The talk will consider aspects of the following setup: Assume for each (key) x from a set U (the universe) a vector $a_x = (a_{x,0}, \ldots, a_{x,m-1})$ has been chosen. Given a list $Z = (z_i)_{i \in [m]}$ of vectors in $\{0, 1\}^r$ we obtain a mapping

$$\varphi_Z : U \to \{0, 1\}^r, x \mapsto \langle a_x, Z \rangle := \bigoplus_{i \in [m]} a_{x,i} \cdot z_i,$$

where \bigoplus is bitwise XOR. The simplest way for creating a data structure for calculating φ_Z is to store Z in an array $Z[0..m-1]$ and answer a query for x by returning $\langle a_x, Z \rangle$. The length m of the array should be $(1 + \varepsilon)n$ for some small ε, and calculating this inner product should be fast.

In the focus of the talk is the case where for all or for most of the sets $S \subseteq U$ of a certain size n the vectors $a_x, x \in S$, are linearly independent. Choosing Z at random will lead to hash families of various degrees of independence. We will be mostly interested in the case where $a_x, x \in U$ are chosen independently at random from $\{0, 1\}^m$, according to some distribution D. We wish to construct (static) retrieval data structures, which means that $S \subseteq U$ and some mapping $f : S \to \{0, 1\}^r$ are given, and the task is to find Z such that the restriction of φ_Z to S is f. For creating such a data structure it is necessary to solve the linear system

$$(a_x)_{x \in S} : Z = (f(x))_{x \in S}$$

for Z. Two problems are central: Under what conditions on m and D can we expect the vectors $a_x, x \in S$ to be linearly independent, and how can we arrange things so that in this case the system can be solved fast, in particular in time close to linear (in n, assuming a reasonable machine model)? Solutions to these problems, some classical and others that have emerged only in recent years, will be discussed.

2012 ACM Subject Classification Theory of computation \rightarrow Sorting and searching; Theory of computation \rightarrow Randomness, geometry and discrete structures

Keywords and phrases Hashing, Retrieval, Linear equations, Randomness

Digital Object Identifier 10.4230/LIPIcs.ESA.2023.1

Category Invited Talk