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Preface

This volume contains the extended abstracts selected for presentation at ESA 2023, the 31st
European Symposium on Algorithms. The event was organized by Centrum Wiskunde & In-
formatica (CWI), Amsterdam, the Netherlands, as a part of ALGO 2023, on
September 4-6, 2023.

The scope of ESA includes original, high-quality, theoretical and applied research on
algorithms and data structures. Since 2002, it has had two tracks: the Design and Analysis
Track (Track A), intended for papers on the design and mathematical analysis of algorithms,
and the Engineering and Applications Track (Track B), for submissions that also address
real- world applications, engineering, and experimental analysis of algorithms. In 2022, a
new track — Track S — was added, inviting contributions that simplify algorithmic results.
We find that simpler algorithms are easier to implement, bridging the gap between theory
and practice, and we find that new simple or elegant proofs are easier to understand and to
teach, and may contain interesting new insights whose relevance only the future will reveal.

In response to the call for papers for ESA 2023, 370 papers were submitted, 267 for Track
A, 61 for Track B, and 42 for Track S. Paper selection was based on originality, technical
quality, exposition quality, and relevance. Each paper received at least three reviews. The
program committees selected 103 papers for inclusion in the program: 79 from Track A, 15
from Track B, and 9 for Track S, yielding an overall acceptance rate of about 28%. The
presentations of the accepted papers, together with two invited talks by Martin Dietzfelbinger
(TU Ilmenau) and Rotem Oshman (Tel Aviv University) promise to make up an exciting
program.

The European Association for Theoretical Computer Science (EATCS) sponsored best
paper and best student paper awards. A submission was eligible for the best student paper
award if all authors were doctoral, master, or bachelor students at the time of submission. For
Track A, the best paper award was given to Ursula Hebert-Johnson, Daniel Lokshtanov and
Eric Vigoda for the paper “Counting and Sampling Labeled Chordal Graphs in Polynomial
Time”. For Track B, the best paper award was given to Xiangyun Ding, Xiaojun Dong, Yan Gu,
Youzhe Liu and Yihan Sun for the paper “Efficient Parallel Output-Sensitive Edit Distance”.
The best paper award for Track S was given to Oleg Verbitsky and Maksim Zhukovskii
for the paper “Canonization of a Random Graph by Two Matrix-Vector Multiplications”.
The best student paper award was given to Joakim Blikstad and Peter Kiss for the paper
“Incremental (1-€)-Approximate Dynamic Matching in O(poly(1/€)) Update Time”.

We wish to thank all the authors who submitted papers for consideration, the invited
speakers, the members of the program committees for their hard work, and the over 500
external reviewers who assisted the program committees in the evaluation process. Special
thanks go to the organizing committee, who helped us with the organization of the conference.

Information on past ESA symposia, including locations and proceedings, is maintained at
http://esa-symposium.org.
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On Hashing by (Random) Equations

Martin Dietzfelbinger =&
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—— Abstract

The talk will consider aspects of the following setup: Assume for each (key) = from a set U (the
universe) a vector az = (az,0,-.,0z,m—1) has been chosen. Given a list Z = (2;);c[m] of vectors in
{0,1}" we obtain a mapping

pz: U —={0,1}", 2~ (a,, Z) = @ Qi 2,

i€[m]

where @ is bitwise XOR. The simplest way for creating a data structure for calculating ¢z is to
store Z in an array Z[0..m — 1] and answer a query for = by returning {(as, Z). The length m of
the array should be (1 + ¢)n for some small e, and calculating this inner product should be fast.
In the focus of the talk is the case where for all or for most of the sets S C U of a certain size n
the vectors ag,xz € S, are linearly independent. Choosing Z at random will lead to hash families of
various degrees of independence. We will be mostly interested in the case where a;,x € U are chosen
independently at random from {0, 1}, according to some distribution D. We wish to construct
(static) retrieval data structures, which means that S C U and some mapping f: S — {0,1}" are
given, and the task is to find Z such that the restriction of ¢z to S is f. For creating such a data
structure it is necessary to solve the linear system

(am)xes -4 = (f(x))mes

for Z. Two problems are central: Under what conditions on m and D can we expect the vectors
az, T € S to be linearly independent, and how can we arrange things so that in this case the system
can be solved fast, in particular in time close to linear (in n, assuming a reasonable machine model)?
Solutions to these problems, some classical and others that have emerged only in recent years, will
be discussed.
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—— Abstract

Computing the diameter of a graph, i.e. the largest distance, is a fundamental problem that is
central in fine-grained complexity. In undirected graphs, the Strong Exponential Time Hypothesis
(SETH) yields a lower bound on the time vs. approximation trade-off that is quite close to the upper
bounds.

In directed graphs, however, where only some of the upper bounds apply, much larger gaps
remain. Since d(u,v) may not be the same as d(v, u), there are multiple ways to define the problem,
the two most natural being the (one-way) diameter (max(, ) d(u,v)) and the roundtrip diameter
(maxy,v d(u,v) + d(v,u)). In this paper we make progress on the outstanding open question for each
of them.

We design the first algorithm for diameter in sparse directed graphs to achieve n'>~¢ time with

an approximation factor better than 2. The new upper bound trade-off makes the directed case

appear more similar to the undirected case. Notably, this is the first algorithm for diameter in
sparse graphs that benefits from fast matrix multiplication.

We design new hardness reductions separating roundtrip diameter from directed and undirected

diameter. In particular, a 1.5-approximation in subquadratic time would refute the All-Nodes

k-Cycle hypothesis, and any (2 — €)-approximation would imply a breakthrough algorithm for
approximate f/-Closest-Pair. Notably, these are the first conditional lower bounds for diameter
that are not based on SETH.
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On Diameter Approximation in Directed Graphs

1 Introduction

The diameter of the graph is the largest shortest paths distance. A very well-studied
parameter with many practical applications (e.g. [23, 36, 45, 15]), its computation and
approximation are also among the most interesting problems in Fine-Grained Complexity
(FGC). Much effort has gone into understanding the approximation vs. running time tradeoff
for this problem (see the survey [43] and the progress after it [14, 13, 34, 35, 28, 25]).

Throughout this introduction we will consider n-vertex and m-edge graphs that, for
simplicity, are unweighted and sparse with m = n't°(1) edges!. The diameter is easily
computable in O(mn) = n?>+°(1) time? by computing All-Pairs Shortest Paths (APSP). One
of the first and simplest results in FGC [41, 46] is that any O(n?~¢) time algorithm for
€ > 0 for the exact computation of the diameter would refute the well-established Strong
Exponential Time Hypothesis (SETH) [30, 18]. Substantial progress has been achieved in the
last several years [41, 19, 14, 13, 34, 35, 28, 25], culminating in an approximation/running
time lower bound tradeoff based on SETH, showing that even for undirected sparse graphs,
for every k > 2, there is no 2 — 1/k — d-approximation algorithm running in O(n'*+/(k=1)=¢)
time for some 4§, > 0.

In terms of upper bounds, the following three algorithms work for both undirected and
directed graphs:

1. compute APSP and take the maximum distance, giving an exact answer in ON(nQ) time,

2. compute single-source shortest paths from/to an arbitrary node and return the largest
distance found, giving a 2-approximation in O(n) time, and

3. an algorithm by [41, 19] giving a 3/2-approximation in O(n'®) time.

For undirected graphs, there are some additional algorithms, given by Cairo, Grossi
and Rizzi [17] that qualitatively (but not quantitatively) match the tradeoff suggested by
the lower bounds: for every k > 1 they obtain an O(n'+t'/(*+1) time, almost-(2 — 1/2%)
approximation algorithm, meaning that there is also a small constant additive error.

The upper and lower bound tradeoffs for undirected graphs are depicted in Figure 1 ; a
gap remains (depicted as white space) because the two trade-offs have different rates. In
directed graphs, however, the gap is significantly larger because an upper bound trade-off is
missing (the lower bound tradeoff follows immediately because it is a harder problem). One
could envision for instance, that the conditional lower bounds for directed diameter could be
strengthened to show that if one wants a (2 — €)-approximation algorithm, then it must take
1:5=0(1) time. Since the work of [17], the main open question (also asked by [43])
for diameter algorithms in directed graphs has been:

at least n

Why are there only three approzimation algorithms for directed diameter, but undirected
diameter has an infinite approximation scheme? Is directed diameter truly harder, or can
one devise further approximation algorithms for it?

1 Notably, however, our algorithmic results hold for general graphs, and our hardness results hold even
for very sparse graphs.
2 The notation O(f(n)) denotes O(f(n) poly log(f(n)).
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Figure 1 Undirected diameter algorithms and hardness.

Directed is Closer to Undirected

Our first result is that one can devise algorithms for directed diameter with truly faster
running times than n'-5, and approximation ratios between 3/2 and 2. It turns out that
the directed case has an upper bound tradeoff as well, albeit with a worse rate than in the
undirected case. Conceptually, this brings undirected and directed diameter closer together.
See Figure 2 for our new algorithms.

» Theorem 1. Let k = 2!*2 for a nonnegative integer t > 0. For every e > 0 (possibly
depending on m ), there exists a randomized 2— % ~+e-approzimation algorithm for the diameter
of a directed weighted graphs in time O(m'*%/e), for

2( 2 )ti (w—1)*

w—1 2

(G2)HT —w) — o5t

The constant 2 < w < 2.37286 in the theorem refers to the fast matrix multiplication
exponent [6]. A surprising feature of our algorithms is that we utilize fast matrix multiplication
techniques to obtain faster algorithms for a problem in sparse graphs. Prior work on shortest
paths has often used fast matrix multiplication to speed-up computations, but to our
knowledge, all of this work is for dense graphs (e.g. [7, 44, 47, 24]). Breaking the n'-> bound
with a combinatorial algorithm is left as an open problem.

Roundtrip is Harder

One unsatisfactory property of the shortest paths distance measure in directed graphs is
that it is not symmetric (d(u,v) # d(v,u)) and is hence not a metric. Another popular
distance measure used in directed graphs that is a metric is the roundtrip measure. Here the
roundtrip distance d(u,v) between vertices u,v is d(u, v) + d(v, u).

Roundtrip distances were first studied in the distributed computing community in the
1990s [22]. In recent years, powerful techniques were developed to handle the fast computation

of sparse roundtrip spanners, and approximations of the minimum roundtrip distance, i.e.
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Figure 2 Directed diameter algorithms and hardness. All tradeoffs hold for both weighted and
unweighted graphs (though citations may differ for weighted vs. unweighted).

the shortest cycle length, the girth, of a directed graph [38, 21, 26, 20]. These techniques
give hope for new algorithms for the mazimum roundtrip distance, the roundtrip diameter of
a directed graph.

Only the first two algorithms in the list in the beginning of the introduction work for
roundtrip diameter: compute an exact answer by computing APSP, and a linear time 2-
approximation that runs SSSP from/to an arbitrary node. These two algorithms work for
any distance metric, and surprisingly there have been no other algorithms developed for
roundtrip diameter. The only fine-grained lower bounds for the problem are the ones that
follow from the known lower bounds for diameter in undirected graphs, and these cannot
explain why there are no known subquadratic time algorithms that achieve a better than
2-approximation.

Are there O(n?=¢) time algorithms for roundtrip diameter in sparse graphs that achieve a
2 — d-approximation for constants €,0 > 07

This question was considered e.g. by [4] who were able to obtain a hardness result for
the related roundtrip radius problem, showing that under a popular hypothesis, such an
algorithm for roundtrip radius does not exist. One of the main questions studied at the
“Fine-Grained Approximation Algorithms and Complexity Workshop” at Bertinoro in 2019
was to obtain new algorithms or hardness results for roundtrip diameter. Unfortunately,
however, no significant progress was made, on either front.

The main approach to obtaining hardness for roundtrip diameter, was to start from the
Orthogonal Vectors (OV) problem and reduce it to a gap version of roundtrip diameter, similar
to all known reductions to (other kinds of) diameter approximation hardness. Unfortunately,
it has been difficult to obtain a reduction from OV to roundtrip diameter that has a larger
gap than that for undirected diameter; in Section 4.1 we give some intuition for why this is
the case.

In this paper we circumvent the difficulty by giving stronger hardness results for roundtrip
diameter starting from different problems and hardness hypotheses. We find this intriguing
because all previous conditional lower bounds for (all variants of) the diameter problem were



A. Abboud, M. Dalirrooyfard, R. Li, and V. Vassilevska Williams

based on SETH. In particular, it gives a new approach for resolving the remaining gaps in
the undirected case, where higher SETH-based lower bounds are provably impossible (under
the so-called NSETH) [35].

Our first negative result conditionally proves that any 5/3 —e approximation for roundtrip
requires n2~°() time; separating it from the undirected and the directed one-way cases where
a 1.5-approximation in O(n1'5) time is possible. This result is based on a reduction from the
so-called All-Nodes k-Cycle problem.

» Definition 2 (All-Nodes k-Cycle in Directed Graphs). Given a k partite directed graph
G=(V,E),V=ViU---UVj, whose edges go only between “adjacent” parts E C Ule Vi x
Vit1 mod k, decide if all nodes v € V1 are contained in a k-cycle in G.

This problem can be solved for all & in time O(nm), e.g. by running an APSP algorithm,
and in subquadratic O(m?~/*) for any fixed k [8]. Breaking the quadratic barrier for
super-constant k£ has been a longstanding open question; we hypothesize that it is impossible.

» Hypothesis 3. No algorithm can solve the All-Nodes k-Cycle problem in sparse directed
graphs for all k > 3 in O(n?7%) time, with § > 0.

Similar hypotheses have been used in recent works [5, 37, 10, 40]. The main difference
is that we require all nodes in V; to be in cycles; such variants of hardness assumptions
that are obtained by changing a quantifier in the definition of the problem are popular, see
e.g. [4, 16, 1.

» Theorem 4. Under Hypothesis 3, for all €,6 > 0, no algorithm can 5/3 — & approzimate
the roundtrip diameter of a sparse directed unweighted graph in O(n?=?) time.

We are thus left with a gap between the linear time factor-2 upper bound and the
subquadratic factor-5/3 lower bound. A related problem with a similar situation is the
problem of computing the eccentricity of all nodes in an undirected graph [4]; there, 5/3
is the right number because one can indeed compute a 5/3-approximation in subquadratic
time [19]. Could it be the same here?

Alas, our final result is a reduction from the following classical problem in geometry to
roundtrip diameter, establishing a barrier for any better-than-2 approximation in subquadratic
time.

» Definition 5 (Approximate ¢, Closest-Pair). Let a > 1. The a-approzimate Ly, Closest-
Pair (CP) problem is, given n vectors vi,...,v, of some dimension d in R™, determine if
there exists v; and v; with ||v; — vj|lec < 1, or if for all v; and vj, v, — vj|lec > .

Closest-pair problems are well-studied in various metrics; the main question being whether
the naive n? bound can be broken (when d is assumed to be n°1)). For £, specifically, a
simple reduction from OV proves a quadratic lower bound for (2 — ¢)-approximations [31];
but going beyond this factor with current reduction techniques runs into a well-known
“triangle-inequality” barrier (see [42, 33]). This leaves a huge gap from the upper bounds that
can only achieve O(loglogn) approximations in subquadratic time [31]. Cell-probe lower
bounds for the related nearest-neighbors problem suggest that this log-log bound may be
optimal [11]; if indeed constant approximations are impossible in subquadratic time then the
following theorem implies a tight lower bound for roundtrip diameter.

» Theorem 6. If for some a > 2,¢ > 0 there is a 2 — é — ¢ approximation algorithm in
time O(m?=¢) for roundtrip diameter in unweighted graphs, then for some § > 0 there is an
a-approzimation for ls-Closest-Pair with vectors of dimension d < n'~? in time O(n?>7?).
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Figure 3 Roundtrip Diameter algorithms and hardness. All tradeoffs hold for both weighted and
unweighted graphs (though citations may differ for weighted vs. unweighted). The previously best
hardness results were those inherited from undirected diameter.

In particular, a 2—¢ approximation for roundtrip diameter in subquadratic time implies an
a-approximation for the £..-Closest-Pair problem in subquadratic time, for some o = O(1/e).
Thus, any further progress on the roundtrip diameter problem requires a breakthrough on
one of the most basic algorithmic questions regarding the ¢, metric (see Figure 3).

1.1 Related Work

Besides the diameter and the roundtrip diameter, there is another natural version of the
diameter problem in directed graphs called Min-Diameter [4, 27, 24]. The distance between
u,v is defined as the min(d(u,v),d(v,u)).®> This problem seems to be even harder than
roundtrip because even a 2-approximation in subquadratic time is not known.

The fine-grained complexity results on diameter (in the sequential setting) have had
interesting consequences for computing the diameter in distributed settings (specifically in
the CONGEST model). Techniques from both the approximation algorithms and from the
hardness reductions have been utilized, see e.g. [39, 2, 9]. It would be interesting to explore
the consequences of our techniques on the intriguing gaps in that context [29].

1.2 Organization

In this extended abstract, we highlight the key ideas in some of our main results (Theorem 1
and Theorem 6) by proving an “easy version” of each theorem. The full proofs of all the
results are in the full version of our paper. First, we establish some preliminaries in Section 2.
In Section 3, we prove the special case of Theorem 1 when t = 0, giving a 7/4-approximation

3 Note that the Max-Diameter version where we take the max rather than the min is equal to the one-way
version.
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of the diameter in directed unweighted graphs in time O(m!4%®). In Section 4.1 we give an
overview of the hardness reductions. In Section 4.2, we prove a weakening of Theorem 6 that
only holds for weighted graphs.

2 Preliminaries

All logs are base e unless otherwise specified. For reals a > 0, let [£a] denote the real interval
[—a,a]. For a boolean statement ¢, let 1[¢] be 1 if ¢ is true and 0 otherwise.

For a vertex v in a graph, let deg(v) denote its degree. For r > 0, let B (v) = {u :
d(u,v) < r} be the in-ball of radius r around v, and let B2“(v) = {u : d(v,u) < r} be the
out-ball of radius r around v. For r > 0, let B{"*(v) be B"(v) and their in-neighbors, and
let B2 (v) be B2*(v) and their out-neighbors.

Throughout, let w < 2.3728596 denote the matrix multiplication constant. We use the
following lemma which says that we can multiply sparse matrices quickly.

» Lemma 7 (see e.g. Theorem 2.5 of [32]). We can multiply a a X b and a b x a matriz, each
w—1
with at most ac nonzero entries, in time O(ac-a = ).4

We repeatedly use the following standard fact.

» Lemma 8. Given two sets B C V with B of size k and V' of size 2m, a set of 4(m/k)logm

uniformly random elements of V' contains an element of B with probability at least 1 — #

Proof. The probability that B is not hit is (1 — %)4’”/’“ logm < g=2logm — 1 <

m2"°

3 7/4-approximation of directed (one-way) diameter

In this section, we prove Theorem 1 in the special case of ¢ = 0 and unweighted graphs. That
is, we give a 7/4-approximation of the (one-way) diameter of a directed unweighted graph in
O(m!457%) time. For the rest of this section, let o = x—ié < 0.4575.

Before stating the algorithm and proof, we highlight how our algorithm differs from
the undirected algorithm of [17]. At a very high level, all known diameter approximation
algorithms compute some pairs of distances, and use the triangle inequality to infer other
distances, saving runtime. Approximating diameter in directed graphs is harder than in
undirected graphs because distances are not symmetric, so we can only use the triangle
inequality “one way.” For example, we always have d(z,y) + d(y,z) > d(x,z), but not
necessarily d(z,y) + d(z,y) > d(x,z). The undirected algorithm [17] crucially uses the
triangle inequality “both ways,” so it was not clear whether their algorithm could be adapted
to the directed case. We get around this barrier using matrix multiplication together with
the triangle inequality to infer distances quickly. We consider the use of matrix multiplication
particularly interesting because, previously, matrix multiplication had only been used for
diameter in dense graphs, but we leverage it in sparse graphs.

» Theorem 9. Let o = :—_T_é There exists a randomized 7/4-approzimation algorithm for

the diameter of an unweighted directed graph running in O(ml‘“‘) time.

w—1
* In [32], this runtime of O(ac- a7 ) is stated only for the case ac > a(“TY/2. However, the runtime
bound for this case works for other cases as well so the lemma is correct for all matrices.

2:7

ESA 2023



On Diameter Approximation in Directed Graphs

L Si” 5
1§] < mi-e Bybns) 5 0
Q1= |BYf(s)| < m'e I\ 5 S
- I\ NN 9 YE
.‘ R RN S o\a‘“
\ s[ 717 77 W\ !
) —~ ~ - . \ '\
N «/ b gout : x| v
207 ) ?.\ L - A\l
DTy ¥ - W, Y Qé?;;,
\ * \2 1 < +++++
a \ \ A 9’0/) HHE
I‘ ! - Sin 4+ | NO”
' cout s E +++++
SES B +++ 4+

Figure 4 Steps 5 and 6. If d(a,b) > D and Steps 2, 3, and 4 do not accept, with high probability,
set S hits the D /7 out- and in- neighborhoods of a and b at vertices s and s’, respectively, that
must have distance at least 5D /7 by the triangle inequality. Thus, checking all pairs of distances in
5% % S which can be done quickly with sparse matrix multiplication, distinguishes at Step 6
whether the diameter is at least D or less than 4D/7.

Proof. It suffices to show that, for any positive integer D > 0, there exists an algorithm Ap
running in time O(m“’“) that takes as input any graph and accepts if the diameter is at
least D, rejects if the diameter is less than 4D/7, and returns arbitrarily otherwise. Then,
we can find the diameter up to a factor of 7/4 by running binary search with Ap,®> which at
most adds a factor of O(logn).

We now describe the algorithm Ap. The last two steps, illustrated in Figure 4 contain
the key new ideas.

1. First, we apply a standard trick that replaces the input graph on n vertices and m edges
with an 2m-vertex graph of max-degree-3 that preserves the diameter: replace each vertex
v with a deg(v)-vertex cycle of weight-0 edges and where the edges to v now connect to
distinct vertices of the cycle. From now on, we work with this max-degree-3 graph on 2m
vertices.

2. Sample 4m®logm uniformly random vertices and compute each vertex’s in- and out-
eccentricity. If any such vertex has (in- or out-) eccentricity at least 4D /7 Accept.

3. For every vertex v, determine if |Bl"3“/t7(v)| < m®. If such a vertex v exists, determine if
any vertex in B%“/t;' (v) has eccentricity at least 4D/7, and Accept if so.

4. For every vertex v, determine if By, (v)| < m®. If such a vertex v exists, determine if
any vertex in Bjj";(v) has eccentricity at least 4D /7, and Accept if so.

5. Sample 4m'~*logm uniformly random vertices S. Let $°* = {s € § : |BSE 7 (s)] <
m'=*} and S = {s e S : |B§%/7(s)| < m!'=}. Compute BJY, (s) and Bt (s) for

| : ‘ 2D/7 2D/7
s € §° and ;7]5/7(3) and B;"D+/7(s) for s € §"".

6. Let A"t € RS™ >V be the |S°“| x n matrix where A,, = 1[v € By 7(s)]. Let
A e RVXS™ be the n x |S™| matrix where AT, = 1[v € Bi, (s)] if [4D/7] = 2(2D/7]
and A", = 1[v € B;’]D‘%(s)] otherwise. Compute A% . Ain ¢ RS™ X5 yging sparse
matrix multiplication. If the product has any zero entries, Accept, otherwise Reject.

5 We have to be careful not to lose a small additive factor. Here are the details: Let D* be the true
diameter. Initialize hi = n,lo = 0. Repeat until hi — lo = 1: let mid = [(hi + l0)/2], run Apq, if
accept, set lo = mid, else hi = mid. One can check that hi > D* + 1 and lo < 7D* /4 always hold. If
we return lo after the loop breaks, the output is always in [D*, 7D /4].
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Runtime. Computing a single eccentricity takes time O(m), so Step 2 takes time O(m!'t?).
For Step 3 checking if |B%“/t7(v)| < m® takes O(m®) time for each v via a partial Breadth-
First-Search (BFS). Here we use that the max-degree is 3. If |Bj°3“/t7(v)| < m®, there are at
most 3m® eccentricity computations which takes time O(m!*®). Step 4 takes time O(m!*<)
for the same reason. Similarly, we can complete Step 5 by running partial BFS for each

s € S until m'~* vertices are visited. This gives S° and S and also gives B3 7 (s) and

ngf)t/‘;(s) for s € S°%" and Bé’bﬁ(s) and B;’Z;/?(s) for s € S™. For Step 6, the runtime

is the time to multiplying sparse matrices. Matrix A°** has at most ‘ﬁ | < 4m'=%logm

rows each with at most maxgegout |B§j§t/7(s)\ < m!= entries, and similarly A" has at most
in+
2D/7

matrix multiplication takes time O(m(2=2%) . m(l’o‘)wal) = O(m'*®) by Lemma 7 with
a=m""%b=mn,c=ml""

4m!*~logm columns each with at most max,cgin | B2 (s)| < 3m!~% entries. The sparse

If the Diameter is less than 4D /7, we always reject. Clearly every vertex has eccentricity
less than 4D/7, so we indeed do not accept at Steps 2, 3, and 4. In Step 5, we claim for
every s € S, 5" € S™ there exists v such that AJ4 = Al =1, so that (A°“ - A™), o > 1
for all s € S° and s’ € S and thus we reject. Fix s € S°% and s’ € S'. By the
diameter bound, d(s,s’) < [4D/7]. Let v be the last vertex on the s-to-s’ shortest path
such that d(s,v) < [2D/7], and, if it exists, let v’ be the vertex after v. Clearly A%4f = 1.
We show AL, =1 as well. If v = &', then clearly v € B;’]Dﬁ(s’) so A", =1 as desired.
Otherwise d(s,v) = [2D/7|. If |4D/7| = 2|2D/7], then d(v,s") < d(s,s’) — d(s,v) <
[4D/7] — |2D/7] = |2D/7], so v € B;’bﬁ(s’) and A, = 1, so again A", = 1. If
[4D/7| =2(2D/7]+1, then d(v', s") < d(s,s')—d(s,v") < [4D/7|—(|2D/7]+1) = |2D/7],
sov' € Bg’bﬁ(s’) and thus v € B;’g%(#) and Al",, =1, as desired. This covers all cases, so
we’ve shown we reject.

If the Diameter is at least D, we accept with high probability. Let a and b be vertices
with d(a,b) > D.

If |B§1[‘)t/7(a)| > m!=% Step 2 computes the eccentricity of some v € nggtﬁ(a) with high
probability (by Lemma 8), which is at least d(v,b) > d(a,b) — d(a,v) > 4D/7 by the triangle
inequality, so we accept. Similarly, we accept with high probability if |B§Tb /7(b)| >ml=e,
Thus we may assume that |B30j§t/7(a)|, |B§Tb/7(b)\ < m!= for the rest of the proof.

If |B%“/t7(v)\ < m® for any vertex v, then either (i) d(v,b) > 4D/7, in which case v has
eccentricity at least 4D/7 and we accept at Step 3, or (ii) d(v,b) < 4D/7, in which case
there is a vertex u € B%“/tﬁ (v) on the v-to-b path with d(u,b) < 3D/7 (take the u € Bf)"/t;r (v)
closest to b on the path). Then d(a,u) > 4D/7 by the triangle inequality and we accept in
Step 3 as we perform a BFS from u. Thus we may assume |B§)“/t7(v)| > m® for all vertices v.
Similarly, because of Step 4, we may assume |ng/7(v)| > m® for all vertices v.

In particular, we may assume \B"D"/t7(a)\ > m® and |Bg/7(b)| > m®. Figure 4 illustrates
this last step. Then S hits B%“/t7(a) with high probability (by Lemma 8), so Bg‘/t7(a) has some
s € S with high probability, and similarly Bg’ﬁ(b) has some s’ € S with high probability. The
triangle inequality implies that Bg}ff/?(s) C Bg}gfﬁ(a), S \Bgﬁfﬁ(sﬂ < |B§}ff/7(a)| <ml-@
and thus s € S°“. Similarly s’ € S. By the triangle inequality, we have d(s,s’) >
d(a,b) —d(a,s) —d(s’,b) > D — D/7—D/7=5D/7. Then we must have (A- B)s s =0, as
otherwise there is a v such that d(s,v) < [2D/7] and d(v,s’) < 4D/7—|2D/7], contradicting
d(s,s’) > 5D/7. Hence, we accept at step 5, as desired. <
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4 Hardness Reductions for Roundtrip

4.1 Overview

In this paper we prove hardness results for roundtrip diameter that go beyond the 2 vs. 3
barrier. Before presenting the proofs, let us begin with an abstract discussion on why this
barrier arises and (at a high level) how we overcome it.

All previous hardness results for diameter are by reductions from OV (or its generalization
to multiple sets). In OV, one is given two sets of vectors of size n and dimension d = poly logn,
A and B, and one needs to determine whether there are a € A,b € B that are orthogonal.
SETH implies that OV requires n2~°M time [46]. In a reduction from OV to a problem
like diameter, one typically has nodes representing the vectors in A and B, as well as nodes
C representing the coordinates, and if there is an orthogonal vector pair a,b, then the
corresponding nodes in the diameter graph are far (distance > 3), and otherwise all pairs of
nodes are close (distance < 2). Going beyond the 2 vs. 3 gap is difficult because each node
a € A must have distance < 2 to each coordinate node in C', regardless of the existence of an
orthogonal pair, and then it is automatically at distance 2 + 1 from any node b € B because
each b has at least one neighbor in C'. So even if a,b are orthogonal, the distance will not be
more than 3.

The key trick for proving a higher lower bound (say 3 vs. 5) for roundtrip is to have two
sets of coordinate nodes, a C/" set that can be used to go forward from A to B, and a C*"4
set that can be used to go back. The default roundtrip paths from A/B to each of these
two sets will have different forms, and this asymmetry will allow us to overcome the above
issue. This is inspired by the difficulty that one faces when trying to make the subquadratic
3/2-approximation algorithms for undirected and directed diameter work for roundtrip.

Unfortunately, there is another (related) issue when reducing from OV. First notice that
all nodes within A and within B must always have small distance (or else the diameter would
be large). This can be accomplished simply by adding direct edges of weight 1.5 between all
pairs (within A and within B); but this creates a dense graph and makes the quadratic lower
bound uninteresting. Instead, such reductions typically add auxiliary nodes to simulate the
n? edges more cheaply, e.g. a star node o that is connected to all of A. But then the node o
must have small distance to B, decreasing all distances between A and B.

Overcoming this issue by a similar trick seems impossible. Instead, our two hardness
results bypass it in different ways.

The reduction from f,.-Closest-Pair starts from a problem that is defined over one set
of vectors A (not two) which means that the coordinates are “in charge” of connecting all
pairs within A. We remark that while OV can also be defined over one set (monochromatic)
instead of two (bichromatic) and that it remains SETH hard; that would prevent us from
applying the above trick of having a forward and a backward sets of coordinate nodes. Our
reduction in Section 4.2 is able to utilize the structure of the metric in order to make both
ideas work simultaneously.

The reduction from All-Node k-Cycle relies on a different idea: it uses a construction
where only a small set of n pairs a; € A,b; € B are “interesting” in the sense that we do not
care about the distances for other pairs (in order to solve the starting problem). Then the
goal becomes to connect all pairs within A and within B by short paths, without decreasing
the distance for the (a;,b;) pairs. A trick similar to the bit-gadget [3, 2] does the job. For
the complete reduction see the full version of the paper.
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4.2 Weighted Roundtrip 2 — ¢ hardness from ¢..-CP

In this section, we highlight the key ideas in Theorem 6 by proving a weaker version, showing
the lower bound for weighted graphs. See the full version of the paper for the extension to
unweighted graphs.

The main technical lemma is showing that to a-approximate £..-Closest-Pair, it suffices
to do so on instances where all vector coordinates are in [+(0.5 4 €)a]. Towards this goal,
we make the following definition.

» Definition 10. The a-approzimate S-bounded {,-Closest-Pair problem is, given n vectors
V1, ..., vy of dimension d in [—3,B]? determine if there exists v; and vj with ||[v; — vjlleo < 1,
or if for all v; and vj, ||v; —vjlleo > a.

We now prove the main technical lemma.

» Lemma 11. Lete € (0,1/2) and o > 1. If one can solve a-approzimate (0.5 + ¢)a-bounded
loo-CP on dimension O(de~'logn) in time T, then one can solve a-approzimate £o,-CP on
dimension d in time T + O (dnlogn), where in O (-) we neglect dependencies on €.

Proof. Start with an ¢, instance ® = (vy,...,v,). We show how to construct a bounded
Lo instance @ such that ® has two vectors with /., distance < 1 if and only if ®’ has two
vectors with /., distance < 1.

First we show we may assume that vy, ..., v, are on domain [0, an]. Suppose that x € [d].
Reindex vy, . .., v, in increasing order of v;[x] (by sorting). Let v{,...,v], be vectors identical
to vy,...,v, except in coordinate x, where instead

i—1
vilz] = Y min(a, v 2] - v[a])
7=0

for i =1,...,n, where the empty sum is 0. We have that v}[z] < an for all i, and furthermore
[vi[z] — vi[z]| > a if and only if |v;[z] — v;j[z]| > o and also |vj[z] — v}[z]| < 1 if and only if
|vi[x] — v;[z]| < 1. Hence, the instance given by v],...,v], is a YES instance if and only if

the instance ® is a YES instance, and is a NO instance if and only if the instance ® is a NO
instance. Repeating this with all other coordinates x gives an instance ®’ such that ® is a
YES instance if and only if ® is a YES instance, and @’ is a NO instance if and only if &' is
a NO instance, and furthermore @ has vectors on [0, an].

Now we show how to construct an £-CP instance in dimension O, (dlogn) vectors with
coordinates in [+(0.5 + ¢)q].

» Lemma 12. Let e € (0,0.5) and a > 1. For any real number M, there exists two maps
g : [0,M] = [=(0.5+ &), (0.5 + €)a2le 11 and b : [0, M] — [0,M/2] such that for
all a,b € [0, M], we have min(|la — b|,«) = min(||(g(a), h(a)) — (g(b), h(b))|lcc, ). (here,
(g(-),h(")) is a length 2[e~1] + 2 wvector.) Furthermore, g and h can be computed in O.(1)
time.

Proof. It suffices to consider when 7! is an integer. Let f, : R — [—(0.5 + €)a, (0.5 + €)a/
be the piecewise function

—(054+¢e)a ifr<z—(05+¢)
fo(x) = 0.5+ ) ifx>2z+(05+¢)a
T —z otherwise.
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For a € [M], define g(a) € R+ and h(a) € R as follows, where we index coordinates by

—e~1, ..., —1,0,1,e7 ! for convenience

9(a)i = farj2+05icala) for —eh <i<e!
h(a) =|a— M/2|.

Clearly ¢ and h have the correct codomain, and they can be computed in Oc(1) time.
Additionally, note that f,(x) and |z — M/2| are 1-Lipschitz functions of x for all z, so g is a
Lipschitz function and thus ||g(a) — g(b)||cc < |a — b.

Now, it suffices to show that min(||(g(a), h(a)) — (g(b), h())||c0, @) > min(|a — b|, a). If a
and b are on the same side of M /2, then [|h(a) — h(b)||co > ||a — M /2| — |b— M/2|| = |a — ],
as desired. Now suppose a and b are on opposite sides of M /2, and without loss of generality
a< M/2<b. Let 0 <i<e ! be the largest integer such that a < M/2 —ica (i = 0 works
so i always exists). If i = ¢!, then a < M/2 — a and

llg(a) = g(®)lloc > farj2—0.5a(b) = farj2—0.5a(a) > 0.5a — (=0.5a) = o > min(la — b|, @),

as desired. Now assume i < ¢~ 1. Let z = M/2 + (0.5 — ie)a. By maximality of i, we have
a—z € [—(0.5+¢)a, —0.5a]. We have g(-).-1_o; = f.() by definition of g. By the definition of
f2(+), since a € [z—(0.5+¢)a, z—0.5a] and b > a, we have min(f,(b)—f.(a), «) = min(b—a, «).
Thus,

min(([g(a) — g(b)[loo, @) = min (g(b)e=1-2; — g(a)e-1-2;, @)
=min(f,(b) — f.(a),a) = min(b — a, ),

as desired. In either case, we have min(||g(a) — g(b)||00, @) > min(|a — b|, @), so we conclude
that min([lg(a) — g(b)lloe, @) = min(ja — b}, @). «

Iterating Lemma 12 gives the following.

» Lemma 13. Let e € (0,1/2). There exists a map g : [0,an] — [£(0.54¢)a]4< Tloen gych,
that for all a,b € [0, an], we have min(|la — b|, &) = min(||g(a) — g(b)||ec, ). Furthermore, g
can be computed in O;(logn) time.

Proof. For £ = 1,..., let M; = an/2'7, and let g} : [My] — [£(0.5 + ¢)a ]2l 141 and
hi : [My] = [Mg41] be the functions given by Lemma 12. For £ =0,1,..., let g¢ : [0,an] —
[—(0.5+ €)a, (0.5 + )]/l 1+ and hy : [0,an] — [0,an/2¢] be such that go(z) = () is an
empty vector, ho(z) = « is the identity, and for £ > 1, ge(z) = (gr—1(2), g} (he—1(x))) and
he(x) = hj(he—1(z)). By Lemma 12, we have that

min (|| (ge-1(a), he-1(a)) = (ge-1(b); he—1 (b)) o, @)
= min (|| (g9-1(a), g7 (he-1(a)), hj (he-1(a))) = (ge(b), g7 (he—1.(0)), B (he—1(b))) |0 )
= min (|| (ge(a), he(a)) — (g¢(0), he()) oo, )
for all £. For £ = [logn], the vector g(a) o (ge(a), he(a) — 0.5a) has every coordinate in
[£(0.5 + €)a], and by (4.2), we have
min(|a — bf, a) = min(|go(a) — go(b)], @)
= min(|ge(a) — ge(b)], @) = min(|g(a) = g(b)oo, @),

as desired. The length of this vector is at most [logn](2[e~!] + 1) + 1, which we bound by
4[e=Ylogn for simplicity (and pad the corresponding vectors with zeros). <
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Figure 5 The roundtrip diameter instance G for ¢--CP hardness.

To finish, let g : [0,an] — [£(0.5 + ¢)a] be given by Lemma 13, and let the original £
instance be vy, ...,v,. Let the new (0.5 + ¢)a-bounded /., instance be w; = (g9(vi[7]))ze[q
of length 4d[e~!] logn. <

We now prove our goal for this section, Theorem 6 for weighted graphs.

» Theorem 14. [f for some o > 2,& > 0 there is a 2 — é — € approzimation algorithm in
time O(m?~¢) for roundtrip diameter in weighted graphs, then for some § > 0 there is an
a-approzimation for Ly, -Closest-Pair with vectors of dimension d < n'=? in time O(n?~°).

Proof. By Lemma 11 it suffices to prove that there exists an O(n?~%) time algorithm for
a-approximate (0.5 + €)a-bounded /o-CP for ¢ = (4a) L.

Let @ be the bounded-domain £,.-CP instance with vectors vy, ..., v, € [£(0.5 + &)a]™.

Then construct a graph G (see Figure 5) with vertex set S U X7 U Xy where X7 = X = [d]

and S = [n]. We identify vertices with the notations ig,zx,, and zx,, for ¢ € [n] and z € [d].

Draw directed edges

1. from ig to zx,, of weight a + v;[z],

2. from zx, to ig, of weight oo — v;[z],

3. from ig to zx,, of weight oo — v;[z],

4. from xx, to ig, of weight « + v;[x], and

5. between any two vertices in X7 U X5, of weight «.

Note that all edge weights are nonnegative, and any two vertices in X; U X5 are roundtrip
distance 2a, and any s € S and x € X; U X5 are distance 2a. Suppose ® has no solution,
so that every pair has {, distance a. Then for vertices ig, jg, there exists a coordinate x
such that v;[z] — v;[z] is either > a or < —a. Without loss of generality, we are in the case
v;[x] — vj[z] > a. Then the path is — zx, — js = zx, — is is a roundtrip path of length

(o —wile]) + (@t vyla]) + (o + vjle]) + (@ — vila]) = da — 2(vifa] - v; o)) < 20

So when ® has no solution, the roundrip diameter is at most 2a.

On the other hand, suppose ® has a solution 7, j such that for all z, |v;[x] — v,[z]| < 1.

Then, as every edge has weight at least (0.5 — &)«
d(is,js) > min (?eu[fil] (d(is, SUXI) +d(zx,,js), d(is, «TXZ) + d(-TXZ,jS)) ,4(0.5 — 8)04)

> min (mi[g](a +v[z] + a — vj[z], o + vi[z] + o — vi[z]), 200 — 45a>
Te

> min(2a — 1,2a — 4ae) = 2a— 1.
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Similarly, we have

d(j57is) 2 200 — 17

so we have

so in this case the RT-diameter is at least 4o — 2. A 2 — o~

drr(js,is) > 4o — 2.

1 — ¢ approximation for RT

diameter can distinguish between RT diameter 4o — 2 and RT-diameter 2c. Thus, a 2 —a—¢

approximation for RT diameter solves a-approximate £.,-CP. <
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—— Abstract

We study the fundamental problem of finding the best string to represent a given set, in the form
of the Closest String problem: Given a set X C ¢ of n strings, find the string * minimizing the
radius of the smallest Hamming ball around z* that encloses all the strings in X. In this paper, we
investigate whether the Closest String problem admits algorithms that are faster than the trivial
exhaustive search algorithm. We obtain the following results for the two natural versions of the
problem:

In the continuous Closest String problem, the goal is to find the solution string z* anywhere
in X¢. For binary strings, the exhaustive search algorithm runs in time O(2% poly(nd)) and we
prove that it cannot be improved to time O(2<1_€)d poly(nd)), for any € > 0, unless the Strong
Exponential Time Hypothesis fails.

In the discrete Closest String problem, z* is required to be in the input set X. While this

problem is clearly in polynomial time, its fine-grained complexity has been pinpointed to be

quadratic time n?*°®) whenever the dimension is w(logn) < d < n°Y). We complement this
known hardness result with new algorithms, proving essentially that whenever d falls out of this
hard range, the discrete Closest String problem can be solved faster than exhaustive search.
In the small-d regime, our algorithm is based on a novel application of the inclusion-exclusion
principle.

Interestingly, all of our results apply (and some are even stronger) to the natural dual of the Closest

String problem, called the Remotest String problem, where the task is to find a string maximizing

the Hamming distance to all the strings in X.
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Can You Solve Closest String Faster Than Exhaustive Search?

1 Introduction

The challenge of characterizing a set of strings by a single representative string is a fundamental
problem all across computer science, arising in essentially all contexts where strings are
involved. The basic task is to find a string z* which minimizes the maximum number of
mismatches to all strings in a given set X. Equivalently, the goal is to find the center z*
of a smallest ball enclosing all strings in X in the Hamming (or ¢g) metric. This problem
has been studied under various names, including Closest String, 1-Center in the Hamming
metric and Chebyshev Radius, and constitutes the perhaps most elementary clustering task
for strings.

In the literature, the Closest String problem has received a lot of attention [11, 12, 23,
14, 22, 26, 9, 25, 20, 27, 1], and it is not surprising that besides the strong theoretical
interest, it finds wide-reaching applications in various domains including machine learning,
bioinformatics, coding theory and cryptography. One such application in machine learning
is for clustering categorical data. Typical clustering objectives involve finding good center
points to characterize a set of feature vectors. For numerical data (such as a number of
publications) this task translates to a center (or median) problem over, say, the ¢; metric
which can be solved using geometry tools. For categorical data, on the other hand, the points
have non-numerical features (such as blood type or nationality) and the task becomes finding
a good center string over the Hamming metric.

Another important application, in the context of computational biology, is the computer-
aided design of PCR primers [25, 24, 10, 29, 13, 32]. On a high level, in the PCR method the
goal is to find and amplify (i.e., copy millions of times) a certain fragment of some sample
DNA. To this end, short DNA fragments (typically 18 to 25 nucleotides) called primers are
used to identify the start and end of the region to be copied. These fragments should match
as closely as possible the target regions in the sample DNA. Designing such primers is a
computational task that reduces exactly to finding a closest string in a given set of genomes.

The Closest String problem comes in two different flavors: In the continuous Closest
String problem the goal is to select an arbitrary center string z* € ¢ (here, ¥ is the
underlying alphabet) that minimizes the maximum Hamming distance to the n strings in
X. This leads to a baseline algorithm running in exponential time O(|%|? poly(nd)). In the
discrete Closest String problem, in contrast, the task is to select the best center z* in the
given set of strings X; this problem therefore admits a baseline algorithm in time O(n%d).
Despite the remarkable attention that both variants have received so far, the most basic
questions about the continuous and discrete Closest String problems have not been fully
resolved yet:

Can the O(|2|? poly(nd))-time algorithm for continuous Closest String be improved?
Can the O(n2d)-time algorithm for discrete Closest String be improved?

In this paper, we make considerable progress towards resolving both driving questions, by
respectively providing tight conditional lower bounds and new algorithms. In the upcoming
Sections 1.1 and 1.2 we will address these questions in depth and state our results.

Interestingly, in both cases our results also extend, at times even in a stronger sense, to a
natural dual of the Closest String problem called the Remotest String problem. Here, the
task is to find a string z* that maximizes the minimum Hamming distance from x* to a
given set of strings X. This problem has also been studied in computational biology [22, 21]
and more prominently in the context of coding theory: The remotest string distance is a
fundamental parameter of any code which is also called the covering radius [8], and under this
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name the Remotest String problem has been studied in previous works [28, 15, 6, 17] mostly
for specific sets X such as linear codes or lattices. See Alon, Panigrahy and Yekhanin [6] for
further connections to matrix rigidity.

1.1 Continuous Closest/Remotest String

Let us start with the more classical continuous Closest String problem. It is well-known
that the problem is NP-complete [11, 22], and up to date the best algorithm remains the
naive one: Exhaustively search through all possible strings in time O(|X|? poly(nd)). This
has motivated the study of approximation algorithms leading to various approximation
schemes [12, 23, 25, 27], and also the study through the lens of parameterized algorithms [14].
In this work, we insist on exact algorithms and raise again the question: Can you solve the
continuous Closest String problem faster than exhaustive search?

For starters, focus on the Closest String problem for binary alphabets (i.e., for |X| = 2)
which is of particular importance in the context of coding theory [20]. From the known
NP-hardness reduction which is based on the 3-SAT problem [11], it is not hard to derive
a 2%/2 lower bound under the Strong Exponential Time Hypothesis (SETH) [18, 19]. This
bound clearly does not match the upper bound and possibly leaves hope for a meet-in-the-
middle-type algorithm. In our first contribution we shatter all such hopes by strengthening
the lower bound, with considerably more effort, to match the time complexity of exhaustive
search:

» Theorem 1 (Continuous Closest String is SETH-Hard). The continuous Closest String
problem cannot be solved in time O(21=9 poly(n)), for any € > 0, unless SETH fails.

Interestingly, we obtain this lower bound as a corollary of the analogous lower bound for
the continuous Remotest String problem (see the following Theorem 2). This is because both
problems are equivalent over the binary alphabet. However, even for larger sized alphabet
sets X, we obtain a matching lower bound against the Remotest String problem:

» Theorem 2 (Continuous Remotest String is SETH-Hard). The continuous Remotest String
problem cannot be solved in time O(|%|1 =9 poly(n)), for any € > 0 and |Z| = o(d), unless
SETH fails.

Theorem 2 gives a tight lower bound for the continuous Remotest String problem in all
regimes where we can expect lower bounds, and we therefore close the exact study of the
continuous Remotest String problem. Indeed, in the regime where the alphabet size |3
exceeds the dimension d, the Closest and Remotest String problems can be solved faster in
time O(d? poly(n,d)) (and even faster parameterized in terms of the target distance [14]).

The intuition behind Theorem 2 is simple: We encode a k-SAT instance as a Remotest
String problem by viewing strings as assignments and by searching for a string which is
remote from all falsifying assignments. The previously known encoding [11] was inefficient
(encoding a single variable X; accounted for two letters in the Remotest String instance: one
for encoding the truth value and another one as a “don’t care” value for clauses not containing
X;), and our contribution is that we make the encoding lossless. While superficially simple,
this baseline idea requires a lot of technical effort.

3:3

ESA 2023



3:4

Can You Solve Closest String Faster Than Exhaustive Search?

1.2 Discrete Closest/Remotest String

Recall that in the discrete Closest String problem (in contrast to the continuous one) the
solution string z* must be part of the input set X. For applications in the context of data
compression and summarization, the discrete problem is often the better choice: Selecting
the representative string from a set of, say, grammatically or semantically meaningful strings
is typically more informative than selecting an arbitrary representative string.

The problem can be naively solved in time O(n2d) by exhaustive search: Compute the
Hamming distance between all (g) pairs of strings in X in time O(d) each. In terms of exact
algorithms, this running time is the fastest known. Toward our second driving question, we
investigate whether this algorithm can be improved, at least for some settings of n and d. In
previous work, Abboud, Bateni, Cohen-Addad, Karthik, and Seddighin [1] have established
a conditional lower bound under the Hitting Set Conjecture [3], stating that the problem
requires quadratic time in n whenever d = w(logn):

» Theorem 3 (Discrete Closest String for Super-Logarithmic Dimensions [1]). The discrete
Closest String problem in dimension d = w(logn) cannot be solved in time O(n>~¢), for any
€ > 0, unless the Hitting Set Conjecture fails.

This hardness result implies that there is likely no polynomially faster algorithm for
Closest String whenever the dimension d falls in the range w(logn) < d < n°1) . But this
leaves open the important question of whether the exhaustive search algorithm can be
improved outside this region, if d is very small (say, o(logn)) or very large (i.e., polynomial
in n). In this paper, we provide answers for both regimes.

Small Dimension. Let us start with the small-dimension regime, d = o(logn). The outcome
of the question whether better algorithms are possible is a priori not clear. Many related
center problems (for which the goal is to select a center point z* that is closest not necessarily
in the Hamming metric but in some other metric space) differ substantially in this regard:
On the one hand, in the Euclidian metric, even for d = 200°2" %) the center problem requires
quadratic time under the Hitting Set Conjecture [1].} On the other hand, in stark contrast,
the center problem for the ¢; and /., metrics can be solved in almost-linear time pito(d)
whenever the dimension is d = o(logn). This dichotomy phenomenon extends to even more
general problems including nearest and furthest neighbor questions for various metrics and
the maximum inner product problem [33, 7].

In view of this, we obtain the perhaps surprising result that whenever d = o(logn) the
discrete Closest String problem can indeed be solved in subquadratic — even almost-linear —
time. More generally, we obtain the following algorithm:

» Theorem 4 (Discrete Closest String for Small Dimensions). The discrete Closest String
problem can be solved in time O(n - 2%).

Note that this result is trivial for binary alphabets, and our contribution lies in finding
an algorithm in time O(n - 2¢) for alphabets of arbitrary size.

We believe that this result is interesting also from a technical perspective, as it crucially
relies on the inclusion-exclusion principle. While this technique is part of the everyday tool-set
for exponential-time and parameterized algorithms, it is uncommon to find applications for
polynomial-time problems and our algorithm yields the first such application to a center-type

! Technically, the problem is only known to be hard in the listing version where we require to list all
feasible centers [1].
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problem, to the best of our knowledge. We believe that our characterization of the Hamming
distance in terms of an inclusion-exclusion-type formula (see Lemma 23) is very natural and
likely to find applications in different contexts.

Large Dimension. In the large-dimension regime, where d is polynomial in n, it is folklore
that fast matrix multiplication should be of use. Specifically, over a binary alphabet we can
solve the Closest String problem in time O(MM(n, d,n)) (where MM(n, d,n) is the time to
multiply an n x d by a d X n matrix) by using fast matrix multiplication to compute the
Hamming distances between all pairs of vectors, rather than by brute-force. For arbitrary
alphabet sizes this idea leads to a running time of O(MM(n, d|X|,n)) which is of little use
as || can be as large as n and in this case the running time becomes Q(n2d).

We prove that nevertheless, the O(n?d)-time baseline algorithm can be improved using
fast matrix multiplication — in fact, using ideas from sparse matrix multiplication such as
Yuster and Zwick’s heavy-light idea [34].

» Theorem 5 (Discrete Closest String for Large Dimensions). For all § > 0, there is some € > 0

such that the discrete Closest String problem with dimension d =n’ can be solved in time
O(n2+6_6).

Remotest String. Finally, we turn our attention to the discrete Remotest String problem.

In light of the previously outlined equivalence in the continuous setting, we would expect that
also in the discrete setting, the Closest and Remotest String problem are tightly connected.
We confirm this suspicion and establish a strong equivalence for binary alphabets:

» Theorem 6 (Equivalence of Discrete Closest and Remotest String). If the discrete Closest
String over a binary alphabet is in time T'(n,d), then the discrete Remotest String over a
binary alphabet is in time T(O(n), O(d+logn))+O(nd). Conversely, if the discrete Remotest
String over a binary alphabet is in time T'(n,d), then the discrete Closest String over a
binary alphabet is in time T'(O(n), O(d + logn)) + O(nd).

In combination with Theorem 3, this equivalence entails that also Remotest String requires
quadratic time in the regime w(logn) < d < n°1) . Let us remark that, while the analogous
equivalence is trivial in the continuous regime, proving Theorem 6 is not trivial and involves
the construction of a suitable gadget that capitalizes on explicit constant-weight codes.

The similarity between discrete Closest and Remotest String continues also on the positive
side: All of our algorithms extend naturally to Remotest String, not only for binary alphabets
(see the full version for more details).

1.3 Open Problems

Our work inspires some interesting open problems. The most pressing question from our
perspective is whether there also is a |%|(*=°(1)4 Jower-bound for continuous Closest String
(for alphabets of size bigger than 2).

» Open Question 7 (Continuous Closest String for Large Alphabets). For |X| > 2, can the
continuous Closest String problem be solved in time O(|X|1 =9 poly(n)), for some e > 07

We believe that our approach (proving hardness under SETH) hits a natural barrier
for the Closest String problem. In some sense, the k-SAT problem behaves very similarly
to Remotest String (with the goal to be remote from all falsifying assignments), and over
binary alphabets remoteness and closeness can be exchanged. For larger alphabets this trivial
equivalence simply does not hold. It would be exciting if this insight could fuel a faster
algorithm for Closest String, and we leave this question for future work.
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On the other hand, consider again the discrete Closest and Remotest String problems.
While we close almost all regimes of parameters, there is one regime which we did not address
in this paper:

» Open Question 8 (Discrete Closest/Remotest String for Logarithmic Dimension). Let ¢ be a
constant. Can the discrete Closest and Remotest String problems with dimension d = clogn
be solved in time O(n*~¢), for some € = €(c) > 07

In the regime d = O(logn), we typically expect only very sophisticated algorithms, say
using the polynomial method in algorithm design [2], to beat exhaustive search. And indeed,
using the polynomial method it is possible to solve also discrete Closest and Remotest
String in subquadratic time for binary (or more generally, constant-size) alphabets [5, 4,
Theorem 1.4]. The question remains whether subquadratic time complexity is also possible
for unrestricted alphabet sizes.

1.4 OQutline of the Paper

We organize this paper as follows. In Section 2 we give some preliminaries and state the
formal definitions of the continuous/discrete Closest/Remotest String problems. In Section 3
we prove our conditional hardness results for the continuous problems. In Section 4 we treat
in detail the discrete problems. Throughout, due to space constraints, we defer several proofs
to the full version of this paper.

2 Preliminaries

We set [n] = {1,...,n} and write O(T) = T(log T)°™ and poly(n) = n°1. We occasionally
write 1(P) € {0,1} to express the truth value of the proposition P.

Strings. Let ¥ be a finite alphabet of size at least 2. For a string x € X¢ of length
(or dimension) d, we write xz[i] for the i-th character in xz. For a subset I C [d], we
write z[I] € X! for the subsequence obtained from z by restricting to the characters
in I. The Hamming distance between two equal-length strings z,y € X¢ is defined as
HD(z,y) = [{i € [d] : z[i] # y[i]}|. Let X be a set of length-d strings and let z* be a length-d
string. Then we set

r(z*, X) = max HD(z*,y) (the radius of X around z*),
ye

dz*, X) = mi)r(l HD(z*,y) (the distance from z* to X).
ye
Let us formally repeat the definitions of the four problems studied in this paper:

» Definition 9 (Continuous Closest String). Given a set of n strings X C X9, find a string
x* € X which minimizes the radius r(x*, X).

» Definition 10 (Continuous Remotest String). Given a set of n strings X C X%, find a string
x* € X4 which mazimizes the distance d(x*, X).

» Definition 11 (Discrete Closest String). Given a set of n strings X C X, find a string
x* € X which minimizes the radius r(z*,X).

» Definition 12 (Discrete Remotest String). Given a set of n strings X C X%, find a string
x* € X which maximizes the distance d(x*, X \ {z*}).
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Hardness Assumptions. In this paper, our lower bounds are conditioned on the following
two plausible hypotheses from fine-grained complexity.

» Definition 13 (Strong Exponential Time Hypothesis, SETH [18, 19]). For all € > 0, there is
some k > 1 such that k-CNF SAT cannot be solved in time O(2(1=9").

» Definition 14 (Hitting Set Conjecture [3]). For all € > 0, there is some ¢ > 1 such that
no algorithm can decide in O(n?=¢) time, whether in two given lists A, B of n subsets of a
universe of size clogn, there is a set in the first list that intersects every set in the second
list (i.e. a “hitting set”).

3 Continuous Closest String is SETH-Hard

In this section we present our fine-grained lower bounds for the continuous Closest and
Remotest String problems. We start with a high-level overview of our proof, and then provide
the technical details in Sections 3.1-3.4.

Let us first recall that over binary alphabets, the continuous Closest and Remotest String
problems are trivially equivalent. The insight is that for any two strings z,y € {0,1}% we
have that HD(z,y) = d — HD(Z, y) where T is the complement of x obtained by flipping each
bit. From this it easily follows that

min  maxHD(z*,y) =d— max min HD(z",y).
Lo lin | may (z%,y) ,-ax, i (z*,y)
Note that finding a string «* optimizing the left-hand side is exactly the Closest String
problem, whereas finding a string «* optimizing the right-hand side is exactly the Remotest
String problem, and thus both problems are one and the same. For this reason, let us focus
our attention for the rest of this section only on the Remotest String problem.

Tight Lower Bound for Remotest String. Our goal is to establish a lower bound under
the Strong Exponential Time Hypothesis. To this end, we reduce a k-SAT instance with N
variables to an instance of the Remotest String problem with dimension d = (1 + o(1))N. In
Sections 3.1-3.4 we will actually reduce from a g-ary analogue of the k-SAT in order to get a
tight lower bound for all alphabet sizes |X|. However, for the sake of simplicity we stick to
binary strings and the usual k-SAT problem in this overview. Our reduction runs in two
steps.

Step 1: Massaging the SAT Formula. In the first step, we bring the given SAT formula
into a suitable shape for the reduction to the Remotest String problem. Throughout, we
partition the variables [N] into groups Pi,..., Px of size exactly s (where s is a parameter
to be determined later). We assert the following Sproperties:
Regularity: All clauses contain exactly k literals, and all clauses contain literals from the
same number of groups (say 7). This property can be easily be guaranteed by adding a
few fresh variables to the formula, all of which must be set to 0 in a satisfying assignment,
and by adding these variables to all clauses which do not satisfy the regularity constraint
yet.
Balancedness: Let us call an assignment o € {0, 1} balanced if in every group it assigns
exactly half the variables to 0 and half the variables to 1. We say that a formula is
balanced if it is either unsatisfiable or if it is satisfiable by a balanced assignment. To
make sure that a given formula is balanced, we can for instance flip each variable in the
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formula with probability % In this way we balance each group with probability ~ ﬁ,
and so all % groups are balanced with probability at least s735. By choosing s = w(1),
this random experiment yields a balanced formula after a negligible number of repetitions.

In Lemma 19 we present a deterministic implementation of this idea.

Step 2: Reduction to Remotest String. The next step is to reduce a regular and balanced
k-CNF formula to an instance of the Remotest String problem. The idea is to encode all
falsifying assignments of the formula as strings — a sufficiently remote point should in spirit
be remote from falsifying and thus satisfying. To implement this idea, take any clause C
from the instance. Exploiting the natural correspondence between strings and assignments,
we add all strings « € {0,1}" that satisfy the following two constraints to the Remotest

String instance:

1. The assignment « falsifies the clause C.

2. For any group P; that does not contain a variable from C, we have that a[P;] = 0° or
We start with the intuition behind the second constraint: For any balanced assignment o and
any group P; that does not contain a variable from C, we have that HD(a*[P], a[P]) = §
(the string a*[P;] contains half zeros and half ones, whereas «[P;] is either all-zeros or
all-ones). There are exactly % — r such groups (by the regularity), leading to Hamming
distance §(& —r).

It follows that the only groups that actually matter for the distance between a* and «
are the groups which do contain a variable from C. Here comes the first constraint into
play: If o* is a satisfying assignment, then a* and « must differ in at least one of these
groups and therefore have total distance at least %(% —r) + 1. Conversely, for any falsifying
assignment a* there is some string o in the instance with distance at most %(% —r).
Therefore, to decide whether the SAT formula is satisfiable it suffices to compute whether
there is a Remotest String with distance at least %(% — )+ 1. Finally, it can be checked
that the number of strings « added to the instance is manageable.

This completes the outline of our hardness proof, and we continue with the details. In
Section 3.1 we introduce the (g, k)-SAT problem which we will use to give a clean reduction
also for alphabet larger than size 2. In Section 3.2 we formally prove how to guarantee that a
given (g, k)-SAT formula is regular and balanced, and in Section 3.3 we give the details about
the reduction to the Remotest String problem. We put these pieces together in Section 3.4

and formally prove Theorem 2.

3.1 g-ary SAT

To obtain our full hardness result, we base our reduction on the hardness of g-ary analogue
of the classical k-SAT problem. We start with an elaborate definition of this problem. Let
X1,...,Xn denote some g-ary variables (i.e., variables taking values in the domain [¢]). A
literal is a Boolean predicate of the form X; # a, where x; is one of the variables and a € [q].
A clause is a disjunction of several literals; we say the clause has width k if it contains exactly
k literals. A (g, k)-CNF formula is a disjunction of clauses of width at most k. Finally, in
the (g, k)-SAT problem, we are given a (g, k)-CNF formula over M clauses and N g-ary
variables, and the task is to check whether there exists an assignment o € [q]"Y which satisfies
all clauses. This problem has already been addressed in previous works [31, 30], and it is
known that g-ary SAT cannot be solved faster than exhaustive search unless SETH fails:
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» Lemma 15 (g-ary SAT is SETH-Hard [30, Theorem 3.3]). For any € > 0, there is some k > 3
such that for all ¢ = q(N) > 2, (q,k)-SAT cannot be solved in time O(q=N poly(M)),
unless SETH fails.

While k is always constant, note that this hardness result applies even when q grows
with V. We will later exploit this by proving hardness for Remotest String even for alphabets
of super-constant size.

3.2 Regularizing and Balancing

Before we get to the core of our hardness result, we need some preliminary lemmas on the
structure of (g, k)-CNF formulas. Throughout, let N be the number of variables and let P
be a partition of N into groups of size exactly s. (Note that the existence of P implies that
N is divisible by s.) In two steps we will now formally introduce the definitions of regular
and balanced formulas and show how to convert unconstrained formulas into regular and
balanced ones. We defer the proofs of the upcoming lemmas to the full version of this paper.

» Definition 16 (Regular Formulas). Let ¢ be a (g, k)-CNF formula over N variables, and
let P be a partition of [N]. We say that ¢ is r-regular (with respect to P) if every clause
contains exactly k literals from exactly r distinct groups in P.

» Lemma 17 (Regularizing). Let ¢ be a (q,k)-CNF formula, and let 2k < s < N. In time
poly(NM) we can construct a (q,2k)-CNF formula ¢’ satisfying the following properties:
@' is satisfiable if and only if ¢ is satisfiable.
@' has at most N + O(s) variables and at most M + O(spoly(q)) clauses.
@' is (k4 1)-regular with respect to some partition P into groups of size exactly s.

» Definition 18 (Balanced Formulas). Let P be a partition of [N] into groups of size s. We
say that an assignment o € [q]N is balanced (with respect to P) if in every group of P, «
assigns each symbol in [q] exactly 3 times. We say that a (q,k)-CNF' formula ¢ is balanced
(with respect to P) if either ¢ is unsatisfiable, or ¢ is satisfiable by a balanced assignment a.

» Lemma 19 (Balancing). Let ¢ be a (g, k)-CNF formula over N variables, let P be a partition
of [N] into groups of size s, and assume that q divides s. We can construct (q,k)-CNF
formulas @1, ..., ¢ over the same number of variables and clauses as ¢ such that:

For alli € [t], ¢; is satisfiable if and only if ¢ is satisfiable.

There is some i € [t] such that ¢; is balanced (with respect to P ).

N

t=((s+1)(qg—1) V5, and we can construct each formula in time poly(N Mt).

3.3 Reduction to Remotest String

Having in mind that for our reduction we can assume the SAT formula to be regular and
balanced, the following lemma constitutes the core of our reduction:

» Lemma 20 (Reduction from Regular Balanced SAT to Remotest String). Suppose there is an
algorithm for the continuous Remotest String problem, running in time O(|S|1=99 poly(n)),
for some € > 0. Then there is an algorithm that decides whether a given s-partitioned
r-regular (¢, k)-SAT formula is satisfiable, and runs in time O(q=ONTOGH) poly(M)).

Proof. We start with some notation: For a clause C, we write P(C) C P to address all
groups containing a literal from C. We start with the construction of the Remotest String
instance with alphabet ¥ = [¢] and dimension d = N. Here, we make use of the natural
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correspondence between strings o € £ and assignments « € [¢]". In the instance, we add
the following strings: For each clause C, add all assignments o € [q]" to the instance which
satisfy the following two constraints:
1. The assignment « falsifies the clause C.
2. For each group P € P\ P(C), the subsequence «[P] contains only one symbol.

(That is, a[P] = a® for some a € [q].)
We prove that this instance is complete and sound.

> Clai]{,n 21 (Completeness). If ¢ is satisfiable, then there is some a* € [¢]? with d(a*, X) >

(g 1)(q rs)

Proof. Since we assume that the formula ¢ is satisfiable and balanced, there is a satisfying
and balanced assignment o*. To prove that d(a*, X) > W, we prove that for each
string o added to the Remotest String instance, we have HD(a*, o) > %j\]_”) . Let C be
the clause associated to «. From the two conditions on «, we get the following two bounds.

By the first condition, « is a falsifying assignment of C. In particular, the subsequence
aUpep(cy P) falsifies C' (which is guaranteed to contain all variables visible to C') falsifies C.
Since a* is a satisfying assignment to the whole formula, and in particular to C', we must
have that o*[Upcpc) Pl # lUpep(c) Pl and thus 3 pep(o) HD(a* [P, a[P]) > 1.

By the second condition, for any group P € P\ P(C), the subsequence a[P] contains
only one symbol. Since a* is balanced, a*[P] contains that symbol exactly in a 1/¢-
fraction of the positions and differs in the remaining ones from «[P]. It follows that
HD(a*[P),a[P]) = s — & = (=1,

Combining both bounds, we have that

ZHDaa ZHDaa )]

PeP(C) PeP\P C)

21+<N7,) (g=1)s _ (g —1(N —rs) 41,
S q q

and the claim follows. <

> Clai\r['n 22 (Soundness). If ¢ is not satisfiable, then for all a* € [¢]? we have d(a*, X) <
(=)W =rs)

Proof. Take any a* € [¢]?. Since ¢ is not satisfiable, a* is a falsifying assignment of ¢ and
thus there is some clause C' that is falsified by a*. Our strategy is to find some string o € [q]?
in the constructed instance with HD(a*, ) < W.

We define that string « group-wise: In the groups P(C) touching C, we define a to
be exactly as o, that is, a[Upepc)] = " [Upep C)] For each group P € P\ P(C) not
touching C', let a € [g] be an arbitrary symbol occurring at least 2 times in o*[P] and assign
a[P] := a®. By this construction we immediately have HD(a[P],a*[P]) < s— 2 = =l ql) )
and in total

a) = Z HD(a*, o[ P Z HD(a*, a[P])

PeP(C) Pe’P\P C)

<0+(JSV_T) (=15 _ (¢— (N —rs)

q q

b

as claimed. 4
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In combination, Claims 21 and 22 show that the constructed instance of the Remotest
String problem is indeed equivalent to the given (g, k)-SAT instance ¢ in the sense that ¢ is

satisfiable if and only if there is a remote string with distance more than W.

It remains to analyze the running time. Let n denote the number of strings in the
constructed instance. As a first step, we prove that n < qO(SH% - M and that we can
construct the instance in time poly(n). Indeed, focus on any clause C. The strings « in
the instance are unconstrained in all groups touching C' (up to the condition that o must
falsify C') which accounts for r - s positions and thus ¢"* = ¢°®) options. For each group
not touching C we can choose between g possible values, and therefore the total number of

options is q%” < q%. Therefore, the total number of strings is indeed n < M - ¢©®) . q%.

Moreover, it is easy to see that the instance can be constructed in time poly(n).

As the time to construct the instance is negligible, the total running time is dominated by
solving the Remotest String instance. Assuming an algorithm in time O(|X|(1=4 poly(n)),
this takes time O(q(1=9N+TOEH+E) poly(M)) as claimed. <

3.4 Putting the Pieces Together
We are finally ready to prove Theorems 1 and 2.

» Theorem 2 (Continuous Remotest String is SETH-Hard). The continuous Remotest String
problem cannot be solved in time O(|Z|=9 poly(n)), for any € > 0 and |Z| = o(d), unless
SETH fails.

Proof. Suppose that the continuous Remotest String problem is in time O(|%|*=94 poly(n))

for some € > 0 and for |X| = o(d). With this in mind, we design a better-than-brute-force

(g, k)-SAT algorithm for ¢ = |¥| by combining the previous three Lemmas 17, 19, and 20.

Let ¢ be the input formula, and let P denote a partition of the variables into groups of size s

(which is yet to be determined) as before.

1. Using Lemma 17, construct a regular (g,2k)-formula ¢’ which is equivalent to ¢.

2. Using Lemma 19, construct regular (g, 2k)-formulas ¢, ..., ¢} all of which are equivalent
to ¢. At least one of these formulas is balanced.

3. By means of the reduction in Lemma 20, solve all ¢ formulas ¢}, ..., ¢;. If a formula is
reported to be satisfiable, check whether the answer is truthful (e.g., using the standard
decision-to-reporting reduction) and if so report that the formula is satisfiable. We need
the additional test since, strictly speaking, we have not verified in Lemma 20 that the
algorithm is correct for non-balanced inputs.

The correctness is obvious. Let us analyze the running time. Constructing the formula ¢’

takes polynomial time and can be neglected. By Lemma 17, ¢’ has N’ = N + O(s) variables

and M’ = M + O(spoly(q)) clauses. The construction of the formulas ¢, ..., ¢; also runs in
polynomial time poly(N'M't) and can be neglected; this time we do not increase the number
of variables and clauses. Moreover, Lemma 19 guarantees that

t=((s+1)(q— 1))(q—1)f% < (Sq)o@)’

By picking s = ¢q (for some parameter ¢ to be determined), this becomes
t< (ch)O(%) _ qO(%logq(cqz)) _ qN~O(l°%).

Finally, by Lemma 20 solving each formula ¢ takes time

q(lie)N/JrO(SJFNT) pOly(M/) _ q(l*é)N‘i’O(S“r%) poly(M) = q(lfe)NJro(cN)JrO(%) poly (M),
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(using that s = cg = o(cN)), and thus the total running time is bounded by

qN~O(1°%) _q(l—e)N+o(cN)+O(¥) poly (M) = q(1—6+o(c)+o(lo§c))N poly(M).

Note that by picking ¢ to be a sufficiently large constant (depending on €), the exponent
becomes (1 — §)N, say. We have therefore obtained an algorithm for the (g, k)-SAT problem
in time O(q*=¢/?N poly(M)), which contradicts SETH by Lemma 15. <

4 Discrete Closest String via Inclusion-Exclusion

In this section, we present an algorithm for the discrete Closest String problem with subquad-
ratic running time whenever the dimension is small, i.e. d = o(logn). Our algorithm relies
on the inclusion-exclusion principle, and is, to the best of our knowledge, the first application
of this technique to the Closest and Remotest String problems. Specifically, we obtain the
following result:

» Theorem 4 (Discrete Closest String for Small Dimensions). The discrete Closest String
problem can be solved in time O(n - 2%).

We structure this section as follows: First, we present a high-level overview of the main
ideas behind the algorithm; for the sake of presentation, we focus only on the Closest String
problem. We start developing a combinatorial toolkit to tackle the Closest String problem
(with all proofs deferred to the full version of this paper). Then, in Section 4.1 we provide
the actual algorithm and prove Theorem 4.

Before we describe our algorithm, we provide some intuition about the general connection
between the inclusion-exclusion principle and the Hamming distance between a pair of strings.
Our key insight is that the inclusion-exclusion principle allows us to express whether two
strings have Hamming distance bounded by, say k. The following lemma makes this idea
precise:

» Lemma 23 (Hamming Distance by Inclusion-Exclusion). Let x and y be two strings of length
d over some alphabet 32, and let 0 < k < d. Then:

D) <0 = 3 e () =y,
1k

Recall that we write z[I] = y[I] to express that the strings x and y are equally restricted
to the indices in I. The precise inclusion-exclusion-type formula does not matter too much
here, but we provide some intuition for Lemma 23 by considering the special cases where
HD(z,y) = k and HD(z,y) = k — 1. If HD(x,y) = k, then there is a unique set I of size
d — k for which z[I] = y[I]. If instead HD(x,y) = k — 1, then there is a unique such set
of size d — k + 1, and additionally there are d — k + 1 such sets of size d — k. The scalars
(—1)HI=dtk( d‘f ‘,;_11) are chosen in such a way that in any case, all these contributions sum
up to exactly 1.

The takeaway from the above lemma is that we can express the proposition that two strings
satisfy HD(z,y) < k by a linear combination of 2¢ indicators of the form 1(x[I] = y[I]). It is
easy to extend this idea further to the following lemma, which is the core of our combinatorial
approach:
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» Lemma 24 (Radius by Inclusion-Exclusion). Let x be a string of length d over some alphabet
Y, let X be a set of strings each of length d over ¥, and let 0 < k < d. Then r(z,X) <k if
and only if

xi= 3 o (0 ) e = vt

ICld]
\I|>d—k
Given this lemma, our algorithm for the Closest String problem is easy to state. Informally,
we proceed in the following two steps:

Step 1: Partition. Precompute, for all z € X and for all I C [d], the value [{y € X : z[I] =
y[I]}|. This can be implemented in time O(n - 2¢ - poly(d)) by partitioning the input strings
X depending on their characters in the range I. After computing this partition, we can read
the value {y € X : z[I] = y[I]}| as the number of strings in the same part as x.

Step 2: Inclusion-Exclusion. We test for each 0 < k < d and = € X, whether r(z, X) <k
and finally return the best answer. By Lemma 24 we can equivalently express the event
r(z, X) <k via

X[ = ) (-plimdtE. (d|f|k_11> Ny € X -2l = y[I]}.
Fian

By observing that the sum contains only 2¢ terms and noting that we have precomputed the

values |{y € X : 2[I] = y[I]}|, we can evaluate the sum, for a fixed z, in time O(2? - poly(d)).

In total, across all strings x € X, the running time becomes O(n - 2¢ - poly(d)).

Finally, let us briefly comment on the poly(d) term in the running time. When evaluating
the above sum naively, we naturally incur a running time overhead of poly(d) since the
numbers in the sum need (d + logn) bits to be represented. However, this overhead can
be circumvented by evaluating the expression in a smarter way. We provide more details in
Section 4.1.

4.1 The Algorithm in Detail

In this subsection, we provide our algorithms for the discrete Closest String problem. Let us
first demonstrate how to precompute [{y € X : z[I] = y[I]}| for all strings = € X efficiently.

» Lemma 25. We can compute |{y € X : z[I] = y[I]}| for all strings x € X in time O(n-2%).

Proof. Our strategy is to compute, for each I C [d], a partition Py of the set of all strings X
such that two strings y1,y2 € X are in the same part in Py if and only if y;[I] = yo[I]. This
is our goal since, for all strings x € X, the value we are interested in [{y € X : z[I] = y[I]}|
is exactly the size of the part P in P; that contains x. Thus, if we can efficiently compute,
for all I C [d] and all z € X, the partition P; and the part P € P such that € P then we
have the desired algorithm.

Computing the partition P; for each subset of I C [d] when |I| < 1 is simple: The
partition Pp contains just one part which is the entire input set. We also know that
Py ={{reX zfil =0} :0€X} for every 0 <i<d—1. Thus, we can compute the
partitions Py and Py;y for every 0 <i < d — 1 in time O(n - d). The remaining question is
how to efficiently compute the partitions P; for each subset of I C [d] where |I| > 2.
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The idea is to use dynamic programming in combination with a partition refinement data
structure. Let us start with some notation: For a partition P and a set S, we define the
refinement of P by S as the partition {P NS, P\ S: P € P}. For two partitions P and
P’, we define the refinement of P by P’ by the iterative refinement of all sets S € P’. In
previous work, Habib, Paul, and Viennot [16] have established a data structure to maintain
partitions P of some universe [n] that efficiently supports the following two operations:

Refinement: We can refine a partition P by another partition P’ in time O(n).

Query: Given a partition P and an element 4 € [d], we can find the part i € P € P in

time O(1).

Given this data structure, our algorithm is simple: Enumerate all sets I in nondecreasing
order with respect to their sizes |I|. Writing I = I’ U {i} (for some i € [d]), we compute P
as the refinement of the previously computed partitions P and Pyyy. It is straightforward
to verify that this algorithm is correct. The running time of each refinement step is O(n)
and so the total running time is O(n - 2¢) as claimed. <

We are finally ready to state our algorithm and prove its correctness using Lemmas 24
and 25.

Proof of Theorem 4. First, it is clear that if we test for each 0 < k < d and x € X whether
r(xz,X) < k then we can find the solution to the discrete Closest String problem. From
Lemma 24 we know that r(z, X) < k if and only if:

xi= 3 e () e x et =y
1Cld]
[T|>d—k
Thus, if we efficiently compute [{y € X : z[I] = y[I]}| for all strings z € X and efficiently
compute the right-hand side of the equation we will have an efficient algorithm for the
discrete Closest String problem. We know from Lemma 25 that we can precompute |{y €
X : z[I] = y[I]}] for all strings x € X in time O(n - 2¢). Therefore, the only missing part of
the algorithm is computing the inclusion-exclusion step in O(n - 2%) time.

If we naively evaluate the inclusion-exclusion formula the running time becomes Q(n-2%-d)
as the intermediate values need Q(d) bits to be represented in memory. However, we observe
that inclusion-exclusion formula can indeed be evaluated more efficiently by rewriting it as
follows:

> o () gy e xatn =y

1C(d)
[1|>d—k

d
=5 (L) S x el =y
=d—k

¢ Ic(d)
|I|=¢

We can precompute Sz, ] := 3 (g 11=e{y € X : z[I] = y[I]}| for all strings 2 € X and all
values 1 < ¢ < d before we compute the inclusion exclusion step. Since there are 2¢ different
subsets of [d] and since we already have access to the values [{y € X : z[I] = y[I]}|, for all
strings = € X, computing S|z, ¢] amounts to time O(n - 2). Afterwards, computing

Zd: (—1)" - (dfki 1) - Sl 4]

{=d—k

for all strings € X and for all 0 < k < d — 1 only takes time O(n - d®). Hence, the total
running time of the algorithm is O(n - 2%). <
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Algorithm 1 An algorithm for the discrete Closest String problem in the small-distance regime.

See Theorem 4.

%

10:
11:
12:
13:
14:
15:

(Step 1: Precompute Tz, I] = [{y € X : z[I] = y[I]}|)

Py X
Py {{zeX:afij=0):0eX} Viel0,...,d—1]
for I =1I'U{i} do

Pr < refinement of Pr, Py

for x € X,1 C [d] do

T[x,I] + |P|wherex € P € P

(Step 2: Inclusion-Ezclusion)

for x € X,I C [d] do

S|z, |I|] « Sl |I]] + Tz, I]

for k< 0,...,d—1do

for z € X do
. ) _
if [ X[ =30, (-1 (,531,) - Slz. 4] then
return x

return an arbitrary z € X

We summarize the pseudocode of the algorithm outlined in the proof of Theorem 4 in

Algorithm 1.
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—— Abstract

The Voronoi diagrams technique, introduced by Cabello [SODA’17] to compute the diameter of
planar graphs in subquadratic time, has revolutionized the field of distance computations in planar
graphs. We present novel applications of this technique in static, fault-tolerant, and partially-dynamic
undirected unweighted planar graphs, as well as some new limitations.
In the static case, we give n3+"(1>/D2 and O(n . D2) time algorithms for computing the diameter
of a planar graph G with diameter D. These are faster than the state of the art O(n5/3)
[SODA’18] when D < n'/3 or D > n?/3.

In the fault-tolerant setting, we give an n”/3+°

U time algorithm for computing the diameter of
G \ {e} for every edge e in G (the replacement diameter problem). This should be compared
with the naive O(n®/3) time algorithm that runs the static algorithm for every edge.

In the incremental setting, where we wish to maintain the diameter while adding edges, we

present an algorithm with total running time n7/3+°(®)

. This should be compared with the naive
O(ns/ 3) time algorithm that runs the static algorithm after every update.

We give a lower bound (conditioned on the SETH) ruling out an amortized O(n'~¢) update
time for maintaining the diameter in weighted planar graph. The lower bound holds even for

incremental or decremental updates.

Our upper bounds are obtained by novel uses and manipulations of Voronoi diagrams. These
include maintaining the Voronoi diagram when edges of the graph are deleted, allowing the sites of
the Voronoi diagram to lie on a BFS tree level (rather than on boundaries of r-division), and a new
reduction from incremental diameter to incremental distance oracles that could be of interest beyond
planar graphs. Our lower bound is the first lower bound for a dynamic planar graph problem that is
conditioned on the SETH.
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1 Introduction

The DIAMETER problem asks to compute the largest distance in the graph. It is one of
the most basic and extensively studied problems in the graph algorithms literature, and
moreover, it is prominent in Fine-grained Complexity where it has driven the development
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of innovative hardness reductions [1,4,5,9,11,17,29,36,67]. Assuming the strong exponential
time hypothesis (SETH), there is also no truly subquadratic algorithm for DIAMETER |5, 67]
in undirected, unweighted graphs with treewidth Q(logn). For graphs of bounded treewidth,
the diameter can be computed in near-linear time [5] (see also [41,50] for algorithms with
time bounds that depend on D). Near-linear time algorithms were developed for many other
restricted graph families, see e.g. [8,14,31-34,40,43,49,66).

One of the outstanding questions that has remained open despite a decade of major
developments in algorithms and conditional lower bounds for graph problems is whether
DIAMETER can be solved in near-linear time in planar graphs. Until 2017, only logarithmic
improvements over the natural O(n?) bound (of computing all-pairs shortest-path, APSP)
had been known [23,72]. The consensus was that truly subquadratic time is impossible and
the focus of the community was on proving a hardness result, e.g. under SETH. But then, in
a celebrated paper, Cabello [22] gave a subquadratic O(n''/6) time algorithm, that was later
improved to the current-best O(n®/3) bound [45].

The breakthrough in Cabello’s work [22] is his novel use of Voronoi Diagrams (VDs)
in planar graph algorithms. This new machinery has revolutionized the field of distance
computation problems in planar graphs and has lead to several breakthroughs [26,28,35,47,63]
including a surprising and almost-optimal distance oracle - a problem that had hitherto seen
many gradual improvements using different techniques both in the exact [10,21,26,30,35,39,
42,47,56,63-65, 73] and the approximate [24,48, 54,55, 58,69, 74] settings. Consequently, the
main meta question occupying the minds of researchers in planar graph algorithms is: what
else can Voronoi diagrams do for us?

1.1 Dynamic Planar Diameter

It is natural to expect VDs to produce breakthroughs in the domain of dynamic planar graphs.
Dynamic data structures that support updates and queries to a graph have remarkable
applications in theory (as a subroutine in static algorithms) and practice (for changing
inputs). Many ingenious algorithms for basic problems in dynamic planar graphs have been
developed in the last few decades, including connectivity, distances, and cuts [6,18,19, 25,
28,37,42,51-53,55,56,59, 62,68,69], but large (polynomial) gaps remain compared to the
lower bounds [3]. Only few of these works [27,28] use VDs and only in a limited way (they
recompute the VD from scratch after every update). It is clear that major advancements
await if one is able to maintain the VD machinery dynamically in a meaningful way. In this
paper, we investigate this possibility by focusing on the DIAMETER problem.

The state-of-the-art algorithm recomputes the diameter from scratch after every update
in time O(n5/ 3). This is not surprising since the only useful technique against DIAMETER (in
static graphs) is based on VDs, and we do not know how to make VDs dynamic.

The first question that comes to mind is: Suppose, optimistically, we could make VDs
as dynamic as possible; what time bound would we hope to get? Clearly, we cannot get
O(n?/3-¢) time per update until we break the O(n°/3) bound for static graphs. Moreover, a
2/3=0(1) Jower bound (under the APSP or Online Matrix Vector Conjectures)
follows from the reductions of Abboud and Dahlgaard [3]. So perhaps dynamic VDs would

conditional n

lead to a matching O(n?/3) upper bound? Our first result rules out this possibility with an
n'=°M lower bound under SETH.

» Theorem 1 (Lower Bound on Dynamic Diameter). If the diameter of a dynamic undirected
planar graph on n nodes can be maintained with O(n'=%) amortized time per weight-change,
then SETH 1is false. This holds even if the dynamic algorithm is allowed to preprocess the
initial graph in poly(n) time, and even in the partially-dynamic setting where weights only
increase or only decrease.
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Notably, this is the first lower bound for a dynamic planar graph problem that is based
on the SETH (as opposed to other conjectures) and only the second example of such a result
if we consider static planar graph problems as well [2,46].

Towards Dynamic Voronoi Diagrams. A large gap of n?/3
and it is likely that it can be closed if we can indeed make VDs dynamic.

In this paper, we take a small (but arguably the first) step towards this goal: we give
an efficient algorithm for updating the VD after the deletion of one edge in the graph,
much faster than recomputing it from scratch. (We refer to Section 5 for an overview and
all the details.) This small step already has interesting applications. While it applies for
general (weighted) planar graphs, the applications we have found only gain an advantage in
unweighted planar graphs.

A concrete application is a faster algorithm for the REPLACEMENT DIAMETER: given a
graph G return the diameter of G \ {e}, the graph obtained by removing the edge e, for
all edges e. The trivial algorithm for this problem makes O(n) calls to a static diameter
algorithm, one for each edge, and achieves O~(n8/ 3) running time. We improve this upper
bound by an n'/3 factor to n”/3+°() by utilizing our efficient updates to VDs, along with
other tricks that are also based on VDs (but not in a dynamic way).

remains despite our lower bound
1

» Theorem 2 (Replacement Diameter). Given an unweighted undirected planar graph G =
(V, E), there is an n7/3+t°MW) time algorithm that for every edge e € E outputs the diameter

of G¢ = (V,E\ {e}).

An additional new result is a faster algorithm for DIAMETER in the incremental setting
where we start from an empty graph and need to maintain the diameter while O(n) edges
are being added (without violating the planarity). The trivial algorithm recomputes the
diameter after every update in a total of O(ng/S) time, and we improve it to n7/3te().

» Theorem 3 (Incremental Diameter). There is an algorithm that maintains the diameter
of an unweighted undirected planar graph undergoing edge insertions in a total of n7/3+to()
time.

This result is based on an elegant reduction from incremental DIAMETER to incremental
distance oracles that could be of interest beyond planar graphs. Its analysis relies on recent
works on the bipartite independent set queries introduced by Beame et al. [13].

1.2 Static Planar Diameter

Back to DIAMETER in static graphs, what else can we hope to get from VDs? Of course, the
biggest open question is whether the 75/3 bound can be improved to n'+°() or whether one
can prove a super-linear lower bound. Toward this question, we would like to understand the
hard/easy cases, and a natural parameter to consider is D — the diameter itself.

One of the main algorithmic contributions of this paper, that is crucial to the afore-
mentioned upper bounds, is an algorithm beating n°/% when D is large (in the range
[n2/3+2 n]). Notably, it implies that anyone seeking a tight conditional lower bound cannot
use constructions with very large diameter.

It is tempting to think that Theorem 6 implies a dynamic diameter algorithm with update time O(nl'ﬁ);
Use an r-division and maintain for each piece the DDG and bisectors. Upon an update of an edge in a
piece P, recompute the DDG of P (using MSSP) and the bisectors of P (using Theorem 6). For each
vertex in the graph, recompute all additive weights using FR-Dijkstra, and compute the furthest vertex
in each piece using Theorem 6. The caveat is that this approach does not handle properly the case
where both endpoints of the diameter path belong to the same piece (not necessarily P). The reason is
that the VD mechanism only handles paths that visit at least one boundary node.

4:3
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» Theorem 4 (Static Large Diameter). The diameter can be computed in n>t°1) /D? time
on an unweighted undirected planar graph with diameter D.

Our new algorithm applies VDs in a novel way, where the VD sites lie on a BFS tree
level, as opposed to lying on the boundary of pieces in an r-divisions.

While our result is the first to address the large D case, the other extreme of small D has
already been studied. Eppstein [41] gave the first near-linear time algorithm for constant D,
with an exponential dependence on D. This dependency was later improved as a byproduct
of new (1 + €)-approximation algorithms for DIAMETER [15,24,41,70]. The state of the art is
O(n - DP) using the (14 ¢)-approximation O(n - (1/¢)®)-time algorithm of Chan and Skrepetos
[24] with e = 1/D. The final result of this paper is an improved bound of O(n.D?) which
increases the range in which the n®/3 bound can be beaten from D < n?/15=¢ to D < n!/3—¢,

» Theorem 5 (Static Small Diameter). The diameter can be computed in O(n - D?) time on
an unweighted undirected planar graph with diameter D.

Our algorithm exploits VDs in a more natural way than that of Chan and Skrepetos [24],
if our goal is solve the small D case exactly (recall that their focus is on approximations). It
remains an interesting open question whether the O(n - (1/¢)®) time approximation algorithm
can be improved. This is related to another challenge of computing approzimate VDs faster
than exact, which we do not address in this paper.

2 Preliminaries

A recursive decomposition tree 7 of a planar graph G is the tree obtained (in linear time)
by recursively separating G with a separator of size \/@ . T is a binary tree whose nodes
correspond to subgraphs of G (called pieces), with the root being all of G and the leaves
being pieces of constant size. We identify each piece P with the node representing it in T
(we can thus abuse notation and write P € T), and with its boundary 0P (i.e. vertices that
belong to some separator along the recursive decomposition used to obtain P). An important
property for us (see e.g. [47, Lemma 3.1]) is that the sum of |P| - |0P’'| over all pairs of
siblings P, P’ in T is O(n'?).

An r-division [44] of a planar graph G is a decomposition of G into ©(n/r) pieces, each
of them with O(r) vertices and O(+/r) boundary vertices (vertices shared with other pieces).
It is possible to compute an r-division in O(n) time [57] with the useful property that the
boundary vertices of each piece lie on a constant number of faces of the piece (called holes).

The dense distance graph (DDG) of a piece P is the complete graph over the boundary
vertices of P. The length of edge uv in the DDG of P equals to the u-to-v distance inside P.
Note that the DDG of P is non-planar. The DDG of an r-division is the union of DDGs of
all pieces of the r-division. Thus, the total number of vertices in the DDG is O(n/+/r), and
the total number of edges is O(n). The DDG of an r-division can be computed in O(n) time
using the MSSP algorithm [56]. Fakcharoenphol and Rao [42] described an O(n/\/r) time
implementation of Dijkstra’s algorithm (nicknamed FR-Dijkstra) on the DDG.

The difficult case for computing the diameter is when the furthest pair of vertices lie in
different pieces. Consider some source vertex s outside of some piece P. For every boundary
vertex u of P, let d(u) denote the s-to-u distance in G. The additively weighted Voronoi
diagram of P with respect to d(-) is a partition of the vertices of P into pairwise disjoint
sets (Voronoi cells), each associated with a unique boundary vertex (site) u. The vertices
in the cell Vor(u) are all the vertices v of P such that u is the last boundary vertex of P
on the shortest s-to-v path. In other words, every site u of P has additive weight d(u), the
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additive distance from a site u to a vertex v of P is defined as d(u) plus the length of the
shortest u-to-v path inside P, and the cell Vor(u) contains all vertices v of P that are closer
(w.r.t. additive distances) to u than to any other site in S. The boundary OVor(u) of a cell
Vor(u) consists of all edges of P that have exactly one endpoint in Vor(u). For example, in a
Voronoi diagram of just two sites u and v, the boundary of the cell Vor(u) is a uv-cut and
is therefore a cycle in the dual graph. This cycle is called the wv-bisector. The complexity
|0Vor(u)| of a Voronoi cell Vor(u) is the number of faces of P that contain vertices of Vor(u)
and of at least two more Voronoi cells. For every source s, computing the furthest vertex
from s in P thus boils down to computing, for each site u, the furthest vertex (w.r.t. additive
distance) from u in Vor(u), and then returning the maximum value among all sites u.

» Theorem 6 ([45]). Let P be an edge-weighted planar graph with r vertices. Let S be a set
of b sites that lie on the boundaries of O(1) faces® of P. The uv-bisectors of all pairs u,v € S
and all possible additive weights d(u),d(v) can be computed and represented in O(rb®) time
and space. Then, given any additive weights d(-) to S, a representation of the Voronoi
diagram w.r.t these weights can be constructed in O(|S|) time. With this representation,
for any site u € S we can query the mazimum distance from u to a vertex in Vor(u) in

O(|dVor(u)|) time.

3 Static Diameter

3.1 An n3t°(®)/D? Algorithm

In this subsection we prove Theorem 4, stating that the diameter can be computed in
n3t°(M) /D? time on an unweighted undirected planar graph with diameter D. We first
present a randomized O(n*/D?) time algorithm, and then show how to improve it to
n3t°(M) /D2 We then show how to derandomize both algorithms. We begin with two simple
observations about the BFS levels when the diameter is > D.

» Observation 7. Let s be any node in a graph of diameter > D. Then at least one out of
the D /2 middle levels of the BF'S tree rooted at s has size O(n/D).

» Observation 8. Let s be any node in G and let L; be the set of nodes at level i in the
BF'S tree rooted at s. Let G; be the subgraph of G that is induced by szi L;. Then for each
connected component C of G; the nodes in L; N C lie on a single face.

Proof. To see that the vertices of L; NC' all lie on the same face in G;, consider the embedding
of the component C' of G; inherited from the embedding of G. Viewing C' as a graph obtained
from G by deleting edges and vertices, one can start from any vertex of L; and follow a curve
in the plane that only goes through deleted edges and vertices until reaching the root s of
the BF'S tree. Hence all vertices of L; lie on a single face of C', and hence also of G;. <

A randomized algorithm. We first compute in O(n) time a 2-approximation (lower bound)
D of D by computing a BFS tree and choosing D to be the furthest root-to-leaf distance.
Then, we repeat the following procedure 6(nlogn/D) times, and return the largest distance
found:

2 Theorem 1.1 in [45] is phrased for a constant number of faced (called holes). However, as pointed in
footnote 8 in [45], the dependency of the running time on the number of holes is polynomial, so the
theorem applies also to the case of a polylogarithmic number of holes.
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1. Randomly sample a source s, compute its BFS tree. Let D’ be the depth of this tree.
Note that D > D’ > D/2. Let S = L; be the set of nodes at level ¢ satisfying both
D'/4 < i< 3D'/4 and |S| = O(n/D’") = O(n/D). By Observation 7, such a set exists.
Let G; be the subgraph of G induced by szl. L;.

2. Compute d(v,b) for all v € G and all b € S.

3. For each connected component C of G;:

a. Compute all bisectors in C of sites C'N S (that lie on a single face by Observation 8).
b. For each node v in G\ G;, compute the VD of C w.r.t the additive weights d(v,b),
and compute the distance from v to its furthest vertex in every Voronoi cell of the VD.

Running time. The first step takes O(n) time by computing and traversing the BFS tree of
s. The second step takes O(n?/D) time by doing a BFS from each vertex of S in O(n) time.
The most expensive step is 3a. By Theorem 6, all bisectors of a connected component C
can be computed in O(|C| - |C' N S|?) time. Over all connected components, this sums up to
O(n - (n/D)?) (since the C’s are disjoint and sum up to n, and the C' N S are disjoint and
sum up to O(n/D)). Finally, in step 3b, for each vertex v, computing v’s VD and furthest
vertex in every cell takes O(|C' N S|) time by Theorem 6. Over all connected components,
this sums up to O(n/D), and thus over all vertices v to O(n?/D). The total running time of
the entire procedure is thus O(n - (n/D)?), and since we repeat the procedure O(n/D) times
we get O(n*/D?).

Correctness. It remains to prove that the distance we return is indeed the diameter with
high probability. Let z,y be the two endpoints of the diameter (i.e. D = d(z,y)). Then, the
probability that a random source s satisfies d(s,x) < D’/4 and d(s,y) > 3D’/4 is at least
D’ /4n (because this happens if s is one of the first D’/4 nodes on the path from z to y).
Therefore, this happens with high probability for at least one of the sources s that we choose.
For this s, we will have that x € G\ G; while y € G; (it is impossible that y € G\ G; because
then an a-to-y path through s would be shorter than D), and then the largest distance that
we find is guaranteed to be d(z,y).

Derandomization. Observe that to derandomize the algorithm, it suffices to replace the
sampling of sources with a (deterministic) selection of a set of sources S of size O(n/D) such
that a diameter endpoint z is at distance < D’/4 from at least one source s € S.

To construct S, pick an arbitrary source s and compute it’s BFS tree T of depth D’ < D.
Find a level L; that has only O(n/D’) = O(n/D) nodes and 0.4D’ <4 < 0.5D’. Similarly,
find a level L; that has only O(n/D) nodes and 0.8D’ < j < 0.9D’. The set of sources is
then S = {s} UL; UL,. It is easy to verify that every vertex v in the graph has an ancestor
or a descendant in 7' that belongs to S and is at distance at most D’/4 < D/4 from v.

A faster algorithm. Next, we improve the running time to n3*°(1) /D2, Again, we will start
with a randomized algorithm and then derandomize. Let B,(v) denote the ball with radius
p around vertex v. Recall that our goal is to sample w.h.p. a vertex s in Bp /4(35) (without
knowing z), where z is a diameter endpoint.

Let p= D/4. In order to sample a vertex s in B,(z) w.h.p., it suffices to randomly sample
a set of O(n/|B,(r)|) vertices (rather than sampling O(n/p) vertices as in the approach
above). Then, for each sampled vertex s, we can find a level L; in the BFS tree of s with
p <1< 2pst. |Li| < |Bay(s)|/p (rather than n/p as in the approach above). Then, executing
the approach above (i.e., executing steps 2-3 of the O(n*/D?) algorithm above) for a specific
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s would take time O(n(|Ba,(s)|/p)?) to compute all bisectors, O(n|Ba,(s)|/p) to compute
all additive weights, and O(|Ba,(s)|?/p) to construct the Voronoi diagrams for all vertices
above level i. We see that if |B,(x)| is large then we gain because we have to sample fewer
vertices, and if |Ba,(s)| is small then we gain because the amount of work for each sampled
vertex decreases.

For this approach to work, we need to (1) estimate |B,(z)|, and (2) relate |B,(x)| and
|B2,(s)|. To address (1), we simply estimate |B,(x)| by enumerating all powers of two 2%
for 0 < k <logn. To address (2), note that |B,(x)| < |Ba,(s)| < |Bs,(z)|, and that there
must exist a j € {1,2,...,/loggn} s.t. |Bz,z-i(2)|/|B,s-s ()| < 3V!8" = noM) (if not,
|B,(z)| > n, a contradiction).

The algorithm is therefore: For each 1 < j < y/logsn, let p; = 377p. For each

0 < k <logn we sample (nlogn)/2" vertices s (reflecting our assumption that B, (z) < 2).

For each sampled vertex s, if | Ba,, ()] > 2¥3V 18s™ then, since | B, ()| < |Ba,(s)| < |Bs,(z)],
it must be that s ¢ B, (z) or | B,, ()| > 2* or |B,,_, ()|/|B,, (z)| > 3V'*8™ (the disjunction
is not exclusive). Hence, in this case we discard s and move on to the next sampled vertex.
Otherwise, |Ba, (s)] < 2¥3V!°8" 'and we can find a level L; with p; < i < 2p; in the BFS

tree rooted at s s.t. |L;| < 2F3V1°8s" /p. and continue as in steps 2-3 from the previous
algorithm. The overall running time is

logzn logn

Z 0 (2% (n(2k3\/log3n/pj)2 + n2k3\/log3n/pj + (2k3\/10g3n)2/pj)) — n3+°(1)/D2.

To argue correctness, note that for j such that |B,, , (z)|/|B,, ()| < 3V logs" and k such
that 2"~! < |B,, (z)| < 2¥, sampling (nlogn)/2* vertices will yield with high probability
a vertex s € B, (z), and this s will not be discarded. This s satisfies d(s,z) < p; and
d(s,y) > 2p;, so the largest distance found for this s is guaranteed to be d(x,y) by the same
argument as in the correctness of the slower algorithm.

Derandomization. We use sparse neighborhood covers of Busch, Lafortune and Tirthapura
[20] to derandomize the algorithm. A p-neighborhood cover Z of a graph G is a set of
connected subgraphs called clusters, such that the union of all clusters is the vertex set of G
and such that for each node v € G, there is some cluster C' € Z that contains B,(v). The
radius of a cover Z is the maximum radius of a cluster in Z. The degree of a cover Z is the
maximum number of clusters that a node in G is a part of. Busch et al. gave a deterministic
O(nlogn)-time algorithm for computing, for any p > 0 and any connected planar graph, a
p-neighborhood cover of any connected planar graph with radius 16p and degree 18. See
also [60] for an O(n) time algorithm.

To adjust the arguments we redefine p; = p3377 for j = 1,..., \/logss(n), and use the

fact that for some j, |B,, ,|/|B,,| < 33V 855" To avoid sampling in our algorithm, for
each choice of j, k, we compute a p;-neighborhood cover Z. We pick an arbitrary vertex s
from each cluster C' of Z such that |C| > 2*. Since the degree of Z is 18, the number vertices
s we choose is at most 18n/2F.

If 28 < |B,,(z)| > 2¥*1 then the cluster C containing B,, (x) will have |C| > 2* vertices,
and we will choose a vertex s € C. Since the radius of Z is 16p;, d(s,z) < 16p;. If
|B17,, (s)| > 2k+133V10833 " e discard s. Since Bi7,,(s) is contained in B3, (z) = B, (a);
we are guaranteed that some s will not be discarded. For such s we find a level L; with
16p; < i < 17p; in the BFS tree rooted at s s.t. |L;| < 2FF133V1°833™ /5. The level of z in
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the BFS tree is at most 16p;, and since p; < p < D/4, the vertex y such that d(z,y) = D is
at level greater than i in the BFS tree. Hence, executing lines 2—3 of the procedure for the
algorithm in section 5 will report the distance D. The running time analysis is identical to
that of the randomized version since we made sure that the number of vertices we choose in
the derandomiztion is at most some fixed constant times the number of sampled vertices in
the randomized algorithm.

3.2 An O(n - D?) Algorithm

In this subsection we prove Theorem 5, stating that the diameter can be computed in O(n~D2)
time on an unweighted planar graph with diameter D. We begin with some preliminaries on
a recursive decomposition using shortest path separators.

Preliminaries. A shortest path separator of a planar graph G is an undirected cycle C(G)
consisting of a shortest s-to-u path, a shortest s-to-v path, and a single edge uv, such that
both the interior and exterior of the cycle consist of at most 2/3 of the total number of
the faces of G. Such a separator can be found in O(n) time [61]. By recursively separating
G with shortest path separators (halting the recursion when we reach subgraphs of size
< D), we obtain the decomposition tree T. The root of T corresponds to the entire graph
G. A node corresponding to subgraph P (we interchangeably refer to it as node P) has two
children, whose subgraphs correspond to the interior and exterior of the separator C'(P).

Observe that for every node P € T the size of the shortest path separator C(P) is O(D).
This is because C(P) consists of two shortest paths, each of length at most D. Moreover,
the boundary of P (vertices of P that have incident edges to vertices not in P) is included
in the union of all C'(P’) where P’ is an ancestor of P, and is therefore of size O(D logn)
and lies on O(logn) faces of P. We compute the DDGs of every node (subgraph) P € T
(i.e. copmute a data structure that can report in O(l) time the distances in the graph P
between and pair of boundary vertices of P) using O(logn) executions of MSSP on P. This
takes total O(n) time over the entire 7. Now, given any vertex v in the subgraph P, we
can compute the distances in G from v to all boundary vertices of P in O(D) time using
FR-Dijkstra. Namely, we initialize the O(D) boundary vertices of P to their distances from
v in the graph P (via MSSP queries), and we run FR-Dijkstra on the union of the DDG of
P and the DDGs of all P’ where P’ is a sibling of some ancestor of P.

The algorithm. For every non-leaf node P € T, we compute the furthest pair of vertices
u,v € P where u is internal to C'(P) and v is external to C'(P). Observe that distances must
be taken in the entire graph G since the shortest u-to-v path may venture out of P. To
this end, we precompute all bisectors of every graph P € T, with the sites being the O(D)
boundary vertices of P. Using Theorem 6, this takes O(|P| - D?) time (where |P| denotes
the size of the subgraph P), so over all T this takes O(n - D?) time. (Observe that here we
have used Theorem 6 with the sites lying on O(logn) faces. As far as we know, in all prior
uses of Theorem 6 the sites lie on O(1) faces). Then, for every vertex v € P, we compute
the distances in G from v to all boundary vertices of P using FR-Dijkstra in O(D) time as
explained above. We then use these distances as additive weights and apply Theorem 6 to
find the furthest vertex from v in P. This also takes O(D) time, so overall O(n - D).

We handle the leaf nodes P € T explicitly (recall that |P| < D). For each leaf node P we
compute the all-pairs shortest-paths (APSP) in G between any two vertices u,v € P. This is
done by running Dijkstra’s standard algorithm from every v € P on the graph P where the
boundary vertices of P are initialized to their distances from v in G (that we have already
computed as v’s additive weights). This takes O(D) time per v, so O(D?) time per P, and
O(D?-n/D) = O(nD) over all leaves P.
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4 A Lower Bound on Dynamic Diameter

In this section we prove Theorem 1. Namely, we give a conditional lower bound ruling out
an amortized O(n'~¢) update time for maintaining the diameter of weighted planar graphs
that undergo a sequence of edge-weight updates.

The proof is inspired by [3], however, there are quite a few changes since the reduction
in [3] is from APSP (not SETH), to dynamic distance oracles (not dynamic diameter), and
rules out O(n%>~¢) update time (not O(n'=¢)). Our reduction is from the following problem,
which is simply a recasting of the Orthogonal Vectors problem in the language of graphs.

» Definition 9 (Graph OV). Given an undirected tripartite graph G with parts A, C, B where
|A| = |B| = n and the middle level has size |C| = O(logn), where all edges are in A x C' and
C x B decide if there exists a pair a; € A,b; € B such that dg(ai, bj) > 2.

It is known that solving this Graph OV problem in O(n?~¢) time refutes SETH [67,71].

Moreover, in the unbalanced version where |A| = n® and |B| = n® for arbitrary constants
a, 8 > 0 we know that an O(n*+t#~¢) time algorithm refutes SETH.

The structure of the reduction. Given an instance G of the Graph OV problem, we
construct a dynamic planar graph H. The graph H is composed of two grids, a left grid and
a right grid, each of dimension |C| = O(logn) by |A| = n. The columns of both grids are
indexed by the nodes of A, such that the top node of the i*" column in the left (resp. right)
grid is called a; (resp. aj). The rows of the grids correspond to the nodes in C' such that the

rightmost (resp. leftmost) node in the k* row of the left (resp. right) grid is called ¢, (resp.

¢,.). In both grids, all horizontal edges have weight 2|C|. In the left grid, the vertical edges
in column ¢ have weight 2i and in the right grid the vertical edges of column i have weight
2(n — i). In the left grid, for every i and k, if the edge (a;,ci) exists in G, then we add a
diagonal edge ey, from vertex (k — 1,4) to vertex (k,i + 1) whose weight is 2i + 2|C| — 1. We
call such ey a shortcut edge (as it is shorter by 1 compared to the alternative path composed
of a vertical edge followed by a horizontal edge). The two grids are connected by |C| edges:
for each k we have an edge from ¢, to ¢}, of weight 2n|C| — 2nk. These |C| edges are the
only edges in H whose weights will change throughout the reduction - all others will remain
fixed. We add a single node = that is connected to all nodes in the top row of the left grid
and all nodes of the top row in the right grid. We set the weight of every edge (a;,x) to be
i - 4|C| and the weight of every edge (z,a}) to be (n — j) - 4/C].

The dynamic updates. After constructing the initial graph H as above, for every j =
1,...,n we obtain a graph H; by applying the following updates to H: for every k = 1,...,|C]|
if the edge (cg, b;) exists in G then decrease by 1 the weight of the edge (¢, ¢},) in H (we refer
to such edge (cx, ¢}.) as a decreased edge). The following main lemma shows that the diameter
of Hj; reveals whether or not there exists an a; € A such that dg(a;,b;) > 2. Note, crucially,
that we can generate all graphs Hy, ..., H, in sequence using only O(nlogn) updates since
H; differ from H,;_; by only O(logn) edge weights. Under SETH, we cannot maintain the
diameter throughout this sequence in O(n?~¢) time. Therefore, each update cannot be done
in O(n'=%) amortized time, thus proving Theorem 1 for the fully-dynamic case. To get a
proof for the incremental case where edge weights only decrease we can do the following (the
decremental case is symmetric). Redefine the weight of the O(logn) edges so that they only
decrease during the sequence: add 2(n — i) to their weight in H; so that their weight is the
largest in H; and smallest in H,. Then, the sequence of graphs can be generated by only
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O(nlogn) decrease-weight updates. The diameter of H; increases by exactly 2(n — i) so the
same analysis goes through. For simplicity, we continue the proof in this section with the
construction in the fully-dynamic case.

» Lemma 10. For any j, the diameter of H; is larger than 4n|C| — 2 iff there exists a; € A
such that dg(a;, b;) > 2.

In the remainder of this section we prove the above lemma. First observe that by our choice
of edge-weights the diameter of H; correspond to some shortest a;-to-a, path. The following
claim shows that in fact it is an a;-to-a} path.

> Claim 11. For all i # ¢, dp,(as, ay) < 4n|C| — 2.

Proof. If £ > i, then the path a; — x — aj, consisting of two edges costs (n — (¢ — 7)) - 4|C] <
4n|C| — 2. Otherwise ¢ < i, then the a;-to-aj, path that only uses horizontal edges costs
2|Cl(n —i+£) +2|C| = 2n < 4n|C| — 2. <

The following claim concludes the proof.
> Claim 12.  For any i, dy, (a;, aj) > 4n|C| — 2 iff dg(as, bj) > 2.

Proof. Observe that the path a; — z — a) consisting of two edges costs 4n|C|. There may
however be a shorter a;-to-a; path that passes through the grids. By our choice of edge
weights (similarly to [3]) such shortest path must start with an a;-to-c prefix (for some
k < |C]) in the left grid, then use the (cg,c),) edge, then in the right grid do ¢ horizontal
steps followed by k vertical steps. Moreover, the a;-to-c, prefix starts with & — 1 vertical
steps, then uses a shortcut edge ey, if it exists (otherwise it does a horizontal step followed
by a vertical step), and then it does n — i — 1 horizontal steps until reaching c.

Suppose first that there were no shortcut edges and no decreased edges at all. The length
of such a;-to-a; path would then be

di(ai,a) =k-2i+ (n—1i)-2|C| + (2n|C| — 2nk) +i - 2|C| + k- 2(n — i) = 4n|C]|.

Note that this length (4n|C|) is the same independent of k and of i. Hence, the only way
an a;-to-a} path can be shorter than 4n|C| is by using shortcut edges and decreased edges.
However, it can use at most one shortcut edge e, and one decreased edge (ck,c},). So its
length is 4n|C| — 2 iff there exists a k such that the shortcut ey exists (i.e., (a;,cx) € E(G))
and the edge (cx, ¢},) is decreased (i.e., (ck,b;) € E(G)), and this is iff dg(a;, b;) < 2. <

» Remark 13. By subdividing all edges, the above reduction implies that O(nl/g_e) update
time is impossible for maintaining the diameter of unweighted planar graphs.

5 Decremental Voronoi diagrams and Replacement Diameter

Overview: A Step Toward Dynamic Voronoi Diagrams. The usefulness of Voronoi diagrams
for diameter and distance reporting in static planar graphs make it natural to ask whether
one can efficiently maintain some useful representation of Voronoi diagrams in the dynamic
setting. This seems challenging because a change in a single edge or in a single additive
weight can cause the entire Voronoi diagram to completely change. For example, decreasing
the weight of a single edge in the Voronoi cell Vor(b) of some site b may cause an expansion of
Vor(b) on the expense of every other Voronoi cell, even cells that were not neighbors of Vor(b)
before the change. The same is true for decreasing the additive weight of b. Indeed, the few
attempts to use Voronoi diagrams in dynamic planar graphs that we are aware of [27,28], all
recompute the Voronoi diagrams from scratch upon every update.
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We make a small step towards dynamic Voronoi diagrams by developing a mechanism for
updating Voronoi diagrams in the decremental setting. In our opinion, this is the most novel
technical contribution of our work. The deletion of an edge in some part of the graph only
causes an increase in the additive weights of certain sites. When the additive weight of site
b increases, its Voronoi cell shrinks. Namely, some vertices that were in Vor(b) before the
increase will belong to Voronoi cells of other sites after the increase. The crucial observation
is that the only relevant sites in this process are b and the sites of the neighboring cells
to Vor(b) in the original Voronoi diagram. The time for the resulting update procedure is
therefore proportional to the cell-degree of b, rather than to the total number of sites in
the Voronoi diagram. Unfortunately, the cell-degree of b may, in general, be as large as
the number of sites. Nonetheless, this procedure turns out to be useful for the replacement
diameter problem, where we can bound the number of times each site is affected by some
edge deletion.

Representing Voronoi diagrams. Let P be a planar graph with real edge-lengths. Let S be
the set of vertices (sites) that lie on O(1) faces, called holes. Recall that every site s € S has
an associated additive weight d(s).

Consider the Voronoi diagram of P with sites S and additive weights d(s). Let P* be the
planar dual of P. Let VDg be the subgraph of P* consisting of the duals of edges (u,v) of P
such that v and v are in different Voronoi cells. Let VD be the graph obtained from VD
after eliminating all degree-2 vertices by repeatedly contracting any one of their incident
edges. The vertices of VD are called Voronoi vertices and the edges of VD are called Voronos
edges. Observe that every Voronoi edge corresponds to a consecutive segment of some bisector
between two sites. Note that VD may be disconnected, i.e., a planar map, and that the
boundaries of faces of this planar map may be disconnected. Each face of VD corresponds to
a cell Vor(s) of some site s € S. Hence there are at most |S| faces in VD. It is shown in [45]
that the total number of edges, vertices, and faces of VD is O(]S|). In what follows, when
we say we compute a Voronoi diagram VD, we mean we use the algorithm in Theorem 6,
which computes a representation of the planar map VD defined above. Each Voronoi edge of
VD corresponds to a segment of a bisector.

5.1 Maintaining Voronoi diagrams while additive weights increase

Consider an increase in the additive weight of a set B C .S of sites. Such an increase can only
change the shortest path (w.r.t. additive weights) of vertices v in the Voronoi cells of sites in
B. FEither the shortest path to such v remains the same but its length increases by the change
in the additive weight of the site, or v becomes part of a Voronoi cell of a different site. In the
latter case, since each shortest path is entirely contained in a single Voronoi cell, planarity
dictates that the new site must be a neighbor of a site in B. We define the set N(B) of
neighbors of the sites in B as the set of sites that are either in B or sites whose Voronoi cells

are adjacent to the Voronoi cells of sites in B. Note that |[N(B)| = O(}_,, g cell-degree(b)).

It follows from the discussion above that the only sites whose Voronoi cells might change as
a result of such an increase are those in N(B).

To compute the new Voronoi diagram we first compute the Voronoi diagram of P with
just the sites N'(B). By Theorem 6, this takes O(3",. 5 cell-degree(b)) time. Let VD' denote
this Voronoi diagram, and let VD denote the Voronoi diagram of P before the change. We
stress that the additive weights of VD' are the ones after the increase, and the additive
weights of VD are the ones before the increase. To obtain the Voronoi diagram of P after the
change, we “glue” together parts of VD' and VD as follows. See Figure 1 for an illustration.
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(a) (b) (©) (d)

Figure 1 An illustration of the process of computing the Voronoi diagram of a piece with 6 sites
when the additive weight of site 1 is increased. (a) VD, the Voronoi diagram of all 6 sites before
the weight increase. (b) VD', the Voronoi diagram of just the increased site (1) and its neighbors
(2, 4, 6), after the increase. (c) VD and VD' superimposed, with the edges deleted from VD, and
from VD' in grey. Observe that all segments of bisectors between cells of the neighbors (2,4,6) that
appear in VD also appear in VD’. (d) The glued Voronoi diagram.

Recall that VD is a (possibly disconnected) planar map whose edges correspond to
segments of bisectors of pairs of sites of VD. The endpoints of these segments are Voronoi
vertices of VD. We start by deleting from VD all the Voronoi edges corresponding to bisectors
involving at least one site of B. For every Voronoi vertex v incident to a Voronoi cell of a
site in B, if all the Voronoi edges incident to v were deleted, then we delete v as well. Let
& denote the set of Voronoi edges e of VD such that e is incident to some Voronoi vertex
v, e was not deleted, but the preceding or following Voronoi edge of e in the cyclic order
of edges around v was deleted. Every Voronoi edge e € £ corresponds to a segment /3 of a
bisector between two sites s1,s2 € N(B) \ B. Since the additive weights of these sites are
unchanged, the segment 8 must be represented by a Voronoi edge ¢’ of VD'. Note that /3
may be a sub-segment of the bisector segment 5’ corresponding to ¢’. Also note that it is
easy to identify ¢/ with e during the computation of VD’ with no asymptotic time overhead.?
For each Voronoi edge e € £ (of VD), we split its corresponding Voronoi edge e’ (of VD')
into two edges e}, e}, by breaking 3’ into two sub-segments at v. Suppose €, is the one whose
corresponding bisector segment contains 8. Note that if v is an endpoint of €’ (i.e., if v is
a Voronoi vertex of VD' as well), then e} is a trivial empty segment of the sj-so bisector.
We delete e}, from VD', and merge the Voronoi edges e of VD and ¢} of VD' into a single
Voronoi edge whose corresponding segment is the concatenation of the segment 5 of e and
the segment of €.

Doing so for the edges e € & effectively “glues” the relevant portion of VD’ into VD,
replacing the portion of VD that we had deleted. The algorithm of [45] for constructing
Voronoi diagrams from precomputed bisectors performs similar stitching and glueing oper-
ations, and the data structures used to represent Voronoi diagrams and bisectors support
all the necessary operations in O(l) time per operation. Hence, the time complexity of this
entire procedure is proportional (up to logarithmic factors) to the number of Voronoi vertices
of the Voronoi cells of the sites in B, which is O(}_, . 5 cell-degree(b)).

3 This can be done, for example, by augmenting the binary search tree representation of segments of
bisectors used in the construction algorithm (cf. [45]) with a boolean flag marking edges in €. Then we
can go over all Voronoi edges of VD' and list for each one the corresponding marked edge e € £, if such
an edge exists in the segment of the bisector corresponding to that Voronoi edge.
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5.2 Replacement Diameter

We now describe how to use the new algorithm for maintaining Voronoi diagrams under
additive weight decreases to get a faster algorithm for replacement diameter. The algorithm
starts by computing a complete recursive decomposition tree 7 of the graph G. For every
node (piece) in T (corresponding to a subgraph of G) we compute all its bisectors. This
takes O~(n2) time over all 7 using Theorem 6. Then, for every vertex s € V we compute
the BFS tree T of s in G and compute the fault-tolerant single source distance oracle of
Baswana et. al. [12] for s in G. This oracle is constructed in O(n) time from G, and can
report in O(1) time the s-to-t distance in the graph G¢ = (V, E \ {e}) for any s, € V and
any e € E. Overall, this also takes O(n?) time. For each piece P € T, for each boundary
vertex b € 9P we create the induced tree ;X' from T}, by marking all vertices of P and all

their lowest common ancestors, and contracting any edge whose endpoints are not marked.

The resulting 7}7 has size O(|P|). For each edge e of G that was contracted in the process we
store the edge of pr into which e was contracted. Since the total number of boundary nodes
and piece sizes over all pieces of T is O(n), the total time to construct all these induced
trees is O(n?). For each piece P € T, let P’ be the sibling of P in 7. Let by, by, ... be the
vertices of 9P’ in some arbitrary order. For each vertex s € P we compute the additivley
weighted Voronoi diagram of s w.r.t P’ with sites {b;} and additive weights d(s, b;). We also
store for s a binary search tree (BST) over by, b, ..., where the node 7 in the tree stores
the distance from s to the furthest vertex in Vor(b;). This takes total O(ny/n) time over all
P €T and all s € P. For each piece P with vertices vy, vo, ... in arbitrary order, we store a
BST over {v;}, where node i stores the furthest vertex from v; in P’. This vertex can be
found in O(1) time for each v; by querying the maximum distance stored in the BST of ;.

For every edge e € E, we need to compute the furthest pair of vertices in the graph
G® = (V,E\ {e}). For an edge e € E and two vertices u,v € G, we say that the pair u,v
is affected in G¢ if e lies on the root-to-v path in 7;. The main idea is to use the fact that
a specific pair u,v is affected in at most D (rather than n) graphs G¢ (since the shortest
u-to-v path in G has at most D edges).

For every affected pair (u,v) there is some pair of sibling pieces (P, P’) s.t. u € P and
v € P’. Our strategy is to go over pairs of sibling pieces (P, P’) in T, and handle all affected
pairs for each (P, P’) together as follows. Assume w.l.o.g. that e ¢ P’. For each b € OP’, we
enumerate in 77 all the decendant vertices of the edge of T} into which e was contracted
(this may be an empty set if e ¢ T},). This way we identify all the affected pairs of the form
(u,b), where u € P and b € 9P’. We query the Baswana et al. oracle for the u-to-b distance
in G° for each such affected pair. For each u € P, let B be the set of boundary vertices
b such that (u,b) is an affected pair. For each vertex u € P with |B| > 1, we update the
Voronoi diagram of u w.r.t. P’ using the procedure Decremental-VD, which is described
in subsection 5.1. This procedure updates the VD (and the furthest vertex from each site)
w.r.t the new additive weights in time ), _ ; cell-degree(b) where cell-degree is the number of
Voronoi cells that are adjacent? to the cell Vor(b) in the original VD (i.e. before the deletion
of e). Using the updated VD, we update the node corresponding to every b € B in the BST
of u with the new furthest vertex in Vor(b). Let d be the maximum distance stored in the

entire BST of u. We update the node corresponding to u in the BST of P with the value d.

After handling all u € P with |B| > 1 in this way, the maximum value stored in the entire
BST of P is the maximum distance in G¢ between any pair of vertices (u,v) with v € P and

v € P’. Taking the maximum over all pairs of siblings (P, P’) € T gives the diameter of G°.

4 Two cells are adjacent if there exists an edge e of G with one endpoint in each cell.
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The total running time for computing the furthest pair for the siblings (P, P’) is analyzed
as follows. The bottleneck is the time to update the VDs. Every time a pair u,b (where
u € P and b € OP') is affected we spend O(cell-degree(b)) time updating the VD of u. Since
each pair is affected by the deletion of at most D edges, the total time invested in updating
VDs for (P, P') is bounded by 3, c pyepps D - cell-degree(b) = [P|D 3, cell-degree(b), which
is O(|P|D - |0P'|), since the sum of cell-degrees of the cells in a VD is order of the number
of sites of the VD. Summing over all pairs of sibling pieces we get that the total time is
Z(P,P,)6T0(|P|D -|0P’|) = O(n*>D). Hence, including the preprocessing, the total time
for the entire replacement diameter algorithm is O(n? + n'>D).

We note that when D > n®/6, it is better to naively use the static n3+0(1)/D2—time

algorithm from section 3.1 for each edge failure. Hence, replacement diameter can be solved
in min(n3+°M /D2 O(n? + n'>D)) = n7/3T°(1) time.

6 Incremental Diameter

In this section we prove Theorem 3. Namely, we present a general reduction showing how to
solve the diameter problem efficiently in incremental graphs given two components: (1) a
distance oracle for incremental graphs, and (2) a diameter algorithm for static graphs that
is relatively fast when the diameter is large. Plugging in the incremental distance oracle of
Das et al. [37] and the static algorithm of Section 3.1 we obtain an algorithm with total
time n7/3+°(1) which improves over the naive bound of O(n®?3). The new algorithm of this
section comes closer to the n2~°(1) lower bound of Section 4 for weighted graphs (the best
lower bound for unweighted graphs is n1'5_"(1)).

The rest of this section is dedicated to proving this theorem. We begin by presenting the
general reduction (that does not assume planarity nor unweighted edges) and then explain
how it can be combined with existing algorithms for planar graphs to obtain the theorem.

A reduction from diameter to s, t-shortest path. In an incremental graph, the diameter
decreases with time, starting from some D < n (otherwise the graph is not connected and
it is easy to check this efficiently) and ending at some D > 1. The idea for the reduction
is simple: we would like to recompute the diameter only when it decreases, and not after
each of the n updates. While it is true that the diameter could decrease Q(n) times, from
n to 1, the point is that re-computation is efficient when the diameter is large (due to the
n3t°(1) /D? algorithm of Section 3.1) and then only O(D) of the re-computations will happen
when the diameter is smaller than D.
Our incremental algorithm works as follows:
Step 1 - sample a new diameter pair: Let P = {(s,t) | d(s,t) = A(G)} be the set of
pairs that realize the current diameter A(G). Sample a pair (s,t') from P uniformly at
random (or from some distribution in which every pair is sampled with probability at
most O(1/|P])).
Step 2 - monitor the distance of the sampled pair: Using an incremental distance
oracle, monitor the distance between s’ and ¢’ throughout the sequence of edge insertions.
Do nothing (except querying the oracle) as long as d(s’,t") does not decrease; in which
case it is still the correct diameter of the graph and can be output whenever there is a
query. If a new edge causes d(s',t’) to decrease, go back to Step 1.

Fach of the two steps involves one of the two ingredients in our reduction. Step 2 utilizes
an incremental distance oracle, while Step 1 uses a static diameter algorithm that can also
sample a diameter pair. At the end of this section we give a general reduction from the
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latter approximate sampling problem to the problem of finding the largest distance from
each node in the graph (i.e. computing all eccentricities). Alternatively, one could notice
that the diameter algorithms we will employ in Step 1 (and many other natural diameter
algorithms) can be modified to also sample a diameter pair uniformly at random.

Running time. Let us first bound the number of times we go to Step 1, which is the most
costly step since it involves a static diameter computation. Step 2 is actually very cheap
since we only perform one update and one query to an incremental distance oracle.

> Claim 14. For any (non adaptive) sequence of edge insertions that does not decrease the
diameter of the graph, the expected number of times our algorithm samples a diameter pair
(i.e. goes to Step 1) is O(logn).

Proof. Let us first analyze the idealistic case in which we manage to sample truly uniformly
in Step 1, and then point out that the same analysis essentially goes through when we sample
almost uniformly.

FEach new edge e decreases the distance for a subset of pairs X, C P. Since the special pair
(s',t') is completely unknown to the adversary who is choosing the sequence of edge insertions,
the probability that e causes the algorithm to go to Step 1 is exactly | X.|/|P| and in that case
the new set of “diameter pairs” becomes P\ X.. Therefore, the expected number of times

we sample can be upper bounded by: f(|P|) < maxg<,<(p| x/|P|+ f(|P| —z) = O(log|P|).
p pPp Y 0<z<|P] g

If the sampling in Step 1 is only approximately uniform, but still satisfies that a pair is
chosen with probability at most O(1/|P]) then the same analysis above goes through, up to
an additional O(1) factor. <

Let TP%@™(n, D) denote the running time of a static diameter algorithm that samples
a diameter pair as in Step 1, when the diameter of the graph is D. Over all the O(n)
edge insertions, the total expected running time of Step 1 is therefore at most Y 7,_, logn -
TPiam(n, D).

To obtain our claimed upper bound of n we will use two diameter algorithms
inside this reduction: the TP%™(n, D) = n?*+°(1) /D? algorithm from Section 3.1 (for large
D) and the TP (n, D) = O(n®/3) algorithm [45] (for small D). (By the reduction in
Section 6.1, these algorithms can also sample an approximately uniform pair as required by
Step 1). The total expected time becomes:

7/340(1)

n?/3 n

n
Z log 7 - TDiam(nyD) =0 Z nd/3 4+ Z n3+o(l)/D2 _ n7/3+0(1)’
D=1 D=1 D=n?2/3
because 3.7, . n3to) /D2 < Zl.(iglzg 25 201 3o /(20)2 < ”33;1) - 2logn. The
1=logo n n

additional time of Step 2 is at most n - v/n using the incremental distance oracle of Das et
al. [37] that has O(y/n) time per update and query.

6.1 Sampling a Diameter Pair

In this section we show the final piece of the incremental diameter algorithm. Namely, a way
to adapt the aforementioned static diameter algorithms so that they sample a diameter pair
approximately uniformly.

A first attempt, that does not quite work, is to add a random “perturbation” p, € (0, ¢)
to the weight of each edge e, where ¢ < 1/D, and then argue that the (probably unique) pair
realizing the diameter in the new graph is a uniformly random pair in P = {(s,t) | d(s,t) =
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A(G)}. Note that the perturbations increase the distance between all pairs by < 1 and
therefore non-diameter-pairs cannot become diameter pairs. One issue, however, is that pairs
with many paths of length A(G) between them are more likely to be chosen than pairs with
few such paths. A second attempt that resolves this issue is to add a perturbation to the
nodes (e.g. by appending a private leaf to each node with a random weight on the new edge).
This idea is closer to the actual solution but it still has an issue of correlations: a node that
participates in many pairs might be sampled less frequently than a node that participates in
few pairs. Therefore, we must take this difference into account when assigning the weights.

Making these ideas go through is a bit complicated. Fortunately, there is an elegant
reduction from our setting to the bipartite independet set query model introduced by Beame
et al. [13] and then use existing results on this model [7,16,38] in a black-box way.

» Theorem 15. There is an algorithm that samples a pair in P = {(s,t) | d(s,t) =
A(G)} where each pair is sampled with probability at most O(1/|P|) and runs in time
(min(O(n®/3), n?+°M) /D?)) on unweighted planar graphs of diameter D.

The main lemma towards proving the theorem is the following.

» Lemma 16. By making logo(l) n calls to an algorithm that returns all eccentricities we
can sample a pair in P = {(s,t) | d(s,t) = A(G)} where each pair is sampled with probability
at most O(1/|P])

Proof. Consider an implicit graph H in which there is an edge between two nodes s, t iff they
are a diameter pair in G (i.e., (s,t) € P). Our goal is to sample an edge from H approximately
uniformly. This can be achieved [7,16,38] by making a polylogarithmic number of queries
to an oracle that, given two subsets L, R C V(H), decides whether there is any edge in
L x RN E(H). This is called a bipartite independent set oracle in the literature, following
Beame et al. [13]. Thus, all we have to do is show that such a query can be supported in the
time of a call to an algorithm that computes all eccentricities in the graph.

First, we precompute the diameter A(G) of G. Then, given a query L, R C V we construct
a graph G’ from G as follows. For each node v € R we add a new “leat” node I,, and connect
it with an edge (of weight 1) to v. Next, we compute the eccentricity of all nodes in G'.
Finally, the answer to the query is yes if and only if there is a u € L such that the eccentricity
of uin G’ is A(G) + 1; this can be checked in O(n) time.

The correctness of the answer follows from the observation that the eccentricity of any
node v in G’ is A(G) + 1 if and only if there is a node v in G such that (1) dg(u,v) = A(G)
and (2) a new leaf node [,, was appended to v. This implies that (1) (u,v) € P is a diameter
pair in G, meaning that (u,v) € E(H), and that (2) v € L. Since we only check for u € R
our answer that L x RN E(H) is non-empty is correct. <

To conclude the proof of Theorem 15 we simply point out that both of the relevant
diameter algorithms already compute the eccentricity of all nodes.
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—— Abstract

Traditional problems in computational geometry involve aspects that are both discrete and continuous.

One such example is nearest-neighbor searching, where the input is discrete, but the result depends
on distances, which vary continuously. In many real-world applications of geometric data structures,
it is assumed that query results are continuous, free of jump discontinuities. This is at odds with
many modern data structures in computational geometry, which employ approximations to achieve
efficiency, but these approximations often suffer from discontinuities.

In this paper, we present a general method for transforming an approximate but discontinuous
data structure into one that produces a smooth approximation, while matching the asymptotic
space efficiencies of the original. We achieve this by adapting an approach called the partition-of-
unity method, which smoothly blends multiple local approximations into a single smooth global
approximation.

We illustrate the use of this technique in a specific application of approximating the distance to
the boundary of a convex polytope in R? from any point in its interior. We begin by developing a
novel data structure that efficiently computes an absolute e-approximation to this query in time
O(log(1/¢)) using O(1/e%/?) storage space. Then, we proceed to apply the proposed partition-of-
unity blending to guarantee the smoothness of the approximate distance field, establishing optimal
asymptotic bounds on the norms of its gradient and Hessian.
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1 Introduction

The field of computational geometry has largely focused on computational problems with
discrete inputs and outputs. Discrete structures are often used to represent geometric objects
that are naturally continuous. Examples include using triangulated meshes to represent
smooth surfaces, Voronoi diagrams to represent distance maps, and various spatial partitions
for answering ray-shooting queries. Due to the high computational complexities involved,
researchers often turn to approximation algorithms. Unfortunately, in retrieval problems,
efficient approximation is often achieved at the expense of continuity.

To make this more precise, consider the common example of distance functions. For a
given set S C R? (which may be discrete or continuous), a natural distance map over R?
arises as:

ds : x> inf ||z —
s @ fof flo—pl,

where || - || denotes the Euclidean norm. In turn, the distance map gives rise to the following
query problem. Given a query point = € R%, the objective is to compute dg(z) efficiently
from a data structure of low storage.
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It is well known that answering the distance query can be reduced to computing the
Voronoi diagram of S. Unfortunately, beyond special low-dimensional cases, the combinatorial
complexity of the Voronoi diagram grows too fast for practical use. For this reason, much
work has focused on data structures for approximate nearest neighbor (ANN) searching [7,9,
21,23,24]. Given any € > 0, an e-ANN data structure returns a point that is within a factor
of 1+ ¢ of the true closest distance.

While approximate nearest-neighbor searching is clearly related to approximating the
distance map, there are fundamental differences between the two problems. The distance
map induced by any set is clearly continuous (and indeed it is 1-Lipschitz continuous [12]).
As two query points converge on a common location, their respective distances to S must also
converge. The same cannot be said for any of the existing approaches based on approximate
nearest neighbor searching. The ANN distances reported for two query points can differ
by an amount that is arbitrarily larger than the distance between the two query points.
In Section 1.1, we will show that this is not merely an artifact of the design of these data
structures; it is unavoidable.

Answering distance queries efficiently is key to many applications including motion
planning [45], surface reconstruction [3,26], physical modeling [36], and data analysis [10, 18].
Discontinuities can result in various sorts of aberrant behaviors. This is because queries
are generated adaptively in a feedback loop, where answers to earlier queries are used to
determine subsequent queries. Consider, for example, a navigation system that is trying to
precisely dock two crafts moving in space. Discontinuities in the distance map can alter the
behavior of the feedback process, resulting in jittering, oscillations, and even infinite looping
(see examples in Section 1.1).

This motivates the main question considered in this paper: Does there exist a data
structure that answers distance queries approximately so that the induced distance function
is continuous? Ideally, the distance function should also be smooth, characterized by bounds
on the norm of its gradient and Hessian. Note that this is quite different from approximate
nearest-neighbor searching, where the objective is to find a point that approximates the
closest distance. Here, the objective is approximate the distance itself.

Applications of distance queries include collision detection [14], penetration depth [47],
robot navigation [31,42], shape matching [2], and density estimation [32]. Often, the
set S arises as a discrete point set obtained by sampling an underlying surface. Implicit
representations of surfaces [13], based on approximating the induced distance map, have
recently witnessed significant developments based on deep neural networks [16, 22, 37], where
the properties of learned distance fields are yet to be fully understood [30, 38].

In this paper we present a general approach for smooth approximation from traditional
non-continuous data structures. This is achieved through a process called blending, where
discrete local approximations are combined to form a smooth function. Our method is loosely
based on the partition-of-unity method (see, e.g., Melenk and Babuska [34]). The approach
involves constructing an open cover of the domain by overlapping patches, computing a
local approximation within each patch, and then blending these approximations together by
associating a smooth weighting function with each patch (see Section 2 for details).

Unfortunately, a direct adaptation of these methods does not yield an efficient solution.
To the best of our knowledge, existing work on partition-of-unity methods for distance
approximation have not considered the asymptotic efficiency of the resulting access structures.
These works have typically involved blending over relatively simple spatial decompositions,
such as grids [40] and balanced quadtrees [35]. The covering elements employed in the blending
were naturally fat, that is, isotropic. These subdivisions are particularly suitable for blending,
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but they lack the flexibility needed to achieve the highest levels of efficiency. Moreover,
we are not aware of prior results on the asymptotic interplay between approximation and
smoothness. (We refer the interested reader to recent works in the finite element literature
on anisotropic [46] and high-dimensional [27] refinements.) In this paper, we adopt the
partition-of-unity approach to perform smooth blending for distance maps while achieving
asymptotic complexity bounds that match the best existing approximation algorithms. Our
results will be presented in Section 1.2.

1.1 On Discontinuities and Witnesses

To better understand how discontinuities arise, it is useful to understand the general structure
of most data structures for answering distance queries. Space is subdivided into regions,
or cells. This is either done explicitly by defining the subdivision over the query range or
implicitly by viewing the data structure abstractly as a decision tree and associating each
leaf of the tree with the subset of query points that land in this leaf due to the search process.
Queries are answered by determining the cell (or cells) that are relevant to the answer, and
accessing distance information for each cell. When the query point moves from one cell to
another, even infinitesimally, different distance information is accessed, and the computed
distance may change discontinuously.

For example, consider four point sites P = {p1, p2, p3, p4} in R%. Suppose that we construct
an e-ANN data structure based on a subdivision into rectangular cells (see Figure 1(a)).
We assume that each cell stores a single site of P, called a representative, that serves as an
e-ANN for every query point lying in this cell, and assume further that the representatives
have been chosen as shown in the figure, with ¢;’s representative being p;. Suppose that a
gradient descent algorithm is run using this structure. Starting from an initial position (e.g.,
qi), the descent takes a step towards the cell’s representative (p;). If the representatives and
step sizes are chosen as in the figure, the descent could loop infinitely.

Pi..

I

b3

(a)

Figure 1 Problems with witness-based distance approximation: (a) infinite loops and (b) jittering.
(The dashed blue lines bound the Voronoi cells of the sites, and the dotted red lines indicate the
direction to the closest site.)

In Figure 1(b), we consider another distance function computed with respect to the
boundary of a convex object €. Cells ¢y, c3, and c¢5 are assigned edge e; as representative,
and cells ¢z, ¢4, and cg are assigned es. If at each point we walk towards the closest edge to
the cell’s centroid, the path oscillates or “jitters” between the two contenders.
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In both of these examples, we assume a standard model in which each cell stores a witness
to an approximate nearest neighbor, and the distance function returns the distance from
the query point to this witness. Let Q be a function that maps query points to witnesses
(presumably based on the cell containing the query point), and let CTQ denote the induced
distance function dg(z) = ||z — Q(z)||. Such an approach is said to be witness-based. The
following lemma shows that any witness-based method that fails to be exact cannot be both
continuous and accurate with respect to relative errors.

» Lemma 1. If a witness-based distance function JQ for a finite point set P C R? is inexact
at even one point, it cannot be both continuous and provide a finite bound on relative errors.

Proof. Suppose towards a contradiction that Eivg is continuous, guarantees a relative error
of at most ¢ for some ¢ > 0, but there exists a point = € R% such that dg(z) > dp(z). In
particular, we may select an arbitrarily small § > 0 such that do(z) > dp(z) + 6. Let p € P
denote a nearest neighbor of z and consider how the value CTQ varies as we walk from = to p
along the line segment Tp. More precisely, letting u be a unit vector directed from x to p,
define z(t) = z + t - u, and do(t) = do(2(t)). Except at a finite number of transition points
where the witness changes, the derivative of g[Q(t) with respect to ¢ cannot be smaller than
—1. (A derivative of —1 occurs when we are walking straight towards the current witness,
and otherwise it is strictly larger.) Since the function is continuous, its value does not change
at transition points. It follows that as we travel a distance of t < dp(z) from x to p, the
value returned by JQ cannot decrease by an amount more than t. Setting t = dp(x) — §/c,
we conclude that

do(z(t)) > do(z) —t > (dp(x)+0) — (dp(x)_é) _ @

c

But, dp(z(t)) = dp(x) — t = §/c, implying that the relative error is

do(z(t)) —dp(x(t) _ do(z(t) A+ed ¢ _ . 1 -
dp (@) = i) 1T e g lTrb-l=e
a contradiction. <

1.2 Main Result

For the sake of concreteness, we will illustrate our approach to producing smooth approximate
distance functions in a specific application which is fairly simple, but still new. Let 2 denote
a convex polytope in R?, and let diam () denote its diameter and 9€ its boundary. We
further assume that (2 is represented as the intersection of n halfspaces. Given a point x € €2,
we define the boundary distance function dyq(z) as the Euclidean distance to z’s closest
point on 9. To simplify notation, we will refer to this as do(z) (see Figure 2(a)). Our
objective is to efficiently evaluate an e-approximation E[Q for any given query = € ), while
guaranteeing smoothness (i.e., continuity and norm bounds on the gradient and Hessian).

By convexity, if x lies in 2’s interior, int(£2), its closest point on the boundary lies on one
of (’s facets, that is, its faces of dimension d — 1. Thus, in the exact setting, the distance map
is determined by the Voronoi diagram of 2’s facets. The skeleton of this Voronoi diagram
is known as the medial azis or medial diagram of Q [17,19,41]. While the combinatorial
complexity of the medial axis is O(n) in R?, it grows much faster in higher dimensions. It is
not hard to show that medial axis corresponds to the lower-envelope of n hyperplanes in
R4+, with a combinatorial complexity of ©(n/%/21) in the worst case [33].



A. Abdelkader and D. M. Mount

o= diam()

(b)

Figure 2 (a) The medial axis of Q and the boundary distance function do and (b) approximating
the boundary distance in terms of absolute errors with parameter € > 0.

The obvious discrete analog to our problem is approximate polytope membership, where
the data structure merely indicates whether the query point lies inside or outside the polytope,
up to a Hausdorff error of ¢ -diam(2) (see Figure 2(b)). In recent work, it was shown that this
problem can be solved in query time O(log(1/¢)) from a data structure using O(1/e(¢=1/2)
of space [1,5].

In this paper, we show how to apply the partition-of-unity method to evaluate an absolute
e-approximate boundary distance function JQ for a convex polytope 2 in a manner that
guarantees smoothness while nearly matching the query times achieved in approximate
membership queries. Specifically, we require that |dg(z) — do(z)| < ¢ - diam(Q), for all
z € int(Q2). Throughout we treat € as an asymptotic quantity, and assume the dimension d
is a constant. Our main result is:

» Theorem 2. Gliven a convex polytope Q and an approzimation parameter € > 0, there
exists a smooth function dq satisfying do(x) < do(x) < do(z) + € - diam(QY) for all z € Q,
which can be evaluated along with its gradient from a data structure with

Query time = O(log(1/¢)) and Storage = O(1/e¥?).

Further, the norms of the gradient and Hessian of do satisfy

|Vda(z)|| = O(1)  and  ||Vda(z)| = OC).

Observe that this is almost as good as the best query and space times for approximate
polytope membership [1, 5], suffering just an additional factor 1/4/ in the space bound. Our
data structure can be viewed as incorporating blending into the data structure of [1]. While
we assume that the query point lies within €2, if this is not the case and z is at distance
at least € - diam(2) outside, the data structure will report this. If x is external to Q but is
closer than this to the boundary, it may erroneously report an answer to the query. Our
focus is on the existence of the data structure, but through the use of known constructions,
it can be built in time O(n/e?@), where n denotes the number of facets of the polytope.

Let us remark on the bounds on the norms of the gradient and Hessian. Clearly, in
any Euclidean distance field the directional derivative of the distance field is as high as 1
(when moving directly towards or away from the nearest point) and is never greater, that
is, [[Vdq(x)|| < 1. Therefore, it is reasonable that the norm of our approximate function,
[Vdg(z)]|, is O(1). The following lemma shows that the O(1/e) upper bound on the norm of
the Hessian is a necessity, up to constant factors. It establishes a lower bound in the context
of a relative errors for approximating the distance to a discrete point set, but the result can
be adapted to our context as well.
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» Lemma 3. Fiz a set of points P C R?, and let Q be a smooth e-approzimate distance
query structure over P with the associated distance dg, for any e > 0 bounding the relative
error. If |P| > 1, then there exists a point x € R? such that |V3dg(z)|| > 1/e.

Proof. Given a function f : R? — R and v > 0, the assertion ||Vf(a) — Vf(b)|| < v is
equivalent to saying that Vf is y-Lipschitz, that is, |Vf(a) = Vf(b)[| < - [la —b]|, for all
a,b € R Letting f := Vdg, we will show that f is y-Lipschitz with v > 1/e.

E.E

Figure 3 Proof of Lemma 3.

Consider two sites p and p’ such that ||pp’|| = 2(2+¢) (see Figure 3). Select points a and
b along the segment pp’ on opposite sides and at distance e from the perpendicular bisector.
Observe that a query point placed at any point on the open segment pa must return p as
the answer, since otherwise the relative error would exceed ((2 4 2¢) — 2)/2 = e. This holds
symmetrically for p’b. It follows that Vf(a) and Vf(b) are unit vectors pointing to the right
and left, respectively. Hence, |V f(a) — Vf(b)||/|la — ]| = 2/2e = 1/¢, as desired. <

The remainder of the paper is organized as follows. In the next section we present an
overview of the partition-of-unity approach. In Section 3 we present an efficient data structure
for answering approximate distance queries for a convex polytope 2, but without continuity.
Finally, in Section 4, we combine these to obtain the desired smooth approximation.

2 Blending and Partition of Unity

The partition of unity is a standard mathematical tool for integrating local constructions
into global ones [29,40]. It is widely used and has applications in various disciplines [34, 35].
The approach involves a collection of patches II = {II;} forming a locally-finite open cover
of a given domain  C R?. The partition of unity is a set of non-negative smooth partition
functions {¢; } such that the support of ¢;, denoted supp(¢;), is a subset of II; (see Figure 4(a)).
The name derives from the requirement that for all z € Q, >, ¢;(z) = 1.

rep; 0

(a) (b)
Figure 4 Patches, representatives, and the partition of unity.
In the context of distance approximation, let us assume that each patch is associated

with a local distance function v;, such that the restriction of v; to II; is an e-approximation
to the true distance function dg. Concretely, each patch is associated with a representative,
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denoted rep,. For example, when approximating the distance to a discrete point set P, rep;
may be a point p € P. In our case, where € is a convex polytope, rep; will be chosen to be a
supporting hyperplane of a facet of Q (see Figure 4(b)). Then, v;(x) can be defined to be
distance from x to the associated representative,

vi(xz) = dist(z,rep;). (1)

The final approximate distance map results by taking the sum of these local distance functions
over all patches weighted by the associated partition functions.

do(x) = Zcbi(x)'vi(x)- (2)

Recall that the support of ¢; is limited to II;, so we need only compute the sum over patches
containing x. Define the depth of x with respect to II, denoted A (z), to be the number of
patches of II containing z, and define Ar; = max, A (z). As in standard applications of the
partition-of-unity method, we will design our patches so that Ap is O(1).

In order to enforce the condition that the functions ¢; sum to unity at any point in the
domain, we will define a set of smooth, non-negative weight functions {1;}, and then define

_ @)

oi(z) W(2)

, where ¥(z) = Zwl(a:) (3)

Observe that since Jg(x) is a convex linear combination of functions, each of which is
locally an e-approximate distance map for €, it follows that gg(x) is itself an e-approximate
distance map. Our construction will guarantee that there exists a positive constant Wy,
such that U(x) > Wy, for all z € Q. Tt follows that ¢;(z) can be made as smooth as desired,
being the quotient of two positive continuous functions. Assuming that the local distance
approximations {v;} are smooth, it follows that élvg is itself smooth, being a sum of products
of pairs of continuous functions. As a 1-dimensional example, see Figure 5.

U9 S v

."— \’. o'-‘ -.\
vy R
2 . , .
Q ' “ .

Figure 5 Blending two distance functions {v; } using two overlapping intervals {II;} with associated
weight functions {¢;}, yielding a smooth approximation do using (a) symmetric covers and (b)
non-symmetric covers.

It remains to define the weight function 1); associated with each patch. These functions
depend on the patch’s shape. For our application, patches will be ellipsoids, but for this
introduction, let us consider the simple case of a Euclidean ball with center point ¢; and
radius r;. First, for z € R, define

1
fi@) = o =il

5:7
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Observe that f achieves its minimum value of 0 at the ball’s center and grows to 1 at its
boundary. To obtain a compactly-supported weight function, we use the standard technique
of composing f with a bump function, also known as the standard mollifier [39]

1
exp ( > if |o| < 1,
ulo) = 1—o? (4)
0 otherwise.

Since 1£(0) = e~ ! and p(1) = 0, we see that the weight is highest near the middle of the shape,
where f = 0, and decays gracefully towards the boundary, where f = 1. It is well-known
that p € C°(R) and is non-analytic with vanishing derivatives for |o| = 1 [39]. Therefore,
we may define 1, (x) = u(fi()).

In summary, given any query point z, we first determine the patches that contain it.
(The number of which, A (z), will be bounded by a constant.) Given the shape functions f;
for each of these patches, we compute the weight functions ;’s by applying the mollifier of
Eq. (4). We then apply Eq. (3) to obtain the partition-of-unity blending functions. Finally,
we apply Egs. (1) and (2) to obtain the final smooth distance approximation. The overall
space and query time are dominated by the total number of patches and the time needed to
determine which patches contain the query point, respectively.

3 Approximating the Boundary Distance Function

The process described in the previous section is generic and can be applied in settings where
the answer to the query can be expressed in terms of a covering of space by regions of low
combinatorial complexity. For the sake of illustration, let us now explore how this works in
the specific application of computing a smooth absolute e-approximation to the boundary
distance in a convex polytope € in R%. Let us assume that Q has been scaled uniformly to
unit diameter, so the absolute approximation error is €.

We will employ a standard method for reducing distance approximation to a covering
problem. First, let’s consider the graph of the boundary distance function dq, that is, the
manifold (x,dg(z)) in R¥1. We will use 2 to denote coordinate values along the (d + 1)st

coordinate axis, which we will take to be directed vertically upwards in our drawings (see
Figure 6(b) and (c)).

Figure 6 Lifting the polytope Q C R? to the lifted body Q C R*.

Assuming that the polytope € contains the origin in its interior, it can be represented as
the intersection of a set of n halfspaces in R¢, Q = ﬂ?zl H;, with each H; taking the form

H; = {zeR?: alz <b;},

where a; € R? is an outward-pointing unit normal vector orthogonal to H;’s bounding
hyperplane and b; € RY is the distance of the bounding hyperplane from the origin. The
distance of a point x € € to the bounding hyperplane is the non-negative scalar z such that
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2 + zay lies on the bounding hyperplane, that is z = b; — aJT-x. The set of points lying below
this surface (that is, the hypograph of the distance function) is the halfspace in R**! given
by the linear inequality z < b; — aJT-a:. The boundary distance function is just the lower
envelope (or minimization diagram [25]) of this set of halfspaces. To turn this into a bounded
convex polytope, we add a horizontal ground-surface halfspace Hy = {(z;z) : z > 0}. Define

the lifted body © C R to be

Q= Hyn ﬂ ﬁj, where ﬁj ={(2;2) e R . 2 <, —ajz} for j € [n].
j=1

Since the sides have a slope of +1, the diameter of € is O(1).
To achieve an absolute approximation error of at most ¢, we lift each of the upper
halfspaces of Q by a vertical distance of +¢ to obtain the resulting expanded object Q. That

is, we define I;Tf ={(x;2) e R*™ : 2 <b; —aJw+ 6} and ot = N1 ﬁj (see Figure 6(c)).

Note that the ground-surface halfspace (ﬁo) is not needed for ﬁ*, and hence it is unbounded.

The essential features of lifting and expansion are summarized in the following lemma.

» Lemma 4. Given a convex polytope Q) of unit diameter and any x € Q, if a vertical ray is
shot upwards from x (viewed as a point in R¥Y) hits a bounding hyperplane of Q within Q7
then the associated facet of € is an absolute e-approximate nearest neighbor of x.

The upshot is that we can base the local distance functions v;(x) (recall Eq. (1)) on
the distance to the bounding hyperplane of Q corresponding to the bounding hyperplane

in the lifted body Q that is hit by the vertical ray shot upwards from the query point x.

An important feature of QO+, which will be of later use (in Lemma 8), is that the distance
between its boundary and that of ) is at least ce - diam(€2), for some constant c.

3.1 Macbeath Regions and Ellipsoids

Our approach to approximating Q for the purpose of answering distance map queries will

be based on generating a net-like covering of Q based on objects called Macbeath regions.

Macbeath regions and their variants have been widely used in convex approximation (see,
e.g., [1,4,6-8]). In contrast to traditional covers based on subdivisions by fat objects, e.g.,
hypercubes, Macbeath regions naturally adapt to the shape of the object being covered. In
this section we present a brief review of the salient features of Macbeath regions.

Given a convex body € and any point x € , the Macbeath region at x is the largest
centrally-symmetric body centered at x and contained within 2. It is common to apply a
constant scaling factor. Formally, for A € R™, the A-scaled Macbeath region at x is

My(x) = 2+ AN(Q—2z)N(z—Q))

(see Figure 7(a)). When £ is clear from context, we will often omit the subscript. We refer
to x and X as the center and scaling factor of M (x), respectively. When A\ < 1, we say
M?*(z) is shrunken.

It is useful to have a low-complexity, smooth proxy for a Macbeath region. Given a
Macbeath region, define its associated Macbeath ellipsoid EJ(x) to be the maximum-volume
ellipsoid contained within MJ(x) (see Figure 7(b)). Clearly, this ellipsoid is centered at x,
and E}(z) is a A-factor scaling of E}(x) about z. By John’s Theorem [11]

E)(z) C Mj(x) C EYY().

Chazelle and Matousek showed that this ellipsoid can be computed for a convex polytope 2
in time linear in the number of its bounding halfspaces [15].

5:9
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(a) (b)

Figure 7 (a) Macbeath regions and (b) Macbeath ellipsoids.

A fundamental property of Macbeath regions, called expansion-containment, states that
if two shrunken Macbeath regions (or ellipsoids) overlap, then a constant-factor expansion of
one contains the other. There are many formulations. The following can be found in [1].

» Lemma 5 (Expansion-Containment). Given a convex body € R%, 0 < X\ < 1, let
B=0B+XN/(1—=X\). Then for any z,y € Q:

(1) MMz)NMMy) #0 = M*y) € MP(2),

(i1) EMNz)NEMy) #0 = EMy) € BV ().

3.2 Approximation through Covering

Our approach to computing an e-approximation to the boundary distance function within
a convex polytope € in R? utilizes Macbeath regions to cover the lifted body Q in R4+,
Recall our assumption that 2 has been scaled to unit diameter, and hence the lifted body 0
also has unit diameter. Given this scaling, our objective is to answer vertical ray-shooting
queries up to an absolute error of at most €, (see Lemma 4).

Before presenting our solution, let us recall some known results for convex approximation.
Given a convex body €2 of unit diameter and € > 0, an e-approxzimate polytope membership
query is given a query point ¢ and returns positive answer if ¢ lies within €2, a negative
answer if ¢ lies at distance more than ¢ from (2, and otherwise, it may give either answer.
Arya et al. presented an efficient data structure for answering approximate membership
queries [7]. Later, Abdelkader and Mount [1] presented a simpler approach with the same
space and query times, as described in the following lemma. We will employ a variant of the
latter data structure.

» Lemma 6. Given a convex polytope Q € R?, there exists a data structure that can answer

absolute e-approzimate polytope membership queries for 0 in time O(log(1/¢)) and storage
O(1/eld=1/2),

In order to apply this data structure for our purposes, we will need to delve a bit deeper
into how it works. Our application of this structure will be in the lifted space R?*!, but let
us describe it now for an arbitrary convex body Q in R%. Given a non-negative parameter ¢,
define the expanded body €25 to be a convex set such that Q C Qs, and the minimum distance
between their boundaries of is at least J.

Next, we define the notion of a Macbeath-based Delone set of Q relative to 25. This
structure is parameterized by two constants 0 < A, < A, < 1, called the packing and covering
constants, respectively (which may depend on the dimension d). Given any point x € €,
define the covering ellipsoid E§(z) = Eg; (z), that is, a Macbeath ellipsoid centered at x
with scaling factor \. defined with respect to the outer body 5. Define the packing ellipsoid
E{(z) analogously, but with a scaling factor of A\,. A Macbeath-based Delone set for
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relative to {25 is any maximal set of points X C €, such that the packing ellipsoids EY (z)
centered at these points are pairwise disjoint. Abdelkader and Mount [1] showed that, by
standard properties of Macbeath regions, constants A, and A, can be chosen such that X
has the following properties:
(i) The union of the covering ellipsoids Ej%(x) over all z € X covers the original body, 2,
(ii) For each z € X, Ej(z) is contained within the expanded body, Qs,
(iii) The number of ellipsoids E§ that contain any point z is O(1),
() [X] = O(1/6-/2).
Note that the constant factors hidden in the O-notation depend on the dimension d.

To turn this into an approximate search structure, a layered DAG is constructed as follows.
For i > 0, let §; = 2¢5. Construct a series of such Delone sets, Xo, X1, ..., X, where X; is
any Macbeath-based Delone set of € with respect to €5,. As ¢ increases, the expanded body
grows larger, and hence the Macbeath ellipsoids also grow larger. But since they need only
cover the original body €, their size, | X;|, decreases with 7. The final layer ¢,, is defined to
be the smallest integer such that | X, | = 1. (It can be shown that ¢, = O(diam(Q2)) = O(1),
which implies that m = O(log(1/0)).) The leaves of the DAG correspond to the covering
ellipsoids E(’s0 centered at the points of Xy. The root is corresponds to the covering ellipsoid
Egem associated with the single point of X, (see Figure 8). Finally, the nodes of level ¢ are
connected to nodes at level ¢ — 1 whenever their associated E’ ellipsoids overlap. Abdelkader
and Mount [1] showed the following:

The DAG has O(log(1/¢)) layers.

The out-degree of any node in the DAG is O(1).

The total number of nodes in the DAG is O(1/§(@~1/2),

Lemma 6 follows by applying a natural search process which simply descends from the root
to any leaf in the DAG, always visiting a node whose E’ ellipsoid contains the query point. If
a query point x € §, the search will succeed in finding a leaf-level ellipsoid E’ that contains
this point.

""'n.x_level 3

Figure 8 Layers of the Macbeath-based Delone set data structure.

3.3 Approximation through Vertical Ray Shooting

We can now explain how to construct the smooth boundary distance approximation for
Q. First, we construct the lifted body (AZ, as described in Section 3. Given a query point
x € (), its distance to the boundary is determined by the height of the point on 90 hit by an
upward-directed vertical ray shot from x in R4+, To apply the hierarchical search, let § = &,
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and for any ¢ > 0, define ﬁ(;k to be the unbounded convex set that results by translating all
the upper halfspaces bounding  up by distance d; = 2. That is, ﬁ(;z = ﬂ;.lzl ﬁ;‘. Observe
that ng = 0¥, the e-expanded body.

We can apply the data structure described in Lemma 6 to these bodies in R%*!. For any
level of the structure, we say that a covering ellipsoid is a top ellipsoid if there exists x € €,
such that this ellipsoid has the highest intersection point with the vertical ray directed up
from x among all the ellipsoids in the cover. Because the covering ellipsoids cover Q it follows
that the union of the top ellipsoids, when projected vertically onto R?, covers the original
body €.

To answer vertical ray-shooting queries using our hierarchy, we traverse the hierarchy
of ellipsoids, but whenever we descend a level in the DAG structure, among all the nodes
whose covering ellipsoid E’ intersects the vertical line segment passing through z, we visit
the one having the highest point of intersection with the ray (see Figure 9). It was shown
in [1] that the number of ellipsoids that need to be considered is O(1). Therefore, in time
proportional to the number of levels, which is O(log(1/¢)), we can find the top ellipsoid at
the leaf level traversed by the vertical ray.

level 2 — level 1 . level 0

Figure 9 Vertical ray-shooting in the hierarchical structure.

Furthermore, because all these ellipsoids lie within ﬁgu, the terminus of the vertical ray
lies within the vertical gap of length € between Q and (AW, as required in Lemma 4. Finally,
through an appropriate adjustment of the scaling factors A, and A., we can apply the same
analysis as in Arya et al. [4, Lemma 3.5] to find a witness hyperplane that serves as the
representative for all vertical rays passing through this ellipsoid. Since the construction
is performed in R¥!, the space required is O(1/¢%/?). This implies that, even ignoring
continuity, we can answer e-approximate boundary distance queries efficiently.

» Theorem 7. Given a convex polytope Q € R?, there exists a data structure that can answer
absolute e-approximate boundary distance queries (without continuity guarantees) for Q in
time O(log(1/¢)) and storage O(1/e%/?).

There are a couple of additional properties, which will be useful for the task of computing
smooth distance approximations. First, because the boundaries of Q and Q7 are separated
by a vertical distance of €, we can infer that the Macbeath ellipsoids cannot be too skinny.

» Lemma 8. Fach of the covering Macbeath ellipsoids in the data structure of Theorem 7
contains a Fuclidean ball at its center of radius at least ce, for some constant ¢ (depending
on e and d).

Proof. The centers lie within (AZ, and Macbeath regions are defined with respect to a+
whose boundary has a vertical separation of €. Because the distance function is 1-Lipschitz
continuous, the sides of both of these bodies have a slope (with respect to vertical) of at
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most 1. Hence, the distance from any point in Q to the boundary of O+ is at least 5/\/&
Therefore, the scale-1 Macbeath region contains a ball of this radius at its center. The
covering Macbeath region has a ball of radius £(\./v/d). The John ellipsoid contains a ball
of radius e(A\./Vd)/vVd = (\./d). Setting ¢ = \./d, completes the proof. <

Second, from the properties of the Macbeath-based Delone set, each point of Q is covered
by only a constant number of the covering ellipsoids at the leaf level. While this does not
necessarily hold for the vertical projections of these ellipsoids, it does hold when we restrict
attention to the top ellipsoids. Let Ay denote maximum number of ellipsoids that may
contain any given point x € €.

» Lemma 9. The blending patches I1 resulting from the vertical projections of the top covering
ellipsoids have constant depth, that is, A = O(1).

Before giving the proof, we establish a useful technical lemma. Let us begin with some
notation. Given a concave function f : R¢ — R, its hypograph, denoted f—, is the set of
points in R%*! lying on or below the function. Clearly, f~ is a convex set. For any point
z € f, define the ray distance of x with respect to f~, denoted ray ;- (2) to be the length
of a ray shot upwards from x to the boundary of f~. For any x € f~ and A > 0, define
M ;‘, () as the A-scaled Macbeath region relative to f~. We omit explicit references to f~
in subscripts when it is clear from context.

» Lemma 10. Given concave f: R? =R, 2 € f~ and A\ > 0, for all y € M;‘_ (z),
(L=X) ray;(z) < ray;(y) < (14 A)-ray;-(z).

Proof. To simplify notation, let r, = ray,—(x) and r, = ray;—(y). To prove the upper
bound, let 2’ denote the intersection of the vertical ray through x with the boundary of f~
(see Figure 10(a)). Consider a supporting hyperplane hg for f~ passing through z’. Let hy be
the parallel supporting hyperplane passing through x, and let hy be the parallel supporting
hyperplane along the lower side of M*(x). Clearly, the vertical distance between hy and hq
is 75, and the vertical distance between hy and hs is Ar,. Since M (z) lies entirely above
ha, it follows that the vertical segment defining r, lies entirely below hg and above hs, which
implies that ry <7y + Ary = (14 A)rg, as desired.

Figure 10 Proof of Lemma 10.

To prove the lower bound, let 3’ denote the point where the vertical ray through y
intersects the boundary of f~ (see Figure 10(b)). Let gy denote a supporting hyperplane
for f~ passing through 3. Let g; be the upper parallel supporting hyperplane for M*(z),
and let g5 be the parallel hyperplane passing through z. Let §; denote the vertical distance
between gg and gi, and let Jo denote the vertical distance between gy and go. By definition
of the Macbeath region, we have d2 — 1 = A\d2, or equivalently 6; = (1 — A)dy. Clearly, y
lies below g1, and so r, > 1. Since all of f~ (including z’) lies below go, we have r; < do.
Therefore, 7, > 01 = (1 — A)d2 > (1 — A)ry, as desired. <
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Proof of Lemma 9. Recall that constants A. and A, are the so called covering and packing
scale factors used in our construction. Given a point x € Q%) let M'(x) and M (x) denote
respectively the covering (A.-scaled) and packing (Ap-scaled) Macbeath regions centered at z
with respect to the expanded body QF. Define E'(z) and E”(z) analogously for Macbeath
ellipsoids.

Recall that our construction is based on a maximal point set X C Q such that the
packing ellipsoids E”(z) are disjoint for z € X and E’(z) cover ). Given any ¢ € €, let
X (q) € X denote the set of top covering ellipsoids E’(x) whose vertical projection contains
q. Equivalently, x € X (q) if the vertical ray passing through ¢ intersects E’(z). It suffices to
show that for any ¢ € Q, | X (¢)| = O(1).

For any x € ﬁ*, define ray(z) to be the length of a vertical ray shot from z up to the
boundary of O+, By definition of a top ellipsoid, for any = € X(q), there exists a point
z € F'(x) such that ray(z) < e. Since E’(z) C M'(x), we have z € M'(z) (see Figure 11(a)).
Thus, by Lemma 10 with O+ playing the role of f~ and z playing the role of y, it follows
that ray(z) <ray(z)/(1 — Ac) <e/(1 — A.). Applying the lemma again, it follows that for
any other point y € E’'(x), we have

ray(y) < (14 A.) ray(z) <

Also, because z € ﬁ, we have ray(z) > e, implying again by Lemma 10 that ray(y) > (1—X\.)e.
In summary, for each z € X(q), there exists a point y along the vertical ray shot up from ¢

such that (1 — A\.)e <ray(y) < %J_rir c.

Figure 11 Proof of Lemma 9.

Let Y(q) be any maximal set of points along the vertical line through ¢ that have ray
distances in the interval [(1 - Ao), if’;i]s and whose packing Macbeath regions are pairwise
disjoint (see Figure 11(b)). Each such Macbeath region covers an interval of length at least
Ap(1 = Ac)e. By a standard packing argument, there are at most a constant ¢’ (depending
on A, and A.) of such Macbeath regions, and their covering Macbeath regions cover this

subsegment of the vertical line.

Now, associate each point z € X (g) with any one of the points of y € Y (q), such that
M'(xz) N M'(y) # 0 (see Figure 11(c)). By the prior observations, such a point of y exists for
each z. By expansion containment (Lemma 5), a constant factor expansion of M’ (y) contains
M’(z) and vice versa. Therefore, the volumes of these bodies are equal up to constant
factors (depending on A, and the dimension d). Because A, and A. are both constants, the
volumes of M"(xz) and M"(y) are related by constant factors. Thus, by a straightforward
packing argument, the disjointness of the M"(x) Macbeath regions implies that the number
of x € X(q) that are associated with any y € Y (¢q) is bounded above by some constant ¢”.
Thus, we have | X (q)| < ¢/¢” = O(1), as desired. <
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4 Putting it Together

We can now explain how to combine the results of the previous section with the partition-of-
unity method from Section 2, to obtain the final smooth distance approximation.

The set of patches IT = {II;} used in blending consist of the vertical projections of all the
top ellipsoids from level-0 of the vertical ray-shooting data structure. Each ellipsoidal patch
II; is represented by its center ¢; € R? and a positive-definite matrix M; such that

I; = {zeR®: fi(z) <1}, where f;(z) = (z —¢;)TM;(x — ¢). (5)
Recalling the definition of the standard mollifier p from Eq. (4), we define

Yi(x) = p(fi(x)). (6)

Given these weight functions, we apply Eq. (3) to obtain the blending function ¢;(x) for
each patch. Recall that each of the top ellipsoids II; is associated with a representative of
the upper envelope of Q in the form of a halfspace H; = {x € R? : a]x < b;}. As mentioned
in Section 3, the associated local distance function is v;(x) = b; — a]z (Eq. (1)).

Given a query point x, we use the vertical ray-shooting data structure to determine
the patches II; containing it. By Lemma 9, there are a constant number of them. We
apply Eq. (2) to blend together the local distance functions to obtain the final distance
approximation, CTQ(:E) The space and query time are dominated by the complexity bounds
for the ray-shooting data structure, given in Lemma 7. This establishes the correctness and
complexity bounds of Theorem 2. The bounds on the norms of the gradient and Hessian are
rather technical and will appear in the full version.

5 Concluding Remarks

In this paper, we have taken first steps towards designing data structures for approximately
answering geometric distance queries approximately, while more faithfully preserving prop-
erties of the underlying distance functions. Existing data structures based on computing
approximate nearest neighbors suffer from discontinuities in the resulting distance field,
which is undesirable in many applications. We have presented a general method for achieving
smoothness by combining a traditional (discontinuous) method with blending, and we have
illustrated the technique in the concrete application of approximating (in terms of absolute
errors) the distance field to the boundary, induced within a convex polytope Q in R%. Our
data structure is efficient in the sense that it nearly matches the best asymptotic space
and time bounds for the simpler problem of approximately determining membership within
the polytope (being suboptimal by a factor of 1/4/¢ in the space). We have also presented
bounds on the norms of the gradient (first derivative) and Hessian (second derivative) of the
approximation.

There are a number of interesting open problems that remain. The first is applying this
method to more approximate nearest neighbor search applications. We have done this for a
discrete set of points in R¢, which we plan to publish in a future paper. While our results
nearly matching the best known complexity bounds for e-approximate nearest neighbor
searching, the technical issues are quite involved. The method can be applied to other query
problems where the answer is naturally associated with a continuous field. Examples include
penetration depth in collision detection [47], distance oracles in robotics and autonomous
navigation [44], and novel-view synthesis using parametric radiance fields [20].
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While our approach produces a smooth approximation, there are other properties of

distance fields that would be useful to preserve. One shortcoming of our method is that it can
produce spurious local minima in the approximate distance field. An interesting question is

whether our approach can be modified to eliminate these minima. We anticipate interesting
connections to the literature on vector field design [43] and mode finding [28].
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—— Abstract
Motivated by the problem of redistricting, we study area-preserving reconfigurations of connected
subdivisions of a simple polygon. A connected subdivision of a polygon R, called a district map,
is a set of interior disjoint connected polygons called districts whose union equals R. We consider
the recombination as the reconfiguration move which takes a subdivision and produces another by
merging two adjacent districts, and by splitting them into two connected polygons of the same area
as the original districts. The complexity of a map is the number of vertices in the boundaries of its
districts. Given two maps with k districts, with complexity O(n), and a perfect matching between

Ollogk) recombination

districts of the same area in the two maps, we show constructively that (logn)
moves are sufficient to reconfigure one into the other. We also show that (logn) recombination

moves are sometimes necessary even when k = 3, thus providing a tight bound when k = 3.
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1 Introduction

We consider the problem of redistricting — the partition of a geographic domain into disjoint
districts. In particular, we consider the case when these districts are required to be connected
and of roughly equal population. These criteria are typically enforced in political redistricting,
wherein each district elects one or more representatives to serve on a governing body, a
canonical example being Congressional districts in the United States. Even under these
restrictions, the space of possible redistricting plans for a typical domain is intractably vast,
making it difficult to sample from this space. Recently, algorithms for generating large samples
of plans have made it possible to find the neutral baseline for a particular state, which in turn
can be used to detect and describe gerrymanders (i.e., unfair maps) [9, 8, 10, 13, 14, 17, 18].
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The most common and successful sampling algorithms for redistricting are Markov chains
that perform a sequence of reconfiguration moves on an initial map. The most prominent
reconfiguration move is the recombination or ReCom move (see Figure 1), which is a move that
modifies two adjacent districts while maintaining population balance and connectivity [13, 14].
In order to properly sample from the space of redistricting plans, we should require that any
feasible redistricting plan can be reached from the initial map by a finite sequence of ReCom
moves. That is, we want to positively answer the reachability question for this reconfiguration
move; in the language of Markov chains this would be to prove that any chain built on the
ReCom move is irreducibile.

Historically, most redistricting algorithms have operated on a discretized version of the
geographic domain. In this framework, a district map is modeled as a vertex partition
of an adjacency graph [14, 24]. This is natural since population data is only available at
the level of fixed geographic units, such as Census blocks in the case of the United States.
The ReCom algorithm fits within this framework, and current versions all use a spanning
tree method on the adjacency graph to perform the ReCom move. Unfortunately, it is
easy to construct small pathological examples of graphs for which ReCom reachability fails.
Moreover, even determining whether two plans can be connected via a sequence of ReCom
moves is PSPACE-complete [3] for general (planar) graphs.

A reasonable but unproven hypothesis is that for real-world adjacency graphs representing
sufficiently fine discretizations of the geographic domain, we will indeed have reachability. A
general theorem covering all adjacency graphs of interest seems beyond reach, which has led
to a search for intermediate results. One direction of investigation is to allow a large class of
graphs but relax the population balance constraint considerably; in such cases theoretical
results are possible [2, 3] (see Related Work below). Reachability on grid graphs or triangular
lattices is an active area of research but as of yet without concrete results.

In this paper, we return to the original hypothesis — that sufficient discretization leads
to reachability — to motivate our result. Instead of modeling redistricting plans as graph
partitions, we adopt a continuous model where the districts are connected polygons of equal
population which partition a polygonal domain. Note that sampling algorithms based on
this model do exist in the literature, most notably the power diagram method in [11], but
these algorithms are not Markov chains and require an extra refinement step to go from
polygonal partitions to partitions that respect the geographic units.

In our continuous model, we are able to establish reachability for the ReCom move —
that is, any two polygonal partitions can be connected by finitely many ReCom steps that
merge and resplit adjacent polygonal districts. The implication is that given two real-world
redistricting plans, a sufficiently fine discretization of the geographic domain allows a finite
sequence of ReCom moves (on the adjacency graph) to connect them. In practice this could
mean that a particular map is not reachable from the initial map when considering voting
precincts as geographic units, but could become reachable when working with Census blocks.

Related Work. In the discrete setting, the context for the reachability problem consists
of a graph G with n nodes, a number of districts & and a slack € > 0. Valid partitions are
defined as partitions of V(G) into k non-empty subsets (called districts) that each induce
connected subgraphs such that the number of vertices in each district lies in the interval
[(1—¢)%, (1 +¢)%]. Two common reconfiguration moves on the space of valid partitions
are the switch move and ReCom move. A switch move [15, 21] consists of reassigning a
single node to a new district. Using the switch move allows one to construct a Markov
chain on the space of valid partitions with easily computable transition probabilities. A
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Figure 1 A sequence of three recombination moves on the state of Wisconsin. At each step, two
districts are merged and split again. The reachability problem is to determine whether any map can
be reached from any other by a finite sequence of such steps.

Metropolis-Hastings weighting can then be used to ensure that the chain samples (in the
limit) from any desired distribution on the space of valid partitions. Crucially, however, this
relies on the assumption that the state space is connected, i.e., that any two partitions can
be connected by switch moves. It is not hard to design concrete examples of graphs for which
this is not true with ¢ = 0. It is known that for € = oo, the state space is connected under
the switch move when G is biconnected; furthermore, that deciding whether two partitions
can be connected by switch moves is PSPACE-complete even when G is planar [2].

The usefulness of the switch move is hampered by the fact that Markov chains built
on it tend to mix slowly [23]. As a result, larger reconfiguration moves, that are often
more effective on real-world instances, were introduced. The ReCom mowve [13, 14] consists
of merging and resplitting two adjacent districts (note that the switch move is a special
case of a ReCom move). When designing a Markov chain based on this move, the most
common method for resplitting is to draw a random spanning tree of the merged districts
and cut an edge such that the resulting connected components form a valid partition. The
disadvantage to such a process is that the transition probabilities between partitions appear

to be intractable, so that the resulting Markov chain has an unknown stationary distribution.

Recently, modifications of the original ReCom Markov chain have been proposed which have
computable transition probabilities [4, 6]; however, an accurate description of the stationary
distribution still requires the state space to be connected. It is easy to construct a graph G
for which the space of valid partitions is not ReCom-connected for ¢ = 0 (even for a 6x6
grid graph [6]). It is known [3] that the state space is connected whenever G is connected
and € = oo, and also when G is Hamiltonian and € > 2; deciding whether two partitions can
be connected by ReCom moves is PSPACE-complete even when G is a triangulation.

Contributions. In this paper, we introduce a continuous model for redistricting and ReCom
moves, where the districts can be arbitrary connected polygons (with real coordinates) in
a polygonal domain (Section 2). While the configuration space in this setting contains
infinitely many maps, we prove that it is always connected under ReCom moves. Our proof is
constructive, and provides an upper bound on the minimum number of ReCom moves between
any two maps in terms of the number of districts k£ and the complexity of the district maps
n (i.e., the number of vertices of all polygons in the initial and target maps). We start with
the first nontrivial case, k = 3 districts in a unit square domain, and show that between any
two maps of complexity O(n), there is a reconfiguration path consisting of O(logn) ReCom
moves (Theorem 9 in Section 3). Importantly, the complexity of the map remains O(n) in all
intermediate steps. Our reconfiguration algorithm generalizes to k districts in an arbitrary
polygonal domain, using a recursion of depth O(log k). It yields an exp(O(logk loglogn))

6:3

ESA 2023



6:4

Reconfiguration of Polygonal Subdivisions via Recombination

bound on the number of ReCom moves between two maps; however, for the complexity of
intermediate maps we obtain only a weaker bound of k" (Theorem 10 in Section 4). On
the other hand, we show that (even for k¥ = 3) the diameter of the configuration space is
infinite by constructing pairs of maps which require arbitrarily large numbers of ReCom
moves to connect (Theorem 12 in Section 5). The number of moves for these examples grows
logarithmically with the complexity of the maps, thereby providing a lower bound which
perfectly matches our upper bound.

2 Preliminaries

A region is a connected set in R? bounded by one or more pairwise disjoint Jordan curves.
A k-district map M(R) = {Dx,..., Dy} is a decomposition of a region R into k interior-
disjoint regions (that is, R = Ule D; and int(D;) Nint(D;) = @ for i # j), where R is
the domain, and Dy, ..., Dy are the districts of the map. We may refer to M(R) simply
as M if R is clear from the context. A recombination move (for short, ReCom) takes
a map M(R) and two districts D;, D; € M(R) and returns a new district map of the
same domain M'(R) = M(R)\ {Di, D;} U{D;, D;}. A recombination is area-preserving if
area(D;) = area(D;) and area(D;) = area(D}). Two k-district maps, M(R) = {Dx1,..., Dy}
and M'(R) ={D},...,D;}, on a domain R are area-compatible if there is a permutation
m:{1,...,k} = {1,..., k} such that area(D;) = area(D} ;) forall i =1,.... k.

We assume that the domain R is a simple polygon, and each district is a connected
polygon (possibly with holes). The configuration space of a map M(R) is the set of all
polygonal district maps on R that are area-compatible with M (R). We define the complexity
of a map M as the total number of vertices on the boundaries of all districts in M(R). We
show (in Section 4) that w.l.o.g. we may assume a unit square domain R = [0, 1]%. The area
of a polygon P, denoted area(P), is either the Euclidean area of P or the integral | poof
some nonnegative integrable density function ¢ : R — R>o. We show (Theorem 10) that
between any pair of area-compatible district maps there is a sequence of area-preserving
recombinations (i.e., the configuration space of area-compatible district maps is connected).

Weak Representation. In intermediate maps of a ReCom sequence, we use infinitesimally
narrow corridors to keep the districts connected. In order to handle narrow corridors
efficiently, we rely on a compressed representation of district maps using weak embeddings
(defined below), where each corridor is represented by a polygonal path; see Fig. 2. The
compressed representation has two key advantages: (1) We may assume that corridors have
zero area; and (2) we may reduce the total number of vertices by representing several parallel
corridors by overlapping polygonal paths (with shared vertices). In Sections 3—4, we construct
a sequence of ReCom moves on compressed maps. We show (in Proposition 1 below) that the
polygonal paths can be thickened into narrow corridors in each stage of the ReCom sequence
to produce a ReCom sequence in which the districts are simple polygons.

An embedding of a planar graph G is an injective function from G (seen as a 1-dimensional
topological space) to R?; intuitively it is a drawing of G in which edges can intersect only at
common endpoints. A weak embedding of G is a continuous function from G to R? such that,
for every € > 0, each vertex can be moved by at most ¢ and each edge can be replaced by a
curve within Fréchet distance e to form an embedding of G (i.e., an e-perturbation of a weak
embedding is an embedding). In particular, a simple polygon is a piecewise linear embedding
of a cycle and the region bound by it; and a weakly simple polygon is a piecewise linear weak
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embedding of a cycle and the region bounded by it. A polygon (with possible holes) is a
simple polygon with pairwise disjoint simple polygons (holes) removed. Similarly, a weak
polygon is a weakly simple polygon with pairwise disjoint weakly simple polygons removed.

Figure 2 An example of a weak embedding of a map. Left: multiple corridors connect disconnected
regions. Right: the corridors are thickened to create three simple polygons.

For a district map M, the boundaries of the districts jointly form a straight-line embedding
of some abstract graph G. By identifying edges on opposite sides of narrow corridors, we
obtain a weak embedding of G. In a weak embedding, two or more corridors may overlap,
and we maintain a linear order among all overlapping corridors.

We use the machinery introduced by Akitaya et al. [1] (based on earlier work [12, 7]);
see also [5, 16]. A weak embedding of G is a piecewise linear map of ¢ : G — R2. The
image graph H is a planar straight-line graph formed by the image ¢(G), where overlapping
vertices (edges) of G are mapped to the same vertex (edge). A weak representation of G
comprises of a weak embedding ¢ and a linear order of overlapping edges of ¢(G) along
each edge of H. We define an e-thickening of H so that G admits an embedding v into the
e-thickening of H so that the Fréchet distance between ¢ and 1 is at most €. We call ¢ an
e-perturbation of the weak representation if the order of the edges of G in the neighborhood
of an edge of H agrees with the given linear order. It is known that if G has n vertices, then
an e-perturbation ¢(G) with O(n) vertices can be computed in O(nlogn) time [1].

Weak Representation for ReCom Sequences. We construct a ReCom sequence in two
passes: The first pass operates on a generic e-perturbation, where the area of each district is
given by the weak representation (hence the corridors have zero area). The second pass then
expands the weak representations into an e-perturbation, using Proposition 1 below (see the
full version of the paper for omitted proofs), where each district is a simple polygon with the
desired area. Note that the number of moves is determined in the first pass.

» Proposition 1. Given two area-compatible k-district maps and a sequence of area-preserving
ReCom moves where districts in intermediate maps are weak polygons with O(n) vertices,
we can compute a sequence of area-preserving ReCom moves of the same length where the
districts in intermediate maps are all polygons with O(n) vertices.

We define the compressed complexity of a district map as the number of vertices in the
image graph H of the weak representation (that is, repeated vertices are counted only once).
The number of ReCom moves produced by our algorithm in Sections 3—4 depends on the
compressed complexity. Using e-perturbations would increase the complexity of maps. For
this reason, it is also useful in our analysis to convert an e-perturbations to a weak embedding
which we do by applying the inverse of the operations described here. Throughout this paper

we use set operations on weak polygons such as D1 U Dy where Dy and Dy are weak polygons.

Let D] and D} be the polygons obtained by the e-perturbation defined in Proposition 1. We
define Dy U Dy to be the weak polygon obtained from D} U Dj.
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3 Reconfiguration for Three Districts

In this section, we consider maps with three districts with a total of n vertices in a unit
square domain R = [0, 1]2. We show that any 3-district map M (R) = {D1, D2, D3} can be
transformed by a finite sequence of ReCom moves into an area-compatible canonical map
in which the districts are axis-aligned rectangles, 1, Q2 and @3, of unit width such that
area(Q;) = area(D;) for i = 1,2, 3.

3.1 Overview of the Algorithm

Our algorithm for transforming a map into the canonical map consists of three stages, each
containing multiple ReCom moves:
Preprocessing (Section 3.2). In this stage, we ensure that our three districts are ordered
top to bottom in a well-defined way, and the middle district has the largest area. Moves
needed: O(1).
Gravity moves (Section 3.3). We perform three ReCom moves to place the districts into
their final positions, with the possible exception of corridors. Moves needed: 3.
Ezxchange sequences (Section 3.5). Corridors maintaining connectivity are carefully
removed, using a tree representation to determine a move that simultaneously removes a
constant fraction of corridors. Moves needed: O(logn).

3.2 Preprocessing: Ordering Property

First we transform the three given districts into simple polygons if necessary. While there is
a district D; that is a polygon with holes, there is an adjacent district D; contained within
a hole. Recombine D; and D; to create a single-edge corridor between D; and the outer
boundary of D;. Next, we create corridors, if necessary, such that each district touches both
the left and right sides of R. While there is a district that is not adjacent to the left (resp.,
right) side s of the R, let D; be such a district closest to s and let D; be an adjacent district
that already touches s; then we recombine D; and D; and append to D; a shortest path to s
along the boundary of D;. Thus, both districts remain simply connected. As all corridors
run along existing vertices of the three districts, the complexity of the map does not increase.
This stage takes O(1) ReCom moves.

After preprocessing, the intersection of each district with the left (resp., right) side of the
square domain is connected; and the order of these intersections is the same on both sides,
or else two districts would cross. Therefore, the districts can be ordered from top to bottom.

We also need to establish the property that the middle district has the largest area. This
can be done trivially with a single ReCom move between the middle district and the largest
district of the three. We call these properties combined the ordering property:

» Definition 2. A three district map M(R) = {D,..., Dy} satisfies the ordering property
if the intersection of each district with the left (resp., right) side of the square domain is
connected, and the middle district, as defined by the resulting order from top to bottom, has
area greater than or equal to each other district.

We assume that the districts are simple polygons in the unit square with a total of n
vertices and describe the details of the recombination moves as we use them in the algorithm.
To reconfigure the districts into their canonical positions, apart from possible corridors, we
perform three gravity moves.



H. A. Akitaya, A. Gonczi, D. L. Souvaine, C. D. Téth, and T. Weighill

3.3 Gravity Move

Assume that M is a 3-district map satisfying the ordering property, with districts labeled Dy
(red), D2 (green), and D3 (blue) from top to bottom. We describe the move GRAVITY (D1, Ds),
which recombines the red and green districts; refer to Figures 3-4. Let P = Dy U D5, which
is a weakly simple polygon by the ordering property. By continuity, there exists a horizontal
line ¢ (that we call the waterline) that partitions the plane into upper and lower halfplanes
¢ and £~ resp., such that area(P N¢1) = area(D;) and area(P N ¢~ ) = area(Ds3). We shall
define new districts D} and D5, resp., that contain PN ¢+ and PN £,

Note, however, that P N¢* and PN ¢~ may be disconnected. We then reconnect disjoint
components of each district by corridors along the boundary of P; see Fig. 4. Note that,
by the ordering property, there is a path 7 on the boundary of D3 (blue) between the left
and right side of the domain R. If there are two or more components of P N ¢+, they are
separated by blue and, therefore they all touch the path w. Therefore (P N{T)U T is a
connected region. Similarly, (PN £~) U is also connected.

We define a red graph as follows: the vertices are the connected components of PN £+
and edges are minimal arcs along m N ¢~ that connect two distinct components of P N ¢+,
Since (P N 1) U is connected, then the red graph is connected. Consider an arbitrary
spanning tree of the red graph, and add its edges (as corridors) to the red district along the
boundary of P. This completes the definition of Dj.

Figure 3 The setup for a gravity move between the red district D; and green district Dy. Left:
a district map satisfying the ordering property. Middle: the union P = D; U D5 is shown in gray.
Right: the horizontal line ¢ equipartitions the gray polygon P.

s funs fans

Figure 4 Constructing the result of a gravity move between red and green on the map in Figure
3. Left: the red region P N¢* and the green region P N ¢~ are each disconnected. Middle: red
corridors create a connected red district Dj. Right: green corridors create a connected green district
D} and restore the ordering property.

Since the blue district is simply connected, each component of P N¢~ also intersects ¢ and
therefore is adjacent to the red district D}. Intuitively, we add corridors along 7 “coating”
the blue district with green and thus restoring the ordering property. Note that m may pass
along the boundary of D, including all red corridors, and the boundaries of the components
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of PN ¢~. Formally, we add green corridors at the intersection of 7 and 9D, if such a
corridor is parallel to a red corridor, it runs between the blue district and the red corridor.
That defines D) and concludes the description of the gravity move.

» Lemma 3. Assume D1 and Dy are the top two districts on a map satisfying the ordering
property. Then GRAVITY(D1,Ds) is an area-preserving ReCom move that maintains the
ordering property.

Since each waterline intersects an edge of a district at most once we have:

» Lemma 4. Assume D1, Dy and D3 each have at most m vertices. Then GRAVITY(D1,D5)
produces districts D} and D}, each with at most O(m) vertices.

The move GRAVITY (D3, D) is defined analogously: a reflection in a horizontal line that
reverses the order of the three districts, such that D]} = D3 becomes the top district and
%, = Dy is the middle district, then apply GRAvVITY(D], D}), followed by another reflection.

» Lemma 5. Let M be a map satisfying the ordering property, with districts Dy, Doy and
D3 from top to bottom. Then GRAVITY(D1, Ds) returns a map that satisfies the ordering
property and DY is disjoint from Qs with the possible exception of corridors, where Qs is the
axis-aligned rectangle of the blue district in the canonical map.

Proof. It suffices to show that the horizontal line ¢ is above Q3. Lemma 3 yields the rest.
By definition, the area below £ is at least area(Dsy) > area(Q3), since Do has the maximum
area of the three districts. Thus, the line ¢ is above Q3. <

Figure 5 An example of a sequence of three gravity moves. (a) A starting configuration; (b) the
result of GRAVITY (D1, D2); (¢): the result of GRAVITY(Ds, D2); (d) the result of the third gravity
move GRAVITY(Dq, D>).

(a)

After three gravity moves each district has positive area only in the regions in their
corresponding districts in the canonical configuration (see Figure 5 for an example).

» Lemma 6. Let M be a map satisfying the ordering property, with districts Dy, Do and D3
from top to bottom. Then the sequence of three moves GRAVITY(D1, Dy), GRAVITY(D3, D3),
and GRAVITY(Dy, Ds) return a map M’ where Dy, Do, and D3 are each contained in their
canonical rectangles, with the possible exception of some corridors.

3.4 Tree Representation of a Region

After prepocessing and the three gravity moves in Lemma 6, we want to eliminate corridors.
We encode the topology of the region P = Dy U D5 in a graph that we use for the EXCHANGE
sequence, described below.
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We define the corridor graph T(R) of a weakly simple polygon R C R. A weakly simple
polygon has a natural decomposition into pairwise disjoint simple polygons and corridors
(polygonal paths). The nodes of T'(R) are simple polygons in the decomposition of R, and the

edges represent corridors between two polygons in R. Denote the set of edges by E(T(R)).

At each node, the rotation of the incident edges represents the counterclockwise order of
corridors along the corresponding polygon in R. The weight of each node is the area of the
corresponding polygon. As corridors have zero thickness, the total weight of the nodes is
W = area(R).

In particular, we want to consider the corridor graph of P = Dy U Ds. Assume that M is
a 3-district map returned by the three gravity moves in Lemma 6. By the ordering property,
we know that the intersection of Dy and Dy is a simple path - either from one side of the
square to another or, if Dy is contained in Ds, then it is a closed curve. Thus, P is a weakly
simple polygon. Let @12 be the union of the two axis-aligned rectangles that contain D; and
D5 in the canonical configuration. Then, the nodes of T(P) are simple polygons in P N Q12
(regions bounded by corridors of D3) and the edges are corridors in R\ Q12 that connect two
such polygons (corridors of Dy and Dy running through @3). Note, however, that a corridor
in P may be the union of three parallel corridors in Ds, Dy, and Do, resp.; see Fig. 6. Since
P is a weakly simple polygon, T'(P) is a tree; see Fig. 6. Note that the number of vertices in
T(P) is bounded above by the compressed complexity of the map and that many different
maps can have the same corridor graph.

(a) (b)

Figure 6 (a) A map M after 3 GRAVITY moves. (b) The nodes of the corridor graph T'(P)
correspond to connected components of PN @12, indicated by distinct colors. (¢) The corridor graph
T(P) encodes the topology of P.

We use the corridor graph T'(P) to eliminate corridors. Consider what happens if the
tree has a leaf that is entirely part of the green district (see Fig. 7). This means that by
doing a gravity move between green and blue we can eliminate the green and blue corridors
adjacent to this leaf, removing the leaf from the tree altogether. Our goal is therefore to
create a part of the tree which is entirely green.

The centroid of a vertex-weighted tree of total weight W is a vertex whose removal
partitions the tree into subtrees of weight at most % each. Jordan [19] proved that every tree

(with unit weights) has a centroid; this was perhaps the oldest separator theorem [20, 22].

The result extends to weighted trees: a greedy algorithm finds the centroid in linear time.

Let ¢ be a centroid of T'(P), and assume that T'(P) is rooted at c. A subtree of T'(P)
is contiguous if it consists of the centroid ¢, some children of ¢ that are consecutive in the
rotation order of ¢, and all their descendants in T'(P).

6:9

ESA 2023



6:10

Reconfiguration of Polygonal Subdivisions via Recombination

» Lemma 7. There exists a contiguous subtree T* of T(P) such that: (i) T* contains at
least & of the vertices of T(P), and (ii) the weight of T* is at most %¥- + w(c), where w(c) is
the weight of the centroid c.

Proof. By the definition of the centroid ¢, the removal of ¢ produces a forest T'(P) — ¢, where
the weight of each component (tree) is at most %-. Partition these deg(c) trees into up to
three forests of consecutive subtrees such that each forest has weight at most % as follows.
Begin with a partition into deg(c) forests, each containing a single tree, and maintain their
cyclic order around c¢. While there are two consecutive forests whose combined weight is at
most %, merge them into a single forest. The while loop terminates with three or fewer
forests: Indeed, for four or more forests, the combined weight of at least one of the consecutive
pairs would be at most % by the pigeonhole principle. Since we partition T(P) — ¢ into
three forests, one of them contains at least % of the vertices T(P) — ¢. Adding ¢ to this forest,
we obtain a contiguous subtree of T'(P) containing at least 3 of the vertices of T'(P). <

3.5 Exchange Sequence

We now describe the exchange sequence, a sequence of three ReCom moves, which eliminates
a fraction of the corridors and reduces the (compressed) complexity of the map. Assume we
are given a 3-district map M satisfying the ordering property. As before, label its districts
red, green, and blue from top to bottom. We further require that there exist two horizontal
lines ¢; and ¢5 such that red has positive area only above /5, blue has positive area only
below ¢, and green has positive area only between ¢; and {5 (cf. Lemma 6). See Figure 7
for an example.

Let ¢ be a centroid of T'(P), where P = D1 U Dy and let T* be a contiguous subtree of
T(P) rooted at the centroid, as in Lemma 7. The exchange sequence consists of the following
three ReCom moves:

1. ReCom green and red: Let ) denote the regions of T* except for the region corresponding
to node ¢. First make @ green. Then partition the remaining region P\ @ with a
gravity-like move as follows. Apply a GRAVITY move w.r.t. P\ @ to subdivide it into
two weak polygons of areas area(D1) for red and area(Ds) — area(Q) for green; see Fig. 7.
After this ReCom move, D; is weakly simple and D- is a weak polygon (in which D is a
hole if @) is a weak polygon with a hole).

2. ReCom green and blue removing unnecessary green and blue corridors simultaneously as
follows. Remove any green and blue monochromatic corridors corresponding to all edges
of T*. Note that this merges some nodes of T'(D3) (see Fig. 7), and creates cycles in
T(D3). While there is a cycle in T'(D3) remove a blue corridor in an edge of T'(Ds3) in
a cycle. As this process modifies only green and red, it requires a single ReCom move.
After this ReCom move, D3 is a weakly simple polygon and Ds is a weakly simple or
weak polygon.

3. ReCom green and red with a GRAVITY move, restoring the ordering property.

» Lemma 8. Let M = {D;, Dy, D3} be a 3-district map with the ordering property, and
M’ = {D}, D}, D} the map returned by an EXCHANGE sequence on M. Let P = D1 U Dy
and P' = D} U D). Then, M’ satisfies the ordering property, and |E(T(P"))| < 2|E(T(P))|.

3.6 Full Reconfiguration Algorithm

Overall, the algorithm for a 3-district map M ([0,1]?) = {D;, D2, D3} works as follows:
after a preprocessing phase of O(1) ReCom moves, apply the sequence of three moves
GRAVITY (D1, D2), GRAVITY(D2, D3), and GRAVITY(D;, D3); compute the corridor graph
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Figure 7 An exchange sequence, shown with maps (left) and corresponding tree representations
(right). Top: a map returned by a sequence of three gravity moves. Middle: using node 1 as the
centroid ¢ and filling the subtree containing nodes 2, 3, 7 and 8 with green. Bottom: removing
unnecessary corridors and performing a gravity move.

T(P) for P = Dy U Ds; while T(P) has two or more nodes, apply an exchange sequence.

Once T'(P) has one node, GRAVITY(D1, D5) yields the canonical configuration.

» Theorem 9. Given a 3-district map M([0,1]?) = {D1, Do, D3} of complexity n, there is a
sequence of O(logn) ReCom moves that transforms it into a canonical map. Furthermore,
the districts in each intermediate map are polygons with O(n) vertices and at most one hole.

Proof. After preprocessing, three GRAVITY moves bring the districts into canonical form
with the possible exception of corridors. Each exchange sequence eliminates a constant
fraction of corridors by Lemma 8. After O(logn) ReCom moves we then obtain the canonical
configuration.

The algorithm described above produces a sequence of ReCom moves, where the districts
in intermediate maps are weak polygons. By Proposition 1, these maps can successively be
perturbed into polygons. This completes the proof of the first claim.
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It remains to show that the districts in each intermediate map are polygons with O(n)
vertices and at most one hole. By construction, the only possible hole appears in the green
district after the first step of the EXCHANGE sequence. Each of the O(1) ReCom moves in
preprocessing adds a corridor with O(n) vertices, and so each district has O(n) vertices at
the end of preprocessing. By Lemma 4, each gravity move increases the number of vertices
by a constant factor. After three gravity moves, each district still has O(n) vertices.

The algorithm applies O(logn) exchange sequences. At the end of every exchange
sequence, the districts are in canonical form with the exception of corridors. Each exchange
sequence removes some of the corridors, and does not create new corridors. It should be clear
that the complexity of the blue district only decreases since corridors are only eliminated
and never created. Note that intermediate ReCom moves within an EXCHANGE sequence
(step 1) may add O(n) new vertices to the red district. In an exchange sequence, the 1st
ReCom move is a GRAVITY move w.r.t. a sub-polygon, and creates only O(n) new vertices by
Lemma 4. The 2nd ReCom move eliminates corridors (and the corresponding vertices); and
the 3rd ReCom move eliminates any other vertices created in the 1st move of the sequence.
Thus, the complexities of the red and green districts decrease after one EXCHANGE sequence.

Finally, when we perturb all weak polygons into polygons in the entire ReCom sequence,
the number of vertices remains O(n) for each district by Proposition 1. |

4 Reconfiguration for k Districts

We generalize our algorithm to an arbitrary number of districts, using recursion. For any
3 <k <mn,an instance I = (M(R), M'(R), ) of the problem consists of two area-compatible
k-district maps M(R) = {D1,...,Dx} and M'(R) = {D},...,D}}, where R is a weak
polygon with at most one hole, and ¢ is a density function. We define the complexity of I
(denoted |I|) as the pair (k,n), where n is the maximum over the compressed complexities
of M and M’', and the complexities of all districts D; and D (i € {1,...,k}). The overall
recursive strategy goes as follows (see the full paper for the details): First construct a
piecewise linear retraction from a (possibly punctured) unit square S to R, and extend M
and M’ to two maps on S. If k > 4, then group the k districts into three superdistricts, each
containing |k/3] or [k/3] districts; and run the algorithm in Section 3 on the superdistricts.
Note that each ReCom move on a pair of superdistricts is an instance of our problem with
fewer districts, which can be solved recursively. The retraction then transforms the ReCom
sequence on S to a ReCom sequence on R. We analyze the recursion to give a bound on the
number of ReCom moves.

» Theorem 10. Given any two area-compatible polygonal k-district maps of complexity at
most n in a simply connected domain, exp(O(log kloglogn)) = (logn)PUesk) = [OUoglogn)
ReCom moves are sufficient to transform one into the other. Furthermore, the complexity of
each map in intermediate steps is nko"

Proof. For 3 < k < n, let T(k,n) denote the minimum number of ReCom moves that can
transform any polygonal k-district map to any other with compatible areas, and the domain
as well as each district is a polygon with at most n vertices. From an instance I(k,n), our
algorithm makes O(logn) recursive calls of the form T (%, ¢-n), where c is a constant. Then,

T(k,n) <O (T <2;,c-n> -logn) + O(k).
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The height of the recursion tree is O(logk) and the maximum branching factor is
O(log(n - c°8¥)) = O(logn + logk) = O(logn) since k < n. Then T(k,n) solves to
exp(O(log kloglogn)) = (logn)@Uogk) = fOoslogn) By Proposition 1, we can convert
the ReCom sequence on weak representation to a ReCom sequence of the same length in
which all districts are simple polygons.

The analysis above prioritized the number of ReCom moves, rather than the complexity of
the map at intermediate steps. For instance, consider the recursion that simulates a ReCom
move of superdistricts transforming a k-district map M(R) into M'(R). Our algorithm
recurses on a %—district map of complexity c¢-n on a punctured square S, which yields a
sequence of O(logn) ReCom moves. However, to convert this into a sequence of ReCom
moves on k-district maps, one must apply a retraction H* (in the full paper) to every
intermediate map, retracting a weakly simple polygon H to its boundary dH. Since the
complexity of H could be Q(n), H might cross the same district Q(n) times, which causes H*
to push the district into (n) narrow corridors along the boundary of H. This might cause
the complexity of the district to increase to Q(n?) in intermediate steps. The retraction H*,
described in the full paper, ensures that the complexity goes up from n to at most O(n?)
after applying H* in each recursive step. Since the depth of the recursion tree is O(log k),
the maximum complexity of all intermediate maps is n2"*" = pk?Y Note that this does
not increase the number of ReCom moves since M and M’ are determined in the parent
level, and H* is only applied to recover intermediate steps between M and M’, which are
obtained from lower complexity maps in the children level. |

5 Lower Bound Construction

This section shows that Q(logn) ReCom moves are sometimes necessary to transform a given
map of complexity n into canonical form, even for three districts of equal areas in [0, 1]%.

Overview. We describe an initial map with 3 districts in a unit square, and show that after
k ReCom moves, each district contains an arc of a specific combinatorial pattern (defined
below). These arcs are defined recursively, each iteration roughly tripling the complexity of
the arcs. Thus the total complexity of the arcs in iteration ¢ is O(3¢). The initial district
map is a thickening of one of these arcs after m > 6 iterations. We show that if each
district contains an arc from iteration ¢, then after a recombination they each contain an
arc of iteration ¢ — 4. In the canonical configuration, each district can only contain arcs
of iteration 1. Then, the number of recombinations from the initial district map to the
canonical configuration is at least linear in the number of iterations.

Construction. We first describe the family of simple arcs Fp, for all £ € Ny, mentioned in
the overview. All arcs in Fy will start at the e-neighborhood of the left side of the square
and end at the e-neighborhood of the right side, crossing the middle section 3¢ times. Each
family Fy can be described with a combinatorial pattern, namely, the order in which the arcs
traverse the 3¢ segments in the middle section of the square. In the base case, Fy is the set
of arcs that cross the middle section only once. Given an arc vy, € Fy, we describe an arc
Ye+1 € Fye1. We construct two arcs, ’y;,fy[ € Fy, that closely follow 7, on the left and on
the right, respectively, and are mutually noncrossing. Then 7,41 is the concatenation of vy,
the reverse of v, , and 72', where two consecutive arcs are connected by short arcs in the left
and right e-neighborhoods of the square; see Fig 8. Let Fyy; be the family of all arcs with
the same combinatorial pattern as y,41. The following observation follows by construction.

6:13

ESA 2023



6:14

Reconfiguration of Polygonal Subdivisions via Recombination

Figure 8 The first three levels of the recursive construction for arcs in Fy, for £ € {0, 1,2}. Note
that the blue, green, and red arcs for £ = 2 each resemble a copy of the entire stage for £ = 1.

» Observation 11. For 0 < j < ¢, we can partition every arc v, € Fy into 37 arcs in Fy_;.

Initial Map. The initial map is drawn relative to an arc -, € F,, whose middle segments
are equally spaced horizontal line segments in the unit square. The map is a “thickening”
of v,,, where the middle section is partitioned into 3" rectangles of equal area. Each of the
three districts is created based on one of three rough copies of v,,_1, i.e., the (m — 1)-anchors
of v,,. We use the portions of the anchors of ~,, in the e-neighborhoods of the vertical sides
of the unit square to construct corridors that make each district connected.

In the full paper, we show that any ReCom move can only make constant progress (in
the number of iterations) towards the canonical map.

» Theorem 12. There ewist two area-compatible 3-district maps, M and M’, both with
complezity O(n), such that Q(logn) ReCom moves are necessary to reconfigure M into M,
even when the districts in both maps are azis-aligned orthogonal polygons with vertices on an
integer grid of size O(n) x O(n).

6 Conclusions

We have shown that (in our continuous setting) any pair of area-compatible district maps
can be reconfigured into each other by a sequence of area-preserving recombination moves.
Though the discrete version of this result remains unsolved (see Related Work), our result
suggests that for any two maps, with a discretization of the geographic domain which is
granular enough, we can connect them by ReCom moves. However, establishing quantitative
bounds on the necessary granularity is left for future work.

Between 3-district maps, the number of recombination moves is O(logn), where n is the
combinatorial complexity of the maps, matching our worst-case lower bound of Q(logn).
Between k-district maps, for k > 4, we construct a sequence of exp(O(logkloglogn)) =
(logn)?U°ek) ReCom moves. It remains an open problem whether the number of moves can
be reduced to be polynomial in both k£ and n. For k > 4 districts, our algorithm uses a
recursion of depth O(log k). However, this approach increases the complexity of intermediate
maps to Y 1t is also an open problem whether there exists a sequence of ReCom moves
where the complexity of intermediate maps remains polynomial in both k£ and n.
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—— Abstract

The k-Detour problem is a basic path-finding problem: given a graph G on n vertices, with specified
nodes s and ¢, and a positive integer k, the goal is to determine if G has an st-path of length exactly
dist(s, t) + k, where dist(s, t) is the length of a shortest path from s to t. The k-Detour problem is
NP-hard when k is part of the input, so researchers have sought efficient parameterized algorithms
for this task, running in f(k) poly(n) time, for f(-) as slow-growing as possible.

We present faster algorithms for k-Detour in undirected graphs, running in 1.853" poly(n)
randomized and 4.082% poly(n) deterministic time. The previous fastest algorithms for this problem
took 2.746" poly(n) randomized and 6.523" poly(n) deterministic time [Bezékova-Curticapean-Dell-
Fomin, ICALP 2017]. Our algorithms use the fact that detecting a path of a given length in an
undirected graph is easier if we are promised that the path belongs to what we call a “bipartitioned”
subgraph, where the nodes are split into two parts and the path must satisfy constraints on those
parts. Previously, this idea was used to obtain the fastest known algorithm for finding paths of
length k in undirected graphs [Bjorklund-Husfeldt-Kaski-Koivisto, JCSS 2017], intuitively by looking
for paths of length k in randomly bipartitioned subgraphs. Our algorithms for k-Detour stem from a
new application of this idea, which does not involve choosing the bipartitioned subgraphs randomly.

Our work has direct implications for the k-Longest Detour problem, another related path-finding
problem. In this problem, we are given the same input as in k-Detour, but are now tasked with
determining if G has an st-path of length at least dist(s,t) + k. Our results for k-Detour imply that
we can solve k-Longest Detour in 3.432F poly(n) randomized and 16.661" poly(n) deterministic time.
The previous fastest algorithms for this problem took 7.539* poly(n) randomized and 42.549% poly(n)
deterministic time [Fomin et al., STACS 2022].
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1 Introduction

The k-Path problem is a well-studied task in computer science:

k-Path
Given: k € NT, a graph G, nodes s and t.
Determine: Does G contain a simple path of length &k from s to t7

For graphs G with n nodes, this problem can be easily solved in O(kn*) time by enumerating
all sequences of k vertices. In the 1980s, Monien [13] showed that the k-Path problem is
actually fixed-parameter tractable (FPT) in k, presenting a k! poly(n) time algorithm solving
k-Path. Since then, significant research has gone into obtaining faster algorithms for k-Path,
with better dependence on k& (see [3, Table 1] for an overview of the many results in this line
of work). This research culminated in the work of Koutis and Williams [11, 16, 12], who
showed that k-Path can be solved in 2" poly(n) (randomized) time, and Bjoérklund, Husfeldt,
Kaski, and Koivisto [3, Section 2], who proved that in undirected graphs, k-Path can be
solved even faster in 1.657% poly(n) (randomized) time. Throughout this paper, we assume
that algorithms are randomized (and return correct answers with high probability in the stated
time bounds), unless otherwise specified.

The k-Path problem is a parameterized version of the NP-complete Longest Path problem,
but it is not the only natural parameterization. Various other parameterizations of k-Path
have been proposed and studied, which we consider in the present paper.

1. Finding a path of length at least k. Instead of looking for a path of length ezactly k
from s to t, one can try to determine the existence of an st-path of length at least k:

k-Longest Path
Given: k € NT, a graph G, nodes s and ¢.
Determine: Does G contain a simple path of length at least k from s to t7

Observe that in the k-Longest Path problem, the length of a solution path is not necessarily
bounded as a function of k. However, it is known that k-Longest Path is also FPT: work of
Zehavi [17] and Fomin, Lokshtanov, Panolan, and Saurabh [9] implies that k-Longest Path
can be solved in 4% poly(n) time. More recently, Eiben, Koana, and Wahlstrém [7, Section
6.3] proved that over undirected graphs, k-Longest Path can be solved in 1.657% poly(n)
time, matching the fastest known runtime for k-Path.

2. Finding an st-path longer than a polynomial-time guarantee. Another paramet-
erization for k-Path is motivated by the fact that one can find a shortest path from s
to t in polynomial time. If the shortest path distance dist(s,t) happens to already be
long, then it is actually “easy” to find a long path from s to ¢. Therefore, it is natural to
consider the parameterized complexity of searching for an st-path that is k edges longer
than the shortest path length from s to t. Our work focuses on these so-called “detour”
variants of the path detection problems discussed above.

k-Detour (a.k.a. k-Exact Detour)
Given: k € NT, a graph G, nodes s and ¢.
Determine: Does G contain a simple path of length dist(s, t) + &k from s to ¢?
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Since k-Path efficiently reduces to solving a single instance of (k—1)-Detour,! the k-Detour
problem is at least as hard as the classical k-Path problem.

The k-Detour problem was introduced by Bezdkova, Curticapean, Dell, and Fomin [2],
who showed that it can be solved by calling polynomially many instances of ¢-Path, for
path lengths ¢ < 2k + 1. Employing the fastest known k-Path algorithms, this implies
that k-Detour can be solved in 22* poly(n) = 4% poly(n) time in general, and even faster
over undirected graphs in 1.6572% poly(n) < 2.746" poly(n) time.

The two parameterizations above can be combined to produce the following problem:

k-Longest Detour
Given: k € NT, a graph G, nodes s and t.
Determine: Does G contain a simple path of length at least dist(s,t) + k from s to ¢?

Observe that k-Longest Detour is at least as hard as k-Longest Path. Unlike the problems
discussed above, k-Longest Detour over directed graphs is not known to be FPT: in fact, it
remains open whether k-Longest Detour is in P even for the special case of k = 1! However,
in undirected graphs, Fomin, Golovach, Lochet, Sagunov, Simonov, and Saurabh [8] showed
that k-Longest Detour can be reduced to solving p-Detour for p < 2k, and then solving
polynomially many instances of ¢-Longest Path, for ¢ < 3k/2. Employing the fastest known
algorithms for k-Detour and k-Longest Path as subroutines, this implies that k-Longest Detour
can be solved over undirected graphs in 7.539% poly(n) time.

The algorithms for k-Detour and k-Longest Detour discussed above are significantly slower

than the fastest known algorithms for the analogous k-Path and k-Longest Path problems.

This motivates the questions: can k-Detour be solved as quickly as k-Path, and can k-Longest
Detour be solved as quickly as k-Longest Path? Given the extensive and influential line of work
that has gone into finding faster algorithms for k-Path and k-Longest Path, obtaining faster
algorithms for these detour problems as well is an interesting open problem in parameterized
complexity and exact algorithms.

Our Results
The main result of our work is a faster algorithm for k-Detour on undirected graphs.
» Theorem 1. In undirected graphs, k-Detour can be solved in 1.853F poly(n) time.

This marks a significant improvement over the previous fastest 2.746* poly(n) time algorithm
for k-Detour (and shows, for example, that this problem can be solved in faster than 2* poly(n)
time, which is often a barrier for parameterized problems). Since the fastest known algorithms
for k-Longest Detour over undirected graphs have a bottleneck of solving 2k-Detour, Theorem 1
implies the following result.

» Theorem 2. In undirected graphs, k-Longest Detour can be solved in 3.432F poly(n) time.

Again, this is a significant improvement over the previous fastest algorithm for k-Longest
Detour on undirected graphs, which ran in 7.539" poly(n) time.

Our algorithm for Theorem 1 applies the fact that k-Path is easier to solve on undirected
graphs which have a prescribed vertex partition into two sets, where we constrain the path
to contain a particular number of nodes from one set, and a particular number of edges

1 Given an instance of k-Path, add an edge from s to t. Then a solution to (k — 1)-Detour in this new
graph corresponds to a solution to k-Path in the original graph.

7:3

ESA 2023



7:4

Faster Detours in Undirected Graphs

whose vertices are in the other set. Formally, we consider the (¢, k1, ¢3)-Bipartitioned Path
problem: given a graph G on n nodes, whose vertices are partitioned into parts V; and V5,
with distinguished vertices s and t, the goal is to determine if G contains a simple path
from s to t of length ¢, which uses exactly k; vertices from V;, and exactly 5 edges whose
endpoints are both in V5. A careful application of the following result from [3] is the main
source of the speed-up in our algorithm for k-Detour.

» Lemma 3 ([3, Section 2]). Let £, k1,{2 be nonnegative integers satisfying the inequality
L+ 1>k +20y. Then over undirected graphs, the (¢, ky,{3)-Bipartitioned Path problem can
be solved in 2F17°2 poly(n) time.

Although this “Bipartitioned Path” problem may appear esoteric at first, Lemma 3 plays
a crucial role in obtaining the fastest known algorithm for k-Path in undirected graphs [3],
and an analogue of Lemma 3 for paths of length at least k is the basis for the fastest known
algorithm for k-Longest Path in undirected graphs [7]. Proofs of Lemma 3 can be found in [3,
Section 2], [5, Section 10.4], and in the full version of this paper in [1, Appendix BJ.

In Section 3, we provide an intuitive overview of how Lemma 3 helps us obtain our
algorithm for k-Detour.

The fastest known algorithms for the path and detour problems discussed above all use
randomness. Researchers are also interested in obtaining fast deterministic algorithms for
these problems. We note that a simplified version of our algorithm for k-Detour implies faster
deterministic algorithms for these detour problems over undirected graphs.

» Theorem 4. The k-Detour problem can be solved over undirected graphs by a deterministic
algorithm in 4.082% poly(n) time.

Prior to this work, the fastest known deterministic algorithm for k-Detour on undirected
graphs ran in 6.523" poly(n) time [2].

» Theorem 5. The k-Longest Detour problem can be solved over undirected graphs by a
deterministic algorithm in 16.661% poly(n) time.

Prior to this work, the fastest known deterministic algorithm for k-Longest Detour on
undirected graphs ran in 42.549% poly(n) time [8].

In summary, we obtain new randomized and deterministic algorithms for k-Detour and
k-Longest Detour over undirected graphs, whose runtimes present significant advances over
what was previously known for these problems.

Organization

The remainder of this paper presents our new algorithms k-Detour. A thorough discussion of
additional related work can is included in the full version of this paper in [1, Appendix A].
In Section 2, we introduce relevant notation, assumptions, and definitions concerning
graphs. In Section 3, we provide an overview of our algorithm for k-Detour. In Section 4, we
present the details of our algorithm, and prove its correctness. The runtime analysis for our
algorithm (and thus the formal proofs of Theorems 1, 2, 4, and 5, given correctness of our
algorithm) are presented in Section 5. In Section 6, we highlight some open problems.

2 Preliminaries

Given positive integers a and b, we let [a] = {1,2,...,a}, and [a,b] = {a,a + 1,...,b}. Given
an integer a and a set of integers S, we define a + S ={a+s|s € S}.
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Throughout, we let G denote the input graph. We assume that G is undirected, has
vertex set V with |V| = n, and, without loss of generality, is connected.? Throughout, we let
s and t denote the two distinguished vertices that come as part of the input to the k-Detour
problem. Given a vertex u, we let d(u) = dist(s,u) denote its distance from s. This distance
is well-defined, since G is connected. Given a path P containing vertices u and v, we let
P[u, v] denote the subpath from u to v on P.

Given an edge e = (u,v) from u to v, we say e is forward if d(v) = d(u) + 1, backwards
if d(v) = d(u) — 1, and stable if d(v) = d(u). In an undirected graph, by triangle inequality
and symmetry of distance, adjacent vertices u and v have |d(u) — d(v)| < 1, so every edge in
a path falls into one of these three categories.

Given two vertices u,v € V, let G(,,) denote the induced subgraph of G' on the set
{u} U{w e V | d(u) < d(w) < d(v)}. Let G(y,00) denote the induced subgraph of G on the
set {u} U{w €V | d(u) <d(w)}. Note that for every u and v, the subgraphs G, ] and
G (v,00) Overlap at vertex v, but are disjoint otherwise.

3 Technical Overview

In this section, we provide an overview of how our k-Detour algorithm works. Our starting
point is the algorithm for this problem presented in [2, Section 4], which we review in
Section 3.1. Then in Section 3.2 we review how the algorithm from Lemma 3 for (¢, k1, £2)-
Bipartitioned Path has previously been used to obtain the fastest known algorithm for k-Path
in undirected graphs. With this context established, in Section 3.3 we outline how we combine
the techniques from Sections 3.1 and 3.2 with new ideas to prove Theorem 1.

3.1 Previous Detour Algorithm

The previous algorithm for k-Detour from [2, Section 4] performs dynamic programming
over nodes in the graph, starting from ¢ and moving to vertices closer to s. In the dynamic
program, for each vertex x with d(z) < d(t), we compute all offsets < k such that there is
a path of length d(t) — d(z) + r from z to ¢ in the subgraph G/, ). Determining this set of
offsets for & = s solves the k-Detour problem, since G5 o) = G.

If d(t) — d(z) < k, we can find all such offsets just by solving ¢-Path for ¢ < 2k.

So, suppose we are given a vertex x with d(t) — d(z) > k + 1 and an offset r < k, and
wish to determine if there is a path of length d(t) — d(z) + r from = to t in G, ). If there
is such a path P, then [2] argues that P can always be split in as depicted in Figure la: for
some vertex y with d(y) > d(z), we can decompose P into two subpaths:

1. a subpath A from z to y of length at most 2k + 1, such that all internal vertices v in A
satisfy d(z) < d(v) < d(y), and
2. a subpath B from y to t in Gy ) of length at most d(t) — d(y) + k.

We can always split a path P in this manner because P has length at most d(t) — d(z) + k,
so at most k edges in P are not forward edges. Intuitively, as we follow the vertices along the
path P, the distance of the current vertex from s can decrease or stay the same at most &k
times, and so P cannot contain too many vertices which are the same distance from s. This
allows one to argue that there is a vertex y with d(y) < d(x) 4+ k 4+ 1 such that all internal
vertices v of the subpath Pz, y] have d(z) < d(v) < d(y). Since d(y) < d(z) +k+ 1 and P
has length at most d(t) — d(x) + k, it turns out that P[x,y] has length at most 2k + 1.

2 If G were not connected, we could replace it with the connected component containing s, and solve the
detour problems on this smaller graph instead.
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(a) Previous Algorithms: A subpath P from z (b) Our Algorithm: In undirected graphs, a sub-
to t in G (4 o) Of a solution path can always be split path P from x to t in G (4, of a solution path can
at a vertex y with d(y) < d(z) + k + 1, such that  be split at a vertex y with d(y) < d(z)+k/2+1, such
d(u) # d(y) for all vertices u # y in P. that Pz, y] is in G4,y and Ply,t] is in Gy o).

Figure 1 To solve k-Detour, we split subpaths P of candidate solutions at a vertex y satisfying
certain nice properties. We obtain a speed-up by getting better upper bounds on d(y) in Figure 1b
than previous work did in Figure la, by allowing P[z,y| to have internal vertices v with d(u) = d(y).

Note that since G, ) only contains vertices v with d(v) >y, the paths A and B must
be disjoint. We can find the length of A using an algorithm for (2k + 1)-Path, and the length
of B will have already been computed in our dynamic program (since y is further from s
than z). So, by trying out all possible y, finding the possible lengths for subpaths A and
B, and then adding up these lengths, we can get all possible lengths for P in the dynamic
program, and solve k-Detour.

3.2 Previous Path Algorithm

The fastest known algorithm for k-Path in undirected graphs goes through the (k, k1, ¢2)-
Bipartitioned Path problem. Recall that in this problem, we are given a bipartition Vi U V5
of the vertices in the graph, and want to find a path of length k from s to ¢, which uses
ky vertices in V; and ¢5 edges with both endpoints in V5. The authors of [3] showed that
(k, k1, {3)-Bipartitioned Path can be solved in 2%1 72 poly(n) time over undirected graphs.

Why does this imply a faster algorithm for k-Path in undirected graphs? Well, suppose
the input graph contains a path P of length k from s to t. Consider a uniform random
bipartition of the vertices of the graph into parts V4 and V5. We expect (k 4 1)/2 vertices
of P to be in V7, and k/4 edges of P to have both endpoints in V5. In fact, this holds with
constant probability, so we can solve k-Path by solving (k, (k 4+ 1)/2, k/4)-Bipartitioned Path
in the randomly partitioned graph. By Lemma 3 this yields a 23%/% poly(n) ~ 1.682% poly(n)
time algorithm for k-Path. We can obtain a faster algorithm using the following modification:
take several uniform random bipartitions of the graph, and solve (k, k1, £2)-Bipartitioned Path
separately for each bipartition, for k1 + ¢5 < 3(1 — €)k/4, where € > 0 is some constant. The
number of bipartitions used is some function of k and ¢, set so that with high probability at
least one of the partitions V; LI V5 has the property that the total number of vertices of P in
V1 and number of edges of P with both endpoints in V2 is at most 3(1 — €)k/4. Setting the
parameter ¢ optimally yields a 1.657% poly(n) time algorithm for k-Path [3].

3.3 Our Improvement

As in the previous approach outlined in Section 3.1, our algorithm for k-Detour performs
dynamic programming over vertices in the graph, starting at ¢, and then moving to vertices
closer to s. For each vertex z with d(z) < d(t), we compute all offsets r < k such that
there is a path of length d(t) — d(z) 4 r from z to ¢ in the subgraph G, o). Obtaining this
information for x = s and r = k solves the k-Detour problem.
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Given a vertex x and offset r < k, we wish to determine if G contains a path of length
d(t) — d(z) +r from z to t in G(; ). Suppose there is such a path P. If d(t) — d(z) is
small enough, it turns out we can find P by solving p-Path for small values of p. So, for
the purpose of this overview, suppose that d(t) — d(x) is sufficiently large. In this case, as
outlined in Section 3.1, previous work showed that P can be split into two subpaths A and
B contained in disjoint subgraphs, such that A has length at most 2k 4+ 1. This splitting
argument holds even for directed graphs. Our first improvement comes from the observation
that in undirected graphs, we can decompose the path P with a smaller prefix: as depicted in
Figure 1b, there must exist a vertex y with d(y) > d(z), such that P splits into a subpath A
from x to y in G,y of length at most 3k/24-1, and a path B from y to ¢ in G, ) of length
at most d(t) — d(y) + k. We can find the length of A by solving (3k/2 + 1)-Path, and the
length of B will already have been computed by dynamic programming, since d(y) > d(x).

This split is possible because any consecutive vertices u and v in P have |d(u) — d(v)| < 1
(this is true for undirected graphs, but is not true in general for directed graphs). Since P

has length at most d(t) — d(z) + k, it turns out that P has at most k/2 backwards edges.

This lets us argue that there exists a vertex y with d(y) < d(z) + k/2 + 1 such that P[z,y]
is contained in G, ,) and Ply,t] is contained in G, ). Finally, A = P[x,y] should have
length at most k& more than d(y) — d(x), which means it has length at most 3k/2 + 1.

This simple modification already yields a faster algorithm? for k-Detour. We get further
improvements by performing casework on the number of stable edges in P (recall that an
edge (u,v) is stable if both its endpoints have the same distance d(u) = d(v) from s).

First, suppose P has at least m stable edges, for some parameter m. Since P has length
at most d(t) — d(x) + k, we can argue that P has at most (k —m)/2 backwards edges. With
this better upper bound on the number of backwards edges, we can improve the splitting
argument and show that P decomposes into subpaths A and B, such that the length of A is
at most (3k —m)/2, and the length of B was already computed by our dynamic program. It
then suffices to solve (3k — m)/2-Path, which yields a speed-up whenever m > Q(k).

Otherwise, P has at most m stable edges. In this case, we consider the bipartition Vi LU V5
of the vertex set, where V] has all vertices at an odd distance from s, and V5 has all vertices
with even distance from s. Since G is undirected, consecutive vertices on the path P differ
in their distance from s by at most one. In particular, all forward and backward edges in
P cross between the parts Vi and V5. Only the stable edges can contribute to edges with
both endpoints in V5. Since we assumed that the number of stable edges is small, it turns
out we can find the length of the subpath A of P by solving (¢, k1, ¢2)-Bipartitioned Path
with respect to the given bipartition, for some ¢ which is very small. In particular, this
approach computes the length of A faster than naively solving (3k — m)/2-Path. By setting
an appropriate threshold for m, we can minimize the runtimes of the algorithm in both of
the above cases, and establish Theorem 1.

So in summary, our faster algorithms come from two main sources of improvement:
using the structure of shortest paths in undirected graphs to get a better “path-splitting”
argument in the dynamic program from k-Detour, and cleverly applying the fast algorithm
from Lemma 3 for (¢, k1, f2)-Bipartitioned Path with carefully chosen bipartitions.

We note that our application of (¢, ki, £2)-Bipartitioned Path is qualitatively different from
its uses in previous work. As discussed in Section 3.1, previous algorithms for k-Detour work
by solving instances of k-Path, and as described in Section 3.2, the fastest algorithms for
k-Path on undirected graphs work by reduction to various instances of (¢, k1, ¢2)-Bipartitioned
Path. Thus, previous algorithms for k-Detour on undirected graphs implicitly rely on the

3 In fact, this observation already yields the fast deterministic algorithms for Theorems 4 and 5.
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fast algorithm for (¢, k1, ¢2)-Bipartitioned Path, applied to random bipartitions of the input
graph. We obtain a faster algorithm for k-Detour arguing that in certain cases, we can “beat
randomness,” by constructing bipartitions which leverage structural information about the
graph (namely, whether the shortest path distance from s to a given vertex is even or odd).

4 Detour Algorithm

In this section, we present Algorithm 1, our new algorithm for the k-Detour problem. As
mentioned in the previous section, our algorithm behaves differently depending on the
number of stable edges that a potential solution path contains. In particular, the algorithm
depends on a parameter « € (0, 1), which determines the threshold for what counts as “many”
stable edges. Later, we will set a to optimize the runtime of Algorithm 1. Certain lines of
Algorithm 1 have comments indicating case numbers, which are explained in Section 4.1.

Our algorithm computes a set L(zx) for each vertex x in the graph, corresponding to the
possible lengths of potential subpaths from x to ¢ of a solution path from s to t.

In step 3 of Algorithm 1, we compute L(z) for all z that are “far” from s, by solving
instances of ¢-Path for ¢ < (3—a)k/2. Starting in step 4, we compute L(x) for vertices x closer
to s, in terms of the previously computed sets L(y) for vertices y further from s. In steps 5
through 7, we compute some lengths in L(z) by solving instances of (a, k1, £2)-Bipartitioned
Path for appropriate a, k1, ¢2 values, and in 8 and 9 we compute the remaining lengths in
L(z) by solving a-Path for a < (3 — a)k/2 + 1.

4.1 Correctness

In this section, we show that Algorithm 1 correctly solves the k-Detour problem for any
choice of a € (0,1). The main technical part of the proof lies in inductively showing that
every possible solution path from s to ¢ will be considered by the algorithm and its length
will be included in the set L(s). In Algorithm 1, we try out values of the variable m from 0
to k, and execute differently depending on how m compares to ak. This is interpreted as
follows: suppose there is a solution path P from x to ¢, then m corresponds to a guess of the
number of stable edges in P.

In Case 1, we guess that P has few stable edges m < ak which corresponds to steps 5
to 7. Under Case 1, there are two possible structures a potential solution path might take
on depending on how d(z) compares to d(t). We refer to the case where d(z) — d(t) is small
as Case 1(a) considered by step 6, and the case where d(z) — d(t) is large as Case 1(b)
considered by step 7. In Case 2, we guess that m > ak, so P has many stable edges, which
corresponds to steps 8 to 9. These cases are also formally defined in our proof of correctness.

» Theorem 6. For any fixzed o € (0,1), Algorithm 1 correctly solves the k-Detour problem.

Proof. We prove that upon halting, each set L(x) computed by Algorithm 1 has the property
that for all integers ¢ € [d(t) — d(z), d(t) — d(z) + k], we have

¢ € L(x) if and only if there is a path of length ¢ from z to ¢ in G4 o0)- (1)

If this property holds, then step 10 of Algorithm 1 returns the correct answer to the k-Detour
problem, since dist(s,t) + k is in L(s) if and only if there is a path from s to ¢ of length
dist(s,t) + k in G(S’OO) =G.

So, it suffices to show that Equation (1) holds for all vertices . We prove this result by
induction on the distance of x from s in the graph.
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Algorithm 1 Our algorithm for solving k-Detour in undirected graphs.

Input: An undirected graph G with distinguished vertices s and ¢, and a parameter a € (0, 1).

1: Initialize Vi «+ {x € V | d(z) =1 mod 2}, Vo + {x € V | d(z) =0 mod 2}.

2: For each vertex z in the graph with d(z) < d(t), initialize L(z) < 0.
> L(z) will be the set of lengths £ € [d(t) — d(x),d(t) — d(z) + k] such that there is
a path of length € from x to t in G4 )-

3: For each vertex x with d(z) € [d(t) — (1 —a)k/2,d(t)], set L(x) to be the set of all positive
integers £ < (3 — a)k/2 such that there is a path of length £ from = to t in G4 o).
> Base case: we compute L(x) for the vertices x which are furthest from s.

4: For each d from d(t) — (1 —a)k/2—1 down to 0, for each vertex x with d(z) = d, complete
steps 5 through 9.
> Inductive Case: compute L(x) layer by layer towards s.

5: For each integer m with 0 < m < ak, and for each choice of integers ki,¢5 > 0
satisfying k1 + ¢ < (3k +m + 2)/4, complete steps 6 and 7.

> This step handles Case 1: the solution path has few stable edges.

6: If there is a path of length ¢ < 2k; 4 £ from x to t in G(; ), update L(z) <
L(z) U {¢}.

> This step handles Case 1(a): d(t) — d(z) < (k—m)/2.

7: Try out all vertices y with d(y) € [d(z) + 1, min(d(¢),d(x) + (3k —m)/2 + 1)].

If for some such y, there is a path from x to y in G, ) of length a < 2k; + ¢
with exactly ki vertices in Vi, and {5 edges with both endpoints in V5, update
L(z) + L(z) U (a+ L(y)).

> This step handles Case 1(b): d(t) — d(z) > (k—m)/2.

8: For each integer m with ak < m < k, complete step 9.
> This step handles Case 2: the solution path has many stable edges.

9: Try out all vertices y with d(y) € [d(z) + 1,d(z) + (1 — a)k/2 + 1]. If for some
such y, there is a path from x to y in G, of length a < (3 — a)k/2 + 1, update
L(z) + L(z) U (a + L(y))

10: Return yes if and only if (dist(s,t) + k) € L(s).

Base Case. For the base case, suppose x is a vertex with
d(x) € [d(t) — (1 — a)k/2,d(t)]. (2)

Then L(z) is computed in step 3 of Algorithm 1. We now verify that Equation (1) holds.
First, suppose ¢ € L(x).
Then, £ must be the length of some path from x to t in G, ) by design.
Conversely, suppose we have a path P from = to t in G(; ) of some length

(< d(t) —d(z) + k.

7:9
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Then by the assumption on z from Equation (2) in this case, we have
C<d(t)—dz)+k<(1—-)k/2+k=(3—a)k/2

so step 3 of Algorithm 1 correctly includes ¢ in L(z).
Thus Equation (1) holds for all vertices x satisfying Equation (2).

Inductive Case. For the inductive step, suppose x is a vertex with
d(z) <d(t)— (1 —a)k/2 — 1. (3)

We may inductively assume that we have computed sets L(y) satisfying Equation (1), for all
vertices y with d(y) > d(z).

Suppose ¢ € L(z) at the end of Algorithm 1. Then either ¢ was added to L(x) in step 6,
or £ was added to L(z) in steps 7 or 9 of Algorithm 1. In the former case, ¢ is the length of
a path from z to t in G(; ) by design. In the latter cases, we have £ = a + b, where a is
the length of some path from x to y (for some vertex y with d(y) > d(x)) in G5, and (by
the inductive hypothesis) b is the length of some path from y to ¢ in Gy o). Since G, 4
and Gy, intersect only at y, the union of these paths is a path from z to ¢ in G4 ). So,
every integer in L(z) is a valid length of a path from z to ¢ in G, ) as desired.

Conversely, suppose there is a path P from x to t in G(, o) of length

¢ [d(t) — d(x),d(t) — d(z) + K]. (4)

We prove that ¢ appears in L(x).

To do this, we will analyze the number of forward, backward, and stable edges appearing
in P. Note that P has at least d(t) — d(z) forward edges, since P begins at a vertex at
distance d(z) from s, ends at a vertex at distance d(t) from s, and only the forward edges
allow us to move to vertices further from s.

Let m denote the number of stable edges in P. We have m < k, since the length of P is
at most d(t) — d(z) + k, and P has at least d(t) — d(z) forward edges.

> Claim 7. Suppose d(x) < d(t) — (k —m)/2 — 1. Then P contains a vertex y such that
1. d(y) € [d(z) + 1,d(z) + (k —m)/2 + 1],

2. every vertex u € Ply,t] with u # y has d(u) > d(y), and

3. every vertex v € P[z,y] has d(v) < d(y).

Proof. For each i € [(k —m)/2 4+ 1], let z; denote the last vertex on P satisfying
d(z) =d(x) + 1.

These vertices exist because we are assuming that d(z) < d(t) — (k —m)/2 — 1, and P must
contain vertices v with d(v) = d for every d € [d(x), d(t)].

By definition, each z; satisfies conditions 1 and 2 from the claim. If some z; satisfies
condition 3 as well, then the claim is true.

So, suppose that none of the z; satisfy condition 3. This means that for each index i, the
subpath P[z, z;] contains a vertex u with d(u) > d(z;). Consecutive vertices in P differ in
their distance from s by at most one, so P[z, z;] must contain an edge e = (v, w) such that
d(v) = d(w) + 1 and d(w) = d(z;) = d(x) + i¢. That is, P contains a backwards edge from a
vertex at distance i + 1 from s to a vertex at distance i from s, as depicted in Figure 2.

Note that 21,22, ..., 2(k—m) 241 occur on P in the listed order. This is because

d(Zl) < d(ZQ) < <K d(Z(k_m)/2+1)
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Figure 2 If node z; does not satisfy condition 3 of Claim 7, it means that before hitting z;, the
path visited a node further from s than z;. Thus, we can associate z; with some backwards edge.
The presence of too many of these backwards edges would violate the length condition on P, so it
turns out that one such node (in the figure, z;42) does have to satisfy condition 3.

and each z; satisfies condition 1 from the claim. Combined with the discussion from the
previous paragraph, this means that P contains at least (kK —m)/2 + 1 backwards edges. We
now argue that this violates the assumption on the length of P.
Let f and b denote the number of forward and backwards edges in P respectively.
Since P starts at « and ends at ¢, we have f — b = d(t) — d(x), which implies that

f=d(t)—d(x)+b. (5)

Then the total length of P is f + b+ m = d(t) — d(z) + m + 2b by Equation (5). However,
since P has at least (k —m)/2 + 1 backwards edges, this length satisfies

d(t) —d(z) +m+2b>d(t) —d(z)+ m+2(k—m)/2+1) >d(t) —d(z) + k

which contradicts the fact that the length ¢ of P satisfies Equation (4). Thus our assumption
was incorrect, and one of the z; satisfies all three conditions from the claim, as desired. <

We now perform casework on the number of stable edges m in P. We start with Case 2
from step 8 of Algorithm 1, since this is the easiest case to analyze.

Case 2: Many Stable Edges (m > ak). Suppose m > ak. In this case, by Equation (3)
we have

d(z) < d(t) — (1 — a)k/2 —1 < d(t) — (k—m)/2 — 1

So, by Claim 7, there exists a vertex y in P satisfying the three conditions of Claim 7.

By condition 3 from Claim 7, the subpath A = P[x,y] is contained in G, . By condition
2 from Claim 7, the subpath B = P[y,t] is contained in G, ).

Let a denote the length of A, and b denote the length of B.

Since A has length at least d(y) — d(z), and P has length at most d(t) — d(z) + k by
Equation (4), we know that the length B satisfies

b<d(t) —d(y) + k. (6)

By the inductive hypothesis, L(y) satisfies Equation (1), so b € L(y).
Similar to the reasoning that established Equation (6), we can prove that

a < d(y) —d(z) + k. (7)

By condition 1 of Claim 7, we know that d(y) < d(x) + (k — m)/2 4+ 1. Since m > «ak, this
implies that d(y) < d(x) + (1 — a)k/2 + 1.
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Substituting this into Equation (7) yields
a<(l—-a)k/24+1+k=(3—-a)k/2+1.

Thus, the length a of A will be found in step 9 of Algorithm 1. As mentioned before, b € L(y).
Thus, £ = a+b € (a+ L(y)) is correctly added to the set L(z) in step 9 of Algorithm 1,
which proves the desired result in this case.

Case 1: Few Stable Edges (m < ak). If we do not fall into Case 2, we must have
m < ak. Recall that in step 1 of Algorithm 1, we defined V7 = {u | d(u) is odd} and
Vo ={u | d(u) is even}.

We want to argue that most edges in path P cross the bipartition V; Ll V5. To that end,
the following claim will be helpful.

> Claim 8. Let @ be a path of length ¢, with at most m stable edges. Let k; denote
the number of vertices of @ in V7, and let ¢ denote the number of edges in @ with both
endpoints in V5. Then we have

ki+ 0 < (q+m+1)/2.

Proof. Let ko denote the number of vertices of @ in V5.

Consider the cycle C' formed by taking @ together with an additional edge between its
endpoints (this new edge is imagined for the purpose of argument, and does not change the
definition of V; and V3).

Let g1, g2, and gcross denote the number of edges of C' with both endpoints in Vi, both
endpoints in V5, and endpoints in both V; and V5 respectively. We have

2kl = 2Q1 + Qeross (8)

because both sides of the above equation count the number of pairs (u,e) such that u is a
vertex in C' N Vy, and e is an edge in C incident to u. A symmetric argument implies that

2¢2 + goross = 2ko2. (9)
Adding Equation (8) and Equation (9) together and simplifying yields

k1 +qe = ks + q1.
This implies that

ki +aq2 = (k1 + k2 +q1 + q2) /2.

Since C' is @) with one additional edge, we have ¢5 < g5. So the above equation implies that

k14l < (k1 +ka+q1+q2) /2. (10)
‘We have
ki+ka=q+1 (11)

since the total number of vertices in () must be one more than its length. By assumption on
the number of stable edges in (), we have

q1 + g2 <m. (12)
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Substituting Equation (11) and Equation (12) into the right hand side of Equation (10)
yields

ki+tly<(qg+m+1)/2
which proves the desired result. <

With Claim 8 established, we are now ready to analyze the two subcases under Case 1,
based on the relative distances of z and ¢ from s.

Case 1(a): d(t) — d(x) is small. Suppose that d(z) € [d(t) — (k —m)/2,d(t)].
In this case, Equation (4) implies that P has length

¢<d(t) —d(z) + k < (3k —m)/2.

Let k1 denote the number of vertices of P in Vi, and ko denote the number of edges in P
with both endpoints in V5. Then by setting @ = P and ¢ = £ in Claim 8, we have

ki 4+l <(l+m+1)/2<(3k+m+2)/4 (13)

Also, note that P has length ¢ < 2kq 4 {5, since 2k is greater than or equal to the number of
edges in P incident to a vertex in V;. This observation, together with Equation (13), shows
that in this case, the length £ is correctly included in L(x) in step 6 of Algorithm 1.

Case 1(b): d(t) — d(«) is large. If we do not fall into Case 1(a), it means that
d(z) <d(t) — (k—m)/2 — 1. (14)

Thus, by Claim 7, there exists a vertex y in P satisfying the three conditions of Claim 7.
The proof that £ € L(x) in this case is essentially a combination of the proofs from Case 2
and Case 1(a).

As in Case 2, by condition 3 from Claim 7, the subpath A = P[z,y] is contained in
G(z,y)- By condition 2 from Claim 7, the subpath B = P[y,t] is contained in Gy ).

Let a and b denote the lengths of paths A and B respectively. Reasoning identical to the
arguments which established Equations (6) and (7) prove that in this case we also have

b<d(t)—d(y) +k (15)
and
a <d(y) —d(z)+ k. (16)

Condition 1 of Claim 7 implies that d(y) < d(z) + (kK —m)/2 + 1. Substituting this into
Equation (16) implies that

a<(3k—m)/2+1.

Let k1 denote the number of vertices of A in Vi, and let £5 denote the number of edges in A
with both endpoints in V5. Then by setting @ = A and ¢ = a in Claim 8, we have

k144 <(a+m+1)/2<Bk+m+2)/4. (17)

Also, we know that a < 2k; + £5, because 2k, is greater than or equal to the number of edges
in A incident to a vertex in V;. Combining this observation with Equation (17), we see that
the length a is indeed computed in step 7 of Algorithm 1.
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By the inductive hypothesis (Equation (1)) and Equation (15), we know that b € L(y).
Thus we have { = a+b € (a+ L(y)), so in this case, ¢ is correctly included in L(x) in step 7
of Algorithm 1.

This completes the induction, and proves that Equation (1) holds for all vertices z in
the graph. In particular, Equation (1) holds for x equal to s. This implies that step 10 of
Algorithm 1 returns the correct answer to the k-Detour algorithm. |

5 Applications

In this section, we present consequences of our new algorithm for k-Detour from Section 4.
» Theorem 1. In undirected graphs, k-Detour can be solved in 1.853" poly(n) time.

Proof. By Theorem 6, Algorithm 1 correctly solves k-Detour, for any value a € (0, 1),

What is the runtime of Algorithm 17 Well, steps 3 and 9 of Algorithm 1 involve solving
polynomially many instances of ¢-Path, for ¢ < (3 — a)k/2 + 1. Using the fastest known
algorithm for k-Path in undirected graphs [3], these steps take

1.657C3 /2 poly(n)

time. The remaining computationally intensive steps of Algorithm 1 occur in steps 6 and 7,
which can be implemented by solving poly(n) instances of (¢, k1, {2)-Bipartitioned Path, for
k1 + 03 < (3k + ak + 2) /4. By Lemma 3, these steps then take

2(3+a)k/4 poly(n)
time overall. Then by setting o = 0.55814 to balance the above runtimes, we see that we can
solve k-Detour over undirected graphs in

(1.657(370‘)]“/2 + 2(3+a)k/4) poly(n) < 1.8526" poly(n)
time, as desired. <

» Theorem 2. In undirected graphs, k-Longest Detour can be solved in 3.432F poly(n) time.

Proof. The proof of [8, Corollary 2] shows that k-Longest Detour in undirected graphs
reduces, in polynomial time, to solving p-Detour for all p < 2k and poly(n) instances of
(3k/2)-Longest Path on graphs with at most n nodes.

The proof of Theorem 1 implies that k-Detour can be solved over undirected graphs in
1.8526% poly(n) time. Previous work in [7, Section 6.3] shows that k-Longest Path can be
solved over undirected graphs in 1.657% poly(n) time. Combining these results together with
the above discussion shows that k-Longest Detour can be solved over undirected graphs in

(1.8526% +1.6573%/ 2) poly(n) < 3.432% poly(n)

time, as desired. <

» Theorem 4. The k-Detour problem can be solved over undirected graphs by a deterministic
algorithm in 4.082% poly(n) time.
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Proof. By Theorem 6, we can solve k-Detour over an undirected graph by running Algorithm 1
with parameter a = 0. When «a = 0 in Algorithm 1, steps 5, 6, 7 never occur. In this case,
the algorithm only needs to solve poly(n) instances of ¢-Path, for ¢ < 3k/2 4 1, in steps 3
and 9. Since k-Path can be solved deterministically in 2.554" poly(n) time [15], this means
that we can solve k-Detour deterministically in

2.554%%/2 poly(n) < 4.0817" poly(n)
time, as desired. <

» Theorem 5. The k-Longest Detour problem can be solved over undirected graphs by a
deterministic algorithm in 16.661% poly(n) time.

Proof. The proof of [8, Corollary 2] shows that k-Longest Detour in undirected graphs reduces,
in deterministic polynomial time, to solving p-Detour for p < 2k, and poly(n) instances of
(3k/2)-Longest Path on graphs with at most n nodes.

The proof of Theorem 4 implies that k-Detour can be solved over undirected graphs
deterministically in 4.0817% poly(n) time. Previous work [9] shows that k-Longest Path can
be solved deterministically in 4.884% poly(n) time. Combining these results together with
the above discussion shows that k-Longest Detour can be solved over undirected graphs
deterministically in

(4.08172k + 4.8843%/ 2) poly(n) < 16.661" poly(n)

time, as desired. |

6 Conclusion

In this paper, we obtained faster algorithms for k-Detour and k-Longest Detour over undirected
graphs. However, many mysteries remain surrounding the true time complexity of these
problems. We highlight some open problems of interest, relevant to our work.

1. The most pertinent question: what is the true parameterized time complexity of k-Detour
and k-Longest Detour? In particular, could it be the case that k-Detour can be solved as
quickly as k-Path, and k-Longest Detour can be solved as quickly as k-Longest Path? No
known conditional lower bounds rule out these possibilities.

2. The current fastest algorithm for k-Longest Path in directed graphs has a bottleneck
of solving 2k-Path. The current fastest algorithm for k-Detour in directed graphs has
a bottleneck of solving 2k-Path. Similarly, the fastest known algorithm* for k-Longest
Detour in undirected graphs requires first solving 2k-Detour. Is this parameter blow-up
necessary? Could it be possible to solve these harder problems with parameter k faster
than solving these easier problems with parameter 2k7

3. The speed-up in our results crucially uses a fast algorithm for the (¢, k1, ¢2)-Bipartitioned
Path problem in undirected graphs. In directed graphs no (2 — )¢ poly(n) time algorithm
appears to be known for this problem, for any constant € > 0 and interesting range of
parameters k1 and ¢5. Such improvements could yield faster algorithms for k-Detour in
directed graphs. Can we get such an improvement? Also of interest: can we get a faster
deterministic algorithm for (¢, k1, ¢3)-Bipartitioned Path?

4 In fact, even the recent alternate algorithm of [10] for k-Longest Detour requires solving 2k-Detour first.
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—— Abstract

Amiri and Wargalla proved the following local-to-global theorem about shortest paths in directed
acyclic graphs (DAGs): if G is a weighted DAG with the property that for each subset S of 3 nodes
there is a shortest path containing every node in S, then there exists a pair (s,t) of nodes such that

there is a shortest st-path containing every node in G. We extend this theorem to general graphs.
For undirected graphs, we prove that the same theorem holds (up to a difference in the constant 3).
For directed graphs, we provide a counterexample to the theorem (for any constant). However, we
prove a roundtrip analogue of the theorem which guarantees there exists a pair (s,t) of nodes such
that every node in G is contained in the union of a shortest st-path and a shortest ts-path.

The original local-to-global theorem for DAGs has an application to the k-Shortest Paths with
Congestion ¢ ((k, ¢)-SPC) problem. In this problem, we are given a weighted graph G, together with
k node pairs (s1,t1),..., (sk,tx), and a positive integer ¢ < k, and tasked with finding a collection
of paths P, ..., Pr such that each P; is a shortest path from s; to t;, and every node in the graph
is on at most ¢ paths P;, or reporting that no such collection of paths exists. When ¢ = k, there
are no congestion constraints, and the problem can be solved easily by running a shortest path
algorithm for each pair (s;,t;) independently. At the other extreme, when ¢ = 1, the (k,c¢)-SPC
problem is equivalent to the k-Disjoint Shortest Paths (k-DSP) problem, where the collection of
shortest paths must be node-disjoint. For fixed k, k-DSP is polynomial-time solvable on DAGs
and undirected graphs. Amiri and Wargalla interpolated between these two extreme values of ¢, to
obtain an algorithm for (k, ¢)-SPC on DAGs that runs in polynomial time when k — ¢ is constant.

In the same way, we prove that (k, c)-SPC can be solved in polynomial time on undirected graphs
whenever k — c is constant. For directed graphs, because of our counterexample to the original
theorem statement, our roundtrip local-to-global result does not imply such an algorithm (k, ¢)-SPC.
Even without an algorithmic application, our proof for directed graphs may be of broader interest
because it characterizes intriguing structural properties of shortest paths in directed graphs.
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1 Introduction

An intriguing question in graph theory and algorithms is: “can we understand the structure of
shortest paths in (directed and undirected) graphs?” More specifically: “can we understand
the structure of the interactions between shortest paths in graphs?” This question has been
approached from various angles in the literature. For instance, Bodwin [12] characterizes
which sets of nodes can be realized as unique shortest paths in weighted graphs, and Cizma
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and Linial investigate the properties of graphs whose shortest paths satisfy or violate certain
geometric properties [19, 20]. Additionally, there is a large body of work on distance
preservers, where the goal is to construct a subgraph that preserves distances in the original
graph (see [11] and the references therein). There are also numerous computational tasks in
which structural results about shortest paths inform the creation and analysis of algorithms,
including distance oracle construction [15], the k-disjoint shortest paths problem, [8], and
the next-to-shortest path problem [35] (the cited papers are the most recent publications in
their respective topics).

The angle of our work is inspired by the following local-to-global theorem! of Amiri and
Wargalla [3] concerning the structure of shortest paths in directed acyclic graphs (DAGs):

» Theorem 1 ([3]). Let G be a weighted DAG with the property that, for each set S of 8
nodes, there is a shortest path containing every node in S. Then, there exists a pair (s,t) of
nodes such that there is a shortest st-path containing every node in G.

Note that in the statement of Theorem 1, the condition that “for each set S of 3 nodes,
there is a shortest path containing every node in S” is equivalent to the condition that one
of the 3 nodes is on a shortest path between the other two.

Theorem 1 is “local-to-global” in the sense that from a highly congested local structure
(every small subset of nodes is contained in a shortest path) we deduce a global structure
(all nodes in the graph live on a single shortest path).

At first glance, Theorem 1 may appear rather specialized, since the existence of shortest
paths through all triples of nodes is a rather strong condition. However, Amiri and Wargalla
[3] show that Theorem 1 has applications to the k-Shortest Paths with Congestion ¢ ((k, ¢)-SPC)
on problem on DAGs: in this problem we are given a DAG, and are tasked with finding a
collection of shortest paths between k given source/sink pairs, such that each node in the
graph is on at most ¢ of the paths. We discuss this application in detail in Section 1.2.

Amiri and Wargalla [3] raised the question of whether their results can be extended to
general graphs, both undirected and directed. Our work answers this question.

1.1 Structural Results

We ask the following question:
Is Theorem 1 true for general (undirected and directed) graphs?

Our first result answers this question affirmatively for undirected graphs (with constant 4
instead of 3).

» Theorem 2 (Undirected graphs). Let G be a weighted undirected graph with the property
that, for each set S of 4 nodes, there is a shortest path containing every node in S. Then,
there exists a pair (s,t) of nodes such that some shortest st-path contains every node in G.

The constant 4 in the statement of Theorem 2 cannot be replaced with 3, as seen by
considering an undirected cycle on four vertices.

Theorem 2 implies a faster algorithm for (k,c)-SPC on undirected graphs, answering an
open question raised in [3, Section 4]. We discuss the background of this problem and our
improvement in Section 1.2.

L This is slightly different from the statement of the theorem in [3], where the authors write present their
result in the context of the Shortest Paths with Congestion problem, which we discuss in detail later.
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Our second result is for directed graphs. First, we observe that there is actually a
counterexample to Theorem 1 for general directed graphs: let a be the constant for which we
desire a counterexample (i.e., the constant that is 3 in Theorem 1, and 4 in Theorem 2). Let
G be a cycle with bidirectional edges, where all clockwise-pointing edges have weight 1 and
all counterclockwise-pointing edges have weight a. One can verify that the precondition of
the theorem holds: for each set S of a nodes there is a shortest path containing every node
in S, just by taking the shortest clockwise path through all nodes in S. However, no single
shortest path contains every node in G, so the theorem does not hold.

Even though a direct attempt at generalizing Theorem 1 to all directed graphs fails, one
might hope for some analogue of Theorem 1 that does hold. One interpretation of the above
counterexample is that the exact statement of Theorem 1 is not the “right” framework for
getting a local-to-global shortest path phenomenon in general directed graphs. To that end,
we consider the roundtrip analogue of Theorem 1, where the final path through every node
is a shortest roundtrip path, i.e., the union of a shortest st-path and a shortest ts-path
(roundtrip distances are a common object of study in directed graphs, with there being
much research, for example, in roundtrip routing [21], roundtrip spanners [33], and roundtrip
diameter computation [1]). Note that the above counterexample does not apply to the
roundtrip analogue of Theorem 1 since there exists a pair (s, ) of nodes such that the union
of a shortest st-path and a shortest ts-path are both in the clockwise direction and thus
contain all nodes in the graph.

For our second result, we present a roundtrip analogue of Theorem 1 which holds true for
general directed graphs (with the constant 11 instead of 3):

» Theorem 3 (Directed graphs). Let G be a weighted directed graph with the property that,
for each set S of 11 nodes, there is a shortest path containing every node in S. Then, there
exists a pair (s,t) of nodes such that the union of a shortest st-path and a shortest ts-path
contains every node in G.

Proving Theorem 3 requires overcoming a number of technical challenges involving the ¢
omplex structure of shortest paths in directed graphs. Due to its roundtrip nature, unlike
Theorem 2, Theorem 3 does not appear to have any immediate algorithmic applications.

1.2 Disjoint and Congested Shortest Path Problems

In this section we introduce the k-Shortest Paths with Congestion ¢ ((k, ¢)-SPC) problem and
state the implications of our work for this problem.

1.2.1 Background

We begin by discussing the related k-Disjoint Shortest Paths (k-DSP) problem. For more
related work on disjoint path problems in general, see the full version.

Disjoint Shortest Paths

Formally, the k-Disjoint Shortest Paths (k-DSP) problem is defined as follows:

k-Disjoint Shortest Paths (k-DSP): Given a graph G and k node pairs (s1,t1), ..., (Sk, tk),
find a collection of node-disjoint paths P, ..., Py such that each P; is a shortest path
from s; to t;, or report that no such collection of paths exists.

8:3
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The k-DSP problem was introduced in the 90s by Eilam-Tzoreff [22], who gave a
polynomial-time algorithm for undirected graphs when k = 2, and conjectured that there is a
polynomial-time algorithm for any fixed k£ in both undirected and directed graphs. Recently,
Lochet [30] proved Eilam-Tzoreff’s conjecture for undirected graphs by showing that k-DSP
can be solved in polynomial time for any fixed k. Subsequently, the dependence on k in the
running time was improved by Bentert, Nichterlein, Renken, and Zschoche [8]. It is known
that k-DSP on undirected graphs is W[1]-hard [8, Proposition 36], so this problem is unlikely
to be fixed-parameter tractable.

For directed graphs, Bérczi and Kobayashi [9] showed that 2-DSP can be solved in
polynomial time. For k > 3 however, determining the complexity of k-DSP on directed
graphs remains a major open problem. This problem is only known to be polynomial-time
solvable for special classes of directed graphs, such as DAGs and planar graphs [9].

Shortest Paths with Congestion

The k-Shortest Paths with Congestion ¢ ((k, ¢)-SPC) problem is the variant of k-DSP where
some amount of congestion (paths overlapping at nodes) is allowed. In general, problems of
finding paths with limited congestion are well-studied studied in both theory and practice.
For instance, there is much work on the problem in undirected graphs where the goal is to
find a maximum cardinality subset of node pairs (s;, ;) that admit (not necessarily shortest)
paths with congestion at most ¢ [32, 28, 7, 6, 5, 17, 4, 26, 16, 18]. As another example, [27]
provides, for fixed k, a polynomial-time algorithm for the problem on directed graphs of
determining that either there is no set of disjoint paths between the node pairs (s;,t;), or
finding a set of such paths with congestion at most 4. Another example for directed graphs
is the problem of finding paths between the node pairs (s;, t;) where only some nodes in the
graph have a congestion constraint [31].

Formally, the k-Shortest Paths with Congestion ¢ ((k, ¢)-SPC) problem is defined as follows:

k-Shortest Paths with Congestion ¢ ((k, ¢)-SPC): Given a graph G, along with k node pairs
(s1,t1),.-.,(sk, tx), and a positive integer ¢ < k, find a collection of paths Py, ..., Py
such that each P; is a shortest path from s; to ¢;, and every node in V(G) is on at most
¢ paths P;, or report that no such collection of paths exists.

The (k,c¢)-SPC problem was introduced by Amiri and Wargalla [3]. Before that, the
version of (k,c)-SPC where the paths are not restricted to be shortest paths was studied by
Amiri, Kreutzer, Marx, and Rabinovich [2].

When ¢ = 1, the (k,¢)-SPC problem is equivalent to the k-DSP problem. At the other
extreme, when ¢ = k, there are no congestion constraints, so the problem can be easily solved
in polynomial time by simply finding a shortest path for each pair (s;,t;) independently.
Amiri and Wargalla [3] asked the following question: can we interpolate between these
two extremes? In particular, can we get algorithms for (k,c)-SPC where the exponential
dependence on k for k-DSP can be replaced with some dependence on O(k — ¢) instead?

Amiri and Wargalla [3] achieved this goal for DAGs. In particular, they gave a reduction
from (k,c)-SPC on DAGs to k-DSP on DAGs of the following form: letting d = k — ¢, if
k-DSP on DAGs can be solved in time f(n, k), then (k,¢)-SPC on DAGs can be solved in

time O ((3kd) - f(2dn, 3d)). The essential aspect of this running time is that the second input

to the function f is not k but rather an O(d) term. A key tool in their reduction is Theorem 1
(stated in a different way).
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Since k-DSP can be solved in n®®*) time on DAGs [9], the above result implies that
(k, ¢)-SPC can be solved in (Skd) - (2dn)®@ time on DAGs. That is, (k,c)-SPC on DAGs is
polynomial-time solvable for arbitrary k& whenever d is constant. We note that for for every
¢, the (k, ¢)-SPC problem on DAGs is W[1]-hard with respect to d, so the problem is unlikely
to be fixed-parameter tractable with respect to d [3, Proof of Theorem 3].

1.2.2 Algorithmic Results

Similarly to Amiri and Wargalla’s result for DAGs, our result for undirected graphs, The-
orem 2, implies a reduction from (k, ¢)-SPC to k-DSP on undirected graphs.

» Lemma 4. If k-DSP can be solved in f(n,k) time on undirected graphs, then (k,c)-SPC
can be solved in O ((fd) . f(3dn,4d)) time on undirected graphs.

Lemma 4 follows from Theorem 2 using an argument nearly identical to the one presented
for DAGs in [3] (up to a difference in constants). For completeness, we include a full proof of
this result in the full version.

Since it is known that k-DSP can be solved in undirected graphs in time n?**) [8],
applying Theorem 2 together with Lemma 4, we deduce the following result.

» Corollary 5. (k,c)-SPC on undirected graphs can be solved in (fd) - (3dn) O MDY time,

Thus (k, ¢)-SPC on undirected graphs is in polynomial time whenever d = k—c¢ is constant;
that is, it is in the complexity class XP with respect to the parameter d. Prior to our work,
no polynomial-time algorithm for this problem appears to have been known in this regime,
even for simple cases such as (k, k — 1)-SPC on undirected graphs.

In contrast, our structural result for directed graphs, Theorem 3, does not imply a faster
algorithm for (k,¢)-SPC in directed graphs. This is because Theorem 3 does not appear to
imply a reduction from (k,c)-SPC to k-DSP in the manner of Lemma 4. Moreover, even if
such a reduction did exist, this would not imply an algorithm for directed graphs analogous
to Corollary 5. This is because while k-DSP is polynomial-time solvable for constant k in
undirected graphs, it remains open whether even 3-DSP over directed graphs can be solved
in polynomial time.

1.3 The Structure of Shortest Paths in Directed Graphs

Although our result for directed graphs, Theorem 3, does not appear to have immediate
algorithmic applications, we believe it is still interesting from a graph theoretic perspective,
especially in light of the current scarcity of results for shortest disjoint path problems in
directed graphs. In this section, we expand upon this idea with some remarks, and then
state a lemma from our proof concerning the structure of shortest paths in directed graphs.

We currently have a poor understanding of the complexity of the k-DSP problem in
directed graphs: for fixed k£ > 3, it is still not known if this problem is either polynomial-time
solvable or NP-hard. In fact, even the complexity of the seemingly easier (3,2)-SPC problem
on directed graphs is open. In this context, Theorem 3 is compelling because it presents an
example of interesting behavior which holds for collections of shortest paths in DAGs, and
then continues to hold, under suitable generalization, for systems of shortest paths in general
directed graphs. This sort of characterization appears to be rare in the literature.

More generally, the methods we use to establish Theorem 3 involve combinatorial observa-
tions about the structure of shortest paths in directed graphs, and the interactions between
them. We believe our analysis could offer more insight into resolving other problems that
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concern systems of shortest paths in directed graphs. There are many such problems, where
the undirected case is well-understood, but in the directed case not much is known. This
barrier is in-part due to the relatively complex patterns of shortest paths which can appear
in directed graphs. We hope that our analysis of directed shortest paths may shed light on
problems for which the structural complexity of directed shortest paths is the bottleneck
towards progress.

One example of a problem where the undirected case is well-understood while the directed
case remains poorly understood is, as discussed previously, the k-DSP problem. Another
curious example is the Not-Shortest Path problem, where the goal is to find an st-path that
is not a shortest path. Although Not-Shortest Path can be solved over undirected graphs in
polynomial time [29], no polynomial time algorithm is known for this problem in directed
graphs. A third example is the problem of approximating the diameter of a graph. For
undirected graphs there is an infinite hierarchy of algorithms that trade off between time
and accuracy [14], while only two points on the hierarchy are known for directed graphs.
Additionally, the roundtrip variant of diameter is the least understood of any studied variant
of the diameter problem [34]. Another example is the construction of approximate hopsets: for
directed graphs there is there a polynomial gap between upper and lower bounds [25, 10, 13],
while for undirected graphs the gap is subpolynomial [23, 24]. The preponderance of such
examples motivates proving results like Theorem 3, which characterize interesting behavior
of shortest paths in directed graphs.

Structural Lemma for Directed Shortest Paths

One of the lemmas we establish on the way to proving Theorem 3 is a general statement
about the structure of shortest paths in directed graphs. It can be stated independently of
the context of the proof of Theorem 3 and we highlight it here.

We categorize any shortest path P into one of two main types, based on the ways that
other shortest paths intersect with it. The following simple definition will be useful for
defining our path types.

» Definition 6. For any nonnegative integer £ and set of £ nodes, v1,va,...,vs, we say that
the order vi — va — - -+ — vy is a shortest-path ordering if there is a shortest path containing
all of the nodes vy,va,...,vs in that order.

In addition to our two main path types, there is a third path type which we call a trivial
path because it is easy to handle:

» Definition 7 (Trivial Path). Given a directed graph, nodes a and b, and a shortest path P
from a to b, we say P is a trivial path if P contains at least one node w such that a — w — b
is the only shortest-path ordering of a,w,b.

Now we are ready to state our two main types of shortest paths. The first type is a
reversing path:

» Definition 8 (Reversing path). Given a directed graph, nodes a and b, and a non-trivial
shortest path P from a to b, P is reversing if P contains at least one node w such that w
falls on some shortest path from b to a. A non-reversing path is a non-trivial path that is
not reversing.

We prove a lemma that characterizes the structure of reversing and non-reversing paths
in terms of the possible shortest-path orderings of each node on the path and the endpoints
of the path. See Figures 1a and 1b for a depiction of the structure enforced by the lemma.
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» Lemma 9 (Reversing/Non-Reversing Lemma). Let P be a non-trivial shortest path and let
a and b be the first and last nodes of P respectively. Then P can be partitioned into three
contiguous ordered segments with the following properties (where a is defined to be in Segment
1, b is defined to be in Segment 3, and Segment 2 could be empty).

Segment 1 consists of nodes w such that the shortest-path orderings of a,w,b are precisely
a—w—b, andb— a — w.

Segment 2 consists of nodes w such that the shortest-path orderings of a,w,b are precisely

{a —w—b, andb—w—a if P is a reversing path

a—w—=b, andb—a—w, andw —b—a if P is a non-reversing path.

Segment 3 consists nodes w such that the shortest-path orderings of a,w,b are precisely
a—w—b, andw—b— a.

______ € e ————
Lem T 4----...._._‘_77?\ eI < LTI
S >, e N
a b a b
S T~ T = .,
— \/_/\/_/ \\ AAAAAAAAA - —— /
Segment 1 Segment 2 Segment 3 S
Segment 1 Segment 2 Segment 3

(b) Non-Reversing Path. The structure of a non-
reversing path, as given by Lemma 9. The possible
shortest-path orderings for nodes in segment 2 are
represented by pink and light blue solid paths, while
the orderings allowed for nodes in segments 1 and 3
are represented by blue dashed and purple dotted
segments respectively.

(a) Reversing Path. The structure of a reversing
path, as given by Lemma 9. The blue dashed path,
pink solid path, and purple dotted path are examples
of the allowed orderings for nodes in segments 1, 2,
and 3 respectively.

Figure 1 Possible orderings of vertices on shortest paths in the reversing and non-reversing cases.
The blue circles are representative examples of the types of nodes on the path from a to b (in general
this path will contain more than just five nodes).

In the proof of Theorem 3 we employ the strategy of categorizing shortest paths as
reversing or non-reversing (or trivial), and applying Lemma 9 to glean some structure. We
note, however, that Lemma 9 itself is not the main technical piece of the proof.

2 Preliminaries

All graphs are assumed to have positive edge weights. Graphs are either undirected or
directed, depending on the section. For any pair of nodes (u,v), we use dist(u,v) to denote
the shortest path distance from u to v. Given a path P and two nodes u and v occurring on
P in that order, we let P[u,v] denote the subpath of P with « and v as endpoints.

For the (k,c¢)-SPC problem, we always let d denote the difference d = k — ¢. When
considering a particular solution to a (k,¢)-SPC instance, we refer to the paths Py, ..., P
between (s1,t1),. .., (s, tx) respectively as solution paths. Any node in the graph which lies
in ¢ of the solution paths is referred to as a mazx-congestion node.
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2.1 Subpath Swapping

In our proofs, we will frequently modify collections of shortest paths by “swapping subpaths”
between intersecting paths. This procedure is depicted in Figure 2, and we formally describe
it below.

» Definition 10 (Subpath Swap). Let R be a collection of shortest paths in a directed graph.
Let P and @) be two paths in R. Let a,b € PNQ be nodes in these paths, such that a appears
before b in both P and Q). We define swapping the subpaths of P and @ between a and b to
be updating the set of paths R by simultaneously replacing P with (P \ Pla,b]) U Q[a,b] and
Q with (Q \ Q[a,b]) U Pla,b]. We often refer to this process simply as “swapping Pla,b] and
Qla,b].”

Si @ b ti Si —— a b—»—tl

Figure 2 A simple subpath swap, where the subpaths from a to b of the green path (from s; to
t;) and pink path (from s; to ¢;) are switched.

» Observation 11 (Subpath Swap). Let R be the solution to some (k,c)-SPC problem. Then
swapping subpaths in R produces a new solution to the same (k,c)-SPC instance with the
same set of maz-congestion nodes.

Proof. This observation holds because swapping subpaths does not change the number of
solution paths any given node is contained in, does not change the endpoints of any solution
path, and all solution paths remain shortest paths. |

2.2 Correspondence Between Our Results and (k, c)-SPC

In this section we detail some nuances regarding the correspondence between the statement
of our results and the (k, ¢)-SPC problem. For the sake of generality and simplicity, we stated
Theorems 1-3 independently of the (k,¢)-SPC problem. In contrast, the original result of
Amiri and Wargalla, corresponding to Theorem 1, was stated as follows:

» Lemma 12 ([3]). If k > 3d, then any instance of (k,c)-SPC on DAGs either has no
solution, or has a solution where some solution path P; passes through all max-congestion
nodes.

Although the statement of Lemma 12 may initially seem unrelated to the statement of
Theorem 1, their correspondence becomes clearer with the following observation, which is a
simple generalization of an observation from [3]:

» Observation 13. Let N be a positive integer. Suppose k > Nd, and let R be a solution to
an arbitrary (k,c)-SPC instance. Then for any set S of N max-congestion nodes in R, there
exists some solution path in R which contains every node in S.

We defer the proof of Observation 13 to the appendix.
To prove our results for the (k, ¢)-SPC problem in undirected graphs (Lemma 4 and Co-
rollary 5), we need to prove a lemma analogous to Lemma 12 but for undirected graphs:
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» Lemma 14. If k > 4d, then any instance of (k,c)-SPC either has no solution, or has a
solution where some solution path P; passes through all max-congestion nodes.

The following generalizes Theorem 2 and Lemma 14.

» Lemma 15 (General Undirected Result). Given an undirected graph and subset W of nodes,
let R be a collection of shortest paths with the following property:

for every set S C W of 4 nodes, some path in R contains every node in S. (%)

Further suppose that applying any sequence of O(n®) subpath swaps to R yields a collection
of shortest paths that still has property (x). Then starting from R, there exists a sequence
of subpath swaps that results in a collection of shortest paths in which some path P passes
through all nodes in W.

We note that the quantity O(n?) is an unimportant technicality used in the proof of the
following observation, and is chosen as a loose upper bound on the number of subpath swaps
we will perform.

» Observation 16. Lemma 15 generalizes both Theorem 2 and Lemma 14.

We defer the proof of Observation 16 to the appendix.
We also prove an analogue of Lemma 12 and Lemma 15 for directed graphs:

» Lemma 17 (General Directed Result). Given a directed graph and subset W of nodes, let
R be a collection of shortest paths with the following property:

for every set S C W of 11 nodes, some path in R contains every node in S. (1)

Further suppose that applying any sequence of O(n®) subpath swaps to R yields a collection

of paths that still has property (t). Then starting from R, there exists a sequence of subpath

swaps that results in a collection of shortest paths in which either:

1. some path P passes through all nodes in W, or

2. the union of two paths P, P’ contain all nodes in W, and the first and last nodes on P
from W are the same as the last and first nodes on P’ from W, respectively.

Lemma 17 generalizes Theorem 3, in exactly the same way as Lemma 15 generalizes Theorem 2

for undirected graphs. In the same way that Lemma 15 generalizes Lemma 14 for undirected

graphs, Lemma 17 implies the following lemma:

» Lemma 18. If k > 11d, then any instance of (k,c)-SPC on directed graphs either has no
solution, or has a solution where the union of some two solution paths P; and P; contains
all mazx-congestion nodes.

Although Lemma 18 does not immediately lead to an algorithm for (k, ¢)-SPC on directed
graphs, it specifies some structure which may be useful for future work on (k,¢)-SPC and
related problems.

One might wonder whether Lemma 18 can be modified to have only one solution path P;
that contains all max-congestion nodes, like for DAGs (Lemma 12) and undirected graphs

(Lemma 14), since this would imply interesting algorithms for (k, ¢)-SPC on directed graphs.

Unfortunately, the answer to this question turns out to be no. Similar to the counterexample
against extending Theorem 2 to directed graphs, we present a counterexample in the full

version which rules out replacing two solution paths with a single solution path in Lemma 18.
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3 Technical Overview

3.1 Prior Work on DAGs

As a starting point for our proofs for general graphs, we use Amiri and Wargalla’s proof of
Theorem 1 for DAGs [3]. We describe their proof differently than they do for the sake of
comparison to our work. We actually describe their proof of the following lemma (which
they do not explicitly state), which is analogous to the statements of our general results
(Lemmas 15 and 17).

» Lemma 19 ([3]). Given a DAG and subset W of nodes, let R be a collection of shortest
paths with the following property:

for every set S C W of 8 nodes, some path in R contains every node in S. (*)

Further suppose that applying any sequence of O(n3) subpath swaps to R yields a collection
of paths that still has property (x). Then starting from R, there exists a sequence of subpath
swaps that results in a collection of shortest paths in which some path P passes through all
nodes in W.

The proof of Lemma 19 is as follows. Let a and b be the first and last nodes in W
(respectively) in a topological ordering of the DAG. Let v1,...vy|—2 be the remaining nodes
in W in order topologically. For ease of notation, we consider R to be changing over time
via subpath swaps, and we will let R denote the current value of R.

The argument is inductive. For the base case, by property (%) there is a path in R
that contains a and b. Suppose inductively that a path P € R currently contains a, b, and
v1,...,vp for some ¢. We would like to perform a subpath swap to augment P by adding
vey1 to P. To do so, we consider a path P’ € R that contains vy, ve41, and b, where such
a path exists by property (x). Importantly, because the graph is a DAG, vy, vs11, and b
appear in that order on both P and P’. Thus, according to the definition of a subpath swap
(Definition 10) we can swap Plvg, b] with P’[vg, b], as shown in Figure 3. As a result of this
subpath swap, P now contains vy in addition to all of the nodes in W that P originally
contained. By induction, this completes the proof.

P
\
a U1 o)) b P;
N\ 7
¢ Vo4l
)
P
\ /|
a V1 ) > b\ —— P;
Ve+1

Figure 3 In a DAG, the topological ordering of the nodes allows us to perform a sequence of
subpath swaps, each adding the next node in W in order to a path P.
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3.2 Undirected Graphs

Recall that our goal for undirected graphs is to prove the following theorem:

» Lemma 15 (General Undirected Result). Given an undirected graph and subset W of nodes,
let R be a collection of shortest paths with the following property:

for every set S C W of 4 nodes, some path in R contains every node in S. (*)

Further suppose that applying any sequence of O(n®) subpath swaps to R yields a collection
of shortest paths that still has property (x). Then starting from R, there exists a sequence
of subpath swaps that results in a collection of shortest paths in which some path P passes
through all nodes in W.

The essential property that enables the subpath swapping in the above argument for
DAGs is the fact that for any triple of nodes in a DAG, there is only one possible order
this triple can appear on any path. This property is not exactly true for general undirected
graphs, but we observe that a similar “consistent ordering” property is true: if there is
a shortest path containing nodes u, v, w in that order, then any shortest path containing
these nodes, has them in that order (or in the reverse order w,v,u, but since the graph is
undirected we can without loss of generality assume they are in the order w,v,w). This
property is true simply because dist(u, w) is larger than both dist(u, v) and dist(v, w), so v
must appear between u and w on any shortest path.

To perform subpath swapping on undirected graphs, we need an initial pair of nodes in
W such that the rest of the nodes in W will be inserted between this initial pair (in the DAG
algorithm, this initial pair a, b was the first and last nodes in W in the topological order). For

undirected graphs, our initial pair is the pair a,b of nodes in W whose distance is maximum.

We order the rest of the nodes in W by their distance from a, to form vy, ..., vw|_2.

Now, our consistent ordering property from above implies the following: for any shortest
path P containing a, all nodes in W N P are ordered as a subsequence of a,v1,v2,...,Um,b
on P. As a result, we can perform the same type of iterative subpath swapping argument as
the DAG algorithm.

3.3 Roundtrip Paths in Directed Graphs

The situation for directed graphs is significantly more involved than the previous cases.
There are several challenges that are present for directed graphs that were not present for
either undirected graphs or DAGs. These difficulties stem from the fact that the interactions
between shortest paths is much more complicated in directed graphs than in DAGs or
undirected graphs.

We first outline these challenges, and then provide an overview of how we address them.
Our techniques for addressing these issues exemplify that despite the possibly complex
arrangement of shortest paths in directed graphs, there still exists an underlying structure to
extract. We hope that our methods might illuminate some structural properties of shortest
paths in directed graphs in a way that could apply to other directed-shortest-path problems.

Recall that our goal is to prove the following theorem:

» Lemma 17 (General Directed Result). Given a directed graph and subset W of nodes, let
R be a collection of shortest paths with the following property:

for every set S C W of 11 nodes, some path in R contains every node in S. ()
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Further suppose that applying any sequence of O(n®) subpath swaps to R yields a collection

of paths that still has property (). Then starting from R, there exists a sequence of subpath

swaps that results in a collection of shortest paths in which either:

1. some path P passes through all nodes in W, or

2. the union of two paths P, P’ contain all nodes in W, and the first and last nodes on P
from W are the same as the last and first nodes on P’ from W, respectively.

Challenges for directed graphs
Challenge 1: No “extremal” nodes

In the proofs for DAGs and undirected graphs, to begin building the path P containing all
nodes in W, we chose two initial extremal nodes a,b € W and added the rest of the nodes of
W between a and b. These nodes a, b were straightforward to choose because there was only
one pair of nodes in W that could possibly appear first and last on a path containing all
nodes in W (for DAGs a and b were the first and last nodes in a topological ordering of W,
and for undirected graphs a and b were the pair of nodes in W with largest distance).

For directed graphs however, it is entirely unclear how to pick these two initial extremal
nodes. For instance, choosing the pair of nodes a,b € W with largest directed distance
dist(a, b) does not work because there could be a shortest path @ containing a and b, where
a and b are not the first and last nodes in W on @ (in particular, if b appears before a on
the shortest path).

To circumvent this issue for directed graphs, we avoid selecting a pair of initial nodes at
all. Without initial nodes as an anchor, we cannot build our path P in order from beginning
to end as we did for DAGs and undirected graphs. Instead, our goal is to ensure the following
weaker property: as we iteratively transform the overall collection of shortest paths R, the
set of nodes in W on the path in R containing the most nodes in W grows over time. That
is, the path of R containing the most nodes in W might currently be P, but at the previous
iteration, the path of R with the most nodes in W might have been a different path P’. In
this case, our weaker property ensures that P currently contains a superset of the nodes in
W that P’ contained at the previous iteration.

To perform a single iteration with this guarantee, we may need to significantly reconfigure
many different paths of R via many subpath swaps. As a result, our path building procedure
is much more intricate than the procedures employed for DAGs and undirected graphs.

Challenge 2: No consistent ordering of nodes on shortest paths

In the proof for DAGs and undirected graphs, we were able to perform subpath swaps due
to the following crucial property: consider an arbitrary set of nodes vy, ..., v, (for any ¢) in
a DAG or an undirected graph. If there is a shortest path containing the nodes vy, ..., vy in
that order, then every shortest path containing these nodes has them in that same order.
For directed graphs, however, this property is not even close to being true. In fact, given
that the nodes v1, ..., vy appear in that order on some shortest path, there are exponentially
many other possible orderings of these nodes on other shortest paths. For instance, when
{ = 4, given that the nodes vy, va, v3,v4 appear in that order on some shortest path, there are
eight possible orderings of these nodes on shortest paths, as depicted in Figure 4 (note that
despite the large number of possible orderings, not all orderings are possible; for instance the
ordering vy, vg, v4,v3 is not possible, as this would imply that dist(vy,v4) < dist(vy,v3), which
contradicts our assumption that some shortest path contains vy, vy, v3,v4 in that order).
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V1 )——(V2)—>—(V3)—>—(V4g V1 V2 )—>—(V3)——(V4g V1) ——(V2 V3 ——(V4 V1 )——(V2)——(V3 V4

V1 —<— (V2 )—<—(V3)—=—(V1g V1) ——(V2 V3 )——(V4 V1 —~=—(V2 V3)——(V4 U1 V2)——(U3 V4

Figure 4 If nodes v1, v2, v3,v4 appear in that order on some shortest path, they can still appear
on different shortest paths in up to seven other distinct possible orders.

Because directed graphs have no consistent ordering of nodes on shortest paths, it becomes
much more difficult to perform subpath swaps like those in the algorithms for DAGs and
undirected graphs.

To address this challenge, we provide a structural analysis of the ways in which shortest
paths in directed graphs can interact with each other. First, as introduced in Section 1.3,
we categorize shortest paths into two main types, reversing paths and non-reversing paths,
and we prove the Reversing/Non-Reversing Path Lemma (Lemma 9). Roughly speaking,
this lemma is useful because it helps us construct sets of nodes that exhibit some sort of
consistent ordering property. This, in turn, enables us to perform sequences of subpath swaps.
Defining these consistently ordered sets of nodes and the corresponding subpath swaps is the
most involved part of the proof, and works differently for each of the two path types.

Proof structure

Our proof is structured as follows. Initially, we define P to be the path in R that contains
the most nodes in W (breaking ties arbitrarily). Then we proceed with the following two
cases:

(Case 1) We first check whether, roughly speaking, P is contained in a cycle that contains
all nodes in W. In this case, we can use a sequence of subpath swaps to build a second
path P’ so that the union of P and P’ contains all nodes in W and have the “roundtrip”
structure specified in the theorem statement, in which case we are done.

(Case 2) If we are not in Case 1, our goal is to augment some path in R so that the set of
nodes of W on the path in R with the most nodes in W grows (the goal introduced in
the discussion of Challenge 1).
After going through these cases, if we are not done we redefine P as the path in R containing
the most nodes in W and repeatedly apply the appropriate case, until we are done. Most
technical details of our proof are in the path augmentation procedure of Case 2. We elaborate
on the main ideas for this procedure next.

Handling Case 2: Path Augmentation

Recall that our goal is the following: Let P be the path in R containing the most nodes in
W, and let W/ =W N P. Fix a node u € W\ W’'. We wish to perform subpath swaps to
yield a path P’ that contains every node in W’ U {u}.

We begin with a few warm-up cases to motivate our general approach.
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Warm-up cases

Let a and b be the first and last nodes on P that are in W, respectively. By property ()
there exists a path in R containing a, b, and u. We will suppose in all of the subsequent
examples, that for all paths in R containing the nodes a, b, and u, the node u is always the
last node in W on the path; this is not a conceptually important assumption and it makes
the description simpler.

We claim that if there is a path P’ € R containing a, b, and u, such that a appears before
b, then we are done. Indeed, as depicted in Figure 5a, in this case we can simply swap the
subpath P[a,b] with P’[a,b], to form a new solution where P’ contains W' U {u}.

P;
\ u - —~——
A
o7 P
a b . P, - » X\
/ > a V1 Ve Vi1 b > PL
a
Vo+1
4 , ¢
P;

u

. P /4_\r /+\

c —a—a b —_— -
\\ / > a > V1 3 Vg +——Ve+1 - b > 1’)7

v
“ (b) More generally, when P’ passes through vei1,b, a, v
in that order, we can perform two subpath swaps to get P’
(a) If a appears before b on P’, a subpath to pass through the rest of W’. Here, the dotted segments
swap lets P’ pass through u together with all indicate portions of the paths which pass through the
of the nodes in W'. nodes of W' that are not labeled in the figure.

Figure 5 The two warm-up cases.

Now we will slightly generalize this warm-up case. Let a,v1,v9,...,b be the nodes in
W' in the order they appear on P. Consider vy and vsy for any £. By property (1) there
exists a path in R containing a, b, u, v, and ve41. We know from the previous warm-up
case that if there is a pathin R containing these nodes such that a appears before b, then
we are done. We also claim that if there exists a path P’ € R containing these nodes such
that ve41,b,a,v, appear in that order, then we are done. This is because as depicted in
Figure 5b, we can swap the subpath P[a,ve] with P’[a,vs], and swap the subpath Plvsy1,b]
with P’[vgy1,b]. Now, P’ contains W’ U {u}.

General Approach: “Critical nodes”

We will motivate our general approach in the context of the above warm-up cases. In the
second warm-up case, we considered 5 nodes (a, b, u, vy, and vg41) in W, and argued that if
there is a path P’ € R containing these 5 nodes in one of several “good” orders, then we are
done because we can perform subpath swaps to reroute P’ through all of W’ U {u}. Thus,
our goal is to choose these 5 (or in general, at most 11) nodes carefully, to guarantee that
they indeed fall into a “good” order on some path in R. We refer to these at most 11 nodes
as critical nodes:

» Definition 20 (Critical Nodes (Informal)). Given a path P € R, a set of nodes T CW of
size |T| < 11 are critical nodes of P if there exists a path P’ € R containing the nodes of T

in an order that allows us to perform subpath swaps to reroute some path in R through all of
W'U{u} (where W =W NP).
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Our general approach is to show that any path P € R contains a set of at most 11 critical
nodes. We remind the reader that this section only concerns Case 2, so our goal is to show
that P contains a set of critical nodes only if P does not already fall into Case 1. After
showing that P contains a set of critical nodes, we are done, because performing subpath
swaps to yield a path containing W’ U {u} was our stated goal.

It is not at all clear a priori that any P should contain a set of critical nodes. Indeed, the
critical nodes need to be chosen very carefully. Specifically, they need to be chosen based on
the structure of the path P.

This is where the definitions from Section 1.3 come into play. We categorize P based on
whether it is reversing or non-reversing, (or trivial). Then we construct the critical nodes of
P using a different procedure specialized for which type of path P is.

If P is a reversing path, then we argue that a valid choice of critical nodes are a, b, and w,
along with the two nodes at the two boundaries between the segments defined in Lemma 9
(and a few other nodes for technical reasons). To make this argument, which we will not
detail here, we construct an involved series of subpath swaps to reroute some path through
all of W/ U {u}.

On the other hand, if P is a non-reversing path, the critical nodes are less straightforward to
define than if P is a reversing path. Indeed, defining the critical nodes for non-reversing paths
is the most conceptually difficult part of our proof. The high-level reason for this difficulty is
the fact that the nodes of Segment 2 of a non-reversing path are quite unconstrained because
they admit 3 possible shortest-path orderings instead of only 2.

To be more concrete, suppose every node on P falls into Segment 2. For simplicity,
suppose we were to choose critical nodes a, b, w, where a and b are the endpoints of P
and also happen to be in W', and w is any other node in W’. Consider the path P’ € R
containing a, b, and w, which exists by property (f). By the definition of Segment 2, there
are 3 possible orderings of a,b,w on P’ (a - w — b, or b — a — w, or w — b — a). Note
that these 3 orderings are cyclic shifts of one another. Suppose, as an illustrative example,
that P’ has the ordering b — a — w. We would like to reroute P’ through all of W' U {u},
but we have a problem. For any node s € W’ that appears between a and w on P, we can
reroute P’ through s by swapping the subpath P[a,w] with P’[a,w]; however, for a node
s € W' that appears between w and b on P, we cannot do this because there is no path
segment from w to b on P’, since b appears before w on P’. Thus, we cannot reroute P’
through s. That is, no matter how we choose the critical nodes, if we do not impose extra
structural constraints, we can always identify a segment of the path that we cannot reroute
P’ through. Overcoming this issue is our main technical challenge, and we defer it to the full
proof.
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—— Abstract

A RAC graph is one admitting a RAC drawing, that is, a polyline drawing in which each crossing
occurs at a right angle. Originally motivated by psychological studies on readability of graph layouts,
RAC graphs form one of the most prominent graph classes in beyond planarity.

In this work, we study a subclass of RAC graphs, called axis-parallel RAC (or apRAC, for short),
that restricts the crossings to pairs of axis-parallel edge-segments. apRAC drawings combine the
readability of planar drawings with the clarity of (non-planar) orthogonal drawings. We consider
these graphs both with and without bends. Our contribution is as follows: (i) We study inclusion
relationships between apRAC and traditional RAC graphs. (ii) We establish bounds on the edge
density of apRAC graphs. (iii) We show that every graph with maximum degree 8 is 2-bend apRAC
and give a linear time drawing algorithm. Some of our results on apRAC graphs also improve the
state of the art for general RAC graphs. We conclude our work with a list of open questions and a
discussion of a natural generalization of the apRAC model.
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1 Introduction

Planar graphs form a fundamental graph class in algorithms and graph theory. This is due to
the fact that planar graphs have many useful properties, e.g., they are closed under minors
and have a linear number of edges. Several decision problems, which are NP-complete for
general graphs, become polynomial-time tractable, when restricted to planar inputs, e.g. [28].
As a result, the corresponding literature is tremendously large.

A recent attempt to extend this wide knowledge from planar to non-planar graphs was
made in the context of beyond-planarity, informally defined as a generalization of planarity
encompassing several graph-families that are close-to-planar in some sense (e.g., by imposing
structural restrictions on corresponding drawings). Notable examples are the classes of
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(i) k-planar graphs [31], in which each edge cannot be crossed more than k times, (ii) k-quasi-
planar graphs [1], which disallow k pairwise crossing edges, and (iii) k-gap planar graphs [9],
in which each crossing is assigned to one of the two involved edges such that each edge is
assigned at most k of its crossings. For an overview refer to the recent textbook [29].

While all of the aforementioned graph-classes are topological, meaning that the actual
geometry of the graph’s elements is not important, there is a single class proposed in the
literature that is purely geometric. The motivation for its study primarily stems from
cognitive experiments indicating that the negative effect of edge crossings in a graph drawing
tends to be eliminated when the angles formed at the edge crossings are large [30]. In
that aspect, the class of right-angle-crossing (RAC) graphs forms the optimal case in this
scenario, where all crossing angles occur at 90°. Formally, it was introduced by Didimo,
Eades and Liotta [22] a decade ago, and since then it has been a fruitful subject of intense
research [5, 17, 19, 23, 25].

Generally speaking, the research on RAC graphs has focused on two main research
directions depending on whether bends are allowed along the edges or not. Formally, in
a k-bend RAC drawing of a graph each edge is a polyline with at most k& bends and the
angle between any two crossing edge-segments is 90°. Accordingly, a k-bend RAC graph
is one admitting such a drawing. A 0-bend RAC graph (or simply RAC graph) with n
vertices has at most 4n — 10 edges [22], that is, at most n — 4 edges more than those of
a corresponding maximal planar graph. The edge-density bounds for 1- and 2-bend RAC
graphs are 5.5n — 10 [2] and 74.2n [8], respectively, while for k£ > 3 it is known that every
graph is k-bend RAC [25]. The research on RAC graphs, however, is not limited to edge-
density bounds. Several algorithmic and combinatorial results [5, 7, 6, 18, 21, 25], as well as
relationships with other graph classes [10, 13, 15, 16, 23, 14] are known; see [20] for a survey.

In this work, we continue the study of RAC graphs along a new and intriguing research line.
Inspired by several well-established models for representing graphs (including the widely-used
orthogonal model [12, 26, 27]), we introduce and study a natural subfamily of k-bend RAC
graphs, which restricts all edge segments involved in crossings to be axis-parallel. We call
this class k-bend apRAC. We expect that this restriction will further enhance the readability
of the obtained drawings, as these combine the simple nature of the planar drawings with the
clarity of the (non-planar) orthogonal drawings by allowing non axis-parallel edge segments,
only when those are crossing-free. We further expect that our restriction will lead to new
results of algorithmic nature. As a matter of fact, almost all algorithms that have been
already proposed in the literature about k-bend RAC graphs in fact yield k-bend apRAC
drawings [11, 22, 25]; e.g., every Hamiltonian degree-3 graph is 0-bend apRAC [6], while
degree-4 and degree-6 graphs are 1- and 2-bend apRAC, respectively [3, 5].

Our contribution is as follows:

In Section 2 we study preliminary properties of 0-bend apRAC graphs in order to prove
that recognizing 0-bend apRAC graphs is NP-hard (see Theorem 3).

We study whether k-bend apRAC graphs form a proper subclass of k-bend RAC graphs:
For k = 0, we establish a strict inclusion relationship with K minus one edge being the
smallest graph separating the two classes. Further, our edge-density result for 1-bend
apRAC graphs establishes a strict inclusion relationship for k = 1, see Corollary 5. The
case k = 2 is more challenging (due to the degrees of freedom introduced by bends) and
we leave it as an open problem. For k& > 3, the two classes coincide, as the construction
establishing that every graph is 3-bend RAC [22] can be converted to 3-bend apRAC by
a rotation of 45°.
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Figure 1 Forbidden configurations by Properties 1-4.

We establish bounds on the edge density of n-vertex k-bend apRAC graphs: For k = 0, we
prove an upper bound of 4n — \/n — 6 and give a corresponding lower bound construction
with 4n — 2|/n] — 7 edges (see Theorem 1). For k € {1,2}, we give linear upper bounds
that are tight up to small additive constants (see Theorems 4 and 6). Notably, for k = 2
our lower-bound construction is a graph with n vertices and 10n — O(1) edges. This
bound extends to general 2-bend RAC graphs and improves the previous best one of
7.83n — O(y/n) [8], answering an open question in [2].

We show that every graph with maximum degree 8 is 2-bend apRAC and give a linear
time drawing algorithm (see Theorem 8) improving the previous best known result stating
that 7-edge colorable degree-7 graphs are 2-bend (ap)RAC [3].

Inspired by the slope-number of graphs, in Section 7 we discuss a natural generaliza-
tion of apRAC drawings where each edge segment involved in a crossing is parallel or
perpendicular to a line having one out of s different slopes.

2 Preliminaries

Throughout this paper, basic graph drawing concepts are used as found in [29, 32]. Let G
be a graph and IT" be a polyline drawing of G and let e = (u,v) be an edge of G. We say
that e uses a horizontal (vertical) port at u if the edge-segment of e that is incident to w is
parallel to the z-axis (to the y-axis) in I'. If e uses neither a vertical nor a horizontal port at
u, then it uses an oblique port at u. In particular, we denote the four orthogonal ports (i.e.,
the vertical and the horizontal ports) as {N, E, S, W }-ports according to compass directions.
In a polyline drawing, vertices and bends are placed on grid-points, whereby the area of the
drawing is determined by the smallest rectangular bounding box that contains the drawing.
In the following, we recall two properties that hold for 0-bend RAC drawings.

» Property 1 (Didimo, Eades and Liotta [22]). In a 0-bend RAC drawing no edge is crossed
by two adjacent edges (see Fig. 1a).

» Property 2 (Didimo, Eades and Liotta [22]). A 0-bend RAC drawing does not contain a
triangle T formed by edges of the graph and two edges (u,v) and (u,v"), such that u lies
outside T while both v and v’ lie inside T (see Fig. 1b).

Next, we establish two properties limited to 0-bend apRAC drawings.

» Property 3. A 0-bend apRAC drawing does not contain a triangle T formed by edges of
the graph and three vertices v1,vs,v3 adjacent to a verter u, such that vy, vs,vs lie outside T
and u lies inside T (see Fig. 1c).

Proof. Assuming the contrary, Property 1 implies that no two edges adjacent to u cross the
same boundary edge of 7. Hence, T consists of three axis-parallel edges; a contradiction. <
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» Property 4. Let T' be a 0-bend apRAC drawing containing o triangle T formed by edges
of the graph and two adjacent vertices u and v such that u is contained inside T while v is
outside T. Then, T’ does not contain a vertex w adjacent to u, v and all vertices of T (see
Fig. 1d).

Proof. For the sake of contradiction, assume there is a vertex w adjacent to u, v and all
vertices of T. If w is inside T in T, then (v,u) and (v, w) violate Property 2; a contradiction.
Otherwise, since (u,v) and (u,w) cross T, by Property 1, it follows that T is a right-angled
triangle whose legs are axis parallel. W.l.o.g., let (v1,v2) and (ve, v3) be the legs of T' crossed
by (u,v) and (u,w), respectively, such that (vi,vs) is horizontal and (ve,vs) is vertical. It
follows that the edge (ve,vs3) of T is crossed by (u,w) and (w,v;) violating Property 1; a
contradiction. |

In Theorem 3 we leverage the following property shown in [7] of the so-called augmented
square antiprism graph. The gadget used in the NP-hardness proof of Theorem 3 is depicted
in Fig. 2a, while the vertex-colored subgraph in Fig. 2a corresponds to the augmented square
antiprism graph.

» Property 5 (Argyriou, Bekos, Symvonis [7]). Any straight-line RAC drawing of the augmented
square antiprism graph has two combinatorial embeddings.

3 0-bend apRAC graphs

In this section, we focus on properties of 0-bend apRAC graphs. We start with an almost
tight bound on the edge-density of 0-bend apRAC graphs - for comparison, recall that
n-vertex 0-bend RAC graphs have at most 4n — 10 edges [22].

» Theorem 1. A 0-bend apRAC graph with n vertices has at most 4n — \/n — 6 edges. Also,
there is an infinite family of graphs with 4n — 2|\/n| — 7 edges that admit 0-bend apRAC
drawings.

Proof. For the upper bound consider any 0-bend apRAC drawing I' of a graph G with n
vertices. As a (k x k)-grid has only k2 grid points, we may assume without loss of generality
that the vertices of G use at least /n different y-coordinates in I'. It follows that the
subgraph G}, of G defined by the set Ej, of all horizontal edges of I is a forest of paths with
at least \/n components; at least one for each used y-coordinate. Thus |Ep| < n — /n. As
G — E}, is crossing-free in T, it has at most 3n — 6 edges, giving the desired upper bound of
4dn — v/n — 6 edges for G.

For the lower bound, consider the construction shown in Fig. 2b. For any even k > 0,
construct a k x k grid graph Hj which contains a pair of crossing edges in every quadrangular
face. Let G be the graph obtained from Hj by adding two extremal adjacent vertices N
and S connected to 2k — 1 consecutive boundary vertices of Hj, each (refer to the blue edges
in Fig. 2b and observe that the edge between N and S can be added by moving N upwards
and to the right and S downwards and to the right of Hy). If we denote by n the number of
vertices of Gy, then n = k? + 2, k = v/n — 2 and thus m = 4n — 2|\/n] — 7. <

Since there exist n-vertex 0-bend RAC graphs with 4n — 10 edges, Corollary 2 follows
from Theorem 1. In [4], we show that K minus one edge is the smallest graph that is 0-bend
RAC but not 0-bend apRAC.

» Corollary 2. The class of 0-bend apRAC graphs is properly contained in the class of 0-bend
RAC graphs.
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Figure 2 (a) Graph used in Theorem 3. (b) Lower bound construction for 0-bend apRAC.
(c¢) Lower bound construction for 1-bend apRAC.

We conclude this section by studying the recognition problem of whether a graph is
0-bend apRAC. Due to space reasons, we only sketch the idea of the proof; the complete
proof can be found in [4].

» Theorem 3. [t is NP-hard to decide whether a given graph is 0-bend apRAC.

Sketch. We adjust the NP-hardness reduction (from 3-SAT) for the general case of RAC
graphs introduced in [7], whose main gadgets use a building block H. We determine a 0-bend
apRAC graph H as a substitute for this building block which has the same properties as H:
(i) H has a unique embedding, (i¢) there are four vertices properly contained in its interior,
which can be connected to vertices in its exterior by crossing a single boundary edge, (i)
no edge can (completely) pass through H without forming a fan crossing, and (iv) H can be
extended horizontally or vertically maintaining properties (i) — (¢i7). The graph shown in
Fig. 2a satisfies all these criteria and can therefore be used for the reduction. |

4 1-bend apRAC graphs

In this section, we will establish an upper bound and an almost matching lower bound for
the class of 1-bend apRAC graphs. Recall that n-vertex 1-bend RAC graphs have at most
5.5n — 10 edges [2].

» Theorem 4. A 1-bend apRAC graph with n vertices has at most 5n — 8 edges. Also, there
is an infinite family of graphs with 5n — 16 edges that admit 1-bend apRAC drawings.

Proof. For the upper bound, consider a 1-bend apRAC drawing I' of an n-vertex graph G.

Each edge segment in T is either horizontal (h), vertical (v) or oblique (o). For z,y € {h,v,0},
let £, be the edges of G with two edge segments of type « and y. Then, Ep,, Eho, Eyo and
E,, form a partition of the edge-set of G, assuming that edges that consist of only one h-,
v- or o-segment are counted towards Fp,, F,, and E,,, respectively. By construction, any
crossing involves exactly one vertical and one horizontal segment. Hence, the subgraph of G
induced by FEjp, U FE,, is planar and contains at most 3n — 6 edges. Further, as every segment
is incident to a vertex and since any vertex is incident to at most two vertical segments, we
have |Ey,o U Epy| < 2n. We can assume that the topmost vertex v; is incident to at most one
vertical edge-segment, since the edge segment incident to v; that points upwards cannot be
involved in a crossing with a horizontal edge-segment. Otherwise, the endpoint incident to
this edge segment would contradict the fact that v; is topmost in I'. Hence, it can be replaced
by a steep oblique edge-segment without introducing new crossings. Analogous observations
can be made for the bottommost vertex in I, which implies that |E,, U Ep,| < 2n — 2. Thus,
|E| = |Enol + |Evol + | Enu| + | Eoo| < 5n — 8.
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Our lower bound construction is as follows; see Fig. 2c. For n > 7, we arrange n — 4
vertices forming a cycle along the two legs of an isosceles triangle with a horizontal base (outer
black edges), such that the left leg has [ 25 | vertices while the right one has [252]. These
n —4 vertices are further joined by a y-monotone path of n —7 edges (inner black edges). Two
extremal vertices IV and S above and below the triangle are connected to all n — 4 vertices
(orange edges). Similarly, two extremal vertices W and E to the left and right of the triangle
are connected to all vertices of the left and right legs of the triangle respectively (blue edges);
the topmost vertex of the right leg is also connected to W. Finally, we add six edges between
the extremal vertices, which gives n —4+n — 6 + 3(n —4) + 6 = 5n — 16 edges. <

Since there exists 1-bend RAC graphs with 5.5n — 72 edges [2], the following corollary is
immediate.

» Corollary 5. The class of 1-bend apRAC graphs is a proper subclass of the one of 1-bend
RAC graphs.

5 2-bend apRAC graphs

In Theorem 6, we provide an upper-bound for the edge density of 2-bend apRAC graphs
together with a lower-bound construction which is tight up to an additive constant. Our
result provides a stark contrast to the one for 2-bend RAC graphs, where the current best
upper-bound on the number of edges of n-vertex graphs is 74.2n [8], while the previous best
lower bound-construction contained only 7.83n — O(y/n) [8] edges.

» Theorem 6. A 2-bend apRAC graph with n vertices has at most 10n — 12 edges. Also,
there is an infinite family of graphs with 10n — 46 edges that admit 2-bend apRAC drawings.

Proof. Consider a 2-bend apRAC drawing I" of an n-vertex graph G. Each edge segment
in T is either horizontal (h), vertical (v) or oblique (o). Denote by S the set of edges that
contain at least one segment in {h,v} incident to a vertex. Since any vertex is incident to
at most two vertical and at most two horizontal segments, it follows that |S| < 4n. Let
E), E, and E, be the set of edges of E\ S whose middle part is h, v and o, respectively.
Assuming that an edge of F \ S consisting of less than three segments belongs to E,,
it follows that E,, E, and E, form a partition of F \ S. Observe that the edges of
FE, cannot be involved in any crossing in I', as all of its segments are oblique. Further,
no two edges of Ej or of F, can cross. Hence, the subgraphs induced by E; U E, and
E, U E, are planar and contain at most 3n — 6 edges each. Recall that |S| < 4n and thus
|E| <|S|+ |Ex| + |Ey| +2|Es] <4n+3n—6+4+3n—6 = 10n — 12.

Refer to Fig. 3a for a schematization of the upcoming lower-bound construction and to
Fig. 4 for a concrete example. Fix an integer k > 6 and consider a set P of k2 points of a
k x k square grid in the plane but rotated very slightly, say counterclockwise, so that the
points in each column have consecutive z-coordinates (consequently the points in each row
have consecutive y-coordinates). For two points p,q € P let their z-distance dist,(p, q) be
the number of points in P having their z-coordinate between p and ¢. Similarly define the
y-distance dist,(p, ¢). The crucial property of point set P is the following.

For any p # q € P we have dist,(p, ¢) + dist,(p,q) >k —1 > 5. (1)

Between any pair p,q € P with consecutive z-coordinates, i.e., dist,(p,q) = 0, we add a
2-bend edge with vertical middle segment by starting and ending with a very short oblique
segment at p respectively ¢. Similarly, we add a 2-bend edge with horizontal middle segment
when dist, (p, q) = 0. Note that these are in total 2k* — 2 edges, no two of which connect the
same pair of points, due to (1).
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Figure 3 (a) Illustration of the construction in Theorem 6 with k = 6. Edges with two oblique
segments are indicated in orange for vertical middle segments and in blue for horizontal middle
segments. Edges using the horizontal or vertical ports are omitted for readability. (b) Edge routing
in the 8 x 8 box B(u) of a vertex u. Blue ports are exclusively used by edges of F; and F3 and
orange ports by F» and Fy. Note that the ports illustrated by bold lines are reserved for oblique-2
edges. Bends on the border of the box are emphasized by a cross.

Next we add four additional points N, E,S, W to the top, right, bottom, and left of
all points in P, respectively. For every point p we add a 2-bend edge with vertical middle
segment between p and N starting with a very short oblique segment at p and ending with
an almost horizontal (but still oblique) segment at N. Similarly, we add a 2-bend edge with
vertical middle segment between p and S, as well as one with horizontal middle segment to
each of E, . Note that these are in total 4k% edges, and that all oblique segments can be
chosen such that all crossings involve middle segments only.

Next we add for (almost) each point p € P four more 2-bend edges. First, consider for p
the point ¢ € P to the right of p with dist,(p,q) = 1, unless p is one of the two rightmost
points in P. We draw a 2-bend edge from p to ¢ by starting with a horizontal segment at p to
almost the z-coordinate of ¢, continuing with a vertical segment to almost the y-coordinate
of ¢, and ending with a very short oblique segment at ¢. Similarly, we use the left horizontal
port at p for an edge to the point ¢ left of p with dist,(p,q) = 2. (We take a-distance 2
instead of 1 to avoid introducing a parallel edge.) Symmetrically, we draw two edges using
the vertical ports at p. Note that these are in total 4k? — 10 edges, and that all crossings
involve horizontal and vertical segments only.

Finally, we add easily add six edges to create a K, on vertices NV, E, S, W. To conclude,
we have constructed a 2-bend apRAC graph with n = k? + 4 vertices and (2k% — 2) + 4k? +
(4k* — 10) + 6 = 10k? — 6 = 10n — 46 edges. <

6 Every graph with maximum degree 8 is 2-bend apRAC

In the following, we prove that graphs with maximum degree 8 admit 2-bend apRAC drawings
of quadratic area which can be computed in linear time. We leverage the following result in
order to decompose the input graph.

» Lemma 7 (Eades, Symvonis, Whitesides [24]). Let G = (V, E) be an n-vertex undirected
graph of degree A and let d = [A/2]. Then, there exists a directed multigraph G' = (V, E")
with the following properties:
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1. each vertex of G' has indegree d and outdegree d;

2. G is a subgraph of the underlying undirected graph of G'; and

3. the edges of G’ can be partitioned into d edge-disjoint directed 2-factors (where a 2-factor
is a spanning subgraph of G' consisting of vertex disjoint cycles, called cycle cover in [24]).

The directed graph G' and the d 2-factors can be computed in O(A2n) time.

Now, we are ready to state the main result.

» Theorem 8. Given a graph G with mazimum degree 8 and n vertices, it is possible to
compute in O(n) time a 2-bend apRAC drawing of G with O(n?) area.

Proof. Let G be a simple graph with maximum degree 8 and n vertices. We apply Lemma 7
to augment G to a directed 8-regular multigraph having four edge-disjoint 2-factors Fi,
Fy,, F3 and F,. Before we present our algorithm in full detail, we sketch an outline of the
necessary steps. We want to stress that in the following, the direction of an edge (u,v) plays
an important role and hence we consider it as a directed edge with source v and target v.

N
(o]

[ —_— —

==

O
S

Figure 4 Illustration of the construction in Theorem 6 with £k = 6. The K4 on the vertices
N, E,S, W is omitted due to space reasons.
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6.1 Outline of the algorithm

In the first step, we will construct two total orders <, and <, of the vertices of G which
will determine the z- and y-coordinates of the vertices in the final drawing. In particular, if
vertex u of G has the i-th position in <, and the j-th position in <, then u will be placed
at point (8¢, 85) in the final drawing. We will construct these two orders independently such
that <, is defined by Fy U F3 and <, is defined by F U Fy. After the computation of <,
and <., which finalizes the position of the vertices in our resulting drawing I', it remains to
draw the edges which are fully characterized by the placement of the respective bend-points.
Every edge will be drawn with exactly three segments, which are either horizontal, vertical or
oblique. To ensure that all crossings in I occur between horizontal and vertical segments, we
will restrict oblique segments to be “short” (a precise definition follows below) and require
that they are incident to a vertex. To this end, we will define, for each vertex u of G, a
closed box B(u) centered at u of size 8 x 8, such that the oblique segments incident to u
are fully contained inside B(u). Note that by construction, the interior of two boxes do not
overlap (they may touch at a corner). Since the z-coordinate of two consecutive vertices u
and v of <, differs by exactly 8, there is a vertical line that is (partially) contained inside
both B(u) and B(v) (analogous for a horizontal line and consecutive vertices in <,). This
allows us to join v and v by an edge that consists of two oblique segments, which is called an
oblique-2 edge. If the unique orthogonal segment of an oblique-2 edge is vertical (horizontal),
we will refer to it as a vertical (horizontal) oblique-2 edge. An edge that contains exactly
one oblique segment will analogously be called an oblique-1 edge.

In the second step, we will classify every edge of G as either an oblique-1 or an oblique-2
edge - again this classification is done independently for F} U F5 and Fy U Fy; we focus on

the description of Fy U Fj, the other one is symmetric. Let e = (u,v) be an edge of F; U Fj.

If w and v are consecutive in <, then e is classified as a vertical oblique-2 edge. Otherwise,
e is classified as an oblique-1 edge such that the (unique) oblique segment is incident to the
target v, while the orthogonal segment at u uses the E-port at u if u <, v, otherwise it uses
the W-port.

In the final step, we will specify the exact coordinates of the bend-points. At a high level,
oblique segments (which are by construction all incident to vertices) will end at the boundary
of the corresponding box, see Fig. 3b. The bend-points between vertical and horizontal
segments are then naturally defined by the intersections of their corresponding lines.

The final drawing I will then satisfy the following two properties.

(i) No bend-point of an edge lies on another edge and
(ii) the edges are drawn with two bends each so that only the edge segments that are
incident to u are contained in the interior of B(u), while all the other edge segments
are either vertical or horizontal.
This will guarantee that the resulting drawing is 2-bend RAC; for an example see Fig. 5.
Note that (i) guarantees that no two segments have a non-degenerate overlap.

6.2 Computing <, and <,

We will now describe how to construct <, and <, explicitly. We focus on the construction
of <, which is based on F; and F3, the order <, can be constructed analogously. Let
C1,C5,...,Cf be an arbitrary ordering of the components of F}. Recall that by definition,
each such Cj is a directed cycle. Let S be a set of vertices that contains exactly one arbitrary
vertex from each cycle in F} and let Py, Ps, ..., Py be the resulting directed paths obtained by
restricting the cycles to V' \ S. Note that this may yield paths that are empty, i.e., when the
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corresponding cycle consists of a single vertex. We construct <, (limited to V' \ S) such that

the vertices of each path appear consecutively defined by the unique directed walk from one

endpoint of the path to the other. The relative order between paths is Py <, Py <5 -+ <4 Pg.

Hence it remains to insert the vertices of S into <,. Throughout the algorithm, we will

maintain the following invariant which will ensure the correctness of our approach.

I.1 Let u € S be a vertex of cycle C;. If |C;| > 1, then w is placed next to at least one vertex
of P;. Otherwise, u is placed directly after the last vertex of C;_; (or as first vertex if
i=1)in <.

If I.1 is maintained, we can guarantee the following observation.

» Observation 1. Let u € C; and v € C; be two vertices of G with i # j. Then, the relative
order of u and v in <, is known.

Assume that each vertex in S that belongs to C1,...,C;_1 has been inserted in <. Let

u € S be the vertex that belongs to C; \ P;. If |C;| < 2, then we place u immediately after

the last vertex of C;_1 in <, if i > 1, otherwise u is the first vertex of <, which maintains

I.1. Hence, in the remainder we can assume that C; consists of at least three vertices. Let

a, b and ¢ be the vertices of G such that (u,a), (b,u) € F; and (u,c) € F3. Even though

G is a multigraph, we have that a # b since C; contains at least three vertices. Hence, by

construction we have a <, b - in particular, a is the first vertex of P; in <, while b is the

last one. Let C; (possibly j = ¢) be the cycle that contains c. Note that it is possible that

c € S, ie., cisnot part of <, initially. However, as this can only happen if i # j, we know

the relative position of u and ¢ by Observation 1. We distinguish between the following cases

based on the relative order of cycle C; (which contains «) and cycle C; (which contains c)

in <.

1. j <i. We insert v immediately before a in <, such that it is the first vertex of Cj, see
Fig. 6a. Clearly, this maintains I.1.

2. i < j. This case is symmetric to the previous one - we insert v immediately after b in
~<, such that it is the last vertex of C;, see Fig. 6b, which again maintains I.1.

3. i = j. In this case, we have that ¢ also belongs to C; (in particular, ¢ belongs to P;
and thus is already part of <.). If ¢ = a or ¢ = b, we simply omit the edge (u,c) and
proceed as in the first case, i.e., we place u as the first vertex of C;. Otherwise, we insert
u directly before or directly after ¢ in <, based on the edge (¢,d) € F3. The relative
order of ¢ and d in <, is known by Observation 1 unless d € C;. If d € P;, the relative
order between ¢ and d is also known (as both are already present in <,). If d ¢ P;, then
d = u and we can omit the edge (u,c) € F3 (because it is a copy of (¢,d) € Fs), in which
case we can again proceed as in the first case. Hence, d # u holds. If ¢ <, d, we insert u
directly before ¢ in <., see see Fig. 6¢, otherwise we insert u directly after ¢ in <. In
both cases, we maintain I.1.

This concludes our construction of <.

6.3 Classification of the edges and port assignment

We focus on the classification of the edges of F} U F3 and their port assignment, the

classification of the edges of F, U Fj is analogous. Our classification will maintain the

following invariants.

1.2 The endpoints of each vertical oblique-2 edge are consecutive in <.

1.3 Each oblique-1 edge (u,v) € Fy U F3 is assigned the W-port at its source vertex w, if
v < u; otherwise, if u <, v, it is assigned the F-port at u.

.4 Every horizontal port is assigned at most once.
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Figure 5 A 2-bend apRAC drawing of Ky; F} and F3 are blue; F and F4 are orange. Below the
drawing of Kg there is a illustration of the cycles in Fi and the relevant edges in F3 for positioning
v1 € S according to Case 3 in the construction of <,. Similarly, a visualization of the cycles in F3
and the relevant edges in Fj is displayed to the left.

Cj

C; o C; Ci
e - he e e seeu d
S ... .. NS
c u a b a b u c (w
(a) (b) ()

Figure 6 Illustration of the construction of <,, Case 1 is shown in (a), Case 2 in (b) and Case 3
in (c). Blue edges belong to Fi, while dashed orange edges belong to Fs.

Let us consider an edge e € F; U F3 between vertices u and v. If u and v are consecutive
in <., then we classify e as a vertical oblique-2 edge. If v and v are not consecutive in <,
we will classify e as an oblique-1 edge, which therefore guarantees 1.2. For any oblique-1
edge, we will, in an initial phase, assign the ports precisely as stated in 1.3. In a subsequent
step, we will create a unique assignment of the horizontal ports by reorienting some edges of
F} U F3 in order to guarantee 1.4. Suppose that after the initial assignment, there exists a
vertex u such that one of its orthogonal ports is assigned to two oblique-1 edges. Assume first
the W-port of u is assigned to edges (u,a) and (u,b). By construction, v has exactly one
outgoing edge in Fi, say (u,a), and exactly one outgoing edge in F3, say (u,b). Let C; be the
cycle of Fy that contains both u and a (which implies that |C;| > 1, as we omit self-loops)
and let C; be the cycle that contains b (possibly ¢ = j). Recall that by construction, the
vertices of P; appear consecutively in <, before the insertion of the vertex v € C; \ P;. Since
(u,a) is an oblique-1 edge, we have that u and a are not consecutive in <. If |C;| = 2, one
of u or a coincides with v, but then u and a are consecutive in <, and thus the edge (u,a) is
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an oblique-2 edge. Hence, |C;| > 2 holds and we either have u = v, a = v or v was inserted
directly in between a and w. In the following, we will refer to Cases 1 - 3 of Section 6.2,
where we computed the total order <,.

1. v = v. Assume first that C; # C;. Then, since (u,b) is assigned the W-port at u, we
have b <, u by 1.3 which implies j < ¢ and hence we placed u according to Case 1, i.e.,
as the first vertex of C; in <,. But since a € C;, we then have u <, a and thus (u,a)
would use the E-port at u, a contradiction.

Hence assume that C; = C}, i.e., b € C;. Then we are in Case 3. In particular, we placed
u such that u and b are consecutive, thus (u,b) is classified as an oblique-2 edge, again
we obtain a contradiction.

2. a =wv. Since (u,a) uses the W-port at u by assumption, we have that a <, v by 1.3 and
thus a cannot be the last vertex of C; in <., and so we are in Case 1 or 3. In Case 1, a
is placed as the first vertex of C; since there exists a vertex a’ with @’ <, a such that
(a,a’) € F5. Further, a is placed next to vertex v’ (i.e., the first vertex of P; in <) with
(a,v") € Fy by construction. Then, we can redirect the edge (u,a) € Fy such that we
can assign (a,u) the E-port at a which solves the conflict at u and does not introduce a
conflict at @ which guarantees I.4. In Case 3, a was placed consecutive to vertex o’ € P;
with (a,a’) € F5. As (u,a) uses the W-port at u, u is necessarily the last vertex of C; in
<. Since the other neighbor of @ in F) different from w is the first vertex of C; in <,
i.e., it precedes a in <,, we can again reorient the edge (u,a) and assign the edge (a,u)
to the free E-port of a, solving the conflict at u which guarantees 1.4.

3. v was inserted directly in between a and u. In this case, we have that both a and u
belong to P;. Since we assume that (u,a) uses the W-port at u, it follows that a <, u
holds. But then by construction, the edge of F} that joins a und w is directed from a to
u and we obtain a contradiction.

The case where the E-port of w is assigned to two edges can be solved in a similar way;
refer to [4] for details.
Observe that if an edge (u,v) was redirected, then both u and v belong to the same cycle C;
of F} and since this operation has to be performed at most once per cycle, it follows that they
can be considered independently. So far, we have computed <, and classified every edge of
Fy U F3 guaranteeing Invariants 1-1.4. Symmetrically, we can compute <, and classify every
edge of Fy U Fy guaranteeing corresponding versions of Invariants 1-1.4; see [4] for details.

6.4 Bend placement

We begin by describing how to place the bends of the edges on each side of the box B(u) of
an arbitrary vertex u based on the type of the edge that is incident to u, refer to Fig. 3b.
Let (24, Yyu) be the coordinates of w in I' that are defined by <, and <,. Recall that the
box B(u) has size 8 x 8. Let e be an edge incident to u. We focus on the case in which
e € F1 U F3, the other case in which e belongs to F> U Fy is handled symmetrically by simply
exchanging = with y, “top/bottom” with “right/left” and “vertical” with “horizontal” from
the following description. By definition, e is either an oblique-1 edge or a vertical oblique-2
edge. Suppose first that e is an oblique-1 edge. If e = (u,v), i.e., e is an outgoing edge of u
in Fy U F3, then by Invariant 1.3 edge e uses either the W- or E-port at u. In the former
case, the segment of e incident to u passes through point (y,,, y, —4), while in the latter case
it passes through point (y.,y., + 4). For an example, refer to the outgoing edge (vs,vg) of vs
in Fig. 5. If e = (v, u), i.e., e is an incoming edge of u in F} U F3, then by Invariant 1.3 e uses
a horizontal port at v and by the fact that every edge consists of exactly three segments, the
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vertical segment of e ends at the top or the bottom side of B(u). Since any vertex has at
most three incoming edges in F; U F3 by construction, we can place the respective bends
at z-coordinate x, + ¢ with ¢ € {—2,—1,1,2} and y-coordinate y, + 4 (y, — 4) for the top
(bottom) side such that the assigned i-value is unique, refer to the incoming edge (v4,v9)
of vg in Fig. 5, where ¢ = —1. Finally, the other bend-point of e is uniquely defined as
(x4 +1,yy), since it connects a vertical with a horizontal segment by construction.

Suppose now that e is a vertical oblique-2 edge. By 1.2, u and v are consecutive in <. If
v <, u the xz-coordinate of the bend point is z,, — 4, otherwise it is z, + 4; e.g., refer to the
edges (v2,v3) and (vs,v4) of vg in Fig. 5, respectively. In order to define the y-coordinate of
the bend point, we have to consider the relative position of v and v in <,. If v <, u the
y-coordinate of the bend point of e is y,, — 3 and otherwise it is y, + 3. 1.2 implies that any
vertex has at most two vertical oblique-2 edges since no vertex has more than two direct
neighbors in <. From the description of the bend-points, the observation follows:

» Observation 2. Let b be a bend-point that delimits an oblique segment s which belongs to
an edge e. If s is incident to u, then b does not lie on any other edge incident to u.

6.5 Proof of correctness

The fact that the obtained drawing is 2-bend apRAC is proved in [4]. To complete the proof
of Theorem 8, we discuss the time complexity and the required area. We apply Lemma 7 to
G to obtain Fy, F, F3 and Fy in O(n) time. For each cycle of F; and F5, an appropriate
ordering of its internal vertices, the classification of the incident edges and the assignment
of the orthogonal ports can be computed in time linear in the size of the cycle. Clearly,
computing the bend-points can be done in linear time as well. Hence we can conclude that
the drawing can be computed in @(n) time. For the area, we can observe that the size of
the grid defined by the boxes is 8n x 8n and by construction, any vertex and any bend point
is placed on a distinct point on the grid. <

7 Conclusion and Open Problems

In this paper, we introduced the class of k-bend apRAC graphs, gave edge-density bounds,
studied inclusion relationships with the general k-bend RAC graphs, and concluded with
an algorithmic result for graphs with maximum degree 8. A natural extension is to allow
drawings where each crossing edge-segment is parallel or perpendicular to a line having one
out of s different slopes. We denote the class of graphs which admit such a drawing as k-bend
s-apRAC, and w.l.o.g. we assume that the horizontal slope is among the s ones. Observe
that for s = 1, the derived class coincides with the class of k-bend apRAC graphs. By joining
several copies of the graph supporting Property 5 that all share a common vertex, we show
that 0-bend s-apRAC graphs form a proper subclass of 0-bend RAC graphs for any s € o(n);
see [4] for details. We also adjust the proof of Theorem 6 to derive an upper bound on the
edge density of 2-bend s-apRAC graphs, which is better than the one of [8] that holds for
general 2-bend RAC graphs for values of s up to 17. We conclude with the following open
problems.

Are there 2-bend RAC graphs that are not 2-bend apRAC?

For k € {1,2}, our edge-density bounds do not relate to the simplicity of the drawings.

Are bounds different for simple drawings, as in the general 1-bend RAC case [2]?

For k € {1,2}, does the class of k-bend s-apRAC graphs on n vertices coincide with the

corresponding class of k-bend RAC graphs, when s € o(n)?
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1 Introduction

For an undirected graph G = (X, E) on n = | X| vertices and m = |E| edges, with s,t € X,
st-connectivity or USTCON is the problem of deciding whether s and ¢ are in the same
component. This problem has applications in many other graph and network problems,
and is of theoretical importance for its connection with space complexity (see e.g. [23]). In
particular, USTCON is complete for the class symmetric logspace, SL, which was shown to be
equal to logspace, L, by exhibiting a classical deterministic logspace algorithm for USTCON [22].
In this paper, we consider quantum algorithms for this problem.
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There are different versions of the problem USTCON depending on how G is accessed.
If G is given as an adjacency matrix, we denote the problem USTCON.¢. If G is given as an
array of arrays, one for each vertex, enumerating the neighbours, we denote the problem
USTCON,,;. * If one only cares about space complexity, these problems are equivalent, but
the same is not true of time complexity: adjacency queries can simulate an array query, and
vice versa, in logspace, but there is a non-negligible time overhead.

A classical deterministic algorithm based on breadth-first search or depth-first search
can solve USTCON,; in O(m) time, using O(n) space. Using a random walk, the space
complexity can be improved to O(log(n)), at the expense of O(nm) time complexity [2].
A series of works [11, 7, 14, 5, 16] culminated in a space-time tradeoff for USTCON,,, of
T = O(n?%/S) queries for any space bound S = Q(log(n)) and S = O(n%/m), due to
Kosowski [19]. While there is no matching time-space lower bound, it is unlikely that this
tradeoff can be significantly improved (see [19, Section 5.1 of arXiv v2] for a discussion).
Kosowski’s algorithm is based on using Metropolis-Hastings random walks to find connections
between S sampled vertices and s, ¢ until it is becomes possible to conclude that s and ¢ are
connected. For comparison, in the adjacency matrix model, the randomized query complexity
of USTCONa¢ iS (:)(ng) and there is no space-time tradeoff.

A quantum algorithm of Diirr, Heiligman, Hgyer and Mhalla [13] for CONNECTIVITY
can be adapted to solve USTCON .t in 6(711'5) time and USTCON,,, in 5(71) time, both of
which are optimal up to polylog factors. Both of these algorithms use 6(71) space, of which
all but O(log(n)) can be classical space (assuming quantum RAM access). A subsequent
quantum algorithm for USTCONpa; due to Belovs and Reichardt uses O(n'-5) time, but only
O(log(n)) space [9], which is optimal in terms of both space and time. It is also possible
to solve USTCONg,. in O(log(n)) space and O(y/nm) time, using a quantum walk (see for
example [8]). This quantum walk algorithm requires a quantum version of array access to
the input graph, which we refer to as USTCONgy, in the next section.

1.1 Summary of results

We describe new quantum walk algorithms for USTCON,,,. These algorithms consider a
quantum walk version of the adjacency array model, in which the input graph is accessed by
a quantum analogue of classical random walk steps. Recall that in the adjacency array model,
we assume that for any vertex u, we can query, for any ¢ € [d,], the i-th neighbour of u, v;(u).
Then a random walk step can be performed from state u by sampling a uniform i € [d,],
and then computing v;(u), which becomes the current state. In the quantum walk access
model, we assume that for any vertex u, we can prepare a uniform superposition over the
neighbours of u. While these models are not identical, they are very similar, and in Section 3,
we formally define the models, and show that quantum walk access can be simulated in the
array model with polylogarithmic overhead under reasonable additional assumptions.
Letting USTCONg,, denote the st-connectivity problem in the quantum walk access model,
we present a one-sided error quantum algorithm that solves USTCONg, in time 6(11) and
space O(log(n)). Perhaps surprisingly, this means that USTCONg, admits no nontrivial
tradeoff between space and time in the quantum setting — a single algorithm can solve this
problem optimally in terms of both time and space (see Theorem 15 for the formal result).

1 There are variations on the details of this model. For now, we allow USTCONa;r to stand in for multiple
variations of the array access model, but precise details of the variations can be found in Section 3.
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Table 1 A summary of classical (randomized) and quantum time and space complexities for
USTCON in the adjacency matrix and adjacency array models. The classical results for USTCONmat
follow from (1) the log(n)-space result for USTCONa,y with an n/d overhead for finding neighbours of
the current vertex in a d-regular graph; and (2) BFS.

USTCONmat

Time TS-tradeoffs

Classical | ©(n?) S =0(og(n)), T = 5(n5/d)
S =0(n), T = 0(n?)

Quantum | ©(n'?) S = O(log(n)), T = O(n**®) [9]
USTCONarr
Time TS-tradeoffs
Classical | ©(m) T = O(max{n?/S,m})
Quantum é(n) S =0(log(n)), T = 5(711‘5)

S=T=0(n) [13]

This work: S = O(log(n)), T = 5(11)

» Theorem 1 (Informal). There is a O(log(n))-space quantum algorithm that decides
USTCONqy, with one-sided error in O(n) time.

In this paper, when we say time, we are counting: (1) quantum gates (unitaries that act
on at most a constant number of qubits); (2) quantum walk queries to G; and (3) (quantum)
random access (QCRAM) operations (QCRAM is used in our second algorithm only, see
below). Inspired by [19], our algorithm is based on a quantum walk search for ¢ starting
from s using a random walk that can be interpreted as a Metropolis-Hastings random walk.

Because of the close relationship between USTCON and classical logspace, we can consider
what this means for logspace problems in general. It does not mean that more space does
not reduce the quantum time complexity of any problem, but it is interesting to consider:
in what settings do we get a non-trivial time-space tradeoff? We consider one such setting:
when we are given a promise on the spectral gap or mixing time of the random walk on
G (see Section 2.2). In that case, we prove the following theorem (see Theorem 17 for the
formal result).

» Theorem 2 (Informal). Suppose whenever s and t are connected, the random walk spectral
gap is at least § > 0. For any S € Q(log(n)), there is a quantum algorithm that decides
USTCONgw with bounded error in O(S) space and T = O (5 + \/7%5) time.

The time bound decreases monotonically for S € Q(logn) until S € O((nd)'/3), at which
point it reaches time complexity T = 5(n1/ 3/ 62/ 3). We leave it as an open problem to prove
a matching lower bound (at least for some values of ¢), which would prove that in certain
regimes, it is not possible to achieve optimal time and space simultaneously.

Our algorithm takes inspiration from [3]. In fact, with some imagination, one can derive a
similar (but incomparable) time-space tradeoff for USTCONg,, from that work: for 1 < .S < m,
the algorithm in [3] can be adapted to use space O(S) and time T € O(S + /m/(55)),
with § the random walk spectral gap.
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In the space bound S of both algorithms in Theorems 1 and 2, only O(log(n)) memory
needs to be actual quantum workspace (i.e., qubits). The remaining O(S) memory can be
classical RAM in the first algorithm and QCRAM in the second algorithm, that is, classical
RAM that is queryable at a quantum superposition of addresses. We discuss the latter in
Section 2.4.

We summarize our results in Figure 1. For S = log(n), the algorithm of Theorem 2 has a
worse time complexity than the algorithm of Theorem 1, whenever § < % We leave it as an
open problem to give a single algorithm that is optimal for all §.

T =n"
A

S =logn (Thm. 1.1)

L no ST .tradeoff

=
I
Wl

' F >5=n
a=-—1 a=20

Figure 1 Quantum space-time tradeoffs for USTCON, with axes representing the time complexity
and spectral gap promise (up to polylog-factors). The grey area represents the regime in which a non-
trivial tradeoff is achieved. Theorem 1 (upper line) corresponds to the regime with space S = O(logn)
and time T = 5(n) Theorem 2 (grey area) corresponds to the regime with a promise on 4, and
interpolates between S = O(logn) and T = O(n), and S = O((nd)'/?) and T = O(n'/3/§%/3).

Organization

The remainder of this paper is organized as follows. We describe preliminaries in Section 2
and Section 3. In Section 4, we prove Theorem 1 by exhibiting a quantum algorithm for
USTCONqy, that is optimal in both time and space. For completeness, we also include a proof
of a corresponding lower bound in Section 4.1. In Section 5, we prove Theorem 2 exhibiting
a quantum time-space tradeoff when given a promise on the spectral gap.

2 Preliminaries

We first give some general notation. For a positive integer k, we let [k] = {1,...,k}.
Throughout this work, n denotes the number of vertices and m the number of edges of the
input graph. For any function f, we let O(f(n)) = f(n) - polylog(n).

2.1 Probability theory

A (probability) distribution on a finite set X is a non-negative function o: X — R>¢ such
that > .y o(v) = 1. Its support is defined as supp(o) := {v € X : o(v) > 0}. We will
implicitly identify such o with row vectors, as is customary in the random walk literature.
To any distribution o, we also associate a quantum state |o) := ) _ /0 (v)|v). Measuring
|o) in the standard basis returns a sample from o.
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For any distribution ¢ on X, and any subset M C X, we will let o(M) =3 ), 0(u).
We let o denote the normalized restriction of o to M, defined by opr(u) = o(u)/o(M) for
all w € M and op(u) = 0 elsewhere.

Finally, the total variation distance between two distributions o and 7 on X is defined as

o= mley =5 3 lo(u) = 7(u)] = mae o (4) — (4)].
ueX -

2.2 Random walks

Fix an undirected graph G = (X, E) with n = |X| vertices and m = |E| edges. We take
EC ()2(), that is, edges e € E are subsets e = {u,v} = {v,u} of pairs of vertices. We will let

N(u):={ve X :{u,v} € FE}

denote the neighbourhood of v € X, and d,, = |N(u)| the degree of u. For convenience we
assume that all vertices have positive degree.

Fix edge weights given by a symmetric matrix W € IR)>(OXX such that W,, , = W, ,, for
all u,v € X, and W,,, > 0 if and only if {u,v} € E. Then G = (X, E,W) defines a weighted
graph. When no W is given, the graph is unweighted and we let W, , = 1 for all {u,v} € E.
For u € X, define w, = ), cx Wu,. The corresponding (weighted) random walk is the
reversible Markov chain on X with transition matriz P € R);OXX given by

Yu,v € X. (1)

u,v

{VZZL“ if {u,v} € E

0 otherwise

This means that the probability of moving from the vertex u along an edge to a neighbouring
vertex v is proportional to the edge’s weight. In the unweighted case, this is called the simple
random walk; in each step it simply moves to a neighbouring vertex chosen uniformly at
random.

Let m € RZ, be the distribution defined by

Woy

W(G)

m(u) = Vu € X,
where W(G) = >_,cx Wu = >, yex Wu,o- In the unweighted case, 7 is proportional to the
degree. The distribution 7 is a stationary distribution of the random walk, i.e., 7P = 7 (it
is a left eigenvector of P with eigenvalue 1).

In fact, when the graph G is connected, 7 is also the unique stationary distribution of P.
If in addition the graph is not bipartite, then all other eigenvalues have absolute value strictly
less than one. That is, if 1 = Ay > -+ > A,, > —1 are the eigenvalues of P then the (absolute)
spectral gap v« = 1 (G) := min{l — |A;| : j = 2,...,n} = min{1 — Ay, 1 + A, } is strictly
positive. Importantly, the inverse of the spectral gap bounds the random walk’s mizing time,
that is, the time required for convergence to the stationary distribution:

» Theorem 3 ([21, Thm. 12.4]). Assume G is connected and not bipartite. Let € > 0 and

1 1
t> —log ,
Vx ETMmin

where Tyin = mingex ©(x). Then ||oP" — ||, < € for any distribution o on X.
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Conversely, it is known that ¢ > (vl

o= 1) log(%) is necessary to ensure mixing from
an arbitrary initial distribution [21, Thm. 12.5]. In the unweighted case, we have Ty, >
% > %, so the former shows that Theorem 3 is tight up to log(n) factors in that case.

Finally, for any s,t € X we let H,; denote the hitting time from s to ¢, which is the
expected number of steps needed to reach ¢ in a random walk starting from s. We let
Cs+ = Hs+ + He s denote the commute time between s and ¢ — the expected number of steps
needed to reach t and then return to s in a random walk starting from s. These quantities
are finite if and only if s and ¢ are in the same component of G. More generally, the commute
time Cg ps from s to a subset M C X is the expected number of steps needed to reach any

vertex in M and then return to s in a random walk starting from s.

2.3 Quantum walk search algorithms

Quantum walk search refers to the use of quantum walks to find certain “marked” elements
on a graph. We will use quantum walk search to search for a vertex connected to ¢ in the
connected component of S. Specifically, we will use the following special case of [4, Thm. 13].2

» Theorem 4. Let P be a random walk on a weighted graph with vertex set X, M C X a
subset of “marked” vertices, and s € X. Let C be the (quantum) time complexity to check for
a given u € X whether u € M, let U be the time complexity of implementing the weighted
quantum walk oracle

[u) 10) = DV Pu u) o).

vEN (u)

in space O(log(n)). Let C be a known upper bound on the commute time Cs pr in the case
where s and M are connected (and in particular M # (). Then there is a quantum algorithm
that, if M # 0 and s is connected to M, finds an element of M with probability at least 2/3.
If M = 0 or s is not connected to M, then the algorithm outputs a vertex not in M. The
algorithm has time complezity O(1/log(C) log(n) + 1/Clog(C) log(log(C))(C + U)) and space
complexity O(log(n)).

2.4 Quantum RAM

Our algorithm will exploit the given space by saving sets of vertices which will be either
connected to s or to ¢t. For our quantum algorithm to access this space, we assume access to
a so-called quantum-classical random access memory or QCRAM. This refers to a memory
that only stores classical information, but can be queried at a superposition of addresses.
More specifically, an R-bit QCRAM stores a string of bits ¢ € {0, 1} so that the following
operations are supported in time polylog(R):

1. UPDATE(i, z): store x € {0,1} in the i-th bit (i.e., set ¢; = x).

2. QUERY: for any superposition ) . a; |i) |s;), it maps

D anli)lss) = D i) |s: © ai).

As was first described by Kerenidis and Prakash [18], using such a QCRAM we can set
up a data structure to generate quantum superpositions over elements in the QCRAM. We
will use the following formulation based on [3].

2 To see that this follows from [4, Thm. 13], note that when |o) = |s), the cost to set up |o) is log(n) and
the value Co ar from [4] is exactly the commute time from s to M [4, Thm. 4].
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» Lemma 5. Fiz integer parameters ¢ and k. Using an O(kllog(¢))-bit QCRAM, there is a
data structure, D, that stores up to £ elements x € {0, 1}’C with associated integer weights, ¢,
of bounded absolute value for some poly(f) bound, and supports the following operations in
time O(k - polylog(kt)) per operation:

1. insertion or deletion of a pair (x,cy),

2. quantum queries of the form “Is x € DQ”

3. preparation of the quantum state \/7 > zeD VCz |T).
x€D

3 USTCON and the Quantum Walk model

In this section we define the undirected st-connectivity problem (UsTCON). The input to
this problem is an undirected graph G = (X, E). Classically, there are various ways this
input may be given, which may change the complexity of the problem. For example, in the
adjacency array model (defined below), it is possible to randomly sample a neighbour of any
vertex u in O(1) queries to G (assuming access to the vertex degrees), facilitating a random
walk on G, whereas if G is given as an adjacency matriz, a random walk step is not so simple.

We will work in a quantum walk analogue of the adjacency array model. We assume
that G can be accessed via the quantum walk oracle that for every u € X outputs a uniform
superposition over its neighbours:3

Ow : |u) 0 \ﬁz (2)

vEN (u)
Formally, we describe USTCONg,, in terms of the input and output.

» Problem 6 (USTCONgw). Given access to an undirected graph G = (X, E) via the quantum
walk oracle Oy, and two vertices s,t € X, decide whether s and t are in the same connected
component of G.

To compare our work with classical results on USTCON,,,, we describe an implementation
of the quantum walk oracle defined above based on adjacency array access to a graph. Let
u € X and ¢ € [d,]. We assume that for each vertex u there is a fixed numbering of its
neighbours from 1 to d,,. In the adjacency array model, two types of queries are allowed:

Degree query Op : |0) |u) — |dy,) |u)

Neighbour query Op : |u) i) [0) — |u) |3) |v;(w))

In the sorted adjacency array model we additionally assume that for every vertex u € X
its neighbours are sorted: for any 4, j € [d,], if i < j then v;(u) < vj(u). In particular, this
allows us to check with O(log(n)) queries whether a given pair of vertices u, v are adjacent.
We define the USTCON-problem in this model as follows.

» Problem 7 (USTCONg..). Given access to an undirected graph G = (X, E) via the sorted
adjacency array model and two vertices s,t € X, decide whether s and t are in the same
connected component of G.

The question that we consider is how many sorted adjacency array queries to the graph
it takes to implement the quantum walk oracle Oyy.

3 Note that this is exactly the quantum walk oracle defined in Theorem 4, specialized to unweighted
graphs.
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1)1 z Y2 & Tno2  Tn_1 Un

’ To q/ T v T2 Tn—2 Tn-1 ¢

}

Figure 2 The parity graph. We include an edge labelled by “x;” (in red) if and only if z; = 1,
and an edge labelled “Z;” (in blue) if and only if z; = 0, meaning that for each vertex we include
exactly one of the two incoming edges, and exactly one of the two outgoing edges. The resulting
graph has s and ¢ connected if and only if PARITY(z) = 1.

» Lemma 8. The quantum walk oracle Ow for an unweighted graph G (Equation (2)) with
mazimum degree dmax can be implemented with O(log(dmax)) queries in the sorted adjacency
array model, and O(1) other elementary operations and space.

The proof of this lemma is deferred to the appendix.
It follows that any quantum algorithm solving USTCONgy, in T time and S = (log(n))
space can solve USTCONg oy in O(T') time and O(S) space.

4 Time- and space-optimal quantum algorithm

In Section 4.2 and Section 4.3, we give an algorithm for USTCON,, that is optimal in both
time and space. For completeness, we first give a time lower bound in Section 4.1.

4.1 Lower bound

The proof of the following lower bound follows the lines of the proof of an analogous lower
bound for the strong connectivity problem described in [13]. The proof is via a reduction
from PARITY.

» Problem 9 (PARITY). Given oracle access to a string x € {0,1}" via Oy : |i)|b) —
. n—1
i) |b @ ), return @, x;.

» Lemma 10 ([6, 15]). The bounded error quantum query complexity of PARITY is Q(n).

We use Lemma 10 and a reduction from parity, using the parity graph illustrated in Figure 2,
to show the following result. The detailed proof can be found in the appendix.

» Theorem 11. The bounded error quantum query complexity of USTCONg-ary and USTCONqy
is Q(n).

4.2 Metropolis-Hastings walk

In this section, we consider an unweighted simple graph G. The algorithm that we propose
involves a quantum walk on a modified weighted version of G that we call G’ = (X', B/, W).
We start by describing the construction of G’ that was introduced in [19, arXiv v2].

» Definition 12 (Metropolis-Hastings walk). For any graph G = (X, E), the corresponding
Metropolis-Hastings walk is the random walk on the weighted graph G' = (X', E', W) defined
as follows. For every u € X, we include a corresponding vertex x, in X'. In addition, for
every edge {u,v} € E, we add a new vertex x, , that splits the edge into two new edges.
Formally:
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X' ={zy:u€ X}U{zyy: {u,v} € E,u<v}
E' = {{zy,vup}: {u,v} € E}.
1

For every edge {xy, 7y} € E', we define the edge weight Wy, o, , = . These weights
define transition probabilities for the random walk on G’.

The above has been called the cautious walk in [19, arXiv v2], while Metropolis-Hastings-
type walks are walks in which neighbours are sampled and accepted with some probability.
Our terminology is motivated by the following observation. If we start with a vertex u € X
and take two steps of the walk of Definition 12, then we arrive at another vertex v € X,
which is either the same or a neighbour of u in G. The walk on G defined this way has
the following alternative description: sample a uniformly random neighbour and accept it
with probability 7 7 diy/f'l” T T 1T di Ta This is precisely a random walk that falls into the
Metropolis-Hastings framework, justifying our terminology. The precise choice of acceptance
probabilities is sometimes called the Glauber choice in the literature (e.g., [20]). We note that
a later version of [19] uses another choice of Metropolis-Hastings walk, but of our purposes
we find it convenient to stick to the walk as defined above.

While the hitting time of a random walk between two vertices in G may be as high as
O(n3), in G’ it is at most O(n?) [19, Lemma 2 of arXiv v2]:

» Lemma 13 ([19]). Let G = (X, E) be any unweighted graph, and G’ the corresponding
(weighted) Metropolis-Hastings graph as in Definition 12. For any u,v € X connected by a
path, H., ,(G') < 18n2.

In order to apply Theorem 4 to G’, we need to upper bound U, the cost of implementing
the weighted quantum walk oracle. For u € X’ the oracle is defined as

Z ) ), Vre X'
YyEN(z

where P;y is the probablhty of walking from x to y defined by the edge weights.

» Lemma 14. The weighted quantum walk oracle U for the Metropolis-Hastings walk G’
can be implemented with 5(1) degree queries Op, 5(1) applications of the quantum walk
operator Oy on the graph G, and 6(1) additional gates.

Therefore, U can be implemented with 6(1) queries to G in the sorted adjacency array
model, and O(1) additional gates.

Proof. Note that the first statement implies the second one due to Lemma 8. Therefore, we
will only prove the first statement. Consider the following encoding of the vertices of G'.

X' ={(u,0) :ue X} U{(u,v) : {u,v} € E,u <v} C X x (XU{0}),

where 0 is a null symbol not contained in X. The first set of this union corresponds to
original vertices of G and the second one corresponds to the added ones.

To implement U on |z) |0), we first compute a bit in an ancilla register A that is |0) , if
x = (u,0) for some u, and |1) , otherwise. We will condition on this value.

First, conditioned on |0) 4, our implementation proceeds as follows, for u € X:

) 0) = 1,00 0) "2 —— 5™ [u) [o) Ju, )

u vEN (u)

g1 1

S ¥ s = e ¥ e ) = Ul 0
Y veEN(u) “ veN(u)
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where J is a unitary that acts as |u,v) |0) — |u,v) |u,v), and J' as |u,v) |u,v) — |u,0) |u, v),
each of which can be implemented with O(log(n)) controlled-NOT gates (since every vertex
is described by O(log(n)) bits).

Next, conditioned on |1) ,, our implementation proceeds as follows, for {u,v} € E with
u < v, and |0) 4, a fresh ancilla:

10) 4 |[Tuw) [0) = [0) 4/ |u,v) |0)

1 1/d, 1/d,
H ( mumvlmml% [, 0) [0)
2

17d +1/d. — 1), |y,
1/d, +1/d, 1/du+1/d,,| ) ar lusv) v)

= 10)4 ( 1/d1/+d1/d fu, 0} [u) + ,/Wj/fj/dv [, v) |v>>
qu.mwu qu,m:vu T T
. (V m |Iu,v> ‘xu> * \l w(-ruw) u7U> | ”>>
U

= 10)
=10) 4/ U |zuw) |0)
1: Query degrees for u and v into a new ancilla register, perform the rotation controlled on

10) ar |, 0) ) +

where we use the following mappings:

the degrees (cf. [17]), and then uncompute the degrees (O(1) degree queries to G).

2: Controlled on the first register, select one of the two vertices to copy into the last register
(O(log(n)) Toffoli gates).

3: Flip the bit in A’ if the second vertex of |u,v) is the same as the one written in the third
register (O(log(n)) elementary gates).

To complete the proof, note that we can uncompute the bit in ancilla A, because the register

containing |z) has not been changed. <

4.3 The algorithm

We can solve USTCONgy (G) using Algorithm 1. This leads to our main theorem of this
section.

Algorithm 1 Quantum algorithm for USTCONgw with optimal time and space.

Apply the algorithm from Theorem 4 to the Metropolis-Hastings walk P’ with
M = {t}, using Lemma 14 to implement the quantum walk oracle for G’. If the
algorithm returns ¢, output “connected”, and otherwise output “disconnected”.

» Theorem 15. There exists a O(log(n))-space quantum algorithm that decides USTCONgy
and USTCONs_ayy with bounded one-sided error in O(n) gates and queries.

Proof. Let X, C X denote the connected component of s. If t € X, the algorithm will
output ¢ with probability at least 2/3, in which case our algorithm will output the correct
answer, “connected”. If t € X, then the algorithm will output an element of X, with
probability 1, in which case, our algorithm will output the correct answer “disconnected”.
This establishes correctness of Algorithm 1 with one-sided error.
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To analyze the complexity, note that by Lemma 14 we have U = 5(1) For any u € X,
we can check if u € M by checking if u = ¢ in complexity C = O(log(n)) = O(1). To
complete the analysis, we need only upper bound the commute time between s and ¢t when
t € X;. Since Cs+ = Hs+ + He s, by Lemma 13, we have Cs; < 36n2 =: C. Thus, referring to
Theorem 4, the complexity of our algorithm is:

%) (\/c 10g(C) log(log(C))(C + U)) = O(n). <

5 Time-space tradeoff for bounded spectral gap

In this section we revisit the problem of undirected st-connectivity in the setting where one
is given a lower bound on the spectral gap of the random walk. As discussed in Section 2.2,
such a bound is tightly related to the mixing time of the walk. We will give a quantum
algorithm that exhibits a nontrivial time-space tradeoff in this setting.

Our discussion will be general and apply to random walks on weighted graphs as defined
in Equation (1). This is useful since the spectral gaps and mixing times of random walks
on G with different edge weights are in general not comparable. E.g., on the lollipop graph
(an n-vertex clique connected to an O(n)-vertex path) the mixing time of the unweighted
random walk is ©(n?) [10], while it is O(n?) for the Metropolis-Hastings walk.* On the other
hand, on an n-vertex star graph the unweighted random walk has mixing time O(1) while
the Metropolis-Hastings walk has mixing time ©(n). Thus, while the specific edge weights
do not affect whether s and ¢ are connected, they do impact the algorithm. Throughout this
section, we assume some fixed edge weights are given, and we do not try to optimize for
“good” edge weights. More specifically, we assume access to a weighted quantum walk oracle
that for every vertex outputs a superposition of its neighbours, with squared amplitudes
proportional to the edge weights:

Ow: |u) Z |u lv) = Z V/Puv|u)|v) Yu e X

vEN (u) vEN (u)

Moreover, we assume access to the weighted vertex degrees w, and that these degrees
are of bounded absolute value for some poly(n) bound. This will allow us to generate the
state |mx/) for any subset X’ C X stored in QCRAM.

» Problem 16 (USTCONgy ). Given access to an undirected weighted graph via the quantum
walk oracle Oy, two vertices s,t € X, and the promise that either s and t are disconnected
or the spectral gap of the transition matriz of the walk is at least some 6 > 0, decide which is
the case.

Our main result of this section is the following:

» Theorem 17. Fiz § > 0. Let G, be a family of undirected weighted graphs G = (X, E, W)
with n = |X|, such that v.(G) > § whenever s and t are connected. Then for any S =
Qlog(n)), there is a quantum algorithm that decides USTCONqw,s on Gy, with bounded error
in O(S) space — of which O(log(n/d)) is quantum memory, and the remainder is QCRAM —

and T = 5(% log(ﬁ) ++/55) queries to Oy, elementary gates, and QCRAM queries.

4 This follows from the O(n?) upper bound on the maximum hitting time of the Metropolis-Hastings walk
(Lemma 13), and the fact that the maximum hitting time upper bounds the mixing time [21, Lemma
10.2].
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Note that we can assume § > 1/n. If 6 < 1/n then T ~ S/§. There is no time-space
tradeoff, and it is always faster to run the Metropolis-Hastings algorithm (Algorithm 1).

The algorithm is stated below as Algorithm 2. It consists of three stages. We fix some
parameter p, which denotes the number of “pebbles”, or vertices the algorithm will keep
track of (so S = O(plog(n))). First, we run O(p) classical random walks starting from s,

each of length ¢ = O (% 10g<pﬂ’;m)). This allows us to sample a set L of O(p) points from
X, the connected component of s (the big-O notation suppresses a universal constant that
is given in the proof). Since £ is at least the mixing time of G (see Theorem 3), assuming s
and ¢t are connected, each point is sampled (approximately) from 7. We do the same from ¢
to get a random subset M C X; connected to t.

Next, we use L and M to prepare (up to some error) the states |rx_) and |7x,), using
inverse quantum walk search, which we describe in more detail in Section 5.2. If s and ¢
are in the same connected component, then |1x_ ) = |7x,), and otherwise, the states are
orthogonal. The final step is to distinguish these two cases using a SWAP test [1, Claim 1].
This roughly follows an earlier approach in [3], the main difference being that we sample the
sets L and M using a random walk (which allows us to exploit the gap promise), while in [3]
the sets are constructed using a breadth-first search.

Algorithm 2 Quantum algorithm for USTCONgw with a tradeoff.

Seed set: Run O(p) classical random walks from s and O(p) classical random

walks from ¢, each for O(% log(pﬁ"_ )) steps. Let L and M denote the respective

sets of endpoints, without duplicates. If L N M # ), return “connected”.?
State preparation: Run inverse quantum walk search from |mp) and |mps) for

time O (4 /%) to prepare |mx_) and |7x,), respectively, to precision 1/8.
SWAP test: Do a SWAP test on the resulting states. If the test returns “0”, return
“connected”, otherwise return “disconnected”.

If we specialize Theorem 17 to the unweighted graph case, we get the following corollary.

» Corollary 18. For any S > 0, there is a quantum algorithm that solves USTCON;-arr With a
promise 6 > 0 on the random walk spectral gap using space S and time T € O(S/5++/n/(55)).

An analogous result holds for the Metropolis-Hastings walk described in Section 4.2 given
a promise on its spectral gap, since we showed that the corresponding quantum walk oracle
can also be efficiently implemented.

In the remainder of this section we will analyze each stage of Algorithm 2.

5.1 Analysis of step 1: Seed set

Recall that the first stage results in random sets L = {x1,..., 2} and M = {y1,...,ycp},
where 1, ...,ycp are the endpoints of independent random walks starting at s or ¢, respect-

ively, and ¢ > 0 is some universal constant that we will choose later. Since we run those

n
PTmin

random walks for O(% log< )) steps, by Theorem 3 it follows that the z; are independent

5 We use the following strategy to check whether L N M # @: Sort L and M and check for every element
of L if it is present in M. This takes O(p) time and space.
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samples drawn from a distribution 7 such that

- p
7=l < o,

where 7 is the stationary distribution on X,. If s and ¢ are connected then Xy = X; and the
samples y; are similarly drawn from a distribution that is p/(8n)-close to m. Here we prove
that this implies lower bounds on the stationary measure of the sets L and M.

» Proposition 19. There exists a universal constant ¢ > 0 such that the following holds.
Let p € [n] and assume L C X is a random set obtained by sampling cp independent
elements from a distribution @ such that |7 — 7|y < & (and removing duplicates). Then,
Pr(n(L) > &) > 5.

The proof of the proposition uses the following lemma, which formalizes the intuition
that adding a random element to a low-probability subset should increase the probability.

» Lemma 20. Let X be a set of cardinality n, A C X an arbitrary fized subset, and let b be
drawn at random from an arbitrary distribution o on X. Then:

Pr <J(A U{B}) > o(4) + 1 2‘;(‘4)> > 1= ;(A).

Proof. Say b is bad if b € A or o(b) < :=24) and good otherwise. Then

2n

1—-0(A4)

Pr <O’(A U{b}) >o(A) + o

) =Pr(bis good) =1 — Pr(b is bad).
We can compute:

Pr(b is bad) = U<Au {:c €X:o(z) < 1—0(14)})

2n
1-0(4) 140(4)
<o(A . =
Sold)tn—5 2
from which the claim follows. <
Proof of Proposition 19. Let x1,x,... denote samples drawn independently at random
from 7. For any integer T' > 1, define Ly := {x1,...,x7} as the set consisting of the first T

samples (with duplicates removed), as well as Ly := (). We say that the T-th sample is a
success if

1
7(Lp) > 7(Lyp_ —
or 7(Lr)>#a(Lr 1)+4n’
and a failure otherwise. Let T} denote the index of the j-th success, with T := 0. Then,

clearly,

N 1
7T(LTfl) > 5

. - f1op P - p 0P

7(Lt,) > mln{Q, 4n} = and hence 7(Lt,) > 7(Lt,) — &n > &

On the other hand, note that by Lemma 20, the 7T-th sample is a success with probability
at least i, even if we condition on all prior samples. In particular, the probability that there

are k failures in a row is at most (2)*. Therefore,

00 00 k
3
E[T; —Tj]=Y kPr(Tj =T, 1+k) <) k (4) =12
k=1 k=1
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and hence, by Markov’s inequality,

Pr(T, > cp) < — E[T})] ZP:ET T, <221

& — - =

P cp cp o i1 cp 10

provided we choose ¢ := 120. Since the random set L in the statement of the lemma is
defined by taking c¢p many samples, we obtain that

P 1 9
P<L>—>>P T,<ep)>1— — = —, <
r\m(l) = ¢ r(Tp < cp) 10 10

5.2 Analysis of step 2: State preparation

Now we turn to the analysis of the quantum walk search routine in step 2 of the algorithm.
We rely on the following proposition from [3], which formalizes the idea of “inverse quantum
walk search”%

» Proposition 21 ([3, Proposition 1]). Consider a subset A C X of a (connected) graph G,
and let § be a lower bound on the spectral gap of a random walk P on G with stationary
distribution w. From |mw4), we can generate a state |7y = |m) + |T') with || |T) ||2 < € using an
expected number of calls to the weighted quantum walk oracle

© ( 7'('114)(5 o (w(zl‘lk)) ’

and O(1/+/m(A)d) reflections around |w4). The algorithm uses space logarithmic in n, 1/4,
1/7(A) and 1/e.

The proposition implies the following.

> Claim 22. Step 2 of Algorithm 2 prepares 1/8-approximations of |rx_) and |rx,) with
probability at least 9/10 in time complexity O (1 / ;’—5 log (%))

5.3 Analysis of step 3: SWAP test

In the last step of our algorithm, we wish to decide whether |rx_) = |7x,) or whether they
are orthogonal. For this we use the SWAP test.

> Claim 23.  Step 3 of Algorithm 2 decides whether |rx ) = [7x,) or whether they are
orthogonal with constant probability in time O(1).

Proof. Using a single copy of two states [¢) and |¢'), and O(log(n)) additional gates,
the SWAP test returns “0” with probability (1 + [(¥|¢/)|?)/2 and “1” with probability
(1= [{@[y")*)/2 [1, Claim 1].

By Claim 22, in step 2 we prepared states |7x,) = |7x.) +|T'z) and |7x,) = |7x,) + [Tam)
such that |[|Tz) |2, || ITar) |2 < 1/8 with probability 9/10. By a triangle inequality, this
implies that

[(Tx, Tx )| = Wmx, mx )| < 1/3,

and so |(Tx_|7x,)| > 2/3 if s and ¢ are connected, but [{(7x_|7x,}| < 1/3 otherwise. The
SWAP test distinguishes these cases with constant probability. <

6 [3, Proposition 1] only proves the proposition for simple random walks, however it trivially extends to
random walks on weighted graphs.
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5.4 Proof of Theorem 17

In this section, we prove Theorem 17, which we restate here for convenience.

» Theorem 17. Fiz 6 > 0. Let G,, be a family of undirected weighted graphs G = (X, E, W)
with n = |X|, such that v.(G) > § whenever s and t are connected. Then for any S =
Qlog(n)), there is a quantum algorithm that decides USTCONqw,5 on Gy, with bounded error
in O(S) space — of which O(log(n/d)) is quantum memory, and the remainder is QCRAM -

and T = 6(% log( L ) +/55) queries to Ow, elementary gates, and QCRAM queries.

Tmin

Proof. We first analyze the space complexity of Algorithm 2. Step 1 is purely classical, and
uses O(plog(n)) space to store the O(p) vertices in L and M, with each random walk using
O(log(n)) space. We can implement step 2 using the algorithm referred to in Proposition 21
using O(log(n)) qubits of space, but this requires that the O(plog(n)) classical space used
to store L and M in step 1 is QCRAM. Finally, step 3 just uses O(log(n)) quantum space.
Thus, the claimed space complexity follows if we set S = plog(n).

Next, we analyze the time complexity. Every random walk of step 1 adds O (% log(pﬂ::m ))
to the time complexity. The total number of walks is O(p). Checking whether L N M = () is
O(p) as this is the total number of samples. Hence, the overall complexity of the first step
is O (% log(ﬁ)). By Claim 22, the complexity of step 2 is O ( % log (%)) Finally,
the SWAP test in step 3 uses only O(log(n)) gates, since the states being compared are
O(log(n))-qubit states. Hence, the total time complexity of Algorithm 2 is

o (g () ) -o(m(2) )
since S = O(p).

Finally, for the correctness of the algorithm, by Claim 23, Algorithm 2 distinguishes
between the case where |mx,) and |7x,) are equal and the case where they are orthogonal
with bounded error. If X, = X; (i.e. s and ¢ are connected) then the states are equal, and if
XsNX; =0 (ie. s and t are not connected) then they are orthogonal. |
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Proof of Lemma 8. Assume first that there is an additional type of query allowed, namely:
Index query: Oy : |u) [v) |0) — |u) |v) |¢) (3)

for u,v € X and ¢ € [d,] such that v;(u) = v. Then Oy can be implemented using Oy, Op,
and Oy as follows. Let Fyy denote the Fourier transform over Zg, and let F = Y"1)_, |d) (d|® Fy,
which can be implemented (to any inverse polynomial precision) in O(log(n)) gates [12].
Then for any u € X, we implement:
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dy

1 :
NG |du) ; |u) |2) |0)

10 [11) [0 0y % |d) [ [0) [0)

Oy Jidfu ) 2; ) 4 [os () CESP ¢1dj ; () Jos(u)) = Ow [u) 0)

To complete the proof, note that the index query operator Oy only requires O(log(d,,)) sorted
adjacency array queries, since the neighbours are sorted and this makes it possible to perform
binary search for 4 such that v;(u) = v. <

Proof of Theorem 11. We will reduce the PARITY problem to USTCONg »;r. Since PARITY
requires Q(n) queries by Lemma 10, and the quantum walk oracle Oy, can be implemented
using O(1) sorted array queries by Lemma 8, this reduction will prove the statement of the

theorem.
n—1

Let € {0,1}" be an input of PARITY. The corresponding output would be @, z;.

Given this, we need to build a USTCONg_,,, input that can be queried with a constant number
of queries to z. Consider an undirected graph G = (X, E) defined as follows (see also
Figure 2):

X = {5 = 0,00, V1,V -+, Un—1,V_1,Vn,t =V}
FE = {{Ui,v;_,_l},{v;,vi_,_l} :1€{0,...,n—1},2; =1}
@) {{vi,vi+1}, {’U;,U;+1} 11 € {0,.. LN 1},xi = 0}

In this setting, @?;01 x; = 1 if and only if s and ¢ are connected in the graph G.

Next, we describe how to implement queries Op and Oy to G as required by the

USTCONg_y,; problem, using queries to O,. Consider the following encoding of vertices of G.

For i € {0,...,n}, welet v; = (i,0), and v} = (¢,1). That is, for a vertex (¢,b), i € {0,...,n}
encodes the “column” and b € {0, 1} encodes the “row”. Assume that the vertices are ordered
lexicographically, i.e.

(i,bi) < (j,bJ) — i<jori:j,bi<bj.

Queries to G are described according to this ordering.
1. Degree queries, Op, are trivial in this case as d,, = dv(lj = dy, = dyy =1, and all other
degrees are 2.
2. Since every vertex has degree at most 2, we explicitly describe neighbour queries, Oy for
indices 1 and 2 such that the ordering assumption holds:
O« [i) [b) [1)0) [0) = i) [b) [1) [i — 1) [b) 5 [i) [b) [1) [i = 1) b & 25-1), ¥ 0 < i <,
O+ [i) [) [2)0) [0) = i) [b) 2) [i + 1) [b) 5 [i) [b) [2) |i + 1) [ & w3), V0 < i < m.
It can be seen from the formulas that queries to G can be implemented with a constant

number of queries to the parity input z. This implies the Q(n) lower bound in USTCONg_ 4y,

For USTCONgy, note that the graph has bounded degree, and so by Lemma 8 we can
simulate a query in this model using O(1) queries in the sorted adjacency array model. This
implies a similar ©(n) lower bound for this model. <
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—— Abstract

We study the online graph exploration problem proposed by Kalyanasundaram and Pruhs (1994) and
prove a constant competitive ratio on minor-free graphs. This result encompasses and significantly
extends the graph classes that were previously known to admit a constant competitive ratio. The
main ingredient of our proof is that we find a connection between the performance of the particular
exploration algorithm BLOCKING and the existence of light spanners. Conversely, we exploit this
connection to construct light spanners of bounded genus graphs. In particular, we achieve a lightness
that improves on the best known upper bound for genus g > 1 and recovers the known tight bound
for the planar case (g = 0).
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1 Introduction

We study a classic online graph exploration problem that was first proposed by Kalyanasun-
daram and Pruhs in 1994 [29]. In this setting, a single agent needs to systematically traverse
an initially unknown, undirected, connected graph with non-negative edge weights. Upon
visiting a new vertex, the agent learns the unique identifiers of all adjacent vertices and the
weights of the corresponding edges. The cost incurred when traversing an edge is simply its
weight. The objective in online graph exploration is to visit all vertices of the graph and
return to the starting vertex while minimizing the total cost.

The performance of a (deterministic) online algorithm ALG is measured in terms of
competitive analysis. That is, given a graph G and starting vertex v of G, we compare the
cost ALG(G, v) of the traversal it produces to the cost of an offline optimum traversal OpT(G).
Note that the optimum cost corresponds to the length of a shortest TSP tour of G and
does not depend on v. We say that ALG is (strictly) p-competitive for a class of graphs if
ALG(G,v) < p-OPT(G) for every graph G in the class and every vertex v of G. The (strict)
competitive ratio of an algorithm ALG is given by inf {p : ALG is p-competitive}.

Kalyanasundaram and Pruhs [29] posed the following question: Is there a deterministic
algorithm for online graph exploration with a constant competitive ratio? Several algorithms
were proposed with a competitive ratio of O(log(n)) [31, 36], where n is the number of vertices,
but better competitive ratios are only known for restricted classes of graphs [29, 31, 33].
The best known lower bound on the competitive ratio is 10/3 [5]. In particular, the original
question of Kalyanasundaram and Pruhs remains open.
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We formalize a connection between the performance of the particular exploration algorithm
BLOCKING and the existence of light spanners. Spanners were introduced in 1989 by Peleg
and Schéffer [35] and have been instrumental in the development of approximation algorithms,
particularly for TSP [3, 8, 9]. Here, a subgraph H = (V, Ex) of a connected, undirected
graph G = (V,E) with edge weights w: E — R is called a (1 + ¢)-spanner of G if
di(u,v) < (14 ¢e)dg(u,v) for all u,v € V, where dg and dg denote the shortest-path
distance in H and G, respectively. Then, H has stretch at most (1 + ¢) and its lightness is
w(H)/w(MST), where w(H) := > .p, w(e) and MST denotes a minimum spanning tree
of G.

We show that the online graph exploration algorithm BLOCKING has a constant com-
petitive ratio on every class of graphs that admits spanners of constant lightness for a
fixed stretch. Prominent graph classes with this property are the classes with a forbidden
minor [9]. We thus, in particular, obtain a constant competitive ratio for online graph
exploration on all graph classes excluding a minor. They encompass many other important
classes, such as graphs of bounded genus or bounded treewidth. Overall, this result subsumes
and significantly extends all previously known graph classes for which a competitive ratio
of o(log(n)) was known.

Regarding research for graph spanners, results typically revolve around the existence of
good, in particular light, spanners. For example, the Erdés girth conjecture [19] is equivalent
to a lower bound of Q(n'/*) on the best lightness of a (2k — 1)-spanner in unweighted graphs.
While this conjecture remains unresolved, a nearly matching upper bound was proven by
Chechik and Wulff-Nilsen [11]. Various constant upper bounds on the lightness are known
for restricted classes of graphs [2, 9, 12, 24]. Our newly discovered connection to graph
exploration also allows us to contribute an improved upper bound for graphs of bounded
genus using the ideas given in [31].

Our results. We significantly expand the class of graphs on which the exploration problem
admits a constant-competitive algorithm.

» Theorem 1. For every graph H and constant 6 > 0, there is a constant ¢ (depending on H
and 0) such that BLOCKINGs is c-competitive on H-minor-free graphs.

The technical contribution of this work is a new-found connection between graph spanners
and the performance of the exploration algorithm BLOCKINGs (see Section 2.1) introduced
by Megow et al. [31] based on an algorithm of Kalyanasundaram and Pruhs [29]. This
connection will allow us to prove Theorem 1.

Prior to our work, the largest class of graphs which was known to admit a constant-
competitive algorithm was the class of bounded genus graphs [31]. As an aside, we obtain a
slightly stronger bound also for bounded genus graphs (cf. Corollary 13).

So far, BLOCKINGs was only studied for constant choices of the parameter 9, i.e., in-
dependent of the number of vertices n. It is known that its competitive ratio is at least
Q(n'/(4+9)) if § is a constant [31]. This naturally raises the question of whether improvement
is possible if 6 may depend on n. We obtain the following results.

» Theorem 2. BLOCKINGiog(p) is O(log(n))-competitive.

This shows that BLOCKING|g(,,) achieves the best previously known competitiveness. We
complement this with the following lower bounds.

» Theorem 3. The competitive ratio of BLOCKING;s, where § = d(n) > 0, is at least

a) Q(log(n)/log(log(n))),
b) Q(log(n)) for ¢ € o(log(n)/loglog(n)) as well as for 6 € Q(log(n)).
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In particular, this shows that there is no ¢ such that BLOCKINGg is constant-competitive,
but it remains open, whether there is a choice of § for which the algorithm is o(log(n))-
competitive.

Next, we exploit the connection between spanners and exploration in reverse to derive
the existence of good spanners in bounded genus graphs.

» Theorem 4. For every e > 0, the greedy (1+¢)-spanner of a graph of genus g has lightness

at most (1 + %) (1 + 12—_36)

Prior to our work, the best known bound was due to Grigni [24] who showed that every
graph of genus g > 1 contains a (14 ¢)-spanner of lightness 1+ %. Moreover, it is already
known that planar graphs, i.e., graphs of genus 0, contain (1 4 ¢)-spanners of lightness 1 + %
and that this is best possible [2]. This means that Theorem 4 gives a tight bound in the case
g = 0 and extrapolates this bound to graphs of larger genus.

Related work. Kalyanasundaram and Pruhs [29] introduced the online graph exploration
problem and gave a constant-competitive algorithm for planar graphs. Megow, Mehlhorn and
Schweitzer [31] revisited the algorithm, addressed some technical intricacies, and proposed
their reinterpretation BLOCKINGg, which we also consider in this paper. They expanded the
result by Kalyanasundaram and Pruhs and showed that the algorithm is constant-competitive
on bounded genus graphs. Moreover, they suggested a new algorithm hDFS and showed
that it is constant-competitive on graphs with a bounded number of different weights and
O(log(n))-competitive on general graphs.

Another very natural approach for exploration is the Nearest Neighbor algorithm, which,
in each step, explores the unvisited vertex nearest to the current location. This algorithm
has been studied extensively as a TSP heuristic. Rosenkrantz, Stearns and Lewis were able
to show that its competitive ratio is ©(log(n)) [36]. It turned out that the lower bound of
Q(log(n)) is already achieved on unweighted planar graphs [28] and on trees [23]. Eberle et
al. [18] revisited the algorithm with learning augmentation.

In addition to planar and bounded genus graphs, the exploration problem has been
studied on many more graph classes. For example, Miyazaki, Morimoto and Okabe were
able to show that the competitive ratio of the exploration problem is (14 v/3)/2 on cycles
and 2 on unweighted graphs. Other examples of such graph classes are tadpole graphs [10],
unicyclic graphs [23], and cactus graphs [23].

Currently, the best known lower bound for the graph exploration problem is 10/3 which
was shown by Birx, Disser, Hopp, and Karousatou [5]. Their construction builds on a
previously known lower bound of 2.5 shown by Dobrev, Kralovi¢, and Markou [17]. Since the
construction by Birx et al. is planar, the lower bound of 10/3 even holds when the problem
is restricted to planar graphs.

Several other settings of the exploration problem have been studied, such as exploration
on directed graphs [1, 13, 22, 21] or exploration with a team of agents [14, 15, 16]. Another
problem which is closely related to graph exploration is online TSP, where a single agent has
to serve requests appearing over time in a known graph [6, 7].

Through the connection with spanners, we are concerned with the existence of light
spanners for a given stretch. Examples of graph classes where the worst-case lightness does
not depend on the number of vertices include planar graphs [2], bounded genus graphs [24],
apex graphs [26], bounded pathwidth graphs [25], bounded treewidth graphs [12], and minor-
free graphs [9]. Our results rely on the existence of light spanners for minor-free graphs [9]
and improve on the lightness for bounded genus graphs. In particular, we study the lightness
of the so-called greedy spanner [2] for graphs of bounded genus. It was shown by Filtser and
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Solomon [20] that this spanner construction is existentially optimal for every class of graphs
closed under taking subgraphs, which means that the optimal lightness guarantee on any
such class is achieved by the greedy spanner.

Light and sparse spanners have applications in various fields. Most importantly, span-
ners were used to give polynomial-time approximation schemes (PTAS) for the travelling
salesperson problem for various graph classes [3, 8, 9]. Note that the difference between
approximations for TSP and online exploration is that, in our setting, the tour is computed
on-the-fly. Indeed, in comparison to our online setting, we desire a constant approximation for
an arbitrary constant, which in the TSP setting is easily obtained by traversing a minimum
spanning tree twice. On the other hand, in the online setting, we are not concerned with
efficiency of the algorithms which is crucial in the TSP setting. Other fields of application
of spanners include distributed systems [4], routing [38], or computational biology [37].

2 The online graph exploration problem on minor-free graphs

In this section, we prove new upper bounds for BLOCKINGs on H-minor-free graphs (The-
orem 1) and for general graphs (Theorem 2). To this end, we begin by introducing the
algorithm BLOCKINGs proposed by Megow et al. [31] based on