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Abstract
For a given polygonal region P , the Lawn Mowing Problem (LMP) asks for a shortest tour T

that gets within Euclidean distance 1/2 of every point in P ; this is equivalent to computing a
shortest tour for a unit-diameter cutter C that covers all of P . As a generalization of the Traveling
Salesman Problem, the LMP is NP-hard; unlike the discrete TSP, however, the LMP has defied
efforts to achieve exact solutions, due to its combination of combinatorial complexity with continuous
geometry.

We provide a number of new contributions that provide insights into the involved difficulties,
as well as positive results that enable both theoretical and practical progress. (1) We show that
the LMP is algebraically hard: it is not solvable by radicals over the field of rationals, even for
the simple case in which P is a 2 × 2 square. This implies that it is impossible to compute exact
optimal solutions under models of computation that rely on elementary arithmetic operations and
the extraction of kth roots, and explains the perceived practical difficulty. (2) We exploit this
algebraic analysis for the natural class of polygons with axis-parallel edges and integer vertices (i.e.,
polyominoes), highlighting the relevance of turn-cost minimization for Lawn Mowing tours, and
leading to a general construction method for feasible tours. (3) We show that this construction
method achieves theoretical worst-case guarantees that improve previous approximation factors for
polyominoes. (4) We demonstrate the practical usefulness beyond polyominoes by performing an
extensive practical study on a spectrum of more general benchmark polygons: We obtain solutions
that are better than the previous best values by Fekete et al., for instance sizes up to 20 times larger.
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1 Introduction

Many geometric optimization problems are NP-hard: the number of possible solutions is finite,
but there may not be an efficient method for systematically finding a best one. A different
kind of difficulty considered in geometry is rooted in the impossibility of obtaining solutions
with a given set of construction tools: Computing the length of a diagonal of a square is
not possible with only rational numbers; trisecting any given angle cannot be done with
ruler and compass, and neither can a square be constructed whose area is equal to that of
a given circle.

In this paper, we consider the Lawn Mowing Problem (LMP), in which we are given a
polygonal region P and a disk cutter C of diameter 1; the task is to find a closed roundtrip
of minimum Euclidean length, such that the cutter “mows” all of P , i.e., a shortest tour that
moves the center of C within distance 1/2 from every point in P . The LMP naturally occurs
in a wide spectrum of practical applications, such as robotics, manufacturing, farming, quality
control, and image processing, so it is of both theoretical and practical importance. As a
generalization of the classic Traveling Salesman Problem (TSP), the LMP is also NP-hard;
however, while the TSP has shown to be amenable to exact methods for computing provably
optimal solutions even for large instances [1], the LMP has defied such attempts, with only
recently some first practical progress by Fekete et al. [26].

1.1 Related Work
There is a wide range of practical applications for the LMP, including manufacturing [5, 31, 32],
cleaning [12], robotic coverage [13, 15, 29, 35], inspection [21], CAD [20], farming [6, 16, 40],
and pest control [9]. In Computational Geometry, the Lawn Mowing Problem was first
introduced by Arkin et al. [3], who later gave the currently best approximation algorithm
with a performance guarantee of 2

√
3αTSP ≈ 3.46αTSP [4], where αTSP is the performance

guarantee for an approximation algorithm for the TSP.
Optimally covering even relatively simple regions such as a disk by a set of n stationary

unit disks has received considerable attention, but is excruciatingly difficult; see [10, 11, 28,
33, 36, 38]. As recently as 2005, Fejes Tóth [22] established optimal values for the maximum
radius of a disk that can be covered by n = 8, 9, 10 unit circles. Recent progress on covering
by (not necessarily equal) disks has been achieved by Fekete et al. [23, 24].

A first practical breakthrough on computing provably good Lawn Mowing tours was
achieved by Fekete et al. [26], who established a primal-dual algorithm for the LMP by
iteratively covering an expanding witness set of finitely many points in P . In each iteration,
their method computes a lower bound, which involves solving a special case of a TSP
instance with neighborhoods, the Close-Enough TSP (CETSP) to provable optimality; for
an upper bound, the method is enhanced to provide full coverage. In each iteration, this
establishes both a valid solution and a valid lower bound, and thereby a bound on the
remaining optimality gap. They also provided a computational study, with good solutions for
a large spectrum of benchmark instances with up to 2000 vertices. However, this approach
encounters scalability issues for larger instances, due to the considerable number of witnesses
that need to be placed.

A seminal result on algebraic aspects of geometric optimization problems was achieved
by Bajaj [7], who established algebraic hardness for the Fermat-Weber problem of finding
a point in R2 that minimizes the sum of Euclidean distances to all points in a given set.
Others have studied the Galois complexity for geometric problems like Graph Drawing or
the Weighted Shortest Path Problem [8, 14, 39].
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As we will see in the course of our algorithmic analysis the number of turns in a tour is
of crucial importance for the overall cost; this has been previously studied by Arkin et al. [2]
in a discrete setting. This objective is also of practical importance in the context of physical
coverage, e.g., in the context of efficient drone trajectories [9].

1.2 Our Results
We provide a spectrum of new theoretical and practical results for the Lawn Mowing Problem.

We prove that computing an optimal Lawn Mowing tour is algebraically hard, even for
the case of mowing a 2 × 2 square by a unit-diameter disk, as it requires computing zeroes
of high-order irreducible polynomials.
We exploit the algebraic analysis to achieve provably good trajectories for polyominoes,
based on the consideration of turn cost, and provide a method for general polygons.
We show that this construction method achieves theoretical worst-case guarantees that
improve previous approximation factors for polyominoes.
We demonstrate the practical usefulness beyond polyominoes on a spectrum of more
general benchmark polygons, obtaining better solutions than the previous values by
Fekete et al. [26], for instance sizes up to 20 times larger.

1.3 Definitions
A (simple) polygon P is a (non-self-intersecting) shape in the plane, bounded by a finite
number n of line segments. The boundary of a polygon P is denoted by ∂P . A polyomino is
a polygon with axis-parallel edges and vertices with integer coordinates; any polyomino can
be canonically partitioned into a finite number N of unit-squares, called pixels. A tour is
a closed continuous curve T : [0, 1] → R2 with T (0) = T (1). The cutter C is a disk of
diameter d, centered in its midpoint. Without loss of generality, we assume d = 1 for the
rest of the paper. The coverage of a tour T with the disk cutter C is the Minkowski sum
T ⊕ C. A Lawn Mowing tour T of a polygon P with a cutter C is a tour whose coverage
contains P . An optimal Lawn Mowing tour is a Lawn Mowing tour of shortest length.

2 Algebraic Hardness

In their recent work, Fekete et al. [26] prove that an optimal Lawn Mowing tour for a polygonal
region is necessarily polygonal itself; on the other hand, they show that optimal tours may
need to contain vertices with irrational coordinates corresponding to arbitrary square roots,
even if P is just a triangle. In the following, we show that if P is a 2 × 2 square, an optimal
tour may involve coordinates that cannot even be described with radicals. See Figure 2 for
the structure of optimal trajectories.

▶ Theorem 1. For the case in which P is a 2 × 2 square, the Lawn Mowing Problem is
algebraically hard: an optimal tour involves coordinates that are zeroes of polynomials that
cannot be expressed by radicals.

2.1 Optimal Tours at Corners
For the 2 × 2 square P , consider the upper left 1 × 1 subsquare S0 with corners (0, 0), (0, 1),
(1, 1), (0, 1), further subdivided into four 1/2 × 1/2 quadrants S0,0, . . . , S0,3, and an optimal
path ω that enters S0 at the bottom and leaves it to the right. Let ps = (px

s , 0), pt = (1, py
t )

ESA 2023
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(a) Any 0 ≤ δ ≤ 1 defines pδ, pt, q and ellipse E.
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(b) The optimal path ω through S0.

Figure 1 Visualizations for Lemma 4.

be the points where ω enters and leaves S0, respectively. For the following lemmas, we
assume that a covering path exists that obeys the above conditions. We will later determine
that path and show that it covers S0. The proofs of Lemmas 2, 3, and 5 can be found in the
full version [27].

▶ Lemma 2. px
s ≤ 1/2 and py

t ≥ 1/2 and either px
s = 1/2 or py

t = 1/2.

Without loss of generality, we assume that px
s = 1/2. The next step is to find the optimal

position of pt. As an optimal path ω must enter the quadrant S0,3 once, we can subdivide
the path into two parts. For some δ > 0, let py

t = 1/2 + δ and pδ = (1/2, δ).

▶ Lemma 3. For any δ > 0, ω has a subpath pspδ.

▶ Lemma 4. The uniquely-shaped optimal Lawn Mowing path ω between two adjacent sides
of S0 has length LS0 ≈ 1.309 with ω = (ps, pδ, q, pt) and

ps = (1/2, 0) pδ =(1/2, δ) ≈ (1/2, 0.168) q ≈ (0.386, 0.682) pt =(1, 1/2+δ) ≈ (1, 0.668).

Proof. Let s3 be the top left corner of S0. We identify a shortest path for visiting one point q

on a circle U with diameter 1 centered in s3 dependent on δ, a necessary condition for a
feasible path. Let c = d(pδ, q) + d(q, pt) be the distance from both points to U . Consider an
ellipse E with foci pδ, pt that touches U in a single point, see Figure 1a. By definition, the
intersection point q minimizes the distance c. For δ ∈ [0, 1] we want to find an intersection
point between E and U that minimizes distance c. We can solve this problem with an exact
optimization approach using Mathematica, see the full version of our paper [27]. It turns
out that δ, qx, qy can only be expressed as the first, third, and first roots of three irreducible
high-degree polynomials fδ, fqx , fqy , see Equation (1) and the full version [27].

fδ(x) =589 824x16 − 7 077 888x15 + 41 189 376x14 − 154 386 432x13+ (1)
416 788 480x12 − 857 112 576x11 + 1 383 417 856x10 − 1 779 354 624x9+
1 834 437 632x8 − 1 514 108 928x7 + 992 782 336x6 − 509 312 064x5+
199 354 208x4 − 57 160 752x3 + 11 200 088x2 − 1 313 928x + 67 417

The value for δ ≈ 0.167876 defines the points pδ and pt. Together with the values for qx, qy, we
obtain the path above. The combined length of the path is δ+c ≈ 1.308838224. As ω contains
a subpath that crosses the full height of S0,0 and another subpath that crosses the full width
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of S0,2, both quadrants are covered by ω, see Figure 1b. By construction, the bottom right
quadrant is covered by the segment pspδ and the point pt. The top left quadrant is covered
by q, because S0,3 is fully contained in a disk with diameter 1 centered in q. Therefore, ω is
a feasible path between two adjacent edges of S0 with a length of L ≈ 1.309. ◀

▶ Lemma 5. A square P of side length 2 has a uniquely-shaped optimal Lawn Mowing tour T

of length L = 4LS0 , where LS0 ≈ 1.309.

2.2 Galois Group of the Polynomial
Now we show that the coordinates of the optimal path ω can not be expressed by radicals.
We employ a similar technique as Bajaj [7] for the generalized Weber problem. A field K

is said to be an extension (written as K/Q) of Q if K contains Q. Given a polynomial
f(x) ∈ Q[x], a finite extension K of Q is a splitting field over Q for f(x) if it can be factorized
into linear polynomials f(x) = (x − a1) · · · (x − ak) ∈ K[x] but not over any proper subfield
of K. Alternatively, K is a splitting field of f(x) of degree n over Q if K is a minimal
extension of Q in which f(x) has n roots. Then the Galois group of the polynomial f is
defined as the Galois group of K/Q. In principle, the Galois group is a certain permutation
group of the roots of the polynomial. From the fundamental theorem of Galois theory, one
can derive a condition for solvability by radicals of the roots of f(x) in terms of algebraic
properties of its Galois group. We state three additional theorems from Galois theory and
Bajaj’s work. The proofs can be found in [7, 34].

▶ Lemma 6 ([34]). f(x) ∈ Q[x] is solvable by radicals over Q iff the Galois group over Q of
f(x), Gal(f(x)), is a solvable group.

▶ Lemma 7 ([34]). The symmetric group Sn is not solvable for n ≥ 5.

▶ Lemma 8 ([7]). If n ≡ 0 mod 2 and n > 2 then the occurrence of an (n − 1)-cycle, an
n-cycle, and a permutation of type 2 + (n − 3) on factoring the polynomial f(x) modulo
primes that do not divide the discriminant of f(x) establishes that Gal(f(x)) over Q is the
symmetric group Sn.

Proof of Theorem 1. It suffices to show that fδ is not solvable by the radicals as it describes
the y-coordinates of two points in the solution. We provide three factorizations of fδ modulo
three primes that do not divide the discriminant disc(fδ(x)).

fδ(x) ≡ 12(x16 + 11x15 + 20x14 + 20x13 + 12x12 + 15x11 + 20x10 + 22x9 + 19x8 + 2x7+
18x6 + 10x5 + 12x4 + 19x3 + 16x2 + 9x + 8) mod 23

fδ(x) ≡ 21(x + 44)(x2 + 34x + 39)(x13 + 4x12 + x11 + 41x10 + 12x9 + 21x8 + 24x7+
32x5 + 22x4 + 10x3 + 24x2 + 18x + 13) mod 47

fδ(x) ≡ (x + 39)(x15 + 8x14 + 43x13 + 23x12 + 19x11 + 38x10 + 9x9 + 6x8 + 17x7+
34x6 + 46x5 + 43x4 + 27x3 + 50x2 + 56x + 1) mod 59

For the good primes p = 23, 47, and 59, the degrees of the irreducible factors of fδ(x)
mod p gives us an 16 − cycle, a 2 + 13 permutation and a 15-cycle, which is enough to show
with Lemma 8 and n = 16 that Gal(fδ) = S16. By Lemma 7, S16 is not solvable; with
Lemma 6, this proves the theorem. ◀

ESA 2023
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3 Mowing Polyominoes

In the following, we analyze good tours for polyominoes, which naturally arise when a
geometric (or geographic) region is mapped, resulting in axis-parallel edges and integer
vertices. In the subsequent two sections, we describe the ensuing theoretical worst-case
guarantees (Section 4) and the practical performance (Section 5).

3.1 Combinatorial Bounds
For a unit-square cutter, the LMP on polyominoes naturally turns into the TSP on the dual
grid graph induced by pixel centers.

▶ Lemma 9. Let N ≥ 2 be the area of a polyomino P to be mowed with a unit-square cutter,
and let L be the minimum length of a Lawn Mowing tour. Then L ≥ N . In the case of a
unit-square cutter, L = N iff the dual grid graph of P has a Hamiltonian cycle.

This follows from Lemma 2 in the paper by Arkin et al. [4] (which argues that there
is an optimal LMP tour for a polyomino whose vertices are pixel centers) and implies the
NP-hardness of the LMP (Theorem 1 in [4]). In particular, they focused on grid graphs
without a cut vertex, which is a node v whose removal disconnects G: “If G has a cut vertex
v, then we can consider separately the approximation problem in each of the components
obtained by removing v, and then splice the tours back together at the vertex v to obtain a
tour in the entire graph G. Thus, we concentrate on the case in which G has no cut vertices.”

For a simply connected polyomino consisting of N pixels, the corresponding grid graph G

does not have any holes, i.e., the complement of G in the infinite integer lattice is connected.
These allow a tight combinatorial bound on the tour length. If G has no cut vertices, then a
combinatorially bounded tour of G exists, as noted by Arkin et al. [4] as follows.

▶ Theorem 10 (Theorem 5 in [4]). Let G be a simple grid graph, having N nodes at the
centerpoints, V , of pixels within a simple rectilinear polygon, R, having n (integer-coordinate)
sides. Assume that G has no cut vertices. Then, in time O(n), one can find a representation
of a tour, T , that visits all N nodes of G, of length at most 6N−4

5 .

For polyominoes with holes, there is a slightly worse, but still relatively tight combinatorial
bound of 53N

40 = 1.325N for the tour length, as follows.

▶ Theorem 11 (Theorem 7 in [4]). Let G be a connected grid graph, having N nodes at
the centerpoints, V , of pixels within a (multiply connected) rectilinear polygon, R, having n

(integer-coordinate) sides. Assume that G has no local cut vertices. Then, in time O(n), one
can find a representation of a tour, T , that visits all N nodes of G, of length at most 1.325N .

3.2 Mowing with a Disk
The natural lower bound of Lemma 9 still applies when mowing with a circular cutter,
because any unit distance covered by the cutter can at most cover a unit area. However,
meeting (or approximating) this bound is no longer possible by simply finding a Hamiltonian
cycle (or a good tour) in the underlying grid graph, as a circular cutter may cover already
mowed area or area outside of P when dealing with pixel corners. Minimizing this effect
ultimately leads to the algebraic analysis from the previous section.

A starting point for further insights is illustrated in Figure 2: The optimal path from
Lemma 4 with length LS0 can be used for rectangles with width 2 and arbitrary height h ≥ 2.
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(a) Optimal Lawn Mowing tour for a 2 × 2 square.
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(b) Optimal Lawn Mowing tour for a rectangle.

Figure 2 Optimal Lawn Mowing tours for a square and a rectangle.
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(a) A pixel S with transi-
tion points.
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(b) A straight-line cover-
ing, with zero turn.

cr

cb

q

(c) A covering for a single,
90-degree turn.

cb

q1 q2

(d) A covering for a dou-
ble, 180-degree U-turn.

Figure 3 A pixel S with three elementary covering trajectories.

▶ Corollary 12. Any rectangle P with width 2 and height h > 2 has a uniquely-shaped optimal
Lawn Mowing tour T of length L = 4LS0 + 2h − 8.

Extending this idea to more general polyominoes leads to realizing a tour of the dual grid
with locally optimal “puzzle pieces”: a limited set of locally good trajectories that mow each
visited pixel, which are merged at transition points on the pixel boundaries; see Figure 3a.
The construction of the puzzle pieces is done in Section 3.3.

3.3 Constructing Puzzle Pieces
In order to analyze locally good trajectories for mowing visited pixels, consider the four
corners of a pixel with coordinates (0, 0), (1, 0), (1, 1), (0, 1). We consider transition points
cb = (1/2, 0), cr = (1, 1/2), ct = (1/2, 1), and cl = (0, 1/2) at the edge centers to ensure
an overall connected trajectory, as shown in Figure 3a. There are three combinatorially
distinct ways for visiting a pixel, corresponding to Figures 3b–3d. These are (i) a straight
path with length 1, (ii) a simple turn with length ≈ 1.32566, and (iii) a U-turn with length
≈ 1.611183, see the full version [27] for details on how to obtain these paths. Note that
we do not use the optimal path from Lemma 4, because it uses transition points that are
slightly off center, pt ̸= cr, with the imbalance canceled out between two adjacent simple
turns. Thus, using central transition points incurs a small marginal cost when compared to
an optimal trajectory (1.32566 vs. 1.309, or about 1.2% longer for each simple turn), but it
sidesteps the higher-order difficulties of combining longer off-center strips.

ESA 2023
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3.4 Building an Overall Tour
Making use of the puzzle pieces, we can now approach the LMP in three steps, as follows.

A Find a cheap roundtrip on the dual grid graph.
B Carry out the individual pixel transitions based on the above puzzle pieces as building

blocks to ensure coverage of all pixels and thus a feasible tour.
C Perform post-processing sensitive to the transition costs on the resulting tour to achieve

further improvement.

In the following sections, we describe how the involved steps can be carried out either
with an emphasis on worst-case runtime and worst-case performance guarantee (giving rise
to theoretical approximation algorithms, as discussed in the following Section 4), or with the
goal of good practical performance in reasonable time for a suite of benchmark instances
(leading to the experimental study described in Section 5).

4 Theoretical Performance: Approximation

For constant-factor approximation, we start with a low-cost roundtrip in the dual grid graph
(Step A), e.g., with the previous results of Arkin et al. [4]. Step B is realized using the puzzle
pieces of Section 3.3 for a feasible tour, at a cost of 1 + τ := 1.32566 for each 90-degree turn
in the grid tour (corresponding to piece (ii)); note that the turn cost for a U-turn of 1.61118
(corresponding to piece (iii)) does not exceed 1 + 2τ . By using combinatorial arguments for
the post-processing Step C, we can prove that a limited number of covering turns (with an
additional turn cost τ) suffices for overall feasibility.

▶ Theorem 13. Let P be a polyomino with N > 5 pixels, and let T be a tour of the dual
grid graph of length L. Then we can find a feasible Lawn Mowing tour for a unit-diameter
disk of length at most L(1 + τ).

Proof. Let T be a tour of the dual grid graph; let L be the length of T . L is the total
number of visits of individual pixels, inducing the following three categories of pixel visits.

1. L0 “free” visits of pixels, in which no covering turn occurs, and no turn cost is incurred.
2. L1 “one-turn” visits of pixels, in which one covering turn occurs, for a turn cost of τ .
3. L2 “U-turn” visits of pixels, in which a double covering turn occurs, for a turn cost of

not more than 2τ .

Let pi be a pixel that is visited in step i of the tour by a U-turn of T . Then pi is adjacent
to a pixel q = pi−1 = pi+1 that was left in step i and entered in step i + 1. Because no pixel
visited by a U-turn needs to be visited more than once, as well as N > 5, the pixel q cannot
only have neighbors that are visited by U-turns. Therefore, q has a predecessor in the tour
that is not a U-turn, (w.l.o.g., pi−2); this visit from pi−2 is either a one-turn visit with a
covering turn, or a free visit. In either case, q is already covered when visited from pi, and
we can simply follow the grid path at only the distance cost of 1.

As a consequence, each U-turn visit (incurring a cost not exceeding 2τ) can be uniquely
mapped to a free visit of its successor (incurring no turn cost), and the overall cost for all
covering turns does not exceed Lτ , for a total length of at most L(1 + τ), as claimed. ◀

For simple polyominoes without cut vertices, Theorem 10 provides a tour T in the dual
grid graph of length at most 6N−4

5 , implying the following.
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▶ Corollary 14. Let P be a simple polyomino with n vertices and N pixels, whose dual grid
graph does not have any cut vertices. Then, in time O(n), one can find a representation of a
feasible Lawn Mowing trajectory T for a unit-diameter disk of length at most 6N−4

5 τ , which
is within 1.5908 of the optimum.

For polyominoes with holes, we can apply the same line of argument to a tour T of the
dual grid graph obtained from Theorem 11.

▶ Corollary 15. Let P be a (not necessarily simple) polyomino with n vertices and N pixels,
whose dual grid graph does not have any cut vertices. Then, in time O(n), one can find a
representation of a feasible Lawn Mowing trajectory T for a unit-diameter disk of length at
most 53N

40 τ , which is within 1.7565 of the optimum.

As the number of turns is of critical importance for the overall cost of a Lawn Mowing tour
obtained from a tour of the dual grid graph, we can consider optimizing a linear combination
of tour length and turn cost. Arkin et al. [2] gave a PTAS for this problem, as follows.

▶ Theorem 16 (Theorem 5.17 in [2]). Define the cost of a tour to be its length plus C times
the number of (90-degree) turns. For any fixed ε > 0, there is a (1 + ε)-approximation
algorithm, with running time 2O(h)NO(C), for minimizing the cost of a tour for an integral
orthogonal polygon P with h holes and N pixels.

Combining tour length and turns allows providing more explicit bounds, as follows.
Additional local considerations are possible, but these do not necessarily improve the worst-
case bounds. Instead, they are employed heuristically in the practical section.

▶ Theorem 17. Let P be a polyomino with n vertices and N pixels, and let T be a tour of
the dual grid graph of length L and a total of t (weighted) turns. Then there is a feasible
Lawn Mowing tour of cost at most L + tτ .

5 Practical Performance: Algorithm Engineering

5.1 Algorithmic Tools
Here we exploit the algorithmic approach of Section 3.4 for good practical performance for
general polygonal regions, starting with a preprocessing step: For a given polygonal region Q,
find a suitable polyomino P that covers it.

We can then aim for practical minimization of tour length and turn cost for A (analogous
to the theoretical Theorem 16), and use puzzle pieces in B for a feasible tour. In principle,
we can approach A by considering an integer program (IP); however, solving this IP becomes
too costly for larger instances, so we use a more scalable approach: (A) Find a good TSP
solution on the dual grid graph; (B) insert puzzle pieces; (C) minimize the induced turn
cost by Integer Programming and Large Neighborhood Search (LNS).

5.1.1 Choosing a Suitable Grid
Consider a non-degenerate polygonal region Q, and a minimal covering polyomino P of cell
size ℓ. Without loss of generality, Q contains only pixels with a point of Q in their interior;
furthermore, we can assume that both an x- and a y-coordinate of a grid point coincide with
a coordinate of Q. This limits the number of relevant grid positions to a quadratic number
of choices, from which one can choose the one with the smallest number of pixels contained
in the resulting polygon P .
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5.1.2 Minimizing Tour and Turn Cost
Finding a covering tour of minimum combined tour length and turn cost can be formulated as
an IP. As the cost for each turn can be specified individually in this IP, we can also minimize
the final tour length directly instead of just approximating it based on the number of turns.
In principle, this IP can be solved with CPLEX [17] or Gurobi [30]; however, this fails when
aiming for truly large instances. (Even without the length of the tour, the turn-cost problem
is notoriously difficult [25].) Thus, we have pursued an alternative approach that starts with
a cheap roundtrip on the dual grid graph in which we ignore the turn cost. We then use
this IP as part of a Large Neighborhood Search (described in Section 5.1.4) to minimize the
actual costs of this solution, and for computing lower bounds on the best possible solution
based on puzzle pieces.

Formulating the Integer Program. To formulate the integer program, let ûvw with uv, vw ∈
EH be the puzzle piece covering the pixel v and connecting cuv and cvw, and uvw be the
direct path between cuv and cvw. We call these tour elements (covering and non-covering)
tiles. We use the variables x

ûvw
∈ B, uv, vw ∈ EH to denote which covering tile, i.e., puzzle

piece, is used for v ∈ VP is in the tour. For simplicity, x
ûvw

is also defined for v ∈ V \ VP ,
but fixed to 0. Analogously, we are using the variables xuvw ∈ N0, uv, vw ∈ EH to denote
how often which non-covering tiles, i.e., direct paths, for v ∈ V are used in the tour. Because
we may need to pass a pixel multiple times, this is an integer variable.

Finding the shortest set of cycles that cover all pixels t ∈ VP can be expressed as follows.
Enforcing a single cycle, i.e., tour, is done later by some more complex constraints that need
additional discussion.

min
∑

uv,vw∈EH

||uvw|| · xuvw + ||ûvw|| · x
ûvw

(2)

s.t.
∑

u,w∈N(v)

x
ûvw

= 1 ∀v ∈ VP (3)

2 · (xwvw + xŵvw) +
∑

n∈N(v),n̸=w

(xnvw + x
n̂vw

)

= 2 · (xvwv + x
v̂wv

) +
∑

n∈N(w),n̸=v

(xvwn + x
v̂wn

)
∀vw ∈ EH (4)

x
v̂wv

∈ B, xvwv ∈ N0 ∀uv, vw ∈ EH (5)

The objective function (2) minimizes the sum of lengths of the used tiles (the length of a
tile is denoted by || · ||). Equation (3) enforces that every pixel v ∈ VP that intersects the
polygon P has one covering tile; N(v) are the neighbors of v. Equation (4) ensures that
every tile has a matching incident tile on each end, i.e., connecting all tiles yields feasible
cycles.

Subtour Elimination. Next, we have to add constraints that enforce a single tour. A simple,
but insufficient, constraint is similar to the classical subtour elimination constraint of the
Dantzig-Fulkerson-Johnson formulation [18] for the Traveling Salesman Problem. For every
non-empty subset S ⊂ V, S ̸= ∅, V ̸⊂ S, V \ S ≠ ∅ that contains a real part of VP , there has
to be some path leaving the set to connect to V \ S.∑

uv,vw∈EH ,v∈S,w ̸∈S

xuvw + x
ûvw

≥ 1
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Unfortunately, this is not sufficient as we can have cycles that cross but are not connected,
e.g., for the tiles uvw and ŝvt with {u, w} ∩ {s, t} = ∅. While they share the same pixel v

in the grid graph, the paths themselves do not have to intersect. We can also not expect
them to be exchangeable as this may increase the objective. Let O be a cycle of tiles that
cover only a real subset of VP , E(O) denote the edges in the grid graph, and âbc ∈ O be a
covering tile of O with b ∈ V (O) ∩ VP . The following constraint now forces the path that
covers v to change and connect to exterior parts.∑

u,w∈N(b),ûbw ̸∈O

x
ûbw

+
∑

vw∈E(O),u∈N(v),uvw ̸∈O,ûvw ̸∈O

(xuvw + x
ûvw

) ≥ 1

This constraint is sufficient as it can be applied to any cycle that is covering only a subset of
VP , but generally less efficient.

5.1.3 Finding a Cheap Roundtrip and Ensure Coverage
We consider two different methods for computing different initial tours.

TSPSmall. Previous authors [12, 37, 42, 44] have suggested using a grid graph H ′ with
smaller cell size ℓ =

√
2

2 for covering P , or simply assumed square-shaped tools. This
eliminates the need to consider any turn cost, as smaller pixels are covered when the cutter
visits their centers. This yields TSPSmall, which we use as a baseline. Because of the smaller
grid size, this may result in double coverage when parallel unit strips suffice to cover the P ,
for a worst-case overhead of

√
2 − 1, or about 41.4 %.

TSPCov. As described in the preceding Section 3, we can use a cheap tour for the grid
graph H with cell size ℓ = 1, and perform the puzzle piece modification. This combined
solver is called TSPCov. As shown in Section 4, we can limit the worst-case overhead for
performing turns of TSPCov to τ = 0.32566 per length of the tour, or about 32.6 %.

5.1.4 Improving the Tour
For a feasible tour from TSPCov, we use an LNS-algorithm [41], which iteratively fixes a
large part of the IP and only optimizes a small region of tiles; this yields TSPTurn. We select
a random tile from the current tour and a fixed number of adjacent pixels. This yields a
limited-size integer program, in which only the involved puzzle pieces are allowed to change.
To escape local minima, we tune the size (and runtime) of the IP after each iteration based
on the runtime of the previous iteration. In the end, we attempt to solve the IP on the
complete instance, using the start solution from the LNS. This provides lower bounds on the
best placement of puzzle pieces.

5.2 Experimental Setup
Our practical implementation was tested on a workstation with an AMD Ryzen 7 5800X
(8 × 3.8 GHz) CPU and 128 GB of RAM. The code and data are publicly available1. We
used the srpg_iso, srpg_iso_aligned and srpg_octa instances and generated additional
polyominoes with the open-source code from the Salzburg Database of Geometric Inputs [19].

1 https://github.com/tubs-alg/lawn-mowing-from-algebra-to-algorithms
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Figure 4 Examples of the used polygons and their size distribution.

See Figure 4 for the overall distribution and Figure 12 in the full version [27] for examples.
We considered polygons with up to n = 300 vertices and a cutter with diameter 1. Overall,
this resulted in 327 instances. All experiments were carried out with a maximum runtime
of 300 s for TSP, LNS and final IP computation. To solve the TSP efficiently, we used the
python binding pyconcorde of the Concorde TSP Solver [43]. All components of TSPCov and
TSPTurn were implemented in Python 3.10 and used the IP solver Gurobi (v10.0) [30]. As in
previous work [26] the relative area (ratio of convex hull area of P and cutter area A(C)) is
more significant for the difficulty of an instance than number of vertices of P .

Figure 5 (Left) A TSPSmall tour yields a feasible but expensive LMP tour. (Middle) A TSP tour
of the underlying dual grid graph, with uncovered patches shown in red. (Right) A feasible LMP
tour after puzzle piece modification of the TSP tour.

5.3 Evaluation
We discuss our practical results along a number of research questions (RQ).

RQ1: How does TSPCov compare to TSPSmall in practice? We compared the worst-case
bound of 32.6 % for TSPCov to the actual performance, using the total cost of TSPSmall as a
baseline. See Figure 5 for an example and Figure 6 for the average relative modification cost.
This shows not more than an additional 19 % cost, with only small variation over size and
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Figure 6 Modification cost over size and instance type. The modification induces a cost of around
19 % over all instance types and sizes. The plot shows the average modification cost and the 95 %
confidence interval.

type. Figure 7b shows that the practical average reduction from TSPSmall is independent of
the size of the polygon, but differs strongly for the different instance classes; we save ≈ 27 %
for polyominoes, ≈ 24 % for octagonal polygons, and ≈ 5 % for orthogonal polygons.

RQ2: How good are the solutions achieved by TSPTurn? For the considered large instances,
provably optimal solutions for the turn-cost minimizing IP are hard to find, so we considered
the remaining optimality gap in the IP. Figure 7a shows that gaps remain below 7 % even
for large instances, and below 5 % on average for medium-sized instances.

We also compared the tours from TSPCov with the cheapest tours obtained by TSPTurn
and TSPSmall. As shown in Figure 7b, on average we obtain ≈ 5 % shorter tours when
compared to the TSPCov tours, independent of instance size and type. For orthogonal
polygons, this doubles the cost reduction.

RQ3: How far are we from the geometric area lower bound? A remaining gap between
TSPTurn and the area bound may result from two sources, both from (i) the quality of
the upper bound (and thus TSPTurn) and (ii) the quality of the area lower bound, for the
following reasons. (i) The optimal LMP tour is not restricted to the grid graph H, so there
may be cheaper tours than what we obtain from TSPTurn. (ii) The simple area bound
(corresponding to Lemma 9) is relatively weak, so it is conceivable that a serious gap to this
lower bound remains.

Overall, the combination of both effects remains limited, as can be seen from Figure 8
(showing the ratio of TSPTurn value and area bound): For the octagonal polygons and
polyominoes, we are on average at most 50 % above the area bound. For orthogonal polygons,
the relative gap is on average below 80 %.

RQ4: How do our solutions compare to previous practical work? As shown before, our
results are already considerably better than work based on TSPSmall. A comparison to the
previous best practical results by Fekete et al. [26] (whose instances were used as a subset of
our benchmarks) is shown in Figure 8; plotted are the ratios between the achieved solution
values and the respective lower bounds. Fekete et al. [26] employ a more sophisticated lower
bound based on an evaluation of a series of Close-Enough TSP (CETSP) instances. The
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Figure 7 (a) Remaining average optimality gaps for the integer program and the 95 % confidence
interval. (b) Comparison of the average cost reduction for different approaches and polygon types.
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(a) Tour length compared to the area bound.

0 10 20 30 40 50
Relative area

1.0

1.2

1.4

1.6

1.8

2.0

2.2

To
ur

 le
ng

th
 / 

LB

Instance
Orthogonal Polygons
Octagonal Polygons
Polyominoes

Algorithm
CETSP
APX

(b) Solution quality of [26].

Figure 8 (a) Tour length compared to the (weaker) area lower bound in terms of the average ratio.
For octagonal polygons and polyominoes, we can get below 50 % on average. (b) Comparable results
for the average solution quality of [26] based on a (stronger) CETSP bound; here APX denotes the
performance of the approximation algorithm by [4]. Note the considerably larger relative area in
comparison to [26].

authors pointed out that the lower bound computation becomes very expensive even for
instances with relative area smaller than 50, see Figures 11 and 12 in [26]. Because we
evaluate much larger instances, our ratios only use the relatively straightforward area bound.
As a consequence, the denominators of these ratios favor the evaluation for [26], which are
shown in Figure 8b; see Figures 9a and 9b for a comparison on a relatively small example
that was also shown in [26]. In addition, we were able to achieve results for instances with a
relative area 20 times larger than [26].
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Despite these additional challenges (of weaker bounds and larger instance sizes), our
results compare favorably to the ones reported by [26]. The main reason lies in our structurally
simpler approach that still yields good results when the complex evaluation of the CETSP
from [26] reaches computational limitations. As can be seen from a comparison of computed
trajectories for the visual example (Figures 9c and 9d), this is also reflected in simpler
trajectories obtained from TSPTurn.

(a) Area (LB): 36.25. (b) LB: 40.94 [26]. (c) TSPTurn (UB): 66.71. (d) UB: 68.16 [26].

Figure 9 Comparison of TSPTurn with lower and upper bounds from Fekete et al. [26].

6 Conclusion

We have presented new insights for the Lawn Mowing Problem, starting with an algebraic
analysis of the structure of optimal trajectories. As a consequence, we can pinpoint a particular
source of the perceived overall difficulty of the problem, and prove that constructing optimal
tours necessarily involves operations that go beyond simple geometric means; we can also use
these insights to come up with better construction methods for tours, both on the theoretical
and the practical side, with minimizing overall turn cost playing a crucial role.

Our results also clear the way for a number of important followup questions. Is it possible
to improve our approach for polyominoes? As discussed in the text, considering higher-order
connectivity between turns and using slightly off-center, axis-parallel strips appears to be
a relatively easy way for (albeit marginal) improvement. It may very well be that this
ultimately leads to optimal tours for polyominoes; however, final success on this fundamental
challenge will require another breakthrough in establishing lower bounds, as neither the
polygon area (which may incur a gap from the optimal value, similar to the number of
vertices in a grid graph does from a TSP solution) nor the Close-Enough TSP bound for a
finite set of witness points may suffice to certify optimality. Given that an optimal tour may
also involve portions that are not axis-parallel, it will also require further algebraic analysis
of turns that are not multiples of 90 degrees.

For the Lawn Mowing Problem on general regions (which may not even have to be
connected), our hardness result hints at further difficulties. It is quite conceivable that the
general LMP is not just algebraically hard, but even ∃R-complete. Even in that case, we
believe that further engineering of the tile-based mowing of polyominoes (with attention
to turn cost) and Close-Enough TSP may be the most helpful tools for further systematic
improvement.

ESA 2023



45:16 The Lawn Mowing Problem: From Algebra to Algorithms

References
1 David L Applegate, Robert E Bixby, Vašek Chvátal, and William J Cook. The Traveling Sales-

man Problem: A Computational Study. Princeton Series in Applied Mathematics. Princeton
University Press, 2007. doi:10.1016/j.orl.2007.06.002.

2 Esther M. Arkin, Michael A. Bender, Erik D. Demaine, Sándor P. Fekete, Joseph S. B. Mitchell,
and Saurabh Sethia. Optimal covering tours with turn costs. SIAM Journal on Computing,
35(3):531–566, 2005. doi:10.1137/S0097539703434267.

3 Esther M. Arkin, Sándor P. Fekete, and Joseph S. B. Mitchell. The lawnmower problem.
In Canadian Conference on Computational Geometry (CCCG), pages 461–466, 1993. URL:
https://cglab.ca/~cccg/proceedings/1993/Paper79.pdf.

4 Esther M. Arkin, Sándor P. Fekete, and Joseph S. B. Mitchell. Approximation algorithms for
lawn mowing and milling. Computational Geometry, 17:25–50, 2000. doi:10.1016/S0925-7
721(00)00015-8.

5 Esther M. Arkin, Martin Held, and Christopher L. Smith. Optimization problems related to
zigzag pocket machining. Algorithmica, 26(2):197–236, 2000. doi:10.1007/s004539910010.

6 Rik Bähnemann, Nicholas Lawrance, Jen Jen Chung, Michael Pantic, Roland Siegwart, and
Juan Nieto. Revisiting Boustrophedon coverage path planning as a generalized traveling
salesman problem. In Field and Service Robotics, pages 277–290, 2021. doi:10.1007/978-981
-15-9460-1_20.

7 Chanderjit Bajaj. The algebraic degree of geometric optimization problems. Discrete &
Computational Geometry, 3(2):177–191, 1988. doi:10.1007/BF02187906.

8 Michael J. Bannister, William E. Devanny, David Eppstein, and Michael T. Goodrich. The
galois complexity of graph drawing: Why numerical solutions are ubiquitous for force-directed,
spectral, and circle packing drawings. Journal of Graph Algorithms and Applications, 19(2):619–
656, 2015. doi:10.7155/jgaa.00349.

9 Aaron T. Becker, Mustapha Debboun, Sándor P. Fekete, Dominik Krupke, and An Nguyen.
Zapping zika with a mosquito-managing drone: Computing optimal flight patterns with
minimum turn cost. In Symposium on Computational Geometry (SoCG), pages 62:1–62:5,
2017. Video at https://www.youtube.com/watch?v=SFyOMDgdNao. doi:10.4230/LIPIcs.S
oCG.2017.62.

10 Károly Bezdek. Körök optimális fedései (Optimal Covering of Circles). PhD thesis, Eötvös
Lorand University, 1979.

11 Károly Bezdek. Über einige optimale Konfigurationen von Kreisen. Ann. Univ. Sci. Budapest
Rolando Eötvös Sect. Math, 27:143–151, 1984.

12 Richard Bormann, Joshua Hampp, and Martin Hägele. New brooms sweep clean - an
autonomous robotic cleaning assistant for professional office cleaning. In IEEE International
Conference on Robotics and Automation (ICRA), pages 4470–4477, 2015. doi:10.1109/ICRA
.2015.7139818.

13 Tauã M. Cabreira, Lisane B. Brisolara, and Paulo R. Ferreira Jr. Survey on coverage path
planning with unmanned aerial vehicles. Drones, 3(1):4, 2019. doi:10.3390/drones3010004.

14 Jean-Lou De Carufel, Carsten Grimm, Anil Maheshwari, Megan Owen, and Michiel H. M.
Smid. A note on the unsolvability of the weighted region shortest path problem. Computational
Geometry, 47(7):724–727, 2014. doi:10.1016/j.comgeo.2014.02.004.

15 Howie Choset. Coverage for robotics–a survey of recent results. Annals of Mathematics and
Artificial Intelligence, 31(1):113–126, 2001. doi:10.1023/A:1016639210559.

16 Howie Choset and Philippe Pignon. Coverage path planning: The Boustrophedon cellular
decomposition. In Field and Service Robotics, pages 203–209, 1998. doi:10.1007/978-1-447
1-1273-0_32.

17 International Business Machines Corporation. IBM ILOG CPLEX Optimization Studio, 2023.
18 George Dantzig, Ray Fulkerson, and Selmer Johnson. Solution of a large-scale traveling-

salesman problem. Journal of the Operations Research Society of America, 2(4):393–410, 1954.
doi:10.1287/opre.2.4.393.

https://doi.org/10.1016/j.orl.2007.06.002
https://doi.org/10.1137/S0097539703434267
https://cglab.ca/~cccg/proceedings/1993/Paper79.pdf
https://doi.org/10.1016/S0925-7721(00)00015-8
https://doi.org/10.1016/S0925-7721(00)00015-8
https://doi.org/10.1007/s004539910010
https://doi.org/10.1007/978-981-15-9460-1_20
https://doi.org/10.1007/978-981-15-9460-1_20
https://doi.org/10.1007/BF02187906
https://doi.org/10.7155/jgaa.00349
https://www.youtube.com/watch?v=SFyOMDgdNao
https://doi.org/10.4230/LIPIcs.SoCG.2017.62
https://doi.org/10.4230/LIPIcs.SoCG.2017.62
https://doi.org/10.1109/ICRA.2015.7139818
https://doi.org/10.1109/ICRA.2015.7139818
https://doi.org/10.3390/drones3010004
https://doi.org/10.1016/j.comgeo.2014.02.004
https://doi.org/10.1023/A:1016639210559
https://doi.org/10.1007/978-1-4471-1273-0_32
https://doi.org/10.1007/978-1-4471-1273-0_32
https://doi.org/10.1287/opre.2.4.393


S. P. Fekete, D. Krupke, M. Perk, C. Rieck, and C. Scheffer 45:17

19 Günther Eder, Martin Held, Steinþór Jasonarson, Philipp Mayer, and Peter Palfrader. Salzburg
database of polygonal data: Polygons and their generators. Data in Brief, 31:105984, 2020.
doi:10.1016/j.dib.2020.105984.

20 Gershon Elber and Myung-Soo Kim. Offsets, sweeps and Minkowski sums. Computer-Aided
Design, 31(3), 1999. doi:10.1016/S0010-4485(99)00012-3.

21 Brendan Englot and Franz Hover. Sampling-based coverage path planning for inspection
of complex structures. In International Conference on Automated Planning and Scheduling
(ICAPS), pages 29–37, 2012. URL: http://www.aaai.org/ocs/index.php/ICAPS/ICAPS12/p
aper/view/4728.

22 Gábor Fejes Tóth. Thinnest covering of a circle by eight, nine, or ten congruent circles.
Combinatorial and Computational Geometry, 52:361–376, 2005. URL: http://library.msri
.org/books/Book52/files/18fejes.pdf.

23 Sándor P. Fekete, Utkarsh Gupta, Phillip Keldenich, Christian Scheffer, and Sahil Shah.
Worst-case optimal covering of rectangles by disks. In Symposium on Computational Geometry
(SoCG), pages 42:1–42:23, 2020. doi:10.4230/LIPIcs.SoCG.2020.42.

24 Sándor P. Fekete, Phillip Keldenich, and Christian Scheffer. Covering rectangles by disks:
The video. In Symposium on Computational Geometry (SoCG), pages 71:1–75:5, 2020.
doi:10.4230/LIPIcs.SoCG.2020.75.

25 Sándor P. Fekete and Dominik Krupke. Practical methods for computing large covering tours
and cycle covers with turn cost. In Algorithm Engineering and Experiments (ALENEX), pages
186–198, 2019. doi:10.1137/1.9781611975499.15.

26 Sándor P. Fekete, Dominik Krupke, Michael Perk, Christian Rieck, and Christian Scheffer.
A closer cut: Computing near-optimal lawn mowing tours. In Symposium on Algorithm
Engineering and Experiments (ALENEX), pages 1–14, 2023. doi:10.1137/1.9781611977561.
ch1.

27 Sándor P. Fekete, Dominik Krupke, Michael Perk, Christian Rieck, and Christian Scheffer. The
lawn mowing problem: From algebra to algorithms, 2023. doi:10.48550/arXiv.2307.01092.

28 Erich Friedman. Circles covering squares web page. https://erich-friedman.github.io/pa
cking/circovsqu, 2014. Online, accessed January 10, 2023.

29 Enric Galceran and Marc Carreras. A survey on coverage path planning for robotics. Robotics
and Autonomous Systems, 61(12):1258–1276, 2013. doi:10.1016/j.robot.2013.09.004.

30 Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023.
31 Martin Held. On the Computational Geometry of Pocket Machining, volume 500 of LNCS.

Springer, 1991. doi:10.1007/3-540-54103-9.
32 Martin Held, Gábor Lukács, and László Andor. Pocket machining based on contour-parallel

tool paths generated by means of proximity maps. Computer-Aided Design, 26(3):189–203,
1994. doi:10.1016/0010-4485(94)90042-6.

33 Aladár Heppes and Hans Melissen. Covering a rectangle with equal circles. Periodica
Mathematica Hungarica, 34(1-2):65–81, 1997. doi:10.1023/A:1004224507766.

34 Israel N. Herstein. Topics in algebra. John Wiley & Sons, 1991.
35 Katharin R. Jensen-Nau, Tucker Hermans, and Kam K. Leang. Near-optimal area-coverage path

planning of energy-constrained aerial robots with application in autonomous environmental
monitoring. IEEE Transactions on Automation Science and Engineering, 18(3):1453–1468,
2021. doi:10.1109/TASE.2020.3016276.

36 Johannes B. M. Melissen and Peter C. Schuur. Covering a rectangle with six and seven circles.
Discrete Applied Mathematics, 99(1-3):149–156, 2000. doi:10.1016/S0166-218X(99)00130-4.

37 Ghulam Murtaza, Salil S. Kanhere, and Sanjay K. Jha. Priority-based coverage path planning
for aerial wireless sensor networks. In IEEE International Conference on Intelligent Sensors,
Sensor Networks and Information Processing (IPSN), pages 219–224, 2013. doi:10.1109/IS
SNIP.2013.6529792.

38 Eric H. Neville. On the solution of numerical functional equations. Proceedings of the London
Mathematical Society, 2(1):308–326, 1915. doi:10.1112/plms/s2_14.1.308.

ESA 2023

https://doi.org/10.1016/j.dib.2020.105984
https://doi.org/10.1016/S0010-4485(99)00012-3
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS12/paper/view/4728
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS12/paper/view/4728
http://library.msri.org/books/Book52/files/18fejes.pdf
http://library.msri.org/books/Book52/files/18fejes.pdf
https://doi.org/10.4230/LIPIcs.SoCG.2020.42
https://doi.org/10.4230/LIPIcs.SoCG.2020.75
https://doi.org/10.1137/1.9781611975499.15
https://doi.org/10.1137/1.9781611977561.ch1
https://doi.org/10.1137/1.9781611977561.ch1
https://doi.org/10.48550/arXiv.2307.01092
https://erich-friedman.github.io/packing/circovsqu
https://erich-friedman.github.io/packing/circovsqu
https://doi.org/10.1016/j.robot.2013.09.004
https://doi.org/10.1007/3-540-54103-9
https://doi.org/10.1016/0010-4485(94)90042-6
https://doi.org/10.1023/A:1004224507766
https://doi.org/10.1109/TASE.2020.3016276
https://doi.org/10.1016/S0166-218X(99)00130-4
https://doi.org/10.1109/ISSNIP.2013.6529792
https://doi.org/10.1109/ISSNIP.2013.6529792
https://doi.org/10.1112/plms/s2_14.1.308


45:18 The Lawn Mowing Problem: From Algebra to Algorithms

39 David Nistér, Richard I. Hartley, and Henrik Stewénius. Using galois theory to prove structure
from motion algorithms are optimal. In IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR), 2007. doi:10.1109/CVPR.2007.383089.

40 Timo Oksanen and Arto Visala. Coverage path planning algorithms for agricultural field
machines. Journal of Field Robotics, 26(8):651–668, 2009. doi:10.1002/rob.20300.

41 David Pisinger and Stefan Ropke. Large neighborhood search. Handbook of metaheuristics,
pages 99–127, 2019. doi:10.1007/978-3-319-91086-4_4.

42 Gokarna Sharma, Ayan Dutta, and Jong-Hoon Kim. Optimal online coverage path planning
with energy constraints. In International Conference on Autonomous Agents and MultiAgent
Systems (AAMAS), pages 1189–1197, 2019. URL: https://dl.acm.org/doi/10.5555/33061
27.3331820.

43 Solver, Concorde TSP. Concorde TSP Solver, 2023. URL: https://www.math.uwaterloo.c
a/tsp/concorde.html.

44 Xiaoming Zheng, Sven Koenig, David Kempe, and Sonal Jain. Multirobot forest coverage
for weighted and unweighted terrain. IEEE Transactions on Robotics, 26(6):1018–1031, 2010.
doi:10.1109/TRO.2010.2072271.

https://doi.org/10.1109/CVPR.2007.383089
https://doi.org/10.1002/rob.20300
https://doi.org/10.1007/978-3-319-91086-4_4
https://dl.acm.org/doi/10.5555/3306127.3331820
https://dl.acm.org/doi/10.5555/3306127.3331820
https://www.math.uwaterloo.ca/tsp/concorde.html
https://www.math.uwaterloo.ca/tsp/concorde.html
https://doi.org/10.1109/TRO.2010.2072271

	1 Introduction
	1.1 Related Work
	1.2 Our Results
	1.3 Definitions

	2 Algebraic Hardness
	2.1 Optimal Tours at Corners
	2.2 Galois Group of the Polynomial

	3 Mowing Polyominoes
	3.1 Combinatorial Bounds
	3.2 Mowing with a Disk
	3.3 Constructing Puzzle Pieces
	3.4 Building an Overall Tour

	4 Theoretical Performance: Approximation
	5 Practical Performance: Algorithm Engineering
	5.1 Algorithmic Tools
	5.1.1 Choosing a Suitable Grid
	5.1.2 Minimizing Tour and Turn Cost
	5.1.3 Finding a Cheap Roundtrip and Ensure Coverage
	5.1.4 Improving the Tour

	5.2 Experimental Setup
	5.3 Evaluation

	6 Conclusion

