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Abstract
Motivated by the problem of redistricting, we study area-preserving reconfigurations of connected
subdivisions of a simple polygon. A connected subdivision of a polygon R, called a district map,
is a set of interior disjoint connected polygons called districts whose union equals R. We consider
the recombination as the reconfiguration move which takes a subdivision and produces another by
merging two adjacent districts, and by splitting them into two connected polygons of the same area
as the original districts. The complexity of a map is the number of vertices in the boundaries of its
districts. Given two maps with k districts, with complexity O(n), and a perfect matching between
districts of the same area in the two maps, we show constructively that (log n)O(log k) recombination
moves are sufficient to reconfigure one into the other. We also show that Ω(log n) recombination
moves are sometimes necessary even when k = 3, thus providing a tight bound when k = 3.
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1 Introduction

We consider the problem of redistricting – the partition of a geographic domain into disjoint
districts. In particular, we consider the case when these districts are required to be connected
and of roughly equal population. These criteria are typically enforced in political redistricting,
wherein each district elects one or more representatives to serve on a governing body, a
canonical example being Congressional districts in the United States. Even under these
restrictions, the space of possible redistricting plans for a typical domain is intractably vast,
making it difficult to sample from this space. Recently, algorithms for generating large samples
of plans have made it possible to find the neutral baseline for a particular state, which in turn
can be used to detect and describe gerrymanders (i.e., unfair maps) [9, 8, 10, 13, 14, 17, 18].
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6:2 Reconfiguration of Polygonal Subdivisions via Recombination

The most common and successful sampling algorithms for redistricting are Markov chains
that perform a sequence of reconfiguration moves on an initial map. The most prominent
reconfiguration move is the recombination or ReCom move (see Figure 1), which is a move that
modifies two adjacent districts while maintaining population balance and connectivity [13, 14].
In order to properly sample from the space of redistricting plans, we should require that any
feasible redistricting plan can be reached from the initial map by a finite sequence of ReCom
moves. That is, we want to positively answer the reachability question for this reconfiguration
move; in the language of Markov chains this would be to prove that any chain built on the
ReCom move is irreducibile.

Historically, most redistricting algorithms have operated on a discretized version of the
geographic domain. In this framework, a district map is modeled as a vertex partition
of an adjacency graph [14, 24]. This is natural since population data is only available at
the level of fixed geographic units, such as Census blocks in the case of the United States.
The ReCom algorithm fits within this framework, and current versions all use a spanning
tree method on the adjacency graph to perform the ReCom move. Unfortunately, it is
easy to construct small pathological examples of graphs for which ReCom reachability fails.
Moreover, even determining whether two plans can be connected via a sequence of ReCom
moves is PSPACE-complete [3] for general (planar) graphs.

A reasonable but unproven hypothesis is that for real-world adjacency graphs representing
sufficiently fine discretizations of the geographic domain, we will indeed have reachability. A
general theorem covering all adjacency graphs of interest seems beyond reach, which has led
to a search for intermediate results. One direction of investigation is to allow a large class of
graphs but relax the population balance constraint considerably; in such cases theoretical
results are possible [2, 3] (see Related Work below). Reachability on grid graphs or triangular
lattices is an active area of research but as of yet without concrete results.

In this paper, we return to the original hypothesis – that sufficient discretization leads
to reachability – to motivate our result. Instead of modeling redistricting plans as graph
partitions, we adopt a continuous model where the districts are connected polygons of equal
population which partition a polygonal domain. Note that sampling algorithms based on
this model do exist in the literature, most notably the power diagram method in [11], but
these algorithms are not Markov chains and require an extra refinement step to go from
polygonal partitions to partitions that respect the geographic units.

In our continuous model, we are able to establish reachability for the ReCom move –
that is, any two polygonal partitions can be connected by finitely many ReCom steps that
merge and resplit adjacent polygonal districts. The implication is that given two real-world
redistricting plans, a sufficiently fine discretization of the geographic domain allows a finite
sequence of ReCom moves (on the adjacency graph) to connect them. In practice this could
mean that a particular map is not reachable from the initial map when considering voting
precincts as geographic units, but could become reachable when working with Census blocks.

Related Work. In the discrete setting, the context for the reachability problem consists
of a graph G with n nodes, a number of districts k and a slack ε ≥ 0. Valid partitions are
defined as partitions of V (G) into k non-empty subsets (called districts) that each induce
connected subgraphs such that the number of vertices in each district lies in the interval
[(1 − ε)n

k , (1 + ε)n
k ]. Two common reconfiguration moves on the space of valid partitions

are the switch move and ReCom move. A switch move [15, 21] consists of reassigning a
single node to a new district. Using the switch move allows one to construct a Markov
chain on the space of valid partitions with easily computable transition probabilities. A
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Figure 1 A sequence of three recombination moves on the state of Wisconsin. At each step, two
districts are merged and split again. The reachability problem is to determine whether any map can
be reached from any other by a finite sequence of such steps.

Metropolis-Hastings weighting can then be used to ensure that the chain samples (in the
limit) from any desired distribution on the space of valid partitions. Crucially, however, this
relies on the assumption that the state space is connected, i.e., that any two partitions can
be connected by switch moves. It is not hard to design concrete examples of graphs for which
this is not true with ε = 0. It is known that for ε = ∞, the state space is connected under
the switch move when G is biconnected; furthermore, that deciding whether two partitions
can be connected by switch moves is PSPACE-complete even when G is planar [2].

The usefulness of the switch move is hampered by the fact that Markov chains built
on it tend to mix slowly [23]. As a result, larger reconfiguration moves, that are often
more effective on real-world instances, were introduced. The ReCom move [13, 14] consists
of merging and resplitting two adjacent districts (note that the switch move is a special
case of a ReCom move). When designing a Markov chain based on this move, the most
common method for resplitting is to draw a random spanning tree of the merged districts
and cut an edge such that the resulting connected components form a valid partition. The
disadvantage to such a process is that the transition probabilities between partitions appear
to be intractable, so that the resulting Markov chain has an unknown stationary distribution.
Recently, modifications of the original ReCom Markov chain have been proposed which have
computable transition probabilities [4, 6]; however, an accurate description of the stationary
distribution still requires the state space to be connected. It is easy to construct a graph G

for which the space of valid partitions is not ReCom-connected for ε = 0 (even for a 6×6
grid graph [6]). It is known [3] that the state space is connected whenever G is connected
and ε = ∞, and also when G is Hamiltonian and ε ≥ 2; deciding whether two partitions can
be connected by ReCom moves is PSPACE-complete even when G is a triangulation.

Contributions. In this paper, we introduce a continuous model for redistricting and ReCom
moves, where the districts can be arbitrary connected polygons (with real coordinates) in
a polygonal domain (Section 2). While the configuration space in this setting contains
infinitely many maps, we prove that it is always connected under ReCom moves. Our proof is
constructive, and provides an upper bound on the minimum number of ReCom moves between
any two maps in terms of the number of districts k and the complexity of the district maps
n (i.e., the number of vertices of all polygons in the initial and target maps). We start with
the first nontrivial case, k = 3 districts in a unit square domain, and show that between any
two maps of complexity O(n), there is a reconfiguration path consisting of O(logn) ReCom
moves (Theorem 9 in Section 3). Importantly, the complexity of the map remains O(n) in all
intermediate steps. Our reconfiguration algorithm generalizes to k districts in an arbitrary
polygonal domain, using a recursion of depth O(log k). It yields an exp(O(log k log logn))
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6:4 Reconfiguration of Polygonal Subdivisions via Recombination

bound on the number of ReCom moves between two maps; however, for the complexity of
intermediate maps we obtain only a weaker bound of nkO(1) (Theorem 10 in Section 4). On
the other hand, we show that (even for k = 3) the diameter of the configuration space is
infinite by constructing pairs of maps which require arbitrarily large numbers of ReCom
moves to connect (Theorem 12 in Section 5). The number of moves for these examples grows
logarithmically with the complexity of the maps, thereby providing a lower bound which
perfectly matches our upper bound.

2 Preliminaries

A region is a connected set in R2 bounded by one or more pairwise disjoint Jordan curves.
A k-district map M(R) = {D1, . . . , Dk} is a decomposition of a region R into k interior-
disjoint regions (that is, R =

⋃k
i=1 Di and int(Di) ∩ int(Dj) = ∅ for i ̸= j), where R is

the domain, and D1, . . . , Dk are the districts of the map. We may refer to M(R) simply
as M if R is clear from the context. A recombination move (for short, ReCom) takes
a map M(R) and two districts Di, Dj ∈ M(R) and returns a new district map of the
same domain M ′(R) = M(R) \ {Di, Dj} ∪ {D′

i, D
′
j}. A recombination is area-preserving if

area(Di) = area(D′
i) and area(Dj) = area(D′

j). Two k-district maps, M(R) = {D1, . . . , Dk}
and M ′(R) = {D′

1, . . . , D
′
k}, on a domain R are area-compatible if there is a permutation

π : {1, . . . , k} → {1, . . . , k} such that area(Di) = area(D′
π(i)) for all i = 1, . . . , k.

We assume that the domain R is a simple polygon, and each district is a connected
polygon (possibly with holes). The configuration space of a map M(R) is the set of all
polygonal district maps on R that are area-compatible with M(R). We define the complexity
of a map M as the total number of vertices on the boundaries of all districts in M(R). We
show (in Section 4) that w.l.o.g. we may assume a unit square domain R = [0, 1]2. The area
of a polygon P , denoted area(P ), is either the Euclidean area of P or the integral

∫
P
δ of

some nonnegative integrable density function δ : R → R≥0. We show (Theorem 10) that
between any pair of area-compatible district maps there is a sequence of area-preserving
recombinations (i.e., the configuration space of area-compatible district maps is connected).

Weak Representation. In intermediate maps of a ReCom sequence, we use infinitesimally
narrow corridors to keep the districts connected. In order to handle narrow corridors
efficiently, we rely on a compressed representation of district maps using weak embeddings
(defined below), where each corridor is represented by a polygonal path; see Fig. 2. The
compressed representation has two key advantages: (1) We may assume that corridors have
zero area; and (2) we may reduce the total number of vertices by representing several parallel
corridors by overlapping polygonal paths (with shared vertices). In Sections 3–4, we construct
a sequence of ReCom moves on compressed maps. We show (in Proposition 1 below) that the
polygonal paths can be thickened into narrow corridors in each stage of the ReCom sequence
to produce a ReCom sequence in which the districts are simple polygons.

An embedding of a planar graph G is an injective function from G (seen as a 1-dimensional
topological space) to R2; intuitively it is a drawing of G in which edges can intersect only at
common endpoints. A weak embedding of G is a continuous function from G to R2 such that,
for every ε > 0, each vertex can be moved by at most ε and each edge can be replaced by a
curve within Fréchet distance ε to form an embedding of G (i.e., an ε-perturbation of a weak
embedding is an embedding). In particular, a simple polygon is a piecewise linear embedding
of a cycle and the region bound by it; and a weakly simple polygon is a piecewise linear weak
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embedding of a cycle and the region bounded by it. A polygon (with possible holes) is a
simple polygon with pairwise disjoint simple polygons (holes) removed. Similarly, a weak
polygon is a weakly simple polygon with pairwise disjoint weakly simple polygons removed.

Figure 2 An example of a weak embedding of a map. Left: multiple corridors connect disconnected
regions. Right: the corridors are thickened to create three simple polygons.

For a district map M , the boundaries of the districts jointly form a straight-line embedding
of some abstract graph G. By identifying edges on opposite sides of narrow corridors, we
obtain a weak embedding of G. In a weak embedding, two or more corridors may overlap,
and we maintain a linear order among all overlapping corridors.

We use the machinery introduced by Akitaya et al. [1] (based on earlier work [12, 7]);
see also [5, 16]. A weak embedding of G is a piecewise linear map of φ : G → R2. The
image graph H is a planar straight-line graph formed by the image φ(G), where overlapping
vertices (edges) of G are mapped to the same vertex (edge). A weak representation of G
comprises of a weak embedding φ and a linear order of overlapping edges of φ(G) along
each edge of H. We define an ε-thickening of H so that G admits an embedding ψ into the
ε-thickening of H so that the Fréchet distance between φ and ψ is at most ε. We call ψ an
ε-perturbation of the weak representation if the order of the edges of G in the neighborhood
of an edge of H agrees with the given linear order. It is known that if G has n vertices, then
an ε-perturbation ψ(G) with O(n) vertices can be computed in O(n logn) time [1].

Weak Representation for ReCom Sequences. We construct a ReCom sequence in two
passes: The first pass operates on a generic ε-perturbation, where the area of each district is
given by the weak representation (hence the corridors have zero area). The second pass then
expands the weak representations into an ε-perturbation, using Proposition 1 below (see the
full version of the paper for omitted proofs), where each district is a simple polygon with the
desired area. Note that the number of moves is determined in the first pass.

▶ Proposition 1. Given two area-compatible k-district maps and a sequence of area-preserving
ReCom moves where districts in intermediate maps are weak polygons with O(n) vertices,
we can compute a sequence of area-preserving ReCom moves of the same length where the
districts in intermediate maps are all polygons with O(n) vertices.

We define the compressed complexity of a district map as the number of vertices in the
image graph H of the weak representation (that is, repeated vertices are counted only once).
The number of ReCom moves produced by our algorithm in Sections 3–4 depends on the
compressed complexity. Using ε-perturbations would increase the complexity of maps. For
this reason, it is also useful in our analysis to convert an ε-perturbations to a weak embedding
which we do by applying the inverse of the operations described here. Throughout this paper
we use set operations on weak polygons such as D1 ∪D2 where D1 and D2 are weak polygons.
Let D′

1 and D′
2 be the polygons obtained by the ε-perturbation defined in Proposition 1. We

define D1 ∪D2 to be the weak polygon obtained from D′
1 ∪D′

2.

ESA 2023



6:6 Reconfiguration of Polygonal Subdivisions via Recombination

3 Reconfiguration for Three Districts

In this section, we consider maps with three districts with a total of n vertices in a unit
square domain R = [0, 1]2. We show that any 3-district map M(R) = {D1, D2, D3} can be
transformed by a finite sequence of ReCom moves into an area-compatible canonical map
in which the districts are axis-aligned rectangles, Q1, Q2 and Q3, of unit width such that
area(Qi) = area(Di) for i = 1, 2, 3.

3.1 Overview of the Algorithm
Our algorithm for transforming a map into the canonical map consists of three stages, each
containing multiple ReCom moves:

Preprocessing (Section 3.2). In this stage, we ensure that our three districts are ordered
top to bottom in a well-defined way, and the middle district has the largest area. Moves
needed: O(1).
Gravity moves (Section 3.3). We perform three ReCom moves to place the districts into
their final positions, with the possible exception of corridors. Moves needed: 3.
Exchange sequences (Section 3.5). Corridors maintaining connectivity are carefully
removed, using a tree representation to determine a move that simultaneously removes a
constant fraction of corridors. Moves needed: O(logn).

3.2 Preprocessing: Ordering Property
First we transform the three given districts into simple polygons if necessary. While there is
a district Di that is a polygon with holes, there is an adjacent district Dj contained within
a hole. Recombine Di and Dj to create a single-edge corridor between Dj and the outer
boundary of Di. Next, we create corridors, if necessary, such that each district touches both
the left and right sides of R. While there is a district that is not adjacent to the left (resp.,
right) side s of the R, let Di be such a district closest to s and let Dj be an adjacent district
that already touches s; then we recombine Di and Dj and append to Di a shortest path to s
along the boundary of Dj . Thus, both districts remain simply connected. As all corridors
run along existing vertices of the three districts, the complexity of the map does not increase.
This stage takes O(1) ReCom moves.

After preprocessing, the intersection of each district with the left (resp., right) side of the
square domain is connected; and the order of these intersections is the same on both sides,
or else two districts would cross. Therefore, the districts can be ordered from top to bottom.

We also need to establish the property that the middle district has the largest area. This
can be done trivially with a single ReCom move between the middle district and the largest
district of the three. We call these properties combined the ordering property:

▶ Definition 2. A three district map M(R) = {D1, . . . , Dk} satisfies the ordering property
if the intersection of each district with the left (resp., right) side of the square domain is
connected, and the middle district, as defined by the resulting order from top to bottom, has
area greater than or equal to each other district.

We assume that the districts are simple polygons in the unit square with a total of n
vertices and describe the details of the recombination moves as we use them in the algorithm.
To reconfigure the districts into their canonical positions, apart from possible corridors, we
perform three gravity moves.
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3.3 Gravity Move
Assume that M is a 3-district map satisfying the ordering property, with districts labeled D1
(red), D2 (green), and D3 (blue) from top to bottom. We describe the move Gravity(D1, D2),
which recombines the red and green districts; refer to Figures 3–4. Let P = D1 ∪D2, which
is a weakly simple polygon by the ordering property. By continuity, there exists a horizontal
line ℓ (that we call the waterline) that partitions the plane into upper and lower halfplanes
ℓ+ and ℓ−, resp., such that area(P ∩ ℓ+) = area(D1) and area(P ∩ ℓ−) = area(D2). We shall
define new districts D′

1 and D′
2, resp., that contain P ∩ ℓ+ and P ∩ ℓ−.

Note, however, that P ∩ ℓ+ and P ∩ ℓ− may be disconnected. We then reconnect disjoint
components of each district by corridors along the boundary of P ; see Fig. 4. Note that,
by the ordering property, there is a path π on the boundary of D3 (blue) between the left
and right side of the domain R. If there are two or more components of P ∩ ℓ+, they are
separated by blue and, therefore they all touch the path π. Therefore (P ∩ ℓ+) ∪ π is a
connected region. Similarly, (P ∩ ℓ−) ∪ π is also connected.

We define a red graph as follows: the vertices are the connected components of P ∩ ℓ+

and edges are minimal arcs along π ∩ ℓ− that connect two distinct components of P ∩ ℓ+.
Since (P ∩ ℓ+) ∪ π is connected, then the red graph is connected. Consider an arbitrary
spanning tree of the red graph, and add its edges (as corridors) to the red district along the
boundary of P . This completes the definition of D′

1.

P P

ℓ
ℓ+

ℓ−

Figure 3 The setup for a gravity move between the red district D1 and green district D2. Left:
a district map satisfying the ordering property. Middle: the union P = D1 ∪ D2 is shown in gray.
Right: the horizontal line ℓ equipartitions the gray polygon P .

Figure 4 Constructing the result of a gravity move between red and green on the map in Figure
3. Left: the red region P ∩ ℓ+ and the green region P ∩ ℓ− are each disconnected. Middle: red
corridors create a connected red district D′

1. Right: green corridors create a connected green district
D′

2 and restore the ordering property.

Since the blue district is simply connected, each component of P ∩ ℓ− also intersects ℓ and
therefore is adjacent to the red district D′

1. Intuitively, we add corridors along π “coating”
the blue district with green and thus restoring the ordering property. Note that π may pass
along the boundary of D′

1, including all red corridors, and the boundaries of the components

ESA 2023



6:8 Reconfiguration of Polygonal Subdivisions via Recombination

of P ∩ ℓ−. Formally, we add green corridors at the intersection of π and ∂D′
1, if such a

corridor is parallel to a red corridor, it runs between the blue district and the red corridor.
That defines D′

2 and concludes the description of the gravity move.

▶ Lemma 3. Assume D1 and D2 are the top two districts on a map satisfying the ordering
property. Then Gravity(D1, D2) is an area-preserving ReCom move that maintains the
ordering property.

Since each waterline intersects an edge of a district at most once we have:

▶ Lemma 4. Assume D1, D2 and D3 each have at most m vertices. Then Gravity(D1,D2)
produces districts D′

1 and D′
2, each with at most O(m) vertices.

The move Gravity(D3, D2) is defined analogously: a reflection in a horizontal line that
reverses the order of the three districts, such that D′

1 = D3 becomes the top district and
D′

2 = D2 is the middle district, then apply Gravity(D′
1, D

′
2), followed by another reflection.

▶ Lemma 5. Let M be a map satisfying the ordering property, with districts D1, D2 and
D3 from top to bottom. Then Gravity(D1, D2) returns a map that satisfies the ordering
property and D′

1 is disjoint from Q3 with the possible exception of corridors, where Q3 is the
axis-aligned rectangle of the blue district in the canonical map.

Proof. It suffices to show that the horizontal line ℓ is above Q3. Lemma 3 yields the rest.
By definition, the area below ℓ is at least area(D2) ≥ area(Q3), since D2 has the maximum
area of the three districts. Thus, the line ℓ is above Q3. ◀

(a) (b) (c) (d)

Figure 5 An example of a sequence of three gravity moves. (a) A starting configuration; (b) the
result of Gravity(D1, D2); (c): the result of Gravity(D3, D2); (d) the result of the third gravity
move Gravity(D1, D2).

After three gravity moves each district has positive area only in the regions in their
corresponding districts in the canonical configuration (see Figure 5 for an example).

▶ Lemma 6. Let M be a map satisfying the ordering property, with districts D1, D2 and D3
from top to bottom. Then the sequence of three moves Gravity(D1, D2), Gravity(D2, D3),
and Gravity(D1, D2) return a map M ′ where D1, D2, and D3 are each contained in their
canonical rectangles, with the possible exception of some corridors.

3.4 Tree Representation of a Region
After prepocessing and the three gravity moves in Lemma 6, we want to eliminate corridors.
We encode the topology of the region P = D1 ∪D2 in a graph that we use for the Exchange
sequence, described below.
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We define the corridor graph T (R) of a weakly simple polygon R ⊂ R. A weakly simple
polygon has a natural decomposition into pairwise disjoint simple polygons and corridors
(polygonal paths). The nodes of T (R) are simple polygons in the decomposition of R, and the
edges represent corridors between two polygons in R. Denote the set of edges by E(T (R)).
At each node, the rotation of the incident edges represents the counterclockwise order of
corridors along the corresponding polygon in R. The weight of each node is the area of the
corresponding polygon. As corridors have zero thickness, the total weight of the nodes is
W = area(R).

In particular, we want to consider the corridor graph of P = D1 ∪D2. Assume that M is
a 3-district map returned by the three gravity moves in Lemma 6. By the ordering property,
we know that the intersection of D1 and D2 is a simple path - either from one side of the
square to another or, if D1 is contained in D2, then it is a closed curve. Thus, P is a weakly
simple polygon. Let Q12 be the union of the two axis-aligned rectangles that contain D1 and
D2 in the canonical configuration. Then, the nodes of T (P ) are simple polygons in P ∩Q12
(regions bounded by corridors of D3) and the edges are corridors in R \Q12 that connect two
such polygons (corridors of D1 and D2 running through Q3). Note, however, that a corridor
in P may be the union of three parallel corridors in D2, D1, and D2, resp.; see Fig. 6. Since
P is a weakly simple polygon, T (P ) is a tree; see Fig. 6. Note that the number of vertices in
T (P ) is bounded above by the compressed complexity of the map and that many different
maps can have the same corridor graph.

(a) (b)

(c)

Figure 6 (a) A map M after 3 Gravity moves. (b) The nodes of the corridor graph T (P )
correspond to connected components of P ∩ Q12, indicated by distinct colors. (c) The corridor graph
T (P ) encodes the topology of P .

We use the corridor graph T (P ) to eliminate corridors. Consider what happens if the
tree has a leaf that is entirely part of the green district (see Fig. 7). This means that by
doing a gravity move between green and blue we can eliminate the green and blue corridors
adjacent to this leaf, removing the leaf from the tree altogether. Our goal is therefore to
create a part of the tree which is entirely green.

The centroid of a vertex-weighted tree of total weight W is a vertex whose removal
partitions the tree into subtrees of weight at most W

2 each. Jordan [19] proved that every tree
(with unit weights) has a centroid; this was perhaps the oldest separator theorem [20, 22].
The result extends to weighted trees: a greedy algorithm finds the centroid in linear time.

Let c be a centroid of T (P ), and assume that T (P ) is rooted at c. A subtree of T (P )
is contiguous if it consists of the centroid c, some children of c that are consecutive in the
rotation order of c, and all their descendants in T (P ).
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6:10 Reconfiguration of Polygonal Subdivisions via Recombination

▶ Lemma 7. There exists a contiguous subtree T ∗ of T (P ) such that: (i) T ∗ contains at
least 1

3 of the vertices of T (P ), and (ii) the weight of T ∗ is at most W
2 + w(c), where w(c) is

the weight of the centroid c.

Proof. By the definition of the centroid c, the removal of c produces a forest T (P ) − c, where
the weight of each component (tree) is at most W

2 . Partition these deg(c) trees into up to
three forests of consecutive subtrees such that each forest has weight at most W

2 as follows.
Begin with a partition into deg(c) forests, each containing a single tree, and maintain their
cyclic order around c. While there are two consecutive forests whose combined weight is at
most W

2 , merge them into a single forest. The while loop terminates with three or fewer
forests: Indeed, for four or more forests, the combined weight of at least one of the consecutive
pairs would be at most W

2 by the pigeonhole principle. Since we partition T (P ) − c into
three forests, one of them contains at least 1

3 of the vertices T (P ) − c. Adding c to this forest,
we obtain a contiguous subtree of T (P ) containing at least 1

3 of the vertices of T (P ). ◀

3.5 Exchange Sequence
We now describe the exchange sequence, a sequence of three ReCom moves, which eliminates
a fraction of the corridors and reduces the (compressed) complexity of the map. Assume we
are given a 3-district map M satisfying the ordering property. As before, label its districts
red, green, and blue from top to bottom. We further require that there exist two horizontal
lines ℓ1 and ℓ2 such that red has positive area only above ℓ2, blue has positive area only
below ℓ1, and green has positive area only between ℓ1 and ℓ2 (cf. Lemma 6). See Figure 7
for an example.

Let c be a centroid of T (P ), where P = D1 ∪D2 and let T ∗ be a contiguous subtree of
T (P ) rooted at the centroid, as in Lemma 7. The exchange sequence consists of the following
three ReCom moves:
1. ReCom green and red: Let Q denote the regions of T ∗ except for the region corresponding

to node c. First make Q green. Then partition the remaining region P \ Q with a
gravity-like move as follows. Apply a Gravity move w.r.t. P \ Q to subdivide it into
two weak polygons of areas area(D1) for red and area(D2) − area(Q) for green; see Fig. 7.
After this ReCom move, D1 is weakly simple and D2 is a weak polygon (in which D1 is a
hole if Q is a weak polygon with a hole).

2. ReCom green and blue removing unnecessary green and blue corridors simultaneously as
follows. Remove any green and blue monochromatic corridors corresponding to all edges
of T ∗. Note that this merges some nodes of T (D3) (see Fig. 7), and creates cycles in
T (D3). While there is a cycle in T (D3) remove a blue corridor in an edge of T (D3) in
a cycle. As this process modifies only green and red, it requires a single ReCom move.
After this ReCom move, D3 is a weakly simple polygon and D2 is a weakly simple or
weak polygon.

3. ReCom green and red with a Gravity move, restoring the ordering property.

▶ Lemma 8. Let M = {D1, D2, D3} be a 3-district map with the ordering property, and
M ′ = {D′

1, D
′
2, D

′
3} the map returned by an Exchange sequence on M . Let P = D1 ∪D2

and P ′ = D′
1 ∪D′

2. Then, M ′ satisfies the ordering property, and |E(T (P ′))| ≤ 2
3 |E(T (P ))|.

3.6 Full Reconfiguration Algorithm
Overall, the algorithm for a 3-district map M([0, 1]2) = {D1, D2, D3} works as follows:
after a preprocessing phase of O(1) ReCom moves, apply the sequence of three moves
Gravity(D1, D2), Gravity(D2, D3), and Gravity(D1, D2); compute the corridor graph
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Figure 7 An exchange sequence, shown with maps (left) and corresponding tree representations
(right). Top: a map returned by a sequence of three gravity moves. Middle: using node 1 as the
centroid c and filling the subtree containing nodes 2, 3, 7 and 8 with green. Bottom: removing
unnecessary corridors and performing a gravity move.

T (P ) for P = D1 ∪ D2; while T (P ) has two or more nodes, apply an exchange sequence.
Once T (P ) has one node, Gravity(D1, D2) yields the canonical configuration.

▶ Theorem 9. Given a 3-district map M([0, 1]2) = {D1, D2, D3} of complexity n, there is a
sequence of O(logn) ReCom moves that transforms it into a canonical map. Furthermore,
the districts in each intermediate map are polygons with O(n) vertices and at most one hole.

Proof. After preprocessing, three Gravity moves bring the districts into canonical form
with the possible exception of corridors. Each exchange sequence eliminates a constant
fraction of corridors by Lemma 8. After O(logn) ReCom moves we then obtain the canonical
configuration.

The algorithm described above produces a sequence of ReCom moves, where the districts
in intermediate maps are weak polygons. By Proposition 1, these maps can successively be
perturbed into polygons. This completes the proof of the first claim.

ESA 2023
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It remains to show that the districts in each intermediate map are polygons with O(n)
vertices and at most one hole. By construction, the only possible hole appears in the green
district after the first step of the Exchange sequence. Each of the O(1) ReCom moves in
preprocessing adds a corridor with O(n) vertices, and so each district has O(n) vertices at
the end of preprocessing. By Lemma 4, each gravity move increases the number of vertices
by a constant factor. After three gravity moves, each district still has O(n) vertices.

The algorithm applies O(logn) exchange sequences. At the end of every exchange
sequence, the districts are in canonical form with the exception of corridors. Each exchange
sequence removes some of the corridors, and does not create new corridors. It should be clear
that the complexity of the blue district only decreases since corridors are only eliminated
and never created. Note that intermediate ReCom moves within an Exchange sequence
(step 1) may add O(n) new vertices to the red district. In an exchange sequence, the 1st
ReCom move is a Gravity move w.r.t. a sub-polygon, and creates only O(n) new vertices by
Lemma 4. The 2nd ReCom move eliminates corridors (and the corresponding vertices); and
the 3rd ReCom move eliminates any other vertices created in the 1st move of the sequence.
Thus, the complexities of the red and green districts decrease after one Exchange sequence.

Finally, when we perturb all weak polygons into polygons in the entire ReCom sequence,
the number of vertices remains O(n) for each district by Proposition 1. ◀

4 Reconfiguration for k Districts

We generalize our algorithm to an arbitrary number of districts, using recursion. For any
3 ≤ k ≤ n, an instance I = (M(R),M ′(R), δ) of the problem consists of two area-compatible
k-district maps M(R) = {D1, . . . , Dk} and M ′(R) = {D′

1, . . . , D
′
k}, where R is a weak

polygon with at most one hole, and δ is a density function. We define the complexity of I
(denoted |I|) as the pair (k, n), where n is the maximum over the compressed complexities
of M and M ′, and the complexities of all districts Di and D′

i (i ∈ {1, . . . , k}). The overall
recursive strategy goes as follows (see the full paper for the details): First construct a
piecewise linear retraction from a (possibly punctured) unit square S to R, and extend M

and M ′ to two maps on S. If k ≥ 4, then group the k districts into three superdistricts, each
containing ⌊k/3⌋ or ⌈k/3⌉ districts; and run the algorithm in Section 3 on the superdistricts.
Note that each ReCom move on a pair of superdistricts is an instance of our problem with
fewer districts, which can be solved recursively. The retraction then transforms the ReCom
sequence on S to a ReCom sequence on R. We analyze the recursion to give a bound on the
number of ReCom moves.

▶ Theorem 10. Given any two area-compatible polygonal k-district maps of complexity at
most n in a simply connected domain, exp(O(log k log logn)) = (logn)O(log k) = kO(log log n)

ReCom moves are sufficient to transform one into the other. Furthermore, the complexity of
each map in intermediate steps is nkO(1) .

Proof. For 3 ≤ k ≤ n, let T (k, n) denote the minimum number of ReCom moves that can
transform any polygonal k-district map to any other with compatible areas, and the domain
as well as each district is a polygon with at most n vertices. From an instance I(k, n), our
algorithm makes O(logn) recursive calls of the form I( 2k

3 , c · n), where c is a constant. Then,

T (k, n) ≤ O

(
T

(
2k
3 , c · n

)
· logn

)
+O(k).
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The height of the recursion tree is O(log k) and the maximum branching factor is
O(log(n · clog k)) = O(logn + log k) = O(logn) since k < n. Then T (k, n) solves to
exp(O(log k log logn)) = (logn)O(log k) = kO(log log n). By Proposition 1, we can convert
the ReCom sequence on weak representation to a ReCom sequence of the same length in
which all districts are simple polygons.

The analysis above prioritized the number of ReCom moves, rather than the complexity of
the map at intermediate steps. For instance, consider the recursion that simulates a ReCom
move of superdistricts transforming a k-district map M(R) into M ′(R). Our algorithm
recurses on a 2k

3 -district map of complexity c · n on a punctured square S, which yields a
sequence of O(logn) ReCom moves. However, to convert this into a sequence of ReCom
moves on k-district maps, one must apply a retraction H∗ (in the full paper) to every
intermediate map, retracting a weakly simple polygon H to its boundary ∂H. Since the
complexity of H could be Ω(n), H might cross the same district Ω(n) times, which causes H∗

to push the district into Ω(n) narrow corridors along the boundary of H. This might cause
the complexity of the district to increase to Ω(n2) in intermediate steps. The retraction H∗,
described in the full paper, ensures that the complexity goes up from n to at most O(n2)
after applying H∗ in each recursive step. Since the depth of the recursion tree is O(log k),
the maximum complexity of all intermediate maps is n2O(log k) = nkO(1) . Note that this does
not increase the number of ReCom moves since M and M ′ are determined in the parent
level, and H∗ is only applied to recover intermediate steps between M and M ′, which are
obtained from lower complexity maps in the children level. ◀

5 Lower Bound Construction

This section shows that Ω(logn) ReCom moves are sometimes necessary to transform a given
map of complexity n into canonical form, even for three districts of equal areas in [0, 1]2.

Overview. We describe an initial map with 3 districts in a unit square, and show that after
k ReCom moves, each district contains an arc of a specific combinatorial pattern (defined
below). These arcs are defined recursively, each iteration roughly tripling the complexity of
the arcs. Thus the total complexity of the arcs in iteration ℓ is O(3ℓ). The initial district
map is a thickening of one of these arcs after m ≥ 6 iterations. We show that if each
district contains an arc from iteration ℓ, then after a recombination they each contain an
arc of iteration ℓ − 4. In the canonical configuration, each district can only contain arcs
of iteration 1. Then, the number of recombinations from the initial district map to the
canonical configuration is at least linear in the number of iterations.

Construction. We first describe the family of simple arcs Fℓ, for all ℓ ∈ N0, mentioned in
the overview. All arcs in Fℓ will start at the ε-neighborhood of the left side of the square
and end at the ε-neighborhood of the right side, crossing the middle section 3ℓ times. Each
family Fℓ can be described with a combinatorial pattern, namely, the order in which the arcs
traverse the 3ℓ segments in the middle section of the square. In the base case, F0 is the set
of arcs that cross the middle section only once. Given an arc γℓ ∈ Fℓ, we describe an arc
γℓ+1 ∈ Fℓ+1. We construct two arcs, γ+

ℓ , γ
−
ℓ ∈ Fℓ, that closely follow γℓ on the left and on

the right, respectively, and are mutually noncrossing. Then γℓ+1 is the concatenation of γℓ,
the reverse of γ−

ℓ , and γ+
ℓ , where two consecutive arcs are connected by short arcs in the left

and right ε-neighborhoods of the square; see Fig 8. Let Fℓ+1 be the family of all arcs with
the same combinatorial pattern as γℓ+1. The following observation follows by construction.
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ε ε1− 2 · ε

ℓ = 0

ϵ ϵ1− 2 · ϵ

ℓ = 1 ℓ = 2

Figure 8 The first three levels of the recursive construction for arcs in Fℓ, for ℓ ∈ {0, 1, 2}. Note
that the blue, green, and red arcs for ℓ = 2 each resemble a copy of the entire stage for ℓ = 1.

▶ Observation 11. For 0 ≤ j ≤ ℓ, we can partition every arc γℓ ∈ Fℓ into 3j arcs in Fℓ−j.

Initial Map. The initial map is drawn relative to an arc γm ∈ Fm whose middle segments
are equally spaced horizontal line segments in the unit square. The map is a “thickening”
of γm where the middle section is partitioned into 3m rectangles of equal area. Each of the
three districts is created based on one of three rough copies of γm−1, i.e., the (m− 1)-anchors
of γm. We use the portions of the anchors of γm in the ε-neighborhoods of the vertical sides
of the unit square to construct corridors that make each district connected.

In the full paper, we show that any ReCom move can only make constant progress (in
the number of iterations) towards the canonical map.

▶ Theorem 12. There exist two area-compatible 3-district maps, M and M ′, both with
complexity O(n), such that Ω(logn) ReCom moves are necessary to reconfigure M into M ′,
even when the districts in both maps are axis-aligned orthogonal polygons with vertices on an
integer grid of size O(n) ×O(n).

6 Conclusions

We have shown that (in our continuous setting) any pair of area-compatible district maps
can be reconfigured into each other by a sequence of area-preserving recombination moves.
Though the discrete version of this result remains unsolved (see Related Work), our result
suggests that for any two maps, with a discretization of the geographic domain which is
granular enough, we can connect them by ReCom moves. However, establishing quantitative
bounds on the necessary granularity is left for future work.

Between 3-district maps, the number of recombination moves is O(logn), where n is the
combinatorial complexity of the maps, matching our worst-case lower bound of Ω(logn).
Between k-district maps, for k ≥ 4, we construct a sequence of exp(O(log k log logn)) =
(logn)O(log k) ReCom moves. It remains an open problem whether the number of moves can
be reduced to be polynomial in both k and n. For k ≥ 4 districts, our algorithm uses a
recursion of depth O(log k). However, this approach increases the complexity of intermediate
maps to nkO(1) . It is also an open problem whether there exists a sequence of ReCom moves
where the complexity of intermediate maps remains polynomial in both k and n.
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