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Preface

This volume contains the extended abstracts selected for presentation at ESA 2023, the 31st
European Symposium on Algorithms. The event was organized by Centrum Wiskunde & In-
formatica (CWI), Amsterdam, the Netherlands, as a part of ALGO 2023, on
September 4–6, 2023.

The scope of ESA includes original, high-quality, theoretical and applied research on
algorithms and data structures. Since 2002, it has had two tracks: the Design and Analysis
Track (Track A), intended for papers on the design and mathematical analysis of algorithms,
and the Engineering and Applications Track (Track B), for submissions that also address
real- world applications, engineering, and experimental analysis of algorithms. In 2022, a
new track – Track S – was added, inviting contributions that simplify algorithmic results.
We find that simpler algorithms are easier to implement, bridging the gap between theory
and practice, and we find that new simple or elegant proofs are easier to understand and to
teach, and may contain interesting new insights whose relevance only the future will reveal.

In response to the call for papers for ESA 2023, 370 papers were submitted, 267 for Track
A, 61 for Track B, and 42 for Track S. Paper selection was based on originality, technical
quality, exposition quality, and relevance. Each paper received at least three reviews. The
program committees selected 103 papers for inclusion in the program: 79 from Track A, 15
from Track B, and 9 for Track S, yielding an overall acceptance rate of about 28%. The
presentations of the accepted papers, together with two invited talks by Martin Dietzfelbinger
(TU Ilmenau) and Rotem Oshman (Tel Aviv University) promise to make up an exciting
program.

The European Association for Theoretical Computer Science (EATCS) sponsored best
paper and best student paper awards. A submission was eligible for the best student paper
award if all authors were doctoral, master, or bachelor students at the time of submission. For
Track A, the best paper award was given to Ursula Hebert-Johnson, Daniel Lokshtanov and
Eric Vigoda for the paper “Counting and Sampling Labeled Chordal Graphs in Polynomial
Time”. For Track B, the best paper award was given to Xiangyun Ding, Xiaojun Dong, Yan Gu,
Youzhe Liu and Yihan Sun for the paper “Efficient Parallel Output-Sensitive Edit Distance”.
The best paper award for Track S was given to Oleg Verbitsky and Maksim Zhukovskii
for the paper “Canonization of a Random Graph by Two Matrix-Vector Multiplications”.
The best student paper award was given to Joakim Blikstad and Peter Kiss for the paper
“Incremental (1-ϵ)-Approximate Dynamic Matching in O(poly(1/ϵ)) Update Time”.

We wish to thank all the authors who submitted papers for consideration, the invited
speakers, the members of the program committees for their hard work, and the over 500
external reviewers who assisted the program committees in the evaluation process. Special
thanks go to the organizing committee, who helped us with the organization of the conference.

Information on past ESA symposia, including locations and proceedings, is maintained at
http://esa-symposium.org.
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On Hashing by (Random) Equations
Martin Dietzfelbinger # Ñ
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Abstract
The talk will consider aspects of the following setup: Assume for each (key) x from a set U (the
universe) a vector ax = (ax,0, . . . , ax,m−1) has been chosen. Given a list Z = (zi)i∈[m] of vectors in
{0, 1}r we obtain a mapping

φZ : U → {0, 1}r, x 7→ ⟨ax, Z⟩ :=
⊕
i∈[m]

ax,i · zi,

where
⊕

is bitwise XOR. The simplest way for creating a data structure for calculating φZ is to
store Z in an array Z[0..m − 1] and answer a query for x by returning ⟨ax, Z⟩. The length m of
the array should be (1 + ε)n for some small ε, and calculating this inner product should be fast.
In the focus of the talk is the case where for all or for most of the sets S ⊆ U of a certain size n

the vectors ax, x ∈ S, are linearly independent. Choosing Z at random will lead to hash families of
various degrees of independence. We will be mostly interested in the case where ax, x ∈ U are chosen
independently at random from {0, 1}m, according to some distribution D. We wish to construct
(static) retrieval data structures, which means that S ⊂ U and some mapping f : S → {0, 1}r are
given, and the task is to find Z such that the restriction of φZ to S is f . For creating such a data
structure it is necessary to solve the linear system

(ax)x∈S · Z = (f(x))x∈S

for Z. Two problems are central: Under what conditions on m and D can we expect the vectors
ax, x ∈ S to be linearly independent, and how can we arrange things so that in this case the system
can be solved fast, in particular in time close to linear (in n, assuming a reasonable machine model)?
Solutions to these problems, some classical and others that have emerged only in recent years, will
be discussed.
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Abstract
Computing the diameter of a graph, i.e. the largest distance, is a fundamental problem that is
central in fine-grained complexity. In undirected graphs, the Strong Exponential Time Hypothesis
(SETH) yields a lower bound on the time vs. approximation trade-off that is quite close to the upper
bounds.

In directed graphs, however, where only some of the upper bounds apply, much larger gaps
remain. Since d(u, v) may not be the same as d(v, u), there are multiple ways to define the problem,
the two most natural being the (one-way) diameter (max(u,v) d(u, v)) and the roundtrip diameter
(maxu,v d(u, v) + d(v, u)). In this paper we make progress on the outstanding open question for each
of them.

We design the first algorithm for diameter in sparse directed graphs to achieve n1.5−ε time with
an approximation factor better than 2. The new upper bound trade-off makes the directed case
appear more similar to the undirected case. Notably, this is the first algorithm for diameter in
sparse graphs that benefits from fast matrix multiplication.
We design new hardness reductions separating roundtrip diameter from directed and undirected
diameter. In particular, a 1.5-approximation in subquadratic time would refute the All-Nodes
k-Cycle hypothesis, and any (2 − ε)-approximation would imply a breakthrough algorithm for
approximate ℓ∞-Closest-Pair. Notably, these are the first conditional lower bounds for diameter
that are not based on SETH.
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2:2 On Diameter Approximation in Directed Graphs

1 Introduction

The diameter of the graph is the largest shortest paths distance. A very well-studied
parameter with many practical applications (e.g. [23, 36, 45, 15]), its computation and
approximation are also among the most interesting problems in Fine-Grained Complexity
(FGC). Much effort has gone into understanding the approximation vs. running time tradeoff
for this problem (see the survey [43] and the progress after it [14, 13, 34, 35, 28, 25]).

Throughout this introduction we will consider n-vertex and m-edge graphs that, for
simplicity, are unweighted and sparse with m = n1+o(1) edges1. The diameter is easily
computable in Õ(mn) = n2+o(1) time2 by computing All-Pairs Shortest Paths (APSP). One
of the first and simplest results in FGC [41, 46] is that any O(n2−ε) time algorithm for
ε > 0 for the exact computation of the diameter would refute the well-established Strong
Exponential Time Hypothesis (SETH) [30, 18]. Substantial progress has been achieved in the
last several years [41, 19, 14, 13, 34, 35, 28, 25], culminating in an approximation/running
time lower bound tradeoff based on SETH, showing that even for undirected sparse graphs,
for every k ≥ 2, there is no 2 − 1/k − δ-approximation algorithm running in Õ(n1+1/(k−1)−ε)
time for some δ, ε > 0.

In terms of upper bounds, the following three algorithms work for both undirected and
directed graphs:

1. compute APSP and take the maximum distance, giving an exact answer in Õ(n2) time,

2. compute single-source shortest paths from/to an arbitrary node and return the largest
distance found, giving a 2-approximation in Õ(n) time, and

3. an algorithm by [41, 19] giving a 3/2-approximation in Õ(n1.5) time.

For undirected graphs, there are some additional algorithms, given by Cairo, Grossi
and Rizzi [17] that qualitatively (but not quantitatively) match the tradeoff suggested by
the lower bounds: for every k ≥ 1 they obtain an Õ(n1+1/(k+1)) time, almost-(2 − 1/2k)
approximation algorithm, meaning that there is also a small constant additive error.

The upper and lower bound tradeoffs for undirected graphs are depicted in Figure 1 ; a
gap remains (depicted as white space) because the two trade-offs have different rates. In
directed graphs, however, the gap is significantly larger because an upper bound trade-off is
missing (the lower bound tradeoff follows immediately because it is a harder problem). One
could envision for instance, that the conditional lower bounds for directed diameter could be
strengthened to show that if one wants a (2 − ε)-approximation algorithm, then it must take
at least n1.5−o(1) time. Since the work of [17], the main open question (also asked by [43])
for diameter algorithms in directed graphs has been:

Why are there only three approximation algorithms for directed diameter, but undirected
diameter has an infinite approximation scheme? Is directed diameter truly harder, or can

one devise further approximation algorithms for it?

1 Notably, however, our algorithmic results hold for general graphs, and our hardness results hold even
for very sparse graphs.

2 The notation Õ(f(n)) denotes O(f(n) poly log(f(n)).
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Figure 1 Undirected diameter algorithms and hardness.

Directed is Closer to Undirected

Our first result is that one can devise algorithms for directed diameter with truly faster
running times than n1.5, and approximation ratios between 3/2 and 2. It turns out that
the directed case has an upper bound tradeoff as well, albeit with a worse rate than in the
undirected case. Conceptually, this brings undirected and directed diameter closer together.
See Figure 2 for our new algorithms.

▶ Theorem 1. Let k = 2t+2 for a nonnegative integer t ≥ 0. For every ε > 0 (possibly
depending on m), there exists a randomized 2− 1

k +ε-approximation algorithm for the diameter
of a directed weighted graphs in time Õ(m1+α/ε), for

α =
2( 2

ω−1 )t − (ω−1)2

2

( 2
ω−1 )t(7 − ω) − ω2−1

2
.

The constant 2 ≤ ω < 2.37286 in the theorem refers to the fast matrix multiplication
exponent [6]. A surprising feature of our algorithms is that we utilize fast matrix multiplication
techniques to obtain faster algorithms for a problem in sparse graphs. Prior work on shortest
paths has often used fast matrix multiplication to speed-up computations, but to our
knowledge, all of this work is for dense graphs (e.g. [7, 44, 47, 24]). Breaking the n1.5 bound
with a combinatorial algorithm is left as an open problem.

Roundtrip is Harder

One unsatisfactory property of the shortest paths distance measure in directed graphs is
that it is not symmetric (d(u, v) ̸= d(v, u)) and is hence not a metric. Another popular
distance measure used in directed graphs that is a metric is the roundtrip measure. Here the
roundtrip distance d̃(u, v) between vertices u, v is d(u, v) + d(v, u).

Roundtrip distances were first studied in the distributed computing community in the
1990s [22]. In recent years, powerful techniques were developed to handle the fast computation
of sparse roundtrip spanners, and approximations of the minimum roundtrip distance, i.e.
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Figure 2 Directed diameter algorithms and hardness. All tradeoffs hold for both weighted and
unweighted graphs (though citations may differ for weighted vs. unweighted).

the shortest cycle length, the girth, of a directed graph [38, 21, 26, 20]. These techniques
give hope for new algorithms for the maximum roundtrip distance, the roundtrip diameter of
a directed graph.

Only the first two algorithms in the list in the beginning of the introduction work for
roundtrip diameter: compute an exact answer by computing APSP, and a linear time 2-
approximation that runs SSSP from/to an arbitrary node. These two algorithms work for
any distance metric, and surprisingly there have been no other algorithms developed for
roundtrip diameter. The only fine-grained lower bounds for the problem are the ones that
follow from the known lower bounds for diameter in undirected graphs, and these cannot
explain why there are no known subquadratic time algorithms that achieve a better than
2-approximation.

Are there O(n2−ε) time algorithms for roundtrip diameter in sparse graphs that achieve a
2 − δ-approximation for constants ε, δ > 0?

This question was considered e.g. by [4] who were able to obtain a hardness result for
the related roundtrip radius problem, showing that under a popular hypothesis, such an
algorithm for roundtrip radius does not exist. One of the main questions studied at the
“Fine-Grained Approximation Algorithms and Complexity Workshop” at Bertinoro in 2019
was to obtain new algorithms or hardness results for roundtrip diameter. Unfortunately,
however, no significant progress was made, on either front.

The main approach to obtaining hardness for roundtrip diameter, was to start from the
Orthogonal Vectors (OV) problem and reduce it to a gap version of roundtrip diameter, similar
to all known reductions to (other kinds of) diameter approximation hardness. Unfortunately,
it has been difficult to obtain a reduction from OV to roundtrip diameter that has a larger
gap than that for undirected diameter; in Section 4.1 we give some intuition for why this is
the case.

In this paper we circumvent the difficulty by giving stronger hardness results for roundtrip
diameter starting from different problems and hardness hypotheses. We find this intriguing
because all previous conditional lower bounds for (all variants of) the diameter problem were
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based on SETH. In particular, it gives a new approach for resolving the remaining gaps in
the undirected case, where higher SETH-based lower bounds are provably impossible (under
the so-called NSETH) [35].

Our first negative result conditionally proves that any 5/3−ε approximation for roundtrip
requires n2−o(1) time; separating it from the undirected and the directed one-way cases where
a 1.5-approximation in Õ(n1.5) time is possible. This result is based on a reduction from the
so-called All-Nodes k-Cycle problem.

▶ Definition 2 (All-Nodes k-Cycle in Directed Graphs). Given a k partite directed graph
G = (V, E), V = V1 ∪ · · · ∪ Vk, whose edges go only between “adjacent” parts E ⊆

⋃k
i=1 Vi ×

Vi+1 mod k, decide if all nodes v ∈ V1 are contained in a k-cycle in G.

This problem can be solved for all k in time O(nm), e.g. by running an APSP algorithm,
and in subquadratic O(m2−1/k) for any fixed k [8]. Breaking the quadratic barrier for
super-constant k has been a longstanding open question; we hypothesize that it is impossible.

▶ Hypothesis 3. No algorithm can solve the All-Nodes k-Cycle problem in sparse directed
graphs for all k ≥ 3 in O(n2−δ) time, with δ > 0.

Similar hypotheses have been used in recent works [5, 37, 10, 40]. The main difference
is that we require all nodes in V1 to be in cycles; such variants of hardness assumptions
that are obtained by changing a quantifier in the definition of the problem are popular, see
e.g. [4, 16, 1].

▶ Theorem 4. Under Hypothesis 3, for all ε, δ > 0, no algorithm can 5/3 − ε approximate
the roundtrip diameter of a sparse directed unweighted graph in O(n2−δ) time.

We are thus left with a gap between the linear time factor-2 upper bound and the
subquadratic factor-5/3 lower bound. A related problem with a similar situation is the
problem of computing the eccentricity of all nodes in an undirected graph [4]; there, 5/3
is the right number because one can indeed compute a 5/3-approximation in subquadratic
time [19]. Could it be the same here?

Alas, our final result is a reduction from the following classical problem in geometry to
roundtrip diameter, establishing a barrier for any better-than-2 approximation in subquadratic
time.

▶ Definition 5 (Approximate ℓ∞ Closest-Pair). Let α > 1. The α-approximate ℓ∞ Closest-
Pair (CP) problem is, given n vectors v1, . . . , vn of some dimension d in Rn, determine if
there exists vi and vj with ∥vi − vj∥∞ ≤ 1, or if for all vi and vj, ∥vi − vj∥∞ ≥ α.

Closest-pair problems are well-studied in various metrics; the main question being whether
the naive n2 bound can be broken (when d is assumed to be no(1)). For ℓ∞ specifically, a
simple reduction from OV proves a quadratic lower bound for (2 − ε)-approximations [31];
but going beyond this factor with current reduction techniques runs into a well-known
“triangle-inequality” barrier (see [42, 33]). This leaves a huge gap from the upper bounds that
can only achieve O(log log n) approximations in subquadratic time [31]. Cell-probe lower
bounds for the related nearest-neighbors problem suggest that this log-log bound may be
optimal [11]; if indeed constant approximations are impossible in subquadratic time then the
following theorem implies a tight lower bound for roundtrip diameter.

▶ Theorem 6. If for some α ≥ 2, ε > 0 there is a 2 − 1
α − ε approximation algorithm in

time O(m2−ε) for roundtrip diameter in unweighted graphs, then for some δ > 0 there is an
α-approximation for ℓ∞-Closest-Pair with vectors of dimension d ≤ n1−δ in time Õ(n2−δ).

ESA 2023



2:6 On Diameter Approximation in Directed Graphs

Apx

k

Õ
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Figure 3 Roundtrip Diameter algorithms and hardness. All tradeoffs hold for both weighted and
unweighted graphs (though citations may differ for weighted vs. unweighted). The previously best
hardness results were those inherited from undirected diameter.

In particular, a 2−ε approximation for roundtrip diameter in subquadratic time implies an
α-approximation for the ℓ∞-Closest-Pair problem in subquadratic time, for some α = O(1/ε).
Thus, any further progress on the roundtrip diameter problem requires a breakthrough on
one of the most basic algorithmic questions regarding the ℓ∞ metric (see Figure 3).

1.1 Related Work
Besides the diameter and the roundtrip diameter, there is another natural version of the
diameter problem in directed graphs called Min-Diameter [4, 27, 24]. The distance between
u, v is defined as the min(d(u, v), d(v, u)).3 This problem seems to be even harder than
roundtrip because even a 2-approximation in subquadratic time is not known.

The fine-grained complexity results on diameter (in the sequential setting) have had
interesting consequences for computing the diameter in distributed settings (specifically in
the CONGEST model). Techniques from both the approximation algorithms and from the
hardness reductions have been utilized, see e.g. [39, 2, 9]. It would be interesting to explore
the consequences of our techniques on the intriguing gaps in that context [29].

1.2 Organization
In this extended abstract, we highlight the key ideas in some of our main results (Theorem 1
and Theorem 6) by proving an “easy version” of each theorem. The full proofs of all the
results are in the full version of our paper. First, we establish some preliminaries in Section 2.
In Section 3, we prove the special case of Theorem 1 when t = 0, giving a 7/4-approximation

3 Note that the Max-Diameter version where we take the max rather than the min is equal to the one-way
version.



A. Abboud, M. Dalirrooyfard, R. Li, and V. Vassilevska Williams 2:7

of the diameter in directed unweighted graphs in time O(m1.458). In Section 4.1 we give an
overview of the hardness reductions. In Section 4.2, we prove a weakening of Theorem 6 that
only holds for weighted graphs.

2 Preliminaries

All logs are base e unless otherwise specified. For reals a ≥ 0, let [±a] denote the real interval
[−a, a]. For a boolean statement φ, let 1[φ] be 1 if φ is true and 0 otherwise.

For a vertex v in a graph, let deg(v) denote its degree. For r ≥ 0, let Bin
r (v) = {u :

d(u, v) ≤ r} be the in-ball of radius r around v, and let Bout
r (v) = {u : d(v, u) ≤ r} be the

out-ball of radius r around v. For r ≥ 0, let Bin+
r (v) be Bin

r (v) and their in-neighbors, and
let Bout+

r (v) be Bout
r (v) and their out-neighbors.

Throughout, let ω ≤ 2.3728596 denote the matrix multiplication constant. We use the
following lemma which says that we can multiply sparse matrices quickly.

▶ Lemma 7 (see e.g. Theorem 2.5 of [32]). We can multiply a a × b and a b × a matrix, each
with at most ac nonzero entries, in time O(ac · a

ω−1
2 ).4

We repeatedly use the following standard fact.

▶ Lemma 8. Given two sets B ⊂ V with B of size k and V of size 2m, a set of 4(m/k) log m

uniformly random elements of V contains an element of B with probability at least 1 − 1
m2 .

Proof. The probability that B is not hit is (1 − k
2m )4m/k log m ≤ e−2 log m = 1

m2 . ◀

3 7/4-approximation of directed (one-way) diameter

In this section, we prove Theorem 1 in the special case of t = 0 and unweighted graphs. That
is, we give a 7/4-approximation of the (one-way) diameter of a directed unweighted graph in
O(m1.4575) time. For the rest of this section, let α = ω+1

ω+5 ≤ 0.4575.
Before stating the algorithm and proof, we highlight how our algorithm differs from

the undirected algorithm of [17]. At a very high level, all known diameter approximation
algorithms compute some pairs of distances, and use the triangle inequality to infer other
distances, saving runtime. Approximating diameter in directed graphs is harder than in
undirected graphs because distances are not symmetric, so we can only use the triangle
inequality “one way.” For example, we always have d(x, y) + d(y, z) ≥ d(x, z), but not
necessarily d(x, y) + d(z, y) ≥ d(x, z). The undirected algorithm [17] crucially uses the
triangle inequality “both ways,” so it was not clear whether their algorithm could be adapted
to the directed case. We get around this barrier using matrix multiplication together with
the triangle inequality to infer distances quickly. We consider the use of matrix multiplication
particularly interesting because, previously, matrix multiplication had only been used for
diameter in dense graphs, but we leverage it in sparse graphs.

▶ Theorem 9. Let α = ω+1
ω+5 . There exists a randomized 7/4-approximation algorithm for

the diameter of an unweighted directed graph running in Õ(m1+α) time.

4 In [32], this runtime of O(ac · a
ω−1

2 ) is stated only for the case ac > a(ω+1)/2. However, the runtime
bound for this case works for other cases as well so the lemma is correct for all matrices.

ESA 2023
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Figure 4 Steps 5 and 6. If d(a, b) ≥ D and Steps 2, 3, and 4 do not accept, with high probability,
set Ŝ hits the D/7 out- and in- neighborhoods of a and b at vertices s and s′, respectively, that
must have distance at least 5D/7 by the triangle inequality. Thus, checking all pairs of distances in
Sout × Sin, which can be done quickly with sparse matrix multiplication, distinguishes at Step 6
whether the diameter is at least D or less than 4D/7.

Proof. It suffices to show that, for any positive integer D > 0, there exists an algorithm AD

running in time Õ(m1+α) that takes as input any graph and accepts if the diameter is at
least D, rejects if the diameter is less than 4D/7, and returns arbitrarily otherwise. Then,
we can find the diameter up to a factor of 7/4 by running binary search with AD,5 which at
most adds a factor of O(log n).

We now describe the algorithm AD. The last two steps, illustrated in Figure 4 contain
the key new ideas.
1. First, we apply a standard trick that replaces the input graph on n vertices and m edges

with an 2m-vertex graph of max-degree-3 that preserves the diameter: replace each vertex
v with a deg(v)-vertex cycle of weight-0 edges and where the edges to v now connect to
distinct vertices of the cycle. From now on, we work with this max-degree-3 graph on 2m

vertices.
2. Sample 4mα log m uniformly random vertices and compute each vertex’s in- and out-

eccentricity. If any such vertex has (in- or out-) eccentricity at least 4D/7 Accept.
3. For every vertex v, determine if |Bout

D/7(v)| ≤ mα. If such a vertex v exists, determine if
any vertex in Bout+

D/7 (v) has eccentricity at least 4D/7, and Accept if so.
4. For every vertex v, determine if |Bin

D/7(v)| ≤ mα. If such a vertex v exists, determine if
any vertex in Bin+

D/7(v) has eccentricity at least 4D/7, and Accept if so.
5. Sample 4m1−α log m uniformly random vertices Ŝ. Let Sout = {s ∈ Ŝ : |Bout

2D/7(s)| ≤
m1−α} and Sin = {s ∈ Ŝ : |Bin

2D/7(s)| ≤ m1−α}. Compute Bout
2D/7(s) and Bout+

2D/7(s) for
s ∈ Sout, and Bin

2D/7(s) and Bin+
2D/7(s) for s ∈ Sin.

6. Let Aout ∈ RSout×V be the |Sout| × n matrix where As,v = 1[v ∈ Bout
2D/7(s)]. Let

Ain ∈ RV ×Sin be the n×|Sin| matrix where Ain
v,s = 1[v ∈ Bin

2D/7(s)] if ⌊4D/7⌋ = 2⌊2D/7⌋
and Ain

v,s = 1[v ∈ Bin+
2D/7(s)] otherwise. Compute Aout · Ain ∈ RSout×Sin using sparse

matrix multiplication. If the product has any zero entries, Accept, otherwise Reject.

5 We have to be careful not to lose a small additive factor. Here are the details: Let D∗ be the true
diameter. Initialize hi = n, lo = 0. Repeat until hi − lo = 1: let mid = ⌊(hi + lo)/2⌋, run Amid, if
accept, set lo = mid, else hi = mid. One can check that hi ≥ D∗ + 1 and lo ≤ 7D∗/4 always hold. If
we return lo after the loop breaks, the output is always in [D∗, 7D∗/4].
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Runtime. Computing a single eccentricity takes time O(m), so Step 2 takes time Õ(m1+α).
For Step 3 checking if |Bout

D/7(v)| ≤ mα takes O(mα) time for each v via a partial Breadth-
First-Search (BFS). Here we use that the max-degree is 3. If |Bout

D/7(v)| ≤ mα, there are at
most 3mα eccentricity computations which takes time O(m1+α). Step 4 takes time O(m1+α)
for the same reason. Similarly, we can complete Step 5 by running partial BFS for each
s ∈ Ŝ until m1−α vertices are visited. This gives Sout and Sin and also gives Bout

2D/7(s) and
Bout+

2D/7(s) for s ∈ Sout and Bin
2D/7(s) and Bin+

2D/7(s) for s ∈ Sin. For Step 6, the runtime
is the time to multiplying sparse matrices. Matrix Aout has at most |Ŝ| ≤ 4m1−α log m

rows each with at most maxs∈Sout |Bout
2D/7(s)| ≤ m1−α entries, and similarly Ain has at most

4m1−α log m columns each with at most maxs∈Sin |Bin+
2D/7(s)| ≤ 3m1−α entries. The sparse

matrix multiplication takes time Õ(m(2−2α) · m(1−α) ω−1
2 ) = Õ(m1+α) by Lemma 7 with

a = m1−α, b = n, c = m1−α.

If the Diameter is less than 4D/7, we always reject. Clearly every vertex has eccentricity
less than 4D/7, so we indeed do not accept at Steps 2, 3, and 4. In Step 5, we claim for
every s ∈ Sout, s′ ∈ Sin there exists v such that Aout

s,v = Ain
v,s′ = 1, so that (Aout · Ain)s,s′ ≥ 1

for all s ∈ Sout and s′ ∈ Sin and thus we reject. Fix s ∈ Sout and s′ ∈ Sin. By the
diameter bound, d(s, s′) ≤ ⌊4D/7⌋. Let v be the last vertex on the s-to-s′ shortest path
such that d(s, v) ≤ ⌊2D/7⌋, and, if it exists, let v′ be the vertex after v. Clearly Aout

s,v = 1.
We show Ain

v,s′ = 1 as well. If v = s′, then clearly v ∈ Bin
2D/7(s′) so Ain

v,s′ = 1 as desired.
Otherwise d(s, v) = ⌊2D/7⌋. If ⌊4D/7⌋ = 2⌊2D/7⌋, then d(v, s′) ≤ d(s, s′) − d(s, v) ≤
⌊4D/7⌋ − ⌊2D/7⌋ = ⌊2D/7⌋, so v ∈ Bin

2D/7(s′) and Ain
v,s′ = 1, so again Ain

v,s′ = 1. If
⌊4D/7⌋ = 2⌊2D/7⌋+1, then d(v′, s′) ≤ d(s, s′)−d(s, v′) ≤ ⌊4D/7⌋− (⌊2D/7⌋+1) = ⌊2D/7⌋,
so v′ ∈ Bin

2D/7(s′) and thus v ∈ Bin+
2D/7(s′) and Ain

v,s′ = 1, as desired. This covers all cases, so
we’ve shown we reject.

If the Diameter is at least D, we accept with high probability. Let a and b be vertices
with d(a, b) ≥ D.

If |Bout
3D/7(a)| > m1−α, Step 2 computes the eccentricity of some v ∈ Bout

3D/7(a) with high
probability (by Lemma 8), which is at least d(v, b) ≥ d(a, b) − d(a, v) ≥ 4D/7 by the triangle
inequality, so we accept. Similarly, we accept with high probability if |Bin

3D/7(b)| > m1−α.
Thus we may assume that |Bout

3D/7(a)|, |Bin
3D/7(b)| ≤ m1−α for the rest of the proof.

If |Bout
D/7(v)| ≤ mα for any vertex v, then either (i) d(v, b) ≥ 4D/7, in which case v has

eccentricity at least 4D/7 and we accept at Step 3, or (ii) d(v, b) ≤ 4D/7, in which case
there is a vertex u ∈ Bout+

D/7 (v) on the v-to-b path with d(u, b) ≤ 3D/7 (take the u ∈ Bout+
D/7 (v)

closest to b on the path). Then d(a, u) ≥ 4D/7 by the triangle inequality and we accept in
Step 3 as we perform a BFS from u. Thus we may assume |Bout

D/7(v)| > mα for all vertices v.
Similarly, because of Step 4, we may assume |Bin

D/7(v)| > mα for all vertices v.
In particular, we may assume |Bout

D/7(a)| > mα and |Bin
D/7(b)| > mα. Figure 4 illustrates

this last step. Then Ŝ hits Bout
D/7(a) with high probability (by Lemma 8), so Bout

D/7(a) has some
s ∈ Ŝ with high probability, and similarly Bin

D/7(b) has some s′ ∈ Ŝ with high probability. The
triangle inequality implies that Bout

2D/7(s) ⊂ Bout
3D/7(a), so |Bout

2D/7(s)| ≤ |Bout
3D/7(a)| ≤ m1−α

and thus s ∈ Sout. Similarly s′ ∈ Sin. By the triangle inequality, we have d(s, s′) ≥
d(a, b) − d(a, s) − d(s′, b) ≥ D − D/7 − D/7 = 5D/7. Then we must have (A · B)s,s′ = 0, as
otherwise there is a v such that d(s, v) ≤ ⌊2D/7⌋ and d(v, s′) ≤ 4D/7−⌊2D/7⌋, contradicting
d(s, s′) ≥ 5D/7. Hence, we accept at step 5, as desired. ◀
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4 Hardness Reductions for Roundtrip

4.1 Overview

In this paper we prove hardness results for roundtrip diameter that go beyond the 2 vs. 3
barrier. Before presenting the proofs, let us begin with an abstract discussion on why this
barrier arises and (at a high level) how we overcome it.

All previous hardness results for diameter are by reductions from OV (or its generalization
to multiple sets). In OV, one is given two sets of vectors of size n and dimension d = poly log n,
A and B, and one needs to determine whether there are a ∈ A, b ∈ B that are orthogonal.
SETH implies that OV requires n2−o(1) time [46]. In a reduction from OV to a problem
like diameter, one typically has nodes representing the vectors in A and B, as well as nodes
C representing the coordinates, and if there is an orthogonal vector pair a, b, then the
corresponding nodes in the diameter graph are far (distance ≥ 3), and otherwise all pairs of
nodes are close (distance ≤ 2). Going beyond the 2 vs. 3 gap is difficult because each node
a ∈ A must have distance ≤ 2 to each coordinate node in C, regardless of the existence of an
orthogonal pair, and then it is automatically at distance 2 + 1 from any node b ∈ B because
each b has at least one neighbor in C. So even if a, b are orthogonal, the distance will not be
more than 3.

The key trick for proving a higher lower bound (say 3 vs. 5) for roundtrip is to have two
sets of coordinate nodes, a Cfwd set that can be used to go forward from A to B, and a Cbwd

set that can be used to go back. The default roundtrip paths from A/B to each of these
two sets will have different forms, and this asymmetry will allow us to overcome the above
issue. This is inspired by the difficulty that one faces when trying to make the subquadratic
3/2-approximation algorithms for undirected and directed diameter work for roundtrip.

Unfortunately, there is another (related) issue when reducing from OV. First notice that
all nodes within A and within B must always have small distance (or else the diameter would
be large). This can be accomplished simply by adding direct edges of weight 1.5 between all
pairs (within A and within B); but this creates a dense graph and makes the quadratic lower
bound uninteresting. Instead, such reductions typically add auxiliary nodes to simulate the
n2 edges more cheaply, e.g. a star node o that is connected to all of A. But then the node o

must have small distance to B, decreasing all distances between A and B.
Overcoming this issue by a similar trick seems impossible. Instead, our two hardness

results bypass it in different ways.
The reduction from ℓ∞-Closest-Pair starts from a problem that is defined over one set

of vectors A (not two) which means that the coordinates are “in charge” of connecting all
pairs within A. We remark that while OV can also be defined over one set (monochromatic)
instead of two (bichromatic) and that it remains SETH hard; that would prevent us from
applying the above trick of having a forward and a backward sets of coordinate nodes. Our
reduction in Section 4.2 is able to utilize the structure of the metric in order to make both
ideas work simultaneously.

The reduction from All-Node k-Cycle relies on a different idea: it uses a construction
where only a small set of n pairs ai ∈ A, bi ∈ B are “interesting” in the sense that we do not
care about the distances for other pairs (in order to solve the starting problem). Then the
goal becomes to connect all pairs within A and within B by short paths, without decreasing
the distance for the (ai, bi) pairs. A trick similar to the bit-gadget [3, 2] does the job. For
the complete reduction see the full version of the paper.
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4.2 Weighted Roundtrip 2 − ε hardness from ℓ∞-CP
In this section, we highlight the key ideas in Theorem 6 by proving a weaker version, showing
the lower bound for weighted graphs. See the full version of the paper for the extension to
unweighted graphs.

The main technical lemma is showing that to α-approximate ℓ∞-Closest-Pair, it suffices
to do so on instances where all vector coordinates are in [±(0.5 + ε)α]. Towards this goal,
we make the following definition.

▶ Definition 10. The α-approximate β-bounded ℓ∞-Closest-Pair problem is, given n vectors
v1, . . . , vn of dimension d in [−β, β]d determine if there exists vi and vj with ∥vi − vj∥∞ ≤ 1,
or if for all vi and vj, ∥vi − vj∥∞ ≥ α.

We now prove the main technical lemma.

▶ Lemma 11. Let ε ∈ (0, 1/2) and α > 1. If one can solve α-approximate (0.5 +ε)α-bounded
ℓ∞-CP on dimension O(dε−1 log n) in time T , then one can solve α-approximate ℓ∞-CP on
dimension d in time T + Oε(dn log n), where in Oε(·) we neglect dependencies on ε.

Proof. Start with an ℓ∞ instance Φ = (v1, . . . , vn). We show how to construct a bounded
ℓ∞ instance Φ′ such that Φ has two vectors with ℓ∞ distance ≤ 1 if and only if Φ′ has two
vectors with ℓ∞ distance ≤ 1.

First we show we may assume that v1, . . . , vn are on domain [0, αn]. Suppose that x ∈ [d].
Reindex v1, . . . , vn in increasing order of vi[x] (by sorting). Let v′

1, . . . , v′
n be vectors identical

to v1, . . . , vn except in coordinate x, where instead

v′
i[x] =

i−1∑
j=0

min(α, vj+1[x] − vj [x])

for i = 1, . . . , n, where the empty sum is 0. We have that v′
i[x] ≤ αn for all i, and furthermore

|v′
i[x] − v′

j [x]| ≥ α if and only if |vi[x] − vj [x]| ≥ α and also |v′
i[x] − v′

j [x]| ≤ 1 if and only if
|vi[x] − vj [x]| ≤ 1. Hence, the instance given by v′

1, . . . , v′
n is a YES instance if and only if

the instance Φ is a YES instance, and is a NO instance if and only if the instance Φ is a NO
instance. Repeating this with all other coordinates x gives an instance Φ′ such that Φ′ is a
YES instance if and only if Φ is a YES instance, and Φ′ is a NO instance if and only if Φ′ is
a NO instance, and furthermore Φ′ has vectors on [0, αn].

Now we show how to construct an ℓ∞-CP instance in dimension Oε(d log n) vectors with
coordinates in [±(0.5 + ε)α].

▶ Lemma 12. Let ε ∈ (0, 0.5) and α > 1. For any real number M , there exists two maps
g : [0, M ] → [−(0.5 + ε)α, (0.5 + ε)α]2⌈ε−1⌉+1 and h : [0, M ] → [0, M/2] such that for
all a, b ∈ [0, M ], we have min(|a − b|, α) = min(∥(g(a), h(a)) − (g(b), h(b))∥∞, α). (here,
(g(·), h(·)) is a length 2⌈ε−1⌉ + 2 vector.) Furthermore, g and h can be computed in Oε(1)
time.

Proof. It suffices to consider when ε−1 is an integer. Let fz : R → [−(0.5 + ε)α, (0.5 + ε)α]
be the piecewise function

fz(x) =


−(0.5 + ε)α if x ≤ z − (0.5 + ε)α
(0.5 + ε)α if x ≥ z + (0.5 + ε)α
x − z otherwise.
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For a ∈ [M ], define g(a) ∈ R2ε−1+1 and h(a) ∈ R as follows, where we index coordinates by
−ε−1, . . . , −1, 0, 1, ε−1 for convenience

g(a)i = fM/2+0.5iεα(a) for − ε−1 ≤ i ≤ ε−1

h(a) = |a − M/2|.

Clearly g and h have the correct codomain, and they can be computed in Oε(1) time.
Additionally, note that fz(x) and |x − M/2| are 1-Lipschitz functions of x for all z, so g is a
Lipschitz function and thus ∥g(a) − g(b)∥∞ ≤ |a − b|.

Now, it suffices to show that min(∥(g(a), h(a)) − (g(b), h(b))∥∞, α) ≥ min(|a − b|, α). If a

and b are on the same side of M/2, then ∥h(a) − h(b)∥∞ ≥ ||a − M/2| − |b − M/2|| = |a − b|,
as desired. Now suppose a and b are on opposite sides of M/2, and without loss of generality
a < M/2 < b. Let 0 ≤ i ≤ ε−1 be the largest integer such that a ≤ M/2 − iεα (i = 0 works
so i always exists). If i = ε−1, then a < M/2 − α and

∥g(a) − g(b)∥∞ ≥ fM/2−0.5α(b) − fM/2−0.5α(a) ≥ 0.5α − (−0.5α) = α ≥ min(|a − b|, α),

as desired. Now assume i < ε−1. Let z = M/2 + (0.5 − iε)α. By maximality of i, we have
a−z ∈ [−(0.5+ε)α, −0.5α]. We have g(·)ε−1−2i = fz(·) by definition of g. By the definition of
fz(·), since a ∈ [z−(0.5+ε)α, z−0.5α] and b ≥ a, we have min(fz(b)−fz(a), α) = min(b−a, α).
Thus,

min(∥g(a) − g(b)∥∞, α) ≥ min (g(b)ε−1−2i − g(a)ε−1−2i, α)
= min(fz(b) − fz(a), α) = min(b − a, α),

as desired. In either case, we have min(∥g(a) − g(b)∥∞, α) ≥ min(|a − b|, α), so we conclude
that min(∥g(a) − g(b)∥∞, α) = min(|a − b|, α). ◀

Iterating Lemma 12 gives the following.

▶ Lemma 13. Let ε ∈ (0, 1/2). There exists a map g : [0, αn] → [±(0.5 + ε)α]4⌈ε−1⌉ log n such
that for all a, b ∈ [0, αn], we have min(|a − b|, α) = min(∥g(a) − g(b)∥∞, α). Furthermore, g

can be computed in Oε(log n) time.

Proof. For ℓ = 1, . . . , let Mℓ = αn/2ℓ−1, and let g∗
ℓ : [Mℓ] → [±(0.5 + ε)α]2⌈ε−1⌉+1 and

h∗
ℓ : [Mℓ] → [Mℓ+1] be the functions given by Lemma 12. For ℓ = 0, 1, . . . , let gℓ : [0, αn] →

[−(0.5 + ε)α, (0.5 + ε)α]ℓ(2⌈ε−1⌉+1) and hℓ : [0, αn] → [0, αn/2ℓ] be such that g0(x) = () is an
empty vector, h0(x) = x is the identity, and for ℓ ≥ 1, gℓ(x) = (gℓ−1(x), g∗

ℓ (hℓ−1(x))) and
hℓ(x) = h∗

ℓ (hℓ−1(x)). By Lemma 12, we have that

min (∥(gℓ−1(a), hℓ−1(a)) − (gℓ−1(b), hℓ−1(b))∥∞, α)
= min

(
∥
(
gℓ−1(a), g∗

ℓ (hℓ−1(a)), h∗
ℓ (hℓ−1(a))

)
−

(
gℓ(b), g∗

ℓ (hℓ−1(b)), h∗
ℓ (hℓ−1(b))

)
∥∞, α

)
= min

(
∥
(
gℓ(a), hℓ(a)

)
−

(
gℓ(b), hℓ(b)

)
∥∞, α

)
for all ℓ. For ℓ = ⌈log n⌉, the vector g(a) def= (gℓ(a), hℓ(a) − 0.5α) has every coordinate in
[±(0.5 + ε)α], and by (4.2), we have

min(|a − b|, α) = min(|g0(a) − g0(b)|, α)
= min(|gℓ(a) − gℓ(b)|, α) = min(|g(a) − g(b)|∞, α),

as desired. The length of this vector is at most ⌈log n⌉(2⌈ε−1⌉ + 1) + 1, which we bound by
4⌈ε−1⌉ log n for simplicity (and pad the corresponding vectors with zeros). ◀
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Figure 5 The roundtrip diameter instance G for ℓ∞-CP hardness.

To finish, let g : [0, αn] → [±(0.5 + ε)α] be given by Lemma 13, and let the original ℓ∞
instance be v1, . . . , vn. Let the new (0.5 + ε)α-bounded ℓ∞ instance be wi = (g(vi[x]))x∈[d]
of length 4d⌈ε−1⌉ log n. ◀

We now prove our goal for this section, Theorem 6 for weighted graphs.

▶ Theorem 14. If for some α ≥ 2, ε > 0 there is a 2 − 1
α − ε approximation algorithm in

time O(m2−ε) for roundtrip diameter in weighted graphs, then for some δ > 0 there is an
α-approximation for ℓ∞-Closest-Pair with vectors of dimension d ≤ n1−δ in time Õ(n2−δ).

Proof. By Lemma 11 it suffices to prove that there exists an O(n2−δ) time algorithm for
α-approximate (0.5 + ε)α-bounded ℓ∞-CP for ε = (4α)−1.

Let Φ be the bounded-domain ℓ∞-CP instance with vectors v1, . . . , vn ∈ [±(0.5 + ε)α]n.
Then construct a graph G (see Figure 5) with vertex set S ∪ X1 ∪ X2 where X1 = X2 = [d]
and S = [n]. We identify vertices with the notations iS , xX1 , and xX2 , for i ∈ [n] and x ∈ [d].
Draw directed edges
1. from iS to xX1 , of weight α + vi[x],
2. from xX1 to iS , of weight α − vi[x],
3. from iS to xX2 , of weight α − vi[x],
4. from xX2 to iS , of weight α + vi[x], and
5. between any two vertices in X1 ∪ X2, of weight α.
Note that all edge weights are nonnegative, and any two vertices in X1 ∪ X2 are roundtrip
distance 2α, and any s ∈ S and x ∈ X1 ∪ X2 are distance 2α. Suppose Φ has no solution,
so that every pair has ℓ∞ distance α. Then for vertices iS , jS , there exists a coordinate x

such that vi[x] − vj [x] is either ≥ α or ≤ −α. Without loss of generality, we are in the case
vi[x] − vj [x] ≥ α. Then the path iS → xX2 → jS → xX1 → iS is a roundtrip path of length

(α − vi[x]) + (α + vj [x]) + (α + vj [x]) + (α − vi[x]) = 4α − 2(vi[x] − vj [x]) ≤ 2α.

So when Φ has no solution, the roundrip diameter is at most 2α.
On the other hand, suppose Φ has a solution i, j such that for all x, |vi[x] − vj [x]| ≤ 1.

Then, as every edge has weight at least (0.5 − ε)α,

d(iS , jS) ≥ min
(

min
x∈[d]

(d(iS , xX1) + d(xX1 , jS), d(iS , xX2) + d(xX2 , jS)) , 4(0.5 − ε)α
)

≥ min
(

min
x∈[d]

(α + vi[x] + α − vj [x], α + vj [x] + α − vi[x]), 2α − 4εα

)
≥ min(2α − 1, 2α − 4αε) = 2α − 1.
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Similarly, we have

d(jS , iS) ≥ 2α − 1,

so we have

dRT (jS , iS) ≥ 4α − 2.

so in this case the RT-diameter is at least 4α − 2. A 2 − α−1 − ε approximation for RT
diameter can distinguish between RT diameter 4α − 2 and RT-diameter 2α. Thus, a 2 − α − ε

approximation for RT diameter solves α-approximate ℓ∞-CP. ◀
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We study the fundamental problem of finding the best string to represent a given set, in the form
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hard range, the discrete Closest String problem can be solved faster than exhaustive search.
In the small-d regime, our algorithm is based on a novel application of the inclusion-exclusion
principle.

Interestingly, all of our results apply (and some are even stronger) to the natural dual of the Closest
String problem, called the Remotest String problem, where the task is to find a string maximizing
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1 Introduction

The challenge of characterizing a set of strings by a single representative string is a fundamental
problem all across computer science, arising in essentially all contexts where strings are
involved. The basic task is to find a string x∗ which minimizes the maximum number of
mismatches to all strings in a given set X. Equivalently, the goal is to find the center x∗

of a smallest ball enclosing all strings in X in the Hamming (or ℓ0) metric. This problem
has been studied under various names, including Closest String, 1-Center in the Hamming
metric and Chebyshev Radius, and constitutes the perhaps most elementary clustering task
for strings.

In the literature, the Closest String problem has received a lot of attention [11, 12, 23,
14, 22, 26, 9, 25, 20, 27, 1], and it is not surprising that besides the strong theoretical
interest, it finds wide-reaching applications in various domains including machine learning,
bioinformatics, coding theory and cryptography. One such application in machine learning
is for clustering categorical data. Typical clustering objectives involve finding good center
points to characterize a set of feature vectors. For numerical data (such as a number of
publications) this task translates to a center (or median) problem over, say, the ℓ1 metric
which can be solved using geometry tools. For categorical data, on the other hand, the points
have non-numerical features (such as blood type or nationality) and the task becomes finding
a good center string over the Hamming metric.

Another important application, in the context of computational biology, is the computer-
aided design of PCR primers [25, 24, 10, 29, 13, 32]. On a high level, in the PCR method the
goal is to find and amplify (i.e., copy millions of times) a certain fragment of some sample
DNA. To this end, short DNA fragments (typically 18 to 25 nucleotides) called primers are
used to identify the start and end of the region to be copied. These fragments should match
as closely as possible the target regions in the sample DNA. Designing such primers is a
computational task that reduces exactly to finding a closest string in a given set of genomes.

The Closest String problem comes in two different flavors: In the continuous Closest
String problem the goal is to select an arbitrary center string x∗ ∈ Σd (here, Σ is the
underlying alphabet) that minimizes the maximum Hamming distance to the n strings in
X. This leads to a baseline algorithm running in exponential time O(|Σ|d poly(nd)). In the
discrete Closest String problem, in contrast, the task is to select the best center x∗ in the
given set of strings X; this problem therefore admits a baseline algorithm in time O(n2d).
Despite the remarkable attention that both variants have received so far, the most basic
questions about the continuous and discrete Closest String problems have not been fully
resolved yet:

Can the O(|Σ|d poly(nd))-time algorithm for continuous Closest String be improved?
Can the O(n2d)-time algorithm for discrete Closest String be improved?

In this paper, we make considerable progress towards resolving both driving questions, by
respectively providing tight conditional lower bounds and new algorithms. In the upcoming
Sections 1.1 and 1.2 we will address these questions in depth and state our results.

Interestingly, in both cases our results also extend, at times even in a stronger sense, to a
natural dual of the Closest String problem called the Remotest String problem. Here, the
task is to find a string x∗ that maximizes the minimum Hamming distance from x∗ to a
given set of strings X. This problem has also been studied in computational biology [22, 21]
and more prominently in the context of coding theory: The remotest string distance is a
fundamental parameter of any code which is also called the covering radius [8], and under this
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name the Remotest String problem has been studied in previous works [28, 15, 6, 17] mostly
for specific sets X such as linear codes or lattices. See Alon, Panigrahy and Yekhanin [6] for
further connections to matrix rigidity.

1.1 Continuous Closest/Remotest String

Let us start with the more classical continuous Closest String problem. It is well-known
that the problem is NP-complete [11, 22], and up to date the best algorithm remains the
naive one: Exhaustively search through all possible strings in time O(|Σ|d poly(nd)). This
has motivated the study of approximation algorithms leading to various approximation
schemes [12, 23, 25, 27], and also the study through the lens of parameterized algorithms [14].
In this work, we insist on exact algorithms and raise again the question: Can you solve the
continuous Closest String problem faster than exhaustive search?

For starters, focus on the Closest String problem for binary alphabets (i.e., for |Σ| = 2)
which is of particular importance in the context of coding theory [20]. From the known
NP-hardness reduction which is based on the 3-SAT problem [11], it is not hard to derive
a 2d/2 lower bound under the Strong Exponential Time Hypothesis (SETH) [18, 19]. This
bound clearly does not match the upper bound and possibly leaves hope for a meet-in-the-
middle-type algorithm. In our first contribution we shatter all such hopes by strengthening
the lower bound, with considerably more effort, to match the time complexity of exhaustive
search:

▶ Theorem 1 (Continuous Closest String is SETH-Hard). The continuous Closest String
problem cannot be solved in time O(2(1−ϵ)d poly(n)), for any ϵ > 0, unless SETH fails.

Interestingly, we obtain this lower bound as a corollary of the analogous lower bound for
the continuous Remotest String problem (see the following Theorem 2). This is because both
problems are equivalent over the binary alphabet. However, even for larger sized alphabet
sets Σ, we obtain a matching lower bound against the Remotest String problem:

▶ Theorem 2 (Continuous Remotest String is SETH-Hard). The continuous Remotest String
problem cannot be solved in time O(|Σ|(1−ϵ)d poly(n)), for any ϵ > 0 and |Σ| = o(d), unless
SETH fails.

Theorem 2 gives a tight lower bound for the continuous Remotest String problem in all
regimes where we can expect lower bounds, and we therefore close the exact study of the
continuous Remotest String problem. Indeed, in the regime where the alphabet size |Σ|
exceeds the dimension d, the Closest and Remotest String problems can be solved faster in
time O(dd poly(n, d)) (and even faster parameterized in terms of the target distance [14]).

The intuition behind Theorem 2 is simple: We encode a k-SAT instance as a Remotest
String problem by viewing strings as assignments and by searching for a string which is
remote from all falsifying assignments. The previously known encoding [11] was inefficient
(encoding a single variable Xi accounted for two letters in the Remotest String instance: one
for encoding the truth value and another one as a “don’t care” value for clauses not containing
Xi), and our contribution is that we make the encoding lossless. While superficially simple,
this baseline idea requires a lot of technical effort.
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1.2 Discrete Closest/Remotest String
Recall that in the discrete Closest String problem (in contrast to the continuous one) the
solution string x∗ must be part of the input set X. For applications in the context of data
compression and summarization, the discrete problem is often the better choice: Selecting
the representative string from a set of, say, grammatically or semantically meaningful strings
is typically more informative than selecting an arbitrary representative string.

The problem can be naively solved in time O(n2d) by exhaustive search: Compute the
Hamming distance between all

(
n
2
)

pairs of strings in X in time O(d) each. In terms of exact
algorithms, this running time is the fastest known. Toward our second driving question, we
investigate whether this algorithm can be improved, at least for some settings of n and d. In
previous work, Abboud, Bateni, Cohen-Addad, Karthik, and Seddighin [1] have established
a conditional lower bound under the Hitting Set Conjecture [3], stating that the problem
requires quadratic time in n whenever d = ω(log n):

▶ Theorem 3 (Discrete Closest String for Super-Logarithmic Dimensions [1]). The discrete
Closest String problem in dimension d = ω(log n) cannot be solved in time O(n2−ϵ), for any
ϵ > 0, unless the Hitting Set Conjecture fails.

This hardness result implies that there is likely no polynomially faster algorithm for
Closest String whenever the dimension d falls in the range ω(log n) < d < no(1). But this
leaves open the important question of whether the exhaustive search algorithm can be
improved outside this region, if d is very small (say, o(log n)) or very large (i.e., polynomial
in n). In this paper, we provide answers for both regimes.

Small Dimension. Let us start with the small-dimension regime, d = o(log n). The outcome
of the question whether better algorithms are possible is a priori not clear. Many related
center problems (for which the goal is to select a center point x∗ that is closest not necessarily
in the Hamming metric but in some other metric space) differ substantially in this regard:
On the one hand, in the Euclidian metric, even for d = 2O(log∗ n), the center problem requires
quadratic time under the Hitting Set Conjecture [1].1 On the other hand, in stark contrast,
the center problem for the ℓ1 and ℓ∞ metrics can be solved in almost-linear time n1+o(1)

whenever the dimension is d = o(log n). This dichotomy phenomenon extends to even more
general problems including nearest and furthest neighbor questions for various metrics and
the maximum inner product problem [33, 7].

In view of this, we obtain the perhaps surprising result that whenever d = o(log n) the
discrete Closest String problem can indeed be solved in subquadratic – even almost-linear –
time. More generally, we obtain the following algorithm:

▶ Theorem 4 (Discrete Closest String for Small Dimensions). The discrete Closest String
problem can be solved in time O(n · 2d).

Note that this result is trivial for binary alphabets, and our contribution lies in finding
an algorithm in time O(n · 2d) for alphabets of arbitrary size.

We believe that this result is interesting also from a technical perspective, as it crucially
relies on the inclusion-exclusion principle. While this technique is part of the everyday tool-set
for exponential-time and parameterized algorithms, it is uncommon to find applications for
polynomial-time problems and our algorithm yields the first such application to a center-type

1 Technically, the problem is only known to be hard in the listing version where we require to list all
feasible centers [1].
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problem, to the best of our knowledge. We believe that our characterization of the Hamming
distance in terms of an inclusion-exclusion-type formula (see Lemma 23) is very natural and
likely to find applications in different contexts.

Large Dimension. In the large-dimension regime, where d is polynomial in n, it is folklore
that fast matrix multiplication should be of use. Specifically, over a binary alphabet we can
solve the Closest String problem in time O(MM(n, d, n)) (where MM(n, d, n) is the time to
multiply an n × d by a d × n matrix) by using fast matrix multiplication to compute the
Hamming distances between all pairs of vectors, rather than by brute-force. For arbitrary
alphabet sizes this idea leads to a running time of O(MM(n, d|Σ|, n)) which is of little use
as |Σ| can be as large as n and in this case the running time becomes Ω(n2d).

We prove that nevertheless, the O(n2d)-time baseline algorithm can be improved using
fast matrix multiplication – in fact, using ideas from sparse matrix multiplication such as
Yuster and Zwick’s heavy-light idea [34].

▶ Theorem 5 (Discrete Closest String for Large Dimensions). For all δ > 0, there is some ϵ > 0
such that the discrete Closest String problem with dimension d = nδ can be solved in time
O(n2+δ−ϵ).

Remotest String. Finally, we turn our attention to the discrete Remotest String problem.
In light of the previously outlined equivalence in the continuous setting, we would expect that
also in the discrete setting, the Closest and Remotest String problem are tightly connected.
We confirm this suspicion and establish a strong equivalence for binary alphabets:

▶ Theorem 6 (Equivalence of Discrete Closest and Remotest String). If the discrete Closest
String over a binary alphabet is in time T (n, d), then the discrete Remotest String over a
binary alphabet is in time T (O(n), O(d+log n))+Õ(nd). Conversely, if the discrete Remotest
String over a binary alphabet is in time T ′(n, d), then the discrete Closest String over a
binary alphabet is in time T ′(O(n), O(d + log n)) + Õ(nd).

In combination with Theorem 3, this equivalence entails that also Remotest String requires
quadratic time in the regime ω(log n) < d < no(1). Let us remark that, while the analogous
equivalence is trivial in the continuous regime, proving Theorem 6 is not trivial and involves
the construction of a suitable gadget that capitalizes on explicit constant-weight codes.

The similarity between discrete Closest and Remotest String continues also on the positive
side: All of our algorithms extend naturally to Remotest String, not only for binary alphabets
(see the full version for more details).

1.3 Open Problems
Our work inspires some interesting open problems. The most pressing question from our
perspective is whether there also is a |Σ|(1−o(1))d lower-bound for continuous Closest String
(for alphabets of size bigger than 2).

▶ Open Question 7 (Continuous Closest String for Large Alphabets). For |Σ| > 2, can the
continuous Closest String problem be solved in time O(|Σ|(1−ϵ)d poly(n)), for some ϵ > 0?

We believe that our approach (proving hardness under SETH) hits a natural barrier
for the Closest String problem. In some sense, the k-SAT problem behaves very similarly
to Remotest String (with the goal to be remote from all falsifying assignments), and over
binary alphabets remoteness and closeness can be exchanged. For larger alphabets this trivial
equivalence simply does not hold. It would be exciting if this insight could fuel a faster
algorithm for Closest String, and we leave this question for future work.
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On the other hand, consider again the discrete Closest and Remotest String problems.
While we close almost all regimes of parameters, there is one regime which we did not address
in this paper:

▶ Open Question 8 (Discrete Closest/Remotest String for Logarithmic Dimension). Let c be a
constant. Can the discrete Closest and Remotest String problems with dimension d = c log n

be solved in time O(n2−ϵ), for some ϵ = ϵ(c) > 0?

In the regime d = Θ(log n), we typically expect only very sophisticated algorithms, say
using the polynomial method in algorithm design [2], to beat exhaustive search. And indeed,
using the polynomial method it is possible to solve also discrete Closest and Remotest
String in subquadratic time for binary (or more generally, constant-size) alphabets [5, 4,
Theorem 1.4]. The question remains whether subquadratic time complexity is also possible
for unrestricted alphabet sizes.

1.4 Outline of the Paper
We organize this paper as follows. In Section 2 we give some preliminaries and state the
formal definitions of the continuous/discrete Closest/Remotest String problems. In Section 3
we prove our conditional hardness results for the continuous problems. In Section 4 we treat
in detail the discrete problems. Throughout, due to space constraints, we defer several proofs
to the full version of this paper.

2 Preliminaries

We set [n] = {1, . . . , n} and write Õ(T ) = T (log T )O(1) and poly(n) = no(1). We occasionally
write 1(P ) ∈ {0, 1} to express the truth value of the proposition P .

Strings. Let Σ be a finite alphabet of size at least 2. For a string x ∈ Σd of length
(or dimension) d, we write x[i] for the i-th character in x. For a subset I ⊆ [d], we
write x[I] ∈ ΣI for the subsequence obtained from x by restricting to the characters
in I. The Hamming distance between two equal-length strings x, y ∈ Σd is defined as
HD(x, y) = |{i ∈ [d] : x[i] ̸= y[i]}|. Let X be a set of length-d strings and let x∗ be a length-d
string. Then we set

r(x∗, X) = max
y∈X

HD(x∗, y) (the radius of X around x∗),

d(x∗, X) = min
y∈X

HD(x∗, y) (the distance from x∗ to X).

Let us formally repeat the definitions of the four problems studied in this paper:

▶ Definition 9 (Continuous Closest String). Given a set of n strings X ⊆ Σd, find a string
x∗ ∈ Σd which minimizes the radius r(x∗, X).

▶ Definition 10 (Continuous Remotest String). Given a set of n strings X ⊆ Σd, find a string
x∗ ∈ Σd which maximizes the distance d(x∗, X).

▶ Definition 11 (Discrete Closest String). Given a set of n strings X ⊆ Σd, find a string
x∗ ∈ X which minimizes the radius r(x∗, X).

▶ Definition 12 (Discrete Remotest String). Given a set of n strings X ⊆ Σd, find a string
x∗ ∈ X which maximizes the distance d(x∗, X \ {x∗}).
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Hardness Assumptions. In this paper, our lower bounds are conditioned on the following
two plausible hypotheses from fine-grained complexity.

▶ Definition 13 (Strong Exponential Time Hypothesis, SETH [18, 19]). For all ϵ > 0, there is
some k ≥ 1 such that k-CNF SAT cannot be solved in time O(2(1−ϵ)n).

▶ Definition 14 (Hitting Set Conjecture [3]). For all ϵ > 0, there is some c ≥ 1 such that
no algorithm can decide in O(n2−ϵ) time, whether in two given lists A, B of n subsets of a
universe of size c log n, there is a set in the first list that intersects every set in the second
list (i.e. a “hitting set”).

3 Continuous Closest String is SETH-Hard

In this section we present our fine-grained lower bounds for the continuous Closest and
Remotest String problems. We start with a high-level overview of our proof, and then provide
the technical details in Sections 3.1–3.4.

Let us first recall that over binary alphabets, the continuous Closest and Remotest String
problems are trivially equivalent. The insight is that for any two strings x, y ∈ {0, 1}d we
have that HD(x, y) = d−HD(x, y) where x is the complement of x obtained by flipping each
bit. From this it easily follows that

min
x∗∈{0,1}d

max
y∈X

HD(x∗, y) = d− max
x∗∈{0,1}d

min
y∈X

HD(x∗, y).

Note that finding a string x∗ optimizing the left-hand side is exactly the Closest String
problem, whereas finding a string x∗ optimizing the right-hand side is exactly the Remotest
String problem, and thus both problems are one and the same. For this reason, let us focus
our attention for the rest of this section only on the Remotest String problem.

Tight Lower Bound for Remotest String. Our goal is to establish a lower bound under
the Strong Exponential Time Hypothesis. To this end, we reduce a k-SAT instance with N

variables to an instance of the Remotest String problem with dimension d = (1 + o(1))N . In
Sections 3.1–3.4 we will actually reduce from a q-ary analogue of the k-SAT in order to get a
tight lower bound for all alphabet sizes |Σ|. However, for the sake of simplicity we stick to
binary strings and the usual k-SAT problem in this overview. Our reduction runs in two
steps.

Step 1: Massaging the SAT Formula. In the first step, we bring the given SAT formula
into a suitable shape for the reduction to the Remotest String problem. Throughout, we
partition the variables [N ] into groups P1, . . . , P N

s
of size exactly s (where s is a parameter

to be determined later). We assert the following properties:
Regularity: All clauses contain exactly k literals, and all clauses contain literals from the
same number of groups (say r). This property can be easily be guaranteed by adding a
few fresh variables to the formula, all of which must be set to 0 in a satisfying assignment,
and by adding these variables to all clauses which do not satisfy the regularity constraint
yet.
Balancedness: Let us call an assignment α ∈ {0, 1}N balanced if in every group it assigns
exactly half the variables to 0 and half the variables to 1. We say that a formula is
balanced if it is either unsatisfiable or if it is satisfiable by a balanced assignment. To
make sure that a given formula is balanced, we can for instance flip each variable in the
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formula with probability 1
2 . In this way we balance each group with probability ≈ 1√

s
,

and so all N
s groups are balanced with probability at least s− N

2s . By choosing s = ω(1),
this random experiment yields a balanced formula after a negligible number of repetitions.
In Lemma 19 we present a deterministic implementation of this idea.

Step 2: Reduction to Remotest String. The next step is to reduce a regular and balanced
k-CNF formula to an instance of the Remotest String problem. The idea is to encode all
falsifying assignments of the formula as strings – a sufficiently remote point should in spirit
be remote from falsifying and thus satisfying. To implement this idea, take any clause C

from the instance. Exploiting the natural correspondence between strings and assignments,
we add all strings α ∈ {0, 1}n that satisfy the following two constraints to the Remotest
String instance:
1. The assignment α falsifies the clause C.
2. For any group Pi that does not contain a variable from C, we have that α[Pi] = 0s or

α[Pi] = 1s.
We start with the intuition behind the second constraint: For any balanced assignment α and
any group Pi that does not contain a variable from C, we have that HD(α∗[Pi], α[Pi]) = s

2
(the string α∗[Pi] contains half zeros and half ones, whereas α[Pi] is either all-zeros or
all-ones). There are exactly N

s − r such groups (by the regularity), leading to Hamming
distance s

2 ( N
s − r).

It follows that the only groups that actually matter for the distance between α∗ and α

are the groups which do contain a variable from C. Here comes the first constraint into
play: If α∗ is a satisfying assignment, then α∗ and α must differ in at least one of these
groups and therefore have total distance at least s

2 ( N
s − r) + 1. Conversely, for any falsifying

assignment α∗ there is some string α in the instance with distance at most s
2 ( N

s − r).
Therefore, to decide whether the SAT formula is satisfiable it suffices to compute whether
there is a Remotest String with distance at least s

2 ( N
s − r) + 1. Finally, it can be checked

that the number of strings α added to the instance is manageable.
This completes the outline of our hardness proof, and we continue with the details. In

Section 3.1 we introduce the (q, k)-SAT problem which we will use to give a clean reduction
also for alphabet larger than size 2. In Section 3.2 we formally prove how to guarantee that a
given (q, k)-SAT formula is regular and balanced, and in Section 3.3 we give the details about
the reduction to the Remotest String problem. We put these pieces together in Section 3.4
and formally prove Theorem 2.

3.1 q-ary SAT

To obtain our full hardness result, we base our reduction on the hardness of q-ary analogue
of the classical k-SAT problem. We start with an elaborate definition of this problem. Let
X1, . . . , XN denote some q-ary variables (i.e., variables taking values in the domain [q]). A
literal is a Boolean predicate of the form Xi ̸= a, where xi is one of the variables and a ∈ [q].
A clause is a disjunction of several literals; we say the clause has width k if it contains exactly
k literals. A (q, k)-CNF formula is a disjunction of clauses of width at most k. Finally, in
the (q, k)-SAT problem, we are given a (q, k)-CNF formula over M clauses and N q-ary
variables, and the task is to check whether there exists an assignment α ∈ [q]N which satisfies
all clauses. This problem has already been addressed in previous works [31, 30], and it is
known that q-ary SAT cannot be solved faster than exhaustive search unless SETH fails:
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▶ Lemma 15 (q-ary SAT is SETH-Hard [30, Theorem 3.3]). For any ϵ > 0, there is some k ≥ 3
such that for all q = q(N) ≥ 2, (q, k)-SAT cannot be solved in time O(q(1−ϵ)N poly(M)),
unless SETH fails.

While k is always constant, note that this hardness result applies even when q grows
with N . We will later exploit this by proving hardness for Remotest String even for alphabets
of super-constant size.

3.2 Regularizing and Balancing
Before we get to the core of our hardness result, we need some preliminary lemmas on the
structure of (q, k)-CNF formulas. Throughout, let N be the number of variables and let P
be a partition of N into groups of size exactly s. (Note that the existence of P implies that
N is divisible by s.) In two steps we will now formally introduce the definitions of regular
and balanced formulas and show how to convert unconstrained formulas into regular and
balanced ones. We defer the proofs of the upcoming lemmas to the full version of this paper.

▶ Definition 16 (Regular Formulas). Let ϕ be a (q, k)-CNF formula over N variables, and
let P be a partition of [N ]. We say that ϕ is r-regular (with respect to P) if every clause
contains exactly k literals from exactly r distinct groups in P.

▶ Lemma 17 (Regularizing). Let ϕ be a (q, k)-CNF formula, and let 2k ≤ s ≤ N . In time
poly(NM) we can construct a (q, 2k)-CNF formula ϕ′ satisfying the following properties:

ϕ′ is satisfiable if and only if ϕ is satisfiable.
ϕ′ has at most N + O(s) variables and at most M + O(s poly(q)) clauses.
ϕ′ is (k + 1)-regular with respect to some partition P into groups of size exactly s.

▶ Definition 18 (Balanced Formulas). Let P be a partition of [N ] into groups of size s. We
say that an assignment α ∈ [q]N is balanced (with respect to P) if in every group of P, α

assigns each symbol in [q] exactly s
q times. We say that a (q, k)-CNF formula ϕ is balanced

(with respect to P) if either ϕ is unsatisfiable, or ϕ is satisfiable by a balanced assignment α.

▶ Lemma 19 (Balancing). Let ϕ be a (q, k)-CNF formula over N variables, let P be a partition
of [N ] into groups of size s, and assume that q divides s. We can construct (q, k)-CNF
formulas ϕ1, . . . , ϕt over the same number of variables and clauses as ϕ such that:

For all i ∈ [t], ϕi is satisfiable if and only if ϕ is satisfiable.
There is some i ∈ [t] such that ϕi is balanced (with respect to P).
t = ((s + 1)(q − 1))(q−1) N

s , and we can construct each formula in time poly(NMt).

3.3 Reduction to Remotest String
Having in mind that for our reduction we can assume the SAT formula to be regular and
balanced, the following lemma constitutes the core of our reduction:

▶ Lemma 20 (Reduction from Regular Balanced SAT to Remotest String). Suppose there is an
algorithm for the continuous Remotest String problem, running in time O(|Σ|(1−ϵ)d poly(n)),
for some ϵ > 0. Then there is an algorithm that decides whether a given s-partitioned
r-regular (q, k)-SAT formula is satisfiable, and runs in time O(q(1−ϵ)N+O(s+ N

s ) poly(M)).

Proof. We start with some notation: For a clause C, we write P(C) ⊆ P to address all
groups containing a literal from C. We start with the construction of the Remotest String
instance with alphabet Σ = [q] and dimension d = N . Here, we make use of the natural
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correspondence between strings α ∈ Σd and assignments α ∈ [q]N . In the instance, we add
the following strings: For each clause C, add all assignments α ∈ [q]N to the instance which
satisfy the following two constraints:
1. The assignment α falsifies the clause C.
2. For each group P ∈ P \ P(C), the subsequence α[P ] contains only one symbol.

(That is, α[P ] = as for some a ∈ [q].)
We prove that this instance is complete and sound.

▷ Claim 21 (Completeness). If ϕ is satisfiable, then there is some α∗ ∈ [q]d with d(α∗, X) >
(q−1)(N−rs)

q .

Proof. Since we assume that the formula ϕ is satisfiable and balanced, there is a satisfying
and balanced assignment α∗. To prove that d(α∗, X) > (q−1)(N−rs)

q , we prove that for each
string α added to the Remotest String instance, we have HD(α∗, α) > (q−1)(N−rs)

q . Let C be
the clause associated to α. From the two conditions on α, we get the following two bounds.

By the first condition, α is a falsifying assignment of C. In particular, the subsequence
α[

⋃
P ∈P(C) P ] falsifies C (which is guaranteed to contain all variables visible to C) falsifies C.

Since α∗ is a satisfying assignment to the whole formula, and in particular to C, we must
have that α∗[

⋃
P ∈P(C) P ] ̸= α[

⋃
P ∈P(C) P ], and thus

∑
P ∈P(C) HD(α∗[P ], α[P ]) ≥ 1.

By the second condition, for any group P ∈ P \ P(C), the subsequence α[P ] contains
only one symbol. Since α∗ is balanced, α∗[P ] contains that symbol exactly in a 1/q-
fraction of the positions and differs in the remaining ones from α[P ]. It follows that
HD(α∗[P ], α[P ]) = s− s

q = (q−1)s
q .

Combining both bounds, we have that

HD(α∗, α) =
∑

P ∈P(C)

HD(α∗, α[P ]) +
∑

P ∈P\P(C)

HD(α∗, α[P ])

≥ 1 +
(

N

s
− r

)
· (q − 1)s

q
= (q − 1)(N − rs)

q
+ 1,

and the claim follows. ◁

▷ Claim 22 (Soundness). If ϕ is not satisfiable, then for all α∗ ∈ [q]d we have d(α∗, X) ≤
(q−1)(N−rs)

q .

Proof. Take any α∗ ∈ [q]d. Since ϕ is not satisfiable, α∗ is a falsifying assignment of ϕ and
thus there is some clause C that is falsified by α∗. Our strategy is to find some string α ∈ [q]d
in the constructed instance with HD(α∗, α) ≤ (q−1)(N−rs)

q .
We define that string α group-wise: In the groups P(C) touching C, we define α to

be exactly as α∗, that is, α[
⋃

P ∈P(C)] := α∗[
⋃

P ∈P(C)]. For each group P ∈ P \ P(C) not
touching C, let a ∈ [q] be an arbitrary symbol occurring at least s

q times in α∗[P ] and assign
α[P ] := as. By this construction we immediately have HD(α[P ], α∗[P ]) ≤ s− s

q = (q−1)s
q ,

and in total

HD(α∗, α) =
∑

P ∈P(C)

HD(α∗, α[P ]) +
∑

P ∈P\P(C)

HD(α∗, α[P ])

≤ 0 +
(

N

s
− r

)
· (q − 1)s

q
= (q − 1)(N − rs)

q
,

as claimed. ◁
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In combination, Claims 21 and 22 show that the constructed instance of the Remotest
String problem is indeed equivalent to the given (q, k)-SAT instance ϕ in the sense that ϕ is
satisfiable if and only if there is a remote string with distance more than (q−1)(N−rs)

q .

It remains to analyze the running time. Let n denote the number of strings in the
constructed instance. As a first step, we prove that n ≤ qO(s)+ N

s ·M and that we can
construct the instance in time poly(n). Indeed, focus on any clause C. The strings α in
the instance are unconstrained in all groups touching C (up to the condition that α must
falsify C) which accounts for r · s positions and thus qrs = qO(s) options. For each group
not touching C we can choose between q possible values, and therefore the total number of
options is q

N
s −r ≤ q

N
s . Therefore, the total number of strings is indeed n ≤M · qO(s) · q N

s .
Moreover, it is easy to see that the instance can be constructed in time poly(n).

As the time to construct the instance is negligible, the total running time is dominated by
solving the Remotest String instance. Assuming an algorithm in time O(|Σ|(1−ϵ)d poly(n)),
this takes time O(q(1−ϵ)N+O(s+ N

s ) poly(M)) as claimed. ◀

3.4 Putting the Pieces Together
We are finally ready to prove Theorems 1 and 2.

▶ Theorem 2 (Continuous Remotest String is SETH-Hard). The continuous Remotest String
problem cannot be solved in time O(|Σ|(1−ϵ)d poly(n)), for any ϵ > 0 and |Σ| = o(d), unless
SETH fails.

Proof. Suppose that the continuous Remotest String problem is in time O(|Σ|(1−ϵ)d poly(n))
for some ϵ > 0 and for |Σ| = o(d). With this in mind, we design a better-than-brute-force
(q, k)-SAT algorithm for q = |Σ| by combining the previous three Lemmas 17, 19, and 20.
Let ϕ be the input formula, and let P denote a partition of the variables into groups of size s

(which is yet to be determined) as before.
1. Using Lemma 17, construct a regular (q, 2k)-formula ϕ′ which is equivalent to ϕ.
2. Using Lemma 19, construct regular (q, 2k)-formulas ϕ′

1, . . . , ϕ′
t all of which are equivalent

to ϕ. At least one of these formulas is balanced.
3. By means of the reduction in Lemma 20, solve all t formulas ϕ′

1, . . . , ϕ′
t. If a formula is

reported to be satisfiable, check whether the answer is truthful (e.g., using the standard
decision-to-reporting reduction) and if so report that the formula is satisfiable. We need
the additional test since, strictly speaking, we have not verified in Lemma 20 that the
algorithm is correct for non-balanced inputs.

The correctness is obvious. Let us analyze the running time. Constructing the formula ϕ′

takes polynomial time and can be neglected. By Lemma 17, ϕ′ has N ′ = N + O(s) variables
and M ′ = M + O(s poly(q)) clauses. The construction of the formulas ϕ′

1, . . . , ϕ′
t also runs in

polynomial time poly(N ′M ′t) and can be neglected; this time we do not increase the number
of variables and clauses. Moreover, Lemma 19 guarantees that

t = ((s + 1)(q − 1))(q−1) N′
s ≤ (sq)O( qN

s ),

By picking s = cq (for some parameter c to be determined), this becomes

t ≤ (cq2)O( N
c ) = qO( N

c logq(cq2)) = qN ·O( log c
c ).

Finally, by Lemma 20 solving each formula ϕ′
i takes time

q(1−ϵ)N ′+O(s+ N′
s ) poly(M ′) = q(1−ϵ)N+O(s+ N

s ) poly(M) = q(1−ϵ)N+o(cN)+O( N
c ) poly(M),
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(using that s = cq = o(cN)), and thus the total running time is bounded by

qN ·O( log c
c ) · q(1−ϵ)N+o(cN)+O( N

c ) poly(M) = q(1−ϵ+o(c)+O( log c
c ))N poly(M).

Note that by picking c to be a sufficiently large constant (depending on ϵ), the exponent
becomes (1− ϵ

2 )N , say. We have therefore obtained an algorithm for the (q, k)-SAT problem
in time O(q(1−ϵ/2)N poly(M)), which contradicts SETH by Lemma 15. ◀

4 Discrete Closest String via Inclusion-Exclusion

In this section, we present an algorithm for the discrete Closest String problem with subquad-
ratic running time whenever the dimension is small, i.e. d = o(log n). Our algorithm relies
on the inclusion-exclusion principle, and is, to the best of our knowledge, the first application
of this technique to the Closest and Remotest String problems. Specifically, we obtain the
following result:

▶ Theorem 4 (Discrete Closest String for Small Dimensions). The discrete Closest String
problem can be solved in time O(n · 2d).

We structure this section as follows: First, we present a high-level overview of the main
ideas behind the algorithm; for the sake of presentation, we focus only on the Closest String
problem. We start developing a combinatorial toolkit to tackle the Closest String problem
(with all proofs deferred to the full version of this paper). Then, in Section 4.1 we provide
the actual algorithm and prove Theorem 4.

Before we describe our algorithm, we provide some intuition about the general connection
between the inclusion-exclusion principle and the Hamming distance between a pair of strings.
Our key insight is that the inclusion-exclusion principle allows us to express whether two
strings have Hamming distance bounded by, say k. The following lemma makes this idea
precise:

▶ Lemma 23 (Hamming Distance by Inclusion-Exclusion). Let x and y be two strings of length
d over some alphabet Σ, and let 0 ≤ k < d. Then:

1(HD(x, y) ≤ k) =
∑

I⊆[d]
|I|≥d−k

(−1)|I|−d+k ·
(
|I| − 1

d− k − 1

)
· 1(x[I] = y[I]).

Recall that we write x[I] = y[I] to express that the strings x and y are equally restricted
to the indices in I. The precise inclusion-exclusion-type formula does not matter too much
here, but we provide some intuition for Lemma 23 by considering the special cases where
HD(x, y) = k and HD(x, y) = k − 1. If HD(x, y) = k, then there is a unique set I of size
d − k for which x[I] = y[I]. If instead HD(x, y) = k − 1, then there is a unique such set
of size d − k + 1, and additionally there are d − k + 1 such sets of size d − k. The scalars
(−1)|I|−d+k

( |I|−1
d−k−1

)
are chosen in such a way that in any case, all these contributions sum

up to exactly 1.
The takeaway from the above lemma is that we can express the proposition that two strings

satisfy HD(x, y) ≤ k by a linear combination of 2d indicators of the form 1(x[I] = y[I]). It is
easy to extend this idea further to the following lemma, which is the core of our combinatorial
approach:
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▶ Lemma 24 (Radius by Inclusion-Exclusion). Let x be a string of length d over some alphabet
Σ, let X be a set of strings each of length d over Σ, and let 0 ≤ k < d. Then r(x, X) ≤ k if
and only if

|X| =
∑

I⊆[d]
|I|≥d−k

(−1)|I|−d+k ·
(
|I| − 1

d− k − 1

)
· |{y ∈ X : x[I] = y[I]}|.

Given this lemma, our algorithm for the Closest String problem is easy to state. Informally,
we proceed in the following two steps:

Step 1: Partition. Precompute, for all x ∈ X and for all I ⊆ [d], the value |{y ∈ X : x[I] =
y[I]}|. This can be implemented in time O(n · 2d · poly(d)) by partitioning the input strings
X depending on their characters in the range I. After computing this partition, we can read
the value |{y ∈ X : x[I] = y[I]}| as the number of strings in the same part as x.

Step 2: Inclusion-Exclusion. We test for each 0 ≤ k ≤ d and x ∈ X, whether r(x, X) ≤ k

and finally return the best answer. By Lemma 24 we can equivalently express the event
r(x, X) ≤ k via

|X| =
∑

I⊆[d]
|I|≥d−k

(−1)|I|−d+k ·
(
|I| − 1

d− k − 1

)
· |{y ∈ X : x[I] = y[I]}|.

By observing that the sum contains only 2d terms and noting that we have precomputed the
values |{y ∈ X : x[I] = y[I]}|, we can evaluate the sum, for a fixed x, in time O(2d · poly(d)).
In total, across all strings x ∈ X, the running time becomes O(n · 2d · poly(d)).

Finally, let us briefly comment on the poly(d) term in the running time. When evaluating
the above sum naively, we naturally incur a running time overhead of poly(d) since the
numbers in the sum need Ω(d + log n) bits to be represented. However, this overhead can
be circumvented by evaluating the expression in a smarter way. We provide more details in
Section 4.1.

4.1 The Algorithm in Detail
In this subsection, we provide our algorithms for the discrete Closest String problem. Let us
first demonstrate how to precompute |{y ∈ X : x[I] = y[I]}| for all strings x ∈ X efficiently.

▶ Lemma 25. We can compute |{y ∈ X : x[I] = y[I]}| for all strings x ∈ X in time O(n ·2d).

Proof. Our strategy is to compute, for each I ⊆ [d], a partition PI of the set of all strings X

such that two strings y1, y2 ∈ X are in the same part in PI if and only if y1[I] = y2[I]. This
is our goal since, for all strings x ∈ X, the value we are interested in |{y ∈ X : x[I] = y[I]}|
is exactly the size of the part P in PI that contains x. Thus, if we can efficiently compute,
for all I ⊆ [d] and all x ∈ X, the partition PI and the part P ∈ PI such that x ∈ P then we
have the desired algorithm.

Computing the partition PI for each subset of I ⊆ [d] when |I| ≤ 1 is simple: The
partition P∅ contains just one part which is the entire input set. We also know that
P{i} = {{x ∈ X : x[i] = σ} : σ ∈ Σ} for every 0 ≤ i ≤ d− 1. Thus, we can compute the
partitions P∅ and P{i} for every 0 ≤ i ≤ d− 1 in time O(n · d). The remaining question is
how to efficiently compute the partitions PI for each subset of I ⊆ [d] where |I| ≥ 2.
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The idea is to use dynamic programming in combination with a partition refinement data
structure. Let us start with some notation: For a partition P and a set S, we define the
refinement of P by S as the partition {P ∩ S, P \ S : P ∈ P}. For two partitions P and
P ′, we define the refinement of P by P ′ by the iterative refinement of all sets S ∈ P ′. In
previous work, Habib, Paul, and Viennot [16] have established a data structure to maintain
partitions P of some universe [n] that efficiently supports the following two operations:

Refinement: We can refine a partition P by another partition P ′ in time O(n).
Query: Given a partition P and an element i ∈ [d], we can find the part i ∈ P ∈ P in
time O(1).

Given this data structure, our algorithm is simple: Enumerate all sets I in nondecreasing
order with respect to their sizes |I|. Writing I = I ′ ∪ {i} (for some i ∈ [d]), we compute PI

as the refinement of the previously computed partitions PI′ and P{i}. It is straightforward
to verify that this algorithm is correct. The running time of each refinement step is O(n)
and so the total running time is O(n · 2d) as claimed. ◀

We are finally ready to state our algorithm and prove its correctness using Lemmas 24
and 25.

Proof of Theorem 4. First, it is clear that if we test for each 0 ≤ k ≤ d and x ∈ X whether
r(x, X) ≤ k then we can find the solution to the discrete Closest String problem. From
Lemma 24 we know that r(x, X) ≤ k if and only if:

|X| =
∑

I⊆[d]
|I|≥d−k

(−1)|I|−d+k ·
(
|I| − 1

d− k − 1

)
· |{y ∈ X : x[I] = y[I]}|.

Thus, if we efficiently compute |{y ∈ X : x[I] = y[I]}| for all strings x ∈ X and efficiently
compute the right-hand side of the equation we will have an efficient algorithm for the
discrete Closest String problem. We know from Lemma 25 that we can precompute |{y ∈
X : x[I] = y[I]}| for all strings x ∈ X in time O(n · 2d). Therefore, the only missing part of
the algorithm is computing the inclusion-exclusion step in O(n · 2d) time.

If we naively evaluate the inclusion-exclusion formula the running time becomes Ω(n ·2d ·d)
as the intermediate values need Ω(d) bits to be represented in memory. However, we observe
that inclusion-exclusion formula can indeed be evaluated more efficiently by rewriting it as
follows:∑

I⊆[d]
|I|≥d−k

(−1)|I|−d+k ·
(
|I| − 1

d− k − 1

)
· |{y ∈ X : x[I] = y[I]}|

=
d∑

ℓ=d−k

(−1)ℓ ·
(

ℓ− 1
d− k − 1

)
·

∑
I⊆[d]
|I|=ℓ

|{y ∈ X : x[I] = y[I]}|.

We can precompute S[x, ℓ] :=
∑

I⊆[d],|I|=ℓ|{y ∈ X : x[I] = y[I]}| for all strings x ∈ X and all
values 1 ≤ ℓ ≤ d before we compute the inclusion exclusion step. Since there are 2d different
subsets of [d] and since we already have access to the values |{y ∈ X : x[I] = y[I]}|, for all
strings x ∈ X, computing S[x, ℓ] amounts to time O(n · 2d). Afterwards, computing

d∑
ℓ=d−k

(−1)ℓ ·
(

ℓ− 1
d− k − 1

)
· S[x, ℓ]

for all strings x ∈ X and for all 0 ≤ k ≤ d− 1 only takes time O(n · d3). Hence, the total
running time of the algorithm is O(n · 2d). ◀
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Algorithm 1 An algorithm for the discrete Closest String problem in the small-distance regime.
See Theorem 4.

1: (Step 1: Precompute T [x, I] = |{y ∈ X : x[I] = y[I]}|)
2: P∅ ← X

3: P{i} ← {{x ∈ X : x[i] = σ} : σ ∈ Σ} ∀i ∈ [0, . . . , d− 1]
4: for I = I ′ ∪ {i} do
5: PI ← refinement of PI′ ,P{i}
6: for x ∈ X, I ⊆ [d] do
7: T [x, I]← |P | where x ∈ P ∈ PI

8: (Step 2: Inclusion-Exclusion)
9: for x ∈ X, I ⊆ [d] do

10: S[x, |I|]← S[x, |I|] + T [x, I]
11: for k ← 0, . . . , d− 1 do
12: for x ∈ X do
13: if |X| =

∑d
ℓ=d−k (−1)ℓ ·

(
ℓ−1

d−k−1
)
· S[x, ℓ] then

14: return x

15: return an arbitrary x ∈ X

We summarize the pseudocode of the algorithm outlined in the proof of Theorem 4 in
Algorithm 1.
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Abstract
The Voronoi diagrams technique, introduced by Cabello [SODA’17] to compute the diameter of
planar graphs in subquadratic time, has revolutionized the field of distance computations in planar
graphs. We present novel applications of this technique in static, fault-tolerant, and partially-dynamic
undirected unweighted planar graphs, as well as some new limitations.

In the static case, we give n3+o(1)/D2 and Õ(n · D2) time algorithms for computing the diameter
of a planar graph G with diameter D. These are faster than the state of the art Õ(n5/3)
[SODA’18] when D < n1/3 or D > n2/3.
In the fault-tolerant setting, we give an n7/3+o(1) time algorithm for computing the diameter of
G \ {e} for every edge e in G (the replacement diameter problem). This should be compared
with the naive Õ(n8/3) time algorithm that runs the static algorithm for every edge.
In the incremental setting, where we wish to maintain the diameter while adding edges, we
present an algorithm with total running time n7/3+o(1). This should be compared with the naive
Õ(n8/3) time algorithm that runs the static algorithm after every update.
We give a lower bound (conditioned on the SETH) ruling out an amortized O(n1−ε) update
time for maintaining the diameter in weighted planar graph. The lower bound holds even for
incremental or decremental updates.

Our upper bounds are obtained by novel uses and manipulations of Voronoi diagrams. These
include maintaining the Voronoi diagram when edges of the graph are deleted, allowing the sites of
the Voronoi diagram to lie on a BFS tree level (rather than on boundaries of r-division), and a new
reduction from incremental diameter to incremental distance oracles that could be of interest beyond
planar graphs. Our lower bound is the first lower bound for a dynamic planar graph problem that is
conditioned on the SETH.
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1 Introduction

The diameter problem asks to compute the largest distance in the graph. It is one of
the most basic and extensively studied problems in the graph algorithms literature, and
moreover, it is prominent in Fine-grained Complexity where it has driven the development
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of innovative hardness reductions [1,4,5,9,11,17,29,36,67]. Assuming the strong exponential
time hypothesis (SETH), there is also no truly subquadratic algorithm for diameter [5, 67]
in undirected, unweighted graphs with treewidth Ω(log n). For graphs of bounded treewidth,
the diameter can be computed in near-linear time [5] (see also [41,50] for algorithms with
time bounds that depend on D). Near-linear time algorithms were developed for many other
restricted graph families, see e.g. [8, 14,31–34,40,43,49,66].

One of the outstanding questions that has remained open despite a decade of major
developments in algorithms and conditional lower bounds for graph problems is whether
diameter can be solved in near-linear time in planar graphs. Until 2017, only logarithmic
improvements over the natural O(n2) bound (of computing all-pairs shortest-path, APSP)
had been known [23,72]. The consensus was that truly subquadratic time is impossible and
the focus of the community was on proving a hardness result, e.g. under SETH. But then, in
a celebrated paper, Cabello [22] gave a subquadratic Õ(n11/6) time algorithm, that was later
improved to the current-best Õ(n5/3) bound [45].

The breakthrough in Cabello’s work [22] is his novel use of Voronoi Diagrams (VDs)
in planar graph algorithms. This new machinery has revolutionized the field of distance
computation problems in planar graphs and has lead to several breakthroughs [26,28,35,47,63]
including a surprising and almost-optimal distance oracle - a problem that had hitherto seen
many gradual improvements using different techniques both in the exact [10, 21, 26, 30, 35, 39,
42, 47, 56, 63–65,73] and the approximate [24, 48, 54, 55, 58, 69, 74] settings. Consequently, the
main meta question occupying the minds of researchers in planar graph algorithms is: what
else can Voronoi diagrams do for us?

1.1 Dynamic Planar Diameter
It is natural to expect VDs to produce breakthroughs in the domain of dynamic planar graphs.
Dynamic data structures that support updates and queries to a graph have remarkable
applications in theory (as a subroutine in static algorithms) and practice (for changing
inputs). Many ingenious algorithms for basic problems in dynamic planar graphs have been
developed in the last few decades, including connectivity, distances, and cuts [6, 18,19,25,
28, 37, 42, 51–53,55, 56, 59, 62, 68, 69], but large (polynomial) gaps remain compared to the
lower bounds [3]. Only few of these works [27,28] use VDs and only in a limited way (they
recompute the VD from scratch after every update). It is clear that major advancements
await if one is able to maintain the VD machinery dynamically in a meaningful way. In this
paper, we investigate this possibility by focusing on the diameter problem.

The state-of-the-art algorithm recomputes the diameter from scratch after every update
in time Õ(n5/3). This is not surprising since the only useful technique against diameter (in
static graphs) is based on VDs, and we do not know how to make VDs dynamic.

The first question that comes to mind is: Suppose, optimistically, we could make VDs
as dynamic as possible; what time bound would we hope to get? Clearly, we cannot get
O(n2/3−ε) time per update until we break the Õ(n5/3) bound for static graphs. Moreover, a
conditional n2/3−o(1) lower bound (under the APSP or Online Matrix Vector Conjectures)
follows from the reductions of Abboud and Dahlgaard [3]. So perhaps dynamic VDs would
lead to a matching O(n2/3) upper bound? Our first result rules out this possibility with an
n1−o(1) lower bound under SETH.

▶ Theorem 1 (Lower Bound on Dynamic Diameter). If the diameter of a dynamic undirected
planar graph on n nodes can be maintained with O(n1−ε) amortized time per weight-change,
then SETH is false. This holds even if the dynamic algorithm is allowed to preprocess the
initial graph in poly(n) time, and even in the partially-dynamic setting where weights only
increase or only decrease.
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Notably, this is the first lower bound for a dynamic planar graph problem that is based
on the SETH (as opposed to other conjectures) and only the second example of such a result
if we consider static planar graph problems as well [2, 46].

Towards Dynamic Voronoi Diagrams. A large gap of n2/3 remains despite our lower bound
and it is likely that it can be closed if we can indeed make VDs dynamic.1

In this paper, we take a small (but arguably the first) step towards this goal: we give
an efficient algorithm for updating the VD after the deletion of one edge in the graph,
much faster than recomputing it from scratch. (We refer to Section 5 for an overview and
all the details.) This small step already has interesting applications. While it applies for
general (weighted) planar graphs, the applications we have found only gain an advantage in
unweighted planar graphs.

A concrete application is a faster algorithm for the replacement diameter: given a
graph G return the diameter of G \ {e}, the graph obtained by removing the edge e, for
all edges e. The trivial algorithm for this problem makes O(n) calls to a static diameter
algorithm, one for each edge, and achieves Õ(n8/3) running time. We improve this upper
bound by an n1/3 factor to n7/3+o(1) by utilizing our efficient updates to VDs, along with
other tricks that are also based on VDs (but not in a dynamic way).

▶ Theorem 2 (Replacement Diameter). Given an unweighted undirected planar graph G =
(V, E), there is an n7/3+o(1) time algorithm that for every edge e ∈ E outputs the diameter
of Ge = (V, E \ {e}).

An additional new result is a faster algorithm for diameter in the incremental setting
where we start from an empty graph and need to maintain the diameter while O(n) edges
are being added (without violating the planarity). The trivial algorithm recomputes the
diameter after every update in a total of Õ(n8/3) time, and we improve it to n7/3+o(1).

▶ Theorem 3 (Incremental Diameter). There is an algorithm that maintains the diameter
of an unweighted undirected planar graph undergoing edge insertions in a total of n7/3+o(1)

time.

This result is based on an elegant reduction from incremental diameter to incremental
distance oracles that could be of interest beyond planar graphs. Its analysis relies on recent
works on the bipartite independent set queries introduced by Beame et al. [13].

1.2 Static Planar Diameter
Back to diameter in static graphs, what else can we hope to get from VDs? Of course, the
biggest open question is whether the n5/3 bound can be improved to n1+o(1), or whether one
can prove a super-linear lower bound. Toward this question, we would like to understand the
hard/easy cases, and a natural parameter to consider is D – the diameter itself.

One of the main algorithmic contributions of this paper, that is crucial to the afore-
mentioned upper bounds, is an algorithm beating n5/3 when D is large (in the range
[n2/3+ε, n]). Notably, it implies that anyone seeking a tight conditional lower bound cannot
use constructions with very large diameter.

1 It is tempting to think that Theorem 6 implies a dynamic diameter algorithm with update time Õ(n1.6);
Use an r-division and maintain for each piece the DDG and bisectors. Upon an update of an edge in a
piece P , recompute the DDG of P (using MSSP) and the bisectors of P (using Theorem 6). For each
vertex in the graph, recompute all additive weights using FR-Dijkstra, and compute the furthest vertex
in each piece using Theorem 6. The caveat is that this approach does not handle properly the case
where both endpoints of the diameter path belong to the same piece (not necessarily P ). The reason is
that the VD mechanism only handles paths that visit at least one boundary node.
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▶ Theorem 4 (Static Large Diameter). The diameter can be computed in n3+o(1)/D2 time
on an unweighted undirected planar graph with diameter D.

Our new algorithm applies VDs in a novel way, where the VD sites lie on a BFS tree
level, as opposed to lying on the boundary of pieces in an r-divisions.

While our result is the first to address the large D case, the other extreme of small D has
already been studied. Eppstein [41] gave the first near-linear time algorithm for constant D,
with an exponential dependence on D. This dependency was later improved as a byproduct
of new (1 + ε)-approximation algorithms for diameter [15,24,41,70]. The state of the art is
Õ(n ·D5) using the (1+ε)-approximation Õ(n · (1/ε)5)-time algorithm of Chan and Skrepetos
[24] with ε = 1/D. The final result of this paper is an improved bound of Õ(nD2) which
increases the range in which the n5/3 bound can be beaten from D < n2/15−ε to D < n1/3−ε.

▶ Theorem 5 (Static Small Diameter). The diameter can be computed in Õ(n · D2) time on
an unweighted undirected planar graph with diameter D.

Our algorithm exploits VDs in a more natural way than that of Chan and Skrepetos [24],
if our goal is solve the small D case exactly (recall that their focus is on approximations). It
remains an interesting open question whether the Õ(n · (1/ε)5) time approximation algorithm
can be improved. This is related to another challenge of computing approximate VDs faster
than exact, which we do not address in this paper.

2 Preliminaries

A recursive decomposition tree T of a planar graph G is the tree obtained (in linear time)
by recursively separating G with a separator of size

√
|G|. T is a binary tree whose nodes

correspond to subgraphs of G (called pieces), with the root being all of G and the leaves
being pieces of constant size. We identify each piece P with the node representing it in T
(we can thus abuse notation and write P ∈ T ), and with its boundary ∂P (i.e. vertices that
belong to some separator along the recursive decomposition used to obtain P ). An important
property for us (see e.g. [47, Lemma 3.1]) is that the sum of |P | · |∂P ′| over all pairs of
siblings P, P ′ in T is Õ(n1.5).

An r-division [44] of a planar graph G is a decomposition of G into Θ(n/r) pieces, each
of them with O(r) vertices and O(

√
r) boundary vertices (vertices shared with other pieces).

It is possible to compute an r-division in O(n) time [57] with the useful property that the
boundary vertices of each piece lie on a constant number of faces of the piece (called holes).

The dense distance graph (DDG) of a piece P is the complete graph over the boundary
vertices of P . The length of edge uv in the DDG of P equals to the u-to-v distance inside P .
Note that the DDG of P is non-planar. The DDG of an r-division is the union of DDGs of
all pieces of the r-division. Thus, the total number of vertices in the DDG is O(n/

√
r), and

the total number of edges is O(n). The DDG of an r-division can be computed in Õ(n) time
using the MSSP algorithm [56]. Fakcharoenphol and Rao [42] described an Õ(n/

√
r) time

implementation of Dijkstra’s algorithm (nicknamed FR-Dijkstra) on the DDG.
The difficult case for computing the diameter is when the furthest pair of vertices lie in

different pieces. Consider some source vertex s outside of some piece P . For every boundary
vertex u of P , let d(u) denote the s-to-u distance in G. The additively weighted Voronoi
diagram of P with respect to d(·) is a partition of the vertices of P into pairwise disjoint
sets (Voronoi cells), each associated with a unique boundary vertex (site) u. The vertices
in the cell Vor(u) are all the vertices v of P such that u is the last boundary vertex of P

on the shortest s-to-v path. In other words, every site u of P has additive weight d(u), the
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additive distance from a site u to a vertex v of P is defined as d(u) plus the length of the
shortest u-to-v path inside P , and the cell Vor(u) contains all vertices v of P that are closer
(w.r.t. additive distances) to u than to any other site in S. The boundary ∂Vor(u) of a cell
Vor(u) consists of all edges of P that have exactly one endpoint in Vor(u). For example, in a
Voronoi diagram of just two sites u and v, the boundary of the cell Vor(u) is a uv-cut and
is therefore a cycle in the dual graph. This cycle is called the uv-bisector. The complexity
|∂Vor(u)| of a Voronoi cell Vor(u) is the number of faces of P that contain vertices of Vor(u)
and of at least two more Voronoi cells. For every source s, computing the furthest vertex
from s in P thus boils down to computing, for each site u, the furthest vertex (w.r.t. additive
distance) from u in Vor(u), and then returning the maximum value among all sites u.

▶ Theorem 6 ([45]). Let P be an edge-weighted planar graph with r vertices. Let S be a set
of b sites that lie on the boundaries of Õ(1) faces2 of P . The uv-bisectors of all pairs u, v ∈ S

and all possible additive weights d(u), d(v) can be computed and represented in Õ(rb2) time
and space. Then, given any additive weights d(·) to S, a representation of the Voronoi
diagram w.r.t these weights can be constructed in Õ(|S|) time. With this representation,
for any site u ∈ S we can query the maximum distance from u to a vertex in Vor(u) in
Õ(|∂Vor(u)|) time.

3 Static Diameter

3.1 An n3+o(1)/D2 Algorithm
In this subsection we prove Theorem 4, stating that the diameter can be computed in
n3+o(1)/D2 time on an unweighted undirected planar graph with diameter D. We first
present a randomized Õ(n4/D3) time algorithm, and then show how to improve it to
n3+o(1)/D2. We then show how to derandomize both algorithms. We begin with two simple
observations about the BFS levels when the diameter is ≥ D.

▶ Observation 7. Let s be any node in a graph of diameter ≥ D. Then at least one out of
the D/2 middle levels of the BFS tree rooted at s has size O(n/D).

▶ Observation 8. Let s be any node in G and let Li be the set of nodes at level i in the
BFS tree rooted at s. Let Gi be the subgraph of G that is induced by

⋃
j≥i Lj . Then for each

connected component C of Gi the nodes in Li ∩ C lie on a single face.

Proof. To see that the vertices of Li ∩C all lie on the same face in Gi, consider the embedding
of the component C of Gi inherited from the embedding of G. Viewing C as a graph obtained
from G by deleting edges and vertices, one can start from any vertex of Li and follow a curve
in the plane that only goes through deleted edges and vertices until reaching the root s of
the BFS tree. Hence all vertices of Li lie on a single face of C, and hence also of Gi. ◀

A randomized algorithm. We first compute in O(n) time a 2-approximation (lower bound)
D̃ of D by computing a BFS tree and choosing D̃ to be the furthest root-to-leaf distance.
Then, we repeat the following procedure θ(n log n/D̃) times, and return the largest distance
found:

2 Theorem 1.1 in [45] is phrased for a constant number of faced (called holes). However, as pointed in
footnote 8 in [45], the dependency of the running time on the number of holes is polynomial, so the
theorem applies also to the case of a polylogarithmic number of holes.
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1. Randomly sample a source s, compute its BFS tree. Let D′ be the depth of this tree.
Note that D ≥ D′ ≥ D/2. Let S = Li be the set of nodes at level i satisfying both
D′/4 < i < 3D′/4 and |S| = O(n/D′) = O(n/D). By Observation 7, such a set exists.
Let Gi be the subgraph of G induced by

⋃
j≥i Lj .

2. Compute d(v, b) for all v ∈ G and all b ∈ S.
3. For each connected component C of Gi:

a. Compute all bisectors in C of sites C ∩ S (that lie on a single face by Observation 8).
b. For each node v in G \ Gi, compute the VD of C w.r.t the additive weights d(v, b),

and compute the distance from v to its furthest vertex in every Voronoi cell of the VD.

Running time. The first step takes O(n) time by computing and traversing the BFS tree of
s. The second step takes O(n2/D) time by doing a BFS from each vertex of S in O(n) time.
The most expensive step is 3a. By Theorem 6, all bisectors of a connected component C

can be computed in Õ(|C| · |C ∩ S|2) time. Over all connected components, this sums up to
Õ(n · (n/D)2) (since the C’s are disjoint and sum up to n, and the C ∩ S are disjoint and
sum up to O(n/D)). Finally, in step 3b, for each vertex v, computing v’s VD and furthest
vertex in every cell takes Õ(|C ∩ S|) time by Theorem 6. Over all connected components,
this sums up to Õ(n/D), and thus over all vertices v to Õ(n2/D). The total running time of
the entire procedure is thus Õ(n · (n/D)2), and since we repeat the procedure Õ(n/D) times
we get Õ(n4/D3).

Correctness. It remains to prove that the distance we return is indeed the diameter with
high probability. Let x, y be the two endpoints of the diameter (i.e. D = d(x, y)). Then, the
probability that a random source s satisfies d(s, x) ≤ D′/4 and d(s, y) ≥ 3D′/4 is at least
D′/4n (because this happens if s is one of the first D′/4 nodes on the path from x to y).
Therefore, this happens with high probability for at least one of the sources s that we choose.
For this s, we will have that x ∈ G \ Gi while y ∈ Gi (it is impossible that y ∈ G \ Gi because
then an x-to-y path through s would be shorter than D), and then the largest distance that
we find is guaranteed to be d(x, y).

Derandomization. Observe that to derandomize the algorithm, it suffices to replace the
sampling of sources with a (deterministic) selection of a set of sources S of size O(n/D) such
that a diameter endpoint x is at distance ≤ D′/4 from at least one source s ∈ S.

To construct S, pick an arbitrary source s and compute it’s BFS tree T of depth D′ ≤ D.
Find a level Li that has only O(n/D′) = O(n/D) nodes and 0.4D′ ≤ i ≤ 0.5D′. Similarly,
find a level Lj that has only O(n/D) nodes and 0.8D′ ≤ j ≤ 0.9D′. The set of sources is
then S = {s} ∪ Li ∪ Lj . It is easy to verify that every vertex v in the graph has an ancestor
or a descendant in T that belongs to S and is at distance at most D′/4 ≤ D/4 from v.

A faster algorithm. Next, we improve the running time to n3+o(1)/D2. Again, we will start
with a randomized algorithm and then derandomize. Let Bρ(v) denote the ball with radius
ρ around vertex v. Recall that our goal is to sample w.h.p. a vertex s in BD̃/4(x) (without
knowing x), where x is a diameter endpoint.

Let ρ = D̃/4. In order to sample a vertex s in Bρ(x) w.h.p., it suffices to randomly sample
a set of Õ(n/|Bρ(x)|) vertices (rather than sampling Õ(n/ρ) vertices as in the approach
above). Then, for each sampled vertex s, we can find a level Li in the BFS tree of s with
ρ < i ≤ 2ρ s.t. |Li| < |B2ρ(s)|/ρ (rather than n/ρ as in the approach above). Then, executing
the approach above (i.e., executing steps 2–3 of the Õ(n4/D3) algorithm above) for a specific
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s would take time Õ(n(|B2ρ(s)|/ρ)2) to compute all bisectors, Õ(n|B2ρ(s)|/ρ) to compute
all additive weights, and Õ(|B2ρ(s)|2/ρ) to construct the Voronoi diagrams for all vertices
above level i. We see that if |Bρ(x)| is large then we gain because we have to sample fewer
vertices, and if |B2ρ(s)| is small then we gain because the amount of work for each sampled
vertex decreases.

For this approach to work, we need to (1) estimate |Bρ(x)|, and (2) relate |Bρ(x)| and
|B2ρ(s)|. To address (1), we simply estimate |Bρ(x)| by enumerating all powers of two 2k

for 0 ≤ k ≤ log n. To address (2), note that |Bρ(x)| < |B2ρ(s)| < |B3ρ(x)|, and that there
must exist a j ∈ {1, 2, . . . ,

√
log3 n} s.t. |B3ρ3−j (x)|/|Bρ3−j (x)| < 3

√
log3n = no(1) (if not,

|Bρ(x)| > n, a contradiction).
The algorithm is therefore: For each 1 ≤ j ≤

√
log3n, let ρj = 3−jρ. For each

0 ≤ k < log n we sample (n log n)/2k vertices s (reflecting our assumption that Bρj
(x) ≤ 2k).

For each sampled vertex s, if |B2ρj
(s)| > 2k3

√
log3n, then, since |Bρ(x)| < |B2ρ(s)| < |B3ρ(x)|,

it must be that s /∈ Bρj
(x) or |Bρj

(x)| > 2k or |Bρj−1(x)|/|Bρj
(x)| > 3

√
log3n (the disjunction

is not exclusive). Hence, in this case we discard s and move on to the next sampled vertex.
Otherwise, |B2ρj (s)| ≤ 2k3

√
log3n, and we can find a level Li with ρj < i < 2ρj in the BFS

tree rooted at s s.t. |Li| < 2k3
√

log3n/ρj , and continue as in steps 2–3 from the previous
algorithm. The overall running time is

√
log3n∑
j=0

log n∑
k=0

Õ
( n

2k

(
n(2k3

√
log3n/ρj)2 + n2k3

√
log3n/ρj + (2k3

√
log3n)2/ρj

))
= n3+o(1)/D2.

To argue correctness, note that for j such that |Bρj−1(x)|/|Bρj
(x)| ≤ 3

√
log3n and k such

that 2k−1 ≤ |Bρj (x)| ≤ 2k, sampling (n log n)/2k vertices will yield with high probability
a vertex s ∈ Bρj

(x), and this s will not be discarded. This s satisfies d(s, x) ≤ ρj and
d(s, y) ≥ 2ρj , so the largest distance found for this s is guaranteed to be d(x, y) by the same
argument as in the correctness of the slower algorithm.

Derandomization. We use sparse neighborhood covers of Busch, Lafortune and Tirthapura
[20] to derandomize the algorithm. A ρ-neighborhood cover Z of a graph G is a set of
connected subgraphs called clusters, such that the union of all clusters is the vertex set of G

and such that for each node v ∈ G, there is some cluster C ∈ Z that contains Bρ(v). The
radius of a cover Z is the maximum radius of a cluster in Z. The degree of a cover Z is the
maximum number of clusters that a node in G is a part of. Busch et al. gave a deterministic
O(n log n)-time algorithm for computing, for any ρ > 0 and any connected planar graph, a
ρ-neighborhood cover of any connected planar graph with radius 16ρ and degree 18. See
also [60] for an O(n) time algorithm.

To adjust the arguments we redefine ρj = ρ33−j for j = 1, . . . ,
√

log33(n), and use the
fact that for some j, |Bρj−1 |/|Bρj | < 33

√
log33 n. To avoid sampling in our algorithm, for

each choice of j, k, we compute a ρj-neighborhood cover Z. We pick an arbitrary vertex s

from each cluster C of Z such that |C| > 2k. Since the degree of Z is 18, the number vertices
s we choose is at most 18n/2k.

If 2k < |Bρj
(x)| > 2k+1 then the cluster C containing Bρj

(x) will have |C| > 2k vertices,
and we will choose a vertex s ∈ C. Since the radius of Z is 16ρj , d(s, x) ≤ 16ρj . If
|B17ρj

(s)| > 2k+133
√

log33 n, we discard s. Since B17ρj
(s) is contained in B33ρj

(x) = Bρj−1(x),
we are guaranteed that some s will not be discarded. For such s we find a level Li with
16ρj < i < 17ρj in the BFS tree rooted at s s.t. |Li| < 2k+133

√
log33 n/ρj . The level of x in
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the BFS tree is at most 16ρj , and since ρj < ρ < D/4, the vertex y such that d(x, y) = D is
at level greater than i in the BFS tree. Hence, executing lines 2–3 of the procedure for the
algorithm in section 5 will report the distance D. The running time analysis is identical to
that of the randomized version since we made sure that the number of vertices we choose in
the derandomiztion is at most some fixed constant times the number of sampled vertices in
the randomized algorithm.

3.2 An Õ(n · D2) Algorithm
In this subsection we prove Theorem 5, stating that the diameter can be computed in Õ(n·D2)
time on an unweighted planar graph with diameter D. We begin with some preliminaries on
a recursive decomposition using shortest path separators.

Preliminaries. A shortest path separator of a planar graph G is an undirected cycle C(G)
consisting of a shortest s-to-u path, a shortest s-to-v path, and a single edge uv, such that
both the interior and exterior of the cycle consist of at most 2/3 of the total number of
the faces of G. Such a separator can be found in O(n) time [61]. By recursively separating
G with shortest path separators (halting the recursion when we reach subgraphs of size
≤ D), we obtain the decomposition tree T . The root of T corresponds to the entire graph
G. A node corresponding to subgraph P (we interchangeably refer to it as node P ) has two
children, whose subgraphs correspond to the interior and exterior of the separator C(P ).

Observe that for every node P ∈ T the size of the shortest path separator C(P ) is O(D).
This is because C(P ) consists of two shortest paths, each of length at most D. Moreover,
the boundary of P (vertices of P that have incident edges to vertices not in P ) is included
in the union of all C(P ′) where P ′ is an ancestor of P , and is therefore of size O(D log n)
and lies on O(log n) faces of P . We compute the DDGs of every node (subgraph) P ∈ T
(i.e. copmute a data structure that can report in Õ(1) time the distances in the graph P

between and pair of boundary vertices of P ) using O(log n) executions of MSSP on P . This
takes total Õ(n) time over the entire T . Now, given any vertex v in the subgraph P , we
can compute the distances in G from v to all boundary vertices of P in Õ(D) time using
FR-Dijkstra. Namely, we initialize the Õ(D) boundary vertices of P to their distances from
v in the graph P (via MSSP queries), and we run FR-Dijkstra on the union of the DDG of
P and the DDGs of all P ′ where P ′ is a sibling of some ancestor of P .

The algorithm. For every non-leaf node P ∈ T , we compute the furthest pair of vertices
u, v ∈ P where u is internal to C(P ) and v is external to C(P ). Observe that distances must
be taken in the entire graph G since the shortest u-to-v path may venture out of P . To
this end, we precompute all bisectors of every graph P ∈ T , with the sites being the Õ(D)
boundary vertices of P . Using Theorem 6, this takes Õ(|P | · D2) time (where |P | denotes
the size of the subgraph P ), so over all T this takes Õ(n · D2) time. (Observe that here we
have used Theorem 6 with the sites lying on O(log n) faces. As far as we know, in all prior
uses of Theorem 6 the sites lie on O(1) faces). Then, for every vertex v ∈ P , we compute
the distances in G from v to all boundary vertices of P using FR-Dijkstra in Õ(D) time as
explained above. We then use these distances as additive weights and apply Theorem 6 to
find the furthest vertex from v in P . This also takes Õ(D) time, so overall Õ(n · D).

We handle the leaf nodes P ∈ T explicitly (recall that |P | ≤ D). For each leaf node P we
compute the all-pairs shortest-paths (APSP) in G between any two vertices u, v ∈ P . This is
done by running Dijkstra’s standard algorithm from every v ∈ P on the graph P where the
boundary vertices of P are initialized to their distances from v in G (that we have already
computed as v’s additive weights). This takes Õ(D) time per v, so Õ(D2) time per P , and
Õ(D2 · n/D) = Õ(nD) over all leaves P .
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4 A Lower Bound on Dynamic Diameter

In this section we prove Theorem 1. Namely, we give a conditional lower bound ruling out
an amortized O(n1−ε) update time for maintaining the diameter of weighted planar graphs
that undergo a sequence of edge-weight updates.

The proof is inspired by [3], however, there are quite a few changes since the reduction
in [3] is from APSP (not SETH), to dynamic distance oracles (not dynamic diameter), and
rules out O(n0.5−ε) update time (not O(n1−ε)). Our reduction is from the following problem,
which is simply a recasting of the Orthogonal Vectors problem in the language of graphs.

▶ Definition 9 (Graph OV). Given an undirected tripartite graph G with parts A, C, B where
|A| = |B| = n and the middle level has size |C| = O(log n), where all edges are in A × C and
C × B decide if there exists a pair ai ∈ A, bj ∈ B such that dG(ai, bj) > 2.

It is known that solving this Graph OV problem in O(n2−ε) time refutes SETH [67,71].
Moreover, in the unbalanced version where |A| = nα and |B| = nβ for arbitrary constants
α, β > 0 we know that an O(nα+β−ε) time algorithm refutes SETH.

The structure of the reduction. Given an instance G of the Graph OV problem, we
construct a dynamic planar graph H. The graph H is composed of two grids, a left grid and
a right grid, each of dimension |C| = O(log n) by |A| = n. The columns of both grids are
indexed by the nodes of A, such that the top node of the ith column in the left (resp. right)
grid is called ai (resp. a′

i). The rows of the grids correspond to the nodes in C such that the
rightmost (resp. leftmost) node in the kth row of the left (resp. right) grid is called ck (resp.
c′

k). In both grids, all horizontal edges have weight 2|C|. In the left grid, the vertical edges
in column i have weight 2i and in the right grid the vertical edges of column i have weight
2(n − i). In the left grid, for every i and k, if the edge (ai, ck) exists in G, then we add a
diagonal edge ek from vertex (k − 1, i) to vertex (k, i + 1) whose weight is 2i + 2|C| − 1. We
call such ek a shortcut edge (as it is shorter by 1 compared to the alternative path composed
of a vertical edge followed by a horizontal edge). The two grids are connected by |C| edges:
for each k we have an edge from ck to c′

k of weight 2n|C| − 2nk. These |C| edges are the
only edges in H whose weights will change throughout the reduction - all others will remain
fixed. We add a single node x that is connected to all nodes in the top row of the left grid
and all nodes of the top row in the right grid. We set the weight of every edge (ai, x) to be
i · 4|C| and the weight of every edge (x, a′

j) to be (n − j) · 4|C|.

The dynamic updates. After constructing the initial graph H as above, for every j =
1, . . . , n we obtain a graph Hj by applying the following updates to H: for every k = 1, . . . , |C|
if the edge (ck, bj) exists in G then decrease by 1 the weight of the edge (ck, c′

k) in H (we refer
to such edge (ck, c′

k) as a decreased edge). The following main lemma shows that the diameter
of Hj reveals whether or not there exists an ai ∈ A such that dG(ai, bj) > 2. Note, crucially,
that we can generate all graphs H1, . . . , Hn in sequence using only O(n log n) updates since
Hi differ from Hi−1 by only O(log n) edge weights. Under SETH, we cannot maintain the
diameter throughout this sequence in O(n2−ε) time. Therefore, each update cannot be done
in O(n1−ε) amortized time, thus proving Theorem 1 for the fully-dynamic case. To get a
proof for the incremental case where edge weights only decrease we can do the following (the
decremental case is symmetric). Redefine the weight of the O(log n) edges so that they only
decrease during the sequence: add 2(n − i) to their weight in Hi so that their weight is the
largest in H1 and smallest in Hn. Then, the sequence of graphs can be generated by only
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O(n log n) decrease-weight updates. The diameter of Hi increases by exactly 2(n − i) so the
same analysis goes through. For simplicity, we continue the proof in this section with the
construction in the fully-dynamic case.

▶ Lemma 10. For any j, the diameter of Hj is larger than 4n|C| − 2 iff there exists ai ∈ A

such that dG(ai, bj) > 2.

In the remainder of this section we prove the above lemma. First observe that by our choice
of edge-weights the diameter of Hj correspond to some shortest ai-to-a′

ℓ path. The following
claim shows that in fact it is an ai-to-a′

i path.

▷ Claim 11. For all i ̸= ℓ, dHj (ai, a′
ℓ) < 4n|C| − 2.

Proof. If ℓ > i, then the path ai − x − a′
ℓ consisting of two edges costs (n − (ℓ − i)) · 4|C| <

4n|C| − 2. Otherwise ℓ < i, then the ai-to-a′
ℓ path that only uses horizontal edges costs

2|C|(n − i + ℓ) + 2|C| = 2n < 4n|C| − 2. ◁

The following claim concludes the proof.

▷ Claim 12. For any i, dHj
(ai, a′

i) > 4n|C| − 2 iff dG(ai, bj) > 2.

Proof. Observe that the path ai − x − a′
i consisting of two edges costs 4n|C|. There may

however be a shorter ai-to-a′
i path that passes through the grids. By our choice of edge

weights (similarly to [3]) such shortest path must start with an ai-to-ck prefix (for some
k ≤ |C|) in the left grid, then use the (ck, c′

k) edge, then in the right grid do i horizontal
steps followed by k vertical steps. Moreover, the ai-to-ck prefix starts with k − 1 vertical
steps, then uses a shortcut edge ek if it exists (otherwise it does a horizontal step followed
by a vertical step), and then it does n − i − 1 horizontal steps until reaching ck.

Suppose first that there were no shortcut edges and no decreased edges at all. The length
of such ai-to-a′

i path would then be

dH(ai, a′
i) = k · 2i + (n − i) · 2|C| + (2n|C| − 2nk) + i · 2|C| + k · 2(n − i) = 4n|C|.

Note that this length (4n|C|) is the same independent of k and of i. Hence, the only way
an ai-to-a′

i path can be shorter than 4n|C| is by using shortcut edges and decreased edges.
However, it can use at most one shortcut edge ek and one decreased edge (ck, c′

k). So its
length is 4n|C| − 2 iff there exists a k such that the shortcut ek exists (i.e., (ai, ck) ∈ E(G))
and the edge (ck, c′

k) is decreased (i.e., (ck, bj) ∈ E(G)), and this is iff dG(ai, bj) ≤ 2. ◁

▶ Remark 13. By subdividing all edges, the above reduction implies that O(n1/2−ε) update
time is impossible for maintaining the diameter of unweighted planar graphs.

5 Decremental Voronoi diagrams and Replacement Diameter

Overview: A Step Toward Dynamic Voronoi Diagrams. The usefulness of Voronoi diagrams
for diameter and distance reporting in static planar graphs make it natural to ask whether
one can efficiently maintain some useful representation of Voronoi diagrams in the dynamic
setting. This seems challenging because a change in a single edge or in a single additive
weight can cause the entire Voronoi diagram to completely change. For example, decreasing
the weight of a single edge in the Voronoi cell Vor(b) of some site b may cause an expansion of
Vor(b) on the expense of every other Voronoi cell, even cells that were not neighbors of Vor(b)
before the change. The same is true for decreasing the additive weight of b. Indeed, the few
attempts to use Voronoi diagrams in dynamic planar graphs that we are aware of [27,28], all
recompute the Voronoi diagrams from scratch upon every update.
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We make a small step towards dynamic Voronoi diagrams by developing a mechanism for
updating Voronoi diagrams in the decremental setting. In our opinion, this is the most novel
technical contribution of our work. The deletion of an edge in some part of the graph only
causes an increase in the additive weights of certain sites. When the additive weight of site
b increases, its Voronoi cell shrinks. Namely, some vertices that were in Vor(b) before the
increase will belong to Voronoi cells of other sites after the increase. The crucial observation
is that the only relevant sites in this process are b and the sites of the neighboring cells
to Vor(b) in the original Voronoi diagram. The time for the resulting update procedure is
therefore proportional to the cell-degree of b, rather than to the total number of sites in
the Voronoi diagram. Unfortunately, the cell-degree of b may, in general, be as large as
the number of sites. Nonetheless, this procedure turns out to be useful for the replacement
diameter problem, where we can bound the number of times each site is affected by some
edge deletion.

Representing Voronoi diagrams. Let P be a planar graph with real edge-lengths. Let S be
the set of vertices (sites) that lie on Õ(1) faces, called holes. Recall that every site s ∈ S has
an associated additive weight d(s).

Consider the Voronoi diagram of P with sites S and additive weights d(s). Let P ∗ be the
planar dual of P . Let VD0 be the subgraph of P ∗ consisting of the duals of edges (u, v) of P

such that u and v are in different Voronoi cells. Let VD be the graph obtained from VD0
after eliminating all degree-2 vertices by repeatedly contracting any one of their incident
edges. The vertices of VD are called Voronoi vertices and the edges of VD are called Voronoi
edges. Observe that every Voronoi edge corresponds to a consecutive segment of some bisector
between two sites. Note that VD may be disconnected, i.e., a planar map, and that the
boundaries of faces of this planar map may be disconnected. Each face of VD corresponds to
a cell Vor(s) of some site s ∈ S. Hence there are at most |S| faces in VD. It is shown in [45]
that the total number of edges, vertices, and faces of VD is O(|S|). In what follows, when
we say we compute a Voronoi diagram VD, we mean we use the algorithm in Theorem 6,
which computes a representation of the planar map VD defined above. Each Voronoi edge of
VD corresponds to a segment of a bisector.

5.1 Maintaining Voronoi diagrams while additive weights increase
Consider an increase in the additive weight of a set B ⊆ S of sites. Such an increase can only
change the shortest path (w.r.t. additive weights) of vertices v in the Voronoi cells of sites in
B. Either the shortest path to such v remains the same but its length increases by the change
in the additive weight of the site, or v becomes part of a Voronoi cell of a different site. In the
latter case, since each shortest path is entirely contained in a single Voronoi cell, planarity
dictates that the new site must be a neighbor of a site in B. We define the set N(B) of
neighbors of the sites in B as the set of sites that are either in B or sites whose Voronoi cells
are adjacent to the Voronoi cells of sites in B. Note that |N(B)| = O(

∑
b∈B cell-degree(b)).

It follows from the discussion above that the only sites whose Voronoi cells might change as
a result of such an increase are those in N(B).

To compute the new Voronoi diagram we first compute the Voronoi diagram of P with
just the sites N(B). By Theorem 6, this takes O(

∑
b∈B cell-degree(b)) time. Let VD′ denote

this Voronoi diagram, and let VD denote the Voronoi diagram of P before the change. We
stress that the additive weights of VD′ are the ones after the increase, and the additive
weights of VD are the ones before the increase. To obtain the Voronoi diagram of P after the
change, we “glue” together parts of VD′ and VD as follows. See Figure 1 for an illustration.
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Figure 1 An illustration of the process of computing the Voronoi diagram of a piece with 6 sites
when the additive weight of site 1 is increased. (a) VD, the Voronoi diagram of all 6 sites before
the weight increase. (b) VD′, the Voronoi diagram of just the increased site (1) and its neighbors
(2, 4, 6), after the increase. (c) VD and VD′ superimposed, with the edges deleted from VD, and
from VD′ in grey. Observe that all segments of bisectors between cells of the neighbors (2,4,6) that
appear in VD also appear in VD′. (d) The glued Voronoi diagram.

Recall that VD is a (possibly disconnected) planar map whose edges correspond to
segments of bisectors of pairs of sites of VD. The endpoints of these segments are Voronoi
vertices of VD. We start by deleting from VD all the Voronoi edges corresponding to bisectors
involving at least one site of B. For every Voronoi vertex v incident to a Voronoi cell of a
site in B, if all the Voronoi edges incident to v were deleted, then we delete v as well. Let
E denote the set of Voronoi edges e of VD such that e is incident to some Voronoi vertex
v, e was not deleted, but the preceding or following Voronoi edge of e in the cyclic order
of edges around v was deleted. Every Voronoi edge e ∈ E corresponds to a segment β of a
bisector between two sites s1, s2 ∈ N(B) \ B. Since the additive weights of these sites are
unchanged, the segment β must be represented by a Voronoi edge e′ of VD′. Note that β

may be a sub-segment of the bisector segment β′ corresponding to e′. Also note that it is
easy to identify e′ with e during the computation of VD′ with no asymptotic time overhead.3
For each Voronoi edge e ∈ E (of VD), we split its corresponding Voronoi edge e′ (of VD′)
into two edges e′

1, e′
2 by breaking β′ into two sub-segments at v. Suppose e′

2 is the one whose
corresponding bisector segment contains β. Note that if v is an endpoint of e′ (i.e., if v is
a Voronoi vertex of VD′ as well), then e′

1 is a trivial empty segment of the s1-s2 bisector.
We delete e′

2 from VD′, and merge the Voronoi edges e of VD and e′
1 of VD′ into a single

Voronoi edge whose corresponding segment is the concatenation of the segment β of e and
the segment of e′

1.

Doing so for the edges e ∈ E effectively “glues” the relevant portion of VD′ into VD,
replacing the portion of VD that we had deleted. The algorithm of [45] for constructing
Voronoi diagrams from precomputed bisectors performs similar stitching and glueing oper-
ations, and the data structures used to represent Voronoi diagrams and bisectors support
all the necessary operations in Õ(1) time per operation. Hence, the time complexity of this
entire procedure is proportional (up to logarithmic factors) to the number of Voronoi vertices
of the Voronoi cells of the sites in B, which is O(

∑
b∈B cell-degree(b)).

3 This can be done, for example, by augmenting the binary search tree representation of segments of
bisectors used in the construction algorithm (cf. [45]) with a boolean flag marking edges in E . Then we
can go over all Voronoi edges of VD′ and list for each one the corresponding marked edge e ∈ E , if such
an edge exists in the segment of the bisector corresponding to that Voronoi edge.
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5.2 Replacement Diameter

We now describe how to use the new algorithm for maintaining Voronoi diagrams under
additive weight decreases to get a faster algorithm for replacement diameter. The algorithm
starts by computing a complete recursive decomposition tree T of the graph G. For every
node (piece) in T (corresponding to a subgraph of G) we compute all its bisectors. This
takes Õ(n2) time over all T using Theorem 6. Then, for every vertex s ∈ V we compute
the BFS tree Ts of s in G and compute the fault-tolerant single source distance oracle of
Baswana et. al. [12] for s in G. This oracle is constructed in Õ(n) time from G, and can
report in Õ(1) time the s-to-t distance in the graph Ge = (V, E \ {e}) for any s, t ∈ V and
any e ∈ E. Overall, this also takes Õ(n2) time. For each piece P ∈ T , for each boundary
vertex b ∈ ∂P we create the induced tree T P

b from Tb by marking all vertices of P and all
their lowest common ancestors, and contracting any edge whose endpoints are not marked.
The resulting T P

b has size O(|P |). For each edge e of G that was contracted in the process we
store the edge of T P

b into which e was contracted. Since the total number of boundary nodes
and piece sizes over all pieces of T is Õ(n), the total time to construct all these induced
trees is Õ(n2). For each piece P ∈ T , let P ′ be the sibling of P in T . Let b1, b2, . . . be the
vertices of ∂P ′ in some arbitrary order. For each vertex s ∈ P we compute the additivley
weighted Voronoi diagram of s w.r.t P ′ with sites {bi} and additive weights d(s, bi). We also
store for s a binary search tree (BST) over b1, b2, . . . , where the node i in the tree stores
the distance from s to the furthest vertex in Vor(bi). This takes total Õ(n

√
n) time over all

P ∈ T and all s ∈ P . For each piece P with vertices v1, v2, . . . in arbitrary order, we store a
BST over {vi}, where node i stores the furthest vertex from vi in P ′. This vertex can be
found in Õ(1) time for each vi by querying the maximum distance stored in the BST of vi.

For every edge e ∈ E, we need to compute the furthest pair of vertices in the graph
Ge = (V, E \ {e}). For an edge e ∈ E and two vertices u, v ∈ G, we say that the pair u, v

is affected in Ge if e lies on the root-to-v path in Tu. The main idea is to use the fact that
a specific pair u, v is affected in at most D (rather than n) graphs Ge (since the shortest
u-to-v path in G has at most D edges).

For every affected pair (u, v) there is some pair of sibling pieces (P, P ′) s.t. u ∈ P and
v ∈ P ′. Our strategy is to go over pairs of sibling pieces (P, P ′) in T , and handle all affected
pairs for each (P, P ′) together as follows. Assume w.l.o.g. that e /∈ P ′. For each b ∈ ∂P ′, we
enumerate in T P

b all the decendant vertices of the edge of T P
b into which e was contracted

(this may be an empty set if e /∈ Tb). This way we identify all the affected pairs of the form
(u, b), where u ∈ P and b ∈ ∂P ′. We query the Baswana et al. oracle for the u-to-b distance
in Ge for each such affected pair. For each u ∈ P , let B be the set of boundary vertices
b such that (u, b) is an affected pair. For each vertex u ∈ P with |B| ≥ 1, we update the
Voronoi diagram of u w.r.t. P ′ using the procedure Decremental-VD, which is described
in subsection 5.1. This procedure updates the VD (and the furthest vertex from each site)
w.r.t the new additive weights in time

∑
b∈B cell-degree(b) where cell-degree is the number of

Voronoi cells that are adjacent4 to the cell Vor(b) in the original VD (i.e. before the deletion
of e). Using the updated VD, we update the node corresponding to every b ∈ B in the BST
of u with the new furthest vertex in Vor(b). Let d be the maximum distance stored in the
entire BST of u. We update the node corresponding to u in the BST of P with the value d.
After handling all u ∈ P with |B| ≥ 1 in this way, the maximum value stored in the entire
BST of P is the maximum distance in Ge between any pair of vertices (u, v) with u ∈ P and
v ∈ P ′. Taking the maximum over all pairs of siblings (P, P ′) ∈ T gives the diameter of Ge.

4 Two cells are adjacent if there exists an edge e of G with one endpoint in each cell.
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The total running time for computing the furthest pair for the siblings (P, P ′) is analyzed
as follows. The bottleneck is the time to update the VDs. Every time a pair u, b (where
u ∈ P and b ∈ ∂P ′) is affected we spend Õ(cell-degree(b)) time updating the VD of u. Since
each pair is affected by the deletion of at most D edges, the total time invested in updating
VDs for (P, P ′) is bounded by

∑
u∈P,b∈∂P ′ D · cell-degree(b) = |P |D

∑
b cell-degree(b), which

is Õ(|P |D · |∂P ′|), since the sum of cell-degrees of the cells in a VD is order of the number
of sites of the VD. Summing over all pairs of sibling pieces we get that the total time is∑

(P,P ′)∈T Õ(|P |D · |∂P ′|) = Õ(n1.5D). Hence, including the preprocessing, the total time
for the entire replacement diameter algorithm is Õ(n2 + n1.5D).

We note that when D ≥ n5/6, it is better to naively use the static n3+o(1)/D2-time
algorithm from section 3.1 for each edge failure. Hence, replacement diameter can be solved
in min(n3+o(1)/D2, Õ(n2 + n1.5D)) = n7/3+o(1) time.

6 Incremental Diameter

In this section we prove Theorem 3. Namely, we present a general reduction showing how to
solve the diameter problem efficiently in incremental graphs given two components: (1) a
distance oracle for incremental graphs, and (2) a diameter algorithm for static graphs that
is relatively fast when the diameter is large. Plugging in the incremental distance oracle of
Das et al. [37] and the static algorithm of Section 3.1 we obtain an algorithm with total
time n7/3+o(1) which improves over the naive bound of Õ(n8/3). The new algorithm of this
section comes closer to the n2−o(1) lower bound of Section 4 for weighted graphs (the best
lower bound for unweighted graphs is n1.5−o(1)).

The rest of this section is dedicated to proving this theorem. We begin by presenting the
general reduction (that does not assume planarity nor unweighted edges) and then explain
how it can be combined with existing algorithms for planar graphs to obtain the theorem.

A reduction from diameter to s, t-shortest path. In an incremental graph, the diameter
decreases with time, starting from some D ≤ n (otherwise the graph is not connected and
it is easy to check this efficiently) and ending at some D ≥ 1. The idea for the reduction
is simple: we would like to recompute the diameter only when it decreases, and not after
each of the n updates. While it is true that the diameter could decrease Ω(n) times, from
n to 1, the point is that re-computation is efficient when the diameter is large (due to the
n3+o(1)/D2 algorithm of Section 3.1) and then only O(D) of the re-computations will happen
when the diameter is smaller than D.

Our incremental algorithm works as follows:
Step 1 - sample a new diameter pair: Let P = {(s, t) | d(s, t) = ∆(G)} be the set of
pairs that realize the current diameter ∆(G). Sample a pair (s′, t′) from P uniformly at
random (or from some distribution in which every pair is sampled with probability at
most O(1/|P |)).
Step 2 - monitor the distance of the sampled pair: Using an incremental distance
oracle, monitor the distance between s′ and t′ throughout the sequence of edge insertions.
Do nothing (except querying the oracle) as long as d(s′, t′) does not decrease; in which
case it is still the correct diameter of the graph and can be output whenever there is a
query. If a new edge causes d(s′, t′) to decrease, go back to Step 1.

Each of the two steps involves one of the two ingredients in our reduction. Step 2 utilizes
an incremental distance oracle, while Step 1 uses a static diameter algorithm that can also
sample a diameter pair. At the end of this section we give a general reduction from the



A. Abboud, S. Mozes, and O. Weimann 4:15

latter approximate sampling problem to the problem of finding the largest distance from
each node in the graph (i.e. computing all eccentricities). Alternatively, one could notice
that the diameter algorithms we will employ in Step 1 (and many other natural diameter
algorithms) can be modified to also sample a diameter pair uniformly at random.

Running time. Let us first bound the number of times we go to Step 1, which is the most
costly step since it involves a static diameter computation. Step 2 is actually very cheap
since we only perform one update and one query to an incremental distance oracle.

▷ Claim 14. For any (non adaptive) sequence of edge insertions that does not decrease the
diameter of the graph, the expected number of times our algorithm samples a diameter pair
(i.e. goes to Step 1) is O(log n).

Proof. Let us first analyze the idealistic case in which we manage to sample truly uniformly
in Step 1, and then point out that the same analysis essentially goes through when we sample
almost uniformly.

Each new edge e decreases the distance for a subset of pairs Xe ⊆ P . Since the special pair
(s′, t′) is completely unknown to the adversary who is choosing the sequence of edge insertions,
the probability that e causes the algorithm to go to Step 1 is exactly |Xe|/|P | and in that case
the new set of “diameter pairs” becomes P \ Xe. Therefore, the expected number of times
we sample can be upper bounded by: f(|P |) ≤ max0≤x≤|P | x/|P | + f(|P | − x) = O(log |P |).

If the sampling in Step 1 is only approximately uniform, but still satisfies that a pair is
chosen with probability at most O(1/|P |) then the same analysis above goes through, up to
an additional O(1) factor. ◁

Let T Diam(n, D) denote the running time of a static diameter algorithm that samples
a diameter pair as in Step 1, when the diameter of the graph is D. Over all the O(n)
edge insertions, the total expected running time of Step 1 is therefore at most

∑n
D=1 log n ·

T Diam(n, D).
To obtain our claimed upper bound of n7/3+o(1) we will use two diameter algorithms

inside this reduction: the T Diam(n, D) = n3+o(1)/D2 algorithm from Section 3.1 (for large
D) and the T Diam(n, D) = Õ(n5/3) algorithm [45] (for small D). (By the reduction in
Section 6.1, these algorithms can also sample an approximately uniform pair as required by
Step 1). The total expected time becomes:

n∑
D=1

log n · T Diam(n, D) = Õ

n2/3∑
D=1

n5/3 +
n∑

D=n2/3

n3+o(1)/D2

 = n7/3+o(1),

because
∑n

D=n2/3 n3+o(1)/D2 ≤
∑log2 n

i=log2 n2/3 2i+1 · n3+o(1)/(2i)2 ≤ n3+o(1)

n2/3 · 2 log n. The
additional time of Step 2 is at most n ·

√
n using the incremental distance oracle of Das et

al. [37] that has O(
√

n) time per update and query.

6.1 Sampling a Diameter Pair
In this section we show the final piece of the incremental diameter algorithm. Namely, a way
to adapt the aforementioned static diameter algorithms so that they sample a diameter pair
approximately uniformly.

A first attempt, that does not quite work, is to add a random “perturbation” pe ∈ (0, ε)
to the weight of each edge e, where ε < 1/D, and then argue that the (probably unique) pair
realizing the diameter in the new graph is a uniformly random pair in P = {(s, t) | d(s, t) =
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∆(G)}. Note that the perturbations increase the distance between all pairs by < 1 and
therefore non-diameter-pairs cannot become diameter pairs. One issue, however, is that pairs
with many paths of length ∆(G) between them are more likely to be chosen than pairs with
few such paths. A second attempt that resolves this issue is to add a perturbation to the
nodes (e.g. by appending a private leaf to each node with a random weight on the new edge).
This idea is closer to the actual solution but it still has an issue of correlations: a node that
participates in many pairs might be sampled less frequently than a node that participates in
few pairs. Therefore, we must take this difference into account when assigning the weights.

Making these ideas go through is a bit complicated. Fortunately, there is an elegant
reduction from our setting to the bipartite independet set query model introduced by Beame
et al. [13] and then use existing results on this model [7, 16,38] in a black-box way.

▶ Theorem 15. There is an algorithm that samples a pair in P = {(s, t) | d(s, t) =
∆(G)} where each pair is sampled with probability at most O(1/|P |) and runs in time
(min(Õ(n5/3), n3+o(1)/D2)) on unweighted planar graphs of diameter D.

The main lemma towards proving the theorem is the following.

▶ Lemma 16. By making logO(1) n calls to an algorithm that returns all eccentricities we
can sample a pair in P = {(s, t) | d(s, t) = ∆(G)} where each pair is sampled with probability
at most O(1/|P |)

Proof. Consider an implicit graph H in which there is an edge between two nodes s, t iff they
are a diameter pair in G (i.e., (s, t) ∈ P ). Our goal is to sample an edge from H approximately
uniformly. This can be achieved [7,16,38] by making a polylogarithmic number of queries
to an oracle that, given two subsets L, R ⊆ V (H), decides whether there is any edge in
L × R ∩ E(H). This is called a bipartite independent set oracle in the literature, following
Beame et al. [13]. Thus, all we have to do is show that such a query can be supported in the
time of a call to an algorithm that computes all eccentricities in the graph.

First, we precompute the diameter ∆(G) of G. Then, given a query L, R ⊆ V we construct
a graph G′ from G as follows. For each node v ∈ R we add a new “leaf” node lv and connect
it with an edge (of weight 1) to v. Next, we compute the eccentricity of all nodes in G′.
Finally, the answer to the query is yes if and only if there is a u ∈ L such that the eccentricity
of u in G′ is ∆(G) + 1; this can be checked in O(n) time.

The correctness of the answer follows from the observation that the eccentricity of any
node u in G′ is ∆(G) + 1 if and only if there is a node v in G such that (1) dG(u, v) = ∆(G)
and (2) a new leaf node lv was appended to v. This implies that (1) (u, v) ∈ P is a diameter
pair in G, meaning that (u, v) ∈ E(H), and that (2) v ∈ L. Since we only check for u ∈ R

our answer that L × R ∩ E(H) is non-empty is correct. ◀

To conclude the proof of Theorem 15 we simply point out that both of the relevant
diameter algorithms already compute the eccentricity of all nodes.
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Abstract
Traditional problems in computational geometry involve aspects that are both discrete and continuous.
One such example is nearest-neighbor searching, where the input is discrete, but the result depends
on distances, which vary continuously. In many real-world applications of geometric data structures,
it is assumed that query results are continuous, free of jump discontinuities. This is at odds with
many modern data structures in computational geometry, which employ approximations to achieve
efficiency, but these approximations often suffer from discontinuities.

In this paper, we present a general method for transforming an approximate but discontinuous
data structure into one that produces a smooth approximation, while matching the asymptotic
space efficiencies of the original. We achieve this by adapting an approach called the partition-of-
unity method, which smoothly blends multiple local approximations into a single smooth global
approximation.

We illustrate the use of this technique in a specific application of approximating the distance to
the boundary of a convex polytope in Rd from any point in its interior. We begin by developing a
novel data structure that efficiently computes an absolute ε-approximation to this query in time
O(log(1/ε)) using O(1/εd/2) storage space. Then, we proceed to apply the proposed partition-of-
unity blending to guarantee the smoothness of the approximate distance field, establishing optimal
asymptotic bounds on the norms of its gradient and Hessian.
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1 Introduction

The field of computational geometry has largely focused on computational problems with
discrete inputs and outputs. Discrete structures are often used to represent geometric objects
that are naturally continuous. Examples include using triangulated meshes to represent
smooth surfaces, Voronoi diagrams to represent distance maps, and various spatial partitions
for answering ray-shooting queries. Due to the high computational complexities involved,
researchers often turn to approximation algorithms. Unfortunately, in retrieval problems,
efficient approximation is often achieved at the expense of continuity.

To make this more precise, consider the common example of distance functions. For a
given set S ⊆ Rd (which may be discrete or continuous), a natural distance map over Rd

arises as:

dS : x 7→ inf
p∈S

∥x− p∥,

where ∥ · ∥ denotes the Euclidean norm. In turn, the distance map gives rise to the following
query problem. Given a query point x ∈ Rd, the objective is to compute dS(x) efficiently
from a data structure of low storage.

© Ahmed Abdelkader and David M. Mount;
licensed under Creative Commons License CC-BY 4.0

31st Annual European Symposium on Algorithms (ESA 2023).
Editors: Inge Li Gørtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz Herman; Article No. 5; pp. 5:1–5:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ahmadabdolkader@gmail.com
https://orcid.org/0000-0002-6749-1807
mailto:mount@umd.edu
https://orcid.org/0000-0002-3290-8932
https://doi.org/10.4230/LIPIcs.ESA.2023.5
https://arxiv.org/abs/2308.08791
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


5:2 Smooth Distance Approximation

It is well known that answering the distance query can be reduced to computing the
Voronoi diagram of S. Unfortunately, beyond special low-dimensional cases, the combinatorial
complexity of the Voronoi diagram grows too fast for practical use. For this reason, much
work has focused on data structures for approximate nearest neighbor (ANN) searching [7, 9,
21, 23, 24]. Given any ε > 0, an ε-ANN data structure returns a point that is within a factor
of 1 + ε of the true closest distance.

While approximate nearest-neighbor searching is clearly related to approximating the
distance map, there are fundamental differences between the two problems. The distance
map induced by any set is clearly continuous (and indeed it is 1-Lipschitz continuous [12]).
As two query points converge on a common location, their respective distances to S must also
converge. The same cannot be said for any of the existing approaches based on approximate
nearest neighbor searching. The ANN distances reported for two query points can differ
by an amount that is arbitrarily larger than the distance between the two query points.
In Section 1.1, we will show that this is not merely an artifact of the design of these data
structures; it is unavoidable.

Answering distance queries efficiently is key to many applications including motion
planning [45], surface reconstruction [3,26], physical modeling [36], and data analysis [10,18].
Discontinuities can result in various sorts of aberrant behaviors. This is because queries
are generated adaptively in a feedback loop, where answers to earlier queries are used to
determine subsequent queries. Consider, for example, a navigation system that is trying to
precisely dock two crafts moving in space. Discontinuities in the distance map can alter the
behavior of the feedback process, resulting in jittering, oscillations, and even infinite looping
(see examples in Section 1.1).

This motivates the main question considered in this paper: Does there exist a data
structure that answers distance queries approximately so that the induced distance function
is continuous? Ideally, the distance function should also be smooth, characterized by bounds
on the norm of its gradient and Hessian. Note that this is quite different from approximate
nearest-neighbor searching, where the objective is to find a point that approximates the
closest distance. Here, the objective is approximate the distance itself.

Applications of distance queries include collision detection [14], penetration depth [47],
robot navigation [31, 42], shape matching [2], and density estimation [32]. Often, the
set S arises as a discrete point set obtained by sampling an underlying surface. Implicit
representations of surfaces [13], based on approximating the induced distance map, have
recently witnessed significant developments based on deep neural networks [16, 22, 37], where
the properties of learned distance fields are yet to be fully understood [30,38].

In this paper we present a general approach for smooth approximation from traditional
non-continuous data structures. This is achieved through a process called blending, where
discrete local approximations are combined to form a smooth function. Our method is loosely
based on the partition-of-unity method (see, e.g., Melenk and Babuška [34]). The approach
involves constructing an open cover of the domain by overlapping patches, computing a
local approximation within each patch, and then blending these approximations together by
associating a smooth weighting function with each patch (see Section 2 for details).

Unfortunately, a direct adaptation of these methods does not yield an efficient solution.
To the best of our knowledge, existing work on partition-of-unity methods for distance
approximation have not considered the asymptotic efficiency of the resulting access structures.
These works have typically involved blending over relatively simple spatial decompositions,
such as grids [40] and balanced quadtrees [35]. The covering elements employed in the blending
were naturally fat, that is, isotropic. These subdivisions are particularly suitable for blending,
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but they lack the flexibility needed to achieve the highest levels of efficiency. Moreover,
we are not aware of prior results on the asymptotic interplay between approximation and
smoothness. (We refer the interested reader to recent works in the finite element literature
on anisotropic [46] and high-dimensional [27] refinements.) In this paper, we adopt the
partition-of-unity approach to perform smooth blending for distance maps while achieving
asymptotic complexity bounds that match the best existing approximation algorithms. Our
results will be presented in Section 1.2.

1.1 On Discontinuities and Witnesses
To better understand how discontinuities arise, it is useful to understand the general structure
of most data structures for answering distance queries. Space is subdivided into regions,
or cells. This is either done explicitly by defining the subdivision over the query range or
implicitly by viewing the data structure abstractly as a decision tree and associating each
leaf of the tree with the subset of query points that land in this leaf due to the search process.
Queries are answered by determining the cell (or cells) that are relevant to the answer, and
accessing distance information for each cell. When the query point moves from one cell to
another, even infinitesimally, different distance information is accessed, and the computed
distance may change discontinuously.

For example, consider four point sites P = {p1, p2, p3, p4} in R2. Suppose that we construct
an ε-ANN data structure based on a subdivision into rectangular cells (see Figure 1(a)).
We assume that each cell stores a single site of P , called a representative, that serves as an
ε-ANN for every query point lying in this cell, and assume further that the representatives
have been chosen as shown in the figure, with qi’s representative being pi. Suppose that a
gradient descent algorithm is run using this structure. Starting from an initial position (e.g.,
qi), the descent takes a step towards the cell’s representative (pi). If the representatives and
step sizes are chosen as in the figure, the descent could loop infinitely.

p1

p2

p3

p4

q1

q2q2

q1 q3

q4

(a) (b)

c1

c2

c3

c4

c6

c5

e1

e2

Ω

Figure 1 Problems with witness-based distance approximation: (a) infinite loops and (b) jittering.
(The dashed blue lines bound the Voronoi cells of the sites, and the dotted red lines indicate the
direction to the closest site.)

In Figure 1(b), we consider another distance function computed with respect to the
boundary of a convex object Ω. Cells c1, c3, and c5 are assigned edge e1 as representative,
and cells c2, c4, and c6 are assigned e2. If at each point we walk towards the closest edge to
the cell’s centroid, the path oscillates or “jitters” between the two contenders.
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In both of these examples, we assume a standard model in which each cell stores a witness
to an approximate nearest neighbor, and the distance function returns the distance from
the query point to this witness. Let Q be a function that maps query points to witnesses
(presumably based on the cell containing the query point), and let d̃Q denote the induced
distance function d̃Q(x) = ∥x− Q(x)∥. Such an approach is said to be witness-based. The
following lemma shows that any witness-based method that fails to be exact cannot be both
continuous and accurate with respect to relative errors.

▶ Lemma 1. If a witness-based distance function d̃Q for a finite point set P ⊂ Rd is inexact
at even one point, it cannot be both continuous and provide a finite bound on relative errors.

Proof. Suppose towards a contradiction that d̃Q is continuous, guarantees a relative error
of at most c for some c > 0, but there exists a point x ∈ Rd such that d̃Q(x) > dP (x). In
particular, we may select an arbitrarily small δ > 0 such that d̃Q(x) > dP (x) + δ. Let p ∈ P

denote a nearest neighbor of x and consider how the value d̃Q varies as we walk from x to p
along the line segment xp. More precisely, letting u be a unit vector directed from x to p,
define x(t) = x+ t · u, and d̃Q(t) = d̃Q(x(t)). Except at a finite number of transition points
where the witness changes, the derivative of d̃Q(t) with respect to t cannot be smaller than
−1. (A derivative of −1 occurs when we are walking straight towards the current witness,
and otherwise it is strictly larger.) Since the function is continuous, its value does not change
at transition points. It follows that as we travel a distance of t ≤ dP (x) from x to p, the
value returned by d̃Q cannot decrease by an amount more than t. Setting t = dP (x) − δ/c,
we conclude that

d̃Q(x(t)) ≥ d̃Q(x) − t > (dP (x) + δ) −
(
dP (x) − δ

c

)
= (1 + c)δ

c
.

But, dP (x(t)) = dP (x) − t = δ/c, implying that the relative error is

d̃Q(x(t)) − dP (x(t))
dP (x(t)) = d̃Q(x(t))

dP (x(t)) − 1 >
(1 + c)δ

c
· c
δ

− 1 = (c+ 1) − 1 = c,

a contradiction. ◀

1.2 Main Result
For the sake of concreteness, we will illustrate our approach to producing smooth approximate
distance functions in a specific application which is fairly simple, but still new. Let Ω denote
a convex polytope in Rd, and let diam(Ω) denote its diameter and ∂Ω its boundary. We
further assume that Ω is represented as the intersection of n halfspaces. Given a point x ∈ Ω,
we define the boundary distance function d∂ Ω(x) as the Euclidean distance to x’s closest
point on ∂Ω. To simplify notation, we will refer to this as dΩ(x) (see Figure 2(a)). Our
objective is to efficiently evaluate an ε-approximation d̃Ω for any given query x ∈ Ω, while
guaranteeing smoothness (i.e., continuity and norm bounds on the gradient and Hessian).

By convexity, if x lies in Ω’s interior, int(Ω), its closest point on the boundary lies on one
of Ω’s facets, that is, its faces of dimension d−1. Thus, in the exact setting, the distance map
is determined by the Voronoi diagram of Ω’s facets. The skeleton of this Voronoi diagram
is known as the medial axis or medial diagram of Ω [17, 19, 41]. While the combinatorial
complexity of the medial axis is O(n) in R2, it grows much faster in higher dimensions. It is
not hard to show that medial axis corresponds to the lower-envelope of n hyperplanes in
Rd+1, with a combinatorial complexity of Θ(n⌈d/2⌉) in the worst case [33].
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Ω

x

dΩ(x)

Ω
ε · diam(Ω)

x

d̃Ω(x)

(a) (b)

Figure 2 (a) The medial axis of Ω and the boundary distance function dΩ and (b) approximating
the boundary distance in terms of absolute errors with parameter ε > 0.

The obvious discrete analog to our problem is approximate polytope membership, where
the data structure merely indicates whether the query point lies inside or outside the polytope,
up to a Hausdorff error of ε ·diam(Ω) (see Figure 2(b)). In recent work, it was shown that this
problem can be solved in query time O(log(1/ε)) from a data structure using O(1/ε(d−1)/2)
of space [1, 5].

In this paper, we show how to apply the partition-of-unity method to evaluate an absolute
ε-approximate boundary distance function d̃Ω for a convex polytope Ω in a manner that
guarantees smoothness while nearly matching the query times achieved in approximate
membership queries. Specifically, we require that |d̃Ω(x) − dΩ(x)| ≤ ε · diam(Ω), for all
x ∈ int(Ω). Throughout we treat ε as an asymptotic quantity, and assume the dimension d

is a constant. Our main result is:

▶ Theorem 2. Given a convex polytope Ω and an approximation parameter ε > 0, there
exists a smooth function d̃Ω satisfying dΩ(x) ≤ d̃Ω(x) ≤ dΩ(x) + ε · diam(Ω) for all x ∈ Ω,
which can be evaluated along with its gradient from a data structure with

Query time = O(log(1/ε)) and Storage = O(1/εd/2).

Further, the norms of the gradient and Hessian of d̃Ω satisfy

∥∥∇d̃Ω(x)
∥∥ = O(1) and

∥∥∇2d̃Ω(x)
∥∥ = O

(
1
ε

)
.

Observe that this is almost as good as the best query and space times for approximate
polytope membership [1,5], suffering just an additional factor 1/

√
ε in the space bound. Our

data structure can be viewed as incorporating blending into the data structure of [1]. While
we assume that the query point lies within Ω, if this is not the case and x is at distance
at least ε · diam(Ω) outside, the data structure will report this. If x is external to Ω but is
closer than this to the boundary, it may erroneously report an answer to the query. Our
focus is on the existence of the data structure, but through the use of known constructions,
it can be built in time O(n/εO(d)), where n denotes the number of facets of the polytope.

Let us remark on the bounds on the norms of the gradient and Hessian. Clearly, in
any Euclidean distance field the directional derivative of the distance field is as high as 1
(when moving directly towards or away from the nearest point) and is never greater, that
is, ∥∇dΩ(x)∥ ≤ 1. Therefore, it is reasonable that the norm of our approximate function,
∥∇d̃Ω(x)∥, is O(1). The following lemma shows that the O(1/ε) upper bound on the norm of
the Hessian is a necessity, up to constant factors. It establishes a lower bound in the context
of a relative errors for approximating the distance to a discrete point set, but the result can
be adapted to our context as well.
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▶ Lemma 3. Fix a set of points P ⊂ Rd, and let Q be a smooth ε-approximate distance
query structure over P with the associated distance d̃Q, for any ε > 0 bounding the relative
error. If |P | > 1, then there exists a point x ∈ Rd such that

∥∥∇2d̃Q(x)
∥∥ ≥ 1/ε.

Proof. Given a function f : Rd → R and γ ≥ 0, the assertion ∥∇f(a) − ∇f(b)∥ ≤ γ is
equivalent to saying that ∇f is γ-Lipschitz, that is, ∥∇f(a) − ∇f(b)∥ ≤ γ · ∥a− b∥, for all
a, b ∈ Rd. Letting f := ∇d̃Q, we will show that f is γ-Lipschitz with γ ≥ 1/ε.

p p′
a b

ε

22

ε

Figure 3 Proof of Lemma 3.

Consider two sites p and p′ such that ∥pp′∥ = 2(2 + ε) (see Figure 3). Select points a and
b along the segment pp′ on opposite sides and at distance ε from the perpendicular bisector.
Observe that a query point placed at any point on the open segment pa must return p as
the answer, since otherwise the relative error would exceed ((2 + 2ε) − 2)/2 = ε. This holds
symmetrically for p′b. It follows that ∇f(a) and ∇f(b) are unit vectors pointing to the right
and left, respectively. Hence, ∥∇f(a) − ∇f(b)∥/∥a− b∥ = 2/2ε = 1/ε, as desired. ◀

The remainder of the paper is organized as follows. In the next section we present an
overview of the partition-of-unity approach. In Section 3 we present an efficient data structure
for answering approximate distance queries for a convex polytope Ω, but without continuity.
Finally, in Section 4, we combine these to obtain the desired smooth approximation.

2 Blending and Partition of Unity

The partition of unity is a standard mathematical tool for integrating local constructions
into global ones [29, 40]. It is widely used and has applications in various disciplines [34, 35].
The approach involves a collection of patches Π = {Πi} forming a locally-finite open cover
of a given domain Ω ⊆ Rd. The partition of unity is a set of non-negative smooth partition
functions {ϕi} such that the support of ϕi, denoted supp(ϕi), is a subset of Πi (see Figure 4(a)).
The name derives from the requirement that for all x ∈ Ω,

∑
i ϕi(x) = 1.

Ω Πi

(a) (b)

Ω

Πi

repi

xvi(x)

Figure 4 Patches, representatives, and the partition of unity.

In the context of distance approximation, let us assume that each patch is associated
with a local distance function vi, such that the restriction of vi to Πi is an ε-approximation
to the true distance function dΩ. Concretely, each patch is associated with a representative,
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denoted repi. For example, when approximating the distance to a discrete point set P , repi

may be a point p ∈ P . In our case, where Ω is a convex polytope, repi will be chosen to be a
supporting hyperplane of a facet of Ω (see Figure 4(b)). Then, vi(x) can be defined to be
distance from x to the associated representative,

vi(x) = dist(x, repi). (1)

The final approximate distance map results by taking the sum of these local distance functions
over all patches weighted by the associated partition functions.

d̃Ω(x) =
∑

i

ϕi(x) · vi(x). (2)

Recall that the support of ϕi is limited to Πi, so we need only compute the sum over patches
containing x. Define the depth of x with respect to Π, denoted ∆Π(x), to be the number of
patches of Π containing x, and define ∆Π = maxx ∆Π(x). As in standard applications of the
partition-of-unity method, we will design our patches so that ∆Π is O(1).

In order to enforce the condition that the functions ϕi sum to unity at any point in the
domain, we will define a set of smooth, non-negative weight functions {ψi}, and then define

ϕi(x) = ψi(x)
Ψ(x) , where Ψ(x) =

∑
i

ψi(x). (3)

Observe that since d̃Ω(x) is a convex linear combination of functions, each of which is
locally an ε-approximate distance map for Ω, it follows that d̃Ω(x) is itself an ε-approximate
distance map. Our construction will guarantee that there exists a positive constant Ψmin,
such that Ψ(x) > Ψmin, for all x ∈ Ω. It follows that ϕi(x) can be made as smooth as desired,
being the quotient of two positive continuous functions. Assuming that the local distance
approximations {vi} are smooth, it follows that d̃Ω is itself smooth, being a sum of products
of pairs of continuous functions. As a 1-dimensional example, see Figure 5.

(a) (b)

Π1
Π2

v2 v1

ψ1 ψ2d̃Ω

Π1
Π2

v2 v1

ψ1 ψ2d̃Ω

Figure 5 Blending two distance functions {vi} using two overlapping intervals {Πi} with associated
weight functions {ψi}, yielding a smooth approximation d̃Ω using (a) symmetric covers and (b)
non-symmetric covers.

It remains to define the weight function ψi associated with each patch. These functions
depend on the patch’s shape. For our application, patches will be ellipsoids, but for this
introduction, let us consider the simple case of a Euclidean ball with center point ci and
radius ri. First, for x ∈ Rd, define

fi(x) = 1
r2

i

∥x− ci∥2.
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Observe that f achieves its minimum value of 0 at the ball’s center and grows to 1 at its
boundary. To obtain a compactly-supported weight function, we use the standard technique
of composing f with a bump function, also known as the standard mollifier [39]

µ(σ) =

exp
(

− 1
1 − σ2

)
if |σ| < 1,

0 otherwise.
(4)

Since µ(0) = e−1 and µ(1) = 0, we see that the weight is highest near the middle of the shape,
where f = 0, and decays gracefully towards the boundary, where f = 1. It is well-known
that µ ∈ C∞

c (R) and is non-analytic with vanishing derivatives for |σ| = 1 [39]. Therefore,
we may define ψi(x) = µ(fi(x)).

In summary, given any query point x, we first determine the patches that contain it.
(The number of which, ∆Π(x), will be bounded by a constant.) Given the shape functions fi

for each of these patches, we compute the weight functions ψi’s by applying the mollifier of
Eq. (4). We then apply Eq. (3) to obtain the partition-of-unity blending functions. Finally,
we apply Eqs. (1) and (2) to obtain the final smooth distance approximation. The overall
space and query time are dominated by the total number of patches and the time needed to
determine which patches contain the query point, respectively.

3 Approximating the Boundary Distance Function

The process described in the previous section is generic and can be applied in settings where
the answer to the query can be expressed in terms of a covering of space by regions of low
combinatorial complexity. For the sake of illustration, let us now explore how this works in
the specific application of computing a smooth absolute ε-approximation to the boundary
distance in a convex polytope Ω in Rd. Let us assume that Ω has been scaled uniformly to
unit diameter, so the absolute approximation error is ε.

We will employ a standard method for reducing distance approximation to a covering
problem. First, let’s consider the graph of the boundary distance function dΩ, that is, the
manifold (x, dΩ(x)) in Rd+1. We will use z to denote coordinate values along the (d+ 1)st
coordinate axis, which we will take to be directed vertically upwards in our drawings (see
Figure 6(b) and (c)).

Ω Ω

Ω̂

x1
x2

x1
x2z

(a) (b)

z
Ω̂

Ω̂+

(c)

q

z = bj − a
⊺
jx

Figure 6 Lifting the polytope Ω ⊆ Rd to the lifted body Ω̂ ⊆ Rd+1.

Assuming that the polytope Ω contains the origin in its interior, it can be represented as
the intersection of a set of n halfspaces in Rd, Ω =

⋂n
j=1 Hj , with each Hj taking the form

Hj = {x ∈ Rd : a⊺j x ≤ bj},

where aj ∈ Rd is an outward-pointing unit normal vector orthogonal to Hj ’s bounding
hyperplane and bj ∈ R+ is the distance of the bounding hyperplane from the origin. The
distance of a point x ∈ Ω to the bounding hyperplane is the non-negative scalar z such that
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x+ zaj lies on the bounding hyperplane, that is z = bj − a⊺j x. The set of points lying below
this surface (that is, the hypograph of the distance function) is the halfspace in Rd+1 given
by the linear inequality z ≤ bj − a⊺j x. The boundary distance function is just the lower
envelope (or minimization diagram [25]) of this set of halfspaces. To turn this into a bounded
convex polytope, we add a horizontal ground-surface halfspace Ĥ0 = {(x; z) : z ≥ 0}. Define
the lifted body Ω̂ ⊂ Rd+1 to be

Ω̂ = Ĥ0 ∩
n⋂

j=1
Ĥj , where Ĥj = {(x; z) ∈ Rd+1 : z ≤ bj − a⊺j x} for j ∈ [n].

Since the sides have a slope of +1, the diameter of Ω̂ is O(1).
To achieve an absolute approximation error of at most ε, we lift each of the upper

halfspaces of Ω̂ by a vertical distance of +ε to obtain the resulting expanded object Ω̂+. That
is, we define Ĥδ

j = {(x; z) ∈ Rd+1 : z ≤ bj − a⊺j x+ δ} and Ω̂+ =
⋂n

j=1 Ĥ
ε
j (see Figure 6(c)).

Note that the ground-surface halfspace (Ĥ0) is not needed for Ω̂+, and hence it is unbounded.
The essential features of lifting and expansion are summarized in the following lemma.

▶ Lemma 4. Given a convex polytope Ω of unit diameter and any x ∈ Ω, if a vertical ray is
shot upwards from x (viewed as a point in Rd+1) hits a bounding hyperplane of Ω̂ within Ω̂+,
then the associated facet of Ω is an absolute ε-approximate nearest neighbor of x.

The upshot is that we can base the local distance functions vi(x) (recall Eq. (1)) on
the distance to the bounding hyperplane of Ω corresponding to the bounding hyperplane
in the lifted body Ω̂ that is hit by the vertical ray shot upwards from the query point x.
An important feature of Ω̂+, which will be of later use (in Lemma 8), is that the distance
between its boundary and that of Ω̂ is at least cε · diam(Ω̂), for some constant c.

3.1 Macbeath Regions and Ellipsoids
Our approach to approximating Ω̂ for the purpose of answering distance map queries will
be based on generating a net-like covering of Ω̂ based on objects called Macbeath regions.
Macbeath regions and their variants have been widely used in convex approximation (see,
e.g., [1, 4, 6–8]). In contrast to traditional covers based on subdivisions by fat objects, e.g.,
hypercubes, Macbeath regions naturally adapt to the shape of the object being covered. In
this section we present a brief review of the salient features of Macbeath regions.

Given a convex body Ω and any point x ∈ Ω, the Macbeath region at x is the largest
centrally-symmetric body centered at x and contained within Ω. It is common to apply a
constant scaling factor. Formally, for λ ∈ R+, the λ-scaled Macbeath region at x is

Mλ
Ω(x) = x+ λ((Ω − x) ∩ (x− Ω))

(see Figure 7(a)). When Ω is clear from context, we will often omit the subscript. We refer
to x and λ as the center and scaling factor of Mλ(x), respectively. When λ < 1, we say
Mλ(x) is shrunken.

It is useful to have a low-complexity, smooth proxy for a Macbeath region. Given a
Macbeath region, define its associated Macbeath ellipsoid Eλ

Ω(x) to be the maximum-volume
ellipsoid contained within Mλ

Ω(x) (see Figure 7(b)). Clearly, this ellipsoid is centered at x,
and Eλ

Ω(x) is a λ-factor scaling of E1
Ω(x) about x. By John’s Theorem [11]

Eλ
Ω(x) ⊆ Mλ

Ω(x) ⊆ Eλ
√

d
Ω (x).

Chazelle and Matoušek showed that this ellipsoid can be computed for a convex polytope Ω
in time linear in the number of its bounding halfspaces [15].
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Ω MΩ(x)

M
1/2
Ω (x)

(a) (b)

Ω
x

EΩ(x)

E
√
d

Ω (x)x

Figure 7 (a) Macbeath regions and (b) Macbeath ellipsoids.

A fundamental property of Macbeath regions, called expansion-containment, states that
if two shrunken Macbeath regions (or ellipsoids) overlap, then a constant-factor expansion of
one contains the other. There are many formulations. The following can be found in [1].

▶ Lemma 5 (Expansion-Containment). Given a convex body Ω ∈ Rd, 0 < λ < 1, let
β = (3 + λ)/(1 − λ). Then for any x, y ∈ Ω:
(i) Mλ(x) ∩Mλ(y) ̸= ∅ =⇒ Mλ(y) ⊆ Mβλ(x),
(ii) Eλ(x) ∩ Eλ(y) ̸= ∅ =⇒ Eλ(y) ⊆ Eβλ

√
d(x).

3.2 Approximation through Covering
Our approach to computing an ε-approximation to the boundary distance function within
a convex polytope Ω in Rd utilizes Macbeath regions to cover the lifted body Ω̂ in Rd+1.
Recall our assumption that Ω has been scaled to unit diameter, and hence the lifted body Ω̂
also has unit diameter. Given this scaling, our objective is to answer vertical ray-shooting
queries up to an absolute error of at most ε, (see Lemma 4).

Before presenting our solution, let us recall some known results for convex approximation.
Given a convex body Ω of unit diameter and ε > 0, an ε-approximate polytope membership
query is given a query point q and returns positive answer if q lies within Ω, a negative
answer if q lies at distance more than ε from Ω, and otherwise, it may give either answer.
Arya et al. presented an efficient data structure for answering approximate membership
queries [7]. Later, Abdelkader and Mount [1] presented a simpler approach with the same
space and query times, as described in the following lemma. We will employ a variant of the
latter data structure.

▶ Lemma 6. Given a convex polytope Ω ∈ Rd, there exists a data structure that can answer
absolute ε-approximate polytope membership queries for Ω in time O(log(1/ε)) and storage
O(1/ε(d−1)/2).

In order to apply this data structure for our purposes, we will need to delve a bit deeper
into how it works. Our application of this structure will be in the lifted space Rd+1, but let
us describe it now for an arbitrary convex body Ω in Rd. Given a non-negative parameter δ,
define the expanded body Ωδ to be a convex set such that Ω ⊆ Ωδ, and the minimum distance
between their boundaries of is at least δ.

Next, we define the notion of a Macbeath-based Delone set of Ω relative to Ωδ. This
structure is parameterized by two constants 0 < λp < λc < 1, called the packing and covering
constants, respectively (which may depend on the dimension d). Given any point x ∈ Ω,
define the covering ellipsoid E′

δ(x) = Eλc

Ωδ
(x), that is, a Macbeath ellipsoid centered at x

with scaling factor λc defined with respect to the outer body Ωδ. Define the packing ellipsoid
E′′

δ (x) analogously, but with a scaling factor of λp. A Macbeath-based Delone set for Ω
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relative to Ωδ is any maximal set of points X ⊂ Ω, such that the packing ellipsoids E′′
δ (x)

centered at these points are pairwise disjoint. Abdelkader and Mount [1] showed that, by
standard properties of Macbeath regions, constants λp and λc can be chosen such that X
has the following properties:

(i) The union of the covering ellipsoids E′
δ(x) over all x ∈ X covers the original body, Ω,

(ii) For each x ∈ X, E′
δ(x) is contained within the expanded body, Ωδ,

(iii) The number of ellipsoids E′
δ that contain any point x is O(1),

(iv) |X| = O(1/δ(d−1)/2).
Note that the constant factors hidden in the O-notation depend on the dimension d.

To turn this into an approximate search structure, a layered DAG is constructed as follows.
For i ≥ 0, let δi = 2iδ. Construct a series of such Delone sets, X0, X1, . . . , Xm where Xi is
any Macbeath-based Delone set of Ω with respect to Ωδi

. As i increases, the expanded body
grows larger, and hence the Macbeath ellipsoids also grow larger. But since they need only
cover the original body Ω, their size, |Xi|, decreases with i. The final layer ℓm is defined to
be the smallest integer such that |Xℓm | = 1. (It can be shown that ℓm = O(diam(Ω)) = O(1),
which implies that m = O(log(1/δ)).) The leaves of the DAG correspond to the covering
ellipsoids E′

δ0
centered at the points of X0. The root is corresponds to the covering ellipsoid

E′
δℓm

associated with the single point of Xℓm
(see Figure 8). Finally, the nodes of level i are

connected to nodes at level i− 1 whenever their associated E′ ellipsoids overlap. Abdelkader
and Mount [1] showed the following:

The DAG has O(log(1/ε)) layers.
The out-degree of any node in the DAG is O(1).
The total number of nodes in the DAG is O(1/δ(d−1)/2).

Lemma 6 follows by applying a natural search process which simply descends from the root
to any leaf in the DAG, always visiting a node whose E′ ellipsoid contains the query point. If
a query point x ∈ Ω, the search will succeed in finding a leaf-level ellipsoid E′ that contains
this point.

level 0level 1level 2level 3

Ωδ0Ωδ1Ωδ2
Ωδ3

Ω

Figure 8 Layers of the Macbeath-based Delone set data structure.

3.3 Approximation through Vertical Ray Shooting
We can now explain how to construct the smooth boundary distance approximation for
Ω. First, we construct the lifted body Ω̂, as described in Section 3. Given a query point
x ∈ Ω, its distance to the boundary is determined by the height of the point on ∂ Ω̂ hit by an
upward-directed vertical ray shot from x in Rd+1. To apply the hierarchical search, let δ = ε,
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and for any ℓ ≥ 0, define Ω̂δℓ
to be the unbounded convex set that results by translating all

the upper halfspaces bounding Ω̂ up by distance δℓ = 2ℓε. That is, Ω̂δℓ
=

⋂n
j=1 Ĥ

δℓ
j . Observe

that Ω̂δ0 = Ω̂+, the ε-expanded body.
We can apply the data structure described in Lemma 6 to these bodies in Rd+1. For any

level of the structure, we say that a covering ellipsoid is a top ellipsoid if there exists x ∈ Ω,
such that this ellipsoid has the highest intersection point with the vertical ray directed up
from x among all the ellipsoids in the cover. Because the covering ellipsoids cover Ω̂ it follows
that the union of the top ellipsoids, when projected vertically onto Rd, covers the original
body Ω.

To answer vertical ray-shooting queries using our hierarchy, we traverse the hierarchy
of ellipsoids, but whenever we descend a level in the DAG structure, among all the nodes
whose covering ellipsoid E′ intersects the vertical line segment passing through x, we visit
the one having the highest point of intersection with the ray (see Figure 9). It was shown
in [1] that the number of ellipsoids that need to be considered is O(1). Therefore, in time
proportional to the number of levels, which is O(log(1/ε)), we can find the top ellipsoid at
the leaf level traversed by the vertical ray.

level 0

Ω̂δ0Ω̂δ1

level 1

Ω̂δ2

level 2

Ω̂
q qq

Figure 9 Vertical ray-shooting in the hierarchical structure.

Furthermore, because all these ellipsoids lie within Ω̂δ0 , the terminus of the vertical ray
lies within the vertical gap of length ε between Ω̂ and Ω̂+, as required in Lemma 4. Finally,
through an appropriate adjustment of the scaling factors λp and λc, we can apply the same
analysis as in Arya et al. [4, Lemma 3.5] to find a witness hyperplane that serves as the
representative for all vertical rays passing through this ellipsoid. Since the construction
is performed in Rd+1, the space required is O(1/εd/2). This implies that, even ignoring
continuity, we can answer ε-approximate boundary distance queries efficiently.

▶ Theorem 7. Given a convex polytope Ω ∈ Rd, there exists a data structure that can answer
absolute ε-approximate boundary distance queries (without continuity guarantees) for Ω in
time O(log(1/ε)) and storage O(1/εd/2).

There are a couple of additional properties, which will be useful for the task of computing
smooth distance approximations. First, because the boundaries of Ω̂ and Ω̂+ are separated
by a vertical distance of ε, we can infer that the Macbeath ellipsoids cannot be too skinny.

▶ Lemma 8. Each of the covering Macbeath ellipsoids in the data structure of Theorem 7
contains a Euclidean ball at its center of radius at least cε, for some constant c (depending
on λc and d).

Proof. The centers lie within Ω̂, and Macbeath regions are defined with respect to Ω̂+

whose boundary has a vertical separation of ε. Because the distance function is 1-Lipschitz
continuous, the sides of both of these bodies have a slope (with respect to vertical) of at
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most 1. Hence, the distance from any point in Ω̂ to the boundary of Ω̂+ is at least ε/
√
d.

Therefore, the scale-1 Macbeath region contains a ball of this radius at its center. The
covering Macbeath region has a ball of radius ε(λc/

√
d). The John ellipsoid contains a ball

of radius ε(λc/
√
d)/

√
d = ε(λc/d). Setting c = λc/d, completes the proof. ◀

Second, from the properties of the Macbeath-based Delone set, each point of Ω̂ is covered
by only a constant number of the covering ellipsoids at the leaf level. While this does not
necessarily hold for the vertical projections of these ellipsoids, it does hold when we restrict
attention to the top ellipsoids. Let ∆Π denote maximum number of ellipsoids that may
contain any given point x ∈ Ω.

▶ Lemma 9. The blending patches Π resulting from the vertical projections of the top covering
ellipsoids have constant depth, that is, ∆Π = O(1).

Before giving the proof, we establish a useful technical lemma. Let us begin with some
notation. Given a concave function f : Rd → R, its hypograph, denoted f−, is the set of
points in Rd+1 lying on or below the function. Clearly, f− is a convex set. For any point
x ∈ f−, define the ray distance of x with respect to f−, denoted rayf−(x) to be the length
of a ray shot upwards from x to the boundary of f−. For any x ∈ f− and λ ≥ 0, define
Mλ

f−(x) as the λ-scaled Macbeath region relative to f−. We omit explicit references to f−

in subscripts when it is clear from context.

▶ Lemma 10. Given concave f : Rd → R, x ∈ f− and λ ≥ 0, for all y ∈ Mλ
f−(x),

(1 − λ) · rayf−(x) ≤ rayf−(y) ≤ (1 + λ) · rayf−(x).

Proof. To simplify notation, let rx = rayf−(x) and ry = rayf−(y). To prove the upper
bound, let x′ denote the intersection of the vertical ray through x with the boundary of f−

(see Figure 10(a)). Consider a supporting hyperplane h0 for f− passing through x′. Let h1 be
the parallel supporting hyperplane passing through x, and let h2 be the parallel supporting
hyperplane along the lower side of Mλ(x). Clearly, the vertical distance between h0 and h1
is rx, and the vertical distance between h1 and h2 is λrx. Since Mλ(x) lies entirely above
h2, it follows that the vertical segment defining ry lies entirely below h0 and above h2, which
implies that ry ≤ rx + λrx = (1 + λ)rx, as desired.

f−

(a)

x

x′

y

y′
h0

h1
h2

rx
λrx

(b)

x y

y′ g0
g1
g2δ2

δ1

Mλ(x)
f−

Mλ(x)

Figure 10 Proof of Lemma 10.

To prove the lower bound, let y′ denote the point where the vertical ray through y

intersects the boundary of f− (see Figure 10(b)). Let g0 denote a supporting hyperplane
for f− passing through y′. Let g1 be the upper parallel supporting hyperplane for Mλ(x),
and let g2 be the parallel hyperplane passing through x. Let δ1 denote the vertical distance
between g0 and g1, and let δ2 denote the vertical distance between g0 and g2. By definition
of the Macbeath region, we have δ2 − δ1 = λδ2, or equivalently δ1 = (1 − λ)δ2. Clearly, y
lies below g1, and so ry ≥ δ1. Since all of f− (including x′) lies below g0, we have rx ≤ δ2.
Therefore, ry ≥ δ1 = (1 − λ)δ2 ≥ (1 − λ)rx, as desired. ◀
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Proof of Lemma 9. Recall that constants λc and λp are the so called covering and packing
scale factors used in our construction. Given a point x ∈ Ω+, let M ′(x) and M ′′(x) denote
respectively the covering (λc-scaled) and packing (λp-scaled) Macbeath regions centered at x
with respect to the expanded body Ω̂+. Define E′(x) and E′′(x) analogously for Macbeath
ellipsoids.

Recall that our construction is based on a maximal point set X ⊂ Ω̂ such that the
packing ellipsoids E′′(x) are disjoint for x ∈ X and E′(x) cover Ω̂. Given any q ∈ Ω, let
X(q) ⊆ X denote the set of top covering ellipsoids E′(x) whose vertical projection contains
q. Equivalently, x ∈ X(q) if the vertical ray passing through q intersects E′(x). It suffices to
show that for any q ∈ Ω, |X(q)| = O(1).

For any x ∈ Ω̂+, define ray(x) to be the length of a vertical ray shot from x up to the
boundary of Ω̂+. By definition of a top ellipsoid, for any x ∈ X(q), there exists a point
z ∈ E′(x) such that ray(z) ≤ ε. Since E′(x) ⊆ M ′(x), we have z ∈ M ′(x) (see Figure 11(a)).
Thus, by Lemma 10 with Ω̂+ playing the role of f− and z playing the role of y, it follows
that ray(x) ≤ ray(z)/(1 − λc) ≤ ε/(1 − λc). Applying the lemma again, it follows that for
any other point y ∈ E′(x), we have

ray(y) ≤ (1 + λc) · ray(x) ≤ 1 + λc

1 − λc
ε.

Also, because x ∈ Ω̂, we have ray(x) ≥ ε, implying again by Lemma 10 that ray(y) ≥ (1−λc)ε.
In summary, for each x ∈ X(q), there exists a point y along the vertical ray shot up from q

such that (1 − λc)ε ≤ ray(y) ≤ 1+λc

1−λc
ε.

(a)

q

ε

Ω̂

Ω̂+

M ′(x)

z

q

x
y

(b)

1+λc
1−λc

ε

(1− λc)ε

q

x
y

(c)

M ′(x)
M ′(y)Y (q)

Figure 11 Proof of Lemma 9.

Let Y (q) be any maximal set of points along the vertical line through q that have ray
distances in the interval

[
(1 − λc), 1+λc

1−λc

]
ε and whose packing Macbeath regions are pairwise

disjoint (see Figure 11(b)). Each such Macbeath region covers an interval of length at least
λp(1 − λc)ε. By a standard packing argument, there are at most a constant c′ (depending
on λp and λc) of such Macbeath regions, and their covering Macbeath regions cover this
subsegment of the vertical line.

Now, associate each point x ∈ X(q) with any one of the points of y ∈ Y (q), such that
M ′(x) ∩M ′(y) ̸= ∅ (see Figure 11(c)). By the prior observations, such a point of y exists for
each x. By expansion containment (Lemma 5), a constant factor expansion of M ′(y) contains
M ′(x) and vice versa. Therefore, the volumes of these bodies are equal up to constant
factors (depending on λc and the dimension d). Because λp and λc are both constants, the
volumes of M ′′(x) and M ′′(y) are related by constant factors. Thus, by a straightforward
packing argument, the disjointness of the M ′′(x) Macbeath regions implies that the number
of x ∈ X(q) that are associated with any y ∈ Y (q) is bounded above by some constant c′′.
Thus, we have |X(q)| ≤ c′c′′ = O(1), as desired. ◀
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4 Putting it Together

We can now explain how to combine the results of the previous section with the partition-of-
unity method from Section 2, to obtain the final smooth distance approximation.

The set of patches Π = {Πi} used in blending consist of the vertical projections of all the
top ellipsoids from level-0 of the vertical ray-shooting data structure. Each ellipsoidal patch
Πi is represented by its center ci ∈ Rd and a positive-definite matrix Mi such that

Πi = {x ∈ Rd : fi(x) ≤ 1}, where fi(x) = (x− ci)⊺Mi(x− ci). (5)

Recalling the definition of the standard mollifier µ from Eq. (4), we define

ψi(x) = µ(fi(x)). (6)

Given these weight functions, we apply Eq. (3) to obtain the blending function ϕi(x) for
each patch. Recall that each of the top ellipsoids Πi is associated with a representative of
the upper envelope of Ω̂ in the form of a halfspace Hi = {x ∈ Rd : a⊺i x ≤ bi}. As mentioned
in Section 3, the associated local distance function is vi(x) = bi − a⊺i x (Eq. (1)).

Given a query point x, we use the vertical ray-shooting data structure to determine
the patches Πi containing it. By Lemma 9, there are a constant number of them. We
apply Eq. (2) to blend together the local distance functions to obtain the final distance
approximation, d̃Ω(x). The space and query time are dominated by the complexity bounds
for the ray-shooting data structure, given in Lemma 7. This establishes the correctness and
complexity bounds of Theorem 2. The bounds on the norms of the gradient and Hessian are
rather technical and will appear in the full version.

5 Concluding Remarks

In this paper, we have taken first steps towards designing data structures for approximately
answering geometric distance queries approximately, while more faithfully preserving prop-
erties of the underlying distance functions. Existing data structures based on computing
approximate nearest neighbors suffer from discontinuities in the resulting distance field,
which is undesirable in many applications. We have presented a general method for achieving
smoothness by combining a traditional (discontinuous) method with blending, and we have
illustrated the technique in the concrete application of approximating (in terms of absolute
errors) the distance field to the boundary, induced within a convex polytope Ω in Rd. Our
data structure is efficient in the sense that it nearly matches the best asymptotic space
and time bounds for the simpler problem of approximately determining membership within
the polytope (being suboptimal by a factor of 1/

√
ε in the space). We have also presented

bounds on the norms of the gradient (first derivative) and Hessian (second derivative) of the
approximation.

There are a number of interesting open problems that remain. The first is applying this
method to more approximate nearest neighbor search applications. We have done this for a
discrete set of points in Rd, which we plan to publish in a future paper. While our results
nearly matching the best known complexity bounds for ε-approximate nearest neighbor
searching, the technical issues are quite involved. The method can be applied to other query
problems where the answer is naturally associated with a continuous field. Examples include
penetration depth in collision detection [47], distance oracles in robotics and autonomous
navigation [44], and novel-view synthesis using parametric radiance fields [20].
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5:16 Smooth Distance Approximation

While our approach produces a smooth approximation, there are other properties of
distance fields that would be useful to preserve. One shortcoming of our method is that it can
produce spurious local minima in the approximate distance field. An interesting question is
whether our approach can be modified to eliminate these minima. We anticipate interesting
connections to the literature on vector field design [43] and mode finding [28].
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Abstract
Motivated by the problem of redistricting, we study area-preserving reconfigurations of connected
subdivisions of a simple polygon. A connected subdivision of a polygon R, called a district map,
is a set of interior disjoint connected polygons called districts whose union equals R. We consider
the recombination as the reconfiguration move which takes a subdivision and produces another by
merging two adjacent districts, and by splitting them into two connected polygons of the same area
as the original districts. The complexity of a map is the number of vertices in the boundaries of its
districts. Given two maps with k districts, with complexity O(n), and a perfect matching between
districts of the same area in the two maps, we show constructively that (log n)O(log k) recombination
moves are sufficient to reconfigure one into the other. We also show that Ω(log n) recombination
moves are sometimes necessary even when k = 3, thus providing a tight bound when k = 3.
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1 Introduction

We consider the problem of redistricting – the partition of a geographic domain into disjoint
districts. In particular, we consider the case when these districts are required to be connected
and of roughly equal population. These criteria are typically enforced in political redistricting,
wherein each district elects one or more representatives to serve on a governing body, a
canonical example being Congressional districts in the United States. Even under these
restrictions, the space of possible redistricting plans for a typical domain is intractably vast,
making it difficult to sample from this space. Recently, algorithms for generating large samples
of plans have made it possible to find the neutral baseline for a particular state, which in turn
can be used to detect and describe gerrymanders (i.e., unfair maps) [9, 8, 10, 13, 14, 17, 18].
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6:2 Reconfiguration of Polygonal Subdivisions via Recombination

The most common and successful sampling algorithms for redistricting are Markov chains
that perform a sequence of reconfiguration moves on an initial map. The most prominent
reconfiguration move is the recombination or ReCom move (see Figure 1), which is a move that
modifies two adjacent districts while maintaining population balance and connectivity [13, 14].
In order to properly sample from the space of redistricting plans, we should require that any
feasible redistricting plan can be reached from the initial map by a finite sequence of ReCom
moves. That is, we want to positively answer the reachability question for this reconfiguration
move; in the language of Markov chains this would be to prove that any chain built on the
ReCom move is irreducibile.

Historically, most redistricting algorithms have operated on a discretized version of the
geographic domain. In this framework, a district map is modeled as a vertex partition
of an adjacency graph [14, 24]. This is natural since population data is only available at
the level of fixed geographic units, such as Census blocks in the case of the United States.
The ReCom algorithm fits within this framework, and current versions all use a spanning
tree method on the adjacency graph to perform the ReCom move. Unfortunately, it is
easy to construct small pathological examples of graphs for which ReCom reachability fails.
Moreover, even determining whether two plans can be connected via a sequence of ReCom
moves is PSPACE-complete [3] for general (planar) graphs.

A reasonable but unproven hypothesis is that for real-world adjacency graphs representing
sufficiently fine discretizations of the geographic domain, we will indeed have reachability. A
general theorem covering all adjacency graphs of interest seems beyond reach, which has led
to a search for intermediate results. One direction of investigation is to allow a large class of
graphs but relax the population balance constraint considerably; in such cases theoretical
results are possible [2, 3] (see Related Work below). Reachability on grid graphs or triangular
lattices is an active area of research but as of yet without concrete results.

In this paper, we return to the original hypothesis – that sufficient discretization leads
to reachability – to motivate our result. Instead of modeling redistricting plans as graph
partitions, we adopt a continuous model where the districts are connected polygons of equal
population which partition a polygonal domain. Note that sampling algorithms based on
this model do exist in the literature, most notably the power diagram method in [11], but
these algorithms are not Markov chains and require an extra refinement step to go from
polygonal partitions to partitions that respect the geographic units.

In our continuous model, we are able to establish reachability for the ReCom move –
that is, any two polygonal partitions can be connected by finitely many ReCom steps that
merge and resplit adjacent polygonal districts. The implication is that given two real-world
redistricting plans, a sufficiently fine discretization of the geographic domain allows a finite
sequence of ReCom moves (on the adjacency graph) to connect them. In practice this could
mean that a particular map is not reachable from the initial map when considering voting
precincts as geographic units, but could become reachable when working with Census blocks.

Related Work. In the discrete setting, the context for the reachability problem consists
of a graph G with n nodes, a number of districts k and a slack ε ≥ 0. Valid partitions are
defined as partitions of V (G) into k non-empty subsets (called districts) that each induce
connected subgraphs such that the number of vertices in each district lies in the interval
[(1 − ε) n

k , (1 + ε) n
k ]. Two common reconfiguration moves on the space of valid partitions

are the switch move and ReCom move. A switch move [15, 21] consists of reassigning a
single node to a new district. Using the switch move allows one to construct a Markov
chain on the space of valid partitions with easily computable transition probabilities. A
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Figure 1 A sequence of three recombination moves on the state of Wisconsin. At each step, two
districts are merged and split again. The reachability problem is to determine whether any map can
be reached from any other by a finite sequence of such steps.

Metropolis-Hastings weighting can then be used to ensure that the chain samples (in the
limit) from any desired distribution on the space of valid partitions. Crucially, however, this
relies on the assumption that the state space is connected, i.e., that any two partitions can
be connected by switch moves. It is not hard to design concrete examples of graphs for which
this is not true with ε = 0. It is known that for ε = ∞, the state space is connected under
the switch move when G is biconnected; furthermore, that deciding whether two partitions
can be connected by switch moves is PSPACE-complete even when G is planar [2].

The usefulness of the switch move is hampered by the fact that Markov chains built
on it tend to mix slowly [23]. As a result, larger reconfiguration moves, that are often
more effective on real-world instances, were introduced. The ReCom move [13, 14] consists
of merging and resplitting two adjacent districts (note that the switch move is a special
case of a ReCom move). When designing a Markov chain based on this move, the most
common method for resplitting is to draw a random spanning tree of the merged districts
and cut an edge such that the resulting connected components form a valid partition. The
disadvantage to such a process is that the transition probabilities between partitions appear
to be intractable, so that the resulting Markov chain has an unknown stationary distribution.
Recently, modifications of the original ReCom Markov chain have been proposed which have
computable transition probabilities [4, 6]; however, an accurate description of the stationary
distribution still requires the state space to be connected. It is easy to construct a graph G

for which the space of valid partitions is not ReCom-connected for ε = 0 (even for a 6×6
grid graph [6]). It is known [3] that the state space is connected whenever G is connected
and ε = ∞, and also when G is Hamiltonian and ε ≥ 2; deciding whether two partitions can
be connected by ReCom moves is PSPACE-complete even when G is a triangulation.

Contributions. In this paper, we introduce a continuous model for redistricting and ReCom
moves, where the districts can be arbitrary connected polygons (with real coordinates) in
a polygonal domain (Section 2). While the configuration space in this setting contains
infinitely many maps, we prove that it is always connected under ReCom moves. Our proof is
constructive, and provides an upper bound on the minimum number of ReCom moves between
any two maps in terms of the number of districts k and the complexity of the district maps
n (i.e., the number of vertices of all polygons in the initial and target maps). We start with
the first nontrivial case, k = 3 districts in a unit square domain, and show that between any
two maps of complexity O(n), there is a reconfiguration path consisting of O(log n) ReCom
moves (Theorem 9 in Section 3). Importantly, the complexity of the map remains O(n) in all
intermediate steps. Our reconfiguration algorithm generalizes to k districts in an arbitrary
polygonal domain, using a recursion of depth O(log k). It yields an exp(O(log k log log n))
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6:4 Reconfiguration of Polygonal Subdivisions via Recombination

bound on the number of ReCom moves between two maps; however, for the complexity of
intermediate maps we obtain only a weaker bound of nkO(1) (Theorem 10 in Section 4). On
the other hand, we show that (even for k = 3) the diameter of the configuration space is
infinite by constructing pairs of maps which require arbitrarily large numbers of ReCom
moves to connect (Theorem 12 in Section 5). The number of moves for these examples grows
logarithmically with the complexity of the maps, thereby providing a lower bound which
perfectly matches our upper bound.

2 Preliminaries

A region is a connected set in R2 bounded by one or more pairwise disjoint Jordan curves.
A k-district map M(R) = {D1, . . . , Dk} is a decomposition of a region R into k interior-
disjoint regions (that is, R =

⋃k
i=1 Di and int(Di) ∩ int(Dj) = ∅ for i ̸= j), where R is

the domain, and D1, . . . , Dk are the districts of the map. We may refer to M(R) simply
as M if R is clear from the context. A recombination move (for short, ReCom) takes
a map M(R) and two districts Di, Dj ∈ M(R) and returns a new district map of the
same domain M ′(R) = M(R) \ {Di, Dj} ∪ {D′

i, D
′
j}. A recombination is area-preserving if

area(Di) = area(D′
i) and area(Dj) = area(D′

j). Two k-district maps, M(R) = {D1, . . . , Dk}
and M ′(R) = {D′

1, . . . , D
′
k}, on a domain R are area-compatible if there is a permutation

π : {1, . . . , k} → {1, . . . , k} such that area(Di) = area(D′
π(i)) for all i = 1, . . . , k.

We assume that the domain R is a simple polygon, and each district is a connected
polygon (possibly with holes). The configuration space of a map M(R) is the set of all
polygonal district maps on R that are area-compatible with M(R). We define the complexity
of a map M as the total number of vertices on the boundaries of all districts in M(R). We
show (in Section 4) that w.l.o.g. we may assume a unit square domain R = [0, 1]2. The area
of a polygon P , denoted area(P ), is either the Euclidean area of P or the integral

∫
P
δ of

some nonnegative integrable density function δ : R → R≥0. We show (Theorem 10) that
between any pair of area-compatible district maps there is a sequence of area-preserving
recombinations (i.e., the configuration space of area-compatible district maps is connected).

Weak Representation. In intermediate maps of a ReCom sequence, we use infinitesimally
narrow corridors to keep the districts connected. In order to handle narrow corridors
efficiently, we rely on a compressed representation of district maps using weak embeddings
(defined below), where each corridor is represented by a polygonal path; see Fig. 2. The
compressed representation has two key advantages: (1) We may assume that corridors have
zero area; and (2) we may reduce the total number of vertices by representing several parallel
corridors by overlapping polygonal paths (with shared vertices). In Sections 3–4, we construct
a sequence of ReCom moves on compressed maps. We show (in Proposition 1 below) that the
polygonal paths can be thickened into narrow corridors in each stage of the ReCom sequence
to produce a ReCom sequence in which the districts are simple polygons.

An embedding of a planar graph G is an injective function from G (seen as a 1-dimensional
topological space) to R2; intuitively it is a drawing of G in which edges can intersect only at
common endpoints. A weak embedding of G is a continuous function from G to R2 such that,
for every ε > 0, each vertex can be moved by at most ε and each edge can be replaced by a
curve within Fréchet distance ε to form an embedding of G (i.e., an ε-perturbation of a weak
embedding is an embedding). In particular, a simple polygon is a piecewise linear embedding
of a cycle and the region bound by it; and a weakly simple polygon is a piecewise linear weak
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embedding of a cycle and the region bounded by it. A polygon (with possible holes) is a
simple polygon with pairwise disjoint simple polygons (holes) removed. Similarly, a weak
polygon is a weakly simple polygon with pairwise disjoint weakly simple polygons removed.

Figure 2 An example of a weak embedding of a map. Left: multiple corridors connect disconnected
regions. Right: the corridors are thickened to create three simple polygons.

For a district map M , the boundaries of the districts jointly form a straight-line embedding
of some abstract graph G. By identifying edges on opposite sides of narrow corridors, we
obtain a weak embedding of G. In a weak embedding, two or more corridors may overlap,
and we maintain a linear order among all overlapping corridors.

We use the machinery introduced by Akitaya et al. [1] (based on earlier work [12, 7]);
see also [5, 16]. A weak embedding of G is a piecewise linear map of φ : G → R2. The
image graph H is a planar straight-line graph formed by the image φ(G), where overlapping
vertices (edges) of G are mapped to the same vertex (edge). A weak representation of G
comprises of a weak embedding φ and a linear order of overlapping edges of φ(G) along
each edge of H. We define an ε-thickening of H so that G admits an embedding ψ into the
ε-thickening of H so that the Fréchet distance between φ and ψ is at most ε. We call ψ an
ε-perturbation of the weak representation if the order of the edges of G in the neighborhood
of an edge of H agrees with the given linear order. It is known that if G has n vertices, then
an ε-perturbation ψ(G) with O(n) vertices can be computed in O(n log n) time [1].

Weak Representation for ReCom Sequences. We construct a ReCom sequence in two
passes: The first pass operates on a generic ε-perturbation, where the area of each district is
given by the weak representation (hence the corridors have zero area). The second pass then
expands the weak representations into an ε-perturbation, using Proposition 1 below (see the
full version of the paper for omitted proofs), where each district is a simple polygon with the
desired area. Note that the number of moves is determined in the first pass.

▶ Proposition 1. Given two area-compatible k-district maps and a sequence of area-preserving
ReCom moves where districts in intermediate maps are weak polygons with O(n) vertices,
we can compute a sequence of area-preserving ReCom moves of the same length where the
districts in intermediate maps are all polygons with O(n) vertices.

We define the compressed complexity of a district map as the number of vertices in the
image graph H of the weak representation (that is, repeated vertices are counted only once).
The number of ReCom moves produced by our algorithm in Sections 3–4 depends on the
compressed complexity. Using ε-perturbations would increase the complexity of maps. For
this reason, it is also useful in our analysis to convert an ε-perturbations to a weak embedding
which we do by applying the inverse of the operations described here. Throughout this paper
we use set operations on weak polygons such as D1 ∪D2 where D1 and D2 are weak polygons.
Let D′

1 and D′
2 be the polygons obtained by the ε-perturbation defined in Proposition 1. We

define D1 ∪D2 to be the weak polygon obtained from D′
1 ∪D′

2.
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3 Reconfiguration for Three Districts

In this section, we consider maps with three districts with a total of n vertices in a unit
square domain R = [0, 1]2. We show that any 3-district map M(R) = {D1, D2, D3} can be
transformed by a finite sequence of ReCom moves into an area-compatible canonical map
in which the districts are axis-aligned rectangles, Q1, Q2 and Q3, of unit width such that
area(Qi) = area(Di) for i = 1, 2, 3.

3.1 Overview of the Algorithm
Our algorithm for transforming a map into the canonical map consists of three stages, each
containing multiple ReCom moves:

Preprocessing (Section 3.2). In this stage, we ensure that our three districts are ordered
top to bottom in a well-defined way, and the middle district has the largest area. Moves
needed: O(1).
Gravity moves (Section 3.3). We perform three ReCom moves to place the districts into
their final positions, with the possible exception of corridors. Moves needed: 3.
Exchange sequences (Section 3.5). Corridors maintaining connectivity are carefully
removed, using a tree representation to determine a move that simultaneously removes a
constant fraction of corridors. Moves needed: O(log n).

3.2 Preprocessing: Ordering Property
First we transform the three given districts into simple polygons if necessary. While there is
a district Di that is a polygon with holes, there is an adjacent district Dj contained within
a hole. Recombine Di and Dj to create a single-edge corridor between Dj and the outer
boundary of Di. Next, we create corridors, if necessary, such that each district touches both
the left and right sides of R. While there is a district that is not adjacent to the left (resp.,
right) side s of the R, let Di be such a district closest to s and let Dj be an adjacent district
that already touches s; then we recombine Di and Dj and append to Di a shortest path to s
along the boundary of Dj . Thus, both districts remain simply connected. As all corridors
run along existing vertices of the three districts, the complexity of the map does not increase.
This stage takes O(1) ReCom moves.

After preprocessing, the intersection of each district with the left (resp., right) side of the
square domain is connected; and the order of these intersections is the same on both sides,
or else two districts would cross. Therefore, the districts can be ordered from top to bottom.

We also need to establish the property that the middle district has the largest area. This
can be done trivially with a single ReCom move between the middle district and the largest
district of the three. We call these properties combined the ordering property:

▶ Definition 2. A three district map M(R) = {D1, . . . , Dk} satisfies the ordering property
if the intersection of each district with the left (resp., right) side of the square domain is
connected, and the middle district, as defined by the resulting order from top to bottom, has
area greater than or equal to each other district.

We assume that the districts are simple polygons in the unit square with a total of n
vertices and describe the details of the recombination moves as we use them in the algorithm.
To reconfigure the districts into their canonical positions, apart from possible corridors, we
perform three gravity moves.



H. A. Akitaya, A. Gonczi, D. L. Souvaine, C. D. Tóth, and T. Weighill 6:7

3.3 Gravity Move
Assume that M is a 3-district map satisfying the ordering property, with districts labeled D1
(red), D2 (green), and D3 (blue) from top to bottom. We describe the move Gravity(D1, D2),
which recombines the red and green districts; refer to Figures 3–4. Let P = D1 ∪D2, which
is a weakly simple polygon by the ordering property. By continuity, there exists a horizontal
line ℓ (that we call the waterline) that partitions the plane into upper and lower halfplanes
ℓ+ and ℓ−, resp., such that area(P ∩ ℓ+) = area(D1) and area(P ∩ ℓ−) = area(D2). We shall
define new districts D′

1 and D′
2, resp., that contain P ∩ ℓ+ and P ∩ ℓ−.

Note, however, that P ∩ ℓ+ and P ∩ ℓ− may be disconnected. We then reconnect disjoint
components of each district by corridors along the boundary of P ; see Fig. 4. Note that,
by the ordering property, there is a path π on the boundary of D3 (blue) between the left
and right side of the domain R. If there are two or more components of P ∩ ℓ+, they are
separated by blue and, therefore they all touch the path π. Therefore (P ∩ ℓ+) ∪ π is a
connected region. Similarly, (P ∩ ℓ−) ∪ π is also connected.

We define a red graph as follows: the vertices are the connected components of P ∩ ℓ+

and edges are minimal arcs along π ∩ ℓ− that connect two distinct components of P ∩ ℓ+.
Since (P ∩ ℓ+) ∪ π is connected, then the red graph is connected. Consider an arbitrary
spanning tree of the red graph, and add its edges (as corridors) to the red district along the
boundary of P . This completes the definition of D′

1.

P P

ℓ
ℓ+

ℓ−

Figure 3 The setup for a gravity move between the red district D1 and green district D2. Left:
a district map satisfying the ordering property. Middle: the union P = D1 ∪ D2 is shown in gray.
Right: the horizontal line ℓ equipartitions the gray polygon P .

Figure 4 Constructing the result of a gravity move between red and green on the map in Figure
3. Left: the red region P ∩ ℓ+ and the green region P ∩ ℓ− are each disconnected. Middle: red
corridors create a connected red district D′

1. Right: green corridors create a connected green district
D′

2 and restore the ordering property.

Since the blue district is simply connected, each component of P ∩ ℓ− also intersects ℓ and
therefore is adjacent to the red district D′

1. Intuitively, we add corridors along π “coating”
the blue district with green and thus restoring the ordering property. Note that π may pass
along the boundary of D′

1, including all red corridors, and the boundaries of the components
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6:8 Reconfiguration of Polygonal Subdivisions via Recombination

of P ∩ ℓ−. Formally, we add green corridors at the intersection of π and ∂D′
1, if such a

corridor is parallel to a red corridor, it runs between the blue district and the red corridor.
That defines D′

2 and concludes the description of the gravity move.

▶ Lemma 3. Assume D1 and D2 are the top two districts on a map satisfying the ordering
property. Then Gravity(D1, D2) is an area-preserving ReCom move that maintains the
ordering property.

Since each waterline intersects an edge of a district at most once we have:

▶ Lemma 4. Assume D1, D2 and D3 each have at most m vertices. Then Gravity(D1,D2)
produces districts D′

1 and D′
2, each with at most O(m) vertices.

The move Gravity(D3, D2) is defined analogously: a reflection in a horizontal line that
reverses the order of the three districts, such that D′

1 = D3 becomes the top district and
D′

2 = D2 is the middle district, then apply Gravity(D′
1, D

′
2), followed by another reflection.

▶ Lemma 5. Let M be a map satisfying the ordering property, with districts D1, D2 and
D3 from top to bottom. Then Gravity(D1, D2) returns a map that satisfies the ordering
property and D′

1 is disjoint from Q3 with the possible exception of corridors, where Q3 is the
axis-aligned rectangle of the blue district in the canonical map.

Proof. It suffices to show that the horizontal line ℓ is above Q3. Lemma 3 yields the rest.
By definition, the area below ℓ is at least area(D2) ≥ area(Q3), since D2 has the maximum
area of the three districts. Thus, the line ℓ is above Q3. ◀

(a) (b) (c) (d)

Figure 5 An example of a sequence of three gravity moves. (a) A starting configuration; (b) the
result of Gravity(D1, D2); (c): the result of Gravity(D3, D2); (d) the result of the third gravity
move Gravity(D1, D2).

After three gravity moves each district has positive area only in the regions in their
corresponding districts in the canonical configuration (see Figure 5 for an example).

▶ Lemma 6. Let M be a map satisfying the ordering property, with districts D1, D2 and D3
from top to bottom. Then the sequence of three moves Gravity(D1, D2), Gravity(D2, D3),
and Gravity(D1, D2) return a map M ′ where D1, D2, and D3 are each contained in their
canonical rectangles, with the possible exception of some corridors.

3.4 Tree Representation of a Region
After prepocessing and the three gravity moves in Lemma 6, we want to eliminate corridors.
We encode the topology of the region P = D1 ∪D2 in a graph that we use for the Exchange
sequence, described below.
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We define the corridor graph T (R) of a weakly simple polygon R ⊂ R. A weakly simple
polygon has a natural decomposition into pairwise disjoint simple polygons and corridors
(polygonal paths). The nodes of T (R) are simple polygons in the decomposition of R, and the
edges represent corridors between two polygons in R. Denote the set of edges by E(T (R)).
At each node, the rotation of the incident edges represents the counterclockwise order of
corridors along the corresponding polygon in R. The weight of each node is the area of the
corresponding polygon. As corridors have zero thickness, the total weight of the nodes is
W = area(R).

In particular, we want to consider the corridor graph of P = D1 ∪D2. Assume that M is
a 3-district map returned by the three gravity moves in Lemma 6. By the ordering property,
we know that the intersection of D1 and D2 is a simple path - either from one side of the
square to another or, if D1 is contained in D2, then it is a closed curve. Thus, P is a weakly
simple polygon. Let Q12 be the union of the two axis-aligned rectangles that contain D1 and
D2 in the canonical configuration. Then, the nodes of T (P ) are simple polygons in P ∩Q12
(regions bounded by corridors of D3) and the edges are corridors in R \Q12 that connect two
such polygons (corridors of D1 and D2 running through Q3). Note, however, that a corridor
in P may be the union of three parallel corridors in D2, D1, and D2, resp.; see Fig. 6. Since
P is a weakly simple polygon, T (P ) is a tree; see Fig. 6. Note that the number of vertices in
T (P ) is bounded above by the compressed complexity of the map and that many different
maps can have the same corridor graph.

(a) (b)

(c)

Figure 6 (a) A map M after 3 Gravity moves. (b) The nodes of the corridor graph T (P )
correspond to connected components of P ∩ Q12, indicated by distinct colors. (c) The corridor graph
T (P ) encodes the topology of P .

We use the corridor graph T (P ) to eliminate corridors. Consider what happens if the
tree has a leaf that is entirely part of the green district (see Fig. 7). This means that by
doing a gravity move between green and blue we can eliminate the green and blue corridors
adjacent to this leaf, removing the leaf from the tree altogether. Our goal is therefore to
create a part of the tree which is entirely green.

The centroid of a vertex-weighted tree of total weight W is a vertex whose removal
partitions the tree into subtrees of weight at most W

2 each. Jordan [19] proved that every tree
(with unit weights) has a centroid; this was perhaps the oldest separator theorem [20, 22].
The result extends to weighted trees: a greedy algorithm finds the centroid in linear time.

Let c be a centroid of T (P ), and assume that T (P ) is rooted at c. A subtree of T (P )
is contiguous if it consists of the centroid c, some children of c that are consecutive in the
rotation order of c, and all their descendants in T (P ).
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6:10 Reconfiguration of Polygonal Subdivisions via Recombination

▶ Lemma 7. There exists a contiguous subtree T ∗ of T (P ) such that: (i) T ∗ contains at
least 1

3 of the vertices of T (P ), and (ii) the weight of T ∗ is at most W
2 + w(c), where w(c) is

the weight of the centroid c.

Proof. By the definition of the centroid c, the removal of c produces a forest T (P ) − c, where
the weight of each component (tree) is at most W

2 . Partition these deg(c) trees into up to
three forests of consecutive subtrees such that each forest has weight at most W

2 as follows.
Begin with a partition into deg(c) forests, each containing a single tree, and maintain their
cyclic order around c. While there are two consecutive forests whose combined weight is at
most W

2 , merge them into a single forest. The while loop terminates with three or fewer
forests: Indeed, for four or more forests, the combined weight of at least one of the consecutive
pairs would be at most W

2 by the pigeonhole principle. Since we partition T (P ) − c into
three forests, one of them contains at least 1

3 of the vertices T (P ) − c. Adding c to this forest,
we obtain a contiguous subtree of T (P ) containing at least 1

3 of the vertices of T (P ). ◀

3.5 Exchange Sequence
We now describe the exchange sequence, a sequence of three ReCom moves, which eliminates
a fraction of the corridors and reduces the (compressed) complexity of the map. Assume we
are given a 3-district map M satisfying the ordering property. As before, label its districts
red, green, and blue from top to bottom. We further require that there exist two horizontal
lines ℓ1 and ℓ2 such that red has positive area only above ℓ2, blue has positive area only
below ℓ1, and green has positive area only between ℓ1 and ℓ2 (cf. Lemma 6). See Figure 7
for an example.

Let c be a centroid of T (P ), where P = D1 ∪D2 and let T ∗ be a contiguous subtree of
T (P ) rooted at the centroid, as in Lemma 7. The exchange sequence consists of the following
three ReCom moves:
1. ReCom green and red: Let Q denote the regions of T ∗ except for the region corresponding

to node c. First make Q green. Then partition the remaining region P \ Q with a
gravity-like move as follows. Apply a Gravity move w.r.t. P \ Q to subdivide it into
two weak polygons of areas area(D1) for red and area(D2) − area(Q) for green; see Fig. 7.
After this ReCom move, D1 is weakly simple and D2 is a weak polygon (in which D1 is a
hole if Q is a weak polygon with a hole).

2. ReCom green and blue removing unnecessary green and blue corridors simultaneously as
follows. Remove any green and blue monochromatic corridors corresponding to all edges
of T ∗. Note that this merges some nodes of T (D3) (see Fig. 7), and creates cycles in
T (D3). While there is a cycle in T (D3) remove a blue corridor in an edge of T (D3) in
a cycle. As this process modifies only green and red, it requires a single ReCom move.
After this ReCom move, D3 is a weakly simple polygon and D2 is a weakly simple or
weak polygon.

3. ReCom green and red with a Gravity move, restoring the ordering property.

▶ Lemma 8. Let M = {D1, D2, D3} be a 3-district map with the ordering property, and
M ′ = {D′

1, D
′
2, D

′
3} the map returned by an Exchange sequence on M . Let P = D1 ∪D2

and P ′ = D′
1 ∪D′

2. Then, M ′ satisfies the ordering property, and |E(T (P ′))| ≤ 2
3 |E(T (P ))|.

3.6 Full Reconfiguration Algorithm
Overall, the algorithm for a 3-district map M([0, 1]2) = {D1, D2, D3} works as follows:
after a preprocessing phase of O(1) ReCom moves, apply the sequence of three moves
Gravity(D1, D2), Gravity(D2, D3), and Gravity(D1, D2); compute the corridor graph
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Figure 7 An exchange sequence, shown with maps (left) and corresponding tree representations
(right). Top: a map returned by a sequence of three gravity moves. Middle: using node 1 as the
centroid c and filling the subtree containing nodes 2, 3, 7 and 8 with green. Bottom: removing
unnecessary corridors and performing a gravity move.

T (P ) for P = D1 ∪ D2; while T (P ) has two or more nodes, apply an exchange sequence.
Once T (P ) has one node, Gravity(D1, D2) yields the canonical configuration.

▶ Theorem 9. Given a 3-district map M([0, 1]2) = {D1, D2, D3} of complexity n, there is a
sequence of O(log n) ReCom moves that transforms it into a canonical map. Furthermore,
the districts in each intermediate map are polygons with O(n) vertices and at most one hole.

Proof. After preprocessing, three Gravity moves bring the districts into canonical form
with the possible exception of corridors. Each exchange sequence eliminates a constant
fraction of corridors by Lemma 8. After O(log n) ReCom moves we then obtain the canonical
configuration.

The algorithm described above produces a sequence of ReCom moves, where the districts
in intermediate maps are weak polygons. By Proposition 1, these maps can successively be
perturbed into polygons. This completes the proof of the first claim.
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6:12 Reconfiguration of Polygonal Subdivisions via Recombination

It remains to show that the districts in each intermediate map are polygons with O(n)
vertices and at most one hole. By construction, the only possible hole appears in the green
district after the first step of the Exchange sequence. Each of the O(1) ReCom moves in
preprocessing adds a corridor with O(n) vertices, and so each district has O(n) vertices at
the end of preprocessing. By Lemma 4, each gravity move increases the number of vertices
by a constant factor. After three gravity moves, each district still has O(n) vertices.

The algorithm applies O(log n) exchange sequences. At the end of every exchange
sequence, the districts are in canonical form with the exception of corridors. Each exchange
sequence removes some of the corridors, and does not create new corridors. It should be clear
that the complexity of the blue district only decreases since corridors are only eliminated
and never created. Note that intermediate ReCom moves within an Exchange sequence
(step 1) may add O(n) new vertices to the red district. In an exchange sequence, the 1st
ReCom move is a Gravity move w.r.t. a sub-polygon, and creates only O(n) new vertices by
Lemma 4. The 2nd ReCom move eliminates corridors (and the corresponding vertices); and
the 3rd ReCom move eliminates any other vertices created in the 1st move of the sequence.
Thus, the complexities of the red and green districts decrease after one Exchange sequence.

Finally, when we perturb all weak polygons into polygons in the entire ReCom sequence,
the number of vertices remains O(n) for each district by Proposition 1. ◀

4 Reconfiguration for k Districts

We generalize our algorithm to an arbitrary number of districts, using recursion. For any
3 ≤ k ≤ n, an instance I = (M(R),M ′(R), δ) of the problem consists of two area-compatible
k-district maps M(R) = {D1, . . . , Dk} and M ′(R) = {D′

1, . . . , D
′
k}, where R is a weak

polygon with at most one hole, and δ is a density function. We define the complexity of I
(denoted |I|) as the pair (k, n), where n is the maximum over the compressed complexities
of M and M ′, and the complexities of all districts Di and D′

i (i ∈ {1, . . . , k}). The overall
recursive strategy goes as follows (see the full paper for the details): First construct a
piecewise linear retraction from a (possibly punctured) unit square S to R, and extend M

and M ′ to two maps on S. If k ≥ 4, then group the k districts into three superdistricts, each
containing ⌊k/3⌋ or ⌈k/3⌉ districts; and run the algorithm in Section 3 on the superdistricts.
Note that each ReCom move on a pair of superdistricts is an instance of our problem with
fewer districts, which can be solved recursively. The retraction then transforms the ReCom
sequence on S to a ReCom sequence on R. We analyze the recursion to give a bound on the
number of ReCom moves.

▶ Theorem 10. Given any two area-compatible polygonal k-district maps of complexity at
most n in a simply connected domain, exp(O(log k log log n)) = (log n)O(log k) = kO(log log n)

ReCom moves are sufficient to transform one into the other. Furthermore, the complexity of
each map in intermediate steps is nkO(1) .

Proof. For 3 ≤ k ≤ n, let T (k, n) denote the minimum number of ReCom moves that can
transform any polygonal k-district map to any other with compatible areas, and the domain
as well as each district is a polygon with at most n vertices. From an instance I(k, n), our
algorithm makes O(log n) recursive calls of the form I( 2k

3 , c · n), where c is a constant. Then,

T (k, n) ≤ O

(
T

(
2k
3 , c · n

)
· log n

)
+O(k).
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The height of the recursion tree is O(log k) and the maximum branching factor is
O(log(n · clog k)) = O(log n + log k) = O(log n) since k < n. Then T (k, n) solves to
exp(O(log k log log n)) = (log n)O(log k) = kO(log log n). By Proposition 1, we can convert
the ReCom sequence on weak representation to a ReCom sequence of the same length in
which all districts are simple polygons.

The analysis above prioritized the number of ReCom moves, rather than the complexity of
the map at intermediate steps. For instance, consider the recursion that simulates a ReCom
move of superdistricts transforming a k-district map M(R) into M ′(R). Our algorithm
recurses on a 2k

3 -district map of complexity c · n on a punctured square S, which yields a
sequence of O(log n) ReCom moves. However, to convert this into a sequence of ReCom
moves on k-district maps, one must apply a retraction H∗ (in the full paper) to every
intermediate map, retracting a weakly simple polygon H to its boundary ∂H. Since the
complexity of H could be Ω(n), H might cross the same district Ω(n) times, which causes H∗

to push the district into Ω(n) narrow corridors along the boundary of H. This might cause
the complexity of the district to increase to Ω(n2) in intermediate steps. The retraction H∗,
described in the full paper, ensures that the complexity goes up from n to at most O(n2)
after applying H∗ in each recursive step. Since the depth of the recursion tree is O(log k),
the maximum complexity of all intermediate maps is n2O(log k) = nkO(1) . Note that this does
not increase the number of ReCom moves since M and M ′ are determined in the parent
level, and H∗ is only applied to recover intermediate steps between M and M ′, which are
obtained from lower complexity maps in the children level. ◀

5 Lower Bound Construction

This section shows that Ω(log n) ReCom moves are sometimes necessary to transform a given
map of complexity n into canonical form, even for three districts of equal areas in [0, 1]2.

Overview. We describe an initial map with 3 districts in a unit square, and show that after
k ReCom moves, each district contains an arc of a specific combinatorial pattern (defined
below). These arcs are defined recursively, each iteration roughly tripling the complexity of
the arcs. Thus the total complexity of the arcs in iteration ℓ is O(3ℓ). The initial district
map is a thickening of one of these arcs after m ≥ 6 iterations. We show that if each
district contains an arc from iteration ℓ, then after a recombination they each contain an
arc of iteration ℓ − 4. In the canonical configuration, each district can only contain arcs
of iteration 1. Then, the number of recombinations from the initial district map to the
canonical configuration is at least linear in the number of iterations.

Construction. We first describe the family of simple arcs Fℓ, for all ℓ ∈ N0, mentioned in
the overview. All arcs in Fℓ will start at the ε-neighborhood of the left side of the square
and end at the ε-neighborhood of the right side, crossing the middle section 3ℓ times. Each
family Fℓ can be described with a combinatorial pattern, namely, the order in which the arcs
traverse the 3ℓ segments in the middle section of the square. In the base case, F0 is the set
of arcs that cross the middle section only once. Given an arc γℓ ∈ Fℓ, we describe an arc
γℓ+1 ∈ Fℓ+1. We construct two arcs, γ+

ℓ , γ
−
ℓ ∈ Fℓ, that closely follow γℓ on the left and on

the right, respectively, and are mutually noncrossing. Then γℓ+1 is the concatenation of γℓ,
the reverse of γ−

ℓ , and γ+
ℓ , where two consecutive arcs are connected by short arcs in the left

and right ε-neighborhoods of the square; see Fig 8. Let Fℓ+1 be the family of all arcs with
the same combinatorial pattern as γℓ+1. The following observation follows by construction.
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ε ε1− 2 · ε

ℓ = 0

ϵ ϵ1− 2 · ϵ

ℓ = 1 ℓ = 2

Figure 8 The first three levels of the recursive construction for arcs in Fℓ, for ℓ ∈ {0, 1, 2}. Note
that the blue, green, and red arcs for ℓ = 2 each resemble a copy of the entire stage for ℓ = 1.

▶ Observation 11. For 0 ≤ j ≤ ℓ, we can partition every arc γℓ ∈ Fℓ into 3j arcs in Fℓ−j.

Initial Map. The initial map is drawn relative to an arc γm ∈ Fm whose middle segments
are equally spaced horizontal line segments in the unit square. The map is a “thickening”
of γm where the middle section is partitioned into 3m rectangles of equal area. Each of the
three districts is created based on one of three rough copies of γm−1, i.e., the (m− 1)-anchors
of γm. We use the portions of the anchors of γm in the ε-neighborhoods of the vertical sides
of the unit square to construct corridors that make each district connected.

In the full paper, we show that any ReCom move can only make constant progress (in
the number of iterations) towards the canonical map.

▶ Theorem 12. There exist two area-compatible 3-district maps, M and M ′, both with
complexity O(n), such that Ω(log n) ReCom moves are necessary to reconfigure M into M ′,
even when the districts in both maps are axis-aligned orthogonal polygons with vertices on an
integer grid of size O(n) ×O(n).

6 Conclusions

We have shown that (in our continuous setting) any pair of area-compatible district maps
can be reconfigured into each other by a sequence of area-preserving recombination moves.
Though the discrete version of this result remains unsolved (see Related Work), our result
suggests that for any two maps, with a discretization of the geographic domain which is
granular enough, we can connect them by ReCom moves. However, establishing quantitative
bounds on the necessary granularity is left for future work.

Between 3-district maps, the number of recombination moves is O(log n), where n is the
combinatorial complexity of the maps, matching our worst-case lower bound of Ω(log n).
Between k-district maps, for k ≥ 4, we construct a sequence of exp(O(log k log log n)) =
(log n)O(log k) ReCom moves. It remains an open problem whether the number of moves can
be reduced to be polynomial in both k and n. For k ≥ 4 districts, our algorithm uses a
recursion of depth O(log k). However, this approach increases the complexity of intermediate
maps to nkO(1) . It is also an open problem whether there exists a sequence of ReCom moves
where the complexity of intermediate maps remains polynomial in both k and n.
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Abstract
The k-Detour problem is a basic path-finding problem: given a graph G on n vertices, with specified
nodes s and t, and a positive integer k, the goal is to determine if G has an st-path of length exactly
dist(s, t) + k, where dist(s, t) is the length of a shortest path from s to t. The k-Detour problem is
NP-hard when k is part of the input, so researchers have sought efficient parameterized algorithms
for this task, running in f(k) poly(n) time, for f(·) as slow-growing as possible.

We present faster algorithms for k-Detour in undirected graphs, running in 1.853k poly(n)
randomized and 4.082k poly(n) deterministic time. The previous fastest algorithms for this problem
took 2.746k poly(n) randomized and 6.523k poly(n) deterministic time [Bezáková-Curticapean-Dell-
Fomin, ICALP 2017]. Our algorithms use the fact that detecting a path of a given length in an
undirected graph is easier if we are promised that the path belongs to what we call a “bipartitioned”
subgraph, where the nodes are split into two parts and the path must satisfy constraints on those
parts. Previously, this idea was used to obtain the fastest known algorithm for finding paths of
length k in undirected graphs [Björklund-Husfeldt-Kaski-Koivisto, JCSS 2017], intuitively by looking
for paths of length k in randomly bipartitioned subgraphs. Our algorithms for k-Detour stem from a
new application of this idea, which does not involve choosing the bipartitioned subgraphs randomly.

Our work has direct implications for the k-Longest Detour problem, another related path-finding
problem. In this problem, we are given the same input as in k-Detour, but are now tasked with
determining if G has an st-path of length at least dist(s, t) + k. Our results for k-Detour imply that
we can solve k-Longest Detour in 3.432k poly(n) randomized and 16.661k poly(n) deterministic time.
The previous fastest algorithms for this problem took 7.539k poly(n) randomized and 42.549k poly(n)
deterministic time [Fomin et al., STACS 2022].
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7:2 Faster Detours in Undirected Graphs

1 Introduction

The k-Path problem is a well-studied task in computer science:

k-Path
Given: k ∈ N+, a graph G, nodes s and t.
Determine: Does G contain a simple path of length k from s to t?

For graphs G with n nodes, this problem can be easily solved in O(knk) time by enumerating
all sequences of k vertices. In the 1980s, Monien [13] showed that the k-Path problem is
actually fixed-parameter tractable (FPT) in k, presenting a k! poly(n) time algorithm solving
k-Path. Since then, significant research has gone into obtaining faster algorithms for k-Path,
with better dependence on k (see [3, Table 1] for an overview of the many results in this line
of work). This research culminated in the work of Koutis and Williams [11, 16, 12], who
showed that k-Path can be solved in 2k poly(n) (randomized) time, and Björklund, Husfeldt,
Kaski, and Koivisto [3, Section 2], who proved that in undirected graphs, k-Path can be
solved even faster in 1.657k poly(n) (randomized) time. Throughout this paper, we assume
that algorithms are randomized (and return correct answers with high probability in the stated
time bounds), unless otherwise specified.

The k-Path problem is a parameterized version of the NP-complete Longest Path problem,
but it is not the only natural parameterization. Various other parameterizations of k-Path
have been proposed and studied, which we consider in the present paper.

1. Finding a path of length at least k. Instead of looking for a path of length exactly k

from s to t, one can try to determine the existence of an st-path of length at least k:

k-Longest Path
Given: k ∈ N+, a graph G, nodes s and t.
Determine: Does G contain a simple path of length at least k from s to t?

Observe that in the k-Longest Path problem, the length of a solution path is not necessarily
bounded as a function of k. However, it is known that k-Longest Path is also FPT: work of
Zehavi [17] and Fomin, Lokshtanov, Panolan, and Saurabh [9] implies that k-Longest Path
can be solved in 4k poly(n) time. More recently, Eiben, Koana, and Wahlström [7, Section
6.3] proved that over undirected graphs, k-Longest Path can be solved in 1.657k poly(n)
time, matching the fastest known runtime for k-Path.

2. Finding an st-path longer than a polynomial-time guarantee. Another paramet-
erization for k-Path is motivated by the fact that one can find a shortest path from s

to t in polynomial time. If the shortest path distance dist(s, t) happens to already be
long, then it is actually “easy” to find a long path from s to t. Therefore, it is natural to
consider the parameterized complexity of searching for an st-path that is k edges longer
than the shortest path length from s to t. Our work focuses on these so-called “detour”
variants of the path detection problems discussed above.

k-Detour (a.k.a. k-Exact Detour)
Given: k ∈ N+, a graph G, nodes s and t.
Determine: Does G contain a simple path of length dist(s, t) + k from s to t?
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Since k-Path efficiently reduces to solving a single instance of (k−1)-Detour,1 the k-Detour
problem is at least as hard as the classical k-Path problem.
The k-Detour problem was introduced by Bezáková, Curticapean, Dell, and Fomin [2],
who showed that it can be solved by calling polynomially many instances of ℓ-Path, for
path lengths ℓ ≤ 2k + 1. Employing the fastest known k-Path algorithms, this implies
that k-Detour can be solved in 22k poly(n) = 4k poly(n) time in general, and even faster
over undirected graphs in 1.6572k poly(n) ≤ 2.746k poly(n) time.

The two parameterizations above can be combined to produce the following problem:

k-Longest Detour
Given: k ∈ N+, a graph G, nodes s and t.
Determine: Does G contain a simple path of length at least dist(s, t) + k from s to t?

Observe that k-Longest Detour is at least as hard as k-Longest Path. Unlike the problems
discussed above, k-Longest Detour over directed graphs is not known to be FPT: in fact, it
remains open whether k-Longest Detour is in P even for the special case of k = 1! However,
in undirected graphs, Fomin, Golovach, Lochet, Sagunov, Simonov, and Saurabh [8] showed
that k-Longest Detour can be reduced to solving p-Detour for p ≤ 2k, and then solving
polynomially many instances of ℓ-Longest Path, for ℓ ≤ 3k/2. Employing the fastest known
algorithms for k-Detour and k-Longest Path as subroutines, this implies that k-Longest Detour
can be solved over undirected graphs in 7.539k poly(n) time.

The algorithms for k-Detour and k-Longest Detour discussed above are significantly slower
than the fastest known algorithms for the analogous k-Path and k-Longest Path problems.
This motivates the questions: can k-Detour be solved as quickly as k-Path, and can k-Longest
Detour be solved as quickly as k-Longest Path? Given the extensive and influential line of work
that has gone into finding faster algorithms for k-Path and k-Longest Path, obtaining faster
algorithms for these detour problems as well is an interesting open problem in parameterized
complexity and exact algorithms.

Our Results
The main result of our work is a faster algorithm for k-Detour on undirected graphs.

▶ Theorem 1. In undirected graphs, k-Detour can be solved in 1.853k poly(n) time.

This marks a significant improvement over the previous fastest 2.746k poly(n) time algorithm
for k-Detour (and shows, for example, that this problem can be solved in faster than 2k poly(n)
time, which is often a barrier for parameterized problems). Since the fastest known algorithms
for k-Longest Detour over undirected graphs have a bottleneck of solving 2k-Detour, Theorem 1
implies the following result.

▶ Theorem 2. In undirected graphs, k-Longest Detour can be solved in 3.432k poly(n) time.

Again, this is a significant improvement over the previous fastest algorithm for k-Longest
Detour on undirected graphs, which ran in 7.539k poly(n) time.

Our algorithm for Theorem 1 applies the fact that k-Path is easier to solve on undirected
graphs which have a prescribed vertex partition into two sets, where we constrain the path
to contain a particular number of nodes from one set, and a particular number of edges

1 Given an instance of k-Path, add an edge from s to t. Then a solution to (k − 1)-Detour in this new
graph corresponds to a solution to k-Path in the original graph.
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whose vertices are in the other set. Formally, we consider the (ℓ, k1, ℓ2)-Bipartitioned Path
problem: given a graph G on n nodes, whose vertices are partitioned into parts V1 and V2,
with distinguished vertices s and t, the goal is to determine if G contains a simple path
from s to t of length ℓ, which uses exactly k1 vertices from V1, and exactly ℓ2 edges whose
endpoints are both in V2. A careful application of the following result from [3] is the main
source of the speed-up in our algorithm for k-Detour.

▶ Lemma 3 ([3, Section 2]). Let ℓ, k1, ℓ2 be nonnegative integers satisfying the inequality
ℓ + 1 ≥ k1 + 2ℓ2. Then over undirected graphs, the (ℓ, k1, ℓ2)-Bipartitioned Path problem can
be solved in 2k1+ℓ2 poly(n) time.

Although this “Bipartitioned Path” problem may appear esoteric at first, Lemma 3 plays
a crucial role in obtaining the fastest known algorithm for k-Path in undirected graphs [3],
and an analogue of Lemma 3 for paths of length at least k is the basis for the fastest known
algorithm for k-Longest Path in undirected graphs [7]. Proofs of Lemma 3 can be found in [3,
Section 2], [5, Section 10.4], and in the full version of this paper in [1, Appendix B].

In Section 3, we provide an intuitive overview of how Lemma 3 helps us obtain our
algorithm for k-Detour.

The fastest known algorithms for the path and detour problems discussed above all use
randomness. Researchers are also interested in obtaining fast deterministic algorithms for
these problems. We note that a simplified version of our algorithm for k-Detour implies faster
deterministic algorithms for these detour problems over undirected graphs.

▶ Theorem 4. The k-Detour problem can be solved over undirected graphs by a deterministic
algorithm in 4.082k poly(n) time.

Prior to this work, the fastest known deterministic algorithm for k-Detour on undirected
graphs ran in 6.523k poly(n) time [2].

▶ Theorem 5. The k-Longest Detour problem can be solved over undirected graphs by a
deterministic algorithm in 16.661k poly(n) time.

Prior to this work, the fastest known deterministic algorithm for k-Longest Detour on
undirected graphs ran in 42.549k poly(n) time [8].

In summary, we obtain new randomized and deterministic algorithms for k-Detour and
k-Longest Detour over undirected graphs, whose runtimes present significant advances over
what was previously known for these problems.

Organization
The remainder of this paper presents our new algorithms k-Detour. A thorough discussion of
additional related work can is included in the full version of this paper in [1, Appendix A].

In Section 2, we introduce relevant notation, assumptions, and definitions concerning
graphs. In Section 3, we provide an overview of our algorithm for k-Detour. In Section 4, we
present the details of our algorithm, and prove its correctness. The runtime analysis for our
algorithm (and thus the formal proofs of Theorems 1, 2, 4, and 5, given correctness of our
algorithm) are presented in Section 5. In Section 6, we highlight some open problems.

2 Preliminaries

Given positive integers a and b, we let [a] = {1, 2, . . . , a}, and [a, b] = {a, a + 1, . . . , b}. Given
an integer a and a set of integers S, we define a + S = {a + s | s ∈ S} .
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Throughout, we let G denote the input graph. We assume that G is undirected, has
vertex set V with |V | = n, and, without loss of generality, is connected.2 Throughout, we let
s and t denote the two distinguished vertices that come as part of the input to the k-Detour
problem. Given a vertex u, we let d(u) = dist(s, u) denote its distance from s. This distance
is well-defined, since G is connected. Given a path P containing vertices u and v, we let
P [u, v] denote the subpath from u to v on P .

Given an edge e = (u, v) from u to v, we say e is forward if d(v) = d(u) + 1, backwards
if d(v) = d(u)− 1, and stable if d(v) = d(u). In an undirected graph, by triangle inequality
and symmetry of distance, adjacent vertices u and v have |d(u)− d(v)| ≤ 1, so every edge in
a path falls into one of these three categories.

Given two vertices u, v ∈ V , let G(u,v] denote the induced subgraph of G on the set
{u} ∪ {w ∈ V | d(u) < d(w) ≤ d(v)}. Let G(u,∞) denote the induced subgraph of G on the
set {u} ∪ {w ∈ V | d(u) < d(w)}. Note that for every u and v, the subgraphs G(u,v] and
G(v,∞) overlap at vertex v, but are disjoint otherwise.

3 Technical Overview

In this section, we provide an overview of how our k-Detour algorithm works. Our starting
point is the algorithm for this problem presented in [2, Section 4], which we review in
Section 3.1. Then in Section 3.2 we review how the algorithm from Lemma 3 for (ℓ, k1, ℓ2)-
Bipartitioned Path has previously been used to obtain the fastest known algorithm for k-Path
in undirected graphs. With this context established, in Section 3.3 we outline how we combine
the techniques from Sections 3.1 and 3.2 with new ideas to prove Theorem 1.

3.1 Previous Detour Algorithm
The previous algorithm for k-Detour from [2, Section 4] performs dynamic programming
over nodes in the graph, starting from t and moving to vertices closer to s. In the dynamic
program, for each vertex x with d(x) ≤ d(t), we compute all offsets r ≤ k such that there is
a path of length d(t)− d(x) + r from x to t in the subgraph G(x,∞). Determining this set of
offsets for x = s solves the k-Detour problem, since G(s,∞) = G.

If d(t)− d(x) ≤ k, we can find all such offsets just by solving ℓ-Path for ℓ ≤ 2k.
So, suppose we are given a vertex x with d(t) − d(x) ≥ k + 1 and an offset r ≤ k, and

wish to determine if there is a path of length d(t)− d(x) + r from x to t in G(x,∞). If there
is such a path P , then [2] argues that P can always be split in as depicted in Figure 1a: for
some vertex y with d(y) > d(x), we can decompose P into two subpaths:
1. a subpath A from x to y of length at most 2k + 1, such that all internal vertices v in A

satisfy d(x) < d(v) < d(y), and
2. a subpath B from y to t in G(y,∞) of length at most d(t)− d(y) + k.

We can always split a path P in this manner because P has length at most d(t)−d(x)+k,
so at most k edges in P are not forward edges. Intuitively, as we follow the vertices along the
path P , the distance of the current vertex from s can decrease or stay the same at most k

times, and so P cannot contain too many vertices which are the same distance from s. This
allows one to argue that there is a vertex y with d(y) ≤ d(x) + k + 1 such that all internal
vertices v of the subpath P [x, y] have d(x) < d(v) < d(y). Since d(y) ≤ d(x) + k + 1 and P

has length at most d(t)− d(x) + k, it turns out that P [x, y] has length at most 2k + 1.

2 If G were not connected, we could replace it with the connected component containing s, and solve the
detour problems on this smaller graph instead.
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x y
t

≤ k + 1

(a) Previous Algorithms: A subpath P from x
to t in G(x,∞) of a solution path can always be split
at a vertex y with d(y) ≤ d(x) + k + 1, such that
d(u) ̸= d(y) for all vertices u ̸= y in P .

x
y t

G(x,y] G(y,∞)

≤ k/2 + 1

(b) Our Algorithm: In undirected graphs, a sub-
path P from x to t in G(x,∞) of a solution path can
be split at a vertex y with d(y) ≤ d(x)+k/2+1, such
that P [x, y] is in G(x,y] and P [y, t] is in G(y,∞).

Figure 1 To solve k-Detour, we split subpaths P of candidate solutions at a vertex y satisfying
certain nice properties. We obtain a speed-up by getting better upper bounds on d(y) in Figure 1b
than previous work did in Figure 1a, by allowing P [x, y] to have internal vertices u with d(u) = d(y).

Note that since G(y,∞) only contains vertices v with d(v) ≥ y, the paths A and B must
be disjoint. We can find the length of A using an algorithm for (2k + 1)-Path, and the length
of B will have already been computed in our dynamic program (since y is further from s

than x). So, by trying out all possible y, finding the possible lengths for subpaths A and
B, and then adding up these lengths, we can get all possible lengths for P in the dynamic
program, and solve k-Detour.

3.2 Previous Path Algorithm
The fastest known algorithm for k-Path in undirected graphs goes through the (k, k1, ℓ2)-
Bipartitioned Path problem. Recall that in this problem, we are given a bipartition V1 ⊔ V2
of the vertices in the graph, and want to find a path of length k from s to t, which uses
k1 vertices in V1 and ℓ2 edges with both endpoints in V2. The authors of [3] showed that
(k, k1, ℓ2)-Bipartitioned Path can be solved in 2k1+ℓ2 poly(n) time over undirected graphs.

Why does this imply a faster algorithm for k-Path in undirected graphs? Well, suppose
the input graph contains a path P of length k from s to t. Consider a uniform random
bipartition of the vertices of the graph into parts V1 and V2. We expect (k + 1)/2 vertices
of P to be in V1, and k/4 edges of P to have both endpoints in V2. In fact, this holds with
constant probability, so we can solve k-Path by solving (k, (k + 1)/2, k/4)-Bipartitioned Path
in the randomly partitioned graph. By Lemma 3 this yields a 23k/4 poly(n) ≈ 1.682k poly(n)
time algorithm for k-Path. We can obtain a faster algorithm using the following modification:
take several uniform random bipartitions of the graph, and solve (k, k1, ℓ2)-Bipartitioned Path
separately for each bipartition, for k1 + ℓ2 ≤ 3(1− ε)k/4, where ε > 0 is some constant. The
number of bipartitions used is some function of k and ε, set so that with high probability at
least one of the partitions V1 ⊔ V2 has the property that the total number of vertices of P in
V1 and number of edges of P with both endpoints in V2 is at most 3(1− ε)k/4. Setting the
parameter ε optimally yields a 1.657k poly(n) time algorithm for k-Path [3].

3.3 Our Improvement
As in the previous approach outlined in Section 3.1, our algorithm for k-Detour performs
dynamic programming over vertices in the graph, starting at t, and then moving to vertices
closer to s. For each vertex x with d(x) ≤ d(t), we compute all offsets r ≤ k such that
there is a path of length d(t)− d(x) + r from x to t in the subgraph G(x,∞). Obtaining this
information for x = s and r = k solves the k-Detour problem.
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Given a vertex x and offset r ≤ k, we wish to determine if G contains a path of length
d(t) − d(x) + r from x to t in G(x,∞). Suppose there is such a path P . If d(t) − d(x) is
small enough, it turns out we can find P by solving p-Path for small values of p. So, for
the purpose of this overview, suppose that d(t)− d(x) is sufficiently large. In this case, as
outlined in Section 3.1, previous work showed that P can be split into two subpaths A and
B contained in disjoint subgraphs, such that A has length at most 2k + 1. This splitting
argument holds even for directed graphs. Our first improvement comes from the observation
that in undirected graphs, we can decompose the path P with a smaller prefix: as depicted in
Figure 1b, there must exist a vertex y with d(y) > d(x), such that P splits into a subpath A

from x to y in G(x,y] of length at most 3k/2 + 1, and a path B from y to t in G(y,∞) of length
at most d(t)− d(y) + k. We can find the length of A by solving (3k/2 + 1)-Path, and the
length of B will already have been computed by dynamic programming, since d(y) > d(x).

This split is possible because any consecutive vertices u and v in P have |d(u)− d(v)| ≤ 1
(this is true for undirected graphs, but is not true in general for directed graphs). Since P

has length at most d(t) − d(x) + k, it turns out that P has at most k/2 backwards edges.
This lets us argue that there exists a vertex y with d(y) ≤ d(x) + k/2 + 1 such that P [x, y]
is contained in G(x,y] and P [y, t] is contained in G(y,∞). Finally, A = P [x, y] should have
length at most k more than d(y)− d(x), which means it has length at most 3k/2 + 1.

This simple modification already yields a faster algorithm3 for k-Detour. We get further
improvements by performing casework on the number of stable edges in P (recall that an
edge (u, v) is stable if both its endpoints have the same distance d(u) = d(v) from s).

First, suppose P has at least m stable edges, for some parameter m. Since P has length
at most d(t)− d(x) + k, we can argue that P has at most (k −m)/2 backwards edges. With
this better upper bound on the number of backwards edges, we can improve the splitting
argument and show that P decomposes into subpaths A and B, such that the length of A is
at most (3k −m)/2, and the length of B was already computed by our dynamic program. It
then suffices to solve (3k −m)/2-Path, which yields a speed-up whenever m ≥ Ω(k).

Otherwise, P has at most m stable edges. In this case, we consider the bipartition V1⊔V2
of the vertex set, where V1 has all vertices at an odd distance from s, and V2 has all vertices
with even distance from s. Since G is undirected, consecutive vertices on the path P differ
in their distance from s by at most one. In particular, all forward and backward edges in
P cross between the parts V1 and V2. Only the stable edges can contribute to edges with
both endpoints in V2. Since we assumed that the number of stable edges is small, it turns
out we can find the length of the subpath A of P by solving (ℓ, k1, ℓ2)-Bipartitioned Path
with respect to the given bipartition, for some ℓ2 which is very small. In particular, this
approach computes the length of A faster than naively solving (3k −m)/2-Path. By setting
an appropriate threshold for m, we can minimize the runtimes of the algorithm in both of
the above cases, and establish Theorem 1.

So in summary, our faster algorithms come from two main sources of improvement:
using the structure of shortest paths in undirected graphs to get a better “path-splitting”
argument in the dynamic program from k-Detour, and cleverly applying the fast algorithm
from Lemma 3 for (ℓ, k1, ℓ2)-Bipartitioned Path with carefully chosen bipartitions.

We note that our application of (ℓ, k1, ℓ2)-Bipartitioned Path is qualitatively different from
its uses in previous work. As discussed in Section 3.1, previous algorithms for k-Detour work
by solving instances of k-Path, and as described in Section 3.2, the fastest algorithms for
k-Path on undirected graphs work by reduction to various instances of (ℓ, k1, ℓ2)-Bipartitioned
Path. Thus, previous algorithms for k-Detour on undirected graphs implicitly rely on the

3 In fact, this observation already yields the fast deterministic algorithms for Theorems 4 and 5.
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7:8 Faster Detours in Undirected Graphs

fast algorithm for (ℓ, k1, ℓ2)-Bipartitioned Path, applied to random bipartitions of the input
graph. We obtain a faster algorithm for k-Detour arguing that in certain cases, we can “beat
randomness,” by constructing bipartitions which leverage structural information about the
graph (namely, whether the shortest path distance from s to a given vertex is even or odd).

4 Detour Algorithm

In this section, we present Algorithm 1, our new algorithm for the k-Detour problem. As
mentioned in the previous section, our algorithm behaves differently depending on the
number of stable edges that a potential solution path contains. In particular, the algorithm
depends on a parameter α ∈ (0, 1), which determines the threshold for what counts as “many”
stable edges. Later, we will set α to optimize the runtime of Algorithm 1. Certain lines of
Algorithm 1 have comments indicating case numbers, which are explained in Section 4.1.

Our algorithm computes a set L(x) for each vertex x in the graph, corresponding to the
possible lengths of potential subpaths from x to t of a solution path from s to t.

In step 3 of Algorithm 1, we compute L(x) for all x that are “far” from s, by solving
instances of ℓ-Path for ℓ ≤ (3−α)k/2. Starting in step 4, we compute L(x) for vertices x closer
to s, in terms of the previously computed sets L(y) for vertices y further from s. In steps 5
through 7, we compute some lengths in L(x) by solving instances of (a, k1, ℓ2)-Bipartitioned
Path for appropriate a, k1, ℓ2 values, and in 8 and 9 we compute the remaining lengths in
L(x) by solving a-Path for a ≤ (3− α)k/2 + 1.

4.1 Correctness
In this section, we show that Algorithm 1 correctly solves the k-Detour problem for any
choice of α ∈ (0, 1). The main technical part of the proof lies in inductively showing that
every possible solution path from s to t will be considered by the algorithm and its length
will be included in the set L(s). In Algorithm 1, we try out values of the variable m from 0
to k, and execute differently depending on how m compares to αk. This is interpreted as
follows: suppose there is a solution path P from x to t, then m corresponds to a guess of the
number of stable edges in P .

In Case 1, we guess that P has few stable edges m < αk which corresponds to steps 5
to 7. Under Case 1, there are two possible structures a potential solution path might take
on depending on how d(x) compares to d(t). We refer to the case where d(x)− d(t) is small
as Case 1(a) considered by step 6, and the case where d(x)− d(t) is large as Case 1(b)
considered by step 7. In Case 2, we guess that m ≥ αk, so P has many stable edges, which
corresponds to steps 8 to 9. These cases are also formally defined in our proof of correctness.

▶ Theorem 6. For any fixed α ∈ (0, 1), Algorithm 1 correctly solves the k-Detour problem.

Proof. We prove that upon halting, each set L(x) computed by Algorithm 1 has the property
that for all integers ℓ ∈ [d(t)− d(x), d(t)− d(x) + k], we have

ℓ ∈ L(x) if and only if there is a path of length ℓ from x to t in G(x,∞). (1)

If this property holds, then step 10 of Algorithm 1 returns the correct answer to the k-Detour
problem, since dist(s, t) + k is in L(s) if and only if there is a path from s to t of length
dist(s, t) + k in G(s,∞) = G.

So, it suffices to show that Equation (1) holds for all vertices x. We prove this result by
induction on the distance of x from s in the graph.
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Algorithm 1 Our algorithm for solving k-Detour in undirected graphs.

Input: An undirected graph G with distinguished vertices s and t, and a parameter α ∈ (0, 1).

1: Initialize V1 ← {x ∈ V | d(x) ≡ 1 mod 2}, V2 ← {x ∈ V | d(x) ≡ 0 mod 2}.
2: For each vertex x in the graph with d(x) ≤ d(t), initialize L(x)← ∅.

▷ L(x) will be the set of lengths ℓ ∈ [d(t)− d(x), d(t)− d(x) + k] such that there is
a path of length ℓ from x to t in G(x,∞).

3: For each vertex x with d(x) ∈ [d(t)−(1−α)k/2, d(t)], set L(x) to be the set of all positive
integers ℓ ≤ (3− α)k/2 such that there is a path of length ℓ from x to t in G(x,∞).

▷ Base case: we compute L(x) for the vertices x which are furthest from s.

4: For each d from d(t)−(1−α)k/2−1 down to 0, for each vertex x with d(x) = d, complete
steps 5 through 9.

▷ Inductive Case: compute L(x) layer by layer towards s.

5: For each integer m with 0 ≤ m < αk, and for each choice of integers k1, ℓ2 ≥ 0
satisfying k1 + ℓ2 ≤ (3k + m + 2)/4, complete steps 6 and 7.

▷ This step handles Case 1: the solution path has few stable edges.

6: If there is a path of length ℓ ≤ 2k1 + ℓ2 from x to t in G(x,∞), update L(x) ←
L(x) ∪ {ℓ}.

▷ This step handles Case 1(a): d(t)− d(x) ≤ (k −m)/2.

7: Try out all vertices y with d(y) ∈ [d(x) + 1, min(d(t), d(x) + (3k − m)/2 + 1)].
If for some such y, there is a path from x to y in G(x,y] of length a ≤ 2k1 + ℓ2
with exactly k1 vertices in V1, and ℓ2 edges with both endpoints in V2, update
L(x)← L(x) ∪ (a + L(y)).

▷ This step handles Case 1(b): d(t)− d(x) > (k −m)/2.

8: For each integer m with αk < m ≤ k, complete step 9.
▷ This step handles Case 2: the solution path has many stable edges.

9: Try out all vertices y with d(y) ∈ [d(x) + 1, d(x) + (1 − α)k/2 + 1]. If for some
such y, there is a path from x to y in G(x,y] of length a ≤ (3− α)k/2 + 1, update
L(x)← L(x) ∪ (a + L(y))

10: Return yes if and only if (dist(s, t) + k) ∈ L(s).

Base Case. For the base case, suppose x is a vertex with

d(x) ∈ [d(t)− (1− α)k/2, d(t)]. (2)

Then L(x) is computed in step 3 of Algorithm 1. We now verify that Equation (1) holds.
First, suppose ℓ ∈ L(x).
Then, ℓ must be the length of some path from x to t in G(x,∞) by design.
Conversely, suppose we have a path P from x to t in G(x,∞) of some length

ℓ ≤ d(t)− d(x) + k.
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Then by the assumption on x from Equation (2) in this case, we have

ℓ ≤ d(t)− d(x) + k ≤ (1− α)k/2 + k = (3− α)k/2

so step 3 of Algorithm 1 correctly includes ℓ in L(x).
Thus Equation (1) holds for all vertices x satisfying Equation (2).

Inductive Case. For the inductive step, suppose x is a vertex with

d(x) ≤ d(t)− (1− α)k/2− 1. (3)

We may inductively assume that we have computed sets L(y) satisfying Equation (1), for all
vertices y with d(y) > d(x).

Suppose ℓ ∈ L(x) at the end of Algorithm 1. Then either ℓ was added to L(x) in step 6,
or ℓ was added to L(x) in steps 7 or 9 of Algorithm 1. In the former case, ℓ is the length of
a path from x to t in G(x,∞) by design. In the latter cases, we have ℓ = a + b, where a is
the length of some path from x to y (for some vertex y with d(y) > d(x)) in G(x,y], and (by
the inductive hypothesis) b is the length of some path from y to t in G(y,∞). Since G(x,y]
and G(y,∞) intersect only at y, the union of these paths is a path from x to t in G(t,∞). So,
every integer in L(x) is a valid length of a path from x to t in G(x,∞) as desired.

Conversely, suppose there is a path P from x to t in G(x,∞) of length

ℓ ∈ [d(t)− d(x), d(t)− d(x) + k]. (4)

We prove that ℓ appears in L(x).
To do this, we will analyze the number of forward, backward, and stable edges appearing

in P . Note that P has at least d(t) − d(x) forward edges, since P begins at a vertex at
distance d(x) from s, ends at a vertex at distance d(t) from s, and only the forward edges
allow us to move to vertices further from s.

Let m denote the number of stable edges in P . We have m ≤ k, since the length of P is
at most d(t)− d(x) + k, and P has at least d(t)− d(x) forward edges.

▷ Claim 7. Suppose d(x) ≤ d(t)− (k −m)/2− 1. Then P contains a vertex y such that
1. d(y) ∈ [d(x) + 1, d(x) + (k −m)/2 + 1],
2. every vertex u ∈ P [y, t] with u ̸= y has d(u) > d(y), and
3. every vertex v ∈ P [x, y] has d(v) ≤ d(y).

Proof. For each i ∈ [(k −m)/2 + 1], let zi denote the last vertex on P satisfying

d(zi) = d(x) + i.

These vertices exist because we are assuming that d(x) ≤ d(t)− (k −m)/2− 1, and P must
contain vertices v with d(v) = d for every d ∈ [d(x), d(t)].

By definition, each zi satisfies conditions 1 and 2 from the claim. If some zi satisfies
condition 3 as well, then the claim is true.

So, suppose that none of the zi satisfy condition 3. This means that for each index i, the
subpath P [x, zi] contains a vertex u with d(u) > d(zi). Consecutive vertices in P differ in
their distance from s by at most one, so P [x, zi] must contain an edge e = (v, w) such that
d(v) = d(w) + 1 and d(w) = d(zi) = d(x) + i. That is, P contains a backwards edge from a
vertex at distance i + 1 from s to a vertex at distance i from s, as depicted in Figure 2.

Note that z1, z2, . . . , z(k−m)/2+1 occur on P in the listed order. This is because

d(z1) < d(z2) < · · · < d(z(k−m)/2+1)
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. . . . . .
x

z1 z2

z3

z4

zi zi+1 zi+2

Figure 2 If node zi does not satisfy condition 3 of Claim 7, it means that before hitting zi, the
path visited a node further from s than zi. Thus, we can associate zi with some backwards edge.
The presence of too many of these backwards edges would violate the length condition on P , so it
turns out that one such node (in the figure, zi+2) does have to satisfy condition 3.

and each zi satisfies condition 1 from the claim. Combined with the discussion from the
previous paragraph, this means that P contains at least (k −m)/2 + 1 backwards edges. We
now argue that this violates the assumption on the length of P .

Let f and b denote the number of forward and backwards edges in P respectively.
Since P starts at x and ends at t, we have f − b = d(t)− d(x), which implies that

f = d(t)− d(x) + b. (5)

Then the total length of P is f + b + m = d(t)− d(x) + m + 2b by Equation (5). However,
since P has at least (k −m)/2 + 1 backwards edges, this length satisfies

d(t)− d(x) + m + 2b ≥ d(t)− d(x) + m + 2 ((k −m)/2 + 1) > d(t)− d(x) + k

which contradicts the fact that the length ℓ of P satisfies Equation (4). Thus our assumption
was incorrect, and one of the zi satisfies all three conditions from the claim, as desired. ◁

We now perform casework on the number of stable edges m in P . We start with Case 2
from step 8 of Algorithm 1, since this is the easiest case to analyze.

Case 2: Many Stable Edges (m ≥ αk). Suppose m ≥ αk. In this case, by Equation (3)
we have

d(x) ≤ d(t)− (1− α)k/2− 1 ≤ d(t)− (k −m)/2− 1

So, by Claim 7, there exists a vertex y in P satisfying the three conditions of Claim 7.
By condition 3 from Claim 7, the subpath A = P [x, y] is contained in G(x,y]. By condition

2 from Claim 7, the subpath B = P [y, t] is contained in G(y,∞).
Let a denote the length of A, and b denote the length of B.
Since A has length at least d(y) − d(x), and P has length at most d(t) − d(x) + k by

Equation (4), we know that the length B satisfies

b ≤ d(t)− d(y) + k. (6)

By the inductive hypothesis, L(y) satisfies Equation (1), so b ∈ L(y).
Similar to the reasoning that established Equation (6), we can prove that

a ≤ d(y)− d(x) + k. (7)

By condition 1 of Claim 7, we know that d(y) ≤ d(x) + (k −m)/2 + 1. Since m ≥ αk, this
implies that d(y) ≤ d(x) + (1− α)k/2 + 1.
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Substituting this into Equation (7) yields

a ≤ (1− α)k/2 + 1 + k = (3− α)k/2 + 1.

Thus, the length a of A will be found in step 9 of Algorithm 1. As mentioned before, b ∈ L(y).
Thus, ℓ = a + b ∈ (a + L(y)) is correctly added to the set L(x) in step 9 of Algorithm 1,
which proves the desired result in this case.

Case 1: Few Stable Edges (m < αk). If we do not fall into Case 2, we must have
m < αk. Recall that in step 1 of Algorithm 1, we defined V1 = {u | d(u) is odd} and
V2 = {u | d(u) is even} .

We want to argue that most edges in path P cross the bipartition V1 ⊔ V2. To that end,
the following claim will be helpful.

▷ Claim 8. Let Q be a path of length q, with at most m stable edges. Let k1 denote
the number of vertices of Q in V1, and let ℓ2 denote the number of edges in Q with both
endpoints in V2. Then we have

k1 + ℓ2 ≤ (q + m + 1)/2.

Proof. Let k2 denote the number of vertices of Q in V2.
Consider the cycle C formed by taking Q together with an additional edge between its

endpoints (this new edge is imagined for the purpose of argument, and does not change the
definition of V1 and V2).

Let q1, q2, and qcross denote the number of edges of C with both endpoints in V1, both
endpoints in V2, and endpoints in both V1 and V2 respectively. We have

2k1 = 2q1 + qcross (8)

because both sides of the above equation count the number of pairs (u, e) such that u is a
vertex in C ∩ V1, and e is an edge in C incident to u. A symmetric argument implies that

2q2 + qcross = 2k2. (9)

Adding Equation (8) and Equation (9) together and simplifying yields

k1 + q2 = k2 + q1.

This implies that

k1 + q2 = (k1 + k2 + q1 + q2) /2.

Since C is Q with one additional edge, we have ℓ2 ≤ q2. So the above equation implies that

k1 + ℓ2 ≤ (k1 + k2 + q1 + q2) /2. (10)

We have

k1 + k2 = q + 1 (11)

since the total number of vertices in Q must be one more than its length. By assumption on
the number of stable edges in Q, we have

q1 + q2 ≤ m. (12)
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Substituting Equation (11) and Equation (12) into the right hand side of Equation (10)
yields

k1 + ℓ2 ≤ (q + m + 1)/2

which proves the desired result. ◁

With Claim 8 established, we are now ready to analyze the two subcases under Case 1,
based on the relative distances of x and t from s.

Case 1(a): d(t) − d(x) is small. Suppose that d(x) ∈ [d(t)− (k −m)/2, d(t)].
In this case, Equation (4) implies that P has length

ℓ ≤ d(t)− d(x) + k ≤ (3k −m)/2.

Let k1 denote the number of vertices of P in V1, and k2 denote the number of edges in P

with both endpoints in V2. Then by setting Q = P and q = ℓ in Claim 8, we have

k1 + ℓ2 ≤ (ℓ + m + 1)/2 ≤ (3k + m + 2)/4. (13)

Also, note that P has length ℓ ≤ 2k1 + ℓ2, since 2k1 is greater than or equal to the number of
edges in P incident to a vertex in V1. This observation, together with Equation (13), shows
that in this case, the length ℓ is correctly included in L(x) in step 6 of Algorithm 1.

Case 1(b): d(t) − d(x) is large. If we do not fall into Case 1(a), it means that

d(x) ≤ d(t)− (k −m)/2− 1. (14)

Thus, by Claim 7, there exists a vertex y in P satisfying the three conditions of Claim 7.
The proof that ℓ ∈ L(x) in this case is essentially a combination of the proofs from Case 2
and Case 1(a).

As in Case 2, by condition 3 from Claim 7, the subpath A = P [x, y] is contained in
G(x,y]. By condition 2 from Claim 7, the subpath B = P [y, t] is contained in G(y,∞).

Let a and b denote the lengths of paths A and B respectively. Reasoning identical to the
arguments which established Equations (6) and (7) prove that in this case we also have

b ≤ d(t)− d(y) + k (15)

and

a ≤ d(y)− d(x) + k. (16)

Condition 1 of Claim 7 implies that d(y) ≤ d(x) + (k −m)/2 + 1. Substituting this into
Equation (16) implies that

a ≤ (3k −m)/2 + 1.

Let k1 denote the number of vertices of A in V1, and let ℓ2 denote the number of edges in A

with both endpoints in V2. Then by setting Q = A and q = a in Claim 8, we have

k1 + ℓ2 ≤ (a + m + 1)/2 ≤ (3k + m + 2)/4. (17)

Also, we know that a ≤ 2k1 + ℓ2, because 2k1 is greater than or equal to the number of edges
in A incident to a vertex in V1. Combining this observation with Equation (17), we see that
the length a is indeed computed in step 7 of Algorithm 1.
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By the inductive hypothesis (Equation (1)) and Equation (15), we know that b ∈ L(y).
Thus we have ℓ = a + b ∈ (a + L(y)), so in this case, ℓ is correctly included in L(x) in step 7
of Algorithm 1.

This completes the induction, and proves that Equation (1) holds for all vertices x in
the graph. In particular, Equation (1) holds for x equal to s. This implies that step 10 of
Algorithm 1 returns the correct answer to the k-Detour algorithm. ◀

5 Applications

In this section, we present consequences of our new algorithm for k-Detour from Section 4.

▶ Theorem 1. In undirected graphs, k-Detour can be solved in 1.853k poly(n) time.

Proof. By Theorem 6, Algorithm 1 correctly solves k-Detour, for any value α ∈ (0, 1),
What is the runtime of Algorithm 1? Well, steps 3 and 9 of Algorithm 1 involve solving

polynomially many instances of ℓ-Path, for ℓ ≤ (3 − α)k/2 + 1. Using the fastest known
algorithm for k-Path in undirected graphs [3], these steps take

1.657(3−α)k/2 poly(n)

time. The remaining computationally intensive steps of Algorithm 1 occur in steps 6 and 7,
which can be implemented by solving poly(n) instances of (ℓ, k1, ℓ2)-Bipartitioned Path, for
k1 + ℓ2 < (3k + αk + 2)/4. By Lemma 3, these steps then take

2(3+α)k/4 poly(n)

time overall. Then by setting α = 0.55814 to balance the above runtimes, we see that we can
solve k-Detour over undirected graphs in(

1.657(3−α)k/2 + 2(3+α)k/4
)

poly(n) ≤ 1.8526k poly(n)

time, as desired. ◀

▶ Theorem 2. In undirected graphs, k-Longest Detour can be solved in 3.432k poly(n) time.

Proof. The proof of [8, Corollary 2] shows that k-Longest Detour in undirected graphs
reduces, in polynomial time, to solving p-Detour for all p ≤ 2k and poly(n) instances of
(3k/2)-Longest Path on graphs with at most n nodes.

The proof of Theorem 1 implies that k-Detour can be solved over undirected graphs in
1.8526k poly(n) time. Previous work in [7, Section 6.3] shows that k-Longest Path can be
solved over undirected graphs in 1.657k poly(n) time. Combining these results together with
the above discussion shows that k-Longest Detour can be solved over undirected graphs in(

1.85262k + 1.6573k/2
)

poly(n) ≤ 3.432k poly(n)

time, as desired. ◀

▶ Theorem 4. The k-Detour problem can be solved over undirected graphs by a deterministic
algorithm in 4.082k poly(n) time.
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Proof. By Theorem 6, we can solve k-Detour over an undirected graph by running Algorithm 1
with parameter α = 0. When α = 0 in Algorithm 1, steps 5, 6, 7 never occur. In this case,
the algorithm only needs to solve poly(n) instances of ℓ-Path, for ℓ ≤ 3k/2 + 1, in steps 3
and 9. Since k-Path can be solved deterministically in 2.554k poly(n) time [15], this means
that we can solve k-Detour deterministically in

2.5543k/2 poly(n) ≤ 4.0817k poly(n)

time, as desired. ◀

▶ Theorem 5. The k-Longest Detour problem can be solved over undirected graphs by a
deterministic algorithm in 16.661k poly(n) time.

Proof. The proof of [8, Corollary 2] shows that k-Longest Detour in undirected graphs reduces,
in deterministic polynomial time, to solving p-Detour for p ≤ 2k, and poly(n) instances of
(3k/2)-Longest Path on graphs with at most n nodes.

The proof of Theorem 4 implies that k-Detour can be solved over undirected graphs
deterministically in 4.0817k poly(n) time. Previous work [9] shows that k-Longest Path can
be solved deterministically in 4.884k poly(n) time. Combining these results together with
the above discussion shows that k-Longest Detour can be solved over undirected graphs
deterministically in(

4.08172k + 4.8843k/2
)

poly(n) ≤ 16.661k poly(n)

time, as desired. ◀

6 Conclusion

In this paper, we obtained faster algorithms for k-Detour and k-Longest Detour over undirected
graphs. However, many mysteries remain surrounding the true time complexity of these
problems. We highlight some open problems of interest, relevant to our work.

1. The most pertinent question: what is the true parameterized time complexity of k-Detour
and k-Longest Detour? In particular, could it be the case that k-Detour can be solved as
quickly as k-Path, and k-Longest Detour can be solved as quickly as k-Longest Path? No
known conditional lower bounds rule out these possibilities.

2. The current fastest algorithm for k-Longest Path in directed graphs has a bottleneck
of solving 2k-Path. The current fastest algorithm for k-Detour in directed graphs has
a bottleneck of solving 2k-Path. Similarly, the fastest known algorithm4 for k-Longest
Detour in undirected graphs requires first solving 2k-Detour. Is this parameter blow-up
necessary? Could it be possible to solve these harder problems with parameter k faster
than solving these easier problems with parameter 2k?

3. The speed-up in our results crucially uses a fast algorithm for the (ℓ, k1, ℓ2)-Bipartitioned
Path problem in undirected graphs. In directed graphs no (2− ε)ℓ poly(n) time algorithm
appears to be known for this problem, for any constant ε > 0 and interesting range of
parameters k1 and ℓ2. Such improvements could yield faster algorithms for k-Detour in
directed graphs. Can we get such an improvement? Also of interest: can we get a faster
deterministic algorithm for (ℓ, k1, ℓ2)-Bipartitioned Path?

4 In fact, even the recent alternate algorithm of [10] for k-Longest Detour requires solving 2k-Detour first.
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4. An easier version of the previous question, also raised in [7, Section 9.1]: can we solve
k-Path in directed bipartite graphs in (2− ε)k poly(n) time, for some constant ε > 0? In
the unparameterized setting, the Hamiltonian Path (k-Path for k = n) problem admits
several distinct algorithms running in (2− ε)n poly(n) time in directed bipartite graphs.
Specifically, [6] shows Hamiltonian Path in directed bipartite graphs can be solved in
1.888n poly(n) time, and [4] uses very different methods to solve this problem even faster
in 3n/2 poly(n) time.5 We conjecture that the same speed-up is possible for k-Path, so
that this problem can be solved over directed bipartite graphs in 3k/2 poly(n) time.
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Abstract
Amiri and Wargalla proved the following local-to-global theorem about shortest paths in directed
acyclic graphs (DAGs): if G is a weighted DAG with the property that for each subset S of 3 nodes
there is a shortest path containing every node in S, then there exists a pair (s, t) of nodes such that
there is a shortest st-path containing every node in G. We extend this theorem to general graphs.
For undirected graphs, we prove that the same theorem holds (up to a difference in the constant 3).
For directed graphs, we provide a counterexample to the theorem (for any constant). However, we
prove a roundtrip analogue of the theorem which guarantees there exists a pair (s, t) of nodes such
that every node in G is contained in the union of a shortest st-path and a shortest ts-path.

The original local-to-global theorem for DAGs has an application to the k-Shortest Paths with
Congestion c ((k, c)-SPC) problem. In this problem, we are given a weighted graph G, together with
k node pairs (s1, t1), . . . , (sk, tk), and a positive integer c ≤ k, and tasked with finding a collection
of paths P1, . . . , Pk such that each Pi is a shortest path from si to ti, and every node in the graph
is on at most c paths Pi, or reporting that no such collection of paths exists. When c = k, there
are no congestion constraints, and the problem can be solved easily by running a shortest path
algorithm for each pair (si, ti) independently. At the other extreme, when c = 1, the (k, c)-SPC
problem is equivalent to the k-Disjoint Shortest Paths (k-DSP) problem, where the collection of
shortest paths must be node-disjoint. For fixed k, k-DSP is polynomial-time solvable on DAGs
and undirected graphs. Amiri and Wargalla interpolated between these two extreme values of c, to
obtain an algorithm for (k, c)-SPC on DAGs that runs in polynomial time when k − c is constant.

In the same way, we prove that (k, c)-SPC can be solved in polynomial time on undirected graphs
whenever k − c is constant. For directed graphs, because of our counterexample to the original
theorem statement, our roundtrip local-to-global result does not imply such an algorithm (k, c)-SPC.
Even without an algorithmic application, our proof for directed graphs may be of broader interest
because it characterizes intriguing structural properties of shortest paths in directed graphs.
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1 Introduction

An intriguing question in graph theory and algorithms is: “can we understand the structure of
shortest paths in (directed and undirected) graphs?” More specifically: “can we understand
the structure of the interactions between shortest paths in graphs?” This question has been
approached from various angles in the literature. For instance, Bodwin [12] characterizes
which sets of nodes can be realized as unique shortest paths in weighted graphs, and Cizma
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and Linial investigate the properties of graphs whose shortest paths satisfy or violate certain
geometric properties [19, 20]. Additionally, there is a large body of work on distance
preservers, where the goal is to construct a subgraph that preserves distances in the original
graph (see [11] and the references therein). There are also numerous computational tasks in
which structural results about shortest paths inform the creation and analysis of algorithms,
including distance oracle construction [15], the k-disjoint shortest paths problem, [8], and
the next-to-shortest path problem [35] (the cited papers are the most recent publications in
their respective topics).

The angle of our work is inspired by the following local-to-global theorem1 of Amiri and
Wargalla [3] concerning the structure of shortest paths in directed acyclic graphs (DAGs):

▶ Theorem 1 ([3]). Let G be a weighted DAG with the property that, for each set S of 3
nodes, there is a shortest path containing every node in S. Then, there exists a pair (s, t) of
nodes such that there is a shortest st-path containing every node in G.

Note that in the statement of Theorem 1, the condition that “for each set S of 3 nodes,
there is a shortest path containing every node in S” is equivalent to the condition that one
of the 3 nodes is on a shortest path between the other two.

Theorem 1 is “local-to-global” in the sense that from a highly congested local structure
(every small subset of nodes is contained in a shortest path) we deduce a global structure
(all nodes in the graph live on a single shortest path).

At first glance, Theorem 1 may appear rather specialized, since the existence of shortest
paths through all triples of nodes is a rather strong condition. However, Amiri and Wargalla
[3] show that Theorem 1 has applications to the k-Shortest Paths with Congestion c ((k, c)-SPC)
on problem on DAGs: in this problem we are given a DAG, and are tasked with finding a
collection of shortest paths between k given source/sink pairs, such that each node in the
graph is on at most c of the paths. We discuss this application in detail in Section 1.2.

Amiri and Wargalla [3] raised the question of whether their results can be extended to
general graphs, both undirected and directed. Our work answers this question.

1.1 Structural Results
We ask the following question:

Is Theorem 1 true for general (undirected and directed) graphs?

Our first result answers this question affirmatively for undirected graphs (with constant 4
instead of 3).

▶ Theorem 2 (Undirected graphs). Let G be a weighted undirected graph with the property
that, for each set S of 4 nodes, there is a shortest path containing every node in S. Then,
there exists a pair (s, t) of nodes such that some shortest st-path contains every node in G.

The constant 4 in the statement of Theorem 2 cannot be replaced with 3, as seen by
considering an undirected cycle on four vertices.

Theorem 2 implies a faster algorithm for (k, c)-SPC on undirected graphs, answering an
open question raised in [3, Section 4]. We discuss the background of this problem and our
improvement in Section 1.2.

1 This is slightly different from the statement of the theorem in [3], where the authors write present their
result in the context of the Shortest Paths with Congestion problem, which we discuss in detail later.
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Our second result is for directed graphs. First, we observe that there is actually a
counterexample to Theorem 1 for general directed graphs: let a be the constant for which we
desire a counterexample (i.e., the constant that is 3 in Theorem 1, and 4 in Theorem 2). Let
G be a cycle with bidirectional edges, where all clockwise-pointing edges have weight 1 and
all counterclockwise-pointing edges have weight a. One can verify that the precondition of
the theorem holds: for each set S of a nodes there is a shortest path containing every node
in S, just by taking the shortest clockwise path through all nodes in S. However, no single
shortest path contains every node in G, so the theorem does not hold.

Even though a direct attempt at generalizing Theorem 1 to all directed graphs fails, one
might hope for some analogue of Theorem 1 that does hold. One interpretation of the above
counterexample is that the exact statement of Theorem 1 is not the “right” framework for
getting a local-to-global shortest path phenomenon in general directed graphs. To that end,
we consider the roundtrip analogue of Theorem 1, where the final path through every node
is a shortest roundtrip path, i.e., the union of a shortest st-path and a shortest ts-path
(roundtrip distances are a common object of study in directed graphs, with there being
much research, for example, in roundtrip routing [21], roundtrip spanners [33], and roundtrip
diameter computation [1]). Note that the above counterexample does not apply to the
roundtrip analogue of Theorem 1 since there exists a pair (s, t) of nodes such that the union
of a shortest st-path and a shortest ts-path are both in the clockwise direction and thus
contain all nodes in the graph.

For our second result, we present a roundtrip analogue of Theorem 1 which holds true for
general directed graphs (with the constant 11 instead of 3):

▶ Theorem 3 (Directed graphs). Let G be a weighted directed graph with the property that,
for each set S of 11 nodes, there is a shortest path containing every node in S. Then, there
exists a pair (s, t) of nodes such that the union of a shortest st-path and a shortest ts-path
contains every node in G.

Proving Theorem 3 requires overcoming a number of technical challenges involving the c
omplex structure of shortest paths in directed graphs. Due to its roundtrip nature, unlike
Theorem 2, Theorem 3 does not appear to have any immediate algorithmic applications.

1.2 Disjoint and Congested Shortest Path Problems
In this section we introduce the k-Shortest Paths with Congestion c ((k, c)-SPC) problem and
state the implications of our work for this problem.

1.2.1 Background
We begin by discussing the related k-Disjoint Shortest Paths (k-DSP) problem. For more
related work on disjoint path problems in general, see the full version.

Disjoint Shortest Paths

Formally, the k-Disjoint Shortest Paths (k-DSP) problem is defined as follows:

k-Disjoint Shortest Paths (k-DSP): Given a graph G and k node pairs (s1, t1), . . . , (sk, tk),
find a collection of node-disjoint paths P1, . . . , Pk such that each Pi is a shortest path
from si to ti, or report that no such collection of paths exists.
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The k-DSP problem was introduced in the 90s by Eilam-Tzoreff [22], who gave a
polynomial-time algorithm for undirected graphs when k = 2, and conjectured that there is a
polynomial-time algorithm for any fixed k in both undirected and directed graphs. Recently,
Lochet [30] proved Eilam-Tzoreff’s conjecture for undirected graphs by showing that k-DSP
can be solved in polynomial time for any fixed k. Subsequently, the dependence on k in the
running time was improved by Bentert, Nichterlein, Renken, and Zschoche [8]. It is known
that k-DSP on undirected graphs is W[1]-hard [8, Proposition 36], so this problem is unlikely
to be fixed-parameter tractable.

For directed graphs, Bérczi and Kobayashi [9] showed that 2-DSP can be solved in
polynomial time. For k ≥ 3 however, determining the complexity of k-DSP on directed
graphs remains a major open problem. This problem is only known to be polynomial-time
solvable for special classes of directed graphs, such as DAGs and planar graphs [9].

Shortest Paths with Congestion

The k-Shortest Paths with Congestion c ((k, c)-SPC) problem is the variant of k-DSP where
some amount of congestion (paths overlapping at nodes) is allowed. In general, problems of
finding paths with limited congestion are well-studied studied in both theory and practice.
For instance, there is much work on the problem in undirected graphs where the goal is to
find a maximum cardinality subset of node pairs (si, ti) that admit (not necessarily shortest)
paths with congestion at most c [32, 28, 7, 6, 5, 17, 4, 26, 16, 18]. As another example, [27]
provides, for fixed k, a polynomial-time algorithm for the problem on directed graphs of
determining that either there is no set of disjoint paths between the node pairs (si, ti), or
finding a set of such paths with congestion at most 4. Another example for directed graphs
is the problem of finding paths between the node pairs (si, ti) where only some nodes in the
graph have a congestion constraint [31].

Formally, the k-Shortest Paths with Congestion c ((k, c)-SPC) problem is defined as follows:

k-Shortest Paths with Congestion c ((k, c)-SPC): Given a graph G, along with k node pairs
(s1, t1), . . . , (sk, tk), and a positive integer c ≤ k, find a collection of paths P1, . . . , Pk

such that each Pi is a shortest path from si to ti, and every node in V (G) is on at most
c paths Pi, or report that no such collection of paths exists.

The (k, c)-SPC problem was introduced by Amiri and Wargalla [3]. Before that, the
version of (k, c)-SPC where the paths are not restricted to be shortest paths was studied by
Amiri, Kreutzer, Marx, and Rabinovich [2].

When c = 1, the (k, c)-SPC problem is equivalent to the k-DSP problem. At the other
extreme, when c = k, there are no congestion constraints, so the problem can be easily solved
in polynomial time by simply finding a shortest path for each pair (si, ti) independently.
Amiri and Wargalla [3] asked the following question: can we interpolate between these
two extremes? In particular, can we get algorithms for (k, c)-SPC where the exponential
dependence on k for k-DSP can be replaced with some dependence on O(k − c) instead?

Amiri and Wargalla [3] achieved this goal for DAGs. In particular, they gave a reduction
from (k, c)-SPC on DAGs to k-DSP on DAGs of the following form: letting d = k − c, if
k-DSP on DAGs can be solved in time f(n, k), then (k, c)-SPC on DAGs can be solved in
time O

((
k
3d

)
· f(2dn, 3d)

)
. The essential aspect of this running time is that the second input

to the function f is not k but rather an O(d) term. A key tool in their reduction is Theorem 1
(stated in a different way).
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Since k-DSP can be solved in nO(k) time on DAGs [9], the above result implies that
(k, c)-SPC can be solved in

(
k
3d

)
· (2dn)O(d) time on DAGs. That is, (k, c)-SPC on DAGs is

polynomial-time solvable for arbitrary k whenever d is constant. We note that for for every
c, the (k, c)-SPC problem on DAGs is W[1]-hard with respect to d, so the problem is unlikely
to be fixed-parameter tractable with respect to d [3, Proof of Theorem 3].

1.2.2 Algorithmic Results
Similarly to Amiri and Wargalla’s result for DAGs, our result for undirected graphs, The-
orem 2, implies a reduction from (k, c)-SPC to k-DSP on undirected graphs.

▶ Lemma 4. If k-DSP can be solved in f(n, k) time on undirected graphs, then (k, c)-SPC
can be solved in O

((
k
4d

)
· f(3dn, 4d)

)
time on undirected graphs.

Lemma 4 follows from Theorem 2 using an argument nearly identical to the one presented
for DAGs in [3] (up to a difference in constants). For completeness, we include a full proof of
this result in the full version.

Since it is known that k-DSP can be solved in undirected graphs in time nO(k·k!) [8],
applying Theorem 2 together with Lemma 4, we deduce the following result.

▶ Corollary 5. (k, c)-SPC on undirected graphs can be solved in
(

k
4d

)
· (3dn)O(d·(4d)!) time.

Thus (k, c)-SPC on undirected graphs is in polynomial time whenever d = k−c is constant;
that is, it is in the complexity class XP with respect to the parameter d. Prior to our work,
no polynomial-time algorithm for this problem appears to have been known in this regime,
even for simple cases such as (k, k − 1)-SPC on undirected graphs.

In contrast, our structural result for directed graphs, Theorem 3, does not imply a faster
algorithm for (k, c)-SPC in directed graphs. This is because Theorem 3 does not appear to
imply a reduction from (k, c)-SPC to k-DSP in the manner of Lemma 4. Moreover, even if
such a reduction did exist, this would not imply an algorithm for directed graphs analogous
to Corollary 5. This is because while k-DSP is polynomial-time solvable for constant k in
undirected graphs, it remains open whether even 3-DSP over directed graphs can be solved
in polynomial time.

1.3 The Structure of Shortest Paths in Directed Graphs
Although our result for directed graphs, Theorem 3, does not appear to have immediate
algorithmic applications, we believe it is still interesting from a graph theoretic perspective,
especially in light of the current scarcity of results for shortest disjoint path problems in
directed graphs. In this section, we expand upon this idea with some remarks, and then
state a lemma from our proof concerning the structure of shortest paths in directed graphs.

We currently have a poor understanding of the complexity of the k-DSP problem in
directed graphs: for fixed k ≥ 3, it is still not known if this problem is either polynomial-time
solvable or NP-hard. In fact, even the complexity of the seemingly easier (3, 2)-SPC problem
on directed graphs is open. In this context, Theorem 3 is compelling because it presents an
example of interesting behavior which holds for collections of shortest paths in DAGs, and
then continues to hold, under suitable generalization, for systems of shortest paths in general
directed graphs. This sort of characterization appears to be rare in the literature.

More generally, the methods we use to establish Theorem 3 involve combinatorial observa-
tions about the structure of shortest paths in directed graphs, and the interactions between
them. We believe our analysis could offer more insight into resolving other problems that
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concern systems of shortest paths in directed graphs. There are many such problems, where
the undirected case is well-understood, but in the directed case not much is known. This
barrier is in-part due to the relatively complex patterns of shortest paths which can appear
in directed graphs. We hope that our analysis of directed shortest paths may shed light on
problems for which the structural complexity of directed shortest paths is the bottleneck
towards progress.

One example of a problem where the undirected case is well-understood while the directed
case remains poorly understood is, as discussed previously, the k-DSP problem. Another
curious example is the Not-Shortest Path problem, where the goal is to find an st-path that
is not a shortest path. Although Not-Shortest Path can be solved over undirected graphs in
polynomial time [29], no polynomial time algorithm is known for this problem in directed
graphs. A third example is the problem of approximating the diameter of a graph. For
undirected graphs there is an infinite hierarchy of algorithms that trade off between time
and accuracy [14], while only two points on the hierarchy are known for directed graphs.
Additionally, the roundtrip variant of diameter is the least understood of any studied variant
of the diameter problem [34]. Another example is the construction of approximate hopsets: for
directed graphs there is there a polynomial gap between upper and lower bounds [25, 10, 13],
while for undirected graphs the gap is subpolynomial [23, 24]. The preponderance of such
examples motivates proving results like Theorem 3, which characterize interesting behavior
of shortest paths in directed graphs.

Structural Lemma for Directed Shortest Paths

One of the lemmas we establish on the way to proving Theorem 3 is a general statement
about the structure of shortest paths in directed graphs. It can be stated independently of
the context of the proof of Theorem 3 and we highlight it here.

We categorize any shortest path P into one of two main types, based on the ways that
other shortest paths intersect with it. The following simple definition will be useful for
defining our path types.

▶ Definition 6. For any nonnegative integer ℓ and set of ℓ nodes, v1, v2, . . . , vℓ, we say that
the order v1 → v2 → · · · → vℓ is a shortest-path ordering if there is a shortest path containing
all of the nodes v1, v2, . . . , vℓ in that order.

In addition to our two main path types, there is a third path type which we call a trivial
path because it is easy to handle:

▶ Definition 7 (Trivial Path). Given a directed graph, nodes a and b, and a shortest path P

from a to b, we say P is a trivial path if P contains at least one node w such that a → w → b

is the only shortest-path ordering of a, w, b.

Now we are ready to state our two main types of shortest paths. The first type is a
reversing path:

▶ Definition 8 (Reversing path). Given a directed graph, nodes a and b, and a non-trivial
shortest path P from a to b, P is reversing if P contains at least one node w such that w

falls on some shortest path from b to a. A non-reversing path is a non-trivial path that is
not reversing.

We prove a lemma that characterizes the structure of reversing and non-reversing paths
in terms of the possible shortest-path orderings of each node on the path and the endpoints
of the path. See Figures 1a and 1b for a depiction of the structure enforced by the lemma.
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▶ Lemma 9 (Reversing/Non-Reversing Lemma). Let P be a non-trivial shortest path and let
a and b be the first and last nodes of P respectively. Then P can be partitioned into three
contiguous ordered segments with the following properties (where a is defined to be in Segment
1, b is defined to be in Segment 3, and Segment 2 could be empty).

Segment 1 consists of nodes w such that the shortest-path orderings of a, w, b are precisely
a → w → b, and b → a → w.

Segment 2 consists of nodes w such that the shortest-path orderings of a, w, b are precisely{
a → w → b, and b → w → a if P is a reversing path
a → w → b, and b → a → w, and w → b → a if P is a non-reversing path.

Segment 3 consists nodes w such that the shortest-path orderings of a, w, b are precisely
a → w → b, and w → b → a.

a b

Segment 1 Segment 2 Segment 3

(a) Reversing Path. The structure of a reversing
path, as given by Lemma 9. The blue dashed path,
pink solid path, and purple dotted path are examples
of the allowed orderings for nodes in segments 1, 2,
and 3 respectively.

a b

Segment 1 Segment 2 Segment 3

(b) Non-Reversing Path. The structure of a non-
reversing path, as given by Lemma 9. The possible
shortest-path orderings for nodes in segment 2 are
represented by pink and light blue solid paths, while
the orderings allowed for nodes in segments 1 and 3
are represented by blue dashed and purple dotted
segments respectively.

Figure 1 Possible orderings of vertices on shortest paths in the reversing and non-reversing cases.
The blue circles are representative examples of the types of nodes on the path from a to b (in general
this path will contain more than just five nodes).

In the proof of Theorem 3 we employ the strategy of categorizing shortest paths as
reversing or non-reversing (or trivial), and applying Lemma 9 to glean some structure. We
note, however, that Lemma 9 itself is not the main technical piece of the proof.

2 Preliminaries

All graphs are assumed to have positive edge weights. Graphs are either undirected or
directed, depending on the section. For any pair of nodes (u, v), we use dist(u, v) to denote
the shortest path distance from u to v. Given a path P and two nodes u and v occurring on
P in that order, we let P [u, v] denote the subpath of P with u and v as endpoints.

For the (k, c)-SPC problem, we always let d denote the difference d = k − c. When
considering a particular solution to a (k, c)-SPC instance, we refer to the paths P1, . . . , Pk

between (s1, t1), . . . , (sk, tk) respectively as solution paths. Any node in the graph which lies
in c of the solution paths is referred to as a max-congestion node.
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2.1 Subpath Swapping
In our proofs, we will frequently modify collections of shortest paths by “swapping subpaths”
between intersecting paths. This procedure is depicted in Figure 2, and we formally describe
it below.

▶ Definition 10 (Subpath Swap). Let R be a collection of shortest paths in a directed graph.
Let P and Q be two paths in R. Let a, b ∈ P ∩ Q be nodes in these paths, such that a appears
before b in both P and Q. We define swapping the subpaths of P and Q between a and b to
be updating the set of paths R by simultaneously replacing P with (P \ P [a, b]) ∪ Q[a, b] and
Q with (Q \ Q[a, b]) ∪ P [a, b]. We often refer to this process simply as “swapping P [a, b] and
Q[a, b].”

si a b ti

tjsj

si a b ti

tjsj

Figure 2 A simple subpath swap, where the subpaths from a to b of the green path (from si to
ti) and pink path (from sj to tj) are switched.

▶ Observation 11 (Subpath Swap). Let R be the solution to some (k, c)-SPC problem. Then
swapping subpaths in R produces a new solution to the same (k, c)-SPC instance with the
same set of max-congestion nodes.

Proof. This observation holds because swapping subpaths does not change the number of
solution paths any given node is contained in, does not change the endpoints of any solution
path, and all solution paths remain shortest paths. ◀

2.2 Correspondence Between Our Results and (k, c)-SPC
In this section we detail some nuances regarding the correspondence between the statement
of our results and the (k, c)-SPC problem. For the sake of generality and simplicity, we stated
Theorems 1-3 independently of the (k, c)-SPC problem. In contrast, the original result of
Amiri and Wargalla, corresponding to Theorem 1, was stated as follows:

▶ Lemma 12 ([3]). If k > 3d, then any instance of (k, c)-SPC on DAGs either has no
solution, or has a solution where some solution path Pi passes through all max-congestion
nodes.

Although the statement of Lemma 12 may initially seem unrelated to the statement of
Theorem 1, their correspondence becomes clearer with the following observation, which is a
simple generalization of an observation from [3]:

▶ Observation 13. Let N be a positive integer. Suppose k > Nd, and let R be a solution to
an arbitrary (k, c)-SPC instance. Then for any set S of N max-congestion nodes in R, there
exists some solution path in R which contains every node in S.

We defer the proof of Observation 13 to the appendix.
To prove our results for the (k, c)-SPC problem in undirected graphs (Lemma 4 and Co-

rollary 5), we need to prove a lemma analogous to Lemma 12 but for undirected graphs:
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▶ Lemma 14. If k > 4d, then any instance of (k, c)-SPC either has no solution, or has a
solution where some solution path Pi passes through all max-congestion nodes.

The following generalizes Theorem 2 and Lemma 14.

▶ Lemma 15 (General Undirected Result). Given an undirected graph and subset W of nodes,
let R be a collection of shortest paths with the following property:

for every set S ⊆ W of 4 nodes, some path in R contains every node in S. (⋆)

Further suppose that applying any sequence of O(n3) subpath swaps to R yields a collection
of shortest paths that still has property (⋆). Then starting from R, there exists a sequence
of subpath swaps that results in a collection of shortest paths in which some path P passes
through all nodes in W .

We note that the quantity O(n3) is an unimportant technicality used in the proof of the
following observation, and is chosen as a loose upper bound on the number of subpath swaps
we will perform.

▶ Observation 16. Lemma 15 generalizes both Theorem 2 and Lemma 14.

We defer the proof of Observation 16 to the appendix.
We also prove an analogue of Lemma 12 and Lemma 15 for directed graphs:

▶ Lemma 17 (General Directed Result). Given a directed graph and subset W of nodes, let
R be a collection of shortest paths with the following property:

for every set S ⊆ W of 11 nodes, some path in R contains every node in S. (†)

Further suppose that applying any sequence of O(n3) subpath swaps to R yields a collection
of paths that still has property (†). Then starting from R, there exists a sequence of subpath
swaps that results in a collection of shortest paths in which either:
1. some path P passes through all nodes in W , or
2. the union of two paths P, P ′ contain all nodes in W , and the first and last nodes on P

from W are the same as the last and first nodes on P ′ from W , respectively.
Lemma 17 generalizes Theorem 3, in exactly the same way as Lemma 15 generalizes Theorem 2
for undirected graphs. In the same way that Lemma 15 generalizes Lemma 14 for undirected
graphs, Lemma 17 implies the following lemma:

▶ Lemma 18. If k > 11d, then any instance of (k, c)-SPC on directed graphs either has no
solution, or has a solution where the union of some two solution paths Pi and Pj contains
all max-congestion nodes.

Although Lemma 18 does not immediately lead to an algorithm for (k, c)-SPC on directed
graphs, it specifies some structure which may be useful for future work on (k, c)-SPC and
related problems.

One might wonder whether Lemma 18 can be modified to have only one solution path Pi

that contains all max-congestion nodes, like for DAGs (Lemma 12) and undirected graphs
(Lemma 14), since this would imply interesting algorithms for (k, c)-SPC on directed graphs.
Unfortunately, the answer to this question turns out to be no. Similar to the counterexample
against extending Theorem 2 to directed graphs, we present a counterexample in the full
version which rules out replacing two solution paths with a single solution path in Lemma 18.
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3 Technical Overview

3.1 Prior Work on DAGs

As a starting point for our proofs for general graphs, we use Amiri and Wargalla’s proof of
Theorem 1 for DAGs [3]. We describe their proof differently than they do for the sake of
comparison to our work. We actually describe their proof of the following lemma (which
they do not explicitly state), which is analogous to the statements of our general results
(Lemmas 15 and 17).

▶ Lemma 19 ([3]). Given a DAG and subset W of nodes, let R be a collection of shortest
paths with the following property:

for every set S ⊆ W of 3 nodes, some path in R contains every node in S. (∗)

Further suppose that applying any sequence of O(n3) subpath swaps to R yields a collection
of paths that still has property (∗). Then starting from R, there exists a sequence of subpath
swaps that results in a collection of shortest paths in which some path P passes through all
nodes in W .

The proof of Lemma 19 is as follows. Let a and b be the first and last nodes in W

(respectively) in a topological ordering of the DAG. Let v1, . . . v|W |−2 be the remaining nodes
in W in order topologically. For ease of notation, we consider R to be changing over time
via subpath swaps, and we will let R denote the current value of R.

The argument is inductive. For the base case, by property (∗) there is a path in R
that contains a and b. Suppose inductively that a path P ∈ R currently contains a, b, and
v1, . . . , vℓ for some ℓ. We would like to perform a subpath swap to augment P by adding
vℓ+1 to P . To do so, we consider a path P ′ ∈ R that contains vℓ, vℓ+1, and b, where such
a path exists by property (∗). Importantly, because the graph is a DAG, vℓ, vℓ+1, and b

appear in that order on both P and P ′. Thus, according to the definition of a subpath swap
(Definition 10) we can swap P [vℓ, b] with P ′[vℓ, b], as shown in Figure 3. As a result of this
subpath swap, P now contains vℓ+1 in addition to all of the nodes in W that P originally
contained. By induction, this completes the proof.

a v1 vℓ b

vℓ+1

. . .. . . . . . Pj

Pj′

a v1 vℓ b

vℓ+1

. . .. . . . . . Pj

Pj′

Figure 3 In a DAG, the topological ordering of the nodes allows us to perform a sequence of
subpath swaps, each adding the next node in W in order to a path P .
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3.2 Undirected Graphs
Recall that our goal for undirected graphs is to prove the following theorem:

▶ Lemma 15 (General Undirected Result). Given an undirected graph and subset W of nodes,
let R be a collection of shortest paths with the following property:

for every set S ⊆ W of 4 nodes, some path in R contains every node in S. (⋆)

Further suppose that applying any sequence of O(n3) subpath swaps to R yields a collection
of shortest paths that still has property (⋆). Then starting from R, there exists a sequence
of subpath swaps that results in a collection of shortest paths in which some path P passes
through all nodes in W .

The essential property that enables the subpath swapping in the above argument for
DAGs is the fact that for any triple of nodes in a DAG, there is only one possible order
this triple can appear on any path. This property is not exactly true for general undirected
graphs, but we observe that a similar “consistent ordering” property is true: if there is
a shortest path containing nodes u, v, w in that order, then any shortest path containing
these nodes, has them in that order (or in the reverse order w, v, u, but since the graph is
undirected we can without loss of generality assume they are in the order u, v, w). This
property is true simply because dist(u, w) is larger than both dist(u, v) and dist(v, w), so v

must appear between u and w on any shortest path.
To perform subpath swapping on undirected graphs, we need an initial pair of nodes in

W such that the rest of the nodes in W will be inserted between this initial pair (in the DAG
algorithm, this initial pair a, b was the first and last nodes in W in the topological order). For
undirected graphs, our initial pair is the pair a, b of nodes in W whose distance is maximum.
We order the rest of the nodes in W by their distance from a, to form v1, . . . , v|W |−2.

Now, our consistent ordering property from above implies the following: for any shortest
path P containing a, all nodes in W ∩ P are ordered as a subsequence of a, v1, v2, . . . , vm, b

on P . As a result, we can perform the same type of iterative subpath swapping argument as
the DAG algorithm.

3.3 Roundtrip Paths in Directed Graphs
The situation for directed graphs is significantly more involved than the previous cases.
There are several challenges that are present for directed graphs that were not present for
either undirected graphs or DAGs. These difficulties stem from the fact that the interactions
between shortest paths is much more complicated in directed graphs than in DAGs or
undirected graphs.

We first outline these challenges, and then provide an overview of how we address them.
Our techniques for addressing these issues exemplify that despite the possibly complex
arrangement of shortest paths in directed graphs, there still exists an underlying structure to
extract. We hope that our methods might illuminate some structural properties of shortest
paths in directed graphs in a way that could apply to other directed-shortest-path problems.

Recall that our goal is to prove the following theorem:

▶ Lemma 17 (General Directed Result). Given a directed graph and subset W of nodes, let
R be a collection of shortest paths with the following property:

for every set S ⊆ W of 11 nodes, some path in R contains every node in S. (†)
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Further suppose that applying any sequence of O(n3) subpath swaps to R yields a collection
of paths that still has property (†). Then starting from R, there exists a sequence of subpath
swaps that results in a collection of shortest paths in which either:
1. some path P passes through all nodes in W , or
2. the union of two paths P, P ′ contain all nodes in W , and the first and last nodes on P

from W are the same as the last and first nodes on P ′ from W , respectively.

Challenges for directed graphs
Challenge 1: No “extremal” nodes

In the proofs for DAGs and undirected graphs, to begin building the path P containing all
nodes in W , we chose two initial extremal nodes a, b ∈ W and added the rest of the nodes of
W between a and b. These nodes a, b were straightforward to choose because there was only
one pair of nodes in W that could possibly appear first and last on a path containing all
nodes in W (for DAGs a and b were the first and last nodes in a topological ordering of W ,
and for undirected graphs a and b were the pair of nodes in W with largest distance).

For directed graphs however, it is entirely unclear how to pick these two initial extremal
nodes. For instance, choosing the pair of nodes a, b ∈ W with largest directed distance
dist(a, b) does not work because there could be a shortest path Q containing a and b, where
a and b are not the first and last nodes in W on Q (in particular, if b appears before a on
the shortest path).

To circumvent this issue for directed graphs, we avoid selecting a pair of initial nodes at
all. Without initial nodes as an anchor, we cannot build our path P in order from beginning
to end as we did for DAGs and undirected graphs. Instead, our goal is to ensure the following
weaker property: as we iteratively transform the overall collection of shortest paths R, the
set of nodes in W on the path in R containing the most nodes in W grows over time. That
is, the path of R containing the most nodes in W might currently be P , but at the previous
iteration, the path of R with the most nodes in W might have been a different path P ′. In
this case, our weaker property ensures that P currently contains a superset of the nodes in
W that P ′ contained at the previous iteration.

To perform a single iteration with this guarantee, we may need to significantly reconfigure
many different paths of R via many subpath swaps. As a result, our path building procedure
is much more intricate than the procedures employed for DAGs and undirected graphs.

Challenge 2: No consistent ordering of nodes on shortest paths

In the proof for DAGs and undirected graphs, we were able to perform subpath swaps due
to the following crucial property: consider an arbitrary set of nodes v1, . . . , vℓ (for any ℓ) in
a DAG or an undirected graph. If there is a shortest path containing the nodes v1, . . . , vℓ in
that order, then every shortest path containing these nodes has them in that same order.

For directed graphs, however, this property is not even close to being true. In fact, given
that the nodes v1, . . . , vℓ appear in that order on some shortest path, there are exponentially
many other possible orderings of these nodes on other shortest paths. For instance, when
ℓ = 4, given that the nodes v1, v2, v3, v4 appear in that order on some shortest path, there are
eight possible orderings of these nodes on shortest paths, as depicted in Figure 4 (note that
despite the large number of possible orderings, not all orderings are possible; for instance the
ordering v1, v2, v4, v3 is not possible, as this would imply that dist(v1, v4) < dist(v1, v3), which
contradicts our assumption that some shortest path contains v1, v2, v3, v4 in that order).
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v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4

v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4

Figure 4 If nodes v1, v2, v3, v4 appear in that order on some shortest path, they can still appear
on different shortest paths in up to seven other distinct possible orders.

Because directed graphs have no consistent ordering of nodes on shortest paths, it becomes
much more difficult to perform subpath swaps like those in the algorithms for DAGs and
undirected graphs.

To address this challenge, we provide a structural analysis of the ways in which shortest
paths in directed graphs can interact with each other. First, as introduced in Section 1.3,
we categorize shortest paths into two main types, reversing paths and non-reversing paths,
and we prove the Reversing/Non-Reversing Path Lemma (Lemma 9). Roughly speaking,
this lemma is useful because it helps us construct sets of nodes that exhibit some sort of
consistent ordering property. This, in turn, enables us to perform sequences of subpath swaps.
Defining these consistently ordered sets of nodes and the corresponding subpath swaps is the
most involved part of the proof, and works differently for each of the two path types.

Proof structure

Our proof is structured as follows. Initially, we define P to be the path in R that contains
the most nodes in W (breaking ties arbitrarily). Then we proceed with the following two
cases:

(Case 1) We first check whether, roughly speaking, P is contained in a cycle that contains
all nodes in W . In this case, we can use a sequence of subpath swaps to build a second
path P ′ so that the union of P and P ′ contains all nodes in W and have the “roundtrip”
structure specified in the theorem statement, in which case we are done.
(Case 2) If we are not in Case 1, our goal is to augment some path in R so that the set of
nodes of W on the path in R with the most nodes in W grows (the goal introduced in
the discussion of Challenge 1).

After going through these cases, if we are not done we redefine P as the path in R containing
the most nodes in W and repeatedly apply the appropriate case, until we are done. Most
technical details of our proof are in the path augmentation procedure of Case 2. We elaborate
on the main ideas for this procedure next.

Handling Case 2: Path Augmentation

Recall that our goal is the following: Let P be the path in R containing the most nodes in
W , and let W ′ = W ∩ P . Fix a node u ∈ W \ W ′. We wish to perform subpath swaps to
yield a path P ′ that contains every node in W ′ ∪ {u}.

We begin with a few warm-up cases to motivate our general approach.
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Warm-up cases

Let a and b be the first and last nodes on P that are in W , respectively. By property (†)
there exists a path in R containing a, b, and u. We will suppose in all of the subsequent
examples, that for all paths in R containing the nodes a, b, and u, the node u is always the
last node in W on the path; this is not a conceptually important assumption and it makes
the description simpler.

We claim that if there is a path P ′ ∈ R containing a, b, and u, such that a appears before
b, then we are done. Indeed, as depicted in Figure 5a, in this case we can simply swap the
subpath P [a, b] with P ′[a, b], to form a new solution where P ′ contains W ′ ∪ {u}.

a b

vℓ+1

. . . . . . Pi

Pj
u

a b

vℓ+1

. . . . . . Pi

Pj
u

(a) If a appears before b on P ′, a subpath
swap lets P ′ pass through u together with all
of the nodes in W ′.

a v1 vℓ vℓ+1 Pi

Pj

b

u

a v1 vℓ vℓ+1 Pi

Pj

b

u

(b) More generally, when P ′ passes through vℓ+1, b, a, vℓ

in that order, we can perform two subpath swaps to get P ′

to pass through the rest of W ′. Here, the dotted segments
indicate portions of the paths which pass through the
nodes of W ′ that are not labeled in the figure.

Figure 5 The two warm-up cases.

Now we will slightly generalize this warm-up case. Let a, v1, v2, . . . , b be the nodes in
W ′ in the order they appear on P . Consider vℓ and vℓ+1 for any ℓ. By property (†) there
exists a path in R containing a, b, u, vℓ, and vℓ+1. We know from the previous warm-up
case that if there is a pathin R containing these nodes such that a appears before b, then
we are done. We also claim that if there exists a path P ′ ∈ R containing these nodes such
that vℓ+1, b, a, vℓ appear in that order, then we are done. This is because as depicted in
Figure 5b, we can swap the subpath P [a, vℓ] with P ′[a, vℓ], and swap the subpath P [vℓ+1, b]
with P ′[vℓ+1, b]. Now, P ′ contains W ′ ∪ {u}.

General Approach: “Critical nodes”

We will motivate our general approach in the context of the above warm-up cases. In the
second warm-up case, we considered 5 nodes (a, b, u, vℓ, and vℓ+1) in W ′, and argued that if
there is a path P ′ ∈ R containing these 5 nodes in one of several “good” orders, then we are
done because we can perform subpath swaps to reroute P ′ through all of W ′ ∪ {u}. Thus,
our goal is to choose these 5 (or in general, at most 11) nodes carefully, to guarantee that
they indeed fall into a “good” order on some path in R. We refer to these at most 11 nodes
as critical nodes:

▶ Definition 20 (Critical Nodes (Informal)). Given a path P ∈ R, a set of nodes T ⊆ W of
size |T | ≤ 11 are critical nodes of P if there exists a path P ′ ∈ R containing the nodes of T

in an order that allows us to perform subpath swaps to reroute some path in R through all of
W ′ ∪ {u} (where W ′ = W ∩ P ).



S. Akmal and N. Wein 8:15

Our general approach is to show that any path P ∈ R contains a set of at most 11 critical
nodes. We remind the reader that this section only concerns Case 2, so our goal is to show
that P contains a set of critical nodes only if P does not already fall into Case 1. After
showing that P contains a set of critical nodes, we are done, because performing subpath
swaps to yield a path containing W ′ ∪ {u} was our stated goal.

It is not at all clear a priori that any P should contain a set of critical nodes. Indeed, the
critical nodes need to be chosen very carefully. Specifically, they need to be chosen based on
the structure of the path P .

This is where the definitions from Section 1.3 come into play. We categorize P based on
whether it is reversing or non-reversing, (or trivial). Then we construct the critical nodes of
P using a different procedure specialized for which type of path P is.

If P is a reversing path, then we argue that a valid choice of critical nodes are a, b, and u,
along with the two nodes at the two boundaries between the segments defined in Lemma 9
(and a few other nodes for technical reasons). To make this argument, which we will not
detail here, we construct an involved series of subpath swaps to reroute some path through
all of W ′ ∪ {u}.

On the other hand, if P is a non-reversing path, the critical nodes are less straightforward to
define than if P is a reversing path. Indeed, defining the critical nodes for non-reversing paths
is the most conceptually difficult part of our proof. The high-level reason for this difficulty is
the fact that the nodes of Segment 2 of a non-reversing path are quite unconstrained because
they admit 3 possible shortest-path orderings instead of only 2.

To be more concrete, suppose every node on P falls into Segment 2. For simplicity,
suppose we were to choose critical nodes a, b, w, where a and b are the endpoints of P

and also happen to be in W ′, and w is any other node in W ′. Consider the path P ′ ∈ R
containing a, b, and w, which exists by property (†). By the definition of Segment 2, there
are 3 possible orderings of a, b, w on P ′ (a → w → b, or b → a → w, or w → b → a). Note
that these 3 orderings are cyclic shifts of one another. Suppose, as an illustrative example,
that P ′ has the ordering b → a → w. We would like to reroute P ′ through all of W ′ ∪ {u},
but we have a problem. For any node s ∈ W ′ that appears between a and w on P , we can
reroute P ′ through s by swapping the subpath P [a, w] with P ′[a, w]; however, for a node
s ∈ W ′ that appears between w and b on P , we cannot do this because there is no path
segment from w to b on P ′, since b appears before w on P ′. Thus, we cannot reroute P ′

through s. That is, no matter how we choose the critical nodes, if we do not impose extra
structural constraints, we can always identify a segment of the path that we cannot reroute
P ′ through. Overcoming this issue is our main technical challenge, and we defer it to the full
proof.
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Abstract
A RAC graph is one admitting a RAC drawing, that is, a polyline drawing in which each crossing
occurs at a right angle. Originally motivated by psychological studies on readability of graph layouts,
RAC graphs form one of the most prominent graph classes in beyond planarity.

In this work, we study a subclass of RAC graphs, called axis-parallel RAC (or apRAC, for short),
that restricts the crossings to pairs of axis-parallel edge-segments. apRAC drawings combine the
readability of planar drawings with the clarity of (non-planar) orthogonal drawings. We consider
these graphs both with and without bends. Our contribution is as follows: (i) We study inclusion
relationships between apRAC and traditional RAC graphs. (ii) We establish bounds on the edge
density of apRAC graphs. (iii) We show that every graph with maximum degree 8 is 2-bend apRAC
and give a linear time drawing algorithm. Some of our results on apRAC graphs also improve the
state of the art for general RAC graphs. We conclude our work with a list of open questions and a
discussion of a natural generalization of the apRAC model.
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1 Introduction

Planar graphs form a fundamental graph class in algorithms and graph theory. This is due to
the fact that planar graphs have many useful properties, e.g., they are closed under minors
and have a linear number of edges. Several decision problems, which are NP-complete for
general graphs, become polynomial-time tractable, when restricted to planar inputs, e.g. [28].
As a result, the corresponding literature is tremendously large.

A recent attempt to extend this wide knowledge from planar to non-planar graphs was
made in the context of beyond-planarity, informally defined as a generalization of planarity
encompassing several graph-families that are close-to-planar in some sense (e.g., by imposing
structural restrictions on corresponding drawings). Notable examples are the classes of
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(i) k-planar graphs [31], in which each edge cannot be crossed more than k times, (ii) k-quasi-
planar graphs [1], which disallow k pairwise crossing edges, and (iii) k-gap planar graphs [9],
in which each crossing is assigned to one of the two involved edges such that each edge is
assigned at most k of its crossings. For an overview refer to the recent textbook [29].

While all of the aforementioned graph-classes are topological, meaning that the actual
geometry of the graph’s elements is not important, there is a single class proposed in the
literature that is purely geometric. The motivation for its study primarily stems from
cognitive experiments indicating that the negative effect of edge crossings in a graph drawing
tends to be eliminated when the angles formed at the edge crossings are large [30]. In
that aspect, the class of right-angle-crossing (RAC) graphs forms the optimal case in this
scenario, where all crossing angles occur at 90◦. Formally, it was introduced by Didimo,
Eades and Liotta [22] a decade ago, and since then it has been a fruitful subject of intense
research [5, 17, 19, 23, 25].

Generally speaking, the research on RAC graphs has focused on two main research
directions depending on whether bends are allowed along the edges or not. Formally, in
a k-bend RAC drawing of a graph each edge is a polyline with at most k bends and the
angle between any two crossing edge-segments is 90◦. Accordingly, a k-bend RAC graph
is one admitting such a drawing. A 0-bend RAC graph (or simply RAC graph) with n

vertices has at most 4n − 10 edges [22], that is, at most n − 4 edges more than those of
a corresponding maximal planar graph. The edge-density bounds for 1- and 2-bend RAC
graphs are 5.5n − 10 [2] and 74.2n [8], respectively, while for k ≥ 3 it is known that every
graph is k-bend RAC [25]. The research on RAC graphs, however, is not limited to edge-
density bounds. Several algorithmic and combinatorial results [5, 7, 6, 18, 21, 25], as well as
relationships with other graph classes [10, 13, 15, 16, 23, 14] are known; see [20] for a survey.

In this work, we continue the study of RAC graphs along a new and intriguing research line.
Inspired by several well-established models for representing graphs (including the widely-used
orthogonal model [12, 26, 27]), we introduce and study a natural subfamily of k-bend RAC
graphs, which restricts all edge segments involved in crossings to be axis-parallel. We call
this class k-bend apRAC. We expect that this restriction will further enhance the readability
of the obtained drawings, as these combine the simple nature of the planar drawings with the
clarity of the (non-planar) orthogonal drawings by allowing non axis-parallel edge segments,
only when those are crossing-free. We further expect that our restriction will lead to new
results of algorithmic nature. As a matter of fact, almost all algorithms that have been
already proposed in the literature about k-bend RAC graphs in fact yield k-bend apRAC
drawings [11, 22, 25]; e.g., every Hamiltonian degree-3 graph is 0-bend apRAC [6], while
degree-4 and degree-6 graphs are 1- and 2-bend apRAC, respectively [3, 5].

Our contribution is as follows:
In Section 2 we study preliminary properties of 0-bend apRAC graphs in order to prove
that recognizing 0-bend apRAC graphs is NP-hard (see Theorem 3).
We study whether k-bend apRAC graphs form a proper subclass of k-bend RAC graphs:
For k = 0, we establish a strict inclusion relationship with K6 minus one edge being the
smallest graph separating the two classes. Further, our edge-density result for 1-bend
apRAC graphs establishes a strict inclusion relationship for k = 1, see Corollary 5. The
case k = 2 is more challenging (due to the degrees of freedom introduced by bends) and
we leave it as an open problem. For k ≥ 3, the two classes coincide, as the construction
establishing that every graph is 3-bend RAC [22] can be converted to 3-bend apRAC by
a rotation of 45◦.
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Figure 1 Forbidden configurations by Properties 1–4.

We establish bounds on the edge density of n-vertex k-bend apRAC graphs: For k = 0, we
prove an upper bound of 4n −

√
n − 6 and give a corresponding lower bound construction

with 4n − 2⌊
√

n⌋ − 7 edges (see Theorem 1). For k ∈ {1, 2}, we give linear upper bounds
that are tight up to small additive constants (see Theorems 4 and 6). Notably, for k = 2
our lower-bound construction is a graph with n vertices and 10n − O(1) edges. This
bound extends to general 2-bend RAC graphs and improves the previous best one of
7.83n − O(

√
n) [8], answering an open question in [2].

We show that every graph with maximum degree 8 is 2-bend apRAC and give a linear
time drawing algorithm (see Theorem 8) improving the previous best known result stating
that 7-edge colorable degree-7 graphs are 2-bend (ap)RAC [3].
Inspired by the slope-number of graphs, in Section 7 we discuss a natural generaliza-
tion of apRAC drawings where each edge segment involved in a crossing is parallel or
perpendicular to a line having one out of s different slopes.

2 Preliminaries

Throughout this paper, basic graph drawing concepts are used as found in [29, 32]. Let G

be a graph and Γ be a polyline drawing of G and let e = (u, v) be an edge of G. We say
that e uses a horizontal (vertical) port at u if the edge-segment of e that is incident to u is
parallel to the x-axis (to the y-axis) in Γ. If e uses neither a vertical nor a horizontal port at
u, then it uses an oblique port at u. In particular, we denote the four orthogonal ports (i.e.,
the vertical and the horizontal ports) as {N, E, S, W }-ports according to compass directions.
In a polyline drawing, vertices and bends are placed on grid-points, whereby the area of the
drawing is determined by the smallest rectangular bounding box that contains the drawing.
In the following, we recall two properties that hold for 0-bend RAC drawings.

▶ Property 1 (Didimo, Eades and Liotta [22]). In a 0-bend RAC drawing no edge is crossed
by two adjacent edges (see Fig. 1a).

▶ Property 2 (Didimo, Eades and Liotta [22]). A 0-bend RAC drawing does not contain a
triangle T formed by edges of the graph and two edges (u, v) and (u, v′), such that u lies
outside T while both v and v′ lie inside T (see Fig. 1b).

Next, we establish two properties limited to 0-bend apRAC drawings.

▶ Property 3. A 0-bend apRAC drawing does not contain a triangle T formed by edges of
the graph and three vertices v1, v2, v3 adjacent to a vertex u, such that v1, v2, v3 lie outside T

and u lies inside T (see Fig. 1c).

Proof. Assuming the contrary, Property 1 implies that no two edges adjacent to u cross the
same boundary edge of T . Hence, T consists of three axis-parallel edges; a contradiction. ◀
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9:4 Axis-Parallel Right Angle Crossing Graphs

▶ Property 4. Let Γ be a 0-bend apRAC drawing containing a triangle T formed by edges
of the graph and two adjacent vertices u and v such that u is contained inside T while v is
outside T . Then, Γ does not contain a vertex w adjacent to u, v and all vertices of T (see
Fig. 1d).

Proof. For the sake of contradiction, assume there is a vertex w adjacent to u, v and all
vertices of T . If w is inside T in Γ, then (v, u) and (v, w) violate Property 2; a contradiction.
Otherwise, since (u, v) and (u, w) cross T , by Property 1, it follows that T is a right-angled
triangle whose legs are axis parallel. W.l.o.g., let (v1, v2) and (v2, v3) be the legs of T crossed
by (u, v) and (u, w), respectively, such that (v1, v2) is horizontal and (v2, v3) is vertical. It
follows that the edge (v2, v3) of T is crossed by (u, w) and (w, v1) violating Property 1; a
contradiction. ◀

In Theorem 3 we leverage the following property shown in [7] of the so-called augmented
square antiprism graph. The gadget used in the NP-hardness proof of Theorem 3 is depicted
in Fig. 2a, while the vertex-colored subgraph in Fig. 2a corresponds to the augmented square
antiprism graph.

▶ Property 5 (Argyriou, Bekos, Symvonis [7]). Any straight-line RAC drawing of the augmented
square antiprism graph has two combinatorial embeddings.

3 0-bend apRAC graphs

In this section, we focus on properties of 0-bend apRAC graphs. We start with an almost
tight bound on the edge-density of 0-bend apRAC graphs - for comparison, recall that
n-vertex 0-bend RAC graphs have at most 4n − 10 edges [22].

▶ Theorem 1. A 0-bend apRAC graph with n vertices has at most 4n −
√

n − 6 edges. Also,
there is an infinite family of graphs with 4n − 2⌊

√
n⌋ − 7 edges that admit 0-bend apRAC

drawings.

Proof. For the upper bound consider any 0-bend apRAC drawing Γ of a graph G with n

vertices. As a (k × k)-grid has only k2 grid points, we may assume without loss of generality
that the vertices of G use at least

√
n different y-coordinates in Γ. It follows that the

subgraph Gh of G defined by the set Eh of all horizontal edges of Γ is a forest of paths with
at least

√
n components; at least one for each used y-coordinate. Thus |Eh| ≤ n −

√
n. As

G − Eh is crossing-free in Γ, it has at most 3n − 6 edges, giving the desired upper bound of
4n −

√
n − 6 edges for G.

For the lower bound, consider the construction shown in Fig. 2b. For any even k > 0,
construct a k ×k grid graph Hk which contains a pair of crossing edges in every quadrangular
face. Let Gk be the graph obtained from Hk by adding two extremal adjacent vertices N

and S connected to 2k − 1 consecutive boundary vertices of Hk each (refer to the blue edges
in Fig. 2b and observe that the edge between N and S can be added by moving N upwards
and to the right and S downwards and to the right of Hk). If we denote by n the number of
vertices of Gk, then n = k2 + 2, k =

√
n − 2 and thus m = 4n − 2⌊

√
n⌋ − 7. ◀

Since there exist n-vertex 0-bend RAC graphs with 4n − 10 edges, Corollary 2 follows
from Theorem 1. In [4], we show that K6 minus one edge is the smallest graph that is 0-bend
RAC but not 0-bend apRAC.

▶ Corollary 2. The class of 0-bend apRAC graphs is properly contained in the class of 0-bend
RAC graphs.
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(a)

N
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(b)

W

S
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N

W

(c)

Figure 2 (a) Graph used in Theorem 3. (b) Lower bound construction for 0-bend apRAC.
(c) Lower bound construction for 1-bend apRAC.

We conclude this section by studying the recognition problem of whether a graph is
0-bend apRAC. Due to space reasons, we only sketch the idea of the proof; the complete
proof can be found in [4].

▶ Theorem 3. It is NP-hard to decide whether a given graph is 0-bend apRAC.

Sketch. We adjust the NP-hardness reduction (from 3-SAT) for the general case of RAC
graphs introduced in [7], whose main gadgets use a building block H. We determine a 0-bend
apRAC graph H as a substitute for this building block which has the same properties as H:
(i) H has a unique embedding, (ii) there are four vertices properly contained in its interior,
which can be connected to vertices in its exterior by crossing a single boundary edge, (iii)
no edge can (completely) pass through H without forming a fan crossing, and (iv) H can be
extended horizontally or vertically maintaining properties (i) − (iii). The graph shown in
Fig. 2a satisfies all these criteria and can therefore be used for the reduction. ◀

4 1-bend apRAC graphs

In this section, we will establish an upper bound and an almost matching lower bound for
the class of 1-bend apRAC graphs. Recall that n-vertex 1-bend RAC graphs have at most
5.5n − 10 edges [2].

▶ Theorem 4. A 1-bend apRAC graph with n vertices has at most 5n − 8 edges. Also, there
is an infinite family of graphs with 5n − 16 edges that admit 1-bend apRAC drawings.

Proof. For the upper bound, consider a 1-bend apRAC drawing Γ of an n-vertex graph G.
Each edge segment in Γ is either horizontal (h), vertical (v) or oblique (o). For x, y ∈ {h, v, o},
let Exy be the edges of G with two edge segments of type x and y. Then, Ehv, Eho, Evo and
Eoo form a partition of the edge-set of G, assuming that edges that consist of only one h-,
v- or o-segment are counted towards Eho, Evo and Eoo, respectively. By construction, any
crossing involves exactly one vertical and one horizontal segment. Hence, the subgraph of G

induced by Eho ∪ Eoo is planar and contains at most 3n − 6 edges. Further, as every segment
is incident to a vertex and since any vertex is incident to at most two vertical segments, we
have |Evo ∪ Ehv| ≤ 2n. We can assume that the topmost vertex vt is incident to at most one
vertical edge-segment, since the edge segment incident to vt that points upwards cannot be
involved in a crossing with a horizontal edge-segment. Otherwise, the endpoint incident to
this edge segment would contradict the fact that vt is topmost in Γ. Hence, it can be replaced
by a steep oblique edge-segment without introducing new crossings. Analogous observations
can be made for the bottommost vertex in Γ, which implies that |Evo ∪ Ehv| ≤ 2n − 2. Thus,
|E| = |Eho| + |Evo| + |Ehv| + |Eoo| ≤ 5n − 8.
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Our lower bound construction is as follows; see Fig. 2c. For n ≥ 7, we arrange n − 4
vertices forming a cycle along the two legs of an isosceles triangle with a horizontal base (outer
black edges), such that the left leg has ⌊ n−4

2 ⌋ vertices while the right one has ⌈ n−4
2 ⌉. These

n−4 vertices are further joined by a y-monotone path of n−7 edges (inner black edges). Two
extremal vertices N and S above and below the triangle are connected to all n − 4 vertices
(orange edges). Similarly, two extremal vertices W and E to the left and right of the triangle
are connected to all vertices of the left and right legs of the triangle respectively (blue edges);
the topmost vertex of the right leg is also connected to W . Finally, we add six edges between
the extremal vertices, which gives n − 4 + n − 6 + 3(n − 4) + 6 = 5n − 16 edges. ◀

Since there exists 1-bend RAC graphs with 5.5n − 72 edges [2], the following corollary is
immediate.

▶ Corollary 5. The class of 1-bend apRAC graphs is a proper subclass of the one of 1-bend
RAC graphs.

5 2-bend apRAC graphs

In Theorem 6, we provide an upper-bound for the edge density of 2-bend apRAC graphs
together with a lower-bound construction which is tight up to an additive constant. Our
result provides a stark contrast to the one for 2-bend RAC graphs, where the current best
upper-bound on the number of edges of n-vertex graphs is 74.2n [8], while the previous best
lower bound-construction contained only 7.83n − O(

√
n) [8] edges.

▶ Theorem 6. A 2-bend apRAC graph with n vertices has at most 10n − 12 edges. Also,
there is an infinite family of graphs with 10n − 46 edges that admit 2-bend apRAC drawings.

Proof. Consider a 2-bend apRAC drawing Γ of an n-vertex graph G. Each edge segment
in Γ is either horizontal (h), vertical (v) or oblique (o). Denote by S the set of edges that
contain at least one segment in {h, v} incident to a vertex. Since any vertex is incident to
at most two vertical and at most two horizontal segments, it follows that |S| ≤ 4n. Let
Eh, Ev and Eo be the set of edges of E \ S whose middle part is h, v and o, respectively.
Assuming that an edge of E \ S consisting of less than three segments belongs to Eo,
it follows that Eh, Ev and Eo form a partition of E \ S. Observe that the edges of
Eo cannot be involved in any crossing in Γ, as all of its segments are oblique. Further,
no two edges of Eh or of Ev can cross. Hence, the subgraphs induced by Eh ∪ Eo and
Ev ∪ Eo are planar and contain at most 3n − 6 edges each. Recall that |S| ≤ 4n and thus
|E| ≤ |S| + |Eh| + |Ev| + 2|Eo| ≤ 4n + 3n − 6 + 3n − 6 = 10n − 12.

Refer to Fig. 3a for a schematization of the upcoming lower-bound construction and to
Fig. 4 for a concrete example. Fix an integer k ≥ 6 and consider a set P of k2 points of a
k × k square grid in the plane but rotated very slightly, say counterclockwise, so that the
points in each column have consecutive x-coordinates (consequently the points in each row
have consecutive y-coordinates). For two points p, q ∈ P let their x-distance distx(p, q) be
the number of points in P having their x-coordinate between p and q. Similarly define the
y-distance disty(p, q). The crucial property of point set P is the following.

For any p ̸= q ∈ P we have distx(p, q) + disty(p, q) ≥ k − 1 ≥ 5. (1)

Between any pair p, q ∈ P with consecutive x-coordinates, i.e., distx(p, q) = 0, we add a
2-bend edge with vertical middle segment by starting and ending with a very short oblique
segment at p respectively q. Similarly, we add a 2-bend edge with horizontal middle segment
when disty(p, q) = 0. Note that these are in total 2k2 − 2 edges, no two of which connect the
same pair of points, due to (1).
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N

E

S

W

(a)

V(u)

H(u)

8i

8j

8j − 3

8j + 3

8i− 3 8i+ 3

(b)

Figure 3 (a) Illustration of the construction in Theorem 6 with k = 6. Edges with two oblique
segments are indicated in orange for vertical middle segments and in blue for horizontal middle
segments. Edges using the horizontal or vertical ports are omitted for readability. (b) Edge routing
in the 8 × 8 box B(u) of a vertex u. Blue ports are exclusively used by edges of F1 and F3 and
orange ports by F2 and F4. Note that the ports illustrated by bold lines are reserved for oblique-2
edges. Bends on the border of the box are emphasized by a cross.

Next we add four additional points N, E, S, W to the top, right, bottom, and left of
all points in P , respectively. For every point p we add a 2-bend edge with vertical middle
segment between p and N starting with a very short oblique segment at p and ending with
an almost horizontal (but still oblique) segment at N . Similarly, we add a 2-bend edge with
vertical middle segment between p and S, as well as one with horizontal middle segment to
each of E, W . Note that these are in total 4k2 edges, and that all oblique segments can be
chosen such that all crossings involve middle segments only.

Next we add for (almost) each point p ∈ P four more 2-bend edges. First, consider for p

the point q ∈ P to the right of p with distx(p, q) = 1, unless p is one of the two rightmost
points in P . We draw a 2-bend edge from p to q by starting with a horizontal segment at p to
almost the x-coordinate of q, continuing with a vertical segment to almost the y-coordinate
of q, and ending with a very short oblique segment at q. Similarly, we use the left horizontal
port at p for an edge to the point q left of p with distx(p, q) = 2. (We take x-distance 2
instead of 1 to avoid introducing a parallel edge.) Symmetrically, we draw two edges using
the vertical ports at p. Note that these are in total 4k2 − 10 edges, and that all crossings
involve horizontal and vertical segments only.

Finally, we add easily add six edges to create a K4 on vertices N, E, S, W . To conclude,
we have constructed a 2-bend apRAC graph with n = k2 + 4 vertices and (2k2 − 2) + 4k2 +
(4k2 − 10) + 6 = 10k2 − 6 = 10n − 46 edges. ◀

6 Every graph with maximum degree 8 is 2-bend apRAC

In the following, we prove that graphs with maximum degree 8 admit 2-bend apRAC drawings
of quadratic area which can be computed in linear time. We leverage the following result in
order to decompose the input graph.

▶ Lemma 7 (Eades, Symvonis, Whitesides [24]). Let G = (V, E) be an n-vertex undirected
graph of degree ∆ and let d = ⌈∆/2⌉. Then, there exists a directed multigraph G′ = (V, E′)
with the following properties:
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9:8 Axis-Parallel Right Angle Crossing Graphs

1. each vertex of G′ has indegree d and outdegree d;
2. G is a subgraph of the underlying undirected graph of G′; and
3. the edges of G′ can be partitioned into d edge-disjoint directed 2-factors (where a 2-factor

is a spanning subgraph of G′ consisting of vertex disjoint cycles, called cycle cover in [24]).
The directed graph G′ and the d 2-factors can be computed in O(∆2n) time.

Now, we are ready to state the main result.

▶ Theorem 8. Given a graph G with maximum degree 8 and n vertices, it is possible to
compute in O(n) time a 2-bend apRAC drawing of G with O(n2) area.

Proof. Let G be a simple graph with maximum degree 8 and n vertices. We apply Lemma 7
to augment G to a directed 8-regular multigraph having four edge-disjoint 2-factors F1,
F2, F3 and F4. Before we present our algorithm in full detail, we sketch an outline of the
necessary steps. We want to stress that in the following, the direction of an edge (u, v) plays
an important role and hence we consider it as a directed edge with source u and target v.

N

S

EW

Figure 4 Illustration of the construction in Theorem 6 with k = 6. The K4 on the vertices
N, E, S, W is omitted due to space reasons.
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6.1 Outline of the algorithm
In the first step, we will construct two total orders ≺x and ≺y of the vertices of G which
will determine the x- and y-coordinates of the vertices in the final drawing. In particular, if
vertex u of G has the i-th position in ≺x and the j-th position in ≺y, then u will be placed
at point (8i, 8j) in the final drawing. We will construct these two orders independently such
that ≺x is defined by F1 ∪ F3 and ≺y is defined by F2 ∪ F4. After the computation of ≺x

and ≺y, which finalizes the position of the vertices in our resulting drawing Γ, it remains to
draw the edges which are fully characterized by the placement of the respective bend-points.
Every edge will be drawn with exactly three segments, which are either horizontal, vertical or
oblique. To ensure that all crossings in Γ occur between horizontal and vertical segments, we
will restrict oblique segments to be “short” (a precise definition follows below) and require
that they are incident to a vertex. To this end, we will define, for each vertex u of G, a
closed box B(u) centered at u of size 8 × 8, such that the oblique segments incident to u

are fully contained inside B(u). Note that by construction, the interior of two boxes do not
overlap (they may touch at a corner). Since the x-coordinate of two consecutive vertices u

and v of ≺x differs by exactly 8, there is a vertical line that is (partially) contained inside
both B(u) and B(v) (analogous for a horizontal line and consecutive vertices in ≺y). This
allows us to join u and v by an edge that consists of two oblique segments, which is called an
oblique-2 edge. If the unique orthogonal segment of an oblique-2 edge is vertical (horizontal),
we will refer to it as a vertical (horizontal) oblique-2 edge. An edge that contains exactly
one oblique segment will analogously be called an oblique-1 edge.

In the second step, we will classify every edge of G as either an oblique-1 or an oblique-2
edge - again this classification is done independently for F1 ∪ F3 and F2 ∪ F4; we focus on
the description of F1 ∪ F3, the other one is symmetric. Let e = (u, v) be an edge of F1 ∪ F3.
If u and v are consecutive in ≺x, then e is classified as a vertical oblique-2 edge. Otherwise,
e is classified as an oblique-1 edge such that the (unique) oblique segment is incident to the
target v, while the orthogonal segment at u uses the E-port at u if u ≺x v, otherwise it uses
the W -port.

In the final step, we will specify the exact coordinates of the bend-points. At a high level,
oblique segments (which are by construction all incident to vertices) will end at the boundary
of the corresponding box, see Fig. 3b. The bend-points between vertical and horizontal
segments are then naturally defined by the intersections of their corresponding lines.

The final drawing Γ will then satisfy the following two properties.
(i) No bend-point of an edge lies on another edge and
(ii) the edges are drawn with two bends each so that only the edge segments that are

incident to u are contained in the interior of B(u), while all the other edge segments
are either vertical or horizontal.

This will guarantee that the resulting drawing is 2-bend RAC; for an example see Fig. 5.
Note that (i) guarantees that no two segments have a non-degenerate overlap.

6.2 Computing ≺x and ≺y

We will now describe how to construct ≺x and ≺y explicitly. We focus on the construction
of ≺x which is based on F1 and F3, the order ≺y can be constructed analogously. Let
C1, C2, . . . , Ck be an arbitrary ordering of the components of F1. Recall that by definition,
each such Ci is a directed cycle. Let S be a set of vertices that contains exactly one arbitrary
vertex from each cycle in F1 and let P1, P2, . . . , Pk be the resulting directed paths obtained by
restricting the cycles to V \ S. Note that this may yield paths that are empty, i.e., when the
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corresponding cycle consists of a single vertex. We construct ≺x (limited to V \ S) such that
the vertices of each path appear consecutively defined by the unique directed walk from one
endpoint of the path to the other. The relative order between paths is P1 ≺x P2 ≺x · · · ≺x Pk.
Hence it remains to insert the vertices of S into ≺x. Throughout the algorithm, we will
maintain the following invariant which will ensure the correctness of our approach.
I.1 Let u ∈ S be a vertex of cycle Ci. If |Ci| > 1, then u is placed next to at least one vertex

of Pi. Otherwise, u is placed directly after the last vertex of Ci−1 (or as first vertex if
i = 1) in ≺x.

If I.1 is maintained, we can guarantee the following observation.

▶ Observation 1. Let u ∈ Ci and v ∈ Cj be two vertices of G with i ̸= j. Then, the relative
order of u and v in ≺x is known.

Assume that each vertex in S that belongs to C1, . . . , Ci−1 has been inserted in ≺x. Let
u ∈ S be the vertex that belongs to Ci \ Pi. If |Ci| ≤ 2, then we place u immediately after
the last vertex of Ci−1 in ≺x if i > 1, otherwise u is the first vertex of ≺x which maintains
I.1. Hence, in the remainder we can assume that Ci consists of at least three vertices. Let
a, b and c be the vertices of G such that (u, a), (b, u) ∈ F1 and (u, c) ∈ F3. Even though
G is a multigraph, we have that a ̸= b since Ci contains at least three vertices. Hence, by
construction we have a ≺x b - in particular, a is the first vertex of Pi in ≺x, while b is the
last one. Let Cj (possibly j = i) be the cycle that contains c. Note that it is possible that
c ∈ S, i.e., c is not part of ≺x initially. However, as this can only happen if i ̸= j, we know
the relative position of u and c by Observation 1. We distinguish between the following cases
based on the relative order of cycle Ci (which contains u) and cycle Cj (which contains c)
in ≺x.
1. j < i. We insert u immediately before a in ≺x such that it is the first vertex of Ci, see

Fig. 6a. Clearly, this maintains I.1.
2. i < j. This case is symmetric to the previous one - we insert u immediately after b in

≺x such that it is the last vertex of Ci, see Fig. 6b, which again maintains I.1.
3. i = j. In this case, we have that c also belongs to Ci (in particular, c belongs to Pi

and thus is already part of ≺x). If c = a or c = b, we simply omit the edge (u, c) and
proceed as in the first case, i.e., we place u as the first vertex of Ci. Otherwise, we insert
u directly before or directly after c in ≺x based on the edge (c, d) ∈ F3. The relative
order of c and d in ≺x is known by Observation 1 unless d ∈ Ci. If d ∈ Pi, the relative
order between c and d is also known (as both are already present in ≺x). If d /∈ Pi, then
d = u and we can omit the edge (u, c) ∈ F3 (because it is a copy of (c, d) ∈ F3), in which
case we can again proceed as in the first case. Hence, d ̸= u holds. If c ≺x d, we insert u

directly before c in ≺x, see see Fig. 6c, otherwise we insert u directly after c in ≺x. In
both cases, we maintain I.1.

This concludes our construction of ≺x.

6.3 Classification of the edges and port assignment
We focus on the classification of the edges of F1 ∪ F3 and their port assignment, the
classification of the edges of F2 ∪ F4 is analogous. Our classification will maintain the
following invariants.
I.2 The endpoints of each vertical oblique-2 edge are consecutive in ≺x.
I.3 Each oblique-1 edge (u, v) ∈ F1 ∪ F3 is assigned the W -port at its source vertex u, if

v ≺x u; otherwise, if u ≺x v, it is assigned the E-port at u.
I.4 Every horizontal port is assigned at most once.



P. Angelini, M. A. Bekos, J. Katheder, M. Kaufmann, M. Pfister, and T. Ueckerdt 9:11

v1

v2

v3

v4

v5

v6

v7

v8

v9

v7

v9
v2

v1

v2

v6

v5

v3

v7

v5

v1
v2v9

v5v6

v3v8

v4v7

Figure 5 A 2-bend apRAC drawing of K9; F1 and F3 are blue; F2 and F4 are orange. Below the
drawing of K9 there is a illustration of the cycles in F1 and the relevant edges in F3 for positioning
v1 ∈ S according to Case 3 in the construction of ≺x. Similarly, a visualization of the cycles in F2

and the relevant edges in F4 is displayed to the left.

u a b
. . .

c

Cj Ci

. . .

(a)

ua b c

CjCi

. . . . . .

(b)

a bu c

d

Ci

(c)

Figure 6 Illustration of the construction of ≺x, Case 1 is shown in (a), Case 2 in (b) and Case 3
in (c). Blue edges belong to F1, while dashed orange edges belong to F3.

Let us consider an edge e ∈ F1 ∪ F3 between vertices u and v. If u and v are consecutive
in ≺x, then we classify e as a vertical oblique-2 edge. If u and v are not consecutive in ≺x,
we will classify e as an oblique-1 edge, which therefore guarantees I.2. For any oblique-1
edge, we will, in an initial phase, assign the ports precisely as stated in I.3. In a subsequent
step, we will create a unique assignment of the horizontal ports by reorienting some edges of
F1 ∪ F3 in order to guarantee I.4. Suppose that after the initial assignment, there exists a
vertex u such that one of its orthogonal ports is assigned to two oblique-1 edges. Assume first
the W -port of u is assigned to edges (u, a) and (u, b). By construction, u has exactly one
outgoing edge in F1, say (u, a), and exactly one outgoing edge in F3, say (u, b). Let Ci be the
cycle of F1 that contains both u and a (which implies that |Ci| > 1, as we omit self-loops)
and let Cj be the cycle that contains b (possibly i = j). Recall that by construction, the
vertices of Pi appear consecutively in ≺x before the insertion of the vertex v ∈ Ci \ Pi. Since
(u, a) is an oblique-1 edge, we have that u and a are not consecutive in ≺x. If |Ci| = 2, one
of u or a coincides with v, but then u and a are consecutive in ≺x and thus the edge (u, a) is

ESA 2023



9:12 Axis-Parallel Right Angle Crossing Graphs

an oblique-2 edge. Hence, |Ci| > 2 holds and we either have u = v, a = v or v was inserted
directly in between a and u. In the following, we will refer to Cases 1 - 3 of Section 6.2,
where we computed the total order ≺x.

1. u = v. Assume first that Ci ̸= Cj . Then, since (u, b) is assigned the W -port at u, we
have b ≺x u by I.3 which implies j < i and hence we placed u according to Case 1, i.e.,
as the first vertex of Ci in ≺x. But since a ∈ Ci, we then have u ≺x a and thus (u, a)
would use the E-port at u, a contradiction.
Hence assume that Ci = Cj , i.e., b ∈ Ci. Then we are in Case 3. In particular, we placed
u such that u and b are consecutive, thus (u, b) is classified as an oblique-2 edge, again
we obtain a contradiction.

2. a = v. Since (u, a) uses the W -port at u by assumption, we have that a ≺x u by I.3 and
thus a cannot be the last vertex of Ci in ≺x, and so we are in Case 1 or 3. In Case 1, a

is placed as the first vertex of Ci since there exists a vertex a′ with a′ ≺x a such that
(a, a′) ∈ F3. Further, a is placed next to vertex v′ (i.e., the first vertex of Pi in ≺x) with
(a, v′) ∈ F1 by construction. Then, we can redirect the edge (u, a) ∈ F1 such that we
can assign (a, u) the E-port at a which solves the conflict at u and does not introduce a
conflict at a which guarantees I.4. In Case 3, a was placed consecutive to vertex a′ ∈ Pi

with (a, a′) ∈ F3. As (u, a) uses the W -port at u, u is necessarily the last vertex of Ci in
≺x. Since the other neighbor of a in F1 different from u is the first vertex of Ci in ≺x,
i.e., it precedes a in ≺x, we can again reorient the edge (u, a) and assign the edge (a, u)
to the free E-port of a, solving the conflict at u which guarantees I.4.

3. v was inserted directly in between a and u. In this case, we have that both a and u

belong to Pi. Since we assume that (u, a) uses the W -port at u, it follows that a ≺x u

holds. But then by construction, the edge of F1 that joins a und u is directed from a to
u and we obtain a contradiction.

The case where the E-port of u is assigned to two edges can be solved in a similar way;
refer to [4] for details.
Observe that if an edge (u, v) was redirected, then both u and v belong to the same cycle Ci

of F1 and since this operation has to be performed at most once per cycle, it follows that they
can be considered independently. So far, we have computed ≺x and classified every edge of
F1 ∪ F3 guaranteeing Invariants 1-I.4. Symmetrically, we can compute ≺y and classify every
edge of F2 ∪ F4 guaranteeing corresponding versions of Invariants 1-I.4; see [4] for details.

6.4 Bend placement
We begin by describing how to place the bends of the edges on each side of the box B(u) of
an arbitrary vertex u based on the type of the edge that is incident to u, refer to Fig. 3b.
Let (xu, yu) be the coordinates of u in Γ that are defined by ≺x and ≺y. Recall that the
box B(u) has size 8 × 8. Let e be an edge incident to u. We focus on the case in which
e ∈ F1 ∪ F3, the other case in which e belongs to F2 ∪ F4 is handled symmetrically by simply
exchanging x with y, “top/bottom” with “right/left” and “vertical” with “horizontal” from
the following description. By definition, e is either an oblique-1 edge or a vertical oblique-2
edge. Suppose first that e is an oblique-1 edge. If e = (u, v), i.e., e is an outgoing edge of u

in F1 ∪ F3, then by Invariant I.3 edge e uses either the W - or E-port at u. In the former
case, the segment of e incident to u passes through point (yu, yu − 4), while in the latter case
it passes through point (yu, yu + 4). For an example, refer to the outgoing edge (v3, v6) of v3
in Fig. 5. If e = (v, u), i.e., e is an incoming edge of u in F1 ∪ F3, then by Invariant I.3 e uses
a horizontal port at v and by the fact that every edge consists of exactly three segments, the
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vertical segment of e ends at the top or the bottom side of B(u). Since any vertex has at
most three incoming edges in F1 ∪ F3 by construction, we can place the respective bends
at x-coordinate xu + i with i ∈ {−2, −1, 1, 2} and y-coordinate yu + 4 (yu − 4) for the top
(bottom) side such that the assigned i-value is unique, refer to the incoming edge (v4, v9)
of v9 in Fig. 5, where i = −1. Finally, the other bend-point of e is uniquely defined as
(xu + i, yv), since it connects a vertical with a horizontal segment by construction.

Suppose now that e is a vertical oblique-2 edge. By I.2, u and v are consecutive in ≺x. If
v ≺x u the x-coordinate of the bend point is xu − 4, otherwise it is xu + 4; e.g., refer to the
edges (v2, v3) and (v3, v4) of v3 in Fig. 5, respectively. In order to define the y-coordinate of
the bend point, we have to consider the relative position of u and v in ≺y. If v ≺y u the
y-coordinate of the bend point of e is yu − 3 and otherwise it is yu + 3. I.2 implies that any
vertex has at most two vertical oblique-2 edges since no vertex has more than two direct
neighbors in ≺x. From the description of the bend-points, the observation follows:

▶ Observation 2. Let b be a bend-point that delimits an oblique segment s which belongs to
an edge e. If s is incident to u, then b does not lie on any other edge incident to u.

6.5 Proof of correctness
The fact that the obtained drawing is 2-bend apRAC is proved in [4]. To complete the proof
of Theorem 8, we discuss the time complexity and the required area. We apply Lemma 7 to
G to obtain F1, F2, F3 and F4 in O(n) time. For each cycle of F1 and F2, an appropriate
ordering of its internal vertices, the classification of the incident edges and the assignment
of the orthogonal ports can be computed in time linear in the size of the cycle. Clearly,
computing the bend-points can be done in linear time as well. Hence we can conclude that
the drawing can be computed in O(n) time. For the area, we can observe that the size of
the grid defined by the boxes is 8n × 8n and by construction, any vertex and any bend point
is placed on a distinct point on the grid. ◀

7 Conclusion and Open Problems

In this paper, we introduced the class of k-bend apRAC graphs, gave edge-density bounds,
studied inclusion relationships with the general k-bend RAC graphs, and concluded with
an algorithmic result for graphs with maximum degree 8. A natural extension is to allow
drawings where each crossing edge-segment is parallel or perpendicular to a line having one
out of s different slopes. We denote the class of graphs which admit such a drawing as k-bend
s-apRAC, and w.l.o.g. we assume that the horizontal slope is among the s ones. Observe
that for s = 1, the derived class coincides with the class of k-bend apRAC graphs. By joining
several copies of the graph supporting Property 5 that all share a common vertex, we show
that 0-bend s-apRAC graphs form a proper subclass of 0-bend RAC graphs for any s ∈ o(n);
see [4] for details. We also adjust the proof of Theorem 6 to derive an upper bound on the
edge density of 2-bend s-apRAC graphs, which is better than the one of [8] that holds for
general 2-bend RAC graphs for values of s up to 17. We conclude with the following open
problems.

Are there 2-bend RAC graphs that are not 2-bend apRAC?
For k ∈ {1, 2}, our edge-density bounds do not relate to the simplicity of the drawings.
Are bounds different for simple drawings, as in the general 1-bend RAC case [2]?
For k ∈ {1, 2}, does the class of k-bend s-apRAC graphs on n vertices coincide with the
corresponding class of k-bend RAC graphs, when s ∈ o(n)?

ESA 2023
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Based on our exploration of 2-bend apRAC graphs, we conjecture that the edge density
of general 2-bend RAC graphs on n vertices is 10n − O(1).
Another important open problem in the field is to settle the complexity of the recognition
of general 1-bend RAC graphs. What if we restrict ourselves to the axis-parallel setting?
From a practical perspective, can an advantage in the readability of k-bend apRAC
drawings over k-bend RAC drawings be demonstrated in user studies?
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1 Introduction

For an undirected graph G = (X,E) on n = |X| vertices and m = |E| edges, with s, t ∈ X,
st-connectivity or ustcon is the problem of deciding whether s and t are in the same
component. This problem has applications in many other graph and network problems,
and is of theoretical importance for its connection with space complexity (see e.g. [23]). In
particular, ustcon is complete for the class symmetric logspace, SL, which was shown to be
equal to logspace, L, by exhibiting a classical deterministic logspace algorithm for ustcon [22].
In this paper, we consider quantum algorithms for this problem.
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There are different versions of the problem ustcon depending on how G is accessed.
If G is given as an adjacency matrix, we denote the problem ustconmat. If G is given as an
array of arrays, one for each vertex, enumerating the neighbours, we denote the problem
ustconarr. 1 If one only cares about space complexity, these problems are equivalent, but
the same is not true of time complexity: adjacency queries can simulate an array query, and
vice versa, in logspace, but there is a non-negligible time overhead.

A classical deterministic algorithm based on breadth-first search or depth-first search
can solve ustconarr in Õ(m) time, using Õ(n) space. Using a random walk, the space
complexity can be improved to O(log(n)), at the expense of Õ(nm) time complexity [2].
A series of works [11, 7, 14, 5, 16] culminated in a space-time tradeoff for ustconarr of
T = Õ(n2/S) queries for any space bound S = Ω(log(n)) and S = O(n2/m), due to
Kosowski [19]. While there is no matching time-space lower bound, it is unlikely that this
tradeoff can be significantly improved (see [19, Section 5.1 of arXiv v2] for a discussion).
Kosowski’s algorithm is based on using Metropolis-Hastings random walks to find connections
between S sampled vertices and s, t until it is becomes possible to conclude that s and t are
connected. For comparison, in the adjacency matrix model, the randomized query complexity
of ustconmat is Θ̃(n2) and there is no space-time tradeoff.

A quantum algorithm of Dürr, Heiligman, Høyer and Mhalla [13] for connectivity
can be adapted to solve ustconmat in Õ(n1.5) time and ustconarr in Õ(n) time, both of
which are optimal up to polylog factors. Both of these algorithms use Õ(n) space, of which
all but O(log(n)) can be classical space (assuming quantum RAM access). A subsequent
quantum algorithm for ustconmat due to Belovs and Reichardt uses Õ(n1.5) time, but only
O(log(n)) space [9], which is optimal in terms of both space and time. It is also possible
to solve ustconarr in O(log(n)) space and Õ(

√
nm) time, using a quantum walk (see for

example [8]). This quantum walk algorithm requires a quantum version of array access to
the input graph, which we refer to as ustconqw in the next section.

1.1 Summary of results

We describe new quantum walk algorithms for ustconarr. These algorithms consider a
quantum walk version of the adjacency array model, in which the input graph is accessed by
a quantum analogue of classical random walk steps. Recall that in the adjacency array model,
we assume that for any vertex u, we can query, for any i ∈ [du], the i-th neighbour of u, vi(u).
Then a random walk step can be performed from state u by sampling a uniform i ∈ [du],
and then computing vi(u), which becomes the current state. In the quantum walk access
model, we assume that for any vertex u, we can prepare a uniform superposition over the
neighbours of u. While these models are not identical, they are very similar, and in Section 3,
we formally define the models, and show that quantum walk access can be simulated in the
array model with polylogarithmic overhead under reasonable additional assumptions.

Letting ustconqw denote the st-connectivity problem in the quantum walk access model,
we present a one-sided error quantum algorithm that solves ustconqw in time Õ(n) and
space O(log(n)). Perhaps surprisingly, this means that ustconqw admits no nontrivial
tradeoff between space and time in the quantum setting – a single algorithm can solve this
problem optimally in terms of both time and space (see Theorem 15 for the formal result).

1 There are variations on the details of this model. For now, we allow ustconarr to stand in for multiple
variations of the array access model, but precise details of the variations can be found in Section 3.
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Table 1 A summary of classical (randomized) and quantum time and space complexities for
ustcon in the adjacency matrix and adjacency array models. The classical results for ustconmat

follow from (1) the log(n)-space result for ustconarr with an n/d overhead for finding neighbours of
the current vertex in a d-regular graph; and (2) BFS.

ustconmat

Time TS-tradeoffs

Classical Θ̃(n2) S = O(log(n)), T = Õ(n3/d)

S = Õ(n), T = Õ(n2)

Quantum Θ̃(n1.5) S = O(log(n)), T = Õ(n1.5) [9]

ustconarr

Time TS-tradeoffs

Classical Θ̃(m) T = Õ(max{n2/S, m})

Quantum Θ̃(n) S = O(log(n)), T = Õ(n1.5)

S = T = Õ(n) [13]

This work: S = O(log(n)), T = Õ(n)

▶ Theorem 1 (Informal). There is a O(log(n))-space quantum algorithm that decides
ustconqw with one-sided error in Õ(n) time.

In this paper, when we say time, we are counting: (1) quantum gates (unitaries that act
on at most a constant number of qubits); (2) quantum walk queries to G; and (3) (quantum)
random access (QCRAM) operations (QCRAM is used in our second algorithm only, see
below). Inspired by [19], our algorithm is based on a quantum walk search for t starting
from s using a random walk that can be interpreted as a Metropolis-Hastings random walk.

Because of the close relationship between ustcon and classical logspace, we can consider
what this means for logspace problems in general. It does not mean that more space does
not reduce the quantum time complexity of any problem, but it is interesting to consider:
in what settings do we get a non-trivial time-space tradeoff? We consider one such setting:
when we are given a promise on the spectral gap or mixing time of the random walk on
G (see Section 2.2). In that case, we prove the following theorem (see Theorem 17 for the
formal result).

▶ Theorem 2 (Informal). Suppose whenever s and t are connected, the random walk spectral
gap is at least δ > 0. For any S ∈ Ω(log(n)), there is a quantum algorithm that decides
ustconqw with bounded error in O(S) space and T = Õ

(
S
δ +

√
n

δS

)
time.

The time bound decreases monotonically for S ∈ Ω(log n) until S ∈ O((nδ)1/3), at which
point it reaches time complexity T = Õ(n1/3/δ2/3). We leave it as an open problem to prove
a matching lower bound (at least for some values of δ), which would prove that in certain
regimes, it is not possible to achieve optimal time and space simultaneously.

Our algorithm takes inspiration from [3]. In fact, with some imagination, one can derive a
similar (but incomparable) time-space tradeoff for ustconqw from that work: for 1 ≤ S ≤ m,
the algorithm in [3] can be adapted to use space Õ(S) and time T ∈ Õ(S +

√
m/(δS)),

with δ the random walk spectral gap.

ESA 2023
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In the space bound S of both algorithms in Theorems 1 and 2, only O(log(n)) memory
needs to be actual quantum workspace (i.e., qubits). The remaining O(S) memory can be
classical RAM in the first algorithm and QCRAM in the second algorithm, that is, classical
RAM that is queryable at a quantum superposition of addresses. We discuss the latter in
Section 2.4.

We summarize our results in Figure 1. For S = log(n), the algorithm of Theorem 2 has a
worse time complexity than the algorithm of Theorem 1, whenever δ < 1

n . We leave it as an
open problem to give a single algorithm that is optimal for all δ.

Figure 1 Quantum space-time tradeoffs for USTCON, with axes representing the time complexity
and spectral gap promise (up to polylog-factors). The grey area represents the regime in which a non-
trivial tradeoff is achieved. Theorem 1 (upper line) corresponds to the regime with space S = O(log n)
and time T = Õ(n). Theorem 2 (grey area) corresponds to the regime with a promise on δ, and
interpolates between S = O(log n) and T = Õ(n), and S = O((nδ)1/3) and T = Õ(n1/3/δ2/3).

Organization

The remainder of this paper is organized as follows. We describe preliminaries in Section 2
and Section 3. In Section 4, we prove Theorem 1 by exhibiting a quantum algorithm for
ustconqw that is optimal in both time and space. For completeness, we also include a proof
of a corresponding lower bound in Section 4.1. In Section 5, we prove Theorem 2 exhibiting
a quantum time-space tradeoff when given a promise on the spectral gap.

2 Preliminaries

We first give some general notation. For a positive integer k, we let [k] = {1, . . . , k}.
Throughout this work, n denotes the number of vertices and m the number of edges of the
input graph. For any function f , we let Õ(f(n)) = f(n) · polylog(n).

2.1 Probability theory
A (probability) distribution on a finite set X is a non-negative function σ : X → R≥0 such
that

∑
v∈X σ(v) = 1. Its support is defined as supp(σ) := {v ∈ X : σ(v) > 0}. We will

implicitly identify such σ with row vectors, as is customary in the random walk literature.
To any distribution σ, we also associate a quantum state |σ⟩ :=

∑
v∈X

√
σ(v) |v⟩. Measuring

|σ⟩ in the standard basis returns a sample from σ.
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For any distribution σ on X, and any subset M ⊆ X, we will let σ(M) =
∑

u∈M σ(u).
We let σM denote the normalized restriction of σ to M , defined by σM (u) = σ(u)/σ(M) for
all u ∈ M and σM (u) = 0 elsewhere.

Finally, the total variation distance between two distributions σ and τ on X is defined as

∥σ − τ∥TV := 1
2
∑
u∈X

|σ(u) − τ(u)| = max
A⊆X

|σ(A) − τ(A)|.

2.2 Random walks
Fix an undirected graph G = (X,E) with n = |X| vertices and m = |E| edges. We take
E ⊆

(
X
2
)
, that is, edges e ∈ E are subsets e = {u, v} = {v, u} of pairs of vertices. We will let

N(u) := {v ∈ X : {u, v} ∈ E}

denote the neighbourhood of u ∈ X, and du = |N(u)| the degree of u. For convenience we
assume that all vertices have positive degree.

Fix edge weights given by a symmetric matrix W ∈ RX×X
≥0 such that Wu,v = Wv,u for

all u, v ∈ X, and Wu,v > 0 if and only if {u, v} ∈ E. Then G = (X,E,W ) defines a weighted
graph. When no W is given, the graph is unweighted and we let Wu,v = 1 for all {u, v} ∈ E.
For u ∈ X, define wu =

∑
v∈X Wu,v. The corresponding (weighted) random walk is the

reversible Markov chain on X with transition matrix P ∈ RX×X
≥0 given by

Pu,v =
{

Wu,v

wu
if {u, v} ∈ E

0 otherwise
∀u, v ∈ X. (1)

This means that the probability of moving from the vertex u along an edge to a neighbouring
vertex v is proportional to the edge’s weight. In the unweighted case, this is called the simple
random walk; in each step it simply moves to a neighbouring vertex chosen uniformly at
random.

Let π ∈ RX
>0 be the distribution defined by

π(u) = wu

W(G) ∀u ∈ X,

where W(G) =
∑

u∈X wu =
∑

u,v∈X Wu,v. In the unweighted case, π is proportional to the
degree. The distribution π is a stationary distribution of the random walk, i.e., πP = π (it
is a left eigenvector of P with eigenvalue 1).

In fact, when the graph G is connected, π is also the unique stationary distribution of P .
If in addition the graph is not bipartite, then all other eigenvalues have absolute value strictly
less than one. That is, if 1 = λ1 ≥ · · · ≥ λn ≥ −1 are the eigenvalues of P then the (absolute)
spectral gap γ⋆ = γ⋆(G) := min{1 − |λj | : j = 2, . . . , n} = min{1 − λ2, 1 + λn} is strictly
positive. Importantly, the inverse of the spectral gap bounds the random walk’s mixing time,
that is, the time required for convergence to the stationary distribution:

▶ Theorem 3 ([21, Thm. 12.4]). Assume G is connected and not bipartite. Let ε > 0 and

t ≥ 1
γ⋆

log
(

1
επmin

)
,

where πmin = minu∈X π(x). Then ∥σP t − π∥TV ≤ ε for any distribution σ on X.

ESA 2023



10:6 (No) Quantum Space-Time Tradeoff for USTCON

Conversely, it is known that t ≥ ( 1
γ⋆

− 1) log
( 1

2ε

)
is necessary to ensure mixing from

an arbitrary initial distribution [21, Thm. 12.5]. In the unweighted case, we have πmin ≥
dmin

n dmax
≥ 1

n2 , so the former shows that Theorem 3 is tight up to log(n) factors in that case.
Finally, for any s, t ∈ X we let Hs,t denote the hitting time from s to t, which is the

expected number of steps needed to reach t in a random walk starting from s. We let
Cs,t = Hs,t + Ht,s denote the commute time between s and t – the expected number of steps
needed to reach t and then return to s in a random walk starting from s. These quantities
are finite if and only if s and t are in the same component of G. More generally, the commute
time Cs,M from s to a subset M ⊆ X is the expected number of steps needed to reach any
vertex in M and then return to s in a random walk starting from s.

2.3 Quantum walk search algorithms
Quantum walk search refers to the use of quantum walks to find certain “marked” elements
on a graph. We will use quantum walk search to search for a vertex connected to t in the
connected component of S. Specifically, we will use the following special case of [4, Thm. 13].2

▶ Theorem 4. Let P be a random walk on a weighted graph with vertex set X, M ⊆ X a
subset of “marked” vertices, and s ∈ X. Let C be the (quantum) time complexity to check for
a given u ∈ X whether u ∈ M , let U be the time complexity of implementing the weighted
quantum walk oracle

|u⟩ |0⟩ 7→
∑

v∈N(u)

√
Pu,v |u⟩ |v⟩ .

in space O(log(n)). Let C be a known upper bound on the commute time Cs,M in the case
where s and M are connected (and in particular M ≠ ∅). Then there is a quantum algorithm
that, if M ̸= ∅ and s is connected to M , finds an element of M with probability at least 2/3.
If M = ∅ or s is not connected to M , then the algorithm outputs a vertex not in M . The
algorithm has time complexity O(

√
log(C) log(n) +

√
C log(C) log(log(C))(C + U)) and space

complexity O(log(n)).

2.4 Quantum RAM
Our algorithm will exploit the given space by saving sets of vertices which will be either
connected to s or to t. For our quantum algorithm to access this space, we assume access to
a so-called quantum-classical random access memory or QCRAM. This refers to a memory
that only stores classical information, but can be queried at a superposition of addresses.
More specifically, an R-bit QCRAM stores a string of bits q ∈ {0, 1}R so that the following
operations are supported in time polylog(R):
1. UPDATE(i, x): store x ∈ {0, 1} in the i-th bit (i.e., set qi = x).
2. QUERY: for any superposition

∑
i αi |i⟩ |si⟩, it maps∑

i

αi |i⟩ |si⟩ 7→
∑

i

αi |i⟩ |si ⊕ qi⟩ .

As was first described by Kerenidis and Prakash [18], using such a QCRAM we can set
up a data structure to generate quantum superpositions over elements in the QCRAM. We
will use the following formulation based on [3].

2 To see that this follows from [4, Thm. 13], note that when |σ⟩ = |s⟩, the cost to set up |σ⟩ is log(n) and
the value Cσ,M from [4] is exactly the commute time from s to M [4, Thm. 4].
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▶ Lemma 5. Fix integer parameters ℓ and k. Using an O(kℓ log(ℓ))-bit QCRAM, there is a
data structure, D, that stores up to ℓ elements x ∈ {0, 1}k with associated integer weights, cx,
of bounded absolute value for some poly(ℓ) bound, and supports the following operations in
time O(k · polylog(kℓ)) per operation:
1. insertion or deletion of a pair (x, cx),
2. quantum queries of the form “Is x ∈ D?”,
3. preparation of the quantum state 1√∑

x∈D
cx

∑
x∈D

√
cx |x⟩.

3 USTCON and the Quantum Walk model

In this section we define the undirected st-connectivity problem (ustcon). The input to
this problem is an undirected graph G = (X,E). Classically, there are various ways this
input may be given, which may change the complexity of the problem. For example, in the
adjacency array model (defined below), it is possible to randomly sample a neighbour of any
vertex u in O(1) queries to G (assuming access to the vertex degrees), facilitating a random
walk on G, whereas if G is given as an adjacency matrix, a random walk step is not so simple.

We will work in a quantum walk analogue of the adjacency array model. We assume
that G can be accessed via the quantum walk oracle that for every u ∈ X outputs a uniform
superposition over its neighbours:3

OW : |u⟩ |0⟩ 7→ 1√
du

∑
v∈N(u)

|u⟩ |v⟩ . (2)

Formally, we describe ustconqw in terms of the input and output.

▶ Problem 6 (ustconqw). Given access to an undirected graph G = (X,E) via the quantum
walk oracle OW , and two vertices s, t ∈ X, decide whether s and t are in the same connected
component of G.

To compare our work with classical results on ustconarr, we describe an implementation
of the quantum walk oracle defined above based on adjacency array access to a graph. Let
u ∈ X and i ∈ [du]. We assume that for each vertex u there is a fixed numbering of its
neighbours from 1 to du. In the adjacency array model, two types of queries are allowed:

Degree query OD : |0⟩ |u⟩ 7→ |du⟩ |u⟩
Neighbour query ON : |u⟩ |i⟩ |0⟩ 7→ |u⟩ |i⟩ |vi(u)⟩

In the sorted adjacency array model we additionally assume that for every vertex u ∈ X

its neighbours are sorted: for any i, j ∈ [du], if i < j then vi(u) < vj(u). In particular, this
allows us to check with O(log(n)) queries whether a given pair of vertices u, v are adjacent.
We define the ustcon-problem in this model as follows.

▶ Problem 7 (ustcons-arr). Given access to an undirected graph G = (X,E) via the sorted
adjacency array model and two vertices s, t ∈ X, decide whether s and t are in the same
connected component of G.

The question that we consider is how many sorted adjacency array queries to the graph
it takes to implement the quantum walk oracle OW .

3 Note that this is exactly the quantum walk oracle defined in Theorem 4, specialized to unweighted
graphs.
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Figure 2 The parity graph. We include an edge labelled by “xi” (in red) if and only if xi = 1,
and an edge labelled “x̄i” (in blue) if and only if xi = 0, meaning that for each vertex we include
exactly one of the two incoming edges, and exactly one of the two outgoing edges. The resulting
graph has s and t connected if and only if parity(x) = 1.

▶ Lemma 8. The quantum walk oracle OW for an unweighted graph G (Equation (2)) with
maximum degree dmax can be implemented with O(log(dmax)) queries in the sorted adjacency
array model, and Õ(1) other elementary operations and space.

The proof of this lemma is deferred to the appendix.
It follows that any quantum algorithm solving ustconqw in T time and S = Ω(log(n))

space can solve ustcons-arr in Õ(T ) time and O(S) space.

4 Time- and space-optimal quantum algorithm

In Section 4.2 and Section 4.3, we give an algorithm for ustconqw that is optimal in both
time and space. For completeness, we first give a time lower bound in Section 4.1.

4.1 Lower bound
The proof of the following lower bound follows the lines of the proof of an analogous lower
bound for the strong connectivity problem described in [13]. The proof is via a reduction
from parity.

▶ Problem 9 (parity). Given oracle access to a string x ∈ {0, 1}n via Ox : |i⟩ |b⟩ 7→
|i⟩ |b⊕ xi⟩, return

⊕n−1
i=0 xi.

▶ Lemma 10 ([6, 15]). The bounded error quantum query complexity of parity is Ω(n).

We use Lemma 10 and a reduction from parity, using the parity graph illustrated in Figure 2,
to show the following result. The detailed proof can be found in the appendix.

▶ Theorem 11. The bounded error quantum query complexity of ustcons-arr and ustconqw
is Ω(n).

4.2 Metropolis-Hastings walk
In this section, we consider an unweighted simple graph G. The algorithm that we propose
involves a quantum walk on a modified weighted version of G that we call G′ = (X ′, E′,W ).
We start by describing the construction of G′ that was introduced in [19, arXiv v2].

▶ Definition 12 (Metropolis-Hastings walk). For any graph G = (X,E), the corresponding
Metropolis-Hastings walk is the random walk on the weighted graph G′ = (X ′, E′,W ) defined
as follows. For every u ∈ X, we include a corresponding vertex xu in X ′. In addition, for
every edge {u, v} ∈ E, we add a new vertex xu,v that splits the edge into two new edges.
Formally:
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X ′ = {xu : u ∈ X} ∪ {xu,v : {u, v} ∈ E, u < v}
E′ = {{xu, xu,v} : {u, v} ∈ E}.

For every edge {xu, xu,v} ∈ E′, we define the edge weight Wxu,xu,v
= 1

du
. These weights

define transition probabilities for the random walk on G′.

The above has been called the cautious walk in [19, arXiv v2], while Metropolis-Hastings-
type walks are walks in which neighbours are sampled and accepted with some probability.
Our terminology is motivated by the following observation. If we start with a vertex u ∈ X

and take two steps of the walk of Definition 12, then we arrive at another vertex v ∈ X,
which is either the same or a neighbour of u in G. The walk on G defined this way has
the following alternative description: sample a uniformly random neighbour and accept it
with probability 1/dv

1/du+1/dv
= 1

1+dv/du
. This is precisely a random walk that falls into the

Metropolis-Hastings framework, justifying our terminology. The precise choice of acceptance
probabilities is sometimes called the Glauber choice in the literature (e.g., [20]). We note that
a later version of [19] uses another choice of Metropolis-Hastings walk, but of our purposes
we find it convenient to stick to the walk as defined above.

While the hitting time of a random walk between two vertices in G may be as high as
O(n3), in G′ it is at most O(n2) [19, Lemma 2 of arXiv v2]:

▶ Lemma 13 ([19]). Let G = (X,E) be any unweighted graph, and G′ the corresponding
(weighted) Metropolis-Hastings graph as in Definition 12. For any u, v ∈ X connected by a
path, Hu,v(G′) ≤ 18n2.

In order to apply Theorem 4 to G′, we need to upper bound U, the cost of implementing
the weighted quantum walk oracle. For u ∈ X ′ the oracle is defined as

U : |x⟩ |0⟩ 7→
∑

y∈N(x)

√
P ′

xy |x⟩ |y⟩ , ∀x ∈ X ′

where P ′
xy is the probability of walking from x to y defined by the edge weights.

▶ Lemma 14. The weighted quantum walk oracle U for the Metropolis-Hastings walk G′

can be implemented with Õ(1) degree queries OD, Õ(1) applications of the quantum walk
operator OW on the graph G, and Õ(1) additional gates.

Therefore, U can be implemented with Õ(1) queries to G in the sorted adjacency array
model, and Õ(1) additional gates.

Proof. Note that the first statement implies the second one due to Lemma 8. Therefore, we
will only prove the first statement. Consider the following encoding of the vertices of G′.

X ′ = {(u, 0) : u ∈ X} ∪ {(u, v) : {u, v} ∈ E, u < v} ⊆ X ×
(
X ∪ {0}

)
,

where 0 is a null symbol not contained in X. The first set of this union corresponds to
original vertices of G and the second one corresponds to the added ones.

To implement U on |x⟩ |0⟩, we first compute a bit in an ancilla register A that is |0⟩A if
x = (u, 0) for some u, and |1⟩A otherwise. We will condition on this value.

First, conditioned on |0⟩A, our implementation proceeds as follows, for u ∈ X:

|xu⟩ |0⟩ = |u, 0⟩ |0⟩ JOW7→ 1√
du

∑
v∈N(u)

|u⟩ |v⟩ |u, v⟩

J′

7→ 1√
du

∑
v∈N(u)

|u, 0⟩ |u, v⟩ = 1√
du

∑
v∈N(u)

|xu⟩ |xu,v⟩ = U |xu⟩ |0⟩
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where J is a unitary that acts as |u, v⟩ |0⟩ 7→ |u, v⟩ |u, v⟩, and J ′ as |u, v⟩ |u, v⟩ 7→ |u, 0⟩ |u, v⟩,
each of which can be implemented with O(log(n)) controlled-NOT gates (since every vertex
is described by O(log(n)) bits).

Next, conditioned on |1⟩A, our implementation proceeds as follows, for {u, v} ∈ E with
u < v, and |0⟩A′ a fresh ancilla:

|0⟩A′ |xu,v⟩ |0⟩ = |0⟩A′ |u, v⟩ |0⟩

17→

(√
1/du

1/du + 1/dv
|0⟩ +

√
1/dv

1/du + 1/dv
|1⟩

)
A′

|u, v⟩ |0⟩

27→

√
1/du

1/du + 1/dv
|0⟩A′ |u, v⟩ |u⟩ +

√
1/dv

1/du + 1/dv
|1⟩A′ |u, v⟩ |v⟩

37→ |0⟩A′

(√
1/du

1/du + 1/dv
|u, v⟩ |u⟩ +

√
1/dv

1/du + 1/dv
|u, v⟩ |v⟩

)

= |0⟩A′

(√
Wxu,v,xu

w(xu,v) |xu,v⟩ |xu⟩ +

√
Wxu,v,xv

w(xu,v) |xu,v⟩ |xv⟩

)
= |0⟩A′ U |xu,v⟩ |0⟩ ,

where we use the following mappings:
1: Query degrees for u and v into a new ancilla register, perform the rotation controlled on

the degrees (cf. [17]), and then uncompute the degrees (O(1) degree queries to G).
2: Controlled on the first register, select one of the two vertices to copy into the last register

(O(log(n)) Toffoli gates).
3: Flip the bit in A′ if the second vertex of |u, v⟩ is the same as the one written in the third

register (O(log(n)) elementary gates).
To complete the proof, note that we can uncompute the bit in ancilla A, because the register
containing |x⟩ has not been changed. ◀

4.3 The algorithm
We can solve ustconqw(G) using Algorithm 1. This leads to our main theorem of this
section.

Algorithm 1 Quantum algorithm for ustconqw with optimal time and space.

Apply the algorithm from Theorem 4 to the Metropolis-Hastings walk P ′ with
M = {t}, using Lemma 14 to implement the quantum walk oracle for G′. If the
algorithm returns t, output “connected”, and otherwise output “disconnected”.

▶ Theorem 15. There exists a O(log(n))-space quantum algorithm that decides ustconqw
and ustcons−arr with bounded one-sided error in Õ(n) gates and queries.

Proof. Let Xs ⊆ X denote the connected component of s. If t ∈ Xs, the algorithm will
output t with probability at least 2/3, in which case our algorithm will output the correct
answer, “connected”. If t ̸∈ Xs, then the algorithm will output an element of Xs with
probability 1, in which case, our algorithm will output the correct answer “disconnected”.
This establishes correctness of Algorithm 1 with one-sided error.
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To analyze the complexity, note that by Lemma 14 we have U = Õ(1). For any u ∈ Xs,
we can check if u ∈ M by checking if u = t in complexity C = O(log(n)) = Õ(1). To
complete the analysis, we need only upper bound the commute time between s and t when
t ∈ Xs. Since Cs,t = Hs,t + Ht,s, by Lemma 13, we have Cs,t ≤ 36n2 =: C. Thus, referring to
Theorem 4, the complexity of our algorithm is:

Õ
(√

C log(C) log(log(C))(C + U)
)

= Õ(n). ◀

5 Time-space tradeoff for bounded spectral gap

In this section we revisit the problem of undirected st-connectivity in the setting where one
is given a lower bound on the spectral gap of the random walk. As discussed in Section 2.2,
such a bound is tightly related to the mixing time of the walk. We will give a quantum
algorithm that exhibits a nontrivial time-space tradeoff in this setting.

Our discussion will be general and apply to random walks on weighted graphs as defined
in Equation (1). This is useful since the spectral gaps and mixing times of random walks
on G with different edge weights are in general not comparable. E.g., on the lollipop graph
(an n-vertex clique connected to an O(n)-vertex path) the mixing time of the unweighted
random walk is Θ(n3) [10], while it is O(n2) for the Metropolis-Hastings walk.4 On the other
hand, on an n-vertex star graph the unweighted random walk has mixing time O(1) while
the Metropolis-Hastings walk has mixing time Θ(n). Thus, while the specific edge weights
do not affect whether s and t are connected, they do impact the algorithm. Throughout this
section, we assume some fixed edge weights are given, and we do not try to optimize for
“good” edge weights. More specifically, we assume access to a weighted quantum walk oracle
that for every vertex outputs a superposition of its neighbours, with squared amplitudes
proportional to the edge weights:

OW : |u⟩ |0⟩ 7→
∑

v∈N(u)

√
Wu,v

wu
|u⟩ |v⟩ =

∑
v∈N(u)

√
Pu,v |u⟩ |v⟩ ∀u ∈ X

Moreover, we assume access to the weighted vertex degrees wu and that these degrees
are of bounded absolute value for some poly(n) bound. This will allow us to generate the
state |πX′⟩ for any subset X ′ ⊆ X stored in QCRAM.

▶ Problem 16 (ustconqw,δ). Given access to an undirected weighted graph via the quantum
walk oracle OW , two vertices s, t ∈ X, and the promise that either s and t are disconnected
or the spectral gap of the transition matrix of the walk is at least some δ > 0, decide which is
the case.

Our main result of this section is the following:

▶ Theorem 17. Fix δ ≥ 0. Let Gn be a family of undirected weighted graphs G = (X,E,W )
with n = |X|, such that γ⋆(G) ≥ δ whenever s and t are connected. Then for any S =
Ω(log(n)), there is a quantum algorithm that decides ustconqw,δ on Gn with bounded error
in O(S) space – of which O(log(n/δ)) is quantum memory, and the remainder is QCRAM –
and T = Õ( S

δ log
(

1
πmin

)
+
√

n
δS ) queries to OW , elementary gates, and QCRAM queries.

4 This follows from the O(n2) upper bound on the maximum hitting time of the Metropolis-Hastings walk
(Lemma 13), and the fact that the maximum hitting time upper bounds the mixing time [21, Lemma
10.2].
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Note that we can assume δ ≥ 1/n. If δ < 1/n then T ≈ S/δ. There is no time-space
tradeoff, and it is always faster to run the Metropolis-Hastings algorithm (Algorithm 1).

The algorithm is stated below as Algorithm 2. It consists of three stages. We fix some
parameter p, which denotes the number of “pebbles”, or vertices the algorithm will keep
track of (so S = O(p log(n))). First, we run O(p) classical random walks starting from s,
each of length ℓ = O

(
1
δ log

(
n

pπmin

))
. This allows us to sample a set L of O(p) points from

Xs, the connected component of s (the big-O notation suppresses a universal constant that
is given in the proof). Since ℓ is at least the mixing time of G (see Theorem 3), assuming s
and t are connected, each point is sampled (approximately) from π. We do the same from t

to get a random subset M ⊆ Xt connected to t.
Next, we use L and M to prepare (up to some error) the states |πXs⟩ and |πXt⟩, using

inverse quantum walk search, which we describe in more detail in Section 5.2. If s and t

are in the same connected component, then |πXs⟩ = |πXt⟩, and otherwise, the states are
orthogonal. The final step is to distinguish these two cases using a SWAP test [1, Claim 1].
This roughly follows an earlier approach in [3], the main difference being that we sample the
sets L and M using a random walk (which allows us to exploit the gap promise), while in [3]
the sets are constructed using a breadth-first search.

Algorithm 2 Quantum algorithm for ustconqw with a tradeoff.

Seed set: Run O(p) classical random walks from s and O(p) classical random
walks from t, each for O( 1

δ log
(

n
pπmin

)
) steps. Let L and M denote the respective

sets of endpoints, without duplicates. If L ∩M ̸= ∅, return “connected”.5
State preparation: Run inverse quantum walk search from |πL⟩ and |πM ⟩ for
time Õ

(√
n
δp

)
to prepare |πXs⟩ and |πXt⟩, respectively, to precision 1/8.

SWAP test: Do a SWAP test on the resulting states. If the test returns “0”, return
“connected”, otherwise return “disconnected”.

If we specialize Theorem 17 to the unweighted graph case, we get the following corollary.

▶ Corollary 18. For any S > 0, there is a quantum algorithm that solves ustcons-arr with a
promise δ > 0 on the random walk spectral gap using space S and time T ∈ Õ(S/δ+

√
n/(δS)).

An analogous result holds for the Metropolis-Hastings walk described in Section 4.2 given
a promise on its spectral gap, since we showed that the corresponding quantum walk oracle
can also be efficiently implemented.

In the remainder of this section we will analyze each stage of Algorithm 2.

5.1 Analysis of step 1: Seed set

Recall that the first stage results in random sets L = {x1, . . . , xcp} and M = {y1, . . . , ycp},
where x1, . . . , ycp are the endpoints of independent random walks starting at s or t, respect-
ively, and c > 0 is some universal constant that we will choose later. Since we run those
random walks for O( 1

δ log
(

n
pπmin

)
) steps, by Theorem 3 it follows that the xj are independent

5 We use the following strategy to check whether L ∩ M ≠ ∅: Sort L and M and check for every element
of L if it is present in M . This takes Õ(p) time and space.
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samples drawn from a distribution π̃ such that

∥π̃ − π∥TV ≤ p

8n,

where π is the stationary distribution on Xs. If s and t are connected then Xs = Xt and the
samples yj are similarly drawn from a distribution that is p/(8n)-close to π. Here we prove
that this implies lower bounds on the stationary measure of the sets L and M .

▶ Proposition 19. There exists a universal constant c > 0 such that the following holds.
Let p ∈ [n] and assume L ⊆ X is a random set obtained by sampling cp independent
elements from a distribution π̃ such that ∥π̃ − π∥TV ≤ p

8n (and removing duplicates). Then,
Pr(π(L) ≥ p

8n ) ≥ 9
10 .

The proof of the proposition uses the following lemma, which formalizes the intuition
that adding a random element to a low-probability subset should increase the probability.

▶ Lemma 20. Let X be a set of cardinality n, A ⊆ X an arbitrary fixed subset, and let b be
drawn at random from an arbitrary distribution σ on X. Then:

Pr
(
σ(A ∪ {b}) > σ(A) + 1 − σ(A)

2n

)
≥ 1 − σ(A)

2 .

Proof. Say b is bad if b ∈ A or σ(b) ≤ 1−σ(A)
2n , and good otherwise. Then

Pr
(
σ(A ∪ {b}) > σ(A) + 1 − σ(A)

2n

)
= Pr(b is good) = 1 − Pr(b is bad).

We can compute:

Pr(b is bad) = σ

(
A ∪

{
x ∈ X : σ(x) ≤ 1 − σ(A)

2n

})
≤ σ(A) + n · 1 − σ(A)

2n = 1 + σ(A)
2 ,

from which the claim follows. ◀

Proof of Proposition 19. Let x1, x2, . . . denote samples drawn independently at random
from π̃. For any integer T ≥ 1, define LT := {x1, . . . , xT } as the set consisting of the first T
samples (with duplicates removed), as well as L0 := ∅. We say that the T -th sample is a
success if

π̃(LT −1) ≥ 1
2 or π̃(LT ) ≥ π̃(LT −1) + 1

4n,

and a failure otherwise. Let Tj denote the index of the j-th success, with T0 := 0. Then,
clearly,

π̃(LTp
) ≥ min

{
1
2 ,

p

4n

}
= p

4n and hence π(LTp
) ≥ π̃(LTp

) − p

8n ≥ p

8n.

On the other hand, note that by Lemma 20, the T -th sample is a success with probability
at least 1

4 , even if we condition on all prior samples. In particular, the probability that there
are k failures in a row is at most ( 3

4 )k. Therefore,

E[Tj − Tj−1] =
∞∑

k=1
kPr(Tj = Tj−1 + k) ≤

∞∑
k=1

k

(
3
4

)k

= 12
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and hence, by Markov’s inequality,

Pr(Tp > cp) ≤ 1
cp

E[Tp] = 1
cp

p∑
j=1

E[Tj − Tj−1] ≤ 12p
cp

= 1
10

provided we choose c := 120. Since the random set L in the statement of the lemma is
defined by taking cp many samples, we obtain that

Pr
(
π(L) ≥ p

8n

)
≥ Pr(Tp ≤ cp) ≥ 1 − 1

10 = 9
10 . ◀

5.2 Analysis of step 2: State preparation
Now we turn to the analysis of the quantum walk search routine in step 2 of the algorithm.
We rely on the following proposition from [3], which formalizes the idea of “inverse quantum
walk search”.6

▶ Proposition 21 ([3, Proposition 1]). Consider a subset A ⊆ X of a (connected) graph G,
and let δ be a lower bound on the spectral gap of a random walk P on G with stationary
distribution π. From |πA⟩, we can generate a state |π̃⟩ = |π⟩ + |Γ⟩ with ∥ |Γ⟩ ∥2 ≤ ϵ using an
expected number of calls to the weighted quantum walk oracle

O

(
1√
π(A)δ

log
(

1
π(A)ϵ

))
,

and O(1/
√
π(A)δ) reflections around |πA⟩. The algorithm uses space logarithmic in n, 1/δ,

1/π(A) and 1/ϵ.

The proposition implies the following.

▷ Claim 22. Step 2 of Algorithm 2 prepares 1/8-approximations of |πXs
⟩ and |πXt

⟩ with
probability at least 9/10 in time complexity O

(√
n
pδ log

(
n
p

))
.

5.3 Analysis of step 3: SWAP test
In the last step of our algorithm, we wish to decide whether |πXs

⟩ = |πXt
⟩ or whether they

are orthogonal. For this we use the SWAP test.

▷ Claim 23. Step 3 of Algorithm 2 decides whether |πXs
⟩ = |πXt

⟩ or whether they are
orthogonal with constant probability in time Õ(1).

Proof. Using a single copy of two states |ψ⟩ and |ψ′⟩, and O(log(n)) additional gates,
the SWAP test returns “0” with probability (1 + |⟨ψ|ψ′⟩|2)/2 and “1” with probability
(1 − |⟨ψ|ψ′⟩|2)/2 [1, Claim 1].

By Claim 22, in step 2 we prepared states |π̃Xs
⟩ = |πXs

⟩ + |ΓL⟩ and |π̃Xt
⟩ = |πXt

⟩ + |ΓM ⟩
such that ∥ |ΓL⟩ ∥2, ∥ |ΓM ⟩ ∥2 ≤ 1/8 with probability 9/10. By a triangle inequality, this
implies that∣∣∣|⟨π̃Xs

|π̃Xt
⟩| − |⟨πXs

|πXt
⟩|
∣∣∣ < 1/3,

and so |⟨π̃Xs
|π̃Xt

⟩| > 2/3 if s and t are connected, but |⟨π̃Xs
|π̃Xt

⟩| < 1/3 otherwise. The
SWAP test distinguishes these cases with constant probability. ◁

6 [3, Proposition 1] only proves the proposition for simple random walks, however it trivially extends to
random walks on weighted graphs.
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5.4 Proof of Theorem 17
In this section, we prove Theorem 17, which we restate here for convenience.

▶ Theorem 17. Fix δ ≥ 0. Let Gn be a family of undirected weighted graphs G = (X,E,W )
with n = |X|, such that γ⋆(G) ≥ δ whenever s and t are connected. Then for any S =
Ω(log(n)), there is a quantum algorithm that decides ustconqw,δ on Gn with bounded error
in O(S) space – of which O(log(n/δ)) is quantum memory, and the remainder is QCRAM –
and T = Õ( S

δ log
(

1
πmin

)
+
√

n
δS ) queries to OW , elementary gates, and QCRAM queries.

Proof. We first analyze the space complexity of Algorithm 2. Step 1 is purely classical, and
uses O(p log(n)) space to store the O(p) vertices in L and M , with each random walk using
O(log(n)) space. We can implement step 2 using the algorithm referred to in Proposition 21
using O(log(n)) qubits of space, but this requires that the O(p log(n)) classical space used
to store L and M in step 1 is QCRAM. Finally, step 3 just uses O(log(n)) quantum space.
Thus, the claimed space complexity follows if we set S = p log(n).

Next, we analyze the time complexity. Every random walk of step 1 adds O
(

1
δ log

(
n

pπmin

))
to the time complexity. The total number of walks is O(p). Checking whether L ∩M = ∅ is
O(p) as this is the total number of samples. Hence, the overall complexity of the first step
is Õ

(
p
δ log

(
1

πmin

))
. By Claim 22, the complexity of step 2 is O

(√
n
pδ log

(
n
p

))
. Finally,

the SWAP test in step 3 uses only O(log(n)) gates, since the states being compared are
O(log(n))-qubit states. Hence, the total time complexity of Algorithm 2 is

T = Õ

(
p

δ
log
(

1
πmin

)
+
√

n

δp

)
= Õ

(
S

δ
log
(

1
πmin

)
+
√

n

δS

)
,

since S = Õ(p).
Finally, for the correctness of the algorithm, by Claim 23, Algorithm 2 distinguishes

between the case where |πXs⟩ and |πXt⟩ are equal and the case where they are orthogonal
with bounded error. If Xs = Xt (i.e. s and t are connected) then the states are equal, and if
Xs ∩Xt = ∅ (i.e. s and t are not connected) then they are orthogonal. ◀
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for u, v ∈ X and i ∈ [du] such that vi(u) = v. Then OW can be implemented using OI , OD,
and ON as follows. Let Fd denote the Fourier transform over Zd, and let F =

∑n
d=1 |d⟩ ⟨d|⊗Fd,

which can be implemented (to any inverse polynomial precision) in O(log(n)) gates [12].
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|0⟩ |u⟩ |0⟩ |0⟩ OD7→ |du⟩ |u⟩ |0⟩ |0⟩ F7→ 1√
du

|du⟩
du∑

i=1
|u⟩ |i⟩ |0⟩

ON7→ 1√
du

|du⟩
du∑

i=1
|u⟩ |i⟩ |vi(u)⟩

O†
I

O†
D7→ 1√

du

du∑
i=1

|u⟩ |vi(u)⟩ = OW |u⟩ |0⟩ .

To complete the proof, note that the index query operator OI only requires O(log(du)) sorted
adjacency array queries, since the neighbours are sorted and this makes it possible to perform
binary search for i such that vi(u) = v. ◀

Proof of Theorem 11. We will reduce the parity problem to ustcons-arr. Since parity
requires Ω(n) queries by Lemma 10, and the quantum walk oracle OW can be implemented
using Õ(1) sorted array queries by Lemma 8, this reduction will prove the statement of the
theorem.

Let x ∈ {0, 1}n be an input of parity. The corresponding output would be
⊕n−1

i=0 xi.
Given this, we need to build a ustcons-arr input that can be queried with a constant number
of queries to x. Consider an undirected graph G = (X,E) defined as follows (see also
Figure 2):

X = {s = v0, v
′
0, v1, v

′
1, . . . , vn−1, v

′
n−1, vn, t = v′

n}
E = {{vi, v

′
i+1}, {v′

i, vi+1} : i ∈ {0, . . . , n− 1}, xi = 1}
∪ {{vi, vi+1}, {v′

i, v
′
i+1} : i ∈ {0, . . . , n− 1}, xi = 0}.

In this setting,
⊕n−1

i=0 xi = 1 if and only if s and t are connected in the graph G.
Next, we describe how to implement queries OD and ON to G as required by the

ustcons-arr problem, using queries to Ox. Consider the following encoding of vertices of G.
For i ∈ {0, . . . , n}, we let vi = (i, 0), and v′

i = (i, 1). That is, for a vertex (i, b), i ∈ {0, . . . , n}
encodes the “column” and b ∈ {0, 1} encodes the “row”. Assume that the vertices are ordered
lexicographically, i.e.

(i, bi) < (j, bj) ⇐⇒ i < j or i = j, bi < bj .

Queries to G are described according to this ordering.
1. Degree queries, OD, are trivial in this case as dv0 = dv′

0
= dvn = dv′

n
= 1, and all other

degrees are 2.
2. Since every vertex has degree at most 2, we explicitly describe neighbour queries, ON for

indices 1 and 2 such that the ordering assumption holds:
ON : |i⟩ |b⟩ |1⟩ |0⟩ |0⟩ 7→ |i⟩ |b⟩ |1⟩ |i− 1⟩ |b⟩ Ox7→ |i⟩ |b⟩ |1⟩ |i− 1⟩ |b⊕ xi−1⟩, ∀ 0 < i ≤ n,
ON : |i⟩ |b⟩ |2⟩ |0⟩ |0⟩ 7→ |i⟩ |b⟩ |2⟩ |i+ 1⟩ |b⟩ Ox7→ |i⟩ |b⟩ |2⟩ |i+ 1⟩ |b⊕ xi⟩, ∀ 0 ≤ i < n.

It can be seen from the formulas that queries to G can be implemented with a constant
number of queries to the parity input x. This implies the Ω(n) lower bound in ustcons-arr.

For ustconqw, note that the graph has bounded degree, and so by Lemma 8 we can
simulate a query in this model using O(1) queries in the sorted adjacency array model. This
implies a similar Ω(n) lower bound for this model. ◀
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Abstract
We study the online graph exploration problem proposed by Kalyanasundaram and Pruhs (1994) and
prove a constant competitive ratio on minor-free graphs. This result encompasses and significantly
extends the graph classes that were previously known to admit a constant competitive ratio. The
main ingredient of our proof is that we find a connection between the performance of the particular
exploration algorithm Blocking and the existence of light spanners. Conversely, we exploit this
connection to construct light spanners of bounded genus graphs. In particular, we achieve a lightness
that improves on the best known upper bound for genus g ≥ 1 and recovers the known tight bound
for the planar case (g = 0).
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1 Introduction

We study a classic online graph exploration problem that was first proposed by Kalyanasun-
daram and Pruhs in 1994 [29]. In this setting, a single agent needs to systematically traverse
an initially unknown, undirected, connected graph with non-negative edge weights. Upon
visiting a new vertex, the agent learns the unique identifiers of all adjacent vertices and the
weights of the corresponding edges. The cost incurred when traversing an edge is simply its
weight. The objective in online graph exploration is to visit all vertices of the graph and
return to the starting vertex while minimizing the total cost.

The performance of a (deterministic) online algorithm Alg is measured in terms of
competitive analysis. That is, given a graph G and starting vertex v of G, we compare the
cost Alg(G, v) of the traversal it produces to the cost of an offline optimum traversal Opt(G).
Note that the optimum cost corresponds to the length of a shortest TSP tour of G and
does not depend on v. We say that Alg is (strictly) ρ-competitive for a class of graphs if
Alg(G, v) ≤ ρ ·Opt(G) for every graph G in the class and every vertex v of G. The (strict)
competitive ratio of an algorithm Alg is given by inf {ρ : Alg is ρ-competitive}.

Kalyanasundaram and Pruhs [29] posed the following question: Is there a deterministic
algorithm for online graph exploration with a constant competitive ratio? Several algorithms
were proposed with a competitive ratio of O(log(n)) [31, 36], where n is the number of vertices,
but better competitive ratios are only known for restricted classes of graphs [29, 31, 33].
The best known lower bound on the competitive ratio is 10/3 [5]. In particular, the original
question of Kalyanasundaram and Pruhs remains open.

© Júlia Baligács, Yann Disser, Irene Heinrich, and Pascal Schweitzer;
licensed under Creative Commons License CC-BY 4.0

31st Annual European Symposium on Algorithms (ESA 2023).
Editors: Inge Li Gørtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz Herman; Article No. 11;
pp. 11:1–11:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:baligacs@mathematik.tu-darmstadt.de
https://orcid.org/0000-0003-2654-149X
mailto:disser@mathematik.tu-darmstadt.de
https://orcid.org/0000-0002-2085-0454
mailto:heinrich@mathematik.tu-darmstadt.de
https://orcid.org/0000-0001-9191-1712
mailto:schweitzer@mathematik.tu-darmstadt.de
https://doi.org/10.4230/LIPIcs.ESA.2023.11
http://arxiv.org/abs/2308.06823
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


11:2 Exploration of Graphs with Excluded Minors

We formalize a connection between the performance of the particular exploration algorithm
Blocking and the existence of light spanners. Spanners were introduced in 1989 by Peleg
and Schäffer [35] and have been instrumental in the development of approximation algorithms,
particularly for TSP [3, 8, 9]. Here, a subgraph H = (V, EH) of a connected, undirected
graph G = (V, E) with edge weights w : E → R≥0 is called a (1 + ε)-spanner of G if
dH(u, v) ≤ (1 + ε) dG(u, v) for all u, v ∈ V , where dH and dG denote the shortest-path
distance in H and G, respectively. Then, H has stretch at most (1 + ε) and its lightness is
w(H)/w(MST), where w(H) :=

∑
e∈EH

w(e) and MST denotes a minimum spanning tree
of G.

We show that the online graph exploration algorithm Blocking has a constant com-
petitive ratio on every class of graphs that admits spanners of constant lightness for a
fixed stretch. Prominent graph classes with this property are the classes with a forbidden
minor [9]. We thus, in particular, obtain a constant competitive ratio for online graph
exploration on all graph classes excluding a minor. They encompass many other important
classes, such as graphs of bounded genus or bounded treewidth. Overall, this result subsumes
and significantly extends all previously known graph classes for which a competitive ratio
of o(log(n)) was known.

Regarding research for graph spanners, results typically revolve around the existence of
good, in particular light, spanners. For example, the Erdős girth conjecture [19] is equivalent
to a lower bound of Ω(n1/k) on the best lightness of a (2k− 1)-spanner in unweighted graphs.
While this conjecture remains unresolved, a nearly matching upper bound was proven by
Chechik and Wulff-Nilsen [11]. Various constant upper bounds on the lightness are known
for restricted classes of graphs [2, 9, 12, 24]. Our newly discovered connection to graph
exploration also allows us to contribute an improved upper bound for graphs of bounded
genus using the ideas given in [31].

Our results. We significantly expand the class of graphs on which the exploration problem
admits a constant-competitive algorithm.

▶ Theorem 1. For every graph H and constant δ > 0, there is a constant c (depending on H

and δ) such that Blockingδ is c-competitive on H-minor-free graphs.

The technical contribution of this work is a new-found connection between graph spanners
and the performance of the exploration algorithm Blockingδ (see Section 2.1) introduced
by Megow et al. [31] based on an algorithm of Kalyanasundaram and Pruhs [29]. This
connection will allow us to prove Theorem 1.

Prior to our work, the largest class of graphs which was known to admit a constant-
competitive algorithm was the class of bounded genus graphs [31]. As an aside, we obtain a
slightly stronger bound also for bounded genus graphs (cf. Corollary 13).

So far, Blockingδ was only studied for constant choices of the parameter δ, i.e., in-
dependent of the number of vertices n. It is known that its competitive ratio is at least
Ω(n1/(4+δ)) if δ is a constant [31]. This naturally raises the question of whether improvement
is possible if δ may depend on n. We obtain the following results.

▶ Theorem 2. Blockinglog(n) is O(log(n))-competitive.

This shows that Blockinglog(n) achieves the best previously known competitiveness. We
complement this with the following lower bounds.

▶ Theorem 3. The competitive ratio of Blockingδ, where δ = δ(n) > 0, is at least
a) Ω(log(n)/ log(log(n))),
b) Ω(log(n)) for δ ∈ o(log(n)/ log log(n)) as well as for δ ∈ Ω(log(n)).
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In particular, this shows that there is no δ such that Blockingδ is constant-competitive,
but it remains open, whether there is a choice of δ for which the algorithm is o(log(n))-
competitive.

Next, we exploit the connection between spanners and exploration in reverse to derive
the existence of good spanners in bounded genus graphs.

▶ Theorem 4. For every ε > 0, the greedy (1 + ε)-spanner of a graph of genus g has lightness
at most

(
1 + 2

ε

)(
1 + 2g

1+ε

)
.

Prior to our work, the best known bound was due to Grigni [24] who showed that every
graph of genus g ≥ 1 contains a (1 + ε)-spanner of lightness 1 + 12g−4

ε . Moreover, it is already
known that planar graphs, i.e., graphs of genus 0, contain (1 + ε)-spanners of lightness 1 + 2

ε

and that this is best possible [2]. This means that Theorem 4 gives a tight bound in the case
g = 0 and extrapolates this bound to graphs of larger genus.

Related work. Kalyanasundaram and Pruhs [29] introduced the online graph exploration
problem and gave a constant-competitive algorithm for planar graphs. Megow, Mehlhorn and
Schweitzer [31] revisited the algorithm, addressed some technical intricacies, and proposed
their reinterpretation Blockingδ, which we also consider in this paper. They expanded the
result by Kalyanasundaram and Pruhs and showed that the algorithm is constant-competitive
on bounded genus graphs. Moreover, they suggested a new algorithm hDFS and showed
that it is constant-competitive on graphs with a bounded number of different weights and
O(log(n))-competitive on general graphs.

Another very natural approach for exploration is the Nearest Neighbor algorithm, which,
in each step, explores the unvisited vertex nearest to the current location. This algorithm
has been studied extensively as a TSP heuristic. Rosenkrantz, Stearns and Lewis were able
to show that its competitive ratio is Θ(log(n)) [36]. It turned out that the lower bound of
Ω(log(n)) is already achieved on unweighted planar graphs [28] and on trees [23]. Eberle et
al. [18] revisited the algorithm with learning augmentation.

In addition to planar and bounded genus graphs, the exploration problem has been
studied on many more graph classes. For example, Miyazaki, Morimoto and Okabe were
able to show that the competitive ratio of the exploration problem is (1 +

√
3)/2 on cycles

and 2 on unweighted graphs. Other examples of such graph classes are tadpole graphs [10],
unicyclic graphs [23], and cactus graphs [23].

Currently, the best known lower bound for the graph exploration problem is 10/3 which
was shown by Birx, Disser, Hopp, and Karousatou [5]. Their construction builds on a
previously known lower bound of 2.5 shown by Dobrev, Královič, and Markou [17]. Since the
construction by Birx et al. is planar, the lower bound of 10/3 even holds when the problem
is restricted to planar graphs.

Several other settings of the exploration problem have been studied, such as exploration
on directed graphs [1, 13, 22, 21] or exploration with a team of agents [14, 15, 16]. Another
problem which is closely related to graph exploration is online TSP, where a single agent has
to serve requests appearing over time in a known graph [6, 7].

Through the connection with spanners, we are concerned with the existence of light
spanners for a given stretch. Examples of graph classes where the worst-case lightness does
not depend on the number of vertices include planar graphs [2], bounded genus graphs [24],
apex graphs [26], bounded pathwidth graphs [25], bounded treewidth graphs [12], and minor-
free graphs [9]. Our results rely on the existence of light spanners for minor-free graphs [9]
and improve on the lightness for bounded genus graphs. In particular, we study the lightness
of the so-called greedy spanner [2] for graphs of bounded genus. It was shown by Filtser and
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11:4 Exploration of Graphs with Excluded Minors

Solomon [20] that this spanner construction is existentially optimal for every class of graphs
closed under taking subgraphs, which means that the optimal lightness guarantee on any
such class is achieved by the greedy spanner.

Light and sparse spanners have applications in various fields. Most importantly, span-
ners were used to give polynomial-time approximation schemes (PTAS) for the travelling
salesperson problem for various graph classes [3, 8, 9]. Note that the difference between
approximations for TSP and online exploration is that, in our setting, the tour is computed
on-the-fly. Indeed, in comparison to our online setting, we desire a constant approximation for
an arbitrary constant, which in the TSP setting is easily obtained by traversing a minimum
spanning tree twice. On the other hand, in the online setting, we are not concerned with
efficiency of the algorithms which is crucial in the TSP setting. Other fields of application
of spanners include distributed systems [4], routing [38], or computational biology [37].

2 The online graph exploration problem on minor-free graphs

In this section, we prove new upper bounds for Blockingδ on H-minor-free graphs (The-
orem 1) and for general graphs (Theorem 2). To this end, we begin by introducing the
algorithm Blockingδ proposed by Megow et al. [31] based on the work of Kalyanasundaram
and Pruhs [29].

2.1 The algorithm Blocking
During the execution of an online graph exploration algorithm, a vertex is explored if it has
been visited by the agent. A neighbor of an explored vertex is a learned vertex. An edge is a
boundary edge if exactly one of its endpoints is explored. By convention, we denote boundary
edges e = (u, v) such that u is explored and v is unexplored. A path is internally explored
if each of its internal vertices is explored. Given two learned vertices x and y, we set the
distance d(x, y) to be the length of a shortest internally explored path linking x with y. In
particular, the distance may decrease during execution.

▶ Definition 5 (Kalyanasundaram and Pruhs [29]). Given some δ > 0, we say that a
boundary edge e = (u, v) is δ-blocked if there is another boundary edge e′ = (u′, v′) such
that w(e′) < w(e) and d(u, v′) ≤ (1 + δ)w(e).

The rough idea of Blocking is to perform a depth-first-traversal while ignoring all
blocked edges. Whenever a previously blocked edge turns unblocked, the agent moves to and
explores one such edge, and initiates a DFS-traversal from its new position. Blocking is
formally specified in Algorithm 1. It is executed on an undirected, weighted, connected, and
initially unexplored graph G = (V, E, w) and takes as input a vertex v of G, denoting the
current position of the agent. The algorithm follows a recursive DFS-like structure and the
input of the initial invocation is the start vertex.

Algorithm 1 Blockingδ(v) [29, 31].

1 while there is a boundary edge e = (y, x) that is not δ-blocked and such that y = v

or e was previously blocked by some edge (u, v) do
2 traverse a shortest internally explored path from v to y

3 traverse e

4 Blockingδ(x)
5 traverse a shortest internally explored path from x to v
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Observe that the algorithm is correct, i.e., every vertex is explored: Assume, for the
sake of contradiction, that some vertex remains unexplored when the algorithm terminates,
i.e., there are still boundary edges. Let e = (u, v) be a boundary edge of minimum weight.
Then, e is not δ-blocked. Therefore, either the exploration of u should have triggered the
exploration of v, or v should have been explored at the last point in time the edge turned
unblocked.

2.2 Key properties of Blocking
Throughout the remainder of Section 2, let G = (V, E, w) be a graph, n = |V | be its number
of vertices, v the given start vertex of G, and δ = δ(n) > 0. We analyze the performance of
Blockingδ on G, i.e., we estimate its total cost WBlocking(G, v, δ). For this, let B be the
set of boundary edges taken by Blockingδ, i.e., the edges traversed during the execution of
line 3.

Note that the total cost of the offline optimum is bounded from below by the weight
of a minimum spanning tree w(MST) and from above by 2w(MST). That is, to show that
Blockingδ is ρ-competitive, it suffices to show WBlocking(G, v, δ) ≤ ρ · w(MST).

▶ Observation 6 (Megow et al. [31]). We have WBlocking(G, v, δ) ≤ 2(δ + 2)w(B).

Proof. We charge all cost incurred in lines 2,3, and 5 to the corresponding boundary
edge e ∈ B. Note that the cost in line 2 is at most (1 + δ)w(e), because either we have y = v

such that dG(v, y) = 0, or e was blocked by an edge (u, v), which implies dG(y, v) ≤ (1+δ)w(e).
The cost in line 3 is w(e) and the cost in line 5 is at most the sum of the cost in lines 2 and 3.
Therefore, each edge e in B is charged at most 2(δ + 2)w(e). ◀

In our subsequent analysis, we will frequently use a minimum spanning tree with a
particular property. For this, in what follows, let MSTB be a minimum spanning tree of G

that maximizes the number of edges in MSTB∩B. As pointed out in [31], cycles in B∪MSTB

are long relative to the weight of the edges they contain. Specifically, the following holds.1

▶ Lemma 7. Let C be a cycle in B ∪MSTB and e be an edge of C. Then,

w(C \ {e}) > (1 + δ)w(e).

Proof. It suffices to show the assertion for an edge of maximum weight in C. We first show
that this edge must be in B, i.e., argmax{w(e) : e ∈ C} ⊆ B:

Assume otherwise and let e = (u, v) ∈ argmax{w(e) : e ∈ C} ∩ (MSTB \B). Removing e

from MSTB separates MSTB into two connected components. In particular, u and v are
in different components. Start walking in C \ {e} from u to v and let e′ be the first edge
that leads from u’s connected component in MSTB \ {e} to v’s connected component. Then,
e′ ∈ B \MSTB and by maximality of e, we have w(e′) ≤ w(e). Therefore, replacing e by e′

in MSTB gives another spanning tree of weight at most w(MSTB). This new spanning
tree has one more edge in common with B than MSTB. This contradicts the choice of
MSTB, so that we can assume from now on argmax{w(e) : e ∈ C} ⊆ B, i.e., every edge in
argmax{w(e) : e ∈ C} is charged, i.e., the edge is traversed in some exectution of line 3 of
the algorithm.

1 The assertion of Lemma 7 implies Claim 1 in [31], which only concerns edges not in the minimum
spanning tree. However, there is a subtle flaw in the proof of Claim 1 in [31]. In fact, in that proof, it is
not clear that when we replace the edge e′ with an edge of the fixed MST, we again obtain a minimum
spanning tree. In any case, the argument above rectifies this.
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u v
e

u′ v′
e′

Figure 1 Illustration of Lemma 7: The black vertices are explored and the green vertices (v and v′)
are unexplored. The blue edges (e and e′) are boundary edges.

Let e = (u, v) be the edge in argmax{w(e) : e ∈ C} that is charged last. At the time e

is traversed, it is a boundary edge, so that u is explored but v is not yet explored. Start
walking in C \ {e} from u to v and let e′ = (u′, v′) be the first edge leading from an explored
vertex u′ to an unexplored vertex v′, i.e., e′ is another boundary edge in C (cf. Figure 1).

Next, we show that w(e′) < w(e): Assume otherwise. By maximality of e, this means
w(e′) = w(e) so that e′ ∈ argmax{w(e) : e ∈ C}. But then, we also have e′ ∈ B. This
contradicts the fact that e is the edge in argmax{w(e) : e ∈ C} that is charged last.

Summing up, we have shown the following facts: Upon exploration of e = (u, v), there
is another boundary edge e′ = (u′, v′) in C with w(e′) < w(e). Since e is not blocked, this
implies

w(C \ {e}) ≥ d(u, v′) > (1 + δ)w(e). ◀

2.3 Connection to spanners
Next, we investigate how the performance of Blockingδ is related to graph spanners. For
this, note that Lemma 7 can be reformulated as follows.

▶ Lemma 8. No proper subgraph of B ∪MSTB is a (1 + δ)-spanner of B ∪MSTB.

The lemma relates spanners to the behavior of Blockingδ. However, we need to take note
that the lemma applies to B ∪MSTB rather than the original graph G. A monotone graph
class is a class of graphs G closed under taking subgraphs, i.e., if G ∈ G and H is a subgraph
of G, then also H ∈ G. Given a graph G, we define OptSpanδ(G) as the minimum lightness
of a (1 + δ)-spanner of G. Moreover, we set OptSpanδ(G) := sup{OptSpanδ(G) : G ∈ G}
to be the supremum over all graphs in G.

▶ Theorem 9. For every monotone graph class G and every δ = δ(n) > 0, the algorithm
Blockingδ is (2(δ + 2) ·OptSpanδ(G))-competitive on G.

Proof. Let G ∈ G. We have

WBlocking(G, v, δ)
Obs 6
≤ 2(δ + 2)w(B) ≤ 2(δ + 2)w(B ∪MSTB). (1)

Since B ∪ MSTB is a subgraph of G, we have B ∪ MSTB ∈ G. By Lemma 8, the only
(1 + δ)-spanner of B ∪MSTB is B ∪MSTB itself. Therefore,

w(B ∪MSTB) ≤ OptSpanδ(B ∪MSTB) · w(MSTB) ≤ OptSpanδ(G) · w(MSTB). (2)

Combined, we obtain

WBlocking(G, v, δ)
(1)
≤ 2(δ + 2)w(B ∪MSTB)

(2)
≤ 2(δ + 2) ·OptSpanδ(G) · w(MSTB). ◀
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The theorem puts us in a position to leverage results on the lightness of spanners in order
to draw conclusions regarding the competitive ratio of Blockingδ. For example, it has been
shown that every planar graph contains a (1 + δ)-spanner of lightness at most 1 + 2

δ [2].
Feeding this into Theorem 9, we conclude that Blockingδ is 2(δ +2)(1+2/δ)-competitive on
planar graphs. This agrees with the bound proven in [29]. However, more generally, bounded
genus graphs have light spanners. In fact, in Section 3.3, we show that every graph of genus
at most g contains a (1 + δ)-spanner of lightness at most

(
1 + 2

δ

) (
1 + 2g

1+δ

)
(Theorem 4).

From this, we obtain the following.

▶ Corollary 10. Blockingδ is 2(δ + 2)
(
1 + 2

δ

)(
1 + 2g

1+δ

)
-competitive on graphs of genus at

most g.

Even more generally, it is known that H-minor-free graphs have light spanners [9].
Specifically, every H-minor-free graph contains a (1 + δ)-spanner of lightness O

(
σH

δ3 log
( 1

δ

))
where σH = |V (H)|

√
log |V (H)|. This yields a constant competitive ratio for Blockingδ

on H-minor-free graphs as follows.

▶ Corollary 11. Blockingδ is 2(δ + 2) ·O
(

σH

δ3 log
( 1

δ

))
-competitive on H-minor-free graphs

where σH = |V (H)|
√

log |V (H)|.

There are also strong bounds for general graphs. Given a graph G with n vertices and an
integer k ≥ 1 and ε ∈ (0, 1), G contains a (2k − 1)(1 + ε)-spanner of lightness Oε

(
n1/k

)
[11],

where the notation Oε indicates that the constant factor hidden in the O-notation depends
on ε. This gives us the following.

▶ Corollary 12. Given an integer k = k(n) ≥ 1 and ε ∈ (0, 1), Blocking(2k−1)(1+ε) is
2((2k − 1)(1 + ε) + 2) ·Oε

(
n1/k

)
-competitive on every graph.

In particular, by suitably choosing δ, we obtain the following.2

▶ Corollary 13.
a) Blocking2 is 16(1 + 2

3 g)-competitive on graphs of genus at most g.
b) For every constant δ > 0 and every graph H, Blockingδ is constant-competitive on

H-minor-free graphs.
c) Blockinglog(n) is O(log(n))-competitive on every graph.

For the case of planar graphs, part a) matches the best known bounds on planar
graphs [29, 31]. For general surfaces, it slightly improves on the best known bound of
16(1 + 2g) on bounded genus graphs [31]. Part b) is the first constant bound on minor-free
graphs, and part c) is the first O(log(n)) bound for Blocking.

2.4 Lower bounds for Blocking
Next, we investigate lower bounds for Blocking when δ is allowed to depend on the input
size. In [31], it was shown that the competitive ratio of Blockingδ on general graphs is at
least Ω(n1/(δ+4)) when δ is a constant. We begin by observing that this can be generalized
to non-constant δ that are not too large.

▶ Observation 14. Suppose δ = δ(n) > 0 such that δ2δ+8 = o(n). Then, the competitive
ratio of Blockingδ is at least Ω(δ · n1/(δ+4)).

2 All missing proofs are deferred to the full version.
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v
1 1 1 1 1 1 1 1 1

e1 e2 ek e′
1 e′

2 e′
k

Figure 2 Illustration of the lower bound construction for Blockingδ (Lemma 15). The light
edges (depicted in blue) are of weight 1 and the heavy edges (depicted in red) are of weight k+1

δ+1 .

Note that 2δ + 8 ≤ log(n)/ log(log(n)) implies that

δ2δ+8 ≤
(

log(n)
log(log(n))

) log(n)
log(log(n))

=
(

1
log(log(n))

) log(n)
log(log(n))

· elog(log(n)) log(n)
log(log(n))

=
(

1
log(log(n))

) log(n)
log(log(n))

· n = o(n),

i.e., the prerequisites of Observation 14 are fulfilled. Moreover, Ω(δn1/(δ+4)) ≥ Ω(log(n))
for every δ = δ(n). Therefore, Observation 14 shows that Blockingδ has competitive ratio
in Ω(log(n)) whenever δ = o(log(n)/ log log(n)). In particular, this shows the first part of
Theorem 3b.

Next, we give another lower bound which shows that the parameter δ cannot be chosen
too large either (the second part of Theorem 3b).

▶ Lemma 15. Suppose δ = δ(n) ∈ (0, n−4
4 ). The competitive ratio of Blockingδ is at

least Ω(δ), even on trees.

Proof sketch. It is not difficult to check that, on the graph illustrated in Figure 2, the cost
of Blocking is asymptotically δ times the cost of the offline optimum. A complete proof
can be found in the full version. ◀

To conclude our lower bound arguments for Blockingδ, observe that, for δ ≥ n−4
4 ,

the behavior of Blockingδ closely resembles the behavior of the algorithm hDFS [31].
In fact, it is not difficult to check that, on the lower bound construction for hDFS given
in [31, Theorem 5], after proceeding to edges of weight more than 16, Blockingδ takes the
exact same route as hDFS, if δ ≥ n−4

4 . Therefore, we obtain the following.

▶ Observation 16. For δ ≥ n−4
4 , the competitive ratio of Blockingδ is at least Ω(log(n)).

We can now combine the lower bound constructions from this section to prove Theorem 3.

Proof of Theorem 3. We begin with proving part b). In Observation 14, we have seen
that the competitive ratio of Blockingδ is at least Ω(log(n)) if δ ∈ o(log(n)/ log log(n)).
By Lemma 15, we obtain the same lower bound for every δ in the range from Ω(log(n))
to (n − 4)/4, and by Observation 16, we obtain the lower bound for δ at least (n − 4)/4.
Therefore, this proves the assertion of Theorem 3b. For part a), note that part b) implies that
a competitive ratio of o(log(n)) is only possible for δ in the range from Ω(log(n)/ log log(n))
to o(log(n)). Using Observation 14 in this range implies the assertion of Theorem 3a. ◀

3 Graph spanners in bounded genus graphs

In this section, we prove Theorem 4 about the existence of light spanners in bounded genus
graphs. For this, we begin by introducing the greedy spanner.
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3.1 The greedy spanner
The greedy (1 + ε)-spanner was suggested by Althöfer et al. [2] and is formally defined as the
output of Algorithm 2. After ordering the edges by weight, it iteratively adds edges if they
are short in comparison to the distance of their endpoints in the graph constructed so far.

Algorithm 2 GreedySpanner(G = (V, E, w), ε).

1 sort E = {e1, . . . , em} such that w(e1) ≤ w(e2) ≤ · · · ≤ w(em)
2 H ← (V, ∅)
3 for i← 1, . . . , m do
4 if dH(ui, vi) > (1 + ε)w(ei), where ei = (ui, vi) then
5 H ← H ∪ {ei}

6 return H

Note that the resulting graph H is indeed a (1 + ε)-spanner of G. The output of the
algorithm actually depends on the chosen order of the edges. In particular, when edge weights
appear multiple times, there may be several possible outputs. However, this will not be
important in our context. When we refer to the greedy spanner, we mean that we arbitrarily
fix some output of the algorithm.

The greedy spanner fulfills the following two key properties: First, the algorithm implicitly
executes Kruskal’s algorithm for finding a minimum spanning tree, i.e., it adds all edges
to H that Kruskal’s algorithm adds. With this, we obtain the following.

▶ Observation 17. The greedy spanner contains all edges of some minimum spanning tree
of the input graph.

The second key property, in fact, resembles the property of Blockingδ in Lemma 7.

▶ Observation 18 (Althöfer et al. [2]). For every cycle C in the greedy spanner H and every
edge e of C, we have w(C \ {e}) > (1 + ε)w(e). In other words, no proper subgraph of H is
a (1 + ε)-spanner of H.

Proof. Let C be a cycle in the greedy spanner. Let e = (u, v) be the edge in C that is added
last. At the time it is added, we have (1 + ε)w(e) < dH(u, v) ≤ w(C \ {e}) by definition of
the algorithm. Since all other edges in C have lower or equal weight than e, the property is
fulfilled for them as well. ◀

3.2 Spanners in planar graphs
Before investigating spanners in bounded genus graphs, we illustrate the technique for the
special case of planar graphs, giving an alternate proof of the following result.

▶ Theorem 19 (Althöfer et al. [2]). For every planar graph G and ε > 0, the greedy
(1 + ε)-spanner of G has lightness at most 1 + 2

ε .

Our proof uses similar ideas as in [31, Theorem 1] and is based on the following main
idea: Fix an embedding of the greedy spanner in the plane and, in a suitable way, partition
the greedy spanner into facial cycles, i.e., cycles that form the boundary of a face. Then use
the fact that none of these cycles are short (cf. Observation 18).
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▶ Lemma 20. Let G be a planar graph, H be the greedy (1 + ε)-spanner of G and MST be a
minimum spanning tree of H. Fix an embedding of H in the plane. Then, we can associate
with every edge e ∈ H \MST a facial cycle Ce containing e, so that Ce ̸= Ce′ for e ̸= e′.

Next, we illustrate how this can be combined with the fact that the greedy spanner does
not contain short cycles (cf. Observation 18).

▶ Lemma 21. Let G be a graph and H be the greedy (1+ε)-spanner of G. Let D be a subgraph
of G such that we can associate with every edge e ∈ H \D a cycle Ce of H containing e,
with the property that

∑
e∈H\D w(Ce) ≤ 2w(H). Then, w(H) ≤

(
1 + 2

ε

)
w(D).

Next, we show how this implies Theorem 19.

Proof of Theorem 19. Let G be a planar graph, let H be the greedy (1 + ε)-spanner of G,
and let MST denote a minimum spanning tree of H. By Observation 17, MST is also a
minimum spanning tree of G, so that it suffices to show w(H) ≤

(
1 + 2

ε

)
w(MST). Since G

is planar, its subgraph H is planar as well. Let us fix an embedding of H on the plane such
that no two edges cross. By Lemma 20, there is a facial cycle Ce for every edge e ∈ H \MST
such that Ce ̸= Ce′ for e ̸= e′. As every edge of H is contained in at most two facial cycles,
we have

∑
e∈H\MST w(Ce) ≤ 2w(H). Therefore, we can apply Lemma 21 with D = MST

and obtain w(H) ≤
(
1 + 2

ε

)
w(MST). ◀

3.3 Generalization to bounded genus graphs
The genus of a graph G is the smallest integer g such that G can be embedded on an
orientable surface of genus g. In this subsection, we study light spanners for the class of
bounded genus graphs and prove Theorem 4. We begin by recalling the theorem.

▶ Theorem 4 (restated). For every ε > 0, the greedy (1 + ε)-spanner of a graph of genus g

has lightness at most
(
1 + 2

ε

)(
1 + 2g

1+ε

)
.

Our proof is based on similar arguments as in [31, Theorem 2] and the main idea is
roughly as follows: Given an embedding of the greedy spanner on a surface of genus g, first
cut the surface along several edges such that we obtain a disk. Then, we can proceed along
similar lines as for Theorem 19. In this work, we estimate more carefully the weight of the
edges along which we cut so that we obtain a slightly improved bound than in [31]. We will
use the following topological lemma for the first step.

▶ Lemma 22. Let G be an unweighted connected graph of genus (exactly) g ≥ 1. Fix an
embedding of G on an orientable surface of genus g and let T be a spanning tree of G. Then,
there is a subgraph D of G with T ⊆ D and |E(D) \ E(T )| ≤ 2g such that, in the inherited
embedding of D, there is only a single face and the edges in D bound a topological disk.3

Proof. It is a standard fact from topology that, on a surface of genus g, one can embed
precisely 2g closed curves that are non-separating, i.e., it is possible to draw 2g cycles on the
surface such that cutting along all of them does not disconnect the surface. Every collection
of 2g curves that are non-separating bounds a topological disk (see Figure 3).4

3 A topological disk is a surface homeomorphic to a 2-dimensional disk. Intuitively, a topological disk is a
continuous deformation of a 2-dimensional disk.

4 This can be proven as follows: The Euler characteristic of a surface of genus g is 2 − 2g [27, Section 2.2]
and cutting along a non-separating closed curve increases the Euler characteristic by 1.
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Figure 3 surface of genus 2 with 4 non-separating cycles bounding a topological disk.

We construct the set D greedily as follows (see Figure 4): Initially, let D := T . Ignoring
all edges in G \D, we have only a single face. Note that every edge in G \D closes a cycle
with D. If we find an edge which only closes non-separating cycles, i.e, does not separate the
surface into two faces, we add it to D. After this, the edges of D still only bound a single
face. We repeat this step until we cannot find further edges whose addition would separate
the surface into multiple faces.

Since there are at most 2g cycles on a surface of genus g that are non-separating, we have
|E(D) \ E(T )| ≤ 2g. It is left to show that D bounds a disk. By maximality of D, every
edge e ∈ G \D is separating when added to D, i.e., in the inherited embedding of D ∪ {e},
the edge e is incident to two faces. In particular, e is incident to two faces in the inherited
embedding of every supergraph of D.

Consider again the embedding of the entire graph G. It is known from topological graph
theory that a minimal genus embedding of a connected graph is cellular, i.e., every face of
the embedding of G is a topological disk [39] (see [34, Proposition 3.4.1]). Since every edge
e ∈ G \D is incident to two distinct faces, its removal merges the two corresponding disks
along a connected part of their common boundary, which yields another disk. Iteratively
removing all edges in G \D in this way, we thus obtain a cellular embedding of D. Since, by
construction, D induces only a single face, we obtain that D bounds a topological disk.

For an illustration of the construction, consider Figure 4. In the example in the left
column, the two green edges enclose non-separating cycles, whereas all blue edges close
separating cycles. In the example in the right column, the half-dotted green edge in D could
be replaced by the blue edge between u and v. ◀

Now, we have all the prerequisites in place to prove Theorem 4. The main idea is to give
a similar construction as in Lemma 20 to partition the greedy spanner into facial cycles.
Before delving into the proof, let us briefly comment on why Lemma 22 is not a reduction to
the planar case, i.e., we cannot use the same construction as in Lemma 20.

Recall that the key ingredient of Lemma 20 was to define a partial order in which an
edge e′ precedes another edge e if e′ is embedded on the inside of the cycle that e closes with
MST. In the bounded genus case, if the cycle closed by e is non-separating, there is no such
thing as “the inside” of the cycle. For example, consider the edge (u, v) in the right column
of Figure 4 and the cycle it closes with MST. This cycle does not have an “inside” and
cannot be decomposed into multiple faces. In particular, the cycle disappears after cutting
the surface along D. However, it separates the disk bounded by D into two parts. Therefore,
we have to consider cycles that include edges of D \MST.

Proof of Theorem 4. Let G be some graph of genus g. Let H be the greedy (1 + ε)-
spanner of G and let MST denote a minimum spanning tree of H. By Observation 17,
we know that MST is also a minimum spanning tree of G, so that it suffices to show
w(H) ≤

(
1 + 2

ε

)(
1 + 2g

1+ε

)
w(MST).
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Figure 4 The two columns show the construction of D for the same graph with two different
embeddings. The black edges belong to T , the green edges to D \ T , and the blue edges to G \ D.
In each column, the first subfigure shows the embedding on the torus. The second subfigure shows a
different representation: The torus is obtained by gluing together the opposite sides of the rectangle.
The last subfigure shows the disk obtained by cutting the surface along D. Note that it contains
every edge of D twice and therefore, every vertex up to 4 times. However, note that the embedding
specifies between which copies of the vertices the blue edges have to be drawn. The capital letters
A, B, C, D denote areas of the torus and are included for better orientation: Leaving area A to the
left leads to area D, leaving A to the top leads to B and so on.

Let g′ be the genus of H. If g′ = 0, the assertion follows directly by Theorem 19.
Therefore, we assume from now on g′ ≥ 1. Note that g′ ≤ g because H is a subgraph of G.
Fix an embedding of H on an orientable closed surface of genus g′ such that no two edges
cross. By Lemma 22, there is a subgraph D of H with MST ⊆ D such that

|E(D) \ E(MST)| ≤ 2g′ ≤ 2g (3)

and such that the edges of D induce only one face and bound a topological disk. Next,
observe that, for every edge e in H \MST, we have w(e) ≤ w(MST)/(1 + ε): Every edge e in
H \MST closes a cycle C together with the edges of MST. Using Observation 18, we obtain

w(e) <
w(C \ {e})

1 + ε
≤ w(MST)

1 + ε
.

In particular, this is fulfilled for edges in D \MST. Combining this with (3), we obtain

w(D) ≤
(

1 + 2g

1 + ε

)
w(MST). (4)

The next step is to bound the weight of H by (1 + 2/ε)w(D). For this, we use a similar
construction as in Lemma 20 and show that it is possible to iteratively choose an edge e

in H \D which, together with the edges of D and the edges chosen in previous iterations,
closes a facial cycle Ce in the embedding of H.
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In each iteration, we find a suitable edge as follows: Pick an arbitrary edge e of H \D.
If it defines a facial cycle together with D and edges chosen in previous iterations, we can
simply choose e. Assume this is not the case. Note that e cuts the disk bounded by D in two
parts and both contain edges in H \D to which no cycles have been assigned yet (otherwise e

would close a suitable facial cycle). Pick the part whose boundary with D contains fewer
edges (breaking ties arbitrarily) and pick a new edge e′ in H \D which lies inside this half
and has not yet been chosen in a previous iteration. Note that e′ again cuts the disk in
two parts and the boundary of the smaller part contains fewer edges of D than in the step
before. Therefore, by repeating the steps above, we will end up with a suitable edge after
finitely many steps. For example, on the left side of Figure 4, if we pick e = (x, z), we will
set e′ = (x, y) and this edge is suitable. After this, we can assign a facial cycle to (x, z) and
then to (u, v). In the instance on the right, we can assign the cycles to the blue edges in any
order.

Note that, in this construction, no two edges are assigned the same facial cycle. As every
edge is contained in at most two facial cycles, we have∑

e∈H\D

w(Ce) ≤ 2w(H). (5)

Therefore, we can now apply Lemma 21 and obtain

w(H)
Lem 21
≤

(
1 + 2

ε

)
w(D)

(4)
≤

(
1 + 2

ε

) (
1 + 2g

1 + ε

)
w(MST). ◀

Recall that Grigni showed that every graph of genus g ≥ 1 contains a (1 + ε)-spanner of
lightness at most 1 + (12g − 4)/ε [24]. Let us briefly comment on how our bound compares
to Grigni’s bound. For this, note that, for g ≥ 1,(

1 + 2
ε

) (
1 + 2g

1 + ε

)
= 1 + 2

ε
+ 2g

1 + ε
+ 4g

ε(1 + ε) < 1 + 2g

ε
+ 2g

ε
+ 4g

ε
= 1 + 8g

ε
.

Therefore, our bound is stronger than Grigni’s bound for every g ≥ 1. Moreover, in
the planar case (i.e., g = 0), we obtain a lightness of 1 + 2

ε . It was shown by
Althöfer et al. [2, Theorem 5] that this is best possible, i.e., our bound is tight for planar
graphs. Note that the worst-case lightness for spanners of graphs of genus g has to in-
crease in g, since not every graph admits a light spanner. For example, for every k ≥ 3
and almost all n, there is a graph on n vertices with girth at least k and at least 1

4 n1+ 1
k

edges [32, Theorem 6.6].

4 Open problems

The key question in online graph exploration is whether the problem admits a constant-
competitive algorithm [29]. While this problem remains open, our results suggest steps that
might be needed towards a resolution of this question. Firstly, we have shown that the online
graph exploration problem allows for a constant-competitive algorithm on graphs admitting a
light spanner, in particular, minor-free graphs. This suggests that, for proving a non-constant
general lower bound on the competitive ratio, one might require dense high-girth graphs
or expanders [30]. Not even a competitive ratio of o(log(n)) has yet been attained, and
our results eliminate Blockingδ, for most values of δ, as a candidate for achieving this. It
remains to close the gap between δ ∈ o(log(n)/ log log(n)) and δ ∈ Ω(log(n)).

Regarding spanners, we gave an improved upper bound on the lightness of spanners in
bounded genus graphs. It is a natural question whether our bound is already tight for g ≥ 1
or can further be improved. In particular, it is unclear whether the worst-case lightness for a
fixed stretch must depend linearly on g.
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1 Introduction

In the classical Traveling Salesperson Problem (TSP), we are given a set of locations as well
as the pairwise distances between them and the objective is to find a shortest tour visiting all
the locations. TSP is one of the most fundamental and well studied problems in Computer
Science [31]. We focus on the online version of the problem in a metric space, the Online
Traveling Salesperson Problem (OLTSP), introduced in the seminal paper of Ausiello et
al. [10]. In OLTSP, the input arrives over time, i.e., new requests (locations) that have to be
visited by the traveler (or server) will appear during the travel. The time in which a request
is communicated to the traveler is called its release time (or release date). The objective is
the minimization of the total traveled time assuming that at any time the traveler either
moves at unit speed or is “waiting” (zero speed) at some location1. We study both the closed
variant, where the server is required to return to the origin after serving all requests, and
the open variant, where the server does not have to return to the origin after serving all the
requests. A series of papers considered many variations of OLTSP in different metric spaces
(general metric space [10, 14], the line [10, 18, 24], the semi-line [9, 14, 19], the ring [14, 28]
and the star [14]).

The motivation of studying OLTSP and its variations comes from applications in many
different domains, such as e.g. logistics and robotics [8, 38]. In the framework of competitive
analysis, the performance of an online algorithm is usually evaluated using the competitive
ratio which is defined as the maximum ratio between the cost of the online algorithm and the
cost of an optimal offline algorithm, which by definition has knowledge of the entire input
in advance, over all input instances. However, it is admitted that the competitive analysis
approach can be overly pessimistic as it is calculated considering worst-case instances, giving a
lot of power to the adversary. Hence, many papers try to limit the power of the adversary [19],
or give extra knowledge and hence more power to the online algorithm [1, 14, 27].

More recently, the framework of Learning-Augmented (LA) algorithms has emerged due
to the vibrant successes of Machine Learning methods and Artificial Intelligence in predicting
and learning the unknown (i.e., future inputs in the case of online algorithms) based on
data [33]. In this line of research, the goal is to utilize predictions of the future input that
have potentially been acquired using a learning algorithm, in order to have provably improved
competitive ratio in the case that the predictions are accurate enough, while maintaining
worst-case guarantees even if the prediction error is arbitrarily large. In particular, a (possibly
erroneous) prediction of the input is given to the algorithm and the goal is to design algorithms
with a good performance guarantee when the prediction is accurate (consistency), a not too
bad (and bounded) performance when the prediction is wrong (robustness) and a gradual
deterioration of the competitive ratio with respect to the prediction error (smoothness). We
give more precise definitions in Section 2.

1 Note that this choice of possible speeds is w.l.o.g., as any setting where the maximum speed is bounded
can be reduced to this setting. Specifically, if the maximum speed is some S > 0, we can normalize
the maximum speed to be 1 and multiply all distances by S. Also, our setting can simulate any other
setting where the algorithm is free to chose either the unit speed of some other speed 0 < s < 1. Moving
at speed s is equivalent to dividing the time into intervals of length dt → 0 and moving at unit speed
only for time s · dt within each interval.
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Recent works have proposed a variety of approaches to tackle OLTSP with predictions
(LA-OLTSP). In [24], Gouleakis et al. studied a learning-augmented framework for OLTSP
on the line. They introduced a prediction model in which the predictions correspond to
the locations of the requests. They proposed LA algorithms for both the closed and the
open variants that are consistent, smooth and robust. Bampis et al., in [14], considered
the case of perfect predictions of the locations and studied different metric spaces (general
metric space, semi-line, ring, and star) and proposed competitive online algorithms and lower
bounds. In [26], Hu et al. proposed three different prediction models for OLTSP. In two
of their models, each request is associated to a prediction for both its release time and its
location while in the third one the prediction is just the release time of the last request.
In [17], Bernardini et al. studied OLTSP with predictions of both the release time and the
location of each request. They introduced a new error measure, the cover error, and they also
considered other online graph problems. More recently, Chawla and Christou [20] studied
the Online Time-Windows TSP with predictions of release time and location of the requests.

In this work, we adopt the prediction model of [24]. We propose a general oracle-based
framework that allows us to design consistent, smooth and robust LA algorithms for both
the closed and open variants of the problem for different metric spaces. We also provide
some interesting lower bounds.

1.1 Our contributions and techniques
In this paper, we propose a novel approach to improve the competitive ratio of OLTSP using
predictions concerning the locations of requests in general metric spaces. Our algorithms
provide tight competitive ratio guarantees in most cases. Moreover, we show how to get
polynomial-time/FPT algorithms in specific metrics, namely rings, trees and flowers.

Bampis et al. [14] gave an algorithm for general metrics with a competitive ratio of 3/2
for the case of perfect predictions (known locations), which is tight. First, in Section 3,
we modify this algorithm (still under the assumption of perfect predictions) and introduce
our main oracle-based 3/2-competitive framework, which we call Strategically Wait And Go
(SWAG, for pseudocode see Algorithm 1). The main idea is to consider a suitable subset of
permutations of the requests, referred to as Dominating permutations, given by a so-called
Domination oracle instead of all the permutations. This allows for a reduction of the running
time, since the bottleneck is located in the cardinality of the set of considered permutations.
This restriction of the permutation set preserves the consistency of 3/2.

Then, we introduce our main algorithm, Learning-Augmented Strategically Wait And
Go (LA-SWAG, for pseudocode see Algorithm 2), which does not assume perfect predictions.
LA-SWAG is consistent, smooth, and robust. More formally, in Section 4 we show the following.

▶ Theorem 1 (Consistency and Smoothness). LA-SWAG has a competitive ratio of at most
3/2 + 5η for both closed and open LA-OLTSP.

Here, η is the error of the prediction (defined formally later) that captures the normalized
sum of distances between predicted and actual locations of the requests. Note that for η = 0,
we get a consistency of 3/2, which is tight for all cases except the open variant on trees.

Additionally, we show a smoothness lower bound of 3/2 + η/2 for the open variant with
η ∈ [0, 1/3] (Proposition 14), implying that a linear dependency on η is required.

Regarding robustness, the algorithm in [24] achieves 3-robustness on the line. LA-SWAG
improves this bound for general metrics and further so in specific metrics.

▶ Theorem 2 (Robustness-Closed). LA-SWAG is 2.75-robust for closed LA-OLTSP in general
metric spaces, and 2.5-robust in Euclidean spaces and in trees.
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▶ Theorem 3 (Robustness-Open). LA-SWAG is (3 − 1/6)-robust for open LA-OLTSP in general
metric spaces, and (3 − 1/3)-robust in trees.

Our analysis for 2.5-robustness and (3 − 1/3)-robustness is tight even on the line.
Moreover, we show a negative result concerning the consistency/robustness trade-off of
any algorithm for the open variant (Lemma 15).

The main technical contribution of our work is the implementation of the domination
oracles we have referred to. On a high level, we say that a permutation πdom dominates
another permutation π at time t, if the following conditions hold. Assuming q is the first
unreleased request in π at time t, the distance traveled up to q is not longer in πdom, and
also a superset of the requests preceding q in π is visited before q. Moreover, πdom induces a
not longer path than π. These two key facts allow us to preserve 3/2-consistency.

For general metrics, we achieve this domination using a very similar idea as the one
employed in the definition of the O(n22n) dynamic programming solution of the classical
TSP [16, 25]. That is, for any possible subset of released requests that might have been
served by π before q, we simply build two optimal paths for the parts before and after q

(without release times) and then we concatenate them to get a dominating permutation. We
call the resulting sets general dominating sets. Any permutation is dominated by the one
corresponding to the correct guess of requests served up to q. This yields a single-exponential
time algorithm overall.

▶ Theorem 4 (General Metrics). LA-SWAG with an oracle D which uses the general dominating
sets runs in single-exponential time and is min{3/2 + 5η, 2.75}-competitive for the closed
variant and min{3/2 + 5η, 3 − 1/6}-competitive for the open variant of LA-OLTSP.

The overarching insight behind how we reduce the runtime in specific metrics is the
fact that we do not really need to try all possible subsets of requests served before q. For
example, in trees, we first show a structural result about the optimal solutions (with release
times). Specifically, we prove that the requests placed along a path from a leaf to the origin
(considered the root) can be assumed to be served in a very specific order. This is the order in
which the requests are encountered as one traverses the path from the leaf to the origin. This
fact allows us to design a domination oracle which, roughly, provides a single permutation
for any subset of leaves visited before q. Hence, we get an FPT algorithm parameterized by
the number l of leaves of the tree.

▶ Theorem 5 (Trees). There exists a Domination oracle for LA-SWAG in trees which yields a
time complexity of O(2l · n3) for the closed variant and O(2l · n4) for the open variant, where
l is the number of leaves of the input tree.

As a first step towards more general graphs, we deal with the concept of cycles by
considering the ring. While we cannot retrieve the exact same structural result about online
optimal solutions, we show something quite similar. Namely, we prove that the cyclic nature
of the ring may be utilized only once by an optimal solution. After such a cyclic traversal,
we can assume that the ring is split in half, yielding a tree which we know how to deal with.

▶ Theorem 6 (Ring). There exists a Domination oracle for LA-SWAG in the ring which yields
a time complexity of O(n3) for the closed variant and O(n5) for the open variant.

Finally, we combine the two previous sets of ideas to tackle flowers. Flowers are essentially
comprised of a bunch of rings (petals) and a semi-line (stem), all of which are attached to
the origin. It is still true that each single ring may be assumed to be traversed with a loop
only once in this case. It turns out that we can consider at most 6 options for every petal.
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▶ Theorem 7 (Flowers). There exists a Domination oracle for LA-SWAG in flowers which
yields a time complexity of O(6p · n3) for the closed variant and O(6p · n5) for the open
variant, where p is the number of petals of the input flower.

We summarize our results in Tables 1 and 2. In the closed variant, there is a lower bound
of 3/2 even in the case of a line [24]. In the open one, we show a lower bound of ≈ 1.468
even in the case of a line and there is a lower bound of 3/2 even in the case of a ring [14]. A
full version of the paper including all proofs can be found in [13].

Table 1 Consistency, smoothness, robustness and runtime guarantees of LA-SWAG for different
metrics and variants.

Smoothness
(Consistency for η = 0) Robustness Runtime

Closed/Open Closed Open Closed Open
Tree

3/2 + 5η

2.5 3 − 1/3 O(2l · n3) O(2l · n4)
Ring 2.75 3 − 1/6 O(n3) O(n5)

Flower 2.75 3 − 1/6 O(6p · n3) O(6p · n5)
Euclidean 2.5 3 − 1/6 O(n2 · 2n) O(n2 · 2n)
General 2.75 3 − 1/6 O(n2 · 2n) O(n2 · 2n)

Table 2 Consistency of LA-SWAG and other tractable algorithms. The upper bounds with * are
given by an FPT algorithm and a polytime algorithm otherwise. Tight bounds are denoted in bold.

Consistency
Closed Open

Previous work This paper Previous work This paper
Line 3/2 [24] 3/2 5/3 [24] 3/2
Star 7/4+ϵ [14] 3/2∗ 2 [14] 3/2∗

Tree 2 [10] 3/2∗ 2 [14] 3/2∗

Ring 5/3 [14] 3/2 2 [14] 3/2
Flower 2 [10] 3/2∗ 2 [14] 3/2∗

1.2 Further related works
The offline version of the problem, in which the locations and release times are known in
advance, has been studied in [18, 38] for both closed and open variants. For OLTSP, a
2-competitive algorithm for the closed variant and a 2.5-competitive algorithm for the open
variant have been proposed in general metric spaces by [10]. Specifically on the line, there
exist lower bounds of 1.64 [10] and 2.04 [18] for the closed and open variants, respectively.

In addition to online TSP, there are several works that have explored learning augmented
settings. The online caching problem with predictions was investigated by [33], and the initial
results were improved by [3, 40, 42]. Adopting the LA approach, algorithms were developed
for the ski-rental problem [2, 23, 39, 41] as well as for scheduling problems [4, 11, 35, 37].
There is also literature on learning augmented algorithms for classical data structures [30],
bloom filters [34], routing problems [15, 22, 29], online selection and matching problems [5, 21]
and a more general framework of online primal-dual algorithms [12]. There is a survey [36]
and an updated list of papers [32] in this area.
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2 Preliminaries

Online TSP (OLTSP)

The input of OLTSP consists of a metric space M with a distinguished point O (the origin),
and a set Q = {q1, ..., qn} of n requests. Every request qi is a pair (xi, ti), where xi is a point
of M and ti ≥ 0 is a real number. We use t to quantify time. The number ti represents the
moment after which the request qi can be served (release time). A server located at the
origin at time t = 0, which can move with unit speed, must serve all the requests after their
release times with the goal of minimizing the total completion time (makespan).

We consider a wide class of continuous metric spaces M whose corresponding distance
metric d(x, y) is defined as the shortest path from x ∈ M to y ∈ M and is continuous in M ,
as in [10]. We call this class general metric spaces (or general metrics). The release times for
continuous metric spaces can be any non-negative real number.

For the rest of the paper, we denote the total completion time of an online algorithm
ALG by | ALG | and that of an optimal (offline) solution OPT by | OPT |. We recall that an
algorithm ALG is ρ-competitive if on all instances we have | ALG | ≤ ρ · | OPT |.

Learning-augmented algorithms

In order to measure the quality of the predictions, we will define a prediction error η. LA
algorithms have three main properties. We use the formal definitions in [24] here. We say
that an algorithm is

α-consistent, if it is α-competitive when η = 0,
β-robust, if it is always β-competitive regardless of η, and
γ-smooth for a continuous function γ(η), if it is γ(η)-competitive.

In general, if c is the best competitive ratio achievable without predictions, it is desirable to
have α < c, β ≤ k · c for some constant k and also the function γ should increase from α to
β along with the error η.

Our prediction setting

Let Q = {q1, . . . , qn} be the set of requests. As we mentioned, each request qi has a
corresponding release time ti and a location xi. We have a set of predictions P = {p1, . . . , pn}
in which pi predicts xi, the location of request qi. The algorithm gets these predictions as
well as the number of requests n as an offline input. The actual values of xi and ti only
become known at time-point ti.

The predictions’ quality can vary and is unknown to the algorithm. We can evaluate
the quality by defining a measure η. Essentially, η measures the sum of all the distance
between the predicted location and the actual ones normalized by the length of a shortest
path serving all the requests.

▶ Definition 8 (Prediction Error). The prediction error of an instance is defined by η =∑n

i=1
d(xi,pi)
F , where F is the length of a shortest path serving all the requests (and returning

to the origin in the closed case).

Note that the prediction error is scale invariant (i.e., it will not change if all the distances
are multiplied by a constant factor), and F acts as the normalization factor.
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3 Oracle-based framework: the SWAG algorithm

In this section, we define an oracle-based algorithm, SWAG, designed for the case of perfect
predictions. The oracle provides the algorithm with a set of permutations of the requests.
We show that if the oracle satisfies some conditions, then SWAG has a competitive ratio of
3/2.

SWAG is actually a (slightly) modified version of the general algorithm in [14]. The principle
of this latter algorithm is the following:

First, to wait at O until a chosen time T . This time T depends both on the requests’
locations and on their release times.
Then, to choose a route of serving requests that minimizes some criterion involving the
length of the corresponding route and the fraction of it which is released at time T , and
to follow this route, waiting at unreleased requests.

The calculation of the chosen time T on the first step is done by computing some values on
all the n! permutations of the requests. The improvement we show here is that we can get
the same competitive ratio (i.e., 3/2) while considering not the whole set of permutations,
but some well chosen (and ideally small) subset that satisfies a certain property. This subset
of permutations is given to the algorithm by the oracle.

Then, based on this framework, to derive an efficient 3/2-competitive algorithm, one only
has to build an efficient oracle. We will show for example in Section 5.2 that for lines or
rings, we can devise a polytime oracle building a polysize subset of permutations, leading to
a polytime 3/2-competitive algorithm for these metrics.

More formally, we consider SWAG, which uses the following notation. For a given order σ

on the requests (where σ[i] denotes the i-th request in the order), we denote:
by ℓσ the length of the route associated to σ (starting at O), i.e., ℓσ = d(O, σ[1]) +∑n−1

j=1 d(σ[j], σ[j+1]) in the open case, ℓσ = d(O, σ[1])+
∑n−1

j=1 d(σ[j], σ[j+1])+d(σ[n], O)
in the closed case;
by ασ(t) the fraction of the length of the largest fully released prefix of the route associated
to σ at time t over ℓσ. More formally, if all n requests are released, then ασ(t) = 1 for all
σ, otherwise, if requests σ[1], . . . , σ[k − 1] are released at t but σ[k] is not, then the route
is fully released up to σ[k], and

ασ(t) =
(
d(O, σ[1]) +

k−1∑
j=1

d(σ[j], σ[j + 1])
)
/ℓσ .

Note that this requires ℓσ > 0. If ℓσ = 0, i.e., all requests are at O, we set ασ = 1.

The key idea behind these subsets is the following. To achieve the same competitive ratio,
it is sufficient that for any possible permutation σ, the set S contains a permutation σ′ that
induces a tour/path that is not longer than that of σ, and its unreleased portion of the tour
at time t is not larger than that of σ. We will say that σ′ dominates σ and define this notion
formally below. Furthermore, since the released parts only change when a new request is
released, it is sufficient to only update the subset then.

▶ Definition 9 (Dominating Permutation). Let σ be a permutation of the n requests and t a
given time. We define Dom(σ, t) to be the set of permutations that dominate permutation σ

at time t. A permutation σ′ ∈ Dom(σ, t) if and only if:

ℓσ′ ≤ ℓσ and (1 − ασ′(t))ℓσ′ ≤ (1 − ασ(t))ℓσ .

We also say that σ′ is a corresponding dominating permutation of σ (at time t).
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Algorithm 1 Strategically Wait And Go (SWAG).

Input: Offline: request locations x1, . . . , xn

Online: release times t1, . . . , tn

Parameter: an oracle D which outputs a set of permutations on requests
1 Call the oracle D to get an initial set S(0) of permutations at t = 0. Set S = S(0).
2 while true do
3 At each release time ti, request a new set S(ti) of permutations and update

S = S(ti). For every σ ∈ S, compute ℓσ and ασ(ti).
4 If ∃ σ0 ∈ S s.t. (1) t ≥ ℓσ0/2 and (2) ασ0(t) ≥ 1/2, set T = t and break.
5 end
6 At time T :

Compute an order σ1 which minimizes, over all orders σ′ ∈ S, (1 − βσ′)ℓσ′ ,
where βσ′ = min{ασ′(T ), 1/2}.
Follow the tour/path associated to σ1. Serve the requests in this order,
waiting at a request location if this request is not released.

We show that SWAG with an oracle D is 3/2-consistent if D is a domination oracle.

▶ Definition 10 (Domination Oracle). An oracle D which outputs at time t a set S(t) of
permutations is a domination oracle if
1. S(t) ⊆ S(t′) for every t ≤ t′, and
2. for all t there exists a permutation σ′ ∈ S(t) such that σ′ ∈ Dom(σOPT, t). Here, σOPT

is the permutation corresponding to the serving order of requests in an optimal solution.

▶ Lemma 11. SWAG is 3/2-consistent for both closed and open variants of OLTSP with
perfect predictions if it uses a domination oracle.

Note that this matches the lower bounds in [24, 14], making the result tight in almost all
cases. Regarding the computational complexity of SWAG, we have the following lemma.

▶ Lemma 12. If N is the maximum number of permutations which the oracle D outputs at
each time t and TD is the total time required (by the oracle) to compute all permutations,
then the running time of SWAG is O(max{n2 · N, TD}).

4 Performance guarantees for LA-OLTSP: the LA-SWAG algorithm

In this section, we deal with imperfect predictions; more specifically, we show how to adapt
SWAG to also get smoothness and robustness upper bounds.

We note that if the predictions are perfect, then LA-SWAG is at least as good as SWAG (it
works the same, the only difference being that it optimally serves the remaining unserved
requests when everything is released). So in particular it is 3/2-consistent as well, provided
that the oracle satisfies the conditions of Lemma 11, which is tight in almost all cases.

We also note that the algorithm could serve the requests in a more clever way: instead of
going first to the predicted location of a request and then to its true location, the algorithm
could go to the true location directly if it is released (or as soon as it is). However, no gain
can be obtained; the tightness of analysis given in the full version of the paper would still
hold.

Regarding the running time of LA-SWAG, it can be shown that if TT SP is the time required
for the computation of an optimal path serving a subset of the requests, then from Lemma 12
we get the following corollary. Note that, for the cases we consider, we achieve suitable upper
bounds on TT SP . We describe how this is done in the full version of the paper.
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Algorithm 2 Learning-Augmented Strategically Wait And Go (LA-SWAG).

Input: Offline: predicted request locations p1, . . . , pn

Online: release times t1, . . . , tn, true request locations x1, . . . , xn

Parameter: an oracle D which outputs a set of permutations on requests

1 (Breaking rule) At any time t: if all requests are released, follow an optimal path
serving all unserved requests (returning to O if in the closed variant) and break.

2 Run SWAG until the starting time T of the server, and the computation of σ1.

3 At time T , follow the tour/path σ1, serving the requests in the following order:
4 for i = 1, . . . , n do

first go to pσ1[i]; if qσ1[i] is not released, wait there until it is released;
then, go to xσ1[i] and serve the request.

5 end
6 In the closed version, go back to O.

▶ Corollary 13. If N is the maximum number of permutations which the oracle D outputs
at each time t, TD is the total time required (by the oracle) to compute all permutations and
TT SP is the time for the computation of an optimal path that serves a subset of the requests,
then the running time of LA-SWAG is O(max{n2 · N, TD, TT SP }).

4.1 Smoothness
In this subsection, we show that LA-SWAG is smooth with respect to the measure of error η.
To show the main result, we relate the performance of LA-SWAG on a hypothetical instance
using the predictions as requests. As noted above, LA-SWAG inherits its 3/2-consistency
from SWAG. Leveraging triangle inequality, we further get upper and lower bounds on the
performance of LA-SWAG in terms of the performance of LA-SWAG and OPT on the actual
instance, respectively. This allows us to determine their maximum ratio.

▶ Theorem 1 (Consistency and Smoothness). LA-SWAG has a competitive ratio of at most
3/2 + 5η for both closed and open LA-OLTSP.

Giving a simple example with 2 requests, we further show that a linear dependency on η

is necessary for the open variant for any algorithm.

▶ Proposition 14 (Smoothness Lower Bound). No algorithm can have a better competitive
ratio than

( 3
2 + η

2
)

for the open variant on an instance with prediction error η ∈ [0, 1/3].

The example is built symmetrically, such that the adversary will be able to react to any
choice made by an algorithm, thereby forcing it to take a detour. At the same time, OPT is
able to quickly finish its route without having to wait or turn back.

4.2 Robustness
LA-SWAG can easily be shown to be 3-robust, as it can always go back to the origin when all
requests are released and then follow an optimal tour. Since the distance to the origin is
at most | OPT | when all requests are released, 3| OPT | is an immediate upper bound. We
first show improved upper bounds on the robustness of LA-SWAG, and then complement this
analysis with some lower bounds.
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The first step in the analysis is to assume LA-SWAG waits for some portion of | OPT | in
the origin, say c. Then, a (3 − c) robustness follows. Otherwise, by construction of LA-SWAG,
we get a suitable bound on the distances of predictions from the origin, depending on c.

For the following, we focus on the case where LA-SWAG leaves early. In the closed variant,
we observe that the furthest away from the origin LA-SWAG can be when the last request is
released is 3/4| OPT |, thereby improving the robustness bound to 2.75. This stems from the
fact that the furthest prediction and the furthest request each cannot have a distance more
than 1/2| OPT | (corresponding to c = 1/4) from the origin as we consider the closed version,
but LA-SWAG could be in between the two locations.

For trees or in a Euclidean space, the same argument can be used, but here it holds that
any point in between the two locations cannot be further away from the origin than either of
the two locations, which gives us overall a 2.5-robustness in these cases.

▶ Theorem 2 (Robustness-Closed). LA-SWAG is 2.75-robust for closed LA-OLTSP in general
metric spaces, and 2.5-robust in Euclidean spaces and in trees.

In the open variant, we can use a similar approach. While going back to the origin and
following OPT is always a viable option when everything is released, we can also go the the
final request OPT visited and then take OPT backwards to serve all requests. It turns out
that these two choices are sufficient to improve the robustness below 3. We again consider
general metrics first and show an improvement to 3 − 1/6, before we again study the case of
trees to show that a bigger improvement to 3 − 1/3 is possible in this scenario.

▶ Theorem 3 (Robustness-Open). LA-SWAG is (3 − 1/6)-robust for open LA-OLTSP in general
metric spaces, and (3 − 1/3)-robust in trees.

We show in the full version that the analyses for 2.5-robustness in the closed variant
and (3 − 1/3)-robustness in the open variant are tight. Moreover, we show the following
consistency-robustness tradeoff for any algorithm in the open variant. For a good consistency
result, the algorithm has to trust the predictions more, which will lead to a bad robustness.

▶ Proposition 15. Let ALG be an algorithm for the open variant with consistency guarantee
2 − λ, where λ ∈ [0, 1]. Then, ALG cannot be (2 + λ − ϵ)-robust, for any ϵ > 0.

5 Domination oracles

In this section, we implement a domination oracle for general metrics using a Dynamic
Programming inspired technique and then we exploit structural insights about specific
metrics to obtain more efficient oracles. We focus on the closed variant; we explain in the
full version how to deal with the open variant. In the following, R(t) and U(t) will refer to
the released and unreleased requests at time t. We may drop the dependency on t.

5.1 General metrics
In the case of perfect predictions, using SWAG and Lemma 11 we can reduce the factorial
running time of the algorithm in [14] for general metrics. We will show that an exponential
number of permutations suffices to have a domination oracle. After that, using the scheme
of LA-SWAG and the theorems proved in the previous section we will get an exponential-time
algorithm that is 3/2-consistent, smooth and robust.

Consider an arbitrary permutation σ of the n requests at time t. A corresponding
dominating tour for this permutation can be constructed in the following way; find the
first unreleased request u ∈ U(t) in the permutation σ. The released requests before u in
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Oa b c d Oa b c d

Figure 1 Two permutations illustrating the notion of domination as in Example 16. Left side:
OPT, right side: σ′.

the permutation form a subset R′(t) ⊆ R(t) of released requests. Then, a corresponding
general dominating tour would be the optimal TSP path that starts from the origin, serves
all requests in R′(t) and ends at request u plus the optimal TSP path that starts from u,
serves all requests in

(
R(t) \ R′(t)

)
∪

(
U(t) \ {u}

)
and returns to the origin. We will call

these tours (corresponding) general dominating tours. It can be shown that at time t a
corresponding general dominating tour σ′ of a permutation σ dominates σ. In Example 16,
we illustrate the notion of a dominating tour.

▶ Example 16. Consider the following example on the line in the closed variant. There are
4 requests a, b, c, d, located at −10, −4, 5, 11, respectively. Assume the release times to be
ta = 10, tb = 46, tc = 55, td = 31. The optimal tour OPT is O → a → d → b → c → O with
| OPT | = 60, never having to wait and reaching requests just as they are released. Thus, we
also have ℓOPT = 60.

Let us focus on the setting in which only the first request has been released, i.e., for
t ∈ [10, 31). At this time, we have R(t) = {a} and U(t) = {b, c, d}. We can see that d is the
first unreleased request in permutation OPT at this time, so u = d, and R′ = R. The first
part of the general dominating permutation σ′ of OPT is thus O → a → d, and the second
part d → c → b → O. This means that ℓσ′ = 50 < 60 = ℓσ. An illustration of OPT and σ′ is
given in Figure 1.

When we run SWAG, we can see why this notion of domination makes sense: Clearly, the
released lengths of OPT and σ′ are 31 for t ∈ [10, 31) (for both permutations, the server can
already serve a and continue to d without having to wait anywhere – but d itself cannot yet
be served). This also means that αOPT ≥ 1/2 and ασ′ ≥ 1/2. Thus, both of the permutations
would start the second part of the algorithm when t would be large enough. Since ℓσ′ ≤ ℓσ, it
suffices to consider the permutation σ′ instead of σ, as regardless of the release time of a, no
earlier starting time could be computed when using OPT than when using σ′. Additionally,
βσ′(t) = βOPT(t) = 1/2 and thus OPT would not be chosen as permutation to follow in the
second part of the algorithm.

Note that, if a, b, and d are released but c is not at some time t′, then OPT would not
be dominated at t′ by σ′. This is because the unreleased part of σ′ would be greater than
that of OPT. Clearly, OPT would be dominated at time t′ by another permutation, e.g.,
O → a → b → d → c → O. ◀

If we assume that t1 ≤ t2 ≤ · · · ≤ tn are the release times of the requests, t0 = 0
and tn+1 = ∞, then at time ti, with i ≤ n, we compute the set of general dominating
permutations Di given the sets R(ti) and U(ti). Together with the previously computed
sets, it is then provided to SWAG as set S(ti) =

⋃i
j=0 Dj . It is easy to show that an oracle

D which outputs at any time t ∈ [ti, ti+1) the general dominating sets S(t) =
⋃i

j=0 Dj

for each i ∈ {0, 1, 2, . . . , n}, is a domination oracle and SWAG is 3/2-consistent (Lemma 11).
Condition 1 of the domination oracle is satisfied as S(t) ⊆ S(t′) for every t ≤ t′. Condition 2
is also satisfied since for each time t we have a corresponding dominating permutation for
every possible subset of R(t) and choice of u, and thus for every permutation σ.
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Concerning the running time of the algorithm, we begin by bounding the number of
general dominating permutations which are contained in the set

⋃i
j=0 Dj for all i ≤ n.

Formally, we prove the following lemma.

▶ Lemma 17. There always exists a set
⋃i

j=0 Dj which consists of at most 2n distinct
general dominating permutations, for all i ∈ {0, 1, . . . , n}.

In order to get an LA algorithm, we run LA-SWAG with the oracle of general dominating
permutations. Since all possible general dominating permutations can be precomputed at
t = 0 using the dynamic programming algorithm for classical TSP in time O(n2 · 2n), we use
Corollary 13 and Lemma 17 to show the following result for the running time of LA-SWAG.

▶ Lemma 18. LA-SWAG that uses the general dominating sets runs in O(n2 · 2n) time
complexity for both closed and open variants of OLTSP.

Using theorems 1, 2, and 3 we show that LA-SWAG with the general dominating permuta-
tions is a single-exponential time algorithm with the following performance guarantees.

▶ Theorem 4 (General Metrics). LA-SWAG with an oracle D which uses the general dominating
sets runs in single-exponential time and is min{3/2 + 5η, 2.75}-competitive for the closed
variant and min{3/2 + 5η, 3 − 1/6}-competitive for the open variant of LA-OLTSP.

5.2 Specific metrics
In the following we explain how to implement domination oracles for trees, rings, and flowers.
These will dominate a so-called sensible set of permutations, which we define later.

We also need to implement the “cleanup” step of LA-SWAG, where a computation of an
optimal classical (offline, without release times) TSP path/tour is required. In fact, these
subroutines are also employed within the domination oracles themselves. We describe how
this is done efficiently (in O(n) time) in the full version of the paper.

▶ Definition 19 (Safe Set). Let X be a set of request locations. A set of permutations Π
is safe for X if for any assignment f of release times to each location in X, there exists a
permutation π ∈ Π which is optimal for the resulting input Q = {(x, f(x)) | x ∈ X}.

Note that the set of all permutations is safe. However, we can define sensible sets of
permutations that follow some desirable structure but are still safe. The guarantees of
LA-SWAG follow even when dominating a sensible set.

In general, the idea is to ensure domination as follows. Let Q1 be the requests served
by a permutation π before its current request q. We construct a permutation πdom, which
serves a superset of Q1 before q and is not longer than π on both parts, before and after q.

Trees
We consider metric spaces that are shaped like a tree. By that we mean continuous spaces
that can be embedded into trees with edges weighted by their lengths. The requests may
appear on nodes of the tree or at some point along the edges.

Suppose that an algorithm serves a request q at time t. There is only one path Pq from q

to O, and it must be traversed after t. Hence, any request q′ on Pq will be visited at some
point after t anyway, rendering the earlier serving of such requests useless. From this, it
follows that any sequence of requests Sq encountered along a path Pq towards the origin may
be safely assumed to be a subsequence of the optimal permutation.
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▶ Definition 20 (Sensible Set for Trees). Let T be a tree rooted at the origin O and X a
set of request locations on T . The set Πs(T , X) of sensible permutations consists of all
permutations π where the following holds. Let π = xπ(1), xπ(2), . . . , xπ(n). For any xπ(i) and
any xπ(j) on the path Pxπ(i) from xπ(i) to the origin, we have j > i.

▷ Claim 21. For any tree T and any set of request locations X, the set Πs(T , X) is safe.

Dominating set

For the above sensible set, we will define a dominating set whose cardinality is of order
O(2l · n), where l is the number of leaves of the underlying tree. The idea is to look at
subsets of paths of leaves to the origin. That is, for each such subset and each selection of
intermediate request q, we consider the permutation which first optimally visits the selected
leaves finishing at q and then “cleans up” the rest of the requests starting from q and ending
at the origin. The set of these permutations for all different choices of leaf subsets and current
request is called Dom⋎(R, U, T , L), where T is the input tree and L is its set of leaves.

▶ Lemma 22 (Tree Domination). Let π be a sensible permutation for a tree T and L be its
set of leaves. Then, ∃ πdom ∈ Dom⋎(R, U, T , L) dominating π.

Using the above lemma, we obtain our main theorem for trees.

▶ Theorem 5 (Trees). There exists a Domination oracle for LA-SWAG in trees which yields a
time complexity of O(2l · n3) for the closed variant and O(2l · n4) for the open variant, where
l is the number of leaves of the input tree.

Ring
If a permutation makes more than one “full” loops around the ring, it may as well keep
only the last. Moreover, no serving needs to be done before the loop. After such a loop,
we can assume that the permutation moves along the ring as if it were a line, i.e., it never
crosses the antipodal point of the origin. Hence, we can define the sensible permutations by
branching on whether a loop is performed and then reduce to the tree case.

▶ Definition 23 (Sensible Set for the Ring). Let X be a set of request locations on the ring.
The sensible set of permutations Π◦

s(X) consists of all permutations π resulting from the
concatenation of πloop and πline where πloop is a subpermutation covering X ′ ⊆ X in a cyclic
fashion and πline ∈ Πs(T, X \ X ′), where T is the tree resulting from splitting the ring at the
midpoint across from the origin.

▷ Claim 24. For any set of request locations X, the set Π◦
s(X) is safe.

Dominating set

It suffices to define the dominators under the assumption that π does indeed have a loop in
the beginning, since we can take the union with the tree dominators.

A crucial distinction is whether the current request q of π is part of the loop or not. In
the first case, π has only traveled a portion of the loop so far and in the second case it has
traveled a full loop and serves as if on a tree afterwards. For every choice of q, we define two
permutations, one pertaining to the first case and another to the second one.

The first permutation serves all released requests within π’s traveled portion of the loop
and then moves to q. The second permutation serves all released requests with a full loop and
then moves to q. Both finish by cleaning up the rest of the requests. We call the resulting
set of permutations Dom◦(R, U).

ESA 2023
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Figure 2 A flower with 7 petals (purple), connected with the stem (green) at the origin (yellow).

▶ Lemma 25 (Ring Domination). Let π be a sensible permutation whose tour contains a full
loop in the beginning. Dom◦(R, U) contains a permutation πdom which dominates π.

Thus, our main theorem for the ring follows.

▶ Theorem 6 (Ring). There exists a Domination oracle for LA-SWAG in the ring which yields
a time complexity of O(n3) for the closed variant and O(n5) for the open variant.

Flowers
We extend the reasoning used for the ring and trees to the so-called flowers. A flower consists
of a number of rings (petals), all of which are attached to the origin point (receptacle). For
reasons of artistic completion, a semi-line (stem) disjoint from the petals is also attached to
the origin point. An illustration is given in Figure 2.

Sensible set

We can assume that any sensible permutation traverses a petal of the flower in a cyclic
fashion at most once, for the same reason that this is true for the ring. Thus, the sensible
set here is defined to include the permutations which have at most one loop for each petal,
such loops are the first visit on the corresponding petal and the restrictions of the sensible
set on trees also apply to every petal after such a loop is carried out.

Dominating set

First, choose the current request q of the permutation π to be dominated. Then, we guess
the subset P of petals “looped” by π. We also guess the petals Pdone ⊆ P already looped
before q. For a set of such choices, we traverse all petals in Pdone in an arbitrary order. Next,
we “snip” every petal except the ones in P , yielding a tree T (actually, a star) and the petals
in P.

Now, we also guess the subset L′ of the leaves L of T to be visited before q. Having fixed
that, we append to our permutation the optimal path from O to q that visits every leaf in
L′ and the possible arc of π to q. Finally, we append the optimal path from q that “cleans
up” the remaining unserved requests. The resulting set is called DomP(R, U).

▶ Lemma 26 (Flower Domination). Let π be a sensible permutation for the flower. The set
DomP(R, U) contains a permutation πdom which dominates π.

Note that to make all these different guesses, one has at most 6 choices for every petal.
So, if the graph has p petals, the cardinality of the dominators is O(6p · n) = O(22.59p · n).
The below complexity comes from the term related to the cardinality of the dominating set.
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▶ Theorem 7 (Flowers). There exists a Domination oracle for LA-SWAG in flowers which
yields a time complexity of O(6p · n3) for the closed variant and O(6p · n5) for the open
variant, where p is the number of petals of the input flower.

6 Conclusion

We studied Online TSP augmented with predictions regarding the locations of the requests.
Our algorithm, LA-SWAG, achieves a competitive ratio of 3/2 under the assumption of perfect
predictions, which is tight in most cases we considered. Additionally, it is smooth and
provides robustness guarantees below 3, improving over previous work. The runtime of
LA-SWAG is single-exponential; however, we show how to remove the exponential dependency
on the number of requests for specific metric spaces.

We believe that our techniques can be generalized to obtain FPT algorithms for other
classes of graphs also; cactus graphs, graphs of bounded treewidth in general, as well as planar
graphs are interesting options. Additionally, extending the algorithm to the Dial-A-Ride
Problem seems like a reasonable direction to follow.

Another interesting direction is to leverage the ideas behind the PTAS for classical TSP
on the Euclidean plane [6, 7] (or any other space which admits an approximation scheme for
that matter) to obtain consistency guarantees which approach 3/2 arbitrarily close as the
computational time is allowed to increase. Note that, since our smoothness proof follows
from consistency itself and robustness from solving a classical TSP instance, these results
would automatically extend, modulo some worsening of the bounds as a function of the
approximation quality. For this, one possible approach is to extend the notion of a sensible
set to that of ϵ-sensible, meaning that a (1 + ϵ)-approximation of the optimal Online TSP
solution is guaranteed to exist within the set. A similar relaxation would also make sense for
the idea of dominating sets.
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Abstract
In the Vertex Connectivity Survivable Network Design (VC-SNDP) problem, the input
is a graph G and a function d : V (G) × V (G) → N that encodes the vertex-connectivity demands
between pairs of vertices. The objective is to find the smallest subgraph H of G that satisfies all these
demands. It is a well-studied NP-complete problem that generalizes several network design problems.
We consider the case of uniform demands, where for every vertex pair (u, v) the connectivity demand
d(u, v) is a fixed integer κ. It is an important problem with wide applications.

We study this problem in the realm of Parameterized Complexity. In this setting, in addition
to G and d we are given an integer ℓ as the parameter and the objective is to determine if we can
remove at least ℓ edges from G without violating any connectivity constraints. This was posed as
an open problem by Bang-Jansen et.al. [SODA 2018], who studied the edge-connectivity variant
of the problem under the same settings. Using a powerful classification result of Lokshtanov et
al. [ICALP 2018], Gutin et al. [JCSS 2019] recently showed that this problem admits a (non-uniform)
FPT algorithm where the running time was unspecified. Further they also gave an (uniform) FPT
algorithm for the case of κ = 2. In this paper we present a (uniform) FPT algorithm any κ that
runs in time 2O(κ2ℓ4 log ℓ) · |V (G)|O(1).

Our algorithm is built upon new insights on vertex connectivity in graphs. Our main conceptual
contribution is a novel graph decomposition called the Wheel decomposition. Informally, it is a
partition of the edge set of a graph G, E(G) = X1 ∪ X2 . . . ∪ Xr, with the parts arranged in a cyclic
order, such that each vertex v ∈ V (G) either has edges in at most two consecutive parts, or has
edges in every part of this partition. The first kind of vertices can be thought of as the rim of the
wheel, while the second kind form the hub. Additionally, the vertex cuts induced by these edge-sets
in G have highly symmetric properties. Our main technical result, informally speaking, establishes
that “nearly edge-minimal” κ-vertex connected graphs admit a wheel decomposition – a fact that
can be exploited for designing algorithms. We believe that this decomposition is of independent
interest and it could be a useful tool in resolving other open problems.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Parameterized Complexity, Vertex Connectivity, Network Design

Digital Object Identifier 10.4230/LIPIcs.ESA.2023.13

Funding Pranabendu Misra: Supported by Google India Research Award 2022, and Start-Up Grant
2022 (SRG/2022/001927) of Science and Engineering Research Board (SERB), India.
Saket Saurabh: Supported by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No. 819416), and Swarnajayanti
Fellowship (No. DST/SJF/MSA01/2017-18).

© Jørgen Bang-Jensen, Kristine Vitting Klinkby, Pranabendu Misra, and Saket Saurabh;
licensed under Creative Commons License CC-BY 4.0

31st Annual European Symposium on Algorithms (ESA 2023).
Editors: Inge Li Gørtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz Herman; Article No. 13;
pp. 13:1–13:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jbj@imada.sdu.dk
https://orcid.org/0000-0001-5783-7125
mailto:krknu12@student.sdu.dk
mailto:pranabendu@cmi.ac.in
https://orcid.org/0000-0002-7086-5590
mailto:saket@imsc.res.in
https://orcid.org/0000-0001-7847-6402
https://doi.org/10.4230/LIPIcs.ESA.2023.13
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


13:2 A Parameterized Algorithm for Vertex Connectivity SNDP with Uniform Demands

1 Introduction

One of the most important challenges in designing real world networks is to ensure their
reliability in the face of damages and equipment failures. A natural solution is to build
additional redundancy in the network, at lowest possible costs, to guarantee connectivity up
to a certain number of failures. This motivates the study of network design problems, and
they are well studied in combinatorial optimization and algorithm design. The problem is
abstractly described using graphs, where vertices naturally represent the nodes of the network,
the edges represent the connections between the nodes and each edge has an associated cost.
In many applications, the objective is to find a minimum cost subgraph that connects all
the nodes and is also able to withstand a certain number of failures of vertices or edges. We
refer to the surveys [14, 19, 22] for details.

Formally, in the case of vertex failures this problem is called Minimum κ-Vertex
Connected Spanning Subgraph (κ-VCSS); the input is a graph G on n vertices with
edge costs w : E(G)→ R+, and the objective is to find a spanning subgraph H of minimum
total cost such that it remains connected even when κ − 1 vertices are deleted, for some
fixed integer κ. And in the case of edge-failures, we get Minimum λ-Edge Connected
Spanning Subgraph (λ-ECSS) where we must ensure network connectivity even after
λ− 1 edges fail, for some fixed integer λ. Both these problems are very well studied, and
have wide applications. Unfortunately they are NP-hard, even in the unweighted setting.
Therefore they have been extensively studied in Approximation algorithms [14, 19, 22], and
more recently in Parameterized algorithms.

If a pair of vertices u, v ∈ V (G) remain connected even after κ− 1 vertex failures, then
by the Menger’s Theorem [3, Theorem 7.3.1], there must be κ internally disjoint paths
from u to v in G. In other words, the vertex-connectivity between u and v is at least κ

in G. Since every pair of vertices in G must have this property, the graph G must be
κ-vertex connected. Similarly, in the case of edge-connectivity, the graph G must be λ-edge
connected. Interpreting κ-VCSS / λ-ECSS in terms of connectivity leads to the Survivable
Network Design Problem (SNDP), where we may have different connectivity demands
between different vertex pairs. SNDP captures a number of network design problems such
as Steiner Tree, Minimum Equivalent Digraph, Hamiltonian Cycle etc. We can
classify many network design problems by the nature of their connectivity constraints into
variants of Edge Connectivity SNDP (EC-SNDP) and Vertex Connectivity SNDP
(VC-SNDP). Observe that κ-VCSS and λ-ECSS correspond to the uniform connectivity
demands case of these problems, respectively. Hence they are also called VC-SNDP / EC-
SNDP with Uniform Demands. There has been a vast amount on research network
design problems, especially in Approximation algorithms [14, 19, 22], which has led to the
development of a number of new algorithmic techniques; e.g. the 2-approximation algorithm
of Jain for EC-SNDP [13] which introduced iterative LP-rounding.

Typically, vertex connectivity problems are often significantly more difficult than the
corresponding edge-connectivity problems. In contrast to the 2-approximation for EC-SNDP,
VC-SNDP has an approximation lower bound of 2log1−ϵ n [18], and κϵ for every κ > κ0
where ϵ > 0 and κ0 > 1 are constants [6]. Even in the case of uniform requirements, i.e.
κ-VCSS, the best known approximation algorithm for κ-VCSS has an approximation factor
O(log κ · log n

n−κ )[23], although it is improved to 6 assuming that n ≥ κ3(κ − 1) + κ [7].
Another example is the Unrestricted Vertex Connectivity Augmentation (UVCA),
where the objective is to augment a κ-vertex connected graph to a κ + t-vertex connected
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graph by adding new edges.1 While Unrestricted Edge Connectivity Augmentation
(UECA), that is similarly defined, is known to be in polynomial time from many decades
ago[11], the complexity of UVCA still remains open. Currently, a polynomial time algorithm
is only known for t = 1 [26].

Recently, there has been a lot of interest in the study of the Parameterized algorithms [8]2
for network design problems [2, 21, 4, 1, 12, 15, 16, 17, 10, 9]. The separation between
vertex-connectivity problems and edge-connectivity problems also persists in this setting;
nearly all of the currently known results are for edge-connectivity problems. Bang-Jensen
et al. [1] gave an FPT algorithm for the parameterized version of λ-ECSS3 in this setting.
This naturally raises the question for κ-VCSS, denoted by p-κ-VCSS4, which they pose as an
open problem. This is the problem we study here. Gutin et.al. [12] gave a non-uniform FPT
algorithm5 for p-κ-VCSS using a powerful classification result of Lokshtanov et al. [20]. The
running time of this algorithm is unspecified. They also gave an (uniform) FPT algorithm
for p-κ-VCSS when κ = 2 (Biconnectivity Deletion) [12].

p-κ-VCSS Parameter: ℓ

Input: A κ-connected graph G = (V, E) and an integer ℓ.
Question: Does there exist a set of edges F ⊆ E such that |F | ≥ ℓ and G′ = (V, E \ F )
is κ-connected?

Our contribution. In this work we give an (uniform) FPT algorithm for p-κ-VCSS for any
constant κ; indeed our result is stronger and the algorithm is FPT in both ℓ and κ. We
build upon the broad approach of Bang-Jensen et al. [1], but develop new insights into vertex
connectivity that are of independent interest.

▶ Theorem 1. p-κ-VCSS admits an FPT algorithm running in time 2O(κ2ℓ4 log ℓ) · |G|O(1).

Our algorithm follows the general scheme laid down by Bang-Jensen et al. [1] for p-λ-
ECSS. We consider the set of all deletable edges, i.e. all those edges e ∈ G(G) such that
G− e is κ-vertex connected. Our goal is to identify an irrelevant edge6 among these edges
and shrink the pool of relevant deletable edges until the instance can be more easily solved.
Bang-Jensen et al. [1] show that, for p-λ-ECSS, if the graph contains a large number of
deletable edges, then there exists a cyclic decomposition of the graph that can be used to
identify an irrelevant edge.7 We prove a similar kind of result for p-κ-VCSS.

We develop a new tool called the Wheel decomposition for this purpose that helps us
understand the structure of “nearly edge minimal” κ-vertex connected graphs. This is our
main conceptual contribution. An intuitive description is as follows: It is a partition of the

1 Formally, the input is a κ-vertex connected graph G and an integer t ≥ 1. The objective is to compute
a minimum cost subset F ⊆ V × V such that G + F is (κ + t)-vertex connected.

2 Let us recall that in Parameterized Complexity, the input is a pair (X, ℓ) where X is an instance of
the problem and ℓ is an integer, called the parameter. The objective is to design a Fixed Parameter
Tractable (FPT) algorithm, i.e. an algorithm that solves the problem in time f(ℓ) · |X|O(1) where f is a
function of ℓ alone.

3 They give FPT algorithms for λ-ECSS in both graphs and digraphs. Further, they extended their
results to κ-VCSS in digraphs by reducing it to special instances of λ-ECSS.

4 Here the p in p-κ-VCSS denotes parameterized
5 Here non-uniform algorithm refers to the complexity theory term, which is different from demands

being uniform or non-uniform.
6 i.e. one that is not present in some solution to the input instance and therefore remains in the graph

when the edges of that solution are deleted.
7 This is specifically required for odd values of λ in undirected graphs. The other cases are much simpler.
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edge set E(G) of a graph G, with the parts arranged in a cyclic order. Any vertex either has
edges in at most two consecutive parts, or else it has edges in every part of the partition.8

Each of these parts, which are edge-subsets, describes a vertex cut in a natural way: the
set of all those vertices that have an edge in this part and another edge somewhere outside
it. In a Wheel decomposition, these vertex cuts are highly symmetric. For our results, we
develop algorithmic tools to construct Wheel decompositions in instances of p-κ-VCSS and
then identify irrelevant edges using them.

We believe that the Wheel decomposition is of independent interest. As we have observed
earlier, vertex connectivity problems are often substantially more difficult than the corres-
ponding edge-connectivity problems. One reason for this is the lack of structural results
and tools for vertex connectivity as compared to edge connectivity. We believe that Wheel
decompositions will be a useful tool in understanding vertex connectivity and resolving other
open questions in the future.

Related works. As we mention above, our work has been most influenced by the work of
Bang-Jensen et al. [1]; we however require several new ideas and methods to deal with vertex
connectivity. Other related works gave FPT algorithms for Directed and Undirected
Spanners [16, 17, 10], and 2-VCSS [12] in a similar setting. A recent work considered
these problems parameterized by the solution size [9]. Additional results are known about
connectivity augmentation problems, e.g. Strong Connectivity Augmentation [15],
Edge connectivity Augmentation by One [21, 4] and Minimum Strong Spanning
Subgraph [2].There is a vast amount of research on network design problems in approximation
algorithms, too many to list comprehensively. We refer to the following surveys for an
overview [14, 19, 22]. There has been recent interest in improving the approximation-factor
for some specific simple cases of EC-SNDP, such as Weighted Tree Augmentation and
Weighted Connectivity Augmentation by One). A sequence of works have finally led
to breaching the approximation factor barrier 2 for both these problems [5, 24, 25]. Ideas
and methods from the Parameterized algorithms for these problems also played a role in
some of these results [5, 4].

2 Preliminaries and Notation

For a universe W and a subset of elements U ⊆ W we will denote the set W \ U by U .
When doing set-operations where one of the sets is a singleton, e.g. A ∪ {x}, we omit the
curly-braces and just write A ∪ x. For a graph G and a subset of vertices A ⊆ V (G), G−A

denotes the induced subgraph G[V (G) \A]. Similarly, for a set of edges B ⊆ E(G), G−B

denotes the subgraph with vertex set V (G) and edge-set E(G) \ B. For a graph G and
a subset of vertex-pairs B ⊆ V × V , G + B denotes the graph with vertex set V (G) and
edge-set E(G) ∪B. Let G = (V, E) be a graph and for an edge e = uv ∈ E the endpoints
of e are the vertices u and v, and we have V (e) = {u, v}. For a vertex u ∈ V let δ(u) ∈ E

define the set of edges which have u as an endpoint. We extend this notion to subsets of
vertices, i.e. δ(X) denotes the set of edges with an endpoint in X. Further, for an edge
e = (u, v), δ(e) denotes the set δ(V (e)). For a set of edges E′ ⊂ E and a vertex v we will
often denote that δ(v) ⊆ E′ by writing v ∈ E′. Given a graph G = (V, E), two vertices
s, t ∈ V , and a path P from s to t we denote the vertices of P as V (P ) and E(P ) will denote
the edges of P . Given two vertices u, v ∈ V (P ) the path P [u, v] is the subpath of P which
goes from u to v. Furthermore, P ]u, v[ will be the induced path P [u, v] \ {u, v}.

8 These two types of vertices can be thought of as the rim and the hub of a wheel.
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An instance of a parameterized problem Π consists of a main part I and a parameter l, and
it is denoted denoted (I, l). A parameterized decision problem Π admits a fixed-parameter
tractable (FPT) if for every instance (I, ℓ) ∈ Π the problem admits an algorithm which
can decide if there is an affirmative or negative answer to the problem and the algorithm
has complexity O(f(ℓ)|I|c) for some positive function f . The problem admits a uniform
FPT algorithm, if there is an algorithm A that solves an instance (I, ℓ) of the problem in
O(f(ℓ)|I|c) time. And it admits a non-uniform FPT algorithm if for each value of ℓ, there is
an algorithm Aℓ that solves an instance (I, ℓ) in O(f(l)|I|c) time.

Vertex-cuts and Separators

▶ Definition 2. Given a set of edges U ⊆ E the vertex-cut induced by U is the minimal set
of vertices denoted S(U) ⊆ V such that for every pair of edges e ∈ U and e′ ∈ U we have
V (e) ∩ V (e′) ⊆ S(U).

Note that, for every vertex u ∈ S(U) the sets δ(u) ∩ U and δ(u) ∩ U are both not empty
due to minimality of U . For two disjoint sets of edges U, W ⊆ E we will use the notation
D(U, W ) to define those vertices in V which are endpoints of edges in both U and W . For
two different graphs G = (V, E) and G′ = (V, E′), defined on the same set of vertices V , and
a set of edges U such that U ⊆ E ∩ E′ we will use a subscript to indicate in which graph we
consider the vertex-cut S(U). That is, S(U)G will refer to a (uniquely determined) vertex-cut
in G while S(U)G′ will refer to a (uniquely determined) vertex-cut in G′. Moreover, with
a slight abuse of notation for the sake of brevity, for a set of edges W ⊆ E and the graph
G∗ = (V, E \W ) we denote the vertex-cut S(U \W )G∗ in G∗ as S(U)G∗ . Note that, the
underlying graph of a vertex-cut and the corresponding subset of edges are always clear from
the context. Note that S(U)G∗ ⊆ S(U)G. We will omit the subscript if there is only one
graph or it is explicitly given in which graph the vertex-cut should be considered. Similarly,
for sets of edges and sets of vertices a subscript will indicate which graph we refer to.

A set of vertices Q ⊆ V in a graph G = (V, E) is a vertex-separator if there exist two
vertices u, v ∈ V \Q such that there is no path from u to v in G−Q. We will also call such
a vertex-separator Q a (u, v)-separator and say that Q separates u and v. For a minimal
(u, v)-separator Q, let R be the set of vertices in the same connected component as u in
G −Q and T = V \ (R ∪Q). Now let U ⊆ E be the set of edges which have an endpoint
in R and observe that Q = S(U), that is, the vertex-cut S(U) is a minimal (u, v)-separator.
This implies that δ(u) ⊆ U and δ(v) ⊆ U . Conversely, if there exists a vertex-cut S(U) such
that for two vertices u, v ∈ V it holds that δ(u) ⊆ U and δ(v) ∈ U then there cannot be a
path from u to v in G− S(U) as δ(v) will be disconnected from δ(u) in this graph. Hence
S(U) must be a (u, v)-separator. Therefore, we have the following observation:

▶ Observation 3. Let G = (V, E) be a graph. For U ⊆ E, if there exist two vertices u, v ∈ V

such that δ(u) ⊆ U and δ(v) ∈ U , then S(U) is a (u, v)-vertex-separator. And if Q is a
minimal (u, v)-separator, then there is a subset of edges U ⊆ E such that Q = S(U), δ(u) ⊆ U

and δ(v) ⊆ U .

We call a vertex-cut S(U) a nearby vertex-separator with respect to e = uv if exacty
one of the vertices u and v is contained in S(U)G, and S(U)G−e

9 is a (u, v)-separator in
G− e. Figure 1 shows a nearby vertex-separator. By Definition 2, for every x ∈ S(U)G−e it
holds that δ(x)G−e intersects UG−e and UG−e. Hence S(U)G = S(U)G−e ∪ v for v ∈ V (e)
which implies that |S(U)G| = |S(U)G−e|+ 1.

9 Recall that, for brevity we write S(U)G−e to denote S(U \ {e})G−e.
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▶ Observation 4. For a graph G = (V, E) and a nearby vertex-separator S(U)G with respect
to e = uv it holds that |S(U)G| = |S(U)G−e| + 1 and S(U)G = S(U)G−e ∪ v for some
v ∈ V (e).

e1 = u1v1

e2

e3

e4
e5

e6

e7

Figure 1 S(U) is a near-vertex separator for e1 where U = {e1, e2, e3, e4}.

▶ Observation 5. A vertex-cut S(U) is a nearby vertex-separator with respect to e = uv if
and only if one of the following holds:

δ(u) \ e ⊆ U and δ(v) ⊆ U (or δ(u) \ e ⊆ U and δ(v) ⊆ U)
δ(u) ⊆ U and δ(v) \ e ⊆ U (or δ(u) ⊆ U and δ(v) \ e ⊆ U)

We have the following results which follows directly from Menger’s Theorem.

▶ Lemma 6. Given a graph G = (V, E) and two vertices u, v ∈ V such that uv ̸∈ E, it is
possible to find a minimum (u, v)-separator S(U) in O((|V |+ |E|)O(1)) time.

▶ Corollary 7. Given a graph G = (V, E) and an edge e, in O((|V | + |E|)O(1)) time it is
possible to find a minimum nearby vertex-separator with respect to e or determine that no
nearby vertex-separator with respect to e exists.

▶ Theorem 8. The following statements are equivalent:
The graph G = (V, E) is κ-connected.
|V | ≥ κ + 1 and for every pair of vertices u, v ∈ V such that uv ̸∈ E there are κ internally
disjoint paths from u to v.
|V | ≥ κ + 1 and every vertex-separator has size at least κ.

▶ Lemma 9. Given a graph G = (V, E), it is possible to determine if G is κ-connected in
O(|G|O(1)) time .

For vertex-cuts in general we have the following.

▶ Lemma 10. The size of vertex-cuts is a submodular function, that is, given two edge-cuts
S(U), S(W ) we have |S(U ∩W )|+ |S(U ∪W )| ≤ |S(U)|+ |S(W )|.

Deletable and Relevant Edges

For a p-κ-VCSS instance (G = (V, E), ℓ) where G is a κ-vertex connected graph, we call a
subset of edge F ⊆ E a solution if G = (V, E \ F ) is κ-connected and |F | ≥ l. To help
distinguish between the edges which may be part of a solution and the edges which can
definitely not be part of a solution we have the following definition:

▶ Definition 11. An edge e ∈ E is deletable if G − e is κ-connected. If an edge is not
deletable then it is undeletable.
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Clearly every edge of a solution F ⊆ E is deletable in G. Let the set of deletable edges of G

be denoted del(G), and denote the remaining edges by undel(G). It means that for a solution
F ⊆ E we have F ⊆ del(G). Instead of working directly with deletable and undeletable edge
we will be working with a subset with the property that R ⊆ del(G), such that if there exists
a solution F then there also exists a solution F ′ ⊆ R. The idea behind the algorithm is that
we will either find a solution or shrink the set R until R is small enough that we can apply a
brute force algorithm to determine if a solution exists or no solution exists.

▶ Definition 12. A set R ⊆ del(G) is a set of relevant edges if one of the following is true.
There exists a solution F ⊆ R.
There exists no solution to the problem.

Now we have the following relation between a deletable edge e ∈ E and a nearby
vertex-separators with respect to e.

▶ Proposition 13. Given a graph G = (V, E) and a deletable edge e ∈ E it holds that every
nearby vertex-separator with respect to e in G is of size at least κ + 1.

3 Overview of the Algorithm

In this section we present an overview of our algorithm, that highlights the main ideas and
techniques of this paper. Broadly we follow the approach of Bang-Jensen et al. [1], who
studied the edge-connectivity version of the problem in both graphs and digraphs, and also
the vertex-connectivity version in digraphs. However we develop some non-trivial new ideas
and methods for vertex connectivity in undirected graphs. Due to limited space, the proofs
and some technical details have been omitted from this extended abstract; they will be
presented in the full version of the paper.

The starting point of our algorithm (similar to Bang-Jensen et al [1]) is the notion of a
deletable edge. Let del(G) be the set of all deletable edges in G. Note that it is computable in
polynomial time. It is clear that any solution F to this instance is a subset of del(G). Here, by
a solution to (G, ℓ) we mean a subset of ℓ edges, F , such that G−F is κ-connected. Note that,
if |del(G)| itself is upper-bounded, by say 49κ2ℓ4, then a simple brute-force algorithm can
find a solution in the time 2O(κ2ℓ4) ·nO(1). Therefore, we may assume that |del(G)| ≥ 49κ2ℓ4.

Consider the effect of removing a deletable edge e ∈ del(G) from G. Observe that a
number of edges in del(G) could become undeletable in G − e, i.e. removing any of these
edges in G− e will violate the κ-connectivity constraint. Let IG

e = del(G) \ del(G− e) denote
the set of all deletable edges in G that become undeletable in G− e. We drop the superscript
when the graph is clear from context. Now consider the following simple greedy algorithm
based on the notion of deletable edges:

If there is a deletable edge e in the current instance (G, ℓ), find the one minimizing
|Ie|. Then recursively solve the instance (G− e, ℓ− 1) to obtain a solution S′ to it.
Finally output the solution S = S′ ∪ {e}. Otherwise, output that there is no solution.

Observe that this algorithm succeeds only if in each sub-instance, the set Ie is not too large
(e.g. O(κ2ℓ3)). In other words, only a bounded number of deletable edges should become
undeletable in each recursive call. Then assuming that del(G) was sufficiently large (e.g.
at least O(κ2ℓ4)) at the beginning, this greedy algorithm produces a solution to (G, ℓ) in
polynomial time.

The remaining case is when there is a sub-instance G′ where, for any deletable edge
e′ ∈ del(G′) |IG′

e′ | > 100κ2ℓ3, that is a large number of deletable edges become undeletable
on removing e′ from G′. We pick such an edge e′ ∈ del(G′) and consider the pair (G′, e′) and
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analyze their structural properties. Our main technical result, simplified, is an algorithm
AIrr that given G, G′, e′, where G′ is a κ-connected subgraph G′ of G and e′ ∈ del(G′)
such that |IG′

e′ | > 100κ2ℓ2, either finds a solution to (G, ℓ), or identifies a new irrelevant
edge e′′ ∈ IG′

e′ for the instance (G, ℓ). Here, an irrelevant edge refers to a deletable edge
e′′ ∈ del(G) such that there is a solution F ⊆ del(G) \ e′′. If we mark e′′ as irrelevant, then it
is treated just like an undeletable edge, and it remains in the graph.

The algorithm runs over many iterations, where in each iteration we either find a solution
or find a new irrelevant edge. We maintain a set of relevant edges R which is initially del(G),
and update it over a sequence of iterations until either a solution is found, or we have rule
out the existence of a solution. Note that we ensure that R is always a subset of the deletable
edges. Further, the definition of the set Ie now becomes R \ del(G− e), since we are only
interested in solutions formed with relevant edges. Therefore our updated algorithm for
p-κ-VCSS is as follows:

Let (G, ℓ) be the input instance of p-κ-VCSS, and let R ⊆ del(G) be the set of relevant
edges. We first apply the above greedy algorithm to (G, ℓ), and output a solution if
one is found.
Otherwise the above greedy algorithm fails to find a solution to (G, ℓ), therefore we
find a sub-instance G′ and pick an arbitrary edge e′ ∈ del(G′) such that Ie′ is large.
Then, apply the algorithm AIrr to (G, G′, e′,R). It either finds a solution F to (G, ℓ),
or it finds a new irrelevant edge e′′ ∈ Ie′ ⊆ R for (G, ℓ). In the first case, we output
the solution found by AIrr. In the second case, start a new iteration on the instance
(G, ℓ) with R− e′′ as the new set of relevant edges.

Observe that we have at most |E| iterations of the above algorithm. Hence, the running time
of the above algorithm is (tAIrr

+ 2) · nO(1), where tAIrr
denotes the running time of the

algorithm AIrr. We prove that tAIrr
= 2O(κ2ℓ4) · nO(1) where n = |V |.

Let us also address another special case of the problem that can be solved in polynomial
time. It leads to a bound on the number of relevant edges incident on any single vertex. This
is required for our implementation of AIrr. We begin by observing the following.

▶ Observation 14. Given a κ-connected graph G = (V, E), a set of relevant edges R ⊆ E,
and an edge e = uv ∈ R. In G − e every set of κ internally disjoint paths from u to
v, P = {P1, P2, . . . , Pκ}, will use all of the irrelevant edges with respect to e, that is,
IG

e ⊆ ∪i∈{1,...,κ}E(Pi).

▶ Lemma 15. Given a κ-connected graph G = (V, E) and a set of relevant edges R. If there
exists a vertex u ∈ V such that |δ(u) ∩R| ≥ (κ + 1) · l, then a solution exists and it can be
found in O((|E|+ |V |)O(1)) time.

In the following subsections we give an overview of main ideas of the algorithm AIrr.
For simplicity, we assume that G = G′, and we have an edge e ∈ R ⊆ del(G) such that
|Ie| > 100κ2ℓ3. In the general case, where G′ is a proper subgraph of G, our methods are
identical with one extra step for handling the edges in E(G) \ E(G′). We construct a Wheel
decomposition of the graph G′ and then we lift it back to G (see Lemma 22).

The Wheel Decomposition

The key conceptual idea behind the algorithm AIrr, is what we call the Wheel decomposition
of a graph; the name is derived from the decomposition structure. See Figure 2.
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▶ Definition 16. Let r ≥ 3 and α be integers. We say that G admits an α-wheel decomposition
(W, r) if there is an edge partition W = {X0, X1, . . . , Xr−1} of E(G) into nonempty subsets,
where the subsets are indexed cyclically, such that for every i ∈ {0, . . . , r − 1} the following
holds.
1. |S(Xi)| = α

2. S(Xi) = D(Xi−1, Xi) ∪ D(Xi, Xi+1),
3. |D(Xi−1, Xi)| = |D(Xi, Xi+1)|,
4. D(Xi−1, Xi) ∩ D(Xi, Xi+1) = S(Xi) ∩ S(Xj) for every j < i− 1 and j > i + 1.

Figure 2 A simple example of a Wheel decomposition of a graph; each part contains two edges
and the center vertex is the only middle vertex of this wheel decomposition.

Observe that Property 4, ensures that for every vertex v ∈ V (G) either δ(v) contains an
edge from every part of W, or from at most two consecutive parts of W, where Xr−1 and
X0 are taken to be consecutive giving W a cyclic order. The vertices of the first kind, i.e.
those that have an edge in every part of W are called the middle vertices of W . We think of
these vertices as the hub of a wheel whose ring is formed by the non-middle vertices of W.
Note the highly symmetrical properties of the vertex-cuts induced by the parts of W . These
are extensively applied in our proofs.

For the algorithm AIrr, we shall associate a κ-Wheel decomposition W with a subset
of edges E+ ⊆ R. Recall that the input to this algorithm consists of a tuple (G,R, G′, e′),
and in the simplified case that we are currently considering G = G′. Further, we have that
Ie′ = R \ del(G− e′) contains at least 100κ2ℓ3 edges. We will compute a subset E+ of Ie,
and use a Wheel decomposition to identify an irrelevant edge in E+. Towards this we first
recall the notion of a nearby vertex separator. We then have the following definition.

▶ Definition 17. Let α be an integer. Let G be a graph and let E+ = {e0, e1, · · · , e|U |−1} ⊆
E(G) be a subset of edges. We say that G admits an edge-restricted α-wheel de-
composition (W, E+) if there is an α-wheel decomposition (W, |E+|) such that for every
i ∈ {0, . . . , |E+| − 1};

ei ∈ Xi,
S(Xi) and S(Xi+1) are both nearby vertex-separators with respect to ei.

▶ Observation 18. Let G be a graph and let E+ = {e0, e1, . . . , er−1} ⊆ R be a subset of
relevant edges. Let (W, E+) be an edge-restricted α-Wheel decomposition of G, for some
integer α, where W = {X0, X1, . . . , Xr−1}. Then for each edge ei = uivi ∈ E+ such that
ei ∈ Xi, we have that δ(ui) ⊆ Xi and δ(vi) \ {ei} ∈ Xi+1. Here Xr denotes the set X0.

The key idea is the fact that both S(Xi) and S(Xi+1) are nearby vertex separators for
ei. This means that both S(Xi+1)G−ei

and S(Xi)G−ei
are ui − vi vertex separators. Hence

δ(ui) \ ei ⊆ Xi \ ei and δ(vi) \ ei ⊆ Xi. We can draw similar conclusions about Xi+1, and
then arrive at these observations. It is immediate from Observation 18 that both endpoints
of an edge ei ∈ E+ must be non-middle vertices of the Wheel decomposition (W, E+). This
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fact will be important in our proofs. However, we must also deal with another issue. Suppose
that we have a (κ + 1)-Wheel decomposition (W, E+) and we wish to mark an edge ei ∈ E+

as irrelevant. To argue the correctness, we have to show that there is a solution that excludes
ei. Towards this, given some solution F to (G, ℓ) that contains ei, we construct another
solution F ′ that excludes ei. The construction of F ′ in our proofs must not only exclude ei

but every edge in E′
i = F ∩ E(D(Xi, Xi+1)) \ Z, where Z denotes the set of middle vertices

of the Wheel decomposition (W, E+); this is a constraint of our arguments. These edges
will be replaced by another set of edges contained in E(D(Xj , Xj+1)) \ Z for some j ̸= i. To
describe the construction of F ′ formally we require the following definition.

▶ Definition 19. Given a κ-connected graph G, and a set of relevant edges R ⊆ E(G). If
G admits an edge-restricted (κ + 1)-wheel decomposition (W, E+) where E+ ⊆ R then a
friendly set of edges for ei ∈ E+ is a set of edges Ei ⊆ R such that
1. ei ∈ Ei,
2. every edge e ∈ Ei has at least one of it’s endpoints in D(Xi, Xi+1) and none of the

endpoints of e are middle vertices,
3. G− Ei is κ-connected,
and Ei has the maximum cardinality among all edge subsets fulfilling these three criteria.

Observe that a friendly set of edges Ei for an edge ei ∈ E+ gives an upper-bound on the
set E′

i described above. It suggests that choosing ei that minimizes |Ei| is the most likely
candidate for a new irrelevant edge. The following lemma gives us a way of a computing
friendly set of edges for a given wheel decomposition (W , E+).

▶ Lemma 20. Given a κ-connected graph G, a set of relevant edges R, and an edge-restricted
(κ + 1)-wheel decomposition (W, E+) of G where E+ ⊆ R, it is possible to find a family
of friendly sets E = {Ei|i ∈ {0, . . . , |E+|}} in O(2O(d·(κ+1)) · |G|O(1)) time, where d is the
maximum number of relevant edges incident on a vertex v ∈ V (G).

Note that this lemma assumes that the number of relevant edges incident on any vertex is
bounded by some number d. Here we require Lemma 15, where we have shown that if there
were a vertex v that had (κ + 1) · ℓ relevant edges incident on it, then we can compute a
solution in polynomial time. Hence, we can assume that d < (κ+1) ·ℓ, and therefore compute
a friendly set of edges in 2O((κ+1)2·l) · nO(1) time. This is suitable for an FPT algorithm.

With all these definitions and lemmas in hand, the process of identifying a new irrelevant
edge in an instance (G,R, ℓ) will be as follows. Using the steps described in the following
sub-section, we will arrive at a subset of relevant edges E+ ⊆ R containing more than
6ℓ + κ + 2 edges and an edge-restricted (κ + 1)-Wheel decomposition (W, E+) in polynomial
time. Next, we will compute a friendly set of edges for every ei ∈ E+. Here we apply
Lemma 20, along with the bound on the number of relevant edges incident to a vertex due
to Lemma 15. This yields a friendly set of edges, Ei for each edge in ei ∈ E+, in total time
2O((κ+1)2·l) · nO(1). Finally, we mark the edge in ei ∈ E+ with the smallest friendly set of
edges as irrelevant. The correctness of the last step is from the following lemma, which is
one of our main technical results.

▶ Lemma 21. Given a graph G = (V, E), a set of relevant edges R, an edge-restricted
(κ + 1)-wheel decomposition (W, E+) of G with E+ ⊆ R where |E+| ≥ 6l + κ + 2, and a
family of friendly sets E for the edges in E+ such that Es ∈ E has the minimum cardinality
of all the sets in E, it holds that R− es is a set of relevant edges in G.

To prove this lemma we consider a hypothetical solution F such that es ∈ F and then we
construct another solution F ′ that excludes es. This then implies that es is irrelevant. Let
W = {X0, X1, . . . , X6ℓ+κ+1}. Since |F | = ℓ, there must exist an index i ∈ {1, . . . , 6ℓ + κ + 2}
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such that for every j ∈ {−2, . . . , 3}, Xi+j ∩ F = ∅. Let E′
s = F ∩ D(Xi, Xi+1) and note

that es ∈ E′
s. Let F ′ = (F \ E′

s) ∪ Ei. We claim that F ′ is also a solution. It is clear that
|F ′| ≥ |F | by our choice of es. To argue that G − F ′ is κ-vertex connected, we give an
argument based on (hypergraph) cut submodularity. While the actual argument is quite
long and non-trivial, the essence of it is that if there were a κ− 1 cut in G− F ′, then using
submodularity we can trim it down to a κ − 1 cut that must exist in G − F . This is a
contradiction since F is a solution, i.e. G − F is κ-connected. Here our arguments make
extensive use of the highly symmetric properties of the cuts S(Xi).

The next lemma allows us to lift a Wheel decomposition from a subgraph G′ back to a
graph G. This is required for the case where our simplifying assumption that G′ = G doesn’t
hold. In that case, G = G′ + F ′ and we have a Wheel decomposition in G′ that must be
converted into a decomposition in G.

▶ Lemma 22. Given a graph G′, a nonempty set of edges F ′ ⊆ V (G′) × V (G′),
an edge-restricted (κ + 1)-wheel decomposition (W ′ = {X ′

0, X ′
1, · · · , X ′

|W|′−1}, E′ =
{e′

0, e′
1, · · · , e′

|W|′−1}) of G′ such that |W ′| ≥ 2 · |F ′| · (r + 1) + 1 for an integer r ≥ 4,
it holds that in polynomial time it is possible to find an edge-restricted (κ + 1)-wheel decom-
position (W ′, E+) of G = G′ + F ′ such that |W ′| = r and E+ ⊆ E′.

The proof of this lemma essentially attempts to “merge” those parts {X ′
i} that are damaged

by adding F ′. The details are presented in the full-version.

Wheel Decomposition for p-κ-VCSS

In this section we give an overview of the next part of the algorithm AIrr that computes
a Wheel decomposition with certain useful properties. The input is a κ-connected graph
G on n vertices, an integer ℓ and a set of relevant edges R and an edge e ∈ R such that
Ie = R \ del(G − e) contains at least κℓ · 2(h + 3) edges. Here h ≥ 3 denotes the number
of parts in our Wheel decomposition, and it is an integer whose value is roughly O(κℓ2) in
our final algorithm. We compute a edge-restricted Wheel decomposition (W, E+) where
E+ ⊆ Ie using the following lemma, which is our second main technical result.

▶ Lemma 23. Given a κ-connected graph G = (V, E), an integer h ≥ 3, an edge e = uv ∈ R
where R is a relevant set of edges for G, such that |Ie| ≥ κ · ℓ · 2(h + 3), in polynomial time
G it is possible to either:
1. find a set of edges F ⊆ E such that G− F is κ-connected and |F | = ℓ, or
2. find a set E+ ⊆ Ie such that |E+| = h and an edge-restricted (κ + 1)-wheel decomposition

(W , E+) of G.

Our proof of this lemma relies on several structural properties of e and Ie. In essence, we
first identify a suitable subset of edges in Ie that can lead to the required Wheel decomposition,
and then prove this fact. The first ingredient is the following. Let e = uv and since e ∈ R,
the graph G− e is κ-connected. Then we argue that for any system of κ internally disjoint
paths from u to v in G − e, P, every edge in Ie occurs in one of the paths in P. This
is because if some edge e′ ∈ Ie was excluded from P, then one can show that G − e − e′

must also be κ-connected. From this statement we can conclude that one of the paths
in P must have at least |Ie|/κ ≥ ℓ · 2(h + 3) edges from Ie, and let P ∈ P be such a
path. We say that this path P satisfies the intersection property with respect to e. Observe
that by a simple max-flow computation we can find this path P in polynomial time. Let
{e1, e2, . . . , eℓ·2(h+3)} ⊆ E(P )∩ Ie where the edges are in sequence of traversing P from u to
v. Our objective is to show that a subset of these edges can lead us to the required Wheel
decomposition.
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Let E′ = {ei | i = 1 mod 2(h + 3)}, and let r be the least integer such that er ∈ E′

and G′ = G − {ei | i = 1 mod 2(h + 3) and i ≤ r} is not κ-connected. If r ≥ ℓ + 1, then
clearly {ei | i = 1 mod 2(h + 3) and i < r} is the required solution to (G, ℓ,R). Therefore,
we assume r ≤ ℓ, and let E′′ = {ei | i = 1 mod 2(h + 3) and i < r}. It is clear that G− E′′

and G− er are κ-connected, but G′ = G− E′′ − er is not.
Let us fix a vertex-separator S(U ′)G′ of size less than κ in G′, where U ′ ⊆ E(G′). It

is clear that S(U ′)G′ separates the vertex pairs ur, vr and uj , vj where er = urvr and
ej = ujvj ∈ E′′ for some j < r. Let us fix the largest such j. Note that r− j ≥ 2(h + 3) and
hence r ≥ 2(h + 3). Let E∗ = {ej , er} ∪ {er+2i−2(h+2) | 0 ≤ i ≤ h + 1}. Finally, we define
the edge subset E+ which contains h edges, that forms one half of our Wheel decomposition
(W , E+) as follows:

E+ = E∗ \ {ej , er−2(h+2), er−2, er}

We remark that the choice of E+ may seem rather arbitrary, however it was chosen to
encode several useful properties that are required for our proof. These properties are applied
in the construction of the edge partition W , which forms the other half of our decomposition.

For convenience, let us rename the edges in E∗ as si ← er+2i−2(h+2) and further let
s = ej and t = er. The following lemma is our next key ingredient, that computes a family
of vertex cuts, defined via edge-subsets, corresponding to E∗. These cuts will be used to
define W .

▶ Lemma 24. Given a graph G = (V, E), an edge e = uv ∈ R and a path P between u and
v fulfilling the intersection property such that Ie ∩ P ̸= ∅, in polynomial time it is possible to
find a family of cuts C = {C1, C3 · · · , C|Ie∩P |} such that for each ei ∈ Ie ∩ E(P ),
1. ei ∈ Ci, e ∈ Ci, and S(Ci) is a nearby vertex-separator with respect to both ei and e.
2. vi is the only internal vertex of P in S(Ci).
3. |S(Ci)| = κ + 1,
4. For every ej = ujvj where 1 < j < i, δ(uj), δ(vj) ⊆ Ci

5. For every ej = ujvj where j ≥ i + 2, δ(uj), δ(vj) ⊆ Ci

Further Ci ⊂ Cj for any j ≥ i + 2.

Proving this lemma is not too difficult, although it requires working out some details. The
idea is to start with a collection of arbitrary κ-cuts in G− e containing an endpoint of these
edges, and further exploiting the membership of ei in Ie. These cuts are “untangled” using
the submodularity of hypergraph cuts, to obtain that last containment property. Similar
ideas were used by Bang-Jensen et al [1].

Applying the above lemma to G, e and P we obtain a collection of cuts, C =
{Cr, C0, C1, . . . Ch+1, Ct} corresponding to the edges in E∗ = {s, s0, s1, . . . , sh+1, t}. Note
that these cuts satisfy all the properties of the above lemma, and in particular Ci ⊂ Cj for
any i < j in this collection. We can now define the edge-partition of our Wheel decomposition
as follows:

W = {X1 = E \ (Ch ∩ C1 ∩ U ′} ∪ {Xi = Ci ∩ Ci−1 ∩ U ′ | 2 ≤ i ≤ h}

Finally, to prove that W is indeed the required Wheel decomposition, we prove it’s
properties one by one. The main tool that we use is once again submodularity of cuts. In
particular, from the definition of W, some intutition can be derived. The cut induced by
U ′ is of size κ− 1 in G′. This cut splits each Ci into two pieces, and further because of the
containment property of C, the parts Xi are defined as the portion of Ci \ Ci−1 in U ′. The
part X1 simply contains the remaining edges. The various symmetric properties of the cuts
induced by each Xi are consequences of the choice of E∗, via submodularity of cuts.
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Putting it all together: An algorithm for p-κ-VCSS

We collect all the previous results to arrive at the following algorithm for p-κ-VCSS:
1. If the induced graph G′ = (V,R) contains a vertex with degree at least (κ + 1) · l then

use the algorithm of Lemma 15 to find a solution and return it.
2. If |R| ≤ 49κ2l4, then for every subset F ′ ⊆ R of size l determine if F ′ is a solution. If F ′

is a solution, return F ′ as a solution. If none of the subsets F’ is a solution, return that
no solution exists.

3. Choose an edge fi ∈ Ri, and let Ifi
= Ri \ del(Gi \ fi):

a. If |Ifi
| ≥ κ · l · 2(2i · (6l + κ + 3) + 4) then by Lemma 23

i. we can either find a solution F ′ for Gi of size l, and return F ′ as a solution,
ii. or we can find a set E+ ⊆ Ie such that |E+| = 2i · (6l + κ + 3) + 1 and an

edge-restricted (κ + 1)-wheel decomposition (W , E+) for Gi.
A. If F ̸= ∅ then given Gi, F , and (W, E+) by Lemma 22 find an edge-restricted

(κ + 1)-wheel decomposition (W ′, E′) of G = Gi + F such that E′ ⊆ E+ and
|E′| ≥ 6l + κ + 2.

B. Otherwise, if F = ∅ then set (W ′, E′) = (W, E+) to be an edge-restricted
(κ + 1)-wheel decomposition of G = Gi.

C. Given the set of relevant edges R, and (W ′, E′) use the algorithm from Lemma 20
to find the friendly sets for every edge ej ∈ E′.

D. Find the edge ej ∈ E′ for which the corresponding friendly set Ej has the smallest
cardinality among all the friendly sets. Now set R := R \ ej and go to step 2.
The correctness of this step follows from Lemma 21.

b. Otherwise, set Gi+1 = Gi − fi, Ri+1 = R ∩ del(Gi+1), and F := F ∪ fi. If |F | ≥ l

return F as a solution.

This algorithm proves Theorem 1. The correctness follows from the correctness of each
lemma used in the above. For the running time, observe that Step 1 runs in polynomial
time. The next steps are repeated at most |E(G)| times, for each iteration, where we shrink
the set of relevant edges R until Step 2 is finally applicable. Note that Step 2 runs in time
2O(κ2ℓ4) · nO(1). One of Steps 3(a)i and 3(a)ii is run in each iteration, which is decided
in polynomial time by Lemma 23. In the second case, we obtain a Wheel decomposition
(W, E+) in Step 3(a)iiC we spend 2O((κ+1)2·l) ·nO(1) time computing friendly sets of edges for
E+. We then mark an irrelevant step, and proceed to the next iteration. A straightforward
calculation gives the claimed running time of the algorithm.

Due to space constraints, several proofs were omitted. Complete details may be found in
the full version of the paper, in the appendix. Finally, we also thank anonymous reviewers
for their suggestions on improving this paper.
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Abstract
A Lyndon word is a string that is lexicographically smaller than all of its non-trivial suffixes. For
example, airbus is a Lyndon word, but amtrak is not a Lyndon word due to its suffix ak. The
Lyndon array stores the length of the longest Lyndon prefix of each suffix of a string. For a length-n
string over a general ordered alphabet, the array can be computed in O(n) time (Bille et al., ICALP
2020). However, on a word-RAM of word-width w ≥ log2 n, linear time is not optimal if the string
is over integer alphabet {0, . . . , σ} with σ ≪ n. In this case, the string can be stored in O(n log σ)
bits (or O(n/ logσ n) words) of memory, and reading it takes only O(n/ logσ n) time. We show that
O(n/ logσ n) time and words of space suffice to compute the succinct 2n-bit version of the Lyndon
array. The time is optimal for w = O(log n). The algorithm uses precomputed lookup tables to
perform significant parts of the computation in constant time. This is possible due to properties of
periodic substrings, which we carefully analyze to achieve the desired result. We envision that the
algorithm has applications in the computation of runs (maximal periodic substrings), where the
Lyndon array plays a central role in both theoretically and practically fast algorithms.
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1 Introduction

A Lyndon word is a string that is lexicographically smaller than all of its non-trivial suffixes.
For example, airbus is a Lyndon word, but amtrak is not a Lyndon word due to its suffix
ak. The Lyndon array stores the length of the longest Lyndon prefix of each suffix of a string
(a precise definition follows later). In this article, we propose a new algorithm that computes
the (succinct version of) the Lyndon array of a length-n string over alphabet {0, . . . , σ} in
O(n/ logσ n) time and words of space on a word-RAM of word-width w ≥ log2 n.

Background and Applications. Since their introduction in the field of combinatorics on
words almost 70 years ago [32], Lyndon words have proven to be useful for designing efficient
algorithms. The Lyndon factorization of a string uniquely decomposes it into lexicographically
non-increasing Lyndon words [9, 15]. It can easily be obtained from the Lyndon array, and
it has recently been used to capture overlaps between reads for next generation DNA
sequencing [7, 8]. The closely related standard factorization T = RS of a Lyndon word
T is uniquely defined by S, which is the longest proper Lyndon suffix, or equivalently the
lexicographically smallest proper suffix of T . It is guaranteed that R is also a Lyndon word
[9]. By recursively factorizing R and S in the same manner until all segments are single
symbols, we obtain the binary Lyndon tree. This tree can also be defined for a non-Lyndon
word T , since prepending an infinitely small symbol makes any word Lyndon. The Lyndon
tree encodes the same information as the Lyndon array (see, e.g., [13, 2]).
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Hohlweg and Reutenauer [24] showed that the Lyndon factorization encodes the list of
left-to-right suffix (lexicographical) minima of a string. Crochemore and Russo [13] showed
that the Lyndon array (respectively the Lyndon tree) of a string encodes the left-to-right
minima tree (respectively the Cartesian tree) of its inverse suffix array (the array that stores
for each suffix its lexicographical rank among all the suffixes). This shows the close relation
between the Lyndon array and the suffix array [33], one of the major data structures in string
algorithmics, with countless applications in compression and indexing. Lyndon words and
the Lyndon array have been used to efficiently compute the suffix array (e.g., [3, 5, 38]) and
vice versa (e.g., [21, 31]). The Lyndon array can be computed from the suffix array in O(n)
time; however, this requires a linearly-sortable alphabet (e.g., Σ = {0, . . . , nO(1)}) due to the
information-theoretic lower bound on comparison sorting. For general ordered alphabets,
there is an O(n) time algorithm that computes the Lyndon array without the suffix array by
exploiting combinatorial properties of Lyndon words [6] (see [16] for a simplified description).
This algorithm can also be used to output a succinct 2n-bit encoding of the Lyndon array,
which is based on a balanced parentheses sequence of the tree structure of the Lyndon array.

The perhaps most important application of the Lyndon array is the computation of runs
(maximal periodic substrings). Kolpakov and Kucherov showed that there are O(n) runs in
a length-n string, and conjectured that this upper bound can be improved to n [29]. A series
of results gradually improved the best known bound [40, 10, 11, 39]. Ultimately, the Lyndon
array and its rich combinatorial properties were used to prove the conjecture [4], which
also resulted in a remarkably simple proof. The Lyndon array is also one of the two main
ingredients of a simple O(n) time algorithm for computing all the runs (see, e.g., [4, 13]).
The second ingredient is a data structure for longest common extensions (LCEs), which
answers queries of the type “Given i, j, what is the longest shared prefix between T [i..n] and
T [j..n]?”. For linearly-sortable alphabets, an LCE data structure with constant query time
can be constructed in O(n) time (e.g., [20]), which results in an O(n) time runs algorithm.
It was conjectured that the same time can be achieved for general ordered alphabets [30],
which resulted in a series of new LCE data structures aimed at these alphabets [30, 22, 12].
The first algorithm that achieves linear time [17] and hence proves the conjecture does not
use an LCE data structure at all. Instead, it relies on the combinatorial structure of the
Lyndon array to explicitly compute all the LCEs in overall linear time.

The existing O(n) time algorithms for the Lyndon array are optimal if the string is over
a general ordered alphabet. However, they are not optimal on a word-RAM of word-width
w ≥ log2 n if the alphabet is {0, . . . , σ} with σ ≪ n. In this case, ⌊logσ n⌋ symbols can
be packed in a single word of memory, and hence they can be processed simultaneously.
Word packing has lead to faster algorithms for many problems in string algorithmics. For
example, O(n log σ/

√
log n) time suffices to construct any of the following data structures

for a packed string: compressed suffix arrays and trees with O(logϵ n) time operations [27];
an index that counts occurrences of a length-m query pattern in O(m/ logσ n + logϵ n) time
[27]; the Burrows–Wheeler transform [26]; the wavelet tree [1, 35] with a fast practical
implementation [25]. A novel LCE data structure by Kempa and Kociumaka can be
constructed in even faster O(n/ logσ n) time and answers queries in O(1) time [26].

Our Contributions. We show that the succinct 2n bit representation of the Lyndon array
can be computed in O(n/ logσ n) time and words of space on a word RAM of word-width
w ≥ log2 n. The time bound is optimal under the common assumption that the input size
scales with the word-width, i.e., w = O(log n). The algorithm uses the same ideas as previous
O(n) time algorithms, but processes the string one word (rather than one position) at a time.
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We accelerate the computation with lookup tables and the LCE data structure by Kempa
and Kociumaka [26]. By carefully analyzing properties of periodic substrings, we are able to
design the lookup tables in a way that minimizes the number of required LCE queries. The
new algorithm will hopefully lead to a sublinear time algorithm for the computation of runs.

The remainder of the paper is structured as follows. In Section 2, we introduce basic
definitions and notation, as well as a simple linear time algorithm for the succinct Lyndon
array. This algorithm is the starting point of our new sublinear time algorithm, which we
present in Section 3. It uses some auxiliary data structures, which we first use as a black
box. In Sections 4 and 5, we show how to implement these data structures.

2 Preliminaries

Strings and Computational Model. For i, j ∈ N, we write [i, j] = (i− 1, j] = [i, j + 1) =
(i − 1, j + 1) to denote the integer interval {i, i + 1, . . . , j} (or the empty set if i > j). A
string T ∈ Σn is a sequence of |T | = n symbols from some alphabet Σ. The empty string
of length 0 is denoted by ε. For i, j ∈ [1, n], we denote the ith symbol of the sequence by
T [i]. The substring T [i..j] = T (i − 1..j] = T [i..j + 1) = T (i − 1..j + 1) is the sequence of
length j − i + 1 that starts with the ith and ends with the jth symbol. For j < i we define
T [i..j] = ε. If i ≤ j, then the longest common extension (LCE) at positions i and j is defined
as lce(i, j) = lce(j, i) = max({ℓ ∈ [0, n − j + 1] | T [i..i + ℓ) = T [j..j + ℓ)}). Substrings
T [1..i] and T [i..n] are respectively called prefix and suffix of T . A substring T [i..j] is proper
if T [i..j] ̸= T , and non-trivial if it is proper and T [i..j] ̸= ε. If the alphabet Σ is totally
ordered, then it induces a lexicographical order as follows. For strings S ∈ Σm and T ∈ Σn,
it holds S ≺ T (and we say that S is lexicographically smaller than T ) if and only if either S

is a prefix of T , or there is some ℓ ∈ [1, min(m, n)] such that S[1..ℓ) = T [1..ℓ) and S[ℓ] < T [ℓ].
We write S ⪯ T to denote that T is not lexicographically smaller than S. A string T [1..n]
has period p ∈ [1, n] if T [1..n− p] = T [1 + p..n]. We then call T [1..n− p] a border of T . The
concatenation of two string S and T is denoted by ST . For k ∈ N0, the k-times concatenation
(or k-power) of T is denoted by T k (with T 0 = ε).

We work on a word RAM (see, e.g., [23]) with words of width w ≥ log2 n bits (where n is
the length of the input string). A string T ∈ [0, σ)n can be stored in packed representation,
i.e., the binary representation of each symbol is stored in ⌈log2 σ⌉ bits, and the entire string
occupies n ⌈log2 σ⌉ consecutive bits or O(n/ logσ n) words of memory. (The number of
bits can be improved to ⌈n log2 σ⌉+O(log2 n) while retaining fast access [14, Theorem 1].)
Primitive bitwise operations suffice to extract any substring of length O(logσ n) in constant
time because such a substring fits in a constant number of words. Since a (sub-)string S is a
bit string of length |S| · ⌈log2 σ⌉, it can be interpreted as an integer in range [1, 2|S|·⌈log2 σ⌉]
(by reading the bit string as a binary number and adding one). We write int(S) to denote
the integer value associated with S (we also use this notations for bitvectors, as they are
merely strings with σ = 2). In this model of computation, a data structure by Kempa and
Kociumaka can be constructed in sublinear time and answers LCE queries (i.e., outputs the
LCE of any two positions) in constant time.

▶ Lemma 1 ([26, Theorem 5.4]). Given a string T ∈ [0, σ)n in packed representation, LCE
queries can be answered in O(1) time after an O(n/ logσ n) time preprocessing.

We do not use uninitialized memory or similar techniques, and hence the words of space
used by the algorithm is upper bounded by the time spent (this includes Lemma 1). Therefore,
we will not discuss any space complexities in the remainder of the paper, and instead only
show the O(n/ logσ n) time bound, which implies that O(n/ logσ n) words of space suffice.
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Figure 1 Data structures for the string ryanairairbus. Edges point to previous smaller suffixes.

Lyndon Arrays. A Lyndon word is a non-empty string T [1..n] over a totally ordered alphabet
that is lexicographically smaller than its non-trivial suffixes, i.e., ∀i ∈ [2, n] : T ≺ T [i..n].

▶ Definition 2. Let T [1..n] be a string over a totally ordered alphabet. The Lyndon array
λ[1..n] and the previous smaller suffix (PSS) array pss[1..n] are defined ∀i ∈ [1, n] by

λ[i] = max({ℓ ∈ [1, n− i + 1] | T [i..i + ℓ) is a Lyndon word }), and
pss[i] = max({j ∈ [1, i) | T [j..n] ≺ T [i..n]} ∪ {0}).

An example is provided in Figure 1a. We may interpret the PSS array as a rooted tree.
The root is an artificial node with label 0. Every text position is a node, and for any position
i, there is an edge from i to its parent pss[i]. Each position is a child of a smaller position or
the artificial root node, and hence it is easy to see that this indeed yields a tree with root 0.
An example of this so-called previous smaller suffix tree (PSS tree) is provided in Figure 1b.

A balanced parentheses sequence (BPS) encodes the tree in 2n + 2 bits (see, e.g., [36]),
which can be described in the following constructive way. We write the sequence in an
append-only manner. We perform a depth-first traversal of the tree, during which we visit
the children of each node in increasing order. Whenever we walk down an edge from pss[i] to
i, we append the opening parenthesis of node i. Whenever we walk up an edge from i to
pss[i], we write the closing parenthesis of node i. An example is provided in Figure 1b. If
we assign preorder-numbers during this traversal, then node i has preorder-number i (see
[19, Lemma 1] and [6]). Hence the ith opening parenthesis belongs to node i. In practice,
the parentheses sequence is a bitvector, where 1-bits are opening parentheses, and 0-bits are
closing ones. Bille et al. [6] showed that the PSS tree inherently encodes the Lyndon array
because λ[i] is exactly the size of the subtree rooted in node i. Hence we need to augment
the parentheses sequence such that subtree-size(i) can be answered in constant time. There
are multiple support data structures that achieve this with o(n) bits of additional space (see,
e.g., [37]), but their current construction algorithms do not achieve sublinear time. However,
we only require a small and simple subset of operations supported by these data structures
(namely rank, select, and find-close). We plan to cover the efficient construction of support
data structures for these operations in a future full version of the paper.

Simple Construction Algorithm for the PSS Tree. A simple algorithm computes the PSS
tree in O(n) time, which will be the starting point for the O(n/ logσ n) time algorithm in
Section 3. Suppose that we have already computed the subtree induced by nodes [0, i).
Attaching node i requires finding pss[i]. A strategy for this follows from the property that
(a) pss[i] is one of the nodes on the already computed path from i− 1 to the root 0, and
(b) on this path, pss[i] is the deepest node j such that either j = 0 or T [j..n] ≺ T [i..n].
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This observation has been used by previous results, and it has been proven, e.g., in [16,
Lemma 6]. It implies an algorithm in which the positions are inserted into the tree one by
one in left-to-right order. This is also the approach of Algorithm 1, which directly computes
the BPS of the tree (see [6, Algorithm 1] for a more abstract version of this algorithm).

Algorithm 1 Linear time construction of the PSS tree.
Require: Packed string T ∈ [0, σ)n.
Ensure: BPS B of the PSS tree of T .

1: B ← ( ▷ opening parenthesis of node 0
2: Q ← stack that contains only 0
3: for i = 1 to n do
4: j ← Q.top()
5: while j > 0 and T [i..n]≺T [j..n] do ▷ evaluate with LCE data structure
6: append ) to B ▷ closing parenthesis of node j

7: Q.pop()
8: j ← Q.top()
9: append ( to B ▷ opening parenthesis of node i

10: Q.push(i)
11: append |Q| times ) to B ▷ closing parentheses of nodes on path from n to 0

At the time at which the algorithm starts processing position i, the sequence B contains
the prefix of the BPS that ends with the opening parenthesis of node i− 1, and the stack
Q contains exactly the nodes on the path from i− 1 (topmost stack element) to the root 0
(bottommost stack element). A loop is used to find the topmost element j on the stack that
satisfies j = 0 or T [j..n] ≺ T [i..n] (lines 4–8). By properties (a) and (b), the final value of j

is the previous smaller suffix of i, which means that node i will be attached as a child of j.
Hence we pop the nodes on the path from i− 1 to j (but excluding j) from the stack, and
then push i on the stack (lines 7 and 10). As explained earlier, the BPS encodes a depth-first
traversal of this tree. In terms of this traversal, we just moved from node i− 1 up to node j,
and then down to node i. Thus, we write one closing parenthesis for each step up (line 6),
and then one opening parenthesis for moving down to node i (line 9). After processing
position n, we write the closing parentheses of the nodes on the path from n to 0 (line 11).

The correctness follows from properties (a) and (b). Each line takes constant time, except
for the lexicographical suffix comparison in line 5. It holds T [i..n] ≺ T [j..n] if and only if
either lce(i, j) = n−i+1 or T [i+lce(i, j)] < T [j +lce(i, j)]. Thus, the LCE data structure
from Lemma 1 suffices to lexicographically compare suffixes in constant time (we use this
technique repeatedly throughout the paper). The number of inner loop iterations is less than
the number of closing parentheses, and hence the total time needed by the algorithm is O(n).

3 A Blockwise Algorithm for the PSS Tree

In this section, we modify Algorithm 1 such that instead of processing a single index at a time,
it processes blocks of indices in each step. The block size k =

⌊
log2 n

8⌈log2 σ⌉

⌋
is approximately

one eighth of the number of symbols that fit into one word of memory, and hence there are
N =

⌈
n
k

⌉
= Θ(n/ logσ n) blocks. Let B1, . . . , BN with ∀x ∈ [1, N ] : Bx = (xk − k, xk] be the

sequence of blocks (where without loss of generality we assume that k divides n).
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In the PSS tree, each block Bx induces a forest that contains exactly the nodes that
are members of the block. For any node j ∈ Bx, if pss[j] ∈ Bx, then pss[j] is the parent
of j in the forest induced by Bx. Otherwise, j is the root of a tree in the forest. We
call these trees small trees, and their roots small roots. The small roots are exactly the
left-to-right lexicographical minima of suffixes starting in Bx, i.e., i ∈ Bx is a root if and
only if ∀i′ ∈ Bx : i′ < i =⇒ T [i′..n] ≻ T [i..n]. Just like in the PSS tree, we arrange the
children of each node in increasing order. The BPS of the forest is the concatenation of the
BPSs of its small trees in left-to-right order.

High-Level Description of the Blockwise Algorithm. We process the blocks one at a time
in left-to-right order. At the time at which we process block Bx, we have already computed
the partial PSS tree induced by all previous blocks, i.e., by [0, xk − k]. For Bx, we first
obtain its induced PSS forest. Our goal is to attach the small roots (including their small
trees) to the respective previous smaller suffixes, which lie on the path from xk − k to 0 in
the partial PSS tree. This is schematically shown in Figure 2a. Note that small roots further
to the right will be attached further up in the path. This is because suffixes on the path are
lexicographically decreasing towards the root, while the suffixes corresponding to small roots
are lexicographically decreasing from left to right. Hence our task is to lexicographically
interleave the path with the small roots. For an efficient implementation of this interleaving
process, it is crucial that we maintain the path from xk − k to 0 in a blockwise manner.
Just like in Algorithm 1, we maintain a stack of the nodes on the path. However, each
stack element is a pair (y,L), where y indicates that we consider block By, and L[1..k] is a
bitvector indicating which of the positions in the block are relevant. For j′ ∈ [1, k], it holds
L[j′] = 1 if and only if yk− k + j′ lies on the path from xk− k to 0. The stack then contains
exactly the blocks with at least one 1-bit in the bitvector. This is visualized in Figure 2a.

3.1 Detailed Description of the Blockwise Algorithm
So far, we described the algorithm in terms of the PSS tree. However, we want to directly
compute its BPS. After O(N) preprocessing time, we can obtain the BPS of the forest
induced by any block in O(1) time. This follows directly from the lemma below.

▶ Lemma 3. Let T ∈ [0, σ)n be a string in packed representation and let ϵ ∈ R+. After
O(n/ logσ n) preprocessing time, the following type of query can be answered in O(1) time.
Given a range [i, i + ℓ) ⊆ [1, n] of length ℓ ≤ log2 n

(2+ϵ)⌈log2 σ⌉ , output the BPS of the PSS forest
induced by [i, i + ℓ), as well as a bitvector R[1..ℓ] such that for j ∈ [1, ℓ] it holds R[j] = 1 if
and only if i + j − 1 is the root of a tree in the forest.

The proof of the lemma is provided in Section 4. When we lexicographically interleave
the suffixes, we will repeatedly encounter another type of query. Given a small root, we have
to find its previous smaller suffix within a block on the stack. A solution for this is provided
by the lemma below, which we prove in Section 5.

▶ Lemma 4. Let T ∈ [0, σ)n be a string in packed representation and let ϵ ∈ R+. After
O(n/ logσ n) preprocessing time, we can answer the following type of query in O(1) time.
Given a position i ∈ [1, n] and a non-empty interval [j, j+ℓ) ⊆ [1, n] of length ℓ ≤ log2 n

(5+ϵ)·⌈log2 σ⌉ ,
find the position jmax = max({j′ ∈ [j, j + ℓ) | T [j′..n] ≺ T [i..n]} ∪ {j − 1}).

Now we have all the tools needed to describe the algorithm. We start with an empty
stack Q and B = (, i.e., with the opening parenthesis of the artificial root node 0. Now we
process the blocks B1, . . . , BN in left-to-right order. At the time at which we start processing
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B1 = [1, 10] B2 = [11, 20] B3 = [21, 30] B4 = [31, 40] forest of
small trees
induced by
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Figure 2 Data structures during the execution of the blockwise algorithm with block size k = 10.
While processing B5 = [41..50], the dashed edges will be inserted into the partial PSS tree induced
by [0..40]. The drawings show the state of the relevant data structures before calling the subroutine
during the first iteration of the main routine (a), and after calling the subroutine in the first (b),
second (c), and third (d) iteration of the main routine. The state after finalizing B5 is shown in (e).
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Bx, the stack Q contains the nodes on the path from xk − k to 0 in the blockwise manner
described above, and B contains the prefix of the BPS of the PSS tree that ends with the
opening parenthesis of node xk − k. We start by querying Lemma 3 with Bx and obtain the
BPS F of the forest induced by Bx, as well as the bitvector R indicating the small roots.
We then find the rightmost 1-bit in R in constant time (there are only 2k = O( 8

√
n) possible

values of R, hence a lookup table for rightmost or leftmost 1-bits can be precomputed in
o(n/ log n) time). If this bit is at position R[b′

x], then bx = b′
x + xk− k is the rightmost small

root in the forest induced by Bx. Note that T [bx..n] is the lexicographically smallest suffix
starting in Bx. The state after this step is visualized in Figure 2a. Now we repeatedly run
the interleaving main routine described below, during which we will alter F , R, Q, and B.

Main Routine. The goal of this routine is to interleave (the remaining small trees of)
Bx with the topmost block on the stack. If F is empty (which happens if and only if R
contains only zeroes), then we have attached all small trees and the main routine terminates.
Otherwise, if Q is empty, the remaining small trees need to be attached to the root of the
PSS tree, and we append F to B. This takes O(1) time and also terminates the main routine.

If neither F nor Q are empty, then we retrieve and pop the topmost pair (y,L) from
Q. We use Lemma 4 to obtain by = max({j′ ∈ By | T [j′..n] ≺ T [bx..n]} ∪ {yk − k}), and
the corresponding within-block offset b′

y = by − yk + k. If pss[bx] ∈ By then by = pss[bx],
and all remaining small trees have to be attached to nodes from By ∩ [by, n]. Since bx will
be attached to by, none of the nodes from By ∩ (by, n] will remain on the stack. Hence we
compute a bitvector L′[1..k] where for j′ ∈ [1, k] it holds L′[j′] = 1 if and only if L[j′] = 1
and j′ ≤ b′

y (this takes constant time using bitwise operations). We then push (y,L′) back
onto the stack. If however pss[bx] /∈ By, then by = yk− k (the first position to the left of By)
and bx will be attached to a node in a block left of By. This means that block By will no
longer be on the stack. Note that either way ∀j′ ∈ (by, bx) : T [j′..n] ≻ T [bx..n].

Our next task is as follows. We have to attach some (possibly none, possibly all) of the
remaining small trees to nodes in By. We reflect this change in F and R by removing the
corresponding prefix of F , and setting the corresponding bits in R to 0. Simultaneously,
we extend B such that it contains the newly attached small trees, possibly interleaved with
additional closing parentheses of nodes from By. This is realized by the following interleaving
subroutine, which we run in a loop (and which will later be replaced by a single constant
time table lookup). A sequence B′ is used to buffer the parentheses that we will append to B.

Subroutine. If either L or R consists only of 0-bits, we terminate the subroutine. Otherwise,
we obtain the rightmost 1-bit of L (with a lookup table). If this bit is at position L[j′], then
the corresponding absolute position is j = j′ + yk − k. If j′ = b′

y (which is equivalent to
j = by = pss[bx]), then all remaining small trees need to be attached to j, and we append F
to B′. We replace F with ε and R with an all-zero bitvector. This terminates the subroutine.

Otherwise (i.e., if j′ > b′
y or equivalently j > by), we obtain the leftmost 1-bit of R (with

a lookup table). If this bit is at position R[i′], then i = i′ + xk − k is the leftmost small root
that we still have to attach. Now we have to determine if T [i..n] ≺ T [j..n]. (This state is
equivalent to reaching the head of the inner loop of Algorithm 1 with the current values of i

and j.) It holds T [i..n] ≺ T [j..n] if and only if T [i..bx) ⪯ T [j..j + bx − i). This is because
j + bx − i ∈ (by, bx), and hence we have already established that T [bx..n] ≺ T [j + bx − i..n].
Thus, if T [i..bx) = T [j..j + bx − i), it immediately follows that T [i..n] ≺ T [j..n]. Note that
T [i..bx) and T [j..j + bx− i) are substrings of T (xk−k..xk] and T (yk−k..yk + k] respectively,
which will later be relevant for an efficient implementation. If T [i..n] ≺ T [j..n], then we
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append ) to B′ (this is the closing parenthesis of node j), and we assign L[j′] = 0. If, however,
T [i..n] ≻ T [j..n], then pss[i] = j. In this case, we take the prefix of F that corresponds to
the small tree rooted in i (which is the shortest balanced prefix of F), and append it to B′.
We remove this prefix from F and assign R[i′] = 0. We then continue with the next iteration
of the subroutine. After the subroutine terminates, we append B′ to B and continue with
the next iteration of the main routine. Figures 2b–2d shows the result of the subroutine in
three consecutive iterations of the main routine.

Finalizing the Block. Once the main routine terminates for block Bx, we have attached
all the small trees of Bx to B. The stack Q contains the blockwise representation of all
the nodes on the path from xk to 0, except for the ones in block Bx. Before we can
continue with the next iteration of the main routine, we have to push (x,L′′) on the stack,
where the 1-bits in L′′ correspond to the nodes on the path from xk to bx. Note that
this information can be obtained from the state of F at the beginning of the main routine
iteration. Since F is a bitvector of length 2k, a lookup table W [1..22k] suffices to store the
bitvector L′′ for each possible F . The table has O( 4

√
n) entries and can be filled naively in

O( 4
√

n · polylog(n)) ⊂ O(n/ log n) time. Once we need L′′, we simply lookup W [int(F)] in
constant time. Finally, in order to continue, the last written parenthesis needs to be the
opening parenthesis of xk. Hence we remove the at most k trailing closing parentheses of B
(in constant time, using another lookup table), and then continue by processing block Bx+1.
Figure 2e shows the running example after finalizing the processed block.

After block BN has been processed, we finish the algorithm execution by appending the
2n + 2− |B| closing parentheses of the nodes on the path from n to 0. This can be done in
O(n/ log n) time by appending them one word (rather than one parenthesis) at a time.

3.2 Analyzing the Time Complexity
The initial and final processing of each block (i.e., computing F , R, bx, and the pair (x,L′′)
to push on the stack) takes constant time. There are exactly N terminal iterations of the
main routine, i.e., iterations where either F or Q is empty. Each terminal iteration takes
constant time. In each of the non-terminal iterations, we pop a pair (y,L) from the stack.
If we do not push an updated pair (y,L′) back onto the stack, then block By will never
participate in the stack again, and hence this case occurs at most N times. If, however, we
do push an updated pair (y,L′) back onto the stack, then during the same main routine
iteration we will also attach all remaining small trees of Bx to the partial PSS tree, which
can also occur only N times. Hence the total number of iterations of the main routine is
O(N). In each non-terminal iteration of the main routine, we call the subroutine exactly
once (even though a single call may lead to multiple iterations of the subroutine). Apart
from this call, each iteration of the main routine takes constant time.

It remains to be shown how to implement the subroutine such that the O(N) calls take
O(n/ logσ n) time in total. A straightforward naive implementation takes O(poly(k)) ⊆
O(polylog(n)) time per call. Note that the subroutine only accesses the following information:
L, b′

y, R (which allows access to b′
x), F , and substrings Ty = T (yk − k..yk + k] and

Tx = T (xk− k..xk]. Bitvectors L and R are of length k bits each; b′
y is an integer from [0, k]

and hence can be encoded in ⌈log2(k + 1)⌉ ≤ ⌊0.99k⌋ bits (for sufficiently large k); sequence
F is of length at most 2k bits; strings Ty and Tx in packed representation require 2k ⌈log2 σ⌉
and k ⌈log2 σ⌉ bits respectively. This motivates a lookup table

M [1..2k][1..2⌊0.99k⌋][1..2k][1..22k][1..22k⌈log2 σ⌉][1..2k⌈log2 σ⌉].
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In entry M [int(L)][b′
y][int(R)][int(F)][int(Ty)][int(Tx)], we store B′ as well as the new values

of R and F after running the subroutine. Note that B′ is of length at most 3k because
it contains at most all the parentheses from F and one closing parenthesis per 1-bit in L.
Hence the information stored in each table entry fits in a constant number of words, and
can be retrieved in constant time. We fill the table in a lazy manner. Initially, we mark
each entry as uninitialized. When accessing M [int(L)][b′

y][int(R)][int(F)][int(Ty)][int(Tx)], we
check if this entry is marked. If it is, then we run the naive O(polylog(n)) time algorithm for
the subroutine, store the result in the entry, and remove its marking. Otherwise, the entry
already contains the values of B′, R, and F after running the subroutine, and we return
them in constant time. The lookup table has at most 27.99k⌈log2 σ⌉ ≤ 2log2 n·7.99/8 = n7.99/8

entries. Computing one entry takes O(polylog(n)) time. Thus, the entire time spent on filling
the table (i.e., on running the subroutine naively) is O(n7.99/8 · polylog(n)) ⊂ O(n/ log n).
Additional O(n/ logσ n) preprocessing time is needed for Lemmas 1, 3, and 4.

4 Proving Lemma 3

A key insight for the proof of Lemma 3 is that the lexicographical order of suffixes starting
in a small range almost entirely depends on a short substring. This is formally expressed by
the auxiliary lemma below.

▶ Lemma 5. Let T [1..n] be a string over a totally ordered alphabet, and let [i, i + 2ℓ) ⊆ [1, n]
be a non-empty interval of even length. Then at least one of the following properties holds:

∀x, y ∈ [i, i + ℓ) : T [x..n] ≺ T [y..n] ⇐⇒ T [x..i + 2ℓ) ≺ T [y..i + 2ℓ), or
∀x, y ∈ [i, i + ℓ) : T [x..n] ≺ T [y..n] ⇐⇒ T [x..i + 2ℓ)# ≺ T [y..i + 2ℓ)#,
where # is an infinitely large symbol, i.e., ∀i′ ∈ [1, n] : T [i′] < #.

Proof. Let ñ = i + 2ℓ. Assume that the lemma does not hold, then there are indices
x1, x2, y1, y2 ∈ [i, i + ℓ) such that T [x1..n] ≺ T [y1..n] but T [x1..ñ) ≻ T [y1..ñ), and T [x2..n] ≺
T [y2..n] but T [x2..ñ)# ≻ T [y2..ñ)#. It is easy to see that this implies

T [y1..ñ) ≺ T [x1..ñ) ≺ T [x1..n] ≺ T [y1..n] = T [y1..ñ)T [ñ..n], and
T [x2..ñ)# ≻ T [y2..ñ)# ≻ T [y2..n] ≻ T [x2..n] = T [x2..ñ)T [ñ..n].

Due to first condition, T [y1..ñ) is a proper prefix of T [x1..ñ) and it holds x1 < y1. Note
that T [y1..ñ) is therefore also a proper suffix (and hence a border) of T [x1..ñ), and thus
T [x1..ñ) has period p1 = (y1−x1). By the same reasoning, the second condition implies that
T [x2..ñ) is a border of T [y2..ñ). Hence y2 < x2, and T [y2..ñ) has period p2 = (x2 − y2). By
combining these observations with the initial assumption, we obtain

T [y1..ñ)T [ñ− p1..n] = T [x1..n] ≺ T [y1..n] = T [y1..ñ)T [ñ..n], and
T [x2..ñ)T [ñ..n] = T [x2..n] ≺ T [y2..n] = T [x2..ñ)T [ñ− p2..n].

The former implies T [ñ− p1..n] ≺ T [ñ..n], the latter implies T [ñ..n] ≺ T [ñ− p2..n]. Hence

T [ñ− p1..ñ)T [ñ..n] ≺ T [ñ..n] ≺ T [ñ− p2..ñ)T [ñ..n].

Since T [max(x1, y2)..ñ) is a suffix of both T [x1..ñ) and T [y2..ñ), it has periods p1 and p2.
Note that x1 < i + ℓ − p1 and y2 < i + ℓ − p2, and hence T [max(x1, y2)..ñ) is of length
ñ−max(x1, y2) > ñ− i− ℓ + min(p1, p2) = ℓ + min(p1, p2) > p1 + p2. Therefore, it follows
from the periodicity lemma [18] that T [max(x1, y2)..ñ) has period p0 = gcd(p1, p2). Since
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both T [ñ− p1..ñ) and T [ñ− p2..ñ) are suffixes of T [max(x1, y2)..ñ), they also have period
p0. Let α = T [ñ − p0..ñ), k1 = p1/p0 and k2 = p2/p0. Then both k1 and k2 are positive
integers, and it holds T [ñ − p1..ñ) = αk1 and T [ñ − p2..ñ) = αk2 . Let k0 be the largest
integer (possibly 0) such that T [ñ..n] = αk0T [ñ + k0p0..n], and let β = T [ñ + k0p0..n]. Then
α is not a prefix of β. The inequality above can be written as αk1+k0β ≺ αk0β ≺ αk2+k0β.
However, this is equivalent to αk1β ≺ β ≺ αk2β, which implies that α is a prefix of β. Due
to this contradiction, the initial assumption must be false, and the lemma holds. ◀

Now we are ready to show Lemma 3, which is restated below.

▶ Lemma 3. Let T ∈ [0, σ)n be a string in packed representation and let ϵ ∈ R+. After
O(n/ logσ n) preprocessing time, the following type of query can be answered in O(1) time.
Given a range [i, i + ℓ) ⊆ [1, n] of length ℓ ≤ log2 n

(2+ϵ)⌈log2 σ⌉ , output the BPS of the PSS forest
induced by [i, i + ℓ), as well as a bitvector R[1..ℓ] such that for j ∈ [1, ℓ] it holds R[j] = 1 if
and only if i + j − 1 is the root of a tree in the forest.

Proof. The answer to any query [i, i + ℓ) is a parentheses sequence of length exactly 2ℓ and a
bitvector of length ℓ. Hence it fits in a constant number of words. Let ℓmax =

⌊
log2 n

(2+ϵ)·⌈log2 σ⌉

⌋
.

We precompute a 2D lookup table E[1..2ℓmax][1..ℓmax] with the purpose of answering the
subset of queries that satisfy i + 2ℓmax > n. For any such query [i, i + ℓ), it holds n− i + 1 ∈
[1, 2ℓmax], and we explicitly store its answer in E[n − i + 1][ℓ]. Since these queries only
consider suffixes of length O(log n), each of the O(log2 n) table entries can be computed
naively in O(polylog(n)) time.

We answer the remaining queries using the LCE data structure from Lemma 1 and
additional lookup tables. For each possible value of ℓ, we construct tables Aℓ[1..22ℓ⌈log2 σ⌉]
and Bℓ[1..22ℓ⌈log2 σ⌉]. For every string S ∈ [0, σ)2ℓ, we store at position Aℓ[int(S)] the BPS
of the PSS forest of S that is induced by [1, ℓ], as well as the bitvector that indicates the
roots. At position Bℓ[int(S)], we store the BPS of the PSS forest of S# that is induced by
[1, ℓ], as well as the bitvector that indicates the roots.

When answering query [i, i + ℓ), we first extract T ′ = T [i, i + 2ℓ). Due to Lemma 5, the
answer to the query is either Aℓ[int(T ′)] or Bℓ[int(T ′)]. A table Cℓ[1..22ℓ⌈log2 σ⌉] is used to
decide which answer is correct. For every string S ∈ [0, σ)2ℓ, we store at position Cℓ[int(S)]
an integer pair (x, y) ∈ [1, ℓ]2 such that S[x..2ℓ] ≺ S[y..2ℓ] and S[x..2ℓ]# ≻ S[y..2ℓ]# (or
x = y = 1 if such a pair does not exist). This is as a witness pair of suffixes for which S

and S# disagree on the lexicographical order. At query time, we lookup (x̂, ŷ) = Cℓ[T ′]. If
T [i+x̂−1..n] ≺ T [i+ŷ−1..n], then we return Aℓ[int(T ′)], and otherwise we return Bℓ[int(T ′)].
The correctness follows from Lemma 5. Testing T [i+ x̂−1..n] ≺ T [i+ ŷ−1..n] takes constant
time with the LCE data structure from Lemma 1. Extracting T ′ and performing table
lookups also takes constant time because T ′ fits in a single word of memory.

A single lookup table entry can be computed naively in O(polylog(n)) time. There are
O(log n) tables, each storing at most 22ℓmax⌈log2 σ⌉ ≤ 2log2 n/(1+ϵ/2) = 1+ϵ/2

√
n entries. Thus,

the precomputation of lookup tables takes O(1+ϵ/2
√

n · polylog(n)) time, which is dominated
by the O(n/ logσ n) time needed to construct the LCE data structure. ◀

5 Proving Lemma 4

The proof of Lemma 4 relies on the properties of periodic substrings that are stated below.

▶ Proposition 6. Let α, β, and γ be arbitrary strings. The following properties hold.
1. If αβ ≻ β and αγ ≺ γ then β ≺ γ.
2. If αγ ≺ γ and α is not a prefix of γ, then ∀x, y ∈ N0 : x > y =⇒ αxβ ≺ αyγ.

ESA 2023
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Proof. We start with (1). Let k ∈ N0 be the maximal value such that both β = αkβ′ and
γ = αkγ′ for some (possibly empty) strings β′ and γ′. If αk+1β′ ≻ αkβ′ and αk+1γ′ ≺ αkγ′,
then β′ ≺ αβ′ and αγ′ ≺ γ′. Now assume that γ′ ⪯ β′, then αγ′ ≺ γ′ ⪯ β′ ≺ αβ′. However,
this implies that α is a prefix of both β and γ, which contradicts the definition of k. Thus
β′ ≺ γ′, which also implies β = αkβ′ ≺ αkγ′ = γ. For (2), consider any x, y ∈ N0 with x > y,
and assume that αγ ≺ γ. Since α is not a prefix of γ, it follows from αγ ≺ γ that αδ ≺ γ for
every string δ. Hence also αx−yβ ≺ γ, which implies αxβ = αyαx−yβ ≺ αyγ. ◀

Now we are ready to show Lemma 4, which is restated below.

▶ Lemma 4. Let T ∈ [0, σ)n be a string in packed representation and let ϵ ∈ R+. After
O(n/ logσ n) preprocessing time, we can answer the following type of query in O(1) time.
Given a position i ∈ [1, n] and a non-empty interval [j, j+ℓ) ⊆ [1, n] of length ℓ ≤ log2 n

(5+ϵ)·⌈log2 σ⌉ ,
find the position jmax = max({j′ ∈ [j, j + ℓ) | T [j′..n] ≺ T [i..n]} ∪ {j − 1}).

Proof. Similarly to what was done in Lemma 3, we spend O(polylog(n)) time to precompute
the answers to all queries that satisfy j + 3ℓ ≥ n or i + 2ℓ ≥ n. For any of the remaining
queries, we consider the set

C = {j′ ∈ [j, j + ℓ) | T [j′..j′ + 2ℓ) = T [i..i + 2ℓ)} = {c1, c2, . . . , ch}

with c1 < c2 < · · · < ch. This set contains exactly the positions j′ ∈ [j, j + ℓ) for which
we cannot easily determine whether T [j′..n] ≺ T [i..n] by inspecting only a small number of
symbols. Hence it captures the difficult part of answering a query, and we treat it separately
from the rest. We answer the query using the following subsets of [j, j + ℓ):

D′ = {j′ ∈ C | T [j′..n] ≺ T [i..n]} (the hard subset), and
D′′ = {j′ ∈ [j, j + ℓ) \ C | T [j′..n] ≺ T [i..n]} (the easy subset).

The result of the query is jmax = max(j′
max, j′′

max), where j′
max = max(D′ ∪ {j − 1}) and

j′′
max = max(D′′ ∪ {j − 1}). We start with the significantly harder task of computing j′

max.
First, we outline the algorithmic approach and the combinatorial properties of the present
substrings (without giving details of an efficient implementation). Later, we describe lookup
tables that achieve the claimed preprocessing and query times.

Periodicity of T [i..i+2ℓ) and T [c1..ch +2ℓ). We show that, if |C| ≥ 2, then there is some
p such that T [c1..ch + 2ℓ) has period p, and ∀x ∈ [1, h) : cx+1− cx = p. This is similar to [34,
Lemma 1] and [28, Lemma 2]. Assume that |C| ≥ 2. For x ∈ [1, h), let px = cx+1 − cx < ℓ.
By design of C, it holds T [cx..cx + 2ℓ− px) = T [cx+1..cx+1 + 2ℓ− px) = T [cx + px..cx + 2ℓ).
This means that T [i..i + 2ℓ) = T [cx..cx + 2ℓ) has a border of length 2ℓ− px, and therefore it
has period px. Let p be the smallest period of T [i..i + 2ℓ). If there was some x ∈ [1, h) such
that px < p, then p would not be the smallest period of T [i..i + 2ℓ). Hence px ≥ p. Now we
show that ∀x ∈ [1, h) : px = p. For the sake of contradiction, assume px > p. By definition
of C, it holds px < ℓ, which means that T [cx..cx + 2ℓ) and T [cx+1..cx+1 + 2ℓ) overlap by
cx + 2ℓ − cx+1 = 2ℓ − px > ℓ > p symbols. Due to this overlap, and because the identical
substrings T [cx..cx + 2ℓ) and T [cx+1..cx+1 + 2ℓ) have period p, it is clear that also their union
T [cx..cx+1 + 2ℓ) has period p. However, this implies T [cx..cx + 2ℓ) = T [cx + p..cx + p + 2ℓ),
which means that cx + p should be in C. Due to this contradiction, it holds px = p. It also
follows that T [c1..ch + 2ℓ) has period p.
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Computing j′
max from c1, ch, and p. We will later introduce lookup tables that output

c1, ch, and p for any query in constant time. The tables might return that c1 and ch do
not exist (i.e., |C| = 0), in which case we report j′

max = j − 1. Otherwise, it might be that
c1 = ch (i.e., |C| = 1). In this case, we report that j′

max = c1 if T [i..n] ≻ T [c1..n] (using an
LCE query for the comparison). Otherwise, we report j′

max = j − 1. It remains to be shown
how to compute j′

max if c1 ̸= ch (i.e., if |C| ≥ 2, and the previously described periodicity
exists).

We evaluate T [i..n] ≺ T [i + p..n] and T [ch..n] ≺ [ch + p..n] (using LCE queries). Due to
the periodicity of T [c1..ch + 2ℓ), for x ∈ [1, h) it holds T [ch..n] ≺ T [ch + p..n] if and only if

T [cx..n] = T [i..i + p)k−xT [ch..n] ≺ T [i..i + p)k−xT [ch + p..n] = T [cx+1..n].

Hence either T [c1..n] ≺ T [c2..n] ≺ · · · ≺ T [ch..n] or T [c1..n] ≻ T [c2..n] ≻ · · · ≻ T [ch..n], and
we already know which of the two applies. Depending on the outcome of the lexicographical
comparisons, we report j′

max according to one of the following three cases.

Case 1: T [c1..n] ≻ T [c2..n] ≻ · · · ≻ T [ch..n].
For the computation of j′

max, we are only interested in the rightmost x ∈ [1, h] such that
T [i..n] ≻ T [cx..n]. Since T [ch..n] is both rightmost and lexicographically minimal among
all the possible T [cx..n], we simply use another LCE query to check if T [i..n] ≻ T [ch..n].
If yes, we report j′

max = ch. Otherwise, we report j′
max = j − 1.

Case 2: T [i..n] ≻ T [i + p..n] and T [c1..n] ≺ T [c2..n] ≺ · · · ≺ T [ch..n].
Let α = T [i..i + p), β = T [i + p..n], and γ = T [c2..n]. The precondition of this
case means that αβ ≻ β and αγ ≺ γ. Proposition 6.1 implies β ≺ γ, and thus also
T [i..n] = αβ ≺ αγ = T [c1..n] ≺ T [c2..n] ≺ · · · ≺ T [ch..n]. Hence we report j′

max = j − 1.

Case 3: T [i..n] ≺ T [i + p..n] and T [c1..n] ≺ T [c2..n] ≺ · · · ≺ T [ch..n].
Let α = T [i..i+p). We compute r = ⌊lce(i, i + p)/p⌋+1 and s = ⌊lce(c1, c1 + p)/p⌋+1,
i.e., the respectively maximal integer powers with T [i..n] = αrβ and T [c1..n] = αsγ,
where β = T [i + rp..n] and γ = T [c1 + sp..n]. The precondition of this case means
that αsγ ≺ αs−1γ, and thus also αγ ≺ α. Note that α is not a prefix of γ. Hence
Proposition 6.2 implies that αrβ ≺ αs′

γ for any s′ < r. Thus, for x ∈ [1, h], if s−x+1 < r

then T [i..n] = αrβ ≺ αs−x+1γ = T [cx..n]. Hence we only have to consider x ≤ s− r + 1.
On the other hand, the precondition of the case also implies αrβ ≺ αr−1β, and thus
αβ ≺ α. Also, α is not a prefix of β. Hence Proposition 6.2 (with swapped roles of
β and γ) implies that αrβ ≻ αs′

γ for any s′ > r. For x ∈ [1, h], if x ≤ s − r then
T [i..n] = αrβ ≻ αs−x+1γ = T [cx..n].
This motivates the following strategy. If s− r + 1 < 1, then there is no suitable choice
of x and we report j′

max = j − 1. If k ≤ s − r, then T [i..n] ≻ T [ch..n] and we report
j′

max = ch. We are left with the case where s− r + 1 ∈ [1, h]. If T [i..n] ≻ T [cs−r+1..n],
then we report j′

max = cs−r+1 (we use another LCE query to achieve constant time). If
we still have not reported anything, then we report j′

max = cs−r if and only if s−r ∈ [1, h]
(we have already established that T [i..n] ≻ T [cs−r..n]). If, however, s− r /∈ [1, h], then
we report j′

max = j − 1.

The three cases are exhaustive, and it takes constant time to determine which case applies.
Regardless of the case, we report j′

max in constant time. We require the LCE data structure
from Lemma 1, and hence the preprocessing time is O(n/ logσ n).
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Lookup Tables for c1, ch, p, and j′′
max. As described above, we can compute j′

max in
constant time if we can determine c1, ch, and p in constant time. Note that these values
depend solely on the substrings T [i..i + 2ℓ) and T [j..j + 3ℓ). This also holds for j′′

max, which
can be written as j′′

max = max({j′ ∈ [j, j + ℓ) | T [j′..j′ + 2ℓ) ≺ T [i..i + 2ℓ)} ∪ {j − 1}).
For each possible value of ℓ, we compute a lookup table Lℓ[1..22ℓ⌈log2 σ⌉][1..23ℓ⌈log2 σ⌉]. Let
S1 ∈ [0, σ)2ℓ and S2 ∈ [0, σ)3ℓ be packed strings. In entry Lℓ[int(S1)][int(S2)], we store the
quadruple ⟨p̂, ĉmin, ĉmax, ŷmax⟩, where

p̂ is the shortest period of S1,
ĉmin = min({x′ ∈ [1, ℓ] | S2[x′..x′ + 2ℓ) = S1} ∪ {∞}),
ĉmax = max({x′ ∈ [1, ℓ] | S2[x′..x′ + 2ℓ) = S1} ∪ {−∞}),
ŷmax = max({x′ ∈ [1, ℓ] | S2[x′..x′ + 2ℓ) ≺ S1} ∪ {−∞}).

A single entry Lℓ[int(S1)][int(S2)] can be computed naively in O(poly(ℓ)) ⊆ O(polylog(n))
time. Table Lℓ has 25ℓ⌈log2 σ⌉ ≤ 2log2 n/(1+ϵ/5) = 1+ϵ/5

√
n entries, and there are O(log n) tables.

Thus, the entire preprocessing time is O(1+ϵ/5
√

n · polylog(n)) ⊂ O(n/ logσ n). Whenever we
have to answer a query i, [j, j + ℓ), we extract T ′ = T [i..i + 2ℓ) and T ′′ = T [j..j + 3ℓ) and
lookup ⟨p, cmin, cmax, ymax⟩ = Lℓ[int(T ′)][int(T ′′)]. This takes constant time because T ′ and
T ′′ fit in a single word of memory. From the construction of Lℓ, it is clear that

p is the shortest period of T [i..i + 2ℓ).
If cmin ̸=∞ then c1 = j + cmin − 1. Otherwise, c0 does not exist.
If cmax ̸= −∞ then ch = j + cmax − 1. Otherwise, ch does not exist.
If ymax ̸= −∞ then j′′

max = j + ymax − 1. Otherwise, j′′
max = j − 1.

Hence we can compute j′
max in constant time as described above, and output the query

result jmax = min(j′
max, j′′

max) in constant time. ◀
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Abstract
Wheeler nondeterministic finite automata (WNFAs) were introduced in (Gagie et al., TCS 2017) as
a powerful generalization of prefix sorting from strings to labeled graphs. WNFAs admit optimal
solutions to classic hard problems on labeled graphs and languages such as compression and regular
expression matching. The problem of deciding whether a given NFA is Wheeler is known to be
NP-complete (Gibney and Thankachan, ESA 2019). Recently, however, Alanko et al. (Information
and Computation 2021) showed how to side-step this complexity by switching to preorders: letting
Q be the set of states and δ the set of transitions, they provided a O(|δ| · |Q|2)-time algorithm
computing a totally-ordered partition (i.e. equivalence relation) of the WNFA’s states such that
(1) equivalent states recognize the same regular language, and (2) the order of (the classes of)
non-equivalent states is consistent with any Wheeler order, when one exists. As a result, the output
is a preorder of the states as useful for pattern matching as standard Wheeler orders.

Further extensions of this line of work (Cotumaccio et al., SODA 2021 and DCC 2022) generalized
these concepts to arbitrary NFAs by introducing co-lex partial preorders: in general, any NFA admits
a partial preorder of its states reflecting the co-lexicographic order of their accepted strings; the
smaller the width of such preorder is, the faster regular expression matching queries can be performed.
To date, the fastest algorithm for computing the smallest-width partial preorder on NFAs runs in
O(|δ|2 + |Q|5/2) time (Cotumaccio, DCC 2022), while on DFAs the same task can be accomplished
in O(min(|Q|2 log |Q|, |δ| · |Q|)) time (Kim et al., CPM 2023).

In this paper, we provide much more efficient solutions to the co-lex order computation problem.
Our results are achieved by extending a classic algorithm for the relational coarsest partition
refinement problem of Paige and Tarjan to work with ordered partitions. More specifically, we
provide a O(|δ| log |Q|)-time algorithm computing a co-lex total preorder when the input is a Wheeler
NFA, and an algorithm with the same time complexity computing the smallest-width co-lex partial
order of any DFA. In addition, we present implementations of our algorithms and show that they
are very efficient also in practice.
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1 Introduction

The classical pattern matching problem between two strings S (the text) and P (the pattern)
over alphabet Σ asks to find the substrings of S matching P . Although many algorithms
solving the on-line version of the problem exist, in many scenarios it is possible to pre-process
S off-line into an index to speed up subsequent pattern matching queries. As a matter of
fact, a very successful line of research dating back to the invention of suffix trees [24] and
culminating with the discovery of compressed data structures [20] showed that it is possible
to represent S in compact space while speeding up matching queries.

The indexed pattern matching problem can be generalized to collections of strings: in
this case the pattern must be found as a substring in a string collection S. A natural
approach to solve this problem is to concatenate all strings in S into one string S and re-use
the well-optimized techniques for classical pattern matching. Even though there are many
successful examples of indexes following this strategy [12, 14, 19], this approach suffers from
high space consumption during index construction (the input is very large), and does not scale
to a more general (and interesting) scenario: the case where S contains an infinite number of
strings. A solution, addressing both issues, is to represent a (potentially infinite) collection
of strings using a finite-state automaton with set of states Q and transition function δ. In
this new scenario, the goal of pattern matching is to locate walks in the automaton (seen
as a labeled graph) spelling the query pattern P . In bioinformatics, for example, genomic
collections are represented using pangenome graphs: labeled graphs encoding nucleotide
variations within the collection [5, 23]. Matching a DNA sequence over a pangenome graph
allows one to discover the genetic variation in a population [22].

Unfortunately, both the off-line and on-line pattern matching problems are hard to solve
on labeled graphs: Equi et al. [10, 11] showed that, conditioned on OVH [25], it is not possible
to design a polynomial-time algorithm to index a labeled graph such that pattern matching
queries can be answered in O(|P | + |δ|α|P |β) time, for any constants α < 1 or β < 1.

A successful paradigm to cope with this hardness is to study sub-classes of graphs where
the problem is easier. Along these lines, Gagie et al. [13] introduced the class of Wheeler
automata: labeled graphs admitting a total order of their states (a Wheeler order) which
respects the underlying alphabet’s order and it is propagated through pairs of equally-labeled
edges. Wheeler orders generalize prefix sorting (the machinery standing at the core of the
most successful string indexes) to labeled graphs and as a consequence, an index over a
Wheeler automaton supports pattern matching queries in near-optimal O(|P | log |Σ|) time.

Wheeler automata, however, have two important limitations. First, the classes of Wheeler
automata and Wheeler languages (accepted by such automata) are quite restricted. For
example, Wheeler automata cannot contain proper cycles labeled with a unary string, and
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moreover, Wheeler languages are star-free [2]. Second, several natural problems related to
Wheeler graphs are computationally hard. For example, the simple fact of deciding if an
automaton is Wheeler is NP-complete, even when the automaton is acyclic [15].

Related to the first issue, the work [8] extended state-ordering to arbitrary automata
by using the concept of co-lex partial order. By switching from total to partial orders, the
authors showed that (i) every automaton can be (partially) sorted, and that (ii) the efficiency
of pattern matching on the automaton depends on the width (maximum size of an antichain)
of such partial order. Wheeler automata are the particular case in which there exists a total
co-lex order (i.e., of width one), thus enabling near-optimal time pattern matching queries.

A way to circumvent the latter limitation (hardness of computing a Wheeler order)
was proposed by Alanko et al. [2] by switching to total preorders: the authors showed a
O(|δ| · |Q|2)-time partition refinement algorithm, which outputs a totally-ordered partition of
Q such that (1) states in the same part recognize the same language, and (2) the order of the
partition is consistent with any Wheeler order of Q. In other words, this ordered partition is
a preorder of the states as useful for indexing as Wheeler orders. Recently, a similar solution
was proposed by Chao et al. [4] to speed up the computation of Wheeler orders in practice;
after a first polynomial-time partition refinement step, their tool runs an exponential-time
solver to assign a Wheeler ordering within classes of equivalent states.

These strategies – partial orders and total preorders – were finally merged by Cotu-
maccio [6]. As in [8], the efficiency of pattern matching depends on the width of such a
partial preorder. The author described a polynomial-time algorithm computing a colex
partial preorder of smallest width over an arbitrary nondeterministic finite-state automaton
(NFA) in O(|δ|2 + |Q|5/2) time. Later, this running time was improved by Kim et al. [17]
in the particular case of DFAs with two algorithms running in time O(|Q|2 log |Q|) and
O(|δ| · |Q|), respectively, and one algorithm running in near-optimal time O(|δ| log |Q|) on
acyclic DFAs. Within the same running times, all the above-mentioned algorithms compute
also a chain partition of minimum size p of the partial preorder (by Dilworth’s theorem [9], p

is equal to the order’s width); such a chain partition is needed to build the index described
in [6]. The index can be built in linear time given as input such a chain partition, uses
(⌈log |Σ|⌉ + ⌈log p⌉ + 2) · (1 + o(1)) bits per edge, and answers pattern matching queries on the
regular language accepted by the automaton in O(p2 log(p · |Σ|)) time per pattern’s character.

Our contributions. We consider two cases of colex orders: (1) total preorders on NFAs,
and (2) partial orders of minimum width on DFAs. We provide algorithms running in time
O(|δ| log |Q|) for both cases, improving the state-of-the-art cubic and quadratic algorithms
to near-optimal time.

Our solution to (1) is obtained by extending a classic algorithm for the relational coarsest
partition refinement problem of Paige and Tarjan [21] to work with ordered partitions. Our
algorithm starts from the ordered partition corresponding to the states’ incoming labels and,
similarly to [21], iteratively refines this partition by enforcing forward-stability: for any two
parts B (the “splitter”) and D (the “split”) the image δa(B) of B through the transition
function (for any alphabet’s character a) must either contain D or be disjoint with D. If
this condition is not satisfied, D is split into three parts: states reached only from B, states
reached only from Q \ B, and states reached from both. In addition to Paige and Tarjan’s
algorithm, we show how to sort these three parts consistently with the current partition’s
order. In fact, we show that our algorithm finds a total preorder on a class of automata
being strictly larger than the Wheeler automata. We dub this class quasi-Wheeler, thereby
extending the class of automata that can be indexed to support queries in near-optimal time.
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▶ Theorem 1. For an NFA A = (Q, δ, s), we can compute a total preorder ⪯ in O(|δ| log |Q|)
time such that ⪯ corresponds to a Wheeler preorder if and only if A is quasi-Wheeler.

Our solution to (2) relies on a further modification of the partition refinement algorithm.
More specifically, we show that within the same time complexity, we can prune the auto-
maton’s transition function so that the resulting graph is a quasi-forest satisfying the following
property: every state u has only one incoming walk, whose label is co-lexicographically
smallest (the infimum) among the labels of all walks ending at u in the original DFA.
Symmetrically, we compute a pruned automaton encoding the co-lexicographically largest
strings (the suprema). We obtain our second result by plugging in the O(|Q| log |Q|)-time
algorithms of Kim et al. [17], which sort the infimum and suprema strings (suffix-doubling)1

and then compute a minimum chain partition of the smallest-width co-lex order (interval
graph coloring). Our result assumes that the DFA is input-consistent (all in-going transitions
to a state are labeled with the same letter). This assumption is a common simplification
in automata theory and it is not a limitation of our approach as every DFA can be easily
transformed into an equivalent input-consistent DFA.

▶ Theorem 2. For an input-consistent DFA A = (Q, δ, s), we can compute a minimum
chain partition of the smallest-width co-lex order in O(|δ| log |Q|) time.

We have implemented our partition refinement algorithms. We compared the implement-
ation of our algorithm from Theorem 1 with a heuristic implementation from WGT [4] (their
first polynomial time step) which, similarly to our algorithm, computes an ordered partition
being consistent with any Wheeler order (although not the most refined – unlike the output
of our algorithm). On random Wheeler NFAs generated with a tool from the same toolbox
(WGT), our implementation outperforms the heuristic from WGT by more than two orders of
magnitude. We also experimentally show that our algorithm from Theorem 2 can prune a
pangenomic DFA with more than 50 million states in less than 6 minutes.

2 Notation and Preliminaries

For an integer k ≥ 1, we let [k] := {1, . . . , k}. Given a set U , a partition P of U is a set
of pairwise disjoint non-empty sets {U1, . . . , Uk} whose union is U . We call U1, . . . , Uk the
parts of P. If we, in addition, have a (total) order of the parts, we say that it is an ordered
partition and denote it with ⟨U1, . . . , Uk⟩. For two (ordered) partitions P and P ′ of U , we
say that P ′ is a refinement of P if every part of P ′ is contained in a part of P , i.e., for every
U ′ ∈ P ′ there is U ∈ P with U ′ ⊆ U . As a special case, a partition is a refinement of itself.

Relations and Orders. A relation R over a set U is a set of ordered pairs of elements from
U , i.e., R ⊆ U × U . We sometimes omit U if it is clear from the context. For two elements
u, v from U , we usually write uRv for (u, v) ∈ R.

A strict partial order over a set U is a relation that satisfies irreflexivity, asymmetry, and
transitivity. If, in addition, a strict partial order satisfies connectedness it is a strict total
order. A total preorder over a set U is a relation that satisfies transitivity, reflexivity, and
connectedness (i.e., for all two distinct u, v ∈ U , u is in relation with v or v is in relation
with u). An equivalence relation over a set U is a relation that satisfies reflexivity, symmetry,

1 More precisely, it is a special case of the suffix doubling algorithm [17], which runs in the claimed time.
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and transitivity. For an equivalence relation ∼, we use [u]∼ to denote the equivalence class of
an element u ∈ U with respect to ∼, i.e., [u]∼ := {v ∈ U : u ∼ v}. We denote with U/∼ the
partition of U consisting of all equivalence classes [u]∼ for u ∈ U . In this paper, we denote
strict total orders with the symbols ≺ and <, total preorders with the symbols ⪯ and ≤,
and equivalence relations with the symbols ∼ and ≈.

A total preorder ⪯ over U induces an equivalence relation ∼ over U : For u, v ∈ U , define
u ∼ v if and only if u ⪯ v and v ⪯ u. Throughout the paper, ∼ will always refer to the
equivalence induced by ⪯ (the order ⪯ will always be unambiguously defined). A total
preorder ⪯, in addition, yields a strict total order ≺ on the elements of U/∼ as [u]∼ ≺ [v]∼
if and only if u ⪯ v and not v ⪯ u. Throughout the paper ≺ will refer to the strict order
induced by ⪯ (always unambiguously defined). A total preorder ⪯ over a set U can thus
be represented by a unique ordered partition ⟨U1, . . . , Uk⟩, where the parts Ui represent the
equivalence classes with respect to ∼ and their ordering represents the strict total order ≺.

Non-Deterministic Finite Automata (NFAs). Let Σ denote a fixed finite and non-empty
alphabet of letters. We assume that there is a strict total order < on the alphabet Σ.

▶ Definition 3 (NFA and DFA). A non-deterministic finite automaton (NFA) over the alphabet
Σ is an ordered triple A = (Q, δ, s), where Q is the set of states, δ : Q × Σ → 2Q is the
transition function, and s ∈ Q is the source state.

A deterministic finite automaton (DFA) over the alphabet Σ is an NFA over Σ such that
|δ(v, a)| ≤ 1 for all a ∈ Σ and v ∈ V .

We note that the standard definition of NFAs includes also a set of final states. As we are not
concerned with the accepting languages of automata in this work, we omit the final states
from the definition. In what follows we consider the alphabet Σ to be fixed and thus frequently
refer to NFAs without specifying the alphabet. Given an NFA A = (Q, δ, s), for a state u ∈ Q

and a letter a ∈ Σ, we use the shortcut δa(u) for δ(u, a), similarly δ−1
a (u) = {v : δ(v, a) = u}.

For a set S ⊆ Q, we let δa(S) :=
⋃

u∈S δa(u) and δ−1
a (S) :=

⋃
u∈S δ−1

a (u).
The set of finite strings over Σ, denoted by Σ∗, is the set of finite sequences of letters

from Σ. We extend the transition function from letters to finite strings in the common way,
i.e, for α ∈ Σ∗ and v ∈ Q, we define δα(v) recursively as follows. If α = ε, we let δα(v) = {v}.
Otherwise, if α = aα′ for some a ∈ Σ and α′ ∈ Σ∗, we let δα(v) =

⋃
w∈δa(v) δα′(w).

▶ Definition 4 (Strings Reaching a State). Given an NFA A = (Q, δ, s), for a state v ∈ Q,
the set of strings reaching v is defined as Sv = {α ∈ Σ∗ : v ∈ δα(s)}.

Equivalently, Sv is the regular language recognized by state v. For simplicity, in this
work we assume that NFAs satisfy the following two properties: (1) The source state has
no in-going transitions, i.e., Ss = {ε} and every other state is reachable from the source
state, i.e., |Sv| ≥ 1 for all v ∈ Q \ {s}. (2) The automaton is input-consistent, i.e., for
every state v ∈ Q \ {s} it holds that δ−1

a (v) is non-empty for exactly one letter a ∈ Σ.
It is easy to see that any automaton can be transformed into an equivalent one (in the
sense of the recognized language) satisfying assumptions (1) and (2). Condition (1) yields
that |Q| ≤ |δ| + 1. Condition (2) comes at the cost of increasing the number of states and
transitions by a factor of at most |Σ|. We also assume that a given NFA contains at least
one transition for every letter. We denote by λ(v) the unique label of the in-going transitions
of a state v ∈ Q \ {s}, while λ(s) := ε. We also extend this notation to sets of states, that is
for a set of states S, we let λ(S) := {λ(v) : v ∈ S} and if λ(S) = {a}, we write λ(S) = a.

ESA 2023
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Forward-Stable Partitions. Alanko et al. consider forward-stable partitions [2, Section 4.2].

▶ Definition 5 (Forward-Stability). Given an NFA A = (Q, δ, s) and two sets of states
S, T ⊆ Q, we say that S is forward-stable with respect to T , if, for all a ∈ Σ, S ⊆ δa(T ) or
S ∩ δa(T ) = ∅ holds. A partition P of A’s states is forward-stable for A, if, for any two
parts S, T ∈ P, it holds that S is forward-stable with respect to T .

A direct consequence of forward-stability is given in the following lemma, i.e., all states in
the same part of a forward-stable partition are reached by the exact same set of strings.

▶ Lemma 6. Let P be a forward-stable partition for an NFA A = (Q, δ, s) and assume that
u, v ∈ P for some part P ∈ P. Then, Su = Sv.

This property can be proven easily using the definition of forward-stability, see, e.g., [2,
Lemma 4.7]. Furthermore, there is a straightforward relationship between forward-stability
and bisimulation, see, e.g., the work of Kanellakis and Smolka [16] or Chapter 7.3 of the
book by Katoen and Baier [3]. The coarsest forward-stable partition for an NFA A, i.e.,
the forward-stable partition with fewest parts, is identical to the partition consisting of the
equivalence classes with respect to the bisimilarity relation (the unique largest bisimulation)
on A−1, the automaton obtained from A by reversing all its transitions. We include a proof
of this fact in full version of this article. This also directly yields that there is a unique
forward-stable partition. We note that a reverse statement of Lemma 6 may not necessarily
hold even for the coarsest forward-stable partition. More precisely, states in different parts of
the coarsest forward-stable partition may have the same set of strings reaching them, see the
left automaton in Figure 1. In what follows, for an NFA A = (Q, δ, s) and an equivalence
relation ∼ on Q, we write A/∼ for the quotient NFA (of A with respect to ∼) obtained
by collapsing the equivalence classes into single states, see [2, Definition 8] for a formal
definition.

Wheeler NFAs and Quasi-Wheeler NFAs. Wheeler NFAs [13] are a special class of NFAs
that can be stored compactly and indexed efficiently as they can be endowed with a specific
type of strict total order, the so-called Wheeler order.

▶ Definition 7 (Wheeler NFA and Wheeler order). Let A = (Q, δ, s) be an NFA. We say that
A is a Wheeler NFA, if there exists a Wheeler order ≺ of Q. A Wheeler order ≺ of Q is a
strict total order on Q such that the source state precedes all other states, i.e., s ≺ v for all
v ∈ Q \ {s}, and, for any pair v ∈ δa(u) and v′ ∈ δa′(u′):
(1) If a < a′, then v ≺ v′.
(2) If a = a′, u ≺ u′, and v ̸= v′, then v ≺ v′.

Clearly, not every NFA is a Wheeler NFA and, even worse, recognizing if a given NFA is
Wheeler is NP-complete (for alphabet size at least 2) as shown by Gibney and Thankachan [15].
We now introduce the following problem, called OrderWheeler: Given an arbitrary NFA
A = (Q, δ, s) as input, the task is to compute a strict total order ≺ of Q with the property
that ≺ is a Wheeler order if A is Wheeler. As a result of the NP-completeness of recognizing
Wheeler NFAs previously mentioned, also OrderWheeler is NP-hard. This follows as
checking whether a given order is indeed a Wheeler order can be done in linear time [1,
Lemma 3.1]. This motivates introducing the following relaxed version of Wheeler NFAs.
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▶ Definition 8 (Wheeler preorders and quasi-Wheeler NFAs). Let A = (Q, δ, s) be an NFA. A
Wheeler preorder ⪯ on Q is a total preorder on Q such that:

The partition Q/∼, where ∼ is the equivalence relation induced by ⪯, is equal to the
coarsest forward-stable partition of A.
The quotient automaton A/∼ is a Wheeler NFA with the strict total order ≺ induced by
⪯ on the equivalence classes with respect to ∼.

We say that A is a quasi-Wheeler NFA, if there exists a Wheeler preorder ⪯ on Q.

See the beginning of this section for the formal definition of ∼ and ≺. From the point of
view of indexing, quasi-Wheeler NFAs are as useful as Wheeler NFAs: note that the quotient
automaton A/∼ in the definition above generates the same language as the original NFA
A due to the properties of the forward-stable partition, see Lemma 6. However, A/∼ is a
Wheeler NFA and can thus be stored compactly and indexed efficiently. We next note that
Corollary 4.11 in the paper by Alanko et al. [2] directly yields the following lemma.

▶ Lemma 9. Let A = (Q, δ, s) be a Wheeler NFA, then A is also a quasi-Wheeler NFA.

Furthermore, the set of quasi-Wheeler NFAs is strictly larger than the set of Wheeler
NFAs as there exist non-Wheeler NFAs A for which the quotient automaton A/∼ is Wheeler,
e.g., the NFA and its corresponding quotient NFA in the center and on the right of Figure 1.
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Figure 1 Left: An NFA for which P = ⟨{s}, {1}, {2}, {3}⟩ is the coarsest forward-stable partition,
yet S2 = S3. Center: A non-Wheeler NFA (the two states 3 and 4 cannot be ordered) that is
quasi-Wheeler as witnessed by the Wheeler preorder ⪯ corresponding to the ordered partition
⟨{s}, {1, 2}, {3}, {4}⟩. Right: Quotient automaton A/∼, where A is the automaton in the middle
and ∼ is the equivalence relation induced by the Wheeler preorder ⪯. Notice that A/∼ is Wheeler
with the strict total order ≺ induced by ⪯ on the equivalence classes with respect to ∼.

An important advantage of quasi-Wheeler NFAs over classical Wheeler NFAs is that the
former can be recognized in polynomial time, which is implicit in the Forward Algorithm
of Alanko et al. [2]. Indeed, the Forward Algorithm receives a Wheeler NFA as input
and, in O(|δ||Q|2) time, outputs a Wheeler order of the quotient automaton A/∼, where
∼ is the equivalence relation induced by the returned partition. However, this algorithm
actually solves a slightly more general problem, since their output partition is guaranteed to
correspond to a Wheeler order of A/∼ whenever A is quasi-Wheeler rather than Wheeler. In
other words Alanko et al. gave a polynomial time algorithm for the following problem that
we call PreOrderWheeler: Given an arbitrary NFA A = (Q, δ, s), the task is to compute
a total preorder ⪯ of Q with the property that ⪯ is a Wheeler preorder if A is quasi-Wheeler.
Their polynomial time algorithm for PreOrderWheeler, the Forward Algorithm, yields a
polynomial-time recognition algorithm for quasi-Wheeler NFAs as follows: Given an arbitrary
input NFA A, run the Forward Algorithm to compute the Wheeler preorder ⪯ given by
an ordering of the forward-stable partition. The output partition is guaranteed to be the
coarsest forward-stable partition. Compute the quotient automaton with respect to this
partition and check if it is Wheeler (in polynomial time by [1, Lemma 3.1]) when endowed
with the induced strict total order ≺.
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3 Partition Refinement for Wheeler Preorders of NFAs

In this section we provide an algorithm that solves PreOrderWheeler in O(|δ| log |Q|)
time. Recall that the Forward Algorithm of Alanko et al. [2] has running time O(|δ| · |Q|2).
We achieve the nearly-linear time complexity by using the partition refinement framework
of Paige and Tarjan [21]. It is in fact clear that this framework can be used to compute a
forward-stable partition. Our notion of forward-stability corresponds to stability with respect
to |Σ| relations, defined as Ea := {(u, v) ∈ Q2 : u ∈ δa(v)} for a ∈ Σ, in their terminology [21,
Section 3]. Our main contribution here is to extend the framework so as to compute an
ordered partition (and thus a preorder), while maintaining the nearly-linear running time.

We proceed with a description of the partition refinement algorithm by Paige and Tarjan.
The algorithm maintains two partitions P and X , here P is an input partition to be refined
and X is such that (1) P is a refinement of X and (2) every part of P is stable with respect
to every part of X . Initially, X is the partition with a single part containing all elements.
Until P becomes stable, i.e., every part of P is stable with respect to every part of P , which
is witnessed by the fact that P = X , the algorithm iteratively chooses a compound part S

from X , i.e., a part form X that consists of multiple parts in P. Then a “splitter” B is
chosen as one of the parts in P contained in S and every part in P is refined using B by
doing a so-called “three-way split” that we detail in the next section. The idea behind the
three-way split is essentially to make P stable with respect to B and S \ B at the same time.
In fact, the choice of B in the algorithm of Paige and Tarjan is crucial. It is fundamental to
always choose a block B such that |B| ≤ |S|/2. This is the essential property that yields
the nearly linear running time using the observation that every element is contained in at
most logarithmically many splitters. This property on the size of B is achieved in Paige and
Tarjan’s implementation by inspecting the first two elements of the list of all parts from P
contained in S and then choosing B to be the smaller one (in size).

As it turns out, this choice of B however interferes with maintaining the order of the parts
such as to satisfy the properties of the Wheeler preorder. We solve this issue by choosing
the smaller (in size) among the first and last block (in the sense of the ordered partition)
contained in the first compound block (rather than the smaller out of the first two blocks, as
in Paige and Tarjan’s algorithm). This choice both guarantees that |B| ≤ |S|/2 and enables
us to maintain a consistent ordering between the parts resulting from a split step.

Algorithm. We proceed with a description of our algorithm. A pseudo-code formulation can
be found in Algorithm 1. First, note that an input-consistent NFA has a natural partition of
its states into the |Σ|+1 parts {Qa}a∈Σ∪{ε}, where Qa := {v ∈ Q : λ(v) = a} for a ∈ Σ∪{ε}.
Property (1) of Wheeler orders already defines the ordering of these parts: any Wheeler
preorder of the NFA’s states has to satisfy that u precedes v if u’s in-coming letter is smaller
than v’s. Hence, the ordering of the |Σ|+1 parts has to be Qε, Qa1 , . . . Qak

, where we assume
that Σ = {a1, . . . , ak} with a1 < . . . < ak. Following this observation, the ordered partition
P in the algorithm is initialized to P := ⟨Qε, Qa1 , . . . Qak

⟩.
As in the original partition refinement framework, the algorithm then keeps splitting the

parts of the partition using so called splitters which are themselves parts in the partition.
By splitting, we mean the operation of making all parts of the partition forward-stable with
respect to the splitter. As in Paige and Tarjan’s algorithm, to maintain the set of splitters,
the algorithm also maintains another ordered partition X such that P is a refinement of
X . Initially X has a unique part that is equal to Q and the algorithm will maintain the
invariant that P is forward-stable with respect to each part from X . As before, we call the
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Algorithm 1 Ordered Partition Refinement.

Input : NFA A = (Q, δ, s)
Output : Ordered Partition P of Q that corresponds to Wheeler preorder if and only

if A is quasi-Wheeler

// * initialization * //
1 P := ⟨Qε, Qa1 , ..., Qak

⟩, X := ⟨Q⟩

2 while X ̸= P do

// * get splitter B * //
3 S := first block in X consisting of multiple blocks in P
4 B := smaller of first and last block from P contained in S

5 // * variable B contains this block even if split *//

// * update X * //
6 if B is first block then replace S in X with B, S \ B else with S \ B, B

// * split blocks in P using B * //
7 for D ∈ P do

// * split D * //
8 D1 := D ∩ δa(B), D2 := D \ D1, where a = λ(D)
9 D11 := D1 ∩ δa(S \ B), D12 := D1 \ D11

// * update P * //
10 if B first block then replace D in P with non-empty sets from D12, D11, D2
11 else with non-empty sets from D2, D11, D12

// * continue for behind newly inserted blocks in P * //

12 return P

Figure 2 The two cases of our “ordered” three-way split of D into D2, D11 and D12 using splitter
B contained in the compound part S. Here, D11 is the part of D that is reached both by B and
S \ B, D12 is the part of D reached by B but not by S \ B, and D2 is the part of D reached by
S \ B but not by B. The size of the splitter B is at most half of the size of the compound block S

containing B. On the left, B is the first part in S (in the ordered partition), on the right it is the
last part. On the left, the order of B, S \ B gets propagated forward, the resulting order within D is
D12, D11, D2. On the right, the order of S \ B, B gets propagated forward, the resulting order within
D is D2, D11, D12. The two shades of blue indicate the pruning of edges explained in Section 4.

parts of X that contain more than a single part from X compound parts. The algorithm then
iteratively takes the first (in the order of the ordered partition) compound block S from P
and defines the splitter B as the smaller (in size) of the first and last (in the order of the
ordered partition) block in P contained in S.
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Once the splitter B is defined, the algorithm aims to split each part D of the partition P
(including B itself) using B. As we aim at making the partition forward-stable with respect
to B we would want to split D into D1 := D ∩ δa(B) and D2 := D \ D1. To implement the
three-way split, we however want to further refine D by S \ B. Recall that S was a part in
X that contained B and that P is already forward-stable with respect to S by the invariant.
The forward-stability of D with respect to S yields that all states in D2 are reached by S \ B

and thus D is decomposed into only three parts D11 := D1 ∩ δa(S \ B), D12 := D1 \ D11,
and D2 := D \ D1 when splitting both with B and S \ B. This three-way split can be
implemented with work proportional to the number of edges leaving B (rather than B and
S \ B). Together with the choice of B being the smaller out of the first and the last block
contained in S, this is the main property that allows to prove the nearly linear running time
bound of the algorithm. The order in which the sets D11, D12, and D2 are put in P replacing
D depends on whether B was the first or the last block in S and is chosen so as to satisfy
property 2 of Wheeler orders. Intuitively, the order of B and S \ B is propagated forward to
D11, D12, and D2, see Figure 2 for an illustration of this “ordered” three-way split.

The algorithm keeps splitting the parts in P in this way until X = P , i.e., until there are
no compound blocks left. Stopping at this point is correct by the invariant that the partition
P is forward-stable with respect to each part from X = P, and, thus, forward-stable for A.

Analysis. The following lemma states that the claimed invariant, that every part of P is
forward-stable with respect to every part of X , holds. This follows immediately from the
same property of the framework by Paige and Tarjan (the proof of this lemma can be found
in the full version).

▶ Lemma 10. At the beginning of every iteration of the while loop in Algorithm 1, it holds
that every part of the ordered partition P is forward-stable with respect to every part of X .

We will now prove the core technical result of this section: The ordered partition refinement
algorithm in fact computes a partition that corresponds to a Wheeler preorder.

▶ Lemma 11. Assume that Algorithm 1 is called on a quasi-Wheeler NFA A = (Q, s, δ).
Then, at any step of the algorithm, the partition P = ⟨Q1, . . . , Qk⟩ agrees with every Wheeler
order ≺ of the quotient automaton A′ := A/P′ , where P ′ denotes the coarsest forward-stable
partition for A. That is, if i < j, u ∈ Pi, v ∈ Pj then u ≺ v for every Wheeler order ≺ of A′.

Proof. The initial partition P = ⟨Qε, Qa1 , . . . , Qak
⟩ agrees with any Wheeler order ≺ of A′.

We will show by induction over the number of steps of the while loop that this is the case in
any step of the algorithm. Assume that this is true before some intermediate iteration and
let us denote with P the ordered partition at that point. Now, let S be the compound block
and let B be the splitter chosen in that iteration. Let us call P ′ the ordered partition after
refining P with B and S \ B, i.e., at the end of that iteration. We will prove that P ′ agrees
with any Wheeler order ≺. As in the algorithm, for D ∈ P, assume that a = λ(D) and let
D1 = D ∩ δa(B), D2 = D \ D1, and D11 = D1 ∩ δa(S \ B) and D12 = D1 \ D11. Now let
u, v ∈ D. If u and v are contained in the same set out of the three sets D12, D11, D2, nothing
is to be shown. Hence, assume that u and v are in two different sets out of the three sets.
There are three cases: (1) u ∈ D11 and v ∈ D2, (2) u ∈ D12 and v ∈ D2, and (3) u ∈ D12
and v ∈ D11. Notice first that in all three cases, there exists x ∈ B with u ∈ δa(x). Now,
recall that D is stable with respect to S due to Lemma 10 and thus there exists y ∈ S \ B

with v ∈ δa(y) in all three cases as well. Let us now first assume that B is the first block in S

in line 5. Then, as B precedes all blocks in S \ B in P and P is consistent with any Wheeler
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order of A′, we have that x ≺ y for any Wheeler order of A′. Then, property 2 of Wheeler
orders implies that u ≺ v for any Wheeler order of A′. In summary, as the algorithm replaces
D by D12, D11, D2 in this case, we deduce that P ′ again agrees with each Wheeler order of
A′. If, instead B is the last block in S in line 5, then B succeeds all blocks in S \ B in P
and thus we can analogously deduce v ≺ u from property 2 of Wheeler orders and as the
algorithm replaces D by D2, D11, D12, we deduce that P ′ agrees with every Wheeler order
of A′ also in this case. ◀

It remains to argue that the ordered partition refinement algorithm in fact runs in the
claimed running time bound of O(|δ| log |Q|). The two main ingredients are as follows: (1)
We always choose the smaller out of the first and the last part contained in S as B and thus
|B| ≤ |S|/2. As a result every state is in at most logarithmically many splitters. (2) We can
implement the algorithm in such a way that the work done in a refinement step with splitter
B is proportional to the size of B and the number of out-going transitions from B. This can
be argued completely analogously as done by Paige and Tarjan. We prove our algorithm
running time and describe the main data structure details in the full version. In summary,
we obtain the following theorem.

▶ Theorem 1. For an NFA A = (Q, δ, s), we can compute a total preorder ⪯ in O(|δ| log |Q|)
time such that ⪯ corresponds to a Wheeler preorder if and only if A is quasi-Wheeler.

4 Partition Refinement for Width-Optimal Co-lex Orders of DFAs

Cotumaccio and Prezza [8] propose a way of sidestepping the fact that there may not be a
Wheeler order for a given NFA. They show how to index general NFAs using partial orders.
For this purpose, they define co-lex orders for NFAs as follows.

▶ Definition 12 (Co-lex Order). Let A = (Q, δ, s) be an NFA. A co-lex order for A is a strict
partial order ≺ of Q such that the source state precedes all other states, i.e., s ≺ v for all
v ∈ Q \ {s}, and, for any pair v ∈ δa(u) and v′ ∈ δa′(u′):
(1) If a < a′, then v ≺ v′.
(2) If a = a′, v ≺ v′, and u ̸= u′, then u ≺ u′.

The width of a strict partial order ≺ is defined as the size of the largest antichain,
i.e. set of pairwise incomparable states, where two distinct states u, v ∈ Q are said to be
incomparable if neither u ≺ v nor v ≺ u holds. Finding a smallest-width co-lex order of
A has been of particular interest for constructing efficient indexes for pattern matching on
automata [8, 6, 7, 17]. We provide more context on co-lex orders in the full version. For
DFAs, the following order is known to be the smallest-width co-lex order [8].

▶ Definition 13. Let A = (Q, δ, s) be a DFA. The relation ≺A over Q is defined as follows.
For u, v ∈ Q, u ≺A v holds if and only if α < β for all α ∈ Su and β ∈ Sv.

In the above definition, the alphabet order < over Σ is extended to the co-lexicographical
order on strings. For the purpose of the co-lex order ≺A, a state v ∈ Q can thus be represented
solely using upper and lower bounds on Sv. In particular, for a state v ∈ Q, let inf Sv and
sup Sv be the greatest lower bound (infimum) and the least upper bound (supremum) of Sv,
respectively, which are possibly left-infinite strings. We refer the reader to the full version
for a formal definition of these concepts. As shown by Kim et al. [17], the co-lex order ≺A
can be characterized using the co-lex order of ISA := {inf Sv : v ∈ Q} ∪ {sup Sv : v ∈ Q}.

ESA 2023



15:12 Sorting Finite Automata via Partition Refinement

▶ Lemma 14 ([17, Theorem 10]). Let A = (Q, δ, s) be a DFA. Then, for any two distinct
states u, v ∈ Q, u ≺A v holds if and only if sup Su ≤ inf Sv.

We note that, for the purpose of indexing, we also need a minimum chain partition of
≺A, i.e., a minimum-size partition of Q such that the states in each part are totally ordered
under ≺A. As shown by Kim et al. [17], such a chain partition can be computed in linear
time via a greedy algorithm for the interval graph coloring problem, provided that the set
ISA (implicitly defining an interval in co-lex order for each state) has been computed and
sorted.

In this section, we give an algorithm for co-lex sorting the set ISA that runs in nearly-
linear time O(|δ| log |Q|) on any input-consistent DFA. This is a significant improvement with
respect to the best previously-known algorithms that run in O(|δ| · |Q|) and O(|Q|2 log |Q|)
time [17].

Outline. Given an input DFA A = (Q, δ, s), we first compute a pruned automaton Ainf =
(Q, δinf , s) that encodes {inf Sv : v ∈ Q} in a sense that walking back starting at a state
v ∈ Q on the pruned transition δinf yields its infimum string inf Sv. Similarly, we compute
a pruned automaton Asup = (Q, δsup, s) that encodes the supremum strings. As we will
see, computing these sets takes O(|δ| log |Q|) time each. On these two pruned automata, we
compute the co-lex order of ISA in O(|Q| log |Q|) time in a similar way as done by Kim et
al. [17], from which the smallest-width co-lex order of A (with a minimum chain partition)
can be computed in linear time.

Pruning Algorithm. The algorithm is identical to Algorithm 1 with the only difference
that we insert an additional pruning step, Algorithm 2, before Line 8 of the algorithm. See
Figure 2 for an illustration: If a state in D is reached from both B and S \ B, we only keep
the edges from the smaller (in the sense of the ordered partition) of the two. This corresponds
to changing δa such that the blue portion of the figure shrinks to the dark blue one.

Algorithm 2 Pruning Step for Algorithm 1 inserted before Line 8.

// * prune A * //
if B is the first block then delete transitions from S \ B to D1 else from B to D1.

We inductively show that Algorithm 2 outputs a pruned automaton encoding the set of
infima I := {inf Sv : v ∈ Q}. For an integer i ≥ 1, let δ(i) be the pruned transition at the
end of the i-th iteration of the while loop. Let us analogously denote with X (i) and P(i) the
state of the ordered partitions X and P in the algorithm at the end of the i-th iteration. For
convenience, we also define δ(0) = δ, X (0) = ⟨Q⟩, and P(0) = ⟨Qε, Qa1 , . . . , Qak

⟩. Lemma 10
and the definition of the pruning step yield the following invariant on forward-stability.

▶ Observation 15. At the end of every iteration i of the while loop in Algorithm 1 when
run together with the pruning step, it holds that every part of the ordered partition P(i) is
forward-stable with respect to every part in X (i) in the automaton A(i) = (Q, δ(i), s).

Intuitively speaking, the pruning step removes transitions that do not originate from the
co-lexicographically smallest part in the sorted partition. Hence, we obtain the following
lemma (the proof is deferred to the full version).

▶ Lemma 16. Let v ∈ Q be a state with a = λ(v) and let A, A′ ∈ X (i) for some i ≥ 0 be
such that v ∈ δ

(i)
a (A) ∩ δa(A′). Then either (i) A = A′ or (ii) A precedes A′ in X (i).
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Let P∗ and δ∗ be the ordered partition and the pruned transition, respectively, obtained
at the end of the algorithm’s execution. From Lemma 16, we can see that for every state
v ∈ Q \ {s}, there exists a unique part A ∈ P∗ such that v ∈ δ∗

λ(v)(A). Combining this
with Observation 15, we obtain that a unique string can be obtained by walking backwards
through the pruned transitions δ∗. For u ∈ Q, let α∗

u be the longest (or possibly left-infinite)
string that can be obtained in this way starting from u. Since every transition comes from a
co-lex smallest part, we can obtain the following lemma (the proof is included in the full
version).

▶ Lemma 17. For every u ∈ Q, α∗
u = inf Su.

It is worth noting that some states possibly have more than one in-going transitions after
the termination of the algorithm. Nevertheless, Lemma 17 still holds when we choose any of
them and remove the others. From this observation, we can assume that every state (except
the source state) in the pruned automaton Ainf has exactly one in-going transition.

Similarly, we can compute the pruned automaton for the set of suprema {sup Sv : v ∈ Q}.
The only difference is that we start with the partition P ′(0) = ⟨Qak

, . . . , Qa1 , Qε⟩ with the
reversed order. It is simple to see the greatest string can be computed with this setting.

Regarding the time complexity, notice that the partition refinement algorithm iterates
through the same partitions as if it were run on Ainf in the first place. Additional time is
taken for the pruning step for deleting transitions. This work can be done in O(1) time
per transition. Once a transition is deleted, it will never be considered in the rest of the
execution and hence the additional work amortizes to O(|δ|). Consequently, the asymptotic
time complexity of the partition refinement algorithm with pruning remains O(|δ| log |Q|).

Computing Co-Lex Order of ISA. Once the two pruned automata Ainf and Asup are
obtained, we can easily compute the co-lex order of ISA in O(|Q| log |Q|) time using the
suffix doubling algorithm [17], which extends the well-known prefix-doubling algorithm [18].
Instead of accessing via integer indexes for the doubling procedure, each state keeps a pointer
referring to another (possibly the same) state that is 2k hops away along its backward walk.
We describe all details of this algorithm in the full version. In summary, we conclude this
section with the following theorem.

▶ Theorem 2. For an input-consistent DFA A = (Q, δ, s), we can compute a minimum
chain partition of the smallest-width co-lex order in O(|δ| log |Q|) time.

5 Experimental results

We implemented our partition refinement algorithms in C++ and made it available at https:
//github.com/regindex/finite-automata-partition-refinement.git. We compared
the algorithm from Theorem 1 to the only (to the best of our knowledge) other available
tool for computing a sorted partition consistent with any Wheeler order of the input NFA,
the renaming heuristic from WGT [4]. For a fair comparison, we only run the first part of
the WGT recognizer and remove the exponential time search that is used to subsequently
compute a Wheeler order of the states ending up in equivalence classes.2 We used the
Wheeler graph generator included in WGT to generate 7 random input Wheeler NFAs with

2 As observed empirically, the partition computed by WGT is in some cases coarser than the partition
computed by our algorithm and is, thus, not necessarily forward-stable.
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|Q| ∈ {56 · 2i : i = 0, . . . , 6} and |δ| = 3|Q| (we cannot generate much denser graphs since for
Wheeler graphs δ = O(|Σ| · |Q|) and here |Σ| = 5). Our experiments were run on a server
with Intel(R) Xeon(R) W-2245 CPU @ 3.90GHz with 8 cores and 128 gigabytes of RAM
running Ubuntu 18.04 LTS 64-bit.

Figure 3 CPU time (left) and memory peak (right) for sorting seven Wheeler NFAs using our
partition refinement algorithm and the renaming heuristic contained in the WGT recognizer software.
Datasets generated using WGT specifying seven different combinations of number of states and edges.

Figure 3 shows the running time and peak memory consumption of both implementations.
As expected, our partition refinement implementation shows a slight super-linear behavior
confirming the O(|δ| · log |Q|) worst-case running time of the algorithm. On the other hand,
WGT shows a quadratic behavior, which is better than the cubic O(|δ| · |Q|2) bound for the
Forward Algorithm of Alanko et. al [2], but between ≈ 100× to ≈ 10000× slower than our
implementation. In terms of peak memory, both implementations behave linearly with respect
to the automaton’s size with a 3× advantage in favor of our implementation. On the largest
input instance containing one million states, our implementation computes the Wheeler
preorder in about seven seconds. In a second experiment, we show that our implementation
of the algorithm from Theorem 2 can prune a pangenomic DFA containing over 51 million
states and 53 million edges in 355 seconds with a peak memory of 33.2 Gb.
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Abstract
We study the computational complexity of several polynomial-time-solvable graph problems para-
meterized by vertex integrity, a measure of a graph’s vulnerability to vertex removal in terms of
connectivity. Vertex integrity is the smallest number ι such that there is a set S of ι′ ≤ ι vertices such
that every connected component of G − S contains at most ι − ι′ vertices. It is known that the vertex
integrity lies between the well-studied parameters vertex cover number and tree-depth. Our work
follows similar studies for vertex cover number [Alon and Yuster, ESA 2007] and tree-depth [Iwata,
Ogasawara, and Ohsaka, STACS 2018].

Alon and Yuster designed algorithms for graphs with small vertex cover number using fast
matrix multiplications. We demonstrate that fast matrix multiplication can also be effectively used
when parameterizing by vertex integrity ι by developing efficient algorithms for problems including
an O(ιω−1n)-time algorithm for Maximum Matching and an O(ι(ω−1)/2n2) ⊆ O(ι0.687n2)-time
algorithm for All-Pairs Shortest Paths. These algorithms can be faster than previous algorithms
parameterized by tree-depth, for which fast matrix multiplication is not known to be effective.
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1 Introduction

Parameterized complexity provides a powerful framework for studying NP-hard problems.
The main idea behind parameterized algorithms is to analyze the running time in terms of
the input size |I| as well as a parameter k, some measure of the input instance. A problem
is fixed-parameter tractable or FPT for short, if it admits an FPT algorithm, an algorithm
running in time f(k) · |I|O(1) time, where f is a function solely depending on k. In the
past decade, a line of research dubbed “FPT in P” has emerged, where the goal is a more
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refined parameterized analysis of polynomial-time-solvable problems [1, 5, 7, 13, 20, 25, 27].
Although the function f usually has to be at least exponential when working with NP-hard
problems, this is not true for problems in P . FPT algorithms where f is a polynomial
function are called fully polynomial-time algorithms and are of course desirable.

We study graph problems in this work. Let n and m be the number of vertices and edges,
respectively. Also, let vc be the vertex cover number and td be the tree-depth (see Section 2
for definitions). Alon and Yuster [2] demonstrated that fast matrix multiplication can be
used effectively for graphs with a (not necessarily small) vertex cover, developing algorithms
for Maximum Matching and All-Pairs Shortest Paths (APSP) that run in O(nω)
time (where ω < 2.372 is the matrix multiplication exponent) even when vc = Θ(n). More
recently, Iwata et al. [26] proposed a divide-and-conquer framework in the design of fully
polynomial-time algorithms parameterized by tree-depth. For instance, they showed that
Maximum Matching can be solved in O(m · td) time.

In this work, we consider the parameter vertex integrity, a parameter that lies between
vertex cover number and tree-depth. The vertex integrity ι of a graph G is the smallest
integer such that G contains a set S of ι′ ≤ ι vertices whose deletion results in a graph
whose connected components each have at most ι − ι′ vertices. Many problems can be solved
in O(nm) time and thus in O(ιn2) time, since m ∈ O(ιn). As the relation td ≤ ι ≤ vc +1
holds for any graph, an algorithm that runs in O(m ·td) time (e.g., for Maximum Matching)
also runs in time O(ι2n). These bounds become O(n3) when ι = Θ(n). However, many
problems can be solved in faster O(nω) time using fast matrix multiplication. We aim
to close this gap by developing fully polynomial-time algorithms that run in O(nω) time
even when ι = Θ(n). Such algorithms are called adaptive, and are optimal unless there
is an (unparameterized) algorithm that runs faster than O(nω) time. For many problems,
the discovery of such an algorithm would be a breakthrough, given that these O(nω)-time
algorithms were developed decades ago and have not been improved since.

Our approach. Before describing our results, let us briefly discuss our approach (see
Section 2 for details). Let S be a k-separator, a vertex set of size at most k′ ≤ k such that
each connected component of G − S has size k − k′. Throughout the paper, we will make the
assumption that a k-separator is given as input. We remark that our algorithms do not require
an (optimal) ι-separator to compute the correct solution. However, the running times of our
algorithm will depend on k and to achieve the claimed running times, we require a k-separator
with k ∈ O(ι). Although G − S may have O(n) connected components, we may assume
that there are Θ(n/k) “components” (which are not necessarily connected; see Section 2
for details), each with O(k) vertices. For every component C, we can use the O(nω)-time
algorithm to solve the instance on G[C] or G[S ∪ C], which takes O(kω · n/k) = O(kω−1n)
time. The next step is to combine solutions for O(n/k) instances, which varies depending on
the problem. For instance, this is trivial for the problem of finding a triangle, as a triangle
must be contained in S ∪ C for some component C. For other problems, e.g., finding a
maximum matching, this step requires a more sophisticated approach.

Main results. There are three main results in this work.
The first result concerns the problem of finding an induced copy of a graph H . Vassilevska

Williams et al. [38] gave an O(nω)-time algorithm that finds an induced copy of H when H

is a graph on four vertices that is not a clique K4 or its complement K4. Their randomized
algorithm is based on computing the number of induced copies of H modulo some integer q

which they show to be computable from A2 in linear time, where A is the adjacency matrix.
We observe that the “essential” part of A2 can be computed in O(ιω−1n) time, leading
to O(ιω−1n)-time algorithms.
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Secondly, we develop an O(ιω−1n)-time algorithm for finding a maximum matching. We
start by showing that whether a graph contains a perfect matching can be determined in
O(ιω−1n) time. Tutte [36] observed that the Tutte matrix is nonsingular if and only if the
graph has a perfect matching. By the Schwartz-Zippel lemma, we can test its nonsingularity
in randomized O(nω) time. We can thus test whether each component in G − S has a perfect
matching in O(ιω−1n) time. However, there might be a vertex in S that must be matched to
a vertex in G − S. To handle these cases, we use Schur complements. The task of finding a
maximum matching is more intricate. Lovász [30] generalized Tutte’s observation by stating
that the rank of the Tutte matrix (which can be computed in randomized O(nω) time)
equals twice the size of a maximum matching. It was only decades later that O(nω)-time
algorithms for finding one were discovered. Mucha and Sankowski [31] and Harvey [24] gave
such algorithms. We show how to adapt the latter to obtain an O(ιω−1n)-time algorithm for
finding a maximum matching.

Lastly, we study APSP on unweighted graphs. Seidel [34] showed that APSP can be
solved in O(nω log n) time. Alon and Yuster [2] later developed an algorithm that runs
in O(vcω−2 n2) time (they actually provide a stronger bound using rectangular matrix
multiplication). We show that APSP can be solved in O(ιω−2n2) time when the graph has
constant diameter. We were not able to obtain an adaptive algorithm in general, but we
give an O(ι(ω−1)/2n2) ⊆ O(ι0.687n2)-time algorithm. When parameterizing by vc, we can
effectively replace every vertex not in the vertex cover with edges of weight two connecting
their neighbors. Thus, the O(Wnω)-time algorithm [17, 35] for weighted APSP, where W is
the maximum weight, finds all pairwise distances between vertices in the vertex cover
in O(vcω) time. For vertex integrity, we show how to replace every component with edges
of weight O(ι). To compute distances between pairs of vertices with at least one vertex
not in the k-separator, we use the known subcubic-time algorithm for computing min-plus
matrix multiplication for bounded-difference matrices, matrices in which the difference of two
adjacent entries in a row is constant [10].

Previous work on vertex integrity. The notion of vertex integrity was introduced by Barefoot
et al. [3]. The vertex integrity ι can be much smaller than n, e.g., it is known that ι ∈ O(n2/3)
on Kh-minor free graphs [4]. The Vertex Integrity problem, i.e., computing an ι-separator
is NP-hard. A straightforward branching algorithm solves Vertex Integrity in O(ιι · n)
time (see [15]). A greedy algorithm can find an O(ι2)-separator in linear time. There is
also a polynomial-time algorithm that can find an O(ι log ι)-separator [29]. FPT algorithms
parameterized by vertex integrity gained increased attention recently [6, 15, 16, 22, 28].
In particular, see Gima et al. [22] for an extensive list of problems that are W[1]-hard for
tree-depth but become FPT when parameterized by vertex integrity.

2 Preliminaries

We use standard notation from graph theory. Unless stated otherwise, all appearing graphs
are undirected. Further, V denotes the set of vertices in the graph, E its set of edges, n its
number of vertices, and m its number of edges. We denote an edge between two vertices u

and v by uv. A walk of length ℓ is a sequence v1, . . . , vℓ of (not necessarily distinct) vertices
such that vivi+1 ∈ E for all i ∈ [ℓ−1], where [j] := {1, . . . , j} for any integer j. A walk whose
vertices are all pairwise distinct is a path. The adjacency matrix of G is the V × V -matrix A

with A[u, v] = 1 if and only if uv ∈ E, and A[u, v] = 0 otherwise (where A[u, v] is the entry
of A indexed by u and v).

ESA 2023
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Graph parameters. For a graph G, the vertex integrity is the smallest integer ι such
that G contains a set S (called ι-separator) of ι′ ≤ ι vertices whose deletion results in a graph
whose connected components each have at most ι − ι′ vertices. The vertex cover number vc
is the smallest cardinality of a vertex cover, a set that contains at least one endpoint of every
edge. The tree-depth td is the smallest depth of a rooted forest F with vertex set V such
that G can be embedded in F , i.e., for every edge xy in G, x is an ancestor of y or vice versa.
The feedback vertex number is the smallest cardinality of a feedback vertex set, a set that
contains at least one vertex of every cycle.

Decomposition. Here, we describe the decomposition with respect to a k-separator, which
will be used throughout the paper. Let S be a k-separator. Typically in our algorithms, we
spend O(kω) time for every connected component in G − S. Since G − S may have Ω(n)
connected components, this would result in a running time of O(kωn), which is often worse
than a more straightforward algorithm. Thus, we will do the following to bound the number
of “components” by O(n/k): Basically, we put together some connected components C

and construct a collection T of sets, each (except for possibly the last one) containing
between k and 2k −1 vertices. More precisely, we start with T = ∅ and process the connected
components of G − S one by one as follows. If every set T ∈ T has at least k vertices, then
add {C} to T , and otherwise replace the set T ∈ T with |T | < k by T ∪ C. Since every
connected component C has at most k vertices, every set T ∈ T (except for possibly the last
set which may be smaller) contains between k and 2k − 1 vertices. Let T = {T1, . . . , Tν}.
It is easy to see that ν ≤ n/k + 1. In our algorithms, we will always assume that the
decomposition (S; T1, . . . , Tν) of V is given. Note that given a k-separator, the decomposition
can be computed in linear time.

Basic operations in matrix multiplication time. For n × n-matrices A, B, one can compute
the following in O(nω) time: (i) the product AB, (ii) the determinant det A, (iii) the
inverse A−1, and (iv) a row/column basis of A (see e.g., [9]). More generally, for a k × n-
matrix A and an n × k-matrix B, one can compute the product AB in O(kω−1n) time by
dividing A and B into n/k blocks of size k × k. The rank of A can be computed using
Gaussian elimination using O(kω−1n) arithmetic operations [8]. Throughout the paper, we
will use a word RAM model with word size O(log n). If F is a field of size poly(n), we will
assume that addition and multiplication take O(1) time.

Matrices and Matchings. For a subset X of rows and a subset Y of columns, we denote
by A[X, Y ] the restriction of the matrix A to rows X and columns Y . For a set X of rows
(or columns), we will use the shorthand A[X] for A[X, X]. The i-th power of the adjacency
matrix A correspond to the number of walks of length i, i.e., Ai[u, v] equals the number of
u-v-walks of length i in G.

Note that for any graph with a k-separator S and decomposition (S; T1, . . . , Tν) it holds
that there is no edge between a vertex in Ti and a vertex in Tj for any i ̸= j. We can
therefore represent the adjacency matrix A of the graph as follows.

A =

S S̄[ ]
S γ β

S̄ βT α
, for α =

T1 · · · Tν T1 α1 · · · O
...

...
. . .

...
Tν O · · · αν

with β =
T1 · · · Tν[ ]

S β1 · · · βν . (1)
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Here, S̄ = T1 ∪ · · · ∪ Tν and the matrices αi, βi, γ all have size O(k) × O(k). Many of our
algorithms will use this representation and exploit the sparseness when computing e.g.,
matrix multiplications and determinants.

We denote the (unique) finite field with 2q many elements by GF(2q). Note that this
field has characteristic 2, i.e., x + x = 0 for every x ∈ GF(2q). For a graph G = (V, E), the
Tutte matrix (also known as the skew adjacency matrix) A whose rows and columns are
indexed by V = {v1, . . . , vn} is defined by

A[u, v] =


+xuv if u = vi, v = vj with i < j and uv ∈ E(G)
−xuv if u = vi, v = vj with j < i and uv ∈ E(G)
0 otherwise,

where xuv is a variable associated with the edge uv. The Tutte matrix A is skew-symmetric,
i.e., A = −AT . The Pfaffian of a skew-symmetric matrix A indexed by V is defined as

pf(A) =
∑

M∈M
σM

∏
uv∈M

A[u, v],

where M is the set of all perfect matchings of (V,
(

V
2
)
) and σM ∈ {±1} is the sign of M .

We will assume that the field has characteristic 2 (implying −1 = 1), and thus the precise
definition of σM is not important for us. (This assumption is not essential to our algorithm
but it will simplify the notation.)

The following are well-known facts about skew-symmetric matrices (see e.g., [23, 32]).

▶ Lemma 1. For a skew-symmetric matrix A, we have det A = pf(A)2.

In particular, a skew-symmetric matrix A is nonsingular if and only if pf(A) ̸= 0.

▶ Lemma 2. For a skew-symmetric matrix A, if X is a row (or column) basis, then A[X] is
nonsingular.

The next is immediate from the definition of Pfaffians.

▶ Lemma 3 (row expansion). For a skew-symmetric matrix A indexed by V and v ∈ V over
a field of characteristic 2, we have pf(A) =

∑
v′∈V \{v} A[v, v′] · pf(Âv,v′), where Âv,v′ is the

matrix where the rows and columns indexed by v and v′ are deleted.

Proofs of statements marked with ⋆ are omitted from the conference version and can be
found in a full version of this paper.

3 Finding Subgraphs

In this section, we develop adaptive algorithms for finding four-vertex subgraphs. There
are eleven non-isomorphic graphs with 4 vertices: the clique on four vertices (K4) and its
complement (K4), the diamond (K4 − e) and its complement (K4 − e), the claw (K1,3) and
its complement (K1,3), the paw (K1,3 + e) and its complement (K1,3 + e), the cycle on four
vertices (C4) and its complement (C4), and the path on four vertices (P4) (which is its own
complement). Note that +e and −e indicate the insertion of an edge or the deletion of
any edge, respectively. A linear-time algorithm is known for detecting whether the input
graph contains an induced P4 [12]. For K4 and K4, the currently fastest algorithm runs
in O(n3.257) [18, 21] and for all other graphs the best known algorithm is by Williams et
al. [38] and runs in O(nω) time. Their approach can be summarized as follows.

ESA 2023
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Let G be an undirected graph and let A be its adjacency matrix. Let H = (V ′, E′) be a
four-vertex graph that is none of K4, K4, C4, C4. There is an integer 2 ≤ qH ≤ 6 such
that if we can compute A2[u, v] for every edge uv ∈ E(G) in time t, then we can compute
the number of induced copies of H in G modulo qH in O(n + m + t) time. See [38,
Lemma 4.1] for details. (Some equations provided in [38] require A3[v] for every v ∈ V .
However, this can be computed in O(m) time if A2[u, v] is given for every edge uv.)
Let q ≥ 2 be an integer and let G, H be two undirected graphs. Let G′ be an induced
subgraph of G obtained by independently deleting each vertex with probability 1/2.
If G contains H as an induced subgraph, then the number of induced copies of H in G′

modulo q is not 0 with probability at least 2−|V (H)|. (For our applications, |V (H)| = 4,
so this probability is at least 1/16.)

We show that when a k-separator is given, one can test in O(kω−1n) time whether there
is an induced copy of H for each four-vertex graph H except for K4 and K4. We start with
all graphs except for K4, K4, C4, C4. Using the framework by Williams et al. [38], it suffices
to show how to compute A2[u, v] for every edge uv ∈ E(G). Clearly, it requires Ω(n2) time to
compute the square A2. Our key observation is that the relevant part of A2 can be computed
in O(kω−1 · n) time. (Incidentally, A2 can be computed in O(kω−2n2) time; see Lemma 18.)

▶ Lemma 4. Given a graph G and a k-separator S, we can compute A2[u, v] for every
edge uv ∈ E(G) in O(kω−1n) time.

Proof. We use the decomposition (S; T1, . . . , Tν) described in Section 2 and suppose that
the adjacency matrix A has the form given in Equation (1). Note that

A2 =

S T1 · · · Tν


S ζ η1 · · · ην

T1 ηT
1 δ1 · · · −

...
...

...
. . .

...
Tν ηT

ν − · · · δν

, where
ζ = γ2 + ββT ,

ηi = γβi + βiαi, and
δi = βT

i βi + α2
i .

Note that computing ζ takes O(ν · kω) = O(kω−1n) time and computing each of the O(ν)
submatrices ηi or δi takes O(kω) time. The − represents pairs where the corresponding
vertices belong to different Ti and are therefore non-adjacent. We thus do not need to
compute these values. Thus, we can compute all relevant values in O(kω−1n) time. ◀

By Lemma 4, an induced copy of H /∈ {K4, K4, C4, C4} can be detected in O(ιω−1n) time.
We show next that C4 and C4 can also be detected in O(ιω−1n) time.

▶ Proposition 5 (⋆). Given a graph G, a k-separator, and a graph H ∈ {C4, C4}, we can
test whether G contains H as an induced subgraph in O(kω−1n) time.

Thus, we obtain the following.

▶ Proposition 6. Given a graph G, a k-separator, and a graph H with four vertices that is
not K4 or K4, we can test whether G contains an induced copy of H in O(kω−1n) time.

We can also find an induced copy with a constant overhead using a standard self-reduction.

▶ Corollary 7 (⋆). Given a graph, a k-separator, and a graph H with four vertices that is
not K4 or K4, we can find an induced copy of H in O(kω−1n) time if it exists.
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Finally, let us also remark on the detection of cliques Kℓ and independent sets Kℓ.
Let tℓ(n) be the time complexity of finding Kℓ (or Kℓ) on an n-vertex graph. (It is known, for
instance, that t4(n) ∈ O(n3.257) [18] using fast rectangular matrix multiplication [21].) Since
any Kℓ must fully be contained in G[S ∪ Ti] for some i, it can be detected in O(tℓ(ι)/ι · n)
time. For the detection of Kℓ, note that if n/ι ≥ ℓ, then there is an independent set of size ℓ.
Thus, we may assume that n ≤ ιℓ. For constant ℓ, we can thus find Kℓ in O(tℓ(ι)) time.

In the full version of the paper, we also study the problem of finding short(est) cycles.
In particular, we show that girth, i.e., the length of a shortest cycle, can be computed
in O(ιω−1n) time.

4 Matching

As mentioned in the introduction, Lovász [30] showed that the cardinality of a maximum
matching can be determined in randomized O(nω) time. Several decades later, two algorithms
have been developed to find a maximum matching [24, 31]. In this section, we show the
following.

▶ Theorem 8. Given a graph and a k-separator, we can find a maximum matching in
randomized O(kω−1n) time.

In the full version of the paper, we show that the existence of a perfect matching can be
checked in O(kω−1n) time, where k is the feedback vertex number of the input graph, that
is, the minimum number of vertices to delete in order to turn the graph into a forest.

Tutte [36] showed that G has a perfect matching if and only if its symbolic Tutte matrix A

is nonsingular. Lovász [30] later showed that the rank of A equals twice the size of maximum
matching. To avoid computation over a multivariate polynomial ring, we will assume that
each variable xuv is instantiated with an element chosen from a finite field F uniformly at
random. (We will assume that |F| = GF(2c⌈log n⌉) for a sufficiently large constant c > 0.)
Since the determinant of the symbolic Tutte matrix has degree at most n, by the Schwartz–
Zippel lemma [33, 39] (which states that a non-zero polynomial of total degree d over a finite
field F is, when evaluated at a uniformly randomly coordinate, non-zero with probability at
least 1 − d/|F|), if G has a perfect matching and F is of size at least δn, then A is nonsingular
with probability at least 1 − 1/δ.

Let A be a block matrix A =
[
α β

γ δ

]
. If α is nonsingular, then the determinant of A

is det(A) = det(α) · det(C), where C = δ − γα−1β is the Schur complement (see e.g., [32]).
Thus, assuming that α is nonsingular, A is nonsingular if and only if δ −γα−1β is nonsingular.
A simple application of the Schur complement yields the following.

▶ Lemma 9. Consider a matrix A of the following form. Then, provided that α is nonsingular,
A is nonsingular if and only if the following matrix A′ is nonsingular.

A =

 α β 0
−βT γ ζ

0 −ζT η

 A′ =
[

γ ζ

−ζT η

]
−

[
−βT

0

]
α−1 [

β 0
]

=
[
γ + βT α−1β ζ

−ζT η

]

Harvey’s algorithm. There is a randomized O(nω)-time algorithm to find a perfect matching
in a graph (if one exists) due to Harvey [24]. We describe the algorithm outline here. The
main idea is to delete edges as long as at least one perfect matching remains until we are
left with a graph in which every vertex has exactly one neighbor. Here, deleting an edge
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corresponds to setting the corresponding entries in the Tutte matrix to zero. Whether an
edge is deletable, i.e., whether there remains a perfect matching after its deletion, can be
determined in O(1) time after computing the inverse of the Tutte matrix in a preprocessing
step. This is essentially due to the fact that for a nonsingular matrix A and column vectors u

and v, matrix A + uvT is nonsingular if and only if 1 + vT A−1u ≠ 0. When an edge is
deleted, the inverse needs to be updated and the Sherman-Morrison-Woodbury formula
(which is not relevant for us) is employed in Harvey’s algorithm. However, it takes O(n2)
time when this update is implemented naively. The crux of Harvey’s algorithm lies in a
recursive scheme that essentially allows to perform the update in O(1) time. The algorithm
uses a subroutine called DeleteEdgesCrossing, which takes two disjoint vertex sets R

and S as input and iteratively deletes all deletable edges uv with u ∈ R and v ∈ S. This
subroutine runs in O(nω) time and our algorithm will also use it.

4.1 Detecting a perfect matching
In this section, we will describe a randomized O(kω−1n)-time algorithm to test whether
a given graph with a k-separator S contains a perfect matching. We assume that the
Tutte matrix A has the form of Equation (1) and that it is instantiated randomly from a
field F = GF(2c⌈log n⌉). For each component Ti, we find a basis T ′

i ⊆ Ti of A[Ti] in O(kω) time.
Note that A[T ′

i ] is nonsingular by Lemma 2. Let T ∗
i = Ti \ T ′

i , Si = Si−1 ∪ T ∗
i for S0 = S,

and S∗ = Sν . Note that if G has a perfect matching M , then at least |T ∗
i | vertices of Ti are

matched to S. Thus, if
∑

i∈[ν] |T ∗
i | > |S|, we can conclude that there is no perfect matching.

Otherwise, we have |S∗| ≤ 2k. Now, consider for each component T ′
i the matrix

Bi =

T ′
i S∗ V \ (S∗ ∪

⋃
j∈[i−1] T ′

j) T ′
i αi βi 0

S∗ −βT
i γi ζi

V \ (S∗ ∪
⋃

j∈[i−1] T ′
j) 0 −ζT

i ηi

,

where γ1 = γ, γi+1 = γi + βT
i α−1

i βi, and all entries except for γi for i > 1 are identical to the
corresponding entries of A. Note that αi and βi may differ from αi and βi in Equation (1),
but if T ′

j = Tj for all j ∈ [ν], then αi and βi here coincide with αi and βi from Equation (1).
Note that the matrix B1 coincides with the Tutte matrix A. Hence, we only need to test
whether B1 is nonsingular. We do this by iteratively computing Bi+1 from Bi in O(kω)
time. For notational convenience, we will assume that there is an empty component T ′

ν+1.
Since αi = A[T ′

i ] is nonsingular, by Lemma 9 the matrix Bi is nonsingular if and only if Bi+1
is nonsingular. The nonsingularity of Bν+1 = γν+1 can be tested in O(kω) time since it
has size O(k) × O(k). Note that our algorithm takes O(kω) time for each i ∈ [ν + 1] and
thus O(νkω) = O(kω−1n) time overall. If A is nonsingular, then our algorithm correctly
concludes that there is a perfect matching. By the Schwartz–Zippel lemma, we know that if G

admits a perfect matching, then the probability that A is nonsingular is at least 1−n/|F| ≥ 1/2.
This leads to the following result.

▶ Proposition 10. Given a graph and a k-separator, we can test whether it has a perfect
matching in randomized O(kω−1n) time.

In the full version of the paper, we show that whether there is a perfect matching can be
checked in O(kω−1n) time, where k is the feedback vertex number. We use a similar approach
based on the Schur complement. The major difference is that computing (A[V \ S])−1 would
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require Ω(n2) time (A is the Tutte matrix and S is a feedback vertex set). Instead, we
compute (A[V \ S])−1A[S, V \ S] via dynamic programming in O(kn) time. To that end,
we first show that for entries with both coordinates in S in the Tutte matrix, it suffices to
use values in {0, 1} instead of variables. This allows us to give a simple characterization
of the entries of (A[V \ S])−1 in terms of alternating paths. Our dynamic program uses a
recurrence relation based on this.

▶ Proposition 11 (⋆). Deciding whether a given graph G contains a perfect matching can be
done in randomized O(kω−1n) time, where k is the feedback vertex number of G.

4.2 Finding a perfect matching
We next give an algorithm to find a perfect matching (if one exists). We will use the same
notation as before and we will again assume that αi is nonsingular for every i ∈ [ν]. Note that
if the submatrix γ1 is also nonsingular, then it is easy to find a perfect matching since the
corresponding submatrices γ1 = A[S∗] and αi = A[T ′

i ] are all nonsingular and therefore there
exists a perfect matching in G[S∗] and G[T ′

i ] for every i ∈ [ν]. We can find these using one of
the randomized O(nω)-time algorithms [24, 31]. This procedure takes O(kων) = O(kω−1n)
time. However, in general, we cannot assume that γ1 is nonsingular.

To deal with the case that γ1 is singular, we use Harvey’s aforementioned algorithm. Our
algorithm first computes γi for each i ∈ [ν + 1]. We then proceed inductively in decreasing
order from i = ν +1 to i = 1. Our algorithm finds a set S̃i ⊆ S̃i+1 ⊆ S∗ (we set S̃ν+1 = S∗ for
notational convenience) and a matching Mi which saturates every vertex in (S̃i+1 \ S̃i) ∪ T ′

i .
The matching Mi is the union of two matchings M ′

i and M ′′
i , where M ′

i is a perfect matching
between S̃i+1 \ S̃i and T ′

i \ T ′′
i for T ′′

i ⊆ T ′
i and M ′′

i is a perfect matching in G[T ′′
i ] (see

Lemmas 13 and 14).
We will maintain the invariant that γi[S̃i] is nonsingular. For i = ν + 1, we have

that γν+1[S̃ν+1] = Bν+1 is nonsingular. Moreover, if this invariant is maintained, then γ1[S̃1]
is nonsingular and thus G[S̃1] contains a perfect matching that can be combined with all
previous Mi to obtain a perfect matching for G. To find the set S̃i for i ∈ [ν], consider the
following submatrix B′

i of Bi whose rows and columns are indexed by S̃i+1 ∪ T ′
i :

B′
i =

[
αi βi[T ′

i , S̃i+1]
−βT

i [S̃i+1, T ′
i ] γi[S̃i+1]

]
.

Note that for a nonzero entry in B′
i, if one of the coordinates is in T ′

i , then the corres-
ponding edge exists in G but this is not necessarily the case if both coordinates are in S̃i+1.
We first show that B′

i is nonsingular.

▶ Lemma 12 (⋆). For each i ∈ [ν], the matrix B′
i is nonsingular.

Since B′
i is nonsingular, we can compute (B′

i)−1 and apply the subroutine DeleteEdges-
Crossing of Harvey [24] on the bipartition (S̃i+1, T ′

i ) in O(kω) time. (This subroutine
requires the inverse to be given.) Essentially, we “delete” (i.e., change to zero) all deletable
entries with one coordinate in S̃i+1 and the other in T ′

i . We then get a skew-symmetric
matrix Ci that is identical to B′

i except that some entries in Ci[S̃i+1, T ′
i ] and Ci[T ′

i , S̃i+1]
are set to zero. Let S̃i be those vertices v ∈ S̃i+1 such that Ci[T ′

i , v] is a zero vector and T ′′
i

be those vertices u ∈ T ′
i such that Ci[S̃i+1, v] is a zero vector. Each remaining nonzero entry

in Ci[S̃i+1, T ′
i ] and Ci[T ′

i , S̃i+1] is undeletable. We show that all edges corresponding to these
entries form a perfect matching M ′

i between S̃i+1 \ S̃i and T ′
i \ T ′′

i .
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▶ Lemma 13. The set M ′
i = {uv | Ci[u, v] ̸= 0, u ∈ S̃i+1 \ S̃i, v ∈ T ′

i \ T ′′
i } is a matching

in G with high probability.

Proof. For a vertex u ∈ S̃i+1\S̃i, assume that there are two vertices v, v′ such that Ci[u, v] ̸= 0
and Ci[u, v′] ̸= 0. We show that this leads to a contradiction when the variables are treated
as indeterminates. Let Ĉiu,w be the result of deleting the rows and columns indexed by u

and w from Ci. By Lemma 3, we have

pf(Ci) = Ci[u, v] pf(Ĉiu,v) + Ci[u, v′] pf(Ĉiu,v′) + p, (2)

where p =
∑

w∈S̃i+1∪T ′
i , w /∈{v,v′} Ci[u, w] pf(Ĉiu,w).

By the assumption that deleting the corresponding edge uv or uv′ (i.e., setting xuv = 0
or xuv′ = 0) results in a singular matrix (this is due to Harvey’s algorithm), we have

Ci[u, v] pf(Ĉiu,v) + p = 0 and Ci[u, v′] pf(Ĉiu,v′) + p = 0.

We thus obtain Ci[u, v] pf(Ĉiu,v) = Ci[u, v′] pf(Ĉiu,v′) = −p. Note that p ≠ 0, since
otherwise pf(Ci) = −p = 0 by Equation (2), which is a contradiction because Ci is nonsin-
gular by Harvey’s algorithm. The left hand side Ci[u, v] pf(Ĉiu,v) is multiplied by a vari-
able Ci[u, v] = xu,v but this variable does not appear on the right hand side Ci[u, v′] pf(Ĉu,v′).
Thus, Q = Ci[u, v] pf(Ĉiu,v) − Ci[u, v′] pf(Ĉiu,v′) is a polynomial that is not identically zero,
which is a contradiction. We thus have exactly one vertex v ∈ T ′

i \ T ′′
i such that Ci[u, v] ̸= 0.

Since Q has degree at most n, this evaluates to non-zero with high probability by the
Schwartz–Zippel lemma. An analogous argument shows that for every v ∈ T ′

i \ T ′′
i , there is

exactly one u ∈ S̃i+1 \ S̃i such that Ci[u, v] ̸= 0. Since every nonzero entry in Ci[S̃i+1, Ti]
corresponds to an edge in G, we are done. ◀

We can now show that our main invariant can be maintained with high probability.

▶ Lemma 14 (⋆). The matrices γi[S̃i] and αi[T ′′
i ] are nonsingular with high probability.

Concluding this section, we prove our main result.

▶ Proposition 15 (⋆). Given a graph with a perfect matching and a k-separator, we can find
a perfect matching in O(kω−1n) time.

In the full version of the paper, we prove Theorem 8, that is, we show how to find a
maximum matching in O(kω−1n) time, when given a k-separator.

5 All-Pairs Shortest Paths

We study the well-known All-Pairs Shortest Paths problem (APSP) on unweighted
graphs. APSP on unweighted graphs can be solved in O(nω)-time using matrix multiplic-
ation [34]. In this section, we show an algorithm which is faster than O(nω) when k is
sufficiently small, that is, k ∈ O(n0.541).

▶ Theorem 16. Given an (unweighted undirected) graph and its k-separator, APSP can be
solved in O(k(ω−1)/2n2) ⊆ O(k0.687n2)-time.

APSP is closely connected to the min-plus-product. In fact, solving APSP is sub-
cubic equivalent to computing the min-plus product of two matrices [19]. The min-
plus product A ⋆ B of a p × q-matrix A with a q × r-matrices B is the p × r-matrix C
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with C[i, j] = mink∈[q] A[i, k] + B[k, j]. While it is conjectured that there is no algorithm
computing the min-plus product of two n × n-matrices in O(n3−ϵ) time for any ϵ > 0, there
is a subcubic-time min-plus matrix multiplication algorithm for bounded-difference matrices,
i.e., matrices in which the difference of two adjacent entries in a row is small [10]. Although
the distance matrix D (which contain pairwise distances) does not necessarily have bounded
differences, for two adjacent vertices u and v, the difference between D[u, w] and D[u, v]
for any w ∈ V is at most 1. The “standard” decomposition of G − S into T1, . . . , Tν from
Section 2 is not convenient in this case, since two vertices in Ti may have distance Θ(n),
e.g., when Ti is not connected. Our algorithm first modifies the given graph so that we have
bounded-difference distance matrices. The main idea is that, for a k-separator S, we can join
connected components from G − S by adding copies of vertices in S. We will also ensure
that there is a Hamiltonian path through each component (this step is essentially also used
by Deng et al. [14]). This ensures that if we rearrange the rows and columns according to
the Hamiltonian path, then two consecutive rows correspond to adjacent vertices and the
distances between either of them and some third vertex differ by at most one.

▶ Lemma 17 (⋆). Given a graph G and a k-separator S, we can compute in O(n + m) time
a graph G′ and its O(k)-separator S′ such that G′ − S′ has connected components T ′

1, . . . , T ′
ν

for ν′ ∈ O(n/k), each of which has a Hamiltonian path Hi, and |S′| = |T ′
1| = · · · = |T ′

ν |.
Moreover, given the distance matrix D′ for G′, one can compute the distance matrix D of G

in O(n2) time.

Using Lemma 17, we now show that APSP on unweighted graphs can be solved faster
than O(nω) if the vertex integrity is sufficiently small and ω > 2.

Proof of Theorem 16. If k ≥ n0.6, then k(ω−1)/2n2 > nω and we apply the O(nω log n)-time
algorithm [34]. Otherwise, k ≤ n0.6 and we use the following algorithm to solve APSP.
1. We apply Lemma 17, resulting in a graph G and sets S, T1, . . . , Tν .
2. For every i, we solve APSP on G[S ∪ Ti]. Let Di = D′

i[Ti, S], where D′
i is the distance

matrix of G[S ∪ Ti].
3. We compute an edge-weighted graph GS where the vertex set is S, the edge set is

(
S
2
)
,

and w(uv) = 1 if uv ∈ E(G), and w(uv) = mini Di(uv) otherwise. We solve APSP on
this weighted graph and call the resulting distance matrix DS . As we show later, DS [u, v]
is the distance from u to v in G.

4. For each i, j ∈ [ν], we compute D∗
i := Di ⋆ DS . and D∗

i,j := D∗
i ⋆ DT

j .
5. Return a symmetric matrix D∗ where the upper triangular part of D∗ is defined by

D∗[u, v] =


DS [u, v] u, v ∈ S,

D∗
i [u, v] u ∈ S and v ∈ Ti,

min{Di[u, v], D∗
i,i[u, v]} u, v ∈ Ti for some i ∈ [ν],

D∗
i,j [u, v] u ∈ Ti and v ∈ Tj for i ̸= j.

First we show the correctness of the algorithm. For u, v ∈ S, Step 3 guarantees
that D∗[u, v] = DS [u, v] is the distance between u and v in the weighted graph GS . As each
edge u′v′ in GS corresponds to a path in S ∪ Ti of length w(u′v′) for some i ∈ [ν], it follows
that each path in GS corresponds to a walk in G of the same length. Thus, DS [u, v] is not
smaller than a shortest u-v-path in G. On the other hand, let P be a shortest u-v-path
in G. Let u = s1, . . . , sℓ = v be the vertices of P in S (in the order they appear in P ). By
construction, for each i < ℓ, there are no vertices in S between si and si+1 in P . Hence,
this subpath of P is fully contained in G[S ∪ Tj ] for some connected component Tj and we
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have w(si, si+1) ≤ distG[S∪Tj ](si, si+1). Consequently, we have that P corresponds to a path
in the weighted graph GS and DS(u, v) is not larger than the length of a shortest u-v-path
in G. Thus, DS [u, v] equals the distance between u and v in G and D∗[u, v] has therefore
been computed correctly.

Next, assume that u ∈ Ti for some i ∈ [ν] and v ∈ S (the case u ∈ S and v ∈ Ti is
analogous). A shortest u-v-path then consists of a shortest u-s-path in G[S ∪ Ti] and a
shortest s-v-path in G for some s ∈ S (since each vertex in Ti only has neighbors in Ti ∪ S).
This implies distG[u, v] = mins∈S Di[u, s] + DS [s, v] = D∗

i [u, v].
Next, assume that u ∈ Ti and v ∈ Ti for some i ∈ [ν]. Then a shortest u-v-path either

stays completely in Ti or it decomposes into a shortest u-s-path in G[S ∪ Ti], followed
by a shortest s-s′-path in G, and finally followed by a shortest s′-v-path in G[S ∪ Ti] for
some s, s′ ∈ S. In the first case, the distance between u and v equals to Di[u, v]. In the
second case, the distance between u and v equals

min
s,s′∈S

distG[S∪Ti](u, s) + distG(s, s′) + distG[S∪Ti](s′, v) = D∗
i,i[u, v].

Thus, D∗[u, v] contains the distance between u and v.
Finally, assume that u ∈ Ti and v ∈ Tj for some i ̸= j ∈ [ν]. A shortest u-v-path then

decomposes into a shortest u-s-path in G[S ∪ Ti], followed by a shortest s-s′-path in G, and
finally followed by a shortest s′-v-path in G[S ∪ Tj ] for some s, s′ ∈ S. Consequently, we
have dist(u, v) = mins,s′∈S Di[u, s] + DS [s, s′] + Dj [s′, v] = D∗

i,j [u, v].
It remains to analyze the running time of the algorithm. Step 1 runs in linear time by

Lemma 17. Step 2 solves APSP on O(n/k) many instances, each with O(k) vertices. As
APSP on unweighted graphs with k vertices can be solved in O(kω log(k)) time, Step 2 runs
in O(nkω−1 log(k)) time.

Step 3 first computes a weighted graph on O(k) vertices. Each edge can be computed
in O(n/k) time. As there are O(k2) many edges, computing the graph takes O(n · k)
time. Solving weighted APSP on this graph then can be done in O(k3) time [37]. As we
assumed k ≤ n0.6, this step runs in O(n1.8) time.

Step 4 computes for each pair (i, j) ∈ [n/k] the min-plus product of Di, DS , and Dj . We
will show that we can compute these min-plus products in O(k(3+ω)/2) time (which is faster
than the state-of-the-art algorithm for computing arbitrary min-plus products). The trick
is to use the fact that Di and D∗

i have bounded difference and then use a result by Chi et
al. [10] stating that the min-plus product of two matrices of dimension n×n can be computed
in O(n(3+ω)/2) ⊆ O(n2.687) time if one of the matrices has bounded difference. While it is
not true a priori that Di and D∗

i have bounded difference, we will order the rows according
to the Hamiltonian path Hi. This ensures that two consecutive vertices are adjacent, which
implies that consecutive entries in a row differ by at most one. Hence, each computation of
the min-plus product can be done in O(k(3+ω)/2) time, as |S| = |T1| = · · · = |Tν | = O(k) by
Lemma 17. Overall, Step 4 runs in O((n/k)2 · k(3+ω)/2) = O(n2 · k(ω−1)/2) time.

Lastly, Step 5 runs in O(n2) time. The overall running time of O(k(ω−1)/2 ·n2) follows from
the observation that the running time for Step 4 dominates the running time of Steps 1, 2, 3,
and 5 as k ≤ n and ω < 2.9. ◀

Adaptive algorithm for bounded diameter. We give an adaptive algorithm for constant
diameter. The crucial observation here is that we can compute the product of the adjacency
matrix of a graph with any other matrix in O(ιω−2n2) time.

▶ Lemma 18. Given a graph G with adjacency matrix A, a k-separator S for G, and
an n × n-matrix M , the matrices AM and MA can be computed in O(kω−2n2) time.
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Proof. Suppose that the adjacency matrix has the form as described in Equation (1). Then,

AM =
[

γM [S, V ] + βM [S, V ]
βT M [S, V ] + αM [S, V ]

]
.

A closer inspection reveals that all the computation can be done in O(kω−2n2) time: First
observe that γM [S, V ] can be computed in O(kω−1n) time. For the other terms, note that

βM [S, V ] =
[
βM [S, S] βM [S, T1] . . . βM [S, Tν ]

]
,

βT M [S, V ] =
[
βT M [S, S] βT M [S, T1] . . . βT M [S, Tν ]

]
,

αM [S, V ] =
[
α1M [T1, S] α2M [T2, S] . . . ανM [Tν , S]

]T
.

Since there are O(n/k) submatrices and each takes O(kω−1n) time to compute, AM can be
computed in O(kω−2n2) time. Note that MA = (AMT )T can be computed analogously. ◀

We obtain our algorithm from the folklore observation that for any two vertices u, v ∈ V ,
there is a walk of length exactly length d between u and v if and only if Ad[u, v] ̸= ∅.

▶ Proposition 19. Given a graph G and a k-separator S, APSP can be solved in O(dkω−2n2)
time where d is the diameter of G.

Proof. Let A be the adjacency matrix of G. We compute matrices B1, . . . , Bd ∈ {0, 1}n×n

recursively as follows. We start with B1 := A. Matrix Bi+1 is computed by multiplying Bi

with A and replacing all non-zero entries by 1. Note that Ai[u, v] = 0 if and only if Bi[u, v] = 0.
Thus, the distance between two vertices u ̸= v is the minimum i such that Bi[u, v] ̸= 0.
By Lemma 18, we can multiply any matrix with A in O(kω−2n2) time. Thus, we can
compute B1, . . . , Bd in O(dkω−2n2) time. ◀

Note that d can be of order Ω(k2) as the vertex integrity in a cycle with n vertices is in O(
√

n)
and its diameter is ⌊n/2⌋.

6 Conclusion

In this work, we investigated the parameter vertex integrity in search for more efficient
algorithms in the FPT-in-P paradigm. We exhibited that for many problems, the structure
of graphs with a small vertex integrity allows us to harness the power of fast matrix
multiplication. In particular, we designed randomized O(ιω−1n)-time algorithms for finding
a four-vertex subgraph (which is not a K4 or a K4) and a maximum matching. We also
showed that unweighted APSP can be solved in O(ι(ω−1)/2n2) time using min-plus product
of bounded-differences matrices, leaving open whether there is an O(ιω−2n2)-time algorithm.
More broadly, we wonder whether a similar approach using fast matrix multiplication can be
used for graphs of bounded tree-depth or tree-width. Existing approaches (e.g. [11, 20, 26])
do not seem amenable to fast matrix multiplication.
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Abstract
The min-diameter of a directed graph G is a measure of the largest distance between nodes. It
is equal to the maximum min-distance dmin(u, v) across all pairs u, v ∈ V (G), where dmin(u, v) =
min(d(u, v), d(v, u)). Min-diameter approximation in directed graphs has attracted attention recently
as an offshoot of the classical and well-studied diameter approximation problem.

Our work provides a 3
2 -approximation algorithm for min-diameter in DAGs running in time

O(m1.426n0.288), and a faster almost- 3
2 -approximation variant which runs in time O(m0.713n). (An

almost-α-approximation algorithm determines the min-diameter to within a multiplicative factor
of α plus constant additive error.) This is the first known algorithm to solve 3

2 -approximation
for min-diameter in sparse DAGs in truly subquadratic time O(m2−ϵ) for ϵ > 0; previously only a
2-approximation was known. By a conditional lower bound result of [Abboud et al, SODA 2016],
a better than 3

2 -approximation can’t be achieved in truly subquadratic time under the Strong
Exponential Time Hypothesis (SETH), so our result is conditionally tight. We additionally obtain a
new conditional lower bound for min-diameter approximation in general directed graphs, showing
that under SETH, one cannot achieve an approximation factor below 2 in truly subquadratic time.

Our work also presents the first study of approximating bichromatic min-diameter, which is the
maximum min-distance between oppositely colored vertices in a 2-colored graph. We show that
SETH implies that in DAGs, a better than 2 approximation cannot be achieved in truly subquadratic
time, and that in general graphs, an approximation within a factor below 5

2 is similarly out of
reach. We then obtain an O(m)-time algorithm which determines if bichromatic min-diameter
is finite, and an almost-2-approximation algorithm for bichromatic min-diameter with runtime
Õ(min(m4/3n1/3, m1/2n3/2)).

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases diameter, min distances, fine-grained, approximation algorithm

Digital Object Identifier 10.4230/LIPIcs.ESA.2023.17

Related Version Full Version: https://arxiv.org/abs/2308.08674 [7]

Funding Jenny Kaufmann: Supported by the National Science Foundation Graduate Research
Fellowship under Grant No. DGE 2140743.
Virginia Vassilevska Williams: Supported by NSF Grant CCF-2129139 and a Sloan Research
Fellowship.

1 Introduction

The min-distance between two vertices x, y in a directed graph G is the minimum of the
one-way distances d(x, y) and d(y, x), and is written dmin(x, y). This notion of distance
was introduced by Abboud, Vassilevska W., and Wang [2] in their study of diameter in
directed graphs. Since the standard notion of distance in directed graphs is not symmetric,
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[2] considered a number of symmetric distance functions: roundtrip distance, max-distance,
and min-distance. The min-distance in particular, has since then been studied in a series of
papers [13, 15, 11].

The min-distance is arguably the most natural notion of distance in directed acyclic
graphs (DAGs), in which for every two vertices x, y, at most one of d(x, y), d(y, x) is finite.
Min-distance is also applicable in potential real-world contexts: for example, if a patient
needs to see a doctor as soon as possible, the doctor can visit the patient or vice versa.

The min-diameter of a directed graph G is the maximum min-distance between any
two vertices, or maxx,y∈V (G) dmin(x, y). One can additionally define the bichromatic min-
diameter in a graph G with vertex set V = A ⊔ B partitioned into “red” and “blue” vertices:
the bichromatic min-diameter is the maximum min-distance between oppositely-colored
vertices, or maxa∈A,b∈B dmin(a, b). These are variants on the standard notions of diameter
[1, 3, 6, 10, 12, 16, 24] and bichromatic diameter [5, 14], respectively.

One can compute min-diameter or bichromatic min-diameter – and for that matter All
Pairs Shortest Paths (APSP), the shortest path distances d(x, y) for all x, y ∈ V – in an
n-vertex m-edge graph in O(mn + n2 log n) time, simply by running Dijkstra’s algorithm
from every vertex. In unweighted graphs, one can instead use BFS, giving an O(mn) runtime.

One might ask whether, for either min-diameter or bichromatic min-diameter, a faster
algorithm exists. However, just as for standard diameter and other diameter variants that
have been studied [2, 14, 20], the Strong Exponential Time Hypothesis (SETH) [18, 9]
suggests exact computation cannot be done in runtimes that are truly subquadratic, meaning
O(m2−ϵ) for ϵ > 0. SETH is one of the main hypotheses in Fine-Grained Complexity [22],
and is among the most well-established hardness hypotheses for showing conditional lower
bounds. It states that for every ϵ > 0, there is an integer k ≥ 3 so that k-SAT on n variables
cannot be solved in O(2(1−ϵ)n) time.

Since exact computation is conditionally hard, we resort to finding approximations. Since
min-distance does not obey the triangle inequality, approximating min-diameter is especially
challenging, in comparison to standard diameter or even roundtrip diameter or max-diameter.
For this reason, much of the work on min-diameter has focused on DAGs.

Min-Diameter
Abboud, Vassilevska W., and Wang [2] gave a 2-approximation for min-diameter in DAGs,
running in Õ(m) time.1 Meanwhile, they showed that if one can obtain a ( 3

2 −δ) approximation
in O(m2−ϵ) time for min-diameter in DAGs (for ε, δ > 0), then SETH is false. The results
of [2] left a gap between the conditional lower bound of 3/2 and the upper bound of 2 for
O(m2−ϵ) time algorithms for DAGs. (The lower bound is for O((mn)1−ϵ) time algorithms
but since the instances are sparse, this is the same as O(m2−ϵ) time.)

Later work by Dalirrooyfard and Kaufmann [13] showed that in dense DAGs, one can
beat the mn barrier by obtaining an almost- 3

2 -approximation algorithm running in O(n2.35)
time. The conditional lower bound of [2] is for sparse DAGs, however, and the gap between
upper and lower bounds has remained.

Our main result is to close this gap for sparse DAGs:

▶ Theorem 1. There is an O(m0.713n) time algorithm that achieves a ( 3
2 , 1

2 )-approximation
for min-diameter in any m-edge, n-node unweighted DAG.

Furthermore, there is an O(m1.426n0.288) time algorithm that achieves a 3
2 -approximation

for min-diameter in any m-edge, n-node unweighted DAG.

1 The tilde hides polylogarithmic factors.
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A (c, a)-approximation for a quantity D is a quantity D′ such that D ≤ D′ ≤ cD + a.
Similar to [13], we use hitting set and set intersection methods to certify distances. Our

main new technique is to iteratively grow a central interval of vertices with convenient
distance properties by checking that at least one of two neighboring vertex subsets, to its left
and right, has the desired properties.

The algorithms use fast matrix multiplication. There are also combinatorial versions of
the algorithms, with runtimes O(m3/4n) for the ( 3

2 , 1
2 )-approximation and O(m5/4n1/2) for

the 3
2 -approximation.2 These runtimess are still subquadratic for sparse graphs.

Our paper also considers the case of general directed graphs. Abboud, Vassilevska W., and
Wang [2] showed that under SETH, any O(m2−ε) time algorithm for ε > 0 for min-diameter
can achieve at best a 2-approximation. This result only held for weighted graphs.

We give the first hardness result for unweighted graphs, extending the hardness of [2]:

▶ Theorem 2. Under SETH, there can be no O(m2−ε) time (2 − δ)-approximation algorithm
for the min-diameter of an unweighted directed graph with n vertices and m = n1+o(1) edges,
for ϵ, δ > 0.

Because our min-diameter approximation algorithms for DAGs obtain an approximation
factor better than 2 in truly subquadratic time, this gives the first separation of hardness
results for min-diameter approximation in the sparse cyclic versus acyclic cases.

This result, along with all other hardness results from SETH in this work, are via
Orthogonal Vectors (OV) reductions. The OV problem is as follows: Given two sets A, B

each containing n d-dimensional Boolean vectors, determine whether there are vectors a ∈ A

and b ∈ B that are orthogonal, meaning a · b = 0.

▶ OV Conjecture ([23]). There is no constant ϵ > 0 such that for any constant c and
d = c log n, the OV problem can be solved by a randomized algorithm in time O(n2−ϵ).

The OV Conjecture is implied by SETH [23]. OV-based sparse graph constructions have
been commonly used to provide hardness results for diameter variants for the past decade,
after having been first introduced by Roditty and Vassilevska W. in [20]. However, unlike
previous OV-based constructions known to us, our construction is of a graph shaped as a
cycle. If there are no orthogonal vectors then all vertices can reach one another via a single
loop around the cycle, whereas if there are orthogonal vectors a path between them must
loop nearly twice around the cycle, giving a min-diameter nearly twice as large.

As for upper bounds for general directed graphs, Dalirrooyfard et al. [15] gave for every
integer k ≥ 2, an Õ(mn1/k) time (4k − 5)-approximation algorithm for min-diameter. Most
recently, Chechik and Zhang [11] achieved a 4-approximation in near-linear time. There is
still a gap between the best approximation known in O(m2−ε) time (3 by [15]) and the best
hardness result for such algorithms (2 by this work for unweighted, and by [2] for weighted).

Bichromatic Min-Diameter
A bichromatic version of diameter was considered by Dalirrooyfard et al. [14]. In a graph
whose nodes are colored red and blue, the bichromatic diameter is the largest distance
between two nodes of different colors. Dalirrooyfard et al. [14] gave algorithms and hardness
for bichromatic diameter under the usual notion of distance.

2 Combinatorial is here used to refer to an algorithm that does not rely on fast matrix multiplication.
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Our work presents the first study of the notion of bichromatic min-diameter. As the
min-diameter is the most natural diameter notion for DAGs, the bichromatic min-diameter
is likewise a natural way to consider distances in DAGs whose vertices are two-colored.

We first give hardness for general directed graphs, suggesting that bichromatic min-
diameter may be harder than regular min-diameter:

▶ Theorem 3. Under SETH, there can be no O(m2−ε) time ( 5
2 − δ)-approximation algorithm

for bichromatic min-diameter in unweighted n-node, m = n1+o(1)-edge graphs for ϵ, δ > 0.
Furthermore, under SETH, there can be no O(m2−ε) time (3−δ)-approximation algorithm

for bichromatic min-diameter in graphs with O(log n) bit integer edge weights.

It would be interesting if the Õ(m
√

n) 3-approximation algorithm for min-diameter of
[15] can be extended to work for bichromatic min-diameter, as then one could get a tight
result in the weighted case.

We next turn to bichromatic min-diameter in DAGs. We give an almost-2-approximation
algorithm and show that it is essentially tight (up to the additive error) under SETH:

▶ Theorem 4. Under SETH, there can be no O(m2−ε) time (2 − δ)-approximation algorithm
for bichromatic min-diameter in unweighted n-node, m = n1+o(1)-edge DAGs, for ϵ, δ > 0.

▶ Theorem 5. There is an Õ(m4/3n1/3)-time algorithm, which, given a DAG and maximum
red-blue edge weight M , outputs a (2, M)-approximation of the bichromatic min-diameter.

Finally, we present a linear-time algorithm which determines whether a directed graph
has finite bichromatic min-diameter. The proof may be found in the full version of the paper
[7].

▶ Theorem 6. There is an O(m) time algorithm which checks, for any weighted directed
graph G, whether the bichromatic min-diameter is finite.

1.1 Preliminaries
We assume the word-RAM model of computation with O(log n) bit words. All of our
algorithms and reductions fall within this model.

Graphs in this work are directed and weakly connected.3 Edge weights are polynomial
in n.

The min-eccentricity of a vertex, ϵ(v), is given by maxu∈V dmin(u, v).
For v ∈ V , the distance-D out-neighborhood of v is Nout

D (v) = {w ∈ V \{v} | d(v, w) ≤ D}.
We define N in

D (v) correspondingly.
Given a DAG G with topological ordering π and vertex sets S, T ⊆ V = V (G), we write

S <π T if all vertices in S appear to the left of all vertices in T . When S or T is equal to
{x} for some vertex x, we may omit the brackets. For vertices s, t, we write s ≤π t if s <π t

or s = t. We define a closed subset (with respect to π) to be a subset S such that for all
v ∈ V , either v ∈ S, v >π S, or v <π S.

Given a DAG G with topological ordering π, a vertex v ∈ V and a set S ⊆ V , let sv ∈ S

be the left-most vertex in S such that d(v, s) ≤ D, if such an sv exists. Then we define
Nout

D,S(v) to be the set of vertices w such that d(v, w) ≤ D and, if sv exists, w ≤π sv. One
can intuitively think of Nout

D,S(v) as the set Nout
D (v) of vertices at distance at most D from v,

3 If a graph is not weakly connected (which can be checked in O(m + n) time), then it has infinite
min-diameter, as well as infinite bichromatic min-diameter if its vertices are 2-colored.
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but cut off after the first (left-most) time we hit S. We define N in
D,S(v) symmetrically. A set

S such that for all v, |Nout
d,S (v)|, |N in

d′,S(v)| ≤ k, will be called a (k, (d, d′))-neighborhood cover.
If d = d′ we refer to it as a (k, d)-neighborhood cover.

A bichromatic DAG G is a DAG whose vertices are two-colored. An (A, B)-separated
DAG, which we may also simply call a separated DAG is a DAG ordered according to some
topological ordering π with color sets A, B such that A <π B.

We sometimes omit π when the choice of π is clear.
Let ω(1, r, 1) be the exponent of the runtime of multiplying n × nr by nr × n matrices.

The square matrix multiplication exponent is ω = ω(1, 1, 1) > 2.37286 [4].

1.2 Techniques

In this section, we review two useful techniques. The first of these is the greedy set cover
lemma. This lemma, and a related randomized version, have been commonly used in prior
work on diameter variants ([3], [20], [8], [2], [13]). See [21] for a proof of the lemma.

▶ Lemma 7. Let p = O(n), and let X1, . . . Xp ⊆ V have size |Xi| ≥ nϵ for ϵ ∈ [0, 1]. In time
O(n1+ϵ) one can construct a set S ⊆ V of size O(n1−ϵ log n) such that S ∩ Xi ̸= ∅ for all
i ∈ [p].

The following technique, previously used in [13], constructs a set cover of all sufficiently
large balls of radius d.

▶ Lemma 8. Given a topologically ordered DAG G and parameters d, d′ and k = nϵ for
ϵ ∈ [0, 1], one can in time O(nk2) construct a (k, (d, d′))-neighborhood cover S of size
O( n

k log n), and also construct the sets Nout
d,S (v), N in

d′,S(v) for all v ∈ V .

Proof. For each vertex v, if |Nout
d (v)| < k, we define Xk

d (v) = Nout
d (v). Otherwise let Xk

d (v)
be the k left-most vertices in Nout

d (v). Similarly, we define the set Y k
d′(v): if |N in

d′ (v)| < k,
then Y k

d′(v) = N in
d′ (v), and otherwise Y k

d′(v) is the k right-most vertices in N in
d′ (v).

We can compute Xk
d (v) as follows: We initialize a set S0 = ∅. While |St| < k, at step

t, we consider the set W = Nout(St ∪ {v}) ∩ Nout
d (v) of out-neighbors of St ∪ {v} that are

at distance at most d from v. If W is nonempty, we let w be its left-most element, and
we construct St+1 = S ∪ {w}. If W is empty, then St = Nout

d (v) = Xk
d (v). If |St| = k,

then St contains the left-most k vertices in Nout
d (v). Thus, in either case, we will eventually

construct St = Xk
d (v). The key step in this construction process, namely finding w, can be

done by maintaining a list containing the left-most neighbor of each vertex in St such that
the neighbor is of distance at most d from v, and choosing the left-most vertex in the list at
each step. At step t, this list has length at most |St| < k, and the total number of steps is at
most k, so the construction can be done in O(k2) time.

We can construct Y k
d′(v) in O(k2) time similarly. Doing this for all v ∈ V takes time

O(nk2).
Lemma 7 gives us a set cover S of size O( n

k log n) which intersects all sets Xk
d (v), Y k

d′(v) of
size at least k. This takes time O(nk). Then for each vertex v, we construct Nout

d,S (v) as the
set obtained from Xk

d (v) by removing all vertices to the right of the left-most s ∈ S ∩ Xk
d (v).

We construct N in
d,S(v) in a symmetric fashion. Since the sets Xk

d (v), Y k
d′(v) were of size at

most k, the sets Nout
d,S (v), N in

d′,S(v) are also of size at most k. ◀
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2 Min-diameter approximation

In Section 2.1 we present a conditional lower bound showing that the OV Conjecture implies
that no (2 − δ)-approximation algorithm for min-diameter in unweighted graphs can run in
truly subquadratic time. Subsequently, in Section 2.2, we give an almost- 3

2 -approximation
algorithm for min-diameter in unweighted DAGs which runs in truly subquadratic time.

2.1 Conditional lower bound in general graphs
We first present a conditional lower bound for approximating min-diameter in general graphs.

▶ Theorem 9. If there are ϵ, δ > 0 such that there is an O(m2−ϵ)-time (2 − δ)-approximation
algorithm for min-diameter, then the OV Conjecture is false.

Proof. Given δ > 0, choose t = ⌈ 2
δ ⌉ so that 2 − δ < 2t

t+1 . Let A be an instance of single-set
OV4, that is, a set of n ≥ 2t vectors in {0, 1}c0 log n for a constant c0 > 0. We will construct a
graph Gt with O(tn) vertices, Õ(tn) edges such that the min-diameter is 2t + 1 if A contains
a pair of orthogonal vectors, and t + 1 otherwise. For each i ∈ [t], we construct a set Ai

of n vertices corresponding bijectively to the vectors in A. For each vector a ∈ A, let ai

be the vertex in set Ai corresponding to a. We also construct a set I of “index” vertices
x1, . . . , xc log n. In total we have O(tn) vertices. We add an edge a1 → xj and an edge
xj → at whenever a[j] = 1. We also add edges ai → ai−1 for each i ∈ {2, . . . , t}. Finally,
we add all possible edges A2 → I. In total we have Õ(tn) edges. This graph Gt may be
constructed in Õ(tn) = Õ(n) time.

We now check that if the OV instance is a YES instance, Gt has at least min-diameter
2t + 1, and in the NO case, Gt has min-diameter t + 1.

Figure 1 The graph Gt. The thick edge denotes that all possible edges A2 → I exist.

YES case

Let a, b ∈ A be orthogonal. Without loss of generality, dmin(a1, b1) = d(a1, b1). There is no j

such that a[j] = b[j] = 1, so there is no length-2 path from a1 to bt via I. Since all edges
between Ai and Ai−1 are of the form ai → ai−1, the first t vertices on any a1 → b1 path

4 The OV Conjecture can be equivalently stated in terms of single-set OV (OV where A = B). Informally,
the reduction is to construct A′ from A by appending 10 to all vectors, and B′ from B by appending 01
to all vectors. If v1, v2 ∈ A′ ∪ B′ are orthogonal, then we must have v1 ∈ A′, v2 ∈ B′ or vice versa.
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must be of the form a1 → xj → ct → · · · → c2 for some j ∈ I, c ∈ A such that a[j] = c[j] = 1.
We note that any path from c2 to b1 must traverse all sets of the cycle with the possible
exception of A1, so must be of length at least t. Then if k is an index such that b[k] = 1, the
path c2 → xk → bt → · · · → b1 gives d(c2, b1) = t + 1. Thus, d(a1, b1) = dmin(a1, b1) ≥ 2t + 1.
So Gt has min-diameter at least 2t + 1.

NO case

Suppose that A contains no pair of orthogonal vectors. For any a1, bi, there is some j such
that a[j] = b[j] = 1, so there is a path a1 → xj → bt → . . . bi of length at most t + 1. Now,
consider any vertices ai, bi′ with 2 ≤ i ≤ i′. Let j be an index such that b[j] = 1. There is a
path ai → . . . a2 → xj → bt → · · · → bi′ which has length at most t. Furthermore, for any
a1 ∈ A1, xj ∈ I, d(a1, xj) ≤ t + 1, since there is a path a1 → xk → at → · · · → a2 → xj for
some k with a[k] = 1. Lastly, for any ai ∈ Ai with i ≥ 2, and for any xj ∈ I, there is a path
ai → . . . a2 → xj of length at most t. Hence, all pairs of vertices are at min-distance at most
t + 1. ◀

2.2 A (3
2 , 1

2)-approximation algorithm in unweighted DAGs
Unlike in general directed graphs, where (2 − δ)-approximating min-diameter seems to be
hard, in DAGs one can achieve an efficient ( 3

2 , 1
2 )-approximation and a (slightly less) efficient

3
2 -approximation. The ( 3

2 , 1
2 ) and the exact 3

2 approximations have very similar proofs; we
present the proof of the ( 3

2 , 1
2 )-approximation result here because the algorithm is faster and

marginally simpler than in the exact 3
2 case, whose proof can be found in the full version of

the paper [7].
Our algorithm uses fast sparse matrix multiplication to compute set intersections. Its

runtime involves the constants α = max{0 ≤ r ≤ 1 | ω(1, r, 1) = 2} and β = ω−2
1−α .

▶ Theorem 10. There is an Õ(m
4β+2−2αβ
5β+3−2αβ n)-time algorithm achieving a ( 3

2 , 1
2 )-approximation

for min-diameter in unweighted DAGs.

Since α > 0.31389 [17] and ω < 2.37286 [4], we can use β ≃ 0.5435, giving the runtime
O(m0.713n).

The algorithm starts by topologically sorting the DAG and fixing a neighborhood-
size parameter k (whose value will be determined later). It then performs two layers of
recursion. The outer layer is a binary search over min-diameter estimates D: for each
estimate D, it will either determine that D is low or high, i.e. that min-diameter(G) > D

or min-diameter(G) ≤ ⌈ 3
2 D⌉. The inner layer, in which the estimate D is fixed, involves

recursively splitting the graph in half according to the topological ordering. Then, in the
core body of the algorithm, one of the following will occur:

We find a pair of vertices with min-distance larger than D, in which case we end the
recursion and report that min-diameter(G) > D.
We verify that every min-distance between a vertex in the left half and a vertex in the
right half is at most ⌈3D/2⌉, and we recurse on the left and right halves of the graph.

The core body of the algorithm – which will be repeated recursively as the graph is
repeatedly cut in half – is as follows:

First, using Lemma 8, we compute a (k, (D/2, ⌈D/2⌉))-neighborhood cover S of size
O( n

k log n) along with neighborhoods Nout
D/2,S(v), N in

⌈D/2⌉,S(v) all of which have size at most
k. Using BFS, we check that dmin(s, v) ≤ D for all s ∈ S, v ∈ V . This step ensures that, for
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every vertex with a “sufficiently large” (meaning, size-k) distance-D/2 out-neighborhood or
distance-⌈D/2⌉ in-neighborhood, some vertex in S lies in that out- or in-neighborhood. In
this sense, S covers all of the large neighborhoods, which will be useful later.

We partition V into 2θ = n/k2 closed intervals, V1, . . . V2θ. We let L = V1 ∪ · · · ∪ Vθ and
R = Vθ+1 ∪ · · · ∪ V2θ be the left and right halves of V . We start in the middle and work
outwards verifying that min-distances between vertices in L and R are at most ⌈3D/2⌉.

At each inductive step, we consider two subsets of vertices A = Vi and B = Vj to the left
and right of the “middle interval,” which consists of the intervening subsets Vi+1 ∪ · · · ∪ Vj−1.
Intuitively, one might picture the middle interval as a growing amoeba, which at each step
engulfs one of A or B. We will only add vertices to the middle interval once they have
been “checked,” so vertices from A that are added to the middle interval have distance at
most 3D/2 to everything in B, and vice-versa. Eventually, either the algorithm will detect a
min-distance greater than D and report that min-diameter(G) > D, or the amoeba will
have engulfed enough of the graph that it contains the entirety of one of the halves L or R,
meaning that all distances from vertices in L to vertices in R are at most ⌈ 3

2 D⌉.
In order to expand the middle interval we have to confirm that one of our two candidate

subsets A and B has small distances to the opposite half of the graph. Performing a BFS
from each vertex in A or B to confirm this directly would be too slow, so instead we present
two subroutines to achieve this goal faster. Algorithm 2 checks that all min-distances between
vertices a ∈ A and b ∈ B are at most ⌈3D/2⌉. Algorithm 3 checks that either all vertices in A

have min-distance at most 3
2 D to all vertices to the right of B, or that a symmetric property

holds for all vertices in B. These algorithms will either detect that the min-diameter is more
than D or allow us to add one of A or B to the middle interval.

We first give a pseudocode description of the main algorithm, Algorithm 1, which will give
context for the two subroutines, Algorithms 2 and 3, whose descriptions follow afterwards.

We will present the correctness and runtime analyses for the two subroutines, and then
present the correctness proof and runtime analysis for the overall algorithm.

The first subroutine, Algorithm 2, checks distances between pairs of vertices in subsets
A, B by using the cover S to hit large neighborhoods and using fast sparse rectangular matrix
multiplication to efficiently check set intersections between small neighborhoods.

▶ Theorem 11 ([19]). If M, M ′ are p × l matrices having at most l nonzero entries, where
p1+ α

2 ≤ l ≤ p
ω+1

2 , then in time O(l
2β

β+1 p
2−αβ
β+1 ) one can compute the product MT M ′.5

▶ Lemma 12. Algorithm 2 produces the correct output in runtime O(k4+ 2β−2αβ
β+1 ).

Proof. We first show correctness. Assume the algorithm fails; then it fails inside the foreach
loop at some pair a, b. Suppose for the sake of contradiction that dmin(a, b) ≤ D. Let
x be a midpoint of the shortest path from a to b, so d(a, x) ≤ D/2, d(x, b) ≤ ⌈D/2⌉.
If x /∈ Nout

D/2,S(a) despite being distance ≤ D/2 from a, then x must lie after the out-
neighborhood of a reaches the (k, (D/2, ⌈D/2⌉))-neighborhood cover S and is cut off. That is,
there is some s ∈ Nout

D/2(a) ∩ S to the left of x, and hence to the left of b. Thus the condition
in line 9 holds, and we continue rather than FAIL, which is a contradiction. Similarly, if
x /∈ N in

⌈D/2⌉,S(b) then the condition in line 7 holds, which is a contradiction. We conclude
that x ∈ Nout

D/2,S(a) ∩ N in
⌈D/2⌉,S(b), in which case Mab ≥ 1, completing the contradiction.

Thus, dmin(a, b) > D, and so min-diameter(G) > D.

5 To be precise, if we have α ≥ a, ω ≤ c, we can define b = c−2
1−a , and then the theorem holds for any such

pair a, b, used in place of α, β.
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Algorithm 1 Full graph min-distance tester.

Input: DAG G = (V, E), diameter guess D, parameters k = m
β+1

5β+3−2αβ and
θ = n/2k2.

Output: One of the following. Each output verifies a corresponding property of G.
PASS ⇒ min-diameter(G) ≤ ⌈ 3

2 D⌉
FAIL ⇒ min-diameter(G) > D

1 Topologically sort G;
2 Using Lemma 8 compute a (k, (D/2, ⌈D/2⌉))-neighborhood cover S ⊆ V . Run BFS

to and from each vertex in S;
3 if ∃s ∈ S such that ϵ(s) > D then
4 FAIL
5 Partition V into consecutive closed intervals, V1, . . . V2θ, with |Vi| = k2 for each i;
6 Initialize i = θ and j = θ + 1;
7 while i ≥ 1 and j ≤ 2θ do
8 Run Algorithm 2 (all-pairs) on the pair (Vi, Vj). If this fails, then FAIL;
9 Run Algorithm 3 (directional tester) on the pair (Vi, Vj). If this fails, then FAIL;

10 else if Algorithm 3 passes and returns Vi then
11 i = i − 1;
12 else

/* Otherwise, Algorithm 3 passes and returns Vj. */
13 j = j + 1;

/* If this line is reached, all distances from L to R are at most
⌈ 3

2 D⌉. */
14 Recursively call this algorithm on G[L] and G[R]. If either fails, FAIL. Else PASS;

Conversely, assume the algorithm passes. Then for each pair of vertices a ∈ A, b ∈ B,
one of the conditions in lines 5, 7, or 9 must hold. If Mab ≥ 1, then there is some x ∈
Nout

D/2,S(a)∩N in
⌈D/2⌉,S(b), giving d(a, b) ≤ d(a, x)+d(x, b) ≤ D/2+⌈D/2⌉ ≤ D+1. Otherwise

if a <π N in
⌈D/2⌉,S(b) and N in

⌈D/2⌉,S(b) ∩ S is nonempty, then there is some s ∈ N in
⌈D/2⌉,S(b) ∩ S

with s ≥π a. Thus d(a, b) ≤ d(a, s) + d(s, b) ≤ D + ⌈D/2⌉ ≤ ⌈3D/2⌉. Similarly, if
b >π Nout

D/2,S(a) and Nout
D/2,S(a) ∩ S is nonempty, then there is some s ∈ Nout

D/2(a) ∩ S with
s ≤π b. So d(a, b) ≤ d(a, s) + d(s, b) ≤ D/2 + D ≤ 3D/2. We conclude that if the algorithm
passes, then every pair a ∈ A, b ∈ B satisfies d(a, b) ≤ ⌈3D/2⌉.

We conclude with runtime analysis. Ma and Mb are sparse p × n matrices with O(pk) =
O(k3) entries, so may be treated as p × pk matrices. Using Theorem 11, the matrix
multiplication takes time at most O((pk)

2β
β+1 p

2−αβ
β+1 ) = O(k4+ 2β−2αβ

β+1 ). The foreach loop
takes O(|A||B|) = O(k4) time. ◀

▶ Remark 13. One can modify Algorithm 2 by computing set intersections of the sets
Nout

D/2,S(a), N in
⌈D/2⌉,S(b) for a ∈ A, b ∈ B, by brute force in lieu of matrix multiplication. This

gives a combinatorial version of Algorithm 2 which runs in time Õ(p2k) = Õ(k5).

Next we give the directional min-distance tester. A call to this subroutine will prove a
min-distance bound of 3D/2 from A to everything past B, prove a bound of ⌈3D/2⌉ from B

to everything before A, or find a pair of vertices with min-distance greater than D. The idea
is to iterate over vertices a in A; those with large D/2-neighborhoods get hit by S, and if
some a has a small D/2-neighborhood it can be used as a jumping-off set to show B is close
to everything past A.
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Algorithm 2 All-pairs min-distance tester.

Input: DAG G = (V, E), topological ordering π, subsets A <π B ⊆ V with
|A| = |B| = p = O(k2), diameter guess D, (k, (D/2, ⌈D/2⌉))-neighborhood
cover S ⊆ V such that ϵ(s) ≤ D for all s ∈ S, and Nout

D/2,S(a), N in
⌈D/2⌉,S(b) for

a ∈ A, b ∈ B.
Output: One of the following. Each output verifies a corresponding property of G.

PASS ⇒ dmin(a, b) ≤ ⌈ 3
2 D⌉ for all in a ∈ A and b ∈ B

FAIL ⇒ min-diameter(G) > D

1 Compute MA, the matrix with columns given by indicator vectors of Nout
D/2,S(a) for

a ∈ A;
2 Compute MB , the matrix with columns given by indicator vectors N in

⌈D/2⌉,S(b) for
b ∈ B;

3 Compute M = MT
A MB ;

4 foreach a ∈ A, b ∈ B do
5 if Mab ≥ 1 then
6 continue;
7 else if a <π N in

⌈D/2⌉,S(b) and N in
⌈D/2⌉,S(b) ∩ S ̸= ∅ then

8 continue;
9 else if b >π Nout

D/2,S(a) and Nout
D/2,S(a) ∩ S ̸= ∅ then

10 continue;
11 else
12 FAIL;

13 PASS;

▶ Lemma 14. Algorithm 3 produces the correct output in runtime O(mk).

Proof. We first show correctness. If the algorithm fails, we must have found a vertex u with
ϵ(u) > D, and thus min-diameter(G) > D.

If the algorithm returns A, then for each a ∈ A, there is some s ∈ S ∩ Nout
D/2,S(a) with

s appearing in B or to its left. Thus for all u >π B, we have d(a, u) ≤ d(a, s) + d(s, u) ≤
D/2 + D = 3D/2.

Otherwise, the algorithm returns B. Then the condition in line 2 must hold for some
a ∈ A. Let u <π A and b ∈ B. Since we do not fail in line 5, we must have d(a, b) ≤ D.
Let x be a midpoint of the shortest path from a to b, so d(a, x) ≤ D/2 and d(x, b) ≤ ⌈D/2⌉.
Since Nout

D/2,S(a) is either not cut off by hitting S or is cut off after B, we have x ∈ Nout
D/2,S(a).

Finally, since we do not fail in line 5, we must have d(u, x) ≤ D. Concluding, d(u, b) ≤
d(u, x) + d(x, b) ≤ D + ⌈D/2⌉ ≤ ⌈3D/2⌉. As u, b were arbitrary, this completes the case.

We conclude with runtime analysis. The outer foreach loop repeats until we have covered
every vertex in A or the condition in line 2 is satisfied. Checking this condition takes time
at most O(k) for a total of O(|A|k) = O(mk). If the condition is satisfied, we perform
1 + |Nout

D/2,S(a)| calls to BFS, for a total of O(mk). The algorithm concludes before returning
to the outer loop, so we may add these contributions for a total time of O(mk). ◀

We can now complete the analysis of the overall algorithm.

▶ Lemma 15. Algorithm 1 produces the correct output in runtime Õ(m
4β+2−2αβ
5β+3−2αβ n).
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Algorithm 3 Directional min-distance tester.

Input: DAG G = (V, E), topological ordering π, closed subsets A <π B ⊆ V ,
diameter guess D, parameter k, (k, (D/2, ⌈D/2⌉))-neighborhood cover S ⊆ V

with ϵ(s) ≤ D for all s ∈ S, and neighborhoods Nout
D/2,S(a) for all a ∈ A.

Output: One of the following. Each output verifies a corresponding property of G.
PASS and return A ⇒ d(a, v) ≤ 3

2 D for all a ∈ A and v >π B

PASS and return B ⇒ d(v, b) ≤ ⌈ 3
2 D⌉ for all b ∈ B and v <π A

FAIL ⇒ min-diameter(G) > D

1 foreach a ∈ A do
2 if Nout

D/2,S(a) ∩ S = ∅ or Nout
D/2,S(a) ∩ S >π B then

3 foreach v ∈ {a} ∪ Nout
D/2,S(a) do

4 BFS to and from v;
5 if ϵ(v) > D then
6 FAIL;

7 PASS and return B;

8 PASS and return A;

Proof. This algorithm fails only when some s ∈ S has ϵ(s) > D, when Algorithm 2 fails, or
Algorithm 3 fails, all of which imply min-diameter(G) > D. We now show that in the event
of a pass, min-diameter(G) ≤ ⌈3D/2⌉. It suffices to prove that if the algorithm reaches line
13 then all min-distances between vertices in L and R are at most ⌈3D/2⌉.

Assume we are at the beginning of iteration t of the while loop. Let It =
⋃

i<ℓ<j Vℓ be
the interval strictly between Vi and Vj . We will show inductively that for all x ∈ L and
y ∈ R, where at least one of x or y is in the interval It, dmin(x, y) ≤ ⌈3D/2⌉. When the loop
terminates, It must entirely contain either L or R, which will prove that all min-distance
between vertices in L and R are at most ⌈3D/2⌉.

The base case is trivial, as I1 is empty. Assume the claim holds for t. Without loss of
generality, assume Algorithm 3 returns Vi, so that It+1 = It ∪ Vi. Let x ∈ L, y ∈ R with at
least one of x or y in It+1. If x or y is in It, then d(x, y) ≤ ⌈3D/2⌉ by induction. Otherwise,
one must lie in It+1 \ It = Vi, and since Vi ⊂ L, this vertex must be x. Then we have y ∈ Vj

or y >π Vj . If y ∈ Vj , then since Algorithm 2 did not fail, we have d(x, y) ≤ 3D/2. If
y >π Vj , then because Algorithm 3 returned Vi we have d(x, y) ≤ ⌈3D/2⌉. This completes
the induction and the proof of correctness.

G can be topologically sorted in time Õ(n). Lemma 8 constructs the set S in time O(nk2).
Running BFS to and from each vertex in S takes time Õ(mn/k). We run Algorithm 2 and
Algorithm 3 each up to 2θ = n/2k2 times. Since Algorithm 2 takes time O(k4+ 2β−2αβ

β+1 ) and
Algorithm 3 takes time O(mk), the total runtime of a recursive step is therefore:

Õ(mn/k + nk2+ 2β−2αβ
β+1 )

Setting k = m
β+1

5β+3−2αβ , we obtain Õ(m
4β+2−2αβ
5β+3−2αβ n) for each recursive step. The recursion

over the left and right halves of the graph then adds a logarithmic factor. ◀

Proof of Theorem 10. Binary searching over D ∈ [n] using Algorithm 1 gives the desired
algorithm. The additive +1/2 follows from the fact that ⌈3D/2⌉ may equal 3D/2 + 1/2. ◀

▶ Remark 16. Using the combinatorial version of Algorithm 2, one can obtain a combinatorial
( 3

2 , 1
2 )-approximation algorithm for min-diameter which runs in time Õ(m3/4n).
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▶ Theorem 17. There is a 3
2 -approximation algorithm for min-diameter in unweighted DAGs

that runs in time Õ(m
8β+4−4αβ
5β+3−2αβ n

β+1
5β+3−2αβ ).

This runtime is at most O(m1.426n0.288). We note that there is also a combinatorial
version of this algorithm which runs in time Õ(m5/4n1/2), and a version which runs in
Õ(m

7β+3−3αβ
5β+3−2αβ n

2β+2−αβ
5β+3−2αβ ) time, which is O(m1.171n0.543), when m ≤ n1.283. A proof of the

theorem may be found in the full version of the paper [7].

3 Bichromatic min-diameter

We first present OV-based conditional lower bounds for bichromatic min-diameter ap-
proximations, both for general graphs and for DAGs. Then in Section 3.2, we give an
almost-2-approximation algorithm for bichromatic min-diameter in DAGs.

3.1 Conditional lower bounds for bichromatic min-diameter
We present, in order of increasing strength of the bound, three conditional lower bounds for
approximating bichromatic min-diameter: one for DAGs, one for unweighted directed graphs,
and one of weighted directed graphs. The constructions proceed analogously to Theorem 9,
and can be found in the full version of the paper [7].

▶ Theorem 18. For any ϵ, δ > 0 if there is an O(n2−ϵ)-time algorithm giving a (2 − δ)-
approximation for bichromatic min-diameter in unweighted DAGs with O(n) vertices and
O(n1+o(1)) edges, then the OV Conjecture is false.

▶ Theorem 19. For any ϵ, δ > 0, if there is an O(n2−ϵ)-time algorithm giving a (5/2 − δ)-
approximation for bichromatic min-diameter in unweighted graphs with O(n) vertices and
O(n1+o(1)) edges, then the OV Conjecture is false.

▶ Theorem 20. For any ϵ, δ > 0, if there is an O(n2−ϵ)-time algorithm giving a (3 − δ)-
approximation for bichromatic min-diameter in weighted graphs with O(n) vertices and
O(n1+o(1)) edges, then the OV Conjecture is false.

3.2 Almost-2-approximation for bichromatic min-diameter in DAGs
We conclude by turning to upper bounds for bichromatic min-diameter.

▶ Theorem 21. There is an Õ(min(m4/3n1/3, m1/2n3/2))-time algorithm, which, given a
DAG G with maximum red-blue edge weight M0, outputs an approximation D0 such that
D ≤ D0 < 2D + M0 ≤ 3D.

We give a brief overview of the algorithm. The full details and proof of correctness can
be found in the full version of the paper [7].

We first consider the simpler case when the DAG is separated, i.e. when in some topological
ordering every red vertex is to the left of every blue vertex. As is typical, we proceed by a
binary search; at each stage we have some guess D for the bichromatic min-diameter and
either verify the true bichromatic min-diameter is larger than D or smaller than 2D.

We begin by finding a hitting set for the red vertices with large red outneighborhoods
(other red vertices at distance at most D). This is achieved via the standard sampling method
(Lemma 8). By running a BFS from this hitting set, we can verify min-distances for all
vertices hit in this way to the blue side are not large; it remains to control vertices with
small red out-neighborhoods. This is handled separately for sparse and dense graphs.
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For sparse graphs, we add an additional step of BFS for each vertex of high degree. By
sparsity, this must be a small fraction of the vertices, so this has a controllable contribution
to the total runtime. For any red vertex with a high-degree vertex in its red outneighborhood,
this will again verify an upper bound on the min-distance to any blue vertex. At this stage,
if any vertex is left, its red outneighborhood is composed of few vertices of low degree. Its
blue boundary, the set of blue neighbors of vertices in its red outneighborhood, must therefore
be small. Consider a single such vertex. Any path from it to a blue vertex must intersect its
blue boundary. So its blue boundary must be a hitting set for blue in-neighborhoods of all of
the blue vertices, or our red vertex would be unable to reach all blue vertices in distance D.
BFSing from this small blue hitting set completes the algorithm.

For dense graphs, the BFS steps from every vertex of high degree and every vertex in a
blue boundary become too costly. After eliminating vertices with large neighborhoods via
the randomized hitting set, we compute blue in-neighborhoods for all remaining blue vertices
and blue boundaries for all remaining red vertices, and conclude by running set intersection
on these two lists of sets.

We then bootstrap this special case for separated DAGs into a complete proof, by
recursively splitting the DAG into a “middle” (consisting of a separated DAG) along with left
and right halves, and bounding min-distances between these different sections of the graph.
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Abstract
Dynamic programming on various graph decompositions is one of the most fundamental techniques
used in parameterized complexity. Unfortunately, even if we consider concepts as simple as path or
tree decompositions, such dynamic programming uses space that is exponential in the decomposition’s
width, and there are good reasons to believe that this is necessary. However, it has been shown that in
graphs of low treedepth it is possible to design algorithms which achieve polynomial space complexity
without requiring worse time complexity than their counterparts working on tree decompositions of
bounded width. Here, treedepth is a graph parameter that, intuitively speaking, takes into account
both the depth and the width of a tree decomposition of the graph, rather than the width alone.

Motivated by the above, we consider graphs that admit clique expressions with bounded depth
and label count, or equivalently, graphs of low shrubdepth. Here, shrubdepth is a bounded-depth
analogue of cliquewidth, in the same way as treedepth is a bounded-depth analogue of treewidth.
We show that also in this setting, bounding the depth of the decomposition is a deciding factor for
improving the space complexity. More precisely, we prove that on n-vertex graphs equipped with a
tree-model (a decomposition notion underlying shrubdepth) of depth d and using k labels,

Independent Set can be solved in time 2O(dk) · nO(1) using O(dk2 log n) space;
Max Cut can be solved in time nO(dk) using O(dk log n) space; and
Dominating Set can be solved in time 2O(dk) · nO(1) using nO(1) space via a randomized
algorithm.

We also establish a lower bound, conditional on a certain assumption about the complexity of
Longest Common Subsequence, which shows that at least in the case of Independent Set the
exponent of the parametric factor in the time complexity has to grow with d if one wishes to keep
the space complexity polynomial.
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1 Introduction

Treewidth and Treedepth. Dynamic programming on graph decompositions is a funda-
mental method in the design of parameterized algorithms. Among various decomposition
notions, tree decompositions, which underly the parameter treewidth, are perhaps the most
widely used; see e.g. [9, 12] for an introduction. A tree decomposition of a graph G of width k

provides a way to “sweep” G while keeping track of at most k + 1 “interface vertices” at a
time. This can be used for dynamic programming: during the sweep, the algorithm maintains
a set of representative partial solutions within the part already swept, one for each possible
behavior of a partial solution on the interface vertices. Thus, the width of the decomposition
is the key factor influencing the number of partial solutions that need to be stored.

In a vast majority of applications, this number of different partial solutions depends (at
least) exponentially on the width k of the decomposition, which often leads to time complexity
of the form f(k) · nO(1) for an exponential function f . This should not be surprising, as most
problems where this technique is used are NP-hard. Unfortunately, the space complexity –
which often appears to be the true bottleneck in practice – is also exponential. There is a
simple tradeoff trick, first observed by Lokshtanov et al. [29], which can often be used to
reduce the space complexity to polynomial at the cost of increasing the time complexity. For
instance, Independent Set can be solved in 2k · nO(1) time and using 2k · nO(1) space on an
n-vertex graph equipped with a width-k tree decomposition via dynamic programming [19];
combining this algorithm with a simple recursive Divide&Conquer scheme yields an algorithm
with running time 2O(k2) · nO(1) and space complexity nO(1).

Allender et al. [2] and then Pilipczuk and Wrochna [35] studied the question whether the
loss on the time complexity is necessary if one wants to achieve polynomial space complexity
in the context of dynamic programming on tree decompositions. While the formal formulation
of their results is somewhat technical and complicated, the take-away message is the following:
there are good complexity-theoretical reasons to believe that even in the simpler setting
of path decompositions, one cannot achieve algorithms with polynomial space complexity
whose running times asymptotically match the running times of their exponential-space
counterparts. We refer to the works [2, 35] for further details.

However, starting with the work of Fürer and Yu [20], a long line of advances [25, 31, 32, 35]
showed that bounding the depth, rather than the width, of a decomposition leads to the
possibility of designing algorithms that are both time- and space-efficient. To this end, we
consider the treedepth of a graph G, which is the least possible depth of an elimination
forest: a forest F on the vertex set of G such that every two vertices adjacent in G are in the

https://arxiv.org/abs/2307.01285
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ancestor/descendant relation in F . An elimination forest of depth d can be regarded as a tree
decomposition of depth d, and thus treedepth is the bounded-depth analogue of treewidth. As
shown in [20, 25, 32, 35], for many classic problems, including 3-Coloring, Independent
Set, Dominating Set, and Hamiltonicity, it is possible to design algorithms with running
time 2O(d) · nO(1) and polynomial space complexity, assuming the graph is supplied with
an elimination forest of depth d. In certain cases, the space complexity can even be as low
as O(d + log n) or O(d log n) [35]. Typically, the main idea is to reformulate the classic
bottom-up dynamic programming approach so that it can be replaced by a simple top-down
recursion. This reformulation is by no means easy – it often involves a highly non-trivial use of
algebraic transforms or other tools of algebraic flavor, such as inclusion-exclusion branching.

Cliquewidth and Shrubdepth. In this work, we are interested in the parameter cliquewidth
and its low-depth counterpart: shrubdepth. While treewidth applies only to sparse graphs,
cliquewidth is a notion of tree-likeness suited for dense graphs as well. The decompositions
underlying cliquewidth are called clique expressions [8]. A clique expression is a term
operating over k-labelled graphs – graphs where every vertex is assigned one of k labels –
and the allowed operations are: (i) apply any renaming function to the labels; (ii) make
a complete bipartite graph between two given labels; and (iii) take the disjoint union of
two k-labelled graphs. Then the cliquewidth of G is the least number of labels using which
(some labelling of) G can be constructed. Similarly to treewidth, dynamic programming over
clique expressions can be used to solve a wide range of problems, in particular all problems
expressible in MSO1 logic, in FPT time when parameterized by cliquewidth. Furthermore,
while several problems involving edge selection or edge counting, such as Hamiltonicity
or Max Cut, remain W[1]-hard under the cliquewidth parameterization [16, 17], standard
dynamic programming still allows us to solve them in XP time. In this sense, clique-width
can be seen as the “least restrictive” general-purpose graph parameter which allows for
efficient dynamic programming algorithms where the decompositions can also be computed
efficiently [18]. Nevertheless, since the cliquewidth of a graph is at least as large as its linear
cliquewidth, which in turn is as large as its pathwidth, the lower bounds of Allender et al. [2]
and of Pilipczuk and Wrochna [35] carry over to the cliquewidth setting. Hence, reducing
the space complexity to polynomial requires a sacrifice in the time complexity.

Shrubdepth, introduced by Ganian et al. [23], is a variant of cliquewidth where we stipulate
the decomposition to have bounded depth. This necessitates altering the set of operations
used in clique expressions in order to allow taking disjoint unions of multiple graphs as a single
operation. In this context, we call the decompositions used for shrubdepth (d, k)-tree-models,
where d stands for the depth and k for the number of labels used; a formal definition is
provided in Section 2. Shrubdepth appears to be a notion of depth that is sound from the
model-theoretic perspective, is FPT-time computable [21], and has become an important
concept in the logic-based theory of well-structured dense graphs [13, 14, 22, 23, 33, 34].

Since shrubdepth is a bounded-depth analogue of cliquewidth in the same way as treedepth
is a bounded-depth analogue of treewidth, it is natural to ask whether for graphs from classes
of bounded shrubdepth, or more concretely, for graphs admitting (d, k)-tree-models where
both d and k are considered parameters, one can design space-efficient FPT algorithms.
Exploring this question is the topic of this work.

Our contribution. We consider three example problems: Independent Set, Max Cut,
and Dominating Set. For each of them we show that on graphs supplied with (d, k)-tree-
models where d = O(1), one can design space-efficient fixed-parameter algorithms whose
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running times asymptotically match the running times of their exponential-space counterparts
working on general clique expressions. While we focus on the three problems mentioned above
for concreteness, we in fact provide a more general algebraic framework, inspired by the work
on the treedepth parameterization [20, 25, 31, 32, 35], that can be applied to a wider range of
problems. Once the depth d is not considered a constant, the running times of our algorithms
increase with d. To mitigate this concern, we give a conditional lower bound showing that
this is likely to be necessary if one wishes to keep the space complexity polynomial.

Recall that standard dynamic programming solves the Independent Set problem in time
2k · nO(1) and space 2k · nO(1) on a graph constructed by a clique expression of width k [19].
Our first contribution is to show that on graphs with (d, k)-tree-models, the space complexity
can be reduced to as low as O(dk2 · log n) at the cost of allowing time complexity 2O(dk) ·nO(1).
In fact, we tackle the more general problem of computing the independent set polynomial.

▶ Theorem 1.1. There is an algorithm which takes as input an n-vertex graph G along with
a (d, k)-tree model of G, runs in time 2O(kd) · nO(1) and uses at most O(dk2 log n) space, and
computes the independent set polynomial of G.

The idea of the proof of Theorem 1.1 is to reorganize the computation of the standard
bottom-up dynamic programming by applying the zeta-transform to the computed tables.
This allows a radical simplification of the way a dynamic programming table for a node
is computed from the tables of its children, so that the whole dynamic programming can
be replaced by top-down recursion. Applying just this yields an algorithm with space
polynomial in n. We reduce space to O(dk2 log n) by computing the result modulo several
small primes, and using space-efficient Chinese remaindering. This is inspired by the algorithm
for Dominating Set on graphs of small treedepth of Pilipczuk and Wrochna [35].

In fact, the technique used to prove Theorem 1.1 is much more general and can be
used to tackle all coloring-like problems of local character. We formalize those under a
single umbrella by solving the problem of counting List H-homomorphisms (for an arbitrary
but fixed pattern graph H), for which we provide an algorithm with the same complexity
guarantees as those of Theorem 1.1. The concrete problems captured by this framework
include, e.g., Odd Cycle Transveral and q-Coloring for a fixed constant q (details in
the full version).

Next, we turn our attention to the Max Cut problem. This problem is W[1]-hard when
parameterized by cliquewidth, but it admits a simple nO(k)-time algorithm on n-vertex graphs
provided with clique expressions of width k [17]. Our second contribution is a space-efficient
counterpart of this result for graphs equipped with bounded-depth tree-models.

▶ Theorem 1.2. There is an algorithm which takes as input an n-vertex graph G along with
a (d, k)-tree model of G, runs in time nO(dk) and uses at most O(dk log n) space, and solves
the Max Cut problem on G.

Upon closer inspection, the standard dynamic programming for Max Cut on clique
expressions solves a Subset Sum-like problem whenever aggregating the dynamic program-
ming tables of children to compute the table of their parent. We apply the approach of
Kane [27] that was used to solve Unary Subset Sum in logarithmic space: we encode the
aforementioned Subset Sum-like problem as computing the product of polynomials, and
use Chinese remaindering to compute this product in a space-efficient way.

Finally, we consider the Dominating Set problem, for which we prove the following.

▶ Theorem 1.3. There is a randomized algorithm which takes as input an n-vertex graph G

along with a (d, k)-tree model of G, runs in time 2O(dk) · nO(1) and uses at most O(dk2 log n +
n log n) space, and reports the minimum size of a dominating set in G that is correct with
probability at least 1/2.
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Note that the algorithm of Theorem 1.3 is randomized and uses much more space than
our previous algorithms: more than n log n. The reason for this is that we use the inclusion-
exclusion approach proposed very recently by Hegerfeld and Kratsch [26], which is able
to count dominating sets only modulo 2. Consequently, while the parity of the number
of dominating sets of certain size can be computed in space O(dk2 log n), to determine
the existence of such dominating sets we use the Isolation Lemma and count the parity of
the number of dominating sets of all possible weights. This introduces randomization and
necessitates sampling – and storing – a weight function. At this point we do not know how
to remove neither the randomization nor the super-linear space complexity in Theorem 1.3;
we believe this is an excellent open problem.

Note that in all the algorithms presented above, the running times contain a factor d in
the exponent compared to the standard (exponential-space) dynamic programming on clique
expressions. The following conditional lower bound shows that some additional dependency
on the depth is indeed necessary; the relevant precise definitions are provided in Section 4.

▶ Theorem 1.4. Suppose Longest Common Subsequence cannot be solved in time Mf(r)

and space f(r) · MO(1) for any computable function f , even if the length t of the sought
subsequence is bounded by δ(N) for any unbounded computable function δ; here r is the
number of strings on input, N is the common length of each string, and M is the total bitsize
of the instance. Then for every unbounded computable function δ, there is no algorithm that
solves the Independent Set problem in graphs supplied with (d, k)-tree-models satisfying
d ⩽ δ(k) that would run in time 2O(k) · nO(1) and simultaneously use nO(1) space.

The possibility of achieving time- and space-efficient algorithms for Longest Common
Subsequence was also the base of conjectures formulated by Pilipczuk and Wrochna [35]
for their lower bounds against time- and space-efficient algorithms on graphs of bounded
pathwidth. The supposition made in Theorem 1.4 is a refined version of those conjectures
that takes also the length of the sought subsequence into account. The reduction underlying
Theorem 1.4 is loosely inspired by the constructions of [35], but requires new ideas due to
the different setting of tree-models of low depth.

Finally, given that the above results point to a fundamental role of shrubdepth in
terms of space complexity, it is natural to ask whether shrubdepth can also be used to
obtain meaningful tractability results with respect to the “usual” notion of fixed-parameter
tractability. We conclude our exposition by highlighting two examples of problems which are
NP-hard on graphs of bounded cliquewidth (and even of bounded pathwidth) [7, 28], and
yet which admit fixed-parameter algorithms when parameterized by the shrubdepth.

▶ Theorem 1.5. Metric Dimension and Firefighter can be solved in fixed-parameter
time on graphs supplied with (d, k)-tree-models, where d and k are considered the parameters.

In this work some technical details have been omitted due to space constraints. We refer
to the full version of the paper for all proofs [5].

2 Preliminaries

For a positive integer k, we denote by [k] = {1, . . . , k} and [k]0 = [k] ∪ {0}. For a function
f : A → B and elements a, b (not necessarily from A ∪ B), the function f [a 7→ b] : A ∪ {a} →
B ∪ {b} is given by f [a 7→ b](x) = f(x) for x ̸= a and f [a 7→ b](a) = b. We use standard
graph terminology [11]. The full proofs of our results also require the use of algebraic tools –
notably the cover product and the fast subset convolution machinery of Björklund et al. [6].
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We use the same computational model as Pilipczuk and Wrochna [35], namely the RAM
model where each operation takes time polynomially proportional to the number of bits of
the input, and the space is measured in terms of bits. We say that an algorithm A runs
in time t(n) and space s(n) if, for every input of size n, the number of operations of A is
bounded by t(n) and the auxiliary used space of A has size bounded by s(n) bits.

Shrubdepth. We first introduce the decomposition notion for shrubdepth: tree-models.

▶ Definition 2.1. For d, k ∈ N, a (d, k)-tree-model (T, M, R, λ) of a graph G is a rooted tree T

of depth d together with a family of symmetric Boolean k × k-matrices M = {Ma}a∈V (T ), a
labeling function λ : V (G) → [k], and a family of renaming functions R = {ρab}ab∈E(T ) with
ρab : [k] → [k] for all ab ∈ E(T ) such that:

The leaves of T are identified with vertices of G. For each node a of T , we denote by
Va ⊆ V (G) the leaves of T that are descendants of a, and with Ga = G[Va] we denote the
subgraph induced by these vertices.
With each node a of T we associate a labeling function λa : Va → [k] defined as follows.
If a is a leaf, then λa(a) = λ(a). If a is a non-leaf node, then for every child b of a and
every vertex v ∈ Vb, we have λa(v) = ρab(λb(v)).
For every pair of vertices (u, v) of G, let a denote their least common ancestor in T .
Then we have uv ∈ E(G) if and only if Ma[λa(u), λa(v)] = 1.

We introduce some notation. If (T, M, R, λ) is a (d, k)-tree model of a graph G, then for
every node a of T and every i ∈ [k], let Va(i) = λ−1

a (i) be the set of vertices labeled i at a.
Given a subset X of Va and i ∈ [k], let Xa(i) = X ∩ Va(i) be the vertices of X labeled i at a.

We say that a class C of graphs has shrubdepth d if there exists k ∈ N such that every
graph in C admits a (d, k)-tree-model. Thus, shrubdepth is a parameter of a graph class,
rather than of a single graph; though there are functionally equivalent notions, such as
SC-depth [23] or rank-depth [10], that are suited for the treatment of single graphs. We
remark that in the original definition proposed by Ganian et al. [23], relabeling is not allowed;
however, using either definition yields the same notion of shrubdepth. Moreover, throughout
this work we abstract away from the computation of the tree-models themselves and assume
that a (d, k)-tree-model of the considered graph is provided on input.

We note that a fixed-parameter algorithm for computing tree-models has been proposed
by Gajarský and Kreutzer [21] (in the sense of Ganian et al. [23]). The approach of Gajarský
and Kreutzer is essentially kernelization: they iteratively “peel off” isomorphic parts of the
graph until the problem is reduced to a kernel of size bounded only in terms of d and k. This
kernel is then treated by any brute-force method. Consequently, a straightforward inspection
of their algorithm [21] shows that it can be implemented with polynomial space; but not
space of the form (d+k)O(1) · log n, due to the necessity of storing all the intermediate graphs
in the kernelization process. We leave as an open question the computation of a (d, k)-tree
model, for a given graph G, running in time f(d, k) · nO(1) and using space (d + k)O(1) · log n.

3 Space-Efficient Algorithms on Tree-Models

Independent Set. In this section, we provide a fixed-parameter algorithm computing the
independent set polynomial of a graph in time 2O(dk) · nO(1) and using poly(d, k) log n space,
when given a (d, k)-tree model. In particular, given a (d, k)-tree model (T, M, R, λ) of an
n-vertex graph G, our algorithm will allow to compute the number of independent sets of
size p for each p ∈ [n]. For simplicity of representation, we start by describing an algorithm
that uses poly(d, k, n) space and then show how a result by Pilipczuk and Wrochna [35] can
be applied to decrease the space complexity to poly(d, k) log n.
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In order to simplify forthcoming definitions/statements, let a be an internal node of T

with b1, . . . , bt as children. For S ⊆ [k], we denote by q(a, S, p) the number of independent
sets I of size p of Ga such that S = {i ∈ [k] : Ia(i) ̸= ∅}. Let us define the polynomial
IS(a, S) =

∑
p∈N q(a, S, p) · xp. For the root r of T , the number of independent sets of G

of size p is then given by
∑

S⊆[k] q(r, S, p) and the independent set polynomial of G is∑
S⊆[k] IS(r, S). Therefore, the problem boils down to the computation of IS(r, S) and its

coefficients q(r, S, p). A usual way to obtain a polynomial or logarithmic space algorithm is
a top-down traversal of a rooted tree-like representation of the input – in our case, this will
be the tree model. In this top-down traversal, the computation of coefficients q(a, S, p) of
IS(a, S) makes some requests to the coefficients q(bi, Si, pi) of IS(bi, Si) for each i ∈ [t], for
some integer pi, and some set Si of labels of Gbi so that

∑
i∈[t] pi = p and

⋃
i∈[t] ρabi

(Si) = S.
Since there are exponentially many (in t) possible partitions of p into t integers and t can be
Θ(n), we must avoid running over all such integer partitions, and this will be done by the
fast computation of a certain subset cover.

We will later show that if some independent set of Ga contains vertices of labels i and j

with Ma[i, j] = 1, then all these vertices come from the same child of a. In particular, the
vertices of label i (rsp. j) cannot come from multiple children of a. To implement this
observation, after fixing a set S of labels, for each label class in S we “guess” (i.e., branch
on) whether it will come from a single child of a or from many. Such a guess is denoted
by α : S → {1=, 2⩾}. So, the assignment α will allow us to control the absence of edges in
the sought-after independent set. For a fixed α, naively branching over all possibilities of
assigning the labels of S to the children of a with respect to α would take time exponential
in t, which could be as large as Θ(n). We will use inclusion-exclusion branching to speed-up
the computations while retaining the space complexity. In some sense, we will first allow less
restricted assignments of labels to the children of a, and then filter out the ones that result
in non-independent sets using the construction of a certain auxiliary graph. The former will
be implemented by using “less restricted” guesses β : S → {1=, 1⩾} where 1⩾ reflects that
vertices of the corresponding label come from at least one child of a. Note that if the vertices
of some label i come from exactly one child of a, then such an independent set satisfies both
β(i) = 1= and β(i) = 1⩾. Although it might seem counterintuitive, this type of guesses will
enable a fast computation of a certain subset cover. After that, we will be able to compute
the number of independent sets satisfying guesses of type α : S → {1=, 2⩾} by observing
that independent sets where some label i occurs in at least two children of a can be obtained
by counting those where label i occurs in at least one child and subtracting those where this
label occurs in exactly one child.

We now proceed to a formalization of the above. Let S ⊆ λa(Va) and α : S → {1=, 2⩾}
be fixed. Let s1, . . . , s|α−1(2⩾)| be an arbitrary linear ordering of α−1(2⩾). To compute
the number of independent sets that match our choice of α, we proceed by iterating over
c ∈ {0, . . . , |α−1(2⩾)|}, and we count independent sets where the labels in {s1, . . . , sc} occur
exactly once, and the number of such sets where the labels occur at least once. Later, we
will obtain the desired number of independent sets via carefully subtracting these two values.
In particular, let γ : {s1, . . . , sc} → {1=, 1⩾}, and we denote by q(a, S, α, c, γ, p) the number
of independent sets I of size p of Ga such that

for every label i /∈ S, we have Ia(i) = ∅;
for every label i ∈ {s1, . . . , sc} with γ(i) = 1=, there exists a unique child bj of a such
that Ia(i) ∩ Vbj

̸= ∅;
for every label i ∈ {s1, . . . , sc} with γ(i) = 1⩾, there exists at least one child bj of a such
that Ia(i) ∩ Vbj

̸= ∅;
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for every label i ∈ S \ {s1, . . . , sc} with α(i) = 1=, there exists a unique child bj of a such
that Ia(i) ∩ Vbj

̸= ∅;
and for every label i ∈ S \{s1, . . . , sc} with α(i) = 2⩾, there exist at least two children bj1

and bj2 of a such that Ia(i) ∩ Vbj1
̸= ∅ and Ia(i) ∩ Vbj2

̸= ∅.
We now proceed with some observations that directly follow from the definitions.

▶ Observation 3.1. We have q(a, S, p) =
∑

α∈{1=,2⩾}S ,γ∈{1=,1⩾}∅ q(a, S, α, 0, γ, p) for every
S ⊆ λa(Va) and integer p. Also, for every α ∈ {1=, 2⩾}S, every c ∈ {0, . . . , |α−1(2⩾)| − 1}
and every γ : {s1, . . . , sc} → {1=, 1⩾}, we have q(a, S, α, c, γ, p) = q(a, S, α, c + 1, γ[sc+1 7→
1⩾], p) − q(a, S, α, c + 1, γ[sc+1 7→ 1=], p).

It remains then to show how to compute the value q(a, S, α, |α−1(2⩾)|, γ, p) for every
α ∈ {1=, 2⩾}S , every γ ∈ {1=, 1⩾}α−1(2⩾), and every integer p. It is worth mentioning that
if β : S → {1=, 1⩾} is such that β−1(1=) = α−1(1=) ∪ γ−1(1=) and β−1(1⩾) = α−1(2⩾) \
γ−1(1=), then q(a, S, α, |α−1(1⩾)|, γ, p) is exactly the number of independent sets I of size p

of Ga satisfying the following:
1. For every i ∈ [k] \ S, we have Ia(i) = ∅.
2. For every i ∈ β−1(1=), there exists a unique index j ∈ [t] such that Ia(i) ∩ Vbj

̸= ∅.
3. For every i ∈ β−1(1⩾), there exists a (not necessarily unique) index j ∈ [t] such that

Ia(i) ∩ Vbj
̸= ∅.

We will therefore write q(a, S, β, p) instead of q(a, S, α, |α−1(1⩾)|, γ, p) and we define the
polynomial TIS(a, S, β) ∈ Z[x] (where “T” stands for “transformed”) as TIS(a, S, β) =∑

p∈N q(a, S, β, p) · xp. Recall that because we are computing IS(a, S) and TIS(a, S, β) in a
top-down manner, some queries for IS(bi, Si) will be made during the computation. Be-
fore continuing in the computation of TIS(a, S, β), let us first explain how to request the
polynomials IS(bj , Sj) from each child bj of a. If a is not the root, let a∗ be its parent
in T , and we use PIS(a, S) (where “P” stands for “parent”) to denote the polynomial
PIS(a, S) =

∑
p∈N0

qρ(a, S, p)xp where qρ(a, S, p) =
∑

D⊆λa(Va) : ρa∗a(D)=S q(a, D, p) is the
number of independent sets of Ga of size p that contain a vertex with label i ∈ [k] (i.e.,
Ia∗(i) ̸= ∅) if and only if i ∈ S holds, where the labels are treated with respect to λa∗ .
Then it holds that PIS(a, S) =

∑
D⊆λa(Va) : ρa∗a(D)=S

IS(a, D) .

As our next step, we make some observations that will not only allow to restrict the β’s
we will need in computing the polynomial IS(a, S) from the polynomials TIS(a, S, β), but
will also motivate the forthcoming definitions. Recall that we have fixed S ⊆ λa(Va) and
β : S → {1=, 1⩾}, and in IS(a, S) and TIS(a, S, α) we are only counting independent sets I

such that Ia(i) ̸= ∅ if and only if i ∈ S.

▶ Observation 3.2. If there exist i1, i2 ∈ S such that Ma[i1, i2] = 1, then for any independent
set I counted in IS(a, S), there exists a unique j ∈ [t] such that Ia(i1) ∪ Ia(i2) ⊆ Vbj

.

Recall that for every label i ∈ α−1(2⩾), each independent set I contributing to the
value q(a, S, α, 0, γ, p) has the property that there are distinct children bj1 and bj2 such that
Ia(i) ∩ Vbj1

and Ia(i) ∩ Vbj2
are both non-empty. Then by Observation 3.2 for every i1 ∈ S

it holds that if α(i1) = 2⩾, then Ma[i1, i2] = 0 for all i2 ∈ S. So if α does not satisfy
this, the request T (a, S, α, 0, γ) can be directly answered with 0. Otherwise, since we use
Observation 3.1 for recursive requests, the requests TIS(a, S, β) made all have the property
that for each i1 ∈ S the following holds: if β(i1) = 1⩾, then Ma[i1, i2] = 0 for all i2 ∈ S.
We call such β’s conflict-free and we restrict ourselves to only conflict-free β’s. In other
words, we may assume that if i1, i2 ∈ S and Ma[i1, i2] = 1, then we have β(i1) = β(i2) = 1=.
Observation 3.2 implies that for such i1 and i2, each independent set I counted in TIS(a, S, β)



B. Bergougnoux et al. 18:9

is such that Ia(i1) ∪ Ia(i2) ⊆ Vbj for some child bj of a. Now, to capture this observation, we
define an auxiliary graph F a,β as follows. The vertex set of F a,β is β−1(1=) and there is an
edge between vertices i1 ≠ i2 if and only if Ma[i1, i2] = 1. Thus, by the above observation, if
we consider a connected component C of F a,β , then in each independent set I counted in
TIS(a, S, β), all the vertices of I with labels from C come from a single child of a.

▶ Observation 3.3. Let C be a connected component of F a,β. For every independent set I

counted in TIS(a, S, β), there exists a unique j ∈ [t] such that
⋃

i∈C Ia(i) ⊆ Vbj .

We proceed with some intuition on how we compute TIS(a, S, β) by requesting some
PIS(bj , Sj). Let I be some independent set counted in TIS(a, S, β). This set contains vertices
with labels from the set S, and the assignment β determines whether there is exactly one
or at least one child from which the vertices of a certain label come from. Moreover, by
Observation 3.3, for two labels i1, i2 from the same connected component of F a,β , the vertices
with labels i1 and i2 in I come from the same child of a. Hence, to count such independent
sets, we have to consider all ways to assign labels from S to subsets of children of a such that
the above properties are satisfied – namely, each connected component of F a,β is assigned to
exactly one child while every label from β−1(1⩾) is assigned to at least one child. Since the
number of such assignments can be exponential in n, we employ the fast computation of a
certain subset cover.

We now formalize this step. Let cc(F a,β) we denote the set of connected components
of F a,β . The universe Ua,β (i.e., the set of objects we assign to the children of a) is defined
as Ua,β = β−1(1⩾) ∪ cc(F a,β). For every j ∈ [t], we define a mapping fa,β

j : 2Ua,β → Z[x, z]
(i.e., to polynomials over x and z) as follows: fa,β

j (X) = PIS(bj , flata,β(X))z|X∩cc(F a,β)|

where flata,β : 2Ua,β → 2S intuitively performs a union over all the present labels – formally:
flata,β(W ) = (W ∩ β−1(1⩾)) ∪

⋃
w∈W ∩cc(F a,β) w. So if we fix the set X of labels coming from

the child bj , then the (unique) coefficient in fa,β
j (X) reflects the number of independent

sets of Gbj
using exactly these labels (with respect to λa). The exponent of the formal

variable z is intended to store the number of connected components of F a,β assigned to bj .
This will later allow us to exclude from the computation those assignments of labels from S

to children of a where the elements of some connected component of F a,β are assigned to
multiple children of a. For every j ∈ [t], we define a similar function ga,β

j : 2S → Z[x, z] as
follows:

ga,β
j (Y ) =

{
fa,β

j (X) if flata,β(X) = Y for some X ∈ 2Ua,β

,

0 otherwise.

Observe that the function flata,β is injective and hence ga,β
j is well-defined. The mapping ga,β

j

filters out those assignments where some connected component of F a,β is “split”.

▶ Lemma 3.4. Let (T, M, R, λ) be a (d, k)-tree model of an n-vertex graph G. Let a be a
non-leaf node of T and let b1, . . . , bt be the children of a. For every S ⊆ λa(Va), and every
conflict-free β : S → {1=, 1⩾}, it holds that

TIS(a, S, β) =

 ∑
X1,...,Xt⊆[k] :
X1∪···∪Xt=S

 t∏
j=1

ga,β
j (Xj)


 ⟨z|cc(F a,β)|⟩,

where for a polynomial P =
∑

u1,u2∈N0
qu1,u2xu1zu2 ∈ Z[x, z] the polynomial P ⟨z|cc(F a,β)|⟩ ∈

Z[x] is defined as P ⟨z|cc(F a,β)|⟩ =
∑

u1∈N0
qu1,|cc(F a,β)|x

u1 .
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Now we can apply a result by Björklund et al. [6] to accelerate the computation of

TIS(a, S, β): It holds TIS(a, S, β) =
( ∑

Y ⊆S

(−1)|S\Y |
t∏

j=1

∑
Z⊆Y

gj(Z)
)

⟨z|cc(F )|⟩. We now have

the equalities required for our algorithm to solve Independent Set parameterized by
shrubdepth. By using these equalities directly, we would obtain an algorithm running in
time 2O(kd) · nO(1) and space O(dk2n2). However, the latter can be substantially improved
by using a result of Pilipczuk and Wrochna [35] based on the Chinese remainder theorem:

▶ Theorem 3.5 ([35]). Let P (x) =
n′∑

i=0
qix

i be a polynomial in one variable x of degree at

most n′ with integer coefficients satisfying 0 ⩽ qi ⩽ 2n′ for i = 0, . . . , n′. Suppose that given
a prime number p ⩽ 2n′ + 2 and s ∈ Fp, the value P (s) (mod p) can be computed in time T

and space S. Then given k ∈ {0, ..., n′}, the value qk can be computed in time O(T · poly(n′))
and space O(S + log n′).

With this, we can finally prove Theorem 1.1.

Counting List-Homomorphisms. We now explain how to apply the techniques from the
above to a broader class of problems, namely all problems expressible as instantiations
of the #-List-H-Homomorphism problem for a fixed pattern graph H (which we will
introduce in a moment). In this way, we cover problems such as Odd Cycle Transversal
and q-Coloring, for a fixed q. Furthermore, the techniques will be useful for solving
Dominating Set later.

Let H be a fixed undirected graph (possibly with loops) and let R ⊆ V (H) be a designated
set of vertices. An instance of the R-Weighted #-List-H-Homomorphism problem
consists of a graph G, a weight function ω : V (G) → N, a list function L : V (G) → 2V (H),
a cardinality C ∈ N and a total weight W ∈ N. The goal is to count the number of list
H-homomorphisms of G such that exactly C vertices of G are mapped to R and their total
weight in ω is W . More formally, we seek the value∣∣{φ : V (G) → V (H)

∣∣ ∀v ∈ V (G) : φ(v) ∈ L(v), ∀uv ∈ E(G) : φ(u)φ(v) ∈ E(H),
|φ−1(R)| = C, and ω(φ−1(R)) = W

}∣∣ .

We say that such φ has cardinality C and weight W . For the “standard” #-List H-
Homomorphism problem we would use R = V (H), C = W = |V (G)|, and unit weights.
We also have the following special cases of the R-Weighted #-List-H-Homomorphism
problem. In all cases, we consider unit weights.

To model Independent Set, the pattern graph H consists of two vertices u and v and
the edge set contains a loop at v and the edge uv. The set R consists of u only.
Similarly, to model Odd Cycle Transversal, the pattern graph H is a triangle on
vertex set {u, v, w} with a loop added on u. Again, we take R = {u}.
To model q-Coloring, we take H to be the loopless clique on q vertices, and R = V (H).

While in all the cases described above we only use unit weights, we need to work with any
weight function in our application to Dominating Set. We prove the following result.

▶ Theorem 3.6. Fix a graph H (possibly with loops) and R ⊆ V (H). There is an algorithm
which takes as input an n-vertex graph G together with a weight function ω and a (d, k)-tree-
model, runs in time 2O(dk) · nO(1) · (W ∗)O(1) and uses space O(k2d(log n + log W ∗)), and
solves the R-Weighted #-List-H-Homomorphism in G, where W ∗ denotes the maximum
weight in ω.
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Max Cut. In the classical Max Cut problem, we are given a graph G and the task is to
output maxX⊆V (G) |E(X, V (G) \ X)|. Towards solving the problem, let us fix a graph G and
a (d, k)-tree model (T, M, R, λ) of G. Recall that for every node a of T , i ∈ [k] and X ⊆ Va,
we denote by Xa(i) the set of vertices in X labeled i at a, i.e., X ∩λ−1

a (i). Given a child b of a,
we let Vab = Vb and we denote by Vab(i) the set of vertices in Vb labeled i at a, i.e., Vb ∩ Va(i).
By Xab(i) we denote the set X ∩ Vab(i). Given c ∈ {a, ab}, we define the c-signature of
X ⊆ Vc – denoted by sigc(X) – as the vector (|Xc(1)|, |Xc(2)|, . . . , |Xc(k)|). We let S(c) be
the set of c-signatures of all the subsets of Vc, i.e., S(c) ..= {sigc(X) : X ⊆ Vc}. Observe that
|S(c)| ∈ nO(k) holds. Also, for the children b1, . . . , bt of a, we define S(ab1, . . . , abt) as the
set of all tuples (s1, . . . , st) with si ∈ S(abi) for each i ∈ [t]. Given s ∈ S(c), we define fc(s)
as the maximum of |E(X, Vc \ X)| over all the subsets X ⊆ Vc with c-signature s. To solve
Max Cut on G, it suffices to compute maxs∈S(r) fr(s) where r is the root of T .

Let b be a child of a. We start explaining how to compute fab(s) by making at most nO(k)

calls to the function fb. Given s′ ∈ S(b), we define ρab(s′) as the vector s = (s1, . . . , sk) ∈
S(ab) such that, for each i ∈ [k], we have si =

∑
j∈ρ−1

ab
(i) s′

j . Observe that for every X ⊆ Vb,
we have sigab(X) = ρab(sigb(X)). Consequently, for every s ∈ S(ab), fab(s) is the maximum
of fb(s′) over the b-signatures s′ ∈ S(b) such that ρab(s′) = s. It follows that we can
compute fab(s) with at most nO(k) calls to the function fb.

▶ Observation 3.7. Given a node a of T with a child b and s ∈ S(ab), we can compute fab

in space O(k log(n)) and time nO(k) with nO(k) oracle access to the function fb.

In order to simplify forthcoming statements, we fix a node a of T with children b1, . . . , bt.
Now, we explain how to compute fa(s) by making at most nO(k) calls to the functions
fab1 , . . . , fabt

. The first step is to express fa(s) in terms of fab1 , . . . , fabt
. We first describe

|E(X, Va \ X)| in terms of |E(X ∩ Vbi
, Vbi

\ X)|. We denote by E(Vb1 , . . . , Vbt
) the set of

edges of G[Va] whose endpoints lie in different Vbi ’s, i.e. E(G[Vb1 , . . . , Vbt ]) \ (E(G[Vb1 ] ∪
· · · ∪ E(G[Vbt

]))). Given X ⊆ Va, we denote by Ea(X) the intersection of E(X, Va \ X) and
E(Vb1 , . . . , Vbt). In simple words, Ea(X) is the set of all cut-edges (i.e., between X and
Va \ X) running between distinct children of a. For i, j ∈ [k], we denote by Ea(X, i, j) the
subset of Ea(X) consisting of the edges whose endpoints are labeled i and j. We capture the
size of Ea(X, i, j) with the following notion. For every c ∈ {a, ab1, . . . , abt}, s ∈ S(c) and
i, j ∈ [k], we define

#pairsc(s, i, j) ..=
{

si · (|Vc(j)| − sj) + sj · (|Vc(i)| − si) if i ̸= j,

si · (|Vc(i)| − si) otherwise.

It is not hard to check that, for every subset X ⊆ Va with a-signature s, #pairsa(s, i, j) is the
size of pairsa(X, i, j) being the set of pairs of distinct vertices in Va labeled i and j at a such
that exactly one of them is in X. Observe that when Ma[i, j] = 1, then |Ea(X, i, j)| is the
number of pairs in pairsa(X, i, j) whose endpoints belong to different sets among Vb1 , . . . , Vbt

.
Moreover, given a child b of a, the number of pairs in pairsa(X, i, j) whose both endpoints
belong to Vb is exactly #pairsab(sigab(X), i, j). Thus when Ma[i, j] = 1, we have

|Ea(X, i, j)| = #pairsa(siga(X), i, j) −
∑
i∈[t]

#pairsabi
(sigabi

(X), i, j) . (1)

We capture the size of Ea(X) with the following notion. For every c ∈ {a, ab1, . . . , abt},
s ∈ S(c) and (k × k)-matrix M , we define mc(s, M) ..=

∑
i,j∈[k],i⩽j
M [i,j]=1

#pairsc(s, i, j). Note

that |Ea(X)| =
∑

i,j∈[k] : i⩽j,Ma[i,j]=1 |Ea(X, i, j)|. Hence, by Equation 1, we deduce that
|Ea(X)| = ma(siga(X), Ma) −

∑
i∈[t] mabi

(sigabi
(X), Ma). Since E(X, Va \ X) is the disjoint

union of Ea(X) and the sets E(X ∩ Vb1 , Vb1 \ X), . . . , E(X ∩ Vbt , Vbt \ X) , we deduce:
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▶ Observation 3.8. For every X ⊆ Va we have

|E(X, Va \X)| = ma(siga(X), Ma)+
t∑

i=1

(
|E(Xi ∩ Vbi , Vbi \ Xi)| − mabi(sigabi

(Xi), Ma)
)

.

We are ready to express fa(s) in terms of fab1 , . . . , fabt and ma, mab1 , . . . , mabt .

▶ Lemma 3.9. For every s ∈ S(a), we have

fa(s) = ma(s, Ma) + max
(s1,...,st)∈S(ab1,...,abt)

s=s1+···+st

(
t∑

i=1

(
fabi

(si) − mabi
(si, Ma)

))
.

To compute fa(s) we use a twist of Kane’s algorithm [27] for solving the k-dimensional
Unary Subset Sum in Logspace.

Dominating Set. We now prove Theorem 1.3. Note that Dominating Set cannot be
directly stated in terms of H-homomorphisms for roughly the following reason. For H-
homomorphisms, the constraints are universal: every neighbor of a vertex with a certain
state must have one of allowed states. For Dominating Set, there is an existential constraint:
a vertex in state “dominated” must have at least one neighbor in the dominating set. Also,
the state of a vertex might change from “undominated” to “dominated” during the algorithm.
The techniques we used for H-homomorphisms cannot capture such properties.

The problem occurs for other parameters as well. One approach that circumvents the
issue is informally called inclusion-exclusion branching, and was used by Pilipczuk and
Wrochna [35] in the context of Dominating Set on graphs of low treedepth. Their dynamic
programming uses the states Taken (i.e., in a dominating set), Allowed (i.e., possibly
dominated), and Forbidden (i.e., not dominated). These states reflect that we are interested
in vertex partitions into three groups such that there are no edges between Taken vertices
and Forbidden vertices; these are constraints that can be modelled using H-homomorphisms
for a three-vertex pattern graph H . Crucially, for a single vertex v, if we fix the states of the
remaining vertices, the number of partitions in which v is dominated is given by the number
of partitions where v is possibly dominated minus the number of partitions where it is not
dominated, i.e., informally “Dominated = Allowed - Forbidden”.

For technical reasons explained later, our algorithm uses the classic Isolation Lemma:

▶ Theorem 3.10 (Isolation lemma, [30]). Let F ⊆ 2[n] be a non-empty set family over the
universe [n]. For each i ∈ [n], choose a weight ω(i) ∈ [2n] uniformly and independently at
random. Then with probability at least 1/2 there exists a unique set of minimum weight in F .

Consequently, we pick a weight function ω that assigns every vertex a weight from
1, . . . , 2n uniformly and independently at random. Storing ω takes O(n log n) space. The
remainder of the algorithm uses only O(dk2 log n) space.

To implement the above idea, we let the graph H have vertex set {T, A, F} standing
for Taken, Allowed, and Forbidden. This graph H has a loop at each vertex as well as the
edges TA and AF. Further, let R := {T}. Following our approach for H-homomorphisms,
for every set S ⊆ States with States := {(T, 1), (F, 1), . . . , (T, k), (F, k)}, every cardinality
c ∈ [n]0, and every weight w ∈ [2n2]0, in time 2O(dk) · nO(1) and space O(dk2 log n) (recall
that here for the maximum weight W ∗ we have W ∗ ⩽ 2n) we can compute the value aS,c,w

being the number of ordered partitions (T̂ , F̂ , Â) of V (G) satisfying the following properties:
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1. there are no edges between T̂ and F̂ ;
2. |T̂ | = c and ω(T̂ ) = w; and
3. for every i ∈ [k] and I ∈ {T, F }, we have (I, i) ∈ S iff Î ∩ V (i) ̸= ∅.
Note that we do not care whether vertices of some label i are mapped to A or not.

After that, we aim to obtain the number of dominating sets of cardinality c and weight w

from values aS,c,w. For this we need to transform the “states” Allowed and Forbidden into
Dominated. Above we have explained how this transformation works if we know the state of
a single vertex. However, now the set S only captures for every label i, which states occur on
the vertices of label i. First, the vertices of this label might be mapped to different vertices
of H. And even if we take the partitions where all vertices of label i are possibly dominated
and subtract the partitions where all these vertices are not dominated, then we obtain the
partitions where at least one vertex with label i is dominated. However, our goal is that all
vertices of label i are dominated. So the Dominated = Allowed - Forbidden equality is not
directly applicable here.

Recently, Hegerfeld and Kratsch [26] showed that when working with label sets, this
equality is in some sense still true modulo 2. On a high level, they show that if we fix a
part T̂ of a partition satisfying the above properties, then any undominated vertex might be
put to any of the sides Â and F̂ . Thus, if T̂ is not a dominating set of G, then there is an
even number of such partitions and they cancel out modulo 2.

We can apply the same transformation to obtain from aS,c,w’s the number of dominating
sets of size c and weight w modulo 2. Isolation lemma implies that with probability at
least 1/2 for some w this number if non-zero if a dominating set of size c exists.

▶ Question 3.11. Is there an algorithm for Dominating Set of n-vertex graphs provided
with a (d, k)-tree-model that runs in time 2O(kd) · nO(1) and uses (d + k)O(1) log n space?

4 The Lower Bound

In this section, we prove Theorem 1.4. This lower bound is based on a reasonable conjecture
on the complexity of the problem Longest Common Subsequence (LCS).

An instance of LCS is a tuple (N, t, Σ, s1, . . . , sr) where N and t are positive integers,
Σ is an alphabet and s1, . . . , sr are r strings over Σ of length N . The goal is to decide
whether there exists a string s ∈ Σt of length t appearing as a subsequence in each si.
There is a standard dynamic programming algorithm for LCS that has time and space
complexity O(Nr). Abboud et al. [1] proved that the existence of an algorithm with running
time O(Nr−ε) for any ε > 0 would contradict the Strong Exponential-Time Hypothesis. As
observed by Elberfeld et al. [15], LCS parameterized by r is complete for the class XNLP:
parameterized problems solvable by a nondeterministic Turing machine using f(k) · nO(1)

time and f(k) log n space, for a computable function f . The only known progress on the
space complexity is due to Barsky et al. with an algorithm running in O(Nr−1) space [3].
This motivated Pilipczuk and Wrochna to formulate the following conjecture [35].

▶ Conjecture 4.1 ([35]). There is no algorithm that solves the LCS problem in time Mf(r)

and using f(r)MO(1) space for any computable function f , where M is the total bitsize of
the instance and r is the number of input strings.

Note that in particular, the existence of an algorithm with time and space complexity as
in Conjecture 4.1 implies the existence of such algorithms for all problems in the class XNLP.

Our lower bound is based on the following stronger variant of Conjecture 4.1, in which
we additionally assume that the sought substring is short.
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▶ Conjecture 4.2. For any unbounded and computable function δ, Conjecture 4.1 holds even
when t ⩽ δ(N).

Let (N, t, Σ, s1, . . . , sr) be an instance of LCS. We assume, without loss of generality,
that N is a power of 2. We provide a reduction from (N, t, Σ, s1, . . . , sr) to an equivalent
instance of Independent Set consisting of a graph G with (r + t + N)O(1) vertices which
admits a (d, k)-tree-model where d = O(log t) and k = O(r log N). This implies Theorem 1.4
since for every unbounded and computable function δ there exists an unbounded and
computable function δ′ such that if t ⩽ δ′(N), then d ⩽ δ(k) for all sufficiently large
N, r ∈ N.

To outline the main idea of the reduction, let s⋆ be a potential common substring of
s1, . . . , sr of length t. We use matchings to represent the binary encoding of the positions of
the letters of s⋆ in each string.

For every string sp and q ∈ [t], we define the selection gadget Sq
p which contains, for

every i ∈ [log N ], an edge called the i-edge of Sq
p. One endpoint of this edge is called the

0-endpoint and the other is called the 1-endpoint; i.e., a selection gadget induces a matching
on log N edges. This results in the following natural bijection between [N ] and the maximal
independent sets of Sq

p. For every I ∈ [N ], we denote by Sq
p|I the independent set that

contains, for each i ∈ [log N ], the x-endpoint of the i-edge of Sq
p where x is the value of

the i-th bit of the binary representation of I − 1 (we consider the first bit to be the most
significant one and the log N -th one the least significant). Then the vertices selected in Sq

p

encode the position of the q-th letter of s⋆ in sp.
We need to guarantee that the selected positions in the gadgets S1

p, . . . , St
p are coherent,

namely, for every q ∈ [t], the position selected in Sq
p is strictly smaller than the one selected

in Sq+1
p . For this, we construct an inferiority gadget denoted by Inf(p, q) for every string sp

and every q ∈ [t − 1]. The idea behind it is to ensure that the only possibility for an
independent set to contain at least 3 log N vertices from Sq

p, Sq+1
p , and their inferiority gadget,

is the following: there exist I < J ∈ [N ] such that the independent set contains Sq
p|I ∪ Sq+1

p |J .
The maximum solution size in the constructed instance of Independent Set – which is the
sum of the independence number of each gadget – will guarantee that only such selections
are possible. We refer to the full version of this paper for the construction of these inferiority
gadgets and the arguments proving the following observation.

▶ Observation 4.3. Let p ∈ [r] and q ∈ [t − 1]. The independence number of Inf(p, q) is
log N and for every I, J ∈ [N ], we have I < J iff there exists a set of log N vertices S from
Inf(p, q) such that the union of S, Sq

p|I and Sq+1
p |J induces an independent set.

Next, we need to ensure that the t positions chosen in s1, . . . , sr indeed correspond to a
common subsequence, i.e., for every q ∈ [t], the q-th chosen letter must be the same in every
s1, . . . , sr. For p ∈ [r − 1], let Mp denote the set of all ordered pairs (I, J) ∈ [N ]2 such that
the I-th letter of sp and the J-th of sp+1 are identical. For each p ∈ [r − 1] and q ∈ [t], we
create the matching gadget Match(p, q) as follows:

For every pair (I, J) ∈ Mp and for each p⋆ ∈ {p, p + 1}, we create a copy Mp,q,I,J
p⋆ of Sq

p⋆

and for every ℓ ∈ [log N ] and x ∈ {0, 1}, we add an edge between the x-endpoint of the
ℓ-edge of Sq

p⋆ and the (1 − x)-endpoint of the ℓ-edge of Mp,q,I,J
p⋆ .

For every pair (I, J) ∈ Mp, we add a new vertex vq
p,I,J adjacent to (1) all the vertices

from Mp,q,I,J
p that are not in Mp,q,I,J

p |I and (2) all the vertices from Mp,q,I,J
p+1 that are not

in Mp,q,I,J
p+1 |J .
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Finally, we turn {vq
p,I,J : (I, J) ∈ Mp} into a clique. Observe that, for each p⋆ ∈ {p, p+1},

an independent set S contains (|Mp| + 1) log N vertices from Sq
p⋆ and its copies Mp,q,I,J

p⋆ if
and only if there exists a value I ∈ [N ] such that S contains Sq

p⋆ |I and Mp,q,I,J
p⋆ |I for each

copy. This leads to the following observation.

▶ Observation 4.4. Let p ∈ [r − 1] and q ∈ [t]. The independence number of Match(p, q)
is 1 + 2 · |Mp| · log N and for every I, J ∈ [N ], we have (I, J) ∈ Mp iff there exists an
independent set S of Match(p, q) with 1 + 2|Mp| · log N vertices such that the union of S,
Sq

p|I and Sq
p+1|J is an independent set.

This concludes the construction of the graph G. See Figure 1 below for an overview.

S11

S12

Match(1, 1)

Inf(1, 1)

S21

S22

Match(1, 2)

Inf(2, 1)

Inf(1, 2)

S31

S32

Match(1, 3)

Inf(2, 2)

Inf(1, 3)

S41

S42

Match(4, t)

Inf(2, 3)

Figure 1 Overview of the graph G with log N = 3, r = 2 and t = 4. There are some edges
between two gadgets if and only if there are some edges between their vertices in G.

We prove correctness of the reduction in the following lemma which follows mostly from
Observations 4.3 and 4.4.

▶ Lemma 4.5. There exists an integer goal such that G admits an independent set of size at
least goal iff the strings s1, . . . , sr admit a common subsequence of length t.

The next step is to construct a tree-model of G.

▶ Lemma 4.6. We can compute in polynomial time a (d, k)-tree-model of G where d =
2 log t + 4 and k = 14r log N − 3.

Sketch of proof. First, we prove that the union of the gadgets associated with a position
q ∈ [t] admits a simple tree-model. For every q ∈ [t], we denote by Gq the union of the
selection gadgets Sq

p with p ∈ [r] and the matching gadgets Match(p, q) with p ∈ [r − 1].
For each q ∈ [t], we prove that Gq admits a (3, k)-tree-model (T q, Mq, Rq, λq) where

the tree T q is constructed as follows. We create the root aq of T q and we attach all the
vertices in the selection gadgets Sq

p with p ∈ [r] as leaves adjacent to aq. Then, for every
p ∈ [r − 1], we create a node aq

p adjacent to aq and for every (I, J) ∈ Mp, we create a
node aq

p,I,J adjacent to aq
p. For each (I, J) ∈ Mp, we make aq

p,I,J adjacent to the vertex
vq

p,I,J and all the vertices in Mp,q,I,J
p and Mp,q,I,J

p+1 . Note that all the vertices in Match(p, q)
are the leaves of the subtree rooted at aq

p, and the leaves of T q are exactly the vertices in Gq.
See Figure 2 for an illustration of T q.

For every q ∈ [t − 1], we denote by Inf(q) the union of Inf(1, q), . . . , Inf(r, q). Moreover,
for every interval [x, y] ⊆ [t], we denote by Gx,y, the union of the graphs Gq over q ∈ [x, y],
and the inferiority gadgets in Inf(q) over q ∈ [x, y] such that q + 1 ∈ [x, y].

For every interval [x, y], we prove by induction on y − x that Gx,y admits a (2 log(y − x +
1) + 4, k)-tree-model. In particular, it implies that G1,t = G admits a (d, k)-tree-model. It
is also easy to see from our proof that this (d, k)-tree-model is computable in polynomial
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M1,q,I,J
1 M1,q,I,J

2
vqp,I,J

Match(1, q)

Match(r − 1, q)

Inf(q − 1)

T<q T>q

aq

α

Sq1

Sqr
aq1

aqr−1

aq1,I,JT q

Inf(q)

α<q α>q

Figure 2 Illustration of the tree T and its subtree T q for the tree-model constructed in Lemma 4.6.
An edge between a white filled rectangle labeled X and a node a of the tree means that all the
vertices in X are leaves adjacent to a.

time. For the base case of the induction, when y = x, we have Gx,y = Gx and we have
proved above that it admits a (3, k)-tree-model. When x < y, let q = ⌊(y − x)/2⌋. We use
the induction hypothesis to obtain:

A (2 log(q − x) + 4, k)-tree model (T <q, R<q, M<q, λ<q) for Gx,q−1.
A (2 log(y − q) + 4, k)-tree-model (T >q, R>q, M>q, λ>q) for Gq+1,y.

Then, we construct a (4 + 2 log(y − x + 1), k)-tree-model (T, R, M, λ) of Gx,y from the
tree-models of Gx,q−1, Gq+1,y, but also the (3, k)-tree-model (T q, λq, Rq, Mq) of Gq. To
obtain T , we create the root α of T and we make it adjacent to aq, the root of T q, and two
new vertices: α<q and α>q. We make α<q adjacent to the root of T <q and to all the vertices
in Inf(q − 1). Symmetrically, we make α>q adjacent to the root of T >q and to all the vertices
in Inf(q). See Figure 2 for an illustration of T . ◀

5 Fixed-Parameter Algorithms for Metric Dimension and Firefighting

Theorem 1.5 – and in particular the fixed-parameter tractability of Metric Dimension and
Firefighter parameterized by shrub-depth – can be obtained by combining known results
about these problems [4, 24] with a bound on the maximum length of induced paths in graph
classes of bounded shrubdepth [23, Theorem 3.7]. These results contrast the NP-hardness of
both problems on graphs of bounded pathwidth [7, 28].

References

1 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness results
for LCS and other sequence similarity measures. In Proc. FOCS 2015, pages 59–78, 2015.
doi:10.1109/FOCS.2015.14.

2 Eric Allender, Shiteng Chen, Tiancheng Lou, Periklis A. Papakonstantinou, and Bangsheng
Tang. Width-parametrized SAT: Time–space tradeoffs. Theory Comput., 10(12):297–339, 2014.
doi:10.4086/toc.2014.v010a012.

https://doi.org/10.1109/FOCS.2015.14
https://doi.org/10.4086/toc.2014.v010a012


B. Bergougnoux et al. 18:17

3 Marina Barsky, Ulrike Stege, Alex Thomo, and Chris Upton. Shortest path approaches for
the longest common subsequence of a set of strings. In Proc. BIBE 2007, pages 327–333, 2007.
doi:10.1109/BIBE.2007.4375584.

4 Cristina Bazgan, Morgan Chopin, Marek Cygan, Michael R. Fellows, Fedor V. Fomin, and
Erik Jan van Leeuwen. Parameterized complexity of firefighting. J. Comput. System Sci.,
80(7):1285–1297, 2014. doi:10.1016/j.jcss.2014.03.001.

5 Benjamin Bergougnoux, Vera Chekan, Robert Ganian, Mamadou Moustapha Kanté, Matthias
Mnich, Sang il Oum, Michał Pilipczuk, and Erik Jan van Leeuwen. Space-efficient parameterized
algorithms on graphs of low shrubdepth. arXiv, 2023. doi:10.48550/arXiv.2307.01285.

6 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Fourier meets Möbius:
fast subset convolution. In Proc. STOC 2007, pages 67–74, 2007.

7 Janka Chlebíková and Morgan Chopin. The firefighter problem: further steps in understanding
its complexity. Theoret. Comput. Sci., 676:42–51, 2017. doi:10.1016/j.tcs.2017.03.004.

8 Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time solvable optimization
problems on graphs of bounded clique-width. Theory Comput. Syst., 33(2):125–150, 2000.
doi:10.1007/s002249910009.

9 Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

10 Matt DeVos, O-joung Kwon, and Sang-il Oum. Branch-depth: Generalizing tree-depth of
graphs. European J. Combin., 90:Article 103186, 2020.

11 Reinhard Diestel. Graph Theory, volume 173 of Graduate texts in mathematics. Springer, 4th
edition, 2012.

12 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

13 Jan Dreier. Lacon- and shrub-decompositions: A new characterization of first-order trans-
ductions of bounded expansion classes. In Proc. LICS 2021, pages 1–13, 2021. doi:
10.1109/LICS52264.2021.9470680.

14 Jan Dreier, Jakub Gajarský, Sandra Kiefer, Michał Pilipczuk, and Szymon Toruńczyk. Treelike
decompositions for transductions of sparse graphs. In Proc. LICS 2022, pages 31:1–31:14,
2022. doi:10.1145/3531130.3533349.

15 Michael Elberfeld, Christoph Stockhusen, and Till Tantau. On the space and circuit complexity
of parameterized problems: Classes and completeness. Algorithmica, 71(3):661–701, 2015.
doi:10.1007/s00453-014-9944-y.

16 Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, and Saket Saurabh. Intractability
of clique-width parameterizations. SIAM J. Comput., 39(5):1941–1956, 2010. doi:10.1137/
080742270.

17 Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, and Saket Saurabh. Almost optimal
lower bounds for problems parameterized by clique-width. SIAM J. Comput., 43(5):1541–1563,
2014. doi:10.1137/130910932.

18 Fedor V. Fomin and Tuukka Korhonen. Fast FPT-approximation of branchwidth. In Proc.
STOC 2022, pages 886–899, 2022.

19 Martin Fürer. Multi-clique-width. In Proc. ITCS 2017, volume 67 of Leibniz Int. Proc. Inform.,
pages 14:1–14:13, 2017. doi:10.4230/LIPIcs.ITCS.2017.14.

20 Martin Fürer and Huiwen Yu. Space saving by dynamic algebraization based on tree-depth.
Theory Comput. Syst., 61(2):283–304, 2017. doi:10.1007/s00224-017-9751-3.

21 Jakub Gajarský and Stephan Kreutzer. Computing shrub-depth decompositions. In Proc.
STACS 2020, volume 154 of Leibniz Int. Proc. Inform., pages 56:1–56:17, 2020. doi:10.4230/
LIPIcs.STACS.2020.56.

22 Jakub Gajarský, Stephan Kreutzer, Jaroslav Nešetřil, Patrice Ossona de Mendez, Michał
Pilipczuk, Sebastian Siebertz, and Szymon Toruńczyk. First-order interpretations of bounded
expansion classes. ACM Trans. Comput. Log., 21(4):Art. 29, 41, 2020. doi:10.1145/3382093.

ESA 2023

https://doi.org/10.1109/BIBE.2007.4375584
https://doi.org/10.1016/j.jcss.2014.03.001
https://doi.org/10.48550/arXiv.2307.01285
https://doi.org/10.1016/j.tcs.2017.03.004
https://doi.org/10.1007/s002249910009
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1109/LICS52264.2021.9470680
https://doi.org/10.1109/LICS52264.2021.9470680
https://doi.org/10.1145/3531130.3533349
https://doi.org/10.1007/s00453-014-9944-y
https://doi.org/10.1137/080742270
https://doi.org/10.1137/080742270
https://doi.org/10.1137/130910932
https://doi.org/10.4230/LIPIcs.ITCS.2017.14
https://doi.org/10.1007/s00224-017-9751-3
https://doi.org/10.4230/LIPIcs.STACS.2020.56
https://doi.org/10.4230/LIPIcs.STACS.2020.56
https://doi.org/10.1145/3382093


18:18 Space-Efficient Parameterized Algorithms on Graphs of Low Shrubdepth

23 Robert Ganian, Petr Hliněný, Jaroslav Nešetřil, Jan Obdržálek, and Patrice Ossona de Mendez.
Shrub-depth: Capturing height of dense graphs. Log. Methods Comput. Sci., 15(1):7:1–7:25,
2019. doi:10.23638/LMCS-15(1:7)2019.

24 Tatsuya Gima, Tesshu Hanaka, Masashi Kiyomi, Yasuaki Kobayashi, and Yota Otachi. Ex-
ploring the gap between treedepth and vertex cover through vertex integrity. Theoret. Comput.
Sci., 918:60–76, 2022. doi:10.1016/j.tcs.2022.03.021.

25 Falko Hegerfeld and Stefan Kratsch. Solving connectivity problems parameterized by treedepth
in single-exponential time and polynomial space. In Proc. STACS 2020, volume 154 of Leibniz
Int. Proc. Inform., 2020.

26 Falko Hegerfeld and Stefan Kratsch. Tight algorithms for connectivity problems parameterized
by clique-width. arXiv, 2023. doi:10.48550/ARXIV.2302.03627.

27 Daniel M. Kane. Unary subset-sum is in logspace. arXiv, 2010. arXiv:1012.1336.
28 Shaohua Li and Marcin Pilipczuk. Hardness of metric dimension in graphs of constant

treewidth. Algorithmica, 84(11):3110–3155, 2022. doi:10.1007/s00453-022-01005-y.
29 Daniel Lokshtanov, Matthias Mnich, and Saket Saurabh. Planar k-path in subexponential

time and polynomial space. In Proc. WG 2011, volume 6986 of Lecture Notes Comput. Sci.,
pages 262–270, 2011. doi:10.1007/978-3-642-25870-1_24.

30 Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy as matrix
inversion. Combinatorica, 7(1):105–113, 1987. doi:10.1007/BF02579206.

31 Wojciech Nadara, Michał Pilipczuk, and Marcin Smulewicz. Computing treedepth in polyno-
mial space and linear FPT time. In Proc. ESA 2022, volume 244 of Leibniz Int. Proc. Inform.,
pages 79:1–79:14, 2022. doi:10.4230/lipics.esa.2022.79.

32 Jesper Nederlof, Michał Pilipczuk, Céline M. F. Swennenhuis, and Karol Węgrzycki. Hamilto-
nian cycle parameterized by treedepth in single exponential time and polynomial space.
In Proc. WG 2020, volume 12301 of Lecture Notes Comput. Sci., pages 27–39, 2020.
doi:10.1007/978-3-030-60440-0_3.

33 Pierre Ohlmann, Michał Pilipczuk, Wojciech Przybyszewski, and Szymon Toruńczyk. Canonical
decompositions in monadically stable and bounded shrubdepth graph classes. arXiv, 2023.
doi:10.48550/arXiv.2303.01473.

34 Patrice Ossona de Mendez, Michał Pilipczuk, and Sebastian Siebertz. Transducing paths
in graph classes with unbounded shrubdepth. European J. Combin., page 103660, 2022.
doi:10.1016/j.ejc.2022.103660.

35 Michał Pilipczuk and Marcin Wrochna. On space efficiency of algorithms working on structural
decompositions of graphs. ACM Trans. Comput. Theory, 9(4):18:1–18:36, 2018. doi:10.1145/
3154856.

https://doi.org/10.23638/LMCS-15(1:7)2019
https://doi.org/10.1016/j.tcs.2022.03.021
https://doi.org/10.48550/ARXIV.2302.03627
https://arxiv.org/abs/1012.1336
https://doi.org/10.1007/s00453-022-01005-y
https://doi.org/10.1007/978-3-642-25870-1_24
https://doi.org/10.1007/BF02579206
https://doi.org/10.4230/lipics.esa.2022.79
https://doi.org/10.1007/978-3-030-60440-0_3
https://doi.org/10.48550/arXiv.2303.01473
https://doi.org/10.1016/j.ejc.2022.103660
https://doi.org/10.1145/3154856
https://doi.org/10.1145/3154856


High Performance Construction of RecSplit Based
Minimal Perfect Hash Functions
Dominik Bez #

Karlsruhe Institute of Technology, Germany

Florian Kurpicz #

Karlsruhe Institute of Technology, Germany

Hans-Peter Lehmann #

Karlsruhe Institute of Technology, Germany

Peter Sanders #

Karlsruhe Institute of Technology, Germany

Abstract
A minimal perfect hash function (MPHF) bijectively maps a set S of objects to the first |S|
integers. It can be used as a building block in databases and data compression. RecSplit [Espos-
ito et al., ALENEX’20] is currently the most space efficient practical minimal perfect hash function.
It heavily relies on trying out hash functions in a brute force way.

We introduce rotation fitting, a new technique that makes the search more efficient by drastically
reducing the number of tried hash functions. Additionally, we greatly improve the construction time
of RecSplit by harnessing parallelism on the level of bits, vectors, cores, and GPUs.

In combination, the resulting improvements yield speedups up to 239 on an 8-core CPU and
up to 5438 using a GPU. The original single-threaded RecSplit implementation needs 1.5 hours to
construct an MPHF for 5 Million objects with 1.56 bits per object. On the GPU, we achieve the
same space usage in just 5 seconds. Given that the speedups are larger than the increase in energy
consumption, our implementation is more energy efficient than the original implementation.
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1 Introduction

A Perfect Hash Function (PHF) is a hash function that does not have collisions, i.e., is
injective, on a given set S of objects. Evaluating the PHF on any object not in S can return an
arbitrary value. A Minimal Perfect Hash Function (MPHF) maps the objects in S to the first
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n = |S| integers, so it is bijective. MPHFs are useful in many applications, for example, to
implement hash tables with guaranteed constant access time [21]. By storing only fingerprints
in the hash table cells [3, 15], we obtain an approximate membership data structure. Storing
payload data in the cells, we obtain an updatable retrieval data structure [32]. Finally, the
perfect hash function values can be used as small identifiers of the input objects [6], which
are easier to handle and more space efficient than, for example, strings.

MPHFs can be very compact – the theoretically minimal space usage is 1.44 bits per
object [2]. Currently, the most space-efficient practical MPHF is RecSplit [14]. It provides
various trade-offs between the space consumption, construction time, and query time.

In this paper, we provide several improvements inside the RecSplit framework. We first
describe RecSplit and other preliminaries in Section 2 and briefly review related work in
Section 3. As a core step during construction, RecSplit tries out hash functions on a small
set of objects until one hash function is a bijection. We introduce a new bijection search
mechanism in Section 4, which reduces the search space of the brute force algorithm compared
to the original method. Rotation fitting hashes the objects to two sets and tries to fit one set
into the “holes” of the other set by rotating (cyclically shifting) it. As a positive side effect,
this approach makes good use of bit parallelism.

We then parallelize RecSplit (with and without rotation fitting) using the vector parallelism
available with Single Instruction Multiple Data (SIMD) instructions and the thread parallelism
available with multicore CPUs and GPUs. Given that hash function construction here is
mostly compute bound and can be done in parallel for a huge number of small subproblems,
the GPU is an ideal hardware. Utilizing GPUs for evaluating hash functions is known
from mining of cryptocurrencies with proof-of-work approach (e.g., Bitcoin). Our extensive
evaluation in Section 6 shows speedups of up to 50 using SIMD, 239 when additionally
using multi-threading with 16 threads, and 5438 using a GPU, compared to the original
single-threaded implementation without rotation fitting. Because GPUs are so much faster
at constructing MPHFs, they lead to a better energy efficiency than the CPU, as we show
in the experiments. Finally, in Section 7, we summarize the results and give directions for
future research.

Our Contributions. With rotation fitting, we introduce a new method for searching for
bijections that can be used in RecSplit. We significantly accelerate the construction by
four kinds of parallelism (bits, vectors, multicores, and GPU). Together, this accelerates
RecSplit constructions by a factor up to 5438 and even makes its construction performance
competitive to significantly less space efficient minimal perfect hash functions.

2 Preliminaries

In Section 2.1, we first shortly describe basic techniques needed by our implementation. We
then continue with describing RecSplit in detail in Section 2.2. Finally, we describe SIMD in
Section 2.3 and GPUs in Section 2.4.

2.1 Basics
Words and Bit Vectors. An important operation in RecSplit is popcount, which returns
the number of 1-bits in a word. Given a bit vector, the rank1(x) operation returns the
number of 1-bits before position x, and the select1(x) operation returns the position of the
x-th 1-bit. The operation can be executed in constant time [10,27] and has very fast and
space-efficient implementations [28, 39]. An additional operation we need in this paper is
roti

k(x) which rotates (i.e., cyclically shifts) the k least significant bits of x by i bit positions.
This can be implemented in a bit parallel way using shifting and masking.
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Bucket 0 Bucket 1 Bucket 2

Input objects

Figure 1 Illustration of the overall RecSplit data structure. Circular nodes of the trees represent
splittings, squares represent bijections.

Golomb-Rice. The Golomb code [24] is a variable length code that is optimal for geometric
distributions. Golomb-Rice [38] is a faster special case, which is almost as space efficient.
Given a parameter τ and the number x to store, the τ least significant bits of x form the
fixed part which is stored directly. The remaining bits are encoded in unary, consisting of
⌊x/2τ ⌋ 0-bits and a final 1-bit. To access one element, we can get the lower bits from the
array of fixed parts and the upper bits through two select1 queries.

Elias-Fano. An Elias-Fano representation [13,16] can be used to store a monotonic sequence
of integers p1, . . . , pk with pk ≤ U . Similar to Golomb-Rice codes, the least significant bits
of each value are stored directly in the lower-bits array and can be accessed directly. The
remaining most significant bits u at index i are encoded as a 1-bit in a bit vector at position
i + u. This means that by executing a select1 query on the upper bits and looking up the
lower bits, we can restore any value in constant time. Using this representation, the sequence
can be stored using k(2 + log(U/k)) bits.

2.2 RecSplit
We now describe RecSplit [14], the MPHF that this paper is based on. Figure 1 illustrates
the overall data structure. The first step of the construction is to apply an initial hash
function on every object of the input to generate objects of uniform distribution. These
objects are mapped to different buckets of expected size b, where b is a tuning parameter.

Splitting Trees. In each bucket, RecSplit constructs an independent splitting tree. The
tree partitions the objects into smaller and smaller sets until the individual sets have a
small configurable size ℓ. The splitting tree has a well-defined shape, depending only on
the leaf size ℓ and the number of objects in the bucket. At each inner node, RecSplit tries
random hash functions to find one that distributes the objects to the child nodes according
to the tree structure. The number of child nodes of an inner node is called fanout. The
fanout is optimized in such a way that the expected amount of work to find the splitting
is roughly equal to the amount of work in all children combined. The fanouts of the two
bottom-most levels are max{2, ⌈0.35ℓ + 0.55⌉} and max{2, ⌈0.21ℓ + 0.9⌉}. In the terminology
of the RecSplit paper, these levels are called lower aggregation levels. The levels above, also
called upper aggregation levels, simply use a fanout of 2.

Bijections. The lowest level of the splitting tree is called leaf level. Each leaf, except for
possibly the last, contains ℓ objects. This is small enough that it is feasible to search for a
bijective mapping by trying random hash functions using brute force. The inner loop of the
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bijection search applies a hash function modulo ℓ on each object. It converts the value to a
bit by taking two to the power of it, and sets the corresponding bit in a bit vector of length
ℓ using a logical OR operation. After hashing all objects, if the resulting bit vector has all its
bits set to 1, it means that the hash function is a bijection on the leaf. If it is not, RecSplit
tries the next hash function.

Representation. Because the splitting trees have a well-defined shape, it is enough to store
the hash function identifier at each node in preorder. These numbers are encoded with
Golomb-Rice code, where all unary parts and all binary parts of a tree are stored together.
The optimal Golomb parameter τ is different based on the layer in the tree and can be
pre-calculated. The encodings of all splitting trees from all buckets are concatenated in a
single bit vector. An additional sequence with encoding based on Elias-Fano encodes both
the prefix sums of the number of objects in each bucket and the positions where the encoding
of each bucket starts.

Query. A RecSplit hash function can be evaluated by determining the bucket of an object
and locating its encoding. The splitting tree in the bucket is traversed from the root to a leaf
by applying the splitting hash function, which determines the child to descend into. Finding
the encoding of a subtree is possible by executing a select1 query on the upper bits of the
Golomb-Rice coded hash function identifiers. During traversal, the number of objects stored
in children left to the one descended into are accumulated. The final hash value is then the
sum of the value of leaf bijection, the number of objects to the left in the splitting tree, and
the total size of previous buckets.

The combination of brute force splitting and bijections is highly space efficient from an
information-theoretical point of view – disregarding overheads due to encoding and metadata,
optimal space consumption can be achieved. Consequently, as the leaf size ℓ gets larger,
optimal space is approached [14].

2.3 SIMD
It is common, especially in perfect hashing, that the same operation needs to be executed on
different data. This can be achieved with a simple loop, which means that the corresponding
instructions must be decoded by the hardware for every element. This can be improved by
using Single Instruction, Multiple Data (SIMD) [17]. A single instruction is used to apply the
same operation on a vector of several elements. We refer to a single element within a SIMD
vector as a lane. For example, a vector may contain 16 lanes with 32 bits each, i.e., the vector
contains 512 bits overall. The exact set of operations depends on the concrete implementation
of the SIMD model. On many Intel and AMD processors, SIMD operations are available
through the Advanced Vector Extensions (AVX) [25]. AVX-512 [26] extends these operations
to 512-bit vectors and is divided into many smaller subsets that offer additional operations.
A subset that is useful for our implementation is AVX512VPOPCNTDQ, which provides
popcount on 512-bit vectors with lanes of size 32 and 64 bits. The roti

k function that
cyclically shifts bits (see Section 2.1) can be implemented in parallel using SIMD.

2.4 GPUs
Graphics Processing Units (GPUs) are specialized processors initially designed for computer
graphics applications. Over the last decades, GPUs evolved to general purpose processors
for highly parallelizable tasks. We now describe the hardware and programming interface in
the following paragraphs. To provide a grasp of the dimensions of a current GPU, we give
metrics of the NVIDIA RTX 3090 [33], which is also used for our experiments (see Section 6).
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Compute Hardware. A GPU consists of several streaming multiprocessors (SMs) (RTX
3090: 82). Each SM contains many arithmetic logic units (ALUs) to perform computations
(RTX 3090: 64 integer ALUs). Several threads (RTX 3090: 32) operate in lock-step, i.e.,
they execute the same instruction at the same time. Such a bundle of threads is called warp.
Threads are masked out for instructions they should not execute. This means that in loops,
each thread in a warp has to iterate as many times as the thread with the largest number
of iterations. To hide latencies, e.g., for memory access, each SM is oversubscribed with
more threads than ALUs, and the GPU schedules the threads efficiently. Multiple warps of
threads form a thread block. Thread blocks are guaranteed to reside on the same SM, which
enables them to cooperate.

Memory. The global memory is the largest and slowest memory on the GPU (RTX 3090:
24 GB). When multiple threads of a warp access the memory simultaneously, the hardware
serves the requests with as few memory transactions as possible. Shared memory is a fast
memory placed on each SM. It is shared between the threads of the same thread block.
On the RTX 3090, shared memory and L1 cache are allocated on the same memory areas.
The data in shared memory is partitioned into 32 memory banks, and the i-th 32-bit word
is stored in bank i mod 32. When multiple threads simultaneously access different words
within the same bank, the access operations have to be serialized.

CUDA. An efficient way to develop applications on NVIDIA GPUs is CUDA [34]. Functions
which can be executed on the GPU are called kernels. Each kernel is executed on a grid of
thread blocks. The grid size and the number of threads per block can be selected by the user.
The user can create several streams. The kernels and data transfers launched into a specific
stream are executed in order, but operations in different streams can arbitrarily overlap.

3 Related Work

Perfect Hashing is an active area of research [2, 7, 8, 9, 11,20,30,31,32,37,40]. Due to a lack
of space, we only describe the most recent and fastest algorithms here. For a more detailed
overview of recent methods, refer to Ref. [30]. To the best of our knowledge, there is no
technique that constructs MPHFs on the GPU yet. Lefebvre and Hoppe [29] describe the
GPU evaluation of MPHFs that were constructed on CPUs.

FiPHa/BBHash. A fast and simple approach to minimal perfect hashing uses fingerprinting
and bumping [9,31,32]. BBHash [31] is a publicly available parallel implementation. The
set S of input objects is hashed using a hash function h → βn for a tuning parameter β.
The set S′ of objects that have a collision is handled recursively. Consider the bit vector b

with b[i] = 1 iff |{s ∈ S : h(s) = i}| = 1. Then rank1(h(s)) defines an MPHF on S \ S′. This
approach needs at least e bits per object (when β = 1) and provides efficient queries when
about 4 or more bits per object are available (using larger values of β). An advantage is the
very simple and easily parallelizable construction.

PTHash. PTHash [37] is based on FCH [20] which can be considered a predecessor of the
hash-and-displace technique [2]. The objects are first distributed into different buckets using
a hash function, but the distribution is not uniform. Specifically, about 60% of the objects
are mapped to 30% of the buckets. The buckets are then processed in order of decreasing
size. For each bucket, a hash function is searched such that each object can be placed in
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the output domain without colliding with other objects that are already placed. The hash
function identifiers are searched linearly and then stored in compressed form with several
possible compression schemes. The proclaimed goal of PTHash is fast query times. Using an
appropriate compression scheme, only a single memory access is required to find the hash
value, and the remaining operations are simple hash function evaluations and arithmetic.
Compared to the original implementation of RecSplit, PTHash consumes more space, but
has faster queries and faster construction time. PTHash-HEM [36] is an implementation that
first partitions the input and then constructs each partition independently in parallel.

SicHash. SicHash [30] is based on the simple idea to store the index of the hash function to
be used in a retrieval data structure. It can capitalize on recent progress on fast and nearly
space optimal retrieval [12]. Computing a valid index for all objects amounts to constructing
a cuckoo hash table [19,35]. In contrast to the brute force methods at the core of PTHash
and RecSplit, this can be done in near linear time even on large tables. SicHash refines this
basic approach using a mix of several fixed precision retrieval data structures and by using
many small(ish) cuckoo hash tables rather than a single large table. Roughly, SicHash allows
faster construction than PTHash while offering similar query time and space consumption.

4 Rotation Fitting

The general idea of RecSplit consists of two independent steps, bijections and splittings
(see Section 2.2). In this section, we introduce a new method for searching for bijections in
RecSplit’s leaf nodes. As a reminder, given m objects, we are looking for a way to quickly
find a mapping of the objects to the first m integers without any collisions. The original
implementation tries out hash functions using brute force until one of them is a bijection.

Rotation fitting ensures that we need significantly fewer hash function evaluations. From
the result of one evaluation, we derive additional candidates that are very fast to compute.
Rotation fitting is efficient when m ≤ w, where w is the size of a machine word. We randomly
distribute the objects into two sets A and B by using a 1-bit hash function. The 1-bit hash
function is the same for all leaf nodes and does not ensure that A and B have the same
size. Now we search for a hash function h that gives a bijection on the leaf. Like in the
original RecSplit implementation, we calculate the hash value of all objects in A and set the
respective bits in the word a to 1. The function h may be ruled out as a valid bijection by
calculating the popcount of a. Analogously, the set B is mapped to the word b using the
same hash function h. Let us now rotate (i.e., cyclically shift) the bits in b. If we can find
a rotation value such that the 1-bits in b fit exactly onto the 0-bits in a, we have found a
bijection on the leaf. More formally, this is the case if there is an r ∈ {0, ..., m − 1}, such
that a | rotr

m(b) has the m least significant bits all set. In the extended version [5], we show
that for large m the probability of finding a bijection using rotation fitting is about m times
higher than the probability when using RecSplit’s brute force approach.

To efficiently store r, we only try hash function identifiers which are multiples of m. This
number plus r is stored for each leaf. We can restore r later by calculating modulo m and
restore the hash function index by rounding down to the next multiple of m. At query time,
a rotation corresponds to an addition modulo m to each object in the set B. The space
overhead per object introduced by rotation fitting tends to 0 for large m [5].

Lookup Tables. It is possible to avoid trying out all m rotations by using a lookup table t.
For all possible values of a, this table contains a rotation parameter t[a] such that rott[a]

m (a)
is minimal. If a value x can be rotated to get the value y, then rott[x]

m (x) = rott[y]
m (y). Let
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c = 2m − 1 be the word where the m least significant bits are set. The value b̂ = b ⊕ c is
b with the m least significant bits flipped. Note that b can fill the holes in a if and only
if b̂ can be rotated to match a. Thus, the necessary rotation of b can be calculated as
r = (t[b̂] − t[a]) mod m using two table lookups. Rotation r is valid if a|rotr

m(b) = c.
Because rotation is a very cheap operation, preliminary experiments show no improvement

by lookup tables. Especially on GPUs, shared memory is a scarce resource and global memory
is too slow. Our implementation therefore does not use lookup tables. Nonetheless, rotation
fitting with lookup tables provides an asymptotic improvement of the running time by a
factor of m. We also find the idea to normalize random permutations like this an interesting
and novel concept. Applying this idea to other permutations is left for future research.

5 Parallelization

We describe the SIMD implementation in Section 5.1 and, on top of it, the multi-threaded
implementation in Section 5.2. Finally, we describe the GPU implementation in Section 5.3.

5.1 SIMD

For the SIMD parallelization, we focus on the description of bijections and splittings, which
(in most configurations) take most time of the construction. While we additionally accelerate
the construction of the Elias-Fano data structure, the ideas are more straight forward and
are omitted due to space constraints. The main idea of our SIMD parallelization is to try
multiple hash function seeds simultaneously. Depending on the operation, we use SIMD
lanes with a width of either 32 bits or 64 bits.

Bijections. For the bijections, each SIMD lane is responsible for trying one hash function.
For this, we load consecutive hash function identifiers and the same input object to each
lane of a SIMD vector, and evaluate the hash function. The resulting hash value in each lane
is converted to a single bit by taking two to the power of it. After calculating the logical OR
of these bits for all objects in the set, we check for a bijection by comparing each lane with a
constant that has all m lower bits set to 1. For rotation fitting, remember that the number
we store as a seed is the hash function identification plus the rotation. This number should
be as small as possible to avoid wasting space, so caution must be taken when trying out the
rotations. If one lane finds a bijection, it might be possible that a higher rotation leads to a
bijection on a lane with a smaller hash function index. Because this gives a smaller overall
number to store, we always try all rotation values, even if a bijection is found.

Splittings. For the splittings, the original implementation uses small arrays of counters.
Each counter contains the number of objects hashed to the respective split section. Instead,
we use two different methods. For the upper aggregation levels with fanout 2, we use a single
counter for the number of objects hashed to the left child. The number of objects in the
right child can then be determined by subtraction. For all practical leaf sizes (ℓ ≤ 24), each
counter of a valid lower level splitting fits into a single byte. Because an overflowing counter
for one child would then just add 1 to the next counter, such overflows cannot make an
invalid splitting look valid. When a seed for a valid splitting is found, we need to redistribute
the objects. We now use SIMD to apply the same hash function to several objects at once,
and store the results in an array. We then redistribute the objects without SIMD parallelism.
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Figure 2 Illustration of how all equally-shaped splitting trees are handled together on the GPU.

5.2 Multi-Threading

The original RecSplit implementation only uses a single thread. This leaves a lot of processing
power unused since most modern processors contain multiple processing cores. As stated in
the original RecSplit paper [14], parallelizing RecSplit is fairly easy because the buckets are
completely independent of each other. First, we sort the input objects by their bucket index
in parallel, and then determine the bucket borders. We then start several threads and assign
a consecutive portion of the buckets to each thread. Because the number of buckets is large
and the input objects are hashed to buckets uniformly, the load of all threads is reasonably
balanced.

After a splitting or bijection is found, it must be stored in the Golomb-Rice coded
sequence. To avoid synchronization, each thread uses its own local sequence and treats its
input as if it was the complete input. This means it also stores the pointers to the start of
each bucket encoding locally. After all threads are done, we sequentially concatenate the
Golomb-Rice sequences and build the combined Elias-Fano data structure holding the prefix
sum of bucket sizes and pointers to the bucket encodings.

5.3 GPU

In the GPU implementation, we first partition the objects to their buckets and partition
the buckets by their respective size. We then use the GPU to determine the splittings and
bijections within the buckets. Buckets with the same size have splitting trees with the same
shape and can therefore be handled efficiently within the same set of kernel calls. This keeps
the number of kernel calls small and is important for scalability. Using CUDA’s streams, we
additionally construct different bucket shapes concurrently, to utilize the GPU in case the
number of buckets having a specific shape is small. For an overview, see Figure 2.

Bijections. All leaf nodes1 of all trees with the same shape are constructed with a single
kernel call. For each leaf node, we start one block of threads. First, the threads in each block
cooperate to load all objects relevant for that leaf node into the shared memory. Similar to
the SIMD implementation, where each lane tried a different hash function, now each thread
tries a different hash function. After each hash function, the threads synchronize, check if a
bijection was found and if it was, store the hash function index into global memory.

1 All leaf nodes except possibly the last of each tree, which might have fewer objects.
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Splittings. Like for the bijections, each splitting is handled by a thread block. The threads
cooperate to load the objects into the shared memory and then each thread tries a different
hash function index. For the two lowest aggregation levels, the thread blocks of all nodes
in that level are started together using one kernel call (see Figure 2). Note that on these
levels, the size of a node and the starting seed is constant. Therefore, the levels are very
homogeneous. Conversely, the higher levels with fanout s = 2 are more heterogeneous. In
particular, the number of objects on a specific level may be different for different nodes on
the same level. Therefore, we launch individual kernels for each of those splittings, which
contain the thread block for all trees with the same shape. We use multiplication and shifts
to increment the counters of how many objects ended up in each lane. An alternative variant
that stores counters in shared memory is slower in preliminary experiments, even when
padding the counters to reduce the probability of bank conflicts. After a valid splitting is
found, the threads in a block cooperate to reorder the objects in that node accordingly.

Assembly. Because the kernels are launched per level, the results are stored in BFS order.
For the final data structure, we need to store them in preorder. The CPU unpacks the
resulting seeds recursively and writes them to an encoded sequence.

6 Experiments

We first describe the experimental setup and general improvements. We then continue
with a comparison of different techniques of our implementation before comparing the
implementation with competitors from the literature. The code and scripts needed to
reproduce our experiments are available on GitHub under the General Public License [22,23].

Experimental Setup. We ran most of our experiments on an Intel i7 11700 processor
with 8 cores (16 hardware threads (HT)) and a base clock speed of 2.5 GHz, supporting
AVX-512. The machine runs Ubuntu 22.04 with Linux 5.15.0 and contains an NVIDIA RTX
3090 GPU. For additional experiments, we used a machine with an AMD EPYC 7702P
processor with 64 cores (128 hardware threads) and a base clock speed of 2.0 GHz. The
machine runs Ubuntu 20.04 with Linux 5.4.0 and supports only AVX2. Unless otherwise
noted, all experiments were run on the Intel machine. We used the GNU C++ compiler
version 11.2.0 with optimization flags -O3 -march=native. The SIMD implementation only
supports x86 CPUs and is optimized towards AVX-512 using the Vector Class Library [18].
The GPU implementation uses CUDA 11. As a reminder, only the construction is using
SIMD, multi-threading, and/or the GPU. The query implementation is identical for the
SIMD and GPU implementation and almost equal to the original implementation [14]. We
therefore did not compare the query performance of SIMD and GPU implementation.

For the comparison with competitors, we used strings of uniform random length ∈ [10, 50]
containing random characters except for the zero byte. Note that, as a first step, all
competitors generate a master hash code (MHC) of each object using a high quality hash
function. This makes the remaining computation largely independent of the input distribution.
When only comparing different configurations of our own data structure, we used random 128-
bit integers directly as MHC, which follows the approach of the original implementation [14].

6.1 Our Implementation
While the original implementation [14] uses std::sort to partition objects into buckets, we
use IPS2Ra [1]. For the less space efficient configurations (ℓ < 5, b < 100), constructing
the buckets is fast, so significant time is spent on sorting objects to buckets. For these
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Figure 3 Pareto front over the construction throughput of different variants of searching for
bijections in the leaves. Single-threaded, non-vectorized measurements with n = 5 Million objects.
The plot on the right gives speedups relative to the brute force method.3

configurations, IPS2Ra both speeds up the sequential case and also enables sorting in parallel.
For more space-efficient configurations (ℓ > 8), the partitioning step needs less than 1% of
the total construction time, both in the parallel and the sequential case. In this section,
we compare against a slight adaption of the original implementation, using IPS2Ra and
supporting parallel construction.

Rotation Fitting. In order to compare rotation fitting with the brute force variant, we give
a Pareto front2 of space usage versus construction time in Figure 3. The construction time
refers to the entire MPHF construction, including the time used for splittings. Rotation
fitting is consistently faster, making the entire MPHF construction up to 3 times faster. The
space overhead of rotation fitting becomes negligible for moderately large ℓ (see extended
version [5]). Unless otherwise noted, all following experiments use rotation fitting.

Dependence on Input Parameters. In Figure 4, we plot the throughput of the SIMD,
GPU and non-vectorized versions for different leaf sizes ℓ and bucket sizes b. For better
comparability with the original paper [14], we include a wide range of configurations, even
ones that are not very competitive. The SIMD version is consistently up to 4.5 times faster
than the non-vectorized version and shows the same scaling behavior in ℓ. The plot indicates
that there is no configuration where one would prefer the non-vectorized version. While the
GPU offers significant speedups for space efficient configurations, it performs not as good for
the space inefficient configurations. A reason for this is data transfers to and from the GPU.

Multi-Threading. Table 1 shows that the parallel construction is up to 5 times faster on
an 8-core machine. In the extended version [5], we give more detailed measurements of
how different RecSplit configurations scale in the number of CPU threads. Rather unusual
configurations with extremely small buckets (b = 5) do not scale as well, because they spend
a lot of time partitioning the objects to buckets – even though we already use the highly
optimized parallel sorter IPS2Ra [1].

2 A configuration is on the Pareto front if it is not dominated by any other configuration with respect to
both construction time and space consumption.

3 Note that giving speedups is non-trivial here because there might not be a configuration that achieves
the same space usage that we could compare with. We therefore calculate the speedup relative to an
interpolation of the next larger and next smaller data points. This is reasonable since RecSplit instances
can be interpolated as well by hashing a certain fraction of objects into data structures with different
configurations.
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Figure 4 Construction throughput with different hardware architectures based on different input
parameters. n = 5 Million objects, 1 CPU thread.

Overall Speedup. Our rotation fitting technique leads to a speedup of up to 3 (see Figure 3)
and SIMD parallelism improves the construction speed by up to a factor of 4.5 (see Figure 4).
Multi-threading for highly space-efficient configurations shows a speedup of close to 5. Table 1
shows the overall improvement of our implementation on CPU and GPU when compared
to the original RecSplit implementation. The original RecSplit paper says that MPHF
construction at 1.56 bits per object is possible. This configuration with 5 Million objects
takes about 1.5 hours using the original implementation. Our SIMD implementation achieves
the same space usage in just 2 minutes on the CPU and 5 seconds on the GPU. Investing
about 40 minutes of GPU time, our implementation achieves a space usage of only 1.495 bits
per object. This is about 40% closer to the lower bound [2] of 1.44 bits, and simultaneously
more than twice as fast as the original implementation.

Energy Consumption. Of course, directly comparing CPU and GPU implementations is
unfair. A sensible metric to compare them is the energy consumption, which can be a
major cost factor. Additionally, the energy consumption is not influenced by market prices.
Table 2 gives energy consumption measurements for different configurations and hardware
architectures. The energy consumption is homogeneous throughout most of the execution
time, except for a short ramp-up in the beginning. We do not count the ramp-up to the
energy consumption. Measurements are performed using a Voltcraft 870 Multimeter.

Even though SIMD instructions need slightly more power, the total energy consumption
of constructing one MPHF is lower. The GPU, even though it needs significantly more power,
is so much faster that the resulting energy usage is about 1000 times lower than the original
single-threaded CPU implementation. For basic RecSplit, the AMD machine needs about
1.5 times more time than the Intel machine. This can be readily explained by a lower clock
frequency. This performance gap grows to a factor 4.6 for sequential SIMDRecSplit. The
likely main reason is that the AMD machines lacks the AVX-512 vector units of the Intel
machine. Still, since both processors have two 256-bit AVX2 units per core, it seems that
better performance might be achievable with careful tuning for the AMD architecture. On
the contrary, the AMD machine shows good scalability so that the energy consumption when
using the entire machine is only a factor 1.3 larger than on the Intel machine – despite the
fact that our implementation was tuned for the Intel architecture.
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Table 1 Construction time of the GPU implementation compared to our multi-threaded adaption
of the original RecSplit implementation. n = 5 Million objects (strong scaling). Construction times
are given in µs/object. We do not report speedups for ℓ = 24 because the CPU baseline takes too
long for this configuration.

Configuration Method Bijections Threads B/Obj Constr. Speedup

ℓ = 16, b = 2000 RecSplit [14] Brute force 1 1.560 1175.4 1
RecSplit Brute force 16 1.560 206.5 5
SIMDRecSplit Rotation fitting 1 1.560 138.0 8
SIMDRecSplit Rotation fitting 16 1.560 27.9 42
GPURecSplit Brute force GPU 1.560 1.8 655
GPURecSplit Rotation fitting GPU 1.560 1.0 1173

ℓ = 18, b = 50 RecSplit [14] Brute force 1 1.707 2942.9 1
RecSplit Brute force 16 1.713 504.0 5
SIMDRecSplit Rotation fitting 1 1.709 58.3 50
SIMDRecSplit Rotation fitting 16 1.708 12.3 239
GPURecSplit Brute force GPU 1.708 5.2 564
GPURecSplit Rotation fitting GPU 1.709 0.5 5438

ℓ = 24, b = 2000 GPURecSplit Brute force GPU 1.496 2300.9 —
GPURecSplit Rotation fitting GPU 1.496 467.9 —

6.2 Comparison with Competitors

We now compare our implementation to the sequential codes RecSplit [14], SicHash [30], and
CHD [2] as well as the parallel codes PTHash [37], PTHash-HEM [36] and BBHash [31].

Space usage trade-off. Figure 5 shows a space versus construction time Pareto front for
each approach. Looking at a single thread first, we make the surprising observation that
SIMDRecSplit not only wins for the most space efficient configurations for which we designed
it but, by far, dominates all the other methods also for less space-efficient cases. For parallel
construction, SIMDRecSplit even strengthens its margin to the competing approaches.

Construction Scaling. Figure 6 compares scaling behavior of the parallel codes. We see that
BBHash scales poorly while both PTHash-HEM and SIMDRecSplit scale well on the 8-core
Intel machine. However, SIMDRecSplit scales better than PTHash-HEM on the 64-core
AMD machine.

Queries. Table 3 shows that when looking at the query time, PTHash is a clear winner.
While BBHash can achieve the same query speed and good construction speed, its space
usage is large. SicHash has a query time close to PTHash’s most compact representation, but
is faster to construct and more space efficient. All RecSplit variants can achieve significantly
lower space than other competitors but require considerably more query time. Our single-
threaded SIMD implementation dominates most competitors with respect to both space
and construction time. The use of rotations makes the queries about 10% slower than the
original RecSplit implementation. The main goal of RecSplit is to achieve extremely small
representation, and queries are not very fast to begin with, so this seems acceptable.
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Table 2 Energy consumption with ℓ = 18, b = 50 and n = 5 Million objects. Energy consumption
is both given as difference to the idle power, as well as total energy consumption of the whole system.
For CPU-only measurements of the 8-core Intel machine, we dismount the GPU.

Total system ∆ to idle

Machine Method Threads Constr. Power Energy Power Energy
Seconds Watt Joule Watt Joule

8-core Intel RecSplit [14] 1 14 714.5 78 1 147 731 37 544 436
SIMDRecSplit 1 291.5 87 25 360 46 13 409
SIMDRecSplit 16 61.5 104 6 396 63 3 874
GPURecSplit 2.5 457 1 142 380 950

64-core AMD RecSplit [14] 1 21 620.8 223 4 821 438 91 1 967 492
SIMDRecSplit 1 1 328.7 224 297 629 92 122 240
SIMDRecSplit 128 23.6 364 8 590 232 5 475
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Figure 5 Trade-off of construction time vs space usage. Weak scaling, n/p = 10 Million objects.
For SicHash and PTHash, we plot all Pareto optimal data points but only show markers for every
fourth point to increase readability. Therefore, the lines might bend on positions without markers.

7 Conclusion and Future Work

We have shown that by harnessing parallelism at all available levels – bits, vectors, cores, and
GPUs – one can dramatically accelerate the construction of highly space efficient minimal
perfect hash functions (MPHFs) using the brute force RecSplit approach [14]. This leads
to speedups of up to 239 on SIMD and 5438 on the GPU and also dramatically reduces
energy consumption. Surprisingly, this even turns out to be the fastest available approach
for constructing less space-efficient MPHFs. This is not what we expected. Our initial
hypothesis was that there would be a trade-off with asymptotically faster approaches winning
for fewer requirements on space consumption. Our new technique rotation fitting reduces
the work needed per tried hash function while adding a tiny bit of space requirement. The
asymptotically “obvious” improvement of replacing ℓ rotations/checks by two table lookups
are not productive on current architectures. So, brute force, simplicity (in the inner loops),
and parallelism currently wins against any attempt at algorithmic sophistication.
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Table 3 Query and construction time of different competitor configurations on 10 Million objects.

Method Bits/Obj. Constr./Obj. Query/Obj.

BBHash [31], γ=5.0 6.871 50 ns 36 ns
BBHash [31], γ=1.0 3.059 208 ns 51 ns

PTHash [37], c=11.0, α=0.88, D-D 4.379 138 ns 25 ns
PTHash [37], c=7.0, α=0.99, C-C 3.313 199 ns 20 ns
PTHash [37], c=6.0, α=0.99, EF 2.345 248 ns 35 ns

SicHash [30], α=0.9, p1=20, p2=77 2.412 119 ns 41 ns
SicHash [30], α=0.97, p1=44, p2=30 2.081 172 ns 40 ns

RecSplit [14], ℓ=5, b=5 2.928 145 ns 65 ns
RecSplit [14], ℓ=8, b=100 1.793 709 ns 75 ns
RecSplit [14], ℓ=14, b=2000 1.584 126 534 ns 96 ns

SIMDRecSplit, ℓ=5, b=5 2.96 49 ns 71 ns
SIMDRecSplit, ℓ=8, b=100 1.806 107 ns 80 ns
SIMDRecSplit, ℓ=14, b=2000 1.585 11 742 ns 110 ns

Another attempt at sophistication that so far failed is to combine brute force RecSplit
with the retrieval approach of SicHash [30]. The idea of this ShockHash approach is to allow
retrieval of a single bit of information for each element. The brute force part then tries
pairs of random hash functions until they define a pseudo-forest – a collection of components
consisting of a tree plus one additional edge. While ShockHash seems to allow space efficient
perfect hashing, initial experiments indicated that performance-wise ShockHash is also inferior
to pure brute force (see the extended version [5] for details). More efficient implementations
of ShockHash may change this picture in the future.

Also, rotation fitting could be generalized by splitting into more than two parts. The
resulting search for several rotations gives more room for sophistications like search space
pruning. Furthermore, the approach from rotation fitting to use a lookup table for normalizing
bit patterns could be generalized to a richer set of mappings than just rotations.

Everything discussed so far is mainly concerned with construction time. However, an
equally important problem is to improve query time. Traversing an aggressively compressed
tree for each query is inherently more expensive than the simple constant time operations
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needed in PTHash [37] or SicHash [30] but there should be more efficient ways to break down
MPHF construction into small subproblems that can be solved with brute force. We believe
that the techniques developed here will turn out to be useful in that respect.

Finally, we can look for generalizations of RecSplit for computing non-minimal PHFs
which allows us to further reduce space consumption of the hash function itself. Better
tuning of the SIMD variant for AMD or perhaps even a portable implementation that also
works on ARM or RISC-V would be relevant for widespread application.
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Abstract
In this paper we study the threshold model of geometric inhomogeneous random graphs (GIRGs); a
generative random graph model that is closely related to hyperbolic random graphs (HRGs). These
models have been observed to capture complex real-world networks well with respect to the structural
and algorithmic properties. Following comprehensive studies regarding their connectivity, i.e., which
parts of the graphs are connected, we have a good understanding under which circumstances a giant
component (containing a constant fraction of the graph) emerges.

While previous results are rather technical and challenging to work with, the goal of this paper
is to provide more accessible proofs. At the same time we significantly improve the previously
known probabilistic guarantees, showing that GIRGs contain a giant component with probability
1 − exp(−Ω(n(3−τ)/2)) for graph size n and a degree distribution with power-law exponent τ ∈ (2, 3).
Based on that we additionally derive insights about the connectivity of certain induced subgraphs of
GIRGs.
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1 Introduction

Geometric inhomogeneous random graphs (GIRGs) are a generative graph model where
vertices are weighted and placed in a geometric ground space and the probability for two of
them to be adjacent depends on the product of their weights, as well as their distance [19]. In
a sense the model combines the strengths of inhomogeneous random graphs [28] and random
geometric graphs [26]. Introduced as a simplified and more general version of hyperbolic
random graphs (HRGs) [23], GIRGs share crucial properties with complex real-world networks.
Such networks are typically characterized by a heterogeneous degree distribution (with few
high-degree vertices, while the majority of vertices has small degree), high clustering (vertices
with common neighbors are likely adjacent themselves), and a small diameter (longest
shortest path), and it has been shown that GIRGs and HRGs capture these properties
well [17, 19, 25].

Beyond these structural properties, GIRGs have also been observed to be a good model
for real-wold networks when it comes to the performance of graph algorithms [3]. This
makes the GIRG framework relevant for algorithmic purposes in multiple ways. On the one
hand, they are a useful tool in the context of average-case analysis, where they yield more
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realistic instances than, e.g., the Erdős–Rényi model, while it is still sufficiently simple to
be mathematically accessible [3, 7]. On the other hand, we can use GIRGs to generate an
abundance of benchmark instances with varying properties, allowing us to perform thorough
evaluations of algorithms even when real-world data is scarce [4, 5].

One of the most basic graph properties, which is also relevant from an algorithmic point
of view, is connectivity, i.e., the question about what parts of a graph are connected via paths.
For random graphs, the first question that typically arises in the context of connectivity
revolves around the emergence of a so-called giant component, which is a connected component
whose size is linear in the size of the graph. The existence of a giant has been researched
on many related graph models like Erdős–Rényi random graphs [12, 13], random geometric
graphs [2, 11, 26, 18], as well as on Chung-Lu random graphs that also capture inhomogeneous
random graphs [1, 9, 10].

Unsurprisingly, being such a fundamental feature, connectivity has also been studied on
GIRGs, and since HRGs are so closely related to them, we consider the corresponding results
to be relevant here as well. For HRGs we know how the emergence of a giant depends on
certain model properties that control the degrees of the resulting graph [6, 14]. We note
that some analyses there are based on a coupling from HRGs to a continuum percolation
model that exhibits a strong resemblance to GIRGs (see [14, Section 2] and [19, Part I,
Section 3.5]). Beyond the giant we also have bounds on the size of the second largest
component of HRGs [20]. For GIRGs it is known that a giant exists asymptotically almost
surely, i.e., with probability 1 − o(1) [21], with another proof giving a certainty of 1 − n−ω(1)

where n denotes the number of vertices in the graph [19, Theorem 4.2]. We note that the
specific function in the exponent has not been determined before.

In this paper, we answer this question, by showing that threshold GIRGs have a giant
component with probability at least 1 − exp(−Ω(n(3−τ)/2)). This improves the previous
results in two ways. First, our proof is simpler and shorter than the technical existing proofs
for HRGs [6, 14]. Secondly, our probability bound is substantially stronger compared to
previous bounds obtained for GIRGs. Moreover, we note that our improved bound does not
only hold for the full graph but also translates to subgraphs located in restricted regions
of the ground space. The argument for this is inspired by a technique used for HRGs [14,
Section 4] (though it is much simpler in our case).

Besides providing more accessible insights in the connectivity of GIRGs, we believe
that our results, in particular those on subgraphs in restricted regions, can be helpful for
algorithmic applications. For example in problems like balanced connected partitioning [8],
one is interested in partitioning a graph into connected components of (roughly) equal size
and in component order connectivity [16] the goal is to find a small separator that divides
the graph into components of bounded size. There it is important, that the graph cannot
only be separated into smaller pieces but that these pieces remain actually connected.

In the following, we give a brief overview of the basic concepts used in the paper (Section 2)
before presenting our proofs regarding the emergence of a giant in GIRGs (Section 3).

2 Preliminaries

Geometric Inhomogeneous Random Graphs. Let Bd = [0, 1]d be the d-dimensional hy-
percube (B for “box”) and let dist be the L∞ metric, i.e., for x = (x1, . . . , xd) ∈ Bd and
y = (y1, . . . , yd) ∈ Bd we have dist(x, y) = maxi∈[d] |xi − yj |.

A geometric inhomogeneous random graph (GIRG) G = (V, E) with ground space Bd

is obtained in three steps. The first step consists of a homogeneous Poisson point process
on Bd, with an intensity that yields n points in expectation. Each point is then considered to
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be a vertex in the graph. In the second step, each vertex v is assigned a weight wv > 1 that
is sampled according to a Pareto distribution with exponent τ ∈ (2, 3), i.e., Pr [wv ≤ w] =
1 − w−(τ−1). In the third step, any two vertices u and v are connected by an edge with a
probability that depends on their distance and their weights. More precisely, there are two
variants. In a threshold GIRG, u and v are adjacent if and only if

dist(u, v) ≤
(

λwuwv

n

)1/d

,

where the constant λ > 0 controls the expected average degree of the graph. We note
that the relation between λ and the corresponding average degree is not trivial and refer
to [5, Section 4.3] for details. In the temperate variant we have an additional temperature
parameter T ∈ (0, 1) and the probability for u and v to be adjacent is given by

Pr [{u, v} ∈ E] = min
{

1,

(
λwuwv

n · (dist(u, v))d

)1/T
}

.

The threshold variant is the limit of the temperature variant for T → 0. We denote the
resulting probability distribution of graphs with G(n,Bd, τ, λ, T ) for general GIRGs (allowing
temperatures in T ∈ [0, 1)). When we just refer to the threshold case, we use G(n,Bd, τ, λ).
We assume the parameters d, τ, λ, and T to be constant, i.e., independent of n.

GIRG Variants. In the literature, several variants of the GIRG model have been studied
and we want to briefly discuss the choice we made here. Usually, GIRGs are considered
with a torus Td as ground space, i.e., the distance in the ith dimension, between x and y

is min{|xi − yi|, 1 − |xi − yi|} instead of just |xi − yi|. The torus usually makes arguments
easier as it eliminates the special case close to the boundary of Bd. However, in our case,
this is not relevant. Moreover, as distances in Td are only smaller than in Bd, all our results
concerning the largest connected component directly translate to the case where Td is the
ground space.

Moreover, instead of sampling n points uniformly at random in the ground space, we use
a Poisson point process. This is a technique often used in geometric random graphs as it
makes the number of vertices appearing in disjoint regions stochastically independent. This is
a similar difference as the one between the Erdős–Rényi model G(n, m) with a fixed number
of edges m and the Gilbert model G(n, p) with a fixed probability p for each individual edge
to exist. While we generally advocate for using the Poisson variant of the GIRG model, we
note that our result carries over to the uniform model.

Poisson Point Process. Let R ⊆ Bd be a region of the ground space with volume a. Then,
the size of the vertex set V (R), i.e., the number of vertices that are sampled in R is a random
variable following a Poisson distribution with expectation µ = an. This in particular means
that the probability for R to contain no vertex is exp(−µ).

We note that the Poisson point process we consider is a marked process, where each
point sampled from Bd obtains a weight sampled from a weight space W as a mark. Due to
the marking theorem, this is equivalent to considering an (inhomogeneous) Poisson point
process of the product space Bd × W , i.e., colloquially speaking, each point pops up with a
position and a weight instead of initially only having a position and drawing the weight as
an afterthought. This is also equivalent to just sampling the number of points N following a
Poisson distribution and viewing the positions and the weights as marks that are sampled
subsequently for each of the N points. Throughout the paper, we switch between these
different perspectives without making this explicit.

ESA 2023
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Lowest Weights Dominate. We regularly consider weight ranges [w1, w2] with w2 ≥ c · w1
for a constant c > 1. The probability for a v to have weight in [w1, w2] is dominated by w1:

Pr [wv ∈ [w1, w2]] = w
−(τ−1)
1 − w

−(τ−1)
2 ≥ w

−(τ−1)
1 ·

(
1 − c−(τ−1)

)
∈ Θ(Pr [wv ≥ w1]).

3 Existence of a Giant Component

We want to show that a threshold GIRG is highly likely to contain a connected component
of linear size. Our argument goes roughly as follows. We first note that vertices with weight
at least

√
n/λ form a clique, which we call the core of the graph. For each non-core vertex,

we can show that the probability that it has a path into the core is non-vanishing, i.e., it is
lower bounded by a non-zero constant. This already shows that we get a connected graph of
linear size in expectation.

To show concentration, i.e., that we get a large connected component with the claimed
probability, we essentially need to show that the events for different low-weight vertices to
connect to the core are sufficiently independent of each other. To this end, we subdivide
the ground space into a grid of regular cells of side length ∆. We call a cell nice if a linear
number of its vertices connect to the core via paths not leaving the cell and then show that
a cell is nice with non-vanishing probability. As this only considers paths within the cell,
the different cells are independent. Thus, we get a series of independent coin flips, one for
each cell. If a constant fraction of these coin flips succeeds, we have a connected component
of linear size. Hence, if the number of cells is sufficiently large, we get concentration via a
Chernoff bound. It follows that we essentially want to choose the cell width ∆ to be as small
as possible such that cells are still nice with non-vanishing probability.

In Section 3.1, we first show that every vertex has constant probability to have a path to
the core. In fact, we show something slightly stronger, by considering not just any paths but
so-called layer paths. Afterwards, we use this result in Section 3.2, to bound the probability
for a cell to be nice. This then also informs us on how to choose the cell width ∆ and thus
on how many cells we obtain. With this, we can wrap up the argument in Section 3.3 by
applying a Chernoff bound. Besides our main results, we there also mention immediate
implications.

3.1 Layer Paths
We want to show that, for any individual vertex, the probability that it has a path to a vertex
of the core is non-vanishing. For this, we define the ℓ-th layer Vℓ to be the set of vertices with
weight in [eℓ/2, e(ℓ+1)/2). Note that the upper and lower bounds are a constant factor apart and
thus (as mentioned in Section 2) the probability for a vertex to have layer ℓ is asymptotically
dominated by the lower bound, i.e., Pr [v ∈ Vℓ] ∈ Θ(Pr

[
wv ≥ eℓ/2]) = Θ(e−ℓ(τ−1)/2).

A path (v0, . . . , vk) is a layer path if it goes from one layer to the next in every step, i.e.,
vi ∈ Vℓ implies vi−1 ∈ Vℓ−1 for every i ∈ [k]. Note that vertices in layer ⌈log(n/λ)⌉ have
weight at least

√
n/λ and thus belong to the core. Thus, the following lemma shows that

each vertex has a layer path to the core with non-vanishing probability.

▶ Lemma 1. Let G ∼ G(n,Bd, τ, λ) be a threshold GIRG and let v be a non-core vertex. The
probability that there is a layer path from v to layer ⌈log(n/λ)⌉ is non-vanishing.

Proof. We bound the probability that such a layer path exists in three steps. First, we
bound the probability that a vertex u on layer ℓ has a neighbor in layer ℓ + 1. In the second
step, we consider the intersection of the events where this happens on all considered layers.
Finally, we show that the resulting probability is non-vanishing.
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w
ℓ ℓ+ 1 ℓ+ 2

B

0

1

u

v

ℓ− 1

∆ℓ

Figure 1 Excerpt of a one-dimensional GIRG with the weights on the x-axis and the ground space
B on the y-axis. A layer path spans from layer ℓ − 1 to ℓ + 2. The gray region is the neighborhood of
vertex u. The dark-gray region contains all vertices in layer ℓ + 1 that have distance at most ∆ℓ to u.

For the first step, consider two vertices u ∈ Vℓ and v ∈ Vℓ+1 in consecutive layers, as
shown in Figure 1. Both their weights are at least w = eℓ/2. Thus, they are definitely
adjacent if their distance dist(u, v) satisfies

dist(u, v) ≤
(

λw2

n

)1/d

= λ1/d

(
eℓ

n

)1/d

=: ∆ℓ.

If vertex u ∈ Vℓ is the current vertex from which we want to make the next step in a layer path,
we are thus interested in the probability that there is a vertex v that lies in layer ℓ + 1 with
dist(u, v) ≤ ∆ℓ. Since these two events (being in layer ℓ+1 and having sufficiently low distance)
are independent, the probability that both happen is Pr [v ∈ Vℓ+1] · Pr [dist(u, v) ≤ ∆ℓ]. As
mentioned above, we have Pr [v ∈ Vℓ+1] ∈ Θ(e−ℓ(τ−1)/2). Moreover, Pr [dist(u, v) ≤ ∆ℓ] ∈
Θ(∆d

ℓ ) = Θ(eℓ/n). Hence, we obtain

Pr [v ∈ Vℓ+1] · Pr [dist(u, v) ≤ ∆ℓ] ∈ Θ
(

e−ℓ(τ−1)/2 · eℓ/n
)

= Θ
(

eℓ(3−τ)/2/n
)

.

To conclude the first step of the proof, let Xℓ be the number of vertices in layer ℓ + 1 with
distance at most ∆ℓ to u ∈ Vℓ. By the above probability, we have E[Xℓ] = Θ(eℓ(3−τ)/2).
We consider the event Xℓ > 0 and call it Aℓ. Note that Aℓ implies that u has at least one
neighbor in the next layer. As Xℓ follows a Poisson distribution, we get

Pr [Aℓ] = 1 − Pr [Xℓ = 0] = 1 − exp (−E[Xℓ]) = 1 − exp
(

−Θ
(

eℓ(3−τ)/2
))

.

In the second step of the proof, we now consider the intersection of all the independent
events A0, A1, . . . , A⌈log(n/λ)⌉, which is sufficient for a layer path starting in layer 0 to exist.
Note that a lower bound for the probability of this intersection also gives a lower bound for
the existence of a layer path starting in any other layer. To show that this intersection occurs
with non-vanishing probability, we utilize the fact that Pr [Aℓ] approaches 1 very quickly for
increasing ℓ. More precisely, we show that for a constant c, all subsequent events Aℓ with
ℓ ≥ c are sufficiently likely, that we can simply take the union bound over their complements.
Thus, we obtain

Pr

⌈log(n/λ)⌉⋂
ℓ=0

Aℓ

 = Pr
[

c−1⋂
ℓ=0

Aℓ

]
· Pr

⌈log(n/λ)⌉⋂
ℓ=c

Aℓ

 .

ESA 2023
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Clearly, the first factor is non-vanishing as it is the product of constantly many non-zero
constants. For the second factor, we consider the complementary events and apply the union
bound to obtain

Pr

⌈log(n/λ)⌉⋂
ℓ=c

Aℓ

 = 1 − Pr

⌈log(n/λ)⌉⋃
ℓ=c

AC
ℓ


≥ 1 −

⌈log(n/λ)⌉∑
ℓ=c

(1 − Pr [Aℓ])

= 1 −
⌈log(n/λ)⌉∑

ℓ=c

exp
(

−Θ(eℓ(3−τ)/2)
)

.

Since the sum converges, we can choose c to be a sufficiently large constant such that the
sum is bounded by any constant ε > 0. The above expression is thus at least 1 − ε, which is
non-vanishing. ◀

Observe that Lemma 1 already shows that the expected number of vertices with a layer
path to the core is linear. Thus, the expected size of the connected component including the
core vertices is linear. To show concentration, we separate the ground space into cells that
are then considered independently.

3.2 A Coin Flip for Each Cell
We subdivide the ground space into a grid of regular cells of side length ∆. We first show
that the high-weight vertices of each cell are likely to induce a connected graph. This is
useful as we can afterwards focus on vertices of lower weight. As edges between low-weight
vertices are short, layer paths on these vertices can cover only a small distance and thus only
few of them leave their cell, which makes different cells (mostly) independent.

▶ Lemma 2. Let G ∼ G(n,Bd, τ, λ) be threshold GIRG, let C be a cell of side length ∆, and
let w be a weight. Then, the graph induced by vertices in C of weight at least w is connected
with probability at least

1 − (2∆)d

λw2 · exp
(

−λw3−τ

2d

)
· n.

Proof. We discretize the cell C into sub-cells, such that vertices in adjacent sub-cells are
adjacent themselves, as shown in Figure 2. Note that two vertices u, v with weights wu, wv ≥ w

are adjacent if their distance is bounded by

dist(u, v) ≤
(

λw2

n

)1/d

.

Thus, all vertices in adjacent sub-cells are guaranteed to be adjacent, if the side length of a
sub-cell is

∆w = 1
2

(
λw2

n

)1/d

.

Note that for very large w, we get ∆w ≥ ∆, in which case all vertices in C are pairwise
adjacent with probability 1. In the following, we therefore assume that w is smaller. For a
given sub-cell C ′, we compute the probability for a given vertex v to lie in C ′ as
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B2

C

∆

∆w

u v

C ′

Figure 2 The cell C of width ∆ is divided into sub-cells of width ∆w. The sub-cell C′ is
completely contained in C. The vertices u and v are in adjacent sub-cells and are therefore adjacent
themselves.

Pr[v ∈ V (C ′)] = (∆w)d =
(

1
2

(
λw2

n

)1/d
)d

= λw2

2dn
.

Additionally, the probability for v to have weight at least wv ≥ w, is given by

Pr[wv ≥ w] = 1 − Pr[wv ≤ w] = w−(τ−1).

Together, we obtain

Pr[v ∈ V (C ′) ∧ wv ≥ w] = Pr[v ∈ V (C ′)] · Pr[wv ≥ w] = λw2

2dn
· w−(τ−1) = λw3−τ

2dn
.

Consequently, the expected number of vertices of weight at least w in C ′ is

E [|{v ∈ V (C ′) | wv ≥ w}|] = λw3−τ

2d
.

Since the vertices are distributed according to a Poisson distribution, the probability for C ′

to not contain any of these vertices is given by

Pr[{v ∈ V (C ′) | wv ≥ w} = ∅] = exp
(

−λw3−τ

2d

)
.

Finally, we lower-bound the probability for the vertices of weight at least w in our initial
cell C to induce a connected graph, by considering the probability that none of its sub-cells
is empty. Note that we have

k =
(⌊

∆
∆w

⌋)d

sub-cells C ′
1, . . . , C ′

k that are completely contained in the cell C. Clearly, whether the
remaining sub-cells (intersecting the boundary of C) are empty or not has no impact on the
connectedness of the considered subgraph. The probability for all of the sub-cells C ′

1, . . . , C ′
k

to be non-empty can be simplified by applying union bound, which yields
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Pr[∀C ′ ∈ {C ′
1, . . . , C ′

k} : V (C ′) ̸= ∅] = (1 − Pr[V (C ′) = ∅])k

≥ 1 − k · Pr[V (C ′) = ∅]

= 1 −
(⌊

∆
∆w

⌋)d

· exp
(

−λw3−τ

2d

)
≥ 1 − ∆d · 2dn

λw2 · exp
(

−λw3−τ

2d

)
= 1 − (2∆)d

λw2 · exp
(

−λw3−τ

2d

)
· n. ◀

The following lemma shows that we basically get an independent coin-flip with non-
vanishing success probability for each cell to be nice. We want to point out three technical
details of the lemma statement here. First, the lemma specifically considers the connected
component containing a vertex of weight at least ŵ. We will later choose ŵ =

√
n/λ, i.e.,

this vertex is part of the core. As all core vertices form a clique, this makes sure that the
components we get for the individual cells actually connect to one large component in the
whole graph. Secondly, the lower bound on µ, which is the expected number of vertices in
the cell, given by µ = ∆dn, requires that the cells are sufficiently large to contain a vertex
of weight ŵ with non-vanishing probability. Thirdly, the lower bound on ŵ ensures that
vertices with higher weight are likely connected by Lemma 2.

▶ Lemma 3. Let G ∼ G(n,Bd, τ, λ) be a threshold GIRG, let ŵ be a weight, and let C

be a cell of side length ∆ containing µ vertices in expectation. Then, with non-vanishing
probability, the graph induced by the vertices in C contains a vertex of weight at least ŵ

whose connected component has size Θ(µ), if µ ≥ ŵτ−1, µ ∈ ω((log n)2/(3−τ) log log(n)d),
and ŵ ∈ ω((log n)1/(3−τ)).

Proof. The overall argument goes as follows. First, the lower bound on µ ensures that C

contains a vertex of weight ŵ with non-vanishing probability. For a smaller weight w ≤ ŵ, we
then apply Lemma 2 to get that all vertices of weight at least w form a connected component
asymptotically almost surely. Afterwards, it remains to show that enough vertices of lower
weight connect to a vertex of weight at least w via paths not leaving C. For the existence
of these paths, we use Lemma 1. To show that most of them do not leave C, we use that
the considered vertices have weight at most w and thus cannot deviate too much from the
starting position.

Recall that the weight of a vertex is at least ŵ with probability ŵ−(τ−1). Thus, the
expected number of vertices in cell C with weight at least ŵ is µŵ−(τ−1). Plugging in the
bound µ ≥ ŵτ−1, everything cancels and we obtain an expected value of 1. As the number
of vertices in C with weight above ŵ follows a Poisson distribution, we get at least one such
vertex with non-vanishing probability.

We set w = ((2d/λ) log n)1/(3−τ). Note that by the condition on ŵ in the lemma statement,
we have w ≤ ŵ for sufficiently large n. Note further that w is chosen such that the exponent
in the bound of Lemma 2 simplifies to − log n. Thus by Lemma 2, the graph induced by the
vertices of weight at least w in C is connected with probability at least 1 − (2∆)d/(λw2). As
∆ ≤ 1 and w is increasing with n, this goes to 1 for n → ∞.

Consider a vertex of weight below w. Then, by Lemma 1, it has a layer path to a vertex
with weight at least w with non-vanishing probability. In the following, with layer path we
always refer to a layer path that ends in the layer belonging to w. Note that a layer path
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has length at most O(log log n). Also note that the largest weight we encounter is in O(w)
as the path stops in the layer belonging to weight w and the weights increase only by a
constant factor between layers. It follows that, in each dimension, the distance between
two consecutive vertices on a layer path is in O((w2/n)1/d), as the vertices would not be
connected otherwise. Thus, the overall deviation of a layer path from the starting point
is upper bonded by O((w2/n)1/d log log n) = O

(
((log n)2/(3−τ) log log(n)d/n)1/d

)
. By the

second lower bound on µ, this is asymptotically less than ∆. Thus, shrinking C accordingly
from all directions yields a subregion C ′ that contains Θ(µ) vertices in expectation such that
any layer path that starts in C ′ stays in C.

Instead of counting all vertices in C ′ that have layer paths, we only count vertices in the
first layer. This has the advantage, that the event that an individual vertex in the first layer
has a layer path is independent of the number of vertices in the first layer (while it depends
on the number of vertices in higher layers). First note that the number of vertices in the
first level of C ′ is a random variable following a Poisson distribution with expected value in
Θ(µ). Thus, there are Θ(µ) such vertices with non-vanishing probability.

Now let X ∈ [0, 1] be the random variable that describes the fraction of vertices in the
first layer that fail to have a layer path. By Lemma 1, the probability for an individual
vertex to not have a layer path is a upper bounded constant p < 1 (i.e., the layer path exists
with non-vanishing probability at least 1 − p). Thus, we get E[X] ≤ p. Markov’s inequality
then gives us Pr [X ≥ c] ≤ p/c and thus Pr [X < c] ≥ 1 − p/c. We can choose c to be a
constant with p < c < 1, which gives us a non-vanishing probability that a fraction of at
least 1 − c > 0 vertices have the desired layer path. Note that this holds independently of
the number of vertices actually sampled in the first layer of C ′.

To wrap up, consider the three events that there exists a vertex of weight at least ŵ, that
there are Θ(µ) vertices in the first layer of C ′, and that a constant fraction of them have
layer paths. Note that the three events are independent and each holds with non-vanishing
probability. Thus, their intersection, which we denote with A, also holds with non-vanishing
probability. Finally, the event B that all vertices of weight at least w induce a connected
graph holds asymptotically almost surely. Though A and B are not independent, we can
apply the union bound to their complements to obtain that A and B together hold with
non-vanishing probability. ◀

3.3 Large Components are Likely to Exist
To obtain the following theorem, it remains to apply a Chernoff bound to the coin flips
obtained for each cell by Lemma 3.

▶ Theorem 4. Let G ∼ G(n,Bd, τ, λ) be a threshold GIRG. Then G has a connected
component of size Θ(n) with probability 1 − exp

(
−Ω(n(3−τ)/2)

)
.

Proof. First note that the probability to have ω(n) vertices is exponentially small and thus
we only have to show the lower bound on the size of the largest connected component. To
apply Lemma 3, we choose the cell width ∆ such that ∆dn = µ = ŵτ−1 where we set
ŵ =

√
n/λ. With this, we obtain that the number of cells k is

k ∈ Θ
(

1
∆d

)
= Θ

( n

ŵτ−1

)
= Θ

 n(√
n/λ

)τ−1

 = Θ
(

n
3−τ

2

)
.
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Note that this bound is valid even if ∆ does not divide the ground space evenly. Further
note that the chosen ∆ satisfies the conditions of Lemma 3, the graph induced by each cell
contains a vertex from the core whose connected component has size Θ(µ) with non-vanishing
probability. If this holds for a constant fraction of cells, we get a giant component, as all
vertices of weight at least ŵ form a clique in G. Thus, we have k independent coin flips,
each succeeding with a probability of p > 0, and we are interested in the number of successes
X. To show that X ∈ Θ(k) is highly likely, we can simply apply a Chernoff bound (see [24,
Theorem 4.4]). For δ ≥ 0, we get

Pr [X ≤ (1 − δ)E[X]] ≤ exp
(

−δ2

2 E[X]
)

.

As E[X] ∈ Θ(k), this implies Pr [X ∈ o(k)] ≤ exp (−Ω(k)). Inserting k yields the claim. ◀

As already mentioned in Section 2, this directly implies the following corollary.

▶ Corollary 5. Theorem 4 also holds with the torus T as ground space.

The following lemma states a well known property of GIRGs, see e.g. [19, Lemma 3.12]
and [22, Definition 2.8]. For the sake of transparency, we give a simple proof based on the
notation established throughout the paper.

▶ Lemma 6 (folklore). Let H ∼ G(n,Bd, τ, λ, T ) be a GIRG and let G be the subgraph induced
by the vertices within a cell of side length ∆ = (f(n)/n)1/d. Then G ∼ G(f(n),Bd, τ, λ, T ).

Proof. Note that we basically consider two ways to generate a graph and claim that they
give the same probability distribution over graphs. Intuitively, this can be seen by generating
points with weights in the cell [0, ∆]d, scaling it to the full ground space [0, 1]d, and making
three observations. First, for the vertex positions, this is equivalent to directly sampling
points in [0, 1]d. Secondly, the weight distribution is independent of the number of vertices.
Thirdly, the connection probabilities between vertices are the same in the scaled variant
as they are in the cell. To make this more formal, draw G as a subgraph of H as stated
in the lemma and draw G′ ∼ G(f(n),Bd, τ, λ, T ). We show that G and G′ follow the same
distribution.

Recall that we consider the Poisson variant of the GIRG model, i.e., the vertices are the
result of a Poisson point process in the product space Bd × W. Thus, the vertex set of G

can be generated by first determining the number of points nG with positions in [0, ∆]d,
which is a random variable following a Poisson distribution with expectation n · ∆d = f(n).
Then, independently for each of the nG vertices, a position is drawn uniformly at random
from [0, ∆]d and a weight is drawn from (1, ∞) with probability density function (τ −1) ·w−τ .

To generate G′, we can also first determine the number of points nG′ , which is also Poisson
distributed with expectation f(n). Thus, we can couple nG and nG′ to have the same value
and we assume a one-to-one correspondence between the vertices in G and G′ in the following.
For each vertex, the weight is again a random variable with density (τ − 1) · w−τ , which only
depends on τ . Thus, for each vertex, we can couple its weight in G with its weight in G′

to assume them to be equal. The position in G′ is drawn uniformly from [0, 1]d. Thus, we
can couple the random variables for the positions in G′ with those in G such that a vertex
with position x ∈ [0, ∆]d in G has position x/∆ in G′. Note that this has the effect that all
distances between vertices in G′ are scaled by a factor of 1/∆ compared to the corresponding
distance in G.
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It remains to show that for every vertex pair u, v the connection probability in G is the
same as in G′. Let wu and wv be the weight of u and v (which is the same for G and G′

due to the coupling). Also, let dist(u, v) be the distance between u and v in G and let
dist′(u, v) = dist(u, v)/∆ be their distance in G′. Then (for T > 0) the connection probability
of u and v in G is

Pr [{u, v} ∈ E] = min
{(

λwuwv

n dist(u, v)d

)1/T

, 1
}

.

The two things that change for G′ is that n is replaced by f(n) and dist(u, v)d is replaced by
dist′(u, v)d = (dist(u, v)/∆)d = n/f(n) · dist(u, v)d. The f(n) cancels out, yielding the same
connection probability for G and G′. For T = 0, the argument works analogously. ◀

Together with Theorem 4 this yields the following corollary. We note that this also yields
large connected components within cells that are too small to contain a core vertex. For
such cells, we know that we get a large connected component but we do not know whether it
connects to the giant of the whole graph. Clearly, the same statement holds with the torus
Td as ground space.

▶ Corollary 7. Let H ∼ G(n,Bd, τ, λ) be a threshold GIRG and let G be the subgraph induced
by the vertices within a cell of side length ∆ = (f(n)/n)1/d. Then G has a connected
component of size Θ(f(n)) with probability 1 − exp

(
−Ω(f(n)(3−τ)/2)

)
.

4 Conclusion

Our proof for the emergence of a giant component in geometric inhomogeneous random
graphs builds on three simple arguments. First, GIRGs are likely to contain a clique of
high-weight vertices. Second, the remaining vertices are sufficiently likely to connect to this
core via layer-paths, whose vertices have exponentially increasing weight. And, third, most
of these paths exist sufficiently independently from each other.

We note that the same argumentation also works for the closely related hyperbolic
random graph model, where the discretization into weight layers translates to a natural
discretization of the underlying geometric space that was previously used to bound the
diameter of HRGs [15].

Our resulting strong probability bound can be combined with a simple coupling argument
to identify connected subgraphs of arbitrary size in certain subregions of the geometric ground
space. In particular, when these subregions are the cells of a regular grid (as used several
times throughout the paper), we obtain connected subgraphs of roughly equal size. We believe
that this property can be utilized in the context of problems with connectivity constraints.
For example, in the previously mentioned balanced connected partitioning problem [8, 27],
the goal is to partition the vertices of a graph into a given number of sets of approximately
equal size, such that their induced subgraphs are connected. Moreover, in component order
connectivity [16] the aim is to find a minimum number of vertices such that after their removal
each connected component has bounded size. We conjecture that our structural insights in
Corollary 7 may prove useful in obtaining efficient algorithms for these problems on GIRGs
and the networks they represent well.
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Abstract
The problem Power Dominating Set (PDS) is motivated by the placement of phasor measurement
units to monitor electrical networks. It asks for a minimum set of vertices in a graph that observes
all remaining vertices by exhaustively applying two observation rules. Our contribution is twofold.
First, we determine the parameterized complexity of PDS by proving it is W [P ]-complete when
parameterized with respect to the solution size. We note that it was only known to be W [2]-hard
before. Our second and main contribution is a new algorithm for PDS that efficiently solves practical
instances.

Our algorithm consists of two complementary parts. The first is a set of reduction rules for
PDS that can also be used in conjunction with previously existing algorithms. The second is an
algorithm for solving the remaining kernel based on the implicit hitting set approach. Our evaluation
on a set of power grid instances from the literature shows that our solver outperforms previous
state-of-the-art solvers for PDS by more than one order of magnitude on average. Furthermore, our
algorithm can solve previously unsolved instances of continental scale within a few minutes.
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1 Introduction

Monitoring power voltages and currents in electric grids is vital for maintaining their stability
and for cost-effective operation. The sensors required to obtain high-resolution measurements,
so-called phasor measurement units, are expensive pieces of equipment. The goal to place
as few of those sensors as possible to minimize cost is called the Power Dominating Set
problem (PDS). It was first posed by Mili, Baldwin and Adapa. [16] and formalized by
Baldwin et al. [2]. In its basic form, the problem asks whether the graph of a power grid can
be observed by exhaustively applying two observation rules [7]: First, every sensor observes
its vertex and all neighbors. Secondly, if a vertex is observed and has only one unobserved
neighbor, that neighbor becomes observed, too.

PDS is unfortunately NP-complete [7, 11, 14], i.e., we cannot expect there to be an
algorithm that performs reasonably on all inputs. Moreover, the problem remains hard for
a wide range of different graph classes [7, 8, 11, 14, 20, 9, 15]. In terms of parameterized
complexity, PDS is known to be W [2]-hard [9] when parameterized by solution size.
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On the positive side, various approaches for solving PDS have been proposed. Theoretic
results show that PDS can be solved in linear time in graphs with fixed tree-width [14, 9].
However, those algorithms have, to the best of our knowledge, never been implemented and
are probably infeasible in practice due to their bad scaling with respect to the tree-width.
Several exponential-time algorithms have been presented [7, 3] but those algorithms have
not been implemented and evaluated either.

Practically feasible approaches using an MILP formulation have been proposed by
Aazami [1]. This formulation was later improved upon by Brimkov, Mikesell, and Smith [6]
and most recently Jovanovic and Voss [13]. A different approach is to reduce PDS to the
hitting set problem [5, 18]. This approach is based on the observation that one can determine
so-called forts, which are subsets of vertices that prevent propagation if none of them is
selected. A set of vertices is a valid solution for PDS if and only if at least one vertex is
selected for each fort, i.e., if it is a hitting set for the collection of all forts. Graphs may
contain an exponential number of forts, so this hitting set instance is not computed explicitly.
Instead, one can use the so-called implicit hitting set approach, where one starts with a
subset of all forts, computes a hitting set for this subset, and then validates whether this
is already a solution for the PDS instance. If not, one obtains at least one new fort that
can be added to the set of considered forts. This is iterated until a solution is found. This
implicit hitting set approach has been used for other problems, e.g., for MaxSAT [17] and
TQBF [12]. For PDS, it has been introduced by Bozeman et al. [5]. The strategy of finding
forts has been later improved by Smith and Hicks [18], providing the current state-of-the-art
for solving PDS in practice.

Our contribution is threefold. First, we study the parameterized complexity of PDS
parameterized by the solution size. Though it is known to be W [2]-hard [9], it was unknown
whether PDS is also contained in W [2]. We show that PDS is W [P ]-complete via a reduction
from Weighted Circuit Satisfiability for circuits of arbitrary weft. This completely
determines its parameterized complexity and in particular shows that it is not in W [2]
unless W [2] = W [P ]. In our second contribution, we propose a set of reduction rules for
pre-processing PDS instances. Our reduction rules aim to produce equivalent instances that
are smaller and annotated with partial decisions, i.e., some vertices are marked as selected
or as forbidden-to-select. Though these annotations lead to a more general problem than
the basic PDS, we show that existing approaches for solving PDS can be easily adapted to
solve the annotated instances. Moreover, we show that their performance greatly benefits
from our reduction rules. Finally, our third contribution is an improved heuristic for finding
forts for the implicit hitting set formulation. This improved heuristic together with our
reduction rules beats the current state of the art solvers by more than one order of magnitude.
Moreover, our approach can solve previously unsolved instances of continental scale.

The remainder of this paper is organized as follows. Section 2 provides an overview of
the basic concepts and notation used throughout this paper. In Section 3, we show that
PDS is W [P ]-complete. Our reduction rules and the heuristic for extending the hitting set
instance are presented in Section 4. Section 5 contains our experimental evaluation of the
new method using a set of benchmark instances.

2 Preliminaries

Graphs and Neighborhoods. Let G = (V, E) be an undirected graph with vertices V and
edges E. For v ∈ V , let N(v) = {u ∈ V | uv ∈ E} be the open neighborhood of v. Similarly,
N [v] = N(V ) ∪ {v} is the closed neighborhood of v. Given a set S ⊆ V we denote by N(S)
and N [S] the union of all open and closed neighborhoods of the vertices in S.
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Power Dominating Set. For a given graph G, the problem Power Dominating Set
(PDS) is to find a minimum vertex set S ⊆ V of selected vertices such that all vertices of the
graph are observed. We call such set a power dominating set. The size of a minimum power
dominating set of a given graph G is called the power dominating number γP (G). Whether
a vertex is observed is determined by the following rules, which are applied iteratively. We
note that for the second rule, vertices can be marked as propagating, i.e., the input of PDS
is not just a graph but a graph together with a set of propagating vertices.

Domination rule. A vertex is observed if it is in the closed neighborhood of a selected vertex.
Propagation rule. Let u ∈ V be a propagating vertex. If u is observed and v ∈ N(u) is the

only neighbor of u that is not yet observed, then v becomes observed1. If the propagation
rule is applied to an observed vertex u, we say it propagates its observation status.

The special case where we have no propagating vertices yields the well known Dominating
Set (DS) problem. Moreover, the special case where all vertices are propagating is called
simple-PDS. In addition to the above Dominating Set variants, we also consider the
extension variant Dominating Set Extension. For DS-Extension, the input consists of
the graph G = (V, E), a set X ⊆ V of pre-selected and a set Y of excluded vertices; vertices
in V \X \Y are called undecided. DS-Extension asks whether there exists a solution S ⊂ V

such that S includes all selected and excludes all excluded vertices, i.e., X ⊆ S and Y ∩S = ∅.
The problems PDS-Extension and simple-IPDS-Extension are defined analogously.

Hitting Set. Let V be a set and let F ⊆ 2V be a family of subsets. A set H ⊆ V is a hitting
set if it hits every set F ∈ F , i.e., F ∩ H ̸= ∅ for all F ∈ F . The problem Hitting Set
is to find a hitting set of minimum size. Note that the extension variant of Hitting Set
reduces to an instance of Hitting Set itself, as one can simply remove excluded elements
and remove the sets containing pre-selected elements.

3 Power Dominating Set is W [P ]-Complete

We prove W [P ]-completeness via a chain of parameterized reductions from the Weighted
Monotone Circuit Satisfiability (WMCS) problem. WMCS has a monotone Boolean
circuit as input and asks whether it can be satisfied by setting at most k inputs to true,
where k is the parameter. We assume familiarity with the W -hierarchy and parameterized
reductions.We start by introducing a variant of the PDS problem that we use as an interme-
diate problem in our chain of reductions. For brevity, we only sketch an outline of the proof
in this section; for the full proof see [4].

The input of the problem Implicating Power Dominating Set (IPDS) is an instance
of PDS with the following additional information. First, edges of the graph G = (V, E) can
be marked as booster edges. Secondly, we are given a set of implication arcs A ⊆ V × V . We
interpret A as a set of directed edges on V but perceive them as separate from the graph G,
i.e., they do not affect the neighborhood. In addition to the domination and propagation
rule introduced in Section 2, we define the following to observation rules.

Booster rule. Let uv ∈ E be a booster edge. If u is observed, then v becomes observed and
vice versa.

Implication rule. Let (u, v) ∈ A be an implication arc and let u be observed. Then v also
becomes observed.

1 The propagation rule is motivated by Kirchoff’s law and Ohm’s law in electric networks. Propagating
vertices are also called zero-injection vertices. In electric networks, they refer to buses in substations
that have no attached loads.
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WMCS IPDS-e PDS-e s-PDS-e

IPDS PDS s-PDS

Lemma 7

Lemma 6
Lemma 5 Lemma 2

Figure 1 Reduction steps to show that PDS and its variants are W [P ] hard. The solid arrows
indicate our parameterized reductions described in this section. The hardness of the extension
problems follows from the hardness of their basic problem, indicated by the dashed arrows.

We note that IPDS is a generalization of PDS in the sense that every PDS instances
is an instance of IPDS with no booster edges and an empty set of implication arcs. The
extension variant IPDS-Extension is defined analogously to PDS-Extension. Proving
containment of IPDS-Extension in W [P ] is straight forward by giving an appropriate
non-deterministic Turing machine. We note that the analogous statement has been observed
before for PDS by Kneis et al. [14]. Note that this implies containment in W [P ] for all other
problem variants we defined.

▶ Lemma 1. Implicating Power Dominating Set Extension is in W [P ].

As all other variants of the power dominating set problem we consider are special cases
of IPDS-Extension, this also proves containment in W [P ] for the other variants.

Power Dominating Set to Simple Power Dominating Set. Our chain of reductions to
prove W [P ]-hardness is illustrated in Figure 1. We start with the reduction from PDS to
Simple PDS, which is similar to the proof of W [2] hardness of PDS [14, 9]. The core idea
is to simulate a non-propagating vertex with a propagating vertex with an additional leaf
attached.

▶ Lemma 2. There is a parameterized reduction from Power Dominating Set to Simple
Power Dominating Set.

Proof Sketch. Similar to the proof of W [2] hardness of Power Dominating Set [14, 9],
we can attach a leaf to each non-propagating vertex. Selecting the leaf as part of a solution
is never optimal: one can instead choose its neighbor. Then, a vertex with an attached leaf
can never propagate to any vertex except the leaf. ◀

Implicating Power Dominating Set to Power Dominating Set. The reduction from IPDS
to PDS, works in two steps. First, we show that we can eliminate implicating arcs by
replacing each of them with the small gadget show in Figure 2a. Using another gadget, we
eliminate booster edges in a similar way, yielding the reduction.

▶ Lemma 3. Every instance of Implicating Power Dominating Set can be reduced to
an equivalent instance with no implication arcs without changing the parameter.

Proof Sketch. Given an IPDS-instance G, we replace all implication arcs a = (x, y) with
the gadget depicted in Figure 2a. To see why the gadget works as desired, consider the
implication gadget and first assume that x is observed. By applying the booster and the
propagation rules, one can verify that all vertices introduced in the gadget and y become
observed. Conversely, if only y is observed, c becomes observed by the booster rule but
cannot propagate due to its two unobserved neighbors. Thus, the gadget mimics the behavior
of an implication arc. ◀
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x c y

(a) Gadget simulating an implication arc from x
to y using booster edges (marked with green dia-
monds).

∧
∧

(b) A gadget for simulating an and gate. The
bottom ∧-node is observed iff all input nodes are
observed.

Figure 2 Gadgets for implication arcs and and gates.

Our gadget for simulating booster edges requires adding a globally unique non-propagating
vertex b to which all such gadgets are connected. The gadget in turn replaces a booster edge
between x and y with a new vertex vxy which is connected to x, y and b. We enforce that b

is selected by attaching a leaf.

▶ Lemma 4. Every IPDS-instances with booster edges can be reduced to an equivalent
instance without booster edges.

Proof Sketch. One can verify that the booster gadget works as intended as follows: by the
domination rule, b observes vxy. If now either of x or y becomes observed, we can apply the
propagation rule on vxy, observing the other. Note that the inserted vertex b is the same for
all booster gadgets. ◀

▶ Lemma 5. There is a parameterized reduction from Implicating Power Dominating
Set to Power Dominating Set.

Extension to Non-Extension (for IPDS). For the IPDS-Extension to IPDS, the core
difficulty comes from enforcing the excluded vertices to not be selected. We already saw
how to enforce the selection of vertices in the construction of the booster gadget. The basic
idea for excluding vertices from the solution is to make the selection of certain vertices very
expensive.

▶ Lemma 6. There is a parameterized reduction from Implicating Power Dominating
Set Extension to Implicating Power Dominating Set.

Proof Sketch (Vertex Exclusion). Let G = (V, E) be an IPDS-Extension-instance where
the vertices Y ⊆ V are excluded from a solution. We construct an equivalent instance
without excluded vertices. We achieve this by creating a new graph G′, consisting of |V | + 1
copies of G and a clique C of |V \ Y | non-propagating vertices. Each copy G(i) has a fresh
set of vertices representing the vertices in G and there is an edge between two vertices in a
copy if there is an edge between their counterparts in G. There are no edges between vertices
in different copies. The vertices in C represent the vertices not excluded from a solution.
For each vertex in C we add edges to the closed neighborhoods of their counterparts in each
of the copies.

Given a power dominating set S of G, selecting the corresponding vertices in C yields a
power dominating set for G′. Conversely, the construction ensures that vertices selected in
one of the copies never observe any vertices in another copy. Thus, and because all copies
are identical, if a minimum power dominating set contains a vertex in one of the copies, it
must contain a vertex in all other copies, too. Hence, a minimum power dominating set of
size less then |V | cannot contain any vertices outside C. As the vertices in C correspond to
the selectable vertices in G, we obtain a power dominating set of G. ◀
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WMCS to IPDS-Extension. Finally, for the reduction from WMCS to IPDS-Extension,
the core idea is to replace the arcs in the directed acyclic graph describing the circuit with
implication arcs and to model and-gates as show in Figure 2b.

▶ Lemma 7. There is a parameterized reduction from Weighted Monotone Circuit
Satisfiability to Implicating Power Dominating Set Extension.

Proof Sketch. We construct an equivalent IPDS-Extension-instance G from a given mono-
tone circuit C = (V, E) as follows. In this construction, we interpret true values in the
circuit as a node being observed. We thus interpret all directed edges in the circuit as
implication arcs and add further implication arcs from the output to every input. The input
nodes become propagating vertices, all other vertices in G are non-propagating. The or-gates
are simulated by the implication rule without further adaptation.

To simulate the and-gates, we use the gadget in Figure 2b. We replace every and-gate v

by two new connected vertices x and y where all outgoing edges of v are instead outgoing
implication arcs of y. For every incoming edge of v from u, we place a new proxy vertex
xu and add an edge xux and an implication arc (u, xu). Then, the gate output y becomes
observed by the propagation rule from x if and only if all proxy vertices xu are observed, i.e.
if all inputs of the and-gate are true.

We need the implication arcs back from the output to the inputs to ensure all vertices
become observed if the corresponding truth assignment is satisfying. ◀

▶ Corollary 8. Power Dominating Set is W[P] complete.

4 Solving Power Dominating Set

In this section, we give an algorithm for solving PDS-Extension. Our algorithm consists of
different phases. In the first phase, we apply the reduction rules described in Section 4.1.
Each rule either shrinks the graph or decides for a vertex that it should be pre-selected or
excluded. We prove that the rules are safe, i.e., they yield equivalent instances. Afterwards,
in Section 4.2 we split the instance into several components that can be solved independently.
Finally, each of the subinstances is solved exactly using the implicit hitting set approach [5]
with our improved strategy for finding new sets that need to be hit; see Section 4.3.

We note that these phases are somewhat modular in the sense that one could easily
add further reduction rules or that one can replace the algorithm for solving the kernel in
the final step. In our experiments in Section 5, we also use an MILP for this step. This
MILP formulation is based on the formulation for PDS by Jovanovic and Voss [13] with the
adjustments from [4, Appendix A]. Moreover, instead of solving the subinstances optimally,
one can instead use a heuristic solver. The preceding application of our reduction rules and
splitting into subinstances then helps to find better solutions rather than improving the
running time of exact solvers. This is used in our experiments to find upper bounds on the
power domination number before we have an exact solution.

4.1 Reduction Rules
Many of our reduction rules are local in the sense that they transform one substructure into
a different substructure. Most of our local reduction rules are illustrated in Figure 3. In the
following, we specify additional reduction rules that are either non-local or otherwise difficult
to illustrate. For more details and proofs of safeness, see [4, Appendix B].
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(a) Deg1a: If an undecided leaf is attached to a non-excluded vertex, the reduction rule excludes the leaf.

(b) Deg1b: Two cases of excluded leaves attached to a vertex. On the left, the parent vertex is propagating
and becomes non-propagating. On the right, the parent vertex is non-propagating and becomes pre-selected.
The attached leaf is removed in both cases.

x v y

(c) Deg2a: A vertex v of degree two can safely be excluded if it has an undecided neighbor.
x v y

(d) Deg2b: The neighbors x and v of degree two can be merged if x is not adjacent to v’s other neighbor y.
x v y z

(e) Deg2c: If v is observed and has two non-adjacent unobserved neighbors of degree two, x and y, with
y being excluded, then we remove y and the edge xv and connect x to the other neighbor z of y.

(f) Tri: We pre-select the undecided and remove the two vertices of degree two in the triangle.

(g) OnlyN: If an excluded vertex is surrounded by non-propagating vertices, only one of which is not
excluded, we pre-select the non-excluded vertex.

(h) ObsE: An edge with two observed endpoints is replaced by edges to an arbitrary pre-selected vertex.
This leads to fewer applications of the propagation rule by replacing them with the domination rule.
Together with Deg1b, Deg2a and Deg2b this also helps reduce the graph size.

Figure 3 Illustrated overview of the local reduction rules. Round vertices are propagating,
triangular vertices are non-propagating, square vertices may be propagating or non-propagating.
Hollow vertices are excluded from a solution, vertices filled black are undecided, red triangular
vertices are pre-selected. Vertices filled gray may be undecided, excluded or pre-selected. Green
vertices are observed but not pre-selected. The absence of an edge is indicated in red .

▶ Reduction ObsNP (Observed Non-Propagating). Let v be an observed, non-propagating and
excluded vertex. Then delete v.

▶ Reduction Isol (Isolated). Let v be an undecided isolated vertex. Then pre-select v.

For the next two reduction rules, we introduce the concept of observation neighborhood.
For a set of vertices U ⊆ V the observation neighborhood is the set of vertices that is observed
when selecting U in addition to all pre-selected vertices and applying the observation rules
exhaustively. For convenience, we define the observation neighborhood of a single vertex v

to be the observation neighborhood of the single element set {v}.

▶ Reduction Dom (Domination). If the closed neighborhood of some undecided vertex w is
contained in the observation neighborhood of some other undecided vertex v, exclude w.

▶ Reduction NecN (Necessary Node). Let v be an undecided vertex. If the observation
neighborhood of all undecided vertices except v does not contain all vertices in G, select v.
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We note that Binkele-Raible and Fernau [3] already introduced reduction rules for their
exponential-time algorithm. We do not use them in our algorithm as they are not generally
applicable but rather require a specific situation. The only exception [3, “isolated”] is
superseded by our reduction rules.

4.1.1 Order of Application
In a first step, use a depth first search and process the vertices in post-order to apply the
rules Deg1a, Deg1b, and Deg2a. The order in which we process the vertices is important here,
as it makes sure that attached paths are properly reduced. This is only relevant for this first
application of the reduction rules and in later applications, we process the vertices and edges
in arbitrary order. After this initial application, we iterate the following three steps until
no reduction rules can be applied. (i) Iterate the application of the local reduction rules
(Deg1a, Deg1b, Deg2a, Deg2b, Tri, Deg2c, OnlyN, ObsNP, ObsE) until no local reduction rule
is applicable. (ii) Apply the non-local rule Dom. (iii) Apply the non-local rule NecN.

We note that applying Dom once to all vertices is exhaustive in the sense that it cannot
be applied again immediately afterwards. It can, however, become applicable again after
rerunning the other reduction rules. The same is true for NecN.

Our reasoning for this sequence of application is that the local rules are more efficient
than the non-local ones. Thus, we first apply the cheap rules exhaustively before resorting
to the expensive ones. Preliminary experiments showed that further tweaking the order of
application has only minor effect on the kernel size and run time.

4.1.2 Implementation Notes
The naïve implementation of the reduction rules can be very slow, in particular for the
non-local rules. The costly operation in those rules is the computation of the observation
neighborhood. We thus use a specialized data structure that allows us to pre-select and
deselect vertices in arbitrary order. Each time we pre-select a vertex, we also update the
observed vertices and keep track of which vertex propagates to which other vertex. For
de-selecting vertices, we only mark vertices as unobserved, that were directly or indirectly
observed by the deselected vertex. Being able to select and deselect arbitrary vertices allows
a straightforward implementation of the non-local rules.

4.2 Split into Subinstances
While the propagation rule may have non-local effects within the whole graph, propagation
cannot pass through selected vertices. This is formalized by the following theorem.

▶ Theorem 9. Let G = (V, E) be the graph with pre-selected vertices X ⊆ V and let
C1, . . . , Cℓ ⊆ V be the vertices in the connected components of the sub-graph of G induced by
V \ X. Further let S1, . . . , Sℓ be minimum power dominating sets of the subgraphs induced
by N [C1], . . . , N [Cℓ]. Then S = S1 ∪ · · · ∪ Sℓ is a minimum power dominating set of G.

These sub-problems can be identified in linear time using a depth-first search restarting
at unexplored non-active nodes while ignoring outgoing edges of active nodes.

4.3 Solving the Kernel Via Implicit Hitting Set
We briefly describe the implicit hitting set approach. Compared to how Bozeman et al. [5]
introduced it, we allow non-propagating vertices. However, this does not change any of the
proofs and thus the approach directly translates to this slightly more general setting.
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In a graph G, a fort is a non-empty subset of vertices F ⊆ V (G) such that no propagating
vertex outside F is adjacent to precisely one vertex in F . A power dominating set must
be a hitting set of the family of all fort neighborhoods in G, i.e., if F is a fort and S is a
power dominating set, then N [F ] ∩ S ̸= ∅. Conversely, if a hitting set for a family F of
fort neighborhoods is not a power dominating set, then one can find an additional fort of G

whose neighborhood is not in F .
This yields the following algorithm. Start with some set F of fort neighborhoods. Compute

a minimum hitting set H for F . If H is already a power dominating set, we have found the
optimum. Otherwise, we construct at least one new fort neighborhood and add it to F .

One core ingredient of this approach is the choice of which fort neighborhoods to add
to F . Previous approaches [18, 5] aimed at finding forts or fort neighborhoods that are as
small as possible. The reasoning behind this is that the set of all fort neighborhoods can be
exponentially large (even when restricted to those that are minimal with respect to inclusion)
and thus it makes sense to add sets that are as restrictive as possible, hoping that only few
sets suffice before the Hitting Set solution yields a PDS solution. However, finding forts
of minimum size or minimum size fort neighborhoods is difficult while just finding any fort is
easy. Moreover, if we add only few forts in every step, we have to potentially solve more
Hitting Set instances. We thus propose to instead find multiple forts at once and to add
them all to the Hitting Set instance. Our method of finding forts is based on the following
lemma.

▶ Lemma 10. Let G = (V, E) be a graph and let S ⊆ V be a set of selected vertices. Let
further be R the set of vertices observed by exhaustive application of the observation rules
with respect to S. Then the set of unobserved vertices V \ R is a fort.

Proof. Assume V \ R is not a fort. Then there exists a propagating vertex v in R that is
adjacent to precisely one vertex w in V \ R, i.e., v has precisely one unobserved neighbor
w. This constradicts the exhaustive application of the propagation rule and thus the set of
unobserved vertices is a fort. ◀

By Lemma 10, whenever we have a candidate solution that does not yet observe all
vertices, we obtain a new fort and can add its neighborhood to the Hitting Set instance
F . For the new forts, we have two objectives. First, we want the new fort neighborhood to
actually provide new restrictions, i.e., it should not be already hit by the minimum hitting
set H of F . This is achieved by making sure that the candidate solution S is a superset
of the hitting set H. Secondly, we want the resulting forts (i.e., the number of unobserved
vertices) to be small. We achieve this heuristically by greedily considering large candidate
solutions.

Specifically, we choose candidate solutions as follows. Recall, that we consider the exten-
sion problem, i.e., we have sets X and Y of pre-selected and excluded vertices, respectively.
Moreover, let H be a minimum hitting set of the current set of fort neighborhoods. Then V

is partitioned into the four sets X, Y , H , and U = V \ H \ X \ Y . Each candidate solution S

we consider is a superset of H ∪X and a subset of H ∪X ∪U . We randomly order the vertices
in U = {u1, . . . , uℓ} and define a sequence U0, . . . , Uℓ ⊆ U . We then consider the candidate
solutions Si = H ∪ X ∪ Ui for 0 ≤ i ≤ ℓ. As we want to consider large candidate solutions, we
start with U0 = U , which clearly yields a solution as the instance would be invalid otherwise.
We obtain the subset Ui from Ui−1 as follows. If Si−1 was a solution, i.e., there were no
unobserved vertices, then Ui = Ui−1 \ {ui}. Otherwise, Ui = Ui−1 ∪ {ui−1} \ {ui}. Note that
this makes sure that each candidate solution Si we consider is either a solution or barley not
a solution as Si ∪ {ui} is a solution.
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This gives us at least one and up to ℓ new fort neighborhoods. These are not directly
added to the set F . Instead, we first apply a simple local search to make sure that each fort
is minimal with respect to inclusion. To this end, we iteratively re-select vertices from U

that had been removed before and check whether this still results in a non-empty fort.
We note that we only add sets to F . Thus, we have to solve a sequence of increasing

Hitting Set instances as a subroutine. To improve the performance of this, one can use
lower bounds achieved in earlier iterations as lower bounds for later iterations (Hitting Set
is monotone with respect to the addition of sets).

5 Experiments

The goal of this section is threefold. First, we evaluate the performance of our algorithm in
comparison to two previous state-of-the-art approaches. Secondly, we give a more detailed
view on the performance by analyzing how the upper and lower bounds found be the different
algorithms converge to the optimal solution. Thirdly, we evaluate the impact of the different
reduction rules.

Experiment Setup. We implemented our algorithm in C++ 20 and compiled it with clang
15.0.1 with the -O3 optimization flag. Our source code will be made publicly available
on publication. For the comparison with the previous state-of-the-art, we use the MILP
formulation approach by Jovanovic and Voss [13]. In the following, we refer to this algorithm
with MILP. The second solver by Smith and Hicks [18] and is based on the implicit hitting
set approach. Unfortunately, their code is not publicly available, and the paper does not
specify all implementation details. To make a fair (or rather generous) comparison, we
initialized their set of forts with our fort heuristic, which, as far as we can judge, leads to
better results than reported in the original publication [18]. We refer to this algorithm as
MFN (abbreviation for minimum fort neighborhood). For the implicit hitting set approaches,
we use an MILP formulation to solve the Hitting Set instances. All MILP instances are
solved using Gurobi 9.5.2 [10].

The experiments were run on a machine running Ubuntu 22.04 with Linux 5.15. The
machine has two Intel®Xeon®Gold 6144 CPUs clocked at 3.5 GHz with 8 single-thread cores
and 192 GB of RAM.

We used a collection of instances shipped with pandapower [19]. We further use the
Eastern, Western, Texas and US instances from the powersimdata set2 [21] based on the US
electric grids. We interpret the power grids as graphs were buses are vertices and power lines
and transformers are edges. Buses without attached loads or generators yield propagating
vertices. For experiments on the pandapower instances, we used a timeout of 2 h and repeated
each experiment 5 times. On the powersimdata instances, we used a timeout of 10 h and
only repeated the experiments using our solver. For repeated experiments, we report the
median result.

Performance Comparison. We compare the performance of our solver to the MILP and
MFN approach, each with and without preprocessing by the reduction rules. To assess the
performance of our approach with reduction rules, we compute the speedup compared to the
lowest run time of the previous approaches without reduction rules.

2 https://github.com/Breakthrough-Energy/PowerSimData

https://github.com/Breakthrough-Energy/PowerSimData
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Table 1 Run times of different combinations of PDS solvers and reduction rules on the pandapower
data set. Note that |S| differs from the results reported in other literature. This is to be expected
because we include non-propagating vertices from the input. Further observe that some run times
are given in milli- or microseconds.

instance |S| MILPa) MILP+Ra) MFNa) MFN+Ra) Ours Ours+R Speedup
# s s s s s s

4gs 2 1.41m 2.75m 2.34m 1.89m 513µ 672µ 2.1
5 2 1.06m 840µ 2.24m 1.60m 265µ 254µ 4.2
6ww 1 1.19m 10µ 836µ 6µ 156µ 8µ 104.6
9 2 2.61m 1.23m 4.98m 2.14m 544µ 181µ 14.4
11_iwamoto 2 4.59m 23µ 3.49m 21µ 613µ 17µ 205.5
14 3 1.79m 1.38m 3.82m 2.01m 487µ 522µ 3.4
24_ieee_rts 6 4.19m 4.87m 5.59m 5.50m 1.30m 802µ 5.2
30 6 2.93m 52µ 5.01m 49µ 622µ 45µ 65.1
ieee30 6 3.40m 52µ 6.53m 43µ 669µ 46µ 73.9
33bw 11 1.81m 50µ 8.39m 44µ 551µ 144µ 12.6
39 9 6.60m 112µ 11.95m 104µ 1.76m 116µ 56.9
57 12 9.74m 9.78m 24.94m 13.83m 1.71m 1.75m 5.6
89pegase 13 22.73m 190µ 12.88m 169µ 1.74m 288µ 44.7
118 29 14.26m 12.49m 59.64m 39.27m 7.63m 4.41m 3.2
145 18 123.65m 275µ 19.65m 269µ 2.46m 274µ 71.7
illinois200 39 20.57m 276µ 162.35m 464µ 4.56m 412µ 49.9
300 72 29.66m 2.75m 218.41m 4.70m 7.57m 1.44m 20.6
1354pegase 311 105.77m 2.61m 2.10 2.93m 19.37m 1.89m 56.0
1888rte 375 554.12m 6.82m 6.26 5.80m 40.36m 3.10m 178.7
2848rte 585 603.93m 7.55m 15.77 6.20m 52.60m 4.94m 122.3
2869pegase 612 1.21 221.46m 16.12 1.53 165.41m 96.05m 12.6
3120sp 768 1.36 270.73m 40.29 1.60 310.77m 113.29m 12.0
6470rte 1303 2.94 42.65m 88.96 68.06m 241.73m 27.58m 106.7
6495rte 1314 3.52 45.85m 89.29 91.92m 256.41m 27.12m 129.7
6515rte 1315 3.89 45.88m 89.75 98.39m 231.60m 27.83m 139.9
9241pegase 2010 5.71 1.31 212.93 13.47 1.36 660.18m 8.6

a) numbers here were obtained from our interpretation of the respective approach

Table 1 shows the run times of the solvers on the smaller pandapower instances. Prepro-
cessing significantly reduced the running times of all solvers in most cases, especially for the
larger instances. We found that our solver with reduction rules performs best in 17 out of
26 instances. In 3 further instances, our solver without reduction rules performed best and
the version with reduction rules came second. In particular, our solver performs best on all
instances of more than 300 vertices and all instances that took more than one millisecond
to solve for any solvers. Even in the six instances where our solver was not the fastest, the
other approaches could only compete when combined with the reduction rules.

For the larger powersimdata instances, neither MILP nor MFN were able to compute an
optimal solution without using our reduction rules. Thus, for these instances, we only compare
our solver with MFN+R and MILP+R. Table 2 shows the results. Observe that for Eastern, our
algorithm finished after 16 min while MFN did not finish after more than 6 h, with a lower
bound that was still more than 100 vertices below the optimal solution. Further observe that
the number of fort neighborhoods |F| is lower for MFN. This is to be expected as minimizing
their number is basically the main goal of MFN when finding new fort neighborhoods. However,
this clearly does not show any benefit in the resulting run time.
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Table 2 Comparison between our algorithm and MFN on the larger powersimdata US instances
preprocessed with our reduction rules. n is the number of vertices, |Z| is the number of non-
propagating vertices an |F| is the size of the arising hitting set instance. For the solvers, we report
the power dominating number γP (or the best found lower bound) as well as the number of fort
neighborhoods F and the run time.

Input Our Solver MFN+R MILP+R

Instance n |Z| γP |F| t (s) γP |F| t (s) γP t (s)

Texas 2000 376 411 838 0.98 411 659 17.73 411 1.81
Western 10024 4106 1825 2618 1.55 1825 2010 158.51 1825 2.16
Eastern 70047 30332 12895 27019 552.46 >12789 >15043 >10 h >12890 >10 h
USA 82071 34814 15131 30357 728.62 >14124 >16391 >10 h >15126 >10 h

Lower and Upper Bounds. We note that all three approaches find lower bounds while
solving the instances. In case of the implicit hitting set approach, each time we solve the
current Hitting Set instance, the solution size is a lower bound for a minimum power
dominating set. This yields lower bounds for our approach as well as for MFN. Moreover,
Gurobi also provides lower bounds for MILP. Additionally, Gurobi provides upper bounds.
To also get upper bounds for the implicit hitting set approaches, we use the following greedy
heuristic. Whenever we have computed a hitting set H of the current fort neighborhoods,
we greedily add vertices to H, preferably selecting vertices with many unobserved neighbors,
until we have a power dominating set. Afterwards, we make sure that the resulting solution
is minimal with respect to inclusion.

With this, we can observe how quickly the different algorithms converge towards the
optimal solution. Figure 4 illustrates the behavior of the bounds with respect to the time for
two of the four powersimdata instances. All three algorithms use our reduction rules (recall
that neither MILP nor MFN were able to solve these instances without them). We clearly
see that, with our approach, the gap between upper and lower bounds shrinks quickly, in
particular compared to MFN. This validates our assumption that adding many – potentially
larger – forts instead of a single minimum size one is highly beneficial. Recall that MFN can
increase its lower bound only by at most 1 after finding a new hitting set while we can
increase the lower by up to one for each undecided unhit vertex.

Interestingly, for MILP+R the gap between upper and lower bound closes much quicker
than for MFN+R. In particular, for the largest USA instance, there is almost no gap left after
little more than 100 s. Gurobi also found an optimal solution, but failed to prove the lower
bound on its size within the timeout of 10 h. Thus, in cases where a good approximation is
acceptable, MILP+R is not much worse than our approach.

Reduction Rules. To evaluate the effect of the reduction rules on the performance of our
algorithm, we let it run on the pandapower instances with different subsets of reduction rules.
Recall that we have several local reduction rules as well was the two non-local rules Dom and
NecN. In addition to using all or no reduction rules, we consider the following subsets. Only
local rules, only non-local rules, all local rules together with Dom, and all local rules together
with NecN.

Figure 5a shows the median running time for each instance in the different settings. In
most instances, the reductions could decrease the running time by an order of magnitude
or more. Moreover, we can see that in most cases all reduction rules are relevant, i.e., we
achieve the lowest run time when using all reduction rules and applying no reduction rules is
usually slower than applying any of the rules.
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Figure 4 Upper and lower bounds on the optimum value on the Texas and USA powersimdata
instances with preprocessing by our reduction rules. We give the bounds reported by our solver and
by MFN, both with added greedy upper bounds, as well as Gurobi for MILP. Lines and shaded areas
each start at the time of the first respective bound. Note that the x axis uses a logarithmic scale.

Figure 5b shows the speedup aggregated over all instances of using reduction rules
compared to using no reduction rules for our solver. We can see that the median speedup
is roughly one order of magnitude when applying all reduction rules. The most interesting
observation here is that local+NecN does not give any improvement compared to just local.
In fact, it is slightly slower. However, when combined with Dom, NecN gives a significant
improvement.

6 Conclusion

We showed that PDS is W [P ]-complete. This closes the gap in the study of its parameterized
complexity. Our reduction uses an auxiliary problem, IPDS, to simulate arbitrary monotone
circuits.

Our second contribution in this paper is a set of new reduction rules for PDS. The rules
yield partially solved instances of PDS-Extension where some vertices are pre-selected for
the power dominating set while other are forbidden from being included. Each rule shrinks
the instance by removing vertices or edges, or pre-selects or excludes vertices from being
selected. Our reduction rules can be used as a pre-processing step to significantly enhance the
performance of existing solvers. Our third and last contribution is a new algorithm for solving
PDS based on the implicit hitting set approach. The core of our algorithm is a new heuristic
to find missing sets for the implicit hitting set instances. We evaluate the effectiveness of our
reduction rules and the performance of our algorithm in experiments on a set of practical
power grid instances from the literature. For comparison, we run the same experiments with
two different approaches from the literature. The comparison shows clearly that our new
heuristic for finding missing fort neighborhoods outperforms the previous approach. Our
algorithm outperforms the reference solvers by more than one order of magnitude. Even
when combining the other approaches with our reduction rules, our algorithm beats them on
most instances. Furthermore, we can solve large instances of continental scale that could not
be solved before. We found that our algorithm finds lower bounds on the power dominating
number more quickly than Gurobi.

A major advantage of our fort heuristic is that it translates easily to other variants
of PDS, as long as it is easy to verify which vertices are observed by a partial solution.
Examples of such variant are the k-Power Dominating Set where propagation is possible
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Figure 5 Running times and speed-up of our algorithm with different subsets of the reduction
rules on the pandapower instances.

if a vertex has less than k unobserved neighbors or l-Round Power Dominating Set where
the number of propagation steps is limited. Other variants, such as Connected Power
Dominating Set are less straightforward. It might be interesting to see if connectivity can
be efficiently enforced in the implicit hitting set model.

Even though our algorithm shows a significant improvement over the state-of-the-art, there
is still some potential for further engineering. Currently, our implementation of the reduction
rules is optimized for a single execution as a pre-processing step. Further optimization might
make them more efficient, especially when only few vertices have changed between rule
applications. This might be useful in more accurate heuristics solutions on large instances or
for use in a branching algorithm. Further fast high quality heuristics can provide good upper
bounds on the solution size. Such a heuristic, combined with the lower bound provided by
our algorithm, might prove optimality earlier, further reducing the run time. Also, other
hitting set solvers beside Gurobi exist and our algorithm might benefit from using those
instead.

References

1 Ashkan Aazami. Domination in graphs with bounded propagation: algorithms, formulations
and hardness results. Journal of Combinatorial Optimization, 19:429–456, 2008. doi:10.1007/
s10878-008-9176-7.

2 T. L. Baldwin, L. Mili, M. B. Boisen, and R. Adapa. Power system observability with minimal
phasor measurement placement. IEEE Transactions on Power Systems, 8:707–715, 1993.
doi:10.1109/59.260810.

3 Daniel Binkele-Raible and Henning Fernau. An exact exponential time algorithm for power
dominating set. Algorithmica, 63(1):323–346, 2012. doi:10.1007/s00453-011-9533-2.

4 Thomas Bläsius and Max Göttlicher. An efficient algorithm for power dominating set, 2023.
arXiv:2306.09870.

https://doi.org/10.1007/s10878-008-9176-7
https://doi.org/10.1007/s10878-008-9176-7
https://doi.org/10.1109/59.260810
https://doi.org/10.1007/s00453-011-9533-2
https://arxiv.org/abs/2306.09870


T. Bläsius and M. Göttlicher 21:15

5 Chassidy Bozeman, Boris Brimkov, Craig Erickson, Daniela Ferrero, Mary Flagg, and Leslie
Hogben. Restricted power domination and zero forcing problems. Journal of Combinatorial
Optimization, 37:935–956, 2018. doi:10.1007/s10878-018-0330-6.

6 Boris Brimkov, Derek Mikesell, and Logan Smith. Connected power domination in
graphs. Journal of Combinatorial Optimization, 38(1):292–315, 2019. doi:10.1007/
s10878-019-00380-7.

7 Dennis J. Brueni. Minimal pmu placement for graph observability: a decomposition approach.
Master’s thesis, Virginia Polytechnic Institute and State University, 1993. doi:10919/45368.

8 Dennis J. Brueni and Lenwood S. Heath. The pmu placement problem. SIAM J. Discret.
Math., 19:744–761, 2005. doi:10.1137/S0895480103432556.

9 Jiong Guo, Rolf Niedermeier, and Daniel Raible. Improved algorithms and complexity
results for power domination in graphs. Algorithmica, 52(2):177–202, 2008. doi:10.1007/
s00453-007-9147-x.

10 Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023. URL: https://www.
gurobi.com.

11 Teresa W Haynes, Sandra M Hedetniemi, Stephen T Hedetniemi, and Michael A Henning. Dom-
ination in graphs applied to electric power networks. SIAM journal on discrete mathematics,
15(4):519–529, 2002. doi:10.1137/S0895480100375831.

12 Mikoláš Janota and Joao Marques-Silva. Solving qbf by clause selection. In International
Joint Conference on Artificial Intelligence, 2015.

13 Raka Jovanovic and Stefan Voss. The fixed set search applied to the power dominating set
problem. Expert Systems, 37(6):e12559, 2020. doi:10.1111/exsy.12559.

14 Joachim Kneis, Daniel Mölle, Stefan Richter, and Peter Rossmanith. Parameterized power
domination complexity. Information Processing Letters, 98(4):145–149, 2006. doi:10.1016/j.
ipl.2006.01.007.

15 Chung-Shou Liao and Der-Tsai Lee. Power domination in circular-arc graphs. Algorithmica,
65(2):443–466, 2013. doi:10.1007/s00453-011-9599-x.

16 L. Mili, Thomas L. Baldwin, and R. Adapa. Phasor measurement placement for voltage
stability analysis of power systems. 29th IEEE Conference on Decision and Control, pages
3033–3038 vol.6, 1990. doi:10.1109/CDC.1990.203341.

17 Paul Saikko, Jeremias Berg, and Matti Järvisalo. LMHS: A SAT-IP Hybrid MaxSAT Solver.
In International Conference on Theory and Applications of Satisfiability Testing, 2016. doi:
10.1007/978-3-319-40970-2_34.

18 Logan A. Smith and Illya V. Hicks. Optimal sensor placement in power grids: Power domination,
set covering, and the neighborhoods of zero forcing forts, 2020. arXiv:2006.03460.

19 L. Thurner, A. Scheidler, F. Schäfer, J. Menke, J. Dollichon, F. Meier, S. Meinecke, and
M. Braun. pandapower – An open-source python tool for convenient modeling, analysis, and
optimization of electric power systems. IEEE Transactions on Power Systems, 33(6):6510–6521,
November 2018. doi:10.1109/TPWRS.2018.2829021.

20 Guangjun Xu, Liying Kang, Erfang Shan, and Min Zhao. Power domination in block graphs.
Theoretical computer science, 359(1-3):299–305, 2006. doi:10.1016/j.tcs.2006.04.011.

21 Yixing Xu, Nathan P Myhrvold, Dhileep Sivam, Kaspar Mueller, Daniel Julius Olsen, Bainan
Xia, Daniel Livengood, Victoria Hunt, Benjamin Rouill’e d’Orfeuil, Daniel B. C. Muldrew,
Merrielle Ondreicka, and Megan Bettilyon. U.s. test system with high spatial and temporal
resolution for renewable integration studies. 2020 IEEE Power & Energy Society General
Meeting (PESGM), pages 1–5, 2020. doi:10.1109/PESGM41954.2020.9281850.

ESA 2023

https://doi.org/10.1007/s10878-018-0330-6
https://doi.org/10.1007/s10878-019-00380-7
https://doi.org/10.1007/s10878-019-00380-7
https://doi.org/10919/45368
https://doi.org/10.1137/S0895480103432556
https://doi.org/10.1007/s00453-007-9147-x
https://doi.org/10.1007/s00453-007-9147-x
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1137/S0895480100375831
https://doi.org/10.1111/exsy.12559
https://doi.org/10.1016/j.ipl.2006.01.007
https://doi.org/10.1016/j.ipl.2006.01.007
https://doi.org/10.1007/s00453-011-9599-x
https://doi.org/10.1109/CDC.1990.203341
https://doi.org/10.1007/978-3-319-40970-2_34
https://doi.org/10.1007/978-3-319-40970-2_34
https://arxiv.org/abs/2006.03460
https://doi.org/10.1109/TPWRS.2018.2829021
https://doi.org/10.1016/j.tcs.2006.04.011
https://doi.org/10.1109/PESGM41954.2020.9281850




Incremental (1 − ε)-Approximate Dynamic
Matching in O(poly(1/ε)) Update Time
Joakim Blikstad #

KTH Royal Institute of Technology, Stockholm, Sweden

Peter Kiss #

Max-Planck-Institut für Informatik, Saarbrücken, Germany
University of Warwick, Coventry, UK

Abstract
In the dynamic approximate maximum bipartite matching problem we are given bipartite graph
G undergoing updates and our goal is to maintain a matching of G which is large compared the
maximum matching size µ(G). We define a dynamic matching algorithm to be α (respectively
(α, β))-approximate if it maintains matching M such that at all times |M | ≥ µ(G) · α (respectively
|M | ≥ µ(G) · α − β).

We present the first deterministic (1 − ε)-approximate dynamic matching algorithm with
O(poly(ε−1)) amortized update time for graphs undergoing edge insertions. Previous solutions either
required super-constant [Gupta FSTTCS’14, Bhattacharya-Kiss-Saranurak SODA’23] or exponential
in 1/ε [Grandoni-Leonardi-Sankowski-Schwiegelshohn-Solomon SODA’19] update time. Our imple-
mentation is arguably simpler than the mentioned algorithms and its description is self contained.
Moreover, we show that if we allow for additive (1, ε · n)-approximation our algorithm seamlessly
extends to also handle vertex deletions, on top of edge insertions. This makes our algorithm one
of the few small update time algorithms for (1 − ε)-approximate dynamic matching allowing for
updates both increasing and decreasing the maximum matching size of G in a fully dynamic manner.

Our algorithm relies on the weighted variant of the celebrated Edge-Degree-Constrained-Subgraph
(EDCS) datastructure introduced by [Bernstein-Stein ICALP’15]. As far as we are aware we introduce
the first application of the weighted-EDCS for arbitrarily dense graphs. We also present a significantly
simplified proof for the approximation ratio of weighed-EDCS as a matching sparsifier compared to
[Bernstein-Stein], as well as simple descriptions of a fractional matching and fractional vertex cover
defined on top of the EDCS. Considering the wide range of applications EDCS has found in settings
such as streaming, sub-linear, stochastic and more we hope our techniques will be of independent
research interest outside of the dynamic setting.
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1 Introduction

Matchings are fundamental objects of combinatorical optimization with a wide range of
practical applications. The first polynomial time algorithm for finding a maximum matching
was published by Kuhn1 [39] in 1955 which ran in O(n4) time. A long line of papers have
focused on improving this polynomial complexity. Notably Edmonds and Karp [30] showed
the first O(n3) time algorithm for the problem which was later improved to O(n2.5) [36].
Mucha and Sankowski [40] showed maximum matching can be solved in matrix multiplication
time, that is in O(nω) where ω is currently around 2.38. In the very recent breakthrough result
of Chen-Kyng-Liu-Peng-ProbstGutenberg-Sachdeva [29], they showed an O(m1+o(1)) time
algorithm for the maximum flow problem (which generalizes bipartite matching) providing
the first near-linear time algorithm, essentially settling the problem in the sequential setting.

Dynamic Model. This paper focuses on the matching problem in the dynamic model where
it has received extensive research attention in recent years, see e.g [1, 2, 10,14,17,20,22,28,
41, 43, 45, 47] and many more. In this setting our task is to maintain a large matching as the
graph undergoes updates. We will refer to updates being fully dynamic if they concern both
insertions and deletions and partially dynamic if only one of the two is allowed. The objective
is to minimize the time spent maintaining the output after each update. Throughout the
paper we will always refer to update time in the amortized sense – averaged over the sequence
of updates. In [45] Sankowski has shown the fist improvement for the fully dynamic maximum
matching problem in terms of update time (O(n1.45)) compared to static recomputation
after each update. Unfortunately, based on well accepted hardness conjectures no dynamic
algorithm for the maximum matching problem may achieve update time sub-linear in n [35].
Most works focused on the relaxed approximate version of the problem where the goal is
to maintain a large matching in G with respect to the maximum matching size µ(G). We
will refer to matching algorithms as α-approximate (respectively (α, β)-approximate) if it
maintains matching M such that at all times |M | ≥ µ(G) ·α (respectively |M | ≥ µ(G) ·α−β).

Fully Dynamic Approximate Matching. The holy grail of dynamic algorithm design is to
achieve an update time of O(polylog(n)) or ideally even constant. For the fully dynamic
approximate matching problem, a long line of research [6, 9, 18, 19, 21, 26, 42, 46] has lead
to algorithms achieving ≈ 1

2 -approximation with O(polylog(n)) and constant update time.
No fully dynamic algorithm has been found achieving better than 1

2 -approximation in
O(polylog(n)) update time for the problem, and this challenge appears to be one of the
most celebrated problem within the dynamic matching literature. A set of interesting papers
focused on ≈ 2

3 -approximation in Õ(
√

n) update time [16,17,32,38] and other approximation-
ratio to polynomial-update-time trade-offs in the better-than- 1

2 -approximation regime were
achieved by [10, 11, 44]. Note that through periodic recomputation of the matching (roughly
every εµ(G) updates) we can achieve fully dynamic (1− ϵ)-approximation in Õ(n) update
time [34]. Very recently [12] has shown that (1 − ε)-approximation is possible in slightly
sublinear update time O(n/ log∗(n)O(1)) suggesting that there might exist efficient non-trivial
algorithms for the problem. Note that very recently [8, 25] have independently shown that if
our goal is to maintain the size of the maximum matching (and not the edge-set) then sub- 1

2
approximation is achievable in polylogarithmic update time.

1 However, this result is usually attributed to Kőnig and Egerváry.



J. Blikstad and P. Kiss 22:3

Partially Dynamic Matching Algorithms. For small approximation ratios, achieving poly-
logarithmic update time for fully dynamic matching seems far out of reach with current
techniques, or perhaps even impossible. Hence, a long line of papers have focused on main-
taining a (1 − ε)-approximate matching in partially dynamic graphs: either incremental
(edge insertions) or decremental (edge deletions). The first O(poly(log(n), ε−1)) algorithm
for maintaining a (1− ε)-approximate matching under edge insertions is due to Gupta [33],
with amortized update time O(log2(n)/ε4). Their algorithm models the bipartite match-
ing problem as a linear program, and uses the celebrated multiplicative-weights-updates
framework. Generalizing the result of [33] recently Bhattacharya-Kiss-Saranurak [23] has
shown that an arbitrarily close approximation to the solution of a linear program undergoing
updates either relaxing or restricting (but not both) its solution polytope can be maintained
in O(poly(log n, ε−1)) update time. Hence, the algorithm of [23] shows how to maintain a
(1− ε)-approximate matching under either decremental or incremental updates with a unified
approach. As both of these papers rely on static linear program solver sub-routines their
update times inherently carry log(n) factors, and it seems implausible that these techniques
can achieve constant update time independent of n.

The decremental algorithms of [15,37] focus on maintaining “evenly spread out” fractional
matchings so that they are robust against edge-deletions. These algorithms rely on either
maximum-flow computation or convex optimization sub-routines which similarly to LP-solvers
carry log(n)-factors into the update time.

The first constant time2 partially dynamic matching algorithm is due to [31] who solve
(1 − ε)-approximate matching in incremental graphs with an update time of (1/ε)O(1/ε).
Their solution relies on augmenting path elimination, a technique used commonly for the
matching problem in the static setting. However, enumerating augmenting paths seems to
inherently carry an exponential dependency on 1/ε due to the number of possible such paths
present in the graph.

As far as we are aware partially dynamic (1− ϵ)-approximate matching algorithms with
update time independent of n and faster than some exponential in ϵ are all restricted to a
relaxed version of the problem where the graph may undergo vertex insertions/deletions.
Such an algorithm can simply be obtained through straightforward periodic rebuilds (if we
allow for additive ϵ ·n slack) or as shown by Zheng-Henzinger [48]3. Hence, it we can observe
the following apparent gap in the literature of partially dynamic matching algorithms:

▶ Question 1. Can we maintain a (1−ε)-approximate maximum matching of a partially
dynamic bipartite graph in O(poly(ε−1)) update time?

Based on the current landscape of the dynamic algorithms literature, achieving (1− ε)-
approximation under fully dynamic updates in small update times seems to be far out of reach.
Contrary to the extensive research effort, no fully dynamic algorithm with poly(log(n), ε−1)
has been found for maintaining matchings with better than 1

2 -approximation. This apparent
difficulty proposes the research of dynamic models somewhere between fully and partially
dynamic updates. The previously mentioned paper by Zheng-Henzinger [48] implements a

2 That is constant-time whenever ε is constant, i.e. the update time should be independent of n.
3 A very recent paper of Zheng-Henzinger [48] has initially claimed an algorithm which can maintain a

(1 − ϵ)-approximate matching in O(1/ε) update time under edge deletions. However, the authors have
found a mistake in their paper and claim that their algorithm only works under specific vertex updates
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(1− ϵ)-approximate algorithm with O(1/ε)-update time which can support vertex insertions
and deletions on separate sides of the bipartition. The existence of this new result proposes
the following natural question:

▶ Question 2. Under what kind of non-partially dynamic updates can we maintain a
(1− ε)-approximate maximum matching of a bipartite graph?

1.1 Our Contribution
In this paper we provide a positive answer to Question 1 and make progress towards
understanding Question 2. Our main result is the first O(poly(1/ε)) update time (1− ε)-
approximate dynamic matching algorithm for bipartite graphs undergoing edge insertions:

▶ Theorem 1. There exists a deterministic dynamic algorithm which for arbitrary small
constant ε > 0 maintains a (1 − ε)-approximate maximum matching of a bipartite graph
undergoing edge insertions in total update time O(n/ε6 + m/ε5).

Previous algorithms for (1−ε) approximate dynamic matching under edge updates required
update times which were either super-constant [23, 33] or had an exponential dependency
on ε−1 [31]. Furthermore, our algorithm is arguably simpler then previous implementations
and it is self contained (except for the static computation of (1 − ε)-approximate maximum
matchings) where as most dynamic matching algorithms either rely on heavy machinery from
previous papers or use black-box tools like multiplicative weight updates or flow-subroutines.

We further show that if we allow for (additive) (1, ε · n)-approximation4 our algorithm
seamlessly extends to a wider range of updates:

▶ Theorem 2. There exists a deterministic dynamic algorithm which for arbitrary small
constant ε > 0 maintains a (1, ϵ · n)-approximate maximum matching of a bipartite graph
undergoing edge insertions and vertex deletions in total update time of O(n/ε8 + m/ε5).

In contrast to the similar update time result of [48] which allows for edge deletions and
vertex insertions on one side of the bipartition our algorithm allows from arbitrary vertex
deletions. Our algorithm maintains a (1− ε)-approximate maximum matching of the graph
throughout updates which can both increase and decrease the maximum matching size of
the graph. Hence, we hope our techniques provide useful insight towards fully dynamizing
(1− ε)-approximate algorithms for the matching problem.

Our algorithm relies on the weighted variant of the celebrated Edge-Degree-Constrained-
Subgraph (EDCS) matching sparsifier. The unweighted EDCS (first introduced by Bernstein-
Stein [16]) has found applications in a number of different computational settings: streaming
[3, 4, 13], stochastic, one way communication, fault tolerant [5], sub-linear [8, 12,24,25] and
dynamic [8,16,17,32,38]. On the other hand the weighted EDCS variant which provides a
tighter approximation has only found applications in small arboricity graphs [16]. Hence, we
initiate the study of the weighted EDCS in dense graphs.

Furthermore, we show a significantly simplified proof for the approximation ratio of the
weighted EDCS datastructure with respect to the maximum matching size. In our proof, we
identify simple and explicit descriptions of a fractional matching and fractional vertex covers

4 Recall that this means that we maintain a matching of size at least µ − εn, as opposed to µ − εµ, where
µ denotes the size of the maximum matching.
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defined on top of the weighted EDCS, which might be of independent interest. Moreover, we
show that the dependence on the slack parameter on the maximum degree of the weighted
EDCS is exactly quadratic. This in sharp contrast to the unweighted EDCS where the same
relationship have been proven to be linear [7]. While within the dynamic matching algorithm
literature papers don’t tend to focus on exact ϵ complexities but rather n dependence, in
models such as semi-streaming and distributed the ϵ dependency usually gains more focus.
Our hard example (most likely) rules out applications of weighted EDCS in these models
for obtaining sub ϵ−2 round/pass complexity algorithms. We hope that these observations
will be of independent research interest due to the wide-spread popularity of the EDCS
datastructure for solving matching problems.

1.2 Our Techniques
Assume H is a multi-graph defined on the vertex set of G and let degH(v) stand for the
degree of vertex v in H. We define the degree of an edge to be the sum of the degrees of its
endpoints.5

▶ Definition 3 (Weighted EDCS [16]). Given a graph G = (V, E), a multiset H is called
a weighted EDCS with parameter β ifa:

(i) degH(u) + degH(v) ≤ β for all edges (u, v) ∈ H.
(ii) degH(u) + degH(v) ≥ β − 1 for all edges (u, v) ∈ E.

If H is not a weighted EDCS, we call an edge e ∈ H overfull if it violates (i), and an
edge e ∈ E underfull if it violates (ii).
a Some authors use an additional parameter β− < β which replaces the “β − 1” in the degree-

constraint. For our purposes, we will always have β− = β − 1.

If β = Ω(ε−2) and H is a β-WEDCS of G then µ(H) ≥ µ(G)·(1−ε) ( [16], Theorem 13). In
order to derive our incremental result we show that a β-WEDCS can be efficiently maintained
greedily under edge insertions. In turn we can efficiently maintain a (1 − ϵ)-approximate
matching within the support of H through periodic recomputation.

Define a valid update of H to be one of the following: (i) and edge e ∈ H which is overfull
with respect to H gets deleted from H; and (ii) a copy of an edge e ∈ E which is underfull
with respect to H is added to H. In Lemma 7 (slightly improving on the similar lemma’s
of [5, 13,16]) we show that if H is initialized as the empty graph and only undergoes valid
updates, then it there are at most O(µ(G) · β2) many updates.

Fix some β = Θ(ε−2). Assume G is initially empty and initialize H to be an empty edge
set (note that by definition initially H is a β-WEDCS of G). Assume edge e is inserted
into G. If at this point e is not underfull with respect to H there is nothing to be done as
H remained a valid WEDCS of G. If e is underfull with respect to H we add copies of it
to H until it is not. This process of adding e to H has increased the edge degree of edges
neighbouring e in H and some of them might have became overfull. To counteract this we
iterate through the neighbours of e in an arbitrary order and if we find an overfull edge e′

we remove it from H. This edge removal decreases the edge degrees in the neighbourhood
of e′. To counteract this we recurse and look for underfull edges in the neighbourhood of

5 Note that we are sticking to the notation weighted-EDCS instead of multi-EDCS to be in line with the
naming convention of [16] which defined H to be a weighted graph with integer edge weights.
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e′. If such an edge e′′ is found we add copies of it to H until e′′ is not underfull and repeat
the same steps as if e′′ was just inserted into G. This defines a natural recursive process for
restoring the WEDCS properties after each edge insertion in a local and greedy way.

Whenever we have to explore the neighbourhood of an edge in O(∆) time (where ∆ is the
max-degree) to either check for underfull or overfull edges we do so because H underwent a
valid update. By Lemma 7 this may only happen at most O(µ(G) · β2) times. Hence, naively
the total work spent greedily fixing the WEDCS properties is O(µ(G) ·∆ · β2). For some
graphs this value might be significantly larger then m. In order to improve the update time
to Oβ(m) we assign a counter cv to each vertex v measuring the number of valid updates of
H the neighbourhood of v has underwent. Once cv grows to Ω(β2 · ε−1) we mark v dirty and
ignore further edges inserted in the neighbourhood of v. By marking a single vertex dirty and
ignoring some edges incident on it we may loose out only on a single edge of any maximum
matching. However, whenever we mark a vertex dirty we can charge Ω(β2 ·ε−1) valid updates
of H to that vertex. As there may be at most O(µ(G) · β2) valid updates of H in total we
may only mark O(µ(G) · ε) vertices dirty hence we will only ignore an O(ϵ)-fraction of any
maximum matching within the graph through ignoring edges incident on dirty vertices. As
we may scan the neighbourhood of vertex v at most O(β2 · ε−1) = poly(ε−1) times until v

is marked dirty we ensure that each edge is explored poly(ε−1) times guaranteeing a total
running time of O(m · poly(ε−1)). Full details can be found in Section 3.

Towards Full Dynamization. The algorithm almost seamlessly adopts to vertex deletions if
we allow for (1, ε · n)-approximation6. Whenever a vertex gets deleted from the graph our
WEDCS H might be locally affected. This means that over the full run of the algorithm, H

may undergo further valid updates then the O(µ(G) · β2) bound provided by Lemma 7. A
potential function based argument allows us to claim that each vertex deletion may increase
the total number valid updates H may undergo by O(β2). As each vertex may be deleted at
most once this means that the total number of valid updates we might make to restore H is
O(n · β2), each update requiring O(∆) time if naively implemented. By marking vertices as
dirty as before we can guarantee amortized O(poly(1/ε)) update time. However, now we
must mark up to ≈ ε · n vertices as dirty (as opposed to ≈ ε · µ(G) like before), which means
we may miss out on ε · n edges of the maximum matching.

2 Preliminaries

Matching Notation. Let NE(v) stand for the edges neighbouring vertex v in E. A fractional
matching f of a graph G is an assignment of the edges of G to values in the range [0, 1] such
that for all vertices v ∈ V it holds that

∑
e∈NE(v) fe ≤ 1. The size of a fractional matching is

simply the sum of the fractional values over its edges. That is a maximum fractional matching
is the solution to the linear program max{

∑
e∈E fe :

∑
e∈NE(v) fe ≤ 1 for all v ∈ V , f ≥ 0}.

A solution x to the dual of this program min{
∑

v∈V xv : xu +xv ≥ 1 for all (u, v) ∈ E, x ≥ 0}
is a fractional vertex cover.

6 Readers may reasonable argue that the additive slack is not necessary as a number of vertex-sparsification
techniques exist in literature allowing us to improve the approximation to purely multiplicative slack in
the dynamic setting. Unfortunately, these techniques don’t appear to be robust against vertex-wise
updates.
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Approximation with respect to a fractional matching is defined simmilarly as with respect
to integral matchings. For a graph G = (V, E) we use µ(G) to denote the size of the
maximum matching in G. Likewise, we use µ∗(G) to denote the size of the maximum
fractional matching. It is well-known that µ(G) ≤ µ∗(G) ≤ 3

2 µ(G) for any graph, and that
µ∗(G) = µ(G) in bipartite graphs.

▶ Theorem 4 (Hopcroft-Karp [36]). There exists a deterministic static algorithm which finds
a (1− ε)-approximate maximum matching of a graph G on m edges in O(m/ε) time.

3 Incremental Approximate Matching

We start by showing our incremental fractional matching algorithm, and then show how to
extend it (for bipartite graphs) to also maintain an integral matching.

3.1 Weighted EDCS & Fractional Matchings

In this section we show our algorithm to (almost7) maintain a weighted EDCS H in an
incremental graph. It is well-known that such an H will be a (1− ε)-matching sparsifier on
bipartite graphs, that is a “sparse” subgraph with µ(H) ≥ (1− ε)µ(G) [16].

As we show later in Section 5.1 (Theorem 13), we even known something stronger: there
is an explicit fractional matching in H of size at least (1− ε)µ∗(G), defined as

f(u,v) = min
(

1
degH(v) ,

1
degH(u)

)
on each (u, v) ∈ H. (1)

Note that [17] similarly (implicitly) defines a large fractional matching on the support of a
weighted EDCS, however our construction and analysis are arguably simpler. This fractional
matching is also valid for general (non-bipartite) graphs. Hence our incremental algorithm
will also maintain this explicit (1− ε)-approximate fractional matching (even in non-bipartite
graphs). Formally we prove the following theorem.

▶ Theorem 5. For any ε ∈ (0, 1), there is an algorithm (Algorithm 1) that maintains a
(1− ε)-approximate maximum fractional matching in an incremental graph in total update
time O(n/ε6 + m/ε5). Additionally, this fractional matching is always supported on a set of
edges H of size |H| ≤ Θ(µ(G)/ε2) and maximum degree O(1/ε2).

First we need two standard facts about weighted EDCS. For completeness, we prove these
in Section 7. Lemma 7 has only been shown before for unweighted EDCS [5,13, 16] and not
weighted (but the arguments are very similar).

▶ Lemma 6. In a β-WEDCS H, the maximum degree is at most β and |H| ≤ βµ∗(G).

▶ Lemma 7. If a multiset of edges H is only ever changed by removing overfull edges and
adding underfull edges, then there are at most β2µ∗(G) such insertions/deletions to H.

7 As we will see later in this section, our sparsifier H will be a weighted EDCS for G \ R, where R is a
subgraph of G with very small maximum matching size µ(R) = O(εµ(G)).
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Overview. Our algorithm (see Algorithm 1) will maintain a weighted EDCS H with
β = Θ(1/ε2). We also maintain the (1 − ε)-approximate fractional matching f as in
Equation (1) and Theorem 13.

When we get an edge-insertions (u, v), we need to reestablish the property that H is an
EDCS. If (u, v) is underfull (degH(u) + degH(v) < β − 1), we add it (maybe multiple times)
to H. This means that degH(u) (similarly degH(v)) increases, which can potentially make
some incident edge (u, w) ∈ H overfull (degH(u) + degH(w) > β), so we must remove one
such edge. This might in turn lead to some edge (w, z) ∈ E being underfull (as now degH(w)
decreased), so we add this edge to H . This process continues, so both from u and v we need
to search for alternating paths of underfull and overfull edges (as is standard in EDCS-based
algorithms). In total, Lemma 7 says there are O(n/ε4) updates to H over the full run of the
algorithm.

We note that searching for an overfull edge is cheap: the maximum degree in H is just
O(β) (Lemma 6), so we can afford to, in Θ(1/ε2) time, check all incident edges. However,
searching for underfull edges is more expensive: this time we cannot afford to just go through
all neighboring edges in E, as we no longer have a bound on the maximum degree.

To overcome this we use an amortization trick which allows us to ignore a vertex if we
touched it too many times. There are only β2µ∗(G) updates to H in total (Lemma 7), so
there will only be εµ∗(G) many vertices incident to more than 2β2/ε of these updates. Any
edges incident to these “update-heavy” vertices we may ignore, as this may only decrease
the maximum matching size by an ε fraction. We thus only need to check each edge a total
of O(1/ε5) times over the run of the algorithm, except when it is in H already. Note that H

is no longer a weighted EDCS of G = (V, E), but rather of G′ = (V, (E \R) ∪H) where R is
this set of edges we ignored (with µ∗(R) ≤ εµ∗(G)).

Algorithm 1 Incremental Weighted EDCS & Frasctional Matching.

// Initially E = H = ∅ and degH(v) = visits[v] = 0 for all v ∈ V .
// When an edge insertion e appears, add it to E and call FixEdge(e).

1 function FixEdge(e = (u, v))
2 if degH(u) + degH(v) > β and (u, v) ∈ H then // overfull
3 Remove (one copy of) the edge (u, v) from H

4 if degH(u) + degH(v) < β − 1 then // underfull
5 Add (one copy of) the edge (u, v) to H

6 if the edge was added or removed then
7 Update degH(u), degH(v), and the fractional matching accordingly
8 FixVertex(u), FixVertex(v)

9 function FixVertex(v)
10 visits[v]← visits[v] + 1
11 if visits[v] < 2β2/ε then
12 for edge e ∈ E incident to v do
13 FixEdge(e)

14 else
15 for edge e ∈ H incident to v do
16 FixEdge(e)
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Running Time. We analyse the total update time spent in different parts of our algorithm.
We first note that FixEdge runs in constant time whenever it does not update H. It is
called once for each edge-insertion (total O(m) times), and also some number of times
from FixVertex.
Now consider the case when FixEdge does update H (which happens at most β2µ∗(G)
times per Lemma 7). Now the algorithm uses O(β) time for the update of the fractional
matching and insertion/removal in H, in addition to exactly two calls to FixVertex.
Except for these calls to FixVertex, over the run of the algorithm we hence spend a total
of O(µ(G)β3) = O(n/ε6) time.
By the previous point, we will call FixVertex at most 2β2µ∗(G) times. In each call,
we either loop through all incident edges in H or E. If we loop through H, we visit
β many edges (by Lemma 6). Either these FixEdge calls take constant time, or they
are already accounted for in the previous point. In total, this thus accounts for another
O(µ(G)β3) = O(n/ε6) running time.
We account for the case when FixVertex loops through all incident edges in E differently.
Consider how often a specific edge e appears in the for-loop at line 13. Each endpoint
vertex of e will reach this line at most O(β2/ε) times. Hence, in total for all edges, line 13
is run at most O(mβ2/ε) = O(m/ε5) times.

Approximation Guarantee. We now argue the approximation ratio. We will show that
the fractional matching supported on H is a (1− 2ε)-approximation of maximum fractional
matching in G. If one want a (1− ε′)-approximation, then one can run the algorithm in the
same asymptotic update time setting ε = ε′/2, and changing β accordingly.

Define RV to be the set of “dirty”/“update-heavy” vertices: that is vertices v for which
FixVertex(v) has been called at least 2β2/ε many times (i.e. visits[v] ≥ 2β2/ε). By a
counting argument |RV | ≤ 2β2µ∗(G)/(2β2/ε) = εµ∗(G), since by Lemma 7 in total there are
only β2µ∗(G) many updates to H , each issuing exactly two calls to FixVertex. If RE is the
set of edges incident to RV , then µ∗(RE) ≤ |RV | ≤ εµ∗(G) since RV is a vertex cover of RE .

Define G′ = (V, E \ (RE \H)). By the above, µ∗(G′) ≥ (1− ε)µ∗(G). We will finish the
proof by arguing that H is a weighted EDCS of G′, and thus that our fractional matching
is of value at least (1 − ε)µ∗(G′) ≥ (1 − ε)2µ∗(G) ≥ (1 − 2ε)µ∗(G). Whenever an edge is
added or removed to H, we call FixVertex on its endpoints, and no other degrees degH

have changes. Every time FixVertex(v) is called for v ̸∈ RV , we make sure that all edges
e ∈ E incident to it satisfy the definition of an EDCS, and when FixVertex(v) is called
for some v ∈ Rv, we check the edges incident to H. We note that when a vertex becomes
“update-heavy” (added to Rv), then we do not immediately remove all incident edges from H

(as then we no longer have the same bound on the number of updates to H since Lemma 7
no longer applies).

▶ Remark 8. We note that our algorithm runs in time O(nβ3 + mβ2/ε), and a valid question
is whether setting β = Θ(1/ε2) is actually necessary? Recently it was shown that for
unweighted EDCS β = Θ(1/ε) is enough [7]. However, for weighted EDCS the ε2 dependency
is indeed necessary, as we show by an example where this is asymptotically tight in Section 5.2
(Theorem 16).

3.2 Integral Matchings in Bipartite Graphs
In this section we argue how to extend our fractional matching algorithm (Theorem 5) to
maintain an integral matching instead (for bipartite graphs), in the same asymptotic update
time. We cannot use known dynamic rounding techniques [23, 47], since all these incur
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polylog(n) factors or require randomization, and we are aiming for update time independent
of n. In fact, our technique is simple and combinatorial; and only relies on the standard
Hopcroft-Karp algorithm for finding a (1− ε)-approximate matching in the static setting [36].

▶ Theorem 1. There exists a deterministic dynamic algorithm which for arbitrary small
constant ε > 0 maintains a (1 − ε)-approximate maximum matching of a bipartite graph
undergoing edge insertions in total update time O(n/ε6 + m/ε5).

▶ Remark 9. Before proving the above theorem, we briefly explain how to achieve a slightly
less efficient version (amortized O(1/ε8) update time) by using the fully dynamic (1 − ε)-
approximate matching algorithm of Gupta-Peng [34] as a black box. The idea is to run the
fully dynamic algorithm on our sparsifier – the weighted EDCS H. This way we maintain a
matching M of size |M | ≥ (1− ε)µ(H) ≥ (1− ε)2µ(G) ≥ (1− 2ε)µ(G).

Gupta-Peng [34] state that their algorithm runs in O(
√

m/ε2) time per update. However,
as previously pointed out by e.g. [16, Lemma 1], it is in fact more efficient when the max-
degree ∆ is low, in which case the update time is only O(∆/ε2). Since H always has
max-degree β = Θ(1/ε2), we can maintain the integral matching M in O(1/ε4) time per
update to H . Over the run of the algorithm, we only perform O(µ(G)/ε4) updates to H (see
Lemma 7), hence the total additional update time spent maintaining the integral matching
will be O(n/ε8).

Proof of Theorem 1. To prove Theorem 1, we need a slightly more refined analysis than
the one above. We still run our incremental algorithm (Algorithm 1 and Theorem 5) to
maintain a weighted EDCS H together with a fractional matching supported on H . Similarly
to above, we additionally maintain an (1− ε)-approximate (integral) matching M of H.

The main idea of the fully dynamic algorithm of Gupta-Peng [34] is to lazily recompute
(in O(|H|/ε) time via Hoproft-Karp Theorem 4) M every ≈ εµ updates to H (indeed, during
this few updates, the matching size cannot change its value by more than εµ). There are
two observations which helps us to do better:

(i) The graph G (but not the sparsifier H) is incremental, so µ(G) can only grow.
(ii) We know a good estimate of µ(G), namely the size of our fractional matching. Denote

by µ̃ the value of the maintained fractional matching, so that (1− ε)µ(G) ≤ µ̃ ≤ µ(G).
The above two observations mean that we only need to recompute the matching M whenever
µ(G) actually have increased significantly (namely by a (1 + Θ(ε))-factor), and not just every
εµ updates.

Formally, whenever |M | ≥ (1−ε)2µ̃ we know that M is still a (1−3ε)-approximation since
then |M | ≥ (1− ε)2µ̃ ≥ (1− ε)3µ(G) ≥ (1− 3ε)µ(G). Conversely, whenever |M | < (1− ε)2µ̃,
we recompute M in time O(|H|/ε) (Theorem 4) so that it is a (1− ε)-approximation of the
maximum matching in H (and thus also a (1− 2ε)-approximation of the maximum matching
in G).

Let us now bound the total time spent recomputing M . Let M1, M2, . . . , Mt be the
different approximate matchings we compute during the run of the algorithm. We first note
that at the time when we compute Mi+1:

|Mi| ≤ (1− ε)2µ̃ ≤ (1− ε) ((1− ε)µ(H)) ≤ (1− ε)|Mi+1| (2)

This in turn means that |Mi| ≤ (1− ε)t−i n (since |Mt| ≤ n), and hence that
∑t

i=1 |Mi| ≤
n

∑∞
i=0(1− ε)i ≤ n/ε, by a geometric sum.

Finally we note that we spend O(|Mi|/ε3) time in order to compute Mi. Indeed, when
we compute Mi, we did so in O(|H|/ε) time, and |H| = O(µ(G)/ε2) by Lemma 6. This
means that in total, over the run of the algorithm, we spend O(

∑
|Mi|/ε3) = O(n/ε4) time
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maintaining the integral matchings Mi. This is in addition to the time spent maintaining the
weighted EDCS H and the fractional matching (see Theorem 5). This concludes the proof of
Theorem 1. ◀

4 Vertex Deletions

In this section we will observe that our algorithm can also handle vertex deletions (simul-
taneously to handling edge insertions) in similar total update time. However, this comes
with one caveat: we instead get additive approximation error proportional to εn (that is we
maintain a matching of size µ∗(G)− εn, instead of µ∗(G)− εµ∗(G) as before).

▶ Theorem 10. For any ε ∈ (0, 1), there is an algorithm that maintains a fractional matching
of size at least µ∗(G)− εn in an graph G undergoing edge insertions and vertex deletions.
The total update time is O(n/ε6 + m/ε5).

Proof. The algorithm (Algorithm 1) remains the same as in Section 3.1. When a vertex is
deleted, we simply remove all it’s incident edges from E and H, and call FixVertex on all
neighboring vertices (in H) who now changed their degree. The only thing which changes
in the analysis is the β2µ∗(G)-bound on the number of updates to H (Lemma 7), which
no longer applies. However, we can still get a weaker version of Lemma 7 with a β2n total
update bound instead:

▶ Lemma 11. If a multiset of edges H is only ever changed by (i) removing overfull edges,
(ii) adding underfull edges, and (iii) removing all edges incident to a vertex when no edges
are underfull or overfull, then there are at most 3β2n insertions/deletions to H.

Given Lemma 11 (which we prove in Section 7), we see that the running time analysis of
Algorithm 1 can remain exactly the same! In the approximation guarantee analysis, we now
have more “update-heavy” vertices |RV | ≤ 6β2n/(2β2/ε) = 3εn, which is why we now can
lose up to O(nε) edges from the matching. Otherwise, the approximation guarantee analysis
remains the same, and so does the rest of the analysis of the algorithm. ◀

Rounding in Bipartite Graphs. Similar as in Section 3.2, we can round the fractional
matching to an integral one in bipartite graphs, also while supporting edge-insertions and
vertex-deletions simultaneously.

▶ Theorem 2. There exists a deterministic dynamic algorithm which for arbitrary small
constant ε > 0 maintains a (1, ϵ · n)-approximate maximum matching of a bipartite graph
undergoing edge insertions and vertex deletions in total update time of O(n/ε8 + m/ε5).

Proof. Unlike in Section 3.2, we cannot argue that µ(G) is increasing when we have vertex
deletions. So instead we resort to the Gupta-Peng [34] framework discussed in Remark 9
(together with Lemma 11), which has the additional cost of O(n/ε8) total update time to
maintain an approximate integral matching on our sparsifier H. ◀

▶ Remark 12. We note that normal vertex-sparsification techniques (such as the one shown
in [38] against oblivious adversaries) do not apply here in order to assume n = Θ̃(µ(G)) so
that the additive error becomes multiplicative again. This is because vertex deletions in the
original graph might become edge deletions in the vertex-sparsified graph. We also note
that one can achieve similar guarantees of supporting vertex deletions with additive εn slack
using any edge-incremental algorithm (also for non-bipartite graphs) as a black-box: see
Section 6 for a discussion on how this can be done. The general approach in Section 6 will
give worse dependency on 1/ε (for dense graphs), compared to Theorems 2 and 10 above.
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5 Tight Bounds of the of Approximation Ratio of a Weighted EDCS

5.1 Explicit Fractional Matching
In this section, we give explicit formulas only based on the degrees in H, for a (1 − ε)-
approximate fractional matching. We prove this by also providing an explicit approximate
fractional vertex cover, and showing that these satisfy approximate complimentary slackness.
This also significantly simplifies the previous proof [16] that H is (1− ε)-matching sparsifier
in bipartite graphs.

▶ Theorem 13. Suppose H is a weighted EDCS of a graph G, with parameter β ≥ 25/ε2.
Let f(u,v) = min{ 1

degH (v) , 1
degH (u)} for each8 (u, v) ∈ H. Then f is a (1 − ϵ)-approximate

fractional matching of G.

Define rv := degH(v)− β−1
2 for a vertex v ∈ H. We define the fractional matching f as in

the statement of the theorem, together with the fractional vertex cover x:

f(u,v) = min
(

1
degH (u) , 1

degH (v)

)
for edge (u, v) ∈ H (3)

xv =
{

min(1, 1
2 + r2

v

β ) if rv ≥ 0
max(0, 1

2 −
r2

v

β ) if rv < 0
(4)

It is now relatively straightforward (albeit a bit calculation-heavy) to argue that f and x are
indeed feasible solutions and that they satisfy approximate complimentary slackness.

▷ Claim 14. Our f is a fractional matching and our x is a fractional vertex cover of G.

Proof. Our f is feasible since no vertex v is overloaded by the matching: at most degH(v)
many incident edges to v contribute at most 1/ degH(v) each.

To argue that x is feasible, consider some edge (u, v) ∈ E. Without loss of generality we
may assume that degH(v) ≥ degH(u) and degH(v) ≥ β−1

2 , i.e. rv ≥ ru and rv ≥ 0 (since
degH(u)+degH(v) ≥ β−1 as H is a weighted EDCS). If r2

v ≥ β/2, xv = 1 so (u, v) is covered.
In the case r2

v < β/2, we instead have xv = 1
2 + r2

v

β . It is always the case that xu ≥ 1
2 −

r2
u

β .
Additionally we note that ru + rv ≥ 0 (so r2

u ≤ r2
v) since degH(u) + degH(v) ≥ β − 1, so we

conclude that xu + xv ≥ 1, and hence that (u, v) is covered. ◁

▷ Claim 15. The fractional matching f and fractional vertex cover x satisfy
(1− 3√

β
, 1 + 2√

β
+ 2

β )-approximate complementary slackness9; in particular:

(i) Whenever f(u,v) > 0, then xu + xv ≤ 1 + 2√
β

+ 1
β .

(ii) Whenever xv > 0, then
∑

u:(u,v)∈H f(u,v) ≥ 1− 4√
β

.

Proof. We verify (i) and (ii).
(i) Suppose f(u,v) > 0, then (u, v) ∈ H, so degH(u) + degH(v) ∈ {β − 1, β}. This

means that 0 ≤ rv + ru ≤ 1. If both rv and ru are non-negative, we have that
xu + xv ≤ 2( 1

2 + 12

β ) ≤ 1 + 2
β . Now, without loss of generality ru < 0 ≤ rv. In case

8 We note that edges e appearing multiple time in H all contribute towards fe: if e appears ϕe times in
H, the value of fe is naturally scaled by ϕe.

9 For completeness, we define the approximate complimentary slackness conditions in Section 7 and prove
them in Lemma 20.
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r2
u ≥ β/2, we know xu = 0 so xu + xv ≤ 1. In the case when r2

u < β/2, we know
xu = 1

2 + r2
u

β and xv ≤ 1
2 + r2

v

β . Since ru + rv ≤ 1, we known that rv ≤ |ru| + 1.
Concluding:

xv + xu ≤ 1 + (|ru|+ 1)2 − r2
u

β
= 1 + 2|ru|+ 1

β
< 1 + 2

√
β + 1
β

= 1 + 2√
β

+ 1
β

.

(ii) Suppose xv > 0. Hence rv > −
√

β/2 (else xv = 0), that is degH(v) > β−1
2 −

√
β/2.

For any incident edge (u, v) ∈ H , we must have degH(v) + degH(u) ≤ β, so degH(u) ≤
β−1

2 + (1 +
√

β/2). Now, we see that we assign weight at least 1/( β−1
2 + (1 +

√
β/2))

to the edge (u, v) in f . Since this holds for all the degH(v) > β−1
2 −

√
β/2 incident

edges we know that v will in total receive, from the fractional matching f , at least:

∑
u:(u,v)∈H

f(u,v) ≥
β−1

2 −
√

β/2
β−1

2 + 1 +
√

β/2
= 1−

√
8β + 2

β +
√

2β + 1
≥ 1− 3√

β
. ◀

Proof of Theorem 13. By the above claims and approximate complimentary slackness (see
Lemma 20 in Section 7) we know that (1− 3√

β
)|x| ≤ (1 + 2√

β
+ 2

β )|f |. Since (1− 3√
β

)/(1 +
2√
β

+ 2
β ) > 1 − 5√

β
, we get that |f | ≥ (1 − 5√

β
)|x| ≥ (1 − ε)|x| ≥ (1 − ε)µ∗(G) whenever

β ≥ 25/ε2. ◀

5.2 Lower Bound
In this section we show that Theorem 13 is tight up to a constant, i.e. that one must set
β = Θ(1/ε2) in order to guarantee that a weighted EDCS preserves a (1− ε)-fraction of the
matching. This might be a bit surprising, considering that for the unweighted EDCS, it is
known that β = Θ(1/ε) suffices (to preserve a ( 2

3 − ε)-approximation to the matching [7]).

▶ Theorem 16. For any β ≥ 2, there exists a (bipartite) graph G together with a weighted
EDCS H for which µ(H) = (1−Θ(1/

√
β))µ(G).

We show our construction in Figure 1, and also describe it here formally in words. For
simplicity, we will assume that β = 2γ2 for some integer γ (but it is not difficult to adapt the
proof for when β is not twice a square). In our construction, each edge appears at most once
in H, and all edges e ∈ H have degH(e) = β; all edges e ∈ E \H have degH(e) = β − 1.

Define the gadget Gi = (Si, Li, Ei) to be a complete bipartite graph in which |Si| = γ2 + i

and |Li| = γ2 − i (S is for vertices with small degree, and L for vertices with large degree).
The subgraph H will consist of many of these gadgets Gi, so we start by noting a few
properties about them. Firstly, vertices in Li have degree β

2 + i while those in Si have degree
β
2 − i. This means that any edge in (u, v) ∈ Ei has degree exactly degGi

(u) + degGi
(v) = β.

We also note that the maximum matching inside Gi is of size |Li| = γ2 − i.

Subgraph H. We begin by describing how the weighted EDCS H looks like, and later we
will define what additional edges are also in the full graph G. The subgraph H will exactly
consist of:

One copy of G0.
Two copies each of G1, G2, . . . , Gγ−1. Call the copies G

(1)
i and G

(2)
i .

2γ copies of Gγ . Call the copies G
(1,j)
γ and G

(2,j)
γ for j = 1, 2, . . . , γ.

▷ Claim 17. µ(H) = 4γ3 − 4γ2 + γ.
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L0 L
(1)
1S

(1)
1 L

(1)
2S

(1)
2 L

(1)
γ−1S

(1)
γ−1

L
(1,1)
γS

(1,1)
γ

L
(1,2)
γS

(1,2)
γ

L
(1,γ)
γS

(1,γ)
γ

S0 L
(2)
1S

(2)
1 L

(2)
2S

(2)
2 L

(2)
γ−1S

(2)
γ−1

L
(2,1)
γS

(2,1)
γ

L
(2,2)
γS

(2,2)
γ

L
(2,γ)
γS

(2,γ)
γ

Figure 1 The lower bound construction. The blue edges are part of H, while the yellow are not.
We have γ =

√
β/2, and each set Si, Li indicates an independent set of vertices of size |Si| = γ2 + i

and |Li| = γ2 − i (so in H they have degrees β
2 − i and β

2 + i respectively). The maximum matching
in H matches all vertices in Li to the corresponding Si. The maximum matching in G however,
matches Li to Si+1 (and S0 to S

(2)
1 ), in addition to Lγ which can also be matched to Sγ .

Proof. Since the maximum matching size in Gi is |Li| = γ2 − i we get:

µ(H) = |L0|+ 2γ|Lγ |+ 2(|L1|+ |L2|+ · · ·+ |Lγ−1|)

= γ2 + 2γ(γ2 − γ) + 2
γ−1∑
i=1

(γ2 − i)

= 4γ3 − 4γ2 + γ ◁

Full graph G. Now we describe the additional edges which are part of G but not already
in H (see also Figure 1):

For k ∈ {1, 2}, we connect G
(k)
1 , G

(k)
2 , . . . , G

(k)
γ−1 in a chain as follows: every pair (u, v)

with u ∈ L
(k)
i and v ∈ S

(k)
i+1 is an edge (so that the induced subgraph on these two sets of

vertices forms a complete bipartite graph).
At the end of these two chains, we connect all the gadgets G

(k,j)
γ as follows: every pair

(u, v) with u ∈ L
(k)
γ−1 and v ∈ S

(k,j)
γ for some j, is an edge.

Finally we connect these two chains using G0 = (S0, L0, E0) as follows: every pair (u, v)
with u ∈ L0 and v ∈ S

(1)
1 is an edge; and every pair (u, v) with u ∈ S0 and v ∈ S

(2)
1 is an

edge.
We note that G is bipartite and all above edges have degree exactly degH(u)+degH(v) = β−1,
so indeed H is a weighted EDCS of G.

▷ Claim 18. µ(G) ≥ 4γ3 − 3γ2 + γ.

Proof. We argue that a matching of this size exists in G. In fact the only edges of H we will
use as part of this matching are those in the gadgets G

(k,j)
γ .

We pick a matching between L
(k)
i and S

(k)
i+1 of size |L(k)

i | = γ − i for all k ∈ {1, 2} and
i = 1, 2, . . . , γ − 2.
In G

(k,j)
γ we pick a matching of size |L(k,j)

γ | = γ2 − γ. Note that exactly 2γ vertices in
S

(k,j)
γ are left unmatched.
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Denote by U (k) the set of unmatched vertices in S
(k,1)
γ , S

(k,2)
γ , . . . , S

(k,γ)
γ , for k ∈ {1, 2}.

Note that |U (k)| = 2γ2 and that (L(k)
γ−1, U (k)) forms a complete bipartite graph, so we

pick a matching of size |L(k)
γ−1| = γ2 − γ + 1 from there.

Finally we pick matchings between L0 and S
(1)
1 (respectively S0 and S

(2)
1 ) of size |L0| = γ

(respectively |S0| = γ).
In total we see that the above matching is exactly |S0| = γ larger than in Claim 17, which
concludes the proof of the claim. ◁

Approximation ratio. To conclude the proof of Theorem 16, we see that µ(G)− µ(H) =
γ2 ≥ 1

4γ µ(G) whenever γ ≥ 1. Hence H preserves at most a (1− 1
4γ ) = (1− 1

2
√

2β
) fraction

of the maximum matching of G.

6 Black-Box Vertex Deletions

Here we briefly explain how one can convert any incremental (1− ε)-approximate maximum
matching algorithm to also support vertex deletions, if allowing additive εn approximation
instead, in a black-box fashion. The reduction is simple and also works in general (non-
bipartite) graphs. Hence, as an immediate application, we can get a (1, εn)-approximate
matching algorithm for general graphs undergoing both edge-insertions and vertex-deletions,
with amortized 1/εO(1/ε) update time, if using the incremental algorithm of [31].

▶ Lemma 19. Suppose A is an algorithm which maintains a (1−ε/2)-approximate maximum
matching for a graph undergoing edge insertions, running in total time T . Then there exists
an algorithm which maintains a (1, εn)-approximate matching, in total time O(T/ε), on a
graph undergoing both edge insertions and vertex deletions.

Proof. We run A, and whenever we get a vertex deletion we ignore it and keep the vertex in
the graph. In the outputted matching from the algorithm we remove any edges incident to
deleted vertices. When εn/2 vertices have been deleted, we actually delete them from the
graph and rerun the algorithm from scratch (starting on the empty graph). This will only
happen 2

ε times, which is the running time blow-up. At each point, the algorithm maintains
a matching of size at least µ− (εn/2 + εn/2) = µ− εn, since only one edge can be removed
per deleted vertex still remaining in the graph. ◀

7 Omitted Proofs

EDCS properties

▶ Lemma 6. In a β-WEDCS H, the maximum degree is at most β and |H| ≤ βµ∗(G).

Proof. If a vertex u has degH(u) > β, then any incident edge (u, v) ∈ H is overfull:
degH(u) + degH(v) > β, leading to a contradiction. Hence the maximum degree is at most
β. Now we construct a fractional matching by assigning a weight of 1/β to every edge in H

(so an edge appearing with multiplicity ϕ in H gets weight ϕ/β). Clearly this is a feasible
fractional matching of G, since no vertex is overloaded. On the other hand, the size of this
fractional matching is |H|/β, implying that |H| ≤ βµ∗(G). ◀

▶ Lemma 7. If a multiset of edges H is only ever changed by removing overfull edges and
adding underfull edges, then there are at most β2µ∗(G) such insertions/deletions to H.
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Proof. We use a potential function argument. Define

Φ(H) := |H|(2β−1)−
∑

(u,v)∈H

(degH(v)+degH(u)) =
∑

(u,v)∈H

(2β−1−degH(u)−degH(v))

We note that if an edge (u, v) appears multiple times in H, it appears multiple times in the
above sum as well. We first note that Φ(∅) = 0 and Φ(H) ≤ β|H| ≤ β2µ∗(G), by Lemma 6
and since (2β − 1− degH(u)− degH(v)) ≤ β when H is a valid EDCS. Now we verify that
updates to H increase the potential by at least 1:

Insertion of an underfull edge (u, v) ∈ E.
That is degH(u) + degH(v) ≤ β − 2 before adding the edge. The term |H|(2β − 1) will
increase by 2β − 1.

∑
(u,v)∈H(degH(v) + degH(u)) will increase by at most 2β − 2, since

one term of value degH(v) + degH(v) ≤ β − 2 + 2 (the +2 comes from degH(v) and
degH(u) increasing by one when we add (u, v) to H) is added, and at most β − 2 other
terms decrease in value by one.
Deletion of an overfull edge (u, v) ∈ H.
That is degH(u) + degH(v) ≥ β + 1 before removing the edge. The term |H|(2β − 1) will
decrease by 2β − 1.

∑
(u,v)∈H(degH(v) + degH(u)) will decrease by at least 2β, since one

term of value degH(v) + degH(v) ≥ β + 1− 2 (the −2 comes from degH(v) and degH(u)
decreasing when we remove (u, v)) is erased, and at least β + 1 other terms increase in
value by one. ◀

▶ Lemma 11. If a multiset of edges H is only ever changed by (i) removing overfull edges,
(ii) adding underfull edges, and (iii) removing all edges incident to a vertex when no edges
are underfull or overfull, then there are at most 3β2n insertions/deletions to H.

Proof. We continue the potential function argument from the proof of Lemma 7 above. When
we delete, from H, all edges incident to some vertex u, we know that we deleted at most
β many edges from H (as the degree of this vertex was at most β). For each such incident
edge (u, v), we bound how much its deletion could have decreased the potential function.
The |H|(2β − 1) term decreased by exactly 2β − 1, and the −

∑
(u,v)∈H(degH(u) + degH(v))

term can only increase. So the total decrease in potential, over all up to β incident edges
which were deleted, is at most 2β2 − β.

Since we can only delete up to n vertices in total, and the potential is always bounded by
β2µ∗(G) ≤ β2n, it follows that the total increase in the potential function, over the run of the
algorithm, is at most 3β2n− nβ (and thus this many updates to H from insertions/deletions
of underfull/overfull edges). In total we deleted at most nβ edges in H incident to deleted
vertices, so the total number of updates to H is thus bounded by 3β2n−βn+βn = 3β2n. ◀

Approximate Complimentary Slackness

▶ Lemma 20. Suppose we have the primal linear program max{cT x : Ax ≤ b, x ≥ 0}, and
its dual min{bT y : AT y ≥ c, y ≥ 0}. We say that feasible primal solution x and dual solution
y satisfy (α, γ)-approximate complementary slackness (for α ≤ 1 ≤ γ) if: (i) if xi = 0 then
(AT )iy ≤ γci, and (ii) if yj = 0 then (A)jx ≥ αbj . When this is the case, then αbT y ≤ γcT x

(i.e. x and y are γ
α -approximate optimal).

Proof. We see that γcT x − αbT y = xT (γc − AT y) + yT (Ax − αb). Now either xi = 0 or
(γc−AT y)i ≥ 0; and either yj = 0 or (Ax− αb)j ≥ 0. Hence γcT x− αbT y ≥ 0. ◀
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Abstract
Dallard, Milanič, and Štorgel [arXiv ’22] ask if, for every class excluding a fixed planar graph H

as an induced minor, Maximum Independent Set can be solved in polynomial time, and show
that this is indeed the case when H is any planar complete bipartite graph, or the 5-vertex clique
minus one edge, or minus two disjoint edges. A positive answer would constitute a far-reaching
generalization of the state-of-the-art, when we currently do not know if a polynomial-time algorithm
exists when H is the 7-vertex path. Relaxing tractability to the existence of a quasipolynomial-time
algorithm, we know substantially more. Indeed, quasipolynomial-time algorithms were recently
obtained for the t-vertex cycle, Ct [Gartland et al., STOC ’21], and the disjoint union of t triangles,
tC3 [Bonamy et al., SODA ’23].

We give, for every integer t, a polynomial-time algorithm running in nO(t5) when H is the friend-
ship graph K1+tK2 (t disjoint edges plus a vertex fully adjacent to them), and a quasipolynomial-time
algorithm running in nO(t2 log n)+f(t), with f a single-exponential function, when H is tC3 ⊎ C4 (the
disjoint union of t triangles and a 4-vertex cycle). The former generalizes the algorithm readily
obtained from Alekseev’s structural result on graphs excluding tK2 as an induced subgraph [Alekseev,
DAM ’07], while the latter extends Bonamy et al.’s result.
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1 Introduction

The Max Independent Set (MIS for short) problem asks, in its optimization form, for
a largest independent set of its input graph G, i.e., a subset of pairwise non-adjacent vertices
in G. In its decision form, the input is a graph G and an integer k, and the question is
whether G admits an independent set of size at least k.
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Besides the ubiquitous usefulness that such a fundamental problem has within combin-
atorial optimization, and notably in the areas of packing, scheduling, and coloring, MIS
(or equivalently Maximum Clique, the same problem in the complement graph) has as
wide a range of applications as possible, as evidenced for instance in map labeling [48],
coding theory [17], spatial scheduling [26], genetic analysis [1], information retrieval [10],
macromolecular docking [28], and sociometry [27] (also see Butenko’s thesis [16]). It is thus
unfortunate that this problem is not only hard to solve but also very reluctant to being ap-
proximated. Indeed, the decision version of MIS is NP-complete [29] and W[1]-complete [25],
while its optimization version cannot be approximated within ratio n1−ε on n-vertex graphs,
for any ε > 0, unless P=NP [35, 50].

In spite of this, theorists and practitioners have put a lot of effort in designing efficient
algorithms for MIS. In parallel to generically solving MIS via integer programming, highly
performant exact and heuristic MIS solvers have emerged in the recent years, based on
diverse methods such as kernelization and evolutionary approaches [40], deep reinforcement
learning [4], graph neural networks [44], and dataless training (where backpropagation
is applied to a loss function based instead on the input) [9]. On the theory side, exact
exponential algorithms have been developed for decades culminating in a running time below
1.2nnO(1) [49].

Another approach is to try and exploit the structure that the input graphs may have.
Indeed, in all the aforementioned applications, inputs are not uniformly sampled over all
n-vertex graphs: They instead bare some structural properties, and in some cases, might avoid
some specific patterns. Graph theory1 offers two main notions of patterns or containment:
the natural and straightforward subgraphs (obtained by removing vertices and edges), and
the deeper minors (further allowing to contract edges). Both notions come with an induced
variant, when edge removals are disallowed, bringing the number of containment types to
four. It is then sensible to determine the patterns H whose absence makes MIS (more)
tractable. It turns out that this question is completely settled for subgraphs and minors.

For the subgraph containment, the argument is the following. By the grid minor the-
orem [45], the class of graphs excluding H as a subgraph has bounded treewidth if (and only
if) all the connected components of H are paths and subdivided claws (i.e., stars with three
leaves); thus MIS can be solved in polynomial-time in this class, for instance by Courcelle’s
theorem [21]. If instead H has a connected component which is not a path nor a subdivided
claw, MIS remains NP-complete since such a class either contains all subcubic graphs or the
2|V (H)|-subdivision of every graph, two families of graphs on which MIS is known to be
NP-complete [5, 8, 43].

For minors, the dichotomy relies on the planarity of H. Indeed, if H is planar, then the
class of graphs excluding H as a minor has bounded treewidth (again, mainly by the grid
minor theorem), and MIS can be solved efficiently. If H is non-planar, then the H-minor-free
graphs include all planar graphs for which MIS is known to be NP-complete [30].

The question is more intriguing for the induced containments, and the induced subgraph
case has received a lot of attention. While it is known for a long time that if H is not
the disjoint union of paths and subdivided claws, MIS remains NP-complete on graphs
without H as an induced subgraph [5, 43], it has been conjectured that MIS is otherwise
polynomial-time solvable. This has been proven when H is the 6-vertex path [34], a claw
with exactly one edge subdivided [6, 41], or any disjoint union of claws [15]. The latter result
extends a polynomial-time algorithm (essentially) due to Alekseev when H is any disjoint

1 We refer the reader to Section 2 for the relevant background in graph theory.
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union of edges [7]. The author indeed proves that the total number of maximal independent
sets is polynomially bounded. One can then enumerate all the maximal independent sets in
polynomial time (following Alekseev’s proof, or using the generic output-sensitive algorithm
of Tsukiyama et al. [47]), and thus find a maximum independent set.

While we currently do not know of a polynomial-time algorithm when H is the 7-vertex
path, Gartland and Lokshtanov [31] have obtained a quasipolynomial-time algorithm when
H is Pt, the t-vertex path, for any positive integer t; also see [42]. Supporting the existence
of at least a quasipolynomial-time algorithm when H is Si,j,k, the claw whose three edges are
subdivided i − 1, j − 1, and k − 1 times, respectively, a quasipolynomial-time approximation
scheme (QPTAS) [20] and a polynomial-time algorithm among bounded-degree graphs [2]
have been proposed. The parameterized complexity of MIS when excluding a fixed induced
subgraph has been studied [12, 13, 22], but the mere statement of which H make the problem
fixed-parameter tractable (and which ones keep it W[1]-complete) is unclear [13].

We eventually arrive at the induced minor containment, the topic of the current paper.
As for minors, the class of all graphs excluding a non-planar graph H as an induced minor
contains all planar graphs; hence MIS remains NP-complete in such a class. However we do
not know of a planar graph H , for which MIS remains NP-complete on H-induced-minor-free
graphs. This has led Dallard, Milanič, and Štorgel [23] to ask if such classes exist:

▶ Question 1. Is it true that for every planar graph H, Max Independent Set can be
solved in polynomial time in the class of graphs excluding H as an induced minor?

A first observation is that avoiding H as an induced minor implies avoiding it as an induced
subgraph. Thus Question 1 is settled for P6, S1,1,2, and tS1,1,1 (where tG denotes the disjoint
of t copies of G). The same authors [23] further obtain a polynomial-time algorithm when
H is K−

5 (the 5-vertex clique minus an edge), K2,t (the bipartite complete graph with 2
vertices fully adjacent to t vertices), and W4 = K1 + C4 (a 4-vertex cycle C4 with a fifth
vertex fully adjacent to the cycle). All three cases were shown by bounding the so-called
tree-independence number (i.e., treewidth where bag size is replaced by independence number
of the subgraph induced by the bag) [23], in which case a polynomial-time algorithm can be
derived for MIS using the corresponding tree-decompositions [24]. They also show that
this is as far as this sole technique can go: H-induced-minor-free graphs have bounded
tree-independence number if and only if H is edgeless or an induced minor of K−

5 , K2,t, or
W4 [23]. The framework of potential maximal cliques [14] and the container method has led
to a polynomial-time algorithm when H = C5 [3, 19].

Question 1 is a beautiful question and, if true, a very difficult one. Indeed, H = P7,
the 7-vertex path, is a very simple planar graph for which we currently do not know
such a polynomial-time algorithm. A natural relaxation of Question 1 is to only request
a quasipolynomial-time algorithm:

▶ Question 2. Is it true that for every planar graph H, Max Independent Set can be
solved in quasipolynomial time in the class of graphs excluding H as an induced minor?

We know somewhat more about Question 2. There is a quasipolynomial-time algorithm
for MIS in Ct-induced-minor-free graphs [32], building upon the H = Pt case. Recently,
Bonamy et al. [11] present a quasipolynomial-time algorithm when H is tC3, i.e., the disjoint
union of t triangles. See Table 1 for a summary of the introduction.

Expecting an affirmative solution to Question 1 or Question 2 may seem optimistic.
However, as far as precise running time is concerned, we do know that for every planar H,
MIS is probably not as difficult in H-induced-minor-free graphs as it is in general graphs.

ESA 2023
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Table 1 The complexity of Max Independent Set when H is excluded as one of the four main
types of patterns. “¬tSt,t,t” means that H is not a subgraph of tSt,t,t for any t. Our results are
framed.

H exluded as subgraph minor induced subgraph induced minor

in P tSt,t,t planar P6, S1,1,2, tS1,1,1 K−
5 , K2,t, W4, C5, K1+tK2

known in QP − − Pt (t ⩾ 7) Ct (t ⩾ 6), tC3 ⊎ C4

NP-c ¬tSt,t,t non-planar ¬tSt,t,t non-planar
open P / NP-c − − P7, . . . P7, C6, . . .
open QP / NP-c − − S1,1,3, S1,2,2 . . . C4 ⊎ C4, . . .

Indeed, Korhonen [39] describes a 2O(n/ logc n)-time algorithm, for some constant c > 0,
to solve MIS on n-vertex graphs excluding a fixed planar graph H as an induced minor.
Assuming the Exponential-Time Hypothesis [36], such a running time is impossible in general
graphs [37].

Our results. We make some progress regarding Questions 1 and 2. Our first contribution
is, for every positive integer t, a polynomial-time algorithm when H is the friendship graph
K1 + tK2 (also called Dutch windmill graph or fan), i.e., t independent edges universally
linked to a 2t + 1-st vertex:

▶ Theorem 1. For every positive integer t, Max Independent Set can be solved in
polynomial-time nO(t5) in n-vertex K1 + tK2-induced-minor-free graphs.

This extends Alekseev’s result [7] for graphs excluding tK2 as an induced subgraph, or
equivalently, as an induced minor. We indeed use this result to first derive a polynomial-time
algorithm in subgraphs of K1 + tK2-induced-minor-free graphs G induced by vertices from
a bounded number of breadth-first search (BFS) layers of G.

We then consider the connected components of our input graph G when deprived of
a subset X of vertices inducing tK2 and, subject to that property, maximizing the order of
the largest connected component in G − X. We show that, due to this careful selection of X,
every component C of G − X admits an efficiently constructible path-decomposition P with
bounded adhesion (i.e., any two distinct bags have a bounded intersection), each bag of which
is contained in a bounded number of consecutive BFS layers of C. Hence MIS can be solved
efficiently within a bag, by our opening step (see previous paragraph). This part is quite
technical, but mostly to justify the existence of P. The algorithm itself remains simple.

Theorem 1 is then obtained by exhaustively finding X and guessing its intersection X ′

with a maximum independent set of G, and performing dynamic programming on the
connected components of G − X, deprived of N(X ′). The dynamic-programming table is
filled via the efficient algorithm when handling an induced subgraph contained in few BFS
layers.

Our second contribution is a quasipolynomial-time algorithm when H is, tC3 ⊎ C4, the
disjoint union of t triangles and a 4-vertex cycle:

▶ Theorem 2. For every positive integer t, Max Independent Set can be solved in
quasipolynomial-time nO(t2 log n)+f(t) (where f is single-exponential) in tC3 ⊎ C4-induced-
minor-free graphs.
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We first perform a quasipolynomial branching rule to get rid of holes of size at most 6
(i.e., induced cycles of length 4, 5, or 6). We then assume that the input graph G is not
(t + 2)C3-induced-minor-free, for otherwise we conclude with Bonamy et al.’s algorithm [11].
Thus G, being tC3 ⊎ C4-induced-minor-free, has to admit (t + 2)C3 as an induced subgraph,
i.e., a collection T1, . . . , Tt+2 of t + 2 pairwise vertex-disjoint and non-adjacent triangles. We
define Si,j , minimally separating Ti and Tj in the graph G deprived of the neighborhoods of
the other triangles Tk (with k ̸= i, j).

We show that each Si,j induces a clique. So does every intersection Ni,j of the neighbor-
hood of two distinct triangles Ti, Tj of the collection (this is where getting rid of the holes of
length at most 6 comes into play). We can therefore exhaustively guess the intersection of
a maximum independent set with the union of the sets Si,j and Ni,j (for every i < j ∈ [t+2]).
We finally observe that G′ = G−

⋃
i̸=j∈[t+2](Si,j ∪Ni,j) is chordal, since the presence of a hole

H in G′ would imply the existence in G of t independent triangles in the non-neighborhood
of H, a contradiction to the tC3 ⊎ C4-induced-minor-freeness of G. We thus conclude by
using a classic algorithm for MIS in chordal graphs [33, 46].

In Section 2 we introduce the relevant graph-theoretic background. In Section 3 we
prove Theorem 1, and in Section 4 we prove Theorem 2.

2 Preliminaries

If i ⩽ j are two integers, we denote by [i, j] the set of integers {i, i + 1, . . . , j − 1, j}, and
by [i], the set [1, i]. We denote by V (G) and E(G) the set of vertices and edges of a graph G,
respectively. We denote by G1 ≃ G2 the fact that the two graphs G1 and G2 are isomorphic,
i.e., equal up to renaming their vertex set. For S ⊆ V (G), the subgraph of G induced by S,
denoted G[S], is obtained by removing from G all the vertices that are not in S (together
with their incident edges). Then G − S is a short-hand for G[V (G) \ S]. A graph H is an
induced subgraph of G if there is an S ⊆ V (G) such that G[S] ≃ H.

For G a graph and a set X ⊆ V (G), EG(X) (or simply E(X)) is a short-hand for
E(G[X]). For G a graph and X, Y ⊆ V (G) two disjoint sets, EG(X, Y ) denotes the set of
edges of E(G) with one endpoint in X and the other endpoint in Y . We denote by NG(v)
and NG[v], the open, respectively closed, neighborhood of v in G. For S ⊆ V (G), we set
NG(S) :=

⋃
v∈S NG(v) \ S and NG[S] := NG(S) ∪ S. We may omit the subscript if G is clear

from the context. A connected component is a maximal connected induced subgraph.
Two cycles C, C ′ are said to be independent if they are vertex-disjoint and there is no edge

between C and C ′. A collection of cycles is independent if they are pairwise independent.
Two vertex subsets X, Y ⊆ V (G) touch if X ∩ Y ≠ ∅ or there is an edge uv ∈ E(G) with
u ∈ X and v ∈ Y . Then two (or more) cycles are independent if and only if they do not
touch. We say that X, Y ⊆ V (G) touch in Z if X ∩ Y ∩ Z ̸= ∅ or there is an edge uv ∈ E(G)
with u ∈ X ∩ Z and v ∈ Y ∩ Z, or equivalently, if X ∩ Z and Y ∩ Z touch.

A graph H is an induced minor of a graph G if H can be obtained from G by a sequence
of vertex deletions and edge contractions. A minor is the same but also allows edge deletions.
Equivalently an induced minor H –with vertex set, say, {v1, . . . , vV (H)}– of G can be defined
as a vertex-partition B1, . . . , B|V (H)| of an induced subgraph of G, such that every G[Bi] is
connected and vivj ∈ E(H) if and only if EG(Bi, Bj) ̸= ∅ (i.e., when the disjoint sets Bi and
Bj touch). Observe indeed that contracting each Bi into a single vertex (which is possible
since each Bi induces a connected subgraph) results in H. A graph G (resp. a graph class)
is said to be H-induced-minor-free if H is not an induced minor of G (resp. no graph of the
class admits H as an induced minor).

ESA 2023
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We denote by Cℓ the ℓ-vertex cycle, and by Kℓ, the ℓ-vertex complete graph. A hole is an
induced cycle of length at least four. A graph is chordal if it has no hole. For two disjoint sets
X, Y ⊆ V (G) in a graph G, an (X, Y )-separator is a (possibly empty) set S ⊆ V (G)\ (X ∪Y )
such that there is no path between X and Y in G − S. An (X, Y )-separator is minimal if no
proper subset of it is itself an (X, Y )-separator.

The disjoint union G1 ⊎ G2 of two graphs G1, G2 has vertex set V (G1) ⊎ V (G2) and edge
set E(G1) ⊎ E(G2), where V (G1) ⊎ V (G2) presupposes that the vertex sets of G1 and G2
are disjoint. If t ⩾ 2 is an integer and G a graph, tG is the graph G ⊎ (t − 1)G, and 1G is
simply G. The join G1 + G2 of two graphs G1, G2 has vertex set V (G1) ⊎ V (G2) and edge
set E(G1) ⊎ E(G2) ⊎ {uv : u ∈ V (G1), v ∈ V (G2)}. In other words, the join of G1 and G2
is obtained from their disjoint union by adding all possible edges between G1 and G2.

A breadth-first search (BFS) layering in G from a vertex v ∈ V (G) (or from a connected
set S ⊆ V (G)) is a partition of the remaining vertices into L1, L2, . . . such that every vertex
of Li is at distance exactly i from v (or from S). Such an Li is called a BFS layer of G (from
v, or from S). Note that there cannot be an edge in G between Li and Lj if |i − j| > 1.

A path-decomposition of a graph G is a list of vertex subsets P = (B1, . . . , Bh) such that⋃
1⩽i⩽h Bi = V (G),

for every e ∈ E(G), there is some Bi that contains both endpoints of e, and
whenever v ∈ Bi ∩ Bj with i < j, v is also in all Bk with i < k < j.

The sets Bi (for i ∈ [h]) are called the bags of P , and the sets Bi ∩ Bi+1 (for i ∈ [h − 1]) the
adhesions of P. Path-decomposition P has maximum adhesion p if all of its adhesions have
size at most p. Note that the adhesion Bi ∩ Bi+1, if disjoint from B1 ∪ Bh, is a vertex cutset
disconnecting B1 from Bh.

3 Polynomial algorithm in K1 + tK2-induced-minor-free graphs

We first show how to solve Max Independent Set in K1 + tK2-induced-minor-free graphs
of bounded diameter. More generally, we show the following.

▶ Lemma 3. Let t, h be fixed non-negative integers. Let G be a K1 + tK2-induced-minor-free
n-vertex graph, and L0 ⊆ V (G) such that G[L0] is connected. Let Li, for any i ∈ [h], be
the subset of vertices of G at distance exactly i of L0. Then, given as input G, L0, and
S ⊆

⋃
1⩽i⩽h Li, a maximum independent set of H := G[S] can be computed in polynomial

time n(2t−1)h+O(1).

Proof. For every j ∈ [h], G[Lj ] has no tK2 induced subgraph (or equivalently, induced
minor). Indeed, G[

⋃
0⩽i⩽j−1 Li] is a connected graph, hence

⋃
0⩽i⩽j−1 Li can be contracted

to a single vertex, and every vertex in Lj has at least one neighbor in Lj−1. Therefore a tK2
induced subgraph in G[Lj ] would contradict the K1 + tK2-induced-minor-freeness of G.

Fix an arbitrary S ⊆
⋃

1⩽i⩽h Li, and consider the induced subgraph H := G[S]. In
particular H [Lj ∩S] has also no tK2 induced subgraph, for every j ∈ [h]. Hence, by a classical
result of Alekseev [7], H[Lj ∩ S] has at most n2t−1 maximal independent sets, which can be
listed in time n2t+O(1) [47].

We thus exhaustively list every h-tuple (I1, . . . , Ih) where, for every j ∈ [h], Ij is a maximal
independent set of H [Lj ∩S], in time n(2t−1)h+O(1). Note that if there is an edge in H between
Li and Lj , then |i − j| ⩽ 1. As each Ij (for j ∈ [h]) is an independent set, H ′ = H [

⋃
j∈[h] Ij ]

is a bipartite graph as witnessed by the bipartition (I1 ∪ I3 ∪ . . . , I2 ∪ I4 ∪ . . .). A maximum
independent set I can thus be computed in polynomial time in H ′. Indeed, by the Kőnig-
Egerváry theorem [38], finding a maximum independent set in a bipartite graph boils down
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to finding a maximum matching, which can be done in polynomial time (and now, even
in almost linear time [18]) by solving a maximum flow problem. We output the largest
independent set I found among every run.

The correctness of the algorithm is based on the observation that a maximum independent
set I⋆ of H intersects every Li (for i ∈ [h]) in an independent set Ji, which by definition is
contained in a maximal independent set Ii of H[Li ∩ S]. In the run when every maximal
independent set Ii is a superset of Ji, we obtain an independent set with cardinality equal to
that of I⋆. ◀

We say that G is reduced if it does not contain degree-1 vertices. If e = uv is an
edge of G, let G \ e (resp. S \ e, S ∪ e, for some S ⊆ V (G)) be the induced subgraph
G[V (G) − {u, v}] = G − {u, v} (resp. the sets S \ {u, v}, S ∪ {u, v}). More generally, for a
collection e1 = u1v1, . . . , ek = ukvk of edges of G, we denote by G \ {e1, . . . , ek} the induced
subgraph G[V (G) − {u1, v1, . . . , uk, vk}] = G − {u1, v1, . . . , uk, vk}.

▶ Lemma 4. Let G be a reduced connected K1 + tK2-induced-minor-free graph containing
tK2 as an induced subgraph. Let X ⊆ V (G) maximize the order of a largest component of
G′ := G − X, among those sets X such that G[X] ≃ tK2. Then for any e ∈ E(G′ − NG(X))
contained in a connected component C of G′,
1. C \ e is disconnected, and
2. each connected component of C \ e contains a vertex in NG(X).

Proof. As G is reduced, every vertex of X has degree at least two (in G). Thus G′ cannot
be connected, for otherwise, contracting in G the set V (G′) to a single vertex would form
a K1 + tK2 induced minor. We thus know that G′ has at least two connected components.

Let C ′ be a largest connected component of G′. Since G is connected, there exists a shortest
path P in G from V (C ′) to V (G′) \ V (C ′). Say, that P ends in the connected component
C ̸= C ′ of G′. Path P has to have some internal vertices in X, but since G[X] ≃ tK2,
it follows that there is an edge e∗ in E(X) (but not necessarily in P ) intersecting both
NG(V (C)) and NG(V (C ′)).

For every edge e ∈ E(G′ − NG(X)) in component C (which is possibly equal to C ′), C \ e

is disconnected. Indeed, for the sake of contradiction, suppose that C \ e is connected, and
consider X ′ := (X \ e∗) ∪ e. By assumption, G[X ′] ≃ tK2. Furthermore, the connected
component of G − X ′ containing e∗ is strictly larger than C ′, as it contains (V (C ′) \ e) ∪ e∗

and intersects V (C) \ e, which are two disjoint sets. This contradicts the maximality of X,
and establishes the first item.

We now prove the second item, also by contradiction. Suppose that there is a connected
component D of C \e that does not contain a vertex in NG(X). We will reach a contradiction
by showing that D contains an edge e′ not intersecting NG(X), and such that D \ e′ is
connected (and conclude in light of the previous paragraph).

Let Li ⊆ V (D) be the i-th neighborhood of e in D, i.e., the vertices at distance i of one
endpoint of e, and at least i of the other endpoint. We consider the last layer Lk, i.e., such
that Lk ̸= ∅ and Lk+1 = ∅. If Lk contains an edge e′, then removing the endpoints of this
edge does not disconnect D (and hence C) since each vertex in Lk has a neighbor in Lk−1
(with the convention that L0 consists of the endpoints of e) and G[L0 ∪ L1 ∪ · · · ∪ Lk−1] is
connected.

If Lk does not contain an edge, then each vertex in Lk has two neighbors in Lk−1. This
is because G is reduced, and by assumption that no vertex of D has a neighbor in X. Hence,
removing the endpoints of any edge e′ incident to a vertex in Lk does not disconnect D

(nor C), since each vertex in Lk has at least one neighbor in Lk−1 which is not an endpoint
of e′. In either case, e′ is an edge of C − NG(X) that does not disconnect C, which we
showed is not possible. ◀
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We now prove the main technical result of the section.

▶ Proposition 5. Let G be a reduced connected n-vertex K1 + tK2-induced-minor-free graph
containing tK2 as an induced subgraph. Let X ⊆ V (G) maximize the order of a largest
component of G′ := G − X, among those sets X such that G[X] ≃ tK2. Then for every
connected component C of G′, a path-decomposition P of C such that

every bag of P is contained in O(t4) consecutive BFS layers of C, and
every adhesion of P is of size at most 2t2,

can be computed in time nO(1).

Proof. Let v be a vertex in NG(X) ∩ V (C) and, for any positive integer s, let Ls be the set
of vertices at distance s from v in C. Let q be the largest distance between v and a vertex
of C. We set f(t) := (t2 + 1)(6t2 + 2) = O(t4). We will show that, for every s ∈ [q − f(t)],
there is a vertex cutset of size at most 2t2 separating Ls from Ls+f(t)−1, and use that fact
for s = 1, f(t) + 1, 2f(t) + 1, . . . to build the path-decomposition P.

We show that any sufficiently long induced path (such as a shortest path from Ls to
Ls+f(t)−1) has some edges with both endpoints in V (C) \ NG(X).

▷ Claim 6. Any induced path P in C contains less than 3t2 vertices in NG(X).

Proof. If there are 3t2 vertices on P with a neighbor in X, then there are at least 3t vertices
w1, . . . , w3t on P that are neighbors of a fixed edge e ∈ E(X). For each i ∈ [t], contract every
edge of P between w3i−2 and w3i−1 but one, say ei. Contract e, and call z the resulting vertex.
The vertex z and the t edges ei contradict the fact that G is K1 + tK2-induced-minor-free.

◁

For an edge e ∈ E(C) we denote by dist(e, v) the length of a shortest path in C from an
endpoint of e to v. We build a collection of paths Qi of C, and edges ei ∈ E(Qi), for
i = 1, 2, . . ., while they are well-defined, in the following way.

Let s ∈ [q − f(t)] and Q1 be a shortest path from Ls to Ls+f(t)−1 in C. Let e1 ∈ E(Q1)
minimize e 7→ dist(e, v), among those edges of Q1 with both endpoints in V (C) \ NG(X).
By Claim 6 there are less than 6t2 edges on Q1 with an endpoint in NG(X), hence dist(e1, v) ⩽
s + 6t2. We denote by Q′

1 the maximal subpath of Q1 starting in Ls and not containing
an endpoint of e1 (that is, stopping just before reaching an endpoint of e1). Note that Q1
is possibly empty. For the next iteration, we work in C \ e1 (recall that this stands for C

deprived of the two endpoints of e1).
We now describe in general the i-th iteration for i ⩾ 2. Let Qi be a shortest path from

Ls to Ls+f(t)−1 in C \ {e1, e2, . . . , ei−1}. Let ei be the first edge of Qi (when starting from
Ls) such that dist(ei, v) ⩾ dist(ei−1, v) + 2 and ei has no endpoint in NG(X). Note that
by Claim 6, dist(ei, v) ⩽ dist(ei−1, v)+2+6t2. Let Q′

i be the maximal subpath of Qi starting
in Ls and not containing an endpoint of ei. See Figure 1.

Let e1, . . . , ek be the obtained collection of edges. In principle, the while loop stops when
one of the following two conditions holds:

(i) Ls is disconnected from Ls+f(t)−1 in C \ {e1, . . . , ek}, or
(ii) there is no edge ek+1 ∈ E(Qk+1) such that dist(ek+1, v) ⩾ dist(ek, v) + 2 and ek+1 has

no endpoint in NG(X).

▷ Claim 7. If case (ii) holds, then k > t2.

Proof. Remark first that for any i we have dist(ei, v) ⩽ s+ i(6t2 +2)−2. Next, we claim that
as long as dist(ei, v) + 2 + 6t2 ⩽ s + f(t) − 1, and case (i) does not occur, the construction
of ei+1 can not fail, since Qi+1 exists, and there are at least 6t2 edges e in Qi+1 satisfying
dist(e, v) ⩾ dist(ei, v). Thus if case (ii) occurs, it must be that (k + 1)(6t2 + 2) − 2 > f(t) − 1,
hence k > t2 since f(t) = (t2 + 1)(6t2 + 2). ◁
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v

X

. . .

Figure 1 Illustration of X (for t = 6) and the first (i.e., with s = 1) f(t) layers (from left to
right) of the connected component C of G − X rooted at v. Vertices of C with a neighbor in X

are filled. We represented the first three iterations: Q1, e1 (in red), Q2, e2 (in blue), Q3, e3 (in dark
green). Not to clutter the figure, we do not represent all the edges, and we code the different labels:
edges ei are squiggly, and subpaths Q′

i are thicker.

▷ Claim 8. It holds that k ⩽ t2.

Proof. Assume for the sake of contradiction that k ⩾ t2 + 1. By Lemma 4 (using both items),
for each i ∈ [k] there exists a vertex vi ∈ V (C) ∩ NG(X) disconnected from v in C \ ei. Since
k ⩾ t2 + 1, there are t + 1 vertices va1 , . . . , vat+1 , with a1 < a2 < . . . < at, all adjacent to
an endpoint of the same fixed edge e ∈ E(X). Let C ′ be the component containing v in
C \ {ea1 , . . . , eat}, and let us contract (in G) the set V (C ′) to a single vertex, say w. We
will now show that vertex w is adjacent to an endpoint of e.

By construction, the edge eat+1 is reachable from v in C \ {ea1 , ea2 , . . . , eat
}, hence

eat+1 ∈ E(C ′). Let P ′ be a path in C ′ from v to an endpoint of eat+1 . Every path in C from
v to vat+1 goes through at least one endpoint of eat+1 , by definition of vat+1 . Let us consider
a shortest path in C from v to vat+1 , i.e., intersecting each layer at most once. Consider
a suffix P ′′ of this path starting at an endpoint of eat+1 and ending at vat+1 . By the previous
remark, P ′′ cannot contain an edge among {ea1 , ea2 , . . . , eat}, since these edges are in layers
with strictly smaller indices than the endpoints of eat+1 . Thus P ′ ∪ P ′′ (possibly combined
with eat+1) connects v to vat+1 in C \ {ea1 , ea2 , . . . , eat

}. Therefore, the contracted vertex w

contains vat+1 ; the latter being adjacent to an endpoint e.
Observe also that, for every i ∈ [t], each subpath Q′

ai
is contained in C ′. Vertex w

is adjacent to an endpoint uai
of eai

, for every i ∈ [t]. Let Cai
be the vertex set of the

connected component of C \ eai
containing vai

. Let Rai
be a path from uai

to vai
in the

subgraph of G induced by Cai plus the endpoints of eai . For each i ∈ [t], if Rai has at least
two edges, contract the edge wuai

, and all the edges of Rai
but the last two; the last one

being fai = yaivai . Finally contract e, and the edge between e and w. We call the resulting
vertex z.

We claim that z and the edges fai make a K1 + tK2 induced minor in G. One can see
that z is adjacent to vai

via e ∈ E(X), and to yai
via w and the path Rai

. We shall justify
that the edges fai

form an induced matching in G. Indeed, suppose some fai
and faj

touch
with i ̸= j ∈ [t]. Then in C \ eai , there is a path from v to vai via Q′

j , a contradiction. ◁

By Claims 7 and 8, case (ii) is impossible, and the 2k ⩽ 2t2 endpoints of e1, . . . , ek form
a vertex cutset disconnecting Ls from Ls+f(t)−1. We can now build the path-decomposition
P. Recall that the BFS search from v gives rise to q layers, L1, . . . , Lq (outside {v}).

For j ∈ [⌊q/f(t)⌋], let Sj be the vertex cutset of size at most 2t2 (and obtained as detailed
above) disconnecting L(j−1)f(t)+1 from Ljf(t). We denote by Ls→s′ the set

⋃
s⩽h⩽s′ Lh.
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Let B1 ⊆ V (C) consist of v, S1, plus all the vertices of connected components of
C[L1→f(t)] − S1 that do not intersect Lf(t).
For j going from 2 to ⌊q/f(t)⌋ − 1, let Bj ⊆ V (C) consist of Sj ∪ Sj+1 plus the vertices
not already present in one of B1, . . . , Bj−1 of all the connected components of

C[L(j−1)f(t)+1→(j+1)f(t)] − (Sj ∪ Sj+1)

that do not intersect L(j+1)f(t).
Let finally B⌊q/f(t)⌋ ⊆ V (C) consist of S⌊q/f(t)⌋ plus the vertices of all the connected
components of C[L(⌊q/f(t)⌋−1)f(t)+1→q] − S⌊q/f(t)⌋ that intersect Lq.

Let P be the path-decomposition (B1, B2, . . . , B⌊q/f(t)⌋). P is indeed a path-decomposition
of C, since our process entirely covers V (C), and by virtue of Sj separating L(j−1)f(t)+1 from
Ljf(t). By construction,

every bag intersects at most 2f(t) = O(t4) layers of BFS from vertex v, and
for every j ∈ [⌊q/f(t)⌋ − 1], Bj ∩ Bj+1 = Sj , so every adhesion has size at most 2t2.

Finally note that once X is found, one can find the path-decomposition P of C in
time nO(1), since this only involves computing (at most n) shortest paths. ◀

We can now wrap up, using Proposition 5 and Lemma 3.

▶ Theorem 1. For every positive integer t, Max Independent Set can be solved in
polynomial-time nO(t5) in n-vertex K1 + tK2-induced-minor-free graphs.

Proof. Let G be our K1 + tK2-induced-minor-free n-vertex input graph. As including
vertices of degree 1 in the independent set is a safe reduction rule, we can assume that G is
reduced. By dealing with the possibly several connected components of G separately, we can
further assume that G is connected. If G has no tK2 as an induced subgraph, we conclude
by invoking Alekseev’s result [7, 47]. Thus we also assume that G has such an induced
subgraph. In time nO(t) we find X ⊆ V (G) that maximizes the order of a largest component
of G′ := G − X, among those sets X such that G[X] ≃ tK2.

We exhaustively guess the intersection X ′ of a fixed maximum independent set of G with
the set X, with an extra multiplicative factor of 22t. We are now left with solving MIS
separately in C ′ := C − NG(X ′) for each connected component C of G′. By Proposition 5,
we obtain in time nO(1) a path-decomposition P = (B1, . . . , Bp) of C ′, such that

every Bi (for i ∈ [p]) is contained in O(t4) consecutive BFS layers of C, and
every adhesion Ai := Bi ∩ Bi+1 (for i ∈ [p − 1]) is of size at most 2t2.

Indeed, removing NG(X ′) from C (and its path-decomposition) preserves those properties.
Let us define A0, Ap to be empty. We proceed to the following dynamic programming.

For i ∈ [0, p], and for any S ⊆ Ai, T [i, S] is meant to eventually contain an independent
set I of C ′[

⋃
1⩽j⩽i Bj ] of maximum cardinality among those such that I ∩ Bi = S. We set

T [0, ∅] = ∅, and observe that it is the only entry of the form T [0, ·].
We fill this table by increasing value of i = 1, 2, . . . , p. Assume that all entries of the form

T [i′, ·] are properly filled for i′ < i. For every S ⊆ Ai, T [i, S] is filled in the following way. For
every S′ ⊆ Ai−1, if S ∪ S′ is an independent set, we compute, by Lemma 3 (with L1, . . . , Lh

being the O(t4) consecutive BFS layers of C containing Bi, and L0 being the connected
set, in C, formed by the union of all the previous layers), a maximum independent set Ii in
C ′[Bi] − N [S ∪ S′] in time nO(ht) = nO(t5). We finally set T [i, S] = T [i − 1, S′] ∪ Ii ∪ S for
a run that maximizes the cardinality of T [i − 1, S′] ∪ Ii.

It takes time p · 2O(t2) · nO(t5) = nO(t5) to completely fill T . Eventually T [p, ∅] contains
a maximum independent set of C ′. We return the union of X ′ and of the maximum
independent sets of C ′ found for each connected component C of G′. The overall running
time is nO(t5). ◀
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4 Quasipolynomial algorithm in tC3 ⊎ C4-induced-minor-free graphs

We first show that the existence of a short hole allows for a quasipolynomial-time branching
rule in tC3 ⊎ C4-induced-minor-free graphs. By branching rule, we mean here a Turing
reduction to (quasipolynomially many) subinstances with no short holes.

▶ Lemma 9. Let G be an n-vertex tC3 ⊎C4-induced-minor-free graph, and let ℓ ⩾ 4 be a fixed
integer. While there is a hole H of length at most ℓ and a tC3 as an induced subgraph in G,
Max Independent Set admits a quasipolynomial branching rule, running in nOℓ(t log n).

Proof. Let C(G) := {X ∈
(

V (G)
3t

)
: G[X] ≃ tC3} be the collection of vertex subsets inducing

t disjoint triangles, and assume µ(G) := |C(G)| > 0, and H is a hole of G of length at most ℓ.
As G is tC3 ⊎ C4-induced-minor-free, N [V (H)] intersects every X ∈ C(G). In particular,
there is a vertex v ∈ V (H) such that N [v] intersects at least a 1/ℓ fraction of the X ∈ C(G).

We branch on two options: either we take v in an (initially empty) solution, and remove
its closed neighborhood from G, or we remove v from G (without adding it to the solution).
With the former choice, the measure µ drops by at least a 1/ℓ fraction (and the number
of vertices of G decreases by at least 1), and with the latter choice, the number of vertices
drops by 1. This branching is exhaustive. We simply need to argue about its running time.

Note that each option can be done at most n times, while the first option cannot
be done more than logℓ(n3t) = Oℓ(t log n) times. Hence the branching tree has at most(

n
logℓ(n3t)

)
= nOℓ(t log n) leaves. ◀

The previous lemma permits us to get rid of short holes, which turns out useful in some
corner case.

▶ Theorem 2. For every positive integer t, Max Independent Set can be solved in
quasipolynomial-time nO(t2 log n)+f(t) (where f is single-exponential) in tC3 ⊎ C4-induced-
minor-free graphs.

Proof. We apply the quasipolynomial branching rule of Lemma 9 with ℓ = 6, until the input
n-vertex graph G no longer has holes of length at most 6, or tC3 induced subgraph.

In time nO(t), we exhaustively look for a collection of pairwise vertex-disjoint and
non-adjacent triangles T1, T2, . . . , Tt+2 in G. If such a collection does not exist, G is (t+2)C3-
induced-minor-free. Indeed, the absence of (t + 2)C3 as an induced subgraph implies that
at least one of the (t + 2) independent cycles realizing a (t + 2)C3 induced minor is of length
at least four. This is ruled out by the assumption that G is tC3 ⊎ C4-induced-minor-free.
(Note here that only (t + 1) independent cycles would suffice.)

We can thus assume that a collection T1, T2, . . . , Tt+2 exists, for otherwise, we can
conclude with the quasipolynomial-time algorithm, running in nO(t2 log n)+f(t) (where f is
single-exponential), of Bonamy et al. [11] for Max Independent Set in graphs with a
bounded number of independent cycles (here, (t + 2)C3-induced-minor-free). In turn, as G

contains tC3 (even (t + 2)C3) as in induced subgraph, we can, in light of the first paragraph,
further assume that all the cycles of G have length either 3 or at least 7. We refer the reader
to Figure 2 for a visual summary of the next two paragraphs.

For every pair Ti, Tj (with i < j ∈ [t + 2]), consider the subgraph Gi,j := G −⋃
k∈[t+2]\{i,j} N(Tk). We claim that Gi,j is chordal. Indeed, since Gi,j is disjoint from

the neighborhood of
⋃

k∈[t+2]\{i,j} Tk, a hole H in G would form a tC3 ⊎ C4-induced-minor
together with {Tk : k ∈ [t + 2] \ {i, j}}. Let now Si,j be a minimal (Ti, Tj)-separator in Gi,j .
A classical argument then shows that Si,j is a clique: suppose for the sake of contradiction
that u, v ∈ Si,j are distinct and non-adjacent. Let Xi, Xj be the two components of Gi,j −Si,j
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containing Ti, Tj . By minimality of Si,j , each of u, v is adjacent to both Xi and Xj . Thus we
can find two induced uv-paths, whose internal vertices are in Xi and Xj respectively. The
union of these paths is a hole H in Gi,j .

Let Ni,j be the set N(Ti) ∩ N(Tj) for each pair i < j ∈ [t + 2]. Observe that the sets Ni,j

need not be disjoint, and that when Ti and Tj are at distance at least 3 apart, Ni,j is empty.
We notice that Ni,j is a clique, for otherwise we can exhibit an induced cycle of length 4, 5,
or 6 in G (hence a hole of length at most 6).

Ti Tj

Tk

Ni,j

Si,j

u

v

Figure 2 Illustration of the sets Si,j and Ni,j , and the two uv-paths through the two components,
in red and blue. If uv were a non-edge, these paths would form a hole in the non-neighborhood
of the other triangles Tk, contradicting tC3 ⊎ C4-minor-freeness. The absence of hole of length at
most 6 implies that Ni,j is also a clique.

We claim that G′ := G − (
⋃

i<j∈[t+2] Si,j ∪ Ni,j) is chordal. Indeed assume there is a hole
H ′ in G′. The tC3 ⊎ C4-induced-minor-freeness implies that H ′ intersects at least two sets
N [Ti] and N [Tj ]. Thus there exists a subpath P of H ′ whose endpoints are in two distinct
N(Ti) and N(Tj). By choosing P minimal, we can furthermore assume that no internal
vertex of P lies in some N [Tk] with k /∈ {i, j}. Since G′ does not include any vertex of⋃

i′<j′∈[t+2] Ni′,j′ , the endpoints of P are not in some N [Tk] with k /∈ {i, j} either. Therefore,
the path P contradicts that Si,j separates Ti and Tj in G −

⋃
k∈[t+2]\{i,j} N(Tk).

We can now describe the rest of the algorithm after the collection T1, T2, . . . , Tt+2 is
found. We greedily compute the minimal separators Si,j . We exhaustively try every subset
S ⊆

⋃
i<j∈[t+2] Si,j ∪ Ni,j that is an independent set. Such a set S contains at most one

vertex in each Si,j and each Ni,j , as we have established that each Si,j and each Ni,j form
a clique. Hence there are nO(t2) such sets S. For each S, we compute a maximum independent
set I in the chordal graph G − (N [S] ∪

⋃
i<j∈[t+2] Si,j ∪ Ni,j) in linear time (see [33, 46]).

We finally output the set S ∪ I maximizing |S ∪ I|. Note that the overall running time is
nO(t2 log n)+f(t). ◀

5 Conclusion

We provided a polynomial-time algorithm for Maximum Independent Set on graphs
excluding the friendship graph as an induced minor and a quasipolynomial-time algorithm
on graphs excluding a disjoint union of t triangles and a 4-cycle as an induced minor.
As mentioned in the introduction, it is of interest to study on which other classes of
graphs exluding some fixed planar graph H as an induced minor MIS can be solved in
(quasi)polynomial-time. If H is a subgraph of the friendship graph or of the wheel, some of
our methods developed for K1 + tK2 might extend.

For disjoint unions of cycles, the first open case is when H is C4 ⊎ C4. Our treatment for
H = tC3 ⊎ C4 does not (easily) extend to this case. It is thus likely that new methods have
to be found. Obtaining a quasipolynomial-time algorithm when H = tCt for any integer t is
a first challenging milestone in the study of MIS on H-induced-minor-free graphs.
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Abstract
We revisit the classic 0-1-Knapsack problem, in which we are given n items with their weights and
profits as well as a weight budget W , and the goal is to find a subset of items of total weight at
most W that maximizes the total profit. We study pseudopolynomial-time algorithms parameterized
by the largest profit of any item pmax, and the largest weight of any item wmax. Our main result are
algorithms for 0-1-Knapsack running in time Õ(nwmaxp

2/3
max) and Õ(npmaxw

2/3
max), improving upon an

algorithm in time O(npmaxwmax) by Pisinger [J. Algorithms ’99]. In the regime pmax ≈ wmax ≈ n

(and W ≈ OPT ≈ n2) our algorithms are the first to break the cubic barrier n3.
To obtain our result, we give an efficient algorithm to compute the min-plus convolution of

near-convex functions. More precisely, we say that a function f : [n] 7→ Z is ∆-near convex with
∆ ≥ 1, if there is a convex function f̆ such that f̆(i) ≤ f(i) ≤ f̆(i) + ∆ for every i. We design an
algorithm computing the min-plus convolution of two ∆-near convex functions in time Õ(n∆). This
tool can replace the usage of the prediction technique of Bateni, Hajiaghayi, Seddighin and Stein
[STOC ’18] in all applications we are aware of, and we believe it has wider applicability.
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1 Introduction

In the 0-1-Knapsack problem, we are given a set of n items I = { (p1, w1), . . . , (pn, wn) },
where item i has a profit pi ∈ N and a weight wi ∈ N, as well as a weight budget W ∈ N.
The goal is to compute OPT := max

∑n
i=1 pixi subject to the contraints

∑n
i=1 wixi ≤ W

and x ∈ { 0, 1 }n. This classic and fundamental problem in computer science and operations
research has been studied for decades (see e.g. [29] for a book on the topic and related
problems). Knapsack is weakly NP-hard, and the textbook dynamic programming algorithm
due to Bellman [5] solves it in time O(n ·min{W, OPT }).

Recent works have studied the fine-grained complexity of Knapsack and related problems,
where the goal is to give best-possible pseudopolynomial-time algorithms with respect to
different parameters, see Table 1 and [7, 27, 12, 2, 15, 22, 30, 23, 26]. In this work we study
the complexity of 0-1-Knapsack in terms of two natural parameters: the largest weight among
the items denoted by wmax, and the largest profit denoted by pmax. Note that we can assume
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without loss of generality that wmax ≤W and pmax ≤ OPT. Therefore, a small polynomial
dependence on these parameters can lead to faster algorithms compared to the standard
dynamic programming algorithm on certain instances.

This parameterization has been studied by several previous works, see Table 1. To
compare these running times, note that since any feasible solution includes at most all items,
we can assume without loss of generality that W ≤ nwmax and OPT ≤ npmax. Note that
when pmax ≈ wmax ≈ n (and W ≈ OPT ≈ n2), all known algorithms require time Ω(n3). In
particular, in this regime the algorithm in time O(nwmaxpmax) of Pisinger from ’99 [34] is
still the best known. In this paper we overcome this cubic barrier :

▶ Theorem 1. There is a randomized algorithm for 0-1-Knapsack that runs in time1

Õ((pmaxW )2/3(nwmax)1/3 + nwmax) and succeeds with high probability. Using the bound
W ≤ nwmax, this running time is at most Õ(n wmax p

2/3
max).

Symmetrically, we obtain the following:

▶ Theorem 2. There is a randomized algorithm for 0-1-Knapsack that runs in time
Õ((wmaxOPT)2/3(npmax)1/3 + npmax) and succeeds with high probability. Using the bound
OPT ≤ npmax, this running time is at most Õ(n pmax w

2/3
max).

Table 1 Pseudopolynomial-time algorithms for 0-1 Knapsack.

Reference Running Time

Bellman [5] O(n · min{W, OPT})

Pisinger [34] O(n · pmax · wmax)

Kellerer and Pferschy [28], also [4, 3] Õ(n + wmax · W )

Bateni, Hajiaghayi, Seddighin and Stein [4] Õ(n + pmax · W )

Axiotis and Tzamos [3] Õ(n · min{ w2
max, p2

max })

Bateni, Hajiaghayi, Seddighin and Stein [4] Õ((n + W ) · min{ wmax, pmax })

Polak, Rohwedder and Węgrzycki [35] O(n + min{ w3
max, p3

max })

Bringmann and Cassis [8] Õ(n + (W + OPT)1.5)

Theorem 1 Õ(n · wmax · p
2/3
max)

Theorem 2 Õ(n · pmax · w
2/3
max)

Min-Plus Convolution. Given functions f, g : [ n ] 7→ Z, their min-plus convolution is
the function h : [ 2n ] 7→ Z defined as h(x) = minx′ f(x′) + g(x − x′) for x ∈ [ 2n ]. This
can be trivially computed in time O(n2), and the best known algorithm for it runs in
time n2/2Ω(

√
log n) [6, 36, 17]. The lack of faster algorithms has led to the Min-Plus

Convolution Hypothesis, which postulates that there is no truly subquadratic algorithm for
this problem [20, 32]. Despite this hypothesis, there are structured instances of min-plus
convolution that can be solved faster [1, 4, 13, 16, 18]. These improvements have been key
to obtain the Knapsack algorithms listed in Table 1 (the only exception being Bellman’s and
Pisinger’s algorithms [5, 34]):

1 We use Õ(·) to supress polylogarithmic factors in the input size and the largest input number.
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When one of the functions is convex, their min-plus convolution can be computed in time
O(n) using the SMAWK algorithm [1]. This has been used for Knapsack indirectly2 by
Kellerer and Pferschy [28], and explicitly by Axiotis and Tzamos [3] and Polak, Rohwedder
and Węgrzycki [35].
When the functions are monotone and have bounded entries, their min-plus convolution
can be computed in time Õ(n1.5) by an algorithm due to Chi, Duan, Xie and Zhang [18].
This has been used for Knapsack by Bringmann and Cassis [8].
Bateni, Hajiaghayi, Seddighin and Stein [4] introduced the prediction technique to show
that the min-plus convolution of certain instances arising from Knapsack can be computed
efficiently. More precisely, let h be the min-plus convolution of two given functions
f, g : [ n ] 7→ Z. They show that if one is given n intervals [ xi . . yi ] for i ∈ [ n ] satisfying
(i) |h(i + j)− (f(i) + g(j))| ≤ ∆ for every i ∈ [ n ] and j ∈ [ xi . . yi ], (ii) for every output
h(k) there exists at least one i such that f(i) + g(k − i) = h(k) and k − i ∈ [ xi . . yi ]
and (iii) 0 ≤ xi, yi < n for all intervals and xi ≤ xj , yi ≤ yj for all i < j; then h can
be computed in time Õ(n ·∆). They showed that this is applicable in the context of
Knapsack.

Our Theorems 1 and 2 fall into the same category of improvements, as we design an
efficient algorithm for a new class of structured instances of min-plus convolution, namely
near convex functions: We say that f : [ n ] 7→ Z is ∆-near convex, if there is a convex function
f̆ : [ n ] 7→ Q such that f̆(i) ≤ f(i) ≤ f̆(i) + ∆ for all i ∈ [ n ]. Our theorem reads as follows:

▶ Theorem 3 (Near Convex MinPlus Convolution). Let f : [ n ] 7→ [−U . . U ], and g : [ m ] 7→
[−U . . U ] be given as inputs where n, m, U ∈ N. Let ∆ ≥ 1 such that both f and g are ∆-near
convex. Then the min-plus convolution of f and g can be computed in time Õ((n + m) ·∆).

We view our Theorem 3 as a replacement for the prediction technique by Bateni et al. [4].
Indeed, all uses of the prediction technique exploit near-convexity to ensure its preconditions,
and thus all uses that we are aware of can be replaced by our Theorem 3. Since the prediction
technique is both difficult to state and difficult to apply, we view our Theorem 3 as replacing
the prediction technique by an easily applicable tool with a concise statement. Moreover,
Theorem 3 provides a new tool for structured instances of min-plus convolution, which we use
in this paper to make progress on 0-1-Knapsack, and which we believe has wider applicability.

Our Techniques. Our approach to prove Theorem 3 is as follows. Let f, g : [ n ] 7→ Z be
the input functions, and let h be their min-plus convolution, which we aim to compute.
First we observe that we can obtain the convex approximations f̆ , ğ witnessing the ∆-near
convexity of f and g, and compute their min-plus convolution h̆ efficiently. By exploiting
h̆ and the convexity of f̆ and ğ, we identify a structured set R ⊆ [ n ]2 with the property
that any (i, j) ∈ [ n ]2 \ R satisfies f(i) + g(j) > h(j). Then, we give a simple recursive
algorithm to cover R with a collection C of disjoint dyadic boxes I × J , where (I, J) ∈ C
satisfies I, J ⊆ [ n ] and I × J ⊆ R. Thus, we can infer h by computing the sumset
A := { (i, f(i)) | i ∈ I } + { (j, g(j)) | j ∈ J } and taking h(k) = min{ y | (k, y) ∈ A } for
every (I, J) ∈ C. To do this efficiently we observe that inside I and J , the functions f [I]
and g[J ] are close to linear functions with the same slope up to an additive error of ±O(∆)
(which follows from their ∆-near convexity). This implies that their sumset is small; more

2 Kellerer and Pferschy did not use SMAWK, but gave a different algorithm for computing the min-plus
convolution of these instances in time O(n log n).
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precisely it has size O((|I|+ |J |)∆). Finally, we make use of known tools that can compute a
sumset in time proportional to its size. The idea of identifying a covering with small sumsets
to efficiently compute the min-plus convolution is inspired by Chan and Lewenstein’s [16]
algorithm for bounded monotone sequences (in which they do not use convexity in any form).
Our algorithm shares some similarities with the prediction technique by Bateni et al. [4]. In
particular, the covering by dyadic boxes where functions are near-linear resembles the way in
which they exploit the intervals [ xi . . yi ] required by their algorithm.

To obtain Theorems 1 and 2, we follow the partition and convolve paradigm that has
been used in many recent algorithms for Subset Sum and Knapsack, see e.g. [7, 4, 8, 26, 14,
31, 21, 11]. Specifically, we randomly split the items into q groups. In each group, we use
the standard dynamic programming algorithm to compute for each weight i, the maximum
profit f(i) attainable with weight at most i using items from that group. Then we combine
the functions f over all groups by min-plus convolution. The crucial observation is that due
to the random splitting we only need to compute the values f(i) in a small weight interval.

Further Related Work. Cygan et al. [20] and Künnemann et al. [32] showed that under the
Min-Plus Convolution Hypothesis, there is no truly subquadratic algorithm for Knapsack on
instances with wmax, W = Θ(n) and pmax, OPT = Ω(n2), and symmetrically, on instances
with pmax, OPT = Θ(n) and wmax, W = Ω(n2). This implies that Bellman’s dynamic
programming algorithm is conditionally optimal in these settings.

Pseudopolynomial-time algorithms parameterized by pmax and wmax have also been
studied for the closely related Unbounded Knapsack problem. Here, the setup is the same as
for 0-1 Knapsack but now a solution might include an arbitrary number of copies of each
item. Chan and He [15] gave an algorithm for this problem in time Õ(n ·min{ pmax, wmax }),
which is optimal under the Min-Plus Convolution Hypothesis. Bringmann and Cassis [8]
gave an algorithm in time Õ(n + (pmax + wmax)1.5) which is better when wmax ≈ pmax ≈ n.

Outline. The paper is organized as follows. In Section 2 we give some formal preliminaries
and establish some notation. In Section 3 we give our algorithm for Knapsack proving Theor-
ems 1 and 2, assuming Theorem 3. In Section 4 we will then give our algorithm for min-plus
convolution, proving Theorem 3.

2 Preliminaries

We write N = { 0, 1, 2, . . . }. For t ∈ N, we define [ t ] := { 0, 1, . . . , t }. Let A ∈ Zn+1

be an integer sequence, i.e., A[i] ∈ Z for i ∈ [ n ]. Sometimes we will refer to such a
sequence as a function A : [ n ] 7→ Z. With this in mind, we use the notation −A to
denote the entry-wise negation of A. Given a, b ∈ R with a ≤ b, we define [ a . . b ] :=
{max(0, ⌊a⌋), max(0, ⌊a⌋) + 1, . . . , ⌈b⌉ − 1, ⌈b⌉ }. The non-standard rounding and capping at
0 in the definition of [ a . . b ] is useful to index a subsequence A[ a . . b ] when a and b might
not be non-negative integers.

The max-plus convolution of two sequences A[ 0 . . n ] ∈ Zn+1, B[ 0 . . m ] ∈ Zm+1, denoted
by MaxConv(A, B), is a sequence of length n + m + 1 where for each k ∈ [ n + m ] we have
MaxConv(A, B)[k] := maxi+j=k A[i] + B[j]. The min-plus convolution MinConv(A, B) is
defined analogously, but replacing max by a min. Note that by negating the entries of the
sequences, these two operations are equivalent.

▶ Fact 4. For any A ∈ Zn+1, B ∈ Zm+1, we have MaxConv(A, B)=−MinConv(−A,−B).
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We will use the following handy notation: Given sequences A[ 0 . . n ], B[ 0 . . n ] and
intervals I, J ⊆ [n] and K ⊆ [2n], we denote by C[K] := MaxConv(A[I], B[J ]) the
computation of C[k] := max{A[i] + B[j] : i ∈ I, j ∈ J, i + j = k} for each k ∈ K.

We say that a function f : [ n ] 7→ Q is convex if f(i)− f(i− 1) ≤ f(i + 1)− f(i) holds
for every i ∈ [ 1 . . n− 1 ]. We say that f is concave if −f is convex.

▶ Definition 5 (Near Convex and Near Concave Functions). For ∆ ≥ 0, we say that a
function f : [ n ] 7→ Z is ∆-near convex, if there is a convex function f̆ : [ n ] 7→ Q such that
f̆(i) ≤ f(i) ≤ f̆(i) + ∆. We say that f is ∆-near concave if −f is ∆-near convex.

If the input consists of N numbers in [−U . . U ], we denote Õ(T ) =
⋃

c≥0 O(T logc(NU)).

3 Faster 0-1 Knapsack Algorithm

In this section we prove Theorem 1. Let (I, W ) be a 0-1 Knapsack instance. Throughout,
we denote the number of items by n := |I|. We identify the item set I with { 1, . . . , n }.
We represent a solution to the knapsack instance (i.e., a subset of I), by an indicator
vector x ∈ { 0, 1 }n. For a subset of the items J ⊆ I, we put wJ (x) :=

∑
i∈J wixi and

pJ (x) :=
∑

i∈J pixi. We define the profit sequence PI [·], where for each j ∈ N we have

PI [j] = max{ pI(x) | x ∈ { 0, 1 }n, wI(x) ≤ j }.

Observe that PI is monotone non-decreasing, and that OPT = PI [W ]. The textbook way
to compute PI [ 0 . . j ] is to use dynamic programming:

▶ Fact 6. For any j ∈ N the sequence PI [ 0 . . j ] can be computed in time O(nj).

Before presenting the algorithm, we make two simple observations about the given
Knapsack instance (I, W ). First, by ignoring items with weight larger than the capacity W ,
we can assume without loss of generality that wmax ≤W . Now every single item is a feasible
solution, so we have pmax ≤ OPT. Second, observe that if W ≥ n · wmax, then the instance
is trivial since we can pack all items. Thus, we can assume without loss of generality that
W ≤ n · wmax. Moreover, since any feasible solution consists of at most all the n items, it
follows that OPT ≤ n · pmax.

The Algorithm

We now describe the algorithm. Set parameters q :=min{(n/pmax)2/3(W/wmax)1/3, W/wmax }
rounded down to the closest power of 2, ∆ := wmaxW/q and η := 11 log n. For each ℓ ∈ [ log q ]
we define the interval Jℓ := [ W

q 2ℓ −
√

∆2ℓη . . W
q 2ℓ +

√
∆2ℓη ].

We start by splitting the items I into q groups I0
1 , . . . , I0

q uniformly at random. The idea
will be to compute an array C0

j associated to each I0
j , and then combine them in a tree-like

fashion. A crucial aspect for the running time is that we only compute |Jℓ| entries of each
array Cℓ

j . In detail, we proceed as follows:

Base Case. For each I0
j , we use Fact 6 to compute PI0

j
[ 0 . . W

q +
√

∆η ] and define the
subarray C0

j [J0] := PI0
j
[J0].

Combination. Iterate over the levels ℓ = 1, . . . log(q). For j ∈ [ 1 . . q/2ℓ ] we set Iℓ
j :=

Iℓ−1
2j−1 ∪ I

ℓ−1
2j . Then, compute the subarray Cℓ

j [Jℓ] by taking the relevant entries of the
max-plus convolution of Cℓ−1

2j−1[Jℓ−1] and Cℓ−1
2j [Jℓ−1].

Returning the answer. (Note that when ℓ = log(q), it holds that I log q
1 = I.) We return the

value C log q
1 [W ]. See Algorithm 1 for the pseudocode.
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Algorithm 1 Knapsack Algorithm. Given a set of items I and a weight budget W , the algorithm
computes the maximum attainable profit.

1: q ← min{ (n/pmax)2/3(W/wmax)1/3, W/wmax } rounded down to the closest power of 2
2: ∆← wmaxW/q

3: η ← 11 log n

4: I0
1 , . . . , I0

q ← random partitioning of I into q groups
5: for i = 1 . . . q do
6: Compute PI0

j
[ 0 . . W

q +
√

∆η ] using standard dynamic programming (Fact 6)
7: J0 ← [ W

q −
√

∆η . . W
q +
√

∆η ]
8: C0

j [J0]← PI0
j
[J0]

9: for ℓ = 1 . . . log(q) do
10: Jℓ ← [ W

q 2ℓ −
√

∆2ℓη . . W
q 2ℓ +

√
∆2ℓη ]

11: for j = 1, . . . , q/2ℓ do
12: Iℓ

j ← I
ℓ−1
2j−1 ∪ I

ℓ−1
2j

13: Compute Cℓ
j [Jℓ]←MaxConv(Cℓ−1

2j−1[Jℓ−1], Cℓ−1
2j [Jℓ−1]) using Theorem 3

14: return C log q
1 [W ]

Correctness

We start by analyzing the correctness of the algorithm. The following lemma shows that the
weight of any solution restricted to one of the sets Iℓ

j is concentrated around its expectation.

▶ Lemma 7 (Concentration, proof deferred to the full version). Let x ∈ { 0, 1 }n be a solution
to the given Knapsack instance. Fix a level ℓ ∈ [ 0 . . log q ] and j ∈ [ 1 . . q/2ℓ ]. Then, with
probability at least 1− 1/n4 it holds that:∣∣∣∣wIℓ

j
(x)− wI(x) · 2ℓ

q

∣∣∣∣ ≤ √∆2ℓ · 10 log n.

Using Lemma 7, we can argue that at level ℓ it suffices to compute a subarray of length
Õ(
√

∆2ℓ) around W2ℓ/q. The following lemma makes this precise:

▶ Lemma 8 (Proof deferred to the full version). Let x ∈ { 0, 1 }n be a solution to the given
Knapsack instance satisfying wI(x) ∈ [ W − wmax . . W ]. With probability at least 1− 1/n2,
for all levels ℓ ∈ [ 0 . . log q ] and all j ∈ [ 1 . . q/2ℓ ] it holds that:

wIℓ
j
(x) ∈ Jℓ = [ W

q 2ℓ −
√

∆2ℓη . . W
q 2ℓ +

√
∆2ℓη ], and

Cℓ
j [wIℓ

j
(x)] ≥ pIℓ

j
(x).

▶ Lemma 9 (Correctness of Algorithm 1). Let x∗ ∈ { 0, 1 }n be an optimal solution to the
given Knapsack instance. Then, for every i ∈ [ wI(x∗) . . W ], it holds that C log q

1 [i] = PI [i]
with probability at least 1− 1/n2.

Proof. We can check in linear time O(n) whether the optimal solution consists of all items,
in which case the instance is trivial. Thus, we can assume without loss of generality
that x∗ does not include all items. In particular, x∗ leaves at least one item out and
therefore its weight satisfies wI(x∗) ∈ [ W − wmax . . W ]. By Lemma 8, it holds that
C log q

1 [wI(x∗)] ≥ pI(x∗) = PI [wI(x∗)] with probability at least 1− 1/n2. From now on we
condition on this event. We will use the following auxiliary claim:
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▷ Claim 10. The sequence C log q
1 [J log q] is monotone non-decreasing, and satisfies C log q

1 [i] ≤
PI [i] for all i ∈ J log q.

Proof. First we argue monotonicity by induction. Note that in the base case ℓ = 0, the
sequence C0

j [J0] = PI0
j
[J0] is monotone non-decreasing due to the definition of PI0

j
. For

level ℓ > 0, the sequence Cℓ
j is computed by taking the max-plus convolution of sequences of

level ℓ− 1. The result follows by observing that the max-plus convolution of two monotone
non-decreasing sequences is monotone non-decreasing.

The second part of the claim follows since (inductively) every entry C log q
1 [i] for i ∈ J log q

corresponds to the profit of a subset of items of I of weight at most i. ◁

Since x∗ is an optimal solution, it holds that PI [i] = pI(x∗) for all i ∈ [ wI(x∗) . . W ].
Thus Claim 10 yields that C log q

1 [i] = PI [i] for all i ∈ [ wI(x∗) . . W ], completing the proof. ◀

Running Time

Now we analyze the running time of Algorithm 1. The key speedup comes from the
computation in Algorithm 1, where we use Theorem 3 to perform the max-plus convolution.
Since Theorem 3 is phrased in terms of min-plus convolution of near-convex functions, we
will use the following corollary:

▶ Corollary 11. Let f : [ n ] 7→ [−U . . U ] and g : [ m ] 7→ [−U . . U ] be given as inputs, where
U ∈ N. Let ∆ ≥ 1 be such that both f and g are ∆-near concave. Then, MaxConv(f, g)
can be computed in time Õ((n + m)∆)

Proof. Noting that −f and −g are ∆-near convex (Definition 5), the result follows from
Theorem 3 and Fact 4. ◀

▶ Lemma 12 (Near Concavity, proof deferred to the full version). For every level ℓ ∈ [ 1 . . q ]
and every j ∈ [ 1 . . q/2ℓ ], it holds that Cℓ

j [Jℓ] is pmax-near concave.

▶ Lemma 13. Fix a level ℓ ∈ [ 1 . . q ] and an iteration j ∈ [ 1 . . q/2ℓ ]. The computation of
Cℓ

j in Algorithm 1 takes time Õ(pmax
√

∆2ℓ)

Proof. By Lemma 12, the sequences Cℓ−1
2j−1[Jℓ−1], Cℓ−1

2j [Jℓ−1] are pmax-near concave. Thus,
by Corollary 11, their max-plus convolution can be computed in time Õ(pmax|Jℓ|) =
Õ(pmax

√
∆2ℓ), where we used η = Õ(1). ◀

▶ Lemma 14 (Running Time of Algorithm 1). Algorithm 1 runs in time

Õ((pmaxW )2/3(nwmax)1/3 + nwmax).

Proof. Recall that q = min{ (n/pmax)2/3(W/wmax)1/3, W/wmax } (up to a factor of 2). Since
W ≤ nwmax, we have that q ≤ n. Moreover, since we assume without loss of generality that
wmax ≤ n, note that q < 1 if and only if q = (n/pmax)2/3(W/wmax)1/3 < 1. This implies that
pmax > n

√
W/wmax. But in this case, the claimed running time is Ω(nW ), so the standard

O(nW ) dynamic programming algorithm (Fact 6) already achieves our time bound. Thus,
we can assume without loss of generality that 1 ≤ q ≤ n, i.e., q is a valid choice for the
number of groups in which we split the item set I.
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We start bounding the running time of the base case, i.e., the computation of the arrays
C0

j for j ∈ [ 1 . . q ] in Algorithm 1. By Fact 6, and the definition ∆ = wmaxW/q this takes
time

O

 q∑
j=1
|I0

j |( W
q +
√

∆η)

 = O
(

n( W
q +
√

∆η)
)

= Õ
(

n W
q + n

√
wmaxW

q

)
. (1)

Now we bound the time of the combination step done in Algorithms 1–1. At level
ℓ ∈ [ 1 . . q ] and iteration j ∈ [ 1 . . q/2ℓ ] the execution of Algorithm 1 takes time Õ(pmax

√
∆2ℓ)

by Lemma 13. Thus, we can bound the overall time as

log q∑
ℓ=1

q/2ℓ∑
j=1

Õ(pmax
√

∆2ℓ) =
log q∑
ℓ=1

q

2ℓ
Õ

(
pmax

√
wmaxW

q 2ℓ
)

=
log q∑
ℓ=1

Õ

(
pmax

√
qwmaxW

2ℓ

)
,

since this is a geometric series, it is bounded by the first term Õ(pmax
√

qwmaxW ). Combining
this with (1), we obtain overall time

Õ
(

pmax
√

qwmaxW + n W
q + n

√
wmaxW

q

)
.

Recalling that q = Θ(min{ (n/pmax)2/3(W/wmax)1/3, W/wmax }), we obtain overall time

Õ((pmaxW )2/3(nwmax)1/3 + nwmax + (pmaxW )1/3(nwmax)2/3).

Finally, using that √xy ≤ (x + y)/2 for all x, y ≥ 0, we have that

(pmaxW )1/3(nwmax)2/3 =
√

(pmaxW )2/3(nwmax)1/3nwmax

≤ O((pmaxW )2/3(nwmax)1/3 + nwmax).

Thus, the overall running time is Õ((pmaxW )2/3(nwmax)1/3 + nwmax), as claimed. ◀

Proof of Theorem 1. Run Algorithm 1. By Lemma 9, we obtain that I log q
1 [W ] = OPT

with probability at least 1− 1/n2, which proves correctness. The running time is immediate
from Lemma 14. Observe that we can obtain success probability 1− 1/nc for any constant
c ≥ 2 by repeating the algorithm c/2 times. Finally, note that Algorithm 1 only computes
the optimal profit of the given instance. In the full version of the paper we describe how to
reconstruct the set of items in an optimal solution with no overhead in the running time. ◀

Proof Sketch of Theorem 2. Our presentation focused on proving Theorem 1. The proof of
the symmetric variant stated in Theorem 2 is very similar, thus we only sketch the required
changes. Essentially, we need to exchange profits with weights everywhere, which in turn
means exchanging max-plus convolutions by min-plus convolutions. In more detail: Instead
of working with the profit sequence PI , we work with the weight sequence WI , where the
entry WI [j] stores the minimum weight of a solution with profit at least j. We do not know
OPT, but we can compute an approximation Ṽ satisfying Ṽ − pmax ≤ OPT ≤ Ṽ in linear
time (see e.g. [29, Theorem 2.5.4]). In the algorithm, we exchange all ocurrences of wmax by
pmax and all ocurrences of W by Ṽ . With these changes, the functions Cℓ

j are now wmax-near
convex (instead of pmax-near concave) so we use Theorem 3 directly instead of Corollary 11.
In this way, we obtain the array C log q

1 [ Ṽ − pmax . . Ṽ ] =WI [ Ṽ − pmax . . Ṽ ]. Then, we can
infer OPT as the largest i ∈ [ Ṽ − pmax . . Ṽ ] such that WI [i] ≤W . ◀
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4 MinPlus Convolution for Near-Convex Sequences

In this section we prove Theorem 3.

▶ Theorem 3 (Near Convex MinPlus Convolution). Let f : [ n ] 7→ [−U . . U ], and g : [ m ] 7→
[−U . . U ] be given as inputs where n, m, U ∈ N. Let ∆ ≥ 1 such that both f and g are ∆-near
convex. Then the min-plus convolution of f and g can be computed in time Õ((n + m) ·∆).

4.1 Preparations
Throughout this section, fix the functions f : [n] 7→ [−U . . U ], g : [m] 7→ [−U . . U ]. Recall
that we say that f : [ n ] 7→ Z is ∆f -near convex, if there is a convex function f̆ : [ n ] 7→ Q such
that f̆(i) ≤ f(i) ≤ f̆(i) + ∆f for all i ∈ [ n ] (see Definition 5). First observe that the lower
convex hull of the points { (i, f(i)) | i ∈ [ n ] } gives the pointwise maximal convex function f̆

with f̆ ≤ f . This can be computed in time O(n) by Graham’s scan [25], since the points
are already sorted by x-coordinate. Then, we can infer ∆f = max{ 1, maxi∈[ n ] f(i)− f̆(i) }.
Thus, from now on we assume that we know f̆ , ∆f , ğ, ∆g. Set ∆ := max{∆f , ∆g }. Let
h̆ := MinConv(f̆ , ğ) and h := MinConv(f, g). The goal is to compute h.

We start by introducing some notation. We call (i, j) ∈ [ n ]× [ m ] a point. We visualize
a point (i, j) as lying on the i-th row and j-th column of an n×m grid, where (0, 0) is on
the bottom-left corner and (n, m) on the top right corner. A point (i, j) lies on diagonal
i + j. For any δ ≥ 0, a point (i, j) is δ-relevant if f̆(i) + ğ(j) ≤ h̆(i + j) + δ. We denote by
Rδ the set of all δ-relevant points.

Points that are 0-relevant are important because of the following observation: We call i a
witness for h̆(k) if f̆(i) + ğ(k − i) = h̆(k). Thus, observe that i is a witness for h̆(k) if and
only if (i, k − i) is a 0-relevant point.

The importance of 2∆-relevant points is captured by the following lemma:

▶ Lemma 15. If (i, j) /∈ R2∆ then f(i) + g(j) > h(i + j).

That is, points that are not 2∆-relevant can be ignored for the purpose of computing h.

Proof. Since (i, j) is not 2∆-relevant, it holds that f(i) + g(j) ≥ f̆(i) + ğ(j) > h̆(i + j) + 2∆.
Let k := i + j, and let i∗ be a witness for h̆(k), i.e., f̆(i∗) + ğ(k − i∗) = h̆(k). Then,

h(k) ≤ f(i∗) + g(k − i∗) ≤ f̆(i∗) + ∆ + ğ(k − i∗) + ∆ = h̆(k) + 2∆ < f(i) + g(j). ◀

We say that a set of points P is a monotone path if for every k ∈ [ n + m ] P contains
exactly one point (ik, jk) on diagonal k, and we have (ik+1, jk+1) ∈ { (ik + 1, jk), (ik, jk + 1) }
for every k ∈ [ n + m− 1 ], see Figure 1a for an illustration. For any δ > 0, we let

P +
δ := { (i, k − i) | k ∈ [ n + m ], i ∈ [ n ] is maximal s.t. (i, k − i) is δ-relevant },

P −
δ := { (i, k − i) | k ∈ [ n + m ], i ∈ [ n ] is minimal s.t. (i, k − i) is δ-relevant }.

The next two lemmas show that P +
δ , P −

δ are monotone paths and that P +
δ , P −

δ form the
boundary of Rδ, see Figure 1c for an illustration. This establishes structure of Rδ that we
will be exploit later.

▶ Lemma 16 (Monotone Paths, proof deferred to the full version). For any δ ≥ 0, P −
δ , P +

δ

are monotone paths.

Let (i, j) be a point and P a monotone path. Let (a, b) ∈ P be the unique point on the
same diagonal as (i, j), i.e., a + b = i + j. We say that (i, j) is below P if i < a, above P if
i > a, and on P if i = a, see Figure 1b for an illustration.
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(0, 0)

(n,m)

P

(a) A monotone path P .

(0, 0)

(n,m)

P

above

below

(b) Points above and below P .

P+
δ

P−
δ

(0, 0)

(n,m)

Rδ

(c) Rδ is between P +
δ and P −

δ .

Figure 1 Visualizations for concepts used in Section 4.

▶ Lemma 17. For any δ ≥ 0, Rδ consists of all points (i, j) that are on or below P +
δ and on

or above P −
δ .

Proof. Fix k ∈ [ n + m ] and let (i+, k − i+), (i−, k − i−) be the point on diagonal k in P +
δ

and P −
δ , respectively. Consider any (i, j) ∈ Rδ on diagonal k. By maximality of i+ we have

i ≤ i+, and similarly i ≥ i− by the minimality of i−. Thus, no point in Rδ is above P +
δ

or below P −
δ . It remains to show that for any i− ≤ i ≤ i+ we have (i, k − i) ∈ Rδ. Note

that the function r(i) := f̆(i) + ğ(k − i) is convex (since it is the sum of convex functions).
Since (i+, k − i+) is δ-relevant, we have r(i+) ≤ h̆(k) + δ. Similarly, since (i−, k − i−) is
δ-relevant, we have r(i−) ≤ h̆(k) + δ. By convexity of r, we obtain that r(i) ≤ h̆(k) + δ for
all i− ≤ i ≤ i+. Hence, we conclude that for each i− ≤ i ≤ i+ we have (i, k − i) ∈ Rδ. ◀

Finally, we need some background on sumsets. Given A, B ⊆ [−U . . U ]2 where U ∈ N,
we define A + B = { a + b | a ∈ A, b ∈ B } as their sumset, where the addition a + b is done
componentwise. The naive way to compute A+B takes time O(|A| · |B|). For our application,
we want to compute the sumset in time near linear in its size |A + B|. For this end, we will
use the following tool to compute sparse non-negative convolution. Given vectors P, Q ∈ Nn,
their convolution P ⋆Q ∈ N2n−1 is defined coordinate-wise by (P ⋆Q)[k] =

∑
i+j=k P [i] ·Q[j].

▶ Theorem 18 (Deterministic Sparse Convolution [10]). There is a deterministic algorithm
to compute the convolution of two nonnegative vectors A, B ∈ Nn in time O(t polylog(n∆)),
where t is the number of non-zero entries in A ⋆ B and ∆ is the largest entry in A and B.

See also [9] for improvements in the log-factors at the cost of randomization and [19, 33, 24]
for prior randomized algorithms with similar guarantees.

▶ Corollary 19 (Output Sensitive Sumset Computation). Given A, B ⊆ [−U . . U ]2, with
|A + B| ≤ N , A + B can be computed in time Õ(N).

Proof. Let A′ := { (x+U) ·5U +(y +U) | (x, y) ∈ A } and similarly, let B′ := { (x+U) ·5U +
(y + U) | (x, y) ∈ B }. Observe that this is a one-to-one embedding of A, B ⊆ [−U . . U ]2 into
A′, B′ ⊆ [ Θ(U2) ]. Moreover, one can check that given C ′ := A′ +B′ we can infer C := A+B

(the choice of 5U prevents any interactions between coordinates when summing them up).
Thus, it suffices to compute A′ + B′. To this end, construct their indicator vectors

PA′ , PB′ ∈ NΘ(U2) and compute the convolution PC′ = PA′ ⋆ PB′ . The non-zero entries
in PC′ correspond to the elements of A′ + B′. By Theorem 18, this runs in time O(|A′ +
B′| polylog(N, U)) = Õ(N). ◀
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4.2 Algorithm
We are ready to describe our algorithm. Recall that we have access to the functions f, f̆ , g, ğ

and the value ∆ = max{∆f , ∆g }.

Computing h̆ = MinConv(f̆ , ğ). Consider the pseudocode given in Algorithm 2.

Algorithm 2 Given convex functions f̆ : [ n ] 7→ Q, ğ : [ m ] 7→ Q, the algorithm computes h̆ =
MinConv(f̆ , ğ).

1: i∗
0 ← 0, h̆(0)← f̆(0) + ğ(0)

2: for k = 1, . . . , n + m do
3: i∗

k ← argmin{ f̆(i) + ğ(k − i) + i
2n | i ∈ { i∗

k−1, i∗
k−1 + 1 } ∩ [ n ] }

4: h̆(k)← f̆(i∗
k) + ğ(k − i∗

k)

▶ Lemma 20. Algorithm 2 computes h̆ = MinConv(f̆ , ğ) in time O(n + m).

Proof. The running time is immediate. To see correctness, focus on i∗
k for k ∈ [ n + m ] as

computed in Algorithm 2. We claim that the path P −
0 equals { (i∗

k, k − i∗
k) | k ∈ [ n + m ] }.

That is, we want to argue that i∗
k is the minimum witness of h̆(k) for each k ∈ [ n + m ].

Indeed, by Lemma 16, P −
0 is a monotone path. Thus, i∗

k ∈ { i∗
k−1, i∗

k−1 + 1 }. Observe that in
Algorithm 2 we pick i∗

k as the minimizer of f̆(i) + ğ(k − i) + i
2n where i ∈ { i∗

k−1, i∗
k−1 + 1 }.

Therefore, the algorithm correctly computes i∗
k (the additive term i/(2n) ensures that we

choose the minimal i). Since i∗
k is a minimum witness of h̆(k), the algorithm correctly

computes h̆(k) for all k ∈ [ n + m ]. ◀

We remark that MinConv(f̆ , ğ) could be computed using the SMAWK algorithm [1].
The reason we give a direct algorithm, is that we will need the witness path P −

0 as computed
by Algorithm 2.

Computing h = MinConv(f, g). Recall that f : [n] 7→ Z and g : [m] 7→ Z. As a final
simplification, we argue that we can assume without loss of generality that n = m, and n + 1
is a power of 2. To this end, let N be the smallest power of 2 greater than max{n, m }.
We pad the functions to length N by setting f(n + j) := 2j ·W for j ∈ [ 1 . . N − 1 − n ]
and g(m + j) := 2j · W for j ∈ [ 1 . . N − 1 − m ], where W is an integer larger than
maxi∈[ n ] f(i) + maxj∈[ m ] g(j). Observe that the entries h(0), . . . , h(n + m) of the result
h = MinConv(f, g) are unchanged (due to the choice of sufficiently large W ), so we can
read off the original result from the result of the padded functions. Moreover, observe that
the padding does not change the parameters ∆f and ∆g.

Now we can describe the algorithm. After running Algorithm 2 we can assume that we
have computed h̆ and the witness path P −

0 = { (i∗
k, k − i∗

k) | k ∈ [ n + m ] }. We will make
use of the following subroutines:

Relevant(i, j): returns f̆(i) + ğ(j) ≤ h̆(i + j) + 2∆.
BelowWitnessPath(i, j): returns i < i∗

i+j

AboveWitnessPath(i, j): returns i > i∗
i+j

Now we can compute h = MinConv(f, g) by calling RecMinConv([ 0 . . n ], [ 0 . . m ]).
See Algorithm 3 for the pseudocode.
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Algorithm 3 Given intervals I = [ iA . . iB ], J = [ jA . . jB ], the algorithm computes the contribu-
tion of f [I] and g[J ] to MinConv(f, g).

1: procedure RecMinConv(I = [ iA . . iB ], J = [ jA . . jB ])
2: if AboveWitnessPath(iA, jB) and NotRelevant(iA, jB) then ▷ Case 1
3: return h̃(k) =∞ for all k ∈ [ iA + jA . . iB + jB ]
4: if BelowWitnessPath(iA, jB) and NotRelevant(iB , jA) then ▷ Case 2
5: return h̃(k) =∞ for all k ∈ [ iA + jA . . iB + jB ]
6: if Relevant(iA, jB) and Relevant(iB , jA) then ▷ Case 3
7: Compute C ← { (i, f(i)) | i ∈ I }+ { (j, g(j)) | j ∈ J } using Corollary 19
8: Infer h̃(k)← min{ y | (k, y) ∈ C } for all k ∈ [ iA + jA . . iB + jB ]
9: return h̃

10: else ▷ Case 4
11: Split I into two intervals I1, I2 of equal length, similarly split J into J1, J2
12: Recursively compute g̃i,j ← RecMinConv(Ii, Jj) for i, j ∈ { 1, 2 }
13: return the pointwise minimum of the functions g̃i,j for i, j ∈ { 1, 2 }

Algorithm 3 recursively computes the contribution of f [ iA . . iB ] and g[ jA . . jB ] to
h = MinConv(f, g). We next discuss its four cases; see Figure 2 for illustrations of Cases 1-3.
If (iA, jB) is above the witness path P −

0 and is not 2∆-relevant (Case 1), then as we argue
below no point in I×J contributes to the output h, so in this case we return a dummy function
(which is +∞ everywhere). Case 2 is symmetric, where (iB , jA) is above P −

0 and not 2∆-
relevant, and we again return a dummy function. Case 3 applies when (iA, jB) and (iB , jA) are
both 2∆-relevant. In this case, we explicitly compute h̃ = MinConv(f [ iA . . iB ], g[ jA . . jB ])
by computing the sumset C = { (i, f(i)) | i ∈ I }+ { (j, g(j)) | j ∈ J } and infering h̃(k) as
the minimum y such that (k, y) ∈ C, which by definition of the sumset equals the minimum
f(i) + g(j) such that i ∈ I, j ∈ J and i + j = k. Note that this step can be done for all
k ∈ [ iA + jA . . iB + jB ] in total time O(|C|) by once scanning over all elements of C.

Finally, if none of the above cases apply, then we split both intervals I and J into equal
halves and recurse on all 4 combinations of halves. We combine them by taking the pointwise
minimum of all computed functions. This case is essentially brute force.

P+
2∆

P−
0

P−
2∆

(0, 0)

(n,m)

(a) Case 1.

P+
2∆

P−
0

P−
2∆

(0, 0)

(n,m)

(b) Case 2.

P+
2∆

P−
0

P−
2∆

(0, 0)

(n,m)

(c) Case 3.

Figure 2 Visualization of Cases 1-3. The green box represents the current subproblem.

Correctness. We start by analyzing the correctness of the algorithm.

▶ Lemma 21 (Correctness of Algorithm 3). RecMinConv([ 0 . . n ], [ 0 . . m ]) (Algorithm 3)
correctly computes h = MinConv(f, g).
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Proof. Let k ∈ [ n + m ] and consider a point (i∗, j∗) in diagonal k such that f(i∗) + g(j∗) =
h(k), i.e., a witness for h(k). We argue that some recursive call computes f(i∗) + g(j∗). This
is clear in Case 4, as (i∗, j∗) is covered by one recursive subproblem. It is also clear in Case
3, since then f(i∗) + g(j∗) is explicitly computed.

To finish correctness, we argue that (i∗, j∗) can never be in a subproblem to which Case
1 or 2 applies. Recall that Case 1 applies to a subproblem I = [ iA . . iB ], J = [ jA . . jB ]
if (iA, jB) is above P −

0 and (iA, jB) is not 2∆-relevant. Since (iA, jB) is not 2∆-relevant,
by Lemma 17 (iA, jB) must be above P +

2∆ or below P −
2∆. Since (iA, jB) is above P −

0 , it
can only be above P +

2∆. Since (iA, jB) is the lower right corner of I × J , it follows that all
points in I × J are above P +

2∆. Thus, by Lemma 17 all points in I × J are not 2∆-relevant.
If we assume for the sake of contradiction that (i∗, j∗) ∈ I × J , then Lemma 15 implies
f(i∗) + g(j∗) > h(k), contradicting the choice of (i∗, j∗) as a witness for h(k). Hence, (i∗, j∗)
can never be in a Case 1 subproblem. Case 2 is symmetric. This finishes the correctness
proof. ◀

Running Time. Next, we analyze the running time. The key insight is that in relevant
regions both functions are essentially linear, with the same slope (see Lemma 22). This
implies that the sumset computed in Case 3 is small (see Lemma 23), so it can be computed
efficiently using Corollary 19. In the following two lemmas, let I = [ iA . . iB ] ⊆ [ n ] and
J = [ jA . . jB ] ⊆ [ m ] be intervals of the same length |I| = |J |.

▶ Lemma 22 (Near Linearity, proof deferred to the full version). If I × J ⊆ R2∆ then there
are a, b, c ∈ R such that |f(i)− (a · i + b)| ≤ 2∆ for all i ∈ I and |g(j)− (a · j + c)| ≤ 2∆ for
all j ∈ J .

▶ Lemma 23 (Relevant Regions have Small Sumsets). If I × J ⊆ R2∆ then the sumset
{ (i, f(i)) | i ∈ I }+ { (j, f(j)) | j ∈ J } has size O(∆ · (|I|+ |J |)).

Proof. By Lemma 22, for any (i, j) ∈ I × J with i + j = k we have

f(i) + g(j) = (a · i + b) + (a · j + c)±O(∆) = a · k + b + c±O(∆).

Thus, for each of the |I|+ |J |−1 x-coordinates (i.e., choices of i+ j), there are O(∆) different
y-coordinates (i.e., values f(i) + g(j)) in the sumset. ◀

▶ Lemma 24 (Running Time of Algorithm 3). RecMinConv([ 0 . . n ], [ 0 . . m ]) (Algorithm 3)
runs in time Õ(n∆).

Proof. We first analyze the running time of one recursive subproblem, ignoring the cost of
recursive calls. Note that in Cases 1 and 2 it suffices to return a dummy value, i.e., we do
not need to iterate over k ∈ [ iA + jA . . iB + jB ] to explitly return h̃(k) =∞. Thus, Cases 1
and 2 run in time O(1). We charge this time to the parent of the current subproblem, which
is a Case 4-subproblem.

Consider Case 4. Ignoring the cost of the recursive subproblems, Case 4 runs in time
O(1), which also covers the charging from children which fall in Cases 1 and 2.

Consider Case 3, and let s := iB − iA + 1 = jB − jA + 1 be the current side length.
By Lemma 23, the sumset computed in Algorithm 3 has size O(∆s). Thus, it can be
computed in time Õ(∆s) using Corollary 19, and the function h̃ can be inferred from it in
time O(∆s).

Now we bound the total running time across subproblems. Fix a side length s and
consider all possible subproblems of side length s, i.e., all boxes

Bs
x,y := [ x · s . . x · s + s− 1 ]× [ y · s . . y · s + s− 1 ], where x, y ∈ [ n/s ].
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Consider a diagonal Ds,d := {Bs
x,x+d | x ∈ [ n/s ] } of these boxes, see Figure 3a. Note that

a box in Ds,d that lies fully above P +
∆ corresponds to a Case 1-subproblem. A box in Ds,d

that lies fully below corresponds to a Case 2-subproblem. A box that is below or on P +
2∆

and above or on P −
2∆ corresponds to a Case 3-subproblem. The remaining boxes intersect

P +
2∆ or P −

2∆ and correspond to Case 4.
Note that by monotonicity of P +

2∆, P −
2∆, at most two boxes in Ds,d are intersected by P +

2∆
or P −

2∆ and thus at most two boxes in Ds,d can appear as Case 4-subproblems. Thus, Case 4
incurs time O(1) per diagonal. We argue that among the boxes in Ds,d, at most two can
appear as Case 3-subproblems. Indeed, if these would be at least three such boxes, then the
parent of the middle box would also be between P +

2∆ and P −
2∆, and thus the parent would

already be a Case 3-subproblem, see Figures 3b and 3c. Thus, the middle box would not
get split, and it would not become a recursive subproblem. Hence per diagonal Ds,d, Case 3
incurs time Õ(∆s) for each of at most two boxes.

It remains to sum up over all side lengths 1 ≤ s ≤ n where s = 2ℓ is a power of 2 (recall
that at each recursive level we split the side length in two equal parts), and over all O(n/s)
diagonals d, to obtain total time

∑log n
ℓ=1 O(n/2ℓ) · Õ(∆2ℓ) = Õ(∆n). Note that the sum over

ℓ only adds another log-factor, which is hidden by the Õ-notation. ◀

(0, 0)

(n,m)

(a) A diagonal of boxes Ds,d.

(0, 0)

(n,m)

R2∆

(b) Three boxes inside R2∆.

(0, 0)

(n,m)

R2∆

(c) The parent box is already con-
tained in R2∆.

Figure 3 Visualizations for the proof of Lemma 24.
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Abstract
We present the algorithm funnelselect, the first optimal randomized cache-oblivious algorithm for the
multiple-selection problem. The algorithm takes as input an unsorted array of N elements and q query
ranks r1 < · · · < rq, and returns in sorted order the q input elements of rank r1, . . . , rq, respectively.
The algorithm uses expected and with high probability O

(∑q+1
i=1

∆i
B

· logM/B
N
∆i

+ N
B

)
I/Os, where

B is the external memory block size, M ≥ B1+ε is the internal memory size, for some constant ε > 0,
and ∆i = ri − ri−1 (assuming r0 = 0 and rq+1 = N + 1). This is the best possible I/O bound in the
cache-oblivious and external memory models. The result is achieved by reversing the computation
of the cache-oblivious sorting algorithm funnelsort by Frigo, Leiserson, Prokop and Ramachandran
[FOCS 1999], using randomly selected pivots for distributing elements, and pruning computations
that with high probability are not expected to contain any query ranks.
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1 Introduction

We present the first optimal randomized cache-oblivious algorithm for the multiple-selection
problem. Our result combines ideas from the cache-oblivious sorting algorithm funnelsort
with existing multiple-selection algorithms. Many existing time- and comparison-optimal
multiple-selection algorithms are already cache oblivious, but they are not optimal with
respect to the number of I/Os performed when analyzed in the cache-oblivious model.

Let us start with a brief history of the multiple-selection problem. In 1961, Hoare
presented the classic randomized sorting algorithm quicksort, published as Algorithm 64 in
the Algorithms column of the Communications of the ACM [15]. Quicksort makes essential
use of the randomized algorithm partition (Algorithm 63 [14]), that picks a random element,
denoted a pivot, and partitions the elements into those smaller and larger than the pivot.
By recursing on each subproblem, quicksort sorts an input of size N in expected O(N lg N)
time and comparisons1. Hoare observed that if we are only interested in finding the rth
smallest element in the input, denoted the element of rank r, we do not need to sort
the input completely. By pruning recursive calls in quicksort not relevant for finding the
rth smallest element, the resulting algorithm find (Algorithm 65 [16]) achieves expected
O(N) time. Chambers [7] generalized this idea to finding q elements of q given ranks
1 ≤ r1 < r2 < · · · < rq ≤ N , in the following denoted the multiple-selection problem, by
just skipping all recursive problems not containing any query rank. The expected running
time is O(N lg q), but Prodinger [19] proved a tighter expected bound of O(B + N), where
B =

∑q+1
i=1 ∆i lg N

∆i
with ∆i = ri− ri−1, for 1 ≤ i ≤ q + 1, assuming r0 = 0 and rq+1 = N + 1.

1 lg denotes the binary logarithm.
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We call B the entropy of the multiple-selection query [3]. Dobkin and Munro [8] achieved
matching asymptotic bounds for the worst-base time in the comparison model by using a
deterministic linear-time (single) selection algorithm [4, 20] for the partitioning steps.

1.1 Model of Computation
In this paper we study the multiple-selection problem in a hierarchical-memory model, where
we have an infinite external memory and an internal memory of capacity M elements, and
where data is transferred between the internal and external memory in blocks of B consecutive
elements. A block transfer is called an I/O (input/output operation). The I/O cost of an
algorithm is the number of I/Os it performs. Aggarwal and Vitter [1] introduced this as the
external-memory model and proved that sorting in this model requires Θ

(
N
B logM/B

N
B

)
I/Os.

The upper bound is, e.g., achieved by M/B-way mergesort and distributionsort algorithms,
where the algorithms exploit knowledge of the parameters M and B.

Frigo et al. [12, 13] introduced the cache-oblivious model, that essentially is the same as
the external-memory model, except that algorithms do not know M and B, and I/Os are
assumed to be performed automatically by an optimal paging algorithm. As a consequence,
cache-oblivious algorithms also adapt to multi-level memory hierarchies (under certain
conditions [13]). The same paper introduced the cache-oblivious sorting algorithm funnelsort
achieving the optimal external-memory I/O bound, assuming a “tall-cache”, M = Ω(B2).
Brodal and Fagerberg [6] observed that under the weaker tall-cache assumption M ≥ B1+ε,
for a constant ε > 0, the optimal I/O bound increases by a factor Θ(1/ε).

Multiple selection was studied in external-memory by Hu et al. [17] and Barbay et al. [3].
The algorithms have an I/O cost of O

(
BI/O + N

B

)
, where BI/O = B

B lg(M/B) . A matching
lower bound was sketched in [3] as a reduction from sorting, assuming the multiple-selection
algorithm partitions the input elements into the gaps between the queried elements (most
algorithms actually solve this problem, that Chambers denoted partial sorting). Hu et al. [17]
considered the case where the queried elements can be returned in arbitrary order without
partial sorting, and showed that without a tall-cache assumption, this problem can actually
be solved asymptotically faster for a small number of queries q.

1.2 Results
Our first result is a lower bound for the external-memory multiple-selection problem (and
not only for the partial-sorting problem as in the lower bound of Barbay et al. [3]).

▶ Theorem 1 (Lower bound). External-memory multiple selection in expectation requires
Ω(BI/O)−O

(
N
B logM/B B

)
I/Os.

Note that an external-memory lower bound is also a cache-oblivious lower bound (for
any online paging strategy), and that under a tall-cache assumption M ≥ B1+ε, for a
constant ε > 0, the last term O

(
N
B logM/B B

)
= O

( 1
ε ·

N
B

)
. The result is obtained by

combining the comparison lower bound for the multiple-selection problem by Dobkin and
Munro [8] with the general reduction technique of Arge et al. [2], that can derive an I/O-
decision-tree lower bound from a comparison-decision-tree lower bound.

Our second result is the cache-oblivious algorithm funnelselect.

▶ Theorem 2 (Funnelselect upper bound). There exists a randomized cache-oblivious algorithm
solving the multiple-selection problem using O

(
BI/O + N

B

)
I/Os in expectation and with high

probability.
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Table 1 Algorithms for selection and multiple selection. CO = cache-oblivious, E = expected,
wc = worst-case bounds. Note that Barbay et al. assume a tall cache, whereas Hu et al. do not.

Reference Comparisons I/Os Comments

Single selection
Hoare [16] E 2 ln 2B + 2N + o(N) O(N/B) CO, randomized
Floyd & Rivest [11] E N + min{r, N−r} + o(N) O(N/B) CO, randomized
Blum et al. [4] wc 5.4305N O(N/B) CO, deterministic
Schönhage et al. [20] wc 3N + o(N) ? deterministic, median
Dor & Zwick [9] wc 2.95 + o(N)N ? deterministic, median

Multiple selection
Chambers [7, 19] E 2 ln 2B + O(N) O((B + N)/B) CO, randomized
Dobkin & Munro [8] wc 3B + O(N) O((B + N)/B) CO, deterministic
Kaligosi et al. [18] wc B + o(B) + O(N) O((B + N)/B) CO, deterministic
Hu et al. [17] wc O(N lg(q)) O(N/B logM/B(q/B)) deterministic

wc O(B + N) O(BI/O + N/B) (from closer analysis)
Barbay et al. [3] wc B + o(B) + O(N) O(BI/O + N/B) online, determ., M ≥ B1+ε

New (Theorem 2) E O(B + N) O(BI/O + N/B) CO, randomized, M ≥ B1+ε

At the high level, the result is obtained by the standard approach of recursively partitioning
by pivots and pruning computations not containing any query ranks. To achieve good I/O
performance in the cache-oblivious model we pipeline the partitioning by essentially reversing
the computations done by funnelsort, and replace each merging node by a partitioning node.
Since we do not know the ranks of the pivots during the partitioning, we pick the pivots
carefully from a random sample such that a concentration bound guarantees approximate
ranks of the pivots, so we can truncate computations that with high probability do not
contain any query ranks. Table 1 summarizes known and the new results.

1.3 Preliminaries and Notation
Throughout the paper we assume that the input to a multiple-selection algorithm are two
arrays S and R, where S is an unsorted array of N elements from a totally ordered universe,
and R is a sorted array r1, . . . , rq of q distinct query ranks, where 1 ≤ r1 < · · · < rq ≤ N .
Our task is to report an array of the q order statistics S(r1), . . . , S(rq), where S(r) is the rth
smallest element in S, i.e., the element at index r in an array storing S after sorting it. If x

is an element and S a set, we let x < S denote that x < y for all y in S. Unless stated
otherwise, we assume that all elements in S are distinct.

1.4 Outline of Paper
In Section 2 we prove the I/O lower bound for multiple selection stated in Theorem 1. In
Section 3 we present internal-memory and external-memory algorithms as a warm-up for the
cache-oblivious algorithm in Section 4 achieving Theorem 2. In Section 5 we analyze the
algorithm. In Section 6, we discuss how to extend the algorithm to partially sort the input,
and in Section 7, we discuss how to deal with equal elements. Section 8 concludes with open
problems.

2 Lower Bound

In this section we prove Theorem 1. Dobkin and Munro [8, Theorem 1] observed that the
comparisons done by a comparison-based multiple-selection algorithm must classify the
remaining elements into “gaps” between the selected elements, and by sorting each of these
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gaps with ∆i − 1 elements using ∆i lg ∆i −O(∆i) additional comparisons, one can sort the
input. Together with the N lg N −O(N) lower bound on comparison based sorting, we have

#comparisons for multiple selection +
q+1∑
i=1

(∆i lg ∆i −O(∆i)) ≥ N lg N −O(N) ,

implying a lower bound of B −O(N) on the number of comparisons for multiple selection,
where B =

∑q+1
i=1 ∆i lg

(
N
∆i

)
. This holds for worst, average, and expected case.

To prove I/O lower bounds on external-memory algorithms, Arge et al. [2] presented
a general reduction that converts a comparison lower bound into an I/O lower bound, by
converting an I/O-decision tree T to a standard comparison decision tree Tc. An I/O-
decision tree consists of unary I/O-nodes moving B elements between internal and external
memory, and comparison nodes between two elements in internal memory. Their lower bound
reduction [2, Corollary 5] relates for any input x, the number of I/Os in T , #I/OsT (x), to
the number of comparisons in Tc, #comparisonsTc

(x), as

#comparisonsTc
(x) ≤ N lg B + #I/OsT (x) ·B

(
3 + lg M −B

B

)
. (1)

Since the reduction relates comparisons and I/Os for each input instance, the reduction can
be used to show worst-case, average-case, and expected-case lower bounds.

Plugging the B −O(N) comparison lower bound into eq. (1) we get

q+1∑
i=1

∆i lg N

∆i
−O(N) ≤ N lg B + #I/Os ·B

(
3 + lg M −B

B

)
,

implying the following I/O lower bound for multiple selection:

#I/Os ≥ 1
1 + 3

lg(M/B)
· BI/O −O

(
N

B
logM/B B

)
= Ω(BI/O)−O

(
N

B
logM/B B

)
,

for M ≥ 2B and BI/O =
∑q+1

i=1
∆i

B logM/B
N
∆i

= B
B lg(M/B) . This concludes the proof of

Theorem 1.
Aggarwal and Vitter [1, Theorem 3.1] proved that comparison-based external-memory

sorting requires Ω
(

N
B · logM/B

N
B

)
I/Os. This lower bound also applies to sorting in the

cache-oblivious model. Brodal and Fagerberg [6, Corollary 2] showed that for a cache-
oblivious sorting algorithm to be asymptotically optimal for all choices of M and B, a
“tall-cache” assumption M ≥ B1+ε is necessary. Since we can sort N elements using a
multiple-selection algorithm by querying all ranks 1, . . . , N , a tall-cache assumption is also
necessary for matching bounds for multiple selection in the cache-oblivious model.

3 Internal-Memory and External-Memory Multiple Selection

In this section we consider simple internal-memory and external-memory (cache-conscious)
algorithms for multiple selection as a warm-up for our cache-oblivous algorithm in Section 4,
which borrows ideas from both algorithms.

3.1 Internal Memory
A simple recursive internal-memory algorithm is MultiSelect (Algorithm 1). This is
essentially Chamber’s algorithm from 1971 [7], except for the choice of pivot. If there are no
query ranks in R, nothing needs to be reported. Otherwise, pick a pivot P from S, partition
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Algorithm 1 Internal-memory multiple selection.

1: procedure MultiSelect(S[1..N ], R[1..q])
2: if R ̸= ∅ then
3: P ← median of S (pivot)
4: Partition S into S1 < P < S2
5: r̄ ← |S1|+ 1 (the rank of P in S)
6: Partition R into R1 < r̄ < R2
7: MultiSelect(S1, R1)
8: if r̄ ∈ R then
9: Report P

10: MultiSelect(S2, {r − r̄ | r ∈ R2})

Algorithm 2 External-memory multiple selection (multi-way generalization of MultiSelect).

1: procedure MultiSelectI/O(S[1..N ], R[1..q])
2: if R ̸= ∅ then
3: Find k̄ − 1 ≤ k − 1 pivots P1 < · · · < Pk̄−1 in S

4: Partition S into S1, . . . , Sk̄ s. t. Pi−1 < Si < Pi (P0 = −∞, Pk̄ = +∞)
5: r̄i ← i + |S1|+ · · ·+ |Si| (the rank of Pi in S)
6: Partition R into R1, . . . , Rk̄ s. t. r̄i−1 < Ri < r̄i (r̄0 = 0, r̄k̄ = N + 1)
7: for i = 1, . . . , k̄ do
8: MultiSelectI/O(Si, {r − r̄i−1 | r ∈ Ri})
9: if r̄i ∈ R then

10: Report Pi

S \ {P} into S1 and S2, such that S1 < P < S2, compute the rank r̄ of the pivot P in S,
partition R \ {r̄} into R1 and R2, such that R1 < r̄ < R2, and recurse on the subproblems
(S1, R1) and (S2, R2). The pivot P is output before the second recursion if r̄ is a query rank
in R (so elements are reported in increasing rank order). This intuitively corresponds to a
distributionsort/quicksort, where we truncate recursive calls not containing any query ranks
in R.

In Algorithm 1, P is the exact median of S, but we could also have used an approximate
median, or a randomly sampled pivot. Chamber’s original algorithm uses a random element
from S. Finding the pivot can be done using the deterministic linear-time median finding
algorithms by Blum et al. [4] or the randomized algorithms by Hoare [16] or Floyd and
Rivest [11]. Prodinger [19] proved that selecting a random pivot leads to expected overall
O(B + N) time. Kaligosi et al. [18, Section 2] proved that Algorithm 1 achieves O(B + N)
worst-case time, if a linear time median selection algorithm is used.

Algorithm MultiSelect is cache oblivious, since it is designed independently of the
memory parameter B and M . All the above median algorithms are based on repeatedly
scanning arrays and (analyzed in the cache-oblivious model) require O(N/B) I/Os worst-case
and expected, respectively. Since the additional work of MultiSelect can be implemented
by repeatedly scanning arrays allocated on a stack, the I/O cost of the algorithm equals the
internal computation time divided by the external-memory block size, i.e., O(B/B) I/Os. Our
cache-oblivious algorithm from Section 4 improves upon this I/O cost by a factor Θ

(
lg M

B

)
.

ESA 2023
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r1 r2 r3 r4 r5 r6

S

S1S1 S2S2 S3S3 S4S4

P1 P2 P3

∆

Figure 1 Recursion for MultiSelectI/O with six query ranks and k = 4. Black squares are
pivots, arrows show rank queries, and shaded areas are skipped subproblems with no query ranks.

3.2 External Memory
A generalization of MultiSelect better suited for external memory is to replace the binary
partitioning by a multi-way partitioning. For a parameter k ≥ 2, we assume the set S is
partitioned into k̄ ≤ k subsets around k̄ − 1 pivots, where each set has size O(|S|/k). The
resulting algorithm is shown as MultiSelectI/O in Algorithm 2. Figure 1 shows a recursion
for MultiSelectI/O on an example with six query ranks. If all sets Si defined by the pivots
have size at most α|S|, where 1/k ≤ α < 1, we denote the partitioning a (k, α)-partitioning.
The algorithm MultiSelect (with exact medians) is the special case of MultiSelectI/O,
where we use a

(
2, 1

2
)
-partitioning.

There are several (k, O(1/k))-partitioning schemes described in the literature, e.g., a
(k, 1.5/k)-partitioning method with k =

√
M/B by Aggarwal and Vitter [1]. Here we describe

a simpler (k, 2/k)-partitioning that incrementally inserts the N elements of S into buckets
defined by a monotonically growing set of pivots, that also works for k = Θ(M/B). Initially
there is one empty bucket and no pivot. Whenever a bucket reaches size > 2N/k (i.e., the
size is 1 + ⌊2N/k⌋), the median of the bucket is selected as a new pivot, and the bucket
is split around the pivot into two buckets with the elements smaller than and larger than
the new pivot, respectively. Each new bucket has size at least ⌊N/k⌋. Therefore, the total
number of buckets created is at most k and each bucket contains at most 2N/k elements.

Crucial for the I/O effectiveness of this partitioning is that one memory block from each
bucket is in memory while scanning S and distributing elements to buckets, i.e., k ≤ c M

B for a
suitable constant 0 < c < 1. Since each bucket can be split using O(N/(kB)) I/Os using the
deterministic selection algorithm from [4], the total cost for creating a (k, 2/k)-partitioning
of S is O(N/B) I/Os, provided k ≤ c M

B . A binary search to find the bucket for an element
requires ≤ ⌈lg(k − 1)⌉ comparisons with pivots, i.e., in total O(N lg k) comparisons for
distributing to buckets. Since each of the at most k − 1 bucket splits requires O(N/k)
comparisons [4], creating a (k, 2k)-partitioning requires O(N lg k) comparisons.

3.3 Analysis
We now analyze the comparison and I/O cost of MultiSelectI/O. Assume creating a
(k, α)-partitioning has an (abstract) cost of C ·N , where C = C(k, α, M, B) does not depend
on N . For example, when counting comparisons we have C = Θ(lg k). The total cost of
MultiSelectI/O is the sum of the costs of all partitioning steps, i.e., C times the sum of
the sizes of all the subsets partitioned by the algorithm (the white rectangles in Figure 1).
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Consider any fixed gap ∆ between two query ranks. We assume that the right query
rank (but not the left) is part of the gap, so that all elements of S belong to exactly one gap.
At each level of the recursion, the gap ∆ intersects at most two subproblems that need to
be partitioned, namely the subproblems containing the query ranks at the boundary of ∆
(illustrated by the dashed lines in Figure 1). Since subproblems at depth d of the recursion
have size at most αdN , the total cost we need to charge within gap ∆ is at most C times

∞∑
d=0

min(∆, 2αdN) ≤ ∆
⌊

log1/α

2N

∆

⌋
+ ∆

∞∑
i=0

αi ≤ ∆ log1/α

2N

∆ + ∆
1− α

.

Here we use that 2αdN is geometrically decreasing and ∆ = 2αdN implies d = log1/α
2N
∆ ,

i.e., in the sum, ∆ is the term for the first
⌊
log1/α

2N
∆
⌋

levels, whereas the remaining terms
are geometrically decreasing, starting with at most ∆. Summing over all gaps we obtain
total cost at most

C ·

(
q+1∑
i=1

∆i log1/α

2N

∆i
+ N

1− α

)
. (2)

Recall that MultiSelect is the special case of MultiSelectI/O with k = 2 and α = 1/2.
For comparisons, we have C = O(1) per processed element in partitioning. By eq. (2), the
total number of comparisons in MultiSelect is O(B + N). For MultiSelectI/O we have
k = cM/B and α = 2/k, and a cost of C = O(1/B) I/Os per processed element, so by
eq. (2), MultiSelectI/O has a total cost of O

(
BI/O + N

B

)
I/Os. Alternatively, using the

multiway partitioning method of Aggarwal and Vitter [1] with k =
√

M/B, α = 1.5/k, and
cost C = O(1/B) for I/Os, we also get a total cost of O

(
BI/O + N

B

)
I/Os from eq. (2).

4 Cache-Oblivious Multiple Selection

In this section we present our cache-oblivious multiple-selection algorithm FunnelSelect
(Algorithm 4). We first recall funnels for merging (Section 4.1) and then show that they
can be used for partitioning (Section 4.2). FunnelSelect performs a single round of such
a funnel-based partitioning, splitting the input into k parts of expected size Θ(N/k) using
k − 1 pivots, where k = Θ(N1/d) and d = max{1 + 2/ε, 3} under the tall-cache assumption
M ≥ B1+ε. We then deal with each of the k parts with a non-empty set of rank queries by
fully sorting it and returning the sought ranks.

However, to stay within the allowed I/O bound, we have to truncate partitioning, namely
whenever neither side of the split is likely to contain a query rank (Section 4.4). To boost
the probability of “guessing correctly” which buckets query ranks fall into, we also have to
choose pivots judiciously (Section 4.3). Section 5 then proves Theorem 2.

4.1 Funnelsort
Since our cache-oblivious multiple-selection algorithm is heavily based on ideas from the
optimal cache-oblivious sorting algorithm funnelsort by Frigo et al. [12, Section 4], we
briefly recall funnelsort and in particular its k-merger construction here.2 Funnelsort uses

2 It should be noted that the cache-oblivious distributionsort algorithm in [12, Section 5] is a significantly
different approach than the one taken by funnelsort and our algorithm, even though our algorithm
highly resembles a classic internal-memory distributionsort algorithm.

ESA 2023
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v1 v3 v5 v7 v9 v11 v13 v15

v2 v6 v10 v14

v4 v12

v8

output arrayoutput arrayoutput arrayoutput arrayoutput arrayoutput arrayoutput arrayoutput arrayoutput arrayoutput arrayoutput arrayoutput arrayoutput arrayoutput arrayoutput arrayoutput array

⌈
kd/2⌉

⌈
kd/4⌉

⌈
kd/4⌉

input
arrays

k′-merger

k′′-mergers

Figure 2 A k-merger in funnelsort for k = 16 input arrays. Content in the buffers is shaded;
elements are added to the bottom of buffers and consumed from the top of buffers. The figure shows
the situation where v6 is in the process of filling its output buffer, after being recursively called from
v4 during its merging, which in turn has been called by v8 during its merging. Buffer sizes for the
three internal levels are shown next to the buffers.

O( N
B logM/B

N
B ) I/Os, assuming the tall-cache assumption M ≥ B2. Brodal and Fagerberg [5,

Lemma 1] presented a lazy version of funnelsort, achieving the same I/O bound under the
weaker tall-cache assumption M ≥ B1+ε, for any constant ε > 0. Funnelsort sorts an array
of N elements by an outer recursion that partitions the input into k arrays each of size at
most ⌈N/k⌉, sorts these subarrays recursively, and then merges these arrays using a k-way
construction named a k-merger. The parameter k depends on the tall-cache assumption
(via ε) and the input size N : k = 2⌈lg(N)/d⌉ = Θ(N1/d) for d = 1 + 2/ε.

A k-merger (see Figure 2) consists of a perfectly balanced binary tree of height lg k of
binary merger-nodes, where each tree edge contains a buffer that is a sorted array of elements.
Each merger-node consumes elements from two child buffers and feeds into its parent output
buffer. When invoking a merger-node v, the node v fills its output buffer by merging the
content of its input buffers until either the output buffer is full or one of the input buffers is
exhausted. If the input buffer of a child w is exhausted, we recursively invoke w to fill its
output buffer; then v continues to fill its output buffer.

The I/O efficiency of funnelsort hinges entirely on a judicious choice of buffer sizes.
The buffers connecting the middle levels of binary mergers (between level ⌈lg(k)/2⌉ and
one below) can hold ⌈kd/2⌉ elements each. The construction is recursively applied to a
k′ = 2⌈lg(k)/2⌉ ≈

√
k-merger forming the top ⌈lg(k)/2⌉ levels and the k′ children each of

which is a k′′ = 2⌊lg(k)/2⌋ ≈
√

k-merger below the middle buffers; following a van-Emde-Boas
layout of the binary tree and recursively allocating buffers consecutively in memory in that
order.
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4.2 Funnels for Partitioning

Figure 3 A 256-partitioner; splitter nodes are shown as circles (as in Figure 2); buffers are only
shown as edges, but with the vertical length of the edges to scale with the buffer sizes for d = 2.
(Buffer sizes by level are 4, 16, 4, 256, 4, 16, 4).

A key innovation of this paper is the k-partitioner, which uses funnels in reverse: instead
of merging k runs, we push elements down the funnel while partitioning them around k − 1
pivots into k buckets. We use the same internal buffer sizes for a k-partitioner as in a
k-merger; each buffer is organized as a queue and maintains an element count. The k output
buffers at the bottom of a k-partitioner are conceptually unbounded (never full). Note that
in partitioning, we always know the number N of elements and can allocate output buffers as
linked lists of blocks of size Θ(N/k). Calling Partition (Algorithm 3) on a node v partitions
elements around v’s pivot and passes them to one of v’s children, recursively emptying these
whenever they become full. FunnelPartition starts with all elements in the root’s input
buffer and then calls Partition on the root. After that, Flush recursively empties any
remaining nonempty buffers.

Figure 2 can be read mutatis mutandi as a k-partitioner instead of a k-merger: Each
node vi stores a pivot Pi and Partition pushes elements towards the leaves. Buffers are
consumed from the bottom and filled at the top of the hatched area. Figure 2 shows an
overall Partition call at v8, where first v4 and then v6 had run full; currently v6 is moving
elements from its parent buffer to its child buffers. Note that buffer sizes in Figure 2 are not
drawn to scale; Figure 3 gives a more truthful representation.

The main property of k-partitioners is given in Lemma 3 below. It is similar to [6,
Lemma 1], but we give a self-contained proof here.

▶ Lemma 3 (Funnel lemma). There exists a constant c ≥ 1 so that the following holds.
Let d ≥ 2 be a constant. The size of a k-partitioner (excluding its output buffers) is bounded
by c · k(d+1)/2. Assume d ≥ 2 is such that B1+ε ≤ M/3 where ε = 2/(d− 1). Partitioning
N ≥ kd elements with FunnelPartition around k− 1 pivots uses N lg(k) comparisons and
incurs O

(
N
B (logM (k) + 1) + k

)
I/Os.
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Algorithm 3 Operations on k-partitioners. The full() method returns whether a buffer has
capacity for further elements. The clear() method removes all current elements from a buffer.

1: procedure FunnelPartition(S[1..N ], P [1..k − 1])
2: Sort P

3: Build k-partitioner, using P as pivots (assigned in in-order to nodes)
4: r ← root node of k-partitioner
5: Partition(r, S)
6: Flush(r)
7: Return k-partitioner output buffers

8: procedure Partition(v, S[1..N ])
9: for x ∈ S do

10: if x ≤ v.pivot then
11: if v.leftBuffer.full() then
12: Partition(v.left, v.leftBuffer)
13: v.leftBuffer.append(x)
14: else
15: if v.rightBuffer.full() then
16: Partition(v.right, v.rightBuffer)
17: v.rightBuffer.append(x)
18: S.clear()

19: procedure Flush(v)
20: if v ̸= null then
21: Partition(v.left, v.leftBuffer)
22: Flush(v.left)
23: Partition(v.right, v.rightBuffer)
24: Flush(v.right)

Proof. Let h = lg(k); by definition of k, we have h ∈ N. The space usage is given recursively
by s(k) = k′ · ⌈kd/2⌉+ s(k′) + k′ · s(k′′); where k′ = 2⌈h/2⌉ and k′′ = 2⌊h/2⌋ are the number
of leaves in the top funnel and the bottom funnels, respectively. Assuming k = 22i for
i ∈ N, this simplifies to s(k) = k(d+1)/2 + (k1/2 + 1)s(k1/2), which satisfies s(k) ≤ S(k) where
we set S(k) = ck(d+1)/2 for a constant c ≥ 1 that depends on initial conditions; if we use
s(4) = 2 · 4d/2 + 3 (space for the buffers and the 3 pivots), c ≥ 2.2 suffices. The bound
s(k) ≤ S(k) indeed remains valid even when h is not a power of 2.

For the analysis of the I/O bound, let M and B with B(d+1)/(d−1) ≤ M/3 (“tall-
cache assumption”) be given. We follow the recursive construction of the funnel until a
k̂-partitioner F̂ satisfies S(k̂) ≤ M/3, i.e., its it fits entirely into (a third of the) internal
memory. For that choice, by the tall-cache assumption, the whole k̂-partitioner and one
block per child and parent buffer fit into internal memory: S(k̂) + (k̂ + 1)B ≤M .

Call the edges/buffers connecting F̂ to its parent and children large (if they exist). For
the analysis, imagine removing all large edges; this leaves us with disconnected base trees,
which in the k-partitioner are connected only by the large edges. Note that between any two
levels, either none or all edges are large. However, unless k = 22i , the height ĥ = lg(k̂) of a
base tree can vary between h = lg(M/(3c))/(d + 1) and h = 2h.
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Now consider a call to Partition at the root of a base tree F̂ with k̂ leaves. Over the
course of (recursively) pushing elements down through F̂ , we incur I/Os for loading the
buffers and pivots of F̂ . Since base trees fit entirely into internal memory, unless there is
another call triggered on a child base tree upon a full (large) buffer, we will only load buffers
inside the k̂-partitioner into memory once, at a total cost of O(S(k̂)/B) I/Os; we also need
to bring one block for each parent and child buffer into memory, using O(k̂) I/Os. We now
distinguish two cases.

Case (1): If k̂ = k, i.e., F̂ is the entire k-partitioner. Since F̂ (as well as one block
per input and output buffer) fits into internal memory, we only need to load it once, at a
cost of O(S(k)/B + k) I/Os. This is O(k(d+1)/2/B + k) = O(kd/B + k) = O(N/B + k) =
O(N/B(logM (k) + 1) + k) as claimed.

Case (2): Otherwise, k̂ < k. We will argue that the following potential scheme pays for all
I/Os costs: Whenever an element is inserted into a large buffer, it releases Θ(1/B) potential.

We first show that charging all elements for this released potential yields the desired
bound. Between any two large buffers, one partitioning phase moves an element at least h

levels down the tree. Overall, the N elements need to travel at most h = lg(k) levels down,
hence each element can be inserted at most ⌈h/h⌉ = O(logM (k) + 1) times into a large buffer,
giving an overall potential of O

(
N
B (logM (k) + 1)

)
= O

(
N
B (logM (k) + 1) + k

)
as claimed.

It remains to prove that the released potential exceeds the incurred I/O cost. First observe
that we initially have to load each F̂ when it is first used; likewise, we have to potentially
load each F̂ an additional time during the final Flush calls. These two load events sum to
O(S(k)/B + k) I/Os, which is O(N/B + k) (as in case (1) above). Additionally, at any point
in time during a Partition call on F̂ , we can get recursive Partition calls on F̂ ’s child
base trees in case their buffer becomes full; such a recursive call can evict F̂ from the internal
memory, and it has to be loaded before Partition resumes on F̂ , causing additional I/Os. We
cannot say when these evictions will happen, but every eviction of F̂ implies that a batch of β

elements have been pushed down from F̂ ’s input buffer to a child’s buffer, where β is the size
of the buffers below F̂ . By the recursive funnel construction, β = Ω(k̂d), so we must have seen
a total release of Θ(β/B) = Ω(k̂d/B) in potential. Since k̂ is the first value with S(k̂) ≤M/3,
we have S(2k̂2) > M/3, which implies, M = O(k̂d+1). By the tall-cache assumption, this
implies B = O(M (d−1)/(d+1)) = O

(
(k̂(d+1))(d−1)/(d+1)) = O(k̂d−1), so k̂ = O(k̂d/B). Hence,

the cost of loading F̂ again after an eviction of O(S(k̂)/B + k̂) = O(k̂d/B) I/Os is covered
by a release in potential. ◀

On a conceptual level, a k-partitioner can be thought of as a cache-oblivious gadget for
repeatedly partitioning with (variable) fan-out in Ω(M1/(d+1)) ∩ O(M2/(d+1)) that, when
applied to Ω(Md/(d+1)) elements, uses O(1/B) I/Os per element and partitioning round.
This results from the bounds on k̂ in base trees in the proof above.

4.3 Selecting Pivots

For funnelselect, we choose pivots P1, . . . , Pk−1 as follows; see also Figure 4: We first sample
each element in the input S with probability p = 1/ lg N . The resulting sample S̄ is sorted.
Finally we select the pivots as the ideal pivots in the sample, using the (expected) sample
size pN : the ith pivot Pi is the ⌊1 + ipN/k⌋th smallest element of S̄. If S̄ is too small, i.e.,
if |S̄| < ⌊(k − 1)pN/k⌋ or |S̄| > 2pN , we declare the pivot selection failed and repeat the
sampling process.
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sample
input

r

Figure 4 Using sampling to select k − 1 pivots for a k-way partitioning of the input, when k = 4
and N = 30. The expected sample size was 9 elements, but only 7 were actually sampled. Top
shows the sorted input and k − 1 ideal pivots, whereas the bottom shows similarly k − 1 ideal pivots
for a sample of the input points. Note the input of rank r is in the 2nd block of white nodes defined
by the ideal pivots, but would be in the 3rd block defined by the actual pivots from the sample.

In Lemma 6 we prove that all pivots are expected “close” to the ideal pivots in S. We call
the ith pivot Pi “ξ-bad” if its rank is more than ξ away from its ideal rank, more formally

Pi is “ξ-bad” if and only if
∣∣S ∩ (−∞, Pi]

∣∣ /∈
[
⌊1 + iN/k⌋ − ξ , ⌊1 + iN/k⌋ + ξ

]
.

We will call Pi bad if it is ξ-bad; otherwise it is good. We call a pivot selection “bad” if any
of the pivots is bad, and “good” otherwise. We select ξ =

⌈
N1/2+δ

⌉
for a small constant δ,

where 0 < δ < 1/6. Since we assume d ≥ 3, k = Θ
(
N1/d

)
implies N/k = Ω

(
N2/3), and

ξ < 1
2 N/k for sufficiently large N . We get the following fact:

▶ Fact 4 (Good pivots). If ξ < 1
2 N/k and all pivots are good,

(a) no bucket Si contains more than N/k + 2ξ ≤ 2N/k elements, and
(b) a query for a rank r will fall into one of at most two buckets: the ⌈(r − ξ)/N · k⌉th or

the ⌈(r + ξ)/N · k⌉th bucket.

Our analysis makes iterated use of the following Chernoff bound.

▶ Lemma 5 ([10, Theorem 1.1]). If X1, . . . , Xn are independent random variables in [0, 1],
and X = X1 + · · ·+ Xn, then for all t > 0 we have

Pr[X < E[X]− t], Pr[X > E[X] + t] ≤ e−2t2/n .

▶ Lemma 6. The probability that Pi is ξ-bad is bounded by 2 exp
(
−2ξ2p2/N

)
.

Proof. Pi is bad if its rank in S is too small (“small bad”) or too big (“big bad”). We first
consider too small ranks. By choice, there are ipN/k elements in S̄ smaller than Pi; if Pi has
small-bad rank, all of these elements must be of rank < iN/k − ξ in S. That means, from
these iN/k − ξ − 1 smallest elements in S, we have chosen at least ipN/k into S̄. Since each
choice is done independently with probability p = 1/ lg N , the number chosen for the sample
is X D= Bin(iN/k − ξ − 1, p), a random variable with binomial distribution and expectation
E[X] = p(iN/k − ξ − 1). We have

P[Pi “small bad”] ≤ P[X ≥ piN/k] ≤ P[X > E[X] + pξ]

≤
Lemma 5

exp
(
−2 (pξ)2

iN/k − ξ − 1

)
≤ exp

(
−2ξ2p2

N

)
.

For the “big-bad” case, we must have chosen at most ipN/k elements from the iN/k + ξ + 1
smallest elements in S into S̄. With X ′ D= Bin(iN/k + ξ + 1, p), we obtain

P[Pi “big bad”] ≤ P[X ′ ≤ piN/k] ≤ P[X ′ < E[X ′]− pξ] ≤ exp
(
−2ξ2p2

N

)
.

By the union bound, Pi is bad with probability at most 2 exp
(
−2ξ2p2/N

)
. ◀
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▶ Lemma 7. The probability that the sample is too small to choose k − 1 pivots is bounded
by exp

(
−2(pN/k − 1)2/N

)
.

Proof. For the sample to be too small, we must have selected at most (k− 1)pN/k elements
into the sample. Since |S̄| D= Bin(N, p), we have by Lemma 5

P[S̄ too small] = P[|S̄| ≤ E[|S̄|]− pN/k] ≤ exp
(
−2(pN/k − 1)2

N

)
. ◀

▶ Corollary 8. With high probability, the pivot choice is well-defined and all k − 1 pivots of
one sampling round are good.

Proof. By Lemmas 6 and 7 and the union bound, the probability that the sample is too
small to choose our pivots or that any Pi is bad is at most

2(k − 1) exp
(
−2ξ2p2/N

)
+ exp

(
−2(pN/k − 1)2/N

)
≤ 2k exp

(
−Ω
(
N2δ/ lg2 N

))
.

The inequality follows from p = 1/ lg(N), ξ = Ω
(
N1/2+δ

)
, N/k = Ω

(
N2/3), and δ < 1/6.

This probability tends to 0 with speed superpolynomial in N . ◀

4.4 Truncated Partitioning
The algorithms from Section 3 achieve optimal cost from simply not recursing on subproblems
not containing any query rank; after partitioning, it is obvious which subproblems are “query
free”. In a cache-oblivious algorithm, we have to truncate partitioning inside the k-partitioner.

After k-partitioning the input, elements are split into k buckets; let us denote these
buckets by S1, . . . , Sk. By Fact 4(b), when pivots are good, a query rank r will fall in
one of two buckets: one in S(r) = {S⌈(r−ξ)/N ·k⌉, S⌈(r+ξ)/N ·k⌉}. Buckets in the set QF =
{S1, . . . , Sk} \

⋃
r∈R S(r) do not contain any query ranks whenever pivots are good; we call

these buckets “expected query-free”. Note that this is a property solely of R and k and hence
QF can be determined by scanning R before partitioning commences.

When constructing the k-partitioner F , we check in a depth-first traversal whether all
leaves below a binary partitioning node v are in QF ; if so, we remove v and rewire its parent
to send elements directly to an output buffer instead of v’s input buffer. The sizes of buffers
between partitioning nodes and the Partition methods remain unchanged. By generating
the output buffers for the leaves of F consecutive in memory, before all internal buffers and
reserving 2N/k space for each, this truncation operation simply changes one pointer.

4.5 Funnelselect
The overall algorithm FunnelSelect is shown in Algorithm 4. It applies one round of
truncated k-partitioning as described above. For each of the resulting buckets, we then simply
invoke an existing I/O-optimal cache-oblivious sorting algorithm and report the sought ranks.
This can be done as a stack-based computation, so that no extra I/Os are paid for reporting
elements, but instead they are reported while they are in main memory anyways from sorting.

5 Analysis

▶ Theorem 9. Algorithm FunnelSelect is cache oblivious and uses O
(
BI/O + N

B

)
I/Os

to report q query ranks r1 < · · · < rq from an unsorted array of N elements. With high
probability it does not fail.
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Algorithm 4 Our overall cache-oblivious multiple-selection algorithm.

1: procedure FunnelSelect(S[1..N ], R[1..q], δ)
2: p← 1/ lg N

3: k ← 2⌈lg(N)/d⌉

4: ξ ← ⌈N1/2+δ⌉
5: Scan S, copy each element into the sample S̄ i. i.d. with prob. p

6: if |S̄| ≤ (k − 1)pN/k ∨ |S̄| < 1
2 Np ∨ |S̄| > 2Np then

7: return Fail
8: Sort S̄

9: for i = 1, . . . , k − 1 do
10: Pi ← S̄[⌊1 + ipN/k⌋] (select pivots from S̄)
11: Construct k-partitioner F using pivots P1, . . . , Pk−1; let S1, . . . , Sk be its leaf buckets
12: for r ∈ R do
13: b1 ← ⌈(r − ξ)/N · k⌉ and b2 ← ⌈(r + ξ)/N · k⌉
14: Mark leaf buckets Sb1 and Sb2 as expected query free
15: for node v in bottom-up traversal of F do
16: if both of v’s children are marked expected query free then
17: Mark v as expected query free
18: Delete v’s children
19: for node v in preorder traversal of F do
20: if v marked expected query free then
21: Declare v’s parent an expected query free output buffer
22: Delete v

23: Partition(F.root, S)
24: Flush(F.root)
25: L1, . . . , Lk̂ ← leaf buckets in F

26: ℓ← 0
27: for i = 1, . . . , k̂ do
28: R′ ← R ∩ (ℓ, ℓ + |Li|]
29: if R′ ̸= ∅ then
30: if Li marked expected query free ∨ |Li| > 2N/k then
31: return Fail
32: else
33: Sort Li using an I/O-optimal cache-oblivious sorting algorithm.
34: for r ∈ R′ do
35: Report Li[r − ℓ]
36: ℓ← ℓ + |Li|

Proof. Let us first deal with failures. We let the algorithm fail if |S̄| is smaller than 1
2 Np or

larger than 2Np. From Lemma 5, with high probability, this does not happen. The only
other cause for failure are bad pivots; by Corollary 8 with high probability, this also does not
happen.

For the I/O cost, we consider the different steps in turn. The I/O cost for computing
the pivots consists of O(N/B) I/Os to scan the input to construct the sample S̄ of size at
most N̄ = 2N/ lg N . To sort the sample, we can use standard top-down mergesort, yielding
O(N̄/B · lg(N̄/M)) = O(N/B) I/Os for sorting S̄ and O(N/B) I/Os to extract the pivots
from S̄. In total selecting the pivots requires O(N/B) I/Os.
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The buffers of F can be built sequentially, using O(k(d+1)/2/B) = O(N (d+1)/2d/B) =
O(N/B) I/Os (Lemma 3). Preparing the leaf buffers additionally touches k = O(N1/d)
positions; if N1/d > N/B, then B > N (d−1)/d and by the tall-cache assumption, M ≥
B(d+1)/(d−1) > N (d+1)/d, so the entire input fits in internal memory and the k accesses are
cached. The same applies for truncating the k-partitioner; anything touching O(k) random
positions incurs O(N/B) I/Os. Marking leaves and nodes as expected query-free can be
done by scanning R (which is sorted), hence we use O(q/B) = O(N/B) I/Os.

The key step is the k-partitioner. As in the proof of Lemma 3, we define k̂ as the level in
the recursive construction of the partitioner where the k̂-partitioner first fits into internal
memory. We overestimate the actual cost by always assuming the smallest k̂ = (M/3c)1/(d+1).
As shown there, the k-partitioner has up to constant factors the same I/O cost as a repeated
k̂-way external-memory partitioning: O(1/B) I/Os per element and k̂-way split. This remains
true when truncating the same subtrees in both algorithms. We can hence bound the cost of
funnel partitioning as in Section 3 by charging the lengths of segments that are split further
(white rectangles in Figure 1) to individual gaps ∆. For MultiSelectI/O, charging a gap ∆
on each level either ∆ or the 2 segments containing its endpoints, whichever is less, was
sufficient to cover all partitioning costs. For FunnelSelect, due to marking (up to) two leaf
buckets as not query-free for the endpoints, we can have up to 4 segments on any level that
still require partitioning. The rest of the analysis is the same, though, and with C = O(1/B),
k = k̂, and α = 2/k̂, we obtain an upper bound of

C ·

(
q+1∑
i=1

∆i log1/α

4N

∆i
+ N

1− α

)
= O(BI/O + N/B)

I/Os for partitioning.
The last part of the algorithm, solving subinstances of multiple selection within leaf buckets,

could be solved recursively, but as we now show, fully sorting such buckets also fits our desired
I/O bound. This improves the failure probability as sorting can be deterministic. A subprob-
lem Li to recurse on is never declared query-free and hence moves all the lg k levels down
the k-partitioner. For N ′ = |Li|, Li hence contributes Θ

(
N ′

B logM k
)

= Θ
(

N ′

B logM/B N
)

I/Os to the partitioning cost, since k = Θ
(
N1/d

)
and under our tall-cache assumption

lg M
B = Θ(lg M). This is an upper bound on the I/O cost of sorting N ′ elements. Any

I/O-efficient cache-oblivious sorting method (such as funnelsort) hence suffices for overall
O(BI/O + N

B ) I/Os. ◀

▶ Corollary 10. There exists a randomized cache-oblivious algorithm solving the multiple-
selection problem using expected and with high probability O

(
BI/O + N

B

)
I/Os.

Proof. FunnelSelect is formulated as a Monte-Carlo algorithm with worst-case time
matching our expected-case time, but which can Fail occasionally. Repeating any failed
execution turns it into a Las-Vegas algorithm with O

(
BI/O + N

B

)
expected I/Os; since

the failure probability is superpolynomially small, we obtain the same bound with high
probability. ◀

6 Partial Sorting

In internal memory, multiple selection would usually rearrange the input in place so that after
the call to the multiple-selection algorithm, the sought elements are at indices r1, . . . , rq. One
would then not even return these elements explicitly. In external memory, this variant is less
desirable, as one would have to pay q I/Os for accessing the elements by index later. Hence
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we defined the multiple-selection problem to return the elements of given ranks. However, it
can be useful to also obtain the input partitioned around these returned values. Since all our
multiple-selection algorithms conceptually follow an inorder traversal of a recursion tree and
report sought elements (in sorted order) when they are identified, it is easy to augment the
algorithms to produce a partitioned copy of the input array along the way. For funnelselect,
we just have to make sure that output buckets are allocated sequentially in memory from
left to right. That way we can output all elements falling between two returned pivots.

7 Allowing Identical Elements

In the previous sections we assumed elements to be distinct. A generic way to allow identical
elements in the algorithms is by letting the algorithms process pairs (x, i), where x is the ith
element in the array S, and break comparison ties between identical elements by comparing
by their input position. This ensures all elements are considered distinct.

The drawback is that the computations need to process and store all these input positions.
To avoid this overhead, one needs to address the problem directly by the individual algorithms.
In the algorithms one needs to handle that multiple elements can be equal to the pivots. In
the partitioning steps one needs to keep track of the number of elements equal to the pivots
and only partition the elements not equal to pivots. Finally, one need to use this information
gathered to handle that a pivot can span a range of ranks and be the answer to multiple
query ranks.

8 Conclusion and Open Problems

We presented the first cache-oblivious multiple-selection algorithm that achieves the optimal
I/O cost even when taking the (entropy of the) ranks to select into account.

A natural open problem is to find a deterministic cache-oblivious multiple-selection
algorithm that achieves the same I/O bound as our randomized algorithm. Another interesting
direction to explore is the “online” version of multiple selection studied in [3], where the
ranks are given one after the other in arbitrary order and the algorithm has to produce
the element of a given rank before the next rank is revealed. Investigating the practical
performance of funnelselect is another route to pursue.
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Abstract
Given a point set P in the Euclidean plane and a parameter t, we define an oriented t-spanner as an
oriented subgraph of the complete bi-directed graph such that for every pair of points, the shortest
cycle in G through those points is at most a factor t longer than the shortest oriented cycle in the
complete bi-directed graph. We investigate the problem of computing sparse graphs with small
oriented dilation.

As we can show that minimising oriented dilation for a given number of edges is NP-hard in the
plane, we first consider one-dimensional point sets. While obtaining a 1-spanner in this setting is
straightforward, already for five points such a spanner has no plane embedding with the leftmost
and rightmost point on the outer face. This leads to restricting to oriented graphs with a one-page
book embedding on the one-dimensional point set. For this case we present a dynamic program to
compute the graph of minimum oriented dilation that runs in O(n8) time for n points, and a greedy
algorithm that computes a 5-spanner in O(n log n) time.

Expanding these results finally gives us a result for two-dimensional point sets: we prove that
for convex point sets the greedy triangulation results in an oriented O(1)-spanner.
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1 Introduction

Computing geometric spanners is an extensively studied problem [5, 20]. Directed geometric
spanners have also been considered [1]. Given a point set P ⊂ Rd and a parameter t, a
directed t-spanner G = (P, E) is a subgraph of the complete bi-directed geometric graph on
P such that for every pair of points p, p′, the shortest path in G is at most a factor t longer
than the shortest path in the complete graph, that is, |p − p′|. The dilation of G then is
the smallest such t. Formally, t = max

{ |dG(p,p′)|
|p−p′|

∣∣ p, p′ ∈ P
}

, where dG(p, p′) denotes the
shortest path from p to p′ in G.

(Directed) geometric spanners have a wide range of applications, ranging from wireless
ad-hoc networks [7, 21] to robot motion planning [12] and the analysis of road networks [2, 14].
In all of these applications one might want to avoid adding the edge (v, u) if the edge (u, v) was
included: in ad-hoc networks this may reduce interference, in motion planning it may reduce
congestion and simplify collision avoidance, in road networks this corresponds to one-way
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roads or tracks, which may be necessary because of space limitations, and in communication
networks one could require two neighbouring devices not to exchange data by the same
(bi-directional) direct connection, for example, in two-way authentication.

This motivates our study of oriented graphs as spanners, i.e. directed spanners G = (P, E)
where (p, p′) ∈ E implies (p′, p) /∈ E. With this restriction, if the edge (p, p′) is added, the
dilation in the other direction is never 1. Even worse, given a set P of three points, where p

and p′ are very close to each other and p′′ is far away from both, any oriented graph will
have arbitrarily high dilation for either (p, p′) or (p′, p) (see Figure 1). Therefore, considering
the dilation for an oriented graph as t = max

{ |dG(p,p′)|
|p−p′|

∣∣ p, p′ ∈ P
}

would not tell us much
about the quality of the spanner. To obtain meaningful results, we define oriented dilation.

p

p′

p′′

Figure 1 If p and p′ are very close to each other and p′′ is far away from both, any oriented
graph will have arbitrarily high (directed) dilation.

By CG(p, p′) we denote the shortest oriented cycle containing the points p and p′ in an
oriented graph G. The optimal oriented cycle ∆(p, p′) for two points p, p′ ∈ P is the shortest
oriented cycle containing p and p′ in the complete graph on P . Notice, ∆(p, p′) is the triangle
∆pp′p′′ with p′′ = arg min

p∗∈P \{p,p′}

(
|p− p∗|+ |p∗ − p′|

)
.

▶ Definition 1 (oriented dilation). Given a point set P and an oriented graph G on P , the
oriented dilation of two points p, p′ ∈ P is defined as

odil(p, p′) = |CG(p, p′)|
|∆(p, p′)| .

The dilation t of an oriented graph is defined as t = max{odil(p, p′) | ∀p, p′ ∈ P}.

An oriented graph with dilation at most t is called an oriented t-spanner. We frequently
contrast our results to known results on undirected geometric spanners, and refer to the
known results by using the adjective undirected. Our new measure for oriented graphs is
similar to the definition of dilation in round trip spanners [9, 10] that has been considered in
the setting of (non-geometric) directed graph spanners; but round trip spanners require a
starting graph, and using the complete bi-directed geometric graph would not give meaningful
results.

In this paper, we initiate the study of oriented spanners. As is common for spanners, our
general goal is to obtain sparse spanners, i.e. with linear number of edges. The goal can be
achieved by bounding the number of edges explicitly or by restricting to a class of sparse
graphs like plane graphs [5]. We refer to a spanner as a minimum (oriented) spanner if it
minimises t under the given restriction.

It is known that computing a minimum undirected spanner with at most n− 1 edges, i.e.
a minimum dilation tree, is NP-hard [15]. The corresponding question for oriented spanners
asks for the minimum dilation cycle. We prove this problem to be NP-hard in Section 3.1.

The problem of computing the minimum undirected spanner restricted to the class of
plane straight-line graphs is called the minimum dilation triangulation problem; its hardness
is still open [14, 15], but it is conjectured to be NP-hard [6]. As this undirected problem can
be emulated in the oriented setting by suitable vertex gadgets, it is unlikely that finding a
minimum plane straight-line (oriented) spanner can be done efficiently.
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Therefore, in Section 2, we start with one-dimensional point sets. For such a point set
P with n points, we can give a minimum spanner with 3n − 6 edges. However, if we are
interested in a one-dimensional result analogous to minimum plane spanners, this spanner
is not suitable: it has no plane embedding with leftmost and rightmost point on the outer
face. Therefore, we restrict our attention to a graph class that is closer to the plane case for
two-dimensional point sets: one-page book embeddings.

We show how to compute a t-spanner which is a one-page plane book embedding for a
one-dimensional point set in Section 2.2. We prove that with a greedy algorithm, we can
always generate such a t-spanner with t ≤ 5 in O(n log n) time. An optimal one-page plane
spanner can be computed in O(n8) time (Theorem 11).

As the resulting spanner is outerplanar, this particular class of graphs is also motivated
by the problem of finding a minimum plane spanner for points in convex position. Using
these results, in Section 3.2, we show that suitably orienting the greedy triangulation leads
to oriented O(1)-spanners for two-dimensional point sets in convex position (Theorem 16).
For general (non-convex) point sets, there are examples where all orientations of the greedy
triangulation have large dilation.

The greedy triangulation fulfils the α-diamond-property [11], and all triangulations with
this property are undirected O(1)-spanners. This raises the question whether all triangulations
fulfilling this property are also oriented O(1)-spanners for convex point sets. In Section 3.3
we answer this question negatively.

Table 1 Overview of the results of the paper.

Point set Spanner type Dilation Time complexity Reference
2-dim. unrestricted minimum NP-hard Theorem 14
2-dim. unrestricted ≤ 2 O(n2) Proposition 13
2-dim. plane minimum Min.Dil. Triangulation Observation 15

2-dim. convex plane O(1) O(n log n) Theorem 16
1-dim. unrestricted 1 O(n) Corollary 3
1-dim. 2-page-plane ≤ 2 O(n) Proposition 4
1-dim. 1-page-plane minimum O(n8) Theorem 11
1-dim. 1-page-plane ≤ 5 O(n log n) Theorem 10

2 One-Dimensional Point Sets

We first focus on points in one dimension. We will always draw points on a horizontal line
with the minimum point leftmost, and the maximum point rightmost. We observe that in
one dimension only the dilation of a linear number of candidate pairs needs to be checked.

▶ Lemma∗ 2. Let P be a one-dimensional point set of n points. The oriented dilation t of
an oriented graph G on P is

t = max{odil(pi, pi+2), odil(pj , pj+3) | 1 ≤ i ≤ n− 2, 1 ≤ j ≤ n− 3}.

This observation directly leads to an oriented 1-spanner with 3n − 6 edges for every
one-dimensional point set.

The proofs of results marked by ∗ are given in a long version of this paper.

ESA 2023



26:4 Oriented Spanners

▶ Corollary 3 (oriented 1-spanner). For every one-dimensional point set P , G = (P, E) with

E = {(pi, pi+1), (pj+2, pj), (pk+3, pk) | 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 2, 1 ≤ k ≤ n− 3}

is an oriented 1-spanner for P (see Figure 2).

p1 p2 p3 p4 p5 p6 p7 p8

p1

p2

p3

p4

p5

p6

p7

p8

Figure 2 One-dimensional oriented 1-spanner and its plane embedding in the Euclidean space.

In two dimensions, plane (straight-line) spanners are of particular interest. The nat-
ural one-dimensional analogue to plane straight-line graphs are one- and two-page book
embeddings [3, 8, 13, 22].

A one-page book embedding of a graph corresponds to an embedding of the vertices as
points on a line with the edges drawn without crossings as circular arcs above the line. In a
two-page book embedding an edge may be drawn as an arc above or below the line. In such a
(one- or two-page) book embedding, for consecutive points on the line, we may draw their
edge straight on the line. We call a graph one-page plane (respectively two-page plane) if it
has a one-page (respectively two-page) book embedding.

In particular, one-page plane graphs are outerplanar graphs and correspond to plane
straight-line graphs if we embed the points on a (slightly) convex arc instead of on a line.
Two-page plane graphs are a subclass of planar graphs, while any planar graph has a four-page
book embedding [22].

As we argue next, the 1-spanner of Corollary 3 is not two-page plane (and therefore
also not one-page plane). This follows from a stronger statement: the graph has no plane
embedding with the first and last point on the outer face. Suppose the graph would have
such an embedding. The graph has 3n− 6 edges, but no edge between the first and the last
point for n > 4. Thus, we could add this edge while maintaining planarity, which contradicts
the fact that a planar graph has at most 3n− 6 edges. Interestingly, the 1-spanner is planar.
We construct a stack triangulation by adding points from left to right. The first three points
form a triangle. Then, we inductively add the next point into the triangle formed by the
previous three points. See Figure 2.
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2.1 Two-Page Plane Spanners
As argued above, the 1-spanner given in Corollary 3 is not two-page plane (and thus not
one-page plane). Moreover, by Lemma 2, no two-page plane 1-spanner can exist. However,
we can give a two-page plane 2-spanner for every one-dimensional point set:

▶ Proposition∗ 4 (two-page plane 2-spanner). For every one-dimensional point set P , the
graph G = (P, E) with E = {(pi, pi+1), (pj+2, pj) | 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n − 2} (see
Figure 3) is a two-page plane oriented 2-spanner for P .

pi pi+1 pi+2 pi+3 pi+4

Figure 3 Part of G = (P, E) with E = {(pi, pi+1), (pj+2, pj) | 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n − 2}.

2.2 One-Page Plane Spanners
The 2-spanner given by Proposition 4 is two-page plane, but not one-page plane. As noted
above, one-page plane graphs on one-dimensional point sets correspond to plane straight-line
graphs if we interpret the point set as being convex. We thus place particular focus on
one-plane plane graphs, since they are not only of interest in their own right but also aid us
in finding oriented plane spanners in two-dimensions.

By maximal one-page plane, we mean a one-page plane graph G = (P, E) such that for
every edge e /∈ E, the graph G′ = (P, E ∪ {e}) is not one-page plane. We call the edge set
{(pi, pi+1) | 1 ≤ i ≤ n− 1} the baseline. A directed edge (pj , pi) with i < j is a back edge.

We refer to an oriented one-page plane graph that includes a baseline and all other edges
are back edges as a one-page-plane-baseline graph, for short 1-PPB graph. Lemma 5 shows
that a 1-PPB graph has smaller dilation than an oriented graph with the same edge set but
another orientation. Without loss of generality, we consider only 1-PPB graphs instead of
one-page plane graphs in general.

▶ Lemma∗ 5. Let G = (P, E) be a one-page plane oriented t-spanner for a one-dimensional
point set P . Let E′ be an edge set where the edges are incident to the same vertices as E,
but the orientation may be different. If we orientate such that G′ = (P, E′) is a 1-PPB graph,
then the dilation of G′ is at most t.

▶ Lemma∗ 6. Let P be a one-dimensional point set of n points. The oriented dilation t of a
1-PPB graph for P is

t = max{odil(pi, pi+2) | 1 ≤ i ≤ n− 2}.

Lemma 6 holds for every 1-PPB graph, even if it is not maximal. Proposition 4 shows
that Lemma 6 does not hold for non-one-page plane graphs.

Due to one-page planarity, for a point set P with |P | > 3, every graph G contains a tuple
pi, pi+2 ∈ P where CG(pi, pi+2) ̸= ∆(pi, pi+2). Combining this with Lemma 6, we get:

▶ Corollary 7. There is no one-page plane 1-spanner for any point set P with |P | > 3.

ESA 2023
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However, there are point sets with a one-page plane almost 1-spanner. Let G = (P, E)
be a graph with |P | = 5, E = {(pi, pi+1) | 1 ≤ i ≤ n − 1} ∪ {(p3, p1), (p5, p3)} and the
distances p2 − p1 = p5 − p4 = ε and p3 − p2 = p4 − p3 = 1 (see Figure 4). It holds that
t = odil(p2, p4) = 2+2ε

2 . For an arbitrary small ε, G is a one-page plane almost 1-spanner.

p1 p2 p3 p4 p5

ε 1 1 ε

Figure 4 1-PPB almost 1-spanner.

▶ Observation∗ 8. There are one-dimensional point sets where no one-page plane oriented
t-spanner exists for t < 2.

We construct a 1-PPB spanner by starting with the base line and greedily adding back
edges sorted by length from shortest to longest if they do not cross any of the edges already
added. The following leads to a simple, greedy algorithm for constructing this graph: The
first edge that we need to add is the shortest edge between two points with exactly one point
in between. Imagine deleting the point that was in between. Then again, we need to add the
shortest edge with exactly one point in between and so on, until only two points are left. By
maintaining the points in a linked list and the relevant distances in a priority queue, this
leads to a run time of O(n log n).

To bound the dilation of the resulting graph, we need the concept of a blocker.

▶ Definition 9 (blocker). Let E be the greedily computed back edge set. Because the resulted
graph G = (P, E ∪ {(pi, pi+1) | 1 ≤ i ≤ n− 1}) is maximal, (pj , pi) /∈ E for i + 2 ≤ j implies
there is a shorter edge in E which intersects with (pj , pi). (The greedy algorithm added
this edge first and discarded (pj , pi) in a later iteration of the loop.) For the shortest edge
intersecting (pj , pi), we say it blocks (pj , pi). The edge can be blocked by (pk, pm) with k > j

and i < m < j or (pm, pk′) with k′ < i and i < m < j (see Figure 5).

pk′ pi pm pj pk

Figure 5 (pj , pi) can be blocked by (pk, pm) or (pm, pk′ ) with i < m < j, k > j and k′ < i.

▶ Theorem∗ 10 (one-page plane 5-spanner). Given a one-dimensional point set P of size n,
a one-page plane oriented 5-spanner can be constructed in O(n log n) time.

The full proof is given in the full version, but, since the proof of correctness for the greedy
two-dimensional algorithm (see Section 3.2) works similarly, we give a proof sketch here.

Proof sketch. Due to Lemma 6, it is sufficient to bound the dilation odil(pi, pi+2) of tuples
pi, pi+2 with one point in-between. Let (b1, pi+1) be the blocker of the optimal edge (pi+2, pi)
(blue). There could be a “sequence of blockers” b1, . . . , bj+1, such that (bk, pi+1) blocks
(bk−1, pi) for 2 ≤ k ≤ j + 1 (green), see Figure 6.
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Combining this with a lower bound on the distance of a tuple bi−2, bi for 3 ≤ i ≤ j + 1
(violet), we show that there are only two blockers bj and bj+1, whose the distance to pi+1 is
larger than pi+1 − pi. There are two cases for the shortest oriented cycle CG(pi, pi+2). For
(bj+1, pi) ∈ E holds odil(pi, pi+2) = 4. The worst-case is that (bj+1, pi) /∈ E is blocked by
some edge (pi+1, pl) with l < i (red). Then the dilation is

odil(pi, pi+2) = (b1 − pl) · 2
(pi+2 − pi) · 2

≤ b1 − pi+1 + pi+1 − pl

pi+2 − pi
≤ pi+2 − pi + 4 · (pi+1 − pi)

pi+2 − pi
= 5.

pipl pi+1 pi+2 b1 bj−1 bj bj+1

≤pi+2 − pi≤bj+1 − pi

≤pi+1 − pi≤pi+1 − pi

≥bj − pi+1

≤pi+1 − pi

Figure 6 Blockers in the proof of Theorem 10.

Figure 7 shows a point set P and its greedily constructed spanner G. The oriented
dilation of G is t = 5−7ε

1+ε . Thus, G is a 5-spanner for P .
However, Figure 8 shows a t-spanner with t = 2−2ε

1+ε < 2 for the same point set. Therefore,
the greedy algorithm does not return the minimum spanner for every given one-dimensional
point set.

p1 p2 p3 p4 p5 p6 p7
3− 5ε 1 ε 1− 3ε 1− ε 1− ε

Figure 7 Example of a greedily constructed spanner, its dilation is t = odil(p2, p4) = 5−7ε
1+ε

< 5.

p1 p2 p3 p4 p5 p6 p7
3− 5ε 1 ε 1− 3ε 1− ε 1− ε

Figure 8 A spanner on the point set of Figure 7 with dilation t = odil(p2, p4) = 2−2ε
1+ε

< 2.

The minimum dilation of a 1-PPB spanner for a one-dimensional point set is larger than 1
(Observation 8), unlike non-plane oriented spanners (Corollary 3). Algorithm 1 computes in
O(n8) time a minimum 1-PPB spanner for a given point set. The dynamic program is based
on the following idea. By Lemma 6, it holds that t = max{t′, t′′, odil(pk−1, pk+1)}, where
t′ is the minimum dilation for {p1, . . . , pk} and t′′ is the minimum dilation for {pk, . . . , pn}.
Due to one-page-planarity, if (pr, pl) ∈ E, it holds that (pj , pi) /∈ E for l < i < r < j and
i < l < j < r. We test all candidates for a split point pk. By adding the edges (pn, pk)

ESA 2023
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and (pk, p1), we can compute the optimal edge set for {p1, . . . , pk} and {pk, . . . , pn} (almost)
independently. (We need the parameters l′ and r′ which represent the only edges needed to
consider odil(pk−1, pk+1).)

▶ Theorem∗ 11 (Optimal 1-PPB). Given a one-dimensional point set P of size n, the
minimum one-page plane oriented spanner for P can be calculated in O(n8) time.

Algorithm 1 Minimum One-Page Plane Spanner.

Require: one-dimensional point set P = {p1, . . . , pn} (numbered from left to right)
Ensure: minimum one-page plane oriented spanner for P

Initialise table oE = [1, . . . , n]× [1, . . . , n]× [1, . . . , n]× [1, . . . , n]
// odil(E′) returns dilation of G = (P, E′ ∪ {(pi, pi+1) | 1 ≤ i ≤ n− 1})
// oE(l, l′, r′, r)= back edges set E′ of a minimum spanner G for {pl, . . . , pr} with
(pl′ , pl) ∈ CG(pl, pl+1) and (pr, pr′) ∈ CG(pr−1, pr)
Fill table by dynamic program based on the recursion formula:

oE(l, l′, r′, r) =



“invalid”, if l′ < l + 2, r′ > r − 2 or l > r (contradicts definition) (i)

“invalid”, if r < l + 2 (no oriented spanners for |P | < 3) (ii)

(pr, pl), if l′ = r and r′ = l (spanner for |P | = 3 is a cycle) (iii)

“invalid”, if l′ < r, r′ > l and l′ > r′ (contradicts planarity) (iv)

E′ = oE(l, l′, kr, r − 1) ∪ {(pr, pl)}, if l′ < r and r′ = l, choose
l ≤ kr ≤ r − 3 s.t. odil(E′) is minimal (v)

E′ = oE(l + 1, kl, r′, r) ∪ {(pr, pl)}, if l′ = r and r′ > l, choose
l + 3 ≤ kl ≤ r s.t. odil(E′) is minimal (vi)

E′ = oE(l, l′, kr, k) ∪ oE(k, kl, r′, r) ∪ {(pr, pl)}, if l′ < r, r′ > l

and l′ ≤ r′, choose l ≤ kr ≤ k − 2, l + 2 ≤ k ≤ r − 2 and
k + 2 ≤ kl ≤ r s.t. odil(E′) is minimal

(vii)

E′ ← oE(1, l′, r′, n), choose l′ and r′ s.t. odil(E′) is minimal
return G = (P, E′ ∪ {(pi, pi+1) | 1 ≤ i ≤ n− 1}) // add baseline

3 Two-Dimensional Point Sets

In the one-dimensional case, we have seen that a 1-spanner exists for every point set, though
it is not plane. In two dimensions, the complete bi-directed graph is always a directed
1-spanner. This is not the case for oriented dilation. There we have point sets where no
1-spanner exists, even more, no 1.46-spanner exists:

▶ Observation∗ 12. There are two-dimensional point sets for which no oriented t-spanner
exists for t < 2

√
3− 2 ≈ 1.46.

While an oriented complete graph does not lead to a 1-spanner, it does yield a 2-spanner:

▶ Proposition∗ 13. For every point set an oriented 2-spanner can be constructed by orienting
a complete graph.
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3.1 Hardness
We now have shown that although a 1-spanner does not exist for every two-dimensional point
set, we get a 2-spanner via the oriented complete graph. However, this leads to a graph with
1
2 n · (n− 1) edges, so this graph is neither sparse nor plane.

We will see that computing a sparse minimum oriented spanner is NP-hard:

▶ Theorem∗ 14. Given a two-dimensional set P of n points and the parameters t and m′,
it is NP-hard to decide if there is an oriented t-spanner G = (P, E) with |E| ≤ m′.

For computing a minimum plane oriented spanner, i.e. a minimum oriented dilation
triangulation, hardness remains open. In the undirected setting this question is a long-
standing open problem [6, 14, 15]. To our knowledge, it is not even known whether a PTAS
for this problem exists, and for several related open problems there is no FPTAS [15], unless
P = NP . We show the following relative hardness result.

▶ Observation 15. An FPTAS for minimum plane oriented spanner would imply an FPTAS
for minimum dilation triangulation.

c2 · ε/n

c2 · ε/n

c1 · ε2/n

c 1
· ε

2 /n

Figure 9 By replacing each point with this construction, we can reduce the minimum dilation
triangulation problem to the minimum plane oriented spanner problem.

We sketch a reduction from the minimum dilation triangulation problem. Suppose we
are given a set P of n points. The idea is to replace every point with the gadget depicted in
Figure 9. The gadget consists of 3 · ⌈ 4n

3 ⌉ points, positioned along a line in small triangles.
Since the triangles are small relative to the distance between the triangles, we obtain an
oriented dilation of less than (1 + cε) within the gadget by connecting the gadget points as
in the figure, where c > 0 is a constant that we can choose by suitably picking c1 and c2.

The gadget leaves us with room for two edges to every one of n points, one in each
direction, without disturbing planarity. Therefore, minimising the oriented dilation in this
setting while requiring planarity should pick the edges that correspond to those in the
minimum dilation triangulation, except if they are ε-close.

3.2 Greedy Triangulation
Given the relative hardness of computing minimum plane oriented spanners, we next inves-
tigate the question of whether plane oriented O(1)-spanners exist. In the undirected setting,
prominent examples for plane constant dilation spanners are the Delaunay triangulation and
the greedy triangulation. Our main result on oriented spanners in two dimensions is that the
greedy triangulation is an O(1)-spanner for convex point sets (i.e. point sets for which the
points lay in convex position).

ESA 2023
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The greedy triangulation of a point set is the triangulation obtained by considering all
pairs of points by increasing distance, and by adding the straight-line edge if it does not
intersect any of the edges already added. The greedy triangulation can be computed in linear
time from the Delaunay triangulation [18], and in linear time for a convex point set if the
order of the points along the convex hull is given [19].

It is known that the dilation of the undirected greedy triangulation is bounded by a
constant. This follows from the fact that the greedy triangulation fulfils the α-diamond-
property [11]. The currently best upper bound on the dilation t of such a triangulation is
t ≤ 8(π−α)2

α2 sin2(α/4) with a lower bound on α of π/6 for the greedy triangulation [4].

p3

pn

p2

p1

11111 1 + ε

δ

δ′

Figure 10 Greedy triangulation for a non-convex point set. It is is also a minimum weight
triangulation.

We first observe that restricting to convex point sets is necessary to obtain constant
dilation from orienting the greedy triangulation. For this, consider the greedy triangulation
T = (P, E) on the following non-convex point set P = {p1, . . . , pn}. As shown in Figure 10,
we place the points {p3, . . . , pn} on a very flat parabola. By arbitrarily decreasing the
y-distances δ, δ′ > 0, we reduce the construction to an almost one-dimensional problem. The
x-distance of each consecutive point pair pi, pi+1 is 1 for 2 ≤ i < n. We place p1 slightly
right of p2 such that the x-distance is 1 + ε for a small ε > 0. Therefore, the x-distance of p1
to pi is ε-larger than x-distance of p2 to pi+1 for 3 ≤ i < n. By this, the greedy triangulation
added (p2, pi+1) ∈ E and discarded (p1, pi) /∈ E for 3 ≤ i < n. Further, we place p1 slightly
below p2 so that, due to planarity, p1 is only adjacent to p2 and pn. Since p1 has degree 2,
for any orientation of T , every shortest oriented cycle containing p1 contains the subpath
pn, p1, p2 or vice versa. From this construction, it follows that odil(p1, p3) ≥ n+ε

2+ε , regardless
of the orientation of T . Therefore, every orientation of greedy triangulation has oriented
dilation Ω(n).

In contrast, for convex point sets, the greedy triangulation results in a O(1)-spanner.
For this, we use a consistent orientation of the edges. This means each face of an oriented
triangulation is confined by an oriented cycle. If such an orientation exists for a given
triangulation, we call it an orientable triangulation. Since the dual graph of a triangulation
of a convex point set is a tree, it is orientable.

▶ Theorem 16. By orienting the greedy triangulation of a convex two-dimensional point set
P consistently, we get a plane oriented O(1)-spanner for P .

Proof. Let T = (P, E) be the greedy triangulation of P and G = (P,
−→
E ) its consistent

orientation (which is unique up to reversing all edges). Note that T is an undirected graph,
whereas G is directed. To improve readability, undirected edges are written with curly
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brackets and directed edges with round brackets. Due to α-diamond property, the undirected
dilation of any greedy triangulation can be bounded by a constant. Let tg be the (smallest
such) constant.

We distinguish between i) {p, p′} is in E or ii) not.
For i), we prove that there is a path from p to p′ in T − {p, p′} of length in O(|∆(p, p′)|),

where ∆(p, p′) is a smallest triangle in the complete graph incident to p and p′. By that, we
bound the length of the shortest oriented cycle CG(p, p′).

Let q ∈ P be the third point incident to ∆(p, p′). Let Π be the undirected path from p to
q in T with first edge {p, q′}, w.l.o.g. q′ ̸= p′. (If q′ = p′, then the proof would be the same
with switched roles for p and p′.)

If {q′, p′} ∈ E, then ∆pq′p′ ∈ E. Regardless of the orientation of {p, q′}, we can bound
|CG(p, p′)| ≤ |∆pq′p′ | ≤ 2 · tg · |∆(p, p′)|. However, {q′, p′} could be blocked by another edge.
Since P is convex and T is planar, this edge is incident to p. Analogous to Theorem 10, we
show that there could be a “sequence of blockers” (see Definition 9), but that there is path
from p to q of length O(|p− q|).

Let bj+2c be such that {q′, bj+2c} ∈ E and {q′, bj+2c} blocks {q′, p′}. Let the points
b1, . . . , bj+2c be ordered such that {p, bi} ∈ E is the shortest edge that blocks {q′, bi−1} with
b0 = p′ (see Figure 11a).

The following inequalities hold for these blockers:

|p− bi| ≤ |q′ − bi−1|, (1)
|p− bi| ≤ |p− bk| for 1 ≤ i < k ≤ j + 2c, and (2)
|p− bi−1| ≤ |bi−2 − bi| for 3 ≤ i ≤ j + 2c. (3)

Equation 2 is true, because otherwise {p, bk} would block {q′, bi−1} instead of {p, bi}.
Equation 3 is explained as follows: due to convexity and planarity, {p, bi+1} ∈ E implies

{bi, bi+2} /∈ E. This means the greedy algorithm added {p, bi+1} and discarded {bi, bi+2} in
later iteration (see Figure 11b).

Let γ be an arbitrary constant. We call an edge long if its length is larger than |q′− p| · γ.
Because of Equation 2, once an edge {p, bi} is long, every edge {p, bk} is also long, for
1 ≤ i < k ≤ j + 2c. Let bj be the point such that {p, bj} is the last short blocker, i.e.

|p− bj | ≤ |q′ − p| · γ and (4)
|p− bk| > |q′ − p| · γ for all j + 1 ≤ k ≤ j + 2c. (5)

By this, the length of the last blocker {p, bj+2c} depends on γ and c:

|p− bj+2c|
eq. 1
≤ |q′ − bj+2c−1|

triangle
inequality
≤ |q′ − p|+ |p− bj+2c−1|

eq. 1
≤ |q′ − p|+ |q′ − bj+2c−2|

triangle
inequality
≤ . . . ≤ 2c · |q′ − p|+ |p− bj |

eq. 4
≤ |q′ − p| · (2c + γ). (6)

Due to convexity, the points bj+1, . . . , bj+2c must be contained in the circle with centre p

and radius |p− bj+2c| (see Figure 11b). Therefore, their pairwise distances are bounded by
its circumference. Upper and lower bounding the sum of the pairwise distances of tuples
bj+i, bj+i+2 for 1 ≤ i ≤ 2c− 2, it follows c is bounded by a function dependent on γ:
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p

p′

q′

b1 = b′
1

b′
j+2c

bj+2c

b′
j

bj

switch roles for p′ and q

proof

(a) Regardless of the orientation, |CG(p, p′)| ≤
|∆pp′b′

j+2c
| + |∆pq′bj+2c

|.

p

bj+1

bj+2

bj+3

bj+2c−2

bj+2c−1

bj+2c

(b) The points bj+1, . . . , bj+2c lie in the circle
with centre p and radius |p − bj+2c|.

Figure 11 Visualisation of the central proof steps of case i) in Theorem 16.

2c · γ · |q′ − p|
eq. 5
<

2c−1∑
i=2
|p− bj+i|

eq. 3
≤

2c−2∑
i=1
|bj+i − bj+i+2|

eq. 6
≤ 2π(2c + γ) · |q′ − p|

⇐⇒ c < π · γ − 1
γ − 2π

.

For γ = O(1), it holds that c = O(1). Thus, the length of the last blocker {p, bj+2c} is
bounded by a constant times |p− q′|.

This proof can be repeated with switched roles for p′ and q. Then, the points b′
1, . . . , b′

j+2c

are ordered such that {p, b′
i} blocks {p′, bi−1} with b0 = q′ (Figure 11a).

By definition of the point set b1, . . . , bj+2c (respectively b′
1, . . . , b′

j+2c), it holds that
{q′, bj+2c} ∈ E and {p′, b′

j+2c} ∈ E. Regardless of the orientation, the length of the shortest
oriented cycle is bounded by |CG(p, p′)| ≤ |∆pq′bj+2c

|+ |∆pp′b′
j+2c
|. This permits a constant

dilation for the case {p, p′} ∈ E as

odil(p, p′) = |CG(p, p′)|
|∆(p, p′)| ≤

|∆pq′bj+2c
|+ |∆pp′b′

j+2c
|

|∆pp′q|

≤ max
{ |∆pq′bj+2c

|
|∆pp′q|

,
|∆pp′b′

j+2c
|

|∆pp′q|

}
wlog= |p− q′|+ |q′ − bj+2c|+ |bj+2c − p|

|∆pp′q|
triangle inequality

≤ 2 · |p− q′|+ 2 · |p− bj+2c|
|∆pp′q|

eq. 6
≤ 2 · |p− q′|+ 2 · |p− q′| · (2c + γ)

|∆pp′q|
= |p− q′| · (4c + 2γ + 2)
|p− p′|+ |p′ − q|+ |q − p|

α-diamond-property
≤ tg · |p− q| · (4c + 2γ + 2)

|∆pp′q|
≤ tg · (4c + 2γ + 2) = O(1).

For ii) {p, p′} /∈ E, due to α-diamond property, there is an undirected path Π from p to
p′ in T of length |Π| ≤ tg · |p− p′|. Applying case i) gives factor λ = O(1) for each path edge
{q′, q′′} ∈ Π. The dilation for the case {p, p′} /∈ E is bounded by
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p3
p2p4

p1

Figure 12 Delaunay triangulation for convex point set. It is also a minimum dilation triangulation.

odil(p, p′) = |CG(p, p′)|
|∆(p, p′)| ≤

∑
{q′,q′′}∈Π |CG(q′, q′′)|
|∆(p, p′)|

case i)
≤ λ · |Π|
|∆(p, p′)| ≤

λ · tg · |p− p′|
|∆(p, p′)| = λ · tg = O(1). ◀

3.3 Other Triangulations
As the greedy triangulation leads to a plane oriented O(1)-spanner for convex point sets, the
question arises whether the α-diamond property implies the existence of oriented spanners.

We already have seen that this is not the case for the greedy triangulation on general
point sets. Likewise, the minimum weight triangulation has the α-diamond property [17] but
does not yield an O(1)-spanner in general. This can be seen by the same example as for the
greedy triangulation in Figure 10. By essentially the same argument, the minimum weight
triangulation will have the same edges incident to p1, which results in an oriented dilation of
Ω(n). Whether the minimum weight triangulation is an oriented O(1)-spanner for convex
point sets, we leave as an open problem.

For the Delaunay triangulation the situation is even worse. The Delaunay triangulation
has the α-diamond property [16] and is the basis for many undirected plane spanner con-
structions [5]. However, for n ≥ 4 its oriented dilation can be arbitrary large, no matter how
we orient its edges, even for convex point sets.

Figure 12 shows the Delaunay triangulation T = (P, E) of a convex point set of size 4.
The shortest cycle CG(p2, p4) contains p1, for any orientation of T . We can place p2, p3, p4
arbitrarily close to each other without decreasing the radius of the circle through them. By
placing p1 in the circle and sufficiently far away from p2, p3 and p4, the oriented dilation
odil(p2, p4) ≥ |CG(p2,p4)|

|∆p2p3p4 | can be made arbitrary large. The example can be modified to
include more points without changing odil(p2, p4).

Finally, we consider orienting the undirected minimum dilation triangulation. However,
essentially the same example as for the Delaunay triangulation shows that there are convex
point sets for which any orientation has arbitrarily large oriented dilation. In Figure 12,
consider the case in which we have fixed all positions except for the y-coordinates of p2
and p4. Let y0 be the y-coordinate of p3, and let y0 + ε be the y-coordinate of p2 and p4.
By decreasing ε > 0, we can make sure that the minimum dilation triangulation chooses
the same diagonal as the Delaunay triangulation, since the undirected dilation between p2
and p4 by the path through p3 becomes arbitrarily close to 1. However, as in the Delaunay
triangulation, the oriented dilation between p2 and p4 can be made arbitrarily large.
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Thus, the quest for a triangulation of small oriented dilation for non-convex point sets
remains open.

4 Conclusion and Outlook

Motivated by applications of geometric spanners, we introduced the concept of oriented
geometric spanners. We provided a wide range of extremal and algorithmic results for
oriented spanners in one and two dimensions.

Intriguingly, orienting the greedy triangulation yields a plane O(1)-spanner for point sets
in convex position, but not for general point sets. Furthermore, other natural triangulations
like the Delaunay and the minimum weight triangulation do not lead to plane constant
dilation spanners.

This raises the question of whether a plane constant dilation spanner exists and can be
computed efficiently. If this is not possible, what is the lowest dilation that we can guarantee?
Until now, even showing whether the greedy triangulation yields an O(n)-spanner remains
open.

As the concept of oriented spanners is newly introduced, it opens up many new avenues
of research, for example:

We know that the minimum one-page plane oriented spanner achieves a dilation of at
most 5 (since this is the bound for the greedy algorithms) and that there are point sets
where it has a dilation of 2. What is its worst-case dilation 2 ≤ t ≤ 5? Can we compute
it faster?
We constructed a two-page plane oriented 2-spanner for any one-dimensional point set.
Is 2 a tight upper bound on the dilation of a minimum two-page plane spanner? Is there
an efficient algorithm to compute such a spanner?
For two-dimensional point sets, the question of bounding minimum oriented dilation
already arises without restricting to plane graphs. What is the worst-case dilation
2
√

3− 2 ≤ t ≤ 2 of the minimum dilation oriented complete graph?
Given an undirected geometric graph, can we efficiently compute an orientation minimising
the dilation? For which graph classes is this possible?
While undirected dilation compares the shortest path from p to p′ in G with the edge
between them in the complete graph Kn, oriented dilation compares the shortest oriented
cycle through p to p′ in G to the shortest triangle in Kn. An analogous measure in
undirected graphs, cyclic dilation, would compare the shortest simple cycle in G to
the shortest triangle in Kn. Can we efficiently compute sparse graphs, in particular
triangulations, of low cyclic dilation? Another measure of interest would be detour dilation,
which compares the shortest path not using the edge {p, p′} in G (i.e. the shortest path in
G− {p, p′}) with the triangle in Kn. Low detour dilation is a necessary condition for low
oriented dilation, and actually at the core of our analysis of the greedy triangulation. Is
there a triangulation with constant detour dilation? Can it be oriented to obtain constant
oriented dilation?
In the applications mentioned, it is desirable to reduce the number of bi-directional edges
but it may not be necessary to avoid them completely. This opens up a whole new set
of questions on the trade-off between directed dilation and the number of bi-directional
edges. For instance, given a parameter t, compute the directed t-spanner with as few
bi-directional edges as possible (and no bound on the number of oriented edges). Or,
given a plane graph with certain edges marked as one-way, compute the orientation of
these edges that minimises the directed dilation (while all other edges are bi-directional).
For which families of graphs can this be done efficiently? For which is this problem
NP-hard?
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Abstract
Coalition formation considers the question of how to partition a set of n agents into disjoint
coalitions according to their preferences. We consider a cardinal utility model with additively
separable aggregation of preferences and study the online variant of coalition formation, where the
agents arrive in sequence and whenever an agent arrives, they have to be assigned to a coalition
immediately. The goal is to maximize social welfare. In a purely deterministic model, the greedy
algorithm, where an agent is assigned to the coalition with the largest gain, is known to achieve an
optimal competitive ratio, which heavily relies on the range of utilities.

We complement this result by considering two related models. First, we study a model where
agents arrive in a random order. We find that the competitive ratio of the greedy algorithm is
Θ

(
1

n2

)
, whereas an alternative algorithm, which is based on alternating between waiting and greedy

phases, can achieve a competitive ratio of Θ
(

1
n

)
. Second, we relax the irrevocability of decisions by

allowing to dissolve coalitions into singleton coalitions, presenting a matching-based algorithm that
once again achieves a competitive ratio of Θ

(
1
n

)
. Hence, compared to the base model, we present

two ways to achieve a competitive ratio that precisely gets rid of utility dependencies. Our results
also give novel insights in weighted online matching.
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1 Introduction

Coalition formation is a vibrant topic in multi-agent systems. The goal is to partition a set
of n agents into disjoint coalitions. We consider the framework of hedonic games, where the
agents have preferences for the coalitions they are part of by disregarding externalities [18].
More specifically, we assume that each agent has cardinal utilities for each other agent and
that utilities for coalitions are aggregated in an additively separable way by taking sums [7].

Most of the hedonic games literature considers an offline setting, where a fully specified
instance is given. By contrast, in many real-life situations, such as the formation of teams in a
company, the agents are not all present in the beginning but rather join an ongoing coalition
formation process over time. With this motivation in mind, Flammini et al. [22] proposed
an online version of hedonic games, where agents arrive one by one. Upon arrival, an agent
reveals their preferences for coalitions containing the agents present thus far, and has to be
added immediately and irrevocably to an existing coalition (or to a new singleton coalition).
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Flammini et al. [22] seek to find algorithms that have high social welfare in a worst-case
analysis against an adaptive adversary that is allowed to select an arbitrary instance and
an arbitrary arrival order of the agents. The performance of an algorithm is measured with
respect to its competitive ratio, that is, the worst-case ratio of the social welfare of the
computed solution compared to the social welfare of the optimal offline solution. Their main
result is that the greedy algorithm, which adds every agent to the best possible coalition
upon arrival, has the optimal competitive ratio of Θ

(
1
n

Umin
Umax

)
, where Umax and Umin are the

maximum and minimum absolute value of a non-zero single-agent utility in the adversarial
instance, respectively.1 In other words, for a fixed number of agents the competitive ratio is
infinite if the maximum or minimum utility is not bounded.

Arguably, unbounded utilities give a lot of power to an adversary. The following example
by Flammini et al. [22] exploits this. Consider the situation where the first two arriving
agents have a mutual utility of 1. If an algorithm adds the second agent to the coalition of
the first agent, then the adaptive adversary can set the utility of 1 as the minimum utility
and add agents with large positive and negative utilities that bring no gain to this coalition.
Hence, the welfare of the large positive utilities is lost, and the algorithm performs badly.
Otherwise, if an algorithm puts the second agent into a singleton coalition, then the adversary
can set the utility of other arriving agents to 0, and the loss of the welfare of the single
positive edge leads to an unbounded competitive ratio.

As a consequence, we want to see whether we can perform better if the adversary has
less power in two related models. First, we consider a model where the adversary is still
capable of fixing a bad instance. However, agents arrive in a random order according to a
permutation of the agents selected uniformly at random. We show that the greedy algorithm
achieves a competitive ratio of Θ

( 1
n2

)
. Moreover, we present an alternative algorithm with a

competitive ratio of Θ
( 1

n

)
, which is based on alternating between waiting and greedy phases.

Second, we allow an algorithm to dissolve a coalition into singleton coalitions to revert bad
previous decisions. We present a 1

6 -competitive online matching algorithm, which can be used
to achieve a competitive ratio of Θ

( 1
n

)
for online coalition formation. Hence, compared to

the deterministic model, we present a novel algorithm, whose competitive ratio gets precisely
rid of utility dependencies. We conclude by showing boundaries for optimal algorithms in
both settings. Moreover, we discuss why the worst-case analysis for our presented algorithm
does not generalize for any algorithm.

2 Related Work

Hedonic games originated from economic theory [18] more than four decades ago. However,
their broad consideration only started about two decades later [3, 7, 16]. In particular,
Bogomolnaia and Jackson [7] introduced additively separable hedonic games (ASHGs), which
are since then an ongoing subject of study. A large part of the research on ASHGs focuses
on the computational complexity of stability measures [2, 9, 13, 17, 22, 23, 29, 30], but some
more recent studies also consider economic efficiency in the sense of Pareto optimality [12, 19],
popularity [8], or strategyproofness [21]. In general, maximizing social welfare is NP-hard,
even if utilities are symmetric and only attain the values −1 and 1 [2]. Moreover, even though
Bullinger [12] presents a polynomial-time algorithm to compute Pareto-optimal partitions
for symmetric ASHG, the partitions computed by this algorithm can have negative social
welfare. All of the literature discussed thus far considers ASHG in an offline setting.

1 Flammini et al. [22] simplify the exposition by scaling the utilities such that Umin is always 1.
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The online variant only came under scrutiny very recently and has been researched far
less. Flammini et al. [22] introduce the problem and focus on deterministic algorithms with
guarantees to social welfare. Strictly speaking, they consider a variant of games equivalent
to ASHGs, where utilities are scaled by a factor of 2. In particular, they consider games
restricted by a maximum coalition size or maximum number of coalitions.

Moreover, there is a recent stream of research on dynamic models of coalition formation
[4, 10, 15]. Instead of agents arriving over time, there exists an initial partition, which
is altered over discrete time steps based on deviations of agents. Some of this literature
explicitly deals with ASHGs or close variants [5, 6, 9, 14].

From the online algorithms literature, most related to our work is the online matching
problem, which was first considered in the seminal paper by Karp et al. [27] considering
online bipartite matching. In this work, an unweighted, bipartite graph is given, and the
agents of one side appear online. The goal is to find a matching of maximum cardinality.
Karp et al. [27] introduce the famous ranking algorithm, which achieves a competitive ratio
of 1 − 1

e . An overview of this research is presented in the very recent book chapter by Huang
and Tröbst [25].

Our model of online coalition formation can be viewed as a generalization of the setting
by Karp et al. [27], with the following modifications: (i) there are edge weights, (ii) all
vertices arrive online, (iii) the underlying graph is not necessarily bipartite, and (iv) coalitions
can be arbitrary subsets of agents. While condition (iv) is specific to coalition formation,
conditions (i)-(iii) have been studied in the literature, albeit, to the best of our knowledge,
not in the combination of all three. Feldman et al. [20] consider condition (i), i.e., a bipartite
setting with edge weights, where one side of the vertices arrives online. They show that
the natural greedy algorithm is 1

2 -competitive, and they provide an algorithm matching the
competitive ratio of 1 − 1

e from Karp et al. [27]. An important condition in this setting is
free disposal, which essentially requires that a previous matching can be dissolved upon the
arrival of a better option. Wang and Wong [31] consider condition (ii), i.e., online bipartite
matching where both sides arrive online. They can beat the greedy algorithm by a primal-dual
algorithm achieving a competitive ratio of 0.532 < 1 − 1

e . Finally, Huang et al. [24] consider
the conjunction of conditions (ii) and (iii), i.e., fully online (non-bipartite) matching. They
extend the ranking algorithm to this setting and show that it is 0.5211-competitive. Both
Wang and Wong [31] and Huang et al. [24] show that a competitive ratio of 1− 1

e is impossible
to achieve in their respective settings. Interestingly, the competitive ratio of 1 − 1

e can be
beaten in the random arrival model [26, 28].

3 Preliminaries

In this section, we present our model. For an integer i ∈ N, we define [i] := {1, . . . , i}.
Additionally, for any set N , define

(
N
2
)

:= {e ⊆ N : |e| = 2}.

3.1 Additively Separable Hedonic Games
Let N be a finite set of n agents. Any subset of N is called a coalition. We denote the set of
all possible coalitions containing agent i ∈ N by Ni = {C ⊆ N : i ∈ C}. A coalition structure
(or partition) is a partition of the agents. Given an agent i ∈ N and a partition π, let π(i)
denote the coalition of i, i.e., the unique coalition C ∈ π with i ∈ C.

A hedonic game is a pair (N,≿) consisting of a set N of agents and a preference profile
≿ = (≿i)i∈N , where ≿i is a weak order over Ni that represents the preferences of agent i.
A hedonic game is called an additively separable hedonic game (ASHG) if there exists a
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complete, undirected, and weighted graph G = (N,E,w) with edge set E =
(

N
2
)

and weight
function w : E → Q, such that, for every agent i ∈ N and every pair of coalitions C,C ′ ∈ Ni,
it holds that C ≿i C

′ if and only if
∑

j∈C w({i, j}) ≥
∑

j∈C′ w({i, j}) [7].2 We then speak of
the ASHG given by G. We abbreviate w(i, j) = w({i, j}). Moreover, since we only consider
complete graphs, we shorten notation and write G = (N,w), where w :

(
N
2
)

→ Q, instead
of G = (N,E,w) to fully specify an underlying graph. For an agent i ∈ N and a coalition
C ∈ Ni or a partition π, we define the utility of i for C or π by ui(C) :=

∑
j∈C w(i, j) and

ui(π) := ui(π(i)), respectively.
Additionally, we extend the weight function to sets of edges F ⊆

(
N
2
)

by w(F ) :=∑
e∈F w(e). A matching is a coalition structure π such that, for all C ∈ π, it holds that

|C| ≤ 2. A matching π is represented by its edge set M(π) := {C ∈ π : |C| = 2} ⊆
(

N
2
)
. We

then write w(π) := w(M(π)) for the weight of matching π.

3.2 Online Coalition Formation
In this section, we introduce our model of online coalition formation and appropriate
objectives. Consider an ASHG given by G = (N,w). Given a subset of agents N ′ ⊆ N ,
let G[N ′] denote the subgraph induced by agent set N ′. Moreover, given a partition π

of N and a subset of agents N ′ ⊆ N , we define π[N ′] as the partition restricted to N ′ as
π[N ′] := {C ∩N ′ : C ∈ π,C ∩N ′ ̸= ∅}. Specifically, if N ′ = N \ {i} for some agent i ∈ N ,
we write π − i instead of π[N ′].

In an online setting, previous decisions influence the capabilities of an algorithm to
form a partition in the next step. Given a partition π and an agent i not covered by π,
let A(π, i) denote the set of available partitions, when the tentative partition is π and the
newly arriving agent is i. As a default, we assume the standard setting where A(π, i) =
AS(π, i) := {π′ : π′ − i = π}. We also consider algorithms that have the capability to
dissolve a coalition completely. We say that an algorithm acts under free dissolution if
A(π, i) = AD(π, i) := AS(π, i) ∪

⋃
C∈π,j∈C{(π \ {C}) ∪ {{i, j}} ∪ {{k} : k ∈ C \ {j}}}.

Free dissolution is the natural extension of free disposal by Feldman et al. [20] in the
domain of matching adapted to coalitions of size larger than 2. In addition, we define
Σ(N) := {σ : [|N |] → N bijective} as the set of all orders of the agent set N .

An instance of an online coalition formation problem is a tuple (G, σ), where G = (N,w)
defines an ASHG and σ ∈ Σ(N). An online coalition formation algorithm for instance (G, σ)
gets as input the sequence G1, . . . , Gn, where, for every i ∈ [n], Gi = G[{σ(1), . . . , σ(i)}].
Then, for every i ∈ [n], the algorithm produces a partition πi of {σ(1), . . . , σ(i)} such that
the algorithm has only access to Gi and for i ≥ 2, it holds that πi ∈ A(πi−1, σ(i)).

The output of the algorithm is the partition πn. Given an online coalition formation
algorithm ALG, let ALG(G, σ) be its output for instance (G, σ).

In other words, the algorithm iteratively builds a partition such that, whenever an agent
arrives, the only knowledge is the game restricted to the present agents, and the algorithm
has to irrevocably assign the new agent to an existing coalition or start a new coalition
(or, under free dissolution, dissolve any coalition before making its decision). If an online
coalition formation algorithm creates a matching in any step, we speak of an online matching
algorithm.

Our benchmark algorithm is the greedy algorithm as introduced by Flammini et al. [22].

2 Since our focus will be on social welfare, the consideration of undirected graphs is without loss of
generality because the social welfare of a partition is invariant under the symmetrization wS({x, y}) =
1
2 (wx(y) + wy(x)) given directed edges with weights wi(j).
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▶ Definition 1 (Greedy algorithm). On input (G, σ), in the ith step, i ≥ 2, the greedy
algorithm (GDY ) forms πi = arg maxπ∈A(πi−1,σ(i)) SW(π) if there exists π ∈ A(πi−1, σ(i))
with SW(π) > SW(πi−1), and πi = πi−1 ∪ {{σ(i)}}, otherwise.

Hence, GDY assigns each arriving agent to the available coalition such that the increase in
social welfare is maximized, or creates a new singleton coalition if no increase is possible.

3.3 Competitive Analysis
The competitive analysis needs a quantifiable objective and we follow Flammini et al. [22]
by considering social welfare. The social welfare of a partition π is defined as SW(π) =∑

i∈N ui(π). A partition π is said to be welfare-optimal if, for every partition π′, it holds
that SW(π) ≥ SW(π′). Given a hedonic game G, let π∗(G) be a welfare-optimal partition.
We say that an online coalition formation algorithm ALG is c-competitive3 if

inf
G

min
σ∈Σ(N)

SW(ALG(G, σ))
SW(π∗(G)) ≥ c.

Equivalently, this means that, for all instances (G, σ), it holds that SW(ALG(G, σ)) ≥
cSW(π∗(G)). The competitive ratio of an algorithm ALG, denoted by cALG, is the maximum
c such that ALG is c-competitive. Note that the competitive ratio is always at most 1.

In addition, we consider online coalition formation with a random arrival order, where we
assume that the arrival order is selected uniformly at random. In the random arrival model,
the competitive ratio of an algorithm ALG is defined as

inf
G

Eσ [SW(ALG(G, σ))]
SW(π∗(G)) ≥ c.

There, the expectation is over the uniform selection of an arrival order σ from Σ(N). Note
that if π is a matching, then w(π) = 1

2 SW(π). Hence, in the competitive analysis of online
matching algorithms, we can as well consider the weight of matchings instead of their social
welfare.

4 Random Arrival Model

In this section, we analyze algorithms aiming at achieving a high social welfare in the random
arrival model. Interestingly, while in the deterministic arrival model, the specific utility
values affect the competitive ratio of the greedy algorithm (and any other algorithm) [22],
in the random arrival model, the dependency is solely on the number of agents. For our
analysis of algorithms in this section we use the notation x ≺σ y to say that σ−1(x) < σ−1(y)
for x, y ∈ N and an arrival order σ.

▶ Theorem 2. The competitive ratio of GDY for ASHGs under a random arrival order
satisfies Θ

( 1
n2

)
.

Proof. First, we show that the competitive ratio of GDY satisfies O
( 1

n2

)
by providing an

example where it performs “bad”. Let ϵ > 0 and consider the ASHG given by Gϵ = (N,wϵ)
depicted in Figure 1. The agent set is N = X ∪ Y ∪ {a, b}, where |X| = |Y | = m. Utilities

3 Here, we use the convention that 0
0 = 1 and x

0 = 0 for any x ∈ Q<0. Also, note that Flammini et al. [22]
define the competitive ratio in the inverse way such that it is always at least 1. Here, we prefer the
more common definition in the online matching literature.
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a b1

X

ϵ

ϵ

..
.

Y

ϵ

ϵ

..
.

Figure 1 The example contains n = 2m + 2 agents. There are m agents in each of the sets X

and Y . The utility between a and any agent in X and b and any agent in Y is ϵ. All omitted edges
represent utilities of −1.

are given by wϵ(a, b) = 1, wϵ(a, x) = wϵ(b, y) = ϵ for x ∈ X and y ∈ Y , and all other weights
are −1. Clearly, for sufficiently small ϵ, the optimal solution has a value of 2 (with {a, b} the
only non-singleton coalition). By inspecting the limit case for ϵ tending to 0, the value of the
greedy algorithm (and therefore also its competitive ratio) is at most twice the probability of
forming {a, b}, i.e.,

cGDY = inf
G

Eσ [SW(GDY (G, σ))]
SW(π∗(G)) ≤ inf

ϵ>0

Eσ [SW(GDY (Gϵ, σ))]
2

≤ Pσ({a, b} ∈ GDY (Gϵ, σ)).

We compute

Pσ({a, b} ∈ GDY (Gϵ, σ)) = Pσ({a, b} ∈ GDY (Gϵ, σ) | a ≺σ b)Pσ(a ≺σ b)
+ Pσ({a, b} ∈ GDY (Gϵ, σ) | b ≺σ a)Pσ(b ≺σ a)

= 2Pσ({a, b} ∈ GDY (Gϵ, σ) | a ≺σ b)Pσ(a ≺σ b).

The second equality follows by symmetry. Next, we sum over all possible arrival positions
of b by summing over the number of alternatives that arrive before b in addition to a. Note
that if more than m agents arrive before b, excluding a, then, by the pigeonhole principle,
some x ∈ X arrives before b and forms a coalition with a. This prevents the coalition {a, b}
from forming so all terms of the sum for i > m are 0. Conditioned on a arriving before b,
the coalition {a, b} forms if and only if all i agents arriving before b are from Y since those
agents will not form a coalition with a. We derive4

cGDY ≤ 2
m∑

i=0
Pσ({a, b} ∈ GDY (Gϵ, σ) | a ≺σ b, σ−1(b) = i+ 2)

· Pσ(a ≺σ b | σ−1(b) = i+ 2)Pσ(σ−1(b) = i+ 2)

= 2
m∑

i=0
Pσ({d : d ≺σ b} \ {a} ⊆ Y | a ≺σ b, σ−1(b) = i+ 2)

· Pσ(a ≺σ b | σ−1(b) = i+ 2)Pσ(σ−1(b) = i+ 2).

We compute all individual terms in the previous sum. First, the probability that the
i agents arriving before b are all from Y is Pσ({d : d ≺σ b} \ {a} ⊆ Y | a ≺σ b, σ−1(b) =
i+ 2) = (m

i )
(2m

i ) , i.e., the number of possibilities to draw i agents from Y divided by the number
of possibilities to draw i agents from Y ∪X.

4 For the first inequality, note that it holds that P(A | B)P(B) = P(A, B) =
∑

C
P(A, B, C) =

∑
C
P(A |

B, C)P(B, C) =
∑

C
P(A | B, C)P(B | C)P(C) for arbitrary events A, B, and C and probability

measures P.
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Second, the probability that a arrives before b when b arrives in position i + 2 is
Pσ(a ≺σ b | σ−1(b) = i + 2) = i+1

2m+1 because we have i + 1 chances to draw a among the
remaining 2m+ 1 alternatives. Finally, due to the random arrival order, the probability that
agent b arrives in a certain fixed position is Pσ(σ−1(b) = i+ 2) = 1

2m+2 . Together, we obtain

cGDY ≤ 2
m∑

i=0

(
m
i

)(2m
i

) i+ 1
2m+ 1

1
2m+ 2 = 2

m2 + 3m+ 2 ∈ O

(
1
m2

)
= O

(
1
n2

)
.

Next, we show that the competitive ratio of GDY satisfies Ω
( 1

n2

)
. Consider an arbitrary

ASHG given by G = (N,w) and let E+(G) =
{
e ∈

(
N
2
)

: w(e) > 0
}

be the set of agent pairs
with positive weights. Then, the welfare-optimal partition π∗(G) satisfies SW(π∗(G)) ≤
2

∑
e∈E+(G) w(e). Furthermore, the social welfare of GDY is at least twice the utility between

the first arriving pair of agents from E+(G). Indeed, until the arrival of a pair of agents with
positive utility, every agent is assigned to a singleton coalition. Thus, since every pair in
E+(G) has equal probability to be the first such pair, the expected social welfare of GDY is

at least the average, i.e., Eσ[SW(GDY (G, σ))] ≥
∑

e∈E+(G)
2w(e)

|E+(G)| and the competitive ratio
is then at least

cGDY = inf
G

Eσ[SW(GDY (G, σ))]
SW(π∗(G)) ≥ inf

G

∑
e∈E+(G)

2w(e)
|E+(G)|

2
∑

e∈E+(G) w(e) = inf
G

1
|E+(G)| ∈ Ω

(
1
n2

)
.

Altogether, we have shown that cGDY is of order Θ
( 1

n2

)
. ◀

The natural question is whether we can obtain better algorithms than the greedy algorithm.
A simple attempt to achieve a better algorithm is to make use of randomization. The
performance of the greedy algorithm was bounded because in the worst case, the value of
greedy is equal to the average weight of a positive edge. However, we can easily achieve the
average weight of a random matching, improving the performance to 1/n. For simplicity, we
assume first that n is even and known to the algorithm in advance. We first analyze a simple
online matching algorithm.

▶ Definition 3 (Random matching algorithm). The random matching algorithm (RMA) leaves
the first n

2 agents unmatched. Then, we select a bijection ϕ :
[

n
2

]
→

[
n
2

]
uniformly at random.

For 1 ≤ i ≤ n
2 , if the weight between the

(
n
2 + i

)
th agent and the ϕ(i)th agent is positive,

then these are matched. Otherwise, the
(

n
2 + i

)
th remains unmatched.

We determine the competitive ratio of RMA.

▶ Proposition 4. RMA has a competitive ratio of Θ
( 1

n

)
for matching instances under a

random arrival order when n is known.

Proof. Consider an instance given by G = (N,w) such that there exists agents a, b ∈ N with
w(a, b) = 1, and w(x, y) = 0 if {x, y} ≠ {a, b}. Then, the maximum weight matching has
weight 1, but RMA has only a chance of(2

1
)(

n−2
n
2 −1

)(
n
n
2

) · 1
n

= n

2(n− 1) · 1
n

= Θ
(

1
n

)
,

to have a and b in the same coalition. There, the first part of the product is the chance that a
and b appear in different stages of the algorithm, and the factor of 1/n is the probability that
they are matched conditioned on them arriving in different stages. Hence, the competitive
ratio of RMA satisfies O

( 1
n

)
.
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On the other hand, in an execution of RMA, every positive edge has a probability of
n

2(n−1) · 1
n to contribute to the computed matching. Let E+ =

{
e ∈

(
N
2
)

: w(e) > 0
}

. Hence,
Eσ[RMA(G, σ)] =

∑
e∈E+

n
2(n−1) · 1

nw(e) ≥ 1
2nw(E+). Since any matching is of weight at

most w(E+), we conclude that

cRMA ≥ 1
2n = Ω

(
1
n

)
. ◀

Our next goal is to derandomize this algorithm while maintaining the same competitive
ratio. A natural way to do this is to have the first half of the agents form singleton coalitions,
and the second half of the agents join the best available coalition. This yields a deterministic
algorithm achieving a competitive ratio of 1

n . First, we maintain the assumption that n
is even and known to the algorithm beforehand. However, after we have analyzed this
algorithm, we will show that we can drop this additional assumption and that a variation of
the algorithm still achieves the same competitive ratio asymptotically.

▶ Definition 5 (Waiting greedy algorithm). The waiting greedy algorithm (WGDY ) places the
first n

2 agents in singleton coalitions. Then, for the remaining n
2 agents, it assigns coalitions

greedily.

The upper bound of the performance of WGDY is again attained by the game depicted
in Figure 1. The analysis is more involved and relies on investigating the distribution of
the agents in the second phase. We defer the complete proof to the full version and restrict
attention to the lower bound. The full version also contains all other missing proofs.

▶ Theorem 6. The competitive ratio of WGDY for ASHGs under a random arrival and
known and even n is Θ

( 1
n

)
.

Proof of lower bound. We show that WGDY ∈ Ω
( 1

n

)
. Consider an arbitrary ASHG given

by G = (N,w). Let Π(n) =
{

(A,B) : A ∪B = N, |A| = |B| = n
2

}
be the set of partitions of

the agent set N into two equally-sized subsets.

Let (A,B) ∈ Π(n). Define E+(A,B) =
{
e = {a, b} ∈

(
N
2
)

: w(e) > 0, a ∈ A, b ∈ B
}

. We
claim that if the agents in A and B arrive in the first and second stage, respectively, then
the weight of the obtained partition is at least 1

nw(E+(A,B)). Let PA,B denote the event
that the partition (A,B) realizes.

Consider an arbitrary agent b ∈ B. Let a1(b), . . . , ar(b)(b) ∈ A be the agents in A such
that {b, ai(b)} ∈ E+(A,B), where r(b) ∈ N is their number. Assume that w(a1(b), b) ≥
w(a2(b), b) ≥ · · · ≥ w(ar(b)(b), b). Let i ∈ [r(b)]. In the event PA,B , an agent b ∈ B arrives as
the ( n

2 + i)th agent (i.e., the ith agent within B) with a probability of 2
n . Moreover, when b

arrives as the ( n
2 + i)th agent, then at most i− 1 coalitions have formed so far, and therefore

some agent in {a1(b), . . . , ai(b)} is still in a singleton coalition. Hence, the increase in weight
caused by b is at least the weight of forming a singleton coalition with the worst partner in
{a1(b), . . . , ai(b)}, that is, w(ai(b), b). Let Ib be the random variable denoting the gain in
social welfare caused by the arrival of b.
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Hence, in the event PA,B , the attained expected social welfare satisfies

Eσ[SW(WGDY (G, σ)) | PA,B ] ≥
∑
b∈B

Eσ[Ib | PA,B ]

=
∑
b∈B

r(b)∑
i=1

Eσ

[
Ib | PA,B , σ

−1(b) = n

2 + i
]
Pσ

(
σ−1(b) = n

2 + i | PA,B

)

=
∑
b∈B

r(b)∑
i=1

Eσ

[
Ib | PA,B , σ

−1(b) = n

2 + i
] 2
n

≥
∑
b∈B

r(b)∑
i=1

w(ai(b), b)
2
n

= 2
n

∑
b∈B

∑
e∈E+(A,B) : b∈e

w(e) = 2
n
w(E+(A,B)).

Hence, the expected social welfare of the partition computed by WGDY is

Eσ [SW(WGDY (G, σ))] ≥ 1
|Π(n)|

∑
(A,B)∈Π(n)

2
n
w

(
E+(A,B)

)
≥ 1

2
2
n
w

(
E+)

. (1)

In the first inequality, we have used that each partition in Π(n) is realized with equal prob-
ability, and in the second inequality, we have used that an edge in E+ =

{
e ∈

(
N
2
)

: w(e) > 0
}

is in E+(A,B) for at least half of the partitions in Π. The latter holds because there are
n2
/4 edges between A and B and n(n−1)/2 edges in total.

Additionally, the social welfare of any partition is at most 2w(E+). Combining this with
Equation (1), we obtain

cWGDY ≥
w(E+)

n

2w(E+) = 1
2n ∈ Ω

(
1
n

)
. ◀

Next, we show that we can still use a variant of this algorithm even if we do not know n.
The idea is to run WGDY on an exponentially growing number of agents repeatedly, possibly
not finishing the last iteration.

▶ Definition 7 (Iterated waiting algorithm). The iterated waiting algorithm (IWA) alternates
between placing 2i agents in singleton coalitions and then assigning 2i agents to coalitions
with the previous 2i agents greedily. The parameter is set to i = 0 at the start and is increased
by 1 after 2i+1 agents arrive.

The lower bound in the analysis follows, because IWA completes an execution of WGDY
for a sufficiently large number of agents. For the upper bound, we can once again use the
game in Figure 1. The analysis is even more involved as in Theorem 6 because we need to
consider dependencies of the distributions of the agents between the phases of IWA.

▶ Theorem 8. IWA has a competitive ratio of c ∈ Θ
( 1

n

)
.

5 Deterministic Model under Free Dissolution

In this section, we consider the model with deterministic arrivals under free dissolution. For
bipartite online matching instances, where one side of the agents is present offline, Feldman
et al. [20] show that GDY , i.e., transitioning to best coalitions within AD(π, i) achieves a
competitive ratio of 1

2 . However, if all vertices arrive online, then GDY does not even achieve
a constant competitive ratio.
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a33a0 a33a1 a33a2 a33a3 a33ak a33ak+11 1 + ϵ 1 + 2ϵ 1 + kϵ. . .

Figure 2 Family of instances for upper bound of the competitive ratio of GDY for matching
instances under free dissolution.

▶ Proposition 9. In the deterministic model with free dissolution, GDY has a competitive
ratio of Θ( 1

n ) in the matching domain.

Proof. First, note that GDY will definitely match a pair of agents with the highest possible
weight Wmax. Moreover, every matching has weight at most n

2Wmax, and therefore cGDY ∈
Ω( 1

n ).
For the upper bound, consider the family of instances depicted in Figure 2. Let ϵ > 0

and k ∈ N even. Consider Gk,ϵ = (Nk,ϵ, wk,ϵ) where Nk,ϵ = {ai : 0 ≤ i ≤ k + 1 and, for
i ∈ [k + 1], wk,ϵ(ai−1, ai) = 1 + (i− 1)ϵ. All other weights are set to 0. Let the arrival order
be (a0, a1, . . . , ak, ak+1). Let M∗(Gk,ϵ) be the maximum weight matching for the instance
given by Gk,ϵ.

Then, M∗(Gk,ϵ)=
{
{a2i, a2i+1} : 0 ≤ i ≤ k

2
}

and GDY outputs the matching {{ak, ak+1}}.
Hence,

inf
ϵ>0

SW(GDY (Gk,ϵ, σk))
SW(M∗(Gk,ϵ, σk)) = inf

ϵ>0

1 + kϵ
k
2 + 1

4k(k + 2)ϵ
= 2
k

∈ Θ
(

1
n

)
. ◀

The non-zero edges in the construction of the previous proposition even induce bipartite
graphs, and it is therefore essential for the result by Feldman et al. [20] that one side of the
agents is present offline. Proposition 9 indicates that even achieving a constant competitive
ratio is a non-trivial task for an online matching algorithm for weighted graphs. In fact, as
we will see in Section 6, the usual result of achieving a competitive ratio of 1/2 with some
algorithm [27, 20, 31] is impossible. Still, we can modify the greedy algorithm to achieve a
constant competitive ratio.

▶ Definition 10 (Dissolution threshold algorithm). Given a matching π and a newly arriving
vertex i, the dissolution threshold algorithm (DTA) is the greedy algorithm for the available
matchings A(π, i) = {(π − j) ∪ {{i, j}} : {j} ∈ π} ∪ {(π \ {C}) ∪ {{i, j}, {k}} : C = {j, k} ∈
π,w(i, j) ≥ 2w(j, k)}.

In words, DTA only dissolves a matched pair if the weight of the new edge compared to the
weight of the dissolved edge is larger by at least a factor of 2.

▶ Theorem 11. In the deterministic model with free dissolution, DTA has a competitive
ratio of 1

6 in the matching domain.

Proof. We show first that cDTA ≤ 1
6 . To this end, we define a family of instances (Gk,ϵ)k≥1,ϵ>0

with a sufficiently large gap between the social welfare of the algorithmic and optimal solutions.
The construction is depicted in Figure 3.

Let Gk = (Nk, wk) where Nk = {ai, bi : 0 ≤ i ≤ k + 1}. The edge weights are given by
w(ai, bi) = 2i+1−ϵ for 0 ≤ i ≤ k, w(ak+1, bk+1) = 2k+1−ϵ, and w(ai, ai+1) = 2i for 0 ≤ i ≤ k.
All other weights are set to 0. The arrival order σk is (a0, a1, b0, a2, b1, . . . , ak+1, bk, bk+1).

Consider an execution of DTA for (Gk,ϵ, σk). It is easy to see that DTA(Gk,ϵ, σk) =
{{ak, ak+1}}, hence SW(DTA(Gk,ϵ)) = 2k. On the other hand, the maximum weight
matching for Gk,ϵ (and sufficiently small ϵ) is M∗(Gk,ϵ) = {{ai, bi} : 0 ≤ i ≤ k + 1} with
SW(M∗(Gk,ϵ)) = 2k+1 + 2k+2 − 2 − (k + 2)ϵ. Hence,
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a33

a33

a0

b0

2 − ϵ

a33

a33

a1

b1

4 − ϵ

a33

a33

a2

b2

8 − ϵ

a33

a33

a3

b3

16 − ϵ

a33

a33

ak

bk

2k+1 − ϵ

a33

a33

ak+1

bk+1

2k+1 − ϵ

1 2 4 2k. . .

Figure 3 Family of instances for tightness of competitive ratio in Theorem 11.

cDTA = inf
G,σ

SW(DTA(G, σ))
SW(M∗(G, σ)) ≤ inf

k≥1,ϵ>0

SW(DTA(Gk,ϵ, σk))
SW(M∗(Gk,ϵ))

= inf
k≥1,ϵ>0

2k

2k+1 + 2k+2 − 2 − (k + 2)ϵ = 1
6 .

Next, we show that cDTA ≥ 1
6 . Let M be the matching produced by DTA and let M∗ be

a maximum weight matching. Without loss of generality, we may assume that all edges in
M∗ have positive weight. Further let F ⊆ E be the set of edges that were formed by DTA
at some point, i.e., F consists of the edges in M as well as all edges that have been dissolved.
The key idea is to consider the relation induced by the replacement of edges. More precisely,
given two edges e, e′ ∈ F , we say that e dominates e′ with respect to replacement, written as
e ≻R e′, if there exists a chain of edges e0, . . . , ej such that e0 = e′, ej = e and for i ∈ [j],
the formation of ei has lead to the dissolution of ei−1. Note that M consists precisely of the
maximal elements in F with respect to ≻R.

We define a function µ : M∗ → 2F as follows. Let m = {a, b} ∈ M∗ and assume that
b arrives after a. For a set of edges F ′ ⊆ F , we define max≻R

(F ′) = {f ∈ F ′ : ∄f ′ ∈
F with f ′ ≻R f}.

If, at the arrival of b, a is already matched with c and 2w(a, c) > w(a, b), then µ(m) =
max≻R

{f ∈ F : f ≿R {a, c}, a ∈ f}. If, at the arrival of b, a is already matched with c

and 2w(a, c) ≤ w(a, b), then b is matched with some d and we define µ(m) = max≻R
({f ∈

F : f ≿R {a, c}, a ∈ f} ∪ {f ∈ F : f ≿R {b, d}, b ∈ f}). If at the arrival of b, a is unmatched,
then b is matched with some d and we define µ(m) = max≻R

{f ∈ F : f ≿R {b, d}, b ∈ f}.
Note that µ always maps to a non-empty set. Indeed, if a is unmatched or matched to an
agent c with 2w(a, c) ≤ w(a, b), then b will certainly be matched because matching with a is
an eligible option. Note that µ is a set-valued function, but for all m ∈ M∗, it holds that
|µ(m)| ≤ 2. Moreover, the only case where µ(m) contains two edges is if we are in the second
case and the edge {a, b} is not created.

Bounding the weight of M∗ proceeds in three steps. First, we bound the weights of edges
in M∗ by their image set in F . Then, we show that each edge in F is only in the image of
few edges. Lastly, we bound the weight accumulated by edges dominated with respect to ≻R.

To illustrate the proof, it is useful to consider the example in Figure 3 from the first
part of the proof. There, F = {{ai, ai+1} : 0 ≤ i ≤ k}. Moreover, the maximum weight
matching is M∗ = {{ai, bi} : 0 ≤ i ≤ k+ 1}. For 0 ≤ i ≤ k we have µ({ai, bi}) = {{ai, ai+1}}
according to the first case in the definition of µ. In addition, µ({ak+1, bk+1}) = {{ak, ak+1}},
also according to the first case in the definition of µ.

▷ Claim 12. For all m ∈ M∗, it holds that w(m) ≤ 2w(µ(m)).
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Proof. Let m = {a, b} ∈ M∗ and assume that b arrives after a. Assume first that, at the
arrival of b, a is already matched with c and 2w(a, c) > w(a, b). Then, for every edge f ∈ F

with f ≿R {a, c} and a ∈ f , there exists a sequence of edges e0, . . . , ej such that e0 = e, ej = f

and for i ∈ [j], ei has replaced ei−1. Hence, w(e) = w(e0) ≤ w(e1) ≤ · · · ≤ w(ej) = w(f). It
follows that w(m) < 2w(a, c) ≤ 2w(µ(m)).

Assume next that, at the arrival of b, a is already matched with c and 2w(a, c) ≤ w(a, b).
Then, b will be matched with an agent d such that w(b, d) ≥ w(a, b) − w(a, c). As in the
first case, w(a, c) ≤ w(max≻R

{f ∈ F : f ≿R {a, c}, a ∈ f}) and w(b, d) ≤ w(max≻R
{f ∈

F : f ≿R {b, d}, b ∈ f}).
If d ∈ {a, c}, then {a, b} ≾R f for all f ∈ µ(m) and w(m) = w(a, b) ≤ w(µ(m)).

Otherwise, i.e., if d ̸= a and d ̸= c, then {a, c} ∩ {b, d} = ∅ and therefore also max≻R
{f ∈

F : f ≿R {a, c}, a ∈ f} ≠ max≻R
{f ∈ F : f ≿R {b, d}, b ∈ f}. Hence, w(m) ≤ w(b, d) +

w(a, c) ≤ w(µ(m)).
Finally, assume that a is unmatched. Then, b will be matched with an agent d such

that w(b, d) ≥ w(a, b). As before, w(b, d) ≤ w(max≻R
{f ∈ F : f ≿R {b, d}, b ∈ f}), and we

conclude w(m) ≤ w(b, d) ≤ w(µ(m)) ≤ 2w(µ(m)). This completes the proof of the claim.
◁

Next we bound the number of edges that map to the same edge. Given an edge e ∈ F ,
define µ−1(e) := {m ∈ M∗ : µ(m) = e}.

▷ Claim 13. If e ∈ M , then |µ−1(e)| ≤ 2. If e ∈ F \M , then |µ−1(e)| ≤ 1.

Proof. By definition of µ, for every m ∈ M∗ and m′ ∈ µ(m), m′ ∩m ̸= ∅. Let e ∈ F . Since
M∗ is a matching, there can be at most one edge in M∗ with a non-empty intersection with
each of the two endpoints of e. Hence, |µ−1(e)| ≤ 2 and the first part of the claim holds.

Now, let e = {a, b} ∈ F \M and assume for contraction that there exist edges m,m′ ∈ M∗

with m ≠ m′, e ∩ m = {a}, e ∩ m′ = {b}, and e ∈ µ(m) ∩ µ(m′). Since, e /∈ M , the edge
e was replaced during the algorithm by another edge e′. By definition of DTA, it holds
that e ∩ e′ ̸= ∅, say e ∩ e′ = {a}. Moreover, e′ ≻R e, contradicting that e ∈ µ(m). Hence,
|µ−1(e)| ≤ 1. ◁

It remains to bound the weight of replaced edges. For this, we introduce the following
notation. For e ∈ M , define Fe = {e′ ∈ F : e ≻R e′}.

▷ Claim 14. For all e ∈ M , it holds that w(Fe) ≤ w(e).

Proof. Let e ∈ M . Since each edge can only replace a single other edge, Fe is of the form
{e1, . . . , ej} for some j ≥ 0 such that, for all i ∈ [j−1], ei has replaced ei+1, and e has replaced
e1. Moreover, since a replacement only happens upon a sufficiently large weight improvement,
we know that, for all i ∈ [j − 1], w(ei) ≥ 2w(ei+1), and w(e) ≥ 2w(e1). Hence, for all i ∈ [j],
it holds that w(ei) ≤ 2−iw(e). Hence, w(Fe) =

∑j
i=1 w(ei) ≤ w(e)

∑j
i=1 2−i ≤ w(e). ◁

Combining all three claims, we compute

w(M∗) =
∑

m∈M∗

w(m)
Claim 12

≤
∑

m∈M∗

2w(µ(m))
Claim 13

≤ 4
∑
e∈M

w(e) + 2
∑

e∈F \M

w(e)

Claim 14
≤ 4

∑
e∈M

w(e) + 2
∑
e∈M

w(e) = 6w(M). ◀

The next two lemmas let us apply DTA as an online coalition formation algorithm.
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▶ Lemma 15. Let G = (N,w) be a complete weighted graph and M∗ a maximum weight
matching of G. Then, w(M∗) ≥ 1

nw(E+), where E+ =
{
e ∈

(
N
2
)

: w(e) > 0
}

.

▶ Lemma 16. Let ALG be a c-competitive algorithm for online matching. Then, ALG is
c
n -competitive for online coalition formation.

Proof. Let (G, σ) be an arbitrary instance of online coalition formation. Let M∗ be a
maximum weight matching for the underlying weighted graph G, and let π∗ be a partition
maximizing social welfare. Let E+ = {e ∈ E : w(e) > 0} be the set of positive edges. Then,

SW(ALG(G, σ)) ≥ c 2w(M∗) ≥ c 2 1
n
w(E+) ≥ c

n
SW(π∗).

The first inequality holds because ALG is a c-competitive algorithm in the matching domain.
The second inequality follows from Lemma 15. The last inequality holds because twice the
sum of positive edges is an upper bound for the social welfare of any partition. ◀

As a consequence, we can apply DTA in the coalition formation domain to obtain a
Θ(1/n)-competitive algorithm under free dissolution.

▶ Corollary 17. DTA is 1
6n -competitive for coalition formation in the deterministic model

under free dissolution.

6 Boundaries for Optimal Algorithms

In both of our models, we have found algorithms with a competitive ratio of Θ
( 1

n

)
. This

raises the question, whether it is possible to achieve even better algorithms, for instance,
with a constant competitive ratio. While we leave the ultimate answer to this question open,
in this section, we give some insight why the optimal algorithm may be hard to find. We
start with upper bounds for the performance of any algorithm in our two settings.

▶ Proposition 18. In the random arrival model, no online coalition formation algorithm
achieves a competitive ratio of more than 1

2 .

Proof. Let ALG be any online coalition formation algorithm. Assume for contradiction that
ALG is c-competitive for some c > 1

2 .
First, note that for any x > 0, if the edge between the first two agents has a weight of

x, then ALG has to form a coalition of size 2. Otherwise, the competitive ratio is 0 in the
instance where just these two agents arrive.

Now, we define a family of instances similar to the instance in Figure 1, with the difference
that the agents in the sets X and Y also have positive utilities. Let ϵ > 0 be a sufficiently
small number and k be a positive integer. Consider the ASHG given by Gk,ϵ = (Nk,ϵ, wk,ϵ),
where Nk,ϵ = {a, b}∪X∪Y with |X| = |Y | = k. Hence, there are a total of n = 2k+2 agents.
Utilities are given as wk,ϵ(a, b) = 1, wk,ϵ(a, x1) = wk,ϵ(b, y1) = wk,ϵ(x1, x2) = wk,ϵ(y1, y2) = ϵ

for x1, x2 ∈ X and y1, y2 ∈ Y . All other utilities are −1.
For ϵ sufficiently small, the social welfare is approximately maximized if the only non-

singleton coalition is {a, b}, yielding a social welfare of 2.
Consider a random arrival order σ. If the first pair of agents are both from X ∪ {a} × Y

or Y ∪ {b} ×X, then SW(ALG, σ) ≤ n2ϵ.
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a1

a2

a3

a4 a5

1

1

1

1

1

3

3

0

Figure 4 Instance for online coalition formation algorithm with free dissolution. The two missing
edges have a weight of w(a1, a4) = w(a1, a5) = −12.

In all other cases, i.e., for the other 2(k + 1)2 possibilities for the first two agents, the
social welfare is at most 2. Hence,

cALG ≤ inf
k>0

inf
ϵ>0

1
2Eσ

[
SW(ALG(Gk,ϵ, σ))

]
≤ inf

k>0
inf
ϵ>0

1
2

4(k + 1)2 + 2(k + 1)kn2ϵ

(2k + 2)(2k + 1)

= inf
k>0

inf
ϵ>0

k + 1
2k + 1 + kn2

2(2k + 1) ϵ = inf
k>0

k + 1
2k + 1 = 1

2 .

The infimum is attained in the limit for k to infinity. ◀

▶ Proposition 19. In the deterministic arrival model, no online coalition formation algorithm
achieves a competitive ratio of more than 1

3 under free dissolution.

Proof. Let ALG be any online coalition formation algorithm with free dissolution. Assume
for contradiction that ALG is c-competitive for some c > 1

3 .
Consider the ASHG given by G = (N,w) depicted in Figure 4. The agents arrive

in the order (a1, a2, a3, a4, a5). Since the algorithm is c-competitive for c > 1
3 , it has to

maintain a coalition structure that has a social welfare of strictly more than 1
3 of the current

maximum social welfare. As a consequence the algorithm is forced to form the partitions
{{a1, a2}}, {{a1, a2, a3}}, and {{a1, a2, a3}, {a4}} after a2, a3, and a4 arrive, respectively.
If the algorithm forms a different partition at any of these steps, then it achieves a social
welfare of at most 1

3 of the current maximum social welfare. Thus, the adversary can stop
and then cALG ≤ 1

3 , a contradiction.
Finally, agent a5 arrives. In the ASHG given by G, the maximum social welfare of 18

is achieved by the partition π∗ = {{a1}, {a2, a3, a4, a5}}. However, the partition before a5
arrives is {{a1, a2, a3}, {a4}}. It is easy to see that the highest social welfare that can be
achieved with free dissolution is 6. This contradicts the assumption that cALG > 1

3 . ◀

A similar bound holds for the online matching setting. As we have already discussed
in Section 5, our next result is a surprising contrast to the usual possibility of achieving
a competitive ratio of 1/2 in many related settings [27, 20, 31]. Interestingly, once again,
our construction only uses bipartite instances. Hence, the crucial property why we cannot
achieve a better competitive ratio is that all agents arrive online.

▶ Proposition 20. In the deterministic arrival model, no online matching algorithm achieves
a competitive ratio of more than ψ under free dissolution, where ψ := 2

3+
√

5 ≈ 0.382.

Proof. Let ALG be any online coalition formation algorithm with free dissolution. Let
ψ = 2

3+
√

5 and assume for contradiction that ALG is c-competitive for some c > ψ.
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a1 a2

a3a4a5

a6 1

1ϕϵ

ϕϵ

ϕϵ

Figure 5 Instance for online matching algorithm with free dissolution. We have ϕϵ = 1+
√

5
2 + ϵ

and the missing edges have weight 0. The figure depicts the case in the proof where b = a1.

We provide an adversarial strategy along the game depicted in Figure 5. Since the
algorithm is c-competitive, it has to maintain a coalition structure that has a social welfare
of strictly more than a c-fraction of the current maximum social welfare.

First, two agents a1 and a2 arrive with w(a1, a2) = 1. Hence, ALG has to form the edge
{a1, a2}. Now, an agent a3 arrives with w(a1, a3) = 0 and w(a2, a3) = 1. Then, ALG only
maintains a matching of positive weight if it leaves a3 unmatched, or if it dissolves {a1, a2}
and forms {a2, a3}. Since the resulting situation is completely symmetric, we assume without
loss of generality that ALG leaves a3 unmatched.

Let ϵ > 0 and consider the constant ϕϵ := 1+
√

5
2 + ϵ.5 Next, an agent a4 arrives with

w(a1, a4) = ϕϵ and w(a2, a4) = w(a3, a4) = 0. Now, ALG only maintains a matching of
positive weight if it leaves a4 unmatched, or if it dissolves {a1, a2} and forms {a1, a4}. In
the former case, ALG creates a matching of weight 1, while the maximum weight matching
is M1 = {{a1, a4}, {a2, a3}} with w(M1) = 1 + ϕϵ. This implies that cALG ≤ 1

1+ϕϵ
=

1
1+ 1+

√
5

2 +ϵ
< 1

1+ 1+
√

5
2

= 2
3+

√
5 = ψ < c, a contradiction. Hence, ALG has to dissolve {a1, a2}

and form {a1, a4}.
Next, an agent a5 arrives with w(a4, a5) = ϕϵ and w(a1, a5) = w(a2, a5) = w(a3, a5) = 0.

Similar to the situation after the arrival of the third agent, ALG has to leave a4 unmatched,
or to dissolve {a1, a4} and form {a4, a5}. Let b ∈ {a1, a5}, such that ALG creates the
matching {{a4, b}}.

Now, an agent a6 arrives with w(b, a6) = ϕϵ and w(x, a6) = 0 for all x ∈ {ai : i ∈ [5]}\{b}.
Hence, ALG will achieve a matching of weight at most ϕϵ. For b′ ∈ {a1, a4} with b′ ̸= b,
consider the matching M2 = {{a2, a3}, {b, a6}, {b′, a4}}. Then, w(M2) = 1 + 2ϕϵ. Hence,

cALG ≤ lim
ϵ→0

ϕϵ

1 + 2ϕϵ
=

1+
√

5
2

1 + 1 +
√

5
= 1 +

√
5

2(2 +
√

5)
= 2

3 +
√

5
= ψ < c.

This is our final contradiction, and hence such an algorithm cannot exist. ◀

Finally, we want to discuss general obstacles for finding classes of instances on which all
algorithms perform poorly. Interestingly, the performance of GDY , WGDY , and IWA is
bounded by the same class of instances, namely the instances depicted in Figure 1. This
raises the question whether this instance is a general worst-case instance. Our next result
shows that this is not the case, unless there exists an algorithm that achieves a constant
competitive ratio whenever the number of agents is known. Indeed, if there exists some
highly valuable edge, then we can make use of an optimal stopping algorithm to achieve a
good competitive ratio. To this end, we show how to apply the odds algorithm [11]. The
details are discussed in the full version.

5 To maintain games with rational weights, we can restrict attention to those ϵ where ϕϵ is rational.
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▶ Proposition 21. Let I be a set of ASHGs and λ ∈ (0, 1] a constant such that for each ASHG
in I given by G = (N,w), the maximum weight edge emax has a weight w(emax) ≥ λ · π∗(G),
where π∗(G) maximizes social welfare. Then, there exists an online coalition formation
algorithm ALG with cALG ∈ Θ (1) on I in the random arrival model with known n.

7 Conclusion

We have considered two models of online coalition formation that both facilitate the existence
of good algorithms compared to a deterministic arrival model. First, we have diminished the
power of the adversary by considering a random arrival of agents. Second, we have increased
the capabilities of an algorithm by allowing coalition dissolution. Both models allow for
algorithms that achieve a competitive ratio of Θ( 1

n ). Interestingly, this precisely gets rid of
weight dependencies of the best algorithm in the deterministic model.

In both approaches, matchings play an important role. In the random arrival model, we
present an algorithm whose output dominates the weight of a randomly created matching.
Hence, matchings occur implicitly in the analysis of the algorithm. Under free dissolution,
our coalition formation algorithm is itself a matching algorithm. The key challenge is to
achieve a constant competitive ratio for online matching under the most general model,
where all agents arrive online, and input graphs are weighted and possibly non-bipartite.
The idea of our algorithm is to enhance the greedy algorithm by adding a threshold for the
improvement in social welfare whenever dissolving a coalition (or edge).

Our work offers several promising directions for future research. First, while we have some
indication that it is hard to obtain algorithms with a competitive ratio better than Θ( 1

n ),
we leave open the question whether there are algorithms obtaining a constant competitive
ratio. Moreover, it would be interesting to find the optimal online matching algorithm for
a fully online model with weighted non-bipartite input instances. Finally, there are many
other classes of coalition formation games, such as fractional hedonic games [1] or ordinal
classes of hedonic games. Considering a random arrival model or coalition dissolution for
these games might lead to intriguing discoveries.
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Abstract

We study the problem of k-means clustering in the space of straight-line segments in R2 under
the Hausdorff distance. For this problem, we give a (1 + ϵ)-approximation algorithm that, for
an input of n segments, for any fixed k, and with constant success probability, runs in time
O(n + ε−O(k) + ε−O(k) · logO(k)(ε−1)). The algorithm has two main ingredients. Firstly, we express
the k-means objective in our metric space as a sum of algebraic functions and use the optimization
technique of Vigneron [40] to approximate its minimum. Secondly, we reduce the input size by
computing a small size coreset using the sensitivity-based sampling framework by Feldman and
Langberg [21, 22]. Our results can be extended to polylines of constant complexity with a running
time of O(n + ε−O(k)).
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1 Introduction

The k-means clustering problem is as follows: Given a point set in a metric space, find
a set of points, called centers, such that the sum of the squared distances from each
input point to its closest center is minimized (over all possible choices of centers). It is
a fundamental algorithmic problem with a ubiquitous role in data analysis in numerous
application domains. As such, it has been studied extensively in geometric and general
metric spaces, under various constraints on the objective and the choice of centers, and
with a focus on complexity lower and upper bounds and the quality of the (approximate)
solution [1, 2, 3, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 21, 22, 25, 28, 31, 34].

In geometric settings, almost all previous work involves clustering points in some low- or
high-dimensional Euclidean space. Notable exceptions include the work on k-means clustering
for lines with point centers [32], and the works on k-center [5] and k-median [6, 10, 19, 37]
clustering for polygonal curves with respect to the Fréchet distance; for k-center, one seeks
to minimize the maximum distance to the closest center, while for k-median, one seeks to
minimize just the sum of the distances (instead of the sum of the squares) to the closest
centers. In this paper, we consider the k-means problem in the space of segments and of
polylines of constant complexity in the plane with respect to the Hausdorff distance.
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1.1 Formalization of the problem
Let (S, dH) be the metric space of closed straight-line segments in R2, where dH is the
Hausdorff distance. Given a set S of n weighted segments, where each s ∈ S has an
associated positive weight ws ∈ R>0, and for any k segments s1, . . . , sk playing the role of
“centers” of the clusters, we define the objective function

costS({s1, . . . , sk}) :=
∑
s∈S

ws · min{d2
H(s1, s), . . . , d2

H(sk, s)}

and define the k-means problem as the problem of finding a minimizer, i.e., a set of segments
S∗ = {s∗

1, . . . , s
∗
k} that minimizes the above cost. Note here that quite often we deal with

unweighted input segments. However, for technical reasons (made clear later in our discussion)
in order to incorporate coresets in our algorithm, we have to consider the more general case
of weighted segments. Also note that we study the continuous version of the problem, where
the solution segments can come from anywhere in (S, dH). This is harder than the so-called
discrete version, where the solution segments have to be selected among the input segments.

We also consider the k-means problem for polylines, each with a bounded number of
segments, under the Hausdorff distance, where the definition of the problem is analogous.

We remark here on an interesting connection to the older and closely related concept of
the Fréchet mean [24]. This is a generalization of the classic notion of mean or average to any
abstract metric space. For a finite point set P in a metric space (M, d), a Fréchet mean is any
minimizer of the so-called Fréchet variance costP (q) :=

∑
p∈P d

2(q, p), taken over all q ∈ M.
For Euclidean spaces, the Fréchet mean is the usual arithmetic mean. (Other usual means
can be recovered as Fréchet means by considering other distances.) The Fréchet mean is a
well-studied concept in Statistics and in Riemannian spaces, where sometimes it is known as
Karcher mean, see [38] for a general, comprehensive treatment. Computing a Fréchet-mean
is precisely the 1-means clustering problem while the k-means is the generalization where
the cost of each cluster is given by the functional defining the Fréchet mean.

1.2 Results
Our main result is a (1 + ε)-approximation algorithm for the k-means problem in (S, dH).
The algorithm runs in O

((
n+ ε−16k+4−η + ε−12k−3 log4k+1(ε−1)

)
(log(1/δ)

)
time, for any

fixed k, any η > 0, and with success probability at least 1 − δ (the constant hidden in the
O-notation depends on η and k).

There are two main ingredients in our algorithm. For the first one, described in Section 2,
we express the k-means objective in the space (S, dH) as a sum of algebraic functions of
constant description complexity. This algebraic approach allows us to use the optimization
technique of Vigneron [40] for approximating the minimum. This is, to the best of our
knowledge, the first application of this technique in the context of clustering. While this
technique is very expensive when applied directly to the entire set of input segments, we can
decrease the running time dramatically by combining it with coresets. This is the second
ingredient of our algorithm, described in Sections 3 and 4 namely, we use the sensitivity
framework of Feldman and Langberg [21, 22] to compute a small coreset of the input and
then we apply the former algebraic approach to the coreset.

We then extend this result to polylines of description complexity at most ℓ = O(1); this
is given in Section 5. In this context, each input polyline and each solution polyline has at
most ℓ segments, but we may put in the solution polylines that are not part of the input.
The running time becomes O

((
n+ ε−O(kℓ)) log(1/δ)

)
.
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As a side-result, in the full version of this paper, we consider the Fréchet mean (or
1-means) problem in a concrete example with two perpendicular segments that intersect at
their centers. We show that even in this simple setting the set of Fréchet means is surprisingly
complex. The optimum is attained in a 3-dimensional subset of the 4-dimensional parameter
space needed to model the space of candidate segments. This example also prompts to the
benefit of looking into an algebraic approach for the general setting.

1.3 Related work
For general metric spaces, k-means (as well as k-median) clustering is APX-hard (when
k is part of the input) [15, 26]. Several polynomial-time, constant factor approximation
algorithms are known for both the continuous and discrete versions of the problem [1, 8]. For
the discrete version, there even exist algorithms that achieve factors arbitrarily close to the
lower bound [26] and run in FPT-time with respect to k and the approximation error ε [17].

The Euclidean k-means, where the input is a set of points in Rd, is NP-hard for d = 2 [34]
and APX-hard when d = ω(log n) [2]. The problem admits EPTASs with respect to k and
ε [31] and with respect to d and ε [11, 13].

As for the Fréchet mean, it has been considered for persistence diagrams [36, 39], point
sets on the unit circle [7], and in the space of graphs [23, 30, 35], to name a few metric spaces
far from the Euclidean setting.

1.4 Definitions and notation
For each point p ∈ R2, we use x(p) and y(p) for its two coordinates. Thus, p = (x(p), y(p)).
For any two points p, q ∈ R2, we denote by pq the segment with endpoints p and q, and
by |pq| the Euclidean distance between them: |pq|2 = (x(p) − x(q))2 + (y(p) − y(q))2. For
simplicity we assume that all input segments have positive length.

Recall that the Hausdorff distance dH(A,B) between any two compact subsets A,B ⊂ R2

is defined by

dH(A,B) = max
{

max
a∈A

min
b∈B

|ab|, max
b∈B

min
a∈A

|ab|
}
.

Define δ(a,B) = minb∈B |ab| for the (directed) distance from a point a to a closed set B. It
is well known and easy to see that for any two segments s1 = a1b1 and s2 = a2b2 in S

dH(s1, s2) = max{δ(a1, s2), δ(b1, s2), δ(a2, s1), δ(b2, s1)}. (1)

2 An algebraic approach to k-means in (S, dH)

We use the following adaptation of the definition of a nice family of functions by Vigneron [40,
Section 2.1]. Let F = {fi : Rd → R | i ∈ I} be a finite family of functions, where I is some
index set. We say that F is nice if there exists a constant λ > d > 0 such that:

each fi ∈ F is nonnegative and bounded;
for each fi ∈ F , there exists a semialgebraic set supp(fi) ⊆ Rd and an algebraic function
gi of degree at most λ with fi(x) = gi(x) for x ∈ supp(fi) and fi(x) = 0 for x /∈ supp(fi);
for each fi ∈ F , the semialgebraic set supp(fi) ⊆ Rd is a boolean combination of at most
λ subsets of Rd, each of them defined by an polynomial inequality of degree at most λ;
for each fi ∈ F , the restriction of fi to supp(fi) is continuous.

ESA 2023
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Note that the definition allows that the sets supp(fi) are open, closed or mixed. It also
allows that fi is discontinuous in Rd \ supp(fi), which may include the boundary of supp(fi)
in some cases.

Our use of this concept will be through the following result for computing an approximation
to the minimum of the function

∑
i fi.

▶ Theorem 1 (Adaptation of Theorem 3.4 in Vigneron [40]). Assume that ε ∈ (0, 1). Let
F = {fi : Rd → R | i ∈ I} be a nice family of m functions. Define g =

∑
i∈I fi and

assume that minx∈Rd g(x) exists. Then we can compute a point x′
ε ∈ Rd such that g(x′

ε) ≤
(1 + ε) minx∈Rd g(x) in time O(m2d−2+η + (m/ε)d+1 logd+1(m/ε)) for any η > 0.1 The
constant hidden in the O-notation depends on η and on d.

Let us first consider the simpler case of two segments and how their Hausdorff distance
is defined. We parameterize a segment ab as the point (x(a), y(a), x(b), y(b)) in R4. Note
that in this parameterization we have the artifact that the segments ab and ba give different
points in R4.

Let ℓab be the line supporting a segment ab. For a point p, the distance δ(p, ab) is given
by one of the three terms |pa|, |pb|, or δ(p, ℓab). For a point q ∈ R2 and a segment ab,
let ℓ⊥(q, ab) be the line perpendicular to ℓab through q. The lines ℓ⊥(a, ab) and ℓ⊥(b, ab)
partition the plane into three 2-dimensional faces (Figure 1) with closures

σ(ab) = the closed slab between ℓ⊥(a, ab) and ℓ⊥(b, ab),
τ(a, ab) = the closed halfspace defined by ℓ⊥(a, ab) that does not contain b,

τ(b, ab) = the closed halfspace defined by ℓ⊥(b, ab) that does not contain a.

We then have

δ(p, ab) =


|pa| if p ∈ τ(a, ab),
|pb| if p ∈ τ(b, ab),
δ(p, ℓab) if p ∈ σ(ab).

From Equation (1), we conclude that, for any two segments ab and a′b′, the distance
dH(ab, a′b′) is given by one of the functions in the family

F(ab, a′b′) :=
{

|aa′|, |ab′|, |ba′|, |bb′|, δ(a, ℓa′b′), δ(b, ℓa′b′), δ(a′, ℓab), δ(b′, ℓab)
}
.

We next argue that all the expressions involved are algebraic. A point p lies on the line
ℓ⊥(a, ab) if and only the scalar product of the vectors a⃗p and a⃗b is zero. This is equivalent to(
x(p), y(p), x(a), y(a), x(b), y(b)

)
being a zero of the algebraic (actually polynomial) function

ψ(x, y, xa, ya, xb, yb) := (x− xa)(xb − xa) + (y − ya)(yb − ya).

The sign of this expression also tells us which side of ℓ⊥(a, ab) the point p lies on. Note that
this function is linear in x and y, while it is quadratic in xa and ya. Symmetrically, the sign
of ψ

(
x(p), y(p), x(b), y(b), x(a), y(a)

)
tells us which side of ℓ⊥(b, ab) point p lies on.

In the following, we will treat the segment a′b′ as variable, identified with R4, while the
segment ab will be fixed. We will show that the space R4 can be decomposed into cells such
that, within a cell, the distance dH(ab, a′b′) is defined always by the same function from

1 As noted in Vigneron [40], one needs to assume either the Real-RAM model of computation (which is
standard in computational geometry) or a model where we can choose the precision of the intermediate
computations, and then the computational complexity of the algorithm depends on the desired precision.
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σ(ab)

τ(a, ab)

τ(b, ab) ℓab

ℓ⊥(a, ab)ℓ⊥(b, ab)

b
a

Figure 1 The regions σ(ab), τ(a, ab) and τ(b, ab).

F(ab, a′b′). Such a decomposition is given by the eight algebraic hypersurfaces describing
the conditions

a′ ∈ ℓ⊥(a, ab), b′ ∈ ℓ⊥(a, ab), a′ ∈ ℓ⊥(b, ab), b′ ∈ ℓ⊥(b, ab),
a ∈ ℓ⊥(a′, a′b′), b ∈ ℓ⊥(a′, a′b′), a ∈ ℓ⊥(b′, a′b′), b ∈ ℓ⊥(b′, a′b′),

together with a set of hypersurfaces, “bisectors”, each defined by the set of points where two
appropriate functions from F(ab, a′b′) meet; this will become clear shortly. Finally, we note
that each function in F(ab, a′b′) is algebraic of constant degree; for example, elementary
algebra shows that

δ2(a′, ℓab) =

((
x(b) − x(a)

)(
y(a) − y(a′)

)
−
(
x(a) − x(a′)

)(
y(b) − y(a)

))2

(
x(a) − x(b)

)2 +
(
y(a) − y(b)

)2 .

We parameterize the space of (sequences of) k segments a1b1, . . . , akbk (the k candidate
cluster centers) by the point(

x(a1), y(a1), x(b1), y(b1), . . . , x(ak), y(ak), x(bk), y(bk)
)

∈ R4k.

Similarly, each z ∈ R4k defines a k-tuple of segments with s1(z) = a1(z)b1(z), . . . , sk(z) =
ak(z)bk(z) by taking the inverse of the parameterization.

▶ Theorem 2. Let k be a fixed, positive integer and let s be a segment in the plane. In O(1)
time we can construct a nice family Fs = {f : R4k → R} of O(1) functions such that

∀z ∈ R4k :
∑

f∈Fs

f(z) = min
i∈[k]

d2
H(s, si(z)).

Proof. Let s = ab be the fixed segment. For each index i ∈ [k], we consider the set Σ(i) of 8
hypersurfaces in R4k, each of them given by one of the following conditions

ai ∈ ℓ⊥(a, ab), bi ∈ ℓ⊥(a, ab), ai ∈ ℓ⊥(b, ab), bi ∈ ℓ⊥(b, ab),
a ∈ ℓ⊥(ai, aibi), b ∈ ℓ⊥(ai, aibi), a ∈ ℓ⊥(bi, aibi), b ∈ ℓ⊥(bi, aibi).

Note that here x(a), y(a), x(b) and y(b) are input data while x(ai), y(ai), x(bi) and y(bi)
are variables defining coordinates in the parameter space R4k.

ESA 2023
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Set Σ := ∪i∈[k]Σ(i) and let AΣ be the arrangement in R4k defined by Σ. From the foregoing
discussion, we have the following property: for each cell c of AΣ and each index i ∈ [k], the set
of functions F(s, aibi) stays the same and each of the distances δ(a, aibi), δ(b, aibi), δ(ai, ab),
and δ(bi, ab), is given by the same function from F(s, aibi). Thus, for all z ∈ c, the distance
dH(s, si(z)) is described by the maximum among the same four functions from F(s, aibi).

In order to make clear that only the coordinates of ai and bi are relevant in the functions
in F(s, aibi), we change the notation to Gi and take each function g of Gi to map from R4k to
R. Formally, for each function f ∈ F(s, aibi) we put into Gi the function g(z) := f(ab, si(z)).

We next define a set Λ of algebraic hypersurfaces in R4k playing the role of “bisectors”.
For each i, j ∈ [k] with i ≤ j, we define Λ(i, j) as the hypersurfaces given by equating each
function of Gi to each function of Gj . Note that each hypersurface is defined by a polynomial
equality of degree at most 6. Since Gi has 8 functions for each i ∈ [k], the set Λ(i, j) has at
most 82 = 64 hypersurfaces (it is 32 for Λ(i, i)).

Set Λ := ∪i∈[k] ∪j∈[k],i≤j Λ(i, j) and let AΛ be the arrangement in R4k induced by Λ. For
each cell c ∈ AΛ the sign of each function g(z) − g′(z) remains constant for g ∈ Gi, g′ ∈ Gj

and z ∈ c.
Finally, let A be the arrangement in R4k induced by the hypersurfaces in Σ ∪ Λ. Note

that this is a refinement of AΣ and AΛ, meaning that each cell of A is contained in a cell of
AΣ and a cell of AΛ.

Consider a cell c ∈ A. Since c is contained in a cell of AΣ, for each i ∈ [k], each function
in the set ∆i(c) = {δ(a, si(z)), δ(b, si(z)), δ(ai(z), ab), and δ(bi(z), ab)} is given by the same
function of Gi for all z ∈ c. Moreover, since c is contained in a cell of AΛ, for every two
distinct functions δ, δ′ ∈ ∆i(c) the sign of δ − δ′ is constant for all z ∈ c. From these
two facts we conclude that, for each i ∈ [k], there is some function gc,i(z) ∈ Gi such that
dH(s, si(z)) = gc,i(z) for all z ∈ c. This function can be easily determined in O(1) time per
cell by evaluating each function in ∆i(c) at some arbitrary point in c.

Similarly, since c is contained in a cell of AΛ, we have that for each distinct i, j ∈ [k] the
sign of

dH(s, si(z)) − dH(s, sj(z)) = gc,i(z) − gc,j(z)

is constant for all z ∈ c. This implies that, for each cell c ∈ A, there exists some index
ι(c) ∈ [k] with the following property:

∀j ∈ [k], z ∈ c : dH(s, sι(c)(z)) ≤ dH(s, sj(z)).

In other words, the segment sι(c)(z) is a closest one to s among s1(z), . . . , sk(z) and moreover
the distance dH(s, sι(c)(z)) is given by a single function gc,ι(c) from Gι(c). Thus, for each z ∈ c

it holds mini∈[k] dH(s, si(z)) = gc,ι(c)(z). As before, the function gc,ι(c)(z) can be determined
in O(k) time per cell by evaluating each dH(s, si(z)) at some arbitrary point in c.

For any set A, let 1A be the function with 1A(x) = 1 if x ∈ A and 1A(x) = 0 if x /∈ A.
For each cell c ∈ A, define the function hc : R4k → R by hc(z) = 1c(z) · g2

c,ι(c)(z). Finally,
set Fs := {hc | c ∈ A}. We can then express the function

z ∈ R4k 7→ min
i∈[k]

d2
H(s, si(z))

as

min
i∈[k]

d2
H(s, si(z)) =

∑
c∈A

1c(z) g2
c,ι(c)(z) =

∑
c∈A

hc(z) =
∑

h∈Fs

h(z).
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Since Σ ∪ Λ has O(k2) = O(1) hypersurfaces, the arrangement A has O(O(k2)4k) = O(1)
cells, each of them described by O(k2) = O(1) algebraic inequalities of constant description
complexity and the family of functions Fs has the desired properties, where the constant
λ used to define the niceness is O(k8k). Constructing A (i.e., with algebraic descriptions
for each cell) takes O(O(k2)4k+16O((4k)4)) = O(1) [4, Chapter 16]. The family Fs can be
constructed in this time as well. ◀

We can now apply Theorem 1 combining all the functions Fs for s ∈ S and compute a
set of k segments whose cost approximates that of an optimal set of segments.

▶ Theorem 3. Let k a fixed, positive integer and let ε ∈ (0, 1). Let S be a family of n
segments in the plane with positive weights. We can compute k segments s1,ε, . . . , sk,ε in R2

such that

costS({s1,ε, . . . , sk,ε}) ≤ (1 + ε) min
{

costS({s1, . . . , sk}) | s1, . . . , sk segments
}

in time O(n8k−2+η + (n/ε)4k+1 log4k+1(n/ε)), for any η > 0. The constant hidden in the
O-notation depends on η and on k.

Proof. For each segment s ∈ S we compute the family Fs of Theorem 2. This takes
O(n) · O(1) = O(n) time in total. To account for the weight ws > 0 of the segment s,
we replace in Fs each function f ∈ Fs with ws · f . Define F := ∪s∈SFs and the function
g :=

∑
f∈F f . Note that F is a family of O(1) ·O(n) = O(n) nice functions and

∀z ∈ R4k : g(z) =
∑
s∈S

∑
f∈Fs

f(z) =
∑
s∈S

ws·min
i∈[k]

dH(s, si(z))2 = costS({s1(z), . . . , sk(z)}).

We can then use Theorem 1 to find in time O(|F|2·4k−2+η + (|F|/ε)4k+1 log4k+1(|F|/ε)), for
any η > 0, a point z′

ε ∈ R4k such that

g(z′
ε) ≤ (1 + ε) min

z∈R4k
costS({s1(z), . . . , sk(z)}).

The point z′
ε ∈ R4k defines the segments s1,ε := s1(z′

ε), . . . , sk,ε := sk(z′
ε). As s1(z), . . . , sk(z)

goes over all k tuples of segments when z iterates over all R4k, we have

min
z∈R4k

costS({s1(z), . . . , sk(z)}) = min
s1,...,sk

costS({s1, . . . , sk}).

We conclude that

costS({s1,ε, . . . , sk,ε} = g(z′
ε) ≤ (1 + ε) min

s1,...,sk

costS({s1, . . . , sk}). ◀

3 A coreset for k-means in (S, dH)

We use the sensitivity framework of Feldman and Langberg [21, 22]. Let F be a finite set of
functions, each of them mapping from Rd to R≥0. The sensitivity of f ∈ F with respect to
F is

σ(f, F ) := sup
z∈Rd

f(z)∑
g∈F

g(z)
.

We also consider the following range space

range≥(F ) :=
(
F,
{

{f ∈ F | f(z) ≥ r} | z ∈ Rd, r ∈ [0,∞)
})
.

We will use the following theorem from [22], which we state here adapted to our needs.
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▶ Theorem 4 (Adaptation of Theorem 31 in Feldman et al. [22]). Let F be a set of n functions
from Rd to [0,∞) with the following properties:

For each choice of weights wf > 0 for f ∈ F , the range space range≥({wf · f | f ∈ F})
has bounded VC-dimension.
For each f ∈ F we are given a value σ̃(f) such that

σ̃(f) ≥ 1
|F |

and σ̃(f) ≥ σ(f, F ).

Set Σ̃(F ) :=
∑

f∈F σ̃(f). Let δ, ε be real values in (0, 1/2). In time O(|F |) we can compute
a subset C ⊆ F of

O

(
Σ̃(F )
ε2

(
log Σ̃(F ) + log 1

δ

))
weighted functions and weights uf > 0 for each f ∈ C such that, with probability at least
1 − δ:

∀z ∈ Rd :

∣∣∣∣∣∣
∑
f∈F

f(z) −
∑
f∈C

uf · f(z)

∣∣∣∣∣∣ ≤ ε
∑
f∈F

f(z).

For each input segment s ∈ S, we define the function fs : R4k → R≥0 with

fs(z) := min{d2
H(s, s1(z)), . . . , d2

H(s, sk(z))} =
(
min{dH(s, s1(z)), . . . , dH(s, sk(z))}

)2
.

Here, the segments s1(z), . . . , sk(z) are the same that were used in the parameterization
before Theorem 2. Set F = {fs | s ∈ S}. In order to use the above theorem, we need
appropriate sensitivity upper bounds σ̃(fs) for each fs ∈ F and a bound on the total
sensitivity Σ̃(F ). Let optk(S) be the cost of an optimal set of segments for k-means, i.e.,
optk(S) = mins1,...,sk

costS({s1, . . . , sk}).

▶ Lemma 5. Let s′
1 . . . , s

′
k′ be a bicriteria (α, β)-approximation for k-means, that is, k′ ≤ βk

and costS({s′
1, . . . , s

′
k′}) ≤ α · optk(S), where α, β ≥ 1. For each i ∈ [k′], let S′

i be the
segments of S closer to s′

i than to any other segment s′
j, j ∈ [k′] \ {i}; ties are solved

arbitrarily so that S′
1, . . . , S

′
k′ is a partition of S. For each segment s ∈ S, let ι(s) ∈ [k′] be

such that s ∈ S′
ι(s). Define for each s ∈ S the value

σ̃(fs) := 32α
|S′

ι(s)|
+

16α · d2
H(s, s′

ι(s))∑
s′∈S′

ι(s)

d2
H(s′, s′

ι(s))
= 32α

|S′
ι(s)|

+
16α · d2

H(s, s′
ι(s))

costS′
ι(s)

(s′
ι(s))

.

Then σ̃(fs) ≥ σ(fs, F ) and σ̃(fs) ≥ 1
|F | .

(The proof of the above lemma is technical and can be found in the full version of this paper.)
Finally, note that for the sensitivities σ̃(fs) defined in Lemma 5, we have the total

sensitivity

Σ̃(F ) =
∑
s∈S

σ̃(fs) =
∑
s∈S

(
32α

|S′
ι(s)|

+
16α · d2

H(s, s′
ι(s))

costS′
ι(s)

(s′
ι(s))

)

=
∑

i∈[k′]

∑
s∈S′

i

32α
|S′

i|
+
∑
s∈S′

i

16α · d2
H(s, s′

i)
costS′

i
(s′

i)

 =
∑

i∈[k′]

(32α+ 16α)

= O(βαk).

Next, we bound the VC-dimension of the range space associated with the input segments.
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▶ Lemma 6. Assume that we have a weight ws > 0 for each s ∈ S and consider the set of
functions Fw = {ws · fs | s ∈ S}. The range space range≥(Fw) has VC-dimension O(1).

Proof. First note that the range space range≥(Fw) is equivalent to the range space (S,R),
where the ranges are

R =
{

{s ∈ S | (ws · fs)(z) ≥ r} | z ∈ R4k, r ∈ [0,∞)
}

=
{

{s ∈ S | ws · min{d2
H(s, s1(z)) . . . , d2

H(s, sk(z))} ≥ r} | z ∈ R4k, r ∈ [0,∞)
}

=
{

{s ∈ S | ∀i ∈ [k] :
√
ws · dH(s, si(z)) ≥

√
r} | z ∈ R4k, r ∈ [0,∞)

}
.

Setting w′
s = √

ws for each s ∈ S and r′ =
√
r, we get that the ranges are

R =
{

{s ∈ S | ∀i ∈ [k] : w′
s · dH(s, si(z)) ≥ r′} | z ∈ R4k, r′ ∈ [0,∞)

}
.

For each segment s ∈ S, consider the hypersurface λs in R4k+1 given by the graph of the func-
tion z ∈ R4k 7→ w′

s · dH(s, si(z)). This is λs ≡
{(
z, w′

s · dH(s, si(z))
)

∈ R4k × R | z ∈ R4k
}

.
As it has been discussed and used in Section 2 when defining the set F(ab, a′b′), the hyper-
surface λs is contained in the union of 8 algebraic hypersurfaces of bounded degree, each of
them being the graph of a function. Let Λs be the set of those 8 algebraic hypersurfaces for
the segment s ∈ S.

Set Λ := ∪s∈SΛs and let A be the arrangement in R4k+1 induced by Λ. Each point
(z, r′) ∈ R4k × R gives a range to R, and two points in the same cell of A give exactly the
same range to R because, for each s ∈ S, the surface λs is above, below or on all the points
of the cell. It may happen that points in different cells of A give the same range, as one still
has to check the condition ∀i ∈ [k] : w′

s · dH(s, si(z)) ≥ r′. In any case, the number of cells
in A is an upper bound to the number of ranges in R, which is exactly the number of ranges
in range≥(Fw).

Classical results in Real Algebraic Geometry imply that A has |Λ|O(k) cells; see for
example [4, Chapter 7] or [33, Section 6.2]. This implies that the so-called shattering
dimension of range≥(Fw) is O(k) = O(1). (See for example Har-Peled [27, Chapter 5] for the
concept and the next property.) Since a range space has bounded shattering dimension if and
only if it has bounded VC-dimension this implies that the VC-dimension of range≥(Fw) is
O(1). The approach we have used is essentially an application of the methodology discussed
by Matoušek [33, Section 10.3].

Note that in this proof we have not tried to optimize the bound on the VC-dimension
because we assume k is constant. Perhaps a better bound follows from adapting the result of
Driemel at al. [20] to the case of weights. ◀

We can now apply Theorem 4 on F to obtain the coreset.

▶ Theorem 7. Assume that k is a fixed positive integer. Let δ, ε be real values in (0, 1/2).
For any set S of n unweighted segments in the plane, we can compute in time O(n log(1/δ))
a subset T ⊆ S of

O

(
ε−2 log 1

δ

)
segments and weights us > 0 for each s ∈ T such that, with probability at least 1 − δ:

∀ segments s1, . . . , sk : |costS({s1, . . . , sk}) − costT ({s1, . . . , sk})| ≤ ε·costS({s1, . . . , sk}).

Proof. We first compute a bicriteria (α = O(1), β = O(1))-approximation for k-means on S by
using the algorithm of Chen [9, Theorem A.4], which in turn is a modification of the algorithm
by Indyk [29]. For a probability of error δ′ = δ/2, the algorithm takes O(n log(1/δ′)) =
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O(n log(1/δ)) time and succeeds with probability at least 1 − δ′ in finding a set s1, . . . , sk′

of k′ = O(k) segments such that costS({s1, . . . , sk′}) ≤ O(1) · costS({s1, . . . , sk}). Note
that the algorithm of Chen is for the discrete version of k-means, where the centers under
consideration must be a subset of S. However, it is well-known that the triangle inequality
implies that this is a factor 4 off for the continuous k-means version. This factor 4 is then
subsumed by the O(1) approximation factor.

Let F = {fs | s ∈ S}. We use the bicriteria approximation for the sensitivity upper
bounds σ̃(fs), for each fs ∈ F , as defined in Lemma 5. As discussed after Lemma 5, the
total sensitivity Σ̃(F ) is O(1) and, by Lemma 6, the VC-dimension of range≥(F ) is O(1).
The result then follows using Theorem 4 with probability of error δ′ = δ/2. The size of the
set C ⊆ F selected by Theorem 4 is O(Σ̃(F )ε−2(log Σ̃(F ) + log(1/δ′)) = O(ε−2 log(1/δ)),
and each function f ∈ C has a given weight uf > 0. We set T = {s ∈ S | fs ∈ C} and, for
each segment s ∈ T , we define the weight ws := ufs

.
With probability at least 1 − δ′ we have

∀z ∈ R4k :

∣∣∣∣∣∣
∑
f∈F

f(z) −
∑
f∈C

uf · f(z)

∣∣∣∣∣∣ ≤ ε
∑
f∈F

f(z),

which can be rewritten as

∀z ∈ R4k :

∣∣∣∣∣∑
s∈S

fs(z) −
∑
s∈T

ws · fs(z)

∣∣∣∣∣ ≤ ε
∑
s∈S

fs(z).

Since fs(z) = min{d2
H(s, s1(z)), . . . , d2

H(s, sk(z))} and s1(z), . . . , sk(z) goes over all k tuples
of candidate segments when z iterates over all R4k, the last statement is equivalent to

∀ segments s1, . . . , sk : |costS({s1, . . . , sk}) − costT ({s1, . . . , sk})| ≤ ε·costS({s1, . . . , sk}).

The algorithm may fail only if the bicriteria approximation of Chen fails or if the application
of Theorem 4 fails, and each of them separately fails with probability at most δ/2. ◀

4 Putting it all together

Let S be a set of n segments in the plane without weights. We first set a fixed probability of
error δ = 1/2, which means that the terms log(1/δ) become O(1). We keep using ε ∈ (0, 1/2)
as a parameter.

We first compute a weighted coreset T ⊆ S with |T | = O(ε−2)) elements in O(n)
time as described in Theorem 7; for each segment s ∈ T we have a weight ws > 0. If
S∗ = {s∗

1, . . . , s
∗
k} is an optimal set of segments for S, then from Theorem 7 we have that

costT (S∗) ≤ (1 + ε) · costS(S∗) with probability at least 1/2.
We apply the (1 + ε)-approximation algorithm of Theorem 3 on T , taking into account

the weights of the segments. As |T | = O(ε−2) the algorithm runs in time

O
(

(ε−2)8k−2+η + (ε−3)4k+1 log4k+1(ε−3)
)

= O
(
ε−16k+4−η + ε−12k−3 log4k+1(ε−1)

)
for any η > 0. When k = 1, the second summand dominates. When k ≥ 2 and ε is below
some constant ε0, the first summand dominates.
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Let T ∗ = {t∗1, . . . , t∗k} be an optimal set of segments for k-means of the weighted set T .
The algorithm of Theorem 3 has then provided a set Sε = {s1,ε, . . . , sk,ε} of k segments for
which costT (Sε) ≤ (1 + ε) · costT (T ∗). Note that for the set Sε we also get from Theorem 7
that (1 − ε) · costS(Sε) ≤ costT (Sε). Since costT (T ∗) ≤ costT (S∗), we conclude that

(1 − ε) · costS(Sε) ≤ costT (Sε) ≤ (1 + ε) · costT (T ∗) ≤ (1 + ε) · costT (S∗)
≤ (1 + ε)2 · costS(S∗)

or

costS(Sε) ≤ (1 + ε)2

(1 − ε) · costS(S∗) = (1 +O(ε)) · costS(S∗).

Setting ε = Θ(ε′) appropriately, we get a (1 + ε′)-approximation for any desired ε′.
By independently repeating the algorithm O(log(1/δ)) times and taking the best among

the solutions, we can reduce the probability of error to any given value δ. Because k = O(1),
evaluating each candidate solution with respect to the whole set of segments takes O(n) time.
We summarize in the following.

▶ Theorem 8. Let k a fixed, positive integer and let δ, ε ∈ (0, 1/2). Let S be a family of n
unweighted segments in the plane. We can compute k segments s1,ε, . . . , sk,ε in R2 such that,
with probability at least 1 − δ,

costS({s1,ε, . . . , sk,ε}) ≤ (1 + ε) min
s1,...,sk

costS({s1, . . . , sk})

in time O
((
n+ ε−16k+4−η + ε−12k−3 log4k+1(ε−1)

)
(log(1/δ)

)
, for any η > 0.

For k = 1, the running time is O
((
n+ ε−15 log5(ε−1)

)
(log(1/δ)

)
, while for k ≥ 2 the

running time is O
((
n+ ε−16k+4−η

)
(log(1/δ)

)
for any η > 0.

5 Extension to polylines

In this section we briefly discuss the extension of our result to the case of polylines of bounded
complexity. To reduce the number of parameters, we assume that each polyline has at most
ℓ segments and we search the k-means among polylines that have at most ℓ segments. (We
can also handle the case where the input and the target centers have different complexities.)
To simplify the discussion, we assume that each input polyline has exactly ℓ segments. We
further assume that ℓ = O(1).

We regard each polyline π as the union of segments and note that the distance between
the polyline π with segments s1, . . . , sℓ and the polyline π′ with segments s′

1, . . . , s
′
ℓ is

dH(π, π′) = max
{

max
i∈[ℓ]

min
j∈[ℓ]

dH(si, s
′
j), max

j∈[ℓ]
min
i∈[ℓ]

dH(s′
j , si)

}
.

Therefore the distance between any two polylines is described as a max-min combination of
O(ℓ2) = O(1) values.

A polyline with ℓ segments is parameterized by 2(ℓ+ 1) real values. Therefore, a sequence
of k polylines with ℓ segments each is parameterized by a point in Rκ for κ = 2k(ℓ + 1).
(Before, for segments, we had κ = 4k.) Each z ∈ Rκ defines k polylines π1(z), . . . , πk(z),
each consisting of ℓ segments.
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Let Π be a set of polylines in the plane, each with ℓ segments. For each π ∈ Π, we define
the function fπ : Rκ → R by

fπ(z) := min{d2
H(π, π1(z)), . . . , d2

H(π, πk(z))} =
(
min{dH(π, π1(z)), . . . , dH(π, πk(z))}

)2

and then define the set of functions F = {fπ | π ∈ Π}.
We first note that the VC-dimension of the range space range≥(Fw) is O(1), where Fw is

obtained from F by scaling each fπ ∈ F with a different scalar wπ > 0. The proof of Lemma 6
readily applies to this case as it only relies on the description complexity of dH(π, πi(z))
being constant, and each patch of the description being an algebraic function.

Next we note that we can use the bicriteria (α = O(1), β = O(1))-approximation for
k-means of Chen, as we did in the proof of Theorem 7. Indeed, this algorithm only requires
that we can compute the distance between any two input objects, which we can do in constant
time. The rest of the proof of Theorem 7 goes unchanged because Lemma 5 and Theorem 4
do not make any assumption related to segments beyond the VC-dimension. We thus obtain
with probability at least 1/2 a coreset Π̃ of O(ε−2) input polylines, each of them with a
positive weight wπ.

It remains to adapt Theorem 3 to the setting of polylines. As we have done in Theorem 2,
for each polyline π we can compute a family Fπ of nice functions such that

fπ(z) =
∑

f∈Fπ

f(z) = min
i∈[k]

d2
H(π, πi(z)) for all z ∈ Rκ.

Indeed, as we did in the proof of Theorem 2, we can break the parameter space Rκ using
O(k2ℓ2) = O(1) algebraic hypersurfaces into O(1) cells such that, within each cell, the
max-max-min expression defining dH(π, πi(z)) is always the same algebraic expression. We
can then apply Theorem 1 to the family of nice functions ∪π∈Π̃Fπ, where each function
in Fπ has been scales with the corresponding weight wπ. Thus, we have an application of
Theorem 1 in Rκ for O(ε−2) functions. The running time is, for any η > 0,

O((ε−2)2κ−2+η + (ε−3)κ+1 logκ+1(ε−3)) = O(ε−4κ+4+η + ε−3κ−3 logκ+1(ε−1))

= O(ε−O(kℓ)).

Like before, we can make O(log(1/δ)) independent repetitions to decrease the probability of
failure to δ. We summarize below.

▶ Theorem 9. Let k and ℓ be fixed, positive integers and let δ, ε ∈ (0, 1/2) be parameters.
Let Π be a family of n unweighted polylines in the plane, each with at most ℓ segments. We
can compute k polylines π1,ε, . . . , πk,ε in R2, each with at most ℓ segments, such that, with
probability at least 1 − δ,

costΠ({π1,ε, . . . , πk,ε}) ≤ (1 + ε) min
π1,...,πk

costΠ({π1, . . . , πk})

in time O
((
n+ ε−O(kℓ)) (log(1/δ)

)
.
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1 Introduction

Effective resistance of a graph is a fundamental quantity to measure the similarity between
two vertices. Given an unweighted graph G and two vertices s and t, the s-t effective
resistance, denoted by RG(s, t), is defined as the electrical distance between s and t when G
represents an electrical circuit with each edge e a resistor with electrical resistance 1. Together
with the related concept electrical flows, effective resistances have played important roles in
advancing the development of graph algorithms. They have been utilized for computing and
approximating maximum flow [10, 34], generating random spanning tree [35, 43], designing
faster algorithms for multicommodity flow [28], and graph sparsification [45, 15]. In addition,
effective resistances have also found applications in machine learning and social network
analysis. For example, it has been used for graph convolutional networks [2], for measuring
the similarity of vertices in social networks [30, 40] and measuring robustness of networks [19].

Let LG denote the Laplacian matrix of G and L†
G denote its pseudo-inverse. Then the s-t

effective resistance admits an elegant expression RG(s, t) = (1s − 1t)⊤ · L†
G · (1s − 1t) where

1u ∈ Rn denotes the indicator vector at vertex u. Hence classical Laplacian solvers [46, 13]
provide almost-linear time algorithms to approximate RG(s, t).

It has recently received increasing interest of designing sublinear-time (or local) algorithms
for estimating effective resistances. In this setting, we are given query access to a graph and
any specified vertex pair s and t, our goal is to find a good approximation of the s-t effective
resistance, by making as few queries as possible. Such algorithms are particularly motivated by
the ubiquitousness of modern massive graphs, on which traditional polynomial-time algorithms
are no longer feasible. Andoni et al. [4] gave an algorithm that (1 + ϵ)-approximates RG(s, t)
in O( 1

ϵ2 poly log 1
ϵ ) time for d-regular expander graphs. Peng et al. [40] then generalized this

algorithm to unbounded-degree expander graphs with an additive error ϵ and similar query
complexity. Li and Sachdeva [31] then gave one algorithm that (1 + ϵ)-approximates the s-t
effective resistance in O( poly(log n)

ϵ ) time on expander graphs (which is implicit in the proof of
Theorem 3.1 in [31]). However, the question of whether it is possible to obtain sublinear-time
estimation for effective resistances on non-expander or general graphs remains largely open.

Besides the aforementioned sublinear-time algorithms for effective resistances on expander
graphs, one can observe an Ω(n)-query lower bound for approximating the effective resistance
of non-adjacent pair s and t. Indeed, consider an n-vertex path, on which the s-t effective
resistance is equivalent to the s-t shortest path length. Intuitively, for the latter problem,
any algorithm with a constant approximation ratio needs to well estimate the number of
edges on the path from s to t, which takes Ω(n) queries in the worst case.

In this paper, we consider the power and limitations of sublinear-time algorithms for
s-t effective resistance such that s and t are adjacent, i.e., (s, t) ∈ E(G). The adjacency
case is already interesting in many applications. For example, in the seminal work on graph
sparsification [45], it suffices to have good estimations of the effective resistances between
the endpoints of edges, i.e., the adjacent pairs. It is also known that the effective resistance
multiplied by the edge weight is equal to the probability that the edge belongs to a randomly
generated spanning tree (see e.g. [18]), which has found applications in random spanning
tree generation.

On the other hand, for an adjacency pair, the lower bound from the previous discussion
does not hold any more, as for any pair s and t such that (s, t) ∈ E, their effective resistance
is exactly 1 on a path. A priori, it could be true that a (1 + ϵ)-approximation of the s-t
effective resistance for an adjacent pair can be found in sublinear time.
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Now we state our results on sublinear-time algorithms for estimating the effective resist-
ances. We will focus on unit-weighted graphs and the adjacency list model [41], in which the
local algorithms can perform degree, neighbor queries and also sample vertices uniformly at
random.

Strong Lower Bounds. First, we provide a strong lower bound for graphs of degree at most
3 except the given pair s and t. For convenience, for a parameter C > 1, we say that value a
is a C-approximation of value b if a ∈ [b/C, b]. In the following, we always assume that the
given pair s and t are adjacent, i.e., (s, t) ∈ E.

▶ Theorem 1. There are infinitely many n and graphs of n vertices such that any local
algorithm with success probability 0.6 and approximation ratio 1.01 on RG(s, t) needs Ω(n)
queries. This holds even for graphs whose vertices are of degree at most 3 except the adjacent
pair s and t.

Next, observe that the trivial algorithm outputting 1 directly gives an approximation
factor 2

1/d(s)+1/d(t) where d(s) and d(t) are the degrees of the adjacent pair s and t. This
is because RG(s, t) ≥ 1/d(s)+1/d(t)

2 from the spectral graph theory [33]. This factor equals
d if the graph is regular and is between min{d(s), d(t)} and 2 min{d(s), d(t)} in general.
If we consider large approximation factors instead of the (1 + ϵ)-approximation shown in
Theorem 1, a natural question is can we design sublinear time algorithms that improve upon
this trivial approximation ratio 2

1/d(s)+1/d(t) ? Our next theorem shows that it would take
Ω(n) queries to improve this ratio significantly.

▶ Theorem 2. There exist a universal constant c > 0 and infinitely many n such that given
any d ≥ 4 and any ℓ ≥ 4, for graphs of n vertices and degree at most d, any local algorithm
to approximate RG(s, t) with success probability 0.6 and approximation ratio 1 + c ·min{d, ℓ}
needs Ω(nd/ℓ) queries.

If we set ℓ = d, this indicates that it takes Ω(n) queries to obtain an approximation
ratio o(d) for d-regular graphs since m = nd/2. In contrast, the corresponding trivial
approximation ratio for adjacent pairs on d-regular graphs is d. If we fix ℓ and consider
graphs with sufficiently large degree d > ℓ, Theorem 2 also gives a trade-off between the
query complexity and approximation ratio. Next we remark that we could incorporate
additive errors into the lower bounds of Theorem 1 and Theorem 2. This is because these
two bounds consider the task of distinguishing between graphs with RG(s, t) = 1 and graphs
with RG(s, t) < 1.

On the other hand, for graphs of degree at most 2 except the given pair s and t, we
provide a (1 + ϵ)-approximation algorithm of sublinear time in Section 5.

Total effective resistance. Another important measure of a network is the total effective
resistance, which is defined as Rtot(G) =

∑
u<v RG(u, v) and is also known as the Kirchhoff

index of a graph
(
see e.g. [20, 19, 30] for numerous applications of Rtot(G)

)
. Because of the

elegant expression Rtot(G) = n ·
∑

i>1
1

λi(LG) where the sum is over all non-trivial eigenvalues
of the Laplacian of G, one may wonder whether there is a simpler approximation algorithm
for the total effective resistance or not. However, we show that even for simple graphs with
degree 2, any algorithm with approximation ratio < 2 needs Ω(n) queries.

▶ Theorem 3. For any n and any ℓ > 1, any local algorithm for computing the total effective
resistance with success probability 0.6 and approximation ratio ℓ needs Ω(n) queries. In
particular, this holds even for ℓ = 2− o(1) and graphs of degree at most 2.

ESA 2023



29:4 Effective Resistances in Non-Expander Graphs

Eigenvalues of graph perturbation. One technical ingredient in the proof of Theorem 1
is to show that an expander graph is still an expander after removing one edge. A natural
approach would be to compare the smallest non-trivial eigenvalue of the Laplacian of the
perturbed graph to the corresponding one of the original graph. Since deleting one edge in G

does not change its edge expansion too much, one may use Cheeger’s inequality (with other
properties) to lower bound the new eigenvalue in terms of the original one. However, our key
technical lemma provides a more direct bound by incorporating the effective resistance of
the moved edge.

▶ Lemma 4. Given a graph G = (V,E) with n vertices, let λ1(G) ≤ · · · ≤ λn(G) be the
eigenvalues of its Laplacian LG. Given any edge (u, v) in G, let G′ =

(
V,E \ {(u, v)}

)
be

the graph obtained from G by removing the edge (u, v) and let λ1(G′) ≤ . . . ≤ λn(G′) be the
eigenvalues of its Laplacian LG′ . Then it holds that

∀i ∈ [n], λi(G′) ≥
(
1−RG(u, v)

)
· λi(G).

This lemma shows that after removing edge (u, v) in an expander G with RG(u, v) strictly
less than 1, G is still an expander. We remark that this requirement on the effective resistance
RG(u, v) is necessary. Because there exists an expander graph G with edges of effective
resistance 1 and vertices of degree 1 (see Claim 10 in Section 3), one can not delete an
arbitrary edge in G while maintaining the expansion property.

We could consider the general problem of bounding the eigenvalues of a matrix after
removing a few rows. Specifically, given a matrix A ∈ Rm×n and k distinct rows aℓ1 , . . . , aℓk

,
the question is to compare all eigenvalues of (A′)⊤A′, where A′ ∈ R(m−k)×n removes row
aℓ1 , . . . ,aℓk

from A, to the eigenvalues of A⊤A. Since (A′)⊤A′ ⪯ A⊤A, each eigenvalue
λi

(
(A′)⊤A′) ≤ λi

(
A⊤A

)
. We give a lower bound for every λi

(
(A′)⊤A′) by incorporating the

leverage scores of those rows.
The (statistical) leverage scores of a matrix A ∈ Rm×n provide a nonuniform importance

sampling distribution over the m rows of A, which plays a crucial role in randomized matrix
algorithms (see [47] for a list of applications). For each row ai in A, its leverage score τi is
defined to be a⊤

i · (A⊤A)† ·ai. In fact, the leverage scores of a matrix are the analogues of the
effective resistances of a graph [16]. More formally, let B ∈ Rm×n denote the edge-incidence
matrix of a graph G as follows: Each edge (u, v) of G gives a row 1u− 1v in B. Furthermore,
the Laplacian matrix L of G equals B⊤B. If a row of B corresponds to edge (u, v), its
leverage score (1u − 1v)⊤ · (B⊤B)† · (1u − 1v) = (1u − 1v)⊤ · L† · (1u − 1v) turns out to be
the effective resistance of (u, v) in G.

Now we state Lemma 5 for the general problem. So Lemma 4 is a direct corollary of
Lemma 5 by setting A to the incidence matrix of G as discussed above.

▶ Lemma 5. Given a matrix A ∈ Rm×n, let λ1 ≤ · · · ≤ λn be the eigenvalues of A⊤A.
Moreover, for each ℓ ∈ [m], let aℓ be row ℓ of A and τℓ = a⊤

ℓ (A⊤A)†aℓ be its leverage score.
For any k distinct indices ℓ1, . . . , ℓk ∈ [m], let A′ ∈ R(m−k)×n be the matrix obtained

from A by removing the corresponding k rows aℓ1 , . . . ,aℓk
; and let λ′

1 ≤ · · · ≤ λ′
n be the

eigenvalues of (A′)⊤A′. It holds that

∀i ∈ [n], λ′
i ∈
[
(1− τℓ1 − τℓ2 − · · · − τℓk

) · λi, λi

]
.

1.1 Related Work
Previous research has studied the problem of how to quickly compute and approximate the
effective resistances in the regime of polynomial-time algorithms, as such algorithms can be
used as a crucial subroutine for other graph algorithms. For example, for any two vertices s
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and t in a n-vertex m-edge graph, one can (1 + ϵ)-approximate the s-t effective resistance
in Õ(m+ nϵ−2) [18] and Õ(m log(1/ϵ)) [13] time, respectively. To (1± ϵ)-approximate the
effective resistances between s given pairs, Chu et al. [11] provided an algorithm in time
O(m1+o(1) + (n+ s)no(1) · ϵ−1.5). There are also algorithms that find (1 + ϵ)-approximations
to the effective resistance between every pair of vertices in Õ(n2/ϵ) time [27]. In order to
exactly compute the s-t or all-pairs effective resistance, the current fastest algorithms run in
times O(nω) (by using the fastest matrix inversion algorithm [8, 24]), where ω < 2.373 is the
matrix multiplication exponent [3]. Faster algorithms are known for planar graphs by using
the nested dissection method [32].

There exists a line of works on how to efficiently maintain the effective resistances
dynamically [42, 1, 21, 22, 17, 9], i.e., if the graph undergoes edge insertions and/or deletions,
and the goal is to support the update operations and query for the effective resistances as
quickly as possible, rather than having to recompute it from scratch each time.

For the total effective resistance, Ghosh et al. [20] studied algorithms for allocating edge
weights on a given graph in order to minimize the total effective resistance. Li and Zhang
[30] used Kirchhoff index (i.e., total effective resistance) as the measure of edge centrality in
weighted networks and gave efficient algorithms for the measure.

Matrix perturbation considers the eigenvalues (singular values) of A after adding a matrix
E of the same order. Various bounds on the error of matrix perturbation, such as absolute
errors and relative errors, has been studied. We refer to the survey [26] and the reference
therein for a complete overview. Even though Lemma 5 is an instantiation of Theorem 2.8
in [26] with (statistical) leverage scores, we provide two simpler proofs in this work which
are more intuitive. Also, different perturbation bounds in terms of the leverage scores were
provided in [25, 23].

Leverage scores, analogue to effective resistances of graphs, have wide applications in
randomized matrix algorithms and large-scale data algorithms. The most notable property
is that sampling the rows of a matrix A via its leverage scores gives an efficient construction
of the subspace embedding of A [45]. This fact is extremely useful in designing ultra-efficient
algorithms for linear regression and low rank approximations [12]. We refer to the survey [47]
for a list of applications. Since bounding eigenvalues are sufficient for ℓ2-subspace embeddings,
there is a line of research on the connection between eigenvalues and leverage scores, such as
spectral sparsifications [45, 5].

Sublinear-time algorithms for the related graph problems has also been investigated. For
example, Lee [29] gave an algorithm for producing a probabilistic (ϵ, δ)-spectral sparsifier
with O(n log n/ϵ2) edges in Õ(n/ϵ2δ) time for unweighted undirected graph. Note that its
running time is sublinear if the number of edges in the graph is large enough. For spectral
approximations in sublinear time, various approximation guarantees have been studied
in [14, 39, 7].

Organization. In Section 2, we provide the basic definitions and notations of this work.
Next we discuss about eigenvalues of perturbed matrices and graphs in Section 3. Then we
prove the lower bounds of Theorem 1 in Section 4. Finally, we discuss the approximation
algorithm for degree-2 graphs in Section 5. Due to the space constraint, we leave the proof
of Theorem 2 and 3 to the full version of this paper in arXiv.

2 Preliminaries

For any integer k ≥ 1, let [k] := {1, · · · , k}. We use a = b± c to denote a ∈ [b− c, b+ c] and
1 to denote the all 1 vector.

ESA 2023
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Basic definitions from graph theory. In this work, we only consider undirected graphs with
unit weights on each edge. Given an undirected graph G = (V,E) with n := |V | vertices and
m := |E| edges, let AG ∈ Rn×n denote the adjacency matrix of G and DG ∈ Rn×n denote
its degree diagonal matrix. We use LG ∈ Rn×n to denote its Laplacian, i.e., LG = DG −AG.
Also, we use V (G) and E(G) to denote the vertex set and edge set of a graph G.

In this work, we use L̃G to denote the normalized Laplacian of G, i.e., L̃G := D
−1/2
G ·LG ·

D
−1/2
G . When the graph is clear, we hide the notation G. Also, we use V (G) and E(G) to

denote the vertex and edge set of G. Moreover, we use d to denote the maximum degree of
G. For a vertex u, let d(u) denote its degree in G and 1u ∈ Rn denote the indicator vector
of u, i.e., 1u(v) = 1 if v = u and 0 otherwise.

Now we define the adjacency list model for sublinear time graph algorithms [41]. There
are three types of operations in constant time:
1. degree query: the algorithm queries the degree of a fixed vertex v ∈ V ;
2. neighbor query: the algorithm queries the i-th neighbor of vertex v given v and i;
3. uniform sampling: the algorithm receives a random vertex in V .

Basic definitions about matrices and expander graphs. We use ψ, ϕ, and bold letter a to
denote vectors and ∥ · ∥ to denote their L2 (Euclidean) norms. For a vector a ∈ RV and a
subset U ⊂ V , let a(U) denote the vector in RU which contains the corresponding entries in
U . So a(i) denotes the i-th entry of a.

Given a symmetric matrix A, we always use λ1(A) ≤ λ2(A) ≤ · · · ≤ λn(A) to denote
its eigenvalues in the non-decreasing order. Furthermore, let its eigendecomposition be
A =

∑
i λi(A) · ψiψ

T
i where ψi is the eigenvector corresponding to the eigenvalue λi(A).

We say G is an expander if the second smallest eigenvalue λ2(L̃) of L̃ is at least c1, for
some universal c1 > 0. This is equivalent to λ2(LG) ≥ c2 for some c2 > 0 when the degree of
G is bounded. We will use Ramanujan graphs [36, 38] of degree 3 and near-Ramanujan graphs
for every degree d ≥ 4 [37]. The guarantee of a Ramanujan graph G of regular degree d is that
λ2(LG) ≥ d− 2

√
d− 1. For near-Ramanujan graphs, we only need λ2(LG) ≥ d− 2.01

√
d− 1.

Basic definitions about effective resistances. Then we define the Moore-Penrose pseudo-
inverse and effective resistances. For a symmetric matrix M ∈ Rn×n whose eigendecomposi-
tion is M =

∑
i λiψiψ

T
i , its Moore-Penrose pseudo-inverse M† =

∑
i:λi ̸=0

1
λi
ψiψ

T
i .

▶ Definition 6 (Effective Resistances). Given a graph G = (V,E), for any two vertices
s, t ∈ V , the s − t effective resistance is defined as RG(s, t) := (1s − 1t)⊤ · L†

G · (1s − 1t).
Moreover, the total effective resistance of G is defined as Rtot(G) =

∑
i<j RG(i, j).

In this work, we will extensively use the following facts about effective resistances (see [33, 44]
for their proofs).

▶ Lemma 7. Given a graph G = (V,E), the effective resistances in G satisfy the following
properties:
1.
∑

(u,v)∈E RG(u, v) = n− 1 and Rtot(G) = n ·
∑

i=2,...,n

1
λi(LG) .

2. 2m ·RG(u, v) = κG(u, v), where κG(i, j) is the commute time of a simple random walk
from vertex i to j in G, i.e., the expected number of steps in a random walk starting at i,
after vertex j is visited and then vertex i is reached again.

3. 1
2
( 1

d(u) + 1
d(v)

)
≤ RG(u, v) ≤

(
1/λ2(L̃G)

)
·
( 1

d(u) + 1
d(v)

)
where λ2(L̃G) is the 2nd smallest

eigenvalue of the normalized Laplacian L̃G.
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4. Given any (s, t), consider all functions ϕ ∈ RV such that ϕ(s) = 1 and ϕ(t) = 0, then

RG(s, t) = 1
min

ϕ∈RV :ϕ(s)=1,ϕ(t)=0

∑
(u,v)∈E(ϕ(u)− ϕ(v))2 .

In fact, the minimum value above is acheived when ϕ is harmonic, namely the unique
solution satisfying ϕ(s) = 1, ϕ(t) = 0, and ϕ(v) = 1

d(v)
∑

(u,v)∈E ϕ(u) for v ∈ V \ {s, t}.
An equivalent definition is RG(s, t) = max

ϕ∈Rn:ϕ⊥1
⟨1s−1t,ϕ⟩2

ϕ⊤·LG·ϕ . In particular, the leverage score

τℓ of row aℓ in A also equals τℓ = max
ϕ∈Rn

⟨aℓ,ϕ⟩2

∥A·ϕ∥2
2
.

5. Let T (G) denote all spanning trees in G. Let us pick T ∈ T uniformly at random. Then
RG(u, v) is the probability (u, v) is in T , i.e., RG(u, v) = PrT ∼T (G)[(u, v) ∈ T ].

Note that the first equation
∑

(u,v)∈E RG(u, v) = n− 1 in Lemma 7 considers the summation
over all edges in E where the total effective resistance is the summation over all pairs.

3 Eigenvalues of Perturbed Graphs and Matrices

We discuss Lemma 4 and Lemma 5 in this section. We give two different proofs for Lemma 5
such that Lemma 4 is a direct corollary by setting A to be the incidence matrix. Then we
show expander graphs with edges of effective resistance 1 to illustrate that we have to remove
edges with RG(u, v) < 1 to keep the perturbed graph as an expander in Lemma 4.

We restate Lemma 5 again. One remark is that both bounds could be tight in Lemma 5.
For example, consider the case A⊤A = I whose τℓ = ∥aℓ∥2

2 for all ℓ and λi ≡ 1 for all i.
Then after removing any aℓ (hence k = 1), (A′)⊤A′ = I − aℓ · a⊤

ℓ has λ′
1 = 1− ∥aℓ∥2

2 with
eigenvector aℓ

∥aℓ∥2
. So λ′

1 matches the lower bound (1− τℓ) · λ1; and all the rest eigenvalues
of (A′)⊤A′ are 1, the same as those of A⊤A.

▶ Lemma 5. Given a matrix A ∈ Rm×n, let λ1 ≤ · · · ≤ λn be the eigenvalues of A⊤A.
Moreover, for each ℓ ∈ [m], let aℓ be row ℓ of A and τℓ = a⊤

ℓ (A⊤A)†aℓ be its leverage score.
For any k distinct indices ℓ1, . . . , ℓk ∈ [m], let A′ ∈ R(m−k)×n be the matrix obtained

from A by removing the corresponding k rows aℓ1 , . . . ,aℓk
; and let λ′

1 ≤ · · · ≤ λ′
n be the

eigenvalues of (A′)⊤A′. It holds that

∀i ∈ [n], λ′
i ∈
[
(1− τℓ1 − τℓ2 − · · · − τℓk

) · λi, λi

]
.

The first proof is based on the characteristic polynomial of A⊤A, which is motivated by
the potential function method of classical work [5]. One ingredient in this proof is the matrix
determinant lemma [5].

▶ Lemma 8. If A is nonsingular and v is a vector, then det(A+vv⊤) = det(A)·(1+v⊤A−1v).

Proof of Lemma 5. For ease of exposition, we start with k = 1. Namely, we remove one
row aℓ from A to obtain A′. Consider the characteristic polynomial of (A′)⊤A′:

det(xI − (A′)⊤A′) = det(xI −A⊤A+ aℓa⊤
ℓ )

= det
(
(xI −A⊤A) ·

(
I + (xI −A⊤A)†aℓa⊤

ℓ

))
= det

(
xI −A⊤A

)
· det

(
I + (xI −A⊤A)†aℓa⊤

ℓ

)
.

Let ψi be the corresponding eigenvector of λi in A such that (xI − A⊤A)†aℓa⊤
ℓ =( ∑

i∈[n]:λi ̸=x

1
x−λi

ψiψ
⊤
i

)
aℓa⊤

ℓ . Then we apply the matrix determinant lemma (Lemma 8) to

det
(
I + (xI −A⊤A)†aℓa⊤

ℓ

)
such that
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det(xI − (A′)⊤A′) = det(xI −A⊤A) ·
(

1 + a⊤
ℓ ·

n∑
i=1

1
x− λi

ψiψ
⊤
i · aℓ

)

= det(xI −A⊤A) ·
(

1−
n∑

i=1

1
λi − x

⟨ψi,aℓ⟩2
)
.

Let λ′
1, λ

′
2, · · · , λ′

n be the roots of det(xI − (A′)⊤A′). Similar to the argument in [5]:
If ⟨ψi,aℓ⟩ = 0, then λi is a root of det(xI − A⊤A), i.e., λ′

i = λi. Otherwise, λ′
i ∈

(λi−1, λi) satisfies
n∑

j=1

1
λj−λ′

i
⟨ψ,aℓ⟩2 = 1. This is because lim

x→λi−1+

n∑
i=1

1
λi−x ⟨ψi,aℓ⟩2 = −∞

and lim
x→λi−

n∑
i=1

1
λi−x ⟨ψi,aℓ⟩2 = +∞. For the 2nd case, we show λ′

i ≥ (1− τℓ)λi.

Let the function p(x) :=
n∑

j=1

1
λj−x ⟨ψj ,aℓ⟩2. If λi−1 ≥ (1 − τℓ)λi, then we have proved

λ′
i > (1− τℓ)λi. Otherwise we show λ′

i > (1− τℓ)λi by considering p(x) in the continuous
interval

[
(1− τℓ)λi, λi

)
.

p

(
(1− τℓ)λi

)
=

n∑
j=1

1
λj − (1− τℓ)λi

⟨ψ,aℓ⟩2

≤
n∑

j=i

1
λj − (1− τℓ)λi

⟨ψ,aℓ⟩2

(Since λ1 < · · · < λi−1 < (1 − τℓ)λi from the assumption, their corresponding terms are negative.)

≤
n∑

j=i

1
λj − (1− τℓ)λj

⟨ψ,aℓ⟩2 = 1
τℓ

n∑
j=i

1
λj
⟨ψ,aℓ⟩2

From the definition, τℓ = a⊤
ℓ (A⊤A)†aℓ = a⊤

ℓ

(
n∑

i=1

1
λi
ψiψ

⊤
i

)
aℓ =

n∑
i=1

1
λi
⟨ψi,aℓ⟩2. So

p
(
(1− τℓ)λi

)
≤ 1.

On the other hand, lim
x→λi−

n∑
i=1

1
λi−x ⟨ψi, aℓ⟩2 = +∞. So p

(
(1− τℓ)λi

)
≤ 1 and p(λi− ϵ) > 1

infer that there exists a x ∈ [(1 − τℓ)λi, λi) such that p(x) = 1, which also means that
det(xI − (A′)⊤A′) has a root λ′

i ∈ [(1− τℓ)λi, λi).
Next we prove λ′

i ≥ (1 − τℓ1 − · · · − τℓk
)λi by induction on k. The above calculation

proves the base case of k = 1.
For the inductive step, let Ã denote the matrix after removing aℓ1 , . . . ,aℓq and A′

denote the matrix by removing one more edge aℓq+1 . By the induction hypothesis, λi(Ã) ∈[(
1−

q∑
j=1

τℓj

)
· λi, λi

]
and (1−

q∑
j=1

τℓj
)·A⊤A ⪯ Ã⊤Ã. This implies (Ã⊤Ã)† ⪯ (1−

q∑
j=1

τℓj
)−1 ·

(A⊤A)†,

τ̃ℓq+1 = a⊤
ℓq+1

(Ã⊤Ã)†aℓq+1 ≤

1−
q∑

j=1
τℓj

−1

a⊤
ℓq+1

(A⊤A)†aℓq+1 =

1−
q∑

j=1
τℓj

−1

τℓq+1 .

Using the perturbation bound for k = 1 on Ã and A′,

λi(A′) ∈
[
(1 − τ̃ℓq+1 )λi(Ã), λi(Ã)

]
⊆

[(
1 −

(
1 −

q∑
j=1

τℓj

)−1

τℓq+1

)(
1 −

q∑
j=1

τℓj

)
λi, λi

]
=

[(
1 −

q+1∑
j=1

τℓj

)
λi, λi

]
. ◀
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Next we present the 2nd proof, which is based on Property 4 of the leverage score in
Lemma 7. One advantage of this proof is that it works directly on multiple edges.

Proof of Lemma 5. We will apply the Courant-Fischer theorem below, which shows λ′
i =

min
S⊂Rn,

dim(S)=i

max
ϕ∈S

ϕ⊤(A′)⊤A′ϕ
ϕ⊤ϕ

.

▶ Lemma 9 (Courant-Fischer-Weyl theorem). Let H be an n × n Hermitian matrix with
eigenvalues λ1(H) ≤ λ2(H) ≤ · · · ≤ λn(H), then

λk(H) = min
S⊂Rn,

dim(S)=k

max
x∈S

x⊤Hx

x⊤x
and max

S⊂Rn,
dim(S)=n−k+1

min
x∈S

x⊤Hx

x⊤x
.

We compare the Rayleigh quotient ϕ⊤(A′)⊤A′ϕ
ϕ⊤ϕ

with ϕ⊤A⊤Aϕ
ϕ⊤ϕ

:

ϕ⊤(A′)⊤A′ϕ

ϕ⊤ϕ
=
∥A′ϕ∥2

2

∥ϕ∥2
2

=
∥Aϕ∥2

2 −
k∑

j=1

(
a⊤

ℓj
ϕ
)2

∥ϕ∥2
2

=
∥Aϕ∥2

2

∥ϕ∥2
2
·

1−
k∑

j=1

(
a⊤

ℓj
ϕ
)2

∥Aϕ∥2
2

 .
Since τℓ = max

ϕ∈Rn

(a⊤
ℓ ϕ)2

∥Aϕ∥2
2

from Property 4 of Lemma 7, 1−
k∑

j=1

(
a⊤

ℓj
ϕ
)2

∥Aϕ∥2
2
≥ 1−

k∑
j=1

τℓj
.

Using Lemma 9 again,

λ′
i = min

S⊂Rn,
dim(S)=i

max
ϕ∈S

∥Aϕ∥2
2

∥ϕ∥2
2

[
1 −

k∑
j=1

(
a⊤

ℓj
ϕ
)2

∥Aϕ∥2
2

]
≥

(
1 −

k∑
j=1

τℓj

)
min

S⊂Rn,
dim(S)=i

max
ϕ∈S

∥Aϕ∥2
2

∥ϕ∥2
2

= (1−
k∑

j=1

τℓj
)λi.

As 1−
k∑

j=1

(
a⊤

ℓj
ϕ
)2

∥Aϕ∥2
2
≤ 1, we can get λ′

i ≤ λi in a similar way. Combining the two inequalities,

λ′
i ∈ [(1−

k∑
j=1

τℓj
)λi, λi]. ◀

We remark that Lemma 5 is also an instantiation of Theorem 2.8 in [26] with leverage
scores. However, we believe the above two proofs shed more insights on the structure
of perturbed matrices and are simplier (without Weyl’s interlacing inequality). But for
completeness, we provide that proof in the full version.

Next we show that there exist edges in expander graphs with unit effective resistance.

▷ Claim 10. For any c0 > 0 and infinitely many n, there exists an expander graph G of
constant degree such that
1. The smallest non-trivial eigenvalue of its Laplacian is at least c0;
2. There exists an edge e in G with effective resistance 1.
Hence, after removing e, λ2(LG′) = 0 in the perturbed graph G′ such that G′ is no longer an
expander.

Proof. Given an expander G′ = (V ′, E′) with constant degree and λ2(LG) = Ω(1), we
add an extra vertex of degree 1 to it. More formally, let V ′ = {1, . . . , n − 1} and G =
(V,E) = (V ′ ∪ {n}, E′ ∪ {(n− 1, n)}). Then RG(n− 1, n) = 1. We will show λ2

(
LG′

)
= Ω(1)

such that G′ is also an expander (its degree is still a constant). So LG(i, j) = LG′(i, j)
except i ∈ {n − 1, n} and j ∈ {n− 1, n} where those four entries have LG(n− 1, n− 1) =
LG′(n− 1, n− 1) + 1, LG(n− 1, n) = LG(n, n− 1) = −1, and LG(n, n) = 1.
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By the Courant-Fischer Theorem, λ2(LG) = min
ϕ⊥1,∥ϕ∥2=1

ϕ⊤LGϕ. Then we prove ϕ⊤LGϕ =

Ω(1) for all ϕ with ϕ⊥1 and ∥ϕ∥2 = 1 by considering ϕ(n) in two cases.
If |ϕ(n)| ≥ 0.8, then |ϕ(n − 1)| ≤ 0.6 because ∥ϕ∥2 = 1. So ϕ⊤LGϕ =

∑
(u,v)∈E

(ϕ(u) −

ϕ(v))2 ≥ (ϕ(n)− ϕ(n− 1))2 ≥ 0.04.
Otherwise |ϕ(n)| < 0.8. For convenience, we assume ϕ(n) ∈ [0, 0.8). Let ϕ([n − 1]) ∈

R[n−1] denotes the sub-vector on V ′ and 1([n − 1]) denotes the all 1-vector on V ′. Then
∥ϕ([n− 1])∥ ≥ 0.6 and

ϕ⊤LGϕ =
∑

(u,v)∈E

(ϕ(u)− ϕ(v))2 ≥
∑

(u,v)∈E′

(ϕ(u)− ϕ(v))2 = ϕ([n− 1])⊤ · LG′ · ϕ([n− 1]).

Since LG′ has an eigenvalue 0 with eigenvector 1([n− 1]), we consider ϕ([n− 1]) after
orthonormalization: ϕ([n− 1])− ⟨ϕ([n−1]),1([n−1])⟩

n−1 · 1([n− 1]).
Note that ⟨ϕ,1⟩ = 0 implies ⟨ϕ([n− 1]),1([n− 1])⟩ = −ϕ(n). We calculate its L2 norm

after orthonormalization as∥∥∥∥ϕ([n− 1])− ⟨ϕ([n− 1]),1([n− 1])⟩
n− 1 · 1([n− 1])

∥∥∥∥2

=
∥∥∥∥ϕ([n− 1]) + ϕ(n)

n− 1 · 1([n− 1])
∥∥∥∥2

= ∥ϕ([n− 1])∥2 +
∥∥∥∥ ϕ(n)
n− 1 · 1([n− 1])

∥∥∥∥2
+ 2ϕ(n)
n− 1 · ⟨ϕ([n− 1]),1([n− 1])⟩

≥ ∥ϕ([n− 1])∥2 − 2ϕ(n)
n− 1 · ϕ(n) ≥ 0.36− 2

n− 1 ≥ 0.3.

So ϕ⊤LGϕ ≥ λ2(LG′) ·
∥∥∥ϕ([n− 1])− ⟨ϕ([n−1]),1([n−1])⟩

n−1 · 1([n− 1])
∥∥∥2

= Ω(1).
From all discussion above, λ2(LG) = Ω(1). Since G has a constant degree, λ2(L̃G) ≥

λ2(LG)/d(G) = Ω(1), which means G is also an expander. ◁

4 Lower Bound for Degree 3

In this section, we prove the lower bound for graphs with degrees at most 3 (except the given
pair s and t). Recall the statement of Theorem 1 in Section 1.

▶ Theorem 1. There are infinitely many n and graphs of n vertices such that any local
algorithm with success probability 0.6 and approximation ratio 1.01 on RG(s, t) needs Ω(n)
queries. This holds even for graphs whose vertices are of degree at most 3 except the adjacent
pair s and t.

One ingredient in the proof is Lemma 4, which bounds the expansion of a perturbed graph
G′ obtained from removing one edge e of the original graph G, in terms of the eigenvalues of
the Laplacian of G and the effective resistance RG(e).

In the rest of this section, we finish the proof of Theorem 1. The high level idea is to
consider a graph G of degree 3 (see Figure 2 for an illustration) constituted by two disjoint
expanders Hs and Ht with one extra edge between s and t in these two expanders separately.

Then we produce a random graph G′ as follows (see Figure 1 for an illustration): remove
one random edge (u, u′) in Hs and another one (v, v′) in Ht separately; then add two edges
(u, v) and (u′, v′) to G′.
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s t

u

u′

v

v′

Hs Ht

Figure 1 G′ after modification.

So the number of vertices in G and G′ are the same; moreover all vertices have the same
degrees. Thus the only way to distinguish between G and G′ is to figure out whether any
of these four edges (u, u′), (v, v′), (u, v), (u′, v′) is in the graph or not. Since there are 3n/2
edges, this needs Ω(n) queries. Finally we bound RG′(s, t) (and the approximation ratio) via
Lemma 4.

s t

Hs Ht

Figure 2 Construction of G with two expanders Hs and Ht.

Proof of Theorem 1. We provide a distribution G of graphs with n vertices and degree
at most 3 (except s and t). Then by Yao’s minimax principle, we only need to consider
deterministic algorithms of qn neighbor queries and 1.01-approximation ratio whose success
probability is at least 0.6 over G. Our goal is to prove qn = Ω(n).

Consider any n such that there exists a 3-regular Ramanujan graph H of size n/2 [36, 38].
Then we construct G with the given pair (s, t) as follows:
1. Take two vertex-disjoint copies of H , denoted by Hs and Ht, such that Hs contains vertex

s and Ht contains vertex t.
2. Define the vertex set V (G) of G to be the union of the vertex sets of Hs and Ht.
3. Define the edge set E(G) of G to be the union of (s, t), the edge set E(Hs) of Hs and

the edge set E(Ht) of Ht.
Note that the effective resistance RG(s, t) = 1 in G.
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Next, we construct a random graph G′ based on G. Let Es,3/4 be the set of edges in Hs

with effective resistance at most 3/4, i.e., Es,3/4 =
{

(u, v) ∈ E(Hs)
∣∣RG(u, v) ≤ 3/4

}
and we

define Et,3/4 analogously. We use the following claim to lower bound the sizes of these two
sets whose proof is deferred to Section 4.1.

▷ Claim 11. It holds that |Es,3/4| ≥ n/12 and |Et,3/4| ≥ n/12.

We give the construction of G′ which is almost identical to G except four edges.
1. Choose one edge (u, u′) uniformly at random from Es,3/4 and remove it from G. Similarly,

remove another random edge (v, v′) ∈ Et,3/4. For convenience, let H ′
s be the subgraph of

Hs obtained by removing (u, u′) from Hs and H ′
t be the subgraph obtained by removing

(v, v′) from H ′
t.

2. Add (u, v) and (u′, v′) to G′.
By our choices of (u, u′) ∈ Es,3/4 and (v, v′) ∈ Et,3/4, H ′

s and H ′
t are still expander graphs

from Lemma 4. Based on this property, we show the effective resistance between s and t in
G′ is strictly less than 1 in Claim 12, whose proof is deferred to Section 4.1.

▷ Claim 12. It holds that RG′(s, t) ≤ 0.99.

Now we fix a deterministic algorithm A with approximation ratio at most 1.01 and
consider the underlying distribution G, which is G or G′ with probability 1/2 separately.
Observe that whenever A succeeds, A is able to distinguish between G and G′, since the
ratio between RG(s, t) = 1 and RG′(s, t) ≤ 0.99 is more than 1.01. For convenience, let us
modify A so that its output is an assertion about whether the input graph is G or G′. By
Yao’s minimax principle, it holds that

0.6 ≤ Pr
G

[A succeeds] = Pr[A(G) = G]
2 + Pr[A(G′) = G′]

2 . (1)

Next we consider all neighbor queries made by A when the underlying graph is G. Since A
and G are fixed, say A makes qn fixed neighbor queries on G. If G′ and G provide the same
answers on these neighbor queries, A fails to distinguish them. But G′ is obtained from G

by removing one random edge in Es,3/4 and another one in Et,3/4 separately. Hence at most
qn edges in Es,3/4 will be queried; and similarly for Et,3/4. So we bound

Pr[A(G′) = G′] ≤ Pr[A(G) = G′] + Pr[One neighbor query returns different values]
≤ 1− Pr[A(G) = G] + qn/|Es,3/4|+ qn/|Et,3/4|.

Plugging this into (1) with the two bounds in Claim 11, we obtain qn ≥ 0.1 · n
12 . ◀

We remark that replacing H by an expander of degree [m/n] would give a lower bound
Ω(m) instead of Ω(n), but this result is covered by Theorem 2 with ℓ = 1.

4.1 Proofs of Claim 11 and Claim 12
We now give the proof of Claim 11.

Proof of Claim 11. Recall that Es,3/4 =
{

(u, v) ∈ E(Hs)
∣∣RG(u, v) ≤ 3/4

}
. First, for any

edge (u, v) in Hs, RHs
(u, v) = RG(u, v). Since (s, t) is the unique edge between Hs and

Ht, the set of spanning trees T (G) is generated by picking one spanning tree T1 ∈ T (Hs)
and one T2 ∈ T (Ht) then connecting them by {(s, t)}. Then by Property 5 of Lemma 7,
RHs

(u, v) = RG(u, v). Thus, Es,3/4 =
{

(u, v) ∈ E(Hs)
∣∣RHs

(u, v) ≤ 3/4
}

.
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From Property 1 of Lemma 7,
∑

(u,v)∈E(Hs) RHs(u, v) = n
2 −1. By the definition of Es,3/4,

we have |E(Hs)\Es,3/4|· 34 ≤
∑

(u,v)∈E(Hs)\Es,3/4
RHs

(u, v) ≤
∑

(u,v)∈E(Hs) RHs
(u, v) = n

2−1,
which implies that |E(Hs) \ Es,3/4| ≤ n/2−1

3/4 .
Since |E(Hs)| = n

2 ·
3
2 , it holds that |Es,3/4| ≥ n

2 ·
3
2 −

n/2−1
3/4 ≥ n/12. ◁

While it is possible to use the Cayley graph construction of Ramanujan graphs to obtain
a better bound, we did not attempt to optimize those constants in this work. Then we finish
the proof of Claim 12.

Proof of Claim 12. Recall that H ′
s and H ′

t are subgraphs in G′ obtained by removing (u, u′) in
Hs and (v, v′) in Ht separately. We show that the 2nd eigenvalue of LH′

s
has λ2(LH′

s
) ≥ 3−2

√
2

4 .
As a Ramanujan graph Hs, λ2(LHs

) ≥ 3 − 2
√

2. Then we apply Lemma 4 to λ2: since
RHs(u, u′) = RG(u, u′) ≤ 3/4 (from the proof of Claim 11), λ2(LH′

s
) ≥ λ2(LHs) · (1 −

RHs
(u, u′)) ≥ 3−2

√
2

4 .
As removing other edges doesn’t decrease the effective resistance of (s, t), we ignore (u′, v′)

to give a upper bound of RG′(s, t). Consider another path s− u− v − t, we have

RH′
s
(s, u) = (1s − 1u)⊤L†

H′
s
(1s − 1u)

≤ λn(L†
H′

s

) · ∥1s − 1u∥2
2 = 1

λ2(LH′
s
) · ∥1s − 1u∥2

2 = 4
3− 2

√
2
· 2 = 24 + 16

√
2;

and the same bound holds for RH′
t
(v, t). Since (s, t) and the path passing by s− u− v − t

are in parallel, we have RG′(s, t) ≤ 1
1+ 1

R
H′

s
(s,u)+1+R

H′
t

(v,t)
≤ 0.99.

More formally, 1/RG′(s, t) = min
ϕ∈RV :ϕ(s)=1,ϕ(t)=0

∑
(a,b)∈E(ϕ(a)− ϕ(b))2 from Property 4

of Lemma 7. Since ϕ(s) and ϕ(t) are fixed,

min
ϕ∈RV :ϕ(s)=1,ϕ(t)=0

∑
(a,b)∈E

(ϕ(a) − ϕ(b))2 = 1 + min
ϕ∈RV :ϕ(s)=1,ϕ(t)=0

∑
(a,b)∈E(G′)\(s,t)

(ϕ(a) − ϕ(b))2.

Because there is only one path s− u− v − t between s and t in G′ if we ignore the two
edges (s, t) and (u′, v′), we simplify the 2nd term as follows.

min
ϕ∈RV :ϕ(s)=1,ϕ(t)=0

∑
(a,b)∈E(G′)\(s,t)

(ϕ(a) − ϕ(b))2

= min
ϕ(u),ϕ(v)∈R

[
(ϕ(u) − ϕ(v))2 + min

ϕ(s)=1

∑
(a,b)∈E(H′

s)

(ϕ(a) − ϕ(b))2 + min
ϕ(t)=0

∑
(a,b)∈E(H′

t
)

(ϕ(a) − ϕ(b))2
]

= min
ϕ(u),ϕ(v)∈R

[
(ϕ(u) − ϕ(v))2 + (1 − ϕ(u))2

RH′
s
(s, u) + ϕ(v)2

RH′
t
(v, t)

]
= 1

1 + RH′
s
(s, u) + RH′

t
(v, t) ,

where the second equation follows from Property 4 of Lemma 7 and the last equation holds
when ϕ∗(u) =

1+RH′
t
(v,t)

1+RH′
s

(s,u)+RH′
t
(v,t) and ϕ∗(v) =

RH′
t
(v,t)

1+RH′
s

(s,u)+RH′
t
(v,t) . ◁

5 Approximation Algorithm for Degree 2

In Section 4, we proved a lower bound for degree-3 graphs (except s and t). Now we give an
approximation algorithm to solve the case of degree 2 in sublinear time. Since all vertices
are of degree 2 except s and t, essentially, G is constituted by several disjoint paths (some of
them are disconnected) between s and t.
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▶ Theorem 13. Given any ϵ < 0.1, for any graph with degree at most 2 except the adjacent
pair s and t, there is a local algorithm such that with probability 0.99, it outputs a (1 + ϵ)-
approximation of RG(s, t) in time O

(
min{d(s)2, d(t)2} · log2 n · log log n · ϵ−2).

Note that as long as min{d(s), d(t)} is not too large, the running time in the above
theorem is sublinear for any constant ϵ > 0. In the rest of this section, we finish the proof of
Theorem 13. In fact, our algorithm could output an additive-error approximation R̃G(s, t) in
time O

(
min{d(s), d(t)} · log2 n · log log n · δ−1 · ϵ−1) such that R̃G(s, t) = (1±ϵ) ·RG(s, t)+δ.

Since RG(s, t) ≥ 2
1/d(s)+1/d(t) ≥ 1/min{d(s), d(t)} from Property 3 of Lemma 7, R̃G(s, t)

is a (1 + 2ϵ)-approximation if we choose δ = ϵ/min{d(s), d(t)}. This choice of δ gives the
running time in Theorem 13. Then we show the additive-error approximation.

First of all, by the following claim (whose proof is deferred to the full version), we focus
on the approximation of ρ := 1/RG(s, t) instead of the approximation of RG(s, t).

▷ Claim 14. If ρ̃ = (1± ϵ) · ρ± δ for ϵ < 0.1, δ < 0.1, and ρ ≥ 1, we always have that 1/ρ̃ is
a (1 + 2ϵ, 2δ)-approximation of 1/ρ.

We remark that ρ ≥ 1 for adjacent pairs. But for any non-adjacent pair s and t, our algorithm
gives an additive-error approximation on their conductance 1/RG(s, t).

Because all vertices except s and t are of degree 2, G is constituted by several disjoint paths
(some are disconnected) between s and t. For convenience, we assume d(s) ≤ d(t) and consider
each edge from s as a path. In this proof, we define its length ℓi = +∞ if it is disconnected;
otherwise ℓi is the exact length of that path from s to t. Since RG(s, t) = 1∑

i
1/ℓi

, our
goal becomes to approximate 1/RG(s, t) = ρ =

∑
i 1/ℓi. In Algorithm 1, we describe the

additive-error approximation algorithm motivated by the chaining argument whose idea is to
sample longer paths with smaller probability. Its guarantee is

ρ̃ = (1± ϵ) · ρ± δ for the output ρ̃ = 1/R̃G(s, t) and ρ = 1/RG(s, t), (2)

which gives the additive error approximation R̃G(s, t) = (1± 2ϵ) ·RG(s, t)± 2δ by Claim 14.

Algorithm 1 Algorithm for estimating effective resistance with additive error.

1: function AdditiveApproximationEffectiveResistance(G, ϵ, δ, s, t)
2: If d(s) > d(t) then swap s and t

3: ρ̃← 0, p0 ← 1

4: a←
20 logn · log log n

ϵδ
5: for k in [0, · · · , log n] do
6: for each path i from s do
7: With prob. pk, take at most 2k+1 · a steps in path i to find out its length ℓi

8: if it reaches t and ℓi > 2k · a, then ρ̃← ρ̃+ 1/(pk · ℓi)
9: pk ← pk−1/2

10: return 1/ρ̃ as the effective resistance (and ρ̃ as the conductance)

In the rest of this section, we prove the correctness of Algorithm 1. We remark that
pk = 2−k in this section. Let us consider its expected time. For a path of length ℓi, if
j = ⌊log2 ℓi/a⌋, the number of expected steps on this path is at most

p0·2a+p1·4a+· · ·+pj ·2ja+pj+1·ℓi+· · ·+plog n·ℓi = 2a·j+ℓi·(pj+1+· · ·+plog n) = O(a·log n).

Since we can start from either s or t, the expected time is O(min{d(s), d(t)} · a · log n).



D. Cai, X. Chen, and P. Peng 29:15

Next we show the approximation guarantee in (2). For all paths whose lengths are
at most 2a, the algorithm gets the exact conductance 1/ℓi of them. The rest paths are
divided into log n groups G1, . . . , Glog n. The paths in group Gk have lengths between
(2k · a, 2k+1 · a]. Assuming path i is in group k, we define the random variable Xi for

estimating 1/ℓi: With probability pk, Xi =
1
pkℓi
−

1
ℓi

; otherwise, Xi = −
1
ℓi

. So EXi = 0 and

VarXi =
1− pk

pk · ℓ2
i

≤
1

pk · ℓ2
i

. And the result of Algorithm 1 is ρ̃ =
∑ 1

ℓi
+Xi = ρ+

∑
Xi.

Now, we calculate the approximation of group Gk by Bernstein’s inequality. There are

two cases of Gk, i.e.,
∑
Gk

1
ℓi
> b and

∑
Gk

1
ℓi
≤ b for a threshold value b =

δ

ϵ · log n.

▶ Lemma 15 (Bernstein’s inequality [6]). Let X1, · · · , Xn be independent zero-mean ran-
dom variables. Suppose that |Xi| ≤ M almost surely, for all i. Then, for all positive t,

Pr
[∣∣∣∣ n∑

i=1
Xi

∣∣∣∣ ≥ t] ≤ 2 exp
[
− 1

4 ·min
{
t2
/

n∑
i=1

EX2
i , t/M

}]
.

In the previous case, (
∑
Gk

1
ℓi

)2/
∑
Gk

1
ℓ2

i

≥ (|Gk|·minGk
ℓi)2

|Gk|·(maxGk
ℓi)2 ≥ |Gk|/4 ≥ 2k−2 · ab. The first

inequality comes from max
Gk

ℓi < 2 min
Gk

ℓi. And the last step is implied by b <
∑
Gk

1
ℓi
<

|Gk| /(2k · a) since each ℓi > 2k · a in Gk.

Then
∑
Gk

EX2
i ≤

∑
Gk

1
pkℓ2

i

≤ 4
ab (
∑
Gk

1
ℓi

)2, and |Xi| ≤ 2k−1
2k·a ≤

1
a for all i ∈ Gk. From the

above discussion, Bernstein’s inequality infers that for t = ϵ
∑
Gk

1
ℓi

,

Pr

[∣∣∣∣∣∑
Gk

Xi

∣∣∣∣∣ ≥ ϵ
∑
Gk

1
ℓi

]
≤ 2 exp

[
−1

4 min

{
abϵ2

4 , aϵ
∑
Gk

1
ℓi

}]
≤ 2 exp

[
−1

4 min
{

abϵ2

4 , abϵ

}]
.

The second step is by the assumption
∑
Gk

1
ℓi
> b.

In the latter case,
∑
Gk

EX2
i ≤

∑
Gk

1
pkℓ2

i

≤
∑
Gk

1
a · ℓi

≤
b

a
with ℓi ≥ 2k · a and

∑
Gk

1
ℓi
≤ b. So

Pr
[∣∣∣∣∣∑

Gk

Xi

∣∣∣∣∣ ≥ δ

log n

]
≤ 2 exp

[
−1

4 min
{

aδ2

b log2 n
,
aδ

log n

}]
.

Take a union bound for all Gk with b = δ
ϵ·log n , Pr

[∣∣∣∣∣ ∑i∈[d]
Xi

∣∣∣∣∣ ≥ ϵ · ∑i∈[d]

1
ℓi

+ δ

]
is at

most 2 log n · exp
[
− 1

4 min
{

aδϵ
4 log n ,

aδ
log n

}]
+ 2 log n · exp

[
− 1

4 min
{

aδϵ
log n ,

aδ
log n

}]
≤ 4 log n ·

exp
[
− aδϵ

16 log n

]
. When a =

20 logn · log log n
ϵδ

, ρ̃ is a (1 + ϵ, δ)-approximation of ρ with
probability 0.99.
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We present new min-max relations in digraphs between the number of paths satisfying certain
conditions and the order of the corresponding cuts. We define these objects in order to capture, in
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1 Introduction

In combinatorial optimization, a min-max relation establishes the equality between two
quantities, one naturally associated with minimizing the size of an object satisfying some
conditions, and the other one associated with maximizing the size of another object. Within
graph theory, famous such min-max relations include Kőnig’s Theorem [15] stating the
equality between the sizes of a maximum matching and a minimum vertex cover in a bipartite
graph or, more relevant to this article, Menger’s Theorem [18] stating, in its simplest form,
the equality between the maximum number of pairwise internally disjoint paths between
two vertices, and the minimum size of a vertex set disconnecting them. Typically, min-max
relations come along with polynomial-time algorithms to find the corresponding objects,
making them extremely useful from the algorithmic point of view.

In this article we focus on directed graphs, or digraphs for short, and our results are
motivated by the complexity of problems related to finding directed disjoint paths between
given terminals. More precisely, in the k-Directed Disjoint Paths problem (k-DDP for
short), we are given a digraph G and k pairs of vertices si, ti, i ∈ [k], and the objective is to
decide whether G contains k pairwise disjoint paths connecting si to ti for i ∈ [k]. A solution
to this problem is usually called a linkage in the literature. Here we note that disjoint paths
is equivalent to paths which are vertex-disjoint.

Unfortunately, Fortune et al. [9] proved that the k-DDP problem is NP-complete already
for k = 2, and Thomassen [20] strengthened this result by showing that it remains so even if
the input digraph is p-strongly connected (see Section 2 for the definition) for any integer
p ≥ 1. Thus, in order to obtain positive algorithmic results, research has focused on either
restricting the input digraphs (for instance, to being acyclic [19] or, more generally, to having
bounded directed tree-width [12]), or on considering relaxations of the problem. Concerning
the latter, a natural candidate is to relax the disjointness condition of the paths, and allow
for congestion in the vertices. Namely, for an integer c ≥ 2, an input of the k-Directed
c-Congested Disjoint Paths problem ((k, c)-DDP for short) is the same as in the k-DDP,
but now we allow each vertex of G to occur in at most c out of the k paths connecting
the terminals. In the particular case c = 2, a solution to this problem is usually called a
half-integral linkage in the literature.

Despite a considerable number of attempts, it is still open whether the (k, c)-DDP
problem can be solved in polynomial time for every fixed value of c ≥ 2 and k > c (note that
if k ≤ c, then the problem can be easily solvable in polynomial time just by verifying the
connectivity between each pair of terminals). A positive answer for the case c = 2 has been
recently conjectured by Giannopoulou et al. [11]. Again, in order to obtain positive results,
several restrictions and variations of the problem have been considered, such as considering
several parameterizations [2, 16], restricting the input graph to have high connectivity [8], or
considering an asymmetric version of the (k, c)-DDP problem [11, 13, 14], where the input is
as in (k, c)-DDP, but the goal is to either certify that it is a no-instance of k-DDP (without
congestion) or a yes-instance of (k, c)-DDP. This asymmetric version has been solved in
polynomial time for every fixed k (i.e., showing that it is in XP; see Section 2) for distinct
values of c in a series of articles, namely for c = 4 by Kawarabayashi et al. [13], for c = 3 by
Kawarabayashi and Kreutzer [14], and for c = 2 by Giannopoulou et al. [11].

The main motivation of this article stems from the techniques used in the latter two
approaches mentioned above. In a nutshell, the main strategy used in [8, 11, 13, 14] is the
following. First, one computes whether the directed tree-width of the input graph is bounded
by an appropriate function of k, the number of terminal pairs. This can be done in time XP
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in k by the results of Johnson et al. [12], or even in time FPT by the results of Campos et
al. [4] (see also [3, Theorem 9.4.4]). If the directed tree-width is bounded by a function of k,
one solves the problem in time XP by using standard programming techniques from Johnson
et al. [12] (cf. Proposition 3). If not, one exploits the fact that large directed tree-width
implies the existence of large “structures” that can be used to carry out the routing of the
desired paths. Typically, such a structure is a bramble, as for example in [8], or a cylindrical
grid, as for example in [11, 14], making use of the celebrated Directed Grid Theorem of
Kawarabayashi and Kreutzer [14] (see also [4] for recent improvements). For the sake of
exposition, assume henceforth that the desired structure is a bramble, but the strategy is
essentially the same with a cylindrical grid.

A bramble in a digraph D is a set B of strongly connected subgraphs of G that pairwise
either intersect or have edges in both directions. The order of a bramble B is the smallest
size of a vertex set of G that intersects all its elements, and its congestion is the maximum
number of times that a vertex of G appears in the elements of B. It is known that large
directed treewidth implies the existence of a bramble of large order and of congestion c ≥ 2.
For c = 2, a proof about how to find such a bramble in polynomial time (with degree not
depending on k), provided that a certificate for large directed tree-width is given, can be
found in [8] (see also [17] for improved bounds for brambles of higher congestion). Assume
for simplicity that c = 2, let B be such a bramble, and let S and T be the sets of sources
and sinks, respectively, of the corresponding problem. The idea is that if one can find a set
PS of disjoint paths from S to appropriate elements of B, and a set PT of disjoint paths
from appropriate elements of B to T (regardless of the ordering of the vertices of S and T ),
then we are done. Indeed, once the paths starting in S reach B, one can use the connectivity
properties of the bramble to “shuffle” the paths appropriately as required by the terminals,
and then follow the paths from B to T . The fact that the bramble has congestion two, and
that the paths in PS , as well as those in PT , are pairwise disjoint, together with a good
choice for the destination and starting points of the those paths, implies that every vertex of
G occurs in at most two of the resulting paths.

Otherwise, if such sets of paths PS and PT do not exist, the approach consists in using
a Menger-like min-max duality to obtain an appropriate separator (or cut) between the
terminals and the bramble of size bounded by a function of c and k, and make some progress
toward the resolution of the problem, for instance by splitting into subproblems of lower
complexity. The ways to define and to exploit such a separator depend on every particular
application, and this ad-hoc subroutine is usually one of the most technically involved parts
of the resulting algorithms [8, 11,13,14].

Our results and techniques. Motivated by the inherent common essential strategy in the
above articles, we aim at finding the crucial general ingredient that can be applied in order
to define and find the corresponding separators. To this end, we introduce new objects
that abstract the existence of the aforementioned desired paths PS and PT between the
terminals and the bramble. These objects are what we call D-paths, T-paths and R-paths. The
inspiration for D-paths and T-paths is what we believe to be the common essential strategies
used by Edwards et al. [8] and Giannopoulou et al. [10]. We remark that a particular set
of T-paths is directly constructed in [10], particularly inside the proof of [10, Theorem 9.1].
The presence of D-paths and T-paths in [8] is more subtle in the construction of a long
algorithm and a collection of non-trivial proofs. In fact, they are not explicitly built due to
constraints in their techniques, but our initial results for this paper included simplifying and
improving the proofs in [8] using D-paths and T-paths. Once the new proofs were obtained,
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we noticed that they could be further improved by a new object which we call R-paths. It
must be noted that this paper includes results for D-paths, T-paths, and R-paths but we only
show applications for R-paths. The reason for this is twofold. First, T-paths have stronger
properties than R-paths which might be useful for solving different problems, and D-paths
are needed in the proof of the duality of T-paths. And second, these three objects are similar
to the point of having similar proofs for their min-max formulas and algorithms, and showing
these variations incurs little additional effort. The formal definitions of these special types of
paths can be found in Section 3.

All three types of paths are associated with a defining partition P1, . . . , Pℓ sharing some
properties and differing in others. For all three, it holds that any two paths in a same part Pi

are disjoint, and it is possible that two paths in distinct parts share vertices. In the context
of the (k, c)-DDP problem, the main difference between D-paths, T-paths, and R-paths lies
in how we want to reach (or, by applying a simple trick of reversing the edges of the digraph,
be reached from) the elements of a bramble B in the given digraph. In D-paths we ask that
all paths end in distinct vertices of a given B ⊆ V (G). In T-paths we ask that all paths end
in distinct vertices of the bramble, and that the set containing all last vertices of the T-paths
forms a partial transversal (see Section 2 for the definition) of B. In R-paths we ask that all
R-paths end in elements of B and that there is a “matching-like” association between the
last vertices of the paths and elements of B containing these vertices.

For each type of paths we define an associated notion of cut and its corresponding order
(see e.g. Definition 10). These cuts are respectively called D-cuts, T-cuts, and R-cuts. We
show that each of these special types of paths and cuts satisfies a Menger-like min-max
duality, that is, that the maximum number of paths equals the minimum order of a cut
(cf. Theorems 11, 13, and 15). Moreover, the corresponding objects attaining the equality
can be found in polynomial time. The proofs of these min-max relations basically consist
in applying Menger’s Theorem [18] in appropriately defined auxiliary graphs. We provide
alternative simpler proofs of these equalities using intersections and unions of matroids,
namely gammoids and transversal matroids. Even if the resulting polynomial-time algorithms
using matroids have worse running time than the ones that we obtain by applying Menger’s
Theorem [18], and that using the deep theory of matroids somehow sheds less light on
interpreting the actual behavior of the considered objects, we think that it is interesting to
observe that the paths and cuts that we define are in fact matroids with nice properties.

The main application we provide for R-paths/cuts in this article is in the proof of
Theorem 16, which is an improved version of [10, Theorem 9.1] both in the requested order of
the structure and by relying on brambles instead of cylindrical grids. Informally, Theorem 16
says that given a digraph G, ordered sets S, T ⊆ V (G), and a large (depending on the
congestion c and on the size k of S and T ) bramble of congestion c, we can either find a
large set of R-paths from S to the bramble and from the bramble to T , which in turn are
used to appropriately connect the pairs si ∈ S, ti ∈ T , or find a separator of size at most
k − 1 intersecting every path from S to a large subset of the bramble, or every path from a
large subset of the bramble to T . Additionally, if the bramble is given, one of the outputs
can be obtained in polynomial time, computing either the paths or one of the separators.

Since in k-strong digraphs the separators are never found, Theorem 16 immediately
implies an improved version of a result by Edwards et al. [8]. Namely, in [8, Theorem 11]
the authors show that, when restricted to (36k3 + 2k)-strong digraphs, every instance of
(k, 2)-DDP where the input digraph contains a large (depending on k) bramble of congestion
two is positive and a solution can be found in polynomial time. When compared to theirs, our
result is an improvement in the following ways. First, it allows us to solve (k, c)-DDP for any



V. Campos, J. Costa, R. Lopes, and I. Sau 30:5

c ≥ 2 in the larger class of k-strong digraphs instead of being restricted to (36k3 + 2k)-strong
digraphs as in [8]. This bound on the strong connectivity of the digraph is almost best possible
according to [8, Theorem 2], unless P = NP (note that an XP algorithm in (k − d)-strong
digraphs, for some constant d, may still be possible). Second, we show how to find the desired
paths using a bramble of congestion c and size at least 2k(c · k − c + 2) + c(k − 1), which
is equal to 4k2 + 2k − 2 when c = 2, instead of the size 188k3 required in [8]. Finally, our
proof is much simpler and shorter than the proof presented in [8]. A main reason of this
simplification is that we can replace the seven properties of the paths requested in [8, Lemma
12] by R-paths. It is worth mentioning that our algorithm reuses the procedure of Edwards
et al. [8] to find a large bramble of congestion two in digraphs of large directed tree-width
(cf. Corollary 8).

We remark that it is also possible to improve the result by Edwards et al. [8] from
(36k3 + 2k)-strong digraphs to k-strong digraphs by replacing part of their proof, namely [8,
Theorem 11], by the result of Giannopoulou et al. [10, Theorem 9.1]. The trade-off is that
the latter relies on the stronger structure of a cylindrical grid (and such grids do contain
brambles of congestion two [8]) instead of brambles. A fundamental difference stands on
the fact that, given a certificate of large directed tree-width, one can produce a bramble of
congestion two in polynomial time, while finding a cylindrical grid still requires FPT time
parameterized by the order of the certificate [4]. Our result using R-paths keeps the best of
both worlds: we are able to drop the request on the strong connectivity of the digraph to k

while relying only on brambles as the routing structures.
Our second application deals with the asymmetric version of the (k, c)-DDP problem

discussed in the introduction. By using our min-max relations, we manage to simplify and
improve one of the main results of Giannopoulou et al. [11] for the case c = 2. Instead of
using the Directed Grid Theorem [14] to reroute the paths through a cylindrical grid, we
reroute them through a bramble of congestion two in a very easy manner after a careful
choice of the paths reaching and leaving the bramble, which is done by applying the duality
between R-paths and R-cuts. Namely, we can replace [10, Theorem 9.1] (this is the full
version of [11]) entirely by Theorem 16 and mostly keep the remaining part of their proof to
obtain an improved version of their XP algorithm for the asymmetric version of (k, 2)-DDP.

We hope that our min-max relations will find further applications in the future as, in
our opinion, they are quite simple, robust, and versatile to be easily applicable to different
types of routing problems in digraphs. A natural candidate is the (k, c)-DDP problem for
any choice of fixed values of c ≥ 2 and k > c, which has remained elusive for some time.

Organization. In Section 2 we present some preliminaries. In Section 3 we state and
discuss our new Menger-like statements for paths in digraphs. The applications of our
results are presented in Section 4. Due to space limitations, the proofs of the results
marked with “(⋆)” can be found in the full version of this paper, available at https:
//arxiv.org/abs/2306.16134.

2 Preliminaries

Due to space limitations, in this section we provide only the most important or non-standard
preliminaries, and additional ones can be found in the full version of this paper, namely basic
definitions of digraphs and matroids.

We refer the reader to [5, 7] for background on parameterized complexity, and we define
here only the most basic definitions. A parameterized problem is a language L ⊆ Σ∗ ×N. For
an instance I = (x, k) ∈ Σ∗ × N, k is called the parameter. A parameterized problem L is
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fixed-parameter tractable (FPT) if there exists an algorithm A, a computable function f , and
a constant c such that given an instance I = (x, k), A (called an FPT algorithm) correctly
decides whether I ∈ L in time bounded by f(k) · |I|c. For instance, the Vertex Cover
problem parameterized by the size of the solution is FPT. A parameterized problem L is in
XP if there exists an algorithm A and two computable functions f and g such that given
an instance I = (x, k), A (called an XP algorithm) correctly decides whether I ∈ L in time
bounded by f(k) · |I|g(k). For instance, the Clique problem parameterized by the size of
the solution is in XP.

Within parameterized problems, the class W[1] may be seen as the parameterized equi-
valent to the class NP of classical decision problems. Without entering into details, a
parameterized problem being W[1]-hard can be seen as a strong evidence that this problem
is not FPT. The canonical example of W[1]-hard problem is Clique parameterized by the
size of the solution.

If B is a collection of sets, for conciseness we use
⋃⋃⋃

B to denote the set
⋃

A∈B A. For a
positive integer k, we denote by [k] the set {1, . . . , k}. For a sequence of sets B = (B1, . . . , Bk),
a transversal of B is a set {b1, . . . , bk} such that bi ∈ Bi for all i ∈ [k]. Here we remark that
the terms in B need not be distinct but the elements in a transversal {b1, . . . , bk} are distinct.
For a set of indices J , we use (Bj | j ∈ J) to denote the sequence of sets indexed by J so
we can use B = (Bj | j ∈ [k]). A subsequence of B is a sequence (Bj | j ∈ J) for J ⊆ [k].
A partial transversal of B is a transversal of some subsequence of B. For convenience, we
extend all notation regarding transversals and partial transversals to collections of sets.

If P is a path in a digraph G, we denote by s-(P ) and s+(P ) the first and last vertices of
P , respectively. Every vertex of P other than s-(P ) and s+(P ) is an internal vertex. For
A, B ∈ V (G), we say that P is an A → B path if s-(P ) ∈ A and s+(P ) ∈ B. For A, B ⊆ V (G)
an (A, B)-separator is a set X ⊆ V (G) such that there are no A → B paths in G \ X.

Let P be a collection of paths in G. We use s-(P) to denote
⋃

P ∈P s-(P ) and s+(P) to
denote

⋃
P ∈P s+(P ). For conciseness, we say henceforth that the paths in P are disjoint if

they are pairwise vertex-disjoint. For A, B ∈ V (G), we say that P is a collection of A → B

paths if s-(P) ⊆ A and s+(P) ⊆ B. For the remaining of this article and unless stated
otherwise, n is used to denote the number of vertices of the input digraph of the problem
under consideration.

▶ Theorem 1 (Menger’s Theorem [18]). Let G be a digraph and A, B ⊆ V (D). The maximum
size of a collection of disjoint A → B paths is equal to the minimum size of an (A, B)-
separator. Furthermore, a maximum size collection of paths and a minimum size separator
can be found in time O(n2).

A digraph G is strongly connected if for every u, v ∈ V (G) there are paths from u to v

and from v to u in G. A separator of G is a set X ⊆ V (G) such that G \ X has a single
vertex or is not strongly connected. If G has at least k + 1 vertices and k is the minimum
size of a separator of G, we say that G is k-strongly connected (or k-strong for short). A
strongly connected component (or strong component for short) of a digraph G is a maximal
induced subgraph of G that is strongly connected.

The directed tree-width of digraphs was introduced by Johnson et al. [12] as a directed
analogue of tree-width of undirected graphs. Informally, the directed tree-width dtw(G) of a
digraph G measures how close G can be approximated by a DAG, and the formal definition
immediately implies that dtw(G) = 0 if and only if G is an acyclic digraph (DAG). Directed
tree-width and arboreal decompositions are not explicitly used in this article and thus we
refer the reader to [12] for the formal definitions. Here it suffices to mention a few known
results. In the same paper where they introduced directed tree-width, Johnson et al. [12]
showed that k-DDP can be solved in XP time with parameters k + dtw(G).
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▶ Proposition 2 (Johnson et al. [12]). The k-DDP problem is solvable in time nO(k+dtw(G)).

Notice that every instance of the (k, c)-DDP problem with c ≥ k is trivially solvable in
polynomial time by simply checking for connectivity between each pair (si, ti). Thus we can
always assume that c < k. It is easy to reduce the congested version to the disjoint version
of DDP: it suffices to generate a new instance by making c copies of each vertex v of the
input digraph, each of them with the same in- and out-neighborhood as v. A formal proof of
this statement was given by Amiri et al. [1]. Hence it follows that (k, c)-DDP is also XP
with parameters k and dtw(G). A direct proof of this statement is also possible by applying
the same framework used to prove Proposition 2, although such a proof is not given in [12].
A similar proof for a congested version of a DDP-like problem is given by Sau and Lopes
in [16]. In any case, the following holds.

▶ Proposition 3. The (k, c)-DDP problem is solvable in time (c · n)O(c(k+dtw(G))).

For both the k-DDP and (k, c)-DDP problems, (a small variation of) the result of
Slivkins [19] implies that the XP time is unlikely to be improvable to FPT, even when
restricted to DAGs (although the result in [19] concerns the edge-disjoint version of k-DDP,
it easily implies W[1]-hardness of the disjoint version by noticing that the line digraph of a
DAG is also a DAG).

As it is the case with tree-width, Johnson et al. [12] also introduced a dual notion for
directed tree-width in the form of havens. However, although the duality in the undirected
case is sharp, in the directed case it is only approximate: they showed that the directed
tree-width of a digraph G is within a constant factor (more precisely, a factor three) from
the maximum order of a haven of G. Since havens and (strict) brambles are interchangeable
in digraphs whilst paying only a constant factor for the transformation (see [6, Chapter 6]
for example), we skip the definition of the former and focus only on the latter.

▶ Definition 4 (Brambles in digraphs). A bramble B = {B1, . . . , Bℓ} in a digraph G is a
collection of strong subgraphs of G such that if B, B′ ∈ B then V (B) ∩ V (B′) ̸= ∅ or there are
edges in G from V (B) to V (B′) and from V (B′) to V (B). We say that the elements of B are
the bags of B. A hitting set of a bramble B is a set C ⊆ V (G) such that C ∩ V (B) ̸= ∅ for all
B ∈ B. The order of a bramble B, denoted by ord(B), is the minimum size of a hitting set of
B. A bramble B is said to be strict if for all pairs B, B′ ∈ B it holds that V (B) ∩ V (B′) ̸= ∅.
For an integer c ≥ 1 we say that B has congestion c if every vertex of G appears in at most
c bags of B.

See Figure 1 for an example of a bramble. Notice that if B is a bramble of congestion c for
some constant c, its order increases together with its size; i.e., |B|. More precisely, since every
vertex of the host digraph can hit at most c elements of B it holds that ord(B) ≥ ⌈|B|/c⌉. If
B′ ⊆ B then we may say that B′ is a subbramble of B.

B1 B2

B3

Figure 1 Example of a bramble {B1, B2, B3} of order two.
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Johnson et al. [12] gave an algorithm that, given a digraph G, either correctly decides
that dtw(G) ≤ 3k − 2 (also yielding an arboreal decomposition of G) or produces a bramble
of order ⌊k/2⌋. This was later improved to an FPT algorithm by Campos et al. [4]. Although
the authors do not explicitly say that the produced bramble is strict, it is easy to verify that
this is the case in their proof, and the same holds for the proof of [12].

▶ Proposition 5 (Campos et al. [4]). Let G be a digraph and t be a non-negative integer.
There is an algorithm running in time 2O(t log t) · nO(1) that either produces an arboreal
decomposition of G of width at most 3t − 2 or finds a strict bramble of order t in G.

Brambles of constant congestion are a key structure used to solve instances of (k, c)-DDP
in f(k)-strong digraphs in the approach by Edwards et al. [8], as discussed in Section 4. In
particular, they use the following result, originally proved by Kawarabayashi and Kreutzer [14]
where an XP algorithm is given, and then improved by Campos et al. [4] with an FPT algorithm
and a better dependency on k. We refer the reader to [4, 14] for the definition of well-linked
sets, and we remark that, for convenience, we present the statement of the following result in
a slightly different way than in the original article.

▶ Proposition 6 (Campos et al. [4]). Let g(k) = (t+1)(⌊t/2⌋+1)−1 and G be a digraph with
directed tree-width at least 3g(t) − 1. There is an algorithm running in time 2O(t2 log t) · nO(1)

that finds in G a bramble B of order g(t), a path P that intersects every bag of B, and a
well-linked set X of size t such that X ⊆ V (P ).

▶ Proposition 7 (Edwards et al. [8]). There exists a function f : N → N satisfying the
following. Let G be a digraph and t ≥ 1 be an integer. Let P be a path in G and X ⊆ V (P )
be a well-linked set with |X| ≥ f(t). Then G contains a bramble B of congestion two and
size t and, given G, P , and X, we can find B in polynomial time.

Pipelining Propositions 5–7 we obtain the following.

▶ Corollary 8. There is a function f : N → N and an FPT algorithm with parameter t that,
given a digraph G and an integer t ≥ 1, either correctly decides that the directed tree-width
of G is at most f(t) or finds a bramble B of congestion two and size t in G.

3 New Menger-like statements for paths and cuts in digraphs

In this section we present the definition and the min-max formulas associated with each
pair D-paths/D-cuts, T-paths/T-cuts, and R-paths/R-cuts. Since all three types of paths
share some properties (in fact, the major distinction between them is in how they reach their
destinations), it is convenient to adopt the following notations.

▶ Definition 9 (Digraph-source sequences and respecting paths). For an integer ℓ ≥ 1, a
digraph-source sequence of size ℓ is a pair (F , S) such that F = (G1, . . . , Gℓ) is a sequence
of digraphs and S = (S1, . . . , Sℓ) is a sequence of subsets of vertices with Si ⊆ V (Gi) for
i ∈ [ℓ]. We say that a set of paths P respects (F , S) or, alternatively, is (F , S)-respecting
if there is a partition P1, . . . , Pℓ of P such that
(a) for i ∈ [ℓ], Pi is a set of disjoints paths in Gi, and
(b) for i ∈ [ℓ], s-(Pi) ∈ Si.
In this case, we say that P1, . . . , Pℓ is a defining partition of P.

Thus in any set of (F , S)-respecting paths, any two paths can intersect only if they belong
to distinct parts of the defining partition.
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To provide some intuition within the context of the (k, c)-DDP problem, in the next
three definitions one can think of the sequence (S1, . . . , Sℓ) as being formed by many copies
of S followed by many copies of T . Notice that any set of (F , S)-respecting paths includes
paths leaving T , which seems counter-intuitive when considering the goal of solving instances
of (k, c)-DDP. We remark this can be easily addressed by associating, with each copy of T

in the sequence S, the digraph Grev obtained by reversing the orientation of every edge of G.

D-paths and D-cuts. Within the context of this paper, D-paths and D-cuts are used as a
tool to prove our results regarding T-paths and T-cuts. In this scenario, one should think of
the set B in the following definition as the set of vertices of a highly connected structure
that is intended to be used to appropriately connect the last vertices of paths from S to the
first vertices of paths from T .

▶ Definition 10 (D-paths and D-cuts). For an integer ℓ ≥ 1, let (F , S) be a digraph-source
sequence with F = (G1, . . . , Gℓ), S = (S1, . . . , Sℓ), and B ⊆

⋃ℓ
i=1 V (Gi). With respect to B,

we say that a set of (F , S)-respecting paths P with defining partition P1, . . . , Pℓ is a set of
D-paths if
(1) for all distinct P, P ′ ∈ P it holds that s+(P ) ̸= s+(P ′), and

(2a) s+(P) ⊆ B.
A D-cut is a sequence X = (X0, . . . , Xℓ) with X0 ⊆ B such that, for i ∈ [ℓ], the set Xi ⊆ V (Gi)
is an (Si, B \ X0)-separator in Gi. The order of a D-cut X is ord(X ) = |X0| +

∑ℓ
i=1 |Xi|.

Thus, in the definition of D-paths we ask each collection of paths associated with each Pi

to be pairwise disjoint in Gi, and the paths from distinct parts Pi, Pj may share vertices
in

⋃ℓ
i=1 V (Gi) other than the last vertices of the paths. The “D” in the name stands for

“disjoint”. For the min-max formula, we prove the following.

▶ Theorem 11 (⋆). Let (F , S) be digraph-source sequence of size ℓ with F = (G1, . . . , Gℓ), and
let B ⊆

⋃ℓ
i=1 V (Gi). With respect to F , S, and B, the maximum number of D-paths is equal

to the minimum order of a D-cut. Additionally, a D-cut of minimum order and a maximum
collection of D-paths can be found in time O((ℓ · n∗ + |B|)2) where n∗ = maxi∈[ℓ](|V (Gi)|).

T-paths and T-cuts. For the sake of intuition, in the next definition one should think of B
as a bramble. Informally, and given a digraph G, we use T-paths and T-cuts to find a large
collection of paths from a given ordered S ⊆ V (G) to the bags of a subbramble BS ⊆ B,
and from the bags of another subbramble BT ⊆ B to T (we can achieve this orientation for
these paths by reversing the orientation of the edges of G), while ensuring that every vertex
outside of B appears in at most two of those paths, and that all elements of BS ∪ BT are
pairwise distinct. The first property can be achieved by simply applying Menger’s Theorem
(cf. Theorem 1) twice. However, by doing this, we can end with a set of paths all ending on
the same bag of B. This scenario is far from ideal, since at some point the goal is to use the
strong connectivity of G[B ∪ B′] for every B, B′ ∈ B to appropriately connect the ending
vertices of the paths from S to the starting vertices of the paths to T , while maintaining the
property that every vertex appears in at most two (or c, in the general case) of those paths.
If a unique bag B contains all starting and ending vertices of the paths, then connecting
those vertices while maintaining such properties may be as hard as finding a solution to an
instance of (k, c)-DDP in the strong digraph G[B], or downright impossible to do.

Therefore, in the proofs applying similar techniques, as seen in the works by Edwards
et al. [8] and by Giannopoulou et al. [10], there is considerable effort into finding paths
with “good properties” that can be used to connected the paths inside of B (or inside of a
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cylindrical grid in the case of [10]), and these properties always include, as far as we know,
that the paths end or start in distinct bags of B (or distinct sections of the cylindrical grid).
In particular, [8, Lemma 16] includes a set of seven properties over a set of paths that we
can substitute by T-paths to achieve better results in a simpler manner.

We can prove the same results using R-paths and R-cuts, which are simpler than T-paths
and T-cuts. We include the proofs for the two latter objects for potential applications in
which the extra properties of T-paths and T-cuts may become handy.

▶ Definition 12 (T-paths and T-cuts). For an integer ℓ ≥ 1, let (F , S) be a digraph-source
sequence with F = (G1, . . . , Gℓ) and S = (S1, . . . , Sℓ), and B be a family of subsets of⋃ℓ

i=1 V (Gi). With respect to B, we say that a set of (F , S)-respecting paths P with defining
partition P1, . . . , Pℓ is a set of T-paths if
(1) for all distinct P, P ′ ∈ P it holds that s+(P ) ̸= s+(P ′), and

(2b) the set s+(P) is a partial transversal of B.
A T-cut is a pair (B′, X ) with B′ ⊆ B and such that X is a D-cut with respect to F , S, and⋃⋃⋃

B′. The order of a T-cut (B′, X) is ord(B′, X) = |B \ B′| + ord(X ).

For convenience, we keep only one set of parenthesis, writing ord(B′, X ) instead of ord((B′, X )).
Notice that conditions (1) in the definition of T-paths is the same as in the definition

of D-paths. Thus the difference between D-paths and T-paths is that in the former we ask
the paths to end in distinct vertices of B, while in the latter we ask the endpoints of the
paths to form a partial transversal of B. This implies that those endpoints are distinct, and
that each of them is associated with a unique element of B. The “T” in the name stands for
“transversal”. See Figure 2 for an example of a transversal of a collection of sets.

B4

B1

v1

B2

v2

B3

v3 v4

Figure 2 Example of a transversal of the collection {B1, B2, B3, B4}. For i ∈ [4] the vertex vi is
associated with the set Bi.

For the T-paths/T-cuts duality, we prove the following.

▶ Theorem 13 (⋆). Let (F , S) be a digraph-source sequence of size ℓ with F = (G1, . . . , Gℓ),
and let B be a collection of subsets of

⋃ℓ
i=1 V (Gi). With respect to F , S, and B, the maximum

number of T-paths is equal to the minimum order of a T-cut. Additionally, a T-cut of
minimum order and a maximum collection of T-paths can be found in time O((ℓ · n∗ + |B|)2),
where n∗ = maxi∈[ℓ](|V (Gi)|).

R-paths and R-cuts. The intuition for R-paths is similar to the one for T-paths, as is the
motivation to use these objects in the context of (k, c)-DDP and similar problems. The
difference between them is that, if P is a set of T-paths, then all vertices of the form s+(P ),
where P ∈ P, are distinct. In R-paths this only holds when considering paths inside of the
same part of its defining partition. More precisely, given a partition P of a set of R-paths
as defined below, s+(P ) and s+(P ′) are guaranteed to be disjoint only when P and P ′ are
in distinct parts of P. In Section 4 we show that this relaxation poses no problem for the
application of R-paths/R-cuts we show in this article.
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▶ Definition 14 (R-paths and R-cuts). For ℓ ≥ 1, let (F , S) be a digraph-source sequence with
F = (G1, . . . , Gℓ) and S = (S1, . . . , Sℓ), and B be a family of subsets of

⋃ℓ
i=1 V (Gi). With

respect to B, we say that a set of (F , S)-respecting paths P with defining partition P1, . . . , Pℓ

is a set of R-paths if
(1c) for some family B∗ ⊆ B there is a bijective mapping h : P → B∗ such that h(P ) = B

implies s+(P ) ∈ B.
An R-cut is a pair (B′, X ) where B′ ⊆ B and X is a sequence (X1, . . . , Xℓ) such that each
Xi ∈ X is an (Si,

⋃⋃⋃
B′)-separator in Gi. The order of an R-cut (B′, X ) is ord(B′, X ) =

|B \ B′| +
∑ℓ

i=1 |Xi|.

We remark that the only difference between R-paths and T-paths is that, in the latter,
condition (1) ensures that all vertices forming the partial transversal of B are distinct. The
“R” in the name stands for “representatives”. For the duality, we prove the following.

▶ Theorem 15 (⋆). Given a digraph-source sequence (F , S) of size ℓ and a set B ⊆⋃ℓ
i=1 V (Gi) then, with respect to F , S, and B, the maximum number of R-paths is equal to

the minimum order of an R-cut. Additionally, an R-cut of minimum order and a maximum
collection of R-paths can be found in O((k · n∗ + |B|)2) where n∗ = maxi∈[ℓ](|V (Gi)|).

Observe that the right side of the pair forming an R-cut cannot be simply a set of vertices
X because, for example, a vertex v ∈ X can be in two distinct Gi and Gj and be part of the
separator in Gi but not part of the separator in Gj . In this case v would be counted twice
in the order of the R-cut, but it is only used in one separator. Also notice that when |B|
is larger than the allowed budget to construct an R-cut, every R-cut of appropriate order
must identify some separator in some Gi, i.e., X ̸= ∅. In fact, there are only two options for
the size of X : either B′ = ∅ and hence X = ∅, or B′ ̸= ∅ and |X | = ℓ. In the latter case, it
is possible that some Xi ∈ X are empty. In Lemma 19 we exploit this fact to show how to
either find in a digraph G a large collection of R-paths from a set S to the vertices appearing
in the elements of some sufficiently large collection B (corresponding to a bramble), or a
small separator intersecting every path from S to all such vertices.

4 Applications

In this section we show how to exploit the duality between R-paths and R-cuts to improve on
results by Edwards et al. [8] and Giannopoulou et al. [11]. The following is the main result
that we prove, and then we use it to improve on results by [8, 11].

▶ Theorem 16. Let k, c be integers with k, c ≥ 2 and g(k, c) = 2k(c · k − c + 2) + c(k − 1).
Let G be a digraph, assume that we are given the bags of a bramble B of congestion c and
size at least g(k, c), and S, T ⊆ V (G) with S = {s1, . . . , sk} and T = {t1, . . . , tk}. Then in
time O(k4 · n2) one can either
1. find a B∗ ⊆ B with |B∗| ≥ g(k, c)−c(k−1) and an (S,

⋃⋃⋃
B∗)-separator XS with |XS | ≤ k−1

that is disjoint from all bags of B∗, or
2. find a B∗ ⊆ B with |B∗| ≥ g(k, c)−c(k−1) and an (

⋃⋃⋃
B∗, T )-separator XT with |XT | ≤ k−1

that is disjoint from all bags of B∗, or
3. find a set of paths {P1, . . . , Pk} in G such that each Pi with i ∈ [k] is a path from si to ti

and each vertex of G appears in at most c of these paths.

Theorem 16 yields an XP algorithm with parameter k for the (k, c)-DDP problem in
k-strong digraphs, as we proceed to discuss. First, we remark that the XP time is only
required when a large bramble of congestion at most c is not provided. If this is the case, we
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first look at the directed tree-width of G, which can be approximated in FPT time applying
Proposition 5. If dtw(G) ≤ f(k) for some computable function f , then we solve the problem
applying Proposition 3. Otherwise, we apply the machinery by Edwards et al. [8] pipelining
Propositions 6 and 7 to obtain a large bramble of congestion two in digraphs of large directed
tree-width, and use Theorem 16 to find a solution in polynomial time, which we show to
always be possible. When assuming that the input digraph is k-strong, only the third output
of Theorem 16 is possible, and therefore as a direct consequence of Theorem 16 we obtain
the following.

▶ Theorem 17. Let G be a k-strong digraph and B be a bramble of congestion c ≥ 2 with
|B| ≥ 2k(c · k − c + 2) + c(k − 1). Then for any ordered sets S, T ⊆ V (G) both of size k, the
instance (G, S, T ) of (k, c)-DDP with c ≥ 2 is positive and a solution can be found in time
O(k4 · n2).

As mentioned in the introduction, our result improves over the result of Edwards et
al. [8] by relaxing the strong connectivity of the input digraph from 36k3 + 2k to k (and this
bound is close to the best possible unless P = NP), by needing a smaller bramble (from size
188k3 to 4k2 + 2k − 2 when c = 2), and because the proof is simpler and shorter. Finally,
applying Corollary 8, Proposition 3, and Theorem 17 (thus again using Proposition 7 by [8])
we immediately obtain the following.

▶ Corollary 18. For every integer c ≥ 2, the (k, c)-DDP problem is solvable in XP time with
parameter k in k-strong digraphs.

As a tool to prove Theorem 16, we first show how we can take many copies of digraphs G

and G′, say ℓ copies of each, to either find 2ℓ · k R-paths to a given collection B of sufficiently
large size, or find an appropriate separator of size at most k − 1 in G or in G′.

▶ Lemma 19. Let (F , S) be a digraph-source sequence where F contains ℓ copies of a digraph
GS and ℓ copies of a digraph GT , in this order, and S contains ℓ copies of a set S ⊆ V (GS)
and ℓ copies of a set T ⊆ V (GT ), in this order, where |S| = |T | = k. Finally, let B be a
collection of subsets of V (G) with |B| ≥ 2ℓ · k. Then either there is a set of R-paths with
respect to F , S, and B of size at least 2ℓ · k, or for some non-empty B′ ⊊ B there is an R-cut
(B′, X ) of order at most 2ℓ · k − 1 such that X contains ℓ copies of an (S,

⋃⋃⋃
B′)-separator XS

followed by ℓ copies of an an (T,
⋃⋃⋃

B)-separator XT with |XS | + |XT | ≤ 2k − 1.

Proof. Assume that the maximum size of a set of R-paths with respect to F , S, and B is
at most 2ℓ · k − 1. Then by Theorem 15 there is a minimum R-cut Y = (B′, X ′) of order at
most 2ℓ · k − 1.

Since |B| ≥ 2ℓ · k we conclude that B′ ̸= ∅ and thus |X ′| = 2ℓ. (we refer the reader to
the discussion in the end of the first part of Section 3). Hence by the choice of F and S
and the definition of R-cuts, we can construct an R-cut (B′, X ) with the same order as Y by
simply including in X exactly ℓ copies of the (S,

⋃⋃⋃
B′)-separator XS contained in X ′, and

ℓ copies of the (T,
⋃⋃⋃

B′)-separator XT contained in X ′. Thus the newly generated R-cut
satisfies |B \ B′| + ℓ(|XS | + |XT |) = ord(B′, X ) = ord(B′, X ′) ≤ 2ℓk − 1. This immediately
implies that |XS | + |XT | ≤ 2k − 1 and the result follows. ◀

Now the plan is to apply twice the duality between R-paths and R-cuts. In the first
application, we consider the digraph-source sequence formed by 2k(c · k − c + 1) copies of
GS = G and then exactly as many copies of GT = Grev, and the same number of copies of S

and T , also in this order. If we do not find a set of 2k(c · k − c + 1) R-paths to the bags of the
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bramble, then we apply Lemma 19 and find an R-cut (B′, X ) of small order and a separator
of size at most k − 1 in GS or GT . Since the given bramble has congestion c, we show that
we can stop with output 1 or 2 of Theorem 16 by taking the bramble B∗ containing all bags
of B that are disjoint from the small separator. This holds because no bag of B∗ can be in
the “wrong side” of the separator. That is, if for instance there is an S → A path P avoiding
the separator XS of size at most k − 1 in GS , then every bag of B∗ must be in B \ B′ since
otherwise one can construct a path in GS \ XS from S to a bag of B′ by using P and the
connectivity properties of the bramble. In this case, we also arrive at a contradiction since
the size of B∗ is too large to be contained in the R-cut.

If the R-paths are found, then we refine the digraph by carefully choosing edges to delete
from G in such a way that, from a second application of the duality between R-paths and
R-cuts, we are guaranteed to find 2k R-paths that can be used to construct the {si} → {ti}
paths while maintaining the congestion under control. In the refined digraph, we keep the
R-paths found in the first iteration and delete edges leaving vertices of the bramble appearing
in bags that were not used as destinations for the R-paths. We apply Lemma 19 in this
digraph and show that the only possible outcome is that the R-paths are found. Otherwise,
there is an R-cut of order at most 2k − 1 and hence there is a B′′ ⊆ B that contains at least
one bag A that is not in the R-cut and is disjoint from the separator, say X ′

S , of size at most
k − 1 that is part of the R-cut. Now the size of X ′

S implies that there is a path from S to a
bag disjoint from X ′

S avoiding the separator, and thus we can reach A from S avoiding X ′
S .

Finally, the refined digraph allows us to associate each vertex of the bramble used by a path
in {P1, . . . , Pk} with a bag of the bramble, depending on where the vertex appears in the
path, in such a way that no vertex is associated twice with the same bag by two distinct
paths. Together with the bound on the congestion of the bramble, this immediately implies
that every vertex of the digraph appears in at most c paths of the set {P1, . . . , Pk}.

Proof of Theorem 16. Let G, S, T , and B be as in the statement of the theorem. Define
GS = G and GT = Grev and let (F , S) be a digraph-source sequence with F containing, in
order, c · k − c + 1 copies of GS followed by c · k − c + 1 copies of GT , and S containing,
in order, the same number of copies of S followed by exactly as many copies of T . Now,
applying Lemma 19 with respect to F , S, B, and ℓ = c · k − c + 1, we conclude that either
there are 2k(c · k − c + 1) R-paths or, for some B′ ⊆ B there is an R-cut (B′, X ) where X
contains ℓ copies of an (S,

⋃⋃⋃
B′)-separator XS and ℓ copies of an an (S,

⋃⋃⋃
B′)-separator XT

with |XS | + |XT | ≤ 2k − 1. We first consider the case where the separators are obtained.
Thus |XS | ≤ k − 1 or |XT | ≤ k − 1. Since both cases are symmetric (the T → XT paths
become XT → T paths when we restore the orientation of the edges of GT ), we suppose
without loss of generality that |XS | ≤ k − 1.

Let B∗ contain all bags of B that are disjoint from XS . Since B has congestion c we
conclude that |B∗| ≥ g(k, c) − c(k − 1). We show that no vertex appearing in a bag of B∗ is
reachable from S in GS \ XS . By contradiction, assume that there is an S → A path P in
GS \ XS for some A ∈ B∗. If there is A′ ∈ B∗ ∩ B′ then we can use the strong connectivity
of GS [A ∪ A′] and the path P to construct an S → A′ path in GS \ XS , contradicting the
choice of XS . Thus in this case B∗ must be entirely contained in B \ B′. Again we obtain
a contradiction since 2k(c · k − c + 2) ≤ |B∗| ≤ |B \ B′| ≤ ord(B′, X ) < 2k(c · k − c + 1). In
other words, the existence of path from S to a vertex in a bag of B∗ avoiding XS implies
that every bag of B∗ is reachable from S in GS \ XS and thus such path cannot exist since
B∗ is too large to be contained in any R-cut of order less than 2k(c · k − c + 1). We conclude
that no bag A ∈ B∗ is reachable from S in GS \ XS , and and output 1 of the theorem follows.
Symmetrically, output 2 of the theorem follows if |XT | ≤ k − 1.
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Assume now that a set of R-paths P of size at least 2k(c · k − c + 1) is found. Let B1 ⊆ B
and let h : P → B1 be the bijective mapping as in (1c) of Definition 14. Thus h(p) = B

implies that s+(P ) ∈ B. Since |S| = |T | = k, we can split P into two sets of equal size PS

and PT , where every path in PS is a path leaving S in GS and every path in PT is a path
leaving T in GT . We define BS = {h(P ) ∈ B1 | P ∈ PS} and BT = {h(P ) ∈ B1 | P ∈ PT }.
The next step is to refine P to make it minimal with respect to B. That is, we say that P

is B-minimal if no path of P contains an internal vertex that is in a bag B \ (BS ∪ BT ). In
other words, when following a path P ∈ P from the first to the last vertex, if we find an
internal vertex v in a bag B that is not in BS nor in BT , we swap P in P by its subpath
ending in v and update BS or BT accordingly. Clearly, condition (1c) of Definition 14 still
hold with respect to the new choice of P, and therefore from now on we assume that P is
B-minimal. This property is important later to bound the maximum number of times that a
vertex can appear in the S → T paths we construct.

Next, we reduce GS and GT to digraphs that are still well connected to B, thus ensuring
that we can find a large set of R-paths in the new digraphs, in which we can maintain control
over how many times a vertex can appear in the S → T paths we construct from these new
R-paths. To this end, define

VS =
⋃

P ∈PS

(V (P ) \ {s+(P )}) ∪
⋃

A∈BS

A and VT =
⋃

P ∈PT

(V (P ) \ {s+(P )}) ∪
⋃

A∈BT

A. (1)

Finally, we construct the digraphs G′
S and G′

T starting from GS and GT , respectively,
applying the following two rules:

For every v ∈ V (GS), if v ∈ (
⋃⋃⋃

B) \ VS then we delete from G′
S every edge leaving v.

For every v ∈ V (GT ), if v ∈ (
⋃⋃⋃

B) \ VT then we delete from G′
T every edge leaving v.

Consider the digraph-source sequence ({G′
S , G′

T }, {S, T}) and let B′ = B \ (BS ∪ BT ), and
notice that B′ may not be a bramble in G′

S nor in G′
T . Clearly |B′| ≥ g(k, c)−2k(c·k−c+1) =

c(k − 1) + 2k > 2k. We apply Lemma 19 with respect to {G′
S , G′

T }, {S, T} (and thus ℓ = 1),
and B′, to either obtain a set of R-paths P ′ of size at least 2k or an R-cut (B′′, {X ′

S , X ′
T })

with order at most 2k − 1 where |X ′
S | + |X ′

T | ≤ 2k − 1 and B′′ ̸= ∅. We claim that only the
first output is possible. By contradiction, assume that the R-cut and the separators were
obtained and, without loss of generality, that |XS | ≤ k − 1. First notice that the upper
bound on the order of the R-cut implies that |B′′ \ B′| ≥ c(k − 1) + 1. Since |XS | ≤ k − 1
this implies that there is at least one bag A′ ∈ B′′ that is disjoint from XS and not included
in R-cut.

Now, set q = 2(c · k − c + 1) and let P1, . . . , Pq be the defining partition of P. That
is, for every i ∈ [q], the part Pi is a set of k disjoint paths in the i-th digraph of F (this
is possible since |S| = |T | = k and hence P cannot contain more than k disjoint paths in
any digraph in F). Thus exactly q/2 parts Pi contain only paths starting in S. Now the
size of XS allows it to intersect at most c(k − 1) bags of B, and thus for some Pi no bag in
Bi = {A ∈ BS | P ∈ Pi and s+(P ) ∈ A} is intersected by X ′

S . Since |X ′
S | ≤ k − 1, there is

a P ∈ Pi from S to a bag A ∈ Bi that is not intersected by X ′
S . By the choice of G′

S this
path also exists in this digraph and, since s+(P ) ∈ A and A ∈ BS , every edge of GS leaving
every vertex in A is kept in G′

S and thus G′
S [A] is strong. Now, as B is a bramble, we can

construct a path from S to A′ (remember that A′ ∈ B′′ and A′ ∩ XS = ∅) by following the
path P and then taking a path from s+(P ) to A′ in G′

S [A ∪ A′], which in turn is guaranteed
to exist since either A ∩ A′ ̸= ∅ or there is an edge from A to A′ in G′

S . This contradicts our
assumption that (B′′, {X ′

S , X ′
T }) is an R-cut and the claim follows.
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Assume now that a set P ′ of 2k R-paths is obtained. Therefore, there are disjoint paths
{QS

1 , . . . , QS
k } leaving S and disjoint paths {Q′

1, . . . , Q′
k} leaving T in P. By recovering the

orientation of the edges of G′
T (we remind the reader that GT = Grev), we construct paths

{QT
1 , . . . , QT

k } reaching T in G and, by renaming the paths if needed, we assume that, for
i ∈ [k], each QS

i is a path starting in si and each QT
i is a path ending in ti. Moreover, by

condition (1c) in the definition of R-paths (see Definition 14), each s+(QS
i ) is associated

with a unique bag Ai ∈ B and each s-(QT
i ) is associated with a unique bag A′

i ∈ B, such that
all bags A1, . . . , Ak, A′

1, . . . , A′
k are distinct. Hence, since B is a bramble, it follows that for

every i ∈ [k] we can find a shortest path Qi from s+(QS
i ) to s-(QT

i ) in the strong digraph
G[Ai ∪ A′

i]. Finally, we construct the desired paths {P1, . . . , Pk}, such that each Pi with
i ∈ [k] is a path from si to ti, by appending Qi to QS

i and then QT
i to the resulting path.

Notice that this construction may result in a walk instead of a path, but every walk can be
easily shortened into a path Pi.

We now claim that every vertex of G appears in at most c paths of the collection
{P1, . . . , Pk}. First, notice that since the paths {QS

1 , . . . , QS
k } are disjoint and the paths

{QT
1 , . . . , QT

k } are disjoint as well, any vertex not appearing in any bag of B can appear in
at most two paths of {P1, . . . , Pk}. Assume now that v is a vertex appearing in some bag of
B. Depending on where v is located in the paths QS

i , QT
i , and Qi, we associate v with a bag

of B. Since B has congestion c, this immediately validates the claim and the result follows.
We remind the reader of our assumption that P is B-minimal, and look again at Equation 1.
If v is in VS because v is in path P ∈ PS ∪ PT and v ̸= s+(P ), then we say that v is a type
1 vertex. Otherwise, we say that v is a type 2 vertex.

For i ∈ [k], if v is a internal vertex of some QS
i , then v ∈ V S and is either a type 1 or

a type 2 vertex. If v is of type 1, then v is an internal vertex of some path P ∈ PS and
v ̸= s+(P ). Since P is B-minimal, this implies that v is in some destination bag of BS and
we associate v with this bag. If v is of type 2, then v is not an internal vertex of any path in
PS and is in some bag of BS . We associate v with this bag. Since the paths {QS

1 , . . . , QS
k }

are disjoint, v appears only in one of those paths and thus no other QS
j can associate v with

another bag of B. The analysis is similar if v is an internal vertex of some QT
j . Notice that

it is possible that v is in both QS
i and QT

j and, in this case, those two paths associate v with
two distinct bags of BS and BT , respectively.

Now let B2 ⊆ B′ and let h′ : P → B2 be a bijective mapping as in (1c) of Definition 14. If
v is a vertex of some Pi from s+(QS

i ) to s-(QT
i ) then we associate v with h′(QS

i ) if v ∈ h′(QS
i ),

and we associated v with h′(QT
i ) if v ∈ h′(QT

i ).
Now, for i, j ∈ [k], every path of the form QS

i , QT
i , or Pi associates each of its vertex

inside of the bramble with a unique bag of B, each vertex associated with some bag appears
in V (QS

i )\{s+(QS
i )}, V (QT

i )\{s-(QT
i )}, or V (Qi), no two distinct QS

i , QT
j associate a vertex

v with the same bag, and the same holds with relation to distinct pairs of paths of the form
Qi, Qj and QT

i , QT
j . We remark that while it is possible that some v appears in both QS

i

and QT
i , this does not pose an issue since in this case v is associated with a pair of distinct

bags B ∈ BS and B′ ∈ BT by QS
i and QT

i , respectively. Since B has congestion c, it follows
that every vertex is associated with at most c bags, which implies that every vertex is in at
most c paths of {P1, . . . , Pk}, and the result follows.

The bound on the running time follows by Theorem 15 and by observing that a set of
R-paths can be made B-minimal in time O(c · k2 · n2) ◀

Application to the asymmetric version of (k, c)-DDP. Theorem 16 is a direct translation
of Giannopoulou et al. [10, Theorem 9.1] to our setting. As mentioned in the introduction,
we can prove a weaker version of Theorem 17 by replacing Theorem 16 by [10, Theorem 9.1].
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In comparison with the result by Edwards et al. [8], with this approach we can drop the
bound on the strong connectivity of the digraph from (36k3 + 2k) to k, and the trade-off is
that in this case we have to rely on the topology of cylindrical grids to connect the paths,
instead of a bramble of congestion c. Although it is true that every digraph with large
directed tree-width contains a large cylindrical grid [14], and that such a grid can be found
in FPT time [4], to find a cylindrical grid of order k the directed tree-width of the digraph
has to increase much more than it is needed to find a bramble of congestion two (although
both dependencies still consist of a non-elementary tower of exponentials). Additionally, we
remark that if the goal is to solve the (k, c)-DDP problem with c ≥ 8, then as stated in
Theorem 17 a bramble of congestion eight suffices, and a polynomial dependency on how
large the directed tree-width of a digraph must be to guarantee the existence of a large
bramble of congestion eight was shown by Masarík et al. [17].

On the other hand, Theorem 16 improves upon [10, Theorem 9.1] in both its statement,
since we use brambles instead of cylindrical grids, and in simplicity. Indeed, brambles of
bounded congestion seem to be a weaker structure than cylindrical grids, since it possible to
extract such brambles with order t from a cylindrical grid of order at least 2t (see [8, Lemma
9]), and the bound on how large the directed tree-width of a digraph has to be to guarantee
the existence of such a bramble with size t is, in many cases (see [17] for instance) and as far as
we know also in the general case, substantially better than what is needed to find a cylindrical
grid with the same order. Additionally, the algorithm to find cylindrical grids runs in FPT
time [4] given a certificate of large directed tree-width and, in contrast, a large bramble of
congestion two can be found in polynomial time when such certificates are provided, as stated
in Proposition 7. Finally, we only ask the bramble to have order 2k(c · k − c + 2) + c(k − 1)
(which equals 4k2 + 2k − 2 when c = 2) instead of order k(6k2 + 2k + 3) for the cylindrical
grid in [10, Theorem 9.1], where the goal is to compute solutions for (k, 2)-DDP. Their proof
relies on the topology of cylindrical grids to connect the paths inside of this structure, after
some careful selection on how to reach it from S and leave it to reach T . In our proof of
Theorem 16, it is very simple to connect the paths inside the bramble. Indeed, after applying
twice the duality between R-paths and R-cuts, for each i ∈ [k] we simply connect the ending
vertex of the path from si to the bramble containing the starting vertex of the path from the
bramble to ti, using the strong connectivity of the digraph induced by B ∪ B′, where B is
the bag associated with si and B′ the bag associated with ti.

Their result [10, Theorem 9.1] is one of the cornerstones in their algorithm to solve the
asymmetric version of (k, 2)-DDP. Recall that, given ordered sets of terminals {s1, . . . , sk}
and {t1, . . . , tk}, the goal in this asymmetric version is to either produce a collection of
paths from each si to the corresponding ti such that every vertex is in at most two paths
of the collection, or conclude that there is no collection of disjoint {si} → {ti} paths.
In the first case, we say that we have constructed a half-integral linkage. In the second
case, we say that we have a no-instance. At any point of their dynamic programming
algorithm, if one of the subproblems they define deals with an instance in which there is no
small separator intersecting all paths from S to the grid or from the grid to T , then they
apply [10, Theorem 9.1] to find a solution to the instance. If a separator is found, then
they generate two easier instances, one of bounded directed tree-width, and one with fewer
number of terminals. Intuitively, the same holds true if we substitute [10, Theorem 9.1] by
our Theorem 16. In the full version of this paper, we give an informal sketch of why this is
indeed the case.
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Enumerating Maximal Induced Subgraphs
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Abstract
Given a graph G, the maximal induced subgraphs problem asks to enumerate all maximal induced
subgraphs of G that belong to a certain hereditary graph class. While its optimization version, known
as the minimum vertex deletion problem in literature, has been intensively studied, enumeration
algorithms were only known for a few simple graph classes, e.g., independent sets, cliques, and
forests, until very recently [Conte and Uno, STOC 2019]. There is also a connected variation of
this problem, where one is concerned with only those induced subgraphs that are connected. We
introduce two new approaches, which enable us to develop algorithms that solve both variations for
a number of important graph classes. A general technique that has been proven very powerful in
enumeration algorithms is to build a solution map, i.e., a multiple digraph on all the solutions of the
problem, and the key of this approach is to make the solution map strongly connected, so that a
simple traversal of the solution map solves the problem. First, we introduce retaliation-free paths to
certify strong connectedness of the solution map we build. Second, generalizing the idea of Cohen,
Kimelfeld, and Sagiv [JCSS 2008], we introduce an apparently very restricted version of the maximal
(connected) induced subgraphs problem, and show that it is equivalent to the original problem in
terms of solvability in incremental polynomial time. Moreover, we give reductions between the two
variations, so that it suffices to solve one of the variations for each class we study. Our work also
leads to direct and simpler proofs of several important known results.
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1 Introduction

A vertex deletion problem asks to transform a given graph into a graph in a certain graph
class P by deleting vertices. Many classic optimization problems belong to the family of
vertex deletion problems, and their algorithms and complexity have been intensively studied.
More often than not, the graph class is hereditary, i.e., closed under taking induced subgraphs.
Examples include complete graphs, edgeless graphs, acyclic graphs, bipartite graphs, planar
graphs, and perfect graphs. For a hereditary graph class, this problem is either NP-hard
or trivial [40]. An equivalent formulation of a vertex deletion problem toward P is to ask
for a maximum induced subgraph that belongs to P. A plethora of algorithms, including
approximation [42, 14, 12, 51, 36, 1], exact [30, 29], and parameterized [10, 15, 14, 12, 36, 1, 2],
have been proposed for both formulations.

Yet another approach toward this problem is to enumerate, or generate or list, inclusion-
wise maximal induced subgraphs that belong to the graph class P , hence called the maximal
induced P subgraphs problem. Trivially, one can always use an enumeration algorithm to solve
the optimization version of the same problem. A classical example of nontrivial use is to color
a graph by enumerating its maximal independent sets [38, 27, 9, 6]. Indeed, the enumeration
of maximal independent sets and the enumeration of maximal cliques are practically the
same, and both are well-studied classic problems [3, 17, 43]. They were also used in finding

© Yixin Cao;
licensed under Creative Commons License CC-BY 4.0

31st Annual European Symposium on Algorithms (ESA 2023).
Editors: Inge Li Gørtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz Herman; Article No. 31;
pp. 31:1–31:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yixin.cao@polyu.edu.hk
https://orcid.org/0000-0002-6927-438X
https://doi.org/10.4230/LIPIcs.ESA.2023.31
http://arxiv.org/abs/2004.09885
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


31:2 Enumerating Maximal Induced Subgraphs

connected vertex covers and edge dominating sets [28]. In general, the maximal induced P
subgraphs problem is motivated by the intrinsic difficulty in formulating a combinatorial
optimization problem: there are always factors that are ill characterized or even omitted in
the formulation [26, 44].1 This is particularly the case for vertex deletion problems, of which
the primary applications are the processing of noisy data, where modifications to a graph
are meant to exclude outliers or to fix noise.

Motivations of maximal induced P subgraphs problems also come from database the-
ory [18], where one is usually concerned with only induced P subgraphs that are connected.
Of any hereditary graph class P , we can define a subclass by allowing only connected graphs
in P. With very few exceptions, this naturally defined class is not hereditary, and hence
this variation, called the maximal connected induced P subgraphs problem, poses different
challenges. Indeed, as we will see, it is somewhat more difficult than the original one.

Let n denote the number of vertices in the input graph, and by a solution we mean a
maximal vertex set that induces a subgraph in P. Since there might be an exponential
number (on n) of solutions, care needs to be taken when we talk about the running time of
an enumeration algorithm. For example, in a graph consisting of disjoint triangles, there
are 3n/3 maximal independent sets. Johnson et al. [37] defined three complexity classes
for enumeration algorithms, namely, polynomial total time (polynomial in n and the total
number of solutions), incremental polynomial time (for all s, the time to output the first
s solutions is polynomial in n and s), and polynomial delay (the time to output the first
solution and the time between two consecutive solutions are both polynomial in n). Both
maximal independent sets and maximal cliques can be enumerated with polynomial delay,
and so are maximal bicliques (complete bipartite graphs) [23, 33] and maximal forests [45].
See the survey [48] and the recent results [21, 19].

2 Our contributions

Our algorithms are summarized below.

▶ Theorem 1. The maximal induced P subgraphs problem and its connected variation can
be solved with polynomial delay when P is one of the following graph classes: interval graphs,
trivially perfect graphs, split graphs, complete split graphs, pseudo-split graphs, threshold
graphs, cluster graphs, complete bipartite graphs, complete p-partite graphs, and d-degree-
bounded graphs.

▶ Theorem 2. The maximal induced P subgraphs problem and its connected variation can be
solved in incremental polynomial time when P is one of the following graph classes: wheel-free
graphs, unit interval graphs, block graphs, 3-leaf powers, basic 4-leaf powers, and any graph
class that can be characterized by a finite set of forbidden induced subgraphs.

Since a connected cluster graph is a clique, the result for the maximal connected induced
cluster subgraphs problem is already known. Also, for a graph class that can be characterized
by a finite set of forbidden induced subgraphs, algorithms for the maximal induced P
subgraphs problem, but not its connected variation, can be derived from Eiter and Gottlob [24]
(see the discussion in Section 2.6).

1 After all, how many times do you click “I’m Feeling Lucky” on Google.com?
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2.1 Solution maps and retaliation-free paths
In a seminal work, Schwikowski and Speckenmeyer [45] proposed an algorithm for enumerating
maximal induced forests, as well as its directed variation, enumerating maximal induced
directed acyclic subgraphs. They introduced a successor function, which, given a solution,
returns a nonempty multi-set of other solutions of G. In so doing they implicitly built a
multiple digraph M(G) whose nodes are the solutions, and there are arc(s) from node S1 to
node S2 if S2 is one of the successors of S1. The key properties of M(G) are (1) the successor
function can be calculated in polynomial time; and (2) M(G) is strongly connected. As a
result, traversing M(G) from any node, we can visit all the solutions in time polynomial in
n and linear on the number of solutions. With a standard bookkeeping mechanism, we can
easily implement it with polynomial delay. We call the multiple digraph on the solutions of an
enumeration problem its solution map. Gély et al. [33] later rediscovered this idea, and used
it to re-analyze enumeration algorithms for maximal cliques and maximal bicliques. Solution
maps are actually very general and powerful. Conte et al. [21, 19] built solution maps to
solve the maximal (connected) induced P subgraphs problem for several important graph
classes. In particular, they solved the connected variation for forests, and directed acyclic
graphs. (They also designed algorithms for enumerating maximal subgraphs, a direction that
we will not pursue in the present paper, and other non-graphic problems.)

To solve an enumeration problem with a solution map consists in defining the successor
function and proving that the implied solution map M is strongly connected. All the
mentioned algorithms follow the same general scheme, although the details are quite problem
specific. For convenience, we may assume that the solutions are subsets of some ground set
U ; for the maximal (connected) induced P subgraphs problem, U is the vertex set of the
input graph.
Successors of a solution S: For each v ∈ U \ S, define a sub-instance restricted to S ∪ {v},

and find a set of solutions of this sub-instance. The union of these |U \ S| sets makes the
successors of S.

Strong connectedness: For each solution S∗, define a specific metric and show that every
other solution S has a successor “closer” to S∗ than S with respect to this metric.

Since a solution S′ can be a successor of S by virtue of two different elements in U \ S, the
solution map is a multiple digraph. The simplest metric is arguably the lexicographical order.
If we number the elements such that those in S∗ are the smallest, then S∗ is the smallest
among all solutions, and hence it suffices to show that each solution S has a lexicographically
smaller successor. The existence of a path from S to S∗ in M, hence the strong connectedness
of M, will then follow from the finiteness of the ground set U . Other metrics have also been
used in literature [45, 18, 21, 19]

The requirement that every other solution has a direct successor that is closer to S∗,
with respect to the metric decided by S∗, is not always easy to achieve. For example, such
successor functions have been claimed for unit interval graphs and interval graphs, but both
turned out to be incorrect. For the connectedness of a solution map, after all, we are only
concerned with the reachability: whether a solution can reach S∗ instead of how long it takes
to do so. (Indeed, in “the most ideal case,” the solution map can be a simple directed cycle,
in which the distance of a pair of solutions can be the number of solutions minus one.)

We introduce retaliation-free paths to certify strong connectedness of a solution map.
Suppose that we are using the lexicographic metric. In our framework, it is possible that
all the successors of a solution S are lexicographically larger than S. Thus, the strong
connectedness of our solution maps is not readily guaranteed, and we proceed as follows.
Let s be the smallest element in S∗ \ S. If any successor of S contains [1..s], then it is

ESA 2023
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lexicographically smaller than S and we are done. Otherwise, we look for a solution S′ that
contains [1..s] and is reachable from S0 = S by a nontrivial path S0S1 · · · S′. It is better to
view this path as a transforming procedure. In the first step, we choose a successor S1 of S

containing s; we call s the gainer, and elements in [1..s] \ S1 the victims of s. We then try to
add the victims of s back, with the guarantee that none of them unseats s, an action which
we call retaliation. A victim r of s may become a gainer in a later step, hence introducing
further victims. In this case, we put other victims of s on hold, and try to restore the victims
of r. Now we need to make sure both r and s are safe. Thus, we consider the gainer–victim
relationship transitive. Such a path of solutions in M is called retaliation-free; see, e.g.,
Figure 1. A retaliation-free path terminates only when it reaches S∗. Therefore, it suffices to
show that it does terminate. (After we reach a solution containing [1..s], the element s is no
longer a gainer, and may be removed as a victim for adding a later element. The path from
S to S∗ we produced as such can have a length super-polynomial in n.)

{1
, 2,

3,
5}

S0
{1

, 3,
4,

5}

S1
{2

, 3,
4,

5}

S2
{1

, 2,
4,

5}

S3
{1

, 2,
3,

4}

S4

Figure 1 A path from S0 to S4 = S∗ in a solution map. Here U = {1, 2, 3, 4, 5}, and its elements
are numbered such that those in S∗ have the smallest numbers. In the first step (S0 → S1), element
4 is the gainer and element 2 is the victim, which becomes the gainer of the second step (S1 → S2),
with victim 1. The last two steps have no victims.

▶ Theorem 3 (Informal). Let M be the solution map of an enumeration problem, and let S∗

be a specific solution. Every retaliation-free path in M with respect to S∗ terminates at S∗.

We use Theorem 3 to develop enumeration algorithms for the maximal (connected)
induced trivially perfect subgraphs problem and the maximal (connected) induced interval
subgraphs problem, both running with polynomial delay. The two problems are paradigmatic
for the use of this technique. The main structures we use for interval graphs are the clique
paths, which are linear, while for trivially perfect graphs, we work on their generating forests,
which are hierarchical.

A trivially perfect graph G can be represented as a forest F , called its generating forest,
such that two vertices u and v are adjacent in G if and only if one of them is an ancestor of
the other in F [49, 50]. It is simpler if we consider the connected variation, where generating
forests are trees. For the purpose of transforming a solution S to another solution S∗, we
transform a generating tree T of G[S] to a generating tree T ∗ of G[S∗]. A main obstacle is
that two vertices in S ∩ S∗ may have different ancestor–descendant relationship in T and T ∗;
see, e.g., vertices 2 and 3 in Figure 2.

1 23 4

(a) G.

3

1 2
(b) G[S∗] = T ∗.

2

3 4
(c) G[S] = T .

Figure 2 A graph G and its only two maximal connected induced trivially perfect subgraphs.
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We add the vertices in S∗ \ S bottom-up, i.e., children before parents. Let v be the
smallest vertex in S∗ \ S in the post-order of T ∗; note that all the T ∗-descendants of v are in
S. It is easy to add v if v is a leaf of T ∗ (because all its T ∗-ancestors have larger numbers
than v) or if v has a single child v′ in T ∗ (because v and v′ are true twins in G[S∗]). The
nontrivial case is when v has multiple T ∗-children. Since we can only make a polynomial
number of solutions to be successors of S, it is very likely that none of the successors keep
all the T ∗-children of v. We observe that as long as we keep two T ∗-children of v, then the
relationship between T ∗-descendants of v and T ∗-ancestors of v will be correctly maintained.
We afford to lose other children of v and their descendants as victims of this step, because
they can be added back easily: all the operations for adding these victims back are under v,
hence isolated from other parts.

Interval graphs are a very important and well-studied graph class [8, 32, 34, 35], and
the interval vertex deletion problem receives a lot of attention [7, 14, 11, 2]. The maximal
cliques of an interval graph can be arranged in a linear manner, called a clique path [32]. A
natural idea is to take a clique path for G[S∗] and number the vertices from left to right;
see, e.g., Figure 3(a). Then for another solution S, we try to add the smallest vertex in
S∗ \ S. However, for solution S shown in Figure 3(b), there is no obvious way to add vertex
18 to S, without removing a smaller vertex. The reason is that intervals for vertices 6–17
are organized in very different ways in the two clique paths. For a reader familiar with
the recognition of interval graphs, the issue is essentially the same as recognizing interval
graphs by graph searches, scanning the vertices from one end to the other end [13]. Note
that {8, 9, 10} is a module (a subset of vertices that have the same neighborhood outside
this subset) of G[S∗] and switching the positions of vertices 8 and 10 gives another valid
representation of G[S∗]. On the other hand, the set {6, . . . , 17} is not a module of G[S∗],
and its orientation is fixed from the right by 18. Since this fact can only be deduced after
seeing vertex 18, it is not available if one scans from the left. The algorithm in [13] tries to
detect and keep track of the orientation of such vertex sets via multiple-sweep searches. For
our problem, we allow some vertices in {6, . . . , 17} to fall victims to vertex 18. Afterward,
we restore the victims from right to left: we process them in a different direction because
vertex 18 is the anchor of this set.

1 2 3 4 5 6 7 8 9 10 11

1
2

3

4
5

6
7

8
9

10 11
12

13
14

15
16 17

18
19

(a) S∗.

1 2 3 4 5 6 7 8 9 10

1
2

3

4
5

6
7

8
9

10
11

12
13

14
15

16
17 21

(b) S.

Figure 3 Two maximal connected induced interval subgraphs of some graph G (other vertices are
immaterial and omitted). Gray numbers at the bottom indicate the indices of the maximal cliques.
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2.2 Algorithms in incremental polynomial time
In each of the mentioned algorithms, the successor function has to be handcrafted. For
example, our successor function for interval graphs does not work for unit interval graphs.
Nor can the successor function of [21, 19] for chordal graphs be applied to interval graphs.2
In the following we aim for general approaches that can be applied with little efforts.

There is nothing inherent in solution maps about polynomial delay, though all of the
mentioned algorithms based on solution maps are of this type. The running time of such an
algorithm is determined by the successor function, which is almost always determined by
the number of successors a solution can have. If the number is polynomial in n, then the
algorithm has polynomial delay. If we allow the number to be polynomial in both n and the
number of solutions, then it needs polynomial total time. One “weakness” of the approach
based on solution maps is the lack of a simple way to develop algorithms in incremental
polynomial time, save those simple classes [18]. We obviate this concern with the following
observation.

▶ Theorem 4. For any hereditary graph class P, the maximal (connected) induced P subgraphs
problem can be solved in polynomial total time if and only if it can be solved in incremental
polynomial time.

For the maximal induced P subgraphs problem, the statement follows from the classical
result of Bioch and Ibaraki [5]; see discussions in Section 2.6. As far as we can check, the
statement for the connected variation was not previously known. (This explains why Cohen
et al. [18] had to prove the statement separately.) Theorem 4 enables us to use solution
maps transparently in developing algorithms for enumerating maximal (connected) induced
P subgraphs in incremental polynomial time. There is strong evidence that a similar claim
on general enumeration problems does not hold [46, 16].

2.3 Restricted versions
Lawler et al. [39] introduced the input-restricted version of an enumeration problem: there
exists an element x ∈ U such that U \ {x} is a solution. This special problem arises naturally
in several design paradigms for enumeration problems, e.g., the design of successor functions,
and the reverse search technique [4]. Cohen et al. [18] proved that the maximal (connected)
induced P subgraphs problem can be solved with polynomial delay when its input-restricted
version can be solved in polynomial time. Moreover, the original problem can be solved in
incremental polynomial time if and only if its input-restricted version can. They also proved
a similar statement for polynomial total time, which is rendered redundant by Theorem 4.
Thus, this ostensibly simpler version is the core of the maximal (connected) induced P
subgraphs problem in terms of solvability in incremental polynomial time.

Since the appearance of [18], there have been attempts at extending its core idea. A
“natural” way seems to be defining a restricted version that is equipped with a special set of
more than one vertex; i.e., G − Z is in P for some set Z of t vertices, where t > 1. However,

2 An early version of [19] mistakenly claimed that their algorithm for the maximal induced chordal
subgraphs problem also applies to interval graphs. Roughly speaking, what they did is to reconstruct a
perfect elimination ordering of a desired solution S∗ from a solution S. As long as the newly added
vertex is simplicial, the resulting graph is chordal. But it is not always an interval graph. The tent
graph (adding three edges to connect the even-number vertices of a 6-cycle) is a counterexample. In the
solution map they built, the only successor of V (G) \ {v}, where v is any degree-2 vertex of G, is G
itself, which is not an interval graph. It is quite nontrivial, if possible at all, to adapt this approach to
interval graphs.
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the extra t − 1 vertices in the set Z turn out to be not helpful. Consider, for instance, P
being the forests. For a graph G and any t, we can make a new graph H by introducing
t − 1 copies of disjoint triangles to G, and then H satisfies the new definition if and only if
G is input-restricted. Therefore, this special version does not have any property that is not
already in the input-restricted version, hence not easier to solve than the latter.

This negative example does not suggest a dead end, and there is a natural generation
that does work. We may view the input-restricted version as an enumeration problem by
itself, and try to build a solution map to solve it. Then in designing the successor function,
in the sub-instance restricted to S ∪ {v}, aside from the vertex x we had, we are bestowed
with another vertex v such that the removal of either of x and v leaves a subgraph in P.
We are thus inspired to define the t-restricted version of the maximal induced P subgraphs
problem:

There exists a set Z of t vertices in G such that G − z is in P for every z ∈ Z.

It is equivalent to that every induced subgraph of G that is not in P contains all vertices
in Z. This requirement is far stronger than G − Z being in P, though equivalent when
t = 1. We are able to show that even this far more restricted version is still equivalent
to the original problem in terms of enumerability in incremental polynomial time. We
remark that our proofs, based on solution maps, are significantly simpler than those on the
input-restricted version [18], which can now be viewed as the 1-restricted version. With the
benefit of hindsight, we can see that all the results of [18] can be easily interpreted using
solution maps, with simpler proofs.

▶ Theorem 5. Let P be a hereditary graph class. The maximal (connected) induced P
subgraphs problem can be solved in incremental polynomial time if and only if there exists a
positive integer t such that its t-restricted version can be solved in polynomial total time.

The strong requirement stipulated in defining the t-restricted version makes it significantly
easier than the original problem. All the algorithms in Theorem 2 are obtained by reducing
these problems to their t-restricted versions. Of these results, we would like to draw special
attention to those on wheel-free graphs, though this graph class in its own sense may
seem to be less interesting compared to others we study. Lokshtanov [41] proved that the
vertex deletion problem toward wheel-free graphs is W[2]-hard with respect to standard
parameterization, hence very unlikely fixed-parameter tractable. This suggests that the
complexity of the maximal induced P subgraphs problem can be quite different from its
optimization counterpart.

Theorem 5 also implies, among others, the following result on graph classes that can be
characterized by a finite set F of forbidden induced subgraphs. Indeed, with t being the
maximum order of graphs in F , the t-restricted version of the maximal (connected) induced
F-free subgraphs problem is trivial. Eiter and Gottlob [24] have proved this result for the
maximal induced F -free subgraphs problem, but their proof does not apply to the connected
variation; see discussions in Section 2.6.

▶ Corollary 6. Let F be a finite set of graphs. The maximal (connected) induced F-free
subgraphs problem can be solved in incremental polynomial time.

We note that the vertex deletion problem to F -free graphs for finite F has been well studied.
In particular, they are fixed-parameter tractable [10] and admit constant-approximation [42].
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2.4 Reductions between the two variations

Since we are dealing with both the maximal induced P subgraphs problem and its connected
variation, it is really irksome if we have to develop two algorithms for each class. Although
Cohen et al. [18] and Conte et al. [21, 19] dealt with both variations, they stopped at noting
that with one of them solved, a slight modification would be able to solve the other. These
modifications have to be done, however, case by case.

The main issue of the connected variation is that the set of connected graphs in a
hereditary graph class P , viewed as a graph class in its own regard, is mostly not hereditary.
If there are two nonadjacent vertices in any connected graph G in P , then the edgeless graph
on two vertices is an induced subgraph of G, hence in P. Therefore, the class of connected
graphs in P remains hereditary only when P is the class of cluster graphs, in which the
connected ones are the complete graphs, and the class of edgeless graphs. A connected
edgeless graph has precisely one vertex, and this seems to be the only class on which the
connected variation, which is trivial, is the easier between the two variations. For a hereditary
graph class P, and a graph G, let us use N1 and N2 to denote, respectively, the number of
maximal induced P subgraphs and the number of maximal connected induced P subgraphs
of G. It is not difficult to see that N1/N2 can be an exponential number on n, while N2/N1
can never be more than n. In the trivial case when P is edgeless, N2 is precisely n, while
N1 can be 3n/3. For a nontrivial example, the graph consisting of n/4 disjoint 4-cycles has
2n/2 maximal induced forests, while only n maximal induced trees. This example applies
to interval graphs, chordal graphs, and many others. Therefore, it is very unlikely we can
use an enumeration algorithm for the maximal induced P subgraphs problem to solve its
connected variation.

The other direction is promising. Two simple observations help here. First, if we can
add vertices to a graph without making new forbidden induced subgraphs, then it does
not change the number of maximal induced P subgraphs, though each of them gets more
vertices. Second, if the extra vertices make all the maximal induced P subgraphs connected,
then by enumerating all maximal connected induced P subgraphs of the new graph, we
obtain effortlessly all maximal induced P subgraphs of the original graph. This idea works
when P is closed under adding universal vertices, examples of which include interval graphs,
chordal graphs, etc. A less trivial reduction can be devised for several other graph classes,
e.g., wheel-free graphs and triangle-free graphs. These reductions focus us on the connected
variation of the problems only, instead of working on both.

Via Theorem 5, we are able to establish a more interesting connection. Although the
condition in the statement looks rather technical, it is satisfied by many natural graph
classes: apart from those in Theorem 2, another notable example is planar graphs. As for the
t-restricted version of both variations, there are only a polynomial number of solutions that
are not a proper superset of Z, and they are easy to handle. Therefore, the focus is on those
solutions containing all vertices in Z. We observe that under the connectivity condition, in
every maximal induced P subgraph of G that contains all vertices in Z, all the vertices in Z

are always in the same component. As a result, there is a one-to-one mapping between such
solutions for these two variations.

▶ Theorem 7. Let c be a constant. Let F be a set of graphs such that every graph in F
of order c or above is biconnected. The maximal induced F-free subgraphs problem can be
solved in incremental polynomial time if and only if its connected variation can be solved in
incremental polynomial time.
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2.5 Characterizing the easy classes
We try to better understand maximal (connected) induced P subgraphs problems that
can be solved with polynomial delay by considering its input-restricted version. We say
that a graph class P has the cks property, after the initials of the authors of [18], if the
input-restricted version of the maximal (connected) induced P subgraphs problem can be
solved in time polynomial only in n. Since it is straightforward to see that the class of
edgeless graphs (independent sets), the class of complete graphs (cliques), and the class of
complete bipartite graphs (bicliques) have the cks property, the polynomial-delay algorithms
for them can be immediately explained by this general result. On the other hand, the
polynomial-delay algorithms of [45] and [21, 19], and our polynomial-delay algorithms for the
maximal (connected) induced interval subgraphs problem and for the maximal (connected)
induced trivially perfect subgraphs problem cannot be derived from this observation. As we
will see, none of these graph classes has the cks property.

It turns out that star forests, forests in which every tree is a star, play a crucial role in
characterizing graph classes with the cks property. Therefore, to find those graph classes
with the cks property, it suffices to consider those forbidding both a star forest and the
complement of a star forest.

▶ Theorem 8. Let F be a nonempty set of graphs. If the class of F-free graphs has the cks
property, then F contains at least one star forest and the complement of at least one star
forest.

Unfortunately, this condition is not sufficient, and many graph classes satisfy this condition
but do not have the cks property. Moreover, it is possible that a class P of graphs has the
cks property but a proper subclass of P does not. This fact makes a full characterization of
graph classes with the cks property more difficult.

2.6 Related work
Let us put our work into context. The aforementioned characterization of a hereditary graph
class by a set F of forbidden induced subgraphs provides another perspective to view the
maximal induced P subgraphs problem, but not its connected variation in general. A subset
S of vertices is a solution if and only if V (G) \ S intersects all forbidden sets of G, i.e., a
minimal set X of vertices such that G[X] ∈ F . If we list all the forbidden sets of G as a
set system, then the problem becomes enumerating minimal vertex sets that intersect each
of the forbidden sets. This brings us to the well-studied problem of enumerating minimal
hitting sets of a set system. A set system is also known as a hypergraph, and the problem is
called hypergraph transversal in literature. Some important general results on enumeration
of maximal induced P subgraphs, e.g., the algorithm for graph classes characterized by a
finite number of forbidden induced subgraphs, were first proved in this setting [24]. Reducing
to the hypergraph transversal problem was also a common approach used by many earlier
heuristic enumeration algorithms, for maximal independent sets and for maximal forests.
A graph may have an exponential number of simple cycles, and thus the maximal induced
forests problem and its associated hypergraph transversal problem have significantly different
input sizes: the latter, including the number of elements and the number of forbidden sets,
may be exponential on the former. This can happen for all graph classes P that have an
infinite number of forbidden induced subgraphs. Deciding whether a graph belongs to such a
class P may be NP-hard, and hence the maximal induced P subgraphs problem cannot be
solved in polynomial total time, though it is still possible for the corresponding hypergraph
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transversal problem, with all the forbidden sets given. Thus, we have to exclude from our
study those graph classes that cannot be recognized in polynomial time. For a graph class
that can be recognized in polynomial time, the maximal (connected) induced P subgraphs
problem is in EnumP, the counterpart of NP for enumeration [16]. (One may consider the
oracle model, where whether a graph is in the class is answered by an oracle in O(1) time,
but this paper will not take this direction.)

The (minimal) hitting sets of a hypergraph H define another hypergraph H ′, and it is an
easy exercise to verify that each set in H is a (minimal) hitting set of H ′. The hypergraph
transversal problem has a decision version: given a pair of hypergraphs on the same set of
elements, decide whether one consists of exactly the minimal hitting sets of the other. Bioch
and Ibaraki [5] showed that the hypergraph traversal problem can be solved in polynomial
total time if and only if it can be solved in incremental polynomial time, by showing that this
is the case precisely if the decision version can be solved in polynomial time. Note that under
certain complexity assumptions, these two complexity classes for enumeration problems are
not equal in general [46, 16].

The results of [5] were actually developed in the setting of monotone Boolean functions.
A Boolean function f : {0, 1}n → {0, 1} is monotone if x ≤ y always implies f(x) ≤ f(y).
The identification problem is to find all minimal true vectors and all maximal false vectors
of f . It is easy to see that the maximal induced P subgraphs problem is a special case
of it. Let G be a graph on n vertices, for any subset X ⊆ V (G), we use x to denote the
characteristic vector of X, i.e., an n-dimension Boolean vector with 1 at the ith position if
and only if vi ∈ X, and set f(x) = 0 if and only if G[X] ∈ P . Then minimal forbidden sets
and the vertex sets of maximal induced P subgraphs of G correspond to minimal true vectors
and maximal false vectors of f , respectively. In this terminology, the maximal induced P
subgraphs problem asks for maximal false vectors only, hence different in the output size.
(Moreover, the identification problem is usually asked in the oracle model.) The decision
version of the identification problem, known as dualization of monotone Boolean functions, is
equivalent to the hypergraph traversal problem, and its incarnations can be found in database
systems, artificial intelligence, and game theory. Fredman and Khachiyan [31] proved that
dualization of monotone Boolean functions, hence hypergraph traversal, can be solved in
quasi-polynomial time. It has been open for nearly four decades whether this problem can
be solved in polynomial time; see the survey of Eiter et al. [25].

The main motivation of studying the connected variation is its practical applications in
database theory, where several important problems can be modeled as enumerating maximal
connected induced P subgraphs. We refer to Cohen et al. [18] and references therein for
the background. Since this variation cannot be directly cast into hypergraphs or monotone
Boolean functions, fewer results on it have been known in literature [18, 21, 19], and they
had to be dealt with separately.

We are exclusively concerned with maximal (connected) induced P subgraphs. There
is also research on enumerating all induced P subgraphs and enumerating all maximum
induced P subgraphs. The first is usually very easy, if not completely trivial, while the
latter has to be very hard: after all, finding a single maximum induced subgraph in a
nontrivial and hereditary graph class is already NP-hard [40]. Yet another, probably more
practical, approach is to list top k solutions, or solutions of costs at most (or at least) k.
This is frequently studied in the framework of parameterized computation. There is work
using the input size as the sole measure for the running time of enumeration algorithms,
e.g., [47]. In summary, efforts toward a systematic understanding of enumeration are gaining
momentum [22].
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Our final remark is on the space usage. A naïve implementation of our main approaches
needs to keep track of all the solutions, hence takes exponential space. How to reduce the
space is the major open problem in this area, and positive results are few but growing. Using
reverse search, Conte et al. [20] showed how to strengthen polynomial-delay algorithms of [18]
to use only polynomial space. Conte et al. [21, 19] also managed to reduce some of their
algorithms to polynomial space.
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Abstract
We consider variants of the classic Multiway Cut problem. Multiway Cut asks to partition a graph
G into k parts so as to separate k given terminals. Recently, Chandrasekaran and Wang (ESA 2021)
introduced ℓp-norm Multiway Cut, a generalization of the problem, in which the goal is to minimize
the ℓp norm of the edge boundaries of k parts. We provide an O(log1/2 n log1/2+1/p k) approximation
algorithm for this problem, improving upon the approximation guarantee of O(log3/2 n log1/2 k) due
to Chandrasekaran and Wang.

We also introduce and study Norm Multiway Cut, a further generalization of Multiway Cut. We
assume that we are given access to an oracle, which answers certain queries about the norm. We
present an O(log1/2 n log7/2 k) approximation algorithm with a weaker oracle and an O(log1/2 n log5/2 k)
approximation algorithm with a stronger oracle. Additionally, we show that without any oracle
access, there is no n1/4−ε approximation algorithm for every ε > 0 assuming the Hypergraph
Dense-vs-Random Conjecture.
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1 Introduction

In this paper, we consider a variant of the classic combinatorial optimization problem,
Minimum Multiway Cut. Given an undirected graph G = (V, E) with edge weights w :
E → R≥0 and k terminals t1, . . . , tk ∈ V , the Minimum Multiway Cut problem asks to
partition graph G into k parts P1, . . . , Pk so that Pi contains terminal ti. The Multiway Cut
objective is to minimize the number or total weight of cut edges. For k = 2, the problem is
equivalent to the minimum st-Cut problem. Dahlhaus, Johnson, Papadimitriou, Seymour,
and Yannakakis proved that it is NP-complete and APX-hard for every k > 2 [9]. They also
gave a simple combinatorial (2 − 2/k)-approximation algorithm. Later Călinescu, Karloff,
and Rabani [7] showed how to obtain a 3/2 approximation using linear programming. This
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result was improved in a series of papers by Karger, Klein, Stein, Thorup, and Young [11],
Buchbinder, Naor and Schwartz [5], and Sharma and Vondrák [13] (see also [6]). The currently
best known approximation factor is 1.2965 [13]. The best known LP integrality gap and
Unique Games Conjecture hardness is 1.20016 due to Bérczi, Chandrasekaran, Király, and
Madan [4] (see also [2, 10, 12]).

In 2004, Svitkina and Tardos [14] introduced the Min-Max Multiway Cut problem. In
this problem, as before, we need to partition graph G into k parts P1, . . . , Pk so that each Pi

contains one terminal ti. However, the objective function is different: Min-Max Multiway Cut
asks to minimize the maximum of edge boundaries of sets Pi i.e., minimize maxi δ(Pi), where
δ(Pi) is the total weight of edges crossing the cut (Pi, V \ Pi). Svitkina and Tardos [14] gave
an O(log3 n) approximation algorithm for the problem. Later, Bansal, Feige, Krauthgamer,
Makarychev, Nagarajan, Naor, and Schwartz [3] provided an O(

√
log n log k)-approximation

algorithm. Also, Ahmadi, Khuller, and Saha [1] studied a related Min-Max Multicut problem.
Recently, Chandrasekaran and Wang [8] proposed a common generalization of the Min

Multiway Cut and Min-Max Multiway Cut problems, which they called Minimum ℓp-norm
Multiway Cut. This problem asks to minimize the ℓp norm of the edge boundaries of parts
P1, . . . , Pk. In other words, the objective is to

minimize:
( k∑

i=1
δ(Pi)p

)1/p

.

Note that this problem is equivalent to Min Multiway Cut when p = 1 and to Min-Max
Multiway Cut when p = ∞. Chandrasekaran and Wang [8] gave an O(log3/2 n log1/2 k)
approximation for the problem. Further, they proved that the problem is NP-hard for every
p ≥ 1 and k ≥ 4. Moreover, it does not admit an O(k1−1/p−ε)-approximation for every ε > 0
assuming the Small Set-Expansion Conjecture; a natural convex program for the problem
has the intgerality gap of Ω(k1−1/p).

In this paper, we provide an improved O(log1/2 n log1/2+1/p k) approximation algorithm.
We note that for p = ∞, our approximation guarantee matches the approximation of the
algorithm due to Bansal et al. [3].1 For p = 2, our approximation guarantee is O(log1/2 n log k),
which is Θ(log n/

√
log k) times better than the approximation guarantee of the algorithm

due to Chandrasekaran and Wang [8]. We also consider variants of Multiway Cut with norms
other than the ℓp norm.

1.1 Our Results
We now formally state our results. First, we present an approximation algorithm for the ℓp-
norm Multiway Cut problem. We show that our algorithm achieves an O(log1/2 n log1/2+1/p k)
approximation for every p > 1.

▶ Theorem 1. There exists a polynomial-time randomized algorithm that given a graph with
n vertices, k terminals, and p > 1, finds an O(log1/2 n log1/2+1/p k) approximation for ℓp-norm
Multiway Cut with high probability.

Further, we provide approximation algorithms for Norm Multiway Cut with an arbitrary
monotonic norm, a further generalization of ℓp-norm Multiway Cut. The monotonic norm is
defined as follows.

1 Our algorithm is stated only for the case where p is finite. However, we can solve an instance with
p = ∞ by running the algorithm with p = log k. Since ∥ · ∥log k is within a constant factor of ∥ · ∥∞ for
vectors in Rk, this approach yields an O(

√
log n log1/2+1/log k k) = O(

√
log n log k)-approximation.
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▶ Definition 2. A norm ∥ · ∥ on Rd is monotonic if for any x, y ∈ Rd with |xi| ≤ |yi| for all
i ∈ [d], it holds ∥x∥ ≤ ∥y∥.

We consider two oracles to the monotonic norm used in the Norm Multiway Cut: (1)
minimization oracle; (2) ordering oracle. For a set A ⊆ [d], let 1A ∈ {0, 1}d denote the
indicator vector of A, i.e., the i-th coordinate (1A)i = 1 if i ∈ A; otherwise, (1A)i = 0.

▶ Definition 3. Given a monotonic norm ∥ · ∥ on Rd, for any i ∈ [d], the minimization
oracle efficiently finds a set Ai ⊆ [d] that minimizes the norm of indicator vectors among all
subsets with size i, i.e.

Ai = arg min
A⊆[n],|A|=i

∥1A∥.

▶ Definition 4. Given a monotonic norm ∥ · ∥ on Rd, for any vector x ∈ Rd, the ordering
oracle efficiently finds an ordering of the vector x that minimizes the norm, i.e.

πx = arg min
π∈Sd

∥xπ∥,

where xπ denotes the ordering of x regarding the permutation π.

Assuming that they are given access to either a “minimization oracle” or a stronger
“ordering oracle”, our algorithms give O(log1/2 n log7/2 k) and O(log1/2 n log5/2 k) approxima-
tion, respectively. We remark that the oracles only answer queries about the norm and, in
particular, there is an ordering oracle for the ℓp-norm, weighted ℓp-norm, and many other
natural norms. Thus, our result implies an O(log1/2 n log5/2 k) approximation for weighted
ℓp-norm Multiway Cut. We prove the following theorems in the full version of the paper.

▶ Theorem 5. There exists a polynomial-time algorithm that for every monotonic norm with a
minimization oracle, given a graph with n vertices and k terminals, finds an O(log1/2 n log7/2 k)
approximation for the Norm Multiway Cut with high probability.

▶ Theorem 6. There exists a polynomial-time algorithm that for every monotonic norm with
an ordering oracle, given a graph with n vertices and k terminals, finds an O(log1/2 n log5/2 k)
approximation for the Norm Multiway Cut with high probability.

Finally, we show that the problem becomes very hard if we are not given access to a
norm minimization oracle. The proof is given in the full version of the paper.

▶ Theorem 7. Consider the Norm Multiway Cut problem with a monotonic norm. Assume
that the norm is given by a formula (in particular, we can easily compute the value of
the norm; however, we are not given a minimization oracle for it). Then, assuming the
Hypergraph Dense-vs-Random Conjecture, there is no polynomial-time algorithm for Norm
Multiway Cut with approximation factor α(n) ≤ n1/4−ε for every ε > 0.

1.2 Proof Overview
We first describe our algorithm for the ℓp-norm Multiway Cut. Our algorithm consists of
three procedures: (1) covering procedure, (2) uncrossing procedure, and (3) aggregation
procedure.

In the covering procedure, we generate a collection of subsets of the vertex set, S =
{S1, S2, · · · , Sm}. We generate these sets iteratively by using a bi-criteria approximation
algorithm for Unbalanced Terminal Cut by Bansal et al. [3] and a multiplicative weight
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update method. See Section 2.1 and Algorithm 1 for details. Each set in S contains at most
one terminal. These sets are not disjoint. While, these sets cover the entire graph, which
means the union of all sets in S contains all vertices. The number of sets in S is at most
O(k log n). We show that the ℓp norm and ℓ1 norm of the edge boundaries of sets in S is at
most O(log1/p n · α) OPT and O(log n · k1−1/p · α) OPT respectively, where α =

√
log n log k

and OPT is the cost of the optimal solution. This covering procedure follows the approach
by Bansal et al. [3] for Min-Max Multiway Cut. Chandrasekaran and Wang [8] also use a
similar covering procedure for ℓp-norm Multiway Cut. Their algorithm finds a cover S that
satisfies the above properties except for the ℓ1 norm bound. We get this ℓ1 norm bound on
the edge boundaries of sets in S by picking proper measure constraints for the Unbalanced
Terminal Cut algorithm. This ℓ1 norm bound is important in the aggregation procedure to
get an improved approximation.

Note that the sets in S are not disjoint. We use the uncrossing procedure to create a
partition of the graph with at most O(k log k) sets. Our uncrossing procedure first sample
O(k log k) sets from S uniformly at random. Then, we run an iterative uncrossing process
given by Bansal et al. [3] over sampled sets until all sets are disjoint and have small boundaries.
We show that all sampled sets cover almost the entire graph. The set of uncovered vertices
does not contain terminals and has a small boundary with high probability. Next, we use
the aggregation procedure to merge these O(k log k) sets into a k partition. We assign k

sets containing one terminal to k parts. For other sets without terminals, we assign them to
k parts almost uniformly such that each part has almost the same ℓ1 norm over assigned
sets. After the uncrossing procedure, the ℓp norm and ℓ1 norm of edge boundaries is at most
O(log1/p k · α) OPT and O(k1−1/p · α) OPT respectively. We upper bound the sets containing
one terminal and the sets with the largest edge boundary in each part by the above ℓp norm
bound. For the remaining sets, by the ℓ1 norm bound and the uniform assignment, we upper
bound the ℓp norm for these sets by O(α) OPT. Chandrasekaran and Wang [8] achieve an
O(log n · α) where the O(log n) factor is due to their aggregation procedure. We use the ℓ1
norm bound in the covering procedure and a new aggregation procedure to reduce O(log n)
extra factor to O(log1/p n). We use the sampling in the uncrossing procedure to further
reduce the extra factor from O(log1/p n) to O(log1/p k).

We now describe our algorithm for Norm Multiway Cut. We use the same framework with
covering, uncrossing, and aggregation procedures. While, unlike the ℓp norm, the general
monotonic norm may not be permutation invariant. For each terminal, we first compute
a minimum cut that separates this terminal from other terminals. Then, we can remove
all terminals and assign the remaining vertices freely among k parts. We mainly use a
bucketing idea to modify our algorithm. We partition k coordinates into log2 k buckets with
exponentially increasing size 2i such that the coordinates with large boundaries in the optimal
solution are assigned to small buckets. Differing from the previous covering procedure, the
new covering procedure uses the Unbalanced Terminal Cut algorithm with parameters related
to each bucket. The cover S contains O(2i log n log k) sets in each bucket i. The boundary of
every set in each bucket is relatively small, at most O(α) times the boundary of the optimal
part in this bucket. We then run the uncrossing and aggregation procedure to create a
multiway cut. We still sample each set in S with probability log2 k/ log2 n. Thus, we have
O(2i log2 k) sets in each bucket i after the uncrossing procedure. For bucket 0 ≤ i ≤ log2 k,
we find a set of 2i coordinates Ii ∈ [k] that minimizes the norm of the indicator vector through
the minimization oracle. We then assign O(2i log2 k) sets in each bucket to coordinates in Ii

such that each coordinate has O(log2 k) sets in bucket i. Thus, we achieve an O(log2 k · α)
approximation for each bucket. Since these sets of coordinates Ii may overlap, we lose an



C. Carlson, J. Jafarov, K. Makarychev, Y. Makarychev, and L. Shan 32:5

additional O(log k) factor for log2 k buckets. Suppose we have a stronger oracle that finds the
best ordering for any given vector that minimizes the norm. Then, we provide an assignment
for each bucket to avoid the large overlapping among buckets. Therefore, we avoid the extra
O(log k) factor loss due to the overlapping.

2 ℓp-norm Multiway Cut

In this section, we present our algorithm for ℓp-norm Multiway Cut. We prove the following
theorem. Our algorithm consists of three parts: covering procedure, uncrossing procedure,
and aggregation procedure. We describe and analyze the covering procedure in Section 2.1,
the uncrossing and aggregation procedures in Section 2.2.

▶ Theorem 1. There exists a polynomial-time randomized algorithm that given a graph with
n vertices and k terminals, and p > 1, finds an O(log1/2 n log1/2+1/p k) approximation for the
ℓp-norm Multiway Cut with high probability.

2.1 Covering Procedure
We first present and analyze a covering procedure in our algorithm. The covering procedure
takes a undirected graph G = (V, E) with edge weights w : E → R≥0 and k terminals
T = {t1, . . . , tk} ⊂ V as input and outputs a collection of sets S = {S1, . . . , Sm} where
Si ⊂ V for all i. All sets Si ∈ S covers the entire graph,

⋃m
i=1 Si = V . Each set Si ∈ S

contains at most one terminal. For each subset S ⊆ V , we use ∂(S) = E(S, V \ S) to
denote all edges crossing the cut (S, V \ S). We use δ(S) =

∑
e∈∂(S) w(e) to denote the edge

boundary of set S, which is the total weight of all edges crossing (S, V \ S). We prove the
following upper bounds on the ℓ1-norm and ℓp-norm of the edge boundaries of these sets in
S, which is crucial for our approximation guarantee.

▶ Lemma 8. Given a graph G = (V, E) with n vertices and k terminals T ⊂ V , the covering
procedure shown in Algorithm 1 returns m = O(k log n) sets S = {S1, . . . , Sm} that satisfies
1. |Si ∩ T | ≤ 1 for all i ∈ [m],
2.

m⋃
i=1

Si = V ,

3.
m∑

t=1
δ(St)p ≤ log n · O(αp) · OPTp,

4.
m∑

t=1
δ(St) ≤ log n · O(α) · k1−1/p · OPT,

where α =
√

log n log k and OPT is the objective value of the optimal ℓp-norm Multiway Cut.

Our algorithm relies on an intermediate problem, Unbalanced Terminal Cut that we
introduce now.

▶ Definition 9 (Unbalanced Terminal Cut). The input to this problem is a tuple ⟨G, w, µ, ρ, T ⟩,
where G = (V, E) is a graph with edge weights w : E → R≥0, a measure µ : V → R≥0, a
parameter ρ ∈ (0, 1], and a set of terminals T . The goal is to find S ⊆ V of minimum cost
δ(S) satisfying:
1. |S ∩ T | ≤ 1,
2. µ(S) ≥ ρ · µ(V ).

Bansal, Feige, Krauthgamer, Makarychev, Nagarajan, Naor, and Schwartz [3] gave a bi-
criteria approximation algorithm for Unbalanced Terminal Cut that we state in the following
theorem.
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Algorithm 1 Covering Procedure.

Set t = 1, and µ1(v) = 1 for all v ∈ V . Let S = ∅.
while

∑
v∈V

µt(v) ≥ 1
n do

Let P ∗
i be a set as stated in Lemma 14.

Guess µt(P ∗
i ).

Let St ⊆ V be the solution for Unbalanced Terminal Cut instance
⟨G, w, µt, max{ 1

2k ,
µt(P ∗

i )
µt(V ) }, T ⟩.

Let S = S ∪ {St}.
for v ∈ V do

Set µt+1(v) =
{

µt(v)/2, if v ∈ St,

µt(v), if v ̸∈ St.

Set t = t + 1
return S.

▶ Theorem 10. There exists a polynomial-time algorithm that given an instance ⟨G, w, µ, ρ, T ⟩
of Unbalanced Terminal Cut, finds a set S ⊆ V satisfying |S ∩ T | ≤ 1, µ(S) ≥ Ω(ρ) · µ(V ),
and δ(S) ≤ α · OPT⟨G,w,µ,ρ,T ⟩ where α = O

(√
log n log 1/ρ

)
.

Our covering procedure relies on the multiplicative weights update method and is inspired
by the algorithm in [3]. It initializes the measure of each vertex to one. At each iteration t,
the algorithm guesses the measure µt(P ∗

i ) of a particular set P ∗
i in an optimal solution and

computes St of measure µt(St) ≈ µt(P ∗
i ) using the Unbalanced Terminal Cut algorithm in

Theorem 10. The existence of such a P ∗
i is shown in Lemma 14. Once St is computed, the

algorithm decreases the measure of the vertices covered by St by a factor of 2. The algorithm
terminates when the total measure of vertices is less than 1/n.

We guess µt(P ∗
i ) as follows: For any set S ⊆ V , its measure µt(S) lies in the range

[µt(u), n ·µt(u)], where u = arg maxv∈S µt(v) is the heaviest vertex in S. Thus µt(P ∗
i ) can be

well approximated by the set A =
{

2i · µt(v) : v ∈ V, i = 0, . . . , ⌊log2 n⌋
}

of size O(n log n).
For each candidate a ∈ A we compute a set S(a) using the Unbalanced Terminal Cut
algorithm with a parameter a and choose St = arg mina∈A δ(S(a)) with the smallest cost.
We give a pseudo-code for this algorithm in Algorithm 1. We remark that one can think of
this algorithm as of multiplicative weight update algorithm for solving a covering LP with
constraints from Lemma 8.

We then analyze this covering algorithm in Algorithm 1. Let S = {S1, · · · , Sm} denote
the collection of m sets output by Algorithm 1. By Theorem 10, every set Si contains at
most one terminal. First, for any fixed vertex v ∈ V , we give a lower bound on the number
of sets containing v.

▷ Claim 11. For a vertex v ∈ V , let Nv = |{St| v ∈ St}| denote the number of sets containing
v. Then Nv ≥ Ω(log n).

Proof. Recall that initially µ1(v) = 1 and after iteration m its measure becomes µm+1(v) =( 1
2
)Nv . Due to the stopping condition of our algorithm we have µm+1(V ) < 1

n . Thus,
1

2Nv
< 1

n and the claim follows. ◁

Next, we bound the number of sets in S. In the following claim we give an upper bound
on the total normalized measure of the sets produced by our algorithm.

▷ Claim 12.
m∑

t=1

µt(St)
µt(V ) ≤ 4 ln n + 1.
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Proof. Observe that the total measure at iteration t can be described as follows:

µt(V ) = µt−1(V ) − µt−1(St−1)
2 = µt−1(V ) ·

(
1 − µt−1(St−1)

2µt−1(V )

)
.

Since µm(V ) ≥ 1
n , we have

1
n

≤ µm(V ) = µ1(V ) ·
m−1∏
t=1

(
1 − µt(St)

2µt(V )

)
≤ n ·

m−1∏
t=1

e
− µt(St)

2µt(V ) = n · e
− 1

2 ·
m−1∑
t=1

µt(St)
µt(V )

,

which implies
m−1∑
t=1

µt(St)
µt(V ) ≤ 4 ln n. Since µm(Sm)

µm(V ) ≤ 1, we get the desired result. ◁

We obtain an upper-bound on the number of sets in S which immediately follows from
Claim 12 and the fact that µt(St) ≥ Ω(1/k)µt(V ) for all t.

▶ Corollary 13. The cover S returned by Algorithm 1 contains m = O(k log n) sets.

We prove the existence of a set in an optimal solution with large measure and small cut
value.

▶ Lemma 14. Let P∗ = (P ∗
1 , . . . , P ∗

k ) be an optimal solution to an ℓp-norm Multiway Cut
instance and let OPT denote the ℓp-norm of P∗. For any measure µ : V → R≥0 on vertices
such that µ(V ) ̸= 0, there exists an i ∈ [k] such that the following three conditions hold:
1. δ(P ∗

i )p ≤ 5 · OPTp · µ(P ∗
i )

µ(V )

2. δ(P ∗
i ) ≤ 5k1−1/p · OPT · µ(P ∗

i )
µ(V )

3. µ(P ∗
i ) ≥ µ(V )

2k

Proof. Let

J = {j ∈ [k] : δ(P ∗
j )p ≤ 5 · OPTp ·µ(P ∗

j )/µ(V ), δ(P ∗
j ) ≤ 5k1−1/p · OPT ·µ(P ∗

j )/µ(V )}

be the indices of sets in P∗ that satisfies conditions 1 and 2 in Lemma 14. It is sufficient to
show that

∑
j∈[k]\J µ(P ∗

j ) < µ(V )/2. If
∑

j∈[k]\J µ(P ∗
j ) < µ(V )/2, then there exists a j ∈ J

such that µ(P ∗
j ) ≥ µ(V )/2k, which implies this set P ∗

j satisfies all three conditions.
We now show that

∑
j∈[k]\J µ(P ∗

j ) < µ(V )/2. Let J̄1 = {j ∈ [k] \ J : δ(P ∗
j )p >

5 · OPTp ·µ(P ∗
j )/µ(V )} be the indices of sets P ∗

j that does not satisfy condition 1. Let
J̄2 = {j ∈ [k] \ J : δ(P ∗

j ) > 5k1−1/p · OPT ·µ(P ∗
j )/µ(V )} be the indices of sets P ∗

j that does not
satisfy condition 2. Note that [k] \ J = J̄1 ∪ J̄2. Then, we have∑

j∈[k]\J

µ(P ∗
j ) ≤

∑
j∈J̄1

µ(P ∗
j ) +

∑
j∈J̄2

µ(P ∗
j )

≤
∑
j∈J̄1

µ(V ) ·
δ(P ∗

j )p

5 OPTp +
∑
j∈J̄2

µ(V ) ·
δ(P ∗

j )
5k1−1/p OPT

≤ µ(V ) ·
∑
j∈[k]

(
δ(P ∗

j )p

5 OPTp +
δ(P ∗

j )
5k1−1/p OPT

)
.

Since P∗ is a partition with an optimal cost, we have

k∑
i=1

δ(P ∗
i )p = OPTp .
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Similarly, we have

k−1/p · OPT =
(

k∑
i=1

1
k

· δ(P ∗
i )p

)1/p

≥ 1
k

k∑
i=1

δ(P ∗
i ),

where the inequality follows from Jensen’s inequality. Thus, we have

∑
j∈[k]\J

µ(P ∗
j ) ≤ µ(V ) ·

∑
j∈[k]

δ(P ∗
j )p

5 OPTp +
δ(P ∗

j )
5k1−1/p OPT

≤ µ(V ) · 2
5 <

µ(V )
2 . ◀

We now prove the main lemma in this section. Specifically, we give two upper-bounds on
the ℓ1-norm and ℓp-norm of the cut values of the sets produced by the covering procedure in
Algorithm 1, respectively.

Proof of Lemma 8. We already show the number of sets in S is at most m = O(k log n) in
Corollary 13. By Theorem 10 and Claim 11, we have every Si contains at most one terminal
and all sets in S covers the entire graph. Thus, it is sufficient to prove the two bounds on
the ℓ1-norm and ℓp-norm of the cut values of the sets in S as shown in Conditions 3 and 4 in
the lemma.

Due to Lemma 14 at each iteration t, there exists a set P ∗
i in an optimal solution with a

measure µt(P ∗
i ) ≥ µt(V )

2k such that

δ(P ∗
i ) ≤ 5 · min

{(
µt(P ∗

i )
µt(V )

)1/p

, k1−1/p · µt(P ∗
i )

µt(V )

}
· OPT .

Thus, at each iteration t of Algorithm 1, we have

δ(St) ≤ O(α) · min
{(

µt(P ∗
i )

µt(V )

)1/p

, k1−1/p · µt(P ∗
i )

µt(V )

}
· OPT .

Note that each set St is computed by the Unbalanced Terminal Cut algorithm in Theorem 10.
Thus, we have µt(St) ≥ Ω(µt(P ∗

i )). Since µt(St) ≥ Ω(µt(P ∗
i )) holds, we obtain (1) δ(St)p ≤

O(αp) · OPTp · µt(St)
µt(V ) ; and (2) δ(St) ≤ O(α) · k1−1/p · OPT · µt(St)

µt(V ) . These provide

m∑
t=1

δ(St)p ≤ O(αp) · OPTp ·
m∑

t=1

µt(St)
µt(V ) ,

m∑
t=1

δ(St) ≤ O(α) · k1−1/p · OPT ·
m∑

t=1

µt(St)
µt(V ) .

By Claim 12, we have
m∑

t=1

µt(St)
µt(V ) = O(log n). Then, we get the desired upper bounds on

m∑
t=1

δ(St)p and
m∑

t=1
δ(St). ◀

2.2 Uncrossing and Aggregation Procedures
In this section, we provide procedures that transform the cover of the graph S produced
by the covering procedure into a partition of the graph P = {P1, P2, . . . , Pk}. Each set Pi

in P contains exactly one terminal in T . With a positive probability, this solution is an
O(log1/2 n log1/2+1/p k) approximation for the ℓp-Norm Multiway Cut.
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▶ Theorem 15. Given a graph G = (V, E) and k terminals T ⊂ V , there exists a polynomial-
time algorithm that returns a partition of the graph P = {P1, P2. . . . , Pk} such that with
probability at least 3/4 − 1/k

1. |Pi ∩ T | = 1 for all i ∈ [k],

2.
(

k∑
i=1

δ(Pi)p

)1/p

≤ O(log1/2 n log1/2+1/p k) · OPT.

Note that the sets in the cover S are not disjoint. We first use the uncrossing procedure
to generate a m′ = O(k log k) partition of the graph P ′ = {P ′

1, P ′
2, . . . , P ′

m′} from the cover S
produced by the covering procedure. We sample O(k log k) sets from S uniformly at random.
These sampled sets cover a large fraction of the graph. Then, we generate disjoint sets from
these sampled sets by using the uncrossing step in [3]. The uncrossing procedure is shown in
Algorithm 2. We then merge these sets in P ′ to get a k-partition P using the aggregation
procedure in Algorithm 3.

In the aggregation procedure, we assign all sets in P ′ into k parts to get a k-partition.
Since P ′ = {P ′

1, P ′
2, . . . , P ′

m′} is a partition of the graph and each set P ′
i contains at most one

terminal, there are exactly k sets containing one terminal in P ′. Suppose P ′
1, P ′

2, · · · , P ′
k are

these sets containing one terminal. We initially assign these sets P ′
1, P ′

2, · · · , P ′
k to k parts

P1, P2, . . . , Pk. Let Q = P ′ \ {P1, P2, · · · , Pk} be the sets in P ′ that does not contain any
terminals. We assign all sets in Q into k parts in a round-robin approach. We sort the sets in
Q by the cut values in descending order and denote it by Q = {Q1, Q2, . . . , Qm′−k}. We then
partition all sets in Q into k buckets Q1, . . . , Qk as follows. Consider every k consecutive sets
{Qjk+1, Qjk+2, · · · , Q(j+1)k} in Q for 0 ≤ j ≤ ⌊m′−k/k⌋. If jk + i > n for j = ⌊m′−k/k⌋ and
some i ∈ [k], then let Qjk+i = ∅. For every i ∈ [k], we assign the set Qjk+i to the bucket
Qi. Finally, we assign each bucket Qi to part Pi and set Pi = Pi ∪ (

⋃
Qj∈Qi

Qj).

Algorithm 2 Uncrossing Procedure.

Sample m′′ − 1 = 12k ln k sets S ′ = (S′
1, S′

2, . . . , S′
m′′−1) from S uniformly at random.

Sort sets in S ′ in a random order.
Set P ′

i = S′
i \ ∪j<iS

′
j for all i = 1, 2 . . . , m′′ − 1.

while there exists a set P ′
i such that δ(P ′

i ) > 2δ(S′
i) do

Set P ′
i = S′

i and for all j ̸= i, P ′
j = P ′

j \ S′
i.

Set the set P ′
m′′ = V \ ∪m′′−1

i=1 P ′
i .

return all non-empty sets P ′
i .

Algorithm 3 Aggregation Procedure.

Set P = {P ′
i ∈ P ′ : P ′

i ∩ T ̸= ∅} = {P1, P2, . . . , Pk}.
Set Q = P ′ \ P.
Sort the sets in Q = {Q1, . . . , Qm′−k} by the cut value in descending order.
Partition the sets in Q into k buckets Q1, · · · , Qk, where

Qi = {Qj ∈ Q : (j − 1) mod k = i − 1}.

Set Pi = (
⋃

Qj∈Qi
Qj) ∪ Pi for all i = 1, . . . , k.

return all sets P1, P2, . . . , Pk.
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We first prove the following lemma on the partition P ′ returned by the uncrossing
procedure.

▶ Lemma 16. Let S denote the collection of sets produced by the covering procedure for a
graph G = (V, E) and k terminals T . Given S as input, the uncrossing procedure as shown
in Algorithm 2 generates a m′ = O(k log k) partition of the graph P ′ = {P ′

1, P ′
2, . . . , P ′

m′}
such that with probability at least 3/4 − 1/k

1. |P ′
i ∩ T | ≤ 1 for all i ∈ [m′],

2.
m′∑
i=1

δ(P ′
i )p ≤ O(log k · αp) · OPTp,

3.
m′∑
i=1

δ(P ′
i ) ≤ O(k1−1/p · α) · OPT,

where α =
√

log n log k.

Proof. We consider all sets P ′
1, P ′

2, . . . , P ′
m′′ generated in the uncrossing procedure (Al-

gorithm 2), including those empty sets that are not returned. If the set P ′
i is empty, we take

δ(P ′
i ) = 0. It is easy to see that these sets P ′

1, P ′
2, . . . , P ′

m′′ are disjoint, and
⋃m′′

i=1 P ′
i = V .

We first show that Algorithm 2 terminates in polynomial time. In graph G, we assume
that the ratio between the largest non-infinite edge weight wmax and the smallest non-zero
edge weight wmin is at most wmax/wmin ≤ n2/ε for a small constant ε > 0. If the graph does
not satisfy this assumption, then we transform it into an instance satisfying this condition
as follows. We guess the largest weight of the cut edge in the optimal solution, denoted
by W . There are at most O(n2) different edge weights. Then, we construct a new graph
G′ with the same vertex set V and edge set E. For every edge e ∈ E, we assign its weight
w′(e) in G′ to be w(e) if εW/n2 ≤ w(e) ≤ W , w′(e) = 0 if w(e) < εW/n2, and w′(e) = ∞ if
w(e) ≥ W . Thus, the new graph G′ satisfies the assumption that wmax/wmin ≤ n2/ε. Let
OPT′ be the optimal value of ℓp multiway cut on graph G′. We know that OPT′ ≤ OPT
since the optimal multiway cut on graph G has a smaller value on graph G′. Suppose we
find an α-approximation for ℓp multiway cut on graph G′. Then, the same partition on the
original graph G has an objective value at most α · OPT′ +εW ≤ (α + ε) OPT. Hence, this
α-approximation solution on G′ provides an (α + ε)-approximation on G.

Consider any iteration of Algorithm 2. Let P ′
i be the partition of V before the current

uncrossing iteration. Suppose we pick a set P ′
i such that δ(P ′

i ) > 2δ(S′
i). For any two subsets

A, B ⊆ V , we use δ(A, B) to denote the total weight of edges crossing A and B. Then, we
have the ℓ1-norm of the cut values after this iteration is

δ(S′
i) +

∑
j ̸=i

δ(P ′
j \ S′

i) ≤ δ(S′
i) +

∑
j ̸=i

δ(P ′
j) − δ(P ′

j , S′
i \ P ′

j) + δ(S′
i, P ′

j \ S′
i)

≤ δ(S′
i) − δ(P ′

i ) + δ(S′
i) +

∑
j ̸=i

δ(P ′
j)

≤ 2δ(S′
i) − 2δ(P ′

i ) +
∑

j

δ(P ′
j) ≤

∑
j

δ(P ′
j) − 2wmin,

where the last inequality is due to δ(P ′
i ) > 2δ(S′

i) and the minimum non-zero edge weight is
wmin. Thus, the ℓ1-norm of the cut values decreases by 2wmin after each iteration. Since
the largest ℓ1-norm of the cut values is at most wmaxn2, the total number of iterations is
polynomial in n.

We then show that the partition returned by Algorithm 2 satisfies two conditions in
the Lemma. We first show that each set P ′

i contains at most one terminal. Note that
for every i = 1, 2, . . . , m′′ − 1, the set P ′

i is a subset of S′
i ∈ S. By Lemma 8, we have
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|P ′
i ∩ T | ≤ |S′

i ∩ T | ≤ 1 for all i = 1, 2, . . . , m′′ − 1. By Claim 11, every vertex u ∈ V is
covered by at least log2 n sets in S. By Corollary 13, the cover S contains at most 6k log2 n

sets. Thus, a random set in S covers u with probability at least 1/6k. For each vertex u ∈ V ,
the probability that u is not covered by any set in S ′ is at most

P{u ̸∈ ∪m′′−1
i=1 S′

i} ≤
(

1 − 1
6k

)12k ln k

≤ 1
k2 . (1)

By the union bound over all terminals, all terminals are covered by S ′ with probability at
least 1 − 1/k. Thus, the set P ′

m′′ contains no terminal with probability at least 1 − 1/k.
We now bound the ℓ1-norm of the cut values of sets P ′

1, P ′
2, . . . , P ′

m′′ . The first two steps
in Algorithm 2 can be implemented equivalently by sorting sets in S in a random order and
picking the first m′′ − 1 = 12k ln k sets as S ′. Let S1, S2, . . . , Sm be the sets in S in a random
order. Let P̃i = S′

i \ ∪j<iS
′
j for i = 1, 2, . . . , m. Then, for any i = 1, 2, . . . , m′′ − 1, the set P̃i

corresponds to the set P ′
i before running the while loop in Algorithm 2.

We first bound the expected ℓ1-norm of the cut values of sets P̃1, P̃2, . . . , P̃m′′−1. Note
that we have

m′′−1∑
i=1

δ(P̃i) ≤
m∑

i=1
δ(P̃i).

We assign each cut edges (u, v) ∈ ∂P̃i into the following two types: (1) edge (u, v) is cut by
a set P̃j for j < i; (2) edge (u, v) is first cut by the set P̃i. Let Ei be the set of cut edges
that first cut by the set P̃i. Let w(Ei) =

∑
e∈Ei

w(e) be the total weight of edges in Ei.
Each cut edge is counted twice in

∑m
i=1 δ(P̃i), while each cut edge is counted exactly once in∑m

i=1 w(Ei). Thus, we have
m∑

i=1
δ(P̃i) = 2

m∑
i=1

w(Ei).

Note that Ei ⊆ ∂Si is a subset of edges cut by Si. Each edge (u, v) ∈ ∂Si is a cut edge in Ei

after uncrossing if and only if Si is the first set among all sets that contain node u or node v

in the uncrossing sequence. Suppose Si only contains node u. Then, the probability that
(u, v) is contained in Ei is at most the probability that Si is the first set among all the sets
that contain node u in the uncrossing sequence. If a set in S that contains node v is before
set Si, then this edge (u, v) is not count in Ei. By Claim 11, we have

P{(u, v) ∈ Ei} ≤ P{Si is the first set that contains u} ≤ 1
log2 n

.

Therefore, we have the expected ℓ1-norm of the cut values of sets P̃1, P̃2, . . . , P̃m is at most

E
[

m∑
i=1

δ(P̃i)
]

= 2
m∑

i=1
E[w(Ei)] = 2

m∑
i=1

∑
e∈∂Si

w(e) · P{e ∈ Ei}

≤ 2
log2 n

m∑
i=1

δ(Si) ≤ k1−1/p · O(α) · OPT,

where the last inequality is from Lemma 8. At every iteration of the while loop, the ℓ1-norm
of the cut values of sets P ′

1, P ′
2, · · · , P ′

m′′−1 only decreases. Thus, we have

E

m′′−1∑
i=1

δ(P ′
i )

 ≤ E

m′′−1∑
i=1

δ(P̃i)

 ≤ k1−1/p · O(α) · OPT .

ESA 2023



32:12 Approximation Algorithm for Norm Multiway Cut

Thus, the expected ℓ1-norm of the cut values of sets P ′
1, P ′

2, . . . , P ′
m′′ is

E

m′′∑
i=1

δ(P ′
i )

 ≤ 2 · E

m′′−1∑
i=1

δ(P ′
i )

 ≤ k1−1/p · O(α) · OPT .

To bound the ℓp-norm of edge boundaries, we then bound the edge boundary of the last
set P ′

m′′ . We only consider the subsampling process in the uncrossing procedure. We sample
O(k log k) sets from the cover S uniformly at random. Consider every edge (u, v) in the
boundary of sets in cover S. If this edge (u, v) is a cut edge crossing P ′

m′′ and v ∈ P ′
m′′ , then

one of the sets Si ∈ S that contains node u is sampled and node v is not covered by sampled
sets. Each set Si ∈ S is sampled with probability O(log k/ log n). Suppose the set Si ∈ S
cuts this edge (u, v) and contains node u. Similar to Equation (1), the probability that node
v ∈ P ′

m′′ conditioned on Si ∈ S ′ is at most 2/k2. Thus, we have

E[δ(P ′
m′′)] = E

w

(u, v) ∈
m′′−1⋃

i=1
∂S′

i : u ̸∈ P ′
m′′ and v ∈ P ′

m′′




≤
m∑

i=1

∑
(u,v)∈∂Si

w(u, v) · P{u ∈ Si, Si ∈ S ′, v ∈ P ′
m′′}

≤ O

(
1
k2 · log k

log n

)
·

m∑
i=1

δ(Si) ≤ O(α) · OPT,

where the last inequality is due to condition 4 in Lemma 8.
After the while loop, we have δ(P ′

i ) ≤ 2δ(S′
i) for all i = 1, 2, . . . , m′′−1. Since E[δ(P ′

m′′)] ≤
O(α) · OPT, by Markov’s Inequality, we have with probability at least 7/8 that δ(P ′

m′′) ≤
O(α) · OPT. Since we subsample a fraction O(log k/ log n) of sets in the cover S uniformly
at random, we have

E

m′′−1∑
i=1

δ(S′
i)p

 ≤ O

(
log k

log n

) m∑
i=1

δ(Si)p.

When δ(P ′
m′′) ≤ O(α) · OPT, we have

E

m′′∑
i=1

δ(P ′
i )p

 ≤ 2p · E

m′′−1∑
i=1

δ(S′
i)p

+ Eδ(P ′
m′′)p

≤ 2p · O

(
log k

log n

) m∑
i=1

δ(Si)p + O(αp) · OPTp ≤ O(log k · αp) · OPTp,

where the third inequality is from the condition 3 in Lemma 8. Therefore, we have the
conditions 2 and 3 in this lemma hold in expectation with probability at least 7/8. By
Markov’s Inequality, we have the conditions 2 and 3 in the lemma hold simultaneously with
probability at least 3/4. Since the condition 1 hold with probability at least 1 − 1/k, we have
all conditions hold with probability at least 3/4 − 1/k. ◀

Next, we analyze the aggregation procedure, which merges these sets to get a k partition
of the graph.

Proof of Theorem 15. By Lemma 16, the partition P ′
1, P ′

2, . . . , P ′
m′ returned by the uncross-

ing procedure (Algorithm 2) satisfies the following three conditions with probability at least
3/4 − 1/k:
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1. |P ′
i ∩ T | ≤ 1 for all i ∈ [m′],

2.
m′∑
i=1

δ(P ′
i )p ≤ O(log k · αp) · OPTp,

3.
m′∑
i=1

δ(P ′
i ) ≤ O(k1−1/p · α) · OPT.

We now assume the partition P ′ = {P ′
1, P ′

2, . . . , P ′
m′} given by the uncrossing procedure

satisfies these three conditions. Then, we use the aggregation procedure as shown in Al-
gorithm 3 on this partition P ′ = {P ′

1, P ′
2, . . . , P ′

m′} to get a k-partition P = {P1, P2, · · · , Pk}.
Since each part Pi has exactly one set P ′

i containing one terminal, we have |Pi ∪ T | = 1 for
all i ∈ [k].

We now bound the ℓp-norm of the cut values. Let Q′
i =

⋃
j>k,Qj∈Qi

Qj be the union of
sets in bucket Qi excluding the set with the largest cut in that bucket. Thus, we have each
part Pi = Q′

i ∪ Qi ∪ P ′
i for all i ∈ [k]. By the triangle inequality, we have(

k∑
i=1

δ(Pi)p

)1/p

≤

(
k∑

i=1
δ(Q′

i)p

)1/p

+
(

k∑
i=1

δ(Qi)p

)1/p

+
(

k∑
i=1

δ(P ′
i )p

)1/p

.

By Lemma 16, the ℓp-norm of the cut values of sets P ′
1, P ′

2, . . . , P ′
k is(

k∑
i=1

δ(P ′
i )p

)1/p

≤ O(log1/p k · α) · OPT .

Similarly, we have the ℓp-norm of the cut values of sets Q1, Q2, . . . , Qk is(
k∑

i=1
δ(Qi)p

)1/p

≤ O(log1/p k · α) · OPT .

We then bound the ℓp-norm of the cut values of sets Q′
1, Q′

2, . . . , Q′
k. We first bound the cut

value of each set Q′
i. Since Qi are sorted by the cut value in descending order, we have

δ(Q′
i) ≤

∑
j>k,Qj∈Qi

δ(Qj) ≤
∑

Qj∈Qk

δ(Qj) ≤ 1
k

∑
Qj∈Q

δ(Qj),

where the second inequality is due to δ(Qi+zk) ≤ δ(Qzk) for z ≥ 1 and the third inequality is
because Qk contains the smallest cut set for every k consecutive sets. By Lemma 16, we have

δ(Q′
i) ≤ 1

k
·
∑

Qj∈Q
δ(Qj) ≤ O(k−1/p · α) · OPT .

Therefore, we have ℓp-norm of the cut values of sets Q′
1, Q′

2, . . . , Q′
k is at most(

k∑
i=1

δ(Q′
i)p

)1/p

≤
(
k · O(k−1 · αp) · OPTp

)1/p = O(α) · OPT .

Combining three parts, we get the conclusion. ◀

By Theorem 15, given a graph with n vertices and k terminals, our algorithm finds an
O(log1/2 n log1/2+1/p k) approximation for the ℓp-Norm Multiway Cut with probability at least
3/4 − 1/k. We can repeat this algorithm O(log 1/ε) times to find an O(log1/2 n log1/2+1/p k)
approximation for the ℓp-Norm Multiway Cut with probability at least 1 − ε, which proves
Theorem 1.
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1 Introduction

An independent set of a graph is a subset of pairwise non-adjacent vertices. The Maximum
Independent Set problem, which asks to find an independent set of maximum cardinality
of a given input graph on n vertices, has been among the most fundamental optimization
problems that appeared in many research areas of computer science and has been a canonical
problem of study in algorithms.

In the field of approximation algorithms, the problem is notoriously hard: It has no
O(n/2log3/4 n)-approximation algorithm running in polynomial time unless NP can be solved
in randomized quasi-polynomial time by the work of Khot and Ponnuswami [15] (building on
earlier work by among others Håstad [14]). The best known polynomial time approximation
algorithm is an Õ(n/ log3 n)-approximation by Feige [9], which is almost twenty years old;
here the Õ-notation hides factors polynomial in log log n.

Besides measuring the approximation ratio as a function of n, two other directions have
been suggested in the literature. One of the directions is to measure the ratio as a function
of the maximum degree d of the input graph. The first improvement over the naive greedy
(d + 1)-approximation to o(d) was given by Halldorsson and Radhakrishnan [12] in 1994.
After this, several improvements to this approximation were made [1, 11, 13], culminating in
the currently best Õ(d/ log1.5 d)-approximation by Bansal, Gupta, and Guruganesh [4] with
an almost matching lower bound of Ω(d/ log2 d) under the Unique Games Conjecture (UGC)
by Austrin, Khot, and Safra [2]; here the Õ-notation hides factors polynomial in log log d.

Another direction is to measure the approximation ratio as a function of the treewidth of
the input graph. Here, a simple greedy algorithm that is based on the fact that graph of
treewidth tw are tw-degenerate (see Lemma 2.5) achieves an approximation ratio of (tw + 1).
This was improved by Czumaj, Halldórsson, Lingas, and Nilsson [7] in 2005, who gave a
(tw/ log n)-approximation algorithm when a tree decomposition of width tw is given with the
input graph. Their algorithm is quite elegant and follows easily from the observation that one
can greedily partition the vertices of the graph into sets V1, . . . , Vr such that the treewidth of
G[Vi] is at most tw/r. Combined with dynamic programming for independent set on graphs
of bounded treewidth, this gives a 2tw/rnO(1) time r-approximation for any r, and therefore
runs in polynomial time when we set r = tw/ log n, resulting in the (tw/ log n)-approximation
algorithm.

Contrary to the degree-direction of approximating independent set, there has been no
progress in the two other directions measuring the approximation ratio as a function on
the number of vertices or the treewidth since the milestone results of Feige [9] and Czumaj
et al. [7]. It is easy to show that one cannot improve the result of Czumaj et al. [7] to
a polynomial time (tw/(f(tw) log n))-approximation for any diverging positive function f ,
assuming the Exponential Time Hypothesis (ETH). In particular, given an input graph G

on n0 vertices we can create a graph G′ on n = 2n0/f(n0) vertices by adding n − n0 vertices
of degree 0. Then G′ has treewidth n0 and the assumed algorithm is a nO(1) = 2o(n0)-time
r-approximation for r = n0/(f(n0) log n) = 1, which violates the lower bound that Maximum
Independent Set cannot be solved exactly in 2o(n0) time on graphs with n0 vertices, assuming
ETH (see e.g. for an equivalent lower bound for Vertex Cover [6, Theorem 14.6] ) .

This ETH lower bound naturally brings us to the question of what is the best approxima-
tion ratio in terms of treewidth only. In this paper, we essentially resolve this question by
relating the approximation ratio parameterized by treewidth tightly to the approximation
ratio parameterized by n.

Formally, as our main result we prove the following theorem:
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▶ Theorem 1.1. Let f : N → N be a function such that there exists an n
f(n) -approximation

algorithm for Maximum Independent Set, where n is the number of vertices of the input graph1.
Then there exists an O

(
tw·log f(tw)

f(tw)

)
-approximation algorithm for Maximum Independent Set,

where tw is the width of a given tree decomposition of the input graph.

Let γ(n) be the approximability function of Maximum Independent Set for n-vertex
graph (i.e., the function for which O(γ(n))-approximation exists and o(γ(n))-approximation
is hard). As mentioned before, the current state of the art has provided the lower and upper
bounds γ(n) = Ω(n/2log3/4 n) [15, 14] and γ(n) = Õ(n/ log3 n) respectively [9]. Similarly,
one can consider Maximum Independent Set parameterized by tw and define τ(tw) as
the approximability function of Maximum Independent Set on the setting when a tree
decomposition of width tw is given. Our result implies that the approximability functions γ

and τ are essentially the same function, so this closes the treewidth-direction of Maximum
Independent Set approximation.

We find this phenomenon rather surprising. For some other parameters, such relations
do not hold, e.g., when we consider the degree parameter d of the input graph, the approx-
imability function of Maximum Independent Set is Ω(d/ log2 d) assuming UGC [2], while the
Õ(n/ log3 n)-approximation of Feige [9] exists.

Combining Theorem 1.1 with the result of Feige [9], we obtain the following corollary.

▶ Corollary 1.2. There exists an O
(

tw·(log log tw)3

log3 tw

)
-approximation algorithm for Maximum

Independent Set, where tw is the width of a given tree decomposition of the input graph.

This improves over the result of Czumaj et al. [7] when log1/3 n = o
(

log tw
log log tw

)
, i.e., when

tw is larger than exp(Ω̃(log1/3 n)). It is better than the algorithm of Feige [9] whenever
tw = o(n/ log log n), so overall it improves the state-of-the-art in the range of parameters

exp(Ω̃(log1/3 n)) ≤ tw ≤ o(n/ log log n).

These results assume that the tree decomposition is given as part of the input. To remove
this assumption, we can use the algorithm of Feige et al. [10] to O(

√
log tw)-approximate

treewidth. In particular, their algorithm combined with Corollary 1.2 yields the following
corollary in the setting when a tree decomposition is not assumed as a part of the input.

▶ Corollary 1.3. There exists an O
(

tw·(log log tw)3

log2.5 tw

)
-approximation algorithm for Maximum

Independent Set, where tw is the treewidth of the input graph.

Techniques

On a high level, our technique behind Theorem 1.1 is as follows: First we delete a set of
vertices of size at most OPT/2 from the graph so that each of the remaining components
can be partitioned into subinstances with pathwidth at most tw and subinstances with
tree decompositions of width O(tw) and depth O(log f(tw)). For the subinstances of small
pathwidth, we partition the vertices into O(log f(tw)) levels based on in how many bags of
the path decomposition they occur. Similarly, for the subinstances with O(log f(tw))-depth
tree decompositions, we partition the vertices in levels based on the depth of the highest bag
of the tree decomposition they occur in. In both subinstances we argue that all vertices of

1 We make mild assumptions on the properties of f , which are detailed in Section 2. Any “reasonable”
function f satisfies these assumptions.
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all but one level can be removed, in order to make the vertices in the remaining level behave
well in the decomposition, after which the remaining level can be chopped into components
of size roughly O(tw) such that the size of maximum independent again does not decrease
significantly.

Although some aspects of our approach are natural, we are not aware of arguments
modifying the tree decomposition as we did here in the previous literature; we expect these
arguments may have more applications for designing approximation algorithms for other
NP -hard problem parameterized by treewidth similar to Theorem 1.1.

Organization

The paper is organized as follows. We give preliminaries in Section 2. A major ingredient of
Theorem 1.1 will be an approximation algorithm for Maximum Independent Set parameterized
by pathwidth, which we will be presented in Section 3. Then, the approximation algorithm
for Maximum Independent Set parameterized by treewidth will be presented in Section 4.
This will use the pathwidth case as a black box. We then conclude and present open problems
in Section 5.

2 Preliminaries

Basic notation

We refer to [8] for standard graph terminology. We use the standard notation – α(G) – to
denote the independence number, i.e., the size of a maximum independendent set, of graph G.
Throughout, for a natural number i we denote the set {1, . . . , i} by [i], and for two natural
numbers i ≤ j we denote the set {i, i + 1, . . . , j} by [i, j]. We use log to denote the base-2
logarithm.

Tree decompositions

Given a graph G, a tree decomposition of G consists of a tree T , where each node t ∈ V (T )
is associated with a subset Bt ⊆ V (G) of vertices called a bag, such that
1.

⋃
t∈V (T ) Bt = V (G)

2. For every edge uv ∈ E(G), there must be some node t such that {u, v} ⊆ Bt.
3. For every vertex v ∈ V (G), the bags {t : v ∈ Bt} are connected in T .

The width of a tree decomposition is maxt∈V (T ) |Bt| − 1. The treewidth of G (denoted
by tw(G)) is the minimum number k, such that G has a tree decomposition of width k. When
the input graph is clear from the context, we simply write tw to denote the treewidth of G.

A rooted tree decomposition is a tree decomposition where one node is assigned to be
the root of the tree T . We use standard rooted-tree definitions when talking about rooted
tree decomposition. The depth of a rooted tree decomposition is the depth of the tree T , i.e.,
the length of the longest root-leaf path.

A rooted tree decomposition T is called nice if it satisfies that
Every node of T has at most 2 children.
If a node t has two children t′ and t′′, then t is called a join node and Bt = Bt′ = Bt′′ .
If a node t has one child t′, then either:

1. Bt ⊂ Bt′ and |Bt′ | = |Bt| + 1, in which case t is a forget node, or
2. Bt′ ⊂ Bt and |Bt| = |Bt′ | + 1, in which case t is an introduce node.
If a node t has no children we call it a leaf node.
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It is well-known that any tree decomposition can be turned into a nice tree decomposition.

▶ Lemma 2.1 ([16]). For every graph G on n vertices, given a tree decomposition T ′ of
width ω, there is a nice tree decomposition T with at most 4 · n nodes and width ω that can
be computed in polynomial time.

It is possible to also assume the following additional property without loss of generality.

▶ Lemma 2.2. Given a tree decomposition T ′ of width ω, there exists a nice tree decomposition
of width ω and at most 4n nodes, that can be computed in polynomial time, such that for
each leaf node t ∈ V (T ), there exists a vertex v ∈ Bt that appears in exactly one bag, i.e., the
bag Bt itself.

Proof. We use Lemma 2.1 to compute a nice tree decomposition T . If there exists a leaf
node t ∈ V (T ) that does not contain such a vertex, we delete t from T . Notice that all the
properties of a tree decomposition continue to hold after such a deletion. However, if after
this deletion the former parent s of t in T is not a leaf, s was a join node which now has a
child with the same bag as s which violates niceness. To repair this we can simply contract
the edge between s and its remaining child in T . It is straightforward to verify that after
this T remains nice. We can iterate the above, strictly decreasing the number of nodes of T ,
until T has the desired property. ◀

We will use the following well-known lemma of Bodlaender and Hagerup [5] to turn a
tree decomposition into a logarithmic-depth tree decomposition, while increasing the width
only by a factor of three.

▶ Lemma 2.3 ([5, Lemma 2.2]). Given a tree decomposition of a graph G of width ω and
having γ nodes, we can compute in polynomial time a rooted tree decomposition of G of depth
O(log γ) and width at most 3ω + 2.

Path decompositions

A path decomposition is a tree decomposition where the tree T is a path. The pathwidth
of G is the minimum number k, such that G has a path decomposition of width k. It is
denoted by pw(G). A nice path decomposition is a nice tree decomposition where T is a
path, and the root is assigned to a degree-1 node, i.e., at one end of the path. Note that
there are no join-nodes in a nice path decomposition.

We observe that any path decomposition can be turned into a nice path decomposition
with 2n nodes.

▶ Lemma 2.4. For every graph G on n vertices, given a path decomposition P ′ of width ω,
there is a nice path decomposition P with 2n nodes and width ω, that can be computed in
polynomial time.

Proof. By introducing vertices one at a time and forgetting vertices one at a time we obtain
a nice path decomposition where the bag of the first node is empty, the bag of the last node
is empty, and on each edge exactly one vertex is either introduced or forgotten, and therefore
the path decomposition has exactly 2n edges and 2n + 1 nodes. We can remove the first bag
that is empty to get a path decomposition with exactly 2n nodes. ◀

ESA 2023
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Maximum independent set approximation

Given a function r that maps graphs to numbers greater than 1, an r-approximation algorithm
for Maximum Independent Set takes as input a graph G and outputs in polynomial time an
independent set in G of size at least α(G)

r(G) . We usually denote any occurrence of |V (G)| in r

by n.
Let us now detail our assumptions on the function f in Theorem 1.1. We assume that

the approximation ratio n/f(n) of the given approximation algorithm is a non-decreasing
function on n. This assumption is reasonable because if n/f(n) would be decreasing at
some point, we could improve the approximation ratio by adding universal vertices to the
graph; note that adding universal vertices does not change the optimal solution, but increases
n. This also implies that the function f(n) grows at most linearly in n. We assume that
for arbitrary fixed constant c ≥ 1, it holds that f(c · n) ∈ O(f(n)). We also assume that
the function f can not decrease too much when n grows, in particular, we assume that for
arbitrary fixed constant c ≥ 1 it holds that f(c · n) ∈ Ω(f(n)).

Moreover, we will use a basic result about finding independent sets whose size depends
on the treewidth of the graph. Recall that a graph G is d-degenerate if there is always a
vertex of degree at most d in any induced subgraph of G. It is known that every graph
G is tw(G)-degenerate: Simply consider the vertex that is contained at a leaf bag and no
other bag of a tree decomposition T of any induced subgraph of G as given by Lemma 2.2.
This vertex has degree at most tw(G). Therefore, we obtain a following trivial algorithm for
approximating Maximum Independent Set parameterized by treewidth.

▶ Lemma 2.5. There is a polynomial time algorithm that given a graph G on n vertices
finds an independent set of size at least n/(tw(G) + 1).

Proof. Iteratively assign a vertex of minimum degree to the independent set and delete its
neighbors. By the aforementioned degeneracy argument, at each iteration at most tw(G) + 1
vertices are deleted, so the number of iterations and the size of the found independent set is
at least n/(tw(G) + 1). ◀

Note that the algorithm of Lemma 2.5 does not need a tree decomposition as an input.

3 Approximation parameterized by pathwidth

In this section, we prove a version of Theorem 1.1 where instead of a tree decomposition,
the input graph is given together with a path decomposition. This will be an important
ingredient for proving Theorem 1.1. In particular, this section is devoted to the proof of the
following lemma.

▶ Lemma 3.1. Let f : N → N be a function such that there exists an n
f(n) -approximation

algorithm for Maximum Independent Set, where n is the number of vertices of the input graph,
and f satisfies the assumptions outlined in Section 2. Then there exists an O

(
pw·log f(pw)

f(pw)

)
-

approximation algorithm for Maximum Independent Set, where pw is the width of a given
path decomposition of the input graph.

Throughout this section we will use G to denote the input graph and pw to denote the
width of the given path decomposition of G. We denote by k = pw + 1 the maximum size of
a bag in the given decomposition. Note that by our assumptions on the function f , it holds
that f(k) = Θ(f(pw)).
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Let us denote OPT = α(G). If OPT < n
f(k) , then Lemma 2.5 gives us a solution of size at

least
n

tw(G) + 1 ≥ OPT · f(k)
tw(G) + 1 ,

i.e., an O(tw(G)/f(k))-approximation, which would give the desired result by the facts that
tw(G) ≤ pw and f(k) = Ω(f(pw)). Therefore, in the rest of this section we will assume that
OPT ≥ n

f(k) .
Let P be the given path decomposition of G. By Lemma 2.4, we can assume without loss

of generality that P is a nice path decomposition and has exactly 2n bags, which we will
denote by B1, . . . , B2n in the order they occur in the path. For each v ∈ V (G), we define the
length of v to be the number of bags in P that contain v, and denote the length of v by
ℓ(v). In particular,

ℓ(v) = |{i ∈ [1, 2n] : v ∈ Bi}|.

Then, we partition V (G) into 2 + ⌈log f(k)⌉ sets based on the lengths of the vertices:

V0 = {v : ℓ(v) < 2k}
Vi = {v : ℓ(v) ∈ [k · 2i, k · 2i+1)}, 1 ≤ i ≤ ⌈log f(k)⌉

V ′ = {v : ℓ(v) ≥ 4k · 2⌈log f(k)⌉}

Note that (V0, V1, . . . , V⌈log f(k)⌉, V ′) is indeed a partition of V (G). We first show that
the set V ′, which consists of the longest vertices, can only contribute to at most half of the
optimal solution.

▶ Lemma 3.2. It holds that |V ′| ≤ OPT/2.

Proof. First, notice that
∑

v∈V (G) ℓ(v) ≤ 2nk. This is because P has 2n bags, each vertex
appears in ℓ(v) bags of P , and each bag of P can have at most k vertices appearing in it.
Now, because for vertices v ∈ V ′ we have ℓ(v) ≥ 4k · 2⌈log f(k)⌉ ≥ 4k · f(k) the vertices in V ′

contribute at least
∑

v∈V ′ ℓ(v) ≥ 4k · f(k) · |V ′| to the sum. Therefore, it holds that

|V ′| ≤ 2nk

4k · f(k) ≤ n

2 · f(k) ≤ OPT/2,

as desired. ◀

Lemma 3.2 implies that at least half of any maximum independent set in G must be in
the subgraph G[V0 ∪ V1 ∪ . . . ∪ V⌈log f(k)⌉]. In the rest of this section, we will focus on the
following lemma.

▶ Lemma 3.3. For each i ∈ [0, ⌈log f(k)⌉], there is a O(k/f(k))-approximation algorithm
for Maximum Independent Set in G[Vi].

It is easy to see how Lemma 3.3 implies Lemma 3.1. For each such G[Vi], we invoke
Lemma 3.3 to obtain a O(k/f(k))-approximate solution Si ⊆ Vi. Our algorithm returns
the set Si with the largest cardinality. Since there are at most O(log f(k)) such sets, by
Lemma 3.2 there must be some integer i∗ for which α(G[Vi∗ ]) ≥ Ω(OPT/ log f(k)). Therefore,
the returned set must have size at least

Ω(OPT/ log f(k))
O(k/f(k)) = OPT · Ω

(
f(k)

k · log f(k)

)
= OPT · Ω

(
f(pw)

pw · log f(pw)

)
.

Therefore, to finish the proof of Lemma 3.1, it remains to prove Lemma 3.3.
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Proof of Lemma 3.3. Recall that the bags of P are denoted by B1, B2, . . . , B2n where Bh

is the h-th bag in the order from left to right. Let L = maxv∈Vi
ℓ(v) denote the maximum

length of a vertex v ∈ Vi. Recall that by our definition of Vi, it holds that if i = 0, then
L < 2k, and if i > 0, then all vertices in Vi have length between L/2 and L. We partition
the set Vi into sets Xr and Yr as follows.

For each r ∈ [1, ⌊2n/(2L)⌋], we define Xr = B2Lr ∩ Vi. These sets contain the vertices
of Vi that appear in bags B2L, B4L, . . . and the vertices in B2Lr can never occur in the
same bag as the vertices in B2Lr′ , for any r ̸= r′, since all vertices in Vi have length at
most L. Let X =

⋃
r Xr.

Denote the remaining vertices by Y = Vi \ X. We further partition Y into sets Yr for
r ∈ [1, ⌈2n/(2L)⌉], where Yr contains the vertices v ∈ Y that occur only in the bags Bj

in the interval j ∈ [2L(r − 1) + 1, 2Lr − 1].

It follows from definitions that X ∪ Y = Vi. See Figure 1 for an illustration.

Figure 1 Xr is the set of vertices in Vi that are in the (2Lr)-th bag. Yr (in red) is the set of
vertices in Vi that start after Xr−1 and end before Xr.

We prove the following claim.

▷ Claim 3.4. For all r ∈ N, both sets Xr and Yr have size at most 4k.

Proof of claim. For the set Xr, there is nothing to prove since each bag contains at most k

vertices. Let us consider the set Yr. First, we observe that because vertices of Yr occur only
in the bags B2L(r−1)+1, . . . , B2Lr−1, we have that∑

v∈Yr

ℓ(v) ≤ k · 2L, (1)

by the argument that each bag can contribute to the length of at most k vertices. Then, we
consider two cases: i > 0 and i = 0.

In the case when i > 0, we know that each vertex v ∈ Yr has length at least ℓ(v) ≥ L/2.
Together with Equation (1), this implies that |Yr| ≤ 4k.

In the case when i = 0, we have L ≤ 2k, but we do not have the lower bound on the length
of vertices in V0. In this case, we use the property that P is a nice path decomposition of G.
We know that the paths of vertices in Yr appear only in the bags B2L(r−1)+1, . . . , B2Lr−1
of P . There are 2L − 1 such bags, and because P is nice, each bag either introduces a
single vertex in Yr ∪ Xr or forgets a single vertex in Xr−1 ∪ Yr. Since all vertices of Yr

must be introduced in these bags, but there are only 2L − 1 such bags, this implies that
|Yr| ≤ 2L − 1 ≤ 4k. ◁
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Finally, notice that because there are no bags that contain vertices from both Yr and Yr′

for r ̸= r′, there are no edges between Yr and Yr′ for r ≠ r′. Also, since Xr−1 and Xr have
2L − 1 bags between them and the maximum length of a vertex is L, it follows that no vertex
from Xr−1 occurs in a bag together with a vertex in Xr, and therefore there are no edges
between Xr and Xr′ for r ̸= r′. Therefore, a union of independent sets in Y1, . . . , Y⌈2n/(2L)⌉
is an independent set in Y , and a union of independent sets in X1, . . . , X⌊2n/(2L)⌋ is an
independent set in X.

As each graph G[Xr] and G[Yr] has at most 4k vertices, we use the given n
f(n) -approx-

imation algorithm to 4k
f(4k) -approximate maximum independent set in all of the graphs G[Xr]

and G[Yr]. We denote by X∗ the union of the results in the graphs G[Xr] and by Y ∗ the union
of the results in the graphs G[Yr]. Note that by previous arguments, α(G[X]) =

∑
r α(G[Xr])

and α(G[Y ]) =
∑

r α(G[Yr]), and therefore X∗ is a 4k
f(4k) -approximation for independent set

in G[X] and Y ∗ is a 4k
f(4k) -approximation for independent set in G[Y ]. Now, we observe that

because Vi = X ∪ Y , either α(G[X]) ≥ α(G[Vi])/2 or α(G[Y ]) ≥ α(G[Vi])/2, and therefore
the larger of X∗ and Y ∗ is a 8k

f(4k) -approximation for independent set in G[Vi]. Note that
8k

f(4k) = O(k/f(k)), which is the desired approximation ratio. ◀

4 Approximation parameterized by treewidth

In this section, we finish the proof of Theorem 1.1. For the convenience of the reader, let us
re-state Theorem 1.1 here.

▶ Theorem 1.1. Let f : N → N be a function such that there exists an n
f(n) -approximation

algorithm for Maximum Independent Set, where n is the number of vertices of the input graph2.
Then there exists an O

(
tw·log f(tw)

f(tw)

)
-approximation algorithm for Maximum Independent Set,

where tw is the width of a given tree decomposition of the input graph.

Throughout this section we will use G to denote the input graph and tw to denote the
width of the given tree decomposition of G. We denote by k = tw + 1 the maximum size of a
bag in the given tree decomposition. Recall that f(k) = Θ(f(tw)).

Let T be the given tree decomposition of G. By Lemma 2.2 we assume that T is nice,
and moreover that for each leaf node t of T there exists a vertex v ∈ Bt that occurs only in
the bag Bt. Let OPT denote the size of a maximum independent set in G. Similarly to the
pathwidth case in Section 3, by using Lemma 2.5 we can assume in the rest of this section
that OPT ≥ n

f(k) .
Let L ⊆ V (T ) be the set of all leaf nodes of T . If the number of leaf nodes is at least

|L| ≥ OPT·f(k)
k , then the unique vertices in these leaf bags already give us an independent

set with the desired approximation factor. Therefore, in the rest of this section we will also
assume that |L| < OPT·f(k)

k . With this assumption, we can invoke the following lemma with
ℓ = 2f(k).

▶ Lemma 4.1. There exists a set X ⊆ V (G) of size |X| ≤ k · |L|
ℓ such that for each connected

component of G − X there is a rooted tree decomposition of width at most k − 1 that has
at most ℓ leaf nodes. Such a set X and the tree decompositions of the components can be
computed in polynomial time.

2 We make mild assumptions on the properties of f , which are detailed in Section 2. Any “reasonable”
function f satisfies these assumptions.
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Proof. We prove the lemma constructively starting with X = ∅ and the tree decomposition T

of the entire graph. We also maintain a set of tree decompositions C of connected components
of G − X. We iteratively remove vertices from the graph G based on the structure of T as
follows.

Initially, we define the set of tree decompositions we will return as C = ∅, and we initially
assign T ′ = T as the tree decomposition from which we will “chop off” pieces with at most
ℓ leaf nodes into C. As long as T ′ has more than ℓ leaves, let t∗ be a node of T ′ such that
there are at least ℓ leaf nodes in the subtree T ∗ of T ′ rooted at t∗ and no descendant of t∗

has the same property. We add the vertices of Bt∗ to X and delete them from the graph
and all bags of T ′. This separates the vertices in the bags in T ∗ from the vertices in the
bags of the rest of T ′ and since no descendant of t∗ had more than ℓ leaves, all connected
components of T ∗ − t∗ have at most ℓ leaves.

We remove T ∗ from T ′, and add all connected components of T ∗ − t∗ into C. This
completes the iteration. When the process stops, vertices in G are either deleted (because
they belonged to Bt∗ in some iteration) or appear in some tree decomposition that was added
to C.

By construction, each connected component of G − X has a tree decomposition that is
given by a connected component in C. Each of these has fewer than ℓ leaves and did not
increase in width compared to T .

With these observations, the following claim finishes the proof of the lemma.

▷ Claim 4.2. It holds that |X| ≤ k · |L|
ℓ .

Proof of claim. In each iteration of the algorithm, the number of leaves of T ′ decreases by at
least ℓ, because T ∗ has more than ℓ leaves. Hence, this process terminates after at most |L|

ℓ

iterations. Each such iteration adds a subset of a bag of T to X (which contains at most k

vertices). Therefore, the total number of deleted vertices is at most k · |L|
ℓ . ◁

◀

We then assume to have X as in the statement of Lemma 4.1 with ℓ = 2 · f(k), and for
each connected component C of G − X a tree decomposition T C of width at most k − 1
with at most 2f(k) leaves. For a connected component C of G − X, let SC denote a fixed
maximum independent set in C. Since |X| ≤ k · |L|

2f(k) ≤ OPT/2, we know that the sum of
|SC | over all connected components C of G − X is at least OPT/2.

We can distinguish two cases for a single connected component C of G − X based on
whether a majority of SC appears in bags of nodes of degree at least 3 in T C or not. Formally,
let Q denote the set of vertices that appear in the bags of nodes of degree at least 3 in T C , i.e.,
Q =

⋃
t has degree > 2 in T C Bt. For each component C one of the following two alternatives

holds:
1. |SC \ Q| > |SC |/2, or
2. |SC ∩ Q| ≥ |SC |/2.

For handling the first case we can observe an easy pathwidth bound for C − Q, which
allows us to apply Lemma 3.1.

▶ Lemma 4.3. A path decomposition of C − Q of width at most k − 1 can be computed in
polynomial time given the tree decomposition T C .

Proof. A path decomposition witnessing this can easily be obtained from T C by deleting
all nodes with degree at least 3 as well as vertices in their bags from the decomposition,
resulting in a disjoint union of paths all of whose bags are of size at most k. These paths can
be concatenated in arbitrary order. ◀
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For the second case we next give a lemma that splits up each C[Q] into O(log f(k)) many
disjoint subgraphs in which every connected component has at most O(k) vertices.

▶ Lemma 4.4. C[Q] can be divided into ℓ ≤ O(log f(k)) subgraphs H1, . . . , Hℓ, such that
V (C[Q]) =

⋃̇
i∈[ℓ]V (Hi), and for any i ∈ [ℓ], each connected component of Hi has at most 6k

vertices. Such H1, . . . , Hℓ can be computed in polynomial time.

Proof. Consider the tree decomposition T C of C obtained according to Lemma 4.1. In
particular, such a tree has at most 2f(k) leaves and therefore at most 2f(k) − 1 nodes with
degree at least 3.

We can replace each path between two nodes u and v of degree at least 3 in T C by two
edges incident to a shared new node whose bag consists of the union Bu ∪ Bv of the bags of
u and v. In this way we obtain a tree decomposition of C[Q] with at most 4 · f(k) nodes and
width at most 2k − 1.

For this tree decomposition we invoke Lemma 2.3 to obtain a tree decomposition T J of
C[Q] with width at most 6k − 1 and depth ℓ ∈ O(log f(k)). Now, we partition the vertices
in C[Q] into H1, . . . , Hℓ where Hi contains all vertices v such that the distance between the
root of T J and the highest bag in which v appears is exactly i − 1.

By definition all V (Hi) are pairwise disjoint and because T J is a tree decomposition of
C[Q], the union of all V (Hi) covers V (C[Q]). Moreover each connected component of any Hi

is by construction a subset of some bag of TJ and thus has at most 6k vertices as desired. ◀

With the previous lemmas in hand, we are now ready to finish the proof of Theorem 1.1
as follows.

Proof of Theorem 1.1. We begin by invoking Lemma 4.1. Let C be the set of connected
components in G − X.

For the next few paragraphs consider an arbitrary but fixed single connected component
C ∈ C. We first use Lemma 4.3 to invoke Lemma 3.1 on C − Q to obtain an independent set
SJ

C in C − Q of size at least Ω
(

f(k)
k·log f(k)

)
· α(C − Q).

Independently we invoke Lemma 4.4 and on each of the returned graphs Hi the assumed
n

f(n) -approximation for n-vertex graphs on each of its connected components. Due to their
small component size for each Hi this results in an independent set SHi

of size at least
Ω

(
f(k)

k

)
·α(Hi). Because the graphs Hi vertex-partition C[Q] and there are only O(log f(k))

many Hi, returning an SHi
with maximum size yields an O(k log f(k)/f(k))-approximate

solution for Maximum Independent Set on C[Q].
We know that either

1. α(C − Q) ≥ α(C)/2, or
2. α(C[Q]) ≥ α(C)/2.
Overall this implies that returning the larger of SJ

C and the maximum-size SHi yields an
O

(
k log f(k)

f(k)

)
-approximate solution for Maximum Independent Set on C. We denote the

returned independent set by SC .
Our final output is the union of all SC . Because all C are pairwise independent, the union

of SC is an independent set in G. Moreover, because
∑

C∈C α(C) ≥ OPT/2 and because of
the above approximation guarantee for each SC , we obtain the overall desired approximation
guarantee. ◀
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5 Conclusion and open problems

In this paper we essentially settled the polynomial time approximability of Maximum
Independent Set when parameterized by treewidth. The most relevant open problem is to
extend our approach to give the improved time-approximation tradeoff result in Czumaj et
al. [7]. The current best known algorithm gives an r-approximation in 2tw/rnO(1) time. With
fine-tuning of the parameters and using the recent exponential-time approximation result of
Bansal et. al. [3], we believe our techniques could give an improved running time of 2o(tw/r)

when r is sufficiently high, e.g., r = logΩ(1) tw.
For us, the most interesting question is perhaps when r is tiny. Can we get a 2-

approximation algorithm that runs in time 2(1/2−ϵ)twnO(1)? Can we prove some concrete
lower bound in this regime? While the Gap-ETH lower bound 2tw/poly(r) (for sufficiently
large r) is immediate from [3], such techniques do not rule out anything when r is a small
constant.

A different possible direction for future research would be to formulate approximation
algorithms in terms of treewidth only for the more general Maximum Weight Induced
Subgraph problem studied by Czumaj et al. [7].
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Abstract
Local clustering aims to identify a cluster within a given graph that includes a designated seed node
or a significant portion of a group of seed nodes. This cluster should be well-characterized, i.e., it
has a high number of internal edges and a low number of external edges. In this work, we propose
SOCIAL, a novel algorithm for local motif clustering which optimizes for motif conductance based on
a local hypergraph model representation of the problem and an adapted version of the max-flow
quotient-cut improvement algorithm (MQI). In our experiments with the triangle motif, SOCIAL
produces local clusters with an average motif conductance 1.7% lower than the state-of-the-art,
while being up to multiple orders of magnitude faster.
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1 Introduction

Graphs are a fundamental tool for representing complex systems and relationships in a
wide range of contexts. They can be used to model everything from data dependencies and
social networks to web links and email interactions. With the massive expansion of data in
recent years, many real-world graphs have grown to enormous sizes, making it challenging
to analyze them. In particular, many applications only require analyzing a small, localized
portion of a graph rather than the entire graph, which is the case for community-detection
on Web [12] and social [21] networks as well as structure-discovery in bioinformatics [47]
networks, among others. Those real-world applications are usually preceded by or modeled
as a local clustering problem. Local clustering aims at identifying a specific cluster within
a given graph that includes a designated seed node or a portion of a group of seed nodes,
and is well-characterized, i.e., it consists of many internal edges and few external edges.
More specifically, the quality of a community can be quantified by specific metrics such as
conductance [22]. Since minimizing conductance is NP-hard [48], approximate and heuristic
approaches are used in practice. Given the nature and scale of the problem, these approaches
should ideally require time and memory dependent only on the size of the found cluster.

The local clustering problem has been investigated both theoretically [1] and experiment-
ally [29], and has been solved using a wide variety of techniques, including statistical [9, 24],
numerical [30, 32], and combinatorial [35, 15] methods. While traditional approaches to local
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clustering typically consider the edge distribution when evaluating the quality of a local
community, novel methods [49, 50, 33, 34, 7] have shifted focus to finding local communities
based on the distribution of motifs, higher-order structures within the graph. These works
provide empirical evidence that this approach, which can be called local motif clustering, is
effective at detecting high-quality local communities. Nevertheless, since this local clustering
perspective is relatively new, there are still many opportunities to improve upon current
approaches and discover more efficient algorithms for finding high-quality solutions.

Contribution. In this work, we propose a novel algorithm for local motif clustering which
optimizes for motif conductance by combining the strongly local hypergraph model from
Chhabra et al. [7] with an adapted version of the fast and effective algorithm max-flow
quotient-cut improvement (MQI) [26]. Our algorithm SOCIAL, which stands for faSter mOtif
Clustering vIa mAximum fLows, starts by building a hypergraph model which is an exact
representation for the motif-distribution around the seed node on the original graph [7].
Using this model, we create a flow model in which certain cuts correspond one-to-one with
sub-sets of the initial cluster that include the seed node and have lower motif conductance
than that of the whole cluster. We then use a push-relabel algorithm to either find such a
cut and repeat the process recursively, or to prove that the current cluster is optimal among
all its sub-clusters containing the seed node. In our experiments with the triangle motif,
SOCIAL produces communities with a motif conductance value that is 1.7% lower than the
state-of-the-art on average, while also being up to multiple orders of magnitude faster.

2 Preliminaries

Graphs. Let G = (V = {0, . . . , n − 1}, E) be an undirected graph with no multiple or self
edges allowed, such that n = |V | and m = |E|. Let c : V → R≥0 be a node-weight function,
and let ω : E → R>0 be an edge-weight function. We generalize c and ω functions to
sets, such that c(V ′) =

∑
v∈V ′ c(v) and ω(E′) =

∑
e∈E′ ω(e). Let N(v) = {u : {v, u} ∈ E}

be the open neighborhood of v, and let N [v] = N(v) ∪ {v} be the closed neighborhood of
v. We generalize the notations N(.) and N [.] to sets, such that N(V ′) = ∪v∈V ′N(v) and
N [V ′] = ∪v∈V ′N [v]. A graph G′ = (V ′, E′) is said to be a subgraph of G = (V, E) if V ′ ⊆ V

and E′ ⊆ E ∩ (V ′ × V ′). When E′ = E ∩ (V ′ × V ′), G′ is the subgraph induced in G by V ′.
Let V ′ = V \ V ′ be the complement of a set V ′ ⊆ V of nodes. Let a motif µ be a connected
graph. Enumerating the motifs µ in a graph G consists of building the collection M of all
occurrences of µ as a subgraph of G. Let d(v) be the degree of node v and ∆ be the maximum
degree of G. Let dω(v) be the weighted degree of a node v and ∆ω be the maximum weighted
degree of G. Let dµ(v) be the motif degree of a node v, i.e., the number of motifs µ ∈ M

which contain v. We generalize the notations d(.), dω(.), and dµ(.) to sets, such that the
volume of V ′ is d(V ′) =

∑
v∈V ′ d(v), the weighted volume of V ′ is dω(V ′) =

∑
v∈V ′ dω(v),

and the motif volume of V ′ is dµ(V ′) =
∑

v∈V ′ dµ(v). Let a spanning forest of G be an
acyclic subgraph of G containing all its nodes. Let the arboricity of G be the minimum
amount of spanning forests of G necessary to cover all its edges.

Local Motif Clustering. In the local graph clustering problem, a graph G = (V, E) and a
seed node u ∈ V are taken as input and the goal is to detect a well-characterized cluster
(or community) C ⊂ V containing u. A high-quality cluster C usually contains nodes
that are densely connected to one another and sparsely connected to C. There are many
functions to quantify the quality of a cluster, such as modularity [5] and conductance [22].
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The conductance metric is defined as ϕ(C) = |E′|/ min(d(C), d(C)), where E′ = E ∩ (C × C)
is the set of edges shared by a cluster C and its complement. Local motif graph clustering is
a generalization of local graph clustering where a motif µ is taken as an additional input
and the computed cluster optimizes a clustering metric based on µ. In particular, the motif
conductance ϕµ(C) of a cluster C is defined by Benson et al. [4] as a generalization of the
conductance in the following way: ϕµ(C) = |M ′|/min(dµ(C), dµ(C)), where M ′ are all the
motifs µ which contain at least one node in C and one node in C. Note that, if the motif
under consideration is simply an edge, then |M ′| is the edge-cut and ϕµ(C) = ϕ(C).

Hypergraphs. Let H = (V = {0, . . . , ”nffl−1}, E) be an undirected hypergraph with no multiple
or self hyperedges allowed, with ”nffl = |V| nodes and ”mffl = |E| hyperedges (or nets). A net is
defined as a subset of V . The nodes that compose a net are called pins. Let `c : V → R≥0 be
a node-weight function, and let ”w : E → R>0 be a net-weight function. We generalize `c and
”w functions to sets, such that `c(V ′) =

∑
v∈V′ `c(v) and ”w(E ′) =

∑
e∈E′ ”w(e). A node v ∈ V is

incident to a net e ∈ E if v ∈ e. Let I(v) be the set of incident nets of v, let `dffl(v) := |I(v)|
be the degree of v, and let `dffl”w(v) := ”w(I(v)) be the weighted degree of v. We generalize
the notations `dffl(.) and `dffl”w(.) to sets, such that the volume of V ′ is `dffl(V ′) =

∑
v∈V′ `dffl(v) and

the weighted volume of V ′ is `dffl”w(V ′) =
∑

v∈V′ `dffl”w(v). Two nodes are adjacent if they are
incident to the same net. Let the number of pins |e| in a net e be the size of e. We define
the contraction operator as

/
such that H

/
V ′, with V ′ ⊆ V, is the hypergraph obtained by

contracting the nodes from V ′ of H . This contraction consists of substituting all the nodes in
V ′ by a single representative node x, removing nets totally contained in V ′, and substituting
all the pins in V ′ by a single pin x in each of the remaining nets. Given a cluster V ′ ⊆ V,
the cut or cut-net cut(V ′) of V ′ consists of the total weight of the nets crossing the cluster,
i.e., cut(V ′) =

∑
e∈E′ ”w(E ′), in which E ′ :=

{
e ∈ E : e ∩ V ′ ̸= ∅, e ∩ V ′ ̸= ∅

}
.

Flows. Let N = (V, E) be a directed flow network. A directed flow network has one source
node s ∈ V , one sink node t ∈ V , and a set of remaining nodes V \ {s, t}. All edges e = (u, v)
in a directed flow network are directed and associated with a nonnegative capacity cap(u, v).
An s-t flow is a function f : V × V → R>0 which satisfies a capacity constraint, i. e., f(u, v) ≤
cap(u, v), a symmetry constraint, i. e., ∀u, v ∈ V : f(u, v) = −f(v, u), and a flow conserva-
tion constraint, i. e., ∀u ∈ V \ {s, t} :

∑
v∈V f(u, v) = 0. An edge (u, v) is called saturated if

cap(u, v) = f(u, v); The total amount of flow moved from s to t is defined as the value |f | of f

and is computed as follows: |f | =
∑

u∈V f(u, t) =
∑

v∈V f(s, v). A given s-t flow f in N is
maximum if, for any s-t flow f ′ in N , |f ′| ≤ |f |. Let Nf = (V, Ef ) be the residual graph asso-
ciated with a given flow f on N , such that Ef = {(u, v) ∈ V × V : cap(u, v) − f(u, v) > 0}.
According to the Max-Flow Min-Cut Theorem [13], the value |f | of a maximum s-t flow f

on N equals the weight of a minimum s-t cut on N , i. e., a 2-way partition of N where edge
weights equal edge capacities, s and t are in distinct blocks, and the total weight of the cut
edges is minimum. To find the sink side of the minimum cut associated with a maximum
flow in N , a reverse breadth-first search can be performed on N starting at the sink node t.

Push-Relabel. For each node u in a directed flow network N , let d(u) be its potential
and exc(u) =

∑
v∈V (f(v, u) − f(u, v)) be its excess. A node u is called active if exc(u) > 0.

An edge (u, v) is called admissible if cap(u, v) − f(u, v) > 0 and d(u) = d(v) + 1. The push-
relabel [16] algorithm builds a maximum flow by computing a succession of preflows, i. e., flows
where the flow conservation constraint is relaxed and replaced by ∀u ∈ V \ {s, t} : exc(u) ≥ 0.
In the initial preflow, all out-edges of s are saturated, ∀u ∈ V \{s} : d(u) = 0, and d(s) = |V |.
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Lawler ExpansionStar ExpansionClique Expansion

Figure 1 Net expansion techniques. Nodes and nets of the hypergraph are respectively represented
by black circles and colored areas around them. Artificial nodes and edges are respectively represented
by circles and arrows with same color as the corresponding net. Bidirectional arrows represent edges
in both directions. Solid and dashed edges have finite and infinite weight, respectively.

The initial preflow is evolved via operations push, i. e., sending as much flow as possible from
an active node through an admissible edge, and relabel, i. e., increasing the potential of a
node until it becomes active. Preflows induce minimum sink-side cuts, so a maximum flow
and a minimum cut are obtained once no node is active.

Flows on Hypergraphs. A common technique to solve flow problems on hypergraphs consists
of transforming them in directed graphs and then applying traditional graph-based techniques
on them. Among the existing transformations [46, 27], we highlight clique expansion, star
expansion, and Lawler expansion. In the clique expansion, each net is represented by a clique,
i.e., a set of edges connecting each pair of its pins in both directions. In this approach, the
weight of each edge is equal to weight of the corresponding net e divided by |e| − 1 and
parallel edges are substituted by a single edge whose weight is the sum of the weights of
the removed edges. In the star expansion, each net is represented by an auxiliary artificial
node connected to its pins by edges in both directions. In this expansion, the edges have the
same weight as the corresponding net. In the Lawler expansion, each net e is represented by
two auxiliary artificial nodes w1 and w1 and a collection of edges. In particular, there is a
directed edge (w1, w2) which has the same weight as the corresponding net. Additionally,
each pin of the corresponding net has an out-edge to w1 and an in-edge from w2, each of
them with weight infinity. The three transformation approaches are exemplified in Figure 1.

2.1 Related Work
Motif-based clustering has been widely studied in the literature, with works such as [3, 49,
25, 36, 44] partitioning all the nodes of a graph into clusters based on motifs. We also
address the topic of clustering based on motifs, but our focus is on identifying clusters in
the immediate vicinity of a specific seed node, rather than on the entire graph. Several
works [24, 30, 32, 11, 42] propose local clustering algorithms on graphs, but they do not
focus on optimizing for motif-based metrics like our work. Instead, they use metrics based
on edges, like conductance and modularity. Multiple works [45, 14, 20, 31] propose local
clustering algorithms on hypergraphs. These algorithms are not designed for local graph
clustering based on motifs, but for local hypergraph clustering. In one of them [45], the
authors utilize a hypergraph extension of FlowImprove [2], which is itself an extension of the
MQI [26] technique. Similarly, we also extend MQI to hypergraphs, then we use it as one of
the steps of our algorithm SOCIAL. In this section, we review previous work on local graph
clustering based on motifs, which is the focus of our work.

Rohe and Qin [38] propose a local clustering algorithm based on triangle motifs. Their
algorithm starts by initializing a cluster containing only the seed node, and iteratively
grows this cluster. Particularly, the algorithm greedily inserts nodes contained in at least a
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Figure 2 Illustration of the phases of SOCIAL. (a) Given a seed node u and a graph G, a ball S

around u is selected. (b) Motif occurrences of µ with at least a node in S are enumerated. (c) The
hypergraph model Hµ is built by converting motifs into nets and contracting S into a single node.
The ball S is taken as the initial cluster C0. (d) The flow model N is built based on C0 in Hµ.
(e) A cluster C ⊆ C0 containing u is found using maximum flows. (f) While C ⊂ C0, the model N
is rebuilt based on C, which is taken as the initial cluster C0. (g) When eventually C = S, C is
converted in a local cluster around the seed node in G.

predefined amount of cut triangles. Huang et al. [19] recover local communities containing
a seed node in online and dynamic setups based on higher-order graph structures named
Trusses [10]. They define the k-truss of a graph as its largest subgraph whose edges are all
contained in at least (k − 2) triangle motifs, hence trusses are a graph structure based on the
frequency of triangles. The authors use indexes to search for k-truss communities in time
proportional to the size of the recovered community.

Yin et al. [49] propose MAPPR, a local motif clustering algorithm based on the Approximate
Personalized PageRank (APPR) method. In a preprocessing phase, MAPPR enumerates the
motif of interest in the entire input graph and constructs a weighted graph W , in which edges
only exist between nodes that appear in at least one instance of the motif, and their edge
weight is equal to the number of occurrences of the motif containing these two endpoints.
Afterward, MAPPR uses an adapted version of the APPR method to find local communities in
the weighted graph constructed in the preprocessing phase. MAPPR is able to extract local
communities from directed input graphs, something that cannot be done using APPR alone.

Zhang et al. [50] propose LCD-Motif, an algorithm that addresses the local motif clustering
problem using a modified version of the spectral method. LCD-Motif has two main differences
in comparison to the traditional spectral motif clustering method. First, instead of computing
singular vectors, the algorithm performs random walks to identify potential members of the
searched cluster. They use the span of a few dimensions of vectors, obtained through random
walks, as an approximation for the local motif spectra. Second, instead of using k-means
for clustering, LCD-Motif searches for the minimum 0-norm vector within the previously
mentioned span, which must contain the seed nodes in its support vector.

Meng et al. [33] propose FuzLhocd, a local motif clustering algorithm that uses fuzzy
arithmetic to optimize a modified version of modularity. Given a seed node, FuzLhocd starts by
detecting probable core nodes of the targeted local community using fuzzy membership. After
identifying the probable core nodes of the target local community using fuzzy membership,
the algorithm expands these nodes using another fuzzy membership to form a cluster.

Zhou et al. [51] propose HOSPLOC, a local motif clustering algorithm that uses a motif-
based random walk to compute a distribution vector, which is then truncated and used in a
vector-based partitioning method. The algorithm begins by approximately estimating the
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distribution vector through a motif-based random walk. To further refine the computation
and focus on the local region, HOSPLOC sets all small vector entries to 0. After this prepro-
cessing step, the algorithm applies a vector-based partitioning method [43] on the resulting
distribution vector in order to identify a local cluster.

Shang et al. [41] propose HSEI, a local motif clustering algorithm that uses motif and
edge information to grow a cluster from a seed node. The algorithm begins by creating an
initial cluster consisting of only the seed node. It then adds nodes to the cluster from the
seed’s neighborhood, selecting them based on their motif degree. The cluster is expanded
using a motif-based extension of the modularity function.

Chhabra et al. [7] propose an algorithm to solve the local motif clustering problem
using powerful (hyper)graph partitioning tools [39, 40, 17, 18]. Their algorithm first uses a
breadth-first search to select a ball containing the seed node and nearby nodes. Next, they
enumerate motif occurrences within the ball and build a (hyper)graph model which allows
them to compute the motif conductance of any cluster within the ball. They then partition
their model into two blocks using a high-quality (hyper)graph partitioning algorithm, and
refine the solution for motif conductance.

3 Local Motif Clustering via Maximum Flows

We now present our algorithm SOCIAL, then we discuss its algorithmic components.

3.1 Overall Strategy

Given a graph G = (V, E), a seed node u, and a motif µ, our strategy for local clustering is
based on the following phases. First, we select a set S ⊆ V containing u and close-by nodes.
From now on, we refer to this set S as a ball around u. Second, we enumerate the collection
M of occurrences of the motif µ which contain at least one node in S. Third, we build a
hypergraph model Hµ in such a way that the motif-conductance of any cluster C ⊆ S in G

can be computed directly in Hµ. Fourth, we set C0 = S as our initial cluster and use it to
build our MQI-based [26] flow model N from the hypergraph model Hµ. Fifth, we use N
to either find a new cluster C ⊂ C0 containing u with strictly smaller motif conductance
than C0 or prove that such cluster does not exist. While C ⊂ C0 is found, we take it as
our new initial cluster, rebuild N , and repeat the previous phase. When eventually no
such strict sub-set is found, the best obtained cluster is directly translated back to G as a
local cluster around the seed node. Figure 2 provides a comprehensive illustration of the
consecutive phases of SOCIAL. Note that there is no guarantee of finding the best overall
cluster including u strictly contained in S. Instead, we find a succession of clusters with
strictly decreasing cardinality and motif conductance until a local optimum is reached. To
better explore the vicinity of u in G and overcome the fact we only find clusters inside S, we
repeat the overall strategy α times with different balls S. Our overall algorithm including
the mentioned repetitions is outlined in Algorithm 1.

3.2 Hypergraph Model

We follow the same procedure as Chhabra et al. [7] to construct the hypergraph model Hµ.
To ensure a thorough understanding of our overall algorithm, we provide a summary of the
phases involved, i.e., finding a ball around the seed node, enumerating motifs within it, and
finally constructing the hypergraph model Hµ.
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Figure 3 Example of motif-enumeration and model-construction phases for the triangle motif. In
the left, the nodes of G are split into sets S and S. In the center, motifs containing nodes in S are
enumerated. In the right, Hµ is built by converting motifs in nets and contracting S into a node r.

Algorithm 1 Local Motif Clustering via Max Flows.
Input graph G = (V, E); seed node u ∈ V ; motif µ
Output cluster C∗ ⊆ V

1: C∗ ← ∅
2: for i = 1, . . . , α do
3: Select ball S around u
4: M ← Enumerate motifs in S
5: Build hypergraph model Hµ based on S and M
6: C ← S
7: do
8: C0 ← C
9: Build flow model N based on C0 in Hµ

10: Solve N to obtain cluster C ⊆ C0 including u
while C ⊂ C0

11: if C∗ = ∅ ∨ ϕµ(C) < ϕµ(C∗) then
12: C∗ ← C
13: Convert C∗ into a local motif cluster in G

Ball around the Seed Node. Our approach to select a ball S is a fixed-depth breadth-first
search (BFS) rooted on u. More specifically, we compute the first ℓ layers of the BFS tree
rooted on u, then we include all its nodes in S. For each of the α repetitions of the overall
algorithm, we use different amounts ℓ of layers for a better algorithm exploration. Two
special cases are handled by SOCIAL, namely a ball S that is either too small or disconnected
from S. We avoid the first special case by ensuring that S contains 100 or more nodes in at
least one repetition of our overall algorithm. More specifically, in case this condition is not
automatically met, then we accomplish it in the last repetition by growing additional layers
in our partial BFS tree while it contains fewer than 100 nodes. The number 100 is based on
the findings of Leskovec et al. [29], which show that most well characterized communities
from real-world graphs have a relatively small size, in the order of magnitude of 100 nodes.
If the second exceptional case happens, it means that the whole BFS tree rooted on the seed
node has at most ℓ layers. In this case, we simply stop the algorithm and return the entire
ball S, which corresponds to an optimal community with motif conductance 0 provided that
there is at least one motif in S and another one in S. The number α of repetitions as well as
the amount ℓ of layers used in each repetition are tuning parameters.

Motif Enumeration. Although enumerating a general motif on some graph is NP-hard [37],
there are efficient heuristics to do it such as the one proposed by Kimmig et al. [23]. Never-
theless, simpler motifs such as small paths, cycles, and cliques can be trivially enumerated in
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polynomial time. We focus our enumeration phase on the triangle motif. We implement the
simple and exact algorithm proposed by Chiba and Nishizeki [8] to enumerate the collection
M of occurrences of the motif µ which contain at least one node in S. Roughly speaking,
this algorithm works by intersecting the neighborhoods of adjacent nodes. For each node
v, the algorithm starts by marking its neighbors with degree smaller than or equal to its
own degree. For each of these specific neighbors of v, it then scans its neighborhood and
enumerates new triangles as soon as marked nodes are found. The running time of this
algorithm is O(ma), where a is the arboricity of the graph. We apply this enumeration
algorithm only on the subgraph induced in G by N [S], which is enough to find all triangles
containing at least one node in S, as exemplified by transformation (a) in Figure 3. As-
suming a constant-bounded arboricity, the overall cost of our motif-enumeration phase for
triangles is O

(
|N [S] × N [S]) ∩ E|

)
.

Hypergraph Model. The hypergraph model Hµ is finally built in two conceptual operations.
First, define a hypergraph containing V as nodes and a set E of nets such that, for each
motif in M , E has a net with pins equal to the endpoints of this motif. Then, we contract
together all nodes in S into a single node r and substitute parallel nets by a single net
whose weight is equal to the summed weights of the removed parallel nets. More formally,
we define the hypergraph version of our model as Hµ = (S ∪ {r}, E) where the set E of
nets contains one net e associated with each motif occurrence G′ = (V ′, E′) ∈ M such
that e = V ′ if V ′ ⊆ S, and e = V ′ ∩ S ∪ {r} otherwise. In the former case the net has
weight 1, in the latter case the net has weight equal to the amount of motif occurrences
in M represented by it. Since node weights in Hµ are irrelevant for SOCIAL, the involved
theorems, and the motif conductance metric, we make all node weights unitary in Hµ. In
practice, the model Hµ can be built by instantiating the nodes in S ∪ {r} and the nets in E .
Assuming that the number of nodes in µ is a constant, our model is built in time O(|S|+ |M |)
and uses memory O(|S| + |M |). The construction of Hµ is illustrated in transformation (c)
of Figure 2 and demonstrated for a particular example in transformation (b) of Figure 3.
Theorem 1 shows that the motif conductance in G of any cluster C ⊆ S can be directly
computed from Hµ assuming dµ(S) ≤ dµ(S). The assumption dµ(S) ≤ dµ(S) is fair in
practice since the ball S computed via BFS tends to be considerably smaller than S for
huge sparse networks. Enumerating the motifs in S is not reasonable for a local clustering
algorithm, but we did verify that our assumption holds during all our experiments.

▶ Theorem 1 (Theorem 3.2 from [7]). The motif conductance ϕµ(C) of a cluster C ⊆ S in
the original graph G can be calculated directly in the hypergraph model Hµ using the ratio of
its cut-net cut(C) to its weighted volume `dffl”w(C), assuming that the motif enumeration step
is exact and dµ(S) ≤ dµ(S).

3.3 Flow Model
In this section, we describe the process of constructing our MQI-based flow model N using the
hypergraph model Hµ and an initial cluster C0 ⊆ S which contains the seed node u. There
are three possible implementations of N based on the three already explained techniques to
represent hypergraphs using graphs, namely clique expansion, star expansion, and Lawler
expansion (see Figure 1). We show a bijective correspondence between certain s-t cuts in
N and clusters C ⊆ C0 in G that include the seed node u and have motif conductance
less than that of C0. We start by converting our hypergraph model Hµ in a directed graph
using the chosen net expansion technique. Second, we find a corresponding cluster C ′

0
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Lawler ExpansionStar ExpansionClique ExpansionHypergraph Model

Figure 4 Flow model N given a hypergraph model Hµ and an initial cluster C0. Nodes and
nets of Hµ are respectively represented by black circles and brown areas around them. The seed
node u is circled in white and the initial cluster C0 is surrounded by a dotted ellipse. Auxiliary
artificial nodes and edges used in each net-expansion are respectively represented by brown circles
and arrows. Bidirectional arrows represent pairs of edges in both directions. The seed node s, the
sink node t, and the in-edges of t are respectively represented by a green circle, a blue circle, and
blue arrows. Solid and dashed arrows respectively represent edges with finite and infinite weight.

for C0 in the created graph. For the clique expansion, C ′
0 = C0 since this transformation

does not create artificial nodes. For the star expansion, C ′
0 consists of C0 and also the

auxiliary artificial nodes connected to at least one node in C0. For the Lawler expansion, C ′
0

consists of C0, the auxiliary artificial nodes w1 having in-edges only from nodes in C0, and
the auxiliary artificial nodes w2 having out-edges to at least one node in C0. Third, we
contract C ′

0 to a single source node s and then remove all its in-edges. Fourth, we multiply
the weight of all the remaining edges by `dffl”w(C0), i.e., the weighted volume of C0 in Hµ. Fifth,
we introduce a sink node t and include in-edges to it from each of the nodes v ∈ C0 \ {u},
such that the weight of (v, t) is set to cut(C0)`dffl”w(v), i.e., the cut-net of C0 in Hµ multiplied
by the weighted degree of v in Hµ. Finally, we include an edge (u, t) from the seed node to
the sink and set its weight to infinity. Our flow network model N is concluded by setting
edge capacities to match edge weights. Figure 4 shows the three possible configurations of
our flow model N for a given hypergraph model Hµ and an initial cluster C0.

We now analyze the theoretical guarantees provided by the defined flow model N .
Theorem 2 shows that there is a set C ⊂ C0 in G including the seed node u with motif
conductance smaller than that of C0 if, and only if, the value of the maximum flow on N
is less than cut(C0)`dffl”w(C0), which is the weight of the trivial cut ({s}, V (N ) \ {s}). Due
to space constraints, we put the proof of Theorem 2 in our public technical report [6]. In
the proof, we show that such improved cluster C consists of the sink side of the minimum
cut associated with the maximum flow. This cluster can be directly obtained with a reverse
breadth-first search on N starting at the sink node. For an even stronger claim, see our
public technical report [6]. Assumptions (a) and (b) in Theorem 2 are the same used in
Theorem 1, which were previously shown to be reasonable in practice. Note that the claim is
only valid for motifs with three nodes for clique and star expansion models, while it is valid
in general for the Lawler expansion model.

▶ Theorem 2. There is a set C ⊂ C0 in G including the seed node u with motif conductance
smaller than that of C0 if, and only if, the maximum flow on N is less than cut(C0)`dffl”w(C0)
under the following assumptions:
a) the motif enumeration phase is exact;
b) dµ(S) ≤ dµ(S) in G;
c) in case N is based on clique expansion or star expansion, the motif µ has three nodes;
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Table 1 Graphs for experiments.

Graph n m # Triangles
com-amazon 334 863 925 872 667 129
com-dblp 317 080 1 049 866 2 224 385
com-youtube 1 134 890 2 987 624 3 056 386
com-livejournal 3 997 962 34 681 189 177 820 130
com-orkut 3 072 441 117 185 083 627 584 181
com-friendster 65 608 366 1 806 067 135 4 173 724 142

SOCIAL utilizes a push-relabel approach to iteratively search for a maximum s-t flow in the
model N . If the found maximum flow is strictly smaller than cut(C0)`dffl”w(C0), then we can
directly find a minimum cut with the same weight as it and, consequently, a cluster C ⊂ C0
containing the seed node u that has a strictly smaller motif conductance value ϕµ(C) than
that of C0 in G. If such a cut is found, the algorithm repeats the process recursively setting
the identified sub-cluster C as the new initial cluster, i.e., it constructs a new flow model based
on Hµ and the initial cluster and uses the push-relabel algorithm to continue searching for
sub-clusters with even lower motif conductance values. If, on the other hand, the maximum
flow is not strictly smaller than cut(C0)`dffl”w(C0), it means that the current cluster C0 is
optimal among all of its sub-clusters containing the seed node u, and the algorithm terminates
for the given ball S.

4 Experimental Evaluation

Methodology. We implemented SOCIAL in C++. We compiled our program using gcc 11.2
with full optimization turned on (-O3 flag). All our experiments are based on the triangle
motif, i.e., the undirected clique of size three. Since this motif has three nodes, Theorem 2 is
valid for all net expansion techniques. Therefore, we focus our experiments on the clique
expansion technique, which is more efficient than the other techniques because it does not
utilize any auxiliary artificial nodes and uses the minimum amount of auxiliary artificial
edges. We use the following parameters for SOCIAL: α = 3, ℓ ∈ {1, 2, 3}. We do not utilize
more than 3 BFS layers because otherwise the ball around the seed node could become
too large in densely connected areas of a graph. Nevertheless, as explained in Section 3.2,
SOCIAL might occasionally use more than 3 BFS layers to ensure that the ball includes a
minimum of 100 nodes, if the seed node under consideration is located in a sparse portion
of the graph. We ensure the integrity of our results by using the same motif-conductance
evaluator function for all tested algorithms. In our experiments, we have used a machine with
a sixty-four-core AMD EPYC 7702P processor running at 2.0 GHz, 1 TB of main memory,
32 MB of L2-Cache, and 256 MB of L3-Cache. We measure running time, motif-conductance,
and/or size of the computed cluster. For each graph, we pick 50 random seed nodes and
use all of them as input for each algorithm. When averaging running time or cluster size
over multiple instances, we use the geometric mean in order to give every instance the same
influence on the final score. When averaging motif conductance over multiple instances, the
final score is computed via arithmetic mean. This is a necessary averaging strategy since
motif conductance can be zero, which makes the geometric mean infeasible to compute. We
also use performance profiles which relate the running time (resp. motif conductance) of a
group of algorithms to the fastest (resp. best) one on a per-instance basis. Their x-axis shows
a factor τ while their y-axis shows the percentage of instances for which algorithm A has up
to τ times the running time (resp. motif conductance) of the fastest (resp. best) algorithm.
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Table 2 Average comparison against state-of-the-art. Times are given in seconds.

Graph SOCIAL LMCHGP MAPPR
ϕµ |C| t(s) ϕµ |C| t(s) ϕµ |C| t(s)

com-amazon 0.031 76 <0.01 0.037 64 0.22 0.153 58 2.68
com-dblp 0.090 58 0.02 0.115 56 0.38 0.289 35 3.04
com-youtube 0.125 1832 4.52 0.172 1443 7.93 0.910 2 10.44
com-livejournal 0.158 494 3.33 0.244 387 8.17 0.507 61 173.80
com-orkut 0.273 1041 256.21 0.150 13168 496.94 0.407 511 923.26
com-friendster 0.388 2060 1194.50 0.368 10610 1339.99 0.741 121 16565.99
Overall 0.178 453 2.33 0.181 823 12.67 0.500 50 79.34

Instances. The graphs used in our experiments are the same ones used by Yin et al. [49]
and Chhabra et al. [7] and the seed nodes used in our experiments are the same used in [7].
Specifically, we use real graphs from the SNAP Network Dataset Collection [28]. Prior to
our experiments, we removed parallel edges, self-loops, and directions of edges and assigning
unitary weight to all nodes and edges. Basic properties of the graphs under consideration
can be found in Table 1.

Competitors. We experimentally compare our SOCIAL against the state-of-the-art compet-
itors, namely MAPPR [49] and the algorithm proposed by Chhabra et al. [7]. For conciseness,
we refer to the latter one from now on as LMCHGP, an acronym for local motif clustering via
(hyper)graph partitioning. We also ran preliminary experiments with HOSPLOC [51]. However,
the algorithm is very slow even for small graphs and not scalable as their algorithm works
using an adjacency matrix and hence needs Ω(n2) space and time. Moverover, experiments
done in their paper are on graphs that are multiple orders of magnitude smaller than the
graphs used in our evaluation. Hence, we are not able to run the algorithm on the scale of the
instances used in this work. We were not able to explicitly compare against LCD-Motif [50]
since their code is not available (neither public, nor privately1) and the data presented in
the respective paper does not warrant explicit comparisons (e.g. seed nodes are typically not
presented in the papers). However, we try to make implicit comparisons in Section 4.1.

We compare our results against the globally best cluster computed for each seed node
by MAPPR using its standard parameters (α = 0.98, ϵ = 10−4) and by LMCHGP using the
configuration with best overall results in [7] (graph model, label propagation, α = 3,
ℓ ∈ {1, 2, 3}, and β = 80). Unless mentioned otherwise, experiments presented here involve
all graphs from Table 1.

4.1 Results
The performance profile plots shown in Figures 5a and 5b, compare LMCHGP [7] and MAPPR [49]
against SOCIAL. In Table 2, we show average results for each graph in our Test Set as well
as average results overall. As shown in Figure 5a, SOCIAL obtains the best or equal motif
conductance value for 62% of the instances, while LMCHGP and MAPPR respectively obtain
the best or equal motif conductance for 49% and 19% of the instances. This result can be
explained with two observations. First, SOCIAL explores the solution space considerably
better than MAPPR, since we build our model multiple times, while MAPPR simply uses the
APPR algorithm. Second, SOCIAL is based on a flow approach which directly optimizes for
motif conductance, whereas LMCHGP is based on a (hyper)graph partitioning algorithm which

1 Personal communication with the authors
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(a) Motif conductance.
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(b) Running time.

Figure 5 Performance profiles for motif conductance and running time considering all instances,
i.e., 50 random seed nodes for each graph in Table 1. In the running time plot, the SOCIAL curve is
roughly coincident with the y-axis.

is repeated multiple times to compensate for its design to minimize the number of cut motifs
rather than motif conductance. In Table 2, SOCIAL outperforms LMCHGP for 4 of the 6 graphs
and overall, and outperforms MAPPR for all graphs and overall. Overall, SOCIAL computes
clusters with motif conductance 0.178 while LMCHGP and MAPPR compute clusters with motif
conductance 0.181 and 0.500, respectively.

As exhibited in Figure 5b, SOCIAL is the fastest one for 87% of the instances, while LMCHGP
and MAPPR are the fastest ones for 12% and 1% of the instances, respectively. Furthermore, the
running time of SOCIAL is within a factor 1.18 of the running times of the fastest competitors
for all instances. SOCIAL is respectively up to 237 and 144 063 times faster than LMCHGP and
MAPPR while being a factor 5.4 and 34.1 faster than them on average. The reason for MAPPR
being considerably slower than the other algorithms is that it must enumerate motifs across
the entire graph, while SOCIAL and LMCHGP only require enumeration of motifs in a ball
around the seed node. The reduced but still substantial difference in running time between
SOCIAL and LMCHGP is a result of LMCHGP’s repeated partitioning of each ball around the
seed node, while SOCIAL employs a flow model to greedily improve the motif conductance
metric until a local optimum cluster is obtained. In Table 2, SOCIAL outperforms LMCHGP
and MAPPR on average in terms of running time for every single graph and overall.
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For a more intuitive analysis of the quality of our results, Figure 6 plots motif conductance
versus cluster size for all communities computed by the three algorithms. Observe that the
communities found by SOCIAL are densely localized in the lower left area of the chart, which
is the region with smaller motif conductance and smaller cluster size. On the other hand,
communities computed by MAPPR are often in the upper area of the chart and communities
computed by LMCHGP are often in the right area of the chart.

Additional Comparisons. As we mention above, we were not able to run comparisons against
LCD-Motif [50] explicitly since their code is not available (neither publicly, nor privately) and
the data presented in the respective papers does not warrant explicit comparisions (e.g., seed
nodes are typically not presented in papers, and in this case instances are directed rather
than undirected). Here, we make an attempt at implicit comparisons. Zhang et al. [50]
(Table 4 therein) compare motif conductance against MAPPR on three directed instances
(cit-HepPh, Slashdot, StanfordWeb) and report an geometric mean improvement of 54%
in motif conductance for the triangle motif. As SOCIAL works for undirected instances,
we have build undirected version of those graphs and run SOCIAL as well as MAPPR for the
triangle motif. The geometric mean improvement we obtain over MAPPR is 223% which is
significantly larger than the improvement of Zhang et al. [50] over MAPPR. Also note that in
our experiments from Table 2, the geometric mean improvement (using the average motif
conductance values) of SOCIAL over MAPPR in motif conductance is 219%.

5 Conclusion

In this work, we propose SOCIAL, a fast flow-based algorithm to solve the local motif clustering
problem in graphs. Given a seed node, our SOCIAL selects a ball of nodes around it, which is
taken as an initial cluster and used to build an exact hypergraph model where nets represent
motifs. Using this model and the initial cluster, we create a flow model in which the value of
the maximum s-t flow is directly related to the presence of sub-sets of the initial cluster that
contain the seed node and have lower motif conductance than the initial cluster as a whole.
Utilizing a push-relabel algorithm, SOCIAL either identifies a sub-cluster containing the seed
node with improved motif conductance and repeats the process recursively by considering it
as the initial cluster, or demonstrates that the current initial cluster is the best among all its
sub-clusters that include the seed node.

In our experiments with the triangle motif, we found that SOCIAL produces communities
with an average motif conductance better than the state-of-the-art, while running up to
orders of magnitude faster on average. For future work, we intend to conduct experiments
with larger motifs and use the Lawler-expansion version of our flow model, since it is the
only one whose quality guarantee holds true for larger motifs. Laslty, we intend to add
parallelization to improve the speed on large instances further.
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Abstract
We explore various generalizations of the online matching problem in a bipartite graph G as the
b-matching problem [8], the allocation problem [5], and the AdWords problem [13] in a beyond-
worst-case setting. Specifically, we assume that G is a (k, d)-bounded degree graph, introduced
by Naor and Wajc [14]. Such graphs model natural properties on the degrees of advertisers and
queries in the allocation and AdWords problems. While previous work only considers the scenario
where k ≥ d, we consider the interesting intermediate regime of k ≤ d and prove a tight competitive
ratio as a function of k, d (under the small-bid assumption) of τ(k, d) = 1 − (1 − k/d) · (1 − 1/d)d−k

for the b-matching and allocation problems. We exploit primal-dual schemes [6, 3] to design and
analyze the corresponding tight upper and lower bounds. Finally, we show a separation between the
allocation and AdWords problems. We demonstrate that τ(k, d) competitiveness is impossible for
the AdWords problem even in (k, d)-bounded degree graphs.
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1 Introduction

Ad auctions have emerged as a powerful tool for online advertisers seeking to reach targeted
audiences through search engines and other digital platforms. Therefore, there has been much
interest in optimizing their revenue generation in recent years. In an ad auction, advertisers
bid on specific keywords or phrases relevant to their products or services. When users query
search engines, in addition to the algorithmic search results, it also displays sponsored ads
that match the ad auctions. These ads are rapidly sold or assigned to potential buyers
(advertisers). In their seminal work, Mehta et al. [13] developed a model for optimizing the
allocation of ad auctions, building upon the concept of online bipartite matching of Karp et
al. [10]. There are n bidders, where each bidder i ∈ {1, . . . , n}, has a known daily budget
B(i). Ad auctions arrive online, one at a time, and each bidder i provides a bid b(i, j) for
buying the product j (displaying the ad). Once the bids are received, the seller’s algorithm
must allocate the ad to one of the interested bidders, and this decision is irrevocable. The
seller’s objective is to maximize the total revenue accumulated from the ad auctions. To
accomplish this, Mehta et al. [13] proposed a (tight) deterministic algorithm, which is
(1 − 1/e)-competitive in cases where the budget of each bidder is relatively larger than the
bids. This is a realistic assumption in the ad auction scenario.
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Consequently, a loss of 1/e can equate to billions of dollars in potential revenue loss each
year. In addition, the 1 − 1/e hardness result of Karp et al. [10] for online matching is
prevalent in all the problem extensions. Therefore, researchers have been inspired to pursue a
more comprehensive theoretical understanding that extends beyond the worst-case scenarios.

One line of research considers stochastic arrival models, which include random order
arrival and iid arrival models. In the random order model, a fixed input graph is prepared in
advance, and the online vertices are randomly arranged. On the other hand, the iid arrival
model involves drawing online vertices from a known or unknown distribution. With these
arrival models, researchers were able to demonstrate results that outperform the 1 − 1/e

competitive ratio in both online matching and vertex-weighted matching, as demonstrated
by various sources [4, 7, 9, 11, 12].

In this work, we consider a different line of research, which assumes structural properties
commonly encountered in ad allocation instances used for targeted advertising. Such
properties were first identified and formalized by Naor and Wajc [14]. We assume that G is
a bipartite (k, d)-bounded-degree graph (for brevity’s sake, we use the term (k, d)-graphs).

Specifically, we assume that advertisers are interested in a large number of ad slots (i.e.∑
j b(i, j) ≥ k · B(i) for all i) and every ad slot is of interest to a relatively small number of

advertisers (i.e. |N(j)| = |{i : b(i, j) > 0}| ≤ d for all j).
This structural assumption is relatively natural for ad allocation graphs. First, ad

campaigns often target relatively small, specific population segments, resulting in users
belonging to fairly few segments. When coupled with the limited number of active campaigns,
this creates a limited pool of ads that may be shown to a particular user, justifying the
assumption of a small degree for ad slots. Second, advertisers generally aim to target large
population segments. However, they often allocate insufficient budget to display ads to all
users within a segment. This leads to the high-degree assumption on the offline side since
every page view by a specific, targeted user corresponds to a vertex in the graph.

Related work. Buchbinder et al. [5] developed a primal-dual algorithm for AdWords that
attains a competitive ratio of (1−1/c)(1−Rmax), where c = (1+Rmax)1/Rmax . As Rmax → 0,
the competitiveness tends to 1 − 1/e. Buchbinder et al. also examined a setting where the
degree of each incoming query was upper bounded by d (i.e., (1, d)-graph) and produced
an algorithm with a competitive ratio of nearly 1 − (1 − 1/d)d for the AdWords with equal
bids per advertiser (a.k.a, the allocation problem). Azar et al. [3] showed that this ratio is
the best possible, also for randomized algorithms. The expression 1 − (1 − 1/d)d is always
greater than 1 − 1/e but approaches the latter as d increases. Naor and Wajc [14] introduced
the (k, d)-graphs class and applied it to the AdWords problem and online bipartite matching.
For k ≥ d, they developed deterministic online algorithms achieving a competitive ratio of
1 − (1 − 1/d)k for online bipartite matching and its vertex-weighted extension, where all
edges connected to an offline vertex i have the same weight. They also showed that this ratio
holds for AdWords with equal bids per advertiser, where each advertiser has the same bid
for all relevant keywords. The ratio of 1 − (1 − 1/d)k is the best possible for online bipartite
matching and the vertex-weighted extension if k ≥ d. For AdWords with arbitrary bids,
Naor and Wajc provided an algorithm with a competitive ratio of (1 − Rmax)(1 − (1 − 1/d)k).
They also demonstrated that if k ≥ d, the best possible competitiveness is upper-bounded by
(1 − Rmax)(1 − (1 − 1/d)k/Rmax). As k/d increases, the expression 1 − (1 − 1/d)k tends to 1,
and for k ≃ d it approaches 1 − 1/e.

A recent work [2], studied the online b-matching problem in (k, d)-graphs for k ≥ d. In
this scenario, each vertex a located on the left-hand side of the bipartite graph represents a
server with a capacity of ba, which implies that it can be matched with up to ba incoming
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α = 1/3 α = 1/2 α = 2/3 α = 3/4

d = 12 0.66765 0.70335 0.76464 0.80744
d = 24 0.66258 0.69997 0.76286 0.80634
d = 48 0.69997 0.69833 0.76200 0.80581
d = 120 0.65868 0.69737 0.76149 0.8055
d → ∞ 0.65772 0.69673 0.76116 0.8053

Figure 1 Comparison of τ(k, d) for various d, k = α · d values.

requests that appear as right-hand side vertices. The objective is to maximize the size of
the generated matching. Their results also hold for the vertex-weighted problem extension
and, thus, for AdWords and auction problems in which each bidder issues individual, equally
valued bids. They designed deterministic online algorithms for optimal competitiveness, for
k ≥ d instances. Later, in [1], they showed a non-trivial extension for the AdWords problem,
i.e., bids of arbitrary value. Specifically, they showed an algorithm for the general AdWords
problem that achieves competitiveness arbitrarily close to 1 for k ≥ d using the small-bids
assumption.

Our Contributions. We examine the interesting scenarios of (k, d)-graphs where k ≤ d.
First, we study the b-matching problem for k ∈ N. Our algorithm is based on a fractional
algorithm for b-matching. In Section 3, we provide a fractional algorithm with a competitive
ratio of τ(k, d), where τ(k, d) = 1 − d−k

d

(
1 − 1

d

)d−k
. The algorithm is based on two steps;

The first ensures that each offline vertex’s fractional load at the end of the algorithm is at
least k/d, while the second step uses the water-level algorithm to allocate the remaining
volume. We analyze the algorithm using the primal-dual scheme and a carefully chosen
potential function, f (k,d). Second, we prove that the bound τ(k, d) is tight. We use the
primal-dual techniques from [3] to analyze a class of (k, d)-graphs where any online algorithm
is at most τ(k, d)-competitive.

Next, for arbitrary k ∈ R+, let α = k/d ≤ 1, we prove that for AdWords in the equally-
valued bids case, it is possible to achieve almost τ(α)-competitive values (under the small bid
assumption), where τ(α) = 1 − (1 − α) · eα−1. It is evident that limd→∞,k=α·d τ(k, d) = τ(α).
Figure 1 presents a comparison of the bound of τ(k, d) as a function of α = k/d and d. The
algorithm uses a similar approach to our fractional matching algorithm on (k, d)-graph and
uses a ’smoother’ potential function f (α) as a function only of α. We round the fractional
algorithm outputs using the algorithm of [5].

Finally, we prove that achieving a τ(α)-competitive algorithm for the AdWords problem
for bids of arbitrary value is impossible. To do that, we significantly extend the lower bounds
of [3], which essentially uses a single scenario, to a multi-scenario instance; we show that
the primal-dual techniques can be adapted to analyze the multi-scenario. Subsequently, we
prove an improved upper bound by carefully choosing such a multi-scenario instance.

2 Preliminaries

The AdWords problem
The online ad auctions problem comprises a group of L = {1, . . . , n} = [n] buyers, where
bidder i has a daily budget of B(i). In the online setting, a group of R = [m] products
arrives one by one, and each buyer i places a bid b(i, j) for each product j. The objective is
to allocate the products to buyers to maximize the seller’s revenue. The allocation can be
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Primal: Dual:

max
∑
j∈R

∑
i∈N(j)

b(i, j) · xi,j∑
j∈N(i)

b(i, j) · xi,j ≤ B(i), ∀i ∈ L (yi)∑
i∈N(j)

xi,j ≤ 1, ∀j ∈ R (zj)

xi,j ≥ 0, ∀i, j

min
∑
i∈L

B(i) · yi +
∑
j∈R

zj

b(i, j) · yi + zj ≥ b(i, j), ∀i, j (xi,j)
yi ≥ 0, ∀i ∈ L

zj ≥ 0, ∀j ∈ R

Figure 2 The fractional AdWords problem (the primal) and the corresponding dual problem.

integral, where a product goes to a single buyer, or fractional, where products can be divided
among several buyers. However, the sum of the fractions cannot exceed 1 for each product.
The revenue received from a buyer i is the minimum between the sum of the costs of the
products allocated to the buyer (times the allocated fraction) and the buyer’s total budget.
The problem can be formulated as a linear programming problem where the variable xi,j

denote the fraction of product j allocated to buyer i. The objective is to maximize the total
seller revenue, and the constraints guarantee that the sum of fractions for each product does
not exceed 1 and each buyer’s budget is not exceeded. See Figure 2 for the corresponding
fractional Linear Program and its dual.

▶ Definition 1 ((k, d)-bounded graph [14]). A bipartite graph G = (L, R, E) is (k, d)-bounded
if each left vertex i ∈ L has a degree d(i) ≥ k, and every right vertex j ∈ R has a degree
d(j) ≤ d. For ad allocations, we replace d(i) ≥ k with the property

∑
j b(i, j) ≥ k · B(i).

Rounding the fractional solution. For the AdWords problem with equal bids per advertiser,
in [5], they presented an algorithm that rounds the online fractional solution, such that if each
product’s bid price is small compared to the total bidder budget (the small bid assumption),
then this rounding phase only reduces the revenue by a factor of 1 − o(1) compared to the
fractional solution revenue. Formally, let bmax = maxj b(j) denote the maximum bid price,
and Bmin = mini B(i).

▶ Theorem (Theorem 5.4 in [5]). There exists a deterministic online rounding algorithm,
where the integral allocation algorithm’s revenue is at least 1 − o(1) times the revenue of the
fractional solution, provided that: (1 + bmax)

√
ln 2n
Bmin

= o(1)

3 Matching on bounded-degree graphs

In this section, we prove the tight bounds for online fractional bipartite matching on bounded-
degree graphs.

The b-matching problem
Consider a bipartite graph G = (L ∪ R, E), where L represents servers and R represents
requests. The set of servers, L, is known beforehand, and each server i ∈ L has an individual
capacity B(i), indicating that it can be matched with up to B(i) requests. Requests arrive
online, one by one, and when a new request j ∈ R arrives, its incident edges are revealed, and
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it must be immediately and irreversibly matched to an eligible server, provided one exists.
The objective is to maximize the number of matching edges. According to the AdWords
formulation, we have b(i, j) = 1 if (i, j) ∈ E and 0 otherwise.

A fractional version of the bipartite matching problems allows for every node j ∈ R to be
allocated partially with nodes i ∈ N(j) in fractions xi,j . We study the case where G is a
(k, d)-graph. Let τ(k, d) = 1 − d−k

d

(
1 − 1

d

)d−k
.

▶ Theorem 2. For the fractional online b-matching problem in (k, d)-graphs, where k ≤ d

and k, d ∈ N+, there exists a τ(k, d)-competitive algorithm.

In Section 4, we prove the result is tight for any (k, d) graph. Note that we may apply the
rounding algorithm of [5] (Theorem 5.4) to the b-matching problem.

3.1 The Two-Step-Water-Level algorithm

For a vertex i ∈ L, denote the level of vertex i as ℓ(i) =
∑

j∈N(i)
xij

B(i) . Note that, for (k, d)-
graphs, a naive online algorithm can ensure that the level of any i ∈ L at the end of the
algorithm is k/d. This is achieved by assigning each online vertex a 1/d fraction to each
neighbor. Since the degree of any j ∈ R is at most d, the algorithm is feasible. In addition,
since for any vertex i ∈ L, the degree is at least k · B(i), its level at the end of the algorithm
will be k/d. Accordingly, our algorithm consists of two steps. For the allocation of an online
vertex j ∈ R, the first step fractionally allocates the vertex’s volume to vertices in i ∈ N(j)
such that their degree is less or equal to k · B(i). As a result of this step, a level of at least
k/d is guaranteed at the end of the algorithm’s run for all i ∈ L. The second step runs the
water-level algorithm, continuously raising the level on the current set of minimum-level
vertices in N(j) on the remainder of the vertex j volume. We use the notations dj(i) and
ℓj(i) for the degree and level of vertex i after vertex j’s arrival, respectively. Given a function
f (k,d) : [0, 1] → [0, 1], which we will describe later, the algorithm also maintains a solution to
the dual variables.

Algorithm 1 The Two-Step-Water-Level algorithm.

Upon the arrival of a new vertex j ∈ R:
1. For each vertex i ∈ N(j), such that dj(i) ≤ k · B(i)

Increase (if necessary) the level of i to dj(i)/d

2. Using the leftover volume:
Increase the level of vertices in N(j) using the water-level algorithm

3. Update the dual variables, let ℓ(j) = mini∈N(j) ℓj(i) and ℓ̂(j) = max(k/d, ℓ(j)).
Set yi = f (k,d)(ℓ(i)), for i ∈ N(j)
Set zj = 1 − f (k,d)(ℓ̂(j))

3.2 The algorithm’s feasibility

We will prove that for a proper f (k,d),(for brevity’s sake, we use f for f (k,d) for the rest of the
section) the primal and dual solutions of the Two-Step-Water-Level (TSWL) algorithm
are feasible.
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Figure 3 The function f (k,d)(x) for k = 2 and d = 5.

▶ Lemma 3. Given a function f : [0, 1] → [0, 1], where f is a monotone non-decreasing
function, the primal and dual solutions of the TSWL Algorithm are feasible at the end of the
algorithm.

Proof. First, we will show that the algorithm does not over-allocate online vertex j in step 1.
We assume that the algorithm is feasible until the arrival of vertex j. For any vertex i ∈ N(j),
its degree increases by 1, and by the algorithm definition, its level prior to the assignment
of vertex i is at least dj(i)−1

d . Therefore, for any such i, xij after the first step is at most
dj(i)

d − dj(i)−1
d = 1

d , and by the definition of (k, d)-graphs, |N(j)| ≤ d. Therefore, vertex j

fractional allocation at step 1 is at most |N(j)| · 1
d ≤ 1. By the definition of step 1, and since

G is (k, d)-graph, at the end of the sequence, the level of any vertex i ∈ L is at least k/d.
To prove that the dual is feasible, we need to verify for i ∈ N(j) that yi + zj ≥ 1

(b(i, j) = 1). If ℓ(j) ≥ k/d, then

yi + zj = f(ℓ(i)) + 1 − f(ℓ(j)) ≥ f(ℓj(i)) + 1 − f(ℓ(j)) ≥ 1,

where the first inequality is since ℓ(i) ≥ ℓj(i) and f is a monotone, non-decreasing function,
and the second inequality is because, by definition, ℓj(i) ≥ ℓ(j). If ℓ(j) < k/d, by definition
ℓ̂(j) = k/d, then we have

yi + zj = f(ℓ(i)) + 1 − f(ℓ̂(j)) ≥ f(k/d) + 1 − f(k/d) ≥ 1,

the first inequality is since the level of any vertex i ∈ L at least k/d and the end of the
algorithm, and since f is a monotone, non-decreasing function. ◀

3.3 The potential function
For a function f , we denote f ′

+(x)(f ′
−(x)) the right (left) derivative of f at point x.

▶ Lemma 4. For any k ≤ d,k ∈ N+ there exists f (k,d) = f : [0, 1] → [0, 1], such that
f, f ′ are monotone, non-decreasing functions.
f(0) = 0, f(1) = 1.
1 − f

(
d−i

d

)
+ f ′

−
(

d−i
d

)
= 1

τ(k,d) , for i ∈ {0, . . . , d − k}.
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Proof. Let β = 1/τ(k,d). We define f [0, 1] → [0, 1] as a piece-wise linear function.

f ′
+

(
d − i + 1

d

)
= f ′

−

(
d − i

d

)
= β ·

(
d − 1

d

)i

, for i ∈ {0, . . . , d − k − 1},

and

f ′
+(0) = f ′

−

(
k

d

)
= β ·

(
d − 1

d

)d−k

.

By definition, f ′ is a monotone, non-decreasing function, and since f ′(x) > 0, f is a monotone,
increasing function. We set f(0) = 0, we have

f(1) = f(0) + k

d
· f ′

−

(
k

d

)
+ 1

d
·

d−k−1∑
i=0

f ′
−

(
d − i

d

)

= 0 + k

d
· β ·

(
d − 1

d

)d−k

+ 1
d

·
d−k−1∑

i=0
β ·
(

d − 1
d

)i

= β ·

(
k

d
·
(

d − 1
d

)d−k

+ 1 −
(

d − 1
d

)d−k
)

= 1

Finally, we show by induction that for i ∈ {0, . . . , d−k}, we have 1−f
(

d−i
d

)
+f ′

−
(

d−i
d

)
= β.

For i = 0:

1 − f

(
d − i

d

)
+ f ′

−

(
d − i

d

)
= 1 − 1 + β ·

(
d − 1

d

)0
= β

and for i ∈ {1, . . . , d − k}:

1 − f

(
d − i − 1

d

)
+ f ′

−

(
d − i − 1

d

)
= 1 − f

(
d − i

d

)
+ 1

d
· f ′

−

(
d − i

d

)
+ d − 1

d
· f ′

−

(
d − i

d

)
= 1 − f

(
d − i

d

)
+ f ′

−

(
d − i

d

)
= β. ◀

3.4 The algorithm’s competitive ratio
We are now able to complete the proof of Theorem 2. By demonstrating that the value of
the primal is at least τ(k, d) = 1

β times the value of the dual solution, we conclude by the
weak duality that the TSWL is τ(k, d)-competitive.

We prove it by bounding the ratio of the increment of the primal and the dual objectives
for every arrival of a vertex j ∈ R. We denote ∆P (∆D) as the primal (dual) value increment.
Moreover, ∆D = ∆L + ∆R, where ∆L(∆R) refers to the increment from the left side (right
side). Now, we have the following key lemma:

▶ Lemma 5. For every arrival of a vertex j ∈ R, we have ∆D ≤ β · ∆P .

Proof. Given a vertex j ∈ R, let t = ℓ(j) · d and t⋆ = ⌈t⌉. We divide it into three cases:
Case 1: ∆P < 1. Here, t = d and vertex j’s neighbors have been fully matched, i.e.,

ℓ(i) = 1 for all i ∈ N(j). Then we would set ∆R = zu = 1 − f(1) = 0, thus we and
∆L ≤ f ′

−(1) · ∆P since f ′ in monotone, non-decreasing, therefore:

∆D = ∆L + ∆R ≤ f ′
−(1) · ∆P + 0 = f ′

−(1) · ∆P = β · ∆P
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Case 2: ∆P = 1 and t > k. In this case, we know that zj = 1 − f(t/d). Next, let V1 be the
increment volume for j’s neighbors between t⋆ − 1 and t⋆. And Let V2 = 1 − V1, i.e., the
total volume of the increment for j’s neighbors below t⋆ − 1. We have

∆L ≤ V1 · f ′
−( t⋆

d
) + V2 · f ′

−( t⋆ − 1
d

)

= V1 · f ′
−( t⋆

d
) + V2 · d − 1

d
· f ′

−( t⋆

d
)

= d − 1
d

· f ′
−( t⋆

d
) + 1

d
· V1 · f ′

−( t⋆

d
)

≤ d − 1
d

· f ′
−( t⋆

d
) + 1

d
· (t − t⋆ + 1) · f ′

−( t⋆

d
)

= f ′
−( t⋆

d
) + 1

d
· (t − t⋆) · f ′

−( t⋆

d
)

where the first inequality is because f ′ in a monotone, non-decreasing function, and the
last inequality holds since we know that (note that j ∈ R, therefore d(j) ≤ d)

V1 ≤
(

t

d
− t⋆ − 1

d

)
· d(j) ≤

(
t

d
− t⋆ − 1

d

)
· d = t − t⋆ + 1

And, by f ’s definition:

∆R = 1 − f( t

d
) = 1 − f( t⋆

d
) − ( t

d
− t⋆

d
) · f ′

−( t⋆

d
) = 1 − f( t⋆

d
) − 1

d
· (t − t⋆) · f ′

−( t⋆

d
).

Therefore,

∆D = ∆R + ∆L ≤ 1 − f( t⋆

d
) + f ′

−( t⋆

d
) = β.

Case 3: ∆P = 1 and t ≤ k. By the algorithm definition, ∆R = zj = 1 − f(k/d), and
∆L = f ′

−(k/d). Thus, we have

∆D = ∆R + ∆L = 1 − f(k

d
) + f ′

−(k

d
) = β. ◀

4 Upper Bounds for fractional matching

In this section, we provide an instance indicating that τ(k, d) is the best possible competitive
ratio that can be achieved by any online algorithm.

▶ Theorem 6. For fractional online matching in (k, d)-graphs, no online algorithm can be
better than τ(k, d)-competitive. This upper bound also holds for randomized algorithms.

Proof. The hard instance is inspired by [3]. More concretely, we construct a parameterized
family of primal linear programs based on a candidate collection of input sequences for proving
the lower bound, where the objective function corresponds to optimizing the competitive
ratio. Given d, k, our instance is a bipartite graph G(L, R, E), where the number of vertices
is n = |L| = |R|. Given a deterministic online fractional algorithm, the adversary sequence
has d phases in total. Wherein in the first k phases, the adversary divides L into n/d

groups, each containing d vertices, and introduces a single online vertex adjacent to each
group. This guarantees d(i) ≥ k for all i ∈ L and that the offline can match k vertices
from each group. Accordingly, the adversary sets Lk+1 ⊂ L by dropping each group’s
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k-lowest load vertices (according to the online algorithm assignment). Next, in phase
t ∈ {k + 1, . . . , d − 1} = [k + 1, d − 1], the adversary divides Lt into |Lt|/d groups and
introduces a single online vertex adjacent to each group. The adversary defines Lt+1 ⊂ Lt by
dropping the lowest load vertex from each group. In the last phase, for each vertex i ∈ Ld,
the adversary introduces an online adjacent vertex.

Formally, the adversary defines for each phase t ∈ [d], Lt ⊆ L, where all the new edges in
phase t would be connected only to Lt, and the adversarial would set Ld ⊆ Ld−1 ⊆ · · · ⊆
L1 = L. Moreover, the adversary groups each set Lt into |Lt|/d disjoint groups, each of
size d, denoted as Lt,s, for s ∈ [|Lt|/d]. In phase t ∈ [d − 1], |Lt|/d online vertices arrive,
and the sth (s ∈ [|Lt|/d]) vertex has edges to the offline vertices in the group Lt,s. For
t ∈ [k], Lt = L, and the adversary uses the same (arbitrary) grouping, i.e., Lt1,s = Lt2,s for
t1, t2 ∈ [k], s ∈ [n/d]. According to the online algorithm assignment, the adversary sets Lk+1.
Specifically, for s ∈ [n/d], let Le

k,s ⊂ Lk,s the subset of the k-lowest load vertices in Lk,s after
phase k and Lm

k,s = Lk,s \ Le
k,s (the subset of the (d − k)-highest load vertices in Lk,s). We

define Lk+1 = ∪n/d
s=1Lm

k,s. note that,|Lk+1| = (1 − k/d) |Lk|. Similarly, the adversary sets Lt+1,
for t ∈ [k +1, d−1] as follow: For s ∈ |Lt|

d , let Le
k,s ⊂ Lk,j be the subset containing the lowest

total load vertex in Lt,s after phase t and Lm
t,s = Lt,s \ Le

t,s. We define Lt+1 = ∪|Lt|/d
s=1 Lm

t,s.
Note that, |Lt+1| = (1 − 1/d) |Lt| for t ∈ [k + 1, d − 1]. Finally, in phase d, for each vertex
i ∈ Ld, the adversary introduces an online adjacent vertex. We set n as a large constant,
ensuring that |Lt| for t ∈ [d] is a multiple of d.

Clearly, the optimal matching size is n since it matches online vertices of phases t ∈ [k]
to the vertices Le

k,s (for s ∈ [n/d]), and for t ∈ [k + 1, d − 1] match the s’th online vertex of
phase t to the vertex in Le

t,s. The rest of the Ld vertices are matched in the last phase.

4.1 The primal linear program
We would use xm

k (xe
k) as the average load assigned in phases [k] on vertices in Lm

k,s(Le
k,s) for

s ∈ [n/d]. Similarly, for t ∈ [k + 1, d − 1] we use xm
t (xk

t ) as the average load assigned in phase
t to vertices in Lm

t,s(Le
t,s). For t ∈ [k + 1, d − 1], we use um

t (ue
k) as the average total load

assigned before phase t to vertices in Lm
t,s(Le

t,s), and um
d as the average total load assigned

before phase d to Ld.

max |Lk|
d ((d − k)xm

k + k · xe
k) +

d−1∑
t=k+1

|Lt|
d

(xe
t + (d − 1)xm

t ) + |Ld|(1 − um
d )

(d − k) · xm
k + k · xe

k ≤ k (vk)
(d − 1) · xm

t + xe
t ≤ 1 ∀t ∈ [k + 1, d − 1], (vt)

xe
k ≤ xm

k (mk)
xe

t + ue
t ≤ xm

t + um
t ∀t ∈ [k + 1, d − 1], (mt)

d · xm
k ≤ (d − 1) · um

k+1 + ue
k+1 (ck)

d · (xm
t + um

t ) ≤ (d − 1) · um
t+1 + ue

t+1 ∀t ∈ [k + 1, d − 2], (ct)
d · (xm

d−1 + um
d−1) ≤ d · um

d (cd−1)
xm

t , um
t , xe

t , ue
t ≥ 0 ∀t ∈ [k, d]

Constraint vk implies that the total volume in vertices in Lm
k (note, |Lm

k |
|Lk| = d−k

d ) plus
the total volume of vertices in Le

k (note, |Le
k|

|Lk| = k
d ) does not exceed the total volume in the

first k phases. Constraint vt for t ∈ [k + 1, d − 1] implies that the total volume of vertices

ESA 2023



35:10 Primal-Dual Schemes for Online Matching in Bounded Degree Graphs

in Lm
t (note, |Lm

t |
|Lt| = d−1

d ) plus the total volume of vertices in Le
t (note, |Le

t |
|Lt| = 1

d ) does not
exceed the total volume assigned in those phases. Constraints mt for t ∈ [k, d − 1] preserve
the monotonicity property, i.e., the average total load of vertices in Lm

t,s is higher than the
average total load of vertices in Lm

e,s, by the groups’ definition. Constraints ct for t ∈ [k, d−1]
preserve the total volume of Lm

t after phase t as the total volume of Lt+1 prior to phase
t + 1. Finally, the objective function captures the fractional volume assigned on L.

4.2 The dual linear program
The dual of the linear program is:

min k · vk +
d−1∑
t=k

vt + |Ld|

(d − k) · vk − mk + d · ck ≥ n · (1 − k/d) (xm
k )

k · vk + mk ≥ n · k

d
(xe

k)

(d − 1) · vt − mt + d · ct ≥ n · (1 − k/d) · (1 − 1/d)t−k ∀t ∈ [k + 1, d − 1], (xm
t )

vt + mt ≥ n

d
· (1 − k/d) · (1 − 1/d)t−k−1 ∀t ∈ [k + 1, d − 1], (xm

t )

− mt − (d − 1) · ct−1 + d · ct ≥ 0 ∀t ∈ [k + 1, d − 1], (um
t )

mt − ct−1 ≥ 0 ∀t ∈ [k + 1, d − 1], (ue
t )

− d · cd−1 ≥ −n · (1 − k/d) · (1 − 1/d)d−k−1 (um
d )

4.3 Constructing the dual solution
By assuming the constraints are tight, we have by constraint (um

d ): cd−1 = n
d ·(1 − 1/d)d−k−1

,

by summing constraints (um
t ) and (ue

t ) for all t ∈ [k + 1, d − 1]: ct = ct−1, and, therefore,

ct = n

d
· (1 − 1/d)d−k−1

, for all t ∈ [k, d − 1].

By summing constraints (xm
k ) and (xe

k) for all t ∈ [k + 1, d − 1]: d · vk + d · ck = n, therefore:

vk = n · 1 − d · ck

d
= n

d
·
(

1 − (1 − k/d) · (1 − 1/d)d−k−1
)

.

By summing constraints (xm
t ) and (xe

k) for all t ∈ [k + 1, d − 1], we have: d · vt + d · ct =
n · (1 − k/d) · (1 − 1/d)t−k−1, therefore:

vt = n

d
· (1 − k/d) · (1 − 1/d)d−k−1

(
(1 − 1/d)t−d − 1

)
, for all t ∈ [k + 1, d − 1].

Finally, by constraint xe
k, mk = n·k

d − k · vk, and by constraint xm
t , mt = n

d · (1 − k/d) ·
(1 − 1/d)t−k−1 − vt. It is easy to verify that the dual is feasible. The value of the dual
objective function:

k · vk +
d−1∑

t=k+1
vt + |Ld| = n · k

d
·
(

1 − (1 − k/d) · (1 − 1/d)d−k−1
)

+
d−1∑

t=k+1

n

d
· (1 − k/d) · (1 − 1/d)d−k−1

(
(1 − 1/d)t−d − 1

)
+ n · (1 − k/d) · (1 − 1/d)d−k−1

= n · τ(k, d)
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Therefore, there is a feasible solution for the dual, with the value n·τ(k, d). By weak duality,
and since the primal captures the objective of the online algorithm, any online algorithm
will fractionally match at most n · τ(k, d) vertices. Finally, since by our construction, the
optimal value is n, any online is at most τ(k, d) competitive as required. See discussion in [3]
for applying the lower bound also on randomized algorithms. ◀

5 Allocation problem

We improve the competitive ratio for the allocation problem on (k, d)-graphs for k ≤ d.

The allocation problem
In the allocation problem, a seller is interested in selling products to a group of buyers
L = [n], where buyer i ∈ L has a budget B(i), and R is a set of products the seller introduces
one by one. Each product j ∈ R has a fixed price b(j). Upon the arrival of a product, the
buyers announce to the seller whether they are interested in buying the current product for
the set price. The seller then decides (instantly) which of the interested buyers to sell the
product to. Using the AdWords formulation, we have b(i, j) ∈ {0, b(j)} for all i.

For k ≥ d, there exists a trivial online fractional solution. Assume k ≤ d and let α = k/d

and τ(α) = 1 − (1 − α) · eα−1, we will show that there exists a τ(α)-competitive fractional
online algorithm.

▶ Theorem 7. For the fractional online allocation problem in (k, d)-graphs, where α = k/d,
there exists a τ(α)-competitive algorithm.

Note that the upper bound of Section 4 also holds for the allocation problem; hence, the
result is tight. The algorithm and analysis are similar to the upper bound in Section 4,
except we use a smooth potential function f (α).

Let α = k/d, τ(α) = 1 − (1 − α) · eα−1, and for a fixed alpha, set β = 1/τ(α), and define
g(x) = 1 + β · (exp(x − 1) − 1), and f (α),

f (α)(x) =
{

g(x) for x ∈ [α, 1]
x·g(α)

α for x ∈ [0, α),

▶ Lemma 8. For f = f (α):
f(0) = 0, f(1) = 1.
f and f ′ are continuous functions in the segment [0, 1], and f, f ′ are monotone non-
decreasing functions.
For x ∈ [α, 1] we have 1 − f(x) + f ′(x) = β

Proof. Clearly, f(x), f ′(x) are continuous functions in the segments [0, α), (α, 1]. In addition,
f−(α) = g(α) = f+(α), so f is a continuous function and

f ′
+(α) = g′(α) = β · exp(α − 1)

= β · α exp(α − 1)
α

= β · (1/β − 1 + exp(α − 1))
α

= 1 + β · (exp(α − 1) − 1)
α

= g(α)
α

= f ′
−(α),

therefore, f ′ is continuous as well. And f ′(x) > 0 for x ∈ [0, 1]. Moreover, f ′′(x) = 0
for x ∈ [0, α] and f ′′(x) = exp(x − 1)/β ≥ 0; hence, f ′ is monotone non-decreasing.
f(0) = 0 · g(α)/α = 0, and f(1) = g(1) = 1 + β · (exp(1 − 1) − 1) = 1. Finally, for x ∈ [α, 1]
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Figure 4 The functions f (α) and f ′(α), for α = 0.4.

1 − f(x) + f ′(x) = 1 − g(x) − g′(x)
= 1 − (1 + β · (exp(x − 1) − 1)) + β · exp(x − 1) = β. ◀

5.1 The Two-Step-Water-Level Allocation algorithm

For i ∈ L, let N(i) be the set of products that buyer i is interested in. Let T (i) =
∑

j∈N(i)
b(j)

B(i)
be the ratio between the sum of prices in which buyer i is interested, to its budget, and let
G(i) =

∑
j∈N(i) b(j) · xi,j be the total gain of bidder i, the level of buyer i ∈ L, defined as

ℓ(i) = G(i)
B(i) . Accordingly, we define the degree and level after the arrival of product j, as

T j(i) =
∑

t∈N(i),t≤j b(t), and ℓj(i) = Gj(i)
B(i) , where Gj(i) =

∑
t∈N(i),t≤j b(t) · xi,t.

Algorithm 2 The Two-Step-Water-Level Allocation algorithm.

Upon the arrival of a new product j ∈ R:
1. For each buyer i ∈ N(j), such that T j(i) ≤ k

Increase (if necessary) Gj(i), the gain of buyer i, to T j(i)/d

2. Using the leftover volume of product j:
Increase the gain of bidders in N(j) using the water-level algorithm (according to

the buyer’s level)
3. Update the dual variables, let ℓ(j) = mini∈N(j) ℓj(i) and ℓ̂(j) = max(k/d, ℓ(j)).

Set yi = f (α)(ℓ(i)), for i ∈ N(j)
Set zj = 1 − f (α)(ℓ̂(j))

5.2 The algorithm’s feasibility
First, we will prove that for a proper f (α) (for brevity’s sake, we use f for f (α) for the rest
of the section), the primal and the dual solutions of Two-Step-Water-Level Allocation
algorithm (TSWLA) are feasible.
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▶ Lemma 9. Given a function f : [0, 1] → [0, 1], where f is monotone, non-decreasing the
primal and dual solutions of the TSWLA algorithm are feasible at the end of the algorithm.

Proof. First, we will show that the algorithm does not over-allocate product j in step 1.
We assume that the algorithm is feasible until the arrival of product j, and we bound the
value of xi,j after step 1, and we will show that xi,j ≤ 1/d, for all i ∈ N(j). For i ∈ N(j),
by our assumption that the algorithm is feasible until the arrival of product j, its level
before the arrival of j is at least T j(i)−b(j)/B(i)

d , by rearranging the terms xi,j ≤ 1
d . Second,∑

i∈N(j) xi,j ≤ |N(j)|
d ≤ 1, by d’s definition. In the second step, the water level algorithm

never increases the level above one, and, therefore, G(i) ≤ B(i) for all i ∈ L. We will show
that for any monotone, non-decreasing function f : [0, 1] → [0, 1], the dual is feasible at the
end of the algorithm’s run. We have for all i ∈ L, ℓ(i) ≥ min(T (i),k)

d ≥ k/d, where the last
inequality is by k’s definition. The dual constraints: If ℓ(j) ≤ k/d, for i ∈ N(j), we have

b(j) · yi + zj = b(j) · f(ℓ(i)) + b(j) · (1 − f(k/d)) ≥ b(j),

since ℓ(i) ≥ k/d for all i ∈ L at the end of the algorithm and f is monotone, non-decreasing.
If ℓ(j) > k/d, we have,

b(j) · yi + zj ≥ b(j) · f(ℓj(i)) + b(j) · (1 − f(ℓ̂(j))) ≥ b(j),

where the first inequality is because ℓ(i) only increases, and f is monotone, non-decreasing. ◀

5.3 Algorithm’s competitive ratio
We are now able to complete the proof of Theorem 7. By proving that the value of the
Primal is at least the τ(α) = 1

β times the value of the dual solution, then, by weak duality,
we will conclude the TSWLA is τ(α)-competitive as required.

We prove it by bounding the ratio of the increment of the primal and the dual for
every arrival. We denote ∆P (∆D) to denote the increment for the primal (dual) variable.
Moreover, ∆D = ∆L + ∆R, where ∆L(∆R) refers to the increment from the left side (right
side). Now, we have the following key lemma:

▶ Lemma 10. For every arrival of a product j ∈ R, we have ∆D ≤ ∆P · β.

Proof. At every step t, we have ∆R = zt, ∆L =
∑

i∈N(j) ∆Li, where ∆Li = B(i) ·(yj
i −yj−1

i )
We note that, d∆Pi

dxi,j
= b(j). Therefore, ∆P = b(j) ·

∑
i∈N(j) xi,j .

d∆Li

dxi,j
= B(i) · dyi

dxi,j
= B(i) · b(j)

B(i) · f ′(ℓ(i)) ≤ b(j) · f ′(ℓj(i)) = b(j) · f ′(ℓ̂(j))

where the inequality is because f ′ is a monotone non-decreasing function, and the last
equality is since f ′(x) = f ′(α) for x ∈ [0, α].

Therefore, we have ∆L ≤ b(j) · f ′(ℓ̂(j))
∑

i∈N(u) xi,j

Case 1.
∑

i xi,j < 1. In this case, ℓ(j) = 1, ∆R = zj = 1 − f(1) = 0, and we have

∆D = ∆L + ∆R ≤ b(j) · f ′(1) ·
∑

i

xi,j = (1 − f(1) + f ′(1)) · ∆P = β · ∆P

Case 2.
∑

i xi,j = 1, ℓ(j) > k/d. We have ∆R = zj = b(j) · (1 − f(ℓ(j)) and ∆P = b(j).

∆D = ∆L+∆R ≤ b(j)·f ′(ℓ(j))+b(j)·(1−f(ℓ(j)) = b(j)·(1−f(ℓ(j))+f ′(ℓ(j))) = β ·∆P

Case 3.
∑

i xi,j = 1, ℓ(j) ≤ k/d. Again, we have ∆P = b(j). We know that ∆R = zj =
b(u) · (1 − f(k/d)). Note that f ′(x) = f ′(k/d) for x ∈ [0, k/d].

∆D = ∆L+∆R ≤ b(j)·f ′(ℓ(j))+b(j)·(1−f(k/d)) = b(j)·(1−f(k/d)+f ′(k/d)) = β ·∆P . ◀
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6 Upper Bounds for the Adwords problem

In this section, we prove that τ(k, d) competitiveness is impossible for the Adwords problem.

▶ Theorem 11. For fractional AdWords in (k, d)-graphs, there exists k, d and fixed ϵ > 0,
such that no online algorithm can be better than (τ(k, d) − ϵ)-competitive.

The hard instance is composed of several scenarios. The intuition behind the scenario
is that if for a certain j, b(i1, j) > b(i2, j), then, on the one hand, the online algorithm
should allocate the item to i1 in order not to lose its higher price, and, on the other hand,
by doing so the optimal allocation can use item j to i2. We amplify this example and prove
an improved upper bound for α = 1/2 (k = d/2) and B(i) = 1 for all i ∈ L. First, we bound
the gain of a subset of the bidders after several sequence steps.

6.1 Bounding the gain of a subset of the bidders

Let Q ⊆ L be a subset of vertices. After several sequence steps, we bound the total online
gain that can be extracted from Q, where the degree of i ∈ Q is already k, and the adversary
determined how many bidders from Q have already exhausted their budget in previous steps.
We compute an upper bound on the total gain of an online algorithm on Q as a function of
the average online gain on Q in previous steps by defining the rest of the sequence for this
subset Q and bounding the total gain using a linear program. The rest of the sequence for
this Q is as the second part of Section 4. Specifically, it defines Qk+1 as a subset of Q in
which the current gain in OPT is 0. In phase t ∈ [k + 1, d − 1], the adversary divides Qt into
|Qt|/d groups and introduces for each group’s bidders a product with an equal bid value of 1.
The adversary defines Qt+1 by dropping the lowest gain bidder from each group. In the last
phase, for each bidder i ∈ Qd, the adversary introduces a product with a bid of 1.

Formally, given such Q and the decomposition of Q into Qe
k, Qm

k where the average gain in
Qe

k is, at most, the average gain of Qm
k For t ∈ [k + 1, d], the adversarial would define at each

phase t ∈ [k + 1, d], Qt ⊆ Q, where Qk+1 = Qm
k . The adversary groups each Qt into |Qt|/d

disjoint groups, each of size d, denoted as Qt,s, for s ∈ [|Qt|/d]. In phase t ∈ [k + 1, , d − 1],
|Qt|/d products arrive and the s’th (s ∈ [|Qt|/d]) bid b(i, s) = 1 to i ∈ Qt,s (and 0 otherwise).
In phase t ∈ [k +1, , d−1], |Qt|/d products arrive and the s’th (s ∈ [|Qt|/d]) product bids are
b(i, s) = 1 to all the bidders in group i ∈ Qt,s. Qt+1 for t ∈ [k + 1, d − 1] is set as follows: For
s ∈ |Qt|

d , let Qe
k,s ⊂ Qk,s be the subset containing the lowest gain bidder in Qt,s after phase

t and Qm
t,s = Qt,j \ Qe

t,j . We define Qt+1 = ∪|Qt|/d
s=1 Qm

t,s. note that, |Qt+1| = (1 − 1/d) |Qt| for
t ∈ [k + 1, d − 1]. Let GQ be the total gain of Q vertices.

Bounding GQ as a function of previous phases. Next, we bound the total gain of GQ, given
that after phase k, a decomposition of Q into Qe

k, Qm
k exists (i.e., Q = Qe

k ∪Qm
k ) such that xm

k

(xe
k) is the average load on Qm

k (Qe
k) and xe

k ≤ xm
k (constraint m̃k). Assuming that the total

gain of Q until (not including) step k +1 is Gk
Q, we have |Qm

k |
|Q| ·xm

k + |Qe
k|

|Q| ·xe
k ≤ Gk

Q

|Q| , constraint
ṽk). We will define Qk+1 = Qm

k , and accordingly, we have d · xm
k ≤ (d − 1) · um

k+1 + ue
k+1

(constraint ñk). Denote V Q = GQ
k

|Q| , and rQ = |Qm
k |

|Q| the following Linear program, will bound
G(V Q, rQ) the total gain that can be extracted from Q.
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G(V Q, rQ) = max |Q| · V Q +
∑d−1

t=k+1
|Qt|

d · (xe
t + (d − 1)xm

t ) + |Qd| · (1 − um
d ),

such that:

rQ · xm
k + (1 − rQ) · xe

k ≤ V Q (ṽk)
(d − 1) · xm

t + xe
t ≤ 1 ∀t ∈ [k + 1, d − 1], (vt)

xe
k ≤ xm

k (m̃k)
xe

t + ue
t ≤ xm

t + um
t ∀t ∈ [k + 1, d − 1], (mt)

d · xm
k ≤ (d − 1) · um

k+1 + ue
k+1 (ñk)

d · (xm
t + um

t ) ≤ (d − 1) · um
t+1 + ue

t+1 ∀t ∈ [k + 1, d − 2], (ct)
d · (xm

d−1 + um
d−1) ≤ d · um

d (cd−1)
xm

t , um
t , xe

t , ue
t ≥ 0 ∀t ∈ [k, d]

6.2 The Scenarios

Let L = U ∪ D, such that |U | = |D| = n, We divide U(D) into n/k disjoint groups Uk,s(Dk,s)
such that |Uk,s| = |Dk,s| = k, for s ∈ [n/k].

Phase 0. For each s ∈ [n/k], introduce a product j, such that b(i, j) = 0.26 · d for i ∈ Uk,s

and b(i, j) = 0.24 · d for j ∈ Dk,s. Any online algorithm must determine γ =
∑

i∈Uk,s,j
xi,j/n,

the average portion of the items of phase 0 assigned to U . Next, the adversary introduces
products of phase k (phases [k − 1] are empty).

First Scenario. For each s ∈ [n/(2 · k)], the adversary introduces two products j1, j2, such
that b(i, j1) = 0.24 · d for i ∈ Uk,2·s−1 ∪ Uk,2·s and b(i, j2) = 0.26 · d for i ∈ Dk,2·s−1 ∪ Dk,2·s.

Second Scenario. For each s ∈ [n/k], the adversary introduces a product j, such that
b(i, j) = 0.24 · d for i ∈ Uk,s and b(i, j) = 0.26 · d for j ∈ Dk,s. Any online algorithm must
determine δ =

∑
i∈Uk,s,j

xi,j/n, the average portion of the items of phase k of the second
scenario assigned to U . Note that, in both scenarios, the current degree of each vertex i ∈ L

is k. Using the values γ, δ, we bound the average gain per bidder of U(D) up to phase k for
scenario o, denoted as V U(o)(V D(o)). For the first scenario:

V U(1) = 1
n

·
(n

k
· γ · 0.26 · d + n

d
· 0.24 · d

)
= 0.52 · γ + 0.24

V D(1) = 1
n

·
(n

k
· (1 − γ) · d · 0.24 · d + n

d
· 0.26 · d

)
= 0.74 − 0.48 · γ

For the second scenario:

V U(2) = 1
n

·
(n

k
· γ · 0.26 · d + n

k
· δ · 0.24 · d

)
= 0.52 · γ + 0.48 · δ

V D(2) = 1
n

·
(n

k
· (1 − γ) · d) · 0.24 · d + n

k
· (1 − δ) · 0.26 · d

)
= 1 − 0.48 · γ − 0.52 · δ

Similarly, we denote γOPT, δOPT as the corresponding values for the optimal allocation.
After setting those values (for a certain case), the gain of OPT on this subset would
be determined. Then, the adversary can omit bidders in the corresponding subset, i.e.,
determining rQ for Q ∈ U, D.
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Continuing the first scenario. In the first scenario, the adversary sets γOPT = 0 (i.e., uses
the products of phase 0 to increase the gain of vertices only in D). Taking into account
also the products of phase k of the first scenario, it omits the rU = 0.24 portion from U

and the rD = 0.74 portion from D, and continues the sequence for U, D separately using
Subsection 6.1 construction.

Formally, for s ∈ [n/k], let Ue
k,j ⊂ Uk,s be the subset of the (rU · k)-lowest gain vertices

in Uk,s after phase k and Um
k,s = Uk,s \ Ue

k,s (the subset of the ((1 − rU ) · k)-highest load
vertices in Uk,j), and define Uk+1 = ∪sUm

k,s. Accordingly, for s ∈ [n/k], let De
k,s ⊂ Dk,s be

the subset of the (rD · k)-lowest gain vertices in Uk,s after phase k and Um
k,j = Uk,j \ Qe

k,j

(the subset of the ((1 − rD) · k)-highest load vertices in Qk,j). We continue the scenario
separately for U and D using Subsection 6.1 construction. We bound the total gain of this
scenario using the LP G(V Q, rQ). Specifically, the total gain is at most (as a function of γ):

G(V U , rU ) + G(V D, rD) = G(0.52 · γ + 0.24, 0.24) + G(0.74 − 0.48 · γ, 0.74).

Continuing the second scenario. In the second scenario, the adversary uses γOPT = 1,
δOPT = 0 (i.e., uses the products of phase 0 to increase the gain of vertices only in U and the
products of the second scenario of phase k to increase the gain of vertices only in D). In this
case, it omits the rU = 0.52 portion from U and the rD = 0.52 portion from D. Similarly to
the previous case, we have:

G(V U , rU ) + G(V D, rD) = G(0.52 · γ + 0.48 · δ, 0.52) + G(1 − 0.48 · γ − 0.52 · δ, 0.52).

By our construction definition, in all scenarios, the optimal value is 2 · n. Therefore, in order
to bound c, we have the following LP

max c

such that: G(0.52 · γ + 0.24, 0.24) + G(0.74 − 0.48 · γ, 0.74) ≥ 2 · n · c

G(0.52 · γ + 0.48 · δ, 0.52) + G(1 − 0.48 · γ − 0.52 · δ, 0.52) ≥ 2 · n · c

By solving it numerically, we have for d = 100, k = 50, we have:

c ≤ 0.69485 < τ(0.5) ≂ 0.6967.
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1 Introduction

The query model of computation has proven a powerful model in which to prove quantum-
classical separations [26, 19, 15] and to understand the limits of quantum algorithms [2, 6, 28].
The power and usefulness of this computational model in the quantum setting in part derives
from the fact that bounded-error quantum query complexity for Boolean function evaluation
is tightly and beautifully described by a semidefinite program (SDP) – the general adversary
bound [46, 44]. The dual of this semidefinite program has played an important role in the
development and understanding of quantum algorithms. In particular, the dual has been used
to show the optimality of span program algorithms, which are a critical element for several
algorithm design paradigms [45, 8, 30, 32] and are useful in a wide range of applications
[11, 20, 12, 9, 7]. While we have methods to create a bounded-error quantum algorithm for
function evaluation based on a set of vectors that exactly satisfy the constraints of the general
adversary dual [44], it is natural to ask how robust this algorithm is to transformations
and perturbations. For example, can we take a vector set that satisfies the dual adversary
constraints and modify it to obtain an algorithm with better space complexity? Or can we
create an algorithm from a vector set that satisfies relaxed dual adversary constraints? In
this paper, we find criteria under which these modified or approximately satisfying vector
sets yield viable algorithms, and we consider two problems where such robustness is useful.

First, we study when we can reduce the space complexity of dual adversary-derived
algorithms. Almost all Boolean functions on n bits have unitary space complexity Ω(n) [31],
but we hope to discover conditions under which less space might be required. We do this by
determining when we can compress the dimension of a set of vectors that exactly satisfies
the dual adversary constraints. While the dual adversary is most commonly studied in the
context of query complexity, is it also closely related to unitary space complexity [31], and
the dimension of the satisfying vectors to the dual adversary problem determines the space
used by the algorithm. As building large quantum computers will likely continue to be a
technical challenge in the near to medium term [29], finding ways to minimize the space used
by quantum computers is important.

We use two approaches to compress the dimension of a satisfying vector set, and hence
reduce the space used by the resulting algorithm. First, we consider using a unitary
transformation to rotate the vectors to a smaller space. Next, we analyze applying the
Johnson-Lindenstrauss (JL) lemma, which is a powerful tool for compressing the dimension
of a vector set while approximately preserving the structure of the vectors. With our analysis,
we find the simpler, unitary transformation always results in a better compression than
the JL approach. But, with either compression method, we can show for any function
with polynomially many 1-valued inputs, or polynomially many 0-valued inputs, there is a
query-optimal algorithm that uses logarithmic space. While it is not surprising that there
is an algorithm that uses logarithmic space for such problems (one could iterate through
possible 1/0-valued inputs and run Grover’s search to test each one), it is not obvious that
there is a query-optimal algorithm that uses logarithmic space.

The second problem we consider is how to create an algorithm using the output of a
numerical SDP solver applied to the general adversary dual. One can plug the general
adversary dual into a classical SDP solver and find a set of vectors that is close to a
query-optimal, exactly satisfying vector set. Due to finite precision, we expect that the
numerical solution will almost never be exactly satisfying, but we would like to know if we
can still produce a query-optimal quantum algorithm. With our tools for creating robust
dual adversary algorithms, we bound the error that can be tolerated, and we describe how
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to take a vector set that does not quite satisfy the dual adversary constraints, but is within
the tolerable error, and use it to create a bounded-error algorithm. In the worst case, our
analysis requires an error that scales inversely with the number of 1-valued or 0-valued inputs.
While this can be exponential in number of bits in the function, prior to our work, it was
not clear how to create any algorithm from an approximately satisfying solution. Moreover,
the general adversary bound is an SDP with dimension |X| where X is the function domain,
so in general, solvers will already take time polynomial in |X| to solve classically [48], so we
expect that attaining this level of precision will only contribute polynomially to the overall
runtime. Additionally, we show numerically that, at least for small functions, the error bound
we require is easily attainable.

One may naturally wonder why a vector set that approximately satisfies the dual adversary
constraints does not immediately yield an appropriate algorithm. The challenge is that
the standard algorithm is based on a reflection about the span of a subset of those vectors.
For example, consider a vector set that should ideally be {|0⟩, |1⟩, |0⟩+ |1⟩}, but is instead
{|0⟩ + 10−10|2⟩, |1⟩, |0⟩ + |1⟩}. The span of the first set is 2-dimensional, but the span of
the second set is 3-dimensional, even though the two vector sets are very close by almost
any metric. If the algorithm reflects over a space that is much larger than it should, it
might not correctly evaluate the function on all inputs. Our techniques allow us to find
appropriate reflections (or in fact unitaries that are close to reflection) so that the algorithms
can proceed, even with errors like the example above. Along the way towards proving our
main results, we also develop several tools that may be of independent interest, including a
robust approximate spectral gap lemma and open-source code to find solutions to the general
adversary dual.

1.1 Related Work
Space Complexity and Compression

Reichardt observes that that the space used by the dual adversary algorithm is the log of
the rank of Z, where Z is the positive semidefinite matrix that optimizes the primal general
adversary bound, and he notes that this provides a worst case log(n|X|) space complexity
for n-bit functions with domain X [44, 43]. Our exact compression result (Theorem 9) is of
a similar flavor, except that we are using the “rank” of the dual. Barnum, Saks, and Szegedy
use a different family of SDPs to characterize query complexity [5] (these SDPs can give
improved performance in the case of small or zero error algorithms), and their algorithm
again depends on the rank of the satisfying positive semidefinite matrix, but in the worst
case uses log |X|+ 1 qubits.

The key tool we use in our compression application is the Johnson-Lindenstrauss lemma.
The lemma guarantees that high-dimensional vectors randomly compressed into a lower-
dimensional space approximately preserves the inner products of the vectors [34]. The JL
lemma is used in a variety of classical applications including compressed sensing, dimension-
ality reduction, and machine learning [23, 49, 13], and it works even with sparse compression
matrices [35]. In fact, our work, in which we compress the dual solution to an SDP, has
similarities to work by So et al. [47], which uses JL compression to reduce the rank of the
matrix that is the primal solution to a semidefinite programming problem, at the cost of only
approximately satisfying the constraints. It is also known that the compressed dimension
given by the Johnson-Lindenstrauss lemma is optimal up to constant factors [39].

The idea of relaxing SDP constraints in order to improve the space used by an algorithm
has also been considered in the classical regime. Ding et al. create a storage-optimal SDP
solver by relaxing constraints [22].
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In the quantum arena, a natural application of the JL lemma would be to compress
the size of quantum states, but Harrow et al. found that there is no such mapping that
significantly reduces the dimension of quantum states while preserving the Schatten 2-norm
distance with high probability [27]. However, the JL lemma was used to compress the space
used by a quantum finger printing protocol [25].

Span programs (which are equivalent to the dual adversary [44, 46]) were in fact originally
formulated in order to understand classical space complexity [36], and Jeffery shows lower
bounds on the space complexity of function evaluation that depend on minimum span
program and approximate span program sizes [31].

Numerical Solutions to the Dual Adversary

The idea of using classical computers to design quantum algorithms is not new. The
variational quantum eigensolver iteratively uses a classical computer to make a ground state
ansatz, which is then tested by a quantum computer [42]. A classical machine learning
algorithm can be used to guide quantum algorithm design [4]. However, the dual adversary
semidefinite programming problem is different in that it automatically produces a query-
optimal algorithm, rather than an iterative process guided by classical, heuristic optimization
methods.

1.2 Open Questions
Our techniques for space compression preserve the quantum query complexity of the original
algorithm, while attempting to reduce space complexity. It would be very interesting if they
could be modified to reduce space at the cost of increased query complexity; this might
provide insight into one of Aaronson’s 2021 open query complexity problems [1]: better
understanding space and query trade offs, specifically for the problems of collision and
element distinctness.

While we analyze dual adversary algorithms, these are closely related to span program
algorithms. It should be possible to translate the bounds and conditions we find on the
robustness of the general adversary dual into analogous bounds and conditions on span
program algorithms. We are especially curious if these relaxed constraints could be related
to Approximate Span Programs [30], which are another way of relaxing the constraints of
standard span programs.

While we show conditions under which it is possible to create dual adversary algorithms,
we do not prove lower bounds. It would be interesting to study whether, with more detailed
analysis, or under additional natural conditions, the JL approach to space compression could
be improved, or whether the analysis we present is optimal.

Generalizations of the general adversary bound characterize the problems of quantum
state conversion [40] and quantum subspace conversion [10]. Perhaps our techniques could
be extended to these additional regimes.

2 Preliminaries

A few notational conventions: we use ∥|ψ⟩∥ do denote the ℓ2 norm of |ψ⟩, [n] to denote
{1, 2, . . . , n}, and δi,j to denote the Kronecker delta function. If |λ⟩ is an eigenvector of
U with eigenvalue eiβ , we say the phase of |λ⟩ is β. For any unitary U , let PΘ(U) be the
orthogonal projector onto the eigenvectors of U with phase at most Θ. That is, PΘ(U) is the
orthogonal projector onto span{|λ⟩ : U |λ⟩ = eiβ |λ⟩ with |β| ≤ Θ}.
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We consider the quantum query complexity and space complexity of evaluating a function
f : X → {0, 1} where X ⊆ {0, 1}n. For such a function f , we define f−1(b) = {x ∈ X :
f(x) = b}. For some x ∈ X ⊆ {0, 1}n, we are given access to an oracle Ox that acts on
Cn⊗C2 as Ox|i⟩|b⟩ = |i⟩|b⊕xi⟩, where |i⟩ for i ∈ [n] and |b⟩ for b ∈ {0, 1} are standard basis
states, and xi is the ith bit of x. Given Ox, we would like to determine f(x). We do this by
implementing a bounded-error quantum query algorithm, which without loss of generality
takes the form

UTOxUT−1Ox · · ·U1OxU0|0̂⟩, (1)

followed by a two-outcome measurement that determines the output of the algorithm, where
U0, . . . UT are unitary operations acting on a Hilbert space of size S, such that for every input
x ∈ X, the probability of outputting f(x) is at least 2/3. The algorithm uses T applications
of the oracle and logS qubits of space. The bounded-error query complexity of f is the
minimum query complexity of any bounded-error query algorithm for f .

The general adversary dual is used in designing query-optimal quantum algorithms for
function evaluation:

▶ Definition 1 (General Adversary Dual). Let f : X → {0, 1} for X ⊆ {0, 1}n. The following
semidefinite optimization problem is called the dual of the general adversary bound, or what
we call the general adversary dual:

min
m∈N

|vx,j⟩∈Cm

max
x∈X

∑
j

∥|vx,j⟩∥2

 (2)

s.t. ∀x, y ∈ X : f(x) ̸= f(y), 1 =
∑

j:xj ̸=yj

⟨vx,j |vy,j⟩. (3)

While Definition 1 seeks to minimize the dimension m of the vectors {|vx,j⟩}x∈X,j∈[n]
(we will drop the set-building subscript and use {|vx,j⟩} when clear from context) that also
minimizes maxx∈X

∑
j ∥|vx,j⟩∥2, we note that to design an algorithm, we only need a vector

set {|vx,j⟩} that satisfies the constraints in Equation (3). This motivates the following
definition, similar to converting vector sets in [3].

▶ Definition 2 (Deciding Vector Set and Related Terms). Let f : X → {0, 1} for X ⊆ {0, 1}n,
and let m ∈ N. Then {|vx,j⟩ ∈ Cm}x∈X,j∈[n] is an f -deciding vector set if

∀x, y ∈ X : f(x) ̸= f(y), 1 =
∑

j:xj ̸=yj

⟨vx,j |vy,j⟩. (4)

We say the size of {|vx,j⟩} is maxx∈X
∑
j ∥|vx,j⟩∥2, the dimension is m, and the maximum

rank is maxj∈[n] rank{|vx,j⟩ : f(x) = 1}.

Given an f -deciding vector set, one can design a query algorithm to decide f :

▶ Theorem 3 ([44, 40]). For f : X → {0, 1} with X ⊆ {0, 1}n let {|vx,j⟩}x∈X,j∈[n] be an
f -deciding vector set with size A and dimension m. Then there is a bounded-error quantum
query algorithm that decides f with query complexity O (A) and space complexity O(log(nm)).

Because any n-bit function can be decided in n queries, we assume A = O(n). Additionally,
applying Cauchy-Schwarz to Equation (4), we have A ≥ 1.

We sketch the proof of Theorem 3 to make it easier to compare with our algorithms.
(For a more detailed description using similar notation, see Ref. [14, Chapter 23.6]). The
subroutine used in both Theorem 3 and in our algorithms is (parallelized) phase estimation.
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▶ Lemma 4 (Phase Estimation [37, 16, 41]). Let U be a unitary that acts on n qubits, and
let δ,Θ > 0. Then there is a phase estimation style circuit that has precision Θ, error δ, acts
on n+ b qubits for b = O

(
log 1

Θ log 1
δ

)
, and uses O

( 1
Θ log 1

δ

)
calls to control-U applied to a

single instance of the state |ψ⟩, such that p0, the probability of outcome 0, satisfies

∥PΘ/2(U)|ψ⟩∥2(1− δ)− δ ≤ p0 ≤ ∥PΘ(U)|ψ⟩∥2 + δ. (5)

We prove Lemma 4 in the full version of the paper [17], which relies heavily on prior analyses
of phase estimation circuits.

The algorithm of Theorem 3 applies phase estimation with precision O(1/A) on a unitary
U with an initial state |0̂⟩. U acts on the space H = C⊕ Cn ⊗ Cm ⊗ C2, and is a product
of two reflections: U = (2Πx − I)(2∆ − I), where Πx = |0̂⟩⟨0̂| +

∑
i∈[n] |i⟩⟨i| ⊗ I ⊗ |xi⟩⟨xi|

(here I acts on Cm, and |0̂⟩ is orthogonal to
∑
i∈[n] |i⟩⟨i| ⊗ I ⊗ (|0⟩⟨0|+ |1⟩⟨1|)) and ∆ is the

orthogonal projector onto the following set of normalized vectors:

|ψy⟩ = 1
√
νy

|0̂⟩+ 1√
cA

∑
i∈[n]

|i⟩|vy,i⟩|yi⟩

 ∀y : f(y) = 1, (6)

s.t. νy = 1 + 1
cA

∑
i∈[n]

∥|vy,i⟩∥2 ≤ 1 + 1/c, (7)

where νy ≥ 1 is chosen to normalize |ψy⟩, and c is a constant chosen depending on the desired
success probability. We note (2Πx − I) requires 2 uses of Ox to implement, and (2∆ − I)
depends on the choice of the deciding vector set but is independent of the input x.

Then when f(x) = 1 and c = 2, |0̂⟩ has high overlap with |ψx⟩, which is easily verified to
be a 0-phase eigenvector of U , so by Lemma 4, the probability of measuring a phase of 0
when we perform phase estimation is large when δ (the error of phase estimation) is a small
constant.

On the other hand, when f(x) = 0, we consider the following normalized vector:

|ϕx⟩ = 1
√
µy

|0̂⟩ − √cA∑
i∈[n]

|i⟩|vx,i⟩|x̄i⟩

 (8)

s.t. µx = 1 + cA
∑
i∈[n]

∥|vx,i⟩∥2 ≤ 1 + cA2, (9)

where µy ≥ 1 is chosen to normalize the vector. Because {|vy,i⟩} is a deciding vector set, we
have ∀y : f(y) = 1, ⟨ψy|ϕx⟩ = 0. Thus {|ϕx⟩} is orthogonal to ∆. Next we use the effective
spectral gap lemma:

▶ Lemma 5 (Effective Spectral Gap Lemma [40]). Let Π,∆ be orthogonal projectors, let
U = (2Π− I)(2∆− I), and ∆|w⟩ = 0. Then

∥PΘ(U)Π|w⟩∥ ≤ Θ/2∥|w⟩∥. (10)

Then the probability of measuring a phase of 0 when we perform phase estimation
when f(x) = 0, by Lemma 4 is upper bounded by a term that depends on ∥PΘ(U)|0̂⟩∥2 =
µy∥PΘ(U)Πx|ϕx⟩∥2. Applying Lemma 5, and using the fact that µy = O(A2), we see
this is small when Θ, the precision of phase estimation, is chosen to be O(1/A). Since
δ (the error of phase estimation) is chosen to be a small constant, by Lemma 4 this
leads to a bounded-error algorithm with query complexity O(A), and space complexity
log(1 + 2nm) +O(logA) = O(log(nm)), as claimed in Theorem 3.
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3 Robust Dual Adversary Algorithm

In this section, we show that the dual adversary algorithm has robustness, in that it tolerates
errors and flexibility in how it is defined. As described in Section 2, we want to create
a bounded-error quantum query algorithm for a Boolean function f : X → {0, 1}, for
X ⊆ {0, 1}n. Similar to the standard algorithm, our robust algorithm will involve applying
phase estimation to a unitary U that acts on the space H = C⊕Cn ⊗Cm ⊗C2. We perform
phase estimation on U with a state |0̂⟩ ∈ H.

We now describe U . As in Section 2, we define the orthogonal projector Πx = |0̂⟩⟨0̂|+∑
i∈[n] |i⟩⟨i| ⊗ I ⊗ |xi⟩⟨xi| on H where I acts on Cm, and |0̂⟩ is orthogonal to

∑
i∈[n] |i⟩⟨i| ⊗

I ⊗ (|0⟩⟨0|+ |1⟩⟨1|). Notice that Πx can be implemented with two applications of the oracle
Ox. Let R be another unitary that acts on the same space as Πx, but R need not be a
reflection. Let U = (2Πx − I)R.

▶ Theorem 6. Let δ, νx, µx > 0, εψ, εϕ ≥ 0, and let U = (2Πx − I)R as defined above, so U
acts on O(log nm) qubits. Consider 0 < θ ≤ 1. Suppose there are sets of (not necessarily
normalized) vectors {|ψx⟩ = 1√

νx
(|0̂⟩ + |ηx⟩)}x:f(x)=1 and {|ϕx⟩ = 1√

µx
(|0̂⟩ + |ηx⟩)}x:f(x)=0

where ∀x ∈ X, ⟨ηx|0̂⟩ = 0, and furthermore, that
1. ∀x : f(x) = 1, ∥(I − U)|ψx⟩∥ ≤ εψ and
2. ∀x : f(x) = 0, Πx|ηx⟩ = 0 and ∥(I +R)|ϕx⟩∥ ≤ εϕ.

Then the probability of measuring a phase of 0 if we do phase estimation on U with initial
state |0̂⟩ with precision θ and error δ when f(x) = 1 is at least√νx(1−

5ε2
ψ

θ2 )−
√
νx∥|ψx⟩∥2 − 1

2

(1− δ)− δ, (11)

and when f(x) = 0 is at most

µx (εϕ/2 + θ/2∥|ϕx⟩∥)2 + δ. (12)

This algorithm uses O
( 1
θ log 1

δ

)
queries and O

(
log(nm) + log 1

θ log 1
δ

)
qubits.

Theorem 6 extends the robustness of the algorithm used to prove Theorem 3 (as described
in Section 2) in several ways. In the standard analysis, εψ and εϕ are both 0, whereas we
now allow them to be non-zero. In addition, Theorem 6 allows for imperfect alignment
between the vector sets {|ψx⟩} and {|ϕx⟩} and the unitary U . This will be the key for our
applications in the following sections. Additionally, in the standard algorithm, R is chosen
to be a reflection, but in Theorem 6, R can be any unitary that satisfies the criterion of
Theorem 6. While none of the applications we describe in this paper use this flexibility in
the design of R, it might be helpful in future use cases.

To prove Theorem 6, we need the following two lemmas, proved in the full version [17]:

▶ Lemma 7. Let U be a unitary and 0 < Θ ≤ 1. If ∥(I−U)|ψx⟩∥2 ≤ ε, then ∥PΘ(U)|ψx⟩∥2 ≥
1− 1.1ε

Θ2 .

Lemma 7 tells us that if a unitary U approximately preserves a state |ψx⟩, then |ψx⟩ has
high overlap with the low phase eigenspace of U . This gives us flexibility when f(x) = 1, in
that our initial state need not have high overlap with the 0-phase space of U , but instead
we only require high overlap with the low-phase-eigenspace of U . The proof of Lemma 7
proceeds by decomposing |ψx⟩ into its eigenbasis with respect to U, and showing that ϵ serves
to bound the amount of amplitude |ψx⟩ can have in states with eigenvalues larger than Θ.
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▶ Lemma 8 (Robust Approximate Spectral Gap Lemma). Let ε ≥ 0, Π be an orthogonal
projector, R be a unitary, and U = (2Π− I)R. For Θ > 0, if ∥(I +R)|w⟩∥ ≤ ε, then

∥PΘ(U)Π|w⟩∥ ≤ ε

2 + Θ
2 ∥|w⟩∥. (13)

Lemma 8 generalizes the standard approximate spectral gap lemma (Lemma 5), in which
R is a reflection and ε = 0. In particular, Lemma 8 shows that when R is not a reflection
and when |w⟩ is not exactly given a phase of −1 by R, a variant of the approximate spectral
gap lemma still holds.1 The proof of Lemma 8 closely follows the proof approach of [40,
Lemma 4.2], which does not use Jordan’s Lemma, but instead directly uses a series of triangle
inequalities and observations of preserved subspaces to obtain the result.

Proof of Theorem 6. We first consider the case of x such that f(x) = 1. By Lemma 4, the
probability that we get an outcome of 0 when we perform phase estimation on the unitary U
with initial state |0̂⟩ with precision Θ and accuracy δ is at least ∥PΘ/2(U)|0̂⟩∥2(1− δ)− δ.
Now

∥PΘ/2(U)|0̂⟩∥ = ∥PΘ/2(U)
√
νx|ψx⟩ − PΘ/2(U)|ηx⟩∥

≥
√
νx∥PΘ/2(U)|ψx⟩∥ − ∥PΘ/2(U)|ηx⟩∥ (reverse triangle inequality)

≥

√√√√νx

(
1−

5ε2
ψ

Θ2

)
− ∥|ηx⟩∥, (14)

where the first term in the final line combines Lemma 7 and the assumption that ∥(I −
U)|ψx⟩∥ ≤ εψ, so ∥(I −U)|ψx⟩∥2 ≤ ε2

ψ, and the second term uses the fact that projectors can
only decrease the ℓ2 norm of a vector. Thus, using that ∥|ηx⟩∥ =

√
νx∥|ψx⟩∥2 − 1, we have

∥PΘ/2(U)|0̂⟩∥2(1− δ)− δ ≥

√νx(1−
5ε2
ψ

Θ2 )−
√
νx∥|ψx⟩∥2 − 1

2

(1− δ)− δ. (15)

When f(x) = 0, by Lemma 4, the probability that we get an outcome of 0 when we
perform phase estimation on U with initial state |0̂⟩ with precision Θ and accuracy δ is at
most

∥PΘ(U)|0̂⟩∥2 + δ = µx∥PΘ(U)Πx|ϕx⟩∥2 + δ, (16)

since by assumption, Πx|ϕx⟩ = 1/√µx|0̂⟩. Then from Lemma 8 and our assumption that
∥(I +R)|ϕx⟩∥ ≤ εϕ, we have

∥PΘ(U)Πx|ϕx⟩∥ ≤ εϕ/2 + Θ/2∥|ϕx⟩∥. (17)

Combining Equation (16) and Equation (17) gives us a probability of outcome 0 of at most

µx (εϕ/2 + Θ/2∥|ϕx⟩∥)2 + δ. (18)

Finally the query complexity and space complexity come from the requirements of phase
estimation Lemma 4, and that 2Πx − I can be implemented with two uses of the oracle. ◀

1 We note Lemma 8 is similar to Lemma 3.4 in [33], except we allow R to not be a reflection.
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4 Compressing the Dual Adversary Algorithm

In this section, we consider how and when it is possible to reduce the space complexity of the
quantum algorithm built from the general adversary dual. In particular, our goal is to take
an f -deciding vector set, reduce its dimension and hence create an algorithm which requires
fewer qubits to implement.

Our first result, Theorem 9, is a simple compression scheme that shows that an f -deciding
vector set on an n-bit function with maximum rank κ′ and size A can be compressed to an
f -deciding vector set with dimension κ′ and size at most A (see Definition 2 for terminology).
The number of qubits required by the resulting algorithm is then O(log(nκ′)) and the query
complexity is O(A), by Theorem 3 and using that A = O(n). Notice that κ′ is at most the
number of 1-valued inputs, but if many of the f -deciding vectors are linearly dependent, the
maximum rank could be much smaller.

We note that an f -deciding vector set is also an ¬f -deciding vector set by Definition 2,
where ¬f is the negation of f . Also, a ¬f -deciding vector set can be used to design a bounded
error quantum algorithm for deciding f by negating the output of the algorithm. Thus for a
given deciding vector set, we can minimize the space used by the algorithm by considering
either ¬f or f .

▶ Theorem 9. Given an f-deciding vector set with maximum rank κ′ and size A, we can
construct an f-deciding vector set with dimension κ′ and size at most A, resulting in an
algorithm that decides f with query complexity O(A) and space complexity O(log(nκ′)).

To prove Theorem 9, we apply a series of unitaries to rotate the vectors of the deciding vector
set into a smaller dimensional space. This is possible because if we apply the same unitary
to two vectors, their inner product is preserved. Our full proof appears in Ref. [17].

The next natural question is whether we can approximate the solution to the general
adversary dual in a lower dimension. We answer this question by considering a compression of
the vectors in a deciding vector set with guarantees from the Johnson-Lindenstrauss lemma,
which approximately preserve the inner products of the vectors.

It turns out that this straightforward idea is not trivial to implement. The first challenge
is that we must preserve the tensor product structure of our vectors in order to ensure that
the query algorithm can apply queries, so we must be careful about the part of the vectors
that we compress. The second challenge is that the compression only approximately preserves
the inner products of the compressed vectors so we need the robust dual adversary algorithm
described in Theorem 6.

Formally stated in Theorem 14, given an f -deciding vector set with maximum rank κ′ and
size A, we show how to build a quantum algorithm that succeeds with probability 2/3 and
operates in a Hilbert space of dimension O((κ′2 +A4κ′)n) with quantum query complexity
O(A). Since A = O(n), as discussed below Theorem 3, the number of qubits needed to run
the algorithm is no more than O(log(κ′n)).

Thus, this approximate compression using the JL lemma achieves the same space com-
plexity as the exact compression of Theorem 9, to within a constant multiplicative factor.
This may seem surprising that we are not able to do better, since we are no longer requiring
the constraints are exactly satisfied. However, the compression dimension in the JL lemma
has a polynomial dependence on the allowed error, and since the amount of error we can
tolerate roughly scales with maximum rank, we do not get as much compression as one might
hope for.

We now describe at a high level how we prove Theorem 14. While an optimal deciding
vector set might use complex vectors, the following lemma, which we prove in Ref. [17],
shows that at a small cost in increased vector dimension, we can restrict to real vectors:
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▶ Lemma 10. If there is an f-deciding vector set with complex numbers of dimension m

and size A, there exists an f-deciding vector set with only real numbers of dimension 2m
and size A.

The proof of Lemma 10 proceeds by creating a new vector set from the original where
each new real vector consists of the real part of the original complex vector stacked on top of
the imaginary part of the original complex vector.

While the standard Johnson-Lindenstrauss lemma guarantees that there is a compression
matrix that approximately preserves the l2-norm difference of any two vectors in a set, we
use the following corollary, which shows that the compression approximately preserves inner
products in addition to distances, which we prove in Ref. [17]. Our proof of Corollary 11 is
similar to a similar result in [38], except that we do not assume the vectors have norm 1.

▶ Corollary 11. Given ε > 0, a set of finite vectors V ⊂ Rd, and a number N > 8 ln(|V |)/ε2,
there is a compression matrix S ∈ RN×d such that for |v⟩, |u⟩ ∈ V ,

(S|u⟩)†(S|v⟩) = ⟨u|v⟩ ± 2ε(∥|u⟩∥2 + ∥|v⟩∥2). (19)

The Johnson-Lindenstrauss lemma guarantees the existence of such a compression matrix
S, and it can be found probabilistically by sampling random projections. It requires O(|X|n)
time to find such a satisfying projection via random sampling [18]. For our purposes, this
contributes to classical preprocessing time and space resources, and not towards the quantum
query complexity or quantum space use of the quantum algorithm itself. In particular, this
sampling requires no queries, so does not contribute to the query complexity.

We now describe how we use Johnson-Lindenstrauss to compress our deciding vector set.
Let {|vx,i⟩} be a real f -deciding vector set with size A, dimension m, and maximum rank κ′.
Define {|ψx⟩}x:f(x)=1 and {|ϕx⟩}x:f(x)=0 as in Equations (6) and (8) in Section 2. Let κ be
the rank of {|ψx⟩}x:f(x)=1. (We show in Ref. [17] that κ′ ≤ κ ≤ 2nκ′.)

To compress our vectors, it suffices to compress their orthonormal basis. Let {|ζj⟩}j∈[κ] be
an orthonormal basis for the space spanned by {|ψx⟩}x:f(x)=1. Then there are (non-unique)
real numbers {αj,x ∈ R}j∈[n],x∈f−1(1) such that

|ζj⟩ =
∑

x:f(x)=1

αj,x|ψx⟩. (20)

We will approximately preserve the structure of the vectors |ζj⟩ in the compression. Thus we
define their components

|vj,i,b⟩ =
∑

x:f(x)=1
xi=b

αj,x√
νx
|vx,i⟩, ∀j ∈ [κ], i ∈ [n], b ∈ {0, 1}. (21)

We will use the random compression matrix S from Corollary 11 to compress the following
set of vectors to error ε, as in Corollary 11, (and the compression dimension N will be chosen
later to achieve the desired value of ε):

{|vj,i,b⟩}j∈[κ],i∈[n],b∈{0,1}

⋃
{|vy,i⟩}y:f(y)=0,i∈[n] . (22)

We use these compressed vectors to define

∀x : f(x) = 1, |ψ′
x⟩ =

[
|0̂⟩⟨0̂|+ (I ⊗ S ⊗ I)

]
|ψx⟩,

∀x : f(x) = 0, |ϕ′
x⟩ =

[
|0̂⟩⟨0̂|+ (I ⊗ S ⊗ I)

]
|ϕx⟩,

∀j ∈ [κ], |ζ ′
j⟩ =

[
|0̂⟩⟨0̂|+ (I ⊗ S ⊗ I)

]
|ζj⟩. (23)
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As one would expect, the primed, compressed versions of these vectors have approximately
the properties of the uncompressed version, as follows:

▶ Lemma 12. For {|ζ ′
j⟩}j∈[κ], {|ψ′

x⟩}x:f(x)=1 and {|ϕ′
x⟩}x:f(x)=0 as described in Equa-

tion (23), these vectors have the following properties
1. ∀j, l ∈ [κ], ⟨ζ ′

j |ζ ′
l⟩ ∈ δj,l ± 4ε

2. ∀j ∈ [κ], x ∈ f−1(0), |⟨ζ ′
j |ϕ′

x⟩| ≤ 2ε(c+ 1)A.
3. ∀x : f(x) = 1,

∣∣∥|ψ′
x⟩∥2 − 1

∣∣ ≤ 4εκ and ∀x : f(x) = 0, |∥|ϕ′
x⟩∥ − 1| ≤ 3ε.

The proof of Lemma 12 uses Corollary 11 in fairly straightforward ways.
Let ∆′ be the orthogonal projector onto the space spanned by {|ψ′

x⟩}x:f(x)=1 and the
reflection R be 2∆′ − I. By definition, observe that R|ψ′

x⟩ = |ψ′
x⟩, so Theorem 6 Item 1 is

satisfied with εψ = 0. Additionally, because |ϕ′
x⟩ has the structure

|ϕ′
x⟩ ∝ |0̂⟩+

∑
i∈[n]

|i⟩|v′
x,i⟩|x̄i⟩ (24)

we have Πx|ϕ′
x⟩ ∝ |0̂⟩, as required by Theorem 6 Item 2. All that is left is to show that

∥(I +R)|ϕ′
x⟩∥ ≤ εϕ.

▶ Lemma 13. Consider ε so that εκ < 1/12. For R as defined below Lemma 12 and |ϕ′
x⟩

defined using Equations (8) and (23), we have ∥(I +R)|ϕ′
x⟩∥ ≤ 8ε(c+ 1)A

√
κ.

We prove Lemma 13 in Ref. [17]. The main idea is to write ∆′ in terms of the vectors
{|ζ ′⟩}, and then use Lemma 12 Item 2. Along the way, we show how to use Gram-Schmidt to
build an orthonormal basis from {|ζ ′

j⟩}, which is already almost orthonormal by Lemma 12
Item 1 (see Ref. [17] for details).

With Lemma 13 in hand, the conditions of Theorem 6 are satisfied and we apply it to
our compressed vectors.

▶ Theorem 14. Consider a Boolean function f : X → {0, 1} where X ⊆ {0, 1}n and
an f-deciding vector set with maximum rank κ and size A. Using Johnson-Lindenstrauss
compression, we can compress the f -deciding vector set to produce a quantum algorithm that
correctly evaluates f(x) with probability 2/3 for every input x ∈ X with O(A) quantum query
complexity. The algorithm uses O(log κn) qubits.

Proof of Theorem 14. We set

Θ = 1
4
√
cA

, ε = min
{

1
4cκ ,

1
32
√
c(c+ 1)A2√κ

}
, δ = 1

25 , and c = 100. (25)

With these choices, we bound the failure probability below 1/3 for all inputs x. (Note c
appears in Equations (6) and (8).)

Case f(x) = 1. By Theorem 6, for x such that f(x) = 1, we have that when εψ = 0, the
probability of measuring a phase of 0 is at least(√

νx −
√
νx∥|ψ′

x⟩∥2 − 1
)2

(1− δ)− δ. (26)

We know that 1 ≤ νx ≤ 1+1/c = 1.01 from Equation (7) and |∥|ψ′
x⟩∥2−1| ≤ 4εκ ≤ 1/100

from Lemma 12 Item 3 and Equation (25) when c = 100, so Equation (26) is at least(√
1−
√

1.01 · 1.01− 1
)2

(1− δ)− δ ≥ 2/3 (27)

where the final inequality is satisfied for δ = 1/25.
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Case f(x) = 0. By Theorem 6, for x such that f(x) = 0, we have that the probability of
measuring a phase of 0 is at most

µx

(
εϕ + Θ

2 ∥|ϕ
′
x⟩∥
)2

+ δ. (28)

We know that µx ≤ 1 + cA2 from Equation (9), εϕ ≤ 8ε(c+ 1)A
√
κ from Lemma 13, and

∥|ϕ′
x⟩∥ ≤ 1 + 3ε from Lemma 12 Item 3. So the probability of measuring a 0 phase is at most

(1 + cA2)
(

8ε(c+ 1)A
√
κ+ Θ

2 (1 + 3ε)
)2

+ δ. (29)

With Θ, ε, δ, and c as set in Equation (25), continuing from Equation (29), we have that
probability of failure when f(x) = 0 is at most

(1 + cA2)
(

1
4
√
cA

+ 1
4
√
cA

)2
+ δ ≤ 1

4cA2 + 1
4 + δ ≤ 1

3 (30)

since A ≥ 1.
To achieve this compression with ε as desired we look to Corollary 11 to see what

compression dimension is achievable. From Equation (22), we see we are compressing at
most 3|X|n vectors. Thus we require a compression dimension

N = O(log(|X|n)/ε2) = O((κ2 +A4κ) log(|X|n)). (31)

Then since our unitary U acts on O(log(nN)) qubits, by Theorem 6, the space complexity is

O(log nN + logA) = O
(
log
(
An(κ2 +A4κ) log(|X|n)

))
= O(log(κn)). (32)

where we’ve used that |X| ≤ 2n and A = O(n). Also, from Theorem 6, the query complexity
is O(A). ◀

▶ Corollary 15. If there are polynomially many 1-valued or 0-valued inputs to a function
f : X → {0, 1}, then there is a query-optimal quantum algorithm that evaluates f , and that
uses O(log n) qubits.

Proof. Notice that κ ≤ n1 where n1 the number of 1-valued inputs to f . When κ = O(nd)
for d = O(1), by Theorem 9 or Theorem 14, we have that for any deciding vector set for f
with size A, we can create an algorithm with query complexity O(A) whose space complexity
is O(log n). Since there is always a deciding vector set for f with size A such that O(A) is
the optimal query complexity of f [44], our results imply that there exists a query-optimal
algorithm that uses logarithmic space. For the case of polynomially many 0-valued inputs,
we use ¬f . ◀

5 Algorithm from a Numerical Solution

While the dual adversary provides a method of designing optimal query algorithms, in
general it might be hard to find an optimal solution. However, since the problem can be
formulated as a semidefinite program, we can find a numerical solution. We show that
numerical solutions that only approximately satisfy the dual adversary constraints can be
used to produce bounded-error quantum algorithms within a constant factor of the objective
function value of the numerical solution.
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We first provide a theoretical result that shows how an algorithm can be constructed
from an approximate deciding vector set, a vector set that only approximately satisfies
Equation (3). Then we introduce a classical Python package implemented specifically to
solve the general adversary dual SDP and show that its solutions often satisfy the error
bounds required by our theoretical results.

5.1 Application of Robust Dual Adversary Algorithm
In previous sections we assumed access to an exact solution to the general adversary dual
which we used to produce approximate solutions. In this section, we use a finite precision
SDP solver to obtain an approximate solution and then build a bounded-error quantum
algorithm with the robust dual adversary algorithm described in Theorem 6.

▶ Theorem 16. Consider a Boolean function f : X → {0, 1} where X ⊆ {0, 1}n and an
approximate f -deciding vector set {|vx,j⟩}x∈X,j∈[n] in the sense that

ε := max
x,y:f(x)̸=f(y)

|⟨ψx|ϕy⟩|, (33)

is small as defined below, where |ψx⟩, |ϕx⟩ are as in Equations (6) and (8). Let A be the size
and m be the dimension of the approximate f-deciding vector set, with size and dimension
defined as in Definition 2. Consider a matrix M with rows |ψx⟩x:f(x)=1. Let the singular
values of M be s1 ≥ s2 ≥ · · · ≥ sκ ≥ sκ+1 := 0 and n1 be |{x : f(x) = 1}|. If there exists
κ∗ ∈ [κ] such that

ε ≤ 1
√
n1

(
sκ∗

2
√
cA
− sκ∗+1

)
and sκ∗+1 ≤

1
2
√

1000cA
, (34)

then there is a quantum algorithm that correctly evaluates f with probability at least 2/3 with
at most O(A) queries and O(log(nm)) qubits.

Given any numerical solution, we can simply set κ∗ = κ in which case we require
ε < sκ/(2

√
cn1A). However, if the singular values fall off sharply then we can obtain a less

stringent constraint on ε, which in turn leads to less precision required by the numerical solver.
So in practice, we search for any κ∗ ∈ [κ] that gives a large enough bound to accommodate
the ε we observe in our numerical solution.

To prove Theorem 16, we apply Theorem 6. For this application, we set R to be equal to
a reflection over the space spanned by the first κ∗ right singular vectors of M, the matrix
whose rows are the vectors {|ψx⟩}x:f(x)=1. We use the following two lemmas to show that
this reflection approximately preserves the vectors {|ψx⟩}x:f(x)=1 and mostly destroys vectors
that are almost orthogonal to all vectors in {|ψx⟩}x:f(x)=1. Their proofs, found in Ref. [17],
use standard results from the singular value decomposition approach to approximating of
matrices.

▶ Lemma 17. Let M be the matrix whose rows are the vectors {|ψx⟩}x∈X1 for some set X1,
and denote M ’s singular values by s1 ≥ s2 ≥ · · · ≥ sκ. Let ∆′ be the orthogonal projector
onto the first κ∗ right singular vectors of M . Then ∀x ∈ X1, (2∆′ − I)|ψx⟩ = |ψx⟩ + |η⟩,
where ∥|η⟩∥ ≤ 2sκ∗+1 and sκ∗+1 = 0 if κ∗ = κ.

▶ Lemma 18. For disjoint sets X1 and Y and sets of vectors {|ψx⟩}x∈X1 and {|ϕy⟩}y∈Y
such that

|⟨ψx|ϕy⟩| ≤ ε ∀x ∈ X1, y ∈ Y, (35)
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let M be the matrix whose rows are the vectors {|ψx⟩}x∈X1 and denote its singular values
by s1 ≥ s2 ≥ · · · ≥ sκ. Let ∆′ be the orthogonal projector onto the first κ∗ right singular
vectors of M . Then ∀y ∈ Y, (2∆′ − I)|ϕy⟩ = |η⟩, where ∥|η⟩∥ ≤ sκ∗+1+ε

√
|X1|

sκ∗ and sκ∗+1 = 0
if κ∗ = κ.

We now use Lemmas 17 and 18 to apply Theorem 6 and prove Theorem 16.

Proof of Theorem 16. Let ∆′ be the orthogonal projector onto the first κ∗ right singular
vectors of M , and set R = 2∆′ − I so as in Theorem 6, U = (2Πx − I)R. Then

εψ := ∥(I − U)|ψx⟩∥ = ∥|ψx⟩ − (2Πx − I)R|ψx⟩∥
= ∥|ψx⟩ − (2Πx − I)(|ψx⟩+ |ηx⟩)∥
= ∥(2Πx − I)|ηx⟩∥ ≤ 2sκ∗+1 (By Lemma 17 and defs of Πx, |ψx⟩)

εϕ := ∥(I +R)|ϕy⟩∥ = ∥2∆′|ϕy⟩∥ ≤ 2
sκ∗+1 + ε

√
n1

sκ∗
. (By Lemma 18)

Then by Theorem 6, if f(x) = 1, the probability of measuring a phase of 0 is at least√νx(1−
5ε2
ψ

Θ2 )−
√
νx∥|ψx⟩∥2 − 1

2

(1− δ)− δ (36)

≥

√(1−
20s2

κ∗+1
Θ2 )−

√
νx∥|ψx⟩∥2 − 1

2

(1− δ)− δ (37)

≥

√1−
20s2

κ∗+1
Θ2 −

√
1/c

2

(1− δ)− δ ≥ 2/3 (38)

where we set c = 100, δ = 1/25, and Θ = (2
√
cA)−1. In addition, we used that νx is between

1 and 1 + 1/c and that ∥|ψx⟩∥ = 1, both by Equation (6). Recall that s2
κ∗+1 ≤ Θ2/1000 by

assumption.
In the other case, where f(x) = 0, the probability of measuring a phase of 0 is at most

µx

(
2
sκ∗+1 + ε

√
n1

sκ∗
+ Θ/2∥|ϕx⟩∥

)2
+ δ ≤ (1 + cA2)

(
2
sκ∗+1 + ε

√
n1

sκ∗
+ Θ/2

)2
+ δ

(39)

= (1 + cA2)
(

1
4
√
cA

+ 1
4
√
cA

)2
+ δ (40)

≤ 1/3 (by the proof of Theorem 14)

when
sκ∗+1 + ε

√
n1

sκ∗
<

1
8
√
cA
⇐⇒ ε <

1
√
n1

(
sκ∗

2
√
cA
− sκ∗+1

)
. (41)

The algorithm uses within a multiplicative factor of 1
Θ log( 1

δ ) = 20A log(20) queries by
Lemma 4. ◀

The obvious question is whether the conditions in Theorem 16 are met in practice. We
show in the next subsection that the conditions are met in the vast majority of numerical
solutions to the general adversary dual for the random Boolean functions we find on functions
of up to 25 bits with domain size 32.
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5.2 Experiments
In this section, we describe how the numerical error (defined in Equation (33)) behaves in
practice.

The general adversary dual (Definition 1) is a semidefinite programming (SDP) problem.
In order to solve the SDP numerically, we first reformulate it in the following standard form:

min
X∈Sn

tr(CX) s.t. A(X) = b and X ⪰ 0 (42)

where Sn is the set of n× n symmetric matrices, C ∈ Sn, tr(·) is the trace, b ∈ Rm is the
constraint vector, and

A(X) := [tr(A1X), . . . , tr(AmX)]⊤ (43)

for constraint matrices Ai ∈ Sn. The reformulation requires converting the constraints
and introducing appropriate slack variables. The constraints for our SDP are particularly
sparse which makes it inefficient to use standard packages like CVXOPT and SDPA [21, 24].
Instead, we use the alternating direction method of [50] which is specifically designed for
SDP problems with sparse structure and orthogonal constraints. The pseudocode appears in
Algorithm 1.

Algorithm 1 Alternating direction augmented Lagrangian method [50].

Require: Constraint matrices A,C ∈ Sn, constraint vector b ∈ Rm, iterations T , tolerance
t ≥ 0

Ensure: Output X approximately satisfies Equation (42)
X0 ← 0n×n ▷ Zero matrix
S0 ← In×n
for k = 0, 1, . . . , T − 1 do

yk+1 ← −(AA∗)+(A(Xk)− b +A(Sk −C)) ▷ (·)+ denotes Moore-Penrose
pseudoinverse

Vk+1 ← C−A∗(yk+1)−Xk

Sk+1 ← Q+Σ+Q⊤
+ ▷ Q+,Σ+ contain the non-negative eigendecomposition of Vk+1

Xk+1 ← Sk+1 −Vk+1

Xk+1 ← round(Xk+1) ▷ For entries within t of 0 or 1, round to nearest integer
end for
X← XT−1

We slightly adapt Algorithm 1 to our problem: We store each matrix in a sparse format,
round entries of the solution after every iteration, and use the Moore-Penrose pseudoinverse.

The first natural question is how well Algorithm 1 performs. We test this by generating
random Boolean functions f : X → {0, 1} where X ⊆ {0, 1}n for different values of n. Since
the dimension of the SDP grows exponentially with |X|, we fix |X| = 32 for our experiments.
For each instance, we compute the maximum numerical error

ε := max
x,y:f(x)̸=f(y)

|⟨ψx|ϕy⟩|. (44)

The results in Theorem 16 depend on the error ε being small so it’s important that we can
obtain solutions with small error efficiently. Figure 1 shows how ε decreases with the number
of iterations T of the SDP solver.
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The next question is whether the error is sufficiently small to satisfy the requirements of
Theorem 16. Figure 2 shows how ε is typically much smaller than the bound required in
Theorem 16 for random functions of up to 25 bits with domain size 32. Our experiments test
for whether ε satisfies the bound of Theorem 16 in the case that κ∗ = κ. It could be that
even larger ε is tolerated by considering κ∗ < κ.
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Figure 1 For random Boolean functions with a domain of fixed size, the maximum numerical
error decreases with the number of iterations of the SDP solver. Note: the vertical axis is on a
logarithmic scale and the shaded regions contain one standard deviation from 20 random instances.
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Figure 2 For random Boolean functions with a domain of fixed size, the maximum numerical
error stays below the threshold required to construct a provably correct bounded-error quantum
algorithm. Note: both axes are on a logarithmic scale and the green region above the diagonal line
indicates the error is small enough.
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Abstract
The average properties of the well-known Subset Sum Problem can be studied by means of its
randomised version, where we are given a target value z, random variables X1, . . . , Xn, and an
error parameter ε > 0, and we seek a subset of the Xis whose sum approximates z up to error ε.
In this setup, it has been shown that, under mild assumptions on the distribution of the random
variables, a sample of size O(log(1/ε)) suffices to obtain, with high probability, approximations
for all values in [−1/2, 1/2]. Recently, this result has been rediscovered outside the algorithms
community, enabling meaningful progress in other fields. In this work, we present an alternative
proof for this theorem, with a more direct approach and resourcing to more elementary tools.
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1 Introduction

In the Subset Sum Problem (SSP), one is given as input a set of n integers X = {x1, x2, . . . , xn}
and a target value z, and wishes to decide if there exists a subset of X that sums to z. That
is, one is to reason about a subset S ⊆ [n] such that

∑
i∈S xi = z. The special case where

z is half of the sum of X is known as the Number Partition Problem (NPP). The converse
reduction is also rather immediate.1

1 To find a subset of X summing to z, one only needs to solve the NPP for the set X ∪ {2z,
∑

i∈[n] xi}.
By doing so, one of the parts must consist of the element

∑
i∈[n] xi alongside the desired subset.
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Be it in either of these forms, the SSP finds applications in a variety of fields, ranging
from combinatorial number theory [31] to cryptography [20,26]. In complexity theory, the
SSP is a well-known NP-complete problem, being a common base for NP-completeness proofs.
In fact, the NPP version figures among Garey and Johnson’s six basic NP-hard problems [19].
Under certain circumstances, the SSP can be challenging even for heuristics that perform
well for many other NP-hard problems [25,30], and a variety of dedicated algorithms have
been proposed to solve it [10, 17, 22–24]. Nonetheless, it is not hard to solve it in polynomial
time if we restrict the input integers to a fixed range [5]. It suffices to recursively list all
achievable sums using the first i integers: we start with A0 = {0} and compute Ai+1 as
Ai ∪ {a + xi+1 | a ∈ Ai}. For integers in the range [0, R], the search space has size O(nR).

Studying how the problem becomes hard as we consider larger ranges of integers (relative
to n) requires a randomised version of the problem, the Random Subset Sum Problem
(RSSP), where the input values are taken as independently and identically distributed
random variables. In this setup, the work [6] proved that the problem experiences a phase
transition in its average complexity as the range of integers increases.

The result we approach in this work comes from related studies on the typical properties
of the problem. In [27] the author proves that, under fairly general conditions, the expected
minimal distance between a subset-sum and the target value is exponentially small. More
specifically, they show the following result.

▶ Theorem 1 (Lueker, 1998). Let X1, . . . , Xn be independent uniform random variables
over [−1, 1], and let ε ∈ (0, 1/3). There exists a universal constant C > 0 such that, if
n ≥ C log(1/ε), then, with probability at least 1 − ε, for all z ∈ [−1, 1] there exists Sz ⊆ [n]
for which∣∣∣∣z −

∑
i∈Sz

Xi

∣∣∣∣ ≤ ε.

That is, a rather small number (of the order of log 1
ε ) of random variables suffices to have a

high probability of approximating not only a single target z, but all values in an interval.
Even though Theorem 1 is stated and proved for uniform random variables and target

values in [−1, 1], it is not hard to extend the result to a broad class of distributions2

and a wider range of targets. This generality makes the theorem a powerful tool for the
analysis of random structures and has recently proven to be particularly useful in the field of
Machine Learning, taking part in a proof of the Strong Lottery Ticket Hypothesis [29] and
in subsequent related works [11,13,14,18], and in Federated Learning [32].

Generalisations of the RSSP have played important roles in the study of random Knapsack
problems [3,4], and to random binary integer programs [7,8]. In particular, the works [2,7,8,14]
recently provided an extension of Theorem 1 to multiple dimensions. As for the equivalent
Random Number Partitioning Problem, [12] recently generalised [6] and the integer version
of the RSSP to non-binary integer coefficients.

The simplicity and ubiquity of the SSP have granted the related results a special didactic
place. Be it as a first example of an NP-complete problem [19], a path to science communic-
ation [21], or simply as a frame for the demonstration of advanced techniques [28], it has
been a tool to make important, but sometimes complicated, ideas easier to communicate.

2 Distributions whose probability density function f satisfies f(x) ≥ b for all x ∈ [−a, a], for some
constants a, b > 0 (see Corollary 3.3 from [27]).
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This work offers a substantially simpler alternative to the original proof of Theorem 1 by
following a general framework introduced in the context of the analysis of Rumour Spreading
algorithms [15]. Originally, the work [27] approaches Theorem 1 by considering the random
variable associated with the proportion of the values in the interval [−1, 1] that can be
approximated up to error ε by the sum of some subset of the first t variables, X1, . . . , Xt.

After restricting to some specific types of subsets, they proceed to evaluate the expected
per-round growth of this proportion, conditioned on the outcomes of X1, . . . , Xt. Their
strategy is to analyse this expected increase by martingale theory, which only becomes
possible after a non-linear transformation of the variables of interest. Those operations
hinder any intuition for the obtained martingale. Nonetheless, a subsequent application of
the Azuma-Hoeffding bound [1] followed by a case analysis leads to the result.

The argument presented here starts in the same direction as the original one, tracking
the mass of values with suitable approximations as we reveal the values of the random
variables X1, . . . , Xn one by one. However, we quickly diverge from [27], managing to obtain
an estimation of the expected growth of this mass without discarding any subset-sum. We
eventually restrict the argument to some types of subsets, but we do so at a point where the
need for such restriction is clear.

We proceed to directly analyse the estimation obtained, without any transformations.
Following [15], this estimation reveals two expected behaviours in expectation, which can
be analysed similarly: as we consider the first variables, the proportion of approximated
values grows very fast; then, after a certain point, the proportion of non-approximable values
decreases very fast.

We remark that, while Theorem 1 crucially relies on tools from martingale theory such
as Azuma-Hoeffding’s inequality, which are not part of standard Computer Science curricula,
our argument makes use of much more elementary results3 which should make it accessible
enough for an undergraduate course on randomised algorithms.

2 Our argument

In this section, we provide an alternative argument for proving Theorem 1. It takes shape
much like the pseudo-polynomial algorithm we described in the introduction. Leveraging
the recursive nature of the problem, we construct a process which, at time t, describes the
proportion of the interval [−1, 1] that can be approximated by some subset of the first t

variables.
We will show that with a suitable number of uniform variables (proportional to log(1/ε))

a factor of 1 − ε/2 of the values in [−1, 1] can be approximated up to error ε. This implies
that any z ∈ [−1, 1] which cannot be approximated within error ε is at most ε away from a
value that can. Therefore it is possible to approximate z up to error 2ε.

2.1 Preliminaries
Let X1, . . . , Xn be realisations of random variables as in Theorem 1, and, without loss of
generality, fix ε > 0. We say a value z ∈ R is ε-approximated at time t if and only if there
exists S ⊆ [t] such that |z −

∑
i∈S Xi| < ε. For 0 ≤ t ≤ n, let ft : R → {0, 1} be the indicator

function for the event “z is ε-approximated at time t”. Therefore, we have f0 = 1(−ε,ε), since
only the interval (−ε, ε) can be approximated by an empty set of values. From there, we can

3 Namely, the intermediate value theorem, Markov’s inequality, and standard Hoeffding bounds.
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exploit the recurrent nature of the problem: a value z can be ε-approximated at time t + 1 if
and only if either z or z − Xt+1 could already be approximated at time t. This implies that
for all z ∈ R we have that

ft+1(z) = ft(z) +
(
1 − ft(z)

)
ft(z − Xt+1). (1)

To keep track of the proportion of values in [−1, 1] that can be ε-approximated at each
step, we define, for each 0 ≤ t ≤ n, the random variable

vt = 1
2

∫ 1

−1
ft(z) dz.

For better readability, throughout the text we will refer to vt simply as “the volume.”
As we mentioned, it suffices to show that, with high probability, at time n, enough of the

interval is ε-approximated (more precisely, that vn ≥ 1 − ε/2) to conclude that the entire
interval is 2ε-approximated.

2.1.1 Expected behaviour
Our first lemma provides a lower bound on the expected value of vt.

▶ Lemma 2. For all 0 ≤ t < n, it holds that

E
[
vt+1

∣∣X1, . . . , Xt

]
≥ vt

[
1 + 1

4 (1 − vt)
]

.

Proof. The definition of vt and the recurrence in Equation (1) give us that

E
[
vt+1

∣∣X1, . . . , Xt

]
= E

1
2

∫ 1

−1
ft+1(z) dz

∣∣∣∣∣X1, . . . , Xt


=
∫ 1

−1

1
2

(
1
2

∫ 1

−1
ft(z) +

(
1 − ft(z)

)
ft(z − x) dz

)
dx

= 1
2

∫ 1

−1
ft(z) dz

∫ 1

−1

1
2 dx + 1

2

∫ 1

−1

1
2

∫ 1

−1

(
1 − ft(z)

)
ft(z − x) dz dx

= vt + 1
4

∫ 1

−1

(
1 − ft(z)

) ∫ 1

−1
ft(z − x) dx dz

= vt + 1
4

∫ 1

−1

(
1 − ft(z)

) ∫ z+1

z−1
ft(y) dy dz,

where the last equality holds by substituting y = z − x. For the previous ones, we apply the
basic properties of integrals and Fubini’s theorem to change the order of integration.

We now look for a lower bound for the last integral in terms of vt. To this end, we exploit
that, since all integrands are non-negative, for all u ∈ [−1/2, 1/2] we have that∫ 1

−1

(
1 − ft(z)

) ∫ z+1

z−1
ft(y) dy dz ≥

∫ u+ 1
2

u− 1
2

(
1 − ft(z)

) ∫ z+1

z−1
ft(y) dy dz

≥
∫ u+ 1

2

u− 1
2

(
1 − ft(z)

) ∫ u+ 1
2

u− 1
2

ft(y) dy dz.
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Both inequalities come from range restrictions: in the first, we use that u ∈ [−1/2, 1/2]
implies [u−1/2, u+1/2] ⊆ [−1, 1]; for the second, we have that [u−1/2, u+1/2] ⊆ [z−1, z+1]
for all z ∈ [u − 1/2, u + 1/2].

To relate the expression to vt explicitly, we choose u in a way that the window [u −
1/2, u + 1/2] entails exactly half of vt. The existence of such u may become clear by recalling
the definition of vt. To make it formal, consider the function given by

h(u) = 1
2

∫ u+ 1
2

u− 1
2

ft(y) dy,

and observe that

min {h(−1/2), h(1/2)} ≤ vt

2 , and max {h(−1/2), h(1/2)} ≥ vt

2 .

Thus, by the intermediate value theorem, there exists u∗ ∈ [−1/2, 1/2] for which h(u∗) = vt/2,
that is, for which

1
2

∫ u∗+ 1
2

u∗− 1
2

ft(y) dy = vt

2 .

Altogether, we can conclude that

E
[
vt+1

∣∣X1, . . . , Xt

]
= vt + 1

4

∫ 1

−1

(
1 − ft(z)

) ∫ z+1

z−1
ft(y) dy dz

≥ vt + 1
2

∫ u∗+ 1
2

u∗− 1
2

(
1 − ft(z)

)(1
2

∫ u∗+ 1
2

u∗− 1
2

ft(y) dy

)
dz

= vt +
(

1
2 − vt

2

)
vt

2

= vt

[
1 + 1

4 (1 − vt)
]

. ◀

Lemma 2 tells us that, if vt were to behave as expected, it should grow exponentially up
to 1/2, at which point 1 − vt starts to decrease exponentially. The rest of the proof follows
accordingly, with Section 2.2 analysing the progress of vt up to one half, and Section 2.3
analogously following the complementary value, 1 − vt, starting from one half. By building
on the results from Section 2.2, we obtain fairly straightforward proofs in Section 2.3. Thus,
the following subsection comprises the core of our argument.

2.2 Growth of the volume up to 1/2
Arguably, the main challenge in analysing the RSSP is the existence of over-time dependencies
and deciding how to overcome it sets much of the course the proof will take. Our strategy
consists in constructing another process which dominates the original one while being free of
dependencies.

Let τ1 be the first time at which the volume exceeds 1/2, that is, let

τ1 = min{t ≥ 0 : vt > 1/2}.

We just proved that up to time τ1 the process vt enjoys exponential growth in expectation.
In the following lemma, we apply a basic concentration inequality to translate this property
into a constant probability of exponential growth for vt itself.
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▶ Lemma 3. Given β ∈ (0, 1/8), let pβ = 1 − 7
8(1−β) . For all integers 0 ≤ t < τ1 it holds

that

Pr
[
vt+1 ≥ vt(1 + β)

∣∣X1, . . . , Xt, t < τ1
]

≥ pβ .

Proof. The result shall follow easily from reverse Markov’s inequality [9, Lemma 4] and
the bound from Lemma 2. However, doing so requires a suitable upper bound on vt+1 and,
while 2vt would serve the purpose, such bound does not hold in general.

We overcome this limitation by fixing t and considering how much vt would grow in the
next step if we were to consider only values ε-approximated at time t that happen to lie
in [−1, 1] after being translated by Xt+1. Making it precise by the means of the recurrence
in Equation (1), we define

ṽ = 1
2

∫ 1

−1

[
ft(z) +

(
1 − ft(z)

)
ft(z − Xt+1) · 1[−1,1](z − Xt+1)

]
dz.

This expression differs from the one for vt+1 only by the inclusion of the characteristic
function of [−1, 1]. This not only implies that ṽ ≤ vt+1, but also that ṽ can replace vt+1 in
the bound from Lemma 2, since the argument provided there eventually restricts itself to
integrals within [−1, 1], trivialising 1[−1,1]. Moreover, as we obtain ṽ without the influence of
values from outside [−1, 1], we must have ṽ ≤ 2vt. Finally, using that t < τ1 implies vt < 1/2
and chaining the previous conclusions in respective order , we conclude that

Pr
[
vt+1 ≥ vt(1 + β)

∣∣X1, . . . , Xt, t < τ1
]

≥ Pr
[
ṽ ≥ vt(1 + β)

∣∣X1, . . . , Xt, t < τ1
]

≥ E[ṽ | X1, . . . , Xt, t < τ1] − vt(1 + β)
2vt − vt(1 + β)

≥
9
8 vt − vt(1 + β)
2vt − vt(1 + β)

= 1 − 7
8(1 − β) ,

where we applied the reverse Markov’s inequality in the second step. ◀

The previous lemma naturally leads us to look for bounds on τ1, that is, to estimate the
time needed for the process to reach volume 1/2. As expected, the exponential nature of the
process yields a logarithmic bound.

▶ Lemma 4. Let t be an integer and given β ∈ (0, 1/8), let pβ = 1 − 7
8(1−β) and i∗ =⌈

log 1
2ε

log(1+β)

⌉
. If t ≥ i∗/pβ, then

Pr [τ1 ≤ t] ≥ 1 − exp

−
2p2

β

t

(
t − i∗

pβ

)2
 .

Proof. The main idea behind the proof is to define a new random variable which stochastically
dominates τ1 while being simpler to analyse. We begin by discretising the domain (0, 1/2] of
the volume into sub-intervals {Ii}0≤i≤i∗ defined as follows:

I0 = (0, ε],

Ii =
(

ε(1 + β)i−1, ε(1 + β)i
]

for 1 ≤ i < i∗,

Ii∗ =
(

ε(1 + β)i∗−1,
1
2

]
,

where i∗ is the smallest integer for which ε (1 + β)i∗
≥ 1/2, that is, i∗ =

⌈
log 1

2ε

log(1+β)

⌉
.
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Now, for each i ≥ 0, we direct our interest to the number of steps required for vt

to exit the sub-interval Ii after first entering it. By Lemma 3, this amount is majorised
by a geometric random variable Yi ∼ Geom(pβ). Therefore, we can conclude that τ1 is
stochastically dominated by the sum of such variables, that is, for t ∈ N, we have that

Pr [τ1 ≥ t] ≤ Pr

 i∗∑
i=1

Yi ≥ t

 . (2)

Let Bt ∼ Bin(t, pβ) be a binomial random variable. For the sum of geometric random
variables, it holds that Pr

[∑i∗

i=1 Yi ≤ t
]

= Pr [Bt ≥ i∗] . Since E[Bt] = tpβ , the Hoeffding
bound for binomial random variables [16, Theorem 1.1] implies that, for all λ ≥ 0, we have
that Pr[Bt ≤ tpβ − λ] ≤ exp(−2λ2/t). Setting t such that tpβ − λ = i∗, we obtain that

Pr

 i∗∑
i=1

Yi ≥ t

 ≤ Pr
[
Bt ≤ i∗]

≤ exp
[
−2

t

(
tpβ − i∗)2

]

= exp

−
2p2

β

t

(
t − i∗

pβ

)2
 ,

which holds as long as λ = tpβ − i∗ ≥ 0, that is, for all t ≥ 1
pβ

⌈
log 1

2ε

log(1+β)

⌉
.

The thesis follows by applying this to Equation (2) and considering the complementary
events. ◀

Since we are done with the analysis of the first phase, we can fix the value of β and
rearrange the bound in Lemma 4 to make it easier to apply later.

▶ Corollary 5. Let ε ∈ (0, 1
3 ), and let t be an integer satisfying t ≥ 264 log 1

ε . Then

Pr [τ1 ≤ t] ≥ 1 − exp
[

− 2
225t

(
t − 264 log 1

ε

)2
]

.

Proof. Setting β = 1
16 in Lemma 4 and, thus, pβ = 1

15 , it suffices to notice that

15 log 1
2ε

log 17
16

+ 15 ≤ 264 log 1
ε

. ◀

2.3 Growth of the volume from 1/2
Here we study the second half of the process: from the moment the volume reaches 1/2 up
to the time it gets to 1 − ε/2. We do so by analysing the complementary stochastic process,
i.e., by tracking, from time τ1 onwards, the proportion of the interval [−1, 1] that cannot
be approximated up to error ε. More precisely, we consider the process {wt}t≥0, defined by
wt = 1 − vτ1+t.

We shall obtain results for wt similar to those we have proved for vt. Fortunately, building
on the previous results makes those proofs quite straightforward. We start by noting that
a statement analogous to Lemma 2 follows immediately from the definition of wt+1 and
Lemma 2.
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▶ Corollary 6. For all t ≥ 0, it holds that

E
[
wt+1

∣∣X1, . . . , Xτ1+t

]
≤ wt

[
1 − 1

4 (1 − wt)
]

.

Let τ2 the first time that wt gets smaller than or equal to ε/2, that is, let

τ2 = min
{

t ≥ 0 : wt ≤ ε/2
}

.

The following lemma bounds this quantity, in analogy to Lemma 4.

▶ Lemma 7. For all t > 0, it holds that

Pr [τ2 ≤ t] ≥ 1 − exp
[

−1
8

(
t − 8log 1

ε

)]
.

Proof. Applying that 1 − wt = vτ1+t > 1/2 to Corollary 6 gives the bound

E
[
wt+1

∣∣X1, . . . , Xτ1+t

]
≤ 7

8wt. (3)

Moreover, from the conditional expectation theory, for any two random variables X and Y ,
we have E

[
E[X | Y ]

]
= E[X]. From this and Equation (3), we can conclude that

E[wt] = E
[
E
[
wt

∣∣X1, . . . , Xτ1+t−1
]]

≤ 7
8 E
[
wt−1

]
,

which, by recursion, yields that

E[wt] ≤
(

7
8

)t

E[w0] ≤ 1
2

(
7
8

)t

.

Finally, by Markov’s inequality,

Pr [τ2 ≥ t] ≤ Pr
[
wt ≥ ε

2

]
≤ 2E[wt]

ε

≤ 1
ε

(
7
8

)t

,

and, since log 8
7 > 1

8 , it holds that

Pr [τ2 ≥ t] ≤ exp
[

−1
8

(
t − 8log 1

ε

)]
.

The thesis follows by considering the complementary event. ◀

2.4 Putting everything together
In this section we conclude our argument, finally proving Theorem 1. We first prove a more
general statement and then detail how it implies the theorem.

Let τ = τ1 + τ2, the first time at which the process {vt}t≥0 reaches at least 1 − ε/2.
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▶ Lemma 8. Let ε ∈ (0, 1/3). There exist constants C ′ > 0 and κ > 0 such that for every
t ≥ C ′ log 1

ε , it holds that

Pr [τ ≤ t] ≥ 1 − 2 exp
[

− 1
κt

(
t − C ′ log 1

ε

)2
]

.

Proof. The definition of τ allows us to apply Corollary 5 and Lemma 7 quite directly. Indeed,
if, for the sake of Corollary 5, we assume that t/2 ≥ 264 log 1

ε , we have that

Pr [τ ≤ t] = Pr [τ1 + τ2 ≤ t]
≥ Pr

[
τ1 ≤ t/2, τ2 ≤ t/2

]
≥ Pr

[
τ1 ≤ t/2

]
+ Pr

[
τ2 ≤ t/2

]
− 1

≥ 1 − exp
[

− 4
225t

(
t

2 − 264 log 1
ε

)2
]

− exp
[

−1
8

(
t

2 − 8log 1
ε

)]

≥ 1 − exp
[

− 4
225t

(
t

2 − 264 log 1
ε

)2
]

− exp
[

− 1
4t

(
t

2 − 8 log 1
ε

)2
]

,

where the second inequality holds by the union bound. By setting κ = 225 and C ′ = 512, we
obtain the thesis. ◀

The expression in the claim of Lemma 8 can be reformulated as

Pr
[
vt ≥ 1 − ε

2

]
≥ 1 − 2 exp

[
− 1

κt

(
t − C ′ log 1

ε

)2
]

;

hence, Theorem 1 follows by taking C ≥ 3C ′ and observing that once we can approximate
all but an ε/2 proportion of the interval [−1, 1], any z ∈ [−1, 1] either is ε-approximated
itself, or is at most ε away from a value that is, which implies that z is 2ε-approximated.
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1 Introduction

With increased interest in applying scheduling algorithms to solve real-life problems, many
models and methods have been addressing the uncertainty in the scheduling community.
Several elegant models that capture uncertainty have been studied in the past two decades,
most of which fall under the umbrella of the research on robust optimization [24, 7, 23, 29] or
stochastic optimization [16, 18, 15, 14]. In those settings, the uncertainty is usually described
by the input. In robust optimization, the input consists of several scenarios, while the input
is sampled from a known distribution in stochastic optimization. In some practical cases, we
can gain additional information about the input by paying extra costs, e.g., money, time,
energy, memory, etc. This model is also known as explorable uncertainty, which aims to
study the trade-offs between the exploration cost and the quality of a solution.

An intriguing scheduling model for explorable uncertainty was proposed by Dürr et al. [10]
under the name of scheduling with testing. In their model, before executing a job, one can
invest some time to test that job, potentially reducing its processing time. A practical use
case is code optimization, where we could either simply run programs/codes (jobs) as they
are or preprocess them through a code optimizer to hopefully improve their execution times.

Their model considers the test cost as the time spent by the machine, which is certainly
important and captures many applications stated in [10]. However, it may fail to describe
some scenarios. For example, in the code optimization problem, the code optimizer may be
an expert who might need to be employed by other companies. This situation is usually
faced by cloud computing companies [25, 6], which accept some tasks and want to assign
them to servers. They can employ experts to optimize some time-intensive tasks to speed up
the execution. In this way, the server can finish more tasks, thus creating more profit for the
company. After optimizing, the experts return the optimized tasks to the cloud computing
company, and the company can start to assign tasks to servers. Thus, optimizing does not
use servers’ time. Different tasks may require a different amount of effort from the expert to
optimize and therefore needs different cost. The company has a fixed budget and aims to
select some tasks to optimize (test) such that the total processing time of tasks is minimized.

Informally, we consider a natural variant of the model proposed in [10], in which we are
given a set of n jobs and a total budget B for testing. Each job j has an upper limit on the
processing time p∧

j and testing cost cj . After testing, the processing time of job j decreases
to a lower limit p∨

j , which is possibly hidden for the algorithms. We refer to the model as the
offline version if p∨

j is known by the algorithm for all jobs j; otherwise, it is called oblivious
version. The paper considers two objectives: the total completion time objective and the
makespan objective, which are two well-studied objectives for scheduling problems in the
literature [19, 5, 22, 9]. The formal definition of our problem is stated in Section 2.

Note that the offline version of the model in Dürr et al. [10] is easy, even if testing a job j

requires a job-specific amount of time tj . Testing a job is then beneficial if p∧
j − p∨

j > tj . In
contrast, we show that the offline version of our budgeted variant of the problem is NP-hard,
assuming each job takes a job-specific amount of budget to be tested. We study both the
offline and the oblivious settings. Further, we differentiate between the uniform cost variant,
where each job takes one unit of budget to be tested, and a non-uniform variant, where the
testing cost is job-specific.

1.1 Our Contributions
The paper studies the problem of Scheduling with a Limited Testing Budget (SLTB) under
both the total completion time minimization objective (SLTBTC) and the makespan min-
imization objective (SLTBM). For both objectives, we further distinguish the offline and
oblivious settings.



C. Damerius, P. Kling, M. Li, C. Xu, and R. Zhang 38:3

Our main results are summarized in Table 1. For the objective of total completion time
minimization, in the offline setting, we show that the problem is NP-hard even when all the
lower processing times are 0 by a reduction from the Partition problem, and then give a
PTAS. The PTAS is derived based on a novel LP rounding scheme. Further, we find that
there exists an FPTAS if all the jobs share the same lower processing time. For the oblivious
setting, we give a (4 + ϵ)-competitive deterministic algorithm for any ϵ (we use the concept
of the competitive ratio following the previous work [10]). The ratio is almost tight since
we prove that no deterministic algorithm has a competitive ratio strictly better than 4. For
the objective of makespan minimization, the main results are derived based on a connection
between our problem and the classical 0-1 knapsack problem. We prove that the offline
setting is NP-hard and admits an FPTAS, while for the oblivious setting, an almost tight
competitive ratio of 2 + ϵ can be obtained.

Table 1 The summary of our results. The vector p∨ := (p∨
1 , . . . , p∨

n) is the lower processing time
vector, and p∨ ∈ R≥0 · 1 means that all the entries of the vector share the same value. ϵ is an
arbitrary positive parameter.

UB (SLTBTC) LB (SLTBTC) UB (SLTBM) LB (SLTBM)

Offline p∨ ∈ Rn
≥0 PTAS (Thm. 4) NP-C (Thm. 1) FPTAS NP-C

p∨ ∈ R≥0 · 1 FPTAS
Oblivious — 4 + ϵ 4 2 + ϵ 2

Paper Organization. We first state some useful notation in Section 2, and then give an
overview of our techniques in Section 3. In the remaining part of the main body (Section 4),
we describe a PTAS for the offline SLTB with the total completion time objective, the most
interesting and technical part of our work. Due to space limitations, the proofs are omitted
in this version. All proofs and our other results can be found in the full version [8].

1.2 Related Work
Explorable Uncertainty. Scheduling with testing falls under the umbrella of the research on
optimization with explorable uncertainty, where some additional information can be obtained
through queries. The model under the stochastic setting can be traced back to Weitzman’s
Pandora’s Box problem [28] and it remains an active research area up to the present [17, 11].
The model under the adversarial setting was first coined by Kahan [21] to study the number
of queries necessary to obtain an element set’s median value. So far, many optimization
problems have been considered in this setting, e.g. caching [27], geometric tasks [4], minimum
spanning tree [20, 26], knapsack [12] and so on.

Scheduling with Testing. The problem of scheduling with testing was first coined by Dürr
et al. [10]. They consider a model where each testing operation requires one unit of time
and mainly investigate non-preemptive schedules on a single machine to minimize the total
completion time or makespan. Since the offline version of the problem (algorithms know the
lower processing time of each job) is trivial, they mainly consider the online version. They
present a 2-competitive deterministic algorithm for total completion time minimization while
the deterministic lower bound is 1.8546. They also gave a 1.7453-competitive randomized
algorithm while the randomized lower bound is 1.6257. For makespan minimization, they give
a 1.618-competitive deterministic algorithm and show that it is optimal for the deterministic
setting. They also present a 4/3-competitive randomized algorithm and show that it is
optimal.
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Later, Albers and Eckl [2] consider the non-uniform testing case where the testing time
depends on the job. They investigate the single-machine preemptive and non-preemptive
scheduling to minimize the total completion time or makespan. The offline version of
this problem is still trivial, so they mainly consider the oblivious version. They present a
4-competitive deterministic algorithm for total completion time minimization and a 3.3794-
competitive randomized algorithm. If preemption is allowed, the deterministic ratio can be
further improved to 3.2361. All lower bounds are the same as in the uniform testing case.
For makespan minimization, they extend the algorithm proposed in [10] and show that the
approximation can be preserved in the non-uniform testing case.

Scheduling with testing on identical machines is also considered in the literature [3]. The
authors mainly consider the makespan minimization in both non-preemptive and preemptive
settings. They look into the non-uniform testing case. For the preemptive setting, they
present a 2 competitive algorithm which is essentially optimal. For the non-preemptive
setting, they give a 3.1016-competitive algorithm for the general testing case, and the ratio
can be improved to 3 when each test requires one unit of time. Later, Gong et al. [13]
improved the non-preemptive ratios to 2.9513 and 2.8081 for non-uniform and uniform testing
cases, respectively.

2 Preliminaries

An instance to Scheduling with a Limited Testing Budget (SLTB) is a 5-tuple I =
(J, p∧, p∨, c, B). J = [n] denotes a set of n jobs. Each job j has an upper limit on
the processing time p∧

j ∈ R≥0, a lower processing time p∨
j ∈ [0, p∧

j ] and a testing cost cj ∈ R≥0.
These parameters are collected in the lower and upper limit processing time vectors p∨ and
p∧, respectively, and a vector of testing costs c. Additionally, a total amount of budget
B ∈ R≥0 is given.

Each job j can be executed either in a tested or untested state. When job j is tested, j

will take p∨
j time to process; otherwise, it requires p∧

j time. If a job is tested, it consumes cj

budget; otherwise, no budget is consumed.
We consider offline and oblivious versions. For the offline version, the algorithm knows

the complete instance I. For the oblivious version, the lower processing time vector p∨ is
hidden from the algorithm, and the remaining information of the instance is known a priori.

In this work, we only consider non-preemptive and, w.l.o.g., gapless schedules on a single
machine. Once a job starts executing, other jobs cannot be processed until the current job is
finished. Thus, a schedule corresponds to a specific ordering of jobs. We define I := [n] to be
the set of positions. The job in position i ∈ I will be the ith job executed in the schedule.

A schedule S = (σ, J∨) for an instance I = (J, p∧, p∨, c, B) is defined by a job order σ

and a testing job set J∨ ⊆ J . The job order σ : J → I is a bijective function that describes
the order in which the jobs are processed (i.e., job j is the σ(j)-th processed job in the
non-preemptive schedule). The testing job set J∨ ⊆ J represents a set of jobs to test with∑

j∈J∨
cj ≤ B.

Given a schedule S, we can indicate whether a job is tested using a set of types T := {∨,∧}.
We say that j is of type ∨,∧ if it is tested, untested, respectively. If S schedules a job j of
type t into position i, we also say that position i is of type t. For a schedule S = (σ, J∨)
and a job j, let the type tS(j) of j in S be ∨ if j ∈ J∨ and ∧ otherwise. Denote by
Cj :=

∑
j′∈J,σ(j′)≤σ(j) p

tS(j′)
j′ the completion time of job j in schedule S. The total completion

time is the sum of all completion times, i.e.,
∑

j∈J Cj , and the makespan is the maximum
completion time among all jobs, i.e., maxj∈J{Cj}.
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Given a testing job set J∨, the optimal ordering of the jobs is easy to determine. The
ordering is relevant for the total completion time minimization but not for the makespan
minimization. It is a well-known fact that the SPT rule (shortest processing time first)
orders the jobs optimally for total completion time minimization. The processing times are
in our case p∨

j if job j is tested and p∧
j otherwise. Thus, an optimal schedule can be easily

constructed from an optimal testing job set J∨.

3 Overview of Techniques

In this section, we focus on the total completion time minimization and give technical
overviews for the offline model and the oblivious model.

3.1 Offline SLTB under Total Completion Time Minimization
For offline SLTBTC, we mainly show the following theorem. The NP-hardness is proved via
a reduction from the Partition problem. Due to space limitations, the proofs are omitted
and can be found in the full version [8], we focus on introducing the high-level ideas of our
PTAS, the most interesting and technical part of this paper.

▶ Theorem 1. The offline SLTBTC problem is NP-hard even when the lower processing
time of each job is 0, and admits a PTAS.

Our algorithm is based on an integer linear programming (ILP) formulation for offline
SLTBTC. The ILP contains variables xj,i,t that dictate whether job j ∈ J should be
scheduled in position i ∈ I of type t ∈ T . (See Section 4.1 for the exact definition of this
ILP.) The ILP is conceptually similar to the classical matching ILP on bipartite graphs [1],
with jobs and positions representing the two disjoint independent sets of the bipartition. A
matching would then describe an assignment of jobs to positions. However, there are two
main differences. First, we have two variables per pair of job and position (distinguished
by the type t ∈ T ). This translates to each job-position pair having two edges that connect
them in the (multi-)graph. Second, the total cost of jobs tested is restricted by some budget
B. This causes a dependency when selecting edges in the graph.

Our approach combines a rounding scheme of the ILP with an exploitation of the cost
structure of the problem. We relax the ILP to an LP by allowing the variables xj,i,t to
take on fractional values between 0 and 1. We start with an optimal LP solution and then
continue with our rounding scheme, which consists of two phases. In the first phase, we
round the solution such that all fractional variables correspond to the edges of a single cycle
in the graph mentioned above. These variables are hard to round directly without overusing
the budget. Here we start the second rounding phase. We relax some of the constraints in
the LP to be able to continue the rounding process. Specifically, we allow certain positions to
schedule two jobs (we call these positions crowded). We end up with an integral (but invalid)
solution that has some crowded positions. Then, we “decrowd” these positions by moving
their jobs to nearby positions (shifting the position of some other jobs one up), and show
that we can bound the cost of moving a job this way in terms of its current contribution
to the overall cost. Observing that moving a job from position i to position i′ (note that
positions are counted from right to left) increases that job’s contribution by a factor of i′/i,
if a crowded position lies far to the right (i is small), we cannot afford to move one of its jobs
too far away. For example, in the extreme case that the rightmost position is crowded (i.e.,
i = 1), even the smallest possible move of one of its jobs to the second-rightmost position
(i.e., i′ = 2) already doubles that job’s contribution. Thus, our algorithm tries to avoid
producing crowded positions that lie too far to the right (at small positions).
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To this end, the rounding process in this phase is specifically tailored to control where
crowded positions can appear in the integral solution. We look at the f(ϵ) = 2/ϵ + 1 smallest
(rightmost) positions that appear on the current path (representing fractional variables), and
select one of them (let’s call it the cut-position) to cut the path into two halves. This is
done such that each half contains 1/ϵ many of the smallest positions on the current path.
By shifting workload along each of these two halves, we can make one of them integral. This
integral half gives us 1/ϵ positions that are not crowded, while the cut-position might have
become crowded (as might any future cut-position in the remaining fractional path). Because
we cut somewhere in the f(ϵ) rightmost positions of the path, we can show that for each
crowded position, there are many positions further to the right of the schedule that are not
crowded (this is basically what our charging argument formalizes). In the end, this allows
us to prove that no job is moved too far from its original position (relative to its original
position), keeping the cost increase due to such moves small.

3.2 Oblivious SLTB under Total Completion Time Minimization

For the oblivious model where the lower processing time vector p∨ is hidden, we show that
(4 + ϵ) approximation can be obtained, and further, prove that the ratio is the best possible.

▶ Theorem 2. For oblivious SLTBTC and any ϵ > 0, there exists a deterministic algorithm
with a competitive ratio of (4 + ϵ), while no deterministic algorithm can obtain a competitive
ratio strictly smaller than 4.

We start by considering the oblivious uniform SLTBTC problem to build some intuition.
The uniform case limits the number of tested jobs, i.e., we can test at most k jobs. Clearly, for
the worst-case analysis, we can assume that each job j tested by our algorithm has p∨

j = p∧
j ;

that is, we exhaust the budget, but no job’s processing time gets reduced. In contrast, for all
the jobs tested by an optimal solution, their processing times can be reduced to 0. Thus,
from this perspective, regardless of which jobs we test, our total completion time remains
unchanged, but the optimum depends on our tested jobs because the adversary can only let
the job j that is not tested by our algorithm have p∨

j = 0.
Then we find that the oblivious uniform SLTBTC problem is essentially equivalent to

the following optimization problem: given a set of jobs J with p∧ and p∨ = 0, the goal is
to select k jobs such that the minimum total completion time obtained by testing at most
k unselected jobs is maximized. The selected jobs can be viewed as the jobs tested by our
algorithm, while the minimum total completion time obtained by testing unselected jobs
is the optimum of oblivious uniform SLTBTC. When our objective value is fixed, a larger
optimum implies a better competitive ratio. For this much easier problem, it is easy to
see that the best strategy is selecting the k jobs with the largest upper processing time,
which is the set of jobs that would be tested by an optimal solution of SLTBTC instance
I = (J, p∧, p∨ = 0, c = 1, k).

We build on the above argument to give the algorithm for the non-uniform case I =
(J, p∧, p∨, c, B). The basic idea is constructing an auxiliary instance Ĩ := (J, p∧, p̃∨ =
0, c, B), solving the instance optimally or approximately, and returning the obtained solution.
Use ALG(·) and OPT(·) to denote the objective values obtained by our algorithm and an
optimal solution of an input instance, respectively. By the theorem proved in the offline
model, we have ALG(Ĩ) ≤ (1 + ϵ)OPT(Ĩ) for any ϵ > 0. In the analysis, we show that our
objective value can be split into two parts: ALG(I) ≤ 2ALG(Ĩ) + 2OPT(I), and therefore,
due to OPT(Ĩ) ≤ OPT(I), a competitive ratio of (4 + 2ϵ) can be proved.
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The lower bound is shown by a hard instance I = (J, p∧ = 1, p∨, c = 1, B = n
2 ), where

the adversary always lets our tested jobs have lower processing time 1 and the processing
time of any other job be 0. Apparently, any deterministic algorithm’s objective value is
n(n + 1)/2, while an optimal solution can achieve a total completion time of n(n + 2)/8,
which implies a lower bound of 4. 2

3.3 SLTBM under Makespan Minimization

▶ Theorem 3. The offline SLTBM problem is NP-hard and admits an FPTAS, while for
oblivious SLTBM, an almost tight competitive ratio of 2 + ϵ can be obtained (for any ϵ > 0).

The offline SLTB problem under makespan minimization is closely related to the classical
0-1 knapsack problem. The classical 0-1 knapsack problem aims to select a subset of items
such that (i) the total weight of the selected items does not exceed a given capacity; (ii) the
total value of the selected items is maximized. To see the connection, consider the testing cost
of each job as the weight of each item and the profit of testing a job (p∧

j − p∨
j ) as the value

of an item. Then we build on the algorithmic idea of the knapsack dynamic programming
and design an FPTAS for the offline setting.

We use the same framework as the total completion time minimization model for the
oblivious setting and obtain a (2 + ϵ)-competitive algorithm. The ratio becomes better here
since, for the makespan objective, we have ALG(I) ≤ ALG(Ĩ) + OPT(I), saving a factor of
2. The lower bound proof is also based on the same hard instance I = (J, p∧ = 1, p∨, c =
1, B = n/2). Any deterministic algorithm’s makespan is n while the optimum is n/2, giving
a lower bound of 2.

4 Offline Setting for SLTB under Total Completion Time Minimization

This section considers the Scheduling with a Limited Testing Budget problem under total
completion time minimization (SLTBTC) in the offline setting and aims to show the following
theorem.

▶ Theorem 4. There exists a PTAS for SLTBTC.

For convenience, we refer to a problem instance as a pair I = (J, B), dropping the
processing time and cost vectors p∨, p∧, and c (which we assume to be implicitly given).
Moreover, in this section, we consider the job positions I = [n] in reverse order to simplify
the calculations. That is, a job j scheduled in position i ∈ I is processed as the i-th last job.

4.1 ILP Formulation and Fixations

We start by introducing our ILP formulation of the SLTBTC problem and defining the term
fixation of a (relaxed) instance of our ILP. Such fixations allow us to formally fix the values
of certain variables in the (relaxed) ILP when analyzing our algorithm.

2 Since in the worst-case, the upper and lower processing times of jobs tested by the algorithm are equal,
it does not help if the algorithm can be adaptive, i.e., change its testing strategy based on such an
information.
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ILP Formulation. Our ILP has indicator variables xj,i,t that are 1 if job j is scheduled at
position i of type t and 0 otherwise. The contribution of such a job to the total completion
time is3 i · pt

j . We have constraints to ensure that each of the n positions schedules one job,
that each job is scheduled once, and that the cost of tested jobs do not exceed the budget.
The equivalence between ILP solutions and SLTBTC schedules is formalized in Lemma 5.

Consider an instance I = (J, B) of the SLTBTC problem. We define an ILP ILPI , with
the variables xj,i,t for each job j ∈ J , position i ∈ I and type t ∈ T .

min
∑

j∈J,i∈I,t∈T

i · pt
j · xj,i,t

s.t.
∑

j∈J,t∈T

xj,i,t = 1 ∀i ∈ I (1)
∑

i∈I,t∈T

xj,i,t = 1 ∀j ∈ J (2)

∑
j∈J,i∈I

cjxj,i,∨ ≤ B (3) xj,i,t ∈ { 0, 1 } ∀j ∈ J, i ∈ I, t ∈ T (4)

For ILPI with variable set XI := {xj,i,t | j ∈ J, i ∈ I, t ∈ T }, a solution x : XI → R assigns
each variable in XI a value. Solution x is called valid if it satisfies the four constraints
and invalid otherwise. For a (possibly invalid) solution x for I we define its cost as
CI(x) :=

∑
j∈J,i∈I,t∈T i · pt

j · xj,i,t and its budget use BI(x) :=
∑

j∈J,i∈I cjxj,i,∨ (we omit I
from CI and B if it is clear from the context). We refer to the different constraints as (1)
position constraints, (2) job constraints, (3) budget constraint, and (4) integrality constraints.

▶ Lemma 5. Let I = (J, B) be an instance for SLTBTC. For each valid solution x to ILPI
there exists a schedule S for I with C(S) = C(x) and vice versa. Each can be computed from
the other in polynomial time.

Relaxation and Fixations. Our algorithm and analysis use relaxed variants of ILPI that fix
certain ILP variables (indicating that, e.g., certain jobs must be tested). It also keeps track
of crowded positions, in which our algorithm may (temporarily) schedule two jobs (violating
the position constraints). We introduce the notion of a fixation F to formally define these
relaxed variants LPI,F of ILPI . 4

▶ Definition 6. A fixation F = (J(F), X(F), IC(F)) of an SLTBTC instance I consists of:
1. a set of tested jobs J(F) ⊆ J ,
2. a set of fully-fixed variables X(F) ⊆ XI where j /∈ J(F) for all xj,i,t ∈ X(F), and
3. a set of crowded positions IC(F) ⊆ I.

For a set operator ◦ ∈ {∪,∩, \ } and a set of positions Ī ⊆ I, we use the notation
F ◦ Ī := (J(F), X(F), IC(F) ◦ Ī) to express the change to the crowded positions of F .

Given a fixation F , we define the following relaxed variant LPI,F of ILPI :
1. For each xj,i,t ∈ XI we relax the integrality constraint to 0 ≤ xj,i,t ≤ 1 (unit constraints).
2. For each xj,i,t ∈ X(F), we add the constraint xj,i,t = 1 (fully-fixed constraints).
3. For each j ∈ J(F), we add the constraint

∑
i∈I xj,i,∨ = 1 (tested job constraints).

4. For each i ∈ IC(F), we relax the position constraint to
∑

j∈J,t∈T xj,i,t ∈ { 0, 1, 2 }.
The resulting LP is omitted in this version and can be found in the full version [8].

3 Remember that we consider the position in reverse order. Thus, the job at position i is the i-th last job.
4 Our PTAS will enumerate through a polynomial number of fixations, and solve the problem for each

one of them. The approximation guarantee is then derived for the fixation that is consistent with the
optimal solution.
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4.2 Graph-theoretic Perspective & Paths
Consider an SLTBTC instance I = (J, B) with fixation F and a (fractional) solution x to
LPI,F . The main building block of our algorithm is a rounding scheme based on the following
graph-interpretation of I and corresponding paths based on the current solution x:

▶ Definition 7. The instance graph GI := (J ·∪ I, E) is a bipartite multi-graph between the
jobs J and positions I with exactly two edges between any pair j ∈ J and i ∈ I. We identify
the edge set E with the variable set XI and refer to a variable xj,i,t ∈ E = XI also as an
edge of type t ∈ {∨,∧} between j and i.

▶ Definition 8. A path P in solution x is a weighted path from is ∈ I (start position) to
ie ∈ I (end position) in GI , where the weight of an edge xj,i,t ∈ P is its value in x. P is
called integral if all its weights are integral and fractional if they are all (strictly) fractional.

Nodes and edges in P must be pairwise distinct, except for possibly equal start and end
positions is = ie, in which case we refer to P also as a cycle. We define J(P ) as the path’s
set of jobs, I(P ) as its set of positions, and K(P ) := I(P ) \ { is, ie }. Moreover, X(P ) is the
sequence of edges/variables from start to end position in P . We say the i-th edge in X(P ) is
even/odd if i is even/odd, such that P reaches j ∈ J(P ) via an odd edge xO

j and leaves j via
an even edge xE

j . We similarly use tO
j and tE

j to denote the type of xO
j and xE

j , respectively.

Next, we define shift operations, which move workload along paths by increasing the
volume of one job at any position i ∈ I(P ) while decreasing the volume of another job at i.

▶ Definition 9. A δ-shift of a path P in x decreases the value of all odd edges (variables) of
P by δ and increases the value of all even edges (variables) of P by δ.

Shift operations (see Figure 1) change the budget use B(x) at a path-dependent (positive
or negative) budget rate (defined below) and might create crowded positions. Our algorithm’s
first two phases (Sections 4.3 and 4.4) carefully pair shift operations such that performing
paired shifts does not increase the budget and does not create too many crowded positions.

Define the budget rate of a path P to be ∆(P ) :=
∑

j∈J(P ) cj · (1|tE
j

=∨ − 1|tO
j

=∨). Let P

be a path in a solution x for LPI,F without crowded positions (i.e., IC(F) = ∅). P is called
y-alternating (or simply alternating) if all odd edges have weight y and all even edges have
weight 1− y. Lemma 10 below formalizes the effect of a δ-shift in terms of the path’s budget
rate. Since our analysis can be restricted to paths with very specific, alternating edge values,
we also formalize such alternating paths and show how they are affected by δ-shifts (see also
Figure 2).

▶ Lemma 10. Let P be a path in a solution x for LPI,F without crowded positions (i.e.,
IC(F) = ∅). Shifting P in x by δ yields a (possibly invalid) solution x̃ with B(x̃) =
B(x)− δ ·∆(P ). If P is y-alternating in x, then it is (y − δ)-alternating in x̃.

4.3 First Phase: Eliminating all but one cycle
Consider an optimal valid solution x to LPI,F without crowded positions (i.e., IC(F) = ∅).
Lemma 11 below is our main tool for rounding fractional variables in x. Consider a set of
variables that form a fractional path in x. Essentially, we want to use a shift operation from
Definition 9 on such a path to make some of its variables integral. If such a shift increases
the budget use B(x) (rendering the solution invalid), we can suitably shift a second path
(possibly using a negative δ) in parallel to ensure that the budget use B(x) does not increase.
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path P

I

J

i1 i2 i3 i4 i5 i6

j1 j2 j3 j4 j5 j6

∨ ∨ ∧ ∧∨∨0.
3

0.6 0.4

0.
1 0.2 0.
6

(a) Path P with start and end positions i3 and i6.

path P

I

J

i1 i2 i3 i4 i5 i6

j1 j2 j3 j4 j5 j6

∨ ∨ ∧ ∧∨∨0.
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0.8 0.2

0.
3 0.0 0.
8

(b) Same path P after the shift.

Figure 1 A path P in a solution x before and after a shift by δ = 0.2. Edges are labeled with
their type (∨ or ∧) and weight from a given solution x. Odd edges are red, and even edges are blue.
The budget rate computes as ∆(P ) = cj2 (1− 0) + cj3 (1− 1) + cj5 (0− 1) = cj2 − cj5 .

path P
I

J

i1 i2 i3 i4 i5 i6

j1 j2 j3 j4 j5 j6

∨∨ ∧ ∧ ∨∨
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6
path P ′
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60.4
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(a) Alternating paths P (solid) and P ′ (dashed).

path P
I

J

i1 i2 i3 i4 i5 i6

j1 j2 j3 j4 j5 j6

∨∨ ∧ ∧ ∨∨

0.
1 0.

0

path P ′

1.00.
90.1
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(b) Same paths by δ = 0.3 and δ′ = 0.6, respectively.

Figure 2 Illustration of Lemma 11 for alternating paths P = (i3, . . . , i4) (solid) and P ′ =
(i4, . . . , i6) (dashed) with budget rates ∆(P ) = cj3 := 2 and ∆(P ′) = cj5 := 1. Shifting P by δ = 0.3
and P ′ by δ′ = 0.6 keeps the budget use constant. P and P ′ stay alternating, P ′ becomes integral,
and i3, i4, i6 (the start/end positions) violate the position constraints after these shifts.

Such shifts might also cause the violation of the position constraints at the path’s start
and end positions. We keep track of such violations by adding those positions to the crowded
position set IC(F) of the fixation F . Lemma 11 formalizes this approach (see also Figure 2).

▶ Lemma 11. Consider x a valid solution for LPI,F . Let P be a fractional path in x with
∆(P ) = 0 or P, P ′ be two fractional paths in x with X(P ) ̸= X(P ′) and ∆(P ), ∆(P ′) ̸= 0.
We can efficiently shift P (and P ′, if existing) in x to yield a valid solution x̃ for LPI,F̃ with:
1. C(x̃) ≤ C(x) and B(x̃) = B(x)
2. F̃ = F ∪ I ′, where I ′ is the set of all start and end positions of non-cyclic paths involved.
3. x̃ contains more integral variables than x.

Lemma 11 allows us to shift along general paths (instead of cycles) at the cost of creating
crowded positions. We rely on this in Section 4.4 and deal with the crowded positions in
Section 4.5. However, to keep the number of crowded positions small and reduce their impact
on the final solution, we apply Lemma 11 on cycles for as long as possible. This avoids the
creation of crowded positions since shifts along cycles cannot change the net workload at
any position. Indeed, note that given any node in a path P that is incident to a fractional
edge must have a second fractional edge, or it would violate its job/position constraint. This
allows us to complete any fractional path to a cycle. Thus, we can keep applying Lemma 11
to cycles (not creating crowded positions) until there is at most one cycle with a non-zero
budget rate left (a blocking cycle). Let x be a solution to LPI,F . A path P of x is called
critical if X(P ) = {xj,i,t ∈ XI | xj,i,t ∈ (0, 1) }. A blocking cycle of x is a critical cycle P

with ∆(P ) ̸= 0. Lemma 12 formalizes the idea above.

▶ Lemma 12. Let I be an instance, F be a fixation with IC(F) = ∅, and x be a valid
optimal solution to LPI,F . Then we can compute in polynomial time a valid optimal solution
x̃ to LPI,F such that all variables in x̃ are integral, or we find a blocking cycle of x̃. Further,
if P is a blocking cycle of x, then P is alternating.
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4.4 Second Phase: Rounding the blocking cycle
Assume that we used Lemma 12 to compute a blocking cycle P for a solution x to LPI,F
with IC(F) = ∅. Because P is critical, all fractional variables are in X(P ). Also, since
∆(P ) ̸= 0, applying Lemma 11 directly is impossible. Instead, we cut up P repeatedly into
two paths P1, P2, and then use Lemma 11 on these paths (see Algorithm 1). Cutting is done
by selecting any position i ∈ K(P ), and separating the path at i: P1 will be the path starting
at the start position of P and end at i. P2 will be the path starting at i and ending at the
end position of P . We abbreviate this operation by P1, P2 ← Cut(P, i). The drawback of
this approach is that Lemma 11 does not guarantee that the resulting solutions still fulfill
the position constraints of the start/end positions of P1, P2, respectively. That is why we
add them to IC(F) in the process.

Algorithm RepeatedCut starts with a solution x̃ and a critical path P̃ . It cuts P̃ at
some position i ∈ K(P̃ ) that is selected by a procedure SelectCutPosition (which is
described later in Algorithm 2 in the next subsection). The algorithm then applies Lemma 11
to the two resulting paths, making at least one of them integral (as guaranteed by Lemma 10).
After that, x̃ and P̃ are updated accordingly. RepeatedCut finishes when |K(P̃ )| = 0 (and
therefore P̃ cannot be cut into two paths anymore). In such a case, RepeatedCut will
reschedule that job to obtain an integral solution. It is also possible that no path remains
after the application of Lemma 11. For such a case, x̃ is already integral. Thus, in both
cases, the resulting integral solution x̃ is returned.

Algorithm 1 RepeatedCut.

Input: A valid solution x for LPI,F with IC(F) = ∅, a blocking cycle P of x.
1: P̃ , x̃← P, x

2: while ∆(P̃ ) ̸= 0 do
3: if K(P̃ ) = ∅ then
4: j ← unique job in J(P̃ ); i1, i2 ← remaining two positions in I(P̃ )
5: In x̃, reschedule j into position min(i1, i2) of type ∨ if tO

j = tE
j = ∨ and ∧ else

6: return x̃

7: i← SelectCutPosition(P̃ )
8: P1, P2 ← Cut(P, i)
9: Apply Lemma 11 to P1, P2 in x̃, changing x̃ accordingly

10: if both paths became integral then return x̃

11: P̃ ← the remaining fractional path
12: Apply Lemma 11 to P̃ in x̃, changing x̃ accordingly
13: return x̃

In the following, we make statements about the state of the variables involved in the
execution of RepeatedCut at the beginning of an iteration of its while-loop. Consider
the state of RepeatedCut (called on path P ) at the beginning of the l’th iteration of the
while-loop (l ≥ 1). We denote by IC

l the start/end position of P together with all positions
selected by SelectCutPosition so far, and IC

∗ the start/end position of P together with
all positions selected by SelectCutPosition throughout the algorithm. Similarly, denote
by x̃l,P̃l the values of x̃,P̃ at that point, respectively, and x̃∗ for the returned solution by
RepeatedCut. Denote F̃l := (J(F), X(F), IC

l ) and F̃∗ := (J(F), X(F), IC
∗ ).

▶ Lemma 13. The following is a loop invariant of RepeatedCut for iteration l ≥ 1: x̃l is
a valid solution for LPI,F̃l

and P̃l is a critical fractional alternating path in x̃l, of which the
start and end positions are in IC

l . Also, x̃∗ is an integral valid solution for LPI,F̃∗
.

Based on Lemma 13, we can analyze the objective obtained by RepeatedCut:
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▶ Lemma 14. Consider an application of RepeatedCut on solution x for LPI,F and a
blocking cycle P . It returns in polynomial time a solution x̃ with C(x̃) ≤ C(x) + Z, where Z

is either 0 or the contribution of job j rescheduled by RepeatedCut in line 5 and j /∈ J(F̃∗).

4.5 Third Phase: Dealing with crowded positions

Lemma 14 guarantees that applying the algorithm RepeatedCut will return us an integral
solution. However, that solution is valid for LPI,F where IC(F) still contains some positions.
Some of these positions may schedule two jobs, which makes this schedule not valid for ILPI .
Our general strategy in this subsection is to move the jobs such that the cost of the solution
does not increase too much. In Observation 15, we move each job to a new position and
bound the cost created by that operation.

▶ Observation 15. Let x be an integral solution to LPI,F for some fixation F . Consider a
job j ∈ J that is scheduled in position i ∈ I of type t ∈ T . Then rescheduling j into position
i′, i.e., setting xj,i,t ← 0 and xj,i′,t ← 1 produces a (possibly invalid) solution x̃, in which
the contribution of j increases by a factor of i′/i compared to x.

As mentioned above, there are still some positions that schedule two jobs. To obtain an
integral valid solution for ILPI , we have to move the jobs in the schedule to new positions,
such that there is exactly one job per position scheduled. We want to use Observation 15
to bound the increase in contribution for each job moved this way. Generally, we move the
jobs as follows: For a position i that schedules two jobs j, j′, we (arbitrarily) distribute j, j′

among positions i, i + 1, thereby moving all jobs from positions i + 1, . . . , n to one higher
position. Following this strategy, jobs in higher positions may get moved multiple times.

To bound the contribution in terms of Observation 15, we set up a charging scheme: Each
position with two jobs scheduled should be charged to a distinct set of 1/ϵ smaller positions
that schedule one job, where ϵ is the accuracy parameter of our algorithm (1/ϵ ∈ N). In the
following, we will always use the following function SelectCutPosition for RepeatedCut:

Algorithm 2 SelectCutPosition.

Input: A path P̃ with |K(P̃ )| ≥ 1
Output: A position i ∈ K(P̃ )
1: if |K(P̃ )| ≥ 2/ϵ + 1 then
2: I ′ ← the smallest 2/ϵ + 1 positions in K(P̃ )
3: return the position that appears as (1/ϵ + 1)-st position in P̃ of the positions in I ′

4: else
5: return any position in K(P̃ )

We care about two properties of the position selected by SelectCutPosition. First,
when we cut P̃ into P1, P2 in line 8 of RepeatedCut, K(P1),K(P2) should each contain
at least 1/ϵ positions. This way, whichever of these paths becomes integral, there will
be 1/ϵ positions that will never be selected by SelectCutPosition in the future. This
is important for our charging scheme to have enough positions to charge to. Second, we
specifically care about the selected positions being the smallest positions that appear in
K(P̃ ). This essentially allows us to charge each position with two jobs scheduled exclusively
to smaller positions, independent of which of the two paths becomes integral.

We represent the charging scheme using a charging function (formally defined in Defini-
tion 16). Essentially, for a set of positions Ī ⊆ I, it charges each position in Ī to its distinct
1/ϵ many smaller positions.
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(a) Illustration of µl (e.g., µl(24) = { 16, 23 }).
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(b) Illustration of µl+1 (e.g., µl+1(26) = { 16, 23 }).
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(c) Path P̃l (solid and dashed), and path P̃l+1 (solid) after one iteration of the while-loop in RepeatedCut.

Figure 3 An update step of Lemma 17 for ϵ = 1/2. The inner positions of P̃l are K(P̃l) =
{ 17, 20, 21, 22, 24, 25, 26, 27 }. Its 2/ϵ + 1 = 5 smallest positions appear in order 22, 17, 20, 21, 24. P̃l

is cut at the (1/ϵ + 1) = 3-rd of these positions (20) into two paths, which are then shifted such
that the dashed one becomes integral and the solid one becomes P̃l+1. I+

l+1 loses positions 21 and
24 compared to I+

l , as these positions belonged to the dashed path, which became integral. I+
l+1

now consists of all remaining 2/ϵ + 1 = 5 inner positions K(P̃l+1) = { 17, 22, 25, 26, 27 }. We set
µl+1(25) = µl(21), µl+1(26) = µl(24), and µl+1(27) = { 21, 24 } (the lost positions from I+

l ).

▶ Definition 16. Let x be a solution to LPI,F for an instance I and a fixation F . Let P be a
critical path in x. For a set Ī ⊆ I, a charging function for Ī is a function µ : Ī → P(I \ Ī) such
that for all i ∈ Ī: (1) |µ(i)| = 1/ϵ, (2) ∀i′ ∈ µ(i) : i′ < i and (3) ∀i′ ∈ Ī : µ(i) ∩ µ(i′) = ∅.

Consider the l’th iteration of the while-loop in RepeatedCut. We define the charging
set I+

l := Ī ∪ IC
l , where Ī contains the smallest 2/ϵ + 1 positions in K(P̃l) (or all of them, if

|K(P̃l)| < 2/ϵ + 1). Similarly, define I+
∗ := IC

∗ .

Lemma 17 shows how to obtain a charging function µ∗ : I+
∗ → P(I \ I+

∗ ) from a charging
function µ1 : I+

1 → P(I \ I+
1 ). We do this by updating the charging function with every

iteration of RepeatedCut’s loop. Figure 3 exemplifies the update of the charging function.

▶ Lemma 17. If there exists a charging function µ1 : I+
1 → P(I \ I+

1 ), then there also exists
a charging function µ∗ : I+

∗ → P(I \ I+
∗ ).

We now use Observation 15 together with a charging function (of which we assume the
existence for now) on a solution x for LPI,F produced by RepeatedCut to find a solution
for ILPI with not too much more cost. Lemma 18 will allow us to produce such a solution.

▶ Lemma 18. Let x be a solution returned by RepeatedCut for LPI,F , and let µ∗ be a
charging function for I+

∗ . Then we can find a valid solution x̃ in polynomial time for ILPI
such that the contribution of each job increases by a factor of at most (1 + ϵ) compared to x.

Consider a solution x returned by RepeatedCut for LPI,F . To be able to apply
Lemma 18 and find a solution for ILPI , we need to make sure that we can find a charging
function µ1 for I+

1 . Furthermore, we still need to bound the contribution created by the job
j in line 5 of RepeatedCut as of Lemma 14. To do this, we choose a proper fixation F∗

and show that a charging function can then be derived.

▶ Definition 19. Let x∗ be an optimal solution to ILPI for an instance I. For i ∈ I, let
further ji ∈ J and ti ∈ T such that x∗

ji,i,ti
= 1. Using M := (2/ϵ + 1)/ϵ, we define the

fixation F∗ by

X(F∗) = {xji,i,ti | i ∈ [M ] } J(F∗) = { j ∈ J | p∧
j > min

i∈[M ]
pti

ji
} IC(F∗) = ∅

▶ Lemma 20. Let x be a solution returned by RepeatedCut for LPI,F∗ . Then there exists
a charging function µ1 for I+

1 .
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Essentially, we brute-force which jobs will be scheduled in the last few positions. This
will make sure that these positions are not in I+

1 , and as such can be used for the charging
function µ1. Assuming that we brute-forced correctly, an optimal solution will also test all
jobs with a larger upper processing time than any of the brute-forced jobs. This is because
an optimal solution will always schedule in order of increasing processing times. Finally, we
can piece together all of the above lemmas and prove the main theorem (Theorem 4). The
detailed proof can be found in [8].

5 Conclusion

We initiated the study of Scheduling with a Limited Testing Budget, where we have a
limited budget for testing jobs to potentially decrease their processing time. We provided
NP-hardness results, a PTAS, as well as tight bounds for a semi-online (oblivious) setting.

Our results open promising avenues for future research. For the setting where we minimize
the total completion time, it remains open whether NP-hardness holds for uniform testing
cost. Also, while our LP-rounding-based PTAS achieves the best possible approximation, it
remains open whether there is a faster, combinatorial algorithm. Another natural direction
would be to consider the case of multiple machines.

Another exciting direction is the following bipartite matching with testing problem that
generalizes our problem, arising from the graph-theoretic perspective in Section 4.2: Consider
a bipartite graph G := (L∪R, E) in which each edge e ∈ E has a cost ce that can be reduced
to če via a testing operation. Given the possibility to test edges before adding them to the
matching, we seek a min-cost perfect matching that respects a given testing budget.
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Abstract
One of the most studied extensions of the famous Traveling Salesperson Problem (TSP) is the
Multiple TSP: a set of m ≥ 1 salespersons collectively traverses a set of n cities by m non-trivial
tours, to minimize the total length of their tours. This problem can also be considered to be a variant
of Uncapacitated Vehicle Routing, where the objective is to minimize the sum of all tour lengths.
When all m tours start from and end at a single common depot v0, then the metric Multiple TSP
can be approximated equally well as the standard metric TSP, as shown by Frieze (1983).

The metric Multiple TSP becomes significantly harder to approximate when there is a set D

of d ≥ 1 depots that form the starting and end points of the m tours. For this case, only a
(2 − 1/d)-approximation in polynomial time is known, as well as a 3/2-approximation for constant d

which requires a prohibitive run time of nΘ(d) (Xu and Rodrigues, INFORMS J. Comput., 2015). A
recent work of Traub, Vygen and Zenklusen (STOC 2020) gives another approximation algorithm
for metric Multiple TSP with run time nΘ(d), which reduces the problem to approximating metric
TSP.

In this paper we overcome the nΘ(d) time barrier: we give the first efficient approximation
algorithm for Multiple TSP with a variable number d of depots that yields a better-than-2 approx-
imation. Our algorithm runs in time (1/ε)O(d log d) · nO(1), and produces a (3/2 + ε)-approximation
with constant probability. For the graphic case, we obtain a deterministic 3/2-approximation in
time 2d · nO(1).
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1 Introduction

The Traveling Salesperson Problem (tsp) is one of the best-studied problems in
combinatorial optimization: given a complete graph G on n nodes together with edge weights
w : E(G) → R≥0, we seek a tour that starts at some node v0 ∈ V (G), then visits all other
nodes of G exactly once, and returns to the origin v0 in such a way that the overall tour
weight is minimized, which is the sum of the weights of the edges traversed by the tour.
TSP is one of Karp’s 21 NP-complete problems [15], which motivates the design of efficient,
polynomial-time approximation algorithms for it. Recall that an α-approximation for a
minimization problem returns, for any instance I, in polynomial time a solution of value at
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most α · OPT(I), where OPT(I) denotes the value of an optimal solution for I. Of special
importance in this regard is Metric TSP, when the edge weight function w obeys the
triangle inequality. For Metric TSP, the tree doubling heuristic yields a 2-approximation,
which was improved to a 3/2-approximation by Christofides [7] and Serdyukov [24] in the
1970s. This approximation factor stood unchallenged for many decades until its recent
improvement to a (3/2 − 10−36)-approximation by Karlin et al. [14].

Due to its ubiquity, a large variety of extensions of the tsp have been studied. Among
the most prominent ones is the Multiple TSP, where a set of m ≥ 1 salespersons (all
starting from some common node v0 called a depot) jointly traverse the entire set of n nodes,
in order to minimize the overall tour length. That is, the goal is to find a collection of
m pairwise edge-disjoint cycles C1, . . . , Cm (all intersecting in some node v0) in G whose
union covers all nodes of the graph and such that the sum of the weights of the cycles is
minimized. This character of having to solve both a partitioning and a sequencing problem
simultaneously gives rise to considerable added complexity, akin to that encountered in
vehicle routing problems. Indeed, one could interpret this problem as a variant of the
Uncapacitated Vehicle Routing Problem; we, however, will adhere to the tsp-style
naming convention, since this is more prevalent in the literature. Let us just mention here
that for metric edge weights, Multiple TSP has the same approximation guarantee as
the standard (single-person) metric TSP; in particular, Metric Multiple TSP admits a
(3/2−10−36)-approximation in polynomial time by the results of Karlin et al. [14]. Frieze [10]
analysed the case of Metric Multiple TSP when each of the tours has to contain at least
one edge and intersect a common depot v0; he provided a 3/2-approximation for this setting
in polynomial time. The Multiple TSP is studied in more than 1,300 publications; an
extensive survey is provided by Bektaş [1].

In this paper we study an extension of the Multiple TSP, where a set D ⊆ V (G) of
nodes is distinguished as depots. Formally, the Multi-Depot Multiple TSP (mdmtsp)
takes as input a complete graph G on n nodes together with edge weights w : E(G) → R≥0,
as well as a set D ⊆ V (G) of d = |D| depots and an integer m ≥ 1 denoting the number of
salespersons available. Now again we are seeking a set of m pairwise edge-disjoint cycles
C1, . . . , Cm in G whose union covers all nodes of the graph and such that the sum of the
weights of the cycles is minimized, but in addition each cycle must contain some depot
from D. Such set of cycles is an optimal solution for the mdmtsp instance, and we denote
the value of some optimal solution by OPT(G, D, w) (or simply OPT if the instance is clear
from the context). The mdmtsp is motivated by several applications of high practical impact,
like motion planning of a set of unmanned aerial vehicles [17, 21, 31] and the routing of
service technicians where the technicians are leaving from multiple depots [20].

The theoretical aspects of mdmtsp have been studied in many research papers [1, 2, 3, 6,
13, 16, 25, 26, 28, 29, 30]. At this point, let us issue a word of caution. There are quite a
few other varieties of (mdm)tsp considered in the literature, all subtly different from each
other. For a compact overview of possible variations, there is the review paper of Bektaş [1].
For the scope of this paper, we consider the metric mdmtsp where the edge weights form a
metric. This allows us to assume that m = d throughout. This assumption is made for the
following two reasons: on the one hand, the case m > d is negligible as the objective function
(the total weight of all tours) is invariant for multiple tours starting from a single depot (if
weights satisfy the triangle inequality, it is easy to show that there is always an optimal
solution in which at most one route will start and end at each depot). On the other hand,
in the case m ≤ d we can try each selection of d′ = m depots by paying a multiplicative
factor of

(
d
m

)
in the run time only. Thus, any instance of metric mdmtsp is specified by a

triple (G, D, w), where G is a complete graph on n nodes, D ⊆ V (G) is the set of depots,
and w : E(G) → R≥0 is a metric.
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The polynomial-time approximability of metric mdmtsp is not fully understood. That
there is a set D of depots (and not just a single depot v0), each one of which must be visited
by one of the tours, makes the approximability of the problem much harder compared to
metric Multiple TSP (i.e., the version without depots). The added complexity arises from
the fact that we not only have to give a good order in which to visit nodes, as in the tsp, but
we also have to partition the nodes appropriately. In particular, the Christofides-Serdyukov
algorithm [7, 24] no longer yields a 3/2-approximation in this setting. The original analysis
of Christofides’ and Serdyukov’s algorithms relies on all odd-degree nodes of some spanning
structure F lying on the same tour, so a parity-correcting edge set J can be computed that
weighs at most 1

2 OPT. This fact is not available in the multi-depot setting, so in polynomial
time we can only guarantee a 2-approximation by using the spanner F for J also. However,
this only achieves a tight approximation ratio of 2 − 1

d for the multi-depot setting, as shown
by Xu et al. [30] (see Figure 1 for a version of their lower-bound example), because the
matching can have weight d−1

d OPT.

Figure 1 An instance on which Algorithm 1 achieves approximation ratio arbitrarily close to 2.
Square nodes are depots and all edges have unit weight. Dashed edges indicate a tour of length d,
dotted edges a minimum csf with weight d − 1 that requires a join of weight d − 1 to complete.

To avoid this issue, the constrained spanning forest needs to be rearranged such that there
is again a matching of weight 1

2 OPT, as in the work of Xu and Rodrigues [28] – this
rearrangement though requires nΘ(d) time.

Similarly, the algorithmic approaches to metric tsp based on solving a linear program (lp)
are also unlikely to give α-approximation algorithms with α < 2 for metric mdmtsp. To this
end, consider the following multi-depot version of the subtour-elimination lp, MDMTSP-LP:

minimize
∑

e∈E(G)

wexe

subject to
∑

e∈δ(v)

xe = 2, ∀ v ∈ V (G) \ D∑
e∈δ(U)

xe ≥ 2, ∀ U ⊆ V (G) \ D

xe ∈ [0, 2], ∀e ∈ E(G)

(MDMTSP-LP)

In Figure 2 we give a construction to show that MDMTSP-LP has integrality gap 2.
If one gives up on the polynomial run time of the approximation algorithm, then smaller

approximation factors are possible. Xu and Rodrigues [28] show how to obtain a 3/2-
approximation, but their algorithm requires time nΘ(d), which is polynomial only if the
number d = |D| of depots is constant. Another 3/2-approximation for mdmtsp with run
time nΘ(d) follows from the recent work of Traub, Vygen and Zenklusen [26]. They in fact
show the much stronger result that any λ-approximation algorithm for metric tsp also
gives a (λ + ε)-approximation algorithm for metric mdmtsp with an additional run time
factor of nO(d/ε). In summary, the state-of-the-art for metric mdmtsp is that there is no
α-approximation known for mdmtsp for any absolute constant α < 2 which runs in time
no(d).
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ℓ nodes

Figure 2 An instance on which the multi-depot subtour-elimination lp has integrality gap
arbitrarily close to 2. The square nodes are the depots and all edges have unit weight. The dashed
edges are assigned xe = 0.5 by the lp, the other edges xe = 1. The lp then has optimum value at
most ℓ + 6, whereas the mdmtsp has optimum value 2(ℓ + 4).

1.1 Our Results
Our main result is a novel approximation algorithm for metric Multiple TSP on d depots
with a significantly improved run time. That is, we provide the first algorithm for metric
mdmtsp which breaks the nΘ(d) time barrier to obtain an approximation ratio strictly better
than 2. Given an instance (G, D, w) of metric mdmtsp, we say a collection C1, . . . , Cd of
cycles is a tour if they jointly cover all nodes of G and each cycle contains exactly one depot
from D.

▶ Theorem 1. There is an algorithm that, given any ε > 0, in time (1/ε)O(d log d) · nO(1)

computes a tour T for any set of n cities with metric distances and d depots. The algorithm is
randomized, and with constant probability the length of the tour T is at most (3/2 + ε) · OPT.

Thus, our result significantly improves on the previously best run time nΘ(d) by Xu and
Rodrigues [28] at the cost of some small additive ε in the approximation factor.

To break through the barrier of 2 on the approximation ratio, we need to rework the
initial spanner F to be “correctly aligned” with the optimal solution so that each subtour
contains an even number of odd-degree nodes, as initially proposed by Xu and Rodrigues [28].
We show that an approximate reworking can be done in time f(d, ε) · nO(1) for some suitable
function f , resulting in a (3/2 + ε)-approximation. To this end, firstly, we give a reduction
of metric mdmtsp to a related routing problem which is known as the Rural Postperson
Problem (rpp). In the rpp, we are given an edge-weighted graph G and a set R of required
edges, and are asked to compute a minimum-weight edge set F such that R ∪̇ F is connected
and Eulerian. Our reduction reveals an approximation algorithm with run time O(n3 + t) to
compute solutions no worse than 3

2 OPT + 1
2 w(T ), where w(T ) is the weight of a single-person

tsp tour T through the depots and t denotes the time to compute T . Then we use a
randomized algorithm of Gutin et al. [11] for the rpp, and an approximate weight reduction
scheme of van Bevern et al. [27], to construct a (1 + ε)-approximation algorithm for a variant
of rpp with depots.

We are then in a position to speed up the reworking of the inital spanner due to two
key insights. Firstly, we allow for some misalignment to remain, as long as it is only due
to the presence of some light edges, limiting the number of edges we have to consider for
removal from F . Secondly, we employ the constructed approximation algorithm for the rpp
to complete our now disconnected spanner to a tour. Doing this provides a large speedup
over the algorithm of Xu and Rodrigues, who first need to guess a set of edges to reconnect
their spanner, and then employ a matching algorithm to obtain a tour. Using the rpp allows
us to do both of these steps simultaneously, and considerably faster.

An important special case of metric tsp is when the metric w is induced by the shortest
paths in a graph. This version is also known as Graphic TSP, and has been studied
extensively from the perspective of approximation algorithms [18, 23]. For mdmtsp on
graphic metrics, we obtain a deterministic algorithm with slightly better approximation
factor and a reduced run time.
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▶ Theorem 2. There is an algorithm that, given any graph G on n nodes and set D ⊆ V (G)
of d depots, in time 2d · nO(1) computes a tour T of length at most 3

2 · OPT.

1.2 Related work
In the case of a single salesperson, i. e. m = 1, Bérczi et al. [4] gave a polynomial-time
3/2-approximation for the many-visits version of metric mdmtsp, that is, when each node v

is equipped with a request r(v) (encoded in binary) of how many times it should be visited.
In a different work, Bérczi et al. [5] have shown constant-factor approximation algorithms

with ratio at most 4 for variants of metric mdmtsp where each tour has to visit exactly one
depot (and thus, d ≤ m).

For the rpp, which asks for a minimum-weight tour traversing all edges of a given subset R

of edges of a graph, there is a polynomial-time approximation algorithm (cf. Frederickson [8]
or Jansen [12]) similar to the approach of Christofides-Serdyukov for metric tsp. The weight
of a solution can be bounded by (3 OPT +w(R))/2, where w(R) is the weight of R.

Oberlin et al. [19] studied heuristic approaches for mdmtsp where d = m and each
salesperson is located at its own depot.

For the objective of minimizing the longest tour length of any salesperson (rather than
the sum of all the tour lengths), Frederickson et al. [9], among other routing problems,
considered the case of a single depot (d = 1), and presented a (ρ + 1 − 1/m)-approximation
algorithm where ρ is the approximation ratio of an algorithm for the single-salesperson tsp.

2 Preliminaries

Let U be a finite universe. For a function w : U → R and a multiset U ⊆ U we write w(U)
to mean

∑
u∈U w(u), where the sum has an additional summand for each copy of an element

in U , i.e. it considers multiplicities. The disjoint union
⋃̇

iAi of some sets {Ai}i is considered
to be the multiset of all items in the collection. For brevity we often write 2A to mean A ∪̇ A.

Throughout this paper, we consider the multiple-depot version of the metric Multiple
TSP, or metric mdmtsp for short. We will generally represent the metric by an edge-weighted
graph whose shortest-path metric we assume to be the metric in use. Notice that this makes
no difference in our setting since we are allowed to traverse edges multiple times; only if this
is forbidden does the non-metric case become relevant.

▶ Definition 3. An instance (G, D, w) of metric mdmtsp consists of a complete graph G,
a set D ⊆ V (G) of d depots, and a metric w : E(G) → R+ on V (G). A multiset of edges
T ⊆ E(G) is called a tour of (G, D, w) if
(P1) the multigraph (V (G), T ) has even degree at every node in V (G),
(P2) and each connected component of (V (G), T ) contains at least one node from D.
We denote by OPT(G, D, w) the minimum weight of any tour of (G, D, w). If the instance is
clear from the context, we may only say OPT.

Edge sets are generally allowed to be multisets, and graphs can have parallel edges.
Imitating the general framework of Christofides-Serdyukov [7, 24], we first compute an edge

set F , called a constrained spanning forest (csf), that ensures the connectivity property (P2).
We then compute an additional set of edges J such that F ∪̇ J has property (P1).

▶ Definition 4. Let G be a graph and let D ⊆ V (G). A constrained spanning forest in (G, D)
is a set F ⊆ E(G) of edges such that the graph (V (G), F ) is acyclic and every connected
component of (V (G), F ) contains at least one node from D.
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39:6 A (3/2 + ε)-Approximation for Multiple TSP with a Variable Number of Depots

We will make use of the following result.

▶ Theorem 5 (Rathinam et al. [21]). Given any graph G on n nodes and m edges with
weights w : E(G) → R and a set D ⊆ V (G), a minimum-weight csf of (G, D, w) can be
computed in time O((n + m) log n).

Proof. The computation of a minimum-weight csf for (G, D, w) can be reduced to computing
a minimum-weight spanning tree in a graph G′ with edge weights w′. The graph G′ is obtained
from G by adding a single root node r connected to every depot by an edge of some weight
less than the weight all other edges in G. Kruskal’s algorithm is guaranteed to choose these
edges for the minimum-weight spanning tree in (G′, w′), and after removing r we are left
with a minimum-weight csf for (G, D, w). ◀

Traditionally, property (P1) is obtained by computing a minimum-weight matching on the
odd-degree nodes of the csf, as in Algorithm 1. However, this algorithm only achieves a

Algorithm 1 Algorithm Multi-Depot Christofides-Serdyukov.

Input: A metric mdmtsp instance (G, D, w).
Output: A tour T with w(T ) ≤ 2 OPT.

1 Compute a minimum-weight csf F for (G, D, w);
2 Let U be the set of nodes with odd degree in F ;
3 Compute a minimum-weight perfect matching M in G[U ];

Result: T := F ∪̇ M

tight approximation ratio of 2 − 1
d for the multi-depot setting, as shown by Xu et al. [30]

(see Figure 1 for a simplified version of their lower bound example), because the matching
can have weight d−1

d OPT. To avoid needing such an expensive matching, the constrained
spanning forest needs to be rearranged such that there is again a matching of weight 1

2 OPT,
as in the work of Xu and Rodrigues [28].

3 Reducing Multi-Depot Multiple TSP to Rural Postperson Problem

In this section we show a reduction from the metric mdmtsp to the rpp. Recall that in the
rpp there is a required set R of edges that a tour should traverse, rather than a set of nodes.

▶ Definition 6 (Rural Postperson Problem). An instance (G, R, w) of rpp consists of a graph G,
a set R ⊆ E(G) of required edges, and a metric weight function w : E(G) → R≥0. A solution
is multiset J ⊆ E(G) for which (V, R ∪̇ J) is Eulerian, and which has only one non-singleton
connected component.1 The weight of a solution J is w(J) =

∑
e∈J w(e). The goal of rpp is

to compute an optimal solution, which is a solution of minimum weight OPT(G, R, w).

There is a polynomial-time approximation algorithm for rpp [8, 12] which computes a
solution J ⊆ E(G) such that w(R ∪̇J) ≤ 3

2 w(R ∪̇J∗), i. e. w(J) ≤ 3
2 OPT + 1

2 w(R), where J∗

is some optimal solution. Due to the first inequality and the unavoidable weight of R, the
algorithm is known as a 3/2-approximation for rpp. This situation is very similar to the
current approximation status of metric mdmtsp, where we can obtain a 3/2-approximation
if we allow for some additional additive term. This observation motivates the following
reduction from metric mdmtsp to rpp.

1 This means that nodes not incident to any edge from R do not need to be visited by the computed tour.
For metric cost functions, however, one can always reduce to the case where R spans G.
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▶ Observation 7. For each instance (G, D, w) of mdmtsp there is an instance (G′, R, w′) of
rpp such that any solution to the rpp instance can be transformed in polynomial time into a
solution to the mdmtsp instance of the same weight.

Proof. First, compute any tsp tour S on the depots in G, that is, on G[D]. Then, for each
node v ∈ V \D, introduce a second node v′, as well as an edge ev = {v, v′}, and set its weight
to w′(ev) = 0. For each edge e ∈ E(G) set w′(e) = w(e), and set R to be the union of S and
two copies of each ev. The any solution to the constructed instance of rpp corresponds to
an mdmtsp tour for (G, D, w) of the same weight. ◀

Notice that this reduction, together with the 3/2-approximation for rpp, allows us to compute
a solution to mdmtsp of weight at most 3

2 OPT + 1
2 w(S). In particular, if all depots are

pairwise close to each other this is already a better-than-2 approximation.
In Section 5 we will in some sense show a stronger result that there is also a (Turing)

reduction from mdmtsp to the special case of rpp where (V, R) has few connected components,
which has been shown by Gutin et al. to be tractable [11]:

▶ Proposition 8 (Gutin et al. [11]). There is a randomized algorithm for rpp that for any
instance (G, R, w), where (V (G), R) has k connected components and w takes only integer
values, in time 2O(k)(n + OPT(G, R, w))O(1) produces a solution. With constant probability,
the computed solution is optimal.

However, as our reduction is only (1+ε)-approximate with respect to the solution qualities,
and needs time exponential in d and ε, we need to remove the polynomial dependence on
OPT(G, R, w) in Proposition 8. To this end, we will adapt an approximate weight reduction
scheme by van Bevern et al. [27]:

▶ Lemma 9 (adapted from van Bevern et al. [27, Lemma 2.12]). Let (G, R, w) be an instance
of rpp with integral weighs, let ε > 0, and let β = max{w(e) | e ∈ E(G)}. Then in polynomial
time we can compute a weight function w′ : E(G) → N≥0 such that

max{w′(e) | e ∈ E(G)} ≤ 2|E(G)|/ε,
and for all α ≥ 1, any solution J to (G, R, w′) with weight w′(J) ≤ α OPT(G, R, w′) also
fulfills w(J) ≤ α OPT(G, R, w) + εβ, as long as J contains at most two copies of each
edge.

Proof. The rounding scheme simply sets w′(e) := ⌊w(e) · 2|E(G)|
ε·β ⌋ for each edge e of G. This

yields the first condition, by definition. For the second condition, observe that for any J we
have

ε · β

2|E(G)|w
′(J) ≤ w(J) ≤ ε · β

2|E(G)|w
′(J) + ε · β

2|E(G)| |J | ≤ ε · β

2|E(G)|w
′(J) + εβ .

Hence, the two weight functions are equivalent up to scaling by a constant and the addition
of at most εβ. ◀

Notice that the restriction on J having at most two copies of each edge is never a problem:
whenever a solution to the rpp has three or more copies of one edge, we can delete two of
them to obtain a cheaper solution.

We will combine Proposition 8 and Lemma 9 to obtain an approximation for k-component
rpp whose run time does not depend on OPT.
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▶ Corollary 10. There is a randomized algorithm that, for any ε > 0, in time 2O(k)(n+ 1
ε )O(1)

computes a solution J for any instance (G, R, w) of rpp where (V (G), R) has k connected
components. The computed solution J has the property that, with constant probability,
w(J) ≤ OPT(G, R, w) + ε max{w(e) | e ∈ J∗ ∪̇ R}, where J∗ is some optimal solution to the
instance.

Proof. We first guess the weight β of the most expensive edge in J∗ ∪̇ R, where J∗ is some
optimal solution. There are only |E(G)| options, so the guessing generates only polynomial
overhead. All edges that are more expensive than β can be removed from the instance to
get some graph G′. Now we apply Lemma 9 to get an instance with weights w′ bounded by
2|E(G)|/ε and use the exact algorithm from Proposition 8 to get a solution J to (G′, R, w′)
in time 2O(k)(n + 1

ε )O(1). From Lemma 9 with α = 1 we know that

w(J) ≤ OPT(G, R, w) + εβ ≤ OPT(G, R, w) + ε max{w(e) | e ∈ J∗ ∪̇ R},

which proves the claim. ◀

We will be using this algorithm to complete partial solutions to instances of mdmtsp.
We will need only a slight modification that allows for the presence of depots as follows.

▶ Definition 11 (Depot Rural Postperson Problem). An instance (G, D, R, w) of the Depot
Rural Postperson Problem (drpp) consists of an rpp instance (G, R, w) and some
depots D ⊆ V (G). A solution is a multiset J ⊆ E(G) such that (V, R ∪̇ J) is Eulerian and
each non-singleton connected component of (V, R ∪̇ J) contains at least one depot. The weight
of a solution J is w(J) =

∑
e∈J w(e). The goal is to compute an optimal solution, which is

a solution of minimum weight OPT(G, D, R, w).

The depot version drpp can be reduced to regular rpp quite easily.

▶ Corollary 12. There is a randomized algorithm that, for any instance (G, D, R, w) of drpp
where (V (G), R) has k connected components and any ε > 0, in time 2O(k log k)(n + 1

ε )O(1)

computes a solution J such that, with constant probability, w(J) ≤ (1 + ε) OPT(G, D, R, w) +
εw(R).

Proof. Note first that each connected component of (V (G), R) can be assumed to contain
at most one depot, so |D| ≤ k. Some optimum solution J∗ induces a partition of the con-
nected components of (v(G), R) where each partition class corresponds to those components
connected to some specific depot. There are at most |D|k ∈ 2O(k log k) possible partitions, so
we can try each partition, solve the regular rpp instance on each of the |D| classes of the
partition using the algorithm from Corollary 10, and return the best solution we found. ◀

4 Intuition for the Algorithm

The algorithm of Xu and Rodrigues [28] executes, at a very high level, the following steps:
1. Compute a minimum-weight constrained spanning forest F for (G, D, w).
2. Guess a set X of at most |D| − 1 edges such that they are in F but not in some fixed

optimal tour T .
3. Discard the guessed edges X from F . This leaves at most 2|D| connected components in

(V, F \ X). If we have guessed correctly, every subtour of T now contains an even number
of odd-degree nodes. There must exist some edges A from T such that (F \ X) ∪ A is a
csf for (G, D) with w((F \ X) ∪ A) ≤ w(T ). The value |A| is at most |D|, so we also
guess A.
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4. Since A contains only edges from T , every subtour of T still contains an even number
of odd-degree nodes with respect to (V, (F \ X) ∪ A). If we compute an odd-join J for
(F \ X) ∪ A, we have w(J) ≤ 1

2 OPT, so return ((F \ X) ∪ A) ∪̇ J .
Since the algorithm needs to guess 2|D| edges in total (in step 2), it can be implemented in
time nO(d). We modify this guessing step by considering for discarding (in step 3) only very
heavy edges, and by sidestepping the guessing of A; instead of computing first a connected
structure and then a join we do this simultaneously, using the algorithm for rpp. Specifically:

In step 2, we only consider edges that are very expensive relative to the total weight
of the forest F . If the targeted edge e is not in this collection, we do not delete it but
instead use it as part of the augmenting set A, doubling the edge. This also fixes parity,
but requires us to relax w((F \ X) ∪̇ A) ≤ w(T ) to w((F \ X) ∪̇ A) ≤ (1 + ε)w(T ). The ε

can be controlled by how expensive relative to F we allow these non-deleted edges to be.

In step 3, we do not actually guess A, we merely use its existence. We instead solve an
instance of drpp with at most 2d connected components for which A ∪̇ J is a solution.
Using the algorithm from Corollary 12, we can compute a (1 + ε)-approximation for the
drpp in time f(d, ε) · nO(1). We use the solution J ′ as a replacement for A ∪̇ J knowing
w(J ′) ≤ (1 + ε)w(A ∪̇ J). Combining inequalities for J and F gives:

w((F \ X) ∪̇ J ′) ≤ (1 + ε)w(((F \ X) ∪̇ A) ∪̇ J) ≤ (1 + ε)3
2 OPT .

An illustration of the augmentation scheme can be found in Figure 3.

d1

d2

d3

e
ê

Figure 3 Illustration of the augmenting edges explored by our algorithm. Blue solid edges
represent a csf, dashed red edges an optimal tour. Note that the tours of d2 and d3 have an odd
number of nodes with odd degree in the csf. Our algorithm considers two options to remedy this.
We either add two copies (green, dotted) of the edge e to the optimal tour, if e is considered to be
light enough. This joins the tours of d2 and d3 to a single tour with an even number of odd-degree
nodes. If e is considered too heavy for this, we remove e from the csf and replace it with the edge ê

(black, dotted). As ê comes from the optimal tour, this keeps the cost of the csf below OPT and it
fixes the parities.
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5 Towards Faster Parity Correction

In this section, we give a formal version of the algorithm described in the previous section,
which we state as Algorithm 2. We prove this algorithm to be a (3/2 + O(ε))-approximation
for metric mdmtsp in Theorem 17. We will restate and reprove some of the results of Xu
and Rodrigues [28] to ensure completeness of the presentation and to integrate properly our
changes to their algorithm.

To this end, let us fix some notation throughout this section. Let (G, D, w) be a metric
mdmtsp instance with D = {d1, . . . , dd}, an optimal tour T , and the minimum-weight CSF F

for (G, D, w) that was computed Algorithm 1. We denote by Ti be the connected component
of T containing di, by Fi the subtree of F containing di, and Ui the set of nodes in Ti that
have odd degree with respect to the edges in F . We take U =

⋃
i Ui.

By minimality of F , we already know that w(F ) ≤ w(T ) = OPT. To extend F to an
mdmtsp tour, we try to compute a minimum-weight matching between the nodes in U . It is
a standard argument from the analysis of the Christofides-Serdyukov algorithm that if |Ui|
is even, Ti contains two disjoint matchings for the nodes in Ui. So if every Ui has even
cardinality, then any minimum-weight matching has weight at most 1

2 OPT. But this is not
the case, since a tree Fi might contain nodes from many different tours, so the odd-degree
nodes are distributed arbitrarily. To record this “misalignment” between the trees and
subtours we introduce the concept of an alignment graph.

▶ Definition 13 (Alignment Graph). The alignment graph H for (G, F, T ) is constructed as
V (H) = D, and

E(H) = {{di, dj} | ∃e ∈ F s.t. |e ∩ V (Ti)| = |e ∩ V (Tj)| = 1} .

We also define a weight function wH : E(H) → R+ as

wH((di, dj)) := min{w(e)|e ∈ F, |V (Ti) ∩ e| = |V (Tj) ∩ e| = 1} .

In the following, we assume that H is connected, otherwise the analysis holds independently
for each connected component.

Now we take Dodd to be the collection of depots di for which |Ui| is odd, and AH to
be any Dodd-join in H. The join AH can be used to augment the original tour T to be
connected. To do this we transfer the join to the original graph to ensure that it contains
a “cheap” matching. For every edge e = {di, dj} ∈ E(AH), pick an edge in ê ∈ E(F ) with
w(ê) = wH(e) and |ê ∩ V (Ti)| = |ê ∩ V (Tj)| = 1. Denote by A the collection of these ê.
Observe that every node in T ∪̇ 2A has even degree, and every connected component of the
graph contains an even number of nodes from U . Hence, there exists a U -join J in G with
w(J) ≤ 1

2 w(T ∪̇ 2A).
Now notice that, if the edges in A have weight at most εw(F ), this inequality yields that

Algorithm 1 already achieves a good approximation ratio, specifically

w(F ) + w(M) ≤ w(F ) + w(J) ≤ (1 + ε)w(F ) + 1
2w(T ) ≤ (3

2 + ε)w(T ) .

Based on this observation, we are willing to augment T with low-weight edges from F to find
a low-weight matching. Therefore, we need to distinguish between heavy and light edges.

▶ Definition 14. Let ε > 0. An edge e ∈ F is ε-light if w(e) ≤ ε
d · w(F ); else, it is ε-heavy.

We now try to replace the ε-heavy edges in A with some other edges from T .
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Algorithm 2 Algorithm Extended Multi-Depot Christofides-Serdyukov.

Input: A metric mdmtsp instance (G, D, w) and a parameter ε > 0.
Output: A tour T such that w(T ) ≤ (3/2 + ε) OPT with constant probability.

1 Compute a minimum-weight CSF F for (G, D, w);
2 Let T be the currently best mdmtsp solution, initially 2F ;
3 Let Y be the set of edges in F which are ε-heavy;
4 foreach X ⊆ Y , |X| ≤ |D| do
5 F ′ := F \ X;
6 Compute a solution M for the drpp instance (G, D, F ′, w) using Corollary 12 ;
7 if w(M ∪̇ F ′) < w(T ) then
8 set T = M ∪̇ F ′;
9 end

10 end
Result: T

▶ Lemma 15 (compare [28, Section 2]). Let X ⊆ A. Then there exist a set Â ⊆ E(T ) of
edges such that (F \ X) ∪ Â is a CSF for (G, D) with w((F \ X) ∪ Â) ≤ w(T ).

Proof. Consider the forest F ′ obtained from T by removing exactly one edge from each
subtour. F ′ contains only edges from T , so it is disjoint from X. By a standard matroid
exchange argument, for each e ∈ X there is a ê ∈ F ′ such that F − e + ê is a CSF and
w(e) ≤ w(ê). This process can then be iterated to remove all of X. The collection of these ê

is Â, giving w((F \ X) ∪ Â) ≤ w(F ′) ≤ w(T ). ◀

This process of replacing augmenting edges from A with edges out of T also fulfills the
key goal of putting an even number of odd-degree nodes into every connected component of
some augmented mdmtsp solution. Consider the following lemma, which is in substance a
version of a statement by Xu and Rodrigues [28, Theorem 2].

▶ Lemma 16. Let A, X, Â be as in Lemma 15. Then every connected component of T ∪(A\X)
contains an even number of nodes that have odd degree in (F \ X) ∪ Â.

Proof. Notice first that the connected components of T ∪ (A \ X) are the union of some of
the subtours of T . Since the edges in Â belong to some tour, adding them to F \ X flips
the parity of the degrees of two nodes on the same tour, so the total parity of odd-degree
nodes on that tour does not change. We can therefore restrict ourselves to considering the
odd-degree nodes with respect to F \ X.

Recall that originally A was constructed from a Dodd-join AH in the alignment graph H.
So X corresponds to some edge set XH ⊆ AH , and we know that AH \ XH constitutes
an (Dodd∆

⋃̇
e∈XH

e)-join, where ∆ denotes the symmetric difference. For multisets, the
symmetric difference of some sets contains an item if and only if it is contained an odd
number of times in their disjoint union. At the same time, removing an edge e ∈ X from F

with corresponding {di, dj} ∈ XH changes the degree of one node in V (Ti) and one node
on V (Tj). So, the depots whose tours contain an odd number of odd-degree nodes with
respect to F \ X are precisely (Dodd∆

⋃̇
e∈XH

e), so AH \ XH joins them correctly. ◀

We are now ready to prove that Algorithm 2 returns a (3/2 + O(ε))-approximation, with
constant probability.

▶ Theorem 17. The tour returned by Algorithm 2 has weight at most (3/2 + O(ε)) OPT,
with constant probability.
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Proof. Set T ′ to be the tour returned by the algorithm. Now let A be the augmenting edge set
for some optimal tour as before and X the set of ε-heavy edges in A. We look at the iteration
of the algorithm where that X is considered for removal. From Lemma 15 we know that there
exists some edge set Â with w(F \X ∪ Â) ≤ OPT and Lemma 16 implies that there is an edge
set J such that F \X ∪̇ Â ∪̇J is Eulerian, contains a depot in each connected component, and
w(J) ≤ 1

2 w(T ∪ (A \ X)). Therefore, Â ∪̇ J is a solution to the drpp instance (G, D, F ′, w).
Hence, the M computed in the algorithm fulfills w(M) ≤ (1 + ε)w(Â ∪̇ J) + εw(F ′). Putting
all these inequalities together yields

w(T ′) = w(M) + w(F \ X)

≤ (w(F ) − w(X) + w(Â)) + (1
2(w(T ) + w(A \ X)) + ε(w(Â) + w(J) + w(F ))

≤ w(T ) + 1
2(w(T ) + d · ε

d
w(F )) + ε(w(Â) + w(J) + w(F )) ≤ 3

2w(T ) + 4εw(T ),

where we use that A \ X contains at most d edges, and all of them are ε-light. ◀

Notice that this algorithm will give a (3/2 + ε)-approximation when called with ε/4 as the
parameter of approximation. The additional run time cost will vanish in the O-notation. The
probability of success for this algorithm is the same as that for the algorithm in Proposition 8.
Notice that while that algorithm is called many times, we only need it to succeed for one
specific choice of X. If it fails in one of the other attempts, we do not care.

It remains to analyze the run time of this algorithm. We see that Y , the set of ε-heavy
edges, has size at most d

ε , so there are only ( d
ε )d possible values for X to be tried. Note

also that each loop iteration requires the approximate solution of a drpp instance with O(d)
components which can be done in time 2O(d log d)(n + 1

ε )O(1). The total run time then is
(1/ε)O(d log d) · nO(1), showing Theorem 1.

6 A Deterministic 3/2-Approximation for Graphic MDMTSP

In this section we provide a deterministic 3/2-approximation for mdmtsp when the metric is
the shortest-path metric of an unweighted graph. The run time of the algorithm is 2d · nO(1).

Let (G, D) be an instance of graphic mdmtsp, where G this time is the unweighted
graph inducing the shortest-path metric. Note that we can assume G to be connected. This
allows us to construct tsp tours that are not much more expensive than optimal solutions to
mdmtsp, which re-enables the original analysis of the Christofides-Serdyukov Algorithm.

For a given optimal mdmtsp tour T , we can extend it to a tsp tour by introducing at
most 2(d − 1) edges. To do this, contract the subtours of T , find a spanning tree in the
contracted graph, and double all the edges of that tree. We then see that the solution F ∪̇ M

returned by Algorithm 1 fulfills

w(F ∪̇ M) ≤ w(T ) + 1
2(w(T ) + 2(d − 1)) = 3

2w(T ) + d − 1 .

Notice that the additive term d − 1 is likely to be very small, since we know w(T ) ≥ n − d.
A similar argument can also be made for metrics which are continuous in the sense that the
space cannot be partitioned into two very distant parts.

▶ Observation 18. Let (G, D, w) be an integer-weighted instance of mdmtsp for which there
exists a constant L such that, for all U ⊆ V (G), it holds min{w(u, v) | u ∈ U, v ̸∈ U} ≤ L.
Then Algorithm 1 returns a solution T for (G, D, w) with w(T ) ≤ 3

2 OPT(G, D, w)+L(d−1).
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Since we know w(T ) to be in Ω(n − d) also in this case, Algorithm 1 gives an asymptotic
3/2-approximation for any constant d and L. We can even get rid of the additive term in
the graphic case (i.e. L = 1) with some additional run time.

▶ Observation 19. There is a 3/2-approximation algorithm for graphic mdmtsp with run
time 2d · nO(1).

Proof. Let T be some fixed optimal tour. We start by guessing the set D′ ⊆ D of depots
whose subtours in T contain at least one edge, generating on overhead of 2d. Then we
know that T contains a csf F ′ for (G, D′) with weight |E(T )| − |D′|. As before, we connect
together all subtours of the depots in D′ with |D′| − 1 edges, and double these edges. Then
the tour F ∪̇ M returned by Algorithm 1 fulfills

|E(F ∪̇ M)| ≤ |E(T )| − |D′| + 1
2(|E(T )| + 2(|D′| − 1)) = 3

2 |E(T )| − 1,

and that proves the claim. ◀

For the special case where we require each depot to have a non-empty tour, we do not even
have to guess the correct subset of depots in Observation 19, yielding a 3/2-approximation
in truly polynomial time.

7 Discussion

We have shown that metric mdmtsp admits a randomized (3/2 + ε)-approximation algorithm
in time (1/ε)O(d log d) · nO(1), filling in the gap between the best-known polynomial approxi-
mation factor, 2, and the 3/2-approximation of Xu and Rodrigues in time nΘ(d). However,
there remain a number of natural openings for improving on our result:

Can our algorithm be derandomized? Since we rely on the algorithm of Gutin et al. [11]
to solve rpp instances, this would require a derandomization of their result. However,
their algorithm relies on the Schwartz-Zippel Lemma [22, 32] for which no deterministic
alternatives have been found in the last 40 years.
Can the approximation factor be improved from 3/2 + ε to 3/2? We loose some ap-
proximation quality both when determining which edges to delete from the csf, and
when solving rpp. Improving the first point would require a further refinement of the
tree-rearrangement technique introduced by Xu and Rodrigues [28]. For the second point,
the rpp algorithm of Gutin et al. would need to be sped up to run in strongly polynomial
time. Again, their algorithm relies on algebraic techniques for which derandomization
appears difficult, so a major technical innovation for k-component rpp is maybe necessary.
Does there exist some polynomial-time α-approximation algorithm for mdmtsp with
α < 2? We know from Traub et al. [26] that any α-approximation algorithm for single-
salesperson tsp implies a (α + ε)-approximation for mdmtsp for any constant number
of depots, i.e. in time nΘ(d). For instances with many depots however, the problem
remains intractable. It is of particular interest that two major technical tools for the
classical tsp, Christofides’ Algorithm and the Subtour-Elimination LP, fail to achieve
better-than-2-approximations in the multi-depot regime (see Figure 1 and Figure 2). It
appears that to make progress on a polynomial-time algorithm some novel structural
insights would be required.
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Abstract
In this paper, we study efficient parallel edit distance algorithms, both in theory and in practice.
Given two strings A[1..n] and B[1..m], and a set of operations allowed to edit the strings, the
edit distance between A and B is the minimum number of operations required to transform A

into B. In this paper, we use edit distance to refer to the Levenshtein distance, which allows
for unit-cost single-character edits (insertions, deletions, substitutions). Sequentially, a standard
Dynamic Programming (DP) algorithm solves edit distance with Θ(nm) cost. In many real-world
applications, the strings to be compared are similar to each other and have small edit distances.
To achieve highly practical implementations, we focus on output-sensitive parallel edit-distance
algorithms, i.e., to achieve asymptotically better cost bounds than the standard Θ(nm) algorithm
when the edit distance is small. We study four algorithms in the paper, including three algorithms
based on Breadth-First Search (BFS), and one algorithm based on Divide-and-Conquer (DaC). Our
BFS-based solution is based on the Landau-Vishkin algorithm. We implement three different data
structures for the longest common prefix (LCP) queries needed in the algorithm: the classic solution
using parallel suffix array, and two hash-based solutions proposed in this paper. Our DaC-based
solution is inspired by the output-insensitive solution proposed by Apostolico et al., and we propose
a non-trivial adaption to make it output-sensitive. All of the algorithms studied in this paper have
good theoretical guarantees, and they achieve different tradeoffs between work (total number of
operations), span (longest dependence chain in the computation), and space.

We test and compare our algorithms on both synthetic data and real-world data, including DNA
sequences, Wikipedia texts, GitHub repositories, etc. Our BFS-based algorithms outperform the
existing parallel edit-distance implementation in ParlayLib in all test cases. On cases with fewer
than 105 edits, our algorithm can process input sequences of size 109 in about ten seconds, while
ParlayLib can only process sequences of sizes up to 106 in the same amount of time. By comparing
our algorithms, we also provide a better understanding of the choice of algorithms for different
input patterns. We believe that our paper is the first systematic study in the theory and practice of
parallel edit distance.
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1 Introduction

Given two strings (sequences) A[1..n] and B[1..m] over an alphabet Σ and a set of operations
allowed to edit the strings, the edit distance between A and B is the minimum number of
operations required to transform A into B. WLOG, we assume m ≤ n. The most commonly
used metric is the Levenshtein distance which allows for unit-cost single-character edits
(insertions, deletions, substitutions). In this paper, we use edit distance to refer to the
Levenshtein distance. We use k to denote the edit distance for strings A and B throughout
this paper. Edit distance is usually used to measure the similarity of two strings (a smaller
distance means higher similarity).

Edit distance is a fundamental problem in computer science, and is introduced in most
algorithm textbooks (e.g., [14, 15, 23]). In practice, it is widely used in version-control
software [54], computational biology [12, 31, 39], natural language processing [10, 29], and
spell corrections [28]. It is also closely related to other important problems such as longest
common subsequence (LCS) [50], longest increasing subsequence (LIS) [34], approximate
string matching [56], and multi-sequence alignment [59]. The classic dynamic programming
(DP) solution can compute edit distance in O(nm) work (number of operations) between
two strings of sizes n and m. This complexity is impractical if the input strings are large.
One useful observation is that, in real-world applications, the strings to be compared are
usually reasonably similar, resulting in a relatively small edit distance. For example, in many
version-control softwares (e.g., Git), if the two committed versions are similar (within a
certain number of edits), the “delta” file is stored to track edits. Otherwise, if the difference
is large, the system directly stores the new version. Most of the DNA or genome sequence
alignment applications also only focus on when the number of edits is small [39]. We say
an edit distance algorithm is output-sensitive if the work is o(nm) when k = o(n). Many
more efficient and/or practical algorithms were proposed in this setting with cost bounds
parameterized by k [19, 20, 21, 22, 26, 35, 36, 37, 46, 47, 49].

Considering the ever-growing data size and plateaued single-processor performance, it is
crucial to consider parallel solutions for edit distance. Although the problem is simple and
well-studied in the sequential setting, we observe a huge gap between theory and practice
in the parallel setting. The few implementations we know of [7, 55, 58] simply parallelize
the O(nm)-work sequential algorithm and require O(n) span (longest dependence chain),
which indicates low-parallelism and redundant work when k ≪ n. Meanwhile, numerous
theoretical parallel algorithms exist [1, 3, 20, 37, 41, 48], but it remains unknown whether
these algorithms are practical (i.e., can be implemented with reasonable engineering effort),
and if so, whether they can yield high performance. The goal of this paper is to formally
study parallel solutions for edit distance. By carefully studying existing theoretical solutions,
we develop new output-sensitive parallel solutions with good theoretical guarantees
and high performance in practice. We also conduct in-depth experimental studies on
existing and our new algorithms.

The classic dynamic programming (DP) algorithm solves edit distance by using the states
G[i, j] as the edit distance of transforming A[1..i] to B[1..j]. G[i, j] can be computed as:

G[i, j] =
{

G[i − 1, j − 1] if A[i] = B[j] and i > 0, j > 0
1 + min(G[i − 1, j], G[i − 1, j − 1], G[i, j − 1]) otherwise

G[i, j] = max(i, j) if i = 0 or j = 0

A simple parallelization of this computation is to compute all states with the same i + j

value in parallel, and process all i + j values in an incremental order [7, 55, 58]. However,
this approach has low parallelism as it requires n + m rounds to finish. Later work [1, 3, 41]
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Table 1 Algorithms in this paper. k is the edit distance. b is the block size. ∗: Monte Carlo
algorithms due to the use of hashing. “Space∗” means auxiliary space used in addition to the input.
Here we assume constant alphabet size for BFS-SA.

Algorithm Work Span Space∗ Algorithm Work Span Space∗

BFS-SA O(n + k2) Õ(k) O(n) BFS-Hash∗ O(n + k2 log n) Õ(k) O(n)
DaC-SD O(nk log k) Õ(1) O(nk) BFS-B-Hash∗ O(n + k2b log n) Õ(kb) O(n/b + k)

improved parallelism using a divide-and-conquer (DaC) approach and achieved Õ(n2)
work and polylog(n) span. These algorithms use the monotonicity of the DP recurrence, and
are complicated. There are two critical issues in the DaC approaches. First, to the best of
our knowledge, there exist no implementations given the sophistication of these algorithms.
Second, they are not output-sensitive (Õ(nm) work), which is inefficient when k ≪ n.

Alternatively, many existing solutions, both sequentially [19, 20, 21, 22, 26, 35, 36, 46, 47]
and in parallel [20, 37] use output-sensitive algorithms, and achieve Õ(nk) or Õ(n + k2) work
and Õ(k) span. These algorithms view DP table as a grid-like DAG, where each state (cell)
(x, y) has three incoming edges from (x−1, y), (x, y −1), and (x−1, y −1) (if they exist). The
edge weight is 0 from (x − 1, y − 1) to (x, y), when A[x] = B[y], and 1 otherwise. Then edit
distance is equivalent to the shortest path from (0, 0) to (n, m). An example is given in Fig. 1.
Since the edge weights can only be 0 or 1, we can use breadth-first search (BFS) from the
cell (0, 0) until (n, m) is reached. Ukkonen [56] further showed that using longest common
prefix (LCP) queries based on suffix trees or suffix arrays, the work can be improved to
O(n + k2). Landau and Vishkin [37] parallelized this algorithm (see Sec. 3). While the
sequential output-sensitive algorithms have been widely used in practice [21, 26, 36, 46, 47],
we are unaware of any existing implementations for the parallel version.

We systematically study parallel output-sensitive edit distance, using both the BFS-based
and the DaC-based approaches. Our first effort is to implement the BFS-based Landau-
Vishkin algorithm with our carefully-engineered parallel suffix array (SA) implementation,
referred to as BFS-SA. Although suffix array is theoretically efficient with O(n) construction
work, the hidden constant is large. Thus, we use hashing-based solutions to replace SA for
LCP queries to improve the performance in practice. We first present a simple approach
BFS-Hash in Sec. 3.2 that stores a hash value for all prefixes of the input. This approach
has O(n) construction work, O(log n) per LCP query, and O(n) auxiliary space. While both
BFS-SA and BFS-Hash take O(n) extra space, such space overhead can be significant in
practice – for example, BFS-Hash requires n 64-bit hash values, which is 4× the input size
considering characters as inputs, and 32× with even smaller alphabet such as molecule bases
(alphabet as {A, C, G, T }). To address the space issue, we proposed BFS-B-Hash using
blocking. Our solution takes a user-defined parameter b as the block size, which trades off
between space usage and query time. BFS-B-Hash limits extra space in O(n/b) by using
O(b log n) LCP query time. Surprisingly, despite a larger LCP cost, our hash-based solutions
are consistently faster than BFS-SA in all real-world test cases, due to cheaper construction.
All of our BFS-based solutions are simple to program.

We also study the DaC-based approach and propose a parallel output-sensitive solution.
We propose a non-trivial adaption for the AALM algorithm [1] to make it output-sensitive.
Our algorithm is inspired by the BFS-based approaches, and improves the work from Õ(nm)
to Õ(nk), with polylogarithmic span. The technical challenge is that the states in the
computation are no longer a rectangle, but an irregular shape (see Fig. 1 and 3). We then
present a highly non-trivial implementation of this algorithm. Among many key challenges,
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we highlight our solution to avoid dynamically allocating arrays in the recursive execution.
While memory allocation is mostly ignored theoretically, in practice it can easily be the
performance bottleneck in the parallel setting. We refer to this implementation as DaC-SD,
with details given in Sec. 4 and 5.2 and the full version of this paper [16].

The bounds of our algorithms (BFS-SA, BFS-Hash, BFS-B-Hash, and DaC-SD) are
presented in Tab. 1. We implemented them and show an experimental study in Sec. 6. We
tested both synthetic and real-world datasets, including DNA, English text from Wikipedia,
and code repositories from GitHub, with string lengths in 105–109 and varying edit distances,
many of them with real edits (e.g., edit history from Wikipedia and commit history on
GitHub). In most tests, our new BFS-B-Hash or BFS-Hash performs the best, and
their relative performance depends on the value of k and the input patterns. Our BFS-
based algorithms are faster than the existing parallel output-insensitive implementation in
ParlayLib [7], even with a reasonably large k ≈ 105. We believe that our paper is the first
systematic study in theory and practice of parallel edit distance, and we give the first publicly
available parallel edit distance implementation that can process billion-scale strings with
small edit distance and our code at [17]. Due to page limit, some details are provided in the
full version of this paper [16]. We summarize our contributions as follows:
1. Two new BFS-based edit distance solutions BFS-Hash and BFS-B-Hash using hash-

based LCP queries. Compared to the existing SA-based solution in Landau-Vishkin,
our hash-based solutions are simpler and more practical. BFS-B-Hash also allows for
tradeoffs between time and auxiliary space.

2. A new DaC-based edit distance solution DaC-SD with O(nk log k) work and polylogar-
ithmic span.

3. New implementations for four output-sensitive edit distance algorithms: BFS-SA, BFS-
Hash, BFS-B-Hash and DaC-SD. Our code is publicly available [17].

4. Experimental study of the existing and our new algorithms on different input patterns.

2 Preliminaries

We use O(f(n)) with high probability (whp) (in n) to mean O(cf(n)) with probability at
least 1 − n−c for c ≥ 1. We use Õ(f(n)) to denote O(f(n) · polylog(n)). For a string A, we
use A[i] as the i-th character in A. We use string and sequence interchangeably. We use
A[i..j] to denote the i-th to the j-th characters in A, and A[i..j) the i-th to the (j − 1)-th
characters in A. Throughout the paper, we use “auxiliary space” to mean space used in
addition to the input.

String Edit Distance. Given two strings A[1..n] and B[1..m], Levenshtein’s Edit Dis-
tance [38] between A and B is the minimum number of operations needed to convert A to B

by using insertions, deletions, and substitutions. We also call the operations edits. In this
paper, we use edit distance to refer to Levenshtein’s Edit Distance. The classic dynamic
programming (DP) algorithm for edit distance uses DP recurrence shown in Sec. 1 with
O(mn) work and space.

Hash Functions. For the simplicity of algorithm descriptions, we assume a perfect hash
function for string comparisons, i.e., a function h : S → [1, O(|S|)] such that h(x) = h(y) ⇐⇒
x = y. For any alphabet Σ with size |α|, we use a hash function h(A[l..r]) =

∑r
i=l A[i] × pr−i

for some prime numbers p > |α|, which returns a unique hash value of the substring A[l..r].
The hash values of two consecutive substrings S1 and S2 can be concatenated as h([S1, S2]) =
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h(S1) ·p|S2| +h(S2), and the inverse can also be computed as h(S2) = h([S1, S2])−p|S2| ·h(S1).
For simplicity, we denote concatenation and its inverse operation as ⊕ and ⊖, respectively, as
h([S1, S2]) = h(S1) ⊕ h(S2) and h(S2) = h([S1, S2]) ⊖ h(S1). We assume perfect hashing for
theoretical analysis. In practice, we use p as a large prime and modular arithmetic to keep
the word-size hash values. In our experiment, we compare different approaches and validate
that our implementations are correct in all test cases. However, collisions are possible for
other datasets, since different strings may be mapped to the same hash value. If such cases
arise, one can either use multiple hash functions for a better success rate in practice, or use
the idea of Hirschberg’s algorithm [27] to generate the edit sequence and run a correctness
check (and restart with another hash function if failed).

Longest Common Prefix (LCP). For two sequences A[1..n] and B[1..m], the Longest
Common Prefix (LCP) query at position x in A[1..n] and position y in B[1..m] is the longest
substring starting from A[x] that match a prefix starting from B[y]. With clear context, we
also use the term “LCP” to refer to the length of the LCP, i.e., LCP(A, B, x, y) is the length
of the longest common prefix substring starting from A[x] and B[y] for A and B.

Computational Model. We use the work-span model in the classic multithreaded model
with binary-forking [2, 8, 9]. We assume a set of threads that share the memory. Each
thread acts like a sequential RAM plus a fork instruction that forks two child threads running
in parallel. When both child threads finish, the parent thread continues. A parallel-for is
simulated by fork for a logarithmic number of steps. A computation can be viewed as a
DAG (directed acyclic graph). The work W of a parallel algorithm is the total number
of operations, and the span (depth) S is the longest path in the DAG. The randomized
work-stealing scheduler can execute such a computation in W/P + O(S) time whp in W on
P processors [2, 9, 25].

Suffix Array. The suffix array (SA) [42] is a lexicographically sorted array of the suffixes of
a string, usually used together with the longest common prefix (LCP) array, which stores
the length of LCP between every adjacent pair of suffixes. The SA and LCP array can be
built in parallel in O(n) work and O(log2 n) span whp [32, 53].

In edit distance, we need the LCP query between A[x..n] and B[y..m] for any x and y.
This can be computed by building the SA and LCP arrays for a new string C[1..n + m]
that concatenates A[1..n] and B[1..m]. The LCP between any pair of suffixes in C can be
computed by a range minimum query (RMQ) on the LCP array, which can be built in
O(n + m) work and O(log(n + m)) span [8]. Combining all pieces gives the following theorem:

▶ Lemma 1. Given two strings A[1..n] and B[1..m], using a suffix array, the longest common
prefix (LCP) between any two substrings A[x..n] and B[y..m] can be reported in O(1) work
and span, with O(n + m) preprocessing work and O(log2(n + m)) span whp.

3 BFS-based Algorithms

3.1 Overview of Existing Sequential and Parallel BFS-based Algorithms
Many existing output-sensitive algorithms [19, 20, 21, 22, 26, 35, 36, 37, 46, 47] are based
on breadth-first search (BFS). These algorithms view the DP matrix for edit distance as a
DAG, as shown in Fig. 1. In this section, we use x and y to denote the row and column
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Figure 1 BFS-based edit distance on
A[1..n] and B[1..m]. A more detailed descrip-
tion is in the full version [16]. ft[i] is the row-id
of the last cell on diagonal i with edit distance t

(frontier t), representing cell (ft[i], ft[i]− i).

Algorithm 1 BFS-based parallel edit dis-
tance [37].

1 f0[0]←LCP(A[1..n], B[1..m]) // Starting point
2 t← 0
3 while ft[n−m] ̸= n do
4 t← t + 1

// Find new frontier for diagonal i
5 parallel-for-each −t ≤ i ≤ t do
6 ft[i]← ft−1[i] // Start from the last cell
7 foreach ⟨dx, dy⟩ ∈ {⟨0, 1⟩, ⟨1, 0⟩, ⟨1, 1⟩} do

// The previous cell is from diagonal j
// j = (x− dx)− (y− dy) = i− dx + dy

8 j ← i− dx + dy
9 if |j| ≤ t− 1 then

10 The row id x← ft−1[j] + dx
11 The column id y ← x− i

// Skip the common prefix
12 x← x+LCP(A[x + 1..n], B[y + 1..m])

// Keep the largest row id
13 ft[i]← max(ft[i], x)

14 return t

ids of the cells in the DP matrix, respectively. Each state (cell) (x, y) has three incoming
edges from (x − 1, y), (x, y − 1), and (x − 1, y − 1) (if they exist). The edge weight is 0 from
(x − 1, y − 1) to (x, y) when A[x] = B[y], and 1 otherwise. Then edit distance is equivalent
to the shortest distance from (0, 0) to (n, m).

Since the edge weights are 0 or 1, we can use a special breadth-first search (BFS) to
compute the shortest distance. In round t, we process states with edit distance t. The
algorithm terminates when we reach cell (n, m). First observed by Ukkonen [56], in the
BFS-based approach, not all states need to be visited. For example, all states with |x−y| > k

will not be reached before we reach (n, m) with edit distance k, since they require more than
k edits. Thus, this BFS will touch at most O(kn) cells, leading to O(kn) work.

Another key observation is that starting from any cell (x, y), if there are diagonal edges
with weight 0, we should always follow the edges until a unit-weight edge is encountered.
Namely, we should always find the longest common prefix (LCP) from A[x + 1] and B[y + 1],
and skip to the cell at (x + p, y + p) with no edit, where p is the LCP length. This idea is
used in Landau and Vishkin [37] on parallel approximate string matching, and we adapt this
idea to edit distance here. Using the modified parallel BFS algorithm by Landau-Vishkin [37]
(shown in Alg. 1), only O(k2) states need to be processed – on each diagonal and for each
edit distance t, only the last cell with t edits needs to be processed (see Fig. 1). Hence,
the BFS runs for k rounds on 2k + 1 diagonals, which gives the O(k2) bound above. In
the BFS algorithm, we can label each diagonal by the value of x − y. In round t, the BFS
visits a frontier of cells ft[·], where ft[i] is the cell with edit distance t on diagonal i, for
−t ≤ i ≤ t. We present the algorithm in Alg. 1 and an illustration in Fig. 1. Note that in
the implementation, we only need to maintain two frontiers (the previous and the current
one), which requires O(k) space. We provide more details about this algorithm in the full
version [16]. If the LCP query is supported by suffix arrays, we can achieve O(n + k2) work
and O(log n + k log k) span for the edit distance algorithm.
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Algorithm Based on Suffix Array (BFS-SA). Using the SA algorithm in [32] and the LCP
algorithm in [53] for Landau-Vishkin gives the claimed bounds in Tab. 1. We present details
about our SA implementation in Sec. 5.1.

3.2 Algorithm Based on String Hashing (BFS-Hash)

Although BFS-SA is theoretically efficient with O(n) preprocessing work to construct the
SA, the hidden constant is large. For better performance, we consider string hashing as an
alternative for SA. Similar attempts (e.g., locality-sensitive hashing) have also been used in
approximate pattern matching problems [43, 44]. In our pursuit of exact output-sensitive
edit distance computation, we draw inspiration from established string hashing algorithms,
such as the Rabin-Karp algorithm (also known as rolling hashing) [33]. We will first present
a simple hash-based solution BFS-Hash with O(n) preprocessing cost and O(n) auxiliary
space. Then later in Sec. 3.3, we will present BFS-B-Hash, which saves auxiliary space by
trading off more work in LCP queries.

As mentioned in Sec. 2, the hash function h(·) maps any substring A[l..r] to a unique hash
value, which provides a fingerprint for this substring in the LCP query. The high-level idea
is to binary search the query length, using the hash value as validation. We precompute the
hash values for all prefixes, i.e., TA[x] = h(A[1..x]) for the prefix substring A[1..x] (similar
for B). They can be computed in parallel by using any scan (prefix-sum) operation [6] with
O(n) work and O(log n) span. We can compute h(A[l..r]) by TA[r] ⊖ TA[l − 1].

With the preprocessed hash values, we dual binary search the LCP of A[x..n] and B[y..m].
We compare the hash values starting from A[x] and B[y] with chunk sizes of 1, 2, 4, 8, . . . ,
until we find value l, such that A[x..x+2l) = B[y..y +2l), but A[x..x+2l+1) ̸= B[y..y +2l+1).
By doing this with O(log n) work, we know that the LCP of A[x..n] and B[y..m] must have
a length in the range [2l, 2l+1). We then perform a regular binary search in this range,
which costs another O(log n) work. This indicates O(log n) work in total per LCP query.
Combining the preprocessing and query costs, we present the cost bounds of BFS-Hash:

▶ Theorem 2. BFS-Hash computes the edit distance between two sequences of length n and
m ≤ n in O(n + k2 log n) work, Õ(k) span, and O(n) auxiliary space, where k is the output
size (fewest possible edits).

BFS-Hash is simple and easy to implement. Our experimental results indicate that its
simplicity also allows for a reasonably good performance in practice for most real-world input
instances. However, this algorithm uses n 64-bit integers as hash values, and such space
overhead may be a concern in practice. This is more pronounced when the input is large
and/or the alphabet is small (particularly when each input element can be represented with
smaller than byte size), as the auxiliary space can be much larger than the input size. This
concern also holds for BFS-SA as several O(n)-size arrays are needed during SA construction.
Note that for shared-memory parallel algorithms, space consumption is also a key constraint
– if an algorithm is slow, we can wait for longer; but if data (and auxiliary data) do not fit
into the memory, then this algorithm is not applicable to large input at all. In this case, the
problem size that is solvable by the algorithm is limited by the space overhead, which makes
the improvement from parallelism much narrower. Below we will discuss how to make our
edit distance algorithms more space efficient.
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"
]

Figure 2 The illustrations of prefix table values and one specific query, with key concepts
shown when computing the hash value of a range using a prefix table.

Algorithm 2 The prefix table for finding the longest common prefix of A[1..n] and B[1..m].

1 // Table construction
2 Function Construct(A, B)
3 TA[·]←Build(A)
4 TB [·]←Build(B)

// The prefix table building process
5 Function Build(A)
6 w ← ⌊|A|/b⌋
7 T [0]← 0
8 parallel-for-each j ← 1 to w do
9 T [j]← h(A[(j − 1)b + 1 .. jb])

10 Scan(T )
11 return T [·]

// Get hash value for prefix sub-
// sequence A[1..x]

12 Function GetHash(A, TA, x)
13 if x = 0 then return 0
14 r ← ⌊(x− 1)/b + 1⌋
15 h̄← TA[r]
16 for i← r · b + 1 to x do
17 h̄← h̄⊕ h(A[i])
18 return h̄

// Compare the subsequences A[x..x + l] and B[y..y + l]
19 Function Compare(A, B, x, y, l)
20 hA ← GetHash(A, TA, x+ l)⊖GetHash(A, TA, x−1)
21 hB ← GetHash(B, TB , y + l)⊖GetHash(B, TB , y−1)
22 return hA = hB

// Longest Common Prefix from A[x] and B[y]
23 Function LCP(A, B, x, y)
24 l1 ← 0

// Find l1, s.t. the LCP is between 2l1 to 2l1+1

blocks
25 while x + 2l1 < n and y + 2l1 < m do
26 if Compare(A, B, x, y, l1) = false then break
27 l1 ← l1 + 1

// Trivial binary search process on the range
[2l1 , 2l1+1)

28 s← 2l1 , t← 2l1+1

29 while s < t do
30 if Compare(A, B, x, y, ⌊(s + t)/2⌋) = false then
31 t← ⌊(s + t)/2⌋
32 else s← ⌊(s + t)/2⌋+ 1
33 return s

3.3 Algorithm Based on Blocked-Hashing (BFS-B-Hash)

In this section, we introduce our BFS-B-Hash algorithm that provides a more space-efficient
solution by trading off worst-case time (work and span). Interestingly, we observed that on
many data sets, BFS-B-Hash can even outperform BFS-Hash and other opponents due to
faster construction time, and we will analyze that in Sec. 6.

To achieve better space usage, we divide the strings into blocks of size b. As such, we
only need to store the hash values for prefixes of the entire blocks h(A[1..b]), h(A[1..2b]), · · · ,

h(A[1..⌊(n/b)⌋ · b]). Our idea of blocking is inspired by many string algorithms (e.g., [4]).
Using this approach, we only need auxiliary space to store O(n/b) hash values, and thus
we can control the space usage using the parameter b. To compute these hash values, we
will first compute the hash value for each block, and run a parallel scan (prefix sum on
⊕) on the hash values for all the blocks. Similar to the above, we refer to these arrays as
TA[i] = h(A[1..ib]) (and TB [i] accordingly), and call them prefix tables.

We now discuss how to run LCP with only partial hash values available. The LCP
function in Alg. 2 presents the process to find the LCP of A[x..n] and B[y..m] using the
prefix tables. We present an illustration in Fig. 2. We will use the same dual binary search
approach to find the LCP of two strings. Since we do not store the hash values for all
prefixes, we use a function GetHash(A, TA, x) to compute h(A[1..x]). We can locate the
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closest precomputed hash value and use r as the previous block id before x. Then the hash
value up to block r is simply h̄ = TA[r]. We then concatenate the rest characters to the hash
value (i.e., return h̄ ⊕ h(A[rb + 1]) ⊕ · · · ⊕ h(A[x])). In this way, we can compute the hash
value of any prefixes for both A and B, and plug this scheme into the dual binary search in
BFS-Hash. In each step of dual binary search, the concatenation of hash value can have at
most b steps, and thus leads to a factor of b overhead in query time than BFS-Hash.

▶ Theorem 3. BFS-B-Hash computes the edit distance between two sequences of length
n and m ≤ n in O(n + k2 · b log n) work and Õ(kb) span, using O(n/b + k) auxiliary space,
where k is the output size (fewest possible edits).

The term k in space usage is from the BFS (each frontier is at most size O(k)). O(b log n)
is the work for each LCP query. Note that this is an upper bound – if the LCP length L is
small, the cost can be significantly smaller (a tighter bound is O(min(L, b log L))). Sec. 6
will show that for normal input strings where the LCP lengths are small in most queries,
the performance of BFS-B-Hash is indeed the fastest, although for certain input instances
when the worst case is reached, the performance is not as good.

4 The Divide-and-Conquer Algorithms

Our parallel output-sensitive algorithm DaC-SD is inspired by the AALM algorithm [1],
and also uses it as a subroutine. We first overview the AALM algorithm, and introduce our
algorithm in details. We assume m = n is a power of 2 in this section for simple descriptions,
but both our algorithm and AALM work for any n and m.

The AALM Algorithm. As described above, the edit distance problem can be considered as
a shortest distance (SD) problem from the top-left cell (0, 0) to the bottom-right cell (n, n) in
the DP matrix G. Instead of directly computing the SD from (0, 0) to (n, n), AALM computes
pairwise SD between any cell on the left/top boundaries and the bottom/right boundaries
(i.e., those on L ∪ U to W ∪ R in Fig. 3(a)). We relabel all cells in L ∪ U as a sequence
v = {v0, v1, . . . v2n} (resp., W ∪ R as u = {u0, u1 · · · , u2n}), as shown in Fig. 3. Therefore,
for the DP matrix G, the pairwise SD between v and u forms a (2n+1)× (2n+1) matrix. We
call it the SD matrix of G, and denote it as DG. AALM uses a divide-and-conquer approach.
It first partitions G into four equal submatrices G1, G2, G3, and G4 (See Fig. 3(b)), and
recursively computes the SD matrices for all Gi. We use Di to denote the SD matrix for Gi.
In the “conquer” step, the AALM algorithm uses a Combine subroutine to combine two SD
matrices into one if they share a common boundary (our algorithm also uses this subroutine).
For example, consider combining G1 and G2. We still use vi and uj to denote the cells on the

left/top and bottom/right boundaries of
(

G1
G2

)
(see Fig. 3(c)), and denote the cells on the

common boundary of G1 and G2 as w1, · · · , wn/2, ordered from left to right. For any pair vi

and uj , if they are in the same submatrix, we can directly get the SD from the corresponding
SD matrix. Otherwise, WLOG assume vi ∈ G1 and uj ∈ G2, then we compute the SD
between them by finding minl D1[i, l] + D2[l, j], i.e., for all wl on the common boundary, we
attempt to use the SD between vi to wl, and wl to uj , and find the minimum one. Similarly,
we can combine D3 with D4, and D1∪2 with D3∪4, and eventually get DG. We note that the
Combine algorithm, even theoretically, is highly involved. At a high level, it uses the Monge
property of the shortest distance (the monotonicity of the DP recurrence), and we refer
the readers to [1] for a detailed algorithm description and theoretical analysis. In Sec. 5.2,
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Figure 3 The illustrations of the key concepts and notation in the AALM algorithm
described in Sec. 4.

we highlight a few challenges and our solutions for implementing this highly complicated
algorithm. Theoretically, combining two n × n SD matrices can be performed in O(n2) work
and O(log2 n) span, which gives O(n2 log n) work and O(log3 n) span for AALM.

Our algorithm. The AALM algorithm has Õ(n2) work (Õ(nm) if n ≠ m) and polylogar-
ithmic span, which is inefficient in the output-sensitive setting. As mentioned in Sec. 3.1,
only a narrow width-O(k) diagonal area in G is useful (Fig. 3(d)). We thus propose an
output-sensitive DaC-SD algorithm adapted from the AALM algorithm. We follow the
same steps in AALM, but restrict the paths to the diagonal area, although the exact size is
unknown ahead of time. We first present the algorithm to compute the shortest distance
on the diagonal region with width 2t + 1 as function Check(t) in Alg. 3, which restricts the
search in diagonals −t to t. First, we divide such a region into four sub-regions (see Fig. 3(d)).
Two of them (G1 and G4) are of the same shape, and the other two of them (G2 and G3)
are triangles. For G2 and G3, we use the AALM algorithm to compute their SD matrices by
aligning them to squares. For G1 and G4, we process them recursively, until the base case
where the edge length of the matrix is smaller than t and they degenerate to squares, in
which case we apply the AALM algorithm. Note that even though the width-(2t+1) diagonal
stripe is not a square (G1 and G4 are also of the same shape), the useful boundaries are still
the left/top and bottom/right boundaries (L ∪ U and W ∪ R in Fig. 3(d)). Therefore, we
can use the same Combine algorithm as in AALM to combine the SD matrices. For example,
in Fig. 3(d), when combining G1 with G2, we obtain the pairwise distance between L ∪ U

and R ∪ R′ using the common boundary W . We can similarly combine all G1, G2, G3, and
G4 to get the SD matrix for G.

However, the output value k is unknown before we run the algorithm. To overcome this
issue, we use a strategy based on prefix doubling to “binary search” the value of k without
asymptotically increasing the work of the algorithm. We start with t = 1, and run the
Check(t) in Alg. 3 (i.e., restricting the search in a width-(2t + 1) diagonal). Assume that
the Check function returns σ edits. If σ ≤ t, we know that σ is the SD from (0, 0) to (n, n),
since allowing the path to go out of the diagonal area will result in an answer greater than t.
Otherwise, we know σ > t, and σ is not necessarily the shortest distance from the (0, 0) to
(n, n), since not restricting the path in the t-diagonal area may allow for a shorter path. If
so, we double t and retry. Although we need O(log k) searches before finding the final answer
k, we will show that the total search cost is asymptotically bounded by the last search. In
the last search, we have t < 2k.
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Algorithm 3 Divide-and-Conquer edit distance algorithm on A[1..n] and B[1..n].

1 Notes: We assume both A and B has size
n = 2c for simple description. Our
algorithm also works for strings with
different lengths with minor changes.

2 Function DaC-SD
3 t← 1
4 while true do
5 D ← Check(t)
6 if D[t][t] ≤ t then break
7 t← min(2t, n)
8 return D[t][t]

// Find the SD in the DP matrix from (0, 0)
to (n, n) by restricting in the diagonal stripe
with width t

9 Function Check(t)
10 D ←GetDistance(0, 0, n, t)

Function GetDistance(i, j, n, t)
if n/2 < t then

Computed D by the AALM algorithm
return D

// Compute the SD matrices for
G1, G2, G3, G4 (as shown in Fig. 3 (d)).

11 D1 ← GetDistance(i, j, n/2, t)
12 Compute D2 and D3 by the AALM al-

gorithm
13 D4 ← GetDistance(i + n/2, j + n/2, n−

n/2, t)
// use the same Combine function as

AALM
14 D1∪2 ← Combine(D1, D2)
15 D3∪4 ← Combine(D3, D4)
16 D ← (D1∪2, D3∪4)
17 return D

We first analyze the cost for Check(t). It contains two recursive calls, two calls to AALM,
and three calls to the Combine function. Therefore, the work for Check(t) is W (n) =
2W (n/2) + O(t2 log t), with base cases W (t) = t2 log t, which solves to W (n) = O(nt log t).
For span, note that there are log(n/t) levels of recursion before reaching the base cases. In
each level, the Combine function combines t × t SD matrices with O(log2 t) span. In the leaf
level, the base case uses AALM with O(log3 t) span. Therefore, the total span of a Check is:

O(log n/t · log2 t + (log n/t + log3 t)) = O(log2 t · (log n/t + log t)) = O(log2 t log n) (1)

We will apply Check(·) for O(log k) times, with t = 1, 2, 4, . . . up to at most 2k. Therefore, the
total work is dominated by the last Check, which is O(nk log k). The span is O(log n log3 k).

▶ Theorem 4. The DaC-SD algorithm computes the edit distance between two sequences of
length n and m ≤ n in O(nk log k) work and O(log n log3 k) span, where k is the output size
(fewest possible edits).

Compared to the BFS-based algorithms with Õ(k) span, our DaC-SD is also output-sensitive
and achieves polylogarithmic span. However, the work is Õ(kn) instead of Õ(n + k2), which
will lead to more running time in practice for a moderate size of k.

5 Implementation Details

We provide all implementations for the four algorithms as well as testing benchmarks at [17].
In this section, we highlight some interesting and challenging parts of our implementations.

5.1 Implementation Details of BFS-based Algorithms
For the suffix array construction in BFS-SA, we implemented a parallel version of the
DC3 algorithm [32]. We also compared our implementation with the SA implementation
in ParlayLib [7], which is a highly optimized version of the prefix doubling algorithm with
O(n log n) work and O(log2 n) span. On average, our implementation is about 2× faster
than that in ParlayLib when applied to edit distance. We present some results for their
comparisons in the full version [16]. For LCP array construction and preprocessing RMQ
queries, we use the implementation in ParlayLib [7], which requires O(n log n) work and
O(log2 n) span. With them, the query has O(1) cost.
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In our experiments on both synthetic and real-world data, we observed that the LCP
length is either very large when we find two long matched chunks, or in most of the cases,
very short when they are not corresponding to each other. This is easy to understand –
for genomes, text or code with certain edit history, it is unlikely that two random starting
positions share a large common prefix. Based on this, we add a simple optimization for all
LCP implementations such that we first compare the leading eight characters, and only when
they all match, we use the regular LCP query. This simple optimization greatly improved
the performance of BFS-SA, and also slightly improved the hash-based solutions.

5.2 Implementation Details of the DaC-SD Algorithm
Although our DaC-SD algorithm given in Alg. 3 is not complicated, we note that imple-
menting it is highly non-trivial in two aspects. First, in Sec. 4, we assume both strings A

and B have the same length n, which is a power of two. However, handling two strings
with different lengths makes the matrix partition more complicated in practice. Another
key challenge is that the combining step in the AALM algorithm is recursive and needs to
allocate memory with varying sizes in the recursive execution. While memory allocation is
mostly ignored theoretically, frequent allocation in practice can easily be the performance
bottleneck in the parallel setting. We discuss our engineering efforts as follows.

Irregularity. The general case, when n and m are not powers of two and not the same, is
more complicated than the case in Alg. 3. In this case, all four subproblems G1, G2, G3,
and G4 will have different sizes. While theoretically, we can always round up, for better
performance in practice, we need to introduce additional parameters to restrict the search
within the belt region as shown in Fig. 4. Therefore, we use two parameters t1 and t2, to
denote the lengths of the diagonal area on each side. We show an illustration in Fig. 4(a)
along with how to compute the subproblem sizes. In extreme cases, t1 or t2 can degenerate
to 0, which results in three subproblems (Fig. 4(b)). In such cases, we will first merge G2
and G4, then merge G1 and G2∪4.

The Combining Step. As mentioned in Sec. 4, achieving an efficient combining step is
highly non-trivial. The straightforward solution to combine two matrices is to use the
Floyd-Warshall algorithm [18], but it incurs O(n3) work and will be a bottleneck. The
AALM algorithm improves this step to O(n2) by taking advantage of the Monge property of
the two matrices. For page limit, we introduce the details of the combining algorithm in the
full version [16]. However, the original AALM algorithm is based on divide-and-conquer and
requires memory allocation for every recursive function call. This is impractical as frequent
parallel memory allocation is extremely inefficient. To overcome this challenge, we redesign
the recursive solution to an iterative solution, such that we can preallocate the memory
space before the combining step. No dynamic memory allocation is involved during the
computation. We provide the details of this approach in the full version [16].

6 Experiments

Setup. We implemented all algorithms in C++ using ParlayLib [7] for fork-join parallelism
and some parallel primitives (e.g., reduce). Our tests use a 96-core (192 hyperthreads)
machine with four Intel Xeon Gold 6252 CPUs, and 1.5 TB of main memory. We utilize
numactl -i all in tests with more than one thread to spread the memory pages across
CPUs in a round-robin fashion. We run each test three times and report the median.
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Figure 4 The illustrations of our
output-sensitive DaC-SD algorithm.
(a) Two parameters t1 and t2 are needed
to denote the lengths of the diagonal area
on each side. (b) The case that t2 = 0 and
G3 degenerates.

Table 2 Real-world datasets in our experi-
ments, including input sizes |A| and |B|, num-
ber of edits k, and alphabet sizes |Σ|.

Data Alias |A| |B| k |Σ|

Wikipedia Wiki v1 0.56M 0.56M 439 256

pages [45] Wiki v2 0.56M 0.56M 5578 256
Wiki v3 0.56M 0.55M 15026 256

Linux kernel Linux v1 6.47M 6.47M 236 256

code [40] Linux v2 6.47M 6.47M 1447 256
Linux v3 6.47M 6.46M 9559 256

DNA DNA 1 42.3M 42.3M 928 4

sequences [5] DNA 2 42.3M 42.3M 9162 4
DNA 3 42.3M 42.3M 91419 4

Tested Algorithms and Datasets. We tested five algorithms in total: four output-sensitive
algorithms in this paper (BFS-SA, BFS-Hash, BFS-B-Hash, DaC-SD), and a baseline
algorithm from ParlayLib [7], which is a parallel output-insensitive implementation with
O(nm) work. The ParlayLib implementation is intended to showcase the simplicity of
parallel algorithms, and as a result, it may not be well-ptimized. We are unaware of other
parallel implementations that provide output-sensitive cost bounds. We use b = 32 for our
BFS-B-Hash. As we will show later, the running time is generally stable with 4 ≤ b ≤ 64.
We tested the algorithms on both synthetic and real-world datasets. For synthetic datasets,
we generate random strings with different string lengths n = 10i for 6 ≤ i ≤ 9 and k (number
of edits) varying from 1 to 105, and set the size of the alphabet as 256. We create strings A

and B by generating n random characters, and applying k edits. The k edits are uniformly
random for insertion, deletion and substitution. For k ≪ n, we have m ≈ n. All values of
k shown in the figures and tables are approximate values. Our real-world datasets include
Wikipedia [45], Linux kernel [40], and DNA sequences [51]. We compare the edit distance
between history pages on Wikipedia and history commits of a Linux kernel file on GitHub.
We also compare DNA sequences by adding valid modifications to them to simulate DNA
damage or genome editing techniques, as is used in many existing papers [11, 13, 30, 57]. We
present the statistics of the real-world datasets in Tab. 2.

Overall Performance on Synthetic Data. We present our results on synthetic data in
the upper part of Fig. 5. We also present the complete results in the full version [16]. For
BFS-based algorithms, we also separate the time for building the data structures for LCP
queries, and the query time (the BFS process). ParlayLib cannot process instances with
n > 106 due to its O(nm) work bound.

We first compare our solutions with ParlayLib [7]. Since ParlayLib is not output-sensitive,
its running time remains the same regardless of the value of k. Among the tests that
ParlayLib can process (n = 106), our output-sensitive algorithms are much faster than
ParlayLib, especially when k is small (up to 105×). For n = 106, all our BFS-based
algorithms are at least 1.7× faster than ParlayLib even when k ≈ n/10.

We then compare our DaC- and BFS-based solutions. DaC-SD has the benefit of
polylogarithmic span, compared to Õ(k) span for the BFS-based algorithm. Although this
seems to suggest that DaC-SD should have better performance when k is large, the result
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Synthetic Datasets:
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Figure 5 Running time (in seconds) of synthetic and real-world datasets for all
algorithms. Lower is better. We put an “×” if the algorithm does not finish within 1000 seconds.
For BFS-based algorithms, we separate the time into building time (constructing the data structure
for LCP queries) and query time (running BFS). All bars out of the range of the y-axis are annotated
with numbers. The number is the total running time for DaC-SD and ParlayLib, and is in the
format of a + b for BFS-SA, where a is the building time and b is the query time. Full results are
presented in the full version [16].

shows the opposite. The reason is that DaC-SD has Õ(nk) work, compared to Õ(n + k2)
cost of the BFS-based algorithms. When k becomes larger, the overhead in work is also
more significant. On the other hand, when k is small, the O(nk) work becomes linear, which
hides the inefficiency in work. Therefore, the gap between DaC-SD and other algorithms is
smaller when k is small, but DaC-SD is still slower than BFS-based algorithms in all test
cases, especially when k is large. This experiment reaffirms the importance of work efficiency
on practical performance for parallel algorithms.

Finally, we compare all our BFS-based solutions. Our hash-based solutions have significant
advantages over the other implementations when k is small, since the pre-processing time
for hash-based solutions is much shorter. When k is large, pre-processing time becomes
negligible, and BFS-Hash seems to be the ideal choice since its query is also efficient. In
particular, for n ≈ m ≈ 109, hash-based algorithms use about 1 second for pre-processing
while BFS-SA uses about 100 seconds. Although BFS-SA also has O(n) construction time,
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Figure 6 Performance of BFS-based algorithms vs.
average LCP length. Some building times are invisible
because they are too small.
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off in BFS-B-Hash. The space
shown is the memory required for
the prefix tables. The dotted line
is the input size. Note that by set-
ting b = 1, the algorithm is equi-
valent to BFS-Hash.

the constant is much larger and its memory access pattern is much worse than the two
hash-based solutions. We note that in some cases, the query time of BFS-SA can still be
faster than BFS-Hash and BFS-B-Hash, especially when k is large, which is consistent
with the theory (O(1) vs. O(log n) or O(b log n) per LCP query).

In theory, BFS-B-Hash reduces space usage in BFS-Hash by increasing the query time.
Interestingly, when k is small, BFS-B-Hash can also be faster than BFS-Hash by up to
2.5×. This is because BFS-B-Hash incurs fewer writes (and thus smaller memory footprints)
in preprocessing that leads to faster building time. When k is small, the running time is
mostly dominated by the building time, and thus BFS-B-Hash can perform better. When k

is relatively large and k2 is comparable to n, BFS-Hash becomes faster than BFS-B-Hash
due to better LCP efficiency. In fact, when k is large, the running time is mainly dominated
by the query (BFS), and all three algorithms behave similarly. It is worth noting that in
these experiments with |Σ| = 256 and random edits, in most of the cases, the queried LCP is
small. Therefore, the O(log n) or O(b log n) query time for BFS-Hash and BFS-B-Hash
are not tight, and they have much better memory access patterns than BFS-SA in LCP
queries. As a result, they can have matching or even better performance than BFS-SA.
Later we will show that under certain input distributions where the average LCP length is
large, BFS-SA can have some advantage over both BFS-Hash and BFS-B-Hash.

Real-World Datasets. We now analyze how our algorithms perform on real-world string
and edit patterns. The results are shown in the lower part of Fig. 5. The results are mostly
consistent with our synthetic datasets, where BFS-B-Hash is more advantageous when k is
small, and BFS-Hash performs the best when k is large. When k is large, BFS-SA can also
have comparable performance to the hash-based solutions.

LCP Length vs. Performance. It seems that for both synthetic and real-world data shown
above, our hash-based solutions are always better than BFS-SA. It is worth asking, whether
BFS-SA can give the best performance in certain cases, given that it has the best theoretical
bounds (see Tab. 1). By investigating the bounds carefully, BFS-SA has better LCP query
cost as O(1), while the costs for BFS-Hash and BFS-B-Hash are O(log L) and O(b log L),
respectively, where L is the LCP length. This indicates that BFS-SA should be advantageous
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Table 3 Self-relative speedup of each implementation in each step. “Build” = constructing
the data structure for LCP queries. “Query” = the BFS process. “t.o.” = timeout. We omit query
speedup when k = 10 because there is little parallelism to be explored for BFS with small k, and
the BFS time is also small and hardly affects the overall speedup. 192 hyperthreads are used for
parallel executions.

n k
BFS-B-Hash BFS-Hash BFS-SA DaC-SD

Build Query Total Build Query Total Build Query Total Total

108 10 20.4 - 19.9 46.6 - 46.5 49.6 - 49.4 68.2
109 105 24.2 36.4 36.3 42.7 46.8 46.6 51.2 27.1 48.3 t.o.

when k and L are both large. To verify this, we artificially created input instances with
medium to large values of k and controlled average LCP query lengths, and showed the
results in Fig. 6 on two specific settings.

The experimental result is consistent with the theoretical analysis. The running time
for BFS-Hash increases slowly with L, while the performance of BFS-B-Hash grows
much faster, since it is affected by a factor of O(b) more than BFS-Hash. The query time
for BFS-SA almost stays the same, but also increases slightly with increasing L. This is
because in general, with increasing L, the running time for all three algorithms may increase
slightly due to worse cache locality in BFS due to more long matches. In Figure 6(a), the
building time for both BFS-Hash and BFS-B-Hash are negligible, while BFS-SA still
incurs significant building time. Even in this case, with an LCP length of 300, the query
time of the hash-based solutions still becomes larger than the total running time of BFS-SA.
In Figure 6(b) with a larger k, the building time for all three algorithms is negligible. In
this case, BFS-SA always has comparable performance with BFS-Hash, and may perform
better when L > 20. However, such extreme cases (both k and L are large) should be very
rare in real-world datasets - when k is large enough so that the query time is large enough
to hide SA’s building time, L is more likely to be small, which in turn is beneficial for the
query bounds in hash-based solutions. Indeed such cases did not appear in our 33 tests on
both synthetic and real data.

Parallelism. We test the self-relative speedup of all algorithms. We present speedup
numbers on two representative tests with different values of n and k in Tab. 3. For BFS-based
algorithms, we separate the speedup for building and query. All our algorithms are highly
parallelized. Even though BFS-SA and DaC-SD have a longer running time, they still
have a 48–68× speedup, indicating good scalability. Our BFS-Hash algorithm has about
40–50× speedup in building, and BFS-B-Hash has a lower but decent speedup of about
20–40×. When k is small, the frontier sizes (and the total work) of BFS are small, and the
running time is also negligible. In this case, we cannot observe meaningful speedup. For
larger k = 105, three BFS-based algorithms achieve 27–48× speedup both in query and entire
edit distance algorithm.

Space Usage. We study the time-space tradeoff of our BFS-B-Hash with different block
sizes b. We present the auxiliary space used by the prefix table in BFS-B-Hash along with
running time in Fig. 7 using one test case with n = 108 and k = 105 in our synthetic dataset.
The dotted line shows the input size. Note that when b = 1, it is exactly BFS-Hash. Since
the inputs are 8-bit characters and the hash values are 64-bit integers, BFS-Hash incurs 8×
space overhead than the input size. Using blocking, we can avoid such overhead and keep
the auxiliary space even lower than the input. The auxiliary space decreases linearly with
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the block size b. Interestingly, although blocking itself incurs time overhead, the impact in
time is small: the time grows by 1.19× from b = 1 to 2, and grows by 1.08× from b = 2 to
64. This is mostly due to two reasons: 1) as mentioned, with 8-bit character input type and
random edits, the average LCP length is likely short and within the first block, and therefore
the query costs in both approaches are close to O(L) for LCP length L, and 2) the extra
factor of b in queries (Line 17) is mostly cache hits (consecutive locations in an array). This
illustrates the benefit of using blocking in such datasets, since blocking saves much space
while only increasing the time by a small fraction.

7 Conclusion and Discussions

We proposed output-sensitive parallel algorithms for the edit-distance problem, as well as
careful engineering of them. We revisited the BFS-based Landau-Vishkin algorithm. In
addition to using SA as is used in Landau-Vishkin (our BFS-SA implementation), we
also designed two hash-based data structures to replace the SA for more practical LCP
queries (BFS-Hash and BFS-B-Hash). We also presented the first output-sensitive parallel
algorithm based on divide-and-conquer with Õ(nk) work and polylogarithmic span. We have
also shown the best of our engineering effort on this algorithm, although its performance
seems less competitive than other candidates due to work inefficiency.

We implemented all these algorithms and tested them on synthetic and real-world
datasets. In summary, our BFS-based solutions show the best overall performance on
datasets with real-world edits or random edits, due to faster preprocessing time and better
I/O-friendliness. BFS-Hash performs the best in time when k is large. BFS-B-Hash
has better performance when k is small. The blocking scheme also greatly improves space
efficiency without introducing much overhead in time. In very extreme cases where both
k and the LCP lengths are large, BFS-SA can have some advantages over the hash-based
solutions, while BFS-B-Hash can be much slower than BFS-Hash. However, such input
patterns seem rare in the real world.

All our BFS-based solutions perform better than the output-insensitive solution in
ParlayLib, and the DaC-based solution with Õ(nk) work and polylogarithmic span, even for
large k >

√
n. The results also imply the importance of work efficiency in parallel algorithm

designs, consistent with the common belief in the literature [52, 24]. Because the number
of cores in modern multi-core machines is small (usually hundreds to thousands) compared
to the problem size, an algorithm is less practical if it blows up the work significantly, as
parallelism cannot compensate for the performance loss due to larger work.
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Abstract
We present efficient algorithms for solving systems of linear equations in 1-Laplacians of well-shaped
simplicial complexes. 1-Laplacians, or higher-dimensional Laplacians, generalize graph Laplacians to
higher-dimensional simplicial complexes and play a key role in computational topology and topological
data analysis. Previously, nearly-linear time solvers were developed for simplicial complexes with
known collapsing sequences and bounded Betti numbers, such as those triangulating a three-ball in
R3 (Cohen, Fasy, Miller, Nayyeri, Peng, and Walkington [SODA’2014], Black, Maxwell, Nayyeri,
and Winkelman [SODA’2022], Black and Nayyeri [ICALP’2022]). Furthermore, Nested Dissection
provides quadratic time solvers for more general systems with nonzero structures representing
well-shaped simplicial complexes embedded in R3.

We generalize the specialized solvers for 1-Laplacians to simplicial complexes with additional
geometric structures but without collapsing sequences and bounded Betti numbers, and we improve
the runtime of Nested Dissection. We focus on simplicial complexes that meet two conditions: (1)
each individual simplex has a bounded aspect ratio, and (2) they can be divided into “disjoint”
and balanced regions with well-shaped interiors and boundaries. Our solvers draw inspiration
from the Incomplete Nested Dissection for stiffness matrices of well-shaped trusses (Kyng, Peng,
Schwieterman, and Zhang [STOC’2018]).
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1 Introduction

Combinatorial Laplacians generalize graph Laplacian matrices to higher dimensional simplicial
complexes – a collection of 0-simplexes (vertices), 1-simplexes (edges), 2-simplexes (triangles),
and their higher dimensional counterparts. Simplicial complexes encode higher-order relations
between data points in a metric space. By studying the topological properties of these
complexes using Combinatorial Laplacians, one can capture higher-order features that go
beyond connectivity and clustering.
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41:2 Efficient 1-Laplacian Solvers for Well-Shaped Simplicial Complexes

Given an oriented d-dimensional simplicial complex K, for each 0 ≤ i ≤ d, let Ci be
the vector space generated by the i-simplexes in K with coefficients in R. We can define a
sequence of boundary operators:

Cd
∂d−→ Cd−1

∂d−1−−−→ · · · ∂2−→ C1
∂1−→ C0,

where each ∂i is a linear map that maps every i-simplex to a signed sum of its boundary
(i− 1)-faces. We define the i-Laplacian Li : Ci → Ci to be

Li = ∂i+1∂⊤
i+1 + ∂⊤

i ∂i. (1)

In particular, ∂1 is the vertex-edge incidence matrix, and L0 is the graph Laplacian (following
the convention, we define ∂0 = 0). One can assign weights to each simplex in K and define
weighted Laplacians.

It is well-known that linear equations in graph Laplacians can be approximately solved in
nearly-linear time in the number of nonzeros of the system [50, 30, 31, 29, 36, 46, 16, 34, 32, 27].
These fast Laplacian solvers have led to significant developments in algorithm design for
graph problems such as maximum flow [41, 42, 10], minimum cost flow and lossy flow [37, 18],
and graph sparsification [49], known as “the Laplacian Paradigm” [52].

Inspired by the success of graph Laplacians, Cohen, Fasy, Miller, Nayyeri, Peng, and
Walkington [13] initiated the study of fast solvers for 1-Laplacian linear equations. They
designed a nearly-linear time solver for simplicial complexes with zero Betti numbers1 and
known collapsing sequences. Later, Black, Maxwell, Nayyeri and Winkelman [5], and Black
and Nayyeri [6] generalized this algorithm to subcomplexes of such a complex with bounded
first Betti numbers2. One concrete example studied in these papers is convex simplicial
complexes that piecewise linearly triangulate a convex ball in R3, for which a collapsing
sequence exists and can be computed in linear time [11, 12]. However, deciding whether
a simplicial complex has a collapsing sequence is NP-hard in general [51]; computing the
Betti numbers is as hard as computing the ranks of general {0, 1} matrices [23]. In addition,
1-Laplacian systems for general simplicial complexes embedded in R4 are as hard to solve as
general sparse linear equations [19], for which the best-known algorithms need super-quadratic
time [47, 44]. All the above motivates the following question:

Can we efficiently solve 1-Laplacian systems for other classes of structured simplicial
complexes, e.g., without known collapsing sequences and with arbitrary Betti numbers?

In addition to the specialized solvers for 1-Laplacian systems mentioned above, Nested
Dissection can solve 1-Laplacian systems in quadratic time for simplicial complexes in R3

with additional geometric structures [25, 39, 43] such as bounded aspect ratios3 of individual
tetrahedrons. Furthermore, iterative methods such as Preconditioned Conjugate Gradient
approximately solve 1-Laplacian systems in time Õ(n

√
κ), where n is the number of simplexes

and κ is the condition number of the coefficient matrix.
Inspired by solvers that leverage geometric structures and spectral properties, we develop

efficient 1-Laplacian solvers for well-shaped simplicial complexes embedded in R3 without
known collapsing sequences and with arbitrary Betti numbers. Our solver adapts the Incom-
plete Nested Dissection algorithm, proposed by Kyng, Peng, Schwieterman, and Zhang [33]

1 Informally, the ith Betti number is the number of i-dimensional holes on a topological surface. For
example, the zeroth, first, and second Betti numbers represent the numbers of connected components,
one-dimensional “circular” holes, and two-dimensional “voids” or “cavities,” respectively.

2 The solver has cubic dependence on the first Betti number.
3 The aspect ratio of a geometric shape S is the radius of the smallest ball containing S divided by the

radius of the largest ball contained in S.
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for solving linear equations in well-shaped 3-dimensional truss stiffness matrices. These
matrices represent another generalization of graph Laplacians; however, they differ quite from
the 1-Laplacians studied in this paper. A primary distinction is that the kernel of a truss
stiffness matrix has an explicit and well-understood form, while computing a 1-Laplacian’s
kernel is as hard as that for a general matrix.

1.1 Our Results
We say a simplex is stable if it has O(1) aspect ratio and Θ(1) weight. We focus on a pure
simplicial complex4 K embedded in R3. We require K admits a nice division parameterized
by r ∈ R+, called r-hollowing. We adopt and adapt the concept of r-hollowing introduced
in [33] to suit our 1-Laplacian solvers. Informally, our r-hollowing for a simplicial complex
containing n simplexes divides K into O(n/r) “separated” regions where each region has
O(r) simplexes and O(r2/3) boundary simplexes. Only boundary simplexes can appear
in multiple regions. Additionally, we mandate that each region’s boundary triangulates a
spherical shell in R3, exhibiting a “hop” diameter of O(r1/3) and a “hop” shell width of at
least 5. The formal definition is given in Definition 2.9. The bounded aspect ratio of each
tetrahedron allows us to employ Nested Dissection for the interior simplexes within every
region. The boundary shape requirement facilitates preconditioning the sub-system, derived
from partial Nested Dissection, by the boundaries themselves and solving this sub-system
using Preconditioned Conjugate Gradient.

Below, we present our main results informally. Firstly, we assume that an r-hollowing
of a pure 3-complex is provided, which offers the broadest applicability of our algorithm.
This assumption is justifiable when one can determine the construction of the simplicial
complex; for instance, one can decide how to discretize a continuous topological space or how
to triangulate a space given a set of points. Subsequently, we establish sufficient conditions
for 3-complexes that allow us to compute r-hollowings in linear time.

▶ Theorem 1.1 (Informal statement). Let K be a pure 3-complex embedded in R3 and composed
of n stable simplexes. Given an r-hollowing for K, for any ϵ > 0, we can approximately solve a
system in the 1-Laplacian of K within error ϵ in time O

(
nr + n4/3r5/18 log(n/ϵ) + n2r−2/3)

.
The runtime is o(n2) if r = o(n) and r = ω(1). In particular, when r = Θ(n3/5), the runtime
is minimized (up to constant) and equals O(n8/5 log(n/ϵ)).

Our runtime in Theorem 1.1 does not depend on the Betti numbers of K and does
not require collapsing sequences. When r = o(n) and r = ω(1), the runtime is o(n2),
asymptotically faster than Nested Dissection [43]. The solver in [6] for a 1-Laplacian system
for the K stated in Theorem 1.1 is Õ(β3m)5, where m is the number of simplexes in X ⊃ K
with a known collapsing sequence and β is the first Betti number of K. In the worst-case
scenario, m can be as large as Ω(n2). But [6] does not require a known r-hollowing.

Without assuming prior knowledge about r-hollowing, the following theorem presents
a solver with the same runtime as Theorem 1.1 when the 3-complex K satisfies additional
geometric restrictions: First, the convex hull of K has O(1) aspect ratio, and each tetrahedron
of K has Θ(1) volume. Second, all but one the boundary components of K, which correspond
to “holes inside” K, satisfy the following conditions: (1) every boundary component of K has

4 A simplicial complex is pure if every maximal simplex (i.e., a simplex that is not a proper subset of any
other simplex in the complex) has the same dimension. For example, a pure 3-complex is a tetrahedron
mesh that consists of tetrahedrons and their sub-simplexes.

5 We use Õ(·) to hide polylog factors on the number of simplexes and the inverse of error parameter.
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1-skeleton diameter O(r1/3); (2) the total size of boundary components within any X ⊂ R3 of
volume r is at most O(r2/3), and the total size of boundary components of K is O(nr−1/3);
(3) the triangle distance between any two boundary components of K is greater than 5. These
geometric conditions allow us to find an r-hollowing of K in linear time.

▶ Theorem 1.2 (Informal statement). Let K be a pure 3-complex embedded in R3 and
composed of n stable simplexes; assume K satisfies the aforementioned additional geometric
structures with parameter r. Then, for any ϵ > 0, we can approximately solve a system in the
1-Laplacian of K within error ϵ in time O

(
nr + n4/3r5/18 log(n/ϵ) + n2r−2/3)

. In particular,
when r = Θ(n3/5), the runtime is minimized (up to constant) and equals O(n8/5 log(n/ϵ)).

We then examine unions of pure 3-complexes glued together by identifying certain subsets
of simplexes on the boundary components (called exterior simplexes) of 3-complex chunks.
Moreover, each 3-complex chunk admits a Θ(n3/5

i )-hollowing with ni being the number of
simplexes in this chunk. We remark that such a union of 3-complexes, called U , may not
be embeddable in R3. So, the previously established methods from [13, 5, 6] and Nested
Dissection are unsuitable for this scenario. Building on our algorithm for Theorem 1.1, we
design an efficient algorithm for U whose runtime depends sub-quadratically on the size of U
and polynomially on the number of chunks and the number of simplexes shared by more
than one chunk.

▶ Theorem 1.3 (Informal statement). Let U be a union of h pure 3-complexes that are
glued together by identifying certain subsets of their exterior simplexes. Each 3-complex
chunk is embedded in R3, contains ni stable simplexes, and has a known Θ(n3/5

i )-hollowing.
For any ϵ > 0, we can solve a system in the 1-Laplacian of U within error ϵ in time
Õ(n8/5k + h2k2 + k3) where n is the number of simplexes in U , k is the number of exterior
simplexes shared by more than one complex chunk.

When h = Õ(1) and k = Õ(n1/2), the solver in Theorem 1.3 has the same runtime as
Theorem 1.1. When h = o(n2/5), k = o(n3/5), the runtime is o(n2), asymptotically faster
than Nested Dissection.

1.2 Motivations and Applications
In the past decade, combinatorial Laplacians have played a crucial role in the development of
computational topology and topological data analysis in various domains, such as statistics [28,
45], graphics and imaging [40, 53], brain networks [35], deep learning [8], signal processing [3],
and cryo-electron microscope [54]. We recommend readers consult accessible surveys [26, 9,
22, 38] for more information.

Combinatorial Laplacians have their roots in the study of discrete Hodge decomposi-
tion [21], which states that the kernel of the i-Laplacian Li is isomorphic to the ith homology
group of the simplicial complex. Among the many applications of combinatorial Laplacians,
a central problem is determining the Betti numbers – the ranks of the homology groups
– which are important topological invariants. Additionally, discrete Hodge decomposition
allows for the extraction of meaningful information from data by decomposing them into
three mutually orthogonal components: gradient (in the image of ∂⊤

i ), curl (in the image of
∂i+1), and harmonic (in the kernel of Li) components. For instance, the three components
of edge flows in a graph capture the global trends, local circulations, and “noise”.

The computation of both Betti numbers and discrete Hodge decomposition of higher-order
flows can be achieved by solving systems of linear equations in combinatorial Laplacians [24,
38]. The rank of a matrix Li can be determined by solving a logarithmic number of linear
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equation systems in Li [2]. The discrete Hodge decomposition can be calculated by solving
least square problems involving boundary operators or combinatorial Laplacians, which in
turn reduces to solving linear equations in these matrices.

Furthermore, an important question in numerical linear algebra concerns whether the
nearly-linear time solvers for graph Laplacian linear equations can be generalized to larger
classes of linear equations. Researchers have achieved success with elliptic finite element
systems [7], Connection Laplacians [32], directed Laplacians [15, 14], well-shaped truss
stiffness matrices [17, 48, 33]. It would be intriguing to determine what structures of linear
equations facilitate faster solvers. Another theoretically compelling reason for developing
efficient solvers for 1-Laplacians stems from the “equivalence” of time complexity between
solving 1-Laplacian systems and general sparse systems of linear equations [19]. If one can
solve all 1-Laplacian systems in time Õ((# of simplexes)c) where c ≥ 1 is a constant, then
one can solve all general systems of linear equations in time Õ((# of nonzero coefficients)c).

2 Preliminaries

2.1 Background of Linear Algebra
Given a vector x ∈ Rn, for 1 ≤ i ≤ n, we let x[i] be the ith entry of x; for 1 ≤ i < j ≤ n,
let x[i : j] be (x[i], x[i + 1], . . . , x[j])⊤. The Euclidean norm of x is ∥x∥2

def=
√∑n

i=1 x[i]2.
Given a matrix A ∈ Rm×n, for 1 ≤ i ≤ m, 1 ≤ j ≤ n, we let A[i, j] be the (i, j)th
entry of A; for S1 ⊆ {1, . . . , m}, S2 ⊆ {1, . . . , n}, let A[S1, S2] be the submatrix with row
indices in S1 and column indices in S2. Furthermore, we let A[S1, :] = A[S1, {1, . . . , n}] and
A[:, S2] = A[{1, . . . , m}, S2]. The operator norm of A (induced by the Euclidean norm) is
∥A∥2

def= maxv∈Rn
∥Ax∥2
∥x∥2

. The image of A is the linear span of the columns of A, denoted by
Im(A), and the kernel of A to be {x ∈ Rn : Ax = 0}, denoted by Ker(A). A fundamental
theorem of Linear Algebra states Rm = Im(A)⊕Ker(A⊤).

▶ Fact 2.1. 6 For any matrix A ∈ Rm×n, Im(A) = Im(AA⊤).

Pseudo-inverse and Projection Matrix

The pseudo-inverse of A is defined to be a matrix A† that satisfies all the following four
criteria: (1) AA†A = A, (2) A†AA† = A†, (3) (AA†)⊤ = AA†, (4) (A†A)⊤ = A†A. The
orthogonal projection matrix onto Im(A) is ΠIm(A) = A(A⊤A)†A⊤.

Eigenvalues and Condition Numbers

Given a square matrix A ∈ Rn×n, let λmax(A) be the maximum eigenvalue of A and λmin(A)
the minimum nonzero eigenvalue of A. The condition number of A, denoted by κ(A), is the
ratio between λmax(A) and λmin(A). A symmetric matrix A is positive semi-definite (PSD)
if all eigenvalues of A are non-negative. Let B ∈ Rn×n be another square matrix. We say
A ≽ B if A−B is PSD. The condition number of A relative to B is

κ(A, B) def= min
{

α

β
: βΠIm(A)BΠIm(A) ≼ A ≼ αB

}
.

6 All the facts in this section are well-known. For completeness, we include their proofs in the Appendix
of the full paper [20].
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▶ Fact 2.2. Let A, B ∈ Rn×n be symmetric matrices such that A ≼ B. Then, for any
V ∈ Rm×n, V AV ⊤ ≼ V BV ⊤.

Schur Complement

Let A ∈ Rn×n, and let F ∪ C be a partition of {1, . . . , n}. We write A as a block matrix:

A =
(

A[F, F ] A[F, C]
A[C, F ] A[C, C]

)
. (2)

We define the (generalized) Schur complement of A onto C to be

Sc[A]C = A[C, C]−A[C, F ]A[F, F ]†A[F, C].

The Schur complement appears in performing a block Gaussian elimination on matrix A to
eliminate the indices in F .

▶ Fact 2.3. Let A be a PSD matrix defined in Equation (2). Then,

A =
(

I
A[C, F ]A[F, F ]† I

) (
A[F, F ]

Sc[A]C

) (
I A[F, F ]†A[F, C]

I

)
.

▶ Fact 2.4. Let A be a PSD matrix defined in Equation (2). Let A = BB⊤, and we

decompose B =
(

BF

BC

)
accordingly. Then, Sc[A]C = BCΠKer(BF )B⊤

C , where ΠKer(BF ) is

the projection onto the kernel of BF .

Solving Linear Equations

We will need Fact 2.5 for relations between different error notations for linear equations and
Theorem 2.6 for Preconditioned Conjugate Gradient.

▶ Fact 2.5. Let A, Z ∈ Rn×n be two symmetric PSD matrices, and let Π be the orthogonal
projection onto Im(A).
1. If (1− ϵ)A† ≼ Z ≼ (1 + ϵ)A†, then ∥AZb − b∥2 ≤ ϵ

√
κ(A) ∥b∥2 for any b ∈ Im(A).

2. If ∥AZb − b∥2 ≤ ϵ ∥b∥2 for any b ∈ Im(A), then (1− ϵ)A† ≼ ΠZΠ ≼ (1 + ϵ)A†.

▶ Theorem 2.6 (Preconditioned Conjugate Gradient [1]). Let A, B ∈ Rn×n be two symmetric
PSD matrices, and let b ∈ Rn. Each iteration of Preconditioned Conjugate Gradient
multiplies one vector with A, solves one system of linear equations in B, and performs a
constant number of vector operations. For any ϵ > 0, the algorithm outputs an x satisfying
∥Ax −ΠAb∥2 ≤ ϵ ∥ΠAb∥2 in O(

√
κ log(κ/ϵ)) such iterations, where ΠA is the orthogonal

projection matrix onto the image of A and κ = κ(A, B).

2.2 Background of Topology
Simplex and Simplicial Complexes

We consider a d-simplex (or d-dimensional simplex) σ as an ordered set of d + 1 vertices,
denoted by σ = [v0, . . . , vd]. A face of σ is a simplex obtained by removing a subset of
vertices from σ. A simplicial complex K is a finite collection of simplexes such that (1) for
every σ ∈ K if τ ⊂ σ then τ ∈ K, and (2) for every σ1, σ2 ∈ K, σ1 ∩ σ2 is either empty or
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a face of both σ1, σ2. The dimension of K is the maximum dimension of any simplex in
K. A d-complex is a d-dimensional simplicial complex. For 1 ≤ i ≤ d, the i-skeleton of a
d-complex K is the subcomplex consisting of all the simplexes of K of dimensions at most i.
In particular, the 1-skeleton of K is a graph.

A piecewise linear embedding of a 3-complex in R3 maps a 0-simplex to a point, a 1-simplex
to a line segment, a 2-simplex to a triangle, and a 3-simplex to a tetrahedron. In addition,
the interior of the images of simplices are disjoint and the boundary of each simplex is
mapped to the appropriate simplices. Such an embedding of a simplicial complex K defines
an underlying topological space K – the union of the images of all the simplexes of K. We say
K is convex if K is convex. We say K triangulates a topological space X if K is homeomorphic
to X. A simplex σ of K is a exterior simplex if σ is contained in the boundary of K, and σ

is an interior simplex otherwise. A connected component of exterior simplexes is called a
boundary component of K.

The aspect ratio of a set S ⊂ R3 is the radius of the smallest ball containing S divided
by the radius of the largest ball contained in S. The aspect ratio of S is always greater
than or equal to 1. We say a simplex σ is stable if it has O(1) aspect ratio and Θ(1) weight.
Miller and Thurston proved the following lemma. As a corollary, the numbers of the vertices,
the edges, the triangles, and the tetrahedrons of a 3-complex K that is composed of stable
tetrahedrons are all equal up to a constant factor.

▶ Lemma 2.7 (Lemma 4.1 of [43]). Let K be a 3-complex in R3 in which each tetrahedron
has O(1) aspect ratio. Then, each vertex of K is contained in at most O(1) tetrahedrons.

Boundary Operators

An i-chain is a weighted sum of the oriented i-simplexes in K with the coefficients in R. Let
Ci denote the ith chain space. The boundary operator is a linear map ∂i : Ci → Ci−1 such
that for an oriented i-simplex σ = [v0, v1, . . . , vi],

∂i(σ) =
i∑

j=0
(−1)j [v0, . . . , v̂j , . . . , vi],

where [v0, . . . , v̂j , . . . , vi] is the oriented (i− 1)-simplex obtained by removing vj from σ.
The operator ∂i can be written as a matrix in |Ci−1| × |Ci| dimensions, where the (r, l)th

entry of ∂i is ±1 if the rth (i− 1)-simplex is a face of the lth i-simplex and 0 otherwise. See
Figure 1 for an example.

v1

v2

v3

v4 [v1, v4, v2] [v2, v4, v3] [v1, v3, v4] [v1, v2, v3]
[v1, v2] -1 0 0 1
[v1, v3] 0 0 1 -1
[v1, v4] 1 0 -1 0
[v2, v3] 0 -1 0 1
[v2, v4] -1 1 0 0
[v3, v4] 0 -1 1 0

∂2 =

Figure 1 An example of boundary operator. The left side is a 3-simplex (a tetrahedron) with
vertices v1, v2, v3, v4. The right side is the corresponding second boundary operator ∂2, where each
column corresponds to an oriented 2-simplex (a triangle) and each row corresponds to an oriented
1-simplex (an edge).
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An important property of boundary operators is ∂i∂i+1 = 0, which implies Im(∂i+1) ⊆
Ker(∂i). So, we can define the quotient space Hi = Ker(∂i)\Im(∂i+1), called the ith homology
space of K. The rank of Hi is called the ith Betti number of K. If the ith Betti number of K
is 0, then Im(∂⊤

i )⊕ Im(∂i+1) = R|Ci|. The first and second Betti numbers of a triangulation
of a three-ball are both 0.

Hodge Decomposition and Combinatorial Laplacians

Combinatorial Laplacians arise from the discrete Hodge decomposition.

▶ Theorem 2.8 (Hodge decomposition [38]). Let A ∈ Rm×n and B ∈ Rn×p be matrices
satisfying AB = 0. Then, there is an orthogonal direct sum decomposition

Rn = Im(A⊤)⊕Ker(A⊤A + BB⊤)⊕ Im(B).

Since ∂i∂i+1 = 0, it is valid to set A = ∂i and B = ∂i+1. The matrix we get in the middle
term is the combinatorial Laplacian: Li

def= ∂⊤
i ∂i + ∂i+1∂⊤

i+1.
The weighted combinatorial Laplacian generalizes combinatorial Laplacian. For each

1 ≤ i ≤ d, we assign each i-simplex of K with a positive weight, and let W i : Ci → Ci be
a diagonal matrix where W i[σ, σ] is the weighted of the i-simplex σ. Then the weighted
i-Laplacian of K is a linear operator Li : Ci → Ci defined as

Li
def= ∂⊤

i W i−1∂i + ∂i+1W i+1∂⊤
i+1.

Note that Hodge decomposition also applies to weighted combinatorial Laplacian (by setting
A = W 1/2

i−1∂i and B = ∂i+1W 1/2
i+1, we have AB = 0). We call Ldown

i
def= ∂⊤

i W i−1∂i the
ith down-Laplacian operator and Lup

i
def= ∂i+1W i+1∂⊤

i+1 the ith up-Laplacian operator.
Sometimes, we use subscripts to specify the complex on which these operators are defined:
∂i,K, W i,K, Ldown

i,K , Lup
i,K.

r-Hollowings

Let K be a pure 3-complex with n simplexes. A set of triangles △̂1, . . . , △̂k form a triangle
path of length k−1 if for any 1 ≤ i ≤ k−1, △̂i and △̂i+1 share an edge. The triangle distance
between two triangles △1 and △2 is the shortest triangle path length between △1 and △2.
The triangle diameter of K is the longest triangle distance between any two triangles. A
spherical shell is {x ∈ R3 : R1 ≤ ∥x∥2 ≤ R2} where R1 < R2. If K triangulates a spherical
shell, we define the shell width to be the shortest triangle distance between any two triangles
where one is on the outer sphere and one is on the inner sphere.

▶ Definition 2.9 (r-hollowing). Let K be a 3-complex with n simplexes, and let r = o(n) be
a positive number. We divide K into O(n/r) regions each of O(r) simplexes and O(r2/3)
boundary simplexes. Only boundary simplexes can appear in more than one region. The
boundary of each region triangulates a spherical shell in R3 and has triangle diameter O(r1/3)
and shell width at least 5. The union of all boundary simplexes of each region is referred to
as an r-hollowing of K.

In addition, this paper also examines sufficient conditions for 3-complexes that enable
us to compute an r-hollowing in linear time (Algorithm 2 and refer to Figure 2 for an
illustration). Specifically, we consider a pure 3-complex K embedded in R3 with n stable
simplexes possessing the following additional geometric structures:
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1. The aspect ratio of the convex hull of K is O(1), and the volume of each tetrahedron in
K is Θ(1).

2. All but one boundary component has 1-skeleton diameter O(r1/3).
3. The total number of exterior simplexes of K within any X ⊂ R3 of volume r is O(r2/3);

the total number of exterior simplexes of K is O(nr−1/3).
4. The triangle distance between any two boundary components of K is greater than 5.

It is worth noting that fulfilling the aforementioned assumptions is not excessively
challenging. On one end of the spectrum, there are scenarios where K contains at most
O(n/r) 2-dimensional holes, each with an interior volume of O(r). On the other end, there
are instances where K encompasses O(nr−1/3) uniformly distributed small holes, each with
a constant interior volume. Moreover, it is likely that all scenarios lying between these
extremes would also meet these assumptions.

3 Main Theorems

We formally state our main results as follows.

▶ Theorem 3.1. Let K be a pure 3-complex embedded in R3 consisting of n stable sim-
plexes and with a known r-hollowing. Let L1 be the 1-Laplacian operator of K, and
let Π1 be the orthogonal projection matrix onto the image of L1. For any vector b
and ϵ > 0, we can find a solution x̃ such that ∥L1x̃ −Π1b∥2 ≤ ϵ ∥Π1b∥2 in time
O

(
nr + n4/3r5/18 log(n/ϵ) + n2r−2/3)

.

We will overview our algorithm for Theorem 3.1 in Section 4 and prove in Section 5.

▶ Theorem 3.2. Let K be a pure 3-complex embedded in R3 consisting of n stable simplexes.
Suppose K satisfies the additional geometric structures 1-4 with parameter r = o(n). Let L1 be
the 1-Laplacian operator of K, and let Π1 be the orthogonal projection matrix onto the image of
L1. For any vector b and ϵ > 0, we can find a solution x̃ such that ∥L1x̃ −Π1b∥2 ≤ ϵ ∥Π1b∥2
in time O

(
nr + n4/3r5/18 log(n/ϵ) + n2r−2/3)

.

The known r-hollowing assumption is replaced with geometric structures in Theorem 3.2,
and a linear time algorithm for finding r-hollowing is presented in Section 6. It is worth
mentioning that the additional geometric structures are introduced to ensure the feasibility
of finding an r-hollowing in linear time. However, the algorithm for solving the system of
linear equations remains the same.

▶ Theorem 3.3. Let U be a union of h pure 3-complexes glued together by identifying
certain subsets of their exterior simplexes. Each 3-complex chunk is embedded in R3 and
comprises ni stable simplexes, and has a known Θ(n3/5

i )-hollowing. Let L1 be the 1-Laplacian
operator of U , and let Π1 be the orthogonal projection matrix onto the image of L1. For any
vector b and ϵ > 0, we can find a solution x̃ such that ∥L1x̃ −Π1b∥2 ≤ ϵ ∥Π1b∥2 in time
Õ(n8/5k + h2k2 + k3), where n is the number of simplexes in U , k is the number of exterior
simplexes shared by more than one chunk.

Due to space constraints, the proof of Theorem 3.3 can be found in the full version of the
paper [20].
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4 Algorithm Overview

Cohen, Fasy, Miller, Nayyeri, Peng, and Walkington [13] observed that

L†
1 =

(
Ldown

1

)†
+ (Lup

1 )†
,

where Ldown
1 = ∂⊤

1 W 0∂1 is the down-Laplacian and Lup
1 = ∂2W 2∂⊤

2 is the up-Laplacian.
The orthogonal projection matrices onto Im(∂⊤

1 ) and Im(∂2) are:

Πdown
1

def= ∂⊤
1 (∂1∂⊤

1 )†∂1, Πup
1

def= ∂2(∂⊤
2 ∂2)†∂⊤

2 .

▶ Lemma 4.1 (Lemma 4.1 of [13]). Let b be a vector. Consider the systems of linear equations:
L1x = Π1b, Lup

1 xup = Πup
1 b, Ldown

1 xdown = Πdown
1 b. Then, x = Πup

1 xup + Πdown
1 xdown.

Lemma 4.1 implies that four operators are needed to approximate L†
1: (1) an approximate

projection operator Π̃down
1 ≈ Πdown

1 , (2) an approximate projection operator Π̃up
1 ≈ Πup

1 ,
(3) a down-Laplacian solver Zdown

1 such that Ldown
1 Zdown

1 b ≈ b for any b ∈ Im(Lup
1 ), and (4)

an up-Laplacian solver Zup
1 such that Lup

1 Zup
1 b ≈ b for any b ∈ Im(Lup

1 ).
We will apply the same approximate orthogonal projection Π̃down

1 given in [13], which does
not depend on Betti numbers. Our solver for the down 1-Laplacian is a slight modification
of the one in [13] to incorporate the simplex weights. We state the two lemmas below.

▶ Lemma 4.2 (Down-projection operator, Lemma 3.2 of [13]). Let K be a 3-complex with n

simplexes. For any ϵ > 0, there exists a linear operator Π̃down
1 such that

(1− ϵ)Πdown
1 ≼ Π̃down

1 (ϵ) ≼ Πdown
1 .

▶ Lemma 4.3 (Down-Laplacian solver). Let K be a weighted simplicial complex, and let
b ∈ Im(Ldown

1 ). There exists an operator Zdown
1 such that Ldown

1 Zdown
1 b = b. In addition,

we can compute Zdown
1 b in linear time.

4.1 Solver for Up-Laplacian
One of our primary technical contributions is the development of an efficient solver for the
up-Laplacian system, stated in Lemma 4.4. We will describe the key idea behind our solver
in this section.

▶ Lemma 4.4 (Up-Laplacian solver). Let K be a pure 3-complex embedded in R3 and composed
of n stable simplexes. Suppose we are given an r-hollowing for K. Then for any ϵ > 0, there
exists an operator Zup

1 such that

∀b ∈ Im(Lup
1 ), ∥Lup

1 Zup
1 b − b∥2 ≤ ϵ ∥b∥2 .

In addition, Zup
1 b can be computed in time O

(
nr + n4/3r5/18 log(n/ϵ) + n2r−2/3)

.

We remark that Lemma 4.4 can be improved to Õ(n3/2) by using a slightly different
r-hollowing (proved in the full version [20]), which might be of independent interest. Since
the bottleneck of our solver for 1-Laplacians is from the projection for up 1-Laplaicans, we
use the same r-hollowing here.

The given O(n3/5)-hollowing suggests a partition of the edges in K into F ∪ C. We will
explain the concrete partition shortly. We have the following matrix identity:

Lup
1 =

(
I

Lup
1 [C, F ]Lup

1 [F, F ]† I

) (
Lup

1 [F, F ]
Sc[Lup

1 ]C

) (
I Lup

1 [F, F ]†Lup
1 [F, C]

I

)
,
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where

Sc[Lup
1 ]C = Lup

1 [C, C]− Lup
1 [C, F ]Lup

1 [F, F ]†Lup
1 [F, C].

The following Lemma 4.5 reduces (approximately) solving a system in Lup
1 to (approximately)

solving two systems in Lup
1 [F, F ] and one system in Sc[Lup

1 ]C , whose proof can be found in
the Appendix of the full version [20]. It is worth noting that Lemma 4.5 holds if we replace
Lup

1 with an arbitrary symmetric PSD matrix, and we will apply it or its variants for different
PSD matrices in our solvers. To avoid introducing additional notations, we state the lemma
below in terms of Lup

1 .

▶ Lemma 4.5. Suppose we have two operators (1) UpLapFSolver(·) such that given any
b ∈ Im(Lup

1 [F, F ]), UpLapFSolver(b) returns a vector x satisfying Lup
1 [F, F ]x = b, and

(2) SchurSolver(·, ·) such that for any h ∈ Im(Sc[Lup
1 ]C) and δ > 0, SchurSolver(h, δ)

returns x̃ satisfying ∥Sc[Lup
1 ]C x̃ − h∥2 ≤ δ ∥h∥2 . Given any b =

(
bF

bC

)
∈ Im(Lup

1 ) and any

ϵ > 0, let

h = bC − Lup
1 [C, F ] ·UpLapFSolver(bF ),

x̃C = SchurSolver(h, δ),
x̃F = UpLapFSolver (bF − Lup

1 [F, C]x̃C) , (3)

where δ ≤ ϵ

1+∥Lup
1 [C,F ]Lup

1 [F,F ]†∥2
. Then,

∥Lup
1 x̃ − b∥2 ≤ ϵ ∥b∥2 ,

where x̃ =
(

x̃F

x̃C

)
. Let mF = |F | and mC = |C|, and let UpLapFSolver have runtime

t1(mF ) and SchurSolver have runtime t2(mC). Then, we can compute x̃ in time
O(t1(mF ) + t2(mC) + mF + mC).

4.1.1 Partitioning the Edges
As suggested by Lemma 4.5, we want to partition the edges of K into F ∪ C so that both
systems in Lup

1 [F, F ] and the Schur complement Sc[Lup
1 ]C can be efficiently solved. The given

O(n3/5)-hollowing divides K into “disjoint” and balanced regions with small boundary. Let
F be the set of the “interior” edges of the regions and C be the set of the “boundary” edges.

We first show the interiors of different regions are “disjoint” in the sense that Lup
1 [F, F ]

is a block diagonal matrix where each diagonal block corresponds to the interior of a region.
We can write Lup

1 as the sum of rank-1 matrices that each corresponds to a triangle in K:

Lup
1 = ∂2W 2∂⊤

2 =
∑

σ:triangle in K

W 2[σ, σ] · ∂2[:, σ]∂2[:, σ]⊤. (4)

For any two edges e1, e2, Lup
1 [e1, e2] = 0 if and only if no triangle in K contains both e1, e2.

By our definition of r-hollowing in Definition 2.9, for different regions R1, R2 of K w.r.t. an
r-hollowing, no triangle contains both an edge from R1 and an edge from R2.

In addition, the following lemma shows that the boundaries of the regions well approximate
the Schur complement onto the boundaries. We give a formal proof of Lemma 4.6 in the full
version [20].

▶ Lemma 4.6 (Spectral bounds for r-hollowing). Let K be a pure 3-complex embedded in R3

composed of stable simplexes. Let T be an r-hollowing of K, and let C be the edges of T .
Then, Lup

1,T ≼ Sc[Lup
1 ]C ≼ O(r)Lup

1,T .
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4.1.2 Proof of Lemma 4.4 for Up-Laplacian Solver
Algorithm 1 sketches a pseudo-code for our up-Laplacian solver.

Algorithm 1 UpLapSolver(K, T , b, ϵ).

Input: A pure 3-complex K of n stable simplexes with up-Laplacian Lup
1 , an

O(n3/5)-hollowing T , a vector b ∈ Im(Lup
1 ), an error parameter ϵ > 0

Output: An approximate solution x̃ such that ∥Lup
1 x̃ − b∥2 ≤ ϵ ∥b∥2

1 F ← the interior edges of regions of K w.r.t. T , C ← the boundary edges of regions.
2 UpLapFSolver(·)← a solver by Nested Dissection that satisfies the requirement in

Lemma 4.5.
3 SchurSolver(·, ·)← a solver by Preconditioned Conjugate Gradient with the

preconditioner being the up-Laplacian of T that satisfies the requirement in Lemma
4.5.

4 x̃ ← computed by Equation (3)
5 return solution x̃

By Lemma 4.5, the x̃ returned by Algorithm 1 satisfies ∥Lup
1 x̃ − b∥2 ≤ ϵ ∥b∥2. To bound

the runtime of Algorithm 1, we need the following lemmas for lines 2 and 3.

▶ Lemma 4.7 (Solver for the “F” part). Let K be a pure 3-complex embedded in R3 and
composed of n stable simplexes. Let T be an r-hollowing of K, and let F be the set of interior
edges in each region of K w.r.t. T . Then, with a pre-processing time O(nr), there exists
a solver UpLapFSolver(·) such that given any bF ∈ im(Lup

1 [F, F ]), UpLapFSolver(bF )
returns an xF such that Lup

1 [F, F ]xF = bF in time O(nr1/3).

By our choice of F , the matrix Lup
1 [F, F ] can be written as a block diagonal matrix where

each block corresponds to a region of K w.r.t. the r-hollowing T . Since each region is a
3-complex in which every tetrahedron has an aspect ratio O(1), we can construct the solver
UpLapFSolver by Nested Dissection [43]. However, since each row or column of Lup

1 [F, F ]
corresponds to an edge, we need to turn the good vertex separators in [43] into good edge
separators for regions of K. The proof of Lemma 4.7 can be found in the full version [20].

▶ Lemma 4.8 (Solver for the Schur complement). Let K be a pure 3-complex embedded
in R3 and composed of n stable simplexes. Let T be an r-hollowing of K, and let C be
the set of boundary edges of each region of K w.r.t. T . Then, with a pre-processing time
O(nr + n2r−2/3) there exists a solver SchurSolver(·, ·) such that for any h ∈ Im(Sc[Lup

1 ]C)
and δ > 0, SchurSolver(h, δ) returns an x̃C such that ∥Sc[Lup

1 ]C x̃C − h∥2 ≤ δ ∥h∥2 in
time Õ

(
nr5/6 + n4/3r5/18)

.

Our solver SchurSolver is based on the Preconditioned Conjugate Gradient (PCG)
with the preconditioner Lup

1,T , the up-Laplacian operator of T . By Theorem 2.6 and Lemma
4.6, the number of PCG iterations is Õ(

√
r). In each PCG iteration, we solve the system in

Lup
1,T via Nested Dissection. Again, the proof of Lemma 4.8 can be found in the full version

of the paper [20].
Given the above lemmas, we prove Lemma 4.4.

Proof of Lemma 4.4. The correctness of Algorithm 1 is by Lemma 4.5. By Lemma 4.7 and
4.8, the total runtime of the algorithm is

Õ
(

nr5/6 + n4/3r5/18 + nr + n2r−2/3
)

. ◀
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4.2 Projection for Up 1-Laplacian
As the first Betti number of K can be arbitrary, the approximate projection operators for the
up 1-Laplacian provided in [13, 5, 6] are not applicable here. Our approximate projection
operator follows a similar approach to our up 1-Laplacian solver, which is based on an
incomplete Nested Dissection for triangles, instead of edges.

▶ Lemma 4.9 (Up-projection operator). Let K be a pure 3-complex embedded in R3 and
composed of n stable simplexes. Suppose we are given an r-hollowing for K. Then, for any
ϵ > 0, there exists an operator Π̃up

1 such that

∀b,
∥∥∥Π̃up

1 b −Πup
1 b

∥∥∥
2
≤ ϵ ∥Πup

1 b∥2 .

In addition, Π̃up
1 b can be computed in time O

(
nr + n4/3r5/18 log(n/ϵ) + n2r−2/3)

.

The proof of Lemma 4.9 can be found in the full paper [20]. The subsequent Lemma
offers a helpful formula for Πup

1 , the orthogonal projection matrix onto the image of Lup
1 .

▶ Lemma 4.10. Let K be a simplicial complex with boundary operator ∂2. For any partition
F ∪ C of the 2-simplexes of K, the orthogonal projection Πup

1 for K can be decomposed as

Πup
1 = ΠIm(∂2[:,F ]) + ΠKer(∂⊤

2 [F,:])∂2[:, C](Sc[Ldown
2 ]C)†∂⊤

2 [C, :]ΠKer(∂⊤
2 [F,:]),

where Ldown
2 is the down 2-Laplacian.

Once more, an r-hollowing offers a natural partition of the triangles within K. We assign
all the “interior” triangles to F and all the “boundary” triangles to C. As such, Nested
Dissection can be utilized to compute ΠIm(∂2[:,F ]) and ΠKer(∂⊤

2 [F,:]). The primary technical
challenge arises when solving a system in the Schur complement Sc[Ldown

2 ]C . We precondition
it using the boundary ∂⊤

2 [C, :]∂2[:, C] and apply Preconditioned Conjugate Gradient, which
requires a distinct approach to bound the relative condition numbers.

5 Proof of Main Theorem 3.1

Given all the four operators in Lemma 4.2, 4.3, 4.4, and 4.9, we prove Theorem 3.1.

Proof of Theorem 3.1. Let κ be the maximum of κ(Ldown
1 ) and κ(Lup

1 ). Let δ > 0 be a
parameter to be determined later. Let Π̃down

1 = Π̃down
1 (δ), Π̃up

1 = Π̃up
1 (δ) be defined in

Lemma 4.2 and 4.9, and let Zdown
1 be the operator in Lemma 4.3 with no error and Zup

1 in
Lemma 4.4 with error δ. Let

b̃up def= Π̃up
1 b, b̃down def= Π̃down

1 b,

x̃up def= Zup
1 b̃up

, x̃down def= Zdown
1 b̃down

,

x̃ def= Π̃up
1 x̃up + Π̃down

1 x̃down.

Then,

∥L1x̃ −Π1b∥2

≤
∥∥∥Lup

1 Π̃up
1 x̃up − b̃up

∥∥∥
2

+
∥∥∥Ldown

1 Π̃down
1 x̃down − b̃down

∥∥∥
2

+
∥∥∥b̃up + b̃down −Π1b

∥∥∥
2

.
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For the first term,∥∥∥Lup
1 Π̃up

1 x̃up − b̃up
∥∥∥

2
≤

∥∥∥Lup
1 Π̃up

1 x̃up − Lup
1 Πup

1 x̃up
∥∥∥

2
+

∥∥∥Lup
1 x̃up − b̃up

∥∥∥
2

.

By Lemma 4.9,∥∥∥Lup
1 Π̃up

1 x̃up − Lup
1 Πup

1 x̃up
∥∥∥

2
≤ ∥Lup

1 ∥2

∥∥∥(Π̃up
1 −Πup

1 )Πup
1 x̃up

∥∥∥
2

≤ δ ∥Lup
1 ∥2 ∥Π

up
1 x̃up∥2 .

Let y def= (Lup
1 )†b̃up. By Lemma 4.4,

∥Πup
1 x̃up − y∥2 ≤

∥∥(Lup
1 )†∥∥

2

∥∥∥Lup
1 Πup

1 x̃up − b̃up
∥∥∥

2
≤ δ

∥∥(Lup
1 )†∥∥

2

∥∥∥b̃up
∥∥∥

2
.

By the triangle inequality,

∥Πup
1 x̃up∥2 ≤ ∥y∥2 + δ

∥∥(Lup
1 )†∥∥

2

∥∥∥b̃up
∥∥∥

2
≤ (1 + δ)

∥∥(Lup
1 )†∥∥

2

∥∥∥b̃up
∥∥∥

2
.

So,
∥∥∥Lup

1 Π̃up
1 x̃up − Lup

1 Πup
1 x̃up

∥∥∥
2
≤ δ(1 + δ)κ

∥∥∥b̃up
∥∥∥

2
.

By Lemma 4.4,
∥∥∥Lup

1 x̃up − b̃up
∥∥∥

2
≤ δ

∥∥∥b̃up
∥∥∥

2
.

So,
∥∥∥Lup

1 Π̃up
1 x̃up − b̃up

∥∥∥
2
≤ 3δκ

∥∥∥b̃up
∥∥∥

2
.

For the second term, the operator Zdown
1 has no error, which means Ldown

1 x̃down = b̃down.
Then,∥∥∥Ldown

1 Π̃down
1 x̃down − b̃down

∥∥∥
2

=
∥∥∥Ldown

1 Π̃down
1 x̃down − Ldown

1 x̃down
∥∥∥

2

≤ δ(1 + δ)κ
∥∥∥b̃down

∥∥∥
2

.

For the third term,∥∥∥b̃up + b̃down −Π1b
∥∥∥2

2
=

∥∥∥(Π̃up −Πup)b
∥∥∥2

2
+

∥∥∥(Π̃down −Πdown)b
∥∥∥2

2

≤ δ2
(
∥Πupb∥2

2 +
∥∥Πdownb

∥∥2
2

)
(by Lemma 4.2, 4.9, Fact 2.5)

= δ2 ∥Π1b∥2
2 .

Combining all the above inequalities,

∥L1x̃ −Π1b∥2 ≤ 3δκ
∥∥∥b̃up

∥∥∥
2

+ 2δκ
∥∥∥b̃down

∥∥∥
2

+ δ ∥Π1b∥2

≤ 3δκ(1 + δ) ∥Πup
1 b∥2 + 2δκ(1 + δ)

∥∥Πdown
1 b

∥∥
2 + δ ∥Π1b∥2

≤ 11δκ ∥Π1b∥2 .

Choosing δ ≤ ϵ
11κ , we have

∥L1x̃ −Π1b∥2 ≤ ϵ ∥Π1b∥2 . ◀

6 Computing an r-Hollowing

In this section, we describe a linear time algorithm (Algorithm 2) that finds an r-hollowing
of a pure 3-complex K embedded in R3 with n stable simplexes that satisfies the additional
geometric structures stated at the end of Section 2. We restate them below:
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1. The aspect ratio of the convex hull of K is O(1), and the volume of each tetrahedron in
K is Θ(1).

2. All but one boundary component has 1-skeleton diameter O(r1/3).
3. The total number of exterior simplexes of K within any X ⊂ R3 of volume r is O(r2/3);

the total number of exterior simplexes of K is O(nr−1/3).
4. The triangle distance between any two boundary components of K is greater than 5.

▶ Lemma 6.1 (Finding an r-hollowing). Let K be a pure 3-complex embedded in R3 and
composed of n stable simplexes. If K possesses additional geometric structures 1-4 with
parameter r = o(n), then we can find an r-hollowing of K in linear time.

In the rest of the section, we will show Algorithm 2 satisfies Lemma 6.1. Let K be the
convex hull of the underlying topological space of K. Algorithm 2 first finds a nice bounding
box – a box encompasses K and its volume and aspect ratio are within constant factors of
those of K. Lemma 6.3 provides a linear time algorithm for finding a nice bounding box
for K when the aspect ratio of K is O(1). Then, Algorithm 2 “cuts” the bounding box into
O(n/r) smaller boxes of equal volume using 2-dimensional planes and turns these cutting
planes into an r-hollowing. Figure 2 illustrates the process of finding an r-hollowing.

We need the following lemma from [4] to construct a nice bounding box.

▶ Lemma 6.2 (Lemma 3.4 of [4]). Given a set X of points in R3, we can compute in linear
time a bounding box B with vol(B) ≤ 6

√
6vol(B∗), where vol(·) is the volume and B∗ is a

bounding box of X with the minimum volume.

▶ Corollary 6.3 (Nice bounding box). Let K be a 3-complex embedded in R3 whose underlying
topological space has aspect ratio O(1). We can compute a nice bounding box of the convex
hull of K in linear time.

The proof of Corollary 6.3 can be found in the full version [20].

(a) (b) (c)

Figure 2 (a) An 2-dimensional illustration of a 3-complex K with several holes inside; (b) A
nice bounding box of K with ⌊n1/3r−1/3⌋ evenly-spaced 2-dimensional planes; (c) An r-hollowing T
generated by Algorithm 2 consisting of simplexes that are “close” to the two-dimensional planes and
parts of the boundaries of the intersecting holes inside with the planes.

Proof of Lemma 6.1. We can check that Algorithm 2 has linear runtime. In the rest of the
proof, we will show T returned by Algorithm 2 is an r-hollowing of K.

By Assumption 1, 2 and 3, the volume of the convex hull of K, denoted by CH(K), is
Θ(n); the maximum volume is attained when K has Θ(n/r) boundary components and each
corresponds to a “hole” of volume Θ(r). By Lemma 6.3, we have vol(B) = Θ(vol(CH(K))) =
Θ(n). In Algorithm 2, the 2-dimensional planes divide the box B into O(n/r) smaller boxes
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Algorithm 2 Hollowing(K, r).

Input: A pure 3-complex K embedded in R3 with n stable simplexes satisfying
assumption 1-4 with a known parameter r = o(n)

Output: An r-hollowing T
1 Find a nice bounding box B for K by Corollary 6.3.
2 For each pair of parallel faces of B, find ⌊n1/3r−1/3⌋ evenly-spaced 2-dimensional

planes parallel to the face which divide B into equal-volume pieces. We can slightly
perturb the planes so that no plane intersects with any vertex of K (see Figure 2(b)).

3 T ← all the tetrahedrons on the boundary of K that form a spherical shell.
4 for each 2-dimensional plane P do
5 Q ← all the tetrahedrons of K that intersect P .
6 if Q is not connected (i.e., P intersects some holes inside) then
7 Q ← Q ∪

⋃
H∈intersected holes inside all the tetrahedrons on the boundary of H,

which are on one side of P and form half of a spherical shell (see Figure 2(c)).
8 end
9 T ← T ∪ Q.

10 end
11 Expand T such that its width reaches 5.
12 return T

each of volume O(r) and surface area O(r2/3). By our construction of T , each smaller box
corresponds to a region; thus, there are O(n/r) regions. By Assumption 3, each region of
T has O(r) simplexes and O(r2/3) boundary simplexes. Moreover, the boundary of each
region triangulates a spherical shell in R3 by construction. Additionally, the diameter of the
underlying topological space of each region is upper bounded by the triangle diameter of the
small box plus Θ(1) times the 1-skeleton diameter of boundary components. By Assumption
2, each region has diameter O(r1/3).

To conclude, T satisfies all the conditions in Definition 2.9 and is an r-hollowing of K. ◀
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Abstract
A weighted directed graph G = (V, A, c), where A ⊆ V × V and c : A → R, naturally describes a
road network in which an electric car, or vehicle (EV), can roam. An arc uv ∈ A models a road
segment connecting the two vertices (junctions) u and v. The cost c(uv) of the arc uv is the amount
of energy the car needs to travel from u to v. This amount can be positive, zero or negative. We
consider both the more realistic scenario where there are no negative cycles in the graph, as well as
the more challenging scenario, which can also be motivated, where negative cycles may be present.

The electric car has a battery that can store up to B units of energy. The car can traverse an
arc uv ∈ A only if it is at u and the charge b in its battery satisfies b ≥ c(uv). If the car traverses
the arc uv then it reaches v with a charge of min{b − c(uv), B} in its battery. Arcs with a positive
cost deplete the battery while arcs with negative costs may charge the battery, but not above its
capacity of B. If the car is at a vertex u and cannot traverse any outgoing arcs of u, then it is stuck
and cannot continue traveling.

We consider the following natural problem: Given two vertices s, t ∈ V , can the car travel from s

to t, starting at s with an initial charge b, where 0 ≤ b ≤ B? If so, what is the maximum charge
with which the car can reach t? Equivalently, what is the smallest depletion δB,b(s, t) such that the
car can reach t with a charge of b − δB,b(s, t) in its battery, and which path should the car follow
to achieve this? We also refer to δB,b(s, t) as the energetic cost of traveling from s to t. We let
δB,b(s, t) = ∞ if the car cannot travel from s to t starting with an initial charge of b. The problem
of computing energetic costs is a strict generalization of the standard shortest paths problem.

When there are no negative cycles, the single-source version of the problem can be solved using
simple adaptations of the classical Bellman-Ford and Dijkstra algorithms. More involved algorithms
are required when the graph may contain negative cycles.
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describes a road network in which an electric car can roam. An arc uv ∈ A models a road
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42:2 Optimal Energetic Paths for Electric Cars

amount of energy the electric car needs to travel from u to v. This amount can be positive,
e.g., if the road segment is uphill; zero; or negative, e.g., if the road segment is downhill. We
consider both the more realistic scenario where there are no negative cycles in the graph, as
well as the more challenging scenario, which can also be motivated, where the graph may
contain negative cycles. (A cycle is negative if the sum of its arc costs is negative.)

An electric car is equipped with a battery that can store up to B units of energy, where
B > 0 is a parameter. We assume that the electric car cannot be charged along the way and
has to rely on the initial charge available in its battery. If the car is currently at vertex u

with charge b in its battery, where 0 ≤ b ≤ B, then it can traverse an arc uv ∈ A if and only
if c(uv) ≤ b. If this condition holds, and the car traverses the arc, then it reaches v with
a charge of min{b− c(uv), B}. In particular, the charge in the battery cannot be negative
and cannot exceed B. The car can traverse uv if b − c(uv) > B (which can hold only if
c(uv) < 0), but the battery will not charge beyond its capacity of B. We may assume that
c(uv) ∈ [−B, B] for every uv ∈ A, as arcs with c(uv) > B can never be used, and thus can
be removed, and costs c(uv) < −B can be changed to c(uv) = −B.

We consider the following natural problem: Given two vertices s, t ∈ V , can the car
travel from s to t, starting at s with an initial charge b, where 0 ≤ b ≤ B? If so, what is
the maximum final charge αB,b(s, t) with which the car can reach t? Equivalently, what is
the minimum depletion δB,b(s, t) such that the car can reach t with a charge of b− δB,b(s, t)
in its battery, and which path should the car follow to achieve this? (If b < B then the
minimum depletion δB,b(s, t) may be negative.) We also refer to δB,b(s, t) as the energetic
cost of traveling from s to t. Note that δB,b(s, t) = b − αB,b(s, t). We let αB,b(s, t) = −∞
and δB,b(s, t) =∞ if the car cannot travel from s to t starting with an initial charge of b.

We also consider the related problem of finding the minimum initial change at s, if any,
that will allow the car to travel to t, ending with a charge of at least b in the battery. We
denote this quantity by βB,b(s, t). We show that minimum initial charges can be computed
by computing maximum final charges, or minimum energetic costs, on the reversed graph.

If all arc costs are non-negative, then δB,b(s, t) = δ(s, t), if δ(s, t) ≤ b ≤ B, where δ(s, t)
is the standard distance, i.e., the length of a shortest path, from s to t in the graph G,
where c(uv) is the length of uv. Otherwise, δB,b(s, t) =∞. If there are negative arc costs
but no negative cycles, δB,b(s, t) = δ(s, t) if and only if there exists a shortest path P from s

to t such that the length of every prefix of P is in the interval [b−B, b]. In general, energetic
costs may be larger than distances, since the charge in the battery is constrained to remain
in the interval [0, B], i.e., it is not allowed to go negative and it is capped at B. (For example,
the electric car may not be able to traverse a mountain pass and may need to take a detour.)
It is always true that δB,b(s, t) ≥ δ(s, t).

The problem of computing minimum energetic costs is thus a strict generalization of
the standard shortest paths problem, even if there are no negative cycles in the graph.
Interestingly, the energetic costs δB,b(s, t) are well-defined even if there are negative cycles in
the graph. The problem is then an interesting variant of one-player energy games with a
reachability objective. It is also related to the 1-VASS (Vector Addition Systems with States)
problem. (See references Section 1.2.) The presence of negative cycles poses interesting
algorithmic challenges. The corresponding minimum energetic paths are still finite, but
are not necessarily simple. A minimum energy path from s to t may need to go through a
sequence of negative cycles, using each one of them to gain sufficient energy to reach the
next negative cycle, and eventually the target t.

When there are no negative cycles, the single-source version of the energetic cost problem
can be solved using simple, but subtle, adaptations of the classical Bellman-Ford [4, 15]
and Dijkstra [11] algorithms. Similar algorithms, some less efficient, are explicit or implicit
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in previous papers (see Section 1.2). We present simpler, self-contained versions of these
algorithms with simpler correctness proofs. We also present efficient algorithms for finding
minimum energetic paths in the presence of negative cycles.

Unlike the standard shortest paths problem, the single-target version of the minimum
energetic paths problem is not equivalent to the single-source version. In particular, one
cannot solve the single-target problem by running a single-source algorithm backward.
Although there is always a tree of minimum energetic paths from a source vertex s to all
other vertices reachable from it, there are simple examples in which there is no tree of
minimum energetic paths to a target vertex t from all vertices that can reach it.

1.1 Our results
We show that the single-source version of the minimum energetic paths problem with negative
arc costs but no negative cycles can be solved in O(mn) time using a simple adaptation of
the Bellman-Ford [4, 15] algorithm, where m = |A| and n = |V |. Furthermore, if a valid
potential function p : V → R is given, i.e., a function for which c(uv) + p(u)− p(v) ≥ 0 for
every uv ∈ A, then the single-source version can be solved in O(m + n log n) time using an
adaptation of Dijkstra’s [11] algorithm equivalent to the A∗ search heuristic (see, e.g., Hart
et al. [21]). Since a valid potential function can be found in O(mn) time using the standard
Bellman-Ford algorithm, the all-pairs version of the minimum energetic paths problem can
be solved O(mn + n2 log n) time.

The O(mn) bound matches the time bound of the standard Bellman-Ford algorithm,
which is still the fastest known algorithm for the single-source shortest paths problem in a
directed graph with general (real) arc costs, and no negative cycles. The O(mn + n2 log n)
bound almost matches the best time bound of O(mn + n2 log log n) obtained by Pettie [31]
for the standard APSP problem with general arc costs. (For a survey of other related results,
see Zwick [38].)

Much faster algorithms are known for the standard single-source shortest paths problem
when arc costs are integral. Bringmann et al. [8], improving a breakthrough result of
Bernstein et al. [5], obtained an O(m log2 n log(nW ) log log n)-time algorithm when arc costs
are integers that are at least −W , where W ≥ 1. By using these algorithms to find a valid
potential function, and then using the energetic version of Dijkstra’s algorithm, we get the
same improved time bound for the single-source version of the minimum energetic paths
problem with negative arc costs but no negative cycles.

We also present a more involved O(mn + n2 log n)-time algorithm for solving the single-
source minimum energetic cost problem in the presence of negative cycles. This gives, of
course, an O(mn2 + n3 log n)-time algorithm for the all-pairs and single-target versions of
the problem.

When the capacity B of the battery is sufficiently large, we show that the all-pairs version
of the minimum energetic cost problem can be solved in O(mn + n2 log n) time.

1.2 Related results
Various adaptations of the Bellman-Ford and Dijkstra algorithms for problems similar or
equivalent to the minimum energetic paths problem defined here, when there are no negative
cycles in the graph, were given by several authors. Eisner et al. [14], improving upon Artmeier
et al. [2], and Brim and Chalupka [6] give versions of these algorithms with the same running
times as ours, but using a slightly different approach. Baum et al. [3] give a version of
Dijkstra’s algorithm but with a much slower running time. They also show that the maximum
charge with which t can be reached when starting at s with charge b is a piece-wise linear
function of b with at most O(n) breakpoints.

ESA 2023
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Brim and Chalupka [6] consider the related problem of solving one-player energy games
and the more complicated problem of solving two-player energy games. (For more on energy
games, see also Brim et al. [7] and Dorfman et al. [12].) The problem of finding minimum
energy paths in the presence of negative cycles may be seen as a variant of one-player energy
games with a reachability objective. The minimum energetic paths problem is also related to
the 1-VASS problem. (See, e.g., Almagor et al. [1] and Künnemann et al. [26].)

Khuller et al. [23] consider a related problem in which the battery (or the fuel tank)
can be recharged at intermediate vertices, with a possibly different price per unit of charge
at each intermediate vertex. All arc costs are non-negative. They give various algorithms
for computing a cheapest path from s to t. Among these algorithms is a O(n2∆ log n)-time
algorithm for the single-target version, where ∆ is a bound on the number of rechargings
allowed, and an O(n3)-time algorithm for the single-target version when the number of
rechargings is unbounded.

Several authors, including Lehmann [27], Tarjan [33] and Mohri [30] considered generalized
versions of the shortest paths problem defined by semirings. If (R,⊕,⊗) is a semiring and P

is an s-t path whose arcs have costs ci, the cost of P is defined to be c(P ) = ⊗k
i=1ci. The goal

is to find ⊕P c(P ), where P ranges over all s-t paths, assuming this quantity is well defined.
The standard shortest paths problem corresponds to the tropical semiring (R, min, +). All
these results assume, as part of the definition of a semiring, that ⊗ is associative. Thus, as
we shall see, none of these results apply to our problem, as our operation ⊗ is not associative.

Generalized versions of Dijkstra’s algorithm were obtained by various authors, most
notably by Knuth [25]. These generalizations are of a different nature and are apparently
not related to the version given here.

Other non-standard versions of the shortest paths problem were also considered. Perhaps
the most famous one is the bottleneck shortest paths problem. See, e.g., [17, 9] for the
single-pair version, and [36, 13] for the all-pairs version. Vassilevska [35] considered an
interesting non-standard non-decreasing version of the shortest paths problem related to
reading train schedules. Finally, Madani et al. [29] considered the discounted shortest paths
problem. All these problems are quite different from the problem considered here.

2 Minimum energetic paths

To simplify the presentation, we concentrate on the computation of δB(s, t) = δB,B(s, t),
i.e., the energetic cost of traveling from s to t when starting with a fully charged battery
of capacity B. Computing δB,b(s, t), for an arbitrary 0 ≤ b ≤ B, can easily be reduced to
computing δB(s, t): Add a new vertex s′ and an arc s′s of cost c(s′s) = B − b. Then, it is
easy to see that δB,b(s, t) = δB(s′, t)− (B − b). A similar idea can be incorporated directly
into the algorithms that we describe. We begin by defining the energetic cost of a path.

▶ Definition 2.1 (Energetic cost of a path). A path P = u0u1 . . . uk is traversable if it can
be traversed when starting from u0 with a fully charged battery. If P is traversable, the
final charge in the battery when reaching uk is B − dB(P ), where dB(P ) is defined to be the
depletion, or the energetic cost of the path. Note that 0 ≤ dB(P ) ≤ B. If the path is not
traversable, we let dB(P ) =∞.

To obtain a simple formula for dB(P ) we define the following operations:

x⊕B y = [x + y]B0 , [z]B0 =


0 if z < 0
z if 0 ≤ z ≤ B

∞ otherwise
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We assume that x+∞ =∞+x =∞ for every x ∈ [−B, B]∪{∞}. For brevity, we sometimes
write x⊕ y instead of x⊕B y when B is understood from the context. 1 Note that for every
x, y ∈ R and B > 0 we have x+y ≤ x⊕B y. It is important to note that ⊕B is not associative.
(For example, B ⊕ (B ⊕−B) = B while (B ⊕B)⊕−B =∞, and (−1⊕−2)⊕ 2 = 2 while
−1⊕ (−2⊕ 2) = 0, assuming B ≥ 2.)

▶ Lemma 2.2. Let P = u0u1 . . . uk be a directed path, let P ′ = u0 . . . uk−1, and let ci =
c(ui−1ui), for i = 0, 1, . . . , k. Let B be the capacity and initial charge of battery at u0. If
k = 0 then dB(P ) = 0. If k > 0 then

dB(P ) = dB(P ′)⊕ ck = ((· · · ((0⊕ c1)⊕ c2)⊕ · · · )⊕ ck−1)⊕ ck .

Proof. Let bi be the charge of the battery at ui and let di = B − bi be the depletion of
the battery at ui, for i = 0, 1, . . . , k. Clearly d0 = 0. It is easy to prove by induction that
di = di−1 ⊕B ci. The lemma follows. ◀

As mentioned, the operation ⊕B is not associative. Thus, in general, dB(P ) ̸= 0⊕ (c1 ⊕
(· · ·⊕ (ck−2⊕ (ck−1⊕ ck)) · · · )). In Section 7 we show, however, that c1⊕ (c2⊕ (· · ·⊕ (ck−1⊕
(ck ⊕ 0)) · · · )) also has an interesting meaning.

▶ Definition 2.3 (Energetic costs, minimum energetic paths). The energetic cost δB(s, t) of
traveling from s to t, starting from s with a fully charged battery of capacity B, is defined as

δB(s, t) = min{ dB(P ) | P is an s-t path in G } .

If δB(s, t) < ∞ and P is an s-t path satisfying δB(s, t) = dB(P ), then P is said to be a
minimum energetic path from s to t.

If there are no negative cycles in the graph, then for every path P from s to t there is a
simple path P ′ such that dB(P ′) ≤ dB(P ). (It is in fact enough to require that there are no
traversable negative cycles in the graph.) Thus, the minimum in the definition above can be
taken over simple paths only. The definition of δB(s, t) is also meaningful in the presence of
negative cycles, though minimum energetic paths are not necessarily simple.

It is not difficult to see, and it will also follow from the correctness of the algorithms that
we present in the next sections, that for every source vertex s ∈ V there is always a tree
of minimum energetic paths to all other vertices that can be reached from it. The simple
example given in Figure 1 shows that a tree of minimum energetic paths to a given target
vertex t does not always exist.

To deal with negative cycles, we need the following definition.

▶ Definition 2.4 (Entry-exit pairs). Let C be a negative cycle in G = (V, A, c) and let B be
the maximum capacity of the battery. A pair of vertices (x, y) on C is an entry-exit pair
of C if the car can start at x with an empty battery and eventually reach y, possibly after
going several times around the cycle, with a full battery, i.e., with a charge of B.

The following lemma, similar to the gasoline puzzle of Lovász [28, p. 31] (see also Klarner
[24, p. 283] and Winkler [37, p. 2]), says that every negative cycle has an entry-exit pair.

▶ Lemma 2.5. Any negative cycle C in G = (V, A, c) contains at least one entry-exit pair.
Such a pair can be found in O(|C|) time.

1 Note that ⊕ is not related to the semiring framework mentioned in Section 1.2.
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Figure 1 A simple but illustrative example. Assume B ≥ 3. The two numbers next to each
vertex u are δB(s, u) and δB(u, t). The bold arcs constitute a tree of minimum energetic paths from
the source vertex s to all other vertices. Another such tree can be obtained by replacing the arc ct

by bt. On the other hand, the only minimum path from a to t is abct, while the only minimum path
from b to t is the arc bt. Thus, there is no tree of minimum paths to t from all other vertices.

Proof. We show first that every negative cycle has an entry x, i.e., a vertex x from which
the cycle can be traversed, starting with an empty battery, when the capacity of the battery
is ignored. We next show that the entry x has a corresponding exit y when the capacity of
the battery is not ignored.

Let C = v0v1 · · · vℓ−1v0 be a negative cycle in G of length ℓ. Let cj = c(vjvj+1), for
j = 0, 1, . . . , ℓ − 1. (We let vℓ = v0.) For j ≥ ℓ, let cj = cj mod ℓ. Let si =

∑i−1
j=0 cj be the

prefix sums of the costs around the cycle, starting from v0. (We allow i > ℓ by wrapping
around the cycle.) Note that sℓ =

∑ℓ−1
j=0 cj < 0 as the cycle is negative. This also implies

that sℓ+i < si for every i. Vertex v0 is an entry if and only if s1, . . . , sℓ−1 ≤ 0. If v0 is not an
entry, let k be the index for which sk is maximized. Note that 0 ≤ k < ℓ. We claim that vk is
an entry. Let s′

i =
∑i−1

j=0 ck+j be the prefix sums starting from vk. Then s′
i = sk+i − sk ≤ 0,

by the definition of k, for every i.
Assume, without loss of generality, that v0 is an entry on C. Let si =

∑i−1
j=0 cj as above

and let i = min{j |sj ≤ −B}(mod ℓ). Then (v0, vi) is an entry-exit pair. It is not difficult to
find i in O(ℓ) time. ◀

The following lemma characterizes the structure of minimum energetic paths when the
graph may contain negative cycles. It is not difficult to give a direct proof of the lemma. Its
correctness also follows from the correctness of the algorithms that we present.

▶ Lemma 2.6. If there is an s-t path P with dB(P ) ≤ B, then there is an s-t path P ′ such
that dB(P ′) ≤ dB(P ) and such that P ′ has the following form (see Figure 2): either P ′ is
simple, or there is a sequence C1, C2, . . . , Ck of simple negative cycles, where k < n, with
entry-exit pairs (x1, y1), (x2, y2), . . . , (xk, yk) on them, such that P ′ is composed of a simple
path from s to x1, followed by sufficiently many traversals of C1 that end in y1 with a full
battery, followed by a simple path from y1 to x2, followed by sufficiently many traversals
of C2 that end in y2 with a full battery, and so on, and finally a simple path from yk to t.
Furthermore, all entries x1, x2, . . . , xk are distinct, and all exits y1, y2, . . . , yk are distinct.

3 An energetic version of the Bellman-Ford algorithm

Recall that for any x and y, x⊕B y ≥ x + y. This implies that in a graph without negative
cycles, if there is a traversable path from s to t, there is such a path that is simple and hence
contains at most n− 1 arcs. This means that if there are no negative cycles, we can solve
the single-source minimum energetic paths problem using the Ford-Bellman [4, 15] shortest
path algorithm: We merely replace + by ⊕B .

We base our description of the algorithm on that in [34], which uses a queue as suggested
by Gilsinn and Witzgall [18].
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Figure 2 Generic structure of minimum energetic paths in the presence of negative cycles. If
δB(s, t) ≤ B, then there is a minimum energetic path from s to t of the form shown, where C1, . . . , Ck

are simple negative cycles and (xi, yi) is an entry-exit pair on Ci, for i = 1, 2, . . . , k. All entries
x1, x2, . . . , xk are distinct and all exits y1, y2, . . . , yk are distinct. The paths P1, P2, . . . , Pk+1 are
simple but necessarily disjoint from the cycles C1, C2, . . . , Ck.

The algorithm maintains a tentative energetic cost d(v) for each vertex v, equal to the
minimum of the energetic costs of paths from s to v found so far. Initially d(s) = 0 and
d(v) =∞ for v ̸= s, where s is the source. It also maintains a queue Q, initially containing s.
The algorithm repeats the following step until Q is empty:

Scan a vertex: Delete the front vertex u on Q. For each arc uv, if δ(u)⊕B c(uv) < δ(v),
relax uv: Set δ(v)← δ(u)⊕B c(uv), set π(v)← u, and add v to the back of Q if it is
not on Q.

Pseudocode of the algorithm, which we call e-BF , is given on the left of Figure 3. The
correctness proof and analysis of the standard Bellman-Ford algorithm in the absence of
negative cycles (see e.g., Tarjan [34]) translates directly to this version.

▶ Theorem 3.1. If G = (V, A, c) has no traversable negative cycles then e-BF finds minimum
energetic paths from s to all vertices in O(mn) time.

Proof. We define passes over the queue. Pass 0 is the first scan step of s. Given that pass k

is defined, pass k + 1 is the sequence of scan steps of vertices added to Q during pass k. A
straightforward induction on k shows that for each vertex v that has a minimum-energy
path of at most k arcs, d(v) is the energetic cost of such a path after k passes. It follows
that the energetic costs are correctly computed. The π values computed describe a tree of
minimum-energy paths from s to all vertices reachable from s using a fully charged battery of
capacity B. Since each pass takes O(m) time, the total time of the algorithm is O(mn). ◀

In addition to the non-existence of negative cycles, the only thing required for correctness
of the algorithm is that ⊕B is non-decreasing in its second argument: If y ≤ z, x⊕ y ≤ x⊕ z.

As in the standard version of the Bellman-Ford algorithm, one can add subtree disassem-
bly [32, 10], which does not improve the worst-case time bound but is likely to speed up the
algorithm in practice. It is also easy to modify the algorithm so that it finds a traversable
negative cycle that can be reached from s, if one exists.

The correctness of e-BF implies the following corollary, which we use to prove the
correctness of the energetic variant of Dijkstra’s algorithm:

▶ Corollary 3.2. If each d(v) < ∞ corresponds to the energetic cost of some path from s

to v, and d(v) ≤ d(u)⊕B c(uv) for every uv ∈ A, then d(v) = δB(s, v), for every v ∈ V .

4 An energetic version of Dijkstra’s algorithm

If all arc costs are non-negative, Dijkstra’s algorithm [11] with + replaced by ⊕B will solve the
single-source problem. This algorithm replaces the queue Q in the Bellman-Ford algorithm
by a heap H. The key of a vertex v in the heap is d(v). Each scan step deletes a vertex of
minimum key from the heap. When a relaxation decreases the key of a vertex in the heap,
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e-BF(G = (V, A, c), B, s):
for u ∈ V do

d(u)←∞
π(u)← null

d(s)← 0

Q← Queue()
Q.insert-last(s)

while Q ̸= ∅ :
u← Q.DeleteF irst()
for uv ∈ A do

if d(v) > d(u)⊕B c(uv) :
d(v)← d(u)⊕B c(uv)
π(v)← u

if v /∈ Q :
Q.InsertLast(v)

return d

e-Dijkstra(G = (V, A, c), p, B, s):
for u ∈ V do

d(u)←∞
π(u)← null

d(s)← 0

H ← min-heap()
H.insert(s,−p(s))

while H ̸= ∅ :
v ← H.delete-min()
for uv ∈ A do

if d(v) > d(u)⊕B c(uv) :
d(v)← d(u)⊕B c(uv)
π(v)← u

if v /∈ H :
H.insert(u, d(v)−p(v))

else:
H.decrease-key(u, d(v)−p(v))

return d

Figure 3 Energetic variants of the Bellman-Ford and Dijkstra algorithms.

the algorithm does the appropriate decrease-key operation on the heap. If all arc costs are
non-negative, the algorithm deletes each vertex from H at most once, and when a vertex v

is deleted from H, d(v) is the minimum energetic cost of a path from s to v. The proof of
correctness mimics that of the standard Dijsktra algorithm. The algorithm does at most n

heap insertions, at most n heap deletions, and at most m decrease-key operations. If the
heap is a Fibonacci heap [16] or equally efficient data structure, e.g., [20], the total running
time is O(m + n log n). In fact, the algorithm is identical to the standard algorithm with d(v)
values greater than B replaced by ∞.

More interesting is that if arc costs can be negative, but there are no negative cycles,
we can use a variant of the A∗ search algorithm, which is a modification of Dijkstra’s
algorithm, to solve the single-source minimum energetic paths problem in O(m + n log n)
time, provided that we have a valid potential function p : V → R. A potential p is valid if
c(uv) + p(u)− p(v) ≥ 0 for every arc uv ∈ A. It is well-known that a valid potential function
exists if and only if the graph contains no negative cycles.

The A∗ search algorithm is almost identical to Dijkstra’s algorithm. The only difference
is that the key of vertex v in the heap is d(v)− p(v), and not just d(v), where p is a valid
potential function. In the original setting of the A∗ search heuristic, −p(v) is an estimate
of the distance from v to the destination t. The correctness of the algorithm only requires,
however, that p is a valid potential function. If p is valid, the A∗ algorithm deletes each
vertex v from the heap at most once, and when v is deleted, d(v) = δB(s, v), the energetic
cost of traveling from s to v.

An energetic version of the A∗ is obtained simply by replacing + by ⊕B in relaxations.
We assume the algorithm is given a potential p that is valid for +, not ⊕B . The algorithm
begins with d(s) = 0 and d(v) =∞ for each vertex v ∈ V \ {s}, and H containing s. The key
of a vertex v in H is d(v)− p(v). The algorithm repeats the following step until H is empty:
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Scan a vertex: Delete from H a vertex u with minimum key d(u)− p(u). For each
arc uv, if d(u)⊕B c(uv) < d(v), relax uv: Set d(v)← d(u)⊕B c(uv); π(v)← u; add v

to H with key d(v)− p(v) if v /∈ H, or decrease the key of v to d(v)− p(v) if v ∈ H.

Pseudocode of the resulting algorithm, which we call e-Dijkstra, is given on the right of
Figure 3. The main step towards establishing the correctness of e-Dijkstra is the following:

▶ Lemma 4.1. If p is a valid potential then e-Dijkstra maintains the following invariant: if u

has been deleted from H while v has not been deleted from H yet, then d(u)−p(u) ≤ d(v)−p(v).
As a consequence, each vertex u is inserted and deleted from H at most once.

Proof. We prove the lemma by induction on the number of heap operations. The lemma
is true initially, as no vertex was deleted from H yet. Suppose it is true just before u is
deleted from H. Since d(u) − p(u) is minimum among all u ∈ H, and since d(v) = ∞ for
all vertices not yet inserted into H, the invariant holds just after u is deleted from H. By
the induction hypothesis, d(u)− p(u) is now maximum over all u′ already deleted from H.
Suppose the invariant holds just before the relaxation of an arc uv. Just after the relaxation,
d(v) = d(u)⊕B c(uv) ≥ d(u) + c(uv). Hence

d(v)− p(v) ≥ d(u) + c(uv)− p(v) ≥ d(u)− p(u) ,

where the last inequality follows by the validity of p. Since the relaxation strictly decreased
d(v), it follows that v could not have already been deleted from H, since it would violate
the claim that d(u) + p(u) is maximum over all vertices already deleted from H. Thus, v

is either in H or was not inserted into H yet. Decreasing the key of v to d(v) − p(v), or
inserting v into H with this key, does not violate the invariant. ◀

The proof of Lemma 4.1 is the same as the proof of the corresponding lemma for the
standard version of A∗ except for the use of the inequality x⊕B y ≥ x + y. Using Lemma 4.1
we can easily prove the correctness of the algorithm.

▶ Theorem 4.2. If G = (V, A, c) has no negative cycles and p is a valid potential for G, then
e-Dijkstra finds minimum energetic paths from s to all vertices in O(m + n log n) time.

Proof. When a vertex u is removed from H, all outgoing arcs uv are scanned and all
appropriate relax operations are performed. By Lemma 4.1, d(u) will not be changed again.
Thus, when the algorithm terminates d(v) ≤ d(u) ⊕B c(uv) for every arc uv ∈ A. By
Corollary 3.2, we have d(v) = δB(s, v), for every v ∈ V . As in the proof of Theorem 3.1 we
get that the π values describe a tree of minimum energetic paths from s to all vertices that
can be reached from s.

The algorithm performs at most n heap insertions, at most n heap deletions, and at
most m decrease-key operations. With an efficient heap implementation the total running
time is O(m + n log n). ◀

To obtain a valid potential function we can use any standard shortest path algorithm: If s

is an arbitrary source from which all vertices are reachable, there are no negative cycles, and
p(v) = δ(s, v), where δ(s, v) is the standard distance from s to v, then c(uv)+p(u)−p(v) ≥ 0,
for every arc uv, by the triangle inequality. (If there is no such vertex s in the graph, add a
new vertex s and connect it with zero-cost arcs to all other vertices.)

Thus we can compute minimum energetic paths from k sources in O(m+n log n) time per
source plus the time to solve one standard single-source shortest path problem with the given
arc costs. The extra time needed for this preprocessing is O(mn) if we use Bellman-Ford,
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or O(m log2 n log(nW ) log log n) if all arc costs are integral and we use the algorithm of
Bringmann et al. [8]. (The faster algorithm is helpful only if k = Ω(log2 n log(nW ) log log n),
where k is the number of sources.)

▶ Corollary 4.3. The all-pairs minimum energetic paths problem on a graph G = (V, A, c)
with no negative cycles can be solved in O(mn + n2 log n) time.

The resulting all-pairs algorithm is very similar to Johnson’s [22] algorithm for the
standard all-pairs shortest paths problem.

5 Finding minimum paths in the presence of negative cycles

In this section we describe an algorithm e-Negative(G, B, s) that finds minimum energetic
costs from a source vertex s ∈ V to all other vertices in a directed graph G = (V, A, c)
that may contain negative cycles. It is not difficult to extend the algorithm to return a
succinct description of the minimum energetic paths. We assume that s has no incoming
arcs. (Incoming arcs of s are not useful as we start from s with a full battery.)

Algorithm e-Negative maintains a set R of reachable vertices that were already processed,
a set of reachable vertices Q that are waiting to be processed, and a set Y ⊆ R of exits.
Initially R = ∅, Q = {s} and Y = ∅. Let GR,Y be the graph obtained from G by removing the
outgoing arcs of vertices not in R, removing the incoming arcs of vertices in Y , and for every
y ∈ Y , adding a 0-cost arc sy. (Note that vertices in V \R may have incoming arcs in GR,Y ,
but no outgoing arcs.) We may assume that the vertex set of GR,Y is VR,Y = R ∪ N(R),
where N(R) are the out-neighbors of the vertices of R. We also have Q ⊆ N(R).) The
algorithm maintains the invariant that GR,Y has no negative cycles and p : VR,Y → R is a
valid potential function for it, and that all vertices in R ∪Q can be reached when starting
from s with a full battery.

The algorithm is composed of rounds. In each round the algorithm removes a vertex
u ∈ Q and processes it, i.e., adds it to the set R. If GR∪{u},Y does not contain negative
cycles, all we need to do is find a valid potential function for GR∪{u},Y and update the set Q

of vertices reachable in GR∪{u},Y when starting from s with a full battery.
To check whether GR∪{u},Y contains a negative cycle we construct a graph Ḡ = ḠR,Y,u

as follows. The graph is obtained by starting from GR,Y , adding a new source vertex ū,
and for every uv ∈ A, adding an arc ūv with c(ūv) = c(uv). We also remove s and its
outgoing arcs. (Note that u /∈ R has no outgoing arcs in Ḡ.) The new graph Ḡ does
not contain negative cycles. The function p is a valid potential function for Ḡ if we let
p(ū) = maxuv∈A(p(v)− c(uv)). 2 All negative cycles in GR∪{u},Y must pass through u. Thus,
GR∪{u},Y contains a negative cycle if and only if δḠ(ū, u) < 0.

We thus run Dijkstra on Ḡ staring from the source ū using the potential function p. If
δḠ(ū, u) < 0 then a shortest path from ū to u becomes a negative cycle C in GR∪{u},Y when
we replace ū with u. (Any path of negative cost from ū to u will do. We can thus stop the
algorithm as soon as such a path is discovered.) In O(|C|) time we find an exit y on C and
add it to Y . This removes the incoming arcs of y from GR∪{u},Y and adds a 0-cost arc sy.
We update the graph Ḡ accordingly, i.e., remove the incoming arcs of y, and run Dijkstra
again. (Note that p is still a valid potential function for Ḡ, since s is not included in it.)

2 This works as ū has no incoming arcs. Equivalently we can use the fact that Dijkstra’s algorithm works
correctly even if the reduced costs of some of the outgoing arcs of the source are negative, which follows
as p(ū) does not really affect the running of the algorithm. (It only affects the key of ū when it is alone
in the heap.
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When no more negative cycles are found, the graph GR∪{u},Y ′ , where Y ′ is the new set of
exits, does not contain negative cycles. We still need to find a valid potential function for it.
To do this it is enough to find distances from s to all other vertices. Let δ(s, v) be the distance
from s to v in GR∪{u},Y ′ . Let δ′(s, v) be the distance from s to v in GR,Y ′ . Finally, let δ′′(ū, v)
be the distance from ū to v in ḠR,Y ′,u. Clearly, δ(s, v) = min{δ′(s, v), δ′(s, u) + δ′′(ū, v)},
since each shortest path in GR∪{u},Y ′ either does not pass through u, in which case its length
is δ′(s, v), or it does pass through u in which case its length is δ′(s, u) + δ′′(ū, v).

To find the distances δ′(s, v) we simply run Dijkstra on GR,Y ′ using the potential
function p, after we set p(s) = maxsv∈A(p(v)− c(sv)). The distances δ′′(ū, v) were already
computed. Thus we can easily compute the distances δ(s, v) in GR∪{u},Y ′ and then set
p(v) = δ(s, v), for every v ∈ VR∪{u},Y ′ .

Given the newly computed potential function p, we can now run e-Dijkstra on GR∪{u},Y ′

to compute energetic costs and the new set of vertices Q′ that are reachable from s but are
not in R∪ {u}. The algorithm then lets R← R∪ {u}, Y ← Y ′ and Q← Q′. This completes
the round. If Q = ∅ the algorithm terminates. Otherwise it proceeds to the next round,
processing the next vertex from Q.

We claim that the energetic costs computed by the last e-Dijkstra, which are also the
values returned by e-Negative, are exactly the energetic costs δB(s, v) in the input graph
G = (V, A, c). (If v /∈ R, then δB(s, v) =∞.)

▶ Theorem 5.1. Algorithm e-Negative(G, B, s) finds minimum energetic costs in a graph
G = (V, A, c) that may contain negative cycles when the capacity of the battery is B. Its
running time is O(mn + n2 log n).

Proof. The correctness of the algorithm follows from the explanations above combined with
a few simple observations. It follows by induction that at the beginning of each round GR,Y

contains no negative cycles, p is a valid potential function for it, and all vertices in R ∪Q

can be reached when starting from s with a full battery.
In each round, the algorithm moves a vertex u from Q to R. To do this, it repeatedly

finds negative cycles in the graph GR∪{u},Y . All such negative cycles must pass through u.
As explained, there is such a negative cycle in GR∪{u},Y if and only if δḠ(ū, u) < 0, where
Ḡ = ḠR,Y,u. A negative path from ū to u corresponds to a negative cycle C, since ū and u

represent the same vertex. If a negative cycle C is found, an exit y on C is identified and
added to Y . (Note that this removes arcs from Ḡ since the incoming arcs of y are removed.)
The arc sy is added to GR∪{u},Y ∪{y} but not to Ḡ = ḠR,Y ∪{y},u.

We next argue that δB(s, y) = 0, for every y ∈ Y . Indeed, each vertex y added to Y is an
exit on a negative cycle C all whose vertices can be reached when starting from s with a
full battery. In particular, the entry x on C corresponding to y can be reached, and by the
definition of entry-exit pairs, y can be reached with full battery, i.e., δB(s, y) = 0. This also
justifies the addition of the 0-cost arc sy.

Let δ′
B(s, v) be the energetic costs computed by the last call to e-Dijkstra on the final

GR,Y . We assume that δ′(s, v) =∞ for every v /∈ R. Let δB(s, v) be the energetic costs in
the input graph G. It is easy to see that δB(s, v) ≤ δ′(s, v), for every v ∈ V . This follows
as GR,Y , without the arcs {sy | y ∈ Y }, is a subgraph of G, and the addition of the arcs
{sy | y ∈ Y }, as argued, does not change the energetic costs.

We next show that when the algorithm terminates we have δB(s, v) = δ′
B(s, v), for

every v ∈ V . Suppose, for the sake of contradiction, that there is a vertex v for which
δB(s, v) < δ′

B(s, v). Let P be a minimum energetic path from s to v in G. If P passes
through a vertex of Y , let y be the last vertex from Y on P and let P ′ be path composed
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of the arc sy followed by the portion of P from the last occurrence of y on P to v. Since
δB(s, v) < δ′

B(s, v), it follows that P ′ is not a path in GR,Y . Thus, P ′ must contain a vertex
not in R. Let u be the first vertex not in R on P ′. It follows that δ′

B(s, u) <∞, since the
portion of P ′ from s to u is also a path in GR,Y . Since u /∈ R, we must have u ∈ Q and the
algorithm should not have terminated.

The algorithm performs at most 2n calls to Dijkstra, since following each such call either
an exit is added to Y or a vertex is added to R. The algorithm performs at most n calls to
e-Dijkstra. Thus, the running time of the algorithm is O(mn + n2 log n). ◀

6 A faster all-pairs algorithm for large batteries

In this section we obtain an O(mn + n2 log n)-time algorithm for the all-pairs energetic cost
problem, in graphs that may contain negative cycles, when the capacity of the battery B is
sufficiently large relative to the arc costs in the graph. The initial charge b may be arbitrary.
More specifically, we assume that B ≥ 3nM , where M = maxuv∈A |c(uv)|.

Recall that δB,b(s, t) is the energetic cost of getting from s to t, starting from s with a
charge b, where 0 ≤ b ≤ B, when the capacity of the battery is B. The energetic cost is
the difference between the initial charge, in this case b, and the final charge. Recall that
δB,b(s, t) ∈ [b−B, b]. (In particular, when b < B, the energetic cost may be negative.)

We started Section 2 with a simple reduction from the computation of δB,b(s, t) to that
of δB(s, t) = δB,B(s, t). The reduction introduces an arc of cost B − b, which may be much
larger than M , so we cannot use it when the battery capacity is large. To make our results
more general we work directly with δB,b(s, t).

The improved algorithm is obtained by using a preprocessing step, described in Section 6.1,
that finds sets of entries or exits that hit all negative cycles. When the battery is large,
such sets can be used to efficiently solve the single-source problem, from any source, in
O(m + n log n) time.

We first describe, in Section 6.2, an efficient algorithm when b ≥ nM . We then use this
algorithm in Section 6.3 to obtain an efficient algorithm when B ≥ 3nM and b is arbitrary.

6.1 Finding sets of entries or exits that hit all negative cycles
A vertex x is an entry if it is an entry on some negative cycle. Similarly, a vertex y is an exit
if it is an exit on some negative cycle.

A set of vertices Z ⊂ V is said to hit all negative cycles in a graph G if there are no
negative cycles in the graph G \ Z, or equivalently in the graphs G \ in(Z) or G \ out(Z),
where G \ Z is the graph obtained by removing all the vertices of Z from G and G \ in(Z)
and G \ out(Z) are the graphs obtained just by removing the incoming or outgoing arcs,
respectively, of the vertices in Z.

We are interested in hitting all negative cycles with either a set of entries, or a set of
exits. We show that this can be done efficiently.

▶ Lemma 6.1. A set Y ⊆ V of exits that hit all negative cycles in G, and a valid potential
function p for G \ in(Y ), can be found in O(mn + n2 log n) time.

Proof. Add to G an auxiliary source vertex s̄ and connect it with 0-cost arcs to all other
vertices of G. Running e-Negative of Section 5 on the resulting graph will construct a set Y

of exits that hit all negative cycles in G and a valid potential function p. ◀

By a slight adaptation of the algorithm, i.e., finding an entry on each negative cycle found
and removing its outgoing arcs, we can also get:
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▶ Lemma 6.2. A set X ⊆ V of entries that hit all negative cycles in G, and a valid potential
function p for G \ out(X), can be found in O(mn + n2 log n) time.

6.2 An algorithm for large initial charges
We assume that nM ≤ b ≤ B, i.e., the initial charge is sufficient to traverse any path of at
most n arcs. Let u⇝ v denote that there is a directed path from u to v in the graph.

Suppose that C is a negative cycle in G and that (x, y) is an entry-exit pair on it. Suppose
that s is the current source. Since x and y are on a cycle we clearly have s⇝ x if and only
if s⇝ y. Furthermore, if s⇝ y then there is also a simple path from s to x, i.e., a path that
uses at most n− 1 arcs. Since we start from s with a sufficiently large initial charge, we can
reach x and eventually, by the definition of entry-exit pairs, reach y with a fully charged
battery. This justifies the following algorithm.

Find a set Y of exits that hit all negative cycles and find a valid potential function p

for G \ in(Y ). For any given source s, find the set Ys ⊆ Y of exits reachable from s. (This
can be easily done in linear time.) Next, construct a graph Gs obtained from G \ in(Y )
by adding arcs of cost b − B from s to every y ∈ Ys. (These arcs ensure that we reach y

with a fully charged battery without needing to use the incoming arcs of y.) Run e-Dijkstra
on Gs using p, after suitably adjusting the potential of s. (We need a slight modification of
e-Dijkstra that works when starting from s with an initial charge b. Alternatively, we can
add an auxiliary source s̄, add an arc s̄s of cost B − b, and run e-Dijkstra from s̄.) This
takes only O(m + n log n) time per vertex, giving an O(mn + n2 log n)-time algorithm for
the all-pairs problem.

6.3 An algorithm for large batteries
We now describe an algorithm for 3nM ≤ B, and any value of b. If nM ≤ b, we can use the
algorithm of the previous section. We can thus assume that b ≤ nM and thus B − b ≥ 2nM ,
i.e., the battery is initially far from being fully charged.

Start by using the algorithm from Section 6.1 to find a set X of entries that hit all
negative cycles of G.

Let P be a minimum energetic path from s to t. We may assume that all cycles on P , if
any, are negative, since otherwise they can be removed without increasing the energetic cost.
If P does not pass through any vertex of X, then it is also a path in G \ out(X). Otherwise,
let x ∈ X be the first entry appearing on P . Suppose that x is an entry of a negative cycle C

and that y is a corresponding exit on C. In general, the path P may not pass through y.
This is one of the main difficulties that algorithm e-Negative had to deal with. However,
when B − b ≥ 2nM , we show that there must exist a minimum energetic path P ′ from s to t

that passes through both x and y. We can further assume that during the last visit of y, the
battery is fully charged.

The path P must reach the first entry x ∈ X after traversing at most n− 1 arcs. If P

is simple, this is obviously true. Otherwise, a cycle C ′ must be formed after traversing at
most n arcs. By definition, there is an entry x ∈ C ′ ∩X. (Note that x is not necessarily an
entry of C ′, but it is an entry of some negative cycle C with a corresponding exit y.)

If bx is the charge in the battery when reaching the first entry x on P , then B− bx ≥ nM .
(The additional charge gained by traversing the portion of P from s to x is at most nM .)
Since x is an entry of C, we can traverse C and get back to x, passing y along the way, with
a charge that is at least bx. (Note that it is important here that the battery is not close to
being fully charged when starting from x, otherwise the claim is not necessarily true.) This
gives us the path P ′.
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This suggests the following algorithm. Start, as mentioned, by finding a set X of entries
that hit all negative cycles and a potential function p for G \ out(X).

For each vertex s ∈ V , run e-Dijkstra on G \ out(X) starting from s using the potential
function p. This finds minimum energetic paths from s that do not pass through X. It also
finds the set Xs of entries that can be reached when staring from s with an initial charge of b.
Let Ys be the set of exits that correspond to the entries in Xs. Construct a new graph Gs as
follows. Remove from G all the outgoing arcs of s. For each y ∈ Ys add a 0-arc from s to y.
Now run the algorithm of Section 6.2, staring from s with a fully charged battery. (Assuming
that a set Y of exits that hit all negative cycles of G was already precomputed.) Subtract
B − b from the results obtained, to adjust for the fact that the initial charge is actually b

and not B, and take the minimum with the results returned by e-Dijkstra call.
The computation of the hitting sets X and Y takes O(mn + n2 log n). For every source

we need only O(m + n log n) time. The total time of the algorithm is thus O(mn + n2 log n).

7 Minimum initial charges and maximum final charges

To end the paper, we consider two problems that are closely related to the minimum energetic
paths problem. Let G = (V, A, c) be a graph with no (traversable) negative cycles and let B

be the capacity of the battery. For two vertices s, t ∈ V , we let αB(s, t) be the maximum
final charge with which it is possible to reach t when starting at s with a full battery, or
−∞, if it is not possible to travel from s to t. We also let βB(s, t) be the minimum initial
charge required at s for getting to t, or ∞, if no initial charge (of at most B) is sufficient.

The maximum final charge problem is not really a new problem as αB(s, t) = B− δB(s, t).
As noted in the introduction, βB(s, t) is the smallest b such that δB,b(s, t) ≤ b, or equivalently
δB,b(s, t) <∞, if there is such a b. Thus, if B and all arc costs are integral, then we can find
βB(s, t), for a specific pair s and t, by a binary search.

There is, however, a more interesting relation between the minimum initial-charge problem
and the minimum energetic cost problem. Namely, βB(s, t) is equal to δ

←
G
B (t, s) the energetic

cost of traveling from t to s in the reversed graph
←
G, the graph obtained by reversing all the

arcs in the graph G and retaining all arc costs. This relation follows easily from the following
lemma, analogous to Lemma 2.2, whose simple proof is omitted. For a path P from s to t,
let bB(P ) be the minimum initial charge at s with which the path P can be traversed.

▶ Lemma 7.1. Let P = u0u1 . . . uk be a directed path, let P ′ = u1 . . . uk, and let ci =
c(ui−1ui), for i = 1, . . . , k. Let B be the capacity of the battery. If k = 0 then bB(P ) = 0. If
k > 0 then

bB(P ) = c1 ⊕B bB(P ′) = c1 ⊕ (c2 ⊕ (· · · ⊕ (ck−1 ⊕ (ck ⊕ 0)) · · · )) .

▶ Corollary 7.2. For every s, t ∈ V , βB(s, t) = δ
←
G
B (t, s).

As immediate corollaries, it follows that we can solve the single-target version of the
minimum initial-charge paths problem in O(m+n log n) time, if we are given a valid potential,
and the all-pairs version of the problem in O(mn + n2 log n).

8 Concluding remarks and open problems

We have presented a clear definition of the minimum energetic paths problem, which is a
strict extension of the standard shortest paths problem, and explained its relation to two
other related problems: minimum initial-charge paths and maximum final-charge paths. We
have also presented efficient algorithms for the minimum energetic paths problem in three
different settings.
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When there are no negative cycles in the graph, the minimum energetic paths problem
can be solved using relatively simple adaptations of the classical Bellman-Ford and Dijkstra
algorithms. We present simple descriptions and simple correctness proofs of these algorithms.
In particular, we have obtained an O(mn)-time algorithm for the single-source version, when
arc costs may be negative but there are no negative cycles, and an O(mn + n2 log n)-time
algorithm for the all-pairs version.

An interesting feature of the minimum energetic paths problem is that it is well defined
even if the graph contains negative cycles. Furthermore, minimum energetic costs are always
obtained by finite length, though not necessarily simple, minimum energetic paths. (This is
not the case for the standard shortest paths problem.) Using new algorithmic techniques,
we have obtained an O(mn + n2 log n)-time algorithm for the single-source version of the
problem. Our best algorithm for the all-pairs version runs the single-source algorithm from
each vertex, yielding a running time of O(mn2 + n3 log n).

We have obtained a more efficient algorithm for the all-pairs version when the capacity
of battery is sufficiently large, i.e., B ≥ 3nM , where M = maxuv∈A |c(uv)| is the maximum
absolute value of an arc cost. The running time of the improved algorithm is O(mn+n2 log n).

The obvious open problems are whether any of our time bounds can be improved. In
particular, is it possible to get an O(mn)-time algorithm for the single-source version when
the graph may contain negative cycles? Is there an O(n3)-time algorithm for the all-pairs
version when the graph may contain negative cycles?

Another interesting problem is whether the new techniques of Bernstein et al. [5] and
Bringmann et al. [8], or the older technique of Goldberg [19] can be used to obtain an
improved algorithm for the single-source version of the minimum energetic paths problem,
when negative cycles may be present in the graph.

Finally, as mentioned, the single-target version of the minimum energetic paths problem
is not equivalent to the single-source version. Currently, our fastest algorithms for the
single-target version actually solve the all-pairs version. Is there a faster solution? The fact
that there may not be a tree of minimum energetic paths to a given target may indicate that
the single-target version is harder than the single-source version.
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Abstract
It is known that first-order logic with some counting extensions can be efficiently evaluated on graph
classes with bounded expansion, where depth-r minors have constant density. More precisely, the
formulas are ∃x1 . . . xk#y φ(x1, . . . , xk, y) > N , where φ is an FO-formula. If φ is quantifier-free, we
can extend this result to nowhere dense graph classes with an almost linear FPT run time. Lifting
this result further to slightly more general graph classes, namely almost nowhere dense classes, where
the size of depth-r clique minors is subpolynomial, is impossible unless FPT = W[1]. On the other
hand, in almost nowhere dense classes we can approximate such counting formulas with a small
additive error. Note those counting formulas are contained in FOC({>}) but not FOC1(P).

In particular, it follows that partial covering problems, such as partial dominating set, have fixed
parameter algorithms on nowhere dense graph classes with almost linear running time.
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1 Introduction

First-order logic can be used to express algorithmic problems. FO-model checking on certain
classes of structures is therefore a meta-algorithm, which solves many problems at the same
time. For example, the three classical problems that started the research on parameterized
complexity are all FO-expressible: Vertex Cover, Independent Set, and Dominating Set [6, 7].
Dominating Set with the natural parameter – the size of the minimal dominating set – is
W[2]-complete on general graphs, but fixed parameter tractable (fpt) on many special graph
classes. The study of sparsity, initiated by Nešetřil and Ossona de Mendez, has led to
the concept of bounded expansion and nowhere dense graph classes [21]. They generalize
many well-known notions of sparsity, such as bounded degree, planarity, bounded genus,
bounded treewidth, (topological) minor-closed, etc. and have led to quite general algorithmic
results [23, 11, 4, 10]. Most notably, Grohe, Kreutzer, and Siebertz showed that FO-model
checking is fpt on nowhere dense graph classes [15]. This shows, e.g., that dominating set
is fpt on nowhere dense graphs, a result that was already known: Dawar and Kreutzer
were able to find a specific algorithm several years earlier [5] that solves generalizations
of the dominating set problem. All of them are FO-expressible, which shows how strong
meta-algorithms are.
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Partial dominating set, also called t-dominating set, is another generalization of domi-
nating set: The input is a graph G and two numbers k and t. The question is, whether G

contains k vertices that dominate at least t vertices. The parameter is k, as in the classical
dominating set problem. (If you choose t as the parameter – which also makes sense – the
problem becomes fixed-parameter tractable even on general graphs [18].) The length of an
FO-formula expressing the existence of a partial dominating depends on t, which is not
bounded by any function of k and therefore all the results on first-order model checking
do not help when we parameterize by k only. Golovach and Villanger showed that partial
dominating set remains hard on degenerate graphs [13], while Amini, Fomin, and Saurabh
have shown that partial dominating set is fixed-parameter tractable in minor-closed graph
classes, which generalized earlier positive results [1]. Very recently, this was improved to
graph classes with bounded-expansion, while simultaneously using only linear fpt time instead
of polynomial fpt time, i.e, the running time is now only f(k)n [8].

This result was achieved by another meta-theorem for the counting logic FOC({>}) on
classes of bounded expansion. FOC({>}) is a fragment of the logic FOC(P), introduced
by Kuske and Schweikardt in order to generalize first-order logic to counting problems [20].
FOC(P) is a very expressive counting logic and allows counting quantifiers #ȳφ(x̄, ȳ), which
count for how many ȳ the FOC(P)-formula φ(x̄, ȳ) is true. Moreover, arithmetic operations
are allowed as well as all predicates in P, which might contain comparisons, equivalence
modula a number, etc. Kuske and Schweikardt showed that the FOC(P)-model checking
problem is fixed parameter tracktable on graphs of bounded degree and hard on trees of
bounded depth. The fragment FOC({>}) is more restrictive and allows only counting
quantifiers of single variables and no arithmetic operations. The only predicate is comparison
against an arbitrary number, but not between counting terms. While FOC({>})-model
checking is still hard on trees of bounded depth, there is an “approximation scheme” for
FOC({>}) on classes of bounded expansion [8]: An algorithm gives either the right answer
or says “mayby,” but only if the formula is both almost satisfied and not satisfied. For a
fragment of FOC({>}), which captures in particular the partial dominating set problem,
we can compute even an exact answer to the model checking problem in linear fpt time [8].
That fragment consists of formulas of the form

∃x1 . . . ∃xk#y φ(y, x1, . . . , xk) > N, (1)

where φ is a first-order formula and N an arbitrary number. The semantics of the count-
ing quantifier #y φ(y, v1, . . . , vk) is the number of vertices u in G such that G satisfies
φ(u, v1, . . . , vk). As an example, the existence of partial dominating set can be expressed as

∃x1 . . . ∃xk#y
k∨

i=1
E(y, xi) ∨ y = xi > t, (2)

where k is the number of the dominating, and t the number of dominated vertices. The
length of the formula only depends on k. This implies that partial dominating set can be
solved in linear fpt time on classes of bounded expansion.

There is another fragment of FOC(P), which should not be confused with FOC({>}). In
FOC1(P), introduced by Grohe and Schweikardt [16], the counting terms may contain at
most one free variable. They show that FOC1(P) is fixed-parameter tractable on nowhere
dense graph classes [16]. Note that formula 2 is in FOC({>}) but not in FOC1(P) as the
counting term relies on k free variables. Hence, FOC({>}) and FOC1(P) are orthogonal in
there expressiveness.
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Table 1 Results of this paper (in boldface) and some related known results. Hard means at least
W[1]-hard. PDS like indicates problems similar to the partial dominating set problems: All problems
that can be expressed by a FOC({>}) formula of the form (1). The mentioned approximation results
are quite different. Numbers are approximated either with a relative or an absolute error.

Graph class FO-MC FOC1(P) FOC({>}) PDS like

bounded expansion fpt [10] fpt [16] hard [8] fpt [8]
(1 + ε)-approx fpt [8]

nowhere dense fpt [15] fpt [16] hard, approx open fptc

almost nowhere dense harda open harda harda

approx±δ fptb

general graphs hard hard hard hard
a Corollary 22, b Corollary 2, c Theorem 1

There has been some research about low degree graphs. A graph class has low degree
if every (sufficiently large) graph has degree at most nε for every ε > 0. Examples are
classes with bounded degree or classes with degree bounded by a polylogarithmic function.
These graph classes are incomparable to nowhere dense classes. Especially, classes of low
degree are not closed under subgraphs. On those classes, Grohe has shown that first-order
model-checking can be solved in almost linear time [14]. Recently, Durand, Schweikardt, and
Segoufin have generalized the result to query counting with constant delay and almost linear
preprocessing time [9]. Vigny explores dynamic query evaluation on graph classes with low
degree [24].

Almost nowhere dense is a property which subsumes both low degree and nowhere dense
classes. Whereas a nowhere dense class C can be characterized that for every r graphs do not
contain up to r times subdivided cliques of arbitrary sizes, for an almost nowhere dense class
arbitrary sizes are allowed, but their growth must be bounded by subpolynomial function in
the size of the graph.

Due to space limitations in this extended abstract many proofs, definitions, results, and
comments can be found only in the appendix, which contains a full version of this paper. Of
course, all main results are presented in this short version as well.

1.1 Our Results
In this work, we consider a fragment of FOC({>}), which we will call PDS-like formulas,
namely formulas of the form

∃x1 . . . ∃xk#y φ(y, x1, . . . , xk) > N

for a quantifier-free FO-formula φ and an (arbitrarily big) number N ∈ Z. This logic is
strong enough to express the partial dominating set problem as formula (2) is contained in
the fragment described above. Remember that this fragment and FOC1(P) are orthogonal.
Table 1 contains an overview of most of the results in this paper.

In formulas that start with existential quantifier it is natural to ask for a witness, if we
can indeed fulfill the formula. For example, in the partial dominating set problem we are
usually interested in actually finding the dominating set rather than verify than one exists.
Often, this is not an issue as problems are self-reducible. Using self-reducibility to find a
witness incurs a runtime penalty. The next theorem shows that solving the model checking
problem, and finding a witness, for formulas in the form of 1 is possible.
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▶ Theorem 1. Let C be a nowhere dense graph class. For every ε > 0, every graph G ∈ C
and every quantifier-free first-order formula φ(yx̄) we can compute a vertex tuple ū∗ that
maximizes J#y φ(yū∗)KG in time O(n1+ε).

As an immediate corollary, we get that the model-checking problem for PDS-like formulas
and thus, also the partial dominating set problem are solvable in almost linear fpt time
on nowhere dense graph classes, where the parameter is the length of the formulas or the
solution size k respectively. Moreover, our meta-algorithm does not only work for partial
dominating set, but for variants such as partial total or partial connected dominating set
as well.

Note that Theorem 1 does not follow from the fact that model-checking for FOC1(P)
or that query-counting for FO-logic is fixed-parameter tractable [16] as we do not count
the number of solutions to a query, but the number of witnesses to some solution. Also,
PDS-like formulas form a fragment orthogonal to FOC1(P). Moreover, we were not able to
prove Theorem 1 by using the result from [16] as a subroutine: formulas inside a counting
quantifier are allowed to have at most one free variable and this weakens self-reducibility or
similar techniques drastically.

The above theorem cannot be extended to the more general case of almost nowhere
dense graph classes. It turns out that even for non-counting formulas this is not possible, as
the (classical) dominating set problem becomes W[1]-hard on some almost nowhere dense
graph classes. This lower bound implies as a special case that plain FO-model checking is
intractable on some almost nowhere dense graph classes. As far as we are aware this does
not follow directly from previously known results.

However, we can go beyond nowhere dense classes if we do not insist on an exact solution:
The model-checking problem for PDS-like formulas can be approximated with an additive
subpolynomial error in almost linear fpt time on almost nowhere dense classes of graphs. To
be more precise, we get the following, slightly more general result.

▶ Corollary 2. Let C be an almost nowhere dense class of graphs. For every ε > 0, every
graph G ∈ C and every quantifier-free first-order formula φ(yx̄), we can compute in time
O(n1+ε) a vertex tuple ū ∈ V (G)|x̄| with

| max
ū

J#y φ(yū)KG − J#y φ(yū∗)KG| ≤ nε.

Talking about characterizations of almost nowhere dense graph classes, we provide a
plethora of different characterizations, similar to the ones for bounded expansion and nowhere
denseness. We show that a class is almost nowhere dense classes if and only if measures like
r-shallow (topological) minor, forbidden r-subdivisions and (weak) r-coloring numbers are
bounded by f(r, ε)nε.

We also examine almost nowhere dense classes from an algorithmic point of view: Whereas
it is “natural” to consider monotonicity as closure property for nowhere dense graph classes,
it is similarly natural to consider closure under edge deletion for almost nowhere dense graph
classes. Consider a graph class C which is closed under deleting edges. Then we show that the
problem of finding an r times subdivided k-clique is fpt for every fixed r on C if and only if C
is almost nowhere dense. In particular, for every graph class that is not almost nowhere dense,
but closed under deletion of edges, there exists a number r such that finding r-subdivided
k-cliques cannot be solved in fpt time under some complexity theoretic assumption, and,
therefore, the FO model checking problem for formulas of the form ∃x̄φ(x̄) where φ(x̄) is
quantifier free and has predicates for adjacency and distance-r adjacency, cannot be solved
either. The situation for distance-r independent set is different: Like finding an r-times
subdivided clique it is fpt on almost nowhere dense graph classes, but there exists a graph
class which is not almost nowhere dense and is closed under edge deletion where the problem
is fpt.
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1.2 Techniques

For Theorem 1, we use a novel dynamic programming technique on game trees of Splitter
games. Splitter games were introduced by Grohe, Kreutzer, and Siebertz [15] to solve
the first-order model-checking problem on nowhere dense classes. Together with their new
concept of sparse neighborhood covers they achieved small recursion trees of constant depth.

Splitter games can be understood as a localized variation of the cops and robbers game
for bounded treedepth (not to be confused with locally bounded treedepth). In contrast
to [15] we apply a dynamic programming approach, similar to the ones used on bounded
tree-depth decompositions. In contrast to bounded treedepth, a graph decomposes into
neighborhoods of small radius instead of connected components when removing vertices
according to Splitter’s winning strategy. A challenge is that the resulting neighborhoods
– in contrast to connected components – are not disjoint and lead to double counting for
counting problems (an issue that does not occur in FO-model checking). To avoid double
counting we introduce so-called cover systems specifically for the subgraph “induced” by
the solution. The existence of such cover systems shows that there is a disjoint selection of
small neighborhoods that cover all the vertices relevant to our counting problem. By solving
a certain variation of the independent set problem, we can find such a selection and can
safely combine the results of local parts of the graph as in dynamic programs for bounded
tree-depth.

To achieve our second result Corollary 2, we adapt the techniques of the proof for solving
the corresponding exact counting problem on classes of bounded expansion [8]: We replace
#y φ(yx̄) by a sum of gradually simpler counting terms until they are simple enough to
be easily evaluated. During this process we use transitive fraternal augmentations and a
functional representation to encode necessary information into the graph, which is needed
during the above simplification of counting terms. Along the way some difficult to handle
literals appear in only a few number of terms. Ignoring them leads to the imprecision of
our approximation. As the number of functional symbols in (almost) nowhere dense graph
classes is not bounded by a constant as it is the case in classes of bounded expansion, the
techniques from [8] have to adapted and extended. The main problem why their proof cannot
be used directly is that the replacement of formulas leads to formulas of constant size in
the case of bounded expansion, but to a non-constant size in our case. Here we use some
new tricks and observe, that even though the transformed formulas can be of subpolynomial
length, they can basically be replaced by many short formulas.

2 Preliminaries

2.1 Weak coloring numbers

A central concept in this paper are generalized coloring numbers, especially the weak coloring
numbers introduced by Kierstead and Yang [17]. An ordering π of a graph G is a linear
ordering of its vertex set and the set of all such orderings is denoted by Π(G).

▶ Definition 3 (Kierstead and Yang [17]). A vertex u ∈ V is weakly r-reachable from a vertex
v ∈ V with respect to π ∈ Π(G) if u ≤π v and there exists a path P from u to v of length at
most r such that u ≤π w for each w ∈ V (P ). The set of weakly r-reachable vertices from v

with respect to π is denoted by WReachr[G, π, v]. Note that v is always included in this set.
We write wdistG,π(u, v) ≤ d if u ∈ WReachr[G, π, v] or v ∈ WReachr[G, π, u].

ESA 2023
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Figure 1 u is weakly 5-reachable from v by the highlighted path, but w is not weakly reachable
from v.

The weak r-coloring number of a graph G (and an ordering π) is defined as

wcolr(G, π) := max
v∈V (G)

|WReachr[G, π, v]|

wcolr(G) := min
π∈Π(G(V ))

wcolr(G, π).

The weak 1-coloring number of a graph is one more than its degeneracy, which is the
smallest number d such that every subgraph H ⊆ G has a vertex of degree at most d in H.
The weak coloring number can be seen as a localized version of tree-depth, as

wcol1(G) ≤ wcol2(G) ≤ · · · ≤ wcol∞(G) = td(G) [21].

Figure 1 contains an example of weak r-reachability. Weak coloring numbers can be used to
characterize nowhere dense graph classes:

▶ Proposition 4 ([25, 22]). A graph class C is nowhere dense if and only if there exists a
function f such that for every r ∈ N, every ε > 0, every graph G ∈ C satisfies wcolr(H) ≤
f(r, ε)|H |ε for every H ⊆ G.

2.2 Splitter game
We will use a game-based characterization of nowhere denseness introduced by Grohe,
Kreutzer and Siebertz [15]. Given a graph G, a radius r and a number of rounds ℓ, the
(ℓ, r)-Splitter game on G is an alternating game between two players called Splitter and
Connector. The game starts on G0 = G. In the ith round, the Connector chooses a vertex vi

from Gi. Then the Splitter chooses a vertex si from the radius-r neighborhood of vi in Gi.
The game continues on Gi+1 = Gi[vi] − si. Splitter wins if after ℓ rounds the graph is empty.
Grohe, Kreutzer and Siebertz showed that nowhere dense graph classes can be characterized
by Splitter games:

▶ Proposition 5 ([15]). Let C be a nowhere dense class of graphs. Then, for every r > 0,
there is ℓ > 0, such that for every G ∈ C, Splitter has a strategy to win the (ℓ, r)-splitter
game on G.

Note that a winning move of Splitter in a current play can be computed in almost linear
time [15, Remark 4.7].

2.3 Sparse neighborhood covers
Even though the splitter game ends after a bounded number of rounds ℓ for nowhere dense
classes, the game tree, i.e. the tree spanned by all possible plays of Splitter and Connector,
can still be large, e.g. in the dimensions of nℓ. To make the game trees small and useful for
algorthmic use, Grohe, Kreutzer and Siebertz introduced sparse neighborhood covers [15].
These covers group “similar” neighborhoods into a small number cluster of bounded radius.
These clusters can be used instead of the neighborhoods, reducing the size of the game tree
to O(n1+ε).
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▶ Definition 6 ([15]). For a radius r ∈ N, an r-neighborhood cover X of a graph G is a
set of connected subgraphs of G called clusters, such that for every vertex v ∈ V (G) there
is some X ∈ X with Nr[v] ⊆ V (X). The degree of v in X is the number of clusters that
contain v and the radius of X is the maximal radius of a cover in X . A class C admits
sparse neighborhood covers if there exists c ∈ N and for all r ∈ N and all ε > 0 a number
d = d(r, ε) such that every graph G ∈ C admits an r-neighborhood cover of radius at most c

and degree at most d|G|ε.

▶ Proposition 7 ([15]). Every nowhere dense class C of graphs admits a sparse neighborhood
cover. For a graph G ∈ C and r ∈ N such an r-neighborhood cover can be computed in time
f(r, ε)n1+ε for every ε > 0.

Indeed, the existence of such covers is another characterization of nowhere dense classes.

▶ Definition 8. For a graph G with a vertex order π, r ∈ N and a vertex v ∈ V (G), we define
Xr[G, π, v] as {u ∈ V (G) | v ∈ WReachr[G, π, u]}. We let Xr = {X2r[G, π, v] | v ∈ V (G)}.

From the proof of Proposition 7 it follows, that the set family Xr is such a sparse neighborhood
cover.

2.4 Low treedepth colorings
A crucial algorithmic tool in the study of bounded expansion and nowhere dense graph
classes are low treedepth colorings, also known as r-centered colorings.

▶ Definition 9. An r-treedepth coloring of a graph G is a coloring of vertices of G such that
any r′ ≤ r color classes induce a subgraph with treedepth at most r′.

The following statement by Zhu [25] is modified such that it is constructive and holds
also for a given vertex ordering π. It follows from the original proof.

▶ Proposition 10 ([25, Proof of Thm. 2.6]). If π is a vertex ordering of a graph G with
wcol2r−2(G, π) ≤ m, an r-treedepth coloring can be computed with at most m colors in
time O(mn).

Graph classes of bounded expansion can be characterized by low treedepth colorings, i.e.,
each graph has an r-treedepth coloring with at most f(r) many colors.

3 Exact Evaluation on Nowhere Dense Classes

In this section we consider the model-checking problem for formulas ∃x1 . . . xk#y φ(yx̄) > N

on nowhere dense graph classes for quantifier-free first-order formulas φ. We show that
this problem can be solved in almost linear fpt time by solving its optimization variant
maxū∈V (G)x̄ #y Jφ(yū)K.

3.1 Radius-r Decomposition Tree
In the following, we will introduce a new kind of decomposition, which heavily relies on
the ideas from [15]. We call it the radius-r decomposition tree. For illustration, consider a
tree-depth decomposition of a graph G. It has the property that after the removal of the
root v in the decomposition, for each connected component C of G − v there exists a child
of v in the decomposition that contains C. In the radius-r decomposition tree, not every
connected component is represented by a child but every radius-r neighborhood of G − v
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instead. Another difference is that these neighborhoods are not necessarily disjoint. We will
use this radius-r decomposition tree as the structure on which a dynamic program will solve
maxū J#y φ(yū)KG.

▶ Definition 11. Let G be a graph. Let r, ℓ ∈ N be such that splitter has a winning strategy
for the ℓ-round radius-2r splitter game on G. Let π be an ordering of G.

A radius-r decomposition tree Tr(G, π, ℓ) is a pair (T, β) where T is a tree of depth ℓ and
β : V (T ) → V (G). We construct it recursively. If G is empty, Tr(G, π, ℓ) is the empty tree.

Let s ∈ V (G) be the first move of the winning strategy of splitter for the (ℓ, 2r)-splitter
game on G. The root is a node t with β(t) = s. For every v ∈ V (G) we append the
decomposition tree Tr(G[Xv], π, ℓ − 1) where Xv = X2r[G − s, π, v].

Note that the case ℓ = 0 while the graph is not empty, cannot happen due to the Splitter
having a winning strategy.

▶ Corollary 12. Let G be a graph, π a vertex ordering of G, r, ℓ ∈ N and T = Tr(G, π, ℓ)
a radius-r decomposition tree. Let t ∈ V (T ) be a node and Tt be the subtree of T starting
at t. Then for every u ∈ W := β(V (Tt)) \ {β(t)} there exists a child t′ of t such that
N

G[W ]
r [u] ⊆ β(Tt′).

▶ Lemma 13. Let G be a graph, π a vertex ordering of G and r, ℓ ∈ N. Then, the radius-r
decomposition tree T = Tr(G, π, ℓ) (Definition 11) has size |T | ≤ wcol2r(G, π)ℓn and depth ℓ.
The construction time is linear in |T |.

Proof. By construction, the depth of the tree is determined by the depth of the splitter
game, which is ℓ.

Consider the root path Pt of some node t ∈ V (T ). Then β(Pt) ⊆ WReach2r[G, π, β(t)].
As the length of Pt is at most ℓ, β(t) appears at most WReach2r[G, π, β(t)]ℓ ≤ wcol2r(G, π)ℓ

times (as a β-label of nodes) in T . Thus, |T | ≤ wcol2r(G, π)ℓn. ◀

▶ Corollary 14. Let C be a nowhere dense graph class. For every r ∈ N the r-decomposition
tree has constant depth, almost linear size and can be computed in almost linear time.

3.2 Cover Systems
Given a subgraph H in G with a vertex ordering π of G. A cover system of H in G is a family
Z of clusters Zi = Xr[G, π, v] ∈ Z for some r ∈ N such that every connected component C

of H is contained in some Zi. A cover system is non-overlapping if all distinct clusters have
an empty intersection.

▶ Lemma 15. For every graph G with a vertex ordering π, every D ⊆ V (G) of size k, there
exists a cover system of G[N [D]] in G of size at most k where each cluster has the same
radius r ≤ 2k.

Proof. We start with the clusters X2[G, π, minπ N [d]] for every d ∈ D. Call this collection Z.
Note that Z is already a valid cover system of G[N [D]] in G. If two distinct clusters Xr[G, π, z]
and Xr[G, π, z′] from Z intersect, we replace both with a new cluster X2r[G, π, minπ{z, z′}]
in Z. Every vertex or edge covered by the two old clusters stays covered in the new one.
Also, if two clusters Xr[G, π, z] and Xr′ [G, π, z′] are of a different radius, say, r′ < r, we
replace Xr′ [G, π, z′] with Xr[G, π, z′] to match the radii of all the clusters.

We repeat this until no intersecting clusters remain. As the number of clusters decreases
with every step, the radius is at most 2k at the end. ◀
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For Theorem 1, one needs to find clusters from Xr which are disjoint and maximize
the sum of weights of clusters. This is captured by the following definition. We can solve
this problem in almost linear time on nowhere dense graph classes, by noticing that the
intersection graphs of the sparse neighborhood covers Xr are almost nowhere dense. Then,
one can use treedepth colorings and LinEMSOL.

▶ Definition 16 (Disjoint Cluster Maximization). Given a graph, a set system Xr as defined
in Definition 8, labelled by a function Λ : Xr → 2Λ of size k. Each combination of a cluster
X ∈ Xr and label λ ∈ Λ(X) is weighted by a function w.

Problem: Find pairwise disjoint clusters X1, . . . , Xk ∈ Xr such that for each label λi ∈ Λ
the cluster Xi is labeled λi and X1, . . . , Xk maximize

∑k
i=1 w(Xi, λi) for such cluster sets.

Parameter: r, k

Let Ω be the set of weighted positive conjunctive clauses (µ, ω(yx̄)), z̄ ⊆ x̄ and ū ∈ V (G)|x̄|.
With Ω|z̄ we denote a subset of Ω with weighted clauses (µ, ω(yx̄)) where every variable
occurring in ω is from z̄. We define Ω|z̄[Z, ū] as

∑
v∈Z

∑
(µ,ω)∈Ω|z̄

µJω(vū)KG. Note that
Ω|z̄[Z, ū] depends only on the assignment of z̄ and does not need the full assignment ū of x̄.

To illustrate the following lemma, consider a positive conjunctive clause ω(yx̄z̄), sets
P, W ⊆ V (G) and ū ∈ P x̄, w̄ ∈ W z̄. To count the fulfilling vertices v ∈ W of ω, i.e. Ω[W, ū],
we want to reduce this task to counting on cover systems of N [w̄]. However, as not all
fulfilling vertices in W are adjacent to w̄, we need to be more careful.

▶ Lemma 17. Let G be a graph, Ω a set of weighted positive conjunctive clauses (µ, ω(yx̄z̄)),
P, W ⊆ V (G) disjoint, ū ∈ P x̄, w̄ ∈ W z̄ such that N [w̄] ⊆ P ∪ W . For every cover system Z
of G[N [w̄]] in G[W ] it holds that

Ω[W, ūw̄] = Ω|yx̄[W, ūw̄] +
∑
Z∈Z

(Ω|yx̄z̄Z
[Z, ūw̄] − Ω|yx̄[Z, ū])

where z̄Z are the variables zi from z̄ which are assigned to a vertex in Z.

Let us consider how a solution ū for #y φ(yx̄) interacts with a radius-r decomposition of
the input graph G where r is chosen appropriately big, e.g. 2k resulting from Lemma 15.
First, we transform φ into a set of positive clauses Ω, making the application of Lemma 17
possible.

Consider some node t in Tr. When applying Lemma 17 with P as the vertices of the root
path of t and W as Tt, we see that the resulting cover system Z corresponds to a selection
of children of t in Tr, as both use the sets Xr from Definition 8. Now imagine that we know
Ωyx̄z̄Z

[Z, ū] for every Z ∈ Z. Note that this number only depends on the assignment of
x̄z̄z and not the vertices assigned outside P and Z. With Lemma 17 we can combine these
numbers into Ω[W, ū] without needing to know the actual assignments of z̄Z in the cover
system anymore! Note that Ωyx̄[Z] is easily computable while only knowing ū and not w̄.

Thus, we can compute J#y φ(yū)K bottom-up using the radius-r decomposition while only
considering the vertices assigned in ū which are contained in the root path of the considered
vertex.

3.3 Dynamic Program
To determine maxū #y φ(yū) for a quantifier-free formula φ(yx̄) we recursively compute the
following information in the decomposition tree of G (bottom-up, if you will). Consider
some node t of T and a partial assignment α of x̄ to the root path β(Pt). The interesting
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information is: How many vertices underneath t, i.e. in V (Gt), fulfill φ under the “best”
choice on completing the assignment α to vertices in V (Gt). Then the answer to the problem
can be read off the information for the root node.

Assume we already know this kind of information for every child t′ of t. To compute
this information for t, we branch how the variables xi that are not assigned under α are
distributed among the children of t. Then the table entries of these children are combined in
a suitable way. We do this for every distribution among children and take the maximum of
the resulting values. If a vertex corresponding to t fulfills with the assignment the formula φ,
it gets counted towards the number of “fulfilling” vertices.

However, we have to take more into consideration. First, branching on the distribution of
the unassigned variables xis under α among the children of t is not fast enough, as there
are around nk possibilities for that. Instead, we branch on how the unassigned variables are
partitioned. For every such partition, we formalize the optimal choice of children ti such that
they contain exactly the unassigned variables from the i-th part, as an optimization problem.

Secondly, the graphs Gt′ spanned by each child t′ of t are in general not disjoint. Combining
the counts of two overlapping graphs yields to double counting. We circumvent this in the
above optimization problem.

Thirdly, we need to keep track of how the vertices in the root path Pt are adjacent to the
variables xi that are assigned underneath t. We cannot branch on the complete assignment
as the number of those is too high.

Before we turn to the dynamic program on the decomposition tree, we consider something
simpler:

Let G be a graph and φ(yx̄) be quantifier-free FO formula. Consider the pair (P, W )
which is a set of vertices P = {v1, . . . , vk} ⊆ V (G) and a set W ⊆ V (G) that is disjoint with
P . We are interested in how many vertices v in G[P ∪ W ] satisfy φ(vū) for an optimal choice
of ū ∈ (P ∪ W )|ū|. For this, we keep track of M

(P,W )
α [S], which is the number of fulfilling

vertices v ∈ W wrt. φ, α̂ and S, maximizing over S-completions α̂ on W .
We can “forget” a vertex v, i.e., derive the information of (P, W ∪{v}) from the information

(P ∪ {v}, W ) as follows: Assume the maximum number of fulfilling vertices in W is x for a
given partial assignment α on P ∪ {v} and adjacency profile S on P ∪ {v}. Then the number
of fulfilling vertices in W ∪ {v} is x + 1 if v satisfies φ with the assignment α and adjacency
profile S, or x otherwise. However, neither α nor S are valid assignments or adjacency
profiles for P . Hence, we need to adjust these so that we can formulate this information for
(P, W ∪ {v}). For this, we need to remove v from α and add the neighborhood of v in P to
S as Si, for every i with α(xi) = v. Then, M

(P ∪{v},W )
α [S] = M

(P,W ∪{v})
α|P

[S′](+1) where α|P
is the assignment α without v and S′ is the adjacency profile as described above.

One can also combine the information of two structures (P, W1) and (P, W2) to get the
information of (P, W1 ⊎ W2) if W1 and W2 are disjoint. This is also known as “merge.”
Consider some assignment α on P and some adjacency profile S on P . Then the number of
fulfilling vertices in U ⊎W wrt φ, α and S is the max{MP,W1

α [S1]+MP,W2
α [S2] | S1 ⊎S2 = S}.

Indeed however, the algorithm does not take a quantifier-free formula φ but a set of
weighted positive conjunctive clauses. Instead of just counting the fulfilled vertices, it
computes the added up weight of them wrt. to the weights of the clauses.

▶ Theorem 1. Let C be a nowhere dense graph class. For every ε > 0, every graph G ∈ C
and every quantifier-free first-order formula φ(yx̄) we can compute a vertex tuple ū∗ that
maximizes J#y φ(yū∗)KG in time O(n1+ε).
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4 Characterizing Almost Nowhere Dense Graph Classes

In this section, we provide various characterizations of almost nowhere dense classes, i.a. via
bounded depth minors and generalized coloring numbers.

▶ Definition 18 (Almost nowhere dense). A graph class C is almost nowhere dense if for
every r ∈ N, ε > 0 there exists n0 such that no graph G ∈ C with |G| ≥ n0 contains K⌈|G|ε⌉
as a depth-r minor.

▶ Theorem 19. Let C be a graph class. The following statements are equivalent.
1. C is almost nowhere dense.
2. For every r ∈ N, ε > 0 there exists n0 such that no graph G ∈ C with |G| ≥ n0 contains

K⌈|G|ε⌉ as a depth-r minor.
3. For every r ∈ N, ε > 0 there exists n0 such that no graph G ∈ C with |G| ≥ n0 contains

K⌈|G|ε⌉ as a depth-r topological minor.
4. For every r ∈ N, ε > 0 there exists n0 such that no graph G ∈ C with |G| ≥ n0 contains

an r′-subdivision of K⌈|G|ε⌉ as a subgraph for any r′ ≤ r.
5. For every r ∈ N, ε > 0 there exists n0 such that wcolr(G) ≤ |G|ε for every graph G ∈ C

with |G| ≥ n0.
6. For every r ∈ N, ε > 0 there exists n0 such that colr(G) ≤ |G|ε for every graph G ∈ C

with |G| ≥ n0.

The characterizations from Theorem 19 are very similar to those for nowhere dense classes.
The only difference in the characterizations 1. to 4. would be the size of the forbidden cliques:
for nowhere dense classes, the size would be f(r) instead of ⌈|G|ε⌉. Similarly, if we would
substitute “for every G ∈ C” with “for every subgraph G ⊆ H ∈ C” in characterizations 5
and 6 would characterize nowhere dense classes. Note that every almost nowhere dense class
which is monotone, i.e. closed under taking subgraphs, is also nowhere dense.

Conversely, if a class C is almost nowhere dense, then its subgraph-closure C⊆ is not
almost nowhere dense in general. Consider for this the class of graphs which for every n ∈ N
contains independent set of size n with a clique of size log n, i.e. the graph In ∪ Klog n. This
class is almost nowhere dense but its subgraph-closure contains cliques Kn of every size n as
member, and so, all graphs.

5 Approximation on Almost Nowhere Dense

In this section we consider the same problem as before, i.e., finding vertices for x̄ that satisfy
#y φ(x̄y) > N but on almost nowhere dense classes of graphs. Here, we give an approximation
algorithm with an additive error. For this, we use completely different techniques compared
to Section 3. We first show how to reduce the corresponding model-checking problem to
approximate sums over unary functions. Then we present the approximate optimization
algorithm in Theorem 20.

The main result of this section is the following approximate optimization algorithm with
additive error.

▶ Theorem 20. There exists a computable function f such that for every graph G and every
quantifier-free first-order formula φ(yx̄) we can compute a vertex tuple ū∗ with

| max
ū

J#y φ(yū)KG − J#y φ(yū∗)KG| ≤ 4|φ|wcol2(G)O(|φ|)

in time wcolf(|φ|)(G)f(|φ|)n.
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For the approximate model-checking problem with an additive error δ, similar to [8], we
want an algorithm such that
1. the algorithm returns “yes” only if G satisfies the formula,
2. returns “no” only if G does not satisfy the formula,
3. returns ⊥ only if the optimum is within δ to N .
The option ⊥ can be seen as “I do not know” as the computed result and the desired result
are so close that the difference falls into the additive error δ.

Given the approximate optimization algorithm from Theorem 20, we can easily build an
approximate model-checking algorithm as described above for the formula ∃x̄#y φ(yx̄) > N

by computing a vertex tuple ū∗ from the theorem. If N − J#y φ(yū∗)KG ≤ δ, answer ⊥.
Otherwise, answer “yes” or “no” according whether J#y φ(yū∗)KG

> N or not. Note that δ

cannot be chosen freely as it depends on the graph (respectively, its weak coloring numbers).
The runtime of the algorithm from Theorem 20 is fpt if the weak r-coloring numbers are

bounded by nε for r ≤ f(|φ|). This is the case for almost nowhere dense classes. This is
in contrast to the results of [8] where the running time of their algorithms is bounded by
f(wcolf(|φ|))||G|| which is fpt on classes of bounded expansion but is not fpt on nowhere
dense and almost nowhere dense classes.

This gives us the following corollary.

▶ Corollary 2. Let C be an almost nowhere dense class of graphs. For every ε > 0, every
graph G ∈ C and every quantifier-free first-order formula φ(yx̄), we can compute in time
O(n1+ε) a vertex tuple ū ∈ V (G)|x̄| with

| max
ū

J#y φ(yū)KG − J#y φ(yū∗)KG| ≤ nε.

6 Hardness Results

In this section, we try to see how far the above result can or cannot be extended to either
a bigger class of problems or to more general graph classes. Exemplary, we examine the
distance-r versions of the dominating set, independent set and clique problem. Note that in
contrast to the section before, we do not consider the partial problem versions. We see that
each of these problems behave differently in this context. The distance-r dominating set
problem is already hard for distance 1 on some almost nowhere dense graph classes, whereas
distance-r independent set and distance-r clique are both fpt on almost nowhere dense graph
classes.

As for graph classes, we consider classes that are closed under removing edges because
monotone graph classes are very well understood and the notions of nowhere dense and
almost nowhere dense coincide on those classes. Interestingly, for graph classes closed under
removing edges the distance-r clique problem is fpt for all distances r if and only if the class
is almost nowhere dense (under some complexity theoretic assumptions). However, there
exist graph classes which are closed under removing edges but not almost nowhere dense
that allow for fpt algorithms for the distance-r independent set problem. The difference of
behavior between distance-r clique and distance-r independent set is also intriguing as the
FO-formulation of these problems has exactly one quantifier alternation for both.

6.1 Exact Evaluation Beyond Nowhere Dense Classes
The following lemma proves that dominating set is W[1]-hard on almost nowhere dense
classes.
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The class of bipartite graphs with sides L and R where L has polylogarithmic size is
almost nowhere dense: A witness for this is a vertex ordering that starts with L and starts .
Only the vertices from L are weakly r-reachable from any vertex. Hence, wcolr(G) ≤ |L| + 1
for each r.

▶ Theorem 21. In bipartite graphs whose left side has 2k(k − 1)⌈log(n)⌉ vertices and whose
right side has n vertices it is W[1]-hard to decide whether there are

(
k
2
)

right-side vertices
dominating all left-side vertices.

Proof. We reduce from colorful clique. Assume we have a k-partite graph G of size n

consisting of parts V0, . . . , Vk−1 (each of a different color) and want to find a colorful clique of
size k. Without loss of generality, we can assume n to be large enough that

( 2⌈log(n)⌉
⌈log(n)⌉−1

)
≥ n.

This means, we can find for each v ∈ V (G) a unique binary encoding enc(v) of length
2⌈log(n)⌉ such that the first bit is set to one and in total exactly half the bits are set to one.
Let enc(v) be the binary complement of enc(v). We construct a bipartite graph H, whose
left side is partitioned into cells Cij for 0 ≤ i ̸= j < k, each of size 2⌈log(n)⌉, and whose
right side will be specified soon. The vertices of each cell are ordered. When we say for a
given vertex v from the right side and cell C that v is connected to C according to a specified
encoding, we mean that for 1 ≤ l ≤ 2⌈log(n)⌉, v is connected to the lth vertex of C if and
only if the lth bit in the encoding is set to one. For 0 ≤ i < k we define

succi(j) =
{

j + 1 mod k i ̸= j + 1 mod k

j + 2 mod k otherwise.

For all 0 ≤ i < j < k and all u ∈ Vi and v ∈ Vj such that uv ∈ E(G), add a vertex xu,v to
the right side and

connect xu,v to Ci,j according to enc(u),
connect xu,v to Ci,succi(j) according to enc(u),
connect xu,v to Cj,i according to enc(v),
connect xu,v to Cj,succj(i) according to enc(v). ◀

We can reduce the aforementioned dominating set variation to the classical dominating
set problem by connecting the right side to a fresh vertex.

▶ Corollary 22. There exists an almost nowhere dense graph class C where the dominating
set problem is W [1]-hard and cannot be solved in time no(k) assuming ETH. This implies
also the hardness of the fragments PDS-like, FOC1(P), and FOC({>}) of FOC(P) on C.

Note that this result does not follow from the intractability result of FO-logic on subgraph-
closed somewhere dense classes, i.e. not nowhere dense classes.

6.2 Beyond Distance One
We showed that the dominating set problem is W [1]-hard on some almost nowhere dense
graph class. However, this is not true for the distance-r clique and independent set problem.

Distance-r clique and independent set on the other hand are fpt on almost nowhere dense
graph classes. Here, we use low treedepth colorings to solve existential FO formulas. With
the right formulation and inclusion-exclusion this works even for distance-r independent set
which cannot be expressed as a purely existential FO formula.

▶ Theorem 23. There exists a computable function f such that for every graph G the
distance-r clique problem can be solved in time wcolf(k,r)(G)f(k,r)n.
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Proof. We can solve this problem with the help of subgraph queries where each subgraph
is an ≤r-subdivision of a k-clique. These subgraphs have less than k2(r + 1) vertices and
there are at most (r + 1)k2 of them. Subgraph queries can be done by checking an existential
FO-formula using Theorem 20. ◀

▶ Theorem 24. There exists a computable function f such that for each graph G the
distance-r independent set problem can be solved in time wcolf(k,r)(G)f(k,r)n.

Proof sketch. We count specially designed subgraphs to solve this problem. These subgraphs
encode that there are vertices v1, . . . vk which have some distance d(vi, vj) from each other.
As the distance constraint “d(vi, vj) ≥ r + 1” for the distance-r independent set problem
cannot be expressed this way, we use inclusion-exclusion to compute the number of such
graphs. To count them, we use low treedepth colorings whose number of colors are bounded
by weak coloring numbers. ◀

▶ Corollary 25. For every almost nowhere dense graph class C, every r ∈ N and every real
ε > 0 both the distance-r clique problem and the distance-r independent set problem can be
solved in time O(n1+ε) given a graph G ∈ C.

6.3 Beyond Almost Nowhere Dense
For graph classes that are closed under removing vertices and edges, i.e., monotone graph
classes, we know a lot already. Most importantly, FO-model checking is fpt on such classes if
and only if the class is nowhere dense (unless FPT = W [1]) [15]. We now want to consider
graph classes that are only closed under removing edges. Here the concept of almost nowhere
dense graph classes becomes interesting.

The following observation follows directly from characterization 6 in Theorem 19. If P
is a parameterized problem that can be solved in time colf(k)(G)f(k)n and C is an almost
nowhere dense graph class, then P can be solved on C in almost linear fpt time f(k, ε)n1+ε

for every ε > 0. We complement this by showing that the distance-r clique problem is
most likely not fpt on all graph classes that are not almost nowhere dense, but closed under
removing edges. Hence, under certain common complexity theoretic assumptions, if a graph
class C is closed under removal of edges then distance-r clique is fpt on C iff C is almost
nowhere dense.

▶ Theorem 26. Let C be a graph class that is not almost nowhere dense, but closed under
removing edges. Then there exists a number r, such that one cannot solve the distance-r′

clique problem parameterized by solution size in fpt time on C for all r′ ≤ r unless i.o.W[1]
⊆ FPT.

Similar hardness results in parameterized complexity are usually built on the hardness
assumption FPT ̸= W [1]. The complexity class i.o.W[1] should be read as “infinitely often
in W[1]” and needs to be explained.

▶ Definition 27. For a language L and an integer n let Ln = L ∩ {0, 1}n. A language L is
in i.o.C for a complexity class C if there is some L′ ∈ C such that L′

n = Ln for infinitely
many input lengths n.

Considering the infinite often variant i.o.C of a complexity class C is an established technique
in complexity theory (i.e., [3, 2]). To prove our result, we show that a graph class C that is not
almost nowhere dense, contains an infinite sequence of graphs having cliques of polynomial
size as bounded depth topological minors. If C is also closed under removal of edges then
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having bounded depth topological clique minors of size n implies the existence of subdivisions
of arbitrary graphs H of size n as induced subgraphs. Extra care needs to be taken to make
sure that all paths connecting the principal vertices should be of equal length, since otherwise
a reduction would need to try out an exponential number of possible length combinations to
finally find the correct subdivision of H that is contained in C. The following corollary is a
direct consequence of Theorem 19.4.

▶ Corollary 28. Let C be some graph class that is not almost nowhere dense. Then there
are r, ε and an infinite sequence of strictly ascending numbers n0, n1, . . . such that for all
i ∈ N there is a graph G ∈ C of order at most ni that contains an r′-subdivision of K⌈nε

i
⌉ as

a subgraph for some r′ ≤ r.

The consequence i.o.W[1] ⊆ FTP is weaker than W[1] ⊆ FPT. We could use the latter
in Theorem 26 if we required a stronger precondition, i.e., that C has “witnesses” for input
lengths n0, n1, n2, . . . such that the gap between ni and ni+1 is only polynomial. This
approach has been used, e.g., in proving lower bounds on the running time of MSO-model
checking in graph classes where the treewidth grows polylogarithmically [19, 12].

Proof of Theorem 26. Let r and ε be the constants (depending on C) from Corollary 28.
Assume that the distance-(r + 1) clique problem on C is fpt when parameterized by solution
size. We will present a Turing reduction showing that the (usual) clique problem on the class
of all graphs is infinitely often in FPT.

By Corollary 28 for infinitely many n0, n1, · · · ∈ N there exists a graph from C of size
at most n

1/ε
i that contains an r′-subdivision of a clique of size ni as a subgraph for some

r′ ≤ r. Let us pick one n = ni. Suppose we want to decide whether a graph G with n

vertices contains a clique of size k. Since C is closed under removal of edges, there exist
r′ ≤ r, and n ≤ N ≤ n1/ε such that C contains a graph Hr′,N consisting of an r′-subdivision
of G together with N isolated vertices. Now for all k, G contains a clique of size k iff
Hr′,N contains a distance-(r′ + 1) clique of size k. Assume for contradiction we had an
algorithm that decides in time at most f(r′, k)nc whether a graph in C of size n contains an
distance-(r′ + 1) clique for r′ ≤ r. (For graphs not in C, the algorithm may give a wrong
answer, but we can modify it to construct and test a witness of a distance-(r′ + 1) clique on
yes-instances. Hence, we can assume that the algorithm never returns “no” on yes-instances.)

The existence of such an algorithm yields us an FPT algorithm for the k-clique problem
on general graphs: For all r′ ≤ r, and n ≤ N ≤ n1/ε, we run this (hypothetical) fpt algorithm
in parallel on Hr′,N for f(r′, k)N c time steps. Then G contains a clique of size k iff for at
least one value of r′ and N we have Hr′,N ∈ C and Hr,N contains a distance-(r′ + 1) k-clique.

As the k-clique problem is W [1]-hard, we get the desired result. ◀

Note that this result does not extend to the distance-r independent set problem. Consider
the class of graphs where at least half of its vertices are isolated. Then the distance-r
independent set problem is trivially FPT for this graph class. However, this graph class is
closed under removing edges, but it is not almost nowhere dense.
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Abstract
We introduce a novel method for the rigorous quantitative evaluation of online algorithms that
relaxes the “radical worst-case” perspective of classic competitive analysis. In contrast to prior work,
our method, referred to as randomly infused advice (RIA), does not make any assumptions about
the input sequence and does not rely on the development of designated online algorithms. Rather,
it can be applied to existing online randomized algorithms, introducing a means to evaluate their
performance in scenarios that lie outside the radical worst-case regime.

More concretely, an online algorithm ALG with RIA benefits from pieces of advice generated by
an omniscient but not entirely reliable oracle. The crux of the new method is that the advice is
provided to ALG by writing it into the buffer B from which ALG normally reads its random bits,
hence allowing us to augment it through a very simple and non-intrusive interface. The (un)reliability
of the oracle is captured via a parameter 0 ≤ α ≤ 1 that determines the probability (per round)
that the advice is successfully infused by the oracle; if the advice is not infused, which occurs with
probability 1 − α, then the buffer B contains fresh random bits (as in the classic online setting).

The applicability of the new RIA method is demonstrated by applying it to three extensively
studied online problems: paging, uniform metrical task systems, and online set cover. For these
problems, we establish new upper bounds on the competitive ratio of classic online algorithms that
improve as the infusion parameter α increases. These are complemented with (often tight) lower
bounds on the competitive ratio of online algorithms with RIA for the three problems.
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1 Introduction

Competitive ratio is a widely used metric for evaluating the performance of online algorithms.
It measures the ratio between the performance of an online algorithm and that of an optimal
offline (clairvoyant) algorithm, assuming a worst-case (i.e., adversarial) input sequence. Early
on, it has been observed (see, e.g., [53]) that in practice, many online algorithms outperform
their theoretical worst-case guarantees. Indeed, in realistic scenarios, the online algorithms
tend to “enjoy a good fortune” and rarely encounter the theoretical pitfalls that realize the
competitiveness lower bounds (cf. [41]).
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Random bits

Oracle

Request i
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Randomized
AlgorithmBuffer

with pbb 1-α

with pbb α

Figure 1 In each round, the algorithm reads its random bits from buffer B. Under the RIA
model, the content of this buffer is replaced by the oracle’s advice for that round with probability α,
independently of other rounds.

This phenomenon has led to extensive research on the analysis of online algorithms
beyond the extreme worst-case nature of traditional competitive analysis (see [38] for a recent
survey). A prominent approach in this regard is to restrict the power of the adversary that
decides on the input sequence, giving rise to the methods of locality of reference [3, 7, 2],
access graph [20], smoothed analysis [47, 15], random arrival order [4, 6, 5], independent
sampling [27], diffused adversaries [41], and distributional analysis [48, 34]. Another approach
is to relax the competitive analysis definition, as done in resource augmentation [50], loose
competitiveness [53], and competitiveness with high probability [39]. See also the surveys [29,
23] for additional measures.

In this paper, we wish to advance the study of (randomized) online algorithms beyond
worst-case competitive analysis by offering a radically new point of view on the concept of
“enjoying a good fortune” (in terms of avoiding the competitiveness pitfalls). Our approach
does not restrict the power of the adversary, hence we do not need to justify any assumptions
on the request sequence. Moreover, we use the standard definition of competitive analysis
(with no relaxations). Last but not least, in contrast to some existing “beyond worst-case”
methods, which are limited to certain types of online problems (e.g., locality of reference and
access graph), our new method is very general and can be applied to seemingly any online
problem.

So, how do we interpret “good fortune” on behalf of a randomized online algorithm ALG
without making any assumptions on ALG’s input sequence? The answer is simple: we look
at the outcome of ALG’s random coin tosses. That is, to make ALG more fortunate, all we
have to do is to increase the chances of getting good such outcomes.

This raises another question: what makes one outcome of ALG’s random coin tosses
better than another? To answer this question, we recruit an omniscient oracle that generates
advice for ALG in each round of the execution. The crux of our method, called randomly
infused advice (RIA), is that the oracle attempts to write this advice into the buffer B from
which ALG normally reads its random bits. To quantitatively control ALG’s good fortune,
we introduce an infusion parameter 0 ≤ α ≤ 1, which determines the probability that the
advice is (successfully) infused by the oracle in each round (independently); if the advice is
not infused – an event occurring with probability 1− α – then the buffer B contains fresh
random bits (as in the classic online setting). Refer to Figure 1 for an illustration.

We emphasize that the interface between the randomized online algorithm ALG and the
oracle is “non-intrusive”, i.e., it is defined on top of the standard computational model of
(randomized) online algorithms (a.k.a. request-answer games). Therefore, the RIA method is
suitable for the analysis of existing online algorithms (including classic ones), facilitating
the evaluation of their performance beyond the extreme worst-case nature of traditional
competitive analysis. This is in contrast to other advice models for online algorithms
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(discussed in Section 1.2) in which the oracle-algorithm interface is based on a designated
buffer (or tape) from which the algorithm reads the advice. As such, these models require
the development of new, model-specific, algorithms and cannot be applied to existing ones.

Notice that the RIA model does not impose any limitations on the size of the buffer B,
and through it, on the advice size (or the number of random bits) provided to ALG in
each round. This raises the concern of making the online algorithm “too powerful” as the
(successfully) infused advice may hold excessive information regarding the future requests. To
overcome this concern, we restrict our attention to randomized online algorithms which are
randomness-oblivious, namely, in each round, ALG has access to past requests, past answers,
the current request, and the current content of the buffer B (which contains the current
advice or random bits), however ALG cannot access the content of B in previous rounds.
Indeed, all algorithms analyzed in this paper are randomness-oblivious.

The main motivation for studying the RIA method comes from analyzing the performance
of randomized online algorithms in scenarios that lie outside the “radical worst-case” regime,
assumed in the classic online computation literature. In particular, this new method allows us
to compare between different online algorithms that exhibit the same performance guarantees
in worst-case scenarios, possibly separating between them in terms of their performance once
the scenarios get “a little bit better”, and to so without making any explicit assumptions
about the request sequence (or the probability distribution thereof).

Another motivation is that the RIA model provides an abstraction for an unreliable
predictor (whose role is assumed by the oracle) whose “mistakes” take a random (rather
than worst-case) flavor, where the infusion parameter α indicates the (expected) fraction of
rounds in which the predictor is correct. In this regard, the non-intrusive interface between
the online algorithm and the oracle gives the RIA model a distinctive advantage over existing
advice models for online algorithms as it enables the analysis of standard online algorithms
in scenarios that include an unreliable predictor, while retaining their worst-case guarantees.

1.1 Our Contribution
On top of the conceptual contribution that lies in introducing the RIA model, we make the
following technical contribution.

Upper bounds

The applicability of the new RIA model is demonstrated on three extensively studied
online problems: the paging problem [50], for which we analyze the classic RandomMark
algorithm [32]; the uniform metrical task system (MTS) problem [21], for which we analyze
the classic UnifMTS algorithm;1 and the unweighted online set cover problem [9], for which
we analyze the influential primal-dual algorithm [24, Ch. 4] with randomized rounding
(referred to as RandSC). In all cases, our findings are similar to what is called “robustness”
and “consistency” in the literature dedicated to online algorithms with predictions [42, 46]:
when augmented with RIA, the competitive ratio of these algorithms is never worse than the
original, and improves asymptotically as α→ 1. Our results are cast in the following three
theorems, where we denote the k-th harmonic number by Hk ≈ log k; we emphasize that in
all cases, neither the online algorithm nor the oracle are aware of the infusion parameter α.

1 Due to spatial considerations, the upper bound for uniform MTS is omitted from this version of the
paper. Refer to the full version [31] for the upper bound description and analysis.
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▶ Theorem 1.1. The competitive ratio of RandomMark augmented with RIA with infusion
parameter 0 ≤ α ≤ 1 on instances of cache size k is at most min{2Hk, 2

α}.

▶ Theorem 1.2. The competitive ratio of UnifMTS augmented with RIA with infusion
parameter 0 ≤ α ≤ 1 on n-state instances is at most min{2Hn, 2

α + 2}.

▶ Theorem 1.3. The competitive ratio of RandSC augmented with RIA with infusion
parameter 0 ≤ α ≤ 1 on instances with n elements and maximum element degree d is at most
O(min{log d log n, log n

α }).

Lower bounds

On the negative side, we prove that the upper bound promised in Theorem 1.1 is asymp-
totically tight for the class of lazy algorithms, which are not allowed to change their cache
configuration unless there is a page miss.

▶ Theorem 1.4. There does not exist a lazy (randomness-oblivious) online paging algorithm
augmented with RIA with infusion parameter 0 ≤ α ≤ 1 whose competitive ratio on instances
of cache size k is better than min{Hk, 1

α}.

Omitting the restriction to lazy algorithms, we can establish a weaker lower bound.

▶ Theorem 1.5. There does not exist a (randomness-oblivious) online paging algorithm
augmented with RIA with infusion parameter 0 ≤ α ≤ 1 whose competitive ratio on instances
of cache size k is better than min{Hk, 1

k·α}.

The uniform MTS problem generalizes the paging problem on instances that include
n = k + 1 pages. As Theorems 1.4 and 1.5 hold (already) for such instances, their promised
lower bounds are transferred to the uniform MTS problem, where laziness translates to online
MTS algorithms that may switch state only when the processing cost is positive [33] (an
algorithm class that includes UnifMTS).

▶ Theorem 1.6. There does not exist a lazy (randomness-oblivious) online uniform MTS
algorithm augmented with RIA with infusion parameter 0 ≤ α ≤ 1 whose competitive ratio
on n-state instances is better than min{Hn−1, 1

α}.

▶ Theorem 1.7. There does not exist a (randomness-oblivious) online uniform MTS algorithm
augmented with RIA with infusion parameter 0 ≤ α ≤ 1 whose competitive ratio on n-state
instances is better than min{Hn−1, 1

(n−1)·α}.

For online set cover, we establish a lower bound for lazy algorithms, namely, online
algorithms which are allowed to buy a set only if it contains the current (uncovered) element
(an algorithm class that includes RandSC).

▶ Theorem 1.8. There does not exist a lazy (randomness-oblivious) unweighted online set
cover algorithm augmented with RIA with infusion parameter 0 ≤ α ≤ 1 whose competitive
ratio on instances with maximum element degree d is better than min{ 1

2 log d, 1
2·α}.

1.2 Novelty and Additional Related Work
Models of Advice

A well-known and suitable advice model for machine-learned predictions is the model of
online algorithms with untrusted advice introduced by Lykouris and Vassilvitskii [42], where
the existing literature includes papers on paging [42, 49, 37, 13], metrical task system [11],
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and online set cover via the primal-dual approach [12]. In this model, the predictor may be
faulty, and the competitive ratio depends on its error so that for low error, the algorithm
should perform close to the offline optimum (a.k.a. consistency), while even for large error,
the algorithm should still fallback to guarantees similar to those of non-augmented online
algorithms (a.k.a. robustness).

Another well-known advice model is the perfect advice model [30, 18] under which many
online problems have been studied, including paging, metrical task system [22], and online set
cover [28]. In this model, the oracle is fully trustworthy, and its power is therefore quantified
via the size (i.e., number of bits) of the advice provided to the online algorithm. This model
is related to lookahead [35], where an algorithm is given some number of future requests in
advance. The model of perfect advice was later extended to untrusted advice, retaining its
focus on measuring the required advice size [10].

Unlike these two advice models, the RIA model does not require any new algorithmic
features (e.g., a designated advice tape) and is therefore applicable to existing (standard)
online algorithms. Furthermore, our model does not limit the advice size, unlike the perfect
advice model, and still allows to arrive at asymptotically tight lower bounds under natural
assumptions, in contrast to the machine-learned prediction model where no general lower
bounds are known.

Online algorithms for paging, MTS, and set cover

Two optimally competitive algorithms for paging are known: PARTITION [43] and EQUI-
TABLE [1]. For the uniform MTS problem, a (2Hn)-competitive algorithm was presented
in [21], later improved to Hn + O(

√
log n) in [36]; the latter result nearly matches the Hn

lower bound of [21].
For online set cover, the state-of-the-art competitive ratio upper bounds are O(log m log n)

for the weighted case [9] and O(log m log(n/OPT)) for the unweighted case [25], where m and
n denote the number of sets (an upper bound on the maximum element degree d) and the
number of elements, respectively; interestingly, both bounds can be realized by deterministic
online algorithms. On the negative side, no (randomized) online algorithm has a competitive
ratio better than Ω(log m) [40] and no deterministic online algorithm has a competitive ratio
better than Ω(log m log n/(log log m + log log n)) [9]. If the (randomized) online algorithm is
required to admit a polynomial time implementation, then the competitiveness lower bound
improves to Ω(log m log n) assuming that NP ⊈ BPP [40].

2 Online Algorithms with Randomly Infused Advice

We begin by recalling standard definitions of online algorithms as request-answer games [17].
Our model of online algorithms with randomly infused advice is then defined as a generaliza-
tion of this model.

2.1 Online Algorithms as Request-Answer Games
Consider a finite sequence σ = ⟨r1, . . . , r|σ|⟩ of requests, where each request ri is taken from
a set R. A solution for σ is a sequence λ = ⟨a1, . . . , a|σ|⟩ of answers, where each answer ai

is taken from a set A. For a given minimization problem, the quality of a solution λ for
a request sequence σ is determined by means of a cost function f : R|σ| ×A|σ| → R ∪ {∞}.2
Let OPT(σ) = infλ∈A|σ| f(σ, λ) denote the cost of an optimal solution for σ.

2 We restrict our attention to minimization problems as these are the problems addressed in the current
paper. Extending our setting to maximization problems is straightforward.
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In the realm of online algorithms, the requests are revealed one-by-one, in discrete rounds,
so that upon receiving request ri in round i, a (randomized) online algorithm ALG outputs
the (random) answer ai irrevocably. That is, the solution λALG = ⟨a1, . . . , a|σ|⟩ produced
by ALG is defined so that each answer ai is computed as a function of (1) the request
subsequence r1, . . . , ri; (2) the answer subsequence a1, . . . , ai−1; and (3) round i’s random bit
string Bi ∈R {0, 1}L, where the parameter L ∈ Z≥0 is specified by the algorithm’s designer
(possibly as a function of the parameters of the problem).3

The performance of an online algorithm ALG is measured via competitive analysis: we say
that ALG is c-competitive if there exists a constant b (that may depend on the parameters
of the problem) such that E[ALG(σ)] ≤ c · OPT(σ) + b for any request sequence σ, where
ALG(σ) is the random variable that takes on the cost of the solution produced by ALG in
response to a request sequence σ. The request sequence σ is assumed to be determined by a
malicious adversary; we stick to the convention of an oblivious adversary [19, Ch. 4] which
means that the adversary knows ALG’s description, but is unaware of the outcome of ALG’s
random coin tosses.

2.2 Randomly Infused Advice

In this paper, we introduce an extension of online algorithms, referred to as online algorithms
with randomly infused advice (RIA). In the RIA model, an algorithm ALG is assisted by
a powerful, yet not entirely reliable, oracle that has access to the entire request sequence σ.
Formally, for any request sequence σ = ⟨r1, . . . , r|σ|⟩ and round 1 ≤ i ≤ |σ|, the oracle O
is defined by an advice function Oσ,i : Ai−1 → {0, 1}L that maps each answer subsequence
⟨a1, . . . , ai−1⟩ to a bit string Oσ,i(a1, . . . , ai−1) ∈ {0, 1}L, referred to as the round i’s advice.
Notice that the length of the advice bit string is equal to the length L of ALG’s random bit
string.

The RIA model is associated with an infusion parameter 0 ≤ α ≤ 1 that quantifies the
(un)reliability of the oracle O. Specifically, in each round i, the bit string Bi (provided
to the online algorithm in that round) is now determined based on the following random
experiment (independently of the other rounds): with probability α, the round i’s advice is
infused into Bi, that is, Bi ← Oσ,i(a1, . . . , ai−1); with probability 1− α, the bit string Bi is
picked uniformly at random, that is, Bi ∈R {0, 1}L.

In other words, in each round i where the infusion is successful (an event occurring with
probability α), the oracle’s advice “smoothly” substitutes the random bit string Bi before it
is provided to ALG; if the infusion is not successful, then Bi remains a random bit string.
We emphasize that ALG and O are not aware (at least not directly) of whether the advice is
successfully infused in the round i, nor are they aware of the infusion parameter α itself.

The competitive ratio of online algorithms ALG with RIA is typically expressed as
a function of the infusion parameter α, where the extreme case of α = 0 corresponds to
standard online computation (with no advice). The ultimate goal is to provide guarantees
on the competitiveness of ALG for any 0 ≤ α ≤ 1.

3 We use a single parameter L (that is often kept implicit in the online algorithm’s description) for
simplicity of the exposition; it can be easily generalized to a (not necessarily bounded) sequence
L1, L2, . . . of round-dependent parameters.
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2.3 Randomness-Oblivious Online Algorithms
Recall that the aforementioned definition of online algorithms dictates that when the online
algorithm ALG determines the answer ai associated with round i, it is aware of the requests
ri′ and answers ai′ associated with past rounds i′ < i, as well as the request ri and random
bit string Bi associated with the current round i, however it is not aware (at least not directly)
of the random bit strings Bi′ associated with past rounds i′ < i. This model choice is made
to prevent an online algorithm ALG with RIA from passing information received through
the (successfully infused) advice to future rounds, thus over-exploiting the lack of an explicit
(model specific) bound on the length of the random / advice bit strings. To distinguish the
online algorithms that adhere to this formulation from general online algorithms (that may
maintain a persistent memory that encodes past random bits), we refer to the former as
randomness-oblivious online algorithms.

3 Paging

In the online paging problem [50], we manage a two-level memory hierarchy, consisting of
a slow memory that stores the set of all n pages, and a fast memory, called the cache, that
stores any size k subset of pages. We are given a sequence σ of requests to the pages. If
a requested page is not in the cache, a page fault occurs, and the page must be moved to the
cache. Since the cache is limited in size, we must specify which page to evict to make space
for the requested page. The goal is to minimize the number of page faults.

In this section, we analyze an elegant randomized online algorithm RandomMark, in-
troduced by Fiat, Karp, Luby, McGeoch, Sleator and Young [32], in the randomly infused
advice framework. The algorithm RandomMark maintains a bit associated with each page
in the cache. Initially the bits of all pages are set to 0 (the pages are unmarked), and after
requesting a page, we bring it to the cache if it is not in the cache yet, and we set its bit to 1
(we mark the page). To bring a page to the cache, we may need to evict another page to
make space for it. In such a case, RandomMark evicts a page uniformly at random chosen
from the unmarked pages. If no unmarked page exists, we unmark all pages. This strategy
has been shown to be 2Hk-competitive [32], where Hk is the harmonic number, and no
randomized algorithm can be better than Hk-competitive.

3.1 RandomMark With Infused Advice
With help of randomness, the classic RandomMark decides on the final candidate to evict:
a random node among unmarked pages. With infused advice, in some rounds the randomness
source used by RandomMark contains advice instead of random bits. The presence of
clairvoyent advice brings obvious advantages, but also brings challenges: not all pages can
be evicted, only the unmarked ones.

Unmarked Longest-Forward-Distance Oracle

An optimal offline algorithm for paging is to evict the item with the access time furthest
in the future [16], also known as longest forward distance (LFD) algorithm. However, we
cannot directly design an oracle for RandomMark around LFD, as it may advise to evict
a marked page, but RandomMark never evicts marked pages. Hence, we propose a variant
of this algorithm that can act as an oracle for RandomMark. Such an oracle, denoted
OULF D, advises RandomMark to evict the page with the longest forward distance among
the unmarked items of RandomMark.
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Analysis of RandomMark

How well can RandomMark perform with infused advice? To find out, we consider the
RandomMark algorithm assisted with the oracle OULF D, and we express the algorithm’s
competitive ratio of in terms of the infusion parameter α (the probability of receiving
advice in each round). Later in this paper, we will show that RandomMark with OULF D is
asymptotically optimal (Theorem 5.4).

▶ Theorem 3.1. The competitive ratio of RandomMark with the oracle OULF D with RIA on
instances of cache size k (against the oblivious adversary) is at most min{2Hk, 2

α}, where
Hk is the k-th harmonic number, and 0 ≤ α ≤ 1 is the infusion parameter.

Before proving this theorem, we recall the definition of a k-phase partitioning of an input
sequence, and we derive sufficient conditions to stop incurring further page faults in a phase.

We begin by recalling basic definitions from the analysis of RandomMark by [32]. We
consider the k-phase partition of the input sequence σ, following the notation from [19]:
phase 0 is the empty sequence, and each phase i > 0 is the maximal sequence following the
phase i− 1 that contains at most k distinct page requests since the start of the ith phase. In
a phase of any marking algorithm, a page requested in the phase is stale if it is unmarked
but was marked in the previous phase, and a page is clean if it is neither stale nor marked.

In addition to these standard definitions, we define the set of vanishing pages as the set
of the pages requested in the previous phase, but not in the current phase. We claim that
after evicting all vanishing pages, marking algorithms incur no further cost in the phase,
since a configuration is reached where all the remaining requests in the current phase are
free (page hits).

▶ Lemma 3.2. Fix an input sequence σ, consider its k-phase partition, and fix any phase P

that is not the first or the last phase. Then, (1) we have exactly c vanishing pages, where
c is the number of clean pages in the phase; and (2) after evicting all vanishing pages, no
marking algorithm for paging incurs further cost in the phase.

Proof. In the phase P , we have exactly k requests to distinct pages: to k − c stale pages
and to c clean pages. Only the clean pages can replace the vanishing pages, hence we have
exactly c vanishing pages. Hence, the first claim holds.

If at any point all c vanishing pages are evicted, this means that all c clean pages were
requested in the phase already. The remaining requests in the phase can concern only stale
pages. As no vanishing pages remain in the cache, the cache consists of c clean pages and
k − c stale pages. Hence, after evicting all vanishing pages, any marking algorithm incurs no
further cost in the phase, and the second claim holds. ◀

Finally, we prove our main claim for paging: RandomMark is min{2Hk, 2
α}-competitive.

We repeat the classic arguments of [32] to arrive at the bound 2Hk, and we analyze the offline
algorithm unmarked longest forward distance, employed by the oracle that probabilistically
interacts with the oracle, to arrive at the bound 2

α .

Proof of Theorem 3.1. Fix any input sequence σ and consider its k-phase partition. Con-
sider any phase that is not the first or the last one. Let c be the number of clean pages in
the phase.

We claim that the expected number of page faults is upper bounded by c/α. If the
algorithm incurs a page fault, and it receives the oracle’s advice, and there are still some
vanishing pages in the cache, then the algorithm evicts a vanishing page; this follows since
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the vanishing pages are not requested in the current phase, hence they have larger forward
distance than other stale pages, and the vanishing pages are unmarked. By Lemma 3.2,
evicting all vanishing pages means that no further cost is incurred throughout the phase,
hence the number of page faults in the phase is upper bounded by the number of page faults
until the algorithm receives c rounds of advice from the oracle (not necessarily consecutive).
The expected number of page faults until receiving c rounds of advice is c/α, since this is
the expected number of independent tosses of α-biased coin until getting c heads outcomes.

Next, we repeat the classic arguments of [32]: the expected number of page faults of the
algorithm is also upper bounded by c ·Hk. Consider an i-th request to a stale page in the
phase for i = 1, 2, 3, . . . , s. Let c(i) denote the number of clean pages requested in the phase
immediately before the i-th request to a stale page, and let S(i) denote the set stale pages
that remain in the cache before the i-th request to a stale page, and let s(i) = |S(i)|. For
i = 1, 2, 3, . . . , s, we compute the expected cost of the i-th request to a stale page. When
the algorithm serves the i-th request to a stale page, exactly s(i) − c(i) of the s(i) stale
pages are in the cache. The stale pages are in the cache with equal probability, say p, since
these are never evicted with the help of advice, but are evicted uniformly from unmarked
pages when a page fault occurs in rounds without advice. The vanishing pages are in the
cache with probability at most p, since they can be evicted both in the rounds with and
without the advice. For the all s(i) stale pages the probability of being in the cache sums to
1, hence p ≤ 1/s(i). Fix a request to a stale page. The page is in the cache with probability
(s(i)− c(i)) · p, hence the expected cost of the request is

1− (s(i)− c(i)) · p ≤ 1− s(i)− c(i)
s(i) = c(i)

s(i) ≤
c

k − i + 1 .

Hence, the total cost of the request to the stale pages is
∑s

i=1 c/(k − i + 1) ≤
∑k

i=2 c/i =
c · (Hk − 1). The total cost in the phase includes the cost of serving the clean page and stale
pages, in total c ·Hk.

We conclude that the number of page faults of the algorithm in a phase is upper-bounded
by both c ·Hk and c/α. By arguments of [32, Theorem 1], the amortized number of faults
made by OPT during the phase is at least c/2. Summing over all phases but the first and the
last one, the competitive ratio is at most min{2Hk, 2

α}. The first and the last phase incurs
cost bounded by 2k, which we account in the additive in the competitive ratio. ◀

The above analysis is asymptotically tight with the lower bound given in Theorem 5.3.
However, for the special case n = k + 1, the result is tight: the competitive ratio of
RandomMark with the oracle OULF D is min{Hk, 1

α}, since in each phase but the last phase,
any offline algorithm pays at least 1, and the number of clean pages is also 1.

The algorithm RandomMark with perfect advice (α = 1) is equivalent to an offline
algorithm that evicts the unmarked item with the longest forward distance. The Theorem 3.1
implies that this algorithm is optimal for n = k + 1, and a 2-approximation for any n.

4 Set Cover

In the set cover problem, we are given a universe U of n elements and a set F = {S1, . . . , Sm}
of m subsets S1, . . . , Sm ⊆ U such that S1 ∪ · · · ∪ Sm = U . For each element e ∈ U , let
F(e) = {S ∈ F | e ∈ S} be the collection of sets that cover it. In the online setting, a subset
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U ′ ⊆ U of elements arrive one by one in an arbitrary order.4 Upon the arrival of an element
e, the algorithm is required to cover it (i.e., if e was not previously covered by the algorithm,
then the algorithm must select a set from F(e)). We emphasize that the algorithm does not
know U ′ (or its size) in advance and that any previously selected set cannot be removed
from the solution obtained by the online algorithm. The cost of a solution to the set cover
problem is the number of sets selected.

In the standard linear program (LP) relaxation for set cover, each set S ∈ F is associated
with a variable xS . The objective is to minimize the sum

∑
S∈F xS subject to the constraints∑

S∈F(e) xS ≥ 1 for each element e ∈ U ′, and xS ≥ 0 for all S ∈ F .
Recall that in the context of set cover in the RIA model, we focus on lazy algorithms, i.e.,

algorithms that adhere to the following restrictions upon the arrival of an elemnt e: (1) if e

is already covered by the algorithm, then in the current round the algorithm does not select
any additional sets to its solution; and (2) if e is not covered yet, then in the current round
the algorithm may only select sets from F(e). Notice that this restriction prevents the trivial
oracle strategy of simply advising to select all the sets of an optimal set cover at each round.

We describe an online algorithm with RIA for set cover in three stages. First, we present
an algorithm that obtains a fractional solution x to the relaxed LP. Then, we present an
online randomized rounding scheme that can be incorporated into the fractional set cover
algorithm to obtain an integral solution which is feasible with high probability. Finally, we
present the oracle’s advice.

Fractional set cover algorithm

We use the basic discrete algorithm presented by Buchbinder and Naor in [24, Chapter
4.2, Algorithm 1].5 The algorithm operates as follows. Initially, set xS = 0 for all S ∈ F .
Upon arrival of an element e, if

∑
S∈F(e) xS < 1, then update xS ← 2 · xS + 1/|F(e)| for all

S ∈ F(e). Observe that at the end of the round, it is guaranteed that the fractional primal
solution maintained by the algorithm satisfies the constraint since the algorithm adds at
least 1/|F(e)| to the variable xS for each set S ∈ F(e).

Let d = maxe∈U ′ |F(e)| be the maximum degree of an element. The following assertion
on the competitive ratio is established by Buchbinder and Naor in [24].

▶ Lemma 4.1 ([24]). The fractional set cover algorithm is O(log d)-competitive.

Randomized rounding

An online rounding scheme that randomly obtains an integral solution from the fractional
set cover algorithm was constructed by Alon et al. in [8]. The solution produced by the
rounding scheme of [8] is feasible with high probability while incurring a multiplicative factor
of O(log n) to the expected cost. However, this rounding method does not fit our advice
framework. This is because all random coins are tossed in the beginning to compute a
threshold for each set. Thus, we present a slightly different rounding method that fits our
framework while maintaining similar guarantees.

The rounding procedure operates as follows. Consider an element e and let x and xint be
the solution maintained by the fractional algorithm and the (integral) solution maintained
by the rounding scheme, respectively, at the time of e’s arrival. If e is already covered

4 While our results in the current section are expressed in terms of the size of the universe n, it can be
modified to obtain the same asymptotic bounds in terms of the length of the element sequence |U ′|.

5 We note that the algorithm presented in [24] is designed for weighted set cover. The algorithm presented
in this paper is its application for the case of unit weights.
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by either the current fractional solution or the current integral solution produced by the
rounding, then we do nothing (we will later show that the feasibility of xint is maintained
with high probability in this case). Otherwise (e is not covered by both solutions), we update
x according to the fractional algorithm. For each S ∈ F(e), let xbeg

S be the value of the
variable xS at the beginning of the round and let δ(S) = xbeg

S + 1/|F(e)| be the additive
increase to xS that occurs during the round. The rounding is obtained by independently
selecting each set S ∈ F(e) to the cover with probability min{1, δ(S) ·Θ(log n)}.

We refer to the randomized algorithm described above (i.e., the fractional set cover
algorithm combined with the rounding scheme) as RandSC. The properties of RandSC are
described in the following lemma.

▶ Lemma 4.2. RandSC is O(log n log d)-competitive and computes a feasible solution with
high probability.6

Proof. Let x be the solution obtained by the fractional algorithm at termination. Recall
that in each round, set S is selected with probability at most δ(S) · c log n (for a constant
c > 0). By linearity of expectation, the total expected cost associated with S is O(log n) · xS .
Thus, the expected cost of RandSC is O(log n) ·

∑
S∈F xS = O(log n log d) · OPT.

We now bound the probability that there exists an element that was not covered by the
integral solution produced by RandSC when it arrived. Consider an element e′ arriving at
round r. Notice that by construction, e′ must be covered by the fractional solution at the
end of round r. We argue that this implies that e′ is covered by the integral solution with
high probability. Let ℓ = |F(e′)| and let S1, . . . Sℓ denote the sets in F(e′). Let us denote
by δi,j the increase to the variable xSi associated with set Si in round j and let pi,j the
probability that Si was selected to the integral solution at round j. If pi,j = 1 for some i ≤ ℓ

and j ≤ r, then e′ is covered by the end of round r with probability 1. Otherwise, due to
the independence of selection events, the probability that e′ is not covered by the integral
solution at the end of round r is

ℓ∏
i=1

r∏
j=1

(1− pi,j) ≤ e
−

∑ℓ

i=1

∑r

j=1
pi,j = e

−c log n
∑ℓ

i=1

∑r

j=1
δi,j ≤ n−c,

where the final inequality holds because the fractional algorithm guarantees that e′ is covered
at round r and thus

∑ℓ
i=1

∑r
j=1 δi,j ≥ 1. By a union bound argument, the probability that

there exists a set that is not covered by the integral solution is at most n1−c. Thus, RandSC
produces a feasible solution with probability at least 1− 1/nc−1. ◀

Oracle’s advice

The idea of the oracle’s advice is to boost the probability of selecting “good” sets while
not losing the probabilistic feasibility guarantee of Lemma 4.2. For the sake of analysis, let
us assume that the oracle is randomized (observe that this assumption does not enhance
the oracle’s power since the oracle can deterministically compute an optimal realization of
the randomized selection). Let A∗ ⊆ F be an optimal solution for the set cover instance.
Consider the arrival of an element e that was not covered yet by both the fractional and
integral solutions and let pS be the probability that set S is selected in the current round of

6 For simplicity, RandSC is described as a Monte Carlo algorithm. It can be easily transformed into a Las
Vegas algorithm as follows: whenever an element e is not covered by RandSC upon the end of a round,
select an arbitrary set that covers e into the solution. Notice that the added expected cost is negligible.
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RandSC for each set S ∈ F(e). The oracle’s advice is as follows: (1) each set S ∈ F(e)∩A∗ is
selected to the advice; and (2) each set S ∈ F(e)−A∗ is independently selected to the advice
with probability pS . Notice that the argument used in Lemma 4.2 regarding the feasibility
of the solution still holds since the oracle does not decrease the selection probability of any
set at a given round. Denoting this oracle by Oboost, we can establish the following theorem.

▶ Theorem 4.3. The competitive ratio of RandSC with the oracle Oboost against an oblivious
adversary is O(log n) ·min{1/α, log d}, where 0 ≤ α ≤ 1 is the infusion parameter.

Proof. We start by showing that RandSC with Oboost is O(log n log d)-competitive. Notice
that by Lemma 4.2, the total expected cost associated with sets S ∈ F −A∗ is O(log n log d) ·
OPT. In addition, the total cost of sets in A∗ is bounded by |A∗| = OPT. Therefore, the
expected cost of the solution produced by RandSC with Oboost is O(log n log d) · OPT.

We now show that RandSC with Oboost is O( log n
α )-competitive. Consider the run of

RandSC with Oboost on some element sequence. We refer to a round as a selection round if
there exists a set that is selected with a positive probability in that round. Notice that we
can bound the cost of RandSC with Oboost only in selection rounds (for non-selection rounds
no cost is incurred). Observe that in each selection round, the probability of selecting a set
from A∗ is at least α (the probability of receiving advice). Moreover, if at some point in the
execution all sets from A∗ were selected, then there are no selection rounds after that point
(since A∗ covers all elements). Hence, the expected number of selection rounds during the
execution is at most |A∗|/α.

To complete our analysis, we argue that the expected cost associated with sets that are not
in A∗ at each selection round is O(log n). Consider a selection round in which an elements e

arrived. Recall that for each set S ∈ F(e)−A∗, we define δ(S) = xbeg
S + 1/|F(e)|, where xbeg

S

is the value of variable xS at the beginning of the round, and select each set S ∈ F(e)−A∗ to
the cover with probability min{1, δ(S) ·Θ(log n)}. Thus, the total expected cost that comes
from the sets S ∈ F(e)−A∗ in the round is bounded by O(log n) ·

∑
S∈F(e)−A∗ xbeg

S + 1
|F (e)| ≤

O(log n)·2 = O(log n). Since the total cost associated with sets from A∗ is at most |A∗|, we get
that the total expected cost of RandSC with Oboost is O(log n) · |A∗|/α = O( log n

α ) ·OPT. ◀

5 Lower Bounds

In this section we show fundamental limitations of online algorithms with RIA. First, we give
a lower bound for competitiveness with RIA for online set cover, under the assumption that
the algorithm is lazy (buys sets only when they are needed to cover the current element).
Second, we give a lower bound for competitiveness with RIA for paging, that we improve to
an asymptotically tight lower bound for the case of lazy algorithms. The lower bound for
paging implies the lower bound for the uniform metrical task system.

5.1 Online Set Cover
We give a lower bound for the competitive ratio of any online randomized algorithm with
RIA for online set cover. The construction of the input sequence is similar to the lower
bounds given in [40, Theorem 2.2.1] and [24, Lemma 4.6]. The bound is given for randomness-
oblivious (defined in Section 2.3) and lazy algorithms (lazy algorithms are allowed to buy a
set only if it contains the current element).

▶ Theorem 5.1. Assume that an online randomized algorithm with RIA for online set-cover
is lazy, randomness-oblivious and strictly c-competitive against the oblivious adversary. Then
c ≥ min{ 1

2 log n, 1
2α}, where n is the size of the universe of element, and α is the infusion

parameter.
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Proof. Fix any lazy, randomness-oblivious online randomized algorithm ALG with RIA, its
oracle O and the infusion parameter α. The adversary is oblivious to random choices of the
algorithm, but it has access to the description of the algorithm, the oracle and the infusion
parameter, hence can maintain the probability distribution of ALG’s cache configurations.

Consider a complete binary tree with d leaves. The items to be covered are the nodes of
the tree, and the sets are the d root-leaf paths. Our sequence σ will be the items on one
root-leaf path, starting from the root and going downward.

We chose the sequence of items to request corresponding to a path in the complete binary
tree as follows. Let F (e) be the family of sets that cover the item e, and let pS be the
probability that ALG currently has the set S in the solution. The first request is to the root
of the tree. For the i-th request, we choose one of the children, x or y of the item requested
in the (i − 1)-th request, depending on the probability distribution of the sets that cover
these items. To decide between x and y, we choose the item r ∈ {x, y} with no smaller sum
of the probability mass

∑
F (x) pS .

We consider two cases depending on whether or not the algorithm received advice for σ.

1. Assume the algorithm did not receive advice for σ. In such case, the algorithm acts as an
online algorithm without advice. Notice that the total probability mass of sets that do
not appear in subsequent iterations add up to at least 1/2. Each path has length log n,
and the algorithm pays at least 1

2 for each such round, hence overall the algorithm pays
1
2 log d.

2. Assume the algorithm received advice for σ. In expectation, the number of rounds before
getting advice is 1

α , and the algorithm pays at least 1
2 for each such round, hence in total

the algorithm pays at least 1
2 ·

1
α = 1

2α .

Note that σ can be covered by a single set, namely the one that corresponds to the leaf
where the path ends, hence OPT(σ) = 1. The online algorithm pays at least min{ 1

2 log d, 1
α}

for any sequence σ of the form described above, hence ALG is at least strictly min{ 1
2 log d, 1

2α}-
competitive. ◀

For lazy algorithms, we can obtain a lower bound in terms of the number of d. We say
that an online algorithm for online set cover is lazy if it buys a set only if the current element
is not yet covered, and then it may buy only sets that cover the current element. The next
bound is stronger than the previous one, as it the bound is on the competitive ratio in the
classic sense, with the possible additive constant, as opposed to the previous bound on the
strict competitiveness.

▶ Theorem 5.2. Assume that an online randomized algorithm with RIA for online set-
cover is lazy, randomness-oblivious and c-competitive against the oblivious adversary. Then
c ≥ min{ 1

2 log d, 1
2α}, where d is the maximum element degree, and α is the infusion parameter.

Proof. We repeat the construction from the previous proof of Theorem 5.1 in phases, in
each phase using a binary tree of 2d items.

As the algorithm is lazy, it cannot buy sets from future phases, and the sets used in
different phases are disjoint, hence advice received in any phase cannot decrease the cost of
the algorithm in any future phase.

Fix any phase. We consider two cases depending on whether or not the algorithm received
advice in this phase. If the algorithm received advice, then it pays at least 1

2 ·
1
α = 1

2α , as
the expected number of rounds in this phase before receiving advice concerning sets in this
phase is 1

α . Otherwise, if the algorithm did not receive advice, then it pays at least 1
2 · log d,

following the arguments from the previous proof.
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In total, the algorithm pays at least min{ 1
2 log d, 1

2α} in each phase, and an optimal
algorithm can cover the items in each phase using a single set, hence the algorithm is at least
min{ 1

2 log d, 1
2α}-competitive.

Note that we can repeat this construction arbitrary number of iterations to obtain a lower
bound on the competitive ratio, as opposed to a lower bound on strict competitive ratio.
In each iteration, we use a new set of items and sets corresponding to a binary balanced
tree, and the maximum number of sets that cover any item d does not increase by repeating
the construction. Hence, no randomized algorithm with infused advice can be better than
min{ 1

2 log d, 1
2α}-competitive. ◀

5.2 Paging and Metrical Task Systems
In this section we give a lower bound for competitiveness of randomized online algorithms
with RIA for paging. The uniform metrical task system problem generalizes the paging
problem on instances that include n = k + 1 pages, hence the lower bound for paging is a
common lower bound for paging and uniform metrical task system. We restrict our attention
to randomness-oblivious algorithms, as defined in Section 2.3. Our lower bound for any
randomness-oblivious algorithm is loose by a factor of 1/k; but with the natural assumption
that the algorithm is lazy, we get rid of the 1/k factor, and for lazy algorithms the upper
bounds for paging (Theorem 3.1) and uniform metrical task systems (Theorem 11 in the full
version [31]) are asymptotically optimal.

To show the lower bound in this section, we apply Yao’s Minimax Principle [52] to
competitiveness of randomized online algorithms. In the case of classic online algorithms,
the lower bound for the competitiveness of the best deterministic online algorithm on a
distribution of inputs implies a lower bound on the competitiveness of any randomized online
algorithm on any input sequence.

We define a deterministic equivalent of algorithms with RIA. To this end, we add to each
request the information whether the request is served by a deterministic online algorithm or
by the oracle. We will analyze performance of such an algorithm on a distribution of requests,
where each round is served by the algorithm with probability 1− α, and by the oracle with
probability α. To give a lower bound for randomness-oblivious algorithms (as defined in
Section 2.3), we need to define a deterministic equivalent of such algorithms that we refer to
as deterministic advice-oblivious algorithms: the answer for each request not served by the
oracle is determined by the current request, previous requests and previous answers.

To apply Yao’s priciple to competitiveness of randomized online algorithms with RIA,
we construct a matrix representation of the game, where the row player corresponds to a
deterministic advice-oblivious algorithm combined with the offline oracle algorithm, and the
column player represents the adversary who specifies the input sequence. The value in each
row-column pair of the matrix equals the expected cost incurred by the algorithm-oracle
pair on the input sequence, divided by the cost of an optimal offline solution for the input
sequence. The choice of whether the online algorithm or the oracle serves a request is
beyond the control of both the adversary and the online algorithm, and to compute the value
for a row-column pair we take the expectation over all possibilities where for each request
independently, the deterministic algorithm serves the request with probability 1− α, and the
oracle serves the request with probability α. Notably, a randomness-oblivious algorithm is
no more powerful than a distribution over the deterministic advice-oblivious algorithms.

▶ Theorem 5.3. Assume that an online randomized algorithm with RIA for online pag-
ing is randomness-oblivious and c-competitive against the oblivious adversary. Then c ≥
min{Hk, 1

k·α}, where α is the infusion parameter.
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Proof. To prove the theorem, we apply Yao’s Minimax Principle [52] to competitiveness of
randomized algorithms. Consider any deterministic advice-oblivious algorithm A for paging,
and construct the following distribution over input sequences. Each round is served by A

with probability 1− α, and by the oracle with probability α. The distribution over requests
to pages is constructed as follows. Let S = {p1, p2, p3, . . . , pk+1} be a set of k + 1 pages. We
construct a probability distribution for choosing a request sequence. The first request σ(1) is
chosen uniformly at random from S. Every other request σ(t), t > 1, is made to a page that
is chosen uniformly at random from S \ {σ(t− 1)}. A phase starting with σ(i) ends with
σ(j), where j, j > i is the smallest integer such that {σ(i), σ(i + 1), . . . , σ(j)} contains k + 1
distinct pages.

We claim that for any advice-oblivious algorithm, the advice received in past phases
cannot reduce the cost of the algorithm in future phases. We argue as follows. First, the
advice-oblivious algorithm is forbidden to store past advice in its internal memory for future
use. Second, no algorithm can store meaningful advice for the future in its cache configuration:
each phase contains requests to k + 1 different items, so for any cache configuration at the
start of the phase, there is always at least 1 clean page: a page that is requested in the phase
that the algorithm does not have in the cache at the start of the phase.

In our bounds, we use that the average cost of the algorithm for each request is 1/k; this
follows because the requested page is random and each of its pages is outside the cache with
equal probability.

We lower-bound the cost of the algorithm in each phase in two ways, depending on
whether or not the algorithm receives advice in any round of the phase.
1. Assume that the algorithm does not receive advice in any round of the phase. In such

case, the algorithm acts as an online algorithm without advice throughout the phase, and
the expected cost of the algorithm in the phase is at least Hk, following the standard
arguments [44]: the expected length of the phase is k ·Hk, the average cost of the algorithm
for each request is 1/k, therefore the cost of the algorithm within a phase is at least Hk.

2. Assume that the algorithm receives advice in some round of the phase. To receive advice,
we need in expectation 1/α rounds prior to the advice round. The average cost of the
algorithm for each request is 1/k, hence the expected cost is at least 1

k·α .

An optimal offline algorithm OPT incurs 1 page fault during each phase, the algorithm
pays at least min{Hk, 1

k·α}, hence by summing over all phases of σ, we arrive at the desired
competitive ratio. ◀

Next, we give an improved lower bound for lazy algorithms for paging. Recall that
lazy algorithms for paging are the algorithms that are never allowed to change its cache
configuration unless there is a page miss. This class includes RandomMark as well as most
other known online paging algorithms. Note that this definition is slightly more general than
the usual definition of lazy algorithms, where the algorithm is only allowed to fetch one page
per request [19]; the intention of this definition is that the lower bound holds for metrical task
systems as well. In the classic setting without infused advice, any algorithm can be turned to
a lazy algorithm without increasing its cost; note, however, that the transformed algorithm
may not be randomness-oblivious. If we restrict our attention to randomness-oblivious
algorithms, the non-lazy algorithms may have an advantage over the lazy algorithms due to
non-lazy algorithm’s potentially frequent interaction with the oracle, which could be used by
the oracle to give advice to prefetch some items even before the first cache miss occurs.
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▶ Theorem 5.4. Assume that an online randomized algorithm with RIA for online paging
is lazy, randomness-oblivious and c-competitive against the oblivious adversary. Then c ≥
min{Hk, 1

α}, where α is the infusion parameter.

Proof. To prove the theorem, we apply Yao’s Minimax Principle [52] to competitiveness of
randomized algorithms. Consider any deterministic advice-oblivious online algorithm and
the probability distribution for choosing a request sequence as in the proof of Theorem 5.3.

We claim that for any advice-oblivious algorithm, the advice received in past phases
cannot reduce the cost of the algorithm in future phases. We argue as follows. First, the
advice-oblivious algorithm is forbidden to store past advice in its internal memory for future
use. Second, no algorithm can store meaningful advice for the future in its cache configuration:
each phase contains requests to k + 1 different items, so for any cache configuration at the
start of the phase, there is always at least 1 clean page: a page that is requested in the phase
that the algorithm does not have in the cache at the start of the phase.

We will show that the expected cost of the algorithm is at least min{Hk, 1
α} in any phase.

We lower-bound the cost of the algorithm in each phase in two ways, depending on whether
in this phase the algorithm receives advice in some round with a cache miss or not.
1. Assume that the algorithm does not receive advice in any round with a cache miss. Since

the algorithm is lazy, advice received in rounds without cache misses does not influence
the algorithm’s cache configuration, and since the algorithm is advice-oblivious, it cannot
store such advice either. In such case, the algorithm acts as an online algorithm without
advice throughout the phase, and the expected cost of the algorithm in the phase is at
least Hk, following the standard arguments [44]: the expected length of the phase is
k ·Hk, the average cost of the algorithm for each request is 1/k because the requested
page is random and each of its pages is outside the cache with equal probability, therefore
the cost of the algorithm within a phase is Hk.

2. Assume that the algorithm receives advice in a round with a cache miss. To receive advice
at a round with a cache miss, we need in expectation 1/α rounds with cache misses. Each
round with a cache miss costs 1, hence the expected cost of the algorithm is at least 1/α.

An optimal offline algorithm OPT incurs a single page fault during each phase, and the
algorithm pays at least min{Hk, 1

α}, hence by summing over all phases of σ, we arrive at the
desired competitive ratio. ◀

The bound given in Theorem 5.4 is asymptotically tight for lazy algorithms. However,
a gap of a constant factor of 2 remains. To address this gap, an optimal randomized algorithm
for paging [43] may be a possible direction for future studies.

6 Future Work

Our work opens interesting avenues for future research. In particular it will be interesting
to further explore the utility of our method applied to other randomized online algorithms.
Randomness-oblivious online algorithms are known for many online problems, e.g., all ran-
domized memoryless algorithms [26] such as the COINFLIP algorithm for file migration [51]
or the HARMONIC algorithm for k-server [14, 45] are randomness-oblivious.
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Abstract
For a given polygonal region P , the Lawn Mowing Problem (LMP) asks for a shortest tour T

that gets within Euclidean distance 1/2 of every point in P ; this is equivalent to computing a
shortest tour for a unit-diameter cutter C that covers all of P . As a generalization of the Traveling
Salesman Problem, the LMP is NP-hard; unlike the discrete TSP, however, the LMP has defied
efforts to achieve exact solutions, due to its combination of combinatorial complexity with continuous
geometry.

We provide a number of new contributions that provide insights into the involved difficulties,
as well as positive results that enable both theoretical and practical progress. (1) We show that
the LMP is algebraically hard: it is not solvable by radicals over the field of rationals, even for
the simple case in which P is a 2 × 2 square. This implies that it is impossible to compute exact
optimal solutions under models of computation that rely on elementary arithmetic operations and
the extraction of kth roots, and explains the perceived practical difficulty. (2) We exploit this
algebraic analysis for the natural class of polygons with axis-parallel edges and integer vertices (i.e.,
polyominoes), highlighting the relevance of turn-cost minimization for Lawn Mowing tours, and
leading to a general construction method for feasible tours. (3) We show that this construction
method achieves theoretical worst-case guarantees that improve previous approximation factors for
polyominoes. (4) We demonstrate the practical usefulness beyond polyominoes by performing an
extensive practical study on a spectrum of more general benchmark polygons: We obtain solutions
that are better than the previous best values by Fekete et al., for instance sizes up to 20 times larger.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Geometric optimization, covering problems, tour problems, lawn mowing,
algebraic hardness, approximation algorithms, algorithm engineering

Digital Object Identifier 10.4230/LIPIcs.ESA.2023.45

Related Version Full Version: https://arxiv.org/abs/2307.01092

Supplementary Material Software (Source Code): https://github.com/tubs-alg/lawn-mowing-
from-algebra-to-algorithms, archived at swh:1:dir:2e2d891d6ee3b0efcf1324f0b123118b93d8
ba69

Funding Work at TU Braunschweig has been partially supported by the German Research Foundation
(DFG), project “Computational Geometry: Solving Hard Optimization Problems” (CG:SHOP),
grant FE407/21-1.

© Sándor P. Fekete, Dominik Krupke, Michael Perk, Christian Rieck, and Christian Scheffer;
licensed under Creative Commons License CC-BY 4.0

31st Annual European Symposium on Algorithms (ESA 2023).
Editors: Inge Li Gørtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz Herman; Article No. 45;
pp. 45:1–45:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:s.fekete@tu-bs.de
https://orcid.org/0000-0002-9062-4241
mailto:d.krupke@tu-bs.de
https://orcid.org/0000-0003-1573-3496
mailto:perk@ibr.cs.tu-bs.de
https://orcid.org/0000-0002-0141-8594
mailto:rieck@ibr.cs.tu-bs.de
https://orcid.org/0000-0003-0846-5163
mailto:christian.scheffer@hs-bochum.de
https://orcid.org/0000-0002-3471-2706
https://doi.org/10.4230/LIPIcs.ESA.2023.45
https://arxiv.org/abs/2307.01092
https://github.com/tubs-alg/lawn-mowing-from-algebra-to-algorithms
https://github.com/tubs-alg/lawn-mowing-from-algebra-to-algorithms
https://archive.softwareheritage.org/swh:1:dir:2e2d891d6ee3b0efcf1324f0b123118b93d8ba69;origin=https://github.com/tubs-alg/lawn-mowing-from-algebra-to-algorithms;visit=swh:1:snp:af9b95176450c7e65d9d8a5061be6e8e8df7c179;anchor=swh:1:rev:58b929b408447c86edeb855b15e3ab0fa16524da
https://archive.softwareheritage.org/swh:1:dir:2e2d891d6ee3b0efcf1324f0b123118b93d8ba69;origin=https://github.com/tubs-alg/lawn-mowing-from-algebra-to-algorithms;visit=swh:1:snp:af9b95176450c7e65d9d8a5061be6e8e8df7c179;anchor=swh:1:rev:58b929b408447c86edeb855b15e3ab0fa16524da
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


45:2 The Lawn Mowing Problem: From Algebra to Algorithms

1 Introduction

Many geometric optimization problems are NP-hard: the number of possible solutions is finite,
but there may not be an efficient method for systematically finding a best one. A different
kind of difficulty considered in geometry is rooted in the impossibility of obtaining solutions
with a given set of construction tools: Computing the length of a diagonal of a square is
not possible with only rational numbers; trisecting any given angle cannot be done with
ruler and compass, and neither can a square be constructed whose area is equal to that of
a given circle.

In this paper, we consider the Lawn Mowing Problem (LMP), in which we are given a
polygonal region P and a disk cutter C of diameter 1; the task is to find a closed roundtrip
of minimum Euclidean length, such that the cutter “mows” all of P , i.e., a shortest tour that
moves the center of C within distance 1/2 from every point in P . The LMP naturally occurs
in a wide spectrum of practical applications, such as robotics, manufacturing, farming, quality
control, and image processing, so it is of both theoretical and practical importance. As a
generalization of the classic Traveling Salesman Problem (TSP), the LMP is also NP-hard;
however, while the TSP has shown to be amenable to exact methods for computing provably
optimal solutions even for large instances [1], the LMP has defied such attempts, with only
recently some first practical progress by Fekete et al. [26].

1.1 Related Work
There is a wide range of practical applications for the LMP, including manufacturing [5, 31, 32],
cleaning [12], robotic coverage [13, 15, 29, 35], inspection [21], CAD [20], farming [6, 16, 40],
and pest control [9]. In Computational Geometry, the Lawn Mowing Problem was first
introduced by Arkin et al. [3], who later gave the currently best approximation algorithm
with a performance guarantee of 2

√
3αTSP ≈ 3.46αTSP [4], where αTSP is the performance

guarantee for an approximation algorithm for the TSP.
Optimally covering even relatively simple regions such as a disk by a set of n stationary

unit disks has received considerable attention, but is excruciatingly difficult; see [10, 11, 28,
33, 36, 38]. As recently as 2005, Fejes Tóth [22] established optimal values for the maximum
radius of a disk that can be covered by n = 8, 9, 10 unit circles. Recent progress on covering
by (not necessarily equal) disks has been achieved by Fekete et al. [23, 24].

A first practical breakthrough on computing provably good Lawn Mowing tours was
achieved by Fekete et al. [26], who established a primal-dual algorithm for the LMP by
iteratively covering an expanding witness set of finitely many points in P . In each iteration,
their method computes a lower bound, which involves solving a special case of a TSP
instance with neighborhoods, the Close-Enough TSP (CETSP) to provable optimality; for
an upper bound, the method is enhanced to provide full coverage. In each iteration, this
establishes both a valid solution and a valid lower bound, and thereby a bound on the
remaining optimality gap. They also provided a computational study, with good solutions for
a large spectrum of benchmark instances with up to 2000 vertices. However, this approach
encounters scalability issues for larger instances, due to the considerable number of witnesses
that need to be placed.

A seminal result on algebraic aspects of geometric optimization problems was achieved
by Bajaj [7], who established algebraic hardness for the Fermat-Weber problem of finding
a point in R2 that minimizes the sum of Euclidean distances to all points in a given set.
Others have studied the Galois complexity for geometric problems like Graph Drawing or
the Weighted Shortest Path Problem [8, 14, 39].
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As we will see in the course of our algorithmic analysis the number of turns in a tour is
of crucial importance for the overall cost; this has been previously studied by Arkin et al. [2]
in a discrete setting. This objective is also of practical importance in the context of physical
coverage, e.g., in the context of efficient drone trajectories [9].

1.2 Our Results
We provide a spectrum of new theoretical and practical results for the Lawn Mowing Problem.

We prove that computing an optimal Lawn Mowing tour is algebraically hard, even for
the case of mowing a 2 × 2 square by a unit-diameter disk, as it requires computing zeroes
of high-order irreducible polynomials.
We exploit the algebraic analysis to achieve provably good trajectories for polyominoes,
based on the consideration of turn cost, and provide a method for general polygons.
We show that this construction method achieves theoretical worst-case guarantees that
improve previous approximation factors for polyominoes.
We demonstrate the practical usefulness beyond polyominoes on a spectrum of more
general benchmark polygons, obtaining better solutions than the previous values by
Fekete et al. [26], for instance sizes up to 20 times larger.

1.3 Definitions
A (simple) polygon P is a (non-self-intersecting) shape in the plane, bounded by a finite
number n of line segments. The boundary of a polygon P is denoted by ∂P . A polyomino is
a polygon with axis-parallel edges and vertices with integer coordinates; any polyomino can
be canonically partitioned into a finite number N of unit-squares, called pixels. A tour is
a closed continuous curve T : [0, 1] → R2 with T (0) = T (1). The cutter C is a disk of
diameter d, centered in its midpoint. Without loss of generality, we assume d = 1 for the
rest of the paper. The coverage of a tour T with the disk cutter C is the Minkowski sum
T ⊕ C. A Lawn Mowing tour T of a polygon P with a cutter C is a tour whose coverage
contains P . An optimal Lawn Mowing tour is a Lawn Mowing tour of shortest length.

2 Algebraic Hardness

In their recent work, Fekete et al. [26] prove that an optimal Lawn Mowing tour for a polygonal
region is necessarily polygonal itself; on the other hand, they show that optimal tours may
need to contain vertices with irrational coordinates corresponding to arbitrary square roots,
even if P is just a triangle. In the following, we show that if P is a 2 × 2 square, an optimal
tour may involve coordinates that cannot even be described with radicals. See Figure 2 for
the structure of optimal trajectories.

▶ Theorem 1. For the case in which P is a 2 × 2 square, the Lawn Mowing Problem is
algebraically hard: an optimal tour involves coordinates that are zeroes of polynomials that
cannot be expressed by radicals.

2.1 Optimal Tours at Corners
For the 2 × 2 square P , consider the upper left 1 × 1 subsquare S0 with corners (0, 0), (0, 1),
(1, 1), (0, 1), further subdivided into four 1/2 × 1/2 quadrants S0,0, . . . , S0,3, and an optimal
path ω that enters S0 at the bottom and leaves it to the right. Let ps = (px

s , 0), pt = (1, py
t )
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(a) Any 0 ≤ δ ≤ 1 defines pδ, pt, q and ellipse E.
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(b) The optimal path ω through S0.

Figure 1 Visualizations for Lemma 4.

be the points where ω enters and leaves S0, respectively. For the following lemmas, we
assume that a covering path exists that obeys the above conditions. We will later determine
that path and show that it covers S0. The proofs of Lemmas 2, 3, and 5 can be found in the
full version [27].

▶ Lemma 2. px
s ≤ 1/2 and py

t ≥ 1/2 and either px
s = 1/2 or py

t = 1/2.

Without loss of generality, we assume that px
s = 1/2. The next step is to find the optimal

position of pt. As an optimal path ω must enter the quadrant S0,3 once, we can subdivide
the path into two parts. For some δ > 0, let py

t = 1/2 + δ and pδ = (1/2, δ).

▶ Lemma 3. For any δ > 0, ω has a subpath pspδ.

▶ Lemma 4. The uniquely-shaped optimal Lawn Mowing path ω between two adjacent sides
of S0 has length LS0 ≈ 1.309 with ω = (ps, pδ, q, pt) and

ps = (1/2, 0) pδ =(1/2, δ) ≈ (1/2, 0.168) q ≈ (0.386, 0.682) pt =(1, 1/2+δ) ≈ (1, 0.668).

Proof. Let s3 be the top left corner of S0. We identify a shortest path for visiting one point q

on a circle U with diameter 1 centered in s3 dependent on δ, a necessary condition for a
feasible path. Let c = d(pδ, q) + d(q, pt) be the distance from both points to U . Consider an
ellipse E with foci pδ, pt that touches U in a single point, see Figure 1a. By definition, the
intersection point q minimizes the distance c. For δ ∈ [0, 1] we want to find an intersection
point between E and U that minimizes distance c. We can solve this problem with an exact
optimization approach using Mathematica, see the full version of our paper [27]. It turns
out that δ, qx, qy can only be expressed as the first, third, and first roots of three irreducible
high-degree polynomials fδ, fqx , fqy , see Equation (1) and the full version [27].

fδ(x) =589 824x16 − 7 077 888x15 + 41 189 376x14 − 154 386 432x13+ (1)
416 788 480x12 − 857 112 576x11 + 1 383 417 856x10 − 1 779 354 624x9+
1 834 437 632x8 − 1 514 108 928x7 + 992 782 336x6 − 509 312 064x5+
199 354 208x4 − 57 160 752x3 + 11 200 088x2 − 1 313 928x + 67 417

The value for δ ≈ 0.167876 defines the points pδ and pt. Together with the values for qx, qy, we
obtain the path above. The combined length of the path is δ+c ≈ 1.308838224. As ω contains
a subpath that crosses the full height of S0,0 and another subpath that crosses the full width
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of S0,2, both quadrants are covered by ω, see Figure 1b. By construction, the bottom right
quadrant is covered by the segment pspδ and the point pt. The top left quadrant is covered
by q, because S0,3 is fully contained in a disk with diameter 1 centered in q. Therefore, ω is
a feasible path between two adjacent edges of S0 with a length of L ≈ 1.309. ◀

▶ Lemma 5. A square P of side length 2 has a uniquely-shaped optimal Lawn Mowing tour T

of length L = 4LS0 , where LS0 ≈ 1.309.

2.2 Galois Group of the Polynomial
Now we show that the coordinates of the optimal path ω can not be expressed by radicals.
We employ a similar technique as Bajaj [7] for the generalized Weber problem. A field K

is said to be an extension (written as K/Q) of Q if K contains Q. Given a polynomial
f(x) ∈ Q[x], a finite extension K of Q is a splitting field over Q for f(x) if it can be factorized
into linear polynomials f(x) = (x − a1) · · · (x − ak) ∈ K[x] but not over any proper subfield
of K. Alternatively, K is a splitting field of f(x) of degree n over Q if K is a minimal
extension of Q in which f(x) has n roots. Then the Galois group of the polynomial f is
defined as the Galois group of K/Q. In principle, the Galois group is a certain permutation
group of the roots of the polynomial. From the fundamental theorem of Galois theory, one
can derive a condition for solvability by radicals of the roots of f(x) in terms of algebraic
properties of its Galois group. We state three additional theorems from Galois theory and
Bajaj’s work. The proofs can be found in [7, 34].

▶ Lemma 6 ([34]). f(x) ∈ Q[x] is solvable by radicals over Q iff the Galois group over Q of
f(x), Gal(f(x)), is a solvable group.

▶ Lemma 7 ([34]). The symmetric group Sn is not solvable for n ≥ 5.

▶ Lemma 8 ([7]). If n ≡ 0 mod 2 and n > 2 then the occurrence of an (n − 1)-cycle, an
n-cycle, and a permutation of type 2 + (n − 3) on factoring the polynomial f(x) modulo
primes that do not divide the discriminant of f(x) establishes that Gal(f(x)) over Q is the
symmetric group Sn.

Proof of Theorem 1. It suffices to show that fδ is not solvable by the radicals as it describes
the y-coordinates of two points in the solution. We provide three factorizations of fδ modulo
three primes that do not divide the discriminant disc(fδ(x)).

fδ(x) ≡ 12(x16 + 11x15 + 20x14 + 20x13 + 12x12 + 15x11 + 20x10 + 22x9 + 19x8 + 2x7+
18x6 + 10x5 + 12x4 + 19x3 + 16x2 + 9x + 8) mod 23

fδ(x) ≡ 21(x + 44)(x2 + 34x + 39)(x13 + 4x12 + x11 + 41x10 + 12x9 + 21x8 + 24x7+
32x5 + 22x4 + 10x3 + 24x2 + 18x + 13) mod 47

fδ(x) ≡ (x + 39)(x15 + 8x14 + 43x13 + 23x12 + 19x11 + 38x10 + 9x9 + 6x8 + 17x7+
34x6 + 46x5 + 43x4 + 27x3 + 50x2 + 56x + 1) mod 59

For the good primes p = 23, 47, and 59, the degrees of the irreducible factors of fδ(x)
mod p gives us an 16 − cycle, a 2 + 13 permutation and a 15-cycle, which is enough to show
with Lemma 8 and n = 16 that Gal(fδ) = S16. By Lemma 7, S16 is not solvable; with
Lemma 6, this proves the theorem. ◀
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3 Mowing Polyominoes

In the following, we analyze good tours for polyominoes, which naturally arise when a
geometric (or geographic) region is mapped, resulting in axis-parallel edges and integer
vertices. In the subsequent two sections, we describe the ensuing theoretical worst-case
guarantees (Section 4) and the practical performance (Section 5).

3.1 Combinatorial Bounds
For a unit-square cutter, the LMP on polyominoes naturally turns into the TSP on the dual
grid graph induced by pixel centers.

▶ Lemma 9. Let N ≥ 2 be the area of a polyomino P to be mowed with a unit-square cutter,
and let L be the minimum length of a Lawn Mowing tour. Then L ≥ N . In the case of a
unit-square cutter, L = N iff the dual grid graph of P has a Hamiltonian cycle.

This follows from Lemma 2 in the paper by Arkin et al. [4] (which argues that there
is an optimal LMP tour for a polyomino whose vertices are pixel centers) and implies the
NP-hardness of the LMP (Theorem 1 in [4]). In particular, they focused on grid graphs
without a cut vertex, which is a node v whose removal disconnects G: “If G has a cut vertex
v, then we can consider separately the approximation problem in each of the components
obtained by removing v, and then splice the tours back together at the vertex v to obtain a
tour in the entire graph G. Thus, we concentrate on the case in which G has no cut vertices.”

For a simply connected polyomino consisting of N pixels, the corresponding grid graph G

does not have any holes, i.e., the complement of G in the infinite integer lattice is connected.
These allow a tight combinatorial bound on the tour length. If G has no cut vertices, then a
combinatorially bounded tour of G exists, as noted by Arkin et al. [4] as follows.

▶ Theorem 10 (Theorem 5 in [4]). Let G be a simple grid graph, having N nodes at the
centerpoints, V , of pixels within a simple rectilinear polygon, R, having n (integer-coordinate)
sides. Assume that G has no cut vertices. Then, in time O(n), one can find a representation
of a tour, T , that visits all N nodes of G, of length at most 6N−4

5 .

For polyominoes with holes, there is a slightly worse, but still relatively tight combinatorial
bound of 53N

40 = 1.325N for the tour length, as follows.

▶ Theorem 11 (Theorem 7 in [4]). Let G be a connected grid graph, having N nodes at
the centerpoints, V , of pixels within a (multiply connected) rectilinear polygon, R, having n

(integer-coordinate) sides. Assume that G has no local cut vertices. Then, in time O(n), one
can find a representation of a tour, T , that visits all N nodes of G, of length at most 1.325N .

3.2 Mowing with a Disk
The natural lower bound of Lemma 9 still applies when mowing with a circular cutter,
because any unit distance covered by the cutter can at most cover a unit area. However,
meeting (or approximating) this bound is no longer possible by simply finding a Hamiltonian
cycle (or a good tour) in the underlying grid graph, as a circular cutter may cover already
mowed area or area outside of P when dealing with pixel corners. Minimizing this effect
ultimately leads to the algebraic analysis from the previous section.

A starting point for further insights is illustrated in Figure 2: The optimal path from
Lemma 4 with length LS0 can be used for rectangles with width 2 and arbitrary height h ≥ 2.
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(a) Optimal Lawn Mowing tour for a 2 × 2 square.
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Figure 2 Optimal Lawn Mowing tours for a square and a rectangle.
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Figure 3 A pixel S with three elementary covering trajectories.

▶ Corollary 12. Any rectangle P with width 2 and height h > 2 has a uniquely-shaped optimal
Lawn Mowing tour T of length L = 4LS0 + 2h − 8.

Extending this idea to more general polyominoes leads to realizing a tour of the dual grid
with locally optimal “puzzle pieces”: a limited set of locally good trajectories that mow each
visited pixel, which are merged at transition points on the pixel boundaries; see Figure 3a.
The construction of the puzzle pieces is done in Section 3.3.

3.3 Constructing Puzzle Pieces
In order to analyze locally good trajectories for mowing visited pixels, consider the four
corners of a pixel with coordinates (0, 0), (1, 0), (1, 1), (0, 1). We consider transition points
cb = (1/2, 0), cr = (1, 1/2), ct = (1/2, 1), and cl = (0, 1/2) at the edge centers to ensure
an overall connected trajectory, as shown in Figure 3a. There are three combinatorially
distinct ways for visiting a pixel, corresponding to Figures 3b–3d. These are (i) a straight
path with length 1, (ii) a simple turn with length ≈ 1.32566, and (iii) a U-turn with length
≈ 1.611183, see the full version [27] for details on how to obtain these paths. Note that
we do not use the optimal path from Lemma 4, because it uses transition points that are
slightly off center, pt ̸= cr, with the imbalance canceled out between two adjacent simple
turns. Thus, using central transition points incurs a small marginal cost when compared to
an optimal trajectory (1.32566 vs. 1.309, or about 1.2% longer for each simple turn), but it
sidesteps the higher-order difficulties of combining longer off-center strips.
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3.4 Building an Overall Tour
Making use of the puzzle pieces, we can now approach the LMP in three steps, as follows.

A Find a cheap roundtrip on the dual grid graph.
B Carry out the individual pixel transitions based on the above puzzle pieces as building

blocks to ensure coverage of all pixels and thus a feasible tour.
C Perform post-processing sensitive to the transition costs on the resulting tour to achieve

further improvement.

In the following sections, we describe how the involved steps can be carried out either
with an emphasis on worst-case runtime and worst-case performance guarantee (giving rise
to theoretical approximation algorithms, as discussed in the following Section 4), or with the
goal of good practical performance in reasonable time for a suite of benchmark instances
(leading to the experimental study described in Section 5).

4 Theoretical Performance: Approximation

For constant-factor approximation, we start with a low-cost roundtrip in the dual grid graph
(Step A), e.g., with the previous results of Arkin et al. [4]. Step B is realized using the puzzle
pieces of Section 3.3 for a feasible tour, at a cost of 1 + τ := 1.32566 for each 90-degree turn
in the grid tour (corresponding to piece (ii)); note that the turn cost for a U-turn of 1.61118
(corresponding to piece (iii)) does not exceed 1 + 2τ . By using combinatorial arguments for
the post-processing Step C, we can prove that a limited number of covering turns (with an
additional turn cost τ) suffices for overall feasibility.

▶ Theorem 13. Let P be a polyomino with N > 5 pixels, and let T be a tour of the dual
grid graph of length L. Then we can find a feasible Lawn Mowing tour for a unit-diameter
disk of length at most L(1 + τ).

Proof. Let T be a tour of the dual grid graph; let L be the length of T . L is the total
number of visits of individual pixels, inducing the following three categories of pixel visits.

1. L0 “free” visits of pixels, in which no covering turn occurs, and no turn cost is incurred.
2. L1 “one-turn” visits of pixels, in which one covering turn occurs, for a turn cost of τ .
3. L2 “U-turn” visits of pixels, in which a double covering turn occurs, for a turn cost of

not more than 2τ .

Let pi be a pixel that is visited in step i of the tour by a U-turn of T . Then pi is adjacent
to a pixel q = pi−1 = pi+1 that was left in step i and entered in step i + 1. Because no pixel
visited by a U-turn needs to be visited more than once, as well as N > 5, the pixel q cannot
only have neighbors that are visited by U-turns. Therefore, q has a predecessor in the tour
that is not a U-turn, (w.l.o.g., pi−2); this visit from pi−2 is either a one-turn visit with a
covering turn, or a free visit. In either case, q is already covered when visited from pi, and
we can simply follow the grid path at only the distance cost of 1.

As a consequence, each U-turn visit (incurring a cost not exceeding 2τ) can be uniquely
mapped to a free visit of its successor (incurring no turn cost), and the overall cost for all
covering turns does not exceed Lτ , for a total length of at most L(1 + τ), as claimed. ◀

For simple polyominoes without cut vertices, Theorem 10 provides a tour T in the dual
grid graph of length at most 6N−4

5 , implying the following.
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▶ Corollary 14. Let P be a simple polyomino with n vertices and N pixels, whose dual grid
graph does not have any cut vertices. Then, in time O(n), one can find a representation of a
feasible Lawn Mowing trajectory T for a unit-diameter disk of length at most 6N−4

5 τ , which
is within 1.5908 of the optimum.

For polyominoes with holes, we can apply the same line of argument to a tour T of the
dual grid graph obtained from Theorem 11.

▶ Corollary 15. Let P be a (not necessarily simple) polyomino with n vertices and N pixels,
whose dual grid graph does not have any cut vertices. Then, in time O(n), one can find a
representation of a feasible Lawn Mowing trajectory T for a unit-diameter disk of length at
most 53N

40 τ , which is within 1.7565 of the optimum.

As the number of turns is of critical importance for the overall cost of a Lawn Mowing tour
obtained from a tour of the dual grid graph, we can consider optimizing a linear combination
of tour length and turn cost. Arkin et al. [2] gave a PTAS for this problem, as follows.

▶ Theorem 16 (Theorem 5.17 in [2]). Define the cost of a tour to be its length plus C times
the number of (90-degree) turns. For any fixed ε > 0, there is a (1 + ε)-approximation
algorithm, with running time 2O(h)NO(C), for minimizing the cost of a tour for an integral
orthogonal polygon P with h holes and N pixels.

Combining tour length and turns allows providing more explicit bounds, as follows.
Additional local considerations are possible, but these do not necessarily improve the worst-
case bounds. Instead, they are employed heuristically in the practical section.

▶ Theorem 17. Let P be a polyomino with n vertices and N pixels, and let T be a tour of
the dual grid graph of length L and a total of t (weighted) turns. Then there is a feasible
Lawn Mowing tour of cost at most L + tτ .

5 Practical Performance: Algorithm Engineering

5.1 Algorithmic Tools
Here we exploit the algorithmic approach of Section 3.4 for good practical performance for
general polygonal regions, starting with a preprocessing step: For a given polygonal region Q,
find a suitable polyomino P that covers it.

We can then aim for practical minimization of tour length and turn cost for A (analogous
to the theoretical Theorem 16), and use puzzle pieces in B for a feasible tour. In principle,
we can approach A by considering an integer program (IP); however, solving this IP becomes
too costly for larger instances, so we use a more scalable approach: (A) Find a good TSP
solution on the dual grid graph; (B) insert puzzle pieces; (C) minimize the induced turn
cost by Integer Programming and Large Neighborhood Search (LNS).

5.1.1 Choosing a Suitable Grid
Consider a non-degenerate polygonal region Q, and a minimal covering polyomino P of cell
size ℓ. Without loss of generality, Q contains only pixels with a point of Q in their interior;
furthermore, we can assume that both an x- and a y-coordinate of a grid point coincide with
a coordinate of Q. This limits the number of relevant grid positions to a quadratic number
of choices, from which one can choose the one with the smallest number of pixels contained
in the resulting polygon P .
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5.1.2 Minimizing Tour and Turn Cost
Finding a covering tour of minimum combined tour length and turn cost can be formulated as
an IP. As the cost for each turn can be specified individually in this IP, we can also minimize
the final tour length directly instead of just approximating it based on the number of turns.
In principle, this IP can be solved with CPLEX [17] or Gurobi [30]; however, this fails when
aiming for truly large instances. (Even without the length of the tour, the turn-cost problem
is notoriously difficult [25].) Thus, we have pursued an alternative approach that starts with
a cheap roundtrip on the dual grid graph in which we ignore the turn cost. We then use
this IP as part of a Large Neighborhood Search (described in Section 5.1.4) to minimize the
actual costs of this solution, and for computing lower bounds on the best possible solution
based on puzzle pieces.

Formulating the Integer Program. To formulate the integer program, let ûvw with uv, vw ∈
EH be the puzzle piece covering the pixel v and connecting cuv and cvw, and uvw be the
direct path between cuv and cvw. We call these tour elements (covering and non-covering)
tiles. We use the variables x

ûvw
∈ B, uv, vw ∈ EH to denote which covering tile, i.e., puzzle

piece, is used for v ∈ VP is in the tour. For simplicity, x
ûvw

is also defined for v ∈ V \ VP ,
but fixed to 0. Analogously, we are using the variables xuvw ∈ N0, uv, vw ∈ EH to denote
how often which non-covering tiles, i.e., direct paths, for v ∈ V are used in the tour. Because
we may need to pass a pixel multiple times, this is an integer variable.

Finding the shortest set of cycles that cover all pixels t ∈ VP can be expressed as follows.
Enforcing a single cycle, i.e., tour, is done later by some more complex constraints that need
additional discussion.

min
∑

uv,vw∈EH

||uvw|| · xuvw + ||ûvw|| · x
ûvw

(2)

s.t.
∑

u,w∈N(v)

x
ûvw

= 1 ∀v ∈ VP (3)

2 · (xwvw + xŵvw) +
∑

n∈N(v),n̸=w

(xnvw + x
n̂vw

)

= 2 · (xvwv + x
v̂wv

) +
∑

n∈N(w),n̸=v

(xvwn + x
v̂wn

)
∀vw ∈ EH (4)

x
v̂wv

∈ B, xvwv ∈ N0 ∀uv, vw ∈ EH (5)

The objective function (2) minimizes the sum of lengths of the used tiles (the length of a
tile is denoted by || · ||). Equation (3) enforces that every pixel v ∈ VP that intersects the
polygon P has one covering tile; N(v) are the neighbors of v. Equation (4) ensures that
every tile has a matching incident tile on each end, i.e., connecting all tiles yields feasible
cycles.

Subtour Elimination. Next, we have to add constraints that enforce a single tour. A simple,
but insufficient, constraint is similar to the classical subtour elimination constraint of the
Dantzig-Fulkerson-Johnson formulation [18] for the Traveling Salesman Problem. For every
non-empty subset S ⊂ V, S ̸= ∅, V ̸⊂ S, V \ S ≠ ∅ that contains a real part of VP , there has
to be some path leaving the set to connect to V \ S.∑

uv,vw∈EH ,v∈S,w ̸∈S

xuvw + x
ûvw

≥ 1
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Unfortunately, this is not sufficient as we can have cycles that cross but are not connected,
e.g., for the tiles uvw and ŝvt with {u, w} ∩ {s, t} = ∅. While they share the same pixel v

in the grid graph, the paths themselves do not have to intersect. We can also not expect
them to be exchangeable as this may increase the objective. Let O be a cycle of tiles that
cover only a real subset of VP , E(O) denote the edges in the grid graph, and âbc ∈ O be a
covering tile of O with b ∈ V (O) ∩ VP . The following constraint now forces the path that
covers v to change and connect to exterior parts.∑

u,w∈N(b),ûbw ̸∈O

x
ûbw

+
∑

vw∈E(O),u∈N(v),uvw ̸∈O,ûvw ̸∈O

(xuvw + x
ûvw

) ≥ 1

This constraint is sufficient as it can be applied to any cycle that is covering only a subset of
VP , but generally less efficient.

5.1.3 Finding a Cheap Roundtrip and Ensure Coverage
We consider two different methods for computing different initial tours.

TSPSmall. Previous authors [12, 37, 42, 44] have suggested using a grid graph H ′ with
smaller cell size ℓ =

√
2

2 for covering P , or simply assumed square-shaped tools. This
eliminates the need to consider any turn cost, as smaller pixels are covered when the cutter
visits their centers. This yields TSPSmall, which we use as a baseline. Because of the smaller
grid size, this may result in double coverage when parallel unit strips suffice to cover the P ,
for a worst-case overhead of

√
2 − 1, or about 41.4 %.

TSPCov. As described in the preceding Section 3, we can use a cheap tour for the grid
graph H with cell size ℓ = 1, and perform the puzzle piece modification. This combined
solver is called TSPCov. As shown in Section 4, we can limit the worst-case overhead for
performing turns of TSPCov to τ = 0.32566 per length of the tour, or about 32.6 %.

5.1.4 Improving the Tour
For a feasible tour from TSPCov, we use an LNS-algorithm [41], which iteratively fixes a
large part of the IP and only optimizes a small region of tiles; this yields TSPTurn. We select
a random tile from the current tour and a fixed number of adjacent pixels. This yields a
limited-size integer program, in which only the involved puzzle pieces are allowed to change.
To escape local minima, we tune the size (and runtime) of the IP after each iteration based
on the runtime of the previous iteration. In the end, we attempt to solve the IP on the
complete instance, using the start solution from the LNS. This provides lower bounds on the
best placement of puzzle pieces.

5.2 Experimental Setup
Our practical implementation was tested on a workstation with an AMD Ryzen 7 5800X
(8 × 3.8 GHz) CPU and 128 GB of RAM. The code and data are publicly available1. We
used the srpg_iso, srpg_iso_aligned and srpg_octa instances and generated additional
polyominoes with the open-source code from the Salzburg Database of Geometric Inputs [19].

1 https://github.com/tubs-alg/lawn-mowing-from-algebra-to-algorithms
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Figure 4 Examples of the used polygons and their size distribution.

See Figure 4 for the overall distribution and Figure 12 in the full version [27] for examples.
We considered polygons with up to n = 300 vertices and a cutter with diameter 1. Overall,
this resulted in 327 instances. All experiments were carried out with a maximum runtime
of 300 s for TSP, LNS and final IP computation. To solve the TSP efficiently, we used the
python binding pyconcorde of the Concorde TSP Solver [43]. All components of TSPCov and
TSPTurn were implemented in Python 3.10 and used the IP solver Gurobi (v10.0) [30]. As in
previous work [26] the relative area (ratio of convex hull area of P and cutter area A(C)) is
more significant for the difficulty of an instance than number of vertices of P .

Figure 5 (Left) A TSPSmall tour yields a feasible but expensive LMP tour. (Middle) A TSP tour
of the underlying dual grid graph, with uncovered patches shown in red. (Right) A feasible LMP
tour after puzzle piece modification of the TSP tour.

5.3 Evaluation
We discuss our practical results along a number of research questions (RQ).

RQ1: How does TSPCov compare to TSPSmall in practice? We compared the worst-case
bound of 32.6 % for TSPCov to the actual performance, using the total cost of TSPSmall as a
baseline. See Figure 5 for an example and Figure 6 for the average relative modification cost.
This shows not more than an additional 19 % cost, with only small variation over size and
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Figure 6 Modification cost over size and instance type. The modification induces a cost of around
19 % over all instance types and sizes. The plot shows the average modification cost and the 95 %
confidence interval.

type. Figure 7b shows that the practical average reduction from TSPSmall is independent of
the size of the polygon, but differs strongly for the different instance classes; we save ≈ 27 %
for polyominoes, ≈ 24 % for octagonal polygons, and ≈ 5 % for orthogonal polygons.

RQ2: How good are the solutions achieved by TSPTurn? For the considered large instances,
provably optimal solutions for the turn-cost minimizing IP are hard to find, so we considered
the remaining optimality gap in the IP. Figure 7a shows that gaps remain below 7 % even
for large instances, and below 5 % on average for medium-sized instances.

We also compared the tours from TSPCov with the cheapest tours obtained by TSPTurn
and TSPSmall. As shown in Figure 7b, on average we obtain ≈ 5 % shorter tours when
compared to the TSPCov tours, independent of instance size and type. For orthogonal
polygons, this doubles the cost reduction.

RQ3: How far are we from the geometric area lower bound? A remaining gap between
TSPTurn and the area bound may result from two sources, both from (i) the quality of
the upper bound (and thus TSPTurn) and (ii) the quality of the area lower bound, for the
following reasons. (i) The optimal LMP tour is not restricted to the grid graph H, so there
may be cheaper tours than what we obtain from TSPTurn. (ii) The simple area bound
(corresponding to Lemma 9) is relatively weak, so it is conceivable that a serious gap to this
lower bound remains.

Overall, the combination of both effects remains limited, as can be seen from Figure 8
(showing the ratio of TSPTurn value and area bound): For the octagonal polygons and
polyominoes, we are on average at most 50 % above the area bound. For orthogonal polygons,
the relative gap is on average below 80 %.

RQ4: How do our solutions compare to previous practical work? As shown before, our
results are already considerably better than work based on TSPSmall. A comparison to the
previous best practical results by Fekete et al. [26] (whose instances were used as a subset of
our benchmarks) is shown in Figure 8; plotted are the ratios between the achieved solution
values and the respective lower bounds. Fekete et al. [26] employ a more sophisticated lower
bound based on an evaluation of a series of Close-Enough TSP (CETSP) instances. The
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Figure 7 (a) Remaining average optimality gaps for the integer program and the 95 % confidence
interval. (b) Comparison of the average cost reduction for different approaches and polygon types.
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(a) Tour length compared to the area bound.
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Figure 8 (a) Tour length compared to the (weaker) area lower bound in terms of the average ratio.
For octagonal polygons and polyominoes, we can get below 50 % on average. (b) Comparable results
for the average solution quality of [26] based on a (stronger) CETSP bound; here APX denotes the
performance of the approximation algorithm by [4]. Note the considerably larger relative area in
comparison to [26].

authors pointed out that the lower bound computation becomes very expensive even for
instances with relative area smaller than 50, see Figures 11 and 12 in [26]. Because we
evaluate much larger instances, our ratios only use the relatively straightforward area bound.
As a consequence, the denominators of these ratios favor the evaluation for [26], which are
shown in Figure 8b; see Figures 9a and 9b for a comparison on a relatively small example
that was also shown in [26]. In addition, we were able to achieve results for instances with a
relative area 20 times larger than [26].
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Despite these additional challenges (of weaker bounds and larger instance sizes), our
results compare favorably to the ones reported by [26]. The main reason lies in our structurally
simpler approach that still yields good results when the complex evaluation of the CETSP
from [26] reaches computational limitations. As can be seen from a comparison of computed
trajectories for the visual example (Figures 9c and 9d), this is also reflected in simpler
trajectories obtained from TSPTurn.

(a) Area (LB): 36.25. (b) LB: 40.94 [26]. (c) TSPTurn (UB): 66.71. (d) UB: 68.16 [26].

Figure 9 Comparison of TSPTurn with lower and upper bounds from Fekete et al. [26].

6 Conclusion

We have presented new insights for the Lawn Mowing Problem, starting with an algebraic
analysis of the structure of optimal trajectories. As a consequence, we can pinpoint a particular
source of the perceived overall difficulty of the problem, and prove that constructing optimal
tours necessarily involves operations that go beyond simple geometric means; we can also use
these insights to come up with better construction methods for tours, both on the theoretical
and the practical side, with minimizing overall turn cost playing a crucial role.

Our results also clear the way for a number of important followup questions. Is it possible
to improve our approach for polyominoes? As discussed in the text, considering higher-order
connectivity between turns and using slightly off-center, axis-parallel strips appears to be
a relatively easy way for (albeit marginal) improvement. It may very well be that this
ultimately leads to optimal tours for polyominoes; however, final success on this fundamental
challenge will require another breakthrough in establishing lower bounds, as neither the
polygon area (which may incur a gap from the optimal value, similar to the number of
vertices in a grid graph does from a TSP solution) nor the Close-Enough TSP bound for a
finite set of witness points may suffice to certify optimality. Given that an optimal tour may
also involve portions that are not axis-parallel, it will also require further algebraic analysis
of turns that are not multiples of 90 degrees.

For the Lawn Mowing Problem on general regions (which may not even have to be
connected), our hardness result hints at further difficulties. It is quite conceivable that the
general LMP is not just algebraically hard, but even ∃R-complete. Even in that case, we
believe that further engineering of the tile-based mowing of polyominoes (with attention
to turn cost) and Close-Enough TSP may be the most helpful tools for further systematic
improvement.
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Abstract
A Monotone Minimal Perfect Hash Function (MMPHF) constructed on a set S of keys is a function
that maps each key in S to its rank. On keys not in S, the function returns an arbitrary value.
Applications range from databases, search engines, data encryption, to pattern-matching algorithms.

In this paper, we describe LeMonHash, a new technique for constructing MMPHFs for integers.
The core idea of LeMonHash is surprisingly simple and effective: we learn a monotone mapping
from keys to their rank via an error-bounded piecewise linear model (the PGM-index), and then we
solve the collisions that might arise among keys mapping to the same rank estimate by associating
small integers with them in a retrieval data structure (BuRR). On synthetic random datasets,
LeMonHash needs 34% less space than the next larger competitor, while achieving about 16 times
faster queries. On real-world datasets, the space usage is very close to or much better than the
best competitors, while achieving up to 19 times faster queries than the next larger competitor. As
far as the construction of LeMonHash is concerned, we get an improvement by a factor of up to 2,
compared to the competitor with the next best space usage.

We also investigate the case of keys being variable-length strings, introducing the so-called
LeMonHash-VL: it needs space within 13% of the best competitors while achieving up to 3 times
faster queries than the next larger competitor.
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1 Introduction

Given a set S of n keys drawn from a universe [u] = {0, . . . , u − 1}, a Monotone Minimal
Perfect Hash Function (MMPHF) is a hash function that maps keys from S to their rank,
and returns an arbitrary value for keys not in S. As the name suggests, such a function
is both perfect because it has no collisions on S, and minimal because its output range is
[n]. Differently from a Minimal Perfect Hash Function (MPHF) [4,12,16,26,40,42,44,50],
which maps keys from S bijectively to [n] in any order, and from an Order-Preserving MPHF
(OPMPHF) [25], which retains a given (arbitrary) order on the keys, an MMPHF takes
advantage of the natural order of the universe to rank the keys in S in small space, i.e. without
encoding them. Indeed, encoding S needs log

(
u
n

)
/n = Ω(log u

n ) bits per key, and encoding
the ranks via an OPMPHF needs log(n!)/n = Ω(log n) bits per key, whilst an MMPHF may
use as few as O(log log log u) bits per key [2], which was recently proven to be optimal [1].
Throughout this paper, log x stands for log2 x, and we use the w-bit word RAM model.

MMPHFs have numerous applications [1]. They enable efficient queries both in encrypted
data [11] and databases [39, 41]. Further applications can be found in information retrieval,
where MMPHFs can be used to index the lexicon [54] or to compute term frequencies [6, 46],
and in pattern matching [5, 27,32], where MMPHFs are applied mostly to integer sequences
representing the occurrences of certain characters in a text.

Despite the widespread use of MMPHFs and recent advancements on their asymptotic
bounds [1], the practical implementations have not made significant progress in terms of
new designs and improved space-time performance since their introduction more than a
decade ago [3], with only some exceptions targeting query time [33]. As a matter of fact, the
solutions in [3] are very sophisticated and well-optimised, and they offer a vast number of
efficient space-time trade-offs that were hard to beat.

In this paper, we offer a fresh new perspective on MMPHFs that departs from existing
approaches, which are mostly based on a trie-like data structure on the keys. We build upon
recent advances in (learning-based) indexing data structures, namely the PGM-index [20,24],
and in retrieval data structures (or static functions), namely BuRR [14]. The former learns a
piecewise linear approximation mapping keys in S to their rank estimate. The latter allows
associating a small fixed-width integer to each key in S, without storing S. We combine these
two seemingly unrelated data structures in a surprisingly simple and effective way. First, we
use the PGM to monotonically map keys to buckets according to their rank estimate, and we
store the global rank of each bucket’s first key in a compressed data structure. Second, since
the rank estimate of some keys might coincide, we solve such bucket collisions by storing the
local ranks of these keys using BuRR. We call our proposal LeMonHash, because it learns and
leverages the smoothness of the input data to build a space-time efficient monotone MPHF.
On the theoretical side, this achieves O(1) bits per key for inputs which are sufficiently
random within buckets – breaking the superlinear lower bound. Practically, on various
integer datasets tried, it needs about one-third less space than previous approaches and is an
order of magnitude faster. We also extend LeMonHash to support variable-length string keys.
This approach needs space within 13% of the best competitors while being up to 3× faster.

Outline. We first describe the basic building blocks of LeMonHash in Section 2 and discuss
related work in Section 3. In Section 4, we describe LeMonHash for integers and then extend
it to variable-length strings in Section 5. In Section 6, we discuss variants and refinements,
before proving the space-time guarantees of LeMonHash in Section 7. In Section 8, we present
our experiments. In Section 9, we summarise the paper and give an outlook for future work.
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2 Preliminaries

In this section, we describe the basic building blocks of LeMonHash.

Bit Vectors. Given a bit vector of size n and b ∈ {0, 1}, the rankb(x) operation returns the
number of b-bits before position x, and the selectb(i) operation returns the position of the ith
b-bit. These operations can be executed in constant time using as little as o(n) bits on top
of the bit vector [13, 34], and they have very space-time efficient implementations [30, 38, 52].

Elias-Fano. Elias-Fano Coding [15,17] is a way to efficiently store a non-decreasing sequence
of n integers over a universe of size u. An integer at position i is split into two parts. The
log n upper bits x are stored in a bit vector H as a 1-bit in H[i + x]. The remaining lower
bits are directly stored in an array L. Integers can be accessed in constant time by finding
the ith 1-bit in H using a select1 data structure and by looking up the lower bits in L.
Predecessor queries are possible by determining the range of integers that share the same
upper bits of the query key using two select0 queries, and then performing a binary search
on that range. If there are no duplicates, this binary search takes O

(
min{log n, log u

n }
)

time.
The space usage of an Elias-Fano coded sequence is n⌈log u

n ⌉ + 2n + o(n) bits (see [47, §4.4]).
Partitioned Elias-Fano [49] is an extension that uses dynamic programming to partition the
input into multiple independent Elias-Fano sequences to minimise the overall space usage.

PGM-index. The PGM-index [24] is a space-efficient data structure for predecessor and
rank queries on a sorted set of n keys from an integer universe [u]. Given a query q ∈ [u],
it computes a rank estimate that is guaranteed to be close to the correct rank by a given
integer parameter ε. If one stores the input keys, then the correct rank can be recovered
via an O(log ε)-time binary search on 2ε + 1 keys around the rank estimate. The PGM
is constructed in O(n) time by first mapping the sorted integers x1, . . . , xn in S to points
(x1, 1), . . . , (xn, n) in a key-position Cartesian plane, and then learning a piecewise linear
ε-approximation of these points, i.e. a sequence of m linear models each approximating the
rank of the keys in a certain sub-range of [u] with a maximum absolute error ε. The value m,
which impacts on the space of the PGM, can range between 1 and m ≤ n/(2ε) [24, Lemma 2]
depending on the “approximate linearity” of the points. In practice, it is very low and can
be proven to be m = O

(
n/ε2)

when the gaps between keys are random variables from a
proper distribution [20]. The time complexity to compute the rank estimate with a PGM
is given by the time to search for the linear model that contains the searched key q, which
boils down to a predecessor search on m integers from a universe of size u. For this, there
exist many trade-offs in various models of computations [24,48].

Retrieval Data Structures. A retrieval data structure or static function on a set S of n keys
denotes a function f : S → {0, 1}r that returns a specific r-bit value for each key. Applying
the function on a key not in S returns an arbitrary value. Retrieval data structures take
(1 + η)rn bits, where η ≥ 0 is the space overhead over the space lower bound of rn bits.

MWHC [43] is a retrieval data structure based on hypergraph peeling, has an overhead
η = 0.23 and can be evaluated in constant time. 2-step MWHC [3] can have a smaller
overhead than MWHC by using two MWHC functions of different widths.

The more recently proposed Bumped Ribbon Retrieval (BuRR) data structure [14] basically
consists of a matrix. The output value for a key can be obtained by multiplying the hash
of the key with that matrix. The matrix can be calculated by solving a linear equation
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system. Because BuRR uses hash functions with spacial coupling [53], the equation system
is almost a diagonal matrix, which makes it very efficient to solve. When some rows of
the equation system would prevent successful solving, BuRR bumps these rows (and the
corresponding keys) to the next layer of the same data structure. BuRR has an overhead
η = O

(
log W/(rW 2)

)
and can be evaluated in O(1 + rW/ log n) time, where W = O(log n)

is a parameter called ribbon width. In practice, BuRR achieves space overheads well below
η = 1% while being faster than widely used data structures with much larger overhead [14].

3 Related Work

Non-monotone perfect hash functions are a related and very active area of research [4, 7, 12,
16,26, 40,42,44, 50]. Due to space constraints, we do not review them in detail. For a more
detailed list, refer to Ref. [40]. We also do not describe order-preserving minimal perfect
hash functions [25] because their theoretical lower bound can trivially be reached by using a
retrieval data structure taking log n bits per key (plus a small overhead). Another loosely
related result is using learned models as a replacement for hash functions in traditional hash
tables [37,51], but it generally has a negative impact on the probe/insert throughput (and
most likely on the space too, due to the storage of the models’ parameters, which these
studies do not evaluate). We now look at monotone minimal perfect hash functions, first
describing the idea of bucketing before then continuing with specific MMPHF constructions.

Bucketing. Bucketing [3] is a general technique to break down MMPHF construction into
smaller sub-problems. The idea is to store a simple monotone, but not necessarily minimal or
perfect distributor function that maps input keys to buckets. Each bucket receives a smaller
number of keys that can then be handled using some (smaller) MMPHF data structure.
To determine the global rank of a key, we need the prefix sum of the bucket sizes. For
equally-sized buckets, this is trivial. Otherwise, this sequence can be stored with Elias-Fano
coding. In the paper by Belazzougui et al. [3], where many of the following techniques are
described, the authors use MWHC [43] to explicitly store the ranks within each bucket.
LeMonHash uses a learned distributor and buckets of expected size 1 (see Section 4).

Longest Common Prefix. Bucketing with Longest Common Prefixes (LCP) [2] maps keys
to equally sized buckets. A first retrieval data structure maps all keys to the length of the
LCP among all keys in its bucket. A second one then maps the value of the LCP to the
bucket index. Overall, it uses O(log log u) bits per key and query time O((log u)/w), and in
practice it has been shown to be the fastest but the most space-inefficient MMPHF [3].

Partial Compacted Trie. First map the keys to equally sized buckets and consider the last
key of each bucket as a router indexed by a compacted trie, e.g., a binary tree where every
node contains a bit string denoting the common prefix of its descending keys. During queries,
the trie is traversed by comparing the bit string of the traversed nodes with the key to decide
whether to stop the search operation at some node (if the prefix does not match), or descend
into the left or right subtree based on the next bit of the key. A Partial Compacted Trie
(PaCo Trie) [3] compresses the compacted trie above by 30–50% by exploiting the fact that,
in an MMPHF, the trie needs to correctly rank only the keys from the input set. Therefore,
each node can store a shorter bit string just long enough to correctly route all input keys.
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Hollow Trie. A Hollow Trie [3] only stores the position of the next bit to look at. Hollow
tries can be represented succinctly using balanced parentheses [45]. To use hollow tries for
bucketing, and thus allow the routing of not-indexed keys, we need a modification to the
data structure. The Hollow Trie Distributor [3] uses a retrieval data structure that maps the
compacted substrings of each key in each tree node to the behaviour of that key in the node
(stopping at the left or right of the node, or following the trie using the next bit of the key).
Overall, it uses O(log log log u) bits per key and query time O(log u).

ZFast Trie. To construct a ZFast Trie [2], we first generate a path-compacted trie. Then,
for prefixes of a specific length (2-fattest number ) of all input keys, a dictionary stores the trie
node that represents that prefix. A query can then perform a binary search over the length
of the queried key. If there is no node in the dictionary for a given prefix, the search can
continue with the pivot as its upper bound. If there is a node, the lower bound of the search
can be set to the length of the longest common prefix of all keys represented by that node.
The ZFast trie uses O(log log log u) bits per key and query time O((log u)/w + log log u).

Path Decomposed Trie. In the previous paragraphs, we described binary tries with a rather
high height. However, those tries are inefficient to query because of the pointer chasing to
non-local memory areas. The main idea behind Path Decomposed Tries [18], which can be
used as an MMPHF [33], is to reduce the height of the tries. We first select one path all
the way from the root node to a leaf. This path is now contracted to a single node, which
becomes the root node in our new path decomposed trie. The remaining nodes in the original
trie form subtries branching from every node in that path. We take all of these subtries,
make them children of the root node, and annotate them by their branching character with
respect to the selected path. The subtries are then converted to path decomposed tries
recursively. In centroid path decomposition, the path to be contracted is always the one that
descends to the node with the most leaves in its subtree.

4 LeMonHash

We now introduce the main contribution of this paper – the MMPHF LeMonHash. The
core idea of LeMonHash is surprisingly simple. We take all the n input integers and map
them to n buckets using some monotone mapping function, that we will describe later. We
store an Elias-Fano coded sequence with the global ranks of the first key in each bucket using
2n + o(n) bits. Given a bucket of size b, we use a ⌈log b⌉-bit retrieval data structure (see
Section 2) to store the local ranks of all its keys. Note that we do not need to store local
ranks if the bucket has only 0 or 1 keys. For squeezing space, instead of storing one retrieval
data structure per bucket, we store a collection of retrieval data structures so that the ith
one stores the local ranks of all keys mapped to buckets whose size b is such that i = ⌈log b⌉.
An illustration of the overall data structure is given in Figure 1a.

Bucket Mapping Function. The space efficiency of LeMonHash is directly related to the
quality of the monotone mapping function. For uniform random integers, a linear mapping
from input keys to n buckets, i.e. a mapping from a key x to the bucket number ⌊xn/u⌋,
leads to an MMPHF with a space usage of just 2.915 bits per key (see Theorem 1). Intuitively,
such a linear mapping returns a rank estimate in [n] for a given key. However, for skewed
distributions, the rank estimate can be far away which can create large buckets whose local
ranks are expensive to store. For example, if the majority of the keys are such that x < u/n,
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0 1 1 3 4 4 5 6 6 9 10 11

0 1 00 01 10

n input keys

n buckets

Retrieval

u

Mapper

Global ranks ∈ [n]

(a) LeMonHash. Keys are mapped to buckets.
Ranks within buckets are stored in (a collection
of) retrieval data structures.

0 3 7 20 23 23 25 35 35

First chunks of all n input keys

Few keys
with these
chunks,

store local
ranks

Next chunks Next chunks

3 11 11 20 23 29 29 35

2w

c buckets

Global ranks ∈ [n]

Mapper

(b) LeMonHash-VL. Global ranks in each level are
stored together. Buckets that are not handled re-
cursively use retrieval data structures like before.

Figure 1 Illustration of the LeMonHash and LeMonHash-VL data structures.

then the first bucket will be large enough to require Θ(log n) bits per key, i.e. our MMPHF
degenerates to a trivial OPMPHF. To tackle this problem, we implement the mapping
function with a PGM-index [24]. As we observed in Section 2, the PGM was originally
designed as a predecessor-search data structure. Here, we use the PGM as a rank estimator
that, for a given key, returns an ε-bounded estimate of its rank. To achieve this result
in LeMonHash, we do not store the list of indexed keys and simply use the PGM’s rank
estimate as the bucket index. The PGM internally adapts to the input data by learning the
smoothness in the distribution via a piecewise linear ε-approximation model, thus it can be
thought of as a “local” approximation of the linear mapping above. Real-world data sets can
often be approximated using piecewise linear models, as discussed in the literature [20] and
also demonstrated by the good space efficiency of our experiments (see Section 8). There
is a trade-off between the amount of space needed to represent the PGM and the quality
of the mapping, which depends on both the input data distribution and the given integer
parameter ε. In Section 8, we test both a version with a constant ε value and a version
that auto-tunes its value by constructing multiple PGMs and then selecting the optimal ε.
Finally, we observe that with the PGM mapper, unlike for the linear mapping and other non
error-bounded learning-based approaches [23, 36], the number of retrieval data structures we
need to keep is bounded by O(log ε) regardless of the input key distribution (see Theorem 2).

Queries. Given a key q, we obtain its bucket i using the mapping function. The global
rank of the (first key in the) bucket is the ith integer in the Elias-Fano coded sequence
of global ranks, which can be accessed in constant time, and the bucket size is computed
by subtraction from the next integer in that sequence. The bucket size b directly tells us
which retrieval data structure to query, i.e. the ⌈log b⌉th one. Evaluating the retrieval data
structure with q gives us its local rank in the bucket. Adding this to the global rank of the
bucket gives us the rank of q. As we show in Section 7, for uniform data, the linear bucket
mapper gives constant time queries, while for other inputs we use the PGM mapper and the
query time is O(log log u).

Comparison to Known Solutions. Known MMPHFs in the literature typically divide
the keys into equal-size buckets and build a compact trie-based distributor. Unlike them,
LeMonHash learns the data linearities and leverages them to distribute keys to buckets close
to their rank. Whenever some keys collide into a bucket, LeMonHash handles these keys via
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a (small) collection of succinct retrieval structures. In contrast to known solutions, whenever
a key is the only one mapped to its bucket, no information needs to be stored in (and no
query is issued on) a retrieval data structure. These features allow LeMonHash to possibly
achieve reduced space occupancy compared to classic MMPHFs, which are oblivious to data
linearities. Also, LeMonHash can reduce the query time by replacing the cache-inefficient
traversal of a trie with the PGM mapper, which in practice is fast to evaluate.

5 LeMonHash-VL

Of course, the idea of LeMonHash can be immediately applied to keys whose maximum
longest common prefix (LCP) is less than w bits. In this case, each string prefix and the
following bit (which are sufficient to distinguish every string from each other) fit into one
machine word and thus can be handled efficiently in time and in space by the PGM mapper.
For strings with longer LCPs, we introduce a tree data structure that we call LeMonHash-VL
(since it handles Variable-Length strings). The main idea is to simply compute the bucket
mapping on a length-w substring of each string, which we call a chunk. Buckets that receive
many keys using this procedure are then handled recursively. Details follow.

Overview. We start with a root node representing all the string keys in S and consider the
set of chunks extracted from each key starting from position |p| (which we store), where p is
the LCP among the keys in S. Given these c distinct chunks, we construct a PGM mapper
to distribute the keys to buckets in [c], and we store an Elias-Fano coded sequence with the
global ranks of the first key in each bucket. Clearly, different keys can be mapped to the
same bucket because the PGM mapper is not perfect (as in the integer case) and because
they share the same chunk value (unlike in the integer case). For example, for the strings
S = {cherry, cocoa, coconut} with p = c and chunks composed of 3 characters, the keys
cocoa and coconut share the chunk value oco and will be mapped to the same bucket.

If a bucket of size b contains fewer input strings than a specific threshold t, we store the
local ranks of the strings in the bucket in a ⌈log b⌉-bit retrieval data structure. Once again,
we do not need to store local ranks if the bucket has only 0 or 1 keys. If instead the bucket is
large (i.e. b ≥ t), we create a child node in the tree data structure by applying the same idea
recursively on the strings S′ of that bucket. This means that we compute a PGM mapper on
the chunks extracted from each string in S′ starting from position |p′|, where p′ is the LCP
among the bucket strings S′. Notice that |p′| ≥ |p| but we always guarantee that S′ ⊊ S, so
the recursion is bounded. In practice, we set the threshold t = 128 (see Section 8.1).

At query time, we can use the sequence of global ranks to calculate the bucket size b,
which allows determining whether we need to continue recursively on a child (because b ≥ t)
or directly return the global rank of the bucket plus the local rank stored in the ⌈log b⌉-bit
retrieval data structure. Figure 1b gives an overview of the data structure.

We observe that the global ranks of each node increase monotonically from left to right
in each level of the overall tree. Therefore, we merge all these global ranks in a level into one
Elias-Fano sequence, thereby avoiding the space overhead of storing many small sequences.

Of course, each inner node of the tree needs some extra metadata, like the encoding of its
bucket mapper, the value of |p|, and an offset to its first global rank in the per-level Elias-Fano
sequence. We associate a node to its metadata via a minimal perfect hash function, where
the identifier of a node is given by the path of the buckets’ indices leading to it.

Given the overall idea, there is a wide range of optimisations that we use. In the following,
we outline the main algorithmic ones and refer the interested reader to our implementation [28]
and the extended version [19] for the many other small-and-tricky optimisations, such as the
use of specialised instructions like popcount and bextr, or lookup tables.
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Alphabet Reduction. The number of nodes and the depth of LeMonHash-VL depend on
both the length and distribution of the input strings, and on how well the PGM mapper
at each node can map strings to distinct buckets given their w-bit chunks. Therefore, we
should aim to fit as much information as possible in the w-bit chunks. We do so by exploiting
the fact that, in real-world data sets, often only a very small alphabet Σ of branching
characters distinguish the strings in each bucket, and that we do not care about the other
characters. We extract chunks from the suffix of each string starting from the position
following the LCP p, as before, but interpret the suffix as a number in radix σ = |Σ| where
each character is replaced by its 0-based index in Σ if present, or by 0 if not present. For
example, for a node on the strings {shoppers, shopping, shops} whose LCP is p = shop,
we would store the alphabet Σ = {e, i, p, s} and map the suffix “pers” of “shoppers” to
index(p)σ3 + index(e)σ2 + index(r)σ1 + index(s)σ0 = 2σ3 + 0σ2 + 0σ1 + 3σ0. Observe that
the chunks computed in this way still preserve the lexicographic order of the strings. The
number of characters we extract is computed to fit as many characters as possible in a w-bit
word, i.e. ⌊w/ log σ⌋ characters. In our implementation over bytes, we store Σ via a bitmap
of size 128 or 256, depending on whether its characters are a subset of ASCII or not. Finally,
we mention that a mapping from strings to numbers in radix σ has also been used to build
compressed string dictionaries [8], but the twist here is that we are considering only the
alphabet of the branching characters since we do not need to store the keys.

Elias-Fano Sequences. The large per-level Elias-Fano sequences of global ranks have a very
irregular structure. For example, if many of the strings in a node share the same chunks,
there is a large gap between two of the stored ranks. We can deal with these irregularities and
reduce the overall space usage by using partitioned Elias-Fano [49]. Furthermore, the PGM
mappers do not always provide a very uniform mapping, which thus results in empty buckets.
An empty bucket corresponds to a duplicate offset value being stored in the Elias-Fano
sequences (see e.g. the duplicate offset 23 in Figure 1b). To optimise the space usage of
such duplicates, we filter them out before constructing the partitioned Elias-Fano sequence.
We do this by grouping the stored numbers in groups of 3 numbers. If all 3 numbers are
duplicates of the number before that group, we do not need to store the group. A bit vector
with rank support indicates which groups were removed.

Perfect Chunk Mapping. In many datasets, there might be only a small number of different
chunks, even if the number of strings they represent is large. For instance, chunks computed
on the first bytes of a set of URLs might be a few due to the scarcity of hostnames, but
each host may contain many distinct pages. In these cases, instead of a PGM, it might be
more space-efficient to build a (perfect) map from chunks to buckets in [c] via a retrieval
data structure taking c⌈log c⌉ bits overall (plus a small overhead), where c is the number of
distinct chunks. In practice, we apply this optimisation whenever c < 128 (see Section 8.1).

Comparison to Known Solutions. In essence, LeMonHash-VL applies the idea of LeM-
onHash recursively to handle variable-length strings. Therefore, unlike known solutions, it
can leverage data linearities to distribute w-bit chunks from the input strings to buckets
using small space, and use additional child nodes only whenever a bucket contains many
strings that thus require inspecting the following chunks to be distinguished. Additionally, it
performs an adaptive alphabet reduction within the buckets to fit more information in the
w-bit chunks, thus leveraging the presence of more regularities in the input data. Overall,
these features result in a data structure that has a small height and is efficient to be traversed.
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6 Variants and Refinements

LeMonHash can be refined in numerous ways, which we only mention briefly due to space
constraints. Looking at a possible external memory implementation, LeMonHash can be
constructed trivially by a linear sweep and queries are possible using a suitable representation
of the predecessor and bucket-size data structures. LeMonHash can also be constructed in
parallel without affecting the queries, in contrast to the trivial parallelisation by partitioning
the input. In LeMonHash-VL, extracting chunks from non-contiguous bytes reduces the
height of the trees but has worse trade-offs in practice. Finally, we present an alternative
to storing the local ranks explicitly. The idea is to recursively split the universe size of
that bucket and record the number of keys smaller than that midpoint. Despite its query
overhead, this technique might be of general interest for MMPHFs. Refer to the extended
version [19] for details.

7 Analysis

We now prove some properties of our LeMonHash data structure for integers. In our analysis,
we use succinct retrieval data structures taking rn + o(n) bits per stored value and answering
queries in constant time (see Section 2 and [14]). Furthermore, since our bucket mappers
need multiplications and divisions, we make the simplifying assumption u = 2w to avoid
dealing with the increased complexity of these arithmetic operations over large integers.

▶ Theorem 1. A LeMonHash data structure with a bucket mapper that simply performs a
linear interpolation of the universe on a list of n uniform random keys needs ≈ n(2.91536 +
o(1)) bits on average1 and answers queries in constant time.

Proof. We approximate the number of keys per bucket using a Poisson distribution which
results in 0.91536n + o(n) bits of space for the retrieval data structures. On top of that, an
Elias-Fano coding of the global bucket ranks gives 2n + o(n) bits. Refer to the extended
version [19] for the full proof. ◀

While this result is formally only valid for a global uniform distribution, for use in
LeMonHash it suffices if each segment computed by the PGM-index is sufficiently smooth. It
need not even be uniformly random as long as each local bucket has a constant expected
size. As long as the space for encoding the segments is in O(n) bits, we retain the linear
space bound of Theorem 1. Moreover, the following worst-case analysis gives us a fallback
position that holds regardless of any assumptions.

▶ Theorem 2. A LeMonHash data structure with the PGM mapper takes n(⌈log(2ε+1)⌉+2+
o(1))+O

(
m log u

m

)
bits of space in the worst case and answers queries in O

(
log logw

u
m

)
time,

where m is the number of linear models in a PGM with an integer parameter ε ≥ 0 constructed
on the n input keys.

1 Numerically, we find that a better space usage of ≈ 2.902n bits can be achieved by mapping the n keys to
only ≈ 0.909n buckets, but this difference is irrelevant in practice. It is also interesting to note that this is
close to the space requirements of most of the practical non-monotone MPHFs [4,7,12,16,26,40,42,44,50].
Using an MMPHF can be useful when indexing an array through an MPHF, because sorting the hash
values can be more cache efficient than a large number of random accesses to the array.
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Proof. The basic idea is that the rank estimate returned by the PGM is guaranteed to be
far from the correct rank by ε, which limits the space of the retrieval data structures. The
O

(
m log u

m

)
-term in the space bound is given by a compressed encoding of the linear models

in the PGM, and the query time is given by a predecessor search structure on the linear
models’ keys. Refer to the extended version [19] for the full proof. ◀

The worst-case bounds obtained in Theorem 2 are hard to compare with the ones of classic
MMPHF (see Section 3) due to the presence of m (and ε), which depends on (and must be
tuned according to) the approximate linearity of the input data, which classic MMPHFs are
oblivious to.2 Refer to Section 2 for bounds on m. Our experiments show that we obtain
better space or space close to the best classic MMPHFs, while being much faster (we use
a weaker but practical predecessor search structure than the one in Theorem 2). Refer to
Section 8 for details.

8 Experiments

In the following section, we first compare different configurations of LeMonHash and
LeMonHash-VL before comparing them with competitors from the literature.

Experimental Setup. We perform our experiments on an Intel Xeon E5-2670 v3 with a
base clock speed of 2.3 GHz running Ubuntu 20.04 with Linux 5.10.0. We use the GNU C++
compiler version 11.1.0 with optimisation flags -O3 -march=native. As a retrieval data
structure, we use BuRR [14] with 64-bit ribbon width and 2-bit bumping info. To store the
bucket sizes, we use the select data structure by Kurpicz [38] in LeMonHash and Partitioned
Elias-Fano [49] in LeMonHash-VL. To map tree paths to the node metadata, we use the
MPHF PTHash [50]. For the PGM implementation in LeMonHash, we use the encoding
from Theorem 2 and use a predecessor search on the Elias-Fano sequence (Section 2). In
LeMonHash-VL, since the number of linear models in a node is typically small, we encode
them explicitly as fixed-width triples (key, slope, intercept) and find the predecessor via a
binary search on the keys. All our experiments are executed on a single thread. Because the
variation is very small, we run each experiment only twice and report the average. We run
the Java competitors on OpenJDK 17.0.4 and perform one warm-up run for the just-in-time
compiler that is not measured. With this, the Java performance is expected to be close to
C++ [3]. Because Java does not have an unsigned 64-bit integer type, we subtract 263 from
each input key to keep their relative order.

The code and scripts needed to reproduce our experiments are available on GitHub under
the General Public License [28,29].

Datasets. Our datasets, as in previous evaluations [3, 33], are a text dataset that contains
terms appearing in the text of web pages [3] and urls crawled from .uk domains in 2007 [10].
Additionally, we also test with dna sequences consisting of 32-mers [22]. Regarding real-world
integer datasets, 5gram contains positions of the most frequent letter in the BWT of a text
file containing 5-grams found in books indexed by Google [9, 31]. The fb dataset contains
Facebook user IDs [35] and osm contains OpenStreetMap locations [35]. As synthetic integer
datasets, we use 64-bit uniform, normal, and exponential distributions. Refer to Table 1 for
details.

2 This happens also in other problems in which data is encoded with linear models [9, 21].
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Table 1 Datasets used for the experiments, together with their length or average (ø) length. Top:
real-world string datasets. Middle: real-world integer datasets. Bottom: synthetic integer datasets.

Dataset n Length Description

text 35M ø 11 bytes Terms appearing in the text of web pages, GOV2 corpus [3]
dna 367M 32 bytes 32-mer from a DNA sequence, Pizza&Chili corpus [22]
urls 106M ø 105 bytes Web URLs crawled from .uk domains in 2007 [10]

5gram 145M 32 bits Positions of the most frequent letter in the BWT of a text file
containing 5-grams found in books indexed by Google [9, 31]

fb 200M 64 bits Facebook user IDs [35]
osm 800M 64 bits OpenStreetMap locations [35]

uniform 100M 64 bits Uniform random
normal 100M 64 bits Normal distribution (µ = 1015, σ2 = 1010)
exponential 100M 64 bits Exponential distribution (λ = 1, scaled with 1015)

8.1 Tuning Parameters
In the following section, we compare several configuration parameters of LeMonHash and
show how they provide a trade-off between space usage and performance.

LeMonHash. Different ways of mapping the keys to buckets have their own advantages and
disadvantages. Table 2 gives measurements of the construction and query throughput, as well
as the space consumption of different bucket mappers. Our implementation of LeMonHash
with a linear bucket mapper achieves a space usage of 2.94n bits, which is remarkably close
to the theoretical space usage of 2.91n bits (see Theorem 1). Of course, a global, linear
mapping does not work for all datasets. A bucket mapper that creates equal-width segments
by interpolating between sampled keys (denoted as “Segmented” in the table) is fast to
construct and query, and it achieves good space usage. But, as for the global linear mapping,
this approach is not robust enough to manage arbitrary input distributions. In particular,
for this heuristic mapper, it is easy to come up with a worst-case input that degenerates the
space usage. Conversely, with the PGM mapper, LeMonHash still achieves 2.96n and 2.98n

bits on uniform random integers but it is more performant and robust on other datasets
(except on osm, where the heuristic mapper obtains a good enough mapping with only its
equal-width segments, which are inexpensive to store). In fact, we explicitly avoided heuristic
design choices in our PGM mapper (such as sampling input keys, removing outliers, or using
linear regression) to not inflate our performance on the tested datasets at the expense of
robustness on unknown ones (see Ref. [36]). Finally, on most input distributions, auto-tuning
the value of ε ∈ {15, 31, 63} does not have a large effect on the space usage.

LeMonHash-VL. Table 3 lists the effect of alphabet reduction on the query and construction
performance. In general, alphabet reduction enables noticeable space improvements with
only a small impact on the construction time. For the dna dataset, which uses only 15
different characters, the alphabet reduction has the largest effect, saving 1.3 bits per key and
simultaneously making the queries 40% faster. The faster queries can be explained by the
reduced tree height. Note that alphabet reduction makes the queries slightly slower for the
other datasets. The reason is that instead of one single bswap instruction for chunk extraction,
it needs multiple arithmetic operations (including popcount) for each input character. The
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Table 2 Comparison of different bucket mappers. The space usage is given in bits per key, the
query throughput in kQueries/second, and the construction throughput (c.t.) in MKeys/second.

Dataset Linear mapper PGM ε = auto PGM ε = 31 Segmented

bpk kq/s c.t. bpk kq/s c.t. bpk kq/s c.t. bpk kq/s c.t.

5gram 5.60 1833.5 6.2 2.62 1747.0 3.8 2.63 1779.4 8.5 2.64 2145.9 14.5
fb 34.35 0.8 5.1 4.91 1156.1 2.8 4.91 1150.7 5.1 4.93 1441.3 7.2
osm 12.92 1525.3 5.5 4.42 999.6 2.8 4.42 998.6 5.0 4.33 1272.9 6.8

uniform 2.94 3244.6 8.7 2.96 1903.3 3.5 2.98 1850.5 6.5 3.03 2192.0 8.7
normal 34.27 105.3 4.8 2.95 1935.0 3.6 2.97 1858.0 6.6 3.00 1727.7 8.7
exponential 5.42 2715.9 6.0 2.95 1876.9 3.6 2.98 1791.5 6.6 3.01 2085.1 8.8

Table 3 Comparison of different variants of LeMonHash-VL. The space usage is given in bits
per key, the query throughput in kQueries/second, and the construction throughput (c.t.) in
MKeys/second. Variants with and without alphabet reduction (AR), a special indexed variant (Idx,
see the extended version [19]), and a variant with fixed instead of auto-tuned parameter ε for the
bucket mapper.

Dataset ε = auto, no AR ε = auto, AR ε = 63, AR Idx, ε = auto, AR

bpk kq/s c.t. bpk kq/s c.t. bpk kq/s c.t. bpk kq/s c.t.

text 6.52 1062.9 1.7 6.03 1005.8 1.6 6.08 1001.8 2.5 6.10 933.2 2.3
dna 7.66 452.8 2.0 6.32 631.3 1.7 6.25 644.8 2.7 6.27 601.1 2.4
urls 7.14 282.7 2.3 6.37 298.8 1.8 6.46 295.1 2.3 6.63 298.1 1.6

indexed variant that builds chunks from the distinguishing bytes instead of a contiguous byte
range (see the extended version [19]) is slower to construct but does not show clear space
savings, which can be explained by larger per-node metadata. We also experimented with
different thresholds for when to stop recursion, as well as the perfect chunk mapping (see
Section 5). Given that the space overhead from each bucket mapper is the same for all data
sets, it is not surprising that the same threshold (128 keys) works well for all datasets (see
the extended version [19]). Finally, making the ε value of the PGM mapper constant instead
of auto-tuned, we naturally get faster construction. As in the integer case, one would expect
a fixed ε value to always produce results that are the same or worse than the auto-tuned
version. This is not the case because, in the recursive setting, it is hard to estimate the effect
of a mapper on the overall space usage. Therefore, an ε value that needs more space locally
can lead to a mapping that proves useful on a later level of the tree. This is why ε = 63 can
achieve better space usage than the auto-tuned version on the dna dataset.

8.2 Comparison with Competitors
In this section, we compare the performance of LeMonHash and LeMonHash-VL with
competitors from the literature. Competitors include the C++ implementation by Grossi and
Ottaviano [33] of the Centroid Hollow Trie, Hollow Trie, and Path Decomposed Trie. Because
that implementation only supports string inputs, we convert the integers to a list of fixed-
length strings. We point out that the Path Decomposed Trie crashes at an internal assertion
when being run on integer datasets. For the Hollow Trie, we encode the skips with either
Gamma or Elias-Fano coding, whatever is better on the dataset. We also include the Java
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Figure 2 Query throughput for string, integer, and synthetic integer datasets vs space usage.
The top-left corner of every plot shows the top-performing solutions in terms of space-time efficiency.

0

1

2

3

C
on

st
r.

M
K

ey
s/

s text dna urls

0
2
4
6
8

C
on

st
r.

M
K

ey
s/

s 5gram fb osm

5 10
0
2
4
6
8

≥
Bits/key

C
on

st
r.

M
K

ey
s/

s uniform

5 10 ≥
Bits/key

normal

5 10 ≥
Bits/key

exponential

Centroid HT [33] HTDist [3] Hollow [33] Hollow [3] ZFast [3]
LCP 2-step [3] LCP [3] VLLCP [3] PaCo [3] VLPaCo [3]
Path Decomp. [33] LeMonHash-VL LeMonHash

Figure 3 Construction throughput for string, integer, and synthetic integer datasets. Competitors
with the symbol in the legend are implemented in Java.
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implementations by Belazzougui et al. [3] of a range of techniques (see Section 3). We use
either the FixedLong or PrefixFreeUtf16 transformation, depending on the data type of the
input. For LeMonHash, we use the PGM mapper with ε = 31. For LeMonHash-VL, we use
the PGM mapper with ε = 63, alphabet reduction and a recursion threshold t = 128.

Queries. Figure 2 plots the query throughput against the achieved storage space. In the
extended version [19], we additionally detail the numbers in tabular format. The LCP-based
methods (see Section 3) have very fast queries but also need the most space (in fact, they
appear to the top-right of the plots). At the same time, LeMonHash matches or even
outperforms the query throughput of LCP-based methods, while being significantly more
space efficient (in fact, it appears towards the top-left of the plots). Compared to competitors
with similar space usage, LeMonHash offers significantly higher query throughput.

Construction. Figure 3 plots the construction throughput against the space needed. On
most synthetic integer datasets, LeMonHash provides a significant improvement to the
state-of-the-art approaches, whereas it matches or outperforms the competitors on real-world
datasets. LeMonHash improves the construction throughput by up to a factor of 2, compared
to the competitor with the next best space usage (typically, variants of the Hollow Trie).
While LeMonHash-VL does not achieve the same space usage as the Hollow Trie Distributor,
its construction is significantly faster, and still it is the second best in space usage.

9 Conclusion and Future Work

In this paper, we have introduced the monotone minimal perfect hash function LeMonHash.
LeMonHash, unlike previous solutions, learns and leverages data smoothness to obtain a
small space usage and significantly faster queries. On most synthetic and real-world datasets,
LeMonHash dominates all competitors – simultaneously – on space usage, construction and
query throughput. Our extension to variable-length strings, LeMonHash-VL, consists of
trees that are significantly more flat and efficient to traverse than competitors. This enables
extremely fast queries with space consumption similar to competitors.

Future Work. Many MMPHF construction algorithms are based on the idea of explicitly
storing ranks of keys within a small bucket. The idea to split small buckets recursively that
we mention in Section 6 can help to reduce the space usage. It remains an open problem
whether the idea works in practice, especially when the distribution of keys inside the bucket
is skewed. It is also worth investigating a different construction of the piecewise linear
approximation in the PGM that minimises the overall space given by the segments and
the local ranks stored in retrieval data structures, rather than the current approach that
maximises the length of the segment (thus minimising just the segments space). Applying
non-linear transformations like low-degree polynomials within each segment would also be
interesting future work. Finally, it would be interesting to apply smoothed analysis to
formally show that many real-world distributions locally behave as if they were uniform
random, therefore leading to tighter space bounds.
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Abstract
For solving NP-hard problems there is often a huge gap between theoretical guarantees and observed
running times on real-world instances. As a first step towards tackling this issue, we propose an
approach to quantify the correlation between theoretical and observed running times.

We use two NP-hard problems related to finding large “cliquish” subgraphs in a given graph as
demonstration of this measure. More precisely, we focus on finding maximum s-clubs and s-plexes,
i. e., graphs of diameter s and graphs where each vertex is adjacent to all but s vertices. Preprocessing
based on Turing kernelization is a standard tool to tackle these problems, especially on sparse graphs.
We provide a parameterized analysis for the Turing kernelization and demonstrate their usefulness
in practice. Moreover, we demonstrate that our measure indeed captures the correlation between
these new theoretical and the observed running times.
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1 Introduction

Highly engineered solvers often perform much better than the known theoretical results
would suggest. This is especially true when dealing with NP-hard problems. Unless P = NP,
no efficient (i. e. polynomial-time) algorithm exists that solves all input instances correctly.
However, optimized implementations can often solve instances with millions of vertices,
variables, etc. as demonstrated frequently at algorithm engineering conferences [4, 35]. Of
course, these implementations are not polynomial-time algorithms for NP-hard problems – the
real-world instances are simply not worst-case instances but have algorithmically exploitable
structures. On the other hand, there are usually relatively small instances making these
solvers struggle. So theoretical running time bounds can often not predict observed running
times on the given data set. Obviously, a better correlation between theoretical results and
empirical findings would be highly desirable.
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A multivariate (i. e. parameterized) analysis of the algorithm allows for a more nuanced
picture of running time bounds. In principle, it could provide us with a much better prediction
for the running time. However, a comparison to the theoretical parameterized running time
is rarely made in practice (although there are notable exceptions [39, 21]). This is probably
due to the multitude of issues arising here; let us mention just a few: For example, most
theoretical bounds are stated using the O-notation that hides constants. Matching these to
observed running times (which depend also on the used hardware) is not straightforward.
Moreover, optimized solvers often combine several tricks that work well in different cases.
The effect of these tricks is often hard to analyze and the observed running times most likely
depend on a large (possibly unknown) set of parameters.

In this work, we use the Pearson correlation coefficient to quantify the correlation between
theoretical bounds and observed running times. Our approach allows us to compare which
theoretical running-time bound fits “better” to the observed running times for a given data
set. Hence, it is relatively easy (but tedious) to generate hypotheses for theoretical bounds
that fit well to experimental observations. Although proving such bounds is a different story,
our approach can be used to transform practical results into impulses for theory.

We exemplify our approach on the s-Club and s-Plex problems and show how for
various solver variants different theoretical explanations can be used. To this end, we follow
the approach of Walteros and Buchanan [39] who demonstrated by means of a multivariate
analysis why Clique is often efficiently solvable in relatively sparse graphs.

1.1 Related work
Clique on Sparse Graphs. Clique is one of Karp’s 21 NP-complete problems [18]. As
such, it is well studied, both in theory and practice; see Wu and Hao [40] for a survey. The
currently fastest exact algorithm has running time O(1.20n) [41], where n is the number of
vertices. While 1.20 seems very small, for a graph with 400 vertices the number of steps has
more than 30 digits which is still infeasibly large. In contrast, a maximum clique can be
found in real-world graphs with millions of vertices [8, 14, 31, 38].

It is easy to see that any clique is contained in the neighborhood of each of its vertices.
Thus, a very basic approach solving clique on a sparse graph G = (V, E) is the following. Take
a vertex v of minimum degree and find the largest clique in N [v] (the closed neighborhood
of v). Then, remove v and continue in the same fashion. In the end, output the largest found
clique. The degeneracy d of a graph is the size of the largest neighborhood encountered in
the above algorithm. Hence, the above algorithm can be implemented to run in 1.20d · nO(1)

time which is on large sparse graphs far better than the O(1.20n) bound. Many of the
graphs considered by Walteros and Buchanan [39] have several hundred thousand vertices
and can be solved in less than a minute (often less than a second). Yet, some of these graphs
have a degeneracy of well above 400 (again resulting in an infeasibly large number of steps).
To rectify this, Walteros and Buchanan [39] provide an algorithm running in 1.28gnO(1)

time, where g := d − k + 1 is called the core-gap and k denotes the number of vertices in
a maximum clique (see Section 3 for a more detailed explanation). Clearly g can be much
smaller than d. In fact, Walteros and Buchanan [39] observe that all their relatively small
but hard-to-solve instances have a large core-gap.

Clubs and Plexes. An s-club is a graph of diameter s. An s-plex is a graph with ℓ vertices
where every vertex has degree at least ℓ − s. While not required by definition, in this work we
only consider connected s-plexes. The task in s-Club / s-Plex is to find the largest s-club /
s-plex in a given graph. Both s-Club and s-Plex are NP-hard as they contain Clique as
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special case (s = 1). Both problems are well-studied in the literature, both from theoretical
and practical perspective. For example, s-Plex is W[1]-hard with respect to the parameter
solution size k for all s ≥ 1 [19, 23]. In contrast, if s > 1, then s-Club is fixed-parameter
tractable with respect to the solution size k [33, 9]. We refer to Komusiewicz [22] for a
further overview on the parameterized complexity of these problems. Several algorithmic
approaches (heuristics and exact algorithms) have been proposed and examined to find
maximum-cardinality clubs [6, 5, 7, 9, 15, 28, 32, 25, 24] or plexes [3, 12, 11, 36, 29]. Variants
of the above-mentioned Turing kernelization approach are employed in engineered solvers for
finding clubs [15, 32] and plexes [3, 29].

1.2 Our results
We start by transferring the approach of Walteros and Buchanan [39] to s-Club and s-
Plex. To this end, introducing a new graph parameter, we describe and analyze the
Turing kernelization for both problems in Section 3. Moreover, we provide simple branching
algorithms showing fixed-parameter tractability with respect to a gap parameter. In Section 4,
we then analyze the impact of the Turing kernelization in computational experiments
for s ∈ {2, 3}. To this end, we use ILP-formulations with and without Turing kernelization
and basic lower bounds. For s-Club significant speedups are observed whereas for s-Plex
the improvements are not as clear (though still a speedup factor of more than 2.5 is achieved
on average). Finally, in Section 5 we use correlations (more precisely the Pearson correlation
coefficient) to analyze how well our theoretical findings fit to our practically observed running
times. While this measure makes no statement about the efficiency of the algorithms, we can
observe that even with the use of black boxes such as ILP-solvers our theoretical findings are
reflected in the experimental results, in particular for the s-Club problem.

2 Preliminaries

For an integer a ∈ N, we denote by [a] the set {1, . . . , a}. For a graph G = (V, E),
let n := |V | and m := |E| be the number of vertices and edges, respectively. Let u, v ∈ V

be two vertices of G. Let distG(u, v) denote the length of any shortest path between u

and v. For x ∈ N, let Nx,G(v) be the xth neighborhood of v, i. e., the set of vertices u

with 1 ≤ distG(u, v) ≤ x, Nx,G[v] = {v} ∪ Nx,G(v), and degx,G(v) be the size of its xth
neighborhood, i. e., degx,G(v) = |Nx,G(v)|. For a set X ⊆ V of vertices, let G[X] denote the
subgraph induced by X. We drop the subscript ·x for x = 1. Also, we omit the subscript ·G
when G is clear from context.

Clique relaxations. Let X be a set of vertices. If the vertices of X are pairwise adjacent,
then we say that X is a clique. Let s ∈ N be an integer. We say that X is an s-club if
the vertices of X have pairwise distance at most s, i. e., maxu,v∈X distG[X](u, v) ≤ s and
that X is an s-plex if G[X] is connected and every vertex v in X has at most s − 1 vertices
nonadjacent to v in X \ {v}, i. e., maxv∈X |X \ N(v)| ≤ s. (Note that a 1-club and a 1-plex
are each a clique.) We sometimes abuse these terms to refer to the subgraph induced by an
s-club or s-plex. The decision problems s-Club and s-Plex ask, given a graph G and an
integer k ∈ N, whether G contains an s-club and s-plex, respectively, of size at least k.

Degeneracy. We say that a graph G = (V, E) is d-degenerate if for every subgraph G′

of G, there exists a vertex with degG′(v) ≤ d. Equivalently, G is d-degenerate if there is an
ordering of V in which every vertex has at most d neighbors that appear later in the ordering.

ESA 2023
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We say that such an ordering is a degeneracy ordering of G. The degeneracy dG of G is
the smallest number d such that G is d-degenerate. For a vertex v ∈ V and an ordering σ

of V , we denote by Qσ
G(v) (and Qσ

G[v]) the set of vertices in NG(v) (and NG[v]) that appear
after v in σ. We also omit the superscript ·σ when it is clear.

Parameterized complexity. Here, we list several relevant notions from parameterized
complexity. See e. g., Cygan et al. [13] for a more comprehensive exposition of parameterized
complexity. A parameterized problem is fixed-parameter tractable or FPT for short if every
instance (I, k) can be solved in time f(k) · |I|O(1) for some computable function f . Such an
algorithm is called an FPT algorithm. It is widely believed that a parameterized problem is
not FPT if it is W[i]-hard for i ∈ N. One way to show fixed-parameter tractability is via
the notion of Turing kernel. For t ∈ N, a t-oracle for a parameterized problem is an oracle
that solves any instance (I, k) in constant time, provided that |I| + k ≤ t. We say that a
parameterized problem admits a Turing kernel of size f(k) if there is an algorithm with
access to an f(k)-oracle that solves (I, k) in time (|I| + k)O(1). It is straightforward to turn
a Turing kernel into an FPT algorithm by simply replacing an f(k)-oracle with a brute-force
algorithm. The brute-force algorithm runs in f ′(k) time for some computable function f ′,
resulting in an f ′(k) · (|I| + k)O(1)-time algorithm.

3 Theory

In this section, we provide theoretical analysis of clique relaxations based on the notion
of Turing kernels. We first describe in Section 3.1 the algorithm for Clique outlined by
Walteros and Buchanan [39], which runs in 1.28gnO(1) time for the gap g := d − k + 1. The
algorithms have two components. The first component is the Turing kernel parameterized by
the degeneracy d. In short, we show that Clique is polynomial-time solvable when we have
access to f(d)-oracle (see Section 2). In practice, there is no such convenient oracle so we
have to provide some algorithm – this is the second component. One way to substitute the
oracle is to use a brute-force algorithm. Since every oracle call takes an input whose size is
bounded by d, we already obtain an FPT algorithm parameterized by d. We can actually
make a more refined analysis by considering the gap parameter g = d − k + 1. Essentially, we
use an FPT algorithm parameterized by g rather than relying on brute force. Walteros and
Buchanan [39] showed that many Clique instances that can be solved efficiently in practice
indeed have small values of g.

We want to adapt this approach to clique relaxations, namely, s-Club and s-Plex.
However, there is one issue: Under standard complexity assumptions, there is no FPT
algorithm for s-Club or s-Plex. More precisely, s-Club is known to be NP-hard for s = 2
and d = 6 [16] and s-Plex is known to be W[1]-hard when parameterized by d + s [20]. For
this reason, we consider a broader notion of degeneracy, which we call x-degeneracy for x ∈ N
(1-degeneracy coincides with the standard degeneracy). We give the formal definition in
Section 3.2. With the notion of x-degeneracy at hand, we describe how to adapt the approach
employed by Walteros and Buchanan [39] to s-Club and s-Plex in Section 3.3.

3.1 Algorithm for Clique
We subsequently sketch the algorithmic approach of Walteros and Buchanan [39] for Clique.

Turing kernel. The Clique problem admits a Turing kernel, in which every input to the
oracle has at most d+1 vertices (thus size O(d2)) as follows: For an instance (G, k) of Clique,
consider a degeneracy ordering of σ = (v1, . . . , vn) of G. We will assume that k ≤ d + 1 since
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a d-degenerate graph has no clique of size d + 2. Observe that for every clique C of G, we
have C ⊆ Qσ[v], where v ∈ C is the vertex that appears first in a degeneracy ordering σ.
Thus, G has a clique of size k if and only if there exists a vertex v ∈ V such that G[Qσ[v]]
has a clique of size k. Since G is d-degenerate, G[Qσ[v]] has at most d + 1 vertices and
size O(d2). This leads to a Turing kernel for the parameter d: Simply call the oracle for the
instances (Qσ[v1], k), . . . , (Qσ[vn], k) and return yes iff at least one oracle answer was yes.

Oracle algorithm. Every oracle can be replaced with a brute-force algorithm running
in O(2dd2) time: Since Qσ[v] is of size at most d + 1, there are O(2d) subsets of Qσ[v] and for
every subset, it takes O(d2) time to check if every pair of vertices are adjacent. Thus, Clique
can be solved in O(2d · d2n) time. In fact, we can refine the analysis for the oracle algorithm
in terms of the gap parameter d − k + 1: To that end, we solve the Deletion to Clique
problem: Given a graph G and an integer ℓ, the task is to find a set of at most ℓ vertices
whose deletion results in a clique. There is a simple O(2ℓn2)-time algorithm for this problem:
If all vertices are pairwise adjacent and ℓ ≥ 0, then we have a yes-instance at hand. Otherwise,
there exist two nonadjacent vertices, say u and v. If ℓ = 0, then we can conclude that there is
no solution. If ℓ ≥ 1, then we recursively solve two instances (G − u, ℓ − 1) and (G − v, ℓ − 1).
This algorithm runs in O(2ℓ · n2) time. Since we need to solve this problem on G[Qσ(v)]
with ℓ := |Qσ[v]| − k ≤ d − k + 1, we have an O(2d−k+1 · d2n)-time algorithm for Clique.
We remark that an instance (G, ℓ) of Deletion to Clique is equivalent to the Vertex
Cover instance (G, ℓ) where G is the complement graph of G. Thus, using a faster known
FPT algorithm for Vertex Cover [10], we obtain an O∗

d(1.28d−k+1n)-time algorithm for
Clique (O∗

d hides factors polynomial in d).

3.2 Extending degeneracy
As mentioned in the beginning of this section, we consider a broader notion of degeneracy
that can defined in two ways.

▶ Definition 3.1. Let G be a graph and x ∈ N. The x-degeneracy of G is the smallest
integer dx ∈ N such that for each subgraph G′ of G, there exists a vertex v with |Nx,G′(v)| ≤ dx.

▶ Definition 3.2. Let G be a graph and x ∈ N. The x-degeneracy of G is the smallest
integer dx such that there is an ordering σ = (v1, . . . , vn) of G such that for every i ∈ [n],
the xth neighborhood of vi in G[vi, . . . , vn] has size at most dx. The ordering σ is called an
x-degeneracy ordering. The set of vertices in Nx,G[v] that appear after v in σ is Qσ

x,G[v].

It is not difficult to show that these two definitions are equivalent. We remark that the
notion of 2-degeneracy has been proposed by Trukhanov et al. [36] in the context of finding
s-plexes. The x-degeneracy and an x-degeneracy ordering can be found in polynomial time:

▶ Theorem 3.3. Given a graph G and an integer x ∈ N, we can compute the x-degeneracy
of G and an x-degeneracy ordering of G in O(n2m) time.

Proof. Repeat the following until the graph is empty: for every vertex v, compute the xth
neighborhood of v. Find a vertex whose xth neighborhood has the smallest size and delete it
from the graph. The ordering in which vertices are deleted is an x-degeneracy ordering. The
x-degeneracy is the maximum over all vertices of the xth neighborhood size when they are
deleted. Note that we spend O(nm) time to compute the xth neighborhood of every vertex
using e.g., BFS. Since we repeat this n times, the algorithm runs in the claimed time. ◀
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Figure 1 An example showing the difference between the 2-degeneracy of G (which is 5) and
the degeneracy of G2 (which is 6). The ordering a, b, . . . , g is a 2-degeneracy ordering in G and a
degeneracy ordering in G2. Note that {b, c, . . . , g} forms a clique in G2 but not a 2-club in G.

We remark that a very similar graph parameter has been studied in the context of
x-Club [25, 24]: the degeneracy of the xth power graph Gx of G. The power graph Gx has
the same vertices as G. Moreover, two vertices u and v are adjacent in Gx if and only if u

and v have distance at most x in G. Note that every s-club in G is a clique in Gx. The
converse, however, is not true; see Figure 1 for an example. While the degeneracy of Gx is in
general larger than the x-degeneracy, it can be computed faster: in O(nm) time [32]. In fact,
the degeneracy of Gx has already been used in Turing kernelization for finding s-clubs [32].
Subsequently, we use the smaller x-degeneracy for stronger algorithmic results.

3.3 Algorithm for s-Club and s-Plex
Turing kernel. For s-Club, we adapt the Turing kernel for Clique as follows. For every s-
club C of G, we have C ⊆ Qσ

s [v], where v ∈ C is the first vertex of C in an s-degeneracy
ordering σ. Thus, G has an s-club of size k if and only if there exists a vertex v ∈ V such
that G[Qσ

s [v]] has an s-club of size k. By the definition of x-degeneracy, we have |Qσ
s (v)| ≤ ds.

Thus, we have a Turing kernel in which every oracle call involves at most ds + 1 vertices.

Oracle algorithm. Again, we can replace every oracle call with a brute-force algorithm.
The input to every oracle call has at most ds + 1 vertices and hence there are 2ds+1 subsets.
Moreover, for every subset, it takes O(d3

s) time to determine whether the vertices have pairwise
distance at most s, resulting in an algorithm running in O(2dsd3

s) time. As in Section 3.1,
we can also refine the algorithm substituting for the oracle using the parameter ds − k + 1.
To this end, we solve the Deletion to s-Club problem: Given a graph G and an integer ℓ,
the task is to find a set of at most ℓ vertices whose deletion results in an s-club. There is
a simple O(2ℓn3)-time algorithm for this problem. If G has diameter at most s and ℓ ≥ 0,
then we have a yes-instance at hand. Otherwise there exist two vertices, say u and v,
with distG(u, v) > s. If ℓ = 0, then we can conclude that there is no solution. If ℓ ≥ 1, then
we recursively solve two instances (G − u, ℓ − 1) and (G − v, ℓ − 1). Since it takes O(n3) time
to compute all pairwise distances, this algorithm runs in O(2ℓ · n3) time. Since we need to
solve this problem on G[Qσ

s [v]] with ℓ := |Qσ
s [v]| − k ≤ ds − k + 1, we obtain:

▶ Theorem 3.4. Given the subgraph G[Qσ
s [v]] for every v ∈ V for an s-degeneracy ordering σ,

s-Club can be solved in O(2ds−k · d3
sn) time.

Turing kernel. For s-Plex, we will provide two adaptations. First, note that every s-plex
is also an s-club (recall that we only consider connected s-plex). Thus the Turing kernel with
the parameterization by ds follows analogously. For another adaptation, we use the fact that
any s-plex with at least 2s − 1 vertices have diameter at most two, as observed by Seidman
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and Foster [34]: Suppose that two vertices u and v in an s-plex C have distance three in G[C].
Then, every vertex in C is nonadjacent to either u or v. Since for each of u and v, there are
at most s − 1 vertices nonadjacent to it, we have |C| ≤ 2s − 2. This leads to a Turing kernel
with respect to the parameter d2 when k ≥ 2s − 1. For every s-plex of size at least 2s − 1, we
have C ⊆ Qσ

2 [v], where v ∈ C is the first vertex of C in a 2-degeneracy ordering σ. Thus, we
have again a Turing kernel where every oracle call involves at most d2 + 1 vertices. (Small
s-plex of size at most 2s − 2 can be found in O(n2s−1).)

Oracle algorithm. Again, we can replace every oracle call on h vertices with a brute-force
algorithm. The input to every oracle call has at most h + 1 vertices and hence there are 2h+1

subsets. Moreover, for every subset, it takes O(h2) time to determine whether it is an
s-plex, resulting an algorithm running in O(2hh2) time. As in Section 3.1, we can also refine
the algorithm substituting for the oracle using the parameter h − k + 1. To that end, we
solve the Deletion to s-Plex problem: Given an n-vertex graph G and an integer ℓ, the
task is to find a set of at most ℓ vertices whose deletion results in an s-plex. There is a
simple O((s + 1)ℓn2)-time algorithm for this problem. If G is an s-plex and ℓ ≥ 0, then we
have a yes-instance at hand. Otherwise there exist a vertex v and s vertices nonadjacent
to v. If ℓ = 0, then we can conclude that there is no solution. If ℓ ≥ 1, then we recursively
solve s + 1 instances (G − v, ℓ − 1) and (G − u, ℓ − 1) where u is one of s vertices nonadjacent
to v. Since it takes O(n2) time to check if the graph is an s-plex, this algorithm runs
in O((s + 1)ℓ · n2) time. Since we need to solve this problem on graphs with h vertices
with ℓ := h − k, we obtain the following:

▶ Theorem 3.5. Given the subgraph G[Qσ
s [v]] for every v ∈ V for an s-degeneracy ordering σ,

s-Plex can be solved in time O((s + 1)ds−k · d2
sn) and O(n2s−1 + (s + 1)d2−k · d3

2n).

We remark that for very small s, the first term n2s−1 can be ignored in practice, because
most instances contain an s-plex of size at least 2s − 1.

4 Experiments

In this section we present the results of our computational experiments for s-Club and
s-Plex for s ∈ {2, 3} on a large dataset of real-world graphs. We did not optimize every
aspect of the implementations as our goal is to investigate the effect of Turing kernelization
and the extent to which our theoretical findings are reflected in the running time (this is
discussed in Section 5). We will see, that the Turing kernelization is quite beneficial for
s-Club but for s-Plex the situation is not as clear.

Setup & Dataset. All experiments were performed on a machine running Ubuntu 18.04
LTS, with an Intel Xeon® W-2125 CPU and 256GB of RAM. A maximum running time of 1
hour per instance was set. We used Gurobi 8.1 to solve ILP-formulations, limited to a single
thread of execution. The program that was used to build the ILP models was implemented
in C++ and compiled with g++ 7.5.

The static graphs from the Network Repository [30] were used for all experiments. Graphs
for which at least one solver configuration timed out, ran out of memory, or completed
in less than 0.05 seconds were omitted. The last case (less than 0.05 s) is to not deal
with the effect of noise in the small running time measurements. The resulting dataset
consists of 259 graphs, with 1033 vertices on average. The source code is available at
https://git.tu-berlin.de/afigiel/splex-sclub-correl.
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We remark that s-Club and s-Plex have been solved for small s on much larger graphs
within minutes [15, 12, 11]. The reason we focus on smaller graphs is to have a meaningful
multivariate analysis. More precisely, we want to see if the running time grows (as suggested
by theory) with growing x-degeneracy and gap. Having running times for large graphs with
small x-degeneracy and gap but not for large graphs with large x-degeneracy and gap would
give misleading results in our analysis in Section 5.

Solvers. We used an ILP solver as oracle for s-Club and s-Plex in the Turing kernelization.
The ILP formulations were taken from the literature: For s-Plex we used a straight-froward
formulation with O(n) variables and constraints and O(n + m) non-zeroes1 [27].

maximize: y

subject to: xv ∈ {0, 1} , y ∈ {0, . . . , n}

y =
∑
v∈V

xv

∀v ∈ V : |V |(1 − xv) +
∑

u∈N(v)

xu ≥ y − s

For 2-Club a simplified formulation by Bourjolly et al. [6] was used. It has O(n) variables,
O(n2) constraints, and O(n3) non-zeroes.

maximize:
∑
v∈V

xv

subject to: xv ∈ {0, 1}
∀u, v ∈ V, dist(u, v) > 2: xu + xv ≤ 1

∀u, v ∈ V, dist(u, v) = 2: xu + xv ≤ 1 +
∑

c∈N(u)∩N(v)

xc

For 3-Club the neighborhood formulation from Almeida and Carvalho [1, 2] was used,
with O(n) binary variables, O(m) continuous variables, at most O(n2) and O(n3) constraints
and non-zeroes, respectively2.

maximize:
∑
v∈V

xv

subject to: xv ∈ {0, 1}
∀u, v ∈ V, dist(u, v) > 3: xu + xv ≤ 1

∀u, v ∈ V, dist(u, v) ∈ {2, 3} : xu + xv ≤ 1 +
∑

c∈N(u)∩N(v)

xc +
∑

e∈Euv

ze

∀e = {a, b} ∈ E : ze ≤ xa, ze ≤ xb

∀e ∈ E : 0 ≤ ze ≤ 1

1 An s-plex of size ℓ > 2s − 1 is guaranteed to be connected and of diameter two [34]. As we only
consider s ∈ {2, 3}, we do not add constraints enforcing connectedness to the ILP. Unsurprisingly, all
found subgraphs were still connected.

2 For compact and general ILP formulations for s-Club (s ≥ 2) we refer to Salemi and Buchanan [32]
and Veremyev et al. [37].
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Table 1 Average running times in seconds of various solver configurations.

noTK full default hint

2club 294.3 18.7 1.9 0.9
3club 641.8 296.0 81.4 41.7
2plex 26.4 63.8 10.1 10.2
3plex 39.6 260.6 81.4 77.6
3plex-2 39.6 63.4 12.4 12.0

where Euv = {{p, q} ∈ E | p ∈ N(u) \ N(v), q ∈ N(v) \ N(u)}. We remark that different
ILP-formulations for these problems are discussed in the literature [3, 27, 32]. However,
analyzing them is beyond the scope of this work.

Solver variants. We tested several approaches using these ILP models to cover all concepts
discussed in Section 3. To this end, we use four different solver configurations, namely noTK,
full, default and hint (described below). We will refer to, for example, 2club_noTK as
the benchmark results of the noTK solver configuration on the 2-Club problem.

The noTK variant (no Turing kernel) simply built a single ILP model for the entire graph.
All other variants use the Turing kernelization to some extent. The full variant makes
only basic use of Turing kernelization, utilizing the 2/3-degeneracy as described in Section 3.
There, each oracle call is solved via an ILP. For 2-Club and 2-Plex the Turing kernelization
using 2-degeneracy is employed, for 3-Club and 3-Plex the one using 3-degeneracy. As
there is only one connected 3-plex of diameter three (the P4) which was never the largest
3-plex in our experiments we also used the 2-degeneracy based Turing kernelization for
3-Plex. We report the results of this variant under 3plex-2 (thus 3plex-2_noTK is the
same as 3plex_noTK).

The default variant uses the Turing kernel approach in combination with a simple lower
bound: It uses the maximum solution size of already solved ILPs as a lower bound on the
global solution size by adding a constraint to the ILPs enforcing that the solution has to
be larger than the current lower bound. Note that this lower bound does not appear in the
algorithm descriptions in Section 3. The order in which the ILPs are solved can therefore
have an impact on the overall running time. We used a fixed 2/3-degeneracy ordering and
did not analyze the impact of the order. Instead, we remove this effect in the hint variant.
There, we added a constraint to each ILP model in the Turing kernels which enforced that
the solution size to the Turing kernel is at least the size of the optimal solution size for
the entire graph. Thus, one can think of (heuristically) optimizing in the default variant
the order in the Turing kernelization so that the oracle calls giving the largest results come
first. Alternatively, this shows the maximum speedup possible by a “perfect” lower-bound
heuristic. Note that in the hint variant at least one ILP model still has a feasible solution.

Results. In Table 1 we summarize the average running time of the different solver configura-
tions on the four considered problems. The approach without Turing kernels is significantly
slower for 2- and 3-Club but not so much for 2- and 3-Plex. This can also be seen in the
detailed comparisons in Figure 2. Interestingly, the noTK variants are much faster in finding
plexes than in finding clubs (more than 10 times larger average running time). However, the
average running time of 2club_default is five times smaller than that of 2plex_default.
Thus, on the one hand the ILP-formulation we use for finding 2/3-clubs may have a room for
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Figure 2 Running time comparison (in seconds) of different variants (top row for 2- and 3-Club,
second row for 2- and 3-Plex). Each cross represents one instance with the x- and y-coordinates
indicating the running time of the respective variant (in seconds): default and noTK resp. hint.
Thus, a cross above (below) the solid diagonal indicates that the solver on the x-axis (y-axis) is
faster on the corresponding instance. The diagonal lines mark factors of 1 (solid), 5 (dashed) and 25
(dotted). The solid horizontal red lines indicate the time limit (1 hour). For 2- and 3-Club a
significant running time improvement is visible. For 2- and 3-Plex the picture is not so clear.

improvement. On the other hand, the Turing kernel approach works much better for clubs
than plexes. The reason is most likely that the Turing kernels are built based on distance,
which fits better with clubs than plexes. This can be seen in the gap-parameter: for 73 resp.
57 instances the gap-parameter was zero for 2-Club resp. 3-Club whereas for the plexes
the gap-parameter was never zero.

Unsurprisingly, the hint variant is the fastest one. However, the default variant is not
much slower than hint (see also right column of Figure 2), even though it does not receive
the solution size as input, and instead uses the maximum solution of the previously solved
ILPs to update the lower bound. Moreover, the default variant is considerably faster than
the full variant. This shows the strength of providing lower bounds to the ILP-solver.
Remarkably, for finding 2/3-clubs even the full variant brings a decent speedup compared
to the noTK variant.

5 Correlation between Theory and Practice

We now analyze correlations between the theoretical running time bounds in Section 3 and
the measured running times in Section 4. Since we have NP-hard problems, our working
hypothesis is that the running time should depend exponentially on some parameter(s).
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Figure 3 The running times of 2club_noTK, 2club_full, 2club_default, and 2club_hint plotted
against the number n of vertices, the 2-degeneracy, and the gap of the input graph. The solid red
lines are linear regressions best fitting to the data points (where the logarithm of the running times
is taken).

Natural parameter candidates are the number n of vertices, the 2- resp. 3-degeneracy, and
the gap parameter (suggested by our theoretical findings). Note that there is a multitude of
other viable parameters3; however, studying them is beyond the scope of this work.

We studied five problems (counting 3plex and 3plex-2 as two) with four different solvers
of each problem. Thus, there are 5 · 4 · 3 = 60 different (parameter, running time)-pairs
to analyze. We illustrate the 12 pairs for 2club in Figure 3 with the red lines depicting
the exponential function of the form αp · β that best fit the data; these lines are computed
via linear regression (logarithm of the running time versus parameter value p). Obviously,
the suggested running time function on the bottom left (2club_hint with parameter n) is
useless: our implementation will in general not become faster the larger the input gets. The
red lines on the top left and bottom right seem far more sensible.

3 See for example https://manyu.pro/assets/parameter-hierarchy.pdf or https://www.
graphclasses.org/ for dozens of graph parameters.
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5.1 Method
Instead of “carefully looking” at each of the plots in Figure 3 and finding arguments for each
one of them, we want an automated way of distinguishing useful from useless suggestions.
To this end, we suggest using the Pearson correlation coefficient which we subsequently just
call correlation coefficient. It is a standard measure of linear correlation between two sets of
data. Simply put, given the (running time, parameter) data points the correlation coefficient
computes a number between -1 and 1. If there is no correlation at all, then the coefficient
is 0. With perfect correlation (i. e. the data points are on a straight line with positive slope)
the coefficient is 1. With perfect negative correlation (i. e. the data points are on a straight
line with negative slope) it is -1.

We report correlations between the logarithm of the running time and the parameter
(in our case either the number of vertices, the generalized degeneracy, or the gap). Thus,
values close to 1 represent good correlations (i.e. some exponential dependency between the
running time and the parameter). However, note that a better correlation value does not
imply a better running time. There are several specifics with our measure that we like to
address before reporting the results.

Exponential Dependency. Note that our approach “ignores” the base of the exponential
functions, in the following sense: A “perfect correlation” of 1 with, say the gap parameter g,
implies that the measured running time t satisfies the following linear relation for some
constant a and b: log t = a · g + b ⇐⇒ t = 2a·g+b = β · αg where β = 2b and α = 2a are
again two constants. Of course, α has to be nowhere close to the bases of the exponential
functions we describe in Section 3. Thus, a “perfect correlation” just indicates that there is
some exponential dependency between the parameter and the running time.

Our justification here is that the measure needs to be somewhat imprecise: The measured
running times can be greatly impacted by the configuration of the ILP-solver [17] or by
the experimental setup [26]. Hence, hitting the theorized worst-case running time seems
rather unlikely. Since we deal with NP-hard problems we expect (despite all heuristic
improvements) some exponential function describing the running time. With our setting we
can get suggestions for the base of the exponential function from experimental results.

Restricted Setting. We restrict ourselves to correlations between one parameter and the
running time. While correlations between multiple parameters and the running time are
possible, our theoretical results in Section 3 only suggest exponential dependencies between
one parameter (2/3-degeneracy or gap) and the running time and not two parameters.
Incorporating the polynomial factors of n in the running times of Section 3 is easily doable.
However, in our analysis it changed the coefficients only marginally (by less than 5%, usually
much less than 1%), probably due to the relatively small size of the graphs. As we are (for
now) only interested in simple exponential dependencies, the Pearson correlation coefficient
suffices as we can take the logarithm of all measured running times. Note that there are
different correlation coefficients that can also measure non-linear correlations and might be
better suited to other settings (e. g. when dealing with polynomial-time solvable problems).

Simplistic Analysis. We use a very simplistic statistical analysis. For example, we ignore
confidence intervals, p-values, or similar issues. The reason being that any “good” correlation
between a parameter (or a combination of parameters) and the measured running time
is only an indication for such a correlation. In particular, if some “new” correlations are
discovered with this method, then this only gives suggestions. Using our theoretical tools, we
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Table 2 Tables summarizing the correlation of different graph parameters n (left table), d2/d3

(middle table), and the gap g (right table) with the logarithm of the measured running times of various
solver configurations (def abbreviates default). In the middle the correlation with 2-degeneracy is
shown for 2club, 2plex and 3plex-2, and with 3-degeneracy for 3club and 3plex).

Correlation with n

noTK full def hint

2club 0.59 0.34 0.03 −0.06
3club 0.48 0.16 0.08 −0.22
2plex 0.53 0.07 0.08 0.07
3plex 0.52 0.06 −0.02 −0.01
3plex-2 0.52 0.08 0.07 0.06

Correlation with d2/d3

noTK full def hint

−0.08 0.84 0.38 −0.01
−0.12 0.67 0.46 0.22

0.21 0.63 0.46 0.46
0.02 0.65 0.40 0.39
0.02 0.62 0.45 0.44

Correlation with gap
noTK full def hint

0.01 0.06 0.35 0.61
0.14 0.34 0.46 0.72
0.22 0.60 0.44 0.45
0.02 0.63 0.39 0.38
0.02 0.59 0.42 0.42

can prove (e. g. show a running time bound) or disprove (e. g. NP-hardness for a constant
parameter value) such suggestions. This ability of theoretical verification allows us to ignore
“safety”-features from statistical analysis.

5.2 Results

Table 2 summarizes the 60 correlation coefficients of three graph parameters with the
logarithm of the measured running times.

Consider the first row corresponding to 2-Club in the three parts of Table 2. The first
columns display the correlation with n which is best for the noTK variant. This well reflects
our observations for the plots in the left column of Figure 3: The default and hint variant
do not display any reasonable correlation with n, only noTK does to some extent. Similarly,
in the right column of Figure 3 the correlations of the default and hint variant with the
gap-parameter are quite decent, but not for the noTK variant. Moreover, in the plot for the
default variant of the right column in Figure 3 there are a few instances that have a high
running time despite a parameter value of zero. This is an argument against the suggested
regression being a “good” explanation. Also, in the bottom right plot one can see that there
are no such (drastic) outliers. Hence, the correlation with the hint variant with the gap is
considerably “better” than with the slower default variant (despite only small differences in
the average running time, see Table 1). This is also reflected in the corresponding correlation
coefficients of 0.61 and 0.35 respectively (see two rightmost columns in Table 2) and, thus,
supports the correlation coefficient as reasonable measure. All in all, the results for 2-Club
indicate that the correlation coefficients reveal exponential dependencies between the running
time and the considered parameter.

Correlations with number of vertices. The results for the other problems are somewhat
similar to the ones for 2-Club. The correlation coefficient for the number of vertices is
highest for all problems with the noTK configuration, whereas with the configurations based
on Turing kernels it is significantly lower (or even negative). This is somehow expected, as
all our ILP formulations use O(n) binary variables. State-of-the-art ILP solvers are highly
complex (“a bag of tricks”) and able to solve instances with millions of integer variables
efficiently. Thus, the correlation of around 0.5 (for noTK) with the number of vertices is
higher than for the other variants, but not the overall highest correlations (see second row
and second column in Figure 3 for the plot corresponding to the highest correlation).
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Correlations with generalized degeneracy. The Turing kernel approaches correlate in gen-
eral better with the 2/3-degeneracy, notable exceptions are the 2club_hint and 3club_hint
variants. As expected, across all problems the highest correlations with the 2/3-degeneracy
are achieved by the full variants: The 2-degeneracy (3-degeneracy) is in our dataset on
average more than five times (more than three times) smaller than n. Hence, the high
correlations for the noTK variants with n translate to high correlations for the full variants
with 2/3-degeneracy. For the noTK configuration there is barely any correlation with the
2/3-degeneracy. It thus seems that the ILP solver cannot exploit the 2/3-degeneracy – at
least with the given ILP formulations.

Correlations for default and hint variants. As discussed in Section 4, the default and
hint variants are considerably faster than the full variants due to having access to some
(perfect) lower bound. As we use the black box of an ILP-solver we do not have theoretical
running time bounds covering the effect of this lower bound. Also note that the running time
differences between the default and hint variants are much smaller than the differences
between other pairs of variants (see Table 1). However, we can observe significant differences
in the correlations of the default and hint variants for 2-Club and 3-Club with respect
to the generalized degeneracy and the gap parameter. Moreover, the correlation coefficients
support some speculations: The correlations in the middle table of Table 2 suggest that
this running time improvement is not (so much) correlated to the 2/3-degeneracy but to
another parameter. For finding clubs the gap-parameter is a good explanation: 2club_hint
and 3club_hint have high correlations with the gap parameter; this can also be seen in the
bottom right 2 × 2 plot subgrid of Figure 3. Thus, with a better lower bound computation
(i. e., some actual heuristic) we suspect the correlation of the default variant with the
degeneracy to decrease and increase with the gap parameter.

For plexes this argumentation does not hold. There is rarely any difference in the
correlation coefficients of the default and hint variant with the 2/3-degeneracy and the
gap-parameter. The reason is simple: while the gap is considerably smaller than the 2/3-
degeneracy for 2/3-Club (the clubs are rather large), this is not the case for 2/3-Plex (the
plexes are quite small), see Figure 4 (in the appendix). Thus, for 2/3-Plex the correlations
differ only marginally between the hint and default variants. Moreover, this explains
very well why despite 2club_noTK being quite slow compared to 2plex_noTK the variant
2club_hint is much faster than 2plex_hint: The average gap for our 2-club instances
is 7.9, hence the exponential running time dependency on the gap is manageable. For 3-club
instances, the average gap is 18.6 which, apparently, is one of the reasons why the 3club
variants are much slower than the 2club variants.

6 Conclusion

We provided theoretical bounds for algorithms solving s-Club and s-Plex and experimentally
tested the employed Turing kernelization for s ∈ {2, 3}. We found that the Turing kernel
approach improves the running time significantly more for clubs than plexes. We believe
that this is due to the fact that the x-degeneracy is defined based on distance. This suggests
the need for exploring notions more suitable for finding plexes.

We also discussed the correlation between the observed running times and the theoretical
bounds. Yet, there is still a large gap between theory and practice: for example, the bases
of the exponential function obtained by regression are all below 1.1 – much smaller than
current theoretical results suggest. We are confident that our approach based on correlation
coefficients can help to close this gap. The approach is easy to employ and quite flexible.
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Figure 4 Relation between 2-degeneracy, gap, and number of vertices. We added 0.5 to the gap
as we use log scale and several instances have a gap of zero (for 2club and 3club). The diagonal
lines mark factors of 1 (solid), 5 (dashed) and 25 (dotted).

Finally, we discuss some directions for future work:
Checking whether the running times correlate with multiple parameters is an easy (but
tedious) extension. The whole process should allow for relatively easy automation. An
automated tool could generate a list of likely correlations from experimental results.
These can then be analyzed theoretically with the parameterized complexity framework.
This way, practice could give more impulses for theory.
Our approach is not limited to analyzing running times. Other objectives could be the
size of preprocessed instances (using the kernelization framework from parameterized
algorithmics) or approximation factors of heuristics or approximation algorithms.
While we use worst-case analysis, average case analysis or smoothed analysis are further
natural candidates.
Improving our general approach: For example, how to incorporate timeouts? Or are
different correlation coefficients better suited?
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1 Introduction

The problem of dispersing a family of objects is a common theme in many situations in
computational geometry. It appears naturally in the wide range of settings that require
assigning elements to locations. In many scenarios, dispersing has two often contradicting
objectives. On the one hand, it is desirable not to place the objects too close to each other.
This can be due to a variety of reasons, e.g., placing customers in a restaurant in socially
distant manner, to placing wireless sensors far from each other in order to avoid interference.
On the other hand, we may already have an existing placement of the objects, and wish to
optimize the resources spent on moving the objects.

With this motivation, we consider the following mathematical model of the dispersing
problems. In this model, our aim is to modify a given arrangement of points in the plane, by
moving some of the points into new positions within a given distance, such that the Euclidean
distance between each pair of points in the final arrangement is at least a fixed constant,
say 2. Equivalently, the problem can be reformulated in terms of finding a non-overlapping
arrangement of unit disks, formulated below as the problem Disk Dispersal.

Input: A family S of n unit disks, an integer k ≥ 0, and a real d ≥ 0.
Task: Decide whether it is possible to obtain from S a family of non-overlapping

unit disks P by moving at most k disks into new positions in such a way
that each unit disk is moved a distance at most d. 1

Disk Dispersal

Disk Dispersal– and therefore, the problem of spreading points – is closely related to
the problem of finding a system of q-distant representatives. This problem was introduced by
Fiala, Kratochvíl, and Proskurowski [14] as a geometric extension of the classic combinatorial
notion of the “systems of distinct representatives”. For a set of geometric objects in a metric
space and a number q > 0, the task is to choose one representative point from each object
such that the selected points are at a distance at least q from each other. For k = n, an
instance (S, d, k) of Disk Dispersal can be viewed as an instance of the problem of finding
a system of q-distance representatives by setting q = 2 and defining the set of geometric
objects as follows: for each disk D ∈ S, create a disk with the same center but with radius d

(instead of 1). This yields that Disk Dispersal is also NP-hard for d = 2 from the result
of [14].

The problem of computing the distant representatives has applications in map labeling
and data vizualization, where the goal is to place labels as close as possible to the specified
features of the map but avoiding overlapping (thus the centers of labels are the centers of
non-intersecting disks, ensuring that they are sufficiently separated) [9, 20, 21]. The problem
is also related to problems of “imprecise points” [22, 23], the settings where locations of
points are given with some precision. Approximation algorithms for this and related point
spreading problems – where the goal is to place the specified number of points within a
certain region so as to maximize the smallest pairwise distance between the points – were
developed in [3, 4, 6, 10, 11, 12, 13, 19, 2, 18].

1 All (unit) disks considered in the paper are open unless specified otherwise. In particular, two unit disks
touching each other are not considered to be overlapping. Due to this simplifying assumption, we avoid
the discussion about placing disks such that the distance between their boundaries is infinitesimally
small.
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Figure 1 An example of Disk Dispersal with k = 1 and d =
√

3. A non-overlapping arrangement
of disks obtained from a family of three disks by moving the central disk at distance

√
3.

To the best of our knowledge, the parameterized complexity of dispersal problems are
widely unexplored. The notable exception is the work of Demaine, Hajiaghayi, and Marx [7]
on dispersion in graphs. In this problem, we are given an underlying edge-weighted graph,
called the connectivity graph G, and a set of k “agents” or “pebbles”, located at a subset of
vertices G. The task is to move the pebbles to distinct vertices and such that no two pebbles
are adjacent. The movement problem is W[1]-hard parameterized by the number of pebbles,
even in the case when each pebble is allowed to move at most one step.

1.1 Our Results
Our first result concerns kernelization (polynomial compression) of Disk Dispersal. Infor-
mally speaking, in parameterized complexity, the polynomial kernel is a polynomial-time
algorithm that compresses the instance of a parameterized problem to the instance whose
size is bounded by a polynomial of the parameter. Theorem 1 gives an algorithm that runs
in polynomial time, and reduces the number of disks to some polynomial of d and k.

▶ Theorem 1. There is a polynomial-time algorithm that, given an instance (S, k, d) of Disk
Dispersal, outputs an equivalent instance (S ′, k, d) of the same problem, where the number
of unit disks is |S ′| = O((d + 1)2k3), and S ′ ⊆ S.

Strictly speaking, the algorithm in Theorem 1 is not a polynomial kernel according to the
standard definition of this notion – we do not guarantee that the coordinates of disks, and
thus the overall size of the compressed instance, is bounded by a polynomial in k and d. We
call such a compression algorithm a partial kernel. Further, we observe in Theorem 12 that
the partial kernel from Theorem 1 can be modified to be a polynomial kernel if the centers
of input disks are constrained to be rationals and we parameterize the problem by k, d, and
the maximum denominator of coordinates of centers.

For a parameterized problem, given the existence of a (partial) kernel, it is usually
straightforward to design a fixed-paramter tractable (FPT) algorithm by an exhaustive
enumeration of all candidate solutions. For Disk Dispersal, however, this is not entirely
obvious. After computing an equivalent reduced instance by applying Theorem 1, one can
enumerate all possible subsets of at most k unit disks that are to be moved. Now, for
each such subset, we want to decide whether each unit disk in the subset can be moved
by a distance of at most d that results in a non-overlapping configuration. Since there are
infinitely many possible target locations for each unit disk, this step requires some additional
work. We show that this decision subroutine can be reduced to checking whether a system of
polynomial inequalities has a solution over real numbers, which can then be determined in
FPT time by using classical results from computational real algebra. Thus, we obtain the
following non-trivial corollary.

▶ Corollary 2. Disk Dispersal is FPT when parameterized by d + k. Specifically, it is
solvable in time (dk)O(k) · |I|O(1).

ESA 2023
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Our next result is a companion lower bound to the partial kernelization of Theorem 1,
which shows that one cannot remove the dependence on d from the kernel size.

▶ Theorem 3. Disk Dispersal parameterized by k does not admit a polynomial kernel
unless coNP ⊆ NP /poly. This result holds even if the distance d is an integer, and the
centers of the given disks have rational coordinates.

As we already mentioned, by the result of Fiala, Kratochvíl, and Proskurowski about
q-distant representatives, Disk Dispersal is NP-hard for d = 2. Thus the problem is in
the class para-NP for parameter d. However, the complexity of parameterization by k is
more interesting, which remains open. However, in the appendix, we show that a rectilinear
version of Disk Dispersal is indeed W[1]-hard parameterized by k.

Organization

In Section 2 we introduce basic notions. In Section 3, we consider kernelization for Disk
Dispersal. Further, we give complexity lower bounds. In Section 4, we show that it is
unlikely that Disk Dispersal admits a polynomial kernel when parameterized by k only.
Finally, in Section 5, we provide some concluding remarks and future directions.

2 Preliminaries

As it is common in computational geometry, we assume the real RAM computational model,
that is, we are working with real numbers and assume that basic operations can be executed
in unit time.

Disks and Segments

For two points A and B in the plane, we use AB to denote the line segment with endpoints
at A and B. The distance between A = (x1, y1) and B = (x2, y2) or the length of AB, is
|AB| = ∥A−B∥2 =

√
(x1 − x2)2 + (y1 − y2)2. The (open unit) disk with a center C = (c1, c2)

in the plane is the set of points (x, y) satisfying the inequality (x − c1)2 + (y − c2)2 < 1.
Whenever we write “disk” we mean an open unit disk, unless radius or closed-ness is specified
explicitly. Clearly, two disks with centers A and B are disjoint if and only if the distance
between A and B is at least two. We say that the disks touch if |AB| = 2. For real numbers
a ≤ b, we use [a, b] = {x ∈ R | a ≤ x ≤ b} to denote a closed interval. For a1 ≤ b1 and
a2 ≤ b2, [a1, b1] × [a2, b2] = {(x, y) ∈ R2 | a1 ≤ x ≤ b1 and a2 ≤ y ≤ b2}. A point X is
properly inside of a polygon P if it is inside P but X is not on the boundary; if we say that
X is inside P , we allow it to be on the boundary. A disk is (properly) iniside of a polygon P

if every point of the disk is (properly) inside of P .

Graphs

We use standard graph-theoretic terminology and refer to the textbook of Diestel [8] for
definitions of standard notions. Let S be a set of geometric objects in the plane (i.e., non-
empty subsets of R2). Then, it is possible to define an intersection graph G(S) as follows:
G(S) contains a unique vertex corresponding to every object in S, and there is an edge
between the two vertices iff the corresponding two objects in S have a non-empty intersection.
Unit disk graphs are the intersection graphs of unit disks in the plane. Note that, given a
family S of unit disks, we can construct the corresponding unit disk graph G(S) in quadratic
time.
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Parameterized Complexity

We refer to the standard textbooks ([5, 17]) for introduction to the area and formal definitions.
Here, we only give a brief overview. Let (I, k) be an instance of a decision problem Π, where
k is a non-negative integer. We say that Π is fixed-parameter tractable by k, if there exists
an algorithm that can decide whether I is a yes-instance of Π in time f(k) · |I|O(1) for some
computable function f , where |I| denotes the size of the instance I. A common way to show
that it is unlikely that a parameterized problem is in FPT, one can prove that it is W[1]-hard
by demonstrating a parameterized reduction from a known W[1]-hard problem; we refer to
[5] for the formal definitions of the class W[1] and parameterized reductions.

A kernelization (or kernel) for Π is a polynomial time algorithm that, given an instance
(I, k) of Π, outputs an equivalent instance (I ′, k′) of Π such that |I ′| + k′ ≤ g(k) for a
computable function g. A kernel is polynomial if g is a polynomial. It can be shown
that every decidable FPT problem admits a kernel. However, it is unlikely that all FPT
problems have polynomial kernels. In particular, there is the now standard cross-composition
technique to show that a parameterized problem does not admit a polynomial kernel unless
NP ⊆ coNP /poly.

Systems of Polynomial Inequalities

In our FPT algorithm, we will need to find suitable locations for new disks that need to be
added such that the locations are “compatible” with an existing arrangement of disks. We
will achieve this by solving systems of polynomial inequalities. We use the following result.

▶ Proposition 4 (Theorem 13.13 in [1]). Let R be a real closed field, and let P ⊆ R[X1, . . . , Xk]
be a finite set of s polynomials, each of degree at most c, and let

(∃X1)(∃X2) . . . (∃Xk)F (X1, X2, . . . , Xk)

be a sentence, where F (X1, . . . , Xk) is a quantifier-free boolean formula involving P-atoms
of type P ⊙ 0, where ⊙ ∈ {=, ̸=, >, <}, and P is a polynomial in P. Then, there exists an
algorithm to decide the truth of the sentence with complexity sk+1cO(k) in D,2 where D is
the ring generated by the coefficients of the polynomials in P.

Furthermore, a point (X∗
1 , . . . , X∗

k) satisfying F (X1, . . . , Xk) can be computed in the
same time by Algorithm 13.2 (sampling algorithm) of [1] (see Theorem 13.11 of [1]).

3 Kernelization and FPT Algorithms for Disk Dispersal

In this section, we first prove Theorem 1 on partial kernel for Disk Dispersal parameterized
by k +d. Specifically, the output instance of the partial kernel is guaranteed to consist of only
O(d2k3) unit disks. In case the coordinates of the disks in the input instance are rationals of
the form a + b

c where b, c are bounded by a fixed constant (or a polynomial in k + d), our
partial kernel in fact yields a (normal) kernel. Finally, using our partial kernel, we prove in
Corollary 2 that Disk Dispersal is FPT parameterized by k + d.

The proofs of our partial kernels begin with the simple observation that if we are given a
yes-instance, then the unit disk graph corresponding to the input set of unit disks admits a
vertex cover of size at most k. So, in polynomial time we obtain a vertex cover U of size at

2 That is, the algorithm performs sk+1cO(k) operations in D.
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k = 4

Figure 2 Example of the propagation effect. The dotted objects correspond to a solution where
an object of a certain color is replaced by the dashed object of the same color.

most 2k. At first glance, one may think to remove all input unit disks that do not intersect
any unit disk in U . However, we might be forced to perform movement operations that make
some neighborhood sets larger (e.g., see Figure 2), which, in turn, can have a propagating
effect that forces us to move unit disks that are “quite far” from all unit disks in U . Still, we
can prove by induction on k that if the input instance is a yes-instance, then it admits a
solution where all the unit disks that are moved are at distance at most O(d2k2) from at
least one unit disk in U . This gives rise to a reduction rule where we only keep the unit disks
within this distance from at least one unit disk in U as well as additional unit disks at some
(almost negligible) distance from them.

After having reduced the number of unit disks, we can shift the unit disks that we keep so
that the coordinates of their centers will be polynomial in k + d, under the assumption that
the coordinates of the unit disks in the input instance are rationals of the form a + b

c where
b, c are bounded by a fixed constant (or a polynomial in k + d). To obtain FPT algorithms,
we first apply our partial kernels. Afterwards, we guess which disks to move. Then, we
determine how to move them by solving a corresponding system of polynomial inequalities.

For the sake of formality, we will use the notion of a solution in this section as follows.

▶ Definition 5. Let (S, k, d) be an instance of Disk Dispersal. A solution is a bijective
function move : S → P such that:
1. P is a packing, i.e., a non-overlapping set of unit disks.
2. |{D ∈ S : move(D) ̸= D}| ≤ k.
3. For every D ∈ S: The distance between the centers of D and move(D) is at most d.

We define the set of unit disks moved by move as {D ∈ S : move(D) ̸= D}, and the size of
move as the size of this set.

Notice that any set of unit disks that is moved by a solution to Disk Dispersal is in
particular a vertex cover (though not necessarily a minimal one) for the intersection graph
of the input set of unit disks. As previously discussed, since the Vertex Cover problem
admits a 2-approximation algorithm in polynomial time, this yields the following observation.

▶ Observation 6. There exists a polynomial-time algorithm that, given an instance (S, k, d)
of Disk Dispersal, either correctly concludes that (S, k, d) is a no-instance, or outputs a
vertex cover of size at most 2k for the unit disk graph corresponding to S.
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We will also need the following observation, which is directly implied by the fact that the
area of a disk of radius r is πr2, while the area of a unit disk (whose radius is 1) is π.

▶ Observation 7. The number of pairwise non-intersecting unit disks in a disk of radius r is
at most r2.

Towards the presentation of our partial kernel, we need to prove one lemma. Informally
speaking, this lemma shows that the set of disks that may be potentially moved in a yes-
instance is contained in a bounded area around a small number of disks, in particular the
disks that form a vertex cover in the intersection graph. Furthermore, since all such disks,
except that forming the vertex cover, are non-intersecting, this lemma eventually helps us
bound the number of such disks by a polynomial in k and d.

▶ Lemma 8. Let (S, d, k) be a yes-instance of Disk Dispersal. Let U be a vertex cover for
the intersection graph of S. Then, any minimum-sized solution to (S, k, d) only moves unit
disks whose center is at distance at most (d + 2) · k from the center of at least one unit disk
in U .

Proof. We prove the lemma by induction on k. When k = 0, the only minimum-sized
solution to (S, k, d) is the one that moves no unit disk, and hence the claim trivially follows.
Now, suppose that the claim holds for k − 1 ≥ 0, and let us prove it for k. If the intersection
graph of S is edgeless, then the only minimum-sized solution to (S, k, d) is the one that
moves no unit disk, and hence the claim trivially follows as in the base case. So, we can next
suppose that there exist two different unit disks D, D′ ∈ S that intersect each other. See
Figure 3 for an illustration.

Since U is a vertex cover, it must contain at least one unit disk among D and D′, denoted
by X. Moreover, any solution to (S, k, d) must move at least one unit disk among D and
D′. Let move : S → P be an arbitrary minimum-sized solution to I = (S, k, d), and let Y

be a unit disk among D and D′ that move moves to attain P. Let Y ′ = move(Y ), and let
S ′ = (S \{Y })∪{Y ′}. We attain solution move′ : S ′ → P ′ to a new instance I ′ = (S ′, k−1, d)
as follows: for every D̃ ∈ S \ {Y }, move′(D̃) = move(D̃); move′(Y ′) = Y ′. Note that move′

must be a minimum-sized solution to (S ′, k − 1, d), otherwise we can obtain a solution for the
original instance (S, k, d) that is smaller than move, contradicting its optimality. Further,
note that (U \ {Y }) ∪ {Y ′} is a (not necessarily minimal) vertex cover for the intersection
graph of S ′. By the inductive hypothesis, this means that move′ only moves unit disks whose
center is at distance at most (d + 2) · (k − 1) from the center of at least one unit disk in
(U \ {Y }) ∪ {Y ′}. Moreover, the distance between the centers of Y and X is at most 2 (since
they intersect) and the distance between the centers of Y ′ and Y is at most d, so the distance
between the centers Y ′ and X is at most d + 2. In turn, this means that move only moves
unit disks at distance at most (d + 2) · k from at least one unit disk in U , which concludes
the proof. ◀

We are now ready to present the partial kernel for Disk Dispersal. For the reader’s
convenience, we restate Theorem 1 here.

▶ Theorem 1. There is a polynomial-time algorithm that, given an instance (S, k, d) of Disk
Dispersal, outputs an equivalent instance (S ′, k, d) of the same problem, where the number
of unit disks is |S ′| = O((d + 1)2k3), and S ′ ⊆ S.

Proof. Given an instance (S, k, d) of Disk Dispersal, the (partial kernel) kernelization
algorithm works as follows. Based on Observation 6, it computes a vertex cover U of size at
most 2k for the intersection graph of S. Then, it obtains S ′ from S by removing from S all
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Y

move(Y ) = Y ′

X

Figure 3 Illustration for Proof of Lemma 8. A vertex cover U contains disk X and a solution S
moves a disk Y to its new location, Y ′ = move(Y ), denoted in dash-dotted disk in red color. A new
instance I′ is obtained by replacing Y with Y ′ and reducing the budget by 1, and U ′ = X ∪ Y ′ is
a vertex cover for the resulting intersection graph. A solution to I′ moves the solid blue, purple,
and orange disks to their new locations, shown in dashed disks of corresponding color. By inductive
hypothesis, the new locations are at distance at most (d + 2) · (k − 1) from U ′, and the distance
between X and Y ′ is at most d + 2.

the unit disks at distance more than (d + 2) · (k + 1) from all unit disks in U . The output
instance is (S ′, k, d). Clearly, the kernelization algorithm works in polynomial time. So, it
suffices to prove that (S, k, d) and (S ′, k, d) are equivalent and that |S ′| = O(d2k3).

We first prove the equivalence. In one direction, suppose that (S, k, d) is a yes-instance,
and let move : S → P be a solution to it. In particular, the restriction of move to S ′ clearly
yields a packing (being a subset of P) and moves at most as many disks as move does. So,
the restriction of move to S ′ is a solution to (S ′, k, d).

In the other direction, suppose that (S ′, k, d) is a yes-instance. By Lemma 8, (S ′, k, d)
admits a solution move′ : S ′ → P ′ that only moves unit disks whose centers are at distance
at most (d + 2) · k from the center of at least one unit disk in U .3 Define move : S → P
for P = P ′ ∪ (S \ S ′) as follows: for every D ∈ S ′, move(D) = move′(D), and for every
D ∈ S \ S ′, move(D) = D. We claim that move is a solution to (S, k, d). To this end, first
note that none of the unit disks in P ′ intersect each other (since move′ is a solution to
(S ′, k, d)). In particular, the unit disks in {D ∈ U : move(D) = D} do not intersect any other
unit disk in P ′. However, all unit disks in S that do not belong to U do not intersect each
other (since U is a vertex cover for the intersection graph of S). So, in P, the only pairs of
unit disks that can potentially intersect each other are pairs where one is a unit disk that
was moved by move and the other belongs to S \ S ′. However, the center of any unit disk
D that is moved by move is at distance at most (d + 2) · k from the center of at least one
unit disk D′ in U , and hence the center of move(D) is at distance at most d + (d + 2) · k

from the center of D′, while the center of any unit disk in S \ S ′ is at distance more than

3 Note that S′ may contains unit disks whose centers are at distance larger than (d + 2) · k (but at most
(d + 2) · (k + 1)) from the centers of all unit disks in U .
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(d + 2) · (k + 1) from the centers of all unit disks in U . Thus, P cannot have a pair of unit
disks that intersect each other, such that one is a unit disk that was moved by move and the
other belongs to S \ S ′. So, move is indeed a solution to (S, k, d).

Now, note that for every D ∈ U , the unit disks whose center is at distance at most
(d+2) ·(k +1) from D are contained in a disk D′ of radius (d+2) ·(k +1)+1 and whose center
is the same as the center of D. So, by Observation 7 and since U is a vertex cover for the
intersection graph of S, this means that there exist at most ((d + 2) · (k + 1) + 2)2 = O(d2k2)
unit disks in S \ U that intersect D′. As |U | ≤ 2k, we conclude that |S ′| ≤ |U | + |U | · ((d +
2) · (k + 1) + 2)2 = O(d2k3). ◀

To reduce the bitsize of encoding the coordinates of the unit disks in the output instance,
we make use of the following lemma.

▶ Lemma 9. There exists a polynomial-time algorithm that, given a set D of unit disks whose
centers have rational coordinates, a partition (D1, D2, . . . , Dℓ) of D, and r ∈ N, outputs a set
D′ of unit disks whose centers have rational coordinates and a bijective function f : D → D′

with the following properties.
For all i ∈ {1, 2, . . . , ℓ}, Di and {f(D) : D ∈ Di} are isometric, that is, for all D, D′ ∈ Di,
we have distance(D, D′) = distance(f(D), f(D′)).
For all distinct i, j ∈ {1, 2, . . . , ℓ}, D ∈ Di and D′ ∈ Dj, we have distance(D, D′) > r.
Encoding the coordinates (in unary) of all the unit disks in {f(D) : D ∈ Di} requires
space polynomial in r, |D|, m = ℓmax

i=1
max

D,D′∈Di

distance(D, D′) and N = maxb,c(b + c) over

every b, c ∈ N, b < c, and b, c are coprime, such that a + b
c is a coordinate of a center of a

unit disk in D.

Proof. For every i ∈ {1, 2, . . . , ℓ}, let Li be a leftmost unit disk in Di (i.e., with a smallest
x-coordinate of its center), and let Di be a bottommost unit disk in Di (i.e., with a smallest
y-coordinate of its center), and denote their centers by (xleft

i , yleft
i ) and (xbottom

i , ybottom
i ),

respectively. Now, for every i ∈ {1, 2, . . . , ℓ} and every D ∈ Di with center (x, y), define f(D)
as the unit disk whose center is (x − xleft

i + (i − 1) · (m + r), y − ybottom
i + (i − 1) · (m + r)).

We define D′ as the set of unit disks assigned by f . Clearly, f : D → D′ is bijective and the
third property in the lemma holds.

For the first property, consider two unit disks D, D′ ∈ Di for some i ∈ {1, 2, . . . , ℓ} with
centers (x, y) and (x′, y′), respectively. Then, distance(f(D), f(D′)) is equal to the square root
of ((x−xleft

i +(i−1) ·(m+r))−(x′ −xleft
i +(i−1) ·(m+r)))2 +((y−ybottom

i +(i−1) ·(m+r))−
(y′ − ybottom

i + (i − 1) · (m + r)))2, which is precisely
√

(x − x′)2 + (y − y′)2 = distance(D, D′).
So, the first property in the lemma holds.

For the second property, consider two unit disks D ∈ Di, D′ ∈ Dj for some i, j ∈
{1, 2, . . . , ℓ}, i < j, with centers (x, y) and (x′, y′), respectively. Then, distance(f(D), f(D′))
is equal to the square root of ((x′ − xleft

j + (j − 1) · (m + r)) − (x − xleft
i + (i − 1) · (m +

r)))2 + ((y′ − ybottom
j + (j − 1) · (m + r)) − (y − ybottom

i + (i − 1) · (m + r)))2. Observe that
x′ ≥ xleft

j , y′ ≥ ybottom
j , x ≤ xleft

i + m, y ≤ ybottom
i + m. So, the above expression is lower

bounded by√
2 ((j − 1) · (m + r) − (m + (i − 1) · (m + r)))2 =

√
2 · ((j − i)(m + r) − m) ≥

√
2r.

In particular, distance(f(D), f(D′)) > r. So, the second property in the lemma holds. ◀

We will also need the following simple observation.
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▶ Observation 10. Let S be a set of unit disks in the Euclidean plane. Let D ∈ S. Then, by
moving D by a distance of at most some d ∈ N, D cannot intersect unit disks whose centers
are at distance at least d + 2 from the original position of the center of D.

Based on Lemma 9 and Observation 10, we prove the following.

▶ Lemma 11. There exists a polynomial-time algorithm that, given an instance (S, k, d) of
Disk Dispersal where the centers of all disks have rational coordinates, and a partition
(S1, S2, . . . , Sℓ) of S such that for all i, j ∈ {1, 2, . . . , ℓ}, D ∈ Si and D′ ∈ Sj, we have
distance(D, D′) ≥ 2d + 2, outputs an equivalent instance of Disk Dispersal, respectively,
with the same parameters k, d and number of unit disks, where encoding the coordinates of all
the unit disks (in unary) requires space polynomial in d, |S|, m = ℓmax

i=1
max

D,D′∈Si

distance(D, D′)

and N = maxb,c(b + c) over every b, c ∈ N, b < c, such that a + b
c is a coordinate of a center

of a unit disk in D.

Proof. The algorithm simply applies the algorithm in Lemma 9 with r = 2d + 2, and obtains
f : S → S ′. Then, it returns D′. From Lemma 9, it directly follows that encoding the
coordinates of all the unit disks requires space polynomial in d, |D|, m and N . Recall that
for all i, j ∈ {1, 2, . . . , ℓ}, D ∈ Si and D′ ∈ Sj , we have distance(D, D′) ≥ 2d + 2, and this
property is preserved under the mapping f (by our choice of r). So, Observation 10 implies
that the sub-instances induced by the different sets Si are “independent” from each other:
we cannot move unit disks in one set Si so that they intersect unit disks in another set Sj .
Also, the same holds for the sub-instances they are mapped to by f . As every sub-instance
induced by some set Si is equivalent to the sub-instance it is mapped to by f since Si and
{f(D) : D ∈ Si} are isometric, we conclude that (S, k, d) and (S ′, k, d) are equivalent. ◀

We our now ready to present our (non-partial) kernel for Disk Dispersal. In particular,
if N is a constant (or polynomial in k + d), the parameterization can be assumed to be only
by k + d.

▶ Theorem 12. Disk Dispersal, restricted to instances where the centers of all disks
have rational coordinates, admits a polynomial kernel with respect to k + d + N , where
N = maxb,c(b + c) over every b, c ∈ N, b < c, such that a + b

c is a coordinate of a center of a
unit disk in S.

Proof. Given an instance (S, k, d) of Disk Dispersal, restricted to instances where the
centers of all disks have rational coordinates, the kernelization algorithm works as follows.
First, we call the algorithm in Theorem 1 to obtain an equivalent instance (S ′, k, d) of Disk
Dispersal. Here, k, d remain unchanged, and S ′ is a subset of S. Let W = {WD : D ∈ S ′}
where WD is a disk whose center is the same as the center of D and whose radius is d + 1.
Let C be the set of connected components of the intersection graph of W. Let P be the
partition of S ′ such that two unit disks in S ′ belong to the same part if and only if there
exists a connected component in C such that both are intersected by (possibly different) disks
that belong to that component. It should be clear, from the definitions of S ′ and W, that
this is indeed a partition, and that if two unit disks in S ′ belong to different parts in this
partition, then the distance between their centers is larger than 2d + 2. So, the kernelization
algorithm then calls the algorithm in Lemma 11 on (S ′, k, d) and P as the partition of D′,
and returns its output. ◀

Lastly, based on Theorem 1 and Proposition 4, we prove Corollary 2 stating that Disk
Dispersal is FPT when parameterized by d + k. We restate the theorem here.
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▶ Corollary 2. Disk Dispersal is FPT when parameterized by d + k. Specifically, it is
solvable in time (dk)O(k) · |I|O(1).

Proof. Given an instance (S, k, d) of Disk Dispersal, the algorithm first calls the algorithm
in Theorem 1 to obtain (in polynomial time) an equivalent instance (S ′, k, d) of Disk
Dispersal, where S ′ ⊆ S is of size O(d2k3). Then, for every A ⊆ S ′ of size at most k such
that S ′ \ A is a packing, the algorithm tests whether it is possible to move each unit disk in
A by a distance of at most d so that, afterwards, S ′ becomes a packing. This can be done by
using the algorithm in Proposition 4 to solve the following system of polynomial inequalities,
which has variables xA, yA for every A ∈ A:

For every S ∈ S ′ \ A and A ∈ A: (xA − a)2 + (yA − b)2 ≥ 4, where (a, b) denotes the
center of S.
For every distinct A1, A2 ∈ A: (xA1 − xA2)2 + (yA1 − yA2)2 ≥ 4.
For every A ∈ A, where (a, b) denotes the center of A in S ′: (xA − a)2 + (yA − b)2 ≤ d2.

The correctness of the algorithm is immediate. For its running time analysis, notice that there
are only

∑k
i=0

(|S′|
i

)
≤ (dk)O(k) choices for A. Further, each of the systems of polynomial

equations that are solved has at most 2k variables, degree 2, and O(|A| · |S ′|) ≤ (dk)O(1)

equations. So, by Proposition 4, it is solvable in time (dk)O(k) · |I|O(1). In turn, we conclude
that the algorithm runs in time (dk)O(k) · |I|O(1). ◀

4 Kernelization lower bound for Disk Dispersal

In this section, we prove Theorem 3. To this end, we show that from several instances of
Disk Appending (defined below), we can construct a single instance I ′ of Disk Dispersal
such that there is a solution to I ′ if and only if there is a solution to at least one of the
instances of Disk Appending. The result then follows from the cross-composition technique
(see [17], Chapter 17 for more details). Disk Appending is defined as follows.

Input: A packing P of n unit disks inside a rectangle R and an integer κ ≥ 0.
Task: Decide whether there is a packing P∗ of n + κ unit disks inside R obtained

from P by adding κ new disks.

Disk Appending

A recent result of Fomin et al. [15, 16] shows that the problem is NP-hard. In particular,
they show the following result.

▶ Proposition 13 (Corollary 2 in [15]). Disk Appending is NP-hard. Furthermore, it
remains NP-hard, even when restricted to instances (R, P, κ) of the following form.

Rectangle R is [0, 2a] × [0, 2b] for integers a, b > 0. It can also be assumed that a = b.
A packing P of disks with their centers inside R such that (i) for every i ∈ {0, . . . , a},
the disks with centers (2i, 0) and (2i, 2b) are in P and (ii) for every j ∈ {0, . . . , b}, the
disks with centers (0, 2j) and (2a, 2j) are in P.

Proof of Theorem 3. The reader may wish to refer to Figure 4, which explains the schematics
of the reduction. We consider instances (R, P, n, κ) of Disk Appending, where R is an
[0, a] × [0, a] square, where a is an even positive integer, P is a packing of n disks with their
centers inside R, such that the centers of the disks are rational, and κ is the number of
disks that need to be added inside R, which is compatible with P, to obtain a packing of
n + k disks. We also assume that for every i ∈ {1, . . . , a/2}, the disks with centers (2i − 1, 1),
(2i − 1, a − 1), (1, 2i − 1) and (a − 1, 2i − 1) are in P.
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For the cross-composition, we first show the polynomial equivalence relation R, over in-
stances (Ri, Pi, ni, κi) of Disk Appending. The instances (Ri, Pi, ni, κi) and (Rj , Pj , nj , κj)
go to the same equivalence classes if (1) the squares Ri and Rj have the same dimension, (2)
Pi and Pj is a packing of ni = nj disks inside Ri and Rj respectively with centers having
rational coordinates, and (3) κi = κj . All the other malformed instances go into another
equivalence class (see [17] for the formal requirements of the equivalence relation). Note
that R satisfies the properties of polynomial equivalence relation, since the equivalence
can be checked in polynomial time, and (2) R partitions the elements of S into at most
(maxx∈S |x|)O(1) classes in a well-formed instance, since κi ≤ ni (this can be assumed w.l.o.g.
by padding the instance as required, as per Proposition 13).

Now we give a cross-composition algorithm for instances belonging to the same equivalence
class. For the last equivalence class of malformed instances, we output a trivial no-instance.
Thus, from now on, we focus on an equivalence class (R1, P1, n, κ), . . . , (Rt, Pt, n, κ), such
that a is the sidelength of every square R1, . . . , Rt. We assume w.l.o.g. that t is odd, and a

is an even integer that is at least 10κ.
For every 1 ≤ i ≤ t, we construct a gadget Gi as follows; see Figure 4. Let R be a

rectangle of height 6 and width 2κ + 6. Suppose the cartesian coordinates of the bottom-left
corner of Gi are (0, 0) (note that this coordinate system is defined only for explaining
the gadget structure, and should not be confused with the coordinate system in the next
paragraph). Then, we place 2(k + 3) disks centered at points (1, 1), (3, 1), . . . , (2k + 5, 1), as
well as (1, 5), (3, 5), . . . , (2κ + 5, 5), and 2 additional disks centered at (1, 3), and (2κ + 5, 3).
These disks lie along the perimeter of the rectangle, with centers at distance 1 from the
perimeter. We call these disks surrounding disks (shown in green). Additionally, we place κ

disks with centers at (4, 3), (6, 3), . . . , (2κ+2, 3), which are termed as interesting disks (shown
in blue). Note that this leaves a horizontal gap of 1 between the leftmost (resp. rightmost)
interesting disk and the surrounding disks with center (1, 3) (resp. (2κ + 5, 3)). Now, we pad
the gadget horizontally by adding columns of 3 disks on both sides of the surrounding disks
in a symmetric manner, such that the width of the gadget becomes exactly a.

Now we describe the construction of the instance of Disk Dispersal. It might be useful
to refer to a schematic description shown in Figure 4. Let d, the distance by which a disk can
be moved, be equal to 9

4 t2a2. We place the first square R1 and the corresponding packing of
disks P1 from the first instance by placing the bottom-left of R1 corner at the origin (0, 0).
Next, we place the instances (R2, P2), (R3, P3), . . . , (Rt, Pt) by aligning their bottom edge
along the x-axis, and leaving a horizontal gap of s :=

√
2ad between the adjacent squares.

Then, we place the gadgets Gi directly above the rectangle Ri such that the vertical distance
between the top edge of Ri and the top edge of Gi is equal to h :=

√
d2 − a2. Since the

width of every gadget Gi is equal to a after padding, the vertical boundaries of Ri and the
corresponding Gi are aligned. Next, we place a set C of κ + 2 co-located disks such that (1)
the vertical distance between the bottom edge of G(t+1)/2 and the centers of disks in C is
equal to d/2, and (2) the centers of the disks in C are aligned with the horizontal center of
the gadget Gi. We place a rectangle tightly enclosing the instance constructed thus far, and
pack all the empty spaces outside the gadgets using disks with integral coordinates on the
centers (not shown in the figure). Finally, we set the budget k, the number of disks that can
be moved, to be (κ + 1) + κ = 2κ + 1. This finishes the construction of the instance of Disk
Dispersal.

The proof of the following claim follows from the careful choice of d, h and s in terms of
a and t.



F. V. Fomin, P. A. Golovach, T. Inamdar, S. Saurabh, and M. Zehavi 48:13

d
2

. . .. . .

. . . . . .

t instances of Disk Appending

Gi Gi+1

h =
√
d2 − a2

s =
√
2ad

. . .

Ri Ri+1R1 R(t+1)/2 Rt

G1 G(t+1)/2 Gt

a

a

ℓ3 ℓ4

κ interesting disks (in blue)

1 1

Gadget Gi for 1 ≤ i ≤ t

κ+ 2
co-located

disks

ℓ1

ℓ2

Figure 4 Schematic depiction of an instance of Disk Dispersal obtained by OR-composition of
instances (Ri, Pi, n, κ) of Disk Appending. Each instance (Ri, Pi, n, κ) is shown in a blue square
of sidelength a. Red rectangles are gadgets Gi, and an example gadget is shown below. Lengths
ℓ1, ℓ2, ℓ3, ℓ4 are defined in Claim 14, and the values of s, h, and d are carefully chosen functions of
t and a, in order to ensure that ℓ1, ℓ3 ≤ d < ℓ2, ℓ4 (note that the figure is not to scale). All the
empty spaces are filled with padding disks with integral coordinates of centers. This ensures that
an interesting disk from Gi cannot be moved into an adjacent Ri±1, and thus different instances
remain “isolated”. In the gadget Gi, the surrounding disks are shown in green and interesting disks
are shown in blue. Finally, purple disks are added on either side of the gadget in order to make the
total width of the gadget exactly a. Then, the gadget Gi and the corresponding square Ri can be
horizontally aligned as shown in the figure.

▷ Claim 14.
1. The maximum distance between the centers of disks in C and any point in any Gi is at

most d (shown as ℓ1 in Figure 4).
2. The minimum distance between the centers of disks in C and any point in any Ri is more

than d (ℓ2).
3. The maximum distance between a point in Gi and a point in the corresponding Ri is at

most d (ℓ3).
4. The minimum distance between a point in Gi and a point in another Rj is more than d

(ℓ4).
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Proof. The values of d, h, and s are chosen carefully in terms of a and t in order to ensure
these properties. First we observe that s =

√
2ad ≥ a, since d = 9

4 t2a2.
1. Note that the horizontal distance between the midpoint of G(t+1)/2 and the leftmost point

in G1 can be upper bounded by (t/2)(a+s) ≤ (t/2) ·(2s) = t ·
√

2ad. The vertical distance
between the bottom edge of G(t+1)/2 and the centers of disks in C is d/2. Therefore, it

suffices to show that
(

d
2
)2 +

(
t
√

2ad
)2

≤ d2, i.e., t2 · 2ad ≤ 3d2

4 , i.e., 2at2 ≤ 3
4 · 9

4 · t2a2.
This holds assuming a ≥ 216.

2. It suffices to consider the vertical distance between the centers of C and the top edge
of R(t+1)/2. This vertical distance is d

2 + h − a, which we want to show is greater than
d. Note that it suffices to show that h =

√
d2 − a2 > d

2 , i.e., a2 < 3d2

4 , i.e., 243
64 t4a2 > 1.

However, since t, a ≥ 1, this is true.
3. ℓ2

3 = h2 + a2 = d2 − a2 + a2 = d2, since h =
√

d2 − a2.
4. It suffices to consider adjacent Gi, Ri+1 pairs (argument for Ri−1 is identical). Then,

ℓ2
4 = (h − a)2 + s2 = (

√
d2 − a2 − a)2 + 2ad = d2 − 2a

√
d2 − a2 + 2ad, which we want to

show is at least d2. This holds since d >
√

d2 − a2. ◁

Now we explain the implications of Claim 14. In any yes-instance, at least κ + 1 disks
from C must be moved by a distance at most d. Let C ′ be this set of disks from the set of
κ + 2 co-located disks, that are moved. Note that in any gadget Gi, if all the κ interesting
disks are moved, then this creates an available space for placing κ + 1 disks of C ′. On the
other hand, if any set of fewer than κ disks inducing a connected component in the contact
graph (i.e., a special kind of intersection graph wherein there is an edge between the vertices
corresponding to two disks iff their boundaries touch each other) of the disks is moved, then
this creates space for at most κ disks from C ′ (note that the distance between C ′ and an
Ri is more than d by item 2 of Claim 14). However, since the budget is 2κ + 1, this cannot
correspond to a feasible solution. Thus, in a solution to a yes-instance, C ′ can only be moved
in the place of κ interesting disks corresponding to a gadget Gi. Next, an interesting disk
can be moved anywhere in the corresponding square Ri (item 3), but cannot be moved to a
different square Rj (item 4). Then, using an argument used for the disks in C ′, we conclude
that the k interesting disks can only be moved in the empty spaces in the corresponding
Ri. Thus, the created instance of Disk Dispersal is a yes-instance iff there exists some
yes-instance (Ri, Pi, n, κ) of Disk Appending. Finally, we note that Proposition 13 implies
that the coordinates of the centers of the disks in each instance of Disk Dispersal can be
assumed to be rational. Furthermore, by letting s ≈

√
2ad, and h ≈

√
d2 − a2 as rational

approximations of their original values with small enough error, we can ensure that the
coordinates of all the centers of the disks in the constructed instance become rational, and
furthermore, the inequalities from Claim 14 continue to hold. This concludes the proof of
Theorem 3. ◀

5 Conclusion and Open Problem

In this paper, we initiate the study of the problem of spreading points from the perspective of
parameterized complexity and kernelization. We reformulate the problem in terms of moving
at most k unit disks by a distance of at most d, which we call Disk Dispersal. We design a
(partial) polynomial kernel for Disk Dispersal parameterized by k and d. Furthermore, we
show that this can be transformed into a (true) kernel, assuming the coordinates of the centers
of the unit disks are rational numbers with bounded denominators. We complement this
result by showing that Disk Dispersal does not admit a polynomial kernel parameterized
by k alone, assuming coNP ⊆ NP /poly. These results provide a complete picture of the
kernelization complexity of Disk Dispersal.
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We show that Disk Dispersal is FPT parameterized by k +d, by combining the (partial)
kernel with a non-trivial subroutine that involves solving a system of polynomial inequalities.
It is natural to ask whether the problem is fixed-parameter tractable by the individual
parameters d and k. Fiala et al. [14] have shown that Disk Dispersal is NP-hard even
when d = 2. However, the parameterized complexity of Disk Dispersal parameterized by k

alone remains open. We make some preliminary progress in this direction. In the full version
of the paper, we prove that the rectilinear version of Disk Dispersal is W[1]-hard when
parameterized by k. This is a constrained version of Disk Dispersal, called Rectilinear
Disk Dispersal, which is defined as follows.

Input: A family S of n unit disks, an integer k ≥ 0, and a real d ≥ 0.
Task: Decide whether it is possible to obtain from S a family of non-overlapping

disks P by moving at most k disks into new positions parallel to the axes
in such a way that each disk is moved at distance at most d.

Rectilinear Disk Dispersal

By examining our algorithmic results, namely, the (partial) kernels and the FPT algorithm
parameterized by k + d also hold for Rectilinear Disk Dispersal. Thus we have a
complete picture of the complexity of Rectilinear Disk Dispersal, with parameters k

and d. Given this state of affairs, we conjecture that Disk Dispersal is also W[1]-hard
when parameterized by k.
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Abstract
We re-visit the complexity of polynomial time pre-processing (kernelization) for the d-Hitting
Set problem. This is one of the most classic problems in Parameterized Complexity by itself, and,
furthermore, it encompasses several other of the most well-studied problems in this field, such
as Vertex Cover, Feedback Vertex Set in Tournaments (FVST) and Cluster Vertex
Deletion (CVD). In fact, d-Hitting Set encompasses any deletion problem to a hereditary property
that can be characterized by a finite set of forbidden induced subgraphs. With respect to bit size, the
kernelization complexity of d-Hitting Set is essentially settled: there exists a kernel with O(kd) bits
(O(kd) sets and O(kd−1) elements) and this it tight by the result of Dell and van Melkebeek [STOC
2010, JACM 2014]. Still, the question of whether there exists a kernel for d-Hitting Set with fewer
elements has remained one of the most major open problems in Kernelization.

In this paper, we first show that if we allow the kernelization to be lossy with a qualitatively
better loss than the best possible approximation ratio of polynomial time approximation algorithms,
then one can obtain kernels where the number of elements is linear for every fixed d. Further, based
on this, we present our main result: we show that there exist approximate Turing kernelizations for
d-Hitting Set that even beat the established bit-size lower bounds for exact kernelizations – in fact,
we use a constant number of oracle calls, each with “near linear” (O(k1+ϵ)) bit size, that is, almost
the best one could hope for. Lastly, for two special cases of implicit 3-Hitting set, namely, FVST
and CVD, we obtain the “best of both worlds” type of results – (1 + ϵ)-approximate kernelizations
with a linear number of vertices. In terms of size, this substantially improves the exact kernels of
Fomin et al. [SODA 2018, TALG 2019], with simpler arguments.
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1 Introduction

In d-Hitting Set, the input consists of a universe U , a family F of sets over U , where
each set in F is of size at most d, and an integer k. The task is to determine whether there
exists a set S ⊆ U , called a hitting set, of size at most k that has a nonempty intersection
with every set of F . The d-Hitting Set problem is a classical optimization problem
whose computational complexity has been studied for decades from the perspectives of
different algorithmic paradigms. Notably, d-Hitting Set is a generic problem, and hence, in
particular, various computational problems can be re-cast in terms of it. Of course, Vertex
Cover, the most well-studied problem in Parameterized Complexity, is the special case
of d-Hitting Set with d = 2. More generally, d-Hitting Set encompasses a variety of
(di)graph modification problems, where the task is to delete at most k vertices (or edges)
from a graph such that the resulting graph does not contain an induced subgraph (or a
subgraph) from a family of forbidden graphs F . Examples of some such well-studied problems
include Cluster Vertex Deletion, d-Path Vertex Cover, d-Component Order
Connectivity, d-Bounded-Degree Vertex Deletion, Split Vertex Deletion and
Feedback Vertex Set in Tournaments.

Kernelization, a subfield of Parameterized Complexity, provides a mathematical framework
to capture the performance of polynomial time preprocessing. It makes it possible to quantify
the degree to which polynomial time algorithms succeed at reducing input instances of
NP-hard problems. More formally, every instance of a parameterized problem Π is associated
with an integer k, which is called the parameter, and Π is said to admit a kernel if there is a
polynomial-time algorithm, called a kernelization algorithm, that reduces the input instance
of Π down to an equivalent instance of Π whose size is bounded by a function f(k) of k.
(Here, two instances are equivalent if both of them are either Yes-instances or No-instances.)
Such an algorithm is called an f(k)-kernel for Π. If f(k) is a polynomial function of k, then
we say that the kernel is a polynomial kernel. Over the last decade, Kernelization has become
a central and active field of study, which stands at the forefront of Parameterized Complexity,
especially with the development of complexity-theoretic lower bound tools for kernelization.
These tools can be used to show that a polynomial kernel [3, 12, 18, 23], or a kernel of a
specific size [9, 10, 21] for concrete problems would imply an unlikely complexity-theoretic
collapse. We refer to the recent book on kernelization [17] for a detailed treatment of the area
of kernelization. In this paper, we provide a number of positive results on the kernelization
complexity of d-Hitting Set, as well as on several special cases of 3-Hitting Set.

The most well-known example of a polynomial kernel, which, to the best of our knowledge,
is taught in the first class/chapter on kernelization of any course/book that considers this
subject, is the classic kernel for Vertex Cover (2-Hitting Set) that is based on Buss
rule. More generally, one of the most well-known examples of a polynomial kernel is a kernel
with O(kd) sets and elements for d-Hitting Set (when d is a fixed constant) using the
Erdös-Rado Sunflower lemma.1 Complementing this positive result, originally in 2010, a
celebrated result by Dell and van Melkebeek [10] showed that unless co-NP ⊆ NP/ poly, for
any d ≥ 2 and any ϵ > 0, d-Hitting Set does not admit a kernel with O(kd−ϵ) sets. Hence,
the kernel with O(kd) sets is essentially tight with respect to size. However, when it comes
to the bound on the number of elements in a kernel, the situation is unclear. Abu-Khzam [1]

1 The origins of this result are unclear. The first kernel with O(kd) sets appeared in 2004 [13], but the
authors do not make use of the Sunflower Lemma. To the best of our knowledge, the first exposition of
the kernel based on the Sunflower Lemma appears in the book of Flum and Grohe [15].
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showed that d-Hitting Set admits a kernel with at most (2d−1)kd−1 +k elements. However,
we do not know whether this bound is tight or even close to that. As it was written in [17,
page 470]:

Could it be that d-Hitting Set admits a kernel with a polynomial in k number of
elements, where the degree of the polynomial does not depend on d? This does not
look like a plausible conjecture, but we do not know how to refute it either.

The origins of this question can be traced back to the open problems from WorKer 2010 [4,
page 4]. Moreover, in the list of open problems from WorKer 2013 and FPT School 2014 [7,
page 4], the authors asked whether d-Hitting Set admits a kernel with f(d) · k elements for
some function f of d only. After being explicitly stated at these venues, this question and its
variants have been re-stated in a considerable number of papers (see, e.g., [11, 17, 29, 2]),
and is being repeatedly asked in annual meetings centered around parameterized complexity.
Arguably, this question has become the most major and longstanding open problem in
kernelization for a specific problem. In spite of many attempts, even for d = 3, the question
whether d-Hitting Set admits a kernel with O(k2−ε) elements, for some ϵ > 0, has still
remained open.

From an approximation perspective, the optimization version of d-Hitting Set admits
a trivial d-approximation. Up to the Unique Game Conjecture, this bound is tight – for any
ε > 0, d-Hitting Set does not admit a polynomial time (d − ε)-approximation [22]. So, at
this front, the problem is essentially resolved.

With respect to kernelization, firstly, the barrier in terms of number of sets, and secondly,
the lack of progress in terms of the number of elements, coupled with the likely impossibility
of (d − ε)-approximation of d-Hitting Set, bring lossy kernelization as a natural tool for
further exploring of the complexity of this fundamental problem. We postpone the formal
definition of lossy kernelization to Section 2. Informally, a polynomial size α-approximate
kernel consists of two polynomial-time procedures. The first is a pre-processing algorithm
that takes as input an instance (I, k) to a parameterized problem, and outputs another
instance (I ′, k′) to the same problem, such that |I ′| + k′ ≤ kO(1). The second transforms,
for every c ≥ 1, a c-approximate solution S′ to the pre-processed instance (I ′, k′) into a
(c · α)-approximate solution S to the original instance (I, k). Then, the main question(s) that
we address in this paper is:

Is it possible to obtain a lossy kernel for d-Hitting Set with a qualitatively better
loss than d and with O(kd−1−ε) bit-size, or at least with O(kd−1−ε) elements?

In this paper, we present a surprising answer: not only the number of elements can be
bounded by O(k) (rather than just O(kd−1−ε)), but even the bit-size can “almost” be bounded
by O(k)! From the perspective of the size of the kernel, this is essentially the best that
one could have hoped for. Still, we only slightly (though non-negligibly) improve on the
approximation ratio d. For example, for d = 2 (Vertex Cover), we attain an approximation
ratio of 1.721. So, while we make a critical step that is also the first – in particular, we
show that, conceptually, the combination of kernelization and approximation breaks their
independent barriers – we also open up the door for further research of this kind, on this
problem as well as other problems.

More precisely, we present the following results and concept. We remark that for all of
our results, we use an interesting fact about the natural Linear Programming (LP) relaxation
of d-Hitting Set: the support of any optimal LP solution to the LP-relaxation of d-
Hitting Set is of size at most d · frac where frac is the optimum (minimum value) of the

ESA 2023
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LP [20]. Furthermore, to reduce bit-size rather than only element number, we introduce an
“adaptive sampling strategy” that is, to the best of our knowledge, also novel in parameterized
complexity. We believe that these ideas will find further applications in kernelization in the
future. More information on our methods can be found in the next section.

Starting Point: Linear-Element Lossy Kernel for d-Hitting Set. First, we
show that d-Hitting Set admits a (d − d−1

d )-approximate d · opt-element kernel, where
opt ≤ k is the (unknown) optimum (that is, size of smallest solution).2 For example, when
d = 3, the approximation ratio is d − d−1

d = 2 1
3 , which is a notable improvement over 3.

When d = 2, this result encompasses the classic (exact) 2 · opt-vertex kernel for Vertex
Cover [6, 27]. We also remark that our linear-element lossy kernel for d-Hitting Set
is a critical component (used as a black box) in all of our other results.
Conceptual Contribution: Lossy Kernelization Protocols. We extend the notions
of lossy kernelization and kernelization protocols3 to lossy kernelization protocols. Roughly
speaking, an α-approximate kernelization protocol can perform a bounded in k number
of calls (called rounds) to an oracle that solves the problem on instances of size (called
call size) bounded in k, and besides that it runs in polynomial time. Ideally, the number
of calls is bounded by a fixed constant, in which case the protocol is called pure. Then,
if the oracle outputs c-approximate solutions to the instances it is given, the protocol
should output a (c · α)-approximate solution to the input instance. In particular, a lossy
kernel is the special case of a lossy protocol with one oracle call. The volume of a lossy
kernelization protocol is the sum of the sizes of the calls it performs.
Main Contribution: Near-Linear Volume and Pure Lossy Kernelization Pro-
tocol for d-Hitting Set. We remark that the work of Dell and van Melkebeek [10] further
asserts that also the existence of an exact (i.e., 1 approximate in our terms) kernelization
protocol for d-Hitting Set of volume O(kd−ϵ) is impossible unless co-NP ⊆ NP/ poly.
First, we show that Vertex Cover admits a (randomized) 1.721-approximate kerneliza-
tion protocol of 2 rounds and call size O(k1.5). This special case is of major interest in
itself: Vertex Cover is the most well-studied problem in Parameterized Complexity,
and, until now, no result that breaks both bit-size and approximation ratio barriers
simultaneously has been known.
Then, we build upon the ideas exemplified for the case of Vertex Cover to significantly
generalize the result: while Vertex Cover corresponds to d = 2, we are able to capture
all choices of d. Thereby, we prove our main result: for any ϵ > 0, d-Hitting Set admits
a (randomized) pure (d − δ)-approximate kernelization protocol of call size O(k1+ϵ).
Here, the number of rounds and δ are fixed constants that depend only on d and ϵ.
While the improvement over the barrier of d in terms of approximation is minor (though
still notable when d = 2), it is a proof of concept – that is, it asserts that d is not an
impassable barrier.4 Moreover, it does so with almost the best possible (being almost
linear) output size.
Outlook: Relation to Ruzsa-Szemerédi Graphs. Lastly, we present a connection
between the possible existence of a (1 + ϵ)-approximate kernelization protocol for Vertex
Cover of call size O(k1.5) and volume O(k1.5+o(1)) and a known open problem about
Ruzsa-Szemerédi graphs. We discuss this result in more detail in Section 3.

2 In fact, when the parameter is k, we show that the bound is better.
3 We remark that kernelization protocols are a highly restricted special case of Turing kernels, that yet

generalizes kernels.
4 Possibly, building upon our work, further improvements on the approximation factor (though perhaps

at the cost of an increase in the output size) may follow.
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Kernels for Implicit 3-Hitting Set Problems. Lastly, we provide better lossy kernels for
two well-studied graph problems, namely, Cluster Vertex Deletion and Feedback
Vertex Set in Tournaments, which are known to be implicit 3-Hitting Set problems [8].
Notably, both our algorithms are based on some of the ideas and concepts that are part of
our previous results, and, furthermore, we believe that the approach underlying the parts
common to both these algorithms may be useful when dealing also with other hitting and
packing problems of constant-sized objects. In the Cluster Vertex Deletion problem,
we are given a graph G and an integer k. The task is to decide whether there exists a set
S of at most k vertices of G such that G − S is a cluster graph. Here, a cluster graph is
a graph where every connected component is a clique. It is known that this problem can
be formulated as a 3-Hitting Set problem where the family F contains the vertex sets of
all induced P3’s of G. (An induced P3 is a path on three vertices where the first and last
vertices are non-adjacent in G.) In the Feedback Vertex Set in Tournaments problem,
we are given a tournament G and an integer k. The task is to decide whether there is a set
S of k vertices such that each directed cycle of G contains a member of S (i.e., G − S is
acyclic). It is known that Feedback Vertex Set in Tournaments can be formulated as
a 3-Hitting Set problem as well, where the family F contains the vertex sets of all directed
cycles on three vertices (triangles) of G.

In [16], it was shown that Feedback Vertex Set in Tournaments and Cluster
Vertex Deletion admit kernels with O(k 3

2 ) vertices and O(k 5
3 ) vertices, respectively. This

answered an open question from WorKer 2010 [4, page 4], regarding the existence of kernels
with O(k2−ϵ) vertices for these problems. The question of the existence of linear-vertex kernels
for these problems is open. In the realm of approximation algorithms, for Feedback Vertex
Set in Tournaments, Cai , Deng and Zang [5] gave a factor 2.5 approximation algorithm,
which was later improved to 7/3 by Mnich, Williams and Végh [26]. Recently, Lokshtanov,
Misra, Mukherjee, Panolan, Philip and Saurabh [24] gave a 2-approximation algorithm for
Feedback Vertex Set in Tournaments. For Cluster Vertex Deletion, You, Wang
and Cao [29] gave a factor 2.5 approximation algorithm, which later was improved to 7/3 by
Fiorini, Joret and Schaudt [14]. It is open whether Cluster Vertex Deletion admits a
2-approximation algorithm. We remark that both problems admit approximation-preserving
reductions from Vertex Cover, and hence they too do not admit (2 − ϵ)-approximation
algorithms up to the Unique Games Conjecture.

We provide the following results for Feedback Vertex Set in Tournaments and
Cluster Vertex Deletion.

Cluster Vertex Deletion. For any 0 < ϵ < 1, the Cluster Vertex Deletion
problem admits a (1 + ϵ)-approximate O( 1

ϵ · opt)-vertex kernel.
Feedback Vertex Set in Tournaments. For any 0 < ϵ < 1, the Feedback Vertex
Set in Tournaments problem admits a (1 + ϵ)-approximate O( 1

ϵ · opt)-vertex kernel.

Reading Guide. First, in Section 2, we present basic terminology regarding lossy kernel-
ization. Due to lack of space, we omit the formal proofs and technical details. Instead, in
Section 3, we present an overview of our proofs Afterwards, in Section 4, we conclude the
extended abstract with some open problems.

2 Lossy Kernelization: Algorithms and Protocols

Lossy Kernelization Algorithms. We follow the framework of lossy kernelization presented
in [25]. Here, we deal only with minimization problems where the value of a solution is its
size, and where the computation of an arbitrary solution (where no optimization is enforced)
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is trivial. Thus, for the sake of clarity of presentation, we only formulate the definitions for
this context, and remark that the definitions can be extended to the more general setting
in the straightforward way (for more information, see [25]). To present the definitions,
consider a parameterized problem Π. Given an instance I of Π with parameter k = κ(I),
denote: if k is a structural parameter, then πI(opt) = opt, and otherwise (if k is a bound
on the solution size given as part of the input) πI(opt) = min{opt, k + 1}. Moreover, for
any solution S to I, denote: if k is a structural parameter, then πI(S) = |S|, and otherwise
πI(S) = min{|S|, k + 1}. We remark that when π is irrelevant (e.g., when the parameter is
structural), we will drop it. A discussion of the motivation behind this definition of πI can
be found in [25]; here, we only briefly note that it signifies that we “care” only for solutions
of size at most k – all other solutions are considered equally bad, treated as having size k + 1.

▶ Definition 1. Let Π be a parameterized minimization problem. Let α ≥ 1. An α-
approximate kernelization algorithm for Π consists of two polynomial-time procedures: reduce
and lift. Given an instance I of Π with parameter k = κ(I), reduce outputs another instance
I ′ of Π with parameter k′ = κ(I ′) such that |I ′| ≤ f(k, α) and k′ ≤ k. Given I, I ′ and a

solution S′ to I ′, lift outputs a solution S to I such that πI(S)
πI(opt(I)) ≤ α

πI′(S′)
πI′(opt(I ′)) . If

πI(S)
πI(opt(I)) ≤ max{α,

πI′(S′)
πI′(opt(I ′))} holds, then the algorithm is termed strict.

In case Π admits an α-approximate kernelization algorithm where the output has size f(k, α),
or where the output has g(k, α) “elements” (e.g., vertices), we say that Π admits an α-
approximate kernel of size f(k, α), or an α-approximate g(k, α)-element kernel, respectively.
When it is clear from context, we simply write f(k) and g(k). When it is guaranteed
that |I ′| ≤ f(k′, α) rather than only |I ′| ≤ f(k, α), then we say that the lossy kernel is
output-parameter sensitive.

We only deal with problems that have constant-factor polynomial-time approximation
algorithms, and where we may directly work with (the unknown) opt as the parameter (then,
π can be dropped). However, working with k (and hence π) has the effect of artificially altering
kernel sizes, but not so if one remembers that k and opt are different parameterizations. The
following lemma clarifies a relation between these two parameterizations.

▶ Lemma 2. Let Π be a minimization problem that, when parameterized by the optimum,
admits an α-approximate kernelization algorithm A of size f(opt) (resp., an α-approximate
g(opt)-element kernel). Then, when parameterized by k, a bound on the solution size that
is part of the input, it admits an α-approximate kernelization algorithm B of size f( k+1

α )
(resp., an α-approximate g( k+1

α )-element kernel).

Proof. We design B as follows. Given an instance (I, k) of Π, reduce of B calls reduce of
A on I. If the output instance size is at most f( k+1

α ) (resp., the output has at most g( k+1
α )

elements), then it outputs this instance with parameter k′ = k. Otherwise, it outputs a
trivial constant-sized instance. Given (I, k), (I ′, k′) and a solution S′ to (I ′, k′), if I ′ is the
output of the reduce procedure of A on I, then lift of B calls lift of A on I, I ′, S′ and
outputs the result. Otherwise, it outputs a trivial solution to I.

The reduce and lift procedures of B clearly have polynomial time complexities, and
the definition of B implies the required size (or element) bound on the output of reduce.
It remains to prove that the approximation ratio is α. To this end, consider an input
(I, k), (I ′, k′), S′ to lift of B. Let S be its output. We differentiate between two cases.

First, suppose that opt(I) ≥ k+1
α . Then, πI(S)

πI(opt(I)) ≤ k + 1
k+1

α

= α ≤ α
πI′(S′)

πI′(opt(I ′)) (where

the last inequality follows because |S′| ≥ opt(I ′) and hence πI′(S′) ≥ πI′(opt(I ′))).
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Second, suppose that opt(I) < k+1
α . Then, it necessarily holds that I ′ is the output of

the reduce procedure of A on I. Moreover, note that opt(I ′) ≤ opt(I) and k′ = k. So,

if |S′| ≥ k′ + 2, then πI(S)
πI(opt(I)) ≤ k + 1

πI(opt(I)) = k′ + 1
opt(I) ≤ k′ + 1

opt(I ′) = πI′(S′)
πI′(opt(I ′)) . Else,

we suppose that |S′| ≤ k′ + 1 and hence πI′(S′) = |S′|. Then,

πI(S)
πI(opt(I)) ≤ |S|

πI(opt(I)) = |S|
opt(I) ≤ α

|S′|
opt(I ′) = α

πI′(S′)
πI′(opt(I ′)) .

Here, the second inequality follows because the approximation ratio of A is α.
This completes the proof. ◀

Approximate kernelization algorithm often use strict reduction rules, defined as follows.

▶ Definition 3. Let Π be a parameterized minimization problem. Let α ≥ 1. An α-strict
reduction rule for Π consists of two polynomial-time procedures: reduce and lift. Given
an instance I of Π with parameter k = κ(I), reduce outputs another instance I ′ of Π with
parameter k′ = κ(I ′) ≤ k. Given I, I ′ and a solution S′ to I ′, lift outputs a solution S to I

such that πI(S)
πI(opt(I)) ≤ max{α,

πI′(S′)
πI′(opt(I ′))}.

▶ Proposition 4 ([25]). Let Π be a parameterized problem. For any α ≥ 1, an approximate
kernelization algorithm for Π that consists only of α-strict reduction rules has approximation
ratio α. Furthermore, it is strict.

Lossy Kernelization Protocols. We extend the notion of lossy kernelization algorithms to
lossy kernelization protocols as follows.

▶ Definition 5 (Lossy Kernelization Protocol). Let Π be a parameterized minimization problem
with parameter k. Let α ≥ 1. An α-approximate kernelization protocol of call size f(k, α)
and g(k, α) rounds for Π is defined as follows. First, the protocol assumes to have access
to an oracle O that, given an instance I ′ of Π of size at most f(k, α), returns a solution
S′ to I ′ such that πI′(S′) ≤ βπI′(opt(I ′)) for minimization and πI′(S′) ≥ 1

β
πI′(opt(I ′)) for

maximization, for some fixed β > 0. Second, for the same fixed β > 0, given an instance I

of Π, the protocol may perform g(k, α) calls to O and other operations in polynomial time,

and then output a solution S to I such that πI(S)
πI(opt(I)) ≤ αβ.

The volume (or size) of the protocol is f(k, α)g(k, α). In case g(k, α) = g(α) (i.e., g

depends only on α), the protocol is called pure.

Notice that an α-approximate kernelization algorithm is the special case of an α-approximate
kernelization protocol when the number of rounds is 1.

Practically, we think that (lossy) kernelization protocols can often be as useful as standard
(lossy) kernels, and, in some cases, more useful. Like standard (lossy) kernels, they reduce
the total size of what we need to solve, only that now what we need to solve is split into
several instances, to be solved one after another. On the one hand, this relaxation seems to,
in most cases, not be restrictive (as what we really care about is the total size of what we
need to solve). On the other hand, it might be helpful if by using this relaxation one can
achieve better bounds than what is known (or, even, what is possible) on the sizes of the
reduced instances, or to simplify the algorithm. For example, for the case of d-Hitting Set,
we do not know how to beat O(kd) using a lossy kernel rather than a protocol.
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Figure 1 The three cases encountered by our 2-call lossy kernelization protocol for Vertex
Cover: (I) |S1| is large, and we return V (G); (II) |S1| is small and |S2| is small, and we return
S1 ∪ S2; (III) |S1| is small and |S2| is large, and we return (V (G) \ S1) ∪ A.

3 Overview of Our Proof Ideas

In this section, we present a high-level overview of our proof ideas.

3.1 Linear-Element Lossy Kernel for d-HITTING SET

We make use of a known result about the natural LP relaxation of d-Hitting Set: the
support of any optimal LP solution to the LP-relaxation of d-Hitting Set is of size at
most d · frac where frac is the optimum (minimum value) of the LP [20]. For the sake of
completeness, we provide a proof. We then provide a lossy reduction rule that computes an
optimal LP solution, and deletes all vertices assigned values at least 1

d−1 . Having applied this
rule exhaustively, we arrive at an instance having an optimal LP solution that assigns only
values strictly smaller than 1

d−1 . Then, it can be shown that all hitting sets are contained
within the support of this LP solution. In turn, in light of the aforementioned known result,
this yields an approximate d · frac-element and (dfrac)d-set kernel that is output-parameter
sensitive.

The analysis that the approximation factor is d − d−1
d is slightly more involved, and is

based on case distinction. In case the number of vertices deleted is “small enough”, the cost
of adding them is “small enough” as well. In the more difficult case where the number of
vertices deleted is “large”, by making use of the already established bound on the output
size as well as the drop in the fractional optimum, we are able to show that, in fact, we
return a solution of approximation factor d − d−1

d irrespective of the approximation ratio
of the solution we are given. More generally, the definition of “small enough” and “large”
gives rise to a trade-off that is critical for our kernelization protocol for d-Hitting Set,
which in particular yields that we can either obtain a negligible additive error or directly a
solution of the desired (which is some fixed constant better than d but worse than d − d−1

d )
approximation ratio. Specifically, this means that it is “safe” to compose our element kernel
as part of other kernelization algorithms or protocols.

3.2 2-Round O(frac1.5)-Call Size Lossy Kernelization Protocol for
VERTEX COVER

Towards the presentation of our near-linear call size lossy kernelization protocol for d-
Hitting Set, we abstract some of the ideas using a simpler 2-round O(frac1.5)-call size
1.721-approximate kernelization protocol for Vertex Cover (where frac ≤ opt ≤ k is the
optimum of the natural LP relaxation of Vertex Cover). First, we apply an (exact)
kernelization algorithm to have a graph G on at most 2frac vertices. The purpose of having
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only 2frac vertices is twofold. First, it means that to obtain a “good enough” approximate
solution, it suffices that we do not pick a “large enough” (linear fraction) of vertices of G

to our solution. Second, it is required for a probability bound derived using union bound
over vertex subsets to hold. Then, roughly speaking, the utility of the first oracle call is
mainly, indirectly, to uncover a “large” (linear in n = |V (G)|) induced subgraph of G that is
“sparse”, and hence can be sent to the second oracle call to be solved optimally.

More precisely, after applying the initial kernelization, we begin by sampling roughly
frac1.5 edges from G. Then, we call the oracle on the sampled graph to obtain a solution S1
to it (but not to G). In case that solution S1 is “large” compared to the size of the vertex
set of G (that is, sufficiently larger than n/2 ≤ frac), we can just return the entire vertex set
of G (see Fig. 1). Else, we know that the subgraph of the sampled graph that is induced
by V (G) \ S1 is edgeless. In addition, we can show (due to the initial kernelization) that
with high probability, every set of edges of size (roughly) at least frac1.5 that is the edge
set of some induced subgraph of G has been hit by our edge sample. Together, this implies
that the subgraph of G induced by V (G) \ S1 has at most frac1.5 edges, and hence can be
solved optimally by a second oracle call. Then, because we know that this subgraph is large
compared to G (else S1 is large), if the oracle returned a “small” solution S2 to it, we may
just take this solution together with S1 (which will form a vertex cover), and yet not choose
sufficiently many vertices so that this will be good enough in terms of the approximation
ratio achieved. Else, also because we know that this subgraph is large compared to G, if the
second oracle returned a “large” solution S2, then we know that every optimal solution must
take many vertices from this subgraph, and hence, to compensate for this, the optimum of
G[S1] must be “very small”. So, we compute a 2-approximate solution A to G[S1], which we
know should not be “too large”, and output the union of A and V (G) \ S1 (which yields a
vertex cover).

3.3 Near-Linear Volume and Pure Lossy Kernelization Protocol for
d-HITTING SET

For any fixed ϵ > 0, we present a pure d(1 − h(d, ϵ))-approximate (randomized) kernelization
protocol for d-Hitting Set with call size O((frac)1+ϵ) where h(d, ϵ) is a fixed positive
constant that depends only on d, ϵ. On a high-level, the idea of our more general lossy
kernelization protocol is to compute a nested family of solutions based on the approach
described above for Vertex Cover (see Fig. 2). Intuitively, as we now can sample only
few sets (that is, frac1+ϵ), when we compute a solution that hits them using an oracle call,
the number of sets it misses can still be huge, and hence we will need to iteratively use the
oracle (a constant number of times) until we reach a subuniverse such that we can optimally
solve the subinstance induced by it by a single oracle call. Below, we give a more elaborate
overview.

First, we apply our linear-element lossy kernel to have an instance I0 = (U0, T0) where
the universe U0 consists of at most dfrac elements. Here, the error of this application is not
multiplied by the error attained next, but will only yield (as mentioned earlier) a negligible
additive error (or directly a solution of the desired approximation ratio). The purpose of
having only dfrac elements is twofold, similarly as it is in the protocol described earlier for
Vertex Cover. Afterwards, we begin by sampling a family F1 of roughly frac1+ϵ sets from
T0. Then, we call the oracle on the sampled family F1 to obtain a solution S1 to it. In
case that solution S1 is “large” (sufficiently larger than |U0|/d ≤ frac), we can just return
U0. Else, we know that the family of sets corresponding to the subinstance I1 induced by
U1 = U0 \ S1 – that is, the family of all sets in T0 contained in U1, which we denote by T1 –
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Figure 2 The nested solutions computed by oracle calls in our lossy kernelization protocol for
d-Hitting Set. Each Si is a solution to a subinstance (Ui−1, Fi−1) sampled from (Ui−1, Ti−1).

was missed by our set sample. In addition, we can show (due to the initial kernelization) that
with high probability, every family of sets of size (roughly) at least fracd−ϵ that corresponds
to a subinstance induced by a subset of U0 has been hit by our set sample. Together, this
implies that T1 has at most fracd−ϵ (rather than fracd) sets. Hence, in some sense, we have
made progress towards the discovery of a sparse subinstance that we can optimally solve.

Due to important differences, let us describe also the second iteration – among at most
1
ϵ (d − 1) iterations performed in total – before skipping to the (last) one where we have a
subinstance that we can optimally solve by an oracle call. The last iteration may not even
be reached, if we find a “good enough” solution earlier. We remark that it is critical to stop
and return a solution as soon as we find a “large enough” one by an oracle call5 as for our
arguments to work, we need to always deal with subinstances whose universe is large (a
linear fraction of |U0|), and these are attained by removing oracle solutions we got along the
way. We begin the second iteration by sampling a family F2 of roughly frac1+ϵ sets from
T1. Then, we call the oracle on the sampled family F2 to obtain a solution S2 to it. On the
one hand, in case that solution S2 is “large” (sufficiently larger than |U1|/d), we cannot just
return U0 as in the first iteration, as now it may not be true that the optimum of I0 is large
compared to |U0|. Still, it is true that the optimum of I1 is large compared to |U1|. So, every
optimal solution (to I0) must take many elements from U1 \ S2, and hence, to compensate for
this, the optimum of the subinstance induced by S1 must be “very small”. So, we compute a
d-approximate solution to this subinstance, which we know should not be “too large” , and
output the union of it and U1 (which yields a hitting set). On the other hand, in case S2
is “small”, we proceed as follows. We observe that the family of sets corresponding to the
subinstance I2 induced by U2 = U1 \ S2, whose family of sets we denote by T2, was missed
by our set sample. In addition, we can show (due to the initial kernelization) that with
high probability, every family of sets of size (roughly) at least fracd−2ϵ that corresponds to a
subinstance induced by a subset of U1 has been hit by our set sample. Together, this implies
that T2 has at most fracd−2ϵ (rather than just fracd−ϵ as in the first iteration) sets. Hence,
in some sense, we have made further progress towards the discovery of a sparse subinstnace
that we can optimally solve.

Finally, we arrive at a subinstance I ′ induced by a subuniverse U ′ ⊆ U0 that is of size
linear in U0 (else we should have returned a solution earlier) and where the family of sets,
F ′, is of size at most frac1+ϵ. Then, we call the oracle on I ′ to obtain a solution S′ to it. On

5 The solution we return is not the one given by the oracle call, but its union with another solution, as
will be clarified immediately, or just U0 in case of the first iteration describe above.
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the one hand, in case that solution S′ is “large” (sufficiently larger than |U ′|/d), we compute
a d-approximate solution to the subinstance induced by U0 \ U ′ (which is the union of all
solutions returned by oracle calls except the last one), and output the union of it and U ′.
Otherwise, we output (U0 \ U ′) ∪ S′, which is “good enough” because U ′ is sufficiently large
while S′ is sufficiently small compared to it, it does not contain a “large enough” number of
elements from U0.

3.4 Outlook: Relation to Ruzsa-Szemerédi Graphs
A graph G is an (r, t)-Ruzsa-Szemerédi graph if its edge set can be partitioned into t edge-
disjoint induced matchings, each of size r. These graphs were introduced in 1978 [28],
and have been extensively studied since then. When r is a function of n, let γ(r) denote
the maximum t (which is a function of n) such that there exists an (r, t)-Ruzsa-Szemerédi
graph. In [19], the authors considered the case where r = cn. They showed that when
c = 1

4 , γ(r) ∈ Θ(log n), and when 1
5 ≤ c ≤ 1

4 , t ∈ O( n
log n ). It is an open problem whether

whenever c is a fixed constant, t ∈ O(n1−ϵ). For any fixed constant 0 < c < 1
4 , we present

a (1 + 4c)-approximate (randomized) kernelization protocol for Vertex Cover with t + 1
rounds and call size O(t(frac)1.5). Clearly, this result makes sense only when t ∈ o(

√
n),

preferably t ∈ O(n 1
2 −λ) for λ as close to 1/2 as possible, because the volume is O(opt2−λ).

If t is “sufficiently small” (depending on the desired number of rounds) whenever c is a
fixed constant (specifically, substitute c = ϵ

4 ), this yields a (1 + ϵ)-approximate kernelization
protocol.

We observe that, for a graph G, r = r(n), t = t(n) ∈ N and U1, U2, . . . , Ut ⊆ V (G)
such that for all i ∈ {1, 2, . . . , t}, G[Ui] has a matching Mi of size at least r, and for all
distinct i, j ∈ {1, 2, . . . , t}, E(G[Ui]) ∩ E(G[Uj ]) = ∅, we have that G is a supergraph of an
(r, t)-Ruzsa-Szemerédi graph. Having this observation in mind, we devise our protocol as
follows. After applying an exact 2frac-vertex kernel, we initialize E′ = ∅, and we perform
t + 1 iterations of the following procedure. We sample a set of roughly frac1.5 edges from G,
and call the oracle on the subgraph of G whose edge set is the set of samples edges union E′

to obtain a solution S to it (but not to G), and compute a maximal matching M in G − S.
If |M | is smaller than cn ≤ 2cfrac, then we return the union of the set of vertices incident
to edges in M (which is a solution to G − S) and S. Else, similarly to the first protocol we
described for Vertex Cover, we can show that with high probability, G − S has (roughly)
at most k1.5 edges, and we add this set of edges to E′. The crux of the proof is in the
argument that, at the latest, at the (t + 1)-st iteration the computed matching will be of size
smaller than cn ≤ 2cfrac, as otherwise we can use the matchings we found, together with the
vertex sets (of the form G − S) we found them in, to construct an (r, t + 1)-Ruzsa-Szemerédi
graph based on the aforementioned observation, which contradicts the choice of t.

3.5 (1 + ϵ)-Approximate O(1
ϵ

· opt)-Vertex Kernel for Implicit
3-HITTING SET Problems

Both of our lossy kernels share a common scheme, which might be useful to derive (1 + ϵ)-
approximate linear-vertex kernels for other implicit hitting and packing problems as well.
Essentially, they both consist of two rules (although in the presentation, they are merged
for simplicity). To present them, we remind that a module (in a graph) is a set of vertices
having the same neighborhood relations with all vertices outside the set. Now, our first rule
reveals some modules in the graph, and our second rule shrinks their size. The first rule in
both of our lossy kernels is essentially the same.
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Now, we elaborate on the first rule. We start by computing an optimal solution α to the
LP-relaxation of the corresponding 3-Hitting Set problem. Notice that support(α) is a
solution, and its size is at most 3frac (in fact, we show that it is at most 3frac − 2|α−1(1)|).
Then, the first rule is as follows. At the beginning, no vertex is marked. Afterwards, one-by-
one, for each vertex v assigned 1 by α (i.e., which belongs to α−1(1)), we construct a graph
whose vertex set is the set of yet unmarked vertices in V (G) \ support(α) and where there is
an edge between every two vertices that create an obstruction together with v (that is, an
induced P3 in Cluster Vertex Deletion and a triangle in Feedback Vertex Set in
Tournaments). We compute a maximal matching in this graph, and decrease its size to 1

ϵ if
it is larger (in which case, it is no longer maximal). The vertices incident to the edges in the
matching are then considered marked. We prove that among the vertices in α−1(1) whose
matching size was decreased, whose set is denoted by D, any solution can only exclude an ϵ

fraction of its size among the vertices in D, and hence it is “safe” (in a lossy sense) to delete
D. Let M be the set of all marked vertices. Then, we show that (support(α) ∪ M) \ {v}, for
any v ∈ support(α) (including those not in α−1(1)), is also a solution.

For Cluster Vertex Deletion, we prove that the outcome of the first rule means
that the vertex set of every clique in G − (support(α) ∪ M) is a module in G − D, and that
for every vertex in support(α), the set of its neighbors in V (G − (support(α) ∪ M)) is the
vertex set of exactly one of these cliques. So, for Cluster Vertex Deletion, this gives
rise to the following second reduction rule (which is, in fact, exact) to decrease the size
of module. For every clique among the aforementioned cliques whose size is larger than
that of its neighborhood, we arbitrarily remove some of its vertices so that its size will be
equal to the size of its neighborhood. This rule is safe since if at least one of the vertices in
such a clique is deleted by a solution, then because it is a module, either that deletion is
irrelevant or the entire clique is deleted, and in the second case we might just as well delete
its neighborhood instead. Because the neighborhoods of the cliques are pairwise-disjoint
(since for every vertex in support(α), the set of its neighbors in V (G − (support(α) ∪ M)) is
the vertex set of exactly one of the cliques), this means that now their total size is at most
(support(α) \ D) ∪ M , and hence we arrive at the desired kernel.

For Feedback Vertex Set in Tournaments, we consider the unique (because G is a
tournament) topological ordering of the vertices in G−support(α), so that all arcs are “forward”
arcs. We prove that the outcome of the first rule means that each vertex v ∈ support(α) has
a unique position within this ordering when restricted to G − (support(α) ∪ M), so that still
all arcs (that is, including those incident to v) are forward arcs in G − (support(α) ∪ M) ∪ {v}.
(Further, the vertex set of each subtournament induced by the vertices “between” any two
marked vertices in G − support(α) is a module in G − D.) We are thus able to characterize all
triangles in G − D as follows: each either consists of three vertices in (support(α) \ D) ∪ M ,
or it consists of a vertex v ∈ support(α) \ D, a vertex u ∈ (support(α) \ D) ∪ M and a
vertex w ∈ V (G) \ (support(α) ∪ M) with a backward arc between v and u and where w

is “in-between” the positions of v and u. This gives rise to a reduction rule for module
shrinkage whose presentation and analysis are more technical than that of Cluster Vertex
Deletion (in particular, unlike the second rule of Cluster Vertex Deletion, the second
rule of Feedback Vertex Set in Tournaments is lossy) and of the first rule; hence, due
to lack of space, we omit them.

4 Conclusion

In this paper, we presented positive results on the kernelization complexity of d-Hitting
Set, as well as for its special cases Cluster Vertex Deletion and Feedback Vertex
Set in Tournaments. First, we proved that if we allow the kernelization to be lossy with
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a qualitatively better loss than the best possible approximation ratio of polynomial time
approximation algorithms, then one can obtain kernels where the number of elements is linear
for every fixed d. Further, we extended the notion of lossy kernelization algorithms to lossy
kernelization protocols and, then, presented our main result: For any ϵ > 0, d-Hitting Set
admits a (randomized) pure (d − δ)-approximate kernelization protocol of call size O(k1+ϵ).
Here, the number of rounds and δ are fixed constants (that depend only on d and ϵ). Finally,
we complemented the aforementioned results as follows: for the special cases of 3-Hitting
Set, namely, Cluster Vertex Deletion and Feedback Vertex Set in Tournaments,
we showed that for any 0 < ϵ < 1, they admits a (1 + ϵ)-approximate O( 1

ϵ · opt)-vertex kernel.
We conclude the paper with a few interesting open problems.

1. Does d-Hitting Set admit a kernel with f(d) · kd−1−ϵ elements for some fixed ϵ > 0, or,
even, with just f(d) · k elements?

2. Does d-Hitting Set admit a (1+ϵ)-approximate O(f(ϵ) ·k)-element kernel (or protocol)?
3. Does d-Hitting Set admit a (1 + ϵ)-approximate O(f(ϵ) · k)-bits kernel (or protocol)?
4. Do Feedback Vertex Set in Tournaments and Cluster Vertex Deletion admit

linear vertex kernels?
5. Are lossy kernelization protocols “more powerful” than lossy kernelization algorithms?
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Abstract
Designing approximate all-pairs distance oracles in the fully dynamic setting is one of the central
problems in dynamic graph algorithms. Despite extensive research on this topic, the first result
breaking the O(

√
n) barrier on the update time for any non-trivial approximation was introduced

only recently by Forster, Goranci and Henzinger [SODA’21] who achieved m1/ρ+o(1) amortized
update time with a O(log n)3ρ−2 factor in the approximation ratio, for any parameter ρ ≥ 1.

In this paper, we give the first constant-stretch fully dynamic distance oracle with small polynomial
update and query time. Prior work required either at least a poly-logarithmic approximation or
much larger update time. Our result gives a more fine-grained trade-off between stretch and update
time, for instance we can achieve constant stretch of O( 1

ρ2 )4/ρ in amortized update time Õ(nρ),
and query time Õ(nρ/8) for any constant parameter 0 < ρ < 1. Our algorithm is randomized and
assumes an oblivious adversary.

A core technical idea underlying our construction is to design a black-box reduction from
decremental approximate hub-labeling schemes to fully dynamic distance oracles, which may be of
independent interest. We then apply this reduction repeatedly to an existing decremental algorithm
to bootstrap our fully dynamic solution.

2012 ACM Subject Classification Theory of computation → Dynamic graph algorithms

Keywords and phrases Dynamic graph algorithms, Distance Oracles, Shortest Paths

Digital Object Identifier 10.4230/LIPIcs.ESA.2023.50

Related Version Full Version: https://arxiv.org/abs/2303.06102

Funding This work is supported by the Austrian Science Fund (FWF): P 32863-N. This project has
received funding from the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement No 947702).

1 Introduction

The All-Pairs Shortest Paths (APSP) problem is one of the cornerstone graph problems
in combinatorial optimization. It has a wide range of applications, for instance in route
planning, navigation systems, and routing in networks, and it has been extensively studied
from both practical and theoretical perspectives. In theoretical computer science, this
problem enjoys much popularity due to its historic contributions to the development of
fundamental algorithmic tools and definitions as well as being used as a subroutine for solving
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The APSP problem has also been studied extensively in dynamic settings. Here, the
underlying graph undergoes edge insertions and deletions (referred to as edge updates), and
the goal is to quickly report an approximation to the shortest paths between any source-target
vertex pair. The dynamic setting is perhaps even more realistic for some of the applications
of the APSP problem, e.g., in navigation systems, as link statistics of road networks are prone
to changes because of evolving traffic conditions. A naive (but rather expensive) solution
to handle these updates is achieved by running an exact static algorithm after each update.
However, at an intuitive level, one would expect to somehow exploit the fact that a single
update is small compared to the size of the network, and thus come up with much faster
update times.

Much of the research literature in dynamic APSP has focused on the partially dynamic
setting. In contrast to the fully dynamic counterpart, this weaker model restricts the types
of updates to edge insertions or deletions only. Some reasons for studying partially dynamic
algorithms include their application as a subroutine in speeding up static algorithms (e.g.,
flow problems [36]), or their utilization as a stepping stone for designing fully-dynamic
algorithms, something that we will also exploit in this work. The popularity of the partially
dynamic setting can also attributed to the fact that dealing with only one type of update
usually leads to better algorithmic guarantees. In fact, the fully dynamic APSP problem
admits strong conditional lower bounds in the low approximation regimes: under plausible
hardness assumptions, Abboud and Vassilevska Williams [3], and later Henzinger, Krinninger,
Nanongkai, and Saranurak [32] show that there are no dynamic APSP algorithms achieving
a (3 − ϵ) approximation with sublinear query time and the update time being a small
polynomial.

From an upper bounds perspective, there are only two works that achieve sublinear
update time for fully dynamic APSP. Abraham, Chechik, and Talwar [5] showed that there
is an algorithm that achieves constant approximation and sublinear update time. However,
their algorithm cannot break the O(

√
n) barrier on the update time. Forster, Goranci,

and Henzinger [25] gave different trade-offs between approximation and update time. In
particular, in no(1) amortized update time and polylogarithmic query time they achieve
no(1) approximation. These two works suffer from either a large approximation guarantee or
update time, leaving open the following key question:

Is there a fully dynamic APSP algorithm that achieves constant approximation with a very
small polynomial update and query time?

1.1 Our result
In this paper, we answer the question of achieving constant approximation with a very
small polynomial update time for the fully dynamic APSP in the affirmative, also known as
the fully dynamic distance oracle problem. More generally, we obtain a trade-off between
approximation, update time, and query time as follows:

▶ Theorem 1. Given a weighted undirected graph G = (V, E, w) with polynomial weights2,
and a constant parameter 0 < ρ < 1, there is a randomized fully dynamic distance oracle
with constant stretch ( 256

ρ2 )4/ρ that w.h.p. achieves Õ(nρ) amortized update time and Õ(nρ/8)
query time. These guarantees hold against an oblivious adversary.

2 In this paper, we assume for ease of notation that the edge weights are integers in the range from 1
to W , where W is polynomial in n. Using a standard approach (see e.g., [8]) this extends to rational
edge weights in some range from the minimum weight Wmin to the maximum weight Wmax, where
Wmax/Wmin is polynomial in n.
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Our distance oracle can also be extended to report the actual (approximate) shortest path
when answering queries (see the full version [26] for a sketch). In addition to the constant
stretch regime, we obtain several interesting tradeoffs, as shown in Theorem 5. For example,
our algorithm achieves O(log log n) stretch with a much faster query time of no(1) and very
small polynomial update time (see Corollary 6).

Our result brings the algorithmic guarantees on fully dynamic distance oracles closer to
the recent conditional hardness result by Abboud, Bringmann, Khoury, and Zamir [2] (and
the subsequent refinement in [1]), who showed that there is no fully dynamic algorithm that
simultaneously achieves constant approximation and no(1) update and query time. We also
remark that our results are consistent with their lower bound since if we insist on constant
approximation, the above trade-off shows that the update time cannot be made as efficient
as no(1).

On the technical side, our result follows the widespread “high-level” approach of extending
decremental algorithms to the fully dynamic setting (see e.g. [33, 38, 39, 40, 10, 30, 5, 25])
and it is inspired by recent developments on the dynamic distance oracle literature that
rely on vertex sparsification [25, 18, 27]. Specifically, we design a reduction that turns a
decremental hub-labeling scheme with some specific properties into a fully dynamic distance
oracle, which may be of independent interest. Our key observation is that an existing
state-of-the-art decremental distance oracle that works against an oblivious adversary can
serve as such hub-labeling scheme. The fully dynamic distance oracle is then obtained by
repeatedly applying the reduction whilst carefully tuning various parameters across levels in
the hierarchy.

More generally, our reduction does not make any assumptions on the adversary and
is based on properties that are quite natural. At a high-level, we consider decremental
approximate hub-labeling schemes with the following properties. (1) For every vertex v ∈ V ,
maintain a set S(v), called a hub set, that has bounded size. (2) For every vertex v ∈ V ,
maintain distance estimates δ(v, u) for each u ∈ S(v), with bounded recourse, which is defined
as the number of times such distance estimates are affected during the execution of the
algorithm. (3) Return the final estimate between a pair of vertices s, t ∈ V , by minimizing
estimates over elements in S(s) ∩ S(t).

Many known distance oracles (e.g. variants of the well-known distance oracle of [44])
have a query mechanism that satisfies the first and third properties, while efficient dynamic
distance oracles are often based on bounded recourse structures satisfying the second property.

Hence we hope that this reduction can be further utilized in the future by characterizing
deterministic decremental distance oracles or the ones with different stretch/time tradeoffs
as such hub-labeling schemes. Similar reductions have been previously proposed in [5] and
then refined in [25] in slightly different contexts. In this work, in addition to refining this
approach for obtaining a constant stretch distance oracle, we aim to keep the reduction as
modular as possible to facilitate potential future applications.

1.2 Related Work
In the following, we give an overview of existing works on fully dynamic all-pairs distance
oracles by dividing them into several categories based on their stretch guarantee. Unless
noted otherwise, all algorithms cited in the following are randomized and have amortized
update time. We report running time bounds for constant accuracy parameter ϵ and assume
that we are dealing with graphs with positive integer edge weights that are polynomial in
the number of vertices. We would also like to point out that all “combinatorial” algorithms
discussed in the following (i.e., algorithms that do not rely on “algebraic” techniques like
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dynamic matrix inverse) are internally employing decremental algorithms. Decremental
algorithms have also been studied on their own with various tradeoffs [40, 10, 31, 16, 35, 24],
and competitive deterministic algorithms have been devised, e.g., [30, 11, 19].

Exact. After earlier attempts on the problem [34, 23], Demetrescu and Italiano [22] presented
their seminal work on exact distance maintenance achieving Õ(n2) update time (with log-
factor improvements by Thorup [42]) and constant query time for weighted directed graphs.

Subsequently, researchers have developed algorithms with subcubic worst-case update
time and constant query time [43, 4] with some of them being deterministic [28, 17]. Note
that one can construct a simple update sequence for which any fully dynamic algorithm
maintaining the distance matrix or the shortest path matrix explicitly needs to perform
Ω(n2) changes to this matrix per update.

Algorithms breaking the n2 barrier at the cost of large query time have been obtained
in unweighted directed graphs by Roditty and Zwick [39] (update time Õ(mn2/t2) and
query time O(t) for any

√
n ≤ t ≤ n3/4), Sankowski [41] (worst-case update time O(n1.897)

and query time O(n1.265)), and van den Brand, Nanongkai, and Saranurak [15] (worst-case
update time O(n1.724) and query time O(n1.724)). The latter two approaches are algebraic
and their running time bounds depend on the matrix multiplication coefficient ω.

(1 + ϵ)-approximation. In addition to exact algorithms, combinatorial and algebraic
algorithms have also been developed for the low stretch regime of (1 + ϵ)-approximation.
In particular, Roditty and Zwick [40] obtained the following trade-off with a combinatorial
algorithm: update time Õ(mn/t) and query time O(t) for any δ > 0 and t ≤ m1/2−δ.
Subsequently, for t ≤

√
n, a deterministic variant was developed [30] and it was generalized

to weighted directed graphs [10]. Furthermore, by a standard reduction (see e.g. [12]) using
a decremental approximate single-source shortest paths algorithm [31, 11], one obtains a
combinatorial, deterministic algorithm with update time O(nm1+o(1)/t) and query time
O(t) for any t ≤ n, for the fully dynamic all-pairs problem in weighted undirected graphs.
Conditional lower bounds [37, 3, 32] suggest that the update and the query time cannot
be both small polynomials in n. For example, no algorithm can maintain a (5/3 − ϵ)-
approximation with update time O(m1/2−δ) and query time O(m1−δ) for any δ > 0, unless
the OMv conjecture fails [32].

Algebraic approaches can achieve subquadratic update time and sublinear query time,
namely worst-case update time O(n1.863) and query time O(n0.666) in weighted directed
graphs [14], or worst-case update time O(n1.788) and query time O(n0.45) in unweighted
undirected graphs [13]. As the conditional lower bound by Abboud and Vassilevska Willi-
ams [3] shows, algebraic approaches seem to be necessary in this regime: unless one is able
to multiply two n × n Boolean matrices in O(n3−δ) time for some constant δ > 0, no fully
dynamic algorithm for st reachability in directed graphs can have O(n2−δ′) update and query
time and O(n3−δ′) preprocessing time (for some constant δ′ > 0). While not explicitly stated
in the paper, the same conditional lower bound extends to fully dynamic (1 + ϵ)-approximate
st distances on undirected unweighted graphs for a small enough constant ϵ.

(2 + ϵ)-approximation. Apart from earlier work [34], the only relevant algorithm in the
(2 + ϵ)-approximation regime is by Bernstein [9] and achieves update time m1+o(1) and query
time O(log log log n) in weighted undirected graphs. It can be made deterministic using
the deterministic approximate single-source shortest path algorithm by Bernstein, Probst
Gutenberg, and Saranurak [11]. The only conditional lower bound in this regime that we are
aware of states that no algorithm can maintain a (3 − ϵ)-approximation with update time
O(n1/2−δ) and query time O(n1−δ) for any δ > 0, unless the OMv conjecture fails [32].
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Larger approximation. In the regime of stretch at least 3, the following trade-offs between
stretch and update time have been developed: Abraham, Chechik, and Talwar [5] de-
signed an algorithm for unweighted undirected graphs with stretch 2O(ρk), update time
Õ(m1/2n1/k), and query time O(k2ρ2), where k ≥ 1 is a freely chosen parameter and ρ = 1 +
⌈log n1−1/k/ log(m/n1−1/k)⌉. Forster, Goranci, and Henzinger [25] designed an algorithm for
weighted undirected graphs with stretch O(log n)3k−2, update time m1/k+o(1) · O(log n)4k−2,
and query time O(k(log n)2), where k ≥ 2 is an arbitrary integer parameter. Very recently,
Chuzhoy and Zhang [20] independently obtained a deterministic algorithm for weighted undir-
ected graphs with stretch (log log n)21/ρ3

, update time Õ(nO(ρ)), and query time Õ(2O(1/ρ))
for any choice of 2

(log n)1/200 < ρ < 1
400 . Similar to our work, they also achieve sublogarithmic

stretch but their guarantee cannot be reduced all the way to a constant. While our algorithm
has the advantage of achieving constant stretch, their algorithm is deterministic, and thus
works against an adaptive adversary. Finally, note that any algorithm whose update time
depends on the sparsity of the graph (possibly also a static one) can be run on a spanner of
the input graph maintained by a fully dynamic spanner algorithm [7]. These upper bounds
are complemented by the following conditional lower bound: for any integer constant k ≥ 2,
there is no dynamic approximate distance oracle with stretch 2k − 1, update time O(mu)
and query time O(mq) with ku + (k + 1)q < 1, unless the 3-SUM conjecture fails [1].

2 Preliminaries

We consider weighted undirected graphs G = (V, E, w) with positive integer edge weights.
We denote by n = |V | the number of vertices, by m = |E| the number of edges, and by W

the maximum weight of an edge. For every pair of vertices u, v ∈ V , the distance distG(u, v)
between u and v in G is the length of a shortest path from u to v in G. For a path P , we
denote by wG(P ) the length of P in G, by E(P ) the edges of P , and by |P | = |E(P )| the
number of edges of P . Also for a graph H, we denote by V (H) and E(H) the vertex and
the edge set of H respectively.

In dynamic graph algorithms, the graph is subject to updates and the algorithm has
to process these updates by spending as little time as possible. In this paper, we consider
updates that insert a single edge to the graph or delete a single edge from the graph. Moreover,
observe that an update that changes the weight of an edge can be simulated by two updates,
where the first update deletes the corresponding edge and the second update re-inserts the
edge with the new weight. Let G(0) be the initial graph, and G(τ) be the graph at time τ

which is the time after τ updates have been performed to the graph.
In this paper we are interested in designing fully dynamic algorithms which can process

edge insertions and edge deletions, and thus, weight changes as well. A decremental algorithm
can process only edge deletions and weight increases. We assume that the updates to the
graph are performed by an oblivious adversary who fixes the sequence of updates before the
algorithm starts. Namely, the adversary cannot adapt the updates based on the choices of the
algorithm during the execution. We say that an algorithm has amortized update time u(n, m)
if its total time spent for processing any sequence of ℓ updates is bounded by ℓ · u(n, m),
when it starts from an empty graph with n vertices and during all the updates has at most
m edges (the time needed to initialize the algorithm on the empty graph before the first
update is also included). An algorithm is path reporting if after a query can also return the
corresponding path explicitly.

In our analysis we use Õ(1) to hide factors polylogarithmic in nW . Namely, we write
Õ(1)d to represent the term O(logcd nW ), for a constant c and a parameter d.
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3 Fully Dynamic Distance Oracle

The technical details of our distance oracle are divided into three parts. Initially in Section
3.1, we give the definition of a hub-labeling scheme together with other useful definitions.
Afterwards, we provide a reduction for extending a decremental approximate hub-labeling
scheme with some properties to a fully dynamic distance oracle. Then in Section 3.2, we
explain how an existing decremental algorithm gives us an approximate hub-labeling scheme
that we can use in this reduction, and finally in Section 3.3 we put everything together by
applying our reduction repeatedly, in order to get a family of fully dynamic distance oracles.

3.1 From decremental hub-labeling scheme to fully dynamic distance
oracle via reduction

We start by defining approximate hub-labeling schemes, and then explain how they are used
in our reduction. Hub-labeling schemes were formally defined by [6] (and were previously
introduced under the name 2-hop cover3 in [21]). We are slightly modifying the definition
for our purpose, for instance by considering an approximate variant.

▶ Definition 2 (Approximate Hub-Labeling Scheme). Given a graph G = (V, E), a hub-labeling
scheme L of stretch α consists of
1. for every vertex v ∈ V , a hub set S(v) ⊆ V and
2. for every pair of vertices u, v ∈ V , a distance estimate δ(v, u) such that distG(v, u) ≤

δ(v, u) < ∞ if u ∈ S(v) and δ(v, u) = ∞ otherwise.
and for every pair of vertices s and t guarantees that

δL(s, t) := min
v∈S(s)∩S(t)

(δ(s, v) + δ(t, v)) ≤ α · distG(s, t) .

The distance label of a vertex v consists of the hub set S(v) and the corresponding
distance estimates δ(v, u), for all u ∈ S(v).

Note that the definition implies δL(s, t) ≥ distG(s, t) for every pair of vertices s and t.
Furthermore, a hub-labeling scheme of stretch α directly implements a distance oracle of
stretch α with query time O(maxv∈V |S(v)|) that consists of the collection of distance labels
for all vertices v ∈ V . We also remark that the entries of value ∞ in the distance estimate
δ(·, ·) do not need to be stored explicitly if the hub sets are stored explicitly and that the
distance estimate δ(·, ·) is not necessarily symmetric.

In the following we consider decremental algorithms for maintaining approximate hub-
labeling schemes, that is, decremental approximate hub-labeling schemes which process each
edge deletion in the graph by first updating their internal data structures and then outputting
the changes made to the hub sets and the distance estimates δ(·, ·). Namely for a vertex
v ∈ V , vertices may leave or join S(v), or the distance estimates of vertices belonging to S(v)
may change, since the decremental algorithm has to update this information for maintaining
correctness at query time.

Denote by S(τ)(v) the hub set of a vertex v ∈ V after τ updates have been processed by the
decremental approximate hub-labeling scheme (we may omit the superscript τ whenever time
is fixed), where τ ≥ 1 is an integer parameter. Then for a pair of vertices u, v ∈ V , the distance
estimate δ(v, u) after τ updates is defined based on Definition 2 and S(τ)(v). Namely, if u is
inside the hub set of v after τ updates (i.e., u ∈ S(τ)(v)) then distG(τ)(v, u) ≤ δ(v, u) < ∞,
otherwise δ(v, u) = ∞.

3 The concept of 2-hop cover or hub-labeling should not be confused with the (related) concept of a
hopset that we will later see in Section 3.2.
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After τ edge deletions have been processed by the decremental approximate hub-labeling
scheme, there are three possible types of changes to the distance estimates δ(v, ·) that
correspond to a vertex v ∈ V , due to the last edge deletion. (1) The distance estimate
δ(v, u) changes for a vertex u ∈ S(τ−1)(v) ∩ S(τ)(v) that remains inside the hub set of v. (2)
The distance estimate δ(v, u) becomes ∞ because a vertex u ∈ S(τ−1)(v) \ S(τ)(v) leaves
the hub set of v. (3) The distance estimate δ(v, u) receives a finite value because a vertex
u ∈ S(τ)(v)\S(τ−1)(v) enters the hub set of v. Let χ(τ)(v) be the number of all these changes
to δ(v, ·) corresponding to v at time τ . In other words, for a fixed vertex v ∈ V , the value of
χ(τ)(v) is equal to the number of vertices u whose corresponding value of δ(v, u) changes
due to the last edge deletion. Moreover, let X(v) =

∑
τ χ(τ)(v) be the total number of such

changes to δ(v, ·) corresponding to v over the course of the algorithm.
In the following lemma, we present a reduction from a decremental approximate hub-

labeling scheme to a fully dynamic distance oracle.

▶ Lemma 3. Consider a decremental hub-labeling scheme A of stretch α with total update
time TA(n, m, W ) and query time QA(n, m, W ), with the following properties:
1. ∀v ∈ V and ∀τ : |S(τ)(v)| ≤ γ. In other words, the size of the hub set of any vertex is

bounded by γ at any moment of the algorithm.
2. ∀v ∈ V : X(v) ≤ ζ. In other words, for every vertex v ∈ V the total number of changes

to δ(v, ·) is at most ζ over the course of the algorithm. Moreover the algorithm detects
and reports these changes explicitly.

Then given A and a fully dynamic distance oracle B of stretch β with amortized update time
tB(n, m, W ) and query time QB(n, m, W ), for any integer ℓ ≥ 1, there is a fully dynamic
distance oracle C of stretch αβ with amortized update time tC(n, m, W ) = TA(n, m, W )/ℓ +
tB(min(ℓ(2 + 2µ), n), ℓ(1 + 2µ), nW ) · (2 + 4µ) and query time QC(n, m, W ) = QA(n, m, W ) +
γ2 · QB(min(ℓ(2 + 2µ), n), ℓ(1 + 2µ), nW ), where µ = γ + ζ.

Proof. We organize the proof in three parts. The first part gives the reduction from A
and B to C, and the second and third part concern the correctness and the running times
respectively.

Reduction. The fully dynamic distance oracle C proceeds in phases of length ℓ. For each
phase, we denote by τ the number of updates processed by A during the phase. At the
beginning of the first phase (which is also the beginning of the algorithm), C initializes the
fully dynamic distance oracle B on the initially empty graph G consisting of 2ℓ vertices4, and
sets an update counter to 0. Whenever an update to G occurs in the first phase, the update
is directly processed by B.5 As soon as the number of updates is more than ℓ, the second
phase is started. We define several sets and the graph H that the fully dynamic distance
oracle C maintains during each subsequent phase:

Let F be the set of edges present in G at the beginning of the phase, E be the current
set of edges in G, and D be the set of edges deleted from G during the phase.
Let I = E\(F \D) be the set of edges inserted to G since the beginning of the phase without
subsequently having been deleted during the phase, and U = {v ∈ V | ∃e ∈ I : v ∈ e} be
the set of endpoints of edges in I.

4 This minor technical detail makes sure that B does not have to deal with vertex insertions.
5 The special treatment of the first ℓ updates is just a technical necessity for a rigorous amortization

argument in the running time analysis.
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Let H be the auxiliary graph that consists of all edges (u, v) ∈ I, together with their hub
sets S(τ)(u) and S(τ)(v) after τ edge deletions have been processed by A. Specifically,
V (H) = {v ∈ V | v ∈ U or (u ∈ U and v ∈ S(τ)(u))} and E(H) = {(u, v) | (u, v) ∈
I or (v ∈ U and u ∈ S(τ)(v))}. Note that at any fixed moment, the size of V (H) is at
most ℓ · (2 + 2γ) and the size of E(H) is at most ℓ · (1 + 2γ).

At the beginning of each subsequent phase, C stores the sets F, E, D, I, U , and the
auxiliary graph H , and sets an update counter to 0. Furthermore, C initializes the decremental
approximate hub-labeling scheme A on the current graph G, and the fully dynamic distance
oracle B on H which is initially an empty “sketch” graph on ℓ · (2 + 2µ) vertices. The graph
H can be thought of as responsible for maintaining estimates for paths that use inserted
edges.

Whenever an update to G occurs, C first checks via the update counter whether the
number of updates since the beginning of the phase is more than ℓ. If this is the case, then
C starts a new phase. Otherwise, after an update the fully dynamic distance oracle C does
the following. On the insertion of an edge (u, v) to G, C adds (u, v) to I, adds u and v to U ,
and adds the edge (u, v) to H , together with the edges (u, p) for every p ∈ S(τ)(u) and (v, p)
for every p ∈ S(τ)(v). Any time an edge (u, v) is added to H, its weight is set to:

wH(u, v) = min(wG(u, v), δ(u, v), δ(v, u)).

Whenever the first edge incident to some vertex v is added to H , the algorithm finds a “fresh”
vertex (of degree 0) in H and henceforth identifies it as v. This is always possible, since
by the two properties of A, the number of such vertices in a phase of length ℓ is at most
ℓ · (2 + 2µ).

On the deletion of an edge (u, v) ∈ E from G, there are two cases to consider.
1. If the edge (u, v) was not present at the beginning of the current phase, or has been

deleted and re-inserted (i.e., (u, v) ∈ I), then C removes (u, v) from I, adds (u, v) to
D, and updates the set U and the graph H accordingly. In particular, if u ∈ U and
v ∈ S(τ)(u), or v ∈ U and u ∈ S(τ)(v), C updates the weight of the edge (u, v) in H to
wH(u, v) = min(δ(u, v), δ(v, u)) (as wG(u, v) = ∞ after the deletion), otherwise C removes
(u, v) from H . Also, for all the vertices v that left U and all the edges (v, p) ∈ E(H) such
that p ∈ S(τ)(v), if p ∈ U and v ∈ S(τ)(p), then C updates the weight of (v, p) in H to
wH(v, p) = δ(p, v) (as v /∈ U after the deletion), and otherwise C removes (v, p) from H.

2. If the edge (u, v) was present at the beginning of the current phase and has not been
deleted yet (i.e., (u, v) ∈ F \ D), then C adds (u, v) to D and the deletion is processed
by A. Whenever A changes some distance estimates δ(v, ·) that correspond to a vertex
v ∈ U (i.e, v is a vertex of H and an endpoint of an edge in I) and its hub set, C updates
the graph H accordingly. In particular, there are three possible scenarios at time τ

of A.6 (1) Whenever the value of δ(v, u) changes for a vertex u ∈ S(τ−1)(v) ∩ S(τ)(v)
that remains inside the hub set of v, C updates the weight of the edge (v, u) in H to
wH(v, u) = min(wG(v, u), δ(v, u), δ(u, v)). (2) Whenever a vertex u ∈ S(τ−1)(v) \ S(τ)(v)
leaves the hub set of v, then if (v, u) ∈ I or u ∈ U and v ∈ S(τ)(u), C updates the weight
of the edge (v, u) in H to wH(v, u) = min(wG(v, u), δ(u, v)) (as δ(v, u) = ∞ after the
deletion), otherwise C removes (v, u) from H . (3) Whenever a vertex u ∈ S(τ)(v)\S(τ−1)(v)
enters the hub set of v, C adds the edge (v, u) to H (unless it exists already) and updates
its weight to wH(v, u) = min(wG(v, u), δ(v, u), δ(u, v)). Note that the number of these

6 Note that τ is the number of updates processed only by A during the phase.
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s tu1 v1 u2 v2

u1 v1

p0 . . .
p1. . .

u2 v2

p2. . . . . .. . . . . .

s t

Figure 1 Illustration of an s-t shortest path. The brown thick edges have been inserted since
the beginning of the phase. The corresponding subgraph of the auxiliary graph H is also depicted
(note that the vertices s and t are not necessarily part of H). The blue thick edges are the ones that
participate in the correctness analysis of the query. Dashed edges depict edges inside the hub sets.

changes at time τ of A is equal to χ(τ)(v) for a vertex v ∈ V . Observe also that based on
the two properties of A, the number of vertices that participate in H during a phase of
length ℓ is at most ℓ · (2 + 2µ). Thus we can always find a “fresh” vertex (of degree 0)
in H.

Finally, all the changes performed to H are processed by the fully dynamic distance oracle
B running on H, where edge weight changes are simulated by a deletion followed by a
re-insertion.

Now a query for the approximate distance between any pair of vertices s and t is answered
by returning:

δC(s, t) = min
(

min
p∈S(τ)(s)∩V (H),q∈S(τ)(t)∩V (H)

(δ(s, p) + δB(p, q) + δ(t, q)) , δA(s, t)
)

.

Whenever S(τ)(s) ∩ V (H) = ∅ or S(τ)(t) ∩ V (H) = ∅, we let the inner term min(·) to be ∞.

Correctness. To prove the correctness of this algorithm, we need to show that distG(s, t) ≤
δC(s, t) ≤ αβ · distG(s, t). The lower bound distG(s, t) ≤ δC(s, t) is immediate, since for
each approximate distance returned by C, the corresponding path uses edges from G or
distance estimates from the decremental approximate hub-labeling scheme which are never
an underestimation of the real distance. To prove the upper bound, consider a shortest
path π from s to t in G, and let GA be the graph maintained by A (i.e., the edge set
of GA is E(GA) = F \ D). If the path π contains only edges from the set F \ D, then
δC(s, t) ≤ δA(s, t) ≤ α · distGA(s, t) = α · distG(s, t), and the claim follows. Otherwise, let
(u1, v1), . . . , (uj , vj) ∈ I denote the edges of π that have been inserted since the beginning of
the current phase in order of appearance on π. Furthermore, let p0 ∈ S(τ)(s) ∩ S(τ)(u1) be
the vertex that “certifies” δA(s, u1), that is, δA(s, u1) = δ(s, p0) + δ(u1, p0). Similarly, let
pj ∈ S(τ)(vj) ∩ S(τ)(t) be the vertex that “certifies” δA(vj , t), and for every 1 ≤ i ≤ j − 1,
let pi ∈ S(τ)(vi) ∩ S(τ)(ui+1) be the vertex that “certifies” δA(vi, ui+1) (see Figure 1). These
vertices must exist by the definition of an approximate hub-labeling scheme. Furthermore,
by the construction of H, the edges (u1, p0) and (vj , pj) have been inserted to H, because
u1 ∈ U and p0 ∈ S(τ)(u1), and vj ∈ U and pj ∈ S(τ)(vj) respectively. Hence, the vertices p0
and pj belong to V (H), and the sum δ(s, p0) + δB(p0, pj) + δ(t, pj) participates in the inner
term min(·). Therefore to analyze the claimed upper-bound on the stretch, we proceed as
follows:

ESA 2023



50:10 Bootstrapping Dynamic Distance Oracles

δC(s, t) ≤ δ(s, p0) + δB(p0, pj) + δ(t, pj)
(stretch guarantee of B)

≤ δ(s, p0) + β · distH(p0, pj) + δ(t, pj)
(triangle inequality)

≤ δ(s, p0) + β · distH(p0, u1)
+

∑
1≤i≤j−1

β · (distH(ui, vi) + distH(vi, pi) + distH(pi, ui+1))

+ β · (distH(uj , vj) + distH(vj , pj)) + δ(t, pj)
(distH ≤ wH )

≤ δ(s, p0) + β · wH(p0, u1) +
∑

1≤i≤j−1
β · (wH(ui, vi) + wH(vi, pi) + wH(pi, ui+1))

+ β · (wH(uj , vj) + wH(vj , pj)) + δ(t, pj)

By the construction of H, the edges (ui, vi) of π and the corresponding edges (pi−1, ui) and
(vi, pi) have been inserted to H7, because (ui, vi) ∈ I, ui ∈ U and pi−1 ∈ S(τ)(ui), and
vi ∈ U and pi ∈ S(τ)(vi) respectively. Hence by the definition of wH(·), we can replace
wH(ui, vi) with wG(ui, vi), wH(pi−1, ui) with δ(ui, pi−1) and wH(vi, pi) with δ(vi, pi). As a
result, we have that (where α ≥ 1 and β ≥ 1):

δC(s, t) ≤ δ(s, p0) + β · δ(u1, p0) +
∑

1≤i≤j−1
β · (wG(ui, vi) + δ(vi, pi) + δ(ui+1, pi))

+ β · (wG(uj , vj) + δ(vj , pj)) + δ(t, pj)
(π is a shortest path)

= δ(s, p0) + β · δ(u1, p0) +
∑

1≤i≤j−1
β · (distG(ui, vi) + δ(vi, pi) + δ(ui+1, pi))

+ β · (distG(uj , vj) + δ(vj , pj)) + δ(t, pj)

≤ β · (δ(s, p0) + δ(u1, p0)) +
∑

1≤i≤j−1
β · (distG(ui, vi) + δ(vi, pi) + δ(ui+1, pi))

+ β · (distG(uj , vj) + δ(vj , pj) + δ(t, pj))
(definition of approximate hub-labeling scheme)

= β · δA(s, u1) +
∑

1≤i≤j−1
β · (distG(ui, vi) + δA(vi, ui+1))

+ β · (distG(uj , vj) + δA(vj , t))

From the stretch guarantee of A, it holds that δA(u, v) ≤ α · dGA(u, v) for any pair of vertices
u, v ∈ V . For any two vertices vi, ui+1 from the previous sum, the subpath of π from vi to
ui+1 uses edges only from the set F \ D, implying that dGA(vi, ui+1) = dG(vi, ui+1). The
same argument holds for the pairs s, u1 and vj , t, thus it follows that:

δC(s, t) ≤ αβ · distG(s, u1) +
∑

1≤i≤j−1
β · (distG(ui, vi) + α · distG(vi, ui+1))

+ β · (distG(uj , vj) + α · distG(vj , t))

7 If vi = ui+1 then pi = vi, and so wH(vi, pi) = wH(pi, ui+1) = 0.
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≤ αβ · distG(s, u1) +
∑

1≤i≤j−1
αβ · (distG(ui, vi) + distG(vi, ui+1))

+ αβ · (distG(uj , vj) + distG(vj , t)) = αβ · distG(s, t).

Update and Query time. To analyze the running times, consider a fixed phase of length
ℓ. During the first phase, the query time is QB(2ℓ, ℓ, W ) and the amortized update is
tB(2ℓ, ℓ, W ), as the initially empty graph G can have at most 2ℓ vertices and ℓ edges after ℓ

updates. For the subsequent phases we proceed as follows. By the construction of H and the
two properties of A, the graph H has at most min(ℓ(2 + 2µ), n) vertices and ℓ(1 + 2µ) edges
during the phase, and the maximum edge weight in H is nW (the maximum distance in G).8
Moreover by the first property we have that |S(τ)(s) ∩ V (H)| ≤ γ and |S(τ)(t) ∩ V (H)| ≤ γ.
Therefore the query time is equal to:

QC(n, m, W ) = QA(n, m, W ) + γ2 · QB(min(ℓ(2 + 2µ), n), ℓ(1 + 2µ), nW ).

Let us now analyze the amortized update time. Since the total update time of A is
TA(n, m, W ) and the amortized update time of B is tB(min(ℓ(2 + 2µ), n), ℓ(1 + 2µ), nW )
during the phase, it remains to bound the total number of updates to H per phase. Whenever
an edge e = (u, v) is inserted to G, we add to H the two endpoints u and v together with
their hub sets S(τ)(u) and S(τ)(v), and at most 1 + 2γ updates can occur to H. Until (u, v)
is deleted from H, every update to H between u, v and their hub sets modifies an entry of
the distance estimate δ(u, ·) or δ(v, ·). By the definition of χ(τ)(·), the number of entries
of the distance estimates δ(u, ·) and δ(v, ·) that are modified at time τ of A is equal to
χ(τ)(u) + χ(τ)(v). Hence until (u, v) is deleted from H, the total number of updates to H

between u, v and their hub sets is equal to 2 · (
∑

τ χ(τ)(u)+
∑

τ χ(τ)(v)) = 2 · (X(u)+X(v)),9
which is at most 4ζ based on the second property of Lemma 3. Moreover, when the edge e

is deleted from G, at most 1 + 2γ updates can occur to H. Therefore, the total number of
updates to H that correspond to an inserted edge in G, is at most 2 + 4γ + 4ζ = 2 + 4µ per
phase. Since there can be at most ℓ inserted edges per phase, the total number of updates
to H during a phase is at most ℓ(2 + 4µ). This implies that the total time for processing
all updates during a phase is TA(n, m, W ) + tB(min(ℓ(2 + 2µ), n), ℓ(1 + 2µ), nW ) · ℓ(2 + 4µ),
which (when amortized over the ℓ updates of the previous phase) amounts to an amortized
update time of:

TC(n, m, W ) = TA(n, m, W )
ℓ

+ tB(min(ℓ(2 + 2µ), n), ℓ(1 + 2µ), nW ) · (2 + 4µ). ◀

3.2 Decremental approximate hub-labeling scheme
In this section, we argue that an existing decremental distance oracle from [35] also provides
an approximate hub-labeling scheme whose properties make the reduction of Lemma 3 quite
efficient. This decremental algorithm is based on the well-known static Thorup-Zwick (TZ)
distance oracle [44].

Thorup-Zwick distance oracle. Given a graph G = (V, E), the construction starts by
defining a non-increasing sequence of sets V = A0 ⊇ A1 ⊇ · · · ⊇ Ak = ∅, where for each
1 ≤ i < k, the set Ai is obtained by subsampling each element of Ai−1 independently with
probability n−1/k.

8 We can assume that δ(·, ·) is upper bounded by nW whenever it has a finite value, since the maximum
distance in G is at most nW . Likewise, we can use the value nW + 1 instead of ∞.

9 We multiply by 2 because edge weight changes are simulated by a deletion followed by a re-insertion.
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For every vertex v ∈ V and 1 ≤ i < k, let δ(v, Ai) = minu∈Ai distG(v, u) be the minimum
distance from v to a vertex in Ai. As Ak = ∅, we let δ(v, Ak) = ∞. Moreover, let pi(v) ∈ Ai

be a vertex in Ai closest to v, that is, distG(v, pi(v)) = δ(v, Ai). Then, the bunch B(v) ⊆ V

of each v ∈ V is defined as:

B(v) =
k−1⋃
i=0

Bi(v) , where Bi(v) = {u ∈ Ai \ Ai+1 : distG(v, u) < distG(v, Ai+1)}.

The cluster of a vertex u ∈ Ai \ Ai+1 is defined as C(u) = {v ∈ V : distG(v, u) <

distG(v, Ai+1)}. Observe that u ∈ B(v) if and only if v ∈ C(u), for any u, v ∈ V .
As noted in [44], this construction is a hub-labeling scheme of stretch 2k−1 (see Definition

2), where the hub set S(v) of a vertex v ∈ V is S(v) = B(v) ∪ (
⋃k−1

i=0 {pi(v)}). In other words,
bunches and pivots of all the k levels form a hub set for v. For obtaining the distance estimates
δ(v, ·) for all v ∈ V as in Definition 2, we need the associated distances δ(v, u) = distG(v, u)
for all u ∈ S(v). It can be shown that with a simple modification of the stretch argument
(e.g. see [29]), it is enough to only use the bunches as the hub sets, and explicit access to
pivots is not necessary. Hence for simplifying the presentation in this section we assume that
the hub sets are equivalent with the bunches. As shown in [44], the size of the bunch of any
vertex is w.h.p. bounded by Õ(n1/k). Recall that the maximum hub set size is one of the
parameters governing the efficiency of our reduction.

In the next lemma we present the decremental algorithm of [35] which has good properties
for the reduction of Lemma 3. For a more detailed explanation of the lemma see the full
version [26].

▶ Lemma 4 (Implicit in [35]). Given a weighted undirected graph G = (V, E) and k > 1, 0 <

ϵ < 1, there is a decremental hub-labeling scheme of stretch (2k − 1)(1 + ϵ) and w.h.p. the
total update time is Õ(mn1/k) · O(log nW/ϵ)2k+1. Moreover, w.h.p. we have the following
two properties:
1. ∀v ∈ V and ∀τ : |S(τ)(v)| ≤ Õ(n1/k). In other words, the size of the bunch of any vertex

is bounded by Õ(n1/k) at any moment of the algorithm.
2. ∀v ∈ V : X(v) ≤ Õ(n1/k) · O(log nW/ϵ)2k+1. In other words, for every vertex v ∈ V the

total number of changes to δ(v, ·) is at most Õ(n1/k) · O(log nW/ϵ)2k+1 over the course
of the algorithm. Moreover the algorithm detects and reports these changes explicitly.

3.3 Putting it together
In this section we explain how to obtain our final fully dynamic distance oracle by using the
decremental algorithm of Section 3.2 in our reduction of Lemma 3.

▶ Theorem 5. For any integer parameters i ≥ 0, k > 1, there is a fully dynamic distance
oracle Bi with stretch (4k)i and w.h.p. the amortized update time is tBi(n, m, W ) = Õ(1)ki ·
m3/(3i+1) · n4i/k and the query time QBi

(n, m, W ) = Õ(1)i · n2i/k.

Proof. The proof is by induction on the parameter i. For the base case i = 0, let B0 be
the trivial fully dynamic distance oracle that achieves stretch 1, amortized update time
tB0(n, m, W ) = O(n3), and query time QB0(n, m, W ) = O(1), by recomputing all-pairs
shortest paths from scratch after each update (e.g., with the Floyd–Warshall algorithm).

For the induction step, let A denote the decremental approximate hub-labeling scheme
from Lemma 4 with stretch α = 4k and w.h.p. total update time TA(n, m, W ) = Õ(1)k ·mn1/k

and query time QA(n, m, W ) = Õ(1) · n1/k, where ϵ has been replaced with any value strictly
smaller than 1

2 . By inductive hypothesis, we have that Bi (with i ≥ 0) is a fully dynamic
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distance oracle of stretch βi = (4k)i with amortized update time Õ(1)ki · m3/(3i+1) · n4i/k

and query time Õ(1)i · n2i/k. Based on Lemma 4, w.h.p. the decremental approximate
hub-labeling scheme A satisfies the properties of Lemma 3 with γ = Õ(1) · n1/k and
ζ = Õ(1)k · n1/k. By applying then Lemma 3 to A and Bi with ℓ = m(3i+1)/(3i+4), the
resulting fully dynamic distance oracle Bi+1 has stretch (4k)i+1, and amortized update time:
tBi+1(n, m, W ) = TA(n, m, W )/ℓ + tBi(n, ℓ(1 + 2µ), nW ) · (2 + 4µ). The first term is equal
to: Õ(1)k · mn1/k/ℓ = Õ(1)k · m3/(3i+4) · n1/k = Õ(1)k · m3/(3(i+1)+1) · n1/k, and the second
term is equal to (where µ = Õ(1)k · n1/k):

tBi
(n, ℓ(1 + 2µ), nW ) · (2 + 4µ) = Õ(1)ki · (ℓ · Õ(1)k · n1/k)3/(3i+1) · n4i/k · Õ(1)k · n1/k

(Replace ℓ with m
(3i+1)/(3i+4))

= Õ(1)ki · (m(3i+1)/(3i+4) · Õ(1)k · n1/k)3/(3i+1) · n4i/k · Õ(1)k · n1/k

(Replace n
3/(3i+1)k with n

3/k and Õ(1)3k/(3i+1) with Õ(1)3k)

= Õ(1)ki · m3/(3i+4) · Õ(1)3k · n3/k · n4i/k · Õ(1)k · n1/k

= Õ(1)ki+k · m3/(3i+4) · n(4i+4)/k = Õ(1)k(i+1) · m3/(3(i+1)+1) · n4(i+1)/k.

Therefore the amortized update time of Bi+1 is:

tBi+1(n, m, W ) = Õ(1)k(i+1) · m3/(3(i+1)+1) · n4(i+1)/k.

Finally the query time of Bi+1 is (where γ2 = Õ(1)2 · n2/k):

QBi+1(n, m, W ) = QA(n, m, W ) + γ2 · QBi(n, ℓ(1 + 2µ), nW )

= Õ(1) · n1/k + Õ(1)2 · n2/k · Õ(1)i · n2i/k = Õ(1)i+1 · n2(i+1)/k.

and so the distance oracle Bi+1 has the desired guarantees. ◀

Proof of Theorem 1. By Theorem 5, for any i ≥ 1, k > 1, there is a fully dynamic distance
oracle Bi of stretch (4k)i that w.h.p. achieves Õ(1)ki · m1/i · n4i/k amortized update time and
Õ(1)i · n2i/k query time. Since m ≤ n2, by setting i = 4

ρ and k = 64
ρ2 the claim follows. ◀

In Theorem 5, we can set i to be a constant and set k = O(log log n)1/i to obtain another
tradeoff, which is summarized in the following corollary.

▶ Corollary 6. Given a weighted undirected graph G = (V, E), there is a fully dynamic
distance oracle with stretch O(log log n) that w.h.p. achieves no(1) query time and Õ(nρ)
amortized update time, for an arbitrarily small constant ρ.

Finally note that we can also obtain similar tradeoffs as [25] where all three of stretch,
amortized update time and query time are no(1), by setting k = O(log log n)2 and i =
O(log log n) in Theorem 5.
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Abstract
One established metric to classify the significance of a mountain peak is its isolation. It specifies the
distance between a peak and the closest point of higher elevation. Peaks with high isolation dominate
their surroundings and provide a nice view from the top. With the availability of worldwide Digital
Elevation Models (DEMs), the isolation of all mountain peaks can be computed automatically.
Previous algorithms run in worst case time that is quadratic in the input size. We present a novel
sweep-plane algorithm that runs in time O(n log n + pTNN) where n is the input size, p the number
of considered peaks and TNN the time for a 2D nearest-neighbor query in an appropriate geometric
search tree. We refine this to a two-level approach that has high locality and good parallel scalability.
Our implementation reduces the time for calculating the isolation of every peak on Earth from hours
to minutes while improving precision.
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1 Introduction

High-resolution digital elevation models (DEMs) are an interesting example of large datasets
with a big potential for applications but equally big challenges due to their enormous
size. For example, WorldDEM provided by the TanDEM-X mission covers the entire globe
with a resolution of 0.4 arcsecond and is currently the highest-resolution worldwide DEM
available [39]. It consists of 6 · 1012 individual sample points and amounts to approximately
25 TB of data. Modern LIDAR technology allows < 1 m2 samples, resulting in more than
300 TB of data for the land surface of the Earth. The algorithm engineering community has
greatly contributed to unlocking the potential of DEMs by developing scalable algorithms for
features such as contour lines, watersheds, and flooding risks [1, 11, 31]. This paper continues
this line of research by studying the isolation of mountain peaks which is a highly nonlocal
feature and requires us to deal with the Earth’s complicated (not-quite spherical) shape.

A mountain’s significance is typically characterized using three properties – elevation,
isolation, and prominence [23]. Whereas elevation is a fundamental property, isolation and
prominence are derived measures. Isolation – also referred to as dominance – measures the
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A

P
ILP

key col

Figure 1 Illustration of a mountain A’s isolation (red) and prominence (blue). The isolation is
measured along the sea-level surface of the Earth.

distance along the sea-level surface of the Earth between the peak and the closest point of
higher elevation, known as the isolation limit point (ILP). Prominence measures the minimum
difference in elevation from a peak and the lowest point on a path to reach higher ground –
called the key col. Refer to Figure 1 for an illustration.

Whereas previously both measures had to be determined manually by laboriously studying
topographic maps, they can now be computed algorithmically using DEMs. Kirmse and
de Ferranti [28] present the current state-of-the-art to compute both measures. They use an
algorithm to determine a peak’s isolation by searching in concentric rectangles of increasing
size around the peak for higher ground. To determine the isolation of every peak on Earth,
their algorithm has a worst case running time of O(n2), with n being the number of sample
points in the DEM. For high-resolution DEMs of the Earth and other celestial bodies, e. g.
the Moon [6] or Mars [24], algorithms with better scalability are needed. Also, Continuously
Updated Digital Elevation Models (CUDEMs), such as NOAA’s DEM of North America’s
coastal regions [2], require efficient algorithms for frequent reprocessing. In particular, parallel
and external algorithms are required.

Contribution and Outline. After presenting basic concepts in Section 2 and related work in
Section 3 we describe the main algorithmic result in Section 4. We begin with a sequential
algorithm that sweeps the surface of the Earth top-down with a sweep-plane storing the
points having surfaces at that elevation. Processing a peak then amounts to a nearest
neighbor query in the sweep-plane data structure. This results in an algorithm with running
time O(n log n + pTNN) where n is the input size, p the number of considered peaks and TNN
the time for a 2D nearest-neighbor query in an appropriate geometric search tree. To make
this more scalable, we then develop an algorithm working on the natural hierarchy of the
data which is specified in tiles. This algorithm performs most of its work in two scans of the
data which can work independently and in parallel tile-by-tile. Only the highest points in
each tile need to be processed in an intermediate global phase. Each of these three phases
has a structure similar to the simple sequential algorithm.

In Section 5 we then explain how 2D-geometric search trees can be adapted to work
on the surface of the Earth by deriving the required geometric predicates. After outlining
implementation details in Section 6, in Section 7 we evaluate our approach using the largest
publicly available DEM data.

2 Preliminaries

Spherical Geometry. Planets can generally be approximated by spheres. In the geographic
coordinate system, a point p = (ϕ, λ) on the surface of a sphere is identified by its latitude ϕ

and longitude λ. Latitude describes p’s north-south location, measured from the equator,
ϕ ∈ [−90◦, 90◦] with negative values south of the equator. Longitude describes p’s east-west
location, measured from the prime meridian through Greenwich, λ ∈ (−180◦, 180◦] with
negative values west of the prime meridian.
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For close distances, Earth’s surface is sufficiently flat to use planar Euclidean distances
between points. For longer distances, spherical distance calculations are necessary, which
are computationally more expensive. On the surface of the sphere, two points are always
connected by at least two great circle segments. The shortest such segment, the geodesic, can
be computed for points p1 = (λ1, ϕ1) and p2 = (λ2, ϕ2) with sphere radius R according to

α = sin2
(

ϕ2 − ϕ1

2

)
+ sin2

(
λ1 − λ2

2

)
cos(λ1) cos(λ2)

d(p1, p2) = R tan−1

( √
α√

(1 − α)

)
(1)

As the Earth and most other planets are not perfect spheres, ellipsoids are a more accurate
approximation of their shape. The World Geodetic System (WGS) [29] defines such an
ellipsoidal approximation of the Earth, requiring the following – even more computationally
expensive – distance formula:

∆λ = (λ2 − λ1)/2 ∆ϕ = (ϕ2 − ϕ1)/2 Λ = (λ2 + λ1)/2
s = sin2 ∆ϕ · cos2 ∆λ+ cos2 Λ · sin2 ∆λ

c = cos2 ∆ϕ · cos2 ∆λ+ sin2 Λ · sin2 ∆λ

w = tan−1(
√

s/
√

c) r =
√

sc

w

d(p1, p2) = 2aw

(
1 + f

3r − 1
2c

sin2 Λ · cos2 ∆ϕ − f
3r + 1

2s
· sin2 ∆ϕ · cos2 Λ

)
(2)

with a and f denoting the equatorial radius and flattening of the WGS84 ellipsoid [29].

Digital Elevation Models. Digital Elevation Models (DEMs) have become one of the most
important tools to analyze the Earth’s surface in geographic information systems. They
represent the surface of the Earth by providing elevation measurements on a grid of sample
points. The data is mostly stored in files of 1 square degree of coverage each, called tiles. A
tile is addressed by its smallest latitude and longitude. In order to enable seamless processing
of several tiles, each tile stores one sample row/column overlap with its neighbors. The
resolution of DEMs is given by the length of one sample at the equator in arcseconds (′′).

State-of-the-art worldwide DEMs, such as WorldDEM, provide a resolution of 0.4′′

spacing between sample points – about 12 m at the equator [39]. Local DEMs, such as the
swissALTI3D, even have a resolution of only 0.5 m sample point spacing [21]. Freely available
DEMs, such as The Shuttle Radar Topography Mission (SRTM) [25], provide a resolution
of 3′′ – about 90 m at the equator – and an absolute vertical height error of no more than
16 m for 90 % of the data [32]. Unfortunately, it does not provide global coverage1 and
contains large void areas, especially in mountainous regions, which are of particular interest
for us. In a laborious process, de Ferranti [12] fused raw SRTM data with other publicly
available datasets [14, 36] and digitized topographic maps to create a worldwide, void-free
DEM available at www.viewfinderpanoramas.org.

1 Only areas between 60◦ North and 56◦ South are covered.
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3 Related work

Graff et al. [22] are the first to use DEM data to classify terrain into mounts, plains, basins
or flats. As there is no definitive definition of these terrain features, several methods for
terrain classification are studied in the literature [38], including fuzzy logic [16, 17] or, more
recently, deep learning [37].

Prominence has received most of the attention when it comes to algorithmic computation
of mountain metrics [26, 28]. Kirmse and de Ferranti [28] present the current state-of-the-art
regarding isolation and prominence computation. As their main focus lies on the prominence
calculation, they present a rather simple O(n2) time isolation calculation algorithm.

In their algorithm they first calculate potential peaks which are samples that are at least
as high as their eight neighboring samples. Afterwards, a search for the closest higher ground
(ILP) is conducted, where, centered on each peak, concentric rectangles of increasing size are
checked to find a sample with higher elevation. Since the closest higher ground of a peak could
also be on a neighboring tile, these might be checked as well. If a higher ground was found,
the distance to this sample is used to constrain the search in neighboring tiles. If not, tiles in
increasing rectangles around the peak-tile are checked until an ILP is found or the complete
world has been checked. Before searching a neighboring tile, the maximum elevation of the
tile is checked. When it is smaller than the peak elevation, the tile can be ignored. Tiles
and their maximum elevation are cached, because they need to be loaded rather frequently.
Inside the tile that contains the peak, planar Euclidean distance approximations are used
to find an ILP, for neighboring tiles, distances are computed according to the spherical
distance function. Because a majority of peaks have a small isolation, the ILP is often within
the same tile as the peak, so mostly planar Euclidean distance approximations are used to
determine a peak’s ILP. This reduces computational costs but also the accuracy for peaks
with small isolation. Only in a final step before output is the distance between a peak and
its determined ILP calculated using the precise, but expensive, ellipsoid distance function.
Kirmse and de Ferranti’s algorithm is unnamed, we refer to it as ConcIso for brevity.

Sweepline algorithms are introduced by Bentley and Ottmann [7] to compute line segment
intersections. The technique is generalized by Anagnostou et al. to three-dimensional space [3].
Sweepline algorithms have been applied to various geometric problems in two- and three-
dimensional space, such as computing Voronoi diagrams [18] or route mining [40]. R-Trees
are often used in spatial databases and have been adapted to geodetic distance computations
by Schubert et al. [33].

4 Algorithm

In this section we present our novel sweep-plane algorithm to calculate the isolation of
mountain peaks. The algorithm takes as input the search area – a quadrilateral A defined
by its north-west and south-east corners – as well as the DEM data. We will first present
a single-sweep algorithm that processes the entire search area in one sweep-plane pass.
Subsequently, we present a scalable three-pass algorithm that reads the DEM-tiles of A twice
and can process tiles in parallel.

4.1 Single-Sweep Algorithm
To determine the isolation of a peak, its closest point with higher elevation – the Isolation
Limit Point (ILP) – needs to be found. Given the search area A, each sample point p of
the DEM within A has two associated events: an insert event at p’s elevation and a remove
event at the elevation of its lowest immediate (NESW) neighbor. Additionally, if a point is
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Figure 2 Illustration of DEM grid and sweep-plane algorithm by using a voxel representation.
Red represents the current peak. Orange DEM points are active and contained in the sweep-plane
data structure. White points are inactive and already removed from the data structure. Black points
have not yet been processed.

the high-point of its 3x3 neighborhood it is associated with a peak event at its elevation. We
describe the peak detection routine in more detail in Section 6. All events are created at
the beginning of the algorithm and can therefore be added to a static sequence sorted by
descending elevation. Peak events are processed before other events at the same elevation.

The sweep-plane then moves downward from the highest sample point to the lowest and
traces the contour lines of the terrain, refer to Figure 2. The sweep-plane data structure SL

is a two-dimensional geometric search tree that maintains a set of currently active points. A
sample point p becomes active at its insert event, when it is swept by the sweep-plane and
inserted into SL. Point p becomes inactive and is removed from SL at its remove event, at
which point its lowest neighboring point is activated and thus all of p’s neighboring points
are either active or have already been deactivated. When a peak event for sample point
p is processed, a nearest neighbor query for the closest active sample point to p in SL is
performed. The returned point w is the ILP for the peak: Since w is active and peaks are
processed before other events, w must be higher than p. There cannot be any closer ILP
as points activated later are not higher than p and since higher points v that are already
deactivated are surrounded by points that are all higher than p. At least one of them must
be closer to p than v.

Analysis. Given a DEM with n points, we can detect its p peaks in time O(n). The resulting
2n + p events can be sorted in O(n log n) time by elevation. Insertion and removal operations
take O(log n) worst case time in several geometric search trees [8, 15, 35]. Nearest neighbor
search complexity is more complicated and still an open problem in many respects. Therefore,
we describe it abstractly as TNN. Simple trees used in practice such as k-D-Trees [8] or
Quadtrees [15] achieve logarithmic time “on average”. Cover trees [9] achieve logarithmic
time when an expansion parameter of the input set is bounded by a constant. Approximate
queries within a factor of 1 + ϵ are possible in time O

(
log(n)/ϵ2) [4]. Overall, we get the

claimed time O(n log n + pTNN).
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Peak Detect. Bounding FinalizationHigh Points

Tile-Peak Map

Figure 3 Overview of our scalable multi-pass algorithm for four tiles in two dimensions. Peaks are
detected for each tile with the peak finding algorithm of ConcIso. The bounding pass determines
an upper bound on the isolation for each peak and assigns it to tiles that could contain closer ILPs
in the Tile-Peak map. The high-points of each tile without a local upper bound are processed by a
separate pass considering only the high-points. In the finalization pass, all peaks assigned to a tile
are checked for an ILP within the tile. The final determination of the closest ILP out of the found
candidates for each peak is not depicted. For the sweep-plane passes, green points are active in the
sweep-plane data structure, gray points are inactive and hollow points are not yet processed. Peaks
are marked by crosses. The high-point of each tile is marked by a different color cross for each tile.

4.2 Scalable Multi-Pass Algorithm
High-resolution DEMs are massive data sets of currently up to 25 TB that require scalable
algorithms. The algorithm described in the previous section can be parallelized to some extent
but its sweeping character limits parallelism. Moreover, a geometric search tree covering the
entire Earth could get quite large. We therefore develop a two-level algorithm that allows for
more coarse-grained parallelism and better locality. We adopt the natural hierarchy of the
input data using tiles of a fixed area but note that reformatting into smaller or finer tiles
would be possible in principle. Furthermore, a more general multi-level algorithm could be
developed using a similar approach.

Multi-level algorithms start at the finest level to extract information for global2 processing
at coarser level. The global results are then passed down to compute the final solution. In
our two-level algorithm this implies that we have two passes reading the DEM tiles from
external memory while a single global pass works with simple per-tile information. The
first (bounding) and last (finalization) pass can work in parallel on each tile. The global
(high-point) pass works in internal memory and is also parallelized. The first two passes
establish a global Tile-Peak map that stores for each tile which peaks can have an ILP in
it. The third pass processes these assigned peaks for a tile and determines their ILPs. All
passes follow a very similar structure to our single-sweep algorithm from Section 4.1. They
are described in detail in the following. Additionally, Figure 3 provides an overview of our
algorithm.

Bounding Pass. The purpose of the first pass is to establish an upper bound on the isolation
of a peak and therefore limit the the number of tiles that need to be searched for its ILP in
the finalization pass. To establish this upper bound, we find a tile-local ILP for each peak
using our single-sweep algorithm. Only the highest point in each tile will not have a tile-local
ILP and is treated separately in the high-point pass. Given the upper bound on the isolation

2 Pun intended.
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of a peak p, we can assign p to all tiles within radius of the upper bound that could contain
a closer ILP for p. In the third pass, these neighboring tiles then need to process p in order
to find ILP candidates within them. To link peaks to tiles for processing in the third pass,
we build a Tile-Peak map that stores for each tile a list of peaks that could have an ILP
within it.

High-Point Pass. As there is no local ILP for the high-point h of each tile, we address high-
points separately in the second pass. This pass uses only one type of event – a combination
of insert and peak event from the other passes – and processes only one point per tile,
namely their high-points. For each high-point h, we perform a nearest neighbor query in the
sweep-plane data structure for h’s closest higher point p. The distance between h and p is
an upper bound on h’s isolation. The sweep-plane data structure is then traversed again to
find all tiles whose closest point to h is at least as close to h as p and h is linked to these
tiles in the Tile-Peak map. Finally, h is inserted into the sweep-plane data structure and the
next lower high-point is processed.

Finalization Pass. In the third pass, each tile is processed again by a sweep-plane algorithm
similar to the single-sweep variant. The peak events of this pass are all peaks that have been
assigned to the tile in the Tile-Peak map. For each assigned peak, the ILP candidate within
the processed tile is determined. After all tiles have been processed by the third pass, each
peak has as many ILP candidates as tiles it has been linked to. Thus, in a final step, for
each peak the closest found ILP candidate is set as the true ILP of the peak.

Algorithmic Details and Outline of Analysis. Let us first look at the total work performed
to process A tiles containing n sample points overall. The bounding pass performs a similar
amount of work as the global algorithm except that it defers nonlocal nearest neighbor
searches to the subsequent passes. More precisely, the high-points of each tile are deferred to
the high-point pass while other peaks are deferred to neighboring tiles. On average, there is
a constant number of such neighbor tiles.3

The high-point pass potentially defers nearest-neighbor-search work for the highest point
of each tile to a potentially large number of tiles. However, this is not so different from what
a search-tree based nearest neighbor search in a global tree data structure would do. Our
two-level algorithm can be viewed as a vertically split (quad-)tree algorithm where updates
and nearest neighbor searches are reordered to improve locality. The overall amount of work
done is quite similar though.

The finalization pass can be viewed as completing the deferred nearest neighbor searches.
Thus, the main overhead of the two-pass algorithm compared to the global algorithm is
that the data is swept through search trees twice. We mitigate this effect by building only
a coarse search tree in the bounding pass. This has no negative effect on precision as the
bounding pass is only needed to identify the tiles where an ILP can be. Only the finalization
pass computes the actual ILPs.

Let us now look at I/O-costs. Assume one tile and the high-points fit in internal memory.
This is similar to a “semi-external”-assumption used in previous algorithm engineering papers
on DEM processing, e. g. [1]. The I/O volume of our two pass algorithm is dominated by

3 Near the poles, there are many candidate tiles that may be closer than a local ILP. However, averaged
over all tiles, this effect is not large. It is interesting to note though that this is an artifact of a
pseudo-high longitudinal resolution that is not reflected in the actual precision of the sensors but stems
from artificially mapping the data using a Mercator projection. Meshes with more uniform cells are
possible, for example the icosahedral grid used in some modern climate/weather models [27].
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(a) (b)

Figure 4 Representation of a latitude-longitude aligned quadrilateral and areas for the different
min-distance cases between a quadrilateral and a point.

reading all tiles twice.4 This is actually better than an external-memory implementation of
the global algorithm as that algorithm would have to sort the data by altitude before being
able to scan the input in the right order for the sweep. Even using pipelining [13], sorting
would require at least two reading and one writing pass over the DEM data.

Finally let us consider parallelization. Bounding and finalization passes can work on
A tiles in parallel. In order to also parallelize the high-point pass, we implement a variant
that uses a static search tree with subtrees augmented by the maximum elevation occuring
in a subtree. Then the A nearest-dominating-point searches can be done in parallel. See
Section 6 for details.

5 Predicates for Search Trees on Spherical Surfaces

The sweep-plane data structure needs to be a dynamic data structures that supports efficient
nearest neighbor queries. Space-partitioning trees such as k-D trees or Quadtrees are
well-suited data structures for this application [8, 15]. These trees recursively divide the
input space into smaller and smaller blocks. For a spherical surface, the space is divided
into quadrilaterals which are aligned with latitude and longitude, refer to Figure 4a. A
quadrilateral is defined by its north-west and south-east corners. Each quadrilateral can
then be further subdivided into smaller quadrilaterals. The root of a space-partitioning tree
covers the entire input area.

Our sweep-plane algorithm requires two geometric primitives for these trees: a) whether
a given point p lies inside a quadrilateral Q and b) the shortest distance between p and
Q. The former can be easily answered by comparing p’s latitude and longitude with Q’s
north-east and south-west corner. For the latter, there are four configurations of p and Q

that need to be considered, refer to Figure 4b:
1. p ∈ Q (red area),
2. p is between the longitude lines of Q (green area),
3. p is between the four great circles through the corners of Q, which are perpendicular to

the longitude edges of Q (blue area),
4. all other positions (white area).

4 In comparison, the Tile-Peak map has negiligible data volume and can be handled in an I/O-efficient
way by observing that the first two passes only insert to it and the third pass only reads it tile by tile.
Thus, we can first buffer its data in an external log which is sorted by tile before the finalization pass.
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For case 1 the distance is zero. In case 2, the closest point s ∈ Q to p is on the intersection
between the longitude line of p and one of the latitude-edges of the quadrilateral, as the
shortest distance between two latitudes is along the longitude lines. The shortest distance of
p to Q is thus the shorter distance between p and the north and south latitude of Q.

In the remaining cases, s must lie on one of the longitude lines of the quadrilateral. To
determine the longitude edge closest to p, we calculate the center longitude of Q and rotate
it to align with the meridian. We rotate p by the same amount. If the longitude of p is
now positive, the west longitude-edge of Q is closer to p, otherwise the east one.5 Having
determined the closest longitude edge, we can now calculate point s using linear algebra in
Euclidean space as described in the accompanying technical report [20, Appendix A.2]. If
the latitude of s is between the top and bottom latitude of Q, s is the point with the shortest
distance to p in Q (case 3). Otherwise one of the corners is the point with the shortest
distance to p (case 4).

Given these primitives, insert and query operations on space-partitioning trees for spherical
surfaces are identical to the ones for Euclidean space.

6 Implementation

We implement our new sweep-plane algorithm in the mountains C++ framework by Kirmse
and de Ferranti [28].6 The framework provides essential functionalities for the work with tiled
DEM data, such as data loading and conversion, peak discovery and distance computations.
Our code is available on Github.7 In the following we provide details our implementation.

Data Structure. We implement a fully dynamic k-D-Tree, that supports insert and remove
operations in O(log n) worst case time and nearest neighbor searches in O(log n) expected
time [19] using the predicates described in the previous section.8 Points are stored in the
leaves of the tree, which have a fixed capacity of C points. On exceeding capacity C, a leaf
is split according to a center-split policy along the longer side of the quadrilateral. The first
points inserted into the tree often belong to the highest peak in a tile and are thus close to
each other. In order to prevent the tree from degenerating, we pre-build the first k levels in
a Quadtree-like manner.9 To improve cache-efficiency, tree nodes are allocated in blocks and
are re-used after deletion.

Another data structure used is the Tile-Peak map, which we implement as an internal
memory hash map with the latitude and longitude of a tile as key and a list of peaks as
value.

Algorithm. Given the search area A, all contained DEM tiles can be processed in parallel.
We use a work queue and thread pool to distribute the computations among the available
processing elements. The Tile-Peak map is initialized in advance with all tiles. To sort the
events of a pass, we use the efficient sorting algorithm ips4o of Axtmann et al. [5].

5 This is possible because we split the Earth at the antimeridian. Therefore, the western longitude of Q
is always smaller than the eastern one.

6 https://github.com/akirmse/mountains
7 https://github.com/dfunke/mountains
8 We also adapted a Quadtree using our predicates, which was however outperformed by the k-D-Tree in

our experiments.
9 Our experiments show k = 4 to be a good choice.
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Bounding Pass. We use the peak detection algorithm of Kirmse and de Ferranti [28, Sec.
2.2] to find all peaks within a tile. It considers all points to be peaks that have eight
neighboring points of lower or equal elevation. If a peak consists of several equally high
sample points, only a single one is added to the set of peaks.10 Since only an upper bound
is calculated during the bounding pass, we down-sample the resolution of the DEM after
peak detection. Since all peaks are within the tile which is processed, distances are rather
small and can be approximated using planar Euclidean geometry during the nearest-neighbor
search. The upper bound is computed using the spherical distance function according to
Equation (1). If the determined upper bound on the isolation of a peak is below a threshold
Imin we discard the peak as insignificant. Peaks with an upper bound above Imin are added
to the Tile-Peak map for processing in the finalization pass as described in Section 4.2.

High-Point Pass. While processing the tiles in the bounding pass, we build a geometric
search tree T that partitions the entire search area down to the tile level. Internal nodes of
T save the highest elevation in its sub-tree. After all tiles have been processed, we can use
this information to efficiently determine upper bounds on the isolation of the high-points of
each tile. For each high-point h, we find the closest tile containing a point of higher elevation
than h in search tree T . The maximum distance between h and any point within the found
tile serves as an upper bound on h’s isolation. Given this upper bound we can add h to all
tiles containing potential ILPs in the Tile-Peak map. This approach is trivially parallelizable
over the number of high-points in the search area.

Finalization Pass. In this pass we use the full resolution of the input DEM. For each tile,
the peaks processed in this pass are the ones that are assigned to it in the Tile-Peak map.
We use ellipsoid distance computations according to Equation (2).

7 Evaluation

In this section we evaluate our novel sweep-plane algorithm to calculate the isolation of
mountain peaks, which we named SweepIso. We evaluate it with regard to runtime behavior
and solution quality and compare it against ConcIso from Kirmse and de Ferranti [28].

10 The algorithm by Kirmse and de Ferranti always chooses the north-west corner of a peak.

Table 1 DEM models of the Earth, Mars and the Moon used in our experiments. The reported
runtime is the single-threaded runtime for the entire data set.

Name Resolution Pixels Size Coverage Runtime

Earth SRTM 3′′ (90 m) 20 × 109 71 GB Global 2.07 h
Earth SRTM NA-EU 1′′ (30 m) 49 × 109 105 GB Cont. US+CAN+EU 3.8 h
Moon SLDEM2015 7′′ (59 m) 11 × 109 22 GB [60◦N, 60◦S] 2.5 h
Mars MGS MOLA -
MEX HRSC Blended

12′′

(197.6 m) 5.7 × 109 11 GB Global 1.3 h
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Experimental Setup. All benchmarks are conducted on a machine with an AMD EPYC
Rome 7702P with 64 cores and 1024 GB of main memory. The DEM data is stored on a
Intel P4510 2 TB NVMe SSD. We use the 3′′ data set from viewfinderpanoramas [12] with
worldwide coverage. To build smaller test instances from the worldwide data set, we choose
a random starting tile and add neighboring tiles in a spiraling manner around it until the
desired number of tiles is reached. For each instance size, we generate several instances
to cover a wide range of terrain. Additionally, we use the 3′′ and 1′′ DEM for the USA,
Canada and most of Europe from viewfinderpanoramas [12] to study the scaling behavior for
higher-resolution DEMs. This data set corresponds to 4294 tiles or roughly 16 % of the total
test data set. We will call this data set NA-EU. We also use data sets from other celestial
bodies: Mars [24] and the Moon [6]. Table 1 lists some properties of the studied data sets
along with the runtime of our algorithm to determine the isolation of every peak contained
in them.

For all benchmarks we use an isolation threshold Imin of 1 km and report the mean
runtime of 5 runs. I/O costs are not part of the reported figures as we use the mountains
framework [28] for them without an attempt at optimization. They are about the same time
as computation for 3′′ DEMs and about 10 % of computation time for 1′′ ones and thus could
be overlapped with the computation in an optimized framework.

7.1 Runtime and Scaling Behavior
The runtime of the algorithms depends on the number of sample points in the DEM. These
can either increase due to a larger search area or a higher-resolution DEM. Another factor
is the number of processed peaks, since every peak starts a local search in ConcIso and a
nearest neighbor query in SweepIso. A larger search area increases the number of tiles and
the number of peaks, whereas higher-resolution data mostly increases the number of points
per tile. High-resolution DEMs can contain more peaks than lower-resolution ones due to the
more truthful representation of the terrain, however these are predominantly low-isolation
peaks and are filtered out in the first pass. We study both effects in our experiments by
using different resolution DEMs as well as increasing search areas.

SweepIso exhibits a nearly constant throughput of sample points per second with
increasing search area, while ConcIso’s throughput degrades – refer to Figure 5a. Figure 8a
shows that SweepIso outperforms ConcIso by a factor of 2 to 3 in terms of sample point
throughput. For instance, we reduce the time required to compute the isolation of every peak
on Earth from 9 h down to 3.5 h. However, ConcIso’s runtime scales significantly better
than its O(n2) worst case runtime bound would suggest. This is because most peaks have a
relatively low isolation. In fact 99.996 % of discovered peaks on the world data set have an
isolation below 50 km and more than 99 % below 10 km. Since one tile covers on average an
area of 70 km × 111 km, the nearest higher point is most of the time within the same tile as
the peak, where fast approximations for the distance calculation are used. Nevertheless, for
high-resolution DEMs the computation cost per peak is significantly higher for ConcIso
than for SweepIso, refer to Figure 5b. A more in-depth analysis of the runtime behavior of
both algorithms can be found in the accompanying technical report [20, Appendix B].

Figure 6 shows the runtime composition of the bounding and the finalization pass. As the
DEM resolution is reduced in the bounding pass, the finalization pass requires the majority
of the runtime, especially for higher-resolution inputs. Geometric computations only make a
small fraction of the runtime. The high-point pass requires just 0.001 % of the total execution
time and is therefore omitted in the figure.
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Figure 5 Single-threaded runtime comparison of SweepIso and ConcIso.
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Figure 8 Single-threaded speedup of SweepIso over ConcIso and relative speedup of SweepIso
for multi-threaded execution.

Figure 8b shows the results of our multi-threaded runtime experiments with the NA-EU
data set. SweepIso scales well with physical cores, but does not benefit from hyper-threading
(HT). For 64 cores it reaches a speedup of 25. We verified the scaling behavior of the algorithm
for the entire Earth and were able to confirm a speedup of 25 on 64 cores. This corresponds
to a runtime of 8 min to calculate the isolation of every peak on Earth. We were not able to
execute ConcIso with multiple threads due to issues in the implementation.

7.2 Solution Quality

In principle, at any particular time, the isolation and witnessing ILP of a peak are a well
defined. However, the actually computed values depend on imprecisions in both the data
and the used algorithms.

Due to the design of SweepIso, more expensive distance approximations can be used to
find the ILP than in ConcIso. This results in closer ILPs being found, as shown in Figure 7,
which displays the distribution of the difference in isolation and the distance between the
found ILPs between SweepIso and ConcIso, using the same data. Even if the isolation
values between the two algorithms do not vary greatly, the distances between the ILPs do.
For example for the Cerro Gordo summit in Mexico both algorithms find ILPs that are more
than 600 km apart while SweepIso’s ILP is merely 0.8 km closer to the peak.

To further evaluate the results, we used the collection of peaks with more than 300 km
isolation from the website peakbagger.com [34]. The comparison showed that for about
75 % of peaks in this list the isolation deviation is below 2 km. In a DEM, a sample point
corresponds to the average elevation of the area it represents. This often leads to an
underestimation of a peak’s elevation, sometimes significantly [28]. For instance, according
to our DEM data, Galdhøpiggen (the highest point of Scandinavia) is 11 m lower than
Glittertind. This causes a significant change in isolation of both mountains. Table 2 lists the
five summits with the biggest differences in isolation between peakbagger and our calculation.
The five most isolated peaks on Mars and the Moon as determined by our algorithm are
presented in Table 3. To the best of our knowledge, this is the first such list.
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Table 2 Biggest isolation differences between discovered and peakbagger (PB) data.

Mountain
PB

Rank
PB

Isolation
SweepIso
Isolation Notes

Galdhøpiggen
(Norway)

47 1568.3 12.9 Galdhøpiggen
DEM elev.: 2455 m – real elev.: 2469 m [30]
Glittertind
DEM elev.: 2466 m – real elev.: 2457 m [30]
Isolation 1563.5 km

Mt. Kirkpatrick
(Antarctica)

45 1585.2 53.5 found ILP at -83.8967;168.3733
DEM elev.: 4416 m – real elev.: 4528 m [30]
ILP elev.: 4416 m

Mt. Hope
(Antarctica)

75 1113.5 203.4 No data found in other sources

Dome Charlie
(Antarctica)

92 971.8 248.6 found ILP at -76.3783;116.3708
DEM elev.: 3265 m – real elev.: 3233 m [10]
ILP elev. 3266 m

Mauga Silisili
(Samoa)

23 2245.1 2502.8 DEM elev.: 1854 m – real elev.:1863 m [30]
PB ILP elev.: 1879 m
found ILP elev.: 1836 m

Cocos Islands
High Point

94 961.4 947.4 Found ILP at Enggano Island

Table 3 Most isolated peaks on Mars and the Moon according to the DEM data listed in Table 1.

Name Coordinates Elevation ILP Isolation

Mars

Olympus Mons 17.33◦N 133.42◦W 21 226 m - ∞
Cruls crater wall 42.27◦S 163.78◦E 4331 m 46.79◦S 147.63◦W 2037.43 km
Near Cyclopia 6.34◦S 129.19◦E 3806 m 18.59◦N 149.99◦E 1913.59 km
Huygens crater wall 10.06◦S 54.62◦E 4604 m 10.50◦S 85.09◦E 1776.76 km
Ascraeus Mons 11.76◦N 104.53◦W 18 321 m 17.89◦N 131.64◦W 1593.92 km

The Moon

Engel’gardt crater wall 5.41◦N 158.63◦W 10 783.3 m - ∞
Between Tacitus and
Fermat craters

18.93◦S 19.17◦E 4832.33 m 60.0◦S 72.65◦W 2261.5 km

Near Lewis crater 21.04◦S 112.33◦W 9459.83 m 5.26◦N 157.98◦W 1574.56 km
Near Calippus crater 39.09◦N 9.46◦E 3625.68 m 9.63◦S 2.06◦E 1492.13 km
Dellinger crater wall 7.25◦S 142.0◦E 7561.73 m 12.91◦S 170.22◦W 1434.95 km
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8 Conclusion and Future Work

We have presented SweepIso, a scalable and efficient algorithm to compute the isolation of
peaks. SweepIso considerably outperforms the previous, more brute-force, state-of-the-art
approach. The performance gains also enable more accurate distance calculations at decisive
places resulting in higher accuracy. SweepIso is able to process the entire Earth for currently
publicly available data within minutes. This is relevant as it indicates that SweepIso can
also handle higher-resolution data that is available commercially or that will be available
in the future. SweepIso’s two-level semi-external sweeping architecture may also be an
interesting design pattern for other computations on massive DEM data. Furthermore,
SweepIso could serve as a benchmark for dynamic nearest neighbor search data structures.

Future Work. From an application perspective, it would be interesting to compute not only
isolations for a given, necessarily imprecise data set but to compute confidence bounds that
take into account error margins in the input data. This would be possible at a moderate
increase in cost. Peaks could be replaced by enclosing boxes/circles while vertical errors could
be handled by having “may-be-there” and “must-be-there” insertion events and sweep-plane
data structures. Geographically most interesting would be those isolations that change a
lot depending on how high exactly particular pairs of peaks are. Those pairs could then be
valuable targets for additional data cleaning or new measurements.

For algorithm engineering, it would be interesting to close the gap between theory and
practice with respect of nearest-neighbor data structures. We have reasonable empirical
performance of simple data structures like k-D trees but no well-fitting performance guarantees
applicable to SweepIso. For example, one could look for a more general characterization of
inputs where cover trees [9] work provably well.
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1 Introduction

Submodularity is a mathematical notion that captures the concept of diminishing returns.
Formally, a set function f : 2N → R≥0 over a ground set N is submodular, if for all
A, B ⊆ N : f(A ∪B) + f(A ∩B) ≤ f(A) + f(B). An equivalent definition, which is called
the diminishing returns property, is the following: f(A ∪ {u})− f(A) ≥ f(B ∪ {u})− f(B),
for every A ⊆ B ⊆ N and every u ∈ N \B. Submodular functions naturally arise in many
different settings, e.g., combinatorics, graph theory, information theory and economics.

We consider the Submodular Welfare (SW) problem. In this problem we are given a
set N = {1, . . . , m} of m unsplittable items and a set B = {1, . . . , n} of n bidders. Each
bidder j has a non-negative (and not necessarily monotone) submodular utility function
fj and the goal is to assign items to the bidders while maximizing the sum of the utilities:∑n

j=1 fj(Sj). Here Sj is the set of items allocated to bidder j, and the requirement is that
Sj ∩ Sj′ = ∅ for every j ̸= j′ (since the items are unsplittable) and ∪n

j=1Sj ⊆ N (note that
not all items must be assigned). SW with monotone utilities has been extensively studied
for more than two decades, e.g., [13,15,19,25,43,52,62,68,69]. Submodular maximization
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with general (not necessarily monotone) objectives is also the focus of extensive theoretical
research, e.g., [24, 30,32,34,36,50,51,63,68,70]. Moreover, maximization of non-monotone
submodular objectives has found numerous practical applications, e.g., network inference [39],
mobile crowdsensing [55], summarization of documents and video [53,54,59], marketing in
social networks [64], and even gang violence reduction [65], to name a few. In particular,
non-monotone utilities in the context of SW can model soft budget constraints, where each
bidder j needs to pay a price pi,j when item i is allocated to it. Additional related problems
were also studied, including: SW with demand queries [26], and other utilities such as XOS
and subadditive [18,23].

When considering the offline version, SW is typically viewed as a special case of maximizing
a submodular objective subject to a partition matroid independence constraint: (1) the
ground set is N ×B; (2) the partition matroid is defined over N ×B where each part in the
partition corresponds to an item, i.e., the part that corresponds to item i ∈ N is {(i, j)}n

j=1;
and (3) the objective f : 2N ×B → R≥0 is defined as: f(S) ≜

∑n
j=1 fj({i : (i, j) ∈ S}). In

case the utilities are monotone a tight (asymptotic) approximation of (1 − 1/e) was given
by [14] by introducing the celebrated continuous greedy algorithm, a tight approximation of
(1− (1− 1/n)n) for any number n of bidders was given by [31], and the matching hardness
result was given by [60]. For a general and not necessarily monotone objective the current
best known offline approximation is also based on the continuous approach and achieves an
approximation of (1/e) + 0.0171 [8], which improved upon the previous works of [21,31].

In the online version of SW items arrive one by one. Whenever an item arrives, one has
to decide immediately and irrevocably whether to assign it to one of the bidders or not
assign it at all (the latter decision is relevant only when the utilities are not necessarily
monotone). There are two natural settings that differ in the order in which items arrive.
First, in the online adversarial setting an adversary can choose the order in which items
arrive (the adversary knows the algorithm and how it operates, however if the algorithm
is randomized it does not know the outcome of its random choices). Second, in the online
random order setting items arrive one by one in a uniform random order.

When considering the online version, as opposed to the offline version, worse results
are known. For monotone utilities, in the adversarial setting, a (1/2)-competitive greedy
algorithm is known and additionally it is the best possible algorithm for this setting [41].
However, if one assumes the online random order setting, it is known that one can achieve a
competitive ratio of (1/2) + 0.0096 [9], which improved the result of [46] who were the first to
break the 1/2 barrier obtaining a competitive ratio of (1/2) + 0.005.

Unfortunately, when considering general submodular (and not necessarily monotone)
utilities, worse results are known. In the adversarial setting, the special case of a single
bidder is of particular interest since it is equivalent to online Unconstrained Submodular
Maximization (USM): given a general submodular objective f items arrive one by one in an
online manner and once an item arrives the algorithm needs to decide whether to choose
or discard it where the goal is to maximize f(S) (S denotes the chosen elements). An
(implicit) competitive ratio of 1/4 was given by [24] for online USM (the algorithm simply
chooses every element independently with a probability of half). This result was proved to
be tight [11]. For the general case of multiple bidders an algorithm achieving a competitive
ratio of 3 − 2

√
2 ≈ 0.171573 was given by [38] (this algorithm handles a general matroid

independence constraint and assumes elements of the ground set arrive in an online manner).
In the random order setting, an (implicit) result follows from analyzing the offline Residual

Random Greedy (RRG) algorithm of [10] for maximizing a non-monotone submodular objective
subject to a matroid independence constraint. When considering SW, the RRG algorithm
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operates as follows: it chooses a uniform random order over the items and goes over the
items in this order, and assigns each item to the bidder with the highest marginal value
(if this marginal value is negative then the item is discarded). Thus, if the RRG algorithm
achieves an approximation of α in the offline setting, then the deterministic greedy achives a
competitive ratio of α in the online random order setting. [10] prove that the RRG algorithm
achieves an approximation of 1/4, therefore implying a competitive ratio of 1/4 for SW in the
random order setting. It is worth noting that better algorithms than RRG are known in the
offline setting, e.g., [8, 21,31], however, they do not apply to the online random order setting.

In this work, we assume the standard value oracle model: each submodular function f

is not given explicitly but rather the algorithm can query for every subset S the value of
f(S). The running time of the algorithm is measured not only by the number of arithmetic
operations, but also by the number of value queries. In the online version, for both adversarial
and random order settings, the algorithm can query subsets S only of items that already
arrived. Thus, intuitively, the algorithm has no information regarding future items.

1.1 Our Results
Focusing first on the adversarial setting, we present the following positive result.

▶ Theorem 1. There exists a randomized polynomial time algorithm achieving a competitive
ratio of 1/4 for online SW in the adversarial setting with general (not necessarily monotone)
utilities.

There are three things to note regarding Theorem 1. First, the competitive ratio of 1/4 is tight
as even for the special case of a single bidder (which is equivalent to online USM) [11] provide
a matching hardness of 1/4. Second, Theorem 1, to the best of our knowledge, improves the
previous best known competitive ratio of 3 − 2

√
2 ≈ 0.171573 [38]. Third, for the special

case of a single bidder the competitive ratio of Theorem 1 matches the 1/4 guarantee of the
simple algorithm that just chooses independently for every item to include it in the solution
with a probability of half [24]. However, we note that the algorithm we present in order to
prove Theorem 1, even in the special case of a single bidder, differs from the algorithm that
just chooses a uniform random subset.

We complement the above result by showing that the randomness of the online algorithm
in Theorem 1 is needed. This is summarized in the following theorem that gives a hardness
result that tends to zero.

▶ Theorem 2. For every M > 0, no deterministic algorithm can achieve a competitive
ratio better than 1/M for online SW in the adversarial setting with general (not necessarily
monotone) utilities.

Focusing on the random order setting, the following theorem proves that one can achieve
an improved competitive ratio over the previously (implicit) known 1/4 [10]. We note that
the following theorem separates the random order and adversarial settings, since one should
recall there is a hardness of 1/4 in the adversarial setting even when only a single bidder is
present.

▶ Theorem 3. The deterministic greedy algorithm achieves a competitive ratio of ≈ 0.27493
for online SW in the random order setting with general (not necessarily monotone) utilities.

The above theorem is achieved by a better analysis of the offline randomized RRG algorithm
of [10]. This improved analysis can be easily extended to a general matroid independence
constraint, as the following theorem states (its proof is deferred to a full version of the paper).
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▶ Theorem 4. The RRG algorithm of [10] achieves an approximation guarantee of ≈ 0.27493
for maximizing a general (not necessarily monotone) submodular function given a matroid
independence constraint.

1.2 Our Approach
The online algorithm for the adversarial setting adopts a simple randomized approach: once
item i arrives it defines a distribution over the bidders and assigns the item to a random
bidder sampled from this distribution. Surprisingly, we prove that a remarkably simple
distribution suffices to obtain a tight competitive ratio of 1/4: item i is assigned to the bidder
with the highest marginal value with a probability of 1/2, to the bidder with the second
highest marginal with a probability of 1/4, and so forth as long as the marginal value is
non-negative. With the remainder probability item i is discarded. It is important to note
that the ordering of the bidders according to their marginal values (as long as the marginal
values are non-negative) dictates the distribution. However, as long as the ordering remains
the same, the distribution is independent of the actual marginal values themselves. We prove
that the above simple approach suffices to obtain a tight competitive ratio of 1/4 for the
adversarial setting.

It should be noted that the above randomized approach is based on the streaming
algorithm of [38], which obtains a competitive ratio of 3− 2

√
2 ≈ 0.171573. Intuitively, we

specialize the algorithm of [38] to online SW in the adversarial setting. The reason is that
once item i arrives one can perform the following process in order to obtain the distribution
over bidders that was defined above: sort the bidders in a non-increasing order of marginal
values and assign the item to the first bidder with a probability of half, if the item was not
assigned to this bidder then with a probability of half assign the item to the next bidder,
and so forth as long as the marginal value is non-negative. This process describes how the
algorithm of [38] operates in the special case the online order of elements of the ground
set N ×B satisfies: (1) all elements {(i, j)}n

j=1 are consecutive in the online order; and (2)
elements {(i, j)}n

j=1 are sorted in a non-increasing order of marginal values of the bidders.
Focusing on the random order setting, we present an improved analysis of the RRG

algorithm for a general matroid independence constraint. As a preliminary step, which
is not required but is mathematically convenient, we present a “smooth” version of the
RRG algorithm. The difference between the original and smooth versions is that in the
smooth version the distribution of the steps the algorithm can perform does not change as
the algorithm progresses. However, in the original version this distribution evolves as the
algorithm progresses. We note that the analysis of both versions is very similar (assuming
the smooth version performs enough steps). Nonetheless, we believe it is easier to analyze
the smooth version.1

A key insight in analyzing the RRG algorithm (as well as other closely related algorithms,
e.g., the Random Greedy algorithm of [10]), is lower bounding the expected value of a fixed
optimal solution OPT when a random subset of elements S is added to it. More precisely,
if each element u satisfies Pr[u ∈ S] ≤ p then standard known arguments, e.g., Lemma
2.2 [10] which is based on Lemma 2.2 [24], imply that E[f(OPT ∪ S)] ≥ (1− p)f(OPT ). It
is important to note that this general insight works for any distribution of S that satisfies
Pr[u ∈ S] ≤ p for every u. This general insight by itself enabled [10] to prove that the
RRG algorithm achieves an approximation of 1/4. We are able to improve upon the above

1 For a detailed comparison of the two versions we defer to a full version of the paper.
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by exploiting the specific probabilistic behavior of the smooth version of the algorithm, as
opposed to the general insight which works for any distribution of S. This results in an
improved analysis of the smooth version of the RRG algorithm via two jointly related recursive
relations that together bound the performance of the algorithm.

1.3 Additional Related Work
The literature regarding submodular maximization, i.e., problems of the form max{f(S) :
S ∈ F} (F is the collection of feasible solutions), is rich, e.g., [4, 7, 8, 10,14,21,22,24,44,47,
48, 60, 61, 66], and dates back to the late 70’s. Moreover, the online SW problem naturally
generalizes many online problems such as online matching [1, 29,40,42, 57], online weighted
matching [1, 28], budgeted allocation [12, 16, 35, 58], and more general classes of online
allocation problems [2, 17, 27, 67]. Other related problems include the extensively studied
class of secretary problems, e.g., [3, 5, 6, 20, 31, 33, 37, 45, 49, 56], where the goal is to solve an
optimization problem assuming the arrival order of the input is uniform and random.

1.4 Preliminaries
In our analysis we require the following known lemma.

▶ Lemma 5 (Lemma 2.2 [10] which is based on Lemma 2.2 [24]). Let f : 2N → R≥0 be
submodular. Denote by A(p) a random subset of A where each element appears with probability
at most p (not necessarily independently). Then E[f(A(p))] ≥ (1− p)f(∅).

1.5 Paper Organization
Section 2 deals with the adversarial setting, proving Theorems 1 and 2. Section 3 focuses on
the random order setting, proving Theorem 3 and 4.

2 Adversarial Setting

In this section we consider the adversarial setting, and present both a tight randomized
algorithm proving Theorem 1 and hardness for any deterministic algorithm (Theorem 2).

2.1 Tight Randomized Algorithm
In this section we consider the adversarial setting, and start by presenting our algorithm
which appears in Algorithm 1. For simplicity of presentation, we assume the items are
numbered according to the order the adversary chooses, i.e., item 1 is the first to arrive, item
2 is the second to arrive and so forth. Hence, the algorithm performs m iterations where in
iteration i the algorithm chooses what to do with item i: with a probability of 1/2 it assigns
it to the bidder with highest marginal value, with a probability of 1/4 is assigns it to the
bidder with the second highest marginal value, and so forth as long as the marginal value is
non-negative. With the remainder probability item i is discarded and not assigned to any
bidder. Therefore, if there are ℓ bidders with non-negative marginal with respect to item i,
item i is discarded with a probability of 2−ℓ. In what follows we use the notation fj(i|S) to
denote the marginal value of item i with respect to bidder j assuming bidder j was already
assigned a subset S ⊆ N of items, i.e., fj(i|S) ≜ fj(S ∪ {i})− fj(S).
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Algorithm 1 Online Adversarial Algorithm.

∀j = 1, . . . , n : S0
j ← ∅.

for i = 1, ..., m do
∀j = 1, . . . , n: Si

j ← Si−1
j .

∀r = 1, . . . , n: let jr be the bidder with the rth highest marginal w.r.t item i:
fj1(i|Si−1

j1
) ≥ fj2(i|Si−1

j2
) ≥ . . . ≥ fjn

(i|Si−1
jn

).
let ji be a random bidder such that Pr[ji = jr] = 2−r.
if fji(i|Si−1

ji ) ≥ 0 then
Si

ji ← Si
ji ∪ {i}

end
end
return Sm

1 , Sm
2 , . . . , Sm

n .

Let O denote an offline optimal allocation for the problem: O = (O1, . . . , On), where Oj

is the collection of items assigned to bidder j in the optimal solution. Formally, O is defined
as follows2:

arg max
(O1,...,On)


n∑

j=1
fj(Oj) : ∀j ̸= r Oj ∩Or = ∅, ∀j = 1, . . . , n Oj ⊆ N

 .

Let Si be the allocation induced by the algorithm at the end of the ith iteration, i.e.,
Si = (Si

1, Si
2, . . . , Si

n). For every bidder j, define Hi
j as follows:

Hi
j ≜ (Oj ∩ {1, . . . , i}) ∪ Si

j ,

and let Hi = (Hi
1, . . . , H i

n). It is important to note that Hi is not necessarily a feasible
solution, since an item might be assigned to up to two bidders. For simplicity of presentation
we use the notation of f(Si) to denote the value of the allocation Si, i.e., f(Si) ≜

∑n
j=1 fj(Si

j).
Similarly, we use f(Hi) to denote

∑n
j=1 fj(Hi

j) (though Hi is not an allocation since items
might be assigned to more than a single bidder).

In order to analyze the algorithm we denote by P i the profit gained during the ith

iteration: P i ≜ f(Si)− f(Si−1). Note that P 1 + . . . + P m = f(Sm)− f(S0), where Sm is
the output of Algorithm 1 and S0 is the empty allocation that does not assign any item
to any of the bidders. Finally, we define the sequence: Ki ≜ f(Hi)− f(Hi−1). Note that
K1 + . . . + Km = f(Hm)− f(S0) (note that H0 = S0).

The analysis of the competitive ratio of Algorithm 1 is essentially based on a single
observation, which for every iteration upper bounds Ki as a function of the expected gained
profit. This is summarized in Lemma 6.

▶ Lemma 6. ∀i = 1, . . . , m the following holds: E[Ki] ≤ 2 · E[P i].

We use Lemma 6 to prove Theorem 1. The proof is essentially by summation over all
iterations of the algorithm.

2 Note that formally speaking this is actually a set, but for notational convenience, in this paper, when
we refer to something as equalling the arg max, we will always mean it equals an element of the arg max
set.
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Proof of Theorem 1. We prove that the competitive ratio of Algorithm 1 is 1/4. Lemma 6,
when applied for every iteration i, implies that: E

[∑m
i=1 Ki

]
≤ 2 · E

[∑m
i=1 P i

]
. Hence, it

follows that: E
[
f(Hm)− f(S0)

]
≤ 2·E

[
f(Sm)− f(S0)

]
. In fact, since f(S0) is non-negative,

we have that:

E [f(Hm)] ≤ 2 · E [f(Sm)] .

For every bidder j and item i we have that the probability that item i is assigned to bidder
j is at most 1/2, i.e., Pr[i ∈ Sm

j ] ≤ 1/2. Therefore, using Lemma 5 applied to the submodular
function hj , where hj : 2N → R≥0 and hj(S) ≜ fj(S ∪Oj) for every S ⊆ N , we can conclude
that: E[fj(Sm

j ∪Oj)] = E[hj(Sm
j )] ≥ (1/2) · hj(∅) = (1/2) · fj(Oj). Therefore,

E[f(Hm)] =
n∑

j=1
E[fj(Hm

j )] =
n∑

j=1
E[fj(Sm

j ∪Oj)] ≥ 1
2

n∑
j=1

fj(Oj) = 1
2 · f(O).

Combining the above, we conclude that: (1/4) · f(O) ≤ E[f(Sm)]. ◀

All that remains is to prove Lemma 6.

Proof of Lemma 6. For proof simplicity, let us start by adding a dummy bidder whose
utility is the zero function. Clearly, this does not change the algorithm’s performance or the
value of f(O), but it lets us assume (without loss of generality) that: (1) for every item i the
optimal solution O allocates item i to some bidder k, i.e., i ∈ Ok; and (2) for every item i at
least one bidder has a non-negative marginal value, i.e., fj(i|Si−1

j ) ≥ 0 for some bidder j.
Fix an iteration i = 1, . . . , m and condition on any possible realization Ri−1 of the random

choices of the algorithm in the first i− 1 iterations. Thus, Si−1, Hi−1, and j1 up to jm are
deterministic and fixed given this conditioning, whereas ji is a random variable.

Recall that (without loss of generality) item i is assigned to bidder k by the optimal
solution and that jr denotes the bidder with the rth highest marginal value with respect to
item i given the elements previously assigned to the bidder. Let us assume that the first
ℓ ≥ 1 bidders have a non-negative marginal value with respect to item i, i.e., fj1(i|Si−1

j1
) ≥

fj2(i|Si−1
j2

) ≥ . . . ≥ fjℓ
(i|Si−1

jℓ
) ≥ 0 and if ℓ < m: fjℓ+1(i|Si−1

jℓ+1
) < 0. Moreover, assume

that bidder k has the tth largest marginal, i.e., k = jt. Let us now bound the expected
change from f(Hi−1) to E[f(Hi)|Ri−1], i.e., E[Ki|Ri−1], given the assumption that t ≤ ℓ,
i.e., bidder k to which the optimal solution assigned item i is among the ℓ bidders who have
a non-negative marginal value:

E[f(Hi)|Ri−1] − f(Hi−1)

=fk(Si−1
k ∪ (Ok ∩ {1, . . . , i − 1}) ∪ {i}) − fk(Si−1

k ∪ (Ok ∩ {1, . . . , i − 1}))+ (1)
ℓ∑

r=1

1{jr ̸=k}

2r

{
fjr ((Ojr ∩ {1, . . . , i − 1}) ∪ Si−1

jr
∪ {i}) − fjr ((Ojr ∩ {1, . . . , i − 1}) ∪ Si−1

jr
)
}

.

The equality in (1) follows from the definitions of Hi and the algorithm, as well as the fact
that i ∈ Ok. We note that that (1) can be upper bounded as follows:

≤fk(i|Si−1
k ) +

ℓ∑
r=1

1{jr ̸=k}fjr
(i|Si−1

jr
)

2r
. (2)
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The inequality in (2) follows from the decreasing marginals property of the submodular
utilities. Next, let us rewrite (2):

=fjt
(i|Si−1

jt
) ·
(

1− 1
2t

)
+

ℓ∑
r=1

fjr
(i|Si−1

jr
)

2r
(3)

=fjt
(i|Si−1

jt
) ·
(

t∑
r=1

2−r

)
+

ℓ∑
r=1

fjr
(i|Si−1

jr
)

2r
. (4)

The equality in (3) holds since bidder k has the tth largest marginal, i.e., k = jt, and t ≤ ℓ.
Also, the equality in (4) follows from the value of a geometric sum. Moreover, we note that
(4) can be further upper bounded:

≤
t∑

r=1

fjr
(i|Si−1

jr
)

2r
+

ℓ∑
r=1

fjr
(i|Si−1

jr
)

2r
. (5)

In the above, the inequality in (5) is true since bidder jr has the rth largest marginal value,
i.e., for every r ≤ t: fjr

(i|Si−1
jr

)) ≥ fjt
(i|Si−1

jt
). Next, we upper bound (5) as follows:

≤2 ·
ℓ∑

r=1

fjr
(i|Si−1

jr
)

2r
. (6)

We note that the inequality in (6) follows since we assumed t ≤ ℓ, i.e., bidder k is among the
ℓ bidders with non-negative marginal values. Hence, the first sum in (5) can be extended to
include all ℓ bidders with non-negative marginal value. Finally, we note that (6) equals the
following by the definition of Algorithm 1:

=2 · E[P i|Ri−1].

Hence, we can conclude that E[Ki|Ri−1] ≤ 2 · E[P i|Ri−1] as desired.
We note that if t > ℓ then the latter inequality trivially holds (the above proof works

until (2) in which the first term is negative and thus can be dropped which implies that
E[Ki|Ri−1] ≤ E[P i|Ri−1] and hence that E[Ki|Ri−1] ≤ 2 · E[P i|Ri−1], since Pi is non-
negative). Thus, using the law of total expectation over all possible outcomes Ri−1 the proof
is complete. ◀

2.2 Deterministic Hardness
Proof of Theorem 2. We present an instance for which any online deterministic algorithm
cannot achieve a competitive ratio better than 1/M for every M > 0 versus an adversary. We
consider an instance with a single bidder B = {b} and two items N = {v1, v2}. The items
arrive according to their index in an online manner, i.e., item v1 is the first to arrive, and
item v2 is the second to arrive. Once item v1 arrives, any deterministic algorithm can query
f on subsets of elements that can contain only v1. Hence, we only need to define f on ∅ and
{v1}. We define f as follows: f(∅) = 0, f({v1}) = 1. How this utility function is extended to
a submodular function over all subsets of items depends on what the algorithm chooses to
do once item v1 arrives.

The first case is when the algorithm chooses not to assign v1 to b. In this case we extend
the above definition of f by setting the contribution of v2 to be linearly zero, i.e,, f({v2}) ≜ 0
and f({v1, v2}) ≜ 1. One can verify that the resulting utility function f is indeed submodular.
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In this case, the value of an optimal solution to the instance equals 1, since item v1 can be
assigned to bidder b by the optimal solution. However, every deterministic algorithm that
does not assign v1 to b has a value of 0. Thus, we conclude a competitive ratio of 0 in this
case.

The second case is when the algorithm chooses to assign v1 to bidder b. In this case
we extend the above definition of f as follows: f({v2}) ≜ M and f({v1, v2}) ≜ 0. One can
verify that the resulting utility function f is indeed submodular. In this case, the value of an
optimal solution to the instance equals M , since the optimal solution can choose to assign
only {v2} to b. However, every deterministic algorithm that assigns v1 to bidder b achieves a
value of at most 1. Thus, we conclude a competitive ratio of at most 1/M in this case.

In conclusion, for this instance, no deterministic algorithm can achieve any competitive
ratio better than 1/M in the online adversarial setting, for every constant M . ◀

3 Uniform Random Order Setting

In this section we focus on the uniform random order setting. Recall that it is known that
if the RRG algorithm provides an approximation of α for maximizing a general submodular
function given a partition matroid independence constraint, then it also provides an online
algorithm in the random order setting which achieves a competitive ratio of α (see brief
discussion in Section 1).

To simplify the presentation of our improved analysis, we present a “smooth” version
of the RRG algorithm of [10]. Though the analysis of the smoothed version is similar to the
original RRG (assuming enough iterations are performed), we believe it is easier to analyze
since all iterations have the same probabilistic distribution (whereas in the original RRG
this is not the case). For simplicity of presentation, we focus on the case the matroid is a
partition matroid (for a general matroid we defer to a full version of the paper). Recall that
this special case already captures SW.

3.1 Partition Matroid
We are given a partition matroid M = (N , I) over a ground set N which is partitioned
into disjoint non-empty sets P1, P2, . . . , Pk. The goal is to choose a subset S ⊆ I, i.e., S

contains at most one element from each set Pj , that maximizes a given non-negative (general)
submodular function f .

We call our algorithm smooth since the random choices of the algorithm are always
uniform, no matter how many iterations the algorithm performed so far. Specifically, the
smooth algorithm chooses in every iteration a part uniformly at random from all k parts
of N , and adds the best element in the chosen part assuming that part does not intersect
what the algorithm chose so far. The original RRG chooses a part uniformly at random from
parts that do not intersect what the algorithm chose so far, and adds the best element in the
chosen part. Thus, the number of iterations the smooth algorithm can perform is unlimited.
A formal description of the algorithm for partition matroids is given as Algorithm 2, and we
note that the number of iterations T is a parameter given to the algorithm. For a comparison
of Algorithm 2 and the original RRG we defer to to a full version of the paper.

Given any S ⊆ N , we denote the parts of the partition of N that do not intersect S by
I(S) ,i.e., I(S) ≜ {j = 1, ..., k|Pj ∩ S = ∅}. Without loss of generality, we assume every part
Pj is padded with a dummy element (a different dummy element for every Pj) that linearly
contributes zero to the objective f . Hence, without loss of generality, |OPT | = k, where we
denote by OPT an optimal solution to the problem: OPT ≜ arg max{f(S)|S ∈ I}.
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Algorithm 2 Smooth Residual Random Greedy (Partition Matroid).

S0 ← ∅.
for i = 1, ..., T do

Si ← Si−1.
Mi ←

⋃
j∈I(Si−1) {arg max {f (Si−1 ∪ {u})− f(Si−1)|u ∈ Pj}}.

Let j be a uniformly random number from {1, ..., k}.
if j ∈ I(Si−1) then

Let ui be the element from Pj in Mi and Si ← Si ∪ {ui}.
end

end
Return ST .

For every set S ∈ I we denote OS ≜ arg maxA{f(S ∪A)|S ∪A ∈ I, A ⊆ N \ S}, i.e., OS

is the best extension of S to an independent set. Recalling that every part Pj is padded with
a dummy element that linearly contributes zero to the objective implies that |OS | = k − |S|.
One should note that O∅ = OPT , and thus OS0 = OPT . Our analysis tracks f(OSi

∪ Si) as
Si changes throughout the algorithm. Intuitively, f(OSi

∪ Si) deteriorate as more elements
are added to Si. Building on the above intuition, the following two lemmas establish a system
of joint recursive formulas for E[f(Si)] and E [f (OSi ∪ Si)].

▶ Lemma 7. For every i = 1, . . . , T :

E [f(Si)]− E [f(Si−1)] ≥ 1
k
· E
[
f
(
OSi−1 ∪ Si−1

)
− f(Si−1)

]
.

Proof. Fix i = 1, . . . , T and condition on any possible realization of the choices of the
algorithm in the first i− 1 iterations. Thus, Si−1, Mi, and OSi−1 are deterministic and fixed
given this conditioning, and ui and Si are the only random variables. For the remainder of
the proof all the probabilities and expectations are conditioned on this possible realization.

E [f(Si)]− f(Si−1) = 1
k

∑
u∈Mi

{f(Si−1 ∪ {u})− f(Si−1)} (7)

≥ 1
k

∑
u∈OSi−1

{f (Si−1 ∪ {u})− f(Si−1)} (8)

≥ 1
k

{
f(Si−1 ∪OSi−1)− f(Si−1)

}
(9)

In the above, the equality in (7) follows from the algorithm’s definition. The inequality
in (8) follows from the greedy choice of Mi, and the inequality in (9) follows from the
submodularity of f . We conclude the proof by unfixing the conditioning and taking an
expectation over all possible such events (the law of total expectation). ◀

The following lemma provides a recursive formula for E[f(OSi
∪ Si)] whose novelty is

in the added contribution of f(Si−1). Without the added E [f(Si−1)] /k term the resulting
approximation will be 1/4 as in [10].

▶ Lemma 8. For every i = 1, . . . , T :

E [f (OSi
∪ Si)] ≥

(
1− 2

k

)
· E
[
f
(
OSi−1 ∪ Si−1

)]
+ 1

k
· E [f(Si−1)] .
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Proof. Fix i = 1, . . . , T and condition on any possible realization of the choices of the
algorithm in the first i − 1 iterations. Thus, Si−1, Mi, and OSi−1 are deterministic and
fixed given this conditioning, and ui, Si, and OSi

are the only random variables. For the
remainder of the proof all the probabilities and expectations are conditioned on this possible
realization.

For every element u ∈ Mi we denote by P (u) the index of the part of the partition of
N which u belongs to. Formally, P (u) = j if and only if u ∈ Pj . We define h : Mi −→ OSi−1

to be a bijection mapping every element u ∈Mi to an element of OSi−1 in such a way that
P (u) = P (h(u)). One should note that our assumption that every Pj contains a dummy
element that contributes zero to the objective implies that I(Si−1) = I(OSi−1), and hence h

is well defined. Thus,

E [f (OSi ∪ Si)]− f
(
OSi−1 ∪ Si−1

)
= 1

k

∑
u∈Mi

{f
(
Si−1 ∪ {u} ∪OSi−1∪{u}

)
− f

(
OSi−1 ∪ Si−1

)
} (10)

≥1
k

∑
u∈Mi

{f
(
Si−1 ∪ {u} ∪ (OSi−1 \ {h(u)})

)
− f

(
OSi−1 ∪ Si−1

)
}. (11)

In the above, the equality in (10) follows from the algorithm’s definition. The inequality in
(11) follows from the observation that OSi−1∪{u} is the best extension of Si−1 ∪ {u} whereas
OSi−1 \ {h(u)} is just an extension of Si−1 ∪ {u}, i.e.,

f(Si−1 ∪ {u} ∪OSi−1∪{u}) ≥ f(Si−1 ∪ {u} ∪ (OSi−1 \ {h(u)})).

We note that (11) equals the following:

= 1
k

∑
u∈Mi|u̸=h(u)

{f
(
Si−1 ∪ {u} ∪ (OSi−1 \ {h(u)})

)
− f

(
OSi−1 ∪ Si−1

)
}. (12)

The equality in (12) holds since if u = h(u) then {u} ∪ (OSi−1 \ {h(u)}) = OSi−1 , and
therefore summation can be reduced to all candidate elements u ∈Mi satisfying u ̸= h(u).
Moreover, we note that (12) can be lower bounded as follows:

≥1
k

∑
u∈Mi|u̸=h(u)

{f
(
Si−1 ∪ {u} ∪OSi−1

)
− f

(
Si−1 ∪OSi−1

)
}+ (13)

1
k

∑
u∈Mi|u̸=h(u)

{f
(
Si−1 ∪ (OSi−1 \ {h(u)})

)
− f

(
Si−1 ∪OSi−1

)
}.

The inequality in (13) follows from submodularity since summation is restricted only to
candidates u ∈Mi satisfying u ̸= h(u) and hence: f(Si−1∪{u}∪ (OSi−1 \{h(u)}))+f(Si−1∪
OSi−1) ≥ f(Si−1 ∪ {u} ∪OSi−1) + f(Si−1 ∪ (OSi−1 \ {h(u)})).

We further lower bound (13) in the following way:

≥1
k

∑
u∈Mi

{f
(
Si−1 ∪ {u} ∪OSi−1

)
− f

(
Si−1 ∪OSi−1

)
}+ (14)

1
k

∑
u∈Mi

{f
(
Si−1 ∪ (OSi−1 \ {h(u)})

)
− f

(
Si−1 ∪OSi−1

)
}.

When examining the inequality in (14) let us start with the first sum. We note that if
u = h(u) for some u ∈Mi then u ∈ OSi−1 , i.e., {u} ∪OSi−1 = OSi−1 . Thus, extending the
first sum to all u ∈ Mi (regardless of whether u equals h(u) or not) does not change the
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first sum. Focusing on the second sum, we note that for every u ∈Mi, regardless of whether
u equals h(u) or not, the following holds: f(Si−1 ∪ (OSi−1 \ {h(u)})) ≤ f(Si−1 ∪ OSi−1).
The reason for the latter is that OSi−1 is the best extension of Si−1 whereas OSi−1 \ {h(u)}
is some extension of Si−1. Hence, adding to the second sum all terms corresponding to
u ∈Mi, where u = h(u), can only decrease the second sum. Therefore, we conclude that the
inequality in (14) holds. Finally, we lower bound (14) as follows:

≥1
k
{f
(
Si−1 ∪OSi−1 ∪Mi

)
− f

(
Si−1 ∪OSi−1

)
}+ (15)

1
k
{f
(
Si−1 ∪OSi−1 \OSi−1

)
− f

(
Si−1 ∪OSi−1

)
}

≥1
k
{f(Si−1)− 2 ·

(
f
(
Si−1 ∪OSi−1

))
} (16)

The inequality in (15) follows from submodularity which implies the following two:∑
u∈Mi

{f
(
Si−1 ∪ {u} ∪ OSi−1

)
− f
(
Si−1 ∪ OSi−1

)
} ≥ f

(
Si−1 ∪ OSi−1 ∪ Mi

)
− f
(
Si−1 ∪ OSi−1

)
∑

u∈Mi

{f
(
Si−1 ∪ OSi−1 \ {h(u)}

)
− f
(
Si−1 ∪ OSi−1

)
} ≥ f

(
Si−1 ∪ OSi−1 \ OSi−1

)
− f
(
Si−1 ∪ OSi−1

)
.

We note that the inequality in (16) follows from the non-negativity of f which implies that:
f
(
Si−1 ∪OSi−1 ∪Mi

)
≥ 0 and the fact that Si−1 ∪OSi−1 \OSi−1 = Si−1.

We conclude the proof by unfixing the conditioning and taking an expectation over all
possible such events (the law of total expectation). ◀

The following lemma lower bounds the solution to the system of joint recursive formulas
presented in Lemmas 7 and 8 (its proof is deferred to a full version of the paper). For
simplicity of presentation we introduce two absolute constants: a ≜ (3−

√
5)/2 ≈ 0.381966

and b ≜ (3 +
√

5)/2 ≈ 2.61803.

▶ Lemma 9. For every i = 0, 1, . . . , T the following hold:

E[f(Si)] ≥
f(OPT )√

5

((
1− a

k

)i

−
(

1− b

k

)i
)

(17)

E [f(OSi ∪ Si)] ≥
f(OPT )

2
√

5

(
(
√

5− 1)
(

1− a

k

)i

+ (
√

5 + 1)
(

1− b

k

)i
)

. (18)

The following lemma establishes the approximation guarantee of Algorithm 2.

▶ Lemma 10. Algorithm 2 achieves an approximation ratio of at least 0.27493 for the
problem of maximizing a non-monotone submodular function subject to a partition matroid
independence constraint.

Proof. By our assumption of the existence of dummy elements, no element of Mi has a
negative marginal value, in any iteration i. We get that always for every i, f(Si) ≥ f(Si−1)
(note that this inequality holds for the random variables Si and Si−1). Therefore, it suffices
to show that E[f(Si)] ≥ 0.274 · f(OPT ) for some i = 1, . . . , T .

Observe that setting i = x∗k, where x∗ = ln(b/a)/
√

5 = ln
(
(3 +

√
5)/(3−

√
5)
)
/
√

5 ≈
0.86, alongside Lemma 9, implies that:

E[f(Sx∗k)] ≥ f(OP T )√
5

((
1 − a

k

)x∗k

−
(

1 − b

k

)x∗k
)

≥ f(OP T )√
5

(
e−x∗a − e−x∗b

)
. (19)
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The inequality above follows from the observation that (1− a/k)x∗k − (1− b/k)x∗k, as a
function of k, is monotone decreasing for every k ≥ 3 (the proof of this technical observation
is deferred to a full version of the paper). Thus, the inequality follows by taking the limit
k →∞. The lemma follows by plugging in the above values of a, b, and x∗. ◀

Proof of Theorem 3. Follows immediately from Lemma 10. ◀

References
1 Gagan Aggarwal, Gagan Goel, Chinmay Karande, and Aranyak Mehta. Online Vertex-

Weighted Bipartite Matching and Single-bid Budgeted Allocations, pages 1253–1264. SIAM,
2011. doi:10.1137/1.9781611973082.95.

2 Shipra Agrawal, Zizhuo Wang, and Yinyu Ye. A dynamic near-optimal algorithm for online
linear programming. Operations Research, 62(4):876–890, 2014.

3 Moshe Babaioff, Nicole Immorlica, and Robert Kleinberg. Matroids, secretary problems,
and online mechanisms. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’07, pages 434–443, USA, 2007. Society for Industrial and Applied
Mathematics.

4 Ashwinkumar Badanidiyuru and Jan Vondrák. Fast algorithms for maximizing submodular
functions. In Proceedings of the Twenty-fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’14, pages 1497–1514, 2014.

5 Siddharth Barman, Seeun Umboh, Shuchi Chawla, and David Malec. Secretary problems with
convex costs. In Artur Czumaj, Kurt Mehlhorn, Andrew Pitts, and Roger Wattenhofer, editors,
Automata, Languages, and Programming, pages 75–87, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg.

6 Mohammadhossein Bateni, Mohammadtaghi Hajiaghayi, and Morteza Zadimoghaddam. Sub-
modular secretary problem and extensions. ACM Trans. Algorithms, 9(4), October 2013.
doi:10.1145/2500121.

7 N. Buchbinder, M. Feldman, J. Naor, and R. Schwartz. A tight linear time (1/2)-approximation
for unconstrained submodular maximization. SIAM Journal on Computing, 44(5):1384–1402,
2015.

8 Niv Buchbinder and Moran Feldman. Constrained submodular maximization via a nonsym-
metric technique. Mathematics of Operations Research, 44(3):988–1005, 2019.

9 Niv Buchbinder, Moran Feldman, Yuval Filmus, and Mohit Garg. Online submodular maxim-
ization: Beating 1/2 made simple. Mathematical Programming, 183(1-2):149–169, 2020.

10 Niv Buchbinder, Moran Feldman, Joseph (Seffi) Naor, and Roy Schwartz. Submodular
maximization with cardinality constraints. In Proceedings of the Twenty-fifth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’14, pages 1433–1452, 2014.

11 Niv Buchbinder, Moran Feldman, and Roy Schwartz. Online submodular maximization with
preemption. ACM Trans. Algorithms, 15(3), June 2019. doi:10.1145/3309764.

12 Niv Buchbinder, Kamal Jain, and Joseph (Seffi) Naor. Online primal-dual algorithms for
maximizing ad-auctions revenue. In Lars Arge, Michael Hoffmann, and Emo Welzl, editors,
Algorithms – ESA 2007, pages 253–264, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

13 Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a submodular
set function subject to a matroid constraint (extended abstract). In Matteo Fischetti and
David P. Williamson, editors, Integer Programming and Combinatorial Optimization, pages
182–196, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

14 Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a monotone
submodular function subject to a matroid constraint. SIAM J. Comput., 40(6):1740–1766,
2011.

15 Deeparnab Chakrabarty and Gagan Goel. On the approximability of budgeted allocations
and improved lower bounds for submodular welfare maximization and gap. SIAM Journal on
Computing, 39(6):2189–2211, 2010. doi:10.1137/080735503.

ESA 2023

https://doi.org/10.1137/1.9781611973082.95
https://doi.org/10.1145/2500121
https://doi.org/10.1145/3309764
https://doi.org/10.1137/080735503


52:14 A Tight Competitive Ratio for Online Submodular Welfare Maximization

16 Nikhil R. Devanur and Thomas P. Hayes. The adwords problem: Online keyword matching
with budgeted bidders under random permutations. In Proceedings of the 10th ACM Conference
on Electronic Commerce, EC ’09, pages 71–78, New York, NY, USA, 2009. Association for
Computing Machinery. doi:10.1145/1566374.1566384.

17 Nikhil R Devanur, Zhiyi Huang, Nitish Korula, Vahab S Mirrokni, and Qiqi Yan. Whole-page
optimization and submodular welfare maximization with online bidders. ACM Transactions
on Economics and Computation (TEAC), 4(3):1–20, 2016.

18 Shahar Dobzinski, Noam Nisan, and Michael Schapira. Approximation algorithms for combinat-
orial auctions with complement-free bidders. Mathematics of Operations Research, 35(1):1–13,
2010. doi:10.1287/moor.1090.0436.

19 Shahar Dobzinski and Michael Schapira. An improved approximation algorithm for combinat-
orial auctions with submodular bidders. In Proceedings of the Seventeenth Annual ACM-SIAM
Symposium on Discrete Algorithm, SODA ’06, pages 1064–1073, USA, 2006. Society for
Industrial and Applied Mathematics.

20 E. B. Dynkin. The optimum choice of the instant for stopping a markov process, 1963.
21 Alina Ene and Huy L. Nguyen. Constrained submodular maximization: Beyond 1/e. In 2016

IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS), pages 248–257,
2016. doi:10.1109/FOCS.2016.34.

22 Alina Ene and Huy L. Nguyen. A nearly-linear time algorithm for submodular maximization
with knapsack, partition and graphical matroid constraints. CoRR, abs/1709.09767, 2018.

23 Uriel Feige. On maximizing welfare when utility functions are subadditive. SIAM Journal on
Computing, 39(1):122–142, 2009. doi:10.1137/070680977.

24 Uriel Feige, Vahab S. Mirrokni, and Jan Vondrák. Maximizing non-monotone submodular
functions. SIAM Journal on Computing, 40(4):1133–1153, 2011.

25 Uriel Feige and Jan Vondrak. Approximation algorithms for allocation problems: Improving
the factor of 1 - 1/e. In 2006 47th Annual IEEE Symposium on Foundations of Computer
Science (FOCS’06), pages 667–676, 2006. doi:10.1109/FOCS.2006.14.

26 Uriel Feige and Jan Vondrák. The submodular welfare problem with demand queries. Theory
of Computing, 6(11):247–290, 2010. doi:10.4086/toc.2010.v006a011.

27 Jon Feldman, Monika Henzinger, Nitish Korula, Vahab S Mirrokni, and Cliff Stein. Online
stochastic packing applied to display ad allocation. In European Symposium on Algorithms,
pages 182–194. Springer, 2010.

28 Jon Feldman, Nitish Korula, Vahab Mirrokni, S. Muthukrishnan, and Martin Pál. Online ad
assignment with free disposal. In Stefano Leonardi, editor, Internet and Network Economics,
pages 374–385, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

29 Jon Feldman, Aranyak Mehta, Vahab Mirrokni, and S. Muthukrishnan. Online stochastic
matching: Beating 1-1/e. In 2009 50th Annual IEEE Symposium on Foundations of Computer
Science, pages 117–126, 2009. doi:10.1109/FOCS.2009.72.

30 Moran Feldman. Maximizing symmetric submodular functions. ACM Transactions on
Algorithms (TALG), 13(3):1–36, 2017.

31 Moran Feldman, Joseph Naor, and Roy Schwartz. A unified continuous greedy algorithm
for submodular maximization. In 2011 IEEE 52nd Annual Symposium on Foundations of
Computer Science, pages 570–579, 2011. doi:10.1109/FOCS.2011.46.

32 Moran Feldman, Joseph (Seffi) Naor, and Roy Schwartz. Nonmonotone submodular maximiz-
ation via a structural continuous greedy algorithm. In ICALP, pages 342–353, 2011.

33 Moran Feldman, Ola Svensson, and Rico Zenklusen. A Simple O(log log(rank))-Competitive
Algorithm for the Matroid Secretary Problem, pages 1189–1201. SIAM, 2015. doi:10.1137/1.
9781611973730.79.

34 Shayan Oveis Gharan and Jan Vondrák. Submodular maximization by simulated annealing.
In Proceedings of the twenty-second annual ACM-SIAM symposium on Discrete Algorithms,
pages 1098–1116. SIAM, 2011.

https://doi.org/10.1145/1566374.1566384
https://doi.org/10.1287/moor.1090.0436
https://doi.org/10.1109/FOCS.2016.34
https://doi.org/10.1137/070680977
https://doi.org/10.1109/FOCS.2006.14
https://doi.org/10.4086/toc.2010.v006a011
https://doi.org/10.1109/FOCS.2009.72
https://doi.org/10.1109/FOCS.2011.46
https://doi.org/10.1137/1.9781611973730.79
https://doi.org/10.1137/1.9781611973730.79


A. Ganz, P. Nuti, and R. Schwartz 52:15

35 Gagan Goel and Aranyak Mehta. Online budgeted matching in random input models with
applications to adwords. In SODA, volume 8, pages 982–991. Citeseer, 2008.

36 Corinna Gottschalk and Britta Peis. Submodular function maximization on the bounded
integer lattice. In Approximation and Online Algorithms. Springer International Publishing,
2015.

37 Anupam Gupta, Aaron Roth, Grant Schoenebeck, and Kunal Talwar. Constrained non-
monotone submodular maximization: Offline and secretary algorithms. In Amin Saberi, editor,
Internet and Network Economics, pages 246–257, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg.

38 Christopher Harshaw, Ehsan Kazemi, Moran Feldman, and Amin Karbasi. The power of
subsampling in submodular maximization. Mathematics of Operations Research, 47(2):1365–
1393, 2022.

39 Xinran He and Yan Liu. Not enough data? joint inferring multiple diffusion networks via
network generation priors. In Proceedings of the Tenth ACM International Conference on Web
Search and Data Mining, WSDM ’17, pages 465–474, New York, NY, USA, 2017. Association
for Computing Machinery. doi:10.1145/3018661.3018675.

40 Bala Kalyanasundaram and Kirk R. Pruhs. An optimal deterministic algorithm for online b-
matching. Theoretical Computer Science, 233(1):319–325, 2000. doi:10.1016/S0304-3975(99)
00140-1.

41 Mikhail Kapralov, Ian Post, and Jan Vondrák. Online and stochastic variants of welfare
maximization. CoRR, abs/1204.1025, 2012. arXiv:1204.1025.

42 R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An optimal algorithm for on-line bipartite
matching. In Proceedings of the Twenty-Second Annual ACM Symposium on Theory of
Computing, STOC ’90, pages 352–358, New York, NY, USA, 1990. Association for Computing
Machinery. doi:10.1145/100216.100262.

43 Subhash Khot, Richard J. Lipton, Evangelos Markakis, and Aranyak Mehta. Inapproximability
results for combinatorial auctions with submodular utility functions. In Proceedings of the
First International Conference on Internet and Network Economics, WINE’05, pages 92–101,
2005.

44 Samir Khuller, Anna Moss, and Joseph (Seffi) Naor. The budgeted maximum coverage problem.
Information Processing Letters, 70(1):39–45, 1999. doi:10.1016/S0020-0190(99)00031-9.

45 Robert Kleinberg. A multiple-choice secretary algorithm with applications to online auctions.
In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’05, pages 630–631, USA, 2005. Society for Industrial and Applied Mathematics.

46 Nitish Korula, Vahab Mirrokni, and Morteza Zadimoghaddam. Online submodular welfare
maximization: Greedy beats 1/2 in random order. SIAM Journal on Computing, 47(3):1056–
1086, 2018. doi:10.1137/15M1051142.

47 Andreas Krause and Carlos Guestrin. A note on the budgeted maximization of submodular
functions. Technical Report CMU-CALD-05-103, 2005.

48 Ariel Kulik, Hadas Shachnai, and Tami Tamir. Approximations for monotone and nonmonotone
submodular maximization with knapsack constraints. Math. Oper. Res., 38(4):729–739,
November 2013.

49 Oded Lachish. O(log log rank) competitive ratio for the matroid secretary problem. In 2014
IEEE 55th Annual Symposium on Foundations of Computer Science, pages 326–335, 2014.
doi:10.1109/FOCS.2014.42.

50 Jon Lee, Vahab S Mirrokni, Viswanath Nagarajan, and Maxim Sviridenko. Maximizing
nonmonotone submodular functions under matroid or knapsack constraints. SIAM Journal on
Discrete Mathematics, 23(4):2053–2078, 2010.

51 Jon Lee, Maxim Sviridenko, and Jan Vondrák. Submodular maximization over multiple
matroids via generalized exchange properties. Math. Oper. Res., 35(4):795–806, November
2010.

ESA 2023

https://doi.org/10.1145/3018661.3018675
https://doi.org/10.1016/S0304-3975(99)00140-1
https://doi.org/10.1016/S0304-3975(99)00140-1
https://arxiv.org/abs/1204.1025
https://doi.org/10.1145/100216.100262
https://doi.org/10.1016/S0020-0190(99)00031-9
https://doi.org/10.1137/15M1051142
https://doi.org/10.1109/FOCS.2014.42


52:16 A Tight Competitive Ratio for Online Submodular Welfare Maximization

52 Benny Lehmann, Daniel Lehmann, and Noam Nisan. Combinatorial auctions with decreasing
marginal utilities. In Proceedings of the 3rd ACM Conference on Electronic Commerce, EC
’01, pages 18–28, 2001.

53 Hui Lin and Jeff Bilmes. Multi-document summarization via budgeted maximization of
submodular functions. In Human Language Technologies: The 2010 Annual Conference of
the North American Chapter of the Association for Computational Linguistics, pages 912–920,
2010.

54 Hui Lin and Jeff Bilmes. A class of submodular functions for document summarization. In
Proceedings of the 49th annual meeting of the association for computational linguistics: human
language technologies, pages 510–520, 2011.

55 Shengzhong Liu, Zhenzhe Zheng, Fan Wu, Shaojie Tang, and Guihai Chen. Context-aware
data quality estimation in mobile crowdsensing. In IEEE INFOCOM 2017 - IEEE Conference
on Computer Communications, pages 1–9, 2017. doi:10.1109/INFOCOM.2017.8057033.

56 Tengyu Ma, Bo Tang, and Yajun Wang. The simulated greedy algorithm for several submodular
matroid secretary problems. Theory of Computing Systems, 58(4):681–706, May 2016. doi:
10.1007/s00224-015-9642-4.

57 Mohammad Mahdian and Qiqi Yan. Online bipartite matching with random arrivals: An
approach based on strongly factor-revealing lps. In Proceedings of the 43rd ACM Symposium
on Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, STOC ’11,
pages 597–606, New York, NY, USA, 2011. Association for Computing Machinery. doi:
10.1145/1993636.1993716.

58 Aranyak Mehta, Amin Saberi, Umesh Vazirani, and Vijay Vazirani. Adwords and generalized
online matching. J. ACM, 54(5):22–es, October 2007. doi:10.1145/1284320.1284321.

59 Baharan Mirzasoleiman, Stefanie Jegelka, and Andreas Krause. Streaming non-monotone
submodular maximization: Personalized video summarization on the fly. In Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications
of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in
Artificial Intelligence, AAAI’18/IAAI’18/EAAI’18. AAAI Press, 2018.

60 G. L. Nemhauser and L. A. Wolsey. Best algorithms for approximating the maximum
of a submodular set function. Mathematics of Operations Research, 3(3):177–188, 1978.
doi:10.1287/moor.3.3.177.

61 G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for
maximizing submodular set functions–i. Math. Program., 14(1):265–294, December 1978.
doi:10.1007/BF01588971.

62 Noam Nisan and Ilya Segal. The communication requirements of efficient allocations and
supporting prices. Journal of Economic Theory, 129(1):192–224, 2006. doi:10.1016/j.jet.
2004.10.007.

63 Xinghao Pan, Stefanie Jegelka, Joseph E Gonzalez, Joseph K Bradley, and Michael I Jordan.
Parallel double greedy submodular maximization. In Z. Ghahramani, M. Welling, C. Cortes,
N. D. Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information Processing
Systems 27, pages 118–126. Curran Associates, Inc., 2014.

64 Ramakumar Pasumarthi, Ramasuri Narayanam, and Balaraman Ravindran. Near optimal
strategies for targeted marketing in social networks. In Proceedings of the 2015 International
Conference on Autonomous Agents and Multiagent Systems, AAMAS ’15, pages 1679–1680,
Richland, SC, 2015. International Foundation for Autonomous Agents and Multiagent Systems.

65 Paulo Shakarian, Joseph Salmento, William Pulleyblank, and John Bertetto. Reducing gang
violence through network influence based targeting of social programs. In Proceedings of
the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’14, pages 1829–1836, 2014.

66 Maxim Sviridenko. A note on maximizing a submodular set function subject to a knapsack
constraint. Oper. Res. Lett., 32(1):41–43, January 2004.

https://doi.org/10.1109/INFOCOM.2017.8057033
https://doi.org/10.1007/s00224-015-9642-4
https://doi.org/10.1007/s00224-015-9642-4
https://doi.org/10.1145/1993636.1993716
https://doi.org/10.1145/1993636.1993716
https://doi.org/10.1145/1284320.1284321
https://doi.org/10.1287/moor.3.3.177
https://doi.org/10.1007/BF01588971
https://doi.org/10.1016/j.jet.2004.10.007
https://doi.org/10.1016/j.jet.2004.10.007


A. Ganz, P. Nuti, and R. Schwartz 52:17

67 Erik Vee, Sergei Vassilvitskii, and Jayavel Shanmugasundaram. Optimal online assignment
with forecasts. In Proceedings of the 11th ACM conference on Electronic commerce, pages
109–118, 2010.

68 J. Vondrák. Symmetry and approximability of submodular maximization problems. SIAM
Journal on Computing, 42(1):265–304, 2013.

69 Jan Vondrák. Optimal approximation for the submodular welfare problem in the value oracle
model. In Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing,
STOC ’08, pages 67–74, 2008.

70 Jan Vondrák, Chandra Chekuri, and Rico Zenklusen. Submodular function maximization via
the multilinear relaxation and contention resolution schemes. In Proceedings of the forty-third
annual ACM symposium on Theory of computing, pages 783–792, 2011.

ESA 2023





First Order Logic and Twin-Width in Tournaments
Colin Geniet #

Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France

Stéphan Thomassé #

Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France

Abstract
We characterise the classes of tournaments with tractable first-order model checking. For every
hereditary class of tournaments T , first-order model checking either is fixed parameter tractable, or
is AW[∗]-hard. This dichotomy coincides with the fact that T has either bounded or unbounded
twin-width, and that the growth of T is either at most exponential or at least factorial. From the
model-theoretic point of view, we show that NIP classes of tournaments coincide with bounded
twin-width. Twin-width is also characterised by three infinite families of obstructions: T has bounded
twin-width if and only if it excludes at least one tournament from each family. This generalises
results of Bonnet et al. on ordered graphs.

The key for these results is a polynomial time algorithm which takes as input a tournament T

and computes a linear order < on V (T ) such that the twin-width of the birelation (T, <) is at most
some function of the twin-width of T . Since approximating twin-width can be done in FPT time for
an ordered structure (T, <), this provides a FPT approximation of twin-width for tournaments.
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1 Introduction

Tournaments can represent the outcome of a ranking of candidates, which need not be a
total order. E.g., in the Condorcet voting paradox, three referees whose preference lists
are (A, B, C), (B, C, A), and (C, A, B), lead to a cycle A← B ← C ← A in the preference
relation. Classical algorithmic problems arise from trying to choose a subset of winners: the
Dominating Set (DS) problem asks for a subset D which is preferred to any other candidate,
i.e. for any y ̸∈ D, there is some x ∈ D which is preferred to y; and the Feedback Vertex
Set (FVS) problem asks to build a preference order by ignoring a subset of candidates.

These problems can be parameterized by the size k of the desired solution. A problem is
fixed parameter tractable (FPT) if it admits an algorithm running in time O(f(k) · nc), for
some function f and constant c. It is known that FVS is FPT for tournaments [18], whereas
DS is unlikely to be FPT. However general tournaments may not be representative of usual
instances: for example, majority voting tournaments with a fixed number r of referees form a
very restricted class. A cornerstone paper by Alon et al. [2], based on Vapnik-Chervonenkis
dimension, shows that k-DS is trivially FPT on r-majority tournaments, because the size of
a minimum dominating set is bounded by f(r). This exemplifies how difficult problems can
become easy on restricted classes, here bounded VC-dimension.
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53:2 First Order Logic and Twin-Width in Tournaments

To put these questions in a much broader perspective, remark that the previous problems
can be expressed in first-order logic (FO). A k-DS is described by the formula

∃x1, x2, . . . , xk.∀y. (y = x1) ∨ (y → x1) ∨ · · · ∨ (y = xk) ∨ (y → xk).

That k-FVS is also expressible in first-order logic is only true in tournaments, and not in
general graphs. It is based on the simple remark that a tournament is acyclic if and only if it
is transitive, i.e. it has no directed 3-cycle, which is easily expressed in FO. Thus k-DS and
k-FVS are instances of the FO Model Checking (or FOMC) problem: given as input a
tournament T and a first-order formula ϕ, does T satisfies ϕ? FO model checking is difficult
on the class of all graphs [12], and using back-and-forth FO encodings, one can show that it
is just as hard on tournaments. We investigate which subclasses of tournaments admit an
FPT algorithm for FO model checking.

1.1 Main results
We prove a dichotomy: in any class T of tournaments (closed under subtournaments),
FOMC is either FPT or AW[∗]-complete. The key of this dichotomy is twin-width (tww), a
complexity parameter introduced by Bonnet et al. [7]: FOMC in T is FPT if T has bounded
twin-width, and AW[∗]-complete otherwise. This dichotomy coincides with a model theoretic
characterisation: the class T has bounded twin-width if and only if it is NIP, meaning that
arbitrary graphs cannot be described from tournaments in T through a fixed FO formula.
This equivalence of twin-width and NIP, called delineation, was conjectured for tournaments
in [4]. The equivalence between NIP and FPT FO model checking also confirms the nowhere
FO dense conjecture of Gajarský et al. [15] for tournaments.

Furthermore, the dichotomy for FO model checking coincides with a gap in the growth
function of the class T , i.e. the number of tournaments of T on n vertices up to isomorphism.
If T has bounded twin-width, then its growth is at most 2O(n), whereas it is at least
(⌊n/2⌋ − 1)! when twin-width is unbounded. This exponential/factorial gap generalises
the Marcus-Tardos theorem on permutations avoiding a fixed pattern [19]. It may also be
compared to results of Boudabbous and Pouzet [9] which show that hereditary classes of
tournaments have growth either at most polynomial or at least exponential.

▶ Theorem 1.1. Let T be a hereditary class of tournaments. Under the assumption FPT ̸=
AW[∗], the following are equivalent:
1. T has bounded twin-width,
2. FO model checking in T is FPT,
3. FO model checking in T is not AW[∗]-complete,
4. T does not FO interpret the class of all graphs,
5. T is monadically NIP, i.e. does not FO transduce all graphs,
6. the growth of T is at most cn for some constant c,
7. the growth of T is less than (

⌊
n
2

⌋
− 1)!.

These equivalences are completed by three minimal classes of obstructions, characterising
twin-width by excluded substructures. These obstructions encode arbitrary permutations.

▶ Theorem 1.2. There are three hereditary classes F=,F⩽,F⩾ such that a hereditary class T
of tournaments has unbounded twin-width if and only if one of F=,F⩽,F⩾ is a subclass of T .

Finally, we show that there is a fixed parameter tractable algorithm which approximates
twin-width of tournaments up to some function.
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▶ Theorem 1.3. There is a function f : N→ N and an FPT algorithm, which given as input
a tournament T , produces either a witness tww(T ) ⩽ f(k), or a witness that tww(T ) ⩾ k.

These results can be generalised to oriented graphs with bounded independence number,
and to relational structures consisting of a tournament augmented by arbitrary binary
relations, see the full version of this paper.

1.2 Overview of the proof
A fundamental idea regarding twin-width is that upper bounds on twin-width can be witnessed
by orders on vertices which exclude grid-like structures in the adjacency matrix. This appears
in the founding works of Guillemot and Marx [17] and Bonnet et al. [7], and the relation
between twin-width and orders has been deeply explored in [6]. However it is difficult to
witness lower bounds on twin-width with this approach: one needs to somehow prove that all
orders contain grids. To this purpose, we want to construct in any tournament T an order <

which, if T has small twin-width, is a witness of this fact, i.e. tww(T, <) ⩽ f(tww(T )).
A tentative approach to obtain such an order is to describe it in FO logic. Indeed, FO

transductions preserve twin-width up to some function [7, Theorem 39]. Thus, if Φ is a
transduction which on any tournament T gives some order <, then tww(T, <) ⩽ f(tww(T ))
as desired. With a few additional requirements, such as < being efficiently computable, it
would be straightforward to obtain our results from the case of ordered graphs [6]. However
this approach is impossible: to transduce a total order on the iterated lexicographic product
of the 3-cycle with itself, one needs a first-order formula with size increasing in the number
of iterations [3]. Remark that this counter-example has twin-width 1.

Instead, our approach is the following: we design a candidate total order < on T ,
computable in polynomial time. If the bi-relation (T, <) has small twin-width, we are done.
On the other hand, if (T, <) has large twin-width, then its adjacency matrix w.r.t. < must
contain a large high-rank grid by [6]. We then extract a subtournament T ′ ⊂ T which still
has a substantial (but logarithmically smaller) high-rank grid, and in which < is roughly
described by a FO transduction. This is enough to witness that T has large twin-width. Using
Ramsey arguments, we extract from T ′ an obstruction F=, F⩽, or F⩾. The construction of
the order is remarkably simple: we consider a binary search tree (BST), i.e. a tree in which
the left, resp. right, branch of a node x consists only of in-, resp. out-neighbours of x. The
order < is the left-to-right order on nodes of the tree. To summarize, the crucial property is

▶ Lemma 1.4. There is a function f such that for any tournament T and BST order <

on T , tww(T, <) ⩽ f(tww(T )).

Lemma 1.4 implies Theorem 1.3: to approximate the twin-width of T , it suffices to compute
any BST order, which takes polynomial time, and then apply the approximation algorithm
for ordered structures [6, Theorem 2], which is FPT. This last algorithm produces either a
contraction sequence (which is valid for (T, <) and a fortiori for T ), or a witness that (T, <)
has large twin-width, which in turn implies that T has large twin-width by Lemma 1.4.

Our main technical result is about extracting the obstructions F=,F⩽,F⩾.

▶ Theorem 1.5. Let T be a hereditary class of tournaments with the property that there
are tournaments T ∈ T and BST orders < such that tww(T, <) is arbitrarily large. Then T
contains one of the classes F=,F⩽,F⩾ as a subclass.

Finally, the classes F=,F⩽,F⩾ are complex in all the senses considered by Theorem 1.1.
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▶ Theorem 1.6. For each R ∈ {=,⩽,⩾}, the class FR

1. has unbounded twin-width;
2. contains at least (

⌊
n
2

⌋
− 1)! tournaments on n vertices counted up to isomorphism;

3. contains at least (
⌊

n
2

⌋
−1)! ·n! tournaments on vertex set {1, . . . , n} counted up to equality;

4. efficiently interprets the class of all graphs;
5. and has AW[∗]-hard FO model checking problem.

Theorems 1.5 and 1.6 together imply Theorem 1.2. They also imply Lemma 1.4 when
applied to the class of tournaments with twin-width at most k: this class cannot contain
any of F=,F⩽,F⩾, hence its tournaments must still have bounded twin-width when paired
with BST orders. Finally, Theorems 1.2 and 1.6 directly imply that if T is a hereditary class
with unbounded twin-width, then T satisfies none of the conditions of Theorem 1.1. The
remaining implications of Theorem 1.1 – that is, when T has bounded twin-width, all other
conditions hold – follow from known results on twin-width. By [7, Theorem 1], FO model
checking has an FPT algorithm when a witness of bounded twin-width is given. Combined
with Theorem 1.3, this gives an FPT algorithm for classes of tournaments with bounded twin-
width. By [7, Theorem 39], a class of structures with bounded twin-width cannot transduce
all graphs. Finally, by [8, Corollary 7.3], a class of structures with bounded twin-width
contains at most cn structures on n vertices up to isomorphism, for some constant c.

1.3 Context and related parameters

It is interesting to compare twin-width to other classical complexity measures for tournaments.
Bounded twin-width implies bounded VC-dimension, since classes with unbounded VC-
dimension contain all possible bipartite subgraphs, which is against single-exponential growth.
Cutwidth was introduced by Chudnovsky, Fradkin and Seymour [11] to study tournament
immersions. Bounded cutwidth is certified by a vertex ordering which can be shown to
exclude grids, hence it is also a witness of bounded twin-width. Another parameter, closely
related to subdivisions in tournaments, is pathwidth, studied by Fradkin and Seymour [14].
Bounded pathwidth of tournaments implies bounded cliquewidth, which in turn also implies
bounded twin-width, see [7]. Thus, we have the following chain of inclusions (if a parameter
is bounded, all the ones listed after are also bounded): cutwidth, pathwidth, cliquewidth,
twin-width, and VC-dimension. For more on the subject, see Fomin and Pilipczuk [13, 21].

Regarding the binary search tree method for ordering tournaments, it corresponds to
the KwikSort algorithm of Ailon, Charikar and Newman for approximating the minimum
feedback arc set [1]. A difference is that their result requires the BST to be randomly chosen,
whereas arbitrary BST provide approximations of twin-width.

1.4 Organisation of the paper

Section 2 summarises our definitions and notations. In section 3 the classes F=,F⩽,F⩾

of obstructions to twin-width are defined, and we prove Theorem 1.6. Section 4 defines
binary search trees, the associated orders, and some related notions. We then prove a crucial
lemma which, from a partition into intervals of a BST order, extracts some FO definable
substructure. Section 5 proves Lemma 1.4 using the former lemma, combined with results
of [6]. See the extended version of this paper [16] for the full proof of Theorem 1.5, which
builds on that of Lemma 1.4.
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2 Preliminaries

This section summarizes the notions and notations used in this work. For n ∈ N, we denote
by [n] the interval of integers {1, . . . , n}.

2.1 Tournaments, relational structures
A tournament T consists of a set of vertices V (T ), and for each u ̸= v ∈ V (T ), an arc
oriented either u → v or v → u (but not both). If x ∈ V (T ), then N+(x) = {y | x→ y}
and N−(x) = {y | y → x} are the in- and out-neighbourhood respectively. A tournament is
transitive if it contains no directed cycle, in which case it defines a total order on its vertices.
We call chain a subset X ⊂ V (D) which induces a transitive tournament.

Relational structures generalise graphs and tournaments. A relational signature is a
finite set Σ of relation symbols R, each with an arity r ∈ N. A Σ-structure consists of a
domain A (vertices), and for each symbol R ∈ Σ of arity r, an interpretation RS ⊆ Ar

(hyperedges). E.g., tournaments and graphs are structures over a signature with a single
binary relation. We restrict ourselves to binary structures, i.e. where all relation symbols
have arity 2. An ordered structure S is a structure over a relation Σ with a special symbol <,
whose interpretation <S is a total order on the domain of S.

If S is a structure with domain A and B ⊆ A, the substructure S[B] induced by B

has domain B, and interprets each relation R as the restriction of RS to B. All classes of
structures considered here are hereditary, i.e. closed under induced substructures.

2.2 Matrices
A matrix is a map M : R× C → Γ, where R, C are the ordered sets of rows and columns of
the matrix, and Γ and its alphabet (usually, Γ = {0, 1}). A submatrix of M is the restriction
of M to some subsets of rows and columns. A division D of M consist of partitions R, C of
the rows and columns respectively into intervals. It is a k-division if the partitions have k

parts each. A cell of the division is the submatrix induced by X × Y for some X ∈ R, Y ∈ C.
A k-grid in a 0,1-matrix is a division in which every cell contains a “1”.

For a tournament T and a total order < on V (T ), the adjacency matrix A(T,<) has V (T )
ordered by < as rows and columns, and contains a “1” at position (u, v) if and only if u→ v.
This generalises to binary structures over any signature Σ, with {0, 1}Σ as alphabet.

2.3 Orders, Quasi-orders
A quasi-order ⪯ is a reflexive and transitive binary relation. The associated equivalence
relation is x ∼ y iff x ⪯ y ∧ y ⪯ x. The strict component of the quasi-order is x ≺ y iff
x ⪯ y and y ̸⪯ x. The quasi-order is total if for all x, y, either x ⪯ y or y ⪯ x. An interval
of a quasi-order ⪯ is a set of the form {z | x ⪯ z ⪯ y} for some x, y, called endpoints. An
interval is a union of equivalence classes of ∼. Two subsets X, Y are overlapping if there
exist x1, x2 ∈ X and y1, y2 ∈ Y such that x1 ⪯ y1 and x2 ⪰ y2. Equivalently, X, Y are
non-overlapping iff there are disjoint intervals IX ,IY such that X ⊆ IX and Y ⊆ IY .

2.4 Permutations
We denote by Sn the group of permutations on n elements. The permutation matrix Mσ

has a “1” at position (i, j) if and only if j = σ(i). A permutation τ is a pattern of σ if Mτ is
a submatrix of Mσ. We say that σ contains a k-grid if Mσ contains a k-grid. When this is
the case, any permutation in Sk is a pattern of σ. For example, the permutation σ on k2

elements defined by σ(ki + j + 1) = kj + i + 1 for any 0 ⩽ i, j < k contains a k-grid.
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A permutation can be represented as a bi-order, i.e. the superposition of two total orders.
Precisely, for σ ∈ Sn, the structure Oσ has domain [n], and has for relations the natural
order <, and the permuted order <σ defined as i <σ j if and only if σ(i) < σ(j). Any bi-order
is isomorphic to some Oσ. Remark that τ is a pattern of σ if and only if Oτ is isomorphic to
an induced substructure of Oσ. We write OS for the class of all finite bi-orders.

2.5 Twin-width
Twin-width, denoted e.g. tww(G), is a complexity parameter defined on graphs, and more
generally on binary structures. We refer the reader to [7] for the definition, based on
contraction sequences – it will not be used in this work. Instead, we rely on the following
characterisation by grid-like structures in adjacency matrices. Recall that a division of a
matrix is a partition of rows and columns into intervals. We say that a matrix is k-diverse if
it contains at least k different rows and k different columns – which is equivalent to having
rank at least k′ up to single-exponential bounds. Then, a rank-k division is a k-division in
which every cell is k-diverse. Bonnet et al. proved

▶ Theorem 2.1 ([6, Theorem 2]). There are functions f, g such that for any graph (or binary
structure) G and any order < on V (G),

if tww(G, <) ⩾ f(k) then the matrix A(G,<) has a rank-k division, and
if the matrix A(G,<) has a rank-g(k) division, then tww(G, <) ⩾ k.

Furthermore there is an FPT algorithm which given G, <, and k, finds either a rank-k
division in A(G,<) or a contraction sequence of width f(k) for (G, <).

2.6 First-order logic
Recall from the introduction that we are interesting in FO Model Checking: given as
input a structure S and a first-order formula ϕ, test if S |= ϕ. We consider the complexity of
this problem parametrized by the size |ϕ|. In general, this problem is AW[∗]-complete.

▶ Theorem 2.2 ([12]). FO Model Checking is AW[∗]-complete on the class of all graphs.

On the other hand, FO model checking is FPT for classes of structures with bounded
twin-width, as long as a witness of twin-width is given.

▶ Theorem 2.3 ([7, Theorem 1]). Given a binary structure S on n vertices, a contraction
sequence of width k for S, and a FO formula ϕ, one can test if S |= ϕ in time f(k, ϕ) · n.

Interpretations are transformations of structures described using logical formulæ. For
two relational signatures Σ, ∆, a FO interpretation Φ from Σ to ∆ consists of, for each
relation R ∈ ∆ of arity r, a FO formula ϕR(x1, . . . , xr) over the language Σ, and one last
formula ϕdom(x) again over Σ. If S is a Σ-structure, the result Φ(S) is obtained by

choosing the same domain as S,
interpreting R ∈ ∆ as {(v1, . . . , vr) | S |= ϕR(v1, . . . , vr)}, the tuples satisfying ϕR,
and finally taking the substructure induced by {v | S |= ϕdom(v)}.

For instance, the square of a graph G has the same vertices as G, with an edge xy iff the
distance of x and y in G is at most 2. This is a FO interpretation with edges defined by

ϕ(x, y) = E(x, y) ∨ (∃z. E(x, z) ∧ E(z, y))

where E(x, x) denotes adjacency. The domain formula just “true” since we do not wish to
delete vertices in this case. FO interpretations are closed under composition.
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Transductions generalise interpretation with a non-deterministic coloring step. Let Σ+

be the signature obtained by adding r new unary relations C1, . . . , Cr to Σ. If S is a
Σ-structure, we denote by S+ the set of Σ+-structures obtained from S by choosing an
arbitrary interpretation of each Ci as a subset of V (S). Now a FO transduction Φ : Σ→ ∆ is
described by the choice of Σ+ augmenting Σ with unary relations, and a FO interpretation ΦI

from Σ+ from ∆. The result of Φ is the set of ∆-structures Φ(S) = {ΦI(T ) | T ∈ S+}. That
is, the interpretation of the unary relations C1, . . . , Cr on S are chosen non-deterministically,
and then ΦI is applied.1 Like interpretations, transductions can be composed.

Given classes C,D of structures, we say that C interprets (resp. transduces) D if there is
a FO interpretation (resp. transduction) Φ such that Φ(C) ⊇ D. We furthermore say that C
efficiently interprets D if there is also an algorithm which given as input D ∈ D, finds in
polynomial time some C ∈ C such that Φ(C) = D. It is straightforward to show that this
additional condition gives an FPT reduction for model checking.

▶ Lemma 2.4. If C efficiently interprets D, then there is an FPT reduction from FO Model
Checking on D to FO Model Checking on C.

Recall that OS denotes the class of bi-orders, which are encodings of permutations. The
following is a folklore result, see e.g. [6, Lemma 10] for a very similar claim.

▶ Lemma 2.5. The class OS of bi-orders efficiently interprets the class of all graphs.

Thus, using Lemma 2.4 and Theorem 2.2, FO Model Checking on OS is AW[∗]-complete.
FO transductions also preserve twin-width, up to some function.

▶ Theorem 2.6 ([7, Theorem 39]). If S is a class of binary structures with bounded twin-width
and Φ is a FO transduction defined on S, then Φ(S) also has bounded twin-width.

A class of structures S is said to be monadically NIP if S does not transduce the class of
all graphs. Theorem 2.6 implies that classes with bounded twin-width are monadically NIP.
The weaker notion of (non-monadically) NIP also exists, however Braunfeld and Laskowski
recently proved that NIP and monadically NIP are equivalent for hereditary classes [10].

2.7 Enumeration
A class S of graphs (or binary relational structures) is small if there exists c such that S
contains at most cn · n! structures on the vertex set [n]. For instance, the class of trees is
small, and more generally proper minor closed classes of graphs are small as shown by Norine
et al. [20]. This was further generalised to classes of bounded twin-width by Bonnet et al.

▶ Theorem 2.7 ([5, Theorem 2.4]). Classes of structures with bounded twin-width are small.

3 Forbidden classes of tournaments

This section defines the three minimal classes F=, F⩽, and F⩾ of obstructions to twin-width
in tournaments. Each of them corresponds to some encoding of the class of all permutations.
For R ∈ {=,⩽,⩾} and any permutation σ, we will define a tournament FR(σ). The class FR

is the hereditary closure of all FR(σ).

1 Additional operations such as duplication of vertices are often allowed in transductions, but these will
not be needed in this work.
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x1 y1

x2 y2

x3 y3

x4 y4

x5 y5

F=(σ)

x1 y1

x2 y2

x3 y3

x4 y4

x5 y5

F⩽(σ)

x1 y1

x2 y2

x3 y3

x4 y4

x5 y5

F⩾(σ)

Figure 1 The three classes of obstructions to twin-width in tournaments. For readability, edges
oriented from some xi to some yj have been omitted. Each class consists of some encoding of the
class of all permutations, represented here with the permutation σ = 31452.

Let R ∈ {=,⩽,⩾}, and let σ ∈ Sn be a permutation on n elements. The tourna-
ment FR(σ) consists of 2n vertices, called x1, . . . , xn, y1, . . . , yn. Let X = {x1, . . . , xn} and
Y = {x1, . . . , yn}. Each of X, Y is a chain under the natural order, i.e. there is an edge
from xi to xj , resp. from yi to yj , if and only if i < j. The edges between X and Y encode σ

in a way specified by the relation R: there is an edge oriented from yj to xi if and only if
i R σ−1(j). See Figure 1 for an example.

Thus in F=(σ) the edges oriented from Y to X form a matching which encodes σ.
In F⩽(σ) and F⩾(σ), these edges form a half-graph which orders X and Y by inclusion of
neighbourhoods, so that the order on X is the natural one, and the order on Y encodes σ.
Precisely, in F⩾(σ), for any i, j ∈ [n], we have(

N−(xi) ∩ Y
)
⊆

(
N−(xj) ∩ Y

)
⇐⇒ i ⩽ j (1)

and
(
N−(yi) ∩X

)
⊆

(
N−(yj) ∩X

)
⇐⇒ σ−1(i) ⩽ σ−1(j), (2)

while in F⩽(σ), the direction of inclusions is reversed.

▶ Lemma 3.1. For each R ∈ {=,⩽,⩾}, the class FR efficiently interprets the class OS of
bi-orders. Precisely, there is an interpretation ΦR, and for any permutation σ ∈ Sn, n ⩾ 2,
there is a σ′ ∈ Sn+1 computable in polynomial time such that Oσ = ΦR(FR(σ′)).

Proof. We will first show that FR(σ) transduces Oσ, and then how to remove the coloring
step of the transduction by slightly extending σ.

Let X = {x1, . . . , xn} and Y = {y1, . . . , yn} be as in the definition of FR(σ). The
transduction uses coloring to guess the set X. It then defines two total orders on Y , which
together describe σ. The first ordering is given by the direction of edges inside Y . The
second depends on R:

If R is =, edges oriented from Y to X are a perfect matching. The direction of edges
in X, interpreted through this matching, defines the second order on Y .
If R is ⩾ or ⩽, the second order is inclusion, respectively inverse inclusion, of in-
neighbourhoods intersected with X, see (2).

With the knowledge of which subset is X, each of these orders is clearly definable with a
first-order formula. Finally, the transduction deletes vertices of X, leaving only Y and the
two orders which encode σ.
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Let us now show how to deterministically define the partition X, Y , at the cost of
extending σ with one fixed value. Here, we assume n ⩾ 2.

If R is =, define σ′ ∈ Sn+1 by σ′(n + 1) = n + 1 and σ′(i) = σ(i) for any i ⩽ n. Then,
in F=(σ′), the unique vertex with out-degree 1 is yn+1. Its out-neighbour is xn+1, which
verifies X = N−(xn+1) ∪ {xn+1} \ {yn+1}.
If R is ⩽, define σ′(1) = n + 1 and σ′(i + 1) = σ(i). Then yn+1 is the unique vertex with
out-degree 1, and its out-neighbour is x1, which satisfies X = N+(x1) ∪ {x1}.
If R is ⩾, we once again define σ′(1) = n+1 and σ′(i+1) = σ(i). Then x1 has in-degree 1,
and its in-neighbour is yn+1. The only other vertex which may have in-degree 1 is y1,
and this happens if and only if σ′(2) = 1. When this is the case, the direction of the
edge x1 → y1 still allows to distinguish x1 in FO logic. Then, having defined x1, we
obtain yn+1 as its in-neighbour, which satisfies X = N+(yn+1).

In all three cases, FR(σ′) contains two extra vertices compared to FR(σ). These extra
vertices can be uniquely identified in first-order logic, and can then be used to define X.
Combined with the previous transduction, this gives an interpretation of Oσ in FR(σ′). ◀

We can now prove that the classes FR are complex.

▶ Theorem 1.6. For each R ∈ {=,⩽,⩾}, the class FR

1. has unbounded twin-width;
2. contains at least (

⌊
n
2

⌋
− 1)! tournaments on n vertices counted up to isomorphism;

3. contains at least (
⌊

n
2

⌋
−1)! ·n! tournaments on vertex set {1, . . . , n} counted up to equality;

4. efficiently interprets the class of all graphs;
5. and has AW[∗]-hard FO model checking problem.

Proof. Item 4 is straightforward by Lemmas 2.5 and 3.1, since efficient interpretations can
be composed. By Lemma 2.4 and Theorem 2.2, this in turn implies Item 5. Item 3 implies
Item 2 by a simple counting argument: in an isomorphism class, there are at most n! choices
of labelling of vertices with {1, . . . , n} (less if there are automorphisms). Furthermore, each
of Items 3 and 4 implies Item 1, by Theorem 2.7 and Theorem 2.6 respectively. Thus it only
remains to prove Item 3.

By Lemma 3.1, for any permutation σ ∈ Sn there is some FR(σ′) on 2n + 2 vertices such
that ΦR(FR(σ′)) = σ, where ΦR is a fixed interpretation. Since interpretations preserve
isomorphism, it follows that there are at least n! non-isomorphic tournaments on 2n+2 vertices
in FR. Furthermore, the arguments of Lemma 3.1, it is easy to show that these FR(σ′) have
no non-trivial automorphism. Thus, there are exactly (2n + 2)! distinct labellings of FR(σ′)
with {1, . . . , 2n+2}. In total, this gives (2n+2)! ·n! distinct graphs on vertices {1, . . . , 2n+2}
in FR, proving Item 3. ◀

Thus the classes F=,F⩽,F⩾ are obstructions to fixed parameter tractability of FO model
checking and twin-width. The rest of the paper shows that they are the only obstructions.
One may also verify that all three are minimal, i.e. none of them is contained in another.

4 Binary search tree orders

This section presents the good order for twin-width in tournaments. It is based on binary
search trees (BST), which we define in a tournament T as a rooted ordered binary tree S

(meaning that each node has a left and right child, either of which may be missing), whose
nodes are the vertices of T , and such that for any x ∈ S

the left child of x (if any) and its descendants are in N−
T (x), and

the right child of x (if any) and its descendants are in N+
T (x), see Figure 2.
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Figure 2 A binary search tree in a tournament. The direction of omitted edges is not constrained.

c1

B1

c2

B2

c3

B3

c4

B4 A4

Figure 3 Example of construction of the quasi-order ⪯+
C . The quasi-order is from left to right,

and the triangles are equivalence classes. The direction of omitted edges (from Bi to Bj ∪ {cj}
for i < j) is not constrained. For ⪯−

C , the direction of all edges would be reversed.

The order associated to S, denoted <S , is the left-to-right order, i.e. the one which places
a node x after its left child and its descendants, but before its right child and its descendants.
Such an order is called a BST order.

Remark that because T is only a tournament and not an order as in a standard BST,
there is no restriction on the direction of edges between the left and right subtrees of x. On
the other hand, if x is an ancestor of y, then there is an edge oriented from x to y if and
only if x <S y. Thus we have
▶ Remark 4.1. In a tournament T , any branch B of a BST S forms a chain which coincides
with <S . That is, for x, y ∈ B, the edge in T is oriented from x to y if and only if x <S y.

We will now define chain quasi-orders, which are FO definable quasi-orders with which
we will approximate BST orders. Let C be a chain in T . Its chain quasi-order ⪯+

C is defined
as follows. Enumerate the vertices of C as c1, . . . , ck so that edges are oriented from ci to cj

when i < j. Define Ai =
⋂

j⩽i N+(cj), and Bi = Ai−1 ∩N−(ci). Then each of B1, . . . , Bk

and Ak is an equivalence class of ⪯+
C , and the classes are ordered as

B1 ≺+
C c1 ≺+

C B2 ≺+
C c2 ≺+

C . . . Bk ≺+
C ck ≺+

C Ak,

see Figure 3. This can be seen as the left-to-right order of a partial BST consisting only
of a single branch c1, . . . , ck, with c1 as root and ck as leaf. It is also a coarsening of the
lexicographic order: the latter would refine the order inside each class Bi using ci+1, . . . , ck.

The dual quasi-order ⪯−
C is defined in the same way, but reversing the direction of all edges.

Thus, we now enumerate C so that edges are from ci to cj when i > j, while Ai =
⋂

j⩽i N−(ci)
and Bi = Ai−1 ∩N+(ci). The rest of the definition is the same.

▶ Lemma 4.2. There is a first-order transduction Φ which non-deterministically computes any
chain quasi-order. That is, for any tournament T and chain quasi-order ⪯o

C , (T,⪯o
C) ∈ Φ(T ).

Proof. The transduction first guesses C and o, and obtains the order within C from the
edges of T . It is then simple to express the definition of ⪯o

C in first-order logic. ◀

We now prove our main technical lemma on BSTs, which shows that BST orders can to
some extent be approximated by chain quasi-orders.
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▶ Lemma 4.3. Let T be a tournament and S be a BST with order <S. There is a func-
tion f(k) = 2O(k) independent of T and S such that for any family P of at least f(k) disjoint
intervals of <S, there is a chain C in T , an orientation o ∈ {+,−} and a subfamily P ′ ⊂ P
such that |P ′| ⩾ k and such that the intervals of P ′ are non-overlapping for ⪯o

C .
Furthermore, C, o, and P ′ can be computed in linear time.

Proof. Let T be a tournament, S a BST of T and <S the corresponding order. Let P be a
family of at least f(k) disjoint intervals of <S , where f(k) = 2O(k) will be determined later.

We choose a branch B = b0, . . . , bp of S by the following process. First b0 is the root of S.
For each (yet to be determined) bi, let Si be the subtree of S rooted in bi, and define the
weight wi to be the number of classes of P intersected by Si. Then bi+1 is chosen to be the
child of bi which maximizes wi+1. This choice ensures that

2wi+1 + 1 ⩾ wi. (3)

For each i < p, let di be the child of bi other than bi+1 (sometimes di does not exist),
and let Di be the subtree of S rooted at di (Di is empty if di does not exist). Furthermore,
let L, R be the sets of vertices which are before, resp. after the leaf bp in the order <S . For
any 0 ⩽ i ⩽ j ⩽ p, let

Li,j
def=

⋃
i⩽ℓ<j
bℓ∈L

{bℓ} ∪Dℓ, and Ri,j
def=

⋃
i⩽ℓ<j
bℓ∈R

{bℓ} ∪Dℓ.

Roughly speaking, Li,j , resp. Ri,j consists of subtrees branching out of B on the left, resp.
right, between bi and bj .

▷ Claim 4.4. For any i, j, the subtree Si is partitioned into Li,j <S Sj <S Ri,j .

Proof. Clearly Li,j , Sj , Ri,j partition Si. Furthermore, if ℓ < j and bℓ ∈ L, then bℓ <S Sj ,
and in turn Dℓ <S bℓ. This proves Li,j <S Sj , and symmetrically Sj <S Ri,j . ◁

▷ Claim 4.5. For 0 ⩽ i < j ⩽ p, if wi ⩾ wj + 3, then there is a part P ∈ P such that
P ⊂ Li,j or P ⊂ Ri,j .

Proof. At least three parts of P intersect Si but not Sj . Since these three parts and Si are
all intervals of <S , one of these parts, say P , is contained in Si. Thus P is a subset of Si

but does not intersect Sj , which by Claim 4.4 implies P ⊂ Li,j or P ⊂ Ri,j . ◁

Construct a sequence i0 < · · · < i2k of indices in {0, . . . , p} inductively by taking i0 = 0,
and choosing iℓ+1 minimal such that wiℓ+1 ⩽ wiℓ

− 3. Using (3) and the minimality of iℓ+1,
we obtain for all ℓ that 2wiℓ+1 + 1 ⩾ wiℓ+1−1 > wil

− 3, hence

2wiℓ+1 + 3 ⩾ wil
. (4)

We can now define f by f(0) = 1 and f(k + 1) = 4f(k) + 9. By assumption, w0 = |P| ⩾ f(k),
and it follows from (4) that the construction of iℓ can be carried out up to i2k.

Define L′
ℓ = Liℓ−1,iℓ

, and similarly R′
ℓ = Riℓ−1,iℓ

, see Figure 4. By Claim 4.5, for any
ℓ ∈ [2k], either L′

ℓ or R′
ℓ contains a part of P. Thus, either there are at least k distinct L′

ℓ

containing a part of P , or there are at least k distinct R′
ℓ containing a part of P . Assume the

former case without loss of generality. We will now forget the vertices which are not in L.
Define C = L ∩ B. By Remark 4.1, this is a chain, whose order coincides with <S .

Furthermore, at any node x of C, the branch B does descend on the right side, since x <S bp.
Thus, the order in C also coincides with the ancestor-descendent order of S. (Remark here

ESA 2023



53:12 First Order Logic and Twin-Width in Tournaments
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3L′

2
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Figure 4 Sketch of the proof of Lemma 4.3. In the upper half, the BST T with the extracted
branch B; circled in red, the extracted subsequence biℓ ; in green arrows, the chain C = B ∩ L =
{b2, b4, b5, b6}. Below the tree, from top to bottom: the partition in L′

ℓ and R′
ℓ; the initial family

(here partition) P, with the parts contained in some L′
ℓ or R′

ℓ highlighted; the final family P ′,
obtained by selecting a part of P inside each possible L′

ℓ.

that if we were in R instead of L, the order of C would be the inverse of the ancestor-
descendant order.) Now, if C is enumerated as c0 <S · · · <S ct, and Ci is the subtree
branching out on the left of ci, defined similarly to Di, then the chain quasi-order ⪯+

C

restricted to L is exactly

C0 ≺+
C c0 ≺+

C C1 ≺+
C c1 ≺+

C . . . ≺+
C ct

where each subtree Ci is an equivalence class. (In R, we would instead use ⪯−
C .) From this

description, we obtain that any Li,j is an interval of ⪯+
C restricted to L.

For each L′
ℓ, select a part of P included in L′

ℓ if any, and define P ′ as the collection
of selected parts. Thus P ′ ⊂ P, and we know from the choice of the family {L′

ℓ}ℓ∈[2k]
that |P ′| ⩾ k. Furthermore, if X ̸= Y are parts of P ′, there are s ̸= t such that X ⊆ L′

s

and Y ⊆ L′
t. Since each L′

ℓ is an interval of (L,⪯+
C), this implies that X and Y are

non-overlapping for ⪯+
C . Thus P ′ satisfies all desired properties.

Finally, given the BST S and the family P, it is routine to compute the weights wi of
all nodes in S by a bottom-up procedure; this only requires to compute the left-most and
right-most parts of P intersecting each subtree. From this, one can in linear time choose the
branch B, the indices iℓ, the better side L or R, and finally compute C and P ′. ◀

5 BST orders witness twin-width

In this section, we prove Lemma 1.4, i.e. that BST orders are good for twin-width. The proof
heavily uses model-theoretic results from [6]. Due to space constraints, the combinatorial
proof of the stronger result Theorem 1.5 is omitted, see the extended version of this paper [16].

If T is a class of tournaments, we denote by T BST the class of ordered tournaments (T, <S)
where T ∈ T and <S is the order of some BST S on T . With this notation, Lemma 1.4 can
be restated as
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▶ Lemma 5.1. If T is a hereditary class of tournaments with bounded twin-width, then T BST

also has bounded twin-width.

Proof. Fix T a class of tournaments with twin-width at most t, and assume by contra-
diction that T BST has unbounded twin-width. Then by Theorem 2.1, for any k there is
some (T, <S) ∈ T BST whose adjacency matrix contains a rank-k division. That is, there are
partitions A1, . . . , Ak and B1, . . . , Bk of V (T ) into intervals of <S such that the adjacency
matrix of any Ai versus Bj is k-diverse.

If k is chosen to be k = f(ℓ) where f is the function of Lemma 4.3, then we obtain two
chain quasi-orders ⪯A,⪯B in T , and subfamilies Ai1 , . . . , Aiℓ

and Bj1 , . . . , Bjℓ
which are

non-overlapping for ⪯A and ⪯B respectively. We can in fact assume that Ai1 , . . . , Aiℓ
are

disjoint intervals of ⪯A, by replacing them by their closure

Āit

def= {x | ∃y, z ∈ Ait
, y ⪯A x ⪯A z}

Let T + be the structure T augmented by the quasi-orders ⪯A and ⪯B. In T +, each
interval Āit

can be described by its two endpoints. Using the terminology of [6, section 9],
this means that Āi1 , . . . , Āiℓ

is a definable disjoint family. Naturally, the same holds for
B̄j1 , . . . , B̄jℓ

. Finally, Ai versus Bj being k-diverse is a very special case of the model-theoretic
notion of A having k distinct ∆-types over B, when ∆ consists only of the formula “being
adjacent”.

Let T + denote the class of tournaments in T augmented by any two chain quasi-orders.
We have just proved that for arbitrary large k, ℓ, there are structures T + ∈ T + containing
two families of ℓ disjoint subsets

(
Āit

)
t∈[ℓ] and

(
B̄jt

)
t∈[ℓ] definable by a fixed formula, and

such that each Āit has k distinct ∆-types over each B̄jt . That is, the class T + is unrestrained
in the sense of [6, Definition 50]. By [6, Theorem 54], it follows that T + is not monadically
NIP, hence has unbounded twin-width. But it follows from Lemma 4.2 that T + is obtained
from T by a first-order transduction, contradicting that T has bounded twin-width. ◀
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Abstract
A searcher faces a graph with edge lengths and vertex weights, initially having explored only a given
starting vertex. In each step, the searcher adds an edge to the solution that connects an unexplored
vertex to an explored vertex. This requires an amount of time equal to the edge length. The goal is
to minimize the weighted sum of the exploration times over all vertices. We show that this problem
is hard to approximate and provide algorithms with improved approximation guarantees. For the
general case, we give a (2e + ε)-approximation for any ε > 0. For the case that all vertices have
unit weight, we provide a 2e-approximation. Finally, we provide a PTAS for the case of a Euclidean
graph. Previously, for all cases only an 8-approximation was known.
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1 Introduction

A vital issue faced by disaster-relief teams sent to regions devastated by natural or man-made
catastrophes is to decide where to search for buried or isolated people. The fundamental
issues behind these decisions are that, in emergency situations, technical means for probing
and for clearing areas are often limited, there is no full knowledge concerning the whereabouts
of potential survivors, and rescue operations are time-critical since the chances of survival
decrease with the time needed for rescue; see also the discussion in Averbakh and Pereira [13].
Mathematically, we model this problem using an undirected graph with edge lengths. The
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vertices of the graph correspond to different locations in the disaster area, and the edges
between them correspond to possible connections between the locations. The length of an
edge corresponds to the time that is needed to clear the connection. Clearing a connection
may mean to clear a road connection of rubble or explosives, or to dig in snow, dirt, or
debris. There is a single rescue team initially located at a designated root vertex. Based on
experience, the rescue team has knowledge about the number of survivors that is located at
the different locations. The goal is to minimize the average time at which the survivors are
reached.

A solution to the problem is given by a sequence of edges to clear until all vertices
(with non-zero weight) can be reached. Once an edge is cleared, it can be traveled along in
negligible time by the rescue team, so that only the time needed to clear edges is considered.
A search problem of this kind is called expanding search problem (ESP) since the set of
vertices accessible by the rescue team expands in every step. This is in contrast to pathwise
search problems where the actual movement of the searcher is modeled and traversing an
edge always requires time equal to the length of the edge, no matter whether it is the first
traversal or not.

Generally speaking, expanding search problems are a suitable model when the time needed
to traverse an edge for the first time is significantly higher than the time needed to traverse
this edge any time after the first time, and, thus, the time needed for further movements
can be neglected. Further applications of expanding search problems are in mining where
the time needed to dig a new tunnel is much higher than moving via already dug tunnels to
previously explored locations (Alpern and Lidbetter [4]) and when securing an area from
a hidden explosive where the time needed to move within a safe region can be neglected
compared to the time needed to secure a new area (Angelopoulos et al. [6]).

Our contribution. In this work, we provide polynomial-time approximation algorithms with
improved approximation guarantees for ESP. We first give an approximation algorithm for
the general case with arbitrary vertex weights with an approximation guarantee of 2e + ε for
any ε > 0 where 2e ≈ 5.44 (Theorem 1). For the unweighted case where all vertices have the
same weight, we provide an approximation algorithm with an approximation guarantee of 2e
(Theorem 6). The result for the unweighted case is obtained by concatenating k-minimum
spanning trees (k-MSTs) for varying values of k and of exponentially increasing length. Using
the probabilistic method on lengths with random factor finally yields an additional factor of e.
This technique has been used for pathwise search problems [16, 26]; we here adapt it to the
case of expanding search. For the weighted case, instead of k-MSTs, we use the quota version
of the k-MST problem where vertices have non-negative weights and, given q ∈ N, the task is
to find a length-minimal tree with vertex weight at least q. Johnson et al. [31] noted that any
approximation algorithm for k-MST that relies on the Goemans–Williamson algorithm [27]
for the prize-collecting Steiner-tree problem can be turned into an approximation algorithm
for the quota version with the same approximation guarantee. We follow this line of reasoning
and show that also the approximation algorithm of Garg [25] that relies on a modified version
of the Goemans–Williamson algorithm can be turned into a 2-approximation algorithm for
the quota version of the problem. Relying on this result, we solve the quota version for a
polynomial number of quotas (thereby losing the factor of 1 + ε) and use these solutions to
construct a sequence of spanning trees of exponentially increasing length. Concatenating
these solutions yields the claimed factor.

We then give a polynomial-time approximation scheme (PTAS) for the case of a Euclidean
graph (Theorem 7). For this result, we use a decomposition approach by Sitters [40] for
the pathwise search problem that relies on partitioning an instance into subinstances. A
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central challenge when adapting this approach to the expanding search setting is that, unlike
pathwise search, expanding search is not memoryless as points contained in one subinstance
may be used as Steiner points in another subinstance. We address this difficulty by keeping
such points in the subinstance with zero weight so that the partitions become overlapping.
To obtain a PTAS for the subproblem, we adapt techniques developed by Arora [9] for
Euclidean TSP. As a byproduct, we obtain a (1 + ε)-approximate reduction from general
ESP to unweighted ESP, implying an alternative (2e + ε)-aproximation which may be of
independent interest.

For all variants considered in this paper, i.e., the unweighted case, the weighted case,
and the Euclidean case, the best approximation algorithm was an 8-approximation due to
Hermans et al. [29].

Finally, we show that there is no PTAS for ESP unless P = NP (Theorem 14). The proof
follows a similar idea as the hardness proof for the traveling repairperson problem suggested
in [15]. However, in comparison to the pathwise search, in our setting the solution needs to
be structured. Showing this property turns out to be rather elaborate. Previously, it was
only known that the expanding search problem is NP-hard [13]. Due to space constraints,
we defer some proofs and more detailed descriptions to the full version of this paper [28].

Further related work. The unweighted pathwise search problem where all vertices have
unit weight is also known as the traveling repairperson problem. Sahni and Gonzales [38]
showed that the problem cannot be efficiently approximated within a constant factor unless
P = NP on complete non-metric graphs when the searcher is required to take a Hamiltonian
tour. Afrati et al. [1] considered the problem in metric spaces and gave an exact algorithm
with quadratic runtime when the metric is induced by a path. This can be improved to
linear runtime as shown by García et al. [24]. Minieka [36] proposed an exact polynomial
algorithm for the case that the metric is induced by an unweighted tree. Sitters [39] showed
that the problem is NP-hard when the metric is induced by a tree with edge lengths 0 and 1.

The first approximation algorithm of the metric traveling repairperson problem is due to
Blum et al. [15] who gave a 144-approximation. After a series of improvements [7, 8, 10, 26, 33],
the best factor so far is a 3.59-approximation for general metrics [16], and a polynomial-time
approximation scheme for trees [40] and on the Euclidean plane [40]. Further variants of
the problem have been studied both in terms of exact solution methods and in terms of
competitive algorithms, among other settings with directed edges [20, 21, 37], with processing
times and time windows [43], with profits at vertices [18], with multiple searchers [17, 19, 35],
and online variants [34]. The vertex-weighted version of the problem is often referred to as
the pathwise search problem. It has been shown to be NP-hard in metric graphs by Trummel
and Weisinger [42] and was further studied in [33]. The approximation schemes in [40] apply
to the weighted case as well.

The expanding search problem has received considerably less attention in the literature
than the pathwise problem. It has been shown to be NP-hard by Averbakh and Pereira [13].
Alpern and Lidbetter [4] introduced a polynomial-time algorithm for the case when the
graph is a tree and gave heuristics for general graphs. Averbakh et al. [12] considered a
generalization of the problem with multiple searchers when the underlying graph is a path;
Tan et al. [41] considered multiple searchers in a tree network. The first constant-factor
approximation for general metrics is the 8-approximation due to Hermans et al. [29], based
on an exact algorithm on trees [4]. Angelopoulos et al. [6] studied the expanding search
ratio of a graph. This value is defined as the minimum over all expanding searches of the
maximum ratio of the time to reach a vertex by the search algorithm and the time to reach
the same vertex by a shortest path. Angelopoulos et al. showed that this ratio is NP-hard to
compute and gave a search strategy that achieves a (4 ln 4)-approximation of the optimum.

ESA 2023
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The pathwise and expanding search problems appear naturally as strategies of the seeker
in a two-player zero sum game between hider and seeker where the hider chooses a vertex
that maximizes the expected search time whereas the seeker aims to minimize the search
time. Gal [22] computed the value (i.e., the unique search time in an equilibrium of the game)
of the pathwise search game on a tree; Alpern and Lidbetter [4] computed this value for the
expanding search game; see also [5] for approximations of this value for general graphs. For
more details on search games, we refer to [2, 3, 23, 30, 32].

2 Preliminaries

We consider a connected undirected graph G = (V, E) with |V | = n and a designated root
vertex r ∈ V . Every vertex v ∈ V has a weight wv ∈ N = {0, 1, 2, . . . }, and we denote by
V ∗ ⊆ V the set of vertices with wv > 0. Every edge e ∈ E has a length ℓe ∈ N. We use
N>0 when we refer to N \ {0}. We consider an agent that is initially located at the root and
performs an expanding search pattern σ. Such a pattern is given by a sequence of distinct edges
σ = (e1, . . . , em) for some m ≤ n − 1 such that r ∈ e1 and the set {e1, . . . , ei} forms a tree in
G for all i ∈ {1, . . . , m}. For a vertex v ∈ V ∗ \{r}, let kv(σ) = inf

{
i ∈ {1, . . . , m} : v ∈ ei

}
be

the index of the first edge that contains v and set kr(σ) = 0. We then call Lv(σ) =
∑kv(σ)

i=1 ℓei

the latency of the vertex v ∈ V ∗ under expanding search pattern σ. Our goal is to find an
expanding search pattern σ that minimizes the total latency L(σ) =

∑
v∈V ∗ wvLv(σ). Note

that vertices v with wv = 0 do not appear in the objective function, and, hence, do not need
to be visited. They may, however, be used as Steiner vertices in the constructed search trees
and, hence, cannot be contracted as in the pathwise search problem. When the pattern σ is
clear from context, we drop the dependency on σ and simply write L, Lv, and kv. The length
ℓ(σ) of a search pattern σ is given by the sum of edge costs, i.e., ℓ(σ) =

∑
e∈σ ℓe. Finally, for

two expanding search patterns σ = (e1, . . . , em), σ′ = (e′
1, . . . , e′

m′), we denote by σ + σ′ their
concatenation, i.e., the subsequence of (e1, . . . , em, e′

1, . . . , e′
m′) in which any edge closing a

cycle is skipped.

3 The weighted case

In this section, we consider the general case of the expanding search problem where the
weights wv ∈ N are arbitrary for all v ∈ V \{r}, and wr = 0. We prove the following theorem.

▶ Theorem 1. For every ε > 0, there is a polynomial-time (2e + ε)-approximation algorithm
for the expanding search problem.

The approximation algorithm that we devise in this section is based on the approximate
solution of several quota versions of the prize-collecting Steiner tree problem. In this problem,
we are given a connected undirected graph G = (V, E) with designated root vertex r ∈ V ,
non-negative edge lengths ℓe ∈ R≥0, e ∈ E, vertex weights wv ∈ N, v ∈ V \ {r}, and a quota
q ∈ [0, W ], where W :=

∑
v∈V wv. The task is to find a subgraph that is a tree T = (VT , ET )

such that r ∈ VT and
∑

v∈VT
wv ≥ q minimizing ℓ(T ) :=

∑
e∈ET

ℓe. We argue that this
problem admits a 2-approximation. The proof can be found in the full version [28].

▶ Lemma 2. For the quota version of the prize-collecting Steiner tree problem, a 2-
approximation can be computed in polynomial time.

To approximate ESP, fix ε > 0. For notational convenience, we show an approximation
algorithm with guarantee 2(1 + ε)e. We solve the quota problem for quotas W − W (1 + ε)−i

for all i ∈ {0, . . . , ω}, where we let ω :=
⌈ log W

log(1+ε)
⌉
. Note that, for fixed ε, the number
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ω is polynomial in the encoding length of the input. In this way, we obtain ω + 1 trees
T0, T1, . . . , Tω. By construction, tree T0 has to collect a total weight of 0, so T0 is the tree
T0 = ({r}, ∅) consisting only of the root vertex. By the choice of ω, the tree Tω has to collect
a total weight of W − W (1 + ε)−ω > W − 1. This implies that the tree Tω collects all weight
since the weights are integers. We then construct a directed auxiliary graph H = (VH , AH)
with vertex set VH = {0, . . . , ω} and arc set AH = {(i, j) : i < j}. We set the cost of arc (i, j)
equal to ci,j = W (1 + ε)−iℓ(Tj). Next, we compute a shortest (0, ω)-path P = (n0, . . . , nl)
with n0 = 0 and nl = ω for some l ∈ N. We construct from this path an expanding search
pattern with l phases. In phase j ∈ {1, . . . , l}, we explore all edges in e ∈ E[Tnj

] with
|e ∩ (

⋃j−1
i=0 V [Tni

])| < 2 in an order such that the subgraph of explored vertices is connected
at all times. In that fashion, when phase j is finished, all vertices in V [Tnj ] have been
explored. Since nl = ω and Tω collects the total weight W , all vertices v with wv > 0 have
been explored when the algorithm terminates. Formally, the algorithm is given as follows:
1) For all i ∈ {0, 1, . . . , ω} solve the quota version of the prize-collecting Steiner tree problem

with quota q = W − W (1 + ε)−i with the 2-approximation algorithm of Lemma 2 and
obtain ω + 1 trees T0, T1, . . . , Tω.

2) Construct an auxiliary weighted directed graph H = (VH , AH) with VH = {0, 1, . . . , ω},
AH = {(i, j) ∈ V 2

H : i < j}, and ci,j := W (1 + ε)−iℓ(Tj).
3) Compute a shortest (0, ω)-path P = (n0, n1, . . . , nl) with n0 = 0 and nl = ω in H.
4) For each phase j ∈ {1, . . . , l} explore all unexplored vertices of V [Tnj ] in any feasible

order using the edge set of E[Tnj
].

Let σAlg be the expanding search pattern given by this algorithm. Let q ∈ [0, W ] be arbitrary
and let j(q) ∈ {1, . . . , l} be such that W − W (1 + ε)−nj(q)−1 ≤ q < W − W (1 + ε)−nj(q) .

Then we define π(q) :=
∑j(q)

i=0 ℓ(Tni
). By Lq(σAlg) we denote the latency of quota q in

σAlg = (e1, ..., em), i.e., the sum of the edge cost of the shortest subsequence (e1, ..., ek) of
σAlg, such that the tree spanned by (e1, ..., ek) has weight at least q. The following lemma
gives an upper bound on the latency for each quota. Its proof uses the intuitive argument
that the worst case for the latency is obtained when all trees are nested and exploration takes
place only at the end of each tree. The formal proof can be found in the full version [28].

▶ Lemma 3. The latency of quota q ∈ [0, W ] in σAlg can be bounded by Lq(σAlg) ≤ π(q).

We can now give an upper bound on L(σAlg). The proof relies on the specific way how
the length of the arcs in H are defined. Its proof can be found in the full version [28].

▶ Lemma 4. For the total latency of the algorithm, we have L(σAlg) ≤ z where z is the cost
of a shortest (0, ω)-path in H.

The technically most challenging part of the analysis of the algorithm is to bound the cost
of a shortest path in relation to the total latency of the optimal expanding search pattern. To
this end, we use a probabilistic argument where a distribution over paths in H corresponding
to the exploration of trees with exponentially increasing weight is considered.

▶ Lemma 5. Let σ∗ be an optimal expanding search pattern with total latency L∗ := L(σ∗).
Then, a shortest (0, ω)-path in H has cost at most 2(1 + ε)eL∗.

Proof. First, we give a lower bound on L∗. For this purpose, let q ∈ [0, W ] be arbitrary,
and let λ∗(q) denote the length of the optimal solution to the instance of the quota version
of the rooted prize-collecting Steiner tree problem with quota q. Note that there are only
finitely many trees T that are subgraphs of G and contain r, so λ∗ is a piece-wise constant
function. The optimal expanding search pattern cannot achieve a total weight of q with a
latency smaller than λ∗(q). Therefore, L∗ ≥

∫W

0 λ∗(q) dq.
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To show that the cost of the shortest (0, ω)-path in H is bounded from above by
2(1 + ε)eL∗, we construct a random path and compute its expected cost. Let γ > 1 be
a parameter whose value will be determined later, and let b = γU where U is a random
variable uniformly drawn from [0, 1). We set m̃ ∈ N to be the smallest number such that
λ∗(W ) ≤ bγm̃. For j ∈ {0, . . . , m̃}, let ñj := max

{
k ∈ {0, . . . , ω} : ℓ(Tk) ≤ 2bγj

}
. These

values are well-defined as ℓ(T0) = 0. Note that the sequence ñ0, ñ1, . . . , ñm̃ is non-decreasing.
We denote by n0, n1, . . . , nm the longest increasing subsequence of ñ0, ñ1, . . . , ñm̃. In the
following, we compute the cost of the path P = (n0, n1, . . . , nm). Let i ∈ {0, . . . , m} be
such that W − W (1 + ε)−i ≤ q < W − W (1 + ε)−(i+1). Recall that π(q) =

∑i+1
j=0 ℓ(Tnj

) is
an upper bound on the latency of quota q, i.e., the sum of the lengths of all trees that lie on
path P up to the first tree that collects a quota of size q all by itself.

For a quota q ∈ [0, W ] we find it convenient to denote by q̄ := W − q the quota left aside.
Let q̄ ∈ [W (1 + ε)−ω, W ] be arbitrary, and let j ∈ {0, . . . , m} and d ∈ [1, γ) be such that
λ∗(W − q̄) = dγj . We distinguish two cases regarding the relation between b and d.

First case: d ≤ b. Since λ∗(q) = λ∗(W − q̄) = dγj , there is a tree of cost dγj that contains
the root and explores a total weight of at least W − q̄. When computing the 2-approximation
for the quota version of the prize-collecting Steiner tree problem with quota W − W (1 + ε)−i,
we obtain a tree Ti with length ℓ(Ti) ≤ 2λ∗(W − W (1 + ε)−i

)
≤ 2λ∗(W − q̄) = 2dγj . The

first inequality is obtained by using the 2-approximation and the second inequality from λ∗

being non-decreasing. Since ℓ(Ti) ≤ 2dγj ≤ 2bγj , we have that nj ≥ i. Using that π(q) is
non-decreasing, that W − W (1 + ε)−i ≥ W − (1 + ε)q̄, and that γ > 1, we obtain

π
(
W − (1 + ε)q̄

)
≤

j∑
k=0

ℓ(Tnk
) ≤

j∑
k=0

2bγk = 2b
γj+1 − 1

γ − 1 ≤ 2bγj γ

γ − 1 .

Second case: d > b. Analogously to the first case we obtain ℓ(Ti) ≤ 2dγj . However, with
1 ≤ b and d < γ we have d < bγ which yields ℓ(Ti) ≤ 2dγj < 2bγj+1. Hence, we have that
nj+1 ≥ i. Again, using that π(q) is non-decreasing, that W − W (1 + ε)−i ≥ W − (1 + ε)q̄,
and that γ > 1, we obtain

π
(
W − (1 + ε)q̄

)
≤

j+1∑
k=0

ℓ(Tnk
) ≤

j+1∑
k=0

2bγk = 2b
γj+2 − 1

γ − 1 ≤ 2bγj+1 γ

γ − 1 .

Note that we are in the first case when U ∈ [logγ d, 1] and in the second case when
U ∈ [0, logγ d). Taking the expectation over U , we obtain

EU

[
π
(
W − (1 + ε)q̄

)]
≤
∫ 1

logγ d

2bγj γ

γ − 1 dU +
∫ logγ d

0
2bγj+1 γ

γ − 1 dU

= 2γj γ

γ − 1

[∫ 1

logγ d

γU dU + γ

∫ logγ d

0
γU dU

]
= 2γj γ

γ − 1

[
γ − d

ln γ
+ γ

d − 1
ln γ

]
= 2γjd

γ

ln γ
= 2 γ

ln γ
λ∗(W − q̄).

Next, consider the case that q̄ < W (1+ε)−ω is arbitrary. Let j ∈ {0, . . . , m} and d ∈ [1, γ)
be such that λ∗(W − q̄) = dγj . By the choice of ω, we have W − q̄ > W −W (1+ϵ)−ω > W −1,
and, hence, λ∗(W ) = λ∗(W − q̄). We distinguish two cases regarding the relation of b and d.
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First case: d ≤ b. Since λ∗(W ) = dγj , there is a tree of cost dγj containing the root that
explores a total weight of at least W − q̄. When computing the 2-approximation for the
quota version of the prize-collecting Steiner tree problem with quota W − W (1 + ε)−ω, we
obtain a tree Tω with length ℓ(Tω) ≤ 2λ∗(W ) = 2dγj ≤ 2bγj , which yields nj ≥ ω, and thus,
j = m. By using γ > 1, we obtain

π
(
W
)

≤
m∑

k=0
ℓ(Tnk

) ≤
m∑

k=0
2bγk = 2b

γm+1 − 1
γ − 1 ≤ 2bγm γ

γ − 1 .

Second case: d > b. Analogously to the first case, we obtain ℓ(Tω) ≤ 2dγj . However, with
1 ≤ b and d < γ we have d < bγ which yields ℓ(Tω) ≤ 2dγj < 2bγj+1. Hence, we have that
nj+1 ≥ ω, i.e., j ≥ m − 1. In any case, by using that γ > 1, we obtain

π(W ) ≤
m∑

k=0
ℓ(Tnk

) ≤
m∑

k=0
2bγk = 2b

γm+1 − 1
γ − 1 ≤ 2bγm γ

γ − 1 .

Again, we are in the first case when U ∈ [logγ d, 1] and in the second case when U ∈
[0, logγ d). Taking the expectation over U , we obtain

EU

[
π
(
W
)]

≤
∫ 1

logγ d

2bγj γ

γ − 1 dU +
∫ logγ d

0
2bγj+1 γ

γ − 1 dU

= 2γj γ

γ − 1

[∫ 1

logγ d

γU dU + γ

∫ logγ d

0
γU dU

]
= 2γj γ

γ − 1

[
γ − d

ln γ
+ γ

d − 1
ln γ

]
= 2γjd

γ

ln γ
= 2 γ

ln γ
λ∗(W ). (1)

The expected cost of the (0, ω)-path P = (n0, n1, . . . , nm) is then given by

E
[
c(P )

]
= E

[∫ W

0
π(q) dq

]
= E

[∫ W

0
π(W − q̄) dq̄

]
.

As π(q) is piece-wise constant, we exchange the order of expectation and integral such that

E
[
c(P )

]
=
∫ W

0
E
[
π(W − q̄)

]
dq̄

= − (1 + ε)
(∫ W (1+ε)−ω

W (1+ε)−1
E
[
π
(
W − (1 + ε)q̄

)]
dq̄ +

∫ 0

W (1+ε)−ω

E
[
π
(
W − (1 + ε)q̄

)]
dq̄

)

≤ (1 + ε)
∫ W (1+ε)−1

W (1+ε)−ω

E
[
π
(
W − (1 + ε)q̄

)]
dq̄ + W (1 + ε)−(ω−1)E

[
π(W )

]
,

where we further used the substitution rule for integrals and the fact that π is non-decreasing.
Using (1), we further obtain

E
[
c(P )

]
≤ 2γ(1 + ε)

ln γ

[∫ W (1+ε)−1

W (1+ε)−ω

λ∗(W − q̄) dq̄ + W (1 + ε)−ωE
[
λ∗(W )

]]

= 2γ(1 + ε)
ln γ

∫ W (1+ε)−1

0
λ∗(W − q̄) dq̄,
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where for the equation we used that W (1 + ε)−ω < 1 and, hence, λ∗ is constant on the
interval [W − W (1 + ε)−ω, W ]. Finally, we obtain

E
[
c(P )

]
≤ 2γ(1 + ε)

ln γ

∫ W

0
λ∗(W −q̄) dq̄ = 2γ(1+ε)

ln γ

∫ W

0
λ∗(q) dq ≤ 2γ(1 + ε)

ln γ
L∗.

This shows that, in the expectation over U , P has an expected cost of at most 2γ(1+ε)
ln γ L∗.

Therefore, we obtain the same bound on the cost of the shortest path. This term is minimized
for γ = e, which implies the result. ◀

Theorem 1 now follows from combining Lemma 4 and Lemma 5.

4 The unweighted case

Compared to the weighted case we do the following adjustments in order to obtain a 2e-
approximation. First, instead of using the quota problem of k-MST, for all k ∈ {1, . . . , n}
we solve the original k-MST problem with the 2-approximation algorithm of Garg [25] and
obtain n trees T1, . . . , Tn. The auxiliary weighted directed graph H = (VH , AH) is then
defined by VH = {1, 2, . . . , n}, AH = {(i, j) ∈ V 2

H : i < j}, and ℓi,j := (n − i)c(Tj). Finally,
we compute a shortest (1, n)-path P = (n0, n1, . . . , nl) with n0 = 1 and nl = n in H. For
each phase j ∈ {1, . . . , l}, we explore all unexplored vertices of V [Tnj

] in any feasible order
using the edge-set of E[Tnj

]. The better approximation factor is due to the fact that we save
the factor of (1 + ε) since we can compute the k-MSTs for all relevant values of k, whereas
before we needed a rounding technique. We then obtain the following result, which we prove
in the full version [28].

▶ Theorem 6. There is a polynomial-time 2e-approximation algorithm for the unweighted
expanding search problem.

5 The Euclidean case

In this section, we show the following theorem.

▶ Theorem 7. On Euclidean graphs, there exists a PTAS for ESP.

Our approach has three steps, corresponding to the three subsections of this section. The
first two steps are reductions inspired by Sitters [40]. In the first step, we show a reduction
from ESP to a problem called δ-bounded ESP, for some constant δ ∈ R+, in the sense that a
PTAS for δ-bounded ESP implies a PTAS for ESP. In the next step, we reduce the latter
problem to another problem called κ-segmented ESP, for some constant κ ∈ N, with weights
in {0, 1}, in the same sense as before. Finally, we provide a PTAS for the latter problem in
the Euclidean case using ideas by Arora [9] as well as Sitters [40].

We define the auxiliary subproblems as modifications of ESP. First, in δ-bounded ESP,
the input comes with an additional delay parameter D ≥ 0, and it is guaranteed that
there exists a solution visiting all nonzero-weight vertices and completing by time δD, i.e.
this solution has length δD (recall definition in Section 2). The objective is minimizing
L′(σ) =

∑
v∈V ∗ wvL′

v(σ) where L′
v(σ) = D +Lv(σ). Second, in κ-segmented ESP, the output

needs to come with κ + 1 additional numbers 0 = t(0) ≤ t(1) ≤ · · · ≤ t(κ). For v ∈ V , its
rounded search time is then L̄v(σ) = inf{t(i) : 0 ≤ i ≤ κ, Lv(σ) ≤ t(i)}, and the objective is
minimizing L̄(σ) =

∑
v∈V ∗ wvL̄v(σ).

We assume 0 < ε ≤ 1 and use Oε(f) to denote O(f) when ε is a constant.
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5.1 Reducing ESP to δ-Bounded ESP
In this subsection, we show the following lemma.

▶ Lemma 8. Consider any class C of metric spaces and constants α > 1, ε > 0. There
exists a constant δ such that, if there exists a polynomial-time α-approximation algorithm for
δ-bounded ESP on C, then there exists an (α + ε)-approximation algorithm for ESP on C.

We follow the decomposition approach by Sitters [40] and adapt it to ESP at several places.
To do so, we assume that a polynomial-time α-approximation algorithm for δ-bounded ESP
on C, denoted Approxδ-bd in the following, is given for a yet-to-be-determined value of δ. In
the remainder of this subsection we describe, given any ε > 0, a polynomial-time algorithm
for ESP on C based on this, and we show that it is a (α + O(ε))-approximation algorithm.

For some constant β, we need, in addition to Approxδ-bd, a polynomial-time β-approxi-
mation algorithm Approxβ for ESP on C as a subroutine. We emphasize that any constant
β is sufficient to obtain an approximation guarantee of α + ε in polynomial time. Therefore,
we can pick, e.g., the algorithm from Section 3. For notational purposes, we assume α ̸= β.

In our algorithm, we apply Approxβ to obtain an order of the vertices according to their
search times in the solution, and we obtain a partition of the vertices by cutting this order
at several places. We run Approxδ-bd on the (carefully defined) emerging subinstances. We
can, however, not simply concatenate all these solutions because any of these solutions may,
despite its low cost, have large total length, which would delay the solutions of all later
subinstances. We solve this issue by cutting the solution at a certain point and using the
solution given by Approxβ from then on – a solution with a length bound.

In the following, we present our algorithm which is given some ε > 0 as well as an instance
I of ESP on C. Our algorithm has five steps.
1) Approximate: Apply Approxβ to the instance to obtain a solution σβ .
2) Partition:

Define γ := 3/ε, a := βγ/ε, and pick b uniformly at random in [0, a].
Define time points ti := e(i−2)a+b for i ∈ [q + 1], where q is as small as possible such
that Lv(σβ) < tq+1 for all v ∈ V .
For i ∈ [q], let Vi := {v ∈ V : ti ≤ Lv(σβ) < ti+1} and Ui := V1 ∪ · · · ∪ Vi.
For i ∈ [q], define Ii to be an instance which is obtained from I by setting the weight
of all vertices in V \ Vi to zero. Note that Ii with delay parameter γti is an instance of
(ea

/γ)-bounded ESP. Indeed, the prefix σβ,i+1 of σβ visiting Ui+1 has total length at
most (ea

/γ)γti = ti+1.
3) Approximate subproblems: For i ∈ [q], apply Approxδ-bd to Ii to obtain an α-

approximation σα,i.
4) Modify: For each i ∈ [q], define σi to be σ′

α,i + σβ,i+1 where:
σ′

α,i is the longest prefix of σα,i of length at most (1 + ea
/εγ)γti.

σβ,i+1 is the prefix of σβ visiting Ui+1.
5) Concatenate: Return σ1 + · · · + σq.

We show Lemma 8 by establishing two lemmata on the above algorithm. We first prove
that partitioning the instance into multiple instances of (ea

/γ)-bounded ESP is only at the
loss of a 1 + ε factor in the achievable (total) objective-function value. Formally, we denote
by σ∗ an optimal solution for I and, for all i ∈ [q], by σ∗

i an optimal solution for Ii. The
proofs of the following two lemmata can be found in the full version [28].

▶ Lemma 9. It holds that E
[∑

i∈[q] L′(σ∗
i )
]

≤ (1 + ε)L(σ∗).
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The next lemma is concerned with Step 4 of the algorithm. For all i ∈ [q], it bounds the
cost of σi against the cost of σ∗

i , and it also bounds the total length of σi.

▶ Lemma 10. For each i ∈ [q], the total length of σi is at most γti+1 − γti. Furthermore, it
holds that L′(σi) ≤ α(1 + ε)L′(σ∗

i ).

With these lemmata at hand, Lemma 8 easily follows.

Proof of Lemma 8. Note that Lemma 10 implies that, in the concatenation of σ1, . . . , σq,
σi starts after a total length of at most γti, for all i ∈ [q]. Therefore, again by Lemma 10,
the cost of the concatenation, as a solution to I, has expected cost at most the left-hand
side of the inequality in Lemma 10 summed over all i ∈ [q]. Hence, applying this inequality,
taking expectation, and then applying Lemma 9 completes the proof. ◀

The partition as stated in the decomposition algorithm is a random partition. We
note that the algorithm can be derandomized using the same techniques as in [40], i.e., by
enumerating all partitions.

We also observe that, from now on, we may also assume that all weights are in {0, 1}.
This is due to the following lemma, proven by Sitters [40] for pathwise search, but the same
proof works in our case as shown in the full version [28].

▶ Lemma 11 (See [40], Lemma 2.10). Consider any class C of metric spaces and any
constants α > 0, δ, ε > 0. If there exists a polynomial-time α-approximation algorithm for δ-
bounded ESP with weights in {0, 1}, then there exists a polynomial-time (α+ε)-approximation
algorithm for δ-bounded ESP.

Note that Lemma 10 and 11, together with Theorem 6, yields an alternative polynomial-
time (2e + ε)-approximation algorithm for the general ESP (Theorem 1).

5.2 Reducing δ-Bounded ESP to κ-Segmented ESP
The following lemma can be proven analogously to a lemma of Sitters [40].

▶ Lemma 12 (See [40], Lemma 2.14). Consider any class of metric spaces C, any class
of weights W, and any constants α > 1, δ, ε > 0. If, for each constant κ, there exists a
polynomial-time α-approximation algorithm for κ-segmented ESP on C with weights W, then
there exists a polynomial-time (α + ε)-approximation algorithm for δ-bounded ESP C with
weights W.

In the proof of the lemma, a similar idea as for the proof of Lemma 10 is used to show
that there is a cheap solution that completes before time Oε(1 + δ)D, where D is the given
delay of the instance. Then, by considering appropriate time points starting at D and
growing exponentially with base (1 + Θ(ε)), one can show that for κ ∈ Oε(log(1 + δ)), an
α-approximate solution for the κ-segmented version of the instance can be transformed into
the desired ((1 + ε)α)-approximate solution for the original instance.

5.3 A PTAS for κ-Segmented ESP in the Euclidean Case
Sitters [40] observed that, in Euclidean space, the QPTAS for the traveling repairperson
problem [10] (which is based on the well-known PTAS by Arora for TSP [9]) can be turned
into a PTAS for the segmented version of the traveling repairperson problem. In this section,
we observe that an adapted approach yields a PTAS for Euclidean segmented ESP with
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weights in {0, 1}. We focus on the two-dimensional case; an extension to the d-dimensional
case for constant d is straightforward. The following description is self-contained up to parts
deferred to the full version [28], but familiarity with Arora’s PTAS [9] may still be helpful.

5.3.1 Setup
The core of our PTAS for segmented ESP is the dynamic-programming procedure. Before
this procedure is called, however, there are several preprocessing steps. First, consider a
smallest axis-aligned square that contains all weight-1 vertices from the input. We denote it
by S0 and its side length by d0. Note that d0 is a lower bound on the cost of an optimal
solution. An optimal solution is, however, not necessarily entirely contained in the square as
it may use a weight-0 vertex outside the square as a “Steiner” vertex. We therefore enlarge
the square from its center by a factor of 3n2 + 1, yielding a new square S with side length
d = (3n2 + 1)d0. The scaling factor is chosen such that all points whose distance from S0
is at least

√
2n2d0 are included. Note that there exists an optimal solution that is entirely

contained in S because a trivial upper bound on the cost of the optimal solution of
√

2n2d0
can be obtained by connecting all weight-1 vertices to r. We can therefore ignore all input
points outside S.

Round the instance. We place a grid of granularity Θ(εd/n4) within S and move each
input point to a closest grid point. Note that, this way, several input points may end up at
the same location. In the same way as in the literature [10], any solution for the rounded
instance can be turned into a solution for the original instance at a cost of O(ε)OPT in the
objective-function value: The additional cost of O(εd/n3) per vertex can be charged to the
objective as it is Ω(d/n2) by construction of S.

Build random quadtree. We first obtain an even larger square from S by enlarging it by
an additional factor of 2 from its center and then shifting it to the left by a value a chosen
uniformly at random from {−d/2, −d/2 + 1, . . . , d/2 − 1, d/2} and to the top by a value b

chosen uniformly at random from the same set, independently from a. Note that, in any
event, the resulting square S′ contains S.

We partition S′ into four equal-sized squares, which are recursively partitioned in the
same way until they only contain a single grid point at which there is a vertex (but possibly
many vertices). From this partition, a so-called quadtree naturally emerges by identifying
each of the squares (also called cells in the following) with a node and making a node a child
of another node if its corresponding square is one of the four smaller squares within that
node’s square. We root the quadtree at the node corresponding to S′. Since the minimum
distance between any two vertices not at the same grid point is Θ(εd/n4) by the rounding
step, the quadtree has depth O(log d).

Derandomization. We remark that the randomization is only for a simpler analysis. Indeed,
our algorithm can be derandomized in the same way as Arora’s PTAS and its variants:
Simply try all, polynomially many, values for the random variables a and b, and output the
cheapest solution obtained this way.

5.3.2 Portal-respecting solutions and the structural result
The set of solutions over which the dynamic-programming procedure optimizes are so-called
portal-respecting solutions. Such solutions only cross cell boundaries at so-called portals,
and they do so only a constant number of times at each portal. For each cell, we place
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Θ(log n/ε) equidistant portals on each side of that cell, from corner to corner and including
the corners. Additionally, each cell inherits all portals from all its ancestors in the quadtree.
The following structural result states that we only lose a 1 + O(ε) factor when restricting to
portal-respecting solutions.

▶ Lemma 13. With constant probability (over the random placement of the quadtree), there
exists a (1 + O(ε))-approximate portal-respecting solution.

The result can be proved precisely in the same way as in [10], by applying Arora’s structural
result [9] to each segment. In [10], the pathwise version of our problem is considered, but
this difference does not affect the proof.

5.3.3 Further setup
Before we describe the dynamic program, we need two additional setup steps.

Additional rounding. Since we guess lengths of parts of the solution, we assume at the loss
of another 1+O(ε) factor that the distance between any two relevant points (i.e., input points
or portals) is a polynomially bounded integer. This is possible because the objective-function
value is the sum of polynomially many distances.

Guessing of segment lengths. It will be useful to know the completion times t(1), . . . , t(κ)

before running the dynamic-programming procedure. By our rounding procedure, we know
that there are only nO(1) options for each of these O(1) lengths, meaning that there are nO(1)

combinations of different completion times for each of the segments, which we can all guess.

5.3.4 Dynamic programming
For each cell z of the quadtree we additionally “guess” the following pieces of information
relevant for the other quadtree cells (reflected in the fact that there is a DP entry for each
combination). Specifically, for each segment i ∈ [κ], we guess

(i) the total length ℓi of segment i within the cell,
(ii) the number mi of times that the segment crosses the boundary of the cell, and for each

j ∈ [mi] of these crossing a type τi,j for the j-th such time, containing
the portal pi,j at which the cell is intersected, and
whether the segment enters or leaves the cell at pi,j .

Note that, again, there are only polynomially many options for each of the parameters (in
particular, mi can be assumed to be at most O(log n/ε), and we only have constantly many
options for the type of each crossing) and therefore only polynomially many DP entries.

Any DP entry DP[z, (ℓi, (τi,j)j∈[mi])i∈[κ]] is supposed to contain the cost of the cheapest
portal-respecting solution restricted to the corresponding cell obeying the constraints imposed
by the guessed parameters and visiting all vertices within the cell. Note that such a solution
may not exist (e.g., the cell does not contain the root but some other vertices, and no segment
ever enters the cell), in which case the cost is ∞. Otherwise, the cost of a solution restricted
to a cell refers to the sum over all vertices in that cell of the completion time of the segment
that they are visited in.

With this definition, the entry DP[z0, (t(i) −
∑

i′<i t(i′), ())i∈[κ]] is supposed to contain
the cost of the optimal portal-respecting solution, where z0 is the root of the quadtree and
() is the empty tuple. By standard techniques, the actual solution can be recovered from
these entries. The DP entries can be computed in a fairly standard manner. A more detailed
description can be found in the full version [28].
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6 Hardness of approximation

This section is dedicated to the following theorem.

▶ Theorem 14. There exists some constant ε > 0 such that there is no polynomial-time
(1 + ε)-approximation algorithm for the expanding search problem, unless P = NP.

The hardness result for ESP follows by a reduction from a variant of the Steiner tree
problem which is defined as follows. Given a graph G = (V, E) with non-negative edge costs
and a set T ⊆ V of vertices, the so-called terminals, the Steiner tree problem on graphs asks
for a minimum-cost tree that is a subgraph of G and that contains all vertices in T . The
variant that we consider and use is the so-called SteinerTree(1,2), short ST(1,2), where
G is a complete graph and all edge costs are either 1 or 2. Bern and Plassmann [14] showed
the following theorem.

▶ Theorem 15 (Theorem 4.2 in [14]). SteinerTree(1,2) is MaxSNP-hard.

It was shown in [11] that there exists no polynomial-time approximation scheme for any
MaxSNP-hard problem, unless P = NP. Hence, there exists some constant ρ > 0 such that
there is no polynomial-time (1 + ρ)-approximation algorithm for ST(1,2), unless P = NP.
We use this to show the hardness result for ESP.

The main idea of the proof of Theorem 14 is as follows. Given a β-approximation algorithm
Alg′ for the expanding search problem for any β > 1, we construct a γ-approximation
algorithm Alg for ST(1,2) with γ < 1 + ρ. With the approximation hardness of ST(1,2),
this contradicts the existence of a β-approximation algorithm Alg′ for the expanding search
problem for any β > 1. The construction of the ESP instance in the reduction from ST(1,2)
is similar to the one used for the travelling repairperson problem. Therein, we construct
several copies of the ST(1,2) instance, which are then connected to a root vertex with
an edge of high cost. However, a significant challenge is that we need to prove that the
obtained expanding search sequence fulfills a property which we call structured. Intuitively,
this property means that no copy of the original ST(1,2) instance is visited more than once
and that all edges belonging to one copy are contiguous within the expanding search pattern.
This property is trivial for the travelling repairperson problem since here using an expensive
edge from the root to one of the copies more than once increases the total cost significantly.
In the expanding search problem, however, these costs are not paid multiple times. The
exact construction of the ESP instance and the proof of Theorem 14 can be found in the full
version [28].
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Abstract
The k-means++ algorithm by Arthur and Vassilvitskii [SODA 2007] is a classical and time-tested
algorithm for the k-means problem. While being very practical, the algorithm also has good
theoretical guarantees: its solution is O(log k)-approximate, in expectation.

In a recent work, Bhattacharya, Eube, Roglin, and Schmidt [ESA 2020] considered the following
question: does the algorithm retain its guarantees if we allow for a slight adversarial noise in the
sampling probability distributions used by the algorithm? This is motivated e.g. by the fact that
computations with real numbers in k-means++ implementations are inexact. Surprisingly, the
analysis under this scenario gets substantially more difficult and the authors were able to prove only
a weaker approximation guarantee of O(log2 k). In this paper, we close the gap by providing a tight,
O(log k)-approximate guarantee for the k-means++ algorithm with noise.
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1 Introduction

The k-means problem is a classical problem in computer science: given a point set X ⊆ Rd

consisting of n points and a parameter k, we are asked to return a set of k clusters with
corresponding cluster centers C ⊆ Rd so as to minimize the sum of the squared distances
of points of X with respect to their closest cluster center in C. Formally, we are asked to
minimize the function φ(X, C) defined by φ(x, C) = minc∈C ||x − c||2 for a single point x

and as φ(X, C) =
∑

x∈X φ(x, C) for a set of points.
There exists some fixed constant c > 1 such that it is NP-hard to find a c-approximate

solution to the k-means objective [2, 4]. On the other hand, a substantial amount of work has
been devoted to finding polynomial time algorithms with a good approximation guarantee,
with the currently best approximation ratio being 5.912 [12]. On the practical side, the
celebrated clustering algorithm k-means++ by Arthur and Vassilvitskii [3] is one of the
classical algorithms for the k-means problem. Due to its simplicity, it is widely used in practice,
for example in the well-known Python Scikit-learn library [18]. It is also very appealing
from the theoretical perspective, as it returns a solution that is O(log k)-approximate, in
expectation.
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The k-means++ algorithm (Algorithm 1 with ε = 0) is indeed very simple: we sample
C ⊆ X in k steps. The first center is taken as a uniformly random point of X. To get each
subsequent center, we always first compute the current costs φ(x, Ci) for each x ∈ X; then
we sample each point of X as the next center with probability proportional to φ(x, Ci).

In [10], the authors made an intriguing observation: the classical analysis of the algorithm
by Arthur and Vassilvitski [3] fails to work if we allow small errors in the sampling probabilities.
That is, consider Algorithm 1: this is the k-means++ algorithm, however, with an additional
small positive parameter ε. In every step, before we sample, we allow an adversary to perturb
the sampling distribution such that the multiplicative change of each probability is within
1± ε of its original value.

Algorithm 1 (1 + ε)-noisy k-means++.
Input: X, k, 0 ≤ ε < 1/2

1: Sample x ∈ X w.p. in
[
(1− ε) · 1

n , (1 + ε) · 1
n

]
, set C1 = {x}.

2: for i← 0, 1, . . . , k − 1 do
3: Sample x ∈ X w.p. in

[
(1− ε) · φ(x,Ci)

φ(X,Ci) , (1 + ε) · φ(x,Ci)
φ(X,Ci)

]
and set Ci+1 = Ci ∪ {x}.

return C := Ck

Does the noisy k-means++ algorithm retain the original guarantees? This question is
natural since in every implementation, there are small numerical errors associated with
the distance computations made by Algorithm 1. It would be shocking if these errors
could substantially affect the quality of the algorithm’s output! From a more theoretical
perspective, the authors of [10] considered this problem as a first step towards understanding
other questions related to the k-means++ algorithm, in particular the analysis of the greedy
variant of k-means++, a related algorithm later analyzed in [14].

Going back to noisy k-means++, the authors of [10] proved that Algorithm 1 remains
O(log2 k)-approximate even for small constant ε (think e.g. ε = 0.01). In this paper, we
improve their analysis to recover the tight O(log k)-approximation guarantee. That is, we
show that the adversarial noise worsens the approximation guarantee by at most a constant
multiplicative factor.

▶ Theorem 1. Algorithm 1 is O(log k)-approximate, in expectation.

▶ Remark 2. It would be interesting to see an analysis of the approximation ratio of
Algorithm 1 that would be within a 1 + O(ε)-factor of the classical k-means++ analysis
from [3], or a counterexample showing this is not possible. In our analysis, we lose a very
large constant factor even for very small ε.

Related Work. There is a lot of work related to the k-means++ algorithm, both improving
the algorithm or its analysis [16, 11, 1, 20, 17, 10, 14] and adapting it to other setups
[8, 6, 19, 17, 5, 7, 9, 15].

2 Reduction to a Sampling Game

To analyze Algorithm 1, the authors of [10] follow the proof of [3] (more precisely, they follow
the proof from [13]) and show that most arguments of that proof, in fact, work even in the
adversarial noise scenario. The part of the proof that does not generalize from ε = 0 to
ε > 0 can be distilled into a simple sampling process that we analyze in this paper. We
next describe this process and state its relation to the analysis of noisy k-means++ (cf. the
discussion on page 15 of [10]).
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▶ Definition 3 ((1 + ε)-adversarial sampling process). Let 0 < ε < 1/2. We define the
(1 + ε)-adversarial sampling process as follows. At the beginning, there is a set E0 of k

elements where each element e ∈ E0 has some nonnegative weight w0(e). The process has k

rounds where in each round, we form the new set Ei+1 from Ei as follows:
1. We define the distribution Di over Ei where the probability of selecting e ∈ Ei is defined

as wi(e)/
∑

e∈Ei
wi(e). Next, an adversary chooses an arbitrary distribution Dε

i over Ei

that satisfies for any e ∈ Ei that

(1− ε)PDi
(e) ≤ PDε

i
(e) ≤ (1 + ε)PDi

(e). (1)

We sample an element ei+1 ∈ Ei according to Dε
i and set Ei+1 = Ei \ {ei+1}.

2. Next, an adversary chooses a new weight function wi+1(e) for every element e ∈ Ei+1 as
an arbitrary function that satisfies

0 ≤ wi+1(e) ≤ wi(e).

We will be interested in the expected average weight of an element after some number

of steps in this process, that is, we need to understand the value of E
[∑

e∈Ei
wi(e)

k−i

]
for

0 ≤ i < k. If ε = 0, one can prove that

E
[∑

e∈Ei
wi(e)

k − i

]
≤
∑

e∈Ei−1
wi−1(e)

k − (i− 1) (2)

where the randomness is over the sampling in the i-th step (we always regard the adversary
as fixed in advance). Why is Equation (2) true? The inequality would clearly hold with
equality if the distribution Di were a uniform one and there was no adversary; we in fact
give larger sampling probabilities to heavier elements in Di and, moreover, the adversary
can lower the weights arbitrarily after we sample, but both of these operations can make the
left-hand side of Equation (2) only smaller.

However, this monotonic behavior is no longer true for ε > 0. The question that needs
to be analyzed as a part of the analysis of noisy k-means++ is whether the adversarial
choices can make the average size of an element drift so that in the end the left-hand side
of Equation (2) is substantially larger than

∑
e∈E0

w0(e)/k. More precisely, we will need to
bound the following quantity that we call the adversarial advantage.

▶ Definition 4 (Adversarial advantage). We say that the adversarial advantage is at most
some function f if the following conclusion holds: Consider a (1 + ε)-adversarial sampling
process on k elements for any 0 < ε < 1

2 , any starting set E0, and any adversary. For any
0 ≤ i < k, we have

E
[∑

e∈Ei
wi(e)

k − i

]
≤ f(k) ·

∑
e∈E0

w0(e)
k

. (3)

Although we require the inequality Equation (3) to hold for all i, note that for all
0 ≤ i ≤ (1 − δ)k we can choose f(k) = 1/δ in Equation (3) and it will be satisfied for
those values of i simply because

∑
e∈Ei

wi(e) ≤
∑

e∈E0
w0(e) is true deterministically. Thus,

intuitively, i = k − 1 is the hardest case.
In [10], the authors proved that if we adapt the analysis of k-means++ to the noisy

k-means++, it only picks up the multiplicative factor of f(k). That is, analyzing the (1 + ε)-
adversarial sampling process is enough to get an upper bound for noisy k-means++. The
following theorem is proven in [10] (it is proven only for f(k) = O(log k), but it directly
generalizes to any f(k)).
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▶ Theorem 5 (Theorem 2 in [10]). For any 0 < ε < 1/2, (1 + ε)-noisy k-means++ is
O(f(k) · log k)-approximate, in expectation.

In Lemma 10 of [10], the authors prove that f(k) = O(log k). The reason for this is that
if an element e ∈ E0 is Θ(log k) times larger than the average size of an element of E0, it
will be sampled in the first k/2 steps of the process with probability 1− 1/kO(1). Thus, the
contribution of elements Ω(log k) larger than the average to the left-hand side of Equation (3)
is negligible even for i = k − 1. Hence, f(k) = O(log k).

▶ Lemma 6 (Lemma 10 in [10]). The adversarial advantage is at most O(log k).

Our technical contribution is to show that the adversarial advantage is bounded by O(1).

▶ Lemma 7. The adversarial advantage is at most O(1).

Theorem 1 then follows from Theorem 5 and Lemma 7.

3 Analysis of the Sampling Process

This section is devoted to the proof of Lemma 7. We view the adversary as a function fixed
at the beginning of the argument. We start by normalizing the starting weights w0 so that
the average at the beginning is one, i.e., from now on we assume that (

∑
e∈E0

w0(e))/k = 1.
For every E ⊆ Ei, we define wi(E) =

∑
e∈E wi(e) and similarly PDε

i
(E) =

∑
e∈E PDε

i
(e). In

every step i, we consider the partition Ei = Bi ⊔Mi ⊔ Si where e ∈ Ei is in
1. the big set Bi iff wi(e) ≥ 80,
2. the medium set Mi iff 2 < wi(e) < 80 and
3. the small set Si iff wi(e) ≤ 2.
The main idea of the analysis is to show that wi(Bi) = O(|Si|), and thus wi(Ei)

k−i =
O(|Si|)

|Si|+|Mi|+|Bi| = O(1), with probability 1 − e−Ω(|Si|). This turns out (see the proof of
Lemma 7) that this is sufficient to show that the adversarial advantage is O(1), i.e., that
E
[

wi(Ei)
k−i

]
= O(1).

Roughly speaking, we call an iteration with ℓ small elements bad, if the total weight of
the big elements is greater than 4ℓ, which intuitively means the average drifted way above
1. In general we use the number of the small elements as our main way to refer to the
iterations. Then in Lemma 9 we denote with ℓmax the number of small elements at the first
bad iteration. Using that the previous iterations were good, and wi2ℓ

(Bi2ℓ
) ≤ 8ℓ for the

bad iterations (Definition 8), we provide an upper bound on the average element size for
the following iterations. Even though this bound is depending on the number of the small
elements ℓ, we show in Lemma 10 that an iteration is bad with probability at most e− ℓ

40 ,
which is enough to show the constant average in expectation.

The following definition is crucial for our analysis.

▶ Definition 8. For every ℓ ∈ {1, 2, . . . , |S0|}, we define iℓ as the smallest i for which |Si| = ℓ.
We refer to a given ℓ ∈ {1, 2, . . . , ⌊|S0|/2⌋} as bad if both wi2ℓ

(Bi2ℓ
) ≤ 8ℓ and wiℓ

(Biℓ
) > 4ℓ

and otherwise we refer to ℓ as good.

Note that iℓ is well-defined in the sense that there has to exist at least one i with |Si| = ℓ for
every ℓ ∈ {1, 2, . . . , |S0|}. This follows from |Si+1| ≥ |Si| − 1 for every i ∈ {1, 2, . . . , k − 1}
and |Sk−1| ≤ 1.

▶ Lemma 9. Let ℓmax be defined as the largest ℓ ∈ {1, 2, . . . , ⌊|S0|/2⌋} such that ℓ is bad, if
there exists such an ℓ, and otherwise let ℓmax = 1. Then, for every i ∈ {0, 1, . . . , k − 1}, we
have wi(Ei)

k−i ≤ 90ℓmax.
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Proof. We first prove by induction that wi(Bi) ≤ max(4|Si|, 8ℓmax) for every i ∈
{0, 1, . . . , k − 1}. As our base case, we consider any i with |Si| ≥ |S0|/2. Using that
the average weight is 1 at the beginning, we get |S0| ≥ k/2 by Markov’s inequality and
therefore wi(Bi) ≤ k ≤ 2|S0| ≤ 4|Si|. For our induction step, consider some arbitrary i with
|Si| < |S0|/2. Let ℓ := |Si|. First, we consider the case that ℓmax ≥ ℓ. In particular, this
implies |Si−1| ≤ |Si|+ 1 ≤ ℓ + 1 ≤ ℓmax + 1 and therefore we get by induction that

wi(Bi) ≤ wi−1(Bi−1) ≤ max(4|Si−1|, 8ℓmax) ≤ max(4(ℓmax + 1), 8ℓmax) ≤ 8ℓmax.

Thus, it suffices to consider the case that ℓ > ℓmax, which in particular implies that ℓ is
good. We have i2ℓ < iℓ ≤ i (since ℓ ≤ |S0|/2 ≤ i) and therefore we can assume by induction
that wi2ℓ

(Bi2ℓ
) ≤ max(4(2ℓ), 8ℓmax) = 8ℓ. As ℓ is good, this implies that wiℓ

(Biℓ
) ≤ 4ℓ and

therefore wi(Bi) ≤ wiℓ
(Biℓ

) ≤ 4ℓ = 4|Si|. This finishes the induction and thus we indeed
have wi(Bi) ≤ max(4|Si|, 8ℓmax) for every i ∈ {0, 1, . . . , k − 1}. Therefore,

wi(Ei)
k − i

≤ wi(Ei)
|Si| + |Mi| + |Bi|

≤ wi(Bi)
max(|Si|, 1) + 80(|Si| + |Mi|)

|Si| + |Mi|
≤ max(4, 8ℓmax) + 80 ≤ 90ℓmax.

◀

▶ Lemma 10. Let ℓ ∈ {1, 2, . . . , ⌊|S0|/2⌋}. Then, ℓ is bad with probability at most e− ℓ
40 .

For the proof of Lemma 10, we need the following Chernoff-bound variant.

▶ Lemma 11 (Chernoff bound). Let X1, . . . , Xℓ be independent Bernoulli-distributed random
variables, each equal to one with probability p. Then,

P
(

ℓ∑
i=1

Xi <
pℓ

2

)
≤ e−pℓ/8.

Proof of Lemma 10. Throughout the proof, we assume that wi2ℓ
(Bi2ℓ

) ≤ 8ℓ. In particular,

|Bi2ℓ
| ≤ wi2ℓ

(Bi2ℓ
)

80 ≤ ℓ

10 .

Below, we will define for every j ∈ {1, 2, . . . , ℓ} an indicator variable Xj in such a way that

1. E[Xj |X1, X2, . . . , Xj−1] ≥ 1
5 for every j ∈ {1, 2, . . . , ℓ} and

2. if X :=
∑ℓ

j=1 Xj ≥ ℓ
10 , then wiℓ

(Biℓ
) ≤ 4ℓ.

The first property implies that X stochastically dominates a random variable X ′ which is
the sum of ℓ independent Bernoulli-distributed random variables, each equal to one with
probability 1/5. Thus, using Lemma 11, we get

P
[
X <

ℓ

10

]
≤ P

[
X ′ <

ℓ

10

]
≤ e− ℓ

40 .

Thus, we can now use the second property to deduce that ℓ is bad with probability at most
e− ℓ

40 . It thus remains to define the random variables and show that they indeed satisfy
the two properties. To that end, fix some j ∈ {1, 2, . . . , ℓ}. We define i′

j as the smallest
i ∈ {i2ℓ, i2ℓ + 1, . . . , iℓ − 1} with |Si| = 2ℓ − j + 1 and ei+1 /∈ Mi. Note that there exists
at least one such i as there exists some i with |Si| = 2ℓ − j + 1 and |Si+1| = 2ℓ − j, and
for this i it holds that ei+1 ∈ Si and therefore ei+1 /∈ Mi. Note that it furthermore holds
that i′

1 < i′
2 < . . . < i′

ℓ. We set Xj = 1 if wi′
j
(Bi′

j
) ≤ 4ℓ or ei′

j
+1 ∈ Bi′

j
and otherwise we set

Xj = 0. We start by showing that the second property holds by proving the contrapositive.
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To that end, assume that wiℓ
(Biℓ

) > 4ℓ. In particular, we have for every j that wi′
j
(Bi′

j
) > 4ℓ.

Thus, if Xj = 1, we get ei′
j
+1 ∈ Bi′

j
and therefore |Bi′

j
+1| ≤ |Bi′

j
| − 1. As |Bi2ℓ

| < ℓ
10 , we

therefore get that X < ℓ
10 , as needed.

It remains to show the first property. To that end, consider any i and assume we have
already sampled e1, . . . , ei in an arbitrary manner such that |Si| ≤ 2ℓ and wi(Bi) ≥ 4ℓ. Then,
conditioned on ei+1 /∈Mi, we get ei+1 ∈ Bi with probability at least

Dε
i (Bi)

Dε
i (Bi) + Dε

i (Si)
≥ (1− ε)wi(Bi)

(1− ε)wi(Bi) + (1 + ε)wi(Si)
≥ 0.5 · 4ℓ

0.5 · 4ℓ + 1.5 · 2 · 2ℓ
≥ 1

5 .

In particular, this directly implies E[Xj |X1, X2, . . . , Xj−1] ≥ 1
5 for every j ∈ {1, 2, . . . , ℓ}.

◀

Finally, we are ready to prove Lemma 7 by combining Lemmas 9 and 10.

Proof of Lemma 7. Fix some i ∈ {0, 1, . . . , k − 1}. Let ℓmax be defined as in Lemma 9.
Lemma 9 gives that for every ℓ with Pr[ℓmax = ℓ] > 0, we have

E
[∑

e∈Ei
wi(e)

k − i
|ℓmax = ℓ

]
≤ 90ℓ.

Moreover, for ℓ > 1 , we can use Lemma 10 to deduce that P[ℓmax = ℓ] ≤ P[ℓ is bad] ≤ e− ℓ
40 .

Therefore,

E
[∑

e∈Ei
wi(e)

k − i

]
≤

∞∑
ℓ=1

90ℓ · e− ℓ−1
40 = O(1). ◀

References
1 Ankit Aggarwal, Amit Deshpande, and Ravi Kannan. Adaptive sampling for k-means clus-

tering. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, pages 15–28. Springer, 2009.

2 Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat. Np-hardness of euclidean
sum-of-squares clustering. Machine learning, 75(2):245–248, 2009.

3 David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. In
Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pages
1027–1035. Society for Industrial and Applied Mathematics, 2007.

4 Pranjal Awasthi, Moses Charikar, Ravishankar Krishnaswamy, and Ali Kemal Sinop. The
hardness of approximation of euclidean k-means. arXiv preprint, 2015. arXiv:1502.03316.

5 Olivier Bachem, Mario Lucic, Hamed Hassani, and Andreas Krause. Fast and provably good
seedings for k-means. In Advances in neural information processing systems, pages 55–63,
2016.

6 Olivier Bachem, Mario Lucic, S Hamed Hassani, and Andreas Krause. Approximate k-means++
in sublinear time. In Thirtieth AAAI Conference on Artificial Intelligence, 2016.

7 Olivier Bachem, Mario Lucic, and Andreas Krause. Distributed and provably good seedings for
k-means in constant rounds. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 292–300. JMLR. org, 2017.

8 Bahman Bahmani, Benjamin Moseley, Andrea Vattani, Ravi Kumar, and Sergei Vassilvitskii.
Scalable k-means++. Proceedings of the VLDB Endowment, 5(7):622–633, 2012.

9 Aditya Bhaskara, Sharvaree Vadgama, and Hong Xu. Greedy sampling for approximate
clustering in the presence of outliers. Advances in Neural Information Processing Systems, 32,
2019.

https://arxiv.org/abs/1502.03316


C. Grunau, A. A. Özüdoğru, and V. Rozhoň 55:7

10 Anup Bhattacharya, Jan Eube, Heiko Röglin, and Melanie Schmidt. Noisy, greedy and not so
greedy k-means++. In 28th Annual European Symposium on Algorithms (ESA 2020). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

11 Davin Choo, Christoph Grunau, Julian Portmann, and Václav Rozhon. k-means++: few more
steps yield constant approximation. In International Conference on Machine Learning, pages
1909–1917. PMLR, 2020.

12 Vincent Cohen-Addad, Hossein Esfandiari, Vahab Mirrokni, and Shyam Narayanan. Improved
approximations for euclidean k-means and k-median, via nested quasi-independent sets, 2022.
doi:10.48550/ARXIV.2204.04828.

13 Sanjoy Dasgupta. Lecture 3 – algorithms for k-means clustering, 2013, accessed May 8th,
2019.

14 Christoph Grunau, Ahmet Alper Özüdoğru, Václav Rozhoň, and Jakub Tětek. A nearly tight
analysis of greedy k-means++. arXiv preprint, 2022. arXiv:2207.07949.

15 Christoph Grunau and Václav Rozhoň. Adapting k-means algorithms for outliers, 2020.
doi:10.48550/arXiv.2007.01118.

16 Silvio Lattanzi and Christian Sohler. A better k-means++ algorithm via local search. In
International Conference on Machine Learning, pages 3662–3671, 2019.

17 Konstantin Makarychev, Aravind Reddy, and Liren Shan. Improved guarantees for k-means++
and k-means++ parallel. Advances in Neural Information Processing Systems, 33:16142–16152,
2020.

18 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

19 Václav Rozhoň. Simple and sharp analysis of k-means||. In International Conference on
Machine Learning, pages 8266–8275. PMLR, 2020.

20 Dennis Wei. A constant-factor bi-criteria approximation guarantee for k-means++. In Advances
in Neural Information Processing Systems, pages 604–612, 2016.

ESA 2023

https://doi.org/10.48550/ARXIV.2204.04828
https://arxiv.org/abs/2207.07949
https://doi.org/10.48550/arXiv.2007.01118




Convergence to Lexicographically Optimal Base in
a (Contra)Polymatroid and Applications to
Densest Subgraph and Tree Packing
Elfarouk Harb #

University of Illinois at Urbana Champaign, IL, USA

Kent Quanrud #

Purdue University, West Lafayette, IN, USA

Chandra Chekuri #

University of Illinois at Urbana Champaign, IL, USA

Abstract
Boob et al. [7] described an iterative peeling algorithm called Greedy++ for the Densest Subgraph
Problem (DSG) and conjectured that it converges to an optimum solution. Chekuri, Qaunrud and
Torres [10] extended the algorithm to supermodular density problems (of which DSG is a special
case) and proved that the resulting algorithm Super-Greedy++ (and hence also Greedy++)
converges. In this paper we revisit the convergence proof and provide a different perspective. This
is done via a connection to Fujishige’s quadratic program for finding a lexicographically optimal
base in a (contra) polymatroid [18], and a noisy version of the Frank-Wolfe method from convex
optimization [17, 25]. This yields a simpler convergence proof, and also shows a stronger property
that Super-Greedy++ converges to the optimal dense decomposition vector, answering a question
raised in Harb et al. [24]. A second contribution of the paper is to understand Thorup’s work on
ideal tree packing and greedy tree packing [46, 47] via the Frank-Wolfe algorithm applied to find a
lexicographically optimum base in the graphic matroid. This yields a simpler and transparent proof.
The two results appear disparate but are unified via Fujishige’s result and convex optimization.
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1 Introduction

In this paper we consider iterative greedy algorithms for two different combinatorial optimiz-
ation problems and show that the convergence of these algorithms can be understood by
combining two general tools, one coming from the theory of submodular functions, and the
other coming from convex optimization. This yields simpler proofs via a unified perspective,
while also yielding additional properties that were previously unknown.

Densest subgraph and supermodularity. We start with the problem that motivated this
work, namely, the densest subgraph problem (DSG). The input to DSG is an undirected
graph G = (V, E) with m = |E| and n = |V |. The goal is to return a subset S ⊆ V that
maximizes |E(S)|

|S| where E(S) = {uv ∈ E : u, v ∈ S} is the set of edges with both end points
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in S. Throughout the paper, we let λ(G) = |E(G)|
|V (G)| denote the density of graph G(V, E). We

treat the unweighted case for simplicity; all the results generalize to edge-weighted graphs.
Goldberg [22] and Picard and Queyranne [37] showed that DSG can be efficiently solved via
a reduction to the s-t maximum-flow problem.

A different connection that shows polynomial-time solvability of DSG is important to
this paper. Consider a real-valued set function f : 2V → R+ defined over the vertex set
V , where f(S) = |E(S)|. This function is supermodular. A function f is supermodular iff
−f is submodular. A real-valued set function f : 2V → R is submodular iff f(A) + f(B) ≥
f(A ∪ B) + f(A ∩ B) for all A, B ⊆ B. Submodular and supermodular set functions are
fundamental in combinatorial optimization – see [41, 19].

Coming back to DSG, maximizing |E(S)|/|S| is equivalent to finding the largest λ such
that λ|S| − |E(S)| ≥ 0 for all S ⊆ V . This corresponds to minimizing the submodular set
function g where g(S) = λ|S| − |E(S)|. A classical result in combinatorial optimization is
that the minimum of a submodular set function can be found in polynomial-time in the
value oracle setting [41]. Thus, DSG can be solved via reduction to submodular set function
minimization and binary search. The preceding connection also motivates the definition of a
generalization of DSG called the densest supermodular set problem (DSS) [10]. The input
is a non-negative supermodular function f : 2V → ℜ+, and the goal is to find S ⊆ V that
maximizes f(S)

|S| . DSS is polynomial-time solvable via submodular set function minimization.
DSG, DSS and its variants have several applications in practice, and they are routinely used
in graph and network analysis to find dense clusters or communities. We refer the reader to
the extensive literature on this topic [32, 7, 14, 48, 43, 1, 49, 16, 34, 39, 6, 27, 2, 42, 30, 28].
DSG is also of interest in algorithms via its connection to arboricity and related notions –
see [40, 13] for recent work.

Faster algorithms, Greedy and Greedy++. Although DSG is polynomial-time solvable
via maxflow or submodular function minimization, the corresponding algorithms are not
yet practical for the large graphs that arise in many applications; this is despite the fact
that we now have very fast theoretical algorithms for maxflow and mincost flow [12]. For
this reason there has been considerable interest in fast (approximation) algorithms. More
than 20 years ago Charikar [9] showed that a simple “peeling” algorithm (Greedy) yields a
1/2-approximation for DSG. An ordering of the vertices as vi1 , vi2 , . . . , vin

is computed as
follows: vi1 is a vertex of minimum degree in G (ties broken arbitrarily), vi2 is a minimum
degree vertex in G − vi1 and so on1. After creating the ordering, the algorithm picks the
best suffix, in terms of density, among the n-possible suffixes of the ordering. Charikar
also developed a simple exact LP relaxation for DSG. Charikar’s results have been quite
influential. Greedy can be implemented in (near)-linear time and has also been adapted
to other variants. The LP relaxation has also been used in several algorithms that yield
a (1 − ϵ)-approximate solution [5, 8], and has led to a flow-based (1 − ϵ)-approximation
[10]. More recently, Boob et al. [7] developed an algorithm called Greedy++ that is
based on combining Greedy with ideas from multiplicative weight updates (MWU); the
algorithm repeatedly applies a simple peeling algorithm with the first iteration coinciding
with Greedy but later iterations depending on a weight vector that is maintained on the
vertices – the formal algorithm is described in a later section. The advantage of the algorithm
is its simplicity, and Boob et al. [7] showed that it has good empirical performance. Moreover

1 This peeling order is the same as the one used to create the so-called core decomposition of a graph [33]
and the Greedy algorithm itself was suggested by Asahiro et al. [4].
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they conjectured that Greedy++ converges to a (1− ϵ)-approximation in O(1/ϵ2) iterations.
Although their strong conjecture is yet unverified, Chekuri, Quanrud and Torres [10] proved
that Greedy++ converges in O( ∆ log |V |

ϵ2λ∗(G) ) iterations where ∆ is the maximum degree of G

and λ∗(G) is the optimum density.
The convergence proof in [10] is non-trivial and relies crucially in considering DSS

and supermodularity. [10] shows that Greedy and Greedy++ can be generalized to
SuperGreedy and SuperGreedy++ for DSS, and that SuperGreedy++ converges
to a (1− ϵ)-approximation solution in O(αf /ϵ2) iterations where αf depends (only) on the
function f .

Dense subgraph decomposition and connections. As we discussed, DSG is a special case
of DSS and hence DSG inherits certain nice structural properties from supermodularity.
One of these is the fact that the vertex set V of every graph G = (V, E) admits a unique
decomposition into S1, S2, . . . , Sk for some k using the following procedure: S1 is the vertex
set of the unique maximal densest subgraph, S2 is the unique maximal densest subgraph
after “contracting” S1, and so on. The existence of such a unique decomposition is more
transparent in the setting of DSS. The fact that there is a unique maximal densest set S1
follows from supermodularity; if A and B are optimum dense sets then so is A ∪ B. One
can then consider a new supermodular function fS1 : 2V −S1 → R defined over V − S1 where
fS1(A) = f(S1 ∪ A) − f(S1) for all A ⊆ V − S1. The new function is also supermodular.
Then S2 is the unique maximal densest set for fS1 . We iterate this process until we obtain
an empty set. The decomposition also allows us to assign a density value λv to each v ∈ V

(which corresponds to the density of the set when v is in the maximal set). We call this the
density vector associated with f . Dense decompositions follow from the theory of principal
partitions of submodular functions [35, 36, 20]. In the context of graphs and DSG this was
rediscovered by Tatti and Gionis who called it the locally-dense decomposition [45, 44], and
gave algorithms for computing it. Subsequently, Danisch et al. [14] applied the well-known
Frank-Wolfe algorithm for constrained convex optimization to a quadratic program derived
from Charikar’s LP relaxation for DSG. More recently, Harb et al. [24] obtained faster
algorithms for computing the dense decomposition in graphs via Charikar’s LP; they used a
different method called FISTA for constrained convex optimization based on acceleration.
Although DSS was not the main focus, [24] also made an important connection to Fujishige’s
result on lexicographically optimal base in polymatroids [18] which elucidated the work of
Danisch et al. on DSG. We describe this next.

Lexicographical optimal base and dense decomposition. We briefly describe Fujishige’s
result [18] and its connection to dense decompositions. Let f : 2V → R+ be a monotone
submodular set function (f(A) ≤ f(B) if A ⊂ B) that is also normalized (f(∅) = 0).
Following Edmonds, the polymatroid associated with f , denote by Pf is the polyhedron
{x ∈ RV | x ≥ 0, x(S) ≤ f(S) ∀S ⊆ V }, where x(S) =

∑
i∈S xi. The base polyhedron

associated with f , denote by Bf , is the polyhedron Pf ∩ {x ∈ RV | x(V ) = f(V )} obtained
by intersecting Pf with the equality constraint x(V ) = f(V ). Each vector x in Bf is
called a base. If f is a monotone normalized supermodular function, we consider the
contrapolymatroid Pf = {x ∈ RV | x ≥ 0, x(S) ≥ f(S) ∀S ⊆ V } (the inequalities are
reversed), and similarly Bf is the base contrapolymatroid obtained by intersecting Pf with
equality constraint x(V ) = f(V ). Fujishige proved that there exists a unique lexicographically
minimal base in any polymatroid, and morover it can found by solving the quadratic program:
min

∑
v x2

v s.t x ∈ Bf . In the context of supermodular functions, one obtains a similar result;
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the quadratic program min
∑

v x2
v s.t x ∈ Bf where Bf is contrapolymatroid associated with

f has a unique solution. As observed explicity in [24], the lexicographically optimal base
gives the dense decomposition vector for DSS. That is, if x∗ is the optimal solution to the
quadratic program then for each v, x∗

v = λv. In particular, as noted in [24], one can apply
the well-known Frank-Wolfe algorithm to the quadratic program and it converges to the
dense decomposition vector. As we will see later, each iteration corresponds to finding a
maximum weight base in a contrapolymatroid which is easy to find via the greedy algorithm.

(Ideal) Tree packings in graphs and the Tutte–Nash-Williams theorem. Our discussion so
far focused on DSG. Now we describe a different problem on graphs and relevant background.
Our goal is to present a unified perspective on these two problems. The well-known Tutte–
Nash-Williams theorem in graph theory (see [41]) establishes a min-max result for the
maximum number of edge-disjoint spanning trees in a multi-graph G. Given an undirected
graph G = (V, E), and a partition P of the vertices, let E(P ) denote the set of edges crossing
the partition. The strength of a partition P is defined as |E(P )|

|P |−1 . Let T (G) denote all possible
spanning trees of G. Let τ∗(G) denote the maximum number of edge-disjoint spanning trees
in G. Then τ∗(G) = minP ⌊ |E(P )|

|P |−1 ⌋. Further, if we define τ(G) to be the maximum fractional
packing of spanning trees, then the floor can be removed and we have τ(G) = minP

|E(P )|
|P |−1 .

We note that the graph theoretic result is a special case of matroid base packing. Tree
packings are useful for a number of applications. In particular, Karger [26] used tree packings
and other ideas in his well-known near-linear randomized algorithm for computing the global
minimum cut of a graph. We are mainly concerned here with Thorup’s work in [46, 47]
that was motivated by dynamic mincut and k-cut problems. He defined the so-called ideal
edge loads and ideal tree packing (details in later section) by recursively decomposing the
graph via Tutte–Nash-Williams partitions [46]. He also proved that a simple iterative greedy
tree packing algorithm converges to the ideal loads [47]. He used the approximate ideal tree
packing to obtain new deterministic algorithms for the k-cut problem, and his approach has
been quite influential in a number of subsequent results [21, 11, 31, 29, 23]. Thorup obtained
his tree packing result from first principles. We ask: is there a connection between ideal tree
packing and DSG?

1.1 Contributions of the paper
This paper has two main contributions. The first is a new proof of the convergence of
SuperGreedy++ for DSS. Our proof is based on showing that SuperGreedy++ can
be viewed as a “noisy” or “approximate” variant of the Frank-Wolfe algorithm applied to
the quadratic program defined by Fujishige. The advantage of the new proof is twofold.
First, it shows that SuperGreedy++ not only converges to a (1 − ϵ)-approximation to
the densest set, but that in fact it converges to the densest decomposition vector. This was
empirically observed in [24] for DSG, and was left as an open problem to resolve. The proof
in [10] on convergence of SuperGreedy++ is based on the MWU method via LPs, and
does not exploit Fujishige’s result which is key to the stronger property that we prove here.
Second, the proof connects two powerful tools directly and at a high-level: Fujishige’s result
on submodular functions, and a standard method for constrained convex optimization.

▶ Theorem 1. Let b∗ be the dense decomposition vector for a non-negative monotone
supermodular set function f : 2V → R+ where |V | = n. Then, SuperGreedy++ converges
in O(αf /ϵ2) iterations to a vector b such that ||b − b∗||2 ≤ ϵ, where αf depends only on f .
For a graph with m edges and n vertices, Greedy++ converges in O(mn2/ϵ2) iterations
for unweighted multigraphs.
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▶ Remark 2. The new convergence gives a weaker bound than the one in [10] in terms of
convergence to a (1− ϵ) relative approximation to the maximum density. However, it gives a
strong additive guarantee to the entire dense decomposition vector.

Our second contribution builds on our insights on DSG and DSS, and applies it towards
understanding ideal tree packing and greed tree packing. We connect the ideal tree packing
of Thorup to the dense decomposition associated with the rank function of the underlying
graphic matroid (which is submodular). We then show that greedy tree packing algorithm
can be viewed as the Frank-Wolfe algorithm applied to the quadratic program defined by
Fujishige, and this easily yields a convergence guarantee.

▶ Theorem 3. Let G = (V, E) be a graph. The ideal edge load vector ℓ∗ : E → R+ for G

is given by the lexicographically minimal base in the polymatroid associated with the rank
function of the graphic matroid of G. The Frank-Wolfe algorithm with step size 1

k+1 , when
applied to the quadratic program for computing the lexicographically minimal base in the
graphic matroid of G, coincides with the greedy tree packing algorithm. For unweighted graphs
on m edges, the generic analysis of Frank-Wolfe method’s convergence shows that greedy
tree packing converges to a load vector ℓ : E → R+ such that ||ℓ− ℓ∗||2 ≤ ϵ in O( m log(m/ϵ)

ϵ2 )
iterations. The standard step size algorithm converges in O( m

ϵ2 ) iterations.

▶ Remark 4. Although the algorithm is the same (greedy tree packing), Thorup’s analysis
guarantees a strongly polynomial-bound even in the capacitated case [47]. However we obtain
a stronger additive guarantee via a generic Frank-Wolfe analysis and our analysis has a 1/ϵ2

dependence while Thorup’s has a 1/ϵ3 dependence. We give a more detailed comparison in
Section 5.

Organization. The rest of the paper is devoted to proving the two theorems. The paper
relies on tools from theory of submodular functions and an adaptation of the analysis of
Frank-Wolfe. We first describe the relevant background and then prove the two results in
separate sections. Due to space constraints, most of the proofs are provided in the full
version.

2 Background on Frank-Wolfe algorithm and a variation

Let D ⊆ ℜd be a compact convex set, and f : D → ℜ be a convex, differentiable function.
Consider the problem of minx∈D f(x). Frank-Wolfe [17] is a first order method and it
relies on access to a linear minimization oracle, LMO, for f that can answer LMO(w) =
arg min

s∈D
⟨s,∇f(w)⟩ for any given w ∈ D. In several applications such oracles with fast running

times exist. Given f,D as above, the Frank-Wolfe algorithm is an iterative algorithm that
converges to the minimizer x∗ ∈ D of f . See Algorithm 1. The algorithm starts with a guess
of the minimizer b(0) ∈ D. In each iteration, it finds a direction d(k+1) to move towards
by calling the linear minimization oracle on the current guess b(k). It then moves slightly
towards that direction using a convex combination to ensure that the new point is in D. The
amount the algorithm moves towards the new direction decreases as k increases signifying
the “confidence” in its current guess as the minimizer.

The original convergence analysis for the Frank-Wolfe algorithm is from [17]. Jaggi [25]
gave an elegant and simpler analysis. His analysis characterizes the convergence rate in terms
of the curvature constant Cf of the function f .
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Algorithm 1 Frank-Wolfe-Original.

1: Initialize b(0) ∈ D
2: for k ← 0 to T − 1 do
3: γ ← 2

k+2
4: d(k+1) ← arg min

s∈D
(⟨s,∇f(b(k))⟩) ▷ Call oracle on b(k)

5: b(k+1) ← (1− γ)b(k) + γd(k+1)

return b(T )

▶ Definition 5. Let D ⊆ ℜd be a compact convex set, and f : D → ℜ be a convex, differentiable
function. The curvature constant Cf of f is defined as

Cf = sup
x,s∈D,γ∈[0,1],y=x+γ(s−x)

2
γ2 (f(y)− f(x)− ⟨y − x,∇f(x)⟩).

▶ Definition 6. Let g : D → ℜ be a differentiable function. Then g is Lipschitz with constant
L if for all x, y ∈ D, ∥g(x)− g(y)∥2 ≤ L ∥x− y∥2.

Let diam(D) = max
x,y∈D

∥x− y∥2 be the diameter of D. One can show that Cf ≤ L·diam(D)2

where L is the Lipschitz constant of ∇f .

▶ Theorem 7 ([25]). Let D ⊆ ℜd be a compact convex set, and f : D → ℜ be a convex,
differentiable function with minimizer b∗. Let b(k) denote the guess on the k-th iteration of
the Frank-Wolfe algorithm. Then f(b(k))− f(b∗) ≤ 2Cf

k+2 .

Jaggi’s proof technique can be used to prove the convergence rate of “noisy/approximate”
variants of the Frank-Wolfe algorithm. This motivates the following definition. An ϵ-
approximate linear minimization oracle is an oracle that for any w ∈ D, returns ŝ such
that ⟨ŝ,∇f(w)⟩ ≤ ⟨s∗,∇f(w)⟩ + ϵ, where s∗ = LMO(w). While an efficient exact linear
minimization oracle exists in some applications, in others one can only ϵ-approximate it
(using numerical methods or otherwise). Jaggi’s proof technique extends to show that an
approximate linear minimization oracles suffices for convergence as long as the approximation
quality improves with the iterations. Suppose the oracle, in iteration k, provides a δCf

k+2 -
approximate solution where δ > 0 is some fixed constant. The convergence rate will only
deteriorate by a (1 + δ) multiplicative factor. Qualitatively, this says that we can afford to be
inaccurate in computing the Frank-Wolfe direction in early iterations, but the approximation
should approach LMO(b(k)) as k →∞.

Another question of interest is the resilience of the Frank-Wolfe algorithm to changes
in the learning rate γk = 2

k+2 . Indeed, the variants we will look at will require γk = 1
k+1 .

Jaggi’s proof can again be adapted to handle this case, with only an O(log k) multiplicative
deterioration in the convergence rate. We state the following theorem whose proof we defer
to the appendix.

▶ Theorem 8. Let D ⊆ ℜd be a compact convex set, and f : D → ℜ be a convex, differentiable
function with minimizer b∗. Suppose instead of computing d(k+1) by calling LMO(b(k)) in
iteration k, we call a δCf

k+2 -approximate linear minimization oracle, for some fixed δ > 0. Also,
suppose instead of using γk = 2

k+2 , we use γk = 1
k+1 as a step size. Then f(b(k))− f(b∗) ≤

2Cf (1+δ)Hk+1
k+1 , where Hn is the n-th Harmonic term.

We refer to the variant of Frank-Wolfe algorithm, as described by Theorem 8, as noisy
Frank-Wolfe.
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3 Sub and supermodular functions, and dense decompositions

We already defined submodular and supermodular set functions, polymatroids and con-
trapolymatroids. We restrict attention to functions satisfying f(∅) = 0 which together
with supermodularity and non-negativity implies monotonocity, that is, f(A) ≤ f(B) for
A ⊆ B. An alternative definition of submodularity is via diminishing marginal values. We
let f(v | A) = f(A ∪ {v}) − f(A) denote the marginal value of v to A. Submodularity is
equivalent to f(v | A) ≥ f(v | B) whenever A ⊆ B and v ∈ V \B; the inequality is reversed
for supermodular set functions. We need the following simple lemma.

▶ Lemma 9. For a submodular function f : 2V → ℜ, the function g(X) = f(V )− f(V \X)
is supermodular. In particular if f is a normalized monotone submodular function then g is
a normalized monotone supermodular function.

Deletion and contraction, and non-negative summation. Sub and supermodular functions
are closed under a few simple operations. Given f : 2V → R, restricting it to a subset
V ′ corresponds to deleting V \ V ′. Given A ⊂ V , contracting f to A yields the function
g : 2V \A → R where g(X) = g(X ∪A)− g(A). Given two functions f and g we can take their
non-negative sum af + bg where a, b ≥ 0. Monotonicity and normalization is also preserved
under these operations.

3.1 Dense decompositions for submodular and supermodular functions
Following the discussion in the introduction, we are interested in decompositions of super-
modular and submodular functions. Dense decompositions follow from the theory of principal
partitions of submodular functions that have been explored extensively. We refer the reader
to Fujishige’s survey [20] as well as Naraynan’s work [35, 36]. The standard perspective comes
from considering the minimizers of the function fλ for a scalar λ where fλ(S) = f(S)− λ|S|.
As λ varies from −∞ to ∞ the minimizers change only at a finite number of break points. In
this paper we are interested in the notion of density, in the form of ratios, for non-negative
submodular and supermodular functions. For this reason we follow the notation from recent
work [44, 14, 10, 24] and state lemmas in a convenient form, and provide proofs in the
appendix for the sake of completeness.

Supermodular function dense decomposition. The basic observation is the following.

▶ Lemma 10. Let f : 2V → ℜ+ be a non-negative supermodular set function. There exists a
unique maximal set S ⊆ V that maximizes f(S)

|S| .

The preceding lemma can be used in a simple fashion to derive the following corollary
(this was explicitly noted in [10] for instance).

▶ Corollary 11. Let f : 2V → ℜ+ be a non-negative supermodular set function. There is
a unique partition S1, S2, . . . , Sh of V with the following property. Let Vi = V − ∪j<iSj

and let Ai = ∪j<iSi. Then, for each i = 1 to h, Si is the unique maximal densest set for
the function fDi

: 2Vi → R+. Moroever, letting λi be the optimum density of fDi
, we have

λ1 > λ2 . . . > λh.

Based on the preceding corollary, we can associated with each v ∈ V a value λ(v):
λ(v) = λi where v ∈ Si. See Figure 1 (full version) for an example of a dense decomposition
of the function f(S) = |E(S)|.
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Dense decomposition for submodular functions. We now discuss submodular functions.
We consider two variants. We start with a basic observation.

▶ Lemma 12. Let f : 2V → ℜ+ be a monotone non-negative submodular set function such
that f(v) > 0 for all v ∈ V . There is a unique minimal set S ⊆ V that minimizes |V |−|S|

f(V )−f(S)
for submodular function f .

Consider the following variant of a decomposition of f . We let S0 = V and find S1 as the
unique minimal set S ⊆ V that minimizes |V |−|S|

f(V )−f(S) . Then we “delete” Ŝ1 = V \ S1, and
find the minimal set S2 ⊆ S1 that minimizes |S1|−|S|

f(S1)−f(S) . In iteration i, we find the unique
minimal set Si ⊂ Si−1 that minimizes |Si−1|−|Si|

f(Si−1)−f(Si) . Notice that Sk ⊂ Sk−1 ⊂ ... ⊂ S1 ⊂ V .
We say the relative density of Ŝi = Si−1 \ Si is λi = |Si−1|−|Si|

f(Si−1)−f(Si) . For u ∈ Ŝi, we say the
density of u is λu = λi. Hence the dense decomposition of f is Ŝ1, ..., Ŝk with densities
λ1, . . . , λk. We refer to this decomposition as the first variant which is based on deletions.

We now describe a second dense decomposition for submodular functions. Let f : 2V → R+
be a monotone submodular function. Consider the supermodular function g : 2V → R+
where g(X) = f(V )− f(V \X) for all X ⊆ V . From Lemma 9, g is monotone supermodular.
We can then apply Corollary 11 to obtain a dense decomposition of g. Let T1, T2, . . . , Tk′ be
the unique decomposition obtained by considering g and let λ̂1, ..., λ̂k′ be the corresponding
densities. Note that this second decomposition is based on contractions.

Not too surprisingly, the two decompositions coincide, as we show in the next theorem.
The main reason to consider them separately is for technical ease in applications where one
or the other view is more natural.

▶ Theorem 13. Let Ŝ1, ..., Ŝk be a dense decomposition (using deletion variant) of a sub-
modular function f with densities λi, . . . , λk. Let T1, ..., Tk′ be a dense decomposition (using
contraction variant) of the same function with densities λ̂1, ..., λ̂k′ . We have (i) k′ = k, (ii)
Ŝ1, ...Ŝk is exactly T1, ..., Tk, and (iii) λ̂i = 1

λi
for 1 ≤ i ≤ k.

3.2 Fujishige’s results on lexicographically optimal bases
Fujishige [18] gave a polyhedral view of the dense decomposition which is the central ingredient
in our work. He stated his theorem for polymatroids, however, it can be easily generalized to
contrapolymatroids. We restrict attention to the unweighted case for notational ease – [18]
treats the weighted case.

Vectors in Rn can be totally ordered by sorting the coordinates in increasing order of
value and considering the lexicographical ordering of the two sorted sequences of length n.
In the following, for a, b ∈ Rn we use a ≺↑ b and a ⪯↑ b to refer to this order. We say that a
vector x in a set D is lexicographically maximum if for all y ∈ D we have y ⪯↑ x.

Fujishige proved the following theorem for polymatroids.

▶ Theorem 14 ([18]). Let f : 2V → R+ be a monotone submodular function (a polymatroid)
and let Bf be its base polytope. Then there is a unique lexicographically maximum base
b∗ ∈ Bf and for each v ∈ V , b∗

v = λv. Moroever, b∗ is the optimum solution to the quadratic
program: min

∑
v x2

v subject to x ∈ Bf .

Another ordering is to sort the coordinates in decreasing order of value and then taking
the lexicographic ordering on the two sorted sequences. We denote this ordering by ≺↓,⪯↓ for
strict and non-strict ordering respectively. We say that a vector x in a set D is lexicographically
minimum if for all y ∈ D we have x ⪯↓ y. The preceding theorem can be generalized to
contrapolymatroids in a straight forward fashion and this was explicitly pointed out in [24].
We paraphrase it to be similar to the preceding theorem statement.
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▶ Theorem 15. Let f : 2V → R+ be a monotone supermodular function (a contrapolymatroid)
and let Bf be its base polytope. Then there is a unique lexicographically minimum base b∗ ∈ Bf

and for each v ∈ V , b∗
v = λv. Moreover, b∗ is the optimum solution to the quadratic program:

min
∑

v x2
v subject to x ∈ Bf .

3.3 Approximating a lexicographically optimal base using Frank-Wolfe

Consider the convex quadratic program min
∑

v∈V x2
v subject to x ∈ Bf where Bf is the

base polytope of f (could be submodular of supermodular). We can use the Frank-Wolfe
method to approximately solve this optimization problem. The gradient of the quadratic
function is 2x and it follows that in each iteration, we need to answer the linear minimization
oracle of LMO(w) = arg mins∈Bf

⟨s, 2w⟩ for w ∈ Bf . This is equivalent to arg mins∈Bf
⟨s, w⟩,

in other words optimizing a linear objective over the base polytope. Edmonds [15] showed
that the simple greedy algorithm is an O(|V | log |V |) time exact algorithm (assuming O(1)
time oracle access to f).

▶ Theorem 16 ([15]). Fix a polymatroid f : 2V → ℜ+. Given a weight vector w ∈ ℜn,
let vj1 , vj2 , . . . , vjn

be a sort of V = {v1, ..., vn} in ascending order of wi values. Let
Ai = {vj1 , ..., vji

} for 1 ≤ i ≤ n with A0 = ∅. Define s∗
i = f(Ai) − f(Ai−1). Then

s∗ = arg mins∈Bf
⟨s, w⟩.

The theorem also holds for supermodular functions but by reversing the order from ascending
to descending order of w and complimenting the set Ai.

▶ Theorem 17 ([15]). Fix a contrapolymatroid f : 2V → ℜ+. Given a weight vector
w ∈ ℜn, let vj1 , vj2 , . . . , vjn

be a sort of V = {v1, ..., vn} in descending order of wi values.
Let Ai = {vji

, ..., vjn
} for 1 ≤ i ≤ n with An+1 = ∅. Define s∗

i = f(Ai) − f(Ai+1). Then
s∗ = arg mins∈Bf

⟨s, w⟩.

Both algorithms are dominated by the sorting step and thus takes O(|V | log |V |) time.
These simple algorithms imply that the Frank-Wolfe algorithm can be used on the quad-
ratic program to obtain an approximation to the lexicographically maximum (respectively
minimum) bases of submodular (respectively supermodular) functions. The standard Frank-
Wolfe algorithm would need O( diam(Bf )2

ϵ2 ) iterations to converge to a vector b̂ satisfying∥∥∥b̂− b∗
∥∥∥

2
≤ ϵ.

4 Application 1: Convergence of GREEDY++ and SUPERGREEDY++

We begin by describing Greedy++ [7] and its generlization SuperGreedy++ [10].
Greedy++ is built upon the peeling idea of Greedy, and applies it over several iter-
ations. The algorithm initializes a weight/load on each v ∈ V , denoted by w(v), to 0. In
each iteration it creates an ordering by peeling the vertices: the next vertex to be chosen is
arg minv∈V (G′)(w(v)+degG′(v)) where G′ is the current graph (after removing the previously
peeled vertices). At the end of the iteration, w(v) is increased by the degree of v when it was
peeled in the current iteration. A precise description can be found below. SuperGreedy
is a natural generalization of Greedy, and SuperGreedy++ generalizes Greedy++. A
formal description of SuperGreedy++ is given below.
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Algorithm 2 Greedy++(G(V, E), T ) [7].
Initialize w(u)← 0 for all u ∈ V

G∗ ← G

for k ← 0 to T − 1 do
G′ ← G

while |G′| > 1 do
u← arg min

u∈G′
(w(u) + degG′(u))

w(u)← w(u) + degG′(u)
G′ ← G′ − {u}
if λ(G′) > λ(G∗) then

G∗ ← G′

return G∗

Algorithm 3 Super-Greedy++( f, T ) [10].
Initialize w(u)← 0 for all u ∈ V

S∗ ← V

for k ← 0 to T − 1 do
V ′ ← V

while |V ′| > 1 do
u← arg min

u∈V ′
(w(u)+f(V ′)−f(V ′−u))

w(u)← w(u) + f(V ′)− f(V ′ − u)
V ′ ← V ′ − u

if f(V ′)
|V ′| > f(S∗)

|S∗| then
S∗ ← V ′

return S∗

The goal of this section is to prove Theorem 1 on the convergence of SuperGreedy++
and Greedy++ to the lexicographically maximal base.

4.1 Intuition and main technical lemmas

As we saw in Section 3.3, if one applies the Frank-Wolfe algorithm to solve the qaudratic
program min

∑
v∈V x2

v subject to x ∈ Bf , each iteration corresponds to finding a minimum
weight base of f where the weights are given by the current vector x. Finding a minimum
weight base corresponds to sorting V by x. However, SuperGreedy++ and Greedy++
use a more involved peeling algorithm in each iteration; the peeling is based on the weights
as well as the degrees of the vertices and it is not a static ordering (the degrees change as
peeling proceeds). This is the difficulty in formally analyzing these algorithms. In [10], the
authors used a connection to the multiplicative weight update method via LP relaxations.
Here we rely on the quadratic program and noisy Frank-Wolfe. The high-level intuition, that
originates in [10], is the following. As the algorithm proceeds in iterations, the weights on
the vertices accumulate; recall that the total increase in the weight in the case of DSG is
m = |E|. The degree term, which influences the peeling, is dominant in early iterations,
but its influence on the ordering of the vertices decreases eventually as the weights of the
vertices get larger. It is then plausible to conjecture that the algorithm behaves like the
standard Frank-Wolfe method in the limit. The main question is how to make this intuition
precise. [10] relies on a connection to the MWU method while we use a connection to noisy
Frank-Wolfe.

For this purpose, consider an iteration of Greedy++ and SuperGreedy++. The
algorithm peels based on the current weight vector and the degrees. We isolate and abstract
this peeling algorithm and refer to it as Weighted-Greedy and Weighted-SuperGreedy
respectively, and formally describe them with the weight vector w as a parameter.
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Algorithm 4 Weighted-Greedy(G, w).
Input: G(V, E) and w(u) for u ∈ V

G′ ← G

Initialize d̂(u) = 0 for all u ∈ V .
while |G′| > 1 do

u← arg minu∈G′(w(u) + degG′(u))
d̂(u)← degG′(u)
G′ ← G′ − {u}

return d̂

Algorithm 5 Weighted-SuperGreedy(f , w).

Input: Supermodular f : 2V → ℜ+, w(u) for
u ∈ V

V ′ ← V

Initialize d̂(u) = 0 for all u ∈ V .
while |V ′| > 1 do

u← arg min
u∈G′

(w(u) + f(V ′)− f(V ′ − u)

d̂(u)← f(V ′)− f(V ′ − u)
V ′ ← V ′ − u

return d̂

The peeling algorithms also compute a base d̂ ∈ Bf . In the case of graphs and DSG,
d̂(u) is set to the degree of the vertex u when it is peeled. One can alternatively view the
base as an orientation of the edges of E. Define for each edge uv ∈ G two weights xuv, xvu.
We say that x is valid if xuv + xvu = 1 and xuv, xvu ≥ 0 for all {u, v} ∈ E(G). For b ∈ ℜ|V |,
we say x induces b if bu =

∑
v∈δ(u) xuv for all u ∈ V . We say a vector d is an orientation if

there is a valid x that induces it.

▶ Lemma 18 ([24]). For f(S) = |E(S)|, b ∈ Bf if and only if b is an orientation.

Recall that the Frank-Wolfe algorithm, for a given weight vector w : V → R+, computes
the minimum-weight base b with respect to w since ⟨w, b⟩ = miny∈Bf

⟨w, y⟩. It is worth taking
a moment to note that this base (or orientation due to Lemma 18) is easily computable: we
orient each edge integrally (i.e xvu = 1, xuv = 0) from v to u if w(u) ≥ w(v), and from u to v

otherwise. A simple exchange argument yields a proof of correctness and is implicit in many
works [14]2. This induces an optimal base d∗

w with respect to w. Our goal is to compare
how the peeling order created by Weighted-Greedy (and Weighted-SuperGreedy) compares
with the best base. The following two technical lemmas formalize the key idea. The first is
tailored to DSG and the second applies to DSS.

▶ Lemma 19. Let d̂ be the output from Weighted-Greedy(G, w) and d∗
w be the optimal

orientation with respect to w. Then ⟨w, d̂⟩ ≤ ⟨w, d∗
w⟩ +

∑
u degG(u)2. In particular, the

additive error does not depend on the weight vector w.

▶ Lemma 20. For a supermodular function f : 2V → ℜ+, let d̂ be the output from Weighted-
SuperGreedy(f, w) (Algorithm 5) and d∗

w be the optimal vector with respect to w as described
in Theorem 17. Then ⟨w, d̂⟩ ≤ ⟨w, d∗

w⟩+ n
∑

u∈V f(u | V − u)2. In particular, the additive
error does not depend on the weight vector w.

4.2 Convergence proof for Greedy++
Why is Lemma 19 crucial? First, observe that the minimizer d∗

w of ⟨w, d⟩ is exactly the same
minimizer as ⟨Kw, d⟩ for any constant K > 0 (and vice-versa).

▶ Lemma 21. Let d̂K be the output of Weighted-Greedy(G, Kw). Then ⟨w, d̂K⟩ ≤

⟨w, d∗
w⟩+

∑
u

degG(u)2

K .

2 Since the optimal orientation is easily computable, one can replace the “peeling” iteration of Greedy++
with the optimum base. This would result in the Frank-Wolfe based algorithm of [14].
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Proof. By Lemma 19,
∑

u∈V Kw(u)d̂K(u) ≤ min
orientation d

(∑
u∈V Kw(u)d(u)

)
+

∑
u degG(u)2.

Dividing by K implies the claim. ◀

We are now ready to view Greedy++ as a noisy Frank-Wolfe algorithm. Algorithm 6
shows how Greedy++ could be interpreted.

Algorithm 6 Greedy++(G(V, E)).
Input: G = (V, E) and w(u) for u ∈ V

Initialize b(0) ←Weighted-Greedy(G, 0) ▷ b(0) is a valid orientation
for k ← 0 to T − 1 do

γ ← 1
k+1

d(k+1) ←Weighted-Greedy(G, (k + 1)b(k))
b(k+1) ← (1− γ)b(k) + γd(k+1)

return b(T )

The algorithm is exactly the same as the one described in Algorithm 2. Indeed, one
can prove that kb(k) is precisely the weights that Greedy++ ends with at round k by
induction. Observe that (k +1)b(k+1) = kb(k) +d(k+1) which is precisely the load as described
in Algorithm 2 (via induction). We note that γ ← 1/(k + 1) is crucial here to ensure we
are taking the average. Lemma 25 in the appendix (full version) implies that each peel in
Algorithm 2 is δCf

k+2 -approximate linear minimization oracle. Using Theorem 8, this implies
that Greedy++ (as described in Algorithm 2) converges to b∗ in Õ( mn2

ϵ2 ) iterations since

δ = O(
∑

u
dG(u)2

m ) and Cf = O(
∑

u dG(u)2). We use the probabilistic method to bound Cf

in the full version.

Extension to SuperGreedy++. An essentially similar analysis works for
SuperGreedy++. Instead of Lemma 19, we rely on Lemma 20. For technical
reasons, the convergence analysis of SuperGreedy++ is slightly weaker than for
Greedy++.

5 Application 2: Greedy Tree Packing interpreted via Frank-Wolfe

Let G = (V, E) be a graph with non-negative edge capacities. The goal of this section
is to view Thorup’s definitions of ideal edge loads and the associated tree packing from
a different perspective, and to derive an alternate convergence analysis of his greedy tree
packing algorithm [46, 47]. In previous work, Chekuri, Quanrud and Xu [11] obtained a
different tree packing based on an LP relaxation for k-cut, and used it in place of ideal tree
packing. Despite this, there was a gap in our understanding which we address here.

We restrict our attention to unweighted multi-graphs throughout this section, and
comment on the capacitated case at the end of the section. Let G = (V, E) be a connected
multi-graph, with n vertices and m edges. Consider the graphic matroid MG(E,F) induced
by G; E is the ground set, and F consists of all sub-forests of G. The bases of the matroid
are precisely the spanning trees of G. Consider the rank function r : 2E → Z+ of MG. r is
submodular, and it is well-known that for a edge subset X ⊆ E, r(X) = n − κ(X) where
κ(X) is the number of connected components induced by X.
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5.1 Thorup’s recursive algorithm as dense decomposition
For consistency with previous notation, we use f to denote the submodular rank function
r. We first describe ideal loads as defined by Thorup. Consider the Tutte–Nash-Williams
partition P for G. Recall that P minimizes the ratio |E(P )|

|P |−1 among all partitions, and this
ratio is τ(G). For each edge e ∈ E(P ), assign ℓ∗(e) = 1

τ(G) . Remove the edges in E(P )
to obtain a graph G′ which now consists of several disconnected components. Recursively
compute ideal loads for the edges in each connected component of G′ (the process stops
when G has no edges).

We claim that Thorup’s recursive decomposition coincides with the dense decomposition
of f (the first variant). To see this, it suffices to see the first step of the dense decomposition.
We find the minimal set S1 ⊆ E that minimizes |E|−|S|

f(E)−f(S) . We let Ŝ1 = E \S1 and assign the
edges in Ŝ1 the density f(E)−f(S)

|E|−|S| . Then, we “delete” Ŝ1. Observe that Ŝ1 = E \S1 is just the
edges crossing the partition P (S1) defined by the κ(S1) connected components spanned by
S1. Also, recall that f(E)−f(S1)

|E|−|S1| = κ(S1)−1
|E\S1| = |P (S1)|−1

E(P (S1)) = 1
τ(G) . Hence, the density assigned

to edges in Ŝ1 is exactly 1
τ(G) by the Tutte–Nash-Williams theorem. The next step is deleting

Ŝ1 = E \ S1, which, as discussed above, are the edges crossing the partition P (S1).
Via induction we prove the following lemma.

▶ Lemma 22. The weights given to the edges by the dense decomposition algorithm on f

coincide with ℓ∗.

5.2 Greedy tree packing converge to ideal relative loads
Thorup considered the following greedy tree packing algorithm. For each edge define a
load ℓ(e) which is initialized to 0. The algorithm proceeds in iterations. In iteration i the
algorithm computes an MST Ti in G with respect to edge weights w(e) = ℓ(e). The load
of each edge e ∈ Ti is increased by 1. Thorup showed that as k →∞, the quantity ℓ(e)/k

converges to ℓ∗(e) for each edge e. His proof is fairly technical. In this section, we present a
different proof of this fact that uses the machinery we have built thus far.

▶ Lemma 23. The vector ℓ∗ is the lexicographically maximal base of the spanning tree
polytope.

Proof. We showed that Thorup’s definition of ideal loads is obtained by simply running the
dense decomposition on the rank function of the graphic matroid induced by G. The bases
of the graphic matroid are the spanning trees of G and hence the base polytope of f is the
spanning tree polytope of G. The dense decomposition of f gives us the lexicographically
maximum base, and hence ℓ∗ is the lexicographically maximal base in the spanning tree
polytope of G. ◀

Hence, ℓ∗ is the unique solution to the quadratic program: min
∑

e ℓ(e)2 subject to
ℓ ∈ SPT(G) where SPT(G) is the spanning tree base polytope. We can thus apply a noisy
Frank-Wolfe algorithm to the quadratic program to obtain Algorithm 7.

The main observation is that this algorithm is exactly the same as Thorup’s greedy
tree packing algorithm. Indeed, observe that (k + 1)ℓ(k+1) ← kℓ(k) + d(k+1) = kℓ(k) + 1{e ∈
MST(G, ℓ(k))} where MST(G, w) is a minimum spanning tree of G with respect to edge
weights w. Since noisy Frank-Wolfe converges, then ℓ(k) converges to ℓ∗(e), and greedy tree
packing converges.

ESA 2023
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Algorithm 7 Frank-Wolfe-Greedy-TreePack(G(V, E)).
Input: G(V, E)

Initialize l(0)(u) = 1{e ∈ T} for any spanning tree T .
for k ← 0 to T − 1 do

γ ← 1
k+1

d(k+1) ← min
s∈SPT(G)

⟨l(k), s⟩ ▷ This is the minimum spanning tree with respect to l(k)

l(k+1) ← (1− γ)l(k) + γd(k+1)

return b(T )

We now establish the convergence guarantee for greedy tree packing. For the spanning
tree polytope of an m edge graph, the curvature constant Cf ≤ 4m because for x, y ∈ Bf ,
2(x − y)T (x − y) =

∑
e∈E(xe − ye)2 ≤ 4m. Plugging this bound into Theorem 8, after

k = O( m log(m/ϵ)
ϵ2 ) iterations,

∥∥ℓ(k) − ℓ∗
∥∥

2 ≤ ϵ.
Suppose we run the standard Frank-Wolfe algorithm with γ = 2/(k + 2). Then, the

convergence guarantee improves to O( m
ϵ2 ). Note that each iteration still corresponds to

finding an MST in the graph with weights. However, the load vector is no longer a simple
average of the trees taken so far.

Comparison to Thorup’s bound and analysis. Thorup [47] considered ideal tree packings
in capacitated graphs; let c(e) ≥ 1 (via scaling) denote the capacity of edge e. Via [18], one
sees that the optimum solution of the quadratic program

∑
e x2

e/c(e) subject to x ∈ SP (G)
is the ideal load vector ℓ∗. Greedy tree packing generalizes to the capacitated case easily; in
each iteration we compute the MST with respect to weights w(e) = ℓ(e)c(e). Thorup proved
the following.

▶ Theorem 24 ([47]). Let G = (V, E) be capacitated graph. Greedy tree packing after
O( m log(mn/ϵ)

ϵ3 ) iterations ouputs a load vector ℓ such that for each edge e ∈ E, ℓ(e) ≤
(1 + ϵ)ℓ∗(e).

We observe that if all capacities are 1 (or identical) then Thorup’s guarantee is that
ℓ(e) − ℓ∗(e) ≤ O(ϵ) for each edge e. For this case, via Frank-Wolfe, we obtain the much
stronger guarantee that ||ℓ− ℓ∗||2 ≤ ϵ which easily implies the per edge condition, however
the per edge guarantee does not imply a guarantee on the norm. Further, in the unweighted
case, our iteration complexity dependence on ϵ is 1/ϵ2 while Thorup’s is 1/ϵ3. Thorup’s
guarantee works for the capacitated case in strongly polynomial number of iterations. We
can adapt the Frank-Wolfe analysis to the capacitated case but it would yield a bound that
depends on C =

∑
e c(e) (in the unweighted case C = m); on the other hand the guarantee

provided by Frank-Wolfe is stronger.
It may seem surprising that the same greedy tree packing algorithm yields different types

of guarantees based on the type of analysis used. We do not have a completely satisfactory
explanation but we point out the following. Thorup’s analysis is a non-trivial refinement
of the standard MWU type analysis of tree packing [38, 50, 3]. As already noted in [24],
if one uses Frank-Wolfe (with γ = 1/(k + 1)) with the softmax potential function that is
standard in the MWU framework, then the resulting algorithm would also be greedy tree
packing. Fujishige’s uses a quadratic objective to guarantee that the optimum solution is the
unique maximal base but in fact any increasing strongly convex function would suffice. In the
context of optimizing a linear function over Bf , due to the optimality of the greedy algorithm,
the only thing that determines the base is the ordering of the elements of V according to the
weight vector; the weights themselves do not matter. Thus, Frank-Wolfe applied to different
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convex objectives can result in the same greedy tree/base packing algorithm. However, the
specific objective can determine the guarantee one obtains after a number of iterations. The
softmax objective is better suited for obtaining relative error guarantees while the quadratic
objective is better suited for obtaining additive error guarantees. Thorup’s analysis is more
sophisticated due to the per edge guarantee in the capacitated setting. A unified analysis
that explains both the relative and additive guarantees is desirable. We leave this is an
interesting direction for future research.
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and Opportunistic Matrix Multiplication
David G. Harris #

University of Maryland, College Park, MD, USA

Abstract
Karppa & Kaski (2019) proposed a novel type of “broken” or “opportunistic” multiplication algorithm,
based on a variant of Strassen’s algorithm, and used this to develop new algorithms for Boolean
matrix multiplication, among other tasks. For instance, their algorithm can compute Boolean
matrix multiplication in O(nlog2(6+6/7) log n) = O(n2.778) time. While faster matrix multiplication
algorithms exist asymptotically, in practice most such algorithms are infeasible for practical problems.

We describe an alternative way to use the broken matrix multiplication algorithm to approximately
compute matrix multiplication, either for real-valued matrices or Boolean matrices. In brief, instead
of running multiple iterations of the broken algorithm on the original input matrix, we form a new
larger matrix by sampling and run a single iteration of the broken algorithm. Asymptotically, the
resulting algorithm has runtime O(n

3 log 6
log 7 log n) ≤ O(n2.763), a slight improvement of Karppa-Kaski’s

algorithm.
Since the goal is to obtain new practical matrix-multiplication algorithms, these asymptotic

runtime bounds are not directly useful. We estimate the runtime for our algorithm for some sample
problems which are at the upper limits of practical algorithms; it appears that for these parameters,
further optimizations are still needed to make our algorithm competitive.
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1 Introduction

Consider the fundamental computational problem of matrix multiplication: given matrices
A,B of dimensions d1 × d3 and d3 × d2 respectively, our goal is to compute the matrix C

given by

Cij =
∑

k

AikBkj

When the matrices are square, we write n = d1 = d2 = d3. There is an obvious O(d1d2d3)
algorithm (the so-called “naive algorithm”), which simply iterates over all values i, j, k.
There is a long line of research into a variety of asymptotically faster algorithms. For
square matrices, the runtime is given as nω+o(1), where ω is the linear algebra constant.
Currently, the best bound [2] is ω ≤ 2.38, coming from a variant of Coppersmith-Winograd’s
algorithm [6]. There are also fast algorithms for rectangular matrix multiplication, although
they are less heavily studied [12, 7].

Unfortunately, nearly all the fast matrix multiplications algorithms are completely im-
practical due to large hidden constants. There are a small handful of algorithms which are
efficient in practice; by far the most important is Strassen’s algorithms and its variants,
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which have runtime O(nlog2 7). Depending on the matrix shape, a few rectangular algorithms
may also be practical [5]. There is an extensive literature on optimizing and implementing
Strassen’s algorithm in various computational platforms, see e.g [4, 8, 10].

There is an important special case of Boolean matrix multiplication (BMM). Here, the
entries of A,B come from the algebra {0, 1} with binary operations ∨, ·, and our goal is to
compute the matrix C given by

Cij =
∨
k

AikBkj

This problem, along with some variants, is a primitive used in algorithms for transitive
closures, parsing context-free grammars, and shortest path problems in unweighted graphs,
among other applications. Again, the obvious O(d1d2d3) naive algorithm can be used. There
are a number of other specialized algorithms based on combinatorial optimizations; most
recently, [13] described an algorithm with runtime roughbly O(n3/ log4 n).

There is a standard reduction from BMM to integer matrix multiplication: compute the
matrix product C̃ = AB over the integers, and then set Cij = 1 if C̃ij ≥ 1. Alternatively,
there is a randomized reduction from BMM to matrix multiplication over the finite field
GF(2): each non-zero entry of B is set to zero with probability 1/2, and then we compute
the matrix product C̃ = AB over GF(2). Then C̃ij = 1 with probability 1/2 whenever
Cij = 1, else C̃ij = 0 with probability one. With further O(log n) repetitions the error
probability can be reduced to a negligible level. The advantage of this approach is that a
variety of additional optimizations are possible for GF(2) arithmetic, most importantly, the
Four Russians method [3]. These can often be combined with asymptotically fast algorithms
such as Strassen. For example, [1] provides an optimized bitsliced implementation which
uses Strassen for the high-level iterations.

It seems difficult to make progress on better practical algorithms for matrix multiplication.
In [11], Karppa & Kaski proposed an innovative and novel approach to break this impasse:
they described a “broken” or “opportunistic” form of matrix multiplication, which computes
the matrix product with some high failure probability. This broken multiplication, in turn,
can be computed more efficiently, both asymptotically and practically, by a variant of
Strassen’s algorithm. For brevity, we refer to their algorithm as the KK algorithm.

By iterating for sufficiently many repetitions, this procedure an be used to solve BMM
with high probability. With appropriate choice of parameters, the overall runtime is
O(nlog2(6+6/7) log n) ≈ n2.776, a notable improvement over Strassen. See also [10] for further
details.

In this paper, we describe an alternative way to use the KK algorithm: instead of executing
multiple independent iterations, we combine them all into a single larger randomized broken
multiplication. Each term of the original matrix multiplication product gets sampled multiple
times into the larger matrix.

For Boolean matrix multiplication, this gives the following crisp result (given here in a
slightly simplified form):

▶ Theorem 1. For square matrices, we can compute BMM using O(n
3 log 3
log 7 (log n)

log 6
log 7 ) ≤

O(n2.763) bit operations with high probability

Our algorithm can also be used to obtain a randomized approximation for real-valued
matrix multiplication. The precise approximation guarantees depend on the values input
matrices. For general matrices, the accuracy of the estimated matrix term C̃ij depends on
the value Cij as well as the “second moment” of matrix, namely
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C̃
(2)
ij =

∑
k

A2
ikB

2
kj

When the input matrices A,B (and hence C) are non-negative, then note that C̃(2)
ij ≤ C2

ij ;
in this case, we have the following crisp statement (again, in simplified form):

▶ Theorem 2. For non-negative square matrices of dimension n, we can obtain an approx-
imating matrix C̃ using O(n2.763/ε2) operations with high probability, satisfying (1 − ϵ)Cij ≤
C̃ij ≤ (1 + ϵ)Cij for all i, j.

For example, in the setting of Boolean matrix multiplication, we can not only detect if
there is any value k with Aik = Bkj = 1, but we can estimate the number of such values of
k, up to any desired relative accuracy.

The new algorithm is quite simple, and also has a number of advantages from the
viewpoint of practical implementations. First, it lends itself easily to rectangular (non-square)
input matrices; we will show a more general theorem which describes the runtime scaling for
matrices of arbitrary shape. Second, the algorithm itself internally uses square matrices, and
is flexible about the precise dimensions used; this avoids a number of tedious issues with
padding in matrix algorithms.

We emphasize that this paper is structured somewhat differently from a typical paper
in theoretical computer science. Since our goal is to develop a new practical algorithm (we
already have good theoretical algorithms!), we cannot afford to look only at asymptotic
estimates, ignoring constant factors in runtime. Instead, we have developed our formlas and
calculations much more preicsely to get concrete runtime estimates in addition to the usual
asymptotic bounds.

In Section 7, we illustrate with some computational estimates for large problem instances
which are at the limit of practicality. Unfortunately, as we will see, the asymptotic behavior
does not seem to fully kick in even at such large scales. At the current time, it appears
that the new algorithm is unlikely to beat alternative algorithms; further optimizations and
improvements may be needed.

We note that [11] also discussed generalizations to other types of broken matrix multi-
plication tensors. We will restrict our attention of the Strassen-based pseudo-multiplication,
for three reasons. First, much of our analysis depends on certain structural properties of
Strassen-type tensor; unlike the analysis in [11], which only depended on the gross number
of terms in the pseudo-multiplication, we need to track the distribution of terms carefully.
Second, it is not clear if any other tensors are practical, especially in light of the fact that
Strassen’s algorithm appears to be the only truly practical fast multiplication algorithm
known. Finally, many of the “generic” amplification techniques for general tensors, which
“only” lose constant factors, are too crude for understanding practical implementations.

2 Pseudo-multiplication

To describe our BMM algorithm, we need to discuss the underlying broken multiplication
algorithm in depth. We call this procedure “pseudo-multiplication”, to distinguish it from
the overall KK algorithm itself. We begin by quoting the algorithmic result of [11].
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▶ Theorem 3. Consider 2 × 2 matrices A,B over a ring R. Using 14 additions and 6
multiplications in R, we can compute the following quantities:

C11 = A12B21

C12 = A11B12 +A12B22

C21 = A21B11 +A22B21

C22 = A21B12 +A22B22

This formula differs from the computation of C = AB, in that the term C11 is missing the
summand A11B11. This computation is achieved by a variant of a Strassen step, except that
one of the 7 multiplications is omitted.

Now consider integer matrices A,B of dimension n = 2s. We can identify the integers
in the range [n] = {0, . . . , n − 1} with binary vectors {0, 1}s; thus, we may write Axy for
vectors x, y ∈ {0, 1}s. We write z = x ∨ y where zi is zero iff xi = yi = 0, i.e. the disjunction
is done coordinate-wise. Also, we let |x| denote the Hamming weight of a binary vector x.
By iterating the algorithm of Theorem 3 for s levels, we get the following:

▶ Theorem 4. Using 7(6s − 4s) additions and 6s = nlog2 6 multiplications, we can compute
the matrix pseudo-product C = A⊠B defined as Cxy =

∑
x∨y∨z=1⃗s AxzBzy, where 1⃗s denotes

the vector of dimension s whose entries are all equal to 1. The computation of C can be
performed over any ring.

Proof. See full paper. ◀

In particular, this implies the following result (which was the only thing shown directly
in [11]):

▶ Corollary 5. The pseudo-product C = A⊠B contains (7/8)s of the summands in the full
matrix product C = AB.

Proof. There are precisely 7s triples of vectors x, y, z ∈ {0, 1}s with x ∨ y ∨ z = 1⃗s. ◀

Note that [11] includes an additional randomization step, where the entries of the matrices
are randomly permuted at each level. We omit this step, since we will later include more
extensive randomization in the overall algorithm. (For practical purposes, this shuffling step
can be awkward to implement efficiently). For given s, we define Ts ⊆ {0, 1}s×{0, 1}s×{0, 1}s

to be the set of triples x, y, z with x ∨ y ∨ z = 1⃗s.
It is sometimes useful to use Strassen’s algorithm, or naive matrix multiplication, for

some of the low-level iterations. Let us suppose that we use s steps of pseudo-multiplication,
followed by true matrix multiplication on the resulting submatrices of dimension bi = di/2s

(the base case). We can view any integer x ∈ {1, . . . , di} as equivalent to an ordered pair
(x′, x′′) where x′ ∈ {0, 1}s and x′′ ∈ {1, . . . , bi}. The resulting matrix, denoted still by
C = A⊠B, then satisfies

Cxy =
∑

z=(z′,z′′)∈{0,1}s×{1,...,b}
x′∨y′∨z′=1⃗s

A(x′,x′′),(z′,z′′)B(z′,z′′)(y′,y′′)

The proof is completely analogous to Theorem 4 so we omit it here. For convenience,
let us say that, for integers x, y, z, we have x ∨ y ∨ z = 1⃗ if, when we write x = (x′, x′′), y =
(y′, y′′), z = (z′, z′′), we have x′ ∨ y′ ∨ z′ = 1⃗s, i.e. (x′, y′, z′) ∈ Ts. When s, d1, d2, d3 are
understood, we also define T ∗ ⊆ [d1] × [d2] × [d3] to be the resulting set of triples (x, y, z)
with this property. With these conventions, we can define C = A⊠ B more compactly as
Cxy =

∑
z:(x,y,z)∈T ∗ AxzBzy.
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If the matrices are square, then the base case would also likely be square b = b1 =
b2 = b3. From a theoretical point of view, b may be viewed as a constant. When working
in the field GF(2), the base case multiplication would likely involve switching to a Four
Russians method and/or bitsliced operations. These optimizations are very powerful in
practice, possibly more important than the asymptotic gains from a fast matrix multiplication
algorithm. Consequently, in practical implementations, b may be very large; for instance, in
the implementation of [1], they choose b ≈ 211 (roughly matching the L2 cache size).

3 Algorithm overview

Consider matrices A,B of dimension d1 × d3 and d3 × d2; here the matrices are either
real-valued or Boolean-valued, and our goal is to approximate the product C = AB. The
algorithms we use are very similar for these two cases: we choose some parameter s and base
sizes b1, b2, b3. For ℓ = 1, 2, 3 we define mℓ = 2sbℓ, and draw random functions fℓ : [mℓ] → [dℓ].
We then form matrices Ā, B̄ of dimension m1 × m3,m3 × m2 by sampling from matrices
A,B according to the function f , i.e. we will have

Āxz = Af1(x)f3(z), B̄zy = Bf3(z)f2(y)

(the actual matrices Ā, B̄ will have some additional scaling factors)
We then compute the pseudo-product C̄ = Ā⊠ B̄, with the given base case sizes, and

produce an estimated matrix C̃, where, for each entry ij, the estimate C̃ij is derived by
aggregating the entries C̄xy where x ∈ f−1

1 (i), y ∈ f−1
2 (j).

The runtime for this process will be O(6s) field operations, and the memory required
is O(4s) to store the matrices Ā, B̄, C̄ (assuming b is constant). For any triple i, j, k in
the matrix product AikBkj , there are roughly 7sb1b2b3

d1d2d3
entries u = (x, y, z) ∈ T ∗ which get

mapped to i, j, k, i.e. f1(x) = i, f2(y) = j, f3(z) = k. Thus, as long as 7sb1b2b3 ≫ d1d2d3, we
should expect that the sampled matrix “covers” the original matrix, and so we get accurate
answers. However, to analyze it formally, we need to take account of some potentially
problematic dependencies between entries in the matrix. This was not an issue encountered
in the original analysis [11], which only worked expectation-wise.

There are a number of other details to work out for the algorithms. For the real-valued
case, we need certain weighting factors to account for the fact that some entries of the
product Ā⊠ B̄ are over-represented in the the pseudo-multiplication. For the Boolean case,
we need to have an additional randomization to handle the Boolean-to-GF(2) reduction. We
provide the details next.

Real-valued algorithm. Having chosen the parameter s and the random functions f , we will
choose scaling matrices GA, GB , GC of dimensions m1 ×m3,m3 ×m2,m1 ×m2 respectively
(their role will be discussed shortly). We then define

Āxz = GA
xzAf1(x),f3(z), B̄zy = GB

zyBf3(z)f2(y)

and, after computing the pseudo-product C̄ = Ā⊠ B̄ over R, we estimate C by

C̃ij =
∑

x∈f−1(i),y∈f−1
2 (j)

GC
xyC̄xy

Importantly, for values x = (x′, x′′) ∈ {0, 1}s × [b1], z = (z′, z′′) ∈ {0, 1}s × [b2], the value
of each term GA

xz should only depend x′, z′, in particular, it should depend on the Hamming
weights of |x′|, |z′|, |x′ ∨ z′|;. A similar criterion should hold for GB , GC matrices. Thus, with
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57:6 Matrix Multiplication via Sampling

a slight abuse of notation, we write GA
x′,z′ and similarly GB

z′,y′ , GC
x′,y′ . Thus, the matrices G

really only have O(s3) degrees of freedom; we discuss later how to choose their values (both
for asymptotic analysis and practical parameters).

Boolean algorithm. In this case, after drawing random functions f , we will also draw a
uniformly random m3 ×m2 binary matrix D. We then form matrices Ā, B̄ by setting:

Āxz = Af1(x)f3(z), B̄zy = Bf3(z)f2(y)Dzy

We then compute the pseudo-product C̄ = Ā⊠ B̄ over the finite field GF(2), with the
given base case sizes, and produce an estimated matrix C̃ by C̃ij =

∨
x∈f−1

1 (i),y∈f−1
2 (j) C̄xy.

Analysis overview. We will analyze the algorithms in three main steps. First, we derive
some non-asymptotic bounds on the accuracy, in terms of parameters which can be computed
explicitly as functions of s. Next, we use these to derive asymptotic bounds on the algorithm
complexity. While illuminating as to the basic algorithm shape, these asymptotic bounds
are not optimized and not of direct relevance for practical-scale computations. So we finish
with some cases studies on very large problem parameters pushing the limits of practical
computations, with concrete bounds.

Throughout, we define parameters

ψ1 = d1 + d2 + d3, ψ2 = d1d2 + d2d3 + d1d3, ψ3 = d1d2d3

Also, for each ℓ = 1, 2, 3, we define qℓ = bℓ/dℓ.

4 Analysis: the real-valued case

Consider some entry i, j; we can see that

C̃ij =
∑

k

∑
(x,y,z)∈T ∗

GA
xzG

B
yzG

C
xy[f1(x) = i][f2(y) = j][f3(z) = k]AikBkj

where we use Iverson notation for any boolean predicate here and throughout the paper,
i.e. [E] = 1 if E holds, otherwise [E] = 0. Our strategy to analyze C̃ij is to compute the
mean and variance. We will show that E[C̃ij ] ∝ Cij (with known proportionality constants).
Thus, by rescaling the matrix entries G as needed, we can obtain an unbiased estimate of
Cij . Likewise, the variance of C̃ij will depend on Cij as well as its “second moment”

C
(2)
ij =

∑
k

A2
ikB

2
kj

To simplify the notation, let us write

Gxyz := GA
xzG

B
yzG

C
xy

for a triple (x, y, z) ∈ T . We have the following main estimate:
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▶ Lemma 6. Define the sums r0, . . . , r7 by:

r0 =
∑

(x,y,z)∈Ts

Gxyz r1 =
∑

x∈{0,1}s

( ∑
y,z:(x,y,z)∈Ts

Gxyz

)2

r2 =
∑

y∈{0,1}s

( ∑
x,z:(x,y,z)∈Ts

Gxyz

)2
, r3 =

∑
z∈{0,1}s

( ∑
x,y:(x,y,z)∈Ts

Gxyz

)2

r4 =
∑

x,y∈{0,1}s

( ∑
z:(x,y,z)∈Ts

Gxyz

)2
, r5 =

∑
x,z∈{0,1}s

( ∑
y:(x,y,z)∈Ts

Gxyz

)2

r6 =
∑

y,z∈{0,1}s

( ∑
x:(x,y,z)∈Ts

Gxyz

)2
, r7 =

∑
(x,y,z)∈Ts

G2
xyz

Then, for any i, j, there holds E[C̃ij ] = q1q2q3r0Cij and

V[C̃ij ] ≤ q1q2q
2
3(q2r1 + q1r2 + r4)C2

ij + q1q2q3(q1q2r3 + q2r5 + q1r6 + r7)C(2)
ij

Proof. See full paper. ◀

For non-negative matrices, the statistic C̃ij can be used to estimate the value Cij up to
some relative accuracy. We summarize this as follows:

▶ Corollary 7. If matrices A,B are non-negative, then

V[C̃ij ]
E[C̃ij ]2

≤ (q3q2r1 + q3q1r2 + q1q2r3) + (q3r4 + q2r5 + q1r6) + r7

q1q2q3r2
0

Proof. We know Cij ≥ 0 and C
(2)
ij ≤ C2

ij for each entry i, j. ◀

5 Analysis: the Boolean case

In the Boolean case, it does not make sense to talk about how close the matrices entries
C̃ij are to the true value Cij . Instead, we will argue that, with high probability, we have
C̃ij = Cij exactly. It is clear that if Cij = 0, then C̃ij = 0 with probability one. Thus,
consider some pair i, j with Cij = 1 and some witness value k with Aik = Bkj = 1. We want
to find a triple of values (x, y, z) ∈ T ∗ such that f1(x) = i, f2(y) = j, f3(z) = k. If such a
triple exists, then the randomization involved in the D matrix should ensure that C̄xy = 1
with probability 1/2, in which case C̃ij = 1 as well.

To show the existence of such a triple (x, y, z), we will use an important general probabil-
istic inequality of Janson [9]. We summarize it in the following form:

▶ Theorem 8 ([9]). Suppose that X1, . . . , XN are independent Bernoulli variables, and
suppose E is a collection of monomial events over ground set [N ], i.e. each event E ∈ E is a
conjunction of the form

∧
r∈RE

Xr for a given subset RE ⊆ [n]. For events E,E′ ∈ E, we
write E ∼ E′ if RE ∩RE′ ̸= ∅, and we write Ē for the complement of E (i.e. that event E
does not hold.)

If we define

κ =
∑
E∈E

E
[ [E]∑

E′∼E [E′]

]
then we have

Pr(
∧

E∈E
Ē) ≤ e−κ
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We use it to get the following main result:

▶ Theorem 9. Define values

q′
1 = 1 − (1 − 1/d1)b1 , q′

2 = 1 − (1 − 0.5/d2)b2 , q′
3 = 1 − (1 − 1/d3)b3

Consider independent Bernoulli variables Iℓ,x for ℓ = 1, 2, 3 and x ∈ {0, 1}s, wherein each
Iℓ,x has expected value q′

ℓ. For each tuple u = (x, y, z) ∈ Ts, define associated event Eu to be
the conjunction I1,x = I2,y = I3,z = 1.

Then, for any pair i, j with Cij = 1, there holds Pr(C̃ij = 0) ≤ Pr(
∧

u∈Ts
Ēu).

Proof. We divide the analysis into two parts. first, we consider the random functions fℓ, and
then consider the random matrix D. Let us fix some arbitrary value k with Aik = Bkj = 1.
Suppose that we chosen the functions fℓ, and let P denote the set of triples (x, y, z) ∈ T ∗

with f1(x) = i, f2(y) = j, f3(z) = k. From this, let S denote the number of distinct values y
encountered, i.e. S = |{y : (x, y, z) ∈ P}|.

We claim that, having fixed the functions fℓ, the probability that Cij = 0 is at most 2−S .
For, suppose that P contains triples (x1, y1, z1), . . . , (xS , yS , zS) where y1, . . . , yS are distinct.
In forming each entry C̄xℓyℓ

, we are adding in Dzℓyℓ
AikBkj = Dzℓyℓ

as well as potentially
other entries Dz′yℓ

. These are all independent random bits, and hence their sum over GF(2)
is equal to 1 with probability precisely 1/2; in this case we would have C̄xℓyℓ

= 1 and hence
C̃ij = 1. Furthermore, since y1, . . . , yS are distinct, all such events are independent.

We also define independent Bernoulli random variables I ′
1,x, I

′
2,y, I

′
3,z to be the events that,

respectively, f1(x) = i, or f2(y) = j, or f3(z) = k; these have means 1
d1
, 1

d2
, 1

d3
respectively.

Note that P , and hence S, is determined by these variables. Integrating over them, we have

Pr(C̃ij = 0) ≤ E[2−S ]

For each x ∈ {0, 1}s, we define events

I1,x =
∨
x′

I ′
1,(x,x′), I2,y =

∨
y′

I ′
2,(y,y′)J(y,y′), I3,z =

∨
z′

I ′
3,(z,z′),

where x′, y′, z′ range over [b1], [b2], [b3] respectively, and where J(y,y′) are independent
Bernoulli-1/2 random variables. Observe that I1,x, I2,y, I3,z are all independent Bernoulli
random variables with means q′

1, q
′
2, q

′
3 respectively. Now consider the probability of the

event Ēu. Suppose we reveal random variables I ′
1,x, I

′
2,y, I

′
3,z. Conditional on these values,

the only way for
∧

u Ēu to occur is that Jy = 0 holds for all tuples u = (x, y, z) ∈ P . This
has probability precisely 2−S . Integrating over variables I ′, we get:

Pr(
∧
u

Ēu) = E[2−S ]

Putting the inequalities together gives the claimed result

Pr(C̃ij = 0) ≤ E[2−S ] = Pr(
∧
u

Ēu) ◀

Observe that events Eu of Theorem 9 are precisely the types of monomial events covered
by Theorem 8; this will be used for asymptotic and concrete bounds later.
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6 Asymptotic analysis

The asymptotic analysis of both the real-valued and Boolean use similar arguments. For this
section, we let b1 = b2 = b3 = 1, since the base cases should only affect analysis by constant
factors.

We want to determine the number of triples (x, y, z) ∈ Ts with f1(x) = i, f2(y) =
j, f3(z) = k for values i, j, k; the relevant quantities (r0, . . . , r7 for the real-valued case and κ
for the Boolean case) are in effect counting these triples. Our basic strategy is to restrict
the analysis to “typical” triples, specifically, let us define H ⊆ Ts to be the set of triples
(x, y, z) ∈ T satisfying the following conditions:
1. |x| ≤ 4s/7 and |y| ≤ 4s/7 and |z| ≤ 4s/7
2. |x ∨ y| ≤ 6s/7 and |x ∨ z| ≤ 6s/7 and |y ∨ z| ≤ 6s/7

▶ Lemma 10. There holds |H| ≥ Ω(7s).

Proof. There are precisely 7s triples (x, y, z) in Ts. Let us consider the probability space
which is the uniform distribution on Ts; equivalently, for each coordinate i, the values
(xi, yi, zi) are chosen uniformly at random among the 7 non-zero values. We need to show
that the conditions on the densities of x, y, z, x ∨ y, x ∨ z, y ∨ z are satisfied with constant
probability.

For each coordinate i, consider the 6-dimensional random vector Vi = (xi, yi, zi, xi ∨
yi, xi ∨ zi, yi ∨ zi) and let V =

∑
i Vi. We need to show that V − βs has non-positive entries

where β = (4/7, 4/7, 4/7, 6/7, 6/7, 6/7). For this, we use the multidimensional Central Limit
Theorem. Since the variables Vi are i.i.d. and each has mean β, the scaled value

√
s(V/s− β)

approaches to a 6-dimensional normal distribution N(0,Σ) with covariance matrix given by

Σ = 1
49



12 −2 −2 4 4 −3
−2 12 −2 4 −3 4
−2 −2 12 −3 4 4
4 4 −3 6 −1 −1
4 −3 4 −1 6 −1

−3 4 4 −1 −1 6


as s → ∞.

Note that Σ is non-singular. Hence, for the corresponding distribution N(0,Σ) there is
positive probability that all six coordinates are negative. For large enough s, the probability
that V − βs has negative entries converges; in particular, it approaches to some constant
value as s → ∞. (The lemma holds vacuously when s = O(1).) ◀

We will define two constants which show up repeatedly in the analysis:

α1 = 14 · 21/7 · 33/7 ≈ 24.75

α2 = 7 · 26/7 ≈ 12.68

▶ Lemma 11. For i = 1, 2, there are O( αs
i√
s
) pairs (x, y, z), (x′, y′, z′) ∈ H with [x = x′]+[y =

y′] + [z = z′] ≥ i.

Proof. For i = 1, we will count the pairs (x, y, z), (x′, y′, z′) ∈ H with x = x′; the cases
with the other two coordinates are completely symmetric. Let us suppose that, among the s
entries of x, there are ℓ coordinated equal to one; since (x, y, z) ∈ H we must have ℓ ≤ 4s/7.
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For each coordinate i with xi = x′
i = 1, the values yi, y

′
i, zi, z

′
i can be arbitrary (giving 16ℓ

choices); for each coordinate i with xi = x′
i = 0, there are three non-zero choices for (yi, zi)

and three non-zero choices for (y′
i, z

′+i). Overall, there are 16ℓ9s−ℓ choices for the vectors
y, z, y′, z′. Summing over ℓ, we get that the total contribution is

⌊4s/7⌋∑
ℓ=0

(
s

ℓ

)
16ℓ9s−ℓ

Let h(ℓ) =
(

s
ℓ

)
16ℓ9s−ℓ be the summand corresponding to ℓ; we can observe that h(ℓ)/h(ℓ−1) =

16(s+1−ℓ)
9 . In particular, for ℓ ≤ 4s/7, this ratio is at least 4/3. Hence, the entire sum∑4s/7

ℓ=0 h(ℓ) is within a constant factor of h(4s/7). In turn, by Stirling’s formula, we can
calculate h(4s/7) ≤ O(αs

1/
√
s).

For i = 2, we count the pairs (x, y, z), (x′, y′, z′) ∈ H with x = x′, y = y′; the cases with
the other two coordinates are again completely symmetric. Let us suppose that, among the
s entries of x, y, there are ℓ coordinates with xi ∨ yi = 1; since (x, y, z) ∈ H we must have
ℓ ≤ 6s/7. For each such coordinate i, there are 4 choices for z, z′ and 3 choices for x, y; for
each coordinate with xi ∨ yi = x′

i ∨ y′
i = 0, we must have zi = z′

i = 1. Summing over ℓ, the
total contribution is

⌊6s/7⌋∑
ℓ=0

(
s

ℓ

)
3ℓ4ℓ

Let h(ℓ) =
(

s
ℓ

)
12ℓ be the summand corresponding to value ℓ; note that h(ℓ)/h(ℓ − 1) =

12(s+1−ℓ)
ℓ . For ℓ ≤ 6s/7, this ratio is at least 2, and hence the entire sum is within a constant

factor of h(6s/7). In turn, by Stirling’s formula, we get h(6s/7) ≤ O(α2s/
√
s). ◀

▶ Proposition 12. Suppose we define matrices GA, GB , GC by

GA
xz = [|x| ≤ 4s/7][|z| ≤ 4s/7][|x ∨ z| ≤ 6s/7]

GB
yz = [|y| ≤ 4s/7][|z| ≤ 4s/7][|y ∨ z| ≤ 6s/7]

GC
xy = [|x| ≤ 4s/7][|y| ≤ 4s/7][|x ∨ y| ≤ 6s/7]

Then the real-valued algorithm satisfies

E[C̃ij ] = νCij7s/ψ3 for a known proportionality constant ν

V[C̃ij ] = O

(
q1q2q

2
3(q1 + q2)αs

1/
√
s+ αs

2/
√
s

)
C2

ij +O

(
q1q2q3(q1q2α

s
1/

√
s+ (q1 + q2)αs

2/
√
s+ 7s

)
C

(2)
ij

Proof. With this definition of the matrices GA, GB , GC , we have Gxyz = [(x, y, z) ∈ H ]. Now
let us compute the sums r0, . . . , r7. For r0, we have r0 =

∑
(x,y,z)∈Ts

Gx,y,z =
∑

(x,y,z)∈H 1 =
|H|; by Lemma 10 this is Ω(7s).

For r1, we compute

r1 =
∑

x∈0,1s

( ∑
y,z:(x,y,z)∈Ts

Gxyz

)2
=

∑
x∈0,1s

( ∑
y,z:(x,y,z)∈H

1
)2

=
∑

(x,y,z)∈H,(x′,y′,z′)∈H
x=x′

1

By Lemma 11, this is O(αs
1/

√
s). By completely analogous reasoning, we have r2, r3 ≤

O(αs
1/

√
s) and r4, r5, r6 ≤ O(αs

2/
√
s). For r7, we have

r7 =
∑

(x,y,z)∈Ts

G2
xyz =

∑
(x,y,z)∈H

1 = |H| ≤ |Ts| ≤ 7s

Now we directly apply Lemma 6. ◀
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By collecting terms in Proposition 12, and noting that qi = 1/di for i = 1, 2, 3, we
immediately get the following corollary:

▶ Corollary 13. Suppose that C
(2)
ij ≤ C2

ij, and that (α1/7)s/
√
s ≤ O(ψ3/ψ1) and

(α2/7)s/
√
s ≤ O(ψ3/ψ2). Then

V[C̃ij ]
E[C̃ij ]2

≤ O(ψ3/7s)

▶ Theorem 14. Suppose that matrices A,B are non-negative. Let ϵ ∈ (0, 1), and define
parameters γ = ψ3/ϵ

2 and β1 = ψ3/ψ1 and β2 = ψ3/ψ2. With appropriate choice of
parameters, we can obtain an estimated matrix C̃, such that, for any entry i, j, there holds

Pr(C̃ij ∈ [(1 − ϵ)Cij , (1 + ϵ)Cij ]) ≥ 3/4,

with overall runtime

O
(
γ

log 6
log 7 + γ

(
(β1

√
log β1)

log(6/7)
log(α1/7) + (β2

√
log β2)

log(6/7)
log(α2/7)

))
Proof. Our strategy will be to take multiple independent executions and average them so
that the resulting sample means have relative variance ϵ2/4. By Chebyshev’s inequality, the
resulting sample means are then within (1 ± ϵ)Cij with probability at least 3/4. To that end,
let us set

s =
⌊

min{log7 γ, logα1/7(β1
√

log β1), logα2/7(β2
√

log β2)}
⌋

It can be shown that (α1/7)s/
√
s ≤ O(ψ3/ψ1) and (α2/7)s/

√
s ≤ O(β2). Now, by

collecting terms in Proposition 12, and noting that qi = 1/di for i = 1, 2, 3, and using the
bounds (α1/7)s/

√
s ≤ O(ψ3/ψ1) and (α2/7)s/

√
s as well as the observation that C(2)

ij ≤ Cij ,
we get the estimate:

V[C̃ij ]
E[C̃ij ]2

≤ O(ψ3/7s)

Thus, if we repeat the process for Ω(1 + ϵ−2/(7s/ψ3)) iterations and take the mean of all
observations, the overall relative variance of the resulting sample mean is reduced to ϵ2/4,
and hence satisfies the required bounds. (We can scale by a known proportionality constant
to get an unbiased estimator). Overall, the runtime is then

O(6s(1 + ϵ−2/(7s/ψ3)))

which after some simplifications, gives the claimed runtime bounds. ◀

▶ Corollary 15. Suppose matrices A,B are non-negative. With appropriate choice of
parameters, the real-valued algorithm can compute C with relative error 1 ± ϵ with probability
3/4 in runtime

O
(

(ψ3/ϵ
2)

log 6
log 7 + ψ0.122

1 ψ0.878
3 + ψ0.259

2 ψ0.741
3

ϵ2

)
In particular, if the matrix is square of dimension n, then the runtime is O(n2.77/ϵ2).
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As usual, we can boost the success probability to any desired value 1 − δ by using median
amplification, with a further O(log(1/δ)) increase in runtime. Despite the (relatively) crisp
formula, Corollary 15 is not directly relevant to practical parameter sizes. Many of the
hidden constants are large, and the bounds are all somewhat crude. Since our main goal is
to obtain a practical algorithm we need to consider more finely how the algorithm scales for
small values of n and s; we consider this in the next section.

The analysis for the Boolean case is similar to the real-valued case.

▶ Theorem 16. Let δ ∈ (0, 1), and define parameters γ = ψ3 log(1/δ) and β1 = ψ3/ψ1 and
β2 = ψ3/ψ2. With appropriate choice of parameters, we can obtain an estimated matrix C̃,
such that, for any entry i, j, there holds

Pr(C̃ij = Cij) ≥ 1 − δ,

with overall runtime

O
(
γ

log 6
log 7 + γ

(
(β1

√
log β1)

log(6/7)
log(α1/7) + (β2

√
log β2)

log(6/7)
log(α2/7)

))
Proof. The proof is completely analogous to Theorem 14 and is omitted. ◀

▶ Corollary 17. With appropriate choice of parameters, we can compute the overall matrix
C correctly with probability at least 1 − 1/ poly(ψ3) using runtime

O
(

(ψ3 logψ3)
log 6
log 7 + ψ0.122

1 ψ0.878
3 + ψ0.259

2 ψ0.741
3

)
We mention one important difference in our analysis of the real-valued and Boolean cases.

For both algorithms, the analysis depends on the set H ⊆ Ts. For the Boolean algorithm,
this is only used for purposes of analysis; the actual algorithm does not need to use H. For
the real-valued algorithm, we need H to define the matrices GA, GB , GC (which are part of
the algorithm itself)

7 Concrete complexity estimates

Since our goal is to get a new practical algorithm, the asymptotic estimates are of limited
value on their own. In this section, we consider costing the matrix multiplication algorithms
for problem sizes which are at the upper limits of a practical problem size. In particular, we
want to compare our algorithm to Strassen’s algorithm and the KK algorithm. There are two
main issues to consider. First, we need a realistic estimate of the runtime; second, we need
a realistic estimate of the algorithm accuracy and/or success probability. The asymptotic
estimates are much too crude for our purposes here.

Let us first consider the runtime. The work for the algorithm will involve 6s many
iterations of the recursive partitioning as given in Theorem 3. The cost of this step will
have a quadratic component (adding and rearranging the relevant submatrices) as well as a
nearly-cubic component (coming from the recursive subproblems). Assuming that the base
case parameters are chosen to be sufficiently large, the first of these should be negligible;
overall, we can estimate the work as 6sWb where Wb is the base-case cost.

Let us compare this runtime with other matrix-multiplication algorithms. To avoid issues
with padding, let us assume for convenience that d1 = d2 = d3 and d is a power of two. In this
case, both Strassen’s algorithm and the KK algorithm would run s many recursive iterations,
and then again pass to a base case. Assuming again that the base case is sufficiently large
to hide the quadratic parts of the algorithm, these would have costs of 7sWb and 6sWb

respectively.
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Estimating Wb itself is much trickier. As a starting point, we might estimate Wb ≈ b1b2b3
in terms of arithmetic operations. But there are many additional factors to consider: a
CPU with SIMD registers of width w may be able to perform w operations in parallel,
which is especially powerful for GF(2) arithmetic. Furthermore, for GF(2), there are other
optimizations such as Four-Russians. Fortunately, in order to compare our algorithm with
Strassen or KK, the precise value of Wb does not matter; it is common to all the algorithms.

To simplify further, let us assume that b1 = b2 = b3, and let b denote this common value,
which we regard as a fixed constant. In this case, for Strassen and KK, the parameter s
must be set to a fixed value s = s0 = log2(n/b). Summarizing, the runtimes of our algorithm,
Strassen’s algorithms, and the KK algorithm, are proportional to values 6s, 7s0 , 6s0 , where
s0 = log2(n/b), respectively.

At this point, let us bring up another important issue with costing the algorithms. As s
increases, the memory used by the algorithm also increases. Storing the original matrices
requires roughly n2 memory, and both Strassen and KK algorithms use essentially this same
amount of memory as well. Our algorithm, by contrast, may require 6s memory to store
the expanded Ā, B̄; if s is large, this may significantly increase the memory cost. Note
that, for very large scale problems, the computational costs of the algorithm (i.e. total
number of arithmetic operations) are dominatedc by the communication costs (i.e. moving
memory across multiple nodes of a computer cluster.) In order to keep this section relatively
contained, we will not investigate further the memory costs.

Next, we need to analyze the algorithm accuracy. Let us first consider the Boolean
algorithm, where the comparison between our algorithm and the other candidate algorithms
is more straightforward. Assuming we are using the reduction from Boolean matrix multi-
plication to GF(2) matrix multiplication, all three algorithms are randomized. Let us denote
by f the maximum failure probability for any entry Cij , if we use the matrix multiplication
algorithm directly. Assuming we want to boost the algorithm to a much lower failure
probability δ, we need to repeat for ⌈log(1/δ)/ log(1/f)⌉ iterations. Indeed, if we want to
compute the entire matrix C correctly, the value δ may need to be quite small (on the order
of 1/n2). In order to put the algorithms on an even footing, let us therefore define a cost
parameter

M = Runtime
log(1/f) (1)

The value f may depend on the number of witness k with AikBkj = 1. The extremal
case for all the algorithms appears to be the case where there is only one witness. In this
case, the KK algorithm has failure probability f = 1 − (7/8)s/2 and Strassen’s algorithm
has failure probability 1/2. We thus have

MStrassen = 7s/ log 2, MKK = 6s

− log(1 − (7/8)s/2) ∼ 2 · (48/7)s ≈ 2 · 6.857s

To compare, we will compute the value M for our algorithm in the next section.
Next, let us consider a scenario for real-valued matrix multiplication. To make things

concrete, let us suppose that A,B are non-negative matrices and we want to estimate the
value Cij up to (1 ± ϵ) for some constant value ϵ = 1/2 and with success probability 3/4. In
order to do so, we need to run the matrix multiplication algorithm for

L = 4V[C̃ij ]
ϵ2E[C̃ij ]2

= 16V[C̃ij ]
E[C̃ij ]2

trials. The runtime for our algorithm will thus be

6s · 16V[C̃ij ]/E[C̃ij ]2
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This comparison is among the favorable possible for our algorithm. Strassen’s algorithm has
error probability zero and has perfect accuracy.

Although [11] did not discuss it, it is also possible to use KK for real-valued matrix
multiplication (where we assume a random permutation of the rows and columns of A,B).
We can estimate its runtime as 6s0 · 16(8/7)s0 , while Strassen’s algorithm will take time 7s0 .

7.1 Case study: non-negative matrix multiplication
Let us consider a sample problem instance with d1 = d2 = d3 = 225; as a reasonable choice
for base case, let us take b1 = b2 = b3 = 27. Note that storing the matrices already requires
251 words of memory, which is at the upper limit of practical. Beyond this size, the problem
would likely require a highly distributed memory system, and the runtime would be mostly
determined by scheduling communications (as opposed to counting arithmetic operations).

With these parameters, Strassen and KK will set s0 = 18, and they have runtimes of
respectively

250.5, 254.0

In order to compare our algorithm to these two algorithms, to need to choose parameter
s and we also need to determine the matrices GA, GB , GC . We do not know how to select
the matrices G in the optimal way, and the choice in Proposition 12 would be suboptimal
by large constant factors. For our purposes, we used a local search method to select G, in
order to minimize relative variance. (We note that, if instead we simply fixed all entries of
GA, GB , GC to be equal to one, the variance would only increase by roughly 10% – 20%)

Figure 1, following, shows the relative variance and runtime for various choices of parameter
s, and for our chosen accuracy parameter ε = 1/2 and success probability 3/4.

s V[C̃ij ]/E[C̃ij ]2 Runtime
10 25.9 55.8
11 23.1 55.6
12 20.3 55.4
13 17.6 55.2
14 14.8 55.0
15 12.1 54.8
16 9.4 54.8
17 6.9 54.8
18 4.5 55.0
19 2.4 55.6
20 0.7 56.4
21 −0.7 57.6

Figure 1 Runtime of our algorithm for the sample problem. To handle the wide dynamic range,
all figures are given in log base two; e.g., for s = 10, relative variance is 225.9 and runtime is 255.8.

The optimal value appears to be roughly s ≈ 15, with runtime 254.8. This is slightly worse
than KK algorithm, and much worse than Strassen’s algorithm. We emphasize that this
comparison is still unfair to Strassen’s algorithm, which provides precise and deterministic
calculations of Cij . Also, the base case choice here is still probably smaller than optimal,
again making the comparisons unfairly favorable to the randomized algorithms.

Thus, despite the asymptotic advantages, it will probably never be profitable to our
algorithm, or the KK algorithm, for real-valued matrix multiplication.
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7.2 Estimating performance for Boolean matrix multiplication

We now turn to estimating the failure probability of our algorithm for the Boolean setting.
Unlike the KK algorithm, the random process involved is much more complex and we cannot
obtain a simple closed-form expression. Our starting point is to consider the random process
of Theorem 9, and to try to estimate the probability p of the event

∧
u∈Ts

Ēu; note that
f ≤ p.

Let us consider a sample problem with d1 = d2 = d3 = 225; following heuristics of [1], we
might take the base case size as b1 = b2 = b3 = 210. With these parameters, we can calculate

MStrassen = 242.64,MKK = 242.61

with both algorithms using s0 = 15. (Recall the definition of M from Eq. (1).) To compare
these with our algorithm, we use both empirical simulations (with 106 trials) on the hand,
and Theorem 8 combined with Theorem 9 on the other hand, to obtain estimates of failure
probability. Specifically, we write κ̃ for the estimate coming from Theorem 8 and we write
κ̂ = log(1/p̂) for the Monte Carlo estimate.

By way of comparison, we can also calculate µ = 7sq′
1q

′
2q

′
3 to be the expected number of

events Eu which hold. In an ideal setting, if the events Eu were completely independent, the
failure probability would be e−µ, and we would have κ = µ. See Figure 2.

s µ κ̃ κ̂ M (upper bound) M (empirical)
7 −26.3 −26.4 44.5
8 −23.5 −23.6 44.2
9 −20.7 −20.8 −19.9 44.0 43.2
10 −17.9 −18.0 −18.9 43.8 44.8
11 −15.1 −15.2 −15.2 43.6 43.5
12 −12.3 −12.5 −12.5 43.5 43.5
13 −9.5 −9.8 −9.7 43.4 43.3
14 −6.7 −7.3 −7.1 43.5 43.2
15 −3.9 −5.0 −4.5 43.7 43.3
16 −1.1 −2.9 −2.1 44.3 43.5
17 1.7 −1.2 −0.1 45.2 44.0
18 4.5 0.2 1.6 46.4 44.9
19 7.3 14 3.0 47.7 46.1
20 10.1 2.5 49.2
21 13.0 3.5 50.8

Figure 2 Possible failure parameters for the algorithm. Figures are given in log base two. Some
empirical estimates are left blank because statistically significant estimates could not be obtained.

The optimal value s appears to be roughly s = 14, and for this value we indeed have
κ̃ ≈ κ̂. Thus, a good heuristic to select s would be to use the calculated value κ̃ and choose
s to minimize the resulting value M . This is much faster than empirical estimation, and it
is also safer in that the resulting failure probability is a provable upper bound on the true
failure probability.
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8 Potential improvements

In the algorithms as we describe, the hash functions fℓ are chosen uniformly at random. The
number of preimages of any i ∈ [dℓ] is thus a Binomial random variable with mean

µ = 2sbℓ

dℓ
= 2sqℓ

There are likely better ways to choose the random hash functions. For example, one
could use a dependent rounding scheme to ensure that each i ∈ [dℓ] has precisely ⌊µ⌋ or ⌈µ⌉
preimages. One could even go further, aiming to ensure that the set of preimages x ∈ f−1

ℓ (i)
is “balanced” in terms of the Hamming weight of its elements.

These types of modifications would likely reduce the variance of the statistical estimates
we develop. For practical parameter sizes, they could make a critical difference in the
performance of the algorithm. However, these modifications are also much harder to analyze
precisely. We leave as an open question the benefit of such improvements and whether they
can make this algorithm fully practical.

References
1 Martin Albrecht, Gregory Bard, and William Hart. Algorithm 898: Efficient multiplication of

dense matrices over GF (2). ACM Transactions on Mathematical Software (TOMS), 37(1):1–14,
2010.

2 Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix
multiplication. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 522–539. SIAM, 2021.

3 Vladimir L’vovich Arlazarov, Yefim A Dinitz, MA Kronrod, and IgorAleksandrovich Faradzhev.
On economical construction of the transitive closure of an oriented graph. In Doklady Akademii
Nauk, volume 194, pages 487–488. Russian Academy of Sciences, 1970.

4 Grey Ballard, James Demmel, Olga Holtz, Benjamin Lipshitz, and Oded Schwartz.
Communication-optimal parallel algorithm for Strassen’s matrix multiplication. In Proceedings
of the twenty-fourth annual ACM symposium on Parallelism in algorithms and architectures,
pages 193–204, 2012.

5 Austin R Benson and Grey Ballard. A framework for practical parallel fast matrix multiplication.
ACM SIGPLAN Notices, 50(8):42–53, 2015.

6 Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progressions.
In Proceedings of the nineteenth annual ACM symposium on Theory of computing, pages 1–6,
1987.

7 François Le Gall and Florent Urrutia. Improved rectangular matrix multiplication using
powers of the Coppersmith-Winograd tensor. In Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1029–1046. SIAM, 2018.

8 Jianyu Huang, Tyler M Smith, Greg M Henry, and Robert A Van De Geijn. Strassen’s algorithm
reloaded. In SC’16: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 690–701. IEEE, 2016.

9 Svante Janson, Tomasz Luczak, and Andrzej Rucinski. An exponential bound for the probability
of nonexistence of a specified subgraph in a random graph. In Random graphs, volume 87,
pages 73–87, 1990.

10 Matti Karppa. Techniques for similarity search and Boolean matrix multiplication. PhD thesis,
2020.

11 Matti Karppa and Petteri Kaski. Probabilistic tensors and opportunistic Boolean matrix
multiplication. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 496–515. SIAM, 2019.



D. G. Harris 57:17

12 François Le Gall. Faster algorithms for rectangular matrix multiplication. In 2012 IEEE 53rd
annual symposium on foundations of computer science, pages 514–523. IEEE, 2012.

13 Huacheng Yu. An improved combinatorial algorithm for boolean matrix multiplication.
Information and Computation, 261:240–247, 2018.

ESA 2023





Counting and Sampling Labeled Chordal Graphs in
Polynomial Time
Úrsula Hébert-Johnson #

University of California, Santa Barbara, CA, USA

Daniel Lokshtanov #

University of California, Santa Barbara, CA, USA

Eric Vigoda #

University of California, Santa Barbara, CA, USA

Abstract
We present the first polynomial-time algorithm to exactly compute the number of labeled chordal
graphs on n vertices. Our algorithm solves a more general problem: given n and ω as input, it
computes the number of ω-colorable labeled chordal graphs on n vertices, using O(n7) arithmetic
operations. A standard sampling-to-counting reduction then yields a polynomial-time exact sampler
that generates an ω-colorable labeled chordal graph on n vertices uniformly at random. Our counting
algorithm improves upon the previous best result by Wormald (1985), which computes the number
of labeled chordal graphs on n vertices in time exponential in n.

An implementation of the polynomial-time counting algorithm gives the number of labeled
chordal graphs on up to 30 vertices in less than three minutes on a standard desktop computer.
Previously, the number of labeled chordal graphs was only known for graphs on up to 15 vertices.
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1 Introduction

Generating random graphs from a prescribed graph family is a fundamental task for running
simulations and testing conjectures. Although generating a random labeled graph on n

vertices is easy (just flip an unbiased coin for each potential edge), the first polynomial-time
algorithm for generating an unlabeled graph uniformly at random was only given in 1987, by
Wormald [36]. The algorithm of Wormald runs in polynomial time in expectation, and to
the best of our knowledge, the existence of a worst-case polynomial-time sampler of random
unlabeled graphs remains open.

Naturally, when we wish to sample from a specified graph family, there are many interesting
families of graphs for which this problem is nontrivial, even when the graphs are labeled. For
the class of labeled trees, a sampling algorithm using Prüfer sequences [27] was discovered in
1918. More recently, a fast (exact) uniform sampler was presented by Gao and Wormald for
d-regular graphs with d = o(

√
n) in 2017 [11], and then for power-law graphs in 2018 [12]. A
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more general problem is the following: given an arbitrary degree sequence, generate a random
graph with those specified degrees – this has been resolved for bipartite graphs [21, 3] as well
as for general graphs when the maximum degree is not too large [16, 1]. See Greenhill [15]
for a survey of random generation of graphs with degree constraints. For planar graphs,
Bodirsky, Gröpl, and Kang presented a polynomial-time algorithm [6], which uses dynamic
programming to exactly compute the number of labeled planar graphs on n vertices and
generate a planar graph uniformly at random in time Õ(n7). This was improved to O(n2)
expected time by Fusy [10], using a Boltzmann sampler.

Our results fall naturally within this line of work. We consider the problem of generating
a labeled chordal graph on n vertices uniformly at random. A graph is chordal if it has
no induced cycles of length at least 4. Despite being one of the most fundamental and
well-studied graph classes, prior to our work, the fastest uniform sampling algorithm for
labeled chordal graphs was the exponential-time algorithm of Wormald from 1985 [35]. (To
be precise, optimizing the running time of an algorithm for counting chordal graphs was
not the main focus of Wormald; rather, the main goal of the paper was to determine the
asymptotic number of chordal graphs with given connectivity, and the exponential-time
algorithm is a corollary of these results.) Since then, various algorithmic approaches have
been proposed for generating chordal graphs (e.g., [23, 32, 33, 8, 24]), but these algorithms
do not come with any formal guarantees about their output distribution. In particular, [32]
specifically asks for the existence of a polynomial-time algorithm to sample chordal graphs
uniformly at random as an open problem. In a recent abstract, Sun and Bezáková [33]
proposed a Markov chain for sampling chordal graphs, but this Markov chain comes with
few mixing time guarantees.

We obtain the first polynomial (in n) time algorithm to exactly count the number of
labeled chordal graphs on n vertices, as well as the first polynomial-time uniform sampling
algorithm for the class of labeled chordal graphs. Our algorithm also easily extends to
counting and sampling ω-colorable labeled chordal graphs. A graph G is ω-colorable if there
exists a function c : V (G) → {1, . . . , ω} such that every edge uv ∈ E(G) satisfies c(u) ̸= c(v).

▶ Theorem 1. There is a deterministic algorithm that given positive integers n and ω ≤ n,
computes the number of ω-colorable labeled chordal graphs on n vertices using O(n7) arithmetic
operations. Moreover, there is a randomized algorithm that generates a graph uniformly
at random from the set of all ω-colorable labeled chordal graphs on n vertices using O(n7)
arithmetic operations.

By the known equivalence between chromatic number, maximum clique size, and treewidth
of chordal graphs [5], Theorem 1 can be reinterpreted as counting and sampling labeled
chordal graphs of clique size at most ω, or treewidth at most ω − 1. The running time
bound of Theorem 1 is stated in terms of the number of arithmetic operations. Since there
are at most 2n2 labeled graphs on n vertices, the arithmetic operations need to deal with
n2-bit integers. Therefore, using the O(n log n)-time algorithm for multiplying two n-bit
integers [19] yields an O(n9 log n)-time upper bound for our algorithm in the RAM model.

A straightforward implementation of our counting algorithm gives the number of labeled
chordal graphs on up to n = 30 vertices in less than three minutes on a standard desktop
computer. Previously, the number of labeled chordal graphs was only known for graphs on
up to 15 vertices [25]. In addition, we use our implementation to compute the number of
ω-colorable labeled chordal graphs for n ≤ 12 and ω ≤ 12. We chose to stop at n = 12 to
keep the table at a reasonable size, not because of the computation time. We present the
computational results in Section 4.
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1.1 A Brief Survey on Chordal Graphs
The literature on chordal graphs is so vast that it would be impossible to fully do it justice.
Discussions of chordal graphs in the literature go as far back as 1958 [18]. What follows is a
summary of some of the most notable problems and milestones.

Many NP-hard optimization problems (such as coloring [13] and maximum independent
set [9]), as well as #P-hard counting problems (such as independent sets [26, 4]), and many
others [29], are polynomial-time solvable on chordal graphs. Chordal graphs have a wide
variety of applications, including phylogeny in evolutionary biology [17, 28] and Bayesian
networks in machine learning [34]. When doing Gaussian elimination on a symmetric matrix,
the set of matrix entries that are nonzero for at least one time-point of the elimination process
corresponds to the edge set of a chordal graph. Thus the problem of finding an ordering
in which to do Gaussian elimination that minimizes the number of nonzero matrix entries
can be reduced to finding a chordal supergraph of a given graph with the minimum number
of edges [30]. This problem, known as minimum fill-in, was shown to be NP-complete by
Yannakakis [37]. Chordal graphs have a central place in graph theory [7], both through their
connection to treewidth [20] and through their connection to perfect graphs [14]. From an
algorithms perspective, chordal graphs can be recognized in linear time [31].

An interesting and relevant result by Bender et al. [2] is that a random n-vertex labeled
chordal graph is a split graph with probability 1 − o(1), i.e., the fraction of labeled chordal
graphs that are not split is o(1). This yields a simple approximately uniform sampler for
labeled chordal graphs: simply sampling a random labeled split graph leads to an output
distribution with total variation distance o(1) from the uniform distribution on labeled
chordal graphs. This simple sampling algorithm is unsatisfactory because it can never output
a non-split chordal graph. Nevertheless, this result suggests two things: The first is that it
might be possible to find a simple and efficient uniform random sampler for labeled chordal
graphs. The second is that the type of chordal graphs that one usually envisions when
thinking of a chordal graph (namely those with relatively small treewidth) are different
from those most likely to be generated by a uniform random sampler (namely split graphs).
Therefore, to generate the type of chordal graphs that one usually envisions, one should be
sampling not from the set of all chordal graphs but rather from a subset, e.g., the set of all
ω-colorable chordal graphs. Fortunately, Theorem 1 provides this functionality.

1.2 Methods
Our exact counting algorithm is based on dynamic programming. While clique trees and
tree decompositions are never explicitly mentioned in the description of the algorithm, the
intuition behind the algorithm is based on these notions. Essentially, we generate a rooted
clique tree where the dynamic-programming table encodes certain properties of the graph,
including how it relates to the root node of the clique tree. A clique tree of a graph G is a tree
T together with a function f that maps each vertex of G to a connected vertex subset of T ,
such that for every pair u,v of vertices in G, uv is an edge in G if and only if f(u) ∩ f(v) ̸= ∅.
It is well known that a graph G has a clique tree if and only if it is chordal [5].

The main difficulty with this approach is that different chordal graphs have different
numbers of clique trees, so if we count the total number of clique trees, this will not give us an
accurate count of the number of n-vertex chordal graphs. Therefore, the key idea behind our
algorithm is to assign to each labeled chordal graph a unique “canonical” clique tree and to
only count these canonical clique trees. The information stored in the dynamic-programming
table is sufficient to ensure that every clique tree that we do count is the canonical tree of
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some chordal graph, and that the canonical clique tree of every chordal graph is counted. As
it turns out, the best way to phrase our algorithm is not in terms of clique trees at all, but
rather in terms of an (essentially) equivalent notion that we call an “evaporation sequence.”
An evaporation sequence is closely related to the standard notion of a perfect elimination
ordering (PEO) of a chordal graph. A simplicial vertex is a vertex whose neighborhood
is a clique, and a PEO is an ordering of the vertices such that each is simplicial in the
current induced subgraph, if we delete the vertices in that order (see Section 3.1 for more
details). An evaporation sequence is a type of “canonical” PEO: at each step, we remove
all simplicial vertices from the current subgraph, rather than making an arbitrary choice
of a single simplicial vertex. We say that all of the simplicial vertices evaporate at time 1.
Next, all of the vertices that become simplicial once the first set of simplicial vertices has
been removed are said to evaporate at time 2, and so on. It is easy to see that every labeled
chordal graph has a unique evaporation sequence, and that this sequence does not depend
on the labeling of the vertices.

Therefore, the number of chordal graphs on n vertices is the sum over all evaporation
sequences of the number of labeled chordal graphs with that evaporation sequence. While
different evaporation sequences correspond to different numbers of chordal graphs, because
this number is independent of the labels, we can simply guess the number x of vertices that
evaporate at any given time, and then without loss of generality assign the labels 1, . . . , x to
those vertices.

In our dynamic-programming algorithm, the recursive subproblems deal with counting
rooted clique trees. In this context, the root of a clique tree is the set of vertices that evaporate
last. Just as we would like to “force” a set of nodes to be in the root of the tree, we will
sometimes want to force a set of nodes to evaporate last. This is done using what we call an
exception set, i.e., a set of vertices that do not evaporate even if they are simplicial.

The random sampling algorithm in Theorem 1 follows from our counting algorithm using
the standard sampling-to-counting reduction of [22].

1.3 Overview of the Paper
Our dynamic-programming algorithm, including the associated recurrences, is presented
in Section 3. For a glimpse of the proof of correctness, one can find the proof of the first
recurrence (the reduction to counting connected chordal graphs) in Section 3.4. The complete
proof of correctness, as well as the details of how to obtain the random sampling algorithm
using the counting algorithm, can be found in the full version of the paper.

2 Preliminaries

Our algorithm counts vertex-labeled chordal graphs. For simplicity of notation, we assume
the vertex set of each graph is a subset of N = {1, 2, 3, . . .}, which allows the labels to also
serve as the names of the vertices. For example, we will speak of the vertex 5 ∈ V (G) rather
than a vertex v with label 5.

▶ Definition 2. A labeled graph is a pair G = (V, E), where the vertex set V is a finite
subset of N and the edge set E is a set of two-element subsets of V .

Henceforth, we implicitly assume all graphs that we consider are labeled graphs. For
nonnegative integers n, we use the notation [n] := {1, 2, . . . , n}. Intervals of integers will
often appear in our algorithm as the vertex set of a graph or subgraph, so we also define

[a, b] := {a, a + 1, . . . , b}

for nonnegative integers a, b. If b < a, then [a, b] = ∅.
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▶ Definition 3. Let A = {a1, . . . , ar} and B = {b1, . . . , br} be finite subsets of N such
that |A| = |B|, where the elements ai and bi are listed in increasing order. We define
ϕ(A, B) : A → B as the bijection that maps ai to bi for all i ∈ [r].

▶ Definition 4. Let G1, G2 be two graphs, and suppose C := V (G1) ∩ V (G2) is a clique in
both G1 and G2. When we say we glue G1 and G2 together at C to obtain G, this indicates
that G is the union of G1 and G2: the vertex set is V (G) = V (G1) ∪ V (G2), and the edge
set is E(G) = E(G1) ∪ E(G2).

For a graph G and a vertex subset S ⊆ V (G), G[S] denotes the induced subgraph on the
vertices of S. For a vertex v ∈ V (G), we denote the neighborhood of v in G by NG(v), or by
N(v) if the graph is clear from the context. For S ⊆ V (G), the open neighborhood of S is
denoted by

NG(S) := {v ∈ V (G) \ S : uv ∈ E(G) for some u ∈ S}

and the closed neighborhood of S is denoted by NG[S] := S ∪ NG(S), or simply N(S) and
N [S], respectively. For S, T ⊆ V (G), we say S sees all of T if T ⊆ N(S).

3 Counting labeled chordal graphs

3.1 The evaporation sequence
▶ Definition 5. A vertex v in a graph G is simplicial if N(v) forms a clique.

A perfect elimination ordering of a graph G is an ordering v1, . . . , vn of the vertices of G

such that for all i ∈ [n], vi is simplicial in the subgraph induced by the vertices vi, . . . , vn. It
is well known that a graph is chordal if and only if it has a perfect elimination ordering [5].
For our counting algorithm, we define the notion of the evaporation sequence of a chordal
graph, which can be viewed as a canonical version of the perfect elimination ordering. In
the evaporation sequence, rather than making an arbitrary choice for which of the simplicial
vertices in G will go first in the ordering, we place the set of all simplicial vertices as the first
item in the sequence. As an example, if G is a tree, then the set of all simplicial vertices
would be exactly the leaves of G.

To build the evaporation sequence, we use the fact that given a chordal graph G, if we
repeatedly remove all simplicial vertices, then eventually no vertices remain. By observing at
which time step each vertex is deleted, we obtain a partition of V (G), which allows us to
classify and understand the structure of G. In our algorithm, it will also be useful to set
aside a set of exceptional vertices which are never deleted, even if they are simplical.

To formalize this, suppose we are given a chordal graph G and a vertex subset X ⊆ V (G).
We define the evaporation sequence of G with exception set X as follows: If X = V (G), then
the evaporation sequence of G is the empty sequence. If X ⊊ V (G), then let L̃1 be the set
of all simplicial vertices in G, and let L1 = L̃1 \ X. Suppose L2, . . . , Lt is the evaporation
sequence of G \ L1 (with exception set X). Then L1, L2, . . . , Lt is the evaporation sequence
of G.

For this definition to make sense, there is one caveat: we must choose X so that all
vertices outside of X eventually evaporate. For example, X = ∅ is always a valid choice
since every chordal graph contains a simplicial vertex [5]. Without this assumption, we could
potentially reach a point where X ⊊ V (G) but X contains all of the simplicial vertices of
G, in which case the evaporation sequence would not be well-defined (we never reach the
base case X = V (G)). In our algorithm, we will always choose a valid X such that all other
vertices eventually evaporate.
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If the evaporation sequence L1, L2, . . . , Lt of G has length t, then we say G evaporates at
time t with exception set X, and t is called the evaporation time. We define LG(X) := Lt

to be the last set in the evaporation sequence of G, and we let LG(X) = ∅ if the sequence
is empty. Similarly, we define the evaporation time of a vertex subset: Suppose G has
evaporation sequence L1, L2, . . . , Lt with exception set X, and suppose S ⊆ V (G) \ X is
a nonempty vertex subset. Let tS be the largest index i such that Li ∩ S ̸= ∅. We say S

evaporates at time tS in G with exception set X.

3.2 Setup for the counting algorithm
Given positive integers n and ω, we wish to count the number of ω-colorable chordal graphs
on n vertices. This can easily be reduced to the problem of counting connected ω-colorable
chordal graphs on at most n vertices (see Lemma 17 in Section 3.4). Therefore, our main
focus is to describe the following algorithm:

▶ Theorem 6. There is an algorithm that given n ∈ N, computes the number of ω-colorable
labeled connected chordal graphs G with vertex set [n] using O(n7) arithmetic operations.

We first give an overview of this algorithm and describe the various dynamic-programming
tables (Definition 7). Next, we describe the recurrences in detail in Section 3.3. In Section 3.4,
we show that the counting portion of Theorem 1 (counting chordal graphs) follows from
Theorem 6 (counting connected chordal graphs). For the complete proof of Theorem 6, see
the full version of the paper.

Algorithm overview. To count ω-colorable connected chordal graphs G, we classify these
graphs based on the behavior of their evaporation sequence. We make use of several counter
functions (these are our dynamic-programming tables), each of which keeps track of the
number of chordal graphs in a particular subclass. The arguments of the counter functions
tell us the number of vertices in the graph, the evaporation time, the size of the exception
set X, the size of the last set of simplicial vertices LG(X), etc. Initially, we consider all
possibilities for the evaporation time of G with exception set X = ∅. Then, using several
of our recursive formulas, we reduce the number of vertices by dividing up the graph into
smaller subgraphs and counting the number of possibilities for each subgraph. As we do so,
the exception set X increases in size. When we consider these various subgraphs, we also
make sure that in each subgraph, the maximum clique size is at most ω. In the end, the
algorithm understands the possibilities for the entire graph, including the cliques that make
up the very first set in its evaporation sequence.

The purpose of the exception set is to allow us to restrict to smaller subgraphs without
distorting the evaporation behavior of the graph. For example, suppose we wish to count
the number of connected chordal graphs on n vertices that evaporate at time t, such that
the vertices 1, 2, . . . , ℓ make up the last set to evaporate, i.e., LG(∅) = [ℓ]. Let L = [ℓ]. One
subproblem of interest would be to count the number of possibilities for the first connected
component of G \ L. Formally, we count the number of possibilities for G′ := G[L ∪ C], where
C is the connected component of G \ L that contains the vertex ℓ + 1. For each possible
number of vertices in G′, we make a recursive call to count the number of possible subgraphs
G′ of that size. However, if we were to restrict to G′ with a still-empty exception set, then
the evaporation time of G′ alone could be much less than the evaporation time of V (G′) in
G. Indeed, there may be vertices in G \ G′ adjacent to L that prevent L from evaporating
before time t, so when we restrict to the subgraph G′, L would now evaporate too soon. This
would cause a cascading effect, causing vertices near L to evaporate as well, and changing the
entire evaporation sequence of G′. To resolve this, we add the vertices of L to the exception
set to preserve the evaporation behavior of G′.



Ú. Hébert-Johnson, D. Lokshtanov, and E. Vigoda 58:7

The list of counter functions is given in Definition 7. As shown below, the number of
ω-colorable connected chordal graphs on n vertices is the sum of various calls to the fourth
function g̃1, since g̃1(t, 0, n) is the number of ω-colorable connected chordal graphs on n

vertices that evaporate at time t with empty exception set. To remember the names of these
counter functions, one can think of them as follows: The g-functions keep track of the size
of the exception set X, but these do not have information about the size of LG(X). The
f -functions have an additional argument ℓ, which is the size of LG(X). As a mnemonic,
one can say that g stands for “glued” and f stands for “free.” In the g-functions, X is the
“root,” and all of the vertices of X are glued, in the sense that they cannot evaporate. In the
f -functions, X ∪ LG(X) is the “root,” and some of the vertices in the root are free, since the
vertices in LG(X) are allowed to evaporate.

▶ Definition 7. The following functions count particular subclasses of chordal graphs. Unless
stated otherwise, the arguments t, x, ℓ, k, z are nonnegative integers.
1. g(t, x, k, z) is the number of ω-colorable connected chordal graphs G with vertex set [x + k]

that evaporate in time at most t with exception set X = [x], where X is a clique, with the
following property: every connected component of G \ X (if any) has at least one neighbor
in X \ [z]. Domain: t ≥ 0, x ≥ 1, z < x.

2. g̃(t, x, k, z) is the same as g(t, x, k, z), except every connected component of G \ X (if
any) evaporates at time exactly t in G. Note: A graph with V (G) = X would be counted
because in that case, g̃ is the same as g. Domain: t ≥ 1, x ≥ 1, z < x.

3. g̃p(t, x, k, z) is the same as g̃(t, x, k, z), except no connected component of G \ X sees all
of X. Domain: t ≥ 1, x ≥ 1, z < x.

4. g̃1(t, x, k) and g̃≥2(t, x, k) are the same as g̃(t, x, k, z), except every connected component
of G \ X sees all of X (hence we no longer require every component of G \ X to have
a neighbor in X \ [z]), and furthermore, for g̃1 we require that G \ X has exactly one
connected component, and for g̃≥2 we require that G \ X has at least two components.
Domain for g̃1: t ≥ 1, x ≥ 0. Domain for g̃≥2: t ≥ 1, x ≥ 1.

5. f(t, x, ℓ, k) is the number of ω-colorable connected chordal graphs G with vertex set
[x + ℓ + k] that evaporate at time exactly t with exception set X = [x], such that G \ X is
connected, LG(X) = [x + 1, x + ℓ], and X ∪ LG(X) is a clique. Domain: t ≥ 1, x ≥ 0,
ℓ ≥ 1.

6. f̃(t, x, ℓ, k) is the same as f(t, x, ℓ, k), except every connected component of G\(X∪LG(X))
evaporates at time exactly t − 1 in G, and there exists at least one such component, i.e.,
X ∪ LG(X) ⊊ V (G). Domain: t ≥ 2, x ≥ 0, ℓ ≥ 1.

7. f̃p(t, x, ℓ, k) is the same as f̃(t, x, ℓ, k), except no connected component of G\ (X ∪LG(X))
sees all of X ∪ LG(X). Domain: t ≥ 2, x ≥ 0, ℓ ≥ 1.

8. f̃p(t, x, ℓ, k, z) is the same as f̃p(t, x, ℓ, k), except every connected component of
G \ (X ∪ LG(X)) has at least one neighbor in (X ∪ LG(X)) \ [z]. Domain: t ≥ 2,
x ≥ 0, ℓ ≥ 1, z ≤ x.

3.3 Recurrences for the counting algorithm
We implicitly assume all graphs in this section are connected and ω-colorable. For k ∈ N,
let c(k) denote the number of ω-colorable connected chordal graphs with vertex set [k].
To compute c(n), we first consider all possibilities for the evaporation time. Initially, the
exception set is empty. We observe that g̃1(t, 0, n) is the number of (connected, ω-colorable)
chordal graphs with vertex set [n] that evaporate at time exactly t with empty exception set.

ESA 2023



58:8 Counting and Sampling Labeled Chordal Graphs in Polynomial Time
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Figure 1 The counter functions. Here L = LG(X) and Z = [z]. An arrow from one function to
another, say from g̃ to g, indicates that the definition of g̃ is the same as that of g, except where
indicated otherwise. The drawing of f̃p represents f̃p(t, x, ℓ, k). The function f̃p(t, x, ℓ, k, z) is similar
but also keeps track of the argument z.
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Therefore,

c(n) =
n∑

t=1
g̃1(t, 0, n).

We compute the necessary values of g̃1 by evaluating the following recurrences top-down
using memoization. We take this approach rather than bottom-up dynamic programming to
simplify the description slightly, since by memoizing we do not need to specify in what order
the entries of the various dynamic-programming tables are computed. We simply compute
each value of the counter functions as needed. For the following recurrences, let X = [x]
according to the current value of the argument x, and let L = LG(X).

To compute g̃1(t, 0, n), the number of chordal graphs that evaporate at time exactly t, we
consider all possibilities for the size ℓ of L. Once the size ℓ is given, there are

(
n
ℓ

)
possibilities

for the label set of L. Recall that f counts the number of chordal graphs where L is fixed
and evaporates at time t, and G \ X is connected. Formally, we have the following recurrence
– the first time this is used, the arguments are t, x = 0 and k = n.

▶ Lemma 8. For g̃1, we have

g̃1(t, x, k) =
k∑

ℓ=1

(
k

ℓ

)
f(t, x, ℓ, k − ℓ).

The proof of Lemma 8, along with the proofs of all of the other recurrences, can be found
in the full version of the paper. To see the intuition behind Lemma 8, recall that in the
definition of f(t, x, ℓ, k) we require a specific label set for LG(X), namely [x + 1, x + ℓ]. If we
were to replace that requirement with LG(X) = L′ for any other subset L′ of [x + 1, x + ℓ + k]
of size ℓ, this would not change the value of f(t, x, ℓ, k). Therefore, in the recurrence for g̃1,
it is sufficient to compute f(t, x, ℓ, k − ℓ) and multiply by

(
k
ℓ

)
, rather than computing

(
k
ℓ

)
distinct counter functions.

For f , to count chordal graphs where L is fixed and evaporates at time t, and G \ X is
connected, we consider all possibilities for the set of labels that appear in components of
G \ (X ∪ L) that evaporate at time exactly t − 1. Recall that f̃ counts the number of chordal
graphs where L is fixed and evaporates at time t, G \ X is connected, and all components of
G \ (X ∪ L) evaporate at time exactly t − 1. For each possible k′ (the size of this label set), f̃

allows us to count the number of possibilities for the subgraph G1 consisting of X ∪ L and all
components of G \ (X ∪ L) that evaporate at time exactly t − 1, and g allows us to count the
number of possibilities for the subgraph G2 consisting of X ∪ L and all other components.

▶ Lemma 9. For f , we have

f(t, x, ℓ, k) =
k∑

k′=1

(
k

k′

)
f̃(t, x, ℓ, k′)g(t − 2, x + ℓ, k − k′, x).

When f is called for the first time in the initial steps of the algorithm, this is the first
moment when X becomes nonempty, since at this point we are restricting to a subgraph
with fewer than n vertices. When we restrict to the subgraph G2, we want to ensure that
its vertices have the same evaporation behavior as they did in G. In particular, we need to
ensure that the vertices of L do not evaporate too soon, since their presence may be essential
for preventing other vertices from evaporating. For this reason, we let X ∪ L be the exception
set for G2. For G1, the exception set is simply X because the components that evaporate
at time exactly t − 1 are still present in G1, preventing the vertices of L from evaporating
before time t.
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For the subgraph G2, now that all of L has been pushed into the exception set, we no
longer have information about the argument ℓ since the last set of simplicial vertices in G2
evaporates further back in time. This is why we call g rather than f to count the possibilities
for G2. In fact, G2 \ [x + ℓ] might not even be connected, which is required by f . Finally,
the fourth argument of g indicates that every connected component of G2 \ (X ∪ L) has at
least one neighbor in L. This ensures that G \ X is connected.

For g, to count chordal graphs that evaporate in time at most t, we consider all possibilities
for the set of labels that appear in connected components of G \ X that evaporate at time
exactly t. Recall that g̃ counts the number of chordal graphs where all connected components
of G \ X evaporate at time exactly t.

▶ Lemma 10. For g, we have

g(t, x, k, z) =
k∑

k′=0

(
k

k′

)
g̃(t, x, k′, z)g(t − 1, x, k − k′, z).

For g̃, to count chordal graphs where all connected components of G\X evaporate at time
exactly t, we consider all possible label sets for the component C of G \ X that contains the
lowest label not in X. The constraint x′ ≥ 1 ensures that G is connected. We also subtract
all ways of selecting x′ elements from [z] to ensure that N(C) is not entirely contained in [z].

▶ Lemma 11. For g̃, we have

g̃(t, x, k, z) =
k∑

k′=1

x∑
x′=1

((
x

x′

)
−

(
z

x′

)) (
k − 1
k′ − 1

)
g̃1(t, x′, k′)g̃(t, x, k − k′, z).

We subtract 1 in the binomial coefficient
(

k−1
k′−1

)
because the label set for C always contains

the lowest non-X label, along with k′ − 1 other labels.
For f̃ , we need to count chordal graphs where L is fixed and evaporates at time t, G \ X

is connected, and all components of G \ (X ∪ L) evaporate at time exactly t − 1. The number
of such graphs in which zero components see all of X ∪ L is f̃p(t, x, ℓ, k). Now if there is
at least one all-seeing component, then we break this down into two further cases: either
exactly one component sees all of X ∪ L, or at least two components see all of X ∪ L. Recall
that f̃p counts the number of chordal graphs where L is fixed and evaporates at time t, all
components of G \ (X ∪ L) evaporate at time exactly t − 1, and no component sees all of
X ∪ L. Also, recall that g̃≥2 counts the number of chordal graphs where all components of
G \ X evaporate at time exactly t, every component sees all of X, and there are at least two
such components. In the first (resp. second) case, g̃1 (resp. g̃≥2) corresponds to the all-seeing
component(s), and f̃p (resp. g̃p) corresponds to the remaining components.

▶ Lemma 12. For f̃ , we have

f̃(t, x, ℓ, k) = f̃p(t, x, ℓ, k) +
k∑

k′=1

(
k

k′

)
g̃1(t − 1, x + ℓ, k′)f̃p(t, x, ℓ, k − k′)

+
k∑

k′=1

(
k

k′

)
g̃≥2(t − 1, x + ℓ, k′)g̃p(t − 1, x + ℓ, k − k′, x).

The above cases are relevant because if at least two components of G \ (X ∪ L) see all of
X ∪L, then this prevents the vertices of L from evaporating before time t. Indeed, each vertex
u ∈ L has a neighbor in each of those two components, meaning u has two non-adjacent
neighbors. Otherwise, if there is at most one such component, then the neighborhoods of
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the remaining components of G \ (X ∪ L) must together cover L to ensure that L does not
evaporate until time t. In that case, for each vertex u ∈ L that is covered by a proper-subset
neighborhood N(C) of a component C, u has a neighbor v ∈ C as well as a neighbor
w ∈ (X ∪ L) \ N(C), and v and w are non-adjacent.

The reason we require G \ X to be connected in the definition of f (rather than just
requiring G to be connected) can be seen from the recurrence for f̃ . Since in the first sum over
k′ we only wish to consider graphs with exactly one all-seeing component, in the definition
of g̃1 we require G \ X to be connected. The recurrence for g̃1 depends on f , so this carries
over into requiring G \ X to be connected in the definition of f . This explains the need for
the argument z (for example, in g): as mentioned above, keeping track of z lets us ensure
that G \ X is connected in all graphs counted by f .

For g̃≥2, to count chordal graphs where all components of G\X evaporate at time exactly
t, every component sees all of X, and there are at least two such components, we consider
all possibilities for the label set of the component that contains the lowest label not in X.
For the remaining components, there is either exactly one of them, or at least two.

▶ Lemma 13. For g̃≥2, we have

g̃≥2(t, x, k) =
k−1∑
k′=1

(
k − 1
k′ − 1

)
g̃1(t, x, k′)

(
g̃1(t, x, k − k′) + g̃≥2(t, x, k − k′)

)
.

For g̃p, to count chordal graphs where all components of G \ X evaporate at time exactly
t and no component sees all of X, we proceed as we did for g̃, except we require x′ < x

rather than x′ ≤ x.

▶ Lemma 14. For g̃p, we have

g̃p(t, x, k, z) =
k∑

k′=1

x−1∑
x′=1

((
x

x′

)
−

(
z

x′

)) (
k − 1
k′ − 1

)
g̃1(t, x′, k′)g̃p(t, x, k − k′, z).

For f̃p, to count chordal graphs where L is fixed and evaporates at time t, all components
of G \ (X ∪ L) evaporate at time exactly t − 1, and no component sees all of X ∪ L, we first
declare that no component can see only into X (since G \ X is connected).

▶ Lemma 15. We have f̃p(t, x, ℓ, k) = f̃p(t, x, ℓ, k, x).

The following recurrence for f̃p counts the number of such graphs in which every component
of G \ (X ∪ L) has at least one neighbor in (X ∪ L) \ [z]. On the first reading, one can
skip the two “otherwise” cases in Lemma 16. In this lemma, we consider all possibilities
for the label set of the component C of G \ (X ∪ L) that contains the lowest label not in
X ∪ L. Additionally, we consider all possibilities for the size x′ of N(C) ∩ X and the size ℓ′

of N(C) ∩ L, and we consider all possibilities for their respective label sets. If ℓ′ > 0, then
N(C) is automatically not contained in [z] since z ≤ x, so there are

(
x
x′

)
possible label sets

for N(C) ∩ X.
The intuition behind the two “otherwise” cases is as follows. If ℓ′ = 0, then we must

subtract
(

z
x′

)
from the number of possible label sets for N(C) ∩ X to ensure that N(C) ⊊ [z].

If ℓ′ = ℓ, then all of the vertices of L have now been pushed into the exception set, so the
evaporation time of the subgraph formed from the remaining components is t − 1. In this
case, we call g̃p since we no longer know the size of the last set of simplicial vertices.1

1 One might wonder whether we depart from the domain of g̃p in the term g̃p(t − 1, x + ℓ′, k − k′, z), since
x + ℓ′ = z when ℓ′ = 0 and x = z. However, if ℓ′ = 0 and x = z, then we observe that

(
x
x′

)
−

(
z
x′

)
= 0.

Thus, for this value of ℓ′, we do not need to evaluate the calls to g̃1, f̃p, and g̃p.
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▶ Lemma 16. For f̃p(t, x, ℓ, k, z), we have

f̃p(t, x, ℓ, k, z) =
k∑

k′=1

∑
0≤x′≤x

0≤ℓ′≤ℓ

0<x′+ℓ′<x+ℓ

(
k − 1
k′ − 1

)(
ℓ

ℓ′

)
g̃1(t − 1, x′ + ℓ′, k′) ·

{(
x
x′

)
if ℓ′ > 0(

x
x′

)
−

(
z
x′

)
otherwise

·

{
f̃p(t, x + ℓ′, ℓ − ℓ′, k − k′, z) if ℓ′ < ℓ

g̃p(t − 1, x + ℓ′, k − k′, z) otherwise.

The base cases are as follows. We reach the base case for g when t = 0:

g(0, x, k, z) =
{

1 if k = 0
0 if k > 0.

For g̃ and g̃p, we have g̃(t, x, 0, z) = 1 and g̃p(t, x, 0, z) = 1 when k = 0. For, g̃1 we observe
that g̃1(t, x, k) = 0 if t = 0 or k = 0. Similarly, for g̃≥2 we have g̃≥2(t, x, k) = 0 if t = 0 or
k = 0. We reach the base case for f when x + ℓ > ω, t = 1, or k = 0. If x + ℓ > ω, then
f(t, x, ℓ, k) = 0. Remarkably, this is the only place where ω appears in the algorithm. If
x + ℓ ≤ ω, then we have

f(1, x, ℓ, k) =
{

1 if k = 0
0 otherwise.

If x + ℓ ≤ ω and t ≥ 2, then f(t, x, ℓ, 0) = 0. For f̃ , we have f̃(t, x, ℓ, k) = 0 if t = 1 or k = 0.
Similarly, for f̃p we have f̃p[t, x, ℓ, k, z] = 0 if t = 1 or k = 0. For the version of f̃p without
the fifth argument z, we do not need a base case since we always immediately call f̃p with z.

The control flow formed by these recurrences is shown in Figure 2. The algorithm
terminates because either the value of t or the number of vertices in the graph (i.e., x + k

or x + ℓ + k) decreases each time we return to the same function. For the running time,
this is dominated by the arithmetic operations needed to compute f̃p. The recurrence for f̃p

involves a triple summation, and there are five arguments, so a naive implementation uses
O(n8) arithmetic operations. However, in the full version of the paper, we show that the
running time can in fact be improved to O(n7) arithmetic operations.

3.4 Proof of Theorem 1 (counting)
In this section, we prove the counting portion of Theorem 1 using Theorem 6. (See the full
version of the paper for the proof of the sampling portion of Theorem 1.) In other words,
we describe an algorithm to count chordal graphs, assuming we have an algorithm to count
connected chordal graphs. Theorem 6 – counting connected chordal graphs – is proved in
the full version of the paper.

For k ∈ N, let a(k) denote the number of ω-colorable chordal graphs with vertex set [k].
Recall that c(k) is the number of ω-colorable connected chordal graphs with vertex set [k].

▶ Lemma 17. The number of ω-colorable chordal graphs with vertex set [n] is given by

a(n) =
n∑

k=1

(
n − 1
k − 1

)
c(k)a(n − k)

for all n ∈ N.
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Figure 2 The control flow of the counting algorithm. An arrow from f to g indicates that the
recursive formula for f depends on g. The arrow is red (and dashed) if t decreases by 1, blue (and
dashed) if t decreases by 2, and black if t does not change. The black self-loops do not cause an
infinite loop because in those recursive calls, the number of vertices decreases.

Proof. Suppose G is an ω-colorable chordal graph with vertex set [n]. Let G1 be the graph
formed by the connected component of G that contains the label 1, and let G′ be the graph
formed by all other connected components of G (which can potentially be empty). Let C

be the set of labels that appear in G1, let k = |C|, and let D = [n] \ C, i.e., D is the set
of labels that appear in G′. Now relabel G1 by applying ϕ(C, [k]) to the labels in C, and
relabel G′ by applying ϕ(D, [n − k]) to the labels in D. (Recall that ϕ(A, B) is defined in
Section 2.) We can see that G1 is now a connected ω-colorable chordal graph with vertex
set [k], and G′ is a connected ω-colorable chordal graph with vertex set [n − k]. The map
that takes any chordal graph G to the resulting pair (G1, G′) is injective since ϕ(C, [k]) and
ϕ(D, [n − k]) are both bijections. Therefore, a(n) is at most the number of possible triples
(G1, G′, C), which is given by the summation above.

To see that a(n) is bounded below by the same summation, suppose we are given 1 ≤ k ≤ n,
a connected ω-colorable chordal graph G1 with vertex set [k], a chordal ω-colorable graph
G′ with vertex set [n − k], and a subset C ⊆ [n] of size k that contains 1. Let D = [n] \ C.
We construct an ω-colorable chordal graph G with vertex set [n] as follows: Relabel G1 by
applying ϕ([k], C) to its label set, and relabel G′ by applying ϕ([n − k], D) to its label set.
Now let G be the union of G1 and G′ (by taking the union of the vertex sets and the edge
sets). The map that takes the triple (G1, G′, C) to the resulting graph G is injective, so a(n)
is at least the summation above, as desired. ◀

Lemma 17 directly gives a dynamic-programming algorithm to compute the number of
ω-colorable chordal graphs with vertex set [n], given n as input. First, by Theorem 6, we
can compute c(k) for all k ∈ [n] at a cost of O(n7) arithmetic operations. Next, we use the
recurrence in Lemma 17 to compute a(n) at a cost of O(n2) arithmetic operations. For the
base case, we observe that a(0) = 1. Therefore, we have an algorithm to count ω-colorable
chordal graphs on n vertices using O(n7) arithmetic operations.

4 Implementation of the counting algorithm

An implementation of the counting algorithm in C++ can be successfully run for inputs as
large as n = 30 in about 2.5 minutes on a standard desktop computer.2 Previously, the
number of labeled chordal graphs was only known up to n = 15. Table 1 shows the number of

2 Our implementation is available on GitHub at https://github.com/uhebertj/chordal.
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connected chordal graphs on n vertices for n ≤ 30, with the chromatic number unrestricted.
Table 2 shows the number of ω-colorable connected chordal graphs on n vertices for various
values of n and ω.

Table 1 Numbers of labeled connected chordal graphs on n vertices.

c(n) n

1 1
1 2
4 3

35 4
541 5

13302 6
489287 7

25864897 8
1910753782 9

193328835393 10
26404671468121 11

4818917841228328 12
1167442027829857677 13

374059462390709800421 14
158311620026439080777076 15

88561607724193506845709239 16
65629642803250494352023169033 17

64646285130595946195244365518454 18
84997214469704246545711429635276299 19

149881423568752945444616261913109046421 20
356260551239284266908724943672911100488558 21

1147374494946449194450825817605340123679150461 22
5032486852040265322461550844695939678052967384053 23

30210545039307528599583618386687349227933725131035504 24
249400383130659050580193267861459579254489822650065685961 25

2844134548699568981561554629043146070324332400944867482340313 26
44993294034522185332489548856700572371349354518671249097245374660 27

991277251392360301443460288397009109066708275778086061470009877027739 28
30526157144572224953157514915475479605501638476250575941226904780179348933 29

1318363800739595427128835554231270770209426196402736248743162258824492158995254 30

5 Conclusion

Our main result is an algorithm that given n, computes the number of labeled chordal
graphs on n vertices using O(n7) arithmetic operations (and in O(n9 log n) time in the RAM
model). This yields a sampling algorithm that generates a labeled chordal graph on n vertices
uniformly at random. For the sampling algorithm, once we have run the counting algorithm
as a preprocessing step, each sample can be obtained using O(n4) arithmetic operations.

The main open problem is to design a substantially faster algorithm for counting or
sampling labeled chordal graphs. We presented exact counting and sampling algorithms;
nevertheless, allowing for approximate counting/sampling might enable even faster algorithms.
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Table 2 Numbers of ω-colorable labeled connected chordal graphs on n vertices.
When ω = 2, the algorithm counts labeled trees.

n

2 3 4 5 6 7 8 9

1 3 16 125 1296 16807 262144 4782969 2

ω

4 34 480 9831 268093 9185436 379623492 3
35 540 13136 466683 22732032 1437072780 4

541 13301 488873 25736782 1873146621 5
13302 489286 25863916 1910084529 6

489287 25864896 1910751531 7
25864897 1910753781 8

1910753782 9
n

10 11 12

100000000 2357947691 61917364224 2

ω

18376225525 1019282908941 63707908718994 3
112588153700 10535042533301 1144261607209084 4
181962472490 22726623077466 3513611793935959 5
192919501307 26158547399061 4666697716137194 6
193325509217 26400465973728 4813890013657154 7
193328830337 26404655450778 4818876084111431 8
193328835392 26404671456933 4818917765689886 9
193328835393 26404671468120 4818917841203841 10

26404671468121 4818917841228327 11
4818917841228328 12

To be precise, for approximate sampling we are aiming for an algorithm that, given n and
δ > 0, samples from a distribution δ-close to uniform (say in total variation distance) in time
polynomial in n and log(1/δ), where the dependence on n is significantly less than n7. Two
interesting approaches to consider are Markov Chain Monte Carlo (MCMC) algorithms, such
as the chain proposed in [33], and the Boltzmann sampling scheme used in [10] for planar
graphs.

Moving beyond chordal graphs, there are many interesting graph classes for which the
problem of counting/sampling n-vertex labeled graphs in polynomial time appears to be
open, including perfect graphs, weakly chordal graphs, strongly chordal graphs, and chordal
bipartite graphs, as well as many graph classes characterized by a finite set of forbidden
minors, subgraphs, or induced subgraphs. It is worth noting that for some well-known graph
classes of this form, such as planar graphs, polynomial-time algorithms are known [6, 10].
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Abstract
The complexity of problems involving global constraints is usually much more difficult to understand
than the complexity of problems only involving local constraints. In the realm of graph problems,
connectivity constraints are a natural form of global constraints. We study connectivity problems
from a fine-grained parameterized perspective. In a breakthrough result, Cygan et al. (TALG 2022)
first obtained Monte-Carlo algorithms with single-exponential running time αtwnO(1) for connectivity
problems parameterized by treewidth by introducing the cut-and-count-technique, which reduces
many connectivity problems to locally checkable counting problems. Furthermore, the obtained
bases α were shown to be optimal under the Strong Exponential-Time Hypothesis (SETH).

However, since only sparse graphs may admit small treewidth, we lack knowledge of the fine-
grained complexity of connectivity problems with respect to dense structure. The most popular
graph parameter to measure dense structure is arguably clique-width, which intuitively measures
how easily a graph can be constructed by repeatedly adding bicliques. Bergougnoux and Kanté (TCS
2019) have shown, using the rank-based approach, that also parameterized by clique-width many
connectivity problems admit single-exponential algorithms. Unfortunately, the obtained running
times are far from optimal under SETH.

We show how to obtain optimal running times parameterized by clique-width for two benchmark
connectivity problems, namely Connected Vertex Cover and Connected Dominating Set.
These are the first tight results for connectivity problems with respect to clique-width and these
results are obtained by developing new algorithms based on the cut-and-count-technique and
novel lower bound constructions. Precisely, we show that there exist one-sided error Monte-Carlo
algorithms that given a k-clique-expression solve

Connected Vertex Cover in time 6knO(1), and
Connected Dominating Set in time 5knO(1).

Both results are shown to be tight under SETH.
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1 Introduction

One way to cope with the NP-hardness of a problem is the theory of parameterized complexity,
where we seek to solve structured instances faster than worst-case instances; an additional
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tractable algorithms with running time1 O∗(f(k)), where k is the parameter and f some
computable function. Having established the existence of such an algorithm, the next natural
step is to take a fine-grained perspective and to determine the smallest possible function f ,
which quantifies the precise impact of the considered structure on problem complexity.

We apply this approach to connectivity problems. Our investigation starts with the
breakthrough results of Cygan et al. [16], who for the first time obtained Monte-Carlo
algorithms with running time O∗(αtw), for some constant base α > 1, for connectivity
problems parameterized by treewidth (tw). These algorithms are obtained via the so-called
cut-and-count-technique, which reduces connectivity problems to locally checkable counting
problems. In addition, the obtained bases α were proven to be optimal assuming the Strong
Exponential-Time Hypothesis (SETH) [14].

As only sparse graphs may have small treewidth, we lack knowledge of the precise
complexity of connectivity problems with respect to dense structure. In the regime of dense
graphs, clique-width (cw) is one of the most popular parameters. Bergougnoux [2] applied cut-
and-count to several width-parameters based on structured neighborhoods with clique-width
among these. Moreover, Bergougnoux and Kanté [4], building upon the rank-based approach
of Bodlaender et al. [8], obtain single-exponential running times O∗(αcw) for a large class of
connectivity problems parameterized by clique-width. As both articles are aimed at obtaining
a breadth of single-exponential algorithms for a large class of problems, the Connected
(Co-)(σ, ρ)-Dominating Set problems, the obtained bases for particular problems are far
from being optimal. For example, the former article implies an O∗(128cw)-time algorithm for
Connected Dominating Set and the latter yields an O∗((27 · 2ω+1)cw)-time algorithm
for Connected Vertex Cover and an O∗((8 · 2ω+1)cw)-time algorithm for Connected
Dominating Set, where ω is the matrix multiplication exponent, see e.g. Alman and
Vassilevska W. [1]. Even if ω = 2, this only yields the large bases 216 and 64 respectively.

We show that the running times for Connected Vertex Cover and Connected
Dominating Set parameterized by clique-width can be considerably optimized by providing
novel algorithms. These faster algorithms again rely on the cut-and-count-technique and
are fine-tuned by precisely analyzing which cut-and-count states are necessary to consider.
Moreover, we use further techniques such as fast subset convolution, inclusion-exclusion
states, and distinguishing between live and dead labels to obtain the improved running times.

▶ Theorem 1.1. There are one-sided error Monte-Carlo algorithms that, given a k-expression2

for a graph G, can solve
Connected Vertex Cover in time O∗(6k),
Connected Dominating Set in time O∗(5k).

We show that these algorithms are essentially the correct ones for these problem-parameter-
combinations by proving that the obtained running times are optimal under SETH. To prove
these lower bounds, we follow the by now standard construction principle of Lokshtanov et
al. [35] for lower bounds relative to width-parameters. To apply this principle for clique-width,
we closely investigate the problem behavior across joins, i.e., the edge-structures via which
clique-width is defined, and the results of this investigation strongly guide us in designing
appropriate gadgets. Precisely, we obtain the following tight lower bounds:

1 The O∗-notation hides polynomial factors in the input size.
2 A k-expression witnesses that the clique-width of G is at most k.
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Table 1 Optimal running-times of several connectivity problems with respect to various width-
parameters listed in increasing generality. The results in the last column are obtained in this paper.
Between modular-treewidth and clique-width, we only have the relationship cw(G) ≤ 3 ·2mod-tw(G)−1,
but the same results are also tight for the more restrictive modular-pathwidth, where we have
cw(G) ≤ mod-pw(G) + 2 by Hegerfeld and Kratsch [26]. The “?” marks problem-parameter
combinations, where an algorithm with single-exponential running time is known by Bergougnoux
and Kanté [4], but a gap between the lower bound and algorithm remains.

Parameters cutwidth treewidth modular-tw clique-width
Connected Vertex Cover O∗(2k) O∗(3k) O∗(5k) O∗(6k)
Connected Dominating Set O∗(3k) O∗(4k) O∗(4k) O∗(5k)
Steiner Tree O∗(3k) O∗(3k) O∗(3k) ?
Feedback Vertex Set O∗(2k) O∗(3k) O∗(5k) ?
References [9] [15, 16] [26] here

▶ Theorem 1.2. Assuming SETH 3, the following statements hold for all ε > 0:
Connected Vertex Cover (with unit costs) cannot be solved in time O∗((6 − ε)cw).
Connected Dominating Set (with unit costs) cannot be solved in time O∗((5 − ε)cw).

This work is part of a research program to determine the optimal running times for
connectivity problems relative to several width-parameters ranging from restrictive to more
and more general ones, hence yielding a fine-grained understanding of the price of generality.
We summarize the known results in Table 1. The cut-and-count-technique by Cygan et
al. [15, 16] together with their lower bounds settle the complexity relative to treewidth (and
pathwidth) for many connectivity problems. Bojikian et al. [9] consider the more restrictive
cutwidth and combine cut-and-count with the rank-based approach to improve upon the
treewidth-algorithms or provide new lower bound constructions with low cutwidth when
no improved algorithm exists. Hegerfeld and Kratsch [26] consider the parameter modular-
treewidth which lifts treewidth into the dense regime by combining tree decompositions with
modular decompositions and thus serves as a natural intermediate step between treewidth
and clique-width. The results on modular-treewidth are obtained by reducing directly to
the treewidth-case or by applying the cut-and-count-technique and the modular structure
to essentially reduce to a more involved problem parameterized by treewidth; in the latter
case, new lower bound constructions are provided that follow similar high-level principles as
here, but that have to adhere to different design restrictions. Cygan et al. [16] observe that
connectivity increases the base by at most 1 in the sparse setting, e.g., Vertex Cover has
optimal base 2, see Lokshtanov et al. [35], and Connected Vertex Cover has optimal
base 3 parameterized by treewidth. For clique-width, this increase can be larger and the
impact of connectivity can even flip the relative complexities, e.g., the optimal bases of
Vertex Cover and Dominating Set are 2 and 4 [29, 32] which increase to 6 and 5,
respectively, upon adding the connectivity constraint.

Further Related Work. Beyond these tight results, the cut-and-count-technique has also
been applied to branchwidth [42] and treedepth [23, 38]. Due to its reliance on the isolation
lemma, the cut-and-count-technique yields randomized algorithms. The rank-based approach
of Bodlaender et al. [8] and the matroid-based techniques of Fomin et al. [19, 20] deal

3 If we instead assume an appropriate random variant of SETH, then these reductions also rule out
Monte-Carlo algorithms with such running times.
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with this shortcoming at the cost of a higher running time and the rank-based approach
can also be applied in other contexts. By combining the rank-based approach with other
techniques to avoid Gaussian elimination, optimal running times can be obtained in some
cases, such as for Hamiltonian Cycle parameterized by pathwidth [12, 13] or coloring
problems parameterized by cutwidth [22, 31]. There are further applications of the rank-based
approach to connectivity problems relative to dense width-parameters, such as rankwidth [5]
and mim-width [3]. We also refer to the survey of Nederlof on rank-based methods [37].

Moving away from connectivity problems, we survey some more of the literature obtaining
tight fine-grained parameterized algorithms for dense parameters. Iwata and Yoshida show
that for any ε > 0 Vertex Cover can be solved in time O∗((2 − ε)tw) if and only if
Vertex Cover can be solved in time O∗((2 − ε)cw) [29]; as the bases differ for treewidth
and clique-width in our case, it seems difficult to transfer their techniques to our setting.
Lampis [34] obtains the tight running time of O∗((2q − 2)cw) for q-Coloring and a tight result
for q-Coloring parameterized by a more restrictive variant of modular-treewidth. Generalizing
to homomorphism problems, Ganian et al. [21] obtain tight results for parameterization by
clique-width, where the obtained base depends on a special measure of the target graph.
Katsikarelis et al. [32] obtain tight results for (k, r)-Center parameterized by clique-width
and, in particular, the tight running time O∗(4cw) for Dominating Set. Jacob et al. [30]
and Hegerfeld and Kratsch [24] show that the running time O∗(4cw) is tight for Odd Cycle
Transversal, where the latter article also considers a generalization to more colors and
contains tight results for parameters that do not fall into the class of width-parameters.

Organization. We discuss the preliminaries in Section 2. Section 3 covers the algorithms
(Theorem 1.1) and Section 4 the lower bounds (Theorem 1.2); both sections first outline
the used techniques and present more details for Connected Vertex Cover. For space
reasons, we only give a few remarks regarding Connected Dominating Set. We conclude
in Section 5. Proofs and sections that are delegated to the full version [25] are denoted by ⋆.

2 Preliminaries

For two integers a, b we write a ≡c b to indicate equality modulo c ∈ N. We use Iverson’s
bracket notation: for a boolean predicate p, we have that [p] is 1 if p is true and 0 otherwise.
For a function f we denote by f [v 7→ α] the function (f \ {(v, f(v))}) ∪ {(v, α)}, viewing f

as a set; we also write f [v 7→ α, w 7→ β] instead of (f [v 7→ α])[w 7→ β]. By Z2 we denote
the field of two elements. For n1, n2 ∈ Z, we write [n1, n2] = {x ∈ Z : n1 ≤ x ≤ n2} and
[n2] = [1, n2]. For a function f : V → Z and a subset W ⊆ V , we write f(W ) =

∑
v∈W f(v).

For functions g : A → B, where B ̸⊆ Z, and A′ ⊆ A, we still denote the image of A′ under
g by g(A′) = {g(v) : v ∈ A′}. If f : A → B is a function and A′ ⊆ A, then f

∣∣
A′ denotes

the restriction of f to A′ and for a subset B′ ⊆ B, we denote the preimage of B′ under
f by f−1(B′) = {a ∈ A : f(a) ∈ B′}. An ordered tuple of sets (A1, . . . , Aℓ) is an ordered
subpartition if Ai ∩ Aj = ∅ for all i ̸= j ∈ [ℓ]. The power set of a set A is denoted by P(A).

Graph Notation. We use common graph-theoretic notation and the essentials of parameter-
ized complexity. Let G = (V, E) be an undirected graph. For a vertex set X ⊆ V , we denote
by G[X] the subgraph of G that is induced by X. The open neighborhood of a vertex v is
given by NG(v) = {u ∈ V : {u, v} ∈ E}, whereas the closed neighborhood is given by NG[v] =
NG(v)∪{v}. For sets X ⊆ V we define NG[X] =

⋃
v∈X NG[v] and NG(X) = NG[X]\X. For

two disjoint vertex subsets A, B ⊆ V , we define EG(A, B) = {{a, b} ∈ E(G) : a ∈ A, b ∈ B}
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and adding a join between A and B means adding an edge between every vertex in A and
every vertex in B. For a vertex set X ⊆ V , we define δG(X) = EG(X, V \ X) and we write
δG(v) = δG({v}) for single vertices v. We denote the number of connected components of G

by cc(G). A cut of G is a partition V = VL ∪ VR, VL ∩ VR = ∅, of its vertices into two parts.

Clique-Expressions and Clique-Width. A labeled graph is a graph G = (V, E) together
with a label function lab : V → N = {1, 2, 3, . . .}; we usually omit mentioning lab explicitly.
A labeled graph is k-labeled if lab(v) ≤ k for all v ∈ V . We consider the following four
operations on labeled graphs:

the introduce-operation ℓ(v) constructs a single-vertex graph whose vertex v has label ℓ,
the union-operation G1 ⊕ G2 constructs the disjoint union of labeled graphs G1 and G2,
the relabel-operation ρi→j(G) changes the label of all vertices in G with label i to label j,
the join-operation ηi,j(G), i ̸= j, which adds an edge between every vertex in G with
label i and every vertex in G with label j.

A valid expression that only consists of introduce-, union-, relabel-, and join-operations
is called a clique-expression. The graph constructed by a clique-expression µ is denoted
Gµ and the constructed label function is denoted labµ : V (Gµ) → N. We associate to a
clique-expression µ the syntax tree Tµ in the natural way and to each node t ∈ V (Tµ)
the corresponding operation. For any node t ∈ V (Tµ) the subtree rooted at t induces a
subexpression µt. When µ is fixed, we define Gt = Gµt

, Vt = V (Gt), Et = E(Gt), and
labt = labµt

for any v ∈ V (Tµ). We write V ℓ
t = lab−1

t (ℓ) for the set of all vertices with
label ℓ at node t and we write Lt = {ℓ ∈ N : V ℓ

t ̸= ∅} for the set of nonempty labels at node t.
A clique-expression µ is a k-clique-expression or just k-expression if Gt is k-labeled

for all t ∈ V (Tµ). The clique-width of a graph G, denoted by cw(G), is the minimum k

such that a k-expression µ with G = Gµ exists. A clique-expression µ is linear if in every
union-operation the second graph consists only of a single vertex. Accordingly, we define the
linear-clique-width of a graph G, denoted lin-cw(G), by only considering linear expressions.

Strong Exponential-Time Hypothesis. The Strong Exponential-Time Hypothesis (SETH)
[10, 28] concerns the complexity of q-Satisfiability, i.e., every clause contains at most q

literals. We define cq = inf{δ : q-Satisfiability can be solved in time O(2δn)} for all q ≥ 3.
The weaker Exponential-Time Hypothesis (ETH) of Impagliazzo and Paturi [27] posits that
c3 > 0 and the Strong Exponential-Time Hypothesis states that limq→∞ cq = 1. Equivalently,
for every δ < 1, there is some q such that q-Satisfiability cannot be solved in time O(2δn).
For our lower bounds, the following weaker variant of SETH is sufficient.

▶ Conjecture 2.1 (CNF-SETH). For every ε > 0, there is no algorithm solving Satisfiability
with n variables and m clauses in time O(poly(m)(2 − ε)n).

Cut and Count. Let G = (V, E) denote a connected graph. For easy reference, we repeat
the key definition and lemmas of the cut-and-count-technique here.

▶ Definition 2.2 ([16]). A cut (VL, VR) of an undirected graph G = (V, E) is consistent if
u ∈ VL and v ∈ VR implies {u, v} /∈ E, i.e., EG(VL, VR) = ∅. A consistently cut subgraph of
G is a pair (X, (XL, XR)) such that X ⊆ V and (XL, XR) is a consistent cut of G[X]. We
denote the set of consistently cut subgraphs of G by C(G).

▶ Lemma 2.3 ([16]). Let X be a subset of vertices such that v∗ ∈ X ⊆ V . The number of
consistently cut subgraphs (X, (XL, XR)) such that v∗ ∈ XL is equal to 2cc(G[X])−1.
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▶ Corollary 2.4 (⋆). Let R ⊆ P(V ) be a family of vertex sets so that every X ∈ R contains
v∗. If the set A = {(X, (XL, XR)) ∈ C(G) : X ∈ R, v∗ ∈ XL} has odd cardinality, then there
exists an X ∈ R such that G[X] is connected.

With the isolation lemma we avoid unwanted cancellations in the cut-and-count-technique.

▶ Definition 2.5. A function w : U → Z isolates a set family F ⊆ P(U) if there is a unique
S′ ∈ F with w(S′) = minS∈F w(S); recall that w(X) =

∑
u∈X w(u) for subsets X of U .

▶ Lemma 2.6 (Isolation Lemma, [36]). Let F ⊆ P(U) be a nonempty set family over a
universe U . Let N ∈ N and for each u ∈ U choose a weight w(u) ∈ [N ] uniformly and
independently at random. Then P[w isolates F ] ≥ 1 − |U |/N .

3 Dynamic Programming Algorithms

Cut and Count. The cut-and-count-technique by Cygan et al. [16] allows us to reduce
the global connectivity constraint to a locally checkable counting problem. Consistent cuts,
cf. Definition 2.2, are the main driver of the cut-and-count-technique. Any graph G = (V, E)
admits exactly 2cc(G) distinct consistent cuts, where cc(G) is the number of connected
components of G. By fixing a vertex v∗ and only considering consistent cuts (VL, VR) with
v∗ ∈ VL, this number reduces to 2cc(G)−1, so that G admits an odd number of such consistent
cuts if and only if G is connected. This behavior implies that if we count pairs (X, (XL, XR)),
where v∗ ∈ X ⊆ V is a partial solution and (XL, XR) a consistent cut of G[X] with v∗ ∈ XL,
modulo two, that all disconnected solutions cancel. When multiple connected solutions exist,
they could also cancel modulo two, but this issue can be avoided at the cost of randomization
by using the isolation lemma, cf. Lemma 2.6. So, if there exists a connected solution, then
we can assume that Lemma 2.3 applies and let the algorithm answer accordingly.

Lifting Vertex States to Label States. For dynamic programming along clique-expressions,
we have to characterize the relevant interactions of a partial solution with the labels which
govern which joins can be constructed by the expression. In the considered problems, a single
vertex v can take a constant number of different states with respect to a partial solution
which we capture with a problem-dependent set Ω; e.g., for Connected Vertex Cover,
we have Ω = {0, 1L, 1R}, representing v /∈ X (state 0), v ∈ XL (state 1L), and v ∈ XR (state
1R), respectively. A clique-expression repeatedly adds joins between pairs of vertex sets, say
A and B, i.e., all possible edges between A and B are added, and the algorithm must check
whether a partial solution remains feasible after adding a join and possibly update some
states. A priori, each choice of vertex states in a label could yield different behaviors for
partial solutions. However, for the considered problems the precise multiplicity of a vertex
state in A or in B is irrelevant for a join; it suffices to distinguish for each side which vertex
states appear and which do not. Therefore, the label states are captured by the subsets of Ω.
The next two techniques will allow us to reduce the number of considered states further.

Nice Clique-Expressions. We refine and augment standard clique-expressions to distinguish
between live and dead labels. When performing dynamic programming along a clique-
expression, we consider the induced subgraphs defined by subexpressions of the given
clique-expression. At a subexpression, we say that a label ℓ is live if in the remaining
expression the vertices with label ℓ receive further edges that are not present in the current
subexpression, otherwise ℓ is dead. First, we observe that we do not need to track the
states of a partial solution at the dead labels, as they only have trivial interactions with



F. Hegerfeld and S. Kratsch 59:7

the other states in the remaining expression. Hence, we only need to consider the states
that can be attained at live labels which allows us to reduce the number of considered states
for Connected Vertex Cover. To simplify the algorithms and avoid handling of edge
cases, we transform the clique-expressions so that no degenerate cases occur and add a
dead-operation ⊥ℓ which handles label ℓ turning from live to dead. The dead-operation is
similar to forget vertex nodes in nice tree decompositions [33]. Distinguishing live and dead
labels has been used before [21, 32, 34] to obtain improved running times, but handling the
label types explicitly via an additional operation is new to the best of the authors’ knowledge.

Inclusion-Exclusion States. For Connected Dominating Set, we transform to a different
set of vertex states, called inclusion-exclusion states, which have proven helpful for domination
problems before [23, 39, 41, 43]. These states do not track whether a vertex is undominated
or dominated by a partial solution, but allow a vertex to be dominated or forbid it. A
solution to the original problem can usually be recovered by an inclusion-exclusion argument,
however when lifting to label states this argument does not directly transfer. We show that
the argument can be adapted for label states when working modulo two, whereas for vertex
states the argument is known to also work for non-modular counting. The advantage of
the inclusion-exclusion states is that at joins we do not have to update vertex states from
undominated to dominated, thus simplifying the algorithm and also allowing us to collapse
several label states into a single one. The dead-operations of nice clique-expressions serve as
suitable timepoints to apply the adapted inclusion-exclusion argument.

Fast Convolutions. To quickly compute the recurrences for union-operations, we utilize
algorithms for fast subset convolution. We tailor the techniques developed by Björklund et
al. [6] on trimmed subset convolutions to obtain a fast algorithm for the union-recurrence
appearing in the Connected Vertex Cover algorithm. For Connected Dominating
Set, we employ the lattice-based results of Björklund et al. [7].

3.1 Nice Clique-Expressions
Let µ be a k-expression for G = (V, E); the associated syntax tree is Tµ. We say that a
clique-expression µ is irredundant if for any join-operation ηi,j(Gt′) = t ∈ V (Tµ), it holds
that EGt′ (V i

t′ , V j
t′ ) = ∅, i.e., no edge added by the join existed before.

▶ Theorem 3.1 ([11]). Any k-expression µ can be transformed into an equivalent, i.e.,
Gµ′ = Gµ, irredundant k-expression µ′ in polynomial time.

Irredundancy still allows several edge cases regarding empty labels to occur, which require
special handling in the dynamic programming algorithms. To avoid this extra effort in the
algorithms, we transform any clique-expression so that these edge cases do not occur.

▶ Definition 3.2. A clique-expression µ of G is nice if µ satisfies the following properties:
µ is irredundant,
for every join-node ηi,j(Gt′) = t ∈ V (Tµ), where t′ is the child of t, we have that Gt ̸= Gt′ ,
i.e., t adds at least one edge and V i

t′ ̸= ∅ and V j
t′ ̸= ∅,

for every relabel-node ρi→j(Gt′) = t ∈ V (Tµ), where t′ is the child of t, we have that
V i

t′ ̸= ∅ and V j
t′ ̸= ∅.

In the full version of the paper, we give a short proof how to transform a k-expression
into an equivalent nice k-expression. However, Ducoffe [17] has also shown how to perform
such a transformation in only linear time with a more involved proof.
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▶ Lemma 3.3 (⋆, [17]). Any k-expression µ can be transformed into an equivalent, i.e.,
Gµ′ = Gµ, nice k-expression µ′ in polynomial time.

For nice clique-expressions, we will now present how we augment the associated syntax
tree to distinguish between live and dead labels. For the remainder of this section, we assume
that G is a connected graph with at least two vertices. We begin with the following definition.

▶ Definition 3.4. Given a clique-expression µ for G = (V, E) and a node t ∈ V (Tµ), the set
of dead vertices at t is defined by Dt = {v ∈ Vt : δG(v) ⊆ Et}. A vertex v ∈ Vt \ Dt is called
live at t.

The next lemma shows that in an irredundant clique-expression either none or all vertices
in a label are dead, thus allowing us to sensibly speak of dead and live labels.

▶ Lemma 3.5 (⋆). Given an irredundant k-expression µ for G = (V, E), a node t ∈ V (Tµ),
and a nonempty label ℓ ∈ Lt, we have that either V ℓ

t ∩ Dt = ∅ or V ℓ
t ⊆ Dt.

The following definition formalizes the handling of live and dead labels and the dead
nodes that are added when a label turns from live to dead.

▶ Definition 3.6. Given an irredundant k-expression µ for G = (V, E), the augmented syntax
tree T̂µ of µ is obtained from Tµ by inserting up to two dead nodes directly above every join
node t = ηi,j(Gt′), where t′ is the child of t in Tµ, based on the following criteria:

if V i
t ⊆ Dt \ Dt′ , then the node ⊥i is inserted,

if V j
t ⊆ Dt \ Dt′ , then the node ⊥j is inserted,

if both nodes ⊥i and ⊥j are inserted, then we insert them in any order.
We extend the notations Gt, Vt, Dt, V ℓ

t , for ℓ ∈ [k], to dead nodes by inheriting the values of
the child node. For every node t ∈ V (T̂µ), we inductively define the live labels Llive

t ⊆ Lt by

Llive
t = {ℓ} if t = ℓ(v), Llive

t = Llive
t′ \ {i} if t = ρi→j(Gt′),

Llive
t = Llive

t′ if t = ηi,j(Gt′), Llive
t = Llive

t′ \ {ℓ} if t = ⊥ℓ(Gt′),
Llive

t = Llive
t1

∪ Llive
t2

if t = Gt1 ⊕ Gt2 .

Dually, the set of dead labels Ldead
t ⊆ Lt is given by Ldead

t = Lt \ Llive
t .

The next lemma shows that, up to pending dead nodes, Llive
t contains all nonempty

labels that only consist of live vertices at t. Due to Lemma 3.5, no label of an irredundant
k-expression can contain both live and dead vertices simultaneously.

▶ Lemma 3.7 (⋆). Let µ be a nice k-expression of G = (V, E) and T̂µ its augmented syntax
tree. For any node t ∈ V (T̂µ) and ℓ ∈ Lt, we have that V ℓ

t ∩ Dt = ∅ implies ℓ ∈ Llive
t . If t is

not the child of a dead node, then we even have that V ℓ
t ∩ Dt = ∅ if and only if ℓ ∈ Llive

t .

3.2 Connected Vertex Cover

Connected Vertex Cover
Input: An undirected graph G = (V, E), a cost function c : V → N \ {0} and an integer b.
Question: Is there a set X ⊆ V , c(X) ≤ b, such that G − X contains no edges and G[X] is

connected?

Let (G = (V, E), c, b) be a Connected Vertex Cover instance with c(v) ≤ |V |O(1) for
all v ∈ V . Furthermore, we assume that G is connected and contains at least two vertices.
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Let µ be a nice k-expression for G. To apply the cut-and-count-technique, we first pick
an edge in G, branch on one of its endpoints v∗, and in this branch only consider solutions
containing v∗. Furthermore, we sample a weight function w : V → [2|V |] for the isolation
lemma, cf. Lemma 2.6. We perform bottom-up dynamic programming along the augmented
syntax tree T̂µ. At every node t ∈ V (T̂µ), we consider the following family of partial solutions

At = {(X, (XL, XR)) ∈ C(Gt) : Gt − X contains no edges and (v∗ ∈ Vt ⇒ v∗ ∈ XL)}.

In other words, At contains all consistently cut vertex covers of Gt such that v∗ is on the
left side of the cut if possible. For every t ∈ V (T̂µ), c ∈ [0, c(V )], w ∈ [0, w(V )], we define
Ac,w

t = {(X, (XL, XR)) ∈ At : c(X) = c, w(X) = w}. Let r̂ denote the root node of the
augmented syntax tree T̂µ. By Corollary 2.4, there exists a connected vertex cover X of G

with c(X) ≤ b if there exist c ∈ [0, b] and w ∈ [0, w(V )] such that Ac,w
r̂ has odd cardinality.

We proceed by analyzing the behavior of a partial solution (X, (XL, XR)) ∈ At with
respect to a label V ℓ

t , ℓ ∈ Lt. A vertex v ∈ V ℓ
t can take one of the states Ω = {0, 1L, 1R},

meaning respectively v /∈ X, or v ∈ XL, or v ∈ XR. To check the feasibility of (X, (XL, XR)),
it suffices to store for each label which vertex states appear and which do not, as the
constraints implied by At are “CSP-like”, i.e., they apply to every edge, and they can be
evaluated for every join by considering all pairs of involved vertex states. Hence, the power
set P(Ω) of Ω captures all possible label states.

The power set P(Ω) a priori yields eight different states per label. However, we can exclude
the state ∅ and the state Ω = {0, 1L, 1R} from consideration. The former can be excluded,
since we only need to store the state for nonempty labels, i.e., containing at least one vertex.
The exclusion of the state Ω = {0, 1L, 1R} is more subtle: any additional incident join would
lead to an infeasible solution for this state, hence only dead labels, cf. Definition 3.6, may
sensibly take this state. We return to this issue in a moment. Since it suffices to store the states
of live labels, we set States = P(Ω) \ {∅, Ω} = {{0}, {1L}, {1R}, {0, 1L}, {0, 1R}, {1L, 1R}}.

Given a node t ∈ V (T̂µ), a t-signature is a function f : Llive
t → States. For every node

t ∈ V (T̂µ), c ∈ [0, c(V )], w ∈ [0, w(V )], and t-signature f , we define

Ac,w
t (f) = {(X, (XL, XR)) ∈ Ac,w

t : 0 ∈ f(ℓ) ⇔ V ℓ
t ̸⊆ X for all ℓ ∈ Llive

t ,

1L ∈ f(ℓ) ⇔ XL ∩ V ℓ
t ̸= ∅ for all ℓ ∈ Llive

t ,

1R ∈ f(ℓ) ⇔ XR ∩ V ℓ
t ̸= ∅ for all ℓ ∈ Llive

t }.

We claim that excluding the state Ω does not cause issues. Consider some node t whose
parent is not a dead node, and (X, (XL, XR)) ∈ Ac,w

t such that there is a live label ℓ ∈ Llive
t

for which the three cases V ℓ
t ̸⊆ X, XL ∩V ℓ

t ̸= ∅, and XR ∩V ℓ
t ̸= ∅ simultaneously occur. Since

ℓ is live, there is some v ∈ NG(V ℓ
t ) \ NGt(V ℓ

t ) by Lemma 3.7. We claim that (X, (XL, XR))
cannot be extended to a consistently cut vertex cover (X ′, (X ′

L, X ′
R)) of G′ = G[Vt ∪ {v}]

(hence also not of G). If v /∈ X ′, then there is an uncovered edge in G′ between V ℓ
t and v. If

v ∈ X ′, then some edge in G′ crosses the cut (X ′
L, X ′

R) and so the cut cannot be consistent.
Hence, partial solutions attaining the state {0, 1L, 1R} at a live label can be discarded.

Instead of computing the sets Ac,w
t (f) directly, we only compute the quantities Ac,w

t (f) =
|Ac,w

t (f)| mod 2. The recurrences for computing Ac,w
t (f), for every t ∈ V (T̂µ), t-signature

f , c ∈ [0, c(V )], w ∈ [0, w(V )] depend on the type of the considered node t:

Introduce node. If t = ℓ(v) for some ℓ ∈ [k], then Llive
t = {ℓ} and

Ac,w
t (f) = [v ̸= v∗ ∨ f(ℓ) = {1L}]

· [(f(ℓ) = {0} ∧ c = w = 0) ∨ (f(ℓ) ∈ {{1L}, {1R}} ∧ c = c(v) ∧ w = w(v))],

since in a singleton graph any choice of singleton state leads to a valid solution, but if v = v∗
then only the solution with v∗ on the left side of the cut is allowed.
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Relabel node. If t = ρi→j(Gt′), where t′ is the child of t, for some i, j ∈ [k], then by niceness
of µ it follows that i ∈ Lt′ , j ∈ Lt′ , Lt = Lt′ \ {i} and either i, j ∈ Llive

t′ or i, j ∈ Ldead
t′ .

If labels i and j are live at t′, then label j is live at t and the recurrence is given by

Ac,w
t (f) =

∑
S1,S2∈States :

S1∪S2=f(j)

Ac,w
t′ (f [i 7→ S1, j 7→ S2]),

since V j
t = V i

t′ ∪ V j
t′ and we simply have to iterate over all possible combinations of

previous states at labels i and j that yield the desired state f(j).
If labels i and j are dead at t′, then label j is dead at t and since we do not track the
state of dead labels, we can simply copy the previous table, i.e., Ac,w

t (f) = Ac,w
t′ (f).

Join node. To check whether two states can lead to a feasible solution after adding a join
between their labels, we introduce a helper function feas : States × States → {0, 1} defined
by feas(S1, S2) = [0 /∈ S1 ∨ 0 /∈ S2][1L ∈ S1 ⇒ 1R /∈ S2][1R ∈ S1 ⇒ 1L /∈ S2]. There are two
reasons for infeasibility: a join edge is not covered, i.e., 0 appears on both sides, or a join
edge connects both sides of the cut, i.e., 1L appears on one side and 1R on the other.

We have t = ηi,j(Gt′) for some i ̸= j ∈ Lt′ , where t′ is the child of t. We have i, j ∈ Llive
t′

and if vertices turn dead at t, i.e., Dt′ ⊊ Dt, then a future dead node will handle it. Hence,
we simply filter out all partial solutions that become infeasible due to the new join:

Ac,w
t (f) = feas(f(i), f(j))Ac,w

t′ (f).

Dead node. We have that t = ⊥ℓ(Gt′), where t′ is the child of t, ℓ /∈ Llive
t , and Llive

t =
Llive

t′ \{ℓ}. Since the only change is that t-signatures do not track the state of label ℓ anymore,
we add up the contributions of all previous states of label ℓ. Hence, the recurrence is given by

Ac,w
t (f) =

∑
S∈States

Ac,w
t′ (f [ℓ 7→ S]).

Although this recurrence looks simple, its correctness proof is nontrivial as it relies on the
previous argument why label state Ω can be excluded.

Union node. We omit the standard, but somewhat technical, description of the union-
recurrence here. After handling labels that are nonempty at only one of the children, a
trimmed subset convolution remains that we can solve in time O∗(6|Llive

t |) for all c, w, and f

simultaneously via the convolution algorithms developed in the appendix of the full version.

▶ Lemma 3.8 (⋆). Given a nice k-expression µ of G = (V, E), the quantities Ac,w
t (f) for all

nodes t ∈ V (T̂µ), t-signatures f , and appropriate c, w, can be computed in time O∗(6k).

Proof sketch. For introduce nodes, relabel nodes, or join nodes, the recurrence for Ac,w
t (f)

can be computed in polynomial time, as additions and multiplications in Z2 take constant
time. For union nodes t, we compute the recurrence for all f , c, w simultaneously in time
O∗(6|Llive

t |) as discussed. As µ is a k-expression, we have |Llive
t | ≤ k for all t ∈ V (T̂µ) and in

particular at most 6k t-signatures for any node t ∈ V (Tµ). Hence, the running time follows.
The proof of correctness for introduce nodes, relabel nodes, join nodes, and union nodes

is straightforward. For dead nodes, the proof of correctness follows from the discussion on
the exclusion of state {0, 1L, 1R} and the construction of the augmented syntax tree T̂µ. ◀
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▶ Theorem 3.9 (⋆). There is a randomized algorithm that given a nice k-expression µ for a
graph G = (V, E) can solve Connected Vertex Cover in time O∗(6k). The algorithm
does not return false positives and returns false negatives with probability at most 1/2.

Proof. We sample a weight function w : V → [2n] uniformly at random. Then, we pick an
edge in G and branch on its endpoints; the chosen endpoint takes the role of v∗ in the current
branch. Using Lemma 3.8, we compute the quantities Ac,w

t (f). At the root node r̂, we have
that Llive

r̂ = ∅. The algorithm returns true if in one of the branches there is some choice of
c ≤ b, w ∈ [0, 2n2], such that Ac,w

r̂ (∅) ̸= 0, otherwise the algorithm returns false.
The running time directly follows from Lemma 3.8. The correctness and error probability

follow from Corollary 2.4, Lemma 2.3 and the isolation lemma, Lemma 2.6. Since these
arguments are standard for the cut-and-count-technique, we omit them here. ◀

3.3 Remarks on Connected Dominating Set Algorithm (⋆)

Connected Dominating Set
Input: An undirected graph G = (V, E), a cost function c : V → N \ {0} and an integer b.
Question: Is there a set X ⊆ V , c(X) ≤ b, such that N(X) ∪ X = V and G[X] is connected?

To obtain our algorithm for Connected Dominating Set, we transform to the inclusion-
exclusion states and apply the cut-and-count-technique. We again have the vertex states 1L

and 1R, but the state 0 splits into the allowed (A) and forbidden state (F), which denote
that a vertex is allowed or forbidden to be dominated. Lifting to label states, we see that
the presence of allowed vertices is irrelevant, as they impose no constraint on future joins,
and that all label states containing at least two distinct non-allowed states behave in the
same way. This allows us to collapse the number of considered label states down to five.

To count solutions dominating a vertex v with the inclusion-exclusion states, one usually
subtracts the number of solutions where v is forbidden from the solutions where v is allowed.
This argument fails when applied to labels, i.e., groups of vertices. Instead, our dynamic
program counts solutions with a label containing u undominated vertices exactly 2u times,
so that all solutions with u > 0 cancel modulo two. Whenever a label turns dead, we apply
this argument to ensure that all vertices in dead labels are dominated.

4 Lower Bounds

Construction Principle. The high-level construction principle of the lower bounds follows
the style of Lokshtanov et al. [35]. That means the resulting graphs can be interpreted as
a matrix of blocks, where each block spans several rows and columns. Every row is a long
path-like gadget that simulates a constant number of variables of the Satisfiability instance
and which contributes 1 unit of clique-width. The number of simulated variables is tied to
the running time that we want to rule out. For technical reasons, we consider bundles of
rows simulating a variable group of appropriate size. Every column corresponds to a clause
and consists of gadgets that decode the states on the path gadgets and check whether the
resulting assignment satisfies the clause. As a consequence of the construction principle, the
lower bounds already apply to linear clique-width.

Path Gadgets and State Transitions. Our main contribution is the design of the path
gadgets that lie at the intersection of every row and column, whereas the decoding gadgets
can be adapted from Cygan et al. [15]. To ensure that each row contributes one unit of
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clique-width, adjacent path gadgets in a row are connected by a join. Our goal is to design a
path gadget admitting as many states as possible. An important issue is how the state of
the path gadgets may transition along each row, as the reduction only works when the state
transitions follow some transition order, i.e, state i can transition to state j only if i ≤ j.

Determining the Transition Order. For sparse width-parameters such as pathwidth, de-
termining an appropriate transition order is much simpler, as the number of possible states is
very small, e.g., there are at most four vertex states for the considered benchmark problems.
The possible set of states for clique-width is much larger and we must select a specific subset
of states, as not all of them admit a transition order. Hence, we analyze the possible state
transitions across a join, obtaining a transition/compatibility matrix showing which pairs of
states can lead to a globally feasible solution and which cannot. After possibly reordering the
rows and columns of the compatibility matrix, a transition order must induce a triangular
submatrix with ones on the diagonal. From a largest possible such triangular submatrix of
the compatibility matrix, we can then deduce an appropriate transition order which guides
the design of the path gadget.

Anatomy of a Path Gadget. Our path gadgets consist of a central clique communicating
with the decoding gadgets, and two boundary parts, i.e., the left and right part connecting
to the previous and following join. In the central clique, each solution avoids exactly one
vertex representing the state of the path gadget. To implement the transition order, the left
and right part have to communicate appropriate states to the two adjacent path gadgets.
By pairing states along the main diagonal of the triangular submatrix, we see which states
must be communicated in each case. The central idea behind designing the left and right
part is to isolate the constituent state properties of the boundary vertices, such as, whether
they are contained in the partial solution or whether they are dominated. This simplifies the
communication with the central clique and expedites implementing the transition order.

Root-Connectivity. To capture the connectivity constraint, we create a distinguished vertex
r̂ called the root and attach a vertex of degree 1 to ensure that every connected vertex cover
or connected dominating set must contain r̂. Given a vertex subset X ⊆ V (G) with r̂ ∈ X,
we say that a vertex v ∈ X is root-connected in X if there is a v, r̂-path in G[X]. We will
just say root-connected if X is clear from the context. The graph G[X] is connected if and
only if all vertices of X are root-connected in X. For the state of a partial solution X, it is
important to consider which vertices are root-connected in X and which are not.

4.1 Path Gadget for Connected Vertex Cover
This subsection is devoted to constructing and analyzing the path gadget used to prove that
Connected Vertex Cover (with unit costs) cannot be solved in time O∗((6 − ε)lin-cw(G))
for some ε > 0 unless the CNF-SETH fails. The remaining parts of the construction are
standard and can be found in the full version. We build a path gadget admitting 6 distinct
states which narrows down to a single label/join, so that each row contributes one unit of
linear clique-width. Each single vertex v has one of 3 states with respect to a partial solution
X: v /∈ X (state 0), v ∈ X and v is root-connected (state 11) or not root-connected (state
10). The state of a label can be described as a subset of {0, 10, 11}.

We proceed by studying the compatibility of theses label states across a join, but we will
only give an informal description here. Essentially, we assume that the considered join is
the final opportunity for two partial solutions X1, X2 ⊆ V with r̂ ∈ Xi, i ∈ [2], living on
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Figure 1 Several cases of partial solution compatibility across a join. The first row depicts the
vertex states in X1 and X2, separated by the dashed line. The second row depicts the vertex states in
X1 ∪ X2 and highlights, from left to right, the induced edges, the uncovered edges, and a connected
component not containing the root r̂.

Table 2 A large triangular submatrix in the compatibility matrix of Connected Vertex Cover.
The rows and columns have been reordered.

X1 vs. X2 {0} {10, 0} {10} {11, 0} {11, 10} {11}
{11} 1 1 1 1 1 1
{11, 10} 0 1 1 1 1 1
{11, 0} 0 0 1 0 1 1
{10} 0 0 0 1 1 1
{10, 0} 0 0 0 0 1 1
{0} 0 0 0 0 0 1

separate sides of the join (with the exception of r̂) to connect. Hence, the partial solutions
X1 and X2 are considered to be compatible when in X1 ∪ X2 every vertex incident to the
considered join has state 0 or 11 and every edge of the join is covered by X1 ∪ X2; see
Figure 1. Since the interaction of Xi, i ∈ [2], with the respective side of the join is captured
by the aforementioned states, we obtain a compatibility matrix of size 7 × 7.

In this compatibility matrix, we find the triangular submatrix depicted in Table 2, after
reordering rows and columns. Independent sets of size two are sufficient to generate the
relevant label states and they are represented by the following ordered pairs of vertex states:
(0, 0), (10, 0), (10, 10), (11, 0), (11, 10), (11, 11). Pairing these states along the diagonal, we
learn which states should be communicated to the left and right boundary in each case.

States. We define the three atomic states Atoms = {0, 10, 11}, with their usual inter-
pretation, and two predicates sol, conn : Atoms → {0, 1} by sol(a) = [a ∈ {10, 11}] and
conn(a) = [a = 11]. We define six (gadget) states consisting of four atomic states each:

s1 = (0 , 0 , 11, 11), s2 = (10, 0 , 11, 10), s3 = (10, 10, 11, 0 ),
s4 = (11, 0 , 10, 10), s5 = (11, 10, 10, 0 ), s6 = (11, 11, 0 , 0 ).
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Figure 2 The path gadget P with the join vertices u1, u2 and u3, u4 joined to further vertices.
All vertices depicted by a rectangle are adjacent to the root r̂. The vertices inside the cyan dashed
rectangle induce a clique. We have highlighted the edges incident to v2 as an example.

The gadget states are numbered in the transition order. We collect the six gadget states in
the set States = {s1, . . . , s6} and use the notation sℓ

i ∈ Atoms, i ∈ [4], ℓ ∈ [6], to refer to
the i-th atomic component of state sℓ. Given a partial solution Y ⊆ V (G), we associate to
each vertex its state in Y with the map stateY : V (G) \ {r̂} → Atoms, which is defined by
stateY (v) = 0 if v /∈ Y ; stateY (v) = 10 if v ∈ Y and v is not root-connected in Y ∪ {r̂};
stateY (v) = 11 if v ∈ Y and v is root-connected in Y ∪ {r̂}.

Construction. The construction of the path gadget P is as follows. We create 4 join vertices
u1, . . . , u4, 12 auxiliary vertices a1,1, a1,2, a1,3, a2,1, . . . , a4,3, 8 solution indicator vertices
b1,0, b1,1, b2,0, b2,1, . . . , b4,1, 8 connectivity indicator vertices c1,0, c1,1, c2,0, c2,1, . . . , c4,1 and 6
clique vertices v1, . . . , v6. We add edges so that the clique vertices vℓ, ℓ ∈ [6], induce a clique
of size 6. Next, we explain how to connect the indicator vertices to the clique vertices. The
clique vertex vℓ corresponds to choosing state sℓ on the join vertices (u1, u2, u3, u4). The
desired behavior of P is that a partial solution X of P + r̂ contains bi,1 if and only if X

contains ui and for the connectivity indicators, that X contains ci,1 if and only if X contains
ui and ui is root-connected in X. Accordingly, for all i ∈ [4] and ℓ ∈ [6], we add the edges
{vℓ, bi,sol(sℓ

i
)} and {vℓ, ci,conn(sℓ

i
)}. For the remaining edges, we refer to Figure 2.

Behavior of a Single Path Gadget. We assume that G is a graph that contains P + r̂ as
an induced subgraph and that only the join vertices ui, i ∈ [4], and clique vertices vℓ, ℓ ∈ [6],
have neighbors outside this copy of P + r̂. Furthermore, let X be a connected vertex cover
of G with r̂ ∈ X; we abuse notation and write X ∩ P instead of X ∩ V (P ).

We begin by showing a lower bound for |X ∩ P | via a vertex-disjoint packing of subgraphs.
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▶ Lemma 4.1 (⋆). We have that |X ∩ P | ≥ 21 = 4 · 4 + 5 and more specifically ai,1 ∈ X,
|X ∩ {ui, ai,3, bi,1, bi,0}| ≥ 2, |X ∩ {ci,0, ci,1}| ≥ 1 for all i ∈ [4] and |X ∩ {v1, . . . , v6}| ≥ 5.

Using Lemma 4.1, we precisely analyze the solutions that match the lower bound of 21
on P and show that these have the desired state behavior. We define for any Y ⊆ V (P ) the
4-tuple state(Y ) = (stateY (u1), stateY (u2), stateY (u3), stateY (u4)) and show that the
states communicated to the boundary depend on the state of the central clique as desired.

▶ Lemma 4.2 (⋆). If |X ∩P | ≤ 21, then |X ∩P | = 21 and ai,1 ∈ X, X ∩{ui, ai,3, bi,1, bi,0} ∈
{{ui, bi,1}, {ai,3, bi,0}}, |X ∩ {ci,0, ci,1}| = 1 for all i ∈ [4] and |X ∩ {v1, . . . , v6}| = 5.
Furthermore, we have state(X ∩ P ) = sℓ for the unique integer ℓ ∈ [6] with vℓ /∈ X.

Proof sketch. The first part follows by observing that the inequalities of Lemma 4.1 must be
tight and that we must pick an antipodal pair in the cycle {ui, ai,3, bi,1, bi,0}. For the second
part, we show that stateX∩P (ui) = sℓ

i for all i ∈ [4]. If vℓ /∈ X, then bi,sol(sℓ
i
), ci,conn(sℓ

i
) ∈ X

by construction of P and because X is a vertex cover. Using the packing equations, we can
propagate this information to ui and obtain the desired state. ◀

Similarly, we also establish that for every state sℓ ∈ States a partial solution Xℓ
P attaining

sℓ actually exists. This is made precise by the following Lemma 4.3, which also shows that
for these partial solutions it is sufficient to establish root-connectivity for the join vertices.

▶ Lemma 4.3. For every ℓ ∈ [6], there exists a vertex cover Xℓ
P of P such that |Xℓ

P | = 21,
Xℓ

P ∩ {v1, . . . , v6} = {v1, . . . , v6} \ {vℓ}, and state(Xℓ
P ) = sℓ. If X is a vertex cover of G

with r̂ ∈ X and X ∩ P = Xℓ
P and for every i ∈ [4] either ui /∈ X or ui is root-connected in

X, then every vertex of Xℓ
P is root-connected in X.

State Transitions. To study the state transitions, suppose that we have two copies P 1 and
P 2 of P such that the vertices u3 and u4 in P 1 are joined to the vertices u1 and u2 in P 2.
We denote the vertices of P 1 with a superscript 1 and the vertices of P 2 with a superscript
2, e.g., u1

3 refers to the vertex u3 of P 1. Again, suppose that P 1 and P 2 are embedded
as induced subgraphs in a larger graph G with a root vertex r̂ and that only the vertices
u1

1, u1
2, u2

3, u2
4 and the clique vertices v1

ℓ , v2
ℓ , ℓ ∈ [6], have neighbors outside of P 1 + P 2 + r̂.

Using the previous lemmas, we show that the state transitions respect the transition
order and that it is also feasible for the state to remain stable.

▶ Lemma 4.4 (⋆). Suppose that |X ∩ P 1| ≤ 21 and |X ∩ P 2| ≤ 21, then state(X ∩ P 1) = sℓ1

and state(X ∩P 2) = sℓ2 with ℓ1 ≤ ℓ2. Additionally, for each ℓ ∈ [6], the set Xℓ = Xℓ
P 1 ∪Xℓ

P 2

is a vertex cover of P 1 + P 2 with stateXℓ({u1
3, u1

4, u2
1, u2

2}) ⊆ {0, 11}.

Proof sketch. By Lemma 4.2, we have state(X ∩ P 1) = sℓ1 and state(X ∩ P 2) = sℓ2 for
some ℓ1, ℓ2 ∈ [6]. Showing ℓ1 ≤ ℓ2 corresponds to proving that all entries below the main
diagonal of the chosen submatrix of the compatibility matrix are zero, i.e., that the submatrix
is triangular. The second part corresponds to checking that all diagonal entries are ones.
Both parts are proved by case checking. ◀

4.2 Remarks on Connected Dominating Set Lower Bound (⋆)
The path gadget construction for Connected Dominating Set is very similar to Connec-
ted Vertex Cover as large parts of the gadget can be reused by subdividing edges. For
Connected Dominating Set, we have to work with 4 vertex states instead of 3 due to
tracking whether a vertex is dominated or not. Hence, we have to contend with, a priori,
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15 = 24 − 1 possible label states instead of 7 = 23 − 1. Surprisingly however, there are only
five different behaviors for these label states, so that we obtain a smaller base, namely 5, for
Connected Dominating Set compared to Connected Vertex Cover.

5 Conclusion and Open Problems

We have provided the first tight results under SETH for connectivity problems parameterized
by clique-width, namely the problems Connected Vertex Cover and Connected
Dominating Set. For several important benchmark problems such as Steiner Tree,
Connected Odd Cycle Transversal, and Feedback Vertex Set, we are not able
to achieve tight results with the current techniques. For Steiner Tree, our algorithmic
techniques readily yield an O∗(4cw)-time algorithm, but the compatibility matrix for the
lower bound only contains a triangular submatrix of size 3 × 3, hence we are not able to
prove a larger lower bound than for treewidth. Similarly for Connected Odd Cycle
Transversal, the techniques for Connected Vertex Cover yield an O∗(14cw)-time
algorithm and a larger lower bound can be proven by adapting the gadgets for Connected
Vertex Cover and adding a gadget to detect the used color at join-vertices, however there
is again no large enough triangular submatrix that would allow us to show that O∗(14cw) is
optimal. For Feedback Vertex Set, a problem with a negative connectivity constraint in
the form of acyclicity, the usual cut-and-count approach involves counting the edges induced
by a partial solution, but this immediately leads to an XP-algorithm parameterized by
clique-width as already noted by Bergougnoux and Kanté [4, 5]. Hence, a different approach
is required to obtain plausible running times for tight results.

A big caveat in applying algorithms parameterized by clique-width is that we are lacking
good algorithms for computing clique-expressions. The currently best algorithms rely on
approximating clique-width via rankwidth, see Oum and Seymour [40] for the first such
algorithm and Fomin and Korhonen [18] for the most recent one. However, the approximation
via rankwidth introduces an exponential error, therefore all single-exponential algorithms
parameterized by clique-width become double-exponential algorithms unless we are given a
clique-expression by other means. A first step towards better approximation algorithms for
clique-width could be a fixed-parameter tractable algorithm with subexponential error.
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Abstract
In bi-criteria optimization problems, the goal is typically to compute the set of Pareto-optimal
solutions. Many algorithms for these types of problems rely on efficient merging or combining of
partial solutions and filtering of dominated solutions in the resulting sets. In this paper, we consider
the task of computing the Pareto sum of two given Pareto sets A, B of size n. The Pareto sum
contains all non-dominated points of the Minkowski sum M = {a + b|a ∈ A, b ∈ B}. Since the
Minkowski sum has a size of n2, but the Pareto sum C can be much smaller, the goal is to compute
C without having to compute and store all of M . We present several new algorithms for efficient
Pareto sum computation, including an output-sensitive one with a running time of O(n log n + nk)
and a space consumption of O(n + k) for k = |C|. We also describe suitable engineering techniques
to improve the practical running times of our algorithms and provide a comparative experimental
study. As one showcase application, we consider preprocessing-based methods for bi-criteria route
planning in road networks. Pareto sum computation is a frequent task in the preprocessing phase.
We show that using our algorithms with an output-sensitive space consumption allows to tackle
larger instances and reduces the preprocessing time compared to algorithms that fully store M .
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1 Introduction

Solving multi-objective combinatorial optimization problems demands to find the set of
non-dominated solutions, also referred to as skyline, Pareto frontier or Pareto set. To solve
problem instances of substantial size, solution approaches often rely on efficient combina-
tion and filtering of partial solutions. In particular, non-dominance filtering of unions or
Minkowski sums of intermediate Pareto sets occur as a frequent subtasks in optimization
algorithms. Examples include decomposition approaches for multi-objective integer program-
ming [16], dynamic programming methods for multi-objective knapsack [7], bi-directional
search algorithms for multi-criteria shortest path problems [4], or Pareto local search for
multi-objective set cover [14].
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A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
B1 1, 60 3, 58 5, 51 13, 50 14, 46 15, 43 21, 42 22, 38 24, 36 26, 34
B2 4, 56 6, 54 8, 47 16, 46 17, 42 18, 39 24, 38 25, 34 27, 32 29, 30
B3 7, 54 9, 52 11, 45 19, 44 20, 40 21, 37 27, 36 28, 32 30, 30 32, 28
B4 10, 53 12, 51 14, 44 22, 43 23, 39 24, 36 30, 35 31, 31 33, 29 35, 27
B5 13, 50 15, 48 17, 41 25, 40 26, 36 27, 33 33, 32 34, 28 36, 26 38, 24
B6 16, 49 18, 47 20, 40 28, 39 29, 35 30, 32 36, 31 37, 27 39, 25 41, 23
B7 17, 48 19, 46 21, 39 29, 38 30, 34 31, 31 37, 30 38, 26 40, 24 42, 22
B8 21, 47 23, 45 25, 38 33, 37 34, 33 35, 30 41, 29 42, 35 44, 23 46, 21
B9 24, 45 26, 43 28, 36 36, 35 37, 31 38, 28 44, 27 45, 23 47, 21 49, 19
B10 28, 41 30, 39 32, 32 40, 31 41, 27 42, 24 48, 23 49, 19 51, 17 53, 15

Figure 1 Example instance with input Pareto sets A, B of size 10. The Minkowski sum has 100
elements. The Pareto sum C consists of 27 elements (marked green in the plot as well as in the
matrix representation).

In this paper, we focus on the efficient computation of the filtered Minkowski sum of
two-dimensional Pareto sets A, B. The Minkowski sum M is defined as the set of elements
derived from pairwise addition of elements in A and B. However, the Minkowski sum often
contains many dominated elements. In fact, it was proven in [12] that for A, B of size n, the
set of non-dominated elements in M – which we refer to as Pareto sum of A, B – might have
a size in o(n). Thus, algorithms that first compute all elements of M and subsequently apply
non-dominance filtering might be unnecessarily wasteful as they come with a running time
and space consumption in Ω(n2). The goal of the paper is to design practical algorithms
for Pareto sum computation with output-sensitive space consumption, and to evaluate their
performance on realistic inputs. As one particular use case of our methods, we will consider
the bi-criteria route planning problem in road networks. There exists a plethora of algorithms
to compute the set of Pareto-optimal paths between a given source and a target node in the
network, see e.g. [8, 2]. The currently fastest methods rely on preprocessing. In particular,
variants of contraction hierarchies (CH) have been proven to be very useful in this context
[17, 19]. In a CH, the input graph is augmented with so called shortcut edges that represent
sets of Pareto-optimal paths between their end points. The shortcuts store the costs of these
paths in the form of Pareto sets. On query time, shortcuts are instrumented to decrease
the search space size of a Pareto-Dijkstra run, resulting in significantly faster query times
and reduced space consumption. In the preprocessing phase, the shortcuts are inserted
incrementally. The base operation is to concatenate two shortcut or original edges e = {u, v}
and e′ = {v, w} to form a new shortcut {u, w}. The Pareto set of the new shortcut is the set
of non-dominated elements in the Minkowski sum of the Pareto sets corresponding to e and e′.
Thus, the preprocessing time crucially depends on an efficient Pareto sum computation. In [9],
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it was discussed that computing the Minkowski sum and filtering all dominated elements in a
naive fashion is too time-consuming. Therefore, filtering strategies were proposed that prune
dominated elements. However, these strategies are not guaranteed to retrieve the Pareto
sum but usually produce a superset thereof. Keeping supersets slows down later stages of
the preprocessing as well as query answering. We will propose novel algorithms that allow
for fast and exact Pareto sum computation.

1.1 Related Work

Non-dominance filtering in point sets is a well-studied task in computational geometry [6],
also referred to as skyline or maxima computation. There exist output-sensitive algorithms
for the two-dimensional case as e.g. the one proposed by Kirkpatrick and Seidel [11] with a
running time of O(N log k) where N denotes the size of the point set and k the size of the
skyline. The basic idea is to first partition the input points into k sets of size ≈ N/k with
non-overlapping ranges with respect to their x-coordinates. Then, the sets are processed
individually in sorted order. As k is typically not known beforehand, a more intricate version
of the algorithm allows to achieve the same asymptotic running time by starting with a coarse
partition and refining it on demand as soon as a certain number of non-dominated points are
identified. With a worst-case running time of O(N log N) and close-to-linear running time
for small k, this algorithm seems to be well-suited for Pareto sum computation. However, in
our application we have N = |M | where M is the Minkowski sum of the input sets A, B; and
any approach that relies on access to M as a whole is bound to a running time and space
consumption in Ω(n2).

Using the interpretation of input elements as two-dimensional points, Pareto sum compu-
tation can also be reduced to computing the Minkowski sum of the orthogonal hulls of A and
B (where both sets are augmented with a dummy point based on the maximum coordinate
values in the respective set). The Minkowski sum of two convex polygons can be computed
in linear time [15]. For non-convex inputs P, Q, the polygons are first decomposed into
convex subpolygons P1, . . . , Ps and Q1, . . . , Qt. Then, the linear time algorithm is applied
to all pairs Pi, Qj , and finally the union of all partial results is computed. The running
time depends on the applied decomposition technique and the number and complexity of
the resulting subpolygons [1]. However, if P and Q are orthogonal convex hulls of size n,
their convex decomposition cannot contain fewer than n subpolygons, and thus the approach
needs to compute the union of Θ(n2) partial solutions.

Recently, new algorithms for Pareto sum computation with the potential to achieve
subquadratic running time and space consumption were proposed in [12]. The so called
NonDomDC algorithm exploits the structure of the matrix that represents the Minkowski sum
(see Figure 1). In particular, it makes use of the fact that columns in the matrix are Pareto
sets themselves. Assuming the Pareto sum Pi of elements occurring in the first i columns
is known, Pi+1 can be computed by merging Pi and column i + 1 and pruning dominated
elements in O(|Pi| + n) time. Thus, with P := maxn

i=1 |Pi| denoting the maximum size of an
intermediate solution, the total running time is in O(Pn) and the space consumption is in
O(n + P ). However, this does not constitute an output-sensitive algorithm as the size of
the intermediate Pareto sum can be significantly larger than the final result size. So even
for small k, the algorithm might have cubic running time and quadratic space consumption.
However, their experimental study demonstrates good performance in practice. Similar
methods, as the box-based method proposed in [10], were shown to be outperformed.

ESA 2023



60:4 Pareto Sums of Pareto Sets

Table 1 Running time and space consumption of different algorithms for Pareto sum computation.
The input size is denoted by n and the output size by k.

algorithm running time space
NonDomDC (ND) O(n3) O(n2) [12]
Kirkpatrick-Seidel (KS) O(n2 log k) Θ(n2) [11]
Brute Force (BF) O(n4) O(n + k) 4.1
Binary Search (BS) O(n3 log n) O(n + k) 4.2
Sort & Compare (SC) O(n2 log n) O(n + k) 4.3
Successive Binary Search (SBS) O(nk log n) O(n + k) 5.1
Successive Sweep Search (SSS) O(n log n + nk) O(n + k) 5.2

1.2 Contribution
In this paper, we consider the problem of efficient Pareto sum computation in theory and
practice. First, we present an algorithm that has the ability to identify a subset of the
Pareto sum C in linear time. This algorithm can be used as a preprocessing step for all
other approaches for Pareto sum computation. Additionally, we show that for certain kinds
of inputs, the algorithm already returns whole set C. Then, we present and thoroughly
analyze several algorithms for Pareto sum computation with a special focus on achieving an
output-sensitive space consumption. Table 1 provides an overview of the characteristics of
our proposed algorithms as well as existing baseline approaches. In an extensive experimental
study, we compare their scalability. We consider randomly generated data as well as real
inputs that stem from bi-criteria route planning instances. For both input types alike, our
output-sensitive successive sweep search proves to be the most efficient algorithm. This aligns
well with our theoretical analysis, as it turns out, especially for large input sizes, that the
Pareto sum C contains only a small fraction of the elements in the Minkowski sum.

2 Problem Definition

In this section, we formally define the notion of a Pareto sum and provide notation used
throughout the paper.

▶ Definition 1 (Domination). Given two points p, p′ ∈ R2, we say that p dominates p′, or
p ≺ p′, if p ̸= p′ and p.x ≤ p′.x as well as p.y ≤ p′.y.

▶ Definition 2 (Pareto set). A set S ⊂ R2 is a Pareto set if no point in S dominates another
point in S, that is ∄s, s′ ∈ S with s ≺ s′.

We always assume that Pareto sets are sorted in lexicographic order. We use Si to refer to
the element with rank i in set S.

▶ Definition 3 (Minkowski sum). Given two Pareto sets A, B ⊂ R2, their Minkowski sum
M = A ⊕ B is defined as M := {a + b| a ∈ A, b ∈ B}.

In a slight abuse of notation, we will use M to refer to the set of elements in the Minkowski
sum as well as the matrix where Mij = Ai + Bj .

▶ Definition 4 (Pareto sum). Let A, B ⊂ R2 be two Pareto sets of size n and let M = A ⊕ B

denote their Minkowski sum. Then the Pareto sum C of A, B is defined as the set of all
non-dominated points in M .

Figure 1 illustrates the concepts of Minkowski and Pareto sums. Throughout the paper, we
will use k to denote the size of C.
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Figure 2 Left: Pareto sets A, B together with their convex hulls. Right: The Minkowski sum
CH(A) ⊕ CH(B) of the convex hulls encloses all pairwise vector additions a + b with a ∈ CH(A)
and b ∈ CH(B). The respective vertices (green points) are a subset of the Pareto Sum C.

3 Minkowski Sum of Convex Hulls

In this section, we present an algorithm that for given Pareto sets A, B computes part of their
Pareto sum in linear time. Thus, this algorithm can be used as an efficient preprocessing
method before applying other (more costly) techniques.

For two convex polygons P, Q ∈ R2, their Minkowski sum P ⊕ Q is a convex polygon
with at most |P | + |Q| vertices and these vertices can be computed in linear time [15]. Let
now A, B be sorted Pareto sets augmented with dummy points (x, y) where x := maxs∈S s.x

and y := maxs∈S s.y for S = A and S = B, respectively. We use CH(A) and CH(B) to
refer to the convex hulls of these two sets. The following observation captures the connection
between these convex hulls and the Pareto sum.

▶ Observation 5. The vertices of the Minkowski sum CH(A) ⊕ CH(B) are a subset of the
Pareto sum of A and B (excluding the dummy point sum).

For a sorted Pareto set, its convex hull can be computed in linear time using Andrew’s
algorithm [3]. Then, using the linear time Minkowski sum algorithm on the two convex hulls
and extracting the respective polygon vertices, we obtain a subset of the Pareto sum C, see
Figure 2. If both A, B are convex, then this procedure already returns all of C. We thus get
the following corollary.

▶ Corollary 6. The Pareto sum of two convex, sorted Pareto sets can be computed in O(n).

For non-convex A, B, we might only get part of the Pareto sum. However, as this step
only takes linear time (assuming the Pareto sets are presorted), it can always be used as an
initial step before applying other algorithms. We will discuss below in more detail how the
knowledge of C ′ ⊂ C can be exploited to decrease the practical running time of several of
the algorithms we propose.
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4 Base Algorithms

In this section, we discuss three simple base algorithms for Pareto sum computation along
with engineering concepts for their acceleration and space consumption reduction. The
algorithms all proceed by checking for each element p ∈ M whether there exists p′ ∈ M that
dominates p. If there is no such p′, the point p is added to the Pareto sum C. The only
difference between the algorithms is the implementation of the dominance check.

4.1 Brute Force (BF)

The easiest way to check for a point p ∈ M whether it is non-dominated is by pairwise
comparison to all other elements in M . This dominance check takes O(|M |) time per point,
accumulating to a total time of O(|M |2) = O(n4). As the elements Mij can be computed on
demand, the space consumption is linear in the input size n and the output size k.

▶ Corollary 7. The BF algorithm runs in O(n4) time using O(n + k) space.

4.2 Binary Search (BS)

To decrease the time needed for the dominance check, we take the structure of M into
account. Based on the assumption that A and B are sorted and that Mij is defined as
Ai + Bj , we have the property that each column (and each row) of the matrix M forms a
sorted Pareto set on its own. Thus, if we want to check whether column Mj contains an
element dominating p, we simply have to find the entry Mij with the largest index i such that
Mij .x ≤ p.x as well as the entry Mi′j with the smallest index i′ such that Mi′j .y ≤ p.y. Then
all elements in Mj with a row index in [i′, i] dominate p (or are equal to p). Accordingly, the
dominance check for Mj boils down to evaluating whether i′ ≤ i holds. These two indices can
each be identified via a binary search over the respective coordinates in the column. Hence
the dominance check time per column is in O(log n), resulting in a total time of O(n log n)
per element in M . Entries of M that need to be accessed can be computed on demand.

▶ Corollary 8. BS runs in O(n3 log n) time using O(n + k) space.

To reduce the practical running time of the BS algorithm, we propose the following
engineering techniques.

Pruning. Whenever we identify a non-dominated point p and add it to C, we can also
compute all entries in M dominated by p in time O(n log n), again with the help of two
binary searches per column. For those points, dominance does not need to be checked
again. However, if we simply store a flag for each entry in M whether it needs to be further
considered or not, the space consumption increases to n2. Instead we can store for each
column the set of intervals of dominated points in an interval tree. The number of intervals
per column is upper bounded by k. Then, for a point p = Mij we can query the interval tree
in time O(log k) to see whether the point lies in a dominated region. Intervals can also be
added or merged within the same time. However, the space consumption would still increase
to O(nk). To keep the space consumption linear, one might only want to store a constant
number of intervals per column (e.g. only the largest one) and then merge or replace intervals
if possible or needed. If pruning is applied, we can also disregard fully dominated columns in
the binary searches of the remaining elements.
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Figure 3 Input Pareto sets following different kinds of distributions (left) and schematic depiction
of the corresponding Minkowski matrix M (middle). Green dots indicate entries in M that are
points on the Minkowski sum of the convex hulls of A and B, black dots indicate entries that are
dominated by the green ones, and orange dots encode the remaining elements of the Pareto sum
which then together dominate the white dots. In the right images, the Minkowski sum and the
Pareto sum are illustrated based on point coordinates.

Priority Binary Search (PBS). As soon as dominance checks might be avoided for some
of the elements based on the pruning techniques described above, the order in which the
points are considered impacts the running time. Identifying points that dominate many other
points early on can significantly reduce the total number of checks. For that purpose, we will
use the preprocessing step described in Section 3 to get an initial set of points C ′ ⊂ C. We
can directly exclude any points dominated by the points in C ′. Furthermore, we conjecture
that points in the same rows or columns as the points of C ′ occupy in M are likely to be
also part of C. Thus, we give priority to these points in our search. Figure 3 shows some
visual support for this hypothesis.

4.3 Sort & Compare (SC)
Given a sorted set of points, extracting the set of non-dominated points can be accomplished
in constant time per point. The smallest element is always added to C. For each other
element in sorted order, we check whether it is dominated by (or equal to) the currently last
element in C. If that is not the case, the element is added to C.

Computing and sorting M as a whole takes time O(n2 log n) and requires quadratic space.
But we can exploit the structure of M to improve the space consumption to linear as follows:
We use a min-heap data structure and initialize it with the first row of M . Each element
in the heap remembers its position in M . When we extract the min element Mij from the
heap and C is empty so far, we add the element to C. Otherwise, we compare Mij to the
element added to C last. If Mij is not dominated, we also add it to C. In any case, we add
its column successor Mi+1j to the heap (as long as i < n). As each column is a sorted Pareto
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set in itself, we know that Mi+1j has to have larger x-value than Mij . Thus, we extract
the elements from the heap exactly according to their global lexicographic order. As the
heap never contains more than n elements, its space consumption is in O(n) and the heap
operations take O(log n) per round.

In conclusion, the heap-based variant has the same asymptotic running time as the one
where we fully compute and sort M , but a significantly reduced space consumption.

▶ Corollary 9. SC runs in O(n2 log n) time using O(n + k) space.

5 Output-Sensitive Algorithms

If the Pareto sum C contains (almost) all elements of the Minkowski sum M , a quadratic
running time is needed already to report C. In this case, the running time of SC is
asymptotically optimal up to logarithmic factors. However, in case C is small, subquadratic
running times might be possible. We will present two output-sensitive algorithms in this
section that have a running time asymptotically faster than SC for k ∈ o(n) or k ∈ o(n log n),
respectively. Both algorithms detect the elements in C successively. This is a well-established
paradigm for output-sensitive skyline computation, see e.g. [13, 18]. However, known
algorithms rely on the explicit availability of the point set to construct an efficient search
data structure. Based on the following lemma, we will design successive algorithms that do
not need access to M as a whole.

▶ Lemma 10. Let A, B be two Pareto sets and c, c′ ∈ C two elements of their Pareto
sum with c.x < c′.x. Then the lexicographically smallest element m in M that dominates
(c′.x − ε, c.y − ε) for ε > 0 is also part of C (if such an element exists).

Proof. We first argue that for any m ∈ M , the smallest point p ∈ M dominating m (or
being equal to m) is part of the Pareto sum C. Assume otherwise for contradiction. Then
there is a point p′ ∈ C that dominates p and thus also m. But in this case p′ is smaller than
p which contradicts the choice of p as smallest element to dominate m.

Now, if there is any point m ∈ M that dominates the dummy point (c′.x − ε, c.y − ε) the
above argumentation applies. ◀

Clearly, M11 and Mnn are always part of the Pareto sum, as those are the points with smallest
global x-value and y-value, respectively. All other elements in C must have an x-value in
the open interval (M11.x, Mnn.x). Thus, if we have an oracle that returns the smallest point
m ∈ M (with respect to lexicographic ordering) in a given range [xmin, xmax) × [ymin, ymax),
we can compute C based on Lemma 10 as follows. We initialize C = M11, Mnn and
xmin = M11.x, xmax = Mnn.x, ymin = Mnn.y, ymax = M11.y. Then we query the oracle to
get the smallest point m in the respective range. If such a point does not exist, we abort.
Otherwise we add the point m to C and set xmin = m.x, ymax = m.y before repeating the
process. Figure 4 illustrates the core concept.

Thus, the algorithm discovers the points in C one-by-one in increasing order of their
x-values (except for Mnn which is known from the start) using k calls to the range-minimum
oracle. A naive oracle implementation would be to check all points in M for containment in
the range and to keep track of the minimum among them. Then each call to the oracle costs
O(n2) and the overall running time of the successive algorithm would be O(n2k). Next, we
describe how to implement the oracle more efficiently.
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Figure 4 Initial search range (green rectangle) spanned by M11 and Mnn. The range-minimum
element m then leads to a reduction of ymax and an increase of xmin (blue arrows) which tightens
the search range for the next element of C.

5.1 Successive Binary Search (SBS)
In the BS approach described in Section 4.2, we use two binary searches per column of M

to check for a query point m ∈ M whether an element dominating m exists in that column.
We can use the same concept to implement a range-minimum oracle: For each column, we
identify via binary searches the first position fx with an x-coordinate larger or equal to
xmin, the last position lx with an x-coordinate smaller than xmax, the first position fy with a
y-coordinate smaller than ymax, and the last position ly with a y-coordinate larger or equal
to ymin. If [fx, lx] ∩ [fy, ly] ̸= ∅, we return max(fx, fy). The entry at that position is the
smallest point dominating m in the column. Keeping track of the smallest returned point
over all columns provides the desired result in O(n log n) per oracle call.

▶ Corollary 11. Successive BS runs in O(nk log n) time using O(n + k) space.

For standard BS we can use the Minkowski sum of the convex hulls of A and B to already
identify a subset C ′ with size k′ ≤ k of the Pareto sum C without the need of binary searches.
We can apply the same initialization here and then simply use the successive algorithm
independently in each of the k′ − 1 ranges induced by any two consecutive points in C ′ (in
sorted order). By that, the number of oracle calls increases to at most k + k′ − 1 < 2k as in
each of the k − 1 ranges the respective last oracle call will return no point. This does not
affect the asymptotic running time, though. But it allows to conduct up to k′ − 1 oracle
calls in parallel.

To further foster parallelization, we can weaken the oracle requirement to always return
the smallest point in a given range to the requirement to return any non-dominated point
in the range. The new point then splits the previous range into two subranges that can be
queried independently. With that, the oracle might be called up to k + 2k′ − 2 < 3k times as
now in each of the k′ − 1 ranges the call to its leftmost induced subrange and the call to
its rightmost induced subrange will return no point. Again, the asymptotic running time
remains unaffected. To implement the weaker oracle, we propose the so called Cascading
BS (CBS) algorithm. Again, we consider the columns one after each other. But now, as
soon as we find a column entry p in the given query range, we update the range immediately
and then search for a point dominating p in the remaining columns. If we find such a point,
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we immediately update again. Note that it can never happen that a point p′ in an already
visited column dominates p, as then we would have selected one point from said column to
tighten the query range and there can never be two points in one column dominating one
another. Thus, after we considered all columns, we can safely add the current point p to C.

For an example of the difference between SBS and CBS, consider the matrix in Figure
1 and assume the current search range is [14, 53) × [15, 44). SBS discovers the element
A6 + B1 = (15, 43) next as this is the point with smallest x-value that dominates the dummy
point (53 − ε, 44 − ε). CBS, however, first detects the point A1 + B10 = (28, 41) as it
already dominates the dummy point. It then proceeds by trying to find an element that
dominates (28, 41). It thus detects A3 + B5 = (17, 41) next and tightens the search range
accordingly. As this is a Pareto sum point, no further dominating elements are found in the
remaining columns and (17, 41) is returned and added to C. The search range is then split
into [14, 17) × [41, 44) and [17, 53) × [15, 41), which can be processed independently.

5.2 Successive Sweep Search (SSS)
To improve the oracle time of SBS, we observe that the binary searches in the columns are
somewhat redundant. If M was fully available, we could apply fractional cascading [5] to the
column vectors. This would reduce the running time to compute the positions fx, lx, fy, ly in
all columns from O(n log n) to O(n). Thus, the k oracle calls cost O(nk). Unfortunately,
computing M and the data structure for fractional cascading requires space and time in
Θ(n2). Fortunately, we can also achieve linear oracle time without the need to access M as a
whole. Based on the structure of M , we know that for an entry Mij all elements Mst with
s ≥ i and t ≥ j have a larger x-coordinate than Mij but a smaller y-coordinate. Vice versa,
all elements in Mst with s ≤ i and t ≤ j have a smaller x-coordinate than Mij but a larger
y-coordinate. This implies, for example, that the position of fx in some column cannot be
larger than the position of fx in the neighboring column to its left. Similar relationships
hold for the positions of lx, fy and ly in neighboring columns. Accordingly, we can find
the respective column values by a single left-to-right sweep, where the search path forms a
monotone staircase structure and is thus bounded in length by 2n.

Even better, we can have a single unified sweep to find the range-minimum m in linear
time: We start at Mn1, that is, the last entry of the first column. Whenever we enter a new
column j, we apply upwards linear search in that column until we reach an entry Mij where
either Mij .x > xmin and Mi−1j .x ≤ xmin or where Mij .y < ymax and Mi−1j .y ≥ ymax. Thus,
we get i = max(fx, fy); except if the entry we start from already has a too small x-value
or a too large y-value or both which means that the column contains no point in the query
range. In the former case, we check whether Mij is contained in the range. If the check is
passed, Mij is a valid candidate for the range-minimum m. We keep track of the smallest
viable candidate over the course of the algorithm. We then go from element Mij to its right
neighbor Mij+1 and proceed with the new column as described above. After processing the
last column, we return the current m as the range-minimum element.

▶ Lemma 12. The sweep algorithm computes the smallest m ∈ M in a given range in O(n).

Proof. To prove correctness, we need to argue that for a column j entered at row i and
exited at row i′ ≤ i, the range-minimum m can not be an entry Mi∗j with i∗ < i′ or i∗ > i.

Clearly, checking elements in column j with a row index smaller than i′ cannot give us
any viable candidates, as either their respective x-value is too small or their y-value is too
large by definition. Hence we only need to consider i∗ > i. If Mij is in the query range, then
the entries in column j with i∗ > i cannot constitute the range-minimum as they all have an
x-value larger than that of Mij . If Mij is not in the query range, we have the following cases:
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Mij .x > xmax. But then Mi∗j .x > xmax holds as well.
Mij .x < xmin or Mij .y > ymax. This case only occurs if i = n. Thus there is no i∗ > i.
Mij .y < ymin. But then Mi∗j .y < ymin holds as well.

Accordingly, if column j contains the range minimum it needs to be an element with a row
index in [i′, i]. If Mi′j is in the range, it is clearly the best candidate in column j for the
range-minimum m. If Mi′j is not in the query range, then the same applies to all entries
in the same column with larger row index as argued above. Thus, it is sufficient to check
Mi′j for each column j. The running time is determined by the number of elements in M

that are accessed. As the interval of elements checked for each column only overlaps with
the intervals of all columns to its left in a single row index, at most 2n elements in M are
considered in total. ◀

Based on this sweep search (SS) oracle, we now get a successive algorithm with better running
time than SBS.

▶ Corollary 13. Successive SS runs in O(n log n + nk) using O(n + k) space.

In fact, if k ∈ o(log n), the running time is dominated by the initial sorting step of the
elements in A, B. For k ∈ o(n), we achieve a subquadratic running time.

For acceleration of sweep search in practice, we observe that if we enter a column at row
i and confirm for some value i′ < i that Mi′j is still feasible with respect to xmin and ymax,
we do not have to check intermediate rows to get the correct range-minimum by virtue of
Lemma 12. Similarly, if we have not found any Mij in column j with Mij .x ≥ xmin and
Mij .y < ymax and the same inequalities apply to some Mij′ with j′ > j, we do not need
to check intermediate columns for range-minimum candidates. Thus, in both cases we can
introduce a skip threshold ∆ > 1 and check for i′ = i − ∆ or j′ = j + ∆, respectively, whether
the necessary conditions apply. If that is the case we skip intermediate rows or columns and
then try to skip ahead again. If skipping is no longer possible, we simply fall back to linear
search. Accordingly, in the worst case, we check at most one superfluous element for each
row and column. This does not increase the asymptotic running time of the oracle but might
reduce its running time in practice if skipping is successful.

Furthermore, similar to CBS, we also propose Cascading Sweep Search (CSS). Here
again, whenever we found a temporary range-minimum candidate m we immediately tighten
the search range to enforce that further candidates need to dominate the current m to be
considered. The sweep search then also guarantees to return an element of the Pareto sum C.
The Minkowski hull preprocessing and the split of search intervals to foster parallelization as
described for CBS can be applied here as well.

6 Experimental Evaluation

We implemented the seven algorithms for Pareto sum computation listed in Table 1 in
C++: The two existing approaches, namely the Kirkpatrick-Seidel algorithm (KS) [11] and
NonDomDC (ND) [12], the three base algorithms (BF, BS, SC), and the two successive
algorithms (SBS, SSS). For KS, we implemented the simpler (and thus faster) variant, where
the output size k (used for partitioning) is given as an input. We simply compute k with one
of our other algorithms and then feed the result into KS. For ND, we actually implemented
two variants described in [12]: In the first variant (described in more detail in Section 1.1),
one always merges the current result with the next column (Sequential ND, SND). In the
second variant, columns are combined in a MergeSort like fashion (Doubling ND, DND). As
benchmark data we use randomly generated inputs as well as real inputs. Both types of data
sets are described in more detail below. All experiments were conducted on a single core of a
3.4 GHz AMD Ryzen Threadripper 1950X 16-core processor with 126 GB of RAM.
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6.1 Results for Generated Data

To generate Pareto sets, we take two random samples of n unique values from a given range.
The first sample is sorted increasingly and represents the x-coordinates within the Pareto set.
The second sequence is sorted decreasingly and represents the y-coordinates. We consider
uniform, Gaussian and exponentially distributed samples over the range [0, n]. In addition,
we investigate A and B where the respective x-coordinates are drawn from vastly different
intervals, namely with upper bounds

√
n and n2. We call this a shifted distribution. Figures

3 and 5 show example instances for each input type. Running times are always averaged
over 100 generated instances per tested value of n.
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Figure 5 Example instances for uniform and shifted uniform point distributions For the latter,
note the logscale of the y-axis. The color coding is the same as in Figure 3.
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Figure 6 Average running times of all algorithms on uniform distributions (left) and of the top
six algorithms on exponential distributions (right). Note the logscale of the y-axis.
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Figure 7 Left: Average running times of selected algorithms on Gaussian distribution. Right:
Intermediate output size of the Sequential ND and Doubling ND algorithms.

Figure 6, left, shows the running times of all algorithms on uniformly distributed instances.
In line with our theoretical analysis, the Brute Fore approach is by far the slowest. Instances
larger than n = 3000 were not tested as those already took over an hour. The engineered
Binary Search algorithm (PBS) is faster than BS by an order of magnitude but not as fast as
the other competitors. Note that we used the variant here that guarantees output-sensitive
space consumption by storing the borders of at most on block of dominated elements per
column. In compliance with the experimental results in [12], we see that DND is faster than
SND. However, they are both slower than the Kirkpatrick-Seidel and the Sort & Compare
algorithm, which exhibit very similar running times. SSS is faster than the second best
algorithm, Sort & Compare, by a factor of 2-5. On exponential distributions the results
are similar, see Figure 6, right. But the ND variants perform slightly worse. On Gaussian
distributions, the ND variants are about two orders of magnitude slower than SSS and even
scale worse than SBS, see Figure 7, left. The reason for this behavior is investigated in
Figure 7, right, which depicts the intermediate solution sizes of the ND algorithms. On
uniform and exponential distributions, the space overhead is less than 1%. However, on
Gaussian distributions, SND and DND require 20% and 65% more space than the output
(and our output-sensitive algorithms), respectively. Also note that even if intermediate sizes
are not much larger than the final size, it might be that the maximum intermediate size
is reached early and persists close to that value, thereby increasing the running times of
the individual column merge steps. Thus, the ND algorithms are both very sensitive to the
distribution of the input points and the position of the Pareto sum points within the matrix.
In contrast, the performance of our sweep algorithms depends primarily on the size of the
output, which was within 4n across all tested instances and distributions.

On uniform, Gaussian and exponential distributions, our engineered SSS variant with
∆-skipping had little impact. On shifted distributions, however, this concept proved to be
very effective due to the Pareto sum points being mostly located either in the first few rows
or the last few columns of the matrix (see Figure 5), and Pareto sum sizes being small in
general. Using ∆ =

√
n, we achieved speeds-ups of two orders of magnitude over all other

approaches on instances with n = 10000.
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Table 2 Experimental results for BCH computation on three road networks of different size.
The table shows the input graph sizes, the number of edges in the augmented graph (original +
shortcuts), the number of non-trivial Pareto sum computations, as well as the running times for
conducting these computations with four different algorithms. The final row shows the preprocessing
time spent on operations other than Pareto sum computation.

ROAD1 ROAD2 ROAD3
#Nodes 349479 1246440 3835238
#Edges 720363 2612260 8037228
#BCH-edges 1325259 4981957 15703653
#PS computations 899390 4424857 48844050
Kirkpatrick-Seidel 32.09 s 1234.15 s >24 h
Sort & Compare 13.45 s 587.77 s 47374.67 s
Doubling ND 19.03 s 454.42 s 37447.61 s
Successive Sweep Search 4.83 s 129.62 s 9668.33 s
Additional preprocessing 7.23 s 54.66 s 1237.58 s

6.2 Results for Real Data

As a real-world application of Pareto sum computation, we consider bi-criteria route planning
in road networks. Here, given an input graph G(V, E) and costs c1, c2 : E → R+, the goal is
to either compute all Pareto-optimal paths with respect to c1, c2 between two nodes s, t ∈ V ,
or the path optimal with respect to one cost while not exceeding a budget on the other
(also known as the constrained shortest path problem). To accelerate query answering, a
bi-criteria contraction hierarchy (BCH) data structure can be used. In the preprocessing
phase of a BCH, the input graph is augmented with additional edges, also called shortcuts.
The shortcut insertion is guided by a node permutation π : V → {1, . . . , n}. For nodes
u, w ∈ V , a shortcut {u, w} is inserted if and only if there exists a simple path from u to w on
which no node has a higher π value than max(π(u), π(w)). The shortcut represents all simple
paths p between u and w with that property. For each Pareto-optimal p, the respective cost
tuple (c1(p), c2(p)) should be assigned to the shortcut. To compute these Pareto sets for all
shortcuts in an efficient manner, a bottom-up approach is used. Let u be the inner node on a
path p from u to w with maximum π-value. If the Pareto sets A and B of the shortcuts {u, v}
and {v, w} are known, respectively, the Pareto set of {u, w} is the Pareto sum C of A and B.
If there are multiple paths p, the final Pareto set of {u, w} is formed by the non-dominated
elements of the union of all these Pareto sums. The non-dominated union of two Pareto sets
can be computed in linear time by merging the presorted sets to obtain the sorted union
and then applying the simple non-dominance check as described in the SC approach. In the
final BCH, queries can be answered with a bi-directional Pareto-Dijkstra run that relaxes
shortcut edges instead of many original edges whenever possible. This significantly reduces
the search space and allows to answer queries orders of magnitude faster [17, 9].

In our experiments, we use test graphs extracted from OpenStreetMap with Euclidean
distance and positive height difference as edge costs (in compliance with [17]). Based on our
results on generated data, we use the best four algorithms (KS, SC, DND and SSS) for Pareto
sum computation. Note that Pareto sets A and B do not necessarily have the same size here,
but all proposed Pareto sum computation algorithms can be easily adapted. Table 2 shows
the characteristics of the three road network instances we considered in our experiments
and the outcomes. The number of Pareto sum computations in the preprocessing phase of
the BCH reported in the table excludes trivial inputs where either A or B has size 1. We
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Figure 8 Detailed results for the ROAD2 instance. Left: Running times in seconds per Pareto
sum computation in dependency of the size of the Minkowski sum. Right: Pareto sum size as
percentage (logscale) of the size of the Minkowski sum.

Figure 9 Detailed results for the ROAD3 instance. Left: Running times in seconds per Pareto
sum computation in dependency of the size of the Minkowski sum. Right: Pareto sum size as
percentage (logscale) of the size of the Minkowski sum.

observe that the time spent on non-trivial Pareto sum computations dominates the overall
preprocessing time, especially on larger networks. There are significant differences in running
time between the algorithms we tested, though. On all instances, SSS is the fastest approach.
It is roughly an order of magnitude faster than the KS algorithm which fully computes
and stores M . With KS, we could not compute a BCH data structure within a day on our
largest instance with about 4 million nodes. Interestingly, in contrast to the experiments on
generated data, DND outperforms SC. Figure 8 shows the running times for all individual
Pareto sum computations as well as the size of the respective results for the ROAD2 instance.
We observe that the larger the Minkowski sum M , the smaller the relative output size. This
explains why SSS consistently outperforms the other approaches, especially on larger inputs.
Figure 9 shows results for the two best algorithms, DND and SSS, on ROAD3. Here, |M |
was up to 3 · 106 and the percentage of elements in the Pareto sum C even approached 0.1.
This is very beneficial for the SSS algorithm as the smaller the output size the fewer range
minimum oracle calls are needed.

Furthermore, we used DND and SSS in query answering to combine Pareto sets in the
bi-directional Pareto-Dijkstra run whenever the forward and the backward search meet. On
the ROAD3 instance, a speed-up of up to 5 over DND was achieved when using SSS.
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7 Conclusions and Future Work

We introduced scalable algorithms for Pareto sum computation which avoid the computation
of the whole Minkowski sum. Our successive sweep search algorithm was shown to perform
best across all instances, generated or real, while guaranteeing an output-sensitive space
consumption. One direction for future work is to carefully parallelize all discussed algorithms.
We also implemented and tested the cascading sweep search variant, which enables parallel
successive search, and observed that the sequential running time matches that of successive
sweep search while splitting the search ranges in many subranges which could be processed in
parallel. Furthermore, even in a parallel implementation, the sweep search algorithm keeps its
output-sensitive space consumption. Another direction for future work is the consideration
of higher-dimensional input points. While some algorithms are easily generalizable, novel
range minimum oracles need to be designed for the successive algorithms to work.
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Abstract
The edge clique cover (ECC) problem – where the goal is to find a minimum cardinality set of
cliques that cover all the edges of a graph – is a classic NP-hard problem that has received much
attention from both the theoretical and experimental algorithms communities. While small sparse
graphs can be solved exactly via the branch-and-reduce algorithm of Gramm et al. [JEA 2009],
larger instances can currently only be solved inexactly using heuristics with unknown overall solution
quality. We revisit computing minimum ECCs exactly in practice by combining data reduction for
both the ECC and vertex clique cover (VCC) problems. We do so by modifying the polynomial-time
reduction of Kou et al. [Commun. ACM 1978] to transform a reduced ECC instance to a VCC
instance; alternatively, we show it is possible to “lift” some VCC reductions to the ECC problem.
Our experiments show that combining data reduction for both problems (which we call synergistic
data reduction) enables finding exact minimum ECCs orders of magnitude faster than the technique
of Gramm et al., and allows solving large sparse graphs on up to millions of vertices and edges that
have never before been solved. With these new exact solutions, we evaluate the quality of recent
heuristic algorithms on large instances for the first time. The most recent of these, EO-ECC by
Abdullah et al. [ICCS 2022], solves 8 of the 27 instances for which we have exact solutions. It is our
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1 Introduction

In the edge clique cover (ECC) problem, also called the clique cover problem, we are given an
unweighted, undirected, simple graph G = (V, E) and asked to find a minimum cardinality
set of cliques that cover the edges of G. The ECC problem is NP-hard, however its decision
variant did not appear in Karp’s original list of NP-complete problems [23], though the
vertex clique cover (VCC) problem did. Compared to the VCC problem, the ECC problem
has received the lion’s share of attention from researchers, in part because it has many
applications. For instance, edge clique covers can be used to succinctly represent constraints
for integer program solvers [5] and to detect communities in networks [12].

Data reduction rules, which allow one to transform an input instance to a smaller
equivalent instance of the same problem, are powerful tools for solving NP-hard problems in
practice [4, 26]. Of particular interest in the field of parameterized algorithms is whether the
repeated application of data reduction rules produces a kernel – which is a problem instance
that has size bounded by a function O(f(k)) of some parameter k of the input. Gramm
et al. [19] show that repeated application of four simple reduction rules produce a kernel
of size 2k, where the parameter k is the number of cliques in the cover. When intermixed
with branch-and-bound (a so-called branch-and-reduce algorithm), these reduction rules
enable solving sparse graphs of up to 10,000 vertices quickly in practice. Since their seminal
work, no progress has been made on solving larger instances exactly. Indeed, the prospect
of doing so is grim since polynomial kernels are unlikely to exist for the ECC problem,
when parameterized on the solution size [13]. Although researchers have found further FPT
algorithms (and smaller kernels) with other parameters [6, 32], these algorithms are still
only able to solve relatively small instances in practice. The outlook for the VCC problem is
even worse in theory: it is unlikely to have any problem kernel when parameterized on the
number of cliques k in the cover, as it is already NP-hard for k = 3 (since it is equivalent to
3-coloring the complement graph).

However, recent data reductions for the VCC problem have been shown to significantly
accelerate computing minimum VCCs exactly in practice. Strash and Thompson [31]
introduce a suite of reduction rules and show that data reduction can solve real-world sparse
graphs with up to millions of vertices in seconds.

Our Results

We show that combining VCC and ECC data reductions enables the ECC problem to be
solved exactly on large instances not previously solvable by Gramm et al. [19]. We do so by
modifying the polynomial-time transformation of Kou et al. [25] to transform a reduced ECC
instance to a VCC instance, but also show that some VCC data reductions can be “lifted”
to ECC data reductions. Their combined reduction power (which we call synergistic data
reduction) reduces an ECC instance significantly more than Gramm et al.’s reductions alone,
enabling us to exactly solve graphs with millions of vertices and edges. With these exact
results, we objectively evaluate the quality of heuristic algorithms recently introduced in
the literature. On instances not solvable exactly with our method, we give upper and lower
bounds for use by future researchers.

2 Related Work

We now briefly review the relevant previous work on the ECC and VCC problems, as well as
practical data reduction in related problems.
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2.1 Edge Clique Cover
The goal of the edge clique cover (ECC) problem is to cover the edges of the graph G

with a minimum number of cliques, denoted θE(G). That is, to find a set of cliques
C = {C1, C2, . . . , Ck} such that each edge is in at least one clique in C and k = θE(G).
Although closely related to the VCC problem (to cover vertices with a minimum number of
cliques, denoted θ(G)), Brigham and Dutton [8] showed that θ(G) ≤ θE(G), and that these
cover numbers can differ significantly: θE(G) can be as large as θ(G)(n − θ(G)). Gramm et
al. [19] introduced four data reductions for the ECC problem, which they show can solve
real-world sparse graphs of hundreds of vertices, as well as synthetic instances on up to 10K
vertices in practice, when interleaved with branch and bound. Furthermore, they showed that
their data reductions produce a kernel of size 2k, where k is the number of cliques. Cygan et
al. [13] showed that it is unlikely that a polynomial-size kernel exists when parameterized by
the number of cliques in the cover, as otherwise the polynomial hierarchy collapses to its
third level. However, Blanchette et al. [6] gave a linear-time algorithm having running time
O(2(k

2)n) where k is the treewidth of the graph. In practice, their algorithm is effective on
graphs with hundreds of vertices and small treewidth. For larger graphs, heuristic methods
are used to compute inexact ECCs [12, 2, 1] in practice. No heuristic algorithm performs
best on all instances, and their overall quality is unclear.

2.2 Vertex Clique Cover
The vertex clique cover (VCC) problem is NP-hard, and closely related to the maximum
independent set and graph coloring problems. The size of a minimum VCC (also called the
clique cover number) θ(G) is lower bounded by the size of a maximum independent set (the
independence number α(G)) and equivalent to the chromatic number of the complement
graph, χ(G). There is a rich line of research on the graph coloring problem, which seeks
to compute the chromatic number; many of the theoretical results for the VCC problem
come via the graph coloring problem. The fastest exact exponential-space algorithm for
computing the chromatic number on an n-vertex graph has time O∗(2n) (where O∗ hides
polynomial factors) using a generalization of the exclusion-inclusion principle [24], and in
polynomial space the problem can be solved in time O(2.2356n) [18]. Furthermore, there
exists no polynomial-time algorithm with approximation ratio better than n1−ϵ for ϵ > 0
unless P = NP [34].

In terms of data reduction, we note that it is unlikely that a kernel exists when paramet-
erized on the (vertex) clique cover number. Deciding if a cover with even 3 cliques exists is
NP-complete (since 3-coloring the complement is NP-hard). A polynomial kernel would have
size O(1) and could be computed in polynomial time. Solving the kernel with brute-force
computation would solve the VCC problem in polynomial time, implying P = NP . However,
in practice, the VCC problem can be solved on large, sparse real-world graphs using the data
reductions by Strash and Thompson [31].

2.3 Data Reduction in Practice for Related Problems
Other classical NP-hard problems have large suites of data reductions that are effective in
practice, including minimum vertex cover [4, 15], maximum cut [16], and cluster editing [7].
Popular data reductions include variations of simplicial vertex removal, degree-2 folding,
twin, domination, unconfined, packing, crown, and linear-programming-relaxation-based
reductions [4]. Even the simplest reductions can be highly effective when combined with
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other techniques [10, 30]. Data reductions are most effective in sparse graphs, which are
the graphs that we consider here. Finally, similar to what we propose here, other NP-hard
problems are solved by first applying a problem transformation. In particular, algorithms for
minimum dominating set problem first transform the problem to an instance of the set cover
problem [33].

3 Preliminaries

We consider a simple finite undirected graph G = (V, E) with vertex set V and edge set
E ⊆ {{u, v} | u, v ∈ V }. For brevity, we denote by n = |V | and m = |E| the number of
vertices and edges in the graph, respectively. When more specificity is needed, we denote
the vertex and edge set of a graph G by V (G) and E(G) respectively. We say two vertices
u, v ∈ V are adjacent (or neighbors) when {u, v} ∈ E. The open neighborhood of a vertex
v ∈ V is the set of its neighbors N(v) := {u | {u, v} ∈ E}, and the degree of v is |N(v)|. We
further define the closed neighborhood of a vertex v ∈ V to be N [v] := N(v) ∪ {v}. Extending
these definitions, the open neighborhood of a set A ⊆ V is N(A) :=

⋃
v∈A N(v) \ A and the

closed neighborhood of A is N [A] :=
⋃

v∈A N [v]. The subgraph of G induced by a vertex set
V ′ ⊆ V , denoted G[V ′], has vertex set V ′ and edge set E′ = {{u, v} ∈ E | u, v ∈ V ′}. The
degeneracy d of a graph G is the smallest value such that every nonempty subgraph of G

has a vertex of degree at most d [27]. It is possible to order the vertices of a graph G in
time O(n + m) so that every vertex has d or fewer neighbors later in the ordering; such an
ordering is called a degeneracy ordering [14].

A vertex set C ⊆ V is called a clique if, for each pair of distinct of vertices u, v ∈ C,
{u, v} ∈ E. A set of cliques C is called an edge clique cover (ECC) (or just a clique cover) of
G if for every edge {u, v} ∈ E there exists at least one C ∈ C such that {u, v} ⊆ C. That is,
there is some clique in C that covers {u, v}. The set of cliques C is said to cover the graph G.
An ECC of minimum cardinality is called a minimum ECC, and its cardinality is denoted by
θE(G), called the edge clique cover number.

Similarly, in a vertex clique cover (VCC), every vertex v ∈ V is covered by some clique.
The cardinality of a minimum VCC is the clique cover number, denoted by θ(G).

4 Existing Tools Discussion

In this section, we discuss basic tools that we will use to solve the ECC problem, together
with insights into their behavior on sparse graphs. We begin by describing the existing ECC
data reductions by Gramm et al. [19]. We then discuss how to convert an input ECC instance
to an equivalent VCC instance using the technique of Kou et al. [25]. We will extend these
tools to develop our full algorithm combining ECC and VCC reductions in the next section.

4.1 ECC Reduction Rules
Gramm et al. [19] introduce four data reduction rules that either cover edges by a clique
known to be in a minimum cardinality ECC or add edges to the input graph G. Once all of
a vertex v’s incident edges are covered, v can be removed from the graph.

With each edge {u, v}, Gramm et al. store the common neighbors in G, denoted by
N{u,v}, as well as a count c{u,v} = |E(G[N{u,v}])| of the edges between common neighbors.
These values are updated in ECC Reduction 1 and are used in ECC Reduction 2.
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Figure 1 Illustrating Gramm et al. [19]’s data reductions: (left) edge {v, x} is in exactly one
maximal clique C1, triggering ECC Reduction 2 and covering edges {v, x}, {v, z}, and {x, z} (middle).
Vertex v can then be removed with ECC Reduction 1. The remaining triangle (right) is covered by
clique C2 by applying ECC Reduction 2 to either {x, y} or {y, z}.

Throughout the application of data reductions, vertices are removed from G and edges
are covered. Figure 1 illustrates an example of the reductions. Set let edge set E′ ⊆ E be
the set of uncovered edges (by extension, E \ E′ are the covered edges). The graph G only
changes when a vertex is removed.

We note that the data reductions by Gramm et al. [19] are particularly effective for
sparse graphs; however, the original data reductions were not written with efficiency in mind.
Although these reductions have (very) slow theoretical running times, we offer insights as to
why their reductions are faster in practice than indicated by the theoretical running time
from Gramm et al. [19].

▶ ECC Reduction 1 ([19]). Let v ∈ V be a vertex whose incident edges are all covered (i.e.,
in E \ E′). Then remove v from the graph G, along with its incident edges, and update values
c{w,x} and N{w,x} for all uncovered edges {w, x} ∈ E′ whose endpoints are both adjacent to
v, i.e., {w, x} ⊆ N(v).

As noted by Gramm et al. [19], this step can be applied to all vertices in running time
O(n2m) by iterating over each vertex v and updating N{u,w} for all edges {u, w} ∈ E′ whose
endpoints are adjacent to v. However, in sparse graphs the maximum degree in G, denoted
∆, is significantly smaller than n. Each edge {u, w} has its set N{u,w} updated at most ∆
times, taking O(∆) time to update each time, giving a more reasonable running time of
O(∆2m). We note that with adjustments, this can be run faster by enumerating all triangles
in G in time O(dm) using the triangle listing by Chiba and Nishizeki [11] and updating
N{u,w} for edge {u, w} in each triangle; however, this is a different implementation than that
done by Gramm et al. [19] and not our focus here.

▶ ECC Reduction 2 ([19]). Let edge {u, v} ∈ E′ be an uncovered edge such that c{u,v} =(|N{u,v}|
2

)
(i.e., the edge is in exactly one maximal clique in G′). Then C = N{u,v} ∪ {u, v}

is a maximal clique of G in some minimum ECC. Add the clique C to the clique cover, and
cover any uncovered edges in C in G.

As noted by Gramm et al. [19], ECC Reduction 2 can be implemented in time O(n2m)
by iterating over each edge {u, v} ∈ E′, checking if c{u,v} =

(|N{u,v}|
2

)
in O(1) time, and

covering the edges of {u, v}’s clique in time O(n2) time.
However, when run on sparse graphs, which tend to have low degeneracy d [14], this rule

is much faster. Graphs with degeneracy d have cliques of at most d + 1 vertices, therefore
the reduction is only triggered when |N{u,v}| < d. Hence, in practice, we should observe the
much faster running time of O(d2m).
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Figure 2 An example graph G with minimum ECC and its transformed graph GV CC with a
corresponding minimum VCC.

Gramm et al. introduce two more ECC reductions (which we’ll refer to as ECC Reduc-
tions 3 and 4), however, they are more complex and less effective than ECC Reductions 1
and 2 in practice. Experiments by Gramm et al. show that these reductions are very slow,
and only improve the search tree size by a constant factor when incorporated into branch
and reduce [19]. We therefore omit them from our discussion and implementation.

4.2 Transforming an ECC Instance to a VCC Instance
Kou et al. [25] showed that the ECC problem is NP-hard via a polynomial-time reduction
from the VCC problem. Furthermore, they gave a polynomial-time reduction to the VCC
problem, which we use as the basis of our transformation. We describe their transformation
and briefly justify why it works.

Given an input graph G = (V, E) for the ECC problem Kou et al. [25] transform G to a
new graph GV CC = (VV CC , EV CC) that is an equivalent VCC instance as follows. For each
edge {x, y} ∈ E, create a new vertex vxy ∈ VV CC , then add an edge {vxy, vwz} to EV CC if
and only if there exists a clique C in G containing both {x, y} and {w, z}. Now, for any
given subset C ⊂ VV CC , C is a clique in GV CC iff its vertices’ corresponding edges in E

also induce a clique in G. Hence, a minimum cardinality VCC in GV CC corresponds to a
minimum cardinality ECC in G. (See Figure 2.)

To determine if two edges are in a clique together in G, Kou et al. [25] make the following
observation:

▶ Observation 1 ([25]). Two distinct edges {x, y}, {w, z} are in a clique together in G iff
{x, y} and {w, z} are incident and {x, y} ∪ {w, z} induce a triangle, or {x, y} and {w, z} are
not incident and {w, x, y, z} form a 4-clique.

However, there is a clear issue when using this transformation: GV CC can be very large.
We briefly discuss its size and sparsity.

4.2.1 The Effect of Transformation on Graph Size and Sparsity
In the worst case, the size of GV CC is a quadratic factor larger than G. Indeed, if the graph
G is itself the complete graph Kn, on n vertices and Θ(n2) edges, then the transformed graph
is the complete graph Kn(n−1)/2 having Θ(n2) nodes and Θ(n4) edges. However, we show
that the size of the graph only increases by a factor of O(d2), where d is the degeneracy of
the graph. Real-world sparse graphs have low degeneracy [14], and thus this is a significant
improvement over the worst case.

▶ Theorem 2. Let the degeneracy of G = (V, E) be d. Then |VV CC | = m ≤ dn and
|EV CC | = O(d2m).
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Proof. By construction |VV CC | = m; hence, to bound |VV CC |, we bound the number of
edges in G. In a degeneracy ordering of the graph, each vertex has at most d later neighbors
in the ordering. Therefore, |VV CC | = m ≤ dn. To bound |EV CC |, we compute an upper
bound on the number of triangles and 4-cliques in G. Following Observation 1, each edge in
EV CC corresponds to a pair of edges in E contained in a triangle or a pair of non-incident
edges in a 4-clique. Each triangle has 3 edges, and each 4-clique has 3 pairs of non-incident
edges. Therefore, an asymptotic upper bound of the number of triangles and 4-cliques in G

gives an upper bound for |EV CC |.
In any triangle, some vertex must come first in a degeneracy ordering, and can be in a

triangle with at most
(

d
2
)

of its at most d later neighbors. Therefore each vertex is in O(d2)
triangles with its later neighbors and, summing up over all vertices, contributes at most
O(d2n) edges to EV CC . Similarly, for each edge {u, v} we count the number of 4-cliques it is
in with (non-incident) edges that come lexicographically after it in the degeneracy ordering.
The number of triangles the second vertex can be in with later neighbors is

(
d
2
)

and hence
the edge is in at most O(d2) 4-cliques with v’s at most d later neighbors, giving at most
O(d2m) 4-cliques total. Thus, we conclude that |EV CC | = O(d2m). ◀

Thus, GV CC has at size at most O(d2m), a factor O(d2) larger than G. As a con-
sequence, the average degree of the graph may increase, but by no more than a factor O(d):
whereas G has average degree 2|E|/|V | = O(dn)/n = O(d), graph GV CC has average degree
2|EV CC |/|VV CC | = O(d2m)/m = O(d2). Therefore, for input graphs with small degeneracy,
the transformed graph is expected to be sparse as well.

However, even if the degeneracy d is small, the graph GV CC may be very large in practice.
Hence, to use this transformation, we require techniques to keep the graph size manageable.

5 Synergistic Reductions: Applying ECC and VCC Reductions

We propose to handle the blow-up by Kou et al. [25] by applying both ECC and VCC
reductions to the problem, which we call synergistic data reduction. We first show how to
adjust the transformation to work on reduced ECC instances, after which we can apply VCC
reductions. We also explore the possibility of “lifting” VCC reductions to ECC reductions.

5.1 Transforming a Partially-Covered ECC Problem Kernel

Recall that the data reductions from Gramm et al. [19] result in a graph in which some edges
are covered, which is not supported by the transformation of Kou et al. [25]. While it is
tempting to modify the transformation to operate on only the uncovered edges E′, this does
not necessarily result in an equivalent instance, as already-covered edges may still be needed
to compute a minimum number of cliques covering E′. For instance, in Figure 1, covering
edges {x, y} and {y, z} with the single clique C2 uses the already-covered edge {x, z}.

One way to correct for this is to first perform the transformation on the entire graph
G = (V, E), and then take the subgraph induced by the vertices corresponding to uncovered
edges in E′. However, this strategy is slow when the edge set E is significantly larger than
E′. We show that it is possible to perform the transformation without making vertices for
all edges in E. Note that since all that remains is to cover the edges in E′, we now focus on
covering all E′ using a minimum number of cliques in G. Taken together with already-chosen
cliques from ECC reductions, this gives us a covering of all of G. (See Figure 3.)

ESA 2023



61:8 Solving Edge Clique Cover Exactly via Synergistic Data Reduction
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Figure 3 A partially-covered graph G with cliques C1, C2 already added to the cover, and its
transformed graph G′

V CC . Grayed vertices and (dotted) edges are those in GV CC , but not G′
V CC .

We transform G to a graph G′
V CC = (V ′

V CC , E′
V CC), where V ′

V CC = {vxy | {x, y} ∈ E′}
and E′

V CC = {{vxy, vwz} | {x, y}, {w, z} ∈ E′ and {x, y} ∪ {w, z} is a clique in G}. This
transformation preserves cliques in G that cover edges in E′, which we capture with the
following observation.

▶ Observation 3. If C ′ is a clique in G′
V CC then C = ∪vxy∈C′{x, y} is a clique covering

|C ′| edges of E′ in G.

Furthermore, the transformation gives a correspondence between cliques covering E′ in
G and VCCs in G′

V CC .

▶ Theorem 4. If C′ is a VCC in G′
V CC then C = {∪vxy∈C′{x, y} | C ′ ∈ C′} is a set of cliques

covering E′ in G.

Proof. By Observation 3, every clique C ′ ∈ C′ in G′
V CC corresponds to a clique C =

∪vxy∈C′{x, y} in G that covers its corresponding edges of E′. Hence, a VCC that covers all
V ′

V CC of G′
V CC corresponds to a collection of cliques covering all edges E′ in G. ◀

Note that in Theorem 4, |C| = |C′|. Hence, a minimum VCC in G′
V CC corresponds

to a minimum-cardinality set of cliques covering E′ in G. This transformation gives us a
technique for computing a minimum ECC: First apply the data reductions of Gramm et al.,
then compute G′

V CC and use VCC reductions and any VCC solver to compute a minimum
VCC in G′

V CC , giving us cliques covering E′ in G and, ultimately an entire ECC of G. While
applying VCC reductions to G′

V CC may produce a smaller instance, these data reductions
are not actually producing a smaller ECC instance. However, as we now show, we can also
“lift” some VCC reductions to the ECC problem, by keeping the equivalence between cliques
in the transformation in mind.

5.2 Lifting VCC Reduction Rules to ECC

Unlike the ECC problem, the VCC problem has many data reduction rules [31]. These
include reductions based on simplicial vertices, dominance, twins, degree-2 folding, and
crowns. We briefly discuss two classes of VCC reductions: clique-removal-based rules and
folding-based rules. We place them in the context of the ECC problem, discuss whether it
is viable to “lift” them to the ECC problem, and consider if the graph transformation is
needed. By combining existing ECC reductions with VCC reductions, we aim to reduce ECC
instances even further.
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v
C = N [v]

(a) C is in a minimum VCC.

u w
vuw

G G′
V CC

(b) Edge {u, w} ∈ E′ is in two cliques in G, but vuw in G′
V CC is

simplicial.

Figure 4 The simplicial vertex VCC reduction can be applied after transforming G to G′
V CC .

5.2.1 Clique-Removal-Based VCC Reductions
We call a VCC reduction that removes a set of cliques from the graph a clique-removal-based
rule. Four VCC reductions (simplicial vertex, dominance, twin removal, and crown) are
clique-removal-based rules [31]. Such rules can be easily transformed into an ECC reduction:
By the equivalence between cliques in the problem transformation, stated in Observation 3,
removing a clique in G′

V CC is equivalent to covering its corresponding clique in G. Thus, to
apply clique-removal-based VCC reductions directly to the ECC problem, we can compute
G′

V CC , apply any clique-removal-based rules, and then cover these cliques in G. We capture
this with the following theorem.

▶ Theorem 5. Any clique-removal-based VCC reduction can be lifted to an ECC reduction.

Of course, we could try to apply these reductions more efficiently to G directly. We discuss
two clique-removal-based VCC reductions and discuss whether they are worth implementing
for ECC directly, or if we should transform G to G′

V CC first.

Simplicial Vertex Reduction

A vertex v is simplicial if N [v] forms a clique. In this case, the clique C = N [v] is in some
minimum VCC. (See Figure 4a.)

▶ VCC Reduction 1 (Simplicial Vertex Reduction [31]). Let v ∈ V be a simplicial vertex.
Then C = N [v] is a clique in some minimum VCC. Add C to the clique cover and remove C

from the graph.

Applying VCC Reduction 1 on G′
V CC is reminiscent of applying ECC Reduction 2 on

the untransformed graph G. While it is true that for {u, w} ∈ E′, if N{u,w} is a clique in G,
then vuw is simplicial in G′

V CC , the converse is not true in general. Hence, VCC Reduction 1
is more powerful. Consider the counterexample in Figure 4b. Vertex vuw is simplicial in
G′

V CC , but {u, w} ∈ E′ is in two cliques of G.
Thus, we have a new data reduction for the ECC problem, which subsumes ECC

Reduction 2:

▶ ECC Reduction 5 (Lifted Simplicial Vertex Reduction). Let edge {u, w} ∈ E′ and let set
C = {x, y ∈ V | {x, y} ∈ E′ and {u, w} ∪ {x, y} is a clique in G} be the set of vertices of
edges in some clique with {u, w}. If C is a clique, then add C to the clique cover, and cover
any uncovered edges of C in G.

To apply our lifted reduction, we could of course first compute G′
V CC and then apply

VCC Reduction 1. However, we can also apply it directly to G with a slight modification to
ECC Reduction 2. For each edge {u, w} ∈ E′ compute the common neighborhood N{u,w}.
Instead of checking that the common neighborhood is a clique, collect the uncovered edges
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M = {C1, C2} I ′ = C3

(a) A flared crown. Cliques C1, C2,
and C3 are in some minimum VCC.
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(b) A partially-covered G where G′
V CC is a flared crown.

Figure 5 The crown removal VCC reduction can be applied after transforming G to G′
V CC .

between vertices in N{u,w}, and check if they induce a clique. Since |N{u,w}| ≤ ∆, it takes
O(d∆) to collect uncovered edges by iterating through the at most d later neighbors of each
vertex, which dominates the running time of this step. Exhaustively applying the reduction
to all edges takes time O(d∆m), which is slightly slower than the O(d2m) time for ECC
Reduction 2.

Is it worth applying ECC Reduction 5 directly to G, or should we first transform G

and run VCC Reduction 1 instead? The transformation can be done in time O(d2m) by
enumerating all of the triangles and 4-cliques of G [11], hence performing the transformation
is faster in theory than applying ECC Reduction 5 to G directly. However, in G′

V CC the
largest clique may have as many as Θ(d2) vertices and Θ(d4) edges since a clique of size d + 1
in G has Θ(d2) edges in G. Therefore, the time to apply VCC Reduction 1 for each of the m

vertices of G′
V CC is O(d4m). Thus, in theory, it is more efficient to apply ECC Reduction 5

directly, rather than first applying a conversion.
However, there are compelling reasons to perform the conversion. For one, most imple-

mentations of simplicial vertex reductions limit the degree of the vertex considered – in some
cases to as small as two – since large-degree simplicial vertices rarely appear in sparse graphs.
Therefore, in practice, it is unlikely that we would observe this large running time. However,
a more compelling reason to perform the transformation is that there are two highly effective
VCC reductions that we do not currently know how to apply directly to G. The first is the
crown removal reduction (a clique-removal-based reduction) and the second is the degree-2
folding-based reduction.

Crown Removal Reduction

The crown removal reduction is arguably one of the most powerful data reductions, successfully
reducing sparse instances for the minimum vertex cover and VCC problems [3, 4, 10].

In a pair of vertex sets (H, I), H is called a head and I a crown if: I is an independent
set, N(I) = H , and there exists a matching from H to I of size |H|. Figure 5a shows a crown
structure. Note that, due to the matching requirement, |I| ≥ |H|. If |I| = |H|, the crown
is called straight, otherwise it is flared. Strash and Thompson [31] give the following data
reduction for the VCC problem, adapting a data reduction for the dual coloring problem [17].

▶ VCC Reduction 2 (Crown Removal Reduction [31]). Let (H, I) be a head and crown with
matching M and unmatched vertices I ′ ⊆ I. Then add cliques in M and I ′ to the clique
cover and remove N [I] from the graph. (See Figure 5a.)

Note that it is possible to identify flared crowns by applying a reduction based on an
LP relaxation, originally introduced for the minimum vertex cover problem by Nemhauser
and Trotter [29]. A variant of this algorithm due to Iwata et al. [21] identifies and removes
all flared crowns at once by computing a maximum matching on a bipartite graph with 2n

vertices and 2m edges using the Hopcroft-Karp algorithm [20] with running time O(m
√

n).
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(a) The degree-2 folding VCC reduction.
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2 vertex vuw with non-adjacent neighbors in G′
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Figure 6 The degree-2 folding VCC reduction can be applied after transforming G to G′
V CC .

As Figure 5b illustrates, after exhaustively applying Gramm et al.’s [19] ECC reductions
it is possible to have a crown structure after transforming to G′

V CC . Thus, lifting the crown
removal reduction can further reduce an ECC instance. However, algorithms for computing
a maximum matching for the LP relaxation use an explicit representation of G′

V CC and
therefore it is unclear how to run this reduction without first transforming G to G′

V CC . The
transformation and maximum matching can be computed in time O(d2m + d2m

√
m) =

O(d2m3/2), since there are O(m) vertices and O(d2m) edges in G′
V CC . We leave the question

of whether the LP relaxation reduction can be more efficiently lifted to an ECC reduction as
an open problem.

5.2.2 Folding-Based VCC Reductions
In contrast to clique-removal-based reductions, folding-based reductions contract a subset
S ⊆ V of vertices into a single vertex v′. Folding S produces a new graph Gf = (V f , Ef ) with
V f = (V \S)∪{v′} and Ef = (E\{{v, x} ∈ E | v ∈ S})∪{{v′, x} | ∃v ∈ S, x ̸∈ S, {v, x} ∈ E}.
We discuss the connections between the ECC problem and the simplest folding-based
reduction, folding vertices of degree two.

Degree-2 Folding

The degree-2 folding reduction for VCC contracts a degree-2 vertex v with non-adjacent
neighbors u and w that are crossing independent [31]. That is, for each edge {x, y} ⊆
N(u) ∪ N(w) either {x, y} ⊆ N(u) or {x, y} ⊆ N(w). This condition ensures that no
spurious cliques are formed after folding. A vertex v meeting these conditions is foldable.

▶ VCC Reduction 3 (Degree-2 Folding Reduction [31]). Let v ∈ V be a foldable degree-2
vertex with non-adjacent neighbors N(v) = {u, w}. Let Gf be the graph obtained by folding
{v, u, w}. Let Cf be a minimum VCC of Gf with clique Cv′ ∈ Cf covering vertex v′ and let
C = Cv′ \ {v′}. Then, the clique cover

C =
{

(Cf \ {Cv′}) ∪ {C ∪ {u}, {v, w}} if C ⊆ N(u),
(Cf \ {Cv′}) ∪ {C ∪ {w}, {v, u}} otherwise,

is a minimum VCC of G.

See Figure 6a for an example of the degree-2 folding VCC reduction. We note that the
transformation from an ECC instance to a VCC instance by Kou et al. [25] does not produce
any degree-2 vertices with non-adjacent neighbors, as edges forming a triangle or 4-clique in
G form a triangle or 6-clique in GV CC . However, our transformation with covered edges can
result in such vertices (see Figure 6b). Thus, the degree-2 folding VCC reduction can be
used to further reduce the instance when applied to G′

V CC .
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We leave as an open problem whether folding-based rules can be lifted to new ECC
reductions; we conjecture that it is possible to lift at least degree-2 folding. However, given
how effective the degree-2 folding reduction is in practice for the VCC problem, we highly
recommend applying it, even though it incurs the overhead of the transformation to G′

V CC .

5.3 Wrapping It All Up

With the tools in this section in hand, we have a clear path to solving the ECC problem on
sparse graphs: first apply the data reductions due to Gramm et al. [19], then transform the
partially-covered graph into a VCC instance, then apply VCC reductions and solve what
remains with any VCC solver. We next perform experiments to evaluate this method.

6 Experimental Evaluation

We now compare our technique to the state of the art through extensive experiments on
both synthetic instances and real-world graphs.

6.1 Experimental Setup

We implemented the ECC reductions and ECC to VCC transformation in C++ and integrated
our methods with the VCC reductions and VCC algorithms by Strash and Thompson2 [31],
which we then compiled with g++ version 11 using the -O3 optimization flag. Our source
code is available under the open source MIT license3. All experiments were conducted on
Hamilton College’s High Performance Computing Cluster (HPCC), on a machine running
CentOS Linux 7.8.2003, with four Intel Xeon Gold 6248 processors running at 2.50GHz with
20 cores each, and 1.5TB of memory. Each algorithm is run sequentially on its own core.

We run experiments on six different algorithms. Gramm is the original branch-and-reduce
code by Gramm et al. [19] written in OCaml, which we compiled with ocamlc version 3.10.2,
and provided a sufficiently large stack size due to its heavy use of recursion. We implement
three algorithms in C++ that first exhaustively apply ECC Reductions 1 and 2, perform a
problem reduction to a VCC instance, apply VCC reductions, and then run a VCC solver:
Redu3BnR solves with the VCC branch-and-reduce algorithm by Strash and Thompson [31],
Redu3IG solves with the VCC iterated greedy (IG) heuristic algorithm by Chalupa [9], and
Redu3ILP solves with an assignment-based ILP formulation [22, 28] for VCC and Gurobi
version 9.5.1. Finally, the two heuristic algorithms Conte [12] and EO-ECC [1] are from their
respective authors and are compiled with javac version 8 and g++ version 11 with -O3,
respectively. Unless stated otherwise, we run each algorithm with a 24-hour time limit. Our
stated running times do not include I/O time such as graph reading and writing.

In our tables, “Kernel” denotes the relevant size of the graph after reductions as either
uncovered edges (Gramm) or vertices remaining (for VCC-based algorithms). “Time” is the
time (in seconds) the solver takes to exactly solve the instance. A “–” indicates that the
solver did not finish in the 24-hour time limit. Bold values indicate the value is the smallest
among all algorithms in the table.

We run our experiments on randomly-generated instances as well as real-world graphs.

2 https://github.com/darrenstrash/ReduVCC
3 https://github.com/darrenstrash/Redu3ECC

https://github.com/darrenstrash/ReduVCC
https://github.com/darrenstrash/Redu3ECC
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Erdős-Rényi Graphs. We generate 70 instances of varying density using the G(n, p) model
of generating an n-vertex graph where each edge is selected independently with probability
p. We use values of n that are powers of two from 64 to 2048, with two different values of p

for each to show the effect of density on the tested algorithms. We generate 5 graphs with
each n, p pair using different random seeds to observe the behavior of algorithms on multiple
instances of similar size and density.

Real-World Instances. We run our experiments on 52 large, sparse, complex networks
from the Stanford Network Data Repository (SNAP)4, the Laboratory for Web Algorithmics
(LAW)5, and the Koblenz Network Collection (KONECT)6. These graphs include citation
networks, web-crawl graphs, and social networks; the largest graph has 18M vertices, and
most graphs follow a scale-free degree distribution: there are many low degree vertices and
few high degree vertices. The number of vertices and edges for each instance can be found
with experimental results in Tables 2 and 3.

6.2 Results on Synthetic Instances
We begin by comparing the performance of Gramm and Redu3BnR on synthetic instances
generated with the Erdős-Rényi G(n, p) model. In Table 1, we present the average kernel
size and running time executing Gramm and Redu3BnR on the 5 instances of each pair of n

and p. We disable ECC Reduction 3 in Gramm, since this configuration enables it to solve
the largest number of synthetic instances within the time limit.

Focusing on running time, Gramm and Redu3BnR are equally matched on very sparse
graphs, quickly solving many instances in significantly less than one second. Though, as the
density increases even slightly, which can be seen when fixing n but increasing p, Gramm
is no longer able to solve even small instances in a 24-hour time limit. However, on all
instances, Redu3BnR easily computes exact solutions. The reason why is clear: on instances
that Gramm is unable to solve, Gramm’s kernel is large (for the highest density instance with
n = 64, p = 0.2, even a kernel of average size 100 is too large for Gramm to solve), whereas
the VCC kernels for Redu3BnR are significantly smaller in all cases. Indeed, for the densest
graphs of each value of n, Gramm is unable to solve every instance in 24 hours, but Redu3BnR
solves all graphs in less than a second. This illustrates that the combined reduction power of
ECC and VCC reductions is able to handle denser instances than running ECC reductions
alone.

6.3 Solving Large Real-World Instances Exactly
We now see which graphs can be solved exactly by one of three algorithms: Gramm, Redu3BnR,
and Redu3ILP. We disable ECC Reductions 3 and 4 in Gramm, since this configuration enables
it to reduce all instances within the time limit. The results are presented in Table 2. Gramm
was able to solve 12 of the 27 instances exactly; 10 of these graphs were solved because the
kernel had 0 uncovered edges and the other two instances (ca-CondMat and ca-GrQc) had
small kernels of less than 100 uncovered edges. However, Gramm exceeds the 24-hour time
limit on the 15 other instances, even those with as few as 176 uncovered edges.

4 https://snap.stanford.edu/data/
5 http://law.di.unimi.it/datasets.php
6 http://konect.cc/
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Table 1 Results on small Erdős-Rényi graphs of varying density. A “∗” indicates that not all
runs finished in the 24-hour time limit, “–” indicates that no runs finished in the 24-hour time limit.

Graph Gramm Redu3BnR

n p m Kernel Time (s) Kernel Time (s)
64 0.15 300 1 < 0.01 0 < 0.01
64 0.2 404 100 1 324.52∗ 10 < 0.01

128 0.1 805 0 < 0.01 0 < 0.01
128 0.15 1 218 491 – 51 0.03
256 0.075 2 433 42 0.02 0 < 0.01
256 0.1 3 264 1 105 – 12 0.02
512 0.05 6 557 137 0.21 1 0.02
512 0.065 8 513 2 281 – 5 0.04

1 024 0.0365 19 072 1 259 153.21∗ 4 0.08
1 024 0.0375 19 596 1 704 – 4 0.07
2 048 0.025 52 245 3 147 5.18 4 0.18
2 048 0.0275 57 488 7 235 – 5 0.20

In contrast, Redu3BnR solves 18 of the instances. On all instances, the kernel computed by
Redu3BnR was smaller than that of Gramm, the smallest of which is on zhishi-hudong-int,
which is reduced to 2% of the size of Gramm’s kernel. With the exception of three instances
(email-EuAll, web-NotreDame, and web-Stanford), every instance was reduced to at most
10% of Gramm’s kernel size. However, the limitations of branch and reduce for the VCC
problem begin to show on these instances. Similar to Gramm, Redu3BnR only finishes within
the 24-hour time limit on graphs with kernel size less than 100, and therefore its success is
largely due to the reduction of the input instance (a pattern observed in other problems [30]).
On the other hand, the Gurobi solver with an ILP formulation is able to solve kernels of
much larger size, even up to 536 209 vertices (in the case of eu-2005).

6.4 Solving Remaining Instances Heuristically
We now look at the instances that could not be solved in the 24-hour time limit by any
exact method. The results are presented in Table 3. Nine instances were reduced to VCC
within the time limit of 24 hours, and the remaining instances were too large to finish in
the time limit (not in the table). After fully transforming the input ECC instance to a
reduced VCC instance, we ran the iterated greedy approach IG due to Chalupa et al. [9],
which we call Redu3IG, and compare its best solution with a lower bound from KaMIS,
a state-of-the-art evolutionary algorithm for finding near-maximum independent sets on
huge networks [26]. Four instances were solved to within 300 cliques of optimum, two of
which (soc-Slashdot0811 and soc-Slashdot0902) are within 100 cliques. The remaining
instances are solved to within 6 000 cliques of optimum.

6.5 Summarizing the Quality of Existing Heuristic Solvers
Finally, using our exact results, we evaluate the quality of two heuristic solvers designed
for large sparse graphs. We compare Conte, an algorithm by Conte et al. [12] designed for
large sparse graphs, and EO-ECC by Abdullah et al. [1]. We run Conte and EO-ECC on all
instances that were solved exactly (i.e., those from Table 2). The results are presented in
Table 4.
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Table 2 Comparing exact algorithms Gramm, Redu3BnR, and Redu3ILP on real-world instances
solved by at least one of the algorithms in a 24-hour time limit. Times marked with a “*” indicate
that the algorithm’s speed was due to programming language differences and not algorithmic
improvements.

Graph Gramm Redu3BnR Redu3ILP

Name n m Kernel Time (s) Kernel Time (s) Time (s)
ca-AstroPh 18 772 198 050 2 837 – 0 0.33 0.33
ca-CondMat 23 133 93 439 62 1.74 0 0.10 0.10
ca-GrQc 5 242 14 484 9 0.15 0 0.02 0.02
ca-HepPh 12 008 118 489 491 – 0 0.16 0.16
ca-HepTh 9 877 25 973 176 – 0 0.03 0.03
cnr-2000 325 557 2 738 969 755 617 – 23 880 – 10 727.29
dblp-2010 326 186 807 700 868 – 0 1.98 1.98
dblp-2011 986 324 3 353 618 8 898 – 50 9.13 9.88
email-EuAll 265 214 364 481 20 648 – 5 064 – 6.99
eu-2005 862 664 16 138 468 5 555 826 – 536 209 – 12 966.59
p2p-Gnutella04 10 876 39 994 0 0.34 0 0.05∗ 0.05∗

p2p-Gnutella05 8 846 31 839 0 0.23 0 0.05∗ 0.05∗

p2p-Gnutella06 8 717 31 525 0 0.33 0 0.04∗ 0.04∗

p2p-Gnutella08 6 301 20 777 261 – 17 0.04 0.06
p2p-Gnutella09 8 114 26 013 214 – 5 0.04 0.08
p2p-Gnutella24 26 518 65 369 0 0.91 0 0.10∗ 0.10∗

p2p-Gnutella25 22 687 54 705 0 0.63 0 0.08∗ 0.08∗

p2p-Gnutella30 36 682 88 328 0 1.27 0 0.09∗ 0.09∗

p2p-Gnutella31 62 586 147 892 0 2.14 0 0.23∗ 0.23∗

roadNet-CA 1 965 206 2 766 607 0 115.17 0 5.60∗ 5.60∗

roadNet-PA 1 088 092 1 541 898 0 45.75 0 2.94∗ 2.94∗

roadNet-TX 1 379 917 1 921 660 0 73.21 0 3.64∗ 3.64∗

web-BerkStan 685 230 6 649 470 2 096 936 – 152 581 – 6 753.27
web-Google 875 713 4 322 051 266 455 – 16 440 – 35.58
web-NotreDame 325 729 1 090 108 98 861 – 14 553 – 20.10
web-Stanford 281 903 1 992 636 523 480 – 57 463 – 981.82
zhishi-hudong-int 1 984 484 14 428 382 1 175 068 – 26 536 – 568.26

Table 3 Heuristic solutions for graphs that could not be solved exactly in 24 hours. “lb” is a
lower bound on θE(G) from KaMIS, “ub” is the smallest clique cover computed by Redu3IG, and
“Time” is the time in seconds for Redu3IG to reach this result.

Graph KaMIS Redu3IG

Name n m lb ub Time (s)
as-skitter 1 696 415 11 095 298 5 843 072 5 847 591 20 848.17
email-Enron 36 692 183 831 42 141 42 207 2 201.00
soc-Epinions1 75 879 405 740 185 544 186 384 18 064.79
soc-pokec-relationships 1 632 803 22 301 964 12 222 248 12 227 949 21 451.91
soc-Slashdot0811 77 360 469 180 328 018 328 079 3 073.75
soc-Slashdot0902 82 168 504 230 351 012 351 072 3 125.21
wiki-Talk 2 394 385 4 659 565 3 645 692 3 648 312 21 088.53
wiki-Vote 7 115 100 762 34 789 35 004 21 424.48
zhishi-baidu-relatedpages 415 641 2 374 044 1 372 941 1 373 912 9 989.00
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From among the 27 graphs, Conte solves five instances exactly. A further nine instances
are solved within 50 cliques of optimal, and eight additional graphs are solved within 2 000
of optimal. EO-ECC, on the other hand, solves eight instances exactly (a superset of Conte’s
five) and solves these faster than Conte. Furthermore, EO-ECC finds 14 smaller solutions
faster than Conte (Conte only finds four smaller solutions faster). However, a distinct negative
is EO-ECC’s running time and solution quality on cnr-2000, eu-2005, and web-BerkStan,
which is much worse than Conte. We conclude that Conte gives consistently fast results with
reasonable solutions, and EO-ECC is sometimes very fast and accurate, and other times not.

Table 4 Evaluation of the quality of heuristic solvers Conte and EO-ECC on all graphs with
known edge clique cover number θE(G). “ub” is the solution found by the given algorithm, and
“Time” is the algorithm’s time in seconds. Values of “ub” marked in bold indicates the algorithm
found an optimal solution, with its time in bold if it did so faster than its competitor. Values of
“ub” in italics indicate that an algorithm found an ECC smaller than its competitor, with its time in
italics if it did so faster than its competitor.

Graph G Conte EO-ECC

Name n m θE(G) ub Time (s) ub Time (s)
ca-AstroPh 18 772 198 050 15 134 15 481 0.92 15 373 0.50
ca-CondMat 23 133 93 439 16 283 16 378 0.54 16 307 0.07
ca-GrQc 5 242 14 484 3 737 3 749 0.15 3 739 0.01
ca-HepPh 12 008 118 489 10 031 10 142 0.69 10 097 0.35
ca-HepTh 9 877 25 973 9 190 9 264 0.19 9 212 0.02
cnr-2000 325 557 2 738 969 752 118 756 905 14.92 763 365 2 820.97
dblp-2010 326 186 807 700 186 834 187 395 2.22 186 968 0.44
dblp-2011 986 324 3 353 618 707 773 713 219 13.56 709 156 3.48
email-EuAll 265 214 364 481 297 092 298 943 2.58 299 257 2.14
eu-2005 862 664 16 138 468 2 832 059 2 883 585 108.67 3 032 337 8 458.21
p2p-Gnutella04 10 876 39 994 38 491 38 491 0.29 38 491 0.04
p2p-Gnutella05 8 846 31 839 30 523 30 527 0.25 30 525 0.04
p2p-Gnutella06 8 717 31 525 30 322 30 327 0.26 30 324 0.04
p2p-Gnutella08 6 301 20 777 19 000 19 042 0.20 19 012 0.03
p2p-Gnutella09 8 114 26 013 24 117 24 150 0.24 24 133 0.03
p2p-Gnutella24 26 518 65 369 63 725 63 726 0.41 63 725 0.06
p2p-Gnutella25 22 687 54 705 53 367 53 367 0.33 53 367 0.05
p2p-Gnutella30 36 682 88 328 85 821 85 823 0.52 85 821 0.10
p2p-Gnutella31 62 586 147 892 144 478 144 478 0.83 144 478 0.15
roadNet-CA 1 965 206 2 766 607 2 537 936 2 537 945 17.90 2 537 936 1.02
roadNet-PA 1 088 092 1 541 898 1 413 370 1 413 370 10.62 1 413 370 0.69
roadNet-TX 1 379 917 1 921 660 1 763 295 1 763 298 13.48 1 763 295 0.89
web-BerkStan 685 230 6 649 470 1 834 074 1 850 605 54.34 1 903 872 2 089.25
web-Google 875 713 4 322 051 1 242 770 1 254 107 24.96 1 251 672 33.10
web-NotreDame 325 729 1 090 108 451 424 453 864 7.09 453 805 7.31
web-Stanford 281 903 1 992 636 562 417 570 958 16.85 591 957 326.92
zhishi-hudong-int 1 984 484 14 428 382 10 557 244 10 698 424 123.45 10 678 121 322.89

Summary (#optimal / #smaller and faster) (5 / 4) (8 / 14)

7 Conclusion and Future Work

We introduced a technique to further reduce ECC problem instances via VCC data reductions,
enabling us to solve large sparse real-world graphs that could not be solved before. Critical
to this technique is the ability to transform reduced ECC instances to the VCC problem,
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through a modification of the polynomial-time reduction of Kou et al. [25]. The combined
reduction power of ECC and VCC reductions, which we call synergistic data reduction,
produces significantly smaller kernels than ECC reductions alone. Of particular interest for
future work is integrating data reduction rules with existing heuristic algorithms for the
ECC problem, trying to implement a more efficient LP relaxation ECC reduction without a
transformation, and to see if folding-based reductions can be lifted to the ECC problem.
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Abstract
We study threshold testing, an elementary probing model with the goal to choose a large value out
of n i.i.d. random variables. An algorithm can test each variable Xi once for some threshold ti, and
the test returns binary feedback whether Xi ≥ ti or not. Thresholds can be chosen adaptively or
non-adaptively by the algorithm. Given the results for the tests of each variable, we then select
the variable with highest conditional expectation. We compare the expected value obtained by the
testing algorithm with expected maximum of the variables.

Threshold testing is a semi-online variant of the gambler’s problem and prophet inequalities.
Indeed, the optimal performance of non-adaptive algorithms for threshold testing is governed by the
standard i.i.d. prophet inequality of approximately 0.745 + o(1) as n → ∞. We show how adaptive
algorithms can significantly improve upon this ratio. Our adaptive testing strategy guarantees a
competitive ratio of at least 0.869 − o(1). Moreover, we show that there are distributions that admit
only a constant ratio c < 1, even when n → ∞. Finally, when each box can be tested multiple times
(with n tests in total), we design an algorithm that achieves a ratio of 1 − o(1).
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1 Introduction

Consider an application process in which n job candidates are interviewed sequentially one by
one for a single position. For each candidate, we assume the qualification for the job can be
expressed by an i.i.d. non-negative random variable Xi with known distribution F . The goal
is to maximize the expected value of the selected candidate. To which extent is the optimal
achievable value harmed by the online arrival of the candidates? This is the classic gambler’s
problem, in which the loss in expected value is expressed by prophet inequalities [22, 26, 9].
More precisely, in this model one usually assumes (i) an interview fully reveals the realization
of the respective variable, and (ii) the requirement of timely feedback forces the decision
maker to irrevocably accept or reject the candidate upon seeing its realization. For i.i.d.
variables, the best-possible prophet inequality states that a candidate σ can be selected such
that E[Xσ] ≥ β · E[max{X1, . . . , Xn}], where β ≈ 0.745 [19, 10].
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The gambler’s problem has been extremely popular over the last decades, but assumptions
(i) and (ii) are often unrealistic. Even after a long interview, an interviewer is usually not fully
aware of the entire set of exact qualifications of a candidate. Moreover, in many selection
processes a decision does not have to be taken instantaneously. In this paper, we examine
the consequences of an arguably more realistic set of conditions. First, instead of (i), we
assume that each candidate only partly reveals their realization in the form of a single bit
of information. As we observe rather directly, this assumption is asymptotically equivalent
to allowing to make a single threshold query to each candidate. Second, instead of (ii), we
assume that the selection must be made only at the end of the process.

More formally, we consider the threshold testing model. We assume that (i′), instead
of revelation of Xi, we perform a single threshold test with some arbitrary threshold ti,
and the feedback is binary (“positive” in case Xi ≥ ti or “negative” otherwise), and (ii′)
a candidate must be chosen only after completing all threshold tests. Again denoting the
selected candidate by σ, we are interested in bounding the loss in expected value using
an inequality of the form E[Xσ] ≥ c · E[max{X1, . . . , Xn}] for c ∈ (0, 1). We call this a
semi-online prophet inequality. A testing algorithm that satisfies it is called c-competitive
and has a competitive ratio of c.

There are four possible models emerging from the different choices of (i) vs. (i′) and (ii) vs.
(ii′). The remaining two models do not require substantial analytical efforts. Indeed, when
we only replace (i) by (i′), the consequences are trivial: There is an optimal algorithm for the
standard gambler’s problem that uses threshold tests. Thus, the existing optimal algorithm
and its guarantees continue to apply because the space of algorithms only shrinks when we
require threshold tests. Also, only replacing (ii) by (ii′) implies a trivial problem – one can see
and choose an option with maximum value at the end, a 1-competitive strategy. In contrast,
the main contribution of this paper is to show that, with (i′) and (ii′) simultaneously, a
mathematically interesting model arises.

Our results also imply a stark qualitative distinction to the standard model. It is well
known that adaptivity, i.e., allowing decisions to depend on past observations, does not help
for the standard gambler’s problem. In our model, we observe rather easily that non-adaptive
testing algorithms are unable to asymptotically improve upon the ratio of β ≈ 0.745. Our
main result is a set of adaptive algorithms that improves significantly upon this bound and
achieves a ratio of approximately 0.869. To complement this result, we show that there are
distributions that imply a non-trivial asymptotical upper bound on the ratio, i.e., there is no
(1 − o(1))-competitive algorithm. We proceed to discuss our contributions in more detail.

1.1 Techniques and Contribution
Let F be the cumulative distribution function of the variables. For most of the paper we
assume (essentially w.l.o.g.) that F is continuous. Our algorithms perform quantile testing,
i.e., they use thresholds of the form F −1(1 − q) for q ∈ (0, 1), oblivious of other properties of
the distribution. It is straightforward to achieve a competitive ratio of 1 − 1/e > 0.632 by
using threshold ti = F −1(1 − 1/n) for all variables and then choosing any variable that has
been tested positively (if any); see, e.g., [19]. The analysis of this strategy is asymptotically
tight for each of the following two parametric distributions1:
FA: For some small ε > 0, with probability 1/

√
n choose a value uniformly from [1−ε, 1 +ε],

and 0 otherwise. As ε → 0 and n → ∞, the algorithm gets a positive test and therefore
value 1 with probability 1 − 1/e while E[max{X1, . . . , Xn}] = 1.

1 Strictly speaking, FA and FB are not continuous. For a rigorous argument, one can resort to an
arbitrarily close continuous approximation of the distributions to obtain the same result.



M. Hoefer and K. Schewior 62:3

FB: Choose the value 1 with probability 1/n2 and 0 otherwise. The algorithm obtains a
value 1 with probability (1 − (1 − 1/n)n)/n while max{X1, . . . , Xn} = 1 with probability
1 − (1 − 1/n2)n. As n → ∞, the ratio of both probabilities approaches 1 − 1/e.

To improve upon 1 − 1/e, an algorithm needs to test for both smaller and larger thresholds
than F −1(1 − 1/n). Thresholds that are all larger than F −1(1 − 1/n) decrease the ratio for
FA; thresholds that are all smaller than F −1(1 − 1/n) decrease the ratio for FB .

The class of algorithms we consider here is parameterized by α1, . . . , αk ∈ (0, 1) with
α1 > α2 > · · · > αk. In the beginning, such an algorithm uses F −1(1 − α1/n) as a threshold
until it sees a positive test. Generally, after i < k positive tests, it sets F −1(1 − αi+1/n) as a
threshold. After k positive tests (i.e., on F −1(1 − α1/n), . . . , F −1(1 − αk/n)), the algorithm
can make arbitrary tests. Indeed, we eventually choose α1 > 1 and α2 < 1.

In our analysis, we exactly calculate the asymptotic probability that the algorithm
sees precisely i positive tests. Note that these probabilities asymptotically determine the
probability density function of Xσ, the chosen variable. It is a step function in quantile space:
The probability of making precisely i positive tests is spread uniformly over the interval
[1 − αi/n, 1] for all i ∈ {1, . . . , k}.

We compare this probability density function of Xσ with that of max{X1, . . . , Xn} by
stochastic dominance, leading to a tight analysis of such algorithms. For fixed values of
α1, . . . , αk, we can analyze the competitive ratio of the respective strategy by solving a
piecewise convex optimization problem, where the k + 1 pieces correspond to the k + 1 steps
of the step function. We numerically maximize the minimum of this function.

We execute this analysis in detail for k ∈ {2, 3}. For k = 3, we obtain a competitive ratio
of approximately 0.869 by setting α1 ≈ 2.035, α2 ≈ 0.506, and α3 ≈ 0.057. Our numerical
results for k = 4 indicate only negligible improvement by further increasing k.

We complement this result by a constant upper bound on the competitive ratio, i.e., an
impossibility of achieving a competitive ratio of 1 − o(1). Intuitively, there is a trade-off
inherent in every test: Testing for a smaller value yields a fallback option in case only one
positive test is found at the end; testing for a larger value allows to differentiate between
different variables when multiple of them have been tested positively. There are instances
in which, irrespective of how the algorithm solves this trade-off, it loses a constant in the
competitive ratio. For the proof we consider a distribution where values 1, 2, or 3 occur with
probability 1/n each, and 0 otherwise. It is minimal in the sense that a competitive ratio
of 1 − o(1) is achievable for any distribution that uses only three values in the support, or
whose parameters do not depend on n.

Finally, we establish that a competitive ratio of 1 − o(1) can be achieved using n tests
when a single variable can be tested multiple times (recall that the realization of each variable
is only drawn once initially from the distribution). The idea is to drop o(n) variables from
consideration and test the remaining ones with a threshold such that, with high probability,
max{X1, . . . , Xn} is larger than this threshold, but only o(n) of these tests are positive. The
additional o(n) tests can then be used to find the maximum variable among those that have
been tested positively.

1.2 Further Related Work
The original prophet inequality [22] states that there is a 1/2-competitive algorithm in the
setting of independent random variables with arbitrary distributions. Initiated by the work of
Hajiaghayi, Kleinberg, and Sandholm [18], prophet inequalities have seen a surge of interest
in the TCS community over the past 15 years. This has, for instance, led to the development
of the tight i.i.d. prophet inequality with competitive ratio approximately 0.745 [10] as
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well as almost-tight random-order [11, 5] and free-order [2, 25, 29, 5] prophet inequalities.
Optimal or near-optimal prophet inequalities can be recovered without knowledge of the
distribution but with O(n) samples [7, 31, 8, 6]. Several works considered multiple-choice
prophet inequalities with combinatorial constraints, e.g., [3, 13, 21, 12]. We also refer to
the (at this point slightly outdated) surveys of Lucier [26] as well as Correa et al. [9] for
additional references.

We compare our work with the two works from the prophet-inequality literature that
seem closest. Orthogonally to samples, Li, Wu, and Wu [24] considered a version of the
unknown i.i.d. setting in which quantile queries to the distribution can be made before the
sequence of variables arrives. They as well as Perez-Salazar, Singh, and Toriello [30] also
used a limited number of (quantile-based) thresholds to achieve near-optimal i.i.d. prophet
inequalities. We are not aware of any version of the single-choice prophet inequality with
general i.i.d. distributions to which the impossibility of approximately 0.745 does not apply.

In stochastic probing (e.g., [4, 15, 1, 16, 17]), information is also revealed online according
to known distributions. The standard models are, however, quite different from our model:
The decision maker gets to choose which variables to probe, and each probe entirely reveals
the realization of the variable at hand. Eventually, the decision maker can pick a (set of)
variable(s), much like in our model. Comparing with an omniscient optimum (like in the
prophet inequality) is, however, usually hopeless in this setting. Instead, one focusses on
computing or approximating the strategy that maximizes the expected selected (total) value,
a task that is straightforward for our model.

In these probing models, the adaptivity gap measures the worst-case multiplicative gap
between the value of the best adaptive and that of the best non-adaptive strategy. Note
that, while our result does imply a nontrivial adaptivity gap (i.e., larger than 1) for our
problem, we are studying a different question as we compare both adaptive and non-adaptive
strategies with an omniscient optimum.

We are aware of two works in the probing literature in which tests do not eradicate all
uncertainty about the respective variable. Hoefer, Schmand, and Schewior [20] considered
a stochastic-probing model in which the first test to a variable only reveals whether the
realization is above or below the median of the distribution, and additional tests can be
used to further narrow down the realization in the same way applied to the conditional
distribution. Gupta et al. [14] generalized the related classic Pandora’s box problem due to
Weitzman [32] and considered the Markovian model. There, a set of Markov chains, which
correspond to variables that can eventually be chosen, is given and, in each step, a probe
can be used to advance one of the Markov chains.

Threshold tests have also been considered in the context of estimating (properties of)
a probability distribution. For example, Paes Leme et al. [23] gave bounds on the sample
complexity, i.e., required number of such tests, to estimate the approximately optimal reserve
price for certain types of distributions. Meister and Nietert [27] as well as Okoroafor et
al. [28] investigated the sample complexity of estimating other objects, e.g., mean, median,
or even full CDF, of the empirical distribution in a non-stochastic setting.

2 Preliminaries

We consider threshold testing defined as follows. We are given a distribution F on R≥0 with
finite expectation. There are n boxes. Each box i contains a hidden realization X1, . . . , Xn

drawn once upfront i.i.d. from F . A testing algorithm can apply a threshold test to each
box i ∈ [n] = {1, . . . , n} exactly once, in that order. To apply a test to box i, the algorithm
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chooses a threshold ti ≥ 0 and receives a binary feedback whether Xi ≥ ti or not. Upon
testing i, the algorithm learns if Xi ≥ ti or not, but not the precise value of Xi. If Xi ≥ ti

we say the test was positive, otherwise it was negative. The algorithm may choose thresholds
adaptively based on the feedback from earlier tests. Finally, after testing each box, the
algorithm chooses one box σ ∈ [n] and receives a reward of Xσ. Here, σ is a random
variable based on the observed feedback and the internal randomization of the algorithm.
We call an algorithm c-competitive if E[Xσ] ≥ c · E[max{X1, . . . , Xn}]. We are interested in
maxmimizing c in the limit as n → ∞.

Non-adaptive Algorithms and Prophet Inequalities. Our testing problem has inherent
connections to the classic prophet inequality for i.i.d. random variables. Consider the
non-adaptive variant, in which the algorithm chooses thresholds t1, . . . , tn upfront. We
observe that this problem is essentially the standard gambler’s problem governed by prophet
inequalities. The optimal algorithm for the gambler’s problem emerges from straightforward
backwards induction. For each box i ∈ [n], the gambler sets a threshold ti to the expected
profit from the optimal algorithm for boxes i + 1, . . . , n. The algorithm accepts i if and only
if Xi ≥ ti. It is straightforward to verify that this implies t1 ≥ . . . ≥ tn. All ti-values can be
computed in advance. As such, a non-adaptive algorithm for threshold testing can use these
thresholds and imitate the optimal algorithm for the gambler’s problem.

▶ Observation 1. The optimal non-adaptive testing algorithm for n boxes obtains at least
the expected reward of the optimal algorithm for the gambler’s problem with n boxes.

We also observe the converse – for large n, the optimal reward of non-adaptive threshold
testing is essentially the optimal reward in the gambler’s problem.

▶ Proposition 2. The optimal non-adaptive testing algorithm for n boxes obtains at most
the expected reward of the optimal algorithm for the gambler’s problem with n + 1 boxes.

Proof. Consider the optimal non-adaptive algorithm for threshold testing. W.l.o.g. we can
assume that the chosen thresholds are ordered such that t∗

1 ≥ . . . ≥ t∗
n. If at least one test

is positive, then among the positively tested boxes, the algorithm chooses the one with the
highest threshold – which is the earliest one in the sequence. The gambler can imitate this
in the online model by using thresholds t∗

1, . . . , t∗
n and accepting the first one with Xi ≥ t∗

i .
If all tests are negative, then the testing algorithm accepts X1 – it failed the test with the
highest threshold and, as such, has the highest conditional expectation. Clearly, this is less
than the apriori expectation of F , which can be obtained by the gambler from accepting box
Xn+1. Hence, the gambler with n + 1 boxes obtains more expected value. ◀

For large n the best competitive ratio is approximately 0.745 by the optimal prophet
inequality [19, 10]. For the rest of the paper we focus on adaptive testing algorithms.

Threshold Testing vs. General Binary Feedback. We discuss our scenario in the context of
a more general model. In binary-feedback testing, the algorithm can choose a set Yi ⊂ R≥0
and learns whether or not Xi ∈ Yi. Note this model generalizes threshold testing – setting
a threshold ti can be simulated by choosing Yi = {x ∈ R | x ≥ ti}. Nevertheless, the
competitive ratio achievable is asymptotically the same as for threshold testing. As such, we
restrict attention to threshold testing.

▶ Proposition 3. The optimal algorithm for binary-feedback testing with n boxes obtains at
most the expected reward of the optimal algorithm for threshold testing with n + 1 boxes.
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Table 1 Numerically optimized parameters and competitive ratios for different values of k.

k α1 α2 α3 α4 comp. ratio as n → ∞

1 1 – – – 1 − 1/e ≈ 0.63212
2 1.83298 0.35932 – – > 0.84005
3 2.035135 0.5063 0.05701 – > 0.86933
4 2.038 0.508 0.058 0.0002 > 0.86956

Proof. Consider an optimal algorithm for binary-feedback testing with n boxes. We modify
this algorithm to obtain an algorithm for threshold testing with n + 1 boxes. We assume
w.l.o.g. that, whenever the original algorithm chooses a set Yi to test the i-th box, then
E[Xi | Xi ∈ Yi] ≥ E[Xi] and, therefore, E[Xi | Xi /∈ Yi] ≤ E[Xi]. We replace any such test
with a threshold test for a threshold ti such that Pr[Xi ≥ ti] = Pr[Xi ∈ Yi], i.e., both tests
are positive with precisely the same probability and E[Xi | Xi ≥ ti] ≥ E[Xi | Xi ∈ Yi]. We
continue in the same way as the original algorithm would upon a positive or negative test,
modifying subsequent tests in the same way. If the original algorithm eventually picks a box
i⋆ with a positive test result, the new algorithm picks the same box. Thereby it obtain at least
the same value since, by our choice of ti⋆ , E[Xi⋆ | Xi⋆ ≥ ti⋆ ] ≥ E[Xi⋆ | Xi⋆ ∈ Yi⋆ ]. Similarly,
if the original algorithm would pick a box with a negative result, the new algorithm picks
box n + 1, obtaining E[Xn+1] = E[Xi⋆ ] ≥ E[Xi⋆ | Xi⋆ /∈ Yi⋆ ] by our assumption above. ◀

3 Adaptive Testing

In this section, we prove the following theorem. For simplicity, we consider a continuous
distribution F throughout the proof. In the following section, we discuss that the result also
generalizes to finite discrete distributions.

▶ Theorem 4. There is an efficient (0.869 − o(1))-competitive algorithm for threshold testing
with a continuous distribution.

Proof. We consider a class of algorithms that is parameterized by a monotone sequence of
quantile parameters q1, . . . , qk ∈ (0, 1) where q1 > . . . > qk. For convenience, we assume
q0 = 1 and qk+1 = . . . = qn = 0. The algorithm starts by testing for the 1 − q1 quantile of
F . Since the distribution is continuous, q1 corresponds to a threshold τ1 (i.e., τ1 is such
that Pr[Xi ≥ τ1] = q1). Then for any j ≥ 1, if the algorithm sees a negative test for τj ,
it continues testing with τj . If it sees a positive test for τj , it increments j to j + 1 (i.e.,
continues testing with the next threshold τj+1). After having tested each box, it selects the
one with the best conditional expectation. This is either the box tested positively for the
threshold corresponding to the largest quantile, or any box (when all tested negative for τ1).

We consider the values of qj in the form qj = αj/n for some αj ∈ (0, n), for all j ∈ [k].
In Table 1, we give example values of αj and the resulting competitive ratios for different
values of k. We obtained these values by numerical optimization over a bounded interval.

We use F to denote the CDF, i.e., F (x) = Pr[Xi < x], for each i ∈ [n] and x ∈ [0, 1].
For the maximum over n i.i.d. draws, we obtain the CDF Fm(x) = (F (x))n = (Pr[Xi <

x])n =
∏

i(Pr[Xi < x]) = Pr[maxi Xi < x]. We denote the complementary CDF by
G(x) = Pr[Xi ≥ x] = 1 − F (x) and Gm(x) = Pr[maxi Xi ≥ x] = 1 − Fm(x). Since F is
continuous, threshold τj = G−1(qj) = F −1(1 − qj), i.e., G(τj) = qj and F (τj) = 1 − qj .
Similarly, Fm(τj) = (1 − qj)n and Gm(τj) = 1 − (1 − qj)n. We here restrict attention
to values of αj ∈ o(n), we will assume these are constants throughout. This implies
limn→∞ Gm(τj) = 1 − e−αj .
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Our analysis proceeds via stochastic dominance. For any given threshold t ≥ 0 we
compare the complementary CDF Gm(t) to the complementary CDF of our algorithm. We
denote the latter by A(t) = Pr[Xσ ≥ t], where σ is the box chosen by our algorithm. If
A(t) ≥ c · Gm(t) for all t ≥ 0, then the algorithm is c-competitive by stochastic dominance.

For any given t ∈ [0, ∞) let q = G(t) = 1 − F (t) and α = n · q. We will conduct
our analysis with respect to α ∈ [0, n] instead of t ∈ [0, ∞). We split [0, n] into intervals
Ij = [αj+1, αj ] for j = 0, . . . , k, where we use α0 = n and αk+1 = 0. Suppose we see a
positive test for αj . Then, between the positive test for αj−1 and the one for αj , assume
there are ℓj ≥ 0 negative tests.

Two Thresholds. We start by discussing an algorithm with k = 2 thresholds. Suppose
α ∈ I2. First, let’s assume we only have a positive test for t1 but not for t2. We call this
event E10. It happens with probability

Pr[E10] =
n−1∑
ℓ1=0

(1 − q1)ℓ1q1 · (1 − q2)n−1−ℓ1 = q1 · (1 − q2)n−1 ·
1 −

(
1−q1
1−q2

)n

1 − 1−q1
1−q2

= q1 · (1 − q2)n − (1 − q1)n

q1 − q2
= α1 ·

(
1 − α2

n

)n −
(
1 − α1

n

)n

α1 − α2
.

In this case, the algorithm selects the box that was tested positive for τ1. It has a value at
least t with probability q/q1 = α/α1.

Otherwise, we have a positive test for τ1 and τ2, which we call event E11. The event that
we have a positive test for τ1 (irrespective of what happens for τ2) is called E1. Clearly,

Pr[E11] = Pr[E1] − Pr[E10].

In case E11 happens, we select the box that tested positive for τ2. It has a value at least t

with probability q/q2 = α/α2.
Overall, for α ∈ I2 we see

A(α) = α

α1
Pr[E10] + α

α2
Pr[E11] = α ·

(
Pr[E10]

α1
+ Pr[E1] − Pr[E10]

α2

)
= α ·

(
Pr[E1]

α2
− (α1 − α2) Pr[E10]

α1α2

)
= α

α2
·
(

1 −
(

1 − α2

n

)n)
= c2(α) ·

(
1 −

(
1 − α

n

)n)
= c2(α) · Gm(α) .

Hence,

c2(α) = α

α2
·

1 −
(
1 − α2

n

)n

1 −
(
1 − α

n

)n ≥ lim
α→0

c2(α) =
1 −

(
1 − α2

n

)
α2

≥ 1 − e−α2

α2
,

since for every given n ≥ 1 and every α > 0, the ratio α/(1 − (1 − α/n)n) > 1, because
α ≥ 1 − (1 − α/n)n by concavity of the latter function.

Now for α ∈ I1, we consider the case with a positive test on τ1 but not on τ2. In this
case, the box has a value of at least t with probability q/q1 = α/α1. Alternatively, if we
see a positive test for τ1 and τ2, the algorithms selects a box with a value of at least t with
probability 1. Overall, for α ∈ I1

A(α) = α

α1
· Pr[E10] + Pr[E11] = Pr[E1] −

(
α1 − α

α1

)
· Pr[E10]
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= 1 −
(

1 − α1 − α

α1 − α2

) (
1 − α1

n

)n

− α1 − α

α1 − α2

(
1 − α2

n

)n

= c1(α) ·
(

1 −
(

1 − α

n

)n)
.

Since α ∈ [α2, α1] is a constant,

lim
n→∞

c1(α) = 1
1 − e−α

·
(

1 − e−α1 − (α1 − α)(e−α2 − e−α1)
α1 − α2

)
.

Finally, for α ∈ I0, we see that

A(α) = α − α1

n − α1
(1 − Pr[E1]) + Pr[E1] = α − α1

n − α1

(
1 − α1

n

)n

+
(

1 −
(

1 − α1

n

)n)
= c0(α) ·

(
1 −

(
1 − α

n

)n)
.

Thus,

c0(α) ≥
1 −

(
1 − α1

n

)n

1 −
(
1 − α

n

)n ≥ 1 − e−α1

1 − e−α
,

where the latter bound holds for any n ≥ 1 and any constant α. Indeed, when α ∈ ω(1), we
obtain a bound of 1 − e−α in the limit for n → ∞.

As a sanity check, observe that c1(α1) = c0(α1) = 1. Indeed, suppose we have a box with
value t ≥ τ1. Then either this box is tested positive for τ1, or some other box was tested
positive for τ1 before. In either case, the algorithm indeed selects a box of value at least
τ1. Similarly, observe that c2(α2) = 1 as well. Indeed, suppose we have a box with value
t ≥ τ2. Suppose (1) this box is tested positive for τ2. Then it is selected. Suppose (2) the
box is tested positive for τ1. Then it is selected, unless some later box is tested positive for
τ2. Either way, we eventually obtain a value of at least τ2. Finally, suppose (3) the box is
not tested at all. Then we have already selected a box of value at least τ2 before.

To obtain the best ratio, we strive to select constants 0 < α2 < α1 in order to

max
α1,α2

{min
α∈I2

c2(α), min
α∈I1

c1(α), min
α∈I0

c0(α)}.

For c2(α) and c0(α) we obtain fairly clear lower bounds, which even hold pointwise for
any n. It seems unpromising to obtain an insightful analytic formula for the minimum of
c1(α) as a function of α1 and α2. Instead, we numerically optimized parameters α1, α2
and used standard solver software to minimize c1(α). The lower bounds for c2 and c0
then amount to (1 − e−0.35932)/0.35932 ≥ 0.8400637 . . . and 1 − e1.83298 ≥ 0.8400564 . . ..
The minimum of limn→∞ c1(α) is located roughly at α∗ ≈ 0.832961265 . . . with a value for
c1(t) = 0.8400569 . . . For a plot of the ratios see Figure 1.

Along similar lines, we analyze the case with k = 3 thresholds in the full version, which
yields a ratio of at least 0.869 − o(1) (see Table 1). Based on similar calculations, we
also numerically optimized the case with k = 4, but we see only very slight improvements.
Intuitively, the probability to reach a state with positive tests for all k thresholds becomes
extremely small. Increasing this probability requires to decrease the value to be tested for in
the first k − 1 tests. However, the possibility to obtain an improvement in this way seems
to vanish very quickly as k grows larger. We conjecture that for all values of k, we cannot
significantly improve the competitive ratio beyond 0.869 as n → ∞. ◀
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Figure 1 Ratios c2, c1 and c0 in the limit for n → ∞ using α1 = 1.83298 and α2 = 0.35932.

Observe that the analysis of our algorithms is tight. Consider the value of α′ that yields
the minimum of all ci(α) in the respective intervals Ii. For a “golden nugget”-distribution,
where each Xi has value 1 with probability α′/n and 0 otherwise, the above calculations
become exact, and the analysis of the competitive ratio becomes tight. While, strictly
speaking, this golden-nugget distribution is discrete, it is straightfoward to approximate it
arbitrarily closely by a continuous distribution.

4 Discrete Distributions

Let us shift attention from a continuous distribution to a finite discrete distribution F . We
assume F is represented in straightforward form as a list of (value, probability) pairs. We
denote by m the number of distinct realizations, and we use v1 < v2 < . . . < vm to denote
the support of F .

Observe that w.l.o.g. we only need to test for these values vj . If we test for a threshold t

in between two consecutive vj < t ≤ vj+1, we obtain the same result by testing for t = vj+1
instead. As such, we restrict to tests for values in the support.

4.1 Testing Algorithms
We first observe that an optimal testing algorithm can be computed in polynomial time.
Moreover, we show that this algorithm yields a competitive ratio of 0.869 − o(1).

▶ Theorem 5. For finite discrete distributions, an optimal testing algorithm can be computed
by dynamic programming in polynomial time.

Proof. We use backwards induction. Consider the last test of box n. Clearly, given the
previously tested boxes 1, . . . , n − 1, we can restrict attention to the one with the highest
conditional expectation. We denote this value by V ∗

n−1. Since each box is tested for exactly
one of the m realizations, there are 2m different possibilities for V ∗

n−1. There are m possible
tests for box n. We can enumerate all the 2m2 combinations. For each value of V ∗

n−1, the
optimal test of box n is the one leads to the highest expected value of the chosen item.
Thus, to determine and describe the optimal decision for box n, we only need to consider 2m

options of V ∗
n−1, and for each option we record the best of the m possible tests for box n.

For the induction, let V ∗
i−1 and V ∗

i be the conditional expectation of the best tested
box before and after testing box i, resp. Suppose that for each possible value of V ∗

i , we
have computed an optimal testing strategy for subsequent boxes i + 1, . . . , n, along with the
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resulting expected value of Xσ. Now for box i, consider each of the 2m possible values for
V ∗

i−1. For each realization vk, we can determine the effect when we test box i for vk – i.e.,
the probability that V ∗

i = V ∗
i−1 (when the test on i implies the conditional expectation of i

is at most V ∗
i−1), as well as the probability that V ∗

i becomes any higher value (otherwise).
For the resulting V ∗

i , we inspect the value obtained by an optimal testing strategy for boxes
i + 1, . . . , n. This serves to find the test of box i resulting in the optimal expected value.

Overall, to determine and describe the optimal decision for box i, we need to consider 2m

options of V ∗
i−1, and for each option we determine the best of the m possible tests for box i

(using the results of the subsequent optimal testing strategy for boxes i + 1, . . . , n). Finally,
for box 1 V ∗

0 is undefined. At this point, we only need to find the best of the m possible tests
for box 1 (using the results of the subsequent optimal testing strategy for boxes 2, . . . , n).
This concludes the backwards induction.

We record for each possible value V ∗
i−1 the best threshold to test box i along with the

resulting expected value emerging from an optimal algorithm for boxes i + 1, . . . , n. Hence,
we can describe an optimal testing strategy using 2 · (1 + (n − 1) · 2m)) entries. This strategy
can be computed in polynomial time via dynamic programming as described above. ◀

At this point, it is unclear how to apply our algorithm from the previous section to finite
discrete distributions since F −1(1 − q) may not be defined for the relevant values of q. In
fact, we will show that the optimal algorithm in Theorem 5 achieves a competitive ratio of
at least 0.869 − o(1) for finite discrete distributions.

We consider the following different model for testing discrete distributions, called
probability testing. It can be viewed as the limit that emerges from approximating dis-
crete with continuous distributions arbitrarily close. Here a test requires an input value
q ∈ [0, 1]. It then returns whether or not the value v in the box lies in the top-q frac-
tion of probability mass of F . For a finite discrete distribution F , let k be such that∑m

j=k+1 Pr[v = vj ] < q ≤
∑m

j=k Pr[v = vj ]. Then the test is positive for v ∈ {vk+1, . . . , vm}
and negative for v ∈ {v1, . . . , vk−1}. For v = vk it yields a randomized outcome, i.e., positive
with probability pq =

(
q −

∑m
j=k+1 Pr[v = vj ]

)
/ Pr[v = vk] and negative otherwise. Hence,

the overall probability that box i is tested positive is exactly q.
Clearly, our algorithm from Section 3 can be implemented with probability testing and

obtains a competitive ratio of 0.8969 − o(1). Probability and threshold testing are equivalent
for continuous distributions, since there is a bijection between thresholds and values for q.
For finite discrete distributions we observe in Proposition 6 that any algorithm for probability
testing can be simulated using randomized threshold tests. We then show that randomized
tests are not beneficial, i.e., for any algorithm with randomized threshold tests, there is one
with deterministic tests performing at least as good. For a formal proof, see the full version.

▶ Proposition 6. If there is a c-competitive algorithm for probability testing, then there is a
c-competitive algorithm for threshold testing.

▶ Corollary 7. The optimal algorithm for finite discrete distributions is at least (0.869−o(1))-
competitive for threshold testing.

4.2 Impossibility
Complementing our results in the previous subsection, we proceed to show a constant upper
bound on the competitive ratio for n → ∞.

▶ Theorem 8. There exists no (1 − o(1))-competitive algorithm for threshold testing.
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Figure 2 The best-possible competitive ratio on the instance used in the proof of Theorem 8 as a
function of n.

To prove the theorem, we are going to construct a counter example that is a discrete
distribution, which carries over to the continuous case by the arguments given in Section 4.
We first observe that such a distribution needs to depend on n: Otherwise, the top realization
appears with constant probability in each box, and an algorithm simply testing for that
realization finds it with probability 1 − o(1). Furthermore, such a distribution needs to have
a support of cardinality at least 4: If the cardinality of the support is 3, it is w.l.o.g. exactly
3, and the algorithm can obtain max{X1, . . . , Xn} by testing for the middle realization and,
upon a positive test, testing for the top realization. If it finds a positive test on the top
realization, it clearly obtains max{X1, . . . , Xn} by choosing the corresponding box. If it
finds a positive test on the middle realization, the corresponding box is the only one that
can possibly contain the top realization, which the algorithm obtains by picking it, so it also
obtains max{X1, . . . , Xn}. In the final case, max{X1, . . . , Xn} is only the lowest realization,
which the algorithm will also obtain by choosing any box.

We consider boxes that contain a realization 3, 2, or 1 with probability 1/n each and
0 otherwise. Intuitively, any algorithm that does not always test for the value 1 before
encountering a positive test runs the risk of missing a value 1. Similarly, any algorithm that
does not always test for the value 2 afterwards and before encountering another positive test
runs the risk of missing a value 2. Such an algorithm, however, with constant probability,
gets into a situation in which it has encountered precisely two positive tests, specifically,
for the values 1 and 2. In that situation, it is clearly optimal to choose the box that has
been positively tested for the value 2. With a constant probability, the value of this box is,
however, equal to 2 while the one that has been tested positively for value 1 is equal to 3. The
conclusion is that the algorithm, in any case, loses a constant fraction of E[max{X1, . . . , Xn}].
In the full version, we present a formal version of this argument.

We have verified numerically (by solving the dynamic program from Theorem 5) that for
this distribution the achievable competitive ratio decreases in n in the interval n = 2, . . . , 1000.
For n = 1000, the optimal competitive ratio is ca. 0.9799 (computed with full precision). See
Figure 2 for the results.

5 Multiple Tests per Box

In this section, we consider a setting with n boxes and a budget of n threshold tests. Each
box can be tested an arbitrary number of times with different thresholds2 as long as there are
still tests available. We again assume continuous distributions and show the following result.

2 Recall that nature draws initially a single value Xi ∼ F inside each box i. All tests on the same box are
evaluated accordingly. The results of multiple tests on the same box are all consistent with the single
unknown Xi drawn upfront.
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▶ Theorem 9. There is an efficient (1 − o(1))-competitive algorithm for threshold testing
with multiple tests per box and a continuous distribution.

Proof. In the first step, our algorithm discards the last ⌈n2/3⌉ boxes, losing only a ⌈n2/3⌉/n

fraction of the value. The remaining ones are tested for the threshold F −1(1 − n−1/3). Let P

be the set of boxes that were tested positively. For each box i ∈ P , the algorithm next searches
the integers {0, . . . , ⌊n2/3⌋} to find the largest j such that the test for F −1(1 − n−1/3 + j/n)
is negative. Then3, F −1(1 − n−1/3 + j/n) < Xi ≤ F −1(1 − n−1/3 + (j + 1)/n). Using a
binary search, this requires at most ⌈2/3 · log n⌉ tests for each box i ∈ P . Using the result, we
say that box i is of type j. Since there are potentially up to n boxes in P , the algorithm may
well run out of tests during this process. Eventually, if the algorithm succeeds to determine
the type of each box in P , it picks a box from P with the highest type. If no such box exists,
it is not unique, or the algorithm ran out of tests before determining the type of each box in
P , it may choose an arbitrary box.

To analyze our algorithm, we fix any v ∈ [F −1(1 − n−1/3), F −1(1)). We denote by Mv

the event that max{X1, . . . , Xn} = v, and by Xσ the value obtained by the algorithm. Our
goal is to show that, whenever an optimal box has a high value v, the probability that we
choose an optimal box is

Pr[Xσ = v | Mv] = 1 − o(1). (1)

Now we see an optimal box with a high value with probability

Pr[max{X1, . . . , Xn} ≥ F −1(1 − n−1/3)] = 1 − (1 − n−1/3)n = 1 − o(1),

so proving Eq. (1) indeed suffices to prove the theorem. To show Eq. (1), we define two
additional events:

E1 is the event that |P | ≤ n1/2 (in particular, this implies that the algorithm does not
run out of tests for large-enough n),
E2 is the event that only a single box has the largest type.

Note that Pr[Xσ = v | Mv] ≥ Pr[E1 ∩ E2 | Mv] since our algorithm chooses the box with the
maximum value if both E1 and E2 occur. We finalize the argument by observing that

Pr[E1 ∩ E2 | Mv] = Pr[E1 | Mv] · Pr[E2 | Mv ∩ E1]

≥
(

1 − e− n1/3
3

)
·
(

1 − n−2/3

1 − n−1/3

)n1/2

= 1 − o(1).

For the inequality, we bound the first probability using a one-sided multiplicative Chernoff
bound with µ = n1/3 and factor 2. We bound the second probability by observing that,
conditioned on Mv, the probability that a single box other than that with realization v

has the same type is at most n−2/3/(1 − n−1/3). Here, n−2/3 is an upper bound on the
probability of having the same type, and 1−n−1/3 is a lower bound on the probability that an
independently drawn value is below v (using that v is a high value). The additional condition
on E1 does not increase the probability of E2. This shows Eq. (1) and thus completes the
proof. ◀

It is rather straightforward to apply the insights from Sec. 4 to show similar results
for testing with multiple tests per box and a finite discrete distribution. Our algorithm
in the proof of Theorem 9 can be cast as a sequential testing algorithm: It tests boxes

3 We use the convention F −1(x) = F −1(1) for x > 1.
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sequentially from box 1 to n − ⌈n2/3⌉. For each box i it applies tests to determine whether
i ∈ P or not, and then binary search the type of i (or aborts when it runs out of tests). For
finite discrete distributions, we can optimize over such sequential testing algorithms using
backwards induction, much like in the proof of Theorem 5. When considering box i, an
optimal decision about the next test can be found by relying on three additional parameters.
Apart from the best conditional expectation of a previous box V ∗

i−1, we also consider the
smallest realization for which we saw a positive test for i, the largest one for which we saw
a negative test for i, as well as the number of tests we applied so far. These parameters
sufficiently describe the current state of the system before applying the next test. Note
that there is only a polynomial number of combinations of these parameters that need to
be considered. Then the algorithm has up to m possible options for the next test of box i –
or m possible options for the first test of box i + 1, thereby concluding the testing of box i.
Hence, there are only polynomially many combinations that need to be considered to find
the optimal decision for the current test (assuming that an optimal testing algorithm for the
subsequent number of tests/boxes has already been computed via backwards induction).

We can also transfer the approximation guarantee for the algorithm from Theorem 9. We
apply the algorithm in the model with probability tests and interpret them as randomized
threshold tests. By applying the arguments of Proposition 6 to the sequential model with
multiple tests per box, we see that for every randomized threshold testing algorithm there is
a deterministic one that performs at least as good. Overall, this yields the following corollary.

▶ Corollary 10. For finite discrete distributions, an optimal sequential testing algorithm for
multiple tests per box can be computed by dynamic programming in polynomial time. It is at
least (1 − o(1))-competitive for threshold testing with multiple tests per box.

6 Conclusion

In this paper, we have initiated the study of threshold testing of i.i.d. random variables, a
probing model with partial revelation and binary feedback. For non-adaptive algorithms, the
model is essentially equivalent to the standard gambler’s problem, and optimal performance
is governed by the i.i.d. prophet inequality of approximately 0.745. For adaptive algorithms,
we obtain a testing algorithm with competitive ratio of 0.869. This significantly outperforms
0.745, proves that there is a substantial adaptivity gap, and reveals the structural difference
of the adaptive problem. Moreover, we show a constant upper bound on the ratio achievable
by any adaptive testing algorithm. In contrast, when we can (adaptively) apply multiple
tests to a single box, it is possible to achieve even a ratio of 1 − o(1).

There are many intriguing open problems arising from our work. Obviously, the current
upper and lower bounds for the i.i.d. model are not tight. More generally, a simple argument
similar to Observation 1 shows that free-order prophet inequalities [5] transfer directly to
non-adaptive threshold testing, even for non-i.i.d. boxes. It is an intriguing open problem
whether these guarantees can be strictly improved using an adaptive testing algorithm. Can
we obtain a ratio strictly larger than 0.745 also for non-i.i.d. threshold testing?

In addition, there are many combinatorial versions of the problem that deserve attention,
i.e., when the algorithm is allowed to select more than one box. Testing algorithms for, e.g.,
knapsack, matroid, or general downward-closed feasibility structures represent a natural and
important direction for future research.
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Abstract
In the Minimum Bisection problem input is a graph G and the goal is to partition the vertex set
into two parts A and B, such that ||A| − |B|| ≤ 1 and the number k of edges between A and B is
minimized. The problem is known to be NP-hard, and assuming the Unique Games Conjecture
even NP-hard to approximate within a constant factor [Khot and Vishnoi, J.ACM’15]. On the other
hand, a O(log n)-approximation algorithm [Räcke, STOC’08] and a parameterized algorithm [Cygan
et al., ACM Transactions on Algorithms’20] running in time kO(k)nO(1) is known.

The Minimum Bisection problem can be viewed as a clustering problem where edges represent
similarity and the task is to partition the vertices into two equally sized clusters while minimizing
the number of pairs of similar objects that end up in different clusters. Motivated by a number of
egregious examples of unfair bias in AI systems, many fundamental clustering problems have been
revisited and re-formulated to incorporate fairness constraints. In this paper we initiate the study of
the Minimum Bisection problem with fairness constraints. Here the input is a graph G, positive
integers c and k, a function χ : V (G) → {1, . . . , c} that assigns a color χ(v) to each vertex v in G,
and c integers r1, r2, · · · , rc. The goal is to partition the vertex set of G into two almost-equal sized
parts A and B with at most k edges between them, such that for each color i ∈ {1, . . . , c}, A has
exactly ri vertices of color i. Each color class corresponds to a group which we require the partition
(A, B) to treat fairly, and the constraints that A has exactly ri vertices of color i can be used to
encode that no group is over- or under-represented in either of the two clusters.

We first show that introducing fairness constraints appears to make the Minimum Bisection
problem qualitatively harder. Specifically we show that unless FPT=W[1] the problem admits no
f(c)nO(1) time algorithm even when k = 0. On the other hand, our main technical contribution
shows that is that this hardness result is simply a consequence of the very strict requirement that
each color class i has exactly ri vertices in A. In particular we give an f(k, c, ϵ)nO(1) time algorithm
that finds a balanced partition (A, B) with at most k edges between them, such that for each color
i ∈ [c], there are at most (1 ± ϵ)ri vertices of color i in A.

Our approximation algorithm is best viewed as a proof of concept that the technique introduced
by [Lampis, ICALP’18] for obtaining FPT-approximation algorithms for problems of bounded tree-
width or clique-width can be efficiently exploited even on graphs of unbounded width. The key
insight is that the technique of Lampis is applicable on tree decompositions with unbreakable bags
(as introduced in [Cygan et al., SIAM Journal on Computing’14]). An important ingredient of
our approximation scheme is a combinatorial result that may be of independent interest, namely
that for every k, every graph G admits a tree decomposition with adhesions of size at most O(k),
unbreakable bags, and logarithmic depth.
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1 Introduction

Clustering is one of the most fundamental problems in computer science. In a clustering
problem, we are typically interested in dividing the given collection of data points into a
group of clusters, such that the set of data points belonging to each cluster are more “similar”
to each other, as compared to the points belonging to other clusters. Depending on the
specific setting and application, there are a number of ways to model this abstract task
of clustering as a concrete mathematical problem. We refer the reader to surveys such as
[30, 27, 3] for a detailed background and literature on the topic.

In one such model of clustering, the input is represented as a simple, undirected graph,
and the existence of an edge between a pair of vertices denotes that the two vertices are
related to, or similar to, each other. For example, this is how one models social networks
as graphs [25] – the set of vertices corresponds to people, and an edge represents that the
two people are friends with each other. In this setting, the classical Minimum Bisection
problem can be thought of as a clustering problem [31, 7] – we are interested in finding
two size-balanced clusters of vertices, such that the number of edges going across the two
clusters is minimized. More formally, in Minimum Bisection problem, we are given a graph
G = (V, E) on n vertices, and a non-negative integer k, and the goal is to determine whether
there exists a balanced edge cut (A, B) of order k. Here, an edge cut (A, B) is a partition of
V (G) into two non-empty subsets A and B, an edge cut is balanced if ||A| − |B|| ≤ 1, and
the order of the cut (A, B) is the number of edges with one endpoint in A and the other
in B. The NP-completeness of Minimum Bisection has long been known [13], and it is
extensively studied from the perspective of approximation and parameterized algorithms.
Minimum Bisection admits a logarithmic approximation in polynomial time [26], and it is
hard to approximate within any constant factor, assuming the Unique Games Conjecture
[19]. In the realm of Parameterized Algorithms, one can solve the problem exactly in time
2O(k log k) · nO(1), i.e., it is Fixed-Parameter Tractable (FPT) parameterized by k [10, 9].

More recently, the notion of fairness has gained prominence in the literature of clustering
algorithms – and algorithm design in general. This is motivated from the fact that, often the
real-life data reflects unconscious biases, and unless the algorithm is explicitly required to
counteract these biases, the output of the algorithm may have real-life consequences that
are unfair ((see, e.g., [15, 24, 11]). Researchers have proposed different models of fairness
for the traditional center-based clustering problems, such as k-Median/Means/Center.
These models of fairness can be broadly classified into two types – individual fairness, and
group fairness. At a high level, individual fairness requires that the solution treats each of
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the individuals (a point) in a fair way, e.g., every point has a cluster-center “nearby” [6].
On the other hand, in the group fairness setting, the set of points is typically divided into
multiple colors, where each color represents, say a particular demographic (such as gender,
ethnicity etc.). In this setting, the fairness constraints are represented in terms of the colors
as a group. There are multiple notions of group fairness (see, e.g., [2, 6, 12, 22, 14, 18]), but
to the specific interest to us is the color-balanced clustering model, studied in [28, 17, 1].
Roughly speaking, in this setting we want the “local proportions” of all colors in every cluster
to be approximately equal to their “global proportions”. Inspired from this color-balanced
notion of fairness, study the following fair version of Minimum Bisection.

In this problem formulation the color classes i ∈ {1, . . . , c} are protected groups which
are required to be treated fairly by the clustering algorithm. The imposed fairness constraint
for group i is that, in the edge cut (A, B), the set A contains precisely ri vertices colored i.

Fair Bisection
Input: An instance (G, c, k, r◦, χ), where

G is an unweighted graph
c and k are positive integers
χ : V (G) → c is a coloring function on V (G) using at most c colors
r◦ = (r1, · · · , rc) is a c length tuple of positive integers

Question: Does there exist an edge cut (A, B) of G of order at most k having exactly
ri vertices of color i in A for each i ∈ [c].

We will say that an edge cut that satisfies the fairness constraints imposed by the tuple
r◦ is r◦-fair.

Thus, when ri is set to be precisely half of the number ci of vertices colored i an r◦-fair
edge cut must evenly split each color class across the two sides A and B.

Our Results

It is quite easy to see that the existing parameterized algorithms [9, 10] for Minimum
Bisection directly generalize to a nO(c)kO(k) time algorithm for Fair Bisection1. Therefore,
the first natural question is whether it is possible to eliminate the dependence on c in
the exponent of n in the running time. Our first result (Theorem 20) is that, assuming
FPT ̸= W[1], an f(c)nO(1) time algorithm is not possible even when k = 0. In fact, this
hardness result holds even in the special case where the vertices of each color are required to
be evenly split across both partitions (in particular, when 2ri = ci for every i).

Our main technical contribution (Theorem 11) is to show that this hardness result is
quite brittle. Indeed, the requirement that each color class i have exactly ri vertices in A

is probably much too strong in the color-balanced fairness setting. We are satisfied even if
the number of vertices of each color class is sufficiently close to the desired target number.
We will say that an edge cut (A, B) is (ϵ, r◦)-fair if A contains no more than ri(1 + ϵ) of
vertices colored i and B contains no more than (ci − ri)(1 + ϵ) vertices colored i. We show
(in Theorem 11) that there exists an algorithm that takes as input an instance (G, c, k, r◦, χ),
together with an ϵ > 0, runs in time f(ϵ, k, c)nO(1), and if G has a r◦-fair edge cut (Â, B̂) of
order at most k then the algorithm produces a (ϵ, r◦)-fair edge cut (A, B) of order at most k.

1 A formal proof of this claim is a corollary of our Theorem 11.
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Our Methods

The hardness result of Theorem 20 is a fairly straightforward parameterized reduction from
Multi-Dimensional Subset Sum parameterized by the dimension2, whose main purpose is
to put the parameterized approximation scheme of Theorem 11 in context. We only discuss
here the methods in the proof of of Theorem 11.

At a very high level the algorithm of Theorem 11 is the combination of two well-known
techniques in parameterized algorithms: dynamic programming over tree decompositions with
unbreakable bags (introduced by Cygan et al. [10]), and the geometric rounding technique of
Lampis [20] for parameterized approximation schemes for problems on graphs of bounded
tree-width or clique-width. The conceptual novelty in (and perhaps the most interesting
technical aspect of) our work is to realize that Lampis’ technique can be applied even to
dynamic programming algorithms over tree decompositions with unbounded width to yield
approximation schemes for parameterized problems on general graphs. Executing on this
vision requires a few non-trivial technical insights, which we will shortly highlight. However,
to describe these technical insights in more detail we first give a brief description of the two
techniques that we combine.

Lampis’ Geometric Rounding Technique

We first discuss how the technique of Lampis [20] applies to tree decompositions of bounded
width. A tree decomposition of a graph G is a pair (T, β) where T is a tree and β is a function
that assigns to each vertex t ∈ V (T ) a vertex set β(t) ⊆ V (G) (called a bag) in G. To be a
tree decomposition the pair (T, β) must satisfy the tree-decomposition axioms: (i) for every
v ∈ V (G) the set {t ∈ V (T ) : v ∈ β(t)} induces a non-empty and connected subgraph of
T , and (ii) for every edge uv ∈ E(G) there exists a t ∈ V (T ) such that {u, v} ⊆ β(t). The
width (or tree-width) of a decomposition (T, β) is defined as maxt∈V (T ) |β(t)| − 1.

Roughly speaking, Lampis’ technique considers dynamic programming (DP) algorithms
over a tree decomposition (T, β) of G of width k. In such an algorithm there is a DP-table for
every node t of the decomposition tree, and suppose that the entries in these tables are indexed
by vectors in {1, 2, . . . , n}d (for some integer d), where n is the number of vertices of G. To
decrease the size of the DP tables and thereby also the running time of the algorithm, one
“sparsifies” the DP table to only consider entries in Sd, where S =

{
⌊(1 + δ)i⌋ : i ≥ 0

}
. This

makes the size of the DP table upper bounded by (log1+δ n)O(d), at the cost of introducing
a multiplicative error of (1 + δ) in every round of the DP algorithm (since now vectors in
{1, 2, . . . , n}d are “approximated” by their closest vector in Sd). If the decomposition tree T

has depth O(log n) the dynamic program only needs O(log n) rounds, and so the total error
of the algorithm is a multiplicative factor of (1 + δ)O(log n). Setting δ = ϵ/ log2 n gives the
desired trade-off between DP table size (and therefore running time) and accuracy. Luckily,
every tree decomposition of width k can be turned into a tree decomposition of width at
most 3k + 2 and depth O(log n) [4] and so this approach works on all graphs of tree-width k.

Tree Decompositions with Unbreakable Bags

We now turn to the technique of Cygan et al. [10] for Minimum Bisection, namely dynamic
programming over tree decompositions with small adhesions and unbreakable bags. We again
need to define a few technical terms. An adhesion of a tree decomposition (T, β) of a graph

2 The hardness of Multi-Dimensional Subset Sum parameterized by the dimension is folklore, but we
were unable to find a reference, so for completeness we provide a proof.
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G is a set β(u) ∩ β(v) for an edge uv ∈ E(T ). The adhesion size of a tree-decomposition is
just the maximum size of an adhesion of the decomposition. A tree decomposition (T, β)
is said to have (q, k)-unbreakable bags if for every bag β(t) of the decomposition and every
edge-cut (A, B) of order at most k in G it holds that min(|A ∩ β(t)|, |B ∩ β(t)|) ≤ q.

The main engine behind the algorithm of Cygan et al. [10] (see also [9]) is a structural
theorem that for every graph G and integer k there exists a tree decomposition (T, β) of
G with adhesion size at most k and (k + 1, k)-unbreakable bags. This is coupled with an
observation that even though this tree decomposition might have unbounded tree-width, we
can still do dynamic programming over this tree decomposition, keeping a DP table for every
adhesion of the tree decomposition, rather than for every bag. However, while tree-width
based DP algorithms utilize a simple recurrence to calculate the DP table at a bag from the
tables of its children, Cygan et al. [10] need to turn to a clever “randomized contraction”
(see [8]) based algorithm to compute the DP table for an adhesion from the DP tables of its
children.

Combining Tree Decompositions with Unbreakable Bags and Geometric Rounding

As we mentioned eariler, the technique of Cygan et al. [10] for Minimum Bisection
generalizes in a relatively straightforward way, to give a f(k)nO(c) time algorithm for Fair
Bisection. Here we do dynamic programming over the tree decomposition of G with
adhesions of size k and (k + 1, k)-unbreakable bags. We have a DP table for every adhesion
that is indexed by a vector in [n]c (this vector describes partial solutions, where the ith

element of the vector is the number of vertices of color i that have so far been put on the A

side in this partial solution).
We want to apply Lampis’ geometric rounding technique and “sparsify” the DP table

to only consider entries in Sc, where S =
{

⌊(1 + δ)i⌋ : i ≥ 0
}

. There are a few technical
obstacles to realizing this plan, that we overcome. The most important one of them is that the
depth reduction theorem of Bodlaender and Hagerup [4] only applies to tree decompositions
of bounded width, therefore it is not immediate how to obtain a tree decomposition with
small adhesions, unbreakable bags and logarithmic depth. A closer inspection of the proof
sketch of Bodlaender and Hagerup [4] reveals that a tree decomposition with adhesions of size
k and (k + 1, k)-unbreakable bags can be turned into a tree decomposition with adhesions of
size O(k), and logarithmic depth, such that each bag of the new decomposition is the union
of a constant number of bags of the old one (the bags in this new decomposition do not
need to themselves be unbreakable). Nevertheless we prove that some careful modifications
to this tree decomposition are sufficient to obtain a tree decomposition with adhesions of
size O(k), logarithmic depth, and (O(k), k)-unbreakable bags (see Theorem 9). We believe
that Theorem 9 will be a useful tool for future applications of Lampis’ geometric rounding
technique to tree decompositions with unbreakable bags.

Organization of the Paper

We begin by defining the basic notions on graphs and tree decompositions in Section 2. In
Section 3, we prove Corollary 10 that shows how to obtain logarithmic-depth unbreakable
tree decompositions. Then, in Section 4, we use such a tree decomposition to design our
exact and approximate algorithms. In Section 5, we sketch the proof of our hardness result,
which shows that Fair Bisection is W[1]-hard parameterized by c even when k = 0. Finally,
in Section 6, we give concluding remarks and future directions. Proofs marked with ∗ can be
found in the full version of the paper.
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2 Preliminaries

For an integer k, we denote the set {1, 2, . . . , k} by [k]. For a graph G, an edge cut is a pair
A, B ⊆ V (G) such that A ∪ B = V (G) and A ∩ B = ∅. The order of an edge cut (A, B) is
|E(A, B)|, that is, the number of edges with one endpoint in A and the other in B. For a
subset X ⊆ V (G), let G \ X denote the graph G[V (G) \ X]. For an edge cut (A, B), and a
subset X ⊆ V (G), the cut induced on X by (A, B) is (A ∩ X, B ∩ X).

▶ Definition 1 (unbreakability). A set X ⊆ V (G) is (q, s)-edge-unbreakable if every edge cut
(A, B) of order at most s satisfies |A ∩ X| ≤ q or |B ∩ X| ≤ q.

For a rooted tree T and vertex t ∈ V (T ), we denote by Tt the subtree of T rooted at t. For a
rooted tree T and a non-root vertex t ∈ V (T ), we denote the parent of t by P(t). The depth
of a tree Tt is the maximum length of a t to leaf path in Tt. For a node t, we denote htT (t)
to be the the depth of the subtree Tt rooted at t in T .

Consider a tree decomposition (T, β) of a graph G. For every t ∈ V (T ) a set β(t) ⊆ V (G),
is called a bag. We can extend the function β to subsets of V (T ) in the natural way: for a
subset X ⊆ V (T ), β(X) :=

⋃
x∈X β(x). Another important notion that we need is of tree

decomposition where bags are “highly connected”, i.e., unbreakable. For a rooted tree T and
vertex v ∈ V (T ) we denote by Tv the subtree of T rooted at v. We refer to the vertices of T

as nodes.
For s, t ∈ V (T ) we say that s is a descendant of t or that t is an ancestor of s if t lies on

the unique path from s to the root; note that a node is both an ancestor and a descendant
of itself. By child(t), we denote the set of children of t in T . For any X ⊆ V (T ), define
GX := G[∪t∈Xβ(V (Tt))].

We define an adhesion of an edge e = (t, t0) ∈ E(T ) to be the set σ(e) := β(t) ∩ β(t0),
and an adhesion of t ∈ V (T ) to be σ(t) := σ(t,P(t)), or σ(t) = ∅ if the parent of t does not
exist, i.e., when t is the root of T . We define the following notation for convenience:

γ(t) :=
⋃

s: descendant of t

β(s)

α(t) := γ(t)\σ(t), Gt := G[γ(t)] − E(G[σ(t)]).
We say that a rooted tree decomposition (T, β) of G is compact if for every node t ∈ V (T )
for which α(t) ̸= ∅ we have that G[α(t)] is connected and NG(α(t)) = σ(t).

3 Obtaining a Low Depth Unbreakable Tree Decomposition

In this section we show that there exists a tree decomposition that has low (i.e., O(log n))
depth, small-size (i.e., O(k)) adhesions, and (O(k), k)-unbreakable bags. To this end, we
design a polynomial-time algorithm that, given a tree decomposition with small adhesions
and unbreakable bags, produces a tree decomposition with the aforementioned properties.
In the next section, we design a dynamic programming algorithm over such a low depth
decomposition to obtain an FPT approximation for Fair Bisection.

In our algorithm, we use the notion of a tree partition of a graph, which, informally,
captures the “tree-likeness” of a graph. Tree partitions were introduced by [29, 16], and are
easy to define.

▶ Definition 2 (Tree Partition). A tree partition of a graph G is a pair (T , τ) where T is a tree
and τ : V (G) → V (T ) is a function from V (G) to V (T ) such that for each e = (u, v) ∈ E(G)
either τ(u) = τ(v) or (τ(u), τ(v)) ∈ E(T ). A rooted tree partition (T , τ) with root r is the
tree partition (T , τ) where the tree T is a rooted tree with root r.
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We remark that we use calligraphic font (T ) to denote trees corresponding to Tree Partitions
to easily distinguish them from graphs that are trees. Observe that for a tree T , the pair
(T = T, τ) where τ(v) = v for each v ∈ T is a trivial tree partition of T . For our result we
only use tree partitions of trees. Given a tree decomposition (T, β) with small adhesions and
unbreakable bags, our goal in this section is to use (T, β) to obtain a tree decomposition
of bounded height without blowing up the adhesion size and unbreakability guarantees too
much. For this we first find a tree partition (T , τ) of T that satisfies additional properties,
such as logarithmic depth and for each t ∈ V (T ), it holds that |τ−1(t)| ≤ 4. Using this tree
partition, we obtain a tree decomposition (T , β1) whose underlying tree is T , and each bag
β1(t), t ∈ V (T ) is a union of at most 4 bags of (T, β); β1(t) =

⋃
x∈τ−1(t) β(x). This tree

decomposition already has bounded height, small adhesion size and each bag is a union of
at most four unbreakable bags of (T, β). From here with some extra work we obtain a tree
decomposition with unbreakable bags as well. For this we use other properties of (T , τ) to
modify (T , β1) to obtain our desired tree decomposition. As outlined above, for our result we
need tree partitions of a tree satisfying some properties. We now define such tree partitions
below and show how to find one in polynomial time.

▶ Definition 3 (Nice Tree Partition). A tree partition (T , τ) of a tree T is said to be a nice
tree partition if it satisfies the following properties:
1. T has depth at most ⌈log2 |V (T )|⌉
2. for each t ∈ V (T ), 1 < |τ−1(t)| ≤ 4.
3. for each t ∈ V (T ), T [Vt] is a subtree of T , where Vt =

⋃
x∈V (Tt) τ−1(x).

We now show how to find a nice tree partition of a tree in polynomial time. For this
we use a recursive procedure. The core idea in each recursive step is to map a balanced
separator b of the tree to the root of the tree partition. To ensure the connectivity properties
of a tree partition, we have a set M of marked vertices in the tree that are always mapped
to the root of the tree partition in addition to b. Then for each connected component in the
forest obtained by removing M ∪ {b} from the tree, we mark new vertices and recurse. We
need some extra work to make sure that every node in the tree partition is mapped to by
only a constant number of nodes in the tree. For this we ensure that in each recursive call
we mark only a few (≤ 2) new vertices.

▶ Lemma 4. Given a tree T on n vertices with root r, one can in polynomial time compute
a rooted nice tree partition (T , τ) of T with root rT such that τ(r) = rT .

Proof. We now design a procedure FindBalancedTP that takes as an argument a tree T ′,
and a non-empty set M ⊆ V (T ′) of size at most 2, and returns a rooted nice tree partition
(T ′, τ ′) of T ′ with root r′, such that M ⊆ τ ′−1(r′). We will invoke this procedure on the
input tree T with M = {r}, where r is the root of T to obtain a rooted nice tree partition
(T , τ) of T .

In the procedure FindBalancedTP(T ′, M) we carry out the following steps:
We find a balanced bisector b of T ′ and initialize M ′ = M ∪ {b}.
If all vertices in M ′ do not lie on a path in T ′, we add an extra vertex x to M ′. Let x

be the last common vertex on the path from m1 to m2 and the path from m1 to b in T .
Modify M ′ = M ′ ∪ {x}.
For each tree H in the forest T ′ \ M ′, we recursively call FindBalancedTP(H ,MH) where
MH = NT ′(M ′) ∩ V (H) is the set of neighbors of vertices in M ′ in H. Let (H, τH) be
the tree partition returned by this procedure call.

ESA 2023



63:8 Parameterized Complexity of Fair Bisection

We now construct a tree partition (T ′, τ ′) with root r′. We assign τ ′−1(r′) = M ′. Then
for each tree H in the forest T ′ \ M ′, we make H a subtree of T ′ by attaching the root of
H as a child to r′. Further for each t ∈ V (H) we assign τ ′−1(t) = τH(t).
We return (T ′, τ ′).

We now prove that for any tree T ′ with root r′, and any non-empty subset M ⊆ V (T ′)
with 0 < |M | ≤ 2, the procedure FindBalancedTP(T ′, M) returns a rooted nice tree partition
(T ′, τ ′) of T ′ with root r′ such that M ⊆ τ ′−1(r′). The proof is by induction.

Base Case |V (T ′)| = 1 or V (T ′) = M ′: In this case V (T ′) = {r′} and τ(r′) = M ′.
Observe that 0 < |M ′| ≤ 4. This is because the procedure is called with a non-empty set M

of size at most two. Then, the procedure initializes M ′ = M , and adds at most two other
vertices (b and x) in V (T ′) to M ′. Thus (T ′, τ ′) is a nice tree partition with root r′ and
M ⊆ τ ′−1(r′).

Now we prove the inductive case where V (T ′) has size i, i > 1 and V (T ′) ̸= M ′. For
this we assume the inductive hypothesis that the procedure returns a tree partition with the
desired properties for all trees H having less than i vertices and non-empty sets M ′ ⊆ V (H)
of size at most two.

Let H be a tree in the forest T ′ \ M ′. We now show that |V (H)| ≤ ⌈|V (T ′)|/2⌉ and
1 < |MH | ≤ 2. By construction M ′ contains the vertex b, a balanced bisector of T ′. Thus
V (H) has size at most ⌈|V (T ′)|/2⌉. |MH | > 1 since H contains at least one child of M ′ since
it is a tree in the forest T ′ \ M ′. To show |MH | ≤ 2, we first show there is a vertex s in M ′

such that in the forest T ′ \ {s} every vertex s′ ∈ M ′ \ {s} is contained in a different tree. If
all vertices in M ∪ {b} do not lie on a path in T ′, then s is just the vertex x we added to M ′

in the second step of the procedure. If the vertices of M ∪ {b} lie on a path P in T ′ then
M ′ = M ∪ {b}. In this case if |M ′| ≤ 2, then s is any vertex in M ′. On the other hand if
|M ′| = 3, then s is the second vertex from M ′ in the path P . Due to the property of s, H

may contain a child of s and a child of one other s′ ∈ M ′ \ {s}. Thus |MH | ≤ 2.
Since H is a tree with |V (H)| ≤ ⌈|V (T ′)|/2⌉ and 1 < |MH | ≤ 2, by induction the tree

partition (H, τH) returned by the call to the procedure FindBalancedTP(H,MH) is a nice
tree partition with root rH and MH ⊆ τ−1

H (rH).
We now show that (T , τ ′) is a rooted tree partition of T ′ with root r′. First we show

that each vertex v ∈ T is mapped to exactly one vertex t ∈ T by τ ′. If v ∈ M ′, then τ(v)
is mapped to r′. If v ∈ H, H ∈ T ′ \ M ′, then since (H, τH) is a rooted tree partition of
H, τ(v) = τH(v) by construction. Next we show that each edge (x, y) ∈ T ′ satisfies either
τ ′(x) = τ ′(y) or (τ ′(x), τ ′(y)) ∈ E(T ), by considering three cases. (i) If x, y ∈ M ′, then
this is trivially true. (ii) If x, y /∈ M ′ then x, y must belong to some tree H ∈ T ′ \ M ′ and
thus by induction (τ ′(x) = τH(x), τ ′(y) = τH(y)) ∈ E(T ). (iii) If x ∈ M ′ and y /∈ M ′, by
construction, τ(x) = r′ and y ∈ MH for some H ∈ T ′ \ M ′. Since MH ⊆ τ−1

H (rH) and rH is
a child of r′ in T ′, (τ ′(x) = r, τ ′(y) = rH) ∈ E(T ).

M ⊆ τ ′−1(r′) just by construction. We now prove properties (1) − (4) in Definition 3
to show that (T ′, τ ′) is a nice tree partition. Recall that for each H ∈ T ′ \ M ′, H is a
subtree of T ′ with rH being a child of r′ in T ′. Then, since |V (H)| ≤ |V (T )|

2 , by inductive
hypothesis, H has depth at most ⌈log2(|V (T ′)|/2)⌉ = ⌈log2(|V (T ′)|)⌉ − 1. Therefore, T ′ has
depth ⌈log2 |V (T ′)|⌉, since the addition of the root r′ increases the depth by 1. For each
t′ ∈ V (T ′), 1 < |τ ′−1(t′)| ≤ 4 since 1 < |τ ′−1(r′)| ≤ 4 and for each H ∈ T ′ \ M ′ and for
each t ∈ V (H), 1 < |τ−1

H (t)| ≤ 4. For each t′ ∈ V (T ′), T ′[Vt′ ] is a subtree of T ′, where
Vt′ =

⋃
x∈V (T ′

t′ ) τ ′−1(x) because for each H ∈ T ′ \ M ′ and t ∈ V (H), H[Vt] is a subtree of
H, where Vt =

⋃
x∈V (Ht) τ−1

H (x) and H is subtree of T ′. This completes the proof. ◀
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Figure 1 Left: Tree decomposition (T, β) with bags colored for easy understanding. Right: tree
decomposition (T , β1) that is constructed using a tree partition (T , τ). The bags in (T, β) are
mapped according to τ to (T , β1). The bags in τ−1(t), t ∈ T can overlap as demonstrated by bags
3, 7, 10 but their overlap is small and contained in YT .

Let (T, β) be a rooted tree decomposition of a graph G with root r, (q, k)-unbreakable
bags and adhesions of size at most k. Further let (T , τ) be a rooted nice tree partition
of T with root rT as provided by Lemma 4. We now show that we can obtain a natural
rooted tree decomposition (T , β1) of G where the tree in the decomposition is T . Here
β1 : V (T ) → 2V (G) and β1(t) =

⋃
x∈τ−1(t) β(x). See Figure 1 for an example of (T , β1).

From now on we fix G, (T, β), (T , τ), and β1 for the rest of the section. We remark that
to prove (T , β1) is a tree decomposition we will not need the nice properties of (T , τ) nor
the properties of the bags and adhesions in (T, β). We will later use them to deduce some
helpful structural properties of (T , β1). Figure 1 is the accompanying figure for the proof of
the following lemma.

▶ Lemma 5 (∗). The pair (T , β1) is a tree decomposition of G.

Observe that since (T , τ) is a nice tree partition of T , the tree decomposition (T , β1) has
depth at most ⌈log2 |V (G)|⌉ and each of its bags is a union of at most four bags of (T, β).
We now prove a few other useful properties of (T , β1) that will help us design our desired
tree decomposition.

▶ Lemma 6. There exists a function γ : V (T ) → V (T ), and a set Yt ⊆ β1(t) for each node
t ∈ V (T ), that satisfy, for each node t ∈ V (T ), the following properties:
1. |Yt| ≤ 8k

2. If t is not the root rT then β1(P(t)) ∩ β1(t) ⊆ Yt

3. for each distinct x, y ∈ τ−1(t), β(x) ∩ β(j) ⊆ Yt

4. for each child tc of t in T , it holds that t = τ(γ(tc)) and β1(tc) ∩ β1(t) ⊆ Yt ∪ β(γ(tc))
Furthermore, γ and the sets Yt for each t ∈ V (T ) can be computed in polynomial time.

Proof. For e = (x, x′) ∈ E(T ), let σ(e) = β(x) ∩ β(x′) be the adhesion of edge e in (T, β).
For rT , let TrT =

⋃
x∈τ−1(rT ) σ((x,P(x))) and γ(rT ) = r. For t ∈ V (T ), t ̸= rT , let Et =

{e : e = (x, y) ∈ E(T ), x ∈ τ−1(P(t)), y ∈ τ−1(t)}. Then let Yt =
⋃

x∈τ−1(rT ) σ((x,P(x))) ∪⋃
e∈ET

σ(e).
For each x in τ−1(P(t)), there exists at most one y ∈ τ−1(t) such that (x, y) ∈ E(T ).

This is because T [Vt] is connected, where t =
⋃

x∈V (Tt) τ−1(x). If x has an edge to two
vertices in τ(t), then there would be a cycle in T . Thus, |Et| ≤ 4. Further since T is from a
nice tree partition, |τ−1(t)| ≤ 4|. Therefore |Yt| ≤ 8k for each t ∈ V (T ).
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≤ 8k
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Figure 2 This shows the final tree decomposition (T ∗, β∗) constructed using (T, β) and (T , β1)
as shown in Fig 1. (T ∗, β∗) is our desired tree decomposition with low depth, unbreakable bags and
small adhesions. Recall that, V (T ∗) = V (T ) ∪ V (T ) and E(T ∗) = {(τ(x), x) : x ∈ T } ∪ {(γ(t), t) :
t ∈ T \ {rT }}.

For t ̸= rT , t ∈ V (T ). Since (T, β) is a tree decomposition and Et are the only set of edges
in T between vertices in τ−1(t) and τ−1(P(t)). Further since (T , β1) is a tree decomposition
with β1(t) =

⋃
x∈τ−1(t) β(x), β1(P(t)) ∩ β1(t) ⊆ Yt.

Recall that (T, β) is a tree decomposition. Therefore, for any two nodes x, y ∈ V (T ),
consider a vertex v ∈ β(x)∩β(y). Note that v must belong to every bag of the node appearing
on the unique x to y path in T . Let z ∈ V (T ) be the least common ancestor of x and y –
note that z may be equal to x or y or neither. Suppose z ̸∈ {x, y}. Then, v must appear
in β(x) ∩ β(P(x)) = σ(x,P(x)), as well as in σ(y,P(y)). Otherwise, if z = x (w.l.o.g.), then
v ∈ σ(y,P(y)). Since Yt ⊇ σ(x,P(x)) ∪ σ(y,P(y)), we get the third property.

Let tc ∈ V (T ), tc ̸= rT . Further let t = P(tc) in T . We now show that for all but at
most one vertex x ∈ τ−1(t), β1(tc) ∩ β(x) ⊆ Yt. If for all x ∈ τ−1, β1(tc) ∩ β(x) ⊆ Yt then
we assign γ(tc) = y for some y ∈ τ−1. In this case, property 4 directly holds. Otherwise
there is one vertex x ∈ τ−1(t) such that β1(tc) ∩ β(x) is not a subset of Yt, then we assign
γ(tc) = x. Here too, property 4 holds.

Now we show that for all but at most one vertex x ∈ τ−1(t), β1(tc) ∩ β(x) ⊆ Yt. Since T
is a nice tree partition, T [Vtc ] is a subtree of T , where Vtc =

⋃
x∈V (Ttc ) τ−1(x). Next Vtc does

not contain rT because tc ̸= rT and τ(rt) = rT . Further Vtc
is tree in the forest T \ τ−1(t).

Every vertex in τ−1(t) has at most one neighbor in Vtc
otherwise it will form a cycle. Since

T is a rooted tree there is at most one node x ∈ τ−1(t) whose neighbor in Vtc is not an
ancestor (or a parent) of x. Thus for all others β(x) ∩ β1(tc) ⊆ σ(x,P(x)) ⊆ YT . ◀

Let γ : V (T ) → V (T ) and Yt ⊆ β1(t) for each node t ∈ T be function and sets given by
Lemma 6. We now define a pair (T ∗, β∗) based on T, T , γ and Yt that we will prove to be a
tree decomposition of G having all our desired properties including unbreakable bags.

▶ Definition 7 ((T ∗, β∗)). Let T ∗ be a graph with V (T ∗) = V (T ) ∪ V (T ) and E(T ∗) =
{(τ(x), x) : x ∈ T} ∪ {(γ(t), t) : t ∈ T \ {rT }}. Also let β∗ : V (T ∗) → 2V (G) be a function
with β∗(t) = Yt, for t ∈ T and β∗(x) = Yτ(x) ∪ β(x) for x ∈ T .

In the following, we show that (T ∗, β∗) is a tree decomposition of G (see Figure 2).

▶ Lemma 8 (∗). (T ∗, β∗) is a rooted tree decomposition of G. Further (T ∗, β∗) satisfies the
following properties:
1. every adhesion of (T ∗, β∗) is of size at most 8k

2. every bag of (T ∗, β∗) is (q + 8k, k)-unbreakable in G.
3. T ∗ has depth at most 2⌈log2 |V (G)|⌉
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We are now ready to prove the main theorem of this section.

▶ Theorem 9. There exists a polynomial-time algorithm that takes input an n-vertex graph
G and positive integers k and q, and a rooted tree decomposition (T, β) of G satisfying the
following properties:
1. every adhesion of (T, β) is of size at most k

2. every bag of (T, β) is (q, k)-unbreakable in G

and finds a compact tree decomposition (T ′, β′) of G satisfying the following properties:
1. every adhesion of (T ′, β′) is of size at most 8k

2. every bag of (T ′, β′) is (q + 8k, k)-unbreakable in G.
3. T ′ has depth at most 2⌈log2 n⌉.

Proof. Let (T, β) be the input tree decomposition of G. We first compute a nice tree partition
(T , τ) of T using Lemma 4. Then we obtain the tree decomposition (T , β1) of G where
β1 : V (G) → V (T ) and β1(t) =

⋃
x∈τ−1(t) β(x) – it is a tree decomposition by Lemma 5.

Let β∗ : V (T ∗) → 2V (G) be a function with β∗(t) = Yt, for t ∈ T and β∗(x) = Yτ(x) ∪β(x)
for x ∈ T . We compute the tree decomposition (T ∗, β∗) with V (T ∗) = V (T ) ∪ V (T ) and
E(T ∗) = {(τ(x), x) : x ∈ T} ∪ {(γ(t), t) : t ∈ T \ {rT }}. By Lemma 8 it satisfies all our
required properties except compactness. We can in polynomial time obtain a compact tree
decomposition (T ′, β′) whose each bag is a subset of some bag of (T ∗, β∗) and whose height
is the same as T ∗ [5]. Thus the tree decomposition (T ′, β′) will satisfy all our required
properties. ◀

The following corollary directly follows from Theorem 9, and a known result ([9]) that
outputs a tree decomposition of a graph satisfying the premise of Corollary 10 in time
2O(k log k) · nO(1).

▶ Corollary 10. Given an n-vertex graph G and an integer k, one can in time 2O(k log k)nO(1)

compute a rooted compact tree decomposition (T, β) of G such that:
1. Every adhesion of (T, β) is of size at most 8k

2. Every bag of (T, β) is (9k, k)-unbreakable in G

3. T has depth at most 2⌈log2 n⌉

4 Exact and Approximation algorithms

Let (G, c, k, r◦, χ) be an instance of Fair Bisection and let n = |V (G)|. We start by
invoking the algorithm of Theorem 10 with G and k to obtain a rooted compact tree
decomposition (T, β) of G with root r, having (9k, k)-edge-unbreakable bags and adhesions of
size at most 8k. This takes time 2O(k log k)nO(1). Recall that an edge cut (A, B) is (ϵ, r◦)-fair
if A and B contain no more than ri(1 + ϵ) and (ci − ri)(1 + ϵ) vertices respectively.

▶ Theorem 11. Given an instance (G, c, k, r◦, χ) of Fair Bisection and ϵ > 0 there exists
an algorithm that in time 2O(k log k) ·

(
c
ϵ

)O(c) · nO(1) finds an (ϵ, r◦)-fair edge cut of G if one
exists, else returns no.

Given a subset S ⊆ V (G), we use χ◦(S) to denote the c length tuple where the ith entry is
the number of vertices v in S having color i, i.e. χ(v) = i. We remark that we use ◦ to denote
tuples of integers of length c. Further we use operators such as +, −, scalar multiplication,
and ⌈⌉ on tuples, which perform the respective operations on each entry in the tuple(s).
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For a node t ∈ V (T ) recall that γ(t) =
⋃

s: descendant of t β(s), α(t) = γ(t)\σ(t), Gt =
G[γ(t)] − E(G[σ(t)]). We perform bottom-up dynamic programming on (T, β). For each
node t ∈ V (T ), we first define a Boolean function ft : {0, · · · , k} × 2σ(t) × {0, · · · , n}c ×
{0, · · · , n}c → {True, False}. For each integer w ∈ {0, · · · , k}, subset At ⊆ σ(t), and c length
tuples a◦ and b◦ with a◦, b◦ ∈ {0, · · · , n}c, we define the following.

▶ Definition 12. ft(w, At, a◦, b◦) = True if there exists an edge cut (A, B) of Gt that satisfies
the following properties: (1) (A, B) has order at most w, (2) A∩σ(t) = At, (3) χ◦(A∩α(t)) =
a◦, and (4) χ◦(B ∩ α(t)) = b◦. If such a cut does not exist, ft(w, At, a◦, b◦) = False. Further
if ft(w, At, a◦, b◦) = True, we say an edge cut (A, B) of Gt that satisfies properties 1 − 4
realizes ft(w, At, a◦, b◦).

From the definition of ft one can make the following observation.

▶ Observation 13. (G, c, k, r◦, χ) is a yes-instance to Fair Bisection if and only if for
fr(k, ∅, r◦, c − r◦) = True, where r is the root of T .

In order to reduce the size of the domain of f (and hence the running time), we work with
the reduced domain D =

{
(1 + δ)i : i ≥ 0

}
. This will approximate the number of vertices of

each color at either side of the cut to the nearest power of 1 + δ, where δ > 0 is a parameter
whose value will be fixed later.

Let Ct be the set of all possible edge-cuts (A, B) of Gt. To compute ft we have a table
Mt : {0, · · · , k} × 2σ(t) × Dc × Dc → {Ct ∪ ⊥} that satisfies properties Mt → ft and ft → Mt

(defined below in Definition 14 and 16). Mt will help us to approximately obtain ft. Let
z ≥ 0 be a sufficiently large constant; for example, z = 10 suffices. We have Definitions 14
and 16 that will be crucial towards proving the correctness of the approximation algorithm.

▶ Definition 14 (Property Mt → ft). If Mt(w, At, a◦, b◦) ̸= ⊥ then ∃ x◦ ∈ {0, · · · , n} and
y◦ ∈ {0, · · · , n} such that:

ft(w, At, x◦, y◦) = True and Mt(w, At, a◦, b◦) is an edge-cut that realizes ft(w, At, x◦, y◦)
a◦ ≤ x◦ ≤ (1 + δ)z·ht(t) log2 n · a◦

b◦ ≤ y◦ ≤ (1 + δ)z·ht(t) log2 n · b◦

▶ Definition 15 (Global-feasible edge cut). An edge cut (A, B) is global-feasible if there exists
an edge cut (A′, B′) of G having order at most k which induces the cut (A, B) on A ∪ B.

▶ Definition 16 (Property ft → Mt). If ft(w, At, x◦, y◦) = True and there is a global-feasible
edge cut (A, B) of Gt that realizes it then ∃ a◦ ∈ Dc and b◦ ∈ Dc such that:

Mt(w, At, a◦, b◦) ̸= ⊥
a◦ ≤ x◦ ≤ (1 + δ)z·ht(t) log2 n · a◦

b◦ ≤ y◦ ≤ (1 + δ)z·ht(t) log2 n · b◦

▶ Definition 17 (Good Mt). Mt is good if it satisfies properties Mt → ft and ft → Mt.

▶ Lemma 18. For each ϵ > 0 and δ = ϵ
2z log3 n

, if fr(k, ϕ, r◦, c◦ − r◦) = True and Mr is good,
then ∃ a◦, b◦ ∈ Dc such that Mr(k, ϕ, a◦, b◦) is a (ϵ, r◦)-fair edge cut of G.

Proof. We first note that, if δ := ϵ
2z log3 n

, then (1+δ)z·log3 n ≤ 1+ϵ. This is because ln(1+ϵ) ≥
ϵ

1+ϵ ≥ ϵ
2 , since ϵ ∈ (0, 1), which implies that (1 + δ)z·log3 n ≤ exp

(
ϵ

2z log3 n
· z log3 n

)
≤

exp
(

ln(1+ϵ)
z log3 n

· z log3 n
)

= 1 + ϵ. Furthermore, log1+δ n = (log n/ϵ)O(1).
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Let fr(k, ϕ, r◦, c◦ − r◦) = True and Mr satisfy properties Mr → fr and fr → Mr.
Since ht(T ) = log n, by the previous claim (1 + δ)z·ht(t) log2 n ≤ 1 + ϵ. So by property
fr → Mr, ∃ a◦, b◦ ∈ Dc such that: (1) Mr(k, ϕ, a◦, b◦) ̸= ⊥, (2) a◦ ≤ r◦ ≤ (1 + ϵ) · a◦, and
b◦ ≤ c◦ − r◦ ≤ (1 + ϵ) · b◦.

Further by property Mr → fr, since Mr(k, ϕ, a◦, b◦) ̸= ⊥, ∃ x◦, y◦ ∈ {0, · · · , n} such that,
(1) fr(k, ϕ, x◦, y◦) = True and Mr(k, ϕ, a◦, b◦) is an edge-cut that realizes fr(k, ϕ, x◦, y◦), (2)
a◦ ≤ x◦ ≤ (1 + ϵ) · a◦ ≤ (1 + ϵ) · r◦, and (3) b◦ ≤ y◦ ≤ (1 + ϵ) · b◦ ≤ (1 + ϵ) · (r◦ − c◦). Thus,
Mr(k, ϕ, a◦, b◦) is a (ϵ, r◦)-fair edge-cut of G. This completes our proof. ◀

Lemma 18 shows us that computing a good table M efficiently is sufficient for obtaining
our final approximation. We now state as a theorem that we can compute a good Mt

assuming a good Mt′ has been computed for each t′ ∈ child(t).

▶ Lemma 19 (∗). There exists an algorithm that takes as input t ∈ V (T ), δ > 0, (T, β), and a
good Mt′ for each t′ ∈ child(t) and computes a good Mt in time 2O(k log k)(log1+δ n)O(c)nO(1).

Assuming Lemma 19 and Lemma 18, the correctness of our algorithm follows. Setting δ

as in Lemma 18, we obtain our desired runtime thus proving Theorem 11.

Proof of Theorem 11. Let δ := ϵ
2z log3 n

. In our algorithm we compute M by computing
good Mt using Lemma 19 for each t ∈ V (T ), bottom up, starting from leaves of T to root of
T . We finally go over each a◦, b◦ ∈ Dc and output a cut Mr(k, ϕ, a◦, b◦) that is a (ϵ, r◦)-fair
edge cut of G if one exists.

The correctness follows directly from the definition of f and Lemma 18. The time taken by
our algorithm is equal the size of domain of M times the time taken to compute each entry in
M . The size of the domain of M is at most 2O(k)(log1+δ n)O(c)nO(1) because |D| ≤ log1+δ n

and all adhesions in (T, β) have size at most 8k. The time taken to compute each entry in
M is 2O(k log k)(log1+δ n)O(c)nO(1) by Lemma 19.

Using log1+δ n = (log n/ϵ)O(1) and a standard case analysis on whether c ≤ log n
log log n ,

it follows that the total time taken is 2O(k log k)(log1+δ n)O(c)nO(1) ≤ 2O(k log k) (
c
ϵ

)O(c) ·
nO(1). ◀

Computing Mt: A sketch of proof of Lemma 19

In particular, we design an algorithm that takes as input a graph G, the tree decomposition
(T, β) and a node t of T , together with dynamic programming tables Mt′ for every child
t′ of t, and outputs the appropriate dynamic programming table Mt (which is good) for t.
This algorithm is an adaptation of a similar step performed by Cygan et al. [10] in their
algorithm for the Minimum Bisection problem. The algorithm of Cygan et al. [10] proceeds
by a random coloring step, followed by a “knapsack”-like dynamic programming algorithm.
Our algorithm proceeds in a similar manner, but faces the following key difficulty: in order
to keep time and space bounded by f(k, c, ϵ)nO(1) we can only store approximate values in
the knapsack dynamic programming table (the table satisfies soundness and completeness
properties similar to Definition 17). Therefore, after computing each entry of the table (from
previous entries) we need to perform a rounding step that introduces a (1 + ( ϵ

log n )O(1))
multiplicative factor in the error bound. The standard way of solving Knapsack involves
considering each item in the input one by one, however this would lead to the rounding
error possibly accumulating and getting out of hand. We overcome this by organizing the
dynamic program in a complete binary tree. That is, split the items in two equal sized
groups, compute dynamic programming tables for the two groups recursively, and combine
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the dynamic programming tables to the two halves to a dynamic programming for all the
items. This ensures that the total error is upper bounded by a multiplicative factor of
(1 + ( ϵ

log n )O(1))O(log3 n) = 1 + O(ϵ).

5 Hardness

Here, we sketch the proof of our result that establishes W[1]-hardness of Fair Bisection.
To this end, we first consider the following problem, called Multi-Dimensional Subset
Sum. In this problem, we are given an instance (V, T ), where V = {V1, . . . , Vn}, such that
each Vi ∈ V is a d-dimensional vector, i.e., Vi ∈ Zd

≥0; and T ∈ Zd
≥0 is the d-dimensional

target vector. The task is to determine whether there exists a subset U ⊆ V such that∑
Vi∈U Vi = T?
Although it is folklore that Multi-Dimensional Subset Sum is W[1]-hard parameterized

by the dimension d, we are unable to find a reference for this result. Thus, we give a reduction
from Binary Constrainted Satisfaction Problem to MDSS; the W[1]-hardness of
the former problem was established in [23, 21]. In fact, our reduction shows that MDSS
is W[1]-hard even when the integer entries in each vector are bounded by a polynomial in
n. As the first step of our reduction, given an instance (V, T ) of MDSS, we reduce it to
Multi-Dimensional Partition (MDP), where the target vector T is exactly half of the
sum of entries along each dimension. Now, for each vector Vi ∈ V , we create a subset Ui of
vertices, which contains exactly Vi(j) many vertices of color 1 ≤ j ≤ d. Then, we arbitrarily
choose a vertex in Ui and connect the rest of the vertices in Ui to it, making a connected
component a star. Proceeding this way for each vector Vi, we obtain a graph G that is a
disjoint union of n stars on Ui’s, with each Ui containing at most polynomially many vertices
of each color. It is straightforward to see the equivalence between the instance (V, T ) of
MDP, and the resulting instance of Fair Bisection, with the cut-size k being zero. Thus,
we conclude with the following theorem, whose formal proof can be found in the full version.

▶ Theorem 20. Fair Bisection is W[1]-hard parameterized by the number of colors c, even
when k, the cut-size is zero.

6 Conclusion

In this paper, we initiated the study of Fair Bisection from the perspective of parameterized
algorithms. We showed that the problem is W[1]-hard parameterized by the number of
colors c, even when k = 0; thus, we cannot hope to generalize the FPT algorithm to Fair
Bisection with a running time of the form f(k, c) · nO(1). On the other hand, the known
2O(k log k) · nO(1) algorithm for Minimum Bisection ([9, 10]) extends to Fair Bisection
in a straightforward manner with running time 2O(k log k) · nO(c). Our main result is that
Fair Bisection admits an FPT-approximation algorithm that finds an (ϵ, r)-fair bisection in
time 2O(k log k) ·

(
c
ϵ

)O(c) · nO(1). In fact, by setting ϵ = 1/(2n), we can obtain the previously
mentioned exact algorithm as a corollary.

We note that our approximation algorithm also works in the setting where a vertex can
belong to multiple color classes. Also, our technique can be extended to Fair q-section
problem, where we want to partition the vertex set into q parts such that (i) at most k edges
with endpoints in different parts, and (ii) each part has proportional representation from
each color – here, the algorithm will have an XP dependence on q.

Our main conceptual contribution is the observation that it is possible to design paramet-
erized approximation algorithms by applying the technique of Lampis [20] to design DP over
tree decompositions with unbreakable bags. Towards this goal we designed an algorithm that
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given a graph G and integer k computes a (9k, k)-unbreakable tree decomposition of G with
logaritmic depth and adhesions of size at most 8k in time 2O(k log k)nO(1). We expect that
this will be a useful tool for obtaining parameterized approximation algorithms for other
problems by using Lampis [20]-style dynamic programming over tree decompositions with
unbreakable bags.
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Abstract
Boosting is a general method to convert a weak learner (which generates hypotheses that are just
slightly better than random) into a strong learner (which generates hypotheses that are much
better than random). Recently, Arunachalam and Maity [5] gave the first quantum improvement
for boosting, by combining Freund and Schapire’s AdaBoost algorithm with a quantum algorithm
for approximate counting. Their booster is faster than classical boosting as a function of the
VC-dimension of the weak learner’s hypothesis class, but worse as a function of the quality of the
weak learner. In this paper we give a substantially faster and simpler quantum boosting algorithm,
based on Servedio’s SmoothBoost algorithm [22].
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1 Introduction

1.1 Boosting
There has been tremendous growth in machine learning research and applications, both
in practice (applying all sorts of methods on all sorts of data and seeing what works well)
and in theory (computational learning theory). However, not very many ideas generated in
theoretical machine learning have had a large impact on machine learning practice. One
of the exceptions is boosting, which is a simple, general, and widely applicable method to
improve the generalization error of a given learning method, i.e., to convert a weak learner
into a strong learner.

The set-up here is binary classification: we are trying to predict binary labels y from
points x ∈ X . A typical case would be X = {0, 1}n. We are given m labeled examples
(x1, y1), . . . , (xm, ym) ∈ X ×{−1, 1} where the xis are independent and identically distributed
(i.i.d.) according to some unknown distribution D, and the binary labels are determined by
some unknown target function f : X → {−1, 1} that we are trying to learn, i.e., yi = f(xi). A
weak learnerW is an algorithm that can be fed a number of examples according to a specified
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distribution D (not to be confused with the unknown data-generating distribution D) over
the m examples of the given sample, and that is then promised to generate a hypothesis
h : X → {−1, 1} that is slightly better than random w.r.t. that D:

Pr
x∼D

[h(x) ̸= f(x)] ≤ 1/2− γ.

Here γ ∈ (0, 1/2) is a small but positive number that gives the quality of the weak learner.
We denote the “cost” (in time complexity or whatever measure the user likes) of one run of W
by W , and use this number also as an upper bound on the number of examples (distributed
according to D) that the weak learner uses.

A hypothesis with a generalization error that is just slightly better than random is not
very useful by itself. The goal of boosting is to convert the weak learner into a strong learner,
which is one that produces hypotheses not only with small empirical error (i.e., w.r.t. the
uniform distribution over the m examples), but even with small generalization error w.r.t. the
unknown target function f : X → {−1, 1} and the unknown distribution D that generated
the examples:

Pr
x∼D

[h(x) ̸= f(x)] ≤ ε.

Here the desired upper bound ε on the final generalization error is a parameter of the strong
learner. Unsurprisingly, achieving smaller ε requires a larger number of examples and larger
runtime. For simplicity, in this introduction we focus on the case ε = 1/3 (in the body of the
paper we cover the general case). Similarly, the smaller the initial advantage γ is, the more
work we will have to do find a hypothesis with small generalization error.2

The idea of boosting is to find a hypothesis with low empirical error by combining
different runs of the weak learner on different distributions. Once we have a hypothesis with
small empirical error on a sufficiently large set of examples, VC-theory implies that such a
hypothesis will probably also have a small generalization error.

How can we find a hypothesis with small empirical error? Because empirical error is
measured w.r.t. the uniform distribution over {x1, . . . , xm}, that will be our first distribu-
tion D1. We run the weak learner on D1, and receive a hypothesis h1 that is slightly better
than random w.r.t. the uniform distribution. The next iteration then biases the distribution
away from the examples that are already well-classified, by increasing the probability of
misclassified examples, yielding a new distribution D2. We then run the weak learner again,
to generate a hypothesis h2 that is slightly better than random w.r.t. this new distribution,
and hence hopefully better than h1 on the examples that were misclassified by h1. Then we
bias the distribution further towards the still-misclassified examples, and so on. The intuition
here is that the distributions Dt “zoom in” on the hardest examples, the ones that are
most difficult to classify correctly. After some T iterations, the T different weak hypotheses
are combined into one hypothesis h, typically by defining the latter as the sign of a linear
combination

∑T
t=1 αtht of the T weak hypotheses h1, . . . , hT . Surprisingly, already after a

relatively small number of iterations, the resulting hypothesis will have small empirical error!
Thus boosting converts the ability to generate weak hypotheses w.r.t. chosen distributions
over the examples, into the ability to generate strong hypotheses, which have small error w.r.t.
both the uniform distribution over the examples, and w.r.t the unknown target function f

and distribution D that generated our m examples.

2 For simplicity we will assume this γ is known to the strong learner we are trying to design, but this is
not necessary: if it doesn’t know γ, the strong learner can try exponentially decreasing guesses for γ
until it finds a hypothesis with small empirical error.
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A number of classical boosting algorithms exist that instantiate this meta-algorithm in
different ways. The most famous of these is probably Freund and Schapire’s AdaBoost [13,
14, 19] (short for “adaptive boosting”), which biases the new distribution Dt+1 based on
the error εt that ht made. It drives the empirical error all the way down to 0 (note that
as soon as this error is < 1/m it must actually be 0). AdaBoost uses T = O(log(m)/γ2)
iterations. Each iteration takes time Õ(m) to compute the error εt of ht and to update the
distribution over the m examples3 and runs the weak learner W once, at cost W . This gives
overall complexity

Õ

(
W + m

γ2

)
.

How large should m be in order to make the inference from low empirical error to low
generalization error? This depends on the hypothesis space Hweak of the weak learner, in
particular on its VC-dimension d (defined in Section 2.1). The hypothesis space Hstrong of
the boosting algorithm consists of all signs of linear combinations of up to T elements of
Hweak. One can show that the VC-dimension of Hstrong is D = Õ(dT ). VC-theory implies
that (for constant ε) m ≈ D ≈ dT ≈ d/γ2 examples suffice to end up with generalization error
≤ ε (with high probability over the choice of the sample). Accordingly, when re-expressed as
a function of d rather than m, the complexity of AdaBoost is

Õ

(
W

γ2 + d

γ4

)
. (1)

1.2 Quantum boosting
In the last few years there has been a surge in interest in possible ways in which quantum
computers might help improve machine learning (see [9] for a survey of several algorithmic
approaches and [6] for quantum learning theory).

Recently, Arunachalam and Maity [5] gave the first speed-up for boosting on a quantum
computer. Here the given sample is still the same classical sequence of m labeled examples
(x1, y1), . . . , (xm, ym) ∈ X×{−1, 1}, but these are now stored in a quantum-accessible classical
memory, which means a quantum learner can query multiple examples in superposition.

The key insight of [5] is that the error εt of the base classifier in the t-th iteration of
AdaBoost can be approximated faster (in time o(m)) using a quantum counting algorithm;
this approximation is subtle because it involves both multiplicative and additive error, in
different regimes for εt. Their method works not only for boosting classical weak learners,
but also for boosting quantum weak learners. These are fed quantum examples w.r.t. the
distribution D:

m∑
i=1

√
D(xi)|xi, yi⟩. (2)

If the quantum weak learner W expects to receive W such examples, the quantum booster
will have to prepare W copies of this state to feed into W.4

3 The notation Õ(f) means O(f · polylog(f)).
4 The classical boosting literature [19] distinguishes “boosting by resampling” and “boosting by reweight-

ing”. Like Arunachalam and Maity [5], we follow “boosting by resampling” and explicitly prepare the W
quantum or classical examples (w.r.t. Dt) that the weak learner needs, rather than just modifying Dt.
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The quantum version of AdaBoost of [5] uses the same number of iterations as classical
AdaBoost, but improves the complexity of each iteration (at least as a function of m or d).
Their main complexity upper bound is:

Õ

(
W 1.5

√
d

γ11

)
. (3)

Comparing with the complexity of classical AdaBoost Eq. (1), this gives a speed-up over
classical boosting in terms of the dependence on the VC-dimension d of the weak learner’s
hypothesis class, but at the expense of a significant deterioration in terms of the dependence
on the quality of the weak learner γ and a milder deterioration in terms of the weak learner’s
cost W .

1.3 Our results
In this paper we give a simpler and faster quantum boosting algorithm. Instead of AdaBoost,
our starting point will be Servedio’s SmoothBoost algorithm [22], which we explain in
Section 3. Servedio’s motivation for smooth boosting was to deal with malicious noise (at
a rate that depends on γ) in the sample better than AdaBoost. However, SmoothBoost is
also very suitable for “quantization” thanks to the following advantages that it has over
AdaBoost:

SmoothBoost doesn’t need to calculate or approximate the error εt of ht on the m

examples, which means we don’t need to apply approximate quantum counting for this.
The distributions Dt that it generates are “smooth” (whence its name), in the sense that
no example has probability much bigger than the uniform probability 1/m. Generating
quantum examples as in Eq. (2) is cheaper when none of the probabilities is big.
The weights αt in the final linear combination

∑
t αtht are all equal to 1 in SmoothBoost.

In contrast, AdaBoost uses αt = 1
2 ln((1− εt)/εt), hence the quantum algorithm’s ap-

proximation errors in εt lead to approximation errors in αt that need to be kept under
control.

In addition to exploiting these “classical” advantages in order to obtain a simpler and faster
quantum booster, we also give an improved procedure to generate quantum examples over
the m examples from S. This procedure assumes access to a non-normalized version of Dt

and doesn’t have to worry about the normalizing factor. As explained in Section 4.1, in a
way quantum mechanics will take care of the proper normalization for us.5

We obtain the following upper bound on the complexity of our Quantum SmoothBoost:6

Õ

(
W

γ4 +
√

d

γ5

)
. (4)

5 We also generate the quantum examples exactly, while [5] only generate them approximately and hence
has to deal with the way the errors in this process affect the other parts of their boosting procedure.
Our example-generating procedure could also be used to improve the bounds of quantum AdaBoost [5],
though the result won’t be as efficient as our quantum SmoothBoost. Note that if we want to use
Quantum SmoothBoost with a classical weak learner W, we can just measure the W quantum examples
in the computational basis to obtain the W classical examples distributed according to Dt that such a
W needs as input. This still gives a speed-up in terms of the desired generalization error ε compared to
classically generating those W examples.

6 This bound is when we aim at constant generalization error ε = 1/3. We also make explicit the
complexity for much smaller ε (see Theorem 14).
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This improves over the complexity of the booster of [5] (as given in Eq. (3)) in terms of the
parameters W and (especially) γ. The γ-dependence is still worse than classical AdaBoost
(as given in Eq. (1)), but not by large powers anymore. It is an interesting open question
whether this γ-dependence can be improved further.

1.4 Related work

Our main sources of inspiration for this paper were the quantum AdaBoost of Arunachalam
and Maity [5] and classical SmoothBoost of Servedio [22], and we have tried in this paper to
combine the best elements of both.

Here we mention a number of related quantum papers. Wang et al. [24] (which preceded [5])
give a quantum speed-up for a specific subtask of AdaBoost, namely to compute the coefficients
αt = 1

2 ln((1− εt)/εt) that combine given base classifiers h1, . . . , hT into a good hypothesis
h = sign(

∑
t αtht). These weights αt are approximated more efficiently than is possible

classically using a version of approximate quantum counting. This, however, assumes the base
classifiers have already been generated and sidesteps the most important aspect of AdaBoost,
which is to generate the ht’s adaptively by running the weak learner on a distribution Dt that
depends on h1, . . . , ht−1. The even earlier paper by Schuld and Petruccione [21] considers
quantum ensembles of classifiers (rather than the linear combinations used in boosting) and
runs AdaBoost as a subroutine, but does not give a quantum boosting algorithm.

AdaBoost may be viewed as an instance of the multiplicative weights update method, see
for instance the presentation in [4, Section 3.6]. There have been several quantum speed-ups
for multiplicative weights methods in other contexts, particularly the quantum SDP-solvers
of Brandão et al. [11, 3, 10, 2], and the very recent quantum version of the Hedge algorithm
of Rebentrost et al. [18]. However, none of those speed-ups for versions of multiplicative
weights seems directly applicable to our boosting setting.

2 Preliminaries

2.1 PAC learning

In this section we give a brief introduction to the PAC learning framework, which provides
theoretical guarantees on learnability. The textbook by Shalev-Shwartz and Ben-David [23]
provides an excellent and detailed introduction to the topic of classical PAC learning.

To formally introduce the PAC learning framework, let D denote a probability distribution
over the set of points X . We want to learn an unknown target function f : X → Y. We
will assume here that the set of labels Y is just {−1, 1}, so we are dealing with binary
classification. A typical situation to keep in mind is the important special case of learning
Boolean functions, where X = {0, 1}n, or X = ∪n≥1{0, 1}n.

Learning begins by choosing a learning algorithm (a “learner”) with an associated
hypothesis class H of functions h : X → {−1, 1}. This hypothesis class could be any set of
functions, but good examples to keep in mind are cases where X = {0, 1}n and H consists of
objects with bounded computational power, for instance all Boolean circuits of at most a
certain size, all neural networks with a specific depth and number of nodes, or all decision
trees of at most a certain depth. We will assume that each h ∈ H has a succinct description
and that we can efficiently evaluate a given h on a given x ∈ X . For simplicity we assume
such an evaluation has unit cost.

ESA 2023
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The learner is given access to a sample S = ((x1, y1), . . . , (xm, ym)), which is the training
data. The points xi are i.i.d. generated according to an unknown distribution D on X , and
the labels yi = f(xi) are determined by the target function f that we are trying to learn.
The learner’s goal is to find an h ∈ H that fits well with the given training data, in the
hope that this h will generalize well to points that were not part of the data, in the sense
of mostly giving the same labels as the target function. The PAC learning framework is a
distribution-free setting, so we would like to design a learner that works well for every D, in
the sense of outputting a hypothesis with low generalization error.

▶ Definition 1. The generalization error of h : X → Y w.r.t. target function f : X → Y
under distribution D is

err(h, f,D) = Pr
x∼D

[h(x) ̸= f(x)].

Generalization error is often referred to as the true error; it is the quantity the learner is
really trying to minimize over the class H of available hypotheses.

As the distribution D is anyway unknown, the generalization error of a hypothesis h

cannot be calculated and the learner uses the empirical error of a hypothesis h (the fraction
of the sample that h mislabels) to measure its performance, as a proxy for the generalization
error.

▶ Definition 2. The empirical error of h : X → Y w.r.t. sample S = ((x1, y1), . . . , (xm, ym))
is

ˆerr(h, S) = Pr
i∈R[m]

[h(xi) ̸= yi],

where i ∈R [m] means that i is taken uniformly at random from [m] = {1, . . . , m}.

▶ Definition 3. An (ε, δ)-PAC learner for a concept class C with hypothesis class H and
sample complexity m, is an algorithm A such that the following holds for all target functions
f ∈ C and all distributions D on X :
A takes as input m examples (x1, f(x1)), . . . , (xm, f(xm)) where the xi are i.i.d. according
to D.
A outputs an h ∈ H which is “Probably Approximately Correct” in the sense that

Pr[err(h, f,D) ≤ ε] ≥ 1− δ,

where the probability is taken over the sample and over the learner’s internal randomness.

The end goal is to find a learner with small sample complexity m, small error probability δ,
and (most important of all) small generalization error ε. Often we will start, however, with
a “weak” learner, one whose generalization error is only slightly better than random. Since
we restricted to binary labels (Y = {−1, 1}), generalization error ε = 1/2 is no better than
random guessing. A weak learner is a learner that does slightly better than that:

▶ Definition 4 (Weak learning). A γ-weak learner W for concept class C with hypothesis
class Hweak is a (1/2− γ, 0)-PAC learner. Hypotheses returned by a weak learner are called
base classifiers.

Following Servedio [22], we assume the weak learner W has error probability δ = 0, so it
always outputs a hypothesis with generalization error ≤ 1/2− γ. If instead we start with a
W that has non-zero error probability, say 1/3, then we can reduce this error probability
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to small δ > 0 as follows. Run W a total number of r = ⌈log3(1/δ)⌉ times, each time with
fresh independent examples. Then, except with probability ≤ (1/3)r ≤ δ, at least one of the
returned hypotheses h1, . . . , hr ∈ Hweak will have generalization error ≤ 1/2− γ. However,
finding (with success probability ≥ 1− δ) among these r hypotheses one with such low error
has a cost. Deciding (with success probability ≥ 2/3) for a given hypothesis h whether it
has error ≤ 1/2− γ under a given distribution can be done by sampling O(1/γ2) examples
according to that distribution and estimating the fraction of examples where h predicts the
label correctly. Searching over the r hypotheses to find a good one adds a factor of O(r)
to the classical cost, and reducing the overall error probability from 1/3 to δ adds another
factor of O(log(1/δ)).7

Suppose we ideally want to run an errorless weak learner T times, namely once in each of
T iterations. But instead we start with a weak learner with error probability 1/3. Reducing
1/3 to δ ≪ 1/T allows us to take a union bound over all T iterations, and conclude that with
high probability each of the T iterations produces a base classifier with generalization error
≤ 1/2− γ (w.r.t. the distribution Dt of that iteration). Because here we assumed our weak
learner has no error probability from the start, we do not have to factor in the additional
cost for this error reduction, but it anyway doesn’t significantly affect the complexities of
classical or quantum boosting (Eqs. (1) and (4) respectively).

2.2 How many examples suffice to ensure small generalization error?
The number of examples that are necessary and sufficient for learning is governed by the
VC-dimension of the relevant hypothesis class and by the desired generalization error, as
follows. A set S ⊆ X of d points is said to be shattered by H if for each of the 2d labelings
ℓ : S → {0, 1}, there exists an h ∈ H that agrees with ℓ on the points in S. The VC-dimension
of a hypothesis class H is the size of a largest S that is shattered by H. Intuitively, if the
VC-dimension of H is small, then it should be relatively simple to find a good hypothesis in
it, i.e., one that minimizes empirical error.

The following theorem implies that for sufficiently large m, every h ∈ H has a generaliza-
tion error that is only slightly worse than its empirical error. Such a result means it suffices
to look for a hypothesis with small empirical error.

▶ Theorem 5 (Theorem 2.5 in [19]). Let H be a hypothesis class of finite VC-dimension d.
Assume that a sample S of size m is chosen for some target function f , i.i.d. according to
some distribution D. Then for every η > 0 it holds that

Pr[∃h ∈ H : err(h, f,D) > ˆerr(h, S) + η] ≤ 8
(em

d

)d

exp
{
−mη2

32

}
.

If we set η = ε/2 and

m = O

(
d log(d/(δε)) + log(1/δ)

ε2

)
,

with a sufficiently large constant in the O(·), then (except with probability δ), each h ∈ H
has a generalization error that is at most ε/2 bigger than its empirical error. Accordingly,
if a learner now outputs any hypothesis h ∈ H whose empirical error is ≤ ε/2, then its
generalization error will be ≤ ε, as desired.

7 In the quantum case the O(1/γ2) can be replaced by O(1/γ) using quantum approximate counting
(Theorem 7 below), and the O(r) can be replaced by O(

√
r) using Grover’s algorithm [15].
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2.3 Quantum PAC learning and helpful quantum subroutines

In order to introduce the quantum boosting algorithm in Section 4, we explain the query
model that the quantum algorithm works with. We say that an algorithm has query access
to a string z ∈ ZN

a over alphabet Za = {0, . . . , a− 1} if it can apply a unitary Oz such that

Oz : |i, b⟩ 7→ |i, b⊕ zi⟩,

where i ∈ {0, 1}⌈log N⌉, b ∈ Za, and ⊕ denotes addition modulo a. Naturally, a quantum
algorithm can apply Oz on a superposition of distinct inputs i.

In the classical setting we assumed a learner is given a sample S = ((x1, y1), . . . , (xm, ym))
of m labeled examples. Here points xi ∈ X are independently drawn from an unknown
distribution D, and labeled yi = f(xi) according to an unknown target function f . Such a
classical sample will still be the starting point of our quantum boosting algorithm; we assume
the learner has query access to the sample (viewed as a string z ∈ (X ×{−1, 1})m). One may
think of the sample as being stored in a quantum-accessible classical memory, sometimes
called QRAM, which may be queried throughout the algorithm (incl. by the weak learner).
However, our setting also encompassed the case of synthetic data, where we would have an
efficient procedure which, on input i, computes the example (xi, yi).

Even though the initially given sample is classical, like Arunachalam and Maity [5] we
will set up our quantum booster so that it can work to improve a classical weak learner
but also to improve a quantum weak learner. The latter is given quantum examples w.r.t.
distribution D:

∑
x∈X

√
D(x)|x, f(x)⟩.

One can think of a quantum example as the coherent version of a random example (x, f(x))
where x ∼ D. A quantum learner is given access to several copies of the quantum example
and performs a POVM measurement, where each outcome is associated with a hypothesis h

in its hypothesis class. It won’t matter for the purposes of this paper, but [7] proved that
in the general PAC and agnostic learning settings, the required number of classical and
quantum examples are the same up to contant factor.

In the case of boosting, the weak learner will be fed quantum examples w.r.t. a distribu-
tion D that only has support on the m given examples. Since our initially given sample is
classical, our boosting algorithm will itself have to prepare the quantum examples that it
wants to feed into the weak learner in each iteration, and we have to (and will) account for
the cost of this.

We also assume that we can evaluate a given h (in the weak learner’s hypothesis
class Hweak) in superposition, meaning we can apply a unitary that maps |h⟩|x⟩|b⟩ 7→
|h⟩|x⟩|h(x) · b⟩; here the basis states of the first space are the names of the h ∈ Hweak, the
basis states of the second space are the elements of X , and the basis states of the third space
are the labels in Y = {−1, 1}.

The definitions of PAC learning and weak learning straightforwardly generalize to the
quantum setting. We refer to the survey [6] for more on this model. The following basic
quantum subroutines can be derived from Brassard et al. [12] (or from [1] if one wants to
avoid use of the quantum Fourier transform):
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▶ Theorem 6 (Amplitude amplification). Suppose we have an m-qubit unitary U such that

U |0m⟩ =
√

a|ϕ0⟩|0⟩+
√

1− a|ϕ1⟩|1⟩,

and we know a lower bound a′ on a. Then there exists a quantum algorithm V using O(1/
√

a′)
applications of U and U†, and Õ(1/

√
a′) other gates, such that

V |0m⟩ =
√

b|ϕ0⟩|0⟩+
√

1− b|ϕ1⟩|1⟩,

where b ∈ [1/2, 1].

▶ Theorem 7 (Approximate counting). Suppose we have query access to a string z ∈ [0, 1]N ,
with sum s =

∑N
i=1 zi ≥ 1. There exists a quantum algorithm that uses O( 1

ε

√
N log(1/δ))

queries and Õ( 1
ε

√
N log(1/δ)) other operations, and that outputs (except with probability ≤ δ)

an s̃ such that (1− ε)s ≤ s̃ ≤ (1 + ε)s.

3 SmoothBoost

We first consider the classical SmoothBoost algorithm of Servedio [22]. It generates only
smooth distributions, in the sense that none of the examples get too much weight. In the
next section we will introduce a quantum version of SmoothBoost.

We give the pseudocode of SmoothBoost in Algorithm 1. There are a few cosmetic changes
compared to the pseudocode of [22] that will make it easier for us to quantize it later. The
algorithm takes four inputs. First, a γ-weak learnerW with associated hypothesis class Hweak

and cost and sample complexity W . Second, a sample S = ((x1, y1), (x2, y2), . . . , (xm, ym)) ∈
(X × {−1, 1})m, for some sample size m that we will choose later. Lastly, a parameter
κ ∈ (0, 1) which controls the empirical error of SmoothBoost and a parameter θ ∈ [0, 1

2 )
which controls the desired margin of the output hypothesis h. The goal of SmoothBoost is
to output a hypothesis h : X → {−1, 1} with small empirical error (and as we shall see later,
for sufficiently large m, this h will also have large generalization error). The final h is going
to be the sign of a sum of elements of Hweak, so the strong learner’s hypothesis class is larger
than that of the weak learner.

The central objects in this algorithm are the vectors M1, M2, . . . , MT ∈ [0, 1]m, which
are unnormalized distributions over the m examples. The distribution Dt is the normalized
version of M t. SmoothBoost starts by initializing weights to N0

i = 0 and M1
i = 1, for all

i ∈ [m], so D1 is uniform. In each iteration, Step 6 checks whether the sum of M t
i is below

κm, and if so it terminates. Otherwise it runs the weak learner on W i.i.d. examples sampled
(from S) according to Dt, producing a base classifier ht : X → {−1, 1}. Step 9 updates N t−1

to N t and M t to M t+1. For each i ∈ [m], N t
i is the cumulative amount by which hypotheses

h1, . . . , ht beat the desired margin θ. If xi got correctly classified by ht, then it will get
higher weight N t

i , which results in smaller weight M t+1
i and smaller probability Dt+1

i in the
next round of boosting. This mechanism forces the next run of the weak learner W to “zoom
in” (i.e., assign higher probabilities) to systematically misclassified instances. The procedure
terminates if the sum of all weights

∑
i∈[m] M t

i gets sufficiently small, as controlled by the
parameter κ.

We now state three results from Servedio [22] that show, respectively, that the intermediate
distributions are smooth, that SmoothBoost terminates after a small number of iterations,
and that it returns a hypothesis with low empirical error.

▷ Claim 8 (Lemma 1 of [22]). For each 1 ≤ t ≤ T , it holds that maxi∈m |Dt
i | ≤ 1

κm .

Proof. This follows from the condition of Step 6: before termination we have
∑m

i=1 M t
i ≥ κm

and M t
i ∈ [0, 1], hence Dt

i = M t
i /
∑

i∈[m] M t
i ≤ 1/κm for all i ∈ [m]. ◁
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Algorithm 1 SmoothBoost.

Input: A γ-weak learner W with complexity W .
A sample S = ((x1, y1), . . . , (xm, ym)) ∈ (X × {−1, 1})m.
Parameters κ ∈ (0, 1), θ ∈ [0, 1

2 ).
Output: Hypothesis h : X → {−1, 1}.

1: function SmoothBoost(W , S, κ, θ)
2: For all i ∈ [m] initialize: N0

i ← 0, M1
i ← 1.

3: t← 1
4: while true do
5: Compute s =

∑m
i=1 M t

i .
6: If s < κm then T ← t− 1, return h← sign(

∑T
t=1 ht), and terminate.

7: Prepare W i.i.d. examples w.r.t. distribution Dt = M t/
∑

i M t
i (see Footnote 8).

8: Feed those W examples into the weak learner W to obtain base classifier ht.
9: For all i ∈ [m] set

N t
i ← N t−1

i + ht(xi)yi − θ

and

M t+1
i ←

1 for N t
i < 0

(1− γ)
Nt

i
2 for N t

i ≥ 0

10: t← t + 1.

▷ Claim 9 (Theorem 3 of [22]). If θ = γ
2+γ and for all t it holds that Pri∼Dt [ht(xi) ̸= yi] ≤

1
2 − γ, then SmoothBoost terminates with T < 2

κγ2√
1−γ

iterations.

Proof. [22, Lemmas 4 and 5] imply 2m
γ

√
1−γ

> γ
∑T

t=1
∑m

i=1 M t
i (this is the hard part of

Servedio’s correctness proof of SmoothBoost). We have
∑m

i=1 M t
i ≥ κm for all t until

termination. Hence 2m
γ

√
1−γ

> γTκm, which implies the claim. ◁

▷ Claim 10 (Theorem 2 of [22]). After t iterations of SmoothBoost, the hypothesis h =
sign(

∑t
t=1 ht) has empirical error ˆerr(h) ≤

∑m
i=1 M t+1

i /m.

Proof. Note that NT
i =

∑T
t=1(ht(xi)yi−θ). Hence if i is such that

∑T
t=1 ht(xi)yi < θT , then

NT
i < 0 and MT +1

i = 1. The final hypothesis h errs on the ith example iff
∑T

t=1 ht(xi)yi < 0.
We upper bound the number of i ∈ [m] for which this happens:∣∣∣∣∣

{
i |

T∑
t=1

ht(xi)yi < 0
}∣∣∣∣∣ ≤

∣∣∣∣∣
{

i |
T∑

t=1
ht(xi)yi < θT

}∣∣∣∣∣ =
∑

i:
∑T

t=1
ht(xi)yi<θT

MT +1
i

≤
m∑

i=1
MT +1

i . ◁

Since SmoothBoost terminates if
∑m

i=1 MT +1
i < κm, Claim 10 implies that the empirical

error of the final hypothesis is < κ.
Combining the previous two claims, we see that the empirical error decreases like

O(1/(Tγ2)). This contrasts with AdaBoost, where the empirical error goes down expo-
nentially fast in T and hence can be driven down to < 1/m (and hence to 0) quite cheaply.
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SmoothBoost does not drive the empirical error down all the way to 0, because that would
require setting κ < 1/m which implies a very large number of iterations, T = O(m/γ2).
However, small but non-zero empirical error is good enough for our purposes, because (with
sufficiently large sample size m) that already implies small generalization error.

We will choose κ to be ε/2, which sets the above upper bound on the empirical error of
the final hypothesis h to half of the allowed generalization error. By the discussion following
Theorem 5, if the sample size m is large enough, the final hypothesis will have generalization
error ≤ ε, as desired. The required m depends on the VC-dimension of the hypothesis class
Hstrong of SmoothBoost, which consists of signs of sums of T elements of the hypothesis class
Hweak of the weak learner. The VC-dimensions of these two classes are related as follows:

▷ Claim 11 (Shalev-Shwartz & Ben-David, p. 109 [23]). Let Hweak be a hypothesis class of VC-
dimension d and Hstrong = {sign(

∑T
i=1 hi) | h1, . . . , hT ∈ Hweak}. Then the VC-dimension

of Hstrong is D = O(Td log(Td)).

By Theorem 5 and the fact that T = O( 1
εγ2 ) it thus suffices to take

m = O

(
D log(D/(δε)) + log(1/δ)

ε2

)
= O

(
d log(d/(δεγ))2

ε3γ2 + log(1/δ)
ε2

)
(5)

examples in order to be able to infer (with success probability ≥ 1− δ) generalization error
≤ ε from empirical error ≤ ε/2.

Finally, let us determine the complexity of SmoothBoost, in terms of the overall number
of elementary operations and queries to the sample and to the ht. There are T = O( 1

εγ2 )
iterations. Each iteration involves one application of the weak learner W, and Õ(m) other
operations. The weak learner needs to be fed W examples sampled according to distribution
Dt. Using rejection sampling, we can generate W such examples at cost O(W/κ) = O(W/ε).8

▶ Theorem 12. Let W be a γ-weak learner of complexity W for concept class C, with
hypothesis class Hweak of VC-dimension d. Then given m examples according to Eq. (5),
SmoothBoost is an (ε, δ)-PAC learner for C, with hypothesis class Hstrong. It runs the weak
learner O( 1

εγ2 ) times and uses

Õ(T (W/ε + m)) = Õ

(
W

ε2γ2 + m

εγ2

)
= Õ

(
W

ε2γ2 + d

ε4γ4

)
other operations (elementary computational steps, queries to the sample, and evaluations of
base classifiers).

4 Quantum Smooth Boosting

In this section we introduce our quantum version of SmoothBoost. The algorithm is given
query access to a quantum (or classical) weak learner W with sample complexity W , and
to a sample S of size m. The quantum weak learner needs to be fed quantum examples
according to the distribution Dt obtained by normalizing the weight-vector M t. We will
start with that.

8 Specifically, Step 7 of SmoothBoost can be implemented as follows. Sample i ∈ [m] uniformly. With
probability M t

i output (xi, yi), and otherwise repeat. Since the probability to output (xi, yi) is
proportional to M t

i , the example (if we indeed output an example) is sampled according to the desired
probability distribution Dt. Note that the probability that we output an example in one try is
1
m

∑
i
M t

i ≥ κ, because of the condition of Step 6. Hence the expected number of repetitions before we
output an example is ≤ 1/κ.
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4.1 Preparing quantum examples
Here we show how we can efficiently prepare quantum examples w.r.t. the distribution Dt

induced by the non-normalized M t, thanks to its smoothness. This may be viewed as a
quantum analogue of the classical rejection sampling sketched in Footnote 8.

▶ Theorem 13. Suppose we have query access to the m numbers M1, . . . , Mm ∈ [0, 1]. Let
s =

∑m
i=1 Mi be their (unknown) sum, which has a known lower bound of κm. Define a

probability distribution D on [m] by Di = Mi/s. Then using an expected number of O(1/
√

κ)
queries and Õ(1/

√
κ) other gates, we can prepare the state

m∑
i=1

√
Di|i⟩.

Proof. Start by preparing the uniform state

1√
m

m∑
i=1
|i⟩|0⟩.

Using two queries (the second to uncompute the value Mi), and a few other gates to implement
a conditional rotation by angle arcsin

(√
Mi

)
, prepare

1√
m

m∑
i=1
|i⟩(
√

Mi|0⟩+
√

1−Mi|1⟩).

The squared norm of the part of the state ending in |0⟩ is s/m ≥ κ. Now use O(1/
√

κ)
rounds of amplitude amplification (Theorem 6) to increase that squared norm to ≥ 1/2. This
costs O(1/

√
κ) queries and Õ(1/

√
κ) other gates.

If we measure the last qubit of the resulting state, then we obtain outcome 0 with
probability ≥ 1/2 and the state collapses to the state that we want to prepare (with an extra
|0⟩-qubit that we can remove). Note that we know when we succeed to produce the desired
state. Since the probability of success is ≥ 1/2, the expected number of repetitions before
success is ≤ 2. ◀

Once we have produced a copy of the state
m∑

i=1

√
Di|i⟩,

we can easily convert this into a quantum example
m∑

i=1

√
Di|xi, yi⟩

by querying the sample S.

4.2 Quantizing SmoothBoost
The pseudocode of Quantum Smooth Boosting is given in Algorithm 2. The algorithm
receives as input a weak quantum learner W with sample complexity W , and query access
to a sample S of m examples. Additionally, it receives two parameters κ, θ.

The algorithm looks a bit different from classical SmoothBoost because it doesn’t update
the m-dimensional vectors N t

i and M t
i explicitly anymore; the O(m) that this costs is more

than we are willing to spend in the quantum case. Instead, we will store the earlier base
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classifiers h1, . . . , ht. Queries to these classifiers together with queries to the sample S allow
us to calculate each entry N t

i and M t
i on demand in time Õ(t), via the formulas of Step 9 of

SmoothBoost.
The algorithm begins by initializing N0, M1 and by setting t = 1. Like in the classical

case, we iterate until the sum of the weights
∑

i∈[m] M t
i becomes small enough. In contrast to

the classical case, we do not have the time to sum these m numbers exactly, so we will instead
estimate the sum with small approximation error using quantum counting (Theorem 7).

Algorithm 2 Quantum SmoothBoost.

Input: A γ-weak quantum learner W with complexity W .
A sample S = ((x1, y1), . . . , (xm, ym)) ∈ (X × {−1, 1})m.
Parameters κ ∈ (0, 1), θ ∈ [0, 1

2 ).
Output: Hypothesis h : X → {−1, 1}.

1: function QuantumSmoothBoost(W , S, κ, θ)
2: t← 1
3: while true do
4: Compute an estimate s̃ of s =

∑m
i=1 M t

i with multiplicative error 1.1 (using
Theorem 7), where the M t

i are as defined in Step 9 of SmoothBoost (and only
computed on demand).

5: If s̃ < κm then T ← t− 1, return h← sign(
∑T

t=1 ht), and terminate.
6: Prepare W copies of example |Dt⟩ w.r.t. distribution Dt

i = Mt
i∑

i∈[m]
Mt

i

(using

Theorem 13).
7: Feed those W examples into the weak learner W to obtain base classifier ht.
8: t← t + 1.

Quantum Smoothboost runs O(TW ) quantum subroutines that each have some error
probability. By setting this error probability to be ≪ 1/TW , the union bound implies
that the probability that at least one of them will fail, is very small. The extra cost-factor
log(TW ) that this error-reduction incurs will be absorbed by our Õ(·) notation.

If we condition on the very-high-probability event that the various quantum subroutines
involved all succeed, then the weights N t and M t are just equal to the weights as they would
be in classical SmoothBoost with the same number of iterations. Because our approximation
s̃ of s for the stopping criterion has small multiplicative error, the smoothness of the
intermediate distributions Dt before termination can be marginally worse than in classical
SmoothBoost (Claim 8): For each 1 ≤ t ≤ T , it holds that maxi∈m |Dt

i | ≤ 1.1
κm .

Quantum SmoothBoost terminates if s̃ < κm. Because s̃ might underestimate the true s

by at most a factor 1.1, upon termination we have s < 1.1κm and hence Claim 10 implies
empirical error ˆerr(h) < 1.1κ. We set κ = ε/2.2 in order to ensure ˆerr(h) ≤ ε/2. Like before,
we choose the sample size m given by Eq. (5) to ensure generalization error ≤ ε.

The total number of iterations is still O( 1
εγ2 ).9 It remains to determine the complexity of

one iteration. The most costly steps in one iteration are Steps 4 and 6. As a subroutine these
will use the fact that we can compute M t

i and N t
i using O(t) = O(T ) calls to the earlier base

classifiers and the sample S.

9 There is one small change in the proof of Claim 9: since we condition on all runs of quantum counting
in Step 4 giving an estimate of

∑
i
M t

i up to multiplicative error 1.1, we now have
∑m

i=1 M t
i ≥ κm/1.1

for all t until termination.
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Step 4. The approximation of s =
∑m

i=1 M t
i up to multiplicative error 1.1 using Theorem 7

costs Õ(T
√

m) (for simplicity assume ε≫ 1/m to ensure the condition s ≥ 1 in Theorem 7
holds.)
Step 6. Preparing one copy of |Dt⟩ costs Õ(T/

√
ε) by Section 4.1 (using our setting of

κ = ε/2.2), so overall this step costs Õ(WT/
√

ε).
Adding these costs shows that one iteration costs Õ(T (W/

√
ε+
√

m)). Plugging in T = O( 1
εγ2 ),

and the same sample size m = Õ(d/ε3γ2) as for classical SmoothBoost (from Eq. (5)), gives
our main result:

▶ Theorem 14. Let W be a γ-weak quantum learner of complexity W for concept class C,
with hypothesis class Hweak of VC-dimension d. Then given m examples according to Eq. (5),
QuantumSmoothBoost is an (ε, δ)-PAC learner for C, with hypothesis class Hstrong. It runs
the weak learner O( 1

εγ2 ) times and uses

Õ(T 2(W/
√

ε +
√

m)) = Õ

(
W

ε2.5γ4 +
√

m

ε2γ4

)
= Õ

(
W

ε2.5γ4 +
√

d

ε3.5γ5

)

other operations (elementary computational steps, queries to the sample, and evaluations of
base classifiers).

For direct comparison with the quantum boosting result of Arunachalam and Maity [5],
we instantiate this by setting ε = δ = 1/3, in which case the complexity of Quantum
SmoothBoost is

Õ

(
W

γ4 +
√

d

γ5

)
.

This polynomially improves over the time complexity Õ

(
W 1.5

√
d

γ11

)
of the quantum version

of AdaBoost of [5], in the W -dependence but especially in the γ-dependence.

5 Future work

This work leaves open many questions for future work:
The γ-dependence of Quantum Smoothboost is still slightly worse than in classical boosting
(1/γ5 vs 1/γ4). Is there a way to improve this further, or can we prove a lower bound on
the γ-dependence for every quantum boosting algorithm that has

√
d-dependence on the

VC-dimension of the weak learner’s hypothesis class?
Our quantum version of SmoothBoost improves the cost per iteration but not the number
of iterations, which remains T = O(1/εγ2). Can we reduce the number of iterations by
quantizing SmoothBoost differently, or by quantizing some other boosting approach?
There are classical boosting-type algorithms with fewer iterations than SmoothBoost, for
instance [8], but it’s not clear there how to significantly reduce the cost per iteration on
a quantum computer.
Boosting has many applications in theory and practice. Can we find applications where
quantum Smoothboost is particularly suitable – some problem where the weak learner
has relatively large advantage γ and large VC-dimension d, so that the square-root
improvement in d dominates the worse dependence on 1/γ?
Can we do boosting for agnostic learning, where the label y of an example (x, y) is not
determined by x but (x, y) is jointly generated by some distribution D on X × Y?
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What about learning with various kinds of noise in the sample: random classification
noise, or Massart noise, or Tsybakov noise, or malicious noise? Servedio [22] designed
SmoothBoost motivated by its ability to deal with malicious noise on the labels of the
sample: if 1/100 of the m given examples have their label flipped, then a distribution
that puts probability ≤ c/m on each i only puts total probability ≤ c/100 on the
erroneous examples. Servedio used this to give a learning algorithm for linear threshold
functions that is robust against small, γ-dependent amounts of malicious noise (see [17]
and references therein for follow-up work). This result straightforwardly carries over to
the quantum case using our Quantum SmoothBoost (we omit the details), but we don’t
know much more about quantum learning with malicious noise.
What about learning functions that have a larger range than just {−1, 1}?
Our booster relies on a VC-dimension-based analysis of boosting. However, there are
non-VC-based analyses of boosting [20], which to some extent can explain why boosting
avoids overfitting even when the VC-dimension of the booster’s hypothesis class gets large
(i.e., when T gets large). We might use this to give an alternative analysis of quantum
boosters.
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Abstract
We study the parameterized complexity of two classic problems on directed graphs: Hamiltonian
Cycle and its generalization Longest Cycle. Since 2008, it is known that Hamiltonian Cycle is
W[1]-hard when parameterized by directed treewidth [Lampis et al., ISSAC’08]. By now, the question
of whether it is FPT parameterized by the directed feedback vertex set (DFVS) number has become
a longstanding open problem. In particular, the DFVS number is the largest natural directed width
measure studied in the literature. In this paper, we provide a negative answer to the question,
showing that even for the DFVS number, the problem remains W[1]-hard. As a consequence, we also
obtain that Longest Cycle is W[1]-hard on directed graphs when parameterized multiplicatively
above girth, in contrast to the undirected case. This resolves an open question posed by Fomin et
al. [ACM ToCT’21] and Gutin and Mnich [arXiv:2207.12278]. Our hardness results apply to the path
versions of the problems as well. On the positive side, we show that Longest Path parameterized
multiplicatively above girth belongs to the class XP.
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1 Introduction

Hamiltonian Cycle (Path) Parameterized by DFVS. In Hamiltonian Cycle (Path),
we are given a (directed or undirected) graph G = (V, E), and the objective is to determine
whether G contains a simple cycle (path) of length n = |V (G)|, called a Hamiltonian cycle
(path). Hamiltonian Cycle1 has been widely studied, from various algorithmic (see, e.g.,
[7, 9–12, 15, 16, 28, 29, 37]) and structural (see, e.g., the survey [50]) points of view. This
problem is among the first problems known to be NP-complete [60], and it remains NP-
complete on various restricted graph classes (see, e.g., [2,20,46]). Nevertheless, a longest path
can be found easily in polynomial-time on the large class of directed acyclic graphs (DAGs)
using dynamic programming.2 Thus, it is natural to ask – can we solve Hamiltonian Cycle
efficiently on wider classes of directed graphs that resemble DAGs to some extent?

1 Throughout the following paragraphs, we refer only to the cycle variant of the problem, but the same
statements also hold for the path variant.

2 For example, see the lecture notes at https://people.csail.mit.edu/virgi/6.s078/lecture17.pdf.
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Figure 1 Figure 3 in [59]. Caption (verbatim): “The ecology of digraph widths. Undirected
measures refer to the underlying undirected graph. Arrows denote generalizations (for example small
treewidth implies small kelly-width). The dashed lines indicate rough borders of known tractability
and intractability for most studied problems (including Hamiltonian Cycle).”

In the undirected realm, the class of acyclic graphs (i.e., forests) can be generalized
to graphs of bounded treewidth [27]. The celebrated Courcelle’s theorem [24] states that
a wide range of problems, including Hamiltonian Cycle, are fixed-parameter tractable
(FPT)3 when parameterized by treewidth. Historically, the notion of directed treewidth
(Definition 4) was introduced by Johnson et al. [58] as a generalization of the undirected
notion contrived to solving linkage problems such as Hamiltonian Cycle; see also [70].
Since then, directed treewidth has been intensively studied (see, e.g., [1, 47,48,52,61,76]).
Over the years, various other width measures for directed graphs have been proposed and
studied as well, where the most prominent ones are the DFVS number (which is the minimum
number of vertices to remove to make the graph acyclic), directed pathwidth (defined similarly
to directed treewidth, where we replace trees by paths), DAG-width [69] and Kelly-width [55].
Notably, DFVS is the largest among them (see Fig. 1). Johnson et al. [58] and Hunter et
al. [55] proved that Hamiltonian Cycle (as well as Longest Cycle, defined later) is
slice-wise polynomial (XP) parameterized by directed treewidth. Later, Lampis et al. [64]
(originally in 2008 [63]) showed that, here, this is the “right” form of the time complexity:
they proved that Hamiltonian Cycle parameterized by directed pathwidth is W[1]-hard
(in fact, even W[2]-hard), implying that the problem is unlikely to be FPT.

Thus, since 2008, it has remained open whether Hamiltonian Cycle parameterized by
DFVS is FPT or W[1]-hard (see Fig. 1). As a follow-up to their result, Kaouri et al. [59]
wrote: “Treewidth occupies a sweet spot in the map of width parameters: restrictive enough
to be efficient and general enough to be useful. What is the right analogue which occupies a
similar sweet spot (if it exists) for digraphs? One direction is to keep searching for the right
width that generalizes DAGs, that is searching the area around (and probably above) DFVS.
... The other possibility is that widths which generalize DAGs, such as DFVS and all the
currently known widths, may not necessarily be the right path to follow. ... The search is on!”

Our main contribution is, essentially, the finish line for this search for Hamiltonian
Cycle. We prove that, unfortunately, already for DFVS number itself, the problem is
W[1]-hard. Formally, Hamiltonian Cycle (Path) By DFVS is defined as follows: Given
a directed graph G = (V, E) and a subset X ⊆ V (G) such that G − X is acyclic, determine
whether G contains a Hamiltonian cycle (path). Here, the parameter is |X|. Note that X

need not be given as input – the computation of a minimum-size vertex set whose removal
makes a given directed graph acyclic is in FPT [23], so, given a directed graph G, we can
simply run the corresponding algorithm to attain X whose size is the DFVS number of G.

3 A problem is FPT (resp. XP) if it is solvable in time f(k) · nO(1) (resp. nf(k)) for some computable
function f of the parameter k, where n is the size of the input.
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▶ Theorem 1. Hamiltonian Cycle By DFVS is W[1]-hard.

We also obtain the same hardness result for Hamiltonian Path By DFVS. Notice
that Hamiltonian Cycle (Path) By DFVS is in XP, since, as mentioned earlier, it is
already known to be in XP even when parameterized by the smaller parameter directed
treewidth [58]. So, the classification of this problem is resolved.

Lastly, we remark that the choice of the larger directed feedback arc set (DFAS) number
is also futile, as it also yields W[1]-hardness. Indeed, there is a simple reduction that shows
this: Replace each vertex v in S by two vertices, vin and vout, so that all vertices that were
in-neighbors (out-neighbors) of v become in-neighbors (out-neighbors) of vin (vout), and add
the arc (vin, vout). It is immediate that the original instance is a Yes-instance of Hamiltonian
Cycle if and only if the new instance is, and that the DFVS number of the original graph
equals the DFAS number of the new graph.

Longest Cycle (Path) Above Girth. In the Longest Cycle (Path) problem, also known
as k-Long Cycle (k-Path), we are given a (directed or undirected) graph G and a non-
negative integer k, and the objective is to determine whether G contains a simple cycle
(path) of length at least k. Clearly, Longest Cycle is a generalization of Hamiltonian
Cycle as the latter is the special case of the former when k = n. Over the past four
decades, Longest Cycle and Longest Path have been intensively studied from the
viewpoint of parameterized complexity. There has been a long race to achieve the best
known running time on general (directed and undirected) graphs for the parameter is
k [5,14,17,19,22,40,44,54,62,67,72,74,77–79], where the current winners for directed graphs
have time complexity 4k · nO(1) [79] for Longest Cycle and 2k · nO(1) [77] for Longest
Path. Moreover, the parameterized complexity of the problems was analyzed with respect to
structural parameterizations (see, e.g., [7, 28, 29, 33, 37, 45, 49]), on special graph classes (see,
e.g., [32,41,42,66,68,80]), and when counting replaces decision [3,4,6,13,18,25,26,34,65,75].
In fact, Longest Path is widely considered to be one of the most well studied in the field,
being, perhaps, second only to Vertex Cover [27].

We consider the “multiplicative above guarantee” parameterization for Longest Path
where the guarantee is girth4, called Longest Cycle (Path) Above Girth, which is
defined as follows (for directed graphs): Given a directed graph G = (V, E) with girth g and
a positive integer k, determine whether G contains a cycle (path) of length at least g · k.
Here, the parameter is k. This parameterization of Longest Cycle (Path) was considered
by Fomin et al. [36], who proved that on undirected graphs the problem is in FPT. They
posed the following open question: “For problems on directed graphs, parameterization
multiplicatively above girth (which is now the length of a shortest directed cycle) may also
make sense. For example, what is the parameterized complexity of Directed Long Cycle
under this parameterization?” This question was also posed by Gutin et al. [51] as Open
Question 9. As our second contribution, we resolve this question – in sharp contrast to the
undirected case, the answer is negative:

▶ Theorem 2. Longest Cycle Above Girth is W[1]-hard.

Again, we can transfer the hardness also to the longest path setting. On the positive side,
we give a deterministic XP algorithm for the path variant of the problem.

▶ Theorem 3. Longest Path Above Girth is in XP.

4 The girth of a graph is the length of its shortest cycle, and it is easily computable in polynomial time.
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Therefore, the classification of this problem is resolved as well. Notice that this theorem
also easily implies that when we ask for a path of length at least g + k, the problem is in
FPT (in fact, solvable in time 2O(k) · nO(1)) as follows. If k ≥ g, then we can simply run
some known 2O(k) · nO(1)-time algorithm for Longest Path parameterized by the solution
size. Otherwise, when k < g, we create n instances of Longest Path Above Girth with
parameter 2 (thus, solvable in polynomial time by our theorem), one for each vertex v:
Replace v by a path of length g − k whose start vertex has all in-neighbors of v as its
in-neighbors and whose end vertex has all out-neighbors of v as its out-neighbors, and take
the disjoint union of the resulting graph and a cycle of length g; it is easy to see that we
should return Yes if and only if the answer to at least one of these n instances is Yes.

Other above/below guarantee versions of Longest Cycle (Path) were also considered in
the literature; see [8,35,38,39,51,53,56,57]. Remarkably, while the parameterized complexity
of all of these versions is quite well understood for undirected graphs, the resolution of the
parameterized complexity of most of these versions has been (sometimes repeatedly) asked
as an open question for directed graphs, where only little is known. It is conceivable that
our contributions will shed light on these open questions as well in future works.

1.1 Techniques
Hamiltonian Cycle By DFVS. Before describing the ideas behind our reduction, we provide
some background about the related Disjoint Paths problem. Here, we are given a graph
with k vertex pairs (si, ti) and the goal is to determine whether there exists k vertex-disjoint5

paths such that the i-th path connects si to ti. While Disjoint Paths is famously known
to be FPT (parameterized by k) on undirected graphs [71], the problem becomes NP-hard
on directed graphs already for k = 2 [43]. What is interesting for us is that when the input
is restricted to be a DAG, then Disjoint Paths can be solved by an XP algorithm [43], but
it is unlikely to admit an FPT algorithm as the problem is W[1]-hard [73].

The latter result suggests a starting point for extending the hardness to our problem.
A simple idea to design a reduction from Disjoint Paths on DAGs is to just insert edges
t1 → s2, t2 → s3, . . . , tk → s1. Then the set {s1, . . . , sk} becomes a DFVS and the existence
of k disjoint (si, ti)-paths implies the existence of a long cycle. There is a catch, though.
This construction might turn a No-instance into an instance with a long cycle because the
cycle might traverse the vertices si, ti in a different order, corresponding to a family of
disjoint paths which does not form a solution to the original instance. To circumvent this,
we open the black box and give a reduction directly from the basic W[1]-complete problem –
Multicolored Clique – while adapting some ideas from the hardness proof for Disjoint
Paths on DAGs by Slivkins [73].

The construction by Slivkins uses two kinds of gadgets. First, for each i = 1, . . . , k one
needs a choice gadget comprising two long directed paths with some arcs from the first path
to the second one. The solution path corresponding to the i-th choice gadget must choose one
of these arcs to “change the lane”; the location of this change encodes the choice of the i-th
vertex in the clique. Next, for each pair (i, j), where 1 ≤ i < j ≤ k, one needs a verification
gadget to check whether the i-th and j-th chosen vertices are adjacent. The corresponding
solution path must traverse the i-th and j-th choice gadgets around the locations of their
transitions. The arcs between the choice gadgets are placed in such a way that both these
locations can be visited only when the corresponding edge exists in the original graph.

5 Another studied variant involves finding edge-disjoint paths. While these two problems behave differently
in some settings, this is not the case in our context.
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Our reduction relies on a similar mechanism of choice gadgets, formed by k directed
paths, corresponding to k colors in the Multicolored Clique instance. The i-th path is
divided into blocks corresponding to the vertices of color i. We enforce that a Hamiltonian
cycle must omit exactly one block when following such a path, thus encoding a choice of k

vertices. The arcs between blocks from different paths encode the adjacency matrix of the
original graph. We would like to guarantee that any Hamiltonian cycle C visits each omitted
block k − 1 times, utilizing the arcs mentioned above. To ensure this, we need to allow C to
“make a step backward” on the directed path during such a visit. On the other hand, we
cannot afford to create too many disjoint cycles because DFVS should have size bounded
in terms of k. As a remedy, we attach k − 1 long cycles to each choice gadget, which are
connected to every block in a certain way (see Figure 3 on page 8). Using the fact that every
vertex in the gadget must be visited by C at some point, we prove that each long cycle is
entered exactly once and each choice gadget is entered exactly k times in total, imposing
a rigid structure on a solution. As a result, we get rid of the flaw occurring in the naive
construction and obtain an equivalent instance with DFVS number O(k2).

Longest Cycle (Path) Above Girth. Having established our main hardness result, it is easy
to extend it to Longest Cycle (Path) Above Girth. We replace each vertex v in the
DFVS by two vertices vin and vout, splitting the in- and out-going arcs of v between them,
and insert a long path from vin to vout. This path is set sufficiently long to make the girth g

of the graph comparable to its size. Consequently, the original graph G is Hamiltonian if and
only if the second one has a cycle of length g ·(dfvs(G)+1). So, this problem is also W[1]-hard.

To design an XP algorithm for Longest Path Above Girth, we follow the win-win
approach employed by the FPT algorithm for the undirected case [36], which relies on a certain
version of the Grid Minor Theorem. In general, the theorem states that either a graph contains
a k × k-grid as a minor, or its treewidth is bounded by f(k), for some (in fact, polynomial)
function f . In the first scenario, a sufficiently long path always exists, whereas in the second
scenario, the problem is solved via dynamic programming on the tree decomposition.

We take advantage of the directed counterpart of the Grid Minor Theorem: either
a digraph contains a subgraph isomorphic to a subdivision of the order-O(k) cylindrical wall
or its directed treewidth is bounded by f(k), for some function f [61]. We prove that in the
first scenario again a sufficiently long path always exists (so we obtain a Yes-instance), while
in the second scenario we can utilize the known algorithm to compute the longest path in
XP time with the help of the directed tree decomposition. Finally, let us remark that this
argument does not extend to Longest Cycle Above Girth because we cannot guarantee
the existence of a sufficiently long cycle in a subdivision of a cylindrical wall. We leave it
open whether this problem belongs to XP as well.

2 Preliminaries

General Notation. For an integer r, let [r] = {1, . . . , r}, and for integers r1, r2, let [r1, r2] =
{r1, r1 + 1, . . . , r2}. We refer to [27] for standard definitions in Parameterized Complexity.

Directed Graphs. We use standard graph theoretic terminology from Diestel’s book [31].
We work with simple directed graphs (digraphs) where the edges are given by a set E

of ordered pairs of vertices. For an edge e = (u, v) in a digraph G, we say that u is an
in-neighbor of v and v is an out-neighbor of u. We refer to e as an incoming edge of v and an
outgoing edge of u. For a vertex set S ⊆ V (G) we define ∂out(S) = {(u, v) ∈ E(G) : u ∈ S},
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Figure 2 A cylindrical grid and a cylindrical wall of order 4. The figure is taken from [61].

∂in(S) = {(u, v) ∈ E(G) : v ∈ S}, and ∂(S) = ∂out(S) ∪ ∂in(S). For two vertex sets
A, B ⊆ V (G) we write E(A, B) for ∂(A)∩∂(B), that is, the set of edges with one endpoint in
A and the other in B. We use this notation only when the digraph G is clear from the context.
When C is a subgraph of G we abbreviate ∂(C) = ∂(V (C)) and likewise for the remaining
notation. A digraph G is isomorphic to a digraph H if there is a bijection f : V (G) → V (H)
such that for any u, v ∈ V (G) we have (u, v) ∈ E(G) if and only if (f(u), f(v)) ∈ E(H). The
length of a path (or a cycle) P is the number of edges in P . When the first and last vertices of
a path P are s and t, respectively, we call it an (s, t)-path. A cycle in G is called Hamiltonian
if it visits all the vertices of G. The girth of a digraph G is the shortest length of a cycle in
G. For a rooted tree T and a node t ∈ V (T ), Tt denotes the subtree of T rooted at t. By
orienting each edge in a rooted tree from a parent to its child we obtain an arborescence.

Directed Treewidth. We move on to the directed counterparts of treewidth and grids.

▶ Definition 4 (Directed Tree Decomposition [61]). A directed tree decomposition of a
directed graph G is a triple (T, β, γ), where T is an arborescence, and β : V (T ) → 2V (G) and
γ : E(T ) → 2V (G) are functions such that
1. {β(t) : t ∈ V (T )} is a partition of V (G) into (possibly empty) sets, and
2. if e = (s, t) ∈ E(T ), A =

⋃
{β(t′) : t′ ∈ V (Tt)} and B = V (G) \ A, then there is no closed

(directed) walk in G − γ(e) containing a vertex in A and a vertex in B.

For t ∈ V (T ), define Γ(t) := β(t) ∪
⋃

{γ(e) : e is incident with t}. Moreover, define
β(T ) :=

⋃
{β(t′) : t′ ∈ V (T )}.

The width of (T, β, γ) is the least integer w such that |Γ(t)| ≤ w +1 for all t ∈ V (T ). The
directed treewidth of G is the least integer w such that G has a directed tree decomposition
of width w.

▶ Definition 5 (Subdivision). For a directed graph G, the edge subdivision of (u, v) ∈ E(G) is
the operation that removes (u, v) from G and inserts two edges (u, w) and (w, v) with the new
vertex w. A graph derived from G by a sequence of edge subdivisions is a subdivision of G.

We now define special graphs called cylindrical grids and cylindrical walls (see Fig. 2).

▶ Definition 6 (Cylindrical Grid and Cylindrical Wall [21]). A cylindrical grid of order k, for
some k ≥ 1, is the directed graph Gk consisting of k pairwise vertex disjoint directed cycles
C1, . . . , Ck, together with 2k pairwise vertex disjoint directed paths P1 . . . , P2k such that:
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for i ∈ [k], V (Ci) = {vi,1, vi,2, . . . , vi,2k} and E(Ci) = {(vi,j , vi,j+1)| j ∈ [2k − 1]} ∪
{(vi,2k, vi,1)}
for i ∈ {1, 3, 5, . . . , 2k − 1}, E(Pi) = {(v1,i, v2,i), (v2,i, v3,i), . . . , (vk−1,i, vk,i)}, and
for i ∈ {2, 4, 6, . . . , 2k}, E(Pi) = {(vk,i, vk−1,i), (vk−1,i, vk−2,i), . . . , (v2,i, v1,i)}.

A cylindrical wall of order k is the directed graph Wk obtained from the cylindrical grid Gk

by splitting each vertex of degree 4 as follows: we replace v by two new vertices vin, vout and
an edge (vin, vout) so that every edge (u, v) ∈ E(Gk) is replaced by an edge (u, vin) and every
edge (v, u) ∈ E(Gk) is replaced by an edge (vout, u).

Note that in the cylindrical grid Gk, the path Pi is oriented from the first cycle to the
last one if i is odd, and from the last cycle to the first if i is even (see Figure 2). We have
the following theorem for directed graphs, which will be helpful in designing our algorithm
in Section 4 using a win/win approach.

▶ Theorem 7 (Directed Grid Theorem [61]). There is a function f : N → N such that for
every fixed k ∈ N, when given a directed graph G, in polynomial time we can compute either:
1. a subgraph of G that is isomorphic to a subdivision6 of Wk or
2. a directed tree decomposition of G of width at most f(k).

3 Hardness of Hamiltonian Cycle By DFVS

This section is devoted to the proof of Theorem 1. It is based on a parameterized reduction
from Multicolored Clique, defined as follows.

Multicolored Clique
Input: A graph G = (V, E), an integer k, and a partition (V 1, V 2, . . . , V k) of V .
Parameter: k

Question: Is there a clique of size k with a vertex from each V i, i ∈ [k]?

This problem is well-known to be W[1]-hard [27, Theorem 13.7]. For an instance
(G, (V 1, V 2, . . . , V k)) of Multicolored Clique, we construct an instance (G′, X) of
Hamiltonian Cycle By DFVS as follows.

Construction of G′. For i ∈ [k] we construct a directed path P i corresponding to V i

as follows. Let us fix an arbitrary ordering <i of the vertices in V i, and accordingly,
denote V i = {v1, v2, . . . v|Vi|}. To each vertex v ∈ V i we associate a directed path Pv

on 2k vertices. We let vleft and vright denote the first and last vertices of Pv, respect-
ively. We refer to the 2(k − 1) internal vertices of Pv as v1,out, v1,in, v2,out, . . . , vi−1,out,
vi−1,in, vi+1,out, vi+1,in, . . . , vk,out, vk,in (note that the index i is avoided). The directed path
P i is the concatenation of these paths: Pv1 → Pv2 →, . . . , → Pv|V i|

.
For every i ∈ [k] we create a “universal” vertex ui and insert edges (ui, vleft), (ui, vright),

(vleft, ui), (vright, ui) for all v ∈ V i. Next, we create k −1 cycles Ci→j for j ∈ [k]\{i}, each of
length 2 · |V i|. The vertices of Ci→j are ci→j,out

v1
, ci→j,in

v1
, ci→j,out

v2
, ci→j,in

v2
, . . . , ci→j,out

v|Vi|
, ci→j,in

v|Vi|
.

We insert edges from ci→j,out
v to vj,out and from vj,in to ci→j,in

v for all v ∈ V i. See Figure 3
for an illustration.

6 The theorem in [61] states that the cylindrical wall of order k is obtained as a topological minor of G.
For any topological minor H of G, there exists a subdivision of H isomorphic to a subgraph of G.
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65:8 Finding Long Directed Cycles Is Hard Even When DFVS Is Small or Girth Is Large

<latexit sha1_base64="03i5IHjTHwBPLwDyWKvxNX+01Yc=">AAAB7HicbVDLSgNBEOyNrxhfUY9eBoPgKewGX8eAF48RzAOSNcxOepMhs7PLzKwQlnyDFw+KePWDvPk3TpI9aGJBQ1HVTXdXkAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHssHM0nQj+hQ8pAzaqzU1I9ZbdovV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzslZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1IQ3fsZlkhqUbLEoTAUxMZl9TgZcITNiYgllittbCRtRRZmx+ZRsCN7yy6ukVat6V9XL+4tK3c3jKMIJnMI5eHANdbiDBjSBAYdneIU3RzovzrvzsWgtOPnMMfyB8/kDxnKOnw==</latexit>

s2
<latexit sha1_base64="rl3GAPOAJ2l59uJiVor3/g+9zZk=">AAAB7HicbVDLSgNBEOyNrxhfUY9eBoPgKewGX8eAF48RzAOSNcxOZpMhs7PLTK8QlnyDFw+KePWDvPk3TpI9aGJBQ1HVTXdXkEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilJj5mtWm/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGz+bFTcmaVAQljbUshmau/JzIaGTOJAtsZURyZZW8m/ud1Uwxv/EyoJEWu2GJRmEqCMZl9TgZCc4ZyYgllWthbCRtRTRnafEo2BG/55VXSqlW9q+rl/UWl7uZxFOEETuEcPLiGOtxBA5rAQMAzvMKbo5wX5935WLQWnHzmGP7A+fwBx/qOoA==</latexit>

t2

<latexit sha1_base64="jVCvH7793nazBqpXTUXpYEf0hEs=">AAAB8XicbVDLSgNBEJz1GeMr6tHLYBA8hV3xdQx48RjBPDBZw+ykNxkyO7vM9AbCkr/w4kERr/6NN//GSbIHTSxoKKq66e4KEikMuu63s7K6tr6xWdgqbu/s7u2XDg4bJk41hzqPZaxbATMghYI6CpTQSjSwKJDQDIa3U785Am1ErB5wnIAfsb4SoeAMrfQ4esokhDjpet1S2a24M9Bl4uWkTHLUuqWvTi/maQQKuWTGtD03QT9jGgWXMCl2UgMJ40PWh7alikVg/Gx28YSeWqVHw1jbUkhn6u+JjEXGjKPAdkYMB2bRm4r/ee0Uwxs/EypJERSfLwpTSTGm0/dpT2jgKMeWMK6FvZXyAdOMow2paEPwFl9eJo3zindVuby/KFfdPI4COSYn5Ix45JpUyR2pkTrhRJFn8kreHOO8OO/Ox7x1xclnjsgfOJ8/qMGQ3Q==</latexit>

vleft1

<latexit sha1_base64="LKulc8A8wLASAUdJ0a73g7REbNI=">AAAB8XicbVDLTgJBEJzFF+IL9ehlIjHxRHaJryOJF4+YyCMCktmhFybMzm5meknIhr/w4kFjvPo33vwbB9iDgpV0UqnqTneXH0th0HW/ndza+sbmVn67sLO7t39QPDxqmCjRHOo8kpFu+cyAFArqKFBCK9bAQl9C0x/dzvzmGLQRkXrASQzdkA2UCARnaKXH8VMqIcBpr9IrltyyOwddJV5GSiRDrVf86vQjnoSgkEtmTNtzY+ymTKPgEqaFTmIgZnzEBtC2VLEQTDedXzylZ1bp0yDSthTSufp7ImWhMZPQt50hw6FZ9mbif147weCmmwoVJwiKLxYFiaQY0dn7tC80cJQTSxjXwt5K+ZBpxtGGVLAheMsvr5JGpexdlS/vL0pVN4sjT07IKTknHrkmVXJHaqROOFHkmbySN8c4L86787FozTnZzDH5A+fzB6pFkN4=</latexit>

vleft2

<latexit sha1_base64="m4Iuk3u925t/YLb21FGiHxCAeO8=">AAAB8XicbVDLTgJBEJzFF+IL9ehlIjHxRHZ9H0m8eMREHhGQzA69MGF2djPTS0I2/IUXDxrj1b/x5t84wB4UrKSTSlV3urv8WAqDrvvt5FZW19Y38puFre2d3b3i/kHdRInmUOORjHTTZwakUFBDgRKasQYW+hIa/vB26jdGoI2I1AOOY+iErK9EIDhDKz2OnlIJAU66591iyS27M9Bl4mWkRDJUu8Wvdi/iSQgKuWTGtDw3xk7KNAouYVJoJwZixoesDy1LFQvBdNLZxRN6YpUeDSJtSyGdqb8nUhYaMw592xkyHJhFbyr+57USDG46qVBxgqD4fFGQSIoRnb5Pe0IDRzm2hHEt7K2UD5hmHG1IBRuCt/jyMqmflb2r8uX9RaniZnHkyRE5JqfEI9ekQu5IldQIJ4o8k1fy5hjnxXl3PuatOSebOSR/4Hz+AKvJkN8=</latexit>

vleft3

<latexit sha1_base64="iVwikxohssjKOEKuwMgkYTp5fOk=">AAAB8nicbVDLSgNBEOz1GeMr6tHLYhA8hV3fx4AXjxHMA5I1zE5mkyGzM8tMbyAs+QwvHhTx6td482+cJHvQxIKGoqqb7q4wEdyg5307K6tr6xubha3i9s7u3n7p4LBhVKopq1MllG6FxDDBJasjR8FaiWYkDgVrhsO7qd8cMW24ko84TlgQk77kEacErdQePWWa9wc46V50S2Wv4s3gLhM/J2XIUeuWvjo9RdOYSaSCGNP2vQSDjGjkVLBJsZMalhA6JH3WtlSSmJkgm508cU+t0nMjpW1JdGfq74mMxMaM49B2xgQHZtGbiv957RSj2yDjMkmRSTpfFKXCReVO/3d7XDOKYmwJoZrbW106IJpQtCkVbQj+4svLpHFe8a8rVw+X5aqXx1GAYziBM/DhBqpwDzWoAwUFz/AKbw46L8678zFvXXHymSP4A+fzB4OHkVw=</latexit>

vright3

<latexit sha1_base64="TZCGd6RQFhh0Q8pNqsWYL5GUNJQ=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSTFr2PBi8cKthbaWDbbTbt0sxt2J4US+jO8eFDEq7/Gm//GbZuDtj4YeLw3w8y8MBHcoOd9O4W19Y3NreJ2aWd3b/+gfHjUMirVlDWpEkq3Q2KY4JI1kaNg7UQzEoeCPYaj25n/OGbacCUfcJKwICYDySNOCVqpM37KNB8Mcdqr9coVr+rN4a4SPycVyNHolb+6fUXTmEmkghjT8b0Eg4xo5FSwaambGpYQOiID1rFUkpiZIJufPHXPrNJ3I6VtSXTn6u+JjMTGTOLQdsYEh2bZm4n/eZ0Uo5sg4zJJkUm6WBSlwkXlzv53+1wzimJiCaGa21tdOiSaULQplWwI/vLLq6RVq/pX1cv7i0rdy+Mowgmcwjn4cA11uIMGNIGCgmd4hTcHnRfn3flYtBacfOYY/sD5/AGCA5Fb</latexit>

vright2

<latexit sha1_base64="d2arBoQ1m6Fjn44Y5AZwMFcVOf8=">AAAB8nicbVDLSgNBEOyNrxhfUY9eFoPgKeyKr2PAi8cI5gHJGmYns8mQ2ZllpjcQlnyGFw+KePVrvPk3TpI9aGJBQ1HVTXdXmAhu0PO+ncLa+sbmVnG7tLO7t39QPjxqGpVqyhpUCaXbITFMcMkayFGwdqIZiUPBWuHobua3xkwbruQjThIWxGQgecQpQSt1xk+Z5oMhTnt+r1zxqt4c7irxc1KBHPVe+avbVzSNmUQqiDEd30swyIhGTgWblrqpYQmhIzJgHUsliZkJsvnJU/fMKn03UtqWRHeu/p7ISGzMJA5tZ0xwaJa9mfif10kxug0yLpMUmaSLRVEqXFTu7H+3zzWjKCaWEKq5vdWlQ6IJRZtSyYbgL7+8SpoXVf+6evVwWal5eRxFOIFTOAcfbqAG91CHBlBQ8Ayv8Oag8+K8Ox+L1oKTzxzDHzifP4B/kVo=</latexit>

vright1

<latexit sha1_base64="q3YxQHH11AiKxe3ZO8pCR45oeSY=">AAAB8nicbVDLSgNBEOz1GeMr6tHLYBA8SNgVX8eAF48RzAOSNcxOZpMhszvLTG8gLPkMLx4U8erXePNvnCR70MSChqKqm+6uIJHCoOt+Oyura+sbm4Wt4vbO7t5+6eCwYVSqGa8zJZVuBdRwKWJeR4GStxLNaRRI3gyGd1O/OeLaCBU/4jjhfkT7sQgFo2il9ugp885VipOu1y2V3Yo7A1kmXk7KkKPWLX11eoqlEY+RSWpM23MT9DOqUTDJJ8VOanhC2ZD2edvSmEbc+Nns5Ak5tUqPhErbipHM1N8TGY2MGUeB7YwoDsyiNxX/89ophrd+JuIkRR6z+aIwlQQVmf5PekJzhnJsCWVa2FsJG1BNGdqUijYEb/HlZdK4qHjXlauHy3LVzeMowDGcwBl4cANVuIca1IGBgmd4hTcHnRfn3fmYt644+cwR/IHz+QPec5Dx</latexit>

v1,out1

<latexit sha1_base64="QRyiyMIPFNpUMPjeFW5BOtIlhq0=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBoPgQcJu8HUMePEYwTxgs4bZyWwyZHZmmekNhCWf4cWDIl79Gm/+jZNkD5pY0FBUddPdFSaCG3Ddb6ewtr6xuVXcLu3s7u0flA+PWkalmrImVULpTkgME1yyJnAQrJNoRuJQsHY4upv57THThiv5CJOEBTEZSB5xSsBK/vgp8y5UCtNerVeuuFV3DrxKvJxUUI5Gr/zV7SuaxkwCFcQY33MTCDKigVPBpqVualhC6IgMmG+pJDEzQTY/eYrPrNLHkdK2JOC5+nsiI7Exkzi0nTGBoVn2ZuJ/np9CdBtkXCYpMEkXi6JUYFB49j/uc80oiIklhGpub8V0SDShYFMq2RC85ZdXSatW9a6rVw+Xlbqbx1FEJ+gUnSMP3aA6ukcN1EQUKfSMXtGbA86L8+58LFoLTj5zjP7A+fwB3/eQ8g==</latexit>

v1,out2

<latexit sha1_base64="4SteTG1Q8QOFi1sIUy+W/Ngqr+M=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBoPgQcKu72PAi8cI5gGbNcxOZpMhszPLTG8gLPkMLx4U8erXePNvnCR70MSChqKqm+6uMBHcgOt+O4WV1bX1jeJmaWt7Z3evvH/QNCrVlDWoEkq3Q2KY4JI1gINg7UQzEoeCtcLh3dRvjZg2XMlHGCcsiElf8ohTAlbyR0+Zd6ZSmHQvuuWKW3VnwMvEy0kF5ah3y1+dnqJpzCRQQYzxPTeBICMaOBVsUuqkhiWEDkmf+ZZKEjMTZLOTJ/jEKj0cKW1LAp6pvycyEhszjkPbGRMYmEVvKv7n+SlEt0HGZZICk3S+KEoFBoWn/+Me14yCGFtCqOb2VkwHRBMKNqWSDcFbfHmZNM+r3nX16uGyUnPzOIroCB2jU+ShG1RD96iOGogihZ7RK3pzwHlx3p2PeWvByWcO0R84nz/he5Dz</latexit>

v1,out3

<latexit sha1_base64="GTJZAdfEi9GsNqH9Dn8ixSejjGw=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8SNg1vo4BLx4jmAds1jA7mU2GzM4sM72BsOQzvHhQxKtf482/cZLsQRMLGoqqbrq7wkRwA6777aysrq1vbBa2its7u3v7pYPDplGppqxBlVC6HRLDBJesARwEayeakTgUrBUO76Z+a8S04Uo+wjhhQUz6kkecErCSP3rKqucqhUm32i2V3Yo7A14mXk7KKEe9W/rq9BRNYyaBCmKM77kJBBnRwKlgk2InNSwhdEj6zLdUkpiZIJudPMGnVunhSGlbEvBM/T2RkdiYcRzazpjAwCx6U/E/z08hug0yLpMUmKTzRVEqMCg8/R/3uGYUxNgSQjW3t2I6IJpQsCkVbQje4svLpHlR8a4rVw+X5Zqbx1FAx+gEnSEP3aAaukd11EAUKfSMXtGbA86L8+58zFtXnHzmCP2B8/kD5JGQ9Q==</latexit>

v3,out3

<latexit sha1_base64="ZrQRQfEPAcPevRsOx3DpVX88w78=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8SNiNz2PAi8cI5gGbNcxOZpMhszPLTG8gLPkMLx4U8erXePNvnCR70MSChqKqm+6uMBHcgOt+Oyura+sbm4Wt4vbO7t5+6eCwaVSqKWtQJZRuh8QwwSVrAAfB2olmJA4Fa4XDu6nfGjFtuJKPME5YEJO+5BGnBKzkj56yi3OVwqRb7ZbKbsWdAS8TLydllKPeLX11eoqmMZNABTHG99wEgoxo4FSwSbGTGpYQOiR95lsqScxMkM1OnuBTq/RwpLQtCXim/p7ISGzMOA5tZ0xgYBa9qfif56cQ3QYZl0kKTNL5oigVGBSe/o97XDMKYmwJoZrbWzEdEE0o2JSKNgRv8eVl0qxWvOvK1cNluebmcRTQMTpBZ8hDN6iG7lEdNRBFCj2jV/TmgPPivDsf89YVJ585Qn/gfP4A4w2Q9A==</latexit>

v3,out2

<latexit sha1_base64="pzv0XcVkjpep3N7WgCfKQ9hSWEc=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBoPgQcKu72PAi8cI5gGbNcxOZpMhszPLTG8gLPkMLx4U8erXePNvnCR70MSChqKqm+6uMBHcgOt+O4WV1bX1jeJmaWt7Z3evvH/QNCrVlDWoEkq3Q2KY4JI1gINg7UQzEoeCtcLh3dRvjZg2XMlHGCcsiElf8ohTAlbyR0/ZxZlKYdL1uuWKW3VnwMvEy0kF5ah3y1+dnqJpzCRQQYzxPTeBICMaOBVsUuqkhiWEDkmf+ZZKEjMTZLOTJ/jEKj0cKW1LAp6pvycyEhszjkPbGRMYmEVvKv7n+SlEt0HGZZICk3S+KEoFBoWn/+Me14yCGFtCqOb2VkwHRBMKNqWSDcFbfHmZNM+r3nX16uGyUnPzOIroCB2jU+ShG1RD96iOGogihZ7RK3pzwHlx3p2PeWvByWcO0R84nz/hiZDz</latexit>

v3,out1

<latexit sha1_base64="R8fU5CraRQyaYdwgQwwMjXjNGL0=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBA8SNj1fQx48RjBPDBZw+ykkwyZnV1mZgNhyV948aCIV//Gm3/jJNmDJhY0FFXddHcFseDauO63s7S8srq2ntvIb25t7+wW9vZrOkoUwyqLRKQaAdUouMSq4UZgI1ZIw0BgPRjcTvz6EJXmkXwwoxj9kPYk73JGjZUeh0/p+SmX47bXLhTdkjsFWSReRoqQodIufLU6EUtClIYJqnXTc2Pjp1QZzgSO861EY0zZgPawaamkIWo/nV48JsdW6ZBupGxJQ6bq74mUhlqPwsB2htT09bw3Ef/zmonp3vgpl3FiULLZom4iiInI5H3S4QqZESNLKFPc3kpYnyrKjA0pb0Pw5l9eJLWzkndVury/KJbdLI4cHMIRnIAH11CGO6hAFRhIeIZXeHO08+K8Ox+z1iUnmzmAP3A+fwD05ZBo</latexit>

v3,in1

<latexit sha1_base64="Ibbh4fkIS5i1g8vgCq0XHUmwjTw=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgQcJufB4DXjxGMA9M1jA7mU2GzM4sM7OBsOQvvHhQxKt/482/cZLsQRMLGoqqbrq7gpgzbVz328mtrK6tb+Q3C1vbO7t7xf2DhpaJIrROJJeqFWBNORO0bpjhtBUriqOA02YwvJ36zRFVmknxYMYx9SPcFyxkBBsrPY6e0vMzJibdSrdYcsvuDGiZeBkpQYZat/jV6UmSRFQYwrHWbc+NjZ9iZRjhdFLoJJrGmAxxn7YtFTii2k9nF0/QiVV6KJTKljBopv6eSHGk9TgKbGeEzUAvelPxP6+dmPDGT5mIE0MFmS8KE46MRNP3UY8pSgwfW4KJYvZWRAZYYWJsSAUbgrf48jJpVMreVfny/qJUdbM48nAEx3AKHlxDFe6gBnUgIOAZXuHN0c6L8+58zFtzTjZzCH/gfP4A9mmQaQ==</latexit>

v3,in2

<latexit sha1_base64="UZ0eZ6kqFQN7VLun5Fq5TUdQHJs=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgQcKu8XUMePEYwTwwWcPsZDYZMjO7zMwGwpK/8OJBEa/+jTf/xkmyB00saCiquunuCmLOtHHdbye3srq2vpHfLGxt7+zuFfcPGjpKFKF1EvFItQKsKWeS1g0znLZiRbEIOG0Gw9up3xxRpVkkH8w4pr7AfclCRrCx0uPoKa2cMTnpVrrFklt2Z0DLxMtICTLUusWvTi8iiaDSEI61bntubPwUK8MIp5NCJ9E0xmSI+7RtqcSCaj+dXTxBJ1bpoTBStqRBM/X3RIqF1mMR2E6BzUAvelPxP6+dmPDGT5mME0MlmS8KE45MhKbvox5TlBg+tgQTxeytiAywwsTYkAo2BG/x5WXSOC97V+XL+4tS1c3iyMMRHMMpeHANVbiDGtSBgIRneIU3RzsvzrvzMW/NOdnMIfyB8/kD9+2Qag==</latexit>

v3,in3

<latexit sha1_base64="U9j8aP6dCp6ZYTEtJJwkZvRDl4c=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBA8SNj1fQx48RjBPDBZw+ykkwyZnV1mZgNhyV948aCIV//Gm3/jJNmDJhY0FFXddHcFseDauO63s7S8srq2ntvIb25t7+wW9vZrOkoUwyqLRKQaAdUouMSq4UZgI1ZIw0BgPRjcTvz6EJXmkXwwoxj9kPYk73JGjZUeh0+pd8rluH3eLhTdkjsFWSReRoqQodIufLU6EUtClIYJqnXTc2Pjp1QZzgSO861EY0zZgPawaamkIWo/nV48JsdW6ZBupGxJQ6bq74mUhlqPwsB2htT09bw3Ef/zmonp3vgpl3FiULLZom4iiInI5H3S4QqZESNLKFPc3kpYnyrKjA0pb0Pw5l9eJLWzkndVury/KJbdLI4cHMIRnIAH11CGO6hAFRhIeIZXeHO08+K8Ox+z1iUnmzmAP3A+fwD02ZBo</latexit>

v1,in3

<latexit sha1_base64="1iUOKaGNWEUs1frCMkSvVcFUSiA=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBA8SNgNvo4BLx4jmAcma5idTJIhs7PLTG8gLPkLLx4U8erfePNvnCR70MSChqKqm+6uIJbCoOt+Oyura+sbm7mt/PbO7t5+4eCwbqJEM15jkYx0M6CGS6F4DQVK3ow1p2EgeSMY3k79xohrIyL1gOOY+yHtK9ETjKKVHkdPqXcu1KRT7hSKbsmdgSwTLyNFyFDtFL7a3YglIVfIJDWm5bkx+inVKJjkk3w7MTymbEj7vGWpoiE3fjq7eEJOrdIlvUjbUkhm6u+JlIbGjMPAdoYUB2bRm4r/ea0Eezd+KlScIFdsvqiXSIIRmb5PukJzhnJsCWVa2FsJG1BNGdqQ8jYEb/HlZVIvl7yr0uX9RbHiZnHk4BhO4Aw8uIYK3EEVasBAwTO8wptjnBfn3fmYt6442cwR/IHz+QPzVZBn</latexit>

v1,in2

<latexit sha1_base64="/OkCH1zl+ChOiCAHAA/t+0tNwek=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgQcKu+DoGvHiMYB6YrGF20kmGzM4uM7OBsOQvvHhQxKt/482/cZLsQRMLGoqqbrq7glhwbVz328mtrK6tb+Q3C1vbO7t7xf2Duo4SxbDGIhGpZkA1Ci6xZrgR2IwV0jAQ2AiGt1O/MUKleSQfzDhGP6R9yXucUWOlx9FT6p1xOel4nWLJLbszkGXiZaQEGaqd4le7G7EkRGmYoFq3PDc2fkqV4UzgpNBONMaUDWkfW5ZKGqL209nFE3JilS7pRcqWNGSm/p5Iaaj1OAxsZ0jNQC96U/E/r5WY3o2fchknBiWbL+olgpiITN8nXa6QGTG2hDLF7a2EDaiizNiQCjYEb/HlZVI/L3tX5cv7i1LFzeLIwxEcwyl4cA0VuIMq1ICBhGd4hTdHOy/Ou/Mxb8052cwh/IHz+QPx0ZBm</latexit>

v1,in1

<latexit sha1_base64="8M2i4aac7j8NlP7J9OBR58So89s=">AAAB7HicbVDLSgNBEOyNrxhfUY9eBoPgKewGX8eAF48RzAOSNcxOZpMhs7PLTK8QlnyDFw+KePWDvPk3TpI9aGJBQ1HVTXdXkEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilZvqY1ab9csWtunOQVeLlpAI5Gv3yV28QszTiCpmkxnQ9N0E/oxoFk3xa6qWGJ5SN6ZB3LVU04sbP5sdOyZlVBiSMtS2FZK7+nshoZMwkCmxnRHFklr2Z+J/XTTG88TOhkhS5YotFYSoJxmT2ORkIzRnKiSWUaWFvJWxENWVo8ynZELzll1dJq1b1rqqX9xeVupvHUYQTOIVz8OAa6nAHDWgCAwHP8ApvjnJenHfnY9FacPKZY/gD5/MHyYKOoQ==</latexit>

u2

<latexit sha1_base64="TE8jUhHovM0zYgmnwY8+qLTQxi0=">AAACBnicbVDLSsNAFJ34rPUVdSnCYBFcSEnqc1lw47KCfUAbw2Q6bYdOMmHmplJCV278FTcuFHHrN7jzb5y2WWjrgQuHc+7l3nuCWHANjvNtLSwuLa+s5tby6xubW9v2zm5Ny0RRVqVSSNUIiGaCR6wKHARrxIqRMBCsHvSvx359wJTmMrqDYcy8kHQj3uGUgJF8+4DepyXcUrzbA6KUfMCnJzKBkZ8OfHfk2wWn6EyA54mbkQLKUPHtr1Zb0iRkEVBBtG66TgxeShRwKtgo30o0iwntky5rGhqRkGkvnbwxwkdGaeOOVKYiwBP190RKQq2HYWA6QwI9PeuNxf+8ZgKdKy/lUZwAi+h0UScRGCQeZ4LbXDEKYmgIoYqbWzHtEUUomOTyJgR39uV5UisV3Yvi+e1ZoexkceTQPjpEx8hFl6iMblAFVRFFj+gZvaI368l6sd6tj2nrgpXN7KE/sD5/AMuCmKk=</latexit>

c2!3,out
v1

<latexit sha1_base64="cmJcFGPzkhsLBZrr3cWdYOoY26I=">AAACBXicbVC7TsMwFHV4lvIKMMJgUSExoCopz7ESC2OR6ENqQ+S4TmvVsSPbKaqiLCz8CgsDCLHyD2z8DW6bAVqOdKWjc+7VvfcEMaNKO863tbC4tLyyWlgrrm9sbm3bO7sNJRKJSR0LJmQrQIowykldU81IK5YERQEjzWBwPfabQyIVFfxOj2LiRajHaUgx0kby7QN8n1ZgR9JeXyMpxQM8PaE889Oh72a+XXLKzgRwnrg5KYEcNd/+6nQFTiLCNWZIqbbrxNpLkdQUM5IVO4kiMcID1CNtQzmKiPLSyRcZPDJKF4ZCmuIaTtTfEymKlBpFgemMkO6rWW8s/ue1Ex1eeSnlcaIJx9NFYcKgFnAcCexSSbBmI0MQltTcCnEfSYS1Ca5oQnBnX54njUrZvSif356Vqk4eRwHsg0NwDFxwCargBtRAHWDwCJ7BK3iznqwX6936mLYuWPnMHvgD6/MH15OYHg==</latexit>

c2!3,in
v1

<latexit sha1_base64="NeQXrTA9DIZXgl4VwqfOZ4hLM4E=">AAACBXicbVC7TsMwFHV4lvIKMMJgUSExoCopz7ESC2OR6ENqQ+S4TmvVsSPbKaqiLCz8CgsDCLHyD2z8DW6bAVqOdKWjc+7VvfcEMaNKO863tbC4tLyyWlgrrm9sbm3bO7sNJRKJSR0LJmQrQIowykldU81IK5YERQEjzWBwPfabQyIVFfxOj2LiRajHaUgx0kby7QN8n1ZgR9JeXyMpxQM8PaE889OhX8l8u+SUnQngPHFzUgI5ar791ekKnESEa8yQUm3XibWXIqkpZiQrdhJFYoQHqEfahnIUEeWlky8yeGSULgyFNMU1nKi/J1IUKTWKAtMZId1Xs95Y/M9rJzq88lLK40QTjqeLwoRBLeA4EtilkmDNRoYgLKm5FeI+kghrE1zRhODOvjxPGpWye1E+vz0rVZ08jgLYB4fgGLjgElTBDaiBOsDgETyDV/BmPVkv1rv1MW1dsPKZPfAH1ucP2RiYHw==</latexit>

c2!3,in
v2

<latexit sha1_base64="hyIm2+Zk2hbnw7hFQ1gtMn4mVWE=">AAACBXicbVC7TsMwFHXKq5RXgBEGiwqJAVVJy2usxMJYJPqQ2hA5rtNadezIdoqqKAsLv8LCAEKs/AMbf4P7GKDlSFc6Oude3XtPEDOqtON8W7ml5ZXVtfx6YWNza3vH3t1rKJFITOpYMCFbAVKEUU7qmmpGWrEkKAoYaQaD67HfHBKpqOB3ehQTL0I9TkOKkTaSbx/i+7QMO5L2+hpJKR5g5ZTyzE+HfiXz7aJTciaAi8SdkSKYoebbX52uwElEuMYMKdV2nVh7KZKaYkayQidRJEZ4gHqkbShHEVFeOvkig8dG6cJQSFNcw4n6eyJFkVKjKDCdEdJ9Ne+Nxf+8dqLDKy+lPE404Xi6KEwY1AKOI4FdKgnWbGQIwpKaWyHuI4mwNsEVTAju/MuLpFEuuRel89uzYtWZxZEHB+AInAAXXIIquAE1UAcYPIJn8ArerCfrxXq3PqatOWs2sw/+wPr8AdqdmCA=</latexit>

c2!3,in
v3

<latexit sha1_base64="Vn9WQdCdQgImM6BkhIbkoPy7i3A=">AAACBnicbVDJSgNBEO2JW4xb1KMIjUHwIGEmcTsGvHiMYBZIxqGn05M06ZkeumsiYcjJi7/ixYMiXv0Gb/6NneWgiQ8KHu9VUVXPjwXXYNvfVmZpeWV1Lbue29jc2t7J7+7VtUwUZTUqhVRNn2gmeMRqwEGwZqwYCX3BGn7/euw3BkxpLqM7GMbMDUk34gGnBIzk5Q/pfVrCbcW7PSBKyQdcPpUJjLx04JVHXr5gF+0J8CJxZqSAZqh6+a92R9IkZBFQQbRuOXYMbkoUcCrYKNdONIsJ7ZMuaxkakZBpN528McLHRungQCpTEeCJ+nsiJaHWw9A3nSGBnp73xuJ/XiuB4MpNeRQnwCI6XRQkAoPE40xwhytGQQwNIVRxcyumPaIIBZNczoTgzL+8SOqlonNRPL89K1TsWRxZdICO0Aly0CWqoBtURTVE0SN6Rq/ozXqyXqx362PamrFmM/voD6zPH86MmKs=</latexit>

c2!3,out
v3

<latexit sha1_base64="sfc0xZUhml2mSHdxHb6A44t2DjA=">AAACBnicbVDLSsNAFJ34rPUVdSnCYBFcSEnqc1lw47KCfUAbw2Q6bYdOMmHmplJCV278FTcuFHHrN7jzb5y2WWjrgQuHc+7l3nuCWHANjvNtLSwuLa+s5tby6xubW9v2zm5Ny0RRVqVSSNUIiGaCR6wKHARrxIqRMBCsHvSvx359wJTmMrqDYcy8kHQj3uGUgJF8+4DepyXcUrzbA6KUfMCnJzKBkZ8O/NLItwtO0ZkAzxM3IwWUoeLbX622pEnIIqCCaN10nRi8lCjgVLBRvpVoFhPaJ13WNDQiIdNeOnljhI+M0sYdqUxFgCfq74mUhFoPw8B0hgR6etYbi/95zQQ6V17KozgBFtHpok4iMEg8zgS3uWIUxNAQQhU3t2LaI4pQMMnlTQju7MvzpFYquhfF89uzQtnJ4sihfXSIjpGLLlEZ3aAKqiKKHtEzekVv1pP1Yr1bH9PWBSub2UN/YH3+AM0HmKo=</latexit>

c2!3,out
v2

<latexit sha1_base64="SI0nthK4KiyplWseSHQSaqtHSDc=">AAAB/HicbVDLSsNAFJ34rPUV7dLNYBFclaQ+l4VuXFawD2hjmUwn7dDJJMzcKCHUX3HjQhG3fog7/8Zpm4W2HrhwOOde7r3HjwXX4Djf1srq2vrGZmGruL2zu7dvHxy2dJQoypo0EpHq+EQzwSVrAgfBOrFiJPQFa/vj+tRvPzCleSTvII2ZF5Kh5AGnBIzUt0v1+6yKe4oPR0CUih7x2aRvl52KMwNeJm5OyihHo29/9QYRTUImgQqiddd1YvAyooBTwSbFXqJZTOiYDFnXUElCpr1sdvwEnxhlgINImZKAZ+rviYyEWqehbzpDAiO96E3F/7xuAsG1l3EZJ8AknS8KEoEhwtMk8IArRkGkhhCquLkV0xFRhILJq2hCcBdfXiatasW9rFzcnpdrTh5HAR2hY3SKXHSFaugGNVATUZSiZ/SK3qwn68V6tz7mrStWPlNCf2B9/gDssZRE</latexit>

C2!3

<latexit sha1_base64="jFs7VZrZFG4YvDc4HgV54gDtWgQ=">AAAB7HicbVDLSgNBEOyNrxhfUY9eBoPgKewGX8eAF48RzAOSNcxOepMhs7PLzKwQlnyDFw+KePWDvPk3TpI9aGJBQ1HVTXdXkAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHssHM0nQj+hQ8pAzaqzUbDxmtWm/XHGr7hxklXg5qUCORr/81RvELI1QGiao1l3PTYyfUWU4Ezgt9VKNCWVjOsSupZJGqP1sfuyUnFllQMJY2ZKGzNXfExmNtJ5Ege2MqBnpZW8m/ud1UxPe+BmXSWpQssWiMBXExGT2ORlwhcyIiSWUKW5vJWxEFWXG5lOyIXjLL6+SVq3qXVUv7y8qdTePowgncArn4ME11OEOGtAEBhye4RXeHOm8OO/Ox6K14OQzx/AHzucPkNqOfA==</latexit>

P 2

Figure 3 Fragment of the graph G′: the path P 2 (comprising subpaths Pv1 , Pv2 , Pv3 ) and the
cycle C2→3.

We add two sets of k “terminal” vertices: S = {s1, s2, . . . , sk} and T = {t1, t2, . . . , tk}.
For i ∈ [k] we insert edges from si, i ∈ [k], to vleft

1 (being the first vertex of the path P i).
We also add edges from vright

|V i| (being the last vertex of the path P i) to ti.
We also create two additional sets of

(
k
2
)

terminal vertices each: Ŝ = {ŝi→j : 1 ≤ 1 < j ≤
k} and T̂ = {t̂i→j : 1 ≤ 1 < j ≤ k}. For i, j ∈ [k], i < j, and v ∈ V i, we insert an edge from
ŝi→j to vj,in (which belongs to Pv and hence to P i) and for v ∈ V j , we insert an edge from
vi,out to t̂i→j . Furthermore, we add edges from every t ∈ T ∪ T̂ to every s ∈ S ∪ Ŝ.

Finally we encode the adjacency matrix of G: for each edge uv in E(G) with u ∈ V i and
v ∈ V j with i < j, we insert an edge from uj,out to vi,in. See Figure 4 for an example.

This concludes the construction of G′. Clearly, the graph G′ can be computed in
polynomial time when given (G, (V 1, . . . , V k)). We begin the analysis of G′ by showing that
it has a DFVS of size O(k2).

▶ Lemma 8. There exists a subset X ⊆ V (G′) such that G′ − X is a DAG and |X| =
k(k − 1) + 2k +

(
k
2
)
.

Proof. Let Y be the set of vertices {ci→j,out
vi : i, j ∈ [k], i ̸= j} where vi stands for the first

vertex in V i. We set X = Y ∪ T ∪ T̂ ∪ {u1, . . . uk} and claim that G′ − X is a directed
acyclic graph. First observe that for each i ∈ [k] the graph Li := P i ∪

⋃
j ̸=i Ci→j − X is

acyclic because it can be drawn with each edge being either vertical or horizontal facing
right (see Figure 3). The remaining edges in G′ − X either start at S ∪ Ŝ (these vertices
have no incoming edges) or go from Li to Lj for i < j. Thus G′ − X is a DAG. Finally we
check that |X| = |Y | + |T | + |T̂ | + k = k(k − 1) + 2k +

(
k
2
)
. ◀

Correctness. We first show that if (G, (V 1, V 2, . . . , V k)) is a Yes-instance then there exists
a Hamiltonian cycle in G′. In the following lemmas, we refer to the directed feedback vertex
set X from Lemma 8.

▶ Lemma 9. If (G, (V 1, V 2, . . . , V k)) is a Yes-instance of Multicolored Clique then
(G′, X) is a Yes-instance of Hamiltonian Cycle By DFVS.

Proof. Let {v1, . . . , vk} be a clique in G with vi ∈ V i for i ∈ k. For i ∈ [k] we define the
path Zi that starts at si, follows P i until vleft

i , visits ui, and then follows P i from vright
i to

ti. Next, for i < j we construct the path Qi→j as ŝi→j → vj,in
i → Ci→j → vj,out

i → vi,in
j →

Cj→i → vi,out
j → t̂i→j . Note that one can traverse the entire cycle Ci→j after entering

it from vj,in
i and leave towards vj,out

i . The edge (vj,out
i , vi,in

j ) is present in G′ due to the
encoding of the adjacency matrix of G. The union of all these paths covers the entire vertex
set of G′. It suffices to observe that these paths can be combined into a single cycle using
the edges from T ∪ T̂ to S ∪ Ŝ. ◀
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<latexit sha1_base64="LKulc8A8wLASAUdJ0a73g7REbNI=">AAAB8XicbVDLTgJBEJzFF+IL9ehlIjHxRHaJryOJF4+YyCMCktmhFybMzm5meknIhr/w4kFjvPo33vwbB9iDgpV0UqnqTneXH0th0HW/ndza+sbmVn67sLO7t39QPDxqmCjRHOo8kpFu+cyAFArqKFBCK9bAQl9C0x/dzvzmGLQRkXrASQzdkA2UCARnaKXH8VMqIcBpr9IrltyyOwddJV5GSiRDrVf86vQjnoSgkEtmTNtzY+ymTKPgEqaFTmIgZnzEBtC2VLEQTDedXzylZ1bp0yDSthTSufp7ImWhMZPQt50hw6FZ9mbif147weCmmwoVJwiKLxYFiaQY0dn7tC80cJQTSxjXwt5K+ZBpxtGGVLAheMsvr5JGpexdlS/vL0pVN4sjT07IKTknHrkmVXJHaqROOFHkmbySN8c4L86787FozTnZzDH5A+fzB6pFkN4=</latexit>

vleft2

<latexit sha1_base64="jVCvH7793nazBqpXTUXpYEf0hEs=">AAAB8XicbVDLSgNBEJz1GeMr6tHLYBA8hV3xdQx48RjBPDBZw+ykNxkyO7vM9AbCkr/w4kERr/6NN//GSbIHTSxoKKq66e4KEikMuu63s7K6tr6xWdgqbu/s7u2XDg4bJk41hzqPZaxbATMghYI6CpTQSjSwKJDQDIa3U785Am1ErB5wnIAfsb4SoeAMrfQ4esokhDjpet1S2a24M9Bl4uWkTHLUuqWvTi/maQQKuWTGtD03QT9jGgWXMCl2UgMJ40PWh7alikVg/Gx28YSeWqVHw1jbUkhn6u+JjEXGjKPAdkYMB2bRm4r/ee0Uwxs/EypJERSfLwpTSTGm0/dpT2jgKMeWMK6FvZXyAdOMow2paEPwFl9eJo3zindVuby/KFfdPI4COSYn5Ix45JpUyR2pkTrhRJFn8kreHOO8OO/Ox7x1xclnjsgfOJ8/qMGQ3Q==</latexit>

vleft1

<latexit sha1_base64="q3YxQHH11AiKxe3ZO8pCR45oeSY=">AAAB8nicbVDLSgNBEOz1GeMr6tHLYBA8SNgVX8eAF48RzAOSNcxOZpMhszvLTG8gLPkMLx4U8erXePNvnCR70MSChqKqm+6uIJHCoOt+Oyura+sbm4Wt4vbO7t5+6eCwYVSqGa8zJZVuBdRwKWJeR4GStxLNaRRI3gyGd1O/OeLaCBU/4jjhfkT7sQgFo2il9ugp885VipOu1y2V3Yo7A1kmXk7KkKPWLX11eoqlEY+RSWpM23MT9DOqUTDJJ8VOanhC2ZD2edvSmEbc+Nns5Ak5tUqPhErbipHM1N8TGY2MGUeB7YwoDsyiNxX/89ophrd+JuIkRR6z+aIwlQQVmf5PekJzhnJsCWVa2FsJG1BNGdqUijYEb/HlZdK4qHjXlauHy3LVzeMowDGcwBl4cANVuIca1IGBgmd4hTcHnRfn3fmYt644+cwR/IHz+QPec5Dx</latexit>

v1,out1

<latexit sha1_base64="/OkCH1zl+ChOiCAHAA/t+0tNwek=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgQcKu+DoGvHiMYB6YrGF20kmGzM4uM7OBsOQvvHhQxKt/482/cZLsQRMLGoqqbrq7glhwbVz328mtrK6tb+Q3C1vbO7t7xf2Duo4SxbDGIhGpZkA1Ci6xZrgR2IwV0jAQ2AiGt1O/MUKleSQfzDhGP6R9yXucUWOlx9FT6p1xOel4nWLJLbszkGXiZaQEGaqd4le7G7EkRGmYoFq3PDc2fkqV4UzgpNBONMaUDWkfW5ZKGqL209nFE3JilS7pRcqWNGSm/p5Iaaj1OAxsZ0jNQC96U/E/r5WY3o2fchknBiWbL+olgpiITN8nXa6QGTG2hDLF7a2EDaiizNiQCjYEb/HlZVI/L3tX5cv7i1LFzeLIwxEcwyl4cA0VuIMq1ICBhGd4hTdHOy/Ou/Mxb8052cwh/IHz+QPx0ZBm</latexit>

v1,in1

<latexit sha1_base64="pzv0XcVkjpep3N7WgCfKQ9hSWEc=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBoPgQcKu72PAi8cI5gGbNcxOZpMhszPLTG8gLPkMLx4U8erXePNvnCR70MSChqKqm+6uMBHcgOt+O4WV1bX1jeJmaWt7Z3evvH/QNCrVlDWoEkq3Q2KY4JI1gINg7UQzEoeCtcLh3dRvjZg2XMlHGCcsiElf8ohTAlbyR0/ZxZlKYdL1uuWKW3VnwMvEy0kF5ah3y1+dnqJpzCRQQYzxPTeBICMaOBVsUuqkhiWEDkmf+ZZKEjMTZLOTJ/jEKj0cKW1LAp6pvycyEhszjkPbGRMYmEVvKv7n+SlEt0HGZZICk3S+KEoFBoWn/+Me14yCGFtCqOb2VkwHRBMKNqWSDcFbfHmZNM+r3nX16uGyUnPzOIroCB2jU+ShG1RD96iOGogihZ7RK3pzwHlx3p2PeWvByWcO0R84nz/hiZDz</latexit>

v3,out1

<latexit sha1_base64="R8fU5CraRQyaYdwgQwwMjXjNGL0=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBA8SNj1fQx48RjBPDBZw+ykkwyZnV1mZgNhyV948aCIV//Gm3/jJNmDJhY0FFXddHcFseDauO63s7S8srq2ntvIb25t7+wW9vZrOkoUwyqLRKQaAdUouMSq4UZgI1ZIw0BgPRjcTvz6EJXmkXwwoxj9kPYk73JGjZUeh0/p+SmX47bXLhTdkjsFWSReRoqQodIufLU6EUtClIYJqnXTc2Pjp1QZzgSO861EY0zZgPawaamkIWo/nV48JsdW6ZBupGxJQ6bq74mUhlqPwsB2htT09bw3Ef/zmonp3vgpl3FiULLZom4iiInI5H3S4QqZESNLKFPc3kpYnyrKjA0pb0Pw5l9eJLWzkndVury/KJbdLI4cHMIRnIAH11CGO6hAFRhIeIZXeHO08+K8Ox+z1iUnmzmAP3A+fwD05ZBo</latexit>

v3,in1

<latexit sha1_base64="d2arBoQ1m6Fjn44Y5AZwMFcVOf8=">AAAB8nicbVDLSgNBEOyNrxhfUY9eFoPgKeyKr2PAi8cI5gHJGmYns8mQ2ZllpjcQlnyGFw+KePVrvPk3TpI9aGJBQ1HVTXdXmAhu0PO+ncLa+sbmVnG7tLO7t39QPjxqGpVqyhpUCaXbITFMcMkayFGwdqIZiUPBWuHobua3xkwbruQjThIWxGQgecQpQSt1xk+Z5oMhTnt+r1zxqt4c7irxc1KBHPVe+avbVzSNmUQqiDEd30swyIhGTgWblrqpYQmhIzJgHUsliZkJsvnJU/fMKn03UtqWRHeu/p7ISGzMJA5tZ0xwaJa9mfif10kxug0yLpMUmaSLRVEqXFTu7H+3zzWjKCaWEKq5vdWlQ6IJRZtSyYbgL7+8SpoXVf+6evVwWal5eRxFOIFTOAcfbqAG91CHBlBQ8Ayv8Oag8+K8Ox+L1oKTzxzDHzifP4B/kVo=</latexit>

vright1

<latexit sha1_base64="QRyiyMIPFNpUMPjeFW5BOtIlhq0=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBoPgQcJu8HUMePEYwTxgs4bZyWwyZHZmmekNhCWf4cWDIl79Gm/+jZNkD5pY0FBUddPdFSaCG3Ddb6ewtr6xuVXcLu3s7u0flA+PWkalmrImVULpTkgME1yyJnAQrJNoRuJQsHY4upv57THThiv5CJOEBTEZSB5xSsBK/vgp8y5UCtNerVeuuFV3DrxKvJxUUI5Gr/zV7SuaxkwCFcQY33MTCDKigVPBpqVualhC6IgMmG+pJDEzQTY/eYrPrNLHkdK2JOC5+nsiI7Exkzi0nTGBoVn2ZuJ/np9CdBtkXCYpMEkXi6JUYFB49j/uc80oiIklhGpub8V0SDShYFMq2RC85ZdXSatW9a6rVw+Xlbqbx1FEJ+gUnSMP3aA6ukcN1EQUKfSMXtGbA86L8+58LFoLTj5zjP7A+fwB3/eQ8g==</latexit>

v1,out2

<latexit sha1_base64="1iUOKaGNWEUs1frCMkSvVcFUSiA=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBA8SNgNvo4BLx4jmAcma5idTJIhs7PLTG8gLPkLLx4U8erfePNvnCR70MSChqKqm+6uIJbCoOt+Oyura+sbm7mt/PbO7t5+4eCwbqJEM15jkYx0M6CGS6F4DQVK3ow1p2EgeSMY3k79xohrIyL1gOOY+yHtK9ETjKKVHkdPqXcu1KRT7hSKbsmdgSwTLyNFyFDtFL7a3YglIVfIJDWm5bkx+inVKJjkk3w7MTymbEj7vGWpoiE3fjq7eEJOrdIlvUjbUkhm6u+JlIbGjMPAdoYUB2bRm4r/ea0Eezd+KlScIFdsvqiXSIIRmb5PukJzhnJsCWVa2FsJG1BNGdqQ8jYEb/HlZVIvl7yr0uX9RbHiZnHk4BhO4Aw8uIYK3EEVasBAwTO8wptjnBfn3fmYt6442cwR/IHz+QPzVZBn</latexit>

v1,in2

<latexit sha1_base64="Ibbh4fkIS5i1g8vgCq0XHUmwjTw=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgQcJufB4DXjxGMA9M1jA7mU2GzM4sM7OBsOQvvHhQxKt/482/cZLsQRMLGoqqbrq7gpgzbVz328mtrK6tb+Q3C1vbO7t7xf2DhpaJIrROJJeqFWBNORO0bpjhtBUriqOA02YwvJ36zRFVmknxYMYx9SPcFyxkBBsrPY6e0vMzJibdSrdYcsvuDGiZeBkpQYZat/jV6UmSRFQYwrHWbc+NjZ9iZRjhdFLoJJrGmAxxn7YtFTii2k9nF0/QiVV6KJTKljBopv6eSHGk9TgKbGeEzUAvelPxP6+dmPDGT5mIE0MFmS8KE46MRNP3UY8pSgwfW4KJYvZWRAZYYWJsSAUbgrf48jJpVMreVfny/qJUdbM48nAEx3AKHlxDFe6gBnUgIOAZXuHN0c6L8+58zFtzTjZzCH/gfP4A9mmQaQ==</latexit>

v3,in2

<latexit sha1_base64="ZrQRQfEPAcPevRsOx3DpVX88w78=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8SNiNz2PAi8cI5gGbNcxOZpMhszPLTG8gLPkMLx4U8erXePNvnCR70MSChqKqm+6uMBHcgOt+Oyura+sbm4Wt4vbO7t5+6eCwaVSqKWtQJZRuh8QwwSVrAAfB2olmJA4Fa4XDu6nfGjFtuJKPME5YEJO+5BGnBKzkj56yi3OVwqRb7ZbKbsWdAS8TLydllKPeLX11eoqmMZNABTHG99wEgoxo4FSwSbGTGpYQOiR95lsqScxMkM1OnuBTq/RwpLQtCXim/p7ISGzMOA5tZ0xgYBa9qfif56cQ3QYZl0kKTNL5oigVGBSe/o97XDMKYmwJoZrbWzEdEE0o2JSKNgRv8eVl0qxWvOvK1cNluebmcRTQMTpBZ8hDN6iG7lEdNRBFCj2jV/TmgPPivDsf89YVJ585Qn/gfP4A4w2Q9A==</latexit>

v3,out2

<latexit sha1_base64="TZCGd6RQFhh0Q8pNqsWYL5GUNJQ=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSTFr2PBi8cKthbaWDbbTbt0sxt2J4US+jO8eFDEq7/Gm//GbZuDtj4YeLw3w8y8MBHcoOd9O4W19Y3NreJ2aWd3b/+gfHjUMirVlDWpEkq3Q2KY4JI1kaNg7UQzEoeCPYaj25n/OGbacCUfcJKwICYDySNOCVqpM37KNB8Mcdqr9coVr+rN4a4SPycVyNHolb+6fUXTmEmkghjT8b0Eg4xo5FSwaambGpYQOiID1rFUkpiZIJufPHXPrNJ3I6VtSXTn6u+JjMTGTOLQdsYEh2bZm4n/eZ0Uo5sg4zJJkUm6WBSlwkXlzv53+1wzimJiCaGa21tdOiSaULQplWwI/vLLq6RVq/pX1cv7i0rdy+Mowgmcwjn4cA11uIMGNIGCgmd4hTcHnRfn3flYtBacfOYY/sD5/AGCA5Fb</latexit>

vright2

<latexit sha1_base64="m4Iuk3u925t/YLb21FGiHxCAeO8=">AAAB8XicbVDLTgJBEJzFF+IL9ehlIjHxRHZ9H0m8eMREHhGQzA69MGF2djPTS0I2/IUXDxrj1b/x5t84wB4UrKSTSlV3urv8WAqDrvvt5FZW19Y38puFre2d3b3i/kHdRInmUOORjHTTZwakUFBDgRKasQYW+hIa/vB26jdGoI2I1AOOY+iErK9EIDhDKz2OnlIJAU66591iyS27M9Bl4mWkRDJUu8Wvdi/iSQgKuWTGtDw3xk7KNAouYVJoJwZixoesDy1LFQvBdNLZxRN6YpUeDSJtSyGdqb8nUhYaMw592xkyHJhFbyr+57USDG46qVBxgqD4fFGQSIoRnb5Pe0IDRzm2hHEt7K2UD5hmHG1IBRuCt/jyMqmflb2r8uX9RaniZnHkyRE5JqfEI9ekQu5IldQIJ4o8k1fy5hjnxXl3PuatOSebOSR/4Hz+AKvJkN8=</latexit>

vleft3

<latexit sha1_base64="4SteTG1Q8QOFi1sIUy+W/Ngqr+M=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBoPgQcKu72PAi8cI5gGbNcxOZpMhszPLTG8gLPkMLx4U8erXePNvnCR70MSChqKqm+6uMBHcgOt+O4WV1bX1jeJmaWt7Z3evvH/QNCrVlDWoEkq3Q2KY4JI1gINg7UQzEoeCtcLh3dRvjZg2XMlHGCcsiElf8ohTAlbyR0+Zd6ZSmHQvuuWKW3VnwMvEy0kF5ah3y1+dnqJpzCRQQYzxPTeBICMaOBVsUuqkhiWEDkmf+ZZKEjMTZLOTJ/jEKj0cKW1LAp6pvycyEhszjkPbGRMYmEVvKv7n+SlEt0HGZZICk3S+KEoFBoWn/+Me14yCGFtCqOb2VkwHRBMKNqWSDcFbfHmZNM+r3nX16uGyUnPzOIroCB2jU+ShG1RD96iOGogihZ7RK3pzwHlx3p2PeWvByWcO0R84nz/he5Dz</latexit>

v1,out3

<latexit sha1_base64="GTJZAdfEi9GsNqH9Dn8ixSejjGw=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8SNg1vo4BLx4jmAds1jA7mU2GzM4sM72BsOQzvHhQxKtf482/cZLsQRMLGoqqbrq7wkRwA6777aysrq1vbBa2its7u3v7pYPDplGppqxBlVC6HRLDBJesARwEayeakTgUrBUO76Z+a8S04Uo+wjhhQUz6kkecErCSP3rKqucqhUm32i2V3Yo7A14mXk7KKEe9W/rq9BRNYyaBCmKM77kJBBnRwKlgk2InNSwhdEj6zLdUkpiZIJudPMGnVunhSGlbEvBM/T2RkdiYcRzazpjAwCx6U/E/z08hug0yLpMUmKTzRVEqMCg8/R/3uGYUxNgSQjW3t2I6IJpQsCkVbQje4svLpHlR8a4rVw+X5Zqbx1FAx+gEnSEP3aAaukd11EAUKfSMXtGbA86L8+58zFtXnHzmCP2B8/kD5JGQ9Q==</latexit>

v3,out3

<latexit sha1_base64="UZ0eZ6kqFQN7VLun5Fq5TUdQHJs=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgQcKu8XUMePEYwTwwWcPsZDYZMjO7zMwGwpK/8OJBEa/+jTf/xkmyB00saCiquunuCmLOtHHdbye3srq2vpHfLGxt7+zuFfcPGjpKFKF1EvFItQKsKWeS1g0znLZiRbEIOG0Gw9up3xxRpVkkH8w4pr7AfclCRrCx0uPoKa2cMTnpVrrFklt2Z0DLxMtICTLUusWvTi8iiaDSEI61bntubPwUK8MIp5NCJ9E0xmSI+7RtqcSCaj+dXTxBJ1bpoTBStqRBM/X3RIqF1mMR2E6BzUAvelPxP6+dmPDGT5mME0MlmS8KE45MhKbvox5TlBg+tgQTxeytiAywwsTYkAo2BG/x5WXSOC97V+XL+4tS1c3iyMMRHMMpeHANVbiDGtSBgIRneIU3RzsvzrvzMW/NOdnMIfyB8/kD9+2Qag==</latexit>

v3,in3

<latexit sha1_base64="U9j8aP6dCp6ZYTEtJJwkZvRDl4c=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBA8SNj1fQx48RjBPDBZw+ykkwyZnV1mZgNhyV948aCIV//Gm3/jJNmDJhY0FFXddHcFseDauO63s7S8srq2ntvIb25t7+wW9vZrOkoUwyqLRKQaAdUouMSq4UZgI1ZIw0BgPRjcTvz6EJXmkXwwoxj9kPYk73JGjZUeh0+pd8rluH3eLhTdkjsFWSReRoqQodIufLU6EUtClIYJqnXTc2Pjp1QZzgSO861EY0zZgPawaamkIWo/nV48JsdW6ZBupGxJQ6bq74mUhlqPwsB2htT09bw3Ef/zmonp3vgpl3FiULLZom4iiInI5H3S4QqZESNLKFPc3kpYnyrKjA0pb0Pw5l9eJLWzkndVury/KJbdLI4cHMIRnIAH11CGO6hAFRhIeIZXeHO08+K8Ox+z1iUnmzmAP3A+fwD02ZBo</latexit>

v1,in3

<latexit sha1_base64="iVwikxohssjKOEKuwMgkYTp5fOk=">AAAB8nicbVDLSgNBEOz1GeMr6tHLYhA8hV3fx4AXjxHMA5I1zE5mkyGzM8tMbyAs+QwvHhTx6td482+cJHvQxIKGoqqb7q4wEdyg5307K6tr6xubha3i9s7u3n7p4LBhVKopq1MllG6FxDDBJasjR8FaiWYkDgVrhsO7qd8cMW24ko84TlgQk77kEacErdQePWWa9wc46V50S2Wv4s3gLhM/J2XIUeuWvjo9RdOYSaSCGNP2vQSDjGjkVLBJsZMalhA6JH3WtlSSmJkgm508cU+t0nMjpW1JdGfq74mMxMaM49B2xgQHZtGbiv957RSj2yDjMkmRSTpfFKXCReVO/3d7XDOKYmwJoZrbW106IJpQtCkVbQj+4svLpHFe8a8rVw+X5aqXx1GAYziBM/DhBqpwDzWoAwUFz/AKbw46L8678zFvXXHymSP4A+fzB4OHkVw=</latexit>

vright3

<latexit sha1_base64="56KLxdPQ8G4GLhlKbJy4So2EeGs=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PAi8cI5oHJGmYnvcmQ2dllZlYIS/7CiwdFvPo33vwbJ8keNLGgoajqprsrSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/VbT6g0j+W9GSfoR3QgecgZNVZ6SB8zgaGZ9LxeueJW3RnIMvFyUoEc9V75q9uPWRqhNExQrTuemxg/o8pwJnBS6qYaE8pGdIAdSyWNUPvZ7OIJObFKn4SxsiUNmam/JzIaaT2OAtsZUTPUi95U/M/rpCa89jMuk9SgZPNFYSqIicn0fdLnCpkRY0soU9zeStiQKsqMDalkQ/AWX14mzbOqd1m9uDuv1Nw8jiIcwTGcggdXUINbqEMDGEh4hld4c7Tz4rw7H/PWgpPPHMIfOJ8/pzSQ3A==</latexit>

uleft
1

<latexit sha1_base64="1CWTefG2IhPbTY8rEHB1UNxlBJg=">AAAB8XicbVDLSgNBEJz1GeMr6tHLYBA8hV3xdQx48RjBPDBZw+ykNxkyO7vM9CphyV948aCIV//Gm3/jJNmDJhY0FFXddHcFiRQGXffbWVpeWV1bL2wUN7e2d3ZLe/sNE6eaQ53HMtatgBmQQkEdBUpoJRpYFEhoBsPrid98BG1ErO5wlIAfsb4SoeAMrXT/9JBJCHHc9bqlsltxp6CLxMtJmeSodUtfnV7M0wgUcsmMaXtugn7GNAouYVzspAYSxoesD21LFYvA+Nn04jE9tkqPhrG2pZBO1d8TGYuMGUWB7YwYDsy8NxH/89ophld+JlSSIig+WxSmkmJMJ+/TntDAUY4sYVwLeyvlA6YZRxtS0Ybgzb+8SBqnFe+icn57Vq66eRwFckiOyAnxyCWpkhtSI3XCiSLP5JW8OcZ5cd6dj1nrkpPPHJA/cD5/AKpOkN4=</latexit>

wleft
1

<latexit sha1_base64="ZX7DYCDkx/TSgZnE2OMsYc+XAkE=">AAAB8nicbVDLSgMxFM34rPVVdekmWAQXUmaKr2XBjcsK9gHtWDJppg3NJENyI5Shn+HGhSJu/Rp3/o1pOwttPXDhcM693HtPlApuwPe/vZXVtfWNzcJWcXtnd2+/dHDYNMpqyhpUCaXbETFMcMkawEGwdqoZSSLBWtHoduq3npg2XMkHGKcsTMhA8phTAk7q2Meseq4sTHpBr1T2K/4MeJkEOSmjHPVe6avbV9QmTAIVxJhO4KcQZkQDp4JNil1rWEroiAxYx1FJEmbCbHbyBJ86pY9jpV1JwDP190RGEmPGSeQ6EwJDs+hNxf+8joX4Jsy4TC0wSeeLYiswKDz9H/e5ZhTE2BFCNXe3YjokmlBwKRVdCMHiy8ukWa0EV5XL+4tyzc/jKKBjdILOUICuUQ3doTpqIIoUekav6M0D78V79z7mrStePnOE/sD7/AHecJDx</latexit>

u2,out
1

<latexit sha1_base64="4eMbpFpfpHk8Ojv2mbJoKeJYJAM=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgQcJu8HUMePEYwTwwWcPspJMMmZ1dZmaFsOQvvHhQxKt/482/cZLsQRMLGoqqbrq7glhwbVz328mtrK6tb+Q3C1vbO7t7xf2Dho4SxbDOIhGpVkA1Ci6xbrgR2IoV0jAQ2AxGN1O/+YRK80jem3GMfkgHkvc5o8ZKD8ljWjnjctL1usWSW3ZnIMvEy0gJMtS6xa9OL2JJiNIwQbVue25s/JQqw5nASaGTaIwpG9EBti2VNETtp7OLJ+TEKj3Sj5QtachM/T2R0lDrcRjYzpCaoV70puJ/Xjsx/Ws/5TJODEo2X9RPBDERmb5PelwhM2JsCWWK21sJG1JFmbEhFWwI3uLLy6RRKXuX5Yu781LVzeLIwxEcwyl4cAVVuIUa1IGBhGd4hTdHOy/Ou/Mxb8052cwh/IHz+QPxzpBm</latexit>

u2,in
1

<latexit sha1_base64="ih0tzEFRA31NwUUMEfz+ikbb6W0=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgQcKu72PAi8cI5oHJGmYnnWTI7OwyMyuEJX/hxYMiXv0bb/6Nk2QPmljQUFR1090VxIJr47rfTm5peWV1Lb9e2Njc2t4p7u7VdZQohjUWiUg1A6pRcIk1w43AZqyQhoHARjC8mfiNJ1SaR/LejGL0Q9qXvMcZNVZ6SB7TsxMuxx2vUyy5ZXcKski8jJQgQ7VT/Gp3I5aEKA0TVOuW58bGT6kynAkcF9qJxpiyIe1jy1JJQ9R+Or14TI6s0iW9SNmShkzV3xMpDbUehYHtDKkZ6HlvIv7ntRLTu/ZTLuPEoGSzRb1EEBORyfukyxUyI0aWUKa4vZWwAVWUGRtSwYbgzb+8SOqnZe+yfHF3Xqq4WRx5OIBDOAYPrqACt1CFGjCQ8Ayv8OZo58V5dz5mrTknm9mHP3A+fwDzWJBn</latexit>

u3,in
1

<latexit sha1_base64="Xzt8WJzFCJvwCLTGAUjJZxB6SHw=">AAAB8nicbVDLSgMxFM34rPVVdekmWAQXUmZ8LwtuXFawD5jWkkkzbWgmGZIboQz9DDcuFHHr17jzb0zbWWjrgQuHc+7l3nuiVHADvv/tLS2vrK6tFzaKm1vbO7ulvf2GUVZTVqdKKN2KiGGCS1YHDoK1Us1IEgnWjIa3E7/5xLThSj7AKGWdhPQljzkl4KTQPmbnp8rCuBt0S2W/4k+BF0mQkzLKUeuWvto9RW3CJFBBjAkDP4VORjRwKti42LaGpYQOSZ+FjkqSMNPJpieP8bFTejhW2pUEPFV/T2QkMWaURK4zITAw895E/M8LLcQ3nYzL1AKTdLYotgKDwpP/cY9rRkGMHCFUc3crpgOiCQWXUtGFEMy/vEgaZ5XgqnJ5f1Gu+nkcBXSIjtAJCtA1qqI7VEN1RJFCz+gVvXngvXjv3sesdcnLZw7QH3ifP9/7kPI=</latexit>

u3,out
1

<latexit sha1_base64="zNeheLRll+ZZ4paI+ANT+NMBu50=">AAAB8nicbVDLSgNBEJyNrxhfUY9eFoPgQcJufB4DXjxGMA/YrGF2MpsMmZ1ZZnqEsOQzvHhQxKtf482/cZLsQRMLGoqqbrq7opQzDZ737RRWVtfWN4qbpa3tnd298v5BS0ujCG0SyaXqRFhTzgRtAgNOO6miOIk4bUej26nffqJKMykeYJzSMMEDwWJGMFgpMI/Z+Zk0MOnVeuWKV/VmcJeJn5MKytHolb+6fUlMQgUQjrUOfC+FMMMKGOF0UuoaTVNMRnhAA0sFTqgOs9nJE/fEKn03lsqWAHem/p7IcKL1OIlsZ4JhqBe9qfifFxiIb8KMidQAFWS+KDbcBelO/3f7TFECfGwJJorZW10yxAoTsCmVbAj+4svLpFWr+lfVy/uLSt3L4yiiI3SMTpGPrlEd3aEGaiKCJHpGr+jNAefFeXc+5q0FJ585RH/gfP4A4X+Q8w==</latexit>

u3,out
2

<latexit sha1_base64="3zkGbnrcK+GncT5QUFXdNakqMUQ=">AAAB8nicbVDLSgNBEJyNrxhfUY9eFoPgQcKu8XUMePEYwTxgs4bZyWwyZHZmmekRwpLP8OJBEa9+jTf/xkmyB00saCiquunuilLONHjet1NYWV1b3yhulra2d3b3yvsHLS2NIrRJJJeqE2FNORO0CQw47aSK4iTitB2Nbqd++4kqzaR4gHFKwwQPBIsZwWClwDxmtTNpYNKr9coVr+rN4C4TPycVlKPRK391+5KYhAogHGsd+F4KYYYVMMLppNQ1mqaYjPCABpYKnFAdZrOTJ+6JVfpuLJUtAe5M/T2R4UTrcRLZzgTDUC96U/E/LzAQ34QZE6kBKsh8UWy4C9Kd/u/2maIE+NgSTBSzt7pkiBUmYFMq2RD8xZeXSeu86l9VL+8vKnUvj6OIjtAxOkU+ukZ1dIcaqIkIkugZvaI3B5wX5935mLcWnHzmEP2B8/kD4wOQ9A==</latexit>

u3,out
3

<latexit sha1_base64="9rXRcucGpJeSDyX+1m7khhmPrhQ=">AAAB8nicbVDLSgNBEJyNrxhfUY9eFoPgQcJufB4DXjxGMA/YrGF2MpsMmZ1ZZnqEsOQzvHhQxKtf482/cZLsQRMLGoqqbrq7opQzDZ737RRWVtfWN4qbpa3tnd298v5BS0ujCG0SyaXqRFhTzgRtAgNOO6miOIk4bUej26nffqJKMykeYJzSMMEDwWJGMFgpMI9Z7UwamPTOe+WKV/VmcJeJn5MKytHolb+6fUlMQgUQjrUOfC+FMMMKGOF0UuoaTVNMRnhAA0sFTqgOs9nJE/fEKn03lsqWAHem/p7IcKL1OIlsZ4JhqBe9qfifFxiIb8KMidQAFWS+KDbcBelO/3f7TFECfGwJJorZW10yxAoTsCmVbAj+4svLpFWr+lfVy/uLSt3L4yiiI3SMTpGPrlEd3aEGaiKCJHpGr+jNAefFeXc+5q0FJ585RH/gfP4A4XiQ8w==</latexit>

u2,out
3

<latexit sha1_base64="1G8icmFneO51fPPyxwhGNGLJxuI=">AAAB8nicbVDLSgMxFM34rPVVdekmWAQXUmaKr2XBjcsK9gHtWDJppg3NJENyI5Shn+HGhSJu/Rp3/o1pOwttPXDhcM693HtPlApuwPe/vZXVtfWNzcJWcXtnd2+/dHDYNMpqyhpUCaXbETFMcMkawEGwdqoZSSLBWtHoduq3npg2XMkHGKcsTMhA8phTAk7q2Meseq4sTHrVXqnsV/wZ8DIJclJGOeq90le3r6hNmAQqiDGdwE8hzIgGTgWbFLvWsJTQERmwjqOSJMyE2ezkCT51Sh/HSruSgGfq74mMJMaMk8h1JgSGZtGbiv95HQvxTZhxmVpgks4XxVZgUHj6P+5zzSiIsSOEau5uxXRINKHgUiq6EILFl5dJs1oJriqX9xflmp/HUUDH6ASdoQBdoxq6Q3XUQBQp9Ixe0ZsH3ov37n3MW1e8fOYI/YH3+QPf9JDy</latexit>

u2,out
2

<latexit sha1_base64="3L4AriZPcdjkM8MkLSqJC9HxS3w=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgQcJu8HUMePEYwTwwWcPspJMMmZ1dZmaFsOQvvHhQxKt/482/cZLsQRMLGoqqbrq7glhwbVz328mtrK6tb+Q3C1vbO7t7xf2Dho4SxbDOIhGpVkA1Ci6xbrgR2IoV0jAQ2AxGN1O/+YRK80jem3GMfkgHkvc5o8ZKD8ljWjnjctKtdIslt+zOQJaJl5ESZKh1i1+dXsSSEKVhgmrd9tzY+ClVhjOBk0In0RhTNqIDbFsqaYjaT2cXT8iJVXqkHylb0pCZ+nsipaHW4zCwnSE1Q73oTcX/vHZi+td+ymWcGJRsvqifCGIiMn2f9LhCZsTYEsoUt7cSNqSKMmNDKtgQvMWXl0mjUvYuyxd356Wqm8WRhyM4hlPw4AqqcAs1qAMDCc/wCm+Odl6cd+dj3ppzsplD+APn8wfzUpBn</latexit>

u2,in
2

<latexit sha1_base64="uX5cXrul77uaSmaJNk9hOE6v6ac=">AAAB8XicbVDJSgNBEK1xjXGLevTSGAQPEmbiegx48RjBLJiMoadTkzTp6Rm6e4Qw5C+8eFDEq3/jzb+xsxw08UHB470qquoFieDauO63s7S8srq2ntvIb25t7+wW9vbrOk4VwxqLRayaAdUouMSa4UZgM1FIo0BgIxjcjP3GEyrNY3lvhgn6Ee1JHnJGjZUe0sesfMrlqHPWKRTdkjsBWSTejBRhhmqn8NXuxiyNUBomqNYtz02Mn1FlOBM4yrdTjQllA9rDlqWSRqj9bHLxiBxbpUvCWNmShkzU3xMZjbQeRoHtjKjp63lvLP7ntVITXvsZl0lqULLpojAVxMRk/D7pcoXMiKEllClubyWsTxVlxoaUtyF48y8vknq55F2WLu7OixV3FkcODuEITsCDK6jALVShBgwkPMMrvDnaeXHenY9p65IzmzmAP3A+fwD01pBo</latexit>

u2,in
3

<latexit sha1_base64="9eUm2W8Uj+kDxZfa2BRfvUFKzZc=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBA8SNg1vo4BLx4jmAcma5idTJIhs7PLTK8QlvyFFw+KePVvvPk3TpI9aGJBQ1HVTXdXEEth0HW/naXlldW19dxGfnNre2e3sLdfN1GiGa+xSEa6GVDDpVC8hgIlb8aa0zCQvBEMbyZ+44lrIyJ1j6OY+yHtK9ETjKKVHpLHtHwq1LhT7hSKbsmdgiwSLyNFyFDtFL7a3YglIVfIJDWm5bkx+inVKJjk43w7MTymbEj7vGWpoiE3fjq9eEyOrdIlvUjbUkim6u+JlIbGjMLAdoYUB2bem4j/ea0Ee9d+KlScIFdstqiXSIIRmbxPukJzhnJkCWVa2FsJG1BNGdqQ8jYEb/7lRVI/K3mXpYu782LFzeLIwSEcwQl4cAUVuIUq1ICBgmd4hTfHOC/Ou/Mxa11yspkD+APn8wf2YJBp</latexit>

u3,in
3

<latexit sha1_base64="vh3Fn0BYfEfWmMMdmjrTRurc7nQ=">AAAB8XicbVDJSgNBEK1xjXGLevTSGAQPEmbiegx48RjBLJiMoadTkzTp6Rm6e4Qw5C+8eFDEq3/jzb+xsxw08UHB470qquoFieDauO63s7S8srq2ntvIb25t7+wW9vbrOk4VwxqLRayaAdUouMSa4UZgM1FIo0BgIxjcjP3GEyrNY3lvhgn6Ee1JHnJGjZUe0sfs7JTLUafcKRTdkjsBWSTejBRhhmqn8NXuxiyNUBomqNYtz02Mn1FlOBM4yrdTjQllA9rDlqWSRqj9bHLxiBxbpUvCWNmShkzU3xMZjbQeRoHtjKjp63lvLP7ntVITXvsZl0lqULLpojAVxMRk/D7pcoXMiKEllClubyWsTxVlxoaUtyF48y8vknq55F2WLu7OixV3FkcODuEITsCDK6jALVShBgwkPMMrvDnaeXHenY9p65IzmzmAP3A+fwD03JBo</latexit>

u3,in
2

<latexit sha1_base64="q7Tge5a4Pz0AujPK9B5Jt0/+mFE=">AAAB8nicbVDLSgNBEOyNrxhfUY9eBoPgKewGX8eAF48RzAOSNcxOZpMhszvLTK8QlnyGFw+KePVrvPk3TpI9aGJBQ1HVTXdXkEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqGZVqxptMSaU7ATVcipg3UaDknURzGgWSt4Px7cxvP3FthIofcJJwP6LDWISCUbRSN33MtBiOcNqv9csVt+rOQVaJl5MK5Gj0y1+9gWJpxGNkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rU0phE3fjY/eUrOrDIgodK2YiRz9fdERiNjJlFgOyOKI7PszcT/vG6K4Y2fiThJkcdssShMJUFFZv+TgdCcoZxYQpkW9lbCRlRThjalkg3BW355lbRqVe+qenl/Uam7eRxFOIFTOAcPrqEOd9CAJjBQ8Ayv8Oag8+K8Ox+L1oKTzxzDHzifP4B1kVo=</latexit>

uright
2

<latexit sha1_base64="arZqT0Qk3TpI3lRK7cp083Uewpk=">AAAB8nicbVDLSgNBEOyNrxhfUY9eFoPgKez6Pga8eIxgHpCsYXYymwyZnVlmeoWw5DO8eFDEq1/jzb9xkuxBEwsaiqpuurvCRHCDnvftFFZW19Y3ipulre2d3b3y/kHTqFRT1qBKKN0OiWGCS9ZAjoK1E81IHArWCke3U7/1xLThSj7gOGFBTAaSR5wStFInfcw0Hwxx0jvvlSte1ZvBXSZ+TiqQo94rf3X7iqYxk0gFMabjewkGGdHIqWCTUjc1LCF0RAasY6kkMTNBNjt54p5Ype9GStuS6M7U3xMZiY0Zx6HtjAkOzaI3Ff/zOilGN0HGZZIik3S+KEqFi8qd/u/2uWYUxdgSQjW3t7p0SDShaFMq2RD8xZeXSfOs6l9VL+8vKjUvj6MIR3AMp+DDNdTgDurQAAoKnuEV3hx0Xpx352PeWnDymUP4A+fzB4H5kVs=</latexit>

uright
3

<latexit sha1_base64="gowKtvo5HKyEiIluiVOI+++g7cI=">AAAB8nicbVBNS8NAEJ34WetX1aOXYBE8lUT8Oha8eKxgPyCNZbPdtEs3u2F3IpTQn+HFgyJe/TXe/Ddu2xy09cHA470ZZuZFqeAGPe/bWVldW9/YLG2Vt3d29/YrB4ctozJNWZMqoXQnIoYJLlkTOQrWSTUjSSRYOxrdTv32E9OGK/mA45SFCRlIHnNK0EpB9phrPhjipOf3KlWv5s3gLhO/IFUo0OhVvrp9RbOESaSCGBP4XophTjRyKtik3M0MSwkdkQELLJUkYSbMZydP3FOr9N1YaVsS3Zn6eyIniTHjJLKdCcGhWfSm4n9ekGF8E+ZcphkySeeL4ky4qNzp/26fa0ZRjC0hVHN7q0uHRBOKNqWyDcFffHmZtM5r/lXt8v6iWveKOEpwDCdwBj5cQx3uoAFNoKDgGV7hzUHnxXl3PuatK04xcwR/4Hz+AH7xkVk=</latexit>

uright
1

<latexit sha1_base64="Ua5dpXQ0P9TVO0UQn83WzCrWzTA=">AAAB8XicbVDLSgNBEJz1GeMr6tHLYBA8hd3g6xjw4jGCeWCyhtlJbzJkdnaZ6RXCkr/w4kERr/6NN//GSbIHTSxoKKq66e4KEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk41hwaPZazbATMghYIGCpTQTjSwKJDQCkY3U7/1BNqIWN3jOAE/YgMlQsEZWukhfcwkhDjpVXulsltxZ6DLxMtJmeSo90pf3X7M0wgUcsmM6Xhugn7GNAouYVLspgYSxkdsAB1LFYvA+Nns4gk9tUqfhrG2pZDO1N8TGYuMGUeB7YwYDs2iNxX/8zophtd+JlSSIig+XxSmkmJMp+/TvtDAUY4tYVwLeyvlQ6YZRxtS0YbgLb68TJrVindZubg7L9fcPI4COSYn5Ix45IrUyC2pkwbhRJFn8kreHOO8OO/Ox7x1xclnjsgfOJ8/qLiQ3Q==</latexit>

uleft
2

<latexit sha1_base64="6Fudb76Dyyp9sO6MXuOuAfkNehc=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBA8hV3fx4AXjxHMA5M1zE5mkyGzs8tMrxCW/IUXD4p49W+8+TdOkj1oYkFDUdVNd1eQSGHQdb+dpeWV1bX1wkZxc2t7Z7e0t98wcaoZr7NYxroVUMOlULyOAiVvJZrTKJC8GQxvJn7ziWsjYnWPo4T7Ee0rEQpG0UoP6WMmeYjj7lm3VHYr7hRkkXg5KUOOWrf01enFLI24QiapMW3PTdDPqEbBJB8XO6nhCWVD2udtSxWNuPGz6cVjcmyVHgljbUshmaq/JzIaGTOKAtsZURyYeW8i/ue1Uwyv/UyoJEWu2GxRmEqCMZm8T3pCc4ZyZAllWthbCRtQTRnakIo2BG/+5UXSOK14l5WLu/Ny1c3jKMAhHMEJeHAFVbiFGtSBgYJneIU3xzgvzrvzMWtdcvKZA/gD5/MHqjyQ3g==</latexit>

uleft
3

<latexit sha1_base64="GPGRtb+oIEnYUtuQYELz5RdqDQM=">AAAB8nicbVDLSgNBEOz1GeMr6tHLYhA8SNgVX8eAF48RzAOSNcxOZpMhszPLTK8SlnyGFw+KePVrvPk3TpI9aGJBQ1HVTXdXmAhu0PO+naXlldW19cJGcXNre2e3tLffMCrVlNWpEkq3QmKY4JLVkaNgrUQzEoeCNcPhzcRvPjJtuJL3OEpYEJO+5BGnBK3UfnrI/FOV4rjrd0tlr+JN4S4SPydlyFHrlr46PUXTmEmkghjT9r0Eg4xo5FSwcbGTGpYQOiR91rZUkpiZIJuePHaPrdJzI6VtSXSn6u+JjMTGjOLQdsYEB2bem4j/ee0Uo+sg4zJJkUk6WxSlwkXlTv53e1wzimJkCaGa21tdOiCaULQpFW0I/vzLi6RxVvEvKxd35+Wql8dRgEM4ghPw4QqqcAs1qAMFBc/wCm8OOi/Ou/Mxa11y8pkD+APn8wfgAZDy</latexit>

w1,out
1

<latexit sha1_base64="bFBfxtcMXObjWvmmJFB083ISeh4=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBoPgQcJu8HUMePEYwTxgs4bZyWwyZHZmmelVwpLP8OJBEa9+jTf/xkmyB00saCiquunuChPBDbjut1NYWV1b3yhulra2d3b3yvsHLaNSTVmTKqF0JySGCS5ZEzgI1kk0I3EoWDsc3Uz99iPThit5D+OEBTEZSB5xSsBK/tNDVjtTKUx6Xq9ccavuDHiZeDmpoByNXvmr21c0jZkEKogxvucmEGREA6eCTUrd1LCE0BEZMN9SSWJmgmx28gSfWKWPI6VtScAz9fdERmJjxnFoO2MCQ7PoTcX/PD+F6DrIuExSYJLOF0WpwKDw9H/c55pREGNLCNXc3orpkGhCwaZUsiF4iy8vk1at6l1WL+7OK3U3j6OIjtAxOkUeukJ1dIsaqIkoUugZvaI3B5wX5935mLcWnHzmEP2B8/kD4YyQ8w==</latexit>

w2,out
1

<latexit sha1_base64="Zt+C2crx40rvohClC+fhuwdd+qI=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBoPgQcJu8HUMePEYwTxgs4bZyWwyZHZmmelVwpLP8OJBEa9+jTf/xkmyB00saCiquunuChPBDbjut1NYWV1b3yhulra2d3b3yvsHLaNSTVmTKqF0JySGCS5ZEzgI1kk0I3EoWDsc3Uz99iPThit5D+OEBTEZSB5xSsBK/tNDVjtTKUx6tV654lbdGfAy8XJSQTkavfJXt69oGjMJVBBjfM9NIMiIBk4Fm5S6qWEJoSMyYL6lksTMBNns5Ak+sUofR0rbkoBn6u+JjMTGjOPQdsYEhmbRm4r/eX4K0XWQcZmkwCSdL4pSgUHh6f+4zzWjIMaWEKq5vRXTIdGEgk2pZEPwFl9eJq1a1busXtydV+puHkcRHaFjdIo8dIXq6BY1UBNRpNAzekVvDjgvzrvzMW8tOPnMIfoD5/MH4xCQ9A==</latexit>

w2,out
2

<latexit sha1_base64="jzSb1OLrn8tVhu4bbzy6ZYuO5HA=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8SNiNz2PAi8cI5gGbNcxOZpMhszPLTK8SlnyGFw+KePVrvPk3TpI9aGJBQ1HVTXdXmAhuwHW/naXlldW19cJGcXNre2e3tLffNCrVlDWoEkq3Q2KY4JI1gINg7UQzEoeCtcLhzcRvPTJtuJL3MEpYEJO+5BGnBKzkPz1k1VOVwrh71i2V3Yo7BV4kXk7KKEe9W/rq9BRNYyaBCmKM77kJBBnRwKlg42InNSwhdEj6zLdUkpiZIJuePMbHVunhSGlbEvBU/T2RkdiYURzazpjAwMx7E/E/z08hug4yLpMUmKSzRVEqMCg8+R/3uGYUxMgSQjW3t2I6IJpQsCkVbQje/MuLpFmteJeVi7vzcs3N4yigQ3SETpCHrlAN3aI6aiCKFHpGr+jNAefFeXc+Zq1LTj5zgP7A+fwB5JSQ9Q==</latexit>

w2,out
3

<latexit sha1_base64="+eX1NKvJiIss5yUB2tI1TyF4R2I=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBoPgQcKu72PAi8cI5gGbNcxOZpMhszPLTK8SlnyGFw+KePVrvPk3TpI9aGJBQ1HVTXdXmAhuwHW/ncLS8srqWnG9tLG5tb1T3t1rGpVqyhpUCaXbITFMcMkawEGwdqIZiUPBWuHwZuK3Hpk2XMl7GCUsiElf8ohTAlbynx4y70SlMO6edcsVt+pOgReJl5MKylHvlr86PUXTmEmgghjje24CQUY0cCrYuNRJDUsIHZI+8y2VJGYmyKYnj/GRVXo4UtqWBDxVf09kJDZmFIe2MyYwMPPeRPzP81OIroOMyyQFJulsUZQKDApP/sc9rhkFMbKEUM3trZgOiCYUbEolG4I3//IiaZ5Wvcvqxd15pebmcRTRATpEx8hDV6iGblEdNRBFCj2jV/TmgPPivDsfs9aCk8/soz9wPn8A4wmQ9A==</latexit>

w1,out
3

<latexit sha1_base64="sxRYNKyd5gHNiFFdKDXo/iCkaSw=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBoPgQcJu8HUMePEYwTxgs4bZyWwyZHZmmelVwpLP8OJBEa9+jTf/xkmyB00saCiquunuChPBDbjut1NYWV1b3yhulra2d3b3yvsHLaNSTVmTKqF0JySGCS5ZEzgI1kk0I3EoWDsc3Uz99iPThit5D+OEBTEZSB5xSsBK/tND5p2pFCa9Wq9ccavuDHiZeDmpoByNXvmr21c0jZkEKogxvucmEGREA6eCTUrd1LCE0BEZMN9SSWJmgmx28gSfWKWPI6VtScAz9fdERmJjxnFoO2MCQ7PoTcX/PD+F6DrIuExSYJLOF0WpwKDw9H/c55pREGNLCNXc3orpkGhCwaZUsiF4iy8vk1at6l1WL+7OK3U3j6OIjtAxOkUeukJ1dIsaqIkoUugZvaI3B5wX5935mLcWnHzmEP2B8/kD4YWQ8w==</latexit>

w1,out
2

<latexit sha1_base64="2NN2QhS5p/ADsWm7n4XgX4zdUoE=">AAAB8XicbVDJSgNBEK2JW4xb1KOXxiB4kDAjbseAF48RzILJGHo6NUmTnp6hu0cJQ/7CiwdFvPo33vwbO8tBEx8UPN6roqpekAiujet+O7ml5ZXVtfx6YWNza3unuLtX13GqGNZYLGLVDKhGwSXWDDcCm4lCGgUCG8Hgeuw3HlFpHss7M0zQj2hP8pAzaqx0//SQeSdcjjpep1hyy+4EZJF4M1KCGaqd4le7G7M0QmmYoFq3PDcxfkaV4UzgqNBONSaUDWgPW5ZKGqH2s8nFI3JklS4JY2VLGjJRf09kNNJ6GAW2M6Kmr+e9sfif10pNeOVnXCapQcmmi8JUEBOT8fukyxUyI4aWUKa4vZWwPlWUGRtSwYbgzb+8SOqnZe+ifH57Vqq4szjycACHcAweXEIFbqAKNWAg4Rle4c3Rzovz7nxMW3PObGYf/sD5/AHzXpBn</latexit>

w1,in
1

<latexit sha1_base64="/J1AEyJiq1xtRBiHtefdE5niBlo=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBA8SNgNvo4BLx4jmAcma5idTJIhs7PLTK8SlvyFFw+KePVvvPk3TpI9aGJBQ1HVTXdXEEth0HW/naXlldW19dxGfnNre2e3sLdfN1GiGa+xSEa6GVDDpVC8hgIlb8aa0zCQvBEMryd+45FrIyJ1h6OY+yHtK9ETjKKV7p8eUu9UqHGn3CkU3ZI7BVkkXkaKkKHaKXy1uxFLQq6QSWpMy3Nj9FOqUTDJx/l2YnhM2ZD2ectSRUNu/HR68ZgcW6VLepG2pZBM1d8TKQ2NGYWB7QwpDsy8NxH/81oJ9q78VKg4Qa7YbFEvkQQjMnmfdIXmDOXIEsq0sLcSNqCaMrQh5W0I3vzLi6ReLnkXpfPbs2LFzeLIwSEcwQl4cAkVuIEq1ICBgmd4hTfHOC/Ou/Mxa11yspkD+APn8wf04pBo</latexit>

w1,in
2

<latexit sha1_base64="ZMb3UnYO8gWPbKwyMqyzJNJ6mWc=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBA8SNj1fQx48RjBPDBZw+xkkgyZnV1mepWw5C+8eFDEq3/jzb9xkuxBEwsaiqpuuruCWAqDrvvtLCwuLa+s5tby6xubW9uFnd2aiRLNeJVFMtKNgBouheJVFCh5I9achoHk9WBwPfbrj1wbEak7HMbcD2lPia5gFK10//SQesdCjdqn7ULRLbkTkHniZaQIGSrtwlerE7Ek5AqZpMY0PTdGP6UaBZN8lG8lhseUDWiPNy1VNOTGTycXj8ihVTqkG2lbCslE/T2R0tCYYRjYzpBi38x6Y/E/r5lg98pPhYoT5IpNF3UTSTAi4/dJR2jOUA4toUwLeythfaopQxtS3obgzb48T2onJe+idH57Viy7WRw52IcDOAIPLqEMN1CBKjBQ8Ayv8OYY58V5dz6mrQtONrMHf+B8/gD2ZpBp</latexit>

w1,in
3

<latexit sha1_base64="6bHr6ClN2u4mzck3KakB7qeqKaE=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgQcJufB4DXjxGMA9M1jA7mU2GzM4sM7NKWPIXXjwo4tW/8ebfOEn2oIkFDUVVN91dQcyZNq777eSWlldW1/LrhY3Nre2d4u5eQ8tEEVonkkvVCrCmnAlaN8xw2ooVxVHAaTMYXk/85iNVmklxZ0Yx9SPcFyxkBBsr3T89pJUTJsbd026x5JbdKdAi8TJSggy1bvGr05MkiagwhGOt254bGz/FyjDC6bjQSTSNMRniPm1bKnBEtZ9OLx6jI6v0UCiVLWHQVP09keJI61EU2M4Im4Ge9ybif147MeGVnzIRJ4YKMlsUJhwZiSbvox5TlBg+sgQTxeytiAywwsTYkAo2BG/+5UXSqJS9i/L57Vmp6mZx5OEADuEYPLiEKtxADepAQMAzvMKbo50X5935mLXmnGxmH/7A+fwB9/CQag==</latexit>

w2,in
3

<latexit sha1_base64="O5qVfiA5JgqGvvpB07r/9M8kckQ=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBA8SNgNvo4BLx4jmAcma5iddJIhs7PLzKwSlvyFFw+KePVvvPk3TpI9aGJBQ1HVTXdXEAuujet+O0vLK6tr67mN/ObW9s5uYW+/rqNEMayxSESqGVCNgkusGW4ENmOFNAwENoLh9cRvPKLSPJJ3ZhSjH9K+5D3OqLHS/dNDWj7lctwpdwpFt+ROQRaJl5EiZKh2Cl/tbsSSEKVhgmrd8tzY+ClVhjOB43w70RhTNqR9bFkqaYjaT6cXj8mxVbqkFylb0pCp+nsipaHWozCwnSE1Az3vTcT/vFZield+ymWcGJRstqiXCGIiMnmfdLlCZsTIEsoUt7cSNqCKMmNDytsQvPmXF0m9XPIuSue3Z8WKm8WRg0M4ghPw4BIqcANVqAEDCc/wCm+Odl6cd+dj1rrkZDMH8AfO5w/2bJBp</latexit>

w2,in
2

<latexit sha1_base64="YI4Sykq6lCYfR+upcKdL8YPuY9M=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBA8SNgNvo4BLx4jmAcma5idTJIhs7PLTK8SlvyFFw+KePVvvPk3TpI9aGJBQ1HVTXdXEEth0HW/naXlldW19dxGfnNre2e3sLdfN1GiGa+xSEa6GVDDpVC8hgIlb8aa0zCQvBEMryd+45FrIyJ1h6OY+yHtK9ETjKKV7p8e0vKpUOOO1ykU3ZI7BVkkXkaKkKHaKXy1uxFLQq6QSWpMy3Nj9FOqUTDJx/l2YnhM2ZD2ectSRUNu/HR68ZgcW6VLepG2pZBM1d8TKQ2NGYWB7QwpDsy8NxH/81oJ9q78VKg4Qa7YbFEvkQQjMnmfdIXmDOXIEsq0sLcSNqCaMrQh5W0I3vzLi6ReLnkXpfPbs2LFzeLIwSEcwQl4cAkVuIEq1ICBgmd4hTfHOC/Ou/Mxa11yspkD+APn8wf06JBo</latexit>

w2,in
1

<latexit sha1_base64="BFOqefRAa76iRF+kZDbPcvwA9so=">AAAB8nicbVDLSgNBEOyNrxhfUY9eFoPgKeyKr2PAi8cI5gHJGmYns8mQ2ZllplcJSz7DiwdFvPo13vwbJ8keNLGgoajqprsrTAQ36HnfTmFldW19o7hZ2tre2d0r7x80jUo1ZQ2qhNLtkBgmuGQN5ChYO9GMxKFgrXB0M/Vbj0wbruQ9jhMWxGQgecQpQSt1nh4yzQdDnPT8XrniVb0Z3GXi56QCOeq98le3r2gaM4lUEGM6vpdgkBGNnAo2KXVTwxJCR2TAOpZKEjMTZLOTJ+6JVfpupLQtie5M/T2RkdiYcRzazpjg0Cx6U/E/r5NidB1kXCYpMknni6JUuKjc6f9un2tGUYwtIVRze6tLh0QTijalkg3BX3x5mTTPqv5l9eLuvFLz8jiKcATHcAo+XEENbqEODaCg4Ble4c1B58V5dz7mrQUnnzmEP3A+fwCCDZFb</latexit>

wright
1

<latexit sha1_base64="3E1xLFPjFDirAtMXFDfzQmgfvq0=">AAAB8nicbVDLSgNBEOz1GeMr6tHLYhA8hd3g6xjw4jGCecBmDbOTSTJkdmaZ6VXCks/w4kERr36NN//GSbIHTSxoKKq66e6KEsENet63s7K6tr6xWdgqbu/s7u2XDg6bRqWasgZVQul2RAwTXLIGchSsnWhG4kiwVjS6mfqtR6YNV/IexwkLYzKQvM8pQSsFTw+Z5oMhTrrVbqnsVbwZ3GXi56QMOerd0lenp2gaM4lUEGMC30swzIhGTgWbFDupYQmhIzJggaWSxMyE2ezkiXtqlZ7bV9qWRHem/p7ISGzMOI5sZ0xwaBa9qfifF6TYvw4zLpMUmaTzRf1UuKjc6f9uj2tGUYwtIVRze6tLh0QTijalog3BX3x5mTSrFf+ycnF3Xq55eRwFOIYTOAMfrqAGt1CHBlBQ8Ayv8Oag8+K8Ox/z1hUnnzmCP3A+fwCDkZFc</latexit>

wright
2

<latexit sha1_base64="dDoTBOemGQETQQ3o3/M46GsOZAY=">AAAB8nicbVDLSgNBEOz1GeMr6tHLYhA8hV3fx4AXjxHMA5I1zE5mkyGzM8tMrxKWfIYXD4p49Wu8+TdOkj1oYkFDUdVNd1eYCG7Q876dpeWV1bX1wkZxc2t7Z7e0t98wKtWU1akSSrdCYpjgktWRo2CtRDMSh4I1w+HNxG8+Mm24kvc4SlgQk77kEacErdR+esg07w9w3D3rlspexZvCXSR+TsqQo9YtfXV6iqYxk0gFMabtewkGGdHIqWDjYic1LCF0SPqsbakkMTNBNj157B5bpedGStuS6E7V3xMZiY0ZxaHtjAkOzLw3Ef/z2ilG10HGZZIik3S2KEqFi8qd/O/2uGYUxcgSQjW3t7p0QDShaFMq2hD8+ZcXSeO04l9WLu7Oy1Uvj6MAh3AEJ+DDFVThFmpQBwoKnuEV3hx0Xpx352PWuuTkMwfwB87nD4UVkV0=</latexit>

wright
3

<latexit sha1_base64="V+RothQwg4uT6LqxZssAsU07U1M=">AAAB8XicbVDJSgNBEO2JW4xb1KOXxiB4CjPux4AXjxHMgskYejo1SZOenqG7RglD/sKLB0W8+jfe/Bs7y0ETHxQ83quiql6QSGHQdb+d3NLyyupafr2wsbm1vVPc3aubONUcajyWsW4GzIAUCmooUEIz0cCiQEIjGFyP/cYjaCNidYfDBPyI9ZQIBWdopfunh0xCiKPOaadYcsvuBHSReDNSIjNUO8WvdjfmaQQKuWTGtDw3QT9jGgWXMCq0UwMJ4wPWg5alikVg/Gxy8YgeWaVLw1jbUkgn6u+JjEXGDKPAdkYM+2beG4v/ea0Uwys/EypJERSfLgpTSTGm4/dpV2jgKIeWMK6FvZXyPtOMow2pYEPw5l9eJPWTsndRPr89K1XcWRx5ckAOyTHxyCWpkBtSJTXCiSLP5JW8OcZ5cd6dj2lrzpnN7JM/cD5/AK1WkOA=</latexit>

wleft
3

<latexit sha1_base64="JxEeYpzvnJypAZ9VrgmEHMbHMK4=">AAAB8XicbVDLTgJBEOzFF+IL9ehlIjHxRHaJryOJF4+YyCMCktlhFibMzm5mejVkw1948aAxXv0bb/6NA+xBwUo6qVR1p7vLj6Uw6LrfTm5ldW19I79Z2Nre2d0r7h80TJRoxusskpFu+dRwKRSvo0DJW7HmNPQlb/qj66nffOTaiEjd4Tjm3ZAOlAgEo2il+6eHVPIAJ71Kr1hyy+4MZJl4GSlBhlqv+NXpRywJuUImqTFtz42xm1KNgkk+KXQSw2PKRnTA25YqGnLTTWcXT8iJVfokiLQthWSm/p5IaWjMOPRtZ0hxaBa9qfif104wuOqmQsUJcsXmi4JEEozI9H3SF5ozlGNLKNPC3krYkGrK0IZUsCF4iy8vk0al7F2Uz2/PSlU3iyMPR3AMp+DBJVThBmpQBwYKnuEV3hzjvDjvzse8NedkM4fwB87nD6vSkN8=</latexit>

wleft
2

<latexit sha1_base64="dGfjG0Tk4aZeyeCwBiCE0vZaDa4=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4Kon4dSx48VjBtIU2ls120y7dbMLuRCihv8GLB0W8+oO8+W/ctjlo64OBx3szzMwLUykMuu63s7K6tr6xWdoqb+/s7u1XDg6bJsk04z5LZKLbITVcCsV9FCh5O9WcxqHkrXB0O/VbT1wbkagHHKc8iOlAiUgwilbyzWPuTXqVqltzZyDLxCtIFQo0epWvbj9hWcwVMkmN6XhuikFONQom+aTczQxPKRvRAe9YqmjMTZDPjp2QU6v0SZRoWwrJTP09kdPYmHEc2s6Y4tAselPxP6+TYXQT5EKlGXLF5ouiTBJMyPRz0heaM5RjSyjTwt5K2JBqytDmU7YheIsvL5Pmec27ql3eX1TrbhFHCY7hBM7Ag2uowx00wAcGAp7hFd4c5bw4787HvHXFKWaO4A+czx/E7Y6e</latexit>

s1
<latexit sha1_base64="t4VQgTfX4Y6IOK63KiYnkzuuiNI=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4Kon4dSx48VjBtIU2ls120y7dbMLuRCihv8GLB0W8+oO8+W/ctjlo64OBx3szzMwLUykMuu63s7K6tr6xWdoqb+/s7u1XDg6bJsk04z5LZKLbITVcCsV9FCh5O9WcxqHkrXB0O/VbT1wbkagHHKc8iOlAiUgwilby8TH3Jr1K1a25M5Bl4hWkCgUavcpXt5+wLOYKmaTGdDw3xSCnGgWTfFLuZoanlI3ogHcsVTTmJshnx07IqVX6JEq0LYVkpv6eyGlszDgObWdMcWgWvan4n9fJMLoJcqHSDLli80VRJgkmZPo56QvNGcqxJZRpYW8lbEg1ZWjzKdsQvMWXl0nzvOZd1S7vL6p1t4ijBMdwAmfgwTXU4Q4a4AMDAc/wCm+Ocl6cd+dj3rriFDNH8AfO5w/GdY6f</latexit>

t1

<latexit sha1_base64="rl3GAPOAJ2l59uJiVor3/g+9zZk=">AAAB7HicbVDLSgNBEOyNrxhfUY9eBoPgKewGX8eAF48RzAOSNcxOZpMhs7PLTK8QlnyDFw+KePWDvPk3TpI9aGJBQ1HVTXdXkEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilJj5mtWm/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGz+bFTcmaVAQljbUshmau/JzIaGTOJAtsZURyZZW8m/ud1Uwxv/EyoJEWu2GJRmEqCMZl9TgZCc4ZyYgllWthbCRtRTRnafEo2BG/55VXSqlW9q+rl/UWl7uZxFOEETuEcPLiGOtxBA5rAQMAzvMKbo5wX5935WLQWnHzmGP7A+fwBx/qOoA==</latexit>

t2
<latexit sha1_base64="03i5IHjTHwBPLwDyWKvxNX+01Yc=">AAAB7HicbVDLSgNBEOyNrxhfUY9eBoPgKewGX8eAF48RzAOSNcxOepMhs7PLzKwQlnyDFw+KePWDvPk3TpI9aGJBQ1HVTXdXkAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHssHM0nQj+hQ8pAzaqzU1I9ZbdovV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzslZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1IQ3fsZlkhqUbLEoTAUxMZl9TgZcITNiYgllittbCRtRRZmx+ZRsCN7yy6ukVat6V9XL+4tK3c3jKMIJnMI5eHANdbiDBjSBAYdneIU3RzovzrvzsWgtOPnMMfyB8/kDxnKOnw==</latexit>

s2

<latexit sha1_base64="BNMlOZ8VTLSel0LPNn2eYVkkSL8=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0n8Pha8eKxg2kIby2Y7bZduNmF3I5TQ3+DFgyJe/UHe/Ddu2xy09cHA470ZZuaFieDauO63U1hZXVvfKG6WtrZ3dvfK+wcNHaeKoc9iEatWSDUKLtE33AhsJQppFApshqPbqd98QqV5LB/MOMEgogPJ+5xRYyVfP2bnk2654lbdGcgy8XJSgRz1bvmr04tZGqE0TFCt256bmCCjynAmcFLqpBoTykZ0gG1LJY1QB9ns2Ak5sUqP9GNlSxoyU39PZDTSehyFtjOiZqgXvan4n9dOTf8myLhMUoOSzRf1U0FMTKafkx5XyIwYW0KZ4vZWwoZUUWZsPiUbgrf48jJpnFW9q+rl/UWl5uZxFOEIjuEUPLiGGtxBHXxgwOEZXuHNkc6L8+58zFsLTj5zCH/gfP4Ax/eOoA==</latexit>

s3
<latexit sha1_base64="rSHg8TS4924cbxLDnVbP87jLmBA=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0n8Pha8eKxg2kIby2a7bZduNmF3IpTQ3+DFgyJe/UHe/Ddu2xy09cHA470ZZuaFiRQGXffbKaysrq1vFDdLW9s7u3vl/YOGiVPNuM9iGetWSA2XQnEfBUreSjSnUSh5MxzdTv3mE9dGxOoBxwkPIjpQoi8YRSv5+JidT7rlilt1ZyDLxMtJBXLUu+WvTi9macQVMkmNaXtugkFGNQom+aTUSQ1PKBvRAW9bqmjETZDNjp2QE6v0SD/WthSSmfp7IqORMeMotJ0RxaFZ9Kbif147xf5NkAmVpMgVmy/qp5JgTKafk57QnKEcW0KZFvZWwoZUU4Y2n5INwVt8eZk0zqreVfXy/qJSc/M4inAEx3AKHlxDDe6gDj4wEPAMr/DmKOfFeXc+5q0FJ585hD9wPn8AyX+OoQ==</latexit>

t3

<latexit sha1_base64="PJAwKuOhlwa5C48cjCoKt9QaEUI=">AAACBXicbVDLSsNAFJ34rPUVdamLwSK4KknxtSy4cVnBPqCJZTKZNEMnD2ZuLCV048ZfceNCEbf+gzv/xmmbhbYeuHA4517uvcdLBVdgWd/G0vLK6tp6aaO8ubW9s2vu7bdUkknKmjQRiex4RDHBY9YEDoJ1UslI5AnW9gbXE7/9wKTiSXwHo5S5EenHPOCUgJZ65pEz5D4LCWB1n9vYkbwfApEyGeLauGdWrKo1BV4kdkEqqECjZ345fkKziMVABVGqa1spuDmRwKlg47KTKZYSOiB91tU0JhFTbj79YoxPtOLjIJG6YsBT9fdETiKlRpGnOyMCoZr3JuJ/XjeD4MrNeZxmwGI6WxRkAkOCJ5Fgn0tGQYw0IVRyfSumIZGEgg6urEOw519eJK1a1b6ont+eVepWEUcJHaJjdIpsdInq6AY1UBNR9Iie0St6M56MF+Pd+Ji1LhnFzAH6A+PzB/QkmC4=</latexit>

bs1!2

<latexit sha1_base64="UQNsafG11YN0F6J1I2cVr2Wu3hI=">AAACBXicbVDLSsNAFJ34rPUVdamLwSK4KknxtSy4cVnBPqCJZTKZNEMnD2ZuLCV048ZfceNCEbf+gzv/xmmbhbYeuHA4517uvcdLBVdgWd/G0vLK6tp6aaO8ubW9s2vu7bdUkknKmjQRiex4RDHBY9YEDoJ1UslI5AnW9gbXE7/9wKTiSXwHo5S5EenHPOCUgJZ65pEz5D4LCWC4z23sSN4PgUiZDHFt3DMrVtWaAi8SuyAVVKDRM78cP6FZxGKggijVta0U3JxI4FSwcdnJFEsJHZA+62oak4gpN59+McYnWvFxkEhdMeCp+nsiJ5FSo8jTnRGBUM17E/E/r5tBcOXmPE4zYDGdLQoygSHBk0iwzyWjIEaaECq5vhXTkEhCQQdX1iHY8y8vklatal9Uz2/PKnWriKOEDtExOkU2ukR1dIMaqIkoekTP6BW9GU/Gi/FufMxal4xi5gD9gfH5A/W6mC8=</latexit>

bt1!2

<latexit sha1_base64="gaJE6tDdMDeLtj+llby0DE5bHxE=">AAACBXicbVC5TsNAEF1zhnAZKKFYESFRRTZ3GYmGMkjkkGITrdfreJX1od0xUWSloeFXaChAiJZ/oONv2CQuIOFJIz29N6OZeV4quALL+jYWFpeWV1ZLa+X1jc2tbXNnt6mSTFLWoIlIZNsjigkeswZwEKydSkYiT7CW178e+60HJhVP4jsYpsyNSC/mAacEtNQ1D5wB91lIAKv73MaO5L0QiJTJAJ+OumbFqloT4HliF6SCCtS75pfjJzSLWAxUEKU6tpWCmxMJnAo2KjuZYimhfdJjHU1jEjHl5pMvRvhIKz4OEqkrBjxRf0/kJFJqGHm6MyIQqllvLP7ndTIIrtycx2kGLKbTRUEmMCR4HAn2uWQUxFATQiXXt2IaEkko6ODKOgR79uV50jyp2hfV89uzSs0q4iihfXSIjpGNLlEN3aA6aiCKHtEzekVvxpPxYrwbH9PWBaOY2UN/YHz+APWpmC8=</latexit>

bs1!3

<latexit sha1_base64="Nr3f5ax2ooa85GxoVbv5Z/hjq+c=">AAACBXicbVC5TsNAEF1zhnAZKKFYESFRRTZ3GYmGMkjkkGITrdfreJX1od0xUWSloeFXaChAiJZ/oONv2CQuIOFJIz29N6OZeV4quALL+jYWFpeWV1ZLa+X1jc2tbXNnt6mSTFLWoIlIZNsjigkeswZwEKydSkYiT7CW178e+60HJhVP4jsYpsyNSC/mAacEtNQ1D5wB91lIAMN9bmNH8l4IRMpkgE9HXbNiVa0J8DyxC1JBBepd88vxE5pFLAYqiFId20rBzYkETgUblZ1MsZTQPumxjqYxiZhy88kXI3ykFR8HidQVA56ovydyEik1jDzdGREI1aw3Fv/zOhkEV27O4zQDFtPpoiATGBI8jgT7XDIKYqgJoZLrWzENiSQUdHBlHYI9+/I8aZ5U7Yvq+e1ZpWYVcZTQPjpEx8hGl6iGblAdNRBFj+gZvaI348l4Md6Nj2nrglHM7KE/MD5/APc/mDA=</latexit>

bt1!3
<latexit sha1_base64="jWRTNCYDj9MPyL6Eb4Yms1iU+M0=">AAACBXicbVC5TsNAEF2HK4TLQAnFigiJKrLDWUaioQwSOaTEROv1Ol5lfWh3TBRZaWj4FRoKEKLlH+j4GzaJC0h40khP781oZp6bCK7Asr6NwtLyyupacb20sbm1vWPu7jVVnErKGjQWsWy7RDHBI9YADoK1E8lI6ArWcgfXE7/1wKTicXQHo4Q5IelH3OeUgJZ65mF3yD0WEMBwn1VxV/J+AETKeIhPxz2zbFWsKfAisXNSRjnqPfOr68U0DVkEVBClOraVgJMRCZwKNi51U8USQgekzzqaRiRkysmmX4zxsVY87MdSVwR4qv6eyEio1Ch0dWdIIFDz3kT8z+uk4F85GY+SFFhEZ4v8VGCI8SQS7HHJKIiRJoRKrm/FNCCSUNDBlXQI9vzLi6RZrdgXlfPbs3LNyuMoogN0hE6QjS5RDd2gOmogih7RM3pFb8aT8WK8Gx+z1oKRz+yjPzA+fwD40pgx</latexit>

bt2!3

<latexit sha1_base64="5H2brvzkBTvZz0WeWv7PK5jQ4cI=">AAACBXicbVC5TsNAEF2HK4TLQAnFigiJKrLDWUaioQwSOaTEROv1Ol5lfWh3TBRZaWj4FRoKEKLlH+j4GzaJC0h40khP781oZp6bCK7Asr6NwtLyyupacb20sbm1vWPu7jVVnErKGjQWsWy7RDHBI9YADoK1E8lI6ArWcgfXE7/1wKTicXQHo4Q5IelH3OeUgJZ65mF3yD0WEMDqPqviruT9AIiU8RCfjntm2apYU+BFYuekjHLUe+ZX14tpGrIIqCBKdWwrAScjEjgVbFzqpoolhA5In3U0jUjIlJNNvxjjY6142I+lrgjwVP09kZFQqVHo6s6QQKDmvYn4n9dJwb9yMh4lKbCIzhb5qcAQ40kk2OOSURAjTQiVXN+KaUAkoaCDK+kQ7PmXF0mzWrEvKue3Z+WalcdRRAfoCJ0gG12iGrpBddRAFD2iZ/SK3own48V4Nz5mrQUjn9lHf2B8/gD3PJgw</latexit>

bs2!3

<latexit sha1_base64="SIa6bV6ROjLk+ihbxN6TOVxMaQg=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4Kon4dSx48VjBtIU2ls120i7dbMLuRiihv8GLB0W8+oO8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw2dZIphj5LRKLaIdUouETfcCOwnSqkcSiwFY5up37rCZXmiXww4xSDmA4kjzijxkp+9ph7k16l6tbcGcgy8QpShQKNXuWr209YFqM0TFCtO56bmiCnynAmcFLuZhpTykZ0gB1LJY1RB/ns2Ak5tUqfRImyJQ2Zqb8nchprPY5D2xlTM9SL3lT8z+tkJroJci7TzKBk80VRJohJyPRz0ucKmRFjSyhT3N5K2JAqyozNp2xD8BZfXibN85p3Vbu8v6jW3SKOEhzDCZyBB9dQhztogA8MODzDK7w50nlx3p2PeeuKU8wcwR84nz/H/Y6g</latexit>

u1

<latexit sha1_base64="8M2i4aac7j8NlP7J9OBR58So89s=">AAAB7HicbVDLSgNBEOyNrxhfUY9eBoPgKewGX8eAF48RzAOSNcxOZpMhs7PLTK8QlnyDFw+KePWDvPk3TpI9aGJBQ1HVTXdXkEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilZvqY1ab9csWtunOQVeLlpAI5Gv3yV28QszTiCpmkxnQ9N0E/oxoFk3xa6qWGJ5SN6ZB3LVU04sbP5sdOyZlVBiSMtS2FZK7+nshoZMwkCmxnRHFklr2Z+J/XTTG88TOhkhS5YotFYSoJxmT2ORkIzRnKiSWUaWFvJWxENWVo8ynZELzll1dJq1b1rqqX9xeVupvHUYQTOIVz8OAa6nAHDWgCAwHP8ApvjnJenHfnY9FacPKZY/gD5/MHyYKOoQ==</latexit>

u2

<latexit sha1_base64="M1MJlMiT6nS46tfPmMHgRGe0XP0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0n8Pha8eKxg2kIby2Y7bZduNmF3I5TQ3+DFgyJe/UHe/Ddu2xy09cHA470ZZuaFieDauO63U1hZXVvfKG6WtrZ3dvfK+wcNHaeKoc9iEatWSDUKLtE33AhsJQppFApshqPbqd98QqV5LB/MOMEgogPJ+5xRYyU/fczOJ91yxa26M5Bl4uWkAjnq3fJXpxezNEJpmKBatz03MUFGleFM4KTUSTUmlI3oANuWShqhDrLZsRNyYpUe6cfKljRkpv6eyGik9TgKbWdEzVAvelPxP6+dmv5NkHGZpAYlmy/qp4KYmEw/Jz2ukBkxtoQyxe2thA2poszYfEo2BG/x5WXSOKt6V9XL+4tKzc3jKMIRHMMpeHANNbiDOvjAgMMzvMKbI50X5935mLcWnHzmEP7A+fwByweOog==</latexit>

u3

<latexit sha1_base64="alE7rmyxk5Vbj8JVkof23Dcwr8E=">AAAB/HicbVDLSsNAFL2pr1pf0S7dDBbBVUmKr2WhG5cV7APaWCbTSTt0kgkzEyWE+ituXCji1g9x5984bbPQ1gMXDufcy733+DFnSjvOt1VYW9/Y3Cpul3Z29/YP7MOjthKJJLRFBBey62NFOYtoSzPNaTeWFIc+px1/0pj5nQcqFRPRnU5j6oV4FLGAEayNNLDLjfvMRX3JRmONpRSPqDYd2BWn6syBVombkwrkaA7sr/5QkCSkkSYcK9VznVh7GZaaEU6npX6iaIzJBI9oz9AIh1R52fz4KTo1yhAFQpqKNJqrvycyHCqVhr7pDLEeq2VvJv7n9RIdXHsZi+JE04gsFgUJR1qgWRJoyCQlmqeGYCKZuRWRMZaYaJNXyYTgLr+8Stq1qntZvbg9r9SdPI4iHMMJnIELV1CHG2hCCwik8Ayv8GY9WS/Wu/WxaC1Y+UwZ/sD6/AHpmZRC</latexit>

C1!2 <latexit sha1_base64="8cHzVv3Usyytan+dxhy4LJdleyE=">AAAB/HicbVDLSsNAFL2pr1pf0S7dDBbBVUl8LwvduKxgH9DGMplO2qGTTJiZKCHUX3HjQhG3fog7/8Zpm4W2HrhwOOde7r3HjzlT2nG+rcLK6tr6RnGztLW9s7tn7x+0lEgkoU0iuJAdHyvKWUSbmmlOO7GkOPQ5bfvj+tRvP1CpmIjudBpTL8TDiAWMYG2kvl2u32cu6kk2HGkspXhEZ5O+XXGqzgxombg5qUCORt/+6g0ESUIaacKxUl3XibWXYakZ4XRS6iWKxpiM8ZB2DY1wSJWXzY6foGOjDFAgpKlIo5n6eyLDoVJp6JvOEOuRWvSm4n9eN9HBtZexKE40jch8UZBwpAWaJoEGTFKieWoIJpKZWxEZYYmJNnmVTAju4svLpHVadS+rF7fnlZqTx1GEQziCE3DhCmpwAw1oAoEUnuEV3qwn68V6tz7mrQUrnynDH1ifP+selEM=</latexit>
C1!3

<latexit sha1_base64="SI0nthK4KiyplWseSHQSaqtHSDc=">AAAB/HicbVDLSsNAFJ34rPUV7dLNYBFclaQ+l4VuXFawD2hjmUwn7dDJJMzcKCHUX3HjQhG3fog7/8Zpm4W2HrhwOOde7r3HjwXX4Djf1srq2vrGZmGruL2zu7dvHxy2dJQoypo0EpHq+EQzwSVrAgfBOrFiJPQFa/vj+tRvPzCleSTvII2ZF5Kh5AGnBIzUt0v1+6yKe4oPR0CUih7x2aRvl52KMwNeJm5OyihHo29/9QYRTUImgQqiddd1YvAyooBTwSbFXqJZTOiYDFnXUElCpr1sdvwEnxhlgINImZKAZ+rviYyEWqehbzpDAiO96E3F/7xuAsG1l3EZJ8AknS8KEoEhwtMk8IArRkGkhhCquLkV0xFRhILJq2hCcBdfXiatasW9rFzcnpdrTh5HAR2hY3SKXHSFaugGNVATUZSiZ/SK3qwn68V6tz7mrStWPlNCf2B9/gDssZRE</latexit>

C2!3
<latexit sha1_base64="NspGW3LioZewdGcyiw9qucM7hmk=">AAAB/HicbVDLSsNAFL2pr1pf0S7dDBbBVUmKr2WhG5cV7APaWCbTSTt0kgkzEyWE+ituXCji1g9x5984bbPQ1gMXDufcy733+DFnSjvOt1VYW9/Y3Cpul3Z29/YP7MOjthKJJLRFBBey62NFOYtoSzPNaTeWFIc+px1/0pj5nQcqFRPRnU5j6oV4FLGAEayNNLDLjfushvqSjcYaSykekTsd2BWn6syBVombkwrkaA7sr/5QkCSkkSYcK9VznVh7GZaaEU6npX6iaIzJBI9oz9AIh1R52fz4KTo1yhAFQpqKNJqrvycyHCqVhr7pDLEeq2VvJv7n9RIdXHsZi+JE04gsFgUJR1qgWRJoyCQlmqeGYCKZuRWRMZaYaJNXyYTgLr+8Stq1qntZvbg9r9SdPI4iHMMJnIELV1CHG2hCCwik8Ayv8GY9WS/Wu/WxaC1Y+UwZ/sD6/AHpp5RC</latexit>

C2!1

<latexit sha1_base64="o1/oYxcZbYKBh7F1lir3JV8F0n0=">AAAB/HicbVDLSsNAFL2pr1pf0S7dDBbBVUl8LwvduKxgH9DGMplO2qGTTJiZKCHUX3HjQhG3fog7/8Zpm4W2HrhwOOde7r3HjzlT2nG+rcLK6tr6RnGztLW9s7tn7x+0lEgkoU0iuJAdHyvKWUSbmmlOO7GkOPQ5bfvj+tRvP1CpmIjudBpTL8TDiAWMYG2kvl2u32dnqCfZcKSxlOIRuZO+XXGqzgxombg5qUCORt/+6g0ESUIaacKxUl3XibWXYakZ4XRS6iWKxpiM8ZB2DY1wSJWXzY6foGOjDFAgpKlIo5n6eyLDoVJp6JvOEOuRWvSm4n9eN9HBtZexKE40jch8UZBwpAWaJoEGTFKieWoIJpKZWxEZYYmJNnmVTAju4svLpHVadS+rF7fnlZqTx1GEQziCE3DhCmpwAw1oAoEUnuEV3qwn68V6tz7mrQUrnynDH1ifP+s6lEM=</latexit>

C3!1
<latexit sha1_base64="oXwO5HtI63fojPAi0TPqef1oI58=">AAAB/HicbVDLSsNAFJ34rPUV7dLNYBFclaQ+l4VuXFawD2hjmUwn7dDJJMzcKCHUX3HjQhG3fog7/8Zpm4W2HrhwOOde7r3HjwXX4Djf1srq2vrGZmGruL2zu7dvHxy2dJQoypo0EpHq+EQzwSVrAgfBOrFiJPQFa/vj+tRvPzCleSTvII2ZF5Kh5AGnBIzUt0v1++wM9xQfjoAoFT3i6qRvl52KMwNeJm5OyihHo29/9QYRTUImgQqiddd1YvAyooBTwSbFXqJZTOiYDFnXUElCpr1sdvwEnxhlgINImZKAZ+rviYyEWqehbzpDAiO96E3F/7xuAsG1l3EZJ8AknS8KEoEhwtMk8IArRkGkhhCquLkV0xFRhILJq2hCcBdfXiatasW9rFzcnpdrTh5HAR2hY3SKXHSFaugGNVATUZSiZ/SK3qwn68V6tz7mrStWPlNCf2B9/gDsv5RE</latexit>

C3!2

<latexit sha1_base64="ZhUQ3V5wNxBol6X2n6HnbPaQg4g=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0n8Pha8eKxg2kIby2Y7bZduNmF3I5TQ3+DFgyJe/UHe/Ddu2xy09cHA470ZZuaFieDauO63U1hZXVvfKG6WtrZ3dvfK+wcNHaeKoc9iEatWSDUKLtE33AhsJQppFApshqPbqd98QqV5LB/MOMEgogPJ+5xRYyW//pidT7rlilt1ZyDLxMtJBXLUu+WvTi9maYTSMEG1bntuYoKMKsOZwEmpk2pMKBvRAbYtlTRCHWSzYyfkxCo90o+VLWnITP09kdFI63EU2s6ImqFe9Kbif147Nf2bIOMySQ1KNl/UTwUxMZl+TnpcITNibAllittbCRtSRZmx+ZRsCN7iy8ukcVb1rqqX9xeVmpvHUYQjOIZT8OAaanAHdfCBAYdneIU3RzovzrvzMW8tOPnMIfyB8/kDkl+OfQ==</latexit>

P 3

<latexit sha1_base64="jFs7VZrZFG4YvDc4HgV54gDtWgQ=">AAAB7HicbVDLSgNBEOyNrxhfUY9eBoPgKewGX8eAF48RzAOSNcxOepMhs7PLzKwQlnyDFw+KePWDvPk3TpI9aGJBQ1HVTXdXkAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHssHM0nQj+hQ8pAzaqzUbDxmtWm/XHGr7hxklXg5qUCORr/81RvELI1QGiao1l3PTYyfUWU4Ezgt9VKNCWVjOsSupZJGqP1sfuyUnFllQMJY2ZKGzNXfExmNtJ5Ege2MqBnpZW8m/ud1UxPe+BmXSWpQssWiMBXExGT2ORlwhcyIiSWUKW5vJWxEFWXG5lOyIXjLL6+SVq3qXVUv7y8qdTePowgncArn4ME11OEOGtAEBhye4RXeHOm8OO/Ox6K14OQzx/AHzucPkNqOfA==</latexit>

P 2

<latexit sha1_base64="VG7HxvHdscTUYGYYF1lk/L71l0c=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4Kon4dSx48VjBtIU2ls120y7dbMLuRCihv8GLB0W8+oO8+W/ctjlo64OBx3szzMwLUykMuu63s7K6tr6xWdoqb+/s7u1XDg6bJsk04z5LZKLbITVcCsV9FCh5O9WcxqHkrXB0O/VbT1wbkagHHKc8iOlAiUgwilbyG4+5N+lVqm7NnYEsE68gVSjQ6FW+uv2EZTFXyCQ1puO5KQY51SiY5JNyNzM8pWxEB7xjqaIxN0E+O3ZCTq3SJ1GibSkkM/X3RE5jY8ZxaDtjikOz6E3F/7xOhtFNkAuVZsgVmy+KMkkwIdPPSV9ozlCOLaFMC3srYUOqKUObT9mG4C2+vEya5zXvqnZ5f1Gtu0UcJTiGEzgDD66hDnfQAB8YCHiGV3hzlPPivDsf89YVp5g5gj9wPn8Aj1WOew==</latexit>

P 1

<latexit sha1_base64="bAtzZtvWDihYVB7PGkK1aAt3df0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEr2PBi8cKpi20oWy2m3bpZhN2J0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTxqmSTTjPsskYnuhNRwKRT3UaDknVRzGoeSt8Px3cxvP3FtRKIecZLyIKZDJSLBKFrJz/q5N+1Xa27dnYOsEq8gNSjQ7Fe/eoOEZTFXyCQ1puu5KQY51SiY5NNKLzM8pWxMh7xrqaIxN0E+P3ZKzqwyIFGibSkkc/X3RE5jYyZxaDtjiiOz7M3E/7xuhtFtkAuVZsgVWyyKMkkwIbPPyUBozlBOLKFMC3srYSOqKUObT8WG4C2/vEpaF3Xvun71cFlruEUcZTiBUzgHD26gAffQBB8YCHiGV3hzlPPivDsfi9aSU8wcwx84nz/JhI6h</latexit>u1

<latexit sha1_base64="2VWqRQs6ykP9ym8RYru9w6TsEE0=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4Kknx61jw4rGCaQttKJvtpF262YTdjVBCf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXpoJr47rfztr6xubWdmmnvLu3f3BYOTpu6SRTDH2WiER1QqpRcIm+4UZgJ1VI41BgOxzfzfz2EyrNE/loJikGMR1KHnFGjZX8rJ/Xp/1K1a25c5BV4hWkCgWa/cpXb5CwLEZpmKBadz03NUFOleFM4LTcyzSmlI3pELuWShqjDvL5sVNybpUBiRJlSxoyV39P5DTWehKHtjOmZqSXvZn4n9fNTHQb5FymmUHJFouiTBCTkNnnZMAVMiMmllCmuL2VsBFVlBmbT9mG4C2/vEpa9Zp3Xbt6uKw23CKOEpzCGVyABzfQgHtogg8MODzDK7w50nlx3p2PReuaU8ycwB84nz/LCY6i</latexit>u2

<latexit sha1_base64="6ci5/Kp4jnSqmgRGEtxFXvjnEfA=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0n8Pha8eKxgbKENZbPdtEs3m7A7EUrob/DiQRGv/iBv/hu3bQ7a+mDg8d4MM/PCVAqDrvvtlFZW19Y3ypuVre2d3b3q/sGjSTLNuM8Smeh2SA2XQnEfBUreTjWncSh5KxzdTv3WE9dGJOoBxykPYjpQIhKMopX8rJefT3rVmlt3ZyDLxCtIDQo0e9Wvbj9hWcwVMkmN6XhuikFONQom+aTSzQxPKRvRAe9YqmjMTZDPjp2QE6v0SZRoWwrJTP09kdPYmHEc2s6Y4tAselPxP6+TYXQT5EKlGXLF5ouiTBJMyPRz0heaM5RjSyjTwt5K2JBqytDmU7EheIsvL5PHs7p3Vb+8v6g13CKOMhzBMZyCB9fQgDtogg8MBDzDK7w5ynlx3p2PeWvJKWYO4Q+czx/Mjo6j</latexit>u3
<latexit sha1_base64="M+UrOM1Vi5PvU6jSiZJ2Cu5qycU=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0n8Pha8eKxg2kIbymY7bZduNmF3Uyihv8GLB0W8+oO8+W/ctjlo64OBx3szzMwLE8G1cd1vp7C2vrG5Vdwu7ezu7R+UD48aOk4VQ5/FIlatkGoUXKJvuBHYShTSKBTYDEf3M785RqV5LJ/MJMEgogPJ+5xRYyV/3M0up91yxa26c5BV4uWkAjnq3fJXpxezNEJpmKBatz03MUFGleFM4LTUSTUmlI3oANuWShqhDrL5sVNyZpUe6cfKljRkrv6eyGik9SQKbWdEzVAvezPxP6+dmv5dkHGZpAYlWyzqp4KYmMw+Jz2ukBkxsYQyxe2thA2poszYfEo2BG/55VXSuKh6N9Xrx6tKzc3jKMIJnMI5eHALNXiAOvjAgMMzvMKbI50X5935WLQWnHzmGP7A+fwBzhaOpA==</latexit>v3

<latexit sha1_base64="gff+WRzhpCnC782Sea+DZZUl+3Y=">AAAB7HicbVDLSgNBEOyNrxhfUY9eBoPgKewGX8eAF48RzAOSJcxOepMhs7PLzGwgLPkGLx4U8eoHefNvnCR70MSChqKqm+6uIBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx/dxvT1BpHssnM03Qj+hQ8pAzaqzUnPSz2qxfrrhVdwGyTrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyVeqnGhLIxHWLXUkkj1H62OHZGLqwyIGGsbElDFurviYxGWk+jwHZG1Iz0qjcX//O6qQnv/IzLJDUo2XJRmApiYjL/nAy4QmbE1BLKFLe3EjaiijJj8ynZELzVl9dJq1b1bqrXj1eVupvHUYQzOIdL8OAW6vAADWgCAw7P8ApvjnRenHfnY9lacPKZU/gD5/MHzJGOow==</latexit>v2

<latexit sha1_base64="nN06XHInOluuSbNNkbD3K+jgLYQ=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEr2PBi8cKpi20oWy2k3bpZhN2N4US+hu8eFDEqz/Im//GbZuDVh8MPN6bYWZemAqujet+OaW19Y3NrfJ2ZWd3b/+genjU0kmmGPosEYnqhFSj4BJ9w43ATqqQxqHAdji+m/vtCSrNE/lopikGMR1KHnFGjZX8ST/3Zv1qza27C5C/xCtIDQo0+9XP3iBhWYzSMEG17npuaoKcKsOZwFmll2lMKRvTIXYtlTRGHeSLY2fkzCoDEiXKljRkof6cyGms9TQObWdMzUivenPxP6+bmeg2yLlMM4OSLRdFmSAmIfPPyYArZEZMLaFMcXsrYSOqKDM2n4oNwVt9+S9pXdS96/rVw2Wt4RZxlOEETuEcPLiBBtxDE3xgwOEJXuDVkc6z8+a8L1tLTjFzDL/gfHwDywyOog==</latexit>v1
<latexit sha1_base64="3a+fp5iGBeLq3yUrWm38ojLMkFw=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEr2PBi8cKphbaUDbbTbt0swm7E6WE/gYvHhTx6g/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h+0TJJpxn2WyES3Q2q4FIr7KFDydqo5jUPJH8LRzdR/eOTaiETd4zjlQUwHSkSCUbSS/9TLvUmvWnPr7gxkmXgFqUGBZq/61e0nLIu5QiapMR3PTTHIqUbBJJ9UupnhKWUjOuAdSxWNuQny2bETcmKVPokSbUshmam/J3IaGzOOQ9sZUxyaRW8q/ud1Moyug1yoNEOu2HxRlEmCCZl+TvpCc4ZybAllWthbCRtSTRnafCo2BG/x5WXSOqt7l/WLu/Nawy3iKMMRHMMpeHAFDbiFJvjAQMAzvMKbo5wX5935mLeWnGLmEP7A+fwBzJSOow==</latexit>w1

<latexit sha1_base64="4dC94mVAhUCeJpjf6gJTbU7T5IY=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKX8eCF48VTFtoQ9lsp+3SzSbsbpQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoqeNUMfRZLGLVDqlGwSX6hhuB7UQhjUKBrXB8O/Nbj6g0j+WDmSQYRHQo+YAzaqzkP/Wy2rRXrrhVdw6ySrycVCBHo1f+6vZjlkYoDRNU647nJibIqDKcCZyWuqnGhLIxHWLHUkkj1EE2P3ZKzqzSJ4NY2ZKGzNXfExmNtJ5Eoe2MqBnpZW8m/ud1UjO4CTIuk9SgZItFg1QQE5PZ56TPFTIjJpZQpri9lbARVZQZm0/JhuAtv7xKmrWqd1W9vL+o1N08jiKcwCmcgwfXUIc7aIAPDDg8wyu8OdJ5cd6dj0VrwclnjuEPnM8fzhmOpA==</latexit>w2

<latexit sha1_base64="EilB5Zdlqfg4jZOMs17AGUavOjM=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0n8Pha8eKxg2kIbymY7bZduNmF3o5TQ3+DFgyJe/UHe/Ddu2xy09cHA470ZZuaFieDauO63U1hZXVvfKG6WtrZ3dvfK+wcNHaeKoc9iEatWSDUKLtE33AhsJQppFApshqPbqd98RKV5LB/MOMEgogPJ+5xRYyX/qZudT7rlilt1ZyDLxMtJBXLUu+WvTi9maYTSMEG1bntuYoKMKsOZwEmpk2pMKBvRAbYtlTRCHWSzYyfkxCo90o+VLWnITP09kdFI63EU2s6ImqFe9Kbif147Nf2bIOMySQ1KNl/UTwUxMZl+TnpcITNibAllittbCRtSRZmx+ZRsCN7iy8ukcVb1rqqX9xeVmpvHUYQjOIZT8OAaanAHdfCBAYdneIU3RzovzrvzMW8tOPnMIfyB8/kDz56OpQ==</latexit>w3

<latexit sha1_base64="VXUJwB0X62RvQ0RD2uztFjB4MsE=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdQx40GMC5gHJEmYnvcmY2dllZlYIS77AiwdFvPpJ3vwbJ8keNLGgoajqprsrSATXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hoduq3nlBpHssHM07Qj+hA8pAzaqxUv+uVym7FnYEsEy8nZchR65W+uv2YpRFKwwTVuuO5ifEzqgxnAifFbqoxoWxEB9ixVNIItZ/NDp2QU6v0SRgrW9KQmfp7IqOR1uMosJ0RNUO96E3F/7xOasIbP+MySQ1KNl8UpoKYmEy/Jn2ukBkxtoQyxe2thA2poszYbIo2BG/x5WXSPK94V5XL+kW56uZxFOAYTuAMPLiGKtxDDRrAAOEZXuHNeXRenHfnY9664uQzR/AHzucPmcuMww==</latexit>

G

Figure 4 Graph G (top right) with a clique {u1, v3, w2} and the graph G′ encoding G. For the
sake of legibility, several groups of edges are omitted in this picture: edges incident to ui or the
cycles Ci→j and edges going from T ∪ T̂ to S ∪ Ŝ.

Proving the converse of Lemma 9 is more challenging. We will reveal the structure of a
potential Hamiltonian cycle H in G′ gradually. First, we show that if H enters the cycle
Ci→j through an incoming edge corresponding to a certain vertex v ∈ V i, then it must also
leave it through an outgoing edge related to v, and vice versa. A priori, there might be
multiple vertices v ∈ V i for which this happens.

For v ∈ V i we denote the edge from ci→j,out
v to vj,out by ei→j,out

v . Similarly, let the edge
from vj,in to ci→j,in

v be ei→j,in
v .

▶ Lemma 10. Let H be a Hamiltonian cycle in G′ and 1 ≤ i < j ≤ k. Then E(H)∩∂(Ci→j)
is of the form

⋃
v∈U {ei→j,out

v , ei→j,in
v } where U is some subset of V i.

Proof. Note that ∂(Ci→j) = {ei→j,out
v1

, ei→j,in
v1

, ei→j,out
v2

, ei→j,in
v2

, . . . ei→j,out
v|Vi|

, ei→j,in
v|Vi|

}. First
suppose that for some v ∈ V i, we have ei→j,in

v ∈ E(H). Since H is a Hamiltonian cycle in
G′, it has to visit the vertex ci→j,out

v . Thus H contains an outgoing edge of ci→j,out
v . The

only two outgoing edges of ci→j,out
v are ei→j,out

v and (ci→j,out
v , ci→j,in

v ). Since ei→j,in
v ∈ E(H)

is an incoming edge of ci→j,in
v , the edge (ci→j,out

v , ci→j,in
v ) cannot belong to E(H). The only

other candidate for the outgoing edge of ci→j,out
v is ei→j,out

v , so ei→j,out
v ∈ E(H).

The proof of implication in the other direction is analogous. Hence for each v ∈ V i we
have ei→j,out

v ∈ E(H) ⇔ ei→j,in
v ∈ E(H). ◀
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65:10 Finding Long Directed Cycles Is Hard Even When DFVS Is Small or Girth Is Large

As the next step, we show that when v ∈ V i and a Hamiltonian cycle enters some cycle
Ci→j adjacent to P i through a vertex from Pv, then it must enter all the k −1 cycles adjacent
to P i through Pv. Again, we cannot yet exclude a scenario that this would happen for
multiple vertices v ∈ V i.

▶ Lemma 11. For any Hamiltonian cycle H in G′ and i ∈ [k], there exists a subset U ⊆ V i

for which we have E(H) ∩ E(P i,
⋃

j ̸=i Ci→j) =
⋃

v∈U E(Pv,
⋃

j ̸=i Ci→j).

Proof. Targeting a contradiction, suppose there exists a vertex v ∈ V i such that at least
one edge of E(Pv,

⋃
j ̸=i Ci→j) is in E(H) and at least one edge of E(Pv,

⋃
j ̸=i Ci→j) is not

in E(H). From Lemma 10 we know that E(H) ∩ E(Pv,
⋃

j ̸=i Ci→j) is a union of pairs of
the form {ei→j,out

v , ei→j,in
v } for some j ∈ [k] \ {i}. Hence there indices p, j ∈ [k] \ {i} so that

(vp,in, vj,out) ∈ E(P i), one of the sets E(Bv, Ci→p), E(Bv, Ci→j) has empty intersection with
E(H) and the other one is contained in E(H). We can assume w.l.o.g. that j = p + 1 and
the first of these sets is empty.

We arrive at the following scenario: p ∈ [k] \ {i}, ei→p,out
v , ei→p,in

v /∈ E(H) and ei→p+1,out
v

, ei→p+1,in
v ∈ E(H). Since H is a Hamiltonian cycle, it has to visit the vertex vp,in. Thus,

it has to traverse an outgoing edge of vp,in. The only outgoing edges of vp,in are the
edges ei→p,in

v and (vp,in, vp+1,out). By the assumption, ei→p,in
v /∈ E(H) so (vp,in, vp+1,out) ∈

E(H). On the other hand, since ei→p+1,out
v ∈ E(H) is an incoming edge of vp+1,out, we

have (vp,in, vp+1,out) /∈ E(H) as it is also an incoming edge to vp+1,out. This yields a
contradiction. ◀

We want to argue now that in fact the set U in Lemma 11 is a singleton, that is, for fixed
i ∈ [k] each cycle Ci→j is being entered exactly once and from the same subpath Pv of P i.
To this end, we take advantage of the universal vertices ui.

▶ Lemma 12. For any Hamiltonian cycle H in G′ and i ∈ [k] there exists v ∈ V i such that
E(H) ∩ E(P i,

⋃
j ̸=i Ci→j) is E(Pv,

⋃
j ̸=i Ci→j).

Proof. Let U be the set from Lemma 11. Targeting a contradiction, suppose that there
exist two distinct v, w ∈ U . That is, E(H) ∩ E(P i,

⋃
j ̸=i Ci→j) ⊇ E(Pv,

⋃
j ̸=i Ci→j) ∪

E(Pw,
⋃

j ̸=i Ci→j).
The Hamiltonian cycle H must contain an outgoing edge of vleft, which is the first vertex

on the path Pv. The only out-neighbors of vleft are ui and vp,out where p = 1 when i ̸= 1 or
p = 2 when i = 1. Recall that the ei→p,out

v is present in E(Bi
v,

⋃
j ̸=i Ci→j) and thereby in

E(H) by the assumption. Also, since the edge ei→p,out
v is an incoming edge of vp,out , the

edge (vleft, vp,out) cannot be in E(H). Thus the outgoing edge of vleft in H is (vleft, ui).
Now consider the vertex wleft, which is the first one of the path Pw. By the same

argument as above, we have (wleft, ui) ∈ E(H). This implies that ui has two in-neighbors in
H, a contradiction.

It is also impossible that U = ∅ because then E(H)∩∂(Ci→j) = ∅ for each j ̸= i implying
that H is disconnected. Consequently, U contains exactly one element. ◀

We can summarize the arguments given so far as follows: for a Hamiltonian cycle H in
G′ and i ∈ [k], there exists vi ∈ V i, such that, for all j ̸= i, it holds that E(H) ∩ ∂(Ci→j) =
E(Pvi

, Ci→j) = {ei→j,out
vi

, ei→j,in
vi

}. We make note of a simple implication of this fact.

▶ Lemma 13. Let H be a Hamiltonian cycle in G′ and i, j ∈ [k]. Let v ∈ V i satisfy
E(H) ∩ ∂(Ci→j) = {ei→j,out

v , ei→j,in
v }. Then e = (vj,out, vj,in) does not belong to E(H).



A. Jacob, M. Włodarczyk, and M. Zehavi 65:11

Proof. Since E(H) ∩ ∂(Ci→j) comprises exactly two edges, we infer that H contains the
path Q = vj,in → ci→j,in

v → . . . → ci→j,out
v → vj,out with all internal vertices from V (Ci→j).

If H traversed the edge e = (vj,out, vj,in), then it would contain the cycle C formed by Q

and e. This would imply H = C, which contradicts that H is Hamiltonian. ◀

We are going to show that H can include only one edge that goes from V (P i) to V (P j);
it will follow that this edge must be (vj,out

i , vi,out
j ).

▶ Lemma 14. Let H be a Hamiltonian cycle in G′. For each pair i, j ∈ [k] with i < j we
have |E(H) ∩ E(P i, P j)| ≤ 1.

Proof. Suppose that |E(H) ∩ E(P i, P j)| ≥ 2. Then there exist u, w ∈ V j and eu ∈
∂ in(ui,in) ∩ ∂out(P i), ew ∈ ∂ in(wi,in) ∩ ∂out(P i) such that eu, ew ∈ E(H). This implies
that the edges (ui,out, ui,in), (wi,out, wi,in) ∈ E(P j) cannot be used by H. Since i < j,
the vertex ui,out has only one out-neighbor different than ui,in: the terminal t̂i→j . Hence
(ui,out, t̂i→j) ∈ E(H). But the same argument applies to wi,out. As a consequence, two
incoming edges of t̂i→j are being used by H and so we arrive at a contradiction. ◀

Finally, we prove the second implication in the correctness proof of the reduction.

▶ Lemma 15. If (G′, X) is a Yes-instance of Hamiltonian Cycle By DFVS then
(G, (V 1, V 2, . . . , V k)) is a Yes-instance of Multicolored Clique.

Proof. Let H be a Hamiltonian cycle in G′ and vi ∈ V i be the vertex given by Lemma 12
for i ∈ [k]. Fix a pair of indices i < j. By Lemma 13 we know that the edge (vj,out

i , vj,in
i )

does not belong to E(H). The remaining outgoing edges of vj,out
i belong to E(P i, P j) and

H must utilize one of them. By the same argument, H must traverse one of the incoming
edges of vi,in

j that belongs to E(P i, P j). Due to Lemma 14, the Hamiltonian cycle H can
use at most one edge from E(P i, P j). Consequently, we obtain that (vj,out

i , vi,in
j ) ∈ E(H).

In particular, this means that (vj,out
i , vi,in

j ) is present in E(G′) and, by the construction of
G′, implies that vivj ∈ E(G). Therefore, {v1, v2, . . . , vk} forms a clique in G. ◀

Lemmas 9 and 15 constitute that the instances (G, (V 1, V 2, . . . , V k)) and (G′, X) are
equivalent while Lemma 8 ensures that |X| = O(k2). We have thus obtained a parameterized
reduction from Multicolored Clique to Hamiltonian Cycle By DFVS, proving
Theorem 1.

Due to space constraints, the W[1]-hardness proofs for Longest Cycle Above Girth
and the path variants of both problems are provided in the full version.

4 XP Algorithm for Longest Path Above Girth

Johnson et al. [58] proved that Hamiltonian Path is in XP parameterized by directed
treewidth. This result was later extended by de Oliveira Oliveira [30] to capture a wider range
of problems expressible in Monadic Second Order (MSO) logic with counting constraints. As
a special case of this theorem, we have the following.

▶ Theorem 16 ([30]). Longest Path on directed graphs is in XP when parameterized by
directed treewidth.

We will use the Directed Grid Theorem (Theorem 7), which either returns a cylindrical
wall of order O(k) in G or concludes that the directed treewidth of G is bounded in terms
of k. In the former case, we prove that a path of length g · k always exists in G. In the latter
case, we use Theorem 16 to solve the problem optimally by an XP algorithm.
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<latexit sha1_base64="MwVVwHIMbzmfqg4GdHQO9Vq1mPw=">AAAB8XicbVDLSgMxFL3js9ZX1aWbYBG6KjPia1lw47KCfWA7lkyatqGZzJDcEcowf+HGhSJu/Rt3/o1pOwttPRA4nHMvuecEsRQGXffbWVldW9/YLGwVt3d29/ZLB4dNEyWa8QaLZKTbATVcCsUbKFDydqw5DQPJW8H4Zuq3nrg2IlL3OIm5H9KhEgPBKFrpwfRSL3tMhcp6pbJbdWcgy8TLSRly1Hulr24/YknIFTJJjel4box+SjUKJnlW7CaGx5SN6ZB3LFU05MZPZxdn5NQqfTKItH0KyUz9vZHS0JhJGNjJkOLILHpT8T+vk+Dg2rd54gS5YvOPBokkGJFpfNIXmjOUE0so08LeStiIasrQllS0JXiLkZdJ86zqXVYv7s7LtUpeRwGO4QQq4MEV1OAW6tAABgqe4RXeHOO8OO/Ox3x0xcl3juAPnM8f1zyQ9g==</latexit>

sin1

<latexit sha1_base64="qdnFiLwfkTyrYJ3/Nrgq03WXUOM=">AAAB8nicbVDLSsNAFJ3UV62vqks3g0XoqiTia1lw47KCfUAay2Q6aYdOZsLMjVBCPsONC0Xc+jXu/BunbRbaeuDC4Zx7ufeeMBHcgOt+O6W19Y3NrfJ2ZWd3b/+genjUMSrVlLWpEkr3QmKY4JK1gYNgvUQzEoeCdcPJ7czvPjFtuJIPME1YEJOR5BGnBKzkm0Hm5Y+ZSiEfVGtuw50DrxKvIDVUoDWofvWHiqYxk0AFMcb33ASCjGjgVLC80k8NSwidkBHzLZUkZibI5ifn+MwqQxwpbUsCnqu/JzISGzONQ9sZExibZW8m/uf5KUQ3QcZlkgKTdLEoSgUGhWf/4yHXjIKYWkKo5vZWTMdEEwo2pYoNwVt+eZV0zhveVePy/qLWrBdxlNEJOkV15KFr1ER3qIXaiCKFntErenPAeXHenY9Fa8kpZo7RHzifP8QEkYE=</latexit>

sout1
<latexit sha1_base64="vWDHzVTF7126NR5KLi4Ad9+wZHQ=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvQVZnxvSy4cVnBPrAdSybNtKFJZkgyQhnmL9y4UMStf+POvzFtZ6GtBwKHc+4l95wg5kwb1/12Ciura+sbxc3S1vbO7l55/6Clo0QR2iQRj1QnwJpyJmnTMMNpJ1YUi4DTdjC+mfrtJ6o0i+S9mcTUF3goWcgINlZ60P30LHtMmcz65Ypbc2dAy8TLSQVyNPrlr94gIomg0hCOte56bmz8FCvDCKdZqZdoGmMyxkPatVRiQbWfzi7O0IlVBiiMlH3SoJn6eyPFQuuJCOykwGakF72p+J/XTUx47ds8cWKoJPOPwoQjE6FpfDRgihLDJ5Zgopi9FZERVpgYW1LJluAtRl4mrdOad1m7uDuv1Kt5HUU4gmOoggdXUIdbaEATCEh4hld4c7Tz4rw7H/PRgpPvHMIfOJ8/2lCQ+A==</latexit>

sin3

<latexit sha1_base64="IKb0jjgqwEYfrayTfRWGr9iuIBI=">AAAB8nicbVDLSsNAFJ34rPVVdelmsAhdlcT3suDGZQX7gDSWyXTSDp3MhJkboYR8hhsXirj1a9z5N07bLLT1wIXDOfdy7z1hIrgB1/12VlbX1jc2S1vl7Z3dvf3KwWHbqFRT1qJKKN0NiWGCS9YCDoJ1E81IHArWCce3U7/zxLThSj7AJGFBTIaSR5wSsJJv+tl5/pipFPJ+perW3RnwMvEKUkUFmv3KV2+gaBozCVQQY3zPTSDIiAZOBcvLvdSwhNAxGTLfUkliZoJsdnKOT60ywJHStiTgmfp7IiOxMZM4tJ0xgZFZ9Kbif56fQnQTZFwmKTBJ54uiVGBQePo/HnDNKIiJJYRqbm/FdEQ0oWBTKtsQvMWXl0n7rO5d1S/vL6qNWhFHCR2jE1RDHrpGDXSHmqiFKFLoGb2iNwecF+fd+Zi3rjjFzBH6A+fzB8cakYM=</latexit>

sout3

<latexit sha1_base64="DndwKMd7ZxJx2TIafHrF4Fy2uiE=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvQVZkRqy4LblxWsA9sx5JJM21oJhmSjFCG+Qs3LhRx69+4829M21lo64HA4Zx7yT0niDnTxnW/ncLa+sbmVnG7tLO7t39QPjxqa5koQltEcqm6AdaUM0FbhhlOu7GiOAo47QSTm5nfeaJKMynuzTSmfoRHgoWMYGOlBz1I69ljykQ2KFfcmjsHWiVeTiqQozkof/WHkiQRFYZwrHXPc2Pjp1gZRjjNSv1E0xiTCR7RnqUCR1T76fziDJ1ZZYhCqewTBs3V3xspjrSeRoGdjLAZ62VvJv7n9RITXvs2T5wYKsjiozDhyEg0i4+GTFFi+NQSTBSztyIyxgoTY0sq2RK85cirpH1e8y5r9buLSqOa11GEEziFKnhwBQ24hSa0gICAZ3iFN0c7L86787EYLTj5zjH8gfP5A91kkPo=</latexit>

sin5

<latexit sha1_base64="m5ZxtuSH2svLnJ3VOuqGERFFwm0=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBahp5KIVY8FLx4r2FpIY9lsN+3SzW7YnQgl5Gd48aCIV3+NN/+N2zYHbX0w8Hhvhpl5YSK4Adf9dkpr6xubW+Xtys7u3v5B9fCoa1SqKetQJZTuhcQwwSXrAAfBeolmJA4FewgnNzP/4Ylpw5W8h2nCgpiMJI84JWAl3wyyZv6YqRTyQbXmNtw58CrxClJDBdqD6ld/qGgaMwlUEGN8z00gyIgGTgXLK/3UsITQCRkx31JJYmaCbH5yjs+sMsSR0rYk4Ln6eyIjsTHTOLSdMYGxWfZm4n+en0J0HWRcJikwSReLolRgUHj2Px5yzSiIqSWEam5vxXRMNKFgU6rYELzll1dJ97zhXTaadxe1Vr2Io4xO0CmqIw9doRa6RW3UQRQp9Ixe0ZsDzovz7nwsWktOMXOM/sD5/AHKMJGF</latexit>

sout5

<latexit sha1_base64="aFmK+lz/nyNBFW7lrSzIjcAiGjM=">AAAB6nicbVDJSgNBEK2JW4xb1KOXxiDkFGbE7Rjw4jEuWSAZQk+nJmnS0zN09whhyCd48aCIV7/Im39jJ5mDRh8UPN6roqpekAiujet+OYWV1bX1jeJmaWt7Z3evvH/Q0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4eua3H1FpHssHM0nQj+hQ8pAzaqx0f9f3+uWKW3PnIH+Jl5MK5Gj0y5+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmJVQYkjJUtachc/TmR0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyX9I6rXkXtfPbs0q9msdRhCM4hip4cAl1uIEGNIHBEJ7gBV4d4Tw7b877orXg5DOH8AvOxzfNK41q</latexit>

R1

<latexit sha1_base64="KSBZB0YFQJzOuLA/Pl6lUfN1ttQ=">AAAB6nicbVDJSgNBEK2JW4xb1KOXxiDkFGbcjwEvHuOSBZIh9HQqSZOenqG7RwhDPsGLB0W8+kXe/Bs7yRw08UHB470qquoFseDauO63k1tZXVvfyG8WtrZ3dveK+wcNHSWKYZ1FIlKtgGoUXGLdcCOwFSukYSCwGYxupn7zCZXmkXw04xj9kA4k73NGjZUe7rtn3WLJrbgzkGXiZaQEGWrd4lenF7EkRGmYoFq3PTc2fkqV4UzgpNBJNMaUjegA25ZKGqL209mpE3JilR7pR8qWNGSm/p5Iaaj1OAxsZ0jNUC96U/E/r52Y/rWfchknBiWbL+ongpiITP8mPa6QGTG2hDLF7a2EDamizNh0CjYEb/HlZdI4rXiXlYu781K1nMWRhyM4hjJ4cAVVuIUa1IHBAJ7hFd4c4bw4787HvDXnZDOH8AfO5w/QM41s</latexit>

R3

<latexit sha1_base64="iZplbev9luMBCcZOFgIFwp9Ldro=">AAAB7HicbVBNTwIxEJ3iF+IX6tFLIzHhRHaNX0cSLxwxukACK+mWLjR0u5u2a0I2/AYvHjTGqz/Im//GAntQ8CWTvLw3k5l5QSK4No7zjQpr6xubW8Xt0s7u3v5B+fCopeNUUebRWMSqExDNBJfMM9wI1kkUI1EgWDsY38789hNTmsfywUwS5kdkKHnIKTFW8u777mOjX644NWcOvErcnFQgR7Nf/uoNYppGTBoqiNZd10mMnxFlOBVsWuqlmiWEjsmQdS2VJGLaz+bHTvGZVQY4jJUtafBc/T2RkUjrSRTYzoiYkV72ZuJ/Xjc14Y2fcZmkhkm6WBSmApsYzz7HA64YNWJiCaGK21sxHRFFqLH5lGwI7vLLq6R1XnOvapd3F5V6NY+jCCdwClVw4Rrq0IAmeECBwzO8whuS6AW9o49FawHlM8fwB+jzBxZdjiU=</latexit>

SH

1

<latexit sha1_base64="/yO330ZjvwlhRb55md7S/hG2JQo=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoOQU9gVX8dALh4jmgckS5idzCZDZmeXmV4hLH6CFw+KePWLvPk3TpI9aGJBQ1HVTXdXkEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmzjVjLdYLGPdDajhUijeQoGSdxPNaRRI3gkmjZnfeeTaiFg94DThfkRHSoSCUbTSfWPgDcoVt+bOQVaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyp1I/NTyhbEJHvGepohE3fjY/9YmcWWVIwljbUkjm6u+JjEbGTKPAdkYUx2bZm4n/eb0Uwxs/EypJkSu2WBSmkmBMZn+TodCcoZxaQpkW9lbCxlRThjadkg3BW355lbTPa95V7fLuolKv5nEU4QROoQoeXEMdbqEJLWAwgmd4hTdHOi/Ou/OxaC04+cwx/IHz+QO2UY1b</latexit>

C1
<latexit sha1_base64="+zz2biRrRqt8FacKvRTOVvTnwlc=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHhRHaJryMJF48Y5ZHAhswOszBhdnYz02tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIJHCoOt+O7mNza3tnfxuYW//4PCoeHzSMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2M63O//cS1EbF6xEnC/YgOlQgFo2ilh3q/2i+W3Iq7AFknXkZKkKHRL371BjFLI66QSWpM13MT9KdUo2CSzwq91PCEsjEd8q6likbc+NPFqTNyYZUBCWNtSyFZqL8npjQyZhIFtjOiODKr3lz8z+umGN76U6GSFLliy0VhKgnGZP43GQjNGcqJJZRpYW8lbEQ1ZWjTKdgQvNWX10mrWvGuK1f3l6VaOYsjD2dwDmXw4AZqcAcNaAKDITzDK7w50nlx3p2PZWvOyWZO4Q+czx+31Y1c</latexit>

C2
<latexit sha1_base64="G6dKUnYo7RR8isYwOGt5h2GrKYI=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHhRHZ9H0m4eMQojwQ2ZHbohQmzs5uZWRNC+AQvHjTGq1/kzb9xgD0oWEknlarudHcFieDauO63k1tb39jcym8Xdnb39g+Kh0dNHaeKYYPFIlbtgGoUXGLDcCOwnSikUSCwFYxqM7/1hErzWD6acYJ+RAeSh5xRY6WHWu+iVyy5FXcOskq8jJQgQ71X/Or2Y5ZGKA0TVOuO5ybGn1BlOBM4LXRTjQllIzrAjqWSRqj9yfzUKTmzSp+EsbIlDZmrvycmNNJ6HAW2M6JmqJe9mfif10lNeOtPuExSg5ItFoWpICYms79JnytkRowtoUxxeythQ6ooMzadgg3BW355lTTPK9515er+slQtZ3Hk4QROoQwe3EAV7qAODWAwgGd4hTdHOC/Ou/OxaM052cwx/IHz+QO5WY1d</latexit>

C3 <latexit sha1_base64="SZUp0KdbBxHX/2CT6UBCbFJANJs=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHhRHYNPo4kXDxilEcCGzI7zMKE2dnNTK8JIXyCFw8a49Uv8ubfOMAeFKykk0pVd7q7gkQKg6777eQ2Nre2d/K7hb39g8Oj4vFJy8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwrs/99hPXRsTqEScJ9yM6VCIUjKKVHur9ar9YcivuAmSdeBkpQYZGv/jVG8QsjbhCJqkxXc9N0J9SjYJJPiv0UsMTysZ0yLuWKhpx408Xp87IhVUGJIy1LYVkof6emNLImEkU2M6I4sisenPxP6+bYnjrT4VKUuSKLReFqSQYk/nfZCA0ZygnllCmhb2VsBHVlKFNp2BD8FZfXiety4p3Xbm6r5Zq5SyOPJzBOZTBgxuowR00oAkMhvAMr/DmSOfFeXc+lq05J5s5hT9wPn8Aut2NXg==</latexit>
C4

<latexit sha1_base64="TGp31vTsdnNCriSrT6gHiWiM84k=">AAAB8HicbVBNTwIxEJ3FL8Qv1KOXRmLCiewaUY8kXjhilA8DK+mWAg1td9N2Tchmf4UXDxrj1Z/jzX9jgT0o+JJJXt6bycy8IOJMG9f9dnJr6xubW/ntws7u3v5B8fCopcNYEdokIQ9VJ8CaciZp0zDDaSdSFIuA03YwuZn57SeqNAvlvZlG1Bd4JNmQEWys9HDXT6rpY1JP+8WSW3HnQKvEy0gJMjT6xa/eICSxoNIQjrXuem5k/AQrwwinaaEXaxphMsEj2rVUYkG1n8wPTtGZVQZoGCpb0qC5+nsiwULrqQhsp8BmrJe9mfif143N8NpPmIxiQyVZLBrGHJkQzb5HA6YoMXxqCSaK2VsRGWOFibEZFWwI3vLLq6R1XvEuK9Xbi1KtnMWRhxM4hTJ4cAU1qEMDmkBAwDO8wpujnBfn3flYtOacbOYY/sD5/AGqVZBB</latexit>

SH

5

<latexit sha1_base64="7+MzCFjjpKtHdCwvkcw7G36/O0I=">AAAB7HicbVBNTwIxEJ3FL8Qv1KOXRmLCiez6fSTxwhGjCySwkm7pQkPb3bRdE7LhN3jxoDFe/UHe/DcW2IOiL5nk5b2ZzMwLE860cd0vp7Cyura+UdwsbW3v7O6V9w9aOk4VoT6Jeaw6IdaUM0l9wwynnURRLEJO2+H4Zua3H6nSLJb3ZpLQQOChZBEj2FjJv+ufPTT65Ypbc+dAf4mXkwrkaPbLn71BTFJBpSEca9313MQEGVaGEU6npV6qaYLJGA9p11KJBdVBNj92ik6sMkBRrGxJg+bqz4kMC60nIrSdApuRXvZm4n9eNzXRdZAxmaSGSrJYFKUcmRjNPkcDpigxfGIJJorZWxEZYYWJsfmUbAje8st/Seu05l3WLm7PK/VqHkcRjuAYquDBFdShAU3wgQCDJ3iBV0c6z86b875oLTj5zCH8gvPxDRlpjic=</latexit>

SH

3

<latexit sha1_base64="+bxXBRCC8IlBj5NcQpmfaKaTd6g=">AAAB7HicbVBNTwIxEJ31E/EL9eilkZhwIrvEryOJF44YXSCBlXRLFxq67abtmpANv8GLB43x6g/y5r+xwB4UfMkkL+/NZGZemHCmjet+O2vrG5tb24Wd4u7e/sFh6ei4pWWqCPWJ5FJ1QqwpZ4L6hhlOO4miOA45bYfj25nffqJKMykezCShQYyHgkWMYGMl/75fe2z0S2W36s6BVomXkzLkaPZLX72BJGlMhSEca9313MQEGVaGEU6nxV6qaYLJGA9p11KBY6qDbH7sFJ1bZYAiqWwJg+bq74kMx1pP4tB2xtiM9LI3E//zuqmJboKMiSQ1VJDFoijlyEg0+xwNmKLE8IklmChmb0VkhBUmxuZTtCF4yy+vklat6l1VL+8uyvVKHkcBTuEMKuDBNdShAU3wgQCDZ3iFN0c4L86787FoXXPymRP4A+fzBxfjjiY=</latexit>

SH

2

<latexit sha1_base64="h+czRAwN4ntDtqNLuqiZSvLPNGQ=">AAAB8HicbVDLTgJBEOzFF+IL9ehlIjHhRHYNPo4kXjhilIeBlcwOA0yYmd3MzJqQzX6FFw8a49XP8ebfOMAeFKykk0pVd7q7gogzbVz328mtrW9sbuW3Czu7e/sHxcOjlg5jRWiThDxUnQBrypmkTcMMp51IUSwCTtvB5Gbmt5+o0iyU92YaUV/gkWRDRrCx0sNdP6mmj0k97RdLbsWdA60SLyMlyNDoF796g5DEgkpDONa667mR8ROsDCOcpoVerGmEyQSPaNdSiQXVfjI/OEVnVhmgYahsSYPm6u+JBAutpyKwnQKbsV72ZuJ/Xjc2w2s/YTKKDZVksWgYc2RCNPseDZiixPCpJZgoZm9FZIwVJsZmVLAheMsvr5LWecW7rFzcVku1chZHHk7gFMrgwRXUoA4NaAIBAc/wCm+Ocl6cd+dj0Zpzsplj+APn8weozJBA</latexit>

SH

4

<latexit sha1_base64="UAMkRccvXa9cOUIu+MDP9IFKHu0=">AAAB6nicbVDJSgNBEK2JW4xb1KOXxiDkFGaC2zHgxWNcskAyhJ5OTdKkp2fo7hFCyCd48aCIV7/Im39jJ5mDJj4oeLxXRVW9IBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzcxvPaHSPJaPZpygH9GB5CFn1Fjp4b5X7RVLbsWdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE177Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNasW7rFzcnZdq5SyOPJzAKZTBgyuowS3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8Azq+Naw==</latexit>

R2

<latexit sha1_base64="OBqQ+nPLgui4cwokCJKsMKlnNuU=">AAAB6nicbVDJSgNBEK2JW4xb1KOXxiDkFGYkLseAF49xyQLJEHo6NUmTnp6hu0cIIZ/gxYMiXv0ib/6NnWQOmvig4PFeFVX1gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGNzO/9YRK81g+mnGCfkQHkoecUWOlh/tetVcsuRV3DrJKvIyUIEO9V/zq9mOWRigNE1Trjucmxp9QZTgTOC10U40JZSM6wI6lkkao/cn81Ck5s0qfhLGyJQ2Zq78nJjTSehwFtjOiZqiXvZn4n9dJTXjtT7hMUoOSLRaFqSAmJrO/SZ8rZEaMLaFMcXsrYUOqKDM2nYINwVt+eZU0zyveZeXirlqqlbM48nACp1AGD66gBrdQhwYwGMAzvMKbI5wX5935WLTmnGzmGP7A+fwB0beNbQ==</latexit>

R4

<latexit sha1_base64="BW7kQgTGkhVt5nAQUXYD3Wywn+U=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHhRHaNqEcSLx7xwSOBDZkdZmHC7OxmpteEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSKFQdf9dnJr6xubW/ntws7u3v5B8fCoaeJUM95gsYx1O6CGS6F4AwVK3k40p1EgeSsY3cz81hPXRsTqEccJ9yM6UCIUjKKVHu571V6x5FbcOcgq8TJSggz1XvGr249ZGnGFTFJjOp6boD+hGgWTfFropoYnlI3ogHcsVTTixp/MT52SM6v0SRhrWwrJXP09MaGRMeMosJ0RxaFZ9mbif14nxfDanwiVpMgVWywKU0kwJrO/SV9ozlCOLaFMC3srYUOqKUObTsGG4C2/vEqa5xXvslK9uyjVylkceTiBUyiDB1dQg1uoQwMYDOAZXuHNkc6L8+58LFpzTjZzDH/gfP4A0zuNbg==</latexit>

R5

<latexit sha1_base64="WtWFMfVERQNPkPwhlt6Z48qECdI=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHhRHaNqEcSLh4xyiOBDZkdBpgwO7uZ6TUhGz7BiweN8eoXefNvHGAPClbSSaWqO91dQSyFQdf9dnIbm1vbO/ndwt7+weFR8fikZaJEM95kkYx0J6CGS6F4EwVK3ok1p2EgeTuY1Od++4lrIyL1iNOY+yEdKTEUjKKVHur9ar9YcivuAmSdeBkpQYZGv/jVG0QsCblCJqkxXc+N0U+pRsEknxV6ieExZRM64l1LFQ258dPFqTNyYZUBGUbalkKyUH9PpDQ0ZhoGtjOkODar3lz8z+smOLz1U6HiBLliy0XDRBKMyPxvMhCaM5RTSyjTwt5K2JhqytCmU7AheKsvr5PWZcW7rlTvr0q1chZHHs7gHMrgwQ3U4A4a0AQGI3iGV3hzpPPivDsfy9ack82cwh84nz+8YY1f</latexit>

C5

Figure 5 The path R (colored in red) in a subdivision of W5, described in Lemma 20.

Throughout this section we abbreviate W = W2k+1 (the cylindrical wall of order 2k + 1).
In order to establish correctness of the algorithm, we need to argue that any subdivision H

of W admits a path k times longer than the girth of H.
We denote the 2k + 1 vertex disjoint cycles in W by CW

1 , CW
2 , . . . CW

2k+1 counting from
the innermost one. For a subdivision H of W we denote the counterpart of CW

i in H as CH
i .

We refer to the girth of H as g. Note that g lower bounds the length of each cycle CH
i .

▶ Definition 17. A subpath in CW
i is called a segment of CW

i if its endpoints have out-
neighbors in CW

i+1 and none of its internal vertices has out-neighbors in CW
i+1. A subpath in

CH
i is a segment of CH

i if it is a subdivision of a segment in CW
i .

We make note of a few properties of segments.

▶ Observation 18. For every i ∈ [2k + 1] the following hold.
1. Each cycle CW

i is a cyclic concatenation of k + 1 segments of length 4.
2. Each cycle CH

i is a cyclic concatenation of k + 1 segments.
3. If i > 1 then each segment of CW

i has a unique internal vertex with an in-neighbor in CW
i−1.

We show that in every cycle CH
i we can choose a segment S so that the path obtained by

traversing all vertices in CH
i that are not internal vertices of S is almost as long as CH

i .

▶ Lemma 19. For a segment S of CH
i , let Ŝ be the subpath of CH

i that starts at the end
of S and ends at the start of S. Then there exists a segment SH

i of CH
i such that ŜH

i has
length at least g − g

k+1 .

Proof. By Observation 18 we know that CH
i can be partitioned into k + 1 segments. By a

counting argument, there exist a segment SH
i of size at most |E(CH

i )|
k+1 . Thus, for the path

ŜH
i complementing SH

i , we have |E(ŜH
i )| ≥ |E(CH

i )| · (1 − 1
k+1 ) ≥ g · (1 − 1

k+1 ). ◀

Let sout
i denote the first vertex on SH

i . If i > 1, we define sin
i to be the unique internal

vertex of SH
i corresponding to a vertex in CW

i with an in-neighbor in CW
i−1. If i = 1, we

define sin
i to be the last vertex on SH

i .

▶ Lemma 20. Let H be a subdivision of W2k+1 and g be the girth of H. Then there exists a
path of length at least g · k in H.
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Proof. For i ∈ [2k + 1] we define path Ri in Ci as follows. If i is odd, we set Ri to be the
subpath of Ci from sin

i to sout
i . If i is even, the path Ri begins at the unique vertex in CH

i

that can be reached via a subdivided edge from sout
i−1 and Ri ends at the unique vertex in CH

i

from which sin
i+1 is reachable by via a subdivided edge. Note that the first and last indices in

[2k + 1] are odd, so the paths Ri are well-defined. We can now concatenate R1, R2, . . . , R2k+1
using the subdivided edges between the cycles to obtain a path R in H; see Figure 5.

We argue that R is sufficiently long. There are k + 1 odd indices in [2k + 1], and, for
each of them, Ri contains the path ŜH

i (from Lemma 19) of length at least g − g
k+1 . Since

these form vertex disjoint subpaths of R, we conclude that E(R) ≥ (g − g
k+1 )(k + 1) =

g(k + 1) − g = g · k. ◀

We are ready to summarize the entire algorithm.

▶ Theorem 3. Longest Path Above Girth is in XP.

Proof. We first execute the algorithm from Theorem 7, which returns either a directed tree
decomposition of width f(k), for some computable function f , or a subgraph H of G that is
a subdivision of W2k+1. Note that the girth of H is at least the girth of G. In the first case,
we apply the algorithm from Theorem 16 to find the longest path in G in polynomial time
for fixed k. In the latter case, Lemma 20 asserts that H contains a path of length at least k

times the girth of H, so we can report that (G, k) a Yes-instance. ◀
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Abstract
The notion of H-treewidth, where H is a hereditary graph class, was recently introduced as a
generalization of the treewidth of an undirected graph. Roughly speaking, a graph of H-treewidth at
most k can be decomposed into (arbitrarily large) H-subgraphs which interact only through vertex
sets of size O(k) which can be organized in a tree-like fashion. H-treewidth can be used as a hybrid
parameterization to develop fixed-parameter tractable algorithms for H-deletion problems, which
ask to find a minimum vertex set whose removal from a given graph G turns it into a member of H.
The bottleneck in the current parameterized algorithms lies in the computation of suitable tree
H-decompositions.

We present FPT-approximation algorithms to compute tree H-decompositions for hereditary and
union-closed graph classes H. Given a graph of H-treewidth k, we can compute a 5-approximate tree
H-decomposition in time f(O(k)) · nO(1) whenever H-deletion parameterized by solution size can
be solved in time f(k) ·nO(1) for some function f(k) ≥ 2k. The current-best algorithms either achieve
an approximation factor of kO(1) or construct optimal decompositions while suffering from non-
uniformity with unknown parameter dependence. Using these decompositions, we obtain algorithms
solving Odd Cycle Transversal in time 2O(k) · nO(1) parameterized by bipartite-treewidth and
Vertex Planarization in time 2O(k log k) · nO(1) parameterized by planar-treewidth, showing that
these can be as fast as the solution-size parameterizations and giving the first ETH-tight algorithms
for parameterizations by hybrid width measures.
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require a tree decomposition to be able to work, there has been long record of algorithms
computing optimal [3, 6, 9, 43] or near-optimal [4, 8, 35] tree decompositions with no end in
sight [36], as well as a long series of experimental work on heuristically computing good tree
decompositions [10, 11, 17, 18]. In this paper, we present a new fixed-parameter tractable
approximation algorithm for the notion of H-treewidth, a generalization of treewidth which
has recently attracted significant attention [1, 21, 29, 30]. Before describing our contributions
for H-treewidth, we summarize the most important background to motivate the problem.

The popularity of treewidth as a graph parameter can be attributed to the fact that
it has very good algorithmic properties (by Courcelle’s theorem, any problem that can be
formulated in Counting Monadic Second-Order (CMSO2) logic can be solved in linear time on
graphs of bounded treewidth [15]), while also having a very elegant mathematical structure
theory. Unfortunately, simple substructures like grids or cliques in a graph can already make
its treewidth large. This means that for many input graphs of interest, the treewidth is
too large for an approach based on treewidth to be efficient: the running times of many
treewidth-based algorithms are of the form f(k) · nO(1), where f is an exponential function
in the treewidth k and n is the total number of vertices of the graph.

Several approaches have been taken to cope with the fact that treewidth is large on graphs
with large cliques or large induced grid subgraphs. One approach lies in generalized width
measures like cliquewidth or rankwidth [41], by essentially replacing the use of separations of
small order (which are encoded in tree decompositions), by separations of large order but in
which the interactions between the two sides is well-structured. Unfortunately this generality
comes at a price in terms of algorithmic applications [24, 25, 26].

This has recently led Eiben, Ganian, Hamm, and Kwon [21] to enrich the notion of
treewidth in a different way. Consider a hereditary class H of graphs, such as bipartite
graphs. The notion of H-treewidth aims to capture how well a graph G can be decomposed
into subgraphs belonging to H which only interact with the rest of the graph via small
vertex sets which are organized in a tree-like manner. While we defer formal definitions
of H-treewidth to Section 2, an intuitive way to think of the concept is the following: a
graph G has H-treewidth at most k if and only if it can be obtained from a graph G0
with a tree decomposition of width at most k by the following process: repeatedly insert a
subgraph Hi belonging to graph class H, such that the neighbors of Hi in the rest of the
graph are all contained in a single bag of the tree decomposition of G0. The H-subgraphs Hi

inserted during this process are called base components and their neighborhoods have size
at most k + 1. When H is a graph class of unbounded treewidth, like bipartite graphs, the
H-treewidth of a graph can be arbitrarily much smaller than its treewidth. This prompted
an investigation of the algorithmic applications of H-treewidth.

In recent works [1, 21, 30], the notion of H-treewidth was used to develop new algorithms
to solve vertex-deletion problems. Many classic NP-hard problems in algorithmic graph
theory can be phrased in the framework of H-deletion: find a minimum vertex-subset S of
the input graph G such that G − S belongs to a prescribed graph class H. Examples include
Vertex Cover (where H is the class of edgeless graphs), Odd Cycle Transversal
(bipartite graphs), and Vertex Planarization (planar graphs). All these problems are
known to be fixed-parameter tractable [14, 33, 34, 39, 44] when parameterized by the size of
a desired solution: there are algorithms that, given an n-vertex graph G and integer k, run
in time f(k) · nO(1) and output a vertex set S ⊆ V (G) of size at most k for which G − S ∈ H,
if such a set exists. These algorithms show that large instances whose optimal solutions
are small, can still be solved efficiently. Alternatively, since the mentioned graph classes H
can be defined in CMSO2, these vertex-deletion problems can be solved in time f(w) · n
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parameterized by the treewidth w of the input graph via Courcelle’s theorem, which shows
that instances of small treewidth (but whose optimal solutions may be large) can be solved
efficiently.

The notion of H-treewidth (abbreviated as twH from now on) can be used to combine
the best of both worlds. It is not difficult to show that if a graph G has a vertex set S of
size k for which G − S ∈ H (we call such a set an H-deletion set), then the H-treewidth of G

is at most k: simply take a trivial tree decomposition consisting of a single bag of size k for
the graph G0 := G[S], so that afterwards the graph G can be obtained from G0 by inserting
the graph H = G − S, which belongs to H and has all its neighbors in a single bag. Since
the H-treewidth of G is also never larger than its standard treewidth, the hybrid (cf. [2])
parameterization by H-treewidth dominates both the parameterizations by the solution size
and the treewidth of the graph. This raises the question whether existing fixed-parameter
tractability results for parameterizations of H-deletion by treewidth or solution size, can
be extended to twH.

It was recently shown [1] that when it comes to non-uniform fixed-parameter tractability
characterizations, the answer to this question is positive. If H satisfies certain mild conditions,
which is the case for all graph classes mentioned so far, then for each value of k there exists
an algorithm AH,k that, given a graph G with twH(G) ≤ k and target value t, decides
whether or not G has an H-deletion set of size at most t. There is a constant cH such that
each algorithm AH,k runs in time O(ncH), so that the overall running time can be bounded
by f(k) · ncH ; however, no bounds on the function f are given and in general it is unknown
how to construct the algorithms whose existence is proven. Another recent paper [29] gave
concrete FPT algorithms to solve H-deletion parameterized by twH for certain cases of H,
including the three mentioned ones. For example, it presents an algorithm that solves Odd
Cycle Transversal in time 2O(k3) · nO(1), parameterized by bipartite-treewidth. The
bottleneck in the latter approach lies in the computation of a suitable tree H-decomposition:
on a graph of twH(G) ≤ k, the algorithm runs in 2O(k log k) · nO(1) time to compute a tree H-
decomposition of width w ∈ O(k3), and then optimally solves Odd Cycle Transversal on
the decomposition of width w in time 2O(w) · nO(1) ≤ 2O(k3) · nO(1). Note that the parameter
dependence of this algorithm is much worse than for the parameterizations by solution size and
by treewidth, both of which can be solved in single-exponential time 2O(k) · nO(1) [44, 37]. To
improve the running times of algorithms for H-deletion based on hybrid parameterizations,
improved algorithms are therefore required to compute approximate tree H-decompositions.
These form the subject of our work.

Our contribution: H-treewidth. We develop generic FPT algorithms to approximate
H-treewidth, for graph classes H which are hereditary and closed under taking the disjoint
union of graphs. To approximate H-treewidth, all our algorithm needs is access to an oracle
for solving H-deletion parameterized by solution size. The values of the solution size
for which the oracle is invoked, will be at most twice as large as the H-treewidth of the
graph we are decomposing. Hence existing algorithms for solution-size parameterizations of
H-deletion can be used as a black box to form the oracle. Aside from the oracle calls, our
algorithm only takes 8k · kn(n + m) time on an n-vertex graph with m edges. So whenever
the solution-size parameterization can be solved in single-exponential time, an approximate
tree H-decomposition can be found in single-exponential time. The approximation factor of
the algorithm is 5, which is a significant improvement over earlier poly(opt) approximations
running in superexponential time. The formal statement of our main result is the following.

▶ Theorem 1. Let H be a hereditary and union-closed class of graphs. There is an algorithm
that, using oracle-access to an algorithm A for H-deletion, takes as input an n-vertex
m-edge graph G, integer k, and either computes a tree H-decomposition of G of width at
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66:4 5-Approximation for H-Treewidth

most 5k + 5 consisting of O(n) nodes, or correctly concludes that twH(G) > k. The algorithm
runs in time O(8k · kn(n + m)), polynomial space, and makes O(8kn) calls to A on induced
subgraphs of G and parameter 2k + 2.

Theorem 1 yields the first constant-factor approximation algorithms for twH that run in
single-exponential time. For example, for H the class of bipartite graphs the running time
becomes O(72k · n2(n + m)), and for interval graphs we obtain O(83k · n(n + m)) (the full
version [31] gives results for more classes H). Combining these approximate decompositions
with existing algorithms that solve H-deletion on a given tree H-decomposition, we obtain
ETH-tight algorithms as a consequence. Odd Cycle Transversal can be solved in
time 2O(k) · nO(1), and Vertex Planarization can be solved in time 2O(k log k) · nO(1)

when parameterized by twH for H the class of bipartite and planar graphs, respectively,
without having to supply a decomposition in the input. For Vertex Planarization, the
previous-best bound [32] was 2O(k5 log k) · nO(1). Note that for the planarization problem, a
parameter dependence of 2o(k log k) is impossible assuming the Exponential Time Hypothesis;
this already holds for the larger parameterization by treewidth [42]. For Odd Cycle
Transversal, an algorithm running in time 2o(n) would violate the Exponential Time
Hypothesis, which follows by a simple reduction from Vertex Cover for which such a lower
bound is known [16, Theorem 14.6]. This implies that the solution size parameterization
cannot be solved in subexponential time.

Compared to existing algorithms to approximate treewidth, the main obstacle we have to
overcome in Theorem 1 is identifying the base components of an approximate decomposition
in a suitable way. The earlier FPT poly(opt)-approximation for twH effectively reduced
the input graph G to a graph G′ by repeatedly extracting large H-subgraphs with small
neighborhoods, in such a way that the treewidth of G′ can be bounded in terms of twH(G),
while a tree decomposition of G′ can be lifted into an approximate tree H-decomposition
of G. Several steps in this process led to losses in the approximation factor. To obtain
our 5-approximation, we avoid the translation between G and G′, and work directly on
decomposing the input graph G.

Our recursive decomposition algorithm works similarly as the Robertson-Seymour 4-
approximation algorithm for treewidth [45] (cf. [16, §7.6]). When given a graph G and
integer k with twH(G) ≤ k, the algorithm maintains a vertex set S of size 3k +4 which forms
the boundary between the part of the graph that has already been decomposed and the part
that still needs to be processed. If S has a 2

3 -balanced separator R of size k + 1, we can
proceed in the usual way: we split the graph based on R, recursively decompose the resulting
parts, and combine these decompositions by adding a bag containing R ∪ S as the root. If S

does not have a balanced separator of size k + 1, then we show (modulo some technical
details) that for any optimal tree H-decomposition, there is a subset S′ ⊆ S of 2k + 3 vertices
which belong to a single base component H0. Our main insight is that such a set S′ can be
used in a win/win approach, by maintaining an H-deletion set X during the decomposition
process that initially contains all vertices. To make progress in the recursion, we would like
to split off a base component containing S′ via a separator U of size at most 2k + 2, while
adding U to the boundary of the remainder of the graph to be decomposed. To identify
an induced H-subgraph with small neighborhood that can serve as a base component, we
compute a minimum (S′, X)-separator U (we allow U to intersect the sets S′, X). Any
connected component H of G − U that contains a vertex from S′ does not contain any vertex
of the H-deletion set X, so H is an induced subgraph of G − X which implies H ∈ H for
hereditary H. Hence if there is an (S′, X)-separator U of size at most 2k + 2, we can use it
to split off base components neighboring U that eliminate 2k + 3 vertices from S from the
boundary, thereby making room to insert U into the boundary without blowing up its size.
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Of course, it may be that all (S′, X)-separators are larger than 2k + 2; by Menger’s
theorem, this happens exactly when there is a family P of 2k +3 vertex-disjoint (S′, X)-paths.
Only k + 1 paths in P can escape the base component H0 covering S′ since its neighborhood
has size at most k + 1, so that k + 2 of them end in a vertex of the deletion set X that lies
in H0. The key point is now that this situation implies that X is redundant in a technical
sense: if we let X ′ denote the endpoints of k + 2 (S′, X)-paths starting and ending in H0, we
can obtain a smaller H-deletion set by replacing X ′ by the neighborhood of H0, which has size
at most k + 1. This replacement is valid as long as H is hereditary and union-closed. Using
an oracle for H-deletion parameterized by solution size, we can therefore efficiently find a
smaller H-deletion set when we know X ′. While the algorithm does not know X ′ in general,
this type of argument leads to the win/win: either there is a small (S′, X)-separator which we
can use to split off a base component, or there is a large family of vertex-disjoint (S′, X)-paths
which allows the H-deletion set to be improved. As the latter can only happen |V (G)| times,
we must eventually identify a base component to split off, allowing the recursion to proceed.

Our contribution: H-elimination distance. The H-elimination distance edH(G) of a
graph G is a parameter [12, 13] that extends treedepth [40] similarly to how H-treewidth
extends treewidth. For hereditary and union-closed classes H, the H-elimination distance of
a graph G is the minimum number of rounds needed to turn G into a member of H, when a
round consists of removing one vertex from each connected component. Such an elimination
process can be represented by a tree structure called H-elimination forest. Aside from the fact
that computing the H-elimination distance may reveal interesting properties of a graph G,
a second motivation for studying this parameter is that it can facilitate polynomial-space
algorithms for solving H-deletion, while the parameterization by twH (which is never
larger) typically gives rise to exponential-space algorithms. At a high level, the state of the art
for computing edH is similar as for twH: there is an exact non-uniform FPT algorithm with
unspecified parameter dependence that works as long as H satisfies some mild conditions [1],
while uniform poly(opt)-approximation algorithms running in time 2kO(1) · nO(1) are known
for several concrete graph classes H [30].

By leveraging similar ideas as for Theorem 1, we also obtain improved FPT-approximation
algorithms for edH. The following theorem gives algorithms for two settings: one for an
algorithm using polynomial space whenever the algorithm A for H-deletion does, which is
the case for most of the considered graph classes, and one for an exponential-space algorithm
with a better approximation ratio.

▶ Theorem 2. Let H be a hereditary and union-closed class of graphs. There exists an
algorithm that, using oracle-access to an algorithm A for H-deletion, takes as input an
n-vertex graph G and integer k, runs in time nO(1), makes nO(1) calls to A on induced
subgraphs of G and parameter 2k, and either concludes that edH(G) > k or outputs an
H-elimination forest of depth O(k3 log3/2 k).

Under the same assumptions, there is an algorithm that runs in time 2O(k2) ·nO(1), makes
nO(1) calls to A on induced subgraphs of G and parameter 2k, and either concludes that
edH(G) > k or outputs an H-elimination forest of depth O(k2).

In the previous work [30, 32] such a dependence on k was possible only in two cases:
when H is the class of bipartite graphs or when H is defined by a finite family of forbidden
induced subgraphs. In the general case, our result effectively shaves off a single k-factor in
the depth of the returned decomposition and in the exponent of the running time, compared
to the previously known approximations. Theorem 2 entails better approximation algorithms
for H-elimination distance for classes of e.g. chordal, interval, planar, bipartite permutation,
or distance-hereditary graphs.
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Organization. The remainder of the paper is organized as follows. We continue by presenting
formal preliminaries in Section 2. In Section 3 we treat H-treewidth, developing the theory
and subroutines needed to prove Theorem 1. Due to space limitations, the resulting proof of
Theorem 1 is deferred to the full version [31], which also provides a list of applications for
concrete graph classes. The proof of Theorem 2 can also be found in the full version. We
conclude in Section 4.

2 Preliminaries

Graphs and graph classes. We consider finite, simple, undirected graphs. We denote the
vertex and edge sets of a graph G by V (G) and E(G) respectively, with |V (G)| = n and
|E(G)| = m. For a set of vertices S ⊆ V (G), by G[S] we denote the graph induced by S.
We use shorthand G − v and G − S for G[V (G) \ {v}] and G[V (G) \ S], respectively. The
open neighborhood NG(v) of v ∈ V (G) is defined as {u ∈ V (G) | uv ∈ E(G)}. The closed
neighborhood of v is NG[v] = NG(v) ∪ {v}. For S ⊆ V (G), we have NG[S] =

⋃
v∈S NG[v]

and NG(S) = NG[S] \ S. We define the boundary ∂G(S) of the vertex set S as NG(V (G) \ S),
i.e., those vertices of S which have a neighbor outside S.

A class of graphs H is called hereditary if for any G ∈ H, every induced subgraph of G

also belongs to H. Furthermore, H is union-closed if for any G1, G2 ∈ H the disjoint union
of G1 and G2 also belongs to H. For a graph class H and a graph G, a set X ⊆ V (G) is
called an H-deletion set in G if G − X ∈ H. For a graph class H, the parameterized problem
H-deletion takes a graph G and parameter k as input, and either outputs a minimum-size
H-deletion set in G or reports that there is no such set of size at most k.

Separators. For two (not necessarily disjoint) sets X, Y ⊆ V (G) in a graph G, a set
P ⊆ V (G) is an (X, Y )-separator if no connected component of G − P contains a vertex
from both X \ P and Y \ P . Such a separator may intersect X ∪ Y . Equivalently, P is
an (X, Y )-separator if each (X, Y )-path contains a vertex of P . The minimum cardinality
of such a separator is denoted λG(X, Y ). By Menger’s theorem, λG(X, Y ) is equal to the
maximum cardinality of a set of pairwise vertex-disjoint (X, Y )-paths. A pair (A, B) of
subsets of V (G) is a separation in G if A ∪ B = V (G) and G has no edges between A \ B

and B \ A. Its order is defined as |A ∩ B|.

▶ Observation 3. For two sets X, Y ⊆ V (G), it holds that λG(X, Y ) ≤ k if and only if there
exists a separation (A, B) in V (G) such that X ⊆ A, Y ⊆ B, and |A ∩ B| ≤ k.

The following theorem summarizes how, given vertex sets X, Y ⊆ V (G) and a bound k,
we can algorithmically find a small-order separation or a large system of vertex-disjoint paths.
The statement follows from the analysis of the Ford-Fulkerson algorithm for maximum (X, Y )-
flow in which each vertex has a capacity of 1. If the algorithm has not terminated within k

iterations, then the flow of value k + 1 yields k + 1 vertex-disjoint paths. If it terminates
earlier, a suitable separation can be identified based on reachability in the residual network
of the last iteration.

▶ Theorem 4 (Ford-Fulkerson, see [16, Thm. 8.2] and [49, §9.2]). There is an algorithm
that, given an n-vertex m-edge graph G, sets X, Y ⊆ V (G), and integer k, runs in time
O(k(n + m)) and determines whether λG(X, Y ) ≤ k. If so, the algorithm also returns a
separation (A, B) in G with X ⊆ A, Y ⊆ B, and |A ∩ B| ≤ k. Otherwise, the algorithm
returns a family of k + 1 vertex-disjoint (X, Y )-paths.
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H-treewidth. We continue by giving a formal definition of a tree H-decomposition.

▶ Definition 5. For a graph class H, a tree H-decomposition of graph G is a triple (T, χ, L)
where L ⊆ V (G), T is a rooted tree, and χ : V (T ) → 2V (G), such that:
1. For each v ∈ V (G) the nodes {t | v ∈ χ(t)} form a non-empty connected subtree of T .
2. For each edge uv ∈ E(G) there is a node t ∈ V (T ) with {u, v} ⊆ χ(t).
3. For each vertex v ∈ L, there is a unique t ∈ V (T ) with v ∈ χ(t), and t is a leaf of T .
4. For each node t ∈ V (T ), the graph G[χ(t) ∩ L] belongs to H.

The width of a tree H-decomposition is defined as max(0, maxt∈V (T ) |χ(t) \ L| − 1). The
H-treewidth of a graph G, denoted twH(G), is the minimum width of a tree H-decomposition
of G. The connected components of G[L] are called base components.

A pair (T, χ) is a (standard) tree decomposition if (T, χ, ∅) satisfies all conditions of an
H-decomposition; the choice of H is irrelevant.

For a rooted tree decomposition (T, χ), Tt denotes the subtree of T rooted at t ∈ V (T ),
while χ(Tt) =

⋃
x∈V (Tt) χ(x). Similarly as treewidth, H-treewidth is a monotone parameter

with respect to taking induced subgraphs.

▶ Observation 6. Let H be a hereditary class of graphs, G be a graph, and H be an induced
subgraph of G. Then twH(H) ≤ twH(G).

3 Approximating H-treewidth

We make preparations for the proof of Theorem 1. First, we formalize the concept of
a potential base component using the notion of an (H, ℓ)-separation and relate it to redundant
subsets in a solution to H-deletion. Next, we prove a counterpart of the balanced-separation
property for graphs of bounded H-treewidth and explain how it allows us to apply a win/win
approach in a single step of the decomposition algorithm.

3.1 Redundancy and (H, ℓ)-separations
We summon the following concept from the previous work on H-treewidth [30] to capture
H-subgraphs with small neighborhoods.

▶ Definition 7. For disjoint C, S ⊆ V (G), the pair (C, S) is called an (H, ℓ)-separation
in G if (1) G[C] ∈ H, (2) |S| ≤ ℓ, and (3) NG(C) ⊆ S.

This notion is tightly connected to the base components of tree H-decompositions. For
any tree H-decomposition (T, χ, L) of width k of a graph G, for any node t ∈ T , the
graph G[χ(t) ∩ L] belongs to H so that C := χ(t) ∩ L satisfies Definition 7. The open
neighborhood of χ(t) ∩ L is a subset of S := χ(t) \ L, which follows from the fact that vertices
of L only occur in a single bag, while each edge has both endpoints covered by a single bag.
Since |S| ≤ k + 1 by definition of the width of a tree H-decomposition, this leads to the
following observation.

▶ Observation 8. Let (T, χ, L) be a tree H-decomposition of a graph G of width k. For each
node t ∈ V (T ), the pair (χ(t) ∩ L, χ(t) \ L) is an (H, k + 1)-separation in G.

The following concept will be useful when working with (H, ℓ)-separations.

▶ Definition 9. For an (H, k)-separation (C, S) and set Z ⊆ V (G), we say that (C, S)
covers Z if Z ⊆ C, or weakly covers Z if Z ⊆ C ∪ S. Set Z ⊆ V (G) is called (weakly)
(H, ℓ)-separable if there exists an (H, ℓ)-separation that (weakly) covers Z.

ESA 2023



66:8 5-Approximation for H-Treewidth

C S V (G) \ (C ∪ S)

Figure 1 Illustration for Lemma 12: an (H, ℓ)-separation (C, S) in a graph G where H is the
class of triangle-free graphs and ℓ = 2. Vertices marked with a cross form an H-deletion set X

in G, while the set Z of size 2ℓ + 1 = 5 marked with blue squares is weakly (H, ℓ)-separable. A set
of 2ℓ + 1 vertex-disjoint (Z, X)-paths P is highlighted, witnessing λG(Z, X) = |Z|. Since |X ∩ C| > ℓ,
the set X is not a minimum H-deletion set in G: it can be improved by replacing X ∩ C with S.
When (C, S) weakly covering Z exists but is unknown to the algorithm, we can still improve X since
the set of X-endpoints of P also form a redundant set in X.

We introduce both notions to keep consistency with the earlier work [30] but in fact we
will be interested only in weak coverings. Following the example above, the set Z = χ(t) is
weakly (H, k + 1)-separable but not necessarily (H, k + 1)-separable.

Next, we introduce the notion of redundancy for solutions to H-deletion.

▶ Definition 10. For an H-deletion set X in G we say that a subset X ′ ⊆ X is redundant
in X if there exists a set X ′′ ⊆ V (G) smaller than |X ′| such that (X \ X ′) ∪ X ′′ is also an
H-deletion set in G.

We remark that redundancy has been studied in the context of local-search strategies
(cf. [27, 28]). It is known that for Vertex Cover finding a redundant subset X ′ in a
solution X is FPT in graphs of bounded local treewidth but W[1]-hard in general, when
parameterized by the size of |X ′| [22]. However, when X ′ is given, one can easily check
whether it is redundant using an algorithm for H-deletion parameterized by the solution
size, due to the following observation.

▶ Observation 11. Let X be an H-deletion set in a graph G. A subset X ′ ⊆ X is redundant
in X if and only if the graph G − (X \ X ′) has an H-deletion set smaller than |X ′|.

An important observation is that when X ′ ⊆ X of size at least ℓ + 1 is weakly (H, ℓ)-
separable, then it is redundant in X by a simple exchange argument. This fact has been
already leveraged in previous work [1, 30] when analyzing the structure of minimum-size
H-deletion sets, which clearly cannot contain any redundant subsets. We exploit it in a
different context, to prove that if there is a large flow between an H-deletion set X and a
weakly (H, ℓ)-separable set Z, then X has a redundant subset. Subsequently, we will show
that this redundant subset can efficiently be detected.

▶ Lemma 12. Let H be a hereditary and union-closed class of graphs. Consider a graph G,
an H-deletion set X in G, and a weakly (H, ℓ)-separable set Z ⊆ V (G). Suppose that there
exists a subset X ′ ⊆ X of size 2ℓ + 1 such that λG(Z, X ′) = 2ℓ + 1. Then X ′ is redundant
in X.

Proof. Let (C, S) be an (H, ℓ) separation in G with Z ⊆ C ∪ S. From the definition of
an (H, ℓ)-separation, we have G[C] ∈ H while NG(C) ⊆ S and |S| ≤ ℓ.
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By Menger’s theorem, the cardinality of a maximum packing of vertex-disjoint (Z, X ′)-
paths equals λG(Z, X ′). Hence there exists a family P = {P1, . . . , P2ℓ+1} of vertex-disjoint
paths, each of which connects a unique vertex zi ∈ Z to a unique vertex xi ∈ X ′ (possibly
xi = zi). At most |S| of these paths intersect the separator S of the (H, ℓ)-separation
(see Figure 1). Let X ′′ = {xi | Pi ∩ S = ∅} denote the X ′-endpoints of those paths not
intersecting S, and let P ′ be the corresponding paths. Each path Pi in P ′ is disjoint from S

and has an endpoint zi ∈ Z. Since Z ⊆ C ∪ S, the zi endpoint belongs to C. As NG(C) ⊆ S

and Pi does not intersect S, the other endpoint xi also belongs to C. Hence all vertices
of X ′′ belong to C, and there are at least 2ℓ + 1 − ℓ = ℓ + 1 of them.

Let X∗ := (X \ X ′′) ∪ S, and observe that |X∗| < |X| since |X ′′| ≥ ℓ + 1 while |S| ≤ ℓ.
We prove that G − X∗ ∈ H, by showing that S is an H-deletion set in G − (X \ X ′′). Since H
is union-closed, it suffices to argue that each connected component H of G − ((X \ X ′′) ∪ S)
belongs to H. If H contains no vertex of X ′′, then H is an induced subgraph of G − X ∈ H
and therefore H ∈ H since the graph class is hereditary. If H contains a vertex of X ′′ ⊆ C,
then the component H is an induced subgraph of G[C] since NG(C) ⊆ S is part of the set X∗.
Hence H is an induced subgraph of G[C] ∈ H, which implies H ∈ H as H is hereditary. This
shows that X∗ is indeed an H-deletion set.

Since (X \ X ′′) ∪ S is an H-deletion set smaller than X, the set X ′′ is redundant in X.
As X ′ ⊇ X ′′, it follows that X ′ is redundant as well. ◀

3.2 The win/win strategy
The classic 4-approximation algorithm for computing a (standard) tree decomposition is
based on the existence of balanced separators in graphs of bounded treewidth. In a graph G

of treewidth ≤ k, any set S of 3k + 4 vertices can by partitioned into S = SA ∪ SB in such a
way that |SA|, |SB | ≤ 2k + 2 and λG(SA, SB) ≤ k + 1 [16, Corollary 7.21]. This is not always
possible if we only have a bound on H-treewidth twH(G) ≤ k because a large subset S′ of S

might lie in a single well-connected base component of a tree H-decomposition, i.e., a base
component whose standard treewidth is large. But then S′ is weakly (H, k + 1)-separable,
which can also be exploited when constructing a decomposition. We show that this is in fact
the only scenario in which we cannot split S in a balanced way.

▶ Lemma 13. Let H be a hereditary and union-closed class of graphs. Let G be a graph with
twH(G) ≤ k. For any set S ⊆ V (G) of size 3k + 4, at least one of the following holds.
1. There is a partition S = SA ∪ SB such that |SA|, |SB | ≤ 2k + 2 and λG(SA, SB) ≤ k + 1.
2. There is a set S′ ⊆ S of size 2k + 3 which is weakly (H, k + 1)-separable.

Proof. Consider an optimal tree H-decomposition (T, χ, L) of G, so that |χ(t) \ L| ≤ k + 1
for each t ∈ V (T ). Let r ∈ V (T ) be its root. We start by showing that (2) holds if some leaf
bag of the decomposition contains 2k + 3 vertices from S.

So suppose there exists a leaf t ∈ V (T ) with |χ(t) ∩ S| ≥ 2k + 3, and let S′ ⊆ χ(t) ∩ S be
an arbitrary subset of size exactly 2k + 3. Observation 8 ensures that (C∗ := χ(t) ∩ L, S∗ :=
χ(t) \ L) is an (H, k + 1)-separation, which weakly covers χ(t) and therefore S′. Hence (2)
holds.

In the remainder, it suffices to show that (1) holds when there is no leaf t ∈ V (T )
with |χ(t) ∩ S| ≥ 2k + 3. Pick a deepest node t∗ in the rooted tree T for which |S ∩ χ(Tt∗)| ≥
2k + 3. Then t∗ is not a leaf since the previous case did not apply, so by definition of
tree H-decomposition we have χ(t∗) ∩ L = ∅. Let D1, . . . , Dp be the connected components
of G−χ(t∗). Since the pair (T, χ) satisfies all properties of a standard tree decomposition, the
bag χ(t∗) is a separator in G so that for each component Di, there is a single tree T i in the
unrooted forest T − t∗ such that T i contains all nodes whose bags contain some v ∈ V (Di);
see for example [46, (2.3)].
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The choice of t∗ ensures that |V (Di) ∩ S| < 2k + 3 for all i ∈ [p]: when vertices of Di

are contained in bags of a tree rooted at a child of t∗ this follows from the fact that t∗ is
a deepest node for which |S ∩ χ(Tt∗)| ≥ 2k + 3; when vertices of Di are contained in the
tree T i of T − t∗ having the parent of t∗, this follows from the fact that χ(Tt∗) contains at
least 2k + 3 vertices from S, none of which appear in Di since a vertex occurring in χ(Tt∗)
and in a bag outside Tt∗ , is contained in χ(t∗) and therefore part of the separator χ(t∗) used
to obtain the component Di. Hence none of the vertices of S ∩ χ(t∗) can appear in Di, which
means there are at most |S| − (2k + 3) ≤ k + 1 vertices in V (Di) ∩ S.

Since |S| = 3k + 4 and no component Di contains at least 2k + 3 vertices from S, the
components can be partitioned into two parts D1, D2 such that

∑
Di∈Dj

|V (Di) ∩ S| ≤ 2k + 2
for each j ∈ {1, 2}. If some component contains at least k + 2 vertices from S, then that
component is a part by itself, ensuring the remainder has at most 3k + 4 − (k + 2) ≤ 2k + 2
vertices from S; if no component contains at least k + 2 vertices from S, then any inclusion-
minimal subset of components having at least k + 2 vertices from S has at most 2k + 2 of
them.

Define S′
A :=

⋃
Di∈D1

V (Di) ∩ S and S′
B :=

⋃
Di∈D2

V (Di) ∩ S, and assume without loss
of generality that |S′

A| ≥ |S′
B |. Note that |S′

A ∪ S′
B | = |S \ χ(t∗)| ≥ 2k + 3, so that the larger

side S′
A contains at least k+2 vertices. To turn S′

A, S′
B into the desired partition of S, it suffices

to take SA = S′
A and SB = S′

B ∪ (χ(t∗) ∩ S) = S \ SA. It is clear that |SA| = |S′
A| ≥ k + 2,

while |SB | = |S|−|SA| ≥ 3k+4−(2k+2) ≥ k+2. The fact that |SA|, |SB | ≥ k+2 while they
partition S with |S| = 3k + 4 implies |SA|, |SB | ≤ 2k + 2 as desired. Since χ(t∗) separates S′

A

from S′
B , it separates SA from SB and we have λG(SA, SB) ≤ |χ(t∗)| = |χ(t∗)\L| ≤ k+1. ◀

We can now translate the last two lemmas into an algorithmic statement, which will be
used as a subroutine in the main algorithm. When twH(G) ≤ k and S ⊆ V (G) is of size
3k + 4, then we can either split it in a balanced way, split off a base component, or detect
a redundancy in a given H-deletion set and reduce its size. Each of these outcomes will
guarantee some progress for the task of constructing a tree H-decomposition.

▶ Lemma 14. Let H be a hereditary and union-closed class of graphs. There is an algorithm
that, using oracle-access to an algorithm A for H-deletion, takes as input an n-vertex
m-edge graph G, integer k, H-deletion set X in G, and a set S ⊆ V (G) of size 3k + 4, runs
in time O(8k · k(n + m)) and polynomial space, makes O(8k) calls to A on induced subgraphs
of G and parameter 2k + 2, and terminates with one of the following outcomes.
1. A partition S = SA ∪ SB and a separation (A, B) in G are returned, such that SA ⊆ A,

SB ⊆ B, |SA| ≤ 2k + 2, |SB | ≤ 2k + 2, and |A ∩ B| ≤ k + 1.
2. A subset S′ ⊆ S and a separation (A, B) in G are returned, such that S′ ⊆ A, X ⊆ B,

|S′| = 2k + 3, and |A ∩ B| ≤ 2k + 2. (This implies that G[A \ B] ∈ H.)
3. An H-deletion set X ′ in G is returned, that is smaller than X.
4. The algorithm correctly concludes that twH(G) > k.

Proof. The algorithm starts by trying to reach the first outcome. For each partition SA ∪ SB

of S in which both parts have at most 2k + 2 vertices, it performs at most k + 2 iterations of
the Fold-Fulkerson algorithm to test whether λG(SA, SB) ≤ k + 1. If so, then the algorithm
outputs a corresponding separation (A, B) in G with SA ⊆ A, SB ⊆ B, and |A ∩ B| =
λG(SA, SB) ≤ k + 1. By Theorem 4, this can be done in time O(k(n + m)).

Next, the algorithm attempts to reach the second outcome. For each subset S′ ⊆ S of
size 2k + 3, it performs at most 2k + 3 iterations of the Ford-Fulkerson algorithm to test
whether λG(S′, X) ≤ 2k + 2. If so, the algorithm extracts a corresponding separation (A, B)
with S′ ⊆ A, X ⊆ B, and |A ∩ B| ≤ 2k + 2, and outputs it.
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If the algorithm has not terminated so far, it will reach the third or fourth outcome. It
proceeds as follows.
1. For each subset S′ ⊆ S of size 2k + 3, we have λG(S′, X) > 2k + 2 since we could not

reach the second outcome. As |S′| = 2k + 3 this implies λG(S′, X) = 2k + 3. By Menger’s
theorem, there is a packing PS′ of 2k +3 vertex-disjoint (S′, X)-paths, and such a packing
can be extracted from the final stage of the Ford-Fulkerson computation.

2. Let X ′
S′ ⊆ X be the endpoints in the set X of the paths PS′ , so that |X ′

S′ | = |S′| = 2k +3.
3. We invoke algorithm A on the graph G − (X \ X ′

S′) and parameter value 2k + 2, to find a
minimum-size H-deletion set in G − (X \ X ′

S′) or conclude that such a set has size more
than 2k + 2. If A returns a solution Y of size at most 2k + 2, then (X \ X ′

S′) ∪ Y is an
H-deletion set in G smaller than X and we return it as the third outcome.

If none of the preceding steps for any S′ ⊆ S of size 2k + 3 caused the algorithm to give
an output, then we conclude that twH(G) > k and terminate.

Correctness. We proceed to argue for correctness of the algorithm. It is clear that if the
algorithm terminates with one of the first three outcomes, then its output is correct. We
proceed to show that if twH(G) ≤ k, then it will indeed terminate in one of those outcomes.
So assume twH(G) ≤ k, which means we may apply Lemma 13 to S and G. If Case 1 of
Lemma 13 holds, then the algorithm will detect the corresponding separation in the first
phase of the algorithm and terminate with a suitable separation. So assume Case 2 holds,
so that there is a set S′ ⊆ S of size 2k + 3 which is weakly (H, k + 1)-separable. Since
the set S′ is a candidate for reaching the second outcome, if that outcome is not reached
we have λG(S′, X) > 2k + 2 and hence λG(S′, X) = 2k + 3 = |S′|. Consider the family of
(S′, X)-paths PS′ constructed by the algorithm for this choice of S′ and let X ′

S′ be their
endpoints in X. The paths PS′ show that λG(S′, X ′

S′) = |S′| = |X ′
S′ | = 2k + 3. Now we

can apply Lemma 12 for ℓ = k + 1 to infer that X ′
S′ is redundant in X, which implies

that G − (X \ X ′
S′) has an H-deletion set smaller than |X ′

S′ | = 2k + 3. Hence algorithm A
outputs an H-deletion set smaller than |X ′

S′ | and the algorithm terminates with the third
outcome.

Since the algorithm reaches one the first three outcomes when twH(G) ≤ k, the algorithm
is correct when it reaches the last outcome.

Running time and oracle calls. Each of the three phases of the algorithm consist of
enumerating subsets S′ ⊆ S, of which there are 2|S| ≤ 23k+4 = O(8k). For each such set S′,
the algorithm performs O(k) rounds of the Ford-Fulkerson algorithm in time O(k(n+m)). In
the last phase, the algorithm additionally invokes A on an induced subgraph of G for each S′

to find an H-deletion set of size at most 2k + 2 if one exists. It follows that the running time
of the algorithm (not accounting for the time spent by A) is O(8k · k(n + m)). The space
usage is easily seen to be polynomial in the input size since the algorithm is iterative. This
concludes the proof of Lemma 14. ◀

3.3 The decomposition algorithm
We retrace the proof of [16, Theorem 7.18] which gives the classic algorithm for approximating
(standard) treewidth. Consider sets S ⊆ W ⊆ V (G) such that ∂G(W ) ⊆ S and |S| = 3k + 4;
we aim to construct a tree decomposition of G[W ] which contains S in its root bag. We can
consider all ways to partition S into SA ∪ SB such that |SA|, |SB | ≤ 2k + 2 and compute a
minimum (SA, SB)-separator. Since |S| = 3k + 4, there are 23k+4 = O(8k) such partitions.
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When tw(G) ≤ k, we are guaranteed that for some partition S = SA ∪ SB we will find a
separator in G[W ] of size ≤ k + 1 which yields the separation (AW , BW ) in G[W ] satisfying
SA ⊆ AW , SB ⊆ BW , and |AW ∩ BW | ≤ k + 1. Then the boundary ∂G(AW ) is contained
in SA ∪ (AW ∩ BW ), and similarly ∂G(BW ) ⊆ SB ∪ (AW ∩ BW ). We create instances
(AW , SA ∪ (AW ∩ BW )) and (BW , SB ∪ (AW ∩ BW )) to be solved recursively, analogously as
(W, S). Note that each of the sets SA ∪ (AW ∩ BW ), SB ∪ (AW ∩ BW ) has less than 3k + 4
vertices, so we can augment each of them with one more vertex before making the recursive
call while preserving the size invariant. This step ensures that the recursion tree has at most
|V (G)| nodes. After computing tree decompositions for G[A] and G[B] we merge them by
creating a new root with a bag S ∪ (AW ∩ BW ) of size at most 4k + 5. Hence, we are able to
construct a tree decomposition of width 4k + 4 assuming that one of width k exists.

There are two differences between the outlined algorithm and ours, while the recursive
scheme stays the same. First, due to scenario (2) in Lemma 14 we need to handle the cases
where we can directly create a base component containing at least 2k + 3 vertices from S.
The lower bound 2k + 3 is greater than the separator size 2k + 2 so we will move on to a
subproblem where S is significantly smaller. We need to include the separator of size 2k + 2
in the root bag, together with S, so we obtain a slightly weaker bound on the maximum
bag size, that is 5k + 6. Next, due to scenario (3) we might not make direct progress in the
recursive scheme but instead we reduce the size of an H-deletion set X that we maintain
(which initially contains all vertices). This situation can happen at most |V (G)| many times,
so eventually we will reach outcome (1) or (2).

The approach sketched above leads to a proof of Theorem 1. The details are deferred to
the full version [31] due to space restrictions. Apart from carefully combining the ingredients
collected so far, in the proof we take care to optimize the number of calls to the H-deletion
oracle, leading to the clean bound of O(8kn) oracle calls advocated in the introduction.

4 Conclusion

We contributed to the algorithmic theory of hybrid graph parameterizations, by showing
how a 5-approximation to twH can be obtained using an algorithm for the solution-size
parameterization of H-deletion as a black box. This makes the step of computing a tree
H-decomposition now essentially as fast as that of solving H-deletion parameterized by
solution size. Our new decomposition algorithm combines with existing algorithms to solve
H-deletion on a given tree H-decomposition, to deliver algorithms that solve H-deletion
parameterized by twH. For Odd Cycle Transversal and Vertex Planarization, the
parameter dependence of the resulting algorithm is equal to the worst of the parameter
dependencies of the solution-size and treewidth-parameterizations. We believe that this is
not a coincidence, and offer the following conjecture.

▶ Conjecture 15. Let H be a hereditary and union-closed graph class. If H-deletion
can be solved in time f(s) · nO(1) parameterized by solution size s, and in time h(w) · nO(1)

parameterized by treewidth w, then H-deletion can be solved in time (f(O(k)) + h(O(k))) ·
nO(1) parameterized by H-treewidth k.

The conjecture is a significant strengthening of the equivalence, with respect to non-
uniform fixed-parameter tractability, between solving H-deletion parameterized by solution
size and computing twH given by Agrawal et al. [1]. It essentially states that there is no price
of generality to pay for using the hybrid parameterization by twH. After three decades in
which the field of parameterized complexity has focused on parameterizations by solution size,
this would lead to a substantial shift of perspective. We believe Theorem 1 is an important
ingredient in this direction.
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To understand the relative power of the parameterizations by solution size, treewidth, and
H-treewidth, the remaining bottleneck lies in using the tree H-decomposition to compute
a minimum H-deletion set. Can the latter be done as efficiently when using a tree H-
decomposition as when using a standard tree decomposition? For problems like Odd Cycle
Transversal and Vertex Planarization, this is indeed the case. But when the current-
best dynamic-programming algorithm over a tree decomposition uses advanced techniques,
it is currently not clear how to lift such an algorithm to work on a tree H-decomposition.
Can H-deletion for H the class of interval graphs be solved in time 2O(k log k) · nO(1)

parameterized by twH? Such a running time can be obtained for the parameterization by
treewidth by adapting the approach of Saitoh, Yoshinaka, and Bodlaender [48].

While we have not touched on the subject here, we expect our ideas to also be applicable
when H is a scattered graph class, i.e., when H consists of graphs where each connected
component is contained in one of a finite number of graph classes H1, . . . , Ht. It is known [30]
that, when Vertex Cover can be solved in polynomial time on each graph class Hi, then
Vertex Cover is FPT parameterized by the width of a given tree H-decomposition. We
expect that Theorem 1 can be generalized to work with scattered graph classes H, as long as
there is an oracle to solve Hi-deletion parameterized by solution size for each individual
class Hi. To accommodate this setting, the algorithm maintains an Hi-deletion set Xi for
each graph class Hi. A step of the decomposition algorithm then either consists of finding a
balanced separation of S, splitting off a base component, or improving one of the deletion
sets Xi (which can occur only t · |V (G)| times).

The decomposition algorithm we presented has an approximation factor of 5. It may
be possible to obtain a smaller approximation ratio at the expense of a worse base of the
exponent, by repeatedly splitting large bags [5, 35, 36]. For obtaining single-exponential
H-deletion algorithms, the advantage of the improved approximation factor would be
immediately lost due to the increased running time and therefore we did not pursue this
direction.

A final direction for future work concerns the optimization of the polynomial part
of the running time. For standard treewidth, a 2-approximation can be computed in
time 2O(k) ·n [35], which was obtained after a long series of improvements (cf. [8, Table 1]) on
both the approximation factor and dependence on n. Can a constant-factor approximation
to H-treewidth be computed in time 2O(k) · (n + m) for graph classes H like bipartite graphs?
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Abstract
We study the reverse shortest path problem on disk graphs in the plane. In this problem we consider
the proximity graph of a set of n disks in the plane of arbitrary radii: In this graph two disks
are connected if the distance between them is at most some threshold parameter r. The case of
intersection graphs is a special case with r = 0. We give an algorithm that, given a target length k,
computes the smallest value of r for which there is a path of length at most k between some given
pair of disks in the proximity graph. Our algorithm runs in O∗(n5/4) randomized expected time,
which improves to O∗(n6/5) for unit disk graphs, where all the disks have the same radius.1 Our
technique is robust and can be applied to many variants of the problem. One significant variant is
the case of weighted proximity graphs, where edges are assigned real weights equal to the distance
between the disks or between their centers, and k is replaced by a target weight w. In other variants,
we want to optimize a parameter different from r, such as a scale factor of the radii of the disks.

The main technique for the decision version of the problem (determining whether the graph
with a given r has the desired property) is based on efficient implementations of BFS (for the
unweighted case) and of Dijkstra’s algorithm (for the weighted case), using efficient data structures
for maintaining the bichromatic closest pair for certain bicliques and several distance functions. The
optimization problem is then solved by combining the resulting decision procedure with enhanced
variants of the interval shrinking and bifurcation technique of [4].
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1 Introduction

In this paper we study the reverse shortest path problem (RSP for short) on graphs defined
by disks in the plane.

1 In this paper the O∗(·) notation hides subpolynomial factors.
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In the simplest variant of this problem, we are given a set P of n points in the plane,
two designated points s, t ∈ P , a real parameter r > 0 and an integer k < n. Define Gr to
be the graph (P, Er), where the edges of Er are all the pairs (p, q) such that ∥p − q∥ ≤ 2r.
This is also the intersection graph of the disks of radius r centered at the points of P . In the
decision version of the RSP problem we want to determine whether Gr contains a path from
s to t with at most k edges. In the optimization version, which is the reverse shortest path
problem itself, we wish to find the smallest value r∗ for which Gr∗ has this property. Both
versions (decision and optimization) of this problem have received considerable attention
during the past decade [5, 7, 14].

Our contributions. We give an algorithm for this problem that runs in O∗(n6/5) randomized
expected time (where the O∗(·) notation hides subpolynomial factors). This improves the
recent O∗(n5/4)-time solution of Wang and Zhao [14]. In fact we study the RSP problem in
a much more general context that involves a variety of intersection or proximity graphs on a
finite set of arbitrary disks in the plane, for which nontrivial bounds were not known prior
to this work.

We first consider unweighted disk graphs in Section 3. In this setup, we have a set D of
n disks in the plane of arbitrary radii. Each disk D ∈ D is specified by its center cD and
radius ρD. For a given parameter r ≥ 0 we define the proximity graph Gr by adding an edge
between disks D and D′ if the distance between them, dist(D, D′) = ∥cD − cD′∥ − ρD − ρD′ ,
is at most r. The case r = 0 is of special interest and gives the intersection graph of the
disks.2

For the decision version of this RSP problem we obtain an algorithm that runs in
O(n log4 n) time, and for the optimization version an algorithm that runs in O∗(n5/4)
randomized expected time. Our technique generalizes to other versions of the optimization
problem. For example, we can consider the intersection graph of the disks (r = 0) and ask
for the smallest scaling factor of the radii of all disks, either by a common additive term or
by a common multiplicative factor, that would make the graph contain a path of at most k

edges between a designated pair of source and target disks Ds and Dt.
In Section 4 we generalize our results further to weighted versions of the proximity graph

Gr. We consider two natural weight functions for the edges. The first sets the weight of
an edge (D, D′) to be the distance ∥cD − cD′∥ between the centers of the disks, and the
second sets the weight to be the distance dist(D, D′) = ∥cD − cD′∥ − ρD − ρD′ between
the disks. We solve the decision problem on such weighted disk graphs, in which we want
to determine whether the shortest path in Gr from Ds to Dt is of length at most w, for
some specified real threshold w, by a careful implementation of Dijkstra’s algorithm (using a
dynamic bichromatic closest pair structure, see below) in O(n log4 n) or O(n log6 n) time,
depending on the type of edge weights. The optimization RSP problem is then solved in
O∗(n5/4) randomized expected time. For weighted unit disk graphs we still get the better
bound of O∗(n6/5) time for the optimization problem.

Our decision algorithms rely on rather complex dynamic data structures (see below),
which should be avoided, if possible, from a practical point of view. Indeed, for unit disk
graphs, there exist simpler and slightly more efficient implementations of BFS and Dijkstra’s
algorithm, in the unweighted and weighted cases, respectively [5,7,13]. However, as explained
in the remarks following Theorems 2 and 7, we cannot use them in conjunction with our
optimization technique, for certain technical reasons. We thus present in the full version of
this paper alternative implementations, based on the known grid-based techniques, which
satisfy our requirements and are arguably somewhat simpler.

2 One technical difference is that when considering proximity graphs, it is customary, although not
obligatory, to assume that the disks are pairwise disjoint, which is certainly not an assumption that one
would make for intersection graphs.
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Our techniques. We achieve our results by carefully combining three main technical
ingredients. The first is an efficient “serial” implementation of parametric search, using
what we call interval shrinking and bifurcation procedures. This technique was first used by
Ben Avraham et al. [4] for solving problems involving the discrete and semi-discrete Fréchet
distance with shortcuts. Here we apply a somewhat modified variant of it in the rather
different context of our RSP problem, exposing its potential to be useful for a wide range of
other problems as well.

We remark, that using this technique requires that the decision procedure access the
parameter r to be optimized via comparisons only, whose outcome depends on the relation
between the optimal r∗ and certain critical values (which in our case turn out to be additively
weighted inter-point distances between the centers of the disks), on which we can apply the
interval shrinking procedure in an efficient manner. We review this technique in Section 2.

The second ingredient is a dynamic nearest neighbor and a dynamic bichromatic closest
pair data structures for additively weighted Euclidean distances. Such structures with
polylogarithmic time per update and access were recently developed by Kaplan et al. [8] and
Liu [11].

The third ingredient that we use for the weighted versions of the problem is a technique that
combines nearest neighbor data structures for two different distance functions. Specifically,
given a (dynamic) nearest neighbor data structure for a distance function d1, and a (dynamic)
nearest neighbor data structure for a distance function d2, we show how we can get a
(dynamic) data structure that can answer constrained nearest neighbor queries of the form:
find the closest point to a query q according to the distance function d1 among all points
whose distance to q according to d2 is at most some threshold r (which is part of the query).

Previous work. The decision problem in the unweighted variants can be solved by running
a BFS from s (or from Ds) in the underlying graph. Similarly, the decision problem in
the weighted variants can be solved by running Dijkstra’s shortest-path algorithm in the
graph. However, the challenge is to do it efficiently, since the graph might have up to
a quadratic number of edges. For unit-disk graphs, Cabello and Jejčič [5] presented an
O(n log n) implementation of BFS, and subsequently Chan and Skrepetos [7] presented an
alternative O(n) implementation (after pre-sorting the points by their x- and y-coordinates).
Moreover, Cabello and Jejčič [5] also described an O(n1+ε) implementation of Dijkstra’s
algorithm for weighted unit-disk graphs, which was followed by a more efficient O(n log2 n)
implementation described by Wang and Xue [13]; see also [8].

The RSP problem in the context of unweighted unit-disk graphs was posed by Cabello and
Jejčič [5], who observed that it can be solved conceptually easily in O∗(n4/3) time, by running
a binary search through the O(n2) inter-point distances (using an efficient distance selection
algorithm). Recently, Wang and Zhao [14] managed to improve this bound, obtaining an
algorithm that solves the problem in O∗(n5/4) time. In the context of weighted unit-disk
graphs, the situation is similar. The RSP problem can be solved easily in O∗(n4/3) time, but
Wang and Zhao [15] were able to obtain an improved O∗(n5/4)-time solution for that version
too. 3

As far as we know, both the decision and optimization problems have not been studied
in the context of general disk graphs.

3 The O∗(n6/5) bound for the RSP problem in both unweighted and weighted unit disk graphs was
already claimed in an unpublished manuscript [9], which appeared shortly after the first RSP paper of
Wang and Zhao. However, this manuscript overlooks an issue that may arise when using an off-the-shelf
decision problem, see the full version of this paper.
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2 Preliminaries

In this section we provide necessary background on the serial parametric search technique of
Ben Avraham et al. [4].

In its basic form, the technique is applicable when the threshold parameter r∗ is the
distance between a pair of input points. There are O(n2) such distances, and the most naïve
algorithm simply finds r∗ by running a binary search through them, guided by the decision
procedure at each comparison. A basic improvement is to implement the binary search using
an efficient procedure for distance selection, such as the one in [2] or [10], which runs in
O∗(n4/3) time. Up to an additional logarithmic factor, this dominates the cost of the whole
procedure (assuming that the decision procedure is more efficient; as we show, this is indeed
the case in all the RSP problems studied in this paper).

The technique of [4] is a combination of two subprocedures, referred to as the interval
shrinking and the bifurcation procedures. The interval shrinking procedure receives an integer
parameter L ≪

(
n
2
)
, and computes an interval I ⊂ R that contains r∗ and at most L critical

values, namely inter-point distances. As shown in [4], this can be done in O∗(n4/3/L1/3)
expected time.

We then run the bifurcation procedure, which simulates the execution of the decision
procedure at the (unknown) threshold r∗, as in the standard parametric search technique [12].
When the simulation reaches a comparison of r∗ with some concrete value r, we know the
answer to the comparison when r lies outside I. However, when r ∈ I we bifurcate, following
both possibilities r∗ > r and r∗ < r (the case r∗ = r will be handled too; see below). This
produces a bifurcation tree T , which we expand until we either collect sufficiently many
bifurcations, or until we reach a sufficiently large uniform depth of T . In either case we stop
this simulation phase, resolve all collected comparisons by a binary search through them,
using the (unsimulated) decision procedure to guide the search, and start a new bifurcation
phase from the unique leaf of T whose associated (shrunk) interval of critical values contains
r∗. The binary search will also identify r∗ when it is one of the critical values through which
it searches, and then terminate the entire procedure right away. In the worst case this will
happen by the time when the entire decision procedure has been simulated.

We comment that this method is viable when the decision procedure is not known to
have a parallel version of small depth, which is required in the standard parametric search
technique. If such a parallel version were available, we could apply standard parametric
search, and obtain a significantly faster algorithm. The RSP problem seems to be inherently
sequential, as it seeks a path in a graph, and is indeed amenable to the technique of [4].

As shown in [4], the bifurcation procedure can be implemented to run in O∗(L1/2D(n))
time, where D(n) is the cost of the decision procedure. A suitable choice of L yields an
overall (randomized expected) running time O∗(n6/5), for (suitable) decision procedures
that run in nearly linear time, as do the decision procedures for all the variants of the RSP
problem considered in this paper.

3 Reverse shortest paths for unweighted disk graphs

Here we are given a set D of n disks in the plane, of arbitrary radii, each parameterized by
its center cD and radius ρD. We consider the intersection graph G× = (D, E), where the
edges of G× are the intersecting pairs of disks. Formally, E consists of all pairs (D, D′) for
which ∥cD − cD′∥ ≤ ρD + ρD′ .

In the decision problem, we are given two designated disks Ds and Dt, and an integer
parameter k, and the goal is to determine whether G× contains a path of at most k edges
from Ds to Dt.
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In the optimization problem we scale the radii of the disks (without changing their
centers), either by an additive term or by a multiplicative factor, and seek the smallest
scaling parameter that makes G× have the desired s-t path.

Towards the end of the section, we consider the special and important case of unit disk
graphs, for which we obtain a better bound.

3.1 The decision procedure
We run BFS on G× from Ds. Suppose that we have already discovered all disks at some
level i of the BFS. We expand the BFS to level i + 1 as follows. We consider each disk D

at level i in turn, and look for its nearest neighbor among the disks that have not yet been
discovered. To do so, we maintain a dynamic additively-weighted Voronoi diagram Vor(U) of
the set U of all the disks that the BFS has not yet reached, where the additive weight of a
disk D is −ρD. Initially, we are at level 0 of the BFS, which includes only Ds, and we set
U = D \ {Ds}.

We search for the nearest neighbor D′ of D in Vor(U). If the weighted distance between D

and D′ is at most ρD, that is, if ∥cD−cD′∥−ρD′ ≤ ρD, we conclude that ∥cD−cD′∥ ≤ ρD+ρD′ ,
so we add D′ to level i + 1, delete it from U , and query the updated Voronoi diagram for the
new nearest neighbor of D again. We continue querying the updated Vor(U) with D until
the distance between D and its nearest neighbor is larger than ρD. When this happens we
replace D by the next disk at level i and repeat this process. When we finish processing in
this manner all disks of level i, we have discovered all disks at level i + 1, and we move on to
level i + 1.

Consider a sequence of queries to the Voronoi diagram with a disk D at some level of
the BFS. We can charge each of these queries but the last, to a new disk that we add,
following this query, to the BFS tree. Therefore the running time of this decision procedure
is dominated by the cost of O(n) queries and n deletions from Vor(U). The most efficient
implementation of such a structure, with running time O(n log4 n), is due to Liu [11]; see
also the earlier study [8], with a worse polylogarithmic factor.

In summary, we have shown:

▶ Theorem 1. Given D, Ds, Dt, and k as above, we can determine whether there exists a
path of at most k edges from Ds to Dt in the intersection graph G× associated with D, in
O(n log4 n) time.

3.2 The optimization procedure
Each disk D ∈ D is assigned the radius ρD + α, for some common additive parameter α, and
we want to find the minimum value α∗ of α for which the intersection graph of the modified
disks, now denoted by G×

α , has the desired s-t path. In principle α could also be negative, as
long as no radius becomes negative, but for simplicity we only consider the case α > 0.

We simulate the decision procedure at the unknown optimal value α∗ by using a bifurcation
procedure. Before starting the simulation, though, we perform an interval-shrinking step, as
described in the introduction.

Interval shrinking. Recall that this step, as introduced in [4], receives an integer threshold
parameter L and produces an interval I0 ⊂ R that contains α∗ and at most L other critical
values, where a value α is critical if the outcome of a comparison changes as we go past α.
In the original formulation, the critical values were inter-point distances in the plane, and
the resulting algorithm ran in O∗(n4/3/L1/3) randomized expected time.
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Here the setup is different. The comparisons that the decision procedure performs are
tests whether expressions of the form ∥cD − cD′∥ − ρD − ρD′ − 2α are positive or negative.
The critical values of the parameter α are thus of the form 1

2 (∥cD − cD′∥ − ρD − ρD′) . The
original mechanism of [4] is based on distance selection. We need a variant in which the basic
step is to bound the number of these new critical values in a given interval (α1, α2). We
turn this problem into a range searching problem, where the disks of D serve as both data
and query objects. Specifically, each disk D is mapped to the point (cD, ρD) in R3, and also
to the range σD = {D′ | 2α1 ≤ ∥cD − cD′∥ − ρD − ρD′ ≤ 2α2}, which is a conical shell in
3-space (see Figure 1(a)). Note that the ranges have three degrees of freedom, and that the
problem is symmetric, so that ranges can be represented as points in R3 and points as ranges.
In other words, we have a symmetric batched range searching problem in R3, involving n

points and n semi-algebraic ranges. Using standard, cutting-based decomposition techniques
in R3, such as in [1, 3], we can implement the range searching step to run in randomized
expected time O∗(n3/2). Combining this with parametric search, as in the standard distance
selection procedure [2], we can implement the distance selection procedure to also run in
randomized expected time O∗(n3/2).

(cD, 0)

(a) (b)

(cD, 0)

(cD,−ρD)

Figure 1 The range σD (in grey) when scaling by an additive term (a) and by a multiplicative
factor (b). The inner and outer radii of the annulus centered at (cD, 0) are ρD + 2α1 and ρD + 2α2,
respectively, in (a) and ρDλ1 and ρDλ2, respectively, in (b).

Extending the machinery in [4], we can convert this distance selection technique to
an interval-shrinking procedure that receives a parameter L ≪

(
n
2
)

and yields an interval
I = (α1, α2) that contains the optimum value α∗ and at most L critical values. A suitable
modification of the analysis in [4] shows that the algorithm runs in O∗(n3/2/L1/2) randomized
expected time.

Bifurcation. We now present the basic bifurcation procedure. This procedure, sometimes
with a few enhancements and modifications, is used in all our algorithms for the various
variants of the RSP problem. We refer the reader to [4] where a similar procedure has been
used.

Our simulation proceeds in phases, where in each phase we construct a bifurcation tree T

that represents some portion of the execution of the BFS, simultaneously for all values of α

in some interval I. Initially I = I0, but it will keep on shrinking as the simulation proceeds.
Each node b of T is associated with an interval Ib = (α1, α2) ⊆ I, such that, up to the state
of simulation represented by b, the BFS proceeds in an identical manner for all values α ∈ Ib.
We continue to simulate the BFS at b. At each comparison of (the unknown) α∗ with some
concrete value α, we either resolve the comparison in a unique manner when α /∈ Ib, or
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else bifurcate, meaning that we create two children u and v of b, assign Iu := (α1, α) and
Iv := (α, α2), and continue to expand T at u and at v, at each of which we know the outcome
of the above procedure (the possibility that α∗ = α will be tested later).

For each node b, let yb denote the amount of work performed at b so far by the simulation
(including comparisons that were fully resolved), and let y−

b denote the sum of the quantities
ya over all proper ancestors a of b, excluding the root. We refer to the cost at the root as the
initialization cost of the tree, and denote it as C0(T ).

We stop the expansion of T at a node b when y−
b + yb = Y , where Y is a threshold

parameter that will be determined later. That is, we stop the simulation at node b as soon
as y−

b plus the work done so far at b becomes Y . We refer to such nodes b as incomplete
leaves of T . We then continue the expansion of T at other nodes.

A subtle issue, that we will address later in more detail, is that when we back up from an
incomplete node b to explore other branches of T , we need to restore the state of execution
at the suitable ancestors of b. See below for details.

We stop the entire construction of T as soon as one of the following two conditions occurs:
(i) We collect X bifurcations, for another threshold parameter X that will be determined

later.
(ii) All the leaves of T are incomplete.

When this happens, we take all the (at most X) critical values of the bifurcations at the
inner nodes of T , and run a binary search through them, using the unsimulated decision
procedure to guide the search. This takes O(D(n) log n) time, and yields the leaf w whose
range Iw contains r∗. It is also possible that the binary search will detect that one of the
critical values it searches through is r∗ itself. In this case the entire procedure is terminated,
and r∗ is output. Otherwise, this ends a phase of the simulation. We start a new phase (if
the simulation has not already ended) with w as the root of the tree, and with Iw as the
critical interval. Note that this will cause the work already done at w to be repeated, and
it is possible that the cost of this work is much larger than Y . However, by charging the
incomplete work at w to the initialization cost C0(T ′) of the next tree T ′, we at most double
this cost, so this will not affect the overall asymptotic bound on the performance of the
procedure; see below for details.

Restoring the execution state. The issue of restoring the state at nodes we back up to,
as mentioned earlier, is more acute in our specific application, because part of this state
includes the Voronoi diagram that our procedure maintains dynamically. Although there
are persistence-based techniques that can efficiently maintain all versions of the diagram,
they are fairly involved, and we opt not to use them. Instead, we use the following simple
approach, which also takes care of all aspects of restoring the state.

Specifically, we expand the bifurcation tree in a depth-first manner, so that at each node
we first recursively construct the subtree of its left child and only then the subtree of its
right child. We thus first expand the leftmost path of T , and slowly proceed to the right,
backing from a node to its parent, and then proceed to the right child, or further up to
the grandparent. When we back up from a node w to its parent v, we simply undo the
operations performed at w, including the updates that were done to the diagram, in reverse
order, replacing each deletion of a disk by the corresponding reinsertion. This requires us to
maintain a log of the updates performed at each node, as well as a log of the other operations,
but is otherwise a reasonably simple procedure, which does not affect the asymptotic running
time and storage bounds.
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3.3 Analysis
By construction, a single phase produces a tree T that has at most X binary nodes, and the
cost of producing each path of T is at most Y , ignoring the initialization cost C0(T ). This is
easily seen to imply that the cost of generating T is O(XY + C0(T )). Indeed, the cost at
each node of T , other than the root, is certainly at most Y , and there are O(X) such nodes
The cost of the subsequent binary search through the critical values is O(D(n) log n). Hence
the overall cost of a single phase is O(XY + C0(T ) + D(n) log n). The number of phases is
estimated as follows. If the phase terminates because of Condition (i), it has discovered X

critical values among those in the current critical interval, which are outside the new critical
interval Iw. Hence the number of such phases is at most L/X.4

A phase that terminates because of Condition (ii) consumes Y of the total cost of the
decision procedure: when we pass to the next phase we follow a single path of the current
T , but all paths use at least Y of the cost, excluding the work done at the root. Note that,
by construction, the part of the simulation performed along a path of the tree in one phase,
excluding the work performed at the root, is disjoint from the part performed along a path
of the tree in a different phase. This is easily seen to imply that the number of phases of
type (ii) is at most D(n)/Y .

The sum
∑

T C0(T ) of the initialization costs of all the trees is at most D(n), because
these initializations perform pairwise disjoint portions of the decision procedure. (Observe
that execution at a root is always completed, no matter how expensive it is.)

We set our parameters so that L
X = D(n)

Y and XY = D(n) log n. That is, we choose
X = L1/2 log1/2 n and Y = D(n) log1/2 n/L1/2, and obtain that the overall cost of the
simulation is O(L1/2D(n) log1/2 n) (this clearly also subsumes the cost

∑
T C0(T )).

In total, the cost of the optimization procedure is

O∗
(

n3/2

L1/2 + L1/2D(n)
)

= O∗
(

n3/2

L1/2 + L1/2n

)
.

We balance these two terms by choosing L = n1/2, and obtain a total cost of O∗(n5/4).
This result is part of the summary in Theorem 2 (which also includes other variants of the
problem), given below.

3.4 Other variants and unit disks
Scaling by a multiplicative factor. Consider first the case of intersection graphs where
the radii are scaled by a common multiplicative factor λ > 0. In this case the critical value
induced by a pair of disks D, D′ satisfies ∥cD − cD′∥ − λρD − λρD′ = 0, or λ = ∥cD − cD′∥

ρD + ρD′
.

As above, the algorithm requires a procedure that computes the number of critical values in
an interval (λ1, λ2). So we convert this task to batched range searching in three dimensions,
where the ranges are now

σD = {D′ | λ1(ρD + ρD′) ≤ ∥cD − cD′∥ ≤ λ2(ρD + ρD′)}.

4 This is a rather weak aspect of the analysis. For the bound L/X to materialize, the X critical values of
each phase must form a prefix or a suffix of the sequence of critical values in the current interval I. In
general, when these critical values are more uniformly spread within I, the number of such phases should
be much smaller. It is a challenging open problem to turn this intuition into an improved procedure, if
possible.
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These too are conical shells, but here the bounding cones have a common apex and different
opening angles (see Figure 1(b)). Other than this new type of ranges, the preceding machinery
proceeds verbatim. The interval shrinking runs in O∗(n3/2/L1/2) expected time and the
bifurcation procedure runs in O∗(L1/2n). With a proper choice of L, the overall cost is
O∗(n5/4) expected time.

Proximity graphs. Next, consider the case of proximity graphs. In this case, we assume
that the disks of D are pairwise disjoint, and we are given an additional parameter r > 0.
(For r = 0 we get the intersection graph G×.) The set of edges of the proximity graph Gr

consists of all pairs of disks (D, D′) for which dist(D, D′) = ∥cD − cD′∥ − ρD − ρD′ ≤ r. In
the RSP problem for proximity graphs, we seek the smallest value of r for which Gr has
the desired s-t path. It is easy to see that this problem can be reduced to the (additive
version of the) corresponding problem for intersection graphs, by simply adding r/2 to the
radius of each of the disks. In the optimization procedure, the critical values are of the form
∥cD − cD′∥ − ρD − ρD′ . Thus, except for the factor 1

2 used earlier, the procedure is essentially
identical to the earlier one.

Unit disks. Finally, consider the special case of unit disks, i.e., where all the radii are
equal, and consider the intersection graph of the disks. In this case, we get a better bound,
since the critical values are merely (one half of the) inter-point distances, and hence the
interval shrinking step can be performed in O∗(n4/3/L1/3) randomized expected time, as
in [4]. Modifying the expression for the overall running time accordingly, we get

O∗
(

n4/3

L1/3 + L1/2n

)
randomized expected time. We now balance these two terms by choosing

L = n2/5, and obtain a total cost of O∗(n6/5). In summary, we have shown:

▶ Theorem 2. The reverse shortest path problem for unweighted intersection or proximity
graphs of arbitrary disks in the plane can be solved in O∗(n5/4) randomized expected time.
This bound applies to all the variants of the problem listed above. In the case of unit disks,
where all radii are equal, the problem can be solved in O∗(n6/5) randomized expected time.

Remark. In the case of unit disks, the decision procedure itself can be implemented to run
faster than O(n log4 n). Chan and Skrepetos [7] even present an algorithm that runs in linear
time (after a preliminary sorting step); see also [5]. However, the critical values produced
by their procedure are not all inter-point distances, which affects the running time of the
optimization procedure. To avoid the use of complex dynamic data structures, we modify
the algorithm of Chan and Skrepetos, so that it can be combined with the optimization
procedure, see the full version of this paper.

4 Reverse shortest paths for weighted disk graphs

Recall that, for a set D of n disks in the plane and an additional parameter r ≥ 0, the
proximity graph Gr of D has an edge between every pair of disks such that

dist(D, D′) := ∥cD − cD′∥ − ρD − ρD′ ≤ r. (1)

The intersection graph G× of D is the proximity graph of D for r = 0, except that in
proximity graphs we usually assume that the disks are pairwise disjoint.
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We next assign weights to the edges. There are two natural choices for these weights. One
is to define the weight of an edge (D, D′) as the distance ∥cD −cD′∥ between the centers. The
other is to define the weight of (D, D′) to be dist(D, D′) if dist(D, D′) ≥ 0 and 0 otherwise
(that is 0 if the disks intersect). Note that for intersection graphs only the first choice gives a
reasonable weight function.

The case of weighted unit disk graphs is a special case of the problem for intersection
graphs G× with weights equal to the distances between the centers. In this case we have
∥cD − cD′∥ = dist(D, D′) + 2.

4.1 The decision procedure
We are given two disks Ds, Dt of D, and the proximity graph Gr of D for some r ≥ 0,
weighted by one of the weight functions above. We want to compute the (length of the)
shortest path π(Ds, Dt) in G from Ds to Dt. We solve this by a clever implementation of
Dijkstra’s algorithm. The required sophistication of the implementation depends on the type
of the weight function we use. We start with the simpler case in which the weight of (D, D′)
is dist(D, D′) (or 0 if the disks intersect). Specifically, the same function that defines the
graph via the threshold r (Equation (1)) is also used to define the weights.

The high-level approach is similar to that proposed by Cabello and Jejčič [5], although
their original algorithm was given only for intersection graphs of unit disks. We briefly recall
this technique, adapted to our context.

We maintain a decomposition of D into three disjoint subsets R, K and U , where R ∪ K
is the set of disks D for which we already have the correct distance label δ(D) (the length of
the shortest path from Ds), and U is the remainder of D, consisting of disks whose distance
labels have not yet been determined. R (resp., K) is the set of active (resp., dead) disks of
R ∪ K, meaning that the disks of R still have outgoing edges in Gr to disks of U , while disks
of K have no such edges. Initially, R = {Ds}, K = ∅, and U = D \ {Ds}.

A single step of our implementation of Dijkstra’s algorithm, a so-called Dijkstra step,
picks the closest pair (D, D′) in R × U , where the modified distance between D and D′ is
defined as

d(D, D′) = δ(D) + dist(D, D′). (2)

Then we need to verify that (D, D′) is indeed an edge of Gr. If this is not the case, i.e.,
dist(D, D′) > r, we move D from R to K, and never process D again. This action is justified
by the following variant of [5, Lemma 6]:

▶ Lemma 3. Let D and D′ be as above, and assume that dist(D, D′) > r. Then dist(D, D′′) >

r for every disk D′′ ∈ U .

Proof. By assumption, and since (D, D′) is the closest pair in R × U , we have, for each
D′′ ∈ U , δ(D) + r < δ(D) + dist(D, D′) ≤ δ(D) + dist(D, D′′), so dist(D, D′′) > r, as
asserted. ◀

Note that Lemma 3 also applies to weighted unit disk graphs (with weight ∥cD − cD′∥
for edge (D, D′).)

Assume then that dist(D, D′) ≤ r. We move D′ from U to R, assign to it the distance
label δ(D′) = δ(D) + dist(D, D′), and set prev(D′) = D, namely D is the disk preceding D′

along the shortest path to D′. We then repeat the entire step with the new sets R and U , and
continue until R empties out. Upon termination, U is the set of disks that are unreachable
from Ds in Gr, and K is the set of reachable disks, each with its correct distance label and
its predecessor.
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The correctness of this procedure is argued exactly as in [5], even though the distance
function is different. An efficient implementation is obtained by applying the efficient dynamic
bichromatic closest-pair data structure of Kaplan et al. [8] and of Liu [11] to R×U , under the
distance function given in (2) and under deletions from U and insertions into and deletions
from R. The technique requires the following two properties.

(i) The Voronoi diagram Vor1(U) of U , under the distance function d1(q, D′) = ∥q − cD′∥ −
ρD′ , for D′ ∈ U , where cD′ and ρD′ are the respective center and radius of D′, has
linear complexity.

(ii) The Voronoi diagram Vor2(R) of R, under the distance function d2(q, D) = δ(D) +
∥q − cD∥ − ρD, for D ∈ R, also has linear complexity.

Both properties indeed hold, as each diagram is an additively-weighted Voronoi diagram of
the set of centers of the disks of U or of R. Both diagrams need to be maintained dynamically,
and the techniques of [8, 11] do that, with a polylogarithmic cost for each update and query
operation. In the more efficient implementation of [11], the amortized cost of an update is
O(log4 n).

In summary, we have shown:

▶ Theorem 4. The shortest-path tree from some starting disk in the proximity graph of
n disks (of arbitrary radii) in the plane, under the weights of inter-disk distances, can be
constructed in O(n log4 n) time.

Next we address the more challenging weighted case when the edge weights are the
distances between the centers.

The edge weights are the distances between the centers. In this case we need to maintain
a dynamic bichromatic closest pair structure under the distance λ(D, D′) = δ(D)+∥cD −cD′∥,

for D ∈ R and D′ ∈ U . But then Lemma 3 does not hold anymore, because it is then possible
that the closest pair (D, D′) ∈ R × U satisfies dist(D, D′) > r but there could be other pairs
(D, D′′) with dist(D, D′′) ≤ r, so D cannot be removed from R yet.

To overcome this difficulty we obtain a bichromatic closest pair (BCP for short) data
structure by applying a black-box reduction of Chan [6] to two novel nearest-neighbor data
structures that we now describe.

Our new data structures find for D ∈ R a nearest neighbor D′ ∈ U according to the
distance function λ but only among disks D′ such that dist(D, D′) ≤ r, and similarly for
D ∈ U .

We then run the Dijkstra steps, using the BCP data structure, as long as there are still
neighbors in R × U . Upon termination, U is the set of disks that are unreachable from
Ds in Gr, and R is the set of reachable disks, each with its correct distance label and its
predecessor.

Our nearest-neighbor data structure consists of two balanced search trees TU and TR.
The tree TU (TR is handled in a similar manner; see below) stores the disks D′ ∈ U at its
leaves, sorted in increasing order of the values ρD′ . For each node v of TU , we maintain an
additively-weighted Voronoi diagram Vor1(Uv) on the set Uv of the disks of U stored at the
leaves of the subtree rooted at v, where the weight of a disk D′ is −ρD′ . We also maintain a
second standard (unweighted) Voronoi diagram Vor2(Uv) for Uv.

Querying TU with a disk D ∈ R is performed as follows. We find the leftmost leaf w0 of
TU whose disk D′

0 satisfies dist(D, D′
0) = ∥cD − cD′

0
∥ − ρD − ρD′

0
≤ r. To find w0, we search

in TU starting at the root. At each node u that we reach, with a left child v and a right child
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w, we search with D in Vor1(Uv), and obtain its nearest neighbor D′ in the corresponding
subset of disks. If ∥cD − cD′∥ − ρD′ ≤ ρD + r, or, equivalently, dist(D, D′) ≤ r, then we
continue the search at the left child v. Otherwise we continue the search with the right
child w. At the root we first search in Vor1(Uroot = U). If the nearest neighbor D′ satisfies
∥cD − cD′∥ − ρD′ > ρD + r, that is, dist(D, D′) > r, we conclude that D has no neighbor
in U .

Let w0 be the leaf that the search reaches. Note that if a disk D′ is stored at a leaf to
the left of w0 then, by construction, dist(D, D′) > r. That is, only disks stored to the right
of w0, including w0, need to be considered.

The search for w0 provides us with a representation of the set U+
w0

of the disks to the
right of w0 as the union of O(log n) pairwise disjoint canonical sets, each being the set of
disks stored at the root of some subtree of TU . We query with D in each of the O(log n)
diagrams Vor2(Uv) that correspond to these subtrees, and return the disk that is nearest to
D, i.e., with the minimum distance between their centers, among all the resulting nearest
neighbors. The correctness of this procedure is a consequence of the following lemma.

▶ Lemma 5. In the above procedure, the output disk D′ satisfies dist(D, D′) ≤ r.

Proof. Let D′
0 be the disk at the leaf w0. By construction, we have

ρD′
0

≤ ρD′ . (3)

By construction, D′ is the disk in U+
w0

nearest to D in the inter-center distance. That is,

∥cD − cD′∥ ≤ ∥cD − cD′
0
∥. (4)

Assume by contradiction that dist(D, D′) > r. Then, by construction,

∥cD − cD′
0
∥ − ρD′

0
− ρD = dist(D, D′

0) ≤ r < dist(D, D′) = ∥cD − cD′∥ − ρD′ − ρD.

That is,

∥cD − cD′
0
∥ − ρD′

0
< ∥cD − cD′∥ − ρD′ . (5)

Adding (3) and (5), we get a contradiction to (4). This establishes the lemma. ◀

The tree TR is defined in an analogous manner for the disks of R, except that (a) the
leaves are sorted in increasing order of δ(D) + ρD, and (b) the Voronoi diagram Vor2(Rv) at
a node v of TR, where Rv is the set of disks stored at the root of the subtree rooted at v, is
the additively-weighted diagram on Rv, where the additive weight of a disk D is δ(D).

The first kind of Voronoi diagrams Vor1(Rv) are defined exactly as in the case of TU ,
with the additive weight being −ρD.

Here too, when we query TR with a disk D′ of U , we search in the tree to find the leftmost
leaf w0 of TR whose disk D0 satisfies dist(D0, D′) = ∥cD0 − cD′∥ − ρD0 − ρD′ ≤ r. This is
performed as follows. We first search for the leftmost leaf w0 whose associated disk D0
satisfies dist(D0, D′) ≤ r, using the same technique as in the previous search in TU , in which
we query various Voronoi diagrams Vor1(Rv) along the search path to w0. We then obtain
the set R+

w0
of all disks stored at the leaves to the right of w0, including w0, as the disjoint

union of O(log n) subtrees. We query each of the diagrams Vor2(Rv) associated with these
subtrees, and return the disk D that is the nearest neighbor to D′ over all these diagrams.

The correctness of this procedure is a consequence of the following “sister” lemma to
Lemma 5.
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▶ Lemma 6. In the above procedure, the output disk D satisfies dist(D, D′) ≤ r.

Proof. Let D0 be the disk at the leaf w0. By construction, we have

δ(D0) + ρD0 ≤ δ(D) + ρD. (6)

By construction, D is the disk in U+
w0

nearest to D′ in the inter-center distance with the
additive weight δ. That is,

δ(D) + ∥cD − cD′∥ ≤ δ(D0) + ∥cD0 − cD′∥. (7)

Assume by contradiction that dist(D, D′) > r. Then, by construction,

∥cD0 − cD′∥ − ρD0 − ρD′ = dist(D0, D′) ≤ r < dist(D, D′) = ∥cD − cD′∥ − ρD − ρD′ .

That is,

∥cD0 − cD′∥ − ρD0 < ∥cD − cD′∥ − ρD. (8)

Adding (6) and (8), we get

δ(D0) + ∥cD0 − cD′∥ < δ(D) + ∥cD − cD′∥,

which is a contradiction to (7). This establishes the lemma. ◀

We make these nearest-neighbor data structures dynamic by maintaining the various
Voronoi diagrams Vor1(Uv), Vor2(Uv), Vor1(Rv), Vor2(Rv), dynamically, using the technique
of [8, 11], in which the update time of each diagram is O(log4 n). An update of either of the
trees TU , TR requires updating O(log n) data structures along the path to the leaf containing
the inserted or deleted element, and therefore takes O(log5 n) time. The transformation
of Chan [6] from the two nearest-neighbor structures to a BCP data structure incurs an
additional logarithmic overhead. Overall we get

▶ Theorem 7. The shortest-path tree from some starting disk in the proximity graph of n

disks (of arbitrary radii) in the plane, under the weights of inter-center distances, can be
constructed in O(n log6 n) time.

Remark. As in the unweighted version, in the case of unit disks, the decision procedure
itself can be implemented to run faster than O(n log6 n). For example, Wang and Xue [13]
present an algorithm that runs in O(n log2 n) time, but this algorithm is not suitable for our
optimization procedure, since its comparisons generate critical values that are determined by
more than two disks. We thus replace its “problematic” components by new ones, to obtain
a (somewhat simpler) algorithm that is suitable for the optimization procedure, see the full
version of this paper.

4.2 The optimization procedure
The most natural reverse shortest path question is to find the smallest value of r such that the
length of the shortest path in Gr from Ds to Dt is smaller than some given real parameter w.

This optimization procedure is implemented as in the unweighted case, using the same
combination of the interval shrinking and bifurcation procedures. The critical values are the
same as in the case for the unweighted proximity graph.

In summary, we have shown:
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▶ Theorem 8. The reverse shortest path problem for weighted intersection or proximity
graphs of arbitrary disks in the plane can be solved in O∗(n5/4) randomized expected time.
This bound applies to all the variants of the problem listed above. In the case of unit disks,
where all radii are equal, the problem can be solved in O∗(n6/5) randomized expected time.

Remark. The machinery developed in this section seems to be more broadly applicable to
other optimization questions that involve shortest paths in weighted proximity or intersection
graphs, of disks or of more general geometric objects. Simple extensions could involve
different definitions of proximity or the use of other weight functions. Other extensions could
involve different problems, such as computing all-pairs shortest paths, computing shortest
paths with negative edge weights, computing the diameter of the graph, etc.

References
1 P. K. Agarwal. Simplex range searching and its variants: A review. In Journey through Discrete

Mathematics: A Tribute to Jiří Matoušek, pages 1–30. Springer Verlag, Berlin-Heidelberg,
2017.

2 P. K. Agarwal, B. Aronov, M. Sharir, and S. Suri. Selecting distances in the plane. Algorithmica,
9:495–514, 1993.

3 P. K. Agarwal, M. J. Katz, and M. Sharir. On reverse shortest paths in geometric proximity
graphs. In 33rd Int. Sympos. on Algorithms and Computation (ISAAC), pages 42:1–42:19,
2022.

4 R. Ben Avraham, O. Filtser, H. Kaplan, M. J. Katz, and M. Sharir. The discrete and
semicontinuous Fréchet distance with shortcuts via approximate distance counting and selection.
ACM Trans. Algorithms, 11, 2015, Art. 29.

5 S. Cabello and M. Jejčič. Shortest paths in intersection graphs of unit disks. Comput. Geom.
Theory Appls., 48:360–367, 2015.

6 T. M. Chan. Dynamic generalized closest pair: Revisiting Eppstein’s technique. In Proc. 3rd
Sympos. Simplicity in Algorithms (SOSA), pages 33–37, 2020.

7 T. M. Chan and D. Skrepetos. All-pairs shortest paths in unit disk graphs in slightly
subquadratic time. In Proc. 27th Int. Sympos on Algorithms and Computation (ISAAC), pages
24:1–24:13, 2016.

8 H. Kaplan, W. Mulzer, L. Roditty, P. Seiferth, and M. Sharir. Dynamic planar voronoi
diagrams for general distance functions and their algorithmic applications. Discrete Comput.
Geom., 64:838–904, 2020.

9 M. J. Katz and M. Sharir. Efficient algorithms for optimization problems involving semi-
algebraic range searching. in arXiv:2111.02052.

10 M. J. Katz and M. Sharir. An expander-based approach to geometric optimization. SIAM J.
Comput., 26:1384–1408, 1997.

11 C.-H. Liu. Nearly optimal planar k nearest neighbors queries under general distance functions.
SIAM J. Comput., 51(3):723–765, 2022.

12 N. Megiddo. Applying parallel computation algorithms in the design of serial algorithms. J.
of the ACM, 30:852–865, 1983.

13 H. Wang and J. Xue. Near-optimal algorithms for shortest paths in weighted unit-disk graphs.
Discrete Comput. Geom., 64:1141–1166, 2020.

14 H. Wang and Y. Zhao. Reverse shortest path problem for unit-disk graphs. In Proc. 17th
Algorithms and Data Structures Sympos. (WADS), pages 655–668, 2021.

15 H. Wang and Y. Zhao. Reverse shortest path problem in weighted unit-disk graphs. In Proc.
16th Int. Conf. and Workshops on Algorithms and Computation (WALCOM), pages 135–146,
2022.

https://arxiv.org/abs/2111.02052


On Fully Dynamic Strongly Connected
Components
Adam Karczmarz #

University of Warsaw, Poland
IDEAS NCBR, Warsaw, Poland

Marcin Smulewicz #

University of Warsaw, Poland

Abstract
We consider maintaining strongly connected components (SCCs) of a directed graph subject to edge
insertions and deletions. For this problem, we show a randomized algebraic data structure with
conditionally tight O(n1.529) worst-case update time. The only previously described subquadratic
update bound for this problem [Karczmarz, Mukherjee, and Sankowski, STOC’22] holds exclusively
in the amortized sense.

For the less general dynamic strong connectivity problem, where one is only interested in
maintaining whether the graph is strongly connected, we give an efficient deterministic black-box
reduction to (arbitrary-pair) dynamic reachability. Consequently, for dynamic strong connectivity
we match the best-known O(n1.407) worst-case upper bound for dynamic reachability [van den
Brand, Nanongkai, and Saranurak FOCS’19]. This is also conditionally optimal and improves upon
the previous O(n1.529) bound. Our reduction also yields the first fully dynamic algorithms for
maintaining the minimum strong connectivity augmentation of a digraph.
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1 Introduction

Two vertices of a directed graph G = (V, E) are strongly connected if they can reach
each other via a path in G. Pairwise strong connectivity is an equivalence relation and
the strongly connected components of G are the equivalence classes of that relation. The
graph G is called strongly connected if it has a single strongly connected component, or,
equivalently, the transitive closure of G is a complete digraph. Testing strong connectivity
and computing strongly connected components (SCCs) are among the most fundamental
algorithmic problems on digraphs. Tarjan [24] famously showed a DFS-based linear-time
algorithm for finding SCCs, which now, along with later alternatives [11, 23], is often taught
in basic algorithms courses and appears in textbooks [9].

We study maintaining strong connectivity and strongly connected components in dynamic
setting. A dynamic graph data structure is called incremental if it can handle edge insertions
only, decremental if it can handle edge deletions only, and fully dynamic if it can handle both.
When designing dynamic graph data structures, one is typically interested in optimizing
both the (amortized or worst-case) update time of the data structure, and the query time.
In the partially dynamic settings (i.e., incremental or decremental) one usually optimizes the
total update time, i.e., the time needed to process the entire sequence of updates. In the
following, let n = |V | and m = |E|.
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In this paper, we focus on the fully dynamic setting with single-edge updates. We are
interested in maintaining the information about the global structure of SCCs of G, as opposed
to supporting pairwise strong-connectivity queries. The information of interest may be either:
(a) a single bit indicating whether G is strongly connected (let us call this variant SC ),
(b) the number of SCCs of G (#SCC ),
(c) a representation of the SCCs allowing very efficient access to the individual SCCs, that

is, computing the size in O(polylog n) time, or reporting the elements in O(polylog n)
time per element (SCCs).

In particular, (c) can be achieved by maintaining an explicit Θ(n)-sized partition of V into
SCCs, which also allows for O(1)-time pairwise strong connectivity queries. On the other
hand, using pairwise strong connectivity queries cannot easily provide any of the considered
global information. In the following, for simplicity, we assume the desired information is
explicitly recomputed after each update so that there is no need to consider query time.
Thus, our sole goal is to optimize the worst-case update time.

Lower bounds. Note that if one is required to maintain the SCCs of a fully dynamic graph
explicitly, then a single update can cause quite dramatic Ω(n)-sized change in the set of
SCCs (consider a directed cycle). Abboud and Vassilevska Williams [1] showed that even for
maintaining a single-bit information whether G has more than two SCCs (the SC2 problem),
a data structure with O(n1−ϵ) amortized time1 is unlikely, as it would break the Orthogonal
Vectors conjecture, which is implied by SETH [15, 27]. The SETH-hardness of [1] does
not seem to extend to SC though, which suggests that #SCC (or even SC2) might be a
computationally harder problem.

The more recent OMv conjecture [14] implies that one cannot achieve O(n1−ϵ) update
time even for SC. This suggests that for sparse graphs with m = Õ(n) the trivial recompute-
from-scratch approach might be the best possible approach for SC and SCCs.

van den Brand, Nanongkai, and Saranurak [26] developed a few extensions of the OMv
conjecture and proved, based on those, that fully dynamic s, t-reachability (where s, t ∈ V are
fixed) currently requires Ω(n1.406) amortized update time, and fully dynamic single-source
reachability (with only the source s fixed) currently requires Ω(n1.528) time per update.2
This means that the state-of-the-art data structures [26, 20] for the respective variants are
near-optimal. By known reductions (see, e.g., [1]), one obtains that SC requires Ω(n1.406)
update time, whereas SCCs require Ω(n1.528) update time.

Upper bounds. Abboud and Vassilevska Williams [1] showed that in order to have Õ(n2−ϵ)
amortized update time for SC using fast matrix multiplication (FMM) is essential, thus
ruling out non-trivial combinatorial approaches. And indeed, FMM-based algebraic dynamic
reachability algorithms [20, 26] allow breaking the quadratic update bound. This is because

1 Abboud and Vassilevska Williams[1] actually write that Ω(m1−o(1)) is the best bound one can hope for.
However, since this bound is a function of m exclusively, it is required to hold only for some density
regime, e.g., sparse graphs.

2 More specifically, based on their OMv conjecture variants, van den Brand, Nanongkai, and Saranurak [26]
proved, for any ϵ > 0, an Ω(mina,b∈[0,1](na+b +nω(1,a,1)−a +nω(1,a,b)−b) ·n−ϵ) lower bound for dynamic
s, t-reachability, and an Ω(n1+ρ−ϵ) lower bound for dynamic single-source reachability (SSR), where
ρ < 0.529 satisfies 1 + 2ρ = ω(1, ρ, 1). Here O(nω(a,b,c)) denotes the time needed to multiply an na × nb

boolean matrix by an nb × nc boolean matrix. These two conditional lower bounds become Ω(n1.406)
and Ω(n1.528), respectively, assuming the current exponents of rectangular matrix multiplication.
Furthermore, they become Ω(n1+1/4−ϵ) and Ω(n1+1/2−ϵ), respectively, assuming ω = 2.
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SC easily reduces to maintaining reachability to and from an arbitrary single vertex [26].
As a result, O(n1.529) worst-case update time is possible in this case. This state-of-the-art
bound does not match the O(n1.406) lower bound [26], though. More generally, since the fully
dynamic data structure of Sankowski [20] allows relatively cheap O(n0.529)-time arbitrary-
pair reachability queries3 at the cost of O(n1.529) update time, this approach generalizes to
maintaining some at most k distinct SCCs of G in O(kn1.529) worst-case time per update. In
particular, for k = 2 this trivially yields a solution to SC2 with O(n1.529) worst-case update
time. This matches the best known upper bound for SC. Consequently, the state-of-the-art
bound for SC does not reflect the intuition of [1] that SC2 might be a harder problem.

The described approach, however, does not easily allow recomputing all SCCs of G, or
even counting them, within subquadratic update time. In fact, the more general #SCC
and SCCs problems do not seem to reduce to inspecting some O(n2−ϵ)-sized subset of
the reachability matrix of G. Nevertheless, Karczmarz, Mukherjee, and Sankowski [17]
recently showed that SCCs (and thus #SCC) can be maintained in O(n1.529) amortized time
per update. Their approach is a mix of combinatorial and algebraic methods and critically
depends on the efficiency of a decremental SCCs data structure. Bernstein, Probst Gutenberg,
and Wulff-Nilsen [7] gave a near-optimal data structure maintaining SCCs explicitly under
edge deletions with Õ(m) total update time. Although the O(n1.529) amortized bound is
near-optimal, the worst-case update time of the data structure of [7] might be Θ(n2), and
thus the worst-case update time of the fully dynamic SCCs data structure [17] may be as
much as Θ(n2) as well. To the best of our knowledge, no non-trivial worst-case bound for
either #SCC or SCCs under fully dynamic edge updates has been described to date.

1.1 Our results
First of all, we close the gaps between the best known lower- and upper (worst-case) bounds
for both fully dynamic strong connectivity (SC) and fully dynamic strongly connected
components (SCC) in general directed graphs. See also Table 1. We achieve that by showing
novel combinatorial reductions to the known fully dynamic arbitrary-pair reachability data
structures [26, 20].

Fully dynamic strongly connected components. For fully dynamic SCCs we prove:

▶ Theorem 1. Let G be a digraph. Suppose there is a fully dynamic reachability data
structure D processing single-edge updates and arbitrary-pair queries on G in U(n) and Q(n)
time respectively. Suppose the answers produced by D are correct with high probability4.

Then one can explicitly maintain the SCCs of G subject to single-edge insertions and
deletions in Õ(U(n) + n · Q(n)) time per update (worst-case if the bounds U(n), Q(n) are
worst-case). The obtained data structure is Monte Carlo randomized. The answers produced
are correct with high probability.

It is worth noting that the data structure trivially works against an adaptive adversary5

since the revealed information, the SCCs, depend only on the current graph G. As far as the
adversarial model of the assumed data structure D is concerned, no special requirements

3 Throughout, we use the term arbitrary-pair reachability to refer to the situation when the endpoints s, t
of a reachability pair of interest are a part of a query and may vary for different queries. The output of
a query is a single bit indicating whether s can reach t in the (current) graph.

4 That is, with probability at least 1 − 1/nc, where the constant c ≥ 1 can be set arbitrarily.
5 That can only see the output of the data structure, and not the random bits used by the data structure

internally.
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beyond high-probability correctness are needed. Indeed, the query interface of D does not
leak any information about the potential random choices made by D internally (unless D errs,
which we treat as a low-probability failure anyway) since the correct answers are uniquely
determined by the graph maintained in D.

Sankowski [20] showed a Monte Carlo randomized data structure with U(n) = O(n1+ρ)
and Q(n) = O(nρ) (both worst-case), where ρ < 0.529 is such that 1 + 2ρ = ω(1, ρ, 1). As a
result, Theorem 1 implies a data structure with O(n1.529) worst-case update bound for fully
dynamic SCCs. To the best of our knowledge, we are the first to achieve a non-trivial O(n2−ϵ)
worst-case update time for SCCs and even #SCC. Moreover, via a folklore6 reduction from
fully dynamic single-source reachability and the conditional lower bound of [26], the obtained
O(n1.529) bound is tight for SCCs. Hence, our data structure constitutes the final answer to
the problem (up to polylog factors), unless the Mv-hinted Mv variant of the OMv conjecture
of [26, Conjecture 5.7] fails. That being said, it is not clear whether our bound is tight for
the counting variant #SCC whose output is a single number, as opposed to n bits in SSR.

The worst-case update time guarantee allows applying Theorem 1 in the fault-tolerant
model, where the goal is to recompute a graph property for a query set of at most k failed
edges or vertices. Georgiadis, Italiano, and Parotsidis [12] showed that after optimal linear
preprocessing, one can compute the SCCs of G after removing any single vertex/edge in
optimal O(n) time. Baswana, Choudhary, and Roditty [2] showed that after polynomial
preprocessing, one can find the SCCs of G after removing k vertices/edges in Õ(2k · n) time.
Thus, the known results could only handle at most log n failures faster than recompute-from-
scratch, for any density of G. Our result implies that for m = Ω(n1.53) one can recompute
SCCs faster than from scratch even under polynomially many (that is, k = O(m/n1.529))
vertex/edge failures7. That being said, the purely combinatorial data structures [2, 12] are
significantly faster if, e.g., k is constant.

It is worth noting that a reduction of computing SCCs to a reachability problem has
been known in the parallel setting [21]. That static reduction does not seem to be applicable
in the dynamic setting using algebraic techniques, though. More specifically, Schudy [21]
reduces computing SCCs of G to a number of adaptively generated instances of multi-source
reachability (which in turn reduces to the single-source case by adding a super-source) on
induced subgraphs of G of total size Õ(m). In the dynamic setting, spending time linear
in m per update is prohibitive, and furthermore it is not clear how to efficiently simulate
adaptively generated multi-source reachability queries for the following reasons. First, using
the super-source trick would either require performing possibly Ω(n) edge updates (which
are very costly, i.e., super-linear using algebraic methods) in the reachability data structure.
If we wanted to avoid that, i.e., handle each source separately, we would possibly end up
performing Ω(n2) single-pair reachability queries. Our reduction for dynamic SCCs relies
on being able to query Õ(n) arbitrary reachability pairs after each update. Crucially, these
pairs cannot be grouped into, e.g., polylog(n) multi-source queries. Such an n-arbitrary-pairs
reachability problem looks much more difficult even in the static setting and does not seem
to be solvable in linear time like multi-source reachability. In fact, we believe no static bound
beyond O(min(nm, nω)) is known.

6 It is enough to maintain a graph G′ obtained from G by adding a super-sink t and edges vt for all
v ∈ V . Then for a query source s, vertices reachable from s in G are those in the SCC of s in G′ + ts.

7 Vertex failures can be easily simulated by splitting each v ∈ V into vin, vout, that inherit the incoming
and outgoing edges of v, resp, and introducing an edge ev = vinvout. Then the failure of v is equivalent
to the failure of ev.
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Strong connectivity. For the less general dynamic strong connectivity (SC), we give an even
more efficient and deterministic black-box reduction to dynamic arbitrary-pair reachability.

▶ Theorem 2. Let G be a digraph. Suppose there is a fully dynamic reachability data structure
processing single-edge updates and arbitrary-pair reachability queries on G in at most T (n)
time. Then one can maintain whether G is strongly connected subject to single-edge insertions
and deletions in O(T (n) log n) time per update (worst-case if the T (n) bound is worst-case).

van den Brand, Nanongkai, and Saranurak [26] showed a Monte Carlo randomized fully
dynamic arbitrary-pair reachability data structure with O(n1.407) worst-case update and
query time. Therefore, Theorem 2 implies O(n1.407) worst-case update bound for fully
dynamic strong connectivity. This improves upon the known O(n1.529) bound following
from the trivial reduction to dynamic single-source reachability. By the conditional lower
bound of [26], we essentially close the complexity of fully dynamic strong connectivity (up to
polylogarithmic factors), unless the uMv-hinted uMv conjecture of [26, Conjecture 5.12] fails.

Whereas the obtained O(n1.407) update bound is Monte Carlo randomized, this is only
caused by the Schwartz-Zippel-lemma-style randomization inside the used reachability data
structure. Obtaining a deterministic subquadratic fully dynamic reachability data structure
would immediately imply a deterministic subquadaratic bound for SC.

Interestingly, our reduction does not seem to generalize to maintaining whether G has
more than two SCCs (SC2), which was the case for the trivial reduction. As a result,
O(n1.529) currently remains the sharpest update bound for SC2. At the same time the
tightest conditional lower bound we have for SC2 is Ω(n1.407) because SC2 does not seem to
be easily reducible from dynamic single-source reachability, which was the case for dynamic
SCCs. This is a consequence of the fact that the output in the SCC problem is n numbers,
whereas in SC2 it is just a single bit. Obtaining a faster dynamic algorithm for SC2 or
coming up with a plausible lower bound beyond O(n1.407) is an interesting next step.

Table 1 Comparison of state-of-the art conditional lower- and upper bounds for the problems
SC, SC2, #SCC, and SCC, and new upper bounds obtained via our reductions. Each problem in
the table generalizes the preceding one. For SC and SCC, our obtained upper bounds are tight.

problem known conditional
lower bound

prev. worst-case
update bound

previous amortized
update bound

our new worst-case
update bound

SC
Ω(n1.406)
[1]+[26]

O(n1.529)
[26, 20]

same as
worst-case

O(n1.407)
Theorem 2+[26]

SC2 –
#SCC

O(n2)
trivial

O(n1.529)
[17]

O(n1.529)
Theorem 1+[20]SCC Ω(n1.528)

[26] via SSR

Generalizations. The reduction of Theorem 2 does generalize in two different ways. First,
within the same update bound (see Theorem 11) we can actually maintain the exact size
χ(G) of the minimum strong connectivity augmentation [10] of G. The minimum strong
connectivity augmentation is a smallest possible set of edges that one needs to add to G

to make it strongly connected. χ(G) can be seen as an alternative and “orthogonal” (to
the number of SCCs) measure of how much G is not strongly connected. As shown by
Eswaran and Tarjan [10], in the static setting, the value χ(G) and some minimum strong
connectivity augmentation can be computed in linear time.
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As is typical for algebraic data structures8, maintaining an object – some minimum
strong augmentation in our case – is trickier than maintaining only the optimal value χ(G).
Our algorithm can be nevertheless extended to maintain some χ(G)-sized augmentation Y

within the same O(n1.407) worst-case bound and against an adaptive adversary, as long as
χ(G) = O(n0.703). On the other hand, for larger χ(G), e.g., χ(G) = Θ(n), some minimum
augmentation Y can be maintained in O(n1.529) worst-case time per update.

Interestingly, the weighted version of the minimum strong connectivity augmentation
problem, where the costs of different potential edges to be added vary, is NP-hard [10].

Moreover, the reduction behind Theorem 2 enables universal reachability queries, even
if G is not strongly connected. That is, in O(n1.407) time, we can decide whether a query
vertex v can reach all vertices in G, or find some vertex that v cannot reach. See Theorem 14.
The O(n1.529) query time follows trivially (simply issue all the n possible reachability queries
from v) from the fully dynamic single-source reachability data structure [20].

1.2 Further related work
Since the known lower bounds [1, 14] imply that fully dynamic (or partially dynamic with
worst-case bounds) SCCs data structures are possible only for sufficiently dense graphs and
using algebraic methods, most of the previous work regarding maintaining SCCs dealt with
partially dynamic settings with the goal of optimizing total update time.

Maintaining SCCs has been studied in the incremental setting [5, 3, 13]. The current best
known randomized solution for sparse graphs [5] has Õ(m4/3) total update time, whereas
the best known deterministic data structure [3] has O(m3/2) total update time. For denser
graphs, Bender et al. [3] gave a near-optimal deterministic data structure with Õ(n2) total
update time. All these data structures maintain SCCs explicitly.

Decremental SCCs maintenance has been studied even more extensively [6, 7, 8, 18, 19].
Bernstein, Probst Gutenberg, and Wulff-Nilsen [7] gave a randomized data structure with
near-optimal Õ(m) total update time. The current best known deterministic total update
time bound of Õ(mn2/3) for general digraphs is due to Bernstein, Probst Gutenberg, and
Saranurak [6]. For planar graphs, the near-optimal Õ(n) total update time can be achieved
deterministically [16].

In the case of (global) strong connectivity, incremental graph search from/to an arbitrary
single source yields optimal O(m) total update time. It is not clear if decremental strong
connectivity is easier, in any sense, than decremental SCCs, and no specialized data structures
beyond those for SCCs maintenance [7, 6] are known for decremental strong connectivity.

2 Preliminaries

In this paper we deal with directed graphs. We write V (G) and E(G) to denote the sets of
vertices and edges of G, respectively. We omit G when the graph in consideration is clear
from the context. A graph H is a subgraph of G, which we denote by H ⊆ G, if and only if
V (H) ⊆ V (G) and E(H) ⊆ E(G). We write e = uv ∈ E(G) when referring to edges of G.
By GR we denote G with edges reversed.

A sequence of vertices P = v1 . . . vk, where k ≥ 1 is called an s → t path in G if s = v1,
vk = t and there is an edge vivi+1 in G for each i = 1, . . . , k − 1. We sometimes view a path
P as a subgraph of G with vertices {v1, . . . , vk} and (possibly zero) edges {v1v2, . . . , vk−1vk}.

8 For example, for dynamic reachability and exact distances, the known algebraic data structures [25, 26, 20]
are polynomially faster than the known solutions to their respective path-reporting variants [4, 17].
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For convenience, we sometimes consider a single edge uv a path. If P1 is a u → v path and
P2 is a v → w path, we denote by P1 · P2 (or simply P1P2) a path obtained by concatenating
P1 with P2. A vertex t ∈ V (G) is reachable from s ∈ V (G) if there is an s → t path in G.

3 Fully dynamic strongly connected components

In this section we describe our fully dynamic strongly connected components data structure.
Suppose there exists a reachability data structure maintaining an n-vertex digraph

subject to single-edge insertions and deletions and answering arbitrary-pair reachability
queries. Denote by U(n) and Q(n) the update and query (resp.) time bounds of the assumed
data structure.

We start by proving the following key observation, that tracking the vertices v ∈ V

strongly connected to some vertex t out of a chosen subset T ⊆ V can be reduced to
maintaining some n cells of the transitive closure matrix (reachability pairs) of a certain
auxiliary graph GT .

▶ Lemma 3. Let G = (V, E) be a digraph, and let T ⊆ V . Let G′ be a graph with vertices
V ′ = {v′ : v ∈ V }, and edges E′ = {u′v′ : uv ∈ E}, i.e., G′ is a copy of G with vertices
primed. Consider a graph GT obtained from G ∪ G′ by adding edges tt′ for each t ∈ T . Then,
for any v ∈ V , v is strongly connected with some t ∈ T in G if and only if there is a path
v → v′ in GT .

Proof. Suppose that v is strongly connected with some t ∈ T in G. Then, there exists a
path P = v → t in G, and a path Q = t → v in G. As a result, there is a corresponding path
Q′ = t′ → v′ in G′. Since tt′ ∈ E(GT ), we conclude there is a v → v′ path P · tt′ · Q′ in GT .

Now suppose there is a v → v′ path in GT . Note that a path R starting in the G-part of
GT can only depart from G for G′ through an edge tt′, t ∈ T , and it cannot go back to G.
As a result, R can be expressed as R1 · (tt′) · R′

2, where R1 = v → t is a path in G, and R′
2 is

a t′ → v′ path in G′. But R′
2 has a corresponding path R2 = t → v in G. The paths R1, R2

certify that v and t are strongly connected. Consequently, v is strongly connected to some
vertex of T in G. ◀

To make use of Lemma 3 we will employ the unique witness trick (usually attributed
to [22]) that have been used for computing witnesses of various matrix products, also in the
dynamic setting [4]. However, in our case, we will use this technique with a conceptually
very different purpose: to select a certain root of every SCC that ever appears in G throughout
edge updates.

▶ Lemma 4. [22] Let X ⊆ V be a subset with n/2k+1 ≤ |X| ≤ n/2k for an integer k ≥ 0.
Let S ⊆ V be a subset obtained by sampling 2k elements of V uniformly at random and
independently (with replacement). Then, with probability at least 1/6, |X ∩ S| = 1.

Proof. The probability that only the i-th sampled vertex is a unique element of X ∩ S is

|X|
n

·
(

1 − |X|
n

)2k−1
≥ 1

2k+1 ·
(

1 − 1
2k

)2k−1
≥ 1

2k+1e
.

The probability that |X ∩ S| = 1 is at least the probability of one of the above disjoint events
happening, i.e., at least 2k · 1

2k+1e
= 1

2e ≥ 1/6. ◀
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Let ℓ = (γ + 2) · log6/5 n for a constant γ > 0 that can be adjusted to control the error
probability. Let B be the smallest integer such that n < 2B, so that B = O(log n). For a
non-negative integer m, put [m] := {0, . . . , m}. Let us identify V with the B-bit numbers
{1, . . . , n}. Moreover, let

T = {Tk,l,b : k ∈ [B − 1], l ∈ [ℓ − 1], b ∈ [B − 1]}

be a family of subsets of V obtained as follows. For k ∈ [B − 1], l ∈ [ℓ − 1] let Tk,l be a subset
of V obtained by sampling 2k elements of V uniformly at random and independently, with
replacement. Then, set Tk,l,b to be a subset of numbers v ∈ Tk,l such that the b-th (0-based)
bit of v in the binary equals 1. Clearly, the family T has O(log3 n) subsets.

First of all, we maintain the graph G itself in the assumed fully dynamic reachability data
structure D. For each T ∈ T , we set up another assumed data structure DT maintaining the
graph GT , as defined in Lemma 3. Note that each edge update to the graph G is reflected
using just two edge updates to each graph GT since GT consists of two copies of G. As a
result, every edge update can be processed in O(U(n) · |T |) = Õ(U(n)) time (worst-case if
the bound U(n) is worst-case).

We now describe how the SCCs of G are recomputed after an update. We build an
auxiliary graph H whose construction follows. For each v ∈ V , k ∈ [B − 1], and l ∈ [ℓ − 1],
we do the following. For every b ∈ [B − 1], we query the data structure DTk,l,b

whether there
exists a path v → v′ in GTk,l,b

. Let sv,k,l be a number (vertex) such that the b-th bit is set
to 1 if and only if the corresponding path in GTk,l,b

exists. If sv,k,l ∈ {1, . . . , n} (so that sv,k,l

is indeed a vertex of G) and v is strongly connected with sv,k,l (which can be tested using
two queries to D), we add an undirected edge {v, sv,k,l} to H.

Observe that the graph H is constructed by performing Õ(n) queries to the assumed
data structures D and DT , T ∈ T . The cost of these queries is Õ(n · Q(n)) (worst-case if
Q(n) is worst-case).

Having constructed the undirected graph H, we output its connected components as the
SCCs of G. Since H has Õ(n) edges, this can be done in Õ(n) additional worst-case time.

▶ Lemma 5. With probability at least 1 − 1/nγ, the connected components of H and the
strongly connected components of G are equal.

Proof. By the construction, if two vertices u, v ∈ V are connected by an edge (or more
generally, a path) in H , then they are strongly connected in G. Hence, we only need to prove
that if u, v ∈ V are strongly connected in G, then they are connected in H as well.

Let C be the SCC of G containing both u and v. Let z ∈ [B − 1] be such an integer that
we have n/2z+1 ≤ |C| ≤ n/2z. By Lemma 4, for each l ∈ [ℓ − 1], Tz,l satisfies |Tz,l ∩ C| = 1
with probability at least 1/6. As a result, with probability at least 1 − (5/6)ℓ ≥ 1 − 1/nγ+2,
at least one of the sets Tz,l, say Tz,y, satisfies |Tz,y ∩ C| = 1. Let s be the unique element of
Tz,y ∩ C. Observe that for b ∈ [B − 1], we have Tz,y,b ∩ C = {s} if the b-th bit of s equals 1
and Tz,y,b ∩ C = ∅ otherwise. As a result, by Lemma 3, for both u and v the query to the
data structure DTz,y,b

will return true if and only if the b-th bit of s is 1. Equivalently, we
will have s = sv,k,l = su,k,l ̸= 0. Since both edges {v, s} and {u, s} are added to H, u and v

are indeed connected in H.
As there are at most n2 pairs (u, v), the implications hold with probability at least

1 − n2 · (1/nγ+2) = 1 − 1/nγ . ◀

Note that the above lemma holds for any version of G since, unless the algorithm makes
a mistake (which happens with low probability), we do not reveal any random bits to the
adversary as the output is always unique. To summarize, we obtain the following.
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▶ Theorem 1. Let G be a digraph. Suppose there is a fully dynamic reachability data
structure D processing single-edge updates and arbitrary-pair queries on G in U(n) and Q(n)
time respectively. Suppose the answers produced by D are correct with high probability.

Then one can explicitly maintain the SCCs of G subject to single-edge insertions and
deletions in Õ(U(n) + n · Q(n)) time per update (worst-case if the bounds U(n), Q(n) are
worst-case). The obtained data structure is Monte Carlo randomized. The answers produced
are correct with high probability.

Sankowski [20] showed that there exists a fully dynamic reachability data structure with
U(n) = Õ(n1+ρ) worst-case update time and Q(n) = Õ(nρ) query time, where ρ < 0.529 is
such that 1 + 2ρ = ω(1, ρ, 1). By Theorem 1 it follows that there exists a fully dynamic data
structure maintaining SCCs explicitly with Õ(n1+ρ) = O(n1.529) worst-case update time.

4 Reducing dynamic strong connectivity to dynamic reachability

In this section we show how to maintain whether the graph G is strongly connected subject
to edge insertions and deletions using a fully dynamic reachability data structure supporting
single-edge updates and arbitrary-pair reachability queries. Our reduction is deterministic and
incurs only polylogarithmic overhead. Again, assume that n < 2B for an integer B = O(log n).
The vertices are numbered 1 through n and thus can be seen as B-bit numbers.

Let us define a source strongly connected component of G to be an SCC of G with no
incoming edges from other SCCs of G. Clearly, if G is strongly connected, it has precisely
one source SCC. The main idea is to maintain a source set Z ⊆ V such that Z contains
precisely one vertex z of every source SCC of G. For example, if G is strongly connected,
then Z can be any single-element subset of V . We also have the following simple property.

▶ Observation 6. For every vertex v ∈ V (G) there exists some source SCC S of G such
that v is reachable from every s ∈ S.

Proof. Let C be the SCC of v in G. Let G∗ be the condensation of G obtained from G

by contracting the SCCs. Then, G∗ is a DAG. In a DAG, every vertex is reachable from a
source (that is, a vertex with no incoming edges). In particular, C is reachable from some
source S of G∗. Consequently, any vertex s ∈ S can reach v in G by construction of G∗. ◀

The following lemma shows how a data structure maintaining some source set of G can be
used to maintain strong connectivity of G.

▶ Lemma 7. Let GR be the reverse of G. Let Z be some source set of G and let ZR be some
source set of GR. Then G is strongly connected if and only if |Z| = |ZR| = 1 and t ∈ ZR

can reach s ∈ Z in G.

Proof. Clearly, if G is strongly connected, then Z = {s}, ZR = {t} for some s, t ∈ V .
Moreover, t can reach s in G.

Now suppose Z = {s} and ZR = {t}. Consider any x, y ∈ V . By Observation 6, y is
reachable from s. Similarly, by Observation 6 applied to GR, x is reachable from t in GR, i.e.,
t is reachable from x in G. By the assumption, t can reach s in G. Thus, there exist a path
x → t → s → y in G. Since the pair x, y was arbitrary, G is indeed strongly connected. ◀

By Lemma 7, we can maintain strong connectivity using a fully dynamic source set data
structure built on G, a fully dynamic source set data structure built on GR, and a fully
dynamic reachability data structure built on G. Every edge update translates to a single edge
update in the three data structures, and a single query to the reachability data structure.

Let us now focus on maintaining a source set Z of G subject to edge updates. We have:
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▶ Lemma 8. For any w ∈ V , there exists at most one z ∈ Z such that w can reach z in G.
Moreover, w is in a source SCC (containing z) if and only if such a z ∈ Z exists.

Proof. Let z ∈ Z and let C be the source SCC of G with z ∈ C. By the definition of a
source SCC, the only vertices of V that can reach z are those in C. As a result, if w can
reach z, then w ∈ C. Therefore, w /∈ C ′ for other source SCCs C ′ ̸= C, and thus w cannot
reach any other z′ ∈ Z, z′ ̸= z. On the other hand, if w ∈ C for some source SCC C, then w

can clearly reach the unique element of Z ∩ C. ◀

Maintained data structures. First of all, let Ḡ be the graph G extended with a super
source s /∈ V (G) and edges sz for all z ∈ Z. We store Ḡ in a fully dynamic reachability data
structure D. Note that using a single reachability query to D we can check whether some
query vertex v ∈ V is reachable from Z in Ḡ. Since G ⊆ Ḡ and s has no incoming edges, the
data structure D can also handle usual reachability queries in G.

For b ∈ [B − 1], let Gb be the graph G extended with a super sink t /∈ V (G), and edges zt

for all z ∈ Z such that the b-th bit of the number z equals 1. We store the O(log n) graphs
Gb in fully dynamic reachability data structures D0, . . . , DB−1. Note that since every v ∈ V

has at least one bit set,
⋃B−1

i=0 Gb contains edges zt for all z ∈ Z. As a result, a vertex w ∈ V

can reach some vertex of Z if and only if w can reach t in
⋃B−1

i=0 Gb. Moreover, by Lemma 8,
if w can reach some vertex of Z, then it can reach precisely one such z ∈ Z. The individual
data structures Gb can be used to find that z: observe that w can reach t (equivalently, reach
z) in Gb precisely if and only if z has the b-th bit set. As a result, we have the following.

▶ Lemma 9. For any w ∈ V one can find the unique z ∈ Z that w can reach in G (if one
exists) using O(log n) queries to the fully dynamic reachability data structures D0, . . . , DB−1.

Whenever the graph G is updated or the set Z undergoes an update, the update is passed
to all the O(log n) relevant data structures D and D0, . . . , DB−1 so that they reflect the
current graphs Ḡ and G0, . . . , GB−1 respectively.

We now proceed with describing how the updates are processed. In the following, denote
by G′ the graph G after the edge update, whereas G denotes the graph before the edge
update considered.

Edge insertions. First consider an insertion of edge uv. If there exists a path u → v in G

(a single query to D), the SCCs of G do not change due to the insertion. No source SCC
gets an incoming edge from another SCC. Therefore, Z remains a valid source set.

Let us thus assume that there is no u → v path in G. In particular, u and v are not
strongly connected in G. Let us denote by Sv the SCC containing v in G. Inserting uv cannot
break any of the existing SCCs of G, but might cause some SCCs of G (in particular Sv)
merge in G′. Let S∗ denote the SCC of v in G′. We have Sv ⊆ S∗, but potentially S∗ = Sv.

Let us now argue that Sv is the only SCC of G that might lose the status of a source
SCC due to the insertion. Indeed, if Sv ̸= S∗, then every other SCC S′ ≠ Sv of G, such that
S′ ⊂ S∗, is reachable from Sv since the insertion of uv makes Sv and S′ strongly connected.
As a result, S′ is not a source SCC of G. Moreover, the respective sets of incoming inter-SCC
edges of other SCCs S′′ of G such that S′′ ∩ S∗ = ∅ do not change, so such S′′ is a source
SCC of G′ if and only if S′′ is a source SCC of G.

By Lemmas 8 and 9 we can test whether Sv is a source SCC (and possibly find the unique
z ∈ Sv ∩ Z) by performing O(log n) queries to the data structures D0, . . . , DB−1. The next
step is to remove z (if it exists) from Z, and update all the data structures D, D0, . . . , Db

accordingly. Next, we apply the insertion of uv to all these data structures so that they store
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(supergraphs) of the updated graph G′. Observe that at this point the set Z might miss at
most one element, if S∗ turns out to be a source SCCs of G′. In order to detect whether this
is the case we check whether v ∈ S∗ can be reached from Z in G′. Recall that this amounts
to a single query to D about the existence of a path from s to u in Ḡ. If so, S∗ is reachable
from some other SCC, and thus is not a source SCC. Otherwise, S∗ is indeed a source SCC
and thus we add to Z an arbitrary element of S∗, e.g., the vertex v, so that Z again becomes
a valid source set of G′.

Edge deletions. Edge deletions can be handled essentially symmetrically to edge insertions.
Suppose an edge uv ∈ E(G) is deleted. Again, if the deletion does not make v unreachable
from u (which can be tested by performing a single update and query on D), neither the
SCCs of G nor the source SCCs of G change. So suppose u cannot reach v after the deletion.

Let S′
v be the SCC containing v in G′ and let S∗ be the SCC containing v in G. We have

S′
v ⊆ S∗ and potentially S′

v = S∗. If S∗ is a source SCC in G, we can find z ∈ S∗ ∩ Z using
O(log n) reachability queries from v to t in D0, . . . , DB−1 by Lemmas 8 and 9.

Observe that S′
v is the only SCC contained in S∗ that might potentially be a source SCC

of G′: if S′ ̸= S′
v is an SCC of G′, and S′ ⊂ S∗, then S′ is surely reachable from S′

v in G′

and thus S′ is not a source SCC of G′. Similarly as we did when processing an insertion, we
remove z (if exists) from Z. At this point, Z might need inserting at most one element in
order to become a valid source set of G′. This is the case precisely when S′

v is a source SCC
of G′. We can check that, again, by issuing a single s → v reachability query to D after the
deletion is reflected in D. If S′

v happens to be a source SCC of G′, we add v ∈ S′
v to Z.

Note that processing an edge update causes at most two element updates to the set Z.
Each of these updates, and also the edge update itself, is reflected in O(log n) fully dynamic
reachability data structures D, D0, . . . , DB−1. Moreover, only O(log n) reachability queries
are performed on these data structures. Consequently, we obtain the following.

▶ Lemma 10. Suppose there is a fully dynamic reachability data structure processing single-
edge updates and arbitrary-pair reachability queries on G in at most T (n) time. Then one
can maintain a source set Z of G explicitly subject to single-edge insertions and deletions in
O(T (n) log n) time per update (worst-case if the T (n) bound is worst-case).

By Lemma 10 and the discussion after Lemma 7, we obtain:

▶ Theorem 2. Let G be a digraph. Suppose there is a fully dynamic reachability data structure
processing single-edge updates and arbitrary-pair reachability queries on G in at most T (n)
time. Then one can maintain whether G is strongly connected subject to single-edge insertions
and deletions in O(T (n) log n) time per update (worst-case if the T (n) bound is worst-case).

The currently best known bound on the maximum of query time and update time of
a fully dynamic arbitrary-pair reachability data structure is T (n) = O(n1.407) worst-case
(Monte Carlo randomized) due to [26]. Consequently, Theorem 2 combined with [26] yields
O(n1.407) worst-case update time for fully dynamic strong connectivity.

Strong connectivity augmentation. Due to a result of Eswaran and Tarjan [10], using
Lemma 10 we can actually prove a more general result.

▶ Theorem 11. Let G be a digraph. Let T (n) be defined as in Theorem 2. Then one can
maintain the size χ(G) of a minimum strong connectivity augmentation of G subject to
single-edge insertions and deletions in O(T (n) log n) time per update. (worst-case if the T (n)
bound is worst-case).

ESA 2023



68:12 On Fully Dynamic Strongly Connected Components

Proof. Let Z and ZR be source sets of G and GR respectively. Define a sink SCC to be
an SCC of G that is a source SCC in GR. Eswaran and Tarjan [10] prove that if G is not
strongly connected, then χ(G) equals max(s, t) + q, where s denotes the number of source
SCCs that are not sink SCCs, t denotes the number of sink SCCs that are not source SCCs,
and q denotes the number of “isolated SCCs” that are both source and sink SCCs. If G is
strongly connected then χ(G) = 0 holds trivially.

Note that with s, t, q defined like this, we have |Z| = s + q and |ZR| = t + q. Hence, if
G is not strongly connected, then max(|Z|, |ZR|) = max(s, t) + q = χ(G). As a result, it is
enough to maintain some sets Z and ZR, and test whether G is strongly connected using
Lemmas 10 and 7. Clearly, we need only O(T (n) log n) time for this. ◀

Again, by combining Theorem 11 with [26], we obtain that the size χ(G) of a minimum
strong connectivity augmentation can be maintained in O(n1.407) worst-case time per update.

Theorem 11 does not immediately yield any actual set Y of edges such that |Y | = χ(G)
and G + Y is strongly connected. We now discuss how such an augmentation Y can be
maintained. To this end we now sketch the method [10] of obtaining an augmentation with
max(|Z|, |ZR|) edges in case G is not strongly connected. Observe that in such a case, the
quantity max(|Z|, |ZR|) is clearly a lower bound on the size of Y .

Suppose wlog. that |Z| ≥ |ZR|. For each z ∈ Z, let tz ∈ ZR be arbitrary such that z

can reach tz in G; note that at least one such tz always exists. Similarly, for each z′ ∈ ZR,
let sz′ ∈ Z be arbitrary such that z′ is reachable from sz′ in G.

Consider a set of edges F = {ztz : z ∈ Z} ∪ {sz′z′ : z′ ∈ ZR}. Let M be a maximal
matching in F (possibly allowing self-loops), that is, a maximal subset {y1y′

1, . . . , yky′
k} ⊆ F

such that all y1, . . . , yk are distinct and all y′
1, . . . , y′

k are distinct.
Put A := {y1, . . . , yk}, and B = {y′

1, . . . , y′
k}. Moreover, put Z \ A = {z1, . . . , zp} and

Z ′ \ B = {z′
1, . . . , z′

q}, where p ≥ q. By the maximality of M , we have that for all z ∈ Z \ A,
tz ∈ B, that is, z can reach some vertex from B in G. Similarly, for all z′ ∈ ZR \ B, z′ is
reachable from a vertex of A.

Put yk+1 := y1. Consider an augmentation:

Y = {y′
iyi+1 : i = 1, . . . , k} ∪ {z′

max(i,q)zi : i = 1, . . . , p}.

We have |Y | = k + p = |Z| = max(|Z|, |ZR|). Eswaran and Tarjan [10] argue rather easily
that G + Y is strongly connected: (1) the source and sink vertices in A ∪ B are pairwise
strongly connected since they are arranged in a cycle, (2) every vertex in ZR \ B can reach
A ∪ B via Z \ A and the edges in Y , and (3) every vertex in Z \ A can be reached from
A ∪ B via ZR \ B and the edges in Y .

The above construction reduces, in O(n) time, the problem of maintaining an optimal Y

to maintaining:
(1) for each vertex z ∈ Z, an arbitrary vertex tz ∈ ZR reachable from z in G,
(2) for each vertex z′ ∈ ZR, an arbitrary vertex sz′ ∈ Z that can reach z′ in G.

If χ(G) = max(|Z|, |ZR|) is small enough, we can achieve the above by simply maintaining
the (Z ∪ ZR) × (Z ∪ ZR) submatrix of the transitive closure of G. van den Brand, Forster,
and Nazari [25] showed the following.

▶ Theorem 12. [25] Let G be a directed graph. Let S be a dynamic subset of V be such that
|S| = O(n0.85) at all times. There exists a data structure explicitly maintaining reachability
between all-pairs of vertices in S subject to fully dynamic single-edge updates to G and
single-element additions/deletions to S in O(n1.407 + |S|2) worst-case time per update.
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Recall that if G is subject to fully dynamic single-edge updates, then Z and ZR undergo at
most two element updates per update to G. As a result, by putting S = Z ∪ ZR in the above
theorem and combining with Lemma 10, we can maintain a minimum strong connectivity
augmentation Y in O(n1.407) time as long as χ(G)2 = O(n1.407).

If χ(G) = Θ(n), however, the above method would have quadratic update time. We now
argue that if we expect χ(G) to be large, then some desired sets {tz ∈ ZR : z ∈ Z}, and
{sz′ ∈ Z : z′ ∈ ZR} can be maintained in O(n1.529) worst-case time per update anyway.
This is possible using the below simple existential reachability data structure.

▶ Lemma 13. Let G be a directed graph. Suppose there is a fully dynamic reachability
data structure processing single-edge updates and arbitrary-pair reachability queries on G in
U(n) = poly(n) and Q(n) = poly(n) time respectively.

Let X ⊆ V be a dynamic subset. There is a data structure maintaining G subject to fully
dynamic edge updates and X subject to single-element insertions and deletions with Õ(U(n))
update time supporting the following queries in Õ(Q(n))-time. Given a query vertex s ∈ V ,
find some vertex x ∈ X that s can reach in G (if such an x exists).

Proof sketch. Suppose wlog. that the vertices of G are identified with {1, . . . , n} and n is a
power of two. Let G′ be obtained from G as follows. First, we augment G with an auxiliary
full binary tree T with n leaves labeled l1, . . . , ln from left to right, so that V (T ) ∩ V (G) = ∅.
The edges in T are directed from children to their parents. Second, for every x ∈ X, we add
an edge xlx to G′. Note that the graph G′ has at most 3n vertices.

We maintain the graph G′ using the assumed reachability data structure D. Whenever G

is subject to an edge insertion or deletion, that update is also applied to G′. Similarly, if an
element x is inserted/deleted from X, this is reflected in G′ by adding/deleting the edge xlx.

The binary tree T allows locating some (or even the minimum-label) vertex of X that
a query vertex s can reach within O(log n) queries to D. Indeed, note that s can reach a
vertex w ∈ V (T ) in G′ if and only if s can reach in G some vertex x ∈ X such that w is an
ancestor of the leaf lx ∈ V (T ). In particular, s can reach X in G if and only if s can reach
the root of T in G′. If this is the case, the search starts in the root of T and descends down
the tree maintaining the invariant that one of the leaves in the current subtree is reachable
from s in G′. Once we reach a leaf lx, we report x ∈ X as reachable from s. ◀

With Lemma 13 in hand (applied twice, to the graph G with X := ZR and to the graph
GR with set X := Z), using fully dynamic reachability data structure of [20] with O(n1.529)
worst-case update time and O(n0.529) query time, we can find the desired sets by issuing
O(n) existential reachability queries. Recall that the sets Z and ZR undergo O(1) updates
per edge update to G, so the worst-case update time is O(n1.529).

Finally, we note that the described algorithms for maintaining the minimum strong con-
nectivity augmentation Y work against an adaptive adversary. Indeed, they are deterministic
if provided with the required reachability information about G. That in turn is uniquely
defined and maintained correctly with high probability by the data structures of [25, 20].

Universal reachability. By maintaining the source set Z, we can also achieve the following.

▶ Theorem 14. Let G be a digraph. Let T (n) be defined as in Theorem 2. There exists
a data structure maintaining G under single-edge insertions and deletions and answering
queries whether a given vertex v can reach all vertices in G (and if not, providing an example
of an unreachable vertex) with Õ(T (n)) update and query time.
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Proof. Let Z be again a source set of G. Clearly, if |Z| > 1, then no vertex of G can reach
all other vertices. Otherwise, if |Z| = 1, then some v can reach all of V if and only if v

can reach (or, equivalently, is strongly connected to) the only element z ∈ Z. As a result,
given Z and the data structure D, we can check whether v can reach all vertices in G by
issuing a v → z query to D in Õ(T (n)) time. If v cannot reach some vertex of G, then it
cannot reach some z′ ∈ Z. Since there is at most one z ∈ Z that v can reach, to find some
unreachable z′ ∈ Z, it is enough to issue two queries to D. ◀
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We consider the Max-3-Section problem, where we are given an undirected graph G = (V, E)
equipped with non-negative edge weights w : E → R+ and the goal is to find a partition of V

into three equisized parts while maximizing the total weight of edges crossing between different
parts. Max-3-Section is closely related to other well-studied graph partitioning problems, e.g.,
Max-Cut, Max-3-Cut, and Max-Bisection. We present a polynomial time algorithm achieving
an approximation of 0.795, that improves upon the previous best known approximation of 0.673.
The requirement of multiple parts that have equal sizes renders Max-3-Section much harder to
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1 Introduction

In this paper we study the Max-3-Section problem: given an undirected graph G = (V, E)
equipped with non-negative edge weights w : E → R+ the goal is to partition the vertex
set V into three equisized parts while maximizing the total weight of edges that cross
between different parts. Max-3-Section is closely related to other classic graph partitioning
problems, where given the same input as in Max-3-Section the goal is to output a partition
of the vertex set V (possibly given some problem specific constraint) while maximizing the
total weight of edges that cross between different parts. Perhaps the most famous of these
problems is Max-Cut, whose constraint is that the partition contains only two parts with no
restriction on the size of these parts. Max-Cut is one of Karp’s 21 NP-hard problems [11]
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and in their seminal work Goemans and Williamson [9] presented an approximation of 0.8786
using semi-definite programming and random hyperplane rounding. It is known that the
latter result is tight, assuming the unique games conjecture, as proved by Khot, Kindler,
Mossel, and O’Donnell [12].

A natural problem that generalizes Max-Cut is Max-k-Cut, whose constraint is that the
partition contains k parts with no restriction on the size of these parts. A simple algorithm
that returns a uniform random solution, i.e., every vertex is assigned independently and
uniformly to one of the k parts, achieves an approximation of 1 − 1/k. Several works aimed at
improving the guarantee of this simple algorithm, e.g., [6, 8, 4, 14]. For example, a notable
case that attracted much attention is the Max-3-Cut problem [6, 8, 4, 14], whose best
approximation is 0.836 and was given by Goemans and Williamson [8]. Interestingly, the
latter guarantee is worse than the approximation known for Max-Cut. For general values
of k, it was shown by Frieze and Jerrum [6] that an approximation of 1 − 1/k + Θ(ln k/k2)
can be achieved. Further improvements for the approximation guarantee were presented by
de Klerk, Pasechnik and Warners [4].

Adding a single global constraint to Max-Cut that requires both parts to be of equal size
leads to the classic problem of Max-Bisection. Max-Bisection was extensively studied
throughout the years, e.g., [6, 16, 10, 5, 15, 2]. This sequence of works currently culminates
with the works of Raghavendra and Tan [15], who present an approximation of 0.85 that
is based on rounding a Lasserre hierarchy semi-definite program, which was subsequently
improved to 0.877 by Austrin, Benabbas, and Georgiou [2] who improved the former rounding.
The question whether one can obtain for Max-Bisection the same approximation guarantee
that is known for Max-Cut remains a tantalizing open problem.

Both Max-3-Section and Max-Bisection are captured by the Max-k-Section problem
[1, 7, 13, 3], which falls in the above broad family of graph partitioning problems and whose
constraint is that the partition contains k equisized parts. Similarly to Max-k-Cut, it
is known that the simple algorithm that returns a uniform random solution achieves an
approximation of 1 − 1/k. Thus, it is no surprise that the goal of past research, e.g., [1, 7, 13],
was to improve upon this guarantee. For the special case of Max-3-Section, Ling [13]
presented an approximation of 0.6733 that is based on rounding a semi-definite programming
relaxation similarly to Max-3-Cut [8]. For general values of k, Andersson [1] presented
an approximation of 1 − 1/k + Θ(1/k3), again by rounding a suitable semi-definite program
relaxation. Additionally, Gaur, Krishnamurti, and Kohli [7] presented a local search algorithm
for a more general problem in which each part has a (possibly different) limit on its size.

The main focus of this work is the Max-3-Section problem. For k = 2, the best known
approximation for Max-Bisection (which is essentially Max-Cut with a single global
constraint on the size of the first part in the partition) equals 0.877 and is (almost) identical
to the best possible approximation of 0.878 for Max-Cut. However, when k = 3, the best
known approximation for Max-3-Section (which is essentially Max-3-Cut with two global
constraints on the size of the first two pieces in the partition) equals 0.6733 and is far from
the best known approximation of 0.836 for Max-3-Cut. Moreover, the former approximation
guarantee of 0.6733 for Max-3-Section only slightly improves upon the 2/3 approximation
guarantee of the trivial algorithm that simply returns a uniform random solution. Thus, we
aim to understand and minimize the gap that exists for k = 3.

1.1 Our Results and Techniques
We present the following main algorithmic result for the Max-3-Section problem:

▶ Theorem 1. There is a polynomial time algorithm for Max-3-Section that achieves an
approximation guarantee of at least 0.795.
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It is important to note that the approximation guarantee of the above theorem improves upon
the previous best known algorithm for Max-3-Section [13] that achieves an approximation
of 0.6773. As proving the exact approximation guarantee of our algorithm is an involved
task (for reasons that will be clear soon), we also present the following conjecture that is
based on numerical evidence:

▶ Conjecture 2. The algorithm presented to prove Theorem 1 achieves an approximation of
0.8192 for Max-3-Section.

We further show how the algorithm we present for proving Theorem 1 can be extended
to general values of k. First, we prove that the algorithm, alongside its analysis, cannot
provide an improved approximation as k increases (when compared to its approximation for
the case of k = 3). Second, using numeric evidence we conjecture that the approximation of
the algorithm remains 0.8192 for k ranging from 3 up to 6. Hence, the above gives rise to
the following extended conjecture:

▶ Conjecture 3. There is a polynomial time algorithm achieving an approximation of 0.8192
for Max-k-Section for k = 3, 4, 5.

The above conjecture provides, for k = 4, 5, an improved approximation when compared to
the previous best known result. The current best is a small improvement over the trivial
randomized approximation algorithm by Andersson [1] which achieves an approximation of
1 − 1/k + Θ(k−3).

When considering our approach to Max-3-Section we focus on two of its closely related
problems: Max-3-Cut and Max-Bisection and examine the approaches used to design and
analyze algorithms for both. Let us start with Max-3-Cut. The approach used to obtain
the current best known algorithms for Max-3-Cut, e.g., [8, 4, 14], is based on the random
hyperplane rounding method due to Goemans and Williamson [9] (as well as extensions of
this method) of a semi-definite programming relaxation. This approach, when applied to
Max-3-Section, suffers a significant drawback since it does not preserve marginal values (a
marginal value is the likelihood the relaxation assigns to the event that vertex u belongs to
part i). Specifically, the expected number of vertices assigned to every part by the rounding
algorithm might be incomparable to n/3 and therefore applying these ideas as was done by
Ling [13] leads only to a minor improvement over the random solution algorithm. It is worth
noting that this drawback is already present when considering Max-Bisection.

Let us now consider Max-Bisection, and specifically we focus on the approach of
Raghavendra and Tan [15] (as well as Austrin, Benabbas, and Georgiou [2] who build
upon [15]). First, a Lasserre hierarchy of a natural semi-definite programming relaxation for
Max-Bisection is solved. Second, a rounding procedure that preserves the marginal values
is applied to obtain a subset C1 ⊆ V of vertices such that: (1) there are sufficiently many
edges crossing the cut C1 defines; and (2) C1 contains (roughly) n/2 vertices. Third, the
solution is re-balanced to obtain a perfect bisection, i.e., ensuring that |C1| = n/2 without a
significant loss in the number of edges crossing between C1 and C2 = V \ C1.

There are two main difficulties when considering this approach in the context of Max-3-
Section. The first difficulty stems from the fact that we have three parts in Max-3-Section,
whereas in Max-Bisection there are only two parts. Therefore, if we use the above rounding
procedure to find C1 ⊆ V of size (roughly) n/3 with sufficiently many edges crossing the
cut C1 defines, it is not clear how to recurse and further partition V \ C1. We note that
in Max-Bisection no recursion is needed since C2 is chosen to be V \ C1. However, in
Max-3-Section V \ C1 still needs to be partitioned into C2 and C3. Our solution to this
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difficulty is to condition the marginal values of vertices remaining in V \ C1 on the fact that
each remaining vertex was not chosen to C1. Such a conditioning, intuitively, ensures that
we preserve marginal values overall while recursing on V \ C1.

The second difficulty in applying this apporach arises from the following observation:
we can show that if one first creates part C1, and then creates part C2 (and part C3 is
all remaining vertices), then if the analysis is performed edge-by-edge (as is the case in
both [15, 2]) no approximation better than 0.7192 can be achieved. Specifically, we present
a configuration of the vectors that correspond to the endpoints of an edge that satisfy:
(1) the vectors are feasible for the semi-definite programming relaxation; and (2) the ratio
between the probability of this edge being separated by the rounding algorithm and the
contribution of its vectors to the objective function of the relaxation is at most 0.7192 (refer
to Section 4 for a formal definition of a configuration and to Observation 35 in the full
version of the paper). An approximation of 0.7192, if possible given the above approach,
improves the current best known approximation of 0.6733 [13]. However, we aim for a much
larger improvement. Our solution to this difficulty is to uniformly permute the order in
which the parts are generated. Since the approach based on [15, 2] preserves marginals, this
permutation allows us to better cope with problematic configurations. It is important to
note that a permutation is meaningless for Max-Bisection, since whether a vertex belongs
to C1 immediately implies whether it belongs to C2 and vice versa. In Max-3-Section this
is obviously not the case.

Thus, following the above discussion, our approach builds upon the approach for Max-
Bisection with two added ingredients. The first is altering the marginal values the semi-
definite programming relaxation provides via appropriate conditioning when recursing. The
second is uniformly permuting the order in which the rounding algorithm generates the parts.
We note that these two added ingredients introduce two main additional obstacles. The first
obstacle relates to the last re-balancing step. In both [15, 2] the re-balancing succeeds since
it is proved that with a high probability each part by itself is close to being the desired size.
The method this is proved is by bounding the variance of the size of each part alone. However,
in our approach for Max-3-Section the bound on the variance of the size of a given part
depends on the other parts as well. This introduces technical issues and hence bounding of
the variance requires much care. The second obstacle relates to the computer assisted proof
via branch and bound method we employ in order to lower bound the performance ratio of our
algorithm. The expression of the separation probability of an edge by the rounding algorithm
is involved, as both marginal values are altered when recursing and we employ a random
permutation over the order in which the parts are generated. Moreover, a configuration
describing how the semi-definite programming relaxation encodes an edge involves 7 different
vectors (see Sections 3 and 4). Thus, we had to incorporate many technical ingredients, e.g.,
analytically bounding the gradient of the separation probability and restricting the search
to specific type of configurations while analytically bounding the error this incurs, to make
the computer assisted proof terminate faster. This results in about 150, 000 hours of CPU,
which is roughly 20 CPU years, to prove Theorem 1.

1.2 Additional Related Work
The Max-Bisection problem has a long and rich history. Frieze and Jerrum [6] presented
an approximation of 0.6514 based on rounding a semi-definite program. Later on, Ye [16],
Halperin and Zwick [10], and Feige and Langberg [5] further improved the approximation
guarantee to 0.699, 0.7016, and 0.7027, respectively. They achieved the above by strengthening
the semi-definite programming relaxation, e.g., by adding triangle inequality constraints,
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and presenting better rounding methods. The next leap in approximating Max-Bisection
came with the work of Raghavendra and Tan [15]. They utilized a higher-level Lasserre
hierarchy semi-definite program, together with an elegant rounding algorithm, and obtained
a 0.85-approximation. Later on, Austrin, Benabbas, and Georgiou [2] showed an improved
rounding algorithm, pushing the approximation guarantee up to 0.877. It should be noted
that the latter is very close to the best possibloe approximation of 0.878 for Max-Cut.

Focusing on Max-k-Cut, Frieze and Jerrum [6] presented an approximation algorithm
with better guarantee than the naive random algorithm. They utilized a semi-definite
program relaxation alongside an elegant rounding algorithm that samples k random vectors
and assigns every vertex v ∈ V to the cluster of the random vector that is closest to v’s vector
in the relaxation. Goemans and Williamson [8] presented an improved approximation of
0.836 for Max-3-Cut by using a complex semi-definite program. In [4], de Klerk, Pasechnik,
and Warners presented further improved bounds for Max-k-Cut. Please refer to Table 1 by
Newman [14] for a summary of approximation guarantees.

1.3 Paper Organization
We start by presenting preliminary definitions in Section 2. Next, in Section 3 we present our
semi-definite program for Max-3-Section and show that it can be strengthened to obtain a
solution which is globally uncorrelated. In Section 4 we present our rounding algorithm and
its analysis. To obtain a bound on the approximation guarantee of our rounding algorithm,
we present an analysis which is based on a computer-assisted proof in Section 5. Furthermore,
we discuss the generalization of our algorithm, and its numerical estimation, in Section 6.
Missing proofs appear in the full version of the paper.

2 Preliminaries

We denote by Φ : R → [0, 1] the cumulative distribution function of the normal gaussian
distribution and by Φ−1 : [0, 1] → R its inverse. Specifically, if R ∼ N [0, 1] then: (1)
∀x ∈ R: Pr[R ≤ x] = Φ(x) (or equivalently Pr[R ≥ x] = 1 − Φ(x)); and (2) ∀x ∈ [0, 1]:
Pr[R ≤ Φ−1(x)] = x (or equivalently Pr[R ≥ Φ−1(x)] = 1 − x). Moreover, we say that a
vector g is a random gaussian vector if its coordinates are i.i.d standard gaussian N(0, 1)
random variables.

We denote by Γt : [0, 1]2 → [0, 1] the probability that a standard bi-variate gaussian
distribution with correlation t has both its coordinates at most the given quantiles, i.e.,

∀q1, q2 ∈ [0, 1] : Γt(q1, q2) ≜ Pr[X ≤ Φ−1(q1), Y ≤ Φ−1(q2)],
(

X

Y

)
∼ N

((
0
0

)
,

(
1 t

t 1

))
.

We define the mutual information between two random variables.

▶ Definition 4. Let X, Y be jointly distributed random variables taking values in [q]. The
mutual information of X and Y is defined as

I(X, Y ) ≜
∑

i,j∈[q]

Pr(X = i, Y = j) log
(

Pr(X = i, Y = j)
Pr(X = i) Pr(X = j)

)
.

For any two disjoint subsets of vertices A, B ⊆ V , we denote by δ(A, B) the collection of
edges having one endpoint in A and another endpoint in B. Hence, |δ(A, B)| denotes the
number of edges crossing between A and B.1

1 For simplicity of presentation, we assume from this point onward that the graph is unweighted. All
of our results apply to graphs equipped with non-negative edge weights, in which case one should
substitute |δ(A, B)| with the total weight of edges crossing between A and B.
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3 The SDP Relaxation for Max-3-Section

In this section, we present a semi-definite programming (SDP) formulation and prove that
it is a relaxation for the Max-3-Section problem. Similarly to previous works on Max-
Bisection, e.g., [2, 15], we strengthen this formulation and obtain additional properties
that will be useful to our rounding algorithm. We define the following SDP formulation for
Max-3-Section:

(SDP) maximize
∑

e=(u,v)∈E

(
1 −

3∑
i=1

yi
u · yi

v

)
(1)

s.t. ∥y∅∥2 = 1 (2)
∥yi

v∥2 = y∅ · yi
v ∀v ∈ V, ∀i = 1, 2, 3 (3)

∥y1
v∥2 + ∥y2

v∥2 + ∥y3
v∥2 = 1 ∀v ∈ V (4)

yi
v · yj

v = 0 ∀v ∈ V, i ̸= j (5)
yi

u · yj
v ≥ 0 ∀u, v ∈ V, ∀i, j = 1, 2, 3 (6)∑

v∈V

∥yi
v∥2 = n/3 ∀i = 1, 2, 3 (7)

We note that in the above and what follows, for every vector y a square norm of a vector
∥y∥2 is with respect to the ℓ2 (Euclidean) norm and equals y · y. Next, we prove that
the formulation is a relaxation for our problem. Intuitively, for every vertex v ∈ V the
formulation SDP assigns a distribution over the three clusters via the vectors y1

v, y2
v, and y3

v.
Specifically, y∅ is a unit vectors (Constraint (2)) that denotes true whereas the zero vector
(that does not appear explicitly in SDP) denotes false. Each vector yi

v indicates how much
vertex v is likely to be assigned to the ith cluster by SDP. Hence, ∥yi

v∥2, or equivalently
yi

v · y∅ (see Constraint (3)), denotes the marginal probability of assigning vertex v to the ith

cluster by SDP. For every vertex v ∈ V , the sum of these marginal probabilities needs to
sum up to one (Constraint 4). Since every vertex v ∈ V can be assigned to a single cluster
in any integral solution, SDP enforces that the vectors yi

v and yj
v for i ≠ j are orthogonal

(Constraint (5)). Intuitively, the joint probability SDP assigns for vertices u and v to belong
to the ith and jth clusters, respectively, is non-negative (Constraint (6)). Finally, since the
three clusters are required to be of size n/3 each Constraint (7) is added to SDP. When
focusing on the objective of SDP (see (1)), for every edge (u, v) ∈ E the inner product yi

u · yi
v

intuitively indicates the joint probability of both u and v to be assigned to the ith cluster
by SDP. Therefore, intuitively 1 − y1

u · y1
v − y2

u · y2
v − y3

u · y3
v indicates the likelihood of

separating an edge (u, v) by SDP. Thus, this is the objective of SDP.
The following lemma proves that SDP is a relaxation to the Max-3-Section problem,

i.e., the value of an optimal solution OPTSDP to SDP is an upper bound on the value of an
integral optimal solution OPT.

▶ Lemma 5. Given an instance of Max-3-Section let OPTSDP be the value of an optimal
solution of SDP (1) and OPT be the value of an optimal integral solution. Then, OPTSDP ≥
OPT.

Proof. Let {C∗
1 , C∗

2 , C∗
3 } be an optimal solution for the given instance of Max-3-Section

whose value is OPT. Construct the following vector solution to SDP. First, fix an arbitrary
unit vector y∅. Second, for every v ∈ V define yi

v to be the zero vector if v /∈ C∗
i and

yi
v = y∅ if v ∈ C∗

i . One may notice that all the constraints hold for this solution and the
value of the objective of SDP equals the value of the optimal solution {C∗

1 , C∗
2 , C∗

3 }. Hence,
OPTSDP ≥ OPT. ◀
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For simplicity of presentation, we denote by Y a solution to SDP. Thus, Y consists of
{yi

u}u∈V,i=1,2,3 and y∅. A useful property that any feasible solution Y to SDP satisfies is
that y1

u + y2
u + y3

u always equals the vector y∅. This is summarized in the following lemma.

▶ Lemma 6. Let Y be a feasible solution to SDP. Then, for every vertex u ∈ V : y1
u+y2

u+y3
u =

y∅.

An immediate corollary of the above lemma is that for every pair of vertices u, v ∈ V :
yi

u · (y1
v + y2

v + y3
v) = ∥yi

u∥2 (via Constraint (3)).

3.1 Globally Uncorrelated Solution

Next we define when a solution Y to SDP is globally uncorrelated following the framework
of [15]. Global uncorrelation implies that our rounding algorithm returns a solution that has
close to n

3 vertices in each part with high probability (see Lemma 15). The sizes then can
be corrected with a minor loss in approximation ratio by randomly shifting the imbalanced
vertices (see Lemma 16).

A simple fact about any SDP solution is the following: given any two vertices u, v,
there exists a local probability distribution µu,v on {1, 2, 3}2 such that Prµu,v

[Xu = i, Xv =
j] = ⟨yi

u, yj
v⟩ for every i, j ∈ {1, 2, 3} and Prµu,v [Xu = i] = ∥yi

u∥2 for every i ∈ {1, 2, 3}.
The distribution implies that, at least, locally the semi-definite program is a distribution
over integral solutions that satisfy correct correlations. The last property states that the
distributions are consistent on their intersection which can be at most one vertex.

▶ Definition 7. A solution Y to SDP is ε-independent if Eu,v[Iµu,v
(Xu, Xv)] ≤ ε where µu,v

is the local probability distribution associated with vertices u and v.

The following lemma is an application of Theorem 4.6 from [15] to our SDP for Max-
3-Section and it shows how to obtain a ε-independent solution. The algorithm proving
Lemma 8 follows from solving the Θ(t2)-level Lasserre hierarchy semi-definite program for
SDP and then inductively conditioning on variables.

▶ Lemma 8. There is an algorithm which, given an integer t > 0 and an instance of Max-3-
Section, runs in time nO(poly(t)) and outputs a set of vectors Y consisting of {yi

v}v∈V,i=1,2,3
and y∅ such that:
1. Y is a feasible solution to SDP.
2. The objective value of SDP (1) when plugging in Y is at least OPTSDP − 1

t .
3. Y is 1

t -independent.

4 The Rounding Algorithm

In this section we present our rounding algorithm for SDP, which appears in Algorithm 1.
The algorithm receives as input a solution to SDP and outputs a partition {C1, C2, C3} of V

that: (1) has high value compared to the SDP value of the input solution; and (2) is (nearly)
balanced, i.e., for every i = 1, 2, 3: |Ci| is close to n/3. We will conclude the analysis by
proving that one can re-balance the partition without a significant loss in the value of the
solution.
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In order to state the algorithm, we require the following definition. For every vertex
u ∈ V and i = 1, 2, 3 we denote by zi

u the normalized component of yi
u that is orthogonal to

y∅, i.e., yi
u = ∥yi

u∥2y∅ +
√

∥yi
i∥2 − ∥yi

u∥4zi
u. Equivalently,

zi
u ≜

yi
u − ∥yi

u∥2y∅√
∥yi

u∥2 − ∥yi
u∥4

. (8)

Clearly, zi
u is a unit vector that is orthogonal to y∅. We note that if the marginal of vertex

u and cluster i is integral, i.e., ∥yi
u∥2 ∈ {0, 1}, then zi

u is not defined. In this case one can
simply choose an arbitrary unit vector in the space orthogonal to y∅ to be zi

u.

Algorithm 1 Max-3-Section Rounding Algorithm.

Input: solution {yi
u}u∈V,i=1,2,3 and y∅ to SDP.

Output: a partition of V into three parts.
1 Draw uniformly at random a permutation π ∈ S3.
2 Draw independently two random Gaussian vectors g1 and g2.
3 Define the following sets:

Sπ(1) ≜
{

u ∈ V : zπ(1)
u · g1 ≥ Φ−1

(
1 − ∥yπ(1)

u ∥2
)}

,

Sπ(2) ≜
{

u ∈ V : zπ(2)
u · g2 ≥ Φ−1

(
1 − ∥yπ(2)

u ∥2/(1 − ∥yπ(1)
u ∥2)

)}
.

4 Return {C1, C2, C3} where: Cπ(1) ≜ Sπ(1), Cπ(2) ≜ Sπ(2) \ Sπ(1),
Cπ(3) ≜ V \ (Sπ(1) ∪ Sπ(2)).

We first prove that Algorithm 1 preserves the marginal probabilities of SDP, i.e., ∥yi
u∥2

is the probability vertex u is assigned to cluster Ci. This is summarized in the following
lemma.

▶ Lemma 9. For every u ∈ V and i = 1, 2, 3, it holds that Pr[u ∈ Ci] = ∥yi
u∥2.

Proof. Fix a permutation π ∈ S3, and let us calculate the probability that u ∈ Ci conditioned
on the event that π was chosen in the first step of Algorithm 1. Hence, the following holds
for Cπ(1):

Pr
[
u ∈ Cπ(1)|π

]
= Pr

[
u ∈ Sπ(1)|π

]
= Pr

[
zπ(1)

u · g1 ≥
(
1 − Φ−1 (1 − ∥yπ(1)

u ∥2)) |π
]

= ∥yπ(1)
u ∥2.

We observe that the sets Sπ(1) and Sπ(2) are constructed with independent vectors g1 and
g2. Therefore, similarly to the above, the following holds for Cπ(2):

Pr
[
u ∈ Cπ(2)|π

]
= Pr

[
u /∈ Sπ(1) ∧ u ∈ Sπ(2)|π

]
= Pr

[
u /∈ Sπ(1)|π

]
· Pr

[
u ∈ Sπ(2)|π

]
=
(
1 − ∥yπ(1)

u ∥2) · Pr
[

zπ(2)
u · g2 ≥

(
1 − Φ−1

(
1 − ∥yπ(2)

u ∥2

(1 − ∥yπ(1)
u ∥2)

))∣∣∣π]
=
(
1 − ∥yπ(1)

u ∥2) · ∥yπ(2)
u ∥2

(1 − ∥yπ(1)
u ∥2)

= ∥yπ(2)
u ∥2.

Finally, since the events {u ∈ Cπ(1)|π}, {u ∈ Cπ(2)|π}, and {u ∈ Cπ(3)|π} are disjoint and
exactly one of them occurs, i.e., every vertex u ∈ V belongs to exactly one cluster in the
output, we can conclude that:
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Pr
[
u ∈ Cπ(3)|π

]
= 1 − Pr

[
u ∈ Cπ(1)|π

]
− Pr

[
u ∈ Cπ(2)|π

]
= 1 − ∥yπ(1)

u ∥2 − ∥yπ(2)
u ∥2 = ∥yπ(3)

u ∥2.

In the above the last equality follows from Constraint (4). Unfixing the conditioning on π by
using the law of total probability concludes the proof. ◀

Our goal is to write an expression for the probability that an edge crosses between two
different parts in the partition that Algorithm 1 outputs. Given a fixed pair of vertices
u, v ∈ V and i = 1, 2, 3, we denote by ti the inner product between zi

u and zi
v. One should

note that Constraint 3 in SDP 1 implies:

ti = (yi
u − xi · y∅) · (yi

v − wi · y∅)√
(xi − x2

i ) · (wi − w2
i )

= αi − xiwi√
(xi − x2

i ) · (wi − w2
i )

, (9)

where xi ≜ ∥yi
u∥2 and wi ≜ ∥yi

v∥2 are the marginal values the SDP assigns to vertices u and
v, respectively, with respect to the ith cluster, and αi ≜ yi

u · yi
v is the correlation the SDP

assigns for both u and v being assigned to the ith cluster. The following lemma gives the
desired expression. We require the following claim for its proof:

▷ Claim 10. Let (X, Y ) be a standard bi-variate Gaussian with correlation t. Then for
every q1, q2 ∈ [0, 1], we have Pr[X ≥ Φ−1(1 − q1), Y ≥ Φ−1(1 − q2)] = Γt(q1, q2).

▶ Lemma 11. For every u, v ∈ V , let Au,v be the event that Algorithm 1 separates u and v:

Pr [Au,v] =1 − 1
6
∑

π∈S3

[
Γtπ(1)

(
xπ(1), wπ(1)

)
+ Γtπ(1)

(
1 − xπ(1), 1 − wπ(1)

)
·

·
(

Γtπ(2)

(
1 −

xπ(2)

1 − xπ(1)
, 1 −

wπ(2)

1 − wπ(1)

)
+ Γtπ(2)

(
xπ(2)

1 − xπ(1)
,

wπ(2)

1 − wπ(1)

))]
.

The proof of Lemma 11 appears in the full version of the paper.
Our goal now is to lower bound the expected value of the output of Algorithm 1, before

it is re-balanced (with a negligible loss) to ensure the size of each cluster is exactly n/3. As
our analysis is performed edge-by-edge, i.e., for every edge we lower bound the ratio of the
probability Algorithm 1 separates the edge to the contribution of this edge to the objective
of SDP (1), we introduce the notions of a configuration and a feasible configuration.

A configuration is a vector c = (x1, x2, x3, w1, w2, w3, α1, α2, α3, t1, t2, t3) ∈ R12, such
that for every i = 1, 2, 3: xi, wi, αi ∈ [0, 1] and ti ∈ [−1, 1]. We say that a configuration c is
a feasible configuration if it can be realized by vectors in a feasible solution to SDP (as the
following definition states).

▶ Definition 12. A configuration c = (x1, x2, x3, w1, w2, w3, α1, α2, α3, t1, t2, t3) ∈ [0, 1]9 ×
[−1, 1]3 is called a feasible configuration if there are vectors y1

u, y2
u, y3

u, y1
v, y2

v, y3
v and y∅

satisfying:
1. The vectors y1

u, y2
u, y3

u, y1
v, y2

v, y3
v and y∅ satisfy Constraints (2) to (6) in SDP.

2. xi = ∥yi
u∥2, wi = ∥yi

v∥2 and αi = yi
u · yi

v, ∀i = 1, 2, 3.
3. ti = (αi − xiwi)/((xi − x2

i )(wi − w2
i ))1/2, ∀i = 1, 2, 3.

The vectors y1
u, y2

u, y3
u, y1

v, y2
v, y3

v and y∅ are called a realization of c. The set of all feasible
configuration is denoted by C.
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We note that there is some redundancy in the above definition. First, we can reduce the
dimension of the configuration by two simply by substituting x3 with 1 − x1 − x2 and w3
with 1 − w1 − w2. Second, we can remove t1, t2 and t3 (or α1, α2 and α3) since each ti (or αi)
can be derived from all the parameters excluding t1, t2, and t3 (or excluding α1, α2, and α3).
In Lemma 21, we give a characterization of C after projecting out t1, t2, t3. This description
consists of linear constraints and we utilize the description for our computer-assisted proof.
For simplicity of the analysis, we will keep all the parameters.

Let us now define two functions over C. The first function f , given a feasible configuration
c ∈ C, returns the probability that Algorithm 1 cuts an edge whose associated vectors are a
realization of c. Formally, following Lemma 11:

f(c) ≜1 − 1
6
∑

π∈S3

[
Γtπ(1)

(
xπ(1), wπ(1)

)
+ Γtπ(1)

(
1 − xπ(1), 1 − wπ(1)

)
·

·
(

Γtπ(2)

(
1 −

xπ(2)

1 − xπ(1)
, 1 −

wπ(2)

1 − wπ(1)

)
+ Γtπ(2)

(
xπ(2)

1 − xπ(1)
,

wπ(2)

1 − wπ(1)

))]
.

The second function g, given a feasible configuration c ∈ C, returns the contribution to
the objective of SDP of an edge whose associated vectors are a realization of c. Formally,
following (1):

g(c) ≜ 1 − α1 − α2 − α3.

It is important to note that both f and g can be evaluated for every configuration c ∈
[0, 1]9 × [−1, 1]3 which might not be necessarily feasible. However, for such a (non feasible)
configuration c, f(c) and g(c) lose their “meaning”.

To lower bound the value of the solution {C1, C2, C3} Algorithm 1 outputs, we introduce
the following:

µ ≜ inf
c∈C

{
f(c)
g(c)

}
. (10)

Clearly, from the above definition of µ, the value of the output {C1, C2, C3} of Algorithm 1
is at least: µ · OPTSDP ≥ µ · OPT (where the inequality follows from Lemma 5 which states
that SDP is a relaxation). Hence, if the output {C1, C2, C3} of Algorithm 1 was perfectly
balanced, i.e., |C1| = |C2| = |C3| = n/3, Algorithm 1 would achieve an approximation of µ to
the Max-3-Section problem. In what follows we show that one can re-balance {C1, C2, C3}
without a significant loss in the value of the solution. Thus, our goal is to lower bound µ.
For now, as formally proving the exact value of µ is a challenging task, we state the following
conjecture that follows from numeric estimation of µ.

▶ Conjecture 13. µ ≥ 0.8192.

Assuming the above conjecture regarding µ (Conjecture 13), there are two things that
are left in order to conclude the analysis of our algorithm. First, we show that if the solution
Y to SDP is independent (as in Definition 7 and Lemma 8 ) then with a sufficiently high
probability every cluster Ci is close to the desired size of n/3. This gives rise to the following
Definition 14 and Lemma 15. Second, we show that a solution {C1, C2, C3} that is close to
being perfectly balanced can be efficiently re-balanced without a significant loss in its value.
The latter is summarized in Lemma 16.
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▶ Definition 14. A partition {C1, C2, C3} of a graph on n nodes is ε-unbalanced if for every
i = 1, 2, 3:

n

3 (1 − ε) ≤ |Ci| ≤ n

3 (1 + ε).

▶ Lemma 15. Let Y be a 1
t -independent solution to SDP where t = Ω(ε−18), and {C1, C2, C3}

be the partition that Algorithm 1 outputs on Y . Then for every i = 1, 2, 3 it holds that:

Pr
[
||Ci| − n/3| ≥ εn

3

]
≤ ε.

Next, we show that such unbalanced partition can be balanced without a large loss in
the objective. That is, we present an algorithm that given a ϵ-unbalanced partition, finds in
polynomial time a balanced partition with small loss in the objective, in expectation.

▶ Lemma 16. There is a polynomial-time algorithm that given a ϵ-unbalanced partition
{C1, C2, C3} with value ∆ = |δ(C1, C2)| + |δ(C2, C3)| + |δ(C1, C3)| finds a balanced partition
{C ′

1, C ′
2, C ′

3} with expected value E[∆′] ≥ (1 − 2ϵ)∆.

The proofs of Lemma 15 and Lemma 16 appear in the full version of the paper. We
combine these lemmas and prove the following result.

▶ Theorem 17. For every constant ε > 0, there exists a polynomial-time approximation
algorithm for Max-3-Section, that runs in time nO(poly(ε−1)), achieving an approximation
of (1 − 2ϵ)(µ − O(ε)).

Proof. Let ε > 0 be a constant, and t an integer satisfying t = Ω(ε−18). Lemma 8 shows
that we can compute in polynomial time a solution Y to SDP that is 1

t -independent with
only an additive loss of 1/t in the objective. We repeatedly apply Algorithm 1 to round
the above Y until we obtain a solution {C1, C2, C3} that is ε-unbalanced, and then apply
Lemma 16 to re-balance it an obtain our final output.

Let us now analyze the approximation guarantee of the above algorithm. First, It follows
form Lemma 15 and a simple union bound over the three clusters that with a probability
of at least 1 − 3ε, applying Algorithm 1 to round the above solution Y yields a clustering
{C1, C2, C3} that is ε-unbalanced (as in Definition 14). Let us denote by A the event that
{C1, C2, C3} is ε-unbalanced. Hence, Pr[A] ≥ 1 − 3ε and Pr[Ā] ≤ 3ε. Moreover, as before,
let us denote by ∆ the value of the solution {C1, C2, C3}. Thus, the expected value of this
solution conditioned on it being ε-unbalanced is at least:

E[∆|A] = E[∆] − Pr[Ā] · E[∆|Ā]
Pr[A] ≥ µ · OPTSDP−H − 9ε

2 OPT.

The inequality follows from the facts that: (1) E[∆|Ā] ≤ (3/2) · OPT (since ∆ ≤ m and
OPT ≥ (2/3)m); (2) E[∆] ≥ µ ·OPTSDP−H (definition of µ (10)); and (3) Pr[A] ≤ 1, Pr[Ā] ≤
3ε. We note that OPTSDP−H ≥ OPTSDP − ε18 ≥ OPT − ε18. Hence,

E[∆|A] ≥ OPT(µ − O(ε)).

Applying Lemma 16 concludes the proof. ◀

Moreover, in Observation 34 in the full version of the paper we present a configuration c
that has a ratio of f(c)

g(c) = 0.8192, hence that is an upper bound on µ.
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4.1 Towards Estimating µ via a Computer Assisted Proof
For our computer assisted proof, we consider a slightly different version of µ which speeds
up our code. Consider the following, for some fixed δ′ > 0:

µ′ ≜ inf
c∈C,g(c)≥δ′

{
f(c)
g(c)

}
. (11)

The following lemma shows the loss we incur when using µ′ rather than µ is bounded.

▶ Lemma 18. Let {C1, C2, C3} be the output of Algorithm 1 when run on a solution Y to
SDP 1 with objective value SDPVAL. Then we have that

E[|δ(C1, C2)| + |δ(C1, C3)| + |δ(C2, C3)|] ≥
(

1 − δ′

2(1 − δ′)

)
µ′ · SDPVAL.

The following theorem summarizes the approximation guarantee when µ′ is used instead
of µ.

▶ Theorem 19. For any constant ε > 0, there is an algorithm that outputs a partition of the
vertex set {C1, C2, C3} with |C1| = |C2| = |C3| satisfying,

E[|δ(C1, C2)|+ |δ(C1, C3)|+ |δ(C2, C3)|] ≥ (1−2ϵ)
(

1 − δ′

2(1 − δ′)

)
µ′(OPTSDP −O(ϵ3/2))

with an expected run-time of nO(1/ε).

Proof. First we use Lemma 8 to get a 1
t -independent solution Y for t = Ω(ϵ−18). Let

OPTSDP−H denote the objective value of this solution. Next we run Algorithm 1 on Y and
repeat until it outputs sets C ′

1, C ′
2, C ′

3 that are ϵ-unbalanced. We note that by Lemma 15
(C ′

1, C ′
2, C ′

3) is not ϵ-unbalanced with probability at most 3ϵ, so we run Algorithm 1 at most
1/3ϵ times in expectation. Since C ′

1, C ′
2, C ′

3 are ϵ-unbalanced, applying the random shifting
of Lemma 16 to C ′

1, C ′
2, C ′

3 we get C1, C2, C3 satisfying

E[|δ(C1, C2)|+ |δ(C1, C3)|+ |δ(C2, C3)|] ≥ (1−2ϵ)E[|δ(C ′
1, C ′

2)|+ |δ(C ′
1, C ′

3)|+ |δ(C ′
2, C ′

3)|],

From Lemma 18 we have,

E[|δ(C1, C2)| + |δ(C1, C3)| + |δ(C2, C3)|] ≥ (1 − 2ϵ)
(

1 − δ′

2(1 − δ′)

)
µ′OPTSDP−H.

Then applying second item of Lemma 8 gives us that OPTSDP−H ≥ OPTSDP − O(ϵ3/2) since
we set t = Ω(ϵ−18). ◀

5 Computer Assisted Proof

The goal of this section is to lower bound µ′. We use a branch and bound procedure to lower
µ′ and which gives a guarantee for the approximation factor of our algorithm (Theorem 19) .
We recall the definition of µ′

µ′ ≜ inf
c∈C,g(c)≥δ′

{
f(c)
g(c)

}
. (12)

The following claim gives a simple, yet useful, bound on the probability that our rounding
algorithm will separate two vertices in the graph.
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▷ Claim 20. Let u, v ∈ V , let xi = ∥yi
u∥2 and wi = ∥yi

v∥2 for i = 1, 2, 3 and c be a
configuration corresponding to this pair. Then it holds that

f(c) ≥ |x1 − w1| + |x2 − w2| + |x3 − w3|
2 .

We characterize the configuration space C which we will consider in the computer assisted
proof.

▶ Lemma 21. Let c = (x1, x2, x3, w1, w2, w3, α1, α2, α3, t1, t2, t3) ∈ C. Then c satisfies the
following:
1. x1 + x2 + x3 = w1 + w2 + w3 = 1.
2. 0 ≤ αi ≤ min{xi, wi} for all i = 1, 2, 3.
3. max{0, x3 − α3 + α1 − w1, w2 − α2 + α1 − x1} ≤ min{w2 − α2, x3 − α3, x2 + x3 − w1 +

α1 − α2 − α3}.

4. ti = αi−xiwi√
(xi−x2

i
)(wi−w2

i
)

for i ∈ [3].

We define the following two polytopes which we will consider when verifying bounding µ′.
These polytopes help us to speed up the branch and bound procedure.
1. S ≜ {(x1, x2, x3, w1, w2, w3, α1, α2, α3, t1, t2, t3)|x1 ≤ min(x2, w1, w2, w3, x3), x2 ≤ x3}.
2. E ≜ {c = (x1, x2, x3, w1, w2, w3, α1, α2, α3, t1, t2, t3)} such that

3∑
i=1

|xi − wi|
2 ≤ ρg(c), g(c) ≥ δ′}.

The following claim shows why we can restrict to configurations in S and follows from
the symmetry of f, g.

▷ Claim 22. Let c ∈ C − S. Then there exists c′ ∈ C ∩ S such that f(c) = f(c′) and
g(c) = g(c′).

Then Claim 22 and Claim 20 imply the following.

▷ Claim 23. If infc∈C∩S∩E
f(c)
g(c) ≥ ρ then µ′ ≥ ρ.

Proof. By Claim 22 we get the following: µ′ = infc∈C,g(c)≥δ′
f(c)
g(c) = infc∈C∩S,g(c)≥δ′

f(c)
g(c) .

Assume for contradiction that µ′ = minc∈C∩S,g(c)≥δ′
f(c)
g(c) < ρ. Then ∃c′ ∈ C ∩ S with

g(c′) ≥ δ′ and f(c′)
g(c′) < ρ. We have that c′ /∈ E otherwise g(c′) ≥ ρ by the assumption of the

lemma. Then by definition of E ,
∑3

i=1
|xi−wi|

2 > ρg(c′), but this is a contradiction by Claim
20 since f(c′) >

∑3
i=1

|xi−wi|
2 > ρg(c′). ◁

Thus our goal for the computed assisted proof is to show infc∈C∩S∩E
f(c)
g(c) ≥ ρ for some value

of ρ. Given 12 intervals (I1, . . . , I12) we define the following polytopes to divide our feasible
region into hypercubes. Consider the following polytope,

P(I1, . . . , I12) = (I1 × I2 . . . × I12) ∩ C.

Note that intervals Ij correspond to possible values of xj for j ∈ [3], intervals I3, I4, I5
correspond to values of w1, w2, w3, intervals I7, I8, I9 correspond to values of α1, α2, α3,
and intervals I10, I11, I12 correspond to t1, t2, t3. Our computer assisted proof enumerates
I1, . . . , I12 so that the union of all P(I1, . . . , I12) ∩ S ∩ E covers C ∩ S ∩ E . For each I1, . . . , I12
we show one of the following three:
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1. P(I1, . . . , I12) ∩ S ∩ E = ∅.
2. infc∈P(I1,...,I12)∩S∩E

f(c)
g(c) ≥ ρ.

3. Divide (I1, . . . , I12) into a collection U whose union equals (I1, . . . , I12) so that each
(I ′

1, . . . , I ′
12) ∈ U satisfies one of the first two items.

which implies the hypothesis of Claim 23. The third item is the branching step and the first
two items are how we eliminate branches. For our computer assisted proof we will only consider
x1, x2, w1, w2, t1, t2, t3 as independent variables. The remaining variables w3, x3, α1, α2, α3
will always take values w3 = 1−w1 −w2, x3 = 1−x1 −x2, αi = xiwi +ti

√
(xi − x2

i )(wi − w2
i )

for i ∈ [3]. Our algorithm runs in stages. In the first stage we use an LP to eliminate
hypercubes. The first stage works as follows,
1. Enumerate all I = (I1, . . . , I12) such that |Ij | = η1 for j ∈ {1, 2, 4, 5} and |Ij | = η2 for j =

10, 11, 12 that the union of all (I1, I2, I3, I4, I10, I11, I12) covers the region [0, 1]4 × [−1, 1]3.
Note that intervals I5, I6, I7 can be determined by the bounds on the other intervals, Ij

such that j /∈ {5, 6, 7}. This follows since bounds on xi, wi, ti imply bounds on αi because
αi = ti

√
(xi − x2

i )(wi − w2
i ) + xiwi. Similarly, I3, I6 are determined by I1, I2 and I4, I5

respectively since x3 = 1 − x1 − x2 and w3 = 1 − w1 − w2.
2. For each hypercube I enumerated in the previous step, check that P(I) ∩ E ∩ S contains

a feasible point by solving an LP. If yes, save I for further processing.

Partial Derivatives

A crucial ingredient of the branch and bound procedure is to obtain a lower bound on the
function f(c) for any configuration c ∈ I in any cube. This we do by computing f(c∗) for
some well chosen c∗ ∈ I and then using bounds on the partial derivatives to infer a bound
f(c) for all other c ∈ I. A tight bound on partial derivatives ensures a smaller branch and
bound tree. We detail the partial derivatives and bounds thus obtained now. Previously, we
defined the notion of configuration and the function f as a function of 12 variables. Since
we only consider (x1, x2, w1, w2, t1, t2, t3) as variables we have ∂f

∂x3
= ∂f

∂w3
= ∂f

∂αi
= 0 and f, g

are functions of 7 independent variables. We recall the definition of f

f(x, w, α, t) =1 − 1
6
∑

π∈S3

[
Γtπ(1)

(
xπ(1), wπ(1)

)
+ Γtπ(1)

(
1 − xπ(1), 1 − wπ(1)

)
·

·
(

Γtπ(2)

(
1 −

xπ(2)

1 − xπ(1)
, 1 −

wπ(2)

1 − wπ(1)

)
+ Γtπ(2)

(
xπ(2)

1 − xπ(1)
,

wπ(2)

1 − wπ(1)

))]
.

Moreover, for our use we can assume that the domain of f is 0 ≤ x1 +x2 ≤ 1, 0 ≤ w1 +w2 ≤ 1,
α1, α2, α3 ∈ [0, 1] and t1, t2, t3 ∈ [−1, 1]. In the following, we are going to prove bounds on
the partial derivatives of f(x, w, α, t) with respect to xi, wi and ti.

▶ Lemma 24. For each (x, w, α, t) in the domain of configuration, the following bounds on
the partial derivatives of f hold:
1. ∂

∂ti
f(x, w, α, t) < 0, for i = 1, 2, 3.

2. | ∂
∂xi

f(x, w, α, t)| ≤ 5
3 − 1

3 (1 − x3−i), for i = 1, 2.
3. | ∂

∂wi
f(x, w, α, t)| ≤ 5

3 − 1
3 (1 − w3−i), for i = 1, 2.

The proof of the lemma is technical and appears in the full version of the paper. We now
have the following claim that gives a lower bound on all configurations in the hypercube as
compared to the point m in it.
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▷ Claim 25. Let I be a hypercube and Q ≜ P(I)∩S ∩E . Let m ∈ R12 be a point where the
coordinates corresponding to x1, x2, w1, w2 are the midpoints I1, I2, I4, I5 respectively and
the last 3 coordinates corresponding are t1, t2, t3 which are the upper bounds of I10, I11, I12.
Then the following holds,

min
c=(x1,...,t1,t2,t3)∈Q

f(x1, x2, . . . , t1, t2, t3) ≥ f(m) − 1
6

∑
z∈{x,w}

2∑
i=1

(5 − (1 − z3−i))(zi − zi).

▶ Lemma 26. Let I, m, Q be defined as in Claim 25. Then minc∈Q
f(c)
g(c) ≥ ρ if,

f(m) − 1
6

∑
z∈{x,w}

2∑
i=1

(5 − (1 − z3−i))(zi − zi) ≥ ρ max
c∈Q

g(c)

where zi, zi for z ∈ {w, x} are the upper and lower bounds given by their corresponding
interval in I.

Proof. We use the fact that f is non-increasing in ti and Claim 25 to get,

min
c∈Q

f(c) ≥ min
c=(x1,x2,...,t1,t2,t3)∈Q

f(x1, x2, . . . , t1, t2, t3)

≥ f(m) − 1
6

∑
z∈{x,w}

2∑
i=1

(5 − (1 − z3−i))(zi − zi)

The first inequality follows since f is non-increasing in t, α by Lemma 24. The third inequality
follows by Claim 25. Thus by the inequality in the lemma and the relation above, we have
shown: minc∈Q f(c) ≥ ρ maxc∈Q g(c). ◀

Now we describe the final stage of the experiment which eliminates all remaining cubes
from the first stage.
1. For all remaining hyper cubes I from stage 1 run the following steps until all cubes are

eliminated.
2. Split the intervals I1, I2, I4, I5 corresponding to x1, x2, w1, w2 into halves to get 16 smaller

sub-hypercubes (I ′
1, . . . , I ′

9, I10, I11, I12). We note that this also tightens the intervals
corresponding to x3, w3, α1, α2, α3. Check if each smaller hypercube has a feasible point
in P(I ′

1, . . . , I ′
9, I10, I11, I12) ∩ S ∩ E . If yes, then the sub-hypercube can be eliminated.

3. Otherwise, verify if the inequality in 26 holds. If yes, the sub-hypercube can be eliminated.
4. Otherwise, split the t1, t2, t3 intervals into halves to get 8 sub-hypercubes

I ′ = (I ′
1, . . . , I ′

9, I ′′
10, I ′′

11, I ′′
12). This also tightens the intervals for α1, α2, α3. Check if each

smaller hypercube I ′ has a feasible point in P(I ′) ∩ S ∩ E . If yes, then the sub-hypercube
can be eliminated.

5. Otherwise, split the sub-hyper cube into 16 smaller hyper-cubes using Step 2. Repeat
Steps 2-5 until all sub cubes are eliminated.

We ran this branch and bound procedure with ρ = 0.80, δ′ = 0.01 giving a final approximation
of 0.795.

6 Max-k-Section

Our algorithm for Max-3-Section can be generalized for larger number of sections in the
following way. For a natural number k ≥ 4, one can write a similar SDP formulation, where
each node v ∈ V has k vectors y1

v, . . . , yk
v , with similar constraints and objective for the SDP
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for Max-3-Section: maximize
∑

{u,v}∈E ·(1 −
∑k

i=1 yi
u · yi

v). The rounding algorithm will
work in a similar way. For example, we consider k = 4. We draw a random permutation π in
S4 and three random gaussian vectors g1, g2, g3 with coordinates independently distributed
by N(0, 1). Then, we define Sπ(1) and Sπ(2) in the same way like in the algorithm for
Max-3-Section. Next, we define

Sπ(3) ≜

{
u ∈ V : zπ(3)

u · g3 ≥ Φ−1

(
1 − ∥yπ(3)

u ∥2

1 − ∥yπ(1)
u ∥2 − ∥yπ(2)

u ∥2

)}

and the four clusters in the output will be Cπ(1) = Sπ(1), Cπ(2) = Sπ(2) \ Sπ(1), Cπ(3) =
Sπ(3) \ (Sπ(2) ∪ Sπ(1)) and Cπ(4) = V \ (Sπ(1) ∪ Sπ(2) ∪ Sπ(3)). Then, for any constant k, we
can claim that with high probability the solution is concentrated and can be re-balanced,
similarly to Lemma 15 and Lemma 16.

Our goal now is to bound the approximation factors that these algorithms achieve, for each
k. As we discussed in the previous sections, computing the worst approximation guarantee,
or even bounding it analytically is not an easy task. For k = 3, we used the branch and
bound algorithm and presented a lower bound on the approximation ratio. For larger values
of k, the computer-assisted proof method becomes computationally harder. However, one
possible approach is to try and give a numerical estimation for the approximation factor. We
will do that in the following way: for each k, one can write an optimization problem over k2

variables that represent the inner products yi
u · yj

v, for each i, j ∈ [k], or as we denoted before,
a feasible configuration. Then, we wish to minimize the ratio of the probability that u, v are
separated and the contribution of the edge {u, v} to the SDP, which is 1 −

∑k
i=1 yi

u · yi
v. To

solve that optimization problem, we use Matlab and the fmincon functionality which can
find a local minimum for this optimization problem, but only a local minimum. Therefore,
we repeat the experiment for numerous random starting points in the feasible region. The
results of the numerical estimations of the approximation for k = 3, 4, 5 are presented in
Conjecture 3.

We note that given a configuration of vectors y1
u, y2

u, y3
u, y1

v, y2
v, y3

v that has a ratio of
ρ between the separation probability and the contribution of the edge (u, v) to the SDP
solution for Max-3-section, one can construct a configuration for max-4-section by adding
two zero vectors y4

u, y4
v. That configuration will have the same contribution for the SDP

for max-4-section, and the separation probability will also be the same, even though the
algorithm admits four sections. Therefore, in that way of analysis, the approximation ratio
of our algorithm can only decrease as k increases. However, our numerical estimations show
that for k ≤ 5, the approximation is not worse than 0.8192. In addition, we note that the
simple algorithm that returns a random balanced k-partition achieves a 1 − 1

k approximation,
hence for k = 3, 4, 5 our algorithm surpasses it.
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Abstract
In the L0 Fitting Tree Metrics problem, we are given all pairwise distances among the elements of a
set V and our output is a tree metric on V . The goal is to minimize the number of pairwise distance
disagreements between the input and the output. We provide an O(1) approximation for L0 Fitting
Tree Metrics, which is asymptotically optimal as the problem is APX-Hard.

For p ≥ 1, solutions to the related Lp Fitting Tree Metrics have typically used a reduction to Lp

Fitting Constrained Ultrametrics. Even though in FOCS ’22 Cohen-Addad et al. solved L0 Fitting
(unconstrained) Ultrametrics within a constant approximation factor, their results did not extend to
tree metrics.

We identify two possible reasons, and provide simple techniques to circumvent them. Our
framework does not modify the algorithm from Cohen-Addad et al. It rather extends any ρ

approximation for L0 Fitting Ultrametrics to a 6ρ approximation for L0 Fitting Tree Metrics in a
blackbox fashion.
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1 Introduction

Trees are used by many disciplines to describe relationships between entities. For example,
in biology, the universal tree of life describes evolutionary distances between organisms. In
fact, trees are relevant for any historical science studying an evolutionary branching process
(e.g. historical linguistics and sociocultural evolution).

In these cases, we are guaranteed that the underlying truth can be described by a tree.
This underlying tree may even have a special structure. For example in machine learning
and data analysis (see e.g.: [3]) it may be an ultrametric, that is a rooted tree with all
leaves being at the same depth. In any case, our access to this tree is usually only through
estimations of pairwise distances. A natural task is thus the reconstruction of the tree, given
(noisy) measurements of pairwise distances.

As the noisy measurements may not describe a tree, we are interested in finding the
“closest” tree to the input. In this work we study the problem of minimizing the number of
pairwise distance disagreements between the measurements and the output tree. As noted
in [6], this objective has a practical relevance; often the distances are obtained by different
(human) classifiers. It is expected that most will do a good job, but if an error occurs, it
may be by a large amount.

Other objectives have also been studied, e.g. minimizing the total error [2, 5, 8], or
minimizing the maximum error [1]. In order to formally introduce a class of problems that
captures all aforementioned objectives we first make some definitions.
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1.1 Problem Definitions
Given a set V , we denote by

(
V
2
)

the set of all (unordered) pairs of disjoint elements from
set V . We use the term distance matrix to refer to a function from

(
V
2
)

to the non-negative
reals. Let D be a distance matrix. We slightly abuse notation and say that for any u ∈ V ,
D(u, u) = 0. For p ≥ 1, we say that ∥D∥p = p

√∑
{u,v}∈(V

2 ) |D(u, v)|p is the Lp norm of D.
We extend the notation for p = 0. In this case ∥D∥0 denotes the number of pairs {u, v} such
that D(u, v) ̸= 0. We even say ∥D∥0 is the L0 norm of D, despite L0 not being a norm. For
ease of notation, we use 00 = 0, so that x0 = 0 if x = 0, and 1 otherwise. As in [6] (and
implicitly in [1]), we allow tree metrics and ultrametrics to have distances equal to 0.

▶ Definition 1. In the Lp Fitting Tree (Ultra) Metrics problem, we are given as input a set
V and a distance matrix D.

The output is a tree metric (or ultrametric) T that spans V and fits D in the sense of
minimizing the Lp-norm

∥T − D∥p =
p

√√√√ ∑
{u,v}∈(V

2 )
|T (u, v) − D(u, v)|p.

We also define a similar problem, Lp Fitting Constrained Ultrametrics. It was initially
defined in [1], who proved that, for p ≥ 1, a ρ approximation for Lp Fitting Constrained
Ultrametrics translates to a 3ρ approximation for Lp Fitting Tree Metrics.

▶ Definition 2. In the Lp Fitting Constrained Ultrametrics problem, we are given as input
a set V , a distance matrix D, a distinguished element α ∈ V , a positive number h and a
positive number lu for each u ∈ V . In particular it holds that lα = h.

The output is an ultrametric U that spans V . It shall also hold that

max{lu, lv} ≤ U(u, v) ≤ h ∀{u, v} ∈
(

V

2

)
.

U shall fit D in the sense of minimizing the Lp-norm

∥U − D∥p =
p

√√√√ ∑
{u,v}∈(V

2 )
|U(u, v) − D(u, v)|p.

1.2 Previous work
When the input is a tree metric, a corresponding tree can be found in O(|V |2) time (linear
in the input size) [9]. As this is usually not the case, research focused on Lp Fitting Tree
Metrics.

The first Lp Fitting Tree Metrics problem solved within an asymptotically optimal
approximation factor is the L∞ Fitting Tree Metrics problem, by Agarwala et al. [1]. In
order to solve it, the authors give a reduction to the L∞ Fitting Constrained Ultrametrics
problem which increases the approximation by a factor 3. They then use the exact solution
of this problem from [7]. In the same paper, they also show how to extend this reduction for
any Lp norm, p ≥ 1.

This reduction turned out to be an essential tool for tackling Lp Fitting Tree Metrics.
Harp, Kannan and McGregor [8] developed an O(min{n, k log n}1/p) approximation factor for
Lp Fitting Ultrametrics, p ≥ 1, where k is the number of distinct distances in the input. Using
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the reduction from [1], they extend their result to the Lp Fitting Tree Metrics case1. Similarly,
Ailon and Charikar [2] get an O(((log n)(log log n))1/p) approximation for the ultrametrics
case, which they then extend to the tree metrics case using the well established reduction.
Finally, Cohen-Addad et al. [5] achieve an asymptotically optimal O(1) approximation factor
for L1 Fitting Tree Metrics, again using an asymptotically optimal O(1) approximation factor
for the ultrametrics case.

In FOCS ’22 Cohen-Addad et al. [6] solved the L0 Fitting Ultrametrics problem within an
asymptotically optimal O(1) approximation factor. However, their result was not extended
to the L0 Fitting Tree Metrics problem. We identify two possible reasons for that:

Most importantly, the reduction from [1] does not work for L0. The reason is that a
crucial step of it uses the convexity of all Lp-norms, p ≥ 1. L0 however is not convex
(and in fact is not a norm).
Even if the reduction worked for L0, the algorithm for L0 Fitting Ultrametrics should be
extended to the L0 Fitting Constrained Ultrametrics problem.

1.3 Our results
In this work we show how any ρ approximation for L0 Fitting Ultrametrics can be extended
to a 6ρ approximation for L0 Fitting Tree Metrics.

In particular, we extend the reduction from [1] to the L0 case, despite L0 not being
convex. We do so by avoiding the averaging argument from [1] which required convexity,
and was necessary to prove the existence of a node with certain properties. Our argument is
of course only valid for L0.

Furthermore, we show how one can use any algorithm for L0 Fitting Ultrametrics to solve
L0 Fitting Constrained Ultrametrics, in a blackbox manner. In contrast [1, 2, 8] all needed
to apply ad-hoc modifications to their Lp Fitting Ultrametrics algorithms to also solve Lp

Fitting Constrained Ultrametrics.
An immediate corollary of these two results is that the ultrametrics algorithm from [6]

can be used to get an asymptotically optimal O(1) approximation factor for L0 Fitting
Tree Metrics. Even though this constant is large, any improved approximation factor for
L0 Fitting Ultrametrics would immediately yield an improved approximation for L0 Fitting
Tree Metrics, using this framework.

Finally, we prove that L0 Fitting Tree Metrics is APX-Hard.
It is interesting to notice that apart from avoiding the averaging argument from [1], the

rest follow existing techniques. However, due to the special structure of L0, we significantly
simplify them.

2 From tree metrics to ultrametrics

In this section we prove the following result:

▶ Theorem 3. A factor ρ ≥ 1 approximation for L0 Fitting Ultrametrics implies a factor 6ρ

approximation for L0 Fitting Tree Metrics.

1 The authors erroneously claim that they get the same approximation for the closest tree metric problem.
However, the known reduction may create ω(k) distinct distances. We believe that the dependence in k
is polynomial, which makes the approximation worse, but still non-trivial.
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Let D be a distance matrix, α ∈ V be a distinguished element and T be a tree spanning
V . In more details, there exists a function mapping elements from V to nodes in T . If
element u ∈ V is mapped to node u′ ∈ T , we say that u is associated with u′. We even say
“node u” to refer to the node associated with u. We note that T may also have auxiliary
nodes, without any element from V being mapped to them.

We say T is an α-restricted tree if the distance from α to any other element u is the same
both in T and in D.

Given a tree T we can obtain an α-restricted tree T /α by modifying T as in Figure 1.
We say that T /α is the α-restricted tree of T .

1

2

4

5

7

4

1

3

1 0 8 3 6
2 8 0 12 4
3 3 12 0 16
4 6 4 16 0

D T T /1

5

3

4

1

2

3

4

3

3

1 2 3 4

Figure 1 T is not α-restricted, for any α ∈ {1, 2, 3, 4}. By modifying T we get T /1 which is
1-restricted. Nodes 3 and 4 move towards 1, while 2 moves away from 1 (by creating a new leaf).
Notice that some nodes of T may be irrelevant for T /1; however we do not need to explicitly delete
them.

Intuitively, for any element u, if T (α, u) ̸= D(α, u), we move u either closer to or further
from α. More specifically, if T (α, u) > D(α, u), then:

if there exists a node in the path from u to α at distance D(α, u) from α, we associate u

with this node,

else there exists an edge in the path from u to α such that one of its endpoints is at
distance less than D(α, u) from α, and the other endpoint is at distance larger than
D(α, u) from α. In this case we subdivide this edge in order to introduce a new node at
distance exactly D(α, u) from α. Then we associate u with this new node.

Else if D(α, u) > T (α, u) we create a new leaf under the node previously associated with u;
the length of the edge connecting them is D(α, u) − T (α, u). Then we associate u with the
newly created leaf, instead of its parent.

The proof strategy for our main result is the following:

In order to approximate the optimal tree, it suffices to approximate the optimal α-
restricted tree, for some α ∈ V . We prove this in Section 2.1.

In order to approximate the optimal α-restricted tree, it suffices to approximate L0
Fitting Constrained Ultrametrics. The proof directly follows from [1]; we include it in
the full version for completeness.

In order to approximate L0 Fitting Constrained Ultrametrics, it suffices to approximate
L0 Fitting Ultrametrics. We prove this in Section 2.2.
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2.1 From tree metrics to restricted tree metrics
The main point where the reduction from [1] breaks for L0 is the connection between optimal
tree metrics and optimal α-restricted tree metrics. The reason is that an averaging argument
used to prove the result uses the convexity of Lp-norms, p ≥ 1. In fact, this argument shows
the existence of an element α such that the optimal α restricted tree is very close to the
optimal tree. Then one can try all elements α and pick the best of them.

We show that even though L0 is not convex, we can still select α in the same way as
in [1]. In particular, we show that for any tree T , there exists an element α such that its
α-restricted tree metric T /α does not increase the cost by more than a factor 3.

▶ Lemma 4. Let D be a distance matrix and T be a tree. Then there exists an element α

such that for the α-restricted tree T /a of T it holds that ∥D − T /a∥0 ≤ 3∥D − T∥0.

Proof. We simply let α be the element that minimizes disagreements, that is

α = argminu∈V ∥D(u) − T (u)∥0

where D(u) is the distance matrix D restricted on the pairs containing u (similarly for T (u)).
We have that ∥D − T∥0 = 1

2
∑

u∈V ∥D(u) − T (u)∥0, as the sum in the right hand side double
counts every pair u, v with D(u, v) ̸= T (u, v). By definition of α, every term in the sum is
lower bounded by ∥D(α) − T (α)∥0, meaning that

∥D − T∥0 ≥ n

2 ∥D(α) − T (α)∥0.

We say that an element u is good if D(α, u) = T (α, u), and bad otherwise; notice that by
definition, the number of bad elements is exactly ∥D(α) − T (α)∥0. As any element u can
have at most n − 1 disagreements in T /α (that is ∥D(u) − T /α(u)∥0 ≤ n − 1), it follows that
the number of pairs u, v with at least one of u, v being bad and D(u, v) ̸= T /α(u, v) is at
most ∥D(α) − T (α)∥0 · (n − 1) ≤ 2∥D − T∥0.

On the other hand, notice that if both u, v are good, then by construction T /α(u, v) =
T (u, v). Therefore, if D(u, v) ̸= T /α(u, v), it also holds that D(u, v) ̸= T (u, v). The number
of such pairs is upper bounded by ∥D − T∥0. ◀

Letting T be an optimal solution for L0 Fitting Tree Metrics establishes that it suffices to
approximate the optimal α-restricted tree, only increasing the approximation by a factor 3.

Furthermore, we can directly use the techniques from [1] to show that any approximation
for the constrained ultrametrics problem can give the exact same approximation for the
optimal α-restricted tree. We include this proof in the full version for completeness, as it is
itself very brief. However we do not include it here, as it has been extensively used in the
literature.

Notice that these results already show that a ρ approximation for L0 Fitting Constrained
Ultrametrics translates to a 3ρ approximation for L0 Fitting Tree Metrics. This is an
extension of the result of [1] for the L0 case.

2.2 From constrained ultrametrics to ultrametrics
In this section we show that it is sufficient to approximate L0 Fitting Ultrametrics, which is
more natural than L0 Fitting Constrained Ultrametrics. The technique used follows the one
used in [5] for Lp, p ∈ {1, 2, . . .} ∪ {∞}. However, in the case of L0 we can simplify.

The high-level view of the technique is the following: Instead of trying to find a constrained
ultrametric close to a distance matrix D, we rather squeeze D itself to obey the constraints.
Let SD be the resulting distance matrix. Then we find an (unconstrained) ultrametric U
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close to this matrix SD; due to the extra structure we imposed on SD, we can only improve U

if we again squeeze it to obey the constraints. The resulting ultrametric SU is a constrained
ultrametric, but all we needed to obtain it was a black-box algorithm for general ultrametrics.

We now define the squeezing process more formally. In the L0 Fitting Constrained
Ultrametrics problem, for every element u we are given a value lu which we call u’s lower-
bound. Furthermore we are given an upper bound h.

A constrained ultrametric U shall satisfy that

h ≥ U(u, v) ≥ max{lu, lv} ∀{u, v} ∈
(

V

2

)
.

Given a distance matrix A, we define the squeezed A as the distance matrix SA for which
SA(u, v) = min{h, max{D(u, v), lu, lv}}, for all {u, v} ∈

(
V
2
)
. Intuitively, SA is obtained by

squeezing A to fit the constraints.
We use the well-known characterization of ultrametrics, that U is an ultrametric iff

∀{u, v, w} ∈
(

V
3
)

: U(u, v) ≤ max{U(u, w), U(v, w)}.

▶ Lemma 5. A factor ρ ≥ 1 approximation for L0 Fitting Ultrametrics implies a factor 2ρ

approximation for L0 Fitting Constrained Ultrametrics.

Proof. Our approach starts with creating SD, the squeezed D. Notice that if U ′ is a
constrained ultrametric, then ∥U ′ − SD∥0 ≤ ∥U ′ − D∥0. This follows because for any u, v it
holds that max{lu, lv} ≤ U ′(u, v) ≤ h, due to U ′ being a constrained ultrametric. Therefore
D(u, v) = U ′(u, v) only if max{lu, lv} ≤ U ′(u, v) ≤ h. But in this case SD(u, v) = D(u, v) =
U ′(u, v).

Similarly, suppose we have an ultrametric U , and we create the squeezed SU .
With the exact same reasoning, we have

∥SD − SU ∥0 ≤ ∥SD − U∥0. (1)

Our solution to L0 Fitting Constrained Ultrametrics is to first create SD by squeezing
D, then obtain ultrametric U by a ρ approximation to L0 Fitting Ultrametrics on SD, and
finally obtain SU by squeezing U .

Let OPTD,C be the closest constrained ultrametric to D, and OPTSD
be the closest

ultrametric to SD. It suffices to show that ∥D − SU ∥0 ≤ 2ρ∥D − OPTD,C∥0 and that SU is
indeed an ultrametric.

By definition of SD, and since OPTD,C is constrained, for any two elements u, v it holds
that

min{D(u, v), OPTD,C(u, v)} ≤ SD(u, v) ≤ max{D(u, v), OPTD,C(u, v)}.

The proof follows by a straightforward case analysis of the 3 cases D(u, v) ≤ max{lu, lv},
max{lu, lv} < D(u, v) ≤ h, h < D(u, v). Therefore:

either D(u, v) = OPTD,C(u, v), in which case

|D(u, v) − OPTD,C(u, v)|0 = 0 = |D(u, v) − SD(u, v)|0 + |SD(u, v) − OPTD,C(u, v)|0

or D(u, v) ̸= OPTD,C(u, v), in which case

|D(u, v) − OPTD,C(u, v)|0 = 1, |D(u, v) − SD(u, v)|0 + |SD(u, v) − OPTD,C(u, v)|0 ≤ 2.
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We conclude that

|D(u, v) − SD(u, v)|0 + |SD(u, v) − OPTD,C(u, v)|0 ≤ 2|D(u, v) − OPTD,C(u, v)|0. (2)

We now have

∥D − SU ∥0 ≤ ∥D − SD∥0 + ∥SD − SU ∥0 (triangle inequality)
≤ ∥D − SD∥0 + ∥SD − U∥0 (1)
≤ ∥D − SD∥0 + ρ∥SD − OPTD,C∥0. (definition of U)

As ρ ≥ 1, the latter is upper bounded by

ρ
∑

{u,v}∈(V
2 )

(|D(u, v) − SD(u, v)|0 + |SD(u, v) − OPTD,C(u, v)|0)

≤ 2ρ
∑

{u,v}∈(V
2 )

(|D(u, v) − OPTD,C(u, v)|0) (2)

= 2ρ∥D − OPTD,C∥0.

Finally, we need to prove that SU inherits that it is an ultrametric. This is clear if we
proceed in rounds; each round we construct a new ultrametric, and the last one will coincide
with SU .

More formally, let U0 = U . In the first |V | rounds, we take out a different u′ ∈ V at a
time, and let

Ur(u′, v) = max{Ur−1(u′, v), lu′} ∀v ̸= u′.

Suppose r > 0 is the first round where Ur is not an ultrametric. Then there exists a
triplet {u, v, w} such that Ur(u, v) > max{Ur(u, w), Ur(v, w)}. As we only increase distances,
this may only happen if Ur(u, v) > Ur−1(u, v). But this means that at round r we picked
either u or v (w.l.o.g. assume it was u) and set Ur(u, v) = lu. However, this would also give
Ur(u, w) ≥ lu = Ur(u, v), contradicting Ur(u, v) > max{Ur(u, w), Ur(v, w)}.

Finally, for SU we simply have

SU (u, v) = min{h, U|V |(u, v)}.

Suppose there exists a triplet {u, v, w} that now violates the ultrametric property, then it
holds that

SU (u, v) > max{SU (u, w), SU (v, w)}.

As we did not increase any distance of U|V |, this means that SU (u, w) < U|V |(u, w) or
SU (v, w) < U|V |(v, w); but distances can only reduce to h which is an upper bound on
SU (u, v) by construction. ◀

To prove our main theorem we use the following result from [1]. We only provide its
proof in the full version, for completeness.

▶ Lemma 6 (Implicit in the proof of Lemma 3.5 of [1]). Let D be a distance matrix, α

be an element, and T be an α-restricted tree metric minimizing ∥T − D∥0. Assuming a
γ-approximation to L0 Fitting Constrained Ultrametrics, we can find an α-restricted tree T ′

such that ∥T ′ − D∥0 ≤ γ∥T − D∥0.
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We are now ready to prove our main theorem.

▶ Theorem 3. A factor ρ ≥ 1 approximation for L0 Fitting Ultrametrics implies a factor 6ρ

approximation for L0 Fitting Tree Metrics.

Proof. We iterate over all u ∈ V nodes. In every iteration we use Lemma 6 along with a 2ρ

approximation for L0 Fitting Constrained Ultrametrics (obtained by Lemma 5) to obtain
a tree Tu with ∥Tu − D∥0 ≤ 2ρ∥T ′

u − D∥0, where T ′
u is the optimal u-restricted tree metric.

Out of all the trees Tu that we obtain, we output T , the one that minimizes ∥Tu − D∥0.
Let TOP T be an optimal tree metric. By Lemma 4 there exists an element α such that for

the α-restricted tree T
/α
OP T of TOP T it holds that ∥T

/α
OP T − D∥0 ≤ 3∥TOP T − D∥0. Therefore

there exists an element α for which we have ∥T ′
α − D∥0 ≤ 3∥TOP T − D∥0.

It now holds that ∥T − D∥0 ≤ ∥Tα − D∥0 ≤ 2ρ∥T ′
α − D∥0 ≤ 6ρ∥TOP T − D∥0. ◀

▶ Corollary 7. There exists a polynomial time O(1) approximation for L0 Fitting Tree
Metrics.

Proof. Follows immediately, by using the polynomial time O(1) approximation for L0 Fitting
Ultrametrics from [6]. ◀

3 APX-Hardness

In this section we show that L0 Fitting Tree Metrics is APX-Hard. Assuming, for the sake
of contradiction, that it is not the case, we show how to approximate Correlation Clustering
(an APX-Hard problem [4]) within any constant factor.

This is a standard reduction used for Lp Fitting Tree Metrics, p ≥ 1. It is however further
simplified for L0. That is because once we decide to move a node, our cost does not depend
on the distance we moved it.

In Correlation Clustering, we are given an unweighted undirected graph G, and the goal is
to output a partition of the vertices2 (clustering) such that we minimize the number of pairs
of vertices connected by an edge in G that are in different parts of the partition (clusters)
plus the number of pairs of vertices not connected by an edge in G that are in the same part
of the partition.

The idea behind the reduction is the following: for every pair of vertices connected by an
edge in G = (V, E), we set their distance to 0, and for every pair of vertices not connected
by an edge, we set their distance to something larger (2 in our case). Then we solve L0
Fitting Tree Metrics. If the output tree has a good structure (every pair of nodes associated
with elements of V has equal distance), it would directly correspond to a clustering. Namely,
each node associated with elements of V corresponds to a cluster that contains all elements
associated with it (may be more than one). Even though we can guarantee that an optimal
solution has this structure, our approximation may not.

To fix this, we introduce many more elements at distance 0 from each other, and at
distance 1 from every element in V . This has the effect of maintaining the structure of an
optimal solution, while incuring a big error in every solution that does not have the desired
structure.

We now formally prove our result.

2 To avoid confusion, we use the term vertices when we refer to Correlation Clustering, and nodes when
we refer to a tree.
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▶ Theorem 8. L0 Fitting Tree Metrics is APX-Hard.

Proof. Let G = (V, E) be the input to Correlation Clustering, and ϵ > 0 be a sufficiently
small constant. For the sake of contradiction we assume that L0 Fitting Tree Metrics can be
approximated within an 1 + ϵ factor. Then we show that using this approximation, we can
approximate Correlation Clustering within the same factor.

Let V ′ be a set, disjoint from V , of size |V ′| = 2
(|V |

2
)
. For any two elements u′, v′ ∈ V ′

we have D(u′, v′) = 0. For u, v ∈ V we have that D(u, v) = 0 if {u, v} ∈ E, and 2 otherwise.
Finally, for u ∈ V, u′ ∈ V ′ we have D(u, u′) = 1. Let T be the tree output by L0 Fitting Tree
Metrics on D.

An upper bound for the optimal value is
(|V |

2
)
. To see this, create the tree T ′ consisting of

two nodes uT ′ , vT ′ at distance 1. All elements of V ′ are associated with uT ′ , and all elements
of V are associated with vT ′ . As the only disagreements between T ′ and D are pairs of
elements of V , the upper bound follows.

Furthermore, any solution that does not have all elements of V ′ associated with the
same node in T has cost at least |V ′| − 1. Therefore, for sufficiently small ϵ, T must have
all elements of V ′ associated with the same node v′. Similarly, all elements of V must be
associated with nodes at distance 1 from v′. In particular, this corresponds to an ultrametric,
where the root node is v′, and all leaves are at depth 1. In what follows we consider this tree
rooted at v′.

Finally, if any non-root node of T is at distance less than 1 from v′, we remove it by
connecting all its children with its parent node. Notice that this does not increase the number
of disagreements, because the distance between elements of V is either 0 or 2. After we can
no longer remove any node, we are left with a tree T with root v′, and children v1, . . . , vℓ

at distance 1 from v′ (thus distance 2 from each other). Each vi is associated with some
elements from V . Our solution to Correlation Clustering is the partition of V induced by
v1, . . . , vℓ.

By construction of D, the cost of this Correlation Clustering solution is exactly equal
to ∥T − D∥0. Furthermore, if C1, . . . , Cℓ′ is the optimal solution to Correlation Clustering,
we can create a tree with a root v′ and children v1, . . . , vℓ′ such that all elements of V ′ are
associated with v′ and all elements of Ci are associated with vi. This means that the optimal
Correlation Clustering cost is an upper bound to the optimal L0 Fitting Tree Metrics.

We conclude that we found an 1+ϵ approximation for Correlation Clustering, contradicting
its APX-Hardness. ◀

We note that the proof assumes some distances to be 0. If we want distances to be strictly
positive, we can select a sufficiently small constant δ instead of 0. Then, we replace nodes
that are associated with multiple elements with stars whose leaves all have distance δ to each
other.
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Abstract
A k-coloring of a tournament is a partition of its vertices into k acyclic sets. Deciding if a tournament
is 2-colorable is NP-hard. A natural problem, akin to that of coloring a 3-colorable graph with few
colors, is to color a 2-colorable tournament with few colors. This problem does not seem to have
been addressed before, although it is a special case of coloring a 2-colorable 3-uniform hypergraph
with few colors, which is a well-studied problem with super-constant lower bounds.

We present an efficient decomposition lemma for tournaments and show that it can be used
to design polynomial-time algorithms to color various classes of tournaments with few colors,
including an algorithm to color a 2-colorable tournament with ten colors. For the classes of
tournaments considered, we complement our upper bounds with strengthened lower bounds, painting
a comprehensive picture of the algorithmic and complexity aspects of coloring tournaments.
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1 Introduction

A tournament T = (V, A) is a complete, oriented graph: For each pair of vertices i, j ∈ V ,
there is either an arc from i to j or an arc from j to i (but not both). A subset of vertices
S ⊆ V induces the subtournament T [S]. If this subtournament contains no directed cycles,
then it is said to be acyclic. The problem of coloring a tournament is that of partitioning the
vertices into the minimum number of acyclic sets, sometimes referred to as the dichromatic
number [32]. Since a tournament contains a directed cycle if and only if it contains a directed
triangle, the problem of coloring a tournament is equivalent to partitioning the vertices into
the minimum number of sets so that each set does not contain a directed triangle.

Coloring tournaments can be compared to the problem of coloring undirected graphs.
For the latter, deciding if a graph is 2-colorable (i.e., bipartite) is easy, but it is NP-hard to
decide if a graph is 3-colorable. A widely-studied promise problem is that we are given a
graph promised to be 3-colorable and the goal is to color it (in polynomial time) with few
colors [34, 5, 23, 24]. For tournaments, it is easy to decide whether or not a tournament is
1-colorable (i.e., transitive), since this is exactly when the tournament is acyclic. However,
deciding if a tournament is 2-colorable is already NP-hard [8].

This suggests the following promise problem: Given a tournament promised to be 2-
colorable, what is the fewest number of colors with which it can be colored in polynomial time?
This question is the starting point for this paper and naturally leads to related problems
of determining upper and lower bounds for coloring various classes of tournaments. For
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Table 1 Best known lower and upper bounds for various graph coloring problems. All inapprox-
imability results are under the assumption P ̸= NP except those denoted by ∗, which are under
the d-To-1 Conjecture [26]. The lower bound should be read as, “It is hard to color a 3-colorable
graph with 5 colors.” The upper bound as, “A 3-colorable graph can be (efficiently) colored with
Õ(n0.19996) colors.”

Graph Type Lower Bound Upper Bound
3-Colorable graphs 5 [6], O(1)∗ [18] Õ(n0.19996)[24]
k-Colorable graphs, k ≥ 3 2k − 1 [6], O(1)∗[18] O(n1− 3

k+1 ) [23]
General graphs n1−ϵ [22, 35] O(n(log log n)2(log n)−3) [19]
3-Uniform 2-colorable hypergraphs O(1) [11] Õ(n 1

5 ) [29]

comparison, the complexity landscape of graph coloring is well studied and we have a general
understanding of what it looks like. (See Table 1.) In contrast, the problem of coloring
tournaments has been studied very little from the algorithmic or complexity perspective.
This paper is an effort to address this disparity.

1.1 Previous Work
The problem of coloring a 2-colorable tournament with few colors is a special case of coloring
a 2-colorable 3-uniform hypergraph with few colors. Deciding if a 3-uniform hypergraph is
2-colorable is NP-hard [31] and more recently it was proved to be NP-hard to color with any
constant number of colors [11]. On the positive side, a 2-colorable 3-uniform hypergraph can
be colored in polynomial time with Õ(n1/5) colors [1, 7, 29], a result which uses tools from
and is analogous to that of [23] for 3-colorable graphs. Thus, Õ(n1/5) is the best-known upper
bound on the number of colors needed to efficiently color a 2-colorable tournament. Deciding
if a tournament is 2-colorable is NP-hard [8] and furthermore, deciding if a tournament is
k-colorable for any k ≥ 2 is NP-hard [15]. It is consistent with these results that we can, say,
efficiently color a 2-colorable tournament with three colors.

From a structural graph theory perspective, the problem of coloring tournaments has
been widely studied due to its connection to the famous Erdős-Hajnal Conjecture [12, 9],
which has an equivalent formulation in terms of tournaments [2]. The latter posits that
for any tournament H, there is a constant ϵH (where 0 < ϵH ≤ 1) such that any H-free
tournament on n vertices has a transitive subtournament of size at least O(nϵH ). [4] exactly
characterize the tournaments for which ϵH = 1, which they call heroes. Forbidding a hero in
a tournament T actually results in T being colorable with a constant number of colors [4],
which yields a transitive induced subtournament of linear size. These results are existential
and do not provide an efficient algorithm to color an H-free tournament with a constant
number of colors, when H is some fixed hero.

1.2 Our Results
We consider some basic algorithmic and computational complexity questions on the subject of
coloring tournaments. Our main algorithmic tool, presented in Section 2, is a decomposition
lemma which can be used to obtain efficient algorithms for coloring tournaments in various
cases when certain conditions are met. On a high level, it bears some resemblance to
decompositions previously used to prove bounded dichromatic number in tournaments and
in dense digraphs with forbidden subgraphs [4, 20]. To apply our decomposition lemma
to 2-colorable tournaments, we use an observation used by [1, 7, 29] which states that
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Table 2 Best known polynomial time inapproximability results and approximation algorithms
for various tournament coloring problems. Previous results are indicated with a citation. All the
results without a citation are established in this paper. Lower bounds are under the assumption
P ̸= NP except those marked with a ∗, which hold under the d-To-1 Conjecture [26]. The function
g(k) denotes the number of colors needed to efficiently color a k-colorable graph, while f(k) is the
number of colors needed to efficiently color a k-colorable tournament. The entry indicated by † is a
hardness of approximation result.

Tournament Type Lower Bound Upper Bound
2-Colorable tournaments 2[8], 3 10
3-Colorable tournaments 5, O(1) ∗ Õ(n0.19996)
k-Colorable tournaments, k ≥ 2 2k − 1, O(1) ∗ 5 · f(k − 1) · g(k)
2-Colorable light tournaments in P? 5
Light tournaments in P? 9
General tournaments n

1
2 −ϵ † n/ log n[13]

there is an efficient algorithm to partition a 2-colorable tournament into two tournaments
that are each light. A light tournament is one in which for each arc uv, the set of vertices
N(uv) = {w | uvw forms a directed triangle} is transitive. (Let C3 denote a directed triangle.
A light tournament is H-free where H is the hero (C3, 1, 1).)

In fact, due to this observation and the fact that [4] showed that light tournaments have
constant dichromatic number, it cannot be NP-hard (unless NP= co-NP) to color a 2-colorable
tournament with O(1) colors. (This does not however immediately imply that there is an
efficient algorithm, since there are many search problems that are believed to be intractable
even though their decision variant is easy, e.g., those in the class TFNP.) Although [4] did not
provide an efficient algorithm to color a light tournament with a constant number of colors,
a careful modification of their techniques indeed results in a polynomial-time algorithm using
around 35 colors to color a light tournament.

Like some other lemmas which show that the dichromatic number of a tournament is
bounded (i.e., constant) if the out-neighborhoods of vertices have bounded dichromatic
number [21], our decomposition lemma also has a local-to-global flavor: If the sets N(uv)
can be efficiently colored with few colors for all arcs uv and if there are two vertices s and t

such that the out-neighborhood of s and the in-neighborhood of t can be efficiently colored
with few colors, then our decomposition lemma yields an efficient algorithm to color the
whole tournament with few colors.

We give applications of our algorithmic decomposition lemma in Section 3. Specifically,
we show that 2-colorable tournaments can be efficiently colored with ten colors and that
light tournaments can be efficiently colored with nine colors. We then use our toolbox to
study 3-colorable tournaments. Here we show that the problem of coloring a 3-colorable
tournament has a constant-factor reduction to the problem of coloring 3-colorable graphs.

Next, we strengthen the lower bounds by showing in Section 4 that it is NP-hard to color
a 2-colorable tournament with three colors. We then give a reduction from coloring graphs
to coloring tournaments, which implies, for example, that it is hard to color 3-colorable
tournaments with O(1) colors under the d-To-1 Conjecture of Khot [26]. Finally, we show
that it is NP-hard to approximate the number of colors required for a general tournament to
within a factor of O(n1/2−ϵ) for any ϵ > 0. Our results are summarized in Table 2.
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1.3 Notation and Preliminaries
Let T = (V, A) be a tournament with vertex set V and arc set A. Sometimes, we use V (T )
to denote its vertex set and A(T ) to denote its arc set. For S ⊂ V , we use T [S] to denote
the subtournament induced on vertex set S, although we sometimes abuse notation and refer
to the subtournament itself as S. We define uv ∈ A to be an arc directed from u to v. We
define N+(v) to be all w ∈ V such that arc vw ∈ A and N−(v) to be all w ∈ V such that
arc wv ∈ A. We let N+[v] = N+(v) ∪ {v} and N−[v] = N−(v) ∪ {v}. For S ⊂ V , we define
N+(S) =

⋃
v∈S N+(v), and we define N−(S), N+[S], N−[S] analogously. We use N±(S) to

denote vertices in V \ S that have at least one in-neighbor and at least one out-neighbor in
S. Sometimes we refer to N±(S) of a set as its mixed neighborhood.

For S, U ⊂ V such that S ∩ U = ∅, we use S ⇒ U to indicate that all arcs between S and
U are directed from S to U . Let C3 denote a directed triangle; usually, we refer to this simply
as a triangle. Define N(uv) ⊂ V to contain all vertices w such that uvw forms the directed
triangle consisting of arcs uv, vw and wu. In other words, N(uv) = N−(u) ∩ N+(v). For
three tournaments T1, T2 and T3, we use ∆(T1, T2, T3) to denote the tournament resulting
from adding all arcs from T1 to T2, all arcs from T2 to T3 and all arcs from T3 to T1.

A tournament T = (V, A) is k-colorable if there is a partition of V into k vertex-disjoint
sets, V1, V2, . . . , Vk, such that T [Vi] is transitive for all i ∈ {1, . . . , k}. We use χ⃗(T ) to denote
the dichromatic number of T (i.e., the minimum number of transitive subtournaments into
which V (T ) can be partitioned). Computing the value χ⃗(T ) is in general NP-hard [8]. We
therefore use χ⃗C(T ) to denote the number of colors by which T can be efficiently colored.
Our goal is to find upper and lower bounds on χ⃗C(T ).

We remark that we will always assume that a tournament T which we want to color is
strongly connected; if this were not the case, we can color each strongly connected component
separately. Therefore, each vertex has an out-neighborhood containing at least one vertex.

2 Efficient Tournament Decomposition for Coloring

We present a decomposition for a tournament that can be computed in polynomial time and
yields an efficient method to color a tournament tournaments with few colors in certain cases.

▶ Definition 1. We define a c-vertex chain (vi)0≤i≤k of a tournament T the following way:
Let v0 and vk be a pair of vertices such that χ⃗C(N+(v0) ∪ N−(vk)) ≤ c, and let (vi)0≤i≤k be
the vertices in the shortest directed path from v0 to vk.

Additionally, we define an arc chain (ei)1≤i≤k corresponding to a vertex chain, where ei

is the arc from vi−1 to vi. The main idea behind this decomposition is to build zones that
can be efficiently colored, and such that all arcs between zones at distance more than four
(i.e., long arcs) go backwards.

▶ Definition 2. Given a c-vertex chain, a path decomposition of a tournament T is defined
as:

D0 = N+(v0).
For 1 ≤ i ≤ k, Di = N(ei) \ (∪0≤j≤i−1Dj).
Dk+1 = N−(vk) \ (∪0≤j≤kDj).

First we prove that this is indeed a decomposition of T .

▶ Lemma 3. Let T = (V, A) be a tournament and let (D0, . . . , Dk+1) be a path decomposition
of T . Then V = ∪0≤i≤k+1Di.
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Proof. We will prove this lemma by contradiction: Suppose there is a vertex w ∈ V that
does not belong to any Di. Assume that w does not belong to the vertex chain. Since w is
neither in D0 nor in Dk+1, then w ∈ N−(v0) and w ∈ N+(vk). Take the smallest integer
i such that w ∈ N+(vi). There must be one since w ∈ N+(vk). Notice that i ≥ 1 since
w /∈ N+(v0), so ei belongs to the arc chain and w ∈ N(ei). Therefore, w ∈ Di, which is a
contradiction.

Now consider the case in which w is in the vertex chain. An arc with both endpoints
in the vertex chain that is not in the arc chain is backwards. Thus, vi ∈ N(ei+2) for all
0 ≤ i ≤ k − 2. Notice that vk−1 can belong to Dk+1 (if it does not belong to Dj for some
j < k + 1). Finally, vk ∈ N(ek−1). ◀

We remark that, for the sake of simplicity and to more easily visualize the decomposition,
it might be easier to not include the vertices in the vertex chain in the path decomposition.
In this case, these vertices can be colored with two extra colors. Since all arcs not in the arc
chain with both endpoints in the vertex chain go backwards (with respect to the arc chain;
otherwise there would be an even shorter path), we can use two colors so that all forwards
arcs (those in the arc chain) are bicolored.

▶ Lemma 4. Let 0 ≤ i, j ≤ k + 1 and let j ≥ i + 5. For u ∈ Di and w ∈ Dj, we have
u ∈ N+(w).

Proof. We will prove this by contradiction. Suppose j ≥ i + 5 and u ∈ N−(w). Then
there is a path of three arcs from vi to vj−1, namely (vi, u, w, vj−1). (By definition of the
decomposition, u ∈ Di implies u ∈ N+(vi) and w ∈ Dj implies w ∈ N−(vj−1).) This is not
possible since by the definition of the vertex chain as the shortest path, there can be no path
between vi and vj−1 with fewer than four arcs (since (j − 1) − i ≥ (i + 5 − 1) − i = 4). ◀

▶ Lemma 5. If T has a c-vertex chain that can be found in polynomial time and if χ⃗C(N(e)) ≤
c for each arc e in the corresponding arc chain, then χ⃗C(T ) ≤ 5c.

Proof. Given a c-vertex chain, we construct a path decomposition. We make five palettes
of c colors each with labels from 0 to 4. We color each Di using the color palette with
label i mod 5. Let us show that we can do this in polynomial time. First, note that the set
of colors used is of size c for every Di. Then, let us consider D0: N+(v0) can be colored
efficiently with c colors by definition of a vertex chain. Similarly, Dk+1 is a subset of N−(vk)
and can thus also be efficiently colored with c colors. Finally, for every 1 ≤ i ≤ k, Di is a
subset of N(ei), which can be colored efficiently with c colors by the condition of the lemma.

Our goal is now to prove that this is a proper coloring of T . We will do this by showing
that all forward arcs between different Di are bicolored. By Lemma 4, there are no forwards
arcs between Di and Dj when j ≥ i + 5. Furthermore, by the definition of the coloring, no
vertex in Di and Dj can share a color for i + 1 ≤ j ≤ i + 4. Thus all forward arcs from Di

to Dj will be bicolored. Since every Di is properly colored, and all forward arcs between
different Di are bicolored, T is properly colored. ◀

The next lemma has essentially the same proof as Lemma 5.

▶ Lemma 6. If T has a c-vertex chain that can be found in polynomial time and if χ⃗C(N(e)) ≤
d for each arc e in the arc chain and if c > d, then χ⃗C(T ) ≤ c + 4d.

Proof. We find the path decomposition using the c-vertex chain. We can color the set
S = D0 ∪ Dk+1 with c colors and the remaining sets Di for 1 ≤ i ≤ k with d colors each.
For the last c − d of the colors used for S, we can remove these vertices from S since these
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v0 v1 v2 v3 v4 v5 v6

D0 D1 D2 D3 D4 D5 D6 D7

e0 e1 e2 e3 e4 e5

Figure 1 A path decomposition of T . The red arcs (ei) form a shortest path from v0 to vk, thus
all the arcs not depicted between the vi’s go backward. All the vertices in a given Di are colored
from the color palette indicated by the color of the Di. Notice that because there are no long forward
arcs between the Di’s, all arcs between Di’s that share a color palette are backwards.

colors will not be used again and call the remaining vertices in S (colored with the first d

colors) S′. For the remaining vertices in S, we decompose them into D0 := D0 ∩ S′ and
Dk+1 := Dk+1 ∩ S′ Now we have sets D0, D1, . . . , Dk+1 each colored with d colors. We color
these sets using five color palettes of d colors each and use the palette i mod 5 for set Di.
By Lemma 4, this does not create any monochromatic forward arcs. Thus, the total number
of colors used is (c − d) + 5d = c + 4d. ◀

3 Algorithms for Coloring Tournaments

We consider various special cases of tournaments and show how to use our tools to color
them with few colors.

3.1 2-Colorable Tournaments
A tournament T = (V, A) is 2-colorable if χ⃗(T ) = 2, and a 2-coloring of tournament T is a
partition of V into two vertex sets, V1 and V2, such that T [V1] and T [V2] are each transitive.
In this section, our goal is to prove Theorem 7.

▶ Theorem 7. Let T be a 2-colorable tournament. Then χ⃗C(T ) ≤ 10.

We say an arc uv in A is heavy if there exist three vertices a, b, c ∈ N(uv) which form
a triangle abc. If a tournament contains no heavy arcs, then it is light. We will use the
following observation.

▶ Observation 8. Let T be a 2-colorable tournament. Then T can be partitioned into two
light subtournaments T1 and T2 such that χ⃗C(T ) ≤ χ⃗C(T1) + χ⃗C(T2).

This observation appears in [1, 7, 29] where it is stated more generally for 2-colorable
3-uniform hypergraphs. We include a proof here for completeness.

▶ Lemma 9. In a 2-coloring of a tournament T , each heavy arc must be 2-colored.

Proof. If u and v are both, say, blue, then each vertex in N(uv) would be red, forcing a
triangle in N(uv) to be all red (i.e., monochromatic), which is not possible in a 2-coloring. ◀
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▶ Corollary 10. In a 2-colorable tournament, the heavy arcs form a bipartite graph.

Now we can prove Observation 8.

Proof of Observation 8. All heavy arcs can be easily detected. By Corollary 10, the set of
heavy arcs forms a bipartite graph. The vertex set of this bipartite graph can be colored
with two colors (red and blue), such that the tournament induced by each color does not
contain a heavy arc. Then we partition the vertices into two sets one containing all the blue
vertices and the other containing all the red vertices. The uncolored vertices can go in either
set. Since neither of these sets contains any heavy arcs, we can partition the vertices of a
2-colorable tournament into two light subtournaments. ◀

Theorem 7 will follow from Observation 8 and the following theorem.

▶ Theorem 11. Let T be a 2-colorable light tournament. Then χ⃗C(T ) ≤ 5.

Our goal it to use Lemma 5 to prove Theorem 11. In other words, we want to show that
a 2-colorable light tournament has a 1-vertex chain. We first prove a useful claim.

▶ Lemma 12. Let T be a k-colorable tournament. Then there exist vertices u and w such
that N+(u) ∪ N−(w) is (k − 1)-colorable.

Proof. Since T = (V, A) is k-colorable, there exist k transitive sets X1, . . . , Xk such that
V = ∪k

i=1Xi. Then take u to be the vertex in X1 that has only incoming arcs from other
vertices in X1 (i.e., the sink vertex for X1). Similarly, take w to be the vertex in X1 that
has only outgoing arcs to other vertices in X1 (i.e., the source vertex for X1). The out-
neighborhood of u and the in-neighborhood of w are both subsets of V \ X1, and thus so is
their union, which is therefore (k − 1)-colorable. ◀

Now we are ready to prove that we can find a 1-vertex chain.

▶ Lemma 13. Let T be a 2-colorable, light tournament. Then T contains a 1-vertex chain
that can be found in polynomial time.

Proof. By Lemma 12, there exist u and w such that N+(u) ∪ N−(w) is transitive. To find
them, we can test the transitivity of N+(u) ∪ N−(w) for every pair of vertices in T . Then
we simply need to find a shortest path from u to w, which can be done in polynomial time.
Let k denote the length of the path, and define v0 = u, vk = w, and (vi)1≤i≤k−1 the rest of
the vertices in the path. ◀

The proof of Theorem 11 follows from Lemma 13, Lemma 5 and the fact that χ⃗C(N(e)) ≤ 1
for every arc e in a light tournament.

Certificates of Non-2-Colorability
In Section 3.1, we presented an algorithm to color a 2-colorable tournament with ten colors.
Suppose we run this algorithm on an arbitrary tournament T (e.g., one that is not 2-colorable).
Then our algorithm will either color T with ten colors or it will produce at least one certificate
that T is not 2-colorable. A certificate will have the following form: either a) there is an odd
cycle of heavy arcs in T , or b) for every ordered pair of vertices (u, v), the subtournament
T [N+(u) ∪ N−(v)] is not transitive. In particular, an 11-chromatic tournament must contain
such a certificate.
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3.2 3-Colorable Tournaments
Coloring 3-colorable tournaments turns out to be closely related to coloring 3-colorable graphs.
This seems surprising since the techniques for 3-colorable graphs were applied to coloring
2-colorable 3-uniform hypergraphs, which are a generalization of 2-colorable tournaments.

We will first show that we can adapt ideas of [34] and [5] to the problem of coloring
3-colorable tournaments by using our algorithm for coloring 2-colorable tournaments with
ten colors as a subroutine.

▶ Lemma 14. A 3-colorable tournament can be colored with O(
√

n) colors in polynomial
time.

Proof. Let T = (V, A) be a 3-colorable tournament. Notice that T has at least three vertices
each of whose out-neighborhoods is 2-colorable. To see this, consider any proper 3-coloring
of T . Each color spans a transitive subtournament and each transitive subtournament has a
sink vertex that has outgoing arcs only towards the other two colors.

For any vertex, if its out-neighborhood is 2-colorable, we can color its out-neighborhood
with 10 colors by Theorem 7. So we can try to run the algorithm for the out-neighborhood of
every vertex, and the algorithm will successfully produce a 10-coloring of the out-neighborhood
of at least three vertices.

Therefore, if the minimum outdegree is at least
√

n, we find a transitive set of size at
least

√
n/10. On the other hand, if the minimum outdegree is smaller than

√
n, we will make

progress another way. In this case, let u be a vertex with outdegree smaller than
√

n. Then,
we add u to a set S, and continue the algorithm on the subtournament of T induced on
V \ N+[u]. We continue this until we find a transitive subtournament of size at least

√
n/20

or until we have removed half the vertices. In the first case, we will have found a transitive
set of size Ω(

√
n), and in the second case, the set S will be transitive, and also of size Ω(

√
n).

In conclusion, since we can find a transitive set of size Ω(
√

n) in polynomial time, we can
repeat the procedure recursively to find a coloring with O(

√
n) colors in polynomial time

(see [5] for example). ◀

We can also use the decomposition of Section 2 to get a coloring with fewer colors based
on a reduction to coloring 3-colorable graphs.

▶ Theorem 15. If we can efficiently color a 3-colorable graph G with k colors, then we can
efficiently color a 3-colorable tournament with 50k colors.

Proof. Let T = (V, A) be a 3-colorable tournament. For every arc e ∈ A, try coloring N(e)
with 10 colors using Theorem 7. If the algorithm fails, the neighborhood of the edge is not
2-colorable, and thus the edge is not monochromatic in any 3-coloring. Let F ⊂ E denote
the set of arcs whose neighborhoods cannot be colored with 10 colors using our algorithm.
Ignore the direction of the arcs in F and consider the graph G = (V, F ). This graph must be
3-colorable, since no arc in F is monochromatic in any 3-coloring of T .

Now let us show that from a coloring of G with k colors, we can obtain a coloring of
T with 50k colors. Consider a coloring of the graph G = (V, F ) and let Vi be the vertices
colored with color i in this coloring. Consider the induced subtournament T ′ = T [Vi]; it
has no arc in F and thus the neighborhood of every arc in this tournament can be colored
efficiently with 10 colors. Furthermore, by Lemma 12 and Theorem 7, there are vertices u

and v in T ′ such that N+
T ′(u) ∪ N−

T ′(v) is efficiently 10-colorable. So by Lemma 5, we can
efficiently color T ′ with 50 colors. We can do this for the subtournament T [Vi] for each of
the i colors used to color G. ◀
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Combining this Lemma with approximation algorithm [24], which colors a 3-colorable
graph with fewer than n

1
5 colors, we obtain the same asymptotic bound for 3-colorable

tournaments.

▶ Corollary 16. Let T be a 3-colorable tournament on n vertices. Then, χ⃗C(T ) ≤ O(n0.19996).

We can extend Theorem 15 to a more general case.

▶ Lemma 17. Let f and g be functions such that we can efficiently color k-colorable
graphs (respectively, k-colorable tournaments) with g(k) (respectively, f(k)) colors. Then
f(k) ≤ 5 · f(k − 1) · g(k).

Proof. We use the same reduction as in the proof of Theorem 15, but now F is the set of
arcs whose neighborhoods cannot be efficiently f(k − 1)-colored. Then each Vi in G is colored
with 5 · f(k − 1) colors. So we need a total of 5 · f(k − 1) · g(k) colors. ◀

3.3 Light Tournaments
Our goal in this section is to prove the following theorem.

▶ Theorem 18. Let T be a light tournament. Then χ⃗C(T ) ≤ 9.

We will prove Theorem 18 by showing that every light tournament has a c-vertex chain
for some constant c. To do this, we will find one vertex whose in-neighborhood we can
color efficiently with a constant number of colors, and another whose out-neighborhood we
can color efficiently with a constant number of colors. We will start by establishing some
structural claims about light tournaments which are adapted from [4].

Throughout this section T = (V, A) will denote a light tournament. Note that we do not
assume that T is necessarily 2-colorable. Recall that a C3 is a directed triangle.

▶ Definition 19. Define a C3-chain of length ℓ in T to be a set of ℓ vertex disjoint C3’s,
X = (X1, X2, X3, . . . , Xℓ), such that for each i ∈ {1, . . . , ℓ − 1}, Xi ⇒ Xi+1.

A backwards arc in a C3-chain is an arc uv with u ∈ Xi and v ∈ Xj for j < i.

▶ Lemma 20. A C3-chain has no backwards arcs.

This follows from the following claim.

▷ Claim 21. If X = (X1, X2, . . . , Xℓ) is a C3-chain of length ℓ, then Xi ⇒ Xj for i < j,
where 1 ≤ i < j ≤ ℓ.

Proof. Notice that there are no arcs from Xi+1 to Xi, since by definition of a C3-chain, we
have all arcs from Xi to Xi+1. Moreover, there is no arc uv from Xi+2 to Xi since otherwise
triangle Xi+1 would appear in the neighborhood N(uv), meaning that uv is heavy, which is
a contradiction. This implies that all arcs go from Xi to Xi+2 (since T is a tournament).
Now suppose j > i + 2. If there is a back arc uv from u ∈ Xj to v ∈ Xi, then uv is a heavy
arc, because Xj−1 would be in N(uv) since by induction we have all arcs from Xi to Xj−1
and from Xj−1 to Xj . ◁

Let us fix X = (X1, X2, . . . , Xℓ) to be a C3-chain in T , and let W = V (T ) \ V (X).
Initially, X can be of any length ℓ ≥ 1.

▷ Claim 22. For w ∈ W :
1. If w ⇒ Xi, then w ⇒ Xj for all j ≥ i.
2. If Xi ⇒ w, then Xj ⇒ w for all j ≤ i.
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Proof. Suppose w ⇒ Xi and there is an arc uw with u ∈ Xj for j > i. Then uw is a heavy
arc. Similarly, suppose Xi ⇒ w and there is an arc wu with u ∈ Xj for j < i, then wu is a
heavy arc. ◁

We partition the vertices in W into zones (Z0, Z1, . . . , Zℓ) using the following criteria.
For w ∈ W , if i is the highest index such that Xi ⇒ w, then w is assigned to zone Zi. If
there is no such Xi, then w is assigned to zone Z0.

Say a vertex w ∈ W is clear if w ⇒ Xi or Xi ⇒ w for all Xi in H. Let C ⊆ W be the
set of clear vertices.

▷ Claim 23. If C is not transitive, we can extend X.

Proof. If the set Zi ∩ C contains a triangle, then we can extend X by adding a new triangle
to the chain between Xi and Xi+1.

If there is no i such that Zi ∩ C contains a triangle, then we claim that C is transitive.
This follows from the observation that there are no backwards arcs from Zj ∩ C to Zi ∩ C

for i < j. Indeed, should such an arc uv from Zj ∩ C to Zi ∩ C exist, then Xi+1 ⊂ N(uv),
so uv would be heavy. ◁

We say that X is a maximal C3-chain if C is transitive. Let us also now define the unclear
vertices U , where U = W \ C. In a maximal C3-chain X = (X1, . . . , Xℓ), notice that for a
vertex a ∈ X1, we have N−(a) ∩ U ⊆ N±(X1). (This is because if a vertex u ∈ N−(a) has
u ⇒ Xi, then u would be a clear vertex.)

▷ Claim 24. We can efficiently find two directed triangles X1 = abc and Xℓ = xyz such that
the set S = {v | v ⇒ X1 or Xℓ ⇒ v} is transitive.

Proof. Find a maximal C3-chain X and let ℓ be the length of this chain. Let abc = X1 and
xyz = Xℓ. The set of vertices {v | v ⇒ X1 or Xℓ ⇒ v} is a subset of C and is therefore
transitive. ◁

▷ Claim 25. Let xyz be a directed triangle. Then χ⃗C(N±({x, y, z})) ≤ 3.

Proof. Each vertex v ∈ N±({x, y, z}) belongs to N(xy), N(yz) or N(zx). Since each of these
sets is transitive, we conclude that N±({x, y, z}) can be colored with three colors. ◁

We can now easily prove Theorem 18, which is a corollary of Lemma 6 and the following
lemma.

▶ Lemma 26. Let T be a light tournament. Then T has a 5-vertex chain.

Proof. Recall that for a vertex a ∈ X1, we have N−(a) ∩ U ⊆ N±(X1). If X1 = abc,
notice that for v ∈ N−(a) ∩ U , v /∈ N(ca). Thus, N−(a) ∩ U ⊆ N(ab) ∪ N(bc), which is
efficiently 2-colorable. Making an analogous argument for N+(z) ∩ U , we conclude that
(N+(z) ∪ N−(a)) ∩ U is efficiently 4-colorable. The rest of the vertices in N+(z) ∪ N−(a)
belong to the set S defined in Claim 24 and can be colored with one color. Therefore
χ⃗C(N+(z) ∪ N−(a)) ≤ 5, so we can use z and a as the endpoints of a 5-vertex chain. ◀

The approach in this section can be extended to bound the chromatic number of a more
general subclass of heroes. See the full version [28] for details.
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4 Hardness of Approximate Coloring in Tournaments

In this section, we examine the hardness of approximate coloring of tournaments. [8] showed
that deciding if a tournament can be 2-colored is NP-hard. Later, [15] proved that for any k,
it is NP-hard to decide if a tournament is k-colorable.

We will first improve upon these NP-hardness results and then show hardness of coloring
k-colorable tournaments for k ≥ 3 with O(1) colors under the d-To-1 conjecture. The d-To-1
conjecture was first introduced by Khot alongside the famous Unique Games conjecture [26],
and has since been used to show hardness of coloring 3-colorable graphs with O(1) colors [18].

First notice that the search problem must be at least as hard as its decisional equivalent.

▶ Observation 27. Let k < ℓ be any two constants. If we can color k-colorable tourna-
ments with ℓ colors, then we can distinguish k-colorable tournaments from tournaments with
chromatic number at least ℓ + 1.

This comes immediately from the fact that if we could ℓ-color all k-colorable tournaments,
then we could see that they do not have chromatic number ℓ + 1 or greater. The hardness
of distinguishing between chromatic number k and greater or equal to ℓ + 1 is therefore
commonly established as a way of implying the hardness of coloring k-colorable graphs with
ℓ colors (see for example [6]).

All proofs of the theorems in this section are provided in the full version [28].

4.1 NP-Hardness of Approximate Coloring of k-Colorable Tournaments
It was shown previously that it is NP-hard to color a 2-colorable tournament with 2 colors [8,
15]. We prove a stronger theorem, that it is NP-hard to 3-color a 2-colorable tournament.

▶ Theorem 28. It is NP-hard, given a tournament T , to distinguish whether χ⃗(T ) = 2 or
χ⃗(T ) ≥ 4.

The proof of this Theorem relies on a reduction from the problem of coloring 2-colorable
tournaments with three colors to the problem of coloring 2-colorable 3-uniform hypergraphs
with six colors. This problem is NP-hard, since it was proven that coloring 2-colorable
3-uniform hypergraphs with any constant number of colors is NP-hard [11].

We then use a recursive construction that starts with the tournament obtained in the
proof of Theorem 28 to generalize the hardness of approximation to k-colorable tournaments
for any constant k.

▶ Theorem 29. It is NP-hard, given a tournament T and a constant k, to distinguish whether
χ⃗(T ) = k or χ⃗(T ) ≥ 2k.

4.2 Reduction from Coloring Graphs to Coloring Tournaments
In Section 3.2, we showed that if we can color a 3-colorable graph with k colors, then we can
color a 3-colorable tournament with 50k colors. We give a reduction in the other direction:
We show that the problem of coloring a k-colorable graph with ℓ colors is reducible to the
problem of coloring a k-colorable tournament with ℓ colors.

▶ Theorem 30. Given any two constants k, ℓ ≥ 3, if we can efficiently distinguish k-colorable
tournaments and tournaments with chromatic number at least ℓ, then we can efficiently
distinguish k-colorable graphs and graphs with chromatic number at least ℓ.
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Figure 2 3-chromatic light tournament.

A corollary of this reduction is the hardness of coloring tournaments under the d-To-1
Conjecture of Khot [26]; [18] showed that assuming the d-To-1 Conjecture, it is hard to color
3-colorable graphs with O(1) colors, and using our reduction, we can extend this hardness to
tournaments.

▶ Corollary 31. Let 3 ≤ k < ℓ be any two constants. Then if the d-To-1 conjecture is true,
we cannot distinguish between tournaments with chromatic number k and tournaments with
chromatic number at least ℓ.

4.3 Hardness of Approximation for General Tournaments
Coloring digon-free digraphs has been shown to be NP-hard to approximate within a factor
of n1/2−ϵ [14]. This proof can easily be extended to the case of tournaments, which provides
the following theorem.

▶ Theorem 32. Given any arbitrarily small constant ϵ > 0, it is NP-hard to approximate
the chromatic number of tournaments within a factor of n1/2−ϵ.

5 Conclusion

There are many open questions related to the theorems we have presented since all the
rows in Table 2 present gaps between the upper and lower bounds. One example is light
tournaments: What is the maximum number of colors required to color a light tournament?
From Theorem 18, we know that light tournaments have dichromatic number at most 9.
On the other hand, there exist light tournaments that are not 2-colorable. An example of
such a tournament is the Paley tournament P7, one of the four 3-chromatic tournaments on
seven vertices [33]. This tournament is represented in Figure 2. We have not found any light
tournament with chromatic number at least four. The Paley tournament P11 is the unique
4-chromatic tournament on 11 vertices [33]. A light 4-chromatic tournament would have to
have at least 13 vertices as [3] proved that any 4-chromatic tournament on 12 vertices must
contain an induced copy of P11 and P11 is not light.

Moreover, notice that if we could show that it is hard to color a 2-colorable tournament
with four colors (rather than three as per Theorem 28), this would imply hardness of coloring
a 2-colorable light tournament with two colors by Observation 8. Indeed, we have no hardness
results for coloring light tournaments. Any upper bound of c on their dichromatic number
would imply that it cannot be NP-hard to color them with c colors, because the property of
being light is checkable in polynomial time (unlike the property of being, say, 2-colorable).

Another observation is the relation of coloring tournaments and the feedback vertex set
(FVS) problem on tournaments. There is an elegant 2-approximation for this problem [30].
Notice that Theorem 7 implies that in a 2-colorable tournament, we can efficiently find a FVS
of size at most 9n/10. In contrast, the algorithm in [30] could just return the whole vertex set
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if the two transitive sets were of roughly equal size. Finally, we mention that, analogous to a
well-studied question for general graphs [10, 27], one can ask what is the largest transitive
induced subtournament that one can efficiently find in a 2-colorable tournament? Is it larger
than n/10?

Finally, we remark that an implication of Theorem 15 is that proving any hardness of
coloring 3-colorable tournaments would then provide hardness of coloring 3-colorable graphs
with 50 times fewer colors. Since it has taken around 20 years to go from proving NP-hardness
of coloring a 3-colorable graph with four colors [25, 16, 17] to NP-hardness of coloring a
3-colorable graph with five colors [6], it would be interesting to see if we can prove hardness
of coloring 3-colorable tournaments for a constant larger than five (at least five is shown in
Theorem 29), or perhaps show that the two problems are actually equivalent.

References
1 Noga Alon, Pierre Kelsen, Sanjeev Mahajan, and Hariharan Ramesh. Coloring 2-colorable

hypergraphs with a sublinear number of colors. Nordic Journal of Computing, 3:425–439, 1996.
2 Noga Alon, János Pach, and József Solymosi. Ramsey-type theorems with forbidden subgraphs.

Combinatorica, 21(2):155–170, 2001.
3 Thomas Bellitto, Nicolas Bousquet, Adam Kabela, and Théo Pierron. The smallest 5-chromatic

tournament. arXiv, 2022. arXiv:2210.09936.
4 Eli Berger, Krzysztof Choromanski, Maria Chudnovsky, Jacob Fox, Martin Loebl, Alex Scott,

Paul Seymour, and Stéphan Thomassé. Tournaments and colouring. Journal of Combinatorial
Theory, Series B, 103(1):1–20, 2013.

5 Avrim Blum. New approximation algorithms for graph coloring. Journal of the ACM, 41(3):470–
516, 1994.

6 Jakub Bulín, Andrei Krokhin, and Jakub Opršal. Algebraic approach to promise constraint
satisfaction. In Proceedings of the 51st Annual ACM Symposium on Theory of Computing
(STOC), pages 602–613, 2019.

7 Hui Chen and Alan Frieze. Coloring bipartite hypergraphs. In Fifth International Conference
on Integer Programming and Combinatorial Optimization (IPCO), pages 345–358, 1996.

8 Xujin Chen, Xiaodong Hu, and Wenan Zang. A min-max theorem on tournaments. SIAM
Journal on Computing, 37(3):923–937, 2007.

9 Maria Chudnovsky. The Erdös-Hajnal Conjecture – A survey. Journal of Graph Theory,
75(2):178–190, 2014.

10 Irit Dinur, Subhash Khot, Will Perkins, and Muli Safra. Hardness of finding independent
sets in almost 3-colorable graphs. In 2010 IEEE 51st Annual Symposium on Foundations of
Computer Science (FOCS), pages 212–221, 2010.

11 Irit Dinur, Oded Regev, and Clifford Smyth. The hardness of 3-uniform hypergraph coloring.
Combinatorica, 25(5):519–535, 2005.

12 Paul Erdős and András Hajnal. Ramsey-type theorems. Discrete Applied Mathematics,
25(1-2):37–52, 1989.

13 Paul Erdos and Leo Moser. On the representation of directed graphs as unions of orderings.
Math. Inst. Hung. Acad. Sci, 9:125–132, 1964.

14 Tomás Feder, Pavol Hell, and Carlos Subi. Complexity of acyclic colorings of graphs and
digraphs with degree and girth constraints. arXiv, 2019. arXiv:1907.00061.

15 Jacob Fox, Lior Gishboliner, Asaf Shapira, and Raphael Yuster. The removal lemma for
tournaments. Journal of Combinatorial Theory, Series B, 136:110–134, 2019.

16 Venkatesan Guruswami and Sanjeev Khanna. On the hardness of 4-coloring a 3-colorable
graph. In Proceedings 15th Annual IEEE Conference on Computational Complexity (CCC),
pages 188–197, 2000.

17 Venkatesan Guruswami and Sanjeev Khanna. On the hardness of 4-coloring a 3-colorable
graph. SIAM Journal on Discrete Mathematics, 18(1):30–40, 2004.

ESA 2023

https://arxiv.org/abs/2210.09936
https://arxiv.org/abs/1907.00061


71:14 Coloring Tournaments with Few Colors: Algorithms and Complexity

18 Venkatesan Guruswami and Sai Sandeep. d-To-1 hardness of coloring 3-colorable graphs with
O(1) colors. In 47th International Colloquium on Automata, Languages, and Programming
(ICALP), 2020.

19 Magnús M Halldórsson. A still better performance guarantee for approximate graph coloring.
Information Processing Letters, 45(1):19–23, 1993.

20 Ararat Harutyunyan, Tien-Nam Le, Alantha Newman, and Stéphan Thomassé. Coloring dense
digraphs. Combinatorica, 39(5):1021–1053, 2019.

21 Ararat Harutyunyan, Tien-Nam Le, Stéphan Thomassé, and Hehui Wu. Coloring tournaments:
From local to global. Journal of Combinatorial Theory, Series B, 138:166–171, 2019.

22 Johan Hastad. Clique is hard to approximate within n1−ϵ. Acta Mathematica, 182:105–142,
1999.

23 David R. Karger, Rajeev Motwani, and Madhu Sudan. Approximate graph coloring by
semidefinite programming. Journal of the ACM, 45(2):246–265, 1998.

24 Ken-ichi Kawarabayashi and Mikkel Thorup. Coloring 3-colorable graphs with less than n1/5

colors. Journal of the ACM, 64(1):1–23, 2017.
25 Sanjeev Khanna, Nathan Linial, and Shmuel Safra. On the hardness of approximating the

chromatic number. Combinatorica, 20(3):393–415, 2000.
26 Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of the 34th

Annual ACM Symposium on Theory of Computing (STOC), pages 767–775, 2002.
27 Subhash Khot and Rishi Saket. Hardness of finding independent sets in 2-colorable and

almost 2-colorable hypergraphs. In Proceedings of the 25th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 1607–1625, 2014.

28 Felix Klingelhoefer and Alantha Newman. Coloring tournaments with few colors: Algorithms
and complexity. arXiv, 2023. arXiv:2305.02922.

29 Michael Krivelevich, Ram Nathaniel, and Benny Sudakov. Approximating coloring and
maximum independent sets in 3-uniform hypergraphs. Journal of Algorithms, 41(1):99–113,
2001.

30 Daniel Lokshtanov, Pranabendu Misra, Joydeep Mukherjee, Fahad Panolan, Geevarghese
Philip, and Saket Saurabh. 2-Approximating feedback vertex set in tournaments. ACM
Transactions on Algorithms, 17(2):1–14, 2021.

31 László Lovász. Coverings and colorings of hypergraphs. In Proc. 4th Southeastern Conference
of Combinatorics, Graph Theory, and Computing, pages 3–12, 1973.

32 Victor Neumann-Lara. The dichromatic number of a digraph. Journal of Combinatorial
Theory, Series B, 33(3):265–270, 1982.

33 Victor Neumann-Lara. The 3 and 4-dichromatic tournaments of minimum order. Discrete
Mathematics, 135(1-3):233–243, 1994.

34 Avi Wigderson. Improving the performance guarantee for approximate graph coloring. Journal
of the ACM, 30(4):729–735, 1983.

35 David Zuckerman. Linear degree extractors and the inapproximability of max clique and
chromatic number. In Proceedings of the 38th Annual ACM Symposium on Theory of Computing
(STOC), pages 681–690, 2006.

https://arxiv.org/abs/2305.02922


Bellman–Ford Is Optimal for Shortest
Hop-Bounded Paths
Tomasz Kociumaka # Ñ

Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany

Adam Polak # Ñ

Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany

Abstract
This paper is about the problem of finding a shortest s-t path using at most h edges in edge-weighted
graphs. The Bellman–Ford algorithm solves this problem in O(hm) time, where m is the number
of edges. We show that this running time is optimal, up to subpolynomial factors, under popular
fine-grained complexity assumptions.

More specifically, we show that under the APSP Hypothesis the problem cannot be solved faster
already in undirected graphs with nonnegative edge weights. This lower bound holds even restricted
to graphs of arbitrary density and for arbitrary h ∈ O(

√
m). Moreover, under a stronger assumption,

namely the Min-Plus Convolution Hypothesis, we can eliminate the restriction h ∈ O(
√

m). In other
words, the O(hm) bound is tight for the entire space of parameters h, m, and n, where n is the
number of nodes.

Our lower bounds can be contrasted with the recent near-linear time algorithm for the negative-
weight Single-Source Shortest Paths problem, which is the textbook application of the Bellman–Ford
algorithm.
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1 Introduction

The Bellman–Ford algorithm [24, 14, 4] is the textbook solution for the Single-Source Shortest
Paths (SSSP) problem in graphs with negative edge weights. It runs in O(nm) time, where
n denotes the number of nodes and m is the number of edges. If we limit the outer for-loop
(see Algorithm 1) to only h ⩽ n − 1 iterations, the algorithm computes single-source shortest
paths that use at most h edges (or hops) and runs in O(hm) time.

Algorithm 1 The Bellman–Ford algorithm.

d(0) ← [+∞, +∞, . . . , +∞];
d(0)[s]← 0;
for i from 1 to n− 1 do

d(i) ← d(i−1);
foreach edge (u, v) ∈ E do

d(i)[v]← min{d(i)[v], d(i−1)[u] + w(u, v)};
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Negative-weight SSSP has seen a lot of improvements over Bellman–Ford’s running
time: scaling algorithms [15, 16, 18], which eventually led to O(n1/2m log W ) running
time, where W denotes the maximum absolute value of a negative edge weight; interior-
point methods for the more general Minimum-Cost Flow problem, which recently led to
an almost-linear O(m1+o(1) log W ) time algorithm [8]; and finally, the recent combinat-
orial near-linear O(m log8(n) log W ) time algorithm [5], subsequently improved to run in
O(m log2(n) log(nW ) log log n) time [7].

Can we get similar improvements for the problem of finding shortest hop-bounded paths?

This basic question stays embarrassingly open. Even in undirected graphs with only
nonnegative edge weights, Bellman–Ford remains the fastest known algorithm for that
problem. In this paper, we give a negative answer to the above question, up to subpolynomial
factors, under popular fine-grained complexity assumptions.

1.1 Our results
Let us begin with formally stating the computational problem that we study: Given a
graph G = (V, E) with edge weights w : E → Z, two distinguished nodes s, t ∈ V , and a
nonnegative integer h ∈ Z⩾0, find (the length of) a shortest path from s to t that uses at
most1 h edges. We call such paths h-hop-bounded, or simply hop-bounded when h is implicit
in the context.

In this paper, we give two fine-grained reductions, each proving that the O(hm) running
time of the Bellman–Ford algorithm is conditionally optimal for the problem, up to subpoly-
nomial factors. Our two hardness results differ from each other in (1) how the parameters
n, m, h of the hard instances relate to each other, and (2) which hardness assumption is
required. Table 1 summarizes these differences.

Our first result holds under the APSP Hypothesis.

▶ Theorem 1. Unless the APSP Hypothesis fails, there is neither an O(h1−εm) nor an
O(hm1−ε) time algorithm for finding the length of a shortest h-hop-bounded s-t path in
undirected graphs with nonnegative edge weights, for any constant ε > 0.

This holds even restricted to instances with density n = Θ(
√

m) and hop bound h = Θ(mη)
for arbitrarily chosen η ∈ (0, 1/2].

Although the hard instances in Theorem 1 are dense, one can trivially obtain sparser
instances by adding isolated nodes. Indeed, such nodes influence neither the length of a
shortest h-hop-bounded s-t path nor the running time bounds as functions of h and m.

▶ Corollary 2. The result of Theorem 1 holds even restricted to instances with density
n = Θ(mν) and hop bound h = Θ(mη) for arbitrarily chosen ν ∈ [1/2, 1] and η ∈ (0, 1/2].

We remark that it is not very surprising that our reduction from APSP can only produce
instances with h ∈ O(

√
m). The conjectured time complexity of APSP in n-node graphs is

n3−o(1) = |input|3/2−o(1). For h = Θ(mη), the O(hm) time bound is actually O(|input|1+η).
Fine-grained reductions from problems with smaller complexity to problems with larger
complexity are possible (see, e.g., [22]) but rare, and to our best knowledge no such reduction
from APSP is known. If Theorem 1 worked for η > 1/2, this would be the first such example.

1 We could also consider a variant of the problem asking for a walk with exactly h edges. It is the harder of
the two variants (adding a length-0 self-loop to node s reduces the “at most h” variant to the “exactly h”
variant), and we prove the hardness of the easier one already.
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Table 1 Summary and comparison of our conditional hardness results for the problem of finding
(the length of) a shortest hop-bounded path between two nodes.

Density Hops Hypothesis

Corollary 2 n = Θ(mν), ν ∈ [1/2, 1] h = Θ(mη), η ∈ (0, 1/2] APSP
Corollary 4 n = Θ(mν), ν ∈ [1/2, 1] h = Θ(mη), η ∈ [1/2, ν] Min-Plus Convolution

n

h

√
m m

1

√
m

m

Easy

Hard under Min-Plus
Convolution Hypothesis

Hard under
APSP Hypothesis

Figure 1 Parameter space. The upper-left triangle represents the case of h ⩾ n, where the
problem degenerates to the standard Shortest Path problem, without hop bound, which can be
solved in Õ(m) time.

In order to cover the remaining combinations of parameters, we use a stronger hypothesis,
concerning a problem with conjectured quadratic time complexity, namely the Min-Plus
Convolution Hypothesis. Since this hypothesis implies the APSP Hypothesis, it is also a
sufficient condition for Theorem 1 and thus gives hardness for the entire parameter space.

▶ Theorem 3. Unless the Min-Plus Convolution Hypothesis fails, there is neither an
O(h1−εm) nor an O(hm1−ε) time algorithm for finding the length of a shortest h-hop-
bounded s-t path problem in undirected graphs with nonnegative edge weights, for any constant
ε > 0.

This holds even restricted to instances with density n = Θ(mη) and hop bound h = Θ(mη)
for arbitrarily chosen η ∈ [1/2, 1].

Just like before, we can sparsify the hard instances by adding isolated nodes.

▶ Corollary 4. The result of Theorem 3 holds even restricted to instances with density
n = Θ(mν) and hop bound h = Θ(mη) for arbitrarily chosen ν ∈ [1/2, 1] and η ∈ [1/2, ν].

Combining Corollaries 2 and 4, we cover the entire range of parameters ν ∈ [1/2, 1] and
η ∈ (0, ν] for which the O(hm) running time is optimal; see Figure 1.

Let us point out that, even though the Bellman–Ford algorithm finds paths from a single
source s to all the nodes in the graph, the above two hardness results hold even for the easier
problem of finding a single path between two distinguished nodes s and t. Moreover, note
that any (shortest path) algorithm for directed graphs could also be used for undirected
graphs (but not necessarily vice versa). Bellman–Ford works in directed graphs with possibly
negative edge weights, while our hardness results already hold for undirected graphs with
nonnegative edge weights.

ESA 2023
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1.2 Hardness assumptions

In this section, we briefly recall the two hypotheses that we use in our theorems.
The APSP Hypothesis is the assertion that the All-Pairs Shortest Paths (APSP) problem

in n-node graphs cannot be solved in truly subcubic O(n3−ε) time for any constant ε > 0. It
is one of the three main hypotheses in fine-grained complexity, the other two being the 3SUM
Hypothesis and Strong Exponential Time Hypothesis (SETH) [26]. The APSP Hypothesis is
strengthened by the existence of a large class of problems that are equivalent to the APSP
problem under subcubic reductions [27, 26], and by the lack of a truly subcubic algorithm
for any of these problems.

In the Min-Plus Convolution problem, we are given two sequences (a[i])n−1
i=0 , (b[i])n−1

i=0 , and
the goal is to output sequence (c[i])n−1

i=0 defined as c[k] = mini+j=k(a[i] + b[j]). So far, only
subpolynomial 2O(

√
log n)-factor improvements [6, 28] over the naive quadratic running time

are known. The Min-Plus Convolution Hypothesis [21, 11] states that the problem cannot
be solved in truly subquadratic time, that is, O(n2−ε) for any constant ε > 0. Similarly to
APSP, there is also a class (albeit smaller) of problems equivalent to Min-Plus Convolution
under subquadratic reductions [11].2

The two hypotheses are closely related because APSP is runtime-equivalent (up to constant
factors) to the Min-Plus Product problem [13], which is the matrix product analogue of
Min-Plus Convolution. There is a reduction from the convolution to the product problem [6],
which entails that the Min-Plus Convolution Hypothesis implies the APSP Hypothesis, and
the former is therefore a stronger assumption.

As is customary in fine-grained complexity, these hypotheses, as well as all the results in
this paper, are stated in the word RAM model of computation with O(log n)-bit machine
words. We assume all input numbers fit into single machine words. Alternatively, the
APSP Hypothesis is sometimes stated as follows [26]: For every ε > 0 there is a constant
c such that APSP cannot be solved in O(N3−ε) time in N -node graphs with edge weights
in {−N c, . . . , N c}. Our results could also be stated this way because our reductions do not
increase weights by more than polynomial factors.

1.3 Related work

Hop-bounded paths are studied in various areas related to graph algorithms, e.g., distributed
algorithms [17], dynamic algorithms [25, 23], or even polyhedral combinatorics [12]. Problems
of finding shortest hop-bounded paths appear, e.g., in the context of quality-of-service (QoS)
routing in networks [2, 9].

Guérin and Orda [19] and Cheng and Ansari [10] studied the problem of finding shortest h-
hop-bounded paths from single source s to all nodes in the graph and for all hop bounds h ⩽ H .
They proved an Ω(Hm) lower bound for that problem against so-called path-comparison-based
algorithms, i.e., algorithms that only access the edge weights by comparing the lengths of
two paths. Although Dijkstra and Bellman–Ford are known to be path-comparison-based,
algebraic algorithms relying on fast matrix multiplication are not.

2 One of the problems equivalent to Min-Plus Convolution is the Knapsack problem on instances with
target value t = Θ(n). Recall that Knapsack can be solved in O(nt) time by a dynamic programming
algorithm due to Bellman [3]. Hence, we can half-jokingly rephrase Theorem 3 and say that if one
Bellman’s algorithm is optimal for Knapsack, then the other Bellman’s algorithm is optimal for shortest
hop-bounded paths.
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Bicriteria Path. In the Bicriteria Path problem, we are given a graph G = (V, E) with two
types of nonnegative edge weights l, c : E → Z, called lengths and costs, respectively; two
budgets L, C ∈ Z; and two distinguished nodes s, t ∈ V . The goal is to find a path from s

to t with the total length at most L and the total cost at most C. Joksch’s algorithm [20]
solves the problem in pseudopolynomial O(min(L, C) · m) time. For the special case of all
edge costs equal to 1, the Bicriteria Path problem is equivalent to the problem we study in
this paper and, moreover, Joksch’s algorithm runs in the same time as the Bellman–Ford
algorithm.

Abboud, Bringmann, Hermelin, and Shabtay [1] proved that, unless SETH fails, there is
no algorithm solving the Bicriteria Path problem on sparse graphs (with m = Θ(n) edges)
with budgets L, C = Θ(nγ) in time O(n1+γ−ε) for any ε > 0 and γ > 0. In other words,
they proved that Joksch’s algorithm is conditionally optimal, up to subpolynomial factors.
Their reduction, however, heavily uses both types of edge weights, and hence it does not
imply any lower bound for the special case with unit costs, i.e., for our problem of interest.

2 Hardness under APSP Hypothesis

Preliminaries. Given a complete tripartite graph G = (A ∪ B ∪ C, E) with edge weights
w : E → Z, the Negative Triangle problem asks to find three nodes a ∈ A, b ∈ B, and c ∈ C

with w(a, b) + w(b, c) + w(c, a) < 0. Vassilevska Williams and Williams [27] proved that
APSP and Negative Triangle are equivalent under subcubic reductions. In particular, unless
the APSP Hypothesis fails, there is no O(N3−ε) time algorithm for Negative Triangle with
|A| = |B| = |C| = N , for any ε > 0.

Via a by now standard argument, under the same assumption, for any ε > 0, there is
no O(Nα+2−ε) time algorithm for the problem restricted to instances with |A| = Θ(Nα)
and |B| = |C| = N for arbitrarily chosen α ∈ (0, 1]. Specifically, the reduction partitions
the original set A into Θ(N1−α) subsets of size Θ(Nα) each; the sets B and C are copied
to all Θ(N1−α) produced instances. A negative triangle exists in the original instance if
and only if it exists in at least one of the produced instances. Thus, if each of the obtained
instances could be solved in O(Nα+2−ε) time, then the original instance could be solved in
O(N1−α · (N2 + Nα+2−ε)) = O(N3−α + N3−ε) time3, violating the APSP Hypothesis.

Reduction. We show how to reduce an instance of Negative Triangle, with |A| = Θ(Nα)
and |B| = |C| = N , to finding the minimum length of an h-hop-bounded s-t path in an
undirected graph with n = Θ(N) nodes, m = Θ(N2) edges, and the hop bound h = Θ(Nα).
In order to prove Theorem 1, we set α = 2η so that n = Θ(N) = Θ(

√
m) and h = Θ(Nα) =

Θ(N2η) = Θ(mη). An O(h1−εm) time (or O(hm1−ε) time) algorithm finding a shortest
h-hop-bounded s-t path would thus yield an O(Nα(1−ε)+2) = O(Nα+2−αε) time (respectively,
O(Nα+2−2ε) time) algorithm for the original instance of the Negative Triangle problem. As
argued above, no such algorithm exists unless the APSP Hypothesis fails.

Let P = |A|. Suppose that A = {a1, . . . , aP }, B = {b1, . . . , bN }, and C = {c1, . . . , cN }.
Moreover, let W denote the maximum absolute value of an edge weight. Create an undirected
graph (see Figure 2) with node set A ∪ B ∪ C ∪ Ā, where Ā = {ā1, . . . , āP } is a disjoint copy
of A.

3 The N2 term corresponds to the time it takes to construct each instance, which consists of O(N2) edges.
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āi

0 0

0 0

w(ai, bj) + 3(P + 1 − i)W

w(bj , ck) + 3W

w(ck, ai) + 3iW

s

t

Figure 2 The graph created in the reduction from Negative Triangle.

For every ai ∈ A and bj ∈ B, add edge {ai, bj} with weight w(ai, bj) + 3(P + 1 − i)W .
For every bj ∈ B and ck ∈ C, add edge {bj , ck} with weight w(bj , ck) + 3W .
For every ck ∈ C and ai ∈ A, add edge {ck, āi} with weight w(ck, ai) + 3iW .
For every i ∈ {1, . . . , P − 1}, add edges {ai, ai+1} and {āi, āi+1} with weights 0.

Consider a shortest path in this graph from s
def= a1 to t

def= āP using at most h
def= P + 2

hops. We claim that its total length is less than (3P + 2)W if and only if there is a negative
triangle in the initial graph. Indeed, each triple (ai, bj , ck) ∈ A × B × C corresponds to path
a1 − a2 − · · · − ai − bj − ck − āi − āi+1 − · · · − āP , which uses exactly P + 2 hops and has
total length

w(ai, bj) + 3(P + 1 − i)W + w(bj , ck) + 3W + w(ck, ai) + 3iW

=
(
w(ai, bj) + w(bj , ck) + w(ck, ai)

)
+ (3P + 2)W.

Hence, the “if” direction follows. For the “only if” direction, fix an s-t path with at most
P + 2 hops and a total length strictly less than (3P + 2)W . The path must be of the form
a1 − a2 − · · · − ai − bj − · · · − ck − āi′ − āi′+1 − · · · − āP , where {ai, bj} is the first edge that
leaves A and {ck, āi′} is the last edge that enters Ā. Every edge has weight at least 0, every
edge incident to bj or ck has weight at least −W + 3W = 2W , and the direct edge between
bj and ck has weight at most W + 3W = 2 · 2W . Thus, the direct edge is the cheapest walk
from bj to ck both in terms of the length and the number of hops. Consequently, we may
assume without loss of generality that our s-t path proceeds directly from bj to ck. This
means that the number of hops is i + 3 + (P − 1 − i′) = P + 2 + i − i′, whereas the total
length is

w(ai, bj) + 3(P + 1 − i)W + w(bj , ck) + 3W + w(ck, ai′) + 3i′W

=
(
w(ai, bj) + w(bj , ck) + w(ck, ai′)

)
+ (3P + 2)W + 3(i′ − i)W.

If i′ < i, then the number of hops is at least P + 3, which is larger than assumed. If i′ > i,
then the path length is at least −3W + (3P + 2)W + 3W ⩾ (3P + 2)W , a contradiction.
Therefore, i = i′ holds. Since the path length is less than (3P + 2)W , we conclude that
w(ai, bj) + w(bj , ck) + w(ck, ai) < 0, i.e., (ai, bj , ck) is a negative triangle in the initial graph.
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3 Hardness under Min-Plus Convolution Hypothesis

Preliminaries. In the Max-Plus Convolution Upper Bound problem, we are given three
sequences (a[i])n−1

i=0 , (b[i])n−1
i=0 , and (c[i])n−1

i=0 of n numbers each, and the goal is to decide
whether c[k] ⩾ maxi+j=k(a[i]+b[j]) holds for all k. In other words, we want to find i, j, k such
that i + j = k and c[k] < a[i] + b[j]. The Max-Plus Convolution Upper Bound and Min-Plus
Convolution problems are equivalent under subquadratic reductions [11, Theorem 3.1]; thus,
in particular, unless the Min-Plus Convolution Hypothesis fails, there is no O(n2−ε) time
algorithm for Max-Plus Convolution Upper Bound, for any ε > 0.

Let us introduce an intermediate problem, which we call Common Max-Plus Convolution
Upper Bound: Given M pairs of sequences(

(a1[i])N−1
i=0 , (b1[i])N−1

i=0
)
, . . . ,

(
(aM [i])N−1

i=0 , (bM [i])N−1
i=0

)
,

and one sequence (c[i])N−1
i=0 , decide if there exist i, j, k, ℓ such that i + j = k and c[k] <

aℓ[i] + bℓ[j]. We call such (i, j, k, ℓ) a violating quadruple. First, we show that the naive
running time of O(MN2) is conditionally optimal for this problem.

▶ Lemma 5. Unless the Min-Plus Convolution Hypothesis fails, there is no O(MN2−ε)
time algorithm for Common Max-Plus Convolution Upper Bound, for any ε > 0, even when
restricted to instances with M = Θ(Nα) for an arbitrarily chosen constant α ⩾ 0.

Proof. The argument is based on a self-reduction of Min-Plus Convolution (see [11, proof of
Theorem 5.5]). Let β = α/(1+α) ∈ [0, 1). We start with an instance of Max-Plus Convolution
Upper Bound with three sequences a, b, c, each of length n. We split a and b into Θ(nβ) blocks
of consecutive elements, each block of length ⌈n1−β⌉ (the last block can be shorter). For
every pair of blocks, one from a and the other from b, we want to check if the corresponding
fragment of c is an upper bound of their max-plus convolution. Similarly to [11], we add
suitable padding so that all three sequences are of the same length. This way, we end up with
Θ(n2β) smaller instances of Max-Plus Convolution Upper Bound. The key step is to classify
these instances according to the third sequence, which results in Θ(nβ) groups of size Θ(nβ)
each (the instances in any single group share the same third sequence). Each such group
becomes a single instance of Common Max-Plus Convolution Upper Bound, with M = Θ(nβ)
and N = Θ(n1−β). If each of these instances can be solved in O(MN2−ε) = O(nβ+(1−β)(2−ε))
time, then the original instance can be solved in O(n2β+(1−β)(2−ε)) = O(n2−(1−β)ε) time,
and the Min-Plus Convolution Hypothesis fails. We conclude the proof by observing that
nβ = nα/(1+α) = (n1/(1+α))α = (n1−β)α, and thus M = Θ(Nα) holds as desired. ◀

Cygan, Mucha, Węgrzycki, and Włodarczyk [11, proof of Theorem 5.4] showed that,
without loss of generality, the input sequences to Max-Plus Convolution Upper Bound are
nonnegative and strictly increasing. The same argument applies to Common Max-Plus
Convolution Upper Bound. Using the additional structure, we can replace the condition
i+j = k with i+j ⩽ k. Indeed, suppose we find (i, j, k, ℓ) with i+j ⩽ k and c[k] < aℓ[i]+bℓ[j];
then, by monotonicity, c[i + j] ⩽ c[k], and hence (i, j, i + j, ℓ) is a quadruple satisfying the
original condition.

▶ Observation 6. The lower bound of Lemma 5 holds even restricted to instances with all
the sequences nonnegative and strictly increasing. For such instances, the condition i + j = k

can be equivalently replaced by i + j ⩽ k.

ESA 2023
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Figure 3 The graph created in the reduction from Common Max-Plus Convolution Upper Bound.

Reduction. We show how to reduce an instance of Common Max-Plus Convolution Upper
Bound, with M pairs of length-N sequences, to finding the length of a shortest hop-bounded
s-t path in an undirected graph with n = Θ(N + M) nodes, m = Θ(NM) edges, and the
hop bound h = Θ(N). This will let us conclude that an O(h1−εm) time (or O(hm1−ε) time)
shortest path algorithm would give an O(MN2−ε) time (respectively, O(M1−εN2−ε) time)
algorithm for the Common Max-Plus Convolution Upper Bound problem and thus violate
the Min-Plus Convolution Hypothesis.

Let W denote the maximum value of any input sequence element. Create an undirected
graph (see Figure 3) composed of three paths u0 − u1 − · · · − uN−1, v0 − v1 − · · · − vN−1,
w0 − w1 − · · · − wN−1, and an independent set of M nodes x1, x2, . . . , xM . Set the weights
of all the path edges to 0. For every i ∈ {0, 1, . . . , N − 1} and ℓ ∈ {1, 2, . . . , M}, add an
edge between ui and xℓ with weight 5W − aℓ[i]. Then, for every j ∈ {0, 1, . . . , N − 1} and
ℓ ∈ {1, 2, . . . , M}, add an edge between xℓ and vj with weight 5W − bℓ[j]. Finally, for every
k ∈ {0, 1, . . . , N − 1}, add an edge between v0 and wk with weight 5W + c[k].

Consider a shortest path in this graph from s
def= u0 to t

def= wN−1 using at most h
def= N + 2

hops. We claim that its total length is less than 15W if and only if there is a quadruple (i, j, k, ℓ)
with i + j ⩽ k and c[k] < aℓ[i] + bℓ[j]. Indeed, each quadruple (i, j, k, ℓ) corresponds to path

u0 − u1 − · · · − ui − xℓ − vj − vj−1 − · · · − v0 − wk − wk+1 − · · · − wN−1. (⋆)

Such a path uses i + 1 + 1 + j + 1 + (N − 1 − k) = (N + 2) + (i + j − k) hops and has total
length 15W − aℓ[i] − bℓ[j] + c[k]. Hence, the “if” direction follows. For the “only if” direction,
since every non-zero edge weight is at least 4W , an s–t path of total length less than 15W

can use at most three such edges, and therefore it must be of the form (⋆). The hop bound
implies i + j − k ⩽ 0 and the total length bound implies c[k] − aℓ[i] − bℓ[j] < 0.

Recall that n = Θ(N + M), m = Θ(NM), and h = Θ(N). For η ∈ [1/2, 1], in order to get
hard shortest hop-bounded path instances with density Θ(mη) and hop bound h = Θ(mη), we
start with the Common Max-Plus Convolution Upper Bound problem restricted to instances
with M = Θ(N (1−η)/η). This implies h = Θ(N) = Θ((NM)η) = Θ(mη). Moreover, due to
η ⩾ 1/2, we have M ⩽ O(N), and thus n = Θ(N + M) = Θ(N) = Θ(mη) holds as desired.
This concludes the proof of Theorem 3.
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Abstract
For a given (possibly directed) graph G, a hopset (a.k.a. shortcut set) is a (small) set of edges whose
addition reduces the graph diameter while preserving desired properties from the given graph G, such
as, reachability and shortest-path distances. The key objective is in optimizing the tradeoff between
the achieved diameter and the size of the shortcut set (possibly also, the distance distortion). Despite
the centrality of these objects and their thorough study over the years, there are still significant
gaps between the known upper and lower bound results.

A common property shared by almost all known shortcut lower bounds is that they hold for the
seemingly simpler task of reducing the diameter of the given graph, DG, by a constant additive term,
in fact, even by just one! We denote such restricted structures by (DG − 1)-diameter hopsets. In this
paper we show that this relaxation can be leveraged to narrow the current gaps, and in certain cases
to also bypass the known lower bound results, when restricting to sparse graphs (with O(n) edges):

Hopsets for Directed Weighted Sparse Graphs. For every n-vertex directed and weighted
sparse graph G with DG ≥ n1/4, one can compute an exact (DG − 1)-diameter hopset of linear
size. Combining this with known lower bound results for dense graphs, we get a separation
between dense and sparse graphs, hence shortcutting sparse graphs is provably easier. For
reachability hopsets, we can provide (DG − 1)-diameter hopsets of linear size, for sparse DAGs,
already for DG ≥ n1/5. This should be compared with the diameter bound of Õ(n1/3) [Kogan
and Parter, SODA 2022], and the lower bound of DG = n1/6 by [Huang and Pettie, SIAM J.
Discret. Math. 2018].
Additive Hopsets for Undirected and Unweighted Graphs. We show a construction
of +24 additive (DG − 1)-diameter hopsets with linear number of edges for DG ≥ n1/12 for
sparse graphs. This bypasses the current lower bound of DG = n1/6 obtained for exact (DG − 1)-
diameter hopset by [HP’18]. For general graphs, the bound becomes DG ≥ n1/6 which matches
the lower bound of exact (DG − 1) hopsets implied by [HP’18]. We also provide new additive
D-diameter hopsets with linear size, for any given diameter D.

Altogether, we show that the current lower bounds can be bypassed by restricting to sparse
graphs (with O(n) edges). Moreover, the gaps are narrowed significantly for any graph by allowing
for a constant additive stretch.
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1 Introduction

A shortcut set (a.k.a hopset) is a small collection of edges H that when added to a given
(possibly directed and weighted) graph G reduces the diameter substantially, while preserving
key properties from G, such as, reachability, shortest-path distances, etc. Since their
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introduction by Ullman and Yannakakis [25] and Thorup [24], shortcut sets have been
studied extensively due to their wide-range of applications for parallel, distributed, dynamic
and streaming algorithms [16, 12, 10, 15, 9, 11, 3]. Their applicability is also demonstrated
by recent algorithmic results, e.g., [15, 9, 11] that use shortcuts as their core component.

We focus on the fundamental notions of reachability D-diameter hopsets1 and exact
D-diameter hopsets. These are sets of edges that when added to G reduce the directed
diameter to at most D while preserving reachability (resp., exact D-hop distances). For a
graph on n vertices and m edges, the literature has mainly focused on how small the diameter
D can become after adding Õ(n) or Õ(m) edges to the graph. Recent years have witnessed a
significant progress on the combinatorial and algorithmic aspects of these structures. Despite
these efforts, there are still major gaps in our understanding. Thorup conjectured [24] that
any n-vertex digraph with m edges, has a D-diameter shortcut of size Õ(m) for2 D = Õ(1).
This has been shown to hold for a restricted class of graphs, such as planar [24]. Hesse [13]
refuted this conjecture for general graphs by presenting a construction of an n-vertex digraph
with m = Θ(n19/17) edges that requires Ω(mn1/17) shortcut edges to reduce its diameter to
below n1/17. Huang and Pettie [14] showed a diameter lower bound of Ω(n1/6) for O(n)-size
shortcuts, and Lu, Vassilevska-Williams, Wein and Xu [21] have recently improved the lower
bound for D-shortcuts with O(m) edges to D = Ω(n1/8).

Up to very recently, the only known upper bound for reachability hopsets was given by
a folklore randomized algorithm, attributed to Ullman and Yannakakis [25], that for every
integer D ≥ 1, provides a shortcut of size Õ((n/D)2). Kogan and Parter [18] have improved
the tradeoff to Õ(n2/D3 + (n/D)3/2). Hence, for reachability D-diameter hopsets of linear
size, we have D = Õ(n1/3) and D = Ω(n1/6).

The gap becomes even more dramatic when insisting on preserving the exact distances.
The only known upper bound for exact D-diameter hopsets are still given by the folklore
algorithm of [25], even for the presumably simpler setting of unweighted and undirected graphs.
Currently, exact D-diameter hopsets of linear size require D = Ω(n1/6) for unweighted and
undirected graphs, while the upper bound is still O(

√
n). The lower bound for weighted

graphs has been recently improved to D = Ω(n1/3) by [17].
In this paper we investigate this curious gap between upper and lower bound results

for reachability and exact hopsets. We aim at understanding the limitations of the current
lower bound constructions, and study whether they can be bypassed, algorithmically. Our
viewpoint differs from the classical algorithmic approach in the sense that we aim to provide
algorithms mainly for the purpose of understanding the key barriers for narrowing the
observed gaps. In the following, for two given shortcutting tasks Π, Π′, we say that task Π is
easier than task Π′ if one can provide for task Π an improved diameter vs. size tradeoff over
the current tradeoff known for task Π′.

1.1 Our Contribution
Our starting observation is that almost all known lower bounds for hopsets, a partial list
includes, [13, 14, 21, 17], in-fact hold for the seemingly easier task of reducing the diameter
of the given graph by just 1. For example, the lower bound of Huang and Pettie [14] exhibits

1 These structures are usually referred to as reachability shortcuts, and the notion of hopset is usually
used in the context of preserving also the shortest-path distances. For clarity of presentation, we unify
the notation and refer to all structures as variants of hopsets.

2 The Õ(.) notation hides poly-log n factors.
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an n-vertex graph G with diameter DG = Θ(n1/6) for which any subset of linear number of
shortcut edges cannot reduce the diameter to DG − 1. As this property is shared by many of
the lower bound results, we raise the following question:

▶ Question 1.1 (Additive vs. Multiplicative Diameter Reduction). Is reducing the graph
diameter by a constant additive term easier than by a constant multiplicative factor?

In this context, we say that task Π is easier than task Π′, if one can provide a solution for
Π′ which improves the state-of-the-art bounds known for Π. To answer this question, we
focus on the notion of (DG − 1)-diameter hopset: a subset of shortcut edges that reduces the
diameter of G from DG to DG−1. We provide new algorithmic results for (DG−1)-diameter
hopsets that significantly narrow the current gap for these structures.

▶ Theorem 1.1 (Reachability (DG−1)-Diameter Hopset). Every m-edge n-vertex DAG
G admits a reachability (DG − 1)-diameter hopset with Õ(m4/3/D

5/3
G ) edges.

By plugging m = O(n), we get a reachability (DG − 1)-hopset with linear number of
edges for every DG ≥ n1/5. This suggests that at least algorithmically and for the family
of sparse graphs, the task of reducing the diameter additively is easier than reducing the
diameter by a constant factor. Currently, for the latter task, linear reachability hopsets exist
only for DG ≥ n1/3, even for sparse DAGs [18, 19].

Another fundamental feature shared by most of the lower bound results [13, 14, 21, 17]
is concerned with the density (i.e. number of edges) of the worst-case graph examples. In
particular, all these lower bound graphs have a super-linear number of edges (referred to
hereafter as dense graphs). E.g., the above-mentioned lower bound graph of [14] contains
Ω(n7/6) edges. We therefore raise the following question:

▶ Question 1.2 (Shortcutting Sparse vs. Dense Graphs). Is reducing graph diameter easier
for sparse graphs compared to dense graphs?

We answer Question 1.2 in the affirmative by providing a provable gap between the sparse
and dense settings, in the context of exact hopsets. We show:

▶ Theorem 1.2 (Exact (DG − 1)-Diameter Hopset, Directed and Weighted). Every
m-edge n-vertex directed (and possibly weighted) graph G admits an exact (DG − 1)-
diameter hopset with Õ((m/DG)4/3) edges.

Taking m = n yields Õ(n)-size exact hopsets for diameter DG ≥ n1/4. This should be
compared with the lower bound for exact (DG − 1)-diameter hopsets by [4] (one can adapt
Theorem 5, therein to this setting) which requires a super-linear number of shortcut edges
for dense graphs G with Θ(n3/2) edges and diameter DG = n1/4.

Finally, we address the setting of exact (DG − 1)-diameter hopsets for unweighted and
undirected graphs, which currently admits the largest gap between the known upper and lower
bound results. Recall that for exact D-diameter hopsets of linear size, we have D = O(

√
n).

As no progress (at least for upper bounds) has been made for exact hopsets over the years, we
consider the question of whether it is possible to narrow this gap by introducing an additive
stretch:
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▶ Question 1.3 (Exact vs. Additive Stretch). Is reducing the graph diameter easier when
allowing an additive stretch compared to exact distances?

To address Question 1.3 we study the notion of additive hopsets, which to the best of our
knowledge has not been considered before. For a given graph G, an +α-additive D-diameter
hopset is a subset of (weighted) shortcut edges H whose addition guarantees the following:
for every u, v pair, the graph G ∪H contains a D-hop u-v path (that is the path contains
at most D edges) of total length3 ℓu,v where distG(u, v) ≤ ℓu,v ≤ distG(u, v) + α. We show
that the introduction of additive stretch can indeed achieve a lot in terms of improving the
state-of-the-art bounds when compared to exact hopsets. We have:

▶ Theorem 1.3 (Additive Hopsets Upper Bounds). Every n-vertex m-edge undir-
ected unweighted graph G admits a +24-additive (DG − 1)-diameter hopset with
Õ(min{(n/DG)6/5, (m/DG)12/11}) edges.

Theorem 1.3 should be compared with the lower bound of [14]. The latter can be shown to
imply that there exists an undirected and unweighted graph G with ω(n7/6) edges for which
any exact (DG − 1)-diameter hopset requires Ω(n) edges. For m = O(n), our construction in
Theorem 1.3 provides +24-additive (DG − 1)-hopset with linear number of edges, for any
DG ≥ n1/12. That is, by restricting to sparse graphs and introducing a small additive stretch
we bypass the lower bound of [14]. Moreover, for any (possibly dense) graph G, we provide
a linear-size additive (DG − 1)-diameter hopset for DG ≥ n1/6, hence matching the lower
bound of n1/6 implied by [14] for exact (DG − 1)-diameter hopsets.

We also show a general construction of α-additive D-hopsets for any given stretch
parameter α and diameter bound D (which is possibly much smaller than DG):

▶ Theorem 1.4. Every n-vertex undirected unweighted graph G with input parameters
α, D, admits a +α-additive D-diameter hopset with Õ((n/(α ·D))2 + (n/α)4/3 + n)
edges. Hence, of linear size for D, α = Ω(n1/4).

The construction of Theorem 1.4 is based on an interesting connection between hopsets and
additive spanners for weighted graphs [1, 7].

Remark. In our upper bound results, we focus on (DG − 1)-diameter hopsets since this is a
recurrent feature of the state-of-the-art lower bounds. Our algorithms can indeed be easily
extended to provide a −c reduction for any given term c. In the context of exact hopsets
and reachability preservers, the factor c will appear in the final size bound (for constant c,
the asymptotic size bound remains as is). For additive hopsets the factor c will appear in
the final size as well as in the final additive stretch (i.e., the +24 term in Theorem 1.3 might
become +24 · c).

Recent Breakthrough Lower-Bound Results on Shortcuts and Hopsets. Following the
submission of this paper, Bodwin and Hoppenworth [5] provided new lower bound results
for shortcuts and hopsets. In particular, they provide a lower bound of D = Ω(n1/4) for

3 The length of a path is measured by the sum of its edge weights (note that in an unweighted graph the
length is the number of edges in the path).
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reachability D-diameter hopsets with linear number of edges. Hence, the current gap for
these structures is D = Õ(n1/3) and D = Ω(n1/6). In addition, for exact D-hopsets of linear
size, they show a lower bound of D = Ω(

√
n), implying that the folklore algorithm for these

structures is indeed tight.

1.2 Preliminaries
Graph Notations. For an a-b dipath P and a b-c dipath P ′ the concatenation of the paths is
denoted by P ◦P ′. Let |P | denote the number of edges (hop) on P and let len(P ) be the length
of path P , measured by the sum of its (possibly) weighted edges. In the context of weighted
graphs, we refer to number of edges on a path P as the number of hops. For a collection
of paths P, let V (P) =

⋃
P ∈P V (P ). For an element set X and p ∈ [0, 1], let X[p] be the

set obtained by taking each element of X into X[p] independently with probability p. For a
subset V ′ ⊆ V , let G[V ′] be the induced graph on V ′. For a (possibly directed and weighted)
graph G and u, v ∈ V (G), let distG(u, v) be the shortest-path distance between u, v in G. Let
Nin(u, G) = {v ∈ V (G) | (v, u) ∈ E(G)} and Nout(u, G) = {v ∈ V (G) | (u, v) ∈ E(G)}.
Define degin(u, G) = |Nin(u, G)| and degout(u, G) = |Nout(u, G)|. For an undirected graph
G, a vertex v ∈ V (G) and an integer k, let Nk(v, G) = {u ∈ V (G) | distG(u, v) ≤ k} and
let degk(v, G) = |Nk(v)|. When G is clear from the context, we may omit it. Also, when
k = 1, we may write N(v, G), rather than N1(v, G). For a given path P ⊆ G and u ∈ P , the
k-hop P -neighbor of u is some vertex in P ∩Nk(u, G).

For an n-vertex digraph G, let TC(G) denote its transitive closure. For (u, v) /∈ TC(G),
distG(u, v) = ∞. A shortcut edge is an edge in TC(G). These definitions are naturally
extended to undirected graphs, by treating all edges as bidirectional, consequently, TC(G)
is an n × n clique for connected undirected graphs. For an integer weighted (possibly
directed) graph G = (V, E, ω) where ω : E → [1, W ], the weighted transitive closure, denoted
as TCW (G), has the same edge set as TC(G) weighted by the G-distances between the
edges’ endpoints. For any vertices u, v ∈ V and integer β ≤ n, define dist(β)

G (u, v) to be
the minimum length u-v path with at most β edges (hops). If there is no such path, then
define dist(β)

G (u, v) = ∞. Throughout, we define the diameter of the graph, DG, by the
smallest value β satisfying that dist(β)

G (u, v) = distG(u, v) for every u, v ∈ V . In the context
of weighted graphs G, DG as defined above is usually refereed to as the hopbound. For ease
of readability, we slightly revise the notion of diameter in a way the captures weighted and
unweighted hopsets as well as reachability shortcuts.

Reachability, Exact and Additive Hopsets. For a directed graph G, a reachability d-diameter
hopset H is a subset of edges from the transitive closure TC(G) such that DG∪H ≤ d. For a
(possibly directed and weighted) graph G, an α-additive d-diameter hopset H is a subset of
weighted edges in TCW (G) satisfying that for every u, v ∈ V (G):

distG(u, v) ≤ dist(d)
G∪H(u, v) ≤ distG(u, v) + α . (1.1)

An exact d-diameter hopset satisfies Eq. (1.1) for α = 0.
In this paper, we study the notion of (DG − 1)-diameter hopsets which given a graph G

provide the desired hopbound guarantees for d = DG − 1. Our algorithms can easily provide
any constant additive reduction, i.e., a (DG − c)-diameter hopsets, for any desired constant
c. We use the notion of (DG − 1) as a reference to the special property of the current lower
bounds. That is, (DG − 1)-hopsets are precisely the structures for which we currently have
lower bounds for. We note that our bounds also hold in the following alternative formulation:
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73:6 Towards Bypassing Lower Bounds for Graph Shortcuts

Given an input parameter D, then the output hopset guarantees a hopbound reduction by 1
(or by a constant term) for any u-v shortest path with hopbound at least D. That is, the
reduction can be provided for all paths of length ≥ D and not only for D = DG.

Shortcutting Tools. We use the basic shortcutting algorithm for dipaths from [23].

▶ Lemma 1.5 (Restatement of Lemma 1.1 in [23]). Any dipath P admits a reachability
2-diameter hopset H with Õ(|P |) edges.

▶ Lemma 1.6 ([25]). For every n-vertex (possibly directed and weighted) graph G and integer
D ≤ n, there is an algorithm ExactHopset that computes an exact D-diameter hopset H with
Õ((n/D)2) edges.

Our constructions employ a useful variant of reachability hopsets, in which it is required
to provide the desired hopbound w.r.t to a given subset of vertices [19].

▶ Definition 1.1 (Subset Reachability Hopset [19]). Given a graph G = (V, E), a subset
S ⊆ V and an integer D, a set of edges H ⊆ TC(G) is an (S, D)-reachability-hopset, if for
every u, v ∈ V such that (u, v) ∈ TC(G), there is a u-v path Pu,v (not necessarily a shortest
path) in G ∪H with at most D vertices from S.

For completeness we provide a complete proof for the following which also provides an
additional property compared to the construction of [19]. See Appendix A for the proof.

▶ Lemma 1.7. For every n-vertex DAG G, S ⊆ V (G) and input parameter D, one can
compute an (S, D)-reachability-hopset H ⊆ TC(G) of size Õ(|S|+ (|S|2/D3)). In addition,
the hopset H satisfies the following for every u, v ∈ V : If there is a shortest path Pu,v ⊆ G

which contains k vertices in V \S, then in G∪H, there is a u-v path (which is not necessarily
the shortest path) that contains at most D vertices from S and at most k vertices from V \ S.

Spanners and Emulators. Graph spanners introduced by Peleg and Schäffer [22] are sparse
subgraphs that preserve shortest path distances up to a small stretch. In contrast to hopsets,
these structures are defined only for undirected graphs, as no sparsificiation is possible in the
worst-case for directed n-vertex graphs with Ω(n2) edges.

▶ Definition 1.2 ((α, β)-Spanner). Given an undirected graph G = (V, E), a subgraph
G∗ ⊆ G is called an (α, β)-spanner if distG∗(u, v) ≤ α · distG(u, v) + β for every u, v ∈ V .

An (α, β)-emulator E∗ is a weighted set of edges in V × V (i.e., not necessarily a subgraph
of G) that provides the same stretch guarantees as (α, β)-spanners, where distG(u, v) ≤
distE∗(u, v) ≤ α · distG(u, v) + β for every u, v ∈ V .

Our constructions also use recent algorithms for computing additive spanners for weighted
graphs [1, 8]. For a weighted graph G = (V, E, ω) where ω : E → {1, . . . , W}, these spanners
provide a +β ·W stretch guarantees. We use the following theorem for weighted additive
spanners by [2] (recently improved by [7]).

▶ Theorem 1.8 (Theorem 3 in [2]). For any n-vertex weighted graph G = (V, E, ω) with
maximum edge weight W , there is an algorithm WeightedSpanner that computes a +8W

additive spanner H ⊆ G with Õ(n4/3) edges.
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2 Directed Shortcuts

In this section we observe that the existing lower bounds for directed hopsets hold for the
relaxed task of (DG − 1)-diameter hopsets. We then show that these lower bounds can be
bypassed for sparse graphs. Our upper bounds yield a separation between sparse and dense
graphs, implying that shortcutting sparse graphs might be simpler in terms of providing an
improved diameter vs. size tradeoffs.

2.1 Exact (DG − 1)-Hopsets
Known Lower Bound. The following lower-bound follows by plugging ℓ = n1/3 in Theorem 5
of [4]. See also Table 3 in [6]. We observe that this lower bound argument, as all prior lower
bounds, holds even when it is required to reduce the diameter of the given graph by 1.

▶ Theorem 2.1 (Exact Hopsets, Directed, Follows by Theorem 5 of [4]). There exist an n-vertex
(dense) directed graphs with Θ(n3/2) edges for which any exact (DG − 1)-hopset must have
Ω(n5/4) shortcut edges provided that DG ≤ n1/4.

New Upper Bound (Proof of Theorem 1.2). We show that the lower bound of Theorem
2.1 can be bypassed for sparse graphs while preserving the exact distances in a weighted
digraph. Note that for m = n, Theorem 1.2 yields O(n)-size exact hopsets for diameter
D ≥ n1/4 while the lower bound of Theorem 2.1 for exact (DG − 1)-diameter requires a
super-linear size for D = n1/4.

The Construction. Set an integer threshold k = ⌈(m/DG)1/3⌉ and define a vertex u to be
low-deg if degin(u) ≤ k and degout(u) ≤ k. Otherwise, the vertex is high-deg. By a simple
counting, there are O(m/k) high-deg vertices in the given m-edge graph.

Let L = V [p] for p = Θ(log n/DG) be a random sample of vertices, and let Lh, Lℓ be the
sets of high-deg (resp., low-deg) vertices in L (hence, Lh ∪ Lℓ = L). The algorithm adds two
subsets of shortcut edges Hh, Hℓ which handle the high-deg and low-deg, respectively:

Hh = (Lh × Lh) ∩ TC(G) .

For every u ∈ Lℓ, Hℓ(u) = {(x, y) | x ∈ Nin(u), y ∈ Nout(u)}.
Hℓ =

⋃
u∈V Hℓ(u).

All added shortcut edges in Hh, Hℓ are weighted by their shortest-path distances in G. The
output hopset is given by H = Hh ∪Hℓ. This completes the description of the construction.

Proof of Theorem 1.2.

Size. Since there are O(m/k) high-deg vertices, w.h.p.,
|Lh| = O(m log n/(kDG)). Hence, |Hh| = Õ((m/(kDG))2). We next bound the size of Hℓ.
Let Vℓ be the set of all low-deg vertices in G. Then,

∑
u∈Vℓ

degin(u) · degout(u) = O(km).
Since Lℓ is obtained by sampling each low-deg vertex with probability of Θ(log n/DG), we
get that w.h.p., |Hℓ| = Õ(km/DG). The size argument holds by setting k = ⌈(m/DG)1/3⌉.

Diameter and Distances. Consider some u-v shortest-path P ⊆ G with DG edges. First
assume that P ∩ Lℓ ≠ ∅. I.e., that P contains at least one sampled low-deg vertex, say z.
Let z′, z′′ be the vertex preceding (resp., subsequent to) z on the path P . Since z′ ∈ Nin(z)
and z′′ ∈ Nout(z), the shortcut edge (z′, z′′) is in Hℓ. Consequently, the path P can be
shortcut into a path P ′ obtained by replacing the 2-hop segment P [z′, z′′] = (z′, z) ◦ (z, z′′)
by a weighted edge (z′, z′′). Note that len(P ′) = len(P ) and that |P ′| = |P | − 1.
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73:8 Towards Bypassing Lower Bounds for Graph Shortcuts

From now on assume that P has no sampled low-deg vertex. W.h.p., it then holds that
P contains at least two high-deg sampled vertices, i.e., |P ∩ Lh| ≥ 2. In addition, we can
assume that those two sampled vertices, x, y are at hop-distance at least D/3 from each
other. Since the weighted edge (x, y) ∈ Hh, the Ω(D)-hop segment P [x, y] can be replaced
by the single edge (x, y). The distances are clearly preserved. Note that in this case, the
hopbound can be reduced by an even a constant factor, and hence the additive reduction is
bottle-necked by the low-deg vertices. ◀

2.2 Reachability (DG − 1)-Hopsets
Known Lower Bound. We start by making the immediate observation that the well-known
lower-bound by Huang and Pettie [14] also holds for (DG − 1)-hopsets.

▶ Theorem 2.2 (Reachability Hopsets, Slight Restatement of [14]). There exists an n-vertex
directed acyclic graph with Ω(n7/6) edges for which any reachability (DG − 1)-hopset must
have Ω(n) shortcut edges provided that DG ≤ n1/6.

Reachability (DG − 1)-Diameter Hopsets (Proof of Theorem 1.1). When settling for
reachability, rather than exact distances, one can provide improved bounds. In particular,
Theorem 1.1 claims that sparse DAGs admit a reachability (DG − 1)-diameter hopset of
linear size for DG ≥ n1/5 (compared to DG ≥ n1/4 when preserving the exact distances).

Throughout, recall that G is a DAG4. The algorithm for reachability (DG − 1)-hopsets is
similar to that of Theorem 1.2. The main distinction is that instead of connecting each pair
of sampled high-deg vertices in the hopset, we add the subset reachability hopset of Lemma
1.7 w.r.t. to the set of high-degree vertices. In our context, this adds |Lh|2/D3

G edges, rather
than |Lh|2 edges, where Lh is the set of sampled high-degree vertices in the construction of
Theorem 1.2.

Proof of Theorem 1.1. Set k = ⌈m4/3/D5/3⌉. The definition of Hℓ is the same, hence
|Hℓ| = Õ(mk/D) = Õ(m4/3/D

5/3
G ). The subset Hh is defined by applying the subset

reachability hopset of Lemma 1.7 with S = Lh and D = DG/2. Since |S| = Õ(m/(kD)), the
size of Hh can be bounded by Õ(|Lh|+ (|Lh|2/D3

G)) = Õ(m4/3/D
5/3
G ).

It remains to consider the diameter argument. By the proof of Theorem 1.2 it is sufficient
to consider a u-v shortest path P of hopbound DG that has at least DG/3 high-deg vertices
and at most DG/3 low-deg vertices. By Lemma 1.7, we have that Hh contains a u-v path
with at most DG/3 low-deg vertices and at most DG/3 high-deg vertices. Note that in this
case, we get a constant reduction in the diameter. The theorem follows. ◀

3 Additive Shortcuts for Undirected Unweighted Graphs

We next consider the gap obtained for exact hopsets in undirected and unweighted graphs.
Our goal is to narrow this gap by (i) restricting attention to (DG − 1)-hopsets (for which the
known lower bound results hold), and (ii) allow a constant additive stretch in the distances.
We will show that for sparse graphs, one can even bypass the current lower bound obtained
for exact hopsets, as the latter is based on a dense graph example.

4 Note that the general DAG reduction introduces a factor of 2 in the diameter, and hence we cannot
employ it. All lower-bound graphs for this problem are DAGs as well.
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Known Lower Bounds for Exact (DG − 1)-Hopsets. We start by observing that the lower
bounds for reachability hopsets by Huang and Pettie [14] also hold for exact hopsets for
undirected and unweighted graphs. See Appendix A for a proof.

▶ Theorem 3.1 (Lower Bound for Exact Hopsets, Undirected Unweighted, Immediate by [14]).
There exist n-vertex undirected and unweighted graphs G with m = Ω(n7/6) edges and
DG = Θ(n1/6), such that any exact (DG − 1)-diameter hopset for G has Ω(n) edges.

We next show that the lower bound of Theorem 3.1 can be bypassed for sparse graphs
when allowing additive stretch. In addition, for general graphs (possibly dense) we match
the bound of n1/6 obtained for exact hopsets.

New Additive (DG − 1)-Hopsets (Proof of Theorem 1.3). We start by presenting an
algorithm that achieves a size bound of Õ((n/DG)6/5) (hence, linear-size for DG ≥ n1/6) and
then explain how to modify the construction to yield the bound of Õ((m/DG)12/11) (which
provides the improved results for sparse graphs). For the sake of this extension, we show the
following slightly stronger statement:

▶ Lemma 3.2. Every n-vertex m-edge undirected unweighted graph G and any input parameter
D, one can compute a hopset H with Õ((n/D)6/5) edges with the following guarantee: For
any u, v pair at distance at least D in G, it holds that distG(u, v) ≤ dist(D−1)

G∪H (u, v) ≤
distG(u, v) + 24.

Note that Lemma 3.2 in particular implies a +24-additive (DG − 1)-diameter hopsets with
Õ((n/D)6/5) edges. The lemma is stronger in the sense that for any given D (where possibly
D < DG), the (−1) reduction in the hopbound holds for any shortest path of length at least
D. In contrast, (DG − 1)-hopsets provides the (−1) reduction only for shortest-paths of
length exactly DG.

The Construction. Let deg2(u) be the number of 2-hop neighbors of u in the given graph
G. Set k = (n/D)1/5 as a parameter that serves as our 2-degree threshold, as follows. A
vertex u is low-deg if deg2(u) ≤ k and it is high-deg otherwise. The algorithm has two
phases. The first phase handles the low-deg vertices by adding Õ(nk/D) shortcut edges. At
the end of that phase, the algorithm outputs also a subgraph G′ in which each vertex is
high-deg. The second phase handles these high-deg vertices by adding an additional subset of
Õ(nk/D + (n/(Dk2))2) shortcut edges. The size bound of (n/D)6/5 is obtained by balancing
these two size terms, which is achieved for k = (n/D)1/5. Throughout, all added shortcut
edges are weighted by the corresponding shortest-path distances between the edge endpoints.

Step (1): Handling Low-Degree Vertices. The algorithm iterates over the low-deg vertices
in the graph, as long as such exists. Initially, set G0 = G and H0 = ∅. In every iteration
i ≥ 1, it gets as input a subgraph Gi−1 and Hi−1 and considers an arbitrary low-deg vertex
u. (If no such exists, then G′ = Gi−1, H ′ = Hi−1 and the step terminates). First, the
algorithm removes u by letting Gi = Gi−1 \ {u}. Then, with probability of p = Θ(log n/D),
the algorithm connects u to each of its (current) 2-hop neighbors in Gi−1 by letting Hi =
Hi−1 ∪ {(u, v) | v ∈ N2(u, Gi−1)}. This completes the description of the ith iteration.
Denoting the number of iterations by ℓ, then the output of the step is given by G′ = Gℓ and
H ′ = Hℓ.
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Step (2): Handling the Remaining High-Degree Vertices. We now restrict attention only
to the graph G′. Letting V ′ = V (G′), the algorithm computes three random samples of
V ′-vertices: S = V ′[p], Q = V ′[q] and R = V ′[r] where p = Θ(log n/D), q = Θ(log n/k) and
r = Θ(log n/(Dk2)). Also, initially set H ′′ = (R×R), and add to H ′′ a subset of shortcut
edges by applying the following shortcutting procedure for every vertex u ∈ S:

Build a depth-6 BFS tree T6(u, G′) ⊆ G′ rooted at u (i.e., a BFS which spans only
N6(u, G′)).
If |T6(u, G′)| = O(k2), add the edges E′(u) = {(u, v) | v ∈ T6(u, G′) ∩Q} to H ′′.

The output hopset is given by H ′ ∪H ′′. We next turn to analyze the construction and prove
Lemma 3.2.

Size. In the first step, for every low-deg vertex u, with probability of p = Θ(log n/D), the
algorithm adds deg2(u) ≤ k shortcut edges. Hence this adds |H ′| = Õ(nk/D) edges, w.h.p.
Consider the second step. W.h.p., |S| = O(n log n/D) and |R| = O(n log n/(Dk2)). For
every u ∈ S with |T6(u, G′)| = O(k2), we have that w.h.p. |T6(u, G′) ∩ Q| ≤ k log n, and
therefore, we have O(|S| · k log n) edges, due to this step. Overall, we added to H ′′ a total of
O(|R|2 + |S| · k log n) edges. The size bound follows by plugging k = (n/D)1/5.

Diameter and Stretch Analysis. Throughout, we override notation and redefine a vertex v

to be low-deg if v /∈ V (G′). That is, a vertex is low-deg if there exists an iteration i in the
Step (1) in which N2(v, Gi−1) ≤ k. A vertex v is then high-deg if v ∈ V (G′) (i.e., it is a
high-deg in each subgraph Gi−1 considered in each iteration i of Step (1)). We also need the
following classification of the high-deg vertices. A vertex u ∈ V (G′) is large if its 6-depth
BFS tree has size |T6(u, G′)| = ω(k2), and it is small otherwise. Let Vℓ = V \ V (G′) be the
low-deg vertices, V small

h (resp., V large
h ) denote the small (resp., large) high-deg vertices. It

then holds that Vℓ ∪ V small
h ∪ V large

h = V (G).
Consider now a u-v shortest-path P with D edges (hops). The analysis breaks into three

cases depending on the number of vertices in V (P ) that belong to each of the three subsets
of vertices Vℓ, V small

h and V large
h .

Case 1: |P ∩ Vℓ| = Ω(D). For every low-deg vertex z, let iz be the iteration in which
z is removed in Step (1). I.e., z is the (unique) selected low-deg vertex in Giz−1. We then
say that the low-deg vertex z ∈ P ∩ Vℓ is bad if both of its 2-hop P -neighbors z1, z2 are not
in Giz−1. This can happen if these two 2-hop neighbors were removed in prior iterations.
Otherwise, the vertex is good.

▶ Lemma 3.3. The path P can contain at most two consecutive bad vertices.

Proof. The claim follows by noting that a 2-hop P -neighbor of a bad vertex x ∈ P must be
good. To see this, let z be a 2-hop P -neighbor of x. Since x is bad, it implies that ix ≥ iz + 1,
i.e., z is removed before x in Step (1). This implies that x ∈ Giz−1 and hence z must be
good. ◀

By Lemma 3.3, we get that in this case P contains Ω(D) good vertices. Since the
algorithm add shortcut edges to each good vertex w.p. p = Θ(log n/D), we get that w.h.p.,
the coin flip is successful for at least one good vertex, say x, on P . By the definition of
the good vertex, at least one of its 2-hop P -neighbors, say x′, is in Gix−1 and therefore the
shortcut edge (x′, x) is in H ′. Let P ′ be the path obtained by replacing the 2-hop segment
P [x, x′] with an edge (x, x′). Then, len(P ) = len(P ′) but |P ′| ≤ |P | − 1, as required.
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Case 2.1: |P ∩ V large
h | = Ω(D). Note that for any for any two vertices u′, u′′ on P at

distance at least 13 from each other, it holds that their 6-hop neighborhoods are disjoint. Also
note that since N6(u′, G′) ⊆ N6(u′, G), we have that |N6(u′, G)| = ω(k2) for every u′ ∈ V large

h .
As P contains Ω(D) vertices from V large

h , we get that the size of the 6-hop neighborhood
of the path P is Ω(Dk2). Since we sample each vertex in V into R independently with
probability of r = Θ(log n/(Dk2)), we get that w.h.p., the following holds: There are two
vertices u′, u′′ ∈ S ∩ P ∩ V large

h at distance Ω(D) from each other such that there exists
w ∈ N6(u′, G) ∩ R and w′ ∈ N6(u′′, G) ∩ R. Since the algorithm adds to H ′′ the shortcut
edge (w, w′), the hopbound between u and u′ is reduced from Ω(D) to at most 13. By the
triangle inequality, this introduces an additive stretch of at most +24. See Fig. 1 (Left) for
an illustration.

Case 2.2: |P ∩ V small
h | = Ω(D). Since P has Ω(D) vertices from V small

h , we can also
assume the following. The path P contains ℓ = Ω(D) segments P1, . . . , Pℓ such that: (i)
each Pi ⊆ G′, (ii) |Pi| = 40 and (iii) the internal 20-length segment of Pi contains a vertex
in V small

h . We then get that w.h.p. there exists a vertex u′ ∈ S ∩ P ∩ V small
h that belongs

to the internal 20-length segment of some Pi ⊆ G′. Let w be a vertex at distance 4 from
u′ on Pi. Since each vertex in G′ has 2-deg at least k, we get (i) |N2(w, G′)| ≥ k and (ii)
N2(w, G′) ⊂ T6(u′, G′). Therefore, w.h.p., it holds that there exists some z ∈ N2(w, G′) ∩Q

(where Q = V ′[Θ(log n/k)]) and consequently, (u′, z) ∈ E′(u). The 4-hop path segment
P [u′, w] can then be replaced by a 3-hop segment P ′ = (u′, z) ◦ (z, z′) ◦ (z′, w) for some
z′ ∈ N(w, G′) ∩ N(z, G′). It is easy to see that the additive stretch is at most +4, as we
replace a 4-hop segment by a 3-hop segment of length at most 8. See Fig. 1 (Right) for an
illustration. Lemma 3.2 follows.

𝑢′ 𝑢′′

𝑤 𝑤′

≤ 6≤ 6

≤ 𝑑 𝑢′, 𝑢′′ + 12

𝑢′ 𝑤

≤ 2

≤ 6
𝑧

Figure 1 An illustration for stretch and diameter argument of Theorem 1.3. Left: The path P

contains Ω(D) vertices which are high-deg and an in addition with large 6-depth BFS trees. The shortcut
edge is shown in blue. Right: The path P has Ω(D) vertices which are high-deg and with small 6-depth
BFS trees.

We are now ready to complete the proof of Theorem 1.3.

Theorem 1.3. It remains to modify the construction to obtain a size bound of
Õ((m/DG)12/11) edges. We start with a preliminary sparsification step that handles vertices
with 1-degree (that is simply the degree) at most k′ = (m/DG)1/11. Let Vℓ,1 be the subset
of all low-degree vertices (i.e., with 1-deg at most k′) and let Vh,1 = V \ Vℓ,1. Let H1 be a
subset of shortcut edges that handles the low-degree vertices, as follows. Let V ′

ℓ,1 = Vℓ,1[p]
for p = Θ(log n/DG). Then,

H1 =
⋃

v∈V ′
ℓ,1

{(x, y) | x, y ∈ N(v) and x ̸= y} .
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Next, we apply the construction of Lemma 3.2 on the graph Gh = G[Vh,1] with D = DG,
which outputs a +24-additive (DG − 1)-diameter hopset H2 on the graph Gh. Observe that
the diameter of Gh might be considerably larger than D. This motivates the more dedicated
guarantees of Lemma 3.2. The output hopset is given by H1 ∪H2.

Size. By the Chernoff bound, w.h.p., |H1| = Õ(mk′/DG). In addition, |Vh,1| = O(m/k′)
by a simple counting argument. Letting n′ = |Vh,1| = O(m/k′), by Lemma 3.2, |H2| =
Õ((n′/DG)6/5). This size bound follows by plugging k′ = (m/DG)1/11.

Diameter and Stretch. Consider a u-v shortest-path P with DG edges. If P contains
Ω(DG) vertices of degree at most k′, then w.h.p., P ∩ V ′

ℓ,1 ̸= ∅, and P is shortcut by one hop,
and the distances are preserved. It remains therefore to consider the case where P contains
ℓ = Ω(DG) segments P1, . . . , Pℓ, each of length 100, that are fully contained in the graph
Gh = G[Vh]. For every i ∈ {1, . . . , ℓ}, letting Pi = [ui1, . . . , ui100] then define an internal
segment P ′

i = [ui50, . . . , ui80] ⊂ Pi.
We next show that this suffices to recover the same argument as obtained in Lemma 3.2.

Partition the vertices on P ∩ Vh,1 into three subsets Vℓ, V small
h , V large

h as in the argument of
Lemma 3.2. We then consider the same cases as in Lemma 3.2 with minor modifications.

Case 1: Vℓ intersects with Ω(DG) distinct segments of P ′
1, . . . , P ′

ℓ . By Lemma 3.3, we
get that w.h.p. the algorithm adds a shortcut edge between some vertex Vℓ ∩ P to its 2-hop
neighbor on the path. Hence, the diameter (hopbound) is reduced by 1, and the distances
are preserved.

Case 2.1: V large
h intersects with Ω(DG) distinct segments of P ′

1, . . . , P ′
ℓ . Note that

any for any two vertices u, v on P at distance at least 13 from each other, it holds that their
6-hop neighborhoods are disjoint. This implies that the 6-hop neighborhood of the path P is
Ω(Dk2). By the exact same argument as obtained for Case 2.1 in Lemma 3.2, we get that
there is at least one segment Pj whose hopbound is reduced while introducing an additive
stretch of at most +24. This holds as the argument in Lemma 3.2 is local in the sense that it
shortcuts segments of constant length provided that there are sampled u′, u′′ ∈ V large

h that
are sufficiently apart on P and that each has a 4-hop P -neighbor on the segment.

Case 2.2: V small
h intersects with Ω(DG) distinct segments of P ′

1, . . . , P ′
ℓ . The claim

follows by noting that the argument for Case 2.2 of Lemma 3.2 shows that any segment Pj gets
shortcut (and while introducing an additive stretch of +4) with probability of Θ(log n/DG).
The probabilities are independent for vertex-disjoint segments. Note that this holds since
it is sufficient for the segment Pj to include the 6-hop neighborhood of the vertex. Since
V small

h intersects with Ω(DG) disjoint segments, at least one of them is successful, w.h.p.,
and provides the desired (−1) reduction in the hopbound (while introducing an additive
stretch of +4). ◀

New Additive D-Diameter Hopsets (for any D). We now turn to proving Theorem 1.4.
For simplicity we show a construction of O(D)-diameter hopsets with additive stretch O(α),
but these constant factors can be easily omitted. The algorithm has two main steps. The
first step computes a graph G′ on O(n log n/α) vertices at the cost of introducing an additive
stretch of O(α). The second step computes an exact D-diameter hopset on G′.
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Specifically, the algorithm starts by computing a weighted net graph G′ = Net(G, p) for
the given (unweighted) graph G where p = Θ(log n/α). The algorithm Net(G, p) outputs
a graph G′ = (V ′, E′, ω′) defined as follows. Let V ′ = V [p] be a random sample of V ,
obtained by sampling each v ∈ V independently with probability of p. Let E′ = {(u, v) ∈
V ′ × V ′ | distG(u, v) ≤ Θ(log n/p) ·W} and ω′((u, v)) = distG(u, v) for every (u, v) ∈ E′.
We use the following observation in our constructions:

▶ Observation 3.1 (Observation 3.4 in [20]). Let G′ = (V ′, E′, ω′) be the output net graph
of Alg. Net(G, p) where G = (V, E, ω) is an n-vertex graph with maximum edge weight W .
Then w.h.p., the following holds: (i) |V ′| = O(np log n), (ii) for every u, v ∈ V ′, distG′(u, v) =
distG(u, v), and (iii) the maximum edge weight of G′ is bounded by W ′ = Θ(W log n/p).

Denote S1 = V (G′), hence S1 = V [p]. By Obs. 3.1(iii), the maximum edge weight of
G′ is W = O(α). Let S2 = S1[q] for q = Θ(log n/D). For a vertex u and a set S1, let
Closest(u, S1) be the closest vertex to u in S1, breaking ties arbitrarily. The output hopset
H is the union of H0 ∪H1 ∪H2 of weighted edges, where:

H0 ← {(u, Closest(u, S1)) | u ∈ V }.
H1 ←WeightedSpanner(G′) of Theorem 1.8.
H2 ← ExactHopset(H1, D) of Lemma 1.6.

This completes the description of the hopset.

Proof of Theorem 1.4. Clearly, |H0| ≤ n. By the Chernoff bound, w.h.p., |S1| =
O(n log2 n/α), and therefore by Theorem 1.8, |H1| = Õ((n/α)4/3). The size of H2 can
bounded by |S2|2 = Õ((n/(α ·D))2), w.h.p. We next turn to consider the additive stretch
and the hopbound.

Consider a u, v pair and let u′ = Closest(u, S1) and v′ = Closest(v, S1). W.h.p., it
holds that distG(u, u′), distG(v, v′) = O(α). Since, u′, v′ ∈ S1, by Obs. 3.1 we have that
distG′(u′, v′) = distG(u, v). Hence, distH1(u′, v′) ≤ distG′(u′, v′) + O(α). Since H2 is an
exact D-diameter hopset for H1, we get:

dist(D)
H1∪H2

(u′, v′) = distH1(u′, v′) ≤ distG(u′, v′) + O(α) .

Letting P be the shortest u′-v′ path with at most D hops in H1 ∪ H2, we get that the
u-v path P ′ = (u, u′) ◦ P ◦ (v′, v) ⊆ G ∪ H has at most O(D) hops and of total length
distG(u, v) + O(α). The theorem follows. ◀
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A Missing Proofs

Proof of Lemma 1.7. Let TC ′ = TC(G)[S] be the induced transitive closure on the subset
S. Compute a collection of O(|S|/D) vertex-disjoint paths P in TC ′ such that TC ′ \ V (P)
has no directed path of length D/10. Let H1 =

⋃
P ∈P H(P ) where H(P ) is a 2-diameter

hopset for P that consists of O(|P | log |P |) edges, using Lemma 1.5. Let S′ = S[p] and
P ′ = P[p] for p = Θ(log n/D). Let H2 = {e(v, P ) | v ∈ S′, P ∈ P ′} where e(v, P ) is an
edge connecting v to its first outgoing neighbor in TC ′ on P . The size bound is immediate.

Consider the diameter argument. Let Q be a u-v shortest path in G for u, v ∈ S such
that |Q ∩ S| ≥ D. By the properties of the paths P , we can assume that |Q \ V (P)| ≤ D/10.
We next show that Q can be transformed into a path Q′ ⊆ G ∪H1 such that the following
holds: (i) for each P ∈ P , |P ∩Q′| ≤ 3 and V (Q′) \ V (P) ⊆ V (Q). This can be obtained by
traversing Q and at each point of observing a vertex z ∈ P ∩Q, we add the shortcut edges
H(P ) to connect z with the far most vertex z′ ∈ P ∩Q. It is easy to see that V (Q′) ⊆ V (Q)
as by shortcutting Q we can only omit vertices.

Finally, in the case where |Q′ ∩ S| ≥ D/2, by property (i), we have that Q′ intersects
with Ω(D) distinct paths from P. Let w ∈ S be the first sampled vertex in Q′ ∩ S′ (w.h.p.,
such exists among the first D/10 many S’ vertices on P ). Let w′ ∈ S be the last vertex on
Q′ that belongs to a sampled path P ′ in P ′ (w.h.p., such exists among that last D/10 many
S’ vertices on P ). The diameter argument holds by noting that the shortcut edge e(w, P ′) is
in H2. ◀

Proof of Theorem 3.1. The lower bound graph of [14] is a DAG with DG layers which
contain Ω(n) critical pairs. For each critical pair ⟨u, v⟩, u belongs to layer 1 and v belongs to
layer DG. Furthermore, there is a unique directed path in G between u to v and this path
contains exactly one vertex from each layer. We now remove the directions of the edges in G

to get an undirected and unweighted graph G′. Notice that now for each critical pair ⟨u, v⟩
in G′, we have a unique shortest path of length DG − 1 between u and v, that is there might
be other paths between u and v but the length of such path will be greater than DG − 1
because such path will necessarily contain at least one vertex from each level, and for a
certain level i there will be two vertices from level i. In particular, the path will contain
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vertices u, w, v consecutively in the path, where u is in level i, w is in level i− 1 and v is in
level i. We therefore have that the unique directed u-v paths in G are translated into unique
undirected unweighted shortest paths in G′. Therefore, the claim holds in the exact same
manner as in [14]. ◀
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Abstract
The block tree [Belazzougui et al. J. Comput. Syst. Sci. ’21] is a compressed text index that can
answer access (extract a character at a position), rank (number of occurrences of a specified character
in a prefix of the text), and select (size of smallest prefix such that a specified character has a
specified rank) queries. It requires O(z log(n/z)) words of space, where z is the number of Lempel-Ziv
factors of the text. For some highly repetitive inputs, a block tree can require as little as 0.015
bits per character of the text. Small values of z make the block tree a space-efficient alternative
to the wavelet tree, which is another index for these three types of queries. While wavelet trees
can be constructed fast in practice, up so far compressed versions of the wavelet tree only leverage
statistical compression, meaning that they are blind to spaced repetitions.

To make block trees usable in practice, a first step is to find ways in constructing them efficiently.
We address this problem by presenting a practically efficient construction algorithm for block trees,
which is up to an order of magnitude faster than previous implementations. Additionally, we
parallelize our implementation, making it the first block tree construction implementation that
works in parallel in shared memory.
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1 Introduction

We experience an every-increasing amount of textual data produced in various domains.
Examples include the exponentially increasing capability to sequence genetic data thanks to
technical advances [63], code repositories such as GitHub, or natural text collections such as
the English Wikipedia, which grows by around 2 million pages each year (currently there are
over 58 million pages)1. Since there is no expectation that the production of such texts will
decelerate, it seems that we start to drown in this sheer amount of data. Nevertheless, for
the addressed examples, there is hope in that the produced textual data is usually highly

1 See https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia, last accessed 2023-07-04.
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repetitive: When sequencing two human individuals, we can expect to find that they share
more than 99.9 % of genetic data. In other domains such as code repositories or natural text
collections, version control systems are used to track all versions of a document or source
code to make it possible to revert changes or compare different versions. Since new versions
often introduce only small changes, collections of all versions of the same document are often
highly repetitive.

When stored or transmitted, texts are oftentimes compressed to save disk space or
bandwidth, respectively. The most popular techniques for lossless text compression are based
on the Lempel-Ziv 77 (LZ77) factorization [66]. Given z is the number of factors of the LZ77
factorization of a given text, we can represent the text in O(z) words of space. In many
use cases, it does not suffice to only store or transmit textual data: the data also has to
be processed. A naive way would be to decompress the data before processing it, which is,
however, prohibitive for massive datasets. To avoid unnecessary decompression, we can use
compressed text indices, which allow us to answer queries efficiently without decompression,
while also guaranteeing us (asymptotically) the same space as the compressed text.

The block tree [6] is such a compressed text index that requires O(z log(n/z)) words of
space for a text T of length n with z LZ77 factors. By default it can answer access queries.
However, it can be augmented with additional information to also answer rank and select
queries. The queries are defined as follows.

access(T, i) returns the character at position i, i.e., T [i] for i ∈ [0, n),
rankα(T, i) returns the number of occurrences of the character α in the i-th prefix of the
text, i.e., rankα(T, i) = |{j ≤ i : T [j] = α}| for α ∈ Σ and i ∈ [0, n), and
selectα(T, i) returns the position of the first character α that has rank i, i.e., selectα(T, i) =
min{j : rankα(T, j) = i} for α ∈ Σ and i ≤ rankα(T, n − 1).

One of the most popular data structures answering all three types of queries is the wavelet
tree [35]. It is used in, among others, compressed full text indices based on the BWT [23,31,51]
or on a grammar [15,16], lossless data compression [22,37,41], and computational geometry [14].
For more related work, see Section 3. Using the block tree, all these queries can be answered
in O(log(n/z)) time, with different space-time trade-offs available, see Section 4.

Our Contribution. In this paper, we present a block tree construction algorithm that lever-
ages properties of the longest previous factor array, which is a common tool for computing the
LZ77 factorization. We analyze our algorithm and show that it has the same asymptotic time
complexity as previously presented construction algorithms. However, in our experimental
evaluation, we observe that the implementation of our proposed algorithm is up to an order
of magnitude faster than previous implementations. Finally, we show that our construction
algorithm can also be parallelized.

2 Preliminaries

Let T = T [0]T [1] . . . T [n − 1] be a text of length n over an alphabet Σ = [0, σ). The substring
T [i..j] = T [i] . . . T [j] is called prefix if i = 0 and suffix if j = n − 1.

The Lempel-Ziv 77 (LZ77) factorization [66] parses the text into z factors f0, . . . , fz−1 ∈
Σ+ such that T = f0 . . . fz−1. For all i ∈ [0, z), fi is either a single character not occurring
in f0, . . . , fi−1 or the longest substring occurring at least twice in f0, . . . , fi. The LZ77
factorization can be computed in linear time and space (see Ref. [2] for a survey).

The longest previous factor array LPF stores at its i-th entry the length ℓ of the longest
substring T [i..i+ℓ) having a previous occurrence in the text [17], i.e., LPF[i] = max{ℓ : T [i..i+
ℓ) = T [j..j + ℓ) for j < i} for i ∈ [0, n). In particular, if i is the starting position of an
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LZ77 factor f , then LPF[i] = |f |, and thus we can compute the LZ77 factorization in linear
time by scanning the LPF array, which can be constructed in linear time [17]. Later on, we
also need the position of the occurrence of a longest previous factor, which we store in the
previous occurrence array PrevOcc. The previous occurrence array is also called quasi suffix
array [27]. Here, for all i ∈ [0, n) we have T [i..i + LPF[i]) = T [PrevOcc[i]..PrevOcc[i] + LPF[i])
if LPF[i] > 0. We write PrevOcc[i] = −1 if LPF[i] = 0, i.e., when T [i] is the leftmost occurrence
of a single character in T .

3 Related Work

In this section, we give related work for compressed data structures answering our three
types of queries (access, rank, and select) and work on block trees.

Access, Rank, and Select Data Structures

Answering queries such as access, rank, select are profound problems that have been well
addressed in literature. Starting with the case for binary alphabets, there are plenty of
results for indexing compressed [10,31,54,55,60] and uncompressed [34,43,47,53,57,64,65] bit
vectors. A recent compressed approach involves the linear approximation of the distributions
of parts of the ranks in the bit vector [10]. Despite that block trees also work on general
alphabets, a block tree variant over the gapped compressed integer array of the ranks of the
bit vector can be used to answer rank and select queries [24].

For larger alphabets, we are aware of statistically compressed data structures, where
space is expressed in relation to the k-th order of empirical entropy Hk with k = o(logσ n).
Most prominent is the Huffman-shaped wavelet tree [35] using n(H0(T ) + 1) + o(n(H0(T ) +
1)) + O(σ log n) bits, and solving all three queries in O(log σ) time. This time could be
reduced to O(1 + log σ/ log log n) with multiary wavelet trees [25], and by a later work [33],
the space got reduced to nH0(T ) + o(n) bits. In practice, (Huffman-shaped) wavelet trees
are also well-engineered [13,18,19,20,21,26,28,45].

For faster queries on large alphabets, Golynski et al. [32] gave a data structure taking
n lg σ + o(n log σ) bits that answers all three types of queries in O(log log σ) time. The space
got improved by Barbay et al. [4] to nH0(T ) + o(n(H0(T ) + 1)) bits. Allowing slightly worse
time complexities, Barbay et al. [5] achieved nHk(T ) + o(n log σ) bits, answering all queries
in o((log log σ)1+ϵ) time, for any fixed constant ϵ > 0. These time bounds were improved by
Grossi et al. [36] to O(log log σ) for rank and select, and constant time for access. Finally,
Belazzougui and Navarro [9] presented a data structure achieving nHk(T ) + o(n log σ) bits
of space, while answering rank in O(log logw σ) time. It further can answer access and select
in O(1) and any time in ω(1), respectively, or the other way around. There are also several
results on lower bounds for data structures answering the three queries we address here.

Another line of research is to augment grammar compression with an index to support
our queries. Here, Belazzougui et al. [7] and Pereira et al. [56] presented grammar indices
answering rank and select queries in O(log n) time. Their indices use O(gσ log n) bits of space
when built on a grammar of size g, where the latter reference requires that the grammar
is balanced. This requirement can be dropped in the light that a grammar can be made
balanced in linear time [29].
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Block Trees

Finally, we focus on block trees. Block trees have been proposed by Belazzougui et al. [8],
who proposed a Monte Carlo construction algorithm using Karp-Rabin fingerprints in the
external memory model. In the journal version [6], the authors provided two construction
algorithms which we analyze in Section 4.1. Navarro [50, Section 4.2] recently surveyed block
trees, who addresses also most of the references below for applications and variations.

A first application is pattern matching, where Navarro [49] uses block trees for locating
pattern in the text. His index uses O(z log(n/z)) words of space and finds all occ occurrences
of a pattern of length m in O(m2 log n + occ logϵ n) time for any constant ϵ > 0. Brisaboa et
al. [11] presented an extension of block trees to a two-dimensional data structure simulating
k2-trees. Recently, Cáceres and Navarro [12] applied block trees for the compression of the
suffix tree topology, the suffix array, and its inverse.

Despite the fact that the space of block trees is related to the size of the LZ77 factorization,
the space can, if we vary the definition of a block tree, be made related to the size γ of a
string attractor [39] or the substring complexity δ [61].

For the former (string attractor size γ), we recall that a string attractor is a set of
positions of the text such that each substring has an occurrence in the text that contains
a position of the string attractor. Kempa and Prezza [39, Theorem 5.3] gave a variant of
block trees whose blocks cover substrings of consecutive string attractor positions and thus
partition T irregularly. Their variant uses O(γ log(n/γ)) = O(z log(n/z)) space and extracts
a length-ℓ substring in O(log(n/γ) · (1 + ℓ)/ logσ n) time. For indexing, Prezza [58] (for rank
and select queries) and Navarro and Prezza [52] (for pattern matching) could revert the
property that blocks on the same level have equal length while retaining the space size.

For the latter (substring complexity δ), let δ := max{dk/k : k ∈ [1, n]} denote the
substring complexity of T , where dk is the number of distinct length-k substrings of T . Then
there is a block tree variant that can be represented in O(δτ logτ

n
δ ) space supporting queries

in O(log n
δ ) time [40].

4 Block Trees

Let T be a text of length n over an alphabet of size σ, whose LZ77 factorization consists of
z factors. The block tree [6] is a compressed index requiring O(z log(n/z)) words of space. It
supports access, rank, and select queries in O(log(n/z)) time. In the following, we describe a
block tree with two integer parameters s and τ that are greater than 1, which specify the
out-degree of the root and all other internal nodes, respectively. For simplicity, we assume
that n = s · τh for some integer h. Now, the block tree is a tree of height h = 1 + logτ

z log n
s log n

with parameters τ and s such that the root has s children and every internal node is a leaf
or has τ children.

Each node u represents a substring of T called block Bu. The root represents the whole
text T and has s children representing s consecutive blocks of length n/s. We refer to all
blocks with the same depth as a block tree level. Two blocks are consecutive if they are in the
same block tree level and if they are consecutive in T . Let Bi · Bi+1 be the concatenated
substring of two consecutive blocks. We mark the blocks i and i + 1, if Bi · Bi+1 is the
leftmost occurrence of that substring in T . All non-root nodes that are not in the last level
represent either marked or unmarked blocks.

All marked blocks Bv are internal nodes with τ children. These children represent
consecutive blocks of length |Bv|/τ whose concatenation is Bv. Unmarked blocks Bu, on
the other hand, are leaves that only store a pointer towards the pair of consecutive blocks
Bi · Bi+1 containing the leftmost occurrence of Bu and the offset of that occurrence in the
blocks. The number of blocks per level of the block tree is bounded.
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Figure 1 The block tree (left) and its pruned version (right) for the text T = AAAABBAAABABBAA
with τ = 2 and s = 4. Dashed arrows indicate pointers to the leftmost occurrence of the block the
arrow starts at. The red line indicates the offset stored in addition to the pointer. Note that only
characters in leaves are stored explicitly. For simplicity, our leaves contain only a single character.
In the pruned block tree, we can replace an additional AA block. Note that we cannot prune the
second AA block, as another block points into it.

▶ Lemma 1 ([6, Lemma 1]). Any level of a block tree (except the first) contains ≤ 3zτ blocks.

We have reached the last (or deepest) level of the block tree when explicitly storing the
representing substring requires less space than storing the pointer for an unmarked block.
At this level, we store the substring of each unmarked block explicitly. For example, if
|Bu| ∈ Θ(logσ n), its encoding requires O(1) words of space. Note that on each level, the
block length decreases by a factor of τ .

The block tree requires O(s + zτ logτ
n log σ
s log n ) words of space. Choosing τ as constant

yields the minimum space requirement of the block tree mentioned above. Choosing s = z

results in block trees of size O(zτ logτ
n log σ
z log n ) words. Different values for τ can introduce

other space-time trade-offs, as described by Belazzougui et al. [6].

4.1 Construction

Belazzougui et al. [6] give two construction algorithms, which we briefly review. Their first
algorithm requires O(n) words of working space, where the idea is to use an Aho-Corasick
automaton [1] that can identify all consecutive pairs of blocks B0 ·B1, B1 ·B2, . . . , Bs−2 ·Bs−1
on the first level. This automaton is then used to identify the first occurrences of all pairs
and to mark them accordingly. To set the leftwards pointers into unmarked blocks, the
automaton is replaced by a new automaton that recognizes all unmarked blocks is created.
The text is traversed using this automaton. Whenever an unmarked block is found for
the first time, a pointer (and offset) is stored. For then on, the second automaton is no
longer of use and can be removed. Subsequently, the algorithm continues with the next level,
considering only the unmarked blocks from the previous level.

Their second algorithm uses O(s + zτ) words of working space and runs in O(n) expected
time. Here, the general idea is to replace the Aho-Corasick automaton with Karp-Rabin
fingerprints [38], i.e., storing Karp-Rabin fingerprints of all consecutive pairs of blocks Bi ·Bi+1
in a hash table. Since there are at most 3zτ blocks per level, this approach requires only
O(s + zτ) words of working space. Both algorithms work in linear time if s = Θ(z).

The block tree as described here only supports access queries. For rank and select support,
additional information has to be stored for each marked block. In the case of rank queries,
the occurrence of all characters in the text up to the beginning of the block is necessary. For
more details, we refer to the original block tree paper [6].
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Pruning. When we construct block trees with one of the two aforementioned construction
algorithms, we meet the asymptotic space bounds – but the block tree may contain more
blocks than necessary, see Figure 1. Remember that we mark the first occurrence of each
pair of consecutive blocks Bi · Bi+1 to guarantee that any block Bu to their right can point
to them. However, there may be no rightwards block pointing to either (or both) Bi, Bi+1.
In this case we would replace one of the blocks (or both) with leftward pointers, if one (or
both) of them occurs previously. Since we do not modify this part of the algorithm, we refer
to Belazzougui et al.’s [6, Section 6.1] description of the pruning step for more details.

5 Block Tree Construction using the LPF Array

We now describe our new block tree construction algorithm based on the LPF array.2 First,
in Section 5.1, we mark blocks using only the LPF array. Then, in Section 5.2, we find the
leftmost occurrences of unmarked blocks, before, in Section 5.3, we combine all these ideas
to our new algorithm.

5.1 Marking Blocks
The block tree is closely related to the LZ77 factorization of the text. Consecutive blocks
Bi−1, Bi, and Bi+1 are only marked if an LZ77 factor starts in Bi, i.e., if they contain the
leftmost occurrence of some substring. Similarly, LPF values witness the shortest substring
starting at each text position that is a leftmost occurrence. Hence, we can make use of
the LPF array to mark blocks. Let s(Bu) denote the starting text position of the substring
represented by Bu.

▶ Lemma 2. Given three consecutive blocks Bi−1, Bi, and Bi+1 of length ℓ. We mark Bi if
LPF[s(Bi−1)] < 2 · ℓ or LPF[s(Bi)] < 2 · ℓ is true.

Proof. By the definition of the LPF array, a substring T [i..i + ℓ) has a preceding occurrence
in the text if LPF[i] ≥ ℓ. We only leave Bi unmarked if both LPF[s(Bi−1)] and LPF[s(Bi)]
are at least 2 · |Bi| because this means that there is a previous occurrence of both Bi−1 · Bi,
and Bi · Bi+1. Otherwise, if there is no previous occurrence of one of the two pairs, we have
to mark Bi. ◀

To determine whether the last block is marked, only its preceding block has to be
considered. Otherwise, it is the same argument as used in Lemma 2. Since each level of the
block tree contains O(zτ) blocks, we get the following result.

▶ Lemma 3. Given the LPF array, we can mark all blocks of a level in the block tree in
O(zτ) time.

5.2 Identifying Leftmost Occurrences
Now, for each unmarked block, we have to identify the leftmost substring in the text that is
equal to that block, as we need to add pointers (and offsets) from the unmarked blocks to
these occurrences. Note that in all levels but the first one, the index of the block Bu does
not automatically translate to the block’s starting position s(Bu), as we do not know how
many blocks have been unmarked to its parent’s left in the previous level. Therefore, we
need to store additional information regarding a block’s starting position for each block.

2 The description is based on and has text overlaps with Daniel Meyer’s Master’s thesis [48].



D. Köppl, F. Kurpicz, and D. Meyer 74:7

5.2.1 Leftmost Occurrences as Text Positions
In this section, we describe how to identify the text position of the previous occurrence.
Afterwards, in Section 5.2.2, we show how to identify the block that contains this text
position on the current level. While the LPF array is sufficient to mark blocks, it does not
contain information necessary to find the leftmost occurrences of blocks that we require
for the leftward pointers. We now give a naive approach to compute the text positions in
Section 5.2.1.1. Then, in Section 5.2.1.2, we improve the naive approach by using dynamic
programming to obtain better asymptotic running times. The general idea in both cases is
to follow the leftmost occurrences of previous occurrences for all blocks on a level.

▶ Lemma 4. Let i ∈ [0, n) be a text position, j = PrevOcc[i], and k = PrevOcc[j]. If
0 < LPF[i] ≤ LPF[j], then T [i..i + LPF[i]) = T [j..j + LPF[i]) = T [k..k + LPF[i]).

Proof. LPF[i] = max{k : T [i..i + k) = T [j..j + k) for j < i} and PrevOcc[i] gives us the
position j, where this longest factor occurs. Since 0 < LPF[i], we have T [i..i + LPF[i]) =
T [j..j + LPF[i]) by definition. We also know that for text position j, there exists a previous
factor of length at least LPF[i] at position k. Hence T [i..i + LPF[i]) = T [k..k + LPF[i]). ◀

The same holds not only for length-LPF[i] substrings, but for general length-ℓ substrings
with ℓ ≤ LPF[i], which is useful when processing a block tree level where blocks have all the
same length ℓ.

▶ Observation 5. Let i ∈ [0, n) be a text position and j = PrevOcc[i]. If 0 < ℓ ≤ LPF[i],
then T [i..i + ℓ) = T [j..j + ℓ).

5.2.1.1 Naive Approach

Using these properties, we can describe a naive algorithm to find the leftmost occurrence of a
given unmarked block Bu = T [i..i + ℓ). Here, we simply follow the PrevOcc entries until the
length of the longest previous factor of the previous occurrence is smaller than ℓ. This leads
us to the first occurrence of length ℓ. Unfortunately, this naive approach requires O(n) time
for each block. For example, in an all-a text aa . . . a, for text position i we would follow the
longest previous occurrences i − 1, i − 2, . . . , 0 in case that PrevOcc(i) = i − 1 for all i > 0.
Therefore, using the naive approach, we do not achieve the asymptotic running time of the
original block tree construction algorithms by Belazzougui et al. [6]. However, in practice,
this approach works very well, as we observed in our experimental evaluation in Section 6.

5.2.1.2 Dynamic Programming

To retain the time complexities of the original block tree construction algorithms, we make
use of dynamic programming to find the leftmost occurrences of a block in the text. We
start with the definitions of ℓ-factors and FirstOccℓ.

▶ Definition 6 (ℓ-factor and FirstOccℓ). For ℓ > 0, we denote T [i..i + ℓ) as ℓ-factori.
FirstOccℓ[i] stores PrevOcc[i], if no previous occurrence of ℓ-factori exists (remember that
PrevOcc[i] = −1 if T [i] is the leftmost occurrences of a character, i.e., LPF[i] = 0) and the
leftmost occurrence of ℓ-factori otherwise.

We can compute FirstOccℓ using dynamic programming by iterating over PrevOcc from
left to right. To start with, we set FirstOccℓ[0] = −1. Suppose that we have processed
FirstOccℓ[0..i − 1] and are at text position i. For j := PrevOcc[i], we consider two cases:
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Table 1 LPF, PrevOcc, FirstOcc2, and the block tree (with parameters s = 5, τ = 2) for the
string AABAAAAAAA. The arrows above the first level of the block tree indicate the FirstOcc2 values.

i T [i] T [i..n) LPF[i] PrevOcc[i] FirstOcc2[i] block tree

0 A AABAAAAAAA 0 -1 -1
1 A ABAAAAAAA 1 0 0
2 B BAAAAAAA 0 -1 -1
3 A AAAAAAA 2 0 0
4 A AAAAAA 6 3 0
5 A AAAAA 5 4 0
6 A AAAA 4 5 0
7 A AAA 3 6 0
8 A AA 2 7 0
9 A A 1 8 8

Case 1 LPF[i] ≥ ℓ and LPF[j] ≥ ℓ: From LPF[j] ≥ ℓ follows that ℓ-factorj has a previous
occurrence. Combined with Observation 5 and LPF[i] ≥ ℓ, we can conclude that the
previous occurrence of ℓ-factorj is also an occurrence of ℓ-factori. As we already calculated
FirstOccℓ[j], we can set FirstOccℓ[i] = FirstOccℓ[j].

Case 2 LPF[i] < ℓ or LPF[j] < ℓ: We set FirstOccℓ[i] = j since either T [i..i + ℓ) or T [j..j + ℓ)
is the leftmost occurrence of ℓ-factori.

See Table 1 for an example. Note that we still need the LPF array to correctly interpret any
FirstOccℓ[i]. For LPF[i] ≥ ℓ but LPF[j] < ℓ we know that ℓ-factori has an earlier occurrence
at j but no occurrence further left. This dynamic programming approach requires O(n) time
to compute FirstOccℓ. Such time is unfeasible if we need to calculate FirstOccℓ for each
level of the block tree.

However, it is possible to compute FirstOccℓ0 using FirstOccℓ1 for ℓ1 ≥ ℓ0, as every
occurrence of an ℓ1-factor contains an ℓ0-factor as a prefix. There might be an occurrence of
the ℓ0-factor further left, but we store information about that in FirstOccℓ1 . Remember
that we also store pointers to a previous occurrence of the longest previous factor if that
factor is shorter than ℓ1.

We can now use this property to identify the leftmost occurrence for each block level-by-
level in FirstOcc∗, where we store FirstOccℓ for the current level and update it for each
following level. Recall that by definition, each pair of marked blocks contains the leftmost
occurrence of at least one substring of T . Therefore, each leftmost occurrence of any substring
with length at most the current block level length ℓ is contained in a marked block. All
blocks in the current level (except for the first level) are children of marked blocks in the
level before. Hence, the leftmost occurrence of each substring of a length equal to the current
block length is contained in a block in the current level. We still have to update all text
positions contained in the previous block tree level. This is necessary as we need to consider
cases where the values in the LPF array are smaller than the last level’s block size ℓ1 but
greater than the next level’s block size ℓ0, i.e., the positions i ∈ [0, n) where ℓ0 ≤ LPF[i] < ℓ1.

In this case FirstOccℓ1 [i] points to a previous occurrence of the longest previous factor
of i. This occurrence can be in an unmarked block as it is not necessarily the first occurrence
of said longest previous factor. Hence, we also have to update FirstOcc∗ for text positions
k ∈ [0, n) that fall into an unmarked block in the previous level. We do so from left to
right. Suppose we have updated FirstOcc∗[0..k − 1] and are processing FirstOcc∗[k]. Let
p = FirstOcc∗[k]. We will update FirstOcc∗[k] if one of the two conditions is met.
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Condition 1 LPF[k] ≥ ℓ0 and LPF[p] ≥ ℓ0: We know that p and k share the same ℓ0-factor
(Observation 5). Therefore, the first occurrence of ℓ0-factorp is also the first occurrence
of ℓ-factork, and we can set FirstOcc∗[k] = FirstOcc∗[p].

Condition 2 0 < LPF[k] ≤ LPF[p]: If condition 2 is met but condition 1 is not, we still know
that FirstOcc∗[k] = FirstOcc∗[p], as there are just two cases:
Case 2.1 LPF[k] < ℓ0 and LPF[p] ≥ ℓ0: Due to condition 2 and Lemma 4 and Observation 5

we know that said longest previous factor is a prefix of ℓ0-factorp. Due to LPF[p] ≥ ℓ0,
FirstOcc∗[p] points to the leftmost occurrence of ℓ0-factorp.

Case 2.2 LPF[k] < ℓ0 and LPF[p] < ℓ0: Due to condition 2 and Lemma 4 we know that
said longest previous factor has a previous occurrence at FirstOcc∗[p].

If neither condition is met, i.e., LPF[p] < LPF[k] and LPF[p] < ℓ0, k is either the leftmost
occurrence for all factors of size at least ℓ0 or FirstOcc∗[k] points to a first occurrence of a
substring smaller than ℓ0 and hence points into a marked block.

▶ Lemma 7. Updating FirstOcc∗ for all levels during the block tree construction requires
O(n(1 + logτ

z
s )) time in total.

Proof. Initializing FirstOcc∗ takes O(n) time. Every level but the first has at most 3zτ

blocks, and the size of blocks is decreasing by a factor τ for each further level. This reduces
the number of string positions still contained inside of blocks geometrically with each level.
The total sum of all block lengths is O(n(1 + logτ

z
s )) [6, Section 6.1]. Since we only have

to update FirstOcc∗ for positions in unmarked blocks in the previous level, we obtain the
required total time for all levels. ◀

5.2.2 Leftmost Occurrences as Blocks
After updating FirstOcc∗ to store the leftmost occurrence for each text position in the
current block tree level B0, B1, . . ., we still have to find the marked blocks covering the
leftmost occurrence of each unmarked block Bu.

We can map the occurrences in the text to blocks in three parts. First, we store for
each unmarked block Bi a pair ⟨FirstOcc∗[s(Bi)], i⟩ containing its leftmost occurrence and
its index in our block level in a set U . Second, we sort the set by each pair’s first element
using a radix sort, i.e., we sort our unmarked blocks by their leftmost occurrences in the
text. Third, we sequentially scan our block tree level and our sorted set U simultaneously in
the following fashion. Let ⟨occj , j⟩ be the currently considered element in U and Bi be the
current block of our block tree level. If ℓ-factoroccj

starts inside Bi, we set a pointer from
Bj to Bi with offset occj − s(Bi) and continue with the next element in U . Otherwise, we
continue with the next block in our block tree level.

▶ Lemma 8. For block trees with zτ = O(n), finding the blocks containing the leftmost
occurrences of unmarked blocks can be done in O(zτ) time and O(zτ) words of space.

Proof. The first and third step require O(zτ) time, as we only scan over blocks in the current
block tree level. Sorting U with radix sort requires O(zτ) time and O(zτ) words of space. ◀

Alternatively, we can also identify the mapping between text positions and blocks by
traversing the already built block tree. This mimics an access query on the block tree that
stops as soon as it reaches the current level. Such a query requires O(logτ

n log σ
s log n ) time, which

is linear in the height of the tree. Overall, computing the mapping using this approach
requires O(zτ logτ

n log σ
s log n ) time.
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Table 2 Input names, number of characters n, alphabet size σ, number of LZ77 factors z, measure
of compressibility z log n

n log σ
, and the compression achieved with p7zip (v. 16.02) expressed by the ratio

of the compressed output size divided by the input size.

Input n σ z z log n
n log σ

p7zip
re

pe
tit

iv
e

cere 461 286 644 5 1 700 630 0.044 5.35 %
coreutils 205 281 778 236 793 915 0.013 11.75 %
einstein.en 467 626 544 139 89 467 0.0007 0.10 %
Escherichia_coli 112 689 515 15 2 078 512 0.121 7.76 %
influenza 154 808 555 15 769 286 0.033 1.69 %
kernel 257 961 616 160 1 446 468 0.021 2.53 %
para 429 265 758 5 2 332 657 0.064 6.05 %
world_leaders 46 968 181 89 175 740 0.014 1.39 %

no
n-

re
pe

tit
iv

e dblp.xml 296 135 874 97 9 576 081 0.138 12.74 %
dna 403 927 746 16 25 628 189 0.453 22.79 %
english 1 610 612 736 239 97 047 354 0.233 26.11 %
pitches 55 832 855 133 5 994 276 0.391 25.89 %
proteins 1 184 051 855 27 80 408 252 0.430 31.30 %
sources 210 866 607 230 11 598 459 0.194 15.84 %

5.3 New Block Tree Construction Algorithm

Now, we can put all these building blocks together to form a practically efficient block tree
construction algorithm. First, we calculate the LPF array and PrevOcc array. We then
initialize FirstOcc∗ for ℓ = n/s and construct each block tree level top-down as described in
this section, i.e., we identify all marked blocks and then compute all pointers (and offsets)
for the unmarked blocks. Finally, we update FirstOcc∗ and repeat this process until we
reach the deepest level, where the blocks are stored explicitly. While this algorithm does
not introduce better asymptotic running times, it practically outpaces all other available
construction implementations, as we will empirically evaluate in Section 6. Overall, combining
all previous steps, we obtain the following result.

▶ Theorem 9. Given a string T of length n over an alphabet of size σ, two integers s and τ

greater than 1, we can compute the block tree in O(n(1 + logτ
z
s )) time using O(n) words of

space.

Pruning. The algorithm described in this section constructs the same block tree structure
as the algorithms described by Belazzougui et al. [6], see Section 4.1. Thus, their pruning
algorithm works without any changes of the block tree resulting from this construction.

6 Experimental Evaluation

We conducted our experiments on a server equipped with an AMD EPYC Rome 7702P (64
cores (128 hyperthreads), frequencies up to 3.35 GHz, and 256 MiB L3 cache) and 1024 GiB
DDR4 ECC RAM. The server runs Ubuntu 20.04.2 LTS. We compiled all code with GCC
12.1 using the flags -03 and -march=native. For the evaluation of our parallel code written
in OpenMP, we compiled the code with the additional flag -fopenmp.



D. Köppl, F. Kurpicz, and D. Meyer 74:11

Table 3 Most space-efficient (τspace and bspace) and fastest configurations (τtime and btime) of
LPF1 on the repetitive inputs (without rank and select support).

Input τspace bspace τtime btime

cere 16 16 2 8
coreutils 8 8 2 2
einstein.en.txt 4 16 2 2
Escherichia_Coli 4 16 2 4
influenza 4 16 2 4
kernel 8 16 2 2
para 4 16 2 8
world_leaders 4 16 2 2

We compare our block tree construction algorithms [42,44] with the (to our best knowledge)
only other block tree implementation by Belazzougui et al. [6].3 Their implementation uses
Karp-Rabin fingerprints (Section 4) with parameter s = 1. While s = 1 is not a feasible
choice in the formal definition of block trees (see Section 4), in practice, all levels without any
unmarked blocks are removed during the pruning phase, making this configuration possible.

There are two different variants of our block tree construction algorithm: LPFDP
s and

LPFs. The former uses the dynamic programming approach to identify the text position
of the previous occurrence while the latter uses the naive approach, see Section 5.2. Since
we need the LPF array for our construction algorithms, we can compute z and also choose
both s = z and s = 1. To show that our improvements are not only based on engineering,
we also include FP1 which uses fingerprints instead of the LPF array while the rest of our
code remains nearly unchanged, i.e., it is a reimplementation of the original algorithm.

For our implementation, we make use of libsais4, the fastest suffix array construction
algorithm implementation available to compute the suffix and longest common prefix arrays
that we use for the LPF array construction. We also use the int_vector from the Succinct
Data Structure Library [30] and the pasta::bit_vector [43] internally in the block tree.

We do not include fast wavelet tree construction algorithms [18, 30] in our plots as
preliminary experiments show that they can be constructed at least an order of magnitude
faster than block trees. For a detailed comparison of query speed of block trees and wavelet
trees, we refer to the block tree article by Belazzougui et al. [6]. They show that block trees
require around the same space but can answer queries an order of magnitude faster.

We conducted our sequential experiments with all combinations of τ ∈ {2, 4, 8, 16} and
maximum leaf size b = {2, 4, 8, 16}, i.e., the threshold on the number of characters stored
explicitly as a leaf. The timing starts when the input is loaded in main memory and stops as
soon as the block tree has been constructed. All reported values are the average of three
runs. We used the repetitive text corpus from the Pizza&Chili corpus5, which was also used
in the original block tree article [6]. Additionally, we used the non-repetitive Pizza&Chili
corpus6. See Table 2 for details.

3 See https://github.com/elarielcl/BlockTrees, last accessed 2023-07-04
4 See https://github.com/IlyaGrebnov/libsais, last accessed 2023-07-04.
5 See http://pizzachili.dcc.uchile.cl/repcorpus, last accessed 2023-07-04.
6 See http://pizzachili.dcc.uchile.cl/texts.html, last accessed 2023-07-04.
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6.1 Sequential Block Tree Construction

In this section, we present the results of our experimental evaluation of block tree construction
algorithms. For the evaluation, we used both, repetitive and non-repetitive inputs.

Repetitive Inputs. In Figures 2 and 3, we show the construction throughput (processed
input in MiB per second) on the y-axis and the space requirements of the final block tree
(without and with additional rank and select support) on the x-axis. Plotting the throughput
helps normalizing the running times for different input sizes. Furthermore, it highlights that
the construction time of the block tree without rank and select support does not depend on
the compressibility of the input.

Surprisingly, on most inputs, smaller block trees are not that much slower to construct
than larger block trees. Our fastest construction algorithm for the smallest block trees is
always LPF1. Hence, we now only compare this algorithm with the original implementation.
This also means that following the previous occurrence in the text naively is (for small block
trees with fewer marked nodes) cheaper than explicitly computing the results. Furthermore,
choosing s = z provides no real benefit, as it does not result in a faster construction. For
most inputs, the most space-efficient configuration of LPF1 uses τ = 4 and b = 16 and the
fastest configuration of LPF1 uses τ = 2 and b = 2, see Table 3. Note that no two different
configurations result in the same space requirements, even though, they can be very close.

When constructing only the block tree without rank and select support, LPF1 is between
6.48 and 11.52 times faster than the original implementation (average: 9.51, median: 9.86).
Computing the additional data for the rank and select support is the same for our and
the original implementation. Thus, here LPF1 is only between 3.61 and 11.23 times faster
(average: 6.75, median: 6.24), despite the fact that the times for LPF1 include also the
LPF array construction. We further want to mention that the LPF array construction also
introduces higher memory requirements during the construction than the fingerprint-based
approaches. Hence, there is a working-space-time trade-off for the construction.

Non-Repetitive Inputs. We now give additional experimental results on the non-repetitive
inputs. We only use 32 MiB prefixes of the texts, as the block tree construction algorithm by
Belazzougui et al. [6] requires more than 1 TiB of working space for larger non-repetitive
inputs. This is due to the order in which their algorithm constructs the block tree. Instead
of first compressing all data internally, many operations and auxiliary data is computed on
the uncompressed data. The results of these experiments are depicted in Figure 5.

Overall, the results are similar to the results for the repetitive inputs: LPF1 is the
fastest construction algorithm most of the time. However, on some inputs, the dynamic
programming LPFDP

z is faster. This is due to the long chains of previous occurrences that
have been marked. Since the texts are non-repetitive, there are fewer marked blocks overall,
resulting in bigger block trees. Overall, for non-repetitive inputs, computing larger block
trees is slightly faster than computing very space-efficient block trees. This becomes very
apparent for block trees with rank and select support.

6.2 Parallel Block Tree Construction

While the total running time of our algorithm is fast compared to our competitor, on average
71.33 % of the running time is spent for the LPF array construction. Fortunately, libsais
supports parallel computation. In addition, we use the LZ77 factorization algorithm by
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Figure 2 Block tree construction without rank and select support, showing throughput (processed
input in MiB per second) and space requirements of the final block tree (bits per character of the
input) on repetitive inputs. The range of each x-axis depends on the compressibility of the input.
Data points for each algorithm show different configurations of τ and b, see Table 3 for more details.

Shun and Zhao [62] that requires O(n) work and O(log2 n) time.7 We also parallelized the
construction of the rank and select support with a straight-forward implementation since the
computed values are independent for each character.

We only achieve a speedup using up to 32 cores. This is most likely due to the fact that
only eight memory controllers are available, which have to be shared by 16 groups of 4 cores.
As soon as we use more than 32 cores, multiple groups have to share a controller. With 32
cores, we achieve a speedup of up to 6.64 (4.71 on average). This comes very close to the
speedups of the parallel libsais, which achieves a speedup of at most 6 (5.2 on average).
The additional speedup can be explained by the speedup thanks to the parallel construction
of the rank and select support.

7 See https://github.com/zfy0701/Parallel-LZ77, last accessed 2023-07-04.
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Figure 3 Block tree with rank and select support construction throughput (processed input in
MiB per second) and space requirements of the final block tree (bits per character of the input) on
repetitive inputs. The range of each x-axis depends on the compressibility of the input. Data points
for each algorithm show different configurations of τ and b, see Table 3 for more details.

7 Conclusion and Future Work

The LPF array allows us to construct the block tree up to an order of magnitude faster
than using Karp-Rabin fingerprints. All tested algorithms produce the same block trees
(when using the same parameters). A simple parallelization of our algorithm results in a
speedup of up to 6.64 using 32 cores. However, the scalability of the current state of the
algorithm is mostly limited by the LPF array computation. Here, it might be interesting to
investigate a parallelization of the construction algorithm based on Karp-Rabin fingerprints
using concurrent hash tables [46]. In general, better scalability is of great interest, as
otherwise, construction speed similar to wavelet trees seems hard to achieve.

In the light that the LPF array can be represented in 2n + o(n) bits [3] with algorithms
computing this representation in compact [3] or compressed space [59], future work includes
engineering a more memory-efficient LPF array construction. Further improvements in
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Figure 4 Parallel (strong scaling) block tree construction using the configuration τ = 8 and
b = 16. Construction times of a block tree includes parallel LPF array construction time.

construction time can be obtained by introducing stricter rules for the marking of nodes in
the block tree rendering the pruning phase unnecessary. Finally, we want to compress the
block tree recursively by using block trees internally.
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Abstract
We revisit once more the problem of designing an oracle for answering connectivity queries in
undirected graphs in the presence of vertex failures. Specifically, given an undirected graph G with
n vertices and m edges and an integer d⋆ ≪ n, the goal is to preprocess the graph in order to
construct a data structure D such that, given a set of vertices F with |F | = d ≤ d⋆, we can derive
an oracle from D that can efficiently answer queries of the form “is x connected with y in G \ F ?”.
Very recently, Long and Saranurak (FOCS 2022) provided a solution to this problem that is almost
optimal with respect to the preprocessing time, the space usage, the update time, and the query
time. However, their solution is highly complicated, and it seems very difficult to be implemented
efficiently. Furthermore, it does not settle the complexity of the problem in the regime where d⋆

is a constant. Here, we provide a much simpler solution to this problem, that uses only textbook
data structures. Our algorithm is deterministic, it has preprocessing time and space complexity
O(d⋆m log n), update time O(d4 log n), and query time O(d). These bounds compare very well with
the previous best, especially considering the simplicity of our approach. In fact, if we assume that
d⋆ is a constant (d⋆ ≥ 4), then our algorithm provides some trade-offs that improve the state of the
art in some respects. Finally, the data structure that we provide is flexible with respect to d⋆: it
can be adapted to increases and decreases, in time and space that are almost proportional to the
change in d⋆ and the size of the graph.
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1 Introduction

In this paper we deal with the following problem. Given an undirected graph G with n

vertices and m edges, and a fixed integer d⋆ (d⋆ ≪ n), the goal is to construct a data
structure D that can be used in order to answer connectivity queries in the presence of at
most d⋆ vertex-failures. More precisely, given a set of vertices F , with |F | ≤ d⋆, we must be
able to efficiently derive an oracle from D, which can efficiently answer queries of the form
“are the vertices x and y connected in G \ F?”. In this problem, we want to simultaneously
optimize the following parameters: (1) the construction time of D (preprocessing time), (2)
the space usage of D, (3) the time to derive the oracle from D given F (update time), and
(4) the time to answer a connectivity query in G \ F . This problem is very well motivated;
it has attracted the attention of researchers for more than a decade now, and it has many
interesting variations. The reader is referred to [5] or [7] for the details on its history and its
variations.
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1.1 Previous work
Despite being extensively studied, it is only very recently that an almost optimal solution was
provided by Long and Saranurak [7]. Specifically, they provided a deterministic algorithm
that has Ô(m) + Õ(d⋆m) preprocessing time, uses O(m log∗ n) space, and has Ô(d2) update
time and O(d) query time.1 This improves on the previous best deterministic solution by
Duan and Pettie [5], that has O(mn log n) preprocessing time, uses O(d⋆m log n) space,
and has O(d3 log3 n) update time and O(d) query time. We note that there are more
solutions to this problem, that optimize some parameters while sacrifising others (e.g., in
the solution of Pilipczuk et al. [9], there is no dependency on n in the update time, but this
is superexponential in d⋆, and the preprocessing time is O(mn222O(d⋆))). We refer to Table
1 in reference [7] for more details on the best known (upper) bounds for this problem. We
also refer to Theorem 1.2 in [7] for a summary of known (conditional) lower bounds, that
establish the optimality of [7].

1.2 Our contribution
The bounds that we mentioned are the best known for a deterministic solution. In practice,
one would prefer the solution of Long and Saranurak [7], because that of Duan and Pettie [5]
has preprocessing time O(mn log n), which can be prohibitively slow for large enough graphs.
However, the solution in [7] is highly complicated, and it seems very difficult to be implemented
efficiently. This is a huge gap between theory and practice. Furthermore, the (hidden)
dependence on n in the time-bounds of [7] is not necessarily optimal if we assume that d⋆ is
a constant for our problem. We note that this is a problem with various parameters, and
thus it is very difficult to optimize all of them simultaneously.

Considering that this is a fundamental connectivity problem, we believe that it is important
to have a solution that is relatively simple to describe and analyze, compares very well with
the best known bounds (even improves them in some respects), opens a new direction to
settle the complexity of the problem, and can be readily implemented efficiently.

In this paper, we exhibit a solution that has precisely those characteristics. We present a
deterministic algorithm that has preprocessing time O(d⋆m log n), uses space O(d⋆m log n),
and has O(d4 log n) update time and O(d) query time.2 Our approach is arguably the simplest
that has been proposed for this problem. The previous solutions rely on sophisticated tree
decompositions of the original graph. Here, instead, we basically rely on a single DFS-tree,
and we simply analyze its connected components after the removal of a set of vertices. It
turns out that there is enough structure to allow for an efficient solution (see Section 3.2).

The bounds that we provide compare very well with the previous best, especially con-
sidering the simplicity of our approach. (See Tables 1 and 2.) In fact, as we can see in
Table 1, our solution is the best choice for implementations, considering that the algorithm
of Long and Saranurak is very difficult to be implemented within the claimed time-bounds.
Furthermore, if we assume that d⋆ is a constant (d⋆ ≥ 4), then, as we can see in Table 2, our
algorithm provides some trade-offs, that improve the state of the art in some respects.

1 The symbol Ô hides subpolynomial (i.e. no(1)) factors, and Õ hides polylogarithmic factors. The hidden
expressions in the time-bounds are not specified by the authors in their overview. Also, the description
for the log∗ n function that appears in the space complexity is that it “can be substituted with any
slowly growing function”. One thing that is explicitly stated, however, is that the hidden subpolynomial
factors are worse than polylogarithmic. We must emphasize that the difficulty in stating the precise
bounds is partly due to there being various trade-offs in the functions involved, and is partly indicative
of the complexity of the techniques that are used.

2 The log factors in the space usage and the time for the updates can be improved with the use of more
sophisticated 2D-range-emptiness data structures, such as those in [2].
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Table 1 Comparison of the best-known deterministic bounds. We note that m can be replaced
with m̄ = min{m, d⋆n}, using the sparsification of Nagamochi and Ibaraki [8]. The data structure
of Pilipczuk et al. does not support an update phase, but answers queries directly, given a set of (at
most d⋆) failed vertices and two query vertices.

Preprocessing Space Update Query

Pilipczuk et al. [9] O(22O(d⋆)
mn2) O(22O(d⋆)

m) − O(22O(d⋆)
)

Duan and Pettie [5] O(mn log n) O(d⋆m log n) O(d3 log3 n) O(d)

Long and Saranurak [7] Ô(m) + Õ(d⋆m) O(m log∗ n) Ô(d2) O(d)

This paper O(d⋆m log n) O(d⋆m log n) O(d4 log n) O(d)

Table 2 Comparison of the best-known deterministic bounds, when d⋆ is a fixed (small) constant.
Although the algorithm of Pilipczuk et al. has the best space and query-time bounds, it has very
large preprocessing time. Our solution has the best preprocessing time, and also better update time
compared to the solutions of [5] and [7]. Furthermore, our space usage is almost linear.

Preprocessing Space Update Query

Pilipczuk et al. [9] O(mn2) O(m) − O(1)

Duan and Pettie [5] O(mn log n) O(m log n) O(log3 n) O(1)

Long and Saranurak [7] Ô(m) + Õ(m) O(m log∗ n) Ô(1) O(1)

This paper O(m log n) O(m log n) O(log n) O(1)

Finally, the data structure that we provide is flexible with respect to d⋆: it can be adapted
to increases and decreases, in time and space that are almost proportional to the change
in d⋆ and the size of the graph (see Corollary 3). We do not know if any of the previous
solutions has this property. It is a natural question whether we can efficiently update the
data structure so that it can handle more failures (or less, and thereby free some space). As
far as we know, we are the first to take notice of this aspect of the problem.

2 Preliminaries

We assume that the reader is familiar with standard graph-theoretical terminology (see,
e.g., [4]). The notation that we use is also standard. Since we deal with connectivity under
vertex failures, it is sufficient to consider simple graphs as input to our problem (because
the existence of parallel edges does not affect the connectivity relation). However, during
the update phase, we construct a multigraph that represents the connectivity relationship
between some connected components after removing the failed vertices (Definition 9). The
parallel edges in this graph are redundant, but they may be introduced by the algorithm
that we use to construct it, and it would be costly to check for redundancy throughout.

It is also sufficient to assume that the input graph G is connected. Because, otherwise, we
can initialize a data structure on every connected component of G; the updates, for a given
set of failures, are distributed to the data structures on the connected components, and the
queries for pairs of vertices that lie in different connected components of G are always false.
We use G to denote the input graph throughout; n and m denote its number of vertices and
edges, respectively. For any two integers x, y, we use the interval notation [x, y] to denote
the set {x, x + 1, . . . , y}. (If x > y, then [x, y] = ∅.)

ESA 2023
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2.1 DFS-based concepts

Let T be a DFS-tree of G, with start vertex r [10]. We use p(v) to denote the parent of every
vertex v ̸= r in T (v is a child of p(v)). For any two vertices u, v, we let T [u, v] denote the
simple tree path from u to v on T . For every two vertices u and v, if the tree path T [r, u] uses
v, then we say that v is an ancestor of u (equivalently, u is a descendant of v). In particular,
a vertex is considered to be an ancestor (and also a descendant) of itself. It is very useful to
identify the vertices with their order of visit during the DFS, starting with r ← 1. Thus, if v

is an ancestor of u, we have v < u. For any vertex v, we let T (v) denote the subtree rooted
at v, and we let ND(v) denote the number of descendants of v (i.e., ND(v) = |T (v)|). Thus,
we have that T (v) = [v, v + ND(v)− 1], and therefore we can check the ancestry relation in
constant time. Two children c and c′ of a vertex v are called consecutive children of v (in
this order), if c′ is the minimum child of v with c′ > c. Notice that, in this case, we have
T (c) ∪ T (c′) = [c, c′ + ND(c′)− 1].

A DFS-tree has the following extremely convenient property: the endpoints of every
non-tree edge of G are related as ancestor and descendant [10], and so we call those edges
back-edges. Our whole approach is basically an exploitation of this property, which does not
hold in general rooted spanning trees of G (unless they are derived from a DFS traversal,
and only then [10]). To see why this is relevant for our purposes, consider what happens
when we remove a vertex f ̸= r from T . Let c1, . . . , ck be the children of f in T . Then, the
connected components of T \ f are given by T (c1), . . . , T (ck) and T (r) \ T (f). A subtree
T (ci), i ∈ {1, . . . , k}, is connected with the rest of the graph in G \ f if and only if there is
a back-edge that stems from T (ci) and ends in a proper ancestor of f . Now, this problem
has an algorithmically elegant solution. Suppose that we have computed, for every vertex
v ≠ r, the lowest proper ancestor of v that is connected with T (v) through a back-edge. We
denote this vertex as low(v). Then, we may simply check whether low(ci) < f , in order to
determine whether T (ci) is connected with T (r) \ T (f) in G \ f .

We extend the concept of the low points, by introducing the lowk points, for any k ∈ N.
These are defined recursively, for any vertex v ̸= r, as follows. low1(v) coincides with
low(v). Then, supposing that we have defined lowk(v) for some k ∈ N, we define lowk+1(v)
as min({y | ∃ a back-edge (x, y) such that x ∈ T (v) and y < v} \ {low1(v), . . . , lowk(v)}).
Notice that lowk(v) may not exist for some k ∈ N (and this implies that lowk′(v) does not
exist, for any k′ > k). If, however, lowk(v) exists, then lowk′(v), for any k′ < k, also exists,
and we have low1(v) < low2(v) < · · · < lowk(v). Notice that the existence of lowk(v) implies
that there is a back-edge (x, lowk(v)), where x is a descendant of v.

▶ Proposition 1 ([6]). Let T be a DFS-tree of a simple graph G, and assume that the
adjacency list of every vertex of G is sorted in increasing order w.r.t. the DFS numbering.
Suppose also that, for some k ∈ {0, . . . , n− 1}, we have computed the low1, . . . , lowk points
of all vertices (w.r.t. T ), and the set {low1(v), . . . , lowk(v)} is stored in an increasingly
sorted array for every v ≠ r. Then we can compute the lowk+1 points of all vertices in
O(n log(k + 1)) time.3

▶ Corollary 2 ([6]). For any k ∈ {1, . . . , n− 1}, the low1, . . . , lowk points of all vertices can
be computed in O(m + kn log k) time.

3 We make the convention that log(1) = 1, so that the time to compute the low1 points is O(n).
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3 The algorithm for vertex failures

3.1 Initializing the data structure
We will need the following ingredients in order to be able to handle at most d⋆ failed vertices.

(i) A DFS-tree T of G rooted at a vertex r. The values ND and depth (w.r.t. T ) must be
computed for all vertices. We identify the vertices of G with the DFS numbering of T .

(ii) A level-ancestor data structure on T .
(iii) A 2D-range-emptiness data structure on the set of the back-edges of G w.r.t. T .
(iv) The lowi points of all vertices, for every i ∈ {1, . . . , d⋆}.
(v) For every i ∈ {1, . . . , d⋆}, a DFS-tree Ti of T rooted at r, where the adjacency lists of

the vertices are given by their children lists sorted in increasing order w.r.t. the lowi

point.
(vi) For every i ∈ {1, . . . , d⋆}, a 2D-range-emptiness data structure on the set of the

back-edges of G w.r.t. Ti.

The depth value in (i) refers to the depths of the vertices in T . This is defined for
every vertex v as the size of the tree path T [r, v]. (Thus, e.g., depth(r) = 1.) It takes O(n)
additional time to compute the depth values during the DFS.

The level-ancestor data structure in (ii) is used in order to answer queries of the form
QueryLA(v, δ) ≡ “return the ancestor of v that lies at depth δ”. We use those queries in order
to find the children of vertices that are ancestors of other vertices. (I.e., given that u is a
descendant of v, we want to know the child of v that is an ancestor of u.) For our purposes,
it is sufficient to use the solution in Section 3 of [1], that preprocesses T in O(n log n) time
so that it can answer level-ancestor queries in (worst-case) O(1) time.

The 2D-range-emptiness data structure in (iii) is used in order to answer queries of the
form 2D_range([X1, X2] × [Y1, Y2]) ≡ “is there a back-edge (x, y) with x ∈ [X1, X2] and
y ∈ [Y1, Y2]?”.4 We can use a standard implementation for this data structure, that has
O(m log n) space and preprocessing time complexity, and can answer a query in (worst-case)
O(log n) time (see, e.g., Section 5.6 in [3]). The m factor here is unavoidable, because the
number of back-edges can be as large as m− n + 1. However, we note that we can improve
the log n factor in the space and the query time if we use a more sophisticated solution, such
as [2].

The low1, . . . , lowd⋆
points of all vertices can be computed in O(m + d⋆n log d⋆) =

O(m + d⋆n log n) time (Corollary 2). We obviously need O(d⋆n) space to store them.
For (v), we just perform d⋆ DFS’s on T , starting from r, where each time we use a

different arrangement of the children lists of T as adjacency lists. This takes O(d⋆n) time
in total, but we do not need to actually store the trees. (In fact, the parent pointer is
the same for all of them.) What we actually need here is the DFS numbering of the i-th
DFS traversal, for every i ∈ {1, . . . , d⋆}, which we denote as DFS i. We keep those DFS
numberings stored, and so we need O(d⋆n) additional space. The usefulness of performing
all those DFS’s will become clear in Section 3.4. Right now, we only need to mention that,
for every i ∈ {1, . . . , d⋆}, the ancestry relation in Ti is the same as that in T . Thus, the
low1, . . . , lowd⋆

points for all vertices w.r.t. Ti are the same as those w.r.t. T .
The 2D-range-emptiness data structures in (vi) are used in order to answer queries of

the form 2D_range_i([X1, X2]× [Y1, Y2]) ≡ “is there a back-edge (x, y) with x ∈ [X1, X2]
and y ∈ [Y1, Y2]?”, where the endpoints of the query rectangle refer to the DFS i numbering,

4 The input to 2D_range is just the endpoints X1, X2, Y1, Y2 of the query rectangle; we use brackets
around them, and the symbol ×, just for readability.
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for i ∈ {1, . . . , d⋆}. Since the ancestry relation is the same for Ti and T , we have that the
queries 2D_range([X1, X2]× [Y1, Y2]) and 2D_range_i([X1, X2]i × [Y1, Y2]i) are equivalent,
where the i index below the brackets means that we have translated the endpoints in the
DFS i numbering.

The construction of the 2D-range-emptiness data structures w.r.t. the DFS-trees
T1, . . . , Td⋆

takes O(d⋆m log n) time in total. In order to keed those data structures stored, we
need O(d⋆m log n) space. Thus, the construction and the storage of the 2D-range-emptiness
data structures dominate the space-time complexity overall.

It is easy to see that the list of data structures from (i) to (vi) is flexible w.r.t. d⋆. Thus,
if d⋆ increases by 1, then we need to additionally compute the lowd⋆+1 points of all vertices,
the Td⋆+1 DFS-tree, and the corresponding 2D-range-emptiness data structure. Computing
the lowd⋆+1 points takes O(n log(d⋆ + 1)) = O(n log n) time, and demands an additional
O(n) space, assuming that we have sorted the adjacency lists of G in increasing order, and
that we have stored the low1, . . . , lowd⋆ points, for every vertex, in an increasingly sorted
array (see Proposition 1).

▶ Corollary 3. Suppose that we have initialized our data structure for some d⋆, and we want
to get a data structure for d⋆ + k. Then we can achieve this in O(km log n) time, using extra
O(km log n) space.

If d⋆ decreases by k, then we just have to discard the lowd⋆−k+1, . . . , lowd⋆
points, the

Td⋆−k+1, . . . , Td⋆ DFS-trees, and the corresponding 2D-range-emptiness data structures. This
will free O(km log n) space.

3.2 The general idea

Let F be a set of failed vertices. Then T \ F may consist of several connected components,
all of which are subtrees of T . It will be necessary to distinguish two types of connected
components of T \ F . Let C be a connected component of T \ F . If no vertex in F is a
descendant of C, then C is called a hanging subtree of T \ F . Otherwise, C is called an
internal component of T \ F . (See Figure 1 for an illustration.) Observe that, while the
number of connected components of T \ F may be as large as n− 1 (even if |F | = 1), the
number of internal components of T \F is at most |F |. This is an important observation, that
allows us to reduce the connectivity of G \ F to the connectivity of the internal components.

More precisely, we can already provide a high level description of our strategy for answering
connectivity queries between pairs of vertices. Let x, y be two vertices of G \ F . Suppose
first that x belongs to an internal component C1 and y belongs to an internal component C2.
Then it is sufficient to know whether C1 and C2 are connected in G \ F . Otherwise, if either
x or y lies in a hanging subtree C, then we can substitute C with any internal component
that is connected with C in G \ F . If no such internal component exists, then x and y are
connected in G \ F if and only if they lie in the same hanging subtree.

Thus, after the deletion of F from G, it is sufficient to make provisions so as to be able
to efficiently answer the following:
(1) Given a vertex x, determine the connected component of T \ F that contains x.
(2) Given two internal components C1 and C2 of T \ F , determine whether C1 and C2 are

connected in G \ F .
(3) Given a hanging subtree C of T \F , find an internal component of T \F that is connected

with C in G \ F , or report that no such internal component exists.
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Figure 1 (a) A set of failed vertices F = {f1, . . . , f6} on a DFS-tree T , and (b) the corresponding
F-forest, which shows the parentF relation between failed vertices. Notice that T \ F is split into
several connected components, but there are only four internal components, C1, C2, C3 and C4. The
hanging subtrees of T \ F are shown with gray color (e.g., H1, H2 and H3). The internal components
C2 and C3 remain connected in G \ F through a back-edge that connects them directly. C1 and
C4 remain connected through the hanging subtree H3 of f6. We have ∂(C1) = {f1}, ∂(C2) = {f2},
∂(C3) = {f3, f4} and ∂(C4) = {f5}. Notice that f6 is the only failed vertex that is not a boundary
vertex of an internal component, and it has parentF (f6) = p(f6).

Actually, the most difficult task, and the only one that we provide a preprocessing for
(during the update phase), is (2). We explain how to perform (1) and (3) during the process
of answering a query, in Section 3.5. An efficient solution for (2) is provided in Section 3.4.

The general idea is that, since there are at most d = |F | internal components of T \ F ,
we can construct a graph with O(d) nodes, representing the internal components of T \ F ,
that captures the connectivity relation among them in G \ F (see Lemma 10). This is
basically done with the introduction of some artificial edges between the (representatives
of the) internal components. In the following subsection, we state some lemmas concerning
the structure of the internal components, and their connectivity relationship in G \ F . All
omitted proofs are contained in the full version of our paper [6].

3.3 The structure of the internal components
We will use the roots of the connected components of T \ F (viewed as rooted subtrees of T )
as representantives of them. Now we introduce some terminology and notation. If C is a
connected component of T \ F , we denote its root as rC . If C is a hanging subtree of T \ F ,
then p(rC) = f is a failed vertex, and we say that C is a hanging subtree of f . If C, C ′ are
two distinct connected components of T \ F such that rC′ is an ancestor of rC , then we say
that C ′ is an ancestor of C. Furthermore, if v is a vertex not in C such that v is an ancestor
(resp., a descendant) of rC , then we say that v is an ancestor (resp., a descendant) of C. If
C is an internal component of T \ F and f is a failed vertex such that p(f) ∈ C, then we say
that f is a boundary vertex of C. The collection of all boundary vertices of C is denoted as
∂(C). Notice that any vertex b ∈ ∂(C) has the property that there is no failed vertex on the
tree path T [p(b), rC ]. Conversely, a failed vertex b such that there is no failed vertex on the
tree path T [p(b), rC ] is a boundary vertex of C. Thus, if b1, . . . , bk is the collection of the
boundary vertices of C, then C = T (rC) \ (T (b1) ∪ · · · ∪ T (bk)).
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The following lemma is a set of properties that are satisfied by the internal components.

▶ Lemma 4 ([6]). Let C be an internal component of T \ F . Then:
(1) Either rC = r, or p(rC) ∈ F .
(2) For every vertex v that is a descendant of C, there is a unique boundary vertex of C that

is an ancestor of v.
(3) Let f1, . . . , fk be the boundary vertices of C, sorted in increasing order. Then C is the

union of the following subsets of consecutive vertices: [rC , f1 − 1], [f1 + ND(f1), f2 −
1], . . . , [fk−1 + ND(fk−1), fk − 1], [fk + ND(fk), rC + ND(rC)− 1]. (We note that some
of those sets may be empty.)

We represent the ancestry relation between failed vertices using a forest which we call the
failed vertex forest (F-forest, for short). The F-forest consists of the following two elements.
First, for every failed vertex f , there is a pointer parentF (f) to the nearest ancestor of f (in
T ) that is also a failed vertex. If there is no ancestor of f that is a failed vertex, then we let
parentF (f) = ⊥. And second, every failed vertex f has a pointer to its list of children in the
F-forest.

The F-forest can be easily constructed in O(d2) time: we just have to find, for every
failed vertex f , the maximum failed vertex f ′ that is a proper ancestor of f ; then we set
parentF (f) = f ′, and we append f to the list of the children of f ′ in the F-forest.

The next lemma shows how we can check in constant time whether a failed vertex belongs
to the boundary of an internal component, and how to retrieve the root of this component.

▶ Lemma 5 ([6]). A failed vertex f is a boundary vertex of an internal component if and
only if parentF (f) ̸= p(f). Now let f be a boundary vertex of an internal component C.
Then, if parentF (f) exists, we have that the root of C is the child of parentF (f) that is an
ancestor of f . Otherwise, the root of C is r.

Thus, according to Lemma 5, if f is a boundary vertex of an internal component C with
rC ≠ r, we can retrieve rC in constant time using a level-ancestor query: i.e., we ask for
the ancestor of f (in T ) whose depth equals that of parentF (f) + 1. We may use this fact
throughout without mention.

The following lemma shows that there are two types of edges that determine the con-
nectivity relation in G \ F between the connected components of T \ F .

▶ Lemma 6 ([6]). Let e be an edge of G \ F whose endpoints lie in different connected
components of T \ F . Then e is a back-edge and either (i) both endpoints of e lie in internal
components, or (ii) one endpoint of e lies in a hanging subtree H, and the other endpoint
lies in an internal component C that is an ancestor of H.

▶ Corollary 7 ([6]). Let C, C ′ be two distinct connected components of T \F that are connected
with an edge e of G \ F . Assume w.l.o.g. that rC′ < rC . Then C ′ is an ancestor of C.

The following lemma provides an algorithmically useful criterion to determine whether a
connected component of T \ F – a hanging subtree or an internal component – is connected
with an internal component of T \ F through a back-edge.

▶ Lemma 8 ([6]). Let C, C ′ be two connected components of T \F such that C ′ is an internal
component that is an ancestor of C, and let b be the boundary vertex of C ′ that is an ancestor
of C. Then there is a back-edge from C to C ′ if and only if there is a back-edge from C

whose lower end lies in [rC′ , p(b)].
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▶ Definition 9 (Connectivity graph). Let R be a multigraph where V (R) is the set of the
roots of the internal components of T \ F , and E(R) satisfies the following three properties:

(1) For every back-edge connecting two internal components C and C ′, there is an edge
(rC , rC′) in R.

(2) Let H be a hanging subtree of a failed vertex f , and let C1, . . . , Ck be the internal com-
ponents that are connected with H through a back-edge. (By Lemma 6, all of C1, . . . , Ck

are ancestors of H.) Assume w.l.o.g. that Ck is an ancestor of all C1, . . . , Ck−1. Then
R contains the edges (rC1 , rCk

), (rC2 , rCk
), . . . , (rCk−1 , rCk

).
(3) Every edge of R is given by either (1) or (2), or it is an edge of the form (rC , rC′), where

C, C ′ are two internal components that are connected in G \ F .

Then R is called a connectivity graph of the internal components of T \ F . The edges of
(1) and (2) are called Type-1 and Type-2, respectively.

The following lemma shows that a connectivity graph captures the connectivity relation-
ship of the internal components of T \ F in G \ F .

▶ Lemma 10 ([6]). Let R be a connectivity graph of the internal components of T \F . Then,
two internal components C, C ′ of T \ F are connected in G \ F if and only if rC , rC′ are
connected in R.

3.4 Handling the updates: construction of a connectivity graph for the
internal components of T \ F

Given a set of failed vertices F , with |F | = d ≤ d⋆, we will show how we can construct a
connectivity graph R for the internal components of T \ F , using O(d4) calls to 2D-range-
emptiness queries. Recall that V (R) is the set of the roots of the internal components of
T \ F .

Algorithm 1 shows how we can find all Type-1 edges of R. The idea is basically to
perform 2D-range-emptiness queries for every pair of internal components, in order to
determine the existence of a back-edge that connects them. More precisely, we work as
follows. Let C be an internal component of T \F . Then it is sufficient to check every ancestor
component C ′ of C, in order to determine whether there is a back-edge from C to C ′ (see
Corollary 7). Let f1, . . . , fk be the boundary vertices of C, sorted in increasing order. Let
also f ′ be the boundary vertex of C ′ that is an ancestor of C, and let I = [rC′ , p(f ′)]. Then
we perform 2D-range-emptiness queries for the existence of a back-edge on the rectangles
[rC , f1 − 1]× I, [f1 + ND(f1), f2 − 1]× I, . . . , [fk + ND(fk), rC + ND(rC)− 1]× I. We know
that there is a back-edge connecting C and C ′ if and only if at least one of those queries is
positive (see Lemma 4(3) and Lemma 8). If that is the case, then we add the edge (rC , rC′)
to R.

Observe that the total number of 2D-range-emptiness queries that we perform is O(d2),
because every one of them corresponds to a triple (C, f, C ′), where C, C ′ are internal
components, C ′ is an ancestor of C, and f is a boundary vertex of C, or rC . And if
C1, . . . , Ck are all the internal components of T \ F , then the number of those triples is
bounded by (|∂(C1)| + 1) · d + · · · + (|∂(Ck)| + 1) · d = (|∂(C1)| + · · · + |∂(Ck)| + k) · d ≤
(d + k) · d ≤ (d + d) · d = O(d2).

▶ Proposition 11 ([6]). Algorithm 1 correctly computes all Type-1 edges to construct a
connectivity graph for the internal components of T \ F . The running time of this algorithm
is O(d2 log n).
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Algorithm 1 Compute all Type-1 edges to construct a connectivity graph R for the internal
components of T \ F .

1 foreach internal component C of T \ F do
2 let f1, . . . , fk be the boundary vertices of C, sorted in increasing order
3 // process every internal component C ′ that is an ancestor of C

4 set f ′ ← p(rC)
5 while f ′ ̸= ⊥ do
6 if p(f ′) ̸= parentF (f ′) then
7 let C ′ be the internal component of T \ F with f ′ ∈ ∂(C ′)
8 set I ← [rC′ , p(f ′)]
9 if at least one of the following queries is positive:

10 2D_range([rC , f1 − 1]× I)
11 2D_range([f1 + ND(f1), f2 − 1]× I)
12 . . .

13 2D_range([fk−1 + ND(fk−1), fk − 1]× I)
14 2D_range([fk + ND(fk), rC + ND(rC)− 1]× I) then
15 add the Type-1 edge (rC , rC′) to R
16 end
17 end
18 f ′ ← parentF (f ′)
19 end
20 end

The construction of Type-2 edges is not so straightforward. For every failed vertex f ,
and every two internal components C and C ′, such that C is an ancestor of f and C ′ is an
ancestor of C, we would like to know whether there is a hanging subtree of f , from which
stem a back-edge e with an endpoint in C and a back-edge e′ with an endpoint in C ′. The
straightforward way to determine this is the following. Let b (resp., b′) be the boundary
vertex of C (resp., C ′) that is an ancestor of f . Then, for every hanging subtree of f with
root c, we perform 2D-range-emptiness queries on the rectangles [c, c + ND(c)− 1]× [rC , p(b)]
and [c, c + ND(c)− 1]× [rC′ , p(b′)]. If both queries are positive, then we know that C and
C ′ are connected in G \ F through the hanging subtree with root c.

Obviously, this method is not efficient in general, because the number of hanging subtrees
of f can be very close to n. However, it is the basis for our more efficient method. The
idea is to perform a lot of those queries at once, for large batches of hanging subtrees. More
specifically, we perform the queries on consecutive hanging subtrees of f (i.e., their roots
are consecutive children of f), for which we know that the answer is positive on C ′ (i.e., for
every one of those subtrees, there certainly exists a back-edge that connects it with C ′). In
order for this idea to work, we have to rearrange properly the lists of children of all vertices.
(Otherwise, the hanging subtrees of f that are connected with C ′ through a back-edge may
not be consecutive in the list of children of f .) In effect, we maintain several DFS trees
(specifically: d⋆), and several 2D-range-emptiness data structures, one for every different
arrangement of the children lists.

Let us elaborate on this idea. Let H be a hanging subtree of f that connects some internal
components, and let C ′ be the lowest one among them (i.e., the one that is an ancestor of
all the others). Then we have that the lower ends of all back-edges that stem from H and
end in ancestors of C ′ are failed vertices that are ancestors of C ′. Thus, since there are at
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most d failed vertices in total, we have that at least one among low1(rH), . . . , lowd(rH) is
in C ′. In other words, rH is one of the children of f whose lowi point is in C ′, for some
i ∈ {1, . . . , d}. Now, assume that for every i ∈ {1, . . . , d⋆}, we have a copy of the list of the
children of f sorted in increasing order w.r.t. the lowi point; let us call this list Li(f), and
let it be stored in way that allows for binary search w.r.t. the lowi point. Then, for every
internal component C that is an ancestor of f , we can find the segment Si(C) of Li(f) that
consists of the children of f whose lowi point lies in C, by searching for the leftmost and the
righmost child in Li(f) whose lowi point lies in [rC , p(b)], where b is the boundary vertex of
C that is an ancestor of f .

Now let i ∈ {1, . . . , d} be such that lowi(rH) ∈ C ′. Then we have that rH ∈ Si(C ′).
Furthermore, we have that every child of f that lies in Si(C ′) and is the root of a hanging
subtree H ′ of f has the property that H ′ is also connected with C ′ through a back-edge.
Thus, we would like to be able to perform 2D-range-emptiness queries as above on the subset
S of Si(C ′) that consists of roots of hanging subtrees, in order to determine the connectivity
(in G \ F ) of C ′ with all internal components C that are ancestors of f and descendants of
C ′. We could do this efficiently if we had the guarantee that S consists of large segments of
consecutive children of f . We can accommodate for that during the preprocessing phase:
for every i ∈ {1, . . . , d⋆}, we perform a DFS of T , starting from r, where the adjacency list
of every vertex v is given by Li(v).5 Let Ti be the resulting DFS tree, and let DFS i be the
corresponding DFS numbering. Then, with the DFS numbering of Ti, we initialize a data
structure 2D_range_i, for answering 2D-range-emptiness queries for back-edges w.r.t. Ti in
subrectangles of [1, n]× [1, n].

Now let us see how everything is put together. Let H be a hanging subtree of f that
connects two internal components C1 and C2, and let b1 and b2 be the boundary vertices of
C1 and C2, respectively, that are ancestors of f . Let C ′ be the lowest internal component
that is connected through a back-edge with H. Then there is an i ∈ {1, . . . , d} such that
lowi(rH) ∈ C ′. Let S be the maximal segment of Si(C ′) that contains rH and consists
of roots of hanging subtrees, let L be the minimum of S and let R be the maximum
of S.6 Then the 2D-range-emptiness queries on [L, R + ND(R) − 1]i × [rC1 , p(b1)]i and
[L, R + ND(R)− 1]i × [rC2 , p(b2)]i with 2D_range_i are both positive, and so we will add
the edges (rC1 , rC′) and (rC2 , rC′) to R. This will maintain in R the information that C ′,
C1 and C2, are connected with the same hanging subtree of f .

The algorithm that constructs enough Type-2 edges to make R a connectivity graph of the
internal components of T \ F is given in Algorithm 2. Our result is stated in Proposition 12.

▶ Proposition 12 ([6]). Algorithm 2 computes enough Type-2 edges to construct a connectivity
graph R for the internal components of T \ F (supposing that R contains all Type-1 edges).
The running time of this algorithm is O(d4 log n).

3.5 Answering the queries
Assume that we have constructed a connectivity graph R for the internal components of
T \ F , and that we have computed its connected components. Thus, given two internal
components C and C ′, we can determine in constant time whether C and C ′ are connected
in G \ F , by simply checking whether rC and rC′ are in the same connected component of R
(see Lemma 10).

5 I.e., it is necessary that the vertices in the adjacency list of v appear in the same order as in Li(v).
6 Notice that, due to the construction of Ti, we have that DFS i(L) and DFS i(R) are also the minimum

and the maximum, respectively, of DFS i(S).
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Algorithm 2 Compute enough Type-2 edges to construct a connectivity graph for the internal
components of T \ F .

1 foreach failed vertex f do
2 // process all pairs of internal components that are ancestors of f

3 set f ′ ← parentF (f)
4 while f ′ ̸= ⊥ do
5 let C ′ be the internal component with f ′ ∈ ∂(C ′)
6 // skip the following if C ′ does not exist, and go immediately

to Line 26
7 foreach i ∈ {1, . . . , d} do
8 let Si be the collection of all maximal segments of Li(f) that consist of

roots of hanging subtrees with their lowi point in C ′

9 end
10 // process all internal components C that are ancestors of f

and descendants of C ′

11 set f ′′ ← f

12 while f ′′ ̸= f ′ do
13 let C be the internal component with f ′′ ∈ ∂(C)
14 // skip the following if C does not exist, and go

immediately to Line 24
15 // check if C is connected with C ′ through at least one

hanging subtree of f

16 foreach i ∈ {1, . . . , d} do
17 foreach S ∈ Si do
18 let L← min(S) and R← max(S)
19 if 2D_range_i([L, R + ND(R)− 1]i × [rC , p(f ′′)]i) = true then
20 add the Type-2 edge (rC , rC′) to R
21 end
22 end
23 end
24 f ′′ ← parentF (f ′′)
25 end
26 f ′ ← parentF (f ′)
27 end
28 end

Now let x, y be two vertices in V (G)\F . In order to determine whether x, y are connected
in G \ F , we try to substitute x, y with roots of internal components of T \ F , and then we
reduce the query to those roots. Specifically, if x (resp., y) belongs to an internal component
C of T \ F , then the connectivity between x and y is the same as that between rC and y

(resp., x and rC). Otherwise, if x (resp., y) belongs to a hanging subtree H of T \ F , then
we try to find an internal component that is connected with H through a back-edge. If such
an internal component C exists, then we can substitute x (resp., y) with rC . Otherwise, x, y

are connected in G \ F if and only if they belong to the same hanging subtree of T \ F . This
idea is shown in Algorithm 3.

▶ Proposition 13 ([6]). Given two vertices x, y in V (G)\F , Algorithm 3 correctly determines
whether x, y are connected in G \ F . The running time of Algorithm 3 is O(d).
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Algorithm 3 query(x, y).

1 if x lies in an internal component C and y lies in an internal component C ′ then
2 if rC is connected with rC′ in R then return true
3 return false
4 end
5 // at least one of x, y lies in a hanging subtree
6 if x lies in a hanging subtree H then
7 // check whether H is connected with an internal component through

a back-edge
8 for i ∈ {1, . . . , d} do
9 if lowi(rH) ̸= ⊥ and lowi(rH) /∈ F then

10 return query(lowi(rH), y)
11 end
12 end
13 // there is no internal component that is connected with H in G\F

14 if y lies in H then return true
15 return false
16 end
17 return query(y, x)

References
1 Michael A. Bender and Martin Farach-Colton. The level ancestor problem simplified. Theor.

Comput. Sci., 321(1):5–12, 2004. doi:10.1016/j.tcs.2003.05.002.
2 Timothy M. Chan, Kasper Green Larsen, and Mihai Pătraşcu. Orthogonal range searching on

the ram, revisited. In Proceedings of the 27th ACM Symposium on Computational Geometry,,
pages 1–10, 2011. doi:10.1145/1998196.1998198.

3 Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. Computational
geometry: algorithms and applications, 3rd Edition. Springer, 2008. URL: https://www.
worldcat.org/oclc/227584184.

4 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

5 Ran Duan and Seth Pettie. Connectivity oracles for graphs subject to vertex failures. SIAM
J. Comput., 49(6):1363–1396, 2020. doi:10.1137/17M1146610.

6 Evangelos Kosinas. Connectivity queries under vertex failures: Not optimal, but practical.
arXiv version, 2023. arXiv:2305.01756.

7 Yaowei Long and Thatchaphol Saranurak. Near-optimal deterministic vertex-failure connectiv-
ity oracles. In 63rd IEEE Annual Symposium on Foundations of Computer Science, FOCS,
pages 1002–1010, 2022. doi:10.1109/FOCS54457.2022.00098.

8 Hiroshi Nagamochi and Toshihide Ibaraki. A linear-time algorithm for finding a sparse k-
connected spanning subgraph of a k-connected graph. Algorithmica, 7(5&6):583–596, 1992.
doi:10.1007/BF01758778.

9 Michal Pilipczuk, Nicole Schirrmacher, Sebastian Siebertz, Szymon Torunczyk, and Alexandre
Vigny. Algorithms and data structures for first-order logic with connectivity under vertex
failures. In 49th International Colloquium on Automata, Languages, and Programming, ICALP,
volume 229 of LIPIcs, pages 102:1–102:18, 2022. doi:10.4230/LIPIcs.ICALP.2022.102.

10 Robert Endre Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput.,
1(2):146–160, 1972. doi:10.1137/0201010.

ESA 2023

https://doi.org/10.1016/j.tcs.2003.05.002
https://doi.org/10.1145/1998196.1998198
https://www.worldcat.org/oclc/227584184
https://www.worldcat.org/oclc/227584184
https://doi.org/10.1137/17M1146610
https://arxiv.org/abs/2305.01756
https://doi.org/10.1109/FOCS54457.2022.00098
https://doi.org/10.1007/BF01758778
https://doi.org/10.4230/LIPIcs.ICALP.2022.102
https://doi.org/10.1137/0201010




Improved Approximations for Translational Packing
of Convex Polygons
Adam Kurpisz # Ñ

Bern University of Applied Sciences, Switzerland
Department of Mathematics, ETH Zürich, Switzerland

Silvan Suter #

Department of Mathematics, ETH Zürich, Switzerland

Abstract
Optimal packing of objects in containers is a critical problem in various real-life and industrial
applications. This paper investigates the two-dimensional packing of convex polygons without
rotations, where only translations are allowed. We study different settings depending on the type of
containers used, including minimizing the number of containers or the size of the container based on
an objective function.

Building on prior research in the field, we develop polynomial-time algorithms with improved
approximation guarantees upon the best-known results by Alt, de Berg and Knauer, as well as
Aamand, Abrahamsen, Beretta and Kleist, for problems such as Polygon Area Minimization, Polygon
Perimeter Minimization, Polygon Strip Packing, and Polygon Bin Packing. Our approach utilizes a
sequence of object transformations that allows sorting by height and orientation, thus enhancing
the effectiveness of shelf packing algorithms for polygon packing problems. In addition, we present
efficient approximation algorithms for special cases of the Polygon Bin Packing problem, progressing
toward solving an open question concerning an O(1)-approximation algorithm for arbitrary polygons.
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1 Introduction

Many real-life situations require us to make decisions about optimally packing a collection
of objects into a specific container. One particular category of these packing problems is
two-dimensional packing, which is encountered in everyday scenarios like arranging items
on a shelf and in industrial applications such as cutting cookies from rolled-out dough
or manufacturing sets of tiles from standard-sized panels made of wood, glass, or metal.
Another intriguing example involves cutting fabric pieces for clothing production. In this
case, the pieces often cannot be rotated freely, as they must adhere to a desired pattern
in the final product, which is tailored of multiple elements. The widespread applicability
of two-dimensional packing problems has led to a surge of interest in designing efficient
algorithms to address them. In this paper, we follow the line of research and study the
problem of packing convex polygons without rotations in various settings depending on the
type of containers used.

Past research focusing on theoretical considerations of two-dimensional packings mainly
concentrates on the scenario when all objects are axis-parallel rectangles. In this paper, we
will discuss packing without rotations, in which only translations are permitted. There are
two main classes of the problem depending on whether the size of the container is fixed and
we want to minimize the number of containers used or whether we want to minimize the
container’s size with respect to some objective function.
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A seminal example of the first class is the Geometric Bin Packing problem in which
a number of unit size squared bins to pack is to be minimized. The problem is arguably
the most natural generalization of the regular (1D) Bin Packing to two dimensions, and
its absolute approximability has been fully understood. Unless P = N P, the best possible
efficient constant factor approximation is 2 [15], and such an algorithm is known [10].

In the second class, there are several variants to be considered. An example is the
Strip Packing Problem which is concerned with packing objects into a strip of width
1 and infinite height in such a way that the maximum of all the heights of the placed
objects is minimized. Like Geometric Bin Packing, Strip Packing generalizes (1D)
Bin Packing. The best known efficient constant factor approximation for Strip Packing
has approximation factor (5/3 + ϵ) [9]. It is known that there can not exist a polynomial
time algorithm with an approximation ratio of (3/2 − ϵ) for any ϵ > 0 unless P = N P , which
follows directly from the approximation hardness of (1D) Bin Packing. Both classes of
problems have been also considered in the asymptotic setting, see e.g. [11, 5, 12].

In younger time, there was also an increase of interest in cases where the objects in
question are general convex polygons. Alt, de Berg and Knauer [2, 3] considered the problem
of packing an instance consisting of a number of convex polygons of the form p ⊂ [0, 1]2 into
a minimum area axis-parallel rectangular container. We refer to this problem as Polygon
Area Minimization throughout this paper. In the special case where the instance consists
of rectangles only, the problem is known to admit a PTAS [4]. They proved the existence of
the following efficient algorithm:

A 23.78-approximation for Polygon Area Minimization.
Recently, Aamand, Abrahamsen, Beretta and Kleist [1] showed that the algorithm of Alt,
de Berg and Knauer can be leveraged to obtain also efficient approximation algorithms of
further problems:

A 7-approximation for Polygon Perimeter Minimization.
A 51-approximation for Polygon Strip Packing.
An 11-approximation for Polygon Bin Packing for polygons with diameter at most 1

10 .

1.1 Our results
The results of Alt, de Berg and Knauer [2, 3] and Aamand et al. [1] are heavily based on
so-called shelf packing algorithms. In shelf packing algorithms, the objects are first placed
on the shelves, possibly ordered by height, which are later stacked on one another to build
a final solution. Compared to axis-parallel rectangles, the main challenge in designing an
approximation algorithm for polygon packing problems is that objects cannot be sorted by
height and orientation simultaneously. As a result, the algorithm and its analysis in [2, 3]
have such a large approximation guarantee. In this paper, we provide new insight into how
shelf packing algorithms should be applied to polygon packing problems. We introduce a
sequence of transformations of the objects that allow us first to sort them by height and later
by orientation to build a solution of a much better approximation guarantee. More precisely,
we design polynomial-time algorithms with the following factors:

A 9.45-approximation for Polygon Area Minimization.
Using this algorithm as a subroutine, we build upon the methods from Aamand et al. [1] to
obtain the following efficient approximation algorithms:

A (3.75 + ϵ)-approximation for Polygon Perimeter Minimization.
A 21.89-approximation for Polygon Strip Packing.
A 5.09-approximation for Polygon Bin Packing for polygons which have their diameter
bounded by 1

10 .
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The results are proved in Sections 4, 5, 6, and 7 respectively. Furthermore, concerning
Polygon Bin Packing, in the full version of this paper we show the following results,
which make progress towards solving an open question of a O(1)-approximation algorithm
for Polygon Bin Packing for arbitrary polygons.

There is an efficient O( 1
δ )-approximation algorithm for Polygon Bin Packing for

instances where each polygon has width or height at most 1 − δ.
There is an efficient O(1)-approximation algorithm for Polygon Bin Packing for
instances with the property that all polygons share a spine (up to translation) with height
at least 3

4 .

2 Preliminaries

We start out considerations by recalling a classical and well-known problem in theoretical
computer science, the Bin Packing problem: Given a list of numbers s1, . . . , sn ∈ (0, 1] ∩ Q,
representing the sizes of n objects, the goal is to find the minimum number of bins of size 1,
so that we can pack all objects into them. Bin Packing can be seen as the task of packing
(1-dimensional) intervals into as few intervals of length 1 as possible. This definition can be
extended to the two dimensional case. To do so we introduce several definitions.

Throughout the paper, for a set subset A of the domain of a function f , f(A) is a shorthand
notation for

∑
a∈A f(a). A packing instance is defined by a finite set I containing objects

to pack, a countable set R containing bins to pack the objects into and a set Φ of allowed
transformations. A shape is a compact connected set s ⊂ R2

≥0. We denote a rectangular
shape r ⊂ R2

≥0 by a tuple r = (w, h) ∈ R2
>0, which has width w and height h. An object o is

an element of I and has a shape s ⊂ [0, 1]2. Furthermore, we define I and I to be the sets
which contain all finite sets I with objects consisting of axis-parallel rectangles and convex
polygons, respectively. We will usually denote |I| by n. In order to ensure computability, we
assume that each object in I and I is defined by finitely many vertices.

A bin R ∈ R is also characterized by having a shape. In this paper, we always assume that
the shape of a bin R is an axis-parallel rectangle. That is, it is a rectangle with each of its sides
being parallel to one of the primal axes in R2, and normally, its lower left corner is at the origin
(0, 0) ∈ R2. We write width(R) and height(R) for the width and the height of a bin R ∈ R.
If R = [0, 1]2, we say that R is a unit bin. In this study, the set of allowed transformations
Φ is the set of all translations, i.e. Φ = {ϕ : R2 → R2 | ∃x0 ∈ R2 ∀x ∈ R2 : ϕ(x) = x + x0}.
Note that we consider the setting where rotations or reflections of objects are not allowed.
We denote the width and the height of an object o (the length of the projection on the x-axis
or y-axis respectively) by width(o) and height(o). The maximum width and height of a
shape of an object in I, we denote by wmax(I) and hmax(I) respectively. We will also use
the notation width(S) and height(S) for arbitrary subsets S ⊂ R2

A packing P of I is defined as a set of pairwise disjoint placements of all o ∈ I with
respect to the set of translations Φ. Given a bin R ∈ R, we say that we can pack I into R

if there is a packing P of I so that P ⊂ R. In this case, we also say that P is a packing of
I into R. If we can pack the objects I into the bin R, we call R a bounding box of I. If
we have an at most countable collection of bins R := {Rj}j∈J , we say that we can pack I

into R, if there is a partition I =
⊔

j∈J Ij so that we can pack the objects Ij into Rj for all
j ∈ J . In such case, if for all j ∈ J , Pj is a packing of Ij into Rj , we refer to P := {Pj}j as
a multi-packing. For any j ∈ J , we say that o is in the packing Pj , if o ∈ Ij . We define
the area(P ) to be the area of the smallest axis-parallel rectangle containing P .
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The definition already demonstrates the more difficult nature of multi-dimensional
packings compared to one dimensional packings. Even if the objects to pack are axis-
parallel rectangles, it is no longer sufficient to consider in which bin to pack which rectangle,
but the exact position in the bin also matters.

In this paper we consider problems consisting in packing convex polygonal shapes into
axis-parallel rectangular bins under translational transformations. More precisely we consider
the following problems.

▶ Problem 1 (Polygon Packing).
Input: Convex polygons I ∈ I .
Goals:

Bin Packing: Find the minimum number B ∈ N so that we can pack I into B unit bins.
Strip Packing: Find the minimum height H ∈ Q>0 so that we can pack I into a bin of
width 1 and height H.
Area Minimization: Find a bounding box R ∈ R2

>0 of I so that f(R) = width(R) ·
height(R) is minimal.
Perimeter Minimization: Find a bounding box R ∈ R2

>0 of I so that f(R) =
2(width(R) + height(R)) is minimal.
Minimum Square: Find a bounding box R ∈ R2

>0 so that f(R) = max{width(R),
height(R)} is minimal.

Throughout the paper for the problems under consideration, we denote the optimal value of
an instance I ∈ I by opt(I).

3 Shelf Packing Algorithms

Introducing well-known shelf-packing algorithms involves basic (1D)-Bin Packing algorithms,
such as NextFit (NF), FirstFit (FF), and BestFit (BF). These place items s1, . . . , sn

into bins sequentially, with si+1 placed according to specific rules. If no placement adheres
to the rule, a new bin is opened. The rules differ for each algorithm.

NF, places si+1 into the most recently opened bin, if it has enough space.
FF, places si+1 in the earliest opened bin in which it fits.
BF, places si+1 in the bin with least free space among bins in which si+1 fits.

NF and FF are often preprocessed by sorting the items in non-increasing size, which are
called NextFitDecreasing (NFD) and FirstFitDecreasing (FFD). It is not hard to
show that NF is a 2-approximation for the Bin Packing problem [14]. Moreover, NF packs
it into at most 1 + 2

∑n
i=1 si bins. BF and FF both have an approximation ratio of 1.7 [7, 8],

which are tight. Furthermore, as shown in [13], if si ≤ 1
m for all i ∈ [n] and some m ≥ 2, FF

packs this instance into at most 1 + (1 + 1
m )

∑n
i=1 si bins. 1

Variants of NF, FF and BF exist for 2D rectangle packing problems, called NextFitDe-
creasingHeight (NFDH), FirstFitDecreasingHeight (FFDH), and BestFitDecreas-
ingHeight (BFDH). These shelf-packing algorithms were introduced for Strip Packing,
placing rectangles r1, . . . , rn ∈ I into a bin R = [0, 1]×[0, ∞) with infinite height. The three
algorithms order rectangles r1, . . . , rn in non-increasing height and place them sequentially

1 In fact they show that FF packs such instance in 2 + (1 + 1
m )

∑n

i=1 si bins. With a strategy analogous
to the one from the proof of Theorem 3 in [6] in the two-dimensional case, however, one can show that
an additive factor of 1 is sufficient.
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into shelves in R. A shelf is a horizontal strip, and rectangles can open new shelves. A
shelf-packing algorithm places ri+1 in an existing shelf according to a rule or opens a new
shelf. The placement is bottom-left without intersecting other rectangles.

NFDH places ri+1 in the most recently opened shelf, if it fits.
FFDH places ri+1 in the lowest possible shelf which has enough space.
BFDH, as FFDH, allows for placing rectangles in a lower shelf than the most recently
opened one. Here, ri+1 is placed in the one which has minimal free horizontal space at
the right end of the shelf among all shelves, while still having at least width(ri+1) of it.

Since NFDH and FFDH are of particular interest in our paper, we present the following
two absolute approximability results for axis-parallel rectangle Strip Packing problem.

▶ Theorem 2 (Theorem 1 [6]). Let I ∈ I . The packing P obtained by NFDH satisfies

height(P ) ≤ hmax(I) + 2 area(I) ≤ 3 opt(I).

▶ Theorem 3 (Theorem 3 [6]). Let m ∈ N and I ∈ I be satisfying that wmax(I) ≤ 1
m . The

packing P of I obtained by FFDH satisfies

height(P ) ≤ hmax(I) +
(

1 + 1
m

)
area(I) ≤

(
2 + 1

m

)
opt(I).

4 An Efficient 9.45-Approximation for Polygon Area Minimization and
7-Approximation when all Polygons are x-Parallelograms

In this section, we prove that there is an efficient 9.4-approximation algorithm for Polygon
Area Minimization, which improves the previous best approximation factor for polynomial
time algorithms of 23.78 by Alt et al. [2, 3]. Based on that result, we also show a 7-
approximation in the special case when all polygons are x-parallelograms, a special type of
parallelograms we will introduce in Definition 5.

4.1 An Efficient 9.45-Approximation for Polygon Area Minimization
To start the discussions, we introduce the following definition.

▶ Definition 4. Let p ⊂ [0, 1]2 be a polygon. A spine s of p is a (straight) line segment
connecting a point in argmin(x,y)∈p y with a point in argmax(x,y)∈p y. We call the angle
between the x-axis in increasing direction and s the angle of s. We say that s is tilted to
the right or leans to the right, if this angle is in (0, π

2 ] and is tilted to the left or leans
to the left, if it is in [ π

2 , π).

Sometimes we also talk about “the” spine of a polygon, implicitly assuming that one has
been fixed. The algorithm of Alt et al. is a shelf-packing algorithm and ordering polygons by
the angle of their spines is a crucial step. Our algorithm shares these two characteristics. A
key difference is that our algorithm first packs the polygons into parallelograms that have
two of their sides parallel to the x-axis. We give such parallelograms their own definition:

▶ Definition 5. An x-parallelogram is a parallelogram q ⊂ R2 that has two of its sides
parallel to the x-axis. Of those two sides, we call the one with lower y-coordinate the base
of q. We write base(q) for the length of the base of q and wside(q) for the width of one of
the sides of q which is not parallel to the x-axis. Similar as to the definition for spines of
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polygons, we say that q is tilted to the right or leans to the right, if the angle between
its right side and the increasing direction of the x-axis is in (0, π

2 ] and is tilted to the left
or leans to the left, if it is in [ π

2 , π). We refer to this angle simply as angle of q.

For packing polygons into x-parallelograms, we prove the following result, which is a
refined version of the discussions of Aamand et al. [1] in Subsection 5.2.4 of their paper.

▶ Lemma 6. Let p be a convex polygon. Then there exists an x-parallelogram q that contains
p and satisfies

(i) height(q) = height(p)
(ii) base(q) ≤ width(p)
(iii) wside(q) ≤ width(p)
(iv) area(q) ≤ 2 area(p).

Proof. First, we construct a bounding x-parallelogram as the one that can be seen in Figure
1. Let lb and lt be lines parallel to the x-axis and tangent to p, touching the bottom of p

and the top of p respectively. Choose pb ∈ p ∩ lb and pt ∈ p ∩ lt and define s to be the line
connecting pb and pt. Note that s is a spine of p. Let sl and sr be tangent to p and parallel
to s, lying on the left and on the right of p. Let pl ∈ p ∩ sl and pr ∈ p ∩ sr. We now define q

to be the set bounded by lb, lt, sl and sr. Note that q is an x-parallelogram that satisfies
(i). As the left and right sides of q are just translations of s, it also satisfies (iii), because of
course s ⊂ p by convexity of p.

Figure 1 The construction of a bounding parallelogram q from the proof of Lemma 6 on an
example polygon p. Note that here, it holds that base(q) > width(p).

To see that q also satisfies (iv), we consider the triangle with vertices pt, pb and pl. We
note that it is contained in p due to convexity and contains exactly half the area of the part
of q that lies on the left of s. Analogously, the triangle with vertices pt, pb and pr has half
the area of the part of q that lies on the right of s. So q does indeed also satisfy (iv).

However, q does not necessarily satisfy (ii) (see the polygon in Figure 1). If it does, then
q satisfies all assumptions of the lemma and we are done.

So we consider now the case when base(q) > width(p). Consider the axis-parallel
rectangle r bounding p. That is, r contains p and each of its sides has non-empty intersection
with p. Surely r satisfies (i), (ii) and (iii). To see that it also satisfies (iv), note that
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area(r) = width(r) height(r)
= width(p) height(p)
< base(q) height(q)
= area(q)
≤ 2 area(p).

So whenever base(q) > base(p), we showed that r satisfies all requirements (i) − (iv) of the
lemma instead. Since r is also an x-parallelogram, we conclude. ◀

With the help of Lemma 6, we can now present the main result of this chapter.

▶ Theorem 7. There is a polynomial time 9.4-approximation algorithm for Polygon Area
Minimization. Moreover, there is such algorithm with running time O(n2 + N), where n is
the number of polygons and N the total number of vertices in a given input I ∈ I , assuming
that each polygon p ∈ I is given as a list of its vertices.

Proof. Let I ∈ I . We construct a packing P as the one depicted in Figure 2.
Pack each polygon p ∈ I into an x-parallelogram q as in Lemma 6. Call the instance

of all so-obtained x-parallelograms IQ. The idea of our algorithm is to use FFDH to pack
straightened, axis-parallel versions of the x-parallelograms IQ and to then use this packing
to obtain one for IQ and hence also I which is not much bigger.

So, define yet another instance IR which, for each q ∈ IQ, contains a rectangle r =
(base(q), height(q)). With FFDH, we now pack IR into a strip of width cwmax(I), where
c ≥ 1 is to be determined later. Call the so-obtained packing PR. By Theorem 3 it follows

height(PR)(cwmax(I)) ≤
(

1 + 1
m

)
area(IR) + chmax(IR)wmax(I), (1)

where m = ⌊c⌋, as wmax(IR) = maxq∈IQ
base(q) ≤ wmax(I) by Lemma 6.

Let S ⊂ IQ be the parallelograms corresponding to the rectangles in a certain shelf in the
packing PR. We can pack S into a new shelf of width (c + 2)wmax(I) by first ordering the
parallelograms S by decreasing angle. Indeed, if we, after this ordering, place them all next
to each other in the shelf, we note that now all bases of the parallelograms are connected to
each other and hence the overlap on either side is at most maxq∈S wside(q) ≤ wmax(I) by
Lemma 6. Put all such shelves on top of each other and call the so-obtained packing PQ.
Note that PQ has the same height as PR, but c+2

c times its width. Finally, we pack each
polygon into its respective parallelogram in the packing PQ. Call this packing P . Then

area(P ) ≤ area(PQ)

≤ c + 2
c

height(PR)(cwmax(I))

≤ c + 2
c

(
1 + 1

m

)
area(IR) + (c + 2)hmax(IR)wmax(I)

= c + 2
c

m + 1
m

area(IQ) + (c + 2)hmax(IQ)wmax(I)

≤ 2c + 2
c

m + 1
m

area(I) + (c + 2)hmax(I)wmax(I)

≤
(

2c + 2
c

m + 1
m

+ (c + 2)
)

opt(I).
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One can check that the minimum is attained at c = 3, in which case we get a 9.4-
approximation.

Figure 2 A packing computed with the algorithm from the proof of Theorem 7, here with
parameter c = 15. For each polygon, also its computed bounding x-parallelogram is drawn.

We now note that the claimed running times of the above algorithm follows by observing
that: Constructing IQ from I can be done in O(N) time, constructing IR from IQ can be
done in O(n) time, constructing PR can be done in O(n2) time, constructing PQ from PR

can be done by sorting in O(n log(n)) time, and finally, constructing P from PQ can be done
in O(N) time. ◀

The algorithm of Alt et al. runs in time O(N log(N)) and thus for certain instances faster
than our algorithm. If, in our algorithm, the use of FFDH for packing IR is replaced by
NFDH, one can show using Theorem 2 that for an optimal choice of c = 2

√
2, the algorithm

has an approximation guarantee of 11.66 while having a running time of O(n log(n) + N),
thus obtaining an algorithm that runs faster than the algorithm of Alt et al., while still
having a greatly improved approximation ratio.

4.2 An Efficient 7-Approximation for Polygon Area Minimization when
all Polygons are x-Parallelograms

In the algorithm presented in the previous subsection, we first pack general polygons into
x-parallelograms and afterwards pack these x-parallelograms. One would expect that if
one wants to pack x-parallelograms from the start, one should be able to obtain a better
approximation factor. Showing that this is indeed the case is the content of this brief section.

▶ Theorem 8. There is a polynomial time 7-approximation algorithm for Polygon Area
Minimization, when all input polygons are x-parallelograms.

The proof follows along the lines of the proof of Theorem 7.

Proof. Let I ∈ I be so that every p ∈ I is an x-parallelogram. As in the proof of Theorem 7,
we define the set IR ∈ I that for every p ∈ I contains some r ∈ IR with width(r) = base(p)
and height(r) = height(p). Again, we pack IR with FFDH into a strip of width cwmax(I)
and call the so-obtained packing PR.

After ordering them by angle, we can pack the parallelograms S ⊂ I corresponding to the
rectangles in some shelf in PR into a new shelf of width (c + 2)wmax(I), because of course
wside(p) ≤ wmax(I). Therefore, calling the so-obtained packing P ,
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area(P ) ≤ c + 2
c

area(PR)

≤ c + 2
c

m + 1
m

area(I) + (c + 2)hmax(I)wmax(I)

≤
(

c + 2
c

m + 1
m

+ (c + 2)
)

opt(I),

which, for c = 2, is minimized and equal to 7. ◀

5 An Efficient (3.75 + ϵ)-Approximation for Polygon Perimeter
Minimization and (3.56 + ϵ)-Approximation for Polygon Minimum
Square

In this section, we show how to leverage the algorithm from Theorem 7 to obtain an
approximation-algorithm for Polygon Perimeter Minimization. We improve on the
polynomial time 7.3-approximation algorithm obtained by Aamand et al. [1] and present an
efficient (3.75 + ϵ)-approximation. Moreover, we show how to leverage that result to obtain
an (3.56 + ϵ)-approximation-algorithm for Polygon Minimum Square.

5.1 An Efficient (3.75 + ϵ)-Approximation for Polygon Perimeter
Minimization

▶ Theorem 9. For every ϵ > 0, there is an efficient (3.75 + ϵ)-approximation algorithm for
Polygon Perimeter Minimization.

Proof. Let I ∈ I . Note that for the perimeter objective, it surely holds that

opt(I) ≥ 2(wmax(I) + hmax(I)). (2)

Furthermore, since a bounding box of I has area at least area(I) and the minimum perimeter
rectangle having area area(I) is a square, it also is true that

opt(I) ≥ 4
√

area(I).

It follows from Inequality 2 that

min{hmax(I), wmax(I)} ≤ 1
4 opt(I)

and without loss of generality, we assume that wmax(I) ≤ 1
4 opt(I). Otherwise we are making

the following argument by packing into vertical shelves instead.
Let P be the packing obtained from the algorithm in Theorem 7, leaving c as a free

parameter. Then P satisfies

width(P ) ≤ (c + 2)wmax(I)

and by dividing the inequality (1) by the width of the strip used for the rectangle packing
obtained by FFDH, cwmax(I), we see that

height(P ) ≤ 2m + 1
m

area(I)
cwmax(I) + hmax(I) ≤ 1

8
m + 1

m

opt(I)2

cwmax(I) + hmax(I).
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We restrict the domain of c so that c ≥ opt(I)
4wmax(I) ≥ 1 and write c = l opt(I)

4wmax(I) for some l ≥ 1.
Then

width(P ) ≤ l

4 opt(I) + 2wmax(I), height(P ) ≤ 1
2l

m + 1
m

opt(I) + hmax(I).

The perimeter of P is hence bounded by

2(width(P ) + height(P )) ≤ 2
((

l

4 + m + 1
2lm

)
opt(I) + 2wmax(I) + hmax(I)

)
≤ 2

(
1
4

(
l + 2(m + 1)

lm

)
+ 1

)
opt(I)

= 1
2

(
l + 2(m + 1)

lm
+ 4

)
opt(I),

which is minimized and equal to 3.75 opt(I) when l is equal to l := 2, where we used that
m = ⌊c⌋ ≥ ⌊l⌋.

Now since the value of opt(I) is not known beforehand and since l depends on it, we need
to guess an optimal value for l. This can be done as follows. Compute the packing from the
algorithm in Theorem 7 for c = 1, (1 + ϵ), . . . , (1 + ϵ)K , where K = log(n)

log(1+ϵ) and denote the
packing obtained for c = (1 + ϵ)k by Pk for all k ∈ {0, 1, . . . , n}. Over all those packings,
choose the one that has minimum perimeter. Say this perimeter is z > 0. Let k ∈ {1, . . . , K}
be so that

(1 + ϵ)k−1 ≤ c ≤ (1 + ϵ)k,

where c := l opt(I)
4wmax(I) . Then, for lk := (1 + ϵ)k 4wmax(I)

opt(I) , it holds that

lk = (1 + ϵ)k 4wmax(I)
opt(I) ≤ (1 + ϵ)c4wmax(I)

opt(I) = (1 + ϵ)l.

In particular, as of course also l ≤ lk, it holds that

z ≤ 2(width(Pk) + height(Pk))

≤ 1
2

(
lk + 2(m + 1)

lkm
+ 4

)
opt(I)

≤ (1 + ϵ)1
2

(
l + 2(m + 1)

lm
+ 4

)
opt(I)

≤ (1 + ϵ)3.75 opt(I),

which shows the statement. ◀

5.2 An Efficient (3.56 + ϵ)-Approximation for Polygon Minimum Square
In this section, we show how to leverage the algorithm from Theorem 7 to obtain an
approximation-algorithm for Polygon Minimum Square.

▶ Theorem 10. For every ϵ > 0, there is an efficient (3.56 + ϵ)-approximation algorithm for
Polygon Minimum Square.

The proof is similar to the proof of Theorem 9.
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Proof. Let I ∈ I . Note that

opt(I) ≥ max{wmax(I), hmax(I)}

and also

opt(I) ≥
√

area(I).

Analogously to the proof of Theorem 9, but substituting c = l opt(I)
wmax(I) for some l ≥ 1 instead,

we can construct a packing P with

width(P ) ≤ l opt(I) + 2wmax(I), height(P ) ≤ 2
l

m + 1
m

opt(I) + hmax(I).

Then

max{width(P ), height(P )} ≤ max
{

l + 2,
2(m + 1)

lm
+ 1

}
opt(I).

The minimum is attained for l = l := 1
2 (

√
17 − 1) in which case m = 1 and the approximation

factor is equal to to 1
2 (

√
17 + 3) ≈ 3.56. As in the proof of Theorem 9, we can guess the

value of l to obtain a (3.56 + ϵ)-approximation algorithm. ◀

6 An Efficient 21.89-Approximation for Polygon Strip Packing

In this section, we show how to obtain a polynomial time 21.8-approximation for Polygon
Strip Packing, improving on the previous best known approximation factor for efficient
algorithms of 51 by Aamand et al. [1]. The idea is to construct vertical shelves with the
algorithm from Theorem 7 and then to stack such vertical shelves horizontally into the
strip. This idea comes from [1]. We slightly improve their procedure using the following
observation.

▶ Lemma 11. Let I ∈ I and let P ⊂ [0, (c+2)wmax(I)]× [0, ∞) be a shelf-packing obtained
by the algorithm from Theorem 7 for some c ≥ 1. Let I ⊂ I be the polygons in one of the
shelves of P and define the packing P := {P (p)}p∈I . Then there is a shelf-packing P ′ of I

into two shelves with width(P ′) ≤ 1
2 (c + 3)wmax(I) and height(P ′) ≤ 2 height(P ).

Proof. The idea is to simply split the shelf in half in its middle as follows. Let xmid :=
(c+2)wmax(I)

2 and partition I into the two sets

IL :=
{

p ∈ I | width
(
P (p) ∩ (R≥xmid ×R)

)
≤ width(p)

2

}
and IR = I\IL. Note that

IR ⊂
{

p ∈ I | width
(
P (p) ∩ (R≤xmid ×R)

)
<

width(p)
2

}
.

We can now pack IL and IR into separate shelves while respecting the ordering of the
polygons in P . We denote the packing where both of those shelves are stacked on each other
by P ′. Both shelves have width at most

xmid + wmax(I)
2 ≤ xmid + wmax(I)

2 = 1
2(c + 3)wmax(I).

and hence P ′ does as well. ◀
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Making use of the lemma, we can show the following result.

▶ Theorem 12. There is a polynomial time 21.8-approximation algorithm for Polygon
Strip Packing.

Proof. Let I ∈ I . We apply the algorithm from Theorem 7, for some c which we will fix
later, to construct vertical shelves. More precisely, we rotate each item by an angle of π/2,
apply the algorithm to the rotated instance, and then rotate the whole packing back by π/2.
Let P be the so obtained packing and let S1, . . . , Sk be the vertical shelves of this packing.

We now stack S1, . . . , Sk horizontally into the (vertical) strip. That is, we pack the
{Si}i∈[k] into horizontal shelves T1, . . . , Tl themselves. Note that since each shelf Si, where
i ∈ [k], has the same height, the problem reduces to (1D)-Bin Packing. In particular,
stacking the {Si}i∈[k] greedily, each except for possibly the last horizontal shelf is covered by
at least half by the Si. If the last shelf Tl is covered by half, we need at most l ≤ 2 area(P )

(c+2)hmax(I)

horizontal shelves to pack S1, . . . , Sk. Otherwise, we need at most l ≤ 2 area(P )
(c+2)hmax(I) +1 shelves.

However, in this case we can reduce the height of Tl, which is filled less than half by the
{Si}i∈[k], to 1

2 (c + 3)hmax(I) by using Lemma 11 on every shelf S in Tl.
In particular, for such packing P ′ it holds that

height(P ′) ≤
(

2 area(P )
(c + 2)hmax(I)

)
(c + 2)hmax(I) + 1

2(c + 3)hmax(I)

= 2 area(P ) + 1
2(c + 3)hmax(I)

≤
(

4c + 2
c

m + 1
m

+ 5
2c + 11

2

)
opt(I)

= 21.8 opt(I),

which is attained for c = 3. ◀

7 Efficient Approximation Algorithms for Polygon Bin Packing for
Polygons of Width Upper Bounded by 1/M

In this section, we present polynomial time approximation algorithms for Polygon Bin
Packing for the case when polygons have their width bounded by a fraction of the form 1

M

and also improved approximations if their height is bounded as well.
To the best of our knowledge, the only presently published polynomial time approximation

algorithm for Polygon Bin Packing is an 11-approximation in the case when the diameter
of the input polygons is bounded by 1

10 , see [1]. For this case, we obtain an efficient
5.09-approximation.

We prove the following theorem.

▶ Theorem 13. Let I ∈ I and assume that there is some M ∈ N≥2 with wmax(I) ≤ 1
M .

Then one can pack I into{
32 opt(I) + 5 if M = 2
4M(M−1)

(M−2)2 opt(I) + 3 if M ≥ 3

bins efficiently. If additionally hmax(I) ≤ 1
M , then we can even efficiently pack I into{

24 opt(I) + 3 if M = 2
2(M+1)(M−1)

(M−2)2 opt(I) + 2 if M ≥ 3

bins.
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In particular, for inputs where both width and height of all polygons are upper bounded
by 1

10 , we get a 5.09-approximation.

Proof. Assume first that M ≥ 3. We use the algorithm from Theorem 7 for c = 1
wmax(I) −2 ≥

M − 2 to obtain a packing P with shelves S1, . . . , Sk. The packing P satisfies

width(P ) ≤ (c + 2)wmax(I) = 1,

and hence a shelf Si, i ∈ [k], fits into a unit bin. Note that m = ⌊c⌋ ≥ M − 2, since M − 2 is
an integer. Since cwmax(I) = 1 − 2wmax(I) ≥ M−2

M , it holds that

height(P ) ≤ 2
(

1 + 1
m

)
area(I)

cwmax(I) + hmax(I) ≤ 2
(

1 + 1
M − 2

)
area(I)

(M − 2)/M
+ hmax(I).

We can now use NF to distribute the shelves into unit bins. Since hmax = 1, this uses at
most 2 height(P ) + 1 bins, see Section 3. But

2 height(P ) + 1 ≤ 4
(

1 + 1
M − 2

)
area(I)

(M − 2)/M
+ 2hmax(I) + 1 ≤ 4M(M − 1)

(M − 2)2 opt(I) + 3.

If hmax(I) ≤ 1
M as well, we can use FF instead of NF to distribute the shelves into bins,

which needs at most (1 + 1
M ) height(P ) + 1 bins, see again Section 3. This way, the number

of needed bins is bounded by(
1 + 1

M

)
height(P ) + 1 ≤ 2(M + 1)(M − 1)

(M − 2)2 opt(I) + 2,

as claimed.
Now we consider the case when M = 2. Partition I into two sets IL and IR, where a

polygon p ∈ I belongs to IL if its chosen x-parallelogram in the proof of Theorem 7 is tilted
to the left and to IR if it is tilted to the right. We now proceed with the algorithm in the
proof of Theorem 7 for c = 1

wmax(I) − 1 ≥ 1, but for IL and IR separately. Call the obtained
packings PL and PR, respectively. Note that since all are tilted to one side only,

width(PL), width(PR) ≤ (c + 1)wmax(I) = 1

and, using m = |c| ≥ 1 and cwmax(I) = 1 − wmax(I) ≥ 1
2 ,

height(PL) ≤ 2
(

1 + 1
m

)
area(IL)

cwmax(IL) + hmax(IL) ≤ 8 area(IL) + hmax(I),

as well as analogously height(PR) ≤ 8 area(IR) + hmax(I).
Hence, for the packing P , where PR is stacked on top of PL, it holds that

width(P ) ≤ 1 and height(P ) ≤ 16 area(I) + 2hmax(I).

From here, with the same arguments as for M ≥ 3, we obtain the desired bounds. ◀
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Abstract
We revisit two well-studied problems, Bounded Degree Vertex Deletion and Defective
Coloring, where the input is a graph G and a target degree ∆ and we are asked either to edit or
partition the graph so that the maximum degree becomes bounded by ∆. Both problems are known
to be parameterized intractable for the most well-known structural parameters, such as treewidth.

We revisit the parameterization by treewidth, as well as several related parameters and present
a more fine-grained picture of the complexity of both problems. In particular:

Both problems admit straightforward DP algorithms with table sizes (∆+2)tw and (χd(∆+1))tw

respectively, where tw is the input graph’s treewidth and χd the number of available colors.
We show that, under the SETH, both algorithms are essentially optimal, for any non-trivial
fixed values of ∆, χd, even if we replace treewidth by pathwidth. Along the way, we obtain an
algorithm for Defective Coloring with complexity quasi-linear in the table size, thus settling
the complexity of both problems for treewidth and pathwidth.
Given that the standard DP algorithm is optimal for treewidth and pathwidth, we then go on to
consider the more restricted parameter tree-depth. Here, previously known lower bounds imply
that, under the ETH, Bounded Vertex Degree Deletion and Defective Coloring cannot
be solved in time no( 4√td) and no(

√
td) respectively, leaving some hope that a qualitatively faster

algorithm than the one for treewidth may be possible. We close this gap by showing that neither
problem can be solved in time no(td), under the ETH, by employing a recursive low tree-depth
construction that may be of independent interest.
Finally, we consider a structural parameter that is known to be restrictive enough to render
both problems FPT: vertex cover. For both problems the best known algorithm in this setting
has a super-exponential dependence of the form vcO(vc). We show that this is optimal, as an
algorithm with dependence of the form vco(vc) would violate the ETH. Our proof relies on a new
application of the technique of d-detecting families introduced by Bonamy et al. [ToCT 2019].

Our results, although mostly negative in nature, paint a clear picture regarding the complexity of
both problems in the landscape of parameterized complexity, since in all cases we provide essentially
matching upper and lower bounds.
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1 Introduction

Parameterized complexity and in particular the study of structural parameters such as
treewidth is one of the most well-developed approaches for dealing with NP-hard problems
on graphs. Treewidth is of course one of the major success stories of this field, as a plethora
of hard problems become fixed-parameter tractable when parameterized by this parameter.
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Naturally, this success has motivated the effort to trace the limits of the algorithmic power
of treewidth by attempting to understand what are the problems for which treewidth-based
techniques cannot work.

When could the treewidth toolbox fail? One common scenario that seems to be shared by
a multitude of problems which are W[1]-hard1 parameterized by treewidth is when a natural
dynamic programming algorithm does exist, but the DP is forced to store for each vertex of
a bag in the tree decomposition an arbitrarily large integer – for example a number related
to the degree of the vertex. Our goal in this paper is to study situations of this type and
pose the natural question of whether one can do better than the “obvious” DP, by obtaining
an algorithm with better running time, even at the expense of looking at a parameter more
restrictive than treewidth.

Given the above, we focus on two problems which are arguably among the most natural
representatives of our scenario: Bounded Degree Vertex Deletion and Defective
Coloring. In both problems the input is a graph G and a target degree ∆ and we are
asked, in the case of Bounded Degree Vertex Deletion to delete a minimum number
of vertices so that the remaining graph has degree at most ∆, and in the case of Defective
Coloring to partition G into a minimum number of color classes such that each class
induces a graph of degree at most ∆. Both problems are well-studied, as they generalize
classical problems (Vertex Cover and Coloring respectively) and we review some of
the previous work below. However, the most relevant aspect of the two problems for our
purposes is the following: (i) both problems admit DP algorithms with complexity of the
form nO(tw) and (ii) both problems are W[1]-hard parameterized by treewidth; in fact, for
Defective Coloring, it is even known that assuming the ETH it cannot be solved in time
no(tw) [5].

Since the nO(tw) algorithms follow from standard DP techniques, it becomes a natural
question whether we can do better. Does a better algorithm exist? Realistically, one could
hope for one of two things: either an algorithm which still handles the problem parameterized
by treewidth and in view of the aforementioned lower bound only attempts a fine-grained
improvement in the running time; or an algorithm which is qualitatively faster at the expense
of using a more restricted parameter. The results of this paper give strong negative evidence
for both questions: if we parameterize by treewidth (and even by pathwidth) the running
time of the standard DP is optimal under the SETH even for all fixed values of the other
relevant parameters (∆ and the number of colors χd); while if we parameterize by more
restrictive parameters, such as tree-depth and vertex cover, we obtain lower bound results
(under the ETH) which indicate that the best algorithm is still essentially to run a form of
the standard treewidth DP, even in these much more restricted cases. Our results thus paint
a complete picture of the structurally parameterized complexity of these two problems and
indicate that the standard DP is optimal in a multitude of restricted cases.

Our contribution in more detail. Following standard techniques, the two problems admit
DP algorithms with tables of sizes (∆ + 2)tw and (χd(∆ + 1))tw respectively. Our first
result is a collection of reductions proving that, assuming the SETH, no algorithm can
improve upon these dynamic programs, even for pathwidth. More precisely, we show that no
algorithm can solve Bounded Degree Vertex Deletion and Defective Coloring
in time (∆ + 2 − ε)pwnO(1) and (χd(∆ + 1) − ε)pwnO(1) respectively, for any ε > 0 and for

1 We assume the reader is familiar with the basics of parameterized complexity theory, as given in standard
textbooks [14].
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any combination of fixed values of ∆, χd (except the combination ∆ = 0 and χd = 2, which
trivially makes Defective Coloring polynomial-time solvable). Our reductions follow the
general strategy pioneered by Lokshtanov, Marx, and Saurabh [37] and indeed generalize
their results for Vertex Cover and Coloring (which already covered the case ∆ = 0).
The main difficulty here is being able to cover all values of the secondary parameters and
for technical reasons we are forced to give separate versions of our reductions to cover the
case ∆ = 1 for both problems. Along the way we note that, even though an algorithm with
complexity (χd∆)O(tw)nO(1) was given for Defective Coloring in [5], it was not known if
an algorithm with complexity (χd(∆ + 1))twnO(1) (that is, with a quasi-linear dependence
on the table size) is possible. For completeness, we settle this by providing an algorithm of
this running time, using the FFT technique proposed by Cygan and Pilipczuk [17]. Taking
also into account the Bounded Degree Vertex Deletion algorithm of running time
(∆ + 2)twnO(1) given by van Rooij [48], we have exactly matching upper and lower bounds
for both problems, for both treewidth and pathwidth.

Given that the results above show rather conclusively that the standard DP is the best
algorithm for parameters treewidth and pathwidth, we then move on to a more restricted
case: tree-depth. We recall that graphs of tree-depth k are a proper subclass of graphs
of pathwidth k, therefore one could reasonably hope to obtain a better algorithm for this
parameter. This hope may further be supported by the fact that known lower bounds do
not match the complexity of the standard algorithm. More precisely, the W[1]-hardness
reduction given for Bounded Degree Vertex Deletion parameterized by tree-depth
by Ganian, Klute, and Ordyniak [27] has a quartic blow-up, thus only implying that no
no( 4√td) algorithm is possible; while the reduction given for Defective Coloring in [5] has
a quadratic blow-up, only implying that no no(

√
td) algorithm is possible (in both cases under

the ETH). Our contribution is to show that both reductions can be replaced by more efficient
reductions which are linear in the parameter; we thus establish that neither problem can be
solved in time no(td), implying that the treewidth-based algorithm remains (qualitatively)
optimal even in this restricted case. One interesting aspect of our reductions is that, rather
than using a modulator to a low tree-depth graph, which is common in such reductions, we
use a recursive construction that leverages the full power of the parameter and may be of
further use in tightening other lower bounds for the parameter tree-depth.

Finally, we move on to a more special case, parameterizing both problems by vertex cover.
Both problems are FPT for this parameter and, since vertex cover is very restrictive as a
parameter, one would hope that, finally, we should be able to obtain an algorithm that is more
clever than the treewidth-based DP. Somewhat disappointingly, the known FPT algorithms
for both problems have complexity vcO(vc)nO(1) [5], and the super-exponential dependence on
the parameter is due to the fact that both algorithms are simple win/win arguments which,
in one case, just execute the standard treewidth DP. We show that this is justified, as neither
problem can be solved in time vco(vc)nO(1) (under the ETH), meaning that the algorithm that
blindly executes the treewidth-based DP in some cases is still (qualitatively) best possible.
We obtain our result by applying the technique of d-detecting families, introduced by Bonamy
et al. [10]. Our results indicate that parameterization by vertex cover is a domain where this
promising, but currently under-used, technique may find more applications in parameterized
complexity.

Related work. Both Bounded Degree Vertex Deletion and Defective Coloring
are well-studied problems with a rich literature. Bounded Degree Vertex Deletion
finds application in a multitude of areas, ranging from computational biology [21] to some
related problems in voting theory [7, 9], and its dual problem, called s-Plex Detection,
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has numerous applications in social network analysis [4, 39, 40]. Various approximation
algorithms are known [24, 25, 43]. The problem has also been extensively studied under
the scope of parameterized complexity. It is W[2]-hard for unbounded values of ∆ and
parameter k (the value of the optimal) [21], while it admits a linear-size kernel parameterized
by k [21, 50], for any fixed ∆ ≥ 0; numerous FPT algorithms have been presented in the
latter setting [40, 41, 49]. FPT approximation algorithms were given for Bounded Degree
Vertex Deletion in [34] and [38]. As for Defective Coloring, which also appears in the
literature as Improper Coloring, it was introduced almost 40 years ago [1, 13]. The main
motivation behind this problem comes from the field of telecommunications, where the colors
correspond to available frequencies and the goal is to assign them to communication nodes; a
small amount of interference between neighboring nodes may be tolerable, which is modeled
by the parameter ∆. There have been plenty of works on the problem (see [2, 3, 5, 6, 12, 30]
and the references therein), especially on unit disk graphs and various classes of grids.

The previous work for both problems that is most relevant to us focuses on their
parameterized complexity for structural parameters, such as treewidth. In this setting,
Bounded Degree Vertex Deletion was one of the first problems to be discovered
to be W[1]-hard parameterized by treewidth [8], though the problem does become FPT
parameterized by tw + ∆ or tw + k. This hardness result was more recently improved by
Ganian et al. [27], who showed that Bounded Degree Vertex Deletion is W[1]-hard
parameterized by tree-depth and feedback vertex set. Defective Coloring was shown
to be W[1]-hard parameterized by tree-depth (and hence pathwidth and treewidth) in [5].
However, [5] gave a hardness reduction for pathwidth that is linear in the parameter, and
hence implies a no(pw) lower bound for Defective Coloring under the ETH, but a hardness
reduction for tree-depth that is quadratic (implying only a no(

√
td) lower bound). Similarly,

the reduction given by [27] for Bounded Degree Vertex Deletion parameterized by
tree-depth is quartic in the parameter, as it goes through an intermediate problem (a variant
of Subset Sum), implying only a no( 4√td) lower bound. Defective Coloring is known to
be FPT parameterized by vertex cover using a simple win/win argument which applies the
treewidth-based DP in one case (if ∆ > vc, then the graph is always 2-colorable; otherwise
the standard DP algorithm runs in FPT time), and the same is true for Bounded Degree
Vertex Deletion (if ∆ ≤ vc, we can use the aforementioned FPT algorithm for parameters
tw + ∆, else assume that k < vc, as otherwise the problem is trivial, follow the reduction
of [8] to Vector Dominating Set [44] and notice that at most vc vertices have degree
greater than ∆). Hence, the best algorithms for both problems for this parameter have
complexity vcO(vc)nO(1).

The fine-grained analysis of the complexity of structural parameterizations, such as by
treewidth, is an active field of research. The technique of using the SETH to establish
tight running time lower bounds was pioneered by Lokshtanov, Marx, and Saurabh [37].
Since then, tight upper and lower bounds are known for a multitude of problems for
parameterizations by treewidth and related parameters, such as pathwidth and clique-width
[15, 16, 19, 20, 23, 26, 28, 29, 31, 42, 47]. One difficulty of the results we present here is that
we need to present a family of reductions: one for each fixed value of ∆ and χd. There are a
few other problems for which families of tight lower bounds are known, such as k-Coloring,
for which the correct dependence is ktw for treewidth [37] and (2k − 2)cw for clique-width [35]
for all k ≥ 3; distance r-Dominating Set, for which the correct dependence is (2r +1)tw [11]
and (3r + 1)cw [32], for all r ≥ 1; and distance d-Independent Set, for which the correct
dependence is dtw [33]. In all these cases, the optimal algorithm is the “natural” DP, and
our results for Bounded Degree Vertex Deletion and Defective Coloring fit this
pattern.
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Table 1 Lower bounds established in the current work. The results of the first row are under
SETH, while all the rest under ETH.

Parameter Bounded Degree Vertex Deletion Defective Coloring
pathwidth + ∆ O⋆((∆ + 2 − ε)pw) O⋆((χd · (∆ + 1) − ε)pw)
treedepth no(td) no(td)

vertex cover vco(vc)nO(1) vco(vc)nO(1)

Even though the previous work mentioned above may make it seem that our SETH-based
lower bounds are not surprising, it is important to stress that it is not a given that the
naïve DP should be optimal for our problems. In particular, Bounded Degree Vertex
Deletion falls into a general category of (σ, ρ)-domination problems, which were studied
recently in [22] (we refer the reader there for the definition of (σ, ρ)-domination). One of the
main results of that work was to show that significant improvements over the basic DP are
indeed possible in some cases, and in particular when one of σ, ρ is cofinite. Since Bounded
Degree Vertex Deletion is the case where σ = {0, . . . , ∆} and ρ = N (that is, ρ is
co-finite), our result falls exactly in the territory left uncharted by [22], where more efficient
algorithms could still be found (and where indeed [22] did uncover such algorithms for some
values of σ, ρ).

Organization. In Section 2 we discuss the general preliminaries, followed by the lower
bounds for Bounded Degree Vertex Deletion in Sections 3–5, and the conclusion
in Section 6. Proofs marked with (⋆), as well as all the results pertaining to Defective
Coloring, can be found in the full version of the paper.

2 Preliminaries

Throughout the paper we use standard graph notation [18], and we assume familiarity with
the basic notions of parameterized complexity [14]. All graphs considered are undirected
without loops, unless explicitly stated otherwise. For a graph G = (V, E) and two integers
χd ≥ 1, ∆ ≥ 0, we say that G admits a (χd, ∆)-coloring if one can partition V into χd sets
such that the graph induced by each set has maximum degree at most ∆. In that case,
Defective Coloring is the problem of deciding, given G, χd, ∆, whether G admits a
(χd, ∆)-coloring. For x, y ∈ Z, let [x, y] = {z ∈ Z | x ≤ z ≤ y}, while [x] = [1, x]. Standard
O⋆ notation is used to suppress polynomial factors. For function f : A → B, and A′ ⊆ A,
let f(A′) =

∑
a∈A′ f(a). For the pathwidth bounds, we use the notion of mixed search

strategy [45], where an edge is cleared by either placing a searcher on both of its endpoints or
sliding one along the edge. We rely on a weaker form of the ETH, which states that 3-SAT
on instances with n variables and m clauses cannot be solved in time 2o(n+m).

In k-Multicolored Clique, we are given a graph G = (V, E) and a partition of V

into k independent sets V1, . . . , Vk, each of size n, and we are asked to determine whether
G contains a k-clique. It is well-known that this problem does not admit any f(k)no(k)

algorithm, where f is any computable function, unless the ETH is false [14].
In q-CSP-B, we are given a Constraint Satisfaction (CSP) instance with n variables

and m constraints. The variables take values in a set Y of size B, i.e. |Y | = B. Each
constraint involves at most q variables and is given as a list of satisfying assignments for these
variables, where a satisfying assignment is a q-tuple of values from the set Y given to each of
the q variables. The following result was shown by Lampis [35] to be a natural consequence
of the SETH, and has been used in the past for various hardness results [19, 20, 29].
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▶ Theorem 1 ([35]). For any B ≥ 2 it holds that, if the SETH is true, then for all ε > 0,
there exists a q such that n-variable q-CSP-B cannot be solved in time O⋆((B − ε)n).

3 Treewidth and Maximum Degree Lower Bounds

In this section we present tight lower bounds on the complexity of solving both Bounded
Degree Vertex Deletion and Defective Coloring parameterized by the treewidth of
the input graph plus the target degree. The latter result can be found in the full version of
the paper.

Both reductions are similar in nature: we start from an instance ϕ of q-CSP-B, and
produce an equivalent instance on a graph of pathwidth pw = n + O(1), where n denotes
the number of variables of ϕ. An interesting observation however, is that for both problems,
we have to distinguish between the case where ∆ = 1 and ∆ ≥ 2; the whole construction
becomes much more complicated in the second case.

3.1 Bounded Degree Vertex Deletion
In the following, we will present a reduction from q-CSP-B to Bounded Degree Vertex
Deletion, for any fixed ∆ ≥ 1, where ∆ = B − 2. In that case, if there exists a O⋆((∆ +
2 − ε)pw) algorithm for Bounded Degree Vertex Deletion, where ε > 0, then there
exists a O⋆((B − ε)n) algorithm for q-CSP-B, for any constant q, which due to Theorem 1
results in SETH failing.

Our reduction is based on the construction of “long paths” of Block gadgets, that are
serially connected in a path-like manner. Each such “path” corresponds to a variable of the
given formula, while each column of this construction is associated with one of its constraints.
Intuitively, our aim is to embed the Bn possible variable assignments into the (∆ + 2)tw

states of some optimal dynamic program that would solve the problem on our constructed
instance.

Below, we present a sequence of gadgets used in our reduction. The aforementioned
block gadgets, which allow a solution to choose among ∆ + 2 reasonable choices, are the
main ingredient. Notice that these gadgets will differ significantly depending on whether
∆ is equal to 1 or not. We connect these gadgets in a path-like manner that ensures that
choices remain consistent throughout the construction, and connect constraint gadgets in
different “columns” of the constructed grid in a way that allows us to verify if the choice
made represents a satisfying assignment, without increasing the graph’s treewidth.

▶ Theorem 2. For any constant ε > 0, there is no O⋆((3−ε)pw) algorithm deciding Bounded
Degree Vertex Deletion for ∆ = 1, where pw denotes the input graph’s pathwidth,
unless the SETH is false.

Proof. Fix some positive ε > 0 for which we want to prove the theorem. We will reduce
q-CSP-3, for some q that is a constant that only depends on ε, to Bounded Degree
Vertex Deletion for ∆ = 1 in a way that ensures that if the resulting Bounded Degree
Vertex Deletion instance could be solved in time O⋆((3 − ε)pw), then we would obtain an
algorithm for q-CSP-3 that would contradict the SETH. To this end, let ϕ be an instance of
q-CSP-3 of n variables X = {xi | i ∈ [n]} taking values over the set Y = [3] and m constraints
C = {cj | j ∈ [m]}. For each constraint we are given a set of at most q variables which are
involved in this constraint and a list of satisfying assignments for these variables, the size of
which is denoted by s : C → [3q], i.e. s(cj) ≤ 3q = O(1) denotes the number of satisfying
assignments for constraint cj . We will construct in polynomial time an equivalent instance
I = (G, k) of Bounded Degree Vertex Deletion for ∆ = 1, where pw(G) ≤ n + O(1).
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Block and Variable Gadgets. For every variable xi and every constraint cj , construct a
path of 3 vertices p1

i,j , p2
i,j and p3

i,j , which comprises the block gadget B̂i,j . Intuitively, we will
map the deletion of py

i,j with an assignment where xi receives value y. Next, for j ∈ [m − 1],
we add an edge between p3

i,j and p1
i,j+1, thus resulting in n paths P1, . . . , Pn of length 3m,

called variable gadgets.

P1

P2

...

Pn

p1
1,1 p2

1,1 p3
1,1 p1

1,2 p2
1,2 p3

1,2

. . .

. . .

. . .

Figure 1 Sequences of block gadgets comprise the variable gadgets.

Constraint Gadget. This gadget is responsible for determining constraint satisfaction, based
on the choices made in the rest of the graph. For constraint cj , construct the constraint
gadget Ĉj as follows:

construct a clique of s(cj) vertices vj
1, . . . , vj

s(cj), and fix an arbitrary one-to-one mapping
between those vertices and the satisfying assignments of cj ,
attach to each vertex vj

ℓ a leaf lj
ℓ ,

if variable xi is involved in the constraint cj and vj
ℓ corresponds to an assignment where

xi has value y ∈ Y , add an edge between vj
ℓ and py

i,j .

Let graph G0 be the graph containing all variable gadgets Pi as well as all the constraint
gadgets Ĉj , for i ∈ [n] and j ∈ [m]. To construct graph G, introduce κ = 2n + 1 copies
G1, . . . , Gκ of G0, such that they are connected sequentially as follows: for i ∈ [n] and
j ∈ [κ − 1], add an edge between p3

i,m(Gj) and p1
i,1(Gj+1), where py

i,j(Ga) denotes the vertex
py

i,j of graph Ga. We refer to the block gadget B̂i,j , to the variable gadget Pi and to the
constraint gadget Ĉj of Ga as B̂Ga

i,j , P Ga
i and ĈGa

j respectively. Let Pi denote the path
resulting from P G1

i , . . . , P Gκ
i . Let k′ =

∑m
j=1(s(cj) − 1 + n) = m · n +

∑m
j=1(s(cj) − 1), and

set k = κ · k′.

▶ Lemma 3. (⋆) If ϕ is satisfiable, then there exists S ⊆ V (G) such that G−S has maximum
degree at most 1 and |S| ≤ k.

▶ Lemma 4. (⋆) If there exists S ⊆ V (G) such that G − S has maximum degree at most 1
and |S| ≤ k, then ϕ is satisfiable.

▶ Lemma 5. (⋆) It holds that pw(G) ≤ n + O(1).

Therefore, in polynomial time, we can construct a graph G, of pathwidth pw(G) ≤
n + O(1) due to Lemma 5, such that, due to Lemmas 3 and 4, deciding whether there exists
S ⊆ V (G) of size |S| ≤ k and G − S has maximum degree at most 1 is equivalent to deciding
whether ϕ is satisfiable. In that case, assuming there exists a O⋆((3 − ε)pw(G)) algorithm
for Bounded Degree Vertex Deletion for ∆ = 1, one could decide q-CSP-3 in time
O⋆((3 − ε)pw(G)) = O⋆((3 − ε)n+O(1)) = O⋆((3 − ε)n) for any constant q, which contradicts
the SETH due to Theorem 1. ◀
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▶ Theorem 6. (⋆) For any constant ε > 0, there is no O⋆((∆ + 2 − ε)pw) algorithm deciding
Bounded Degree Vertex Deletion for ∆ ≥ 2, where pw denotes the input graph’s
pathwidth, unless the SETH is false.

4 Tree-depth Lower Bounds

In this section we present lower bounds on the complexity of solving Bounded Degree
Vertex Deletion and Defective Coloring, when parameterized by the tree-depth of
the input graph. The latter result can be found in the full version of the paper.

The common starting point of both reductions is an instance of k-Multicolored
Clique, where k is a power of 2. Our main technical contribution is a recursive construction
which allows us to keep the tree-depth of the constructed graph linear with respect to k,
which we briefly sketch here. The main idea behind the construction is the following:

First, we describe a choice gadget Ĉi, which encodes, for every independent set Vi of the
graph, which vertex of Vi is part of the clique.
Afterwards, we describe how one can make a copy of such a choice gadget, by using only
a constant number of vertices, while at the same time guaranteeing that the choices
between the instances of the choice gadget remain the same.
Lastly, we define an adjacency gadget Â(i1, i2, i′

1, i′
2), whose purpose is to verify that, for

the given choices of vertices, there exists an edge between Vi and Vi′ , for any i ∈ [i1, i2]
and i′ ∈ [i′

1, i′
2]. Initially we deal with the case where i1 = i2 and i′

1 = i′
2, while ensuring

that the tree-depth of the construction is constant. For the other case, the gadget is
constructed in two steps. Firstly, it contains all the choice gadgets Ĉi and Ĉi′ . Secondly,
it contains 4 instances of adjacency gadgets, due to the upper and lower half of [i1, i2]
and [i′

1, i′
2], while the occurrences of the choice gadgets in those are copies of the choice

gadgets introduced in the first step. The fact that k is a power of 2 guarantees that the
upper and lower half of both [i1, i2] and [i′

1, i′
2] are well defined.

Then, by removing the vertices used in the copy gadgets, it follows that all adjacency gadgets
constructed in the second step become disconnected. Therefore, the tree-depth of the whole
construction is given by a recursive formula of the form T (k) = O(k) + T (k/2).

4.1 Bounded Degree Vertex Deletion

▶ Theorem 7. For any computable function f , if there exists an algorithm that solves
Bounded Degree Vertex Deletion in time f(td)no(td), where td denotes the tree-depth
of the input graph, then the ETH is false.

Proof. Let (G, k) be an instance of k-Multicolored Clique, such that every vertex of G

has a self loop, i.e. {v, v} ∈ E(G), for all v ∈ V (G). Recall that we assume that G is given to
us partitioned into k independent sets V1, . . . , Vk, where Vi = {vi

1, . . . , vi
n}. Assume without

loss of generality that k = 2z, for some z ∈ N (one can do so by adding dummy independent
sets connected to all the other vertices of the graph). Moreover, let Ei1,i2 ⊆ E(G) denote
the edges of G with one endpoint in Vi1 and the other in Vi2 . Set ∆ = n3. We will construct
in polynomial time a graph H of tree-depth td(H) = O(k) and size |V (H)| = kO(1) · nO(1),
such that there exists S ⊆ V (H), |S| ≤ k′ and H − S has maximum degree at most ∆, for
some k′, if and only if G has a k-clique.
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Ĉi1

...

Ĉ⌊ i1+i2
2 ⌋

Ĉ⌈ i1+i2
2 ⌉

...

Ĉi2

Ĉi′
1

· · · Ĉ⌊
i′
1+i′

2
2

⌋ Ĉ⌈
i′
1+i′

2
2

⌉
· · · Ĉi′

2

Ĉi1

...

Ĉ⌊ i1+i2
2 ⌋

Ĉ⌈ i1+i2
2 ⌉

...

Ĉi2

Ĉi′
1

...

Ĉ⌊
i′
1+i′

2
2

⌋

Ĉi′
1

...

Ĉ⌊
i′
1+i′

2
2

⌋

Ĉi1

...

Ĉ⌊ i1+i2
2 ⌋

Ĉ⌈ i1+i2
2 ⌉

...

Ĉi2

Ĉ⌈
i′
1+i′

2
2

⌉
...

Ĉi′
2

Ĉ⌈
i′
1+i′

2
2

⌉
...

Ĉi′
2

Figure 2 Adjacency gadget Â(i1, i2, i′
1, i′

2). Dashed lines denote copies.

Choice Gadget. For an independent set Vi, we construct the choice gadget Ĉi as depicted
in Figure 3a. We first construct independent sets Ĉp

i = {vi,p
1 , . . . , vi,p

n }, where p ∈ {h, l}.
Afterwards, we connect vi,h

j and vi,l
j with a vertex qi

j , and add to the latter ∆ − 1 leaves.
Intuitively, we will consider an one-to-one mapping between the vertex vi

j of Vi belonging to
a supposed k-clique of G and the deletion of exactly j vertices of Ĉl

i and n − j from Ĉh
i .

Copy Gadget. Given two instances I1, I2 of a choice gadget Ĉi, when we say that we
connect them with a copy gadget, we introduce two vertices g1 and g2, attach to each of those
∆ − n leaves, and lastly add an edge between g1 (respectively, g2) with the vertices of Ĉl

i of
instance I1 (respectively, I2), as well as the vertices of Ĉh

i of instance I2 (respectively, I1).

Edge Gadget. Let e = {vi1
j1

, vi2
j2

} ∈ Ei1,i2 be an edge of G. Construct the edge gadget Êe as
depicted in Figure 4, where every vertex ci

j has ∆ leaves attached.

Adjacency Gadget. For i1 ≤ i2 and i′
1 ≤ i′

2, we define the adjacency gadget Â(i1, i2, i′
1, i′

2)
as follows:

Consider first the case when i1 = i2 and i′
1 = i′

2. Let the adjacency gadget contain
instances of the edge gadgets Êe, for e ∈ Ei1,i′

1 , the choice gadgets Ĉi1 and Ĉi′
1
, as well

as vertices ℓl
i1,i′

1
, ℓh

i1,i′
1
, rl

i1,i′
1

and rh
i1,i′

1
. Add edges between

ℓl
i1,i′

1
and Ĉl

i1
,

ℓh
i1,i′

1
and Ĉh

i1
,

rl
i1,i′

1
and Ĉl

i′
1
,

rh
i1,i′

1
and Ĉh

i′
1
.
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vi,l
1

· · ·
vi,l

n

vi,h
1

· · ·
vi,h

n

qi
1

· · ·
qi

n

Ĉl
i

Ĉh
i

(a) Choice gadget Ĉi.

· · ·

· · ·

Ĉl
i

Ĉh
i

I1

· · ·

· · ·

Ĉl
i

Ĉh
i

I2

g1

g2

(b) Making a copy of a choice gadget Ĉi.

Figure 3 Black vertices have ∆ − 1 and gray ∆ − n leaves attached.

r

ci1
1si1

1

...

ci1
j1

si1
j1

ci1
j1+1

si1
j1+1

...
ci1

nsi1
n

ci2
1 si2

1

...

ci2
j2

si2
j2

ci2
j2+1

si2
j2+1

...
ci2

n si2
n

Figure 4 Edge gadget Êe for e = {vi1
j1

, vi2
j2

}. Black vertices have ∆ leaves attached.

If e = {vi1
j1

, v
i′

1
j2

} ∈ Ei1,i′
1 , then add the following edges adjacent to Êe:

ℓl
i1,i′

1
with si1

κ , for κ ∈ [j1],

ℓh
i1,i′

1
with si1

κ , for κ ∈ [j1 + 1, n],

rl
i1,i′

1
with s

i′
1

κ , for κ ∈ [j2],

rh
i1,i′

1
with s

i′
1

κ , for κ ∈ [j2 + 1, n].

Let τ(x), where x ∈ {ℓl
i1,i′

1
, ℓh

i1,i′
1
, rl

i1,i′
1
, rh

i1,i′
1
}, denote the number of neighbors of x

belonging to some edge gadget. Attach ∆ − τ(x) leaves to vertex x.
Now consider the case when i1 < i2 and i′

1 < i′
2. Then, let Â(i1, i2, i′

1, i′
2) contain choice

gadgets Ĉi and Ĉi′ , where i ∈ [i1, i2] and i′ ∈ [i′
1, i′

2], which we will refer to as the original
choice gadgets of Â(i1, i2, i′

1, i′
2), as well as the adjacency gadgets

Â(i1,
⌊

i1+i2
2

⌋
, i′

1,
⌊

i′
1+i′

2
2

⌋
),

Â(i1,
⌊

i1+i2
2

⌋
,
⌈

i′
1+i′

2
2

⌉
, i′

2),

Â(
⌈

i1+i2
2

⌉
, i2, i′

1,
⌊

i′
1+i′

2
2

⌋
),

Â(
⌈

i1+i2
2

⌉
, i2,

⌈
i′

1+i′
2

2

⌉
, i′

2).

Lastly, we connect with a copy gadget any choice gadgets Ĉi and Ĉi′ appearing in said
adjacency gadgets, with the corresponding original choice gadget Ĉi and Ĉi′ . Notice that
then, every original choice gadget is taking part in two copy gadgets.

Let graph H be the adjacency gadget Â(1, k, 1, k). Notice that it holds that |V (H)| =
(n · k)O(1). Let β = 2k(2k − 1), and set k′ = 2(|E(G)| − kn) · 2n + kn · 2n + 2

(
k
2
)

+ k + n · β.
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Figure 5 Adjacency gadget Â(i1, i1, i′
1, i′

1), where Ei1,i′
1 = {ei | i ∈ [λ]}. Black vertices have

leaves attached.

▶ Lemma 8. (⋆) H has the following properties:
The number of instances of choice gadgets present in H is β,
The number of instances of edge gadget Êe present in H, where e = {vi1

j1
, vi2

j2
} ∈ E(G), is

one if i1 = i2, and two otherwise.

▶ Lemma 9. (⋆) It holds that td(H) = O(k).

▶ Lemma 10. (⋆) If G contains a k-clique, then there exists S ⊆ V (H), with |S| ≤ k′, such
that H − S has maximum degree at most ∆.

▶ Lemma 11. (⋆) If there exists S ⊆ V (H), with |S| ≤ k′, such that H − S has maximum
degree at most ∆, then G contains a k-clique.

Therefore, in polynomial time, we can construct a graph H, of tree-depth td = O(k)
due to Lemma 9, such that, due to Lemmas 10 and 11, deciding whether there exists
S ⊆ V (H) of size |S| ≤ k′ and H − S has maximum degree at most ∆ = n3 is equivalent to
deciding whether G has a k-clique. In that case, assuming there exists a f(td)|V (H)|o(td)

algorithm for Bounded Degree Vertex Deletion, where f is any computable function,
one could decide k-Multicolored Clique in time f(td)|V (H)|o(td) = g(k) · no(k), for some
computable function g, which contradicts the ETH. ◀

5 Vertex Cover Lower Bounds

In this section we present lower bounds on the complexity of solving Bounded Degree
Vertex Deletion when parameterized by the vertex cover of the input graph. An analogous
lower bound is shown for Defective Coloring, which has been deferred to the appendix
due to space restrictions. In both cases, we start from a 3-SAT instance of n variables, and
produce an equivalent instance where the input graph has vertex cover O(n/ log n), hence
any algorithm solving the latter problem in time vco(vc)nO(1) would refute the ETH. As a
consequence of the above, already known algorithms for both of these problems are essentially
optimal. We start by presenting some necessary tools used in both of these reductions, and
then prove the stated results for Bounded Degree Vertex Deletion.

5.1 Preliminary Tools
We first define a constrained version of 3-SAT, called (3,4)-XSAT. This variant is closely
related with the (3,4)-SAT problem [46] which asks whether a given formula ϕ is satisfiable,
where ϕ is a 3-SAT formula each clause of which contains exactly 3 different variables and
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each variable occurs in at most 4 clauses. As observed by Bonamy et al. [10], a corollary of
Tovey’s work [46] is that there is no 2o(n) algorithm for (3,4)-SAT unless the ETH is false,
where n denotes the number of variables of the formula. Here we prove an analogous lower
bound for (3,4)-XSAT. Subsequently, by closely following Lemma 3.2 from [10], we present a
way to partition the formula’s variables and clauses into groups such that variables appearing
in clauses of the same clause group belong to different variable groups.

(3,4)-XSAT
Input: A 3-SAT formula ϕ every clause of which contains exactly 3 distinct variables
and each variable appears in at most 4 clauses.
Task: Determine whether there exists an assignment to the variables of ϕ such that each
clause has exactly one True literal.

▶ Theorem 12. (⋆) (3,4)-XSAT cannot be decided in time 2o(n), where n denotes the number
of variables of the input formula, unless the ETH fails.

We proceed by proving that, given a (3,4)-XSAT instance, we can partition the variables
and clauses of the formula into groups such that variables appearing in clauses of the same
clause group belong to different variable groups.

▶ Lemma 13. (⋆) Let ϕ be an instance of (3,4)-XSAT, where V denotes the set of its n

variables and C the set of its clauses. Moreover, let b ≤
√

n. One can produce in time nO(1)

a partition of ϕ’s variables into nV disjoint sets V1, . . . , VnV
of size at most b as well as

a partition of its clauses into nC disjoint sets C1, . . . , CnC
of size at most

√
n, for some

integers nV = O(n/b) and nC = O(
√

n), such that, for any i ∈ [nC ], any two variables
appearing in clauses of Ci belong to different variable subsets.

▶ Definition 14. A d-detecting family is a set of subsets of a finite set U that can be used to
distinguish between different functions f, g : U → {0, . . . , d − 1}. Therefore, if f ̸= g, there
exists U ′ ⊆ U such that f(U ′) ̸= g(U ′) and U ′ belongs to said family.

Lindström [36] has provided a deterministic construction of sublinear, d-detecting families,
while Bonamy et al. [10] were the first to use them in the context of computational complexity,
proving tight lower bounds for the Multicoloring problem under the ETH. The following
theorem will be crucial towards proving the stated lower bounds.

▶ Theorem 15 ([36]). For every constant d ∈ N and finite set U , there is a d-detecting
family F on U of size 2|U |

logd |U | · (1 + o(1)). Moreover, F can be constructed in time polynomial
in |U |.

5.2 Bounded Degree Vertex Deletion
Let ϕ be an instance of (3,4)-XSAT of n variables. Assume without loss of generality that n

is a power of 4 (this can be achieved by adding dummy variables to the instance if needed).
Making use of Lemma 13, one can obtain in time nO(1) the following:

a partition of ϕ’s variables into subsets V1, . . . , VnV
, where |Vi| ≤ log n and nV =

O(n/ log n),
a partition of ϕ’s clauses into subsets C1, . . . , CnC

, where |Ci| ≤
√

n and nC = O(
√

n),
where any two variables occurring in clauses of the same clause subset belong to different
variable subsets. For i ∈ [nC ], let {Ci,1, . . . , Ci,ni

F
} be a 4-detecting family of subsets of Ci

for some ni
F = O(

√
n/ log n), produced in time nO(1) due to Theorem 15. Moreover, let

nF = maxnC
i=1 ni

F . Define ∆ = n3 and k = nV . We will construct a graph G = (V, E) such
that there exists S ⊆ V (G) of size |S| ≤ k and G − S has maximum degree at most ∆ if and
only if there exists an assignment such that every clause of ϕ has exactly one True literal.
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Choice Gadget. For each variable subset Vi, we define the choice gadget graph Gi as follows:
introduce vertices κi, λi and vj

i , where j ∈ [n],
add edges {κi, vj

i } and {λi, vj
i }, for all j ∈ [n],

attach sufficiently many leaves to κi and λi such that their degree is ∆ + 1.
Let Vi = {vj

i | j ∈ [n]}, for i = 1, . . . , nV . We fix an arbitrary one-to-one mapping so
that every vertex of Vi corresponds to a different assignment for the variables of Vi. Since
2|Vi| ≤ n, there are sufficiently many vertices to uniquely encode all the different assignments
of Vi. Let V = V1 ∪ . . . ∪ VnV

denote the set of all such vertices.

Clause Gadget. For i ∈ [nC ], let Ci be a clause subset and {Ci,1, . . . , Ci,ni
F

} its 4-detecting
family. For every subset Ci,j of the 4-detecting family, introduce vertices ci,j and c′

i,j . Add
an edge between ci,j and vq

p if there exists variable x ∈ Vp such that x occurs in some clause
c ∈ Ci,j , and vq

p corresponds to an assignment of Vp that satisfies c. Due to Lemma 13,
ci,j has exactly |Ci,j | · 3n

2 such edges: there are exactly 3|Ci,j | different variables appearing
in clauses of Ci,j , each belonging to a different variable subset, and for each such variable,
half the assignments of the corresponding variable subset result in the satisfaction of the
corresponding clause of Ci,j . Attach to ci,j a sufficient number of leaves such that its total
degree is ∆ + |Ci,j |. Moreover, for v ∈ V , let v ∈ N(c′

i,j) if v /∈ N(ci,j). Notice that then, it
holds that N(ci,j)∪N(c′

i,j) ⊇ V , while N(ci,j)∩N(c′
i,j) = ∅. Lastly, attach to c′

i,j a sufficient
number of leaves such that its total degree is ∆ + (k − |Ci,j |).

Let I = (G, ∆, k) be an instance of Bounded Degree Vertex Deletion.

▶ Lemma 16. (⋆)It holds that vc(G) = O(n/ log n).

▶ Lemma 17. (⋆) If ϕ is a Yes instance of (3,4)-XSAT, then I is a Yes instance of Bounded
Degree Vertex Deletion.

▶ Lemma 18. (⋆) If I is a Yes instance of Bounded Degree Vertex Deletion, then ϕ

is a Yes instance of (3,4)-XSAT.

We can now prove the main theorem of this section.

▶ Theorem 19. (⋆) There is no vco(vc)nO(1) time algorithm for Bounded Degree Vertex
Deletion, where vc denotes the size of the minimum vertex cover of the input graph, unless
the ETH fails.

6 Conclusion

In this work, we have examined in depth the complexity of Bounded Degree Vertex
Deletion and Defective Coloring under the perspective of parameterized complexity.
In particular, we have precisely determined the complexity of both problems parameterized
by some of the most commonly used structural parameters. As a direction for future research,
we consider the question of whether we could obtain a no(fvs) lower bound for Bounded
Degree Vertex Deletion as well as for Defective Coloring when χd = 2, where fvs
denotes the size of the minimum feedback vertex set of the input graph.
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Abstract
Learning the community structure of a large-scale graph is a fundamental problem in machine
learning, computer science and statistics. Among others, the Stochastic Block Model (SBM) serves
a canonical model for community detection and clustering, and the Massively Parallel Computation
(MPC) model is a mathematical abstraction of real-world parallel computing systems, which provides
a powerful computational framework for handling large-scale datasets. We study the problem
of exactly recovering the communities in a graph generated from the SBM in the MPC model.
Specifically, given kn vertices that are partitioned into k equal-sized clusters (i.e., each has size n), a
graph on these kn vertices is randomly generated such that each pair of vertices is connected with
probability p if they are in the same cluster and with probability q if not, where p > q > 0.

We give MPC algorithms for the SBM in the (very general) s-space MPC model, where each ma-
chine is guaranteed to have memory s = Ω(log n). Under the condition that1 p−q√

p
≥ Ω̃(k 1

2 n
− 1

2 + 1
2(r−1) )

for any integer r ∈ [3, O(log n)], our first algorithm exactly recovers all the k clusters in O(kr logs n)
rounds using Õ(m) total space, or in O(r logs n) rounds using Õ(km) total space. If p−q√

p
≥ Ω̃(k 3

4 n− 1
4 ),

our second algorithm achieves O(logs n) rounds and Õ(m) total space complexity. Both algorithms
significantly improve upon a recent result of Cohen-Addad et al. [PODC’22], who gave algorithms
that only work in the sublinear space MPC model, where each machine has local memory s = O(nδ)
for some constant δ > 0, with a much stronger condition on p, q, k. Our algorithms are based on
collecting the r-step neighborhood of each vertex and comparing the difference of some statistical
information generated from the local neighborhoods for each pair of vertices. To implement the
clustering algorithms in parallel, we present efficient approaches for implementing some basic graph
operations in the s-space MPC model.
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1 Introduction

Graph clustering is a fundamental task in machine learning, computer science and statistics.
In this task, given a graph that may represent a social/information/biological network, the
goal is to partition its vertex set into a few maximal subsets (called clusters or communities)
of similar vertices. Depending on the context, a cluster may correspond to a social group of
people with the same hobbies, a group of web-pages with similar contents or a set of proteins
that interact very frequently. Intuitively, in a good clustering of a graph, there are few edges
between different clusters while there are relatively many edges inside each cluster. There
is no unified formalization on the notions of graph clustering and clusters. Here we focus
on a natural and widely-used model for graph clustering, the stochastic block model (SBM).
In the SBM, we are given a set V of N = kn vertices such that there is a hidden partition
of V with V =

⋃k
i=1 Vi, Vi ∩ Vj = ∅ for any 1 ≤ i < j ≤ k, where each set Vi is called a

cluster (or community). For simplicity, we assume that each cluster has an equal size, i.e.,
|Vi| = n. We say a graph G = (V, E) is generated from the SBM with parameters n, p, q, k,
abbreviated as SBM(n, p, q, k), if for any two vertices u, v that belong to the same cluster,
the edge (u, v) appears in G with probability p; for any two vertices u, v that belong to two
different clusters, the edge (u, v) appears with probability q, where 0 < q < p < 1.

Thanks to its simplicity and its ability in explaining the community structures in real
world data, the SBM has been extensively studied in the computer science literature. Most
previous work has been focusing on algorithms that work on a single machine, with the
goal of extracting the communities with the optimal (computational and/or statistical)
trade-offs between parameters n, p, q, k, for different types of recoveries (i.e., exact, weak,
and partial recovery). Significant progress has been made on such algorithms (and their
limitations) in the past decades (see the survey [1]). However, most of these algorithms
are essentially sequential and cannot be adapted to the parallel or distributed environment,
which is unsatisfactory as modern graphs are becoming massive and most of them cannot be
fitted into the main memory of a single machine.

We study the problem of exactly recovering communities of a graph from the SBM in the
massively parallel computation (MPC) model [24, 22, 5], which is a mathematical abstraction
of modern frameworks of real-world parallel computing systems like MapReduce [19], Hadoop
[28], Spark [29] and Dryad [23]. In this model, there are M machines that communicate in
synchronous rounds, where the local memory of each machine is limited to s words, each of
O(log n) bits. A word is enough to store a node or a machine identifier from a polynomial
(in n) domain. Communication is the largest bottleneck in the MPC model. Take the graph
problem as an example. The edges of the input graph are arbitrarily distributed across the
M machines initially. Ideally, we would like to use minimal number of rounds of computation
while using small (say sublinear) space per machine and small total space (i.e., the sum of
space used by all machines).

Recently, Cohen-Addad et al. [16] gave two algorithms Majority and Louvain that
recover the communities in a graph generated from SBM(n, p, q, k) when p−q√

p ≥ Ω(n− 1
4 +ε)

and k is constant. They work in O( 1
ε·δ ) rounds in the sublinear space MPC model, i.e., each

machine has local memory s = O(nδ), for any constant δ > 0. Their algorithms and analysis
improve upon previous sequential versions of Majority and Louvain given by Cohen-Addad
et al [12]. Note that for any sequential algorithm, it is known that p−q√

p = Ω(
√

log n
n ) is

necessary for exact recovery even for k = 2 [2]; there exist spectral algorithms and SDP-based
algorithms that find all clusters and achieve this parameter threshold [1]. Therefore, it is
natural to ask if one can obtain a round-efficient MPC algorithm in the sublinear space model
with roughly the same parameter threshold.
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In this paper, we consider a more general setting that we call the s-space MPC model in
which the local memory s is only guaranteed to satisfy that s = Ω(log n). Nowadays, the
growth rate of data volume far exceeds the growth rate of machine hardware storage and it
is likely that we need much more machines to analyze large-scale data. Furthermore, the
problem of clustering of data points from some metric space on such a model has recently
received increasing interest [8, 20, 4, 14, 17, 18] (see also Section 1.3), partly due to the fact
that in some scenarios, the number of clusters k is too large such that even just storing k

representatives of all the clusters is not possible in a single machine. Note that this model is
more difficult to handle than the sublinear space model, and we need to carefully partition
the data across machines so that different machines work in different “regions of space” to
get a good tradeoff between communication and the used space. Here, we are interested in
the question whether we can obtain an SBM clustering algorithm in the s-space MPC model
with good tradeoffs between communication, space and SBM parameters.

1.1 Our Results
We give clustering algorithms for the SBM that work in the s-space MPC model where
the local memory s of each machine is only guaranteed to satisfy that s = Ω(log n). Let
m = Θ(kn2p + k2n2q) denote the total number of edges of the graph (our conditions always
imply that p ≥ Ω( log n

n ) and k ≤ n). We use “with high probability” to denote “with
probability at least 1 − O(n−1)”.

Our first algorithm has the following performance guarantee.

▶ Theorem 1. Let r be any integer such that 3 ≤ r ≤ O(log n). Let p, q ≤ 0.75 be
parameters such that max{p(1 − p), q(1 − q)} ≥ C0 log n/n where C0 > 0 is some constant.
Suppose that p−q√

p ≥ Ω
(

k
1
2 n− 1

2 + 1
2(r−1) log7(kn)

)
. Let G be a random graph generated from

SBM(n, p, q, k). Then there exists an algorithm in the s-space MPC model that outputs k

clusters in O(kr logs n) rounds with high probability where each machine has s = Ω(log n)
memory. The total space used by the algorithm is Õ(m).

We note that the round complexity can be improved to be O(r logs n) at the cost of
increasing the total space by a k factor, which is formalized in the following theorem.

▶ Theorem 2. Under the same condition in Theorem 1, there exists an algorithm that
outputs k clusters in O(r logs n) rounds where each machine has s = Ω(log n) memory with
high probability and uses Õ(km) total space.

Note that for any integer constant 3 ≤ r ≤ o(log n) and any k ≤ poly(log n), the
round complexity of the above algorithm is O(logs n) while the total space is Õ(m). When
r = Θ(log n), then the recovery condition becomes p−q√

p ≥ Ω̃(
√

k
n ), which almost matches

the statistical limit in the sequential setting up to logarithmic terms [2]. In this case, our
algorithm has round complexity O(log n logs n) for any k ≤ poly(log n) in the s-space MPC
model.

When the gap between p, q is sufficiently large, we can achieve O(logs n) rounds using
Õ(m) total space, i.e., both the round complexity and the total space complexity are
independent of the number k of clusters. Formally, we have the following theorem.

▶ Theorem 3. Given a random graph G from SBM(n, p, q, k) with p−q√
p ≥ Ω

(
k

3
4 n− 1

4 (log n) 1
4

)
,

there exists an algorithm in the s-space MPC model that can output k hidden clusters within
O(logs n) rounds with high probability, where s = Ω(log n), and uses Õ(m) total space.

ESA 2023
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We note that all the algorithms in Theorem 1, 2 and 3 significantly improve the results
of [16], of which the algorithms only work in the sublinear space MPC model, i.e., s = O(nδ)
for some constant δ > 0, and finish in O( 1

δε ) rounds, assuming that p−q√
p ≥ n−1/4+ε and k is

a constant. In both sublinear space and s-space models, our algorithms work for a much
wider class of SBM graphs (i.e., the requirement on the conditions of p, q, k are much weaker)
than those in [16]. Furthermore, even for the same regime of parameters, our algorithms
have better round complexity. For example, in the sublinear space MPC model, our round
complexity (from Theorem 3) is O(1/δ) under the condition that p−q√

p ≥ Ω(n− 1
4 (log n) 1

4 ) and
k is constant, while the algorithms in [16] have round complexity O( log n

δ log log n ) under the
same condition2.

Our algorithms are quite different from those in [16], in which the algorithms are based
on the local-search methods and proceed in rounds by updating the so-called swap values
for each node to decide where to move the node. Our algorithms are based on collecting
the r-step neighborhood of each vertex and comparing the difference of some statistical
information generated from the local neighborhoods for each pair of vertices.

To implement the above MPC algorithms, we give new algorithms of some basic graphs
operations in the s-space MPC model in Section 3, including RandomSet (for randomly
sampling a set), ReorganizeNBR that is for organizing the neighborhood of any two nodes
u, v in a set so that they are “aligned”, i.e., the i-th byte of u (or v) indicates whether the
i-th node is the neighbor of u (or v ). We believe these results will be useful as basic tools in
designing algorithms for other problems in the s-space MPC model.

1.2 Our Techniques
Our MPC algorithms are based on two simple sequential algorithms. We first describe our
first algorithm given in Theorem 3. It is based on the observation that if p−q√

p ≥ Ω̃(k 3
4 n− 1

4 ),
then the number of common neighbors of any two vertices can be used to distinguish if they
belong to the same cluster or not. That is, if u, v belong to the same cluster, then the number
of their common neighbors is above some threshold ∆; otherwise, the number of common
neighbors is smaller than ∆. Let N(v) denote the set of all the neighbors of v. We further
note that to get k clusters of V , it is not necessary to compute |N(u) ∩ N(v)| for all pairs of
u, v in V , which may cause too much communication for MPC implementation. Instead, we
first randomly sample a small set S′ with |S′| = Θ(k log n). Then we find k representatives
of the hidden clusters from S′ by computing |N(u) ∩ N(v)| for all pairs of u, v in S′ and
update S′ to be the set of k representatives. Then we sample independently another small
set S of vertices, and find k sub-clusters from S by computing |N(u) ∩ N(v)| for u ∈ S and
v ∈ S′. (A set T ⊆ S is called a sub-cluster of some cluster Vi if T ⊆ Vi.) Based on the
k sub-clusters obtained from S, we can find all the hidden clusters V1, . . . , Vk putting any
vertex v ∈ V \ S to the sub-cluster that contains the most number of neighbors of v.

There are several challenges to implementing the above algorithm in the s-space MPC
model in which the local memory only satisfies that s = Ω(log n). Note that in this model,
even just to compute the number of common neighbors |N(u) ∩ N(v)| for any fixed pair
u, v in a few parallel rounds (say O(logs n) rounds) is non-trivial. The reason is that the
neighborhoods N(u), N(v) can be much larger than s and some neighborhoods will be used
too many times which leads to large round complexity. To efficiently compute |N(u) ∩ N(v)|
for u ∈ S and v ∈ S′, we first show how to reorganize N(u) and N(v) for u ∈ S and v ∈ S′

2 This can be seen by setting 1
ε = Θ( log n

log log n ) in [16].
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so that each byte of N(u) and N(v) for any two nodes aligned; then we can show how to
compute |N(u) ∩ N(v)| in parallel efficiently by appropriately making some copies of N(u)
and N(v). For these tasks, we give detailed MPC implementations of some basic operations,
e.g., a procedure for copying neighbors of some carefully chosen nodes and aligning their
neighbors while using no more than Õ(m) total space.

Our MPC algorithms from Theorem 1 and 2 are based on a recent sequential algorithm
given in [25]. Roughly speaking, one can use the power iterations of some matrix B = A−q ·J
to find the corresponding clusters, where A is the adjacency matrix of the graph and J is the
all-1 matrix. It is shown that with high probability, the ℓ2-norm of Br

u −Br
v is relatively small,

if u, v belong to the same cluster; and is large, otherwise. Here Br
u is the row corresponding

to vertex u in the matrix Br. We show that in order to compute ∥Br
u − Br

v∥2, it suffices to
compute the expressions 1T

x (A − qJ)2r1y for all x, y ∈ {u, v}. To do so, we expand the above
expression so that we get a sum of terms, each being a vector-matrix-vector multiplication.
Then we give a combinatorial explanation of each term, and then calculate it in parallel
efficiently based on some basic graph operations in the s-space model.

1.3 Related Work

There is a line of research on metric clustering in the MPC model. In this setting, the input
is a set of data points from some metric space (e.g., Euclidean space), and the goal is to
find k representative centers, such that some objective function (e.g. the cost functions of
k-means, k-median and k-center) is minimized (e.g., [8]). Bhaskara and Wijewardena [8]
developed an algorithm that outputs O(k log k log n) centers whose cost is within a factor
of O((log n log log n)2) of the optimal k-means (or k-median) clustering, using a memory of
s ∈ Ω(d log n) per machine and O(logs n) parallel rounds. Note that this does not require
Ω(k) memory per machine. Coy et al. [18] recently improved the approximation ratio of
the algorithm for k-center in [8] to O(log∗ n). Cohen-Addad et al. [17] gave a fully scalable
(1+ε)-approximate k-means clustering algorithm when the instance exhibits a “ground-truth”
clustering structure, captured by a notion of “O(α)-perturbation resilient”, and it uses O(1)
rounds and Oε,d(n1+1/α2+o(1)) total space with arbitrary memory per machine, where each
data point is from Rd.

Regarding the power method for SBM, Wang et al. [27] proposed an iterative algorithm
that first employs the power method with a random starting point and then turns to a
generalized power method that can find the communities in a finite number of iterations. Their
algorithm runs in nearly linear time and can exactly recover the underlying communities at
the information-theoretic limit. Cohen-Addad et al. [15] further gave a linear-time algorithm
that recovers exactly the communities at the asymptotic information-theoretic threshold.
Their algorithm is based on similar ideas as in [16], that is, given a partition, moving a vertex
from one part to the part where it has most neighbors should somewhat improve the quality
of the partition.

Correlation clustering has been studied under the MPC model. In this problem, a signed
graph G = (V, E, σ) is given as input, and the goal is to partition the vertex set into arbitrarily
many clusters so that the disagreement of the corresponding clustering is minimized, where
the disagreement is the number of edges that cross different clusters plus the number of
non-adjacent pairs inside the clusters [9, 11, 26, 21, 10, 13, 3]. The state-of-the-art is a
(3 + ε)-approximation algorithm in O(1/ε) rounds in the massively parallel computation
(MPC) with sublinear space [7].

ESA 2023
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2 Preliminaries

Consider an undirected graph G = (V, E) where V is the set of vertices, and E is the set
of edges. We use n to denote the size of |V | and m to denote the size of |E|. Each node in
G has a unique ID from 1 to n. We use ID(u) to denote the ID for a node u ∈ V . We use
d(u) to denote the degree of u ∈ V . Let N(u) denote the set of neighbors of a node u ∈ V .
Given a vertex set S ⊂ V , we use G[S] to denote the subgraph induced by vertices in S. In
this paper, we abuse the use of node(s) and vertex(vertices). We use [i] to denote {1, 2, · · · i}.
When nodes are active (inactive), they execute (do not execute) algorithms.

Chernoff Bound

Let X1, ..., Xn be independent binary random variables, and X = Σn
i=1Xi, and µ = E[X].

Then it holds that for all δ > 0 that P[X ≥ (1 + δ)µ] ≤ ( e−δ

(1+δ)1+δ )µ ≤ e− min[δ2,δ]µ/3; For all
δ ∈ (0, 1), P[X ≤ (1 − δ)µ] ≤ ( eδ

(1−δ)1−δ )µ ≤ e−δ2µ/2.

The MPC model

In this model, we assume that all data is arbitrarily distributed among some machines. Let
N denote the total amount of data. Each machine has local memory s. In our settings,
s = Ω(log n). The sum of all local memory is N = O((m+n)poly(log n)). The communication
between any pair of two machines is synchronous, and the bandwidth is s words.

We ignore the cost of local communication and computation happening in each machine.
As the description of the MPC model in the literature, we ignore some communication details
among different machines and suppose that all machines are known to each other which
means that any machine can send messages to another machine directly (even when the
local memory is very small). For the problems in the MPC model, we aim to make the total
number of communication rounds among machines as small as possible.

▶ Definition 4 (separable function). Let f : 2R → R denote a set function. We say that
f is separable if and only if for any set of reals A and for any B ⊆ A, we have f(A) =
f(f(B), f(A \ B)) 3.

▶ Lemma 5 ([6]). Given an n-vertex graph, we have xu for each node u ∈ V . If the function
f is a separable function, then there exists an algorithm that computes f({xi ∈ N(u)}) for
each u ∈ V with high probability in the sublinear space MPC model in O(1/δ) rounds using
Õ(m) space where each machine has space O(nδ).

In the s-space MPC model, we restate the following folklore lemma.

▶ Lemma 6. Given an n-vertex graph, there exists an algorithm that makes each node u ∈ V

visit N(u) in O(logs n) rounds with high probability.

The sorting algorithm is a very important black-box tool in the MPC model, which is
stated as follows.

▶ Theorem 7 ([22]). Sorting can be solved in O(logs n) rounds in the s-space MPC model.

3 For example, f can be a sum function.
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Furthermore, it has been shown that indexing and prefix-sum operation can be performed
in O(logs n) rounds [22]. We refer to the Index Algorithm for solving indexing problems
in the s-space MPC model and the Sorting Algorithm for solving sorting problems in the
same model. Throughout the context, we will rely on the fundamental properties associated
with the aforementioned operations, as well as Lemma 5 and Lemma 6 by default.

3 Implementing Basic Graph Operations in the s-space MPC Model

In this section, we present algorithms for several fundamental graph operations in the s-space
model, which will be utilized in our MPC algorithms. To the best of our knowledge, most
of these operations have not been previously implemented in the s-space MPC model. We
denote the machines holding node x as Mx. (It is important to note that the MPC model
follows an edge-partition model, which means that multiple machines may hold the same
vertices). It is worth mentioning that in order to implement some of our proposed algorithms,
we utilize previous algorithms for basic MPC operations, as demonstrated in the full version.

RandomSet

In the RandomSet problem, given an input value X = Ω(log n), our goal is to output a
random set S = {x1, x2, . . . , x|S|} where each element xi (i ∈ [|S|]) is selected uniformly and
independently at random and S′ =

{
(x, y)|x ∈ S ∩ Mx, y = IndS(x)

}
where |S| = Θ(X),

and IndS(x) is the index of of x ∈ S in S. We use the algorithm RandomSet to solve the
RandomSet problem.

▶ Lemma 8. The RandomSet problem can be solved in the s-space MPC model in O(logs n)
rounds where s = Ω(log n).

ReorganizeNBR

The ReorganizeNBR problem involves an input set S, where the objective is to reorganize
N(u) for all u ∈ S in a manner that aligns the bytes of N(u) and N(v) for any two nodes
u, v ∈ S. Specifically, the i-th byte of N(u) indicates whether the i-th node is a neighbor of u.
The motivation behind the ReorganizeNBR problem is to efficiently compute |N(u) ∩ N(v)|
for any pair of nodes u and v in S (refer to Figure 1 for illustration). We utilize the
ReorganizeNBR algorithm to address this problem.

Now, we show how to reorganize a graph in MPC model where each machine has memory
s = Ω(log n). We say a subgraph H is a randomly sampled subgraph if nodes in VH are
randomly sampled, and H is the set of edges and vertices constructed from picking VH with
their incident edges. We use H = (VH , EH) to denote such a random sampled graph.

▶ Lemma 9. Given a graph G = (V, E) with m = Θ(nc+1), where m is the number of edges
and n is the number of vertices, and c ∈ (0, 1] is some positive constant, for a given randomly
sampled subgraph H = (VH , EH) satisfying |VH | ≤ Õ(m/n) where VH is constructed by
RandomSet, there exists an algorithm that can reorganize N(u) for each u ∈ VH in constant
rounds, with total space complexity Õ(m) in the MPC model where each machine has a
memory of s = Ω(log n).

CopyNBR(S, t)

Suppose we have S = {N(v1), . . . , N(vx)} stored in machines where vi ∈ S, i ∈ [x] and S

is a random set created by RandomSet. We will create N(vi)1, . . . , N(vi)t for each N(vi)
where i ∈ [x]. The goal is to make t copies of N(u) for each u ∈ S such that we can execute

ESA 2023
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v1 v3 v4 vs vi+1 vi+3 vi+4 vi+s vn-s+1 ... vn-s+4 vn.........

N(vj)

... .........

N(vk)

v1 v3 v4 vs vi+1 vi+3 vi+4 vi+s vn-s+1 vn-s+4 vn

v2

v2

vi+2

vi+2

Figure 1 Align Operation. The first row represents N(vj), the blue rectangle (treated as “1”)
indicates that the corresponding vertex vi ∈ N(vj), and the white rectangle (treated as “0”) indicates
that the vertex vi ̸∈ N(vj). Once N(vj) and N(vk) are encoded as such bit strings, we can compare
the strings simultaneously to compute their common neighbors.

other algorithms in parallel. In our setup, each N(u) where u ∈ S is organized in a collection
of consecutive machines. To solve this problem, we employ the CopyNBR(S, t) algorithm.
Upon executing CopyNBR(S, t), all t copies of S are stored in consecutive machines.

▶ Lemma 10. The CopyNBR(S, t) problem can be solved in O(logs n) rounds in the s-space
MPC model where s = Ω(log n) and t is a parameter satisying n|S|t ≤ Õ(m).

EvenCluster

Consider a set S comprising nodes labeled from 1 to k. The objective is to ensure that the
number of nodes with labels in S is even. To achieve this, we employ the EvenCluster
algorithm, designed specifically to solve this problem.

▶ Lemma 11. In the MPC model with each machine’s memory s = Ω(log n), there exists
an algorithm that can output S′ ⊆ S within O(logs n) rounds, such that each label in S′ is
associated with the same number of nodes with that label.

RepresentativeK(S)

In the RepresentativeK(S) problem, the input is a set S = S1 ∪ · · · ∪ Sk of nodes with
|S| labels (each node in Si has |Si| labels) where Si ∩ Sj = ∅ for any i ̸= j and |Si| =
Θ(|S|/k) ≥ Ω(log n). Our goal is to output k nodes with k representative labels. We use
RepresentativeK(S) to solve this problem.

▶ Lemma 12. The RepresentativeK(S) problem can be solved in O(logs n) rounds where S

is created by RandomSet and |S| ≥ Ω(k log n) in the s-space MPC model (s = Ω(log n)).

CompareCut(S, V )

In the CompareCut(S, V ) problem, the input is a set S of k sets, i.e., {S1, S2, . . . , Sk} and
the vertex set V , the goal is to output the largest one among numbers n(u, Si) of edges
between u ∈ V and Si for each Si, along with the label of u (i.e., the label of the Si), where
i ∈ [k]. We use ComputeCut(S,V) to solve this problem.

▶ Lemma 13. Given a graph G = (V, E), let S ⊂ V be a random set of nodes created
by RandomSet. The CompareCut(S, V ) problem can be solved in O(logs n) rounds in the
s-space MPC model (s = Ω(log n)).
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4 The Algorithm Based on Neighbor Counting

Recall that a graph G = (V, E) is generated from the SBM(n, p, q, k) if there is a hidden
partition V = ∪k

i=1Vk of the nk-vertex set V , and for any two vertices u, v that belong to
the same cluster, the edge (u, v) appears in E with probability p; for any two vertices u, v

that belong to two different clusters, the edge (u, v) appears in E with probability q, where
0 < q < p < 1. In this section, we give the algorithm underlying Theorem 3.

We first give a simple sequential algorithm based on comparing common neighbors. Then
we show how to implement it in the s-space model. To do so, we give implementations of a
number of basic graph operations in the s-space model, which is deferred to Section 3.

4.1 A Sequential Algorithm Based on Counting Common Neighbors

▶ Theorem 14. If p−q√
p ≥ Ω( (k+1)1/2

n1/4 ), the algorithm CommNBR can output k clusters in

O( k2n log n
p ) time with probability 1 − O( 1

n ).

In our sequential algorithm CommNBR, we first randomly sample a set S of 21nk2 log n
d

nodes from V such that each cluster has more than Θ(log n) nodes with high probability
where d is the number of neighbors of an arbitrary node u ∈ V . Then, for each pair u, v, we
count the number of their common neighbors in G, i.e., those vertices that are connected to
both u and v. If the number of common neighbors is above some threshold ∆, then we put
them into the same cluster. In this way, we can obtain k sub-clusters of S, C1, . . . , Ck. That
is, each Ci ⊆ S and is a subset of some cluster, i.e., Ci = Vπ(i) ∩ S for some permutation
π : {1, . . . , k} → {1, . . . , k}. Let L(v, Ci) denote the number of incident edges between a
node v and a cluster Ci. We can then cluster each remaining node v ∈ V \ S by finding the
index j such that L(v, Cj) is the greatest among all numbers L(v, Ci), 1 ≤ i ≤ k.

For the intuition of the existence of such a threshold ∆, let us take the case k = 2 as an
example. In this case, for any two vertices u, v belonging to the same cluster, the expected
number of common neighbors is p2n+ q2n; for any two vertices u, v belonging to two different
clusters, the expected number of common neighbors is 2npq. Since p−q√

p ≥ Ω
(

(k+1)1/2

n1/4

)
, there

exists a sufficiently large gap between these two numbers so that we can define a suitable
threshold. However, the values of p and q are not provided. To address this issue, we propose
an algorithm called ComputeDEL, which can be described as follows. We first sample a
set S∆ of Θ(k log n) nodes, and for each pair u, v ∈ S∆, we compute a set V∆ of values of
|N(u) ∩ N(v)|. We let ∆′ = max{value ∈ V∆}, and then we have ∆ = ∆′ − 9

√
∆′ log n.

4.2 Implementation in the s-space MPC model
Now we describe our MPC algorithm MPC-CommNBR, which is an implementation of
CommNBR, where the local memory is s = Ω(log n), and prove Theorem 3.

Recall that in CommNBR, there are two major steps. In the first step, we need to find k

clusters from a set S of randomly sampled nodes. In the second step, based on the clustering
on S, we cluster all nodes in V . The major challenge lies in the simulation (in MPC model)
of the first step which is to compare common neighbors between two nodes u and v. It is
easy to see that computing |N(u) ∩ N(v)| for u, v ∈ V is exactly the task of finding common
elements in two sets. For convenience, we use a set Su to denote N(u) for a node u ∈ V .
Then, we need to find the common elements between Su and Sv by a method comm(Su, Sv).
Note that we need to execute comm(Su, Sv) for different u and v for many times. Therefore,
to compute |N(u) ∩ N(v)| for different u, v ∈ V efficiently, we need to solve two problems.
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The first one is to implement comm(Su, Sv) efficiently in MPC model where each machine’s
memory is s = Ω(log n). The second one is to execute the first one in parallel. For the first
one, we use a simple method to implement comm(Su, Sv) in MPC model. Let V ′ be the set
of nodes in which for each u ∈ V ′, Su will be compared. We make each byte of Su(u ∈ V ′)
aligned. Then, we can directly compute |Su ∩ Sv|. For the second one, we solve it by copying
sets for enough times and then we let machines storing these copied sets execute the same
algorithm in parallel. We use the MPC implementations of the basic graph operations in
Section 3 to implement our clustering algorithm here.

Algorithm 1 MPC-CommNBR: An MPC algorithm based on counting common neighbors.

Input: A SBM graph G;
1: Let d = |N(u)| where u is an arbitrary node in V

2: Apply RandomSet to obtain random node set S′ and S, where |S′| = Θ(k log n)
and |S| = (21k2n log n)/d

3: Update S′ and obtain ∆ by ComputeREP(S′)
4: Obtain k sub-clusters S1, . . . , Sk by ComputeSubcluster(S, S′, ∆)
5: Obtain k clusters of V by ComputeCluster(S1, . . . , Sk, V ).

Algorithm 2 ComputeRep: Compute representative for each cluster by common neigh-
bors and ∆.

Input: Random vertex set S′;
1: Run CompareINIT(S′);
2: Obtain k nodes with k representative lables by RepresentativeK(S′);
3: Update S′ by only keeping k nodes obtained from Step 2.
4: return S′ and ∆

For the algorithm CompareINIT(S′), we describe it as follows.

CompareINIT(S′):
1) Reorganize neighbors of nodes in S′ by ReorganizeNBR(S′).
2) Execute CopyNBR(S′) to create |S′| copies of N(u) for each u ∈ S′.
3) Based on copies of N(u) from 2), we directly compute |N(u) ∩ N(v)| in parallel

where u, v ∈ S′.
4) Execute CompareGRP to obtain final results by summing all partial results

obtained from 3).
5) Compute ∆′, i.e., the maximum value of |N(u) ∩ N(v)| for all pairs of u, v ∈ S′

and output ∆ = ∆′ − 9
√

∆′ log n.

In ComputeSubcluster(S′, S, ∆), the process is similar to ComputeREP(S′). The
major difference is that we only copy N(u) for each u ∈ S for k times and copy N(v) for
each v ∈ S′ for |S| times. By computing |N(u) ∩ N(v)| where u ∈ copy-S, v ∈ copy-S′,
and copy-S, copy-S′ are the copies of S and S′, we can obtain k sub-clusters of S. The
details of computing can refer to ComputeREP(S′).

In ComputeCluster(S1, . . . , Sk, V ), we first apply EvenCluster(S) to output k

sub-clusters from S such that each cluster has the same number of nodes. Then, we use
ComputeCut(S, V ) to cluster V .

Next, we show the details of CompareGRP used in the procedure of ComputeREP(S′).
In the CompareGRP problem, the input is a set of groups of machines and the goal is to
output the results by comparing groups of machines. Take two groups A, B of machines as
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an example. Our goal is to output the common elements by comparing A and B. We say
that group A compares to group B which means that the i-th member machine of the group
A will compare to the i-th member machine of group B (i ∈ [n/s]).

▶ Lemma 15. Given a set of consecutive groups each of which has n/s member machines,
there exists an algorithm that takes O(logs n) rounds to obtain the results of comparing data
between groups correspondingly.

Now we are ready to prove Theorem 3.

Proof of Theorem 3. The correctness of obtaining k clusters based on counting common
neighbors can be seen in Theorem 14. By Lemma 8, we can create randomly sampled sets
S and S′ such that each machine M knows indexes of nodes in M ∩ S and M ∩ S′ within
O(logs n) rounds.

Next, we first prove that by ComputeREP(S′), we can obtain k sub-clusters within
O(logs n) rounds. By Lemma 9, it takes O(logs n) rounds for ReorganizeNBR(S′). By
Lemma 10, we use O(logs n) rounds to finish CopyNBR(S′) for each N(u) where u ∈ S′. By
Lemma 15, it takes O(logs n) to first get partial results and then obtain the complete results
of |N(u) ∩ N(v)| where u, v ∈ S′. We can use O(logs n) rounds to obtain ∆ by simulating
ComputeDEL within O(logs n) rounds. Then by Lemma 15 and Lemma 12, we can obtain
k sub-clusters from S′ in O(logs n) rounds in the MPC model and the total space is Õ(m).
Similarly, by ComputeSubcluster(S′, S, ∆), we can prove that within O(logs n) rounds,
we can obtain k clusters from S in the MPC model and the total space used is Õ(m).

Now, let us see the last step of obtaining k clusters of V . By Lemma 11 and setting
|S∗| = 20k2n log n

d , we can output S∗ ⊆ S such that for any two labels i, j ∈ [k], we have
NS∗(i) = NS∗(j) in O(logs n) rounds, where NS∗(i) is the number of nodes in S∗ with label i.
Finally, by Lemma 13, we can decide all labels of V within O(logs n) rounds with high
probability. The total space used in MPC model is Õ(m). Thus, our proof is completed. ◀

5 The Algorithm Based on Power Iterations

In this section, we give another MPC algorithm for a general SBM graph in the s-space
model and prove Theorem 1. The omitted proof of this section is deferred to the full version.
Also, we first carefully design a sequential algorithm and then we implement it in the s-space
MPC model. Our second sequential algorithm is based on power iterations which perform
well in a recent algorithm in [25]. The algorithm makes use of the adjacency matrix A of the
graph G, from which we define a matrix B = A − q · J , where J is the n × n all-1 matrix.
Then it decides if two vertices u, v are in the same cluster or not by checking the ℓ2-norm
of the difference between Br

u and Br
v , which are the rows corresponding to vertices u, v,

respectively, in the matrix Br (the r-th power of matrix B).
We note that the algorithm in [25] only considers the special case that r = log n. Here, our

sequential algorithm considers all possible r ∈ {1, . . . , O(log n)} and for each r we choose a
different threshold ∆, which depends on the value of p, q and k. To implement our sequential
algorithm in the MPC model, we divide the process of matrix computation into different
components each of which can be implemented efficiently in the s-space model.

5.1 A Sequential Algorithm Based on Power Iterations
We now describe Algorithm PowerIteration. Let A be an adjacency matrix of the input
graph G and r where r is a parameter. Let ∆ = C

√
k
√

p(1 − q)(log kn)7(p − q)r−1nr−1,
where C > 0 is some universal constant. We set B = A − q · J where J = 1n×n. Let W = V .
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We choose an arbitrary vertex v in W and put v into a sub-cluster Ci where i ∈ [k]. For
each node u in W , if ∥Br

u − Br
v∥ ≤ ∆, then we add u to Ci. Next, we remove Ci from W .

Repeat the above process until W is empty. Then we return all the clusters Ci’s.

▶ Theorem 16. Let p, q ≤ 0.75 be parameters such that max{p(1 − p), q(1 − q)} ≥ C0 log n/n

where C0 > 0 is some constant. Suppose that p−q√
p ≥ (C2

0 + 1)k 1
2 n− 1

2 + 1
2(r−1) (log kn)7. Let G

be a random graph generated from SBM(n, p, q, k) and r ∈ [3, O(log n)], then with probability
at least 1 − O(n−1) the algorithm PowerIteration can output k hidden clusters for suitable
∆ and r.

5.2 The MPC Algorithm
In this section, we show how to implement PowerIteration in the s-space MPC model.
The pseudocode is found in Algorithm 3. Given a matrix A, we use A2r

i to denote the i-th
row of A2r. We use A2r

·j to denote the j-th column of A2r.

Algorithm 3 MPC-PowerIteration.

Input: A SBM graph G, ∆;
1: Let A be an adjacent matrix of G, r be the parameter
2: Let ∆ = C

√
k
√

p(1 − q)(log kn)7(p − q)r−1nr−1, where C ∈ R+
∗

3: B = A − q · J where J = 1n×n

4: Let i = 1 and W = V

5: Initially, all nodes in W are active
6: while IsActive(W ) is true do
7: Choose an arbitrary vertex v ∈ W and send it to all machines
8: Label v with i, i.e., Ci = {v}
9: for each machine holding active vertex u ∈ W , we execute the following

procedure in parallel do
10: ComputeNorm(B, u, v, r)
11: if ∥Br

u − Br
v∥ ≤ ∆ then

12: Label u with i

13: Set nodes in Ci inactive
14: i = i + 1
15: Return all the sub-clusters Ci’s.

We use IsActive(W ) to determine whether there are active nodes in W or not, which
can be done in O(logs n) rounds. The details of IsActive(W ) is given in the full version.

We then use another subroutine ComputeNorm(B, i, j, r) to compute ∥Br
i −Br

j ∥. Notice
that we can’t directly calculate matrix multiplication, which will take lots of rounds, we
notice some good properties of ∥Br

i − Br
j ∥ and have the following theorem.

▶ Theorem 17. For a fixed i and j ∈ [n] and any integer r < O(log n), the subrountine
ComputeNorm(B, i, j, r) for computing ∥Br

i −Br
j ∥ can be implemented in O(r logs n) rounds

where each machine has memory s = Ω(log n).

Now we give the ideas of ComputeNorm(B, i, j, r). We find that the expansion of
∥Br

i − Br
j ∥ has good properties such that we only need to compute the key terms for these

O(r2) terms and the coefficients have good combinatorial explanations. Then we can use
graph algorithms to calculate the results. First we note that
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||Br
i − Br

j ||2 = ||(1T
i − 1T

j )(A − qJ)r||2 = (1T
i − 1T

j )(A − qJ)2r(1i − 1j)
=1T

i (A − qJ)2r1i − 1T
i (A − qJ)2r1j − 1T

j (A − qJ)2r1i + 1T
j (A − qJ)2r1j ,

so we only need to calculate 1T
x (A − qJ)2r1y where x, y ∈ {i, j}.

Now we have the following lemma about the expanded formula.
▶ Lemma 18. We have

1T
x (A − qJ)2r1y = 1T

x A2r1y +
∑

0≤i1≤2r−1

∑
0≤it≤2r−1

Xi1,it
(Ai1

x )J(Ait
·y)

where Xi1,it
is coefficient only related to n, q and Ci and Ci is the total number of different

walks with length i from n vertices.
Since r = O(log n), there are poly(log n) terms in the right hand side. So we can store

all coefficients in Õ(n) space. Notice that 1T
x A2r1y for all y ∈ [n] is the ith row of A2r, i.e.,

A2r
x . To compute 1T

x (A − qJ)2r1y, we split it into computing Ci, Ai1
x JAit

·y, and A2r
x .

Compute Ci and Ai1
x JAit

·y

We show how to compute the value of any Ci and Ai1
x JAit

·y. Let j⃗ be all ones vector, which is
a column of J . To compute Ai

xj⃗, we propose a simple algorithm, i.e., Algorithm 4 that is
described as follows.

Algorithm 4 AixSum(G(n), r): Calculating Ai
x⃗j for all x ∈ [n], i ∈ [2r].

Input: A graph G(n),r
1: for each node u in G do
2: Au,0 = 1
3: let i = 1
4: while i ≤ 2r do
5: for each node u in G do
6: sumu = 0
7: for each neighbor v of u do
8: sumu+ = Av,i−1
9: Av,i = sumu

10: i = i + 1
11: Return A, Ax,i is Ai

xj⃗

▶ Lemma 19. For all x ∈ [n], i ∈ [2r], Algorithm 4 outputs Ai
xj⃗.

To compute Ci for any i ∈ [n], we only need to sum up Ai
xj⃗ for all x, i ∈ [n].

Now, let us see how to implement Algorithm 4 in the s-space MPC model. Notice that in
default, we use the fact that in the s-space MPC model, each vertex can visit its neighbors
in O(logs n) rounds where each machine has memory of O(nδ) by Lemma 5.
▶ Lemma 20. In s-space MPC model, for all i ∈ [2r] and x ∈ [n], there exists an algorithm
that can compute all Ai

xj⃗ in O(r logs n) rounds,where each machine has memory s = Ω(logs n).
Notice that Ai1

x JAit
·y = Ai1

x j⃗(Ait
y j⃗), Ci =

∑
x∈[n] Ai

xj⃗ and we have computed Ai
xj⃗ for all

i ∈ [2r] and x ∈ [n], we can obtain Ai1
x JAit

·y in constant rounds. So the main round complexity
is only about the calculation of Ai

xj⃗ and we have the following corollary.
▶ Corollary 21. In s-space MPC model, there exists an algorithm that can compute Ai1

x JAit
·y

and Ci in O(r logs n) rounds, where each machine has memory s = Ω(log n).
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Compute A2r
x

Note that each entry a2r
x,y in A2r

x is exactly the number of walks with step size r from vx to vy.
The naive algorithm of computing A2r is to compute the matrix, but it is resources-consuming.
Another idea is to compute a2r

x,y for any x and y, respectively. If each machine can store all
vertices within radius r, then we can directly compute all a2r

x,y (x, y ∈ [n]). Now, we consider
the s-space MPC model, i.e., single machines cannot store vertices within radius r.

▶ Lemma 22. Let a2r
x,y be the number of walks from the vertex x to the vertex y after walks

with step size 2r. There exists a procedure ComputeArx that can find a2r
x,y after O(r logs n)

rounds where each machine has memory s = Ω(log n).

By taking the union of different vertices, we can get the following corollary.

▶ Corollary 23. Let A2r
i be set of the numbers of walks from the vertex i to the vertex j

where j ∈ [1, n] after walks with step size r. The procedure ComputeArx can find A2r
i after

O(r logs n) rounds where each machine has memory s = Ω(log n).

Compute ∥Br
i − Br

j ∥

After obtaining Ai
x and Ai

·y, the value of Ai
xJAi

·y is the multiplication of the sums of terms
in each of two vectors. And the coefficient of each term is the multiplication of Ci, n and q.
Now, we can prove Theorem 17.

Proof of Theorem 17. By Lemma 18, 1T
x (A − qJ)2r1y which consists of at most O(r2)

terms with Ci, Ai1
x JAit

·y, and A2r
x . Let us see the round complexity of computing it. We

take the round complexity of computing one key term as an example. We only need to look
at the round complexity of computing

(∏t−1
l=2 Cil

)
(Ai1

x )J(Ait
·y). By Corollary 21, we need

O(i logs n) rounds to compute any Ci where i ∈ [2r]. We can finish calculating
(∏t−1

l=2 Cil

)
in

O(r logs n) rounds. By Lemma 20, we can obtain the result of (Ai1
x )J(Ait

·y) within O(r logs n)
rounds. Notice that there is a special term 1T

x A2r1T
y . By Corollary 23, we can find it

within O(r logs n) rounds. There are some other similar computations, which also take
O(r logs n) rounds. Recall that there are O(r2) terms, we deal with it by copying the whole
graph for poly(log n) times and then put these results together. Therefore, it takes O(r logs n)
rounds to calculate 1T

x (A − qJ)2r1y. Therefore, we need O(r logs n) rounds to finish the
calculation of ∥Br

i − Br
j ∥. ◀

By Theorem 17, we can finish the proof of Theorem 1.

Proof of Theorem 1. The main idea of MPC-PowerIteration(Algorithm 3) is to fix a
node vi first and calculate ∥Br

i − Br
j ∥ for any other node vj in the same cluster to obtain all

nodes in the same cluster. We need to store all simplified coefficients in each round which
uses O(nr2) space. For other operations in the algorithms, O(m) space is enough. So the
total space complexity is Õ(m + nr2) = Õ(m).

In the full version, we show how to implement IsActive(W ) in O(logs n) rounds. By
Theorem 17, we can finish ∥Br

i −Br
j ∥ within O(r logs n) rounds. Therefore, we need O(r logs n)

rounds to find a cluster and all its nodes. There are k hidden clusters and we execute the
above procedure sequentially, so the round complexity is O(kr logs n). ◀

Now we show how to use more space to trade off round complexity and give the proof of
Theorem 2.
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Proof of Theorem 2. Recall that in MPC-PowerIteration(Algorithm 3), we sequentially
find k clusters, that is the reason why there is a factor k in the round complexity. Now, we
execute the process in parallel. First, we randomly sample a set Sk of Θ(k log n) nodes. With
high probability, for each hidden cluster, we sample Θ(log n) nodes in Sk. Then, for each
node u ∈ Sk, we execute ComputeMatrix(B, u, v, r) for each v ∈ V . If ∥Br

u −Br
v∥ ≤ ∆, we

put u and v in the same cluster. The space for this step is Õ(km + knr2 log n). Then, we will
have k clusters with Θ(k log n) labels. We remove duplicated labels by keeping the label with
the minimum value among all received labels to get one label vertex for each cluster. Then
by using these k label vertices, we can use Õ(km + knr2 log n) = Õ(km) space to cluster all
vertices. So, we can find all k clusters in O(r logs n) rounds with high probability. ◀
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Abstract
The paper introduces two player connectivity games played on finite bipartite graphs. Algorithms
that solve these connectivity games can be used as subroutines for solving Müller games. Müller
games constitute a well established class of games in model checking and verification. In connectivity
games, the objective of one of the players is to visit every node of the game graph infinitely often.
The first contribution of this paper is our proof that solving connectivity games can be reduced
to the incremental strongly connected component maintenance (ISCCM) problem, an important
problem in graph algorithms and data structures. The second contribution is that we non-trivially
adapt two known algorithms for the ISCCM problem to provide two efficient algorithms that solve
the connectivity games problem. Finally, based on the techniques developed, we recast Horn’s
polynomial time algorithm that solves explicitly given Müller games and provide the first correctness
proof of the algorithm. Our algorithms are more efficient than that of Horn’s algorithm. Our solution
for connectivity games is used as a subroutine in the algorithm.
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1 Introduction

1.1 Müller games given explicitly
In the area of logic, model checking, and verification of reactive systems, studying games played
on graphs is a key research topic [10]. This is mostly motivated through modelling reactive
systems and reductions of model checking problems to games on graphs. Understanding the
algorithmic content of determinacy results is also at the core of this research. Müller games
constitute a well-established class of games for verification. Recall that a Müller game G is a
tuple (V0, V1, E, Ω), where

The tuple G = (V0 ∪ V1, E) is a finite directed bipartite graph so that V0 and V1 partition
the set V = V0 ∪ V1. Usually G is called the arena of G.
The set E ⊆ (V0 × V1) ∪ (V1 × V0) of edges.
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V0 and V1 are sets from which player 0 and player 1, respectively, move. Positions in Vσ

are called player σ positions, σ ∈ {0, 1}.
Ω ⊆ 2V is a collection of winning sets.

Say that the game G = (V0, V1, E, Ω) is explicitly given if V , E, and all sets in Ω are fully
presented as input. The (input) size of explicitly given Müller game is thus bounded by
|V | + |E| + 2|V | · |V |. Finally, the game graph of the Müller game G is the underlying bipartite
graph G = (V0 ∪ V1, E).

For each v ∈ V , let E(v) = {u | E(v, u)} be the set of successors of v. Let X ⊆ V . Call
the set E(X) =

⋃
v∈X E(v) the successor of X. Similarly, for a v ∈ V , the predecessor of v

is the set E−1(v) = {u | (u, v) ∈ E}. Call the set E−1(X) =
⋃

v∈X E−1(v) the predecessor
of X.

Let G = (V0, V1, E, Ω) be a Müller game. The players play the game by moving a given
token along the edges of the graph. The token is initially placed on a node v0 ∈ V . The play
proceeds in rounds. At any round of the play, if the token is placed on a player σ’s node v,
then player σ chooses u ∈ E(v), moves the token to u and the play continues on to the next
round. Formally, a play (starting from v0) is a sequence ρ = v0, v1, . . . such that vi+1 ∈ E(vi)
for all i ∈ N. If a play reaches a position v such that E(v) = ∅, then player 1 wins the play.
For an infinite play ρ, set Inf(ρ) = {v ∈ V | ∃ωi(vi = v)}. We say player 0 wins the play ρ if
Inf(ρ) ∈ Ω; otherwise, player 1 wins the play.

A strategy for player σ is a function that takes as inputs initial segments of plays
v0, v1, . . . , vk where vk ∈ Vσ and output some vk+1 ∈ E(vk). A strategy for player σ

is winning from v0 if, assuming player σ follows the strategy, all plays starting from v0
generated by the players are winning for player σ. The game G is determined if one of the
players has a winning strategy. Müller games are Borel games, and hence, by the result of
Martin [18], they are determined. Since Müller games are determined we can partition the
set V onto two sets Win0 and Win1, where v ∈ Winσ iff player σ wins the game starting
at v, σ ∈ {0, 1}. To solve a given Müller game G = (V0, V1, E, Ω) means to find the sets
Win0 and Win1. There are several known algorithms that solve Müller games. These
algorithms provide the basis for analysis and synthesis of Müller games. In particular, these
algorithms extract finite state winning strategies for the players [8, 12, 13, 19, 20, 22]. Also,
efficiency of algorithms depend on the underlying structure of graphs [17] [9]. We stress
that the algorithms that solve Müller games depend on the presentations of the games. The
problem of solving Müller games is typically in PSPACE for many reasonable representations
[19, 20]. However, if the winning condition is represented as a Zielonka tree [22] or as the
well-known parity condition, then solving the games turns into a NP ∩ co-NP problem [5].
P. Hunter and A. Dawar [13] investigate five other representations: win-set, Muller, Zielonka
DAGs, Emerson-Lei, and explicit Muller. They show that the problem of the winner is
PSPACE-hard for the first four representations. F. Horn [12] provides a polynomial time
algorithm that solves explicit Müller games. However, his proof of correctness has non-trivial
flaws. So, we provide an alternative correctness proof based on ideas totally independent of
Horn’s. Designing new algorithms, improving and analysing the state of the art techniques
in this area is a key research direction. This paper contributes to this.

1.2 Connectivity games
One motivation for defining connectivity games comes from solving Müller games. Many
algorithms that solve Müller games or its variants are recursive. Given a Müller game G, one
constructs a set of smaller Müller games. The solution of the games G′ from this set is then
used to solve G. Through an iteration process, these reductions produce sequences of the
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form G1, G2, . . . , Gr, where Gi+1 = G′
i such that G′

r = Gr+1. The key point is that solving the
game Gr at the base of this iteration boils down to investigating connectivity of the graph
Gr in the game-theoretic setting. Namely, to win the game Gr, one of the players has to visit
all the nodes of Gr infinitely often. This observation calls for deeper and refined analysis of
those Müller games G = (V0, V1, E, Ω) where the objective of player 0 is to visit all the nodes
of the underlying graph G, that is, Ω = {V }. We single out these games:

▶ Definition 1. A Müller game G = (V0, V1, E, Ω) is called a connectivity game if Ω is a
singleton that consists of V .

The second motivation to investigate the connectivity games comes from the concept of
connectivity itself. The notion of (vertex) connectivity is fundamental in graph theory and
its applications. There is a large amount of work ranging from complexity theoretic issues
to designing efficient data structures and algorithms that aim to analyse connectivity in
graphs. Connectivity in graphs and graph like structures is well-studied in almost all areas
of computer science in various settings and motivations. For undirected graphs, connectivity
of a graph G is defined through existence of paths between all vertices of G. For directed
graphs G connectivity is defined through strong connectivity. The digraph G is strongly
connected if for any two vertices x and y there exist paths from x to y and from y to x. One
can extend these notions of (vertex) connectivity into a game-theoretic setting as follows.
There are two players: player 0 and player 1. A token is placed on a vertex v0 of a bipartite
graph G = (V0 ∪ V1, E). Player 0 starts the play by moving the token along an outgoing
edge (v0, v1). Player 1 responds by moving the token along an outgoing edge from the vertex
v1, say (v1, v2). This continues on and the players produce a path v0, v1, . . . , vk called a play
starting at v0. Say that player 0 wins the play v0, v1, . . . , vk if the play visits every node in
V . Call thus described game forced-connectivity game. A posssible scenario for this situation
is that player 0 wants to pass a message through all the nodes of a given network in the
presense of an adversary. If player 0 has a winning strategy, then we say that the player wins
the game starting at v0. Winning this forced-connectivity game from v0 does not always
guarantee that the player wins the game starting at any other vertex. Therefore we can define
game-theoretic connectivity as follows. A directed bipartite graph G is forced-connected if
player 0 wins the forced-connectivity game in G starting at any vertex of G. Thus, finding
out if G is a forced-connected is equivalent to solving connectivity games as in Definition 1.

▶ Definition 2. Let G = (V0, V1, E, Ω) be a connectivity game. Call the bipartite graph
G = (V0, V1, E) forced-connected if player 0 wins the game G.

The third motivation is related to generalised Büchi winning condition. The generalised
Büchi winning condition is given by subsets F1, . . ., Fk of the game graph G. Player 0 wins a
play if the play meets each of these winning sets F1, . . ., Fk infinitely often. Our connectivity
games winning condition can be viewed as a specific generalised Büchi winning condition
where the accepting sets are all singletons.

1.3 Our contributions
The focus of this paper is two-fold. On the one hand, we study connectivity games and
provide the state-of-the-art algorithms for solving them. H. Bodlaender, M. Dinneen, and
B. Khoussainov [3, 4] call connectivity games update games. Their motivation comes from
modelling the scenario where messages should be passed to all the nodes of the network in
the presence of adversary. On the other hand, using the connectivity game solution process
as a subroutine, we recast Horn’s polynomial time algorithm that solves explicitly given
Müller games and provide a proof of its correctness. We detail these below.

ESA 2023
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1. Our first contribution is that given a connectivity game G, we construct a sequence of
directed graphs G0, G1, . . . , Gs such that player 0 wins G if and only if Gs is strongly
connected [See Theorem 8]. Due to this result, we reduce solving connectivity game
problem to the incremental strongly connected component maintenance (ISCCM) problem,
one of the key problems in graph algorithms and data structure analysis [1, 11].

2. A standard brute-force algorithm that solves the connectivity game G runs in time
O(|V |2(|V | + |E|)). H. Bodlaender, M. Dinneen, and B. Khoussainov in [3, 4, 7, 16]
provided algorithms that solve the connectivity games in O(|V ||E|). Due to Theorem 8,
we solve the connectivity game problem by adapting two known algorithms that solve
the ISCCM problem. The first algorithm is by Haeupler et al. [11] who designed the
soft-threshold search algorithm that handles sparse graphs. Their algorithm runs in time
O(

√
mm), where m is the number of edges. The second is the solution by Bender et al.

[1, 2]. Their algorithm is best suited for the class of dense graphs and runs in time of
O(n2 log n), where n is the number of vertices. By adapting these algorithms, we design
new algorithms to solve the connectivity games. The first algorithm, given a connectivity
game G, runs in time O((

√
|V1| + 1)|E| + |V1|2) [See Theorem 9]. The first feature of this

algorithm is that the algorithm solves the problem in linear time in |V0| if |V1| is considered
as a parameter. The parameter constant in this case is |V1|3/2. The second feature is that
the algorithm runs in linear time if the underlying game graph is sparse. Our second
algorithm solves the connectivity game in time O((|V1| + |V0|) · |V0| log |V0|) [See Theorem
10]. In contrast to the previous algorithm, this algorithm solves the connectivity game
problem in linear time in |V1| if |V0| is considered as a parameter. The parameterised
constant is |V0| log |V0|. Furthermore, the second algorithm is more efficient than the first
one on dense graphs. These two algorithms outperform the standard bound O(|V ||E|),
mentioned above, for solving the connectivity games. As a framework, this is similar to
the work of K. Chatterjee and M. Henzinger [6] who improved the standard O(|V ||E|)
time bound for solving Büchi games to O(|V |2) bound through analysis of maximal
end-component decomposition algorithms.

3. In [12] Horn provided a polynomial time algorithm that solves explicitly given Müller
games. In his algorithm, Horn uses the standard procedure of solving connectivity
games as a subroutine. Directly using our algorithms above, as a subroutine to Horn’s
algorithm, we obviously improve Horn’s algorithm in an order of magnitude. Horn’s proof
of correctness uses three lemmas (see Lemmas 5, 6, and 7 in [12]). However, his Lemmas
6 and 7 contain non-trivial flaws. We provide our independent proof of correctness. In
terms of ideas, our proof is completely different from Horn’s proof ideas. We discuss
these in Section 6. To the best of our knowledge, this is the first work that correctly and
fully recasts Horn’s polynomial time algorithm with the efficient sub-routine for solving
the connectivity games. Furthermore, in terms of running time, our algorithms perform
better than that of Horn’s algorithm [See Theorem 20 and Theorem 21]. For instance,
one of our algorithms decreases the degree of |Ω| from |Ω|3 in Horn’s algorithm to |Ω|2
[See Theorem 21]. Since |Ω| is bounded by 2|V |, the improvement is significant.

2 A characterization theorem

A Müller game G = (V0, V1, E, Ω) is a connectivity game if Ω = {V }. In this section we
focus on connectivity games G. In the study of Müller games, often it is required that
for each v the successor set E(v) = {u | (v, u) ∈ E} is not empty. We do not put this
condition as it will be convenient for our analysis of connectivity games to consider cases
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when E(v) = ∅. Recall that a strongly connected component of a directed graph is a maximal
set X such that there exists a path between any two vertices of X. Denote the collection
of all strongly connected components of the game graph G of game G by SCC(G). For all
distinct components X, Y ∈ SCC(G), we have X ∩ Y = ∅ and

⋃
X∈SCC(G) X = V .

▶ Definition 3. Let G be a connectivity game. Consider two sets U ⊆ V1 and S ⊆ V . Define

Force(U, S) = {v | v ∈ (E−1(S) \ S) ∩ U and E(v) ⊆ S}.

▶ Definition 4. We say that a set X ⊆ V in game G is a forced trap (FT) if either
|X| = 1 or if |X| > 1 then E(X ∩ V1) ⊆ X and X is strongly connected. Further X is
forced-connected component (FCC) if either |X| = 1 or if |X| > 1 then the sub-game
G(X) of the game G played in X is forced-connected.

▶ Lemma 5. Let C = {C1, C2, . . . , Ck}, where k > 1, be a collection of FTs that partition
the game graph G. If G is forced-connected then for every X ∈ C there is a Y ∈ C distinct
from X such that either Y is a singleton consisting of a player 1’s node and E(Y ) ⊆ X, or
Y has player 0’s node y with E(y) ∩ X ̸= ∅.

We now define the sequence {Gk}k≥0 of graphs. Initially, in G0, the edges are only those
that start in the nodes of player 0. Then the inductive construction increases the set of edges
as follows. Intuitive explanation of the process is the following. Throughout the sequence, the
invariant that FTs coincide with strongly connected components is maintained. By Lemma
7, these FTs are FCCs. This is ensured at each iteration by only adding the edges of those
Player 1 vertices from where Player 1 is forced onto an existing SCC in the graph constructed
so far. When this iteration terminates, the FCCs of the original graph coincide with the
FCCs of the resulting graph, which in turn coincides with the SCCs by the invariant.

Here is now a formal process. We will call each Gk the kth-derivative of G. We will also
view each Gk as a connectivity game. Our construction is the following.

Initially, for k = 0, set F0 = ∅, U0 = V1 and G0 = (V0, V1, E0), where E0 consists of all
outgoing edges in E of player 0.
For k > 0, consider the set Fk =

⋃
S∈SCC(Gk−1) Force(Ui−1, S), and define Uk = Uk−1\Fk,

Gk = (V0, V1, Ek), where Ek = Ek−1 ∪ {(v, u) | v ∈ Fk and (v, u) ∈ E}.
Note that the SCCs of G0 are all singletons. For k = 1 we have the following. The set F1
consists of all player 1 nodes of out-degree 1. The set E1 contains E0 and all outgoing edges
from the set F1. We note that each SCC of G1 is also a FT in G1. Therefore each SCC X

in G1 is also a maximal FT. Observe that each Fk ⊆ Uk−1 consists of player 1’s nodes v

such that all moves of player 1 from v go to the same SCC in Gk−1. Moreover, Uk is the set
of player 1’s nodes whose outgoing edges aren’t in Ek. Now we list some properties of the
sequence {Gk}k≥0. A verification of these properties follows from the construction:

For every player 1’s node v and k > 0, the outgoing edges of v are in Ek \ Ek−1 iff all the
outgoing edges of v point to the same SCC in Gk−1 and in Gk−1 the out-degree of v is 0.
For each k ≥ 0, every SCC in Gk is a FT in Gk.
For all k ≥ 0 we have Fk+1 ⊆ Uk ⊆ Uk−1 ⊆ . . . ⊆ U0 = V1.
For all k1 ̸= k2 we have Fk1 ∩ Fk2 = ∅.
If Fk = ∅ with k > 0 then for all i ≥ k, Gi = Gk−1. We call the minimal such k the
stabilization point and denote it by s. Note that s ≤ |V1|.
If for all X ∈ SCC(Gk), either |X| > 1 or X is a singleton consisting of player 0’s node
only then Gk = G.
For each k ≥ 0 and player 1’s node v, if v is in a nontrivial SCC in Gk then all v’s outgoing
edges from v are in Ek.
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▶ Lemma 6. If G is forced-connected and |SCC(Gk)| > 1, then Gk ̸= Gk+1.

Given a connectivity game G, we now construct a sequence of forests {Γk(G)}k≥0 by
induction. The idea is to represent the interactions of the SCCs of the graphs Gk with SCCs
of the Gk−1, for k = 1, 2, . . .. The sequence of forests Γk(G) = (Nk, Sonk), k = 0, 1, . . ., is
defined as follows:

For k = 0, set Γ0(G) = (N0, Son0), where N0 = {{v} | v ∈ V } and Son0({v}) = ∅ for all
v ∈ V .
For k > 0, let C = SCC(Gk) \ Nk−1 be the set of new SCCs in Gk. Define the forest
Γk(G) = (Nk, Sonk), where

1. Nk = Nk−1 ∪ C, and
2. Sonk = Sonk−1 ∪ {(X, Y ) | X ∈ C, Y ∈ SCC(Gk−1) and Y ⊂ X}.
Thus the new SCCs X that belong to C have become the roots of the trees in the forest
Γk(G). The children of X are now SCCs in Gk−1 that are contained in X.

Note that if s is the stabilization point of the sequence {Gk}k≥0, then for all k ≥ s we have
Γk(G) = Γs(G). Therefore, we set Γ(G) = Γs(G). Thus, for the forest Γ(G) we have N = Ns

and Son = Sons. The following properties of the forest Γ(G) can easily be verified:
For all nodes X ∈ N , X’s sons partition X =

⋃
Y ∈Son(X) Y .

For all nodes X ∈ N with |X| > 1, E(X ∩ V1) ⊆ X.
The roots of Γ(G) are strongly connected components of Gs.

▶ Lemma 7. Consider Γ(G) = (N, Son). Let X ∈ N be such that |X| > 1. Then the
sub-game G(X) of the game G played in X is forced-connected.

Given the results above, we now relate solving forced connectivity problem to strong
connectedness in directed graphs:

▶ Theorem 8 (Characterization Theorem). The connectivity game G is forced-connected if
and only if the directed graph Gs is strongly connected.

3 Solving connectivity games efficiently

In a dynamic setting the increment strongly connected maintenance (ISCCM) problem is
stated as follows. Initially, we are given n vertices and the empty edge set. A sequence of
edges e1, . . . , em are added. No multiple edges and loops are allowed. The goal is to design
a data structure that maintains the SCCs of the graphs after each addition of edges. By
Theorem 8 the connectivity games problem is reduced to the incremental strongly connected
component maintenance (ISCCM) problem. Note that Tarjan’s algorithm solves the static
version of the strongly connected component maintenance problem in time O(m) [21].

We mention two algorithms that solve the ISCCM problem. The first is the soft-threshold
search algorithm by Haeupler et al. [11] that handles sparse graphs. Their algorithm runs in
time O(

√
mm). The second is by Bender et al. [1, 2]. Their algorithm is best suited for the

class of dense graphs and runs in time of O(n2 log n). We adapt these algorithms carefully
in the proofs of our Theorems 9 and 10 below.

▶ Theorem 9. The connectivity game G can be solved in time O((
√

|V1| + 1)|E| + |V1|2).

We point out two features of this theorem. The first is that if the cardinality |V1|
is considered as a parameter, then we can solve the problem in linear time in |V0|. The
parameter constant in this case is |V1|3/2. The second feature is that the algorithm runs in
linear time if the underlying game graph is sparse. Our second theorem is the following:
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▶ Theorem 10. The connectivity game G can be solved in time O((|V1| + |V0|) · |V0| log |V0|).

In comparison to the theorem above, this theorem implies that we can solve the problem
in linear time in |V1|. The parameterised constant is |V0| log |V0|. Furthermore, the algorithm
is more efficient than the first one on dense graphs.

Finally, both of the algorithms outperform the standard known bound O(|V ||E|) that
solves the connectivity games.

4 Solving explicitly given Müller games

We start with standard notions about games on graphs. Let G be a Müller game. A set
S ⊆ V determines a subgame in G if for all v ∈ S we have E(v) ∩ S ̸= ∅. We call G(S), the
subgame of G determined by S. The set S ⊆ V is a σ-trap in G if S determines a subgame
in G and E(S ∩ Vσ) ⊆ S.

Let Winσ(G) be the set of all v in G such that player σ wins G starting from v. If
Winσ(G) = V , we say that player σ wins G. Otherwise, we say that player σ cannot win G.

Let Attrσ(X, G(Y )) be the set of all v in Y such that player σ can force the token from
v to X in game G(Y ).

Let Ω be the set of all winning sets of the Müller game G. We topologically order < the set
Ω, that is, for all distinct X, Y ∈ Ω, if X ⊊ Y then X < Y . Thus, if W1 < W2 < . . . < Ws is
a topological linear order on Ω then we have this. If i < j then Wi ̸⊇ Wj .

Below we provide several results that are interesting on their own. We will also use them
in our analysis of Müller games.

▶ Lemma 11. Let G be a game, F0 = Ω and F1 = 2V \ Ω. If V ∈ Fσ and for all v ∈ V ,
either Attrσ({v}, G) = V or player σ wins G(V \ Attrσ({v}, G)) then player σ wins G.

The proof of the next lemma uses the lemma above:

▶ Lemma 12. Let S = {S1, S2, . . . , Sk} ⊆ 2V \ {V } be the collection of all 0-traps in G and
assume that V ∈ Ω. If for all Si ∈ S, player 1 can’t win G(Si) then player 0 wins G.

The next lemma shows that we can reduce the size of the wining condition set Ω′ if one
of the sets W ∈ Ω′ is minimal (with respect to ⊆) and not forced-connected. The proof uses
Lemmas 11 and 12.

▶ Lemma 13. Let W ⊆ V be a subgame. If G(W ) isn’t forced-connected and no winning set
in Ω is contained in W , then Win1(G) = Win1(G′), where G′ is the same as G but has the
additional winning set: Ω′ = Ω ∪ {W }.

Let G be Müller game with Ω = {W1, W2, . . . , Ws}. For the next two lemmas and the
follow-up theorem we assume that there exists a W ∈ Ω such that G(W ) is forced-connected
and W isn’t a 1-trap. The following is a construction that occurs naturally if one wants to
analyse Müller games. We attribute this to Horn [12]:

▶ Definition 14 (Horn’s construction). Let W ∈ Ω such that G(W ) is forced-connected and is
not a 1-trap. The game GW = (GW , ΩW ) determined by W is defined as follows:

1. VW = V0 ∪ V1 ∪ {W}, where W is a player 1’s new vertex.
2. EW = E ∪ (V0 ∩ W ) × {W} ∪ {W} × (E(V1 ∩ W ) \ W ).
3. ΩW = (Ω ∪ {W ′ ∪ {W} | W ′ ∈ R}) \ (R ∪ {W }), where the set R is the following

R = {W ′ | W ′ ∈ Ω and W ⊂ W ′}.
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Note that |ΩW | + 1 = |Ω|, and GW (W ) is forced-connected. Thus, similar to the lemma
above, Horn’s construction also reduces the size of Ω. Now our goal is to show that Horn’s
construction preserves the winners of the original game. This is shown in the next two
lemmas. Here we note that Horn’s original proof of his correctness followed a different line
of proof; this will be explained later.

▶ Lemma 15. We have Win0(GW ) \ {W} ⊆ Win0(G).

Proof. Let σW be a winning strategy for player 0 in game GW starting at s ∈ V . We now
describe a winning strategy for player 0 in G starting from s. Player 0 plays the game G by
simulating plays ρ consistent with σW in GW . If a play ρ stays out of W, then the player 0
copies ρ in G. Once ρ moves to W, then player 0 in G moves to any node in W ∩ V1. Then
player 0 stays in W and uses its strategy to visit every node in W . If player 1 moves out of
W to a node u in G, this will correspond to a move by player 1 from W to u in GW . Player
0 continues on simulating ρ.

Let ρ′ be the play in G consistent with the strategy. If ρ meets W finitely often then
Inf(ρ) = Inf(ρ′) and Inf(ρ′) ∈ Ω. If ρ never moves out of W from some point on, then
Inf(ρ′) = W . In both cases player 0 wins. If the simulation leaves W infinitely often, then
Inf(ρ) ∈ {W ′ ∪ {W} | W ′ ∈ R} and W ⊆ Inf(ρ). Therefore

Inf(ρ′) ⊆ Inf(ρ) \ {W} ∪ W = Inf(ρ) \ {W} ⊆ Inf(ρ′),

and hence Inf(ρ′) = Inf(ρ) \ {W} ∈ R, and player 0 wins. ◀

The next lemma is more involved. Assume that the set W ′ ⊆ V determines a subgame in
G. Then W ′ also determines a subgame of GW . We call the set W ′ extendible if W ′ ∪{W} is a
subgame of GW . Note that there could exist non-extendible W ′. In particular, some winning
sets in Ω could become non-extendible in GW . In the analysis of Win1(GW ) extendible and
non-extendible sets must be taken into account. The lemma below does extactly that.

▶ Lemma 16. We have Win1(GW ) \ {W} ⊆ Win1(G).

Proof. We define the following two sets of subgames of the game G. The first set A is the
following set of subgames of G:

{W ′ | W ′ is extendible & player 1 wins GW (W ′ ∪ {W})}.

Note that if W ′ ∈ A then player 1 wins the subgame GW (W ′). The second set B is the
following set of subgames of G:

{W ′ | W ̸⊆ W ′ and player 1 wins GW (W ′)}.

Now we define the set S = A ∪ B. The sets A and B are disjoint. The set W does not belong
to S because W ∪ {W} is not a subgame in GW and W ̸∈ B by definition of B. Note that
the set B can contain sets W ′ that are subsets of non-extendible (winning) sets.

Since player 1 wins GW (Win1(GW )), Win1(GW ) is a 0-trap in GW and it’s easy to see that
Win1(GW )\{W} is also a 0-trap in G. Then if W ∈ Win1(GW ) then Win1(GW )\{W} ∈ A,
otherwise Win1(GW ) \ {W} ∈ B. Since Win1(GW ) \ {W} ∈ S, to prove the lemma it suffices
to show that player 1 wins G(S) for all S ∈ S.

Topologically order S: S1 < S2 < . . . < Ss. For each ℓ = 1, 2, . . . , s, we want to show
that player 1 wins G(Sℓ). As player 1 wins GW (Sℓ), for all 1-traps S′ ⊂ Sℓ player 1 wins
GW (S′). Let T = {T1, T2, . . . Tt} ⊆ 2Sℓ \ {Sℓ} be all 1-traps in the game G(Sℓ). For each
Ti ∈ T we reason as follows.
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Case 1: W ⊆ Ti. Then EW (W)∩Ti = (EW (V1 ∩W )\W )∩Ti = (EW (V1 ∩W )\W )∩Sℓ =
EW (W) ∩ Sℓ. Since W ⊆ Sℓ implies player 1 wins GW (Sℓ ∪ {W}) and EW (W) ∩ Sℓ ̸= ∅,
Ti ∪ {W} is also a 1-trap in the game GW (Sℓ ∪ {W}) and player 1 wins GW (Ti ∪ {W}).
Hence Ti belongs to A.

Case 2: W ̸⊆ Ti. Note that Ti is also a 1-trap in the game GW (Sℓ) and player 1 wins
GW (Ti). Hence Ti belongs to B.

Thus, T ⊂ S and by hypothesis, player 1 wins all G(Ti).
If Sℓ ∈ B then player 1 wins G(Sℓ) = GW (Sℓ). Otherwise Sℓ ∈ A and player 1 wins

GW (Sℓ ∪ {W}).
If Sℓ /∈ Ω, then for all v ∈ Sℓ, Attr1({v}, G(Sℓ)) = Sℓ or player 1 wins G(Sℓ \
Attr1({v}, G(Sℓ))) since Sℓ \ Attr1({v}, G(Sℓ)) is a 1-trap in the game G(Sℓ). By Lemma
11, player 1 wins G(Sℓ).
Otherwise by Lemma 12, there is a 0-trap Q ⊂ Sℓ ∪ {W} in GW (Sℓ ∪ {W}) such that
player 1 wins GW (Q).

If W /∈ Q then W ∩ V0 ∩ Q = ∅ and Q also determines a 0-trap in the game G(Sℓ).
Since W ̸⊆ Q, player 1 wins G(Q) = GW (Q) and let Y = Q.
If W ∈ Q then let Y = Q \ {W}. Note that for all v ∈ V0 ∩ W ∩ Q, EW (v) ∩ Q =
EW (v) ∩ (Sℓ ∪ {W}) and |EW (v) ∩ (Sℓ ∪ {W})| > 1. Hence Y determines a 0-trap in
the game G(Sℓ). Since player 1 wins GW (Y ∪ {W}), Y belongs to A and by hypothesis
player 1 wins G(Y ).

Therefore there exists a 0-trap Y in the game G(Sℓ) such that player 1 wins G(Y ). Also
Attr1(Y, G(Sℓ)) = Sℓ or player 1 wins G(Sℓ \ Attr1(Y, G(Sℓ))) since Sℓ \ Attr1(Y, G(Sℓ))
is a 1-trap in the game G(Sℓ). Then we construct a winning strategy for player 1 in the
game G(Sℓ) as follows.

If the token is in Y then player 1 forces the token in Y forever and follows the winning
strategy in G(Y ).
If the token is in Attr1(Y, G(Sℓ)) then player 1 forces the token to Y .
Otherwise, player 1 follows the winning strategy in G(Sℓ \ Attr1(Y, G(Sℓ))).

By hypothesis, for all Si ∈ S, player 1 wins G(Si). ◀

By Lemmas 15 and 16, we have the following theorem.

▶ Theorem 17. Win0(G) = Win0(GW ) \ {W} and Win1(G) = Win1(GW ) \ {W}. ⌟

Input: An explicit Müller game G = (G, Ω)
Output: The winning regions of player 0 and player 1
topologically order Ω;
G′ = (V ′

0 , V ′
1 , E′)← G = (V0, V1, E);

Ω′ ← Ω;
W in0 ← ∅;
while Ω′ ̸= ∅ do

W ′
i ← pop(Ω′)

if G′(W ′
i ) is forced-connected then

if W ′
i is a 1-trap in G′ then

remove Attr0(W ′
i , G′) from G′ and add it to W in0;

else
G′ ← G′

W ′
i
;

end
end

end
return W in0 ∩ V and V \W in0

Figure 1 Algorithm for explicit Müller games.
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We briefly explain the algorithm, presented in Figure 1, that takes as input an explicit
Müller game G and returns the winning regions of the players. Initially, the algorithm orders
Ω topologically: W1 < W2 < . . . < Ws. At each iteration, the algorithm modifies the arena
and the winning conditions:

If W ′
i doesn’t determine a subgame in game G′ or G′(W ′

i ) isn’t forced-connected, W ′
i is

removed from Ω′.
Otherwise, G′(W ′

i ) is forced-connected, then:
If W ′

i is a 1-trap in G′ then Attr0(W ′
i , G′) is removed from G′ and added to the winning

region of player 0. Note that all W ′ ∈ Ω′ with W ′ ∩ Attr0(W ′
i , G′) ̸= ∅ are removed.

Otherwise, apply Horn’s construction to G′ by setting G′ = G′
W ′

i
. In this construction,

a new player 1’s node W′
i is added to G′, W′

i is added to all supersets of W ′
i in Ω′

and W ′
i itself is removed from Ω′, which maintains the topological order of Ω′.

Now our goal is to show that Horn’s algorithm preserves the winner of the original games
at each iteration so that the algorithm can compute the winning regions correctly. This is
shown in the next lemma and theorem.

▶ Lemma 18. At the end of each iteration, we have

Win0(G) = (Win0(G′) ∪ Win0) ∩ V and Win1(G) = Win1(G′) ∩ V.

Proof. Initially, G′ = G and Win0 = ∅, which holds the lemma. Then for i = 1, 2, . . . , s,
we want to show that at the end of ith iteration, Win0(G) = (Win0(G′) ∪ Win0) ∩ V

and Win1(G) = Win1(G′) ∩ V . Let G′′ be G′ and Win′
0 be Win0 at the beginning of ith

iteration. Let G′′′ be G′ and Win′′
0 be Win0 at the end of ith iteration. By hypothesis,

Win0(G) = (Win0(G′′)∪Win′
0)∩V and Win1(G) = Win1(G′′)∩V . If W ′

i doesn’t determine
a subgame in game G′ or W ′

i isn’t forced-connected then by Lemma 13, W ′
i can be removed

without affecting the winning regions of the players of the game. Otherwise, if W ′
i is a

1-trap in G′ then player 0 wins G′′(Attr0(W ′
i , G′′)) by forcing the token to W ′

i and then to
go through W ′

i . Since Attr0(W ′
i , G′′) is a 1-trap in G′′, Attr0(W ′

i , G′′) ⊆ Win0(G′′). Since
G′′′ = G′′(V ′′ \ Attr0(W ′

i , G′′)), Win0(G′′) = Win0(G′′′) ∪ Attr0(W ′
i , G′′) and Win1(G′′) =

Win1(G′′′). Therefore, Win0(G) = (Win0(G′′′)∪Attr0(W ′
i , G′′)∪Win′

0)∩V = (Win0(G′′′)∪
Win′′

0) ∩ V and Win1(G) = Win1(G′′′) ∩ V . If W ′
i isn’t a 1-trap in G′ then by Theorem 17,

Win0(G′′) = Win0(G′′′) \ {W′
i} and Win1(G′′) = Win1(G′′′) \ {W′

i}. Therefore, Win0(G) =
(Win0(G′′′) ∪ Win′′

0) ∩ V and Win1(G) = Win1(G′′′) ∩ V . By hypothesis, at the end of each
iteration, G′ and Win0 hold the lemma. ◀

By Lemma 18, we have the following theorem.

▶ Theorem 19. At the end of the algorithm, we have

Win0(G) = Win0 ∩ V and Win1(G) = V \ Win0. ⌟

At each iteration, at most one player 1’s vertex is added and at most |V ′
0 | edges are added.

Therefore, |V ′
0 | = |V0|, |V ′

1 | is bounded by |V1| + |Ω| and |E′| is bounded by |E| + |V0||Ω|.
For time complexity of the algorithm, there are at most |Ω| iterations in a run and the most
time-consuming operation is to determine if G′(W ′

i ) is forced-connected. By Theorem 9 and
Theorem 10, we have the following theorems.

▶ Theorem 20. There exists an algorithm that solves the explicit Müller game G in time
O(|Ω| · ((

√
|V1| + |Ω| + 1)(|E| + |V0||Ω|) + (|V1| + |Ω|)2)). ⌟
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▶ Theorem 21. There exists an algorithm that solves the explicit Müller game G in time
O(|Ω| · (|V0| + |V1| + |Ω|) · |V0| log |V0|). ⌟

Both of these algorithms beat the bound of Horn’s algorithm. Importantly, Theorem 21
decreases the degree of |Ω| from |Ω|3 in Horn’s algorithm to |Ω|2. Since |Ω| is bounded by
2|V |, the improvement is significant.

5 Applications

We now apply the results above to specific classes of games. Here we give three examples
of such classes. The first such class is the class of fully separated Müller games. A Müller
game G is fully separated if for each W ∈ Ω there is a sW , called separator, such that all
sW ∈ W but sW /∈ W ′ for all W ′ ∈ Ω distinct from W . The second class of games is the
class of linear games. A Müller game G is a linear game if the set Ω forms a linear order
W1 ⊂ W2 ⊂ . . . ⊂ Ws. These classes of games were studied in [15]. As the games are fully
separated, when one constructs G′

W ′
i

there is no need to add a new vertex. Then applying
Theorems 9 and 10 to Horn’s algorithm, we get the following result:

▶ Theorem 22. Each of the following is true:
1. Any fully separated Müller game G can be solved in time O(|V | · ((

√
|V1| + 1)|E| + |V1|2)).

2. Any fully separated Müller game G can be solved in time O(|V |2 · |V0| log |V0|). ⌟

Both of these algorithms beat the bound of [15] O(|V |2|E|) that solves fully separated
Müller game. Applying Theorem 20 and Theorem 21, we have the following theorems.

▶ Theorem 23. Each of the following is true:
1. Any linear Müller game G can be solved in time O(|V | · ((

√
|V | + 1) · |V0||V | + |V |2)).

2. Any linear Müller game G can be solved in time O(|V |2 · |V0| log |V0|). ⌟

Both of these algorithms beat the bound O(|V |2·|V |−1|E|) from of [15] and the bound
O(|V |3 · |V0|) implied from Horn’s algorithm.

The third class of Müller games was introduced by A. Dawar and P. Hunter in [14]. They
investigated games with anti-chain winning condition. A winning condition Ω is an anti-chain
if X ̸⊆ Y for all X, Y ∈ Ω. Applying Theorem 20 and Theorem 21, we have the following
theorems. Note that, since the winning condition is an anti-chain, |V ′

1 | is bounded by |V1|,
|E′| is bounded by |E| and no new player 1’s vertex is added to Ω′.

▶ Theorem 24. Each of the following is true:
1. Any Müller game G with anti-chain winning condition can be solved in time O(|Ω| ·

((
√

|V1| + 1)|E| + |V1|2)).
2. Any Müller game G with anti-chain winning condition can be solved in time O(|Ω||V | ·

|V0| log |V0|). ⌟

Just as above, both of the algorithms beat the bound O(|Ω||V |2|E|) from [14] and the
bound of Horn’s algorithm O(|Ω||V ||E|) that solves the explicit Müller games with anti-chain
winning conditions.

6 A note on Horn’s proof

In [12], Horn considers sensible sets. A winning set W ∈ Ω is sensible if it determines a
subgame. Initially, all non-sensible sets are removed (this is fine). Then Horn’s assumption
is that through the iteration process (in the algorithm in figure 1) sensibility is preserved.
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When GW is built (during iterations), a winning condition W ′ that contains W might become
non-sensible. Hence, sensibility is not preserved during iterations. Horn’s analysis doesn’t
take non-sensible sets into account. This is important. In Horn’s defence, assume we remove
all non-sensible winning sets in the current game GW (Note that the algorithm removes
non-sensible winning conditions). However, Horn does not prove that this is a correct action.
Horn’s proof does not analyse an intricate interplay between sensibility and maintenance of
the winning sets at each iteration. Neglecting non-sensible sets makes the proofs of Lemmas
6 and 7 (in [12]) incorrect. Here is an example.

Let G = (G, Ω) be a game where G is shown in figure 2 and Ω = {W1, W2, W3}, where
W1 = {v1, u1}, W2 = {v1, u1, u2}, and W3 = {v1, v2, u1, u2}. During the algorithm, player
0 wins the subgame determined by W1. The set W1 isn’t a 1-trap. So the new player 1’s
node W1 is added. The sensible set W2 now becomes non-sensible in GW1 . Let us assume
that W2 ∪ {W1} is removed from the winning set in GW1 . Then player 0 wins the subgame
determined by W3 ∪ {W1}. Horn’s Lemma 7 applied to the game in GW1 that occurs on
W3 ∪ {W1} states the following.

Player 1 wins the original game played on W3, where W3 is removed from Ω.

The proof uses induction that has the following important (in our view unrecoverable)
flaw. The proof considers the maximal winning sets inside W3. Clearly, the maximal winning
set inside W3 is W3 itself. Horn refers to player 1 winning strategy on W3. Such strategy
does not exists as it needs to be built. This is a self-loop argument. Trying to save Horn’s
proof, lets assume that W2 was considered by Horn to be the maximal set. Since W2 ∪ {W1}
is non-sensible in GW1 , it is removed during the algorithm. Horn claims that player 1 has
a winning strategy by playing inside W2 and uses it to build a winning strategy in W3.
However, player 0 wins G(W1) and W1 is a 1-trap in G(W2). As a result, player 1 has no
winning strategy in G(W2) and Horn’s proof fails. Since Horn reuses the proof of Lemma
7 in the proof of Lemma 6, Horn fails on the proofs of Lemmas 6 and 7. These show that
Horn’s inductive arguments fail.

Figure 2 The counter case to Horn’s Lemmas 6 and 7.

Our section 4 develops new ideas and methods that are not present in Horn’s arguments.
As an example, we consider extendible and non-extendible sets in the proof of Lemma 16.
The lemma takes winning regions that are subsets of non-sensible sets into account. These
are placed in set B in the lemma. We also show that the players’ winning nodes stay invariant
with each iteration. This completely differs from Horn’s arguments. Horn’s Lemmas 5, 6,
and 7 are aimed at proving that the original game restricted to W , given by the iteration, is
won by one of the players. Our approach is obviously different.



Z. Liang, B. Khoussainov, T. Takisaka and M. Xiao 79:13

References
1 Michael A Bender, Jeremy T Fineman, and Seth Gilbert. A new approach to incremental

topological ordering. In Proceedings of the twentieth annual ACM-SIAM symposium on Discrete
algorithms, pages 1108–1115. SIAM, 2009.

2 Michael A Bender, Jeremy T Fineman, Seth Gilbert, and Robert E Tarjan. A new approach
to incremental cycle detection and related problems. arXiv preprint, 2011. arXiv:1112.0784.

3 Hans L Bodlaender, Michael J Dinneen, and Bakhadyr Khoussainov. On game-theoretic models
of networks. In Algorithms and Computation: 12th International Symposium, ISAAC 2001
Christchurch, New Zealand, December 19–21, 2001 Proceedings 12, pages 550–561. Springer,
2001.

4 Hans L Bodlaender, Michael J Dinneen, and Bakhadyr Khoussainov. Relaxed update and
partition network games. Fundamenta Informaticae, 49(4):301–312, 2002.

5 Cristian S Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan. Deciding
parity games in quasipolynomial time. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, pages 252–263, 2017.

6 Krishnendu Chatterjee and Monika Henzinger. Efficient and dynamic algorithms for alternating
büchi games and maximal end-component decomposition. Journal of the ACM (JACM),
61(3):1–40, 2014.

7 Michael J Dinneen and Bakhadyr Khoussainov. Update networks and their routing strategies.
In International Workshop on Graph-Theoretic Concepts in Computer Science, pages 127–136.
Springer, 2000.

8 Stefan Dziembowski, Marcin Jurdzinski, and Igor Walukiewicz. How much memory is needed
to win infinite games? In Proceedings of Twelfth Annual IEEE Symposium on Logic in
Computer Science, pages 99–110. IEEE, 1997.

9 Aniruddh Gandhi, Bakhadyr Khoussainov, and Jiamou Liu. Efficient algorithms for games
played on trees with back-edges. Fundamenta Informaticae, 111(4):391–412, 2011.

10 Erich Grädel, Wolfgang Thomas, and Thomas Wilke. Automata, logics, and infinite games.
lncs, vol. 2500, 2002.

11 Bernhard Haeupler, Telikepalli Kavitha, Rogers Mathew, Siddhartha Sen, and Robert E
Tarjan. Incremental cycle detection, topological ordering, and strong component maintenance.
ACM Transactions on Algorithms (TALG), 8(1):1–33, 2012.

12 Florian Horn. Explicit muller games are ptime. In IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science. Schloss Dagstuhl-Leibniz-Zentrum
für Informatik, 2008.

13 Paul Hunter and Anuj Dawar. Complexity bounds for regular games. In International
Symposium on Mathematical Foundations of Computer Science, pages 495–506. Springer, 2005.

14 Paul Hunter and Anuj Dawar. Complexity bounds for muller games. Theoretical Computer
Science (TCS), 2008.

15 Hajime Ishihara and Bakhadyr Khoussainov. Complexity of some infinite games played on
finite graphs. In International Workshop on Graph-Theoretic Concepts in Computer Science,
pages 270–281. Springer, 2002.

16 Imran Khaliq, Bakhadyr Khoussainov, and Jiamou Liu. Extracting winning strategies in
update games. In Models of Computation in Context: 7th Conference on Computability
in Europe, CiE 2011, Sofia, Bulgaria, June 27-July 2, 2011. Proceedings 7, pages 142–151.
Springer, 2011.

17 Bakhadyr Khoussainov, Jiamou Liu, and Imran Khaliq. A dynamic algorithm for reachability
games played on trees. In Mathematical Foundations of Computer Science 2009: 34th Interna-
tional Symposium, MFCS 2009, Novy Smokovec, High Tatras, Slovakia, August 24-28, 2009.
Proceedings 34, pages 477–488. Springer, 2009.

18 Donald A Martin. Borel determinacy. Annals of Mathematics, 102(2):363–371, 1975.
19 Robert McNaughton. Infinite games played on finite graphs. Annals of Pure and Applied

Logic, 65(2):149–184, 1993.

ESA 2023

https://arxiv.org/abs/1112.0784


79:14 Connectivity in the Presence of an Opponent

20 Anil Nerode, Jeffrey B Remmel, and Alexander Yakhnis. Mcnaughton games and extracting
strategies for concurrent programs. Annals of Pure and Applied Logic, 78(1-3):203–242, 1996.

21 Robert Tarjan. Depth-first search and linear graph algorithms. SIAM journal on computing,
1(2):146–160, 1972.

22 Wieslaw Zielonka. Infinite games on finitely coloured graphs with applications to automata
on infinite trees. Theoretical Computer Science, 200(1-2):135–183, 1998.



On the Perturbation Function of Ranking and
Balance for Weighted Online Bipartite Matching
Jingxun Liang #

IIIS, Tsinghua University, Beijing, China

Zhihao Gavin Tang #

ITCS, Shanghai University of Finance and Economics, China

Yixuan Even Xu #

IIIS, Tsinghua University, Beijing, China

Yuhao Zhang #

Shanghai Jiao Tong University, China

Renfei Zhou #

IIIS, Tsinghua University, Beijing, China

Abstract
Ranking and Balance are arguably the two most important algorithms in the online matching
literature. They achieve the same optimal competitive ratio of 1 − 1/e for the integral version
and fractional version of online bipartite matching by Karp, Vazirani, and Vazirani (STOC 1990)
respectively. The two algorithms have been generalized to weighted online bipartite matching prob-
lems, including vertex-weighted online bipartite matching and AdWords, by utilizing a perturbation
function. The canonical choice of the perturbation function is f(x) = 1 − ex−1 as it leads to the
optimal competitive ratio of 1 − 1/e in both settings.

We advance the understanding of the weighted generalizations of Ranking and Balance in this
paper, with a focus on studying the effect of different perturbation functions. First, we prove
that the canonical perturbation function is the unique optimal perturbation function for vertex-
weighted online bipartite matching. In stark contrast, all perturbation functions achieve the optimal
competitive ratio of 1 − 1/e in the unweighted setting. Second, we prove that the generalization of
Ranking to AdWords with unknown budgets using the canonical perturbation function is at most
0.624 competitive, refuting a conjecture of Vazirani (2021). More generally, as an application of
the first result, we prove that no perturbation function leads to the prominent competitive ratio
of 1 − 1/e by establishing an upper bound of 1 − 1/e − 0.0003. Finally, we propose the online
budget-additive welfare maximization problem that is intermediate between AdWords and AdWords
with unknown budgets, and we design an optimal 1 − 1/e competitive algorithm by generalizing
Balance.
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1 Introduction

Online bipartite matching has been extensively studied since the seminal work of Karp,
Vazirani, and Vazirani [22]. Two remarkable algorithms, Ranking of Karp et al. [22] and
Balance of Kalyanasundaram and Pruhs [19], achieve the same optimal competitive ratio of
1 − 1/e for the integral (randomized) and fractional (deterministic) version of the problem
respectively.

AdWords and Vertex-weighted. Motivated by the display of advertising on the Internet,
Mehta et al. [25] generalized the online bipartite matching problem so that it allows weighted
graphs. Consider an underlying bipartite graph G = (L ∪ R, E) with L, R being offline and
online vertices. Each vertex u ∈ L is associated with a budget Bu, and each edge (u, v) ∈ E

is associated with a bid wuv. The offline vertices and their corresponding budgets are known
in advance. The online vertices arrive one at a time, with their incident edges and associated
bids, and have to be matched immediately and irrevocably to some u ∈ L. An offline vertex
u ∈ L can be matched to multiple online vertices. Let Su be the set of online vertices
matched to u and then, the revenue of u equals min{Bu,

∑
v∈Su

wuv}, that is, the revenue
cannot exceed the budget. The goal is to maximize the total revenue and to compete against
the optimal revenue of an offline algorithm that knows the whole graph.

Mehta et al. [25] established an optimal (1 − 1/e)-competitive algorithm for the fractional
version1 of the problem by generalizing Balance to Perturbed-Balance. Later, Aggarwal et
al. [1] considered a restricted setting of AdWords, called vertex-weighted online bipartite
matching, in which all edges incident to u have the same weight of wu = Bu. They generalized
Ranking to Perturbed-Ranking and obtained the same 1 − 1/e competitive ratio for the
integral version of the problem.

The two generalizations are both greedy-based algorithms with a careful perturbation of
the weights. Specifically, upon the arrival of each vertex v, the algorithm matches it with
the offline vertex u with the maximum perturbed weight f(xu) · wuv, among those neighbors
whose budgets have not yet been exhausted. Here, xu corresponds to the random rank
of u in Perturbed-Ranking and the fraction of budget spent so far in Perturbed-Balance.
The canonical choice of the perturbation function is f(x) = 1 − ex−1, applied by Mehta
et al. [25] and Aggarwal et al. [1]. Notably, Devanur, Jain, and Kleinberg [7] provided a
unified primal-dual analysis for Perturbed-Ranking and Perturbed-Balance, in which the
perturbation function plays a critical role even for the unweighted online bipartite matching
problem.

Despite the above successful generalizations of Ranking and Balance from unweighted to
weighted graphs, we lack an understanding of the extra difficulty introduced by weighted
graphs. In this paper, we revisit the two classic algorithms and focus on the perturbation
function. Notice that for unweighted graphs, Perturbed-Ranking (resp. Perturbed-Balance)
with an arbitrary perturbation function degenerates to the same Ranking (resp. Balance)
algorithm and achieves the optimal competitive ratio of 1 − 1/e. We examine the importance
of perturbation functions by studying the performance of Perturbed-Ranking and Perturbed-
Balance on weighted graphs with an arbitrary perturbation function.

Our first result confirms the importance of the perturbation function, proving that the
canonical perturbation function f(x) = 1 − ex−1 is the unique optimal perturbation function
for vertex-weighted online bipartite matching.

1 The paper states their result with the small-bid assumption, i.e., γ = maxu,v wuv/Bu is small. We
consider the fractional AdWords problem, corresponding to the case when γ → 0. See our discussion in
Section 2.
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▶ Theorem 1. The perturbation function f(x) = 1 − ex−1 is unique (up to a scale
factor) for Perturbed-Ranking and Perturbed-Balance to achieve the optimal compet-
itive ratio of 1 − 1/e for vertex-weighted online bipartite matching.

It is surprising that this question has been overlooked by the online matching community.
We introduce a new family of hard instances that heavily exploits the power of weighted
graphs. Noticeably, prior to our work, the only 1 − 1/e impossibility result by Karp et al. [22]
is established for unweighted graphs. This advanced understanding is also the starting point
for us to explore the limitation of Perturbed-Ranking in a more general model, i.e., AdWords
with unknown budgets.

AdWords with Unknown Budgets. A major open question left by Mehta et al. [25] is the
competitive ratio of Perturbed-Ranking for the fractional AdWords problem. In addition
to obvious theoretical interests, the Perturbed-Ranking algorithm has a merit of budget-
obliviousness, as pointed out by Vazirani [28] and Udwani [27]. I.e., the algorithm does not
need to know the budget of each vertex, in contrast to the Perturbed-Balance algorithm.
Formally, consider the setting of AdWords with unknown budgets: the algorithm has no
prior knowledge of the budgets and only learns the budget of each vertex u when the total
revenue of u first exceeds its budget. Observe that Perturbed-Balance is not applicable in
this setting, since its decision at each step depends on the fraction of budget spent on each
offline vertex.

Perturbed-Ranking is the only known algorithm for AdWords with unknown budgets
so far. Using the canonical perturbation function f(x) = 1 − ex−1, Vazirani [28] proved
Perturbed-Ranking is (1 − 1/e)-competitive assuming a no-surpassing property. Udwani [27]
proved that the algorithm is 0.508-competitive in the general case and is 0.522-competitive
with a different perturbation function f(x) = 1 − e1.15(x−1).

It is natural to ask if other perturbation functions can lead to a better competitive
ratio, or even 1 − 1/e. In this paper, we give a limitation of all perturbation functions,
showing a separation between vertex-weighted online bipartite matching and AdWords on
the performance of Perturbed-Ranking.

We first show that Perturbed-Ranking with the canonical perturbation function can
only achieve a competitive ratio of at most 0.624 < 1 − 1/e. Then, together with the
family of instances we constructed in the proof of Theorem 1, we manage to prove that any
perturbation function cannot lead to the prominent competitive ratio of 1 − 1/e:

▶ Theorem 2. The competitive ratio of Perturbed-Ranking algorithm with any
perturbation function f(x) on fractional AdWords is at most 1 − 1/e − 0.0003. In
particular, using the canonical function f(x) = 1 − ex−1, the competitive ratio is at
most 0.624.

Our result refutes the conjecture of Vazirani [28] that Perturbed-Ranking is 1 − 1/e

competitive. Moreover, our construction is clean and simple, suggesting that the no-surpassing
assumption might be too strong to hold in reality. Such result leads to the conjecture that
there is no 1 − 1/e competitive algorithm for AdWords with unknown budgets.

ESA 2023
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Remark. Very recently, independently by our work, Udwani [27] updated his paper and
proved that a specific perturbation function family f(x) = 1 − eβ(x−1) is at most 0.624-
competitive for any β > 0. Our result provides a stronger observation by another approach
that shows all perturbation functions cannot achieve the competitive ratio of 1 − 1/e.

Online Budget-additive Welfare Maximization. The above upper bound of the competitive
ratio for Perturbed-Ranking suggests that AdWords with unknown budgets should be strictly
harder than AdWords, in terms of the worse-case competitive ratio. Unfortunately, our
current construction is specific to the Perturbed-Ranking algorithm and does not serve as a
problem hardness.

Inspired by the online submodular welfare maximization problem (that we discuss below
in the related work section), we consider a variant which we call online budget-additive
welfare maximization problem, that lies in between the original AdWords and AdWords
with unknown budgets. Specifically, we assume that 1) the algorithm has no information
of the budgets at the beginning, 2) at each step, the algorithm can query for each vertex
u, the value of wu(S) = min{Bu,

∑
v∈S wuv} for any subset S of arrived vertices. Notice

that AdWords with unknown budgets can be interpreted in a similar way, except that the
algorithm can only query those sets S that are subsets of S(u) ∪ {v} where S(u) is the set of
current matched vertices to u.

Our final result is an optimal algorithm for the fractional version of the problem. We
hope it would shed some light on designing online algorithms beyond Perturbed-Ranking in
the AdWords with unknown budgets setting and designing algorithms beyond greedy (with
unrestricted computational power) in the online submodular welfare maximization setting.

▶ Theorem 3. There exists a fractional algorithm that achieves the competitive ratio
of (1 − 1/e) for the Online Budget-Additive Welfare Maximization problem.

Roadmap. Section 2 presents the formal definitions of the Perturbed-Ranking and Perturbed-
Balance algorithms. We prove Theorem 1 in Section 3 and Theorem 2 in Section 4. Due to
space limit, we provide the proof of Theorem 3 in the full version.

1.1 Related Work
The seminal work of Karp et al. [22] studied the unweighted and one-sided online bipartite
matching model and proposed the optimal (1 − 1/e)-competitive algorithm: Ranking. The
analysis of Ranking has been refined and simplified by a series of works [2, 7, 11, 8].
Kalyanasundaram and Pruhs studied the b-matching model and designed Balance (fractional)
that also achieves the competitive ratio of 1 − 1/e. The model has been generalized to
many weighted variants, e.g., vertex-weighted [1, 14, 15, 18], edge-weighted [3, 9, 10], and
AdWords [6, 25, 17]. Besides the aforementioned generalization of Ranking and Balance to the
vertex-weighted and AdWords settings, Huang et al. [15] generalized Ranking to the vertex-
weighted setting with random arrival order, by utilizing a two-dimensional perturbation
function. They achieved a competitive ratio of 0.653 that is subsequently improved to
0.662 by Jin and Williamson [18]. Another line of work adapts Ranking and Balance to
other matching problems, including online bipartite matching with random arrivals [21, 24],
oblivious matching [5, 26] and fully online matching [12, 13, 16].

The most general extension of online bipartite matching is the online submodular welfare
maximization problem. It captures most of the weighted variants of online bipartite matching
discussed above. In this problem, a set of n offline vertices are given, each associated with a
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monotone submodular function wu. Upon the arrival of an online vertex, it must be assigned
to one of the offline vertices and the goal is to maximized the welfare

∑
u wu(Su), where Su

is the set of vertices received by u. The algorithm is assumed to have value oracles for the
functions. I.e., an algorithm can query the value of wu(S) for an arbitrary subset S of arrived
online vertices. Kapralov et al. [20] proved that the 0.5-competitive greedy algorithm is
optimal with restricted computational powers. For the unknown i.i.d. setting, they provided
an optimal (1 − 1/e)-competitive algorithm. In the random arrival model, Korula et al. [23]
proved that greedy is at least 0.5052-competitive, and the ratio is improved to 0.5096 by
Buchbinder et al. [4]. Our budget-additive welfare maximization problem is a special case of
the submodular welfare maximization problem where every wu is a budget-additive function
and admits an (1 − 1/e)-competitive algorithm.

Moreover, the AdWords with unknown budgets problem suggests us to study a more
restricted oracle access for online submodular welfare maximization. We call it marginal
oracle, that on the arrival of an online vertex v, the algorithm can only query the value of
wu(S) for S ⊆ Su(v) ∪ {v}, where Su(v) is the current matched vertex set to u. Based on
our discoveries in this paper, we make the following three conjectures for future work:

Online submodular welfare maximization with marginal oracles does not admit a 1 − 1/e

competitive algorithm.
AdWords with unknown budgets does not admit a 1 − 1/e competitive algorithm.
Online submodular welfare maximization admits a 0.5 + Ω(1) competitive algorithm.

All the three conjectures assume unlimited computational powers so that the third conjecture
does not violate the impossibility result of [20]. Observe that if the second conjecture holds,
it automatically confirms the first conjecture, and implies a price of budget-obliviousness for
AdWords.

2 Preliminaries

We first give the formal definitions of Perturbed-Ranking and Perturbed-Balance for the
vertex-weighted online bipartite matching problem and then discuss their extensions to the
fractional AdWords problem. Both algorithms depends on a perturbation function.
▶ Definition 4 (Perturbation Function). A perturbation function is a non-increasing and right
continuous function f(x) : [0, 1] → [0, 1].

2.1 Vertex-weighted
Given a perturbation function f , the two algorithms are defined as below. Observe that
Perturbed-Ranking is a randomized algorithm and Perturbed-Balance is a deterministic
algorithm.
▶ Definition 5 (Perturbed-Ranking [1]). Sample a rank yu for each offline vertex u ∈ L

independently from a uniform distribution on [0, 1]. On the arrival of an online vertex v, we
match v to the unmatched neighbor u with maximum perturbed weight f(yu) · wu.
▶ Definition 6 (Perturbed-Balance). On the arrival time of an online vertex v, we continuously
match v to the offline neighbor u with maximum perturbed weight f(xu) · wu, where xu is the
current matched portion of u.

We remark that in the context of Perturbed-Ranking, a perturbation function can be
interpreted as an alternative representation of a [0, 1]-bounded random variable, in which
f(x) corresponds to the value of a quantile x. Moreover, the right continuity is necessary for
the Perturbed-Balance algorithm to be well-defined.
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2.2 AdWords
In Section 4, we shall work on the fractional version of AdWords (and its variant) that
is (slightly) more relaxed than the AdWords problem with small bid assumption. See e.g.
Udwani [27] for a more detailed discussion.

Fractional AdWords. The fractional AdWords problem allows each edge (u, v) to be
fractionally matched by an amount of xuv ∈ [0, 1], as long as the total matched portion of
each online vertex v is no more than a unit, i.e.,

∑
u xuv ≤ 1.

Consider the following generalizations of Perturbed-Ranking and Perturbed-Balance for
the fractional AdWords problem:
▶ Definition 7 (Perturbed-Ranking [28, 27]). Sample a rank yu for each offline vertex u ∈ L

independently from a uniform distribution on [0, 1]. On the arrival of an online vertex v, we
continuously match v to the neighbor u with maximum perturbed weight f(yu) · wuv, among
those neighbors whose budgets have not been exhausted yet.
▶ Definition 8 (Perturbed-Balance (a.k.a. MSVV [25])). On the arrival time of an online
vertex v, we continuously match v to the offline neighbor u with maximum perturbed weight
f(xu/Bu) · wuv, where xu is the current used budget of u.

3 Vertex-Weighted

In this section, we consider vertex-weighted online bipartite matching. We prove that to
achieve the optimal competitive ratio of Γ = 1 − 1/e, the canonical choice of the perturbation
function f(x) = 1 − ex−1 is unique (up to a scale factor).

Our result holds for both Perturbed-Ranking and Perturbed-Balance. Indeed, we establish
a dominance of Perturbed-Balance over Perturbed-Ranking in terms of worst-case competitive
ratio.
▶ Lemma 9. For any perturbation function f , the competitive ratio of Perturbed-Ranking
is at most the competitive ratio of Perturbed-Balance for vertex-weighted online bipartite
matching.

We sketch our proof below and provide the detailed proof in the full version.

Proof Sketch. Given an arbitrary instance G = (L ∪ R, E, w), we construct an instance
G′ so that the competitive ratio of Perturbed-Balance for G and the competitive ratio of
Perturbed-Ranking for G′ are approximately the same.

For each offline vertex u ∈ L, create N duplicates {u(i)}N
i=1 in G′ and with weights

wu(i) = wu.
For each online vertex v ∈ R, create N duplicates {v(i)}N

i=1 in G′ that arrive in a sequence.
For each (u, v) ∈ E, let there be a complete bipartite graph between {u(i)} and {v(i)} in
G′.

Now, we consider the behavior of Perturbed-Ranking on G′. Intuitively, although the ranks
are drawn independently for each offline vertex, the set of N ranks of {u(i)}N

i=1 should be
“close” to

{ 1
N , 2

N , . . . , 1
}

with high probability when N is sufficiently large. Formally, we
prove the following mathematical fact in the full version.

▶ Lemma 10. Let x1, . . . , xn be i.i.d. random variables sampled from [0, 1] uniformly. Let yi

be the i-th order statistics of {x1, . . . , xn}, for i = 1, . . . , n. Then for any parameter ε with
4n−1/4 < ε < 1, we have

Pr
x1,...,xn

[∣∣∣∣yi − i

n

∣∣∣∣ ≤ ε, ∀i ∈ [n]
]

≥ 1 − 2ne−
√

n/6. (3.1)
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For now, we assume the set of ranks of {u(i)} is { 1
N , 2

N , . . . , 1} for each vertex u. Then,
upon the arrival of {v(i)}, we are basically running a discretized version of the Perturbed-
Balance algorithm, with a step size of 1

N . To formalize this intuition, we can introduce
a family of ε-approximate Perturbed-Balance algorithms that approaches the behavior of
Perturbed-Balance when ε → 0. Moreover, we prove that the Perturbed-Ranking algorithm
can be interpreted as an ε-approximate Perturbed-Balance algorithm when the ranks of
{u(i)} behave nicely (which is of high probability). Finally, we conclude the proof of the
lemma by letting N go to infinity. The detail is provided in the full version. ◀

Equipped with the above lemma, we hereafter focus on the easy-to-analyze Perturbed-
Balance algorithm, since it is deterministic while Perturbed-Ranking is randomized.

Our main construction is a family of instances that strongly restricts the shape of the
perturbation function. Naturally, our construction is built upon the classical upper triangle
graph that gives the tight 1 − 1/e competitive ratio for unweighted online bipartite matching.
On the other hand, our construction consists of a few novel gadgets that might be useful for
other weighted online matching problems. The following lemma also serves as a stepping
stone of our result for the AdWords with unknown budget problem in Section 4.

▶ Lemma 11. If the Perturbed-Balance algorithm achieves a competitive ratio of Γ for
vertex-weighted online bipartite matching, then the perturbation function f satisfies the
following:

(
β + 1 − eβ−1 − Γ

)
· f(α) ≥ (1 − (1 − Γ) · eα) ·

∫ β

0
f(x)dx, ∀α, β ∈ [0, 1]. (3.2)

We defer its proof till the end of the section and proceed by first proving our main
theorem.

▶ Theorem 1. The perturbation function f(x) = 1 − ex−1 is unique (up to a scale factor)
for Perturbed-Ranking and Perturbed-Balance to achieve the optimal competitive ratio of
1 − 1/e for vertex-weighted online bipartite matching.

Proof. By Lemma 9, it suffices to prove the theorem for Perturbed-Balance. By Lemma 11
with Γ = 1 − 1/e, the perturbation function f(x) satisfies the following:

f(α)
1 − eα−1 ≥

∫ β

0 f(x)dx

β − eβ−1 + e−1 , ∀α, β ∈ (0, 1).

Let M
def== infα∈(0,1)

f(α)
1−eα−1 . We must then have

f(α) ≥ M(1 − eα−1), ∀α ∈ [0, 1], (3.3)∫ β

0
f(x)dx ≤ M(β − eβ−1 + e−1), ∀β ∈ [0, 1]. (3.4)

Taking the integral of f(x) and applying (3.3), we have∫ β

0
f(x)dx ≥ M

∫ β

0
(1 − ex−1)dx = M(β − eβ−1 + e−1).

Together with (3.4), we conclude that f(x) = M(1 − ex−1) for all x ∈ [0, 1] according
to the right-continuity of function f . Specifically, if there exists an x∗ ∈ [0, 1), that
f(x∗) = M(1 − ex∗−1) + ε for some ε > 0, then there exists a sufficiently small δ > 0 such
that for any x ∈ [x∗, x∗ + δ], f(x) ≥ M(1 − ex−1) + ε

2 . Then we can see by (3.3) that
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∫ 1

0
f(x)dx ≥

∫ 1

0

(
M(1 − ex−1) + 1[x∗ ≤ x ≤ x∗ + δ] · ε

2

)
dx = M

e
+ εδ

2 ,

which violates the statement of (3.4),
∫ 1

0 f(x)dx ≤ M
e . Therefore, ∀x ∈ [0, 1), f(x) =

M(1 − ex−1). Also, for f(1), note that f(x) is decreasing, so f(1) ≤ limx→1− f(x) = 0. Then
f(1) = 0.

This shows that ∀x ∈ [0, 1], f(x) = M(1−ex−1), concluding the proof of the theorem. ◀

3.1 Proof of Lemma 11
Fix α, β ∈ [0, 1]. Let n, m be sufficiently large numbers. Refer to Figure 3.1 for our instance.

Offline Vertices

Onine Vertices

U1,1
βeαn Vertices

Weight = f(β/m)

V2,1
βn Vertices

V1,1
β(eα-1)n+1 

Vertices

...

U1,m
βeαn Vertices
Weight = f(β)

V2,m
βn Vertices

V1,m
β(eα-1)n+1 

Vertices

m Groups

U2,1
n Vertices

Weight = f(α)

U2,m
n Vertices

Weight = f(α)

...
V3,1

n Vertices

V3,m
n Vertices

V1 U1 V2 U2 V3

Figure 3.1 Instance 1.

Our construction consists of m groups of vertices, and each group consists of 5 parts. We
use V1,i, V2,i, V3,i to denote the three online parts of group i and U1,i, U2,i to denote the two
offline parts of group i. Let Vj = ∪i∈mVj,i for j ∈ {1, 2, 3} and Uj = ∪i∈mUj,i for j ∈ {1, 2}.
We first define the vertices of the graph: for each i ≤ m,

U1,i consists of (βeαn + 1) offline vertices2 with the same weight of f( i
m · β).

U2,i consists of n offline vertices with the same weight of f(α).
V1,i, V2,i, V3,i consist of β(eα − 1)n, βn, n online vertices, respectively.

The arrival order of the vertices is the following:

V1,1 → V1,2 → · · · → V1,m → V2,1 → V2,2 → · · · → V2,m → V3,1 → V3,2 → · · · → V3,m.

Next, we define the edges of the graph:
V1,i and U1,i are connected as an upper triangle. I.e., the j-th vertex of V1,i is connected
to the k-th vertex of U1,i if and only in k ≥ j.
V2,i and the last βn vertices in U1,i are fully connected.
V2 and U2 are fully connected.

2 When βeαn is a fraction, let there be ⌈βeαn⌉ vertices. Since we are interested in the case when n, m are
sufficiently large, we safely omit the ceiling function for the simplicity of notation. We apply a similar
treatment for fractions throughout the paper.
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V3 and U2 are connected as a upper triangle. I.e., the j-th vertex of V3 is connected to
the k-th vertex of U2 if and only in k ≥ j.

We first calculate the optimum matching of the graph. That is, matching together (V3, U2)
and (V1 ∪ V2, U1). Therefore, we have

OPT = nm · f(α)︸ ︷︷ ︸
(V3,U2)

+
m∑

i=1
βeαn · f

(
i

m
· β

)
︸ ︷︷ ︸

(V1∪V2,U1)

= nm ·

(
f(α) + eα

∫ β

0
f(x)dx + o(1)

)
, (3.5)

where the second equality holds when m goes to infinity.
Next, we analyze the the performance of Perturbed-Balance. We split the whole instance

into three stages, corresponding to the arrivals of V1, V2, V3 respectively.

First stage (V1). Upon the arrival of each vertex in V1, it matches uniformly to its
neighbours in U1. The behavior of Perturbed-Balance is the same for different groups. We
analyze the matched portion of the last βn vertices of each group after the first stage:

xu = 1
βeαn

+ 1
βeαn − 1 + · · · + 1

βn
= ln

(
βeαn

βn

)
+ o(1) = α + o(1),

where the equality holds when n goes to infinity.

Second Stage (V2). Upon the arrival of each vertex v of V2,i, it will be weighing the
perturbed weights from U1,i and U2:

f(xu1) · wu1 = f(α + o(1)) · f

(
i

m

)
, for u1 ∈ U1,i ∩ N(v),

and f(xu2) · wu2 ≥ f

(
i

m

)
· f(α), for u2 ∈ U2.

Notice that the perturbed weights from U2 is always larger than the perturbed weights from
U1,i. We claim that in the second stage, all vertices of V2 would be fully matched to U2 by
Perturbed-Balance. Thus, at the end of the second stage, all vertices in U2 have matched
portion β.

Third stage (V3). The behavior of the last stage is similar to the behavior of the first stage,
except that all vertices in U2 start with a matched portion of β. After the arrival of the k-th
vertex in V3, the matched portion of its neighbor equals

β + 1
nm

+ 1
nm − 1 + · · · + 1

nm − k + 1 ≥ β + ln
(

nm

nm − k + 1

)
.

Consequently, only the first (1 − eβ−1)nm + 1 vertices from V3 can be matched. For the rest
of the online vertices, all their neighbors would be fully matched before their arrivals.

To sum up, we calculate the performance of Perturbed-Balance.

ALG ≤
m∑

i=1
(β(eα − 1)n + 1) · f

(
i

m
· β

)
︸ ︷︷ ︸

(V1,U1)

+ βnm · f(α)︸ ︷︷ ︸
(V2,U2)

+
(
(1 − eβ−1)nm + 1

)
· f(α)︸ ︷︷ ︸

(V3,U2)

= nm ·

(
(eα − 1)

∫ β

0
f(x)dx + (β + 1 − eβ−1) · f(α) + o(1)

)
. (3.6)
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Together with (3.5) and the assumption that Perturbed-Balance is Γ-competitive, we
conclude the proof by letting n, m → ∞:

(eα − 1)
∫ β

0
f(x)dx + (β + 1 − eβ−1) · f(α) ≥ Γ ·

(
f(α) + eα

∫ β

0
f(x)dx

)

⇐⇒
(
β + 1 − eβ−1 − Γ

)
· f(α) ≥ (1 − (1 − Γ) · eα) ·

∫ β

0
f(x)dx, ∀α, β ∈ [0, 1].

4 AdWords with Unknown Budget

In this section, we prove Theorem 2.

▶ Theorem 2. The competitive ratio of Perturbed-Ranking algorithm with any perturbation
function f(x) on fractional AdWords is at most 1 − 1/e − 0.0003. In particular, using the
canonical function f(x) = 1 − ex−1, the competitive ratio is at most 0.624.

We first construct a hard instance for which Perturbed-Ranking with f(x) = 1 − ex−1

only achieves a competitive ratio of 0.624. Recall that the vertex-weighted online bipartite
matching problem is a special case of the AdWords problem. Together with Theorem 1,
it should be convincing that Perturbed-Ranking (with any perturbation function) cannot
achieve the prominent competitive ratio of 1 − 1/e.

Our construction for general perturbation functions has a similar structure as the con-
struction for the canonical perturbation function. On the other hand, general perturbation
functions introduce extra technical difficulties to our argument that we shall discuss soon.

4.1 Canonical Perturbation Function f(x) = 1 − ex−1

We prove the result by the following lemma.

▶ Lemma 12. If Perturbed-Ranking with perturbation function f(x) = 1 − ex−1 achieves a
competitive ratio of Γ on AdWords, then

(1 − Γ) · f(α) ≥ (Γ − α) ·
∫ α

0
f(x)dx + Γ ·

∫ 1

α

f(x)dx, ∀α ∈ [0, 1]. (4.1)

Proof. Fix α ∈ [0, 1]. Let n be a sufficiently large number. Refer to Figure 4.1 for our
instance.

Our construction consists of n + 1 offline vertices u0, u1, . . . , un and 2n online vertices
v1, v2, . . . , v2n. The budgets of u1, u2, . . . , un are all 1 and the budget of u0 is unlimited. The
online vertices arrive in ascending order of their indices, i.e. vi is the i-th arriving online
vertex. Next, we define the edges of the graph:

v1, v2, . . . , vn are connected to u0, with edge weights b1, b2, . . . , bn respectively.
v1, v2, . . . , v2n are fully connected to u1, u2, . . . , un with edge weights 1.

Before we define the weights, we make an extra assumption to simplify our analysis:

∀1 ≤ i ≤ n, the rank of ui is yi = i/n.

Indeed, by Lemma 10, we would have that the set of ranks {y1, . . . , yn} are “close” to
{ 1

n , 2
n , · · · , 1}. Moreover, all vertices u1, . . . , un are symmetric in our graph. This assumption

would significantly simplify our analysis and can be removed by a more conservative choice
of the edge weights. We omit the tedious details for simplicity.
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Offline Vertices

Onine Vertices

b1

bn

1

1

1

1
n Vertices n Verticesn Vertices

Budget = 1

Budget = +∞
u0

u1, u2, ..., unv1, v2, ..., vn vn+1, vn+2, ..., v2n

Figure 4.1 Instance 2.

Let bi = f(i/n)
f(α) . The offline optimum is to match v1, v2, . . . , vn to u0 and to match

vn+1, vn+2, . . . , v2n to u1, u2, . . . , un, respectively. Consequently,

OPT = n +
n∑

i=1
bi = n ·

(
1 + 1

f(α)

∫ 1

0
f(x)dx + o(1)

)
.

With the assumption, the only randomness of Perturbed-Ranking is the rank y0 of u0.

Case 1. (y0 ≥ α) For each online vertex vi, the perturbed weight of (u0, vi) is

bi · f(y0) = f(y0)
f(α) · f

(
i

n

)
≤ f

(
i

n

)
,

while the perturbed weight of (ui, vi) is f(yi) = f
(

i
n

)
. Therefore, Perturbed-Ranking matches

(ui, vi) for all 1 ≤ i ≤ n and we have ALG(y0) = n.

Case 2. (y0 < α) In this case, some of the v1, v2, . . . , vn would be matched to u0. However,
the number of vertices matched to u0 should be no more than αn. The reason is as follows.
For each online vertex vi, suppose the number of previous vertices matched to u0 is larger
than αn, then the perturbed weight of (u0, vi) is f(y0)

f(α) · f
(

i
n

)
, while the perturbed weight of

(ui−αn, vi) is f
(

i
n − α

)
. Notice that f(x) = 1 − ex−1 is a log-concave function. Hence,

f(y0)
f(α) · f

(
i

n

)
≤ f(0)

f(α) · f

(
i

n

)
≤ f

(
i

n
− α

)
.

In other words, vi will not match u0. This concludes the proof that the number of vertices
matched to u0 is no more than αn. Notice that bi’s are non-increasing, we have

ALG(y0) ≤
αn∑
i=1

bi + n =
αn∑
i=1

f(i/n)
f(α) + n = n ·

(
1

f(α)

∫ α

0
f(x)dx + 1 + o(1)

)
.

Putting the two cases together and assuming that Perturbed-Ranking algorithm is
Γ-competitive, we conclude the proof of the lemma.

Γ ≤ E[ALG]
OPT =

α · n ·
(

1
f(α)

∫ α

0 f(x)dx + 1 + o(1)
)

+ (1 − α) · n

n ·
(

1 + 1
f(α)

∫ 1
0 f(x)dx + o(1)

) =
α ·
∫ α

0 f(x)dx + f(α)∫ 1
0 f(x)dx + f(α)

⇐⇒ (1 − Γ) · f(α) ≥ (Γ − α) ·
∫ α

0
f(x)dx + Γ ·

∫ 1

α

f(x)dx. ◀
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▶ Corollary 13. Perturbed-Ranking with f(x) = 1 − ex−1 is at most 0.624-competitive for
AdWords.

Proof. Plugging in α = 0.1 and f(x) = 1 − ex−1 in equation (4.1), we have

Γ ≤
α ·
∫ α

0 f(x)dx + f(α)∫ 1
0 f(x)dx + f(α)

=
0.1 ·

(
0.1 − e−0.9 + e−1)+ 1 − e−0.9

e−1 + 1 − e−0.9 < 0.624 . ◀

4.2 General Perturbation Functions
Before we delve into the detailed proof, we explain the technical difficulty introduced by
general perturbation functions. Our plan is to generalize Lemma 12: if we are able to prove
equation (4.1) for an arbitrary function f , we would then conclude our theorem by combining
it with equation (3.2).

However, our argument of the second case (y0 < α) of Lemma 12 crucially relies on the
specific formula of f(x). I.e., to upper bound the performance of Perturbed-Ranking, we use
the fact that f(0) · f(x) ≤ f(α) · f(x − α).

For a general perturbation function f(x), if we stick to the same property that no more
than αn vertices can be matched to u0 when y0 < α, we could achieve it by setting the
weights bi to be smaller. Indeed, if f

(
i
n − α

)
≥ f(0) · bi holds, the previous analysis can be

easily generalized. Hence, a natural attempt is to modify the instance as the following.

bi =
{ 1

f(α) · f
(

i
n

)
i < αn,

min
{

1
f(α) · f

(
i
n

)
, 1

f(0) · f
(

i
n − α

)}
i ≥ αn.

Unfortunately, this modification is not strong enough to give a constant strictly smaller
than 1 − 1/e. The reason is that the function f may have a steep drop in the neighborhood
of 0, which leads to negligible bi’s in the above construction.

On the other hand, the failure of the analysis comes from our coarse and brutal relaxation
by establishing a single upper bound for all y0 < α. For instance, if the function steeply
drops at some β ∈ [0, α], then we could resolve the issue by considering two cases of y0 < β

or y0 ∈ [β, α). Formally, we prove the following lemma that is slightly weaker than (4.1).

▶ Lemma 14. If Perturbed-Ranking with perturbation function f(x) achieves a competitive
ratio of Γ on AdWords, then

(1 − Γ) · f(α) ≥ (Γ − α) ·
∫ α

0
f(x)dx + (Γ − β) ·

∫ 1

α

min
{

f(x), f(α)
f(β)f(x − α)

}
dx,

∀α, β ∈ [0, 1], α ≥ β. (4.2)

Proof. We apply the same construction as in Lemma 12 and make the same assumption
that yi = i

n for the simplicity of presentation. We modify the instance by setting the weights
bi differently:

∀1 ≤ i ≤ n, bi =
{ 1

f(α) · f
(

i
n

)
i < αn,

min
{

1
f(α) · f

(
i
n

)
, 1

f(β) · f
(

i
n − α

)}
i ≥ αn.

The optimal solution equals

OPT = n+
n∑

i=1
bi = n·

(
1 + 1

f(α)

∫ α

0
f(x)dx +

∫ 1

α

min
{

f(x)
f(α) ,

f(x − α)
f(β)

}
dx + o(1)

)
. (4.3)

Next, we consider the performance of Perturbed-Ranking depending on the value of y0.
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Case 1. (y0 < β) We use OPT as a trivial upper bound of ALG, i.e., ALG(y0) ≤ OPT.

Case 2. (y0 ≥ α) For each online vertex vi, the perturbed weight of (u0, vi) is

bi · f(y0) ≤ f(y0)
f(α) · f

(
i

n

)
≤ f

(
i

n

)
,

while the perturbed weight of (ui, vi) is f(yi) = f
(

i
n

)
. Therefore, Perturbed-Ranking matches

(ui, vi) for all 1 ≤ i ≤ n and we have ALG(y0) = n.

Case 3. (y0 ∈ [β, α)) We prove that the number of vertices matched to u0 is no more
than αn. This can be similarly argued as follows. For each online vertex i (i > αn),
suppose the number of vertices matched to u0 is already αn, the perturbed weight for u0
is f(y0) · bi ≤ f(y0)

f(β) · f
(

i
n − α

)
, while the perturbed weight for ui−αn is f

(
i
n − α

)
. So that

f
(

i
n − α

)
≥ f(y0) · bi and thus vi will not choose u0 again. Therefore, as the number of

vertices matched to u0 is no more than αn, we have

ALG ≤ n +
αn∑
i=1

bi = n ·
(

1 + 1
f(α)

∫ α

0
f(x)dx + o(1)

)
.

Taking expectation over the randomness of y0, we conclude that

E[ALG] ≤ n ·
(

α − β

f(α)

∫ α

0
f(x)dx + 1 − β + o(1)

)
+ β · OPT. (4.4)

Finally, we conclude the proof by plugging in (4.3) and (4.4) to E[ALG] ≥ Γ · OPT and
letting n goes to infinity. ◀

Recall that the vertex-weighted online bipartite matching problem is a special case
of AdWords. We conclude the proof of Theorem 2 by Lemma 11, 14 and the following
mathematical fact. We provide the proof of the following lemma in the full version.

▶ Lemma 15. If a perturbation function f and Γ > 0 satisfy the following conditions:

(
α + 1 − eα−1 − Γ

)
· f(β) ≥

(
1 − (1 − Γ) · eβ

)
·
∫ α

0
f(x)dx, ∀α, β ∈ [0, 1], (4.5)

(1 − Γ)f(α) ≥ (Γ − α)
∫ α

0
f(x)dx + (Γ − β)

∫ 1

α

min
{

f(x), f(α)
f(β)f(x − α)

}
dx,

∀α, β ∈ [0, 1], α ≥ β,

(4.6)

then Γ < 1 − 1/e − 0.0003.
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Abstract
Phase estimation, due to Kitaev [arXiv’95], is one of the most fundamental subroutines in quantum
computing, used in Shor’s factoring algorithm, optimization algorithms, quantum chemistry al-
gorithms, and many others. In the basic scenario, one is given black-box access to a unitary U , and an
eigenstate |ψ⟩ of U with unknown eigenvalue eiθ, and the task is to estimate the eigenphase θ within
±δ, with high probability. The repeated application of U and U−1 is typically the most expensive
part of phase estimation, so for us the cost of an algorithm will be that number of applications.

Motivated by the “guided Hamiltonian problem” in quantum chemistry, we tightly characterize
the cost of several variants of phase estimation where we are no longer given an arbitrary eigenstate,
but are required to estimate the maximum eigenphase of U , aided by advice in the form of states (or
a unitary preparing those states) which are promised to have at least a certain overlap γ with the
top eigenspace. We give algorithms and matching lower bounds (up to logarithmic factors) for all
ranges of parameters. We show a crossover point below which advice is not helpful: o(1/γ2) copies of
the advice state (or o(1/γ) applications of an advice-preparing unitary) are not significantly better
than having no advice at all. We also show that having knowledge of the eigenbasis of U does not
significantly reduce cost. Our upper bounds use the subroutine of generalized maximum-finding of
van Apeldoorn, Gilyén, Gribling, and de Wolf [Quantum’20], the state-based Hamiltonian simulation
of Lloyd, Mohseni, and Rebentrost [Nature Physics’13], and several other techniques. Our lower
bounds follow by reductions from a fractional version of the Boolean OR function with advice, which
we lower bound by a simple modification of the adversary method of Ambainis [JCSS’02]. As an
immediate consequence we also obtain a lower bound on the complexity of the Unitary recurrence
time problem, matching an upper bound of She and Yuen [ITCS’23] and resolving an open question
posed by them.

Lastly, we study how efficiently one can reduce the error probability in the basic phase-estimation
scenario. We show that an algorithm solving phase estimation to precision δ with error probability
at most ε must have cost Ω

(
1
δ

log 1
ϵ

)
, matching the obvious way to error-reduce the basic constant-

error-probability phase estimation algorithm. This contrasts with some other scenarios in quantum
computing (e.g. search) where error-reduction costs only a factor O(

√
log(1/ϵ)). Our lower bound

technique uses a variant of the polynomial method with trigonometric polynomials.
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81:2 Tight Bounds for Quantum Phase Estimation and Related Problems

1 Introduction

1.1 Phase estimation
Kitaev [19] gave an elegant and efficient quantum algorithm for the task of phase estimation
nearly 30 years ago. The task is easy to state: given black-box access to a unitary and an
eigenstate, estimate the phase of the associated eigenvalue. Roughly speaking, the standard
algorithm for this task sets up a superposition involving many different powers of the unitary
to extract many different powers of the eigenvalue, and then uses a quantum Fourier transform
to turn that into an estimate of the eigenphase.1 Many of the most prominent quantum
algorithms can either be phrased as phase estimation, or use phase estimation as a crucial
subroutine. Some examples are Shor’s period-finding algorithm [30] as presented in [10];
approximate counting [6] can be done using phase estimation on the unitary of one iteration
of Grover’s search algorithm [16], which also recovers the O(

√
N) complexity for searching

an N -element unordered search space; the HHL algorithm for solving linear systems of
equations estimates eigenvalues in order to invert them [17]. Applications of phase estimation
in quantum chemistry are also very prominent, as discussed below.

More precisely, we are given black-box access to an N -dimensional unitary U (and a
controlled version thereof) and a state |ψ⟩ that satisfies U |ψ⟩ = eiθ|ψ⟩. Our goal is to output
(with probability at least 2/3) a θ̃ ∈ [0, 2π) such that |θ̃ − θ| is at most δ in R mod 2π. In
the basic scenario we are given access to one copy of |ψ⟩, and are allowed to apply U and
its inverse. Since the repeated applications of U and U−1 are typically the most expensive
parts of algorithms for phase estimation, the cost we wish to minimize is the number of
applications of U and U−1. We are additionally allowed arbitrary unitaries that do not
depend on U , at no cost. Kitaev’s algorithm has cost O(1/δ).

1.2 Phase estimation with advice
One of the core problems in quantum chemistry is the following: given a classical description
of some Hamiltonian H (for instance an “electronic structure” Hamiltonian in the form
of a small number of local terms), estimate its ground state energy, which is its smallest
eigenvalue. If H is normalized such that its eigenvalues are all in [0, 2π) and we define
the unitary U = eiH (which has the same eigenvectors as H, with an eigenvalue λ of H
becoming the eigenvalue eiλ for U), then finding the ground state energy of H is equivalent
to finding the smallest eigenphase of U . If we are additionally given a ground state |ψ⟩ (i.e.,
an eigenstate corresponding to the smallest eigenphase), then phase estimation is tailor-made
to estimate the ground state energy. However, in quantum chemistry it is typically hard to
prepare the ground state of H, or even something close to it. What can sometimes be done
is the preparation of some quantum state that has some non-negligible “overlap” γ with
the ground space, for instance the “Hartree-Fock state”. We will call such a state an advice
state. In the complexity-theoretic context, this problem of ground state estimation for a local
Hamiltonian given an advice state, is known as the “guided local Hamiltonian problem”,
and has received quite some attention recently [13, 8, 12, 32] because of its connections with
quantum chemistry as well as deep complexity questions such as the PCP conjecture. These
complexity-theoretic results typically focus on the BQP-completeness of certain special cases

1 An added advantage of the standard algorithm for phase estimation is that it can also work with a
quantum Fourier transform that is correct on average rather than in the worst case [23]. However, there
are also approaches to phase estimation that avoid the QFT altogether, see e.g. [28].
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of the guided local Hamiltonian problem, and don’t care about polynomial overheads of the
cost in the number of qubits logN and in the parameters δ and γ. In contrast, we care here
about getting essentially optimal bounds on the cost of phase estimation in various scenarios.

To be more precise, suppose our input unitary is U =
∑N−1

j=0 eiθj |uj⟩⟨uj | with each
θj ∈ [0, 2π). Let θmax = maxj∈{0,1,...,N−1} θj denote the maximum eigenphase, and let S
denote the space spanned by all eigenstates with eigenphase θmax, i.e., the “top eigenspace”.
Advice is given in the form of a state |α⟩ whose projection on S has squared norm at least γ2:
∥PS |α⟩∥2 ≥ γ2. Note that if S is spanned by a single eigenstate |umax⟩, then this condition
is the same as |⟨α|umax⟩| ≥ γ, which is why we call γ the overlap of the advice state with
the target eigenspace. The task maxQPEN,δ is to output, with probability at least 2/3, a
δ-precise (in R mod 2π) estimate of θmax.2

We will distinguish between the setting where the advice is given in the form of a number
of copies of the advice state |α⟩, or the potentially more powerful setting where we can apply
(multiple times) a unitary A that prepares |α⟩ from some easy-to-prepare initial state, say |0⟩.
We would have such a unitary A for instance if we have a procedure to prepare |α⟩ ourselves
in the lab. We can also distinguish between the situation where the eigenbasis |u0⟩, . . . , |uN ⟩
of U is known (say, the computational basis where |uj⟩ = |j⟩) and the potentially harder
situation where the eigenbasis is unknown. These two binary distinctions give us four different
settings. For each of these settings we determine essentially optimal bounds on the cost of
phase estimation, summarized in Table 1.

Table 1 Our results for the cost of maxQPEN,δ. We assume γ > 1/
√
N since a random state has

overlap 1/
√
N with the target eigenspace with high probability, and such a state can be prepared

at no cost. The “Basis” column indicates whether the eigenbasis of U is known; “Access to advice”
indicates whether we get copies of the advice state or a unitary to prepare it; “Number of accesses”
refers to the number of accesses to advice that we have. The last two columns show our bounds with
references to the lemmas where they are stated and proved. The Õ(·) in the upper-bound column
hides a factor logN for the odd-numbered rows, and log(1/γ) for the even-numbered rows.

Row Basis Access to advice Number of accesses Upper bound Lower bound

1 known state o
(

1
γ2

)
Õ

( √
N
δ

)
, Lemma 20 Ω

( √
N
δ

)
, Lemma 13

2 known state Ω
(

1
γ2

)
Õ

(
1

γδ

)
, Lemma 22 Ω

(
1

γδ

)
, Lemma 14

3 unknown state o
(

1
γ2

)
Õ

( √
N
δ

)
, Lemma 20 Ω

( √
N
δ

)
, Lemma 13

4 unknown state Ω
(

1
γ2

)
Õ

(
1

γδ

)
, Lemma 22 Ω

(
1

γδ

)
, Lemma 14

5 known unitary o
(

1
γ

)
Õ

( √
N
δ

)
, Lemma 20 Ω

( √
N
δ

)
, Lemma 15

6 known unitary Ω
(

1
γ

)
Õ

(
1

γδ

)
, Lemma 21 Ω

(
1

γδ

)
, Lemma 16

7 unknown unitary o
(

1
γ

)
Õ

( √
N
δ

)
, Lemma 20 Ω

( √
N
δ

)
, Lemma 15

8 unknown unitary Ω
(

1
γ

)
Õ

(
1

γδ

)
, Lemma 21 Ω

(
1

γδ

)
, Lemma 16

Let us highlight some interesting consequences of our results. First, a little bit of advice
is no better than no advice: the upper bounds in the odd-numbered rows of Table 1 are
actually obtained by algorithms that don’t use the given advice (o(1/γ2) copies of |α⟩ or
o(1/γ) applications of A and A−1) at all, yet their costs essentially match the lower bounds
for algorithms that use advice.

2 It doesn’t really matter, but we focus on the maximum rather than minimum eigenphase of U because
eigenphase 0 (i.e., eigenvalue 1) is a natural baseline, and we are looking for the eigenphase furthest
away from this baseline.

ESA 2023



81:4 Tight Bounds for Quantum Phase Estimation and Related Problems

We remark here that the same proofs yield the same asymptotic lower bounds for
algorithms with access to at most c/γ2 advice states for Theorem 12, Rows 1 and 3 of Table 1,
and for algorithms with access to at most c/γ advice unitaries for Rows 5 and 7 of Table 1,
where c is a suitably small constant. We chose to use o(·) to avoid clutter.

A second interesting consequence is that too much advice is no better than a moderate
amount of advice: the upper bounds in Rows 2 and 4 use O(1/γ2) advice states, and the
upper bounds in Rows 6 and 8 use O(1/γ) advice unitaries, and using more advice does not
reduce the cost further. Thirdly, it turns out that knowledge of the eigenbasis of U doesn’t
really help in reducing the cost: the costs in row 1 and row 3 are the same, and similarly for
rows 2 vs. 4, 5 vs. 7 and 6 vs. 8.

Our upper bounds use the subroutine of generalized maximum-finding of van Apeldoorn,
Gilyén, Gribling, and de Wolf [2] which allows us to find maximum values in the second
register of a two-register superposition even when the first of these two registers has an
unknown basis. We derive the upper bound of row 4 from the upper bound of row 8 by
using roughly 1/γ copies of |α⟩ to simulate one reflection around the state |α⟩ = A|0⟩, using
the techniques of Lloyd, Mohseni, and Rebentrost [24].3 Our lower bounds follow from
reductions from a fractional version of the Boolean OR function with advice. We show a
lower bound for this by a simple modification of the adversary method [1] taking into account
the input-dependent advice in the initial state.

Comparison with related work

Some of the results in our table were already (partially) known. A cost-Õ(
√
N/δ) algorithm

for the adviceless setting with unknown eigenbasis (implying the upper bounds of rows 1, 3, 5,
7) was originally due to Poulin and Wocjan [27], and subsequently improved in the log-factors
by van Apeldoorn et al. [2]; the latter algorithm is basically our proof of Lemma 20. Lin
and Tong [21] (improving upon [11]) studied the situation with an advice-preparing unitary.
Their setting is slightly different from ours, they focus on preparing the ground state4 of a
given Hamiltonian without a known bound on its spectrum, but [21, Theorem 8] implies a
cost-O(log(1/γ) log(1/δ) log log(1/δ)/γδ) algorithm for our row 8. Their follow-up paper [22]
further reduces the number of auxiliary qubits with a view to near-term implementation, but
does not reduce the cost further. Our cost-O(log(1/γ)/γδ) algorithm is slightly better in the
log-factors than theirs, and uses quite different techniques ([21] uses quantum singular value
transformation [15]).

On the lower-bound side, Ω(1/δ) for the cost of phase estimation has long been known to
hold when the success probability is required to be a constant, this follows for instance from
the approximate counting lower bound of Nayak and Wu [26] (see also [4]). Lin and Tong [21,
Theorem 10] proved lower bounds of Ω(1/γ) and Ω(1/δ) on the cost for the setting with
known eigenbasis and advice unitary (our row 6, and hence also row 8). This is subsumed by
our stronger (and essentially optimal) Ω(1/γδ) lower bound in row 6. As far as we are aware,
ours is the first paper to systematically tie together these different results and to complete
the table with tight upper and lower bounds for the cost in all 8 cases.

3 We only stated the cost (number of applications of U and U−1) of our algorithms here in the upper-bound
column of Table 1. However, one can verify that the gate-complexities of our algorithms are only worse
by log-factors: they use three main subroutines, all of which have only small overheads in gate-complexity.
These subroutines are basic quantum phase estimation [19], generalized maximum-finding [2], and the
simulation of a unitary reflecting about the state |α⟩ given a small number of copies of |α⟩.

4 Because generalized maximum-finding (Lemma 17) actually outputs a state in addition to an estimate,
our algorithms can be modified to also output a state that is close to the top eigenspace of U .
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Let us also mention some recent work that is not directly covered by our results. First,
lower bounds for the slightly unusual small-success-probability regime were recently studied
by Lin [20]. Second, there has been work to make phase estimation more efficient in the
important special case where the unitary U = eiH is induced by a Hamiltonian H given
classically as the sum of relatively simple terms, when the cost of phase estimation interacts
with the cost of Hamiltonian simulation. See for instance the recent paper by Wan, Berta,
and Campbell [31] and references therein.

Application

She and Yuen [29, Theorems 1.6 and 1.7] studied the (t, δ)-Unitary recurrence time problem,
which is to distinguish whether an input unitary U satisfies U t = I or ∥U t −I∥ ≥ δ, promised
that one of these is the case (see Definition 7). They proved non-matching upper and lower
bounds for the cost of quantum algorithms for this problem (see Theorem 8 in this paper).
As an immediate application of our lower bound for fractional OR with advice, we also obtain
improved lower bounds for the unitary recurrence time problem that match the upper bound
of She and Yuen and answer one of their open problems [29, Section 2].

▶ Theorem 1 (Lower bound for Unitary recurrence time). Any quantum algorithm solving the
(t, δ)-recurrence time problem for N -dimensional unitaries has cost Ω(t

√
N/δ).

Interestingly, our lower bound uses the adversary method as opposed to their usage of the
polynomial method.

1.3 Phase estimation with small error probability

For our results in this subsection we revert to the original scenario of phase estimation,
where an algorithm is given the actual eigenstate |ψ⟩ as input and the goal is to estimate its
eigenphase θ. However, we now consider the regime where we want small error probability ε
rather than constant error probability 1/3. Let QPEN,δ,ε denote the task of computing, with
error probability ≤ ε, a δ-approximation of θ. By repeating Kitaev’s O(1/δ)-cost phase
estimation algorithm O(log(1/ε)) times and taking the median of the answers, we have the
following ε-dependent upper bound.

▶ Theorem 2 (Kitaev + standard error-reduction). For all integers N ≥ 2 and all ε ∈
(0, 1/2), δ ∈ [0, 2π), there exists an algorithm that solves QPEN,δ,ε with cost O

( 1
δ log 1

ε

)
.

Grover’s algorithm [16] can compute the ORN function with error probability ≤ 1/3
using O(

√
N) queries to its N input bits. Interestingly, there exists an ε-error quantum

algorithm for ORN with only O(
√
N log(1/ε)) queries, which is asymptotically optimal [7],

and similarly one can reduce error from 1/3 to ε for all symmetric Boolean functions at
the expense of only a factor

√
log(1/ε) in the query complexity [33]. This is a speed-up

over the naive O(log(1/ε)) multiplicative overhead. Since optimal quantum algorithms with
error probability 1/3 for ORN and for all symmetric functions can be derived from phase
estimation, one may ask if one can achieve such an efficient error-reduction for quantum
phase estimation as well: is there an algorithm for QPEN,δ,ε of cost O

(
1
δ

√
log(1/ε)

)
? We

answer this in the negative, showing Theorem 2 is tight.

ESA 2023
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▶ Theorem 3. For integers N ≥ 2 and ε, δ ∈ (0, 1/2),5 every algorithm that solves QPEN,δ,ε

has cost Ω
( 1

δ log 1
ε

)
.

In particular, this means that the optimal complexity of ORN with small error probability ε
of [7] cannot be derived from a phase estimation routine, in contrast to the case of ORN

(and search) with constant error probability. To show Theorem 3 we first argue that a
cost-C algorithm for QPEN,δ,ε gives us a cost-C algorithm that distinguishes U = I versus
U = I − (1 − eiθ)|0⟩⟨0| where θ /∈ [−3δ, 3δ] mod 2π. We then note that the acceptance
probability of such an algorithm can be written as a degree-2C trigonometric polynomial
in θ, and invoke a known upper bound on the growth of such trigonometric polynomials in
order to lower bound their degree.

2 Preliminaries

We state the required preliminaries in this section. All logarithms are taken base 2. For a
positive integer N , U(N) denotes the space of N -dimensional unitaries, and I denote the
N -dimensional Identity matrix (we drop the subscript if the dimension is clear from context).

For a positive integer N ≥ 2 and a value θ ∈ [0, 2π), define the N -dimensional unitary
Uθ as Uθ = I − (1 − eiθ)|0⟩⟨0|. In other words, Uθ is the diagonal matrix with all 1’s except
the first entry, which is eiθ. For an integer j ∈ {0, 1, . . . , N − 1} and δ ∈ [0, 2π), define
Mj,δ = I − (1 − eiδ)|j⟩⟨j|.

2.1 Model of computation
Here we give a description of our model of computation for all tasks considered in this paper.
All problems considered in this paper have the following properties:

Input: An N -dimensional unitary U . We have access to the input as described below.
State space: The state space of an algorithm comprises two registers: the first register
is N -dimensional, and the second register is an arbitrarily large workspace.
Access to input and allowed operations: An algorithm A may apply U and U−1

to the first register, and unitaries independent of U to the whole space. It performs a
POVM at the end to determine the classical output.
Cost of an algorithm: Total number of applications of U and U−1.

Depending on the specific problem under consideration, the following properties are variable.
Initial state: The initial state is assumed to be |0⟩|0⟩ unless mentioned otherwise.
Input promise: The subset of U(N) (possibly the full set) from which the input is
taken.
Output: The output requirement.
Advice: We may be given access to a specific number of “advice states” |α⟩, or access
to a specific number of applications of a unitary A that prepares an advice state (e.g.,
A|0⟩ = |α⟩).

2.2 Problems of interest
We list our problems of interest here. All problems fit in the framework of the previous
subsection, so we skip descriptions of the input, access to the input and allowed operations,
and the workspace.

5 We require δ < 2π/5 for our proof of Claim 23 to work. This requirement can be strengthened a little
to δ < 2π/3, but we state our theorem with δ < 1/2 for ease of notation.
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▶ Definition 4 (Phase Estimation). Let N ≥ 2 be an integer and ε, δ > 0. The task QPEN,δ,ε

is:
Advice: We are given a single state |ψ⟩ (in other words, our starting state is |ψ⟩|0⟩) with
the promise that U |ψ⟩ = eiθ|ψ⟩.
Output: With probability at least 1 − ε, output θ̃ ∈ [0, 2π) such that |θ̃ − θ| ≤ δ mod 2π.

▶ Definition 5. Let N ≥ 2 be an integer and ε, δ ∈ (0, 1). The task distN,δ,ε is:
Input promise: U ∈ {I, {Uθ : θ /∈ [δ, δ] mod 2π}}.
Output: With probability at least 1 − ε, output 1 if U = I, and output 0 otherwise.

We next define the natural variant of phase estimation that we consider when an algorithm
need not be given a state from the target eigenspace.

▶ Definition 6 (Maximum phase estimation). Let N ≥ 2 be an integer and δ > 0. The task
maxQPEN,δ is:

Input promise: We consider two cases: one where the eigenbasis of U is known, and
the other where it is unknown. In the former case, we may assume U =

∑N−1
j=0 eiθj |j⟩⟨j|.

Define θmax = maxj∈{0,1,...,N−1} θj ∈ [0, 2π).
Advice: We consider two cases:

In one case we are given access to advice in the form of a state |α⟩ such that
∥PS |α⟩∥2 ≥ γ2, where PS denotes the projection on S, the space of all eigenstates
with eigenphase θmax. If S is spanned by one |umax⟩, this requirement is the same as
|⟨α|umax⟩| ≥ γ.
In the other case, we have black-box access to a unitary A that prepares such a state |α⟩.
We can apply A and A−1. As before, γ is the overlap of |α⟩ with the target eigenspace.

Number of accesses to advice: We either have ‘few’ accesses to advice as defined
above (o(1/γ2) advice states or o(1/γ) advice unitaries), or ‘many’ accesses to advice
(Ω(1/γ2) advice states or Ω(1/γ) advice unitaries).
Output: With probability at least 2/3, output a value in [θmax − δ, θmax + δ] mod 2π.

▶ Definition 7 (Unitary recurrence time, [29, Definition 1.5]). For integers N ≥ 2, t ≥ 1 and
δ ∈ (0, 1), the (t, δ)-recurrence time problem is:

Input promise: Either U = I, or ∥U t − I∥ ≥ δ in spectral norm.
Output: With probability at least 2/3: output 1 if U = I, and 0 otherwise.

The following are the non-matching upper and lower bounds for this problem of She and
Yuen [29].

▶ Theorem 8 ([29, Theorems 1.6 and 1.7]). Let δ ≤ 1
2π . Every quantum algorithm solving

the (t, δ)-recurrence time problem for d-dimensional unitaries has cost Ω
(

max
(
t/δ,

√
d
))

.
The (t, δ)-recurrence time problem can be solved with cost O(t

√
d/δ).

2.3 Trigonometric polynomials and their growth
▶ Definition 9 (Trigonometric Polynomials). A function p : R → is said to be a trigonometric
polynomial of degree d if there exist complex numbers {ak : k ∈ {−d, . . . , d}} such that for
all θ ∈ R,

p(θ) =
d∑

k=−d

ake
ikθ.

ESA 2023
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▶ Theorem 10 ([5, Theorem 5.1.2]). Let t be a degree-n real-valued trigonometric polynomial
and s ∈ (0, π/2] be such that µ({θ ∈ [−π, π) : |t(θ)| ≤ 1}) ≥ 2π − s, where µ denotes the
Lebesgue measure on R. Then, supx∈R |t(x)| ≤ exp(4ns).

3 Lower bounds for maximum phase estimation and Unitary
recurrence time

In this section we show lower bounds on the quantum complexity of maximum phase
estimation obtained by varying all its parameters (see Section 2.1 and Definition 6). In this
section and the next, we refer to the row numbers of Table 1 when stating and proving our
bounds.

Recall that for an integer j ∈ {0, 1, . . . , N − 1} and δ ∈ [0, 2π) we define Mj,δ = I − (1 −
eiδ)|j⟩⟨j|. Our lower bounds will be by reduction from the following “Fractional OR with
advice” problem, which fits in the framework of the model described in Section 2.1.

▶ Definition 11 (Fractional OR with advice). Let N ≥ 2 be integer, δ > 0. The task frORN,δ,t

is:
Input promise: U ∈ {I, {Mj,δ : j ∈ {1, 2, . . . , N − 1}}}.
Advice: When U = I we are given t copies of |0⟩ as advice. When U = Mj,δ, we
are given t copies of the state γ|j⟩ +

√
1 − γ2|0⟩, i.e., part of our starting state is

(γ|j⟩ +
√

1 − γ2|0⟩)⊗t.
Output: With probability at least 2/3: output 1 if U = I, and 0 if U ̸= I.

We first show a lower bound on the cost of computing frORN,δ,t when t = o(1/γ2). All
of our lower bounds in Table 1 as well as our lower bound for the Unitary recurrence time
problem will use this lower bound. We refer the reader to the full version of the paper [25,
Appendix A] for the proof. The proof follows along the same lines as Ambainis’ adversary
lower bound [1, Theorem 4.1] of Ω(

√
N) queries for the N -bit Search problem, but now we

additionally take into account the initial advice states and the fact that our input unitaries
are only fractional versions of phase queries.

▶ Theorem 12. For an integer N ≥ 2, real numbers γ ≥ 1/
√
N , δ ∈ [0, π] and t = o(1/γ2),

every algorithm solving frORN,δ,t has cost Ω(
√
N/δ).

▶ Lemma 13 (Lower bound for Rows 1,3). Row 1 (and hence Row 3) has a lower bound of
Ω(

√
N/δ).

Proof. A cost-C algorithm A for maxQPEN,δ with t advice states and known eigenbasis of U
immediately yields a cost-C algorithm A′ for frORN,3δ,t: run A on the input unitary, output
1 if the output phase is in [−δ, δ] modulo 2π, and output 0 otherwise. When U = I, the
correctness of A guarantees that with probability at least 2/3, the value output by A is in
[−δ, δ] mod 2π. When U = Mj,3δ, the correctness of A guarantees that with probability at
least 2/3, the value output by A is in [2δ, 4δ]. For δ < 2π/5, we have [−δ, δ] mod 2π∩ [2δ, 4δ]
mod 2π = ∅. Thus, A′ solves frORN,3δ,t and has cost C. Theorem 12 yields the bound
C = Ω

(√
N/δ

)
when t = o(1/γ2), giving the desired result. ◀

▶ Lemma 14 (Lower bound for Rows 2,4). Row 2 (and hence Row 4) has a lower bound of
Ω (1/γδ).

Proof. We prove the required lower bound for maxQPEN,δ with inputs satisfying the promise
that U ∈

{
IN ,

{
Mj,3δ : j ∈

{
1, 2, . . . , 1/γ2 − 1

}}}
. Because of this assumption, we may take

the uniform superposition over the first 1/γ2 computational basis states as our advice state:
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the algorithm should work with such an advice state, since it has overlap γ with the top
eigenspace for each of the possible U . However, an algorithm can prepare such advice states
at no cost, so we may assume that the algorithm has no access to advice at all. As in the
previous proof, this gives an algorithm of the same cost for frOR1/γ2,3δ,0 (ignoring all other
dimensions). Theorem 12 with N = 1/γ2 and t = 0 yields the required lower bound of
Ω(1/γδ). ◀

▶ Lemma 15 (Lower bound for Rows 5,7). Row 5 (and hence Row 7) has a lower bound of
Ω(

√
N/δ).

Proof. Towards the required lower bound, consider a cost-C algorithm A solving maxQPEN,δ

with inputs satisfying the promise U ∈ {IN , {Mj,3δ : j ∈ {1, 2, . . . , N − 1}}}, and with t =
o(1/γ) accesses to a unitary that prepares an advice state that has overlap at least γ with
the target eigenspace. We want to construct an algorithm A′ for maxQPEN,δ with the same
promised inputs that uses no advice, and with cost not much larger than that of A. Note
that we may assume γ = o(1), since otherwise t = 0, so then A itself already uses no advice.

We first show how an algorithm can itself implement a good-enough advice unitary A

quite cheaply. Assuming without loss of generality that 1/3δ is an integer, U1/3δ is actually a
“phase query”: if U = Mj,3δ, then we have U1/3δ = I − 2|j⟩⟨j|, which is the diagonal matrix
with 1’s everywhere except a −1 in the jth entry; and if U = I then U1/3δ = I. Thus A
can start by mapping |0⟩ to a uniform superposition over all indices, and then use Grover’s
algorithm with U1/3δ as our query operator to amplify the amplitude of |j⟩ to ≥ γ. We
know that O(γ

√
N) “Grover iterations” suffice for this (see, for example, [34, Section 7.2] for

details). Each Grover iteration would use one phase-query U1/3δ, so the overall cost (number
of applications of U and U−1) of this advice unitary is O(γ

√
N/δ). If U = I, the state just

remains the uniform superposition.
We now have all components to describe A′: Run A, and whenever A invokes an advice

unitary, use the above A. Since A uses at most t advice unitaries, the cost of A′ is at most
C + t ·O(γ

√
N/δ). Note that A′ uses no advice at all anymore, and solves maxQPEN,δ under

the promise that the input unitary satisfies U ∈ {IN , {Mj,3δ : j ∈ {1, 2, . . . , N − 1}}}. Again,
this immediately yields an algorithm of the same cost for frORN,3δ,0 as in the previous two
proofs. Theorem 12 now implies

C +O(tγ
√
N/δ) = Ω(

√
N/δ),

and hence C = Ω(
√
N/δ) since t = o(1/γ) (t ≤ c/γ for sufficiently small constant c also

suffices). ◀

▶ Lemma 16 (Lower bound for Rows 6,8). Row 6 (and hence Row 8) has a lower bound of
Ω (1/γδ).

Proof. Just as in the proof of Lemma 14, we may assume N = 1/γ2 by only allowing input
unitaries of the form U ∈

{
IN ,

{
Mj,3δ : j ∈

{
1, 2, . . . , 1/γ2 − 1

}}}
. With this assumption,

we may assume that we have no access to advice (i.e., t = 0) since an algorithm can prepare
a good-enough advice state (namely the uniform superposition over all 1/γ2 basis states) at
no cost. This yields the required lower bound of Ω(1/γδ) by Lemma 15. ◀

Finally we prove an optimal lower bound for the Unitary recurrence time problem, match-
ing She and Yuen’s upper bound (Theorem 8) and resolving one of their open problems [29,
Section 2].
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Proof of Theorem 1. Consider an algorithm A solving the (t, δ)-recurrence time problem.
Restrict to inputs of the form U ∈

{
IN ,

{
Mj,3δ/t : j ∈ {1, 2, . . . , N − 1}

}}
. When U = I we

have U t = I. When U = Mj,3δ/t, we have ∥U t − I∥ = |1 − e3iδ| ≥ δ for all δ ∈ [0, 1]. Thus,
A solves frORN,3δ/t,0. Theorem 12 yields the required lower bound of Ω(t

√
N/δ). ◀

4 Upper bounds for maximum phase estimation

In this section we show upper bounds on the quantum complexity of our 8 variants of
maximum phase estimation (see Section 2.1, Definition 6 and Table 1). We require the
following generalized maximum-finding procedure, adapted from [2, Lemma 48]; we changed
their wording a bit and modified it from minimum-finding to maximum-finding.

▶ Lemma 17 ([2, Lemma 48]). There exists a quantum algorithm M and constant C > 0
such that the following holds. Suppose we have a q-qubit unitary V such that

V |0⟩ =
K−1∑
k=0

|ψk⟩|xk⟩,

where x0 > x1 > · · · > xK−1 are distinct real numbers (written down in finite precision),
and the |ψk⟩ are unnormalized states. Let X be the random variable obtained if we were to
measure the last register, so Pr[X = xk] = ∥|ψk⟩∥2. Let M ≥ C/

√
Pr[X ≥ xj ] for some j.

Then M uses at most M applications of V and V −1, and O(qM) other gates, and outputs an
xi ≥ xj with probability at least 3/4 (in particular, if j = 0 then M outputs the maximum).

▶ Remark 18. It may be verified by going through [2, Lemma 48] that the only applications
of V and V −1 used by M are to prepare V |0⟩ starting from |0⟩, and to reflect about V |0⟩.
We can use generalized maximum-finding to approximate the largest eigenphase starting
from the ability to prepare a superposition of eigenstates (possibly with some additional
workspace qubits):

▶ Lemma 19. There exists a quantum algorithm B such that the following holds. Suppose we
have an N -dimensional unitary U with (unknown) eigenstates |u0⟩, . . . , |uN−1⟩ and associated
eigenphases θ0, . . . , θN−1 ∈ [0, 2π). Suppose we also have a unitary A such that

A|0⟩ =
N−1∑
j=0

αj |uj⟩|ϕj⟩,

where
∑

j:θj=θmax
|αj |2 ≥ γ2 and the |ϕj⟩ are arbitrary (normalized) states. Then B uses at

most O(1/γ) applications of A and A−1, and O(log(1/γ)/γδ) applications of U and U−1,
and with probability at least 2/3 outputs a number θ ∈ [θmax − δ, θmax + δ] mod 2π.

Proof. Let Ṽ be the unitary that applies phase estimation with unitary U , precision δ, and
small error probability η (to be determined later), on the first register of the state A|0⟩,
writing the estimates of the phase in a third register. Then

Ṽ |0⟩ =
N−1∑
j=0

αj |uj⟩|ϕj⟩|θ̃j⟩,

where, for each j, |θ̃j⟩ is a superposition over estimates of θj , most of which are δ-close to θj .
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For the purposes of analysis, we would like to define a “cleaned up” unitary V (very close
to Ṽ ) that doesn’t have any estimates with error > δ. Let |θ̃j

′⟩ be the state obtained from |θ̃j⟩
by removing the estimates that are more than δ-far from θj , and renormalizing. Because we
ran phase estimation with error probability ≤ η, it is easy to show that

∥∥∥|θ̃j
′⟩ − |θ̃j⟩

∥∥∥ = O(√η).
Then there exists6 a unitary V such that

∥∥Ṽ − V
∥∥ = O(√η) and

V |0⟩ =
N−1∑
j=0

αj |uj⟩|ϕj⟩|θ̃j
′⟩ =

K−1∑
k=0

|ψk⟩|xk⟩,

where the xk are the distinct estimates that have support in the last register, and the |ψk⟩
are (unnormalized) superpositions of the |uj⟩|ϕj⟩’s that are associated with those estimates.

The largest xk’s are good estimates of θmax. Algorithm B now applies the maximum-
finding algorithm M of Lemma 17 with the unitary Ṽ . Let us first analyze what would
happen if B used the cleaned-up V instead of Ṽ . Let X denote the random variable obtained
if we measure the last register, and note that Pr[X ≥ θmax − δ] ≥

∑
j:θj=θmax

|αj |2 ≥ γ2

because all estimates in V |0⟩ have error ≤ δ. Hence B would use O(1/γ) applications of
V and V −1 to find a θ ∈ [θmax − δ, θmax + δ] with success probability ≥ 3/4. Algorithm
B will actually use Ṽ and Ṽ −1 instead of V and V −1, which (because errors in quantum
circuits add at most linearly) incurs an overall error in operator norm of ≤ O(√η) ·O(1/γ).
Choosing η ≪ γ2, this overall error can be made an arbitrarily small constant. The success
probability of the algorithm can drop slightly below 3/4 now, but is still ≥ 2/3.

It remains to analyze the cost of B. Each Ṽ uses 1 application of A, and O(log(1/η)/δ) =
O(log(1/γ)/δ) applications of U and U−1 for phase estimation (Theorem 2), so B uses O(1/γ)
applications of A and A−1, and O(log(1/γ)/γδ) applications of U and U−1 in total. ◀

The upper bounds for our 8 variants of phase estimation (see Table 1) will all follow
from this. We start with the 4 odd-numbered rows, where it turns out the advice is not
actually needed to meet our earlier lower bounds. The next proof is basically the same as
[2, Lemma 50] about estimating the minimal eigenvalue of a Hamiltonian (this improved
slightly upon [27]; see also [14, Lemma 3.A.4]).

▶ Lemma 20 (Upper bound for Rows 1, 3, 5, 7). There is an algorithm that uses no advice and
solves the case in Row 3 (and hence in Rows 1, 5, and 7 as well) with cost O(

√
N log(N)/δ).

Proof. Let A be the unitary that maps |0⟩ to the maximally entangled state in N dimensions.
This state can be written in any orthonormal basis, including the (unknown) eigenbasis of U :

A|0⟩ = 1√
N

N−1∑
j=0

|j⟩|j⟩ = 1√
N

N−1∑
j=0

|uj⟩|uj⟩,

where |uj⟩ denotes the entry-wise conjugated version of |uj⟩. Applying Lemma 19 with this
A, |ϕj⟩ = |uj⟩, and γ = 1/

√
N gives the result. ◀

The next two lemmas cover the 4 cases where the advice states/unitaries are helpful.

▶ Lemma 21 (Upper bound for Rows 6, 8). There is a quantum algorithm that uses O(1/γ)
applications of the advice unitary (and its inverse) and solves the case in Row 8 (and hence
the case in Row 6 as well) with cost O(log(1/γ)/γδ).

6 This is fairly easy to show, see e.g. [9, proof of Theorem 2.4 in Appendix A].
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Proof. Apply Lemma 19 with the unitary A that maps |0⟩ to |α⟩, with empty states |ϕj⟩. ◀

▶ Lemma 22 (Upper bound for Rows 2, 4). There is a quantum algorithm that uses O(1/γ2)
copies of the advice state and solves the case in Row 4 (and hence in Row 2) with cost
O(log(1/γ)/γδ).

Proof. We will build upon the algorithm for Row 8 of Lemma 21. By Remark 18 and the
algorithm in Lemma 21, its O(1/γ) applications of the advice unitary A and its inverse A−1

are only used there for two purposes: (1) to prepare a copy of the advice state A|0⟩ = |α⟩,
and (2) to reflect about |α⟩. We now want to replace these applications of A by using
copies of the advice state. For (1) this is obvious. Assume the algorithm for Row 8 uses
(2) at most C/γ times, for some constant C. To implement these reflections, we will invoke
the result of Lloyd, Mohseni, and Rebentrost [24] (see also [18]), who showed that given
a number t > 0 and O(t2/η) copies of a mixed quantum state ρ, one can implement the
unitary eitρ up to error η (in diamond-norm difference between the intended unitary and the
actually-implemented channel). We will use this result with ρ = |α⟩⟨α|, t = π, η = γ/(100C),
noting that the implemented unitary eiπ|α⟩⟨α| = I − 2|α⟩⟨α| is a reflection about |α⟩ (up to a
global minus sign that doesn’t matter).

Accordingly, we can implement the ≤ C/γ reflections used by the algorithm for Row 8
using O(1/γ2) copies of |α⟩, each reflection implemented with error ≤ η. Because errors in
quantum circuits add at most linearly, the overall error between the algorithm of Row 8 and
our simulation of it (using copies of |α⟩) is at most η · C/γ ≤ 1/100. Hence we obtain an
algorithm for Row 4 that uses O(1/γ2) copies of |α⟩ and has the same cost O(log(1/γ)/γδ)
as the algorithm of Row 8. ◀

5 Tight bounds for phase estimation with small error probability

Here we prove our lower bound for quantum algorithms solving phase estimation with
precision δ and error probability at most ε, Theorem 3, which follows from Claims 23 and 24
below.

▷ Claim 23. For all integers N ≥ 2 and all ε, δ ∈ (0, 1/2), if there is a cost-d algorithm
solving QPEN,δ,ε, then there is a cost-d algorithm solving distN,δ,ε.

Proof. Consider an algorithm A of cost d that solves QPEN,δ,ε. We construct below an
algorithm A′ of cost d solving distN,δ,ε. Let U ∈ U(N) be the input. The following is the
description of A′:
1. Run A with inputs U and |0⟩.
2. Output 1 if the output of A is in [−δ, δ] mod 2π, and output 0 otherwise.
Clearly A′ is a valid algorithm, as far as access to input and allowed operations are concerned,
since its initial state is |0⟩, it applies U,U−1, some unitaries independent of U , and finally
performs a two-outcome projective measurement to determine the output bit. The cost of
A′ is d.

The correctness follows along the same lines as the proofs in Section 3. We prove
correctness here for completeness. First note that |0⟩ is an eigenstate of all U ∈ {I} ∪
{Uθ : θ /∈ [−3δ, 3δ] mod 2π}. When U = I, the correctness of A guarantees that with
probability at least 1 − ε, the value output by A is in [−δ, δ] mod 2π. When U = Uθ, the
correctness of A guarantees that with probability at least 1 − ε, the value output by A is
in [θ − δ, θ + δ] mod 2π. For θ /∈ [−3δ, 3δ] mod 2π we have [−δ, δ] mod 2π ∩ [θ − δ, θ + δ]
mod 2π = ∅ since δ < 1/2 < 2π/5, and hence A′ solves distN,δ,ε. ◁
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We next show a lower bound for the cost of algorithms computing distN,δ,ε.

▷ Claim 24. For all integers N ≥ 2, ε, δ ∈ (0, 1/2), every algorithm for distN,δ,ε has cost
Ω

( 1
δ log 1

ε

)
.

In order to prove Claim 24, we first show that amplitudes of basis states in low-cost
algorithms that run on Uθ are low-degree trigonometric polynomials in θ. This is analogous
to the fact that amplitudes of basis states in query algorithms for Boolean functions are
low-degree (algebraic) polynomials in the input variables [3, Lemma 4.1], and our proof is
inspired by theirs.

▷ Claim 25. Let t > 0 be a positive integer and let θ ∈ [0, 2π]. Consider a quantum
circuit that has starting state |0⟩, uses an arbitrary number of θ-independent unitaries, uses
t applications of controlled-Uθ and controlled-U−1

θ in total, and performs no intermediate
measurements. Then the amplitudes of basis states before the final measurement are degree-t
trigonometric polynomials in θ.

Proof. We prove this by induction on t. The claim is clearly true when t = 0 since all
amplitudes are constants in this case. For the inductive step, suppose the claim is true for
t = d. Let |ψd⟩ denote the state of the circuit just before the application of the (d+ 1)th
application of Uθ (the argument for U−1

θ is similar, and we skip it). By the inductive
hypothesis, we have

|ψd⟩ =
∑

w

∑
b∈{0,1}

N−1∑
j=0

pj,b,w(θ)|j⟩|b⟩|w⟩,

where the first register is where Uθ and U−1
θ act, the second register is the control qubit, and

the last register represents the workspace (i.e., Uθ and U−1
θ do not act on this register), and

each pj,b,w is a trigonometric polynomial of degree at most d in θ. For a basis state |j⟩|b⟩|w⟩,
we have

Uθ|j⟩|b⟩|w⟩ =
{
eiθ|0⟩|b⟩|w⟩ if j = 0 and b = 1

|j⟩|b⟩|w⟩ otherwise.

In both cases, the amplitudes of the basis states after the application of Uθ are degree-(d+ 1)
trigonometric polynomials in θ. After the last application of Uθ the algorithm will apply an
input-independent unitary. The amplitudes after that unitary are linear combinations of
the amplitudes before, which won’t increase degree. This concludes the inductive step, and
hence the theorem. ◁

Proof of Claim 24. Consider a cost-t algorithm A′ solving distN,δ,ε. Claim 25 implies that
on input Uθ, the amplitudes of the basis states before the final measurement are degree-t
trigonometric polynomials in θ. The acceptance-probability polynomial p : R → R given
by p(θ) := Pr[A′(Uθ) = 1] is a degree-2t trigonometric polynomial, because it is the sum of
squares of moduli of certain amplitudes, and each of these squares is a degree-2t trigonometric
polynomial. The correctness of the algorithm ensures that p(0) ∈ [1 − ε, 1] and p(θ) ∈ [0, ε]
for all θ /∈ [−3δ, 3δ] mod 2π. See Figure 1 for a visual depiction of the behaviour of p for
θ ∈ [−π, π).

Scaling by a global factor of 1/ε, we obtain a trigonometric polynomial q of degree 2t
satisfying:
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θ

p = 0

p = 1

−→
0−π π−3δ 3δ

ε

p(0) ≥ 1 − ε

Figure 1 Acceptance probability p of A′ as a function of θ in the proof of Claim 24.

q(0) ≥ (1 − ε)/ε > 1/(2ε), and
q(θ) ∈ [0, 1] for all θ ∈ [−π, π) \ [−3δ, 3δ].

Thus, Theorem 10 is applicable with s = 6δ, which implies 1/(2ε) ≤ supx∈R |q(x)| ≤
exp(24tδ). By taking logarithms and rearranging we get t = Ω

( 1
δ log 1

ε

)
, proving the theorem.

◀

6 Conclusion

In this paper we considered several natural variants of the fundamental phase estimation
problem in quantum computing, and proved essentially tight bounds on their cost in each
setting. As an immediate application of one of our bounds, we resolved an open question
of [29, Section 2].

We mention two interesting questions in the first variant of phase estimation we considered,
where an algorithm is given a number of copies of advice states/unitaries instead of black-box
access to a perfect eigenstate as in the basic phase estimation setup. First, are the logarithmic
overheads in the input dimension N and the inverse of the overlap γ in our upper bounds
(see Table 1) necessary, or can we give tighter upper bounds? Second, can we show the
log(1/ε)-dependence on the error probability also in the advice-guided case, like we did for
basic phase estimation (Theorem 3)?
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Abstract
We give a fine-grained classification of evaluating the Tutte polynomial T (G; x, y) on all integer
points on graphs with small treewidth and cutwidth. Specifically, we show for any point (x, y) ∈ Z2

that either
T (G; x, y) can be computed in polynomial time,
T (G; x, y) can be computed in 2O(tw)nO(1) time, but not in 2o(ctw)nO(1) time assuming the
Exponential Time Hypothesis (ETH),
T (G; x, y) can be computed in 2O(tw log tw)nO(1) time, but not in 2o(ctw log ctw)nO(1) time assuming
the ETH,

where we assume tree decompositions of treewidth tw and cutwidth decompositions of cutwidth ctw

are given as input along with the input graph on n vertices and point (x, y).
To obtain these results, we refine the existing reductions that were instrumental for the seminal

dichotomy by Jaeger, Welsh and Vertigan [Math. Proc. Cambridge Philos. Soc’90]. One of our
technical contributions is a new rank bound of a matrix that indicates whether the union of two
forests is a forest itself, which we use to show that the number of forests of a graph can be counted
in 2O(tw)nO(1) time.
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82:2 Tutte Polynomial Parameterized by Width Measures

For a number of these fields it is important to understand how difficult it is to compute
the Tutte polynomial. A series of papers, culminating in the work by Jaeger, Vertigan, and
Welsh [15] has given a complete dichotomy showing that the problem of evaluating the Tutte
polynmial is #P-hard on all points except on the following special points on which it is
known to be computable in polynomial time:

(1, 1), (−1, −1), (0, −1), (−1, 0), (i, −i), (−i, i), (j, j2), (j2, j), H1 (1)

where j = e2πi/3 and i =
√

−1, and Hα denotes the hyperbola {(x, y) : (x − 1)(y − 1) = α}.
These hyperbolic curves turn out to be of great importance to understanding the complexity
of the Tutte Polynomial, as the problem is generally equally hard on all points of the same
curve, except for the special points listed in (1).

Further refinements of the result by [15] have since been made: Among others, a more
fine-grained examination of the complexity was done by Brand et al. [5] (building on earlier
work by Dell et. al. [12]): they showed that for almost all points the Tutte polynomial cannot
be evaluated in 2o(n) time on n-vertex graphs, assuming (a weaker counting version of) the
Exponential Time Hypothesis. This is tight because, on the positive side, Björklund et al. [2]
showed that the Tutte polynomial can be evaluated on any point in 2nnO(1) time.

Another perspective worth examining is that of the parameterized complexity of the
problem, when parameterized by width measures. This is a rapidly evolving field within
parameterized complexity.1 Intuitively, it is concerned with the effects of structural properties
of the given input graph on its complexity. This often generates results that have greater
practical value and give a deeper understanding of the problem, in comparison with classical
worst-case analysis. It is therefore natural to ask what a complexity classification for the
Tutte Polynomial would look like in this parameterized context.

For the specific subject of evaluating the Tutte polynomial parameterized by width
measures, research has already been done in this area over twenty years ago: Noble [21] has
given a polynomial time algorithm for evaluation the Tutte Polynomial on bounded treewidth
graphs. Noble mostly focused on the dependence on the number of vertices and edges,
and showed each point of the Tutte polynomial can be evaluated in linear time, assuming
the treewidth of the graph is constant. See also an independently discovered (but slower)
algorithm by Andrzejak [1]. However, this glances over the exponential part of the runtime,
i.e. the dependence on the treewidth. Since this is typically the bottleneck, recent work aims
to refine our understanding of this exponential dependence with upper and lower bounds on
complexity of the problem in terms of this parameter that match in a fine-grained sense.

In this work, we extend this research line and determine the fine-grained complexity for
each integer point (x, y) of the problem of evaluating the Tutte polynomial (x, y). As was
done in previous works, we base our lower bounds on the Exponential Time Hypothesis
(ETH) and the Strong Exponential Time Hypothesis (SETH) formulated by Impagliazzo
and Paturi [14]. For a given width parameter k, the former will be used to exclude run
times of the form ko(k)nO(1), while the latter will be used to exclude run times of the form
(c − ϵ)knO(1) for some constant c and any ϵ > 0.

Specifically we consider the treewidth, pathwidth and cutwidth of the graph. The first two,
in some sense, measure how close the graph is to looking like a tree or path respectively. The
cutwidth measures how many edges are layered on top of each other when the vertices are
placed in any linear order. We will more precisely define these parameters in the preliminaries.

1 For example, the biennial Workshop on Graph Classes, Optimization, and Width Parameters (GROW)
already had its 10’th edition recently https://conferences.famnit.upr.si/event/22/.

https://conferences.famnit.upr.si/event/22/
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x

y

Figure 1 The red points have time complexity of the form kO(k), the blue points have time
complexity of the form O(ck) for some constant c and the green points have polynomial time
complexity.

Width measures in particular are interesting because instances where such structural
parameters are small come up a lot in practice. For example, the curve H2 corresponds to
the partition function of the Ising model, which is widely studied in statistical physics, on
graphs with particular topology such as lattice graphs or open/closed Cayley trees ([18]). In
all such graphs with n vertices, even the cutwidth (the largest parameter we study) is at
most O(

√
n).

1.1 Our contributions
Our classification handles points (x, y) differently based on whether (x − 1)(y − 1) is negative,
zero or positive, and reads as follows:

▶ Theorem 1.1. Let G be a graph with given tree, path and cut decompositions of width tw,
pw and ctw respectively. Let (x, y) ∈ Z2 be a non-special point, then up to some polynomial
factor in |V (G)|, the following holds.
1. If (x − 1)(y − 1) < 0 or x = 1, then T (G; x, y) can be computed in time twO(tw) and

cannot be computed in time ctwo(ctw) under ETH.
2. If y = 1, then T (G; x, y) can be computed in time O(4pw) or O(64tw) and cannot be

computed in time 2o(ctw) under ETH.
3. If (x − 1)(y − 1) = q > 1, then T (G; x, y) can be computed in time O(qtw). Furthermore,

a. if x ̸= 0, then T (G; x, y) cannot be computed in time O((q − ϵ)ctw) under SETH.
b. if x = 0, then T (G; x, y) cannot be computed in time O((q − ϵ)pw) and O(q − ϵ)ctw /2)

under SETH.

This is a fine-grained classification for evaluating the Tutte polynomial at any given
integer point, simultaneously for all the parameters treewidth, pathwidth and cutwidth. This
is because if a graph has cutwidth ctw, pathwidth pw and treewidth tw, then tw ≤ pw ≤ ctw.
Our result implies that, for evaluating the Tutte polynomial at a given integer point, it does
not give a substantial advantage to have small cutwidth instead of small treewidth. This is
somewhat surprising since, for example, for computing the closely related chromatic number
of a graph there exists a 2ctwnO(1) time algorithm, but any pwo(pw) nO(1) time algorithm
would contradict the ETH [19].

Of particular interest are the upper bounds in Case 2. for the points {(x, y) : y = 1},
which are closely related to the problem of computing the number of forests in the input
graph. One reason why this results stands out in particular is that it indicates an inherent
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asymmetry between the x- and y-axes, in this parameterized setting. In the general setting,
problems related to the Tutte Polynomial often have a natural dual problem, which one can
obtain by interchanging the x- and y-coordinates. For example the chromatic polynomial
can be found (up to some computable term f) as χG(λ) = f(λ)T (1 − λ, 0), while the flow
polynomial can be found as CG(λ) = g(λ)T (0, 1 − λ). These two problems are equivalent on
planar graphs, in the sense that the chromatic number of a planar graph is equal to the flow
number of its dual graph.

We note that for this curve we have an ETH bound, while for the other results of the
form ctwnO(1) we have a stronger SETH bound. We suspect that a (4 − ϵ)ctwnO(1) lower
bound for any ϵ > 0, based on SETH, also holds for evaluating T (G; 2, 1), but that it will
take significant additional technical effort.

Techniques. In order to get the classification, our first step follows the method of [15] to re-
duce the evaluation of T (G; x, y) for all points in hyperbola Hα = {(x, y) : (x − 1)(y − 1) = α}
to the evaluation to a single point in Hα. This is achieved in [15] by some graph operations
(stretch and thickening), but these may increase the involved width parameters. We refine
these operations in Section 3 to avoid this.

With this step being made, several cases of Theorem 1.1 then follow from a combination
of new short separate and non-trivial arguments and previous work (including some very
recent work such as [8, 13]).

However, for the upper bound in Case 2. of Theorem 1.1, our proof is more involved. To
get our upper bound, we introduced the forest compatibility matrix. Its rows and columns are
indexed with forests (encoded as partitions indicating their connected components). An entry
in this matrix indicates whether the union of the two forests forms a forest itself. This matrix
is closely related to matrices playing a crucial role in the Cut and Count method [11] and
rank based method [4] to quickly solve connectivity problems on graphs with small tree-width.
However, the previous rank upper bounds do not work for bounding the rank of the forest
compatibility matrix over the reals since we check for acyclicity instead of connectivity. We
nevertheless show that this the rank of this matrix is 4n; in fact the set of non-crossing
partitions forms a basis of this matrix. We prove this via an inductive argument that is
somewhat similar to the rank bound of 2n/2−1 of the matchings connectivity matrix over
GF (2) from [10]. Subsequently, we show how to use this insight to get a 2O(tw) algorithm to
evaluate T (G; 1, 2) (i.e. counting the number of spanning forests).

1.2 Organization

The remainder of this paper supports Theorem 1.1, although some slightly less interesting
cases (being the upper bound in Case 1.) are deferred to the full version of the paper [20].
Proofs of Lemmas and Theorems indicated with † are also deferred to the full version [20].

In Section 2 we describe some preliminaries. In Section 3 we show how to reduce the task
of computing all points along a hyperbola curve to a single point. We now describe where
each part of Theorem 1.1 can be found in the paper. The lower bound in Case 1. is given in
Theorem 5.7 and 5.3. The lower bound in Case 2. is by Dell et al. [12]. The upper bound in
Case 2. is given in Section 4 (specifically, Theorems 4.17 and 4.18). The lower bound in
Case 3. is given in Theorem 5.1 (for q = 2) and Theorem 5.4 (for q > 2). The upper bound
bound in 3. is given in Theorem 5.2 (for q = 2) and Theorem 5.5 (for q > 2).



I. Mannens and J. Nederlof 82:5

2 Preliminaries

Computational Model. In this paper we frequently have real (and some inteormediate
lemma’s are even stated for even complex) numbers as intermediate results of computations.
However, as is common in this area we work in the word RAM model in which all basic
arithmetic operations with such numbers can be done in constant time, and therefore this
does not influence our running time bounds.

Interpolation. Throughout this paper we will use interpolation to derive a polynomial,
given a finite set of evaluations of said polynomial. For our purposes it suffices to note that
this can be done in polynomial time, for example by solving the system of linear equations
given by the Vandermonde matrix and the evaluations (see e.g. [7, Section 30.1]).

▶ Lemma 2.1. Given pairs (x0, y0), . . . , (xd, yd), there exists an algorithm which computes
the unique degree d polynomial p such that p(xi) = yi for i = 0, . . . , d and runs in time O(d3).

2.1 The Tutte polynomial
There are multiple ways of defining the Tutte polynomial. In this paper we will only need
the following definition

T (G; x, y) =
∑

A⊆E

(x − 1)k(A)−k(E)(y − 1)k(A)+|A|−|V |,

where k(A) denotes the number of connected components of the graph (V, A). We will often
use the following notation

Hα = {(x, y) : (x − 1)(y − 1) = α}.

Note that these curves form hyperbolas and that for α = 0 the hyperbola collapses into two
orthogonal, straight lines. We refer to these two lines as separate curves

Hx
0 = {(x, y) : x = 1},

Hy
0 = {(x, y) : y = 1}.

Throughout the paper we will refer to the problem of finding the value of T (G; a, b) for
an individual point as computing the Tutte polynomial on (a, b). We will often restrict the
Tutte polynomial to a one-dimensional curve Hα. Note that in this case the polynomial can
be expressed as a univariate polynomial2

Tα(G; t) := T
(

G; α

t
+ 1, t + 1

)
.

We refer to the problem of finding the coefficients of Tα as computing the Tutte polynomial
along Hα.

As mentioned in the introduction, the Tutte polynomial is known to be computable in
polynomial time on the points

(1, 1), (−1, −1), (0, −1), (−1, 0), (i, −i), (−i, i), (j, j2), (j2, j) (2)

and along the curve H1 and it is #P to evaluate it on any other point. We call the points
listed in (2), along with the points on the curve H1 special points. See [15] for more details.

2 Note that one can get rid of the negative powers of t in the following expression, by multiplying the
whole polynomial by some power of t.
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2.2 Width measures
We consider the width measures treewidth, pathwidth and cutwidth of a graph G (denoted
respectively with tw(G), pw(G) and ctw(G)). We use standard notation (such as introduced
in [9]); see the appendix

2.3 Brylawski’s tensor product formula
In Section 3 we will make use of Brylawski’s tensor product formula [6] to reduce the
computation of T (G; x′, y′) to that of T (G′; x, y) for some other point (x′, y′) and some other
graph G′. The original formula is formulated in terms of pointed matroids, however we will
only need the formulation for (multi)graphs. Before we can state the formula, we first need
to introduce some notation.

Given graphs G and H, where an edge e ∈ E(H) is labeled as a special edge, we define
the pointed tensor product3 G⊗e H of G and H as the graph given by the following procedure.
For every edge f ∈ E(G) we first create a copy Hf of H, then identify f with the copy of
the edge e in Hf and finally remove the edge f (and thus also the edge e) from the graph.

Intuitively it might be easier to think of this product as replacing every edge of G with a
copy H \ e, where two of the vertices in H are designated as gluing points. For example one
could replace every edge with a path of length k by taking as H the cycle Ck+1 on k + 1
vertices, as seen in figure 2.

u

v

w u

v

w

Figure 2 The pointed tensor product of the left-hand graph with a 3-cycle is given by the
right-hand graph.

Note that this is not always well-defined, as one can choose which endpoint is identified
with which. It turns out that this choice does not affect the graphic matroid of G ⊗e H and
thus it does not affect the resulting Tutte polynomial. In this paper we will only consider
graphs H that are symmetric over e and thus the product is actually well-defined.

We are now ready to state Brylawski’s tensor product formula. Let TC and TL be the
unique polynomials that satisfy the following system of equations

(x − 1)TC(H; x, y) + TL(H; x, y) = T (H \ e; x, y)
TC(H; x, y) + (y − 1)TL(H; x, y) = T (H/e; x, y).

We define

x′ = T (H\e; x, y)
TL(H; x, y) y′ = T (H/e; x, y)

TC(H; x, y) .

Let n = |V (H)|, m = |E(H)| and k = k(E(H)). Brylawski’s tensor product formula
states that

T (G ⊗e H; x, y) = TC(H; x, y)m−n+kTL(H; x, y)n−kT (G; x′, y′).

3 Note that this is different from the standard tensor product for graphs.
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3 Reducing along the curve Hα

In this section we describe how we can lift hardness results from a single point (a, b) ∈ Hα to
the whole curve Hα. We summarize the results from this section in the following theorem.

▶ Theorem 3.1. Let (a, b) ∈ C2. Also let T (G; x, y) be the Tutte polynomial of G and
α := (a − 1)(b − 1). There exists a polynomial time reduction from computing T on (a, b)
for graphs of given tree-, path- or cutwidth, to computing T along Hα for graphs width the
following with parameters.

If |a| /∈ {0, 1} or if |b| /∈ {0, 1} and a ̸= 0, then the treewidth remains tw(G). The cutwidth
and pathwidth become at most ctw(G) + 2 and pw(G) + 2 respectively.
If |b| /∈ {0, 1} and a = 0, then the treewidth remains tw(G). The pathwidth becomes at
most pw(G) + 2 and the cutwidth becomes at most 2 ctw(G).
If |a|, |b| ∈ {0, 1}, then the treewidth remains tw(G). The pathwidth becomes at most
pw(G) + 2 and the cutwidth becomes at most 12 ctw(G).

Theorem 3.1 lets us lift both algorithms and lower bounds from a point (a, b) to the
whole curve Hα. While our main theorem only requires Theorem 3.1 to be stated for integer
valued points, we will state it as the most general version we can prove. We note that for
Case 1. of Theorem 1.1, we do not care too much about constant multiplicative factors in
the cutwidth, since we have an ETH bound of the form ctw(G)o(ctw(G)). For Case 2. we
only need the bounds on the treewidth and pathwidth. Thus the blowup in the cutwidth is
only relevant for Case 3.. In this case the only integer valued points that fall under the third
item of Theorem 3.1 are (−1, 0), (0, −1) and (−1, −1). These are all special points, which
means that this item is not relevant for Case 3..

In our proofs we will make use of the following transformations.

▶ Definition 3.2 ([15]). Let G be a simple graph. We define the k-stretch kG of G as the
graph obtained by replacing every edge by a path of length k. We define the k-thickening kG

of G as the graph obtained by replacing every edge by k parallel edges.

A new variant we introduce to keep the cutwidth low is defined as follows:

▶ Definition 3.3. We define the insulated k-thickening (k)G as the graph obtained by replacing
every edge by a path of length 3 and then replacing the middle edge in each of these paths by
k parallel edges.

u v

Figure 3 The result of applying the insulated 4-thickening to an edge between u and v.

3.1 Effect on width parameters
We give three lemmas that show how these transformations effect the parameters we use.

▶ Lemma 3.4 (†). Let G be a graph. Then we have that tw(kG) ≤ tw(G), tw(kG) ≤ tw(G)
and tw((k)G) ≤ tw(G).

▶ Lemma 3.5 (†). Let G be a graph. Then we have that pw(kG) ≤ pw(G) + 2,
pw(kG) ≤ pw(G) and pw((k)G) ≤ pw(G) + 2.
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▶ Lemma 3.6 (†). Let G be a graph. Then we have that ctw(kG) ≤ ctw(G),
ctw(kG) ≤ k ctw(G) and ctw((k)G) ≤ ctw(G) + k − 1.

We remark that the only significant blowup is that of the cutwidth, when applying the
k-thickening. We will therefore limit our use of this transformation as much as possible.

3.2 Reductions

We now discuss the proof of Theorem 3.1. In the full version in the appendix we split the
theorem into multiple separate cases. Here, we only give one case as a representative sample:

▶ Lemma 3.7. Let (a, b) ∈ C2 be a point with |a| /∈ {0, 1}. Also let T (G; x, y) be the Tutte
polynomial of G and α := (a − 1)(b − 1). There exists a polynomial time reduction from
computing T on (a, b) for graphs of given tree-, path- or cutwidth, to computing T along Hα

for graphs with the following with parameters. The treewidth and cutwidth remain tw(G) and
ctw(G) respectively. The pathwidth becomes at most pw(G) + 2.

We prove this lemma using essentially the same proof as given in [15]. Note that in our
setting we use Lemmas 3.4, 3.5 and 3.6 to ensure that relevant parameters are not increased
by the operations we perform.

Proof. By Brylawski’s tensor product formula [6], we find the following expression for the
k-stretch of the graph G

(1 + a + · · · + ak−1)k(E)T

(
G; ak,

b + a + · · · + ak−1

1 + a + · · · + ak−1

)
= T (kG; a, b). (3)

Note that

ak − 1 = (1 + a + · · · + ak−1)(a − 1)

and

b + a + · · · + ak−1

1 + a + · · · + ak−1 − 1 = b − 1
1 + a + · · · + ak−1 .

We find that the point on which we evaluate T (G) in (3) also lies on Hα.
By examining the formula for the Tutte polynomial, we find that for n = |V (G)| the

degree of the Tutte polynomial is at most n2 + n. By choosing k = 0, . . . , n2 + n, since
|a| /∈ {0, 1}, we can find T (G; x, y), for n2 + n + 1 different values of (x, y) ∈ Hα. By lemma
2.1, we can now interpolate the univariate restriction

Tα(G; t) = T
(

G; α

t
+ 1, t + 1

)
.

of T (G) along Hα.
Note that by Lemmas 3.4 and 3.6 the k-stretch preserves both the cutwidth and the

treewidth of the graph and by Lemma 3.5 the pathwidth increases by a constant additive
factor. We find that any fine-grained parameterized lower bound for Hα extends to points
(a, b). ◀
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4 Counting forests

In this section we consider the problem of counting the number of forests in a graph. This
problem corresponds to the point (2, 1) and thus by Theorem 3.1 any bounds found for this
problem can be lifted to the whole curve Hy

0 .
We trivially get the following lower bound from existing bounds on the non-parameterized

version of the problem [12].

▶ Theorem 4.1. Computing the Tutte polynomial along the curve Hy
0 cannot be done in

time 2o(ctw(G))nO(1), unless #ETH fails.

To complement this lower bound, we give an algorithm to count the number of forests in
a graph G in ctw(G) time. The algorithm uses a rank based approach, the runtime of which
depends on the rank of the so called forest compatibility matrix. We start by introducing
this matrix and examining its rank.

4.1 Notation
We will use the notation [n] = {1, . . . , n}. Unless stated otherwise, we will assume the set
[n] to be ordered. We write π ⊢ S to indicate that π is a partition of S.

We will consider matrices indexed by partitions. We will write M [π, ρ] for the element in
the row corresponding to π and the column corresponding to ρ. We will write M [π] for the
vector containing all elements in the row corresponding to π.

4.2 Rank bound
In this section we prove the following theorem, for the so called forest compatibility matrix Fn.

▶ Theorem 4.2. The rank of Fn is at most Cn, the nth Catalan number. In particular
rank(Fn) = O(4nn−3/2)

Before we can define the forest compatibility matrix, we first need the following definitions.

▶ Definition 4.3. We say that a boundaried graph G = ([n] ∪ V, E), with boundary [n], is
a representative forest for a partition π ⊢ [n], if for every S ∈ π there is some connected
component C ⊆ V (G) such that C ∩ [n] = S.

Given two boundaried graphs G and H, both with boundary B, we define the glue G ⊕ H

of G and H as follows. First take the disjoint union of G and H. Then identify each v ∈ B

in G with its analogue in H.

This definition shows how one can relate forests and partitions. Throughout the section we
will mostly consider partitions as they capture only the information we need. The following
definition elaborates on this by lifting the concept of cycles in a clue of two trees to a cycle
inducet by two partitions.

▶ Definition 4.4. Let π, ρ ⊢ [n] and let Gπ and Gρ be representative forests of π and ρ

respectively. We say that π and ρ induce a cycle if Gπ ⊕ Gρ contains a cycle.

It is not hard to see that it does not matter which representatives Gπ and Gρ we choose, since
one only needs to know the connected components on [n]. This means that this definition is
indeed well-defined. For this same reason, in the following definition, we only need a row
and column for each partition of the separator.

ESA 2023
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▶ Definition 4.5. We define the forest compatibility matrix FS of a set S by

FS [π, ρ] :=
{

0 if π and ρ induce a cycle
1 otherwise

for any π, ρ ⊢ S. We will write Fn := F[n].

Finally we will need the following definition to bound the rank of the forest compatibility
matrix.

▶ Definition 4.6. We say that two sets A, B ∈ π are crossing on an ordering <, if there are
a1, a2 ∈ A and b1, b2 ∈ B such that a1 < b1 < a2 < b2 or b1 < a1 < b2 < a2. If a partition
contains two crossing sets, we refer to it as a crossing partition.

Throughout this section it will sometimes be convenient to think of the ordering as a
permutation.

The general idea behind the proof of Theorem 4.2 is to show that any partition can be
“uncrossed”, i.e. its row in Fn can be written as a linear combination of rows, corresponding
to non-crossing partitions.

4.2.1 Manipulating partitions

For the proof of Theorem 4.2 we will need the following operations, which will allow us to
manipulate partitions by contracting an expanding intervals and projecting down to subsets
of the ground set.

▶ Definition 4.7. An interval is a subset I ⊆ [n] of consecutive numbers, i.e. there is no
b /∈ I such that a1 < b < a2 for some a1, a2 ∈ I. Given an interval I and a partition π of [n],
we define the contraction π −i I of π by I as the partition of the set [n] −i I := ([n] ∪ {i}) \ I

given by we merging all sets that intersect I and replacing I by a single element i, i.e.

π −i I := {S ∈ π : S ∩ I = ∅} ∪
{(⋃

{S ∈ π : S ∩ I ̸= ∅} ∪ {i}
)

\ I
}

.

If we have an ordering on [n], we place i in the same place in the ordering as I, that is for
any a ∈ [n] \ I and b ∈ I, we have a < b if and only if a < i.

We define the blowup π +i I of π by I as the partition of the set [n] +i I := ([n] ∪ I) \ {i},
given by adding all elements of I to the set that contains i and then removing i, i.e.

π +i I := {S ∈ π : i /∈ S} ∪ {(S \ {i}) ∪ I : i ∈ S}.

Again we place I in the same place in the ordering as i.

We will sometimes abuse notation and refer to [n] −i I as simply [n′] for n′ = n − |I| + 1.
We now turn our attention to a number of useful lemmas. The first lemma intuitively

says that if we contract an interval contained in some partition, then any decomposition of
the resulting smaller partition gives the same decomposition of the larger partition.

▶ Lemma 4.8. Let π be a partition of [n] and let I be an interval such that I ⊆ S ∈ π.
We set n′ = n − |I| + 1. Suppose that for some set of partitions R of [n′], we have
Fn′ [π −i I] =

∑
ρ∈R aρFn′ [ρ]. Then Fn[π] =

∑
ρ∈R aρFn[ρ +i I].
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Proof. Let χ be some partition of [n]. Note that if |S′ ∩ I| ≥ 2 for some S′ ∈ χ, we have
that Fn[π, χ] = Fn[ρ +i I, χ] = 0. Thus we may assume that χ contains no such sets. Also
note that if there is some cycle that only requires I and not the rest of S, then again we
have that Fn[π, χ] = Fn[ρ +i I, χ] = 0. Thus we may assume that any cycle induced by χ

and π that has a set that intersects I, also requires a set that intersects S \ I, but not I.
We now claim that for χ with the above assumptions we have Fn[ρ +i I, χ] = Fn[ρ, χ −i I]

for any ρ. This would immediately imply that for such χ

Fn[π, χ] = Fn[π −i I, χ −i I] =
∑
ρ∈R

aρFn[ρ, χ −i I] =
∑
ρ∈R

aρFn[ρ +i I, χ],

which proves the lemma.
First note that if ρ and χ −i I induce a cycle, that does not involve i, then ρ +i I and χ

also induce that same cycle and vice versa.
Now suppose that ρ +i I and χ induce a cycle involving I, then there is some S′ in the

cycle that intersects I. By assumption there is also some set S′′ ∈ χ in the cycle, that
intersects S \ I, but not I. W.l.o.g. the cycle does not loop back on itself and thus these
sets are the only two in the cycle that intersect S. Note that S′ gets merged into the set
containing i, but S′′ does not. Since the rest of the cycle does not involve I, it is unaffected
and thus the cycle remains intact after contraction.

In the reverse direction we assume that ρ and χ −i I induce a cycle involving i, then it
is clear to see that this cycle survives after blowing up i, using one of the sets in χ that
intersect I. This proves the claim and thus the lemma. ◀

This next lemma intuitively says that if we project our partition to a subset of the ground
set, then any decomposition of the resulting smaller partition gives the same decomposition
of the larger partition.

▶ Lemma 4.9. Let π be a partition of [n] and let n′ < n. Suppose that for some set of parti-
tions R of [n′], we have Fn′ [π|[n′]] =

∑
ρ∈R aρFn′ [ρ], then Fn[π] =

∑
ρ∈R aρFn[ρ ⊔ π|[n]\[n′]].

Proof. Let χ be some partition of [n]. If χ and π|[n]\[n′] induce a cycle, then the statement
trivially holds. In the rest of the proof we will therefore assume that any cycle induced by χ

and π requires the use of π|[n′].
We first define an equivalence relation ∼ on [n] by defining two elements to be equivalent

if they are either in the same set of χ or in the same set of π|[n]\[n′]. We then complete this
to a full equivalence relation. We now define the partition χ′ of [n′] as the set of equivalence
classes of ∼, restricted to [n′].

We claim that Fn[ρ ⊔ π|[n]\[n′], χ] = Fn′ [ρ, χ′] for any ρ, which would immediately imply
that

Fn[π, χ] = Fn′ [π|[n′], χ′] =
∑
ρ∈R

aρFn′ [ρ, χ′] =
∑
ρ∈R

aρFn[ρ ⊔ π|[n]\[n′], χ]

which proves the lemma.
Suppose that ρ ⊔ π|[n]\[n′] and χ induce some cycle. Since the cycle must pass through

[n′], there must be some path from one element of [n′] to another, induced by ρ ⊔ π|[n]\[n′]
and χ. Since all elements in this path are equivalent, this path must lie entirely inside of a
set S′ ∈ χ′ and thus replacing such a path with S′ results in a cycle induced by ρ and χ′.
Note that if a cycle only requires sets from π|[n′], this operation results in a single set S′

from χ′ in the new cycle. However, since any set involved in the old cycle must contain at
least two elements in the path, that set together with S′ induces a cycle.
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Similarly, in the reverse direction we take a cycle induced by ρ and χ′ and blow up any
sets of χ′ into a path in the corresponding connected component to find a cycle induced by
ρ ⊔ π|[n]\[n′] and χ. ◀

The following two lemmas help ensure that our operations do not introduce new crossings.
The first of the two lemmas shows us that we can safely contract an interval, so long as it is
contained in a set of the partition.

▶ Lemma 4.10 (†). Let I ⊆ [n] be an interval of [n]. Let π be a non-crossing partition of
[n] −i I. Then π +i I is also non-crossing.

This next lemma shows us that, in our setting, projection is safe, as long as we do not
forget any elements of sets that cross one another.

▶ Lemma 4.11 (†). Let π ⊢ [n] be a partition such that only A, B ∈ π cross each other and
all other pairs of sets in π are non-crossing. Then for a non-crossing partition ρ of A ∪ B

we have that ρ ∪ π|[n]\(A∪B) is non-crossing.

4.2.2 Proof of the rank bound
With Lemmas 4.8, 4.9, 4.10 and 4.11 in hand, we are now ready to describe the main
uncrossing operation.

▶ Lemma 4.12. Let π be a non-crossing partition on an ordering p. In time O(n) we can
find constants cρ, such that Fn[π] =

∑
ρ∈N cρFn[ρ], where N is the set of partitions that are

non crossing on p ◦ (i, i + 1).

Proof. Throughout the proof, we will consider the partition π on the ordering p ◦ (i, i + 1).
We first note that since π is non-crossing on p, any crossing of π must involve both i and
i + 1. Let i ∈ A ∈ π and i + 1 ∈ B ∈ π. If A = B, then π is non-crossing and thus we may
assume that A ̸= B. Note that π|A∪B , when viewed as a partition of A ∪ B, consists of
either 4 or 5 intervals which alternate between A and B. Define π′ as the partition given by
contracting these intervals. We find that π′ is a partition on n′ elements, where either n′ = 4
or n′ = 5 elements, with intervals of size 1 (see Figure 4).

We can explicitly construct the forest compatibility matrices for n′ ∈ {4, 5} and check
that the non-crossing partitions give a basis. With this paper we provide a MATLAB script
that verifies this. Thus we can write

Fn′ [π′] =
∑
ρ∈R

cρFn′ [ρ],

where R is the set of non-crossing partitions of [n′]. By Lemma 4.8 we find that

FA∪B [π|A∪B ] =
∑
ρ∈R

cρFA∪B [ρ +i1 I1 + · · · +in′ In′ ].

By Lemma 4.10 each ρ +i1 I1 + · · · +in′ In′ is still non-crossing. By Lemma 4.9 we find

Fn[π] =
∑
ρ∈R

cρFA∪B [(ρ +i1 I1 + · · · +in′ In′) ∪ π|[n]\(A∪B)].

By Lemma 4.11 each (ρ +i1 I1 + · · · +in′ In′) ∪ π|[n]\(A∪B) is still non-crossing. We conclude
that Fn[π] can be written as a linear combination of rows corresponding to non-crossing
partitions.

Note that we can construct π′ in O(n) time. We then find the cρ in O(1) time and
reconstruct the (ρ +i1 I1 + · · · +in′ In′) ∪ π|[n]\(A∪B) in O(n) time. ◀
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Figure 4 From left to right, these are examples of π before the swap, π after the swap, π|A∪B

and π′.

By repeatedly applying Lemma 4.12, we can prove the following theorem.

▶ Theorem 4.13. The rows corresponding to non-crossing partitions span a row basis of the
forest compatibility matrix Fn.

Proof. Let π be a partition of [n] such that we can turn it into a non-crossing partition
by swapping two consecutive elements i and i + 1 in the order of [n]. By Lemma 4.12 we
can write the row Fn[π] corresponding to π as a linear combination of rows corresponding
to non-crossing partitions of [n]. This shows that, for Bp the set of rows corresponding
to non-crossing partitions on p, we have Bp◦(i,i+1) ⊆ span(Bp). Since every partition is
non-crossing for some permutation and every permutation can be decomposed into 2-cycles
on consecutive elements, this implies that every row can be written as a linear combination
of rows corresponding to non-crossing partitions on some fixed ordering p. ◀

From this we immediately find a proof for Theorem 4.2.

Proof of Theorem 4.2. By Theorem 4.13 the non-crossing partitions form a basis of Fn.
Since there are Cn such partitions we find rank(Fn) ≤ Cn. ◀

4.3 Algorithm
We will now describe the algorithm for counting forests. We first define the dynamic
programming table and the notion of representation. For details on how to compute the
table entries, see the full version [20].

▶ Definition 4.14. Let G be a graph and let (T, (Bx)x∈V (D)) be a tree/path decomposition
of G. Recall that Gx is defined as the graph induced by the union of all bags, whose nodes
are descendants of x in T. We define the dynamic programming table τ by

τx[π] := |{X ⊆ E(Gx) : (V, X) is acyclic ,

∀u, v ∈ Bx there is a path in (V, X) from u to v iff ∃S ∈ π s.t. u, v ∈ S}|
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In other words, the table entry τx[π] counts the number of forests in Gx whose connected
components agree with π. In the rest of this section, we will refer to the number of nonzero
entries τx[π] in a ’row’ τx of the dynamic programming table as the support of τx, written
supp(τx). Our aim will be to ensure that the support of our rows remains contained in the
entries corresponding to non-crossing partitions for some ordering on the bag Bx. This is
captured in the following definition.

▶ Definition 4.15. We say a vector a, indexed by partitions, is reduced on an ordering p, if
aπ = 0 for any partition π that is crossing for p.

In order to ensure that we do not lose any relevant information we will reduce our rows,
while retaining the following property for the matrix FBx .

▶ Definition 4.16. Given a matrix M , we say that a vector a M -represents a vector b if
Ma = Mb

In the full version of the paper[20], we describe a dynamic programming algorithm that
works with reduced rows, rather than the whole table. It does so by alternating between
reducing the current row in the table and computing the next row. This allows us to work
with a table where the rows effectively have size rank(Ftw) (or rank(Fpw)). Doing so, we
establish the following:

▶ Theorem 4.17 (†). There exists an algorithm that, given a graph G with a path decompos-
ition of width pw(G), computes the number of forests in the graph in time 4pw(G)nO(1).

▶ Theorem 4.18 (†). There exists an algorithm that, given a graph G with a tree decomposition
of width tw(G), computes the number of forests in the graph in time 64tw(G)nO(1).

5 Other cases

In this section we handle the remaining cases mentioned in Theorem 1.1.

5.1 The curve H2

The curve H2 is equivalent to the partition function of the Ising model. Both our proofs for
the upper and lower bound on the complexity will make use of this fact.

▶ Theorem 5.1. Computing the Tutte polynomial along the curve H2 cannot be done in time
(2 − ϵ)ctw(G)nO(1), unless SETH fails.

Proof Sketch. Using known equivalences we first reduce #MaximumClosedSubgraphs
to the problem of computing the Tutte polynomial along the curve H2. We then ap-
ply a simple transformation, based on a similar argument by [17] to ensure the graph
only has odd degree vertices. It then suffices to note that on graphs with only odd
degree vertices, the complement of a perfect matching is a maximum closed subgraph
and thus #MaximumClosedSubgraphs is equivalent to #PerfectMatchings on such
graphs. This allows us to lift an existing lower bound from [8] on #PerfectMatchings to
#MaximumClosedSubgraphs. ◀

We also show in the full version that this lower bound can be matched with a tight upper
bound. The proof uses dynamic programming combined with subset convolution [3, 9].

▶ Theorem 5.2. Let G be a graph with a given tree decomposition of width tw(G). There
exists an algorithm that computes T (G; a, b), for (a, b) ∈ H2, in time 2tw(G)nO(1).
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5.2 The curve Hx
0

The curve Hx
0 contains the point (1, 2), which counts the number of connected edgesets of a

connected graph. Using existing results this gives an ETH lower bound which matches the
running time of the algorithm mentioned in theorem 1.1.

▶ Theorem 5.3. Let 0 < α < 1. Computing the Tutte polynomial along the curve Hx
0 cannot

be done in time (α ctw(G) − ϵ)(1−α) ctw(G)/2nO(1), unless SETH fails.

Proof. In [13] a lower bound of pctw(G) is found for counting connected edgesets modulo
p. In the reduction the authors reduce to counting essentially distinct q-coloring modulo
p, with cutwidth ctw(G) + q2 and p = q. Thus we find a lower bound of pctw(G)−p2 =
(α ctw(G))(1−α) ctw(G)/2 for p = (α ctw(G))1/2. ◀

5.3 The curve Hq for q ∈ Z≥3

These curves contain the points (1 − q, 0), which count the number of q-colorings. Using
previous results and a folklore algorithm, we find matching upper and lower bounds for these
points and thus for the whole curves.

▶ Theorem 5.4. Let q ∈ Z≥3. Computing the Tutte polynomial along the curve Hq cannot
be done in time (q − ϵ)ctw(G)nO(1), unless SETH fails.

Proof. Note that Hq contains the point (1 − q, 0). Computing the Tutte polynomial on this
point is equivalent to counting the number of q-colorings of the graph G.

By choosing a modulus p > q we can apply the results from [13] to find a lower bound of
qctw(G) on the time complexity of counting q-colorings modulo p. This lower bound clearly
extends to general counting. ◀

▶ Theorem 5.5. Let G be a graph with a given tree decomposition of width tw(G) and q ∈ Z≥3.
There exists an algorithm that computes T (G; a, b) for (a, b) ∈ Hq in time qtw(G)nO(1).

This theorem is a direct consequence of combining Theorem 3.1 with the following folklore
result:

▶ Theorem 5.6 (Folklore). Let G be a graph with a given tree decomposition of width tw(G)
and q ∈ Z≥3. There exists an algorithm that computes the number of q-colorings of G in
time qtw(G)nO(1).

5.4 The curve H−q for q ∈ Z>0

These curves contain the points (1 + q, 0). Using the same results we used to prove theorem
5.4 and exploiting the fact these results hold for modular counting, we find an ETH lower
bound which matches the running time of the algorithm mentioned in theorem 1.1.

▶ Theorem 5.7. Let q ∈ Z>0. Computing the Tutte polynomial along the curve H−q cannot
be done in ctw(G)o(ctw(G)) time, unless ETH fails.

Proof. Like mentioned earlier H−q contains the point (1 + q, 0). For a prime p > q we have
that T (G; 1 + q, 0) ≡p T (G; 1 + q − p, 0). This means that computing the Tutte polynomial
modulo p at the point (1 + q, 0) is equivalent to counting the number of p − q-colorings
of G modulo p. Since q > 0 and p > q we find that 0 < p − q < p and thus as before,
by [13], we find a lower bound of (p − q)ctw(G). Since the cutwidth of the construction
in [13] is O(n + rpr+2) for some r dependant on p − q and ϵ. We find that there is no
algorithm running in time O((p − q − ϵ)ctw(G)−rpr+2) = O((α ctw(G) − ϵ)ctw(G)(1−α)/(r+2)),
where p − q = (α ctw(G))1/(r+2). ◀
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6 Conclusion

In this paper we gave a classification of the complexity, parameterized by treewidth/path-
width/cutwidth, of evaluating the Tutte polynomial at integer points into either computable

in polynomial time,
in twO(tw) nO(1) time but not in ctwo(ctw) nO(1) time,
in qtwnO(1) time but not in 2o(ctw) (and for many points not even in rctwnO(1) time for
some constants q > r),

assuming the (Strong) Exponential Time Hypothesis.
This classification turned out to be somewhat surprising, especially considering the

asymmetry between Hx
0 = {(x, y) : x = 1} and Hy

0 = {(x, y) : y = 1} that does not show up
in other classifications such as the ones from [5, 12, 15].

Our paper leaves ample opportunities for further research. First, we believe that our rank
upper bound should have more applications for counting forests with different properties.
For example, it seems plausible that it can be used to count all Feedback Vertex Sets in
time 2O(tw)nO(1) or the number of spanning trees with k components in time 2O(tw)nO(1).
The latter result would improve over a result by Peng and Fei Wan [22] that show how to
count the number of spanning forests with k components (or equivalently, n − k − 1 edges)
in twO(tw) nO(1) time. We decided to not initiate this study in this paper to retain the focus
on the Tutte polynomial.

Second, it would be interesting to see if our classification of the complexity of all points
on Z2 can be extended to a classification of the complexity of all points on R2 (or even C2).
Typically, evaluation at non-integer points can be reduced to integers points (leading to
hardness for non-integer points), but we were not able to establish such a reduction without
considerably increasing the width parameters.

Third, it would be interesting to see if a similar classification can be made when paramet-
erized by the vertex cover number instead of treewidth/pathwidth/cutwidth. We already
know that the runtime of 2nnO(1) by Björklund et al. [2] for evaluating the Tutte polynomial
cannot be strengthened to a general 2O(k)nO(1) time algorithm where k is the minimum
vertex cover size of the input graph due to a result by Jaffke and Jansen [16], but this still
leaves the complexity of evaluating at many other points open.
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Abstract
Due to the exponential growth of genomic data, constructing dedicated data structures has become
the principal bottleneck in common bioinformatics applications. In particular, the Burrows-Wheeler
Transform (BWT) is the basis of some of the most popular self-indexes for genomic data, due to its
known favourable behaviour on repetitive data.

Some tools that exploit the intrinsic repetitiveness of biological data have risen in popularity, due
to their speed and low space consumption. We introduce a new algorithm for computing the BWT,
which takes advantage of the redundancy of the data through a compressed version of matching
statistics, the CMS of [Lipták et al., WABI 2022]. We show that it suffices to sort a small subset of
suffixes, lowering both computation time and space. Our result is due to a new insight which links
the so-called insert-heads of [Lipták et al., WABI 2022] to the well-known run boundaries of the
BWT.

We give two implementations of our algorithm, called CMS-BWT, both competitive in our experi-
mental validation on highly repetitive real-life datasets. In most cases, they outperform other tools
w.r.t. running time, trading off a higher memory footprint, which, however, is still considerably
smaller than the total size of the input data.
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1 Introduction

The Burrows-Wheeler Transform (BWT) [6] is a reversible permutation of the characters
of the input text that can be computed in linear time and space. It is closely related to
the suffix array, a permutation of the indices of T which is based on the lexicographic order
of the suffixes. It is known that the BWT, when applied to repetitive texts, results in an
easier-to-compress string, especially when using simple run-length encoding.

Another virtue of the BWT is that it can be used as a self-index to replace the original
text. It can support pattern matching queries, more specifically, it counts how many times
a pattern P occurs in T using time proportional to |P |. It can be incorporated into more
elaborate indexes [11, 13, 14, 27] to support locating queries (finding the positions in T where
P occurs) and more complex queries such as finding Maximal Exact Matches (MEMs) and
Maximal Unique Matches (MUMs). MEMs and MUMs are of key importance, especially
in the field of bioinformatics, where they are used for read alignment (e.g. MUMmer [23]).
Widely used tools such as BowTie2 [18] and BWA [20] are based on the BWT for aligning
short reads to a reference genome.

Nowadays, the amount of biological data that is publicly available is too big for most
BWT construction algorithms. A key observation is that, even though the size of these
datasets is massive, the information contained within them is highly redundant. This is why
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tools such as big-BWT [5], r-pfBWT [26] and grlBWT [10] have emerged. These tools exploit
the intrinsic repetitiveness of the input data to build large BWTs fast and in compressed
space.

Recently, Lipták et al. [22] devised a variant of matching statistics [8] called compressed
matching statistics (CMS). This data structure has been proven to be effective in expressing
the redundancy of sets of highly similar strings and being used in the process of suffix sorting.
Cunial et al. [9] work with a compact representation of matching statistics, i.e. a bitvector
of length 2|P | storing the differentially encoded lengths of the matches. They also present
several ways of compressing the bitvector based on both lossless and lossy methods. This
representation is fundamentally different from that of [22] due to the fact that the CMS, and
more prominently its enhanced version, packs more information than just the length of the
matches. This additional information can then be used for other applications such as suffix
sorting.

In this paper, we are going to show that the CMS of [22] not only can be used to
build the generalized suffix array of a collection of strings but can also be highly useful in
building large BWTs, due to the fact that it uses considerably less space than the input
data. Experimental results show that our implementation, CMS-BWT, is competitive, if not
better, than the state-of-the-art tools for constructing the BWT, although heavier on the
space consumption side.

Our algorithm is based on a new insight that allows us to find the run boundaries of
the BWT within special buckets of suffixes, which are closely connected to the fundamental
element of the compressed matching statistics, the so-called insert-heads.

The paper is organized as follows. In Section 2, we give definitions and notations used
in the remainder of the paper. Section 3 contains an overview of the compressed matching
statistics. In Section 4, we present our contribution, describing the algorithm used for
constructing the BWT. In Section 5, we describe details of our implementation and then
report experimental results in Section 6. Finally, in Section 7, conclusions and future work
are discussed.

2 Basics

Let Σ be an ordered alphabet of size σ. A string T over Σ is a finite sequence of characters
from Σ. The ith character of T is denoted T [i], its length is |T | = n, and T [i..j] denotes the
substring T [i] · · ·T [j]. If i > j, then T [i..j] is the empty string ε. The suffix T [i..] = T [i..n]
is referred to as the ith suffix sufi(T ), and T [..i] = T [1..i] is the ith prefix prefi(T ). When T
is clear from the context, we write sufi for sufi(T ).

We assume that the last character of T is the sentinel character $. It is set to be smaller
than any other character in Σ and appears only once as the end-of-string character.

The suffix array SA of a string T is a permutation of the set {1, . . . , n} such that
SA[i] = j if sufj(T ) is the ith in lexicographic order among all suffixes. Numerous suffix
array construction algorithms (SACAs) exist in the literature [25, 24, 1, 21, 15]. SA-IS [25]
is by far the most popular linear time SACA, being both simple and fast in practice.

The inverse suffix array ISA is the inverse permutation of SA, namely ISA[SA[i]] = i.
The longest common prefix (lcp) of a pair of strings T and S is the longest string U

which is the prefix of both T and S. The longest-common-prefix array LCP is another array
closely related to the SA. It is given by: LCP[1] = 0, and for i > 1, LCP[i] is the length
of the longest common prefix of the two suffixes sufSA[i−1] and sufSA[i]. This array can be
computed in linear time, too [17].
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The Burrows-Wheeler Transform BWT [6] is a reversible permutation of the input text
T . It is defined as BWT[i] = $ if SA[i] = 1, and BWT[i] = T [SA[i]− 1] otherwise.

Let R and S be two strings. The matching statistics MS of S w.r.t. R is an array of
length |S| in which every entry is a pair of integers defined as follows. Fix i, let Ui be the
longest prefix of suffix sufi(S) which occurs as a substring in R. Then, entry MS[i] = (pi, ℓi),
where pi is an occurrence of Ui in R, or −1 if Ui = ε, and ℓi = |Ui|. We will call Ui matching
factor and the character ci = S[i + ℓi] will be referred to as mismatch character of position i.
We set the end-of-string character of R to be smaller than the one of S (# < $).

For an integer array A of length n and an index i, the previous and next smaller values
are defined as follows: PSV(A, i) = max{i′ < i : A[i′] < A[i]}, NSV(A, i) = min{i′ > i :
A[i′] < A[i]}. The minimum of the empty set is −∞ and the maximum is +∞. There exists
a data structure of size n log(3 + 2

√
2) + o(n) bits that can be built in O(n) time and answers

both PSV and NSV queries in constant time [12].
Given a set of integers X and an integer x, the predecessor of x is the largest element in X

less than or equal to x. In other words, predX(x) = max{y ∈ X : y ≤ x}. Predecessor queries
can be answered in O(log log |X|) time using the y-fast trie data structure of Willard [29]
which uses O(|X|) space.

Let C = {S1, S2, . . . , Sm} be a collection of strings not necessarily distinct, i.e. C is a
multiset. The total length of C will be denoted by N , where we use end-of-string characters to
delimit the strings, i.e. N =

∑m
d=1 |Sd|+m. From now on, we will treat C as this concatenated

string, slightly abusing notation.

Our problem is defined as follows:

Problem Statement: Given a string collection C = {S1, . . . , Sm} and a reference
string R, compute the Burrows-Wheeler Transform BWT of C.

The end-of-string character # of R is assumed to be smaller than any of C. Moreover, in
our setting, we assume that each Si ∈ C is highly similar to R.

3 Compressed Matching Statistics

Recently, the authors of [22] introduced a new data structure called Compressed Matching
Statistics (CMS). This data structure exploits the redundancy of plain MS, where we have
the following property: if ℓi > 0, then ℓi+1 ≥ ℓi − 1. We can identify sequences of the
form (x, x− 1, x− 2, . . .) where x = ℓi, called decrement runs. A decrement run ends when
ℓj > ℓj−1 − 1, and j is the starting position of a head. For an example see Figure 1.

▶ Definition 1 (Compressed matching statistics, [22]). Let R, S be two strings over Σ, and
MS be the matching statistics of S w.r.t. R. The compressed matching statistics (CMS)
of S w.r.t. R is a data structure storing (j, MS[j]) for each head j, and a predecessor data
structure on the set of heads H.

It was shown in [22] that it is possible to recover each individual value MS[i] for any i

using the following formula: MS[i] = (pi + k, ℓi − k), where j = predH(i) and k = j − i. This
can be done in O(log log χ) time and O(χ) space, where χ = |H|.

It was shown in [22] that storing the matching statistics information only for heads leads
to a compression ratio of up to 100 times on real-life data.

ESA 2023



83:4 Matching Statistics Speed up BWT Construction

3.1 Enhanced Compressed Matching Statistics
In [22], the CMS was refined with additional information to get the enhanced compressed
matching statistics (eCMS). Assuming that all characters occurring in S also occur in R at
least once, the information of pi can be made more specific, namely, one can compute the
position that a suffix from S would have if it was present in SAR the SA of R. This position
is called insert point of i:

ip(i) =


1 if Ui = ε,

max{j | Ui is a prefix of R[SAR[j]..] and R[SAR[j]..] < Uic} if this set is
non-empty,

min{j | Ui is a prefix of R[SAR[j]..]} otherwise.

The first case is satisfied only for the end-of-string characters of the collection C, because
the sentinel character of R is smaller than any other character (# < $). In the other two
cases, the insert point is the lexicographic rank of suffix i among all suffixes of R. Suffix i

ideally points to the next smaller occurrence of Ui in R, if it exists (case 2). Otherwise, it
coincides with the smallest occurrence of Ui in R (case 3).

For the eCMS, the positions for which the MS information is saved are called insert-heads
and are defined as follows: j is an insert-head if SAR[ip(j)] ̸= SAR[ip(j − 1)] + 1. Some
additional information is also stored in each insert-head: ci, the mismatching character,
and xi, a boolean value associated with ci. This value is set to be smaller (S = 0) if
ci < R[SA[ip(i)] + ℓi] or larger (L = 1) otherwise. Referring to the definition of ip, xi = 1
whenever we are in case 2, xi = 0 when we are in case 3.

▶ Definition 2 (Enhanced compressed matching statistics, [22]). Let R, S be two strings over
Σ. Define the enhanced matching statistics of S w.r.t. R as follows: for 1 ≤ i ≤ |S|, let
ems(i) = (qi, ℓi, xi, ci), where qi = SAR[ip(i)], ℓi is the length of the matching factor U of
i, ci is the mismatch character, and xi ∈ {S, L} indicates whether Uici is smaller (S) or
greater (L) than R[qi..]. The enhanced compressed matching statistics (eCMS) of S w.r.t. R

is a data structure storing (j, ems(j)) for each insert-head j, and a predecessor data structure
on the set of insert-heads K.

The size of K is denoted by |K| = κ. The time for recovering MS[i] becomes O(log log κ),
while the space becomes O(κ) [22].

By definition, the number of insert-heads is larger than the number of heads. Although
in [22] the difference in numbers is noticeable, the compression effect is still very strong. For
actual numbers see Section 6.2, more specifically Table 1.

For an example of eCMS refer to Figure 1.

3.2 Comparing two suffixes using eCMS
The additional information of insert-heads helps bucketing suffixes with respect to the insert
point. We will call these buckets insert-buckets. Assessing the order of any two suffixes
having different insert point has been proven in the following lemma:

▶ Lemma 3 ([22]). Let 1 ≤ i, j ≤ N . If ip(i) < ip(j), then sufi < sufj.

On the other hand, when two suffixes belonging to the same insert-bucket are compared
the following lemma refines the order:

▶ Lemma 4 ([22]). Let 1 ≤ i, j ≤ N , and ip(i) = ip(j).
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i 1 2 3 4 5 6 7 8 9 10 11 12
R C A T T A G A T T A G #

S T A G A G A T T A T T $
pi 4 5 6 5 6 7 8 9 2 3 4 -1
ℓi 4 3 2 6 5 4 3 2 3 2 1 0

head ✓ ✓ ✓

qi 4 5 6 5 6 2 3 4 7 8 9 12
insert-

head ✓ ✓ ✓ ✓ ✓

ci G T T $ $
xi S L L S L

Figure 1 An example for matching statistics and corresponding CMS and eCMS. In rows 1 and
2, we report MS[i] = (pi, ℓi) of S w.r.t. R. In row 3, we mark the starting positions of the heads
(CMS). In row 4, for each index, we give the special position qi = SAR[ip(i)], where ip(i) is the insert
point of sufi in SAR. In row 5, we mark insert-heads (eCMS). In the last two rows, we complete the
information stored in insert-heads, namely the mismatch character ci and xi, the associated boolean
value (S = smaller, L = larger).

1. If ℓi < ℓj and xi = S, then sufi < sufj.
2. If ℓi < ℓj and xi = L, then sufj < sufi.
3. If ℓi = ℓj and xi = S and xj = L, then sufi < sufj.
4. If ℓi = ℓj and xi = xj and ci < cj, then sufi < sufj.

To achieve the final correct order of two suffixes having the same insert-head information,
in [22] it was suggested sorting only the insert-heads. Then, using the new rank for each
head, the total order of two suffixes can be established.

If two arbitrary suffixes from C are being compared, one needs to perform two predecessor
queries to get the insert-head of each suffix. This implies that the time spent for a single
comparison is O(log log κ). As we will see in Section 4, we can avoid the predecessor queries
when scanning the collection left to right, resulting in constant time comparisons. This is
because we will only perform comparisons of suffixes of one insert-head at a time with other
insert-heads of the same insert-bucket.

3.3 Computing the eCMS
We will use the procedure outlined in [22].

The data structures needed to compute the eCMS of C w.r.t. R are the suffix array
SAR, the inverse suffix array ISAR, the LCP-array LCPR, and the RMQ data structure for
PSV-NSV queries on LCPR. Every data structure can be constructed in O(|R|) time and
space.

This procedure takes O(N log |R|) time and O(|R|) space and outputs the set of insert-
heads of size O(κ).

To speed up the practical running time, we will use also the following proposed heuristic
of [22]. Because we work with highly similar strings, it is common to have a singleton interval
(an interval of size one) after the failure of a sequence of right extensions. A key insight
is that also after the subsequent left contraction, the interval remains of size one. This
means that the matching factor Ui lies within a leaf branch in a hypothetical suffix tree of
R. In order to detect these cases, we can compare ℓi to the maximum value in LCPR. If
ℓi − 1 > max(LCPR), then it means that there is no other suffix in R with a prefix equal

ESA 2023
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to Ui. This means that we are in a leaf branch. Computing the left contraction is now
equal to accessing ISA[pi + 1]. This bypasses the PSV and NSV queries on LCPR, avoiding
the corresponding cache misses. Computing a single maximum can be too restricting for
some datasets, so a refinement of this strategy is to divide LCPR into blocks and compute a
maximum value for each of them.

The practical speedup can be of an order of magnitude when using this last strategy on
sets of highly repetitive strings, as it was shown in [22].

4 Computing the BWT with enhanced Compressed Matching
Statistics

In this section, we are going to outline the procedure used to compute the BWT of C using
only data structures built on R and the eCMS of C w.r.t. R.

We will use the following heuristic in order to speed up the computation of BWT(C):
suffixes in text order between two insert-heads are preceded by the same character present
in the reference. This can be intuitively explained by looking at the way eCMS is built:
any position between two consecutive insert-heads is consecutive in text order both in R

and C. Therefore, by knowing the insert point of each suffix we know what its position
is in the previously computed SAR, and consequently which is the preceding character
stored in BWTR. This insight tells us that we just have to “expand” BWTR based on the
number of suffixes with the same insert-point while taking care of insert-heads. The suffixes
corresponding to the starting positions of insert-heads are the only ones that need to be
sorted inside each insert-bucket. See Figure 2 for an example.

▶ Lemma 5. Let sufi and sufj be two suffixes of C. If ip(i) = ip(j) and the two suffixes
are not the start of an insert-head, then sufi and sufj are preceded by the same character
c = R[SA[ip(i)]− 1], i.e. C[i− 1] = C[j − 1] = c = R[SA[ip(i)]− 1].

Proof. By assumption we know that ip(i) = ip(j), therefore SA[ip(i)] = SA[ip(j)]. Because
sufi and sufj are not the starting positions of any insert-head, it is true that SA[ip(i− 1)] =
SA[ip(i)]− 1 and SA[ip(j − 1)] = SA[ip(j)]− 1. Therefore, SA[ip(i− 1)] = SA[ip(j − 1)] and
also ip(i− 1) = ip(j − 1). Since Ui−1, Uj−1 ≠ ε it follows that the first character of Ui−1 and
Uj−1 is the same. ◀

While computing the eCMS of C w.r.t. R, we can simultaneously count how many suffixes
fall in each insert-bucket. We recall that we can have at most |R| insert-buckets, so the size
of the array of counters called bucket-counters is |R| log N bits. By Lemma 5 we know that
suffixes in the same insert-bucket have different preceding character only if one of them is
an insert-head. By scanning again the collection, we just need to count how many suffixes
belonging to the same insert-bucket come before each insert-head. In a sense, insert-heads
work as run boundaries inside their insert-bucket, because they are preceded by a character
that is different from the one preceding other non-insert-head suffixes. Therefore, we only
need an additional counter for each insert-head to keep track of this quantity. We will store
the counters in an array called head-counters. Inside a given insert-bucket we already know
the total order of insert-heads, because we have sorted the whole set K after the computation
of eCMS, as mentioned in Section 3.2.

Since we are scanning C left-to-right, we know MS[i] for every suffix, without the need
of using predecessor queries as we explain next. By saving the eCMS in text order, we
start from the first insert-head k1. Every suffix i before the starting position of k2 have
MS[i] = (q1 + (i− j1), ℓ1 − (i− j1)), where j1 = 1 is the starting position of k1. Then, when
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R . . . . . .C

BWTR SAR

. . .
. . .

. . .

. . .
. . .

. . .

$ $ $ $

i

i+1

C
N

G

A

A

A

T

A

T

A
T
A

. . .

A
A N

C

Figure 2 Example showcasing the proposed heuristic. Solid coloured lines under C are matching
factors for insert-heads, while solid black lines are matching factors for suffixes inbetween insert-heads.
Dotted red lines are for suffixes inbetween insert-heads that share the same insert-point as the first
solid red line (an insert-head). Suffixes inbetween insert-heads share the same preceding character
(red A) with the reference R, while the red-coloured insert-head is preceded by a different character
(purple T). Zooming in on the insert-bucket, we see that it can happen that the purple T goes
between the red As, breaking what would have been a run of only red As.

we reach the starting position of k2, we just have to repeat this procedure until every couple
of insert-heads has been processed. We will compare suffix i only with insert-heads stored in
the corresponding insert-bucket, therefore we do not need to perform any predecessor query.
Ultimately, the comparisons are made in constant time. Given sufi, we can perform a binary
search in the bucket corresponding to ip(i) taking O(log Ki) time, where Ki is the set of
insert-heads in the bucket with ip(i). After finding the correct index using Lemma 4 and, if
necessary, resorting to the rank of the sorted insert-heads, we increment the counter for that
insert-head. The array of head-counters takes κ log N bits of space.

Building the BWT of C is then just a matter of interleaving bucket-counters and head-
counters. For 1 ≤ i ≤ |R|, let x = bucket-counter[i] be the number of suffixes in that bucket.
If no insert-heads are present in the bucket, write c = R[SA[i]− 1] in the output BWT(C) x

times. Otherwise, if at least one insert-head is in the bucket, for each head-counter in the
current insert-bucket write c repeated as many times as indicated in the head-counter. Then,
after the head-counter is processed, write the character that precedes the insert-head itself,
namely C[j − 1], where j is the starting position of the insert-head. Each time we write a
character from either the head-counter or the head itself, we subtract one from x. If at the
end of this procedure, x is not equal to 0, it means we still need to write that number of c

characters in the output BWT. This is because this amount of suffixes was bigger than any
insert-head in their insert-bucket.

The main procedure is outlined in Algorithm 1 and the running time and space consump-
tion are reported in Proposition 6. A full example can be found in Figure 3.

▶ Proposition 6. Given R and C, we can compute BWT(C) in O(N log κ + N log |R|+ |R|)
time and O(κ + |R|) space.
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1 2 3 4 5 6 7 8 9
1
0 1 2

R CATTAGATTAG#

1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4

C T
•

AGA
•

GA
•

TTA
•

TT$1
•

G
•

ATTAC
•

ATTAG$2
•

q 4 5 6 5 6 2 3 4 7 8 912 6 7 8 9101 2 3 4 5 6 12

i eCMS
1 ( 1, 4,4, G,S)
2 ( 4, 5,6, T,L)
3 ( 6, 2,4, T,L)
4 ( 9, 7,3,$1,S)
5 (12,12,0,$1,L)
6 (13, 6,5, C,S)
7 (18, 1,6,$2,S)
8 (24,12,0,$2,L)

i BWTR[i] SAR[i] bucket-counter[i]
1 G 12 2
2 T 10 1
3 T 5 3
4 G 7 2
5 C 2 2
6 # 1 1
7 A 11 0
8 A 6 4
9 T 9 2

10 T 4 3
11 A 8 2
12 A 3 2

i sorted eCMS head-counter[i] prev. char.
1 (12,12,0,$1,L) 0 T
2 (24,12,0,$2,L) 0 G
3 ( 4, 5,6, T,L) 2 G
4 ( 9, 7,3,$1,S) 0 T
5 ( 6, 2,4, T,L) 1 G
6 (18, 1,6,$2,S) 0 A
7 (13, 6,5, C,S) 2 $2

8 ( 1, 4,4, G,S) 1 $1

i BWTC [i]
1 T
2 G
3 T
4 T
5 T
6 G
7 T
8 G
9 C

10 G
11 A
12 A
13 A
14 $2

15 A
16 T
17 T
18 T
19 $1

20 T
21 A
22 A
23 A
24 A

Figure 3 Example of the construction of BWT(C). The colour purple is used to indicate a
relationship with insert-heads, whereas red is used to indicate a relationship with R and BWTR.
On the left, under C we mark insert-heads with a purple circle and highlight with the same colour
qj when j is an insert-head. In the middle part of the figure, entries of bucket-counter highlighted
in red contains a positive number, meaning that no insert-head is contained within that bucket. On
the other hand, entries coloured in purple tell us that we have at least one insert-head in that bucket.
On the right, we show the full BWT of C, where we use the same colour code. We also show with
horizontal lines insert-buckets, highlighting how we interleaved information from bucket-counters
and head-counters.

Proof. Computing all data structures for R can be done in linear time and space in |R|.
Computing the eCMS of C takes O(N log |R|) time and O(|R|) space using the approach
described in Section 3.3. The computation of BWT(C) is bounded by the time of counting
how many suffixes are smaller than each insert-head in a bucket with the same ip(i). More
specifically,

∑
1≤i≤|R| Bi log Ki ≤ |C| log κ, where Bi is the set of suffixes belonging to

insert-bucket i and Ki the set of insert-heads within the same insert-bucket i. The space
consumption is dominated by the number of insert-heads and the size of the data structures
on R. ◀

Because we are working with highly similar strings, we expect to have few insert-heads,
having long matches between any string of C and R. This makes the sorting part of
insert-heads very fast in practice, due to κ being small. Also, the process of binary searching
is conducted bucket by bucket, so the number of heads in the same bucket is expected to be
smaller than κ.

Moreover, if the insert-heads are concentrated in a few insert-buckets we can entirely
skip the computation for each bucket without insert-heads. More information on real-life
datasets related to this insight can be found in Section 6.2.

5 Implementation details

The algorithm starts by first augmenting the reference with characters that occur in C but
not in R so that we have a well-defined insert point for each suffix of the collection.
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Algorithm 1 CMS-BWT.

Input: reference R, collection C
Output: BWT(C)

1 compute SAR, ISAR, LCPR, PSV− NSV(LCPR)
2 bucket-counters ← [0] ∗N

3 eCMS ← [ ]
4 pprev ← −∞
5 for i← 1 to N do
6 ⟨i, pi, ℓi, ci, xi⟩ ← computeMS(R, C, i)
7 if pi ̸= pprev + 1 then
8 eCMS.add(⟨i, pi, ℓi, ci, xi⟩)
9 mark bucket-counter[pi] // insert-bucket has an insert-head

10 bucket-counter[pi] + +
11 pprev ← pi

12 else
13 bucket-counter[pi] + +
14 end
15 end
16 sort eCMS
17 head-counters ← [0] ∗K

18 for i← 1 to N do
19 if bucket-counters[pi] is marked then
20 j ← binary-search correct position of sufi in Kpi

21 head-counters[j] + +
22 end
23 end
24 for i← 1 to |R| do
25 x← bucket-counters[i]
26 if i > 1 then char ← R[SAR[i− 1]]
27 else char ← R[|R|]
28 if bucket-counter[i] is marked then
29 for j ∈ indices(Ki) do // set of indices of Ki

30 write char head-counters[j] times
31 write character preceding jth head
32 x = x− head-counters[j]− 1
33 end
34 if x > 0 then
35 write char x times
36 end
37 else
38 write char bucket-counter[i] times
39 end
40 end
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Then, we use libsais [16] to build SAR and LCPR. We chose this tool because it has
been experimentally proven to be one of the fastest tools for general-purpose suffix array
construction. For the LCP array it uses the Φ method [17]. The data structure for PSV-NSV
queries on the LCPR is based on the work of Cánovas and Navarro [7].

For sorting the eCMS, we first rename each insert-head with a metacharacter based on
the rank of the partial lexicographic order of the substrings associated with each insert-head.
Then, by rearranging these metacharacters in text order we use again libsais to compute
the suffix array of this metacharacter string.

When profiling the implementation, we found that the number of distinct insert-heads, i.e.
the number of different tuples in K, grows even slower than the total set. For example, looking
at the dataset consisting of 333 copies of Human Chromosome 19 described in Section 6.2, we
have only 4,355,600 unique insert-heads versus κ = 174, 532, 868. Moreover, when performing
binary search comparisons, more than 60% of the total number of comparisons were resolved
by comparing the length plus xi information stored in the eCMS. Combining these two
insights led us to another heuristic based on a two-layered binary search. First, we compare
the length information ℓi = ℓki

− (i − j) along with xki
of a suffix i with insert-head

predK(i) = ki starting at position j with the set of unique insert-heads of its insert-bucket.
Then, if the pair ℓi and xki

is different from any other insert-head we increment the counter
for the insert-head pointed to by this first binary search. Otherwise, we have to refine the
search by comparing sufi with the whole set of insert-heads having ip(i), ℓ = ℓi and xki

.
This technique led to a speedup in the binary search phase of between 10% and 20%.

To avoid continuous cache misses due to loading different subsets of insert-heads with
different insert points during binary searching, we put a number of suffixes in a buffer divided
into insert-buckets. After the buffer is at its full capacity, we proceed to process in bulk
suffixes in the same insert-bucket, easing the loading in cache of subsets of insert-heads. For
all of our experiments, we set this buffer to 2GB, but it can be arbitrarily chosen by the user.

Lastly, we also implemented a variant of CMS-BWT trading off space for running time. This
was achieved by writing to disk some of the data structures involved in different phases of the
algorithm. This version saves roughly a third of the space used by the non-memory-saving
implementation.

6 Experiments

We implemented our algorithm for computing the BWT in C++. Our implementation,
CMS-BWT, is available at https://github.com/fmasillo/CMS-BWT. The experiments were
conducted on a desktop equipped with 64GB of RAM DDR4-3200MHz and an Intel(R)
Core(R) i9-11900 @ 2.50GHz (with turbo speed @ 5GHz) with 16 MB of cache. The
operating system was Ubuntu 22.04 LTS, the compiler used was g++ version 11.3.0 with
options -std=c++20 -O3 -funroll-loops -march=native enabled.

6.1 Tools compared

We compared two different implementations of CMS-BWT (simple and memory-saving) to the
following four tools:
1. big-BWT [5], a tool which computes both the BWT and the suffix array. It is specifically

made for highly repetitive data. We used the default parameters (-w = 10, -p = 100)
and the -f flag to parse fasta files as input. We chose the default parameters in order to
be consistent with the literature [5, 3, 4]. This tool outputs the entire BWT.

https://github.com/fmasillo/CMS-BWT
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To double-check the choice of parameters, we performed further experiments on each
combination of w ∈ {6, 8, 10} and p ∈ {50, 100, 200, 400, 800} as reported in [5]. On the
basis of these experiments, we concluded that the default parameters w = 10 and p = 100
lead to the best combination of memory and time for the two datasets evaluated. It should
be noted that the variation in memory and time between the different parameters is
non-negligible, reaching a 7 times larger peak memory consumption and a 40% slowdown
in running time for the sars-cov2 dataset (data not shown).

2. r-pfBWT [26], is a tool improving on plain PFP. It has been shown to be both faster and
to use less space than big-BWT for big enough dataset sizes. We run the experiments
using --bwt-only --w1 10 --w2 5 as flags. This tool outputs the run-length encoded
BWT.

3. grlBWT [10], a tool computing the BCR BWT [2] again with a focus on highly repetitive
data. We used the default parameters. This tool outputs the run-length encoded BWT.

4. ropeBWT2 [19], a highly optimized tool to compute the BCR BWT on DNA data. We
used the flag -R to skip the reverse complement. We also compare the effect of adding
the -P flag, which limits the software to execute in single-threaded mode at all times.
This tool outputs the entire BWT.

6.2 Datasets

In our experiments, we used two publicly available datasets. The first dataset, called chr19
contains copies of the Human Chromosome 19 from the 1000 Genomes Project [28]. The
second dataset, named sars-cov2, consists of copies of SARS-CoV2 genomes taken from
COVID-19 Data Portal 1. Some additional metadata can be found in Table 1.

The total size of both datasets is 60GB. We took increasing prefixes of size 1GB, 10GB,
20GB, 40GB, and 60GB. For the explicit number of sequences contained in each dataset see
Table 2.

For example, looking at 20GB of chr19 data, where we have around 333 copies of Human
Chromosome 19, we have insert-heads only in 6% of the buckets. This means that around
94% of the suffixes will not be compared against any insert-head, speeding up the whole
process.

Table 1 Datasets used in experiments. In column 3, we specify the alphabet size σ, in column 4
the number r of runs of the BWT, in column 5 the number of insert-heads, and in column 6 the
number of unique insert-heads. In our experiments, we use prefixes of each dataset up to 60GB. The
last three columns refer to the 20GB prefix.

Name Description σ r no. of i-heads no. unique i-heads
(20 GB) (20 GB) (20 GB)

chr19 Human Chromosome 19 5 36 723 404 174 532 868 4 355 600
sars-cov2 SARS-CoV2 genome 14 19 075 277 253 188 521 1 466 183

1 We used the following command to download in bulk the data using the CDP File Downloader:
java -jar cdp-file-downloader.jar - -domain=VIRAL_SEQUENCES - -datatype=SEQUENCES -
-format=FASTA - -location=/home/data/ - -email=xxx@xxx.xx - -protocol=FTP
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Table 2 Number of sequences present in each dataset.

Name 1GB 10GB 20GB 40GB 60GB
chr19 17 167 333 666 1 000
sars-cov2 36 204 332 209 659 441 1 312 058 1 966 237
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Figure 4 Running time comparison of tools outputting the full BWT.

6.3 Results

As already pointed out in Section 6.1, the output of the tools can either be the full BWT or
the run-length encoded BWT. This can be a non-negligible time overhead. Therefore, when
comparing to tools that output the whole BWT we will also write this version of the BWT
to disk. On the other hand, when comparing CMS-BWT to r-pfBWT and grlBWT we will write
to disk the run-length encoded BWT.

In Figures 4a, 4b, 5a and 5b, we report the comparison of the running time of the five
tools divided by dataset and output type.

On the chr19 dataset, we are always the fastest tool compared to other tools that
output the uncompressed BWT. More specifically, comparing the non-memory-saving
implementation at 60GB of data, we are 57% faster than big-BWT and 10 times faster than
ropeBWT2 with and without -P. Compared to the tools that output the run-length encoded
BWT, our fastest implementation is always the winner, while at 60GB, our memory-saving
implementation takes 12% more time than r-pfBWT. Both implementations outperform
grlBWT, e.g. at 60GB of data they take a fourth of the time.

On the sars-cov2 dataset we are always the fastest tool in both settings. For example,
at 60GB of data, we are faster than: big-BWT by 17%, ropeBWT2 with -P by 114%, ropeBWT2
with no -P by 35%, r-pfBWT by 445% and grlBWT by 53%.

In Figure 6a and 6b we show the memory footprint of the five tools. As one can notice, our
tool has the highest memory requirement. However, it can be noted that the memory-saving
variant of CMS-BWT on bigger sizes of both datasets requires always less than half of the input
size in space. On the sars-cov2 dataset we have a higher memory footprint than on chr19
because for the same size of the datasets we have a significantly higher number of strings in
the collection, leading to more insert-heads.



F. Masillo 83:13

chr19_1GB
chr19_10GB

chr19_20GB
chr19_40GB

chr19_60GB
0

1000

2000

3000

4000

5000

tim
e 

(s
)

Algorithm running time comparison on chr19 - rle output

CMS-BWT
CMS-BWT (memory saving)
grlbwt
r-pfbwt

(a) Running time comparison on different subsets of
copies of Chromosome 19.

13000

covid_1GB
covid_10GB

covid_20GB
covid_40GB

covid_60GB
0

1000

2000

3000

4000

5000

6000

tim
e 

(s
)

Algorithm running time comparison on covid - rle output

CMS-BWT
CMS-BWT (memory saving)
grlbwt
r-pfbwt

(b) Running time comparison on different subsets of
copies of SARS-CoV2 genomes.

Figure 5 Running time comparison of tools outputting the run-length encoded BWT.

chr19_1GB
chr19_10GB

chr19_20GB
chr19_40GB

chr19_60GB
0

5

10

15

20

25

m
ax

 re
sid

en
t s

et
 si

ze
 (G

B)

Algorithm memory consumption comparison on chr19

CMS-BWT
CMS-BWT (memory saving)
big-bwt
rope-bwt
grlbwt
r-pfbwt

(a) Comparison of tools on different subsets of copies
of Chromosome 19.

covid_1GB
covid_10GB

covid_20GB
covid_40GB

covid_60GB
0

5

10

15

20

25

30

35

40

m
ax

 re
sid

en
t s

et
 si

ze
 (G

B)

Algorithm memory consumption comparison on covid

CMS-BWT
CMS-BWT (memory saving)
big-bwt
rope-bwt
grlbwt
r-pfbwt

(b) Comparison of tools on different subsets of SARS-
CoV2 genomes.

Figure 6 Peak memory measured as maximum resident set size in GB.

7 Conclusions

We presented a new algorithm for constructing the BWT of a collection of highly similar
strings in compressed space. An experimental evaluation of two different implementations
shows that our algorithm is competitive with state-of-the-art tools. Most of the time, both
implementations outperform the other tools in terms of running time, but they are also the
heaviest w.r.t. space consumption.

Future work will focus on parallelizing the implementation to allow taking advantage of
multicore CPUs that are widespread nowadays. It is fairly straightforward to assign distinct
sequences to a pool of multiple threads to compute the matching statistics. Another phase
that would directly benefit from multi-threading is the for-loop at line 18 in Algorithm 1.
With careful handling of locks for each head-counter, this is easily parallelizable, dividing
the for-loop into equal parts. Moreover, we are going to investigate other ways of reducing
memory consumption to close the gap between CMS-BWT and competing tools.
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We are also working on extending our algorithm to incorporate the computation of
SA-samples. This will allow us to build the r-index. With careful implementation, our tool
can be extended to compute SA-samples along with bucket- and head-counters, without
changing either the time or space bounds given in Proposition 6.
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Abstract
We consider the Min-Sum k-Clustering (k-MSC) problem. Given a set of points in a metric which is
represented by an edge-weighted graph G = (V,E) and a parameter k, the goal is to partition the
points V into k clusters such that the sum of distances between all pairs of the points within the
same cluster is minimized.

The k-MSC problem is known to be APX-hard on general metrics. The best known approximation
algorithms for the problem obtained by Behsaz, Friggstad, Salavatipour and Sivakumar [Algorithmica
2019] achieve an approximation ratio of O(log |V |) in polynomial time for general metrics and an
approximation ratio 2 + ϵ in quasi-polynomial time for metrics with bounded doubling dimension.
No approximation schemes for k-MSC (when k is part of the input) is known for any non-trivial
metrics prior to our work. In fact, most of the previous works rely on the simple fact that there is a
2-approximate reduction from k-MSC to the balanced k-median problem and design approximation
algorithms for the latter to obtain an approximation for k-MSC.

In this paper, we obtain the first Quasi-Polynomial Time Approximation Schemes (QPTAS)
for the problem on metrics induced by graphs of bounded treewidth, graphs of bounded highway
dimension, graphs of bounded doubling dimensions (including fixed dimensional Euclidean metrics),
and planar and minor-free graphs. We bypass the barrier of 2 for k-MSC by introducing a new
clustering problem, which we call min-hub clustering, which is a generalization of balanced k-median
and is a trade off between center-based clustering problems (such as balanced k-median) and pair-wise
clustering (such as Min-Sum k-clustering). We then show how one can find approximation schemes
for Min-hub clustering on certain classes of metrics.
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1 Introduction

Clustering is a fundamental problem in many areas of data analysis and machine learning
and has many applications across various fields. Given a set of points with a notion of
similarity (distance) between every pair of points, in a typical k clustering problem, the task
is to partition the points into k clusters to minimize dissimilarities of the points that fall
into the same cluster.

In the well-known center-based k-clustering problems (such as k-center, k-median, k-
means), the partition is obtained by selecting a set of k centers and assigning each point to
its nearest center. The clusters are then evaluated based on the distances between the points
and their centers: in the case of k-center, the objective is to minimize the maximum distance
of a point to its nearest center, while in the case of k-median (k-means), respectively, the
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(a) (b)

Figure 1 Clustering of a set of points: (a) a possible center-based clustering induced by a Voronoi
diagram of two cluster centers , and (b) a min-sum k-clustering solution for k = 2. Observe that the
min-sum k-clustering solution in (b) places all outliers into a separate cluster.

objective is to minimize the sum of distances (the sum of squared distances, respectively)
between points and their centers. Compared to other clustering algorithms, center-based
algorithms are efficient for clustering large datasets as the main task reduces to selecting k
centers; once we decided on the set of centers, points that are closest to a particular center
are considered to be part of the cluster represented by that center. Center-based clustering
algorithms are not always precise because they heavily rely on the assumption that each
cluster has a spherical shape and hence can be represented by one center.

In pair-wise k-clustering, on the other hand, the goal of partitioning is to minimize the
dissimilarity between pairs of points that are in the same cluster. For example, in the case of
the k-diameter problem, the goal is to minimize the maximum distance between any two
points in a cluster; or in the min-sum k-clustering problem, the goal is to minimize the sum
of distances between all pairs of the points within the same cluster.

Unlike center-based clustering problems, min-sum k-clustering (which is the main focus
of this paper) is less sensitive to the shape of clusters because it forms clusters based on
the pair-wise distances between points rather than the distances of points to their cluster
center. Also, as observed in [8], min-sum k-clustering can handle (detect) noises (outliers) in
an effective way: in scenarios where data include well-defined clusters and a limited number
of scattered noises (outliers), assigning an outlier to one of the clusters would be more costly
than placing it in an outlier cluster that holds all the outliers. This results in a solution with
a separate cluster specifically for outliers, avoiding the limitations of center-based clustering
algorithms, which rely on Voronoi partitioning to divide the data space into clusters and are
unable to handle overlapping cluster spaces. See Figure 1.

We now formally define the min-sum k-clustering problem. Given a metric space over a set
of n points V with metric distances d(u, v) between any two u, v ∈ V . We assume the metric
is induced by an edge-weighted graph G = (V,E). In the Min-Sum k-Clustering problem
(k-MSC), the goal is to partition points V into k clusters C1, ..., Ck to minimize the sum
of pairwise distances between points assigned to the same cluster:

∑k
i=1

∑
{u,v}⊆Ci

d(u, v).
This problem is closely related to the Balanced k-Median problem (k-BM), with the same
input as in k-MSC. Here, the goal is to select k points c1, ..., ck ∈ V as the centers of the
clusters and partition points V into clusters C1, ..., Ck to minimize

∑k
i=1 |Ci|

∑
v∈Ci

d(v, ci).

Related Works

Sahni and Gonzalez introduced k-MSC in 1976 [13]. They showed the problem is NP -hard
and provided a polynomial time k-approximation algorithm for the k-Max Cut problem,
which is the dual of k-MSC and involves partitioning points into k clusters to maximize
the distance between points in different clusters. Kann et al. [12] showed it is NP -Hard
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to approximate non-metric k-MSC within O(n2−ϵ) for any ϵ > 0 and k > 3. Later,
Cohen-Addad et al. [6] proved that it is NP -hard to approximate metric k-MSC within
1.415.

Guttman-Beck and Hassin [11] showed that k-BM and k-MSC are closely related.
They showed an algorithm with ρ approximation for one of these problems implies a 2ρ
approximation for the other. In the literature, most of the previous work (with a guaranteed
approximation factor) for k-MSC make use of this reduction. Guttman-Beck and Hassin [11]
showed that k-BM can be solved in time nO(k) by guessing the cluster centers and sizes
and finding the minimum-cost assignment from clients to these centers. This results in
a 2-approximation solution for the min-sum k-clustering problem when k is fixed. Bartal
et al. [3] introduced the first polynomial time approximation algorithm for both k-MSC
and k-BM in metric spaces. They devised an algorithm with an approximation factor of
O( 1

ϵ log1+ϵ n) and running time of n 1
ϵ for k-BM. The algorithm is based on the embedding

of metric spaces into hierarchically separated trees (HSTs). They also provided a bi-criteria
approximation algorithm with a constant approximation factor with O(k) clusters. Later,
Behsaz et al. [4] improved the result by utilizing the properties of HSTs through a direct
dynamic programming approach, leading to a O(log n) approximation algorithm for both
k-MSC and k-BM. This is the current best result for general metrics. They also present a
quasi-polynomial time approximation scheme for k-BM in metrics with constant doubling
dimensions, leading to a (2 + ϵ)-approximation algorithm for the min-sum k-clustering
problem that runs in quasi-polynomial time. More recently Banerjee et al. [2] gave a
bicriteria approximation for k-MSC with outliers: for any ϵ > 0, given an instance with n

points and any integer n′ ≤ n, their algorithm finds a solution that clusters at least (1 − ϵ)n′

points whose cost is poly(1/ϵ) times the optimum clustering of n′ points.
For small values of k, Vega et al. [9] introduced the first polynomial time approximation

scheme for k-MSC in metric spaces. The running time of their algorithm is O(n3k2ϵ−k2

).
Czumaj and Sohler [8], presented a (4 + ϵ) approximation algorithm for k-MSC in metric
spaces with a running time of linear for k = o(log n/ log log n).

Our Results and Techniques

As mentioned earlier, the previous methods for designing approximation for k-MSC attempt
to approximate the cost using a center-based clustering objective (such as k-BM [3, 4] or a
capacitated version of k-median [2]). Such methods have a barrier of 2 (even for tree metrics).
A key challenge in extending the framework of [4] to work directly for k-MSC is to develop
a compact representation of the cluster types in a near-optimal solution that can capture the
essence of the cluster without relying on a center.

Here we introduce a new clustering objective that is in between the pair-wise distances
objective of k-MSC and the center-based objective of k-BM, which we call min-hub
clustering. We show that for metrics with a nice hierarchical decomposition (such as graphs
of bounded treewidth, or bounded doubling dimension), the objective of min-hub clustering is
a good (namely (1 + ϵ)) approximation of k-MSC and how one can obtain an approximation
scheme for the new objective (and hence one for k-MSC).

In center-based clustering, a cluster is represented by a single center. However, as
demonstrated in Figure 1 (see the outlier cluster in red), not all k-MSC clusters can be
represented by a single center. To address this, we explore the possibility of using multiple
centers to represent a cluster. Our results show that a cluster in the k-MSC solution can be
represented by Oϵ(1) centers, which we refer to as hubs, while incurring an error of (1 + ϵ).
Specifically, let H be a set of hubs. The hub-distance between two points u and v in a cluster
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84:4 Approximation Schemes for Min-Sum k-Clustering

C is defined as the shortest path between the points that passes through hub points in H.
Our results show that there exists a set of H of constant size (depending on ϵ) such that
the sum of distances between all pairs of points within C is “almost” equal to the sum of
hub-distances between pairs of points in C. This suggests that the network interconnecting
the hubs, called the backbone structure, carries the majority of the connection flow in the
cluster. We represent a cluster by the type of its backbone structure and the distribution of
points around its hubs.

In Section 2, we consider the special case of tree metrics. We construct a dynamic program
for k-MSC on tree metrics that have a logarithmic height. In Section 3, we extend our
approach to cover metrics with bounded treewidth, thereby covering general trees as well.

▶ Theorem 1. There is a quasi-polynomial time algorithm that, given an instance of k-MSC
on a metric of treewidth f , for any ϵ > 0 finds a (1 + ϵ)-approximate solution in time
nO(f2+( log n

ϵ )σ+1), where σ depends on ϵ.

It is worth pointing out that, if one tries to extend the result from trees to graphs with
treewidth f in a natural way, the algorithm will have a run time of the form n( log n

ϵ )f2+σ+1

(instead of nO(f2+( log n
ϵ )σ+1)), which is still quasi-polynomial for fixed f , but will not be

quasi-polynomial if f = Polylog(n). This is essential to obtain the next three theorems, as
we use embeddings into graphs with treewidths f = Polylog(n).

In Section 4, using frameworks from [14], [10], and [7], we expand our results to three
additional metric classes: bounded doubling metrics, bounded highway dimension metrics,
and minor-free metrics, respectively.

▶ Theorem 2. There is a quasi-polynomial time algorithm that, given an instance of k-MSC
on a metric of doubling dimension D, for any ϵ > 0 finds a (1 + ϵ) approximate solution in
time nO(( D log n

ϵ )2D+( log n
ϵ )σ+1).

▶ Theorem 3. There is a quasi-polynomial time algorithm that, given an instance of k-MSC
on a metric highway dimension D and violation λ, for any ϵ > 0 finds a (1 + ϵ) approximate
solution in time nO((log n)α+( log n

ϵ )σ+1)), where α = O(log2( D
ϵλ )/λ).

▶ Theorem 4. There is a quasi-polynomial time algorithm that, given an instance of k-MSC
in minor-free metrics, for any 1/2 > ϵ > 0 finds a (1 + ϵ) approximate solution in time
nϵ−O(1) logO(1) n.

2 The k-MSC Problem in Tree Metrics

In this section, we construct a dynamic program for k-MSC on trees. Consider metric (V, d)
induced by an edge-weighted tree T = (V,E). Let w(e) denote the weight of edge e in E.

We let T be rooted at an arbitrary vertex r ∈ V . The parent of a vertex v ∈ V \ {r} is
the vertex adjacent to v on the path from v to r. If u is the parent of v then v is a child of u.
A tree vertex is called a leaf if it has no children and is called an internal vertex otherwise.
The level of each node is the number of edges on the path from it to r. The height of the
tree is the level of the leaf node with the highest level. We use Tv to denote the subtree
rooted at v, V (Tv) and E(Tv) to denote the vertex set and the edge set of Tv, respectively.
By introducing zero-weight edges and nodes, we convert the tree into an equivalent binary
tree. Note that the resulting binary tree has at most 2|V | nodes.

We use C ⊆ V to denote a cluster and D(C) to denote the total sum of the distances
between all pairs of points in C; i.e., D(C) =

∑
{u,v}⊆C d(u, v). We use H ⊆ V to indicate a

set of points referred to as hubs. The distance between any two points u and v in C, when
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(a) (b)

Figure 2 (a) A cluster on the tree, where the blue circles specify points of this cluster. (b) Shaded
regions highlight the resulting groups by applying Lemma 5 on the cluster. Notice that the distance
between any two points of the cluster that belong to different groups (such as u and v) is equal
to their hub-distance, dH(u, v), as long as H contains the border nodes of the groups. The larger
circles around the nodes depict the border nodes of the groups (so the proper hubs of the cluster).

Algorithm 1 Tree Partitioning Algorithm.

1 Cν ← ∅
2 η ← max{ν|C|, 1}
3 L← {v ∈ V : 1

2η ≤ |V (Tv) ∩ C| ≤ η}
4 while L ̸= ∅ do
5 v̂ ← v ∈ L ▷ If multiple, select v with the lowest level.
6 g ← V (Tv̂)
7 Cν ← Cν ∪ {g}
8 remove Tv̂ from T

9 L← {v ∈ V (T ) : 1
2η ≤ |V (Tv) ∩ C| ≤ η}

10 end
11 Cν ← Cν ∪ {V (Tr)}

measured through hubs in H, is called the hub-distance and is denoted by dH(u, v). This
is the length of the shortest path between the two points that goes through hub points in
H; i.e., dH(u, v) = minh1,h2∈H

(
d(u, h1) + d(h1, h2) + d(h2, v)

)
. Let pH(u, v) represent the

path between points u and v that passes through hub points in H and has the length of
dH(u, v). The sum of pairwise hub-distances for the points in C is represented by DH(C)
and is equal to the total sum of the hub-distances between all pairs of points in C; i.e.,
DH(C) =

∑
{u,v}⊆C dH(u, v). Note that DV (C)=D(C).

The following lemma shows how to find a (constant-size) set of hubs that represents a
given cluster in metrics induced by a tree metric. See Figure 2. For a subset of nodes g ⊆ V ,
we use δ(g) = {v ∈ g : uv ∈ E & u /∈ g} to denote the border nodes of g.

▶ Lemma 5. Let C ⊆ V be a cluster and let T = (V,E) be a given binary tree. For
any ν > 0, there exists a partition of V into a set of groups Cν = {g1, . . . , gσ} such that
all of the following properties hold: (i) the subgraph induced by each group g ∈ Cν is
connected. (ii) for each group g ∈ Cν , |g ∩ C| ∈ [1,max {1, ν|C|}]. (iii) |Cν | = O(1/ν). (iv)
∀g ∈ Cν , |δ(g)| = O(1/ν).

Proof. We use Algorithm 1 to compute Cν . The algorithm iteratively selects a subtree Tv̂,
with approximately ν

2 of the total number of points |C|, adds the vertex set V (Tv̂) to Cν ,
and removes Tv̂ from T . The number of iterations (i.e. the number of groups made by the
algorithm) is at most 2/ν, and every vertex of V belongs to one group.

ESA 2023



84:6 Approximation Schemes for Min-Sum k-Clustering

Note that there is at most one edge between any two groups, so |δ(g)| = O(1/ν), ∀g ∈ Cν .
The subgraphs induced by gi’s are connected by construction. Thus, the algorithm has
constructed a partition with the desired properties, as shown in Figure 2. ◀

Note that each cluster covers only a subset of points, however, the groups of the cluster
always include all the nodes of V . Given a cluster C ⊆ V and a constant ν > 0, let
Cν = {g1, . . . , gσ} be the groups obtained by applying Lemma 5 on C with the given value
of ν. We let Hν(C) = ∪σ

i=1δ(gi) denote the ν-proper hubs of the cluster. Notice that the
size of |Hν(C)| is constant, depending on ν.

Given a cluster C ⊆ V and a constant ν > 0, consider the ν-proper hubs of the
cluster, Hν(C). We refer to costHν (C) =

∑σ
i=1

∑σ
j=i+1

∑
u∈gi∩C,v∈gj∩C dHν (C)(u, v) as the

ν-approximate cost of the cluster. This represents the sum of hub-distances between all
pairs of points of C belonging to different groups. The following lemma shows that costHν (C)
is “almost” equal to D(C), when the value of ν is sufficiently small.

▶ Lemma 6. For each such cluster C and any ν > 0, costHν (C) ≤ D(C) ≤ (1 +
O(ν))costHν

(C).

The proof is omitted due to page limitations.
To make the presentation of our dynamic programming algorithm simpler, we formulate

a problem with the same input and objective as the min-sum k-clustering problem, but the
cost of clusters is evaluated by costHν(C) instead of D(C): Given a constant ν > 0 and an
edge-weighted tree T = (V,E). In the Min-Hub k-Clustering problem (k-MHC), we are
asked to partition points V into k clusters C1, ..., Ck to minimize

∑k
i=1 costHν (Ci).

▶ Theorem 7. Let ϵ > 0. A (1 + ϵ)-approximation for k-MHC will imply a (1 + O(ϵ))-
approximation for k-MSC on tree metrics.

The proof is omitted due to page limitations.

2.1 QPTAS for k-MHC on Trees with Logarithmic Heights
Theorem 7 tells us that if we try to find a clustering which optimizes the objective of
k-MHC, then the same clustering has a good value for the objective of k-MSC. Suppose
we are given a tree T = (V,E) that has a logarithmic height and a constant ν > 0. Let
OPT be the minimum cost of partitioning V into k clusters C1, C2, · · · , Ck with the total
cost being

∑k
i=1 costHν

(Ci). Given ϵ > 0, we will present a dynamic program that finds
a (1 + ϵ)-approximation of OPT . This, as a result of Theorem 7, leads to a (1 + O(ϵ))
approximation solution for k-MSC on trees with logarithmic heights. Then, in the next
section, we will extend the dynamic program to cover metrics with bounded treewidth,
thereby covering general trees as well.

Preprocessing. We assume each node of the tree has a token on it and our goal is to cluster
the tokens. We may modify the tree by adding dummy edges (with zero weight) and dummy
nodes (that do not have tokens). Throughout this section, we refer to a node with a token
as a point and a node without a token as a vertex. By introducing zero-weight edges and
nodes, we convert the tree into an equivalent binary tree in which the points are only located
on distinct leaves. We repeatedly remove leaves with no tokens until there is no such leaf
in the tree. We also repeatedly remove internal vertices (with no token) of degree two by
consolidating their incident edges into one edge of the total weight.
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(a) (b) (c)

Figure 3 (a) A cluster and its corresponding groups. (b) The partial cluster with respect to Tv.
(c) The corresponding backbone tree whose nodes are labelled according to their sizes/weights.

Cluster, Backbone Tree, and Partial Cluster Types. Let ν > 0 and consider a cluster
C ⊆ V . Suppose Cν = {g1, . . . , gσ} are the groups by Lemma 5. We define a tree called the
backbone tree of C, with nodes corresponding to groups g1, . . . , gσ. This tree has edges
between nodes whose corresponding groups are connected by an edge. We use gi to refer to
both the group and the corresponding node in the backbone tree. According to Cayley’s
formula [1], the number of different trees that can be formed by ñ labeled nodes is ññ−2.
Hence the cluster’s backbone tree has one of the types 1, 2, · · · , σσ−2.

Each cluster C is associated with a pair (tb, w⃗) (referred to as the cluster type of C),
where tb is an integer between 1 and σσ−2 and represents the type of the cluster’s backbone
tree, and w⃗ is a vector representing the weights of each node in the backbone tree, with
w⃗[i] = |gi ∩ C| being the number of points in the i-th group of the cluster; see Figure 3.

The maximum number of ways to assign weights to nodes of a backbone tree is nσ, where
n = |V |. To keep the number of different cluster types manageable, we store the group
weights approximately by rounding them to the nearest threshold value. This reduces the
number of possible ways to assign weights to nodes of a backbone tree to a poly-logarithmic
number and so allows for a more compact representation of the cluster types.

▶ Definition 8. Given ϵ > 0, let ϵ′ be ϵ
c log n . Let logarithmic threshold values be

Φϵ,n = {ϕ1, · · · , ϕτ } where ϕi = i for 1 ≤ i ≤ ⌈ 1
ϵ′ ⌉, and for i > 1

ϵ′ we have ϕi = ⌈ϕi−1(1+ϵ′)⌉,
and ϕτ = n. So τ = O( log n

ϵ ). We define a mapping ϕ which associates with each value
1 ≤ i ≤ n the minimum threshold value ϕj for which i ≤ ϕj holds.

By rounding the weights of groups to the nearest threshold value, the number of different
cluster types is reduced to O(σσ−2( log n

ϵ′ )σ)), where σ = O(1/ν). We will show that, by choos-
ing the number of thresholds appropriately large, the DP solution will have a multiplicative
error of at most 1 +O(ϵ) (provided that the tree has a logarithmic height).

For every cluster C ⊂ V and every node v ∈ V , the part of cluster that falls into Tv is
referred to as the partial cluster of C with respect to v. To represent such a partial cluster,
we associate it with a triple (tc, γv, s⃗v), where tc is an integer between 1 and O(σσ−2( log n

ϵ′ )σ))
and represents the type of the cluster, γv is the split group of the partial cluster and specifies
the group that includes the node v, and s⃗v is a vector representing the sizes of each group
of the partial cluster that intersects with the tree Tv, with s⃗v[i] = |(gi ∩ C) ∩ V (Tv)| being
the number of points in the i-th group that intersect with V (Tv); see Figure 3. Similar
to the group weights, the group sizes are stored approximately by rounding them to the
nearest threshold value. This results in a reduction of the number of partial cluster types to
O(σσ−2( log n

ϵ′ )σ)). Observe that a partial cluster C with respect to root r is actually the full
cluster C. This means that for every group i in the cluster, the value s⃗r[i] is equal to w⃗[i].
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84:8 Approximation Schemes for Min-Sum k-Clustering

We let Γv ⊆ Cν indicate the groups, called the inner groups, of the partial cluster whose
nodes are completely contained within the tree node Tv. For a specific partial cluster type ℓ
at v, we use the notation γℓ

v,Γℓ
v, s⃗

ℓ
v, and w⃗ℓ to refer to its split group, inner groups, size, and

weight vectors, respectively. It is important to note that both the weight vector w⃗ℓ and the
inner groups Γℓ

v can be obtained from the triple (tc, γv, s⃗v) that defines ℓ.
A partial cluster type ℓ with respect to a node v is considered valid if the following

conditions are met: (i) the values of s⃗ℓ
v[i] for each group i of ℓ are between 0 and w⃗ℓ[i], (ii)

the value of w⃗ℓ[i] for each group i of ℓ is less than or equal to max{ν.
∑

i′ w⃗ℓ[i′], 1} (see
Lemma 5), (iii) if v is a leaf node of T , then γℓ

v is a leaf node of the backbone tree of ℓ (from
the definition of the backbone tree). A partial cluster type ℓ is considered a leaf partial
cluster type at a node v if γℓ

v is a leaf node of the backbone tree of ℓ and s⃗ℓ
v[γℓ

v] = 1.

Edge Load, Partial Cluster Cost, and Cluster Cost. Consider a cluster C together with its
groups Cν = {g1, . . . , gσ} and hubs Hν(C) , and let ℓ be the type of this cluster with respect
to v. Recall that, vectors w⃗ℓ and s⃗ℓ

v are used to show the weight and the size (with respect
to the tree Tv) of the groups within the cluster C, and γv is used to specify the group of the
cluster that includes the node v. Here, we explain how to compute the ν-approximate cost
of the cluster, costHν

(C), by utilizing the information provided by these vectors.
We define the load of edge e with respect to the cluster C, its groups Cν , and hubs

Hν(C) to be the number of paths pH(u, v) that include edge e over all (u, v) ∈ X, where
X = ∪σ̂

i=1Xi and Xi = {(u, v) : u ∈ ĝi v ∈ C \ ĝi}. Let ev denote the edge connecting v to
its parent in T . The load of edge ev with respect to ℓ can be calculated using the following
formula, represented as loadℓ(ev):

loadℓ(ev) =
( σ∑
i=1,i̸=γv

s⃗ℓv[i]
)
×

( σ∑
i=1

(w⃗ℓ[i]− s⃗ℓv[i])
)

︸ ︷︷ ︸
#paths crossing ev s.t. one of its ends is below γv

+ s⃗ℓv[γv]×
( σ∑
i/∈Γv

w⃗ℓ[i]
)

︸ ︷︷ ︸
#paths crossing ev s.t. one of its ends is in γv

We define and compute the cost of a partial cluster type ℓ with respect to a node v (we
denote it by costℓv) recursively as follows. For the base case, costℓv = 0, if v is a leaf node. For
the recurrence, costℓv = costℓv1

+ costℓv2
+ loadℓ(ev1)w(ev1) + loadℓ(ev2)w(ev2), where v1, v2

are children of v. Note that the union of groups of each cluster always includes the root node
r (see Algorithm 1). One can verify that costℓr = costHν (C), if ℓ stores the exact weights and
sizes of the groups of the cluster. However, here, ℓ stores weights and sizes approximately
and therefore the edge load loadℓ(ev) might be overestimated by a factor of (1 + ϵ′) (by
choosing the number of thresholds appropriately large). In the next section, we will see
how this affects our approximation solution and results in a multiplicative error of at most
1 +O(ϵ) (provided that the tree has a logarithmic height).

Dynamic Program

The Dynamic Program (DP) starts at the leaves of T and works its way up, exploring
all possible ways to form clusters. For each node v and each possible configuration Pv

of partial clusters with respect to v, there is an entry in the DP table. A configuration
Pv ∈ [k]O(σσ−2( log n

ϵ′ )σ)} at node v lists the number of each type of partial cluster covering
points within subtree Tv. We let A[v,Pv] store the minimum cost to form a set of partial
clusters, which match the configuration Pv, and cover all points in Tv. Observe that the
number of such subproblems is at most nO(σσ−2( log n

ϵ′ )σ).
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(a) (b) (c)

Figure 4 Consider a node v and its children v1, v2. There are three possible scenarios in which v,
v1, and v2 may belong to one or two groups of a cluster. (a) is depicting the case where all three
nodes are in the same group, (b) is depicting the case that v and v1 are in the same group, (c) is
depicting the case that v and v2 are in the same group. Note that the case where all three nodes
belong to different groups does not happen due to Algorithm 1.

Consider a node v in the tree T . Assume for now that we have access to a table
λ[Pv,Pv1 ,Pv2 ], where Pv is the configuration at node v, and Pv1 and Pv2 are the configurations
at its children nodes v1 and v2, respectively. The table λ indicates whether the configurations
Pv, Pv1 , and Pv2 are consistent, meaning that there is a solution where the descriptions
of partial clusters below nodes v, v1, and v2 match the configurations Pv, Pv1 , and Pv2 ,
respectively. We shall describe how to compute λ. We will compute the subproblems A[v,Pv]
in a bottom-up manner: We will compute A[v,Pv] after we have computed the subproblems
A[v1,Pv1 ] and A[v2,Pv2 ] for the children of v. The subproblems are computed as follows:

Base Case. For every leaf node v and every configuration Pv, set: A[v,Pv] = 0 if there exists
a type ℓ such that Pv[ℓ] = 1 and ℓ is a leaf partial cluster at v. Otherwise, set A[v,Pv] = ∞.

Recurrence. Let load(v) =
∑

ℓ Pv[ℓ]loadℓ(ev). For each internal node v and its children,
v1, v2 and every combination of configurations of Pv on v and Pv1 ,Pv2 :

A[v,Pv] = min
Pv,Pv1 ,Pv2 :λ[Pv,Pv1 ,Pv2 ]=T rue

∑
i=1,2

(
A[vi,Pvi

] + load(vi)w(vvi)
)

The final solution is obtained by finding the minimum value of A[r,Pr] over all config-
urations Pr such that the sum of all Pr[ℓ] values equals k; and s⃗ℓ

r[i] = w⃗ℓ[i] holds, for each
partial cluster type ℓ with Pr[ℓ] > 0, and for all i.

Consistency Constraints. Consider a node v and its children v1, v2. Let Pv =
(tc, γv, s⃗v), Pv1 = (tc1 , γv1 , s⃗v1), Pv2 = (tc2 , γv2 , s⃗v2) be some valid partial cluster types at
v, v1, v2, respectively. We say Pv is consistent with Pv1 and Pv2 if the following conditions
are met:

Type Consistency. The types of Pv, Pv1 , and Pv2 must be the same, i.e. tc = tc1 = tc2 .
Group Consistency. The groups of Pv1 and Pv2 are consistent with those of Pv: Recall
that γv indicates the split group of a partial cluster Pv and Γv indicates the inner groups
of Pv. Let δin

v be the inner groups adjacent to γv in the backbone tree; δin
v = δ({γv})∩Γv,

where δ({γv}) indicates groups adjacent to γv (in the backbone tree). Depending on the
values of γv, γv1 , γv2 , one of the following cases holds:

If γv = γv1 = γv2 (Figure 4a), then δin
v1

∪ δin
v2

= δin
v , δin

v1
∩ δin

v2
= ∅.

If γv = γv1 and γv2 ∈ δin
v (Figure 4b), then δin

v1
= δin

v \ {γv2}, δin
v2

= δ({γv2}) \ {γv}.
If γv = γv2 and γv1 ∈ δin

v (Figure 4c), then δin
v2

= δin
v \ {γv1}, δin

v1
= δ({γv1}) \ {γv}.
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Size Consistency. The group sizes of P1 and P2 are consistent with those of P .
Depending on the values of γv, γv1 , γv2 , one of the following cases holds:

If γv = γv1 = γv2 , then we ensure that ϕ
(
s⃗v1 [γv1 ] + s⃗v2 [γv2 ]

)
= s⃗v[γv].

If γv = γv1 and γv2 ∈ δin
v , then we ensure that s⃗v2 [γv2 ] = w[γv2 ] and s⃗v1 [γv1 ] = s⃗v[γv].

If γv = γv2 and γv1 ∈ δin
v , then we ensure that s⃗v1 [γv1 ] = w[γv1 ] and s⃗v2 [γv2 ] = s⃗v[γv].

Note that the case that γv1 = γv2 , γv ̸= γv1 is impossible since each group of the cluster
covers a connected subtree. Furthermore, the case when γv1 ∈ δin

v & γv2 ∈ δin
v is impossible

using the fact that there is no point on the internal node v (see the preprocessing step).
The value of λ[Pv,Pv1 ,Pv2 ] is calculated recursively for every combination of configurations

of v and its children, v1, v2. For the base case λ[⃗0, 0⃗, 0⃗] = True. Let Pv − Pv indicate the
configuration of Pv with one less partial cluster of type Pv. For the recurrence, we consider
all possible consistent valid partial cluster types Pv, Pv1 and Pv2

λ[Pv,Pv1 ,Pv2 ] =
∨

∀ consistent Pv,Pv1 ,Pv2

λ[Pv − Pv,Pv1 − Pv1 ,Pv2 − Pv1 ]

Analysis

In our DP, configurations store the rounded sizes (and weights) of the partial clusters’ groups.
To ensure consistency between the sizes of the groups at node v and its children v1 and v2,
we allow the size of the group at v to be a (1 + ϵ′) upper bound for the combined size of
the groups at v1 and v2. This results in a multiplicative error of at most (1 + ϵ′) in the
calculation of the edges’ loads and so the cost of the partial clusters at each node of the tree
when the sizes (weights) of merged partial clusters are rounded. Given that the height of the
tree is h, it is not difficult to see that our dynamic programming approach finds a solution
that is an (1 + ϵ′)h-approximation to the problem.

The number of possible configurations Pv for each node v is at most nO(σσ−2( log n

ϵ′ )σ)),
resulting in nO(σσ−2( log n

ϵ′ )σ)) dynamic program table entries. To compute each entry in
the DP table, we iterate over all consistent configurations at v, v1, and v2, which takes
nO(σσ−2( log n

ϵ′ )σ)) time. Hence, the overall running time of the algorithm is nO(σσ−2( log n

ϵ′ )σ)),
which is still a quasi-polynomial time complexity in n. By setting ϵ′ = ϵ

log n in the threshold
mapping, the algorithm finds a (1 + ϵ) approximation solution in time nO(σσ−2( log n

ϵ )σ+1)).

▶ Theorem 9. There is a QPTAS for the k-MSC problem on trees with logarithmic heights.

3 The k-MSC Problem in Metrics of Bounded Treewidth

In this section, we extend our algorithm from Section 2 to metrics of bounded treewidth. A
tree decomposition of a graph G = (V,E) is a tree T = (V ′, E′) on a new set of nodes V ′,
where each i ∈ V ′ corresponds to a subset bi, called a bag, of vertices of V with the following
properties: (i) ∪i∈V ′bi = V , (ii) for every edge uv ∈ E, there exists a bag t of T such that bt

contains both u and v, (iii) if bi, bj contain vertex v then every bag on the path between i

and j in T contains v. The width of a tree decomposition T is the size of the largest bag of T
minus one; this is maxi∈V ′(|bi| − 1). The treewidth of a graph G is the minimum width over
all possible tree decompositions of G. The authors of [5] showed that any graph G = (V,E)
with treewidth f has a tree decomposition T of width at most 3f + 2 that has the following
two extra properties: (i) T is binary, (ii) the height of T is O(log |V |).

Given a graph G = (V,E) with a treewidth of f ′, we create a binary decomposition tree
T = (V ′, E′) with a width of no more than 3f ′ + 2 and a height of logarithmic in |V | (see [5]).
Let f be the width of T . We will refer to G as the graph and T as the tree. We will refer to
vertices in V as nodes and vertices in V ′ as bags. We will refer to edges in G as edges and
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edges in T as super-edges. Let T be rooted at an arbitrary bag r ∈ V ′. We use Tb to denote
the subtree rooted at the bag b, V ′(Tb) to denote the bag set of Tb, and E′(Tb) to denote the
super-edge set of Tb. Each node u ∈ V can appear in multiple bags of V ′, and these bags
form a subtree of T . To ensure that each point is covered only once, we consider the point
as a token placed at the node. We place the token of a node at the bag closest to the root of
T that contains the node. This bag is marked as the one containing the point.

We further modify the tree to make sure that (i) only the leaf bags contain the tokens
and (ii) each bag contains at most one token: for any bag A that violates these two rules,
create two new bags B and C that are identical copies of A. Move one of the tokens from the
original bag A to bag C and place any remaining tokens in bag B. Connect the children of
the original bag A to the newly created bag B. Connect both bags B and C to A. Finally, we
remove all leaf bags without any tokens. This process results in a binary tree decomposition
with a height of O(log n). We call this tree decomposition with these properties the proper
tree decomposition of the graph. For each point u ∈ V , we let Bu ∈ V ′ denote the bag
that contains point u. For each C ⊆ V , let BC = {Bu : u ∈ C}.

Consider a mapping p : V ′ → V ′ that maps each bag to its parent bag and maps r to
itself. Let eb be the super-edge between b and p(b) in T . The edges (s, t) where s ∈ b and
t ∈ p(b) are referred to as the bridge-edges with respect to the super-edge eb. We use the
notation es,t

b to refer to these edges. An edge between such vertices s ∈ b and t ∈ p(b) is
added in G with a weight of d(s, t) if it does not already exist. For any pair of points u and
v in V , one can verify that there exists a path between u ∈ Bu and v ∈ Bv in the tree T
consisting only of bridge-edges over the super-edges which is equivalent to the shortest path
between u and v in the graph. This path connects the bags Bu and Bv in T and only uses
the bridge-edges over the super-edges of the unique path connecting these bags in the tree.
The length of this path is equal to d(u, v), the distance between u and v in the graph G.
This path is referred to as pB(u, v).

For each bag b ∈ V ′, let V ′
b = ∪i∈V ′(Tb)bi denote the union of nodes in bags of V ′(Tb).

For a tree decomposition T = (V ′, E′) and a subset of bags V̂ ⊆ V ′, we use δ(V̂ ) = {bi ∈ V̂ :
bibj ∈ E′ & bj /∈ V̂ } to denote the border bags of V̂ . The proof of the following lemma is
analogous to that of Lemma 5.

▶ Lemma 10. Given a graph G = (V,E) of bounded treewidth, a proper tree decomposition
T = (V ′, E′) of G, a set of points C ⊆ V , for any ν > 0, there exists a partition of V ′

into a set of groups Cν = {g1, . . . , gσ} such that all of the following properties hold: (i)
The subgraph induced by each group g ∈ Cν is connected in T . (ii) For each group g ∈ Cν ,
|g ∩BC | ∈ [1,max {1, ν|C|}]. (iii) σ = O(1/ν). (iv) ∀g ∈ Cν , |δ(g)| = O(1/ν).

Let ν > 0. Consider a cluster C ⊆ V . Let Cν = {g1, . . . , gσ} be the groups
obtained by Lemma 10. For each such cluster C and any constant ν > 0, we let
Hν(C) = ∪σ

i=1 ∪j∈δ(gi) bj denote the border hubs of the cluster and costHν (C) =∑σ
i=1

∑σ
j=i+1

∑
u∈V (gi)∩C,v∈V (gj)∩C dHν (C)(u, v) be the ν-approximate cost of the cluster.

Notice that for any two points u and v in C that belong to different groups of Cν , the path
pB(u, v) passes through the hubs Hν(C), implying d(u, v) = dHν (C)(u, v). The proof of the
following is analogous to that of Theorem 7.

▶ Theorem 11. Given ϵ > 0, a (1 + ϵ)-approximation for k-MHC, will imply a (1 +O(ϵ))-
approximation for k-MSC on bounded treewidth graphs.
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3.1 QPTAS for k-MHC on Graphs of Bounded Treewidth

Given ν > 0 and a graph G(V,E) that has a proper decomposition tree T = (V ′, E′) with a
logarithmic height and a treewidth of f . Let OPT be the minimum cost of partitioning V
into k clusters C1, C2, · · · , Ck with the total cost being

∑k
i=1 costHν

(Ci). Given ϵ > 0, we
will present a dynamic program that finds a (1 + ϵ) approximation of OPT . This, as a result
of Theorem 11, leads to a (1 +O(ϵ)) approximation solution for the k-MSC problem.

Consider a cluster C ⊆ V . Let Cν = {g1, . . . , gσ} be the groups obtained by Lemma 10
on C. We define a backbone tree associated with the cluster C. This tree is made up of
O(1/ν) nodes that correspond to the groups of Cν and there are edges between the nodes
in the tree if the corresponding groups in Cν are connected by a super-edge in the tree T .
A cluster type is defined as a node-weighted backbone tree where each node in the tree is
assigned a weight from the threshold values Φϵ,n (see Definition 8) which represents the
number of points in the corresponding group rounded up to the nearest threshold value.

For each cluster C and bag b in tree T , we associate a partial cluster type to it. This
is represented by a triple (tc, γb, s⃗b) and includes: the type of the cluster, tc; the group of
the cluster that has bag b, γb; and a vector s⃗b, where s⃗b[i] denotes the number of points in
the ith group located in tree Tb. It is not hard to verify that the number of possible partial
clusters is O(σσ−2 logσ

(1+ϵ′) n) = O(( log n
ϵ )σ+1), where we fix σ = O(1/ν).

We use ℓ ∈ {1, 2, . . . , O(( log n
ϵ )σ+1)} to refer to a specific partial cluster type. A partial

cluster type ℓ with respect to a vertex b is considered valid if: the values of s⃗ℓ
v[i] for each

group i of ℓ are between 0 and w⃗ℓ[i], the value of w⃗ℓ[i] for each group i of ℓ is less than or
equal to max{ν.

∑
i′ w⃗ℓ[i′], 1}, and if v is a leaf vertex of T , then γℓ

v is a leaf node of the
backbone tree of ℓ. A partial cluster type ℓ is considered a leaf partial cluster type at a
vertex b if γℓ

b is a leaf node of the backbone tree of ℓ and s⃗ℓ
b[γℓ

v] = 1.
Consider a cluster C together with its groups Cν = {g1, . . . , gσ} and hubs Hν(C), and

let ℓ be the type of this cluster with respect to bag b. Here, we explain how to compute
the ν-approximate cost of the cluster, costHν (C). Let X = ∪σ

i=1Xi and Xi = {(u, v) : u ∈
V (gi) v ∈ C \ V (gi)}. Let eb denote the super edge connecting b to its parent bag p(b) in T .
We define load of a bridge-edge es,t

b with respect to the cluster C, its groups Cν , and hubs
Hν(C) to be the number of paths pB(u, v) that contain this edge over all {u, v} ∈ X. We
use loadℓ(es,t

b ) to represent the load of bridge-edge es,t
b with respect to partial cluster type ℓ

and bag b. Similarly, we use loadℓ(eb) to represent the load of super-edge eb with respect to
partial cluster type ℓ and bag b.

Similarly to the case of the tree, the load of the super-edge eb with respect to ℓ can be
calculated using the following formula: loadℓ(eb) =

( ∑σ
i=1,i̸=γb

s⃗ℓ
b[i]

)
×

( ∑σ
i=1(w⃗ℓ[i] − s⃗ℓ

b[i])
)
+

s⃗ℓ
b[γb] ×

( ∑σ
i/∈Γb

w⃗ℓ[i]
)
. Note that loadℓ(eb) computes the number of paths pHν (C)(u, v) in G

that cross the cut-set (b, p(b)) for all pairs of points (u, v) in the set X.
When computing the cost of a cluster type, it is necessary to take into account the load

among the bridge-edges. However, the load of a bridge-edge cannot be calculated simply from
the sizes and weights of the groups within the cluster, unlike the load of the super-edges.

To address this issue, for each partial cluster type ℓ and each b, we have defined a vector
ψℓ

b with a dimension of f2 (where f is the treewidth of the graph), that ψℓ
b[es,t

b ] specifies the
load of each bridge-edge es,t

b with respect to ℓ. One can now compute the cost of a partial
cluster ℓ at bag b, denoted by costℓb, recursively as follows. For the base case, costℓb = 0, if
b is a leaf bag. For the recurrence, costℓb = costℓb1

+ costℓb2
+

∑
{s,t}∈b1×b ψ

ℓ
b1

(eb1
s,t)w(eb1

s,t) +∑
{s,t}∈b2×b ψ

ℓ
b2

(eb2
s,t)w(eb2

s,t), where b1, b2 are children of b.



I. Naderi, M. Rezapour, and M. R. Salavatipour 84:13

We could attach ψℓ
b (with a dimension of f2 which approximately stores the flow of the

bridge edges) to the vectores we store for each cluster type ℓ to obtain a QPTAS for the
problem on graphs with bounded treewidth. However, this QPTAS cannot be extended to
include graphs with bounded highway dimension or graphs with bounded doubling dimensions
(as f becomes logarithmic in these cases). To address this issue, in the next section we
propose that at each bag v, it is sufficient to store information about the total flow of the
partial clusters that passes through the bridge edges, in addition to the information about
the type of partial cluster covering the points within the subtree. This eliminates the need
to separately store the flow of each partial cluster.

Dynamic program

The Dynamic Program (DP) traverses T starting at the leaves and moving upward and
considers all ways partial clusters can be made. At each bag b, a configuration < b,Pb, ψb >

is defined. In this configuration, Pb specifies the number of partial clusters of each type
covering points within Tb, and ψb specifies the total load for each bridge-edge over all the
partial cluster types ℓ specified in Pb; namely, ψb =

∑
ℓ Pb[ℓ].ψℓ

b.

Valid Configuration. The validity check of a configuration involves ensuring the feasibility of
the load distributions among partial clusters. For a given bag b and configuration (Pb, ψb), we
can use the loads of super edges to get the total loads crossing b: Ψb =

∑
ℓ Pb[ℓ]loadℓ(eb). We

say the configuration (Pb, ψb) is valid if the following holds: ϕ(Ψb) = ϕ

(∑
eb

s,t∈b×p(b) ψ[eb
s,t]

)
;

this is, the total load of the partial clusters crossing super-edge eb (this can be obtained via
Pb as described in the previous section) must be equal to the total load of the partial clusters
crossing all the bridge-edges with respect to the super-edge eb. Note that when b is a leaf,
this condition implies that, ϕ(

∑
eb

s,t∈b×p(b) ψ[eb
s,t]) = ϕ(

∑
i w[i] − 1).

Assume for now that we have access to an inner table φ[(P, ψ), (P1, ψ1), (P2, ψ2)] that for
every combination of configurations of (P, ψ) on b and (P1, ψ1), (P2, ψ2) on its children, b1, b2,
indicates whether they are consistent or not. The representation of ⊥ is used to indicate the
empty configurations for handling the cases when b is a leaf or has one child.

Let A[b,Pb, ψb] be the minimum cost solution for subproblem < b,Pb, ψb > in which
points in V ′

b are covered by a set of partial clusters whose types (and loads) are consistent
with the configuration Pb, ψb (recall that V ′

b = ∪i∈Tb
bi).

We will compute the subproblems A[b,Pb, ψb] in a bottom-up manner:

Base Case. For each leaf vertex b: A[b,Pb, ψb] = 0 if φ[(Pb, ψb),⊥,⊥] = True and otherwise
it is ∞.

Recurrence. For each internal vertex b and its children, b1, b2:

A[b,Pb, ψb] = min
φ[(Pb,ψb),(Pb1 ,ψb1 ),(Pb2 ,ψb2 )]=True

{ ∑
i=1,2

(
A[bi,Pbi , ψbi ] +

∑
{s,t}∈bi×b

ψb[ebi
s,t]w(ebi

s,t)
)}

The case of b having one child is similar. The final solution is obtained by finding the
minimum value of A[b,Pb, ψb] over all valid configurations < Pb, ψb > such that the sum of
all Pb[ℓ] values equals k.

ESA 2023
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Consistency Constraints

Consider a bag b and its two children b1 and b2. Let < Pb, ψb >, < Pb1 , ψb1 >, and <

Pb2 , ψb2 > be some configurations at b, b1, and b2, respectively. To check the consistency of
them, there are two steps to follow: (1) verify the feasibility of partial cluster types; if the
types of the partial clusters in Pb match those in Pb1 and Pb2 . (2) ensure the feasibility of load
distributions; if the load distribution of the clusters in ψb aligns with the load distributions of
the clusters in ψb1 and ψb2 . If these two conditions are met, φ[(Pb, ψb), (Pb1 , ψb1), (Pb2 , ψb2)]
will be set to True. Otherwise, it will be set to False.

Feasibility of Partial Cluster Types. Here we check if there is a solution where the de-
scriptions of partial clusters below nodes b, b1, and b2 match the configurations Pb, Pb1 , and
Pb2 , respectively. This step guarantees that the final clustering covers all the points and
is therefore a valid solution. This check is very similar to the consistency verification we
performed in the case of the tree. There are three cases, depending on whether b is a leaf, a
bag with one child, or a bag with two children:

when b is a leaf: Pb[ℓ] = 1 must hold for some ℓ, where ℓ is a leaf partial cluster at b.
when b has one child, say bag b1: since there is no point (token) on internal bags, b and b1
must belong to the same group. In this case, we must ensure the following: tb = tb1 (type
consistency); γb = γb1 , δ

in
b = δin

b1
(group consistency); and s⃗b = s⃗b1 (size consistency).

when b has two children, b1, b2. Let P = (tc, γb, s⃗b), P1 = (tc1 , γb1 , s⃗b1), P2 = (tc2 , γv2 , s⃗b2)
be considered partial cluster types at b, b1, b2, respectively. Note that the type of a cluster
is made up of backbone tree tb and weights w⃗. Recall that similar to trees, δ({γb}) stands
for the adjacent bags of γb and δin

b stands for the adjacent bags of γb inside Tb. We say
the partial cluster type P (with respect to Tb) is consistent with the two partial clusters
P1 and P2 (with respect to Tb1 and Tb2 , respectively) if the following holds: (i) (type
consistency) tc = tc1 = tc2 . (ii)(group consistency) If γb = γb1 = γb2 , then we ensure
that δin

b1
∪ δin

b2
= δin

b and δin
b1

∩ δin
b2

= ∅. If γb = γb1 and γb2 ∈ δin
b , then we ensure that

δin
b1

= δin
b \ {γb2} and δin

b2
= δ({γb2}) \ {γb}. If γb = γb2 and γb1 ∈ δin

b , then we ensure that
δin

b2
= δin

b \ {γb1} and δin
b1

= δ({γb1}) \ {γb}. (iii) (size consistency) If γb = γb1 = γb2 , then
we ensure that ϕ

(
s⃗b1 [γb1 ] + s⃗b2 [γb2 ]

)
= s⃗b[γb]. If γb = γb1 and γb2 ∈ δin

b , then we ensure
that s⃗b2 [γb2 ] = w[γb2 ] and s⃗b1 [γb1 ] = s⃗b[γb]. If γb = γb2 and γb1 ∈ δin

b , then we ensure
that s⃗b1 [γb1 ] = w[γb1 ] and s⃗b2 [γb2 ] = s⃗b[γb].

For every combination of configurations on b and its children, b1, b2, λ[Pb,Pb1 ,Pb2 ] is
computed recursively as below. For the base case λ[⃗0, 0⃗, 0⃗] = True. For the recurrence, we
consider all possible consistent partial cluster types Pb, Pb1 and Pb2

λ[Pb,Pb1 ,Pb2 ] =
∨

∀ consistent Pb,Pv1 ,Pv2

λ[Pb − Pb,Pb1 − Pb1 ,Pb2 − Pb1 ]

where Pb − Pb indicates the configuration of Pb with one less partial cluster of type Pb.

Feasibility of Load Distributions. This ensures that the sum of all flows through the bridge
edges into bag b and the sum of all flows out of it are consistent, and that the flow originates
only from points that have tokens. This confirms the accuracy of the solution cost calculated
using these bridge-edge load distributions. There are three cases, depending on whether b is
a leaf, a bag with one child, or a bag with two children:

when b is a leaf. Suppose y ∈ b is the only point of bag b, we must ensure that:
∀st : s ∈ b, t ∈ p(b), s ̸= y, ψ[eb

s,t] = 0
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when b has one child, say b1. Loads of configurations ψb, ψb1 are consistent if and only if,
for each vertex of b, the load coming from b1 into each vertex of b is equal to the load
going upwards, formulated as following: ∀t ∈ b.

∑
s∈b1

ψ[eb1
s,t] =

∑
u∈p(b) ψ[eb

t,u]
when b has two children, b1, b2. For each t ∈ b let Lt be

∑
s∈b1

ψ[eb1
s,t], Rt be

∑
s∈b1

ψ[eb2
s,t],

Ut be
∑

s∈p(b) ψ[eb
t,s]. Load vectors of configurations ψb, ψb1 , ψb2 are consistent if and

only if for each u ∈ bb one of the following constraints must hold: Lb + Rb = Ub or
|Lb −Rb| = Ub.

Proof of Theorem 1. There are O(( log n
ϵ )σ+1) possible partial clusters, so the number of

subproblem configurations, Pb, at bag b is nO(( log n
ϵ )σ+1). The number of the possible values

for ψ, is nf2 , resulting in a number of DP table entries of nO(f2+( log n
ϵ )σ+1).

Deciding configurations (Pb, ψb), (Pvb
, ψb1), (Pb2 , ψb2) are consistent requires iterating over

all consistent configurations which are at most equal nO(f2+( log n
ϵ )σ+1). Therefore the running

time is nO(f2+( log n
ϵ )σ+1), which is quasi-polynomial in n. Notice that even if treewidth is

poly-logarithmic, the running time stays quasi-polynomial.
We lose a factor of (1 + ϵ/ log n) when computing A[b,Pb] at each level of recursion. Since

the height of the tree is at most c log n, the approximation factor of the solution is 1 + ϵ. ◀

4 Bounded Doubling, Highway Dimension, and Minor-Free Metrics

We assume that the aspect ratio of a given metric in a k-MSC instance is polynomially
bounded (the details are omitted). We use our QPTAS for k-MSC on graphs with bounded
treewidth as a black box and combine it with embeddings into polylogarithmic-treewidth
graphs [7, 10, 14] to develop QPTASs for k-MSC on metric spaces with bounded doubling
dimension1, bounded highway dimension, and minor-free metrics. The details are omitted in
this version of the paper.
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Abstract
In this paper, we study the maximum clique problem on hyperbolic random graphs. A hyperbolic
random graph is a mathematical model for analyzing scale-free networks since it effectively explains
the power-law degree distribution of scale-free networks. We propose a simple algorithm for
finding a maximum clique in hyperbolic random graph. We first analyze the running time of our
algorithm theoretically. We can compute a maximum clique on a hyperbolic random graph G in
O(m + n4.5(1−α)) expected time if a geometric representation is given or in O(m + n6(1−α)) expected
time if a geometric representation is not given, where n and m denote the numbers of vertices and
edges of G, respectively, and α denotes a parameter controlling the power-law exponent of the degree
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1 Introduction

Designing algorithms for analyzing large real-world networks such as social networks, World
Wide Web, or biological networks is a fundamental problem in computer science that has
attracted considerable attention in the last decades. To deal with this problem from the
theoretical point of view, it is required to define a mathematical model for real-world networks.
For this purpose, several models have been proposed. Those models are required to replicate
the salient features of real-world networks. One of the most salient features of real-world
networks is scale-free. In general, a graph is considered as a scale-free network if its diameter
is small, one connected component has large size, it has subgraphs with large edge density,
and most importantly, its degree distribution follows a power law. Here, for an integer k ≤ n,
let P (k) be the fraction of nodes having degree exactly k. If P (k) ∼ k−β , we say that the
degree distribution of the graph follows a power law. In this case, β is called the power-law
exponent.

One promising model for scale-free real-world networks is the hyperbolic random graph
model. A hyperbolic random graph is constructed from two parameters. First, points in the
hyperbolic plane are chosen from a certain distribution depending on the parameters. Then
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we consider the points as the vertices of the constructed hyperbolic random graph. For two
vertices whose distance is at most a certain threshold, we add an edge between them. For
illustration, see Figure 1. It is known that the degree distribution of a hyperbolic random
graph follows a power-law [15]. Moreover, its diameter is small with high probability [14, 16],
and it has a giant connected component [10, 17]. Including these results, the structural
properties of hyperbolic random graphs have been studied extensively [11]. However, only a
few algorithmic results are known. In other words, the previous work focuses on why we can
use hyperbolic random graphs as a promising model, but only a few work focuses on how to
use this model for solving real-world problems. We focus on the latter type of problems.

In this paper, we focus on the maximum clique problem for hyperbolic random graphs
from theoretical and practical point of view. The maximum clique problem asks for a
maximum-cardinality set of pairwise adjacent vertices. For general graphs, this problem
is NP-hard. Moreover, it is W[1]-hard when it is parameterized by the solution size, and
it is APX-hard even for cubic graphs [2]. Therefore, the theoretical study on the clique
problem focuses on special classes of graphs. In fact, this problem can be solved in polynomial
time for special classes of graphs such as planar graphs, unit disk graphs and hyperbolic
random graphs [7, 12, 13]. More specifically, the algorithm by Bläsius et al. [7] for computing
a maximum clique of a hyperbolic random graph takes O(mn2.5) worst-case time. The
randomness in the choice of vertices is not considered in the analysis of the algorithm. One
natural question here is to design an algorithm for this problem with improved expected time.

To analyze our algorithm, we use the average-case analysis. A traditional modeling choice
in the analysis of algorithms is worst-case analysis, where the performance of an algorithm is
measured by the worst performance over all possible inputs. Although it is a useful framework
in the analysis of algorithms, it does not take into account the distribution of inputs that
an algorithm is likely to encounter in practice. It is possible that an algorithm performs
well on most inputs, but poorly on a small number of inputs that are rarely encountered in
practice. In this case, the worst-case analysis can mislead the analysis of algorithms. The
field of ”beyond worst-case analysis” studies ways for overcoming these limitations [25]. One
simple technique studied in this field is the average-case analysis. As the hyperbolic random
graph model intrinsically defines an input distribution, the average-case analysis is a natural
model for analyzing algorithms for hyperbolic random graphs.

Previous Work. While the structural properties of hyperbolic random graphs has been
studied extensively, only a few algorithmic problems have been studied. The most extensively
studied algorithmic problem on hyperbolic random graphs is the generation problem: Given
parameters, the goal is to generate a hyperbolic random graph efficiently. The best-known
algorithms run in expected linear time [5] and in worst-case subquadratic time [26]. Also,
Bläsius et al. [8] studied the problem of embedding a scale-free network into the hyperbolic
plane and presented heuristics for this problem.

Very recently, classical algorithmic problems such as shortest path problems, the maximum
clique problem and the independent set problem have been studied. These problems can be
solved significantly faster in hyperbolic random graphs. More specifically, given a hyperbolic
random graph, the shortest path between any two vertices can be computed in sublinear
expected time [4, 9]. A hyperbolic random graph admits a sublinear-sized balanced separator
with high probability [6]. As applications, Bläsius et al. [6] showed that the independent set
problem admits a PTAS for hyperbolic random graphs, and the maximum matching problem
admits a subquadratic-time algorithm. Also, the clique problem can be solved in polynomial
time for hyperbolic random graphs in the worst case [7].
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The clique problem has been studied extensively because it has numerous applications in
various field such as community search in social networks, team formation in expert networks,
gene expression and motif discovery in bioinformatics and anomaly detection in complex
networks [19]. From a theoretical perspective, the best-known exact algorithm runs in 20.276n

time in [23]. However, it is not sufficiently fast for massive real-world networks, leading
to the proposal of lots of exact algorithms and heuristics for this problem on real-world
networks [1, 19, 21, 24]. While these algorithms and heuristics work efficiently in practice,
there is no theoretical guarantee of their efficiency.

Our results. We present algorithms for computing a maximum clique in a hyperbolic
random graph and analyze their performances theoretically and empirically.

Given a hyperbolic random graph with parameters α and C together with its geometric
representation, we can compute a maximum clique in O(m + n4.5(1−α)) expected time, where
n and m denotes the numbers of vertices and edges of the given graph. Here, we have
1/2 < α < 1, and the O-notation hides a constant depending on α and C. With high
probability, our algorithm outperforms the previously best-known algorithm by Bläsius et
al. [7] running in O(mn2.5) time. In the case that a geometric representation is not given,
our algorithm runs in O(m + n6(1−α)) expected time. This is the first algorithms for the
maximum clique problem on hyperbolic random graphs not using geometric representations.

Also, we implemented our algorithms and analyzed it empirically. We run our algorithms
on both synthetic data (hyperbolic random graphs) and real-world data. For hyperbolic
random graphs, since it is proved that our algorithm computes a maximum clique correctly,
we focus on the efficiency of the algorithms. We observed that our algorithms perform
efficiently; it takes about 100ms for n = 106. For real-world networks, our algorithm gives a
lower bound on the optimal solution. We observed that our algorithm performs well especially
for collaboration networks and web networks. These are typical scale-free real-world networks.

2 Preliminaries

Let H2 be the hyperbolic plane with curvature −1. We can handle hyperbolic planes with
arbitrary (negative) curvatures by rescaling other model parameters which will be defined
later. Thus it suffices to deal with the hyperbolic plane with curvature −1. Since the
hyperbolic plane is isotropic, we choose an arbitrary point o and consider it as the origin
of H2. Also, we fix a half-line ℓo from o going towards an arbitrary point, say w, as the
axis. Then we can represent a point v of H2 as (rv, ϕv) where rv is the hyperbolic distance
between v and o, and ϕv is the angle from ℓo to the half-line from o going towards v. We
call rv and ϕv the radial and angular coordinates of v.

For any two points x and y in H2, we use d(x, y) to denote the distance in H2 between x

and y. Then we have the following.

d(u, v) = cosh−1(cosh(ru) cosh(rv) − sinh(ru) sinh(rv) cos(∆ϕu,v)
≤ cosh−1(cosh(ru) cosh(rv) + sinh(ru) sinh(rv)),

where ∆ϕu,v denotes the small relative angle between v and u [3]. For a point x ∈ H2

and a value r ≥ 0, we use Bx(r) to denote the disk centered at x with radius r. That is,
Bx(r) = {v ∈ H2 | d(v, x) ≤ r}.

ESA 2023
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Figure 1 HRGs with different parameters. As C gets larger, the average degree gets larger (See
(a–b)). As α gets larger, the points gets closer to the boundary of D (See (b–c)).

2.1 Hyperbolic Random Graphs
A hyperbolic unit disk graph (HRG) is a graph whose vertices are placed on H2, and two
vertices are connected by an edge if the distance between them on H2 is at most some
threshold. This threshold is called the radius threshold of the graph. This is the same as the
unit disk graph except that the hyperbolic unit disk graph is defined on H2 while the unit
disk graph is defined on the Euclidean plane.

In this paper, we focus on the hyperbolic random graph model introduced by Papadopoulos
et al. [20]. It is a family {Gn,α,C} of distributions, indexed by the number n of vertices, a
parameter C adjusting the average degree of a graph, and a parameter α determining the
power-law exponent. A sample from {Gn,α,C} is a hyperbolic unit disk graph on n points
(vertices) chosen independently as follows. Let D be the disk centered at o with radius
R = 2 ln n + C. To pick a point v in D, we first sample its radius rv, and then sample its
angular coordinate ϕv. The probability density ρ(r) for the radial coordinate rv is defined as

ρ(r) = α sinh(αr)
cosh(αR) − 1 . (1)

Then the angular coordinate is sampled uniformly from [0, 2π). In this way, we can sample
one vertex with respect to parameters α and C, and by choosing n vertices independently
and by computing the hyperbolic unit disk graph with radius threshold R on the n vertices,
we can obtain a sample from the distribution {Gn,α,C}.

An intuition behind the definition of ρ(r) is as follows. To choose a point v uniformly at
random in D, we first choose its angular coordinate uniformly at random in [0, 2π) as we
did for Gn,α,C , and choose its radial coordinate according to the distribution with density
function ρ(r) = sinh(r)

cosh(αR)−1 . But in this case, the power-law exponent of a graph is fixed. To
add the flexibility to the model, the authors of [20] introduced a parameter α and defined
the density function as in (1). Here, For α < 1, this favors points closer to the center of D,
while for α > 1, this favors points closer to the boundary of D. For α = 1, this corresponds
to the uniform distribution [15]. For illustration, see Figure 1.

Properties of HRGs. Let µ(S) be the probability measure of a set S ⊆ D, that is,

µ(S) =
∫

x∈S

α sinh(αrx)
2π cosh(αR) − 1dx.

For a vertex v of a hyperbolic random graph G with n vertices, the expected degree of v in G

is n · µ(Bv(R) ∩ D) by construction. Moreover, notice that µ(Bv(R) ∩ D) = µ(Bv′(R) ∩ D)
for any two vertices v, v′ with rv = rv′ . Thus to make the description easier, we let Br(r′)
denote B(r,0)(r′) if it is clear from the context. Note that D = B0(R).
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Hyperbolic random graphs have all properties for being considered as scale-free networks
mentioned above. In particular, hyperbolic random graphs with parameter α have power-law
exponent β, where β = 2α + 1 if α ≥ 1/2, and β = 2 otherwise. Most real-world networks
have a power-law exponent larger than two. Thus we assume that α > 1/2 in the paper.

2.2 Algorithms for the Maximum Clique Problem

In this section, we review the algorithm for this problem on hyperbolic random graphs de-
scribed in [7], which is an extension of [12]. This algorithms requires geometric representations
of hyperbolic random graphs. Let G = (V, E) be a hyperbolic random graph.

For α ≥ 1, they showed that a hyperbolic random graph has O(n) maximal cliques with
high probability. Therefore, a maximum clique can be computed in linear time with high
probability by just enumerating all the maximal cliques.

For 1
2 < α < 1, they showed that the algorithm in [12] can be extended to hyperbolic

random graphs. Assume first that, for a maximum clique K, we have two vertices u and
v of K with maximum r = d(u, v). Then all vertices in K are contained in the region
Ruv = Bu(r) ∩ Bv(r). Then we can compute K by considering the vertices in Ruv as follows.
We partition Ruv into R1

uv and R2
uv with respect to the line through u and v. They showed

that the diameter of R1
uv (and R2

uv) is at most one, and thus V ∩ R1
uv (and V ∩ R2

uv)) forms
a clique. Therefore, the subgraph Guv of G induced by V ∩ Ruv is the complement of a
bipartite graph with bipartition (V ∩R1

uv, V ∩R2
uv). Moreover, K is an independent set of the

complement of Guv. Therefore, it suffices to compute an independent set of the complement
of Guv, and we can do this in in O(n2.5) time using the Hopcroft-Karp algorithm. However,
we are not given the edge uv in advance. Thus we apply this procedure for every edge uv of
G, and then take the largest clique as a solution. This takes O(mn2.5) time in total.

Throughout this paper, we use P[A] to denote the probability that an event A occurs.
For a random variable X, we use E[X] to denote the expected value of X. Due to lack of
space, some proofs and details are omitted. Missing proofs and details can be found in the
full version of this paper.

3 Efficient Algorithm for the Maximum Clique Problem

In this section, we present an algorithm for the maximum clique problem on a hyperbolic ran-
dom graph drawn from Rn,α,C running in O

(
m + n4.5(1−α)) expected time. This algorithm

correctly works for any hyperbolic unit disk graph, but its time bound is guaranteed only for
hyperbolic random graphs. As we only deal with the case that 1/2 < α < 1, this algorithm
is significantly faster than the algorithm in [7].

A main observation is the following. A clique of size k consists of vertices of degree at
least k − 1. That is, to find a clique of size at least k, removing vertices with degree less
than k − 1 does not affect the solution. Thus once we have a lower bound, say k, on the size
of a maximum clique, we can remove all vertices of degree less than k. Our strategy is to
construct a sufficiently large clique (which is not necessarily maximum) as a preprocessing
step so that we can remove a sufficiently large number of vertices of small degree. After
applying a preprocessing step, we will see that the number of vertices we have decreases to
O(n1−α) with high probability. Then we apply the algorithm in [7] to the resulting graph.
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3.1 Computing a Sufficiently Large Clique Efficiently

In this section, we show how to compute a clique of size Ω(n1−α) with probability 1−2−Ω(n1−α).
The algorithm is simple: Scan the vertices in the non-increasing order of their degrees, and
maintain a clique Q, which is initially set as ∅. If the next vertex can be added to Q to form
a larger clique, then add it, otherwise exclude it. We can sort the vertices with respect to
their degrees in O(n + m) time using counting sort. Also, we can construct the clique Q in
O(n + m) time. In the following, we call Q the initial clique.

Now, we show that the size of the initial clique is Ω(n1−α) with probability 1 − 2−Ω(n1−α).
First, we show that a sufficient large clique can be found by collecting all vertices in B0(R/2)
with high probability. in Lemma 1. For its proof, see the full version.

▶ Lemma 1. For any constant c′ > 0, the vertices in B0(R/2 − c′) forms a clique of size
Ω(n1−α) with probability 1 − 2−Ω(n1−α).

Thus, we can get desired clique by choosing Ω(n1−α) vertices in B0(R/2) with high
probability. However, as we scan the vertices in the decreasing order of their degrees, this
does not immediately imply that the size of the initial clique is Ω(n1−α). In the following
lemma, we show that the initial clique has the claimed size by showing that the Ω(n1−α)
vertices with highest degrees are contained in B0(R/2) with high probability.

▶ Lemma 2. The initial clique has size Ω(n1−α) with probability 1 − 2−Ω(n1−α).

Proof. Here, we give a brief sketch of the proof. For details, see the full version. First, we
show that no vertex lying outside of B0(R/2) has degree greater than 2ec1

√
n with high

probability for some constant c1 depending only on C, α. Then we show that no vertex in
B0(R/2 − c2) has degree smaller than 2ec1

√
n with high probability for some constant c2.

To construct the initial solution, we scan the vertices in the decreasing order of their degrees.
Therefore, with probability 1 − 2−Ω(

√
n), we consider all vertices in B0(R/2 − c2) before

considering any vertex lying outside of B0(R/2). Therefore, the initial clique contains all
vertices in B0(R/2 − c2) with high probability. By Lemma 1, the initial clique has size at
least Ω(n1−α) with high probability. ◀

3.2 Removing All Vertices of Small Degree

In this section, we show how to remove a sufficiently large number of vertices, and show that
the size of the remaining graph is O(n1−α) with high probability. This algorithm is also
simple: given the initial clique of size k, we repeatedly delete all vertices of degree smaller
than k. We call the resulting graph the kernel. Then no vertex in the kernel has degree
smaller than k at the end of the process. This process can be implemented in linear time as
follows: maintain the queue of vertices of degree smaller than k, and maintain the degree
of each vertex. Then remove the vertices in the queue in order. Whenever a vertex v is
removed, update the degree of each neighbor w of v and insert w to the queue if its degree
gets smaller than k.

We show that the kernel has size O(n1−α). Notice that we do not specify the order of
vertices we consider during the deletion process. Fortunately, the kernel size remains the
same regardless of the choice of deletion ordering. A proof of Lemma 3 can be found in the
full version of this paper.

▶ Lemma 3. In any order of deleting vertices, we can get a unique kernel.
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Because of the uniqueness of the kernel, for analysis, we may fix a specific deletion ordering
and slightly modify the deletion process as follows. Imagine that we scan the vertices in
the decreasing order of their radial coordinates. If the degree of a current vertex (in the
remaining graph) is at least the size of the initial clique size, then we terminate the deletion
process. Otherwise, we delete the current vertex, and consider the next vertex. By Lemma 3,
the number of remaining vertices is at least the size of the kernel. In the following lemma,
we analyze the number of remaining vertices.

▶ Lemma 4. Given an initial solution of size Ω(n1−α), then the size of the kernel is O(n1−α)
with probability 1 − 2−Ω(n1−α).

Proof. Here, we give a sketch of the proof only. For details, see the full version.
Let K be the initial solution, and let r′ be a value such that nµ(B0(r′) ∩ Br′(R)) is |K|

2e .
Then we show that all the vertices with radial coordinates larger than r′ are removed with
probability 1 − 2−Ω(n1−α). To do this, for a vertex v, we define the inner degree of v as
the number of its neighboring vertices whose radial coordinates are smaller than the radial
coordinate of v. The expected inner degree of a vertex with radial coordinate r ≥ r′ is at
most nµ(B0(r′) ∩ Br′(R)) = |K|

2e .
Chernoff bound implies that for a vertex with radial coordinate larger than r′, the

probability that its inner degree is larger than the size of the initial clique is at most 2−|K|.
By the union bound over at most n vertices with radial coordinates larger than r′, the
probability that no vertex with radial coordinate larger than r′ has inner degree larger
than than the size of the initial clique is at most n2−|K| = 2−Ω(n1−α). In other words, with
probability 1 − n2−c3n1−α = 1 − 2−Ω(n1−α), all vertices with radial coordinates larger than r′

have inner degree larger than the size of the initial clique.
If this event happens, we remove all vertices with coordinates larger than r′. We show

that the number of vertices with coordinates at most r′ is at most O(n1−α) with probability
1−2−Ω(n1−α). Therefore, the probability that the number of remaining vertices after applying
the deletion process is at most O(n1−α) is at least 1 − 2−Ω(n1−α). ◀

Although the deletion process we use for analysis requires the geometric representation
of G, the original deletion process does not require the geometric representation of G. By
combining the argument in Section 3.1 and Section 3.2, we have the following theorem.

▶ Theorem 5. Given a graph drawn from Gn,α,C with 1
2 < α < 1 and its geometric

representation, we can compute its maximum clique in O
(
m + n4.5(1−α)) expected time.

4 Efficient Robust Algorithm for the Maximum Clique Problem

In this section, we present the first algorithm for the maximum clique problem on hyperbolic
random graphs which does not require geometric representations. In many cases, a geometric
representation of a graph is not given. In particular, real-world networks such as social and
collaboration networks are not defined based on geometry although they share properties
with HRGs. As we want to use hyperbolic random graphs as a model for such real-world
networks, it is necessary to design algorithms not requiring geometric representations.

Our main key tool in this section is the notion of co-bipartite neighborhood edge elimination
ordering (CNEEO) introduced by Raghavan and Spinrad [22]. It can be considered as a variant
of a perfect elimination ordering. Let G be an undirected graph. Let L = (e1, e2, . . . em)
be an edge ordering of all edges of G. Let GL[i] be the subgraph of G with the edge set
{ei, ei+1 . . . em}. For a vertex v ∈ V , let NG(v) denote the set of neighbors of v in G. Then
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L is called a co-bipartite neighborhood edge elimination ordering (CNEEO) if for each edge
ei = (ui, vi), the subgraph of G induced by NGL[i](ui) ∩ NGL[i](vi) is co-bipartite. Here, a
co-bipartite graph is a graph whose complement is bipartite.

Raghavan and Spinrad [22] presented an algorithm for computing a CNEEO in polynomial
time if it exists. It uses a simple greedy algorithm: compute the edges of a CNEEO one
by one, and add an edge immediately if it does not violate the condition of a CNEEO.
Moreover, they presented a polynomial-time algorithm for computing a maximum clique in
polynomial time assuming a CNEEO is given. Since Raghavan and Spinrad [22] did not give
an explicit time bound on their algorithm, we analyzed their algorithm and confirmed that
their algorithm takes O(m3 +mn2.5) time in the full version. Note that this time bound holds
for an arbitrary graph (not necessarily a hyperbolic unit disk graph) admitting a CNEEO.

We show that a hyperbolic unit disk graph admits a CNEEO. This immediately leads to
an O(m3 + mn2.5)-time algorithm for the maximum clique problem. Its proof can be found
in the full version. In the case of hyperbolic random graphs, we can solve the problem even
faster. As we did in Section 3, we compute an initial clique, remove vertices of small degrees,
and then obtain a kernel of small size. Recall that these procedures do not require geometric
representations. Note that the kernel is also a hyperbolic unit disk graph because we remove
vertices only. The number of vertices of the kernel is O(n1−α) and the edges is O(n2−2α) in
probability 1 − 2−Ω(n1−α). Thus, we have the following theorem.

▶ Corollary 6. Given a graph drawn from Gn,α,C with 1
2 < α < 1, we can compute a maximum

clique in O
(
m + n6(1−α)) expected time without its geometric representation.

Heuristics for real-world networks. A main motivation of the study of hyperbolic random
graphs is to obtain heuristics for analyzing real-world networks. Many real-world networks
share salient features with hyperbolic random graphs, but this does not mean that many
real-world networks are hyperbolic random graphs. Because the algorithm in Corollary 6
is aborted for a graph not admitting a CNEEO, one cannot expect that this algorithm
works correctly for many real-world networks. In fact, only a few real-world networks admit
CNEEO as we will see in Section 6. That is, for most of real-world networks, the algorithm
in Corollary 6 is aborted.

However, in this case, we can obtain a lower bound on the optimal clique sizes, and
moreover, we can reduce the size of the graph. Although we do not have any theoretical
bound here, our experiments showed that the size of the clique we can obtain is close to the
optimal value for many instances. For details, see the full version.

5 Improving Performance through Additional Optimizations

For implementation, we introduce the following two minor techniques for improving the
performance of the algorithms. Although these techniques do not improve the performance
theoretically, they improve the performance empirically. Recall that our algorithms consist
of two phases: Computing a kernel of size O(n1−α), and then computing a maximum clique
of the kernel. As the first phase can be implemented efficiently, we focus on the second
phase here. Again, the second phase has two steps. With geometric representations, we
first compute a CNEEO, and then compute a maximum clique using the CNEEO. Without
geometric representations, we consider every edge, and then compute a maximum clique
in the subgraph induced by the common neighbors of the endpoint of the edge. The first
technique applies to both of the two steps, and the second technique applies to the first step.
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5.1 Skipping Vertices with Low Degree

The main observation of our kernelization algorithm is that, for any lower bound k on the
size of a maximum clique, a vertex of degree less than k does not participate in a maximum
clique. The first technique we use in the implementation is to make use of this observation
also for computing a CNEEO, and for computing a maximum clique using the CNEEO.

While computing a CNEEO, the lower bound k we have does not change; it is the size of
the initial clique. Whenever we access a vertex, we check if its degree is less than k. If so, we
remove this vertex from the kernel, and do not consider it any more. One can consider this
as “lazy deletion.” Then once we have a CNEEO, we scan the edges in the CNEEO, and
for each edge, we compute a maximum clique of the subgraph defined by the edge. If it is
larger than the lower bound k we have, we update k accordingly. In this process, whenever
we find a vertex of degree less than k, we remove it immediately. Moreover, if the subgraph
defined by each edge of CNEEO has vertices less than k, we skip this subgraph as it does
not contain a clique of size larger than k.

5.2 Introducing the Priority of Edges

Recall that the second phases consists of two steps: computing a CNEEO, and computing a
maximum clique using the CNEEO. In this section, we focus on the first step.

With Geometric Representations. In this case, we use the O(m′n′2.5)-time algorithm by [7]
for computing a maximum clique of the kernel with n′ vertices and m′ edges. Although it
is the theoretically best-known algorithm, we observed that computing a maximum clique
using a CNEEO is more efficient practically. By the proof in the full version, the list of
the edges sorted in the non-decreasing order of their lengths is a CNEEO. Without using a
CNEEO, for each edge uv, we have to compute the subgraph of G induced by the common
neighbors of u and v in G. On the other hand, once we have a CNEEO, it suffices to consider
the subgraph of G induced by the common neighbors of u and v in GL, where GL is the
subgraph of G with the edges coming after uv in the CNEEO. If uv lies close to the last
edge in the CNEEO, the number of common neighbors of u and v in GL can be significantly
smaller than the number of their common neighbors in G. This can lead to the performance
improvement.

Without Geometric Representations. In this case, we compute a CNEEO in a greedy
fashion. Starting from the empty sequence, we add the edges one by one in order. For each
edge e not added to the current ordering, we check if the common neighbors of the endpoints
of e in the kernel is co-bipartite. If an edge passes this test, we add it to the ordering. It is
time-consuming especially when only a few edges can pass the test. To avoid considering
the same edge repeatedly, we use the following observation. Once an edge e fails this test, it
cannot pass the test unless one of its incident edges are added to the ordering. Using this
observation, we classify the edges into two sets: active edges and inactive edges. In each
iteration, we consider the active edges only. Once an edge fails the test, then it becomes
inactive. Once an edge passes the test, we make all its incident edges active. In this way, we
can significantly improve the running time especially for graphs that do not accept CNEEO.
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(a) (b)

Figure 2 (a) Comparison of the kernel sizes with varying α. Here, δ = 10. (b) Cactus plot of the
kernel size versus the number of accepted instances for each value of α with fixed n = 107.

6 Experimental Evaluation

In this section, we evaluate the performance of our algorithm mainly on hyperbolic random
graphs and real-world networks.

Environment and data. We implemented our algorithm using C++17. The code were
compiled with GNU GCC version 11.3.0 with optimization flag “-O2”. All tests were run on
a desktop with Rygen 7 3800X CPU, 32GB memory, and Ubuntu 22.04LTS.

We evaluate the performance of our algorithm on hyperbolic random graphs and real-world
networks. For hyperbolic random graphs, we generate graphs using the open source library
GIRGs [5] by setting parameters differently. Recall that we have three parameters n, C and
α. Here, instead of C, we use the average degree, denoted by δ, as a parameter because δ

can be represented as a function of C and α. As we consider the average performance of
our algorithm, we sampled 100 random graphs for fixed parameters n, δ and α, and then
calculate the average results (the size of kernels or the running times).

For real-world networks, we use the SNAP dataset [18]. It contains directed graphs and
non-simple graphs as well. In this case, we simply ignore the directions of the edges and
interpret all directed graphs as undirected graphs. Also, we collapse all multiple edges into a
single edge and remove all loops.

6.1 Experiment on Hyperbolic Random Graphs: Kernel Size
We showed that the size of the kernel of the hyperbolic random graph is O(n1−α) with
probability 1 − 2Ω(n1−α). In this section, we evaluated the tendency on the size of the kernel
experimentally as n, α and δ change. Here, α controls the power-law exponent, and δ is the
average degree of the graph. For experiments for δ, see the full version.

Figure 2 shows the tendency on the size of the kernel as α changes. Here, we fix δ = 10.
Figure 2(a) shows a plot of the kernel size versus the number of vertices of a graph on a
log–log scale for each value of α. We generate 100 instances randomly and take the average
of their results for each point in the plot. Figure 2(b) shows a cactus plot of the kernel size
versus the number of accepted instances for each value of α. Here, for a fixed kernel size k,
an instance is said to accepted if our algorithm returns a kernel of size at most k for this
instance. Here, we fix n = 107 and δ = 10.
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(a) (b)

Figure 3 (a) Comparison of running times of different versions of our algorithm. (b) Comparison
of running times with and without geometric representations. Here, α = 0.75 and δ = 10.

Table 1 Running time for each operation. The unit of time is a millisecond.

INIT KERNEL CNEEO CONST INDEP OTHER TOTAL
MaxClique - - - 21 516.34 4 470.38 8.18 25 994.90
MaxCliqueRed 15.67 89.27 - 1 126.95 37.92 2.88 1 272.70
MaxCliqueSkip 15.59 88.62 - 925.33 30.77 2.88 1 063.19
MaxCliqueOpt 15.64 88.61 1.07 12.55 1.19 2.88 121.94
MaxCliqueNoGeo 15.32 89.25 258.45 5.82 0.93 2.96 372.74

For α ≤ 0.8, the size of the average kernel decreases for sufficiently large n, say n = 107,
as α increases in Figure 2(a). Also, the kernel sizes for all instances are concentrated on the
average kernel size for each α ≤ 0.8 in Figure 2(b). This is consistent with Lemma 4 stating
that the kernel size is O(n1−α) with high probability. However, this fact does not hold for
α > 0.8 in Figure 2(a), and the reason for this can be seen in Figure 2(b). At α = 0.85,
approximately 10% of instances did not have kernels of size at most 1500, and at α = 0.9,
over 60% of instances did not have such kernels. Notice that the plot sharply increases when
the kernel size exceeds 1500. The success probability stated in Lemma 4 is 1 − 2Ω(n1−α),
which decreases as α increases. In other words, if n is not sufficiently large, it is possible
that the success probability 1 − 2Ω(n1−α) is not sufficiently large for α > 0.8. That is, if we
increase the number of vertices on our experiments, we would get the desired tendency on
the kernel size for all values α. Nevertheless, at n = 107, our algorithm removes a significant
number of vertices, leaving only 0.01% of vertices at α = 0.85 and only 1% at α = 0.9.

6.2 Experiment on Hyperbolic Random Graphs: Running Time
In this section, we conducted experiments for evaluating the running times of different
versions of our algorithms. Figure 3 shows a plot of the number of vertices versus the
running time of each version of our algorithm. Here, we fix α = 0.75 and δ = 10. Each
point of the plot is averaged for 100 instances. Figure 3(a) shows a plot for the algorithm,
denoted by MaxClique, by Bläsius et al. [7] and three different versions of the algorithm
using geometric representations: MaxCliqueRed, MaxCliqueSkip, and MaxCliqueOpt. More
specifically, MaxCliqueRed denotes the algorithm described in Section 4. MaxCliqueSkip
denotes the algorithm described in Section 5.1 that skips low-degree vertices. MaxCliqueOpt
denotes the algorithm described in Section 5.2 that introduces priorities of edges. As expected,
MaxCliqueOpt outperforms all other versions of the algorithms in this experiment.
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Table 2 The performance of our algorithm on the real-world data.

|V | |E| |Vkernel| |Vleft| |Eleft| runtime ωkernel ωeval ω

as-skitter 1 696,415 11 095,298 28 787 17 033 693 272 342.63 37 ≥ 63 67
ca-AstroPh 18 771 198 050 3 679 0 0 1.18 23 57 57
ca-CondMat 23 133 93 439 13 464 0 0 0.07 4 26 26
ca-HepPh 11 204 118 489 0 0 0 0.00 239 239 239
com-amazon 334 863 925 872 255 473 0 0 0.55 3 7 7
com-dblp 317 080 1 049 866 1 716 0 0 0.21 26 114 114
com-lj 3 997 962 34 681 189 1 713 237 126 388 4 587 418 2 316.20 7 ≥ 289 327
com-youtube 1 134 890 2 990 443 36 716 7 919 211 051 53.48 13 ≥ 14 17
Gnutella31 62 586 147 892 33 816 0 0 0.05 2 4 4
Slashdot0811 77 360 469 180 14 315 1 503 40 418 7.94 10 ≥ 17 26
Slashdot0902 82 168 504 229 13 964 1 543 42 215 9.24 11 ≥ 17 27
soc-Epinions1 75 879 405 740 9 337 3 717 148 354 26.09 10 ≥ 22 23
soc-pokec 1 632 803 22 301 964 1 252 317 54 101 924 531 288.37 4 ≥ 29 29
web-BerkStan 685 230 6 649 470 27 058 25 593 589 913 1 224.22 18 ≥ 201 201
web-Google 875 713 4 322 051 193 406 2 068 20 426 8.60 10 ≥ 44 44
web-NotreDame 325 729 1 090 108 51 227 760 8 181 4.86 6 ≥ 155 155
web-Stanford 281 903 1 992 636 32 123 10 721 249 272 177.79 18 ≥ 61 61
WikiTalk 2,394 385 4 659 563 70 130 10 421 520 338 447.69 7 ≥ 16 26
Wiki-Vote 7 115 100 762 2 913 1 802 62 893 6.34 9 ≥ 13 17

For a precise analysis, we evaluated the running time of each task for our algorithms
and reported them in in Table 1. More specifically, the algorithms conduct six tasks: INIT
denotes the task of finding an initial solution. KERNEL denotes the task of finding the kernel.
CNEEO denotes the task of computing a CNEEO. CONST denotes the task of constructing
a co-bipartite graph by considering the common neighbors of the endpoints of each edge.
INDEP denotes the task of computing a maximum independent set of the complement of a
co-bipartite graph. OTHER denotes all the other tasks such as the initialization for variables
and caches. TOTAL denotes the entire tasks of our algorithm.

As expected, MaxCliqueRed outperforms MaxClique significantly. However, CONST
is still a time-consuming task for MaxCliqueRed. Thus we focus on optimization tech-
niques for CONST and provides MaxCliqueSkip and MaxCliqueOpt in Section 5. Although
MaxCliqueSkip gives a performance improvement, it still takes a significant amount of time
in CONST and INDEP. MaxCliqueOpt computes a CNEEO by sorting the edges with respect
to their lengths. This allows us to manage degree efficiently and apply low-degree skip
technique to a larger number of vertices. This significantly improves the running time of
MaxCliqueSkip for CONST and INDEP. This algorithm runs in about 100ms even at n = 106,
exhibiting a performance improvement over 200 times compared to MaxClique.

Next, we compared the running times of two algorithms with and without geometrical
representations. In the case that a geometric representation is given, we use MaxCliqueOpt.
If a geometric representation is not given, we use the algorithm in Section 4 and denote it by
MaxCliqueNoGeo. In MaxCliqueOpt, we can quickly compute a CNEEO by sorting the edges
in non-decreasing order of length. However, MaxCliqueNoGeo computes a CNEEO in a greedy
approach which incurs significant overhead. Despite this, the performance of MaxCliqueNoGeo
in Figure 3(b) does not show a significant difference compared to MaxCliqueOpt, and it even
outperforms MaxCliqueSkip.
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6.3 Experiment on Real-World Dataset
Our algorithm can heuristically find large cliques for real-world data. We conducted experi-
ments on several real-world datasets and recorded these results in Table 2. The unit of the
running time is a second. |V | and |E| denote the numbers of vertices and edges of the input
graph, respectively. |Vkernel| denotes the number of vertices of the kernel. |Vleft| and |Eleft|
denote the numbers of vertices and edges of the remaining graph. Also, ωkernel denotes the
size of the initial clique, ωeval denotes the size of the clique computed from our algorithm,
and ω denotes the size of the maximum clique of the graph. Here, ω is the correct answer
given by the dataset. If a given graph accepts a CNEEO, it is theoretically guaranteed that
ωeval is the exact solution and |Vleft| = |Eleft| = 0. Otherwise, ωeval is a lower bound on the
exact solution, and Gleft = (Vleft, Eleft) has a maximum clique if ωeval is strictly smaller than
the exact solution.

The collaboration networks such as ca-AstroPh, CondMat, HepPh, and com-dblp are one
of the well-known scale-free networks. These networks accept a CNEEO, allowing us to find
the exact maximum clique. Moreover, we were able to find a CNEEO considerably faster for
these networks than for other graphs in our experiments. Web graphs such as web-BerkStan,
web-Google, web-Notre Dame, and web-Stanford are also one of the well-known scale-free
networks. Although these graphs do not accept a CNEEO, we were able to reduce the
number of vertices and edges significantly, and we obtained maximum cliques. For the other
graphs we tested, we were able to obtain lower bounds that were close to the maximum
clique size in most cases, and we were able to significantly reduce the size of the graphs.

7 Conclusion

We presented improved algorithms for the maximum clique problem on hyperbolic random
graphs. Our algorithms find a sufficiently large initial solution and find a sufficiently small
kernel in linear time, which greatly improves the average time complexity and practical
running time. Also we gave the first algorithm for the maximum clique problem on hyperbolic
random graphs without geometrical representations. Beyond the hyperbolic random graph,
we applied these algorithms to real-world dataset and obtained lower bounds close to the
optimum solutions for most of instances.

There are two possible directions for further improvement on our algorithms. First, we
compute a maximum clique of hyperbolic random graphs using the framework for computing
a maximum clique of unit disk graphs in [12]. Recently, Espenant et al. [13] improved
the algorithm [12] and presented an O(n2.5 log n)-time algorithm for the maximum clique
problem on unit disk graphs. It would be interesting if this technique can be applied to
hyperbolic geometry. Second, the bottleneck of our algorithm lies in constructing a CNEEO.
Especially, for most of real-world dataset, most of the running time is devoted to constructing
a CNEEO. Thus to speed up the overall performance, this step must be improved.
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Abstract
We study the parameterized complexity of MinCSP for so-called equality languages, i.e., for finite
languages over an infinite domain such as N, where the relations are defined via first-order formulas
whose only predicate is =. This is an important class of languages that forms the starting point of
all study of infinite-domain CSPs under the commonly used approach pioneered by Bodirsky, i.e.,
languages defined as reducts of finitely bounded homogeneous structures. Moreover, MinCSP over
equality languages forms a natural class of optimisation problems in its own right, covering such
problems as Edge Multicut, Steiner Multicut and (under singleton expansion) Edge Multiway
Cut. We classify MinCSP(Γ) for every finite equality language Γ, under the natural parameter,
as either FPT, W[1]-hard but admitting a constant-factor FPT-approximation, or not admitting a
constant-factor FPT-approximation unless FPT=W[2]. In particular, we describe an FPT case that
slightly generalises Multicut, and show a constant-factor FPT-approximation for Disjunctive
Multicut, the generalisation of Multicut where the “cut requests” come as disjunctions over
O(1) individual cut requests si ≠ ti. We also consider singleton expansions of equality languages,
enriching an equality language with the capability for assignment constraints (x = i) for either a
finite or infinitely many constants i, and fully characterize the complexity of the resulting MinCSP.
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1 Introduction

Let D be a fixed domain, and let Γ be a finite set of finitary relations over D. Γ is referred
to as a constraint language. A constraint over Γ is a pair (R, X), less formally written R(X),
where R ∈ Γ is a relation of some arity r and X = (x1, . . . , xr) is a tuple of variables. It
is satisfied by an assignment α if (α(x1), . . . , α(xr)) ∈ R. For a constraint language Γ, the
constraint satisfaction problem over Γ, CSP(Γ), is the problem where an instance I is a
collection of constraints over Γ, on some set of variables V , and the question is if there
is an assignment satisfying all constraints in I. In the optimization variant MinCSP(Γ),
the input also contains an integer k and the question is whether there is an assignment
such that all but at most k constraints are satisfied. Less formally, a constraint language
Γ determines the “type of constraints” allowed in an instance of CSP(Γ) or MinCSP(Γ),
and varying the constraint language defines problems of varying complexity (such as k-SAT,
k-Colouring, st-Min Cut, etc.). After decades-long investigations, dichotomy theorems
have been established for these problems: for every constraint language over a finite domain,
CSP(Γ) and MinCSP(Γ) is either in P or NP-complete, and the characterizations are
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known [16, 40, 38, 31]. For fixed cases, such as the Boolean domain D = {0, 1}, parameterized
dichotomies are also known, characterizing every problem MinCSP(Γ) as either FPT or
W[1]-hard [29], and similarly for approximate FPT algorithms [12]. This work represents
significant advancements of our understanding of tractable and intractable computational
problems (classical or parameterized).

But as highlighted by Bodirsky [3, 9], there are also many problems from a range
of application domains that do not lend themselves to a formulation in the above CSP
framework, yet which can be formulated via CSPs over structures with infinite domains.
Unfortunately, CSPs with fixed templates over infinite domains are not as well-behaved
as over finite domains; it is known that the problem CSP(Γ) over an infinite domain can
have any computational complexity (including being intermediate), making any dichotomy
impossible [6, 9]. There are also questions of how an arbitrary infinite-domain relation would
be represented. The approach used by Bodirsky, which is the standard approach for the
study of infinite-domain CSPs, is to consider a language Γ as a reduct of a finitely bounded
homogeneous structure. Less technically, consider a structure, for example (Q, <) or (Z, <),
and let Γ be a finite language where every relation in Γ has a quantifier-free first-order
definition over the structure; i.e., Γ is a first-order reduct of the structure. For such languages
a dichotomy is plausible, and many cases have been settled, including temporal CSPs, i.e.,
first-order reducts of (Q, <) [8]; discrete temporal CSPs, i.e., first-order reducts of (Z, <) [10];
CSPs over the universal random graph [11]; and many more.

Our goal is to study the parameterized complexity of MinCSPs over such structures.
Many important problems in parameterized complexity, which are not well handled by CSP
optimization frameworks over finite-domain CSPs, can be expressed very simply in this
setting. For example, the MinCSP with domain Q and the single relation < is equivalent
to the Directed Feedback Arc Set problem, i.e., given a digraph D and an integer
k, find a set X of at most k arcs from D such that D −X is acyclic. (Here, the vertices
of D become variables, the arcs constraints, and the topological order of D −X becomes
an assignment which violates at most |X| constraints.) Other examples include Subset
Directed Feedback Arc Set, which corresponds to MinCSP(<,≤), and Symmetric
Directed Multicut which corresponds to MinCSP(≤, ̸=). The former is another important
FPT problem [18], while FPT status of the latter is open [23].

The structure we study in this paper is (N, =). The relations definable over this structure
are called equality constraint languages. Here, N is an arbitrary, countably infinite domain;
first-order reducts of (N, =) are simply relations definable by a quantifier-free first-order
formula whose only predicate is =. Equivalently, relations in an equality language accept or
reject an assignment to their arguments purely based on the partition that the assignment
induces. Since every first-order formula is allowed to use equality in this framework, equality
languages are contained in every other class of languages studied in the framework. Hence,
characterizing the complexity of equality languages is a prerequisite for studying any other
structure.

Moreover, the setting also covers problems that are important in their own right, as it
captures undirected graph separation problems. In particular, (Vertex/Edge) Multicut
is defined as follows. The input is a graph G, an integer k, and a set of cut requests
T ⊆

(
V (G)

2
)
, and the task is to find a set X of at most k vertices, respectively edges, such

that for every cut request st ∈ T , vertices s and t are in different connected components in
G−X. Multicut is FPT parameterized by k – a breakthrough result, settling a long-open
question [37, 14]. As with the above examples, there appears to be no natural way of
capturing Multicut as a finite-domain CSP optimization problem. However, it naturally



G. Osipov and M. Wahlström 86:3

corresponds to MinCSP(=, ̸=) over domain N, where edges correspond to soft =-constraints
and cut requests to crisp ̸=-constraints. Another classic problem is Multiway Cut, which
is the special case of Multicut where the cut requests are T =

(
T
2
)

for a set T of terminal
vertices in the graph. Multiway Cut was among the first graph separation problems
shown to be FPT [36], and remains a relevant problem, e.g., for the question of polynomial
kernelization [32, 39]. While Multiway Cut is not directly captured by an equality CSP, it
is captured by the singleton expansion of the setting, i.e., allowing “assignment constraints”
of the form x = i for all i ∈ N.

Related work. Bodirsky and Kara [7] characterized CSP(Γ) as in P or NP-hard for every
equality language Γ. Bodirsky, Chen and Pinsker [5] characterized the structure of equality
languages up to pp-definitions (primitive positive definitions, see Section 2); these are too
coarse to preserve the parameterized complexity of a problem, but their results are very
useful as a guide to our search. For much more material on CSPs over infinite domains, see
Bodirsky [4]. Singleton expansions (under different names) are discussed by Bodirsky [4] and
Jonsson [25]. We have taken the term from Barto et al. [1].

Many variations on cut problems have been considered, and have been particularly
important in parameterized complexity [20] (see also [19]). We cover Multicut, Multiway
Cut and Steiner cut. Given a graph G and a set of terminals T ⊆ V (G), a Steiner
cut is an edge cut in G that separates T , i.e., a cut Z such that some pair of vertices in
T is disconnected in G − Z. Steiner Cut is the problem of finding a minimum Steiner
cut. This can clearly be solved in polynomial time; in fact, using advanced methods, it can
even be computed in near-linear time [33, 17]. Steiner Multicut is the generalization
where the input contains a set T = {T1, . . . , Tt} of terminal sets and the task is to find a
smallest-possible cut that separates every set Ti. Since Multiway Cut with 3 terminals
is NP-hard, Steiner Multicut is NP-hard if t ≥ 3. Bringmann et al. [15] considered
parameterized variations of this and showed, among other results, that Edge Steiner
Multicut is FPT even for terminal sets Ti of unbounded size, if the parameter includes
both t and the cut size k. On the other hand, parameterized by k alone, Steiner Multicut
is W[1]-hard for terminal sets of size |Ti| = 3.

Other parameterized CSP dichotomies directly relevant to our work are the dichotomies
for Boolean MinCSP as having constant factor FPT-approximations or being W[1]-hard to
approximate [12] (with additional results in a later preprint [13]) and the recent FPT/W[1]-
hardness dichotomy [29].

The area of FPT approximations has seen significant activity in recent years, especially
regarding lower bounds on FPT approximations [24, 26, 2, 34]. In particular, we will need
that there is no constant-factor FPT-approximation for Nearest Codeword in Boolean
codes unless FPT=W[1] [13, 2], or for Hitting Set unless FPT=W[2] [34]. Lokshtanov
et al. [35] considered fast FPT-approximations for problems whose FPT algorithms are
slow; in particular, our result for Steiner Multicut builds on their algorithm giving an
O∗(2O(k))-time 2-approximation.

Our Results
We study the classical and parameterized complexity of MinCSP(Γ) for every finite equality
language Γ, as well as for singleton expansions over equality languages. We consider both
exact FPT-algorithms and constant-factor FPT-approximations, and for every finite Γ classify
whether MinCSP(Γ) is in FPT, MinCSP(Γ) is W[1]-hard but admits constant-factor FPT-
approximation, or MinCSP(Γ) is W[1]-hard to approximate within any constant. To describe
the cases in more detail, we need some definitions.
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Unsurprisingly, MinCSP(Γ) for an equality language Γ is NP-hard except in trivial cases,
since MinCSP(=, ̸=) already corresponds to Edge Multicut. Specifically, MinCSP(Γ)
is in P if Γ is constant, in which case every relation in Γ contains the tuple (1, . . . , 1), or
strictly negative, in which case every relation in Γ contains every tuple (1, . . . , r) where all
values are distinct (proper definitions of the terms are found in Section 3). In all other cases,
MinCSP(Γ) is NP-hard by reduction from Edge Multicut. Moreover, under the Unique
Games Conjecture [27], NP-hard MinCSP(Γ) does not admit polynomial-time constant-factor
approximation.

To describe constraint languages Γ that give rise to fixed-parameter tractable MinCSP(Γ),
let NEQ3 be the ternary relation which contains all tuples with three distinct values, and let
a split constraint be a constraint R of some arity p + q for p, q ≥ 0, defined (up to argument
order) by

R(x1, . . . , xp, y1, . . . , yq) ≡
∧

i,j∈[p]

(xi = xj) ∧
∧

i∈[p],j∈[q]

(xi ̸= yj).

We note that MinCSP(Γ) with split constraints reduces to Vertex Multicut. A split
constraint R(u1, . . . , up, v1, . . . , vq) can be represented by introducing a new vertex c, adding
edges cui for every i ∈ [p] and cut requests cvj for every i ∈ [q]. However, a constraint
NEQ3(u, v, w) cannot be handled by a gadget. Hence, we introduce the following auxiliary
graph problem, and show that it is in FPT.

Vertex Multicut with Deletable Triples (aka Triple Multicut)

Instance: A graph G, a collection T ⊆
(

V (G)
3

)
of vertex triples, and integer k.

Parameter: k.

Question: Are there subsets XV ⊆ V (G) and XT ⊆ T such that |XV | + |XT | ≤ k and
every connected component of G − XV intersects every triple in T \ XT in at
most one vertex?

MinCSP(Γ) for Γ with only split relations and NEQ3 easily reduces to Triple Multicut.
To complement this result with hardness, we prove the following.

▶ Theorem 1. Let Γ be an equality constraint language that is neither constant nor strictly
negative. Then MinCSP(Γ) is FPT if every relation in Γ is either split or NEQ3, and
W[1]-hard otherwise.

Next, we describe the cases with constant-factor FPT-approximations. Consider relation

Rd = (x1 ̸= y1 ∨ · · · ∨ xd ̸= yd)

and let Γ be a constraint language where every relation is defined by conjunction of relations
Rd and =. We show that MinCSP(Γ) for such Γ is constant-factor fpt-approximable, with
the factor depending on d. Again, we introduce a new graph problem to capture this case. Let
G be a graph; a subset L ⊆

(
V (G)

2
)

of pairs is a request list, and a set of vertices X ⊆ V (G)
satisfies L if there is a pair st ∈ L separated by X. For a graph G and a collection of request
lists L, let cost(G,L) be the minimum size of a set X ⊆ V (G) that satisfies all lists in L.

Disjunctive Multicut
Instance: A graph G, a collection L of request lists, each of size at most d, and an

integer k.
Parameter: k.

Question: Is cost(G, L) ≤ k?
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Our main algorithmic contribution is an FPT-approximation for Disjunctive Multicut.
Note that Steiner Multicut is the special case of Disjunctive Multicut where each
request list is L =

(
Ti

2
)

for some terminal set Ti. Here we obtain an improved algorithm with
approximation factor 2 and running time O∗(2O(k)).

This precisely describes the FPT-approximable cases of MinCSP(Γ): For every equality
constraint language Γ such that CSP(Γ) is in P, either MinCSP(Γ) reduces to Disjunctive
Multicut in an immediate way (up to a constant-factor approximation loss), implying a
constant-factor FPT-approximation, or there is a cost-preserving reduction from Hitting
Set to MinCSP(Γ). We refer to the latter as MinCSP(Γ) being Hitting Set-hard.

▶ Theorem 2. Let Γ be an equality constraint language such that CSP(Γ) is in P. Then
either MinCSP(Γ) reduces to Disjunctive Multicut and has a constant-factor FPT-
approximation, or MinCSP(Γ) is Hitting Set-hard.

We can summarize the main result in the following way: for every finite equality constraint
language Γ, either MinCSP(Γ) is FPT by reduction to Triple Multicut, MinCSP(Γ) is
FPT-approximable by reduction to Disjunctive Multicut, or MinCSP(Γ) is Hitting
Set-hard. A more technical description in terms of the allowed relations can be found in
Section 3.

Singleton Expansion. In addition to the above (main) results, we also investigate the
effect of adding constants to an equality language motivated by the problem Multiway
Cut. More precisely, for an equality language Γ, we investigate the effect of adding some
number of unary singleton relations {(i)} to Γ. This is equivalent to allowing “assignment
constraints” (x = i) in MinCSP(Γ). We consider adding either a finite number of singletons,
or every singleton relation. For an equality language Γ and an integer c ∈ N, c ≥ 1, we define
Γ+

c = Γ ∪ {{(i) | i ∈ [c]} as the language Γ with c different singletons added, and let Γ+

denote Γ with every singleton {(i)}, i ∈ N added. Edge Multiway Cut corresponds to
MinCSP(Γ+) over the language Γ = {=}, and s-Edge Multiway Cut, the special case
with s terminals, corresponds to MinCSP(Γ+

s ). By a singleton expansion of Γ we refer to
either the language Γ′ = Γ+ or Γ′ = Γ+

c for some c ∈ N.
As the first step of the characterization, we observe that if Γ can express = and ̸=, then

the singleton expansion adds no power, i.e., MinCSP(Γ+) reduces back to MinCSP(Γ) by
introducing variables c1, . . . , cm for arbitrarily many constants, adding constraints ci ̸= cj

whenever i ̸= j, and using constraints x = ci in place of assignments x = i. For the rest of
the characterization, we thus study the cases that either cannot express equality, or cannot
express disequality. In the former case, MinCSP(Γ′) is always FPT and constant-factor
approximable; the latter case is more involved. We defer the full case description to the
full paper, but in summary, for any singleton expansion Γ′ of a finite equality language Γ,
we characterize MinCSP(Γ′) as being in P or NP-hard, being FPT or W[1]-hard, and with
respect to the existence of polynomial-time or FPT constant-factor approximations. Overall,
the positive cases in the characterization follow without difficulty, but completing the picture
with negative results requires significant additional work, building on the structural results
of Bodirsky, Chen and Pinsker [5].

Roadmap. Section 2 contains technical preliminaries. Section 3 gives an overview of the
classification proof. Section 4 shows the FPT algorithm for Triple Multicut. Section 5 gives
the FPT approximation algorithms. This version omits several proofs, the approximation
result for Steiner Multicut, and the classification of CSP and MinCSP for equality
constraint languages under singleton expansion. These can be found in the full version.
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2 Preliminaries

Graph Separation. Let G be an undirected graph. Denote the vertex set of G by V (G)
and the edge set by E(G). For a subset of edges/vertices X in G, let G − X denote the
graph obtained by removing the elements of X from G, i.e. G − X = (V (G), E(G) \ X)
if X ⊆ E(G) and G −X = G[V (G) \X] if X ⊆ V (G). A cut request is a pair of vertices
st ∈

(
V (G)

2
)
, and an st-cut/st-separator is a subset of edges/vertices X such that G − X

contains no path connecting s and t. We write that X fulfills st if X is an st-cut/st-separator.
We implicitly allows the inputs to cut problems such as Multiway Cut and Multicut to
contain undeletable edges/vertices: for edges, with a parameter of k, we can include k + 1
parallel copies; for vertices, we can replace a vertex v with a clique of size k + 1, where every
member of the clique has the same neighbourhood as v.

Parameterized Deletion. A parameterized problem is a subset of Σ∗ × N, where Σ is the
input alphabet. The parameterized complexity class FPT contains problems decidable in
f(k) · nO(1) time, where f is a computable function and n is the bit-size of the instance. Let
L1, L2 ⊆ Σ∗ × N be two parameterized problems. A mapping F : Σ∗ × N → Σ∗ × N is an
FPT-reduction from L1 to L2 if

(x, k) ∈ L1 if and only if F ((x, k)) ∈ L2,
the mapping can be computed in f(k) · nO(1) time for some computable function f , and
there is a computable function g : N→ N such that for all (x, k) ∈ Σ∗ × N, if (x′, k′) =
F ((x, k)), then k′ ≤ g(k).

The classes W[1] and W[2] contains all problems that are FPT-reducible to Clique and
Hitting Set, respectively, parameterized by the solution size. These problems are not in
FPT under the standard assumptions FPT ̸=W[1] and FPT ̸=W[2]. For a thorough treatment
of parameterized complexity we refer to [20].

Constraint Satisfaction. Fix a domain D. A relation R of arity r is a subset of tuples in
Dr, i.e. R ⊆ Dr. We write = and ̸= to denote the binary equality and disequality relations
over D, i.e. {(a, b) ∈ D2 : a = b} and {(a, b) ∈ D2 : a ̸= b}, respectively. A constraint
language Γ is a set of relations over a domain D. A constraint is defined by a relation R

and a tuple of variables x = (x1, . . . , xr), where r is the arity of R. It is often written
as R(x) or R(x1, . . . , xr). An assignment α : {x1, . . . , xr} → D satisfies the constraint if
α(x) = (α(x1), . . . , α(xr)) ∈ R, and violates the constraint if α(x) /∈ R.

Constraint Satisfaction Problem for Γ (CSP(Γ))

Instance: An instance I, where V (I) is a set of variables and C(I) is a multiset of
constraints using relations from Γ.

Question: Is there an assignment α : V (I) → D that satisfies all constraints in C(I)?

MinCSP is an optimization version of the problem seeking an assignment that minimizes
the number of violated constraints. In this constraints are allowed to be crisp and soft. The
cost of assignment α in an instance I of CSP is infinite if it violates a crisp constraint, and
equals the number of violated soft constraints otherwise. The cost of an instance I denoted
by cost(I) is the minimum cost of any assignment to I.

MinCSP(Γ)

Instance: An instance I of CSP(Γ) and an integer k.
Question: Is cost(I) ≤ k?
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Next, we recall a useful notion that captures local reductions between CSPs.

▶ Definition 3. Let Γ be a constraint language over D and R ⊆ Dr be a relation. A primitive
positive definition (pp-definition) of R in Γ is an instance CR of CSP(Γ, =) with primary
variables x, auxiliary variables y and the following properties:
(1) if α satisfies CR, then it satisfies R(x),
(2) if α satisfies R(x), then there exists an extension of α to y that satisfies CR.

Informally, pp-definitions can be used to simulate R using the relations available in Γ and
equality: every constraint using R can be replaced by a gadget based on the pp-definition,
resulting in an equivalent instance. The type of reductions captured by pp-definitions is
however incompatible with MinCSP because the reductions do not preserve assignment
costs. This motivates the following definition.

▶ Definition 4. Let Γ be a constraint language over D and R ⊆ Dr be a relation. An
implementation of R in Γ is a pp-definition of R with primary variables x, auxiliary variables
y and an additional property: if α violates R(x), there exists an extension of α to y of cost
one.

Although pp-definitions do not preserve costs, they can be used to simulate crisp con-
straints in MinCSP instances.

▶ Proposition 5 (Proposition 5.2 in [30]). Let Γ be a constraint language over a domain D

and R be a relation over D. Then the following hold.
1. If Γ pp-defines R, then there is an FPT-reduction from MinCSP(Γ, R) restricted to

instances with only crisp R-constraints to MinCSP(Γ, =).
2. If Γ implements R, there is an FPT-reduction from MinCSP(Γ, R) to MinCSP(Γ, =).

Approximation. A minimization problem over an alphabet Σ is a triple (I, sol, cost), where
I ⊆ Σ∗ is the set of instances, sol : I → Σ∗ is a function such that maps instances I ∈ I to the
sets of solutions sol(I), and cost : I×Σ∗ → Z≥0 is a function that takes an instance I ∈ I and
a solution X ∈ sol(I) as input, and returns a non-negative integer cost of the solution. Define
cost(I) := min{cost(I, X) : X ∈ cost(I)}. A constant-factor approximation algorithm with
factor c ≥ 1 takes an instance x ∈ I and an integer k ∈ N, and returns “yes” if cost(I) ≤ k

and “no” if cost(I) > c · k. A cost-preserving reduction from a problem A = (IA, solA, costA)
to B = (IB , solB , costB) is a pair of polynomial-time computable functions F and G such
that (1) for every I ∈ IA, we have F (I) ∈ IB with costA(I) = costB(F (I)), and (2) for every
I ∈ IA and Y ∈ sol(F (I)), we have G(I, Y ) ∈ sol(I), and costA(I, G(I, Y )) ≤ costB(F (I), Y ).
If there is a cost-preserving reduction from A to B, and B admits a constant-factor polynomial-
time/fpt approximation algorithm, then A also admits a constant-factor polynomial-time/fpt
approximation algorithm.

3 Classification Overview

We now give an overview of the complexity dichotomy. Details are deferred to the full paper.
We begin with a definition of the relevant language classes. Recall that an equality language
is a constraint language over N whose relations can be defined via Boolean formulas over
the equality predicate. More precisely, for a set of variables X = {x1, . . . , xn}, let a positive
literal be a term (xi = xj) and a negative literal a term (xi ̸= xj), i, j ∈ [n]. A clause is a
disjunction of literals. Then every equality relation has a CNF definition as a conjunction of
clauses. A relation (respectively language) is Horn if it (respectively every relation in the
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Table 1 Selected Horn relations R and the complexity of MinCSP(R, =, ≠). FPA refers to
fixed-parameter approximation.

Name CNF Formula Tuples Complexity

EQ3 (x1 = x2) ∧ (x2 = x3) ∧ (x1 = x3) (1, 1, 1) FPT
NEQ3 (x1 ̸= x2) ∧ (x2 ̸= x3) ∧ (x1 ̸= x3) (1, 2, 3) FPT

— (x1 = x2) ∧ (x1 ̸= x3) ∧ (x2 ̸= x3) (1, 1, 2) FPT

ODD3
(x1 = x2 ∨ x1 ̸= x3) ∧ (x1 = x2 ∨
x2 ̸= x3) ∧ (x1 ̸= x2 ∨ x2 ̸= x3) (1, 1, 1), (1, 2, 3) Hitting Set-hard

NAE3 (x1 ̸= x2 ∨ x2 ̸= x3) excludes (1, 1, 1) W[1]-hard, FPA

R∨
̸=,̸=

(x1 ̸= x2 ∨ x3 ̸= x4) ∧ (x1 ̸= x3) ∧
(x1 ̸= x4) ∧ (x2 ̸= x3) ∧ (x2 ̸= x4) (1, 2, 3, 3), (1, 1, 2, 3), (1, 2, 3, 4) W[1]-hard, FPA

R∧
=,= (x1 = x2) ∧ (x3 = x4) (1, 1, 1, 1), (1, 1, 2, 2) W[1]-hard, FPA

R∧
̸=,̸= (x1 ̸= x2) ∧ (x3 ̸= x4) – too many too list here – W[1]-hard, FPA

R∧
=,̸= (x1 = x2) ∧ (x3 ̸= x4) (1, 1, 1, 2), (1, 1, 2, 1), (1, 1, 2, 3) W[1]-hard, FPA

language) has a CNF definition where every clause has at most one positive literal, negative
if positive literals only occur in singleton clauses (xi = xj), strictly negative if there are no
positive literals, and conjunctive if all clauses are singletons. Note that split relations and
NEQ3 are both conjunctive.

Bodirsky and Kara [7] showed that for an equality language Γ, CSP(Γ) is in P if Γ is Horn
or constant, and NP-hard otherwise. We note that MinCSP(Γ) is trivial if Γ is constant
or strictly negative, and also show that if Γ is Horn but not constant or strictly negative
then Γ implements the relations = and ̸=. Hence we focus on this case and assume that Γ is
Horn and =, ̸= ∈ Γ. The polynomial-time complexity classification then follows since Edge
Multicut reduces to MinCSP(=, ̸=). For the remaining steps, we show that
1. MinCSP(Γ, =, ̸=) admits a constant-factor FPT-approximation if Γ is negative, otherwise

it is Hitting Set-hard;
2. MinCSP(R, =, ̸=) is W[1]-hard if R is negative but not conjunctive;
3. MinCSP(R, =, ̸=) is W[1]-hard if R is conjunctive but neither split nor NEQ3;
4. MinCSP(Γ, =, ̸=) is in FPT if Γ is conjunctive and all relations in Γ are split or NEQ3.
Table 1 lists a number of Horn relations and the associated complexity of MinCSP.

Towards hardness of approximation, we recall a result of Bodirsky, Chen and Pinsker [5]
that every equality language that is not negative can define ODD3 (see Table 1). We show
that MinCSP(ODD3, =, ̸=) is Hitting Set-hard.

▶ Lemma 6. There is a cost-preserving reduction from Hitting Set to MinCSP(ODD3, =
, ̸=) where every ODD3-constraint is crisp.

Proof Sketch. Let the input be (V, E , k), V = {1, . . . , n}. Create an instance (I, k) of
MinCSP(ODD3, =, ̸=) starting from variables x1, . . . , xn and z, with soft constraints xi = z

for all i ∈ [n]. For every set e = {a1, . . . , aℓ} ∈ E , add auxiliary variables y2, . . . , yℓ and crisp
constraints ODD3(xa1 , xa2 , y2), ODD3(yi−1, xai

, yi) for all 3 ≤ i ≤ ℓ, and xa1 ̸= yℓ. These
constraints are satisfiable if and only if not all variables xi, i ∈ e are equal, so to satisfy them
it is sufficient to break a soft constraint xai

= z. Thus, X ⊆ V is a hitting set if and only if
I − {xi = z : i ∈ X} is consistent. ◀

As noted, this implies that MinCSP(Γ) is W[1]-hard to even approximate in FPT time.
Now assume that Γ is negative. Then every relation R ∈ Γ is defined by a conjunction of
positive singleton clauses and strictly negative clauses. For a constant-factor approximation,
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Figure 1 An illustration of a choice gadget for t = 3. Black arcs correspond to equality constraints,
dashed red edges to soft disequality constraints, and the bold red edge to a crisp disequality constraint.

by [12, Lemma 10] we may split these definitions into separate constraints, so we may assume
that an instance of MinCSP(Γ) uses constraint types (xi = xj) and (x1 ̸= y1∨ . . .∨xr ̸= yr),
of lengths r ≤ d for some constant d. Then MinCSP(Γ) reduces to Disjunctive Multicut,
and since d = O(1) we get an FPT approximation. This settles the cases where MinCSP(Γ)
has a constant-factor FPT approximation.

Towards delineating FPT and W[1]-hard cases, assume that Γ is negative but not
conjunctive, and let R ∈ Γ be a relation such that every CNF definition of R contains a
non-singleton clause. We show that in this case {R, =, ̸=} pp-defines R∨

̸=,̸= or NAE3, and
that MinCSP(R′, =, ̸=) is W[1]-hard with crisp R′-constraints, where R′ is either R∨

̸=,̸= or
NAE3. The problem MinCSP(NAE3, =) with crisp NAE3-constraints naturally corresponds
to Steiner Multicut, which is W[1]-hard [15]. For the remaining proofs, we will need
a choice gadget. Let S = {s1, . . . , st} be a set. Define an instance W (S) of CSP(=, ≠)
as follows. Introduce 2t + 1 variables v0, . . . , v2t and identify indices modulo 2t + 1, e.g.
v0 = v2t+1. Connect variables in a cycle of equalities, i.e. add soft constraints vi = vi+1 for
all 0 ≤ i ≤ 2t. The forward partner of a variable vi is f(vi) := vi+t, i.e. the variable that is t

steps ahead of vi on the cycle. Add soft constraints vi ̸= f(vi) for all 0 ≤ i ≤ 2t, and make
the constraint v0 ̸= vt crisp. See Figure 1 for an illustration.

▶ Lemma 7. Let S be a set of size at least two and W (S) be the choice gadget. Then
cost(W (S)) = 3. Moreover, if X ⊆W (S), |X| = 3, W (S)−X is consistent and X contains
vi ̸= f(vi), then X also contains vi−1 = vi and f(vi) = f(vi+1).

Proof Sketch. Since v0 ̸= vt is a crisp constraint, we need to remove one link from the top
and one from the the bottom chain of equality constraints connecting v0 and vt. After this
deletion, at least one chain of length ⌈ 2t+1−2

2 ⌉ = t remains, which connects a vertex vi with
its forward partner f(vi). Thus, we either need to disconnect vi and f(vi), or remove the
constraint vi ̸= f(vi). Observe that it is sufficient to delete vi−1 = vi, f(vi) = f(vi+1) and
vi ̸= f(vi) to satisfy W (S). Moreover, if a deletion set X of size 3 contains vi ̸= f(vi), the
only pair of vertices vj and f(vj) that may remain connected in W (S)−X is the pair with
j = i. Out of the two compatible choices, only deleting vi−1 = vi and f(vi) = f(vi+1) leaves
no constraint unsatisfied. ◀

Intuitively, deleting vi−1 = vi, f(vi) = f(vi+1) and vi ̸= f(vi) from W (S) corresponds
to choosing element si from the set S. We note a simple reduction from Multicoloured
Independent Set to MinCSP(R∨

̸=,̸=, =). Let the input be a graph G with k colour classes
V (G) = V1 ∪ . . . Vk. Create a choice gadget for every Vi without soft ̸=-constraints (but
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keeping the crisp one), and set the budget to 2k. For every pair u ∈ Vi, v ∈ Vj for i ̸= j such
that uv ∈ E(G), add a crisp constraint R∨

̸=,̸=(u, f(u), v, f(v)). Due to the budget, u = f(u)
holds for at least one u ∈ Vi for every Vi, corresponding to a selection, and the R-constraint
prevents that u = f(u) and v = f(v), thereby blocking the combination of u ∈ Vi and v ∈ Vj .
We defer the details.

Having shown that MinCSP(Γ, =, ≠) is W[1]-hard if Γ is non-conjunctive, it remains
to show hardness for languages which are conjunctive but not NEQ3 or split. We use the
following W[1]-hard problem (see [22, Lemma 6.1]).

Split Paired Cut
Instance: Graphs G1, G2, vertices s1, t1 ∈ V (G1), s2, t2 ∈ V (G2), a family of disjoint

edge pairs P ⊆ E(G1) × E(G2), and an integer k.
Parameter: k.

Question: Is there a subset X ⊆ P of size at most k such that for both i ∈ {1, 2},
{ei : {e1, e2} ∈ X} is an st-cut in Gi?

Assuming Γ is conjunctive, associate with a relation R(x1, . . . , xr) a graph where for
each pair i, j ∈ [r] there is a blue edge xixj if i ̸= j and R implies xi = xj , and a red edge
xixj if R implies xi ̸= xj . Then the graph of a split relation R(X, Y ), X = {x1, . . . , xp}
and Y = {y1, . . . , yq} is a blue clique on X and a red biclique of (X, Y ), and the graph
of NEQ3 is a red triangle. The remaining cases are precisely the cases when the graph
contains two disjoint edges x1x2, x3x4 with no blue edges connecting their endpoints (such
as R∧

=,=, R∧
=,̸= or R∧

̸=,̸=). There is a curious parallel to the characterization of FPT cases
of Boolean MinCSP, in terms of 2CNF-definable relations whose Gaifman graph is 2K2-
free [29]. We show hardness for all such cases. If both x1x2 and x3x4 are blue, a reduction is
immediate from Split Paired Cut. We sketch the reduction for a more interesting case of
MinCSP(R∧

̸=,̸=, =, ̸=), and note that the reduction for MinCSP(R∧
=,̸=, =, ≠) is a variant of

the above, and hence omitted in this version of the paper.

▶ Lemma 8. MinCSP(R∧
̸=,̸=, =) is W[1]-hard.

Proof sketch. Let (G1, G2, s1, t1, s2, t2,P, k) be an instance of Split Paired Cut. By the
construction of [28, Lemma 5.7], assume k = 2ℓ, and Fi for i ∈ {1, 2} are siti-maxflows in
Gi partitioning E(Gi) into k pairwise edge-disjoint paths. Construct an instance (I, k′) of
MinCSP(R, =, ̸=) with k′ = 5ℓ as follows. Start by creating a variable for every vertex in
V (G1) ∪ V (G2) with the same name as the vertex. For each i ∈ {1, 2}, consider a path
P ∈ Fi, and let p be the number of edges on P . Create a choice gadget W (P ) for every P

with variables vP
0 , . . . , vP

p following the path, and fresh variables vP
j for p < j ≤ 2p added

to the instance. Observe that variables may appear on several paths in Fi. In particular,
vP

0 = si and vP
p = ti for every P ∈ Fi, so we have crisp constraints si ≠ ti. Furthermore,

since Fi partitions E(Gi), the construction contains a copy of graphs G1 and G2 with equality
constraints for edges. Now we pair up edges according to P . For every pair {e1, e2} ∈ P , let
P ∈ F1 and Q ∈ F2 be the paths such that e1 ∈ P and e2 ∈ Q, and suppose e1 = vP

i−1vP
i and

e2 = vQ
j−1vQ

j . Pair up soft constraints vP
i ≠ f(vP

i ) and vQ
j ≠ f(vQ

j ), i.e. replace individual
constraints with one soft constraint R(vP

i , f(vP ), vQ
j , f(vQ

j )). Finally, if an edge uv ∈ E(G)
does not appear in any pair of P, make constraint u = v crisp in I. This completes the
construction.

The proof of correctness is deferred to the full paper. ◀
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For all remaining cases, as noted, every R ∈ Γ is either split or NEQ3, and there is a simple
reduction from MinCSP(Γ) to Triple Multicut. Since the latter is FPT (Theorem 10)
the classification is complete.

We omit the details of the classification for singleton expansion cases. The proofs are
somewhat more intricate, explicitly using the algebraic method as employed by Bodirsky,
Chen and Pinsker [5], but ultimately both the hardness proofs and algorithmic cases are less
interesting than for the above.

4 Triple Multicut

We show that Triple Multicut is in FPT, thus proving Theorem 10. The algorithm works
by a reduction to Boolean MinCSP, i.e. MinCSP(∆) for a constraint language ∆ over
the binary domain {0, 1}. Parameterized complexity of Boolean MinCSP was completely
classified by [29]. As a result of our reduction, we obtain an instance where ∆ is bijunctive,
i.e. every relation in ∆ can be defined by a Boolean formula in CNF with at most two literals
in each clause. Define the Gaifman graph of a bijunctive relation R with vertices {1, . . . , r},
where r is the arity of R, and edges ij for every pair of indices such that R(x1, . . . , xr) implies
a 2-clause involving xi and xj . A graph is 2K2-free if no four vertices induce a subgraph
with two independent edges.

▶ Theorem 9 (Theorem 1.2 of [29]). Let ∆ be a finite bijunctive Boolean constraint language
such that the Gaifman graphs of all relations in ∆ are 2K2-free. Then MinCSP(∆) is in
FPT.

We are ready to present the algorithm.

▶ Theorem 10. Triple Multicut is fixed-parameter tractable.

Proof Sketch. Let (G, T , k) be an instance of Triple Multicut. By iterative compression,
we obtain XV ⊆ V (G) and XT ⊆ T such that |XV |+ |XT | ≤ k + 1 and all components of
G−XV intersect triples in T \XT in at most one vertex. Moreover, by branching on the
intersection, we can assume that a hypothetical optimal solution (ZV , ZT ) to (G, T , k) is
disjoint from (XV , XT ). Let X = XV ∪

⋃
uvw∈XT

{u, v, w} and guess the partition of the
vertices in X into connected components of G−ZV . Identify vertices that belong to the same
component, and enumerate them via the bijective mapping α : X → {1, . . . , d}. Observe
that for every triple uvw ∈ XT , values α(u), α(v) and α(w) are distinct since XT ∩ ZT = ∅.
Create an instance Iα of Boolean MinCSP as follows.
1. Introduce variables vi and v̂i for every v ∈ V (G) and i ∈ [d].
2. For every vertex v ∈ V (G), add soft constraint

∧
i<j(¬vi ∨ ¬vj) ∧

∧
i(vi → v̂i).

3. For every vertex v ∈ X, add crisp constraints vα(v), v̂α(v), and ¬vj , ¬v̂j for all j ≠ α(v).
4. For every edge uv ∈ E(G) and i ∈ [d], add crisp constraints ûi → vi and v̂i → ui.
5. For every triple uvw ∈ T and i ∈ [d], add soft constraints (¬ûi ∨ ¬v̂i) ∧ (¬v̂i ∨ ¬ŵi) ∧

(¬ûi ∨ ¬ŵi).
This completes the reduction. We defer the correctness proof to the full version. ◀

5 Disjunctive Multicut

We show that Disjunctive Multicut is constant-factor fpt-approximable. Section 5 presents
the main loop of the Disjunctive Multicut algorithm, while Section 5 is dedicated to the
most technical subroutine of the algorithm that involves randomized covering of shadow [37].
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Main Loop of the Disjunctive Multicut Algorithm
Let G be a graph with vertices V (G) = V ∞(G) ⊎ V 1(G) partitioned into undeletable and
deletable, respectively. A subset L ⊆

(
V (G)

2
)

of pairs is a request list, and a set of vertices
X ⊆ V (G) satisfies L if there is a pair st ∈ L separated by X. This includes the possibility
that s ∈ X or t ∈ X. For a graph G and a collection of request lists L, we let cost(G,L) be
the minimum size of a set X ⊆ V 1(G) that satisfies all lists in L. Disjunctive Multicut
asks, given an instance (G,L), whether cost(G,L) ≤ k.

Disjunctive Multicut problem generalizes not only Multicut (which is a special
case with d = 1) but also d-Hitting Set. To see the latter, take an edgeless graph G and
make every request a singleton, i.e. a pair ss for a vertex s ∈ V (G). The only way to satisfy
a singleton ss is to delete the vertex s itself, and the only way to satisfy a list of singletons
is to delete one of the vertices in it.

The intuitive idea behind the approximation algorithm for Disjunctive Multicut is
to iteratively simplify the instance (G,L, k), making it closer to Bounded Hitting Set
after each iteration. Roughly, we make progress if the maximum number of non-singleton
requests in a list decreases. In each iteration, the goal is to find a set of O(k) vertices whose
deletion, combined with some branching steps, simplifies every request list. This process can
continue for O(d) steps until we obtain an instance of Bounded Hitting Set, which can
be solved in fpt time by branching. The instance may increase in the process, but finally we
obtain a solution of cost f(d) · k for some function f . We do not optimize for f in our proofs.
Observe also that in the context of constant-factor fpt approximability, some dependence on
d is unavoidable since the problem with unbounded d generalizes Hitting Set.

Formally, for a request list L, let µ1(L) and µ2(L) be the number of singleton and
non-singleton cut requests in L, respectively. Define the measure for a list L as µ(L) =
µ1(L) + 3µ2(L) = |L| + 2µ2(L), and extend it to a collection of list requests L by taking
the maximum, i.e. µ(L) = maxL∈L µ(L). Observe that µ(L) ≤ 3d for any instance of
Disjunctive Multicut. Further, let V (L) =

⋃
st∈L{s, t} denote the set of vertices in a

list L, and ν(L) = µ1(L) + 2µ2(L) be an upper bound on the maximum number of variable
occurrences in a list of L. The workhorse of the approximation algorithm is the following
lemma.

▶ Lemma 11. There is a randomized algorithm Simplify that takes an instance (G,L, k) of
Disjunctive Multicut as input, and in O∗(2O(k)) time produces a graph G′ and a collection
of requests L′ such that |V (G′)| ≤ |V (G)|, ν(L′) ≤ ν(L), |L′| ≤ k2|L|, and µ(L′) ≤ µ(L)− 1.
Moreover, the following holds.

If cost(G,L) ≤ k, then, with probability 2−O(k2), we have cost(G′,L′) ≤ 2k.
If cost(G,L) > 3k, then we have cost(G′,L′) > 2k.

Randomization in Lemma 11 comes from the use of the random covering of shadow
of [37, 18]. They also provide a derandomized version of this procedure, so our algorithm can
be derandomized as well. We postpone the proof of Lemma 11 until Section 5 since it requires
introduction of some technical machinery. For now, we show how to prove Theorem 12 using
the result of the lemma.

▶ Theorem 12. Disjunctive Multicut is fixed-parameter tractable.

Proof. Let (G,L, k) be an instance of Disjunctive Multicut. Repeat the following steps
until µ2(L) = 0. Apply the algorithm of Lemma 11 to (G,L, k), obtaining a new graph
G and a new collection of lists L, and let (G,L, k) := (G′,L′, 2k). When µ2(L) = 0, let
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Algorithm 1 Main Loop.

1: procedure SolveDJMC(G,L, k)
2: while µ2(L) > 0 do
3: (G,L)← Simplify(G,L, k)
4: if Simplify rejects then
5: reject
6: k ← 2k

7: W ← {vv : v ∈ V (G)}
8: if SolveHittingSet(W,L, k) accepts then
9: accept

10: else
11: reject

W = {vv : v ∈ V (G)} be the set of singleton cut requests for every vertex in V (G). Check
whether (W,L, k) is a yes-instance of Hitting Set – if yes, accept, otherwise reject. See
Algorithm 1 for the pseudocode.

To argue correctness, let (G,L, k) be the input instance and (G′,L′, k′) be the instance
obtained after simplification. By induction and Lemma 11, we have |V (G′)| ≤ |V (G)| and
ν(L′) ≤ ν(L). Since ν(L′) ≤ ν(L) ≤ 2d and µ2(L) = 0, every list in L has at most 2d

requests. Let r be the number of calls to Simplify performed by the algorithm. Note
that r ≤ µ(L) ≤ 3d since the measure decreases by at least one with each iteration, and
define k′ = 2rk. The lists in L′ only contain singletons, thus (G′,L′, k′) is essentially an
instance of Hitting Set with sets of size 2d. Moreover, |L′| ≤ k2r|L|, so the number of
lists is polynomial in |L|. We can solve (G′,L′, k′) in O∗((2d)k′) time by branching (see, for
example, Chapter 3 in [20]). For the other direction, suppose cost(G,L) ≤ k. By Lemma 11
and induction, we have cost(G′,L′) ≤ 2rk ≤ k′ with probability 2−O(rk2), and the algorithm
accepts. If cost(I) > 3k, then cost(G′,L′) > k′ and the algorithm rejects. ◀

Simplification Procedure
In this section we prove Lemma 11. We start by iterative compression and guessing. Then
we delete at most k vertices from the graph and modify it, obtaining an instance amenable
to the main technical tool of the section – the shadow covering technique.

Initial Phase

Let (G,L, k) be an instance of Disjunctive Multicut. By iterative compression, assume
we have a set X ⊆ V (G) that satisfies all lists in L and |X| = c · k + 1, where c := c(d) is the
approximation factor. Assume Z is an optimal solution to G, i.e. |Z| ≤ k and Z satisfies
all lists in L. Guess the intersection W = X ∩ Z, and let G′ = G−W , X ′ = X \W , and
Z ′ = Z \W . Construct L′ starting with L and removing all lists satisfied by W . Further,
guess the partition X = (X1, . . . , Xℓ) of X ′ into the connected components of G′ − Z ′, and
identify the variables in each subset Xi into a single vertex xi, and redefine X ′ accordingly.
Note that the probability of our guesses being correct up to this point is 2−O(k log k). Also,
these steps can be derandomized by creating 2O(k log k) branches.

Now compute a minimum X -multiway cut in G′, i.e. a set M ⊆ V 1(G′) that separates
every pair of vertices xi and xj in X ′. Note that Z ′ is a X -multiway cut by the definition of
X , so |M | ≤ |Z ′| ≤ k. Such a set M can be computed in O∗(2k) time using the algorithm
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of [21]. If no X -multiway cut of size at most k exists, then abort the branch and make
another guess for X . If an X -multiway cut M of size at most k is obtained, remove the
vertices in M from G and along with the lists in L′ satisfied by M . This completes the initial
phase of the algorithm. Properties of the resulting instance are summarized below.

▶ Lemma 13 (Proof Omitted). After the initial phase we obtain a graph G′, a family of list
requests L′, and subset of vertices X ′ ⊆ V (G′) such that |V (G′)| ≤ |V (G)|, ν(L′) ≤ ν(L),
µ(L′) ≤ µ(L), and |X ′| ∈ O(k). The set X ′ satisfies all lists in L′ and intersects each
connected component of G′ in at most one vertex. Moreover, the following hold.

cost(G,L) ≤ k + cost(G′,L′).
If cost(G,L) ≤ k, then, with probability 2−O(k log k), we have cost(G′,L′) ≤ k. Moreover,
there is a set Z ′ ⊆ V (G′), |Z ′| ≤ k that satisfies all lists in L′ and is disjoint from X ′.

Random Covering of Shadow

Random covering of shadow is a powerful tool introduced by [37] and sharpened by [18]. We
use the latter work as our starting point. Although [18] present their theorems in terms
of directed graphs, their results are applicable to our setting by considering undirected
edges as bidirectional, i.e. replacing every edge uv with a pair of antiparallel arcs (u, v) and
(v, u). Consider a graph G with vertices partitioned into deltable and undeletable subsets,
i.e. V (G) = V 1(G) ⊎ V ∞(G). Let F = (F1, . . . , Fq) be a family of connected subgraphs of
G. An F-transversal is a set of vertices T that intersects every subgraph Fi in F . If T is an
F -transversal, we say that F is T -connected. For every W ⊆ V (G), the shadow of W (with
respect to T ) is the subset of vertices disconnected from T in G −W . We state it for the
case T ⊆ V ∞(G) which suffices for our applications.

▶ Theorem 14 (Random Covering of Shadow, Theorem 3.5 in [18]). There is an algorithm
RandomCover that takes a graph G, a subset T ⊆ V ∞(G) and an integer k as input, and
in O∗(4k) time outputs a set S ⊆ V (G) such that the following holds. For any family F of
T -connected subgraphs, if there is an F-transversal of size at most k in V 1(G), then with
probability 2−O(k2), there exists an F-transversal Y ⊆ V 1(G) of size at most k such that
1. Y ∩ S = ∅, and
2. S covers the shadow of Y with respect to T .

The following consequence is convenient for our purposes.

▶ Corollary 15 (Proof Omitted). Let S and Y be the shadow-covering set and the F-transversal
from Theorem 14, respectively. Define R = V (G) \ S to be the complement of S. Then
Y ⊆ R and, for every vertex v ∈ R, either v ∈ Y or v is connected to T in G− Y .

Note that if a vertex v ∈ N(S) and v is undeletable, then v ∈ R and v /∈ Y , hence v is
connected to T in G− Y . Since Y ∩ S = ∅, every vertex in N(v) ∩ S is also connected to T

in G− Y , so we can remove N(v) ∩ S from S (and add it to R instead). By applying this
procedure to exhaustion, we may assume that no vertex in N(S) is undeletable.

With the random covering of shadow at our disposal, we return to Disjunctive Multi-
cut. By Lemma 13, we can start with an instance (G,L, k) and a set X ⊆ V (G) such that
|X| ∈ O(k), X satisfies all lists in L, every connected component of G intersects X in at
most one vertex, and there is an optimal solution Z disjoint from X. Let T := T (G,L, X, Z)
be the set of cut requests in

⋃
L satisfied by both X and Z. Define F as the set of st-walks

for all st ∈ T . Observe that an F -transversal is precisely a T -multicut. Apply the algorithm
from Theorem 14 to (G, X, k). Since X and Z are F -transversals and |Z| ≤ k by assumption,
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Theorem 14 and Corollary 15 imply that we can obtain a set R ⊆ V (G) in fpt time such
that, with probability 2−O(k2), there is an F -transversal Y ⊆ R of size at most k, and every
vertex in R \ Y is connected to X in G− Y .

For every vertex v ∈ V 1(G) \X, define a set of vertices Rv ⊆ R \X as follows:
if v is disconnected from X, then let Rv = ∅;
if v ∈ N(X) or v ∈ R, then let Rv = {v};
otherwise, let Rv = R ∩N(H), where H is the component of G[S] containing v.

Note that, by definition, the set Rv is an Xv-separator in G. Moreover, we have ensured
that N(S) does not contain undeletable vertices, so Rv does not contain undeletable vertices.
In a certain sense, the sets Rv are the only Xv-separators that Y needs to use. This idea is
made precise in the following lemma.

▶ Lemma 16 (Proof Omitted). Let G be a graph. Let X and Y be disjoint subsets of V (G)
such that X intersects every connected component of G in at most one vertex. Suppose
R ⊆ V (G) is such that Y ⊆ R and all vertices in R \ Y are connected to X in G− Y . If a
vertex s is disconnected from X in G− Y , then Rs ⊆ Y .

Now we compute a simplified collection of lists L′. Start by adding all lists in L to L′.
Remove every singleton request xx such that x ∈ X from every list of L′. For every list
L ∈ L′ not shortened this way, let st ∈ L be a non-singleton cut request satisfied by X.
Consider Rs and Rt and apply one of the following rules.
(R1) If |Rs| > k and |Rt| > k, remove st from L.
(R2) If |Rs| ≤ k and |Rt| > k, replace L with sets (L \ {st}) ∪ {aa} for all a ∈ Rs.
(R3) If |Rs| > k and |Rt| ≤ k, replace L with sets (L \ {st}) ∪ {bb} for all b ∈ Rt.
(R4) If |Rs| ≤ k and |Rt| ≤ k, replace L with sets (L \ {st})∪ {aa, bb} for all a ∈ Rt, b ∈ Rt.
Finally, make vertices in X undeletable, obtaining a new graph G′. This completes the
simplification step. Note that each list in L is processed once, so the running time of the last
step is polynomial.

Now we prove some properties of G′ and L′ obtained above. Note that |V (G′)| = |V (G)|.
Since every list in L is processed once and with at most k2 new lists, the size of |L′| grows by
a factor of at most k2. To see that ν(L′) ≤ ν(L) and µ(L′) ≤ µ(L)− 1, observe that every
reduction rule replaces a list L with new lists with either one less non-singleton request (so
µ2 decreases by at least 1), and adds up to two singleton requests (so µ1 increases by at
most 2). Moreover, in every list of L there is a cut request satisfied by X, so no list of L
remains unchanged in L′. We state the remaining ingredients for proving correctness.

▶ Lemma 17 (Proof Omitted). If cost(G,L) ≤ k, then, with probability 2−O(k2), we have
cost(G′,L′) ≤ 2k.

▶ Lemma 18 (Proof Omitted). If cost(G,L) > 2k, then we have cost(G′,L′) > 2k.

We are now ready to prove Lemma 11.

Proof of Lemma 11. Suppose (G,L, k) is a yes-instance of Disjunctive Multicut. By
Lemma 13, after the initial phase we obtain G′, L′ such that |V (G′)| ≤ |V (G)|, ν(L′) ≤ ν(L),
µ(L′) ≤ µ(L), and cost(G′,L′) ≤ k. Moreover, we obtain a set X ′ ⊆ V (G′), |X ′| ∈ O(k),
that satisfies all lists in L′, intersects every component of G′ in at most one vertex, and is
disjoint from an optimum solution Z ′ to (G′,L′, k). Now we apply random covering of shadow
and the list reduction rules to G′,L′, X ′, obtaining a new graph G′′ and a new set of lists
L′′. By Lemma 17, with probability 2O(−k2), we have cost(G′′,L′′) ≤ 2k. This proves one
statement of Lemma 11. For the second statement of Lemma 11, suppose cost(G′′,L′′) ≤ 2k.
By Lemma 18, we have cost(G′,L′) ≤ 2k. By Lemma 13, cost(G′L′) ≤ 2k implies that
cost(G,L) ≤ 2k + k ≤ 3k, and we are done. ◀
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Abstract
We investigate the maximum bottleneck matching problem in bipartite graphs. Given a bipartite
graph with nonnegative edge weights, the problem is to find a maximum cardinality matching in
which the minimum weight of an edge is the maximum. To the best of our knowledge, there are two
widely used solvers for this problem based on two different approaches. There exists a third known
approach in the literature, which seems inferior to those two which is presumably why there is no
implementation of it. We take this third approach, make theoretical observations to improve its
behavior, and implement the improved method. Experiments with the existing two solvers show
that their run time can be too high to be useful in many interesting cases. Furthermore, their
performance is not predictable, and slight perturbations of the input graph lead to considerable
changes in the run time. On the other hand, the proposed solver’s performance is much more stable;
it is almost always faster than or comparable to the two existing solvers, and its run time always
remains low.
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1 Introduction

A matching in a graph is a set of edges without any common vertices. A maximum cardinality
matching in a graph has the largest number of edges among all matchings. We investigate
algorithms for finding a maximum cardinality matching whose minimum edge weight is the
maximum on bipartite graphs with edge weights. This is called the bottleneck matching
problem or linear bottleneck assignment problem when all vertices can be matched [3,
Section 6.2]. Formally, the bottleneck matching problem is to find a maximum cardinality
matching M which maximizes

min
(ri,cj)∈M

wi,j .

This problem can be solved in polynomial time.
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The bottleneck matching problem arises in different contexts [3, Section 6.2.8]. We
are motivated by the Birkhoff–von Neumann (BvN) decomposition of doubly stochastic
matrices [2], which arises in practical applications [1, 4, 16, 21]. In this case, the bipartite
graphs associated with matrices have equal number of vertices on both sides and contain
perfect matchings. A known heuristic for the BvN decomposition [10] repeatedly calls a
bottleneck matching algorithm on the bipartite graph of a dynamically changing matrix.

Table 1 Run time, in seconds, of mc64j2 and mc64j3 on 12 problems. A is the original matrix,
AP is the same matrix with a random column permutation; S = DP (A)E, where P (A) is the 0-1
matrix with 1s at the nonzero positions of A; and D and E are positive diagonal matrices scaling
P (A) to be doubly stochastic.

A AP S
matrix j2 j3 j2 j3 j2 j3
atmosmodm 0.05 0.26 0.13 0.40 684.87 6487.07
CurlCurl_3 0.05 0.31 0.15 0.48 578.83 2958.07
ss 2.28 0.90 2317.46 1.73 810.10 16501.00
vas_stokes_2M 0.25 1.87 6310.44 727.57 1420.01 4571.14

The software MC64 [7, 8] is the state-of-the-art and implements two algorithms, denoted
mc64j2 and mc64j3, for the bottleneck matching problem. To the best of our knowledge
these are the only available codes that can handle bipartite graphs corresponding to large
sparse matrices. Their worst-case run time are O(n(m + n) log2 n) and O(nm log2 n), on
bipartite graphs with n vertices on each side and m edges [8]. MC64, especially the newer
mc64j2 [8], is well engineered. It works very well for graphs corresponding to matrices from
numerical applications. However, it does not have stable run time behavior in two senses.
First, when run on the same bipartite graph twice with different edge weights the difference
in run time can be in the order of hours. Second, on two equivalent problem instances, where
one is obtained from the other by just reordering the vertices, the run time can change
dramatically. We report the run time of MC64 on four matrices, from the SuiteSparse Matrix
Collection [5], in Table 1 to explain this – more experiments of similar nature are in Section 4.
Here, the set of rows and the set of columns of a matrix correspond to the two parts of the
bipartite graph with an edge between two vertices if the corresponding entry in the matrix
is nonzero, and the nonzero values are the edge weights. The table contains results for A,
for AP where P is a random permutation, and for the doubly stochastic matrix S which is
obtained by scaling the pattern of A with Sinkhorn-Knopp algorithm [20].

The bipartite graphs of A and AP are the same apart from renumbering of the vertices
in one part. While on A both mc64j2 and mc64j3 are fast, both methods suffer on AP; the
run time of mc64j2 is not acceptable for the last two instances, and that of mc64j3 is high
for the last one in Table 1. The bottleneck matching problems on A and AP are essentially
the same, as permuting the columns does not change the values, nor the bottleneck matching
and its value. The bipartite graph of S = DP (A)E is the same as that of A with different
edge weights, hence the problems are not equivalent. Now, the run time of both methods
is too much for all instances. The wildly varying run time of both MC64 routines on S in
comparison to those on A further highlight the instability in their performance.

Our aim in this paper is to develop an algorithm for the bottleneck matching problem
which is better than the state-of-the-art codes in MC64. For this purpose, we study an
overlooked alternative from the literature. We make observations that pave the way for an
efficient algorithm, implement and compare it against the codes from MC64. We conduct a
large set of experiments to show that our approach is usually much faster than MC64 and in
addition exhibits stable and robust performance.
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Section 2 gives a brief background and a summary of the known algorithms. Section 3
contains the proposed algorithm. Section 4 presents the experimental results, and Section 5
concludes the paper. Appendix of the related version, which is available at https://inria.
hal.science/hal-04146298, contains detailed description of the experiments and further
experiments.

2 Background and related work

A matrix A with nnz(A) nonzero entries can be represented with a bipartite graph G =
(R ∪ C, E) where each row of A corresponds to a unique vertex in R, each column of A
corresponds to a unique vertex in C, and there is an edge (ri, cj) whenever aij ̸= 0. The
number m of edges in G is thus equivalent to nnz(A). When the edges are weighted, the
weight of the edge (ri, cj) is |aij |, that is the magnitude of the nonzeros of A. For a vertex v,
we use adj(v) to denote the set of its neighbors.

A matching is a set of edges with no common vertices. A matching is of maximum
cardinality if it has the largest number of edges. Given a matching M, a vertex is matched if
an edge from M is incident on it and free otherwise. A matching is perfect if it matches all
vertices. The deficiency of a matching M is the difference between the maximum cardinality
of a matching and |M|. Given a matching M in the graph G, a path in G is M-alternating
if its edges are alternately in M. An M-alternating path P is M-augmenting if the start
and end vertices of P are both free. A vertex cover is a set of vertices that includes at least
one vertex from each edge. In a bipartite graph the maximum cardinality of a matching is
equal to the minimum cardinality of a vertex cover [3, Th. 2.7].

Given a bipartite graph, any of its maximum cardinality matchings can be used to obtain
a canonical decomposition called Dulmage-Mendelsohn (DM) decomposition [11]. Based on
the DM decomposition, Pothen and Fan [18] describe algorithms to permute sparse matrices
in a block upper triangular form (BTF):

A =


HC SC VC

HR AH ∗ ∗
SR O AS ∗
VR O O AV

 . (1)

In a BTF, the submatrix AH has more columns than rows, and all rows in HR are matched
to a column in HC in any maximum cardinality matching; the submatrix AS is square
with at least one perfect matching; the submatrix AV has more rows than columns, and all
columns in VC are matched to a row in VR. The rows/columns in each block are defined as
follows

HR = {row vertices reachable from free column vertices via alternating paths},

HC = {free column vertices or column vertices reachable from free column vertices via
alternating paths},

VR = {free row vertices or row vertices reachable from free row vertices via
alternating paths},

VC = {column vertices reachable from free row vertices via alternating paths},

SR = R \ (HR ∪ VR), and
SC = C \ (HC ∪ VC).

A standard BFS/DFS-based graph traversal algorithm will find these sets in linear time.
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We make some observation on the BTF form of a matrix. First, the DM decomposition
reveals a minimum cover [3, Alg. 3.1]. As all nonzeros in the BTF (1) are confined in the
rows HR ∪ SR and the columns in VC , the vertex set C = HR ∪ SR ∪ VC is a cover. Since
the cardinality of C is equal to the maximum cardinality of a matching, it is a minimum
cover. Second, if one adds new nonzeros to the diagonal blocks, upper diagonal blocks, or to
the blocks (SR, HC) and (VR, SC), the maximum cardinality of a matching does not change.
This is so, as the new nonzeros cannot create augmenting paths.

Hall’s theorem [13] states that for a bipartite graph G to have a column-perfect matching,
the relation |S| ≤ |

⋃
c∈S adj(c)| must hold for any subset S of columns. If a similar relation

holds for all subsets of rows, then G will have perfect matchings.
An n × n matrix A ̸= 0 is called doubly stochastic if every entry is nonnegative and the

sum of entries in each row and each column is equal to 1. Any nonnegative square matrix,
whose bipartite graph has perfect matchings, can be scaled with two diagonal matrices to be
doubly stochastic [20]. A permutation matrix is a square matrix where each row/column
contains exactly one nonzero value equal to 1. A perfect matching in the bipartite graph
representation of A corresponds to a permutation matrix. The bipartite graphs of doubly
stochastic matrices have perfect matchings.

Henceforth, we assume that the given bipartite graph contains perfect matchings. We
comment on rectangular matrices and matrices without perfect matchings in Section 3.3.

2.1 Related work
We review three algorithms from the literature [3, 7, 8]. The first two are implemented in
MC64, and to the best of our knowledge are currently the best practical algorithms. Burkard
et al. [3, Section 6.2.4] describe two other algorithms [12, 19], which are more theoretical.

2.1.1 Shortest-augmenting path based algorithms
Algorithms based on shortest augmenting paths start with a matching which has the maximum
bottleneck value for the currently matched vertices C ′ in one part, say C. In order to augment
the matching, a shortest augmenting path from a free vertex c of C is found with a variant
of Dijkstra’s shortest path algorithm. Augmenting along the shortest paths maintains the
invariant that the current matching has the maximum bottleneck value for any matching that
matches the vertices C ′ ∪ {c}. The process continues until a perfect matching is obtained.

The state-of-the-art implementation in MC64 [8], mc64j2, starts by computing an upper
bound ω on the bottleneck value, which is the minimum of maximum in each column and
row. It then computes a maximal matching on the graph containing only edge weights no
smaller than ω, which is then improved by length-three augmenting paths in a preprocess
step. Then, a shortest-augmenting path is sought from each free column vertex to solve the
problem. mc64j2 implements an efficient adaptation of Dijkstra’s algorithm to find these
paths. Depending on the edge weights, the structure of the bipartite graph, or the visit
order many edges and vertices may be visited while finding an augmenting path. As seen in
Table 1, this can accumulate and result in very long run time.

2.1.2 Threshold-based algorithms
Let G be a weighted bipartite graph. For a value ω, let G[ω] contain only the edges of G

with weight at least ω. Threshold-based algorithms find the largest ω for which G[ω] has a
perfect matching. They do so by considering different values for ω, testing whether G[ω]
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has a perfect matching or not and tuning the next ω to a higher or lower value accordingly.
MC64’s implementation, mc64j3, discusses initialization and algorithmic choices to reduce
the number of tests [7]. However, MC64 uses a depth-first-search algorithm to find the
augmenting paths for each test which can slow it down, as seen in Table 1.

2.1.3 An algorithm based on duality
This algorithm is also threshold-based and uses the duality of matchings and coverings to find
the next threshold. We explain this algorithm in more detail as ours improves upon it. Let ω

be a value where G[ω] does not contain a perfect matching. Let M be a maximum cardinality
matching in G[ω]. From M one can define a minimum vertex cover C = HR ∪ SR ∪ VC of
G[ω] with vertex sets I = HR ∪ SR and J = VC [3, Section 6.2.3]. Since M is not perfect,
there must be an edge in G from a vertex in Ī = R \ I to another vertex in J̄ = C \ J . The
value maxi∈Ī,j∈J̄ aij thus cannot be smaller than the bottleneck matching value of G and
can be used as the next threshold. This approach is shown in Algorithm 1 [3, Section 6.2.3].

Algorithm 1 Duality-based algorithm.
Input : G, an edge weighted bipartite graph having perfect matchings
Output :M, a bottleneck perfect matching
Let ω be an upper bound on the bottleneck matching value
M← ∅
while |M| < n do
M← a maximum cardinality matching in G[ω]
if |M| < n then

1 Let I ⊆ R and J ⊆ C be the vertex sets of the associated cover of G[ω]
2 ω ← maxi∈R\I,j∈C\J wi,j /* in G, not G[ω] */

The maximum cardinality matching in G[ω] can be found in O(
√

n nnz(A[ω])) time in
the worst case [14]. Once such a matching is found, the associated minimum cover and the
maximum uncovered value at Line 2 can be obtained in linear time. Therefore, the worst
case time complexity of Algorithm 1 is O(

√
n nnz(A)) times the number of iterations. The

worst case run time for Algorithm 1 can hence be too high. This is so as a new edge, due
to the reduced ω, does not mean one more edge in the maximum matching, and hence the
while loop can even run for more than n iterations.

3 The proposed algorithm

Our algorithm is based on Algorithm 1 and integrates threshold techniques. Let G = (R∪C, E)
be an edge weighted bipartite graph, with wi,j being the weight of the edge (ri, cj). Let ω be
a nonnegative value, G[ω] be as before, and the bottleneck matching value b⋆ be the largest
ω for which G[ω] has a perfect matching. We call a value ω safe, when ω ≥ b⋆. Algorithm 1
produces decreasing safe values that converge to b⋆. We make a series of observations to find
b⋆ faster. The first observation is that there are several minimum vertex covers associated
with a given maximum cardinality matching. Using the BTF (1), let C′ = HR ∪ SC ∪ VC . As
all nonzeros are covered by C′ and |C′| = |HR ∪ SR ∪ VC |, C′ is also a minimum cover. If we
choose this cover, the sets I and J at Line 1 of Algorithm 1 become HR and SC ∪ VC , in
which case, the maximum value can be different. This leads to the following proposition.

▶ Proposition 1. Let C1 = HR ∪ SR ∪ VC and C2 = HR ∪ SC ∪ VC be two minimum covers
of G[ω] revealed by the BTF (1). Let ω1 and ω2 be the maximum values defined in Line 2 of
Algorithm 1 for C1 and C2, respectively. Then, min(ω1, ω2) is safe.

ESA 2023
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Proof. Let ω be the current value, and ω1 < ω2 without loss of generality. This means that ω2
is in A(VR, SC) and all entries in A(VR, HC) are smaller than ω2. The maximum cardinality
of a matching in G[ω2] cannot be larger than that in G[ω], as the set C1 = HR ∪ SR ∪ VC

still covers all edges of G[ω2], including those that arise in A(SR, HC). Hence the cover C1
can be used to get the next ω in Line 2, which concludes the proof. ◀

Based on Proposition 1, one can use the smaller of the largest uncovered element in
(SR ∪ VR, HC) and that in (VR, HC ∪ SC). We propose to exploit the two identified covers as
much as possible for a faster convergence of ω to b⋆. As we reason in Lemma 2 below, one
can find a tighter bound on b⋆, depending on the deficiency of the current matching as well
as the (original) adjacencies of the vertices in the identified covers.

▶ Lemma 2. Let M be a maximum cardinality matching in G[ω] with a deficiency of k in
G; A[ω] and A be, respectively, the matrices associated with G[ω] and G; C = HR ∪ SC ∪ VC

be a minimum vertex cover of G[ω] associated with M when A[ω] is permuted in a BTF (1);
Let ωr

k be the kth largest element in
⋃

i∈SR∪VR
max{wi,j : j ∈ HC}, and ωc

k the kth largest
element in

⋃
j∈HC

max{wi,j : i ∈ SR ∪ VR}. Then, ωk = min(ωr
k, ωc

k) is safe.

Proof. Consider first the set HC of columns, and note that |HC | − |HR| = k as all other
columns are matched. By Hall’s theorem, |HC | ≤ |

⋃
c∈HC

adj(c)| must hold in A as there is
a perfect matching. Among all rows in

⋃
c∈HC

adj(c), we have |HR| in the set HR. Therefore
there must be at least k other nonzero rows in A(SR ∪ VR, HC). The element ωr

k from⋃
i∈SR∪VR

max{wi,j : j ∈ HC} is safe as any value greater than that will cover less than
k rows and Hall’s conditions cannot be satisfied. A similar argument applies to ωc

k by
considering the set SR ∪ VR of rows. In A[ω] we have adj(SR ∪ VR) = SC ∪ VC , and
|SR ∪ VR| − |SC ∪ VC | = k. The element ωc

k must be safe since we need at least k nonzero
columns in A(SR ∪VR, HC). The value ωk is thus safe as the minimum of two safe values. ◀

One can identify several minimum covers, collect the kth largest uncovered element with
respect to each, and use the minimum of the collected elements as the next ω. As finding
these minimum covers can be expensive, we propose using the two which are readily revealed
by the BTF. That is, we use ω = min(ω1, ω2) where

ωr
1, ωc

1 = k-th largest row and column maximum entries in A(SR ∪ VR, HC) ,

ω1 = min(ωr
1, ωc

1) , (2)
ωr

2, ωc
2 = k-th largest row and column maximum entries in A(VR, HC ∪ SC) ,

ω2 = min(ωr
2, ωc

2) . (3)

This corresponds to applying Hall’s theorem to the sets HC and HC ∪ SC of columns and to
the sets VR and SR ∪ VR of rows.

3.1 Putting it all together
The proposed algorithm bottled is shown in Algorithm 2. The input is a sparse matrix
represented in the compressed storage by columns (CSC) format. bottled creates a
compressed storage by rows (CSR) representation of the input matrix. It then sorts the
nonzeros in each row and each column in non-increasing order of their values. Then
the threshold ω is initialized as the minimum of the 2n nonzero values consisting of the
maximum in each row and maximum in each column. The algorithm then updates the
threshold ω in a while-loop as in Algorithm 1. In the while-loop there are three subroutines:
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MaximumCardinalityMatching, SAP, and DM-dec. These subroutines correspond to a
maximum cardinality matching algorithm, a shortest augmenting path-based method to
match a column, and an algorithm obtaining the row and column blocks of the BTF (1).

Algorithm 2 bottled: The proposed bottleneck matching algorithm.
Input : A, stored by columns
Output :M, a bottleneck perfect matching
Create a CSR representation of A
Sort the nonzeros in each row and in each column in non-increasing order of values

1 ω ← min of the maximum in each row, maximum in each column
G[ω]← (R ∪ C, ∅) and M← ∅
while |M| < n do

2 for each i, release new aij ≥ ω and for each j release new aij ≥ ω into G[ω]
if |M| = n− 1 then
M← SAP(G,M, c) with the last free vertex c

else
3 M′ ← MaximumCardinalityMatching(G[ω],M)

if |M′| = n then M←M′; break
if |M′| = |M| then

4 select a vertex c

M← SAP(G,M′, c)
else
M←M′

⟨HR, SR, VR, HC , SC , VC⟩ ← DM-dec(G[ω],M)
5 ω ← min(ω1, ω2) with ω1 as in (2) and ω2 as in (3)

Algorithm 2 stores the edges of G[ω] over the storage of A in the CSC and CSR formats,
without explicitly building adjacency lists. The start address of each row and column are the
same as those of A. For each row/column of G[ω], we keep an end-pointer which points to
the smallest nonzero of A in that row/column that is no smaller than ω. These end-pointers
are initialized before the while-loop in O(n) time, and incremented at Line 2 at each iteration
of the while-loop. Therefore the total run time cost of building G[ω]s is O(nnz(A)).

In Algorithm 2, SAP(G, M, c) refers to the algorithm summarized in Section 2.1.1. As
stated before, SAP needs the current matching to have the bottleneck value among all
matchings covering the same set of column vertices. The approach outlined in Algorithm 1
produces such matchings, that is why, at any point, one can resort to SAP. We invoke SAP in
two cases: (i) when the deficiency is one; (ii) when an update of ω did not yield an increase
in the cardinality of the current matching. The first case is straightforward. For the second
case, we apply a simple heuristic to help the algorithm converge faster. As any free column
vertex can be the start of an augmenting path, we choose c ∈ C whose largest edge weight
not included in the current G[ω] is minimum. Matching c will lead to a reduced ω, and
the reduction will hopefully be large with this choice of c (some empirical results are in the
appendix of the related version). The most common algorithms for the maximum cardinality
matching problem take an initial matching as input and augment it. This is very suitable at
Line 3 of Algorithm 2, as we have a maximum cardinality matching on a graph, we add new
edges, and then ask for a maximum cardinality matching in the new graph. We have used
the code-base of MatchMaker [6, 15] to implement this step in the implicit representation of
G[ω].

At Line 5 of Algorithm 2, we use a binary heap with a limit k on its size. For ωr
1, the

nonzeros of each row in SR ∪VR with value smaller than ω are visited, and the largest element
is used as a key in the heap. When the heap is full, keys are added only if they are larger
than the current minimum, which is then removed. The minimum of the heap is returned as
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ωr
1. Other quantities of (2) and (3) are computed similarly. All nonzeros of A − A[ω] in the

rows SR ∪ VR and columns HC can be visited and the heap operations can be performed
in O(nnz(A(SR ∪ VR, HC)) + (|HC | + |SR ∪ VR|) log k) time. A similar analysis holds for
A(SR ∪ VR, HC). The run time of one iteration of the while loop is thus dominated by that
of the maximum cardinality matching algorithm. We do not have an estimate on the number
of iterations of the while-loop; in the empirical results in Section 4.3 the number is less than
what a binary search approach would yield.

3.2 In the context of a BvN decomposition method

The Birkhoff–von Neumann (BvN) theorem [2] states that a doubly stochastic matrix A can
be written as A =

∑ℓ
i=1 αiPi where each Pi is a permutation matrix, and αis are positive

coefficients summing up to one. Such a decomposition is not unique, and the problem of
finding a decomposition with the smallest ℓ value is NP-Complete [10].

One heuristic [10] for obtaining a BvN decomposition of a double stochastic matrix
A works as follows. It finds the value b of a bottleneck matching whose pattern is the
permutation matrix P, replaces A with A− bP, and continues until a zero matrix is obtained.
A property of this heuristic is that the successive bottleneck values are in a non-increasing
order [9]. Our bottleneck matching algorithm is very fitting in this case. One can create the
CSR representation and sort each row and column once. Then, executing the while loop of
Algorithm 2 will obtain a bottleneck matching for the current matrix. Once b and P are
obtained, replacing A with A − bP can be done by subtracting b from each matched entry
and updating that entry’s position in the sorted list of both rows and columns in overall
O(n + nnz(A)) time. While doing so, one can update the end-pointers used for G[ω], and
avoid the preprocessing in Algorithm 2 at subsequent invocations.

3.3 Rectangular matrices or matrices without perfect matchings

The case in which there are perfect matchings in the given bipartite graph is common in
applications where the bipartite graphs correspond to sparse matrices. This is especially so
in the BvN decomposition, which was our motivation. Nonetheless MC64’s j2 and j3 work
for cases in which one part of the bipartite graph has more vertices than the other, where the
smaller side can be perfectly matched. This corresponds to nR × n matrices for nR > n that
have column-perfect matchings. Our algorithm can handle this case either by initializing ω

at Line 1 using only the column values, or by using those and only the nth maximum of the
set of nR maximum entries, one from in each row.

Consider now the most general case corresponding to nR × n matrices, with nR ≥ n and
without column perfect matchings. In this case, mc64j2 returns a maximum cardinality
matching, without necessarily finding the correct bottleneck value. That is so because not all
vertices from which the shortest-augmenting paths are sought can be matched in a bottleneck
maximum cardinality matching. We do not know of a suitable fix for this. mc64j3 and its
equivalent thresh on the other hand work correctly. The presented algorithm bottled
needs four minor modifications to handle this general case: (i) the maximum size of a
matching n′ should be computed at the beginning; (ii) the initialization should use the choose
the smallest of the n′th maximum of n maximum entries, one from each column, and the
n′th maximum of the nR maximum entries, one from each row; (iii) at Line 5, the deficiency
is k = n′ − |M|; and (iv) the shortest-augmenting path method should not be used.
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4 Experiments

We observed in a preliminary set of experiments that mc64j2 is generally faster than
mc64j3; the geometric mean of the ratios of the run time of the latter to that of the
former was 4.6. As already highlighted in Table 1, the run time of mc64j3 can be too
large to experiment (this happens more frequently than with mc64j2). That is why we
have implemented a threshold-based approach, referred here as thresh, using the same
code base of bottled, and use it in our experiments instead of mc64j3. thresh uses the
initialization procedure common to mc64j3 and bottled to find a large initial matching
and an upper bound ω on the bottleneck value. If this matching is not maximum, then
the edge weights are sorted to find the bottleneck value by a binary search between the
smallest edge weight and the initial value ω. The binary search uses only the available edge
weights and each time half of the edges are discarded. Our codes, written in C, are available
at https://gitlab.inria.fr/bora-ucar/bottled; the codes used in the experiments are
elsewhere [17].

The next subsection describes the data set, and Section 4.2 conducts a performance
analysis of bottled. Section 4.3 compares bottled with mc64j2 and thresh. Last,
some experiments using bottled within a BvN decomposition heuristic are discussed in
Section 4.4. Appendix of the related version contains detailed information about experiments.

4.1 Data set and measurements
We have experimented with all square matrices with perfect matchings, at least 100,000 rows,
less than 250,000,000 nonzeros, and with no explicit zeros from SuiteSparse [5]. There were
113 such matrices at the time of experimentation. From each matrix, we created six types of
problem instances, which are denoted as A, DAE, DP (A)E, AP, DAPE, and DP (A)PE.
The A-type instance corresponds to the bipartite graph of the original matrix with the
magnitudes of the entries as edge weights. The DAE-type and DP (A)E-type instances
correspond, respectively, to the scaled version of the matrices and their patterns with 20
iterations of the Sinkhorn–Knopp [20] algorithm, and the other three types of instances are
obtained from the first three by random column permutations. We discarded the instances
A and AP for 0-1 matrices; for the same set of matrices DAE-type and DP (A)E-type
instances are identical, and hence we kept only one of them. We discarded the instances in
which the initialization algorithm found the bottleneck value, in which case all three methods
are equivalent. We report the experiments with 14 A-type, 18 DAE-type, 58 DP (A)E-type
instances, and the same number of instances with column permutations. For each instance,
each algorithm is run five times and the geometric mean of the run time is reported as that
algorithm’s performance on that instance; when column permutations are applied, these
correspond to five different permutations. When comparing two algorithms’ run time, we do
not include cases where both algorithms run in less than one second (as both are very small
and the difference between the algorithms is insignificant). Appendix of the related version
contains all the results.

We carry out the experiments on a machine having Intel(R) Xeon(R) CPU E7-8890 v4 with
a clock-speed of 2.20 GHz, and 1.5TB memory. The machine runs Debian GNU/Linux 11
(64 bit). All the codes are compiled with GCC version 10.2.1, with option -O3. We ran
MatchMaker [6, 15] to verify that there were perfect matchings. We used MatchMaker with
options “no cheap matching”, “Push-Relabel + fairness” as the core algorithm. For the sake
of completeness, we report that the maximum run time of MatchMaker for any matrix was
2.65 seconds for vas_stokes_4M and 28.19 for the column permuted version of the same
matrix.
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4.2 Performance analysis of BOTTLED

We first analyze the percentage of the total run time of bottled spent in the preprocessing
step – creating the CSR representation or sorting the entries. Table 2 summarizes the results
for six different problem instances, where bottled took more than one second for A-, DAE-
and/or DP (A)E-type instances. This table presents the geometric mean of the percentage
of the time spent creating the CSR representation and sorting (with respect to the total time
of bottled). The row “tTime” contains the geometric mean of the run time of bottled
on the instances A, DAE and DP (A)E in seconds, and for the instances AP, DAPE
and DP (A)PE it contains the geometric mean of the ratio of the run time of bottled on
the permuted instances to the original ones. For example, the run time under the column
DP (A)PE is obtained by taking the geometric mean of ratio of the run time of bottled
on the 33 DP (A)PE instances to that on the 33 DP (A)E instances.

As we can see from Table 2, the average run time of bottled on any of the six problem
instance types is below 10 seconds. A first observation is that for all instances, the two
preprocessing steps account for a non-negligible part of the total run time. At two extremes,
they take 7% and 37% of the total time in DP (A)E and DAPE instances, respectively. We
further observe that the absolute run time of CSR and sorting increases for the permuted
instances. The percentage of the total time spent in CSR also increases for the permuted
instances while that of sorting either increases or remains the same. If the CSR representation
is available, its creation can be skipped and one can reduce the run time considerably. As
discussed in Section 3.2, for the targeted BvN application bottled can skip not only the
CSR creation, but also the sorting phase across different runs of the algorithm.

Table 2 Percentage of the total time spent in
creating a CSR matrix and sorting the nonzeros in
bottled; “tTime”: the geometric mean of the run
time of bottled on the instances A, DAE and
DP (A)E in seconds, and the ratios of the others to
their counterparts.

A AP DAE DAPE DP (A)E DP (A)PE
CSR 5% 13% 7% 25% 4% 17%
sort 5% 5% 10% 12% 3% 3%
tTime 6.54(s) 1.28 3.43(s) 1.02 3.40(s) 1.28

Table 3 Breakdown of the total time
(tTime) of bottled in seconds.

matrix instance-type tTime CSR sort

vas_stokes_4M

A 14.81 6.70 3.17
AP 32.36 20.13 5.51

DAE 23.44 6.93 3.66
DAPE 52.99 19.93 5.57

vas_stokes_2M DP (A)E 11.67 2.96 2.01
DP (A)PE 19.30 8.81 2.57

Another observation from Table 2 is that the run time of bottled consistently increases
for the permuted instances. To put this into perspective, we present the run time of bottled
on a few instances in Table 3. We see that the increase in run time for the permuted matrices
can be attributed, in part, to the creation of the CSR. For example, for vas_stokes_4M,
excluding CSR and sort times from the total time yields 4.94 and 6.72 seconds for the
while loop for A- and AP-type respectively. A similar calculation for the pairs DP (A)E
and DP (A)PE for vas_stokes_2M shows that the while loop takes 6.7 and 7.92 seconds,
respectively. In the instance pairs DAE and DAPE for vas_stokes_4M, the increase in the
CSR time is still a contributing factor. From these two tables, we conclude that bottled’s
preprocessing takes up a significant portion of the total run time.

We have also investigated the number of iterations of the while-loop of bottled in
different types of instances to see how stable and robust it is with respect to random column
permutations. The number of iterations of the while loop were almost always the same for
all 90 instances; in a few cases there was a difference of one in the number of iterations. The
small changes in the number of iterations confirm the robustness of bottled.
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Table 4 The geometric mean and the maximum of the run time of the three methods on six
different instance types.

A AP DAE DAPE DP (A)E DP (A)PE
geomean mc64j2 0.49 6.23 0.16 0.74 12.47 20.16

thresh 2.58 3.80 1.09 1.54 2.24 3.16
bottled 1.23 2.38 0.44 0.81 1.23 2.07

maximum mc64j2 123.04 18054.00 31.42 9139.63 1419.99 6813.20
thresh 43.55 64.90 59.42 91.74 63.51 77.57
bottled 14.52 31.81 23.22 51.55 58.64 76.20

4.3 Comparison of different algorithms
We compared bottled against mc64j2 and thresh. We first provide a broad overview of the
comparisons in Table 4, which lists the geometric mean of the run time of the three methods
as well as their maximum run time in different problem instance types (all instances). As
can be seen, bottled exhibits the best performance overall, despite being slightly slower on
average for A-, DAE-, DAPE- instance types than mc64j2– the margin is not large enough
for mc64j2 to make up for the performance loss on the other instance types. Furthermore,
bottled’s maximum run time is consistently smaller than those of both mc64j2 and thresh.
In contrast, the maximum run time of mc64j2 is prohibitive in all but the A and DAE-type
instances. While thresh avoids the prohibitive run time of its equivalent mc64j3 (see
Table 1) by using a better cardinality matching algorithm [15], its maximum run time is still
noticeably larger than that of bottled in all but two cases.

We now look more into the performance of bottled versus that of mc64j2. Figure 1a
shows the natural logarithm (in the y-axis) of the ratio of the run time of mc64j2 to that of
bottled for the instances on which either method has a run time greater than 1 second. Here,
mc64j2 is faster than bottled on 22 instances, and bottled is faster on the remaining 117
instances. In all 139 instances, the geometric mean of the ratio of the run time of mc64j2 to
that of bottled is 8.5, confirming that bottled is faster than mc64j2 in average.
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(a) The natural logarithm of the ratio of the run
time of mc64j2 to that of bottled in the y-axis
in sorted order on 139 problem instances in the
x-axis.
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(b) The run time behavior of mc64j2 on four
DP (A)E-type instances measured at 20 uniform
steps (x-axis), normalized to the total time (y-axis).

Figure 1 Performance comparison between mc64j2 and bottled, and investigation on mc64j2.

In order to put these numbers into a perspective with the run time, we present Table 5.
Table 5 lists six matrices in which the ratio of the run time of mc64j2 to that of bottled
was the smallest for certain instance types with or without permutation. It next lists six
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Table 5 The run time of mc64j2 and bottled on selected instances, where their ratios were the
lowest or the highest in different problem instance types or the permuted versions.

matrix type mc64j2 bottled type mc64j2 bottled
c-73b A 0.09 13.55 AP 0.10 9.42
c-73 A 0.19 14.52 AP 0.34 14.68
dielFilterV3real A 0.33 11.72 AP 0.81 21.48
boyd2 DP (A)E 0.03 3.31 DP (A)PE 0.07 1.84
boyd2 DAE 0.03 2.43 DAPE 0.10 1.50
dielFilterV3clx A 0.12 3.97 AP 0.49 7.19
atmosmodd DP (A)E 555.76 7.01 DP (A)PE 1757.81 12.11
vas_stokes_1M DP (A)E 452.36 4.20 DP (A)PE 2427.71 7.42
vas_stokes_2M DP (A)E 1419.99 11.93 DP (A)PE 6813.20 18.37
ss DP (A)E 824.91 4.66 DP (A)PE 2621.10 10.79
CurlCurl_3 DP (A)E 610.16 1.54 DP (A)PE 211.56 3.80
atmosmodj DP (A)E 565.60 7.27 DP (A)PE 1683.32 11.97
vas_stokes_4M DAE 0.83 23.22 DAPE 9139.63 51.55
ss A 2.25 2.65 AP 2532.09 8.65
vas_stokes_4M A 0.53 14.23 AP 18054.00 31.81

matrices with different instance types in which the ratio of the run time of mc64j2 to
that of bottled was the largest for the original matrices and three for the permuted ones
(three others were already in the list). Here we see that mc64j2 can have equivalently good
performance on both the A- and AP-type instances (see the first block in Table 5). Still,
there were some AP instances where mc64j2 ran prohibitively long (see the last two rows
with ss and vas_stokes_4M). mc64j2 also struggled on several DP (A)E and DP (A)PE
instances as seen in the second block. The prohibitively high run time of mc64j2 highlight
the issue in the approaches based on the shortest augmenting paths: one may visit many
edges and vertices to find augmenting paths at different stages during the execution. As
such a behavior is also seen for DFS-based-cardinality matching algorithms [6], it cannot be
attributed on the particular implementation of the shortest path algorithm in mc64j2.

Figure 1b shows the run time behavior of mc64j2 on the four DP (A)E-type instances of
Table 1. The total number of augmentations is divided by 20 to obtain a step size, the run
time is measured after each step and normalized by the total time. As this figure shows, in
some instances the augmentations took about the same time all throughout, whereas in others
later augmentations took more time. As the greedy matching approach of mc64j2 does not
always find a maximum matching, it can needlessly result in many additional augmentations.
Those augmentations may lead to large run time, not solely because of their number. For
example, in the DP (A)E-type instance of CurlCurl_3, a square matrix with n = 1219574
rows and nnz = 13544618 nonzeros, there are 20040 augmentations with a total run time of
about 600 seconds, even though the maximum cardinality matching on G[ω0] has a deficiency
of one. Obviously, detecting this would lead to much better run time. On the other hand,
for the DP (A)E-type instance of rajat31, a square martrix with n = 4690002 rows and
nnz = 20316253 nonzeros, mc64j2 needs 1562500 augmentations (its greedy approach finds
a maximum cardinality matching initially), and the whole run time is 48.39 seconds. As
rajat31 is much bigger than CurlCurl_3 and needs more augmentations, its shorter run time
attests that the process of augmenting one-by-one can take large time due to instance specific
properties. It hence cannot constitute a reliable method for the bottleneck matching problem
in general. In passing we note that mc64j2 is well-engineered and is faster than using our
own SAP implementation for the augmentations.

We compare now bottled and thresh. In total, bottled beat thresh in 165 instances
out of 180. The largest differences (in seconds) in favor of thresh were in the A- and
AP-type instances of c-73b and c-73. thresh obtained a run time of 2.88 and 3.48 seconds
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Table 6 Run time, in seconds, of bottled and the BvN decomposition heuristic, along with the
number of permutation matrices in the decomposition.

bottled longest run time of BvN
matrix instance initialization bottled in an iteration num.perm time

atmosmodm DAE 0.22 58.73 46 452.14
DP (A)E 0.21 14.43 50 200.80

CurlCurl_3 DAE 0.35 17.30 50 183.43
DP (A)E 0.34 4.33 50 68.45

ss DAE 1.15 13.37 50 228.92
DP (A)E 1.46 39.77 50 186.31

vas_stokes_2M DAE 5.04 4.74 50 78.32
DP (A)E 5.10 4.87 50 74.36

on c-73b, and 6.35 and 5.11 seconds on c-73. On these instances bottled was relatively
close to thresh (see Table 5) – the largest difference is 10.67 seconds on the A-type instance
of c-73b. Since both methods utilize the same core matching algorithm, the superiority of
bottled over thresh should come from doing fewer iterations. Figure 2a supports this
reasoning by plotting the difference between the number of iterations of thresh and that of
bottled in nondecreasing order. As seen in this figure, thresh’s number of iterations is
always larger than bottled’s; the theoretical observations of Section 3 translate to practical
gains. We compute the ratio of the run time of thresh to that of bottled for the instances
on which either thresh or bottled has a run time greater than 1 second (123 instances),
and present the natural logarithm of this ratio in the y-axis in Figure 2b. As seen in this
figure, bottled fares better than thresh in the majority of cases.
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(b) The natural logarithm of the ratio of the run
time of thresh to that of bottled in the y-axis
in sorted order on 123 instances in the x-axis.

Figure 2 Performance comparison between thresh and bottled.

4.4 Inside a BvN decomposition method
Table 6 presents the run time of the BvN decomposition method on the DAE- and DP (A)E-
type instances of four matrices (obtained with 2500 scaling iterations). We run the BvN
decomposition method until 50 permutation matrices or a coefficient of 0.92 are obtained.
As each permutation matrix is obtained by a call to bottled, we show their number in the
column “num.perm”. Further, the table also presents the time for the initial preprocessing of
bottled, and the maximum time taken in a call to bottled subsequently for obtaining a
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permutation matrix. We observe that the maximum run time of bottled, in an iteration,
multiplied by the number of calls is at least 2.92 (for DAE of ss) and up to 10.67 (for DP (A)E
of ss) times the total BvN time. This suggests that the run time of the subsequent bottleneck
matching calls reduces appreciably, and bottled works well inside the decomposition method
by avoiding the preprocessing.

5 Conclusion

We have investigated the problem of finding a maximum bottleneck matching in bipartite
graphs. Existing implementations for the problem suffer from unpredictable run time that
can get prohibitively large, i.e., requiring thousands or even tens of thousands of seconds to
complete. We have proposed a new algorithm called bottled that converts an inefficient,
duality-based approach into an efficient one through theoretical findings. Experimental results
show that bottled is almost always faster than the state-of-the-art methods. Furthermore,
its run time is reliable and always remains within reasonable time limits. We have also
explored its use inside a heuristic for the Birkhoff–von Neumann decomposition of doubly
stochastic matrices and experimentally established the suitability of the proposed algorithm
for this purpose.

Currently the proposed approach resorts to an augmenting-path-based method in few
corner cases and only when there are perfect matchings. We plan to explore the possibility
to use them more effectively, along with potential data reduction rules.
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Abstract
The tree edit distance problem is a natural generalization of the classic string edit distance problem.
Given two ordered, edge-labeled trees T1 and T2, the edit distance between T1 and T2 is defined as
the minimum total cost of operations that transform T1 into T2. In one operation, we can contract
an edge, split a vertex into two or change the label of an edge.

For the weighted version of the problem, where the cost of each operation depends on the type
of the operation and the label on the edge involved, O(n3) time algorithms are known for both
rooted and unrooted trees. The existence of a truly subcubic O(n3−ϵ) time algorithm is unlikely, as
it would imply a truly subcubic algorithm for the APSP problem. However, recently Mao (FOCS’21)
showed that if we assume that each operation has a unit cost, then the tree edit distance between
two rooted trees can be computed in truly subcubic time.

In this paper, we show how to adapt Mao’s algorithm to make it work for unrooted trees and
we show an Õ(n(7ω+15)/(2ω+6)) ≤ O(n2.9417) time algorithm for the unweighted tree edit distance
between two unrooted trees, where ω ≤ 2.373 is the matrix multiplication exponent. It is the first
known subcubic algorithm for unrooted trees.

The main idea behind our algorithm is the fact that to compute the tree edit distance between
two unrooted trees, it is enough to compute the tree edit distance between an arbitrary rooting of
the first tree and every rooting of the second tree.
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1 Introduction

The tree edit distance problem is a natural generalization of the classic string edit distance
problem. Given two trees T1 and T2, the edit distance between T1 and T2 is defined as the
minimum total cost of operations that transform T1 into T2. The exact definition of the
problem depends on whether we consider rooted or unrooted trees.

For the unrooted variant, which is the focus of this paper, the trees are edge-labeled and
for each vertex its neighbors form a cyclic order. We can think of unrooted trees as if they
were embedded in the plane. In one operation, we can contract an edge, split a vertex into
two or change the label of any edge. The cost of each operation depends on the type of the
operation and the label on the edge involved.

Computing the edit distance between two trees has found applications in many different
areas, such as computational biology [18, 11], image processing [1, 12, 14, 17] and comparing
XML data [3, 4, 10]. One of the most notable examples is comparing the secondary structures
of RNA molecules, which can be represented as rooted trees [18].
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The tree edit distance problem has been already studied for many years. In 1977, Tai [19]
showed the first algorithm that computes the edit distance between two rooted trees of size
n in O(n6) time. Next, Zhang and Shasha [21] used a dynamic programming approach to
improve the complexity to O(n4) time. Their dynamic programming scheme was used as a
basis for later algorithms. Klein [13] showed how to optimize their algorithm to O(n3 log n)
time by better choosing the direction of transitions in their dynamic programming scheme.
Furthermore, he showed that his algorithm can be extended to also work for the unrooted
trees in the same time complexity. Later, Demaine, Mozes, Rossman and Weimann [7]
further improved the time complexity for the rooted case to O(n3). Finally, Dudek and
Gawrychowski [8] showed that the tree edit distance between unrooted trees can also be
solved in O(n3) time.

From the lower bound side, Bringmann, Gawrychowski, Mozes and Weimann [2] showed
that the existence of a truly subcubic O(n3−ϵ) time algorithm for the tree edit distance
is unlikely. They proved that the existence of such an algorithm implies a truly subcubic
algorithm for the All Pairs Shortest Paths problem (assuming an alphabet of size Θ(n)) and
O(nk(1−ϵ)) time algorithm for finding a maximum weight k-clique (assuming a sufficiently
large constant size alphabet).

However, all of these previous algorithms and lower bounds work when the costs of the
operations are arbitrary. Recently, Mao [15] showed that if we assume that each operation has
unit cost, then the tree edit distance between two rooted trees can be computed in O(n2.9546)
time. Since in the weighted setting it was possible to obtain the same time complexity for
unrooted trees as for rooted trees, Mao posed the following open problem:

Is it possible to compute the unweighted tree edit distance between two unrooted trees in
subcubic time?

We answer this question affirmatively.

1.1 Our contribution
We build on ideas of Mao [15] and Klein [13] and obtain the first ever known subcubic
algorithm for the tree edit distance between unrooted trees in the unweighted setting. Our
main result is the following:

▶ Theorem 1. There is an Õ(mn(5ω+9)/(2ω+6)) ≤ O(mn1.9417) time algorithm that computes
the (unweighted) tree edit distance between two unrooted trees of sizes n and m.

We were not able to adapt one of the optimizations from Mao, thus our algorithm is
slightly slower than the one for rooted trees. Note that, however the numerical value of the
exponent in our result is actually better than in the original Mao’s paper. It is only due to
the fact that we replaced the algorithm for max-plus multiplication of two bounded-difference
n× n matrices that Mao used (running in O(n2.8244) time) with a more recent result from
Chi, Duan, Xie and Zhang (O(n2.687) time) [6]. Dürr [9] showed that with this new result,
Mao’s algorithm works in Õ(mn1.915) time. Thus, our algorithm is in fact slower than Mao’s
algorithm.

1.2 Technical overview
Sketch of Mao’s algorithm for rooted trees. First, let us note that in the unrooted tree
edit distance, we consider edge-labeled trees, but Mao’s algorithm works for node-labeled
trees. However, the modification of Mao’s algorithm to work for rooted edge-labeled trees is
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simple. Indeed, for both trees we can introduce a virtual root that becomes a parent of the
original root and then we can associate the label of every vertex with the label of edge to its
parent.

Mao’s algorithm is based on Chen’s algorithm [5]. Chen showed a completely different
approach than previous algorithms that were based on Zhang and Shasha’s dynamic program-
ming scheme. He reduced the problem to the (min, +) matrix multiplication and obtained
an algorithm working in O(n4) time1.

Mao builds on Chen’s approach but considers an equivalent maximization problem of the
similarity of trees. Due to this, the matrices occurring in his algorithm satisfy additional
properties: they are monotone and the difference between two adjacent cells is bounded by a
constant. For such matrices, there exists a truly subcubic time algorithm that computes the
(min, +) product [6], which is crucial for obtaining a subcubic complexity in the tree edit
distance problem.

In summary, Mao’s algorithm, given two trees T1 and T2, computes matrices S(T ′
1) for

some subtrees T ′
1 of tree T1. Every such matrix S(T ′

1) encodes the similarity between tree T ′
1

and all relevant fragments of tree T2. These fragments are defined as segments of the Euler
tour sequence2 and are formally defined in Definition 8.

Mao first shows a dynamic programming scheme based on Chen’s algorithm that computes
S(T1) in O(n4) time. Next, he optimizes it to O(n3) time by exploiting the special properties
of similarity matrices. Then, to achieve a subcubic complexity, he presents a special
decomposition scheme, which allows him to skip some of the subproblems. For block size
∆ = nd for some d slightly smaller than 0.5, he decomposes the computation of S(T ) into
O(n/∆) transitions of one of two types.

The first type is a concatenation of two trees. For that, he shows an O(t1−ϵn2) time
algorithm that computes the (max, +) product of two bounded-difference matrices such that
the entries in one of them are bounded by t. The second transition type involves expanding a
subtree by adding a path going up from its root along with some additional subtrees attached
to this path. For these transitions, Mao presents a special three-part combinatorial method.

Sketch of our algorithm for unrooted trees. To generalize Mao’s algorithm to unrooted
trees, we use the idea that Klein [13] used in his O(n3 log n) time algorithm. Klein used
the fact that to compute the tree edit distance between two unrooted trees, it is enough to
consider arbitrary rooting of the first tree and try all possible rootings of the second tree.

Direct application of this fact requires solving O(n) particular instances of the rooted
tree edit distance. However, Klein showed that his O(n3 log n) time algorithm for the rooted
tree edit distance can be modified to solve all of these instances at once in the same time
complexity. To achieve this, he used the fact that his algorithm for rooted trees computes
the edit distance between some fragments of the first tree and all subtrees of the second tree
that correspond to some segment of the Euler tour sequence of that tree. Since the different
rootings of the second tree correspond to different cyclic shifts of the Euler tour sequence,
Klein modified his algorithm so that it computes the edit distance between some fragments
of the first tree and all cyclic segments of the Euler tour sequence of the second tree.

We notice that Mao’s algorithm has properties similar to those of Klein’s algorithm. For
some of the subtrees T ′

1 of the first tree, it computes a similarity matrix S(T ′
1) that encodes

the similarity between tree T ′
1 and all subtrees of T2 that correspond to some segment of the

1 By reduction we mean that he used (min, +) matrix multiplication as a sub-procedure in his algorithm.
2 Actually, Mao used the so-called bi-order traversal sequence, but Euler tour sequence is its equivalent

for edge-labeled trees.
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Euler tour sequence of that tree. Thus, we need to modify the algorithm to handle cyclic
segments of the Euler tour sequence. To do this, we build our new similarity matrices on a
doubled Euler tour sequence (see Definitions 7–9 in Section 2). Now every cyclic segment of
the original Euler tour occurs as a normal segment in our sequence.

The introduction of a doubled Euler tour requires us to make a few modifications to
Mao’s algorithm. The key technical challenge is handling of multiplication of new similarity
matrices which we describe in Section 4.1.

2 Preliminaries

In the tree edit distance problem we consider ordered trees with labels on edges. We consider
both rooted and unrooted trees. For rooted trees, ordered means that for each vertex we are
given a left-to-right order of its children. For unrooted trees, ordered means that for each
vertex its neighbors form a cyclic order.

Note that we can transform an unrooted tree into a rooted tree by choosing a root and
the first edge to its children. This choice carries over to the other vertices and defines the
order of their children. It uniquely determines the rooting of the tree, thus there are 2(n− 1)
possible rootings for an unrooted tree with n vertices.

For simplicity, we first assume that both input trees are of equal size n, but at the end
we address the case when they have different sizes.

As we are interested in unrooted tree edit distance, we consider only trees that are edge
labeled (for rooted tree edit distance it is more common to have labels on nodes). In this
paper, we assume that every edge is labeled from some alphabet Σ of size O(n).

▶ Definition 2 ((Unweighted) Tree Edit Distance). Let T1 and T2 be rooted, ordered trees with
labels on edges. We consider two types of operations:

Label change of a selected edge in tree T1 or T2.
Contraction of a selected edge in tree T1 or T2. When contracting an edge pu where p is
parent of u, children of u become children of p, they replace u in the children’s list of p

and keep their order.
The tree edit distance between T1 and T2, denoted by ed(T1, T2), is the minimum number of
operations we have to perform on T1 and T2 to transform both trees into an identical tree.

▶ Definition 3 ((Unweighted) Unrooted Tree Edit Distance). Let T1 and T2 be unrooted,
ordered trees with labels on edges. We define the tree edit distance between T1 and T2 as the
minimum edit distance over all possible rootings of T1 and T2.

Klein [13] mentioned, it is enough to consider arbitrary rooting of the first tree and try
all possible rootings of the second tree to find an optimal solution for the unrooted tree edit
distance.

▶ Lemma 4. Let T1 and T2 be unrooted trees. For every rooting of tree T1 there is at least
one rooting of T2 that admits minimum edit distance between T1 and T2.

Same as Mao, we consider a maximization problem equivalent to the tree edit distance
problem.

▶ Definition 5 (Similarity). The similarity between two rooted trees T1 and T2 is defined as
sim(T1, T2) = |E(T1)|+ |E(T2)| − ed(T1, T2).

Similarity can also be interpreted as the weight of the heaviest matching between the edges
of the tree T1 and T2, where the cost of edge matching is 2 when edges have the same labels
and 1 when they are different. In addition, the matching must respect the tree structure,
which means:
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if edge a ∈ T1 is matched to edge b ∈ T2, then edges in the subtree of a can be matched
only to edges in the subtree of b,
if edge a ∈ T1 is matched to edge b ∈ T2 and c ∈ T1 is matched to d ∈ T2, then a is “to
the left” of c if and only if b is “to the left” of d.

Note that 0 ≤ sim(T1, T2) ≤ 2 min(|E(T1)|, |E(T2)|).

▶ Definition 6. By η(e, f) we denote the cost of matching edges e and f , that means
η(e, f) = 2 if labels of these edges are equal and η(e, f) = 1 otherwise.

Tree definitions. For a rooted tree T , by LT we denote the subtree of the first (leftmost)
child of the root of T along with the edge to the root of T . Similarly, by RT we denote the
subtree of the last (rightmost) child of the root of T along with the edge to the root of T .
Given an edge e in a rooted tree, we use sub(e) to represent the subtree rooted at edge e..

For two rooted trees T1 and T2, by T1 + T2 we denote the tree formed by merging the
roots of tree T1 and T2 such that edges from the tree T1 are “to the left” of the edges from
the tree T2.

For two trees (rooted/unrooted) T1 and T2 such that T1 ⊆ T2, by T2 − T1 we denote the
tree formed from tree T2 by contracting all edges that appear in tree T1.

To describe the “fragments” of a tree that we will consider in our algorithm, we use
segments of the Euler cycle of the tree. Due to technical reasons, instead of dealing with a
cyclic sequence, we consider a doubled Euler tour sequence.

▶ Definition 7. Let T be an unrooted tree. Consider the walk on this tree that starts at an
arbitrary edge and goes twice through the Euler Tour, which visits neighbors according to
their order.
(a) For i ∈ {1, . . . , 4|E(T )|} by T (i) we denote the i-th edge of this walk.
(b) By I(e)i we denote the index of the i-th occurrence of the edge e in this walk.
(c) By li,j(e) we denote the index of the first occurrence of the edge e in T (i), . . . , T (j − 1).
(d) By ri,j(e) we denote the index of the second occurrence of the edge e in T (i), . . . , T (j−1).

Note that each edge appears exactly 4 times in this walk.

▶ Definition 8 (Segment). Given an unrooted tree T and integers l, r such that 1 ≤ l ≤
r ≤ 4|E(T )| and r − l ≤ 2|E(T )|, by T [l, r) we denote the tree formed from the tree T by
contracting every edge that occurs less than 2 times in T (l), . . . , T (r − 1).

Let us note here that despite the fact that our input tree is unrooted, we can view the
segments of this tree as rooted trees. Indeed, the first non-contracted edge that appears in
the segment defines the rooting of this segment. Thus, the segments of length 2|E(T )| define
all possible rootings of the tree T . See Figure 1.

Matrix definitions. Now we are ready to define similarity matrix – it encodes information
about similarity of the whole rooted tree T and all “relevant fragments” of unrooted tree Q.

▶ Definition 9 (Similarity matrix). Given a rooted tree T and an unrooted tree Q similarity
matrix S(T, Q) is a matrix of size 4|E(Q)| × 4|E(Q)|, where:

S(T, Q)i,j =
{

sim(T, Q[i, j)) if i ≤ j and j − i ≤ 2|E(Q)|
−∞ if i > j or j − i > 2|E(Q)|

For simplicity, we also introduce additional notation for naming of similarity matrix cells.
We divide them into three types:
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Figure 1 Example unrooted tree T with its doubled Euler tour sequence and segment T [11, 22)
of this tree. The edge marked as red defines the rooting of this segment.

valid cells – cells S(T, Q)i,j for which i ≤ j and j − i ≤ 2|E(Q)|,
invalid cells – cells S(T, Q)i,j for which j − i > 2|E(Q)|,
cells under diagonal .

During our algorithm we will allow invalid cells to store values other than −∞. Because of
that, we introduce a special equality relation for similarity matrices:

▶ Definition 10. By =valid we denote the relation on matrices which is true if and only if
they are equal on the set of valid cells.

▶ Definition 11. Let A and B be n×n matrices. By A ⋆ B we denote their (max, +) product
i.e. (A ⋆ B)i,j = max1≤k≤nAi,k + Bk,j.

Now, we define a few properties of matrices. Given an n× n matrix A we call it:
(a) finite-upper-triangular matrix if all entries below diagonal are −∞ and the rest are finite,
(b) row-monotone matrix if Ai,j ≤ Ai,j+1 for all i, j,
(c) column-monotone matrix if Ai+1,j ≤ Ai,j for all i, j,
(d) W -bounded-difference matrix if for all i, j we have:

|Ai,j −Ai−1,j | ≤W

|Ai,j −Ai,j+1| ≤W

(e) bounded-difference matrix if it is a W -bounded-difference matrix for some W = O(1),
(f) finite-upper-triangular-W -bounded-difference matrix if it is a finite-upper-triangular

matrix and property d holds for all i ≤ j,
(g) M -bounded similarity matrix if it is a similarity matrix and all finite entries are integers

between 0 and M .

It is easy to see that for similarity matrices S(T, Q) the properties row-monotone and
column monotone hold for all cells except invalid cells. The following lemma, which is
an analogy to Lemma 4.1 from Mao [15], tells that the finite-upper-triangular-2-bounded-
difference property also holds for all cells except invalid cells.

▶ Lemma 12. Given a rooted tree T and an unrooted tree Q, we have:
sim(T, Q[i, j + 1)) ≤ sim(T, Q[i, j)) + 2 for all i ≤ j, j − i + 1 ≤ 2|E(Q)|.
sim(T, Q[i− 1, j)) ≤ sim(T, Q[i, j)) + 2 for all i ≤ j, j − i + 1 ≤ 2|E(Q)|.
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3 Cubic algorithm for Unrooted Tree Edit Distance

In this section, we introduce a basic dynamic programming scheme that computes the
similarity of trees. It is the same scheme that Mao used, except that we use slightly different
similarity matrices. We show how to efficiently compute this dynamic programming scheme
in Õ(n3) time. This gives us a basic algorithm that will be later used in our subcubic
algorithm.

As mentioned in Lemma 4, it is enough to consider an arbitrary rooting of the first tree
and try all possible rootings of the second tree to find an optimal solution. Because of
that, we can assume that we are given a rooted tree T , an unrooted tree Q and we want
to compute the edit distances between T and every rooting of Q. To achieve that, we will
compute the similarity matrix S(T, Q). We will do this by computing recursively similarity
matrices S(T ′, Q) where T ′ is some fragment of tree T . As the second argument of S(T ′, Q)
will always be Q in our algorithm, we will use a shorthand S(T ′) := S(T ′, Q). Additionally,
we call S(T ′) the similarity matrix of tree T ′.

3.1 Dynamic programming scheme

To compute S(T ′), we consider the following cases:
(a) T ′ has no edges (it is a single vertex). Then the values in all valid cells are 0.
(b) The root of T ′ has only one child. Let r be the root and u be its only child. We choose

if we want to match ru to some edge e of Q[i, j) or not:

S(T ′)i,j = max
{

S(T ′ − ru)i,j

maxe∈Q[i;j)
{

S(T ′ − ru)li,j(e)+1,ri,j(e) + η(ru, e)
}

(c) The root of T ′ has more than one child. Let RT ′ be the subtree of the last child of the
root of T ′ along with the edge to the root of T ′. Then:

S(T ′)i,j = max
i≤k≤j

{S(T ′ −RT ′)i,k + S(RT ′)k,j}

In other words: S(T ′) = S(T ′ −RT ′) ⋆ S(RT ′).

Using this scheme, we can compute S(T ) in O(n4) time. Proof of the correctness of this
algorithm is included in the full version of this paper [16].

3.2 Optimization to cubic

To optimize our algorithm to Õ(n3) time, we will exploit special properties of similarity
matrices. We will rely on the fact that S(T ′) is a 2|E(T ′)|-bounded similarity matrix.

Furthermore, we will use the fact that these matrices are almost row-monotone and
column-monotone. The only exception to this property are invalid cells, however their value
is always −∞. Because of that, we are able to use the same computation model that Mao
used to store row-monotone, column-monotone matrices with slight modifications to handle
invalid cells.

Let l := 2n− 2. We consider the following operations for 2l × 2l matrices:
create a new 2l × 2l matrix [−∞]2l,2l,
given a matrix A, create a copy of this matrix,

ESA 2023



88:8 Subcubic Algorithm for (Unweighted) Unrooted Tree Edit Distance

given a matrix A, indexes i′, j′ and a value x, create a new 2l × 2l matrix
B := rangemax(A, i′, j′, x), such that:

Bij =
{

max(Aij , x) if i ≤ i′ and j ≥ j′ and j − i ≤ l

Aij otherwise

Furthermore, given matrix A we consider the following queries:
get the value Ai,j ,
get the index mincol(A, i, x) = min{j | Aij ≥ x} or any index in [1, 2l] if such an index
does not exist,
get the index maxrow(A, j, x) = max{i | Aij ≥ x} or any index in [1, 2l] if such an index
does not exist.

Note that the underlying data structure can keep a row-monotone, column-monotone matrix,
and we can just modify queries to return −∞ when reading invalid cells. This means we
don’t need to have the j − i ≤ l condition in the rangemax operation, thus we can use a
simple 2D max operation (the same as Mao). All these operations can be performed with
well-known data structures, such as persistent 2D segment trees in Õ(1) time.

From now on, we assume that we store similarity matrices using the above computation
model. We will go through all three cases of our dynamic programming scheme and we will
show how to efficiently solve them using the above data structure:

(a) We can easily initialize all valid cells to 0 using O(n) rangemax queries. This gives us
Õ(n2) time for the entire algorithm.

(b) Let us recall the equation for this case:

S(T ′)i,j = max
{

S(T ′ − ru)i,j

maxe∈Q[i;j)
{

S(T ′ − ru)li,j(e)+1,ri,j(e) + η(ru, e)
}

Naive computation of this equation relies on iterating through all cells we want to compute
and for each S(T ′)i,j we iterate through each edge of Q[i, j). Instead, we can do the opposite
and iterate through each edge of Q and update for each of them all relevant cells of S(T ′).
Thus, we first initialize S(T ′) with S(T ′ − ru) and then for each edge e of Q we make three
rangemax operations. See Algorithm 1 for exact values of the parameters.

Algorithm 1 Computation of case b.
Input T, Q, S(T ′ − ru)
Output S(T ′)

1: S(T ′)← S(T ′ − ru)
2: for all e ∈ E(Q) do
3: S(T ′)← rangemax(S(T ′), I(e)1, I(e)2 + 1, S(T ′ − ru)I(e)1+1,I(e)2 + η(ru, e))
4: S(T ′)← rangemax(S(T ′), I(e)2, I(e)3 + 1, S(T ′ − ru)I(e)2+1,I(e)3 + η(ru, e))
5: S(T ′)← rangemax(S(T ′), I(e)3, I(e)4 + 1, S(T ′ − ru)I(e)3+1,I(e)4 + η(ru, e))
6: return S(T ′)

A single computation of this case takes Õ(n) time, which gives us Õ(n2) time for the
entire algorithm.
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(c) This case is a matrix multiplication S(T ′) = S(T ′ − RT ′) ⋆ S(RT ′). To speed up
the computation, we will relay on the fact that S(T ′) is a 2|E(T ′)| -bounded similarity
matrix. The following lemma, which corresponds to Lemma 4.3 from Mao [15], shows that
we can multiply similarity matrices in complexity dependent on the bounds of values of these
matrices:

▶ Lemma 13. Let A, B be l × l matrices. If A is a tA-bounded similarity matrix and B is a
tB-bounded similarity matrix, then we can compute C = A ⋆ B in Õ(tAtBl) time.

The algorithm that computes C = A ⋆ B is the same as Algorithm 1 from Mao [15] and
can be found in the full version of this paper [16] together with the proof of correctness.
Thus, every time we multiply similarity matrices of trees T ′ −RT ′ and RT ′ , we contribute
Õ(|T ′ −RT ′ ||RT ′ |n) time to the total time complexity of this case. To compute the sum of
these components, we can correlate |T ′ −RT ′ ||RT ′ | with the number of pairs of edges (e, f)
where e ∈ T ′ −RT ′ and f ∈ RT ′ . Let us sum these pairs over all multiplications. It is easy
to see that each pair of edges from tree T ′ appears at most once in such a sum. Thus, the
total time complexity of this case is equal to Õ(n3).

After considering all three cases, we can see that the whole algorithm works in Õ(n3)
time. Note here that if the input trees are of different sizes n and m, then this algorithm
works in Õ(nm2) time.

4 Subcubic algorithm for unrooted tree edit distance

In this section, we show how to get a subcubic algorithm for the unrooted tree edit distance
problem. Our algorithm is based on the same decomposition scheme as Mao’s algorithm.
However, we will start by showing a different bottom-up view at Õ(n3) algorithm. This will
give us a better intuition about Mao’s decomposition scheme.

We can view the Õ(n3) algorithm as a decomposition scheme that computes S(T ) using
the following two types of transitions:

Type I: for trees T1, T2:
compute S(T1 + T2) from S(T1) and S(T2)

Type II: for trees T1, T2 such that T2 is T1 with one added edge going from the root up:
compute S(T2) from S(T1)

Note that the total time complexity of type I transitions is Õ(n3), while the total
complexity of type II transitions is Õ(n2). This gives us an idea that to get a subcubic
complexity we can try to balance these transitions. To reduce the number of type I transitions,
we can generalize transitions of type II. Instead of adding a single edge going up from the
root of T1, we can add a “hat”, that is, a path going up from the root along with some
additional subtrees. This is the general idea of Mao’s decomposition scheme, which we will
now formally describe. See Figure 2 for an illustration of the “hat” structure.

First, we introduce additional definition that will help us define sub-problems occuring in
the decomposition scheme. This definition corresponds to the synchronous subtree definition
from Mao.

▶ Definition 14 (Connected segment). Given an unrooted tree T , segment T [i, j) is called a
connected segment if there is no edge that occurs in T (i), . . . , T (j − 1) exactly once.

A connected segment can be alternatively defined by a selection of a vertex v ∈ T and a
connected interval of children of the vertex v (we call v the root of the segment), so that
subtrees of these children along with the edges from v to these children belong to this segment.
Thus, a connected segment forms a connected subtree of tree T .
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Now let ∆ be the block size – a parameter, that we will set later. We decompose the
computation of S(T ) into O(n/∆) transitions of two types:

Type I: for connected segments T1, T2 such that |T1| ≥ ∆ and |T2| ≥ ∆:
compute S(T1 + T2) from S(T1) and S(T2)

Type II: for connected segments T1, T2 such that T1 ⊂ T2 and |T2| − |T1| = O(∆):
compute S(T2) from S(T1)

To compute this decomposition, we will use the same algorithm as Mao did. This algorithm
is included in the full version of this paper [16].

The following theorem, which corresponds to Theorem 4.5 from Mao [15], tells us how we
can perform a type I transition efficiently. We prove this in Section 4.1.

▶ Theorem 15. Let A, B be n× n similarity matrices of unrooted trees. If A is t-bounded,
then C = A ⋆ B can be computed in MUL(t, n) := Õ(t0.8145n2) time.

For type II transitions, in Section 4.2 we prove the following theorem, which corresponds
to Theorem 4.6 from Mao [15].

▶ Theorem 16. Let T1, T2 be the connected segments of tree T such that T1 ⊂ T2 and
|T2| − |T1| = O(∆). Given S(T1) we can compute S(T2) in Õ(MUL(∆, n) + n∆4) time.

Combining these two theorems, together with the decomposition scheme, gives us an algorithm
from Theorem 1. Analysis of the time complexity of this algorithm can be found in the full
version of this paper [16].

Note that in the Theorem 16 we have slightly worse time complexity for the type II
transition than Õ(MUL(∆, n) + n∆3) time from Mao’s algorithm.

4.1 Type I transitions
In this section, we show how to efficiently multiply similarity matrices of unrooted trees
and prove Theorem 15. Mao showed how to multiply similarity matrices of rooted trees in
Õ(t0.9038n2) time, where t is a bound on the entries of one of the matrices. For unrooted
trees, we will use his algorithm with a slight modification.

Mao’s algorithm is a recursive procedure that uses the (max, +) matrix multiplication
of bounded-difference matrices as a sub-procedure. Lately, Chi et al. [6] showed a better
algorithm for the (max, +) product of bounded-difference matrices. This algorithm allows us
to get a better exponent in Mao’s matrix multiplication.

▶ Theorem 17 ([6]). There is an Õ(n(3+ω)/2) ≤ Õ(n2.687) time randomized algorithm that
computes the (min, +) product of any two n× n bounded-difference matrices.

To analyze the improvement in the exponent, we will use the following lemma implicitly
proven by Mao:

▶ Lemma 18 ([15, Section 4.4]). Assume there is an Õ(nc) time algorithm that computes the
(min, +) product of any two n× n bounded-difference matrices. Let A, B be row-monotone,
column-monotone and finite-upper-triangular-bounded-difference n×n matrices whose entries
on the main diagonals are zero. If A is t-bounded-upper-triangular and δ is a positive value,
then C = A ⋆ B can be computed in Õ(n2t2/δ + n2δc−2) time.

The above complexity reaches the optimum when n2t2/δ = n2δc−2. By setting δ = t2/(c−1)

we get that we can multiply the similarity matrices of rooted trees in Õ(t(2c−4)/(c−1)n2) time,
if one of the matrices has values bounded by t.
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Now we want to use this algorithm also for unrooted trees. However, we need to make
sure that the values from invalid cells do not affect the values of valid cells. To easily handle
this, before calling the algorithm from Lemma 18 we fix the values of invalid cells based on
the values of valid cells.

Let A, B be similarity matrices of unrooted trees. We want to compute C = A ⋆ B. For
every invalid cell Ai,j we set new value of Ai,j as the maximum of valid cells Ai′,j′ , such that
i ≤ i′ ≤ j′ ≤ j. Let A′ be the resulting matrix. We can easily compute this transformation
in O(n2) time by using simple recursive equation A′

i,j = max(A′
i+1,j , A′

i,j−1). Similarly, we
convert matrix B into matrix B′.

The obtained matrices A′ and B′ are obviously monotone and finite-upper-triangular. To
prove that these new matrices are bounded-difference let us use induction on i + j. For a
valid cell, our inductive thesis is satisfied. Now, take any invalid cell A′

i,j . Then, by inductive
hypothesis we have that A′

i−1,j ∈ [A′
i−1,j−1, A′

i−1,j−1+2] and A′
i,j−1 ∈ [A′

i−1,j−1, A′
i−1,j−1+2].

Thus, |A′
i,j−A′

i−1,j | ≤ 2 and |A′
i,j−A′

i,j−1| ≤ 2, so matrices A′ and B′ are bounded-difference
matrices.

Let C ′ = A′ ⋆ B′. It remains to show that C ′ =valid C. Let us take any valid cell C ′
i,j .

There is a position k such that C ′
i,j = A′

i,k + B′
k,j . If one of A′

i,k, B′
k,j is an invalid cell, then

the other would be equal to −∞ and we would have C ′
i,j < 0. But C ′

i,j ≥ A′
i,i + B′

i,j ≥ 0,
which gives us a contradiction. Thus, invalid cells of A′ and B′ have no effect on valid cells
of C ′, so C ′ =valid C.

This gives us that we can compute C = A ⋆ B in Õ(t(2c−4)/(c−1)n2) time assuming we can
compute the (min, +) product of any two n× n bounded-difference matrices in Õ(nc) time.

Combining this with Theorem 17 we get the proof of Theorem 15.

4.2 Type II transitions
In this section, we prove Theorem 16. Let T1, T2 be connected segments of tree T such that
T1 ⊂ T2 and |T2| − |T1| = O(∆). We want to compute S(T2) given S(T1).

Let us consider the path p = e1e2 . . . ek in tree T that goes from the root of T2 to the root
of T1. For 1 ≤ i ≤ k, let Li be the subtree of tree T2 consisting of siblings of edge ei that
are to the left of ei and all descendants of these edges. Additionally, let Lk+1 be a subtree
of tree T2 consisting of descendants of edge ek that are to the left of tree T1. Similarly, we
denote subtrees that are to the right of path p by Ri for 1 ≤ i ≤ k + 1. See Figure 2.

For 1 ≤ i ≤ j ≤ k + 1, by Li,j we denote the tree Li + Li+1 + . . . + Lj and by Ri,j we
denote the tree Rj + Rj−1 + . . . + Ri.

First, for all trees Li,j , Ri,j , we compute the similarity matrices S(Li,j), S(Ri,j) using
the Õ(nm2) time algorithm from Section 3.2. We notice that in one run of this algorithm,
we can compute S(Li,j) for a fixed i and all j ≥ i. Thus, we only need to use that algorithm
O(∆) times, which in total gives us Õ(n∆3) time for that step.

Now, we consider two cases:
(a) None of the edges e1, . . . , ek is matched to some edge of tree Q.
(b) At least one of the edges e1, . . . , ek is matched to some edge of tree Q.

For case (a), we can use Theorem 15 to compute S(L1,k+1) ⋆ S(T1) ⋆ S(R1,k+1) in
MUL(∆, n) time. For case (b), we define a restricted version of the similarity matrix for
trees T ′, such that the root of T ′ has only one child.

ESA 2023
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e2
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Rk+1T1

e1L1 R1

Figure 2 Tree T2. In the type II transition we compute S(T2) based on S(T1).

▶ Definition 19 (Restricted similarity matrix). Let T ′ be a rooted tree such that the root u

of T ′ has only one child v. The restricted similarity matrix Ŝ(T ′) is a 4|E(Q)| × 4|E(Q)|
matrix where:

Ŝ(T ′)i,j =
{

maxe∈Q[i,j){sim(T ′ − uv, sub(e)− e) + η(uv, e)} if i ≤ j, j − i ≤ 2|E(Q)|
−∞ otherwise

We will compute Ŝ(sub(ei)) for all edges ei on path p. But first, let us assume that we
have already computed these restricted similarity matrices. We show how to compute S(T2)
using these matrices.

As mentioned before we can first initialize S(T2) with S(L1,k+1)⋆S(T1)⋆S(R1,k+1). Now,
let us consider a single valid cell S(T2)i,j that we want to compute. To cover case (b), we
can iterate through:

First edge ex from path p that is matched.
Edge e ∈ Q[i, j) such that ex is matched to e.

Then, we have:
Edges from L1,x are matched to edges from Q[i, li,j(e)) contributing S(L1,x)i,li,j(e).
Edges from sub(ex) are matched to edges from Q[li,j(e), ri,j(e) + 1) contributing
Ŝ(sub(ex))li,j(e),ri,j(e)+1.
Edges from R1,x are matched to edges from Q[ri,j(e)+1, j) contributing S(R1,x)ri,j(e)+1,j .

Note that we allow edge ex to be matched to some other edge than e from Q[li,j(e), ri,j(e)+1).
However, the cost of such matching will be at least as good as the cost of best matching that
matches ex to e, thus it does not affect the correctness of our algorithm.

This gives us that we can compute S(T2) from all Ŝ(sub(ei)) in Õ(n3∆). To optimize
this, we can use a similar idea to the one from Algorithm 1. Instead of calculating all the
cells from S(T2) separately, we can do it globally. We iterate through:

First edge ex from path p that is matched.
Edge e ∈ Q such that ex is matched to e.
Occurrence (I(e)c, I(e)c+1) of the edge e in the doubled Euler tour.
Cost a of matching edges from L1,x.
Cost b of matching edges from R1,x.
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Now we can find the shortest segment [i, j), such that it contains (I(e)c, I(e)c+1), the cost of
matching L1,x to Q[i, I(e)c) is at least a and the cost of matching R1,x to Q[I(e)c+1 + 1, j)
is at least b. Then we can use a single rangemax operation to update all valid cells S(T2)i′,j′

for which i′ ≤ i and j ≤ j′. This gives us that we can compute S(T2) from Ŝ(sub(ei))’s in
Õ(n∆3) time. The pseudocode for this part can be found in the full version of this paper [16].

Now, it remains to show how to compute all Ŝ(sub(ei))’s. We compute them starting
with ek and going up to e1. Thus, assume that we have already computed Ŝ(sub(ei))’s for
all i greater than some x. We want to compute Ŝ(sub(ex)). Let us consider two cases:
(a) None of the edges ex+1, . . . , ek is matched.
(b) At least one of the edges ex+1, . . . , ek is matched.
Both of these cases can be computed using similar ideas that we used to compute S(T2) from
all Ŝ(sub(ei)). In the full version of this paper [16], we present how to compute case (a) in
Õ(n∆2) time and case (b) in Õ(n∆3) time.

Thus, we can compute single Ŝ(sub(ex)) in Õ(n∆3) time and all of them in Õ(n∆4) time.
Therefore, a whole single transition of type II can be computed in Õ(MUL(∆, n) + n∆4)
time, which finishes the proof of Theorem 16.

5 Final remarks

We have presented the first truly subcubic algorithm for the unweighted variant of the
unrooted tree edit distance. However, as mentioned before our algorithm has a slightly
worse exponent than the best-known algorithm for rooted trees. The difference comes
from Theorem 16 where we have time complexity Õ(MUL(∆, n) + n∆4), while Mao has
Õ(MUL(∆, n) + n∆3) in corresponding theorem. It will be interesting to see if our algorithm
could be optimized to match the time complexity of Mao’s algorithm.

For the weighted tree edit distance probably the most interesting open problem is a
question whether there exists a weakly subcubic algorithm for that version. One of the lower
bounds [2] that claims this problem cannot be solved in a truly subcubic time is based on
APSP conjecture. However, for APSP weakly subcubic time algorithms are already known.
Williams [20] showed that the APSP problem can be solved in O(n3/2Ω(

√
log n)) time. Thus,

we can try to obtain a weakly subcubic algorithm for the weighted tree edit distance by
showing a reduction to the APSP problem.
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Abstract
The Cover Suffix Tree (CST) of a string T is the suffix tree of T with additional explicit nodes
corresponding to halves of square substrings of T . In the CST an explicit node corresponding to
a substring C of T is annotated with two numbers: the number of non-overlapping consecutive
occurrences of C and the total number of positions in T that are covered by occurrences of C in T .
Kociumaka et al. (Algorithmica, 2015) have shown how to compute the CST of a length-n string
in O(n log n) time. We give an algorithm that computes the same data structure in O(n) time
assuming that T is over an integer alphabet and discuss its implications.

A string C is a cover of text T if occurrences of C in T cover all positions of T ; C is a seed of
T if occurrences and overhangs (i.e., prefix-suffix occurrences) of C in T cover all positions of T .
An α-partial cover (α-partial seed) of text T is a string C whose occurrences in T (occurrences
and overhangs in T , respectively) cover at least α positions of T . Kociumaka et al. (Algorithmica,
2015; Theor. Comput. Sci., 2018) have shown that knowing the CST of a length-n string T , one can
compute a linear-sized representation of all seeds of T as well as all shortest α-partial covers and
seeds in T for a given α in O(n) time. Thus our result implies linear-time algorithms computing
these notions of quasiperiodicity. The resulting algorithm computing seeds is substantially different
from the previous one (Kociumaka et al., SODA 2012, ACM Trans. Algorithms, 2020); in particular,
it is non-recursive. Kociumaka et al. (Algorithmica, 2015) proposed an O(n log n)-time algorithm
for computing a shortest α-partial cover for each α = 1, . . . , n; we improve this complexity to O(n).

Our results are based on a new combinatorial characterization of consecutive overlapping
occurrences of a substring S of T in terms of the set of runs (see Kolpakov and Kucherov, FOCS
1999) in T . This new insight also leads to an O(n)-sized index for reporting overlapping consecutive
occurrences of a given pattern P of length m in the optimal O(m + output) time, where output is
the number of occurrences reported. In comparison, a general index for reporting bounded-gap
consecutive occurrences of Navarro and Thankachan (Theor. Comput. Sci., 2016) uses O(n log n)
space.
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1 Introduction

The Cover Suffix Tree (CST, in short) of a string T , denoted as CST (T ), is the suffix tree
of T (ST (T )) augmented with additional nodes and values. For every substring C of T ,
CST (T ) allows to efficiently compute the number of positions in T that are covered by
occurrences of C, provided that the node representing C in CST (T ) is known. Thus the CST
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is a generalization of string covers [3]. The CST of a string was introduced by Kociumaka et
al. [29] for computing so-called partial covers of a string (see below). Other applications of
the CST to the field of quasiperiodicity (see [2]) were discussed in [29, 30].

Let n denote the length of a string T . Kociumaka et al. [29] presented an algorithm
computing CST (T ) in O(n log n) time. Our main result is an algorithm that constructs
CST (T ) in O(n) time. We assume that T is over an integer alphabet {0, . . . , nO(1)}. This
assumption has become a standard in suffix tree construction algorithms since the linear-time
suffix tree construction algorithm of Farach [18].

In Section 1.1 we provide more details on the CST. Then in Section 1.2 we discuss
applications of our result to computing various notions of quasiperiodicity and in Section 1.3
we present an application of our approach to a variant of text indexing.
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Figure 1 CST(T ) for T = aaabaabaabaaabaaaa#. Black circles denote explicit nodes of ST(T )
and blue circles represent nodes corresponding to halves of square substrings in T . The numbers
next to nodes denote cv(v) and nov(v).

1.1 Cover Suffix Tree
In the suffix tree ST (T ), there is a 1-to-1 correspondence between substrings of T and
(explicit and implicit) nodes. The same applies to CST (T ). The set of explicit nodes of the
CST (T ) comprises of the explicit nodes of the suffix tree of T and of nodes corresponding to
halves of square substrings of T . Here a square is a string of the form X2 = XX, for some
string X which is called the square half.

The CST has the same tree structure as the Maximal Augmented Suffix Tree (MAST)
introduced by Apostolico and Preparata for the String Statistics Problem [4]. It was already
observed by Brodal et al. [11] that the MAST of T uses only O(n) space; this is because
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the suffix tree has O(n) nodes [32] and the number of different square substrings of T is
O(n) [20]. By a recent result of Brlek and Li [9, 10] showing that a string of length n contains
at most n different square substrings, it follows that the CST (and MAST) contains at most
3n explicit nodes.

For a node v of CST (T ), by v̄ we denote the substring of T that corresponds to v. A
consecutive occurrence of string S in T is a pair of indices (i, j) in T such that j > i, S has
occurrences starting at positions i and j in T and S does not occur at any of the positions
i + 1, . . . , j − 1. A consecutive occurrence (i, j) of S is called overlapping if j < i + |S|
and non-overlapping otherwise. In CST (T ), each node v is annotated by two values (see
Figure 1):

cv(v), equal to the total number of positions in T covered by occurrences of v̄, and
nov(v), equal to one plus the number of non-overlapping consecutive occurrences of v̄

in T . (Intuitively, the one corresponds to the rightmost occurrence of v̄ in T .)

The key property of values cv(v) and nov(v) is that if u is an implicit node of CST (T )
that is located on an edge from an explicit node v to its parent, then cv(u) can be expressed
in terms of cv(v) and nov(v) as follows: cv(u) = cv(v) − (|v̄| − |ū|)nov(v); see Figure 2.

T a a a b a a b a a b a a a b a a a a
a b a a b a a

a b a a b a a

T a a a b a a b a a b a a a b a a a a
a b a a b a

a b a a b a

Figure 2 Left: the locus v of C = abaabaa in CST(T ) is an explicit node and we have cv(v) = 10,
nov(v) = 1 (see Figure 1). Right: the locus v′ of the prefix C′ = abaaba of C is an implicit node
one character above v. We then have cv(v′) = cv(v) − nov(v) = 9.

We obtain the following result.

▶ Theorem 1. The Cover Suffix Tree (CST) of a string of length n over an integer alphabet
can be constructed in O(n) time.

The O(n log n)-time algorithm from [29] for constructing CST (T ) processes the suffix tree
of T bottom-up, storing for each explicit node v the set of occurrences of the corresponding
substring of T in an AVL tree. Its time complexity follows by using an efficient algorithm for
merging AVL trees [13] (cf. [12]). We use a completely different approach, based on a new
combinatorial observation that links overlapping consecutive occurrences of substrings of T

to runs in T [31]. We show that the (multi)set of substrings whose overlapping consecutive
occurrences are implied by a run has a simple, “triangular” structure. The values ov(v) and
cv(v) for explicit nodes v of CST (v) are then computed in two bottom-up traversals, one in
the tree of suffix links of ST (T ) and the other in the CST (T ).

1.2 Applications of CST to quasiperiodicity
Theorem 1 has several applications in the field of quasiperiodicity [2]. Basic notions of
quasiperiodicity are covers [3], that were already mentioned before, and seeds [25]. A string
C is a cover of a string T if each position of T is inside at least one occurrence of C. A string
S is a seed of a string T if it is a cover of a superstring of T . In other words, all positions of
T are covered by occurrences and overhangs of S, where an overhang is a prefix of T being
a suffix of S or a suffix of T being a prefix of S. A substring C of T is called an α-partial
cover of T if the occurrences of C in T cover at least α positions in T . A substring S of T

is called an α-partial seed of T if the occurrences and overhangs of S in T cover at least α

positions in T . See Figure 3 for examples.
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T a a a b a a b a a b a a a b a a a a
a a b a a

a a b a a
a a b a a

a a b a a

T a a a b a a b a a b a a a b a a a a
a a b a a

a a b a a
a a b a a

a a b a aa a b a a
a a b a a

Figure 3 C = aabaa is a 15-partial cover of T (left). Indeed, the node v of CST(T ) corresponding
to C has cv(v) = 15 (Figure 1). C is also an 18-partial seed of T , hence, a seed of T (right).

In [29, 30] it was noticed that given the CST (T ), all shortest α-partial covers and α-partial
seeds of T for a specified value of the parameter α can be computed in O(n) time. Thus our
Theorem 1 implies the following result.

▶ Corollary 2. Let T be a string of length n over an integer alphabet and α ∈ [1 . . n]. All
shortest α-partial covers and seeds of T can be computed in O(n) time.

In [29] also the following problem was considered.

AllPartialCovers
Input: a string T of length n

Output: for all α = 1, . . . , n, a shortest α-partial cover of T

▶ Example 3. For T from Figure 1, the solution to AllPartialCovers problem can be as
follows: substring C = a for α ≤ 14, substring C = aabaa for α = 15 (see Figure 3), and any
length-α substring of T for α ≥ 16.

An O(n log n)-time solution for AllPartialCovers based on CST (T ) and on computing
the upper envelope [24] of O(n) line segments was presented in [29]. We obtain the following
result.

▶ Theorem 4. AllPartialCovers problem can be solved in O(n) time for a length-n
string over an integer alphabet.

A linear-time algorithm computing all covers of a string was presented almost 30 years
ago by Moore and Smyth [33, 34]. A rather involved linear-time algorithm computing
a representation of all seeds in a string over an integer alphabet was given much more
recently by Kociumaka et al. [27]. The representation (already introduced in the earlier,
O(n log n)-time algorithm by Iliopoulos et al. [25]) consists of a set of paths in the suffix trees
of T and of T reversed, at most one path on each edge of the suffix trees. Seeds of T are
exactly |T |-partial seeds of T , so Corollary 2 immediately implies an alternative linear-time
algorithm computing all shortest seeds of T . Moreover, in [29, Theorem 3] it was observed
that having CST (T ), the aforementioned representation of all seeds in T can be computed in
O(n) time. Thus Theorem 1 yields an alternative O(n)-time algorithm computing the same
representation of all seeds in T as in [27]. The resulting algorithm is substantially different
from the algorithm of [27]; in particular, it is non-recursive and arguably simpler.

Recently, Kociumaka et al. [28] showed that there exists a different representation of
all seeds of a string, consisting of O(n) disjoint paths on just the suffix tree of T , and that
this representation can be computed in O(n) time assuming an integer alphabet. This
representation, however, no longer satisfies the convenient property that at most one path
on each edge of the suffix tree is in the representation (see [28, Fig. 2] for an example).
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1.3 Reporting overlapping occurrences
Data stored in the CST can be used to compute, for any substring S of T , the number
ov(S) of overlapping consecutive occurrences of S in T . We show that the technique behind
Theorem 1 can be further exploited to obtain a linear-space index for reporting overlapping
consecutive occurrences of a query pattern.

Navarro and Thankachan [35] proposed an index that, given a length-m substring S of T

and an interval [α, β], reports all consecutive occurrences (i, j) of S such that α ≤ j − i ≤ β

in O(m + output) time, where output is the number of consecutive occurrences reported. The
size of their index for a text T of length n is O(n log n). We solve the following problem.

Reporting bounded-gap overlapping consecutive occurrences
Input: A string T of length n

Query input: A substring S of T , |S| = m, and a positive integer β such that β < m

Query output: All consecutive occurrences (i, j) of S in T such that j − i ≤ β

▶ Theorem 5. There is an index of size O(n) that reports all bounded-gap overlapping
consecutive occurrences of a length-m pattern in O(m + output) time, where output is the
number of consecutive occurrences reported. If T is over a constant-sized alphabet, the index
can be constructed in O(n) time. The construction time becomes expected if T is over an
integer alphabet.

The data structure of Theorem 5 is superior to the data structure of [35] if α = 0 and
β < m.

In the data structure we use the same combinatorial observation as in Theorem 1. With
it, a query for a pattern S consists in finding the corresponding node v in CST (T ) and
reporting all “triangular” structures implied by runs that contain v. To this end, range
minimum query data structures [8] are used to store the “bottom sides” of the triangles.
Thanks to this, it is actually sufficient to store ST (T ) instead of the CST (T ). The expected
time in the construction algorithm stems from using perfect hashing [21] to store children of
a node of the suffix tree if T is over a superconstant alphabet.

1.4 Structure of the paper
We start by recalling basic definitions related to strings and compact tries (including
suffix trees). In Section 3 we present the proof of the main Theorem 1. Solution to
AllPartialCovers (Theorem 4) is provided in Section 4. The data structure for reporting
bounded-gap overlapping consecutive occurrences (proof of Theorem 5) is presented in the
full version. We conclude in Section 5.

2 Preliminaries

2.1 Strings
By Σ we denote the finite alphabet of all the considered strings. We assume that characters of
a string S are numbered 1 through |S|, with S[i] ∈ Σ denoting the ith character. An integer
j ∈ [1 . . |S|] is called an index in S. A string S[i]S[i + 1] · · · S[j] for any indices i, j such that
i ≤ j is called a substring of S. By S[i . . j] we denote a fragment of S that can be viewed as
a positioned substring S[i]S[i + 1] · · · S[j] (formally, it is represented in O(1) space with a
reference to S and the interval [i . . j]). We also denote S[i . . j − 1] as S[i . . j). Two fragments

ESA 2023



89:6 Linear Time Construction of Cover Suffix Tree and Applications

S[i . . j] and S[i′ . . j′] match (notation: S[i . . j] = S[i′ . . j′]) if the underlying substrings are
the same. Similarly we define matching of a fragment and a substring. Two fragments S[i . . j]
and S[i′ . . j′] are equivalent (notation: S[i . . j] ≡ S[i′ . . j′]) if i = i′ and j = j′. A string U is
called a prefix (suffix) of a string S if U = S[1 . . |U |] (U = S[|S| − |U | + 1 . . |S|], respectively)
and a border of S if it is both a prefix and a suffix of S.

Henceforth by T we denote the text string and by n we denote |T |. We say that a
string S occurs in the text T at position i if S = T [i . . i + |S|). A pair of indices (i, j)
in T is called a consecutive occurrence of substring S if i < j, T [i . . i + |S|) = T [j . . j + |S|)
and T [k . . k + |S|) ̸= S for all k ∈ (i . . j). A consecutive occurrence is called overlapping if
j < i + |S| and otherwise it is called non-overlapping. By OvOcc(S) we denote the set of
overlapping consecutive occurrences of S in T .

For a string U and d ∈ Z≥0, by Ud we denote the dth power of U , equal to a concatenation
of d copies of U . A string V is primitive if V = Ud for d ∈ Z+ implies that d = 1. The
following property of primitive strings is a known consequence of Fine and Wilf’s lemma [19].

▶ Lemma 6 (Synchronization property, see [14]). A string V is primitive if and only if V has
exactly two occurrences in V 2.

A string of the form U2 is called a square.

▶ Theorem 7 ([20] and [15, 6]). The number of distinct square substrings in a length-n string
is O(n) and they can all be computed in O(n) time assuming an integer alphabet.

We say that a string S has a period p if S[i] = S[i + p] holds for all i ∈ [1 . . |S| − p];
equivalently, if S has a border of length |S| − p. By per(S) we denote the smallest period
of S.

A run in a string T is a triad (a, b, p) such that (1) p is the smallest period of T [a . . b], (2)
2p ≤ b − a + 1, (3) a = 1 or T [a − 1] ̸= T [a − 1 + p], and (4) b = |T | or T [b + 1] ̸= T [b + 1 − p].
The exponent of a run R = (a, b, p) is defined as exp(R) = (b − a + 1)/p. By R(T ) we denote
the set of all runs in T .

▶ Theorem 8 ([5]). A string T of length n has at most n runs and they can be computed in
O(n) time if T is over an integer alphabet.

An earlier bound |R(T )| = O(n) together with an O(n)-time algorithm for computing
R(T ) was proposed in [31]. All runs can be computed in O(n) time also for a string over a
general ordered alphabet [17].

2.2 Compact tries
The suffix trie of a string T contains a node for every distinct substring of T #, where # ̸∈ Σ
is a special end marker. The root node is the empty string. For each pair of substrings
(S, Sc) of T , where c ∈ Σ, there is an edge from S to Sc labeled with the character c. Each
suffix of T# corresponds to a leaf of the suffix trie.

A compact suffix trie of T contains the root, the branching nodes, the leaf nodes, and
possibly some other nodes of the suffix trie as explicit nodes. Maximal paths that do not
contain explicit nodes are replaced by single compact edges, and a fragment of T is used
to represent the label of every such edge in O(1) space. The nodes that are dissolved due
to compactification are called implicit nodes; an implicit node u can be referred to as a
pair (v, d) where v is the nearest explicit descendant of u and d is the distance (number of
characters) between u and v. The most common example of a compact suffix trie of T is the
suffix tree of T , denoted here as ST (T ), in which each maximal branchless path from the
suffix trie is replaced by a single compact edge.
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▶ Theorem 9 ([18, 26]). The suffix tree of a string of length n over an integer alphabet can
be constructed in O(n) time.

For a node v of a compact suffix trie T of T , the corresponding substring v̄ of T is called
the string label of v. Conversely, for a substring (or fragment) S of T , its locus in T is the
(explicit or implicit) node v of T such that v̄ = S.

The locus in ST (T ) of a substring S is denoted as locus(S). For a non-root explicit node
v of ST (T ), its suffix link leads from v to the node suf (v) = locus(X), where v̄ = cX, c ∈ Σ;
it is known that suf (v) is then an explicit node. By ST ′(T ) we denote tree of suffix links in
ST (T ). The nodes of ST ′(T ) are the explicit nodes of ST (T ) and for each non-root explicit
node v of ST (T ), in ST ′(T ) there is an edge connecting node v with node suf (v).

Let Sq(T ) = {S : S2 is a substring of T}. Then the tree structure of CST (T ) is a
compact suffix trie of T that could be obtained from the suffix tree ST (T ) by making loci of
substrings Sq(T ) explicit.

A weighted ancestor query on a compact suffix trie T is given a leaf ℓ of T and a non-
negative integer d and asks for the topmost (explicit) ancestor w of ℓ such that |w̄| ≥ d. We
denote such a query and its result as w = WA(ℓ, d). We use the following offline solution to
the problem of answering WA queries.

▶ Theorem 10 ([28]). Any q weighted ancestor queries on a compact suffix trie with O(n)
nodes of a length-n string can be answered in O(n + q) time.

Data structures for answering weighted ancestor queries with different complexities are
known [1, 22], also in the special case of the compact suffix trie being the suffix tree [7, 23].

Let v be a node of a compact suffix trie and S = v̄. Then cv(v) is formally defined as

cv(v) =
⋃

{ [i . . i + |S|) : T [i . . i + |S|) = S }.

Moreover, nov(v) equals one plus the number of non-overlapping consecutive occurrences of
S in T . CST (T ) stores the values cv(v) and nov(v) for each explicit node v. By occ(v) we
further denote the total number of occurrences of v̄ in T . The values occ(v) for all explicit
nodes of a compact suffix trie can be computed bottom-up in linear time, as occ(v) is the
number of leaves in the subtree of node v. By ov(v) we denote the number of overlapping
consecutive occurrences of v̄ in T . We have ov(v) + nov(v) = occ(v). We use the notations
cv(), nov(), ov() and occ() also for substrings of T .

3 Construction of the CST

3.1 Computing the tree structure
▶ Lemma 11. The tree structure of the CST of a string T of length n over an integer
alphabet can be computed in O(n) time.

Proof. The suffix tree of a string over an integer alphabet can be constructed in O(n) time
(Theorem 9). By Theorem 7, the set Sq(T ) of square substring halves, each represented as a
fragment of T , can be computed in O(n) time.

The final step is to make all implicit nodes of the suffix tree that correspond to elements
of Sq(T ) explicit. Let T [i . . i + 2d) be a square substring and ℓ be the leaf of the suffix tree
of T corresponding to the suffix T [i . . n]. Using a weighted ancestor query we can compute a
pair (v, p) where v = WA(ℓ, d) is the nearest explicit descendant of the locus u of T [i . . i + d)
and p is the distance between u and v. With Theorem 10 a batch of O(n) such queries
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can be answered in O(n) time. Finally, we use Radix Sort to sort the pairs (v, p) (under
an arbitrary, fixed order on nodes of the suffix tree) in O(n) time. As a result, the loci of
substrings in Sq(T ) are grouped by their nearest explicit descendants, and each group is
sorted by decreasing depths. This allows to make all the desired implicit nodes explicit in
O(n) time. ◀

3.2 Properties of overlapping consecutive occurrences
If a substring S of T does not have overlapping occurrences in T , i.e., ov(S) = 0, then
cv(S) = nov(S) · |S| = occ(S) · |S| is easy to compute. Hence, below we characterize
overlapping consecutive occurrences of substrings. To this end, we use runs.

For indices 1 ≤ i ≤ j1 ≤ j2 ≤ n, we denote the set of fragments corresponding to a path
in the suffix tree of T :

Path(i, j1, j2) = {T [i . . j] : j ∈ [j1 . . j2]}.

For a run R = (a, b, p) in T , we denote

Triangle(R) = Triangle(a, b, p) =
b−2p⋃
i=a

Path(i, i + p, b − p).

Figure 4 gives a graphical motivation for the name of this set of fragments, whereas Figure 5
shows that in some cases the triangle is “wrapped”.

The following key combinatorial lemma shows that sets Triangle(R) for R ∈ R(T ) are
sufficient for counting overlapping consecutive occurrences.
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Figure 4 Illustration of the sets Triangle(R), Upper(R) and Lower(R) on paths in CST(T ) for an
example run R = (1, 14, 5). All nodes representing fragments from Triangle(R) are distinct because
exp(R) = 2.8 ≤ 3. The nodes in Upper(R) and Lower(R) are explicit in CST(T ) (see Observation 13).

▶ Lemma 12. Let S be a string of length d. Then S has an overlapping consecutive occurrence
(i, j) in T for some indices i, j if and only if S matches a fragment T [i . . i + d) ∈ Triangle(R)
for some run R with period j − i in T .

Proof. (⇒) If S has an overlapping consecutive occurrence (i, j), then the substring F =
T [i . . j + d) has a border S, so F has a period p = j − i < d.
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We further have |F | = j + d − i > 2(j − i) = 2p. Period p is the smallest period of F ;
indeed, a period q ∈ [1 . . p) would imply an occurrence T [i + q . . i + q + d) of S at position
i + q such that i < i + q < i + p = j − i, so (i, j) would not be a consecutive occurrence of S.

Finally, fragment F extends to a unique maximal periodic fragment with smallest period
p; it is a run R = (a, b, p) in T . We have T [i . . i + d) ∈ Path(i, i + p, b − p) ⊆ Triangle(R) as
i ∈ [a . . b − 2p].

(⇐) Assume that T [i . . i + d) ∈ Triangle(R) holds for some run R = (a, b, p) and S =
T [i . . i + d). Then [i . . i + d + p) ⊆ [a . . b], so the period of the run implies that T [i + p . . i +
p + d) = T [i . . i + d) = S. Moreover, d > p by the definition of Triangle(R), so the two
occurrences of S overlap.

Finally, we need to show that (i, j), for j = i + p, is a consecutive occurrence of S. If
there was an occurrence T [k . . k + d) = S with i < k < j, then the string X = T [i . . i + p)
would have an occurrence in T [i . . i + 2p) = X2 being neither a prefix nor a suffix of X2.
String X is primitive, as otherwise the run R would have a period smaller than p. Therefore
this situation is impossible by the synchronization property (Lemma 6). ◀
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b
4

a
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b
6

a
7

b
8

a
9

b
10

Lower(R)

Triangle(R)

Figure 5 Illustration of the sets Triangle(R), Upper(R) and Lower(R) on paths in CST(T ) for a
run R = (1, 10, 2) with exponent 5. The substrings in the set Triangle(R) form a multiset being the
sum of the two trapezia and a triangle. The set Upper(R) contains six fragments; three of them
match substring ab, and the remaining three match ba.

For a run R = (a, b, p), we further denote:

Upper(a, b, p) = {T [i . . i + p) : i ∈ [a . . b − 2p]}
Lower(a, b, p) = {T [i . . b − p] : i ∈ [a . . b − 2p]}

Intuitively, Lower(R) consists of bottommost endpoints of paths Path from Triangle(R) and
Upper(R) consists of parents of topmost endpoints of these paths. Informally, they are the
“lower side” and the “excluded upper side” of the triangle; see also Figures 4 and 5. Below
we show basic properties of these sets.

▶ Observation 13. Let R be a run in T .
(a) All fragments in Upper(R) are square halves in T .
(b) The loci of fragments in Lower(R) are explicit nodes in ST (T ).
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Proof. (a) By the periodicity of run R, each fragment T [i . . i + p) ∈ Upper(R) is followed by
a matching fragment T [i + p . . i + 2p). This is because i ≤ b − 2p. Hence, T [i . . i + 2p) is
indeed a square in T .

(b) Let T [i . . b − p] ∈ Lower(R) and c = T [b + 1 − p]. The period of the run implies that
T [i . . b − p] = T [i + p . . b].

If T [i . . b − p] is a suffix of T , its locus in ST (T ) is explicit as the locus has children along
the characters c and #.

Otherwise, character c′ = T [b + 1] is different from c by the right maximality of the run
R. Hence, T [i . . b − p]c and T [i . . b − p]c′ are different substrings of T , as claimed. ◀

Let us note that if exp(R) > 3, then each of the sets Upper(R), Triangle(R) may contain
matching fragments; see Figure 5.

3.3 Counting overlapping consecutive occurrences
For each explicit node v of CST (T ), instead of nov(v), we will compute the number ov(v) of
overlapping consecutive occurrences of the substring v̄ in T .

For a set F of fragments of T , we denote by #v(F) = |{T [i . . j] ∈ F : v̄ = T [i . . j]}| the
number of fragments in F that match v̄. Lemma 12 implies the following formula for ov(v).

▶ Observation 14. For a node v of CST (T ), ov(v) =
∑

R∈R(T ) #v(Triangle(R)).

We will show how to efficiently evaluate these formulas for all explicit nodes v simultaneously.
For each explicit node v of CST (T ) we will compute two counters:

Cupper[v] =
∑

R∈R(T )

#v(Upper(R)), Clower[v] =
∑

R∈R(T )

#v(Lower(R)).

That is, Cupper[v] (Clower[v]) stores the number of times fragments matching the substring v̄

occur in Upper(R) (Lower(R), respectively) over all runs R ∈ R(T ).
For an explicit node v of CST (T ), by subtree(v) we denote the set of explicit descendants

of v in the tree (including v). The following lemma shows how to compute ov from the
counters Cupper and Clower. The lemma follows by Observation 14.

▶ Lemma 15. For an explicit node v of the CST (T ), we have

ov(v) =
∑

w∈subtree(v)

(Clower[w] − Cupper[w]).

Proof. If node x is an ancestor of node y, by x ⇝ y we denote the set of explicit nodes
on the path from x to y. By root we denote the root of CST (T ). By the definitions of
Triangle(R), Upper(R) and Lower(R) and Observation 14, we have:

ov(v) =
∑

R∈R(T )

#v(Triangle(R))

=
∑

(a,p,b)∈R(T )

b−2p∑
i=a

#v(Path(i, i + p, b − p))

=
∑

(a,p,b)∈R(T )

|{i ∈ [a . . b − 2p] : v ∈ (locus(T [i . . i + p])⇝ locus(T [i . . b − p]))}|
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=
∑

(a,p,b)∈R(T )

|{i ∈ [a . . b − 2p] : v ∈ (root ⇝ locus(T [i . . b − p]))}|

−
∑

(a,p,b)∈R(T )

|{i ∈ [a . . b − 2p] : v ∈ (root ⇝ locus(T [i . . i + p))}|

=
∑

R∈R(T )

∑
w∈subtree(v)

#w(Lower(R)) −
∑

R∈R(T )

∑
w∈subtree(v)

#w(Upper(R))

=
∑

w∈subtree(v)

(Clower[w] − Cupper[w]). ◀

3.3.1 Computing Clower and Cupper

Let us recall that ST ′(T ) is the tree of suffix links of ST (T ).

▶ Observation 16. For each run R in T , Lower(R) forms a path in ST ′(T ).

▶ Lemma 17. The counters Clower[v] for all explicit nodes v of CST (T ) can be computed in
O(n) time.

Proof. By the observation, Clower[v] is simply the number of paths Lower(R) that cover
node v in ST ′(T ) (in particular, no two fragments in a single set Lower(R) match).

To count paths covering each node in a rooted tree we apply a standard approach using ±1
counters. Initially all counters Clower[v] are equal to 0. For each run R = (a, b, p) ∈ R(T ), we
increment Clower[v] for the bottom endpoint v of the path Lower(R) (v = locus(T [a . . b − p]))
and decrement Clower[u] for the parent u in ST ′(T ) of the top endpoint of Lower(R) (u =
locus(T [b − 2p + 1 . . b − p])). In the end for each node u of ST ′(T ) in a bottom-up order, we
add Clower[v] to Clower[u] for all children v of u in ST ′(T ).

Let us summarize and analyze the complexity of the algorithm. Tree ST ′(T ) has O(n)
nodes. By Theorem 8, there are at most n paths Lower(R) and all runs R can be computed
in O(n) time. The endpoints of all paths Lower(R) can be located in ST ′(T ) in O(n) time
using weighted ancestor queries in ST (T ) (Theorem 10). Finally, the bottom-up traversal of
the tree ST ′(T ) takes O(n) time. ◀

We proceed to computing counters Cupper. Let us define an operation rot such that
rot(cX) = Xc for a string X and character c ∈ Σ. For k ∈ Z≥0, by rotk(S) we denote the
composition of rot k times. If S′ = rotk(S) for some strings S, S′ and k ∈ Z≥0, we say that
S′ is a cyclic rotation of S. We also say that S and S′ are cyclically equivalent.

For each run R in T , the strings in Upper(R) are cyclic rotations of each other. This
motivates introduction of the following directed graph G = (V, E). The set of vertices is
V = Sq(T ) and the arcs are defined as follows: (S, S′) ∈ E if and only if S, S′ ∈ V and
S′ = rot(S). Instead of addressing vertices of G by substrings of T , we will address them by
their loci in CST (T ) which are explicit nodes of CST (V ).

▶ Observation 18. For each run R in T , Upper(R) corresponds to a (directed) walk in G.

Let us note that the vertices (and arcs) on the walk Upper(R) may repeat if exp(R) > 3
(see Figure 5 again). In particular, in this case Upper(R) is contained in a cycle in G.

We proceed to the construction of graph G. More precisely, a sufficient subset of arcs of
G is constructed.

▶ Lemma 19. A subset E′ of E containing all arcs that belong to any walk Upper(R), for
R ∈ R(T ), can be constructed in O(n) time.
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Proof. For each distinct square substring T [i . . i + 2d) of T , we insert into E′ an arc from
locus(T [i . . i + d)) to locus(T [i + 1 . . i + d]) if T [i + 1 . . i + d] ∈ Sq(T ); the latter condition
can be checked from the construction of the tree structure of CST (T ) (Lemma 11). By
Theorem 7, square substrings of T can be enumerated in O(n) time. Then we use off-line
weighted ancestor queries (Theorem 10) on CST (T ) to find the desired loci. This concludes
that the time complexity is O(n). Now let us argue for the correctness of this algorithm in
two steps.

Why E′ ⊆ E: When adding an arc from locus(T [i . . i + d)) to locus(T [i + 1 . . i + d]),
we know that T [i . . i + d) ∈ Sq(T ) and we check if T [i + 1 . . i + d] ∈ Sq(T ). Hence, an arc
connects two vertices of V = Sq(T ). Finally, we have rot(T [i . . i + d)) = T [i + 1 . . i + d]
because T [i . . i + 2d) is a square. Consequently, E′ ⊆ E.

Why all arcs that belong to any walk Upper(R) are in E′: Let T [i . . i+p), T [i+1 . . i+p] ∈
Upper(a, b, p) be two consecutive elements. Then a ≤ i < b − 2p, so T [i . . i + 2p) is a square.
Therefore, (locus(T [i . . i + p)), locus(T [i + 1 . . i + p])) ∈ E′ by definition. ◀

In the lemma above, it can be the case that E′ ⊊ E if there are two substrings S, S′ ∈ Sq(T )
such that S′ = rot(S) but there are no two fragments T [i . . i + |S|), T [i + 1 . . i + 1 + |S|)
matching S and S′, respectively. Moreover, it can happen that E′ contains an arc that
does not belong to any walk Upper(R). Indeed, when an arc from locus(T [i . . i + d)) to
locus(T [i+1 . . i+d]) is added to E′, we avoid the unnecessary check if T [i . . i+d), T [i+1 . . i+d]
belong to a set Upper(R) for any run R.

▶ Lemma 20. The counters Cupper[v] for all explicit nodes v of CST (T ) can be computed
in O(n) time.

Proof. By Observation 18, Cupper[v] is the total number of times that walks Upper(R) visit
the node v ∈ V . We will be able to compute these counters efficiently using the fact that
graph G has a particularly simple structure: it is a collection of disjoint cycles and paths.
The same applies to the graph G′ = (V, E′) that is computed in Lemma 19. For a node u,
by next(u) we denote the unique node v such that (u, v) ∈ E′, and ⊥ if no such node exists.

We can find all cycles in G′ using the DFS. Then we apply an algorithm using ±1 counters
(as in the proof of Lemma 17) and additional counters C ′ assigned to cycles. Initially all
counters are equal to 0. For each cycle Q, let us order the nodes v1, . . . , v|Q| ∈ Q along the
cycle (arbitrarily) and assign them consecutive id numbers id(vi) = i.

For each walk Upper(R), R = (a, b, p) ∈ R(T ), we check if its endpoints v1 and v2
(v1 = locus(T [a . . a + p)) and v2 = locus(T [b − 2p . . b − p))) belong to a cycle. If not, we
increment Cupper[v1]; we also decrement Cupper[next(v2)] if next(v2) ̸= ⊥. Otherwise, if v1, v2
belong to a cycle Q, we increase the cycle counter C ′[Q] by ⌊ |Upper(R)| / |Q| ⌋. Moreover
(for v1, v2 ∈ Q), if id(v1) ≤ id(v2), we increment Cupper[v1] and decrement Cupper[next(v2)]
if id(v2) < |Q|. If, however, id(v1) > id(v2), we increment Cupper[v1] and Cupper(u) for the
node u ∈ Q with id(u) = 1 and decrement Cupper[next(v2)], thus “breaking the cyclicity”.

For each cycle Q, let us remove the arc (v, next(v)) for vertex v ∈ Q such that id(v) = |Q|.
This way G′ becomes acyclic; it can be viewed as a forest in which each tree is a path. For
each node v of the modified graph G′ in topological order, we add Cupper[v] to Cupper[next(v)]
if next(v) ̸= ⊥. Finally, for each original cycle Q in G′, we increase Cupper[v] for all vertices
v ∈ Q by the counter C ′[Q]. This way we have computed all the counters Cupper as desired.

Let us analyze the complexity. By Lemma 19, graph G′ = (V, E′) can be constructed
in O(n) time. By Theorem 8, there are at most n paths Upper(R) and all runs R can be
computed in O(n) time. The endpoints of walks Upper(R) can be located in G′ in O(n)
time using weighted ancestor queries in CST (T ) (Theorem 10). Finally, the computation of
counters via DFS and topological ordering takes O(n) time. ◀
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This concludes efficient computation of the numbers of overlapping and non-overlapping
consecutive occurrences.

▶ Lemma 21. Values ov(v) and nov(v) for all explicit nodes v of CST (T ) can be computed
in O(n) time.

Proof. We compute the counters Clower and Cupper using Lemmas 17 and 20, respectively.
By the formula from Lemma 15, for each node v of CST (T ) in the bottom-up order, ov(v)
can be computed as a sum of Clower[v]−Cupper[v] and the sum of values ov(w) for all explicit
children w of v. Such values can be computed via a bottom-up traversal in O(n) time.

Finally we recall that nov(v) = occ(v) − ov(v) and that occ(v) for all explicit nodes of
CST (T ) can be easily computed in O(n) time bottom-up. ◀

3.4 Computing coverage
For a substring S of T , we introduce the following notations:

cv_ov(S) =
∑

(i,j)∈OvOcc(S)

(j − i), cv_nov(S) = nov(S) · |S|.

As before, we denote cv_ov(v) = cv_ov(v̄) and cv_nov(v) = cv_nov(v̄) for nodes v of
CST (T ). The proof of the following observation provides intuition on these definitions.

▶ Observation 22. For every substring S of T , cv(S) = cv_ov(S) + cv_nov(S).

Proof. Let us assign each position k of T that is covered by an occurrence of S to the
rightmost occurrence T [i . . i + |S|) of S with i < k. Let j be the next occurrence of S to the
right of position i (then j > k), if any. If j exists and (i, j) ∈ OvOcc(S), then position k is
counted in cv_ov(S). Otherwise position k is counted in cv_nov(S). ◀

Values cv_nov(v) for explicit nodes v of CST (T ) can be easily computed using values
nov(v) computed in Lemma 21. Lemma 12 yields the following formula for cv_ov(v).

▶ Observation 23. For a node v of CST (T ), cv_ov(v) =
∑

R∈R(T ) #v(Triangle(R)) ·per(R).

Now cv_ov values can be computed similarly as ov values were computed in Section 3.3. We
just need to multiply counter updates by periods of respective runs.

▶ Lemma 24. The values cv_ov(v) for all explicit nodes v of CST (T ) can be computed in
O(n) time.

Proof. Let

C ′
upper[v] =

∑
R∈R(T )

#v(Upper(R)) · per(R), C ′
lower[v] =

∑
R∈R(T )

#v(Lower(R)) · per(R).

Following the proof of Lemma 15 it can be readily verified that for every explicit node v,

cv_ov(v) =
∑

w∈subtree(v)

(C ′
lower[w] − C ′

upper[w]).

The counters C ′
lower[v] (C ′

upper[v]) for all explicit nodes can be computed as in Lemma 17
(Lemma 20, respectively), where instead of ±1 counters, for each path Lower(R) (walk
Upper(R), respectively), R ∈ R(T ), we add and subtract per(R) in the respective nodes (and
increase cycle counters C ′[Q] by amounts ⌊ |Upper(R)| / |Q| ⌋ · per(R)). ◀
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This concludes the construction of CST (T ).

▶ Theorem 1. The Cover Suffix Tree (CST) of a string of length n over an integer alphabet
can be constructed in O(n) time.

Proof. Lemma 11 can be used to construct the tree structure of CST (T ). We compute
occ(v) for all explicit nodes of CST (T ) in a bottom-up traversal and ov(v) using Lemma 21,
which lets us compute nov(v) = occ(v) − ov(v) for all explicit nodes. Then for all explicit
nodes we compute cv_ov(v) using Lemma 24, which lets us compute cv(v) for all explicit
nodes using values cv_nov(v) that, in turn, depend on nov(v). Each of the lemmas, as well
as the bottom-up processing, requires O(n) time. ◀

4 Solution to AllPartialCovers

An O(n log n)-time solution to AllPartialCovers from [29] is based on computing the
upper envelope of O(n) line segments, each connecting points (|v|, cv(v)) and (|v|−k, cv(v)−
k · nov(v)) constructed for an edge of CST (T ) from v to its parent v′ containing k implicit
nodes. An upper envelope of O(n) line segments can be computed in O(n log n) time [24].

We show that the AllPartialCovers problem can be solved in O(n) time using the
following observation. A substring C of T is called branching if the locus of C in ST (T ) is a
branching node.

▶ Lemma 25. If C is a substring of T , then there is a substring C ′ of T such that |C ′| = |C|,
cv(C ′) ≥ cv(C) and C ′ is branching or a suffix of T .

Proof. Let C0 = C. If C0 is branching or C0 is a suffix of T , we are done. Otherwise, all
occurrences of C0 in T are followed by the same character. Let a be this character, X be C

without its first character, and C1 = Xa. We have |C1| = |C0| and cv(C1) ≥ cv(C0). We use
this construction to obtain substrings C1, C2, . . . The sequence ends at the first substring
that is branching or a suffix of T ; such a substring exists since the rightmost occurrence of
Ci in T , for i ≥ 1, is located to the right of the rightmost occurrence of Ci−1 in T . Let Ck,
for k ≥ 1, be the last substring in this sequence. By the construction, |Ck| = |C0| = |C|,
cv(Ck) ≥ cv(C) and Ck is branching or a suffix of T . We choose C ′ = Ck. ◀

By the lemma, in the solution to AllPartialCovers it suffices to iterate over all suffixes
of T and branching nodes of ST (T ). We obtain the following result that was already stated
in Section 1.

Algorithm 1 Solution to AllPartialCovers.

for i := 1 to n do shortest[n − i + 1] := T [i . . n];
foreach branching node v of ST (T ) do

if |v̄| < |shortest[cv(v)]| then
shortest[cv(v)] := v̄;

for i := n − 1 down to 1 do
if |shortest[i]| > |shortest[i + 1]| then

shortest[i] := shortest[i + 1];

▶ Theorem 4. AllPartialCovers problem can be solved in O(n) time for a length-n
string over an integer alphabet.
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Proof. We apply Algorithm 1. Clearly, the algorithm works in O(n) time. Let us argue for
its correctness.

In the algorithm an auxiliary array shortest is used that stores fragments of T represented
in O(1) space each. By Lemma 25, after the foreach-loop, shortest[α] = C for α ∈ [1 . . n] if
C is a shortest substring of T such that cv(C) = α. At the end, shortest[α] = C if C is a
shortest substring of T such that cv(C) ≥ α. Hence, shortest[α] is a shortest α-partial cover
of T by definition. ◀

5 Conclusions

We have designed the first linear-time algorithm computing the Cover Suffix Tree. We have
shown several applications of this result, some of which follow directly from previous work.
Experimental comparison of our algorithms for computing the Cover Suffix Tree and the set
of seeds in a string with implementations of existing methods from [16] is left as future work.

It remains an open problem if our approach can help to improve upon the O(n log n)-time
algorithm of Brodal et al. [11] for constructing MAST.
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Abstract
A simultaneous representation of (vertex-labeled) graphs G1, . . . , Gk consists of a (geometric)
intersection representation Ri for each graph Gi such that each vertex v is represented by the same
geometric object in each Ri for which Gi contains v. While Jampani and Lubiw showed that the
existence of simultaneous interval representations for k = 2 can be tested efficiently (2010), testing
it for graphs where k is part of the input is NP-complete (Bok and Jedličková, 2018). An important
special case of simultaneous representations is the sunflower case, where Gi ∩ Gj = (V (Gi) ∩
V (Gj), E(Gi) ∩ E(Gj)) is the same graph for each i ̸= j. We give an O(

∑k

i=1(|V (Gi)| + |E(Gi)|))-
time algorithm for deciding the existence of a simultaneous interval representation for the sunflower
case, even when k is part of the input. This answers an open question of Jampani and Lubiw.
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1 Introduction

For a family of geometric objects, the intersection graph is a graph that has for each object
a vertex such that two vertices are adjacent if and only if their objects intersect. Its
representation is the assignment of the objects to the vertices. In this paper, we consider
interval representations, which are assignments of intervals on the real line to the vertices of
a graph G such that two vertices of G are adjacent if and only if their intervals intersect.
Graph G is an interval graph if it has such a representation; see Figure 1.

A fundamental problem in the area of intersection graphs is the recognition problem,
where the task is to decide whether a given graph G admits a particular type of (geometric)
intersection representation. The simultaneous representation problem is a generalization
of the recognition problem that asks for k input graphs G1, . . . , Gk (with vertex labels)
whether there exist corresponding representations R1, . . . , Rk such that each vertex v that
is shared by two graphs Gi and Gj is represented by the same geometric object in Ri and
in Rj . For ease of notation, we refer to G = (G1, . . . , Gk) as a simultaneous graph, and
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Figure 1 An interval graph G, and an interval representation R of G. A valid clique ordering is
{a, b}, {c, b, d}, {b, d, e}.
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to R = (R1, . . . , Rk) as a simultaneous representation. For two graphs G, H we define the
intersection G ∩ H = (V (G) ∩ V (H), E(G) ∩ E(H)). A sunflower simultaneous graph is a
simultaneous graph G = (G1, . . . , Gk) where G1, . . . , Gk have pairwise the same intersection,
i.e., there is a graph S with S = Gi ∩ Gj for each i ̸= j. We call S the shared graph of G.

Simultaneous representations have first been studied in the context of graph embeddings
where also shared edges have to be represented by the same arc; see [3] for a survey. The
notion of simultaneous representations of general intersection graph classes was introduced
by Jampani and Lubiw, who gave an O(n3)-algorithm for recognizing simultaneous sunflower
permutation graphs (where n is the number of vertices in G1 ∪ · · · ∪ Gk) [17], proved NP-
completeness for sunflower chordal graphs (as intersection graphs of subtrees of a tree) [17],
and gave an O(n2 log n)-time algorithm for simultaneous interval graphs with k = 2 [15].
They left the case k > 2 open. The running times of all these algorithms were subsequently
reduced to optimal linear time (assuming each input graph is given separately, thus counting
the shared graph k times, and assuming that each input graph belongs to the corresponding
class) [4, 19].

Since then, the simultaneous representation problem has also been studied for proper and
unit interval graphs [20], circle graphs [8] and permutation graphs [17, 19] where k is part of
the input. Bok and Jedličková showed that recognizing simultaneous non-sunflower interval
graphs is NP-complete [5] if k is part of the input. Similar results hold for simultaneous
proper and unit interval representations [20].

A problem closely related to the (sunflower) simultaneous representation problem is
partial representation extension, where a representation R of a subgraph H of a single input
graph G is given, and the question is, whether G has a representation whose restriction
to H coincides with R. It has been studied extensively for various graph classes, e.g. for
interval graphs [18], circular-arc graphs [10], circle graphs [8, 19], as well as proper and
unit interval graphs [18]. Bläsius and Rutter gave a linear-time reduction from the partial
interval representation problem to the simultaneous interval representation problem on two
graphs [4].

We characterize sunflower simultaneous interval graphs in terms of linear orderings of
maximal cliques that satisfy certain consecutivity constrains. This allows us to work with
an established data structure called PQ-tree, which represents linear orderings satisfying
given consecutivity constraints. The algorithms of Jampani and Lubiw [15] and Bläsius
and Rutter [4] for recognizing simultaneous interval graphs with k = 2 input graphs use a
similar characterization and they also use PQ-trees. Jampani and Lubiw iteratively add
non-maximal cliques to orders of maximal cliques and associate nodes of distinct PQ-trees
to achieve necessary compatibilities. On the other hand, Bläsius and Rutter synchronize
a PQ-tree T that describes orderings of maximal cliques of both input graphs with two
PQ-trees T1, T2 for the two individual input graphs. To this end, they construct PQ-trees
for many nodes of T and a 2-SAT formula which describes dependencies between decisions in
these trees. While they establish a more general framework for simultaneous PQ-orderings,
their approach does not work for more than two input graphs for sunflower simultaneous
interval graph recognition.

Our Result. We show how to recognize sunflower simultaneous interval graphs in linear
time (assuming the input graphs are given separately) even when the number of input graphs
is part of the input, thereby answering the open question of Jampani and Lubiw [16]. We
note that, similar to Bläsius and Rutter, we use a PQ-tree T that describes orderings of
the maximal cliques of the input graphs, synchronize it with PQ-trees for the individual
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Figure 2 A simultaneous graph G = (G1, G2) with a simultaneous interval representation of G.

input graphs, and use a 2-SAT formula to describe dependencies between decisions in these
PQ-trees. However, with each operation, they only synchronize pairs of PQ-trees while, in a
sense, we synchronize multiple PQ-trees at once. Further, we essentially only construct a
single PQ-tree for the synchronization, instead of one for potentially each node of T , which
can be linear in the size of the input. For our construction, we exploit a close relation between
consecutivity constraints and certain substructures in PQ-trees (Lemma 5) that provides
a converse for a natural and widely used property of PQ-trees and may be of independent
interest.

Organization. In Section 2, we characterize sunflower interval graphs in terms of linear
orderings of maximal cliques and we describe PQ-trees. In Section 3, we describe operations
on PQ-trees and dependencies between decisions in the original and resulting PQ-trees. In
Section 4, we describe our construction, characterize sunflower interval graphs in terms of
this construction, and give the linear-time algorithm for the sunflower interval representation
problem. In Section 5 we conclude with open questions.

2 Preliminaries

For n ∈ N we set [n] = {j ∈ N | 1 ≤ j ≤ n}. In this paper all graphs are simple.

Simultaneous Interval Graphs. An interval representation R = {Iv}v∈V of a graph G =
(V, E) associates with each vertex v ∈ V an interval Iv = [x, y] ⊆ R such that for each pair
of vertices u, v ∈ V we have Iu ∩ Iv ̸= ∅ ⇔ uv ∈ E; see Figure 1. A simultaneous interval
representation of a simultaneous graph G = (G1, . . . , Gk) assigns each vertex v ∈

⋃k
i=1 V (Gi)

an interval Iv such that the induced interval representation {Iv}v∈V (Gi) is an interval
representation of Gi, for each i ∈ [k]; see Figure 2. In the following we only consider
sunflower simultaneous graphs G = (G1, . . . , Gk) which are simultaneous graphs for which
there is a graph S such that Gi ∩ Gj = S for i ̸= j. Note that it is necessary that S is an
induced subgraph of each input graph Gi for G to be a simultaneous interval graph. We
call S the shared graph of G.

It is well known that interval graphs can be characterized via orderings of maximal cliques.
A valid clique ordering of G is a linear ordering of the maximal cliques of G such that for
each v ∈ V (G) the maximal cliques of G that contain v are consecutive.

▶ Proposition 1 (Fulkerson and Gross [12]). A graph is an interval graph if and only if it
admits a valid clique ordering.

ESA 2023
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Let G = (G1, . . . , Gk) be a sunflower simultaneous graph with shared graph S. For
i ∈ [k], let Ki denote the set of maximal cliques of Gi and let K =

⋃̇k

i=1 Ki. Note that
we use the disjoint union since we want to treat the maximal cliques of the input graphs
separately, even if they coincide with maximal cliques of other input graphs. I.e., each
clique in K is tagged with the input graph Gi it comes from. For a vertex v ∈ V (Gi), we
define Ki(v) = {C ∈ Ki | v ∈ C} as the set of all maximal cliques of Gi that contain v and
for v ∈ V (S), we define K(v) = {C ∈ K | v ∈ C} as the (multi)-set of all maximal cliques
of G1, . . . , Gk that contain v. We further define K(S) as the set of maximal cliques in the
shared graph S. A simultaneous clique ordering of G is a linear ordering σ of K such that
the following two properties hold:

▶ Property 1. For each v ∈ V (S) the set K(v) is consecutive.

▶ Property 2. The restriction of σ to Ki is a valid clique ordering of Gi for each i ∈ [k].

The following theorem provides a combinatorial description of sunflower interval graphs
which we will use for our algorithm.

▶ Theorem 2. A sunflower simultaneous graph G is a simultaneous interval graph if and
only if it admits a simultaneous clique ordering.

Proof. If G = (G1, . . . , Gk) is a simultaneous interval graph, then it has a simultaneous
interval representation. For i ∈ [k], we choose a point pC for each clique C ∈ Ki such that
all intervals for C contain pC and no interval for vertices in V (Gi) \ C contains pC . Such a
point must exist since intervals have the Helly property and C is maximal in Gi. We call
these points clique points. Then for each v ∈ V (S) the clique points in the interval R(v) of v

are consecutive and exactly the cliques in K(v). Note that Property 1 does not necessarily
hold for non-shared vertices. However, for each input graph Gi the clique points are placed
according to the induced representation of Gi and thus provide a clique ordering of Gi.

On the other hand, given a simultaneous clique ordering σ for G, we construct an interval
representation of G as follows. We first place distinct (clique) points for the maximal cliques
in K on the real line in the order of σ from the left to the right. We then set for each
vertex v ∈ V its interval R(v) to [ℓ(v), r(v)] where ℓ(v) and r(v) are the leftmost point and
the rightmost point for cliques containing v, respectively. We claim that the clique points
and the consecutivity constraints then enforce correct adjacencies. Namely, two vertices
u, v of the same input graph Gi have intersecting intervals R(u), R(v) if and only if those
intervals share a clique point. It remains to show that R(u), R(v) share a clique point if and
only if u, v are adjacent. First observe that if u, v are adjacent, then there is some maximal
clique containing both and its clique point is contained in R(u) and R(v) by Properties 1, 2.

For the other direction, let R(u), R(v) share a clique point. We aim to show that there is
a clique containing u and v, which implies that u and v are adjacent, concluding the proof.
Since R(u), R(v) share a clique point, one of the intervals, lets say R(u), contains an endpoint
of the other one. That endpoint p is a clique point for a clique Cp ∈ Ki(v) by definition
of R(v). If v ̸∈ V (S), then Cp is a clique in Gi that also contains u by Property 2. We can
argue analogously if R(v) contains an endpoint of R(u) and u ̸∈ V (S). If both u and v lie
in V (S), then Cp contains u and v by Property 1. Finally, consider the case where u ̸∈ V (S),
v ∈ V (S) and R(v) contains no end of R(u), meaning that R(v) ⊆ R(u). Since S has a
maximal clique Cv containing v and Gi has a maximal clique C ′

v containing Cv, R(v) must
contain a clique point for C ′

v and thus u and v are contained in clique C ′
v. ◀
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Figure 3 A PQ-tree T , an equivalent PQ-tree T ′ where the leaves a, b, c, d, e are consecutive,
and a reduction T ′′ of T with {a, b, c, d, e} (introduced in Section 3). We depict P-nodes as circles
and squares as Q-nodes. T ′′ can be obtained from T ′ by merging the nodes along the thick path
after splitting the gray P-nodes. This results in nodes with only two children, which we consider as
Q-nodes.

PQ-Trees. Let L be a set and let L′ ⊆ L. The ordering ≤′ of L′ is induced by a linear
ordering ≤ of L, if we have a ≤′ b ⇔ a ≤ b for all a, b ∈ L′. A PQ-tree is a data structure
that represents linear orderings satisfying a set of consecutivity constraints [6]. Formally, a
PQ-tree T on a set L of leaves is a rooted ordered tree where each inner node is either a
P-node or a Q-node; see Figure 3. The order of its leaves is the order induced by a preorder
traversal of the tree. A PQ-tree T ′ is equivalent to T if T ′ can be obtained from T by
arbitrarily reordering the children of P-nodes and by reversing the order of the children of
any subset of Q-nodes. Note that reversing the order of the children of a Q-node λ does not
change the order of the children of any child of λ. In this paper, we consider P-nodes with
only two children as Q-nodes. Note that this does not affect which PQ-trees are equivalent.
For each inner node µ we say we flip µ, if we reverse the order of its children.

A PQ-tree represents a linear ordering ≤ of L if ≤ is the order of the leaves of some
equivalent PQ-tree. We write R(T ) for all linear orderings of L represented by T . The
null-tree is defined as a special PQ-tree T∅ with R(T∅) = ∅. For an inner node µ of a PQ-tree,
let L(µ) denote the leaves of the subtree rooted at µ. For a leaf µ let L(µ) = {µ}. We denote
the lowest common ancestor of a set N ⊆ V (T ) by lcaT (N). We say that a node ν of T is
left of a node λ in t if ν comes before λ in a preorder traversal. However, the order of a node
and one of its ancestors will never be relevant in this paper.

3 Operations on PQ-Trees

By Theorem 2, we can recognize sunflower simultaneous interval graphs by testing the
existence of a simultaneous clique ordering. We use PQ-trees to describe clique orderings
that satisfy the properties of a simultaneous clique ordering. Namely, we use a PQ-tree T

with leaf set K to describe all linear orderings satisfying Property 1 and PQ-trees T ′
1, . . . , T ′

k

where each T ′
i represents all valid clique orderings of Gi. A simultaneous clique ordering is

then a linear ordering σ ∈ R(T ) that induces orderings in R(T ′
1), . . . , R(T ′

k).
To find such a linear ordering σ, we “synchronize” these PQ-trees. One step will be to

construct a PQ-tree TS on K(S) that describes the maximal clique orderings of S that are in
some sense compatible with the linear orderings in R(T ′

1), . . . , R(T ′
k). Another aspect is to

describe the dependencies between decisions at Q-nodes in all constructed PQ-trees.

Consistency and Backward-Consistency. We say that an ordered pair of leaves (λ1, λ2) is
forward directed if λ1 comes before λ2 in the leaf ordering of the PQ-tree. Otherwise, we call
it backward directed. Hence, a pair of leaves is either forward directed or backward directed.
Note that the corresponding children ν1, ν2 of lca(λ1, λ2) with λ1 ∈ L(ν1) and λ2 ∈ L(ν2)
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90:6 Simultaneous Representation of Interval Graphs in the Sunflower Case

are ordered the same way as λ1, λ2. Hence, if µ is a Q-node, flipping µ changes the order
of λ1, λ2. Let T1, T2 be two PQ-trees on sets L1, L2 with L1 ⊆ L2 and let µ1, µ2 be two
Q-nodes in T1, T2 such that there are two leaves λ̂1, λ̂2 whose order is affected by flipping µ1
or µ2, respectively. More formally, let µ1 be a Q-node in T1 with children ν1

1 , ν1
2 and let µ2

be a Q-node in T2 with children ν2
1 , ν2

2 , such that there exist two leaves λ̂1 ∈ L(ν1
1) ∩ L(ν2

1)
and λ̂2 ∈ L(ν1

2) ∩ L(ν2
2).

We say µ1 and µ2 are consistent, if for each pair (λ1, λ2) of leaves with µ1 = lcaT1(λ1, λ2),
µ2 = lcaT2(λ1, λ2) we have that (λ1, λ2) is forward directed in T1 if and only if it is forward
directed in T2. We say µ1 and µ2 are reverse consistent, if for each pair (λ1, λ2) of leaves with
µ1 = lcaT1(λ1, λ2), µ2 = lcaT2(λ1, λ2) we have that (λ1, λ2) is forward directed in T1 if and
only if (λ1, λ2) is backward directed in T2. Observe that µ1, µ2 cannot be both consistent and
reverse consistent at the same time. Consider the case where µ1, µ2 are neither consistent nor
reverse consistent. Then µ1, µ2 order at least one pair of leaves differently (one forward and
one backward directed) and at least one pair of leaves the same way (forward or backward
directed). This remains true even after flipping one or both of µ1, µ2. Hence, in that case no
linear order in R(T1) can be extended to a linear order in R(T2), since at least one pair of
leaves is ordered differently.

We use four operations on PQ-trees for the construction of the PQ-tree TS that orders
the maximal cliques of the shared graph: reduction, intersection, projection and pruning.
While the first three operations are frequently used for PQ-trees, pruning is less common, but
was for example used in the context of level planarity [7] where the algorithm is attributed
to Di Battista and Nardelli [2].

To achieve a linear running time for our algorithm, we track what happens to Q-nodes
when applying these operations in a PQ-tree, similar as in [4].

Reduction. Let T be a PQ-tree with leaf set L. The reduction of R(T ) with a set L′ ⊆ L

is the set R′(T, L′) of linear orderings in R(T ) where L′ is consecutive. A PQ-tree T ′ with
R(T ′) = R′(T, L′) can be computed from T in O(|L′|) time [6]. This operation is the main
operation for PQ-trees, since it allows to compute a PQ-tree T̂ on L where sets S1, . . . , Sk ⊆ L

are consecutive efficiently.

▶ Proposition 3 (Booth and Lueker [6]). Let L be a finite set and let S1, . . . , Sk ⊆ L be
non-empty sets. A PQ-tree T̂ on L that represents the linear orderings of L where S1, . . . , Sk

are consecutive can be computed in O(|L| +
∑k

i=1 |Si|) time.

While the reduction for PQ-trees was originally described by applying a variety of
templates, Hsu gave an alternative description [14]; see also [11]. Roughly speaking, we find
a certain path P in T that separates L′ and L \ L′, split P-nodes on P suitably and merge
the resulting nodes on P to a single P-node. Finally we remove some degeneracies (especially,
if P consists of a single P-node λ, the resulting Q-node is smoothed, effectively just splitting
λ into two P-nodes); see Figure 3. For more details, we refer to the papers of Booth and
Lueker [6] or Hsu [14]. We only use the running time result for the construction of PQ-trees
satisfying given consecutivity constraints mentioned above. Especially, we do not need to
keep track of the consistencies between Q-nodes for the reduction.

Intersection. Let T1, T2 be PQ-trees with leaf set L. The intersection T1 ∩ T2 is a PQ-tree
on L representing R(T1) ∩ R(T2). It can be computed from T1, T2 in O(|L|) time together
with the consistencies between the Q-nodes in T1 ∩ T2 and the Q-nodes in T1 and T2 [19].

For any two cliques A, B ∈ L where lcaT1(A, B) or lcaT2(A, B) is a Q-node, one can see
that lcaT1∩T2(A, B) is a Q-node as follows. Let lcaT1(A, B) be a Q-node. We can obtain
T1 ∩ T2 from T1, by applying a reduction on T1 for each consecutivity constraint of T2. Since
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the only possible change to Q-nodes in reductions is being merged with other nodes to a
Q-node of higher degree, the lowest common ancestor of A, B remains a Q-node (Note that
the reduction of a PQ-tree for a given set is unique up to equivalence).

Projection. Let T be a PQ-tree with leaf set L and let L′ ⊆ L. The projection R⋆(T, L′)
from R(T ) to L′ is the set of linear orderings of L′ induced by the linear orderings in R(T )
on L′. The projection T ′ of T on L′ is a PQ-tree on L′ with R(T ′) = R⋆(T, L′). It can be
computed in O(|L|) time from T by only keeping nodes µ with L(µ) ∩ L′ ̸= ∅ and smoothing
all nodes with a single child (that is, removing the node and adding an arc connecting its
parent with its child). Here all Q-nodes in T ′ are consistent to their respective copy in T .

Prune. Let T be a PQ-tree with leaf set L, let ℓ′ ̸∈ L and let L′ ⊆ L be consecutive in
each σ ∈ R(T ). For any σ ∈ R(T ), the prune of L′ to ℓ′ in σ is the result of replacing L′ in σ

by ℓ′. The prune of L′ to ℓ′ in R(T ) is the set containing for each σ ∈ R(T ) the prune of L′

to ℓ′ in σ. For pruning PQ-trees, we first observe that consecutive sets of leaves correspond
to simple substructures of PQ-trees.

▶ Lemma 4. Let T be a PQ-tree with leaf set L and let L′ ⊆ L be consecutive in each σ ∈ R(T ).
Then, there is either a P-node λ with L(λ) = L′ or a Q-node µ with a consecutive subset of
children ν1, . . . , νl such that

⋃l
i=1 L(νi) = L′.

Proof. We consider ν = lca(L′), i.e., L′ ⊆ L(ν) and there are two distinct children µ1,µ2
of ν with L′ ∩ L(µ1) ̸= ∅ and L′ ∩ L(µ2) ̸= ∅.

First assume ν is a P-node. Then for any other child ξ of ν we have L(ξ) ⊆ L′ since
otherwise we could violate the consecutivity of L′ by placing ξ between µ1 and µ2. We
further have L(µ1) ⊆ L′ and L(µ2) ⊆ L′, since otherwise the consecutivity of L′ is violated
after flipping µ1 and µ2. Hence, we have L(ν) = L′.

Next let ν be a Q-node, and let µ1, µ2 be the leftmost and the rightmost child of ν

with descendants in L′. Since L′ is consecutive, all children between µ1 and µ2 only have
descendants in L′. If µ1 or µ2 had a descendant not in L′, then the consecutivity of L′ could
be violated by flipping it. Hence, ν has the stated property. ◀

With this insight, the prune of L′ to ℓ′ in T is obtained as follows. By Lemma 4, either
lca(L′) is a P-node with L(lca(L′)) = L′ or lca(L′) is a Q-node with consecutive children
ν1, . . . , νl such that L′ =

⋃l
i=1 L(νi). If lca(L′) is a P-node, the prune is obtained by replacing

lca(L′) and its subtree by leaf ℓ′. Otherwise, the prune is obtained by replacing ν1, . . . , νl

by ℓ′ as a child of the Q-node lca(L′). Clearly, given L′, the prune can be computed in
O(|L′|) time from T with a bottom-up approach. We introduce additional consistencies.
Namely, we consider each Q-node µ of T consistent to its copy µ′ in the prune of L′ to ℓ′ in
T , if that copy exists. These consistencies are trivial and not explicitly computed.

4 Recognition Algorithm

We use Theorem 2 to recognize sunflower simultaneous interval graphs by deciding whether
a given sunflower simultaneous graph G has a simultaneous clique ordering. The rough idea
is the following. For Property 1, we construct a PQ-tree T on K where K(v) is consecutive
for each v ∈ V (S). For Property 2, we construct for each i ∈ [k] a PQ-tree T ′

i on Ki where
Ki(v) is consecutive for each v ∈ V (Gi). I.e., each T ′

i represents the valid clique orderings
of Gi; see Figure 4. By construction, a simultaneous clique ordering of G is then a linear
ordering σ ∈ R(T ) that induces a linear ordering in each of R(T ′

1), . . . , R(T ′
k).

ESA 2023
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Figure 4 Top: Simultaneous representation of a sunflower simultaneous graph G = (G1, G2) with
V (G1) = {a, b, c, r, s, t, u} and V (G2) = {x, y, r, s, t, u}. Below are the PQ-trees for G with circles
for P-nodes and squares for Q-nodes, as defined in Section 4. The leaves are cliques described as
strings of the contained vertices.



I. Rutter and P. Stumpf 90:9

This means that we obtain σ as the order of leaves of T , if for i ∈ [k] any two cliques
A, B ∈ Ki are ordered the same way in the order of leaves of T and in the order of leaves of T ′

i .
We construct PQ-trees T1, . . . , Tk by restricting T ′

1, . . . , T ′
k such that they are “compatible”

with T while only loosing linear orderings that do not match any simultaneous clique ordering.
We will show that if lcaT (A, B) is a Q-node, then so is lcaTi

(A, B). This allows to ensure
the same ordering of A, B in T and Ti by making each pair of backward-consistent Q-nodes
consistent. We achieve this with a 2-SAT formula Φ. If µ = lcaT (A, B) is a P-node, then we
cannot just arrange the children of µ according to Ti, since this can also affect the order of
maximal cliques for other input graphs. However, we can resolve this problem as follows.
We will see that, if A or B is a child of µ directly, then its position can be chosen according
to Ti without affecting the order of the cliques for other input graphs. Otherwise, µ has two
inner nodes ν1, ν2 with A ∈ L(ν1), B ∈ L(ν2) as children. The next lemma then shows that
the order of ν1 and ν2 is in a sense decided by the order of two shared intervals (“below”
ν1 and ν2, respectively). This allows us to synchronize T and T1, . . . , Tk by considering
corresponding valid clique orderings for K(S). Namely, we use the operations on PQ-trees
from Section 3 to obtain a PQ-tree TS on K(S) that is in a sense compatible with T1, . . . , Tk

and T . In T , we order the children of a P-node µ that are inner nodes according to the order
of corresponding shared intervals whose order is given by the order of the leaves of TS , and
we apply corresponding orderings in each Ti. This ensures compatibility of the orders of
T1, . . . , Tk, since all children of µ that are leaves are private to some Ti and can be arranged
accordingly in T .

Note that each consecutivity constraint for T is a set K(v) with v ∈ V (S). In that sense,
by the following lemma each child of a P-node in T has a private shared vertex v ∈ V (S) if
it is an inner node.

▶ Lemma 5. Let L be a finite set and let {S1, . . . , Sk} ⊆ 2L with |Si| ≥ 2 for i ∈ [k]. Let T

be the PQ-tree on L obtained by making S1, . . . , Sk consecutive. Let µ be a P-node and let ν

be a child of µ that is not a leaf. Then if ν is a P-node, there is an Si with L(ν) = Si. If ν is
a Q-node, there is an Si with

⋃l
j=1 L(νj) = Si for a consecutive subset of children ν1, . . . , νl

of ν.

Proof. Let ν be a P-node and suppose there is no Si with L(ν) = Si. First observe that by
Lemma 4, for any Si with Si ∩ L(µ) ̸= ∅, we have either L(µ) ⊆ Si or Si ⊆ L(λ) for some
child λ of µ. This means that, after contracting the arc µν, no Si can be violated. However,
the contraction allows to order other children of µ between the children of ν. Thereby L(ν)
is no longer consecutive in all represented linear orderings. This contradicts T originally
representing all linear orderings where S1, . . . , Sk are consecutive, since in each σ ∈ R(T ) for
the original T , leaf set L(ν) is consecutive.

Next, let ν be a Q-node and suppose there is no Si with
⋃l

j=1 L(νj) = Si for any
consecutive subset of children ν1, . . . , νl of ν. If ν has precisely two children, we treat it
as a P-node and argue as above that there is an Si with L(ν) = Si. Hence, assume that
ν has at least three children. By Lemma 4, for any Si with Si ∩ L(µ) ̸= ∅, we then have
either L(µ) ⊆ Si or Si ⊆ L(λ) for some child λ of µ. This means that after switching the
label of µ from Q-node to P-node, still all represented linear orderings have all Si consecutive.
This contradicts the choice of T , since by making µ a P-node, T represents additional linear
orderings. ◀

Note that Lemma 5 is in a sense the converse of Lemma 4 for the children of P-nodes.
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4.1 Polynomial-Time Algorithm
We now describe the construction of the 2-SAT formula Φ and all relevant PQ-trees. For Φ,
each Q-node λ (of any constructed PQ-tree) is assigned a Boolean variable xλ that tells
whether it should be flipped, and we add (xλ ↔ xµ) for consistent nodes µ and we add
(xλ ̸↔ xν) for backward-consistent nodes ν to Φ. We describe for which PQ-trees we need to
consider the consistencies after introducing all PQ-trees.

Let G = (G1, . . . , Gk) be a sunflower simultaneous graph and let T be the PQ-tree on K
that enforces consecutivity of each set K(v) with v ∈ V (S); see Figure 4. Note that if T is
the null-tree, then there exists no simultaneous clique ordering since Property 1 cannot be
satisfied, and by Theorem 2 there is no simultaneous interval representation of G. Hence, we
assume in the following, that T is not the null-tree.

For i ∈ [k], let T |i be the projection of T on Ki, and let T ′
i be the PQ-tree on Ki that

enforces consecutivity of each set Ki(v) with v ∈ V (Gi). Note that T ′
i describes all valid

clique orderings of Gi. We are interested in the PQ-tree Ti = T |i ∩ T ′
i , which restricts the

valid clique orderings of Gi to those that are compatible with Property 1; see Figure 4. With
Property 2 this means that, if any Ti is the null-tree, then there is no simultaneous clique
order. Hence, we assume in the following that no Ti is the null-tree.

We would like to synchronize T1, . . . , Tk with T . However, they have distinct leaf sets.
Thus, we cannot just intersect them. Instead, we aim to describe the clique orderings for S

that can be induced by T1, . . . , Tk with PQ-trees. This allows us to find a clique ordering
for S that is compatible with all T1, . . . , Tk. With the Q-nodes flipped according to a solution
of Φ, this will be enough to synchronize T1, . . . , Tk with T .

We next aim to prune T1, . . . , Tk to maximal cliques of S. For any clique A ∈ K(S),
we define Ki(A) as the set of maximal cliques of Gi that contain A as a subclique. It is
Ki(A) = {C ∈ Ki | A ⊆ C} =

⋂
v∈A{C ∈ Ki | v ∈ C} =

⋂
v∈A(K(v) ∩ Ki). The critical

observation is that, since the intersection of consecutive sets is itself consecutive in a linear
order, Ki(A) is consecutive in T ′

i and thus in Ti. Note that for distinct A, B ∈ K(S), the
sets Ki(A) and Ki(B) are disjoint, since the set of shared vertices in a maximal clique
C ∈ Ki(A) ∩ Ki(B) would otherwise be A as well as B.

We can now construct for each Ti a PQ-tree describing the corresponding orderings of
K(S) as follows. For i ∈ [k], let T ⋆

i be the PQ-tree obtained by starting with Ti and pruning
for each A ∈ K(S) the set Ki(A) to leaf A. Then, let Ti|S be the projection of T ⋆

i on K(S).
Finally, let TS =

⋂k
i=1 Ti|S be the intersection of all Ti|S ; see Figure 4. By construction,

R(TS) contains all clique orderings of S that can be induced by a simultaneous clique order.
Hence, if it is the null-tree, there is no simultaneous clique order.

For each 1 ≤ i ≤ k, we add clauses to Φ for the consistencies between T and T |i, between
T |i and Ti, between Ti and T ⋆

i , between T ⋆
i and Ti|S , and between Ti|S and TS . If Φ is not

satisfiable, then there is no simultaneous clique ordering. On the other hand, with this, the
necessary conditions are also sufficient.

▶ Theorem 6. (G1, . . . , Gk) is a sunflower interval graph if and only if Φ is satisfiable and
neither T nor TS is the null-tree.

Proof. If (G1, . . . , Gk) is a sunflower interval graph the requirements are necessary as
discussed above. Hence, assume that neither T nor TS is the null-tree and that Φ has a
satisfying assignment Γ. By Theorem 2, it suffices to find a simultaneous clique ordering.
We aim to operate on T and each Ti such that the order σ of T induces the order of each Ti,
thus ensuring that σ is a simultaneous clique ordering. We first flip all Q-nodes according
to Γ (that is, flip each Q-node λ where xλ is true). This ensures that any two cliques A, B
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in K or C(S) are ordered the same way in each of T, T1, . . . , Tk or T1|S , . . . , Tk|S , TS where
lca(A, B) is a Q-node and the sets Ki(A), Ki(B) are ordered in Ti the same way as A, B are
ordered in Ti|S , for i ∈ [k].

We next order the children of the P-nodes of T . Let µ be a P-node of T . Then, by Lemma 5
for each child ν of µ that is an inner node, there is a vertex v ∈ S such that K(v) ⊆ L(ν):
We choose an arbitrary clique Cν ∈ K(S) that contains v. We then order the children ν of µ

that are inner nodes according to the order of the corresponding cliques Cν given by TS .
For i ∈ [k], we order the sets Ki(Cν) in Ti accordingly. First note that these sets are not
empty since each Gi contains a clique containing Cν . Next note that this orders any two
leaves λ1,λ2 ∈ Ki with µ = lcaT (λ1, λ2) that are not children of µ the same way in Ti as in T

since for the corresponding children ν1, ν2 of µ we have that L(ν1) and L(ν2) are consecutive
in T and thus also in Ti. E.g., even if ν1 is a Q-node and Ki(Cν1) does not contain λ1, this
rearrangement still ensures the correct ordering of λ1 and λ2 in Ti. Finally note that this
does not flip any Q-nodes of Ti since projection and intersection preserve Q-nodes that order
two leaves of the projection set [4]. I.e., for each pair of cliques A, B ∈ K(S) such that the
order of Ki(A), Ki(B) is decided by a Q-node µ in Ti, there is a Q-node in TS deciding the
order of A, B the same way as µ orders Ki(A), Ki(B) (after flipping Q-nodes according
to Γ).

With this, for any P-node µ of T and any two children ν1, ν2 of µ that are inner nodes,
each Ti orders any pair of A ∈ L(ν1)∩Ki and B ∈ L(ν2)∩Ki the same way as T . This allows
us to order the children of µ simultaneously according to T1, . . . , Tk where each inner node ν

is ordered as any leaf C ∈ L(ν) ∩ Ki. Note that each child of µ that is a leaf is contained
in a single Ti, i.e., it can be placed solely considering the order in Ti (which ensures the
correct order with regards to the children of µ that are inner nodes). Since L(ν) ∩ Ki is
consecutive in Ti, the choice of C(ν) does not matter. I.e., we find an ordering of all children
of µ, which is compatible with the orderings given by T1, . . . , Tk. It remains to show that T

now actually provides a simultaneous clique ordering. Property 1 is satisfied by the definition
of T . For Property 2 we verify that the order of Ki induced by T is the same as the one given
by Ti. Consider any two cliques A, B ∈ Ki. If lcaT (A, B) is a Q-node, then A, B are ordered
the same way in T and Ti, since we flipped the Q-nodes according to Φ. If lcaT (A, B) is a
P-node, then they are ordered the same way in T and Ti by the operations we just applied
on the P-nodes of T . ◀

All three requirements in Theorem 6 are necessary; see Figure 5. Theorem 6 allows to
recognize sunflower interval graphs in polynomial time by constructing T , TS and Φ. If G is
a simultaneous interval graph, we obtain a simultaneous clique ordering of G by following
the construction in the proof of Theorem 6. With the construction in Theorem 2, we then
obtain a simultaneous interval representation.

▶ Corollary 7. Sunflower interval graphs can be recognized in polynomial time. For yes-
instances a simultaneous interval representation can also be constructed in polynomial time.

4.2 Linear-Time Algorithm
To achieve a linear running time, we use that the construction steps can be done efficiently,
while also computing the consistencies between Q-nodes, as discussed in Section 3. However,
we cannot afford to compute the projection from T on Ki for each i ∈ [k] separately, since
this could result in an additional factor of k for the running time. Instead, we use the next
lemma to compute the projections simultaneously. A similar argumentation has been used
by Münch et al. [19].
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Figure 5 Variants of a sunflower graph G = (G1, G2) where G1 and G2 are interval graphs, but
G is not a simultaneous interval graph. a) T is a null-tree since the sets {abc, bx}, {abc, ay} and
{abc, cz} have to be consecutive, while abc can only have two neighbors in the linear ordering. b) TS

is a null-tree since G1 forces b to be in the middle of a and c, while G2 forces a to be in the middle
of b and c. c) Φ cannot be satisfied since ξ is consistent to µ and ν while λ is consistent to µ and
backward-consistent to ν (note that these consistencies are implied in Φ via the other constructed
PQ-trees).
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▶ Lemma 8. Let T be an ordered tree with leaf set L and let S = {S1, . . . , Sl} ⊆ 2L. Then,
for each Si ∈ S the projection T ⋆

i of T on Si can be computed such that each node of T ⋆
i

holds a reference to its original copy in T , with a total running time in O(|L| +
∑l

i=1 |Si|).

Proof. Observe that a preorder traversal of a T ⋆
i is a subsequence of a preorder traversal of

T . We create a list U that contains a tuple (Si, λ.p) where λ.p is the position of λ in the
preorder of T , for each Si ∈ S and λ ∈ Si. We then sort U lexicographically in linear time
using radix sort [9]. Then, for each set Si ∈ S, the tuples with Si are consecutive and provide
the order of the leaves in Si in the preorder traversal. For any Si, we find all nodes of T ⋆

i in
T with the following observation. Let µ be a node of T ⋆

i and let ν1, ν2 be two children of µ

with ν1 < ν2 in the preorder. Then µ is the lowest common ancestor of the rightmost leaf in
L(ν1) and the leftmost leaf in L(ν2). Hence, each inner node of T ⋆

i is the lowest common
ancestor of two consecutive leaves. We use the lowest common ancestor data structure for
static trees by Harel and Tarjan [13], to compute for every pair of nodes λ1, λ2 in Si that
are consecutive in the preorder the least common ancestor lcaT (λ1, λ2) and place it between
λ1 and λ2 in a copy Ui of Si ordered as the preorder. This is already preparing the last step,
which is to compute for each node of T ⋆

i its parent. Now every node λ ∈ Si is descendant
of both its neighbors µ1, µ2 in Ui. If µ1, µ2 are distinct, the later one in the preorder is
the parent of λ (and descendant of the other one). By removing Si and then all duplicates
from Ui, we get a list of all nodes of Si of height 1. Note that all duplicates of a node λ

are consecutive, when they are removed. By repeating the same for each height, we get the
parents of all nodes. ◀

With that, the construction of the PQ-trees is straightforward.

▶ Corollary 9. Sunflower interval graphs can be recognized in O(
∑k

i=1(|V (Gi)| + |E(Gi)|))
time, where (G1, . . . , Gk) is the input sunflower graph. For yes-instances a simultaneous
interval representation can be constructed in the same asymptotic running time.

Proof. We follow the construction of T , T1, . . . , Tk, T1|S , . . . , Tk|S , TS for Theorem 6. For
each constructed PQ-tree, we maintain the consistencies to the PQ-tree(s) it is constructed
from (except for consistencies to unchanged copies of a Q-node, where we use the same
variable). The trees T and T ′

1, . . . , T ′
k, can be constructed in O(

∑k
i=1(|V (Gi)| + |E(Gi)|))

time by Proposition 3. Then, T |1, . . . , T |k can be constructed in O(
∑k

i=1(|V (Gi)| + |E(Gi)|))
time by Lemma 8. The PQ-trees T1, . . . , Tk can be constructed in the same total time [19].
T1|S , . . . , Tk|S can then be constructed in O(

∑k
i=1(|V (Gi)| + |E(Gi)|)) by computing the

projection and prunes directly. However, we store the smoothed nodes and pruned subtrees
(or sets of subtrees), such that we can compute easily a linear order in R(Ti) whose prune
is a given linear order in R(Ti|S) (after projection to K(S)). Finally, TS can be computed
in O(k · (|V (S)| + |E(S)|)) time. The 2-SAT formula Φ can easily be computed from the
maintained consistencies. A solution for Φ can be computed in linear time [1]. With
Theorem 6 this suffices to decide whether there is a simultaneous interval representation.

To compute such a representation in linear time, we construct the simultaneous clique
ordering a bit differently than in Theorem 6. We first operate on T1|S , . . . , Tk|S such that
their leaves are ordered as in TS . This can be done in O(k · (|V (S)| + |E(S)|)) time. Then we
reverse the smoothing and pruning from T1, . . . , Tk (using the stored nodes and subtrees) to
obtain corresponding linear orderings in R(T1), . . . , R(Tk). This can be done in time linear
in the size of T1, . . . , Tk, i.e., in O(

∑k
i=1(|V (Gi)| + |E(Gi)|)) time.

In the proof of Theorem 6 we established that the obtained linear orderings can now be
merged to a simultaneous clique ordering. We only need to ensure the consecutivities for
the shared vertices. Then, we compute for i ∈ [k] the first and last position sv

i , tv
i of each
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shared vertex v ∈ V (S) in the clique ordering of Ti by iterating over the clique ordering
once. For i ∈ [k], we sort a list of all these positions in O(|V (Gi)| + |E(Gi)|) time using
counting sort [9]. After removing duplicates of positions appearing multiple times, we assign
each shared vertex v the positions ŝv

i , t̂v
i of sv

i , tv
i in that sorted list. We can then consider

for each vertex v ∈ V (S) two k-tuples ŝv = (ŝv
1, . . . , ŝv

k) and t̂v = (t̂v
1, . . . , t̂v

k). We sort a list
LS of all these k-tuples lexicographically in O(k · |V (S)|) time using radix sort [9]. This
provides us with an order of the start and endpoints of the intervals of the shared vertices in
a simultaneous interval representation.

We get a simultaneous clique ordering σ by simultaneously iterating over the sorted list
LS and the clique orderings of T1, . . . , Tk as follows. At each entry sv (or tv) of LS , append
to σ for each Ti all cliques between the last appended clique and position sv

i (or tv
i ). After the

last entry of LS , append the remaining cliques to σ. Since we followed the construction of the
proof of Theorem 6 there is a simultaneous clique ordering inducing the clique orderings of
T1, . . . , Tk. Thus, we have for any two entries r = (r1, . . . , rk), r′ = (r′

1, . . . , r′
k) that r ≤ r′ in

LS only if ri ≤ r′
i, for all i ∈ [k]. This ensures that each clique C is appended when C ∩ V (S)

are precisely the shared vertices v for which sv is processed, but tv is not. Hence, Property 1
is satisfied and σ actually is a simultaneous clique ordering. With that a simultaneous
interval representation can be computed straightforwardly, by placing a point for each clique
on the real line in that order and then assigning to each vertex v the interval [sv, tv] where
sv, tv are the points for the first and last clique containing v, as done for Theorem 2. ◀

5 Open Questions

While we solve the sunflower representation problem for interval graphs in linear time if
each input graph is given separately, a more compact input description is possible, if the
number of non-shared vertices is very small. In that case, the input can be given as the union
G =

⋃k
i=1 Gi as a single graph with labels describing which input graph a non-shared vertex

belongs to. Our approach would then have a running time in O(k · (|V (G)| + |E(G)|)).

▶ Question 1. Can the sunflower representation problem for interval graphs be solved in
o(k · (|V (G)| + |E(G)|)) time if the input is given as the union graph G?

Note that it is not clear how to even verify that each input graph is an interval graph
with less time.

While the general simultaneous representation problem is NP-complete for interval graphs
if the number of input graphs is part of the input, and it is solvable in linear time for k = 2,
we do not know the complexity for fixed k > 2.

▶ Question 2. Can the simultaneous representation problem for interval graphs be solved
in polynomial time for a fixed k > 2? In particular, considering k as a parameter, is the
problem in XP? Is it FPT?
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Abstract
Streaming algorithms are typically analyzed in the oblivious setting, where we assume that the input
stream is fixed in advance. Recently, there is a growing interest in designing adversarially robust
streaming algorithms that must maintain utility even when the input stream is chosen adaptively
and adversarially as the execution progresses. While several fascinating results are known for the
adversarial setting, in general, it comes at a very high cost in terms of the required space. Motivated
by this, in this work we set out to explore intermediate models that allow us to interpolate between
the oblivious and the adversarial models. Specifically, we put forward the following two models:

The bounded interruptions model, in which we assume that the adversary is only partially
adaptive.
The advice model, in which the streaming algorithm may occasionally ask for one bit of advice.

We present both positive and negative results for each of these two models. In particular, we
present generic reductions from each of these models to the oblivious model. This allows us to design
robust algorithms with significantly improved space complexity compared to what is known in the
plain adversarial model.
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1 Introduction

Streaming algorithms are algorithms for processing data streams in which the input is
presented as a sequence of items. Generally speaking, these algorithms have access to limited
memory, significantly smaller than what is needed to store the entire data stream. This field
was formalized by Alon, Matias, and Szegedy [3], and has generated a large body of work
that intersects many other fields in computer science. In this work, we focus on streaming
algorithms that aim to track a certain function of the input stream, and to continuously
report estimates of this function. Formally,

▶ Definition 1.1 (Informal version of Definition 2.1). Let X be a finite domain and let
g : X∗ → R be a function that maps every input x⃗ ∈ X∗ to a real number g(x⃗) ∈ R.
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91:2 Relaxed Models for Adversarial Streaming: The ASBI Model and the ASA Model

Let A be an algorithm that in every round i ∈ [m] obtains an element xi ∈ X and outputs
a response zi ∈ R. Algorithm A is said to be an oblivious streaming algorithm for g with
accuracy α, failure probability β, and stream length m, if the following holds for every input
sequence x⃗ = (x1, x2, . . . , xm) ∈ Xm. Consider an execution of A on the input stream x⃗.
Then, Pr [∀i ∈ [m] we have zi ∈ (1± α) · g(x1, . . . , xi)] ≥ 1−β, where the probability is taken
over the coins of algorithm A.

Note that in Definition 1.1, the streaming algorithm is required to succeed (w.h.p.)
for every fixed input stream. In particular, it is assumed that the choice for the elements
in the stream is independent from the internal randomness of the streaming algorithm.
This assumption, called the oblivious setting, is crucial for the correctness of most classical
streaming algorithms. In this work, we are interested in a setting where this assumption
does not hold, referred to as the adversarial setting.

1.1 The (Plain) Adversarial Model
The adversarial streaming model, in various forms, was considered by [20, 12, 13, 1, 2, 15,
8, 7, 16, 24, 6, 4]. The adversarial setting is modeled by a two-player game between a
(randomized) StreamingAlgorithm and an Adversary. At the beginning, we fix a function
g : X∗ → R. Throughout the game, the adversary chooses the updates in the stream, and is
allowed to query the streaming algorithm at T time steps of its choice (referred to as “query
times”). Formally, for round i = 1, 2, . . . , m:
1. The Adversary chooses an update xi ∈ X and a query demand qi ∈ {0, 1}, under the

restriction that
∑i

j=1 qj ≤ T .
2. The StreamingAlgorithm processes the new update xi. If qi = 1 then, the Streaming-

Algorithm outputs a response zi, which is given to the Adversary.

The goal of the Adversary is to make the StreamingAlgorithm output an incorrect response
zi at some query time i in the stream. Let g be a function defining a streaming problem,
and suppose that there is an oblivious streaming algorithm A for g that uses space s. It is
easy to see that g can be solved in the adversarial setting using space ≈ s · T , by running T

copies of A and using each copy for at most one query. The question is if we can do better.
Indeed, Hassidim et al. [16] showed the following result.

▶ Theorem 1.2 ([16], informal). If there is an oblivious streaming algorithm for a function g

that uses space s, then there is an adversarially robust streaming algorithm for g supporting
T queries using space ≈

√
T · s.

Note that when the number of queries T is large, this construction incurs a large space
blowup. One way for coping with this is to assume additional restrictions on the function
g or on the input stream. Indeed, starting with Ben-Eliezer et al. [7], most of the positive
results on adversarial streaming assumed that the input stream is restricted to have a small
flip-number, defined as follows.

▶ Definition 1.3 (Flip number [7]). The (α, m)-flip number of an input stream x⃗ w.r.t. a
function g, denoted as λα,m(x⃗, g), or simply λ, is the maximal number of times that the value
of g changes (increases or decreases) by a factor of (1 + α) during the stream x⃗.

Starting from [7], the prior works of [7, 16, 24, 4] presented generic constructions that
transform an oblivious streaming algorithm with space s into an adversarially robust streaming
algorithm with space ≈ s · poly(λ). That is, under the assumption that the flip-number
is bounded, these prior works can even support T = m queries. This is useful since the



M. Sadigurschi, M. Shechner, and U. Stemmer 91:3

parameter λ is known to be small for many interesting streaming problems in the insertion-
only model (where there are no deletions in the stream). However, in general it can be as
big as Θ(m), in which case the transformations of [7, 16, 24, 4] come at a very high cost in
terms of space. To summarize this discussion, current reductions from the adversarial to
the oblivious setting are useful either when the number of queries T is small, or when the
flip-number is small.

1.2 Our Results
One criticism of the adversarial model is that it is (perhaps) too pessimistic. Indeed, there
could be many scenarios that do not fall into the oblivious model, but are still quite far from
an “adversarial” setting. Motivated by this, in this work, we set out to explore intermediate
models that allow us to interpolate between the oblivious model and the adversarial model.
Specifically, we study two such models, which we call the bounded interruptions model and
the advice model.

1.2.1 Adversarial Streaming with Bounded Interruptions (ASBI)
Recall that in the plain adversarial model, the adversary is fully adaptive in the sense that it
does not commit to the ith update before time i. We consider a refinement of this setting in
which the adversary is only partially adaptive. The game begins with the adversary specifying
a complete input stream. Throughout the execution, the adversary (who sees the outputs of
the streaming algorithm) can adaptively decide to interrupt and to replace the suffix of the
stream (which has not yet been processed by the streaming algorithm). Formally, we define
the following ASBI game between a StreamingAlgorithm and an Adversary.

Parameters: m denotes the length of the stream, T denotes the number of allowed queries,
and R denotes the number of allowed interruptions.

1. The Adversary chooses a stream x⃗ = (x1, x2, . . . , xm) ∈ Xm.
2. For round i = 1, 2, . . . , m

a. The Adversary chooses a query demand qi ∈ {0, 1} and an interruption demand
di ∈ {0, 1}, under the restriction that

∑i
j=1 qj ≤ T and

∑i
j=1 dj ≤ R.

b. If di = 1 then the adversary outputs a new stream suffix (x′
i, . . . , x′

m) and we override
(xi, . . . , xm)← (x′

i, . . . , x′
m).

c. The StreamingAlgorithm obtains the update xi. If qi = 1 then, the Streaming-
Algorithm outputs a response zi, which is given to the Adversary.

That is, the adversary sees all of the outputs given by the streaming algorithm (in
query times), and adaptively decides on R places in which it “interrupts” and arbitrarily
modifies the rest of the stream. Importantly, the streaming algorithm “does not know” when
interruptions occur. The ASBI model limits the adaptivity of the adversary in a natural way,
capturing settings in which the number of “adaptivity rounds” can be bounded. It gives
us an intuitive interpolation between the oblivious setting (in which R = 0) and the full
adversarial setting (obtained by setting R = T ).1

We show the following generic result.

1 As described, the plain adversarial setting is obtained by setting R = m. However, an easy argument
shows that setting R > T does not give more power to the adversary over the case of R = T .
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▶ Theorem 1.4 (informal version of Theorem 3.1). If there exists an oblivious streaming
algorithm for a function g : X∗ → R using space s then for every 1 ≤ R ≤ T there exists an
adversarially robust streaming algorithm for g in the ASBI model that answers T queries and
resists R interruptions using space ≈ min

{
R,
√

T
}
· s.

To obtain this result, we build on the sketch switching technique introduced by Ben-Eliezer
et al. [7]. Intuitively, we maintain 2R copies of an oblivious streaming algorithm A, where in
every given moment exactly two of these copies are designated as “active”. As long as the
two active copies produce (roughly) the same estimates, they remain as the “active” copies,
and we use their estimates as our response. Once they disagree, we discard them both (never
to be used again) and designate two (fresh) copies as “active”. In Section 3 we show that
this construction can be formalized to obtain Theorem 1.4.

▶ Remark 1.5. While our method resembles the sketch switching technique of [7], their
technique is tailored to the setting where the flip-number is small (i.e., the value of the
target function does not “jump” too many times throughout the stream), and is not directly
applicable to the ASBI model. Specifically, in [7] there is only one active copy, which is
“swithched” the moment its response differs significantly from the previously released estimate.
This is useful under the assumption that the flip-number is small, because the flip-number
bounds the number of switches. However, in the ASBI model we do not assume anything
about the flip-number of the stream, and the value of the target function can be completely
different at different query times.

For example, the following is a direct application of Theorem 1.4 for F2 estimation (i.e.,
estimating the second moment of the frequency vector of the input stream).

▶ Theorem 1.6 (F2 estimation in the ASBI model, informal). Let 1 ≤ R ≤ T . There exists an
adversarially robust F2 estimation algorithm in the ASBI model that guarantees α-accuracy
(w.h.p.) for T queries while resisting R interruptions using space ≈ min

{
R,
√

T
}

/α2.

This improves the state-of-the-art for turnstile streams in the plain adversarial model
(from [16]) whenever R ≲

√
T .

A negative result for the ASBI model. Note that the space blowup of our construction
from Theorem 1.4 grows linearly with the number of interruptions R. Recall that in the
full adversarial model (where R = T for T queries) it is known that a space blowup of

√
T

suffices (see Theorem 1.2). Thus, one might guess that the correct dependence in R in the
ASBI model should be

√
R. However, we show that this is generally not the case. Specifically,

we show that there exists a streaming problem that can easily be solved in the oblivious
setting with small space, but necessitates space linear in R in the ASBI model, provided that
the number of queries is large enough (quadratic in R). This shows that our upper bound
stated in Theorem 1.4 is (nearly) tight in general. Formally,

▶ Theorem 1.7 (informal version of Corollary 3.8). For every R ≤ T there exists a streaming
problem that requires at least Ω

(
min

{
R,
√

T
})

space to be solved in the ASBI model with R

interruptions and T queries, but can be solved in the oblivious setting using space polylog(T ).

1.2.2 Adversarial Streaming with Advice (ASA)
We put forward another intermediate model, in which the streaming algorithm may occasion-
ally ask for one bit of advice throughout the execution. Formally, we consider the following
game, referred to as the ASA game, between the StreamingAlgorithm and an Adversary.
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Parameters: m denotes the length of the stream, T ≤ m denotes the number of allowed
queries, and η ∈ N is a parameter controlling the query/advice rate.

For round i = 1, 2, . . . , m :
1. The Adversary chooses an update xi ∈ X and a query demand qi ∈ {0, 1}, under the

restriction that
∑i

j=1 qj ≤ T .
2. The StreamingAlgorithm processes the new update xi.
3. If qi = 1 then

a. The StreamingAlgorithm outputs a response zi, which is given to the Adversary.
b. If

(∑i
j=1 qj

)
mod η = 0 then the StreamingAlgorithm specifies a predicate pi :

X∗ → {0, 1}, and obtains pi(x1, x2, . . . , xi).

That is, in the ASA model the adversary is allowed a total of T queries, and once every
η queries the streaming algorithm is allowed to obtain one bit of advice, computed as a
predicate of the items in the stream so far.

Unlike our ASBI model, which (we believe) has a strong algorithmic motivation, the main
motivation to study the ASA model is theoretical. It gives us an intuitive way to measure the
amount of additional information that the streaming algorithm needs in order to maintain
utility in the adversarial setting.

▶ Remark 1.8. Even though the main motivation for the ASA model is theoretical, it could
also be interesting from an algorithmic standpoint in the following context. Consider a
streaming setting in which the input stream is fed into both a (low space) streaming algorithm
A and to a server S. The server has large space and can store all the input stream (and,
therefore, can in principle solve the streaming problem itself). However, suppose that the
server has some communication bottleneck and is busy serving many other tasks in parallel.
Hence we would like to delegate as much of the communication as possible to the “cheap”
(low space) streaming algorithm A. The ASA model allows for such a delegation, in the sense
that the streaming algorithm handles most of the queries itself, and only once every η queries
it asks for one bit of advice from the server.

We show the following generic result.

▶ Theorem 1.9 (informal version of Theorem 4.2). If there exists an oblivious linear streaming
algorithm for a function g : X∗ → R with space s, then for every η ∈ N there exists an
adversarially robust streaming algorithm for g in the ASA model with query/advice rate η

using space ≈ η · s2.

To obtain this result, we rely on a technique introduced by Hassidim et al. [16] which uses
differential privacy [11] to protect not the input data, but rather the internal randomness
of the streaming algorithm. Intuitively, this allows us to make sure that the “robustness”
of our algorithm deteriorates slower than the advice rate, which allows us to obtain an
advice-robustness tradeoff.

Note that the space complexity of the algorithm from Theorem 1.9 does not depend
polynomially on the number of queries T . For example, the following is a direct application
of this theorem in the context of F2 estimation.

▶ Theorem 1.10 (F2 estimation in the ASA model, informal). Let η ∈ N. There exists an
adversarially robust F2 estimation algorithm in the ASA model with query/advice rate η that
guarantees α-accuracy (w.h.p.) using space Õ

(
η/α4)

.

ESA 2023
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▶ Remark 1.11. We stress that there is a formal sense in which the ASA model is “between”
the oblivious and the (plain) adversarial models. Clearly, the ASA model is easier than
the plain adversarial model, as we can simply ignore the advice bits. On the other hand, a
simple argument shows that the ASA model (with any η > 1) is qualitatively harder than the
oblivious setting. To see this, let A be an algorithm in the ASA model for a function g with
query/advice rate η > 1. Then A can be transformed into the following oblivious algorithm
Aoblivious for g (that returns an estimate in every time step without getting any advice):

An oblivious algorithm Aoblivious

1. Instantiate algorithm A (which expects to operate in the ASA model).
2. In every time i ∈ [m]:

a. Obtain an update xi ∈ X.
b. Duplicate A (with its internal state) into a shadow copy Ashadow.
c. Feed the update (xi, 0) to A and the update (xi, 1) to Ashadow, and obtain an answer

zi from the shadow copy. Here we use the notation that (x, q) means an update x

with a query demand q. Note that we only query the shadow copy.
d. Output zi and erase the shadow copy from memory.

As we “rewind” A after every query, it is never expected to issue an advice-request and so
Aoblivious never issues an advice-request as well. Furthermore, a simple argument shows that
Aoblivious maintains utility in the oblivious setting.2

▶ Remark 1.12. Our construction has the benefit that the predicates specified throughout
the interaction are “simple” in the sense that every single one of them can be computed in a
streaming fashion. That is, given the predicate pi, the bit pi(x1, x2, . . . , xi) can be computed
using small space with one pass over x1, x2, . . . , xi.

A negative result for the ASA model. Theorem 1.9 shows a strong positive result in the
ASA model for streaming problems that are defined by real valued functions, presenting
space complexity that does not depend directly on the number of queries T . We compliment
this result with a negative result for a simple streaming problem which is not defined by a
real valued function. Specifically, we consider (a variant of) the well-studied ℓ0-sampling
problem, where the streaming algorithm must return an (almost) uniformly random element
from the set of non-deleted elements. It is known that the ℓ0-sampling problem is easy in the
oblivious setting (see e.g. [17]) and hard in the plain adversarial setting (see e.g. [1]). Using
a simple counting argument, we show that the ℓ0-sampling problem remains hard also in the
ASA model even if the query/advice rate is 1, i.e., even if the streaming algorithm gets an
advice bit for every query. Formally,

▶ Theorem 1.13 (informal version of Theorem 4.5). Every algorithm for solving the ℓ0-
sampling problem in the ASA model with T queries must use space Ω(T ). Furthermore, this
holds even when η = 1, that is, even if the algorithm gets an advice bit after every query.

2 To see this, fix an input stream x⃗ = (x1, x2, . . . , xm), and fix j ∈ [m]. Note that the distribution of the
output given by Aoblivious in time j when running on x⃗ is identical to the outcome distribution of A
when running on the stream ((x1, 0), . . . , (xj−1, 0), (xj , 1)), which must be accurate w.h.p. by the utility
guarantees of A (since there is only 1 query in this alternative stream, then A gets no advice when
running on it). The claim now follows by a union bound over the query times.
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1.3 Additional Related Works
The adversarial streaming model (in a setting similar to ours) dates back to at least [1], who
studied it implicitly and showed an impossibility result for robust ℓ0 sampling in sublinear
memory. The adversarial streaming model was then formalized explicitly by [15], who showed
strong impossibility results for linear sketches. A recent line of work, starting with [7]
and continuing with [16, 24, 4, 6] showed positive results (i.e., robust algorithms) for many
problems of interest, under the assumption that the flip-number of the stream is bounded.
On the negative side, [7] also presented an attack with O(n) number of adaptive rounds on a
variant of the AMS sketch, where n is the size of the domain. Later, [19] presented a streaming
problem that can be solved in the oblivious setting with polylogarithmic space, but requires
polynomial space in the adversarial setting. Thus, the result of [19] separates the oblivious
model from the (plain) adversarial model. More recently, [9] and [10] presented attacks on
a concrete algorithm, namely CountSketch, with a number of queries that is linear in the
space of the algorithm and while using only a single round of adaptivity. Following [16], the
idea of using differential privacy to protect the internal randomness of interactive algorithms
was used in additional settings, for example in the context of dynamic algorithms [5] and
learning with experts [23].

2 Preliminaries

In this work we consider streaming problems which are defined by a real valued function
(where the goal is to approximate the value of this function) as well as streaming problems
that define a set of valid solutions and the goal is to return one of the valid solutions. The
following definition unifies these two objectives for the oblivious setting.

▶ Definition 2.1 (Oblivious streaming). Let X be a finite domain and let g : X∗ → 2W be a
function that maps every input x⃗ ∈ X∗ to a subset g(x⃗) ⊆W of valid solutions (from some
range W ).

Let A be an algorithm that, for m rounds, obtains an element xi ∈ X and outputs a
response zi ∈ W . Algorithm A is said to be an oblivious streaming algorithm for g with
failure probability β, and stream length m, if the following holds for every input sequence
x⃗ = (x1, x2, . . . , xm) ∈ Xm. Consider an execution of A on the input stream x⃗. Then,

Pr [∀i ∈ [m] we have zi ∈ g(x1, . . . , xi)] ≥ 1− β,

where the probability is taken over the coins of algorithm A.

For example, in the problem of estimating the number of distinct elements in the stream,
the function g in the above definition returns the interval g(x1, . . . , xi) = (1±α)·|{x1, . . . , xi}|,
where α is the desired approximation parameter.

3 Adversarial Streaming with Bounded Interruptions (ASBI)

In this section we present our results for the ASBI model, defined in Section 1.2.1. We begin
with our generic transformation.

3.1 A Generic Construction for the ASBI Model
We present a generic construction whose space blowup depends only on the number of
interruptions R (and not on the number of queries T ). We therefore assume in our construction
that T = m, i.e., that the adversary queries the streaming algorithm on every time step. Our
construction is given in algorithm RobustInterruptions. The following theorem specifies
its properties.

ESA 2023
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Algorithm 1 RobustInterruptions.

Input: Parameter R ∈ N+ bounding the number of possible interruptions.
Algorithm used: An oblivious streaming algorithm A with space s, accuracy α, and
confidence β.

1. Initialize 2R independent instances of algorithm A, denoted as Aanswer
1 , . . . ,Aanswer

R and
Acheck

1 , . . . ,Acheck
R . Set r = 1.

2. For i = 1, 2, . . . , m:
a. Obtain the next item in the stream xi ∈ X.
b. Feed xi to all of the copies of algorithm A.
c. Let zanswer

r,i and zcheck
r,i denote the answers returned by Aanswer

r and Acheck
r , respectively.

d. If zanswer
r,i ∈ (1 ± 2α) · zcheck

r,i then output zanswer
r,i . Otherwise, output zcheck

r,i and set
r ← r + 1.

e. If r > R then FAIL. Otherwise continue to the next iteration.

▶ Theorem 3.1. Fix any function g and fix α, β > 0. Let A be an oblivious streaming
algorithm for g that uses space s and guarantees accuracy α with failure probability β. Then
for all R ∈ N+ there exists an adversarially robust streaming algorithm for g that resists R

interruptions and guarantees accuracy 5α with failure probability O(Rβ) using space O(Rs).

▶ Remark 3.2. Recall that Hassidim et al. [16] showed a generic transformation from an
oblivious algorithm for a function g : X∗ → R with space s to an adversarial algorithm (in the
plain model) for g, answering T queries with space ≈

√
T · s (see Theorem 1.2). Therefore,

combined with the above theorem, we get that for every such function g and every 1 ≤ R ≤ T

there exists an adversarially robust streaming algorithm in the ASBI model that answers T

queries and resists R interruptions using space ≈ min
{

R,
√

T
}
· s.

Fix an adversary B and consider the interaction between algorithm RobustInterruptions
and the adversary B. For r ∈ [R], let ir denote the time step in which zcheck

r,ir
is returned.

▶ Lemma 3.3. Fix r∗ ∈ [R]. With probability at least 1 − β, the answers returned by
Acheck

r∗ in times 1, 2, . . . , ir∗ are α-accurate. That is, for every 1 ≤ i ≤ ir∗ it holds that
zcheck

r∗,i ∈ (1± α) · g(x1, . . . , xi).

Proof. For simplicity, we assume that the adversary B is deterministic (this is without loss
of generality by a simple averaging argument). Fix the randomness of all copies of algorithm
A, except for Acheck

r∗ . Let RIr∗ be a variant of algorithm RobustInterruptions which is
identical to RobustInterruptions until the time step i∗ in which r becomes r∗. In times
i ≥ i∗, algorithm RIr∗ simply outputs zanswer

r∗,i , i.e., the answer given by Aanswer
r∗ . Note that

Acheck
r∗ does not exist in algorithm RIr∗ .

As we fixed the coins of the copies of A ̸= Acheck
r∗ , the interaction between B and RIr∗ is

deterministic. In particular, it generates a single stream x⃗r∗ . By the utility guarantees of
algorithm Acheck

r∗ , when run on this stream, then with probability at least 1− β it maintains
α-accuracy throughout the stream.

The lemma now follows by observing that until time ir∗ the stream generated by the
interaction between B and algorithm RobustInterruptions is identical to the stream x⃗r∗ . ◀

▶ Lemma 3.4. With probability at least 1 − Rβ, all of the answers given by
RobustInterruptions (before returning FAIL) are 5α-accurate.
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Proof. Follows from a union bound over Lemma 3.3, and by Step 2d of
RobustInterruptions. ◀

▶ Lemma 3.5. Algorithm RobustInterruptions returns FAIL with probability at most 2Rβ.

Proof. Let j1, j2, . . . , jR denote the time steps in which the adversary conducts interruptions.
That is, j1 is the first time in which the adversary switches the suffix of the stream, j2 is
the second time this happens, and so on. Also let p1, p2, . . . , pR denote the time steps in
which the parameter r increases during the execution of algorithm RobustInterruptions.
Specifically, pℓ is the time i in which r becomes equal to ℓ + 1. We show that for every
r ∈ [R], with probability at least 1 − 2rβ it holds that jr ≤ pr. (That is, interruptions
happen “faster” then r increases.)

The proof is by induction on r. For the base case, r = 1, let x⃗1 denote the first stream
chosen by the adversary. By the utility guarantees of A, with probability at least 1− 2β we
have that both Aanswer

1 and Acheck
1 are α-accurate w.r.t. this stream, in which case r does

not increase. Thus, with probability at least 1− 2β we have j1 ≤ p1.
The inductive step is similar: Fix r ∈ [R], and suppose that jr ≤ pr, which happens with

probability at least (1− 2rβ) by the inductive assumption. Let x⃗r denote the last stream
specified by the adversary before time pr. Note that the internal coins of Aanswer

r+1 and Acheck
r+1

are independent with this stream. Hence, by the utility guarantees of A, with probability
at least 1− 2β we have that both Aanswer

r+1 and Acheck
r+1 are α-accurate w.r.t. this stream, in

which case r does not increase. Overall, with probability at least 1 − 2(r + 1)β we have
jr+1 ≤ pr+1.

The lemma now follows by recalling that there are at most R interruptions throughout
the execution. Hence, with probability at least 1−2Rβ it holds that r never increases beyond
R, and the algorithm does not fail. ◀

Theorem 3.1 now follows by combining Lemmas 3.3, 3.4, 3.5.

3.2 A Negative Result for the ASBI Model
We show the following negative result.

▶ Theorem 3.6. For every R, there exists a streaming problem over domain of size poly(R)
and stream length poly(R) that requires at least Ω(R) space to be solved in the ASBI model
with R interruptions and T = R2 queries to within constant accuracy (small enough), but
can be solved in the oblivious setting using space polylog(R).

We next provide an overview for the proof of this theorem (see the full version of this
work for more details). At a high level, Theorem 3.6 follows by strengthening the following
negative result of Kaplan et al. [19] for the (plain) adversarial model.

▶ Theorem 3.7 ([19]). For every T , there exists a streaming problem over domain of size
poly(T ) and stream length poly(T ) that requires at least

√
T space to be solved in the (plain)

adversarial setting with T queries to within constant accuracy (small enough), but can be
solved in the oblivious setting using space polylog(T ).

To obtain their result, Kaplan et al. [19] presented a streaming problem, called the SADA
problem, that is easy to solve in the oblivious setting but requires large space to be solved in
the adversarial setting. Specifically, they showed a reduction from a hard problem in learning
theory (called the adaptive data analysis (ADA) problem) to the task of solving the SADA
problem in the adversarial setting with small space.
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In the ADA problem, the goal is to design a mechanism A that initially obtains a dataset
D consisting of n i.i.d. samples from some unknown distribution P, and then answers k

adaptively chosen queries w.r.t. P. Importantly, A’s answers must be accurate w.r.t. the
underlying distribution P, and not just w.r.t. the empirical dataset D. Hardt, Ullman,
and Steinke [14, 22] showed that the ADA problem requires a large sample complexity.
Specifically, they showed that every efficient3 mechanism for this problem must have sample
complexity n ≥ Ω(

√
k).

Theorem 3.6 follows by the following two observations regarding the negative result of [19]
for the SADA problem, and regarding the underlying hardness result of [14, 22] for the ADA
problem:
1. In the hardness results of [14, 22] for the ADA problem, the adversary generates the

queries using O(n) rounds of adaptivity, where n is the sample size. In more detail, the
adversary poses O(n2) queries throughout the interaction, but these queries are generated
in O(n) bulks where queries in the jth bulk depend only on answers given to queries of
previous bulks.

2. The reduction of Kaplan et al. [19] from the ADA problem to the SADA problem maintains
the number of adaptivity rounds. That is, the reduction of Kaplan et al. [19] transforms
an adversary for the ADA problem that generates the queries in ℓ bulks into an adversary
for the SADA problem that uses ℓ interruptions.

The following is an immediate corollary of Theorem 3.6.

▶ Corollary 3.8. For every R ≤ T , there exists a streaming problem over domain of size
poly(T ) and stream length poly(T ) that requires at least Ω

(
min

{
R,
√

T
})

space to be solved
in the ASBI model with R interruptions and T queries to within constant accuracy (small
enough), but can be solved in the oblivious setting using space polylog(T ).

Observe that this (nearly) matches our upper bound stated in Theorem 1.4. We remark
that Theorem 3.6 and Corollary 3.8 hold even in a model where the streaming algorithm is
strengthen and gets an indication during each interruption round.

4 Adversarial Streaming with Advice (ASA)

In this section we present our results for the ASA model, defined in Section 1.2.2. We begin
with our generic transformation.

4.1 A Generic Construction for the ASA Model
Our generic construction for the ASA model transforms an oblivious and linear streaming
algorithm A into a robust streaming algorithm in the ASA model. The linearity property
that we need is the following. Suppose that three copies of A, call them A1,A2,A3, are
instantiated with the same internal randomness r, and suppose that A1 processes a stream
x⃗1 and that A2 processes a stream x⃗2 and that A3 processes the stream x⃗1 ◦ x⃗2 (where the
operator ◦ stands for concatenation). Then there is an operation, denote it as “+”, that
allows us to obtain an internal state (A1 +A2) that is identical to the internal state of A3.
Many classical streaming algorithms have this property (for example, the classical AMS
sketch for F2 has this property [3]). Formally,

3 The results of [14, 22] hold for all computationally efficient mechanisms, or alternatively, for a class of
unbounded mechanisms which they call natural mechanisms.
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Algorithm 2 RobustAdvice(β, m, η).

Input: Parameters: β is the failure probability, m is the length of input stream and η is the
advice query cycle.
Algorithm used: An oblivious linear streaming algorithm A with space s for α accuracy.
Constants calculation:
1. k = Ω(ηs log(m/β) log2(m/(βα))) is the number of instances of each of the sets “active”,

“next” and “shadow”.
2. ε0 = ε√

8ηks ln(1/δ)
is the privacy parameter of PrivateMed executions, where ε = 1/100,

δ = O(β/m).

1. Initialize k independent instances Aactive
1 , . . . ,Aactive

k of algorithm A.
2. REPEAT (outer loop)

a. Initialize k independent instances Anext
1 , . . . ,Anext

k of algorithm A.
b. Let Ashadow

1 , . . . ,Ashadow
k be duplicated copies of Anext

1 , . . . ,Anext
k , where each Ashadow

i

is initiated with the same randomness as Anext
i .

c. Denote the current time step as t. (That is, so far we have seen t updates in the
stream.)

d. REPEAT (inner loop)
i. Receive next update xt and a query demand qt ∈ {0, 1}.
ii. Insert update xt into each of Aactive

1 ,Anext
1 , . . . ,Aactive

k ,Anext
k .

iii. If qt = 1 then:
Query Aactive

1 ,Aactive
2 , . . . ,Aactive

k and obtain answers yt,1, yt,2, . . . , yt,k

Output zt ← PrivateMed(yt,1, yt,2, . . . , yt,k) with privacy parameter ε0.
If

(∑t
ℓ=1 qℓ

)
mod η = 0 then define the predicate pt that given a (prefix of a)

stream x⃗ returns the next bit in the inner state of (Ashadow
1 ,Ashadow

2 , . . . ,Ashadow
k )

after processing the first t updates in x⃗. Update the corresponding bit in the
state of the corresponding Ashadow

i .
If

(∑t
ℓ=1 qℓ

)
mod ηks = 0 then EXIT inner loop. Otherwise, CONTINUE inner

loop.
e. For i ∈ [k] let Aactive

i .Sv ← Anext
i .Sv +Ashadow

i .Sv and let Aactive
i .SR ← Anext

i .SR.

▶ Definition 4.1 (Linear state algorithm). Let A be an algorithm with three segments of
memory state. The first segment, denoted as SR, is randomized in the beginning of the
execution and then remains fixed. The second segment, denoted as Sv, is an encoding of a
vector in Rd. The third segment, denoted as Sc, is the rest of its memory space and is used
for other computations. Then, A is linear state w.r.t. its input stream if for any two streams
x⃗1 = (x1, . . . , xl) ∈ X l, x⃗2 = (x1, . . . , xp) ∈ Xp with lengths of l, p ∈ N and three different
executions of A with the same randomized state (SR) the following holds:

A(x⃗1 ◦ x⃗2).Sv = A(x⃗1).Sv +A(x⃗2).Sv

Where A(x⃗).Sv is the encoded vector v ∈ Rd resulting from the input stream x⃗ encoded in the
corresponding memory state.
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Our construction is given in algorithm RobustAdvice, and its properties are stated in
the following theorem.4. The analysis is deferred to the the full version of this work [21].

▶ Theorem 4.2. Fix any real valued function g and fix α, β > 0 and η ∈ N. Let A be an
oblivious linear-state streaming algorithm for g that uses space s and guarantees accuracy α

with failure probability 1/10. Then there exists an adversarially robust streaming algorithm
for g in the ASA model with query/advice rate η, accuracy α, and failure probability β using
space O(ηs2 log(m/β) log2(m/(βα))).

4.2 A Negative Result for the ASA Model

In this section we show that ℓ0-sampling, a classical streaming problem, cannot be solved
with sublinear space in the adversarial setting with advice. Consider a turnstile stream
u⃗ = (u1, . . . , um) where each ui = (ai, ∆i) ∈ [n]× {±1}. A β-error ℓ0-sampler returns with
probability at least 1− β an (almost) uniformly random element from

support(u1, . . . , um) =
{

a ∈ [n] :
∑

i:ai=a

∆i ̸= 0
}

,

provided that this support is not empty. The next theorem, due to Jowhari et al. [18], shows
that ℓ0-sampling is easy in the oblivious setting.

▶ Theorem 4.3 ([18]). There is a streaming algorithm with storage O
(

log2(n) log( 1
β )

)
bits,

that with probability at most β reports FAIL, with probability at most 1/n2 reports an arbitrary
answer, and in all other cases produces a uniform sample from support(u⃗).

Nevertheless, as we next show, this is a hard problem in the ASA setting. In fact, our
negative result even holds for a simpler variant of the ℓ0-sampling problem, in which the
algorithm is allowed to return an arbitrary element, rather than a random element. Formally,

▶ Definition 4.4 (The J0 problem). Let X be a finite domain and let A be an algorithm
that operates on a stream of updates (u1, . . . , um) ∈ (X × {±1}), given to A one by one.
Algorithm A solves the J0 problem with failure probability β if, except with probability at
most β, whenever A is queried it outputs an element with non-zero frequency w.r.t. the
current stream. That is, if A is queried in time i then it should output an element from
support(u1, . . . , ui).

▶ Theorem 4.5. Let X be a finite domain and let T be such that |X| = Ω(T ) (large enough).
Let A be an algorithm for solving the J0 problem over X in the adversarial setting with
advice with T queries and with failure probability at most 3/4. Then A uses space Ω(T ).
Furthermore, this holds also when η = 1, that is, even if algorithm A gets an advice after
every query.

Proof. Let A be an algorithm for the J0 problem with T queries over domain X in the ASA
setting with failure probability at most 3/4. Consider the following thought experiment.

4 We assume that the estimates given by the oblivious algorithm A are in the range [−mc, −1/mc] ∪
{0} ∪ [1/mc, mc] for some constant c, and are rounded to the nearest power of (1 + α). See the full
version of this work for more details [21].
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Input: Y ⊆ X of size |Y | = T

1. For every x ∈ Y , feed algorithm A the update (x, 1).
2. Initiate Ŷ = ∅.
3. Repeat T times:

a. Query A and obtain an outcome x ∈ X

b. If A requests an advice then give it a random bit b.
c. Add x to Ŷ

d. Feed the update (x,−1) to A
4. Output Ŷ .

We say that the thought experiment succeeds if Ŷ = Y . By the assumption on A, for
every input Y , our thought experiment succeeds with probability at least 2−T /4. This is
because if all of the bits of advice are correct then A succeeds with probability at least 1/4,
and the advice bits are all correct with probability at least 2−T . Hence, there must exist a
fixture of A’s coins and a fixture of an advice string b⃗ for which our thought experiments
succeeds on at least 2−T /4 fraction of the possible inputs Y .5

That is, after fixing A’s coins and the advice string b⃗ as above, there is a subset of inputs
B of size |B| ≥ 2−T

4
(|X|

T

)
such that for every Y ∈ B, when executed on Y , our thought

experiment outputs Ŷ = Y . Finally, note that the inner state of algorithm A at the end
of Step 1 determines the outcome of our thought experiment. Hence, as there are at least
2−T

4
(|X|

T

)
different outputs, there must be at least 2−T

4
(|X|

T

)
possible different inner states for

algorithm A, meaning that its space complexity (in bits) is at least log
(

2−T

4
(|X|

T

))
, which is

more than T provided that |X| = Ω(T ) (large enough). ◀
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Abstract
We give the first almost-linear time algorithm for computing the maximal k-edge-connected subgraphs
of an undirected unweighted graph for any constant k. More specifically, given an n-vertex m-edge
graph G = (V, E) and a number k = logo(1) n, we can deterministically compute in O(m + n1+o(1))
time the unique vertex partition {V1, . . . , Vz} such that, for every i, Vi induces a k-edge-connected
subgraph while every superset V ′

i ⊃ Vi does not. Previous algorithms with linear time work only
when k ≤ 2 [Tarjan SICOMP’72], otherwise they all require Ω(m + n

√
n) time even when k = 3

[Chechik et al. SODA’17; Forster et al. SODA’20].
Our algorithm also extends to the decremental graph setting; we can deterministically maintain

the maximal k-edge-connected subgraphs of a graph undergoing edge deletions in m1+o(1) total update
time. Our key idea is a reduction to the dynamic algorithm supporting pairwise k-edge-connectivity
queries [Jin and Sun FOCS’20].
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1 Introduction

We study the problem of efficiently computing the maximal k-edge-connected subgraphs.
Given an undirected unweighted graph G = (V, E) with n vertices and m edges, we say that
G is k-edge-connected if one needs to delete at least k edges to disconnect G. The maximal
k-edge-connected subgraphs of G is a unique vertex partition {V1, . . . , Vz} of V such that,
for every i, the induced subgraph G[Vi] is k-edge-connected and there is no strict superset
V ′

i ⊃ Vi where G[V ′
i ] is k-edge-connected.

This fundamental graph problem has been intensively studied. Since the 70’s, Tarjan [13]
showed an optimal O(m)-time algorithm when k = 2. For larger k, the folklore recursive
mincut algorithm takes Õ(mn) time1 and there have been significant efforts from the database
community in devising faster heuristics [15, 17, 2, 12, 16] but they all require Ω(mn) time in
the worst case. Eventually in 2017, Chechik et al. [3] broke the O(mn) bound to Õ(m

√
nkO(k))

using a novel approach based on local cut algorithms. Forster et al. [4] then improved the
local cut algorithm and gave a faster Monte Carlo randomized algorithm with Õ(mk+n3/2k3)
running time. Very recently, Geogiadis et al. [5] showed a deterministic algorithm with

1 The algorithm computes a global minimum cut (A, B) (using e.g. Karger’s algorithm [8]) and return
{V } if the cut size of (A, B) is at least k. Otherwise, recurse on both G[A] and G[B] and return the
union of the answers of the two recursions.
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Figure 1 A graph G where its maximal 3-edge-connected subgraphs are different from its 3-edge-
connected components.

Õ(m + n3/2k8) time and also how to sparsify a graph to O(nk log n) edges while preserving
maximal k-edge-connected subgraphs in O(m) time. Thus, the factor m in the running time
of all algorithms can be improved to O(nk log n) while paying an O(m) additive term. The
O(mn) bound has also been improved even in more general settings such as directed graphs
and/or vertex connectivity [6, 3, 4] as well as weighted undirected graphs [10]. Nonetheless,
in the simplest setting of undirected unweighted graphs where m = O(n) and k = O(1), the
Ω(n
√

n) bound remains the state of the art since 2017.
Let us discuss the closely related problem called k-edge-connected components. The goal

of this problem is to compute the unique vertex partition {V̂ 1, . . . , V̂ z′} of V such that, each
vertex pair (s, t) is in the same part V̂ i iff the (s, t)-minimum cut in G (not in G[V̂i]) is at
least k. The partition of the maximal k-edge-connected subgraphs is always a refinement
of the k-edge-connected components and the refinement can be strict. See Figure 1 for
example. Very recently, the Gomory-Hu tree algorithm by Abboud et al. [1] implies that
k-edge-connected components can be computed in m1+o(1) time in undirected unweighted
graphs. This algorithm, however, does not solve nor imply anything to our problem. See
Appendix A for a more detailed discussion.

It is an intriguing question whether one can also obtain an almost-linear time algorithm
for maximal k-edge-connected subgraphs, or there is a separation between these two closely
related problems.

Our results

In this paper, we show the first almost-linear time algorithm when k = logo(1) n, answering
the above question affirmatively at least for small k.

▶ Theorem 1. There is a deterministic algorithm that, given an undirected unweighted graph
G with n vertices and m edges, computes the maximal k-edge-connected subgraphs of G in
O(m + n1+o(1)) time for any k = logo(1) n.

Our techniques naturally extend to the decremental graph setting.
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▶ Theorem 2. There is a deterministic algorithm that, given an undirected unweighted
graph G with n vertices and m edges undergoing a sequence of edge deletions, maintains the
maximal k-edge-connected subgraphs of G in m1+o(1) total update time for any k = logo(1) n.

Dynamic algorithms for maximal k-edge-connected subgraphs were recently studied in [5].
For comparison, their algorithm can handle both edge insertions and deletions but require
O(n
√

n log n) worst-case update time, which is significantly slower than our mo(1) amortized
update time. When k = 3, they also gave an algorithm that handles edge insertions only
using Õ(n2) total update time.

Previous Approaches and Our Techniques

Our approach diverges significantly from the local-cut-based approach in [3, 4]. In these
previous approaches, they call the local cut subroutine Ω(n) times and each call takes Ω(

√
n)

time. Hence, their running time is at least Ω(n
√

n) and this seems inherent without significant
modification. Recently, [5] took a different approach. Their Õ(m + n3/2k8)-time algorithm
efficiently implements the folklore recursive mincut algorithm by feeding O(nk) updates to
the dynamic minimum cut algorithm by Thorup [14]. However, since Thorup’s algorithm
has Ω(

√
n) update time, the final running time of [5] is at least Ω(n

√
n) as well.

Our algorithm is similar to [5] in spirit but is much more efficient. We instead apply the
dynamic k-edge connectivity algorithms by Jin and Sun [7] that takes only no(1) update time
when k = logo(1) n. Our reduction is more complicated than the reduction in [5] to dynamic
minimum cut because the data structure by [7] only supports pairwise k-edge connectivity
queries, not a global minimum cut. Nonetheless, we show that Õ(nk) updates and queries to
this “weaker” data structure also suffice.

Our approach is quite generic. Our algorithm is carefully designed without the need to
check if the graph for which the recursive call is made is k-edge-connected. This allows us to
extend our algorithm to the dynamic case.

Organization

We give preliminaries in Section 2. Then, we prove Theorem 1 and Theorem 2 in Section 3
and Section 4, respectively.

2 Preliminaries

Let G = (V, E) be an unweighted undirected graph. Let n = |V | and m = |E|, and assume
m = poly(n) and k = logo(1) n. For any S, T ⊆ V , let E(S, T ) = {(u, v) ∈ E | u ∈ S, v ∈ T}.
For every vertex u, the degree of u is deg(u) = |{(u, v) | (u, v) ∈ E}|. For every subset of
vertices S ⊆ V , the volume of S is vol(S) =

∑
u∈S deg(u). Denote G[S] as the induced graph

of G on a subset of vertices S ⊆ V .
Two vertices s and t are k-edge-connected in G if one needs to delete at least k edges to

disconnect s and t in G. A vertex set S is k-edge-connected if every pair of vertices in S is
k-edge-connected. We use the convention that S is k-edge-connected when |S| = 1. We say
that a graph G = (V, E) is k-edge-connected if V is k-edge-connected. A k-edge-connected
component is an inclusion-maximal vertex set S such that S is k-edge-connected. A whole
vertex set can always be partitioned into k-edge-connected components. We use kECC(u) to
denote the unique k-edge-connected component containing u. Note that a k-edge-connected
component may not induce a connected graph when k > 2. A vertex set S is a k-cut if
|E(S, V \ S)| < k. Note, however, we also count the whole vertex set V as a trivial k-cut.
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We will crucially exploit the following dynamic algorithm in our paper.

▶ Theorem 3 (Dynamic pairwise k-edge connectivity [7]). There is a deterministic algorithm
that maintains a graph G with n vertices undergoing edge insertions and deletions using no(1)

update time and, given any vertex pair (s, t), reports whether s and t are k-edge-connected in
the current graph G in no(1) time where k = logo(1) n.

For the maximal k-edge-connected subgraph problem, we can assume that the graph is
sparse using the forest decomposition.

▶ Definition 4 (Forest decomposition [9]). A t-forest decomposition of a graph G is a collection
of forests F1, . . . , Ft, such that Fi is a spanning forest of G \

⋃i−1
j=1 Fj, for every 1 ≤ i ≤ t.

▶ Theorem 5 (Lemma 8.3 of [5]). Any O(k log n)-forest decomposition of a graph has the
same maximal k-edge-connected subgraphs as the original graph. Moreover, there is an
algorithm for constructing such a O(k log n)-forest decomposition in O(m) time.

3 The Static Algorithm

In this section, we prove our main result, Theorem 1. The key idea is the following reduction:

▶ Lemma 6. Suppose there is a deterministic decremental algorithm supporting pairwise
k-edge-connectivity that has tp ·m total preprocessing and update time on an initial graph
with n vertices and m edges and query time tq.

Then, there is a deterministic algorithm for computing the maximal k-edge-connected
subgraphs in O(m + (tp + tq) · kn log2 n) time.

By plugging in Theorem 3, we get Theorem 1. The rest of this section is for proving
Lemma 6. Throughout this section, we let tq denote the query time of the decremental
pairwise k-edge connectivity data structure that Lemma 6 assumes.

Recall again that, for any vertex u, u’s k-edge-connected component, kECC(u), might
not induce a connected graph. The first tool for proving Lemma 6 is a “local” algorithm for
finding a connected component of G[kECC(u)].

▶ Lemma 7. Given a graph G and a vertex u, there is a deterministic algorithm for finding
the connected component U containing u of G[kECC(u)] in O(tq · vol(U)) time.

Proof. We run BFS from u to explore every vertex in the connected component U containing
u of kECC(u). During the BFS process, we only visit the vertices in kECC(u) by checking
if the newly found vertex is k-edge-connected to u. Since each edge incident to U is visited
at most twice, the total running time is O(tq · vol(U)). ◀

Below, we describe the algorithm for Lemma 6 in Algorithm 1 and then give the analysis.

Correctness

We start with the following structural lemma.

▶ Lemma 8 (Lemma 5.6 of [3]). Let T be a k-cut in G[C] for some vertex set C. Then,
either

T is a k-cut in G as well, or
T contains an endpoint of E(C, V (G) \ C).

Next, the crucial observation of our algorithm is captured by the following invariant.
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Algorithm 1 Main(G, L): compute the maximal k-edge-connected subgraphs.

Input: An undirected connected graph G = (V, E), and a list of vertices L (initially
L = V ). Note that the parameters are passed by value.

Output: The maximal k-edge-connected subgraphs of G.
1 S ← ∅.
2 while |L| > 1 do
3 Choose an arbitrary pair (u, v) ∈ L.
4 if u and v are k-edge-connected in G then
5 L← L \ {v}.
6 else
7 Simultaneously compute the u’s connected component of G[kECC(u)] and

the v’s connected component of G[kECC(v)], until the one with the smaller
volume (denoted by U) is found.

8 S ← S ∪Main(G[U ], U).
9 G← G \ U .

10 L← (L \ U) ∪ {w /∈ U | (x, w) ∈ E(U, V (G) \ U)}.
11 end
12 end
13 S ← S ∪ {V (G)}.
14 return S.

▶ Lemma 9. At any step of Algorithm 1, every k-cut T in G is such that T ∩ L ̸= ∅.

Proof. The base case is trivial because L← V initially. Next, we prove the inductive step.
L can change in Line 5 or Line 8.

In the first case, the algorithm finds that u and v are k-edge-connected and removes v

from L. For any k-cut T where v ∈ T , an important observation is that kECC(v) ⊆ T as
well. But kECC(u) = kECC(v) and so u ∈ T too. So the invariant still holds even after
removing v from L.

In the second case, the algorithm removes U from G. Let us denote G′ = G \ U . Since
the algorithm adds the endpoints of cut edges crossing U to L, it suffices to consider a k-cut
T in G′ that is disjoint from the endpoints of the cut edges of U . By Lemma 8, T was a
k-cut in G. Since the changes in L occur only at U and neighbors of U , while T is disjoint
from both U and all neighbors of U , we have T ∩ L ̸= ∅ by the induction hypothesis. ◀

▶ Corollary 10. When |L| = 1, then G is k-edge-connected.

Proof. Otherwise, there is a partition (A, B) of V where |E(A, B)| < k. So both A and B

are k-cuts in G. By Lemma 9, A ∩ L ̸= ∅ and B ∩ L ̸= ∅ which contradicts that |L| = 1. ◀

We are ready to conclude the correctness of Algorithm 1. At a high level, the algorithm
finds the set U and “cuts along” U at Lines 7. Then, on one hand, recurse on U at Line 8
and, on the other hand, continue on V (G) \ U . We say that the cut edges E(U, V (G) \ U)
are “deleted”.

Now, since U is the connected component of G[kECC(u)] for some vertex u. We have
that, for every edge (x, y) ∈ E(U, V (G) \U), the pair x and y are not k-edge-connected in G.
In particular, x and y are not k-edge-connected in G[V ′] for every V ′ ⊆ V .
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Algorithm 2 Update(H, e).

Input: A k-edge-connected subgraph H and an edge e = (x, y) ∈ H to be deleted.
Output: The k-edge-connected subgraphs of H after deletion.

1 H ← H \ {(x, y)}.
2 return Main(H, {x, y}).

Thus, the algorithm never deletes edges inside any maximal k-edge-connected subgraph Vi.
Since the algorithm stops only when the remaining graph is k-edge-connected, the algorithm
indeed returns the maximal k-edge-connected subgraphs of the whole graph.

Running Time

Consider the time spent on each recursive call. Let G′ be the graph for which the recursive
call is made and m′ = vol(G′). Every vertex is inserted to L initially or as an endpoint of
some removed edge, so the total number of vertices added to L is O(m′). In each iteration,
either we remove a vertex from L, or remove a subgraph from G. Hence we check pairwise
k-edge-connectivity O(m′) times, so the running time of checking pairwise k-edge-connectivity
is O(tq ·m′). For the time of finding connected components of k-edge-connected components,
since we spend O(tq · vol(U)) time to find some U and remove U from G, the total cost is
O(tq ·m′). Plus, initializing the dynamic pairwise k-edge connectivity algorithm on G′ takes
O(tp ·m′) time. Thus the total running time of each recursive call is O((tp + tq) ·m′).

For the recursion depth, since each U found has the smaller volume of the two, vol(U) ≤
m′/2. Hence the recursion depth is O(log m0), where n0 and m0 are the numbers of
vertices and edges of the initial graph. Thus the total running time of Algorithm 1 is
O((tp + tq) ·m0 log n0).

By applying Theorem 5 to the initial graph G and invoking Algorithm 1 on the resulting
graph, the number of edges in the resulting graph is O(kn0 log n0), so the running time is
improved to O(m0 + (tp + tq) · kn0 log2 n0). This completes the proof of Lemma 6.

4 The Decremental Algorithm

Our static algorithm can be naturally extended to a decremental dynamic algorithm. To
prove Theorem 2, we prove the following reduction. By combining Lemma 11 and Theorem 3,
we are done.

▶ Lemma 11. Suppose there is a deterministic decremental algorithm supporting pairwise
k-edge-connectivity that has tp ·m total preprocessing and update time on an initial graph
with n vertices and m edges and query time tq.

Then there is a deterministic decremental dynamic algorithm for maintaining the maximal
k-edge-connected subgraphs on an undirected graph of n vertices and m edges with O((tp +
tq) ·m log n) total preprocessing and update time, and O(1) query time.

The algorithm for Lemma 11 as is follows. First, we preprocess the initial graph G0 using
Algorithm 1 and obtain the maximal k-edge-connected subgraphs {V1, . . . , Vz} of G0.

Next, given an edge e to be deleted, if e is in a maximal k-edge-connected subgraph Vi of
G, then we invoke Update(G[Vi], e) and update the set of the maximal k-edge-connected
subgraphs of G; otherwise we ignore e. The subroutine Update(H, e) is described in
Algorithm 2.



T. Saranurak and W. Yuan 92:7

Correctness

Let H = (V ′, E′) be the maximal k-edge-connected subgraph containing edge (x, y) before
deletion. It suffices to prove that Lemma 9 holds when we invoke Algorithm 1. Suppose
there is a k-cut C in H \ {(x, y)} such that C ∩ {x, y} = ∅, then C is also a k-cut in H, a
contradiction. Hence the correctness follows from the correctness of Algorithm 1.

Running Time

In the case that H \ {(x, y)} is still k-edge-connected, the running time is tq. We charge this
time tq to the deleted edge (x, y).

Otherwise, consider the time spend on each recursive call of Main. Assume that the total
volume of the subgraphs removed and passed to another recursive call in a recursive call is
ν. The total number of vertices added to L is O(ν). In each iteration, we either remove
a vertex from L or remove a subgraph. Hence we check pairwise k-edge-connectivity O(ν)
times, so the running time of checking pairwise k-edge-connectivity is O(tq · ν). Since we
spend O(tq · vol(U)) time to find U , the total cost is O(tq · ν). Plus, it takes O((tp + tq) ·m′)
time to initialize the dynamic pairwise k-edge connectivity algorithm and check pairwise
k-edge-connectivity on a graph H ′ with m′ edges for the first time we invoke Main on H ′.
Also, removing all edges from H ′ takes tp ·m′ time. We charge O(tp + tq) to each of the
removed edges in each recursive call.

The recursion depth is O(log m0) by Lemma 6, where n0 and m0 are the numbers of
vertices and edges of the initial graph. Hence each edge will be charged O(log m0) times, so
the total preprocessing and update time is O((tp + tq) ·m0 log n0).
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First, we set G′ ← G. Assume V = {1, 2, . . . , n}. For every 1 ≤ i < n, add k parallel
dummy length-2 paths (i, di,1, i + 1), . . . , (i, di,k, i + 1). Thus i and i + 1 are k-edge-connected,
so V is k-edge-connected at the end. When we compute the maximal k-edge-connected
subgraphs of G′, we know that we will first remove all dummy vertices di,j because they all
have degree 2 (assuming that k > 2). We will obtain G and so we will obtain the maximal
k-edge-connected subgraphs of G from this process.
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Abstract
The Connected Max Cut (CMC) problem takes in an undirected graph G(V, E) and finds a subset
S ⊆ V such that the induced subgraph G[S] is connected and the number of edges connecting
vertices in S to vertices in V \ S is maximized. This problem is closely related to the Max Leaf
Degree (MLD) problem. The input to the MLD problem is an undirected graph G(V, E) and the
goal is to find a subtree of G that maximizes the degree (in G) of its leaves. [Gandhi et al. 2018]
observed that an α-approximation for the MLD problem induces an O(α)-approximation for the
CMC problem.

We present an O(log log |V |)-approximation algorithm for the MLD problem via local search.
This implies an O(log log |V |)-approximation algorithm for the CMC problem. Thus, improving
(exponentially) the best known O(log |V |) approximation of the Connected Max Cut problem
[Hajiaghayi et al. 2015].
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1 Introduction

The Connected Max Cut (CMC) problem takes in an undirected graph G(V, E) and finds a
subset S ⊆ V such that the induced subgraph G[S] is connected and the number of edges
connecting vertices in S to vertices in V \ S is maximized. This problem is known to be
NP-Hard [6]. We give an O(log log n)-approximation algorithm for this problem, where
n = |V |. This improves on the previously known O(log n)-approximation algorithm given
in [6]. (We say that an approximation algorithm for a maximization problem achieves an
α ≥ 1 approximation ratio if the value of its output is at least 1

α of the maximum.)
A function f : 2V → IR+ is submodular if for every A, B ∈ V , f(A) + f(B) ≥ f(A ∪

B) + f(A ∩ B). It is not difficult to verify that the cut function is submodular and non-
monotone, and thus the CMC problem is a special case of non-monotone submodular function
maximization subject to connectivity constraints. To the best of our knowledge there are no
nontrivial approximation algorithms for the well motivated general non-monotone submodular
function maximization subject to connectivity constraints.

The CMC problem is closely related to the Max Leaf Tree (MLT) and Max Leaf Spanning
Tree (MLST) problems. The undirected version of the MLT problem takes in a vertex-
weighted undirected graph G(V, E, w) and finds a subtree with maximum weight on the
leaves. The weighted version of the MLST problem requires the output tree of the MLT
instance to be a spanning tree. We note that the MLT problem can also be posed as a non-
monotone submodular function maximization problem subject to connectivity constraints.
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In this case the submodular function f : 2V → IR+ defined on subsets of vertices of G is
f(U) =

∑
x∈N (U) w(x), where N (U) is the set of neighbors of the vertices in U that are not

in U (and f(∅) = 0).
Gandhi et al. [4] observed that an α-approximation algorithm for the MLT problem

implies a 4α-approximation algorithm for the (edge) weighted CMC problem. Based on this
observation we consider a special case of the MLT problem we call the MLD problem. In
this problem we are given an undirected graph G(V, E) and the goal is to find a subtree that
maximizes the degree (in G) of its leaves, that is, the weight of vertices in this special case of
the MLT problem is their degree in G. Applying the observation in Gandhi et al. [4] we get
that an α-approximation algorithm for the MLD problem gives a 4α-approximation algorithm
for the unweighted CMC problem. We present an O(log log n)-approximation algorithm for
the MLD problem and thus an approximation algorithm with the same quality for the CMC
problem.

Our algorithm is quite simple and involves successive local improvement steps. The proof
that our algorithm indeed achieves an O(log log n) approximation ratio is somewhat involved
and relies on the fact that the weights of the vertices in the MLD problem instance are
the degrees of these vertices in an undirected graph with no parallel edges. To prove the
O(log log n) approximation ratio we prove a stronger property of our solution: we prove that
the total number of edges in the graph is O(log log n) times the sum of the degrees of the
leaves of the computed subtree. This bound is tight as we can construct an instance that
achieves this upper bound.

1.1 Motivation and Prior Art
We motivate both our CMC problem and the general non-monotone submodular function
maximization subject to connectivity constraints. The Max Cut problem is a fundamental
combinatorial optimization problem and is one of the problems listed in Karp’s seminal
paper on NP-Complete problems [9]. Extending the Max Cut problem to the CMC problem
is natural. We note that a similar extension of the Min Cut problem is trivial since we can
always find a minimum cut that separates a connected component.

The Max Cut problem has numerous applications, e.g., in circuit layout design, statistical
physics [1], and image segmentation [3, 13]. Some of these applications can be extended to
the connected max cut problem. For example, Hajiaghayi et al. [6] noted that the image
segmentation application with the additional requirement that the pixels are connected can
be modeled as a CMC problem.

There are quite a few applications of non-monotone submodular function maximiza-
tion among them: maximum facility location and optimal sensor placement, segmentation
problems [10], least core value of general supermodular cost games [15], optimal marketing
over social networks [7], and revenue maximization for banner advertisement [2]. Some of
these applications consider functions that are defined on a vertex set of a graph and thus
it is natural to consider the maximization subject to graph constraints. For example, in
sensor placement we may constrain the activated sensors to be connected to enable efficient
communication, or sets targeted for marketing in a social network may be required to be in
the same social community.

The CMC problem was introduced by Hajiaghayi et al. in [5] (see also [6]) who gave
an O(log n)-approximation algorithm for this problem and obtained a polynomial time
approximation scheme for the CMC problem on planar graphs and on bounded genus graphs.

Lee et al. [11] generalized the problem considered in [6] in two aspects: (i) they considered
more general graph constraints and not just connectivity constraints, and (ii) they allowed
the graph constraints to be on a separate graph from the one in which the max cut needs
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to be computed (as long as both graphs are defined on the same set of vertices). The
graph constraints considered in [11] include independent set, vertex cover, dominating set
and connectivity. Lee et al. [11] showed a 2 approximation for this problem on graphs
with bounded treewidth. Some of these results (for constraints such as independent set,
dominating set, and connectivity) can be achieved also for planar graphs, bounded genus
graphs, and graphs with a fixed excluded minor. The algorithm in [11] is not combinatorial
but uses an LP relaxation based on the Sherali-Adams hierarchy.

As mentioned above, Gandhi et al. [4] showed that the weighted CMC problem and the
MLT problem are closely related. They obtained a constant approximation algorithm for
MLT problem in the special case of {0, 1} weights, and then used a “bucketing” technique
to extend it to an O(log n)-approximation algorithm for the general case. This implies
an O(log n)-approximation algorithm for the weighted CMC problem which improves the
O

(
log2 n

)
-approximation algorithm for this problem given in [6].

The unweighted MLT problem is simply the problem of finding a subtree with the
maximum number of leaves. Note that there is always a spanning tree that maximizes the
number of leaves, and thus the unweighted MLT problem and the unweighted MLST problem
are equivalent and both can be approximated within a factor of 2 [16]. The weighted MLST
problem admits no n1−ε approximation, for any constant ε > 0 as it is equivalent to the
Maximum Independent Set problem, as observed in [8]. This is in contrast to the weighted
MLT problem that admits an O(log n) approximation [4], and to the MLD problem, which is
a special case of the weighted MLT problem in which the weight of every vertex is equal to
its degree, that admits an O(log log n) approximation, as shown in this paper.

The rest of the paper is organized as follows. Section 2 gives a formal definition of
our problems. Section 3 describes the local search algorithm, and Section 4 proves its
approximation ratio. Section 5 has some concluding remarks and open problems. Due to
space constraints some of the proofs are omitted from this abridged version of the paper.

2 Preliminaries and Problem Definitions

In all our problems we consider undirected graphs with no parallel edges. Let G(V, E) be
such a graph, with n = |V |, and m = |E|. For a subset S ⊆ V , define NG(S) to be the subset
of the edges in E with exactly one endpoint in S. For a vertex v ∈ V , let dG(v) denote the
degree of v in G; that is, dG(v) = |NG({v})|. For a subset S ⊆ V , define G[S] to be the
subgraph induced by S. Any subset S ⊆ V such that G[S] is connected, defines a connected
cut of size |NG(S)|.

A tree T (U, F ) is a subtree of graph G if T is a tree, U ⊆ V , and F ⊆ E. We denote
the “subtree” relation by the symbol ⊑, namely, T ⊑ G indicates that T is a subtree of G.
Let V (T ) be the set of vertices of T , L(T ) be the set of leaves of T , and I(T ) be the set of
the internal vertices of T ; that is, L(T ) = {v | v ∈ U ∧ dT (v) = 1} and I(T ) = V (T ) \ L(T ).
Obviously, T (U, F ) is a spanning tree of G iff U = V .

For any given vertex r ∈ U , if T is rooted at r, then all the edges in F are oriented from
r outwards; namely, for (x, y) ∈ F , vertex x precedes y in the (unique) path from r to y.
In this case we say that x is the parent of y and y is a child of x. Our convention is to
specify the tree edge connecting x to its child y as (x, y). If vertex x is on the (unique) path
from r to y then x is an ancestor of y and y is a descendant of x. We denote this relation
by x⇝y. A vertex x is considered an ancestor and a descendant of itself (unless specified
explicitly otherwise). For a subset U ′ ⊆ U , define DescT (U ′) to be the set of descendants
of the vertices in U ′, and LDescT (U ′) to be the set of leaf descendants of the vertices in
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93:4 Approximating Connected Maximum Cuts via Local Search

U ′. Namely, DescT (U ′) = {y | ∃x ∈ U ′ : x⇝y}, and LDescT (U ′) = DescT (U ′) ∩ L(T ). To
simplify notation for singleton sets, we define DescT (u) = DescT ({u}). We assume that n > 2
(since the problem is trivial when n ≤ 2), and for convenience we always root T at a vertex r

for which dT (r) > 1.

For a vertex x ∈ U , let CT (x) be the set of its children in T , and Tx be the subtree
rooted at x; that is, the tree induced by the set of the descendants of x. For any two vertices
x, y ∈ U , let LCA(x, y) denote the lowest ancestor of x and y; defined as the unique vertex
u ∈ U such that u is an ancestor of both x and y, and none of the children of u is an ancestor
of both x and y.

For a graph G(V, E) and a tree T (U, F ), where U ⊆ V , define the leaf degree of T in G,
denoted LDG(T ), as LDG(T ) =

∑
v∈L(T ) dG(v); in words, the leaf degree of T is the sum of

the degrees in G of the leaves of T .

The input for both the Connected Max Cut (CMC) problem and the Max Leaf Degree
(MLD) problem is a graph G(V, E). The output of the CMC problem is a connected cut of
maximum size. The output of the MLD problem is a subtree Topt ⊑ G with maximum leaf
degree, i.e., Topt = arg maxT ⊑G {LDG(T )}.

Hajiaghayi et al. [6] proved that the CMC problem is NP-Hard even when the input is
restricted to planar graphs. The MLD problem is NP-Hard as well. To see this note that
when the graph G(V, E) is regular the MLD problem is equivalent to the unweighted MLT
problem (since all vertices have the same weight), which is equivalent to the unweighted
MLST problem, as noted above. The unweighted MLST problem on regular graphs was
shown to be NP-Hard in [12, 14] and thus the MLD problem is also NP-Hard even when
the input is restricted to regular graphs. The MLD problem is APX-Hard as well since the
unweighted MLST problem on 5-regular graphs is APX-Hard [14].

Both problems have a weighted version which is not considered in this paper. In the
weighted CMC problem every edge e ∈ E has a weight and the output of the weighted CMC
problem is a connected cut of maximum weight. In the MLT problem, which is the weighted
MLD problem, every vertex v ∈ V has a weight w(v) and the output of the MLT problem
is a subtree Topt ⊑ G with maximum leaf weight, i.e., Topt = arg maxT ⊑G

{∑
v∈L(T ) w(v)

}
.

(Recall that the MLD problem is a special case of the weighted MLT problem in which the
weight of the vertices is equal to their degree.)

Since both the CMC and the MLD problems are NP-Hard they call for approximation
algorithms. Both are maximization problems. We say that an approximation algorithm for a
maximization problem achieves an α ≥ 1 approximation ratio if the value of its output is at
least 1

α of the maximum. Gandhi et al. [4] proved a relation between the approximation of
these problems.

▶ Theorem 1 ([4]). An α-approximation algorithm for the MLD problem implies a 4α-
approximation algorithm for the CMC problem.

We note that [4] considered the weighted CMC and MLT problems. For an edge weighted
CMC instance the weight of a vertex v in the corresponding MLT instance is the sum of the
weights of the edges in NG({v}). It is easy to see that the MLD problem corresponds to the
unweighted CMC problem since in the MLD problem the weight of every vertex equals its
degree.
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3 The Local Search Algorithm for MLD

Given a graph G(V, E), we present a local search algorithm that finds a subtree T ∗ ⊑ G

such that O(LDG(T ∗) log log n) = maxT ⊑G {LDG(T )}. We start by computing any spanning
tree T (V, F ) of G, and root it at an arbitrary vertex r ∈ V . The solution generated by our
algorithm will be a subtree of G, also rooted at r. The algorithm proceeds iteratively by
performing local search improvements. Each local search improvement considers an internal
vertex v ∈ I(T ) and determines whether making v a leaf, while potentially removing some
of the current leaves in T , results in an improved tree. We call such an operation a vertex
improvement defined below. The algorithm terminates when no local search improvements
are available and the current tree T at this point is returned as T ∗.

3.1 Vertex improvement
To define the improvements we first introduce the notion of dependent children. Let T ⊑ G

be a subtree of G. Consider a vertex v ∈ I(T ), and let CT (v) ⊆ V (T ) be the set of children
of v in T . For a vertex x ∈ CT (v), consider G[I(T )∪ {x} \ {v}] – the subgraph of G induced
by x, and the vertices in I(T ), except for v. We say that x is a dependent child of v if x is
disconnected from r in this induced subgraph. Note that a dependent child of v depends on v

for its connectivity to r in the subgraph G[I(T )∪{x}] (implying that v is a separating vertex
in G[I(T ) ∪ {x}]). If a vertex x ∈ CT (v) is not a dependent child then it is an independent
child of v. Let DT (v) ⊆ CT (v) be the (possibly empty) set of dependent children of v in
T . (For the root r of T , trivially DT (r) = CT (r).) Figure 1 illustrates a vertex v and its
independent child x.

Figure 1 Vertices x and z are independent children of v since the paths from z to x and from x

to r via (x′, y) use only internal vertices of T and avoid v.

▶ Lemma 2. For a subtree T (U, F ) ⊑ G and a vertex v ∈ I(T ), if v has any independent
children, then there exists an independent child x ∈ CT (v)\DT (v) and a subtree T ′(U, F ′) ⊑ G,
such that CT ′(v) = CT (v) \ {x}, L(T ) ⊆ L(T ′) ⊆ L(T ) ∪ {v, x}, and LDG(T ′) ≥ LDG(T ).

Proof. Consider an independent child z ∈ CT (v) \DT (v) (see Figure 1). By the definition of
an independent child there exists a path in G that connects z to the root r with the property
that all the vertices along this path are in I(T ) \ {v}. Follow such a path starting at z. It
must include an edge (x′, y) such that LCA(x′, y) is an ancestor of v other than v. (This is
because r is not a descendant of v.) Consider the first such edge along the path. For this
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edge x′ is a descendant of v (other than v) and y is not a descendant of v. Adding the edge
(x′, y) to the set F of the edges of T creates a cycle that consists of the tree paths from
LCA(x′, y) to x′ and to y and the edge (x′, y). Since x′ is a descendant of v other than v,
the path from LCA(x′, y) to x′ contains an edge that connects v to one of its children. Let
this child be x ∈ CT (v). Clearly, x is also an independent child since the path from x to r

that uses the tree path from x to x′, the edge (x′, y) and the tree path from y to r avoids v.
Let F ′ = F ∪ {(x′, y)} \ {(v, x)}. (See also Figure 1.) All the vertices in U are reachable

from r via edges of F ′ as follows. The vertices that are not descendants of x are reachable
in the same way as before and the ones which are descendants of x are reachable through
the edge (x′, y) since y (which is not a descendant of x in T ) is reachable from r and all the
descendants of x are reachable from y via edge (x′, y) and the edges in the subtree rooted at
x as all these edges are in F ′. Since |F ′| = |F | = |U | − 1 we have that T ′(U, F ′) is a tree
that spans the vertex set U , and thus T ′(U, F ′) ⊑ G.

The path from x to r in T ′ avoids v, and thus x is not a descendent of v in T ′. This is the
only change in the set of children of v, implying that CT ′(v) = CT \ {x}. The only vertices
in U whose degree in T ′ may be larger than their degree in T are y (always) and x′ (when
x′ ≠ x). However, y ∈ I(T ) and when x′ ≠ x also x′ ∈ I(T ). Thus, none of the leaves of T

may become internal vertices in T ′. On the other hand the degrees of v and x (when x′ ̸= x)
in T ′ are 1 less than their degrees in T and thus they may become leaves in T ′, implying that
L(T ) ⊆ L(T ′) ⊆ L(T ) ∪ {v, x}. Since L(T ) ⊆ L(T ′), we also have LDG(T ′) ≥ LDG(T ). ◀

Given a subtree T (U, F ) ⊑ G and a vertex v ∈ I(T ), Lemma 2 can be applied successively
to obtain a tree T ′(U, F ′) in which v has no independent children. This is done as follows.
Start by initializing T ′ to T . If v has an independent child in T ′, apply Lemma 2 to get
a modified tree T ′ that spans the same set of vertices U and satisfies the conditions of
the lemma. If vertex v still has an independent child in the modified T ′, then repeat the
application of Lemma 2. The process is bound to terminate since the number of children of
v is decreased in each iteration. Note that when the process terminates L(T ) ⊆ L(T ′) and
thus LDG(T ′) ≥ LDG(T ).

The function VertexImprove(G, T, v) described in Algorithm 1 gets a graph G(V, E),
a subtree T (U, F ) ⊑ G, and a vertex v ∈ I(T ) as parameters. It determines whether
LDG(T ) can be improved by making v a leaf. It returns a subtree T ′(U ′, F ′) ⊑ G such that
LDG(T ′) ≥ LDG(T ). (In case of improvement LDG(T ′) > LDG(T ).)

Algorithm 1 Check whether the leaf degree can be improved by making v a leaf.

1: function VertexImprove(G, T, v)
2: Parameters: graph G(V, E), subtree T (U, F ) ⊑ G, vertex v

3: Returned value: subtree T ′ ⊑ G, s.t. LDG(T ′) ≥ LDG(T )
4: T ′ ← T

5: while ∃x ∈ CT ′(v) ∧ ∃(x′, y) ∈ E such that x⇝x′ and v⇝/ y do
6: Update tree T ′ by swapping the tree edge (v, x) with the nontree edge (x′, y)
7: if v is a leaf in T ′ then
8: return T ′

9: else if dG(v) ≤ 2LDG(T ′
v) then ▷ no substantial improvement

10: return T ′

11: else ▷ remove the subtrees rooted at the children of v

12: return T ′ ← T ′[(U \ DescT ′(v)) ∪ {v}]
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The function VertexImprove starts by modifying the tree T to a tree T ′(U, F ′) in which
v has no independent children as described above. (Note that any independent child of v before
the modification becomes an independent child of another vertex in I(T ).) At this point v may
either be a leaf in T ′ or an internal vertex with only dependent children. If v is a leaf, then
L(T ) ∪ {v} ⊆ L(T ′) and LDG(T ′) > LDG(T ), resulting in an improvement of the leaf degree.
In this case tree T ′(U, F ′) is returned by the function. If v has only dependent children, then
function VertexImprove checks whether removing the subtrees rooted at the children of v,
and thus making v a leaf improves the leaf degree (substantially). (See Figure 2.) Specifically,
let T ′[Ũ ] be the subgraph of T ′ induced by the vertex set Ũ = (U \ DescT ′(v))∪{v}. Clearly,
T ′[Ũ ] is connected and thus T ′[Ũ ] ⊑ G. Compare LDG(T ′) and LDG(T ′[Ũ ]): The only leaf
in T ′[Ũ ] that is not a leaf in T ′ is v. On the other hand the only leaves in T ′ that are not
in T ′[Ũ ] are the descendant leaves of v in T ′, namely, LDescT ′(v). Let T ′

v be the subtree
of T ′ rooted at v. We get that LDG(T ′

v) is the sum of the degrees in G of the leaves in
LDescT ′(v). Consequently, LDG(T ′[Ũ ]) − LDG(T ′) = dG(v) − LDG(T ′

v). It follows that if
dG(v) > LDG(T ′

v), then LDG(T ′[Ũ ]) > LDG(T ′). To achieve our approximation ratio we
perform an improvement step in this case only if the resulting improvement is “substantial”;
that is, only if dG(v) > 2LDG(T ′

v) or equivalently LDG(T ′[Ũ ])− LDG(T ′) > LDG(T ′
v). In this

case T ′[Ũ ] is returned by the function VertexImprove(G, T, v).

Figure 2 Removing the children of v and all their descendants.

It follows from the proof of Lemma 2 that as long as v has any independent children, the
condition of the While loop in Line 5 of Algorithm 1 must be satisfied. After the execution
of this While loop all the vertices in CT ′(v) must be dependent children of v. Note that
Algorithm 1 can be implemented in polynomial time.

3.2 Sequencing the improvement steps

Algorithm 2 starts from an arbitrary spanning tree and calls the function VertexImprove
successively, as long as tree T has an internal vertex that was not considered as a candidate
for improvement by this function. An internal vertex v is considered as a candidate for
improvement only after all its nonleaf children were considered as candidates for improvement.
Such an internal vertex is guaranteed to exist whenever there are internal vertices that were
not considered for improvement. The output of Algorithm 2 is the final tree, denoted T ∗.

We prove the following properties of the tree T ∗ that is the output of Algorithm 2.

▶ Lemma 3. For every vertex v ∈ I(T ∗), dG(v) ≤ 2
∑

u∈DT ∗ (v) LDG(T ∗
u ) ≤ 2LDG(T ∗

v ).

ESA 2023



93:8 Approximating Connected Maximum Cuts via Local Search

Algorithm 2 Local improvements.

Input: graph G(V, E), and an arbitrary vertex r ∈ V

Output: a subtree T ∗ ⊑ G rooted at r

1: T (V, F )← a spanning tree rooted at r

2: tested(v)← false, ∀v ∈ I(T )
3: tested(v)← true, ∀v ∈ L(T )
4: while ∃v ∈ I(T ) s.t. tested(v) = false do
5: find a vertex v ∈ I(T ) s.t. tested(v) = false ∧ ∀u ∈ CT (v) tested(u) = true
6: T ← VertexImprove(G, T, v)
7: tested(v)← true
8: return T ∗ ← T

Proof. Algorithm 2 starts with a spanning tree T rooted at r. The tree T is modified in
every call to VertexImprove. Each such change may involve the removal of vertices from
T and conversion of some vertices from internal vertices to leaves. However, a leaf is never
changed to an internal vertex, and a vertex that was removed from T will never be brought
back. Consider an internal vertex v ∈ I(T ∗) and the function call VertexImprove(G, T, v).
Fix T to be the tree after this call. Vertex v has to be an internal vertex of T (as otherwise it
would not be in I(T ∗)). It follows that after this call dG(v) ≤ 2LDG(Tv), and all the vertices
in CT (v) are dependent children of v. Since all these vertices were children of v also before
the function call VertexImprove(G, T, v), then by our algorithm they were considered for
improvement before this call. It follows that removing any of these vertices in subsequent
calls would imply also the removal of v, and since removed vertices are not brought back
this did not happen. Thus, DT (v) = CT (v) ⊆ CT ∗(v). Since I(T ∗) ⊆ I(T ) all these vertices
are also dependent children of v in T ∗ and thus dG(v) ≤ 2

∑
u∈DT ∗ (v) LDG(T ∗

u ). Clearly,
2

∑
u∈DT ∗ (v) LDG(T ∗

u ) ≤ 2LDG(T ∗
v ). ◀

▶ Lemma 4. There are no edges connecting vertices in I(T ∗) to vertices outside T ∗.

Proof. We show that the following assertion holds throughout the computation of Algorithm 2:
there are no edges connecting vertices in I(T ) to vertices outside T . The lemma follows since
T ∗ is the final value of T . The assertion holds at the start of Algorithm 2 since initially T is
a spanning tree and thus there are no vertices outside T . Suppose that the assertion holds
for T until the function call VertexImprove(G, T, v). We need to show that it holds also
after this call. This clearly holds in case the vertices of T are not changed in this call. The
only nontrivial case is when some vertices are removed from T in this call; that is, Line 12 in
Algorithm 1 is executed. Recall that the removed vertices are all the descendants of v (other
than v itself) in the tree T ′, and that in tree T ′ all the children of v are dependent children;
i.e., DT ′(v) = CT ′(v). This implies that none of the vertices in descT ′(v) are connected to
an internal vertex of T ′[(U \ DescT ′(v)) ∪ {v}] (which is the returned value of T ) as this will
imply that at least one of the vertices in CT ′(v) is independent. Thus, the assertion holds
for T also after the call. ◀

It is not difficult to see that Algorithm 2 can be implemented in polynomial time. We
remark that the efficiency of the algorithm can be improved by avoiding the search for a
vertex v for which tested(v) = false ∧ ∀u ∈ CT (v) tested(u) = true (Line 5). This can be
done by computing a postorder of the vertices of the initial tree T (which is a spanning tree)
and following this order when the vertices are considered for improvement. Recall that a
vertex v appears in a postorder after all its descendants. So, this is the case for the initial
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tree. Now, suppose that Algorithm 2 follows the vertices in this order, and a vertex v is
considered for improvement. At this point all the descendants of v in the initial tree were
considered already. Any descendant of v at this point that was not a descendant of v in
the original tree became a descendant as a result of a move of vertices in a function call to
VertexImprove. The only vertices that are moved in this function call must have been
considered for improvement already since they are the descendant of the vertex considered
for improvement in the call to VertexImprove. Thus, when a vertex v is considered for
improvement all its descendants were already considered for improvement.

4 The Approximation Ratio of the Algorithm

Recall that T ∗ is the tree computed by Algorithm 2. We start by proving that the number
of edges with at least one endpoint in V (T ∗) is O(LDG(T ∗) log log n). We prove this bound
separately for tree edges and nontree edges. Next, we show that the total number of edges
of G outside T ∗ is also O(LDG(T ∗) log log n). It follows that m = O(LDG(T ∗) log log n).
Since for any subtree S of G, LDG(S) ≤ 2m, we get that for any subtree S of G, LDG(S) =
O(LDG(T ∗) log log n). This implies that Algorithm 2 is an O(log log n)-approximation al-
gorithm for both the MLD and the respective CMC problems.

4.1 Bounding the number of tree edges in T ∗

We show that the number of tree edges is O(LDG(T ∗)). For this we upper bound the number
of vertices in T ∗ which also bounds the number of tree edges in T ∗. Clearly, the number
of leaves is |L(T ∗)|. Also, the number of vertices of degree at least 3 in T ∗ is bounded by
|L(T ∗)| − 1. We still need to bound the number of vertices of degree 2 in T ∗. To prove this
bound we apply a lemma from [6] that states that WLOG it can be assumed that the input
graph to the CMC problem and thus also to the respective MLD problem does not contain a
path of three vertices of degree 2.

▶ Lemma 5 ([6]). WLOG it can be assumed that the input graph to the CMC problem and
thus also to the respective MLD problem does not contain a path of three vertices of degree 2.

We note that [6] considered the slightly more general {0, 1}-weighted case rather than the
unit weight case considered here.

For the remainder of our analysis we color the edges of T ∗ in two colors red and blue.
For v ∈ I(T ∗), a tree edge (v, u) is colored red if u is a dependent child of v and colored
blue otherwise. Trivially, all the edges outgoing from r are red. By Lemma 3 every vertex
v ∈ I(T ∗) has at least one outgoing red edge. We now bound the number of degree 2 vertices
in T ∗.

▶ Lemma 6. The number of degree 2 vertices in T ∗ is bounded by 8|L(T ∗)|+ 3LDG(T ∗).

Proof. Consider the subgraph of T ∗ induced by its degree 2 vertices. This subgraph is a
collection of paths. The endpoint of each such path is the parent of a distinct vertex of
degree other than 2 in T ∗. Hence, the number of these paths is bounded by the number of
vertices with degree other than 2 in T ∗. As stated above, the number of vertices of degree 1
in T ∗ is |L(T ∗)|, and the number of vertices of degree 3 or more is bounded by |L(T ∗)| − 1.
Thus, the total number of these paths is bounded by 2|L(T ∗)| − 1. Consider the paths of
length (in edges) at most 3. Let n3 be the number of these paths. The number of vertices of
degree 2 on these paths is bounded by 4n3.
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Consider the rest of the paths, and denote their number by n≥4. Let v1, v2, v3, . . . , vℓ,
for ℓ ≥ 5, be such a path. Note that the edges (vi, vi+1), for i ∈ [1..ℓ− 1], must be red
since every internal vertex must have at least one dependent child and vi+1 is the only child
of vi; namely, CT ∗(vi) = DT ∗(vi) = {vi+1}. By Lemma 5 G does not contain a path of
three vertices of degree 2. Thus, at least one out of every three consecutive vertices on the
path v2, . . . , vℓ−1 must have degree at least 3 in G. Hence, at least ⌊ ℓ−2

3 ⌋ vertices on the
path v2, . . . , vℓ−1 must have degree at least 3 in G. Let vi be one of these vertices, and let
y /∈ {vi−1, vi+1} be a vertex connected to vi in G (y /∈ {vi−1, vi+1} because G has no parallel
edges). By Lemma 4 vertex vi is not connected to vertices outside T ∗, and hence y ∈ V (T ∗).
We claim that y must be a leaf. To obtain a contradiction assume that this is not the case
and consider LCA(vi, y). If LCA(vi, y) ̸= vi, then it must be an ancestor of vi−1 but not
vi−1 itself (since vi is the only child of vi−1). In this case vi cannot be a dependent child
of vi−1 because the path from vi to y using edge (vi, y) and then up the tree to LCA(vi, y)
avoids vi−1. If LCA(vi, y) = vi, then y must be a descendant of vi+1 but not vi+1 itself. In
this case the only child of vi+1 cannot be a dependent child because the path from this child
down the tree to y and then to vi using edge (vi, y) avoids vi+1.

It follows that at least ⌊ ℓ−2
3 ⌋ ≥

ℓ−4
3 vertices on every path v1, v1, v2, . . . , vℓ of degree

2 vertices in T ∗, where ℓ ≥ 4, are connected to leaves in L(T ∗). Thus, each one of the
n≥4 paths of length ℓ ≥ 4 of degree 2 vertices in T ∗ contributes at least ℓ−4

3 to the leaf
degree of T ∗, which equals LDG(T ∗). Summing this over all such paths implies that the
total number of vertices of degree 2 on these paths is bounded by 3LDG(T ∗) + 4n≥4. Since
n3 +n≥4 < 2|L(T ∗)| the number of degree 2 vertices is bounded by 8|L(T ∗)|+3LDG(T ∗). ◀

We conclude the following theorem.

▶ Theorem 7. The number of tree edges in T ∗ is bounded by 10|L(T ∗)| + 3LDG(T ∗) =
O(LDG(T ∗)).

4.2 Bounding the number of nontree edges with at least 1 endpoint in
V (T ∗)

The number of nontree edges with at least one endpoint in L(T ∗) is O(LDG(T ∗)). Thus,
from now on we concentrate on bounding the number of nontree edges with at least one
endpoint in I(T ∗), and the other not in L(T ∗). We have already established in Lemma 4
that a vertex in I(T ∗) cannot be connected to a vertex outside T ∗. It follows that it suffices
to bound the number of nontree edges with both endpoints in I(T ∗).

Recall that for v ∈ I(T ∗), a tree edge (v, u) is colored red if u is a dependent child of
v and colored blue otherwise. For a vertex v ∈ I(T ∗), let BT ∗(v) be the subset of vertices
of T ∗ that can be reached from v by paths that start at a red edge outgoing from v and
then use only blue edges. In other words, BT ∗(v) consists of all the dependent children of v

and all the vertices that are reachable from these dependent children using only blue edges.
(Notice that v /∈ BT ∗(v).) In the next lemma we prove that an internal vertex x ∈ BT ∗(v)
cannot be connected to an internal vertex of T ∗ that is neither v nor in BT ∗(v) ∪BT ∗(x).

▶ Lemma 8. If an internal vertex x ∈ BT ∗(v) is connected by a nontree edge to a vertex
y ∈ I(T ∗), then y ∈ {v} ∪BT ∗(v) ∪BT ∗(x).

Proof. To obtain a contradiction assume that x is connected to a vertex y ∈ I(T ∗) \
({v} ∪BT ∗(v) ∪BT ∗(x)). We consider 4 cases.
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Case 1. y is a descendant of x. Follow the path from x to y in T ∗. The vertex immediately
after x along this path must be in BT ∗(v) ∪ BT ∗(x). By our assumption y /∈ BT ∗(v) ∪
BT ∗(x). Thus, the path from x to y in T ∗ must leave either BT ∗(v) or BT ∗(x). Note
that for any vertex u ∈ I(T ∗), any tree edge connecting a vertex in BT ∗(u) to a vertex
outside BT ∗(u) must be red. It follows that the path from x to y in T ∗ must include a
red edge (x′, x′′), where x′ ̸= x is a descendant of x. Note that vertex x′′ is a dependent
child of x′ since (x′, x′′) is red. This is a contradiction since the path from x′′ down the
tree to y, followed by the edge (x, y), and the path from x down the tree to the parent of
x′ avoids x′, and thus x′′ cannot be a dependent child of x′.

Case 2. vertex y is a descendant of a vertex z ∈ BT ∗(v), where z ̸= x, and y is not a
descendant of x. Since y /∈ BT ∗(v) the path from z to y in T ∗ must include a red edge
(z′, z′′), where z′ ∈ BT ∗(v). In this case z′′ is an ancestor of y, and thus z′′ is connected
to x through the edge (x, y). To obtain a contradiction we show that there exists a path
from x to the parent of z′ that avoids the vertex z′. This implies that z′′ cannot be a
dependent child of z′ which is a contradiction. Consider LCA(x, z′). By our assumption
in this case x is not an ancestor of y and thus it also cannot be an ancestor of z′. Thus,
LCA(x, z′) ̸= x. In case LCA(x, z′) ̸= z′ the path from x to the parent of z′ goes from x

to LCA(x, z′) and then down the tree to the parent of z′. In case is LCA(x, z′) = z′ we
must have that z′ is an ancestor of x. Since both x and z′ are in BT ∗(v), all the edges on
the path in T ∗ from z′ to x are blue. But then the ancestor of x which is the child of z′

is not a dependent child of z′, and thus there is a path from x to the parent of z′ that
goes through this child and avoids z′.
In the remaining two cases vertex y is not a descendant of any vertex in BT ∗(v).

Case 3. Vertex y is not a descendant of v. In this case there is a path from y to the parent
of v that avoids v. Let x′ be the child of v that is an ancestor of x. Since x ∈ BT ∗(v),
the tree edge (v, x′) is colored red, and vertex x′ is a dependent child of v but this is a
contradiction since the path from x′ to x and then through the edge (x, y) to the parent
of v avoids v.

Case 4. Vertex y is a descendant of v. Consider the first edge (v, y′) on the path from v to y

in T ∗. Since y is not a descendant of any vertex in BT ∗(v) this edge must be colored blue,
and thus y′ is an independent child of v and there exists a path from y′ to the parent of
v that avoids v. As in the previous case, let x′ be the child of v that is an ancestor of
x. The tree edge (v, x′) is colored red, and vertex x′ is a dependent child of v. This is a
contradiction since the path from x′ that goes down the tree to x, then to y through the
edge (x, y), then up the tree to y′, and then from y′ to the parent of v, avoids v. ◀

Consider a vertex x ∈ V (T ∗) that is not the root r. Since all the edges outgoing from r

are red, there must be at least one red edge (v, v′) on the path up the tree from x to r. Thus
there exists a vertex v ∈ I(T ∗) such that x ∈ BT ∗(v). Note that v is the unique ancestor of
x with the property that the (unique) path from v to x in T ∗ starts in a red edge and then
uses only blue edges. It follows that any two sets BT ∗(v) and BT ∗(u) are disjoint. Thus, the
sets BT ∗(v) form a partition of the vertices in T ∗ (excluding r). This implies that the total
number of edges of the form (v, x), where v ∈ I(T ∗) and x ∈ BT ∗(v) ∩ I(T ∗) is bounded by
|I(T ∗)| (since there are no parallel edges). Clearly, |I(T ∗)| is bounded by the number of tree
edges, and thus by Theorem 7 |I(T ∗)| = O(LDG(T ∗)).

It follows from Lemma 8 that we are left with bounding the number of nontree edges
(x, y), where both x and y are in BT ∗(v) ∩ I(T ∗), for some v ∈ I(T ∗). To bound the number
of these edges we modify the tree T ∗ to a tree T̃ that spans the same set of vertices as T ∗ in
which all the vertices in BT ∗(v) become the children of v. Note that unlike the tree T ∗, the
tree T̃ is not a subtree of G.
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4.2.1 The modification of T ∗ to T̃

Tree T̃ is obtained from T ∗(U, F ) by making all the vertices in BT ∗(v) the children of v, for
every v ∈ I(T ∗). Formally, for every v ∈ I(T ∗), edge (v, x) is a tree edge of T̃ iff x ∈ BT ∗(v).
To illustrate the definition, consider a vertex x ∈ BT ∗(v) that is not a child of v in T ∗, and
let y be the parent of x in T ∗. Note that the edge (y, x) is a blue edge and x is thus an
independent child. We remove the edge (y, x) and instead add the edge (v, x), making v the
new parent of x. Let T̃ be the resulting tree. It is not difficult to see that T̃ is indeed a tree
that spans the set U . This is because the parent of any vertex v in T̃ is an ancestor of its
parent in T ∗.

▶ Lemma 9. Any two vertices {x, y} ⊆ BT ∗(v) ∩ I(T ∗), for some v ∈ I(T ∗) are siblings in
T̃ and share v as their parent.

Proof. If both x and y are independent children in T ∗ then after the modification both
become children of v. The only other vertices in BT ∗(v) ∩ I(T ∗) are the dependent children
of v and they remain children of v also in T̃ . ◀

Recall that we need to bound the number of nontree edges of the form (x, y), where
both x and y are in BT ∗(v) ∩ I(T ∗), for some v ∈ I(T ∗). This is equivalent to bounding the
number of the edges of G that connect siblings in I(T̃ ).

▶ Lemma 10. For any vertex v ∈ I(T ∗), if x is a descendant of a dependent child of v in
T ∗ then x is a descendant of v in T̃ .

By Lemma 3 for every vertex v ∈ I(T ∗), dG(v) ≤ 2
∑

u∈DT ∗ (v) LDG(T ∗
u ). By Lemma 10

any leaf descendant of a vertex u ∈ DT ∗(v) is a descendant of v in T̃ and thus we have
dG(v) ≤ 2LDG(T̃v). As shown above, to bound the number of nontree edges with both
endpoints in BT ∗(v) ∩ I(T ∗), for some v ∈ I(T ∗), it suffices to bound the number of edges
that connect siblings in I(T̃ ). For this we prove the following slightly more general theorem,
where instead of considering the leaf degree, we assume general weights on the leaves of
T̃ . Associate a weight w(ℓ) ≥ 1 with every leaf ℓ ∈ L(T̃ ). For a vertex v ∈ I(T̃ ), let w(T̃v)
denote the total weight of the leaves of T̃v, which is the subtree rooted at v. Also define
w(T̃ ) = w(T̃r). The following theorem (proven below) may be interesting on its own.

▶ Theorem 11. Let T̃ be a rooted tree with an integral weight w(ℓ) ≥ 1 associated with every
leaf ℓ ∈ L(T̃ ), and let G̃(I(T̃ ), Ẽ) be a graph with no parallel edges that all of its edges connect
siblings in I(T̃ ). If for every v ∈ I(T̃ ), dG̃(v) ≤ 2w(T̃v), then |Ẽ| = O

(
w(T̃ ) log log w(T̃ )

)
.

To prove this theorem we further modify T̃ to T̂ in which the degree of every internal
vertex is lower and upper bounded by a constant times the weight of the leaves of its rooted
subtree.

4.2.2 The modification of T̃ to T̂

We obtain T̂ from T̃ by removing some of the internal vertices of T̃ . While doing so we
maintain that the number of edges connecting siblings in I(T̂ ) remains the same as the
number of edges connecting siblings in I(T̃ ).

Initially, T̂ is set to T̃ and Ĝ is set to G̃. Next, we traverse the vertices of I(T̂ ) \ {r} top
down starting from the children of the root r. When a vertex v is traversed we check whether
v has any children that are internal vertices, and if so whether dĜ(v) < w(T̂v). (Recall that
by the conditions of Theorem 11, initially, dĜ(v) ≤ 2w(T̂v).) If this is the case we execute
the following modification steps.
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Step 1. Remove v from T̂ and connect all the children of v that are internal vertices to the
parent of v. Denote the set of these children by C.

Step 2. Pick a vertex x ∈ C and connect x to all the leaves of T̂ that were children of v

before its removal.
Step 3. For every edge (v, y) in Ĝ that connected v before its removal to a sibling in T̂ , find

a vertex z ∈ C such that dĜ(z) < 3w(T̂z)− 1, and add the edge (z, y) to Ĝ in lieu
of the edge (v, y). Lemma 12 implies that such a vertex z always exists.

▶ Lemma 12. After Step 2 of the modification steps

dĜ(v) +
∑
z∈C

dĜ(z) < 3
∑
z∈C

w(T̂z). (1)

Lemma 12 implies that for each of the dĜ(v) edges that connected v to its siblings we
can find in Step 3 a vertex z ∈ C such that dĜ(z) < 3w(T̂z)− 1. (Recall that the weights
are integral.)

▶ Lemma 13. After traversing all the vertices of T̂ the following properties are satisfied.
Property 1. The graph Ĝ(I(T̂ ), Ê) has no parallel edges and all of its edges connect siblings

in I(T̂ ).
Property 2. The number of edges of Ĝ is the same as the number of edges of G̃.
Property 3. For every internal vertex v ∈ I(T̂ ) \ {r} that is a parent of a nonleaf vertex in

T̂ , w(T̂v) ≤ dĜ(v).
Property 4. For every internal vertex v ∈ I(T̂ ) \ {r}, dĜ(v) ≤ 3w(T̂v).

4.2.3 Bounding the number of edges connecting siblings in T̂

To bound the number of edges connecting siblings in T̂ we prove the following theorem.

▶ Theorem 14. Let T̂ be a rooted tree with an integral weight w(ℓ) ≥ 1 associated with
every leaf ℓ ∈ L(T̂ ), and let Ĝ(I(T̂ ), Ê) be a graph with no parallel edges that all of its edges
connect siblings in I(T̂ ). If for every v ∈ I(T̂ ) that is a parent of a nonleaf vertex in T̂ ,
w(T̂v) ≤ dĜ(v), and for every v ∈ I(T̂ ), dĜ(v) ≤ 3w(T̂v), then |Ê| = O

(
w(T̂ ) log log w(T̂ )

)
.

To prove Theorem 14 we use the following simple inequality that holds for undirected
graphs with no parallel edges.

▶ Lemma 15. Let H(V, E) be an undirected graph with no parallel edges and m = |E|. Let
U ⊆ V be the subset of vertices of degree at most 4

√
m. Then,

∑
v∈U dH(v) > 7

8 m.

Proof of Theorem 14. To bound the number of edges of Ĝ we use a charging scheme. For a
vertex v ∈ I(T̂ ) that is a parent of at least 2 nonleaf vertices in T̂ , let Ĝv = Ĝ[CT̂ (v)∩ I(T̂ )];
that is, the subgraph of Ĝ induced by the children of v that are internal vertices. Note that Ĝ

is the union of all these subgraphs since Ĝ only contains edges that connect siblings in I(T̂ ).
Let mv be the number of edges in this subgraph. “Charge” these mv edges to the subset of
children of v whose degree in Ĝv and thus also in Ĝ is at most 4√mv. By Lemma 15 the
sum of the degrees of all these children is greater than 7

8 mv. Thus it suffices to charge each
such child x of v the amount 8

7 · dĜ(x) to cover for all the mv edges.
To bound the total number of edges we need to sum the charges of all the vertices. We

distinguish between charged vertices that are parents of a nonleaf vertex and those with
only leaf children. There are 3 cases based on the characteristics of the charged vertex
x ∈ CT̂ (v) ∩ I(T̂ ).
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Case 1. The charged vertex x has only leaf children. By the conditions of the theorem dĜ(x)
is upper bounded by 3 times the weight of its leaf children. Since the leaf children of any
two vertices are disjoint we get that the total amount charged to vertices with only leaf
children is upper bounded by 8

7 · 3w(T̂ ).

Case 2. The charged vertex x is a parent of a nonleaf vertex and dĜ(x) ≤ 48 · 3 = 144.
The amount charged to all such vertices is upper bounded by 8

7 · 144 times the number
of vertices in I(T̂ ) that have siblings. The number of internal vertices in T̂ that have
siblings (and thus are children of a vertex whose degree is at least 3 in T̂ ) is bounded by
the number of leaves of T̂ . Note that O

(
L(T̂ )

)
= O

(
w(T̂ )

)
since for every leaf ℓ ∈ L(T̂ ),

w(ℓ) ≥ 1. We conclude that the amount charged to all such vertices is O
(

w(T̂ )
)

.

Case 3. The charged vertex x is a parent of a nonleaf vertex and dĜ(x) > 144. By our
construction since x is a parent of a nonleaf vertex we have w(T̂x) ≥ 1

3 dĜ(x) > 48 and
dĜ(x) > w(T̂x). Recall that the number of edges in Ĝv is mv. Since dĜ(x) ≤ 4√mv

we have also w(T̂x) < 4√mv. On the other hand we claim that w(T̂v) ≥ 2
3 mv. This

holds since for every child y ∈ CT̂ (v) ∩ I(T̂ ) we have dĜ(y) ≤ 3w(T̂y) summing over all
such children of v we get that the sum of all degrees, which is 2mv, is bounded by 3
times the sum of the weights of the subtrees rooted at all these children. The sum of
these weights is upper bounded by the weight of the subtree rooted at their parent v

and thus we have 2mv ≤ 3w(T̂v). Combining the two inequalities (i) w(T̂x) < 4√mv and

(ii) w(T̂v) ≥ 2
3 mv, we get w(T̂v) ≥ 2

3 mv = 1
24

(
4√mv

)2
> 1

24

(
w(T̂x)

)2
> 22 · 24 (since

w(T̂x) > 48), and thus for any ancestor y of v it also holds that w(T̂y) > 1
24

(
w(T̂x)

)2
.

Note that 1
24 ·

(
22i−1 · 24

)2
= 22i · 24. Thus, applying the inequality recursively on all the

ancestors of x that are also charged, implies that if i ancestors of the charged vertex x

are also charged, then the weight of the subtree rooted at the highest such ancestor is at
least 22i · 24. This implies that the maximum number of such vertices that are charged
along any path from the root to a leaf is O

(
log log w(T̂ )

)
.

To sum the total amount charged to vertices with a nonleaf child and degree in Ĝ greater
than 144, we consider them in “layers”. The first layer consists of all vertices x such that (1)
x has a nonleaf child and dĜ(x) > 144, (2) x was charged, and (3) none of the ancestors of x

(other than x) were charged. Similarly, layer i > 1 consists of all vertices x such that (1) x

has a nonleaf child and dĜ(x) > 144, (2) x was charged, and (3) x has an ancestor (other than
x) that belongs to layer i− 1. The number of layers is bounded by the maximum number of
vertices that are charged along any path from the root to a leaf which is O

(
log log w(T̂ )

)
. By

the construction of layers if vertices x and y are in the same layer then T̂x and T̂y are disjoint.
Since the charge of a vertex x that is a parent of a nonleaf vertex is 8

7 · dĜ(x) ≤ 8
7 · 3w(T̂x)

the total amount charged to the vertices in the same layer is 8
7 · 3w(T̂ ). The proof follows

since there are O
(

log log w(T̂ )
)

layers. ◀

We note that the bound Theorem 14 is tight. We show a family of trees and associated
graphs that achieve the upper bound in Theorem 14. Let S1 be a tree of height 3 with 5
vertices: a root, 2 children of the root, and 2 leaves, each of which is a single child of a child of
the root. Assign a weight of 1 to each of the 2 leaves. The graph Ĝ1 consists of a single edge
connecting the 2 children of the root. For i > 1, the tree Si is given by taking 22i−1 copies of
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Si−1 and connecting them to a common root. The graph Ĝi includes 22i−1 copies of Ĝi−1
associated with the copies of Si−1. In addition, partition the 22i−1 children of the root of Si

into two sets of size 22i−1−1 and add the edges of the complete bipartite graph connecting the
vertices in these 2 sets. The number of these edges is

(
22i−1−1

)2
= 22i−2. Figure 3 shows

the tree S2 and the associated graph Ĝ2. It can be verified that the construction obeys the
conditions in Theorem 14. It can be shown by a simple induction that the number of leaves
in Si is 22i−1 and the number of edges in Ĝi is i · 22i−2 which achieves the bound tightly.

Figure 3 The tree S2 and the associated graph Ĝ2. Tree edges are dashed and graph edges are
solid.

We use Theorem 14 to prove Theorem 11.

Proof of Theorem 11. The number of edges of G̃ connecting siblings in I(T̃ ) is the same as
the number of edges of Ĝ connecting siblings in I(T̂ ) (see Property 2 above). Also, by our
modification process w(T̃ ) = w(T̂ ). By Properties 3 and 4 above the tree T̂ and the graph Ĝ

satisfy the conditions of Theorem 14. It follows that the number of edges connecting siblings
in I(T̂ ) and thus also in I(T̃ ) is O

(
w(T̃ ) log log w(T̃ )

)
. ◀

The analysis in Sections 4.1 and 4.2 implies the following theorem.

▶ Theorem 16. The number of edges with at least one endpoint in V (T ∗) is
O(LDG(T ∗) log log n).

Proof. Theorem 7 implies that the number of tree edges in T ∗ is O(LDG(T ∗)). Clearly,
the number of edges with one endpoint in L(T ∗) is O(LDG(T ∗)). As shown earlier the
number of edges connecting a vertex v to vertices in BT ∗(v)∩ I(T ∗) is also O(LDG(T ∗)). By
Lemma 8 the only other edges with at least one endpoint in V (T ∗) are edges connecting 2
vertices in BT ∗(v) ∩ I(T ∗), for some v ∈ I(T ∗). By Lemma 3 for every vertex v ∈ I(T ∗),
dG(v) ≤ 2

∑
u∈DT ∗ (v) LDG(T ∗

u ). This implies that after modifying T ∗ to T̃ the conditions of
Theorem 11 hold with w(ℓ) = dG(ℓ), for every leaf ℓ ∈ L(T ∗). The theorem follows since
log log |E(G)| = O(log log n). ◀

4.3 Bounding the number of edges outside T ∗

The next theorem bounds the number of edges in G[V \ V (T ∗)].

▶ Theorem 17. The number of edges in G[V \ V (T ∗)] is O(LDG(T ∗) log log n).
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The proof of the theorem is omitted due to space constraints. It has two parts. First, we
prove that there exists some constant c such that the number of edges added to G[V \V (T ∗)]
when the subtrees rooted at the children of a vertex v are removed from the tree is at most
c · LDG(T ′

v) log log n. Second, we show that the total number of edges in G[V \ V (T ∗)] is
bounded by c ·LDG(T ∗) log log n using the fact that that the subtrees rooted at the children of
a vertex v are removed only when the improvement is substantial; namely, dG(v) > 2LDG(T ′

v).
We conclude with the main theorem.

▶ Theorem 18. The total number of edges in G(V, E) is O(LDG(T ∗) log log n). Thus,
Algorithm 2 is an O(log log n)-approximation algorithm for both the MLD and the respective
CMC problems.

5 Conclusions and Future Research

We gave an O(log log n)-approximation algorithm for the MLD problem that implies an
approximation algorithm with the same quality to the CMC problem. The approximation
algorithm consists of local improvement steps. While we have evidence that the analysis of
our algorithm is tight, it is open whether the approximation ratio we achieved is tight or
whether there exists a o(log log n)-approximation for the MLD and CMC problems.

Our algorithm uses the fact that the weights of the vertices in the MLD problem are the
degrees of these vertices in an undirected graph with no parallel edges. It will be interesting
to see if the same approach can be extended to other weights. It cannot be extended to
general weights as there are examples of graphs with general edge weights in which the ratio
of the total edge weight to the weighted connected cut is Ω(log log n).

To the best of our knowledge neither nontrivial approximation algorithms nor hardness
of approximation results are known for non-monotone submodular function maximization
subject to connectivity constraints. Any progress along these lines for either general or
specific classes of graphs is bound to have numerous applications.
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Abstract
In this paper, we introduce the concept of Density-Balanced Subset in a matroid, in which independent
sets can be sampled so as to guarantee that (i) each element has the same probability to be sampled,
and (ii) those events are negatively correlated. These Density-Balanced Subsets are subsets in the
ground set of a matroid in which the traditional notion of uniform random sampling can be extended.

We then provide an application of this concept to the Matroid-Constrained Maximum Coverage
problem. In this problem, given a matroid M = (V, I) of rank k on a ground set V and a coverage
function f on V , the goal is to find an independent set S ∈ I maximizing f(S). This problem is an
important special case of the much-studied submodular function maximization problem subject to a
matroid constraint; this is also a generalization of the maximum k-cover problem in a graph. In
this paper, assuming that the coverage function has a bounded frequency µ (i.e., any element of
the underlying universe of the coverage function appears in at most µ sets), we design a procedure,
parameterized by some integer ρ, to extract in polynomial time an approximate kernel of size ρ ·k that
is guaranteed to contain a 1 − (µ − 1)/ρ approximation of the optimal solution. This procedure can
then be used to get a Fixed-Parameter Tractable Approximation Scheme (FPT-AS) providing a 1 − ε

approximation in time (µ/ε)O(k) · |V |O(1). This generalizes and improves the results of [Manurangsi,
2019] and [Huang and Sellier, 2022], providing the first FPT-AS working on an arbitrary matroid.
Moreover, as the kernel has a very simple characterization, it can be constructed in the streaming
setting.
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1 Introduction

Matroids are fundamental combinatorial structures that generalize the notion of linear
independence in a vector space as well as the notion of forest in a graph. In combinatorial
optimization, the matroid constraints are an important generalization of the cardinality
constraint. For instance, consider the problem of maximizing a submodular function under
some constraint. If the constraint is that the feasible subsets are those of size bounded by
some parameter k (cardinality constraint), an approximation of 1 − 1/e can be obtained
in polynomial time by a simple greedy algorithm [22] (this ratio is also the best possible
in polynomial time unless P = NP , see [7]). Under the more general constraint that the
feasible subsets are those that are independent in a given matroid M (matroid constraint),
an approximation of 1 − 1/e can also be achieved in polynomial time [3], albeit by using
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a more involved continuous greedy technique. Hence, somehow surprisingly, even though
the matroid constraint is more complex than the cardinality constraint, some optimization
problems are not really “harder” in the matroid context.

Following this perspective, in this paper we consider the problem of maximizing a coverage
function of bounded frequency under some constraint. The starting point of our paper is the
work of Manurangsi [18] in which, for cardinality constraints, a Fixed-Parameter Tractable
Approximation Scheme (FPT-AS) is developed. Our main result here is a generalization
of that FPT-AS to matroid constraints (Corollary 8), extending the approximate kernel
construction of [18] to matroids (Theorem 6). A key idea in [18] is the use of uniform random
sampling of subsets of given cardinality; unfortunately, in the matroid setting, near-uniform
sampling of independent sets is in general impossible. Instead, here we introduce the concept
of Density-Balanced Subset (DBS, Definition 2) in matroids. We show that in those particular
subsets of the ground set we can generalize the traditional notion of uniform random sampling
of a subset of a given cardinality, to that of sampling a maximum independent set, while
guaranteeing that (i) every element of the DBS has the same probability of being sampled
(i.e., the probabilities are “balanced”) and that (ii) those events are negatively correlated
(Proposition 3).

Density-Balanced Subsets

We introduce here the concept of Density-Balanced Subsets. Let us first define the notion
of density. (In the following we assume that readers already have some familiarity with
matroids; an introduction to matroids is provided in the beginning of Section 2.)

▶ Definition 1. Let M = (V, I) be a matroid. The density of a subset U ⊆ V in M is
defined as

ρM(U) = |U |
rankM(U) .

The density of an empty set is set to 0, and the density of a non-empty set of rank 0 is +∞.

From that we define a Density-Balanced Subset (DBS). Basically, in a DBS, no subset
has a larger density than the DBS itself.

▶ Definition 2. Let M = (V, I) be a matroid, and ρ be a positive integer. A subset V ′ ⊆ V

is called a ρ-DBS in M if ρM(V ′) = ρ and for all U ⊆ V ′, ρM(U) ≤ ρ.

Density-Balanced Subsets appear naturally when extracting independent sets in matroid
unions (as we will see in Section 3); in Figure 1 a simple example of DBS is given.

v1 v2 v3 · · · vρ+1 vρ+2 . . . v2ρ

≤ 1 ≤ 1 ≤ 1

≤ 2

Figure 1 Example of ρ-DBS of rank k = 2. The tree represents a laminar matroid M = (V, I)
on the ground set V = {v1, . . . , v2ρ}: the leaves represent elements of the ground set, and the inner
nodes represent cardinality constraints on the elements in their associated subtree (e.g., if S ∈ I,
then |S ∩ {v3, . . . , vρ+1}| ≤ 1). Observe that V ′ = V is a ρ-DBS.
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In ρ-DBSes, it is possible to sample independent sets while having the desired balance
and negative correlation properties. Moreover, the sampled independent sets are “maximal”
(i.e., these sampled independent sets are bases in the restriction of the matroid to the DBS),
hence, in this sense, this extends the notion of uniform random sampling. This result comes
from a more general randomized rounding algorithm developed by Chekuri, Vondrák, and
Zenklusen [4].

▶ Proposition 3. Let M = (V, I) be a matroid, V ′ ⊆ V be a ρ-DBS for some positive integer
ρ, and k = rankM(V ′). There exists a procedure to sample randomly from V ′ an independent
set of k elements S = {s1, . . . , sk} ∈ I such that:

(i) for all v ∈ V ′, P[v ∈ S] = 1/ρ;
(ii) for all T ⊆ V ′, P[T ⊆ S] ≤

∏
v∈T P[v ∈ S] = 1/ρ|T |.

Matroid-Constrained Maximum Coverage

Let M = (V, I) be a matroid of rank k on a ground set V . Given a universe U , a weight
function w : U → R+, and a family {Uv}v∈V of subsets of U , the matroid-constrained
maximum coverage problem is to select a subset S ∈ I maximizing the coverage function
f(S) = w(

⋃
s∈S Us) =

∑
u∈
⋃

s∈S
Us

w(u), namely, to find an element in arg maxS∈I f(S).
The frequency of an element of the universe u ∈ U refers to the number of sets Uv in which

it appears. We say that f has bounded frequency µ if every element of the underlying universe
U has a frequency bounded by µ. In our paper, we will focus on the matroid-constrained
maximum coverage problem for coverage functions having some bounded frequency µ; this
assumption is quite common and is used for instance in [2, 8, 13, 21, 24, 25]. An important
special case is µ = 2, where it corresponds to the coverage function over edges in a graph.
Besides the frequency parameter, another parameter z, corresponding to the number of
points covered in an optimal solution, has been used to design FTP algorithms in [15].

To put our problem in a larger picture, we can first observe that a coverage function is a
special case of monotone submodular function. For the problem of maximizing a monotone
submodular function under a matroid constraint, an approximation of 1−1/e can be achieved
in polynomial time [3] using continuous greedy and pipage rounding techniques. Later, a
combinatorial approach for maximizing coverage functions over matroids was developed to
achieve the same ratio [9], and this approach was then generalized to monotone submodular
functions [10].

A special case of our problem when the matroid constraint is simply a cardinality constraint
(i.e., a uniform matroid) has been studied in [1, 7, 12, 26]. It has been shown in [12] that
a simple greedy procedure (picking at each step the element maximizing the increase of
the coverage function) guarantees a ratio of 1− 1/e. If a polynomial time algorithm could
approximate maximum coverage within a ratio of 1− 1/e + ε for some ε > 0, then it would
imply that P = NP [7]. Furthermore, one cannot obtain in FPT time (where the matroid
rank k is the parameter) an approximation ratio better than 1− 1/e + ε, assuming GAP-
ETH [19]. However, when the coverage function has bounded frequency µ, an approximation
of 1− (1− 1/µ)µ can be achieved [1].

The case where the coverage function has a frequency µ bounded by 2 is called the
matroid-constrained vertex cover [13, 14], and is called max k-vertex-cover when the
matroid is uniform. The latter has also been studied through the lens of fixed-parameterized-
tractability. The problem is W [1]-hard with k being the parameter [11], thus getting an
exact solution in FPT time is unlikely. Nonetheless, it is possible to get a near-optimal
solution in FPT time [20]. Precisely, an FPT approximation scheme (FPT-AS) is given
in [20], that delivers a 1−ε approximate solution in (k/ε)O(k3/ε) · |V |O(1) time, later improved
to (1/ε)O(k) · |V |O(1) in [18, 25].
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Here we recall the definition of an FPT-AS, introduced by Marx [20]:

▶ Definition 4. Given a parameter function κ associating a positive integer to each instance
x ∈ I of some problem, a Fixed-Parameter Tractable Approximation Scheme (FPT-AS) is
an algorithm that provides a (1− ε) approximate solution in time g(ε, κ(x)) · |x|O(1) for some
computable function g.
In our case, each of the instances consists of a bounded-frequency coverage function and a
matroid, and the parameter of an instance is the rank k of its matroid.

For our problem, an FPT-AS has been designed for partition, laminar, and transversal
matroids in [13], where the concept of robust subset is introduced to generalize the random
sampling argument developed in [18]. In [13], an approximate kernel1 is extracted, consisting
of a maximum weight independent set in the union of several copies of the same matroid M
(see below for a definition of the union of matroids), and then a brute-force enumeration is
performed on that kernel of small size. The number of matroids in these unions depends on
the type of matroid.

▶ Definition 5. Let M = (V, I) be a matroid. Then we can define ρM = (V, Iρ) as the
union of ρ matroids M, as follows: S ∈ Iρ if S can be partitioned into S1 ∪ · · · ∪ Sρ so that
for all i we have Si ∈ I.

It is known that the union of matroids is still a matroid and that an independence oracle
for ρM can be implemented in polynomial time given an independence oracle for M, e.g.,
see [23]. Moreover, the rank of ρM is at most ρ times the rank of M.

In this paper, we prove that a maximum weight independent set in ρM contains an
approximate solution of the problem, and that this ratio does not depend on the type of
matroid (unlike [13]):

▶ Theorem 6. LetM = (V, I) be a matroid and let f be a coverage function on V of frequency
bounded by µ. Let V ′ be a maximum weight independent set in ρM, with respect to the weights
f({v}). Then V ′ contains a 1− (µ− 1)/ρ approximate solution of the matroid-constrained
maximum coverage problem.

The proof of Theorem 6 relies on a reinterpretation of the greedy algorithm (extracting
V ′ in the matroid ρM, i.e., Algorithm 2) as the process of constructing ρ-DBSes in a series
of contracted matroids of M (see Algorithm 1). These DBSes that appear during the
construction of the kernel can then be used for random sampling purposes, allowing us to
generalize the argument of [18] for uniform matroids to any matroid (details in Section 3).
▶ Remark 7. The simplicity of our characterization of the kernel implies that our kernelization
process can be easily turned into a streaming algorithm, as in [13]. In fact, assuming that
the matroid as well as the cover function is provided to the algorithm as oracles, maintaining
a maximum weight independent set in ρM with respect to the weights f({v}) can be done
in streaming using O(ρ · k) memory.

By taking the appropriate value ρ = ⌈(µ−1)/ε⌉ and performing a bruteforce enumeration
on the approximate kernel described in Theorem 6 (that kernel would be of size ρ·k = O(k·µ/ε)
and could be extracted in polynomial time, assuming that an independence oracle for M
and an oracle for f are given), we obtain an FPT-AS, extending the result of [18]:

1 An α-approximate kernel [17, 18] for some parameterized optimization problem is a pair of polynomial
time algorithms A, the reduction algorithm, and B, the solution lifting algorithm, such that (i) given an
instance (x, κ(x)), A produces another instance (x′, κ(x′)) such that |x′|, κ(x′) are bounded by g(κ(x))
and (ii) given a β approximate solution S′ for (x′, κ(x′)), B produces a solution S of (x, κ(x)) such
that S is an αβ approximate solution for (x, κ(x)). In the following we will use the terms “kernel” and
“approximate kernel” interchangeably, dropping the adjective.
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▶ Corollary 8. There exists an algorithm that computes a 1− ε approximate solution of the
matroid-constrained maximum coverage in (µ/ε)O(k) · |V |O(1) time.

To see the interest of this result, we note that if the only parameter is the rank k of the
matroid, one cannot obtain in FPT time an approximation ratio better than 1 − 1/e + ε

(assuming GAP-ETH) for a general coverage function [19], even if the matroid is the simplest
uniform matroid. In contrast, our result shows that it is possible to break through this lower
bound and get arbitrarily close to 1 for an arbitrary matroid when the frequency of the
coverage function is bounded. We also emphasize here that the randomization is only used
in the analysis; our algorithm itself is deterministic.

An important special case of Theorem 6 is when µ = 2, which corresponds to the
matroid-constrained vertex cover problem, and for which we have:

▶ Corollary 9. Let M = (V, I) be a matroid and let G = (V, E) be a weighted graph. Let V ′

be a maximum weight independent set in ρM, with respect to the weighted degrees degw(v).
Then V ′ contains a 1 − 1/ρ approximate solution of the matroid-constrained vertex cover
problem.

This extends and improves the previous kernelization results for this problem [13, 18].
In fact, in [18] the 1− 1/ρ approximation is attained for the union of ρ uniform matroids,
and in [13] that ratio is attained either for the union of ρ partition matroids, 2 · ρ laminar
matroids, or ρ + k − 1 (reduced later to ρ in [16]) transversal matroids.

2 Density-Balanced Subsets

Let us start with some definitions. Given a finite set V , a matroid is a pair M = (V, I)
where I ⊆ P(V ) is a family of subsets in V that satisfies the following three conditions: (1)
∅ ∈ I, (2) if X ⊆ Y ∈ I, then X ∈ I, and (3) if X, Y ∈ I, |Y | > |X|, then there exists an
element e ∈ Y \X so that X ∪ {e} ∈ I.

The set V is called the ground set of the matroid and the elements of I are called the
independent sets. Matroids terminology borrows concepts from vector spaces as well as graph
theory. The rank of a subset X ⊆ V is defined as rankM(X) = maxY ⊆X, Y ∈I |Y |; the rank
of a matroid is defined as rankM(V ). The span of a subset X ⊆ V in the matroid M is
defined as spanM(X) = {x ∈ V : rankM(X ∪ {x}) = rankM(X)}, and these elements in
the span are called spanned by X in M. A subset C ⊆ V is a circuit if C is a minimal
non-independent set, i.e., for every v ∈ C, C\{v} ∈ I. An element in V that is a circuit by
itself is called a loop. For more details about matroids, we refer the reader to [23].

We recall the definition of a restriction and a contraction of a matroid. Performing such
operation on a matroid results in another matroid.

▶ Definition 10 (Restriction). Let M = (V, I) be a matroid, and let V ′ ⊆ V be a subset.
Then we define the restriction of M to V ′ as M|V ′ = (V ′, I ′) where I ′ = {S ⊆ V ′ : S ∈ I}

▶ Definition 11 (Contraction). Let M = (V, I) be a matroid, and let U be a subset of
V . Then we define the contracted matroid M/U = (V \U, IU ) so that, given a maximum
independent subset BU of U , IU = {S ⊆ V \U : S ∪ BU ∈ I}.

It is well-known that any choice of BU produces the same IU , as a result the definition of
contraction is unambiguous. The following proposition comes directly from the definition.

▶ Proposition 12. Let M = (V, I) be a matroid and let A ⊆ B ⊆ V . Then we have
rankM/A(B\A) = rankM(B)− rankM(A).
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In this paper, we use the notion of density of a subset in a matroid. We can observe from
that definition that the density of a non-empty set is always larger or equal to one.

▶ Definition 1. Let M = (V, I) be a matroid. The density of a subset U ⊆ V in M is
defined as

ρM(U) = |U |
rankM(U) .

The density of an empty set is set to 0, and the density of a non-empty set of rank 0 is +∞.

We now introduce the notion of Density-Balanced Subset (DBS).

▶ Definition 2. Let M = (V, I) be a matroid, and ρ be a positive integer. A subset V ′ ⊆ V

is called a ρ-DBS in M if ρM(V ′) = ρ and for all U ⊆ V ′, ρM(U) ≤ ρ.

Here is a theorem due to Edmonds [5] that will allow us to get another characterization
of Density-Balanced Subsets.

▶ Theorem 13 (Theorem 1 in [5]). The elements of a matroid M can be partitioned into as
few as ρ sets, each of which is independent, if and only if there is no subset A of elements of
M for which |A| > ρ · rankM(A).

▶ Proposition 14. Let M = (V, I) be a matroid. If V ′ is a ρ-DBS for some positive integer
ρ, then there exist ρ independent sets B1, . . . , Bρ such that V ′ = B1 ∪ · · · ∪Bρ. Conversely,
if a set V ′ of density ρ can be partitioned into ρ independent sets B1, . . . , Bρ, then V ′ is a
ρ-DBS.

Proof. Consider the matroid M|V ′, i.e., the restriction of M to V ′. By Theorem 13, as the
density of any set A ⊆ V ′ is bounded by ρ, V ′ can be partitioned into ρ independent sets
B1, . . . , Bρ. Conversely, if V ′ can be partitioned into ρ independent sets B1, . . . , Bρ, then by
Theorem 13 the density of any set A ⊆ V ′ is bounded by ρ. As we assumed ρM(V ′) = ρ, V ′

is a ρ-DBS. ◀

In DBSes, the notion of uniform random sampling can be properly extended.

▶ Proposition 3. Let M = (V, I) be a matroid, V ′ ⊆ V be a ρ-DBS for some positive integer
ρ, and k = rankM(V ′). There exists a procedure to sample randomly from V ′ an independent
set of k elements S = {s1, . . . , sk} ∈ I such that:

(i) for all v ∈ V ′, P[v ∈ S] = 1/ρ;
(ii) for all T ⊆ V ′, P[T ⊆ S] ≤

∏
v∈T P[v ∈ S] = 1/ρ|T |.

Proof. By Proposition 14, we can write V ′ = B1 ∪ · · · ∪ Bρ for some disjoint independent
sets. Hence we obtain (denoting 1U the indicator vector of the set U):

1
ρ
1V ′ = 1

ρ

ρ∑
i=1

1Bi
∈ P (M),

where P (M) = conv{1S : S ∈ I} = {x ∈ [0, 1]V : ∀S ⊆ V,
∑

v∈S xv ≤ rankM(S)} denotes
the matroid polytope of M. Therefore we can apply the randomized rounding algorithm
developed in [4] to the vector 1

ρ1V ′ to get an integral vector X = 1S ∈ {0, 1}V such that
S ⊆ V ′ is a maximum independent set and

(i) for all v ∈ V ′, P[v ∈ S] = E[Xv] = 1/ρ;
(ii) for all T ⊆ V ′, P[T ⊆ S] = E[

∏
v∈T Xv] ≤

∏
v∈X E[Xv] =

∏
v∈T P[v ∈ S] = 1/ρ|T |.

This concludes the proof. ◀
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Conversely we also have the following proposition.

▶ Proposition 15. Let V ′ a set of integer density ρ in which independent sets can be sampled
randomly so that each element has probability 1/ρ of being sampled, then V ′ is a ρ-DBS.

Proof. In fact, if there exists U ⊆ V ′ such that ρM(U) > ρ, then an algorithm sampling each
element in V ′ with probability 1/ρ would take in expectation strictly more than rankM(U)
elements in U , meaning that some of those sampled set violate the rank constraint on U . ◀

Another useful property of DBSes is that after a matroid contraction we can still recover
in a ρ-DBS V ′ a smaller V ′′ while preserving the rank of V ′ in the contracted matroid:

▶ Proposition 16. Let M = (V, I) be a matroid, and V ′ be a ρ-DBS in M for some positive
integer ρ. Let A ⊆ V such that V ′ ̸⊆ spanM(A). Then there exists a subset V ′′ ⊆ V ′ such
that:

(i) V ′′ is a ρ-DBS in M/A;
(ii) rankM/A(V ′′) = rankM/A(V ′\A).

Proof. Using Proposition 14, we know that V ′ = B1 ∪ · · · ∪Bρ for some disjoint independent
sets B1, . . . , Bρ, each of cardinality rankM(V ′) (because V ′ has density ρ, so it contains
ρ · rankM(V ′) elements, and each independent set is made of at most rankM(V ′) elements),
and each of them spanning V ′ in M. As a result, for all i ∈ {1, . . . , ρ} we also have
V ′\A ⊆ spanM/A(Bi\A), hence rankM/A(Bi\A) = rankM/A(V ′\A) and thereby there exists
B′

i ⊆ Bi\A such that B′
i is independent in M/A and |B′

i| = rankM/A(V ′\A). Hence V ′′ =
B′

1 ∪ · · · ∪B′
ρ is a set of rank equal to rankM/A(V ′\A) inM/A, contains ρ · rankM/A(V ′\A)

elements, and can be partitioned into ρ independent sets, therefore, by Proposition 14, V ′′ is
a ρ-DBS in M/A with rankM/A(V ′′) = |B′

1| = · · · = |B′
ρ| = rankM/A(V ′\A). ◀

The following propositions are about matroid contraction and densest subsets. The next
proposition states how the density is changed after a matroid contraction.

▶ Proposition 17. Let M = (V, I) be a matroid. If A ⊆ B ⊆ V and U ⊆ V \B we have
ρM/A(U) ≤ ρM/B(U), assuming that ρM/A(U) < +∞.

Proof. We have rankM/A(U) ≥ rankM/B(U), while the cardinality |U | remains the same. ◀

Now we give some results regarding densest subsets, which are closely related to Density-
Balanced Subsets, as a densest subset in a matroid is automatically a DBS.

▶ Proposition 18. Let M = (V, I) be a matroid, and ρ be a positive integer. Let V ′ ⊆ V . If
maxU⊆V ′ ρM(U) < ρ, then for any v ∈ V \V ′, maxU⊆V ′∪{v} ρM(U) ≤ ρ.

Proof. Consider U ⊆ V ′, U ̸= ∅. As ρM(U) < ρ, we know that |U | ≤ ρ · rankM(U) − 1
(because ρ · rankM(U) is an integer). Therefore we have

ρM(U ∪ {v}) ≤ |U |+ 1
rankM(U) ≤

ρ · rankM(U)− 1 + 1
rankM(U) = ρ,

which concludes the proof. ◀

▶ Proposition 19. Let M = (V, I) be a matroid, V ′ be a subset of V , and let B be a subset
that reaches the maximum density ρ∗ < +∞ in V ′. Then given any A ⊊ B, ρM/A(B\A) ≥ ρ∗.
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Proof. If rankM/A(B\A) = 0 then ρM/A(B\A) = +∞ and we are done; otherwise, by
Proposition 12:

ρM(B) =
rankM(A) · ρM(A) + rankM/A(B\A) · ρM/A(B\A)

rankM(A) + rankM/A(B\A) ,

hence ρM(B) is a weighted average of ρM(A) and ρM/A(B\A). As ρM(A) ≤ ρ∗ (by definition
of ρ∗), it implies that ρM/A(B\A) ≥ ρ∗. ◀

The following proposition states that the densest subsets are closed under union, thus
proving the uniqueness of the maximum cardinality densest subset – that property will be
useful in Algorithm 1 (Section 3).

▶ Proposition 20. Let M = (V, I) be a matroid, and V ′ ⊆ V . Let ρ∗ = maxU⊆V ′ ρM(U) <

+∞. Then given any two subsets W1, W2 in V ′ of density ρ∗, ρM(W1 ∪W2) = ρ∗.

Proof. If W1 ⊆W2, then the proposition is trivially true. So assume that W1\W2 ≠ ∅, and
we can observe that

ρ∗ ≤ ρM/(W1∩W2)(W1\(W1 ∩W2)) ≤ ρM/W2(W1\(W1 ∩W2)),

where the first inequality uses Proposition 19 and the second uses Proposition 17. As a
result, by the facts that ρM(W2) = ρ∗ and that ρM/W2(W1\(W1 ∩W2)) ≥ ρ∗, we obtain
ρM(W1 ∪W2) ≥ ρ∗ (using a weighted average argument as in Proposition 19). Hence we
have ρM(W1 ∪W2) = ρ∗. ◀

▶ Proposition 21. Let M = (V, I) be a matroid, and V ′ ⊆ V a non-empty set. Let A be the
largest densest subset in V ′. Then for any B ⊆ V ′\A, we have ρM/A(B) < ρM(A).

Proof. We proceed by contradiction. Suppose that there exists B ⊆ V ′\A such that
ρM/A(B) ≥ ρM(A). Then it implies that

ρM(A ∪B) = ρM(A) · rankM(A)
rankM(A) + rankM/A(B) +

ρM/A(B) · rankM/A(B)
rankM(A) + rankM/A(B) ≥ ρM(A),

contradicting the hypothesis that A was the largest densest set in V ′. ◀

3 Matroid-Constrained Maximum Coverage

Here we will use a slightly different formalization of the coverage function, based on edge-
weighted hypergraphs (compared to the one given in the introduction), but it is straightforward
to see that these formalizations are equivalent. Let G = (V, E) be a hypergraph, V being a set
of vertices and E being a set of hyper-edges, i.e., an element e ∈ E is a subset of V . We denote
n = |V |. Let w : E → R+ be a weight function on the hyper-edges. We extend this function
to any set of hyper-edges by setting for any A ⊆ E, w(A) =

∑
e∈A w(e). For a vertex v ∈ V ,

we denote δ(v) the set of its set of incident hyper-edges, namely, δ(v) = {e ∈ E : v ∈ e}, and
degw(v) its weighted degree, namely, degw(v) = w(δ(v)). The frequency of a hyper-edge e is
defined as the number of vertices for which e appears in δ(v), namely, |e|. The hypergraph
G will be said of bounded frequency µ if all its hyper-edges have frequencies bounded by µ.
For two sets of vertices S, T we denote by E(S, T ) the set of hyper-edges having at least
one endpoint in each set S and T , namely, E(S, T ) = {e ∈ E : e ∩ S ̸= ∅, e ∩ T ̸= ∅}. For
conciseness we will denote E(S) = E(S, S).
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Let M = (V, I) be a matroid on the ground set V . In the matroid-constrained maximum
coverage problem, we are asked to find a set of vertices S ⊆ V that is independent in
the matroid M (i.e., S ∈ I) and that maximizes the total weight of the covered hyper-
edges, namely, an element of arg maxS∈I w(E(S)). The problem can be solved exactly by
the standard greedy algorithm if µ = 1 [6], so in the following we will assume that our
hypergraph has a bounded frequency of µ ≥ 2. Observe that the case µ = 2 corresponds to
the matroid-constrained vertex cover, studied in [13].

Here we want to construct a kernel that contains a good approximation of the optimal
solution of the maximum coverage problem under a matroid constraint. We will start by
describing a procedure to build the kernel that will be convenient for the analysis, and then
we will show that this algorithm turn out to be equivalent to the one of Theorem 6. We build
our kernel V ′ as follows. Let ρ be a fixed positive integer. Start with an empty set V ′, and
an auxiliary set C that is also empty at the beginning. Process the elements vi ∈ V in the
order of non-increasing weighted-degrees. If the element vi is not spanned by V ′ at that time
we add that element to C, we check whether C contains a set of density larger or equal to ρ

with respect to the matroid M/V ′. If this is the case, then we consider that largest densest
subset X in C with respect to M/V ′, we add that set into V ′ and remove that set from C

(note that, because of Proposition 20, the largest densest set X is well-defined). When the
main loop terminates, the set C is also added into V ′. A formal description of this procedure
is provided in Algorithm 1.

Algorithm 1 Algorithm for building a maximum coverage approximate kernel.

1: V = {v1, . . . , vn} where degw(v1) ≥ · · · ≥ degw(vn)
2: V ′ ← ∅, C ← ∅
3: for i = 1, . . . , n do ▷ vertices are processed in non-increasing order of weighted degree
4: if vi ∈ spanM(V ′) then
5: continue ▷ vi is ignored if already spanned by V ′

6: C ← C ∪ {vi}
7: let X be the largest densest subset in C with respect to the matroid M/V ′

8: if ρM/V ′(X) ≥ ρ then
9: C ← C\X

10: V ′ ← V ′ ∪X

11: V ′ ← V ′ ∪ C

12: return V ′

▷ Claim 22. In Algorithm 1, at the end of each iteration of the loop, for all U ⊆ C,
ρM/V ′(U) < ρ. Moreover, when the condition at Line 8 is true, we have ρM/V ′(X) = ρ.

Proof. We prove these two properties by induction. In the first iteration of the algorithm,
both properties are clearly true. Suppose that during the ith iteration both properties are
satisfied. It means that at the beginning of the (i + 1)st iteration the densest subset in C

is of density strictly smaller than ρ, hence Proposition 18 implies that the densest subset
after inserting vi+1 in C cannot be of density strictly larger than ρ. This implies the second
property for the (i + 1)st iteration. Regarding the first property,

if condition at Line 8 is false, then the first property is clearly satisfied;
if condition at Line 8 is true, then the preceding discussion implies that the largest
densest subset X removed from C has density ρ, and therefore, by Proposition 21, the
first property is satisfied.

This concludes the proof. ◁
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The set V ′ can be decomposed as follows:

V ′ = X1 ∪ · · · ∪Xr ∪R (1)

where the Xis represent the largest densest subsets X that were added through the execution
of the algorithm (at Line 10), labeled in the order they were added, and R represents the set
of remaining elements coming from C that were added after termination of the main loop
(at Line 11). As each Xi is a densest subset of density ρ in M/(

⋃i−1
j=1 Xj), each set Xi is a

ρ-DBS in the matroid M/(
⋃i−1

j=1 Xj).
Now we can prove the following important lemma, which states that the set V ′ built

by Algorithm 1 is an approximate kernel, i.e., a small subset of V containing a good
approximation of the optimal solution:

▶ Lemma 23. Let V ′ be the kernel built in Algorithm 1, and let O be an optimal solution.
Then V ′ contains an independent set S such that w(E(S)) ≥ (1− (µ− 1)/ρ) · w(E(O)).

Proof. Let O ∈ I be an optimal solution. We denote Oin = O ∩ V ′, Oout = O\Oin. As
in [13, 18], we want to sample randomly an independent set S ⊆ V ′ so that we have an
inequality in expectation, implying that some set satisfying that same inequality actually
exists:

E[w(E(S))] ≥ (1− (µ− 1)/ρ) · w(E(O)).

To sample S, we will do the following. For i = 1, . . . , r, using Proposition 16, consider
X ′

i ⊆ Xi a ρ-DBS in M/(Oin ∪
⋃i−1

j=1 Xj) of rank ki = rankM/(Oin∪
⋃i−1

j=1
Xj)(Xi) (if Xi

is spanned by Oin ∪
⋃i−1

j=1 Xj in M, then we just set X ′
i = ∅ and ki = 0). From that

set X ′
i, using Proposition 3, we sample an independent set Si = {si,1, . . . , si,ki

} ⊆ X ′
i in

M/(Oin ∪
⋃i−1

j=1 Xj) such that:
(i) for all v ∈ X ′

i, P[v ∈ Si] = 1/ρ;
(ii) for all v, v′ ∈ X ′

i such that v ̸= v′, P[v ∈ Si ∧ v′ ∈ Si] ≤ 1/ρ2.
Then we set S = Oin ∪

⋃r
i=1 Si. We denote S̃ =

⋃r
i=1 Si and V ′′ =

⋃r
i=1 X ′

i. The Sis are
sampled independently.

▷ Claim 24. The set S sampled using the aforementioned method is always independent in
M. Moreover,

(i) for all v ∈ V ′′, P[v ∈ S̃] = 1/ρ;
(ii) for all v, v′ ∈ V ′′ such that v ̸= v′, P[v ∈ S̃ ∧ v′ ∈ S̃] ≤ 1/ρ2.

Proof. We prove by induction on i that Oin ∪
⋃i

j=1 Sj is independent in M. For i = 0 this
is clearly true, as Oin is a subset of O, which is an independent set in M. Suppose that the
property is true for some i < r. Then it means that Oin∪

⋃i
j=1 Sj is an independent set inM.

We know that for any sampling in X ′
i+1, the set Si+1 is independent is M/(Oin ∪

⋃i
j=1 Xj),

so it is also independent in M/(Oin ∪
⋃i

j=1 Sj) (as Oin ∪
⋃i

j=1 Sj ⊆ Oin ∪
⋃i

j=1 Xj) and
therefore Oin ∪

⋃i+1
j=1 Sj is independent in M.

Then, for property (i), consider some v ∈ V ′′. There exists a unique i so that v ∈ Xi

(as the Xis are disjoint). Hence from the properties of the sampling of Si we know that
P[v ∈ Si] = 1/ρ, hence P[v ∈ S̃] = 1/ρ. For property (ii), if v and v′ are in the same Xi,
then the way Si is sampled guarantees that P[v ∈ S̃ ∧ v′ ∈ S̃] ≤ 1/ρ2. Otherwise, the choices
of v and v′ are independent, i.e., P[v ∈ S̃ ∧ v′ ∈ S̃] = 1/ρ2. ◁

For i = 1, . . . , r, let Oout
i = Oout ∩ (spanM(

⋃i
j=1 Xj)\spanM(

⋃i−1
j=1 Xj)).
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▷ Claim 25. We have Oout = Oout ∩ spanM(
⋃r

i=1 Xi) =
⋃r

i=1 Oout
i .

Proof. The second part of the equality is straightforward, so we focus on the first part.
Consider v ∈ O\spanM(

⋃r
i=1 Xi). It means that when v is processed in Algorithm 1, that

element cannot be discarded by the condition in Line 4, because at that time V ′ =
⋃i

j=1 Xj

for some i and therefore v is not spanned by V ′: that element is thereby added to C. Hence
v is added to V ′ in the end (Line 11) and v ∈ Oin (more precisely, v ∈ O ∩ R, using the
notation of equation (1)). ◁

▷ Claim 26. For all v ∈ Oout
i , for all v′ ∈ Xj such that j ≤ i, we have degw(v) ≤ degw(v′).

Proof. The element v ∈ Oout
i has been discarded after the sets X1, . . . , Xi were built (other-

wise it would not have been spanned by V ′, see Line 4), therefore these sets only contain
elements having larger or equal weighted degrees. ◁

▷ Claim 27. For all 1 ≤ i ≤ r, we have |
⋃i

j=1 Oout
j | ≤

∑i
j=1 kj .

Proof. The set
⋃i

j=1 Oout
j is independent in M/Oin and as it is in spanM(

⋃i
j=1 Xj),

it is in spanM/Oin(
⋃i

j=1 Xj). Then we obtain |
⋃i

j=1 Oout
j | ≤ rankM/Oin(

⋃i
j=1 Xj) =∑i

j=1 rankM/(Oin∪
⋃j−1

l=1
Xl)(Xj) =

∑i
j=1 kj , where in the first equality we used Proposi-

tion 12 multiple times. ◁

Now we index the elements in Oout = {o1, . . . , o|Oout|} so that Oout
1 = {o1, . . . , o|Oout

1 |},
Oout

2 = {o|Oout
1 |+1, . . . , o|Oout

1 |+|Oout
2 |}, and so on. Similarly, we index the elements of S̃ =

{s1, . . . , s∑r

i=1
ki
} so that s1 = s1,1, . . . , sk1 = s1,k1 , sk1+1 = s2,1, . . . , sk1+k2 = s2,k2 , and so

on.
In the following, we will say that the element si “replaces” the element oi.

▷ Claim 28. For all 1 ≤ i ≤ |Oout|, we have degw(oi) ≤ degw(si).

Proof. Because of Claim 27, an element oi ∈ Oout
j is replaced by si ∈ Xj′ for some j′ ≤ j.

As a result, by Claim 26, we know that we always have degw(oi) ≤ degw(v) for any v ∈ Xj′ .
As si is drawn from Xj′ we obtain the desired result. ◁

Then, as S = Oin ∪ S̃, we have:

w(E(S)) = w(E(Oin)) + w(E(S̃))− w(E(Oin, S̃)).

We bound E[w(E(Oin, S̃))] as follows. By construction, P[v′ ∈ V ′′] = 1/ρ for all v′ ∈ V ′′.
Then we have

E[w(E(Oin, S̃))] =
∑

e∈E(Oin)

w(e) · P[e ∩ S̃ ̸= ∅]

≤
∑

e∈E(Oin)

[
w(e) ·

( ∑
v′∈e∩V ′′

P[v′ ∈ S̃]
)]

by union-bound

=
∑

e∈E(Oin)

w(e) · |e ∩ V ′′| · 1/ρ as P[v′ ∈ S̃] = 1/ρ, ∀v′ ∈ V ′′

≤
∑

e∈E(Oin)

w(e) · (µ− 1) · 1/ρ as |e ∩ V ′′| ≤ µ− 1

= (µ− 1)/ρ · w(E(Oin)).
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Furthermore, the value w(E(S̃)) can be rearranged as follows:

w(E(S̃)) =
∑

e∈E(S̃)

∑
v∈e∩S̃

w(e)
|e ∩ S̃|

=
∑
v∈S̃

∑
e∈δ(v)

w(e)
|e ∩ S̃|

=
∑
v∈S̃

∑
e∈δ(v)

((
1− |e ∩ S̃| − 1

|e ∩ S̃|

)
· w(e)

)
=
∑
v∈S̃

degw(e)−
∑

e∈δ(v)

|e ∩ S̃| − 1
|e ∩ S̃|

· w(e)

 .

Hence E[w(E(S̃))] can be written as

E[w(E(S̃))] = E

∑
v∈S̃

degw(v)

− E

∑
v∈S̃

∑
e∈δ(v)

|e ∩ S̃| − 1
|e ∩ S̃|

· w(e)

 . (2)

We will then focus on upper-bounding the second term, which captures the extent to which
edges are counted multiple times in the first term of the sum. We have

E

∑
v∈S̃

∑
e∈δ(v)

|e ∩ S̃| − 1
|e ∩ S̃|

· w(e)


≤ E

 ∑
v∈V ′′

∑
e∈δ(v)

w(e) · 1[v ∈ S̃ ∧ |e ∩ S̃| ≥ 2]


=
∑

v∈V ′′

∑
e∈δ(v)

w(e) · P[v ∈ S̃ ∧ |e ∩ S̃| ≥ 2]

≤
∑

v∈V ′′

∑
e∈δ(v)

w(e) ·

 ∑
v′∈e∩V ′′\{v}

P[v ∈ S̃ ∧ v′ ∈ S̃]

 by union-bound

≤
∑

v∈V ′′

∑
e∈δ(v)

w(e) ·

 ∑
v′∈e∩V ′′\{v}

1/ρ2

 by Claim 24

≤
∑

v∈V ′′

∑
e∈δ(v)

w(e) ·
(
(µ− 1) · 1/ρ2) as |e ∩ V ′′\{v}| ≤ µ− 1

= (µ− 1)
∑

v∈V ′′

1/ρ2 · degw(v)

= (µ− 1)/ρ · E

∑
v∈S̃

degw(v)

 . as P[v ∈ S̃] = 1/ρ, ∀v ∈ V ′′

where for the first inequality we apply the worst possible coefficient (namely, 1 ≥ (µ− 1)/µ)
each time e is covered more than once by S̃, and for the second inequality we use a union
bound, namely, P[v ∈ S̃ ∧ |e ∩ S̃| ≥ 2] ≤

∑
v′∈e∩V ′′\{v} P[v ∈ S̃ ∧ v′ ∈ S̃]. As a result,

combining with (2), we obtain

E[w(E(S̃))] ≥ (1− (µ− 1)/ρ) · E

∑
v∈S̃

degw(v)

 .

Then this can be compared to w(E(Oout)) as we have

E

∑
v∈S̃

degw(v)

 ≥ E

|Oout|∑
i=1

degw(si)

 ≥ |Oout|∑
i=1

degw(oi) ≥ w(E(Oout)),
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where we use Claim 27 for the first inequality (for i = r, i.e., |S̃| ≥ |Oout|), Claim 28 in the
second inequality, and then we use that the sum of the weighted degrees is always greater
than the actual weight of covered hyper-edges (because the hype-edges may be counted
multiple times in the sum of the weighted degrees) for the last one.

As a result, we finally get:

E[w(E(S))] ≥ w(E(Oin)) + (1− (µ− 1)/ρ) · w(E(Oout))− (µ− 1)/ρ · w(E(Oin))
≥ (1 − (µ − 1)/ρ) · w(E(O)).

Therefore by averaging principle, there exists S∗ ⊆ V ′ such that S∗ ∈ I and w(E(S∗)) ≥
(1− (µ− 1)/ρ) · w(E(O)). ◀

Now we give another interpretation of Algorithm 1 in terms of matroid union, which
allows us to give a simpler description of the kernel V ′. First recall the definition of matroid
union:

▶ Definition 5. Let M = (V, I) be a matroid. Then we can define ρM = (V, Iρ) as the
union of ρ matroids M, as follows: S ∈ Iρ if S can be partitioned into S1 ∪ · · · ∪ Sρ so that
for all i we have Si ∈ I.

In Algorithm 2 we provide a simpler description of Algorithm 1 (the equivalence of the
two algorithms is proved in Proposition 29).

Algorithm 2 Algorithm for building a maximum coverage approximate kernel.

1: V = {v1, . . . , vn} where degw(v1) ≥ · · · ≥ degw(vn)
2: V ′ ← ∅
3: for i = 1, . . . , n do ▷ vertices are processed in non-increasing order of weighted degree
4: if V ′ ∪ {vi} ∈ Iρ then
5: V ′ ← V ′ ∪ {vi}
6: return V ′

▶ Proposition 29. Algorithm 1 and Algorithm 2 build the same kernel V ′. Moreover, V ′ is
a maximum weight independent set in ρM with respect to the weighted degrees.

Proof. To prove the first part of the proposition, it suffices to prove that the condition in
Line 4 of Algorithm 1 is equivalent to check whether V ′ ∪ C ∪ {vi} is or is not in Iρ (if so,
then V ′ ∪ C in Algorithm 1 plays the role of V ′ in Algorithm 2).

Using the decomposition in equation (1), we know that when vi is processed and we check
the condition in Line 4 of Algorithm 1, we have V ′ = X1 ∪ · · · ∪Xj for some j ∈ {0, . . . , r}.
We know that each Xl is a ρ-DBS in M/(

⋃l−1
l′=1 Xl′), hence each one can be partitioned

into ρ independent sets Bl,1, . . . , Bl,ρ in M/(
⋃l−1

l′=1 Xl′), all of size rankM/(
⋃l−1

l′=1
Xl′ )(Xl).

Therefore,

V ′ = (B1,1 ∪ · · · ∪Bj,1)︸ ︷︷ ︸
B1

∪ · · · ∪ (B1,ρ ∪ · · · ∪Bj,ρ)︸ ︷︷ ︸
Bρ

can be partitioned into ρ independent sets in M, each of size rankM(V ′). Now, regarding
condition in Line 4 of Algorithm 1:
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If vi ∈ spanM(V ′), as V ′ is a set containing ρ · rankM(X) elements, the set V ′ ∪{vi} will
contain ρ · rankM(X) + 1 elements while still being of rank equal to rankM(V ′): hence it
is not possible to partition V ′ ∪ {vi} into ρ independent sets (as each one can contain up
to rankM(V ′) elements), so V ′ ∪ C ∪ {vi} ̸∈ Iρ.
Otherwise, by Claim 22, the densest subset in C with respect to the matroid M/V ′ is
of density strictly below ρ, hence, by Proposition 18, the densest subset in C ∪ {vi} is
of density at most ρ. We can therefore use Theorem 13 to partition C ∪ {vi} into ρ

independent sets C1, . . . , Cρ in M/V ′, hence V ′ ∪C ∪ {vi} = (B1 ∪C1) ∪ · · · ∪ (Bρ ∪Cρ)
can be partitioned into ρ independent subsets, i.e., V ′ ∪ C ∪ {vi} ∈ Iρ.

Therefore Algorithms 1 and 2 build the very same approximate kernel V ′. As Algorithm 2
is simply the greedy algorithm to build a maximum weight independent set in the matroid
ρM with respect to the weighted degrees (see [6]), V ′ is a maximum weight independent set
in ρM. ◀

▶ Theorem 6. LetM = (V, I) be a matroid and let f be a coverage function on V of frequency
bounded by µ. Let V ′ be a maximum weight independent set in ρM, with respect to the weights
f({v}). Then V ′ contains a 1− (µ− 1)/ρ approximate solution of the matroid-constrained
maximum coverage problem.

Proof. In fact, from the characterization of maximum weight independent sets in [6], any
maximum weight independent set in ρM can be obtained by choosing the right processing
order in Algorithm 2 (i.e., for elements having the same weighted degrees, putting first the
ones we want to pick in our kernel). Hence that kernel would have been built following the
procedure of Algorithm 1, and therefore the result of Lemma 23 applies. ◀
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Abstract
In the committee selection problem, the goal is to choose a subset of size k from a set of candidates C

that collectively gives the best representation to a set of voters. We consider this problem in Euclidean
d-space where each voter/candidate is a point and voters’ preferences are implicitly represented by
Euclidean distances to candidates. We explore fault-tolerance in committee selection and study the
following three variants: (1) given a committee and a set of f failing candidates, find their optimal
replacement; (2) compute the worst-case replacement score for a given committee under failure of f

candidates; and (3) design a committee with the best replacement score under worst-case failures.
The score of a committee is determined using the well-known (min-max) Chamberlin-Courant rule:
minimize the maximum distance between any voter and its closest candidate in the committee.
Our main results include the following: (1) in one dimension, all three problems can be solved in
polynomial time; (2) in dimension d ≥ 2, all three problems are NP-hard; and (3) all three problems
admit a constant-factor approximation in any fixed dimension, and the optimal committee problem
has an FPT bicriterion approximation.
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1 Introduction and Problem Statement

We consider the computational complexity of adding fault tolerance into spatial voting. In
spatial voting [7, 1, 29], the voters and the candidates are both modeled as points in some
d-dimensional space, where each dimension represents an independent policy issue that is
important for the election, and each voter’s preference among the candidates is implicitly
encoded by a distance function. For example, in the simplest 1-dimensional setting, voters
and candidates are points on a line indicating their real-valued preference on a single issue.
The specific setting for our work is multiwinner spatial elections, also called committee
selection, in d dimensions where we have a set V of n voters, a set C of m candidates, and a
committee size (integer) k. The goal is to choose a subset of k candidates, called the winning
committee, that collectively best represents the preferences of all the voters [9, 11, 12].

One aspect of committee selection that appears not to have been investigated is fault
tolerance, that is, how robust a chosen committee is against the possibility that some of the
winning members may default. Committee selection problems model a number of applications
in the social sciences and in computer science where such defaults are not uncommon, such as
democratic elections, staff hiring, choosing public projects, locations of public facilities, jury
selection, cache management, etc. [21, 14, 26, 2, 4, 23, 13]. In this paper, we are particularly
interested in designing algorithms to address questions of the following kind: If some of the
winning members default, how badly does this affect the overall score of the committee? Or,
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how much does the committee score suffer if a worst-case subset of size f defaults? Finally,
can we proactively choose a committee in such a way that it can tolerate up to f faults with
the minimum possible score degradation? We begin by formalizing these problems more
precisely and then describing our results.

Suppose V = {v1, . . . , vn} is a set of n voters and C = {c1, . . . , cm} is a set of m

candidates, modeled as points in d-dimensional Euclidean space. (We occasionally call the
tuple (V, C) an election E.) Given a positive integer k, we want to elect k candidates, called
the committee, using the well-known Chamberlin-Courant voting rule [5]. This rule assigns a
score to each committee as follows. Let T ⊆ C be a committee. For each voter v, the score
of T for v is defined as σ(v, T ) = minc∈T d(v, c), namely, the distance from v to its closest
candidate in T .1 The score of the committee T is defined as σ(T ) = maxv∈V σ(v, T ), namely,
the largest distance between any voter and its closest neighbor in T . (In facility location
parlance, this is the well-known k-center problem.)

The fault tolerance of a committee is parameterized by a positive integer f , which is the
upper bound on the number of candidates that can fail.2 Throughout the paper, we use
the notation J to denote a failing set of candidates. We are allowed to replace the failing
members of J with any set of at most |T ∩J | candidates from C \J . We often denote this set
of replacement candidates by R. However, we must keep all the non-failing members of T in
the committee – that is, the replacement committee is the set (T \ J) ∪R – and throughout
the paper our goal is to optimize this committee’s score, namely σ((T \ J) ∪R).

We consider the following three versions of fault-tolerant committee selection, presented
in increasing order of complexity. The first problem is the simplest: given a committee and a
failing set, find the best replacement committee.

Optimal Replacement Problem (ORP)
Input: An election E = (V, C), a committee T ⊆ C and a failing set J ⊆ C.
Goal: Find a replacement set R ⊆ C \J of size at most |T ∩J | minimizing σ((T \J)∪R).

Our second problem is to quantify the fault tolerance of a given committee T over worst-
case faults. That is, what is the largest score of T ’s replacement when a worst-case subset
of f faults occur? We introduce the following notation as T ’s measure of j-fault-tolerance,
for any 0 ≤ j ≤ f : σj(T ) = maxJ⊆C s.t. |J|≤j σ((T \ J) ∪ R), where R is an optimal
replacement set with size at most |T ∩ J |. We want to compute σf (T ). Occasionally, we also
use the notation σ0(T ) for the no-fault score of T , namely σ(T ).

Fault-Tolerance Score (FTS)
Input: An election E = (V, C), a committee T ⊆ C and a fault-tolerance parameter f .
Goal: Compute σf (T ).

Our third and final problem is to compute a committee with optimal fault-tolerance score.

Optimal Fault-Tolerant Committee (OFTC)
Input: An election E = (V, C), a committee size k and a fault-tolerance parameter f .
Goal: Find T ⊆ C of size at most k minimizing σf (T ).

1 Originally, Chamberlin and Courant [5] defined a voting rule on Borda scores (also known as Borda-CC).
In this paper, similarly to [2], we study a min-max version of this rule on a more general scoring function,
which in our case is based on voter-candidate distances.

2 In our work, we will allow any subset of size f from C to fail, so the faults can also include candidates
not in the selected committee T . This only makes the problem harder because the adversary can always
limit the faults to T , and elimination of candidates from C \ T makes finding replacements for failing
committee members more difficult.
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1.1 Our Results
We first show that even in one dimension, fault-tolerant committee problems are nontrivial. In
particular, while the Optimal Replacement Problem (ORP) is easily solved by a simple greedy
algorithm, the other two problems, Fault-Tolerance Score (FTS) and Optimal Fault-Tolerant
Committee (OFTC), do not appear to be easy. Our main result in one dimension is the
design of efficient dynamic-programming-based algorithms for these two problems. Along
the way, we solve a fault-tolerant Hitting Set problem for points and unit intervals, which
may be of independent interest.

In two dimensions and higher, OFTC is NP-hard because of its close connection to
the k-center problem. However, we show that even the seemingly simpler problem of
optimal replacement (ORP) is also NP-hard. Our main results include a constant-factor
approximation for all three problems in any fixed dimension (in fact, in any metric space),
as well as a novel bicriterion FPT approximation via an EPTAS whose running time has the
form f(ϵ)nO(1). For ease of reference, we show these results in the following table.

Table 1 Summary of our results.

One-dimensional
instances

Dimension d ≥ 2
Complexity Approximation Bounded f

ORP P
(Theorem 1)

NP-hard
(Theorem 11)

3-approx.
(Lemma 12)

P
(full version)

FTS P
(Theorem 6)

NP-hard
(Theorem 11)

3-approx.
(Lemma 13)

P
(full version)

OFTC P
(Theorem 9)

NP-hard
(Theorem 11)

5-approx.
(Lemma 17)

Bicriterion-EPTAS
(Theorem 20)

NP-hard
(full version)

3-approx.
(Theorem 16)

Due to limited space, proofs of some of the theorems/lemmas (marked with (⋆)) are
deferred to the full version of the paper.

1.2 Related Work
To the best of our knowledge, the issue of fault tolerance in committee selection has not been
studied in voting literature – their primary focus is on protocols and algorithms for choosing
candidates [11, 12, 25, 27, 28, 8, 3]. However, the following two lines of work consider some
related issues. First, in the “unavailable candidate model” [22, 15] the goal is to choose
a single winner with maximum expected score when candidates fail according to a given
probability distribution; in contrast, we consider multiwinner elections under worst-case
faults. In the second line of work, a set of election control problems are considered where
candidates are added [10] or deleted [17] to change the outcome of the election. In this
setting, the candidate set is modified to obtain a favorable election outcome, which is a
rather different problem than ours.

In the facility-location research, there has been prior work on adding fault tolerance to
k-center or k-median solutions [6, 20, 19, 30, 16], but the main approach there is to assign
each user (voter) to multiple facilities (candidates). In particular, the “p-neighbor k-center”
framework [6] minimizes the maximum distance between a user and its pth center as a
way to protect against p − 1 faults. This formulation, however, differs from our optimal
fault-tolerant committee problem (OFTC) because in our setting the replacement candidates
are chosen after failing candidates are announced. Therefore, in the OFTC problem, the
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designer does not have to simultaneously allocate p neighbors for all the voters. Furthermore,
to the best of our knowledge, neither of our first two problems – Optimal Replacement (ORP)
and Fault-Tolerance Score (FTS) – have been studied in the facility-location literature, and
initiate a new research direction. We also formulate and solve a fault-tolerant hitting set
problem in one dimension, which may be of independent interest.

2 Fault-Tolerant Committees in One Dimension

Even in one dimension, computing the fault-tolerance score of a given committee or finding
a committee with minimum fault-tolerance score is nontrivial. The optimal replacement
problem, however, is easy – a simple greedy algorithm works. Our main result in this section
is to design efficient dynamic-programming algorithms for the former two problems. In doing
so, we also solve the fault-tolerant version of Hitting Set for points and unit segments.

2.1 Optimal Replacement Problem
In the Optimal Replacement Problem (ORP), we are given a committee T ⊆ C and a failing
set J ⊆ C, and we must find a replacement set R minimizing the score σ((T \ J)∪R), where
|R| ≤ |T ∩ J |. Since this score is always the distance between some voter-candidate pair, it
suffices to solve the following decision problem: Is there a replacement set with score at most
r? We can then try all possible O(nm) distances to find the smallest feasible replacement
score.

This decision problem is equivalent to the following hitting set problem: for each voter
v ∈ V , let Iv be the interval of length 2r centered at v, and let I = {Iv : v ∈ V } be the set of
these n (voter) intervals. A subset of candidates is a hitting set for I if each interval contains
at least one of the candidates. In our problem, we are given a hitting set T and a failing
subset of candidates J , and we must find the minimum-size replacement hitting set. Such a
replacement is easily found using the standard greedy algorithm, as follows. We first remove
all of the intervals from I that are already hit by a candidate in T \ J , and we also remove
all the failing candidates J from C. For the leftmost remaining interval, we then choose the
rightmost candidate c contained in it, add it to R, delete all intervals hit by c, and iterate
until all remaining intervals are hit. If we ever encounter an interval containing no candidate,
or if the size of the replacement set is larger than |T \ J |, the answer to the decision problem
is no. Otherwise, the solution is R. The greedy algorithm is easily implemented to run in
time O((m + n) log(m + n)). To find the optimal replacement set, we can do a binary search
over O(nm) values of r and find the smallest r for which |(T \ J) ∪R| ≤ k.

▶ Theorem 1. The Optimal Replacement Problem can be solved in time O((m+n) log2(m+n))
for one-dimensional Euclidean elections.

2.2 Computing the Fault-Tolerance Score (FTS) of a Committee
We now come to the more difficult problem of computing the fault-tolerance score σf (T ) of
a committee T in one dimension, which is the worst case over all possible failing sets of T .
Once again it suffices to solve the following decision problem: given a size-k committee T and
a real number r, can we find a replacement with score at most r for every failing subset of
size f? Using our hitting set formulation, σf (T ) ≤ r if and only if T is an f -tolerant hitting
set of I, that is, for any failing set J ⊆ C of size at most f , there exists a replacement set
R ⊆ C \ J such that |(T \ J)∪R| ≤ |T | and (T \ J)∪R hits I. (Recall that each member of
I is an interval of length 2r centered at one of the voter positions.) We can then compute
the fault-tolerance score of T by trying each of the O(nm) voter-candidate distances to find
the smallest r for which this decision problem has a positive answer.
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I1

I2

I3

I4

c1 c2 c3 c4 c5

Figure 1 The figure shows an interval hitting set instance with four intervals and five points.
The set {c2, c4} is a feasible hitting set. For X = {c2, c3, c5}, the intervals I1, I3, I4 are X-disjoint.

We solve this fault-tolerant hitting set decision problem by observing that the size of
a smallest hitting set equals the size of a maximum independent set, defined with respect
to candidate points and voter intervals in the following way. Suppose the intervals of
I = {I1, . . . , In} are sorted left to right. First, we can assume without loss of generality that
|Ii ∩C| > f for all i ∈ [n], since otherwise there is no f -tolerant hitting set for I. Given a set
of points X in R, we say that a set of intervals is X-disjoint if each point in X is contained
in at most one interval. (That is, X-disjoint intervals can be thought of as independent in
that they contain disjoint sets of points in X). The following claim is easy to prove.

▶ Lemma 2. Given a set of points X and a set of intervals J on the real line, the size of a
minimum hitting set X ′ ⊆ X of J equals the maximum size of an X-disjoint subset of J .

Thus, if T ⊆ C is an f -tolerant hitting set for I, then for any failing set J ⊆ C, the
size of any (C \ J)-disjoint subset of I is at most |T |. One should note that the size of the
maximum (C \ J)-disjoint subset in I is a monotonically increasing function of |J | – as more
candidates fail, more intervals can become disjoint. Our goal is to find the maximum size
of such a disjoint interval family over all possible failure sets J of size at most f . We will
do this using dynamic programming, by combining solutions of subproblems, where each
subproblem corresponds to an index range [i, j], over the set of candidate points c1, . . . , cm.
Assuming that the candidate points C = {c1, . . . , cm} are ordered from left to right, our
subproblems are defined as follows, for 1 ≤ i ≤ j ≤ m:

Ci,j = {ci, . . . , cj} is the set of candidates in the range [ci, cj ].
Ii,j = {I ∈ I : I ∩ C ⊆ Ci,j} is the set of intervals that only contain points from Ci,j .
For any J ⊆ Ci,j , δi,j(J) is the maximum size of a (Ci,j\J)-disjoint subset of Ii,j .
The subproblems we want to solve are the values δi,j(f) = maxJ⊆Ci,j ,|J|≤f δi,j(J).

The key technical lemma of this section is the following claim.

▶ Lemma 3. T ⊆ C is an f-tolerant hitting set of I if and only if |T ∩ Ci,j | ≥ δi,j(f), for
all 1 ≤ i ≤ j ≤ m.

Proof. We first show the “if” part of the lemma. Assume |T ∩Ci,j | ≥ δi,j(f) for all i, j ∈ [m]
with i ≤ j. To see that T is an f -tolerant hitting set of I, consider a failing set J ⊆ C of
size at most f . We have to show the existence of a replacement set R ⊆ C\J such that
|(T\J) ∪R| ≤ |T | and (T\J) ∪R is a hitting set of I. We write T\J = {ci1 , . . . , cip

}, where
i1 < · · · < ip. For convenience, set i0 = 0 and ip+1 = m + 1. By our assumption, every
interval I ∈ I is hit by some point in C. Thus, either I is hit by T\J or I belongs to Ii,j where
i = it−1 + 1 and j = it − 1 for some index t ∈ [p + 1]. Now consider an index t ∈ [p + 1]. We
write Tt = T ∩Ci,j and define Rt ⊆ Ci,j\J as a minimum hitting set of Ii,j . By Lemma 2, the
size of Rt is equal to the maximum size of a (Ci,j\J)-disjoint subset of Ii,j , which is nothing
but δi,j(J ∩ Ci,j). Also, by assumption, we have |Tt| = |T ∩ Ci,j | ≥ δi,j(f) ≥ δi,j(J ∩ Ci,j).
Therefore, |Rt| ≤ |Tt|. Finally, we define R =

⋃p+1
t=1 Rt. Clearly, (T\J) ∪ R hits I. So it

suffices to show that |(T\J) ∪R| ≤ |T |. Since |Rt| ≤ |Tt| for all t ∈ [p + 1], we have
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|(T\J) ∪R| = |T\J |+
p+1∑
t=1
|Rt| ≤ |T\J |+

p+1∑
t=1
|Tt| = |T |,

which completes the proof of the “if” part.
Next, we prove the “only if” part of the lemma. Assume T ⊆ C is an f -tolerant hitting

set of I. Consider two indices i, j ∈ [m] with i ≤ j. To show |T ∩ Ci,j | ≥ δi,j(f), it suffices
to show that |T ∩ Ci,j | ≥ δi,j(J) for all J ⊆ Ci,j with |J | ≤ f . Since T is an f -tolerant
hitting set of I, there exists R ⊆ C\J such that |(T\J)∪R| ≤ |T | and (T\J)∪R is a hitting
set of I. For brevity, let T ′ = (T\J) ∪ R. By definition, the intervals in Ii,j can only be
hit by the points in Ci,j . Thus, T ′ ∩ Ci,j is a hitting set of Ii,j . As T ′ ∩ Ci,j ⊆ Ci,j\J , by
Lemma 2, the size of T ′ ∩ Ci,j is at least the maximum size of a (Ci,j\J)-disjoint subset of
Ii,j , i.e., |T ′ ∩ Ci,j | ≥ δi,j(J). Furthermore, because J ⊆ Ci,j , we have (T\J)\Ci,j = T\Ci,j .
It follows that T\Ci,j ⊆ T ′\Ci,j and thus |T\Ci,j | ≤ |T ′\Ci,j |. For a committee T , we can
partition T into two parts: the part containing candidates in Ci,j and the part containing
candidates outside of Ci,j . Hence, |T | = |T ∩Ci,j |+ |T\Ci,j | and |T ′| = |T ′∩Ci,j |+ |T ′\Ci,j |.
Because |T ′| ≤ |T | and |T ′\Ci,j | ≥ |T\Ci,j |, we have |T ′ ∩ Ci,j | ≤ |T ∩ Ci,j |. Therefore,
|T ∩ Ci,j | ≥ δi,j(J). This completes the proof of Lemma 3. ◀

In order to decide if σf (T ) ≤ r, therefore, we just have to compute δi,j(f), for all i, j,
and check the condition |T ∩ Ci,j | ≥ δi,j(f). We now show how to do that efficiently.

Efficiently Computing δi,j(f)

For ease of presentation, we show how to compute δ1,m(f); computing other δi,j(f) is
similar. We have C1,m = C, I1,m = I, and δ1,m(f) is size of the largest subset of I that is
(C\J)-disjoint for any failing set J ⊆ C with |J | ≤ f . The intervals of I = {I1, I2, . . . , In}
are in the left to right sorted order and, for each i ∈ [n], let C(Ii) = C ∩ Ii be the set of
points in C that hits Ii. Define Γ [i][j] as the maximum size of an (C \X)-disjoint subset
J ⊆ {I1, . . . , Ii} such that X ⊆ C and |X| ≤ j.

▶ Lemma 4. We have the following recurrence

Γ [i][j] = max
{

Γ [i− 1][j],
max

0≤i′≤i
1 + Γ [i′][j − |C(Ii) ∩ C(Ii′)|]

}

Clearly, δ1,m(f) = Γ [n][f ]. The base case for our dynamic program is Γ [0, j] = 0 for
all j ∈ [f ] and Γ [i][j] = −∞ for j < 0 and all i ∈ [n]. Our dynamic program runs in time
O(n2mf). In the same way, we can compute the values of δi,j(f) for all i, j ∈ [m] with i ≤ j.

▶ Lemma 5. δi,j(f), for all 1 ≤ i ≤ j ≤ m, can be computed in time O(n2m3f).

Given a hitting set T ⊆ C and the values δi,j(f), we can verify the condition in Lemma 3
in time O(m3). We can then use binary search to find the smallest value of r for which T is
an f -tolerant hitting set. This establishes the following result.

▶ Theorem 6. The fault-tolerance score of a 1-dimensional committee T can be computed in
time O(n2m3f log(nm)).
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2.3 Optimal Fault-Tolerant Committee
We now address the problem of designing a fault-tolerant committee: select a committee T

of size k whose fault-tolerance score σf (T ) is minimized. Thus, our goal is not to optimize
the fault-free score of T , namely σ0(T ), but rather the score that the best replacement will
have after a worst-case set of f faults in T , namely σf (T ). Following the earlier approach, we
again focus on the decision question: given some r ≥ 0, is there a committee of size k with
σf (T ) ≤ r? For a given value of r, we construct our hitting set instance with candidate-points
and voter-intervals, and compute a minimum-sized f -tolerant hitting set T ⊆ C as follows:
1. Compute the value of δi,j(f), for all 1 ≤ i ≤ j ≤ m.
2. Compute a minimum subset T ⊆ C satisfying |T ∩ Ci,j | ≥ δi,j(f), for all 1 ≤ i ≤ j ≤ m.
3. If |T | ≤ k, we have a solution; otherwise, the answer to the decision problem is no.

Step (1) is implemented using the dynamic program of the previous subsection, and so it
suffices to explain how to implement step (2). We assume without loss of generality that
|Ci,j | ≥ δi,j(f) for all i, j, because otherwise there is no solution. We compute a set T using
the following greedy algorithm.

Initialize T = ∅.
For each ck for k ∈ [m], if there exists i, j ∈ [m] with i ≤ k ≤ j ≤ m such that
δi,j(f) ≥ |T ∩ Ci,j |+ (j − k + 1), then add ck to T .

The algorithm runs in time O(m3). To prove correctness, we first claim the following.

▶ Lemma 7. |T ∩ Ci,j | ≥ δi,j(f), for all 1 ≤ i ≤ j ≤ m.

Proof. Suppose not, so we have |T ∩ Ci,j | < δi,j(f), for some i ≤ j. We recall that for any
interval Ii ∈ I, |Ii ∩ C| > f . Therefore, for any failing set J , Ci,j \ J is a hitting set of
Ii,j , and |Ci,j | ≥ δi,j(f). This implies that there exists some point among ci, . . . , cj that
is not in T . Let k ∈ {i, . . . , j} be the largest index such that ck /∈ T . For convenience,
we use T ′ to denote the set T in the iteration of our algorithm that considers ck. Note
that T ∩ Ci,j = (T ′ ∩ Ci,j) ∪ {ck+1, . . . , cj} and (T ′ ∩ Ci,j) ∩ {ck+1, . . . , cj} = ∅. Therefore,
|T ′∩Ci,j | = |T ∩Ci,j |−(j−k) < δi,j(f)−(j−k). This implies |T ′∩Ci,j |+(j−k+1) ≤ δi,j(f).
By our algorithm, in this case we should include ck in T , which contradicts the fact that
ck /∈ T . ◀

We now argue that T has the minimum size among all subsets of C satisfying the property
of Lemma 7. Let opt be the minimum size of a subset of C satisfying the desired property.
We write T = {ck1 , . . . , ckr

}, where k1 < · · · < kr.

▶ Lemma 8 (⋆). For any t ∈ [r], there exists a subset T ∗ ⊆ C such that (1) |T ∗∩Ci,j | ≥ δi,j(f)
for all i, j ∈ [m] with i ≤ j, (2) |T ∗| = opt, and (3) {ck1 , . . . , ckt

} ⊆ T ∗.

We use binary search to find the smallest r such that the reduced instance has an
f -tolerant hitting set of size at most k. Therefore, the following theorem holds.

▶ Theorem 9. Optimal Fault-Tolerant Committee can be solved in time O(n2m3f log(nm))
for one-dimensional Euclidean elections.

▶ Remark 10. Our dynamic programming algorithm works as long as either the set V or the
set C is embedded in R (i.e., has a linear ordering), while the other set can have an arbitrary
d-dimensional embedding. Moreover, we can also extend our algorithms to ordinal elections
with (widely studied) single-peaked preferences [2, 24] to compute an optimal fault-tolerant
Chamberlin-Courant committee.
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3 Fault-Tolerant Committees in Multidimensional Space

We now consider fault tolerance in multidimensional elections. Unsurprisingly, the optimal
committee design problem is intractable – it is similar to facility location – but it turns out
that the seemingly simpler variants ORP and FTS are also intractable. In particular, we
have the following (refer to the full version of the paper for details).

▶ Theorem 11 (⋆). All three problems (Optimal Replacement, Fault-Tolerance Score, and
Optimal Fault-Tolerant Committee) are NP-hard, in any dimension d ≥ 2 under the Euclidean
norm, where size of the committee k and the failure parameter f are part of the input.

3.1 Optimal Replacement Problem
A simple greedy algorithm achieves a 3-approximation for the Optimal Replacement Problem
in any fixed dimension d as well as in any metric space.

▶ Lemma 12. We can find a 3-approximation for ORP in time O(k(nk + m)).

Proof. Let T ⊆ C be the given committee and let J ⊆ T be the failing set. In order to
find the replacement set R, we initialize T̂ = T \ J , and then repeat the following two steps
|T ∩ J | times: (1) Choose the farthest voter from T̂ , namely, choose v̂ = arg maxv∈V d(v, T̂ ),
and (2) Add to T̂ the candidate ĉ /∈ T̂ that is closest to v̂. Upon termination, we clearly have
|T̂ | = |T |. Due to limited space, the proof of the approximation ratio is deferred to the full
version of our paper. ◀

3.2 Computing the Fault-Tolerance Score
We can also approximate the optimal fault-tolerance score of a committee within a factor of
3. Specifically, if the optimal fault-tolerance score of T is σf (T ) = σ∗, then our algorithm
returns a real number σ′ such that σ∗ ≤ σ′ ≤ 3σ∗.

For each voter v, let df (v) be v’s distance to its (f + 1)th closest candidate, and let
d′ = maxv∈V df (v) be the maximum of these values over all voters. The basic idea behind our
approximation is simple and uses the following two facts: (1) σ∗ ≥ d′, and (2) σ∗ ≥ σ(T ). The
first one holds because d′ is the best score possible if some voter’s f nearest candidates fail,
and the second one holds because a failure can only worsen the score (that is, σf (T ) ≥ σ(T )
for any f > 0). Therefore, the distance σ′ = d′ + 2σ(T ) is clearly within a factor of 3 of the
optimal σ∗. We claim that for any failing set J ⊆ C, there exists a replacement R ⊆ C \ J of
size at most |T ∩ J | such that σ((T \ J) ∪R) ≤ σ′. Due to limited space, we omit the proof
from the extended abstract; it is included in the full version of our paper.

▶ Lemma 13. The fault-tolerance score of a committee can be approximated within a factor
of 3 in time O(nm log(f)).

3.3 Optimal Fault-Tolerant Committee
We now discuss how to design approximately optimal fault-tolerant committees in multiwinner
elections. Specifically, given a set of voters V and a set of candidates C in d-space, along
with parameters k (committee size) and f (number of faults), we want to compute a size k

committee T ⊆ C with the minimum fault-tolerance score σf (T ). We prove two approximation
results for this problem: (1) We can solve this problem within an approximation factor of
3 in polynomial time if the parameter f is treated as a constant (while k remains possibly
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unbounded). If f is not assumed to be a constant, we can solve the problem within an
approximation factor of 5. (2) We give an EPTAS with running time (1/ε)O(1/ε2d)(m+n)O(1)

which is a bicriterion approximation, where the output committee T is fault-tolerant for at
least (1− ε)n voters with σf (T ) ≤ (1 + ε)σ∗. The next two subsections discuss these results.

3.3.1 3-Approximation for Bounded f

Let σ∗ be the optimal f -tolerant score of a committee of size k. We compute the approximation
solution via an approximate decision algorithm, which takes as input a number σ ≥ σf (C)
and returns a committee T ⊆ C of size at most k with σf (T ) ≤ 3σ if σ ≥ σ∗. (We slightly
abuse notation to introduce a convenient quantity σf (C), which is the f -fault-tolerance score
of a committee with all the input candidates. This is clearly a lower bound on any size k

committee’s score.)
For a committee T ⊆ C and a failing set J ⊆ C, let δ(T, J) denote the score obtained

after finding an optimal replacement K. That is,

δ(T, J) = min
K∈C\J,|K|=|T ∩J|

σ0((T\J) ∪K).

Thus, σf (T ) = maxJ⊆C,|J|≤f δ(T, J). Our approximation algorithm is shown in Algorithm 1.
It begins with an empty committee T (line 1), and as long as there exists a failing set J of
size at most f for which δ(T, J) > 3σ, 3 we do the following.

First, we remove all candidates in J from T (line 3). Then, whenever there exists a voter
v ∈ V with d(v, T ) > 3σ, we add to T a candidate c ∈ C\J whose distance to v is at most σ

(lines 5-6). Such a c always exists because σ is at least the distance to the (f + 1)th closest
neighbor to v.

We call this voter v the witness of c, denoted by wit[c] (line 7). Adding c to T guarantees
that d(v, T ) ≤ σ. We repeat this procedure (the inner while loop) until d(v, T ) ≤ 3σ for all
v ∈ V . Finally, the outer while loop terminates when δ(T, J) ≤ 3σ for all J ⊆ C of size at
most f , i.e., σf (T ) ≤ 3σ. At this point, we return the committee T .

Algorithm 1 Approximate decision algorithm.

Input: a set V of voters, a set C of candidates, the committee size k, the fault-tolerance
parameter f , and a number σ ≥ σf (C)

1: T ← ∅
2: while ∃ J ⊆ C such that |J | ≤ f and δ(T, J) > 3σ do
3: T ← T\J
4: while ∃ v ∈ V such that d(v, T ) > 3σ do
5: c← a candidate in C\J satisfying d(v, c) ≤ σ

6: T ← T ∪ {c}
7: wit[c]← v

8: return T

▶ Lemma 14 (⋆). Let T be the committee computed by Algorithm 1. Then d(wit[c], wit[c′]) >

2σ for any two distinct c, c′ ∈ T .

▶ Lemma 15. If σ ≥ σ∗, then Algorithm 1 outputs a size k committee T with σf (T ) ≤ 3σ.

3 We can check this condition by iterating over all failing sets of size f and computing an optimal
replacement set in each case.
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Proof. The condition of the outer while loop of Algorithm 1 guarantees that δ(T, J) ≤ 3σ

for all J ⊆ C of size at most f , which implies σf (T ) ≤ 3σ. To prove |T | ≤ k, suppose
T = {c1, . . . , cr}. By Lemma 14, the pairwise distances between the voters wit[c1], . . . , wit[cr]
are all larger than 2σ and thus larger than 2σ∗ (as σ ≥ σ∗ by our assumption). Now consider
a committee T ∗ ⊆ C of size k satisfying σf (T ∗) = σ∗. For each wit[ci], there exists c∗

i ∈ T ∗

such that d(wit[ci], c∗
i ) ≤ σ∗. Observe that c∗

1, . . . , c∗
r are all distinct. Indeed, if c∗

i = c∗
j and

i ̸= j, then by the triangle inequality,

d(wit[ci], wit[cj ]) ≤ d(wit[ci], c∗
i ) + d(wit[cj ], c∗

j ) ≤ 2σ∗,

contradicting the fact that d(wit[ci], wit[cj ]) > 2σ∗. Since |T ∗| = k and c∗
1, . . . , c∗

r ∈ T ∗, we
have r ≤ k, which completes the proof. ◀

Using these two lemmas, we can compute a 3-approximate solution using Algorithm 1 as
follows. First, we compute σf (C) in O(nmf+1) time by enumerating all failing sets J ⊆ C of
size at most f . For every voter v ∈ V and every candidate c ∈ C such that d(v, c) ≥ σf (C),
we run Algorithm 1 with σ = d(v, c). Among all the committees returned of size at most k,
we pick the one, say T ∗, that minimizes σf (T ∗). To see that σf (T ∗) ≤ 3σ∗, note that σ∗ must
be the distance between a voter and a candidate. Thus, there is one call of Algorithm 1 with
σ = σ∗, which returns a committee T ⊆ C of size at most k such that σf (T ) ≤ 3σ = 3σ∗, by
Lemma 15. We have σf (T ∗) ≤ σf (T ) by construction, which implies σf (T ∗) ≤ 3σ∗. In the
full version, we show that each call of Algorithm 1 takes O(nm2f+1) time. We need to call
the algorithm O(nm) times. Thus, we have the following result.

▶ Theorem 16. We can find a 3-approximation for Optimal Fault-tolerant Committee in
time O(n2m2f+2), assuming the fault-tolerance parameter f is a constant.

If we do not assume f to be a constant, then the well-known “farthest first” greedy rule
for adding candidates achieves a factor 5 approximation. Due to limited space, we describe
the algorithm and its analysis in the appendix.

▶ Lemma 17 (⋆). We can find a 5-approximation for Optimal Fault-Tolerant Committee in
time O(mnk).

All of the above approximations hold not just for d-dimensional Euclidean space, for any
fixed d, but also for any metric space.

3.3.2 A bicriterion EPTAS
Finally, we design a bicriterion FPT approximation scheme with running time f(ε) · nO(1),
which finds a size-k committee whose fault-tolerance score for at least a (1 − ε) fraction
of the voters is within a factor of (1 + ε) of the optimum. Formally, we say a committee
T is (r, ρ)-good if there exists a subset V ′ ⊆ V of size at least ρn such that the f -tolerant
score of T with respect to only the voters in V ′ is at most r. Then our approximation
scheme can output a size-k committee which is ((1 + ε)σ∗, 1 − ε)-good. The core of our
approximation scheme is the following (approximation) decision algorithm. The decision
algorithm takes the problem instance and an additional number r > 0 as input. The output of
the algorithm has two possibilities: it either (i) returns YES and gives a size-k committee that
is ((1 + ε)r, 1− ε)-good or (ii) simply returns NO. Importantly, the algorithm is guaranteed
to give output (i) as long as r ≥ σ∗. Note that this decision algorithm directly gives us
the desired approximation scheme. Indeed, we can apply it with r = d(v, c) for all v ∈ V

and c ∈ C. Let r∗ be the smallest r that makes the algorithm give output (i). The size-k
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committee T ∗ obtained when applying the algorithm with r∗ is ((1 + ε)r∗, 1− ε)-good. We
have r∗ ≤ σ∗ because the algorithm must be applied with r = σ∗ at some point and it is
guaranteed to give output (i) at that time. Thus, T ∗ is ((1 + ε)σ∗, 1− ε)-good, as desired.

For simplicity of exposition, we describe our decision algorithm in two dimensions. By
scaling, we may assume that the given number is r = 1. To solve the decision problem, our
algorithm uses the shifting technique [18]. Let h be an integer parameter to be determined
later. For a pair of integers i, j ∈ Z, let □i,j denote the h× h square [i, i + h]× [j, j + h]. A
square □i,j is nonempty if it contains at least one voter or candidate. We first compute the
index set Ĩ = {(i, j) : □i,j is nonempty}. This can be easily done in time O((n + m)h2).

Consider a pair (x, y) ∈ {0, . . . , h− 1}2. Let Lx,y be the set of all integer pairs (i, j) such
that i (mod h) ≡ x and j (mod h) ≡ y. We write Ĩx,y = Ĩ ∩ Lx,y. For a voter v ∈ V and a
square □i,j , we say v is a boundary voter for □i,j if v /∈ [i + 2, i + h− 2]× [j + 2, j + h− 2].
Furthermore, we say v conflicts with (x, y) if v is a boundary voter in □i,j for some (i, j) ∈ Ĩx,y.

▶ Lemma 18 (⋆). There exists a pair (x, y) ∈ {0, . . . , h− 1}2 such that at most 4h−4
h2 · |V |

voters conflict with (x, y).

We fix a pair (x, y) ∈ {0, . . . , h − 1}2 that conflicts with the minimum number of
voters. For (i, j) ∈ Ĩx,y, we define the set of (non-boundary) voters Vi,j = {v ∈ □i,j : v ∈
[i + 2, i + h− 2]× [j + 2, j + h− 2]}, and the set of candidates Ci,j = {c ∈ C : c ∈ □i,j}. Note
that for (i, j) ∈ Ĩx,y, the Ci,j ’s are disjoint and form a partition of C. Next, we show an
important lemma which allows our algorithm to divide our problem into smaller subproblems,
solve them individually, and combine the solutions to solve the overall problem.

▶ Lemma 19 (⋆). Let V1, V2, . . . , Vs be subsets of V and let T1, T2, . . . , Ts be pairwise disjoint
subsets of C such that Ti is a fault-tolerant committee for Vi with σf (Ti) = σ. Then,
T =

⋃s
i=1 Ti is a fault-tolerant committee of

⋃s
i=1 Vi with σf (T ) = σ.

Consider a pair (i, j) ∈ Ĩx,y. Let T i,j be a smallest fault-tolerant committee for Vi,j with
σf (T i,j) ≤ 1. We observe that any inclusion-minimal fault-tolerant committee Ti,j for Vi,j

satisfies Ti,j ⊆ Ci,j . This is because any candidate outside Ci,j has distance more than
1 + 6/h to any voter in Vi,j (for a large enough value of h). In the next section we will show
how to compute a fault-tolerant committee Ti,j ⊆ Ci,j for Vi,j such that |Ti,j | ≤ |T i,j | and
σf (Ti,j) ≤ 1 + 6/h in hO(h4)nO(1) time. Assuming we can compute the above-mentioned
committee Ti,j , our overall algorithm is as follows:
1. Fix a pair (x, y) ∈ {0, . . . , h− 1}2 conflicting with the minimum number of voters, and

set h to be the smallest integer such that (4h− 4)/h2 ≤ ε and 6/h ≤ ε.
2. For each pair (i, j) ∈ Ĩx,y, compute Ti,j ⊆ Ci,j .
3. Let T =

⋃
(i,j)∈Ĩx,y

Ti,j . If |T | ≤ k, return YES (along with T ); otherwise, return NO.

Let V ′ =
⋃

(i,j)∈Ĩx,y
Vi,j . Since the Ci,j ’s are disjoint, using Lemma 19, we conclude that

T is a fault-tolerant committee for V ′. Furthermore, from our choice of (x, y), we have
|V ′| ≥ (1− ε)n. It is easy to show that the f -tolerant score of T with respect to the voters in
V ′ is at most 1 + ε, and in addition, if σ∗ ≥ 1, we have |T | ≤ k; we give a formal argument in
the full version of our paper. This proves correctness of our decision algorithm. The overall
algorithm takes (1/ε)O(1/ε4)(m + n)O(1) time. We note that the algorithm can be directly
generalized to the d-dimensional case with running time (1/ε)O(1/ε2d)(m + n)O(1). Therefore,
we have the following result.

▶ Theorem 20. Given a d-dimensional Fault-Tolerant Committee Selection instance, we can
compute a size-k committee T such that the f -tolerant score of T with respect to at least (1−ε)n
voters is at most (1 + ε)σ∗, where σ∗ is the optimal f-tolerant score of a size-k committee
(with respect to the entire set V ). This algorithm runs in time (1/ε)O(1/ε2d)(m + n)O(1).
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< 2/h
1/h

1/h

voters

candidates

Figure 2 The figure shows a cell in the shifted grid. The solid lines around the sides are the grid
lines (and the region inside them is a cell). The shaded (green) region is the boundary region. Inside
the boundary region, we divide the cell into 1/h × 1/h smaller cells. The distance between any two
points in a smaller cell is < 2/h. All candidates in smaller cells are identical (i.e., candidates in blue
regions). In this example, since only five cells are nonempty, we have at most 25 distinct failing sets.

Algorithm to Compute Ti,j

We now present the most challenging piece of our algorithm: the computation of the Ti,j ’s.
Consider a box □i,j . Suppose there exists a fault-tolerant committee T ⊆ C for Vi,j with
σf (T ) ≤ 1. Our task is to compute a fault-tolerant committee Ti,j ⊆ C for Vi,j such that
|Ti,j | ≤ |T | and σf (Ti,j) ≤ 1 + 6/h.

We divide □i,j into h4 smaller cells each with size 1
h ×

1
h , and we denote the set of these

cells by L = {l1, . . . , lh4}. (See Figure 2.) Our algorithm is based on two key observations:
(i) A committee with a candidate in every nonempty cell has f -tolerant score within a
difference of at most 2/h from the optimum score. Since the number of cells is h4, this implies
that the size of a smallest approximately optimal committee is bounded by h4 (formally
shown in Lemma 21).
(ii) All candidates in a cell can be treated as identical, causing only a loss of 2/h in the score.
This implies that for any Ti,j , to approximately compute the f -tolerant score of Ti,j , we only
need to consider the failing sets where either all or none of the candidates in a cell fail. Note
that the number of such failing sets is at most 2O(h4) (formally shown in Lemma 22).

Using these two observations, at a high level, our algorithm goes through all committees
of size at most h4 (there are hO(h4) of these as we can assume that each cell has at most
h4 candidates), approximately computes the f -tolerant score of each of these committees in
time 2O(h4), and returns the smallest one with the desired score.

▶ Lemma 21 (⋆). Let T, T ∗ ⊆ C be fault-tolerant committees for Vi,j. If |T ∗ ∩ la| = 1 for
all a ∈ [h4] such that C ∩ la ̸= ∅, then σf (T ∗)− σf (T ) ≤ 2/h.

Based on the above observation, we solve the problem as follows. We enumerate all maps
χ : L→ {0, 1, . . . , h4} where χ(la) is the number of candidates from la in the committee. The
total number of such maps is hO(h4). For each feasible map, i.e., χ satisfying χ(la) ≤ |C ∩ la|
for all a ∈ [h4], we construct a fault-tolerant committee T ∗

χ for Vi,j by picking (arbitrarily)
χ(la) candidates in C ∩ la for all a ∈ [h4] and including them in T ∗

χ . For each constructed
T ∗

χ , we compute a number σ̃f (T ∗
χ) that approximates σf (T ∗

χ) using the following lemma.

▶ Lemma 22 (⋆). Given T ∗
χ , one can compute a number σ̃f (T ∗

χ) in 2O(h4)nO(1) time such
that |σ̃f (T ∗

χ)− σf (T ∗
χ)| ≤ 2/h.
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Finally, we let Ti,j be the smallest among all committees T ∗
χ satisfying σ̃f (T ∗

χ) ≤ 1 + 4/h,
and we return it as our solution. The running time of our algorithm is clearly hO(h4)nO(1).
The following lemma shows that our algorithm is correct.

▶ Lemma 23 (⋆). We have σf (Ti,j) ≤ 1+6/h. Furthermore, |Ti,j | ≤ |T | for any fault-tolerant
committee T for Vi,j with σf (T ) ≤ 1.
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Abstract
Prefix aggregation operation (also called scan), and its particular case, prefix summation, is an
important parallel primitive and enjoys a lot of attention in the research literature. It is also used in
many algorithms as one of the steps.

Aggregation over dominated points in Rm is a multidimensional generalisation of prefix aggre-
gation. It is also intensively researched, both as a parallel primitive and as a practical problem,
encountered in computational geometry, spatial databases and data warehouses.

In this paper we show that, for a constant dimension m, aggregation over dominated points in
Rm can be computed by O(1) basic operations that include sorting the whole dataset, zipping sorted
lists of elements, computing prefix aggregations of lists of elements and flat maps, which expand the
data size from initial n to n logm−1 n.

Thereby we establish that prefix aggregation suffices to express aggregation over dominated
points in more dimensions, even though the latter is a far-reaching generalisation of the former.
Many problems known to be expressible by aggregation over dominated points become expressible
by prefix aggregation, too.

We rely on a small set of primitive operations which guarantee an easy transfer to various
distributed architectures and some desired properties of the implementation.
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1 Introduction

In this paper we derive a tight relation between two computing problems: prefix aggregation
and aggregation over dominated points. We first describe the problems alone, in a framework
which covers them both.

The input data is assumed to be a collection of tuples composed of sortable atomic
elements. We are interested in aggregation in general. We assume the data consists of two
sets: a set D of data points and a set Q of queries where for each query there is a subset
q̂ ⊆ D of data points it matches.

A nonempty set A is the domain of weights. We are also given an associative and
commutative function ⊕ : A × A → A with unit e, i.e., neutral element of ⊕.

© Jacek Sroka and Jerzy Tyszkiewicz;
licensed under Creative Commons License CC-BY 4.0

31st Annual European Symposium on Algorithms (ESA 2023).
Editors: Inge Li Gørtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz Herman; Article No. 96;
pp. 96:1–96:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:j.sroka@mimuw.edu.pl
https://orcid.org/0000-0002-1714-9667
mailto:j.tyszkiewicz@mimuw.edu.pl
https://orcid.org/0000-0003-2858-3124
https://doi.org/10.4230/LIPIcs.ESA.2023.96
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


96:2 Aggregating over Dominated Points by Sorting, Scanning, Zip and Flat Maps

Data points have weights in A, defined by a function w : D → A. We use notation⊕
d∈S w(d) and the like for the application of ⊕ to a multiset of weights of elements S ⊆ D,

the same way as Σ is used as a generalisation of + to a multiset of numbers.
The goal is to compute

⊕
d∈q̂ w(d) for all q ∈ Q. The two problems we consider in the

paper are specific cases of the above schematic outline. We assume D and Q to be large.

1.1 Prefix aggregation and its role as a parallel primitive
Prefix aggregation (also called scan) arises when data and queries are linearly ordered, say
are both elements of R, and q̂ = {d ∈ D | d < q}. Then we wish to compute

⊕
d<q w(d).

The eponymous case is when D = Q, so the aggregations are applied to all prefixes of the
whole sequence of data points.

Concerning the importance of prefix aggregation as a computing primitive, it is well-
known that, no matter what practical or theoretical parallel computation model is considered,
sorting and scan are among the very first algorithms to be developed. The importance of the
latter has even led to patents around the idea of including a prefix sum in the instruction
set of a microprocessor [27], attempts of hardware implementations [16, 17] or adapting the
actual algorithm to the architecture of the processor, sequential [14] or parallel [9]. Attempts
of formal verification have also been undertaken [20, 10].

Scans were also researched as a primitive to implement parallel variants of many algorithms,
including radix sort, quicksort, lexical analysis, polynomial evaluation, stream compaction,
histograms and string comparison [4, 5], and also geometric partitioning algorithms [13].

1.2 Aggregation over dominated points
In this problem, data and queries are points in the m-dimensional space Rm. For two such
points we write (x1, . . . , xm) < (y1, . . . , ym) when inequalities hold coordinate-wise, i.e.,
x1 < y1, . . . , xm < ym. Then let q̂ = {d ∈ D|d < q}.

The result of the algorithm should therefore consist of
⊕

d<q w(d) for each query point q,
which is the result of applying ⊕ to the set of all weights of points in D which are dominated
by q, i.e., coordinate-wise smaller than q.

Aggregation over dominated points can obviously be considered as a multidimensional
generalisation of 1-dimensional prefix aggregation. Note however that typically prefix
aggregation uses an associative operation ⊕ with unit, while in the multidimensional setting
we also require it to be commutative. The reason is that prefix aggregation has a natural order
in which the elements are aggregated. In multidimensional setting there is no such natural
order and hence, for the sake of producing a deterministic result, we require commutativity.

Aggregation over dominated points, referred to as general prefix computations, has been
shown to be a parallel primitive which allows expressing many computational problems [22].
This approach has been subsequently extended to a general parallel computation model called
Broadcast with Selective Reduction PRAM (BSR for short). The multiple criteria variant
of BSR, introduced by Akl and Stojmenović [2, 3] after a number of earlier papers about
single criterion BSR, is the one whose only parallel primitive is aggregation over dominated
points. Many computational problems have been then shown to have constant-round BSR
algorithms including: counting intersections of isothetic line segments, vertical segment
visibility, maximal elements in m dimensions, ECDF searching, 2-set dominance counting
and rectangle containment in m dimensions, rectangle enclosure and intersection counting in
m dimensions [2], all nearest smaller values [28], all nearest neighbours and furthest pairs of
points in a plane in L1 metric, the all nearest foreign neighbours in L1 metric and the all
furthest foreign pairs of points in the plane in L1 metric [18]. All of them therefore can be
expressed by aggregation over dominated points.
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Other applications of this primitive include calculating Empirical Cumulative Distribution
Functions (ECDFs) in statistics, which are required in multivariate Kolmogorov-Smirnov,
Cramér-von Mises and Anderson-Darling statistical tests [15]. The problem is also intensively
studied, under the name range-aggregate queries by the spatial database community [1, 26, 21]
and data warehouse community [11]. However, in this area one typically does not assume
queries to be known in advance, so the focus is rather on storing data points in a data
structure which allows efficient querying.

1.3 Our contribution
We prove the following.

▶ Theorem 1. Aggregation over dominated points in Rm, where m is constant, can be
computed in O(1) basic operations: sorting of lists of tuples, zipping and computing prefix
aggregations as well as flat maps over such lists. By using flat lists, our algorithm expands
the initial size of the input data from n to O(n logm−1 n) tuples.

Our work thus creates a direct link between so far separate parallel primitives. In this
respect, we follow the paradigm presented by Blelloch [4, 5], who has shown that many
computational problems can be expressed by prefix aggregation. Our result does not add just
one more such problem, but, by transitivity, all problems which have been previously shown
to be expressible by aggregation over dominated points. An interesting theoretical conclusion
can be drawn, that prefix aggregation suffices to express aggregation over dominated points,
i.e., its own multidimensional generalisation.

Seen from another prespective, our work significantly simplifies the algorithm from our
earlier paper Sroka et al. [23]. It presents a constant-rounds algorithms for solving the
counting variant of the problem, written for MapReduce and designed to be minimal in the
sense proposed by Tao et al. [25], which guarantees it evenly distributes computation among
worker nodes. It distributes range trees explicitly, and we borrow the method to do so from
that paper. However, it uses recursion to deal with consecutive dimensions and minimal
group-by method from [25] to aggregate the counts. We regard it as a new contribution
that all data processing tasks of this algorithm are replaced by invocations of a very few
simple primitives of well-understood behaviours, and that this result neatly connects two
computational tasks, each one with its own history of research of algorithms it can express.

This switch from a particular parallel model to high-level parallel primitives makes the
algorithm simpler to understand, reducing the number and level of details which must be
taken care of. Another benefit is the fact that the algorithm now avoids any direct references
to the mechanisms of the parallel hardware it is running on, like processors, messages, shared
resources, etc. It requires exactly those, which are used by the underlying implementations
of of the primitives we rely on. Among them, prefix aggregation is the only one, which allows
combining values from an unbounded number of data elements together. However, the role
of flat maps is also crucial, because they distribute certain computations, the results of which
prefix aggregation later reduces. Finally, scans allow distributing many algorithms which in
the centralised setting are based on sorting and iterating over data. Such approach has many
advantages similar to those pointed out in [25], e.g., the resulting algorithms have strong
guarantees concerning the way they distribute work and load. The ideas we present this
paper can be viewed as generalisation of such approach to multidimensional setting the same
way as range tree generalises binary search tree.

There is also an algorithm by Yufei Tao [24][Theorem 5] that uses an entirely different idea.
It is directly tailored for the MPC model and takes care of reducing the maximal amount
of communication between processors. It is based on partitioning space into fragments,
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recursively solving problem over them and finally aggregating partial results. It achieves the
optimal load mO(m)N/p with p processors. As far as we understand, neither of them can be
adapted to use prefix aggregation as its main mechanism.

2 Primitives

2.1 Data model
We assume the data to be stored in immutable but ordered lists. We are going to transform
lists into new lists. Such approach and immutability is typical for distributed architectures,
while ordering can be achieved by imposing some order on nodes in the cluster and distributing
values such that successive nodes have increasing elements. Initial ordering of the input data
is arbitrary, but we assume that input values are equipped with some numerical IDs that
define it and can be used to break ties if needed.

The initial list of data points (vectors in Rm) is going to be referred to as D and the list
of queries as Q. The weights of data points are represented by weight function w : D → A.
To make the exposition simpler, we assume that weights are defined for queries, too, and
w(q) = e for q ∈ Q, so that they do not interfere with aggregation.

2.2 Primitives and macros
In this section we postulate primitive operations that are used to express our algorithms as
well we define some convenient macros that combine them.

▶ Definition 2 (Sort). For x = [x0, . . . , xn] and some linear order relation ≼⊆ X × X

sort(x,≼) = [xi1 , . . . , xin
],

where the multisets {{xi1 , . . . xin
}} and {{x1, . . . xn}} are equal, and xij

≼ xij+1 for all j. ⌟

It is known that radix sort and quicksort are expressible by prefix aggregation [4, 5],
hence we could theoretically eliminate sorting from the list of primitives we rely on.

▶ Definition 3 (FlatMap). For x = [x0, . . . , xn] and f : X → [Y ], which applied to an element
produces a list of elements as the result:

flatmap(x, f) = f(x0) & . . . & f(xn),

where & is list concatenation. ⌟

For convenience we define map, which expects f : X → Y to produce single elements, by
using FlatMap and composing f with list constructor list():

map(x, f) := flatmap(x, list() ◦ f),

so that

map([x1, . . . , xn], f) = [f(x1), . . . , f(xn)]

Zip is an operation which takes two (or more) lists of equal length and combines them
into a single list of tuples, created from elements at the same positions.

▶ Definition 4 (Zip). For lists x1 = [x1
1, . . . , x1

n], . . . , xk = [xk
1 , . . . , xk

n]:

zip(x1, . . . , xk) = [(x1
1, . . . , xk

1), . . . , (x1
n, . . . , xk

n)]. ⌟
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As usually immediately after zip we want to do something with those tuples, we define
macros, which map or flatmap a provided function f : Xk → Y or f : Xk → [Y ] on the
tuples immediately:

mapzip(x1, . . . , xk, f) := map(zip(x1, . . . , xk), f),

flatmapzip(x1, . . . , xk, f) := flatmap(zip(x1, . . . , xk), f).

We define three variants of prefix aggregation of a list [a1, . . . , an] of elements of A, known
from literature.

▶ Definition 5 (Scan). For an aggregation operation ⊕ : A × A → A, its natural element e

and a list [a1, . . . , an] of elements of A:

scan([a1, . . . , an], ⊕) = [a1, a1 ⊕ a2, . . . , a1 ⊕ . . . ⊕ an],

scan−([a1, . . . , an], ⊕) = [e, a1, . . . , a1 ⊕ . . . ⊕ an−1]. ⌟

As we need scan− only for aggregating nondecreasing lists of numerical values with
⊕ = max and e = −∞ we define a macro: shift([x1, . . . , xn]) := scan−([x1, . . . , xn], max) =
[−∞, x1, . . . , xn−1], which is indeed a right-shift of its input if [x1, . . . , xn] is nondecreasing.

Another useful macro for lists of numerical values with ⊕ = max and e = −∞ is
the following: broadcastmax([x1, . . . , xn]) := scan(sort([x1, . . . , xn], ≥), max) = [x, . . . , x]
where x = max(x1, . . . , xn). This macro indeed broadcasts the maximal value in a list to all
positions. By zipping this list with another list we assure that the maximal value can be
used for local processing of the latter, by map.

▶ Definition 6 (Segmented scan). For an aggregation operation ⊕ : A × A → A and two
lists [a1, . . . , an] of elements of A and [t1, . . . , tn] of elements of some other set T , where the
latter list is sorted:

sscan([a1, . . . , an], [t1, . . . , tn], ⊕) = [
⊕

i≤1
ti=t1

ai,
⊕

i≤2
ti=t2

ai, . . . ,
⊕

i≤n

ti=tn

ai].

This means, that we essentially decompose the first argument list into maximal segments
over which the corresponding elements of the second list remain identical, and then compute
scan(s, ⊕) for each segment s separately, e.g., sscan([1, 2, 3, 4, 5, 6], [0, 0, 1, 1, 1, 2], +) =
[1, 3, 3, 7, 12, 6].

Segmented scan can be expressed by standard scan (see [4]), but is typically designed
and implemented independently, which gives a chance for better performance, in particular
on complex, constrained architectures, such as GPU [8]. It can also be implemented as a
data oblivious algorithm, whose memory access pattern is independent of the actual data
being processed [19]. Note that scan is our only operation for combining unbounded number
of elements, here by aggregation into a single value.

The primitives described in this section essentially define our model of hardware the
algorithm is running on.

3 Checking dominance by polylogarithmic data expansion

In this section we present an important tool we need in our algorithm. It allows us to
distribute the process of checking dominance relations later on. It can be viewed as a method
to distribute a range tree that allows to query multidimensional data. It derives from the
paper [23].
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Figure 1 Geometric visualization of the example data and queries. Note that the aggregation
output in this case should be w(d1) for q1 and w(d1) ⊕ w(d2) for q2.

We consider natural numbers written in binary notation, padded to some fixed length with
leading 0’s. Let x be a bitstring. Then let P 0(x) be the set of all bitstrings v such that v0 is a
prefix of x, including the empty prefix, should x start with a 0, e.g., P 0(01010) = {0101, 01, ε}.
Similarly, let P1(x) be the set of all bitstrings v, such that v1 is a prefix of x.

▶ Lemma 7. Suppose x and y are natural numbers represented as bitstrings of equal length,
perhaps with leading 0’s.

If x < y then P 0(x)∩P 1(y) has exactly one element, and if x ≥ y then P 0(x)∩P 1(y) = ∅.

Proof. x < y iff their longest common prefix is followed by 0 in x and by 1 in y. Hence
P0(x) ∩ P1(y) is nonempty iff x < y, which takes care of the x ≥ y part.

To rule out the possibility that x < y and P0(x) ∩ P1(y) has more than 1 element, it is
enough to observe that the longest element in P 0(x) ∩ P 1(y) is at the same time the shortest
one because it has to be followed by different symbols in x and y. ◀

Let (x1, . . . , xn) be a tuple of bitstrings. Define P 0((x1, . . . , xn)) = P 0(x1)× . . .×P 0(xn),
and similarly P1((x1, . . . , xn)) = P1(x1) × . . . × P1(xn).

▶ Lemma 8. Let x⃗ = (x1, . . . , xn) and y⃗ = (y1, . . . , yn) be two tuples of natural numbers
encoded as bitstrings, coordinate-wise of equal lengths.

If x⃗ is coordinate-wise smaller than y⃗ then P 0(x⃗) ∩ P 1(y⃗) is a singleton, and otherwise it
is empty.

Proof. Follows from Lemma 7. ◀

4 Algorithm

We present the algorithm in several groups of numbered instructions and for each add
explanations. Each such group is followed by an example of its action on a very small 2-
dimensional dataset with D = [(2, 3)d1, (6, 1)d2] and Q = [(4, 7)q1, (8, 5)q2], which is intended
to help with the explanation of the algorithm. Value subscripts indicate their IDs, whose
order is d1, q1, d2, q2. See Figure 1 for a geometrical visualization.

The algorithm works on data and query points together, so first the union DQ = D ∪ Q

of those two lists is created.

0 DQ = flatmapzip(D, Q, λx, y.[x, y])



J. Sroka and J. Tyszkiewicz 96:7

0 DQ = [(2, 3)d1, (4, 7)q1, (6, 1)d2, (8, 5)q2]

The next group of instructions is used to compute, for each dimension, the rank of each
tuple’s coordinate in that dimension and the total number of unique coordinates.

Let less : R × R → R be defined as

less(a, b) =
{

1 if a < b

0 if a ≥ b
.

For each dimension i = 1, . . . , m we add the following instructions.

5i − 4 Si = map(DQ, λx.x[i])
5i − 3 Ti = sort(Si, ≤)
5i − 2 Wi = shift(Ti)
5i − 1 Ri = scan(mapzip(Wi, Ti, less), +)
5i Ui = broadcastmax(Ri)

for i = 1: for i = 2:
1 S1 = [2d1, 4q1, 6d2, 8q2] 6 S2 = [3d1, 7q1, 1d2, 5q2]
2 T1 = [2d1, 4q1, 6d2, 8q2] 7 T2 = [1d2, 3d1, 5q2, 7q1]
3 W1 = [−∞, 2d1, 4q1, 6d2] 8 W2 = [−∞, 1d2, 3d1, 5q2]
4 R1 = [1, 2, 3, 4] 9 R2 = [1, 2, 3, 4]
5 U1 = [4, 4, 4, 4] 10 U2 = [4, 4, 4, 4]

Line 5i − 4 extracts the sequence of i-th coordinates of vectors from DQ, which is then
sorted in line 5i − 3, so that it can be shifted by one position to the right in line 5i − 2. Then
less in line 5i − 1 essentially compares each element of Ti with its predecessor and produces
a list of 1s and 0s, with 1 on positions with a difference and 0 otherwise. Therefore prefix
sum of that sequence computes ranks of the elements of Ti. In particular, on the last index
there will be total number of unique elements. We need a list with this value present at every
position. It is computed in line 5i with broadcastmax.

Now we transform each rank into its binary representation of fixed length which can be
viewed as coordinates of that value in a binary search tree. Let bin(n, k) for n ≤ k be defined
as a binary expansion of n − 1 using exactly ⌈log k⌉ binary digits, i.e., with leading zeros if
necessary.

Again for each dimension i = 1, . . . , m we add the following instructions.

5m + i BRi = sort(mapzip(Ri, Ui, bin), ID)

for i = 1: for i = 2:
11 BR1 = [00d1, 01q1, 10d2, 11q2] 12 BR2 = [01d1, 11q1, 00d2, 10q2]

The instructions in lines 5m + 1, . . . , 6m transform the original data in each dimension to
the rank space, where values are replaced by their ranks within the whole dataset, written in
binary. Ranks isomorphically preserve all inequalities of the original real values, and hence
preserve the results of aggregations to be computed, too.
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Let P 0(x) and P 1(x) be as in Lemma 8. Furthermore, let P be a function from m-tuples
of binary strings to sets of m-tuples of binary strings, defined as follows:

P (b1, . . . , bm) =
{

P0(b1, . . . , bm) if (b1, . . . , bm) is a data point;
P1(b1, . . . , bm) if (b1, . . . , bm) is a query point.

6m + 1 EDQ = flatmapzip(BR1, . . . , BRm, P )

13 EDQ = [(ε, ε)d1, (0, ε)d1, (0, ε)q1, (0, 1)q1, (1, ε)d2, (1, 0)d2, (ε, ε)q2, (1, ε)q2]

This results in a new, expanded sequence EDQ consisting of tuples of bitstrings. We
assume they inherit ID and weights from their originating data and query points. This
sequence will contain many duplicated tuples, but with different IDs. This operation increases
the total size of data from O(n) to O(n logm n).

Let ≤lex be doubly lexicographic ordering relation on tuples from EDQ: lexicographic
for bitstrings in each coordinate and lexicographic between coordinates, with the (crucial)
additional requirement, that in case of a tie of two tuples data points precede queries.

6m + 2 SEDQ = sort(EDQ, ≤lex)

14 SEDQ = [(ε, ε)d1, (ε, ε)q2, (0, ε)d1, (0, ε)q1, (0, 1)q1, (1, ε)d2, (1, ε)q2, (1, 0)d2]

SEDQ is composed of segments consisting of duplicates, differing only by IDs and weights.
Data points come before queries among each segment of equal values. At this point we have
prepared all data we need, it remains to perform several steps of aggregations.

6m + 3 A1 = sscan(map(SEDQ, λx.w(x)), SEDQ, ⊕)

15 A1 = [w(d1)d1, w(d1)q2, w(d1)d1, w(d1)q1, eq1, w(d2)d2, w(d2)q2, w(d2)d2]

In line 6m + 3 we compute segmented prefix sums of the weights of the sorted data and
queries. All bitstring coordinates serve as tags for segmentation. This way a list is created,
where each query point q corresponds (by position on the list) to the aggregation of all
weights of data points which yielded the same tuple of bitstrings. By Lemma 8, each such
identical tuple originates from a data point d such that d < q, and, moreover, for each fixed
tuple t derived from q there is one-to-one correspondence between such tuples and data
points which also produced t and are (therefore) dominated by q.

Queries have been assigned neutral weight, so they do not interfere with the scan. However,
some aggregation happens at the positions of data points, too.

Let ≤ID be ordering relation on tuples which compares their associated ID values.

6m + 4 A2 = sort(A1, ≥ID)
6m + 5 A3 = sscan(A2, map(A1, λx.ID(x)), ⊕)
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16 A2 = [w(d2)q2, w(d1)q2, w(d2)d2, w(d2)d2, eq1, w(d1)q1, w(d1)d1, w(d1)d1]
17 A3 = [w(d2)q2, (w(d2) ⊕ w(d1))q2, w(d2)d2, (w(d2) ⊕ w(d2))d2,

eq1, w(d1)q1, w(d1)d1, (w(d1) ⊕ w(d1))d1]

Line 6m + 4 is a sort of partial aggregations by ID in nonincreasing sequence, which
creates a continuous segment of aggregation values corresponding to each query. There are
also separate segments of data points, which are irrelevant now.

After that in line 6m + 5 we compute segmented prefix sums of the already partially
aggregated weights of the sorted data and queries, whereby their ID values serve as tags
for segmentation. This way partial aggregations for each query are further aggregated, so
that the total aggregation of each query q corresponds, by position, to the last tuple which
originated from q. This total aggregation for q comes from all d such that P (q) × P (d) ̸= ∅
(those sets are created in line 6m + 1). By Lemma 8, {d|P (q) ∩ P (d) ̸= ∅} = {d|d < q}, and
each such d in the r.h.s. is witnessed by exactly one element of P (q) ∩ P (d).

At this point the aggregation of each query is already computed, but the data contains
many partial aggregations for the same query, too. Therefore the last task is to distribute
the total aggregation of each query to all tuples with the same ID.

This can be significantly simplified if A is linearly ordered and a ⊕ b ≥ a for all a, b ∈ A.

In this case for each query we need the maximum aggregation among all partial ones.
Therefore a segmented variant of broadcastmax with ID defining segmentation would do
that. Otherwise the method to achieve the goal is more complex and described below.

Let neutral_if_eq(id1, id2, a) =
{

e if id1 = id2
a if id1 ̸= id2

.

6m + 6 A4 = sort(A3, ≤ID)
6m + 7 H = shift(map(A4, λx.ID(x)))
6m + 8 A5 = mapzip(A4, H, map(A4, λx.ID(x)), neutral_if_eq)
6m + 9 Out = sscan(A5, map(λx.ID(x), A5), ⊕)

18 A4 = [(w(d1) ⊕ w(d1))d1, w(d1)d1, w(d1)q1, eq1, (w(d2) ⊕ w(d2))d2, w(d2)d2,

(w(d2) ⊕ w(d1))q2, w(d2)q2]
19 H = [−∞, d1, d1, q1, q1, d2, d2, q2]
20 A5 = [(w(d1) ⊕ w(d1))d1, ed1, w(d1)q1, eq1, (w(d2) ⊕ w(d2))d2, ed2,

(w(d2) ⊕ w(d1))q2, eq2]
21 Out =[(w(d1) ⊕ w(d1))d1, (w(d1) ⊕ w(d1))d1, w(d1)q1, w(d1)q1, (w(d2) ⊕ w(d2))d2,

(w(d2) ⊕ w(d2))d2, (w(d2) ⊕ w(d1))q2, (w(d2) ⊕ w(d1))q2]

In line 6m+6 we reverse the sort order of A4. Now the complete aggregations come at the
beginning of each segment, and, moreover, the ID values are nondecreasing, hence we can
shift them in line 6m + 7. Line 6m + 8 resets all computed weights to the neutral e, except at
the beginning of each segment, where the complete aggregation is present. Finally, segmented
scan in line 6m + 9 aggregates these values with neutral elements elsewhere, producing the
desired output.

Now each query ID is accompanied by the aggregation of weights of its dominated points,
which means that the desired output has been computed. In total it took 6m + 9 instructions
and at most that many intermediate lists of data created. As it can be seen, the output of
the example agrees with the output determined from the geometric presentation in Figure 1.
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5 Improvement by one logarithm

It is possible to reduce the amount of data generated by a factor of log n.
One of the coordinates (say: the last one) is chosen. It is not replaced by ranks and left

in the form of real numbers. The remaining ones are replaced by ranks and prefixes are
generated, exactly as in the basic algorithm, from both data points and queries. This results
in a multiset of ≤ n logm−1 n tuples with m − 1 coordinates in the form of bitstrings and the
last, m-th coordinate being real number. Identifiers are retained.

Now sort the data and queries EDQ into SEDQ (see line 6m + 2 and explanation thereof
above) according to the doubly lexicographic order, with queries preceding data points in
case of equality of all coordinates (including the m-th).

This results in segments of data elements with m − 1 first coordinates equal, sorted
according to the last coordinate within the segment. Then the remainder of the algorithm is
executed exactly as in the basic version.

6 Relation to range trees and complexity

The algorithm we have presented above is derived from our earlier MapReduce algorithm
Sroka et al. [23], and is indeed a parallelisation of the common sequential algorithm, based
on range trees. The move to the rank space with ranks expressed as binary expansions is
equivalent to speaking about elements in terms of their positions in a balanced binary tree,
whose leaves hold the sorted data. The binary encodings then correspond to branches in
the tree, and their prefixes to the positions where attached trees of smaller dimensions are
located.

Our algorithm inherits its total data complexity of O(n logm−1 n) from the range tree
algorithm. This distributed data structure is generated by flat maps, while the parallelisation
is achieved by expressing operations on the tree in terms of sorting, zipping and prefix
aggregation.

Time complexity of our algorithm depends very much on the underlying architecture
and complexity of the primitive operations, but its analysis is pretty straightforward in each
case, since it is a fixed length sequence of operations of very well known properties, applied
to lists of data of sizes easy to determine. In particular, no matter what architecture it is
executed on, if the implementations of primitives do the same total work as their sequential
variants, then the whole algorithm will also have the total work of the sequential algorithm
using range trees.

Indeed, in the sequential case the only nonlinear (and thus dominating) operation
is sorting, and the size of the data is O(n logm−1 n). One linearithmic sort takes time
O(n logm−1 n · log(n logm−1 n)) = O(n logm n), which is equal to the worst case of the
standard sequential implementation, calculated as creating the range tree with n/2 data
points and then processing n/2 queries by this tree. There is a one logarithm better variant
of Chazelle [6], which however works only for counting.

For the MPC model, it is known that for δ > 0, sorting and scanning of n values can
be performed deterministically in a constant number of rounds using nδ space per machine,
O(n) total space, and poly(n) local computation, which follows directly from analogous
bounds for MapReduce computation. The load can be made O(N/p) [7]. This implies that
our algorithm in dimension m can be implemented deterministically in O(m) rounds, with
nδ space per machine, O(n logm−1 n) total space and poly(n) local computation, with load
O(N logm−1 N/p).
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By comparison, the algorithm by Hu et al. [12] achieves load O(Np−1 logm−1 p) with p

processors, which is better than what get in this paper. This is not surprising, since our
reliance on high-level primitives gives us much less freedom in designing the computation
mechanism and achieving low loads. In particular, the set of instructions we use does not
permit shifting the computational effort into the local computation, which is the method to
lower the loads. The algorithm of Tao [24] does it to an even higher extent, arriving at load
mO(m)N/p.

Our earlier algorithm from Sroka et al. [23] is quite similar, but at that time we did only
tests of an implementation on MapReduce, for which it has been designed. The running
times did not seem to scale linearly with the number of machines. Moreover, for its present
form we can do complexity analysis, greatly simplified by known complxities of the primitives
we use.

7 Summary and future research

In this paper we have presented algorithm for aggregating over dominated points in Rm,
where m is constant. Our algorithm is based on a limited set of primitive operations: sorting,
prefix aggregations, zip and flat maps. All those primitive operations are well studied and
their efficient implementations exist for essentially all distributed architectures.

This proves that one-dimensional prefix aggregation allows expressing its own multidi-
mensional generalisation. The latter problem has many practical applications, as well as it is
known to be a parallel primitive, allowing to express in turn further problems. By transitivity,
our result expresses all those problems in terms of the above mentioned primitive operations.

We consider our result to be primarily of theoretical interest at present, before experimental
tests are conducted.

We believe that our algorithm may turn out to be quite practical. First of all, it is
absolutely transparent and does not hide any significant computation steps. The local
computation is on the level of individual tuples, only. No large collections of data need
to be broadcasted to computation nodes and there is no limit on number of such nodes.
Otherwise we use high-level primitives of very well understood algorithmic properties, and
whose highly optimised implementations exist for virtually all hardware platforms. Also the
organisation of the algorithm into a sequence of functional operations (without any branch)
on immutable ordered lists is very convenient for implementation. Last but not least, the
choice of primitives guarantees that the algorithm has several desired properties, e.g., it is
minimal in the sense of [25].

On the other hand, the logm−1 n memory footprint will be a problem in larger dimensions.
Therefore an obvious item on the “further research” list is undertaking experiments with

the algorithm on diverse parallel platforms.
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Abstract
We consider the Online Rent Minimization problem, where online jobs with release times, deadlines,
and processing times must be scheduled on machines that can be rented for a fixed length period
of T . The objective is to minimize the number of machine rents. This problem generalizes the
Online Machine Minimization problem where machines can be rented for an infinite period, and
both problems have an asymptotically optimal competitive ratio of O(log(pmax/pmin)) for general
processing times, where pmax and pmin are the maximum and minimum processing times respectively.
However, for small values of pmax/pmin, a better competitive ratio can be achieved by assuming
unit-size jobs. Under this assumption, Devanur et al. (2014) gave an optimal e-competitive algorithm
for Online Machine Minimization, and Chen and Zhang (2022) gave a (3e + 7) ≈ 15.16-competitive
algorithm for Online Rent Minimization. In this paper, we significantly improve the competitive
ratio of the Online Rent Minimization problem under unit size to 6, by using a clean oracle-based
online algorithm framework.
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1 Introduction

Machine Minimization is a classical scheduling problem in combinatorial optimization. We
are given n jobs with release time and deadline to schedule. Each job j has a length pj

and must be assigned to a machine for pj units of time between its release time rj and its
deadline dj . However, in many practical scenarios, such as cloud computing, we may not
need to buy the machines but only rent them for a fixed period of time. This motivates
the Rent Minimization problem, introduced by Saha [12]. In this problem, we are given a
constant T , which represents the duration of a machine rent. The goal is to minimize the
number of rents we make to process all jobs within their deadlines.

Another related formulation, inspired by nuclear weapon testing, is the Calibration
problem, proposed by Bender et al. [3]. In this problem, we are given m machines and a
set of jobs that must be completed feasibly. However, before using a machine, we need to
calibrate it. Each calibration, similar to a rent, activates the machine for a time period of T .
The goal is to minimize the number of calibrations to process all jobs on time. The main
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difference between the Calibration and the Rent Minimization problems is that the former
restricts us to have at most m machines working in parallel at any given time, while the
latter does not have such a constraint. Therefore, the Rent Minimization problem can be
regarded as a special case of the Calibration problem when m =∞.

On the other hand, in the cloud rental scenario and many other practical applications,
the computing requests usually increase over time and can be modeled as online released
jobs. Therefore, we investigate the problem in an online setting. We do not have any prior
knowledge about the jobs before their release time, and need to schedule jobs and rent
machines online and irrevocably over time. The goal is to minimize the total number of rents
for scheduling all jobs. Note that the online generalization is also studied in the Calibration
problem by Chen and Zhang [5]. To ensure that online algorithms can schedule all jobs,
they also assume m =∞ in their model, which coincides with the Online Rent Minimization
model.

Why consider unit-size jobs? Saha [12] proposes an O(log (pmax/pmin))-competitive al-
gorithm for the Online Machine Minimization problem. By paying a constant factor, it
can be extended to an O(log (pmax/pmin))-competitive algorithm for the Online Rent Min-
imization problem. (pmax and pmin are the longest and shortest processing time among
all jobs.), which was proved to be the best competitive ratio asymptotically. However,
in many real-world applications, one company usually receives similar length requests, so
the ratio between pmax and pmin may not be too large; and it is worthwhile to reduce the
constant factor of the ratio when pmax/pmin is small. To this end, we focus on the special
case of unit-size jobs (i.e., all pj = 1). Note that by partitioning jobs by their length into
log(pmax/pmin) groups, the α-competitive unit-size algorithm can be extended to a roughly
(3α log (pmax/pmin))-competitive algorithm in the general case.

The unit-size special case has also been considered in the Online Machine Minimization
problem [5, 8, 10]. Devanur et al. [8] present an e-competitive algorithm for the Online
Machine Minimization problem under unit-size jobs (though earlier work by Bansal et al.
[2] implies the same result), and it is the optimal ratio among all deterministic algorithms.
Current best lower bound of the online renting problem under unit-size jobs is also e since it
is a generalized model. On the positive side, Chen and Zhang [5] study the online renting
problem under unit-size jobs. They improve the implicit constant ratio by Saha [12] to
3e + 7 ≈ 15.16. In their algorithm, jobs are distinguished by whether they are long or short
based on the length of their time window (i.e., dj − rj) and are handled separately. Our
paper significantly improves the competitive ratio to 6 with a cleaner oracle-based algorithm
without identifying whether jobs are short or long.

▶ Theorem 1. There exists an efficient 6-competitive algorithm for the online renting
problems under unit-size jobs.

Our techniques. In the work of Chen and Zhang [5], they rent machines for long and short
jobs separately; as a result, their final competitive ratio is the sum of two cases, which makes
the ratio large. The technical reason behind this result is that they use the e-competitive
Online Machine Minimization algorithm by Devanur et al. [8] as a black box, which is only
suitable for short jobs. (Roughly speaking, it is because we can view T =∞ when jobs are
short.) Therefore, they must use another approach to handle long jobs.

In our paper, we formalize and extend the Online Machine Minimization algorithm to an
oracle-based framework, instead of using the algorithm as a black box. The oracle-based
framework uses an offline algorithm to guide our online decision. Note that the Online
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Machine Minimization algorithm also uses an efficient offline optimal algorithm as an oracle.
However, we do not know a polynomial offline Rent Minimization algorithm for unit-size jobs.
The main algorithmic novelty is that we find an efficient substitute for the optimal algorithm
to act as a bridge between online decisions and the optimal offline solution. The oracle is
a kind of optimal augmentation algorithm. It is allowed to use a rent length of 3T , and
the rent number is at most OPT with rent length T . It also satisfies some online monotone
properties so that we can control the cost of the online algorithm. Finally, we prove that by
following the offline oracle and paying a factor of 6 online, we can recover the same ability
for scheduling jobs as the offline oracle. This concludes the competitive ratio of 6.

Extension to the model with delay. Chen and Zhang [5] also raise a perspective that
the operation rent (a.k.a. calibration in their paper) needs a non-negative time λ to finish.
We call it Online Rent Minimization with Delay. They propose an (3(e + 1)λ + 3e + 7) ≈
(11.15λ+15.16)-competitive algorithm. We use a black box reduction to extend the algorithm
in Theorem 1 and improve the ratio to 6(λ + 1).

▶ Theorem 2. As a corollary of Theorem 1, there exists an efficient 6(λ + 1)-competitive
algorithm when we need λ time to finish each rent.

Other related works. Offline Machine Minimization is a well-studied and classic model.
Garey and Johnson [9] shows that it is NP-hard. On the algorithm side, Raghavan and
Thompson [11] propose an O( log n

log log n )-approximation algorithm. Later, the ratio has been

improved to O(
√

log n
log log n ) by Chuzhoy et al. [6]. Whether there exists a constant approxima-

tion ratio is still open. Moreover, several special cases are also discussed. Cieliebak et al. [7]
focus on the case that each job’s active time (dj − rj) is small. Yu and Zhang [13] achieve a
ratio of 2 in the equal release time case and a ratio of 6 in the equal processing time case.

Scheduling to minimize the number of calibrations is proposed by Bender et al. [3]. The
general case is NP-hard even for checking feasibility. Under unit-size jobs, Bender et al. give
a 2-approximation algorithm; later, Chen et al. [4] give the first PTAS algorithm. However,
it is worth noting that whether the unit-size special case is polynomially solvable is still open.
Moreover, Angel et al. [1] introduce the concept of delay, which means that each calibration
requires λ time to finish. They study the delay setting on the one-machine special case of
the offline calibration problem and show that it is polynomially solvable.

2 Preliminaries

We first define the models and introduce the basic notations.

Rent Minimization. We have a set of jobs J = {1, · · · , n} and a fixed rent length T . For
job j ∈ J , it has a release time rj , a deadline dj , and a unit processing time pj = 1. Each
job should be assigned to one active machine at an integer time unit [t, t + 1), where t is an
integer such that rj ≤ t ≤ dj − 1. We can rent a machine at any integer time point t. Then
we will have an active machine during [t, t + T ). The objective is to minimize the number of
machine rents to process all jobs in J .

Online Rent Minimization. In the online version, all jobs are released online, and they
become visible at their release time. On the other hand, we need to make rent decisions and
assign jobs online irrevocably. In particular, at an integer time point t, we have:
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Jobs with release time equal to t become visible.
We can decide to rent a machine at t or any time after that.
We can schedule jobs on active machines during the time unit [t, t + 1) irrevocably.

Notations on Rent Set. We use a multiset I = {[s1, c1), [s2, c2), · · · [si, ci), · · · } to denote
a set of rents, where the i-th rent interval starts at si and is active in [si, ci). Note that ci

always equals si + T when the rent length is T ; however, we use the general notation for
future reference.

Focusing on the time unit [t, t + 1), the number of active units AI(t) is defined as the
number of active machines at time t, which means that we can schedule at most AI(t) jobs
at time t. For a given rent set I, we have AI(t) = |{[si, ci) ∈ I | t ∈ [si, ci)}| . We also extend
the notation for intervals, such that AI(r∗, d∗) =

∑d∗−1
t=r∗ AI(t) is the number of active units

during the time interval [r∗, d∗).

Feasibility of Rent Set. We call a rent set I feasible for J , if we can schedule all jobs in J

on I. We introduce a lemma based on Hall’s Theorem to check whether I is feasible.
For a given jobs set J , we define J(r∗, d∗) = {j ∈ J |r∗ ≤ rj < dj ≤ d∗} to represent the

jobs that must be assigned inside the interval [r∗, d∗).

▶ Lemma 3 (Feasibility). I is feasible for J iff. ∀r∗ ≤ d∗ ∈ N, AI(r∗, d∗) ≥ |J(r∗, d∗)| .

Proof. For any fixed r∗ and d∗, the sum of active units provided by I is AI(r∗, d∗). Each
job released and due between this period must be scheduled on these time slots. If there
exists a pair of r∗ and d∗ such that AI(r∗, d∗) < |J(r∗, d∗)|, there is no feasible assignment
because of the pigeonhole principle. On the other hand, if the inequality holds for all r∗ and
d∗, we can view it as a bipartite matching between jobs and active units. There is a feasible
assignment by Hall’s Theorem. ◀

An Efficient Checker and Scheduler: Earliest Deadline First (EDF). Earliest Deadline
First is a greedy algorithm that can find a feasible assignment for J on I if and only if I is
feasible for J . When we call EDF(J, I), we scan time units from early to late, and assign the
released job with the earliest deadline to a free active machine at the current time unit. If a
job with deadline d cannot find a free active machine at the time unit [d− 1, d), EDF(J, I)
fails, and we call d the fail time of EDF(J, I). Otherwise, EDF(J, I) succeeds. Bender et
al. [3] has already proved that EDF can check the feasibility. It is also worth noting that
EDF can be efficiently implemented in O(n log n) by using a heap, instead of going through
all integer time points directly.

▶ Lemma 4 ([3]). EDF(J, I) succeeds, i.e., it can find a feasible schedule for J on I, if and
only if I is feasible for J .

Using EDF online. Note that we only make comparisons between released jobs. Therefore,
the EDF algorithm can be simulated online : we only need to find a feasible rent set I, and
then EDF can automatically find a feasible assignment online.

3 Oracle-based Online Algorithm Framework

Moving towards online algorithms, one natural way is to use an offline algorithm as an oracle
to suggest the actions of online algorithms. We keep track of this offline algorithm and make
corresponding online decisions when the offline algorithm changes along with the online jobs
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release. Whenever the offline algorithm increases by one at the moment t because of the
change of the job set, the online algorithm performs one Batch-Rent at this time t, which is a
fixed rent scheme that contains Γ machines. Intuitively, we use these Γ machines to catch
up with the one increment of the offline oracle. It is worth noting that the e-competitive
algorithm for Online Machine Minimization follows this approach [8].

In our case, compared to Machine Minimization, we have two main differences in our
oracle-based framework. The first difference is the job set we input to the oracle. Because
of the online fashion, the most natural way is to input the set of all released jobs to the
oracle. In Machine Minimization, it works because T =∞ and earlier rents are always more
powerful; however, this is not true in Rent Minimization. Indeed, too early rents may cause
trouble in Rent Minimization. Intuitively, we are only allowed to make online rent when
the offline oracle reports an increment if we want to bound the competitive ratio in the
framework. Consider the case where T = 10 and two jobs will be due at 100 with release
time 0 and 90. If we report the first job to the offline oracle at 0, the offline oracle will return
one new rent interval. Following the oracle-based framework, we will make Γ online rent
intervals at 0. However, we still need to make more rent intervals at 90, while the offline
oracle may not increase. To this end, we use the job set Jt as the job set we input to the
oracle at time t. A job j is in Jt if it satisfies the following two properties:
1) It is visible at t, i.e., rj ≤ t.
2) It is emergent at (or before) t, i.e., dj ≤ t + T .

Another difference is an augmentation factor α. The oracle is allowed to have αT active
time for each rent. Since the existence of a polynomial time optimal offline algorithm for
Rent Minimization is still unknown, this factor allows us to find an efficient substitute. We
use Oracleα(J, T ) (instead of Oracle(J, αT ), since the target rent length is still T ) to denote
an oracle with augmentation factor α. The framework is formalized in Algorithm 1.

Algorithm 1 Oracle-based Online Algorithm Framework.

procedure OracleBasedOnline(t: time, J : known jobs, T : length of rent)
∆t = |Oracleα(Jt, T )| − |Oracleα(Jt−1, T )| ▷ α is a positive integer
Perform ∆t(if ∆t > 0) Batch-Rent operations at t, consisting of Γ machines that start

at or after t.
schedule jobs at t following EDF(J, I), where I is the current online rent set.

end procedure

Then, we discuss how this framework helps us control the number of rents made by the
online algorithm. First, as a substitute for the optimal offline algorithm, Oracleα needs to
maintain some properties similar to those of the optimal offline algorithm. Second, Batch-Rent
should support the online algorithm to be as powerful as the offline oracle in scheduling all
released jobs. We integrate and formalize these messages in the following lemma.

▶ Lemma 5. Let OPT(J, T ) be the number of rents used by the optimal offline algorithm to
schedule the job set J , Algorithm 1 is Γ-competitive if these three properties are guaranteed:
1) For any job set J , |Oracleα(J, T )| ≤ OPT(J, T );
2) The offline oracle is online monotone: |Oracleα(Jt1 , T )| ≤ |Oracleα(Jt2 , T )| if t1 ≤ t2;
3) Algorithm 1 is feasible for scheduling all online released jobs.

Proof. The online algorithm makes
∑

∆t>0 ∆t rent batches, which is exactly |Oracleα(J , T )|
by property 2) and is not greater than |OPT(J , T )| by property 1). Also, the output satisfies
the feasibility requirement by property 3). Therefore, Algorithm 1 is Γ-competitive. ◀
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The e-competitive algorithm for Online Machine Minimization. We can use the framework
to understand the e-competitive Online Machine Minimization algorithm.

Oracle is the optimal offline algorithm, and we set α = 1. The monotonicity directly
comes from optimality.
Jt is the set of visible jobs at t because all jobs are emergent.
Each Batch-Rent contains e new machines in average; for simplicity, we omit any rounding
issues related to e.

Choice of the oracle. Recall that we do not have an efficient optimal algorithm for Rent
Minimization currently. It remains to find a suitable substitute that also uses a small number
of rents (property 1). One candidate algorithm may be the Lazy-Binning algorithm by Bender
et al. [3], which requires an augmentation factor of 2 to satisfy property 1). However, Lazy-
Binning algorithm, as well as other relatively simple 2 approximation algorithms we come up
with, cannot guarantee monotonicity. This will make us fail to bound the competitive ratio
of the online algorithm. In the next section, we introduce our oracle with an augmentation
factor of 3, called the semi-online algorithm, which provides all the properties we need in
Lemma 5.

4 The Semi-Online Algorithm

In this section, we introduce the semi-online algorithm shown as Algorithm 2, which uses an
augmentation factor of 3 and acts as the Oracle3 in our framework.

Algorithm 2 The Semi-Online Algorithm.

procedure SemiOnline(J : input job set, T : length of rent)
J ′, I ← ∅ ▷ I is a multiset for rents.
τj = max{rj , dj − T} for all j.
for j ∈ J in non-decreasing order of τj do

J ′ ← J ′ ∪ {j}
if EDF(J ′, I) fails then

I ← I ∪ {[τj − T, τj + 2T )} ▷ A rent that starts at τj − T with length 3T .
end if

end for
return I

end procedure

We call Algorithm 2 semi-online, because the enumerating order is exactly the same as
how Jt increases in the oracle-based framework. Thus, if we have some new jobs with rj = t

or dj −T = t when the online time moves from t−1 to t, the only possible difference between
SemiOnline(Jt−1, T ) and SemiOnline(Jt, T ) is some rent intervals of [t − T, t + 2T ). This
observation could be formalized into the following properties of the semi-online algorithm.

▶ Lemma 6 (Strong Monotonicity). We have the following two properties for Algorithm 2.
1. For any Jt1 and Jt2 where t1 ≤ t2, we have SemiOnline(Jt1 , T ) ⊆ SemiOnline(Jt2 , T ).
2. SemiOnline(Jt, T )\SemiOnline(Jt−1, T ) is a multiset of a fixed rent interval [t−T, t+2T ).

Proof. Intuitively, the reason behind the lemma is that the order of τj is the same as the
order in which we insert jobs into Jt as t increases. Formally speaking, compare Jt1 and
Jt2 and consider a job j ∈ Jt2 \ Jt1 . By definition, we have that τj ≥ max

j′∈Jt1

τj′ . Therefore,
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Algorithm 2 first enumerates the jobs in Jt1 and then the jobs in Jt2 \ Jt1 , which concludes
the first property immediately. For the second property, the reason is that Jt \Jt−1 is a set of
jobs with rj = t or dj − T = t. In other words, we enumerate them after jobs in Jt−1. Thus,
if I continues to grow when we enumerate them, the new interval must be [t−T, t + 2T ). ◀

The strong monotonicity in Lemma 6 suffices to show the weak monotonicity in property
2) of Lemma 5. On the other hand, these two properties are also used in the proof of property
3) later. It remains to prove property 1) by bounding the cardinality of the semi-online
algorithm’s solution.

▶ Lemma 7. |SemiOnline(J, T )| ≤ OPT(J, T ), and SemiOnline(J, T ) is feasible for J .

Before proving Lemma 7, we introduce coOPT so that we can better understand the
solution structure.

▶ Definition 8 (Optimal complement solution). For a job set J , rent length T , and a given rent
set I (which may not be length T ), the optimal complement solution of I, denoted as coOPT(I),
is defined as a rent set of length T with minimum cardinality such that I ∪ coOPT(I) is
feasible for J .

▶ Fact 9. coOPT(∅) = OPT, coOPT(OPT) = ∅.

Consider a rent set I that is infeasible for J . Below, we state the main property of coOPT.

▶ Lemma 10. Let d be the fail time of EDF(J, I). There exists a coOPT(I) such that there
is a rent interval [s, s + T ) ∈ coOPT(I) that satisfies: d− T ≤ s < d.

Proof. We use coOPT as a shorthand for coOPT(I) in this proof. Let [s, s + T ) be the
earliest interval in coOPT.

First, we show that s < d. Suppose, for a contradiction, that s ≥ d. Let j be the job
that fails in EDF(J, I), where J is a fixed given job set. Then, j has no more active units
in coOPT, since all rent intervals start at or after d. But this contradicts the definition of
coOPT, which is a feasible rent set for J .

Second, we show that s ≥ d− T can be true. If this is not true, we construct a new rent
set coOPT′ = coOPT \ {[s, s + T )} ∪ {[d− T, d)} . That is, we replace the rent interval at s

with another one at d− T . We claim that coOPT′ ∪ I is also feasible for J . This means that
coOPT′ is also a feasible coOPT, and [s′ = d− T, T ) is a feasible rent interval that satisfies
our desired condition.

To prove our claim, we fix an arbitrary choice of r∗ ≤ d∗ ∈ N, and we verify the condition
in Lemma 3, i.e., AI∪coOPT′(r∗, d∗) ≥ |J(r∗, d∗)|.

We consider two cases:
Case 1: d∗ < d. If the condition does not hold, we have AI(r∗, d∗) ≤ AI∪coOPT′(r∗, d∗) <

J ′(r∗, d∗), which means that EDF(I, J ′) must fail no later than d∗ since the active units
are not enough beforehand. This contradicts the definition of d.
Case 2: d∗ ≥ d. The only difference between coOPT and coOPT′ is the contribution of
active units by [s, s + T ) and [d− T, d). We prove that [d− T, d) must provide at least as
many active units as [s, s + T ) does. Referring to Figure 1, we see that [d − T, d) has
more active units than [s, s + T ) in [s + T, d), and vice versa in [s, d− T ). Since d∗ ≥ d,
we need r∗ ≤ d− T to reach the advantage area of coOPT; however, [r∗, d∗) then covers
the whole part of [d − T, d). This implies that the total contribution of coOPT never
exceeds that of coOPT′.

The discussion concludes the claim. ◀
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coOPT′
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Figure 1 coOPT’ contributes at least as many active units as coOPT on [r∗, d∗) when d∗ ≥ d.

▶ Lemma 11. At the end of each iteration of j, I is feasible for J ′.

Proof. We prove it by induction. In the base case, I is feasible for J ′ when they are ∅. Then,
assume the lemma is true after the (j − 1)-th iteration. At the j-th iteration, we add a job j

to J ′. This means that ∀r∗ ≤ rj , d∗ ≥ dj , |J ′(r∗, d∗)| will increase by one. If EDF(J ′, I) is
already feasible, we are done. Otherwise, the algorithm will employ a new 3T length rent
interval [τj − T, τj + 2T ). Notice that d∗ ≥ dj ≥ τj . Every AI(r∗, d∗) also increases by at
least one. Thus, we still have AI(r∗, d∗) ≥ |J ′(r∗, d∗)| after we employ [τj − T, τj + 2T ) (at
the end of the j-th iteration). ◀

▶ Corollary 12. SemiOnline(J, T ) is feasible for J .

▶ Lemma 13. In the j-th iteration, if EDF(J ′, I) is infeasible in Algorithm 2, before we rent
[t− T, t + 2T ), we have

|coOPT(I ∪ {[t− T, t + 2T )})| ≤ |coOPT(I)| − 1.

Proof. By the condition of the lemma and Lemma 11, we have EDF(J ′, I) is infeasible while
EDF(J ′ \ {j}, I) is feasible. By the enumerating order, all the jobs j′ in J ′ must satisfy
max{rj , dj′ − T} ≤ τj . Therefore, EDF(J ′, I) must fail at a deadline d ≤ τj + T . On the
other hand, for all j′ ∈ J such that dj′ < τj , we must have j′ ∈ J ′ \ {j}, also because of the
enumerating order. Thus, we can show that d ≥ τj . Otherwise, J ′ \ {j} would be infeasible
for I, which is a contradiction. In conclusion, we show that the failure time d of EDF(J ′, I)
satisfies τj ≤ d < τj + T.

Finally, by Lemma 10, there exists a coOPT with rent interval [s, s + T ] such that
d− T ≤ s < d. It implies that τj − T < s < τj + T . Therefore [s, s + T ) is always a subset
of [τj − T, τj + 2T ). We have

|coOPT(I ∪ {[t− T, t + 2T )})| ≤ |coOPT(I ∪ {s})| = |coOPT(I)| − 1. ◀

Proof of Lemma 7. Recall Fact 9 that coOPT(∅) = OPT. It follows that SemiOnline rents
at most OPT times as a corollary of Lemma 13. ◀

5 The 6-competitive Online Algorithm

It remains to define the rent scheme for each Batch-Rent in the framework. For completeness,
we formally describe the algorithm in Algorithm 3.
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Algorithm 3 The Online algorithm.

procedure OnlineRent(t: time, J : known jobs, T : length of rent)
∆ = |SemiOnline(Jt, T )| − |SemiOnline(Jt−1, T )|
Perform ∆ Batch-Rent at time t, each consists of 6 machines: 4 at t and 2 at t + T .
schedule jobs at t following EDF(J, I), where I is the current online rent set.

end procedure

Next, we prove the property 3) of Lemma 5 by our design of Batch-Rent, i.e., to show
Algorithm 3 is feasible for the total job set J . Combining with the property 1) and 2) by
the semi-online algorithm, we can conclude our online algorithm is 6-compeititve as claimed
in Theorem 1.

First, we introduce an obvious relationship between online and semi-online algorithms.

▶ Fact 14. At every moment t, there always exists a bijection from one semi-online rent
batch to one online rent batch, such that both batches are at the same time: 4× [t, t + T ) +
2× [t + T, t + 2T ) in Online 7→ [t− T, t + 2T ) in SemiOnline.

Proof. This fact is directly implied by the second property of Lemma 6. Whenever
SemiOnline(Jt, T ) increases from SemiOnline(Jt−1, T ) by some rent intervals of [t−T, t + 2T ),
the new batches must be 4× [t, t + T ) + 2× [t + T, t + 2T ). Each of them can correspond to
one [t− T, t + 2T ). ◀

We prove the feasibility by showing that the active units provided by the online algorithm
are always enough for the possible jobs inside any possible interval [r∗, d∗).

▶ Lemma 15. Let I be the rent sets made by our algorithm. We have ∀r∗ ≤ d∗ ∈
N, A(r∗, d∗) ≥ |J (r∗, d∗)|, where we use A to denote AI for simplicity.

We remark that Lemma 15 provides the necessary information to prove the correctness
via the feasibility lemma (Lemma 3). It only remains to complete the proof of Lemma 15.

5.1 Proof of Lemma 15
Let us fix an arbitrary range r∗ ≤ d∗, and discuss A(r∗, d∗) and J (r∗, d∗) separately. First,
we discuss A(r∗, d∗). The behavior of the online algorithm can be represented by a set of
online rent batches. Note that only those rent batches that start in (r∗ − 2T, d∗) can provide
active units inside [r∗, d∗). Therefore, we only discuss a subset B of all rent batches with a
start time in (r∗ − 2T, d∗). Each b means a Batch-Rent made by Algorithm 3. We use t(b) to
mean its decision time. That is, a batch b contains 4 rent intervals of [t(b), t(b) + T ), and 2
of [t(b) + T, t(b) + 2T ).

We partition the time interval [r∗, d∗) by several critical time points. The first time
point is θ1 = max

{(
r∗+d∗

2

)
, d∗ − T

}
. It means that θ1 = d∗ − T when d∗ − r∗ ≥ 2T

and θ1 =
(

r∗+d∗

2

)
when d∗ − r∗ < 2T . Remark that in both cases, θ1 ≥ d∗ − T . Then

we recursively define θi+1 =
(

θi+d∗

2

)
for every i ≥ 1 until ⌊θi⌋ = d∗ − 1. Besides, we let

θ0 = r∗ − 1. For i ≥ 1, we call [⌊θi−1⌋+ 1, ⌊θi⌋] the i-th sub-interval, which is the minimal
sub-interval of (θi−1, θi] that contains all integers in it. We define Bi ⊆ B as the set of rent
batches starting in the i-th sub-interval. Moreover, we let B0 be the set of rent batches
starting in (r∗ − 2T, r∗].
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Figure 2 An example for b ∈ B1 when d∗ − r∗ > 2T . The shaded area is the considered [r∗, d∗),
and the online rent batch provides 2λ1(b) + 2 min{λ1(b), T } active units to it.

For each b ∈ B, recall that t(b) is the time it was allocated, and we let λi(b) be the length
of the intersecting interval of [t(b), t(b) + 2T ) and [⌊θi−1⌋+ 1, d∗). Note that λ1(b) represents
the intersecting interval with the whole [r∗, d∗). Let L = min{2T, d∗ − r∗} = 2(d∗ − θ1)
denote the maximum possible length in λ1, and by our partition method. It follows the
property of the length of sub-intervals by our partition.

▶ Lemma 16 (Partition length property). For any batch b ∈ Bi where i ≥ 1, the intersection
of [t(b), t(b) + 2T ) and [⌊θi−1⌋+ 1, d∗) satisfies: 2−i · L ≤ λi(b) ≤ 21−i · L.

Proof. For i = 1, λ1(b) = min{2T, d∗ − t(b)}. By definition, r∗ ≤ t(b) ≤ ⌊θ1⌋, hence

L/2 = min{T, d∗ − θ1} ≤ min{2T, d∗ − t(b)} ≤ min{2T, d∗ − r∗} = L.

For i ≥ 2, by definition d∗ − θi = 2−i ·L. Because t(b) ∈ [⌊θi−1⌋+ 1, ⌊θi⌋] ⊆ (θi−1, θi], we
have 2−i · L ≤ λi(b) ≤ min{2T, 21−i · L}. Since 2 · L ≤ 2T , we conclude the lemma. ◀

Then, we present the lemmas for a lower bound of active units and an upper bound of
job numbers.

▶ Lemma 17 (Lower bound of active units).

A(r∗, d∗) ≥
∑

b∈B0

(2λ1(b) + 2 max{λ1(b)− T, 0})

+
∑

b∈B1

(2λ1(b) + 2 min{λ1(b), T})

+
∑
i≥2

4 · (2−i · L) · |Bi|.

Proof. Three terms on the RHS of the inequality are counting of B0, B1 and B≥2, where
the first two are straightforward counting as shown in Figure 2, and the last term was scaled
down a bit by Lemma 16:

4
∑
i≥2

∑
b∈Bi

λ1(b) = 4
∑
i≥2

∑
b∈Bi

λi(b) ≥
∑
i≥2

4 · (2−i · L) · |Bi|. ◀
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Let Ji be the job set with deadline at most d∗ and released in the i-th subinterval:

Ji = {j ∈ J | ⌊θi−1⌋+ 1 ≤ rj ≤ ⌊θi⌋, dj ≤ d∗} .

We provide an upper bound of Ji by the performance of our algorithm.

▶ Lemma 18. Let It be the semi-online batches allocated at or before time t. We have that
Ji is no more than the active units after ⌊θi−1⌋+ 1 provided by SemiOnline at ⌊θi⌋. i.e.,

Ji ≤ AI⌊θi⌋(⌊θi−1⌋+ 1, d∗).

Proof. Let us observe the time point t = ⌊θi⌋. SemiOnline(Jt, T ) reports It at this time.
By Lemma 11, It is feasible for Jt. By the definition of θi, we prove t ≥ d∗ − T because
θ1 ≥ d∗ − T . Thus, all jobs with deadlines at most d∗ are already in Jt, and combining with
the feasibility of It, we have:

Ji = Jt(⌊θi−1⌋+ 1, d∗) ≤ At(⌊θi−1⌋+ 1, d∗).

The lemma then concludes because we define t = ⌊θi⌋. ◀

▶ Lemma 19 (Upper bound of job numbers). We have two different upper bounds for Ji:

i = 1: |J1| ≤
∑

b∈B0

λ1(b) +
∑

b∈B1

(λ1(b) + L/2) .

i ≥ 2: |Ji| ≤
∑

b∈B0

λi(b) + 2 · (2−i · L) ·
i∑

j=1
|Bj |.

Proof. In this proof, we apply Lemma 18 and count the number of active units after θi−1 by
I⌊θi⌋. Note that by Fact 14, each 3T length rent interval in I⌊θi⌋ corresponds to an online
Batch-Rent.

First, let us consider the case i = 1. I⌊θi⌋ corresponds to the online batches with
t(b) ≤ I⌊θi⌋. Note that the ending time of b and its corresponding semi-online rent interval
are both t(b) + 2T . Thus, AI⌊θi⌋(⌊θi−1⌋+ 1, d∗) corresponds to B0 and B1.

For i = 1, we keep the B0 straightforward and calculate the upper bound of active units
provided by the corresponding semi-online batch for each batch b in B1. Note that the
semi-online rent set spans [t(b)− T, t(b) + 2T ). We split the 3T interval into first T and last
2T : the latter could be upper bounded by λ1(b) using Lemma 16, and we could find that the
former is at most L/2:

When d∗ − r∗ < 2T , t(b)− r∗ < (d∗ − r∗)/2, then min {T, t(b)− r∗} < L/2.
When d∗ − r∗ ≥ 2T , L = 2T , and then min {T, t(b)− r∗} ≤ T = L/2.

So we can conclude that

|J1| ≤
∑

b∈B0

λ1(b) +
∑

b∈B1

(λ1(b) + L/2) .

For the case i ≥ 2, all jobs released in sub-interval i can be allocated at most [θi−1 +1, d∗),
and by Lemma 16 each semi-online batch covers at most 2 ·(2−i ·L). Like i = 1, the inequality
follows direct counting on ∪i

j=0Bj . ◀

Thus far, we are ready to prove Lemma 15 by a charging argument.
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Proof of Lemma 15. Recall that in Lemma 17 we have

A(r∗, d∗) ≥
∑

b∈B0

(2 max{λ1(b)− T, 0}+ 2λ1(b)) +
∑

b∈B1

(2λ1(b) + 2 min{T, λ1(b)})

+
∑
i≥2

4 · (2−i · L) · |Bi|.
(1)

Also, by Lemma 19,

J (r∗, d∗) ≤
∑

b∈B0

λ1(b)+
∑

b∈B1

(λ1(b) + L/2)+
∑
i≥2

 ∑
b∈B0

λi(b) + 2 · (2−i · L) ·
i∑

j=1
|Bj |

 . (2)

Using these two inequalities, we charge the upper bound of J (r∗, d∗) and the lower bound
of A(r∗, d∗) to each b ∈ B. We prove that for each b, the charged amount of J (r∗, d∗)’s
upper bound is at most A(r∗, d∗)’s lower bound.

First, for b ∈ B0, the contribution of b to the lower bound of A(r∗, d∗) (i.e., RHS of
Equation (1)) is: 2 max{λ1(b) − T, 0} + 2λ1(b). The contribution to the upper bound of
J (r∗, d∗) (i.e., RHS of Equation (2)) is: λ1(b)+

∑
i≥2 λi(b). Note that b ∈ B0 only contributes

to a prefix of [r, d), it is easy to see that λi(b) ≤ 21−iλ1(b), and thus

λ1(b) +
∑
i≥2

λi(b) ≤ λ1(b) +
∑
i≥2

21−iλ1(b) < 2λ1(b).

We are done for b ∈ B0.
Second, for b ∈ B1, the contribution of b to the lower bound of A(r∗, d∗) (i.e., RHS of

Equation (1)) is: 2λ1(b) + 2 min{T, λ1(b)}. The contribution to the upper bound of J (r∗, d∗)
(i.e., RHS of Equation (2)) is: λ1(b) + L/2 +

∑
i≥2 2 · (2−i · L). Then, we have

λ1(b) + L/2 +
∑
i≥2

2 · (2−i · L) < λ1(b) + L/2 + 2 ·
(
2−1 · L

)
≤ λ1(b) + L/2 + 2 ·min {T, λ1(b)}
≤ 2λ1(b) + 2 min{T, λ1(b)}.

The last inequality holds by Lemma 16. Therefore, we are done for b ∈ B1.
Finally, for b ∈ Bi≥2, the contribution of b to the lower bound of A(r∗, d∗) (i.e., RHS of

Equation (1)) is: 4 · (2−i ·L). The contribution to the upper bound of J (r∗, d∗) (i.e., RHS of
Equation (2)) is:

∑
i′≥i 2 · (2−i′ · L). We are done because

∑
i′≥i 2−i′

< 21−i. Summing up
three parts, we have proved that A(r∗, d∗) ≥ J (r∗, d∗). ◀

5.2 A Remark on Running Time

We only need to recalculate SemiOnline if the job set gets updated, and the procedure of
reconstructing the rent set in SemiOnline can be maintained incrementally. Thus, it is possible
to implement the algorithm calling EDF at most n + OPT ≤ 2n times, and hence achieve a
worst case guarantee of O(n2 log n). Also, note that a job can influence the calculation of
SemiOnline for at most O(T ) time units, so the SemiOnline can also update in O(nw log w)
if there are at most O(w) jobs within any interval of length O(T ). Therefore, the online
algorithm is efficient in terms of worst case guarantee and also average online updating.
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6 Online Rent Minimization with Delay

In the version with delay, we are also given an online released job set J and a rent length T .
We aim to minimize the number of rents needed to process all jobs. The notations are the
same as in the Online Rent Minimization problem. Moreover, we are given a nonnegative
integer λ as the delay parameter. It means that if we rent a machine at time t, we will have
an active machine at [t + λ, t + λ + T ). Note that it is impossible to serve an unknown
emergency job with dj − rj ≤ λ online; following Chen and Zhang [5], we require that the
active time dj − rj is at least λ + 1.

We use the following reduction lemma and our 6-competitive no-delay algorithm as a
black box to prove Theorem 2. Chen and Zhang [5] also mention this approach.

▶ Lemma 20 (Reduction). If ALG(J ) ≤ Γ·OPT(J ) for every job set J , we have an algorithm
ALGλ that guarantees

ALGλ(J , λ) ≤ Γ · (λ + 1) · OPT(J ),

if ∀j ∈ J , dj − rj ≥ λ + 1.

After proving Lemma 20, Theorem 2 follows directly. See the full version for a complete
proof.

▶ Theorem 2. As a corollary of Theorem 1, there exists an efficient 6(λ + 1)-competitive
algorithm when we need λ time to finish each rent.

7 Conclusion and Future Work

In conclusion, our main contribution is a 6-competitive algorithm for the Online Rent
Minimization problem under unit-size jobs, which follows the oracle-based framework.

Since the Online Rent Minimization problem is a generalization of the Online Machine
Minimization problem, where we have an optimal e-competitive algorithm, one major question
is: Is the Rent Minimization problem strictly harder than the Machine Minimization problem?

On the other hand, we are also interested in the power of oracle-based algorithms. Note
that the optimal e-competitive algorithm for Machine Minimization follows the oracle-based
framework. It is interesting to ask: What is the best competitive ratio we can achieve for the
Online Rent Minimization problem by using the oracle-based framework? The Semi-Online
captures our current understanding of the possible range of optimal solutions, so replacing it
with an optimal oracle cannot improve ratio directly by the same argument in the paper. Is
it possible to obtain a better ratio with access to an optimal oracle?
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Abstract
Submodular maximization has been a central topic in theoretical computer science and combinatorial
optimization over the last decades. Plenty of well-performed approximation algorithms have been
designed for the problem over a variety of constraints. In this paper, we consider the submodular
multiple knapsack problem (SMKP). In SMKP, the profits of each subset of elements are specified
by a monotone submodular function. The goal is to find a feasible packing of elements over multiple
bins (knapsacks) to maximize the profit. Recently, Fairstein et al. [ESA20] proposed a nearly
optimal (1 − e−1 − ϵ)-approximation algorithm for SMKP. Their algorithm is obtained by combining
configuration LP, a grouping technique for bin packing, and the continuous greedy algorithm for
submodular maximization. As a result, the algorithm is somewhat sophisticated and inherently
randomized. In this paper, we present an arguably simple deterministic combinatorial algorithm for
SMKP, which achieves a (1 − e−1 − ϵ)-approximation ratio. Our algorithm is based on very different
ideas compared with Fairstein et al. [ESA20].
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1 Introduction

The multiple knapsack problem (MKP) is defined as follows. We are given a set N of n

elements and a set M of m bins (knapsacks). Each element u ∈ N has a positive cost
c(u) > 0 and a positive profit p(u) > 0. The cost (profit) of a subset S ⊆ N equals the sum
of the costs (profits) of its elements. The j-th bin in M has a positive budget Bj > 0 for
1 ≤ j ≤ m. A subset S ⊆ N is feasible if there is a disjoint partition {Sj}m

j=1 of S such that
c(Sj) ≤ Bj for 1 ≤ j ≤ m. The goal is to find a feasible set S (and its partition {Sj}m

j=1)
whose profit is maximized. It is well-known that the problem admits a PTAS but no FPTAS
assuming P ̸= NP [18, 5, 17].

In this paper, we consider the submodular generalization of the above problem, referred
to as the submodular multiple knapsack problem (SMKP). In SMKP, the profit is in general
non-additive and specified by a monotone submodular function f : 2N → R+. Here, a
set function f : 2N → R is monotone if f(S) ≤ f(T ) for any S ⊆ T and submodular if
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f(S ∪ {u}) − f(S) ≥ f(T ∪ {u}) − f(T ) for any S ⊆ T and u ̸∈ T . The goal is again
to find a feasible set S which maximizes the profit f(S). When m = 1, the problem
reduces to submodular maximization under a knapsack constraint, which enjoys an optimal
(1 − e−1)-approximation [18, 25].

Submodular functions capture the effect of diminishing returns in the economy and
generalize many well-known functions such as coverage functions, cut functions, matroid rank
functions, and log determinants. By introducing a submodular objective, SMKP falls in the
field of submodular maximization, which studies maximization problems with submodular
objectives, including maximum coverage problem, maximum cut problem, submodular welfare
problem [26], influence maximization [19]. The study of submodular maximization has lasted
for more than forty years. As early as 1978, it was shown that for monotone submodular
maximization, a greedy algorithm achieves a (1 − e−1)-approximation under the cardinality
constraint [24] and a 1/2 approximation under the matroid constraint [15]. On the other
hand, even for the cardinality constraint, the problem does not admit an approximation
ratio better than 1 − e−1 [23]. It was a longstanding open question whether the problem
admits a (1 − e−1)-approximation under the matroid constraint. In 2008, Vondrák [26]
made a big breakthrough and answered this question affirmatively by proposing the so-called
continuous greedy algorithm. Since then, plenty of optimal or well-performed approximation
algorithms have been proposed for submodular maximization over a variety of constraints
[2, 3, 4, 7, 12, 14, 16, 21, 22, 27].

For SMKP, a nearly optimal (1−e−1−ϵ)-approximation algorithm based on the continuous
greedy technique was recently proposed in [9]. Their algorithm relies on two key ideas. First,
they showed that by defining a configuration LP, an SMKP instance whose all bins have
the same budget can be reduced to submodular maximization under 2-dimensional packing
constraints (SMPC). Second, they developed a grouping technique inspired by [6] to convert
a general SMKP instance to a leveled instance where bins are partitioned into blocks and
bins in the same block have the same budget. In this way, they are able to reduce a general
SMKP instance to an SMPC instance. They finally finished their work by a refined analysis
of the continuous greedy algorithm for SMPC.

The techniques adopted by [9] and the way to combine them are somewhat sophisticated,
which makes their algorithm not easy to understand and implement. Besides, the continuous
greedy technique involves a sampling process and therefore their algorithm is inherently
randomized. To the best of our knowledge, no deterministic algorithm was known for SMKP.
In this paper, we present a simple deterministic combinatorial algorithm for SMKP, which
achieves a (1 − e−1 − ϵ)-approximation ratio.

▶ Theorem 1. For any ϵ > 0, there exists a deterministic combinatorial algorithm for SMKP
that achieves a (1 − e−1 − ϵ)-approximation ratio and runs in polynomial time.

1.1 Technique Overview
We start with solving SMKP instances under the identical case, where all the bins have the
same budget B. Such instances can be reduced to exponential-size instances of submodular
maximization subject to a cardinality constraint. Inspired by this observation, we design
an algorithm for the identical case by mimicking the greedy algorithm for the cardinality
constraint. See Section 1.1.1 for details.

For any general SMKP instance, we use the grouping technique developed by [9] to convert
it to the so-called leveled instance. While Fairstein et al. [9] resorts to the configuration LP
to solve the leveled instance, we present a simple (1 − e−1 − ϵ)-approximation algorithm for it
by exploiting its structure and invoking our algorithm for the identical case as a subroutine.
See Section 1.1.2 for details.
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1.1.1 The Identical Case
Under the identical case, SMKP can be regarded as an exponential-size instance of submodular
maximization subject to a cardinality constraint. Specifically, let I = {S ⊆ N | c(S) ≤ B}.
For any T ⊆ I, define g(T ) = f(∪S∈T S). It is easy to verify that g is a monotone submodular
function. Then, max{g(T ) | |T | ≤ m} describes the SMKP instance under the identical case.

Inspired by the above observation, our algorithm packs bins one by one and manages
to make each bin pack at least the average marginal value of the optimal solution over m

bins. In other words, for the j-th bin, it aims to find a set Sj such that f(Sj | ∪j−1
i=1 Si) ≥

1
m f(OPT | ∪j−1

i=1 Si), where OPT denotes the optimal solution. This naturally leads to
(1 − e−1) approximation.

We take the first bin as an example and explain that it is possible to find a set S1 such
that f(S1) ≥ 1

m f(OPT ) when m is large enough. If S1 is obtained by packing elements in
sequence greedily according to their marginal densities, then we can prove

f(S1) ≥ (1 − e−c(S1)/c(OP T )) · f(OPT ).

If we further allow S1 to violate the budget constraint by adding one more element, then
c(S1) ≥ B. Together with c(OPT ) ≤ mB, we have

f(S1) ≥ (1 − e−1/m) · f(OPT ) ≈ 1
m

f(OPT ).

The story has not ended since the last element added to S1 violates the budget constraint.
To handle this issue, our algorithm divides elements into large and small elements according
to their costs and then packs them in different ways. Specifically, an element u ∈ N is large
if c(u) > ϵB and small otherwise. Our algorithm packs large elements by enumeration since
there are polynomial ways to pack them in total. It packs small elements greedily as before.
In this way, the last element added to S1 has a cost less than ϵB and there are at most m

such elements. Thus, all of them can be repacked using additional ϵm bins and all Sj ’s will
then become feasible.

In Lemma 5, we show that f(S1) ≥ 1
m f(OPT ) still holds although we introduce the

enumeration step.

1.1.2 The General Case
Observe that a general SMKP instance can be reduced to an exponential-size instance
of submodular maximization subject to a partition matroid constraint. Specifically, let
Ij = {S ⊆ N | c(S) ≤ Bj} be the feasible region for the j-th bin and I = ∪m

j=1Ij . For any
T ⊆ I, define g(T ) = f(∪S∈T S). Then, max{g(T ) | |T ∩ Ij | ≤ 1, 1 ≤ j ≤ m} describes the
general SMKP instance. Recall that the optimal (1 − e−1)-approximation for the partition
matroid constraint is obtained via the continuous greedy algorithm [26]. Thus, it is not a
good idea to solve general SMKP instances directly.

The difficulty in solving general SMKP stems from that the budgets are distinct. Therefore,
we first consider an “intermediate” instance where bins can be partitioned into r blocks
{Mk}r

k=1 such that block Mk contains sufficiently many bins and all of them have the same
budget Bk. Clearly, this instance is slightly more general than the instance under the identical
case. It can also be reduced to an exponential-size instance of submodular maximization
subject to a partition matroid constraint. Specifically, let Ik = {S ⊆ N | c(S) ≤ Bk}
for 1 ≤ k ≤ r and I = ∪r

k=1Ik. For any T ⊆ I, define g(T ) = f(∪S∈T S). Then,
max{g(T ) | |T ∩ Ik| ≤ |Mk|, 1 ≤ k ≤ r} describes the above SMKP instance.

ESA 2023
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The above two reductions lead to different constraints |T ∩ Ij | ≤ 1 and |T ∩ Ik| ≤ |Mk|.
For convenience, assume that 1/ϵ is an integer, |Mk| ≥ 1/ϵ and ϵ|Mk| is an integer for all
1 ≤ k ≤ r. Our key observation is that for constraint {T ⊆ I | |T ∩ Ik| ≤ |Mk|, 1 ≤ k ≤ r},
there is a simple deterministic algorithm that can achieve (1 − e−1 − ϵ)-approximation. The
algorithm runs in 1/ϵ iterations. In each iteration, block Mk is visited in sequence and the
algorithm will pack ϵ|Mk| bins in Mk. This forms an SMKP instance under the identical
case. Thus, we can invoke our algorithm for the identical case to solve it.

Finally, we apply a grouping technique from [9] to convert a general instance to a t-leveled
instance which has blocks {Mk}r

k=1 and bins in the same block have the same budget. Besides,
each of the first t2 blocks contains a single bin, and each of the remaining blocks contains
at least t. This is very similar to the intermediate instance before and it is not difficult to
handle the first t2 blocks.

1.2 Related Work

MKP has been fully studied previously. Kellerer [18] proposed the first PTAS for the identical
case of the problem. Soon after, Chekuri and Khanna [5] proposed a PTAS for the general
case. The result was later improved to an EPTAS by Jansen [17]. On the other hand, it
is easy to see that the problem does not admit an FPTAS even for the case of m = 2 bins
unless P = NP [5].

SMKP contains submodular maximization subject to a knapsack constraint as a special
case. For this problem, there is an optimal (1 − e−1)-approximation algorithm that runs in
O(n5) time [18, 25]. Later, a fast algorithm was proposed in [1] that achieves a (1 − e−1 − ϵ)-
approximation ratio and runs in n2(log n/ϵ)O(1/ϵ8) time2. This was recently improved in [8]
by a new algorithm that runs in (1/ϵ)O(1/ϵ4)n log2 n time. The last two algorithms are
impractical due to their high dependence on 1/ϵ. Very recently, a (1 − e−1)-approximation
algorithm was proposed in [20, 13], which runs in O(n4) time. This algorithm can be further
accelerated to achieve (1 − e−1 − ϵ)-approximation in Õ(n3/ϵ) time.

To the best of our knowledge, SMKP was first considered in Feldman’s Ph. D thesis [11].
Feldman proposed a polynomial time (1/9 − o(1))-approximation algorithm and a pseudo-
polynomial time 1/4 approximation algorithm for the general case of SMKP. For the identical
case, he improved the results to a polynomial time ((e − 1)/(3e − 1) − o(1)) ≈ 0.24 approx-
imation algorithm and a pseudo-polynomial time (1 − e−1 − o(1))-approximation algorithm.
These algorithms are based on the continuous greedy technique and contension resolution
schemes [27], and hence involve randomness inherently. Recently, Fairstein et al. [9] proposed
a polynomial time randomized (1 − e−1 − ϵ)-approximation algorithm for general SMKP.

1.3 Organization

In Section 2, we first formulate SMKP and introduce some notations. Then, we present
a greedy algorithm that packs elements greedily according to their marginal densities. In
Section 3, we present a (1 − e−1 − ϵ)-approximation algorithm for SMKP under the identical
case, assuming the number of bins m ≥ 1/(4ϵ3). In Section 4, we present a (1 − e−1 − ϵ)-
approximation algorithm for general SMKP. We conclude the paper and list some open
problems in Section 5.

2 As pointed out by [28, 8], the result in [1] has some issues.
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Algorithm 1 Greedy.

Input: elements N , budgets {Bj}m
j=1, profit f , cost c.

1 Sj = ∅ for 1 ≤ j ≤ m and S = ∪m
j=1Sj .

2 while N \ S ̸= ∅ and there exists 1 ≤ j ≤ m such that c(Sj) < Bj do
3 u∗ = arg maxu∈N\S f(u | S)/c(u).
4 Sj = Sj + u∗ and S = S + u∗.
5 end
6 return S = ∪m

j=1Sj .

2 Preliminaries

An instance of the submodular multiple knapsack problem (SMKP) is defined as follows. We
are given a set N of n elements and a set M of m bins (knapsacks). Each element u ∈ N

has a positive cost c(u) > 0. A subset S ⊆ N of elements has a cost c(S) =
∑

u∈S c(u). The
j-th bin in M has a positive budget Bj > 0 for 1 ≤ j ≤ m. A subset S ⊆ N is feasible for
the problem if there is a disjoint partition {Sj}m

j=1 of S such that c(Sj) ≤ Bj for 1 ≤ j ≤ m.
The profit of each subset S ⊆ N of elements is specified by a normalized, monotone and
submodular function f : 2N → R+. For a non-negative set function f : 2N → R+, it is
called normalized if f(∅) = 0, monotone if f(S) ≤ f(T ) for any S ⊆ T , and submodular if
f(S ∪{u})−f(S) ≥ f(T ∪{u})−f(T ) for any S ⊆ T and u ̸∈ T . The goal is to find a feasible
set S (and its partition {Sj}m

j=1) such that the profit f(S) (or f(∪m
j=1Sj)) is maximized.

An SMKP instance is specified by (N, M, {Bj}j∈M , f, c). Throughout this paper, we
use OPT to denote the optimal solution of an SMKP instance. Let S + u be a shorthand
for S ∪ {u}. For the objective function f , we also use f(u | S) and f(T | S) to denote the
marginal values f(S + u) − f(S) and f(S ∪ T ) − f(S), respectively. f is accessed via a value
oracle that returns f(S) when set S ⊆ N is queried. The query complexity of any algorithm
for SMKP should be polynomial in the size of the problem.

2.1 The Greedy Algorithm
We first present a greedy algorithm, which is depicted as Algorithm 1. It serves as a
cornerstone for other algorithms in this paper. It returns a (possibly infeasible) set with
a (1 − 1/e) approximation ratio. It packs elements one by one greedily, according to their
densities, namely the ratios of their marginal values to their costs. The process continues
provided there exists some bin whose budget has not been exhausted yet. As a side effect,
each bin may pack one more element whose addition exceeds the budget of that bin. For
convenience, we refer to this element as a reserved element. Nonetheless, we show that the
set returned by Algorithm 1 has a large profit.

▶ Lemma 2. Let S be the set returned by Algorithm 1. For any set X ⊆ N , we have

f(S) ≥
(

1 − e−c(S)/c(X)
)

· f(X).

Proof. If c(S) <
∑m

j=1 Bj , there is some j such that c(Sj) < Bj . It means that Algorithm 1
ended with S = N . Thus, the lemma follows by monotonicity.

Now consider the case where c(S) ≥
∑m

j=1 Bj . Assume that S = {u1, u2, . . . , uℓ}, and
for 0 ≤ i ≤ ℓ, Si = {u1, u2, . . . ui} denotes the first i elements packed by Algorithm 1. Then,
by the greedy rule,

f(ui | Si−1)
c(ui)

≥ f(x | Si−1)
c(x) , ∀ x ∈ X \ Si−1.
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By moving c(x) to the left and summing over x ∈ X \ Si−1,

c(X \ Si−1) · f(ui | Si−1)
c(ui)

≥
∑

x∈X\Si−1

f(x | Si−1) ≥ f(X \ Si−1 | Si−1).

The last inequality holds since f is submodular. This gives us

f(Si) − f(Si−1)
c(ui)

≥ f(X \ Si−1 | Si−1)
c(X \ Si−1) ≥ f(X) − f(Si−1)

c(X) . (1)

The last inequality holds since f is monotone and c(X \ Si−1) ≤ c(X).
Next, we assume that f(X) > f(Sℓ), since otherwise the lemma already holds. Under

this assumption, it must hold that c(ui) < c(X), since otherwise inequality (1) implies that
f(X) ≤ f(Si) ≤ f(Sℓ). A contradiction! Now we can rearrange inequality (1) and obtain
that

f(X) − f(Si) ≤
(

1 − c(ui)
c(X)

)
(f(X) − f(Si−1)).

By expanding the recurrence, we have

f(X) − f(Si) ≤
i∏

j=1

(
1 − c(uj)

c(X)

)
· f(X) ≤

i∏
j=1

e−
c(uj )
c(X) · f(X) = e− c(Si)

c(X) · f(X).

The second inequality holds due to ex ≥ 1 + x. Hence we have

f(Si) ≥
(

1 − e−c(Si)/c(X)
)

· f(X).

The lemma follows by plugging i = ℓ into it. ◀

The above lemma immediately leads to the following corollary.

▶ Corollary 3. The set S returned by Algorithm 1 satisfies f(S) ≥ (1 − e−1) · f(OPT ).

Proof. If c(S) <
∑m

j=1 Bj , there is some j such that c(Sj) < Bj . It means that Algorithm 1
ended with S = N . Thus, the corollary follows by monotonicity. If c(S) ≥

∑m
j=1 Bj , then

c(S) ≥ c(OPT ). The corollary follows from Lemma 2. ◀

3 The identical Case

In this section, we present a deterministic (1 − e−1 − ϵ) approximation algorithm for SMKP
under the identical case, where all bins have the same budget. Our algorithm is depicted as
Algorithm 2 and works when m ≥ 1/(4ϵ3). It packs bins one by one and manages to make
each bin pack at least the average marginal value of the optimal solution over m bins. In other
words, for the j-th bin, it aims to find a set Sj such that f(Sj | ∪j−1

i=1 Si) ≥ 1
m f(OPT | ∪j−1

i=1 Si).
This naturally leads to (1 − e−1) approximation. For this purpose, Algorithm 2 divides
elements into large and small elements according to their costs. Given input ϵ, an element
u ∈ N is large if c(u) > ϵB and small otherwise. Let Nℓ = {u ∈ N | c(u) > ϵB} be the set of
large elements and Ns = N \ Nℓ. For the j-th bin, Algorithm 2 first enumerates all feasible
subsets of large elements. Then, for every such subset, Algorithm 1 is invoked over small
elements to augment it. Finally, the one with the maximum marginal value is assigned to Sj .

Due to the call of Algorithm 1, Sj might contain a reserved element, which is the last
added into Sj and violates the budget. To remedy this issue, Algorithm 2 divides the bins
into two classes: the first (1 − ϵ)m bins are called working bins and the last ϵm bins are
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Algorithm 2 Identical-case.

Input: elements N , budget B, number of bins m, profit f , cost c, constant ϵ > 0.
1 Let the first (1 − ϵ)m bins be working bins and the last ϵm bins be reserved bins.
2 Define Nℓ = {u ∈ N | c(u) > ϵB} and let Ns = N \ Nℓ.
3 Sj = ∅ for 1 ≤ j ≤ m and T = ∪m

j=1Sj .
4 for j = 1 to (1 − ϵ)m do
5 foreach subset E ⊆ Nℓ such that c(E) ≤ B do
6 GE = Greedy(Ns, B − c(E), f(· | T ∪ E), c(·)).
7 end
8 Sj = arg maxE f(E ∪ GE | T ) and T = ∪m

j=1Sj .
9 end

10 Repack the reserved elements in T into the reserved bins.
11 return T = ∪m

j=1Sj .

called reserved bins. The procedure described above only proceeds with the working bins.
After that, Algorithm 2 repacks all reserved elements into the reserved bins. We will show
that in this way, Algorithm 2 produces a feasible solution and the loss of the profit is little
even if it does not use the reserved bins to pack new elements.

We now give an analysis of Algorithm 2. For 1 ≤ j ≤ (1 − ϵ)m, let Sj be defined as in
line 8 of Algorithm 2 and Tj = ∪j

i=1Si. We first show that Algorithm 2 returns a feasible
solution.

▶ Lemma 4. Algorithm 2 produces a feasible solution.

Proof. For 1 ≤ j ≤ (1 − ϵ)m, observe that each Sj contains at most one reserved element
due to the call of Algorithm 1. By repacking those reserved elements into the reserved bins,
each Sj becomes feasible. Besides, the cost of each reserved element is at most ϵB since it is
a small element. Thus, a reserved bin can pack at least 1/ϵ reserved elements. Then, ϵm

reserved bins can pack m > (1 − ϵ)m reserved elements without exceeding their budgets.
Therefore, Algorithm 2 produces a feasible solution. ◀

Next, we present Lemma 5 for Algorithm 2.

▶ Lemma 5. Assume that m ≥ 1/(4ϵ3). For every 1 ≤ j ≤ (1 − ϵ)m,

f(Sj | Tj−1) ≥ 1 − 2ϵ

m
· f(OPT | Tj−1).

Proof. For the sake of description, we define g(·) = f(· | Tj−1) and the lemma becomes
g(Sj) ≥ 1−2ϵ

m · g(OPT ). Let OPTℓ = OPT ∩ Nℓ and OPTs = OPT \ OPTℓ. We prove the
lemma by case analysis, according to the cost and density of OPTs.
Case 1: c(OPTs) ≥ ϵmB, namely OPTs has a large cost. Let OPTℓ = ∪m

j=1OPTℓ,j and
OPTs = ∪m

j=1OPTs,j , where OPTℓ,j and OPTs,j are the large and small elements packed
in the j-th bin, respectively. For each 1 ≤ j ≤ m, since c(OPTℓ,j) ≤ B, OPTℓ,j will be
enumerated during the foreach loop. Let Gj be the output of Greedy (Algorithm 1)
starting from OPTℓ,j . We will show that one of OPTℓ,j ∪ Gj satisfies the lemma.
If c(Gj) < B−c(OPTℓ,j), it means that Algorithm 1 ended with Gj = OPTs and therefore
g(Gj | OPTℓ,j) = g(OPTs | OPTℓ,j). If c(Gj) ≥ B − c(OPTℓ,j), then c(Gj) ≥ c(OPTs,j).
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By Lemma 2,

g(Gj | OPTℓ,j) ≥
(

1 − e−c(Gj)/c(OP Ts)
)

· g(OPTs | OPTℓ,j)

≥
(

1 − e−c(OP Ts,j)/c(OP Ts)
)

· g(OPTs | OPTℓ,j)

≥
(

c(OPTs,j)
c(OPTs) − c(OPTs,j)2

2 · c(OPTs)2

)
· g(OPTs | OPTℓ,j)

≥
(

c(OPTs,j)
c(OPTs) − 1

2ϵ2m2

)
· g(OPTs | OPTℓ,j)

≥
(

c(OPTs,j)
c(OPTs) − 2ϵ

m

)
· g(OPTs | OPTℓ,j).

The third inequality holds since 1 − e−x ≥ x − x2/2 for x ≥ 0. The fourth inequality
holds since c(OPTs,j)/c(OPTs) ≤ 1/(ϵm). The last inequality holds since m ≥ 1/(4ϵ3).
By adding g(OPTℓ,j) on both sides of the last inequality and summing over j,

m∑
j=1

g(OPTℓ,j ∪ Gj) ≥
m∑

j=1

(
c(OPTs,j)
c(OPTs) − 2ϵ

m

)
· g(OPTs | OPTℓ,j) +

m∑
j=1

g(OPTℓ,j)

≥
m∑

j=1

(
c(OPTs,j)
c(OPTs) − 2ϵ

m

)
· g(OPTs | OPTℓ) + g(OPTℓ)

= (1 − 2ϵ) · g(OPTs | OPTℓ) + g(OPTℓ)
≥ (1 − 2ϵ) · g(OPT ).

Hence, the maximum of OPTℓ,j ∪ Gj satisfies the lemma and so does Sj .
Case 2: g(OPTs) ≥ (1 − e−B/c(OP Ts))−1 · g(OP T )

m , namely the density of OPTs is large.
Consider one of the iterations of foreach loop where E = ∅. Note that it is augmented
by G∅ via Greedy (Algorithm 1). If c(G∅) < B, it means that Algorithm 1 ended with
G∅ = OPTs. Then,

g(G∅) = g(OPTs) ≥ (1 − e−B/c(OP Ts))−1 · g(OPT )
m

≥ g(OPT )
m

.

If c(G∅) ≥ B, by Lemma 2,

g(G∅) ≥
(

1 − e−B/c(OP Ts)
)

· g(OPTs) ≥ g(OPT )
m

.

This implies that G∅ satisfies the lemma and so does Sj .
Case 3: c(OPTs) < ϵmB and g(OPTs) <

(
1 − e−B/c(OP Ts))−1 · g(OP T )

m , namely both the
cost and density of OPTs are small. We show that OPTs only contributes a negligible
value in OPT :

g(OPTs) < (1 − e−1/ϵm)−1 · g(OPT )
m

≤
(

1
ϵm

− 1
2ϵ2m2

)−1
g(OPT )

m

≤
(

1
2ϵm

)−1
g(OPT )

m
= 2ϵ · g(OPT ).

The first inequality holds since (1 − e−B/x)−1 is monotone increasing. The second holds
since 1 − e−x ≥ x − x2/2 for x ≥ 0. The third holds as long as m ≥ 1/ϵ. Hence, by
submodularity,

g(OPTℓ) ≥ g(OPT ) − g(OPTs) ≥ (1 − 2ϵ) · g(OPT ),
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and

1
m

m∑
j=1

g(OPTℓ,j) ≥ 1
m

· g(OPTℓ) ≥ 1 − 2ϵ

m
· g(OPT ).

This implies that the maximum of OPTℓ,j satisfies the lemma and so does Sj . ◀

By expanding the recurrence in Lemma 5, we have

▶ Lemma 6. Assume that m ≥ 1/(4ϵ3). For every 1 ≤ j ≤ (1 − ϵ)m,

f(Tj) ≥ (1 − e−j(1−2ϵ)/m) · f(OPT ).

Proof. By Lemma 5, for 1 ≤ j ≤ (1 − ϵ)m,

f(Sj | Tj−1) ≥ 1 − 2ϵ

m
· f(OPT | Tj−1).

By monotonicity of f ,

f(Tj) − f(Tj−1) ≥ 1 − 2ϵ

m
· (f(OPT ) − f(Tj−1)).

By rearranging the above inequality,(
1 − 1 − 2ϵ

m

)
(f(OPT ) − f(Tj−1)) ≥ f(OPT ) − f(Tj).

By expanding the recurrence,

f(OPT ) − f(Tj) ≤
(

1 − 1 − 2ϵ

m

)j

f(OPT ) ≤ e−j(1−2ϵ)/m · f(OPT ).

The last inequality holds since e−x ≥ 1 − x. Thus, we have

f(Tj) ≥ (1 − e−j(1−2ϵ)/m) · f(OPT ). ◀

We now provide a theoretical guarantee for Algorithm 2.

▶ Theorem 7. When m ≥ 1/(4ϵ3), Algorithm 2 achieves a (1 − e−1 − O(ϵ)) approximation
ratio and uses O(mn3+1/ϵ) queries.

Proof. For the approximation ratio, by plugging j = (1 − ϵ)m into Lemma 6,

f(T(1−ϵ)m) ≥ (1 − e−(1−ϵ)(1−2ϵ)) · f(OPT ).

For the query complexity, observe that during the foreach loop, the number of subsets
E ⊆ Nℓ such that c(E) ≤ B is at most

1/ϵ∑
i=0

(
n

i

)
= O(n1/ϵ+1).

Since each E is augmented via Greedy, which uses O(n2) queries, the foreach loop uses
O(n1/ϵ+3) in total. Then, Algorithm 2 overall uses O(mn3+1/ϵ) queries. ◀
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4 The General Case

In this section, we present a deterministic (1 − e−1 − ϵ) approximation algorithm for solving
general SMKP instances. A key difficulty is that the budgets of bins are distinct, which makes
our technique for the identical case inapplicable. In Section 4.1, we introduce a grouping
technique from [9], which reshapes any SMKP instance such that bins can be partitioned into
blocks and almost every block contains sufficiently many bins with the same budget. Next, in
Section 4.2, we show how one can design a nearly optimal algorithm for such instances.

4.1 Reshape the Instance
We first introduce a grouping technique from [9] to reshape any SMKP instance as follows.

▶ Definition 8. A subset of bins M ′ ⊆ M is called a block if for any i, j ∈ M ′, Bi = Bj.

▶ Definition 9. For any t ∈ N+, a partition {Mk}r
k=1 of bins M is t-leveled if for every

1 ≤ k ≤ r, Mk is a block and |Mk| = t⌊(k−1)/t2⌋.

To gain some intuition, note that for every 1 ≤ k ≤ t2, block Mk contains a single bin, and
for every t2 < k ≤ 2t2, block Mk contains t bins, etc. It follows that except for the first t2

blocks, each of the remaining blocks contains at least t bins with the same budget.

▶ Lemma 10 ([9]). There is a polynomial-time algorithm, referred to as Block, that takes
a set of bins M , budgets {Bj}j∈M and a parameter t ∈ N+ as input, and returns a new set
of bins M̃ ⊆ M , budgets {B̃j}

j∈M̃
and a t-leveled partition {M̃k}r

k=1 of bins M̃ such that
For every j ∈ M̃ , B̃j ≤ Bj.
For any SMKP instance (N, M, {Bj}j∈M , f, c) and a feasible solution {Sj}j∈M for it,
there exists a feasible solution {S̃j}

j∈M̃
for instance (N, M̃, {B̃j}

j∈M̃
, f, c) such that

f(∪
j∈M̃

S̃j) ≥
(
1 − 1

t

)
f(∪j∈M Sj) and ∪

j∈M̃
S̃j ⊆ ∪j∈M Sj.

The instance (N, M̃, {B̃j}
j∈M̃

, f, c) is called t-leveled. Lemma 10 tells us that any feasible
solution for it is also feasible for the original instance (N, M, {Bj}j∈M , f, c), and an optimal
solution for it causes a small loss in the profit.

4.2 The Final Algorithm
Now, we explain how one can design a nearly optimal algorithm for a t-leveled SMKP instance
with bins M̃ , budgets {B̃j}

j∈M̃
and a t-leveled partition {M̃k}r

k=1 of M̃ .
For t2 < k ≤ r, block M̃k contains |M̃k| ≥ t bins with the same budget B̃k. The problem

restricted to each block M̃k can be regarded as an SMKP instance under the identical case.
Thus, a natural idea is to pack each block M̃k in sequence by invoking Algorithm 2. However,
we fail to get an optimal approximation via this procedure. Instead, we develop a technique
that is inspired by [1]. We run 1/ϵ iterations in total (assume that 1/ϵ is an integer). In each
iteration, we pack each block M̃k in sequence but only pack ϵ|M̃k| bins (assume that ϵ|M̃k|
is an integer). This forms an instance under the identical case with ϵ|M̃k| bins and therefore
we can invoke Algorithm 2 to solve it.

For 1 ≤ k ≤ t2, block M̃k contains a single bin with budget B̃k. Basically, we can use
Greedy to pack elements. Likewise, we do not use the full budget at a time. Instead, we
also run 1/ϵ iterations. In each iteration, we pack elements using budget (ϵ − ϵ2)B̃k. To avoid
exceeding the budget, we only pack small elements u satisfying c(u) ≤ ϵ2B̃k. To ensure this,
we need to enumerate large-valued and large-cost elements in this bin. The overall procedure
is depicted as Algorithm 3.
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Algorithm 3 The Final Algorithm for SMKP.

Input: elements N , bins M , budgets {Bj}j∈M , profit f , cost c, constant ϵ > 0.
1 Let s = 1/(16ϵ9) and t = 1/(4ϵ3).
2 Let C = ∅.
3 (M̃, {B̃j}

j∈M̃
, {M̃k}r

k=0) = Block(M, {Bj}j∈M , t).
4 foreach feasible solution {Ej}t2

j=1 such that | ∪m
j=1 Ej | ≤ s do \\ Ej = ∅ for j > t2

5 Let E = ∪t2

j=1Ej .
6 Let Sj = Ej for 1 ≤ j ≤ t2 and Sj = ∅ for t2 < j ≤ k.
7 for i = 1 to 1/ϵ do
8 for k = 1 to r do \\ handle blocks one by one
9 if k ≤ t2 then \\ each block contains a single bin

10 Let D = {u ∈ N \ E | f(u | E) > 1
s · f(E)}.

11 Let Lk = {u ∈ N \ E | c(u) > ϵ2(B̃k − c(Ek))}.
12 Rk = Greedy(N \ (E ∪ D ∪ Lk), (ϵ − ϵ2)(B̃k − c(Ek)), f(· | ∪m

j=1Sj),
c(·)).

13 Sk+1 = Sk+1 ∪ Rk.
14 else \\ each block contains ≥ t bins
15 {Rj}

j∈M̃k
= Identical-case(N \ E, B̃k, ϵ|M̃k|, f(· | ∪m

j=1Sj), c(·), ϵ).
16 Sj = Sj ∪ Rj for j ∈ M̃k.
17 end
18 end
19 end
20 C = C ∪ {{Sj}m

j=1}.
21 end
22 return arg max{f(∪m

j=1Sj) | {Sj}m
j=1 ∈ C}.

▶ Theorem 11. Algorithm 3 achieves a 1 − e−1 − O(ϵ) approximation ratio and uses a
polynomial number of queries.

Proof. Let ÕPT = ∪m
j=1ÕPT j be the optimal solution of the SMKP instance with bins M̃

and budgets {B̃j}
j∈M̃

. Let OPT ′ = ∪t2

j=1ÕPT j . Order elements in OPT ′ greedily according
to their marginal values such that o1 = arg maxo∈OP T ′ f(o), o2 = arg maxo∈OP T ′\{o1} f(o |
o1), etc. Denote by E the first s elements in OPT ′ (if |OPT ′| < s, then E = OPT ′). Let
Ej = E ∩ ÕPT j for 1 ≤ j ≤ t2. Then, {Ej}t2

j=1 will be enumerated during the foreach loop.
In the following, we focus on this particular set.

Let D = {u ∈ N | f(u | E) > 1
s · f(E)}. Since E is the first s elements in OPT ′, we

have f(o | E) ≤ 1
s · f(E) for any o ∈ OPT ′ \ E. Thus, D ∩ (OPT ′ \ E) = ∅ and therefore

OPT ′ \ E will not be excluded from the execution of Greedy over N \ (E ∪ D). Besides,
{ÕPT j \ Ej}t2

j=1 is a feasible solution given budgets {B̃j − c(Ej)}t2

j=1.
For 1 ≤ j ≤ t2, let Lj = {u ∈ N \E | c(u) > ϵ2(B̃j −c(Ej))}. Define OPT ∗ as follows. For

1 ≤ j ≤ t2, OPT ∗
j = ÕPT j \ Lj . For j > t2, OPT ∗

j = ÕPT j . Then, OPT ∗ = ∪m
j=1OPT ∗

j .
We have

f(OPT ∗ | E) = f((∪t2

j=1ÕPT j \ Lj) ∪ (∪m
j=t2+1ÕPT j) | E)

≥ f(∪m
j=1ÕPT j | E) − f(∪t2

j=1ÕPT j ∩ Lj | E)
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≥ f(ÕPT | E) −
t2∑

j=1

∑
u∈(ÕP T j\E)∩Lj

f(u | E)

≥ f(ÕPT | E) − t2

ϵ2s
· f(E)

= f(ÕPT | E) − ϵ · f(E).

The first two inequalities are due to submodularity. The third inequality holds since by
definition of Lj , ÕPT j \ E contains at most 1/ϵ2 elements in Lj , and f(u | E) ≤ 1

s f(E) due
to D ∩ (ÕPT j \ E) = ∅. The last equality follows from the choices of t and s. This implies
that invoking Greedy over N \ (E ∪ D ∪ Lj) for 1 ≤ j ≤ t2 only incurs little loss in the
profit.

Now we are prepared to provide a theoretical bound for Algorithm 3. Let g(·) = f(· | E).
For 1 ≤ i ≤ 1/ϵ and 1 ≤ k ≤ r, let Rik be the set returned in line 12 if k ≤ t2 and
Rik = ∪

j∈M̃k
Rj otherwise, where {Rj}

j∈M̃k
is the set returned in line 15. Then, the k-th

block M̃k packs ∪1/ϵ
i=1Rik by the end of Algorithm 3. Define T0 = ∅ and Ti = Ti−1 ∪ (∪r

k=1Rik)
for 1 ≤ i ≤ 1/ϵ.

For 1 ≤ i ≤ 1/ϵ and 1 ≤ k ≤ t2, by Lemma 2,

g(Rik | Ti−1 ∪ (∪k−1
k′=1Rik′)) ≥ (1 − e−(ϵ−ϵ2)) · g(OPT ∗

k | Ti−1 ∪ (∪k−1
k′=1Rik′))

≥ (ϵ − 2ϵ2) · g(OPT ∗
k | Ti).

The last inequality holds due to 1 − e−x ≥ x − x2/2 for x ≥ 0 and submodularity.
For 1 ≤ i ≤ 1/ϵ and t2 < k ≤ r, by Lemma 6,

g(Rik | Ti−1 ∪ (∪k−1
k′=1Rik′)) ≥ (1 − e−ϵ(1−2ϵ)) · g(OPT ∗

k | Ti−1 ∪ (∪k−1
k′=1Rik′))

≥ (ϵ − 3ϵ2) · g(OPT ∗
k | Ti).

Again, the last inequality holds due to 1 − e−x ≥ x − x2/2 for x ≥ 0 and submodularity.
Summing up over 1 ≤ k ≤ r, we have

g(Ti) − g(Ti−1) =
r∑

k=1
g(Rik | Ti−1 ∪ (∪k−1

k′=1Rik′))

≥
r∑

k=1
(ϵ − 3ϵ2) · g(OPT ∗

k | Ti)

≥ (ϵ − 3ϵ2) · g(OPT ∗ | Ti)
≥ (ϵ − 3ϵ2) · (g(OPT ∗) − g(Ti)).

The last two inequalities are due to submodularity and monotonicity, respectively. By adding
g(OPT ∗) to both sides and move g(Ti) to the right in the above inequality,

g(OPT ∗) − g(Ti−1) ≥ (1 + ϵ − 3ϵ2)(g(OPT ∗) − g(Ti)).

This leads to

g(OPT ∗) − g(Ti) ≤ 1
(1 + ϵ − 3ϵ2)i

· g(OPT ∗).

Hence, by plugging i = 1/ϵ,

g(T1/ϵ) ≥
(

1 − 1
(1 + ϵ − 3ϵ2)1/ϵ

)
· g(OPT ∗) =

(
1 − e− 1

ϵ ln(1+ϵ−3ϵ2)
)

· g(OPT ∗)

≥ (1 − e− 1
ϵ (ϵ−3ϵ2−(ϵ−3ϵ2)2/2)) · g(OPT ∗) ≥ (1 − e−1 − O(ϵ)) · g(OPT ∗).
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The second inequality holds since ln(1 + x) ≥ x − x2/2 for x > 0. Finally, recall that
g(·) = f(· | E), we have

f(T1/ϵ) = f(E) + f(T1/ϵ | E) ≥ f(E) + (1 − e−1 − O(ϵ)) · f(OPT ∗ | E)

≥ f(E) + (1 − e−1 − O(ϵ)) · (f(ÕPT | E) − ϵf(E))
≥ (1 − e−1 − O(ϵ)) · f(OPT ). ◀

5 Conclusion

In this paper, we present a deterministic (1 − e−1 − ϵ)-approximation algorithm for SMKP.
Our algorithm is inspired by the viewpoint regarding SMKP instances as exponential-size
instances of submodular maximization subject to a cardinality or partition matroid constraint.
Thus our algorithm is conceptually much simpler than that of Fairstein et al. [9].

As pointed out by [9], it remains open to remove the loss of ϵ in the approximation
ratio. As a first step, we present a (1 − e−1)-approximation algorithm for SMKP when
the number of bins m is constant in the full version of this paper. Recently, a randomized
0.385-approximation algorithm for non-monotone SMKP was proposed in [10]. It is an
interesting question to design deterministic algorithms for this problem.
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Abstract
Spanner construction is a well-studied problem and Delaunay triangulations are among the most
popular spanners. Tight bounds are known if the Delaunay triangulation is constructed using an
equilateral triangle, a square, or a regular hexagon. However, all other shapes have remained elusive.
In this paper we extend the restricted class of spanners for which tight bounds are known. We prove
that Delaunay triangulations constructed using rectangles with aspect ratio A have spanning ratio
at most

√
2
√

1 + A2 + A
√

A2 + 1, which matches the known lower bound.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Spanners, Delaunay Triangulation, Spanning Ratio

Digital Object Identifier 10.4230/LIPIcs.ESA.2023.99

Related Version Full Version: https://arxiv.org/abs/2211.11987

1 Introduction

A geometric graph is a weighted graph in the plane where every vertex v has coordinates
(xv, yv) and the weight of an edge between any two vertices is the Euclidean distance between
its endpoints. A geometric spanner is defined to be a class of subgraphs where the shortest
path distance between any two vertices is at most the Euclidean distance between these two
vertices multiplied by a constant t. The smallest constant t for which this property holds
is called the spanning ratio or stretch factor of the geometric spanner. A comprehensive
overview on the topic of geometric spanners can be found in the book by Narasimhan and
Smid [11] and the survey by Bose and Smid [5].

One way to construct a geometric spanner is by using a Delaunay triangulation. The
Delaunay triangulation is defined as follows: for any two vertices u and v, if there exists
a circle with u and v on its boundary and no other vertex in its interior, then the edge
between u and v is part of the Delaunay triangulation. Equivalently, this can be defined
using three vertices u, v, and w, where the triangle connecting these three vertices is part of
the Delaunay triangulation if and only if the unique circle through these three points does
not contain any other vertices in its interior. For simplicity, it is usually assumed that no
three points are collinear and no four points lie on the boundary of the circle.

The tight spanning ratio of the Delaunay triangulation is not known. Dobkin et al. [8]
showed an upper bound of π(1 +

√
5)/2 ≈ 5.09 for the spanning ratio, which Keil and

Gutwin [9] improved to 4π/3
√

3 ≈ 2.42. Currently, the best upper bound is 1.998, proven by
Xia [14]. A lower bound on the spanning ratio was provided by Bose et al. [4], who showed
that this is strictly larger than π

2 . This was later improved to 1.59 by Xia and Zhang [15].
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Usually, the distance between two points u and v in the plane is defined as ((xu − xv)2 +
(yu − yv)2)

1
2 . This distance can be generalized to a family of metrics Lp where the distance

between u and v is defined as ((xu − xv)p + (yu − yv)p)
1
p . The shape of a “circle” varies

in different metrics, leading to different Delaunay triangulations in different metrics. For
example, the shape of the “circle” would be a diamond or square in the L1 and L∞ metrics.

In 1986, Lee and Lin [10] introduced the notion of generalized Delaunay triangulations.
Instead of using a circle to construct the graph, generalized Delaunay triangulations can be
constructed using arbitrary geometric shapes. It was proven that any generalized Delaunay
triangulation constructed using a convex shape is a spanner [2].

Although generalized Delaunay triangulations using arbitrary convex shapes are known
to be spanners, their spanning ratios are less well understood. Tight bounds on the spanning
ratio are only known when an equilateral triangle, a square, or a regular hexagon is used
in the construction. When using equilateral triangles, Chew [7] showed that the spanning
ratio is 2. When using squares, Chew [6] showed an upper bound of

√
10 ≈ 3.16, and

Bonichon et al. [1] showed a matching upper and lower bound of
√

4 + 2
√

2 ≈ 2.61. When
using regular hexagons, Perković et al. [12] showed a tight bound of 2.

Bose et al. [3] studied generalized Delaunay triangulations using rectangles. For rectangles
with aspect ratio A, they showed an upper bound of

√
2(2A + 1) and a lower bound of√

2
√

1 + A2 + A
√

A2 + 1. Inspired by the proof of Bonichon et al. [1], by significantly ex-
tending and generalizing their approach we obtain a tight bound of

√
2
√

1 + A2 + A
√

A2 + 1.
This extends the class of shapes for which a tight bound is known for the spanning ratio of
generalized Delaunay triangulations. We note that the proof of our result is not a straight-
forward extension of Bonichon et al. [1], as we cannot simply rotate our lemmas to get them
to prove both the horizontal and vertical cases simultaneously.

2 Preliminaries

Let us first formally define the rectangle Delaunay triangulation of a set of points P . Given
an arbitrary axis-aligned rectangle R, the rectangle Delaunay triangulation is constructed
by considering scaled translates of R (rotations are not allowed). Such scaled translates
are also referred to as homothets. Given two vertices u and v in P , the rectangle Delaunay
triangulation contains an edge between u and v if and only if there exists a scaled translate of
R with u and v on its boundary which contains no vertices of P in the interior. Equivalently,
the rectangle Delaunay triangulation contains a triangle △uvw if and only if there exists
a scaled translate of R with u, v, and w on its boundary which contains no vertices of
P in the interior. We note that different rectangles can give different rectangle Delaunay
triangulations.

For our proofs, we assume that P is in general position. Specifically, we assume that no
four vertices lie on the boundary of any scaled translate of R and that no two vertices lie on
a line parallel to any of the sides of R (i.e., no two vertices lie on a vertical or horizontal
line). These assumptions are common for Delaunay graphs and are required to guarantee
their planarity.

Throughout this paper, we use A to denote the aspect ratio of the rectangle R used in
the construction of the rectangle Delaunay triangulation, i.e., A = l/s where l and s are
the length of the long and short side of R respectively. We also use dt(u, v) to denote the
length of the shortest path in the rectangle Delaunay triangulation between u and v, dx(u, v)
to denote the difference in x-coordinate between u and v, dy(u, v) to denote the difference
in y-coordinate between u and v, and d2(u, v) to denote the Euclidean distance between u

and v.
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Due to space constraints, we have deferred proofs of several lemmas to the full version of
this paper [13].

3 Bounding the Spanning Ratio

To show an upper bound on the spanning ratio between any two vertices u and v, we consider
the sequence of triangles T1, T2, ..., Tk intersecting with line segment uv. The order of this
sequence is determined by the order in which these triangles are encountered when following
uv from u to v (as shown in Figure 1). Each triangle except T1 and Tk intersects the interior
of uv twice. Hence, we can define the last line segment of Ti (1 ≤ i < k) that intersects
uv as the line segment involved in the second intersection. We use hi and li to denote the
endpoints of the last line segment of Ti, where hi is the endpoint above uv and li is the
endpoint below uv. Since all Ti are triangles, we have that for every Ti and Ti+1, either
li = li+1 or hi = hi+1. We also define h0 = l0 = u, lk = hk = v.

u

v

h1

R1

R2

R3

R4

R5

R6

l1 = l2

h2 = h3

l3 = l4

h4 = h5

l5

Figure 1 The triangles intersecting uv and their associated rectangles and hi and li.

Each triangle Ti also has an associated rectangle Ri: the scaled translate of R that has
the three vertices of Ti on its boundary. For ease of reference, we use W (west), N (north),
E (east), and S (south) to refer to the four sides of a rectangle. We also use these sides to
classify an edge, for example, if an endpoint of an edge lies on the W side of Ri and the
other endpoint lies on the N side of Ri, we call the edge a WN edge. We also define u to
be on the E side of R0 (not associated with any triangle), as this will simplify some of the
lemma statements.

Define L to be the length of the vertical side of R divided by the length of the horizontal
size of R. Note that L can be either A or 1/A. For our proofs, it is helpful to distinguish
between edges of slope less than the slope of the diagonal of R and those with larger slope.

▶ Definition 1. An edge is gentle if it has a slope within [-L, L]. Otherwise it is steep.

ESA 2023
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We let u, v be any two vertices in the rectangle Delaunay triangulation. Fix the (x, y)-
coordinate system so that we have Ldx(u, v) > dy(u, v). Note that this is without loss of
generality, since we can simply switch the x- and y-axes if needed. This implies that if we
consider a scaled translate of R with u lying in the lower left corner and passing through
v, then v lies on the E side. Without loss of generality, we assume u to be at the origin
(0, 0) and v to be at (x, y). We use R(u, v) to denote the rectangle with u and v in opposite
corners.

In order to bound the spanning ratio of the rectangle Delaunay triangulation, we first
define what it means for a rectangle to have potential. This later helps us to bound the total
length of the shortest path between u and v in the rectangle Delaunay triangulation.

▶ Definition 2. The inductive point c of a rectangle Ri is the point with larger x-coordinate
out of hi and li. Rectangle Ri is inductive if edge (li, hi) is gentle.

▶ Definition 3. A rectangle Ri has potential if dt(u, hi) + dt(u, li) + dRi
(hi, li) ≤ (2 + 2L)xi

where dRi
(hi, li) is the Euclidean distance when moving clockwise from hi to li along the

sides of Ri and xi is the x-coordinate of the E side of Ri.

We are now ready to prove that rectangles that are not inductive pass on their potential.

▶ Lemma 4. If R(u, v) is empty and (u, v) is not an edge in the rectangle Delaunay
triangulation, then R1 has potential. Furthermore, for any 1 ≤ i < k, if Ri has potential but
is not inductive, then Ri+1 has potential.

Next, we bound the distance from u to the inductive point of a rectangle with potential
when this inductive point lies on the E side of the rectangle.

▶ Lemma 5. If rectangle Ri has potential and its inductive point c (c = hi or c = li) lies on
the E side of Ri, then dt(u, c) ≤ (1 + L)xc.

Now we shift our focus to paths consisting of gentle edges (see Figure 2).

▶ Definition 6. If hj is on the E side of Rj, the maximal high path ending at hj is hj

itself; otherwise, it is the path hi, hi+1, ..., hj such that hm is not on the E side of Rm (for
i < m ≤ j) and either i = 0 or hi is on the E side of Ri.

If lj is on the E side of Rj, the maximal low path ending at lj is lj; otherwise, it is the
path li, li+1, ..., lj such that lm is not on the E side of Rm (for i < m ≤ j) and either i = 0
or li is on the E side of Ri.

Next, we bound the length of these maximal high and maximal low paths.

▶ Lemma 7. If the path hi, hi+1, ..., hj is a maximal high path then dt(hi, hj) ≤ (xhj
−

xhi
) + (yhj

− yhi
). Similarly, if the path li, li+1, ..., lj is a maximal low path then dt(li, lj) ≤

(xlj
− xli

) + (yli
− ylj

).

We now use the above lemmas to prove bounds on the path length from u to the inductive
point on the first inductive rectangle (if one exists) when R(u, v) does not contain any vertices.
Note that in Property 2 of Lemma 8, we differentiate between L = A and L = 1/A, which is
crucial in proving Theorem 10.

▶ Lemma 8. Let R(u, v) not contain any vertices of P and let (u, v) not be an edge of the
rectangle Delaunay triangulation. The following properties hold:
1. If no rectangle in R1, ..., Rk is inductive then

dt(u, v) ≤ (L +
√

L2 + 1)x + y.
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Ri

Ri+1

Rj

hj

hi

hi+1

Figure 2 An example of a maximal high path (thick edges). The other edges of the triangles are
shown using dashed line segments.

2. Otherwise, let Rj be the first inductive rectangle in the sequence R1, ..., Rk.
a. If hj is the inductive point of Rj and L = A, then

dt(u, hj) + (yhj − y) ≤ (A +
√

A2 + 1)xhj .

b. If hj is the inductive point of Rj and L = 1
A , then

dt(u, hj) + A(yhj
− y) ≤

(
1 +

√
1

A2 + 1
)

xhj
.

c. If lj is the inductive point of Rj and L = A, then

dt(u, lj) − ylj ≤ (A +
√

A2 + 1)xlj .

d. If lj is the inductive point of Rj and L = 1
A , then

dt(u, lj) − Aylj
≤

(
1 +

√
1

A2 + 1
)

xlj
.

Proof. Property 1: By Lemma 4, if no rectangle in R1, ..., Rk is inductive then the last
rectangle must have potential since R1 has potential. Since no two vertices have the same
y-coordinate, v must lie on the E side of the last rectangle. Thus, we can use Lemma 5 to
conclude that dt(u, v) ≤ (1 + L)x ≤ (L +

√
L2 + 1)x + y.

Property 2a: We consider the situation where Rj is the first inductive rectangle in the
sequence R1, ..., Rk. Let li, ..., lj−1 = lj be the maximal low path ending at lj , and recall that
hj is the inductive point of Rj . By Lemma 4 we know that Ri has potential, since R1 has
potential and no rectangle before Ri is inductive. Since Ri has potential and li is on the E
side of Ri, by Lemma 5 we know dt(u, li) ≤ (1 + L)xli . See Figure 3. Since L = A, we have

dt(u, hj) + (yhj − y) ≤ dt(u, li) + dt(li, lj) + d2(lj , hj) + (yhj − y)
≤ (1 + A)xli

+ dt(li, lj) + d2(lj , hj) + yhj
.

Since li, ..., lj−1 = lj is a maximal low path, by Lemma 7 we know dt(li, lj) ≤ (xlj
− xli

) +
(yli

− ylj
). Hence, we obtain that:

dt(u, hj) + (yhj
− y) ≤ (1 + A)xli

+ (xlj
− xli

) + (yli
− ylj

) + d2(lj , hj) + yhj

= Axli + xlj + (yli − ylj ) + d2(lj , hj) + yhj .

ESA 2023
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Ri

Rjlj

li
u

R1

. . . . . .

hj

Figure 3 In Property 2a, Rj is the first inductive rectangle, hj is the inductive point of Rj , and
li, ..., lj−1 = lj is the maximal low path ending at lj . Ri has potential and li is on the E side of Ri.

Because Rj is inductive, we know that edge (lj , hj) is gentle. Therefore, d2(lj , hj) ≤√
1 + A2(xhj − xlj ) and thus:

dt(u, hj) + (yhj
− y) ≤ Axli

+ xlj
+ (yli

− ylj
) +

√
1 + A2(xhj

− xlj
) + yhj

≤ Axli
+ (yli

− ylj
) +

√
1 + A2xhj

+ yhj
.

Furthermore, again because edge (lj , hj) is gentle, we have that yhj
− ylj

≤ A(xhj
− xlj

)
and therefore:

dt(u, hj) + (yhj − y) ≤ Axli + yli +
√

1 + A2xhj + A(xhj − xlj )

≤ yli +
√

1 + A2xhj + Axhj .

Note that when i ≤ j, then xli ≤ xlj . Finally, since R(u, v) is empty, li must lie below it
and thus yli

< 0, which leads to: dt(u, hj) + (yhj
− y) ≤ (A +

√
A2 + 1)xhj

.
Property 2b: Let Rj be the first inductive rectangle in the sequence R1, ..., Rk. Let

li, ..., lj−1 = lj be the maximal low path ending at lj , and recall that hj is the inductive
point of Rj . By Lemma 4, Ri has potential, and by Lemma 5, we have dt(u, li) ≤ (1 + L)xli

.
Since L = 1

A , we have

dt(u, hj) + A(yhj
− y) ≤ dt(u, li) + dt(li, lj) + d2(lj , hj) + A(yhj

− y)
≤ (1 + 1

A )xli
+ dt(li, lj) + d2(lj , hj) + Ayhj

.

Since li, ..., lj−1 = lj is a maximal low path, by Lemma 7 we know dt(li, lj) ≤ (xlj
−

xli) + (yli − ylj ). Because Rj is inductive, we know that edge (lj , hj) is gentle. Therefore,
d2(lj , hj) ≤

√
1 + 1

A2 (xhj
− xlj

) and thus:

dt(u, hj) + A(yhj − y) ≤ (1 + 1
A

)xli + (xlj − xli ) + (yli − ylj ) + d2(lj , hj) + Ayhj

≤ (1 + 1
A

)xli + (xlj − xli ) + (yli − ylj ) +
√

1 + 1
A2 (xhj − xlj ) + Ayhj

≤ 1
A

xli + (yli − ylj ) +
√

1 + 1
A2 xhj + Ayhj .
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Again because edge (lj , hj) is gentle, we have that yhj − ylj ≤ 1
A (xhj − xlj ). Therefore

A(yhj
− ylj

) ≤ (xhj
− xlj

). We have A ≥ 1 and therefore:

dt(u, hj) + A(yhj
− y) ≤ 1

A xli
+ A(yli

− ylj
) +

√
1 + 1

A2 xhj
+ Ayhj

≤ 1
A xli

+ Ayli
+ (xhj

− xlj
) +

√
1 + 1

A2 xhj
.

Since 1
A ≤ 1 and i ≤ j, we have 1

A xli ≤ xli ≤ xlj . Therefore

dt(u, hj) + A(yhj − y) ≤ Ayli + xhj +
√

1 + 1
A2 xhj ≤ (1 +

√
1

A2 + 1)xhj .

Property 2c: Let Rj be the first inductive rectangle in the sequence R1, ..., Rk. Now, let
hi, ..., hj−1 = hj be the maximal high path ending at hj , and recall that lj is the inductive
point of Rj . By Lemma 4, Ri has potential, and by Lemma 5, we have dt(u, hi) ≤ (1 + L)xhi

.
Since L = A,

dt(u, lj) − ylj
≤ dt(u, hi) + dt(hi, hj) + d2(hj , lj) − ylj

≤ (1 + A)xhi
+ dt(hi, hj) + d2(hj , lj) − ylj

.

Since hi, ..., hj−1 = hj is a maximal high path, by Lemma 7 we know dt(hi, hj) ≤
(xhj

− xhi
) + (yhj

− yhi
). It follows that:

dt(u, lj) − ylj
≤ (1 + A)xhi

+ (xhj
− xhi

) + (yhj
− yhi

) + d2(hj , lj) − ylj

= Axhi
+ xhj

+ (yhj
− yhi

) + d2(hj , lj) − ylj
.

Because Rj is inductive, we know that edge (lj , hj) is gentle. Therefore, d2(hj , lj) ≤√
1 + A2(xlj

− xhj
) and thus:

dt(u, lj) − ylj
≤ Axhi

+ xhj
+ (yhj

− yhi
) +

√
1 + A2(xlj

− xhj
) − ylj

≤ Axhi
+ (yhj

− yhi
) +

√
1 + A2xlj

− ylj
.

Furthermore, again because edge (lj , hj) is gentle, we have that yhj
− ylj

≤ A(xlj
− xhj

)
and therefore:

dt(u, lj) − ylj
≤ Axhi

− yhi
+

√
1 + A2xlj

+ A(xlj
− xhj

)

≤ −yhi
+

√
1 + A2xlj

+ Axlj
.

Finally, since R(u, v) is empty, hi must lie above it and thus yhi > 0, which leads to
dt(u, lj) − ylj

≤ (A +
√

A2 + 1)xlj
.

Property 2d: Let Rj be the first inductive rectangle in the sequence R1, ..., Rk. Now, let
hi, ..., hj−1 = hj be the maximal high path ending at hj , and recall that lj is the inductive
point of Rj . By Lemma 4, Ri has potential, and by Lemma 5, we have dt(u, hi) ≤ (1 + L)xhi .
Since L = 1

A ,

dt(u, lj) − Aylj ≤ dt(u, hi) + dt(hi, hj) + d2(hj , lj) − Aylj

≤ (1 + 1
A )xhi + dt(hi, hj) + d2(hj , lj) − Aylj .

Since hi, ..., hj−1 = hj is a maximal high path, by Lemma 7 we know dt(hi, hj) ≤ (xhj
−

xhi)+(yhj −yhi). Because edge (lj , hj) is gentle, we have that d2(hj , lj) ≤
√

1 + 1
A2 (xlj −xhj ).

It follows that:

ESA 2023
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dt(u, lj) − Aylj
≤ (1 + 1

A )xhi
+ (xhj

− xhi
) + (yhj

− yhi
) + d2(hj , lj) − Aylj

≤ (1 + 1
A )xhi

+ (xhj
− xhi

) + (yhj
− yhi

) +
√

1 + 1
A2 (xlj

− xhj
) − Aylj

≤ 1
A xhi + (yhj − yhi) +

√
1 + 1

A2 xlj − Aylj .

Again because edge (lj , hj) is gentle, we have that yhj
− ylj

≤ 1
A (xlj

− xhj
). Therefore

A(yhj
− ylj

) ≤ (xlj
− xhj

) and

dt(u, lj) − Aylj ≤ 1
A xhi + A(yhj − yhi) +

√
1 + 1

A2 xlj − Aylj

≤ 1
A xhi

+ (xlj
− xhj

) − Ayhi
+

√
1 + 1

A2 xlj
.

Since 1
A ≤ 1, we have 1

A xhi ≤ xhi ≤ xhj . Thus

dt(u, lj) − Aylj ≤ xlj − Ayhi +
√

1 + 1
A2 xlj

≤ (1 +
√

1
A2 + 1)xlj

.

as required, completing our proof of Property 1, 2a, 2b, 2c and 2d. ◀

Our final ingredient determines the types of edges we can encounter when the y-coordinate
of a vertex differs significantly from that of v.

▶ Lemma 9. Let R(u, v) not contain any vertices of P and let the coordinates of the inductive
point c of Ri be such that it satisfies 0 < L(x − xc) < |y − yc|.

If c = hi and thus 0 < L(x − xc) < yc − y, then let j be the smallest index larger than i

such that L(x − xhj
) ≥ yc − y ≥ 0. All edges on the path hi, ..., hj are NE edges.

If c = li and thus 0 < L(x − xc) < y − yc, then let j be the smallest index larger than i

such that L(x − xlj
) ≥ y − yc ≥ 0. All edges on the path li, ..., lj are SE edges.

We now have all the ingredients needed to prove our main result. Recall that, up to
Lemma 9, the (x, y)-coordinate system is fixed so that Ldx(u, v) > dy(u, v), i.e. Lx ≥ y.
However, for ease of exposition, in Theorem 10 we instead fix the (x, y)-coordinate system so
that all the homothet rectangles have their vertical sides being the long sides.

Note that in Lemma 8, we obtain different upper bounds depending on whether L = A

or L = 1/A. These two cases must be treated differently for the inductive proof of Theorem 10
to hold. In particular, in Theorem 10 the bound for Adx(u, v) ≥ dy(u, v) does not coincide
with the rotated version of the bound for Adx(u, v) < dy(u, v).

▶ Theorem 10. Let u, v be any two vertices in the rectangle Delaunay triangulation. If
Adx(u, v) ≥ dy(u, v), then

dt(u, v) ≤ (A +
√

A2 + 1)x + y.

Otherwise,

dt(u, v) ≤ Ax +
(

1 +
√

1
A2 + 1

)
y.

Proof. We consider all pairs of vertices (u, v) and order them by the size of the smallest
scaled translate of R that has both u and v on its boundary. We perform induction based on
the rank in this ordering.
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The first pair (u, v) in this ordering has the smallest overall scaled translate of R and
can thus contain no vertices of P , as any such vertex would imply the existence of a
smaller rectangle with two vertices on its boundary, contradicting that we are considering
the smallest one. Hence, by construction there exists an edge between u and v and thus
dt(u, v) = d2(u, v) ≤ x + y, satisfying the induction hypothesis, regardless of whether or not
Adx(u, v) ≥ dy(u, v).

Next, consider an arbitrary pair (u, v) and assume the theorem holds for all pairs (u, v)
defining a smaller rectangle. We consider two cases: R(u, v) does not contain any vertex of
P , and R(u, v) contains some vertices of P .
Case 1: There are no vertices inside R(u, v). We distinguish two subcases, either Ax ≥ y or

Ax < y.
Subcase Ax ≥ y: Note that since the vertical side of the homothets is the longer side,

for the (x, y)-coordinate system we have L = A, and Lx ≥ y.
If (u, v) is an edge in the rectangle Delaunay triangulation, then dt(u, v) ≤ x + y ≤
(A +

√
A2 + 1)x + y. Otherwise, if no rectangle in R1, ..., Rk is inductive then by

Property 1 of Lemma 8 we know dt(u, v) ≤ (A +
√

A2 + 1)x + y.
Hence, we focus on the case where there is an inductive rectangle. Let Ri be the
first inductive rectangle in the sequence R1, ..., Rk. We distinguish the case where
the inductive point is hi and where it is li. If hi is the inductive point of Ri then by
Property 2a of Lemma 8 we know dt(u, hi) + (yhi

− y) ≤ (A +
√

A2 + 1)xhi
and thus

dt(u, hi) ≤ (A +
√

A2 + 1)xhi − (yhi − y).
If A(x − xhi

) ≥ yhi
− y ≥ 0, we let hj = hi in the remainder. Otherwise, we let j be

the smallest index larger than i such that A(x − xhj ) ≥ yhj − y ≥ 0. By Lemma 9,
hj exists and all edges on the path hi, ..., hj are NE edges. By triangle inequality,
dt(hm, hm+1) ≤ (xhm+1 −xhm)+(yhm −yhm+1) for any hm and hm+1 on this path. This
implies that dt(hi, hj) ≤ (xhj

− xhi
) + (yhi

− yhj
). Since A(x − xhj

) ≥ yhj
− y ≥ 0 and

the smallest scaled translate of R with hj and v on its boundary is smaller than that
of u and v, we can use induction to get dt(hj , v) ≤ (A +

√
A2 + 1)dx(hj , v) + dy(hj , v).

Putting everything together, we obtain that

dt(u, v) ≤ dt(u, hi) + dt(hi, hj) + dt(hj , v)

≤ (A +
√

A2 + 1)xhi − (yhi − y) + (xhj − xhi ) + (yhi − yhj )

+ (A +
√

A2 + 1)dx(hj , v) + dy(hj , v)

= (A +
√

A2 + 1)xhi + (xhj − xhi ) + (y − yhj )

+ (A +
√

A2 + 1)dx(hj , v) + dy(hj , v)

≤ (A +
√

A2 + 1)dx(u, hj) − dy(hj , v) + (A +
√

A2 + 1)dx(hj , v) + dy(hj , v)

= (A +
√

A2 + 1)x.

proving the theorem when hi is the inductive point of Ri.
If li is the inductive point of Ri then by Property 2c of Lemma 8 we know dt(u, li)−yli

≤
(A +

√
A2 + 1)xli and thus dt(u, li) ≤ (A +

√
A2 + 1)xli + yli .

If A(x − xli) ≥ y − yli , we let lj = li in the remainder. Otherwise, we let j be
the smallest index larger than i such that A(x − xlj

) ≥ y − yc ≥ 0. By Lemma 9,
lj exists and all edges on the path li, ..., lj are SE edges. By triangle inequality,
dt(lm, lm+1) ≤ (xlm+1 − xlm) + (ylm+1 − yhm) for any lm and lm+1 on this path. This
implies that dt(li, lj) ≤ (xlj

− xli
) + (ylj

− yli
). Since A(x − xlj

) ≥ y − ylj
≥ 0 and

the smallest scaled translate of R with lj and v on its boundary is smaller than that
of u and v, we can use induction to get dt(lj , v) ≤ (A +

√
A2 + 1)dx(lj , v) + dy(lj , v).

Putting everything together, this implies that

ESA 2023
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dt(u, v) ≤ dt(u, li) + dt(li, lj) + dt(lj , v)

≤ (A +
√

A2 + 1)xli + yli + (xlj − xli ) + (ylj − yli )

+ (A +
√

A2 + 1)dx(lj , v) + dy(lj , v)

≤ (A +
√

A2 + 1)xli + (xlj − xli ) + ylj + (A +
√

A2 + 1)dx(lj , v) + dy(lj , v)

≤ (A +
√

A2 + 1)x + y.

completing the proof of Case 1 when Ax ≥ y.

Subcase Ax < y: Consider the (x′, y′)-coordinate system where the x′-axis equals the
y-axis and the y′-axis equals the x-axis. See Figure 4. When we look at the homothet
rectangles R1, . . . , Rk intersecting the segment uv in the (x′, y′)-coordinate system, the
horizontal side of the homothets is the longer side and we have L = 1/A. Therefore,
Ax < y implies Lx′ > y′.

u

v

x

y

x′

y′ u

v
R1

R2

R1

R2

Figure 4 Homothet rectangles R1, . . . , Rk in the (x′, y′)-coordinate system, for k = 2.

If (u, v) is an edge in the rectangle Delaunay triangulation, then dt(u, v) ≤ x′ + y′ ≤
(1 +

√
1

A2 + 1)y + Ax. If no rectangle in R1, ..., Rk is inductive then by Property 1 of

Lemma 8 we know dt(u, v) ≤ ( 1
A +

√
1

A2 + 1)x′ + y′ ≤ (1 +
√

1
A2 + 1)y + Ax.

When there is an inductive rectangle, define Ri, hi and li as above. If hi is the
inductive point of Ri then by Property 2b of Lemma 8 we know dt(u, hi)+A(y′

hi
−y′) ≤

(1 +
√

1
A2 + 1)x′

hi
.

If 1
A (x′ − x′

hi
) ≥ y′

hi
− y′ ≥ 0, we let hj = hi in the remainder. Otherwise, we let j be

the smallest index larger than i such that 1
A (x′ − x′

hj
) ≥ y′

hj
− y′ ≥ 0. By Lemma 9,

hj exists and all edges on the path hi, ..., hj are NE edges. By triangle inequality,
dt(hi, hj) ≤ (x′

hj
−x′

hi
)+(y′

hi
−y′

hj
). Since 1

A (x′ −x′
hj

) ≥ y′
hj

−y′ ≥ 0 and the smallest
scaled translate of R with hj and v on its boundary is smaller than that of u and v,
we can use induction to get dt(hj , v) ≤ (1 +

√
1

A2 + 1)dy(hj , v) + Adx(hj , v). Putting
everything together, we obtain
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dt(u, v) ≤ dt(u, hi) + dt(hi, hj) + dt(hj , v)

≤ (1 +
√

1
A2 + 1)x′

hi
− A(y′

hi
− y′) + (x′

hj
− x′

hi
) + (y′

hi
− y′

hj
)

+ (1 +
√

1
A2 + 1)dy(hj , v) + Adx(hj , v)

≤ (1 +
√

1
A2 + 1)x′

hi
− A(y′

hi
− y′) + (x′

hj
− x′

hi
) + A(y′

hi
− y′

hj
)

+ (1 +
√

1
A2 + 1)dy(hj , v) + Adx(hj , v)

≤ (1 +
√

1
A2 + 1)x′

hi
+ (x′

hj
− x′

hi
) − Ady′(hj , v)

+ (1 +
√

1
A2 + 1)dy(hj , v) + Adx(hj , v).

Recall that the y′-axis in the (x′, y′)-coordinate system equals the x-axis in the (x, y)-
coordinate system, so Ady′(hj , v) = Adx(hj , v). Thus

dt(u, v) ≤ (1 +
√

1
A2 + 1)x′

hj
+ (1 +

√
1

A2 + 1)dy(hj , v)

= (1 +
√

1
A2 + 1)y.

If li is the inductive point of Ri then by Property 2d of Lemma 8 we know dt(u, li) −
Ay′

li
≤ (1 +

√
1

A2 + 1)x′
li

. Thus dt(u, li) ≤ (1 +
√

1
A2 + 1)x′

li
+ Ay′

li
.

If 1
A (x′ − x′

li
) ≥ y′ − y′

li
≥ 0, we let lj = li in the remainder. Otherwise, we let j be

the smallest index larger than i such that 1
A (x′ − x′

lj
) ≥ y′ − y′

lj
≥ 0. By Lemma 9,

lj exists and all edges on the path li, ..., lj are SE edges. By triangle inequality,
dt(li, lj) ≤ (x′

lj
− x′

li
) + (y′

lj
− y′

li
). Since 1

A (x′ − x′
lj

) ≥ y′ − y′
lj

≥ 0 and the smallest
scaled translate of R with lj and v on its boundary is smaller than that of u and v,
we can use induction to get dt(lj , v) ≤ (1 +

√
1

A2 + 1)dy(lj , v) + Adx(lj , v). Thus we
obtain that

dt(u, v) ≤ dt(u, li) + dt(li, lj) + dt(lj , v)

≤ (1 +
√

1
A2 + 1)x′

li
+ Ay′

li
+ (x′

lj
− x′

li
) + (y′

lj
− y′

li
)

+ (1 +
√

1
A2 + 1)dy(lj , v) + Adx(lj , v)

≤ (1 +
√

1
A2 + 1)x′

li
+ Ay′

li
+ (x′

lj
− x′

li
) + A(y′

lj
− y′

li
)

+ (1 +
√

1
A2 + 1)dy(lj , v) + Adx(lj , v)

= (1 +
√

1
A2 + 1)x′

li
+ (x′

lj
− x′

li
) + Ay′

lj

+ (1 +
√

1
A2 + 1)dy(lj , v) + Adx(lj , v).

Using that Ay′
lj

= Axlj , we obtain

dt(u, v) ≤ (1 +
√

1
A2 + 1)ylj

+ (1 +
√

1
A2 + 1)dy(lj , v) + Ax

= (1 +
√

1
A2 + 1)y + Ax.

completing the proof of Case 1.
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Case 2: There are vertices of P inside R(u, v). We distinguish two subcases, either Ax ≥ y

or Ax < y.
Subcase Ax ≥ y: We split R(u, v) into three regions formally defined as follows:

A = {p | p is inside R(u, v) such that Adx(u, p) < dy(u, p)}, B = {p |
p is inside R(u, v) such that Adx(u, p) ≥ dy(u, p) and Adx(p, v) ≥ dy(p, v)}, C = {p |
p is inside R(u, v) such that Adx(p, v) < dy(p, v)}. Informally, these three regions can
be constructed by considering the line through u and the line through v parallel to the
line through the diagonal of R and labelling the resulting regions A, B, and C from
left to right (see Figure 5(a)).

u

v

A

B

C

u

v

A

B

C

(a) (b)

Figure 5 (a) The three regions in R(u, v) when Ax ≥ y. (b) The three regions in R(u, v) when
Ax < y.

If there exists a vertex p inside region B, then we can apply induction on the pairs (u, p),
which satisfies Adx(u, p) ≥ dy(u, p), and (p, v), which satisfies Adx(p, v) ≥ dy(p, v):

dt(u, v) ≤ dt(u, p) + dt(p, v)

≤ (A +
√

A2 + 1)dx(u, p) + dy(u, p) + (A +
√

A2 + 1)dx(p, v) + dy(p, v)

= (A +
√

A2 + 1)x + y.

If there is no vertex inside region B, we define Ru to be the smallest scaled translate of
R that has u on its lower left corner and some vertex p ∈ A in R(u, v) on its boundary.
Similarly, we define Rv to be the smallest scaled translate of R that has v on its upper
right corner and some vertex q ∈ C in R(u, v) on its boundary. Since R(u, v) is not
empty, at least one of p and q must exist. Assume without loss of generality that p

exists. In this case we have that Adx(p, v) > dy(p, v) and the smallest homothet with
p and v on its boundary is smaller than that of u and v. If (u, p) is an edge in the
rectangle Delaunay triangulation, then we obtain that:

dt(u, v) ≤ dt(u, p) + dt(p, v)
= d2(u, p) + dt(p, v)

≤ dx(u, p) + dy(u, p) + (A +
√

A2 + 1)dx(p, v) + dy(p, v)

≤ (A +
√

A2 + 1)x + y.

An analogous argument can be used if q exists and (v, q) is an edge in the rectangle
Delaunay triangulation.
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Hence, it remains to consider the case where (u, p) is not an edge, in which case Ru is
not empty. This implies that there exists a p′ ∈ C such that (u, p′) is an edge. We
have that Adx(p′, v) < dy(p′, v) and the smallest scaled translate of R with p′ and v

on its boundary is smaller than that of u and v. By the induction hypothesis, we have:

dt(u, v) ≤ dt(u, p′) + dt(p′, v)
= d2(u, p′) + dt(p′, v)

≤ dx(u, p′) + dy(u, p′) + Adx(p′, v) +
(

1 +
√

1
A2 + 1

)
dy(p′, v)

≤ Ax +
(

1 +
√

1
A2 + 1

)
y.

Since Ax ≥ y and
(

1 +
√

1
A2 + 1

)
> 1, we have

dt(u, v) ≤ 1Ax +
(

1 +
√

1
A2 + 1

)
y

≤
(

1 +
√

1
A2 + 1

)
Ax + 1y

=
(

A +
√

A2 + 1
)

x + y.

Subcase Ax < y: We split R(u, v) into three regions formally defined as follows:
A = {p | p is inside R(u, v) such that Adx(v, p) ≥ dy(v, p)}, B = {p |
p is inside R(u, v) such that Adx(v, p) < dy(v, p) and Adx(u, p) < dy(u, p)}, C =
{p | p is inside R(u, v) such that Adx(u, p) ≥ dy(u, p)}. See Figure 5(b).
If there exists a vertex p inside region B, then we can apply induction on the pairs (u, p),
which satisfies Adx(u, p) < dy(u, p), and (p, v), which satisfies Adx(v, p) < dy(v, p):

dt(u, v) ≤ dt(u, p) + dt(p, v)

≤ Adx(u, p) + (1 +
√

1
A2 + 1)dy(u, p) + Adx(p, v) + (1 +

√
1

A2 + 1)dy(p, v)

= Ax + (1 +
√

1
A2 + 1)y.

If there is no vertex inside region B, we define Ru to be the smallest scaled translate of
R that has u on its lower left corner and some vertex p ∈ A in R(u, v) on its boundary.
Similarly, we define Rv to be the smallest scaled translate of R that has v on its upper
right corner and some vertex q ∈ C in R(u, v) on its boundary. Since R(u, v) is not
empty, at least one of p and q must exist. Assume without loss of generality that p

exists. In this case we have that Adx(p, v) > dy(p, v) and the smallest rectangle with
p and v on its boundary is smaller than that of u and v. If (u, p) is an edge in the
rectangle Delaunay triangulation, then we obtain that:

dt(u, v) ≤ dt(u, p) + dt(p, v)
= d2(u, p) + dt(p, v)

≤ dx(u, p) + dy(u, p) + (A +
√

A2 + 1)dx(p, v) + dy(p, v)

≤ (A +
√

A2 + 1)x + y.
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Since Ax < y, we have

dt(u, v) ≤ (A +
√

A2 + 1)x + y

= (1 +
√

1 + 1
A2 )Ax + 1y

≤ Ax + (1 +
√

1
A2 + 1)y.

An analogous argument can be used if q exists and (v, q) is an edge in the rectangle
Delaunay triangulation.
Hence, it remains to consider the case where (u, p) is not an edge, in which case Ru is
not empty. This implies that there exists a p′ ∈ C such that (u, p′) is an edge. We
have that Adx(p′, v) < dy(p′, v) and the smallest scaled translate of R with p′ and v

on its boundary is smaller than that of u and v. By the induction hypothesis, we have:

dt(u, v) ≤ dt(u, p′) + dt(p′, v)
= d2(u, p′) + dt(p′, v)

≤ dx(u, p′) + dy(u, p′) + Adx(p′, v) +
(

1 +
√

1
A2 + 1

)
dy(p′, v)

≤ Ax +
(

1 +
√

1
A2 + 1

)
y.

This completes the proof of Case 2 and the theorem. ◀

We can now use Theorem 10 to show an upper bound of the spanning ratio of the rectangle
Delaunay triangulation. For any pair of vertices u, v in the graph, if Adx(u, v) ≥ dy(u, v) we
have

dt(u, v)
d2(u, v) <

(A +
√

A2 + 1)x + y√
x2 + y2

.

This function is maximized when y/x = 1/(A +
√

A2 + 1), where the function is equal to

√
2
√

1 + A2 + A
√

1 + A2.

On the other hand, when Adx(u, v) < dy(u, v), we can get

dt(u, v)
d2(u, v) <

Ax + (1 +
√

1
A2 + 1)y√

x2 + y2
.

This function is maximized when y/x = (1 +
√

1
A2 + 1)/A, where the function value equals√

A2 + 2 + 2
√

1 + 1
A2 + 1

A2 ,

which is at most
√

2
√

1 + A2 + A
√

1 + A2. This implies the main result of the paper.

▶ Theorem 11. The spanning ratio of the rectangle Delaunay triangulation is at most√
2
√

1 + A2 + A
√

1 + A2, where A is the aspect ratio of the rectangle used in its construction.

Since it was already known that
√

2
√

1 + A2 + A
√

1 + A2 is a lower bound on the
spanning ratio [3], we obtain that the bound of

√
2
√

1 + A2 + A
√

1 + A2 is tight.
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Abstract
We show that a canonical labeling of a random n-vertex graph can be obtained by assigning to each
vertex x the triple (w1(x), w2(x), w3(x)), where wk(x) is the number of walks of length k starting from
x. This takes time O(n2), where n2 is the input size, by using just two matrix-vector multiplications.
The linear-time canonization of a random graph is the classical result of Babai, Erdős, and Selkow.
For this purpose they use the well-known combinatorial color refinement procedure, and we make a
comparative analysis of the two algorithmic approaches.
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1 Introduction

A walk in a graph G = (V, E) is a sequence of vertices x0x1 . . . xk such that (xi, xi+1) ∈ E

for every 0 ≤ i < k. We say that x0x1 . . . xk is a walk of length k from x0 to xk. For a
vertex x ∈ V , let wG

k (x) denote the total number of walks of length k in G starting from x.
Furthermore, we define wG

k (x) = (wG
1 (x), . . . , wG

k (x)).
The Erdős-Rényi random graph G(n, p) is a graph on the vertex set [n] = {1, . . . , n}

where each pair of distinct vertices x and y is adjacent with probability p independently of
the other pairs. In particular, G(n, 1/2) is a random graph chosen equiprobably from among
all graphs on [n].

▶ Theorem 1. Let G = G(n, 1/2). Then

wG
3 (x) ̸= wG

3 (y) for all x ̸= y

with probability at least 1 − O( 4
√

ln n/n).

If α is an isomorphism from a graph G to a graph H, then clearly wG
k (x) = wH

k (α(x)).
Theorem 1, therefore, shows that the map x 7→ wG

3 (x) is a canonical labeling of G for almost
all n-vertex graphs G. This labeling is easy to compute. Indeed, if A is the adjacency matrix
of G and 1 is the all-ones vector-column of length n, then

(wG
k (1), . . . , wG

k (n))⊤ = Ak
1.

After noting that wG
1 (x) = d(x), where d(x) denotes the degree of a vertex x, this yields the

following simple canonical labeling algorithm.
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Algorithm A. Canonical labeling of a random graph.

Input: a graph G on [n] with adjacency matrix A.
1. Form a vector D1 = (d(1), . . . , d(n))⊤.
2. Compute D2 = AD1 and D3 = AD2.
3. Let W be the matrix formed by the three columns D1, D2, D3 and let W1, . . . , Wn be the

rows of W .
4. If there are identical rows Wx = Wy for some x ̸= y, then give up. Otherwise,
5. to each vertex x, assign the label Wx.

▶ Corollary 2. Algorithm A with high probability canonizes a random n-vertex graph, taking
time O(n2) on every input.

The notation O(·) in the time bound means a linear function up to the logarithmic
factor log n log log n corresponding to the complexity of integer multiplication [7], that is,
O(n2) = O(n2 log n log log n). If the model of computation assumes that multiplication of
two integers takes a constant time, then we just set O(n2) = O(n2). This time bound stems
from the fact that the two matrix-vector multiplications in Step 2 are the most expensive
operations performed by the algorithm. Note that this bound is essentially linear because a
random graph is with high probability dense, having (1/4 + o(1))n2 edges.

The linear-time canonization of almost all graphs is a classical result of Babai, Erdős, and
Selkow [2], which was a basis for settling the average-case complexity of graph isomorphism
in [3]. While our algorithm is based solely on basic linear-algebraic primitives, the method
used in [2, 3] is purely combinatorial. Before comparing the two approaches, we put Theorem
1 in the context of the earlier work on walk counts and their applications to isomorphism
testing.

Of course, Algorithm A can be enhanced by taking into account also longer walks, that
is, by involving also other vector-columns Ak

1 for k > 3. Note that there is no gain in
considering these vectors for k ≥ n. Indeed, if Ak

1 is a linear combination of the vectors
1, A1, A2

1, . . . , Ak−1
1, the same is obviously true also for Ak+1

1 (cf. [11, Lemma 1] and
see also [6] for a more detailed linear-algebraic analysis). Therefore, it suffices to start our
matrix W from the column 1 and add a subsequent column Ak

1 as long as this increases
the rank of W , which is possible only up to k = n − 1. The n × n matrix W = W G formed
by the columns 1, A1, . . . , An−1

1 is called the walk matrix of the graph G (WM for brevity).
The entries of W G = (wx,k)1≤x≤n, 0≤k<n are nothing else as the walk counts wx,k = wG

k (x).
Note that wG

0 (x) = 1 as there is a single walk of length 0 from x.
We say that a graph G is WM-discrete if the rows of the walk matrix W G are pairwise

different, i.e., W G
x ̸= W G

y for all x ̸= y. For a such G, the walk matrix yields a canonical
labeling where each vertex x is assigned the vector W G

x = (wG
0 (x), wG

1 (x), . . . , wG
n−1(x)).

Note that if W G has identical rows, then this matrix is singular; cf. [5, Section 7]. O’Rourke
and Touri [10] prove that the walk matrix of a random graph is non-singular with high
probability. This implies that a random graph is WM-discrete with high probability and,
hence, almost all graphs are canonizable by computing the n × n walk matrix similarly to
Algorithm A. Note that this takes time O(n3), which is outperformed by our Corollary 2
due to using the truncated variant of WM of size n × 4.

Remarkably, non-singular walk matrices can be used to test isomorphism of two given
graphs directly rather than by computing their canonical forms. If graphs G and H are
isomorphic, then their walk matrices W G and W H can be obtained from one another by
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rearranging the rows. If the last condition is satisfied, we write W G ≈ W H . This relation
between matrices is efficiently checkable just by sorting the rows in the lexicographic order.
We say that a graph G is WM-identifiable if, conversely, for all H we have G ∼= H whenever
W G ≈ W H . Liu and Siemons [8] prove that if the walk matrix of a graph is non-singular,
then it uniquely determines the adjacency matrix. This implies by [10] that a random graph
is WM-identifiable with high probability.

Note that, by a simple counting argument, almost all n-vertex graphs cannot be identified
by the shorter version of the walk matrix of size n × k as long as k = o(

√
n/ log n). In

particular, Theorem 1 cannot be extended to the identifiability concept.
The combinatorial approach of Babai, Erdős, and Selkow [2] is based on the color

refinement procedure (CR for brevity) dating back to the sixties (e.g., [9]). CR begins with
a uniform coloring of all vertices in an input graph and iteratively refines a current coloring
according to the following principle: If two vertices are equally colored but have distinct
color frequencies in their neighborhoods, then they get distinct colors in the next refinement
step. The refinement steps are executed as long as the refinement is proper. As soon as
the color classes stay the same, CR terminates and outputs the current coloring (a detailed
description of the algorithm is given in Section 3.1). CR distinguishes graphs G and H if
their color palettes are distinct. A graph G is called CR-identifiable if it is distinguishable by
CR from every non-isomorphic H. CR can also be used for computing a canonical labeling
of a single input graph. We say that a graph G is CR-discrete if CR assigns a unique color
to each vertex of G. It is easy to prove that every CR-discrete graph is CR-identifiable. We
do not know whether or not this is true also for the corresponding WM concepts.

Powers and Sulaiman [11] discuss examples when the CR-partition and the WM-partition
are different, that is, CR and the WM-based vertex-classification algorithm give different
results. In particular, [11, Fig. 3] shows a graph which is, in our terminology, CR-discrete
but not WM-discrete. We give a finer information about the relationship between the two
algorithmic approaches.

▶ Theorem 3.
1. Every WM-discrete graph is also CR-discrete.
2. Every WM-identifiable graph is also CR-identifiable.
3. There is a graph that is

(a) CR-discrete (hence also CR-identifiable) and
(b) neither WM-discrete
(c) nor WM-identifiable.

Theorem 3 shows that the WM approach is superseded by the CR algorithm with regard to
canonization of a single input graph and testing isomorphism of two input graphs. Moreover,
CR is sometimes more successful with respect to both algorithmic problems. Thus, WM can
be regarded as a weaker algorithmic tool for canonical labeling and isomorphism testing,
which is not so surprising as this approach is actually based on a single basic linear-algebraic
primitive, namely matrix-vector multiplication. In this sense, Algorithm A is arguably
simpler than the classical CR-based canonization of a random graph as it demonstrates
that a random graph can be canonized in an essentially linear time even with less powerful
computational means.

Theorems 1 and 3 are proved in Sections 2 and 3 respectively.

ESA 2023
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2 Canonization of a random graph

2.1 Probability preliminaries
Let X be a binomial random variable with parameters n and p, that is, X =

∑n
i=1 Xi where

Xi’s are mutually independent and, for each i, we have Xi = 1 with probability 1 and Xi = 0
with probability 1 − p. We use the notation X ∼ Bin(n, p) when X has this distribution. As
well known, X is well-concentrated around its expectation np.

▶ Lemma 4 (Chernoff’s bound; see, e.g., [1, Corollary A.1.7]). If X ∼ Bin(n, p), then

P[|X − np| > t] ≤ 2e−2t2/n

for every t ≥ 0.

▶ Lemma 5. If X and Y are independent random variables, each having the probability
distribution Bin(n, 1/2), then P[X = Y ] < 1/

√
πn.

Proof. Using the well-known estimate(
2n

n

)
<

22n

√
πn

, (1)

we obtain

P[X = Y ] =
n∑

k=0

((
n

k

)
2−n

)2
= 2−2n

n∑
k=0

(
n

k

)2
= 2−2n

(
2n

n

)
<

1√
πn

,

where the last equality is a special case of Vandermonde’s convolution. ◀

2.2 Proof of Theorem 1
For a vertex i ∈ [n], recall that w3(i) = (wG

1 (i), wG
2 (i), wG

3 (i)). By the union bound,

P[w3(i) = w3(j) for some i, j] ≤
∑
i,j

P[w3(i) = w3(j)] =
(

n

2

)
P[w3(1) = w3(2)].

Therefore, it suffices to prove that

P[w3(1) = w3(2)] = O(n−9/4 ln1/4 n). (2)

Let NH(v) denote the neighborhood of a vertex v in a graph H. Given two sets U1 ⊂
[n] \ {1} and U2 ⊂ [n] \ {2}, let G′ = G′(U1, U2) be the random graph G subject to the
conditions NG(1) = U1 and NG(2) = U2. In other terms, G′ is a random graph on [n] chosen
equiprobably among all graphs satisfying these conditions. Let w′

k(i) = wG′

k (i) denote the
number of walks of length k emanating from i in G′ (the dependence of w′

k(i) on the pair
U1, U2 will be dropped for the sake of notational convenience). Define

p(U1, U2) = P
[∑

i∈U1

w′
1(i) =

∑
i∈U2

w′
1(i) and

∑
i∈U1

w′
2(i) =

∑
i∈U2

w′
2(i)
]

.

We have
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P[w3(1) = w3(2)]

=
∑

U1,U2 : |U1|=|U2|

P[w3(1) = w3(2) | NG(1) = U1, NG(2) = U2]

× P[NG(1) = U1, NG(2) = U2]

=
∑

U1,U2 : |U1|=|U2|

p(U1, U2) × P[NG(1) = U1, NG(2) = U2]. (3)

Note first that∑
|U1|=|U2|

P [NG(1) = U1, NG(2) = U2] = P [|NG(1)| = |NG(2)|]

= P [|NG(1) \ {2}| = |NG(2) \ {1}|] = O(n−1/2)

by Lemma 5 because |NG(1) \ {2}| ∼ Bin(n − 2, 1/2) and |NG(2) \ {1}| ∼ Bin(n − 2, 1/2)
are independent binomial random variables. This allows us to derive (2) from (3) if we prove
that

p(U1, U2) = O(n−7/4 ln1/4 n) (4)

for the neighborhood sets U1 and U2.
In fact, we do not need to prove (4) for all pairs U1, U2 because the contribution of some

of them in (3) is negligible. Indeed, set ε(n) = n−1/4. Note that |NG(j)| ∼ Bin(n − 1, 1/2)
for j = 1, 2 and |(NG(1) ∩ NG(2)) \ {1, 2}| ∼ Bin(n − 2, 1/4). By the Chernoff bound (see
Lemma 4), we have (1/2 − ε(n))n ≤ |NG(j)| ≤ (1/2 + ε(n))n for j = 1, 2 and (1/4 − ε(n))n ≤
|NG(1) ∩ NG(2)| ≤ (1/4 + ε(n))n with probability 1 − e−Ω(

√
n). Call a pair U1, U2 standard

if |Uj | for j = 1, 2 and |U1 ∩ U2| are in the same ranges. Thus, all non-standard pairs make a
negligible contribution in (3), and we only have to prove (4) for each standard pair U1, U2.

For a graph H and a subset U ⊂ V (H), let EH(U) denote the set of edges of H with
at least one vertex in U . Given two sets of edges E1 and E2 incident to the vertices in
U1 \ {2} and U2 \ {1} respectively, let G′′ = G′′(U1, U2, E1, E2) be the random graph G′

subject to the conditions EG′(U1 \ {2}) = E1 and EG′(U2 \ {1}) = E2. Let w′′
k(i) = wG′′

k (i)
denote the number of walks of length k emanating from i in G′′ (the dependence of w′′

k(i) on
U1, U2, E1, E2 is dropped for notational simplicity). Using this notation, we can write

p(U1, U2) =
∑

E1,E2:
∑

U1
w′

1(i)=
∑

U2
w′

1(i)

P [EG′(U1 \ {2}) = E1, EG′(U2 \ {1}) = E2]

× P
[∑

i∈U1

w′′
2 (i) =

∑
i∈U2

w′′
2 (i)

]
. (5)

We first show that∑
E1,E2:

∑
U1

w′
1(i)=

∑
U2

w′
1(i)

P [EG′(U1 \ {2}) = E1, EG′(U2 \ {1}) = E2] = O(1/n). (6)

Note that the sum in the left hand side of (6) is equal to the probability that
∑

i∈U1
w′

1(i) =∑
i∈U2

w′
1(i). This equality is equivalent to

∑
i∈U1\(U2∪{2}) w′

1(i) =
∑

i∈U2\(U1∪{1}) w′
1(i),

which in its turn is true if and only if U1 \ (U2 ∪ {2}) and U2 \ (U1 ∪ {1}) send the same
number of edges to [n] \ [(U1 ∪ U2 ∪ {1, 2}) \ (U1 ∩ U2)]. Since the pair U1, U2 is standard,
these numbers are independent binomial random variables with Θ(n2) trials. Equality (6)
now follows by Lemma 5.

ESA 2023
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We now can derive Equality (4) from Equality (6) by proving that

P
[∑

i∈U1

w′′
2 (i) =

∑
i∈U2

w′′
2 (i)

]
= O(n−3/4 ln1/4 n) (7)

for each potential pair E1, E2. Again, it is enough to do this only for most probable pairs
whose contribution in (5) is overwhelming. Specifically, let w′

2(u, v) denote the number of all
paths of length 2 between u and v in G′ and define

∆(i, j) = (w′
2(i, 1) + w′

2(j, 1)) − (w′
2(i, 2) + w′

2(j, 2)).

Note that the numbers w′
2(i, 1), w′

2(j, 1), w′
2(i, 2), w′

2(j, 2) and, hence, the numbers ∆(i, j)
are completely determined by specifying EG′(U1 \ {2}) = E1 and EG′(U2 \ {1}) = E2. We
call a pair E1, E2 standard if ∆(i, j) takes on O(

√
n ln n) different values for i ̸= j from

[n] \ (U1 ∪ U2 ∪ {1, 2}). The following fact shows that it is enough if we prove (7) for each
standard pair E1, E2.

▷ Claim 6. If a pair U1, U2 is standard, then

|{∆(i, j) : i, j ∈ [n] \ (U1 ∪ U2 ∪ {1, 2}), i ̸= j}| = O(
√

n ln n)

with probability 1 − O(n−6).

Proof. Let u1 = |U1|, u2 = |U2|, and u = |U1 ∩ U2|. Note that

∆(i, j) = |NG′(i)∩(U1 \U2)|+|NG′(j)∩(U1 \U2)|−|NG′(i)∩(U2 \U1)|−|NG′(j)∩(U2 \U1)|.

The four terms in the right hand side are independent random variables Bin(u1 − u, 1/2),
Bin(u1 − u, 1/2), Bin(u2 − u, 1/2), Bin(u2 − u, 1/2) respectively. Since N − Bin(N, p) ∼
Bin(N, 1 − p), we conclude that ∆(i, j) ∼ 2u − 2u2 + Bin(2u1 + 2u2 − 4u, 1/2). The Chernoff
bound (see Lemma 4) implies that, for each pair i, j, the inequalities

2u − 2u2 + (u1 + u2 − 2u)
(

1 −
√

2 ln n√
u1 + u2 − 2u

)

≤ ∆(i, j) ≤ 2u − 2u2 + (u1 + u2 − 2u)
(

1 +
√

2 ln n√
u1 + u2 − 2u

)

are violated with probability at most O(n−8). By the union bound, the probability that not
all values ∆(i, j) fall in an integer interval of length at most

2
√

2 ln n(u1 + u2 − 2u) = O(
√

n ln n)

is bounded by O(n−6). ◁

It remains to prove (7) for a fixed standard pair E1, E2. Note that all walks of length 3
starting from 1 and 2 and having at least 2 vertices inside U1 ∪ U2 ∪ {1, 2} are determined
by U1, U2, E1, E2. Let γj = γj(U1, U2, E1, E2) denote the number of such walks starting at j

for j = 1, 2. Let e′′
i,j be the indicator random variable of the presence of the edge {i, j} in

G′′. The equality
∑

i∈U1
w′′

2 (i) =
∑

i∈U2
w′′

2 (i) can be rewritten as

γ1 +
∑

i,j /∈U1∪U2∪{1,2}

e′′
ij(w′

2(i, 1)+w′
2(j, 1)) = γ2 +

∑
i,j /∈U1∪U2∪{1,2}

e′′
ij(w′

2(i, 2)+w′
2(j, 2)), (8)
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where the sums count the walks of length 3 from 1 and 2 whose last two vertices are
outside U1 ∪ U2 ∪ {1, 2}. Since E1, E2 is a standard pair, there exists an integer x ̸= 0
such that ∆(i, j) = x for Ω(n3/2/

√
ln n) pairs i, j. Let Sx be the set of all such pairs. Let

G∗ = G∗(U1, U2, E1, E2, E∗) be obtained from G′′ by exposing all edges except those between
i, j in Sx, where E∗ is the set of exposed edges. Equality (8) is fulfilled if and only if∑

{i,j}∈Sx

e′′
ijx = γ(U1, U2, E1, E2, E∗) (9)

for some integer γ(U1, U2, E1, E2, E∗) which is completely determined by U1, U2, E1, E2, E∗. It
remains to note that the binomial random variable

∑
{i,j}∈Sx

e′′
ij ∼ Bin(|Sx|, 1/2) takes on

any fixed value with probability at most
( |Sx|

⌊|Sx|/2⌋
)
/2|Sx| = O(|Sx|−1/2) = O(n−3/4 ln1/4 n),

where the first equality is due to (1). This completes the proof of Equality (7) and of the
whole theorem.
▶ Remark 7. The probability bound in Theorem 1 cannot be significantly improved be-
cause P[wG

3 (1) = wG
3 (2)] = n−Ω(1). To see this, note first that P[wG

1 (1) = wG
1 (2)] =

Θ(n−1/2) (see the proof of Lemma 5). Assuming that a standard pair U1, U2 with
|U1| = |U2| is fixed, we can similarly show that p(U1, U2) = Θ(n−1), which implies that
P[
(
wG

1 (1), wG
2 (1)

)
=
(
wG

1 (2), wG
2 (2)

)
] = Θ(n−3/2). Showing a polynomial lower bound for

P[
(
wG

1 (1), wG
2 (1), wG

3 (1)
)

=
(
wG

1 (2), wG
2 (2), wG

3 (2)
)
] is a slightly more delicate issue. Follow-

ing the same proof strategy as for the upper bound, we have to ensure that the equation
(9) has at least one integer solution

∑
{i,j}∈Sx

e′′
ij . We can do this because we have enough

freedom in adjusting the right hand side of (9) by choosing an appropriate value of γ1 − γ2.
Indeed, first of all, |x| does not exceed 2n with probability 1. Second, we have an interval of
length at least 100n for the values of γ1 − γ2 that are reachable with probability Ω(n−1). As
easily seen, this is enough for obtaining a desired lower bound.

We leave as an open question whether Theorem 1 can be improved by excluding paths
of length 3. Our conjecture is that this is impossible, that is, Theorem 1 is optimal in this
respect, but proving this poses some technical challenges.

3 Comparing WM and CR

3.1 Color refinement
We begin with a formal description of the color refinement algorithm (CR for short). CR
operates on vertex-colored graphs but applies also to uncolored graph by assuming that their
vertices are colored uniformly. An input to the algorithm consists either of a single graph or
a pair of graphs. Consider the former case first. For an input graph G with initial coloring
C0, CR iteratively computes new colorings

Ci(x) =
(

Ci−1(x), {{Ci−1(y)}}y∈N(x)

)
, (10)

where {{}} denotes a multiset and N(x) is the neighborhood of a vertex x. Denote the
partition of V (G) into the color classes of Ci by Pi. Note that each subsequent partition
Pi+1 is either finer than or equal to Pi. If Pi+1 = Pi, then Pj = Pi for all j ≥ i. Suppose
that the color partition stabilizes in the t-th round, that is, t is the minimum number such
that Pt = Pt−1. CR terminates at this point and outputs the coloring C = Ct. Note that if
the colors are computed exactly as defined by (10), they will require exponentially long color
names. To prevent this, the algorithm renames the colors after each refinement step, using
the same set of no more than n color names.
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We say that a graph G is CR-discrete if C(x) ̸= C(x′) for all x ̸= x′.
If an input consists of two graphs G and H, then it is convenient to assume that their

vertex sets V (G) and V (H) are disjoint. The vertex colorings of G and H define an initial
coloring C0 of the union V (G) ∪ V (H), which is iteratively refined according to (10). The
color partition Pi is defined exactly as above but now on the whole set V (G) ∪ V (H). As
soon as the color partition of V (G) ∪ V (H) stabilizes1, CR terminates and outputs the
current coloring C = Ct of V (G) ∪ V (H). The color names are renamed for both graphs
synchronously.

We say that CR distinguishes G and H if {{C(x)}}x∈V (G) ̸= {{C(x)}}x∈V (H). A graph G

is called CR-identifiable if it is distinguishable by CR from every non-isomorphic H. Note
that every CR-discrete graph is CR-identifiable.

3.2 Proof of Theorem 3

3.2.1 Parts 1 and 2

Parts 1 and 2 of Theorem 3 follow immediately from the lemma below. We prove this lemma
by a direct combinatorial argument. Alternatively, one can use an algebraic approach in [11,
Theorem 2] or the connection to finite variable logics exploited in [4, Lemma 4].

▶ Lemma 8. Let G and H be uncolored n-vertex graphs (the case G = H is not excluded).
Let x ∈ V (G), x′ ∈ V (H), and k be an arbitrary non-negative integer. Then Ck(x) ̸= Ck(x′)
whenever wG

k (x) ̸= wH
k (x′).

Proof. Using the induction on k, we prove that wG
k (x) = wH

k (x′) whenever Ck(x) = Ck(x′).
In the base case of k = 0, these equalities are equivalent just because they are both true by
definition (recall that wG

0 (x) = 0). Assume that Ck(y) = Ck(y′) implies wG
k (y) = wH

k (y′) for
all y ∈ V (G) and y′ ∈ V (H). Let Ck+1(x) = Ck+1(x′). By the definition of the refinement
step, we have {{Ck(y)}}y∈N(x) = {{Ck(y)}}y∈N(x′). Using the induction assumption, from
here we derive the equality

{{
wG

k (y)
}}

y∈N(x) =
{{

wH
k (y)

}}
y∈N(x′). The equality wG

k+1(x) =
wH

k+1(x′) now follows by noting that wG
k+1(x) =

∑
y∈N(x) wG

k (y). ◀

3.2.2 Part 3

We now construct a graph G with the three desired properties (a)–(c). Note that this graph
can be used in an obvious way to produce infinitely many examples separating the strength
of WM and CR.

Let Zn denote the cyclic group with elements 0, 1, . . . , n and operation being the addition
modulo n. Our construction is based on the well-known Shrikhande graph; see, e.g., [12].
This is the Cayley graph of the group Z4 × Z4 with connection set {±(1, 0), ±(0, 1), ±(1, 1)}.
A natural drawing of the Shrikhande graph on the torus can be seen in both parts of Fig. 1.

Recall that a graph G is strongly regular with parameters (n, d, λ, µ) if it has n vertices,
every vertex in G has d neighbors (i.e., G is regular of degree d), every two adjacent vertices of
G have λ common neighbors, and every two non-adjacent vertices have µ common neighbors.
We will use two properties of the Shrikhande graph:

It is a strongly regular graph with parameters (16, 6, 2, 2).
The pairs u, v of non-adjacent vertices in the graph are split into two categories depending
on whether the two common neighbors of u and v are adjacent or not.
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A

a2

a3

a1

B

b2

b1 b3

Figure 1 Two colored versions of the Shrikhande graph.

Consider two copies A and B of the Shrikhande graph. In each of A and B, let us
individualize three vertices, a1, a2, a3 in A and b1, b2, b3 in B, by assigning unique colors
as shown in Fig. 1. The vertices ai and bi for each i = 1, 2, 3 are equally colored. All
non-individualized vertices are considered also colored, all in the same color. Of the three
vertices a1, a2, a3, only a1 and a2 are adjacent, and the vertices b1, b2, b3 have the same
adjacency pattern. An important difference between A and B is that the two common
neighbors of b2 and b3 are adjacent while the two common neighbors of a2 and a3 are not.2
This implies that the vertex-colored graphs A and B are non-isomorphic.

Before presenting further details, we give a brief outline of the rest of the proof. We
will begin with establishing some useful properties of A and B. Though these graphs are
non-isomorphic, it is useful to notice that they are still quite similar in the sense that they
are indistinguishable by one round of CR (Claim 9). On the other hand, both A and B are
CR-discrete (Claim 10) and are, therefore, distinguished after CR makes sufficiently many
rounds (Claim 11). The desired graph G will be constructed from A and B by connecting the
equally colored vertices, i.e., ai and bi, via new edges and vertices. While a1, a2, a3, b1, b2, b3
are not colored any more in G, their neighborhoods are modified so that their colors are
actually simulated by iterated degrees. This allows us to derive from Claims 10 and 11 that
G is CR-discrete (Claim 12). On the other hand, G is not WM-discrete (Claim 14). In order
to show that some vertices in G have the same numbers of outgoing walks of each length, we
use some basic properties of strongly regular graphs (Claim 13) and the fact that a walk can
leave A or B only via one of the vertices a1, a2, a3, b1, b2, b3 (and here an important role is
played by Claim 9). Finally, we argue that G is not WM-identifiable (Claim 15). Indeed, if
we construct another graph G′ similarly to G but using two copies of A, then G and G′ will
have the same walk matrix.

We now proceed with the detailed proof.

▷ Claim 9. After the first round of CR, the vertex-colored graphs A and B are still
indistinguishable. That is, there is a bijection f : V (A) → V (B) such that C1(x) = C1(f(x))
for all x ∈ V (A).

1 Note that the stabilization on each of the sets V (G) and V (H) can occur earlier than on V (G) ∪ V (H).
2 Using the fact that the Shrikhande graph is arc-transitive, it is easy to check that A and B are defined

uniquely up to isomorphism of colored graphs.
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A B

Figure 2 The colorings of A and B after the first color refinement round. For each i = 1, 2, 3,
the vertices ai and bi have the same unique color. The color of each non-individualized vertex is
determined by its adjacency to the individualized vertices. For example, the color of a vertex in
A means that this vertex is adjacent to a1 and a2 but not to a3.

Proof. Since A and B are regular graphs of the same degree, the equally colored vertices
x ∈ V (A) and x′ ∈ V (B) obtain distinct colors after the first color refinement round only
when their neighborhoods contain different sets of individualized vertices (that is, ai ∈ N(x)
while bi /∈ N(x′) or vice versa for some i = 1, 2, 3). This is not the case for the individualized
vertices because the correspondence ai 7→ bi is a partial isomorphism of A and B. As for
the non-individualized vertices, both A and B have exactly one vertex adjacent to all the
three individualized vertices, three vertices adjacent to exactly two of them, and two vertices
adjacent to none of them. Moreover, in both A and B there are two non-individualized
vertices adjacent to ai (resp. to bi) for each i = 1, 2 and three non-individualized vertices
adjacent to a3 (resp. to b3). The colorings of A and B after the first refinement round are
shown in Fig. 2. ◁

▷ Claim 10. Both vertex-colored graphs A and B are CR-discrete.

Proof. Call a vertex solitary if CR colors it differently than the other vertices of the graphs.
We prove that every vertex in A is solitary. Virtually the same argument applies also to B.
The individualized vertices a1, a2, a3 are solitary from the very beginning. The single vertex
a adjacent to all of them is obviously also solitary. Thus, A contains a triangle subgraph
whose all vertices, namely a, a1, a2, are solitary. Let a′ be the common neighbor of a1 and a2
different from a (recall that the Shrikhande graph is strongly regular with the third parameter
λ = 2). The fact that a1 and a2 are solitary implies that the equality C(a′) = C(x) for
x ̸= a′ can be true only if x = a, which is actually impossible because a is solitary. Therefore,
a′ is solitary too. This argument applies to any triangle whose all vertices are solitary and to
the other common neighbor of any two vertices of this triangle. Consider the graph whose
vertices are the triangles of the Shrikhande graph, adjacent exactly when they share an edge.
This graph (known as the Dyck graph) is obviously connected, which readily implies that all
vertices of A are solitary. ◁

▷ Claim 11. The vertex-colored graphs A and B are distinguishable by CR.

Proof. Recall that A and B are non-isomorphic because the two common neighbors of b2
and b3 are adjacent while the two common neighbors of a2 and a3 are not. By Claim 10,
both A and B are CR-discrete. Assume that A and B are indistinguishable by CR. Let f be
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c4

a3 c3 b3

a2 c2 b2

a1 c1 b1

A B

Figure 3 Construction of G.

the bijection from V (A) to V (B) respecting the final CR-coloring, that is, C(f(x)) = C(x)
for all x ∈ V (A). Since f is not an isomorphism, there are vertices u and v in A such that
u and v are adjacent but f(u) and f(v) are not or vice versa. This shows, however, that
the coloring C is still unstable because, by the refinement rule, u and f(u) have to receive
distinct colors in the next round. This contradiction proves the claim. ◁

We now construct a graph G as the vertex-disjoint union of A and B where each pair
ai, bi is connected via new edges and new intermediate vertices as shown in Fig. 3. Thus,
V (G) = V (A) ∪ V (B) ∪ {c1, c2, c3, c4} where c1, c2, c3, c4 are new connector vertices of degree
2, 3, 4, 1 respectively. The graph G is uncolored, that is, the colors of the six individualized
vertices a1, a2, a3, b1, b2, b3 are erased. The next claim proves Part 3(a) of the theorem.

▷ Claim 12. G is CR-discrete.

Proof. The connector vertices c1, c2, c3, c4 have unique degrees 2, 3, 4, 1 and become solitary
after the first refinement round. The vertices a1, a2, a3 have degree 7, while the other vertices
in A have degree 6. Each of the three vertices a1, a2, a3 is distinguished from the other two
by the adjacency to its own connector. It follows that after the second refinement round,
the colors C2(a1), C2(a2), C2(a3) become unique within A (even when still C2(ai) = C2(bi)).
Claim 10, therefore, implies that eventually C(x) ̸= C(x′) for all x ̸= x′ in A. The same
argument applies to B. Using the same argument as in the proof of Claim 11, we also have
C(x) ̸= C(x′) for all x ∈ V (A) and x′ ∈ V (B). ◁

Let wR
k (x, y) denote the number of walks of length k from a vertex x to a vertex y in a

graph R. We will need the following simple and well-known facts.3

3 Let Pk+1 be a path of length k with end vertices s and t. Note that wR
k (x, y) is equal to the number of

all homomorphisms from Pk+1 to R taking s to x and t to y. Part 2 of Claim 13 is a particular case of
a much more general result about the invariance of homomorphism counts under the Weisfeiler-Leman
equivalence for graphs with designated vertices [4, Lemma 4].
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▷ Claim 13.
1. If R is a regular graph of degree d, then wR

k (x) = dk for every x ∈ V (R).
2. Suppose now that R is a strongly regular graph with parameters (n, d, λ, µ) and fix an

arbitrary k ≥ 0. Then the walk count wR
k (x, x) is the same for every x ∈ V (R). If

x ≠ y, then the value of wR
k (x, y) depends only on the adjacency of x and y (and on the

parameters d, λ, µ).

Proof. Part 1 is obvious. Part 2 follows from an easy inductive argument. Indeed, it is trivially
true for k = 0. Assume that wR

k (x, y) = ak for all adjacent x and y and that wR
k (x, y) = nk

for all non-adjacent unequal x and y. Then wR
k+1(x, x) =

∑
z∈N(x) wR

k (z, x) = d ak. If x and
y are adjacent, then

wR
k+1(x, y) =

∑
z∈N(x)∩N(y)

wR
k (z, y) +

∑
z∈N(x)\N(y)

wR
k (z, y) = λak + (d − λ)nk.

If x and y are non-adjacent and unequal, then

wR
k+1(x, y) =

∑
z∈N(x)∩N(y)

wR
k (z, y) +

∑
z∈N(x)\N(y)

wR
k (z, y) = µak + (d − µ)nk,

enabling the induction step. ◁

We are now prepared to prove Part 3(b) of the theorem.

▷ Claim 14. G is not WM-discrete.

Proof. Define an equivalence relation ≡ on V (G) as follows. Each connector vertex is
equivalent only to itself. Let C1 be the coloring of V (A) ∪ V (B) obtained after the first
round of the execution of CR on the vertex-colored graphs A and B; see Claim 9. We set
x ≡ x′ for x, x′ ∈ V (A) ∪ V (B) if C1(x) = C1(x′). Recall that the largest equivalence class
of ≡ consists of six vertices (three uncolored vertices in A adjacent to a3 but neither to a1
nor to a2 and three uncolored vertices in B adjacent to b3 but neither to b1 nor to b2). We
claim that wG

k (x) = wG
k (x′) for every k whenever x ≡ x′. Indeed, if x ∈ V (A), then

wG
k (x) = wA

k (x) +
3∑

i=1

k−1∑
j=0

wA
j (x, ai)wG

k−j−1(ci). (11)

Here, we separately consider the walks of length k inside A and the walks of length k leaving
A. A walk can leave A only after visiting one of the vertices a1, a2, a3. If such a walk leaves
A first after the j-th step via ai, it arrives at the connector ci and, starting from it, makes
the remaining k − j − 1 steps. The similar equality holds for x ∈ V (B).

It remains to notice that the right hand side of (11) and its analog for B yield the same
value for all x in the same ≡-class. Indeed, let x ≡ x′ and suppose that x ∈ A and x′ ∈ B

(the cases x, x′ ∈ A and x, x′ ∈ B are completely similar). Then wA
k (x) = wB

k (x′) = 6k by
Part 1 of Claim 13. Finally, for each j the equalities wA

j (x, ai) = wB
j (x, bi) for i = 1, 2, 3

follow from Part 2 of Claim 13 by the definition of the relation ≡ and the description of C1
in the proof of Claim 9. ◁

It remains to prove Part 3(c) of the theorem.

▷ Claim 15. G is not WM-identifiable.
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Proof. Construct G′ in the same way as G but using a copy A′ of A instead of B. The graphs
G and G′ are non-isomorphic, basically because A and B are non-isomorphic as colored graphs.
In particular, G′ has an automorphism fixing the connector vertices and transposing A and A′,
whereas G has no non-trivial automorphism by Claim 12. Fix a colored-graph isomorphism
f ′ from A′ to A. Define a bijection F from V (G′) = V (A) ∪ V (A′) ∪ {c1, c2, c3, c4} onto
V (G) = V (A) ∪ V (B) ∪ {c1, c2, c3, c4} so that F (ci) = ci for i = 1, 2, 3, 4, the restriction f of
F to V (A) is as in Claim 9, and the restriction of F to V (A′) is the isomorphism f ′. The
proof of Claim 14 applies to the graph G′ virtually without changes. In particular, the analog
of Equality (11) for G′ allows us to show by a simple induction that wG′

k (x) = wG
k (f(x)) for

x ∈ V (A) and wG′

k (x′) = wG
k (f ′(x′)) for x′ ∈ V (A′), as well as that wG′

k (ci) = wG
k (ci) for

i = 1, 2, 3, 4. Thus, for every x ∈ V (G′) we have wG′

k (x) = wG
k (F (x)) for all k, implying that

G and G′ are WM-indistinguishable. ◁

The proof of Theorem 3 is complete.
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Abstract
In this paper, we propose new techniques for solving geometric optimization problems involving
interpoint distances of a point set in the plane. Given a set P of n points in the plane and an integer
1 ≤ k ≤

(
n
2

)
, the distance selection problem is to find the k-th smallest interpoint distance among all

pairs of points of P . The previously best deterministic algorithm solves the problem in O(n4/3 log2 n)
time [Katz and Sharir, 1997]. In this paper, we improve their algorithm to O(n4/3 log n) time.
Using similar techniques, we also give improved algorithms on both the two-sided and the one-sided
discrete Fréchet distance with shortcuts problem for two point sets in the plane. For the two-sided
problem (resp., one-sided problem), we improve the previous work [Avraham, Filtser, Kaplan, Katz,
and Sharir, 2015] by a factor of roughly log2(m + n) (resp., (m + n)ϵ), where m and n are the sizes
of the two input point sets, respectively. Other problems whose solutions can be improved by our
techniques include the reverse shortest path problems for unit-disk graphs. Our techniques are quite
general and we believe they will find many other applications in future.
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1 Introduction

In this paper, we propose new techniques for solving geometric optimization problems
involving interpoint distances in a point set in the plane. More specifically, the optimal
objective value of these problems is equal to the (Euclidean) distance of two points in the set.
Our techniques usually yield improvements over the previous work by at least a logarithmic
factor (and sometimes a polynomial factor).

The first problem we consider is the distance selection problem: Given a set P of n points
in the plane and an integer 1 ≤ k ≤

(
n
2
)
, the problem asks for the k-th smallest interpoint

distance among all pairs of points of P . The problem can be easily solved in O(n2) time.
The first subquadratic time algorithm was given by Chazelle [10]; the algorithm runs in
O(n9/5 log4/5 n) time and is based on Yao’s technique [21]. Later, Agarwal, Aronov, Sharir,
and Suri [1] gave a better algorithm of O(n3/2 log5/2 n) time and subsequently Goodrich [13]
solved the problem in O(n4/3 log8/3 n) time. Katz and Sharir [14] finally presented an
O(n4/3 log2 n) time algorithm. All above are deterministic algorithms. Several randomized
algorithms have also been proposed for the problem. The randomized algorithm of [1] runs
in O(n4/3 log8/3 n) expected time. Matousek [17] gave another randomized algorithm of

1 Corresponding author.

© Haitao Wang and Yiming Zhao;
licensed under Creative Commons License CC-BY 4.0

31st Annual European Symposium on Algorithms (ESA 2023).
Editors: Inge Li Gørtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz Herman; Article No. 101;
pp. 101:1–101:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:haitao.wang@utah.edu
mailto:yiming.zhao@usu.edu
https://doi.org/10.4230/LIPIcs.ESA.2023.101
https://arxiv.org/abs/2306.01073
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


101:2 Improved Algorithms for Distance Selection and Related Problems

O(n4/3 log2/3 n) expected time. Very recently, Chan and Zheng proposed a randomized
algorithm of O(n4/3) expected time (see the arXiv version of [9]). Also, the time complexity
can be made as a function of k. In particular, Chan’s randomized techniques [7] solved the
problem in O(n log n + n2/3k1/3 log5/3 n) expected time and Wang [18] recently improved
the algorithm to O(n log n + n2/3k1/3 log n) expected time; these algorithms are particularly
interesting when k is relatively small.

In this paper, we present a new deterministic algorithm that solves the distance selection
problem in O(n4/3 log n) time. Albeit slower than the randomized algorithm of Chan and
Zheng [9], our algorithm is the first progress on the deterministic solution since the work of
Katz and Sharir [14] published 25 years ago (30 years if we consider their conference version
in SoCG 1993). One technique we introduce is an algorithm for solving the following partial
batched range searching problem.

▶ Problem 1 (Partial batched range searching). Given a set A of m points and a set B

of n points in the plane and an interval (α, β], one needs to construct two collections of
edge-disjoint complete bipartite graphs Γ(A, B, α, β) = {At × Bt | At ⊆ A, Bt ⊆ B} and
Π(A, B, α, β) = {A′

s × B′
s | A′

s ⊆ A, B′
s ⊆ B} such that the following two conditions are

satisfied.
1. For each pair (a, b) ∈ At × Bt ∈ Γ(A, B, α, β), the (Euclidean) distance ∥ab∥ between

points a ∈ At and b ∈ Bt is in (α, β].
2. For any two points a ∈ A and b ∈ B with ∥ab∥ ∈ (α, β], either Γ(A, B, α, β) has a unique

graph At × Bt that contains (a, b) or Π(A, B, α, β) has a unique graph A′
s × B′

s that
contains (a, b).

In other words, the two collections Γ and Π together record all pairs (a, b) of points a ∈ A

and b ∈ B whose distances are in (α, β]. While all pairs of points recorded in Γ have their
distances in (α, β], this may not be true for Π. For this reason, we sometimes call the point
pairs recorded in Π uncertain pairs.

Note that if context is clear, we sometimes use Γ and Π to refer to Γ(A, B, α, β) and
Π(A, B, α, β), respectively. Also, for short, we use BRS to refer to batched range searching.

In the traditional BRS, which has been studied with many applications, e.g.,[20, 15, 4], the
collection Π is ∅ (and thus Γ itself satisfies the two conditions in Problem 1); for differentiation,
we refer to this case as the complete BRS. The advantage of the partial problem over the
complete problem is that the partial problem can usually be solved faster, with a sacrifice
that some uncertain pairs (i.e., those recorded in Π) are left unresolved. As will be seen later,
in typical applications the number of those uncertain pairs can be made small enough so
that they can be handled easily without affecting the overall runtime of the algorithm. More
specifically, we derive an algorithm to compute a solution for the partial BRS, whose runtime
is controlled by a parameter (roughly speaking, the runtime increases as the graph sizes of Π
decreases). Previously, Katz and Sharir [14] gave an algorithm for the complete problem.
Our solution, albeit for the more general partial problem, even improves their algorithm by
roughly a logarithmic factor when applied to the complete case.

On the one hand, our partial BRS solution helps achieve our new result for the distance
selection problem. On the other hand, combining some techniques for the latter problem, we
propose a general algorithmic framework that can be used to solve any geometric optimization
problem that involves interpoint distances of a set of points in the plane. Consider such a
problem whose optimal objective value (denoted by δ∗) is equal to the distance of two points
of a set P of n points in the plane. Assume that the decision problem (i.e., given δ, decide
whether δ ≥ δ∗) can be solved in TD time. A straightforward algorithm for computing δ∗ is to
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use the distance selection algorithm and the decision algorithm to perform binary search on
interpoint distances of all pairs of points of P ; the algorithm runs in O(log n) iterations and
each iteration takes O(n4/3 log n + TD) time (if we use our new distance selection algorithm).
As such, the total runtime is O((n4/3 log n + TD) log n). Using our new framework, the
runtime can be bounded by O((n4/3 + TD) log n), which is faster when TD = o(n4/3 log n).

One application of this new framework is the two-sided discrete Fréchet distance with
shortcuts problem, or two-sided DFD for short. Fréchet distance is used to measure the
similarity between two curves and many of its variations have been studied, e.g., [2, 3, 4, 5, 6,
12]. To reduce the impact of outliers between two (sampled) curves, discrete Fréchet distance
with shortcuts was proposed [4, 12]. If outliers of only one curve need to be taken care of, it
is called one-sided DFD; otherwise it is two-sided DFD. Avraham, Filtser, Kaplan, Katz, and
Sharir [4] solved the two-sided DFD in O((m2/3n2/3 + m + n) log3(m + n)), where m and n

are the numbers of vertices of the two input curves, respectively. Using our new framework,
we improve their algorithm to O((m2/3n2/3 · 2O(log∗(m+n)) + m log n + n log m) log(m + n))
time, an improvement of roughly O(log2(m + n)).

For the one-sided DFD, the authors of [4] gave a randomized algorithm of O((m+n)6/5+ϵ)
expected time, for any constant ϵ > 0. Using our solution to the partial BRS, we improve
their algorithm to O((m + n)6/5 log8/5(m + n)) expected time. Based on the techniques of [4],
Katz and Sharir [15] proposed an algorithmic framework for solving geometric optimization
problems that involve interpoint distances in a point set. Consider such a problem whose
optimal objective value (denoted by δ∗) is equal to the distance of two points of a set P of
n points in the plane. The framework has two main procedures. The first procedure is to
compute an interval that contains δ∗ and with high probability at most L interpoint distances
of P . Using the interval and a bifurcation tree technique, the second main procedure finally
computes δ∗. Assuming that the decision problem can be solved in TD time, the first main
procedure takes O(n4/3+ϵ/L1/3 + TD · log n · log log n) expected time and the second one
runs in O(L1/2 · TD · log n) time, resulting in an algorithm of O(n4/3+ϵ/L1/3 + TD · log n ·
log log n + L1/2 · TD · log n) expected time in total [4, 15]. Using our partial BRS solution, we
improve the first main procedure to O(n4/3/L1/3 · log2 n + TD · log n · log log n) expected time,
which eliminates the O(nϵ) factor. Thus, the total expected time of the framework becomes
O(n4/3/L1/3 · log2 n + TD · log n · log log n + L1/2 · TD · log n). Our result for the one-sided
DFD is a direct application of this framework. More specifically, since TD = O(m + n) [4],
we set L = (m + n)2/5 log6/5(m + n) and replace n by (m + n) in the above time complexity
as there are two parameters m and n in the problem.

We demonstrate two more applications of the framework where our new techniques lead
to improved results over the previous work: the reverse shortest paths in unit-disk graphs and
its weighted case. Given a set P of n points in the plane and a parameter δ > 0, the unit-disk
graph Gδ(P ) is an undirected graph whose vertex set is P such that an edge connects two
points p, q ∈ P if the (Euclidean) distance between p and q is at most δ. In the unweighted
(resp., weighted) case, the weight of each edge is equal to 1 (resp., the distance between the
two vertices). Given P , two points s, t ∈ P , and a parameter λ, the problem is to compute
the smallest δ∗ such that the shortest path length between s and t in Gδ∗(P ) is at most λ.

Deterministic algorithms of O(n5/4 log7/4 n) and O(n5/4 log5/2 n) times are known for
the unweighted and weighted problems, respectively [20]. The decision problem for the
unweighted case can be solved in O(n) time (after points of P are sorted) [8] while the
weighted case can be solved in O(n log2 n) time [19]. As such, using their framework, Katz
and Sharir [15] solved both problems in O(n6/5+ϵ) expected time (by setting L = n2/5).
With our improvement to the framework, we can now solve the unweighted problem in
O(n6/5 log8/5 n) expected time (by setting L = n2/5 log6/5 n) and solve the weighted case in
O(n6/5 log12/5 n) expected time (by setting L = n2/5/ log6/5 n).
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In summary, we propose two algorithmic frameworks for geometric optimization problems
that involve interpoint distances in a set of points in the plane. The first one is deterministic
while the second one is randomized. The first framework is mainly useful when the decision
algorithm time TD is relatively large (e.g., close to O(n4/3)) while the second one is more
interesting when TD is small (e.g., near linear). Both frameworks rely on our solution to
the partial BRS problem. As optimization problems involving interpoint distances are very
common in computational geometry, we believe our techniques will find more applications.

Outline. The rest of the paper is organized as follows. Section 2 presents our algorithm for
the partial BRS. The distance selection algorithm is described in Section 3. The two-sided
DFD problem is solved in Section 4, where we also propose our first algorithmic framework.
The one-sided DFD and our second algorithmic framework are discussed in Section 5. Due
to the space limit, some details and proofs are omitted but can be found in the full paper.

2 Partial batched range searching

In this section, we present our solution to the partial BRS problem, i.e., Problem 1. We
follow the notation in the statement of Problem 1. In particular, m = |A| and n = |B|.

For any set P of points and a compact region R in the plane, let P (R) denote the subset
of points of P in R, i.e., P (R) = P ∩ R. For any point p in the plane, with respect to the
interval (α, β] in Problem 1, let Dp denote the annulus centered at p and having radii α and
β (e.g., see Fig. 1); so Dp has an inner boundary circle of radius α and an outer boundary
circle of radius β. We assume that Dp includes its outer boundary circle but not its inner
boundary circle. In this way, a point q is in Dp if and only if ∥pq∥ ∈ (α, β]. Define D as the
set of all annuli Dp for all points p ∈ A. Define C to be the set of boundary circles of all
annuli of D. Hence, C consists of 2m circles. For any compact region R in the plane, let CR

denote the subset of circles of C that intersect the relative interior of R.
An important tool we use is the cuttings [11]. For a parameter 1 ≤ r ≤ n, a (1/r)-cutting

Ξ of size O(r2) for C is a collection of O(r2) constant-complexity cells whose union covers
the plane such that the interior of each cell σ ∈ Ξ is intersected by at most m/r circles in
C, i.e., |Cσ| ≤ m/r. We actually use hierarchical cuttings [11]. We say that a cutting Ξ′

c-refines a cutting Ξ if each cell of Ξ′ is contained in a single cell of Ξ and every cell of Ξ
contains at most c cells of Ξ′. Let Ξ0 denote the cutting whose single cell is the whole plane.
Then we define cuttings {Ξ0, Ξ1, ..., Ξk}, in which each Ξi, 1 ≤ i ≤ k, is a (1/ρi)-cutting of
size O(ρ2i) that c-refines Ξi−1, for two constants ρ and c. By setting k = ⌈logρ r⌉, the last
cutting Ξk is a (1/r)-cutting. The sequence {Ξ0, Ξ1, ..., Ξk} of cuttings is called a hierarchical
(1/r)-cutting of C. For a cell σ′ of Ξi−1, 1 ≤ i ≤ k, that fully contains cell σ of Ξi, we say
that σ′ is the parent of σ and σ is a child of σ′. Thus the hierarchical (1/r)-cutting can be
viewed as a tree structure with Ξ0 as the root.

A hierarchical (1/r)-cutting of C can be computed in O(mr) time, e.g., by the algorithm
in [18], which adapts Chazelle’s algorithm [11] for hyperplanes. The algorithm also produces
the subset Cσ for all cells σ ∈ Ξi for all i = 0, 1, . . . , k, implying that the total size of these
subsets is O(mr). In particular, each cell of the cutting produced by the algorithm of [18] is
a pseudo-trapezoid that is bounded by two vertical line segments from left and right, an arc
of a circle of C from top, and an arc of a circle of C from bottom (e.g., see Fig. 2).

Using cuttings, we obtain the following solution to the partial BRS problem.

▶ Lemma 1. For any r with 1 ≤ r ≤ min{m1/3, n1/3}, we can compute in O(mr log r + nr)
time two collections Γ(A, B, α, β) = {At × Bt | At ⊆ A, Bt ⊆ B} and Π(A, B, α, β) = {A′

s ×
B′

s | A′
s ⊆ A, B′

s ⊆ B} of edge-disjoint complete bipartite graphs that satisfy the conditions
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α

β

p

Figure 1 An annulus Dp (the grey region). Figure 2 Illustrating a pseudo-trapezoid.

of Problem 1, with the following complexities: (1) |Γ| = O(r4); (2)
∑

t |At|,
∑

t |Bt| =
O(mr log r + nr); (3) |Π| = O(r4); (4) |A′

s| = O(m/r3) and |B′
s| = O(n/r3) for each

A′
s×B′

s ∈ Π; (5) the number of pairs of points recorded in Π is O(r4 ·m/r3 ·n/r3) = O(mn/r2).

Proof. We begin with constructing a hierarchical (1/r)-cutting {Ξ0, Ξ1, ..., Ξk} for C, which
takes O(mr) time as discussed above. We use Ξ to refer to the set of all cells σ in all cuttings
Ξi, 0 ≤ i ≤ k. Next we compute the set B(σ) for each cell σ in the cutting (recall that B(σ)
refers to the subset of points of B inside σ; we call B(σ) a canonical subset). This can be
done in O(n log r) time in a top-down manner by processing each point of B individually.
Specifically, for each point p ∈ B, suppose we know that p is in σ′ for a cell σ′ in Ξi−1 (which
is true initially when i = 1 as Ξ0 has a single cell that is the entire plane). By examining
each child of σ′ we can find in O(1) time the cell σ of Ξi that contains p and then we add p

to B(σ). Since k = Θ(log r), each point of B is stored in O(log r) canonical subsets and the
total size of all canonical subsets B(σ) for all cells σ ∈ Ξ is O(n log r).

Next, for each cell σ of Ξ, we compute another canonical subset Aσ ⊆ A. Specifically, a
point p ∈ A is in Aσ if the annulus Dp contains σ but not σ’s parent. The subsets Aσ for
all cells σ of Ξ can be computed in O(mr) time. Indeed, recall that the cutting algorithm
already computes Cσ for all cells σ ∈ Ξ. For each Ξi−1, 1 ≤ i ≤ k, for each cell σ′ of Ξi−1, we
consider each circle C ∈ Cσ′ . Let p be the point of A such that C is a bounding circle of the
annulus Dp. For each child σ of σ′, if Dp fully contains σ, then we add p to Aσ. In this way,
Aσ for all cells σ of Ξ can be computed in O(mr) time since

∑
0≤i≤k

∑
σ′∈Ξi

|Cσ′ | = O(mr)
and each cell σ′ has O(1) children. As such, the total size of Aσ for all cells σ ∈ Ξ is O(mr).

By definition, for each cell σ ∈ Ξ, for any point a ∈ Aσ and any point b ∈ B(σ), we have
∥ab∥ ∈ (α, β]. As such, we return {Aσ × B(σ) | σ ∈ Ξ} as a subcollection of Γ(A, B, α, β) to
be computed for the lemma. Note that the complete bipartite graphs of {Aσ × B(σ) | σ ∈ Ξ}
are edge-disjoint. The size of the subcollection is equal to the number of cells of the
hierarchical cutting, which is O(r2). Also, we have shown above that

∑
σ∈Ξ |Aσ| = O(mr)

and
∑

σ∈Ξ |B(σ)| = O(n log r).
For each cell σ of the last cutting Ξk, we have |Cσ| ≤ m/r. Let Âσ denote the subset of

points p ∈ A such that Dp has a bounding circle in Cσ. We do not know whether distances
between points of Âσ and points of B(σ) are in (α, β] or not. If |B(σ)| > n/r2, then we
arbitrarily partition B(σ) into subsets of size between n/(2r2) and n/r2. We call these
subsets standard subsets of B(σ). Since |B| = n and we have O(r2) cells in cutting Ξk, the
number of standard subsets of all cells of Ξk is O(r2). For each standard subset B̂(σ) ⊆ B(σ),
we form a pair (Âσ, B̂(σ)) as an “unsolved” subproblem. Then we have O(r2) subproblems.
Note that |Âσ| ≤ m/r and |B̂(σ)| ≤ n/r2. If we apply the same algorithm recursively on each
subproblem, then we have the following recurrence relation (which holds for any 1 ≤ r ≤ m):

T (m, n) = O(mr + n log r) + O(r2) · T (m

r
,

n

r2 ). (1)
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Note that if we use T (m, n) to represent the total size of At and Bt of all complete
bipartite graphs At × Bt in the subcollection of Γ(A, B, α, β) that have been produced as
above, then we have the same recurrence as above. If N(m, n) denotes the number of these
graphs, then we have the following recurrence:

N(m, n) = O(r2) + O(r2) · N(m

r
,

n

r2 ).

We now solve the problem in a “dual” setting by switching the roles of A and B, i.e., define
annuli centered at points of B and compute the hierarchical cutting for their bounding circles.
Then, symmetrically we have the following recurrences (which holds for any 1 ≤ r ≤ n):

T (m, n) = O(nr + m log r) + O(r2) · T ( m

r2 ,
n

r
), (2)

N(m, n) = O(r2) + O(r2) · N( m

r2 ,
n

r
).

By applying (2) to each subproblem of (1) using the same parameter r and we can obtain
the following recurrence:

T (m, n) = O(mr log r + nr) + O(r4) · T ( m

r3 ,
n

r3 ).

Similarly, we have

N(m, n) = O(r4) + O(r4) · N( m

r3 ,
n

r3 ).

The above recurrences tell us that in O(mr log r + nr) time we can compute a collection
of O(r4) edge-disjoint complete bipartite graphs At × Bt with At ⊆ A and Bt ⊆ B such that
for any two points a ∈ At and b ∈ Bt their distance ∥ab∥ lies in (α, β]. Further, the size of
all such At’s and Bt’s is bounded by O(mr log r + nr). We return the above collection as
Γ(A, B, α, β) for the lemma.

In addition, we have also O(r4) graphs A′
s × B′

s with A′
s ⊆ A and B′

s ⊆ B corresponding
to the unsolved subproblems T (m/r3, n/r3) and we do not know whether ∥ab∥ ∈ (α, β] for
points a ∈ A′

s and b ∈ B′
s. We return the collection of all such graphs as Π(A, B, α, β) for

the lemma. Hence, |Π(A, B, α, β)| = O(r4), and |A′
s| ≤ m/r3 and |B′

s| ≤ n/r3 for each
graph A′

s × B′
s in the collection. The number of pairs of points recorded in Π(A, B, α, β) is

O(|Π(A, B, α, β)| · m/r3 · n/r3), which is O(mn/r2). This proves the lemma. ◀

Theorem 2 solves the complete BRS by running the algorithm of Lemma 1 recursively.

▶ Theorem 2. We can compute in O(m2/3n2/3 · 2O(log∗(m+n)) + m log n + n log m) time a
collection Γ(A, B, α, β) = {At × Bt | At ⊆ A, Bt ⊆ B} of edge-disjoint complete bipartite
graphs that satisfy the conditions of Problem 1 (with Π(A, B, α, β) = ∅), with the following
complexities: (1) |Γ| = O(m2/3n2/3 ·log∗(m+n)+m+n); (2)

∑
t |At|,

∑
t |Bt| = O(m2/3n2/3 ·

2O(log∗(m+n)) + m log n + n log m).

Proof. To solve the complete BRS problem, the main idea is to apply the recurrence (2)
recursively until the size of each subproblem becomes O(1). We first consider the symmetric
case where m = n. By setting r = n1/3/ log n and applying (2) with m = n, we obtain the
following

T (n, n) = O(n4/3) + O(n4/3/ log4 n) · T (log3 n, log3 n). (3)
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Similarly, we have

N(n, n) = O(n4/3/ log4 n) + O(n4/3/ log4 n) · N(log3 n, log3 n). (4)

The recurrences solve to T (n, n) = n4/3 ·2O(log∗ n) and N(n, n) = O(n4/3 · log∗ n). This means
that in n4/3 · 2O(log∗ n) time we can compute a collection Γ(A, B, α, β) = {At × Bt | At ⊆
A, Bt ⊆ B} of O(n4/3 log∗ n) edge-disjoint complete bipartite graphs, with

∑
t |At|,

∑
t |Bt| =

n4/3 · 2O(log∗ n), and it satisfies the conditions of Problem 1 with Π(A, B, α, β) = ∅.
For the asymmetric case, i.e., m ̸= n, it is solved by utilizing the above symmetric case

result; the details can be found in the full paper. ◀

For comparison, Katz and Sharir [14] solved the complete BRS problem in O((m2/3n2/3 +
m + n) log m) time by producing O(m2/3n2/3 + m + n) complete bipartite graphs whose
total vertex set size is O((m2/3n2/3 + m + n) log m)). Our result improves their runtime and
vertex set size by almost a logarithmic factor with slightly more graphs produced.

3 Distance selection

In this section, we present our algorithm for the distance selection problem. Let P be a set
of n points in the plane. Define E(P ) as the set of distances of all pairs of points of P . Given
an integer 1 ≤ k ≤

(
n
2
)
, the problem is to find the k-th smallest value in E(P ), denoted by δ∗.

Given any δ, the decision problem is to determine whether δ ≥ δ∗. Wang [18] recently gave
an O(n4/3) time algorithm that can compute the number of values of E(P ) at most δ, denoted
by kδ. Observe that δ ≥ δ∗ if and only if kδ ≥ k. Thus, using Wang’s algorithm [18], the
decision problem can be solved in O(n4/3) time. We should point out that the O(n4/3 log2 n)
time algorithm of Katz and Sharir [14] for computing δ∗ utilizes a decision algorithm of
O(n4/3 log n) time. However, even if we replace their decision algorithm by Wang’s O(n4/3)
time algorithm, the runtime of the overall algorithm for computing δ∗ is still O(n4/3 log2 n)
because other parts of the algorithm dominate the total time. To reduce the overall time
to O(n4/3 log n), new techniques are needed, in addition to using the faster O(n4/3) time
decision algorithm. These new techniques include, for instance, Lemma 1 for the partial BRS
problem, as will be seen below.

Before presenting the details of our algorithm, we first give the following lemma, which is
critical to our algorithm and is obtained by using Lemma 1.

▶ Lemma 3. Given an interval (α, β], Problem 1 with A = P and B = P can be solved
in O(n4/3) time by computing two collections Γ(P, P, α, β) = {At × Bt | At, Bt ⊆ P}
and Π(P, P, α, β) = {A′

s × B′
s | A′

s, B′
s ⊆ P} with the following complexities: (1) |Γ| =

O(n4/3/ log4 log n); (2)
∑

t |At|,
∑

t |Bt| = O(n4/3); (3) |Π| = O(n4/3/ log4 log n); (4)
|A′

s|, |B′
s| = O(log3 log n), for each A′

s × B′
s ∈ Π.

Proof. We first apply Lemma 1 with A = P , B = P , and r = n1/3/ log n. This constructs a
collection Γ1 = {At × Bt | At, Bt ⊆ P} of O(n4/3/ log4 n) edge-disjoint complete bipartite
graphs in O(n4/3) time. The total size of vertex sets of these graphs is O(n4/3), i.e.,∑

t |At|,
∑

t |Bt| = O(n4/3). We also have a collection Π1 = {A′
s × B′

s | A′
s, B′

s ⊆ P} of
O(n4/3/ log4 n) edge-disjoint complete bipartite graphs that record uncertain point pairs,
with |A′

s|, |B′
s| = O(log3 n).

Hence, the number of uncertain pairs of points of P (i.e., we do not know whether their
distances are in (α, β]) is

∑
s |A′

s| · |B′
s| = O(n4/3 log2 n). To further reduce this number,

we apply Lemma 1 on every pair (A′
s, B′

s) of Π1. More specifically, for each pair (A′
s, B′

s)
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of Π1, we apply Lemma 1 with A = A′
s, B = B′

s, and r = log n/ log log n. This computes
a collection Γs of O(log4 n/ log4 log n) edge-disjoint complete bipartite graphs in O(log4 n)
time; the total size of vertex sets of all graphs in Γs is O(log4 n). We also have a collection
Πs of O(log4 n/ log4 log n) edge-disjoint complete bipartite graphs. The size of each vertex
set of each graph of Πs is bounded by O(log3 log n). The total time for Lemma 1 on all
pairs (A′

s, B′
s) of Π1 as above is O(n4/3). We return Γ1 ∪

⋃
s Γs as collection Γ, and

⋃
s Πs

as collection Π in the lemma statement. As such, the complexities in the lemma hold. ◀

In what follows, we describe our algorithm for computing δ∗. Like Katz and Sharir’s
algorithm [14], our algorithm proceeds in stages. Initially, we have I0 = (0, +∞]. In each
j-th stage, an interval Ij = (αi, βj ] is computed from Ij−1 such that Ij must contain δ∗

and the number of values of E(P ) in Ij is a constant fraction of that in Ij−1. Specifically,
we will prove that |E(P ) ∩ Ij | = O(n2ρj) holds for each j, for some constant ρ < 1. Once
|E(P ) ∩ Ij | is no more than a threshold (to be given later; as will be seen later, this threshold
is not constant, which is a main difference between our algorithm and Katz and Sharir’s
algorithm [14]), we will compute δ∗ directly. In the following we discuss the j-th stage of the
algorithm. We assume that we have an interval Ij−1 = (αj−1, βj−1] containing δ∗.

We first apply Lemma 3 with (α, β] = (αj−1, βj−1]. This is another major difference
between our algorithm and Katz and Sharir’s algorithm [14], where they solved the complete
BRS problem, while we only solve a partial problem (this saves time by a logarithmic factor).
Applying Lemma 3 produces a collection Γj−1 = {At ×Bt | At, Bt ⊆ P} of O(n4/3/ log4 log n)
edge-disjoint complete bipartite graphs, with

∑
t |At|,

∑
t |Bt| = O(n4/3), as well as another

collection Πj−1 of O(n4/3/ log4 log n) graphs. By Lemma 3 (3) and (4), the number of pairs
of points of P in Πj−1 is O(n4/3 log2 log n).

If
∑

t |At| · |Bt| ≤ n4/3 log n, which is our threshold, then this is the last stage of the
algorithm and we compute δ∗ directly by Lemma 4. Each edge of the graph in Γj−1 ∪ Πj−1
connects two points of P ; we say that the distance of the two points is induced by the edge.

▶ Lemma 4. If
∑

t |At| · |Bt| ≤ n4/3 log n, then δ∗ can be computed in O(n4/3 log n) time.

Proof. We first explicitly compute the set S of distances induced from edges of all graphs of
Γj−1 and Πj−1. Since

∑
t |At| · |Bt| ≤ n4/3 log n and the number of edges of all graphs of Πj−1

is O(n4/3 log2 log n), we have |S| = O(n4/3 log n) and S can be computed in O(n4/3 log n)
time by brute force. Then, we compute the number kαj−1 of values of E(P ) that are at most
αj−1, which can be done in O(n4/3) time [18]. Observe that δ∗ is the (k − kαj−1)-th smallest
value in S. Hence, using the linear time selection algorithm, we can find δ∗ in O(|S|) time,
which is O(n4/3 log n). ◀

We now assume
∑

t |At| · |Bt| > n4/3 log n. The rest of the algorithm for the j-th iteration
takes O(n4/3) time. For each graph At × Bt ∈ Γj−1, if |At| < |Bt|, then we switch the name
of At and Bt, i.e., At now refers to Bt and Bt refers to the original At. Note that this does
not change the solution of the partial BRS produced by Lemma 3 and it does not change the
complexities of Lemma 3 either. This name change is only for ease of the exposition. Now
we have |At| ≥ |Bt| for each graph At × Bt ∈ Γj−1. Let mt = |At| and nt = |Bt|.

We partition each At into g = ⌊mt/nt⌋ subsets At1, At2, . . . , Atg so that each subset
contains nt elements except that the last subset Atg contains at least nt but at most 2nt − 1
elements. Each pair (Ati, Bt), 1 ≤ i ≤ g, can be viewed as a complete bipartite graph. As
in [14], we construct a d-regular LPS-expander graph Gti on the vertex set Ati ∪ Bt, for a
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constant d to be fixed later.2 The expander Gti has O(|Ati|+|Bt|) edges and can be computed
in O(|Ati| + |Bt|) time [14, 16]. Let Gt be the union of all these expander graphs Gti over all
i = 1, 2, . . . , g. The construction of Gt takes

∑g
i=1 O(|Ati| + |Bt|) = O(|At| + ⌊ mt

nt
⌋ · |Bt|) =

O(|At|) time. Hence, computing all graphs {Gt}t for all O(n4/3/ log4 log n) pairs At × Bt in
Γj−1 takes

∑
t O(|At|) = O(n4/3) time. The number of edges in Gt is O(|At| + |Bt|), and

thus the number of edges in all graphs {Gt}t is
∑

t O(|At| + |Bt|) = O(n4/3).
For each edge (a, b) in graph Gt that connects a point a ∈ At and a point b ∈ Bt, we

associate it with the interpoint distance ∥ab∥. We compute all these distances for all graphs
{Gt}t to form a set S. The size of S is bounded by the number of edges in all graphs {Gt}t,
which is O(n4/3). Note that all values of S are in the interval Ij−1.

One way we could proceed from here is to find the largest value δ1 of S with δ1 < δ∗ and
the smallest value δ2 with δ∗ ≤ δ2, and then return (δ1, δ2] as the interval Ij and finish the
j-th stage of the algorithm. Finding δ1 and δ2 could be done by binary search on S using the
linear time selection algorithm and the O(n4/3) time decision algorithm. Then the runtime
of this step would be O(n4/3 log n), resulting in a total of O(n4/3 log2 n) time for the overall
algorithm for computing δ∗ since there are O(log n) stages. To improve the time, as in [14],
we use the “Cole-like” technique to reduce the number of calls to the decision algorithm to
O(1) in each stage, as follows.

We assign a weight to each value of S. Note that since each graph Gti ∈ Gt is a d-regular
LPS-expander, the degree of Gti is d [14]. Hence, Gti has at most (|Ati| + |Bt|) · d/2 edges
and thus it contributes at most (|Ati| + |Bt|) · d/2 values to S. We assign each distance
induced from Gti a weight equal to |Ati| · |Bt|/(|Ati| + |Bt|). As such, the total weight of the
values of S is at most∑

t,i

(|Ati| + |Bt|) · d

2 · |Ati| · |Bt|
|Ati| + |Bt|

= d

2 ·
∑
t,i

|Ati| · |Bt| = d

2 · mj−1,

where mj−1 =
∑

t |At| · |Bt|. Recall that mj−1 > n4/3 log n and |Bt| ≤ |Ati| in each Gti. We
can assume n ≥ 16 so that mj−1 ≥ 16. As such, we have the following bound for the weight
of each value in S: |Ati| · |Bt|/(|Ati| + |Bt|) ≤ |Bt| ≤

√
|Bt| · |Ati| ≤ √

mj−1 ≤ mj−1/4.
We partition the values of S into at most 2d intervals {I ′

1, I ′
2, ..., I ′

h}, 1 ≤ h ≤ 2d, such
that the total weight of values in every interval is at least mj−1/4 and but at most mj−1/2.
The partition can be done in O(|S|) time, which is O(n4/3), using the linear time selection
algorithm. Then, we invoke the decision algorithm log(2d) = O(1) times to find the interval
I ′

l that contains δ∗, for some 1 ≤ l ≤ h. We set Ij = I ′
l . Since the decision algorithm is called

O(1) times, this step takes O(n4/3) time. This finishes the j-th stage of the algorithm.
The following Lemma 5 shows that the number of values of E(P ) in Ij is a constant

portion of that in Ij−1. This guarantees that the algorithm will finish in O(log n) stages
since |E(P )| = O(n2). As each stage runs in O(n4/3) time (except that the last stage takes
O(n4/3 log n) time), the total time of the algorithm is O(n4/3 log n).

▶ Lemma 5. There exists a constant ρ with 0 < ρ < 1 such that the number of values of
E(P ) in Ij is at most ρ times the number of values of E(P ) in Ij−1.

2 A good summary of definitions and properties of expanders can be found in Section 2 of [14]. Here it
suffices for the reader to know the following property (which is needed in the proof of Lemma 5): If X
and Y are two vertex subsets of a d-regular expander graph of M vertices and there are fewer than 3M
edges connecting points of X and points of Y , then |X| · |Y | ≤ 9M2/d.

ESA 2023



101:10 Improved Algorithms for Distance Selection and Related Problems

Proof. Define nj (resp., nj−1) as the number of values of E(P ) in Ij (resp., Ij−1). Our goal
is to find a constant ρ ∈ (0, 1) so that nj ≤ ρ · nj−1 holds.

Recall that mj−1 is the number of distances induced from the graphs of Γj−1. Define
m′

j−1 as the number of distances induced from the graphs of Πj−1. Define qj (resp., q′
j) as

the number of interpoint distances of E(P ) ∩ Ij whose point pairs are recorded in Γj−1 (resp.,
Πj−1). Note that all interpoint distances induced from graphs of Γj−1 are in Ij−1. Hence,
mj−1 ≤ nj−1. By definition, nj = qj + q′

j and q′
j ≤ m′

j−1. By Lemma 3 (3) and (4), we have
m′

j−1 = O(n4/3 log2 log n).
We first make the following claim: there exists a constant γ ∈ (0, 1/3) such that

qj ≤ γ · mj−1. The proof of this claim is similar to the analysis in [14] and can be found in
the full paper. Next, we prove the lemma by using this claim.

As this is not the last stage of the algorithm (since otherwise δ∗ would have already
been computed without producing interval Ij), it holds that mj−1 > n4/3 log n. Since
m′

j−1 = O(n4/3 log2 log n), there exists a constant c′ ∈ (0, 1/3) such that m′
j−1

mj−1
≤ c′ when

n is sufficiently large. As nj = qj + q′
j , q′

j ≤ m′
j−1, and mj−1 ≤ nj−1, we can obtain the

following using the above claim:

nj = qj + q′
j ≤ qj + m′

j−1 ≤ γ · mj−1 + c′ · mj−1 ≤ (γ + c′) · mj−1 ≤ (γ + c′) · nj−1.

Set ρ = γ + c′. Since both γ and c′ are in (0, 1/3), we have ρ ∈ (0, 2/3) and nj ≤ ρ · nj−1.
This proves the lemma. ◀

We conclude with the following result. Note that once δ∗ is computed, one can find a
pair of points of P whose distance is equal to δ∗ in additional O(n4/3) time [18].

▶ Theorem 6. Given a set P of n points in the plane and an integer 1 ≤ k ≤
(

n
2
)
, the k-th

smallest interpoint distance of P can be computed in O(n4/3 log n) time.

Remark. Our algorithm can be easily extended to the following bipartite version of the
distance selection problem: Given a set A of m points and a set B of n points in the plane, and
an integer 1 ≤ k ≤ mn, compute the k-th smallest interpoint distance δ∗ in the set {∥ab∥ | a ∈
A, b ∈ B}. This problem can be solved in O((m2/3n2/3 + m log n + n log m) log(m + n)) time
by extending our algorithm. More detailed discussions can be found in the full paper.

4 Two-sided discrete Fréchet distance with shortcuts

In this section, we show that our techniques in Section 3 can be used to solve the two-sided
DFD problem. Let A = {a1, a2, ..., am} and B = {b1, b2, ..., bn} be two sequences of points
in the plane. Consider two frogs connected by an inelastic leash, initially placed at a1 and
b1, respectively. Each frog is allowed to jump forward at most one step in one move, i.e., if
the first frog is currently at ai, then in the next move it can either jump to ai+1 or stay at
ai. Note that frogs are not allowed to go backwards. The discrete Fréchet distance (or DFD
for short) is defined as the minimum length of the inelastic leash that allows two frogs to
reach their destinations, i.e., am and bn, respectively.

Because the Fréchet distance is very sensitive to outliers, to reduce the sensitivity, DFD
with outliers have been proposed [4]. Specifically, if we allow the A-frog to jump from its
current point to any of its succeeding points in each move but B-frog has to traverse all points
in B in order plus one restriction that only one frog is allowed to jump in each move (i.e., in
each move one of the frogs must stay still), then this problem is called one-sided discrete
Fréchet distance with shortcuts (or one-sided DFD for short), where the goal is to compute
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the minimum length of the inelastic leash that allows two frogs to reach their destinations.
If we allow both frogs to skip points in their sequences (but again with the restriction that
only one frog is allowed to jump in each move), then problem is called two-sided DFD.

We focus on the two-sided DFD in this section while the one-sided version will be treated
in the next section. Let δ∗ denote the optimal objective value, i.e., the minimum length
of the leash. Avraham, Filtser, Kaplan, Katz, and Sharir [4] presented an algorithm that
can compute δ∗ in O((m2/3n2/3 + m + n) log3(m + n)) time. In what follows, we show that
our techniques in Section 3 can improve their algorithm to O((m2/3n2/3 · 2O(log∗(m+n)) +
m log n + n log m) log(m + n)) time, roughly a factor of O(log2(m + n)) faster.

To solve the problem, the authors of [4] first proposed an algorithm to solve the decision
problem, i.e., given any δ, decide whether δ∗ ≤ δ; the algorithm runs in O((m2/3n2/3 + m +
n) log2(m + n)) time. Then, to compute δ∗, the authors of [4] used the bipartite version of
the distance selection algorithm from Katz and Sharir [14] for point sets A and B together
with their decision algorithm to do binary search on the interpoint distances between points
in A and those in B, i.e., in each iteration, using the distance selection algorithm to find
the k-th smallest distance δk for an appropriate k and then call the decision algorithm on
δk to decide which way to search. As both the distance selection algorithm [14] and the
decision algorithm run in O((m2/3n2/3 + m + n) log2(m + n)) time, computing δ∗ takes
O((m2/3n2/3 + m + n) log3(m + n)) time.

The following lemma (whose proof is in the full paper) shows that the runtime of their
decision algorithm [4] can be improved by a factor of roughly O(log2(m + n)), by using our
result in Theorem 2 for the complete BRS problem.

▶ Lemma 7. Given any δ, we can decide whether the two-sided DFD δ∗ ≤ δ in O(m2/3n2/3 ·
2O(log∗(m+n)) + m log n + n log m) time.

Improving the optimization algorithm for computing δ∗. With our new O((m2/3n2/3 +
m log n+n log m) log(m+n)) time bipartite distance selection algorithm in Section 3 and the
above faster decision algorithm, following the same binary search scheme as discussed above,
δ∗ can be computed in O((m2/3n2/3 + m log n + n log m) log2(m + n)) time, a logarithmic
factor improvement over the result of [4]. Notice that the time is dominated by the calls to
the bipartite distance selection algorithm.

To further improve the algorithm, an observation is that we do not have to call the distance
selection algorithm as an oracle and instead we can use that algorithm as a framework and
replace the decision algorithm of the distance selection problem by the decision algorithm of
the two-sided DFD problem. This will roughly reduce another logarithmic factor. The proof
of the following theorem provides the details about this idea.

▶ Theorem 8. Given two sequences of points A = (a1, a2, ..., am) and B = (b1, b2, ..., bn) in
the plane, the two-sided DFD problem can be solved in O((m2/3n2/3 ·2O(log∗(m+n)) +m log n+
n log m) log(m + n)) time.

Proof. Following our distance selection algorithm, we run in stages and each j-th stage
will compute an interval Ij that contains δ∗. In the j-th stage, we first perform the partial
BRS on point sets A and B with respect to interval Ij−1, in the same way as before. This
produces a collection Γ of (m2/3n2/3/ log4 log(m2/n) + m2/3n2/3/ log4 log(n2/m) + m + n)
edge-disjoint complete bipartite graphs that record some pairs of A × B whose interpoint
distances are in Ij−1. The total size of vertex sets of all graphs in Γ is O(m2/3n2/3 +
m log n + n log m). In addition, we also have a collection Π of complete bipartite graphs
representing O(m2/3n2/3 log2 log(m + n)) uncertain pairs of A × B. The total runtime is
O(m2/3n2/3 + m log n + n log m).
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We next compute the number nΓ of distances induced from the graphs of Γ. If nΓ is larger
than the threshold τ = (m2/3n2/3 + m log n + n log m) log(m + n), then we use the “Cole-like”
technique to perform a binary search on the interpoint distances induced from the expander
graphs that are built on the vertex sets of the graphs in Γ, which calls the decision algorithm
O(1) times. The runtime for this stage is O(m2/3n2/3 · 2O(log∗(m+n)) + m log n + n log m). If
nΓ ≤ τ , then we reach the last stage of the algorithm and we can compute δ∗ as follows. We
compute the interpoint distances induced from the graphs in Γ and Π. The total number of
such distances is O((m2/3n2/3 + m log n + n log m) log(m + n)). Using the decision algorithm
and the linear time selection algorithm, a binary search on these interpoint distances is
performed to compute δ∗, which takes O((m2/3n2/3 ·2O(log∗(m+n)) +m log n+n log m) log(m+
n)) time as the decision algorithm is called O(log(m + n)) times. The algorithm finishes
within O(log(m+n)) stages by an analysis similar to Lemma 5 (indeed, the proof of Lemma 5
does not rely on which decision algorithm is used).

In summary, the total runtime for computing δ∗ is bounded by O((m2/3n2/3·2O(log∗(m+n))+
m log n + n log m) log(m + n)). ◀

A general (deterministic) algorithmic framework. The algorithm of Theorem 8 can be
made into a general algorithmic framework for solving geometric optimization problems
involving interpoint distances in the plane. Specifically, suppose we have an optimization
problem P whose optimal objective value δ∗ is equal to ∥ab∥ for a point a ∈ A and a point
b ∈ B, with A as a set of m points and B as a set of n points in the plane. The goal is to
compute δ∗. Suppose that we have a decision algorithm that can determine whether δ ≥ δ∗

in TD time for any δ. Then, we can compute δ∗ by applying exactly the same algorithm
of Theorem 8 except that we use the decision algorithm for P instead. The total time of
the algorithm is O((m2/3n2/3 + m log n + n log m + TD) · log(m + n)). Note that in the case
TD = o((m2/3n2/3 + m log n + n log m) log(m + n)) this is faster than the traditional binary
search approach by repeatedly invoking the distance selection algorithm.

▶ Theorem 9. Given two sets A and B of m and n points respectively in the plane, any
geometric optimization problem whose optimal objective value is equal to the distance between
a point of a ∈ A and a point of b ∈ B can be solved in O((m2/3n2/3 + m log n + n log m +
TD) · log(m + n)) time, where TD is the time for solving the decision version of the problem.

5 One-sided discrete Fréchet distance with shortcuts

We consider the one-sided DFD problem defined in Section 4. Let δ∗ denote the optimal
objective value. Avraham, Filtser, Kaplan, Katz, and Sharir [4] proposed an a randomized
algorithm of O((m + n)6/5+ϵ) expected time. We show that using our result in Lemma 1 for
the partial BRS the runtime of their algorithm can be reduced to O((m+n)6/5 log8/5(m+n)).

Define E(A, B) = {∥ab∥ | a ∈ A, b ∈ B}. It is known that δ∗ ∈ E(A, B) [4]. The decision
problem is to decide whether δ ≥ δ∗ for any δ. The authors [4] solved the decision problem
in O(m + n) (deterministic) time. To compute δ∗, their algorithm has two main procedures.

The first main procedure computes an interval (α, β] that is guaranteed to contain δ∗, and
in addition, with high probability the interval contains at most L values of E(A, B), given any
1 ≤ L ≤ mn; the algorithm runs in O((m + n)4/3+ϵ/L1/3 + (m + n) log(m + n) log log(m + n))
time, for any ϵ > 0. More specifically, during the course of the algorithm, an interval (α, β]
containing δ∗ is maintained; initially α = 0 and β = ∞. In each iteration, the algorithm first
determines, through random sampling, whether the number of values of E(A, B) in (α, β] is
at most L with high probability. If so, the algorithm stops by returning the current interval
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(α, β]. Otherwise, a subset R of O(log(m + n)) values of E(A, B) is sampled which contains
with high probability an approximate median (in the middle three quarters) among the
values of E(A, B) in (α, β]. A binary search guided by the decision algorithm is performed to
narrow down the interval (α, β]; the algorithm then proceeds with the next iteration. As
such, after O(log(m + n)) iterations, the algorithm eventually returns an interval (α, β] with
the property discussed above.

The second main procedure is to find δ∗ from E(A, B) ∩ (α, β]. This is done by using a
bifurcation tree technique (Lemma 4.4 [4]), whose runtime relies on L′, the true number of
values of E(A, B) in (α, β]. As it is possible that L′ > L, if the algorithm detects that case
happens, then the first main procedure will run one more round from scratch. As L′ < L

holds with high probability, the expected number of rounds is O(1). If L′ ≤ L, the runtime
of the second main procedure is bounded by O((m + n)L1/2 log(m + n)).

As such, the expected time of the algorithm is O((m + n)4/3+ϵ/L1/3 + (m + n) log(m +
n) log log(m + n) + (m + n)L1/2 log(m + n)). Setting L to O((m + n)2/5+ϵ) for another small
ϵ > 0, the time can be bounded by O((m + n)6/5+ϵ).

Our improvement. We can improve the runtime of the first main procedure by a factor of
O((m + n)ϵ), which leads to the improvement of overall algorithm by a similar factor. To
this end, by applying Lemma 1 with r = ( m+n

L )1/3, we first have the following corollary,
which improves Lemma 4.1 in [4] (which is needed in the first main procedure).

▶ Corollary 10. Given a set A of m points and a set B of n points in the plane, an interval
(α, β], and a parameter 1 ≤ L ≤ mn, we can compute in O((m + n)4/3/L1/3 · log( m+n

L ))
time two collections Γ(A, B, α, β) = {At × Bt | At ⊆ A, Bt ⊆ B} and Π(A, B, α, β) = {A′

s ×
B′

s | A′
s ⊆ A, B′

s ⊆ B} of edge-disjoint complete bipartite graphs that satisfy the conditions
of Problem 1, with the following complexities: (1) |Γ| = O(( m+n

L )4/3); (2)
∑

t |At|,
∑

t |Bt| =
O((m + n)4/3/L1/3 · log( m+n

L )); (3) |Π| = O(( m+n
L )4/3); (4) |A′

s| = O( mL
m+n ) and |B′

s| =
O( nL

m+n ) for each A′
s × B′

s ∈ Π; (5) the number of pairs of points recorded in Π is O((m +
n)4/3L2/3).

Replacing Lemma 4.1 in [4] by our results in Corollary 10 and following the rest of the
algorithm in [4] leads to an algorithm to compute δ∗ in O((m + n)6/5 log2(m + n)) time.
More details can be found in the full paper, which makes the discussion in the context of a
more general algorithmic framework (indeed, a recent result of Katz and Sharir [15] already
gave such a framework; here we improve their result by a factor of O((m + n)ϵ) due to
Corollary 10). As discussed in Section 1, another immediate application of the framework is
the reverse shortest path problem in unit-disk graphs [20].
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Abstract
Given a collection of m sets, each a subset of a universe {1, . . . , n}, maximum coverage is the problem
of choosing k sets whose union has the largest cardinality. A simple greedy algorithm achieves an
approximation factor of 1 − 1/e ≈ 0.632, which is the best possible polynomial-time approximation
unless P = NP.

In the streaming setting, information about the input is revealed gradually, in an online fashion.
In the set-streaming model, each set is listed contiguously in the stream. In the more general
edge-streaming model, the stream is composed of set-element pairs, denoting membership. The
overall goal in the streaming setting is to design algorithms that use sublinear space in the size of the
input. An interesting line of research is to design algorithms with space complexity polylogarithmic
in the size of the input (i.e., polylogarithmic in both n and m); we call such algorithms low-space.
In the set-streaming model, it is known that 1/2 is the best possible low-space approximation. In
the edge-streaming model, no low-space algorithm can achieve a nontrivial approximation factor.

We study the problem under the assumption that the order in which the stream arrives is chosen
uniformly at random. Our main results are as follows.

In the random-arrival set-streaming model, we give two new algorithms to show that low space is
sufficient to break the 1/2 barrier. The first achieves an approximation factor of 1/2 + c1 using
Õ(k2) space, where c1 > 0 is a small constant and Õ(·) notation suppresses polylogarithmic
factors; the second achieves a factor of 1 − 1/e − ε − o(1) using Õ(k2ε−3) space, where the o(1)
term is a function of k. This is essentially the optimal bound, as breaking the 1 − 1/e barrier is
known to require high space.
In the random-arrival edge-streaming model, we show for all fixed α > 0 and δ > 0, any algorithm
that α-approximates maximum coverage with probability at least 0.9 in the random-arrival
edge-streaming model requires Ω(m1−δ) space (i.e., high space), even for the special case of k = 1.
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1 Introduction

Maximum coverage is a classic NP-hard problem in computer science with a range of
applications, including facility allocation [16], information retrieval [2], and content re-
commendation [18]. We are given a collection of m sets, F , each a subset of a universe
[n] := {1, . . . , n}, and a positive integer, k. The goal is to choose k sets from F such that
the cardinality of the union of the chosen sets – known as their coverage – is maximised. A
standard greedy algorithm achieves a (1− 1/e)-approximation and unless P = NP, this is
the best approximation possible in polynomial time [7].
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The greedy algorithm performs well in practice, but requires access to the entire input
during its operation, which scales poorly for massive data sets. In the last 15 years, there
has been an increasing focus on streaming algorithms for maximum coverage [18, 15, 6, 11].
These algorithms process the input piece by piece and use substantially less space than would
be required to simply read the entire input into memory and run a classical algorithm, which
requires O(mn) space in general. In the set-streaming model, each set arrives contiguously in
the stream: all the elements in one set are listed, then all the elements in the next set, and
so on. In the more general edge-streaming model, each entity in the stream is a set-element
pair, so the full description of a set might be spread across the stream.

Most existing work on streaming algorithms for maximum coverage has focused on the
arbitrary-arrival model, in which the stream may arrive in any order. In particular, the stream
may arrive in a worst-case order, so any theoretical guarantees made about an algorithm
in this model must be made for all possible stream orderings. In practice, however, it is
often reasonable to assume that the data stream is randomly ordered;1 in the random-arrival
model, all possible stream orderings are considered equally likely, and theoretical guarantees
about an algorithm in this model need only be made as an average over these orderings. The
random-arrival model has been studied for many important problems, including quantile
estimation [10], maximum matching [13, 4], and submodular maximisation [17, 1], often
revealing improved space-accuracy trade-offs.

In this paper, we study maximum coverage in the random-arrival model. In the random-
arrival set-streaming model,2 the order in which the sets appear in the stream is uniformly
random, but we assume nothing about the order in which the elements in each set arrive.
By contrast, in the random-arrival edge-streaming model, the edges arrive in a uniformly
random order, so large sets are more likely to be represented early in the stream. For each
model, our goal is to determine whether the random-arrival assumption permits a better
approximation factor than is possible in the corresponding arbitrary-arrival model, when very
low space is available (i.e., polylogarithmic in both n and m). We answer this question in
the affirmative for random-arrival set-streaming: we present two low-space algorithms, each
achieving an approximation factor better than 1/2 (the best possible approximation in the
arbitrary-arrival model). For random-arrival edge-streaming, we demonstrate a near-tight
space lower bound, hence answering in the negative: nearly linear in m space is required to
achieve a nontrivial approximation.

1.1 Related work

Table 1 summarises relevant past work on streaming algorithms for maximum coverage. Note
that any algorithm that guarantees an approximation factor in the arbitrary-arrival model
trivially also guarantees this approximation factor in the random-arrival model.

The multi-pass variant of streaming maximum coverage has also been studied, in which a
small number of passes over the stream are allowed [15, 12]. In this paper, however, we focus
exclusively on single-pass algorithms.

Unless otherwise specified, the following results apply to the arbitrary-arrival model.

1 See Guha and McGregor [10] §1.1 for a discussion on justifications for this assumption.
2 Note that we consider both “random-arrival” and “set-streaming” to be part of the model specification.

When we talk about the random-arrival model, we mean both the random-arrival set-streaming and
random-arrival edge-streaming models.
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Set-streaming. Saha and Getoor [18], who introduced the set-streaming model, gave a 1/4-
approximation algorithm called sops,3 which uses Õ(nk) space and explicitly returns the k

chosen sets. Yu and Yuan [20] studied the problem under the more relaxed ID-reporting
output specification, in which only the IDs of the k chosen sets must be returned by the
algorithm.4 They gave an algorithm, gops, which achieves an approximation factor of
approximately 0.3 and uses Õ(n) space, where Õ(·) notation suppresses dependence on
polylogarithmic factors. Further progress came indirectly from Badanidiyuru et al. [5], who
gave a (1/2− ε)-approximation algorithm for the related submodular maximisation problem.
A careful adaptation to maximum coverage uses Õ(nε−1) space [15].

More recently, McGregor and Vu [15] developed the first set-streaming maximum coverage
algorithms that use sublinear-in-n space. Using subsampling, which effectively discards much
of the universe, [n], they substantially reduce the space consumption of their algorithms
with minimal loss in solution quality. Of the four new algorithms they developed, the fourth,
which we call mv-4 after the authors, is the most relevant to our work, as it is both low-space
and single-pass. mv-4 achieves an approximation factor of 1/2− ε using just Õ(kε−3) space.
The algorithm is explained in detail in Section 2.1. The other two mv algorithms that are
also single-pass are also included in Table 1 (although note that they are not low-space).

McGregor and Vu [15] also proved the first nontrivial space lower bound for set-streaming
maximum coverage. They showed that achieving an approximation factor better than 1−1/e

requires Ω(mk−2) space in the arbitrary-arrival model and Ω(mk−3) space in the random-
arrival model. Feldman et al. [8] extended this result to approximation factors better than 1/2
for the arbitrary-arrival model.5 Note that all lower bounds discussed in this work apply to
the problem of simply estimating the optimal coverage.

The results of McGregor and Vu [15] and Feldman et al. [8] imply that the best possible
approximation factor that can be achieved using low space in the arbitrary-arrival model
is 1/2, where by “low space” we mean space polylogarithmic in both n and m.6 In the random-
arrival model, however, there is a knowledge gap for approximation factors between 1/2
and 1− 1/e: can some low-space algorithm achieve an approximation factor in this range, or
is high space always required?

Edge-streaming. Bateni et al. [6] gave the first edge-streaming maximum coverage algorithm,
which achieves an approximation factor of 1−1/e− ε using Õε(m) space, where the subscript
suppresses dependence on ε (which was not analysed by the authors). Indyk and Vakilian [11]
improved this result by showing that the optimal space bound is Θ̃(α2m), where α > 0
is the approximation factor. This result implies that achieving a nontrivial (i.e., nonzero)
approximation factor using low space is impossible in the arbitrary-arrival edge-streaming
model.

3 The algorithm was given this name in a later work [20].
4 IDs appear explicitly in the edge-streaming model as part of the set-element pairs. In the set-streaming

model, we assume for convenience that the ID of each set is listed directly before the elements in the
set, but this is a largely unimportant implementation detail.

5 The authors actually studied the more general submodular maximisation problem. However, the
submodular function constructed for the hardness instance is also a coverage function, so the result
applies to maximum coverage as well.

6 Other reasonable definitions exist, but we choose to focus on n and m since these are the parameters
that can cause a maximum coverage problem instance to require a huge amount of space to store, which
is the motivation for using streaming algorithms in the first place.

ESA 2023
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Table 1 A summary of known results and our new results for the space complexity of single-pass
streaming approximation algorithms for maximum coverage. Each of the parameters α, δ, ε is positive,
and c1 is a small positive constant.

Stream Name Arrival Approximation Space Ref.

Set

sops Arbitrary 1/4 O(nk) [18]
gops Arbitrary ∼0.3 Õ(n) [20]
mcss Arbitrary 1/2 − ε Õ(nε−1) [5, 15]
mv-1 Arbitrary 1 − 1/e − ε Õ(mε−2) [15]
mv-3 Arbitrary 1 − ε Õ(mε−2 · min(k, ε−1)) [15]
mv-4 Arbitrary 1/2 − ε Õ(kε−3) [15]

– Arbitrary > 1 − 1/e Ω(mk−2) [15]
– Arbitrary > 1/2 Ω(mk−3) [8]
– Random > 1 − 1/e Ω(mk−3) [15]

gs-salsa Random 1/2 + c1 Õ(k2) Here
gs-smc+ Random 1 − 1/e − ε − o(1) Õ(k2ε−3) Here

Edge

– Arbitrary 1 − 1/e − ε Õε(m) [6]
– Arbitrary α > 0 Θ̃(α2m) [11]
– Random Any fixed α > 0 Ω(m1−δ) Here

1.2 Our contributions

The results of this paper are included in Table 1.

Set-streaming. In the arbitrary-arrival model, the best approximation factor that can be
achieved using low space is 1/2. We present two low-space algorithms that break the 1/2
barrier in the random-arrival model.

The first algorithm, gs-salsa, uses Õ(k2) space and achieves an approximation factor
of 1/2 + c1 in-expectation, where c1 > 0 is a small absolute constant.
The second algorithm, gs-smc+, uses Õ(k2ε−3) space and achieves an approximation
factor of 1− 1/e− ε− o(1) in-expectation, where the o(1) term is a function of k. For
large k, this is essentially the optimal low-space approximation.7

Both algorithms are based on existing state-of-the-art random-arrival algorithms for the
related submodular maximisation problem [17, 1]. Our main contribution is a generalisation
of the subsampling technique introduced by McGregor and Vu [15] in the design of mv-4,
which we apply to these existing submodular maximisation algorithms to achieve our results.

Edge-streaming. Indyk and Vakilian [11] showed that Θ̃(α2m) space is necessary and suffi-
cient for α-approximating maximum coverage in the arbitrary-arrival model. An immediate
corollary is that for all fixed α > 0, the problem requires Ω(m) space. We prove an almost
matching hardness result for the random-arrival case.

7 Throughout this work, we typically do not consider the approximation factor of an algorithm (or hardness
result) as a function of k, and instead consider the worst-case value of k (just as we take a worst-case
collection of sets F). We make an exception for gs-smc+ due to the quality of its approximation for
large values of k. Note that the hardness results of McGregor and Vu [15] and Feldman et al. [8] apply
as k approaches infinity, so the algorithm really is near-optimal for large k.
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▶ Theorem 1. For all fixed α > 0 and δ > 0, any algorithm that α-approximates max-
imum coverage with probability at least 0.9 in the random-arrival edge-streaming model
requires Ω(m1−δ) space, even for the special case of k = 1.

Our result implies that unlike set-streaming, edge-streaming maximum coverage is not
made easier by the random-arrival assumption, in the sense that the assumption does not
increase the best possible low-space approximation. Our proof of Theorem 1 is a careful
combination of ideas from the proof for the arbitrary-arrival case by Indyk and Vakilian [11]
with ideas from Andoni et al. [3], who proved a random-arrival space lower bound for the
frequency moment estimation problem.

2 Beating 1/2 for Set-Streaming

In this section, we show that the 1/2 barrier can be broken for random-arrival set-streaming
maximum coverage using low space. Our main contribution is a generalised version of the
subsampling technique introduced by McGregor and Vu [15], which allows us to replace the
core subroutine of mv-4 with any set-streaming maximum coverage algorithm. In particular,
replacing the subroutine with state-of-the-art streaming algorithms for the related submodular
maximisation problem yields two new maximum coverage algorithms with approximation
factors better than 1/2 in the random-arrival model. The first, gs-salsa, achieves an
approximation factor of 1/2 + c1 for a small constant c1 > 0. The second, gs-smc+, achieves
an approximation factor of 1− 1/e− ε− o(1), where the o(1) term is a function of k. For
large k, this is essentially the optimal bound.

2.1 Preliminaries: Design of MV-4
We start by providing a high-level overview of the mv-4 algorithm designed by McGregor
and Vu [15], which achieves an approximation factor of 1/2− ε using Õ(kε−3) space in the
arbitrary-arrival model, which is essentially the optimal low-space approximation.

At the heart of mv-4 is a subroutine, A, which achieves an approximation factor of 1/2−ε

using high space. This seeming contradiction is avoided by only providing a small sample
of the input to A; mv-4 is equipped with a binary hash function h : [n] → {0, 1}, and as
each element e arrives in the stream, it is passed to the subroutine A only if h(e) = 1. The
subroutine is therefore run on a subsampled problem instance I ′ over a smaller universe [n]′ =
{e ∈ [n] : h(e) = 1}, with subsampled sets S′

i = Si∩ [n]′ for each Si ∈ F . An optimal solution
to I ′ may not correspond to an optimal solution to I, but when the hash function is chosen
appropriately, a good solution to I ′ corresponds to a nearly-as-good solution to I with high
probability. The hash function h is chosen such that P[h(e) = 1] = p for all e ∈ [n]. When
the subsampling rate p is small, the space consumption of A is substantially reduced, and
the overall algorithm becomes low-space.

The subsampling rate p is set in terms of the optimal coverage, OPT. Of course, we do
not know OPT in advance! To get around this, mv-4 runs parallel instantiations of A, each
corresponding to a different guess v for OPT. Each instantiation Av therefore has its own
subsampling rate pv, hash function hv, and is run on a separate subsampled instance I ′

v.
This introduces two new problems. Firstly, at the end of the stream, how do we know which
instantiation corresponds to the correct guess? Rather than solve this problem directly, mv-4
maintains an F0-sketch8 of the set of elements covered (in the unsubsampled universe, [n])

8 Given a stream of items, an F0-sketch is a small data structure capable of closely estimating the number
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by the solution found by each instantiation. At the end of the stream, the solution with the
highest estimated coverage is taken. Jaud et al. [12] gave a simpler method, which uses the
subsampled coverage achieved by each instantiation to decide which solution to return.

The second problem introduced by the use of parallel instantiations concerns the space
consumption of instantiations corresponding to bad guesses for OPT. If a guess v is much
smaller than OPT, the subsampling rate pv is set too high, the subsampled universe is
too large, and so Av uses too much space. To address this, mv-4 keeps track of the space
consumption of each instantiation and terminates the instantiation if it uses too much space.

2.2 Generalised subsampling
In this section, we present a generalised version of McGregor and Vu’s [15] subsampling
technique. This allows the subroutine A to be replaced by any set-streaming maximum
coverage algorithm B. In Section 2.3, we apply our generalised subsampling technique
to maximum coverage algorithms derived from state-of-the-art algorithms for submodular
maximisation. The space consumption of these algorithms is proportional to d = maxSi∈F |Si|,
the maximum set size of the problem instance. Under this condition, generalised subsampling
substantially reduces the space consumption of B. Our main result is as follows.

▶ Theorem 2 (Generalised subsampling). Suppose B achieves an approximation factor of α

in-expectation9 for set-streaming maximum coverage using O(ds) space, where d is the
maximum set size. There exists an algorithm, called GS(B), which, given ε > 0, achieves an
approximation factor of α− ε in-expectation and uses Õ(kε−2s) space.

An important aspect of Theorem 2 is that no assumptions are made about the design
of B. This presents a challenge when we try to replace A with B in mv-4, as the operation
of mv-4 relies on an important property of A. In particular, A is threshold-based: as each
set arrives in the stream, the algorithm decides irrevocably whether to include the set in the
solution, and maintains a set C of the elements covered by the chosen sets. The decision
to include an incoming set is based on whether the additional coverage provided by the set
exceeds some threshold. This property is important to the design of mv-4 for two reasons.
Firstly, it allows mv-4 to maintain a sketch of the elements covered by each instantiation
of A in the unsubsampled universe, since after each set arrives, A can inform mv-4 as to
whether it chose the set.10 Secondly, the space consumption of A is directly proportional to
the size of C, so this value may be used to trigger the termination of instantiations that use
too much space.

We do not want to assume that B is threshold-based – indeed, we want to assume nothing
at all about the design B – so we use an alternative idea. We abandon guessing OPT,
and instead guess d, the maximum set size.11 Our approach requires that some guess w

satisfies d/2 ≤ w ≤ d, so we make guesses in powers of 2. The problem of choosing which

of distinct items in the stream. The details are unimportant for our purposes.
9 There is nothing special about in-expectation guarantees, and the theorem could just as easily be

proved for with-high-probability guarantees. We focus on in-expectation results since this is the type
of guarantee made about the state-of-the-art submodular maximisation algorithms that we apply our
results to in Section 2.3.

10 The alternative approach used by Jaud et al. [12] works quite differently, but also exploits the threshold-
based architecture of A by using the size of C for each instantiation to decide which solution to
return.

11 This is similar to an idea appearing in Badanidiyuru et al. [5], who studied streaming algorithms for
submodular maximisation. Their algorithm, sieve-streaming, runs parallel instantiations corresponding
to guesses for the maximum value of the given submodular function over any one item from the stream.
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Algorithm 1 The generalised subsampling algorithm GS(B).

1: W ← {2i : i ∈ N, 2i ≤ n} ▷ Guesses for d

2: λ← ⌊2k log(emε−1)⌋ ▷ Hash function independence parameter
3: for w ∈W do
4: Initialise Bw, an instantiation of B
5: pw ← min{1, 3kε−2 log(emε−1)w−1} ▷ Subsampling rate
6: Sample hw ∈ Hpw,λ uniformly at random ▷ Choose hash function
7: activew ← true ▷ Kill switch indicator
8: for i = 1, . . . , m do ▷ Iterate over each set in the stream
9: for e ∈ Si do ▷ Iterate over each element in the set

10: for w ∈W do
11: if d∗

w > 2pww(1 + ε) then
12: activew ← false ▷ Terminate Bw

13: if activew and hw(e) = 1 then
14: Supply e to the stream of Bw

15: Let Iw ⊂ [m] be the solution returned by Bw

16: wc ← min{w ∈W : d∗/2 ≤ w ≤ d∗} ▷ At this point, d∗ = d.
17: return Iwc

solution to return becomes trivial, since we can easily keep track of the maximum observed
set size and choose the appropriate instantiation at the end of the stream (Line 16). We also
keep track of the maximum observed set size for each subsampled problem instance, and use
this value to trigger the termination of bad instantiations (Line 11).

Our generalised subsampling algorithm GS(B) is formalised by Algorithm 1. The vari-
able d∗ keeps track of the running maximum set size observed so far in the stream. For
example, d∗ = 0 at the start of the stream, and d∗ = d at the end of the stream. Similarly, d∗

w

keeps track of the maximum set size observed for the subsampled problem instance I ′
w corres-

ponding to the guess w for d. We omit from Algorithm 1 the straightforward steps required
to keep track of these variables. The set Hpw,λ appearing on Line 6 represents a λ-wise
independent family of hash functions with the property that for all e ∈ [n], P[h(e) = 1] = pw.
A hash function h from this family may be sampled, stored, and evaluated using O(λ)
space [15]. In the remainder of this section, we show that GS(B) achieves the approximation
factor and space consumption guaranteed by Theorem 2.

Approximation factor. GS(B) returns the solution found by Bwc , where wc is the smallest
guess for d satisfying d/2 ≤ wc ≤ d (see Line 16), so we focus on this instantiation of B. In
particular, S′

i is taken to mean the version of Si subsampled using the hash function hwc
,

and the wc subscript is often suppressed (e.g., p = pwc
and I ′ = I ′

wc
).

Since each element e ∈ [n] is subsampled with probability p, we expect that for any given
choice of sets S1, . . . , Sl, the subsampled coverage of these sets will be approximately p times
their unsubsampled coverage. The following result formalises this intuition.

▶ Lemma 3. With probability at least 1− ε, for all collections of up to k sets S1, . . . , Sl ∈ F ,
|S′

1 ∪ · · · ∪ S′
l | = p · |S1 ∪ · · · ∪ Sl| ± pεd.

This result is similar to Lemma 8 from McGregor and Vu [15], with a few minor changes.
Most notably, the probability of success is changed from a term involving m to one involving ε,
which is important for the purpose of making an in-expectation guarantee.
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Our proof more closely resembles the proof of Corollary 5 from Jaud et al. [12], who showed
that the independence factor λ can be decreased substantially from its original definition in
McGregor and Vu [15]. As in Jaud et al. [12], we require the following concentration bound
for our proof.

▶ Theorem 4 (Schmidt et al. [19]). Let X1, . . . , Xn be λ-wise independent binary random
variables. Let X =

∑n
i=1 Xi and µ = E[X]. If λ ≤ ⌊min(γ, γ2)µe−1/3⌋, then

P [|X − µ| ≥ γµ] ≤ e−⌊λ/2⌋.

Proof of Lemma 3. Fix any collection of sets S1, . . . , Sl ∈ F with 1 ≤ l ≤ k. Let D =
|S1 ∪ · · · ∪ Sl| be the unsubsampled coverage of the collection and let D′ = |S′

1 ∪ · · · ∪ S′
l |

be the subsampled coverage. Let Xe = 1 if e ∈ S1 ∪ · · · ∪ Sl and h(e) = 1, and let Xe = 0
otherwise. Then D′ =

∑n
i=1 Xi and µ := E[D′] = pD. The Xi are λ-wise independent by

the choice of h, where λ = ⌊2k log(emε−1)⌋. Define γ = εd/D so that γµ = pεd. Before
applying Theorem 4, we verify the necessary condition on the independence factor:⌊

min(γ, γ2)µe−1/3
⌋

=
⌊
min(1, γ)γµe−1/3

⌋
≥

⌊
ε · pεd · 2

3

⌋
=

⌊
ε2 · 3kε−2 log(emε−1)w−1 · d · 2

3

⌋
≥

⌊
2k log(emε−1)

⌋
= λ,

where we make use of the fact that γ ≥ ε (since d ≥ D), e−1/3 ≥ 2/3, and w ≤ d. Therefore,
we have

P [|D′ − µ| ≥ pεd] = P [|D′ − µ| ≥ γµ] ≤ exp
(
−

⌊
⌊2k log(emε−1)⌋

2

⌋)
≤ exp

(
−

⌊
k log(emε−1)

⌋)
≤ exp

(
−k log(emε−1) + 1

)
≤ (emε−1)−k · e = e−k+1m−kεk ≤ m−kε.

The total number of collections is
∑k

i=1
(

m
i

)
≤

∑k
i=1

mk

k = mk, so taking a union bound, the
probability that |D′ − µ| ≥ pεd for some collection is at most mkm−kε = ε. ◀

Using Lemma 3, we can show that a good solution to the subsampled instance I ′

corresponds to a nearly-as-good solution to I. This result is analogous to Corollary 9 from
McGregor and Vu [15].

▶ Corollary 5. Let OPT′ be the optimal coverage for the subsampled problem instance I ′.
If a choice of k sets S1, . . . , Sk satisfies |S′

1 ∪ · · · ∪ S′
k| ≥ β ·OPT′, then with probability at

least 1− ε, |S1 ∪ · · · ∪ Sk| ≥ (β − 2ε) ·OPT.

Proof. Let O1, . . . , Ok be an optimal solution to the unsubsampled problem instance I. We
have

OPT′ ≥ |O′
1 ∪ · · · ∪O′

k| ≥ p · |O1 ∪ · · · ∪Ok| − pεd ≥ p(1− ε) ·OPT,

where the second inequality follows from Lemma 3. Now let S1, . . . , Sk be a collection of sets
satisfying |S′

1 ∪ · · · ∪ S′
k| ≥ β ·OPT. Applying Lemma 3 once again, we have

|S1 ∪ . . . ∪ Sk| ≥
1
p
· |S′

1 ∪ . . . ∪ S′
k| − εd ≥ 1

p
· β ·OPT′ − ε ·OPT

≥ β

p
· p(1− ε) ·OPT− ε ·OPT ≥ (β − 2ε) ·OPT. ◀
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Now B achieves an approximation factor of α in-expectation on the subsampled instance I ′.
Therefore, by Corollary 5, with probability at least 1− ε, B achieves an approximation factor
of α− 2ε in-expectation. The unconditional expected approximation factor is therefore at
least (1− ε)(α− 2ε) ≥ (α− 3ε). Dividing ε by 3 at the start (omitted from Algorithm 1 for
brevity) corrects this to α− ε without changing the asymptotic space complexity.

Of course, the above reasoning is only valid if, in the at-least-(1− ε)-probability event
that all the approximations in Lemma 3 hold, the instantiation Bwc

is not terminated.12

Let i′
max = arg maxi |S′

i| be the index of the largest set in the subsampled instance. We have

d∗
wc
≤ dwc =

∣∣∣S′
i′

max

∣∣∣ ∗
≤ pwc

∣∣Si′
max

∣∣ + pwcεd ≤ pwcd(1 + ε) ≤ 2pwcwc(1 + ε),

where the starred inequality follows from an application of Lemma 3 on the singleton collection
containing only Si′

max
. Therefore, the instantiation Bwc

is not terminated.

Space consumption. We now consider an arbitrary instantiation Bw, where w is not
necessarily the correct guess for d. Unlike n, m, and k, we do not assume that a maximum
coverage streaming algorithm is provided with the maximum set size d at the start of the
stream. Furthermore, at any point during the stream, it could be that the largest set has
already been observed (i.e., d∗ = d). Therefore, since Bw uses O(dws) space, it must also
use O(d∗

ws) space. Now as long as Bw is not terminated, by Line 11, we have d∗
w ≤ 2pww(1+ε),

so the space consumption of Bw is

O(d∗
ws) = O(pww(1 + ε)s) = O(kε−2 log(emε−1)w−1ws) = Õ(kε−2s).

Each instantiation also requires the storage of the hash function hw, but this takes just O(λ) =
Õ(k) space. There are |W | = O(log n) instantiations, so the total space complexity of GS(B)
is Õ(kε−2s). This completes the proof of Theorem 2.

2.3 Beating 1/2 via submodular maximisation
Submodular maximisation is a heavily studied problem in combinatorial optimisation that
may be viewed as a generalisation of maximum coverage. A function f : 2V → R over a
ground set V is said to be submodular if we have

f (e | X) ≥ f (e | Y ) for all X ⊆ Y ⊆ V and e ∈ V \ Y ,

where f (e | X) = f (X ∪ {e}) − f(X) is the marginal gain of e given X. Submodular
maximisation is the problem of choosing A ⊆ V such that f(A) is maximised. We consider a
popular variant of the problem in which a cardinality constraint |A| ≤ k is applied and f is
assumed to be non-negative and monotone.

Submodular maximisation has received a lot of attention in the streaming model [5, 17, 1].
In this model, the items of V arrive one at a time in the stream, and we assume access to an
oracle for f , which may be queried in O(1) time. In the arbitrary-arrival model, it is known
that Ω(mk−3) space is required to achieve an approximation factor above 1/2, where m = |V |
is the length of the stream [8].13 In the random-arrival model, however, the 1/2 barrier has
been broken. This was first achieved by Norouzi-Fard et al. [17], who gave a Õ(k)-space

12 Note that the inequality in Corollary 5 always holds in this event.
13 This is the same result that states that Ω(mk−3) space is required to achieve approximation factors

better than 1/2 for arbitrary-arrival set-streaming maximum coverage (cf. Table 1).
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algorithm, called salsa, which achieves an approximation factor of 1/2 + c0 in-expectation
for a very small constant c0 > 0. More recently, Agrawal et al. [1] gave an algorithm which
achieves an approximation factor of 1− 1/e− ε− o(1) in-expectation, where the o(1) term is
a function of k. The algorithm, which we call smc after its authors, uses Õε(k) space, where
a complicated exponential dependence on ε is suppressed. Liu et al. [14] improved the space
complexity to Õ(kε−1) while maintaining the approximation factor; we call this improved
algorithm smc+.

Submodular maximisation generalises maximum coverage: given a maximum coverage
instance I = (F , k), we simply set V = F and define f to be the coverage function
f(X) = |∪Si∈XSi|. It is not hard to see that f is non-negative, monotone, and submodular.
In the study of maximum coverage, however, we do not assume oracle access for evaluating
coverage, so it must be evaluated explicitly. Therefore, if we use a submodular maximisation
streaming algorithm for set-streaming maximum coverage, entire sets must be retained in
memory, leading to an increase in space consumption proportional to d, the size of the largest
set. Applying Theorem 2, however, we have the following key result.

▶ Corollary 6. Suppose B achieves an approximation factor of α in-expectation for streaming
submodular maximisation using O(s) space. There exists an algorithm for set-streaming
maximum coverage which, given ε > 0, achieves an approximation factor of α−ε in-expectation
and uses Õ(kε−2s) space.

Applying this result to salsa with ε = c1 := c0/2 yields gs-salsa, which achieves an
approximation factor of 1/2 + c0 − ε = 1/2 + c1 in-expectation using Õ(kε−2 · kε−1) = Õ(k2)
space (note that ε in this case is constant). Applying the result to smc+ yields gs-smc+,
which uses Õ(k2ε−3) space and achieves an approximation factor of 1− 1/e− ε− o(1)− ε

in-expectation. Dividing ε by 2 returns the approximation factor to 1−1/e−ε−o(1) with no
change to the space complexity. Recall that achieving an approximation factor above 1− 1/e

requires high space [15], so for large k, this is essentially the optimal approximation. The o(1)
term decreases quite slowly, however, so for small k, gs-salsa may be preferable.

3 Hardness Result for Edge-Streaming

In this section, we prove Theorem 1, which essentially says that no low-space algorithm can
achieve a nontrivial approximation in the random-arrival edge-streaming model.

Our proof is a reduction from the heavily studied t-party set disjointness problem, DISJt.
In this problem, t players are each given a set Si ⊆ [N ], where the ith player knows only Si.
Either all sets are pairwise disjoint (a YES instance), or are pairwise disjoint except for
an element that is common to all t sets (a NO instance). Gronemeier [9] showed that any
protocol that solves this problem with probability 2/3 requires Ω(N/t) bits of communication,
even if the players may use public randomness. The hardness instance for this problem is such
that we may assume that |S1| = . . . = |St| = cN/t for an arbitrarily small constant c > 0.

Our proof combines ideas from two existing approaches, both of which are also reductions
from DISJt. The first is a result due to Andoni et al. [3], who proved a near-tight space
lower bound for the problem of frequency moment estimation on random-arrival streams.
Given a stream ⟨a1, . . . , al⟩, where each ai ∈ [n], the kth frequency moment is defined
as Fk :=

∑
i∈[n] fk

i , where fi = |{j : aj = i}| is the number of times i appears in the stream.
Andoni et al. [3] studied the problem of 0.5-estimating this quantity, which is known to
require Θ̃(n1−2/k) space in the arbitrary-arrival model. They showed that Ω(n1−2.5/k/ log n)
space is necessary in the random-arrival model, almost matching the upper bound. In their
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proof, a stream of integers is constructed such that we have Fk = l for a YES instance
and Fk ≥ 2l for a NO instance. Our proof is very similar, but we include all the details for
completeness. The main difference in our proof is that we need to construct a stream of edges,
rather than a stream of integers. We use an idea from Indyk and Vakilian [11], who proved
that Ω(α2m) space is required to α-approximate maximum coverage in the arbitrary-arrival
edge-streaming model. Their proof involves the construction of a stream of edges such that
the maximum coverage is 1 for a YES instance and 1/α for a NO instance. We make a small
change to this construction to ensure that the stream is in random order.

We start with two slightly reparameterised preliminary results from Andoni et al. [3].
Throughout this section, we assume that α and δ have been fixed.

▶ Lemma 7. Let W = {I1, . . . , It} be t = l2δ/5 random intervals from

Cyclel,w := {[i− 1 (mod l) + 1, . . . , w + i− 2 (mod l) + 1] : i ∈ [l]} ,

where w = c1l1−3δ/5 and c1 > 0 is a sufficiently small absolute constant. With probability at
least 0.99,
1. Ii1 ∩ Ii2 ∩ Ii3 = ∅ for any i1 < i2 < i3.
2. |{(i1, i2) : i1 < i2, Ii1 ∩ Ii2 ̸= ∅}| ≤

√
t.

The set Cyclel,w is simply the set of size-w intervals from [l], including those that “wrap
around” from l to 1. For example, Cycle4,3 = {[1, 2, 3], [2, 3, 4], [3, 4, 1], [4, 1, 2]}.

▶ Lemma 8. Consider a uniformly random subset S ⊆ [l] of size t = l2δ/5. For some
sufficiently small absolute constant c2 > 0, with probability at least 0.99, for each j1, j2 ∈ S,
|j2 − j1| ≥ c2l1−4δ/5.

We also require the following result.

▶ Lemma 9. Let X be the number of unique values produced by ⌈t/4⌉ independent, uniformly
random draws from [t] (with replacement). For sufficiently large t, P(X ≥ t/6) ≥ 0.99.

Proof. Let Xi = 1(i is drawn at least once), then X =
∑t

i=1 Xi. We have

µ := E[X] = tE[X1] = t
(

1− (1− 1/t)⌈t/4⌉
)
≥ t

(
1− e−1/4

)
≥ t/5.

By a Chernoff bound for negatively correlated Boolean random variables where we set β = 6/5,
we have

P
(

X <
t

6

)
= P

(
X <

t/5
β

)
≤ P

(
X <

µ

β

)
≤

(
e1/β−1

ββ

)µ

= cµ
3 ≤ c

t/5
3 ,

where c3 is an absolute constant less than 1. By setting t ≥ 5 logc3
(0.01) ≈ 11.9, we

get P(X < t/6) ≤ 0.01 and the result follows. ◀

We are now ready to prove Theorem 1. Let S = {S1, . . . , St} be an instance of DISJt

where t = l2δ/5, N = l1−δ/5, and for all i ∈ [t], we have |Si| = c1N/t = c1l1−3δ/5 =: w,

where c1 is as in Lemma 7. Any protocol that solves S with probability at least 2/3
requires Ω(N/t) = Ω(l1−3δ/5) bits of communication.

Let A be an s-space algorithm for random-arrival edge-streaming maximum coverage that
achieves an approximation factor of α with probability at least 0.9 on streams containing l

edges. We describe a protocol that uses A to solve S using O(ts) bits of communication, and
therefore deduce that s = Ω(l1−3δ/5/t) = Ω(l1−δ) = Ω(m1−δ) (note that m ≤ l, since l edges
cannot possibly specify the contents of more than m non-empty sets).
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Using public randomness, the players pick:
1. Intervals W = {I1 = [a1, b1], . . . , It = [at, bt]} from Cyclel,w, ordered such that bi ≤ bj

if i ≤ j. The intervals are chosen independently with replacement.
2. A permutation σ of [2l].
3. A binary string r of length t2/c2, where c2 is as in Lemma 8.

Each interval in W has size |Ii| = w. If b1 < w, then at least one set “wraps around”
from l to 1. In this case, terminate with failure. Each interval has probability (w − 1)/l of
wrapping around, so by a simple union bound, P[b1 < w] ≤ t(w − 1)/l ≤ c1l−δ/5. For large
enough l, this value is at most 0.01. Also, if any j ∈ [n] appears in three or more distinct
intervals in W, or if more than

√
t pairs of intervals intersect, the protocol terminates with

failure. By Lemma 7, this too occurs with probability at most 0.01.
The players construct, as described below, a length-l stream U = ⟨u1, . . . , ul⟩ representing

a maximum coverage problem instance I = (F = {H1, . . . , Hm}, k = 1) in the edge-streaming
model, where each Hi ⊆ [t]. Each edge is a set-element pair uj = (yj , ej) indicating
that ej ∈ Hyj

. The players take turns generating edges and feeding them to the stream of the
algorithm A. When it is no longer a player’s turn to generate the next edge, the player sends
the entire state of A to the appropriate player, which requires O(s) bits of communication.

Constructing the stream. The construction is very similar to the one presented by Andoni
et al. [3]. First, each player i randomly orders their set Si to produce a string si of length w.
Now consider uj , the jth element in the stream U . The player chosen to construct uj depends
on the number of intervals in W that contain j.
0. If j appears in none of the intervals, uj is determined by player i, where Ii = [ai, bi] is

the interval with the smallest ai such that ai > j. If no such interval exists (which may
occur towards the end of the stream) then uj is determined by player t.

1. If j appears in just one interval Ii, uj is determined by player i.
2. If j appears in two intervals Ii and Ii+1, we have a “clash” between players i and i+1. We

partition [l] into t2/c2 equally sized intervals, which we call zones. We say that zone u is
a 0-zone if ru = 0, and a 1-zone otherwise. If j is in a 0-zone, uj is determined by player i.
Otherwise, uj is determined by player i + 1. Each zone has length w2 := c2l1−4δ/5.

Note that j never appears in more than two intervals, since this results in termination of the
protocol. Figure 1 shows an example of how players might be chosen to construct the stream.

At the end of their interval, each player sends the state of A to the next player. Also,
when two players’ intervals overlap, they may need to send the state of A back and forth
several times (e.g., in Figure 1, players 2 and 3 need to pass the state to each other three
times). Assuming the protocol does not terminate, there are at most

√
t clashes, and each

clash results in at most w/w2 = O(
√

t) messages being sent. The total number of messages
is O(t +

√
t ·
√

t) = O(t), so the communication complexity of the protocol is O(ts).
Now suppose player i has been chosen to construct the edge uj = (yj , ej). The set ID yj

is chosen in exactly the same way as the integer aj in Andoni et al. [3]: set yj = σ(xj), where
the definition of xj differs for each of the three cases.
0. Set xj = l + j to be a padding value.
1. Set xj = si

q to be a standard value with probability 1/2, where j is the qth element of Ii.
Otherwise, set xj = l + j to be a padding value.

2. Set xj = si
q to be a standard value, where j is the qth element of Ii.
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Output stream
Intervals W I1 I2 I3

Zones 0-zone1-zone1-zone etc...
Player determining

output stream: 1 2 3 2 3

Figure 1 An example allocation of stream construction responsibility for a simple DISJ3 instance
in which there is a single overlap between two intervals (I2 and I3). Note that this is a non-
terminating instance.

Table 2 A portion of an example reduction for a DISJt NO instance with multiply occurring
element 3. Column j denotes the index of the stream, while the strings s2 and s3 (which contain
the contents of the sets S2 and S3) have been positioned in place of the intervals I2 = {11, . . . , 14}
and I3 = {13, . . . , 16} for clarity. The “Player” column denotes the player who determines the
edge uj = (σ(xj), pj). In Case 1 (e.g., j = 11), there are two different equally likely values for xj ;
both values are shown. We assume that l = 20.

j s2 s3 Zone Player Case xj

...
...

...
...

...
10 0 2 0 l + j = 30
11 4 0 2 1 s2

1 = 4 or l + j = 31
12 5 1 2 1 s2

2 = 5 or l + j = 32
13 3 8 1 3 2 s3

1 = 8
14 1 2 0 2 2 s2

4 = 1
15 3 0 3 1 s3

3 = 3 or l + j = 35
16 6 0 3 1 s3

4 = 6 or l + j = 36
17 0 4 0 l + j = 37
...

...
...

...
...

Table 2 shows an example of how the xj are defined for a portion of the stream that
includes two overlapping intervals. Observe that each occurrence of an element e in a set Si

has probability 1/2 of appearing as a standard value xj = e for some j.14

It remains to choose the element ej . In their proof for the arbitrary-arrival case, Indyk
and Vakilian [11] set ej = i and insert the edge (xj , ej) into the stream, where xj is always
a standard value (the intervals are contiguous sections of the stream). The result is that
each He ∈ F contains the IDs of the players holding the element e, so the maximum coverage
is either 1 (in a YES instance) or t (in a NO instance). This idea does not work for our
purposes, since if we set ej = i, consecutive edges inserted by the same player will always
have the same ej . Instead, we set ej = pj , where pj ∈ [t] is a randomly sampled player ID.

By the same argument given by Andoni et al. [3], the stream is in (nearly15) random
order. The only difference is the presence of pj in each of our edges. However, as the pj are
randomly and independently sampled from [t], they have no effect on whether the stream is
randomly ordered.

14 In Case 1, this probability comes from the random choice between a standard value and a padding value.
In Case 2, this probability comes from the random choice of zone due to the binary string r.

15 Certain orderings are impossible due to the termination with failure conditions. Since termination
happens with probability at most 0.02, however, the biggest detrimental effect that this can possibly
have on the performance of A is a decrease of 0.02 in the probability of successfully achieving the
approximation factor.

ESA 2023



102:14 Maximum Coverage in Random-Arrival Streams

Using the output of A. What does the output of A tell us about the DISJt instance S?
The following claims are made assuming that the protocol does not terminate with failure.

▷ Claim 10. If S is a YES instance, the optimal coverage of I is 1.

Proof. First, observe that the xj are all distinct, since all padding values are distinct from
each other, all standard values are distinct from each other (as S is a YES instance), and no
standard value can ever equal a padding value, as si

q ≤ N < l < l + j. Therefore, since σ is
a permutation, the yj are also all distinct, so each edge in the stream specifies a different
set ID. Every set is therefore singleton, so the optimal coverage is 1. ◁

▷ Claim 11. If S is a NO instance, then with probability at least 0.97, the optimal coverage
of I is at least t/6.

Proof. There is some e ∈ [N ] such that e ∈ Si for all i ∈ [t]. For each occurrence of e in
a set Si, there is some position in the stream where e appears as an edge (σ(e), pj) with
probability 1/2. Let V be this set of positions (e.g., in Table 2, the multiply occurring element
is e = 3, and the set V includes 13 and 15). Since the intervals W are chosen randomly and
the strings si are randomly ordered, V is a uniformly random subset of [l], so by Lemma 8,
with probability at least 0.99, no two elements of V fall within c2l1−4δ/5 of each other. This
is precisely w2, the size of each zone, so no two elements fall within the same zone. Each
occurrence of e therefore appears in the stream with probability 1/2 independently, so the
number of occurrences that appear has a Binomial distribution q ∼ B(t, 1/2). When t is
sufficiently large,16 q ≥ t/4 with probability at least 0.99.

Now consider these q appearances, (σ(e), p1), . . . , (σ(e), pq). Assuming that we indeed
have q ≥ t/4, by Lemma 9, the number of distinct values among p1, . . . , pq is at least t/6,
so choosing Hσ(e) yields a coverage of at least t/6. By a union bound on the three sources
of error (Lemma 8, variation in the Binomial distribution, and Lemma 9), this occurs with
probability at least 0.97. ◁

By taking l large enough, we can ensure that t/6 ≥ 1/α, in which case A is powerful enough
to distinguish between YES and NO instances. Tallying up the various sources of error, A
succeeds with probability at least 0.9, we avoid early termination with probability at least 0.98,
and (in the case of a NO instance) Claim 11 holds with probability at least 0.97. Thus, by a
union bound, the protocol succeeds with probability at least 1−0.1−0.02−0.03 = 0.85 ≥ 2/3.
This completes the proof of Theorem 1.
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Abstract
Randomized matrix algorithms have had significant recent impact on numerical linear algebra. One
especially powerful class of methods are algorithms for approximate matrix multiplication based on
sampling. Such methods typically sample individual matrix rows and columns using carefully chosen
importance sampling probabilities. However, due to practical considerations like memory locality
and the preservation of matrix structure, it is often preferable to sample contiguous blocks of rows
and columns all together. Recently, (Wu, 2018) addressed this setting by developing an approximate
matrix multiplication method based on block sampling. However, the method is inefficient, as it
requires knowledge of optimal importance sampling probabilities that are expensive to compute.

We address this issue by showing that the method of Wu can be accelerated through the use of
a randomized implicit trace estimation method. Doing so allows us to provably reduce the cost of
sampling to near-linear in the size of the matrices being multiplied, without impacting the accuracy
of the final approximate matrix multiplication. Overall, this yields a fast practical algorithm,
which we test on a number of synthetic and real-world data sets. We complement our algorithmic
contribution with the first extensive empirical comparison of block algorithms for randomized matrix
multiplication. Our method offers a significant runtime advantage over the method of (Wu, 2018)
and also outperforms basic uniform sampling of blocks. However, we find another recent method
of (Charalambides, 2021) which uses sub-optimal but efficiently computable sampling probabilities
often (but not always) offers the best trade-off between speed and accuracy.
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1 Introduction

Matrix computations are central across computing, with applications in optimization, scientific
computing, data science, and more. In recent years, in an effort to tackle the challenge of
scaling computations to larger and larger matrices, randomized methods have taken center
stage [14, 27]. Collectively known as Randomized Numerical Linear Algebra or “RandNLA”,
the study of randomized matrix algorithms has led to faster algorithms for a number of
central problems in linear algebra, including least squares regression [5, 24, 25], low-rank
approximation [10, 13, 17, 23], trace estimation [18, 21], and more. Many of these algorithms
are based on relatively simple sampling and sketching routines (like Johnson-Lindenstrauss
random projection hashing-based methods) which are easily parallelized and adapted to
modern computational environments, including distributed and streaming architectures [4].
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1.1 Randomized Matrix Multiplication
Beyond the problems listed above, another topic of central interest in RandNLA is, of course,
matrix multiplication. There has been significant work on developing randomized algorithms
for matrix multiplication that return an approximate solution in a fraction of the time it
would take to perform exact multiplication [6, 7]. Roughly, randomized matrix-multiplication
methods can be split into two categories – random projection methods [25] and random
sampling methods [12]. In both cases, the idea is to quickly compress given input matrices
A ∈ Rm×n and B ∈ Rn×p to form matrix “sketches” C ∈ Rm×c and D ∈ Rc×p, where c ≪ n.
We then return CD as an approximation to AB. For many standard methods, including
Johnson-Lindenstrauss random projection [25] and norm-based column and row sampling
[12], a choice of c = O(1/ϵ2) for ϵ ∈ (0, 1) ensures that with high probability:

∥AB − CD∥F ≤ ϵ∥A∥F ∥B∥F . (1)

The approximation CD can be computed in O(cmp) = O(mp/ϵ2) time, significantly im-
proving on the naive cost of O(nmp) when n is large in comparison to 1/ϵ2. So, we get an
algorithmic speedup as long as C and D can be quickly obtained from A and B.

1.1.1 The BasicMatrixMultiplication Method
In this paper, we are specifically interested in random sampling methods for computing C
and D. The most well-known method is the BasicMatrixMultiplication algorithm of Drineas,
Kannan, and Mahoney [11, 12]. The idea behind the algorithm is elegant: the matrix
multiplication AB can be cast as the sum of rank-one components, each an outer product
of a column in A and the corresponding row in B. In particular, AB =

∑n
i=1 A(i)B(i),

where A(i) denotes the ith column of A and B(i) denotes the ith row of B. BasicMatrix-
Multiplication approximates this sum by sampling the rank-one components using non-
uniform sampling probabilities. To be more specific, we sample A(i)B(i) with probability
pi = ∥A(i)∥2∥B(i)∥2∑n

j=1
∥A(j)∥2∥B(j)∥2

, so “heavy” columns and rows (which contribute more to the matrix

product) are sampled with high probability. Equivalently, for the BasicMatrixMultiplication
method, C and D consist of a subset of columns and rows from A and B, sampled according
to their ℓ2 norms. More details are provided in Section 2.

The BasicMatrixMultiplication algorithm is a powerful method with a number of desirable
properties. First, the method achieves the strong bound of Equation (1), matching random
projection methods in the worst case. However, on top of this:
1. When constructing C and D, the BasicMatrixMultiplication method preserves sparsity

and structure originally present in A and B. This can lead to more compact sketches in
practice. The same is not true of random projection based methods, which e.g. produce
dense sketches C and D, even if A and B are sparse.

2. The sampling probabilities p1, . . . , pn, and thus the sketches C and D can be computed
in just O(mn + pn) time, which is linear in the size of the input. We simply need to
compute the norm of all columns (resp., rows) in A (resp., B).

3. The sampling probabilities used are provably optimal in the sense that they minimize the
expected squared error E

[
∥AB − CD∥2

F

]
amongst all choices of probabilities. As a result,

BasicMatrixMultiplication often outperforms the worst-case bound of Equation (1).

Thanks to the advantages above, the BasicMatrixMultiplication algorithm has been
widely adapted and applied to problems in information retrieval [15], image processing [20],
and distributed computation [19].
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1.2 Our Contributions
Despite its many virtues, an important practical issue with the BasicMatrixMultiplication
method is that it samples columns and rows from A and B independently at random. In many
applications, it would actually be preferable to sample contiguous blocks of columns from A,
and respective blocks of rows from B, i.e., to sample every column A(i), A(i+1), . . . , A(i+q−1)

for some starting index i and block size q. The need for block sampling arises for a few
reasons. First, in some settings it is desirable to keep nearby rows together to preserve
structure in A. As an example, [28] and [29] consider a problem where samples are obtained
from block-structured finite element stiffness matrices. Moreover, even when A and B are
unstructured, sampling multiple blocks of columns is typically more efficient on modern
architectures where memory access costs are a major factor in determining final runtimes.
When A and B are large enough that they must be stored in slow memory (e.g. on disk
instead of in RAM) accessing a block of q adjacent columns (which are stored adjacent on
disk) will often be far cheaper than accessing a set of q columns with non-adjacent indices.

1.2.1 The BlockBasicMatrixMultiplication Method
To address these concerns, recent work by Wu introduces a block-wise version of the Ba-
sicMatrixMultiplication method, which we call BlockBasicMatrixMultiplication [28]. The
method maintains many of the nice properties of the BasicMatrixMultiplication method,
and for any block size q, it can be shown that sampling O(1/ϵ2) blocks results in the same
error guarantee of Equation (1).1 Moreover, it can be shown that the sampling probabilities
used by Wu’s method are optimal for block sampling, just as those used by BasicMatrix-
Multiplication were optimal for single column sampling. However, a major disadvantage of
BlockBasicMatrixMultiplication is that these probabilities are no longer efficient to compute.
Concretely, consider Θ1, . . . , Θℓ which are disjoint subsets of adjacency indices that partition
{1, . . . , n}, i.e. for all j, Θi = {ki, ki +1, . . . , ki + qi} for some starting index ki and block size
qi, and Θ1 ∪ . . . ∪ Θℓ = {1, . . . , n}. If we want to sample a subset of blocks from Θ1, . . . , Θℓ,
[28] shows that the optimal probability to sample the ith block is equal to:

p̂i =
∥A(Θi)B(Θi)∥F∑ℓ

j=1 ∥A(Θj)B(Θj)∥F

(2)

This strictly generalizes the probabilities from BasicMatrixMultiplication, since for two
vectors A(i) and B(i), ∥A(i)B(i)∥F = ∥A(i)∥2∥B(i)∥2. However, in the general block case,
the probability is more expensive to compute. In particular, the naive cost of computing
p̂i equals O(qimp) (the cost of multiplying A(Θi)B(Θi)) so the total cost of sampling is∑ℓ

i=1 O(qimp) = O(nmp). This is as slow as if we had computed AB exactly! Assuming
for simplicity that q1 = . . . = qℓ = q (typically blocks have the same size), this runtime
can be improved to O(nmq + npq) when q ≤ p, m (see Equation (4) for more details). But
nevertheless, the complexity is still greater than the linear run time of O(nm + np) achieved
by BasicMatrixMultiplication by a multiplicative factor of q. In practice, we might want q in
the 100s or 1000s to take sufficient advantage of memory locality.

1 We might have hoped to obtain a better guarantee with block sampling. E.g. that when sampling
blocks of size q, we would only need O( 1

qϵ2 ) block samples, which is a total of O(1/ϵ2) columns. This
is not possible, however, as can be seen by considering adversarial matrices with e.g. all but columns
1, q + 1, 2q + 1, . . . set to zero. That said, in practice, sampling c blocks from A and B often performs
much better in terms of accuracy than sampling c individual columns.
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1.3 Faster Probabilities via Stochastic Trace Estimation
Our main contribution is to present a simple method for efficiently implementing the
optimal sampling scheme of [28]. In particular, we show how to approximate the required
sampling probabilities from Equation (2) up to a multiplicative constant factor using the
classic Hutchinson’s stochastic traces estimation method [18]. Another central technique in
randomized numerical linear algebra, Hutchinson’s traces estimator can approximate the
∥A(Θi)B(Θi)∥F term from Equation (2) with just a small number of matrix-vector multiplies
with A(Θi) and B(Θi) involving randomly chosen vectors. The end result is a method running
in O((nm + np) log(n)) time for computing all probabilities, which is near linear in the size of
the total size of the input matrices. At the same time, an analysis of our method shows that
using approximate sampling probabilities yields the same theoretical guarantees as [28], up
to constant factors. We call our method Hutchinson-estimated Block Approximate Matrix
Multiplication (Hutch AMM for short).

1.3.1 Empirical Evaluation
We perform an extensive experimental evaluation of our Hutch AMM method, showing that,
empirically, the probability computation can be performed to sufficient accuracy using just
5(nm + np) floating-point operations, even for very large values of m. The cost of then
computing CD once the probabilities are computed and used for sampling is then a lower
order computational. As a result, our method outperforms an efficient implementation of the
approach from [28] in terms of runtime, without sacrificing accuracy in approximating AB.

We also compare Hutch AMM to other baselines. For example, one natural approach is
simply to uniformly sample from the rows and columns of A and B (either blocks or individual
rows and columns). Uniform sampling typically requires more samples in comparison to using
optimal importance sampling probabilities to obtain a given level of accuracy. The trade-off,
however, is that uniform sampling has no computational overhead to compute probabilities –
a sample of c columns from A can be chosen in O(c) time. The only major runtime cost
is computing CD. Nevertheless, we show that for block sampling, our method typically
outperforms uniform sampling in terms of runtime to achieve a given level of approximation
accuracy, showing the value of importance sampling.

Finally, we compare against a recent method of [3], which also studies block based sampling
methods for approximate matrix multiplication. Their “Block CR Method” introduces an
alternative approach that samples blocks with probabilities equal to:

p̃i =
∥A(Θi)∥F ∥B(Θi)∥F∑ℓ

j=1 ∥A(Θj)∥F ∥B(Θj)∥F

(3)

While not optimal for minimizing E
[
∥AB − CD∥2

F

]
, these probabilities minimize a natural

upper bound2 on the expected squared error, and can be shown to achieve the bound of
Equation (1) with q = O(1/ϵ2) samples [3]. So, they match the result of Wu in the worst
case. At the same time, p̃1, . . . , p̃ℓ can be computed in linear time, O(nm + np), as they do
not require multiplying the blocks A(Θi) and B(Θi).

2 The text of [3] implies that the probabilities are optimal, but there is a small error in the derivation
of the variance of the estimator considered, where an upper bound is mistakenly considered to be
an equality. Nevertheless, the authors conclusion, that O(1/ϵ2) block samples suffice to achieve error
∥AB − CD∥F ≤ ϵ∥A∥F ∥B∥F , still holds.
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Overall, we find the Block CR method of [3] extremely effective. While it does not yield
as good an accuracy for a given number of samples as our method and that of Wu, the
difference is relatively small. So, when comparing overall runtime to approximate the matrix
product AB, the method of [3] usually offers the best accuracy vs. runtime trade-off.

1.4 Paper Organization

The organization of this paper is as follows: In Section 2, we introduce the BlockBasicMa-
trixMultiplication and our proposed modification. Section 3 presents a detailed analysis
and comparison of the expected squared error of the methods. In Section 4, we provide the
experiment details, followed by a brief discussion of the results. Finally, we conclude the
paper and discuss future research directions in Section 5.

2 Methodology

2.1 Notation

We denote matrices and vectors using bold Roman letters. For a vector v ∈ Rn, ∥v∥2 =√∑n
i=1 vi denotes the standard Euclidean norm. For a matrix A ∈ Rm×n, ∥A∥F =√∑m
i=1
∑n

j=1 Aij denotes the Frobenius norm. We use superscript A(i) to denote the ith

column of A and subscript A(j) to denote the jth row. For a set of c indices S, we let
A(S) denote the m × c matrix containing A(j) for j ∈ S. Similarly, A(S) denote the c × n

matrix containing A(j) for j ∈ S. For a square M ∈ Rn×n, tr(M) =
∑n

i=1 Mii denotes the
trace. We use Pr[B] to denote the probability of a random event B and E[X] to denote the
expectation of a random variable X.

2.2 Hutchinson-estimated block Approximate Matrix Multiplication

Given matrices A ∈ Rm×n and B ∈ Rn×p, BasicMatrixMultiplication returns an unbiased
estimator for the matrix product AB by sampling rank-one components (each is an outer
product of a column from A and corresponding row from B). Specifically, the algorithm
selects and re-weights a subset of c columns from A to form a matrix C ∈ Rm×c and the
corresponding c rows from B to form a matrix D ∈ Rc×p so that CD ≈ AB. To reduce the
approximation error, rows and columns are sampled with non-uniform probabilities, and
appropriately scaled after sampling by the inverse probability to ensure the E[CD] = AB.
The algorithm is summarized in Algorithm 1:

Algorithm 1 BasicMatrixMultiplication w/ Optimal Sampling Probability [12].

Input: A ∈ Rm×n, B ∈ Rn×p, number of samples c.
Output: Estimate of matrix product AB.

For all i ∈ 1, . . . , n, compute optimal sampling probability pi = ∥A(i)∥2∥B(i)∥2∑n

j=1
∥A(j)∥2∥B(j)∥2

.

for t = 1 . . . , c do
Pick j ∈ {1, . . . , n} with probability Pr(j = k) = pk.
Set C(t) = A(j)

√
cpj

and D(t) = B(j)√
cpj

end
Return CD
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As discussed in Section 1, the sampling probabilities p1, . . . , pn used in Algorithm 1 are
optimal in that they minimize E

[
∥AB − CD∥2

F

]
amongst all possible choices of probabilities

[12] (when using an unbiased estimator of the same form as Algorithm 1).
It is possible to extend the BasicMatrixMultiplication method to sampling blocks of rows

and columns. To do so, we consider a partition of the indices {1, . . . , n} into ℓ disjoint sets
Θ1, . . . , Θℓ. [28] derived optimal probabilities p̂1, . . . , p̂ℓ for sampling in the block setting,
which are shown below in Algorithm 2. Again, these probabilities minimize E

[
∥AB − CD∥2

F

]
amongst all possible choices of sampling probabilities.

Algorithm 2 Block BasicMatrixMultiplication w/ Optimal Sampling Probability [28].

Input: A ∈ Rm×n, B ∈ Rn×p, number of samples c, disjoint set of column indices
{Θ1, . . . , Θℓ} with Θ1 ∪ . . . ∪ Θℓ = {1, . . . , n}.

Output: Estimate of matrix product AB.

For all i ∈ 1, . . . , ℓ, compute optimal sampling probability p̂i = ∥A(Θi)B(Θi
)∥F∑ℓ

j=1
∥A(Θj ).B(Θj )∥F

Initialize C and D as empty matrices.
for t = 1, . . . , c do

Pick j ∈ {1, . . . , ℓ} with probability Pr(j = k) = p̂k.
Append A(Θj )√

cp̂j

onto C’s columns and B(Θj)√
cp̂j

onto D’s rows.

end
Return CD

▷ Claim 1. Assume Θ1, . . . , Θℓ are equally sized, so each contains q = n
l indices. Then

the BlockBasicMatrixMultiplication method of Algorithm 2 can be implemented in time
O(mnp), or in time O(n(m + p)q + cqmp), which is faster when q ≤ m, p.

Proof. Once sampling probabilities are computed and sampling performed, the cost of
multiplying CD is equal to O(cqmp). Specifically, C contains c blocks of q columns, so has
dimension m × cq and D has dimension cq × p. We focus on the cost of computing the
optimal probabilities, p̂1, . . . , p̂ℓ. Doing so requires computing ∥A(Θi)B(Θi

)∥F all i. Since
A(Θi) ∈ Rm×q and B(Θi) ∈ Rq×p, this can be done directly in O(qmp) time. Summing
over all ℓ blocks and using that q = n

ℓ , the total runtime is O(nmp) to compute p1, . . . , pℓ.
Alternatively, if q ≤ m + p, we can use the cyclic property of the trace:

∥A(Θi)B(Θi
)∥2

F = tr(BT
(Θi)(A(Θi))T A(Θi)B(Θi)) = tr((A(Θi))T A(Θi)B(Θi)BT

(Θi)). (4)

If we first compute (A(Θi))T A(Θi) and B(Θi)BT
(Θi) and then multiply the resulting q × q

matrices, the above trace can be computed in time O(q2m+q2p+q3) = O((m+p)q2). Again,
summing over all ℓ blocks and using that q = n

ℓ , the total runtime is O(n(m + p)q). ◁

As illustrated by Claim 1, the computational cost of BlockBasicMatrixMultiplication can
be prohibitively expensive. When q is larger than either m or p, the cost is as large as the
cost of computing the product AB exactly.

Our proposed approach is to speed up the BlockBasicMatrixMultiplication method
by using Hutchinson’s stochastic trace estimator [16, 18] to efficiently approximate
∥A(Θi)B(Θi

)∥2
F = tr(BT

(Θi)(A(Θi))T A(Θi)B(Θi)). Given an p × p matrix M, this estimator
estimates tr(M) via repeated multiplication of the matrix by random vectors. In particular,
for a sampling parameter h and vectors g1, . . . , gh each chosen to have independent random
entries with mean 0 and variance 1, the estimator takes the form:
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Hh(M) = 1
h

h∑
j=1

g⊺
j Mgj . (5)

Typically, random {−1, +1} Rademacher random variables are chosen for the entries of each
gj . It is easily checked that E [Hh(M)] = tr(M) and for sufficiently large h, the estimator
concentrates around its expectation [1, 8]. The value of the estimation in Equation (5) is that,
for M = BT

(Θi)(A(Θi))T A(Θi)B(Θi), each term in the sum
∑h

i=1 g⊺
j Mgj can be computed in

just O(pq + mq + pq + mq) = O(q(m + p)) time by multiplying BT
(Θi)(A(Θi))T A(Θi)B(Θi)gj

from right to left. When h is a small constant, the cost is thus linear in the total size of the
blocks A(Θi) and B(Θi). Overall, our proposed algorithm is summarized in Algorithm 3:

Algorithm 3 Hutchinson-estimated Block Approx. Matrix Multiplication (Hutch AMM).

Input: A ∈ Rm×n, B ∈ Rn×p, number of samples c, disjoint sets of column indices
{Θ1, . . . , Θℓ} with Θ1 ∪ . . . ∪ Θℓ = {1, . . . , n}, number of Hutchinson’s
samples h.

Output: Estimate of matrix product AB.
For all i ∈ 1, . . . , ℓ, compute approximate optimal sampling probability

p̄i =

√
Hh(BT

(Θi)(A(Θi))T A(Θi)B(Θi))∑ℓ
j=1

√
Hh(BT

(Θj)(A(Θj))T A(Θj)B(Θj))

Initialize C and D as empty matrices.
for t = 1, . . . , c do

Pick j ∈ {1, . . . , ℓ} with probability Pr(j = k) = p̄k.
Append A(Θj )√

cp̄j
onto C’s columns and B(Θj)√

cp̄j
onto D’s rows.

end
Return CD

We can bound the runtime of Algorithm 3 as follows:

▷ Claim 2. Assume Θ1, . . . , Θℓ are equally sized, so each contains q = n
l indices. Then the

Hutch AMM method of Algorithm 3 can be implemented in time O(nh(m + p) + cqmp).

Proof. The proof follows from the discussion above. For each block, computing the Hutchin-
son’s estimate Hh(BT

(Θi)(A(Θi))T A(Θi)B(Θi)) takes time O(qh(m + p)) for a total runtime of
ℓ · O(qh(m + p)) = O(nh(m + p)). We then have an additional cost of O(cqmp) to compute
CD, which will typically be a lower order term when the number of samples c is small. ◁

From Claim 1 and Claim 2, we can check that Hutch AMM improves on the BlockBasicMa-
trixMultiplication algorithm whenever the number of Hutchinson’s iterations h is less than
the block size q. As we will prove in the next section, if suffices to set h = O(log n) to match
the accuracy guarantees of BlockBasicMatrixMultiplication up to a multiplicative constant.

3 Error Analysis

In this section we provide an analysis of our Hutch AMM method. We start by stating the
main result from [28], which bounds the expected squared error of the BlockBasicMatrixMul-
tiplication method.
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▶ Proposition 3 (Proposition 2.2 [28]). For input matrices A ∈ Rm×n and B ∈ Rn×p, let
CD be the approximate matrix product returned by Algorithm 2. We have that E [CD] = AB
and the expected squared approximation error in Frobenius norm is:

E[∥AB − CD∥2
F ] = 1

c

ℓ∑
i=1

1
p̂i

∥A(Θi)B(Θi)∥2
F − ∥AB∥2

F

c
. (6)

Setting p̂i := ∥A(Θi)B(Θi)∥F∑l

i=1
∥A(Θi)B(Θi)∥F

for i = 1, . . . , ℓ, we obtain minimum expected error, which

can be upper bounded by:

E[∥AB − CD∥2
F ] ≤ 1

c

(
ℓ∑

i=1
∥A(Θi)B(Θi)∥F

)2

(7)

Note that, applying submultiplicativity of the Frobenius norm and Cauchy-Schwarz inequality
we can (loosely) bound:

1
c

(
ℓ∑

i=1
∥A(Θi)B(Θi)∥F

)2

≤ 1
c

(
ℓ∑

i=1
∥A(Θi)∥F ∥B(Θi)∥F

)2

≤ 1
c

(
ℓ∑

i=1
∥A(Θi)∥2

F

)(
ℓ∑

i=1
∥B(Θi)∥2

F

)
= 1

c
∥A∥2

F ∥B∥2
F

Using the resulting bound on E[∥AB − CD∥2
F ] we can apply Markov’s inequality to the

non-negative random variable ∥AB − CD∥2
F to prove that, with probability (1 − δ), Block-

BasicMatrixMultiplication achieves error ∥AB − CD∥F ≤ 1√
δc

∥A∥F ∥B∥F . In other words,
with c = O(1/δϵ2) samples, we obtain error ϵ∥A∥F ∥B∥F with probability (1 − δ), as desired.

What happens if we sample with approximately optimal probabilities? From Equation (6),
it can be checked directly that, if instead C and D are sampled with probabilities p̄1, . . . , p̄ℓ

satisfying p̄i ≥ 1
β p̂i for some constant β ≥ 1, then the expected squared error can be bounded

by:

E[∥AB − CD∥2
F ] ≤ β

c

(
ℓ∑

i=1
∥A(Θi)B(Θi)∥F

)2

. (8)

In other words, as long as p̄1, . . . , p̄ℓ approximate the optimal sampling probabilities p̂1, . . . , p̂ℓ

up to a constant factor, we obtain expected squared error that is within a multiplicative
constant of the bound from Equation (8) achieved by Wu’s optimal method.

With this in mind, we focus on showing that the approximate probabilities used in our
Hutch AMM method satisfy this multiplicative bound. In particular, we prove:

▶ Lemma 4. For inputs A ∈ Rm×n and B ∈ Rn×p, let p̄1, . . . , p̄ℓ be computed as in
Algorithm 3 with parameter h, and let p̂1, . . . , p̂ℓ be the optimal sampling probabilities from
Algorithm 2. As long as h ≥ C log(ℓ/δ) for a fixed constant C, then with probability 1 − δ,

p̄i ≥ 1
2 p̂i for all i ∈ 1, . . . ℓ.

In other words, as long as h = O(log ℓ) ≤ O(log n), then with high probability we obtain
sampling probabilities with a constant factor of the optimal probabilities, and thus expected
squared error with a constant of Equation (7), as desired.

To prove 4, we use the following standard bound on the accuracy of Hutchinson’s estimator:
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▶ Lemma 5 (See [8] or [21]). Let M ∈ Rd×d and δ ∈ (0, 1/2]. Let Hh(M) be Hutchinson’s
estimator run for h repetition, as in Equation (5). For fixed constants C1, C2, if h >

C1 log (1/δ), then with probability ≥ 1 − δ

|Hh(M) − tr(M)| ≤ C2

√
log (1/δ)

h
∥M∥F . (9)

Proof of Lemma 4. Let Xi denote Xi = A(Θi)B(Θi). Let h = 4 max(C1, C2
2 ) log(ℓ/δ). Then

by Lemma 5 it follows that, for any i ∈ 1, . . . , ℓ,

∣∣Hh(XT
i Xi) − tr(XT

i Xi)
∣∣ ≤ 1

2∥XT
i Xi∥F ,

with probability 1 − δ/ℓ. By a union bound, the statement holds simultaneously for all
i ∈ 1, . . . , ℓ with probability 1 − δ. Since XT

i Xi is a positive semidefinite matrix, we have
that ∥XT

i Xi∥F ≤ tr(XT
i Xi). So we can conclude that for all i ∈ 1, . . . , ℓ,

.5 · tr(XT
i Xi) ≤ Hh(XT

i Xi) ≤ 1.5 · tr(XT
i Xi).

We have that p̄i =
√

Hh(XT
i

Xi)∑ℓ

j=1

√
Hh(XT

j
Xj)

, so we conclude that, as desired,

p̄i ≥
√

.5 · tr(XT
i Xi)√

1.5
∑ℓ

j=1 tr(XT
j Xj)

≥ 1
2 p̂i. ◀

Combined with the bound in Equation (8) and Markov’s inequality, Lemma 4 implies
that as long as h = O(log(ℓ/δ), then with probability 1 − δ, Hutch AMM returns an estimate
CD satisfying ∥AB − CD∥F ≤ 1√

δc

∑ℓ
i=1 ∥A(Θi)B(Θi)∥F ≤ 1√

δc
∥A∥F ∥B∥F . Accordingly,

we match the guarantees of the BlockBasicMatrixMultiplication method, but with a total
computational cost of just O(n log(n)(m + p)) to compute sampling probabilities, which is
near linear in the size of the inputs A ∈ Rm×n and B ∈ Rn×p.

4 Experiments

In this section, we test our algorithm on both synthetic matrices and real-world datasets. We
demonstrate its performance by comparing it with the optimal BlockBasicMatrixMultiplica-
tion method [28], which in this section we call “Optimal Block AMM” for conciseness. As
discussed in the introduction, we also compare with two baseline method: sampling blocks
using uniform probabilities p̃i = 1

ℓ and the CR method from [3], which samples with the
probabilities shown in Equation (3).3

To compare methods, we use mean relative error ∥CD−AB∥F

∥AB∥F
and the total computational

time as two performance metrics in estimation accuracy and efficiency. All experiments were
conducted in Matlab R2022b on a laptop with a 2.7 GHz Quad-Core Intel Core i7 and 16
GB memory.

3 We note that there has been some recent follow-up work in [22] on modifications of the BlockBasic-
MatrixMultiplication method. However, the algorithms in that work ultimately perform individual
row/column sampling within each block, so they are not directly comparable to the other methods
studied in this paper, which always sampled contiguous blocks of rows or columns together.
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Figure 1 Performance comparison of different block approximate matrix multiplication methods
on matrices generated by different procedures. The matrices for plots (a-c) have size of 100 × 10000,
with a sampling block size q = 100, (d) involves matrices of size of 10 × 100000, with sampling block
size q = 1000. Our results show that, when comparing the number of samples c to average relative
error for 200 trials, the Hutch AMM method with h ≥ 5 consistently performs as well as the optimal
Optimal Block AMM method for matrices with significant differences in row/column norms (a,b),
while the Hutch AMM with h = 1 and uniform sampling methods perform worse. The CR methods
perform similarly to the optimal block AMM, except for the sparse case (d).

4.1 Data sets

For our synthetic data, we generate B ∈ R10000×100 with all entries uniform random in [0, 1].
For two data sets, we generate A ∈ R100×10000 with random Gaussian entries with variance 1,
and mean depending on the column index, i. For (a) Exponential decreasing, the means are
uniformly spaced on an exponential grid from exp (50) down to 1. For (b) Drift, the means
follow two trends. For the first 5000 columns they are exponentially decreasing as in (a), and
for the next 5000 columns the means are linearly decreasing. A similar matrix was used in [9].
These first two data sets have columns and blocks of columns with widely varying magnitudes.
For our third dataset, (c) Uniform, A is simply generated with entries uniform random in
[0, 1] like B. Finally, for (d) Sparse, we construct a sparse matrix A ∈ R10×100000 with 0.1%
non-zero entries selecting uniformly at random in [0, 1]. We construct B ∈ R100000×10 with
entries drawn from a standard normal distribution, but with 1% entries randomly replaced
with larger values uniformly distributed between 0 and an arbitrary positive number (we
used exp (4) in this paper).

For real-world data, we consider two different application scenarios: (1) Natural language
processing: We extracted TF-IDF matrices from a subset of the TDT2 corpus (Nist Topic
Detection and Tracking corpus)[2]. (2) Time series: We formed the whole-month (February
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(a) Mean relative error comparison of Hutch AMM
from h=1 to h=10.

(b) Estimation error for selected h plotted in shaded
region, shaded region ranges between plus and minus
one standard deviation from mean.

Figure 2 This figure investigates the impact of h on the estimation accuracy of Hutch AMM
methods. The graph shows the average relative estimation error against sampling number c for 200
trials for the Exponential Decreasing synthetic data. Higher choices of h generally lead to better
average error, but there is little to no benefit of choosing a value of h larger than 5. Similarly, low
choices of h lead to higher variance, as shown in (b). The shaded region represents the plus and
minus one standard deviation from the mean relative estimation error among the 200 trials. As we
can see, this region is much narrower for h = 5 in comparison to h = 1.

2022) yellow taxi trip records as a matrix using NYC Taxi and Limousine Commission
(TLC) Trip Record Data[26], the columns are sorted by pick-up time. We include numerical
features such as trip distances, itemized fares, and driver-reported passenger counts, as well
as one-hot-encoded categorical features such as VendorID and payment type. For the TF-IDF
experiments, we construct a matrix A of size 1000 × 36763; for the trip record experiments,
A has size 24 × 2877693. In both cases we set B = AT and use block size q = 100.

4.2 Results
We first compare the accuracy of block approximate matrix multiplication methods as a
function of the number of samples c. As shown in Figure 1, our Hutch AMM method run
with h as small as 5 consistently matches the Optimal Block AMM method from [28]. Both
methods outperform uniform sampling, except when A and B have uniform column norms,
in which case there is limited value in importance sampling. The CR method also performs
quite well, although is worse than our Hutch AMM method for the sparse synthetic data.
Running Hutch AMM with h = 1 shows worse performance. In Figure 2, we take a closer
look at the impact of varying h, and the choice of h = 5 seems to be a sweet spot – lower
values lead to higher error (due to worse approximation of the optimal sampling probabilities)
whereas high values offer little improvement, and lead to higher computation cost.

Having settled on h = 5 as a default parameter for our Hutch AMM method, we proceed
to compare the runtime against all baselines. We do so in Figure 3 for the synthetic data
and Figure 4 for the real-world data sets. In both cases, we perform repeated trials with
various choices of c. Since runtime and accuracy are not deterministic functions of c, this
leads to a scatter plot comparing running time vs. accuracy, which we visualize plot plotting
a moving average trend for each method tested. Overall, the plots show that Hutch AMM
offers improved computation time over Optimal Block AMM, and typically much better
accuracy than uniform sampling. However, while it showed better performance than the
CR method in terms of accuracy for a given number of samples for some problems (e.g. the
Sparse data), the slightly lower computational complexity of the CR method comes through
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(a) Exponential decreasing. (b) Drift.

(c) Uniform. (d) Sparse.

Figure 3 Relative estimation error against computation time, with a moving average line generated
using window length 20. Matrices are generated using the same procedures as in Figure 1. For
interpretation: A line to the left indicates the corresponding method’s superior computational
efficiency; a line towards the bottom indicates the corresponding method’s superior estimation
accuracy. Our observations indicate that both our Hutch AMM method and the CR method improve
on the Optimal Block Matrix multiplication method in terms of efficiency/accuracy tradeoff. They
also beat uniform sampling in all cases except for (c). Overall, the CR method shows the best overall
performance, despite its use of non-uniform sampling probabilities.

in the plots. In terms of overall computational complexity, in our experiments, it was more
efficient to run the CR method. The lack of optimal sampling probabilities is made up for
by including a slightly larger number of samples c in C in D.

5 Summary and Conclusion

In this study, we present the Hutchinson-estimated block Approximate Matrix Multiplication
(Hutch AMM) method, which is a more computationally efficient variant of the existing
BlockBasicMatrixMultiplication method. Our proposed method utilizes Hutchinson’s es-
timator to calculate a near-optimal sampling probability, which reduces computation cost
while maintaining a high level of estimation accuracy when an appropriate h parameter is
chosen. We validate our method through a detailed complexity analysis and proof of bounded
squared error. Additionally, we perform experiments on both synthetic and practical data.
Our results demonstrate that the Hutch AMM method is more computationally efficient and
provides accurate estimation on par with the optimal BlockBasicMatrixMultiplication in
all cases. Furthermore, we show that our proposed method can offer better performance
in terms of estimation accuracy than the similarly efficient CR block matrix multiplication
method.
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(a) TDT2 corpus. (b) NYC Yellow Taxi Trip.

Figure 4 The figure shows scatter points of relative estimation error plotted against computation
time, with a moving average line generated using smoothing window length 20. The matrices used
are practical datasets: (a) TF-IDF matrices from a subset of the TDT2 corpus, and (b) the February
2022 Trip Record Data from the NYC Taxi and Limousine Commission (TLC). Despite the different
characteristics of these datasets, we still observe that Hutch AMM is more computationally efficient
and achieves close estimation accuracy to optimal block AMM.

We acknowledge that our proposed Hutch AMM method has potential for improvement.
Although our current partitioning strategy splits matrix columns into blocks by a natural
sequence, it may be possible to optimize this process by implementing alternative partitioning
strategies tailored for specific matrix factors. Moreover, we can explore alternative estimators
for near-optimal sampling probabilities or even consider biased estimators to further enhance
the computational efficiency of AMM. These are promising avenues for future research in
this area.
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Abstract
Transshipment is an important generalization of both the shortest path problem and the optimal
transport problem. The task asks to route a demand using a flow of minimum cost over (unca-
pacitated) edges. Transshipment has recently received extensive attention in theoretical computer
science as it is the centerpiece of all modern theoretical breakthroughs in parallel and distributed
(approximate) shortest-path computation, a classic and well-studied problem.

The key advantage of transshipment over shortest paths is the so-called boosting property: one
can often boost a crude approximate solution to a (near-optimal) (1 + ε)-approximate solution.
However, our understanding of this phenomenon is limited: it is not clear which approximators can
be boosted. Moreover, all current boosting frameworks are built with a specific type of approximator
in mind and are relatively complicated.

The main takeaway of our paper is conceptual: any black-box oracle that computes an ap-
proximate dual solution can be boosted to an (1 + ε)-approximator. This decouples and simplifies
all known near-optimal (1 + ε)-approximate transshipment and shortest paths results: they all
(implicitly) construct approximate dual solutions and boost them.

We provide a very simple analysis based on the multiplicative weights framework. Furthermore, to
keep the paper completely self-contained, we provide a new (and arguably much simpler) analysis of
multiplicative weights that leverages well-known optimization tools to bypass the ad-hoc calculations
used in the standard analyses.
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1 Introduction

Suppose we are given a weighted graph G = (V, E) and a demand vector d ∈ RV satisfying∑
v∈V d(v) = 0, where d(v) denotes the number of units of some (single) commodity that

are either available (if d(v) > 0) or required (if d(v) < 0) at the node v. Transshipment asks
to distribute the available units of the commodity until it perfectly matches the requirement.
The goal is to minimize the total cost of movement, where moving a single unit over an edge
e has a cost of w(e) (w(e) ≥ 0 is the weight of e).
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Transshipment is a strong generalization of multiple problems, including the s− t shortest
path problem, optimal transport, or the assignment problem on metric spaces.

▶ Example 1. Given two nodes s, t in a weighted graph G, the shortest path can be modeled
as transshipment for the demand d(v) := I[v = s]− I[v = t].

▶ Example 2. Let (V, d) be a metric space and let A, B ⊆ V be two disjoint subsets. The
minimum cost perfect matching between A and B (the so-called assignment problem [14]) can
be modeled as transshipment on the complete bipartite graph (A ∪B, A×B) with weights
w({a, b}) = d(a, b) and the demand vector d(v) := I[v ∈ A]− I[v ∈ B]. This also models the
Wasserstein distance (also known as the earth mover’s distance or optimal transport [18]).

Perhaps surprisingly, transshipment has proven to be extremely useful for uncovering
the distance structure (i.e., shortest paths) of a graph. Indeed, the problem has been the
centerpiece of all near-optimal approaches to the single-source shortest path problem in the
parallel and distributed settings [5, 10, 2, 19, 15].

The key property that differentiates transshipment from other similar problems like
shortest path is the so-called boosting property – one can boost a crude, say poly(log n)-
approximate solution, to a near-optimal (1 + ε)-approximate solution. This conceptually
reduces (1+ε)-transshipment (and shortest path computation) to approximate transshipment.
However, not all approximators can be boosted and a more principled understanding of
which approaches are susceptible to boosting is required. Moreover, the current boosting
algorithms are coupled together with the specific approximators they use, making them
non-modular, complicated, and hard to reuse.

The main takeaway of our paper is conceptual: any black-box oracle that computes a
α-approximate dual solution can be boosted to a (1 + ε)-approximate dual solution. This
significantly simplifies current transshipment results by decoupling them into two independent
questions: (1) how to obtain an approximate dual solution (which is often model-specific),
and (2) how to boost this approximate solution (which can be reused). The scope of this
paper is to develop a simple framework for the latter question.

We provide a very simple algorithm and analysis based on the multiplicative weights
framework. Furthermore, to keep the paper completely self-contained, we provide a new
(and arguably much simpler) analysis of multiplicative weights that leverages well-known
optimization tools to bypass the ad-hoc calculations used in the standard analyses. (deferred
to the full version).

We now provide several examples that show how prior approaches all (implicitly) construct
approximate dual and then boost them.

▶ Example 3. Sherman [17] gave the first sequential almost-linear1 (1 + ε)-transshipment
algorithm. The main insight was the construction of a so-called linear cost approximator,
which is a linear operator R (i.e., matrix) such that ∥Rd∥1 approximates the optimal
transshipment cost in the sense that OPT(d) ≤ ∥Rd∥1 ≤ no(1)OPT(d) for all demands
d ∈ RV . Their paper uses linear cost approximators with subgradient descent to show
one can obtain a (1 + ε)-approximate solution. We provide a conceptual decoupling and
reinterpretation of their paper: one can use any linear cost approximator R to directly obtain
an approximate dual solution, which can, in turn, be boosted to an (1 + ε)-approximate
solution via our framework.

1 We refer to mpoly(log n) as near-linear and m1+o(1) as almost-linear runtimes.
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▶ Example 4. Haeupler and Li [8] solve no(1)-approximate transshipment in the distributed
setting and leave the possibility of boosting to an (1 + ε)-approximation as the main open
problem, which would have yielded important consequences in the distributed setting. Our
paper provides a partial explanation to why their approach was not susceptible to boosting:
their approach, based on low-stretch spanning trees, only computes a primal solution (i.e.,
an approximate flow), whereas a dual solution is required. A dual-based solution was later
recently developed by Rozhon et al. [15].

▶ Example 5. Other successful (1 + ε)-transshipment approaches either approximate the
solution by solving the original problem on a spanner [5], or by constructing a linear cost
approximator on an emulator of the original graph [10, 2] (an emulator of G is a graph H

whose distance structure multiplicatively approximates the one of G, see Section 4.1). We
show all of these approaches can be reinterpreted as obtaining an approximate dual solution.

Comparison with Becker et al. [5]. The paper contributed the first polylog-competitive
existentially-optimal shortest path algorithm in the distributed setting (up to Õ(1)-factors).
Crucially, they develop a boosting framework for transshipment which, similar to this paper,
uses an approximate dual solver to construct a near-optimal solution. The main drawbacks of
their solver are that (1) the analysis of [5] is quite involved, stemming from it being based on
projected gradient descent, and (2) as written, the interface of the [5] solver relies on solving a
modified version of transshipment which is harder to interpret and work with than the original
one. As stated in the journal version of [5], their interface can be significantly simplified (by
working with projections), but this degrades the runtime to have an α4-dependency w.r.t. the
approximation quality α of the approximator (we provide an α2-dependency) and requires
non-explicit modifications to the solver that might be difficult for non-experts.2 On the other
hand, the approach presented in our paper has several drawbacks compared to [5], such as:
(1) our solver requires a guess on the optimal solution, which is obtained using binary search,
while their solver does not need adapting the internal parameters during the optimization
process, and (2) our dual-only solver needs to perform extra steps to return a feasible primal
solution. However, independent of the drawbacks, we believe the user-friendly interface,
better runtime, and a simpler analysis make our conceptual contribution worthwhile.

Potential impact. Ultimately, we hope that this paper will encourage an ongoing effort
to simplify deep algorithmic results that use continuous optimization tools. Such an effort
would potentially yield a dual benefit: it would both lower the barrier to entry for newcomers
by conceptually simplifying the current approaches, as well as help to transfer the modern
theoretically-optimal algorithms into real-world state-of-the-art by allowing practitioners
to independently combine the theoretical ideas with the many heuristics necessary for an
algorithm to perform well in practice.

Organization of the paper. We present a model-oblivious boosting framework for transship-
ment in Section 3 and apply it in Section 4 to simplify previous results. These applications
are loosely grouped by the method of computing the approximate dual solution: Section 4.1
presents results when the approximate solution is computed on a spanner or emulator (i.e.,

2 Specifically, they require the returned dual solution be orthogonal to the demand vector. However,
as they note in the journal version of their paper, this issue can be mitigated by projecting a general
solution to the space of vectors orthogonal to the demand: this can be shown to work with a loss in
approximation factor and time complexity if one appropriately initializes the solution.
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on graphs that approximate the original metric). Section 4.2 presents results that compute
the dual solution via (aforementioned) linear cost approximators. Finally, the full version of
the paper gives a simple and self-contained analysis of multiplicative weights.

2 Preliminaries

Graph Notation. Let G = (V, E) be a undirected graph and let n := |V |, m := |E|. It is
often convenient to direct E consistently. For simplicity and without loss of generality, we
assume that V = {v1, v2, . . . , vn} and define E⃗ = {(vi, vj) | (vi, vj) ∈ E, i < j}. We identify
E and E⃗ by the obvious bijection. We chose this orientation for simplicity and concreteness:
arbitrarily changing the orientations does not influence the results (if done consistently). We
denote with B ∈ {−1, 0, 1}V ×E⃗ the node-edge incidence matrix of G, which for any v ∈ V

and e = (s, t) ∈ E⃗ assigns Bs,e = 1, Bt,e = −1, and Bu,e = 0 when u ̸∈ {s, t}. A weight or
length function w assigns each edge e ∈ E⃗ a weight w(e) > 0. The weight function can also
be interpreted as a diagonal weight matrix W ∈ RE⃗×E⃗

≥0 which assigns We,e = w(e) ≥ 1 for
any e ∈ E⃗ (and 0 on all off-diagonal entries). In this paper, it is often more convenient to
specify weighted graphs via G ∼= (B, W ), i.e., by specifying its matrices B and W as defined
above.

e1

e2

v1 v2

v3

B =



+1 0
−1 +1
0 −1




v1
v2
v3

e1 e2

Figure 1 A simple graph G and its corresponding node-edge incidence matrix B.

Flows and Transshipment (TS). A demand is a d ∈ RV . We say a demand is proper if∑
v∈V dv = 0. A flow is a vector f ∈ RE⃗ , where f(e⃗) > 0 if flowing in the direction of the

arc e⃗ and negative otherwise. A flow f routes a demand d if Bf = d. It is easy to see only
proper demands are routed by flows. The cost of a flow f is ∥Wf∥1. For a weighted graph
G and a given proper demand d the transshipment problem (or TS, for short) asks to find
a flow f∗

d of minimum-cost among flows that route d. In other words, the tuple (B, W, d)
specifies a transshipment instance. When the underlying graph G ∼= (B, W ) is clear from
the context, we define ∥d∥OPT := ∥Wf∗

d ∥1 to denote the cost of the optimal flow for routing
demand d. The transshipment problem naturally admits the following LP formulation and
its dual. The primal asks us to optimize over all flows f ∈ RE⃗ , while the dual asks us to
optimize over all vectors ϕ : RV , which we refer to as potentials.

Primal: min ∥Wf∥1 : Bf = d, Dual: max ⟨d, ϕ⟩ :
∥∥W −1B⊤ϕ

∥∥
∞ ≤ 1. (1)

Scalar products are denoted as ⟨x, y⟩ = xT · y. Finally, we assume the weights and demands
are polynomially-bounded, hence ∥d∥OPT ≤ nO(1). Any feasible primal and dual values
provide an upper and lower bound on ∥d∥OPT, formally stated in the following well-known
result.

▶ Fact 6. Let f ∈ RE⃗ and ϕ ∈ RV be any feasible primal and dual solution: i.e., Bf = d

and
∥∥W −1BT ϕ

∥∥
∞ ≤ 1. Then ⟨d, ϕ⟩ ≤ ∥d∥OPT ≤ ∥Wf∥1.
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For example, consider the s-t shortest path subproblem where d(v) = I[v = s]− I[v = t]
specifies the demand. One optimal solution to the primal/dual pair is to set f(e⃗) to 1 iff e⃗ is
on some fixed shortest path from s to t; ϕ(v) is set to the distance in G from t ∈ V . Note
that in this case the primal and dual objectives are equal, and correspond to the weight of
the shortest path from s to t.

d(v) = +1

d(v) = −1

fe = 1

fe = 1

fe = 1

fe = 1

d(v) = −1

d(v) = +1
2

1

0

0
0

−1

0

1 1 1

0 1

0

1

1 1

Figure 2 A example transshipment graph with its exact solution. The original graph is unit
weight we = 1 and undirected. The demand d is non-zero at four nodes. The optimal primal flow f

is depicted in blue and is non-zero for four edges. One of many optimal vectors ϕ is depicted in red.
The optimal value of the solution is OPT = 4.

Asymptotic Notation. We use Õ to hide polylogarithmic factors in n, i.e., Õ(1) = polylog n.

Algorithmic model and basic vector operations. To facilitate both simplicity and generality,
we specify our algorithms using high-level operations. Specifically, in a unit operation, we can
perform the following so-called basic vector operations: (1) assign vectors in Rn or Rm to
variables, (2) add two (vector) variables together, (3) apply any scalar function λ : R→ R to
each component of a vector separately, and (4) compute matrix-vector products with matrices
B, BT , W , and W −1. Note that each basic vector operation can be near-optimally compiled
into standard parallel/distributed models. In PRAM: each operation can be performed
in Õ(1) depth and near-linear work. In the standard distributed model of computation
CONGEST [12] basic vector operations can be computed in a single round of distributed
computation (where the variables are stored in the obvious distributed fashion).

Multiplicative weights (MW) framework is a powerful meta-algorithm that allows for
(among other things) solving various optimization tasks by reducing them to simpler (so-called
“linearized”) versions of the original problem [3]. For the purposes of this paper, we define
the following pair of tasks.

▶ Definition 7. Let γ ∈ R be a scalar, A ∈ Rm×n be a matrix, and b ∈ Rn be a vector. We
define the following Feasibility task:

∃?x ∈ Rn | ∥Ax∥∞ + ⟨b, x⟩ ≤ γ. (2)

Given additionally a vector p ∈ Rm satisfying ∥p∥1 ≤ 1 and an accuracy parameter ε > 0,
we also define the following Linearized task:

∃?x ∈ Rn | ⟨p, Ax⟩+ ⟨b, x⟩ ≤ γ − ε. (3)

Note that if the Feasibility task (Equation (2)) is feasible, then the Linearized task (Equa-
tion (3)) is also feasible for every p (satisfying ∥p∥1 ≤ 1) and every ε > 0.
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Suppose we want to solve some fixed Feasibility task (Equation (2)) and assume we know
how to solve the accompanying (typically much easier!) Linearized task (Equation (3), for
any p and ε) via some black-box Oracle. Then, there exists a simple algorithm that computes
a solution to the Feasibility task by repeatedly querying the Oracle with different values of p

that satisfy ∥p∥1 ≤ 1 (the accuracy ε stays fixed); the oracle is assumed to return a feasible
solution x for each queried Linearized task.

We define the width of the Oracle ρ > 0 to be (any upper bound on) the largest width
of a solution ∥Ax∥∞ that can be returned by the Oracle, i.e., ρ ≥ ∥Ax∥∞ during the course
of the algorithm. Oracles with larger widths need to be queried more times, hence we aim to
construct Oracles with their width being as small as possible. The following Theorem 8 and
Algorithm 1 give a solver for the Feasibility task (Equation (2)) assuming the Oracle. We
defer the proof to the full version of the paper.

▶ Theorem 8. Let (A, b, γ) be a feasible Feasibility task (Equation (2)) and fix ε > 0. Suppose
we have access to an Oracle that will solve the accompanying Linearized task Equation (3)
specified by (A, b, γ, p, ε) for any ∥p∥1 ≤ 1. Then, Algorithm 1 constructs a feasible solution
for Equation (2) and queries the Oracle at most 4ε−2ρ2 ln(2m) times. Here, ρ > 0 is the
width of the Oracle.

Algorithm 1 Solver for the Feasibility task using an oracle for the Linearized task.

1. Input: Feasbility task (A ∈ Rm×n, b ∈ Rn, γ ∈ R) and ε > 0.
2. Initialize x∗ ← 0⃗ ∈ Rn and β := ε/(2ρ2).
3. For t = 1, . . . , T rounds, where T := 4ε−2ρ2 ln(2m):

a. Let q ←
[

A

−A

]
x∗ ∈ R2m.

b. Let q′
i ← exp(βqi)i for i ∈ [2m].

c. Let pt ← (1/
∑2m

i=1 q′
i)(q′

i − q′
i+m). (Normalization and flattening.)

d. MW outputs pt ∈ Rm to Oracle. (Note that ∥pt∥1 ≤ 1.)
e. Oracle returns a solution xt ∈ Rn to the Linearized task w.r.t. pt. (ρ must be set

large enough such that ∥Ax∥∞ ≤ ρ.)
f. We update x∗ ← x∗ + xt.

4. MW outputs (1/T ) · x∗ ∈ Rn.

3 A Boosting Framework for Transshipment

We describe how to compute an (1 + ε)-approximate solution for transshipment given only a
black-box oracle which computes an α-approximate dual solution. This oracle is called the
dual-only α-approximator (where the dual is defined as in Equation (1)).

▶ Definition 9 (Dual-Only Approximator). Let G ∼= (B, W ) be a weighted graph. A dual-only
α-approximator for transshipment over G is an oracle which, given any proper demand
d ∈ RV , outputs a dual solution ϕ ∈ RV satisfying the following properties:

(Dual feasibility)
∥∥W −1BT ϕ

∥∥
∞ ≤ 1.

(Approximation guarantee): ⟨d, ϕ⟩ ≥ 1
α ∥d∥OPT .

Note that, directly from its definition, a dual-only α-approximator can be used to obtain an
α-approximate value of the solution.
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We typically want poly(log n)-approximators or no(1)-approximators that can be con-
structed and queried efficiently. However, for pedagogical purposes, we first show that the
minimum spanning tree (MST) is a non-trivial n-approximator.

▶ Example 10 (MST). Let d ∈ RV be an arbitrary proper demand. The MST T of G

can be used as a simple n-approximator for transshipment. First, root the MST T in an
arbitrary r ∈ V and assume without loss of generality (up to re-orientation of edges in E)
that all edges point from parent to child nodes in this rooted tree. Next, let fT be the unique
flow supported on T that perfectly routes d. We now define ϕ ∈ RV by saying ϕ(r) := 0
and proceeding in a top-to-bottom order. For each parent-child tree-edge e = (p, c), set
ϕ(c) := ϕ(p)− sign(fT (e))w(e). Now, by construction, we have ∥WfT ∥1 = ⟨ϕ, d⟩ (decompose
the flow fT into a positive combination of oriented paths such that all of them cross each
tree edge with the same orientation; the claim is true for each one of them and, therefore,
for their sum). Furthermore,

∥∥W −1BT ϕ
∥∥

∞ ≤ n by the following argument: consider each
edge e = {u, v} ∈ EG and consider the unique u − v tree-path. This path is composed of
at most n edges, and each one of them have weight at most w(e) (since T is the MST).
Hence, |ϕ(u) − ϕ(v)| ≤ w(e) · n, which is equivalent to the claim above. Finally, defining
ϕ∗ := 1

n ϕ we get a feasible dual solution that is n-approximate: Using Fact 6 we have
||d||OPT ≤ ∥WfT ∥1 = ⟨ϕ, d⟩ = n · ⟨ϕ∗, d⟩, as required.

We now show the central claim of our framework: given a dual-only α-approximator we
can leverage the multiplicative weights framework (Definition 7) to provide feasible potentials
(i.e., a dual solution) ϕ ∈ RV that are (1 + ε)-approximate, i.e., ⟨d, ϕ⟩ ≥ 1

1+ε ∥d∥OPT. The
existence of the boosting procedure is formalized in Lemma 11, while the explicit algorithm
is deferred to the full version of the paper.

As an assumption to simplify the exposition, we can safely assume that we know the
value of g := ∥d∥OPT (up to a multiplicative 1 + ε) as this value can be “guessed” via a
standard binary search since our method will either certify that ∥d∥OPT ≤ (1 + ε)g (telling
us our guess g is too low), or will otherwise construct a feasible solution ϕ with ⟨d, ϕ⟩ ≥ g

(telling us we can increase our guess).

▶ Lemma 11. Let (B, W, d) be a transshipment instance and let ε > 0. Given any g ≥ 0, and
any dual-only α-approximator, there is a 4ε−2α2 ln(2m)-round algorithm that, in each round,
queries the approximator once and performs O(1) basic vector operations. At termination,
the algorithm either:
1. outputs (feasible) potentials ϕ∗ ∈ RV satisfying

∥∥W −1BT ϕ∗
∥∥

∞ ≤ 1 and ⟨d, ϕ∗⟩ ≥ g, or,
2. detects that ∥d∥OPT ≤ (1 + ε)g; indeed, it outputs an (infeasible) flow f∗ ∈ RE satisfying
∥Wf∗∥1 ≤ g and ∥d−Bf∗∥OPT ≤ εg.

Remark. If one is only concerned about finding an (1 + ε)-approximate dual solution, one
can completely ignore the infeasible flow that is being outputted and simply use the fact that
the second condition guarantees ∥d∥OPT ≤ (1 + ε)g, which is sufficient for binary search. Fur-
thermore, we note that any such (infeasible) flow f∗ satisfying the above properties guarantees
∥d∥OPT ≤ (1 + ε)g by the following argument. First, by definition of ∥d−Bf∗∥OPT ≤ εg,
there exists a flow fresidual that routes d−Bf∗ and has cost ∥Wfresidual∥1 ≤ εg. Then, the
flow f∗ + fresidual routes demand d (since Bf∗ + Bfresidual = Bf∗ + d − Bf∗ = d) and has
cost at most ∥Wf∗∥1 + ∥Wfresidual∥1 ≤ g + εg = (1 + ε)g, implying that ∥d∥OPT ≤ (1 + ε)g.
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Proof. First, finding potentials ϕ ∈ RV satisfying
∥∥W −1BT ϕ

∥∥
∞ ≤ 1 and ⟨d, ϕ⟩ ≥ g is

equivalent to finding potentials ∃?ϕ ∈ RV |
∥∥W −1BT ϕ

∥∥
∞ −

〈
1
g d, ϕ

〉
≤ 0 (one direction is

immediate, the other direction follows by the fact that we can scale ϕ such that ⟨d, ϕ⟩ = g).
Therefore, it is sufficient to solve the following so-called TS Feasibility task (see Figure 3).

TS feasbility task: ∃?ϕ ∈ RV |
∥∥W −1BT ϕ

∥∥
∞

≤ 1 and ⟨d, ϕ⟩ ≥ g.
TS feasbility task (equivalent): ∃?ϕ ∈ RV |

∥∥W −1BT ϕ
∥∥

∞
−

〈
1
g

d, ϕ
〉

≤ 0.
Linearized TS task (given ∥p∥1 ≤ 1): ∃?ϕ ∈ RV |

〈
p, W −1BT ϕ

〉
−

〈
1
g

d, ϕ
〉

≤ −ε.
Linearized TS task (equivalent): ∃?ϕ ∈ RV | ⟨dresidual, ϕ⟩ ≥ ε · g,

where dresidual := d − B(g · W −1p).

Figure 3 The (second, equivalent form of the) TS Feasibility task is a subcase of the
Feasibility task defined in Definition 7 with A := W −1BT , b := (1/g)d, γ := 0, and renaming
x → ϕ. The equivalent forms of the tasks follow by straightforward algebraic manipulation.

We apply the MW framework by interpreting the TS Feasbility task as a Feasibility Task
in the sense of Definition 7, solving it via Algorithm 1 where we have to implement the
Oracle.

First, we note that the TS Feasibility task directly corresponds to a (A := W −1BT , b :=
− 1

g d, γ := 0)-Feasibility task. We aim to implement the Oracle for the corresponding
Linearized TS task with a small width ρ. To recap, ρ is the maximum value of

∥∥W −1BT ϕ
∥∥

∞
ever returned by the Oracle – we later determine that setting ρ := α suffices.

The Oracle, upon receiving p by Algorithm 1, queries the dual-only α-approximator with
the (so-called) residual demand dresidual := d−B(g ·W −1p). Intuitively, we can interpret p,
or more specifically g ·W −1p, as the “current” iterate of the final flow solution. Specifically,∥∥g ·W −1p

∥∥
1 ≤ g, i.e., it has a small cost since g is a guess for OPT. If the residual demand

can be routed with a small cost of at most εg (which can be estimated via the approximator),
it means that ∥dresidual∥ ≤ εg, hence f∗ := g ·W −1p satisfies the second output condition.

The appoximator, being asked to route dresidual, returns the α-approximate feasible
dual, i.e., a vector ϕresidual ∈ RV satisfying ⟨dresidual, ϕresidual⟩ ≥ 1

α ∥dresidual∥OPT and∥∥W −1BT ϕresidual
∥∥

∞ ≤ 1. The Oracle outputs ϕ′ := α · ϕresidual. Note that the width
of the oracle is exactly

∥∥W −1Bϕ′
∥∥

∞ = |α|
∥∥W −1Bϕresidual

∥∥
∞ ≤ α · 1 = α.

Either ⟨dresidual, ϕ′⟩ ≥ ε · g, and the Oracle successfully solves the Linearized TS task by
returning ϕresidual, in which case the MW loop continues. If this is always the case, Algorithm 1
outputs ϕ∗ satisfying

∥∥W −1BT ϕ∗
∥∥

∞ ≤ 1 and ⟨d, ϕ∗⟩ ≥ g, as required. Regarding the width
of the solution, we have that

∥∥W −1BT ϕ′
∥∥

∞ ≤ α, hence setting ρ := α suffices, leading to at
most 4ε−2α2 ln 2m rounds of the algorithm.

On the other hand, if this is (ever) not the case, we say the Oracle fails. In this case,
at the moment of failure, we define f∗ := g · W −1p and have that ⟨dresidual, ϕ′⟩ ≤ ε · g.
Since ϕ′ = αϕresidual, we have ⟨dresidual, ϕresidual⟩ ≤ ε

α · g. Since ϕresidual is an α-approximate
dual w.r.t. dresidual, we have that

∥∥d−B(g ·W −1p)
∥∥

OPT = ∥dresidual∥OPT ≤ α · ε
α g = ε · g.

Therefore, f∗ satisfies the second condition and we are done. ◀

The full algorithm is deferred to the full version.

Reducing the residual error of the primal. While the booster of Lemma 11 returns a
feasible (1 + ε)-approximate dual solution, it does not return a feasible primal solution (i.e.,
flow). However, this issue can be resolved by repeatedly routing the residual demand d−Bf∗



G. Zuzic 104:9

until the cost of routing the residual demand drops to an insignificant 1/poly(n)-fraction of
the original cost, at which point any trivial reparation scheme suffices (like routing along
the MST). See the full version of the paper for more details. Combining the above result
with binary searching the guess g and with the residual error reduction (but without the
model-specific trivial routing), we immediately yield the following result (proof deferred to
the full version).

▶ Corollary 12. Let (B, W, d) be a transshipment instance. Given any 1/2 ≥ ε > 0, C > 0
and dual-only α-approximator, there is an Õ(C · ε−2α2)-round algorithm computing (both):

a feasible dual ϕ∗ satisfying (1 + ε)−1 ∥d∥OPT ≤ ⟨d, ϕ⟩ ≤ ∥d∥OPT, and,
an (infeasible) primal f∗ satisfying ∥Wf∥1 ≤ (1 + ε) ∥d∥OPT and ∥d−Bf∗∥OPT ≤
n−C ∥d∥OPT.

In each round, the algorithm performs O(1) basic vector operations and queries to the
approximator.

4 Applications

In this section, we show how to apply the boosting framework of Section 3 to simplify and
decouple several landmark results in the parallel and distributed settings. First, we describe
results that approximate transshipment by solving it on a compact graph representation
called a spanner or emulator (Section 4.1). Then, we describe results that use linear cost
approximators (Section 4.2).

4.1 Approximating via spanners and emulators

A β-approximate emulator of a graph G = (V, EG) is a weighted graph H = (V, EH)
on the same vertex set where the distances are approximated with a distortion of β; i.e.,
distG(u, v) ≤ distH(u, v) ≤ β · distG(u, v) for all u, v ∈ V . A spanner is simply an emulator
that is a subgraph of G, i.e., where EH ⊆ EG, making it particularly well-studied in some
settings.

Approximating with emulators is conceptually straightforward: faced with a transshipment
instance on G, we (approximately) solve the instance on H, which yields an approximate
solution on G. This is captured by the following result.

▶ Theorem 13. Let H be a β-approximate emulator of G. Any dual-only α-approximator
on H is a dual-only (α · β)-approximator on H.

Proof. Fix a demand d on G. Querying the H-approximator, we obtain a dual solution ϕH

satisfying
∥∥W −1

H BT
HϕH

∥∥
∞ ≤ 1; we also know an accompanying primal solution fH exists

with WH(fH) ≤ α ⟨d, ϕH⟩.
Primal solution. We construct a flow fG in G as follows. For each edge e ∈ EH we know,

due to distG(u, v) ≤ distH(u, v), that there exists a path in G of length at most wH(e);
we add fH(e) amount of flow along this path. It is easy to check that, fG routes d (i.e.,
BGfG = d, hence it is feasible) and that WG(fG) ≤WH(fH), hence ∥d∥OPT(G) ≤ α ⟨d, ϕH⟩.

Dual solution. Let ϕG := 1
β ϕH . Note that ∥d∥OPT(G) ≤ (αβ) · ⟨d, ϕG⟩, hence it is

sufficient to deduce
∥∥W −1

G BT
GϕG

∥∥
∞ ≤ 1. Since ϕH is feasible in H, we have for each

e′ = {u′, v′} ∈ EH that (BT
HϕG)e′ = |ϕG(u′) − ϕG(v′)| ≤ |ϕH (u′)−ϕH (v′)|

β = wH (u′,v′)
β .

Fix an edge e = {u, v} ∈ EG; since distH(u, v) ≤ β · distG(u, v) there exists a path
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(u = p′
0, p′

1, p′
2, . . . , p′

k = v) in H of length at most β · wG(e). Therefore, we can de-
duce that

∥∥W −1
G BT

GϕG

∥∥
∞ ≤ 1 in the following way: |(W −1

G BT
GϕG)e| = |ϕG(u)−ϕG(v)|

wG(e) ≤∑T

i=1
|ϕG(p′

i−1)−ϕG(p′
i)|

wG(e) ≤
∑T

i=1
wH (p′

i−1,p′
i)

βwG(e) ≤ βwG(e)
βwG(e) = 1. ◀

Remark. There are a few immediate extensions to the above proof. Given a primal-dual
approximator (one that returns both a primal and a dual) on a spanner, we can immediately
obtain a primal-dual approximator on G since the returned primal fH is also a feasible primal
in G. A similar property holds for emulators, but one would need to provide a mapping that
embeds each edge e ∈ EG into (paths of) H that are of length at most β · w(e) in order to
construct the flow fG on G.

Application: TS in Broadcast congested clique [5]. Using algorithms from prior work,
a Broadcast congested clique can compute an Õ(1)-approximate Baswana-Sen [4] spanner
H in Õ(1) rounds. The edges of such a spanner are naturally partitioned into n parts of
size Õ(1), where each part is associated with a unique node, and that node knows the edges
in its part. Therefore, the spanner can be made global knowledge in Õ(1) rounds using
broadcasts. Therefore, each node can solve a transshipment instance on H, providing an
Õ(1)-approximator for the original graph via Theorem 13, culminating in an Õ(ε−2)-round
solution for (1 + ε)-transshipment.

Application: existentially-optimal SSSP in Broadcast CONGEST [5]. Consider the
single-source shortest path (SSSP) problem where each node wants to compute (1 + ε)-
approximate from some source s ∈ V . From prior work, we can compute an overlay graph
G′ = (V ′, E′) where V ′ ⊆ V and |V ′| = Õ(ε−1√n) such that the SSSP task on G reduces
to SSSP on G′, and G′ can be computed in Õ(D + ε−1√n) rounds. As was shown in [5],
an SSSP instance can be solved by solving Õ(1) transshipment instances (the details are
non-trivial and out of scope of this paper), hence the problem reduces to solving TS on
G′. However, any T -round Broadcast congested clique algorithm can be simulated on G′ in
T ·O(D + |V ′|) = T · Õ(D + ε−1√n) rounds of Broadcast CONGEST: we simulate a single
round by constructing a BFS tree on G (of depth O(D) and in O(D) rounds), and then
pipelining all |V ′| messages (that are to be broadcasted in the current round) to the root
and them down to all other nodes, taking O(D + |V ′|) rounds in Broadcast CONGEST per
round of Broadcast congested clique. Combining with the Broadcast congested clique result,
we obtain an Õ(ε3)(D +

√
n)-round algorithm.

Application: near-optimal TS in PRAM [2]. The paper introduces a concept called low-hop
emulator H = (V, EH) of G = (V, E) satisfying (i) H is an Õ(1)-approximate emulator of G,
(ii) |EH | = Õ(n), and (iii) distO(log log n)

H (u, v) = distH(u, v), i.e., every (exact) shortest path
in H has at most O(log log n) hops (edges). Moreover, low-hop emulators can be computed
in PRAM in Õ(1) depth and Õ(m) work. Low hop emulators are particularly useful since
Property (iii) implies that one can compute (exact) SSSP on them in Õ(1) depth and Õ(n)
work (e.g., using O(log log n) rounds of Bellman-Ford). The ability to compute exact SSSP
enables each node of H to be embedded into ℓ1 space of dimension Õ(1) with (worst-case)
distortion Õ(1) (via so-called Bourgain’s embedding [6] via Õ(1) SSSP oracle calls). Since
H is an emulator of G, the same embedding is an Õ(1)-distortion embedding of G. Using
Theorem 13, this reduces (1 + ε)-TS to finding an Õ(1)-approximator in ℓ1 space. This
can be done in Õ(1) depth and Õ(n) work using linear cost approximators (explained in
Section 4.2) by utilizing the so-called randomly shifted grids method [9]. This culminates in
an Õ(ε−2) depth and Õ(ε−2m) work (1 + ε)-transshipment algorithm.
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4.2 Approximating by linear cost approximators
A particularly successful type of approximator for transshipment has been the linear cost
approximator. The successes of such an approximator include the first m1+o(1) algorithm for
transshipment in the centralized model [17] and the first Õ(m)-work and Õ(1)-depth parallel
shortest path algorithm [2, 10].

▶ Definition 14. An α-approximate linear cost approximator for a weighted graph G is a k×n

matrix P , such that, for any proper demand d it holds that ∥d∥OPT ≤ ∥Pd∥1 ≤ α ∥d∥OPT .

Our insight is that one can immediately convert a linear cost approximator P to a
dual-only approximator. Note that the sign function is applied entry-wise to a vector.

▶ Theorem 15. Let P be an α-approximate linear cost approximator. Consider the function
ϕ(d) that maps a demand d to ϕ(d) := 1

α P T sign(Pd). Then, ϕ is a dual-only α-approximator.

Proof. Let G ∼= (B, W ) be the underlying graph. First, we show that the following subclaim
about a linear-algebraic guarantee that characterizes P : we have that

∥∥yPBW −1
∥∥

∞ ≤ α

over all ∥y∥∞ ≤ 1. Specifically, for each oriented edge e⃗ ∈ E⃗, consider how P approximates
the cost of routing a unit from the head to the tail of e⃗. Formally, we define the demand de⃗

to be de⃗(x) := I[x = s]− I[x = t] for an edge e⃗ = (s, t) ∈ E⃗. Clearly, ∥de⃗∥OPT ≤ w(e), hence
it is necessary that

∥∥Pde⃗w(e)−1
∥∥

1 ≤ α. Furthermore, it is easy to see that the columns of B

are exactly de⃗ over all e⃗ ∈ E⃗, hence each column of PBW −1 has ℓ1-norm at most α. This is
equivalent to

∥∥yT PBW −1
∥∥

∞ ≤ α over all ∥y∥∞ ≤ 1. This proves the subclaim.
We now prove the complete result. Let y := sign(Pd) and ϕ(d) := 1

α P T y. Since,
∥d∥OPT ≤ ∥Pd∥1, there must exists a flow f satisfying d such that ∥d∥OPT ≤ ∥Wf∥1 ≤
∥Pd∥1. We verify all properties Definition 9. (Dual feasibility)

∥∥W −1BT ϕ(d)
∥∥

∞ =
1
α

∥∥W −1BT P T y
∥∥

∞ ≤
1
α · α = 1 via the subclaim. (Approximation guarantee) ⟨d, ϕ(d)⟩ =

1
α ⟨Pd, y⟩ = 1

α ⟨Pd, sign(Pd)⟩ = 1
α ∥Pd∥1 ≥

1
α ∥d∥OPT. ◀

Having a dual-only α-approximator that can be evaluated in M time, we construct (via
Corollary 12) an Õ(ε−2α2 ·M) time (1 + ε)-approximate algorithm for transshipment.

▶ Corollary 16. Let P be an α-approximate linear cost approximator on a weighted graph G

and suppose that we can evaluate matrix-vector multiplications with P and P T (and other
basic vector operations) in M time. Given any TS instance, there is an Õ(ε−2α2M)-time
algorithm that computes a (1+ε)-approximate primal-dual pair (f, ϕ) satisfying the properties
listed in Corollary 12.

Application: almost-optimal sequential TS [17]. The goal is to construct ε−2m1+o(1)-time
(1 + ε)-TS solver in the sequential setting. Following Corollary 16, it is sufficient to construct
a no(1)-approximate linear cost approximator P , which is accomplished as follows. Each
vertex of a weighted graph G is embedded into ℓ1 space of dimension O(log2 n) with (worst-
case) distortion O(log n) (via so-called Bourgain’s embedding [6] in Õ(m) sequential time).
Then, the dimension of the embedding is reduced to d := O(

√
log n) via a simple Johnson-

Lindenstrauss projection [7], increasing the distortion of the embedding to exp(O(d)) =
no(1). Finally, the paper constructs a O(log1.5 n)-approximate linear cost approximator
in this (virtual) ℓ1 space of dimension d that can be evaluated efficiently, leading to a
exp(O(d)) ·O(log1.5 n) = no(1)-approximate linear cost approximator in G, which yields the
result. Approximator in ℓ1 space: We give a short cursory description on how to construct
the approximator P . Re-scale and round the ℓ1 space such that all coordinates are integral.
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Then, each point x calculates the distance c(x) to the closest point with all-even coordinates.
Then, x uniformly spreads its demand d(x) among all points with all-even coordinates that
are of distance exactly c(x) to x. Finally, repeat the algorithm on points with all-even
coordinates (delete other points, divide all coordinates by 2). After O(log n) iterations, the
entire remaining demand will be supported on 2d vertices of the hypercube, which can be
routed to a common vertex yielding a O(d) approximation. It can be shown that the cost
incurred by spreading the demand at any particular step O(d)-approximates the optimal
solution, and that the optimal solution does not increase in-between two steps, leading to
a O(d log n) = O(log1.5 n)-approximate linear cost approximator. Efficiency: Evaluating
the approximator requires computing the demands at each step in the above algorithm.
Evaluating even the first step requires n2d time since each point x sends its demand to
(potentially) 2d = no(1) closest all-even points. Therefore, the dimension of the embedding is
reduced to O(

√
log n). Moreover, the paper (implicitly) claims this approximator in ℓ1 can

be evaluated in m1+o(1) time. Finally, we remark that the approximator does not yield a flow
in the original graph in any meaningful way, (i.e., it only approximates costs), confirming
that it is dual-only. Together, we solve (1 + ε)-TS in ε−2m1+o(1) time.

Application: near-optimal TS in PRAM [10]. The goal is to solve (1 + ε)-TS in Õ(1)
depth and Õ(m) work in PRAM. The paper constructs an Õ(1)-approximate linear cost
approximator P with sparsity Õ(m), meaning it can be evaluated in Õ(1) depth and Õ(m)
work, which would yield the result. To do so, the paper follows [17] by embedding G in ℓ1
space with distortion Õ(1) and dimension d := Õ(1) and then uses the randomly shifted
grids methods of [9] to approximate the cost in this virtual space. Approximator in ℓ1
space: We define a randomly shifted grid of scale W to be the set W (Zd + u) ⊆ Rd, where
each coordinate of u ∈ Rd is uniformly drawn from [0, 1) (i.e., one obtains a randomly shifted
grid by taking all integral d-dimensional points, randomly translating them along each axis,
them multiplying all coordinates by W ). Initially, set W ← Õ(1). The routing works by
sampling s := Õ(1) randomly shifted grids of scale W and, for each grid, each point x

sends 1/s of its demand d(x) to the closest point in the grid. The scale W is increased by
a polylogarithmic factor and the algorithm is repeated for O(log n) steps until all demand
is supported on a hypercube, at which point it can be O(d)-approximated by aggregating
it at a single vertex. It can be shown that the cost incurred by routing the demand at
any particular step Õ(1)-approximates the optimal solution, and that the optimal solution
increases only by a multiplicative 1 + 1/poly(log n) factor, hence after O(log n) iterations we
obtain an Õ(1)-approximate linear cost approximator P that has sparsity Õ(m). Vertex
reduction framework: On its face, the above approach simply shows that in order to get
(1 + ε)-transshipment (and (1 + ε)-shortest paths, as arduously shown in the paper), it is
sufficient to find an Õ(1)-distortion ℓ1-embedding. However, to find an ℓ1-embedding, one
needs Õ(1)-approx shortest paths (with some additional technical requirements concerning the
violation of the triangle inequality). To resolve this cycle, the paper goes through the vertex
reduction framework of [11, 13] which reduces the number of vertices by a polylogarithmic
factor, recursively solves transshipment, lifts the solution to the original graph, and repairs
it using the boosting framework. The details are out-of-scope.

Future work. The ideas used for solving transshipment have historically paralleled the
ideas used for solving maximum flow problems. Adding to the connection between these two
problems, approximate solutions to maximum flow can also be boosted in a similar way to
transshipment [16] via linear cost approximators (called congestion approximators). However,
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no framework that can handle black-box approximators has been developed – creating such
a framework would conceptually simplify the task of designing approximate maximum flow
solutions. Furthermore, both transshipment and maximum flow are special cases of the
so-called ℓp-norm flow, which also seems to support boosting [1].
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