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Abstract
In the L0 Fitting Tree Metrics problem, we are given all pairwise distances among the elements of a
set V and our output is a tree metric on V . The goal is to minimize the number of pairwise distance
disagreements between the input and the output. We provide an O(1) approximation for L0 Fitting
Tree Metrics, which is asymptotically optimal as the problem is APX-Hard.

For p ≥ 1, solutions to the related Lp Fitting Tree Metrics have typically used a reduction to Lp

Fitting Constrained Ultrametrics. Even though in FOCS ’22 Cohen-Addad et al. solved L0 Fitting
(unconstrained) Ultrametrics within a constant approximation factor, their results did not extend to
tree metrics.

We identify two possible reasons, and provide simple techniques to circumvent them. Our
framework does not modify the algorithm from Cohen-Addad et al. It rather extends any ρ

approximation for L0 Fitting Ultrametrics to a 6ρ approximation for L0 Fitting Tree Metrics in a
blackbox fashion.
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1 Introduction

Trees are used by many disciplines to describe relationships between entities. For example,
in biology, the universal tree of life describes evolutionary distances between organisms. In
fact, trees are relevant for any historical science studying an evolutionary branching process
(e.g. historical linguistics and sociocultural evolution).

In these cases, we are guaranteed that the underlying truth can be described by a tree.
This underlying tree may even have a special structure. For example in machine learning
and data analysis (see e.g.: [3]) it may be an ultrametric, that is a rooted tree with all
leaves being at the same depth. In any case, our access to this tree is usually only through
estimations of pairwise distances. A natural task is thus the reconstruction of the tree, given
(noisy) measurements of pairwise distances.

As the noisy measurements may not describe a tree, we are interested in finding the
“closest” tree to the input. In this work we study the problem of minimizing the number of
pairwise distance disagreements between the measurements and the output tree. As noted
in [6], this objective has a practical relevance; often the distances are obtained by different
(human) classifiers. It is expected that most will do a good job, but if an error occurs, it
may be by a large amount.

Other objectives have also been studied, e.g. minimizing the total error [2, 5, 8], or
minimizing the maximum error [1]. In order to formally introduce a class of problems that
captures all aforementioned objectives we first make some definitions.

© Evangelos Kipouridis;
licensed under Creative Commons License CC-BY 4.0

31st Annual European Symposium on Algorithms (ESA 2023).
Editors: Inge Li Gørtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz Herman; Article No. 70;
pp. 70:1–70:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kipouridis@cs.uni-saarland.de
https://orcid.org/0000-0002-5830-5830
https://doi.org/10.4230/LIPIcs.ESA.2023.70
https://arxiv.org/abs/2307.16066
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


70:2 Fitting Tree Metrics with Minimum Disagreements

1.1 Problem Definitions
Given a set V , we denote by

(
V
2
)

the set of all (unordered) pairs of disjoint elements from
set V . We use the term distance matrix to refer to a function from

(
V
2
)

to the non-negative
reals. Let D be a distance matrix. We slightly abuse notation and say that for any u ∈ V ,
D(u, u) = 0. For p ≥ 1, we say that ∥D∥p = p

√∑
{u,v}∈(V

2 ) |D(u, v)|p is the Lp norm of D.
We extend the notation for p = 0. In this case ∥D∥0 denotes the number of pairs {u, v} such
that D(u, v) ̸= 0. We even say ∥D∥0 is the L0 norm of D, despite L0 not being a norm. For
ease of notation, we use 00 = 0, so that x0 = 0 if x = 0, and 1 otherwise. As in [6] (and
implicitly in [1]), we allow tree metrics and ultrametrics to have distances equal to 0.

▶ Definition 1. In the Lp Fitting Tree (Ultra) Metrics problem, we are given as input a set
V and a distance matrix D.

The output is a tree metric (or ultrametric) T that spans V and fits D in the sense of
minimizing the Lp-norm

∥T − D∥p =
p

√√√√ ∑
{u,v}∈(V

2 )
|T (u, v) − D(u, v)|p.

We also define a similar problem, Lp Fitting Constrained Ultrametrics. It was initially
defined in [1], who proved that, for p ≥ 1, a ρ approximation for Lp Fitting Constrained
Ultrametrics translates to a 3ρ approximation for Lp Fitting Tree Metrics.

▶ Definition 2. In the Lp Fitting Constrained Ultrametrics problem, we are given as input
a set V , a distance matrix D, a distinguished element α ∈ V , a positive number h and a
positive number lu for each u ∈ V . In particular it holds that lα = h.

The output is an ultrametric U that spans V . It shall also hold that

max{lu, lv} ≤ U(u, v) ≤ h ∀{u, v} ∈
(

V

2

)
.

U shall fit D in the sense of minimizing the Lp-norm

∥U − D∥p =
p

√√√√ ∑
{u,v}∈(V

2 )
|U(u, v) − D(u, v)|p.

1.2 Previous work
When the input is a tree metric, a corresponding tree can be found in O(|V |2) time (linear
in the input size) [9]. As this is usually not the case, research focused on Lp Fitting Tree
Metrics.

The first Lp Fitting Tree Metrics problem solved within an asymptotically optimal
approximation factor is the L∞ Fitting Tree Metrics problem, by Agarwala et al. [1]. In
order to solve it, the authors give a reduction to the L∞ Fitting Constrained Ultrametrics
problem which increases the approximation by a factor 3. They then use the exact solution
of this problem from [7]. In the same paper, they also show how to extend this reduction for
any Lp norm, p ≥ 1.

This reduction turned out to be an essential tool for tackling Lp Fitting Tree Metrics.
Harp, Kannan and McGregor [8] developed an O(min{n, k log n}1/p) approximation factor for
Lp Fitting Ultrametrics, p ≥ 1, where k is the number of distinct distances in the input. Using
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the reduction from [1], they extend their result to the Lp Fitting Tree Metrics case1. Similarly,
Ailon and Charikar [2] get an O(((log n)(log log n))1/p) approximation for the ultrametrics
case, which they then extend to the tree metrics case using the well established reduction.
Finally, Cohen-Addad et al. [5] achieve an asymptotically optimal O(1) approximation factor
for L1 Fitting Tree Metrics, again using an asymptotically optimal O(1) approximation factor
for the ultrametrics case.

In FOCS ’22 Cohen-Addad et al. [6] solved the L0 Fitting Ultrametrics problem within an
asymptotically optimal O(1) approximation factor. However, their result was not extended
to the L0 Fitting Tree Metrics problem. We identify two possible reasons for that:

Most importantly, the reduction from [1] does not work for L0. The reason is that a
crucial step of it uses the convexity of all Lp-norms, p ≥ 1. L0 however is not convex
(and in fact is not a norm).
Even if the reduction worked for L0, the algorithm for L0 Fitting Ultrametrics should be
extended to the L0 Fitting Constrained Ultrametrics problem.

1.3 Our results
In this work we show how any ρ approximation for L0 Fitting Ultrametrics can be extended
to a 6ρ approximation for L0 Fitting Tree Metrics.

In particular, we extend the reduction from [1] to the L0 case, despite L0 not being
convex. We do so by avoiding the averaging argument from [1] which required convexity,
and was necessary to prove the existence of a node with certain properties. Our argument is
of course only valid for L0.

Furthermore, we show how one can use any algorithm for L0 Fitting Ultrametrics to solve
L0 Fitting Constrained Ultrametrics, in a blackbox manner. In contrast [1, 2, 8] all needed
to apply ad-hoc modifications to their Lp Fitting Ultrametrics algorithms to also solve Lp

Fitting Constrained Ultrametrics.
An immediate corollary of these two results is that the ultrametrics algorithm from [6]

can be used to get an asymptotically optimal O(1) approximation factor for L0 Fitting
Tree Metrics. Even though this constant is large, any improved approximation factor for
L0 Fitting Ultrametrics would immediately yield an improved approximation for L0 Fitting
Tree Metrics, using this framework.

Finally, we prove that L0 Fitting Tree Metrics is APX-Hard.
It is interesting to notice that apart from avoiding the averaging argument from [1], the

rest follow existing techniques. However, due to the special structure of L0, we significantly
simplify them.

2 From tree metrics to ultrametrics

In this section we prove the following result:

▶ Theorem 3. A factor ρ ≥ 1 approximation for L0 Fitting Ultrametrics implies a factor 6ρ

approximation for L0 Fitting Tree Metrics.

1 The authors erroneously claim that they get the same approximation for the closest tree metric problem.
However, the known reduction may create ω(k) distinct distances. We believe that the dependence in k
is polynomial, which makes the approximation worse, but still non-trivial.

ESA 2023



70:4 Fitting Tree Metrics with Minimum Disagreements

Let D be a distance matrix, α ∈ V be a distinguished element and T be a tree spanning
V . In more details, there exists a function mapping elements from V to nodes in T . If
element u ∈ V is mapped to node u′ ∈ T , we say that u is associated with u′. We even say
“node u” to refer to the node associated with u. We note that T may also have auxiliary
nodes, without any element from V being mapped to them.

We say T is an α-restricted tree if the distance from α to any other element u is the same
both in T and in D.

Given a tree T we can obtain an α-restricted tree T /α by modifying T as in Figure 1.
We say that T /α is the α-restricted tree of T .

1

2

4

5

7

4

1

3

1 0 8 3 6
2 8 0 12 4
3 3 12 0 16
4 6 4 16 0

D T T /1

5

3

4

1

2

3

4

3

3

1 2 3 4

Figure 1 T is not α-restricted, for any α ∈ {1, 2, 3, 4}. By modifying T we get T /1 which is
1-restricted. Nodes 3 and 4 move towards 1, while 2 moves away from 1 (by creating a new leaf).
Notice that some nodes of T may be irrelevant for T /1; however we do not need to explicitly delete
them.

Intuitively, for any element u, if T (α, u) ̸= D(α, u), we move u either closer to or further
from α. More specifically, if T (α, u) > D(α, u), then:

if there exists a node in the path from u to α at distance D(α, u) from α, we associate u

with this node,

else there exists an edge in the path from u to α such that one of its endpoints is at
distance less than D(α, u) from α, and the other endpoint is at distance larger than
D(α, u) from α. In this case we subdivide this edge in order to introduce a new node at
distance exactly D(α, u) from α. Then we associate u with this new node.

Else if D(α, u) > T (α, u) we create a new leaf under the node previously associated with u;
the length of the edge connecting them is D(α, u) − T (α, u). Then we associate u with the
newly created leaf, instead of its parent.

The proof strategy for our main result is the following:

In order to approximate the optimal tree, it suffices to approximate the optimal α-
restricted tree, for some α ∈ V . We prove this in Section 2.1.

In order to approximate the optimal α-restricted tree, it suffices to approximate L0
Fitting Constrained Ultrametrics. The proof directly follows from [1]; we include it in
the full version for completeness.

In order to approximate L0 Fitting Constrained Ultrametrics, it suffices to approximate
L0 Fitting Ultrametrics. We prove this in Section 2.2.
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2.1 From tree metrics to restricted tree metrics
The main point where the reduction from [1] breaks for L0 is the connection between optimal
tree metrics and optimal α-restricted tree metrics. The reason is that an averaging argument
used to prove the result uses the convexity of Lp-norms, p ≥ 1. In fact, this argument shows
the existence of an element α such that the optimal α restricted tree is very close to the
optimal tree. Then one can try all elements α and pick the best of them.

We show that even though L0 is not convex, we can still select α in the same way as
in [1]. In particular, we show that for any tree T , there exists an element α such that its
α-restricted tree metric T /α does not increase the cost by more than a factor 3.

▶ Lemma 4. Let D be a distance matrix and T be a tree. Then there exists an element α

such that for the α-restricted tree T /a of T it holds that ∥D − T /a∥0 ≤ 3∥D − T∥0.

Proof. We simply let α be the element that minimizes disagreements, that is

α = argminu∈V ∥D(u) − T (u)∥0

where D(u) is the distance matrix D restricted on the pairs containing u (similarly for T (u)).
We have that ∥D − T∥0 = 1

2
∑

u∈V ∥D(u) − T (u)∥0, as the sum in the right hand side double
counts every pair u, v with D(u, v) ̸= T (u, v). By definition of α, every term in the sum is
lower bounded by ∥D(α) − T (α)∥0, meaning that

∥D − T∥0 ≥ n

2 ∥D(α) − T (α)∥0.

We say that an element u is good if D(α, u) = T (α, u), and bad otherwise; notice that by
definition, the number of bad elements is exactly ∥D(α) − T (α)∥0. As any element u can
have at most n − 1 disagreements in T /α (that is ∥D(u) − T /α(u)∥0 ≤ n − 1), it follows that
the number of pairs u, v with at least one of u, v being bad and D(u, v) ̸= T /α(u, v) is at
most ∥D(α) − T (α)∥0 · (n − 1) ≤ 2∥D − T∥0.

On the other hand, notice that if both u, v are good, then by construction T /α(u, v) =
T (u, v). Therefore, if D(u, v) ̸= T /α(u, v), it also holds that D(u, v) ̸= T (u, v). The number
of such pairs is upper bounded by ∥D − T∥0. ◀

Letting T be an optimal solution for L0 Fitting Tree Metrics establishes that it suffices to
approximate the optimal α-restricted tree, only increasing the approximation by a factor 3.

Furthermore, we can directly use the techniques from [1] to show that any approximation
for the constrained ultrametrics problem can give the exact same approximation for the
optimal α-restricted tree. We include this proof in the full version for completeness, as it is
itself very brief. However we do not include it here, as it has been extensively used in the
literature.

Notice that these results already show that a ρ approximation for L0 Fitting Constrained
Ultrametrics translates to a 3ρ approximation for L0 Fitting Tree Metrics. This is an
extension of the result of [1] for the L0 case.

2.2 From constrained ultrametrics to ultrametrics
In this section we show that it is sufficient to approximate L0 Fitting Ultrametrics, which is
more natural than L0 Fitting Constrained Ultrametrics. The technique used follows the one
used in [5] for Lp, p ∈ {1, 2, . . .} ∪ {∞}. However, in the case of L0 we can simplify.

The high-level view of the technique is the following: Instead of trying to find a constrained
ultrametric close to a distance matrix D, we rather squeeze D itself to obey the constraints.
Let SD be the resulting distance matrix. Then we find an (unconstrained) ultrametric U

ESA 2023



70:6 Fitting Tree Metrics with Minimum Disagreements

close to this matrix SD; due to the extra structure we imposed on SD, we can only improve U

if we again squeeze it to obey the constraints. The resulting ultrametric SU is a constrained
ultrametric, but all we needed to obtain it was a black-box algorithm for general ultrametrics.

We now define the squeezing process more formally. In the L0 Fitting Constrained
Ultrametrics problem, for every element u we are given a value lu which we call u’s lower-
bound. Furthermore we are given an upper bound h.

A constrained ultrametric U shall satisfy that

h ≥ U(u, v) ≥ max{lu, lv} ∀{u, v} ∈
(

V

2

)
.

Given a distance matrix A, we define the squeezed A as the distance matrix SA for which
SA(u, v) = min{h, max{D(u, v), lu, lv}}, for all {u, v} ∈

(
V
2
)
. Intuitively, SA is obtained by

squeezing A to fit the constraints.
We use the well-known characterization of ultrametrics, that U is an ultrametric iff

∀{u, v, w} ∈
(

V
3
)

: U(u, v) ≤ max{U(u, w), U(v, w)}.

▶ Lemma 5. A factor ρ ≥ 1 approximation for L0 Fitting Ultrametrics implies a factor 2ρ

approximation for L0 Fitting Constrained Ultrametrics.

Proof. Our approach starts with creating SD, the squeezed D. Notice that if U ′ is a
constrained ultrametric, then ∥U ′ − SD∥0 ≤ ∥U ′ − D∥0. This follows because for any u, v it
holds that max{lu, lv} ≤ U ′(u, v) ≤ h, due to U ′ being a constrained ultrametric. Therefore
D(u, v) = U ′(u, v) only if max{lu, lv} ≤ U ′(u, v) ≤ h. But in this case SD(u, v) = D(u, v) =
U ′(u, v).

Similarly, suppose we have an ultrametric U , and we create the squeezed SU .
With the exact same reasoning, we have

∥SD − SU ∥0 ≤ ∥SD − U∥0. (1)

Our solution to L0 Fitting Constrained Ultrametrics is to first create SD by squeezing
D, then obtain ultrametric U by a ρ approximation to L0 Fitting Ultrametrics on SD, and
finally obtain SU by squeezing U .

Let OPTD,C be the closest constrained ultrametric to D, and OPTSD
be the closest

ultrametric to SD. It suffices to show that ∥D − SU ∥0 ≤ 2ρ∥D − OPTD,C∥0 and that SU is
indeed an ultrametric.

By definition of SD, and since OPTD,C is constrained, for any two elements u, v it holds
that

min{D(u, v), OPTD,C(u, v)} ≤ SD(u, v) ≤ max{D(u, v), OPTD,C(u, v)}.

The proof follows by a straightforward case analysis of the 3 cases D(u, v) ≤ max{lu, lv},
max{lu, lv} < D(u, v) ≤ h, h < D(u, v). Therefore:

either D(u, v) = OPTD,C(u, v), in which case

|D(u, v) − OPTD,C(u, v)|0 = 0 = |D(u, v) − SD(u, v)|0 + |SD(u, v) − OPTD,C(u, v)|0

or D(u, v) ̸= OPTD,C(u, v), in which case

|D(u, v)−OPTD,C(u, v)|0 = 1, |D(u, v)−SD(u, v)|0 + |SD(u, v)−OPTD,C(u, v)|0 ≤ 2.
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We conclude that

|D(u, v) − SD(u, v)|0 + |SD(u, v) − OPTD,C(u, v)|0 ≤ 2|D(u, v) − OPTD,C(u, v)|0. (2)

We now have

∥D − SU ∥0 ≤ ∥D − SD∥0 + ∥SD − SU ∥0 (triangle inequality)
≤ ∥D − SD∥0 + ∥SD − U∥0 (1)
≤ ∥D − SD∥0 + ρ∥SD − OPTD,C∥0. (definition of U)

As ρ ≥ 1, the latter is upper bounded by

ρ
∑

{u,v}∈(V
2 )

(|D(u, v) − SD(u, v)|0 + |SD(u, v) − OPTD,C(u, v)|0)

≤ 2ρ
∑

{u,v}∈(V
2 )

(|D(u, v) − OPTD,C(u, v)|0) (2)

= 2ρ∥D − OPTD,C∥0.

Finally, we need to prove that SU inherits that it is an ultrametric. This is clear if we
proceed in rounds; each round we construct a new ultrametric, and the last one will coincide
with SU .

More formally, let U0 = U . In the first |V | rounds, we take out a different u′ ∈ V at a
time, and let

Ur(u′, v) = max{Ur−1(u′, v), lu′} ∀v ̸= u′.

Suppose r > 0 is the first round where Ur is not an ultrametric. Then there exists a
triplet {u, v, w} such that Ur(u, v) > max{Ur(u, w), Ur(v, w)}. As we only increase distances,
this may only happen if Ur(u, v) > Ur−1(u, v). But this means that at round r we picked
either u or v (w.l.o.g. assume it was u) and set Ur(u, v) = lu. However, this would also give
Ur(u, w) ≥ lu = Ur(u, v), contradicting Ur(u, v) > max{Ur(u, w), Ur(v, w)}.

Finally, for SU we simply have

SU (u, v) = min{h, U|V |(u, v)}.

Suppose there exists a triplet {u, v, w} that now violates the ultrametric property, then it
holds that

SU (u, v) > max{SU (u, w), SU (v, w)}.

As we did not increase any distance of U|V |, this means that SU (u, w) < U|V |(u, w) or
SU (v, w) < U|V |(v, w); but distances can only reduce to h which is an upper bound on
SU (u, v) by construction. ◀

To prove our main theorem we use the following result from [1]. We only provide its
proof in the full version, for completeness.

▶ Lemma 6 (Implicit in the proof of Lemma 3.5 of [1]). Let D be a distance matrix, α

be an element, and T be an α-restricted tree metric minimizing ∥T − D∥0. Assuming a
γ-approximation to L0 Fitting Constrained Ultrametrics, we can find an α-restricted tree T ′

such that ∥T ′ − D∥0 ≤ γ∥T − D∥0.

ESA 2023
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We are now ready to prove our main theorem.

▶ Theorem 3. A factor ρ ≥ 1 approximation for L0 Fitting Ultrametrics implies a factor 6ρ

approximation for L0 Fitting Tree Metrics.

Proof. We iterate over all u ∈ V nodes. In every iteration we use Lemma 6 along with a 2ρ

approximation for L0 Fitting Constrained Ultrametrics (obtained by Lemma 5) to obtain
a tree Tu with ∥Tu − D∥0 ≤ 2ρ∥T ′

u − D∥0, where T ′
u is the optimal u-restricted tree metric.

Out of all the trees Tu that we obtain, we output T , the one that minimizes ∥Tu − D∥0.
Let TOP T be an optimal tree metric. By Lemma 4 there exists an element α such that for

the α-restricted tree T
/α
OP T of TOP T it holds that ∥T

/α
OP T − D∥0 ≤ 3∥TOP T − D∥0. Therefore

there exists an element α for which we have ∥T ′
α − D∥0 ≤ 3∥TOP T − D∥0.

It now holds that ∥T − D∥0 ≤ ∥Tα − D∥0 ≤ 2ρ∥T ′
α − D∥0 ≤ 6ρ∥TOP T − D∥0. ◀

▶ Corollary 7. There exists a polynomial time O(1) approximation for L0 Fitting Tree
Metrics.

Proof. Follows immediately, by using the polynomial time O(1) approximation for L0 Fitting
Ultrametrics from [6]. ◀

3 APX-Hardness

In this section we show that L0 Fitting Tree Metrics is APX-Hard. Assuming, for the sake
of contradiction, that it is not the case, we show how to approximate Correlation Clustering
(an APX-Hard problem [4]) within any constant factor.

This is a standard reduction used for Lp Fitting Tree Metrics, p ≥ 1. It is however further
simplified for L0. That is because once we decide to move a node, our cost does not depend
on the distance we moved it.

In Correlation Clustering, we are given an unweighted undirected graph G, and the goal is
to output a partition of the vertices2 (clustering) such that we minimize the number of pairs
of vertices connected by an edge in G that are in different parts of the partition (clusters)
plus the number of pairs of vertices not connected by an edge in G that are in the same part
of the partition.

The idea behind the reduction is the following: for every pair of vertices connected by an
edge in G = (V, E), we set their distance to 0, and for every pair of vertices not connected
by an edge, we set their distance to something larger (2 in our case). Then we solve L0
Fitting Tree Metrics. If the output tree has a good structure (every pair of nodes associated
with elements of V has equal distance), it would directly correspond to a clustering. Namely,
each node associated with elements of V corresponds to a cluster that contains all elements
associated with it (may be more than one). Even though we can guarantee that an optimal
solution has this structure, our approximation may not.

To fix this, we introduce many more elements at distance 0 from each other, and at
distance 1 from every element in V . This has the effect of maintaining the structure of an
optimal solution, while incuring a big error in every solution that does not have the desired
structure.

We now formally prove our result.

2 To avoid confusion, we use the term vertices when we refer to Correlation Clustering, and nodes when
we refer to a tree.
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▶ Theorem 8. L0 Fitting Tree Metrics is APX-Hard.

Proof. Let G = (V, E) be the input to Correlation Clustering, and ϵ > 0 be a sufficiently
small constant. For the sake of contradiction we assume that L0 Fitting Tree Metrics can be
approximated within an 1 + ϵ factor. Then we show that using this approximation, we can
approximate Correlation Clustering within the same factor.

Let V ′ be a set, disjoint from V , of size |V ′| = 2
(|V |

2
)
. For any two elements u′, v′ ∈ V ′

we have D(u′, v′) = 0. For u, v ∈ V we have that D(u, v) = 0 if {u, v} ∈ E, and 2 otherwise.
Finally, for u ∈ V, u′ ∈ V ′ we have D(u, u′) = 1. Let T be the tree output by L0 Fitting Tree
Metrics on D.

An upper bound for the optimal value is
(|V |

2
)
. To see this, create the tree T ′ consisting of

two nodes uT ′ , vT ′ at distance 1. All elements of V ′ are associated with uT ′ , and all elements
of V are associated with vT ′ . As the only disagreements between T ′ and D are pairs of
elements of V , the upper bound follows.

Furthermore, any solution that does not have all elements of V ′ associated with the
same node in T has cost at least |V ′| − 1. Therefore, for sufficiently small ϵ, T must have
all elements of V ′ associated with the same node v′. Similarly, all elements of V must be
associated with nodes at distance 1 from v′. In particular, this corresponds to an ultrametric,
where the root node is v′, and all leaves are at depth 1. In what follows we consider this tree
rooted at v′.

Finally, if any non-root node of T is at distance less than 1 from v′, we remove it by
connecting all its children with its parent node. Notice that this does not increase the number
of disagreements, because the distance between elements of V is either 0 or 2. After we can
no longer remove any node, we are left with a tree T with root v′, and children v1, . . . , vℓ

at distance 1 from v′ (thus distance 2 from each other). Each vi is associated with some
elements from V . Our solution to Correlation Clustering is the partition of V induced by
v1, . . . , vℓ.

By construction of D, the cost of this Correlation Clustering solution is exactly equal
to ∥T − D∥0. Furthermore, if C1, . . . , Cℓ′ is the optimal solution to Correlation Clustering,
we can create a tree with a root v′ and children v1, . . . , vℓ′ such that all elements of V ′ are
associated with v′ and all elements of Ci are associated with vi. This means that the optimal
Correlation Clustering cost is an upper bound to the optimal L0 Fitting Tree Metrics.

We conclude that we found an 1+ϵ approximation for Correlation Clustering, contradicting
its APX-Hardness. ◀

We note that the proof assumes some distances to be 0. If we want distances to be strictly
positive, we can select a sufficiently small constant δ instead of 0. Then, we replace nodes
that are associated with multiple elements with stars whose leaves all have distance δ to each
other.
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