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Abstract
We study threshold testing, an elementary probing model with the goal to choose a large value out
of n i.i.d. random variables. An algorithm can test each variable Xi once for some threshold ti, and
the test returns binary feedback whether Xi ≥ ti or not. Thresholds can be chosen adaptively or
non-adaptively by the algorithm. Given the results for the tests of each variable, we then select
the variable with highest conditional expectation. We compare the expected value obtained by the
testing algorithm with expected maximum of the variables.

Threshold testing is a semi-online variant of the gambler’s problem and prophet inequalities.
Indeed, the optimal performance of non-adaptive algorithms for threshold testing is governed by the
standard i.i.d. prophet inequality of approximately 0.745 + o(1) as n → ∞. We show how adaptive
algorithms can significantly improve upon this ratio. Our adaptive testing strategy guarantees a
competitive ratio of at least 0.869 − o(1). Moreover, we show that there are distributions that admit
only a constant ratio c < 1, even when n → ∞. Finally, when each box can be tested multiple times
(with n tests in total), we design an algorithm that achieves a ratio of 1 − o(1).
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1 Introduction

Consider an application process in which n job candidates are interviewed sequentially one by
one for a single position. For each candidate, we assume the qualification for the job can be
expressed by an i.i.d. non-negative random variable Xi with known distribution F . The goal
is to maximize the expected value of the selected candidate. To which extent is the optimal
achievable value harmed by the online arrival of the candidates? This is the classic gambler’s
problem, in which the loss in expected value is expressed by prophet inequalities [22, 26, 9].
More precisely, in this model one usually assumes (i) an interview fully reveals the realization
of the respective variable, and (ii) the requirement of timely feedback forces the decision
maker to irrevocably accept or reject the candidate upon seeing its realization. For i.i.d.
variables, the best-possible prophet inequality states that a candidate σ can be selected such
that E[Xσ] ≥ β · E[max{X1, . . . , Xn}], where β ≈ 0.745 [19, 10].
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The gambler’s problem has been extremely popular over the last decades, but assumptions
(i) and (ii) are often unrealistic. Even after a long interview, an interviewer is usually not fully
aware of the entire set of exact qualifications of a candidate. Moreover, in many selection
processes a decision does not have to be taken instantaneously. In this paper, we examine
the consequences of an arguably more realistic set of conditions. First, instead of (i), we
assume that each candidate only partly reveals their realization in the form of a single bit
of information. As we observe rather directly, this assumption is asymptotically equivalent
to allowing to make a single threshold query to each candidate. Second, instead of (ii), we
assume that the selection must be made only at the end of the process.

More formally, we consider the threshold testing model. We assume that (i′), instead
of revelation of Xi, we perform a single threshold test with some arbitrary threshold ti,
and the feedback is binary (“positive” in case Xi ≥ ti or “negative” otherwise), and (ii′)
a candidate must be chosen only after completing all threshold tests. Again denoting the
selected candidate by σ, we are interested in bounding the loss in expected value using
an inequality of the form E[Xσ] ≥ c · E[max{X1, . . . , Xn}] for c ∈ (0, 1). We call this a
semi-online prophet inequality. A testing algorithm that satisfies it is called c-competitive
and has a competitive ratio of c.

There are four possible models emerging from the different choices of (i) vs. (i′) and (ii) vs.
(ii′). The remaining two models do not require substantial analytical efforts. Indeed, when
we only replace (i) by (i′), the consequences are trivial: There is an optimal algorithm for the
standard gambler’s problem that uses threshold tests. Thus, the existing optimal algorithm
and its guarantees continue to apply because the space of algorithms only shrinks when we
require threshold tests. Also, only replacing (ii) by (ii′) implies a trivial problem – one can see
and choose an option with maximum value at the end, a 1-competitive strategy. In contrast,
the main contribution of this paper is to show that, with (i′) and (ii′) simultaneously, a
mathematically interesting model arises.

Our results also imply a stark qualitative distinction to the standard model. It is well
known that adaptivity, i.e., allowing decisions to depend on past observations, does not help
for the standard gambler’s problem. In our model, we observe rather easily that non-adaptive
testing algorithms are unable to asymptotically improve upon the ratio of β ≈ 0.745. Our
main result is a set of adaptive algorithms that improves significantly upon this bound and
achieves a ratio of approximately 0.869. To complement this result, we show that there are
distributions that imply a non-trivial asymptotical upper bound on the ratio, i.e., there is no
(1 − o(1))-competitive algorithm. We proceed to discuss our contributions in more detail.

1.1 Techniques and Contribution
Let F be the cumulative distribution function of the variables. For most of the paper we
assume (essentially w.l.o.g.) that F is continuous. Our algorithms perform quantile testing,
i.e., they use thresholds of the form F −1(1 − q) for q ∈ (0, 1), oblivious of other properties of
the distribution. It is straightforward to achieve a competitive ratio of 1 − 1/e > 0.632 by
using threshold ti = F −1(1 − 1/n) for all variables and then choosing any variable that has
been tested positively (if any); see, e.g., [19]. The analysis of this strategy is asymptotically
tight for each of the following two parametric distributions1:
FA: For some small ε > 0, with probability 1/

√
n choose a value uniformly from [1−ε, 1+ε],

and 0 otherwise. As ε → 0 and n → ∞, the algorithm gets a positive test and therefore
value 1 with probability 1 − 1/e while E[max{X1, . . . , Xn}] = 1.

1 Strictly speaking, FA and FB are not continuous. For a rigorous argument, one can resort to an
arbitrarily close continuous approximation of the distributions to obtain the same result.
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FB: Choose the value 1 with probability 1/n2 and 0 otherwise. The algorithm obtains a
value 1 with probability (1 − (1 − 1/n)n)/n while max{X1, . . . , Xn} = 1 with probability
1 − (1 − 1/n2)n. As n → ∞, the ratio of both probabilities approaches 1 − 1/e.

To improve upon 1 − 1/e, an algorithm needs to test for both smaller and larger thresholds
than F −1(1 − 1/n). Thresholds that are all larger than F −1(1 − 1/n) decrease the ratio for
FA; thresholds that are all smaller than F −1(1 − 1/n) decrease the ratio for FB .

The class of algorithms we consider here is parameterized by α1, . . . , αk ∈ (0, 1) with
α1 > α2 > · · · > αk. In the beginning, such an algorithm uses F −1(1 − α1/n) as a threshold
until it sees a positive test. Generally, after i < k positive tests, it sets F −1(1 − αi+1/n) as a
threshold. After k positive tests (i.e., on F −1(1 − α1/n), . . . , F −1(1 − αk/n)), the algorithm
can make arbitrary tests. Indeed, we eventually choose α1 > 1 and α2 < 1.

In our analysis, we exactly calculate the asymptotic probability that the algorithm
sees precisely i positive tests. Note that these probabilities asymptotically determine the
probability density function of Xσ, the chosen variable. It is a step function in quantile space:
The probability of making precisely i positive tests is spread uniformly over the interval
[1 − αi/n, 1] for all i ∈ {1, . . . , k}.

We compare this probability density function of Xσ with that of max{X1, . . . , Xn} by
stochastic dominance, leading to a tight analysis of such algorithms. For fixed values of
α1, . . . , αk, we can analyze the competitive ratio of the respective strategy by solving a
piecewise convex optimization problem, where the k + 1 pieces correspond to the k + 1 steps
of the step function. We numerically maximize the minimum of this function.

We execute this analysis in detail for k ∈ {2, 3}. For k = 3, we obtain a competitive ratio
of approximately 0.869 by setting α1 ≈ 2.035, α2 ≈ 0.506, and α3 ≈ 0.057. Our numerical
results for k = 4 indicate only negligible improvement by further increasing k.

We complement this result by a constant upper bound on the competitive ratio, i.e., an
impossibility of achieving a competitive ratio of 1 − o(1). Intuitively, there is a trade-off
inherent in every test: Testing for a smaller value yields a fallback option in case only one
positive test is found at the end; testing for a larger value allows to differentiate between
different variables when multiple of them have been tested positively. There are instances
in which, irrespective of how the algorithm solves this trade-off, it loses a constant in the
competitive ratio. For the proof we consider a distribution where values 1, 2, or 3 occur with
probability 1/n each, and 0 otherwise. It is minimal in the sense that a competitive ratio
of 1 − o(1) is achievable for any distribution that uses only three values in the support, or
whose parameters do not depend on n.

Finally, we establish that a competitive ratio of 1 − o(1) can be achieved using n tests
when a single variable can be tested multiple times (recall that the realization of each variable
is only drawn once initially from the distribution). The idea is to drop o(n) variables from
consideration and test the remaining ones with a threshold such that, with high probability,
max{X1, . . . , Xn} is larger than this threshold, but only o(n) of these tests are positive. The
additional o(n) tests can then be used to find the maximum variable among those that have
been tested positively.

1.2 Further Related Work
The original prophet inequality [22] states that there is a 1/2-competitive algorithm in the
setting of independent random variables with arbitrary distributions. Initiated by the work of
Hajiaghayi, Kleinberg, and Sandholm [18], prophet inequalities have seen a surge of interest
in the TCS community over the past 15 years. This has, for instance, led to the development
of the tight i.i.d. prophet inequality with competitive ratio approximately 0.745 [10] as
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well as almost-tight random-order [11, 5] and free-order [2, 25, 29, 5] prophet inequalities.
Optimal or near-optimal prophet inequalities can be recovered without knowledge of the
distribution but with O(n) samples [7, 31, 8, 6]. Several works considered multiple-choice
prophet inequalities with combinatorial constraints, e.g., [3, 13, 21, 12]. We also refer to
the (at this point slightly outdated) surveys of Lucier [26] as well as Correa et al. [9] for
additional references.

We compare our work with the two works from the prophet-inequality literature that
seem closest. Orthogonally to samples, Li, Wu, and Wu [24] considered a version of the
unknown i.i.d. setting in which quantile queries to the distribution can be made before the
sequence of variables arrives. They as well as Perez-Salazar, Singh, and Toriello [30] also
used a limited number of (quantile-based) thresholds to achieve near-optimal i.i.d. prophet
inequalities. We are not aware of any version of the single-choice prophet inequality with
general i.i.d. distributions to which the impossibility of approximately 0.745 does not apply.

In stochastic probing (e.g., [4, 15, 1, 16, 17]), information is also revealed online according
to known distributions. The standard models are, however, quite different from our model:
The decision maker gets to choose which variables to probe, and each probe entirely reveals
the realization of the variable at hand. Eventually, the decision maker can pick a (set of)
variable(s), much like in our model. Comparing with an omniscient optimum (like in the
prophet inequality) is, however, usually hopeless in this setting. Instead, one focusses on
computing or approximating the strategy that maximizes the expected selected (total) value,
a task that is straightforward for our model.

In these probing models, the adaptivity gap measures the worst-case multiplicative gap
between the value of the best adaptive and that of the best non-adaptive strategy. Note
that, while our result does imply a nontrivial adaptivity gap (i.e., larger than 1) for our
problem, we are studying a different question as we compare both adaptive and non-adaptive
strategies with an omniscient optimum.

We are aware of two works in the probing literature in which tests do not eradicate all
uncertainty about the respective variable. Hoefer, Schmand, and Schewior [20] considered
a stochastic-probing model in which the first test to a variable only reveals whether the
realization is above or below the median of the distribution, and additional tests can be
used to further narrow down the realization in the same way applied to the conditional
distribution. Gupta et al. [14] generalized the related classic Pandora’s box problem due to
Weitzman [32] and considered the Markovian model. There, a set of Markov chains, which
correspond to variables that can eventually be chosen, is given and, in each step, a probe
can be used to advance one of the Markov chains.

Threshold tests have also been considered in the context of estimating (properties of)
a probability distribution. For example, Paes Leme et al. [23] gave bounds on the sample
complexity, i.e., required number of such tests, to estimate the approximately optimal reserve
price for certain types of distributions. Meister and Nietert [27] as well as Okoroafor et
al. [28] investigated the sample complexity of estimating other objects, e.g., mean, median,
or even full CDF, of the empirical distribution in a non-stochastic setting.

2 Preliminaries

We consider threshold testing defined as follows. We are given a distribution F on R≥0 with
finite expectation. There are n boxes. Each box i contains a hidden realization X1, . . . , Xn

drawn once upfront i.i.d. from F . A testing algorithm can apply a threshold test to each
box i ∈ [n] = {1, . . . , n} exactly once, in that order. To apply a test to box i, the algorithm
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chooses a threshold ti ≥ 0 and receives a binary feedback whether Xi ≥ ti or not. Upon
testing i, the algorithm learns if Xi ≥ ti or not, but not the precise value of Xi. If Xi ≥ ti

we say the test was positive, otherwise it was negative. The algorithm may choose thresholds
adaptively based on the feedback from earlier tests. Finally, after testing each box, the
algorithm chooses one box σ ∈ [n] and receives a reward of Xσ. Here, σ is a random
variable based on the observed feedback and the internal randomization of the algorithm.
We call an algorithm c-competitive if E[Xσ] ≥ c · E[max{X1, . . . , Xn}]. We are interested in
maxmimizing c in the limit as n → ∞.

Non-adaptive Algorithms and Prophet Inequalities. Our testing problem has inherent
connections to the classic prophet inequality for i.i.d. random variables. Consider the
non-adaptive variant, in which the algorithm chooses thresholds t1, . . . , tn upfront. We
observe that this problem is essentially the standard gambler’s problem governed by prophet
inequalities. The optimal algorithm for the gambler’s problem emerges from straightforward
backwards induction. For each box i ∈ [n], the gambler sets a threshold ti to the expected
profit from the optimal algorithm for boxes i + 1, . . . , n. The algorithm accepts i if and only
if Xi ≥ ti. It is straightforward to verify that this implies t1 ≥ . . . ≥ tn. All ti-values can be
computed in advance. As such, a non-adaptive algorithm for threshold testing can use these
thresholds and imitate the optimal algorithm for the gambler’s problem.

▶ Observation 1. The optimal non-adaptive testing algorithm for n boxes obtains at least
the expected reward of the optimal algorithm for the gambler’s problem with n boxes.

We also observe the converse – for large n, the optimal reward of non-adaptive threshold
testing is essentially the optimal reward in the gambler’s problem.

▶ Proposition 2. The optimal non-adaptive testing algorithm for n boxes obtains at most
the expected reward of the optimal algorithm for the gambler’s problem with n + 1 boxes.

Proof. Consider the optimal non-adaptive algorithm for threshold testing. W.l.o.g. we can
assume that the chosen thresholds are ordered such that t∗

1 ≥ . . . ≥ t∗
n. If at least one test

is positive, then among the positively tested boxes, the algorithm chooses the one with the
highest threshold – which is the earliest one in the sequence. The gambler can imitate this
in the online model by using thresholds t∗

1, . . . , t∗
n and accepting the first one with Xi ≥ t∗

i .
If all tests are negative, then the testing algorithm accepts X1 – it failed the test with the
highest threshold and, as such, has the highest conditional expectation. Clearly, this is less
than the apriori expectation of F , which can be obtained by the gambler from accepting box
Xn+1. Hence, the gambler with n + 1 boxes obtains more expected value. ◀

For large n the best competitive ratio is approximately 0.745 by the optimal prophet
inequality [19, 10]. For the rest of the paper we focus on adaptive testing algorithms.

Threshold Testing vs. General Binary Feedback. We discuss our scenario in the context of
a more general model. In binary-feedback testing, the algorithm can choose a set Yi ⊂ R≥0
and learns whether or not Xi ∈ Yi. Note this model generalizes threshold testing – setting
a threshold ti can be simulated by choosing Yi = {x ∈ R | x ≥ ti}. Nevertheless, the
competitive ratio achievable is asymptotically the same as for threshold testing. As such, we
restrict attention to threshold testing.

▶ Proposition 3. The optimal algorithm for binary-feedback testing with n boxes obtains at
most the expected reward of the optimal algorithm for threshold testing with n + 1 boxes.

ESA 2023
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Table 1 Numerically optimized parameters and competitive ratios for different values of k.

k α1 α2 α3 α4 comp. ratio as n → ∞

1 1 – – – 1 − 1/e ≈ 0.63212
2 1.83298 0.35932 – – > 0.84005
3 2.035135 0.5063 0.05701 – > 0.86933
4 2.038 0.508 0.058 0.0002 > 0.86956

Proof. Consider an optimal algorithm for binary-feedback testing with n boxes. We modify
this algorithm to obtain an algorithm for threshold testing with n + 1 boxes. We assume
w.l.o.g. that, whenever the original algorithm chooses a set Yi to test the i-th box, then
E[Xi | Xi ∈ Yi] ≥ E[Xi] and, therefore, E[Xi | Xi /∈ Yi] ≤ E[Xi]. We replace any such test
with a threshold test for a threshold ti such that Pr[Xi ≥ ti] = Pr[Xi ∈ Yi], i.e., both tests
are positive with precisely the same probability and E[Xi | Xi ≥ ti] ≥ E[Xi | Xi ∈ Yi]. We
continue in the same way as the original algorithm would upon a positive or negative test,
modifying subsequent tests in the same way. If the original algorithm eventually picks a box
i⋆ with a positive test result, the new algorithm picks the same box. Thereby it obtain at least
the same value since, by our choice of ti⋆ , E[Xi⋆ | Xi⋆ ≥ ti⋆ ] ≥ E[Xi⋆ | Xi⋆ ∈ Yi⋆ ]. Similarly,
if the original algorithm would pick a box with a negative result, the new algorithm picks
box n + 1, obtaining E[Xn+1] = E[Xi⋆ ] ≥ E[Xi⋆ | Xi⋆ /∈ Yi⋆ ] by our assumption above. ◀

3 Adaptive Testing

In this section, we prove the following theorem. For simplicity, we consider a continuous
distribution F throughout the proof. In the following section, we discuss that the result also
generalizes to finite discrete distributions.

▶ Theorem 4. There is an efficient (0.869 − o(1))-competitive algorithm for threshold testing
with a continuous distribution.

Proof. We consider a class of algorithms that is parameterized by a monotone sequence of
quantile parameters q1, . . . , qk ∈ (0, 1) where q1 > . . . > qk. For convenience, we assume
q0 = 1 and qk+1 = . . . = qn = 0. The algorithm starts by testing for the 1 − q1 quantile of
F . Since the distribution is continuous, q1 corresponds to a threshold τ1 (i.e., τ1 is such
that Pr[Xi ≥ τ1] = q1). Then for any j ≥ 1, if the algorithm sees a negative test for τj ,
it continues testing with τj . If it sees a positive test for τj , it increments j to j + 1 (i.e.,
continues testing with the next threshold τj+1). After having tested each box, it selects the
one with the best conditional expectation. This is either the box tested positively for the
threshold corresponding to the largest quantile, or any box (when all tested negative for τ1).

We consider the values of qj in the form qj = αj/n for some αj ∈ (0, n), for all j ∈ [k].
In Table 1, we give example values of αj and the resulting competitive ratios for different
values of k. We obtained these values by numerical optimization over a bounded interval.

We use F to denote the CDF, i.e., F (x) = Pr[Xi < x], for each i ∈ [n] and x ∈ [0, 1].
For the maximum over n i.i.d. draws, we obtain the CDF Fm(x) = (F (x))n = (Pr[Xi <

x])n =
∏

i(Pr[Xi < x]) = Pr[maxi Xi < x]. We denote the complementary CDF by
G(x) = Pr[Xi ≥ x] = 1 − F (x) and Gm(x) = Pr[maxi Xi ≥ x] = 1 − Fm(x). Since F is
continuous, threshold τj = G−1(qj) = F −1(1 − qj), i.e., G(τj) = qj and F (τj) = 1 − qj .
Similarly, Fm(τj) = (1 − qj)n and Gm(τj) = 1 − (1 − qj)n. We here restrict attention
to values of αj ∈ o(n), we will assume these are constants throughout. This implies
limn→∞ Gm(τj) = 1 − e−αj .
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Our analysis proceeds via stochastic dominance. For any given threshold t ≥ 0 we
compare the complementary CDF Gm(t) to the complementary CDF of our algorithm. We
denote the latter by A(t) = Pr[Xσ ≥ t], where σ is the box chosen by our algorithm. If
A(t) ≥ c · Gm(t) for all t ≥ 0, then the algorithm is c-competitive by stochastic dominance.

For any given t ∈ [0, ∞) let q = G(t) = 1 − F (t) and α = n · q. We will conduct
our analysis with respect to α ∈ [0, n] instead of t ∈ [0, ∞). We split [0, n] into intervals
Ij = [αj+1, αj ] for j = 0, . . . , k, where we use α0 = n and αk+1 = 0. Suppose we see a
positive test for αj . Then, between the positive test for αj−1 and the one for αj , assume
there are ℓj ≥ 0 negative tests.

Two Thresholds. We start by discussing an algorithm with k = 2 thresholds. Suppose
α ∈ I2. First, let’s assume we only have a positive test for t1 but not for t2. We call this
event E10. It happens with probability

Pr[E10] =
n−1∑
ℓ1=0

(1 − q1)ℓ1q1 · (1 − q2)n−1−ℓ1 = q1 · (1 − q2)n−1 ·
1 −

(
1−q1
1−q2

)n

1 − 1−q1
1−q2

= q1 · (1 − q2)n − (1 − q1)n

q1 − q2
= α1 ·

(
1 − α2

n

)n −
(
1 − α1

n

)n

α1 − α2
.

In this case, the algorithm selects the box that was tested positive for τ1. It has a value at
least t with probability q/q1 = α/α1.

Otherwise, we have a positive test for τ1 and τ2, which we call event E11. The event that
we have a positive test for τ1 (irrespective of what happens for τ2) is called E1. Clearly,

Pr[E11] = Pr[E1] − Pr[E10].

In case E11 happens, we select the box that tested positive for τ2. It has a value at least t

with probability q/q2 = α/α2.
Overall, for α ∈ I2 we see

A(α) = α

α1
Pr[E10] + α

α2
Pr[E11] = α ·

(
Pr[E10]

α1
+ Pr[E1] − Pr[E10]

α2

)
= α ·

(
Pr[E1]

α2
− (α1 − α2) Pr[E10]

α1α2

)
= α

α2
·
(

1 −
(

1 − α2

n

)n)
= c2(α) ·

(
1 −

(
1 − α

n

)n)
= c2(α) · Gm(α) .

Hence,

c2(α) = α

α2
·

1 −
(
1 − α2

n

)n

1 −
(
1 − α

n

)n ≥ lim
α→0

c2(α) =
1 −

(
1 − α2

n

)
α2

≥ 1 − e−α2

α2
,

since for every given n ≥ 1 and every α > 0, the ratio α/(1 − (1 − α/n)n) > 1, because
α ≥ 1 − (1 − α/n)n by concavity of the latter function.

Now for α ∈ I1, we consider the case with a positive test on τ1 but not on τ2. In this
case, the box has a value of at least t with probability q/q1 = α/α1. Alternatively, if we
see a positive test for τ1 and τ2, the algorithms selects a box with a value of at least t with
probability 1. Overall, for α ∈ I1

A(α) = α

α1
· Pr[E10] + Pr[E11] = Pr[E1] −

(
α1 − α

α1

)
· Pr[E10]
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= 1 −
(

1 − α1 − α

α1 − α2

) (
1 − α1

n

)n

− α1 − α

α1 − α2

(
1 − α2

n

)n

= c1(α) ·
(

1 −
(

1 − α

n

)n)
.

Since α ∈ [α2, α1] is a constant,

lim
n→∞

c1(α) = 1
1 − e−α

·
(

1 − e−α1 − (α1 − α)(e−α2 − e−α1)
α1 − α2

)
.

Finally, for α ∈ I0, we see that

A(α) = α − α1

n − α1
(1 − Pr[E1]) + Pr[E1] = α − α1

n − α1

(
1 − α1

n

)n

+
(

1 −
(

1 − α1

n

)n)
= c0(α) ·

(
1 −

(
1 − α

n

)n)
.

Thus,

c0(α) ≥
1 −

(
1 − α1

n

)n

1 −
(
1 − α

n

)n ≥ 1 − e−α1

1 − e−α
,

where the latter bound holds for any n ≥ 1 and any constant α. Indeed, when α ∈ ω(1), we
obtain a bound of 1 − e−α in the limit for n → ∞.

As a sanity check, observe that c1(α1) = c0(α1) = 1. Indeed, suppose we have a box with
value t ≥ τ1. Then either this box is tested positive for τ1, or some other box was tested
positive for τ1 before. In either case, the algorithm indeed selects a box of value at least
τ1. Similarly, observe that c2(α2) = 1 as well. Indeed, suppose we have a box with value
t ≥ τ2. Suppose (1) this box is tested positive for τ2. Then it is selected. Suppose (2) the
box is tested positive for τ1. Then it is selected, unless some later box is tested positive for
τ2. Either way, we eventually obtain a value of at least τ2. Finally, suppose (3) the box is
not tested at all. Then we have already selected a box of value at least τ2 before.

To obtain the best ratio, we strive to select constants 0 < α2 < α1 in order to

max
α1,α2

{min
α∈I2

c2(α), min
α∈I1

c1(α), min
α∈I0

c0(α)}.

For c2(α) and c0(α) we obtain fairly clear lower bounds, which even hold pointwise for
any n. It seems unpromising to obtain an insightful analytic formula for the minimum of
c1(α) as a function of α1 and α2. Instead, we numerically optimized parameters α1, α2
and used standard solver software to minimize c1(α). The lower bounds for c2 and c0
then amount to (1 − e−0.35932)/0.35932 ≥ 0.8400637 . . . and 1 − e1.83298 ≥ 0.8400564 . . ..
The minimum of limn→∞ c1(α) is located roughly at α∗ ≈ 0.832961265 . . . with a value for
c1(t) = 0.8400569 . . . For a plot of the ratios see Figure 1.

Along similar lines, we analyze the case with k = 3 thresholds in the full version, which
yields a ratio of at least 0.869 − o(1) (see Table 1). Based on similar calculations, we
also numerically optimized the case with k = 4, but we see only very slight improvements.
Intuitively, the probability to reach a state with positive tests for all k thresholds becomes
extremely small. Increasing this probability requires to decrease the value to be tested for in
the first k − 1 tests. However, the possibility to obtain an improvement in this way seems
to vanish very quickly as k grows larger. We conjecture that for all values of k, we cannot
significantly improve the competitive ratio beyond 0.869 as n → ∞. ◀
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Figure 1 Ratios c2, c1 and c0 in the limit for n → ∞ using α1 = 1.83298 and α2 = 0.35932.

Observe that the analysis of our algorithms is tight. Consider the value of α′ that yields
the minimum of all ci(α) in the respective intervals Ii. For a “golden nugget”-distribution,
where each Xi has value 1 with probability α′/n and 0 otherwise, the above calculations
become exact, and the analysis of the competitive ratio becomes tight. While, strictly
speaking, this golden-nugget distribution is discrete, it is straightfoward to approximate it
arbitrarily closely by a continuous distribution.

4 Discrete Distributions

Let us shift attention from a continuous distribution to a finite discrete distribution F . We
assume F is represented in straightforward form as a list of (value, probability) pairs. We
denote by m the number of distinct realizations, and we use v1 < v2 < . . . < vm to denote
the support of F .

Observe that w.l.o.g. we only need to test for these values vj . If we test for a threshold t

in between two consecutive vj < t ≤ vj+1, we obtain the same result by testing for t = vj+1
instead. As such, we restrict to tests for values in the support.

4.1 Testing Algorithms
We first observe that an optimal testing algorithm can be computed in polynomial time.
Moreover, we show that this algorithm yields a competitive ratio of 0.869 − o(1).

▶ Theorem 5. For finite discrete distributions, an optimal testing algorithm can be computed
by dynamic programming in polynomial time.

Proof. We use backwards induction. Consider the last test of box n. Clearly, given the
previously tested boxes 1, . . . , n − 1, we can restrict attention to the one with the highest
conditional expectation. We denote this value by V ∗

n−1. Since each box is tested for exactly
one of the m realizations, there are 2m different possibilities for V ∗

n−1. There are m possible
tests for box n. We can enumerate all the 2m2 combinations. For each value of V ∗

n−1, the
optimal test of box n is the one leads to the highest expected value of the chosen item.
Thus, to determine and describe the optimal decision for box n, we only need to consider 2m

options of V ∗
n−1, and for each option we record the best of the m possible tests for box n.

For the induction, let V ∗
i−1 and V ∗

i be the conditional expectation of the best tested
box before and after testing box i, resp. Suppose that for each possible value of V ∗

i , we
have computed an optimal testing strategy for subsequent boxes i + 1, . . . , n, along with the

ESA 2023



62:10 Threshold Testing and Semi-Online Prophet Inequalities

resulting expected value of Xσ. Now for box i, consider each of the 2m possible values for
V ∗

i−1. For each realization vk, we can determine the effect when we test box i for vk – i.e.,
the probability that V ∗

i = V ∗
i−1 (when the test on i implies the conditional expectation of i

is at most V ∗
i−1), as well as the probability that V ∗

i becomes any higher value (otherwise).
For the resulting V ∗

i , we inspect the value obtained by an optimal testing strategy for boxes
i + 1, . . . , n. This serves to find the test of box i resulting in the optimal expected value.

Overall, to determine and describe the optimal decision for box i, we need to consider 2m

options of V ∗
i−1, and for each option we determine the best of the m possible tests for box i

(using the results of the subsequent optimal testing strategy for boxes i + 1, . . . , n). Finally,
for box 1 V ∗

0 is undefined. At this point, we only need to find the best of the m possible tests
for box 1 (using the results of the subsequent optimal testing strategy for boxes 2, . . . , n).
This concludes the backwards induction.

We record for each possible value V ∗
i−1 the best threshold to test box i along with the

resulting expected value emerging from an optimal algorithm for boxes i + 1, . . . , n. Hence,
we can describe an optimal testing strategy using 2 · (1 + (n − 1) · 2m)) entries. This strategy
can be computed in polynomial time via dynamic programming as described above. ◀

At this point, it is unclear how to apply our algorithm from the previous section to finite
discrete distributions since F −1(1 − q) may not be defined for the relevant values of q. In
fact, we will show that the optimal algorithm in Theorem 5 achieves a competitive ratio of
at least 0.869 − o(1) for finite discrete distributions.

We consider the following different model for testing discrete distributions, called
probability testing. It can be viewed as the limit that emerges from approximating dis-
crete with continuous distributions arbitrarily close. Here a test requires an input value
q ∈ [0, 1]. It then returns whether or not the value v in the box lies in the top-q frac-
tion of probability mass of F . For a finite discrete distribution F , let k be such that∑m

j=k+1 Pr[v = vj ] < q ≤
∑m

j=k Pr[v = vj ]. Then the test is positive for v ∈ {vk+1, . . . , vm}
and negative for v ∈ {v1, . . . , vk−1}. For v = vk it yields a randomized outcome, i.e., positive
with probability pq =

(
q −

∑m
j=k+1 Pr[v = vj ]

)
/ Pr[v = vk] and negative otherwise. Hence,

the overall probability that box i is tested positive is exactly q.
Clearly, our algorithm from Section 3 can be implemented with probability testing and

obtains a competitive ratio of 0.8969 − o(1). Probability and threshold testing are equivalent
for continuous distributions, since there is a bijection between thresholds and values for q.
For finite discrete distributions we observe in Proposition 6 that any algorithm for probability
testing can be simulated using randomized threshold tests. We then show that randomized
tests are not beneficial, i.e., for any algorithm with randomized threshold tests, there is one
with deterministic tests performing at least as good. For a formal proof, see the full version.

▶ Proposition 6. If there is a c-competitive algorithm for probability testing, then there is a
c-competitive algorithm for threshold testing.

▶ Corollary 7. The optimal algorithm for finite discrete distributions is at least (0.869−o(1))-
competitive for threshold testing.

4.2 Impossibility
Complementing our results in the previous subsection, we proceed to show a constant upper
bound on the competitive ratio for n → ∞.

▶ Theorem 8. There exists no (1 − o(1))-competitive algorithm for threshold testing.



M. Hoefer and K. Schewior 62:11

100 200 300 400 500 600 700 800 900 1,000

0.98

0.99

1

n

co
m

pe
tit

iv
e

ra
tio

Figure 2 The best-possible competitive ratio on the instance used in the proof of Theorem 8 as a
function of n.

To prove the theorem, we are going to construct a counter example that is a discrete
distribution, which carries over to the continuous case by the arguments given in Section 4.
We first observe that such a distribution needs to depend on n: Otherwise, the top realization
appears with constant probability in each box, and an algorithm simply testing for that
realization finds it with probability 1 − o(1). Furthermore, such a distribution needs to have
a support of cardinality at least 4: If the cardinality of the support is 3, it is w.l.o.g. exactly
3, and the algorithm can obtain max{X1, . . . , Xn} by testing for the middle realization and,
upon a positive test, testing for the top realization. If it finds a positive test on the top
realization, it clearly obtains max{X1, . . . , Xn} by choosing the corresponding box. If it
finds a positive test on the middle realization, the corresponding box is the only one that
can possibly contain the top realization, which the algorithm obtains by picking it, so it also
obtains max{X1, . . . , Xn}. In the final case, max{X1, . . . , Xn} is only the lowest realization,
which the algorithm will also obtain by choosing any box.

We consider boxes that contain a realization 3, 2, or 1 with probability 1/n each and
0 otherwise. Intuitively, any algorithm that does not always test for the value 1 before
encountering a positive test runs the risk of missing a value 1. Similarly, any algorithm that
does not always test for the value 2 afterwards and before encountering another positive test
runs the risk of missing a value 2. Such an algorithm, however, with constant probability,
gets into a situation in which it has encountered precisely two positive tests, specifically,
for the values 1 and 2. In that situation, it is clearly optimal to choose the box that has
been positively tested for the value 2. With a constant probability, the value of this box is,
however, equal to 2 while the one that has been tested positively for value 1 is equal to 3. The
conclusion is that the algorithm, in any case, loses a constant fraction of E[max{X1, . . . , Xn}].
In the full version, we present a formal version of this argument.

We have verified numerically (by solving the dynamic program from Theorem 5) that for
this distribution the achievable competitive ratio decreases in n in the interval n = 2, . . . , 1000.
For n = 1000, the optimal competitive ratio is ca. 0.9799 (computed with full precision). See
Figure 2 for the results.

5 Multiple Tests per Box

In this section, we consider a setting with n boxes and a budget of n threshold tests. Each
box can be tested an arbitrary number of times with different thresholds2 as long as there are
still tests available. We again assume continuous distributions and show the following result.

2 Recall that nature draws initially a single value Xi ∼ F inside each box i. All tests on the same box are
evaluated accordingly. The results of multiple tests on the same box are all consistent with the single
unknown Xi drawn upfront.

ESA 2023



62:12 Threshold Testing and Semi-Online Prophet Inequalities

▶ Theorem 9. There is an efficient (1 − o(1))-competitive algorithm for threshold testing
with multiple tests per box and a continuous distribution.

Proof. In the first step, our algorithm discards the last ⌈n2/3⌉ boxes, losing only a ⌈n2/3⌉/n

fraction of the value. The remaining ones are tested for the threshold F −1(1 − n−1/3). Let P

be the set of boxes that were tested positively. For each box i ∈ P , the algorithm next searches
the integers {0, . . . , ⌊n2/3⌋} to find the largest j such that the test for F −1(1 − n−1/3 + j/n)
is negative. Then3, F −1(1 − n−1/3 + j/n) < Xi ≤ F −1(1 − n−1/3 + (j + 1)/n). Using a
binary search, this requires at most ⌈2/3 · log n⌉ tests for each box i ∈ P . Using the result, we
say that box i is of type j. Since there are potentially up to n boxes in P , the algorithm may
well run out of tests during this process. Eventually, if the algorithm succeeds to determine
the type of each box in P , it picks a box from P with the highest type. If no such box exists,
it is not unique, or the algorithm ran out of tests before determining the type of each box in
P , it may choose an arbitrary box.

To analyze our algorithm, we fix any v ∈ [F −1(1 − n−1/3), F −1(1)). We denote by Mv

the event that max{X1, . . . , Xn} = v, and by Xσ the value obtained by the algorithm. Our
goal is to show that, whenever an optimal box has a high value v, the probability that we
choose an optimal box is

Pr[Xσ = v | Mv] = 1 − o(1). (1)

Now we see an optimal box with a high value with probability

Pr[max{X1, . . . , Xn} ≥ F −1(1 − n−1/3)] = 1 − (1 − n−1/3)n = 1 − o(1),

so proving Eq. (1) indeed suffices to prove the theorem. To show Eq. (1), we define two
additional events:

E1 is the event that |P | ≤ n1/2 (in particular, this implies that the algorithm does not
run out of tests for large-enough n),
E2 is the event that only a single box has the largest type.

Note that Pr[Xσ = v | Mv] ≥ Pr[E1 ∩ E2 | Mv] since our algorithm chooses the box with the
maximum value if both E1 and E2 occur. We finalize the argument by observing that

Pr[E1 ∩ E2 | Mv] = Pr[E1 | Mv] · Pr[E2 | Mv ∩ E1]

≥
(

1 − e− n1/3
3

)
·
(

1 − n−2/3

1 − n−1/3

)n1/2

= 1 − o(1).

For the inequality, we bound the first probability using a one-sided multiplicative Chernoff
bound with µ = n1/3 and factor 2. We bound the second probability by observing that,
conditioned on Mv, the probability that a single box other than that with realization v

has the same type is at most n−2/3/(1 − n−1/3). Here, n−2/3 is an upper bound on the
probability of having the same type, and 1−n−1/3 is a lower bound on the probability that an
independently drawn value is below v (using that v is a high value). The additional condition
on E1 does not increase the probability of E2. This shows Eq. (1) and thus completes the
proof. ◀

It is rather straightforward to apply the insights from Sec. 4 to show similar results
for testing with multiple tests per box and a finite discrete distribution. Our algorithm
in the proof of Theorem 9 can be cast as a sequential testing algorithm: It tests boxes

3 We use the convention F −1(x) = F −1(1) for x > 1.
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sequentially from box 1 to n − ⌈n2/3⌉. For each box i it applies tests to determine whether
i ∈ P or not, and then binary search the type of i (or aborts when it runs out of tests). For
finite discrete distributions, we can optimize over such sequential testing algorithms using
backwards induction, much like in the proof of Theorem 5. When considering box i, an
optimal decision about the next test can be found by relying on three additional parameters.
Apart from the best conditional expectation of a previous box V ∗

i−1, we also consider the
smallest realization for which we saw a positive test for i, the largest one for which we saw
a negative test for i, as well as the number of tests we applied so far. These parameters
sufficiently describe the current state of the system before applying the next test. Note
that there is only a polynomial number of combinations of these parameters that need to
be considered. Then the algorithm has up to m possible options for the next test of box i –
or m possible options for the first test of box i + 1, thereby concluding the testing of box i.
Hence, there are only polynomially many combinations that need to be considered to find
the optimal decision for the current test (assuming that an optimal testing algorithm for the
subsequent number of tests/boxes has already been computed via backwards induction).

We can also transfer the approximation guarantee for the algorithm from Theorem 9. We
apply the algorithm in the model with probability tests and interpret them as randomized
threshold tests. By applying the arguments of Proposition 6 to the sequential model with
multiple tests per box, we see that for every randomized threshold testing algorithm there is
a deterministic one that performs at least as good. Overall, this yields the following corollary.

▶ Corollary 10. For finite discrete distributions, an optimal sequential testing algorithm for
multiple tests per box can be computed by dynamic programming in polynomial time. It is at
least (1 − o(1))-competitive for threshold testing with multiple tests per box.

6 Conclusion

In this paper, we have initiated the study of threshold testing of i.i.d. random variables, a
probing model with partial revelation and binary feedback. For non-adaptive algorithms, the
model is essentially equivalent to the standard gambler’s problem, and optimal performance
is governed by the i.i.d. prophet inequality of approximately 0.745. For adaptive algorithms,
we obtain a testing algorithm with competitive ratio of 0.869. This significantly outperforms
0.745, proves that there is a substantial adaptivity gap, and reveals the structural difference
of the adaptive problem. Moreover, we show a constant upper bound on the ratio achievable
by any adaptive testing algorithm. In contrast, when we can (adaptively) apply multiple
tests to a single box, it is possible to achieve even a ratio of 1 − o(1).

There are many intriguing open problems arising from our work. Obviously, the current
upper and lower bounds for the i.i.d. model are not tight. More generally, a simple argument
similar to Observation 1 shows that free-order prophet inequalities [5] transfer directly to
non-adaptive threshold testing, even for non-i.i.d. boxes. It is an intriguing open problem
whether these guarantees can be strictly improved using an adaptive testing algorithm. Can
we obtain a ratio strictly larger than 0.745 also for non-i.i.d. threshold testing?

In addition, there are many combinatorial versions of the problem that deserve attention,
i.e., when the algorithm is allowed to select more than one box. Testing algorithms for, e.g.,
knapsack, matroid, or general downward-closed feasibility structures represent a natural and
important direction for future research.
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