
Simple Deterministic Approximation for
Submodular Multiple Knapsack Problem
Xiaoming Sun #

Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
University of Chinese Academy of Sciences, Beijing, China

Jialin Zhang #

Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
University of Chinese Academy of Sciences, Beijing, China

Zhijie Zhang1 #

Center for Applied Mathematics of Fujian Province, School of Mathematics and Statistics,
Fuzhou University, China

Abstract
Submodular maximization has been a central topic in theoretical computer science and combinatorial
optimization over the last decades. Plenty of well-performed approximation algorithms have been
designed for the problem over a variety of constraints. In this paper, we consider the submodular
multiple knapsack problem (SMKP). In SMKP, the profits of each subset of elements are specified
by a monotone submodular function. The goal is to find a feasible packing of elements over multiple
bins (knapsacks) to maximize the profit. Recently, Fairstein et al. [ESA20] proposed a nearly
optimal (1 − e−1 − ϵ)-approximation algorithm for SMKP. Their algorithm is obtained by combining
configuration LP, a grouping technique for bin packing, and the continuous greedy algorithm for
submodular maximization. As a result, the algorithm is somewhat sophisticated and inherently
randomized. In this paper, we present an arguably simple deterministic combinatorial algorithm for
SMKP, which achieves a (1 − e−1 − ϵ)-approximation ratio. Our algorithm is based on very different
ideas compared with Fairstein et al. [ESA20].

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Submodular maximization, knapsack problem, deterministic algorithm

Digital Object Identifier 10.4230/LIPIcs.ESA.2023.98

Related Version Full Version: https://arxiv.org/abs/2003.11450

Funding This work was supported in part by the National Natural Science Foundation of China
Grants No. 61832003, 62272441.

1 Introduction

The multiple knapsack problem (MKP) is defined as follows. We are given a set N of n

elements and a set M of m bins (knapsacks). Each element u ∈ N has a positive cost
c(u) > 0 and a positive profit p(u) > 0. The cost (profit) of a subset S ⊆ N equals the sum
of the costs (profits) of its elements. The j-th bin in M has a positive budget Bj > 0 for
1 ≤ j ≤ m. A subset S ⊆ N is feasible if there is a disjoint partition {Sj}m

j=1 of S such that
c(Sj) ≤ Bj for 1 ≤ j ≤ m. The goal is to find a feasible set S (and its partition {Sj}m

j=1)
whose profit is maximized. It is well-known that the problem admits a PTAS but no FPTAS
assuming P ̸= NP [18, 5, 17].

In this paper, we consider the submodular generalization of the above problem, referred
to as the submodular multiple knapsack problem (SMKP). In SMKP, the profit is in general
non-additive and specified by a monotone submodular function f : 2N → R+. Here, a
set function f : 2N → R is monotone if f(S) ≤ f(T) for any S ⊆ T and submodular if

1 Corresponding author

© Xiaoming Sun, Jialin Zhang, and Zhijie Zhang;
licensed under Creative Commons License CC-BY 4.0

31st Annual European Symposium on Algorithms (ESA 2023).
Editors: Inge Li Gørtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz Herman; Article No. 98;
pp. 98:1–98:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sunxiaoming@ict.ac.cn
mailto:zhangjialin@ict.ac.cn
mailto:zzhang@fzu.edu.cn
https://doi.org/10.4230/LIPIcs.ESA.2023.98
https://arxiv.org/abs/2003.11450
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

98:2 Simple Deterministic Approximation for Submodular Multiple Knapsack Problem

f(S ∪ {u}) − f(S) ≥ f(T ∪ {u}) − f(T) for any S ⊆ T and u ̸∈ T . The goal is again
to find a feasible set S which maximizes the profit f(S). When m = 1, the problem
reduces to submodular maximization under a knapsack constraint, which enjoys an optimal
(1 − e−1)-approximation [18, 25].

Submodular functions capture the effect of diminishing returns in the economy and
generalize many well-known functions such as coverage functions, cut functions, matroid rank
functions, and log determinants. By introducing a submodular objective, SMKP falls in the
field of submodular maximization, which studies maximization problems with submodular
objectives, including maximum coverage problem, maximum cut problem, submodular welfare
problem [26], influence maximization [19]. The study of submodular maximization has lasted
for more than forty years. As early as 1978, it was shown that for monotone submodular
maximization, a greedy algorithm achieves a (1 − e−1)-approximation under the cardinality
constraint [24] and a 1/2 approximation under the matroid constraint [15]. On the other
hand, even for the cardinality constraint, the problem does not admit an approximation
ratio better than 1 − e−1 [23]. It was a longstanding open question whether the problem
admits a (1 − e−1)-approximation under the matroid constraint. In 2008, Vondrák [26]
made a big breakthrough and answered this question affirmatively by proposing the so-called
continuous greedy algorithm. Since then, plenty of optimal or well-performed approximation
algorithms have been proposed for submodular maximization over a variety of constraints
[2, 3, 4, 7, 12, 14, 16, 21, 22, 27].

For SMKP, a nearly optimal (1−e−1−ϵ)-approximation algorithm based on the continuous
greedy technique was recently proposed in [9]. Their algorithm relies on two key ideas. First,
they showed that by defining a configuration LP, an SMKP instance whose all bins have
the same budget can be reduced to submodular maximization under 2-dimensional packing
constraints (SMPC). Second, they developed a grouping technique inspired by [6] to convert
a general SMKP instance to a leveled instance where bins are partitioned into blocks and
bins in the same block have the same budget. In this way, they are able to reduce a general
SMKP instance to an SMPC instance. They finally finished their work by a refined analysis
of the continuous greedy algorithm for SMPC.

The techniques adopted by [9] and the way to combine them are somewhat sophisticated,
which makes their algorithm not easy to understand and implement. Besides, the continuous
greedy technique involves a sampling process and therefore their algorithm is inherently
randomized. To the best of our knowledge, no deterministic algorithm was known for SMKP.
In this paper, we present a simple deterministic combinatorial algorithm for SMKP, which
achieves a (1 − e−1 − ϵ)-approximation ratio.

▶ Theorem 1. For any ϵ > 0, there exists a deterministic combinatorial algorithm for SMKP
that achieves a (1 − e−1 − ϵ)-approximation ratio and runs in polynomial time.

1.1 Technique Overview
We start with solving SMKP instances under the identical case, where all the bins have the
same budget B. Such instances can be reduced to exponential-size instances of submodular
maximization subject to a cardinality constraint. Inspired by this observation, we design
an algorithm for the identical case by mimicking the greedy algorithm for the cardinality
constraint. See Section 1.1.1 for details.

For any general SMKP instance, we use the grouping technique developed by [9] to convert
it to the so-called leveled instance. While Fairstein et al. [9] resorts to the configuration LP
to solve the leveled instance, we present a simple (1 − e−1 − ϵ)-approximation algorithm for it
by exploiting its structure and invoking our algorithm for the identical case as a subroutine.
See Section 1.1.2 for details.

X. Sun, J. Zhang, and Z. Zhang 98:3

1.1.1 The Identical Case
Under the identical case, SMKP can be regarded as an exponential-size instance of submodular
maximization subject to a cardinality constraint. Specifically, let I = {S ⊆ N | c(S) ≤ B}.
For any T ⊆ I, define g(T) = f(∪S∈T S). It is easy to verify that g is a monotone submodular
function. Then, max{g(T) | |T | ≤ m} describes the SMKP instance under the identical case.

Inspired by the above observation, our algorithm packs bins one by one and manages
to make each bin pack at least the average marginal value of the optimal solution over m

bins. In other words, for the j-th bin, it aims to find a set Sj such that f(Sj | ∪j−1
i=1 Si) ≥

1
m f(OPT | ∪j−1

i=1 Si), where OPT denotes the optimal solution. This naturally leads to
(1 − e−1) approximation.

We take the first bin as an example and explain that it is possible to find a set S1 such
that f(S1) ≥ 1

m f(OPT) when m is large enough. If S1 is obtained by packing elements in
sequence greedily according to their marginal densities, then we can prove

f(S1) ≥ (1 − e−c(S1)/c(OP T)) · f(OPT).

If we further allow S1 to violate the budget constraint by adding one more element, then
c(S1) ≥ B. Together with c(OPT) ≤ mB, we have

f(S1) ≥ (1 − e−1/m) · f(OPT) ≈ 1
m

f(OPT).

The story has not ended since the last element added to S1 violates the budget constraint.
To handle this issue, our algorithm divides elements into large and small elements according
to their costs and then packs them in different ways. Specifically, an element u ∈ N is large
if c(u) > ϵB and small otherwise. Our algorithm packs large elements by enumeration since
there are polynomial ways to pack them in total. It packs small elements greedily as before.
In this way, the last element added to S1 has a cost less than ϵB and there are at most m

such elements. Thus, all of them can be repacked using additional ϵm bins and all Sj ’s will
then become feasible.

In Lemma 5, we show that f(S1) ≥ 1
m f(OPT) still holds although we introduce the

enumeration step.

1.1.2 The General Case
Observe that a general SMKP instance can be reduced to an exponential-size instance
of submodular maximization subject to a partition matroid constraint. Specifically, let
Ij = {S ⊆ N | c(S) ≤ Bj} be the feasible region for the j-th bin and I = ∪m

j=1Ij . For any
T ⊆ I, define g(T) = f(∪S∈T S). Then, max{g(T) | |T ∩ Ij | ≤ 1, 1 ≤ j ≤ m} describes the
general SMKP instance. Recall that the optimal (1 − e−1)-approximation for the partition
matroid constraint is obtained via the continuous greedy algorithm [26]. Thus, it is not a
good idea to solve general SMKP instances directly.

The difficulty in solving general SMKP stems from that the budgets are distinct. Therefore,
we first consider an “intermediate” instance where bins can be partitioned into r blocks
{Mk}r

k=1 such that block Mk contains sufficiently many bins and all of them have the same
budget Bk. Clearly, this instance is slightly more general than the instance under the identical
case. It can also be reduced to an exponential-size instance of submodular maximization
subject to a partition matroid constraint. Specifically, let Ik = {S ⊆ N | c(S) ≤ Bk}
for 1 ≤ k ≤ r and I = ∪r

k=1Ik. For any T ⊆ I, define g(T) = f(∪S∈T S). Then,
max{g(T) | |T ∩ Ik| ≤ |Mk|, 1 ≤ k ≤ r} describes the above SMKP instance.

ESA 2023

98:4 Simple Deterministic Approximation for Submodular Multiple Knapsack Problem

The above two reductions lead to different constraints |T ∩ Ij | ≤ 1 and |T ∩ Ik| ≤ |Mk|.
For convenience, assume that 1/ϵ is an integer, |Mk| ≥ 1/ϵ and ϵ|Mk| is an integer for all
1 ≤ k ≤ r. Our key observation is that for constraint {T ⊆ I | |T ∩ Ik| ≤ |Mk|, 1 ≤ k ≤ r},
there is a simple deterministic algorithm that can achieve (1 − e−1 − ϵ)-approximation. The
algorithm runs in 1/ϵ iterations. In each iteration, block Mk is visited in sequence and the
algorithm will pack ϵ|Mk| bins in Mk. This forms an SMKP instance under the identical
case. Thus, we can invoke our algorithm for the identical case to solve it.

Finally, we apply a grouping technique from [9] to convert a general instance to a t-leveled
instance which has blocks {Mk}r

k=1 and bins in the same block have the same budget. Besides,
each of the first t2 blocks contains a single bin, and each of the remaining blocks contains
at least t. This is very similar to the intermediate instance before and it is not difficult to
handle the first t2 blocks.

1.2 Related Work

MKP has been fully studied previously. Kellerer [18] proposed the first PTAS for the identical
case of the problem. Soon after, Chekuri and Khanna [5] proposed a PTAS for the general
case. The result was later improved to an EPTAS by Jansen [17]. On the other hand, it
is easy to see that the problem does not admit an FPTAS even for the case of m = 2 bins
unless P = NP [5].

SMKP contains submodular maximization subject to a knapsack constraint as a special
case. For this problem, there is an optimal (1 − e−1)-approximation algorithm that runs in
O(n5) time [18, 25]. Later, a fast algorithm was proposed in [1] that achieves a (1 − e−1 − ϵ)-
approximation ratio and runs in n2(log n/ϵ)O(1/ϵ8) time2. This was recently improved in [8]
by a new algorithm that runs in (1/ϵ)O(1/ϵ4)n log2 n time. The last two algorithms are
impractical due to their high dependence on 1/ϵ. Very recently, a (1 − e−1)-approximation
algorithm was proposed in [20, 13], which runs in O(n4) time. This algorithm can be further
accelerated to achieve (1 − e−1 − ϵ)-approximation in Õ(n3/ϵ) time.

To the best of our knowledge, SMKP was first considered in Feldman’s Ph. D thesis [11].
Feldman proposed a polynomial time (1/9 − o(1))-approximation algorithm and a pseudo-
polynomial time 1/4 approximation algorithm for the general case of SMKP. For the identical
case, he improved the results to a polynomial time ((e − 1)/(3e − 1) − o(1)) ≈ 0.24 approx-
imation algorithm and a pseudo-polynomial time (1 − e−1 − o(1))-approximation algorithm.
These algorithms are based on the continuous greedy technique and contension resolution
schemes [27], and hence involve randomness inherently. Recently, Fairstein et al. [9] proposed
a polynomial time randomized (1 − e−1 − ϵ)-approximation algorithm for general SMKP.

1.3 Organization

In Section 2, we first formulate SMKP and introduce some notations. Then, we present
a greedy algorithm that packs elements greedily according to their marginal densities. In
Section 3, we present a (1 − e−1 − ϵ)-approximation algorithm for SMKP under the identical
case, assuming the number of bins m ≥ 1/(4ϵ3). In Section 4, we present a (1 − e−1 − ϵ)-
approximation algorithm for general SMKP. We conclude the paper and list some open
problems in Section 5.

2 As pointed out by [28, 8], the result in [1] has some issues.

X. Sun, J. Zhang, and Z. Zhang 98:5

Algorithm 1 Greedy.

Input: elements N , budgets {Bj}m
j=1, profit f , cost c.

1 Sj = ∅ for 1 ≤ j ≤ m and S = ∪m
j=1Sj .

2 while N \ S ̸= ∅ and there exists 1 ≤ j ≤ m such that c(Sj) < Bj do
3 u∗ = arg maxu∈N\S f(u | S)/c(u).
4 Sj = Sj + u∗ and S = S + u∗.
5 end
6 return S = ∪m

j=1Sj .

2 Preliminaries

An instance of the submodular multiple knapsack problem (SMKP) is defined as follows. We
are given a set N of n elements and a set M of m bins (knapsacks). Each element u ∈ N

has a positive cost c(u) > 0. A subset S ⊆ N of elements has a cost c(S) =
∑

u∈S c(u). The
j-th bin in M has a positive budget Bj > 0 for 1 ≤ j ≤ m. A subset S ⊆ N is feasible for
the problem if there is a disjoint partition {Sj}m

j=1 of S such that c(Sj) ≤ Bj for 1 ≤ j ≤ m.
The profit of each subset S ⊆ N of elements is specified by a normalized, monotone and
submodular function f : 2N → R+. For a non-negative set function f : 2N → R+, it is
called normalized if f(∅) = 0, monotone if f(S) ≤ f(T) for any S ⊆ T , and submodular if
f(S ∪{u})−f(S) ≥ f(T ∪{u})−f(T) for any S ⊆ T and u ̸∈ T . The goal is to find a feasible
set S (and its partition {Sj}m

j=1) such that the profit f(S) (or f(∪m
j=1Sj)) is maximized.

An SMKP instance is specified by (N, M, {Bj}j∈M , f, c). Throughout this paper, we
use OPT to denote the optimal solution of an SMKP instance. Let S + u be a shorthand
for S ∪ {u}. For the objective function f , we also use f(u | S) and f(T | S) to denote the
marginal values f(S + u) − f(S) and f(S ∪ T) − f(S), respectively. f is accessed via a value
oracle that returns f(S) when set S ⊆ N is queried. The query complexity of any algorithm
for SMKP should be polynomial in the size of the problem.

2.1 The Greedy Algorithm
We first present a greedy algorithm, which is depicted as Algorithm 1. It serves as a
cornerstone for other algorithms in this paper. It returns a (possibly infeasible) set with
a (1 − 1/e) approximation ratio. It packs elements one by one greedily, according to their
densities, namely the ratios of their marginal values to their costs. The process continues
provided there exists some bin whose budget has not been exhausted yet. As a side effect,
each bin may pack one more element whose addition exceeds the budget of that bin. For
convenience, we refer to this element as a reserved element. Nonetheless, we show that the
set returned by Algorithm 1 has a large profit.

▶ Lemma 2. Let S be the set returned by Algorithm 1. For any set X ⊆ N , we have

f(S) ≥
(

1 − e−c(S)/c(X)
)

· f(X).

Proof. If c(S) <
∑m

j=1 Bj , there is some j such that c(Sj) < Bj . It means that Algorithm 1
ended with S = N . Thus, the lemma follows by monotonicity.

Now consider the case where c(S) ≥
∑m

j=1 Bj . Assume that S = {u1, u2, . . . , uℓ}, and
for 0 ≤ i ≤ ℓ, Si = {u1, u2, . . . ui} denotes the first i elements packed by Algorithm 1. Then,
by the greedy rule,

f(ui | Si−1)
c(ui)

≥ f(x | Si−1)
c(x) , ∀ x ∈ X \ Si−1.

ESA 2023

98:6 Simple Deterministic Approximation for Submodular Multiple Knapsack Problem

By moving c(x) to the left and summing over x ∈ X \ Si−1,

c(X \ Si−1) · f(ui | Si−1)
c(ui)

≥
∑

x∈X\Si−1

f(x | Si−1) ≥ f(X \ Si−1 | Si−1).

The last inequality holds since f is submodular. This gives us

f(Si) − f(Si−1)
c(ui)

≥ f(X \ Si−1 | Si−1)
c(X \ Si−1) ≥ f(X) − f(Si−1)

c(X) . (1)

The last inequality holds since f is monotone and c(X \ Si−1) ≤ c(X).
Next, we assume that f(X) > f(Sℓ), since otherwise the lemma already holds. Under

this assumption, it must hold that c(ui) < c(X), since otherwise inequality (1) implies that
f(X) ≤ f(Si) ≤ f(Sℓ). A contradiction! Now we can rearrange inequality (1) and obtain
that

f(X) − f(Si) ≤
(

1 − c(ui)
c(X)

)
(f(X) − f(Si−1)).

By expanding the recurrence, we have

f(X) − f(Si) ≤
i∏

j=1

(
1 − c(uj)

c(X)

)
· f(X) ≤

i∏
j=1

e−
c(uj)
c(X) · f(X) = e− c(Si)

c(X) · f(X).

The second inequality holds due to ex ≥ 1 + x. Hence we have

f(Si) ≥
(

1 − e−c(Si)/c(X)
)

· f(X).

The lemma follows by plugging i = ℓ into it. ◀

The above lemma immediately leads to the following corollary.

▶ Corollary 3. The set S returned by Algorithm 1 satisfies f(S) ≥ (1 − e−1) · f(OPT).

Proof. If c(S) <
∑m

j=1 Bj , there is some j such that c(Sj) < Bj . It means that Algorithm 1
ended with S = N . Thus, the corollary follows by monotonicity. If c(S) ≥

∑m
j=1 Bj , then

c(S) ≥ c(OPT). The corollary follows from Lemma 2. ◀

3 The identical Case

In this section, we present a deterministic (1 − e−1 − ϵ) approximation algorithm for SMKP
under the identical case, where all bins have the same budget. Our algorithm is depicted as
Algorithm 2 and works when m ≥ 1/(4ϵ3). It packs bins one by one and manages to make
each bin pack at least the average marginal value of the optimal solution over m bins. In other
words, for the j-th bin, it aims to find a set Sj such that f(Sj | ∪j−1

i=1 Si) ≥ 1
m f(OPT | ∪j−1

i=1 Si).
This naturally leads to (1 − e−1) approximation. For this purpose, Algorithm 2 divides
elements into large and small elements according to their costs. Given input ϵ, an element
u ∈ N is large if c(u) > ϵB and small otherwise. Let Nℓ = {u ∈ N | c(u) > ϵB} be the set of
large elements and Ns = N \ Nℓ. For the j-th bin, Algorithm 2 first enumerates all feasible
subsets of large elements. Then, for every such subset, Algorithm 1 is invoked over small
elements to augment it. Finally, the one with the maximum marginal value is assigned to Sj .

Due to the call of Algorithm 1, Sj might contain a reserved element, which is the last
added into Sj and violates the budget. To remedy this issue, Algorithm 2 divides the bins
into two classes: the first (1 − ϵ)m bins are called working bins and the last ϵm bins are

X. Sun, J. Zhang, and Z. Zhang 98:7

Algorithm 2 Identical-case.

Input: elements N , budget B, number of bins m, profit f , cost c, constant ϵ > 0.
1 Let the first (1 − ϵ)m bins be working bins and the last ϵm bins be reserved bins.
2 Define Nℓ = {u ∈ N | c(u) > ϵB} and let Ns = N \ Nℓ.
3 Sj = ∅ for 1 ≤ j ≤ m and T = ∪m

j=1Sj .
4 for j = 1 to (1 − ϵ)m do
5 foreach subset E ⊆ Nℓ such that c(E) ≤ B do
6 GE = Greedy(Ns, B − c(E), f(· | T ∪ E), c(·)).
7 end
8 Sj = arg maxE f(E ∪ GE | T) and T = ∪m

j=1Sj .
9 end

10 Repack the reserved elements in T into the reserved bins.
11 return T = ∪m

j=1Sj .

called reserved bins. The procedure described above only proceeds with the working bins.
After that, Algorithm 2 repacks all reserved elements into the reserved bins. We will show
that in this way, Algorithm 2 produces a feasible solution and the loss of the profit is little
even if it does not use the reserved bins to pack new elements.

We now give an analysis of Algorithm 2. For 1 ≤ j ≤ (1 − ϵ)m, let Sj be defined as in
line 8 of Algorithm 2 and Tj = ∪j

i=1Si. We first show that Algorithm 2 returns a feasible
solution.

▶ Lemma 4. Algorithm 2 produces a feasible solution.

Proof. For 1 ≤ j ≤ (1 − ϵ)m, observe that each Sj contains at most one reserved element
due to the call of Algorithm 1. By repacking those reserved elements into the reserved bins,
each Sj becomes feasible. Besides, the cost of each reserved element is at most ϵB since it is
a small element. Thus, a reserved bin can pack at least 1/ϵ reserved elements. Then, ϵm

reserved bins can pack m > (1 − ϵ)m reserved elements without exceeding their budgets.
Therefore, Algorithm 2 produces a feasible solution. ◀

Next, we present Lemma 5 for Algorithm 2.

▶ Lemma 5. Assume that m ≥ 1/(4ϵ3). For every 1 ≤ j ≤ (1 − ϵ)m,

f(Sj | Tj−1) ≥ 1 − 2ϵ

m
· f(OPT | Tj−1).

Proof. For the sake of description, we define g(·) = f(· | Tj−1) and the lemma becomes
g(Sj) ≥ 1−2ϵ

m · g(OPT). Let OPTℓ = OPT ∩ Nℓ and OPTs = OPT \ OPTℓ. We prove the
lemma by case analysis, according to the cost and density of OPTs.
Case 1: c(OPTs) ≥ ϵmB, namely OPTs has a large cost. Let OPTℓ = ∪m

j=1OPTℓ,j and
OPTs = ∪m

j=1OPTs,j , where OPTℓ,j and OPTs,j are the large and small elements packed
in the j-th bin, respectively. For each 1 ≤ j ≤ m, since c(OPTℓ,j) ≤ B, OPTℓ,j will be
enumerated during the foreach loop. Let Gj be the output of Greedy (Algorithm 1)
starting from OPTℓ,j . We will show that one of OPTℓ,j ∪ Gj satisfies the lemma.
If c(Gj) < B−c(OPTℓ,j), it means that Algorithm 1 ended with Gj = OPTs and therefore
g(Gj | OPTℓ,j) = g(OPTs | OPTℓ,j). If c(Gj) ≥ B − c(OPTℓ,j), then c(Gj) ≥ c(OPTs,j).

ESA 2023

98:8 Simple Deterministic Approximation for Submodular Multiple Knapsack Problem

By Lemma 2,

g(Gj | OPTℓ,j) ≥
(

1 − e−c(Gj)/c(OP Ts)
)

· g(OPTs | OPTℓ,j)

≥
(

1 − e−c(OP Ts,j)/c(OP Ts)
)

· g(OPTs | OPTℓ,j)

≥
(

c(OPTs,j)
c(OPTs) − c(OPTs,j)2

2 · c(OPTs)2

)
· g(OPTs | OPTℓ,j)

≥
(

c(OPTs,j)
c(OPTs) − 1

2ϵ2m2

)
· g(OPTs | OPTℓ,j)

≥
(

c(OPTs,j)
c(OPTs) − 2ϵ

m

)
· g(OPTs | OPTℓ,j).

The third inequality holds since 1 − e−x ≥ x − x2/2 for x ≥ 0. The fourth inequality
holds since c(OPTs,j)/c(OPTs) ≤ 1/(ϵm). The last inequality holds since m ≥ 1/(4ϵ3).
By adding g(OPTℓ,j) on both sides of the last inequality and summing over j,

m∑
j=1

g(OPTℓ,j ∪ Gj) ≥
m∑

j=1

(
c(OPTs,j)
c(OPTs) − 2ϵ

m

)
· g(OPTs | OPTℓ,j) +

m∑
j=1

g(OPTℓ,j)

≥
m∑

j=1

(
c(OPTs,j)
c(OPTs) − 2ϵ

m

)
· g(OPTs | OPTℓ) + g(OPTℓ)

= (1 − 2ϵ) · g(OPTs | OPTℓ) + g(OPTℓ)
≥ (1 − 2ϵ) · g(OPT).

Hence, the maximum of OPTℓ,j ∪ Gj satisfies the lemma and so does Sj .
Case 2: g(OPTs) ≥ (1 − e−B/c(OP Ts))−1 · g(OP T)

m , namely the density of OPTs is large.
Consider one of the iterations of foreach loop where E = ∅. Note that it is augmented
by G∅ via Greedy (Algorithm 1). If c(G∅) < B, it means that Algorithm 1 ended with
G∅ = OPTs. Then,

g(G∅) = g(OPTs) ≥ (1 − e−B/c(OP Ts))−1 · g(OPT)
m

≥ g(OPT)
m

.

If c(G∅) ≥ B, by Lemma 2,

g(G∅) ≥
(

1 − e−B/c(OP Ts)
)

· g(OPTs) ≥ g(OPT)
m

.

This implies that G∅ satisfies the lemma and so does Sj .
Case 3: c(OPTs) < ϵmB and g(OPTs) <

(
1 − e−B/c(OP Ts))−1 · g(OP T)

m , namely both the
cost and density of OPTs are small. We show that OPTs only contributes a negligible
value in OPT :

g(OPTs) < (1 − e−1/ϵm)−1 · g(OPT)
m

≤
(

1
ϵm

− 1
2ϵ2m2

)−1
g(OPT)

m

≤
(

1
2ϵm

)−1
g(OPT)

m
= 2ϵ · g(OPT).

The first inequality holds since (1 − e−B/x)−1 is monotone increasing. The second holds
since 1 − e−x ≥ x − x2/2 for x ≥ 0. The third holds as long as m ≥ 1/ϵ. Hence, by
submodularity,

g(OPTℓ) ≥ g(OPT) − g(OPTs) ≥ (1 − 2ϵ) · g(OPT),

X. Sun, J. Zhang, and Z. Zhang 98:9

and

1
m

m∑
j=1

g(OPTℓ,j) ≥ 1
m

· g(OPTℓ) ≥ 1 − 2ϵ

m
· g(OPT).

This implies that the maximum of OPTℓ,j satisfies the lemma and so does Sj . ◀

By expanding the recurrence in Lemma 5, we have

▶ Lemma 6. Assume that m ≥ 1/(4ϵ3). For every 1 ≤ j ≤ (1 − ϵ)m,

f(Tj) ≥ (1 − e−j(1−2ϵ)/m) · f(OPT).

Proof. By Lemma 5, for 1 ≤ j ≤ (1 − ϵ)m,

f(Sj | Tj−1) ≥ 1 − 2ϵ

m
· f(OPT | Tj−1).

By monotonicity of f ,

f(Tj) − f(Tj−1) ≥ 1 − 2ϵ

m
· (f(OPT) − f(Tj−1)).

By rearranging the above inequality,(
1 − 1 − 2ϵ

m

)
(f(OPT) − f(Tj−1)) ≥ f(OPT) − f(Tj).

By expanding the recurrence,

f(OPT) − f(Tj) ≤
(

1 − 1 − 2ϵ

m

)j

f(OPT) ≤ e−j(1−2ϵ)/m · f(OPT).

The last inequality holds since e−x ≥ 1 − x. Thus, we have

f(Tj) ≥ (1 − e−j(1−2ϵ)/m) · f(OPT). ◀

We now provide a theoretical guarantee for Algorithm 2.

▶ Theorem 7. When m ≥ 1/(4ϵ3), Algorithm 2 achieves a (1 − e−1 − O(ϵ)) approximation
ratio and uses O(mn3+1/ϵ) queries.

Proof. For the approximation ratio, by plugging j = (1 − ϵ)m into Lemma 6,

f(T(1−ϵ)m) ≥ (1 − e−(1−ϵ)(1−2ϵ)) · f(OPT).

For the query complexity, observe that during the foreach loop, the number of subsets
E ⊆ Nℓ such that c(E) ≤ B is at most

1/ϵ∑
i=0

(
n

i

)
= O(n1/ϵ+1).

Since each E is augmented via Greedy, which uses O(n2) queries, the foreach loop uses
O(n1/ϵ+3) in total. Then, Algorithm 2 overall uses O(mn3+1/ϵ) queries. ◀

ESA 2023

98:10 Simple Deterministic Approximation for Submodular Multiple Knapsack Problem

4 The General Case

In this section, we present a deterministic (1 − e−1 − ϵ) approximation algorithm for solving
general SMKP instances. A key difficulty is that the budgets of bins are distinct, which makes
our technique for the identical case inapplicable. In Section 4.1, we introduce a grouping
technique from [9], which reshapes any SMKP instance such that bins can be partitioned into
blocks and almost every block contains sufficiently many bins with the same budget. Next, in
Section 4.2, we show how one can design a nearly optimal algorithm for such instances.

4.1 Reshape the Instance
We first introduce a grouping technique from [9] to reshape any SMKP instance as follows.

▶ Definition 8. A subset of bins M ′ ⊆ M is called a block if for any i, j ∈ M ′, Bi = Bj.

▶ Definition 9. For any t ∈ N+, a partition {Mk}r
k=1 of bins M is t-leveled if for every

1 ≤ k ≤ r, Mk is a block and |Mk| = t⌊(k−1)/t2⌋.

To gain some intuition, note that for every 1 ≤ k ≤ t2, block Mk contains a single bin, and
for every t2 < k ≤ 2t2, block Mk contains t bins, etc. It follows that except for the first t2

blocks, each of the remaining blocks contains at least t bins with the same budget.

▶ Lemma 10 ([9]). There is a polynomial-time algorithm, referred to as Block, that takes
a set of bins M , budgets {Bj}j∈M and a parameter t ∈ N+ as input, and returns a new set
of bins M̃ ⊆ M , budgets {B̃j}

j∈M̃
and a t-leveled partition {M̃k}r

k=1 of bins M̃ such that
For every j ∈ M̃ , B̃j ≤ Bj.
For any SMKP instance (N, M, {Bj}j∈M , f, c) and a feasible solution {Sj}j∈M for it,
there exists a feasible solution {S̃j}

j∈M̃
for instance (N, M̃, {B̃j}

j∈M̃
, f, c) such that

f(∪
j∈M̃

S̃j) ≥
(
1 − 1

t

)
f(∪j∈M Sj) and ∪

j∈M̃
S̃j ⊆ ∪j∈M Sj.

The instance (N, M̃, {B̃j}
j∈M̃

, f, c) is called t-leveled. Lemma 10 tells us that any feasible
solution for it is also feasible for the original instance (N, M, {Bj}j∈M , f, c), and an optimal
solution for it causes a small loss in the profit.

4.2 The Final Algorithm
Now, we explain how one can design a nearly optimal algorithm for a t-leveled SMKP instance
with bins M̃ , budgets {B̃j}

j∈M̃
and a t-leveled partition {M̃k}r

k=1 of M̃ .
For t2 < k ≤ r, block M̃k contains |M̃k| ≥ t bins with the same budget B̃k. The problem

restricted to each block M̃k can be regarded as an SMKP instance under the identical case.
Thus, a natural idea is to pack each block M̃k in sequence by invoking Algorithm 2. However,
we fail to get an optimal approximation via this procedure. Instead, we develop a technique
that is inspired by [1]. We run 1/ϵ iterations in total (assume that 1/ϵ is an integer). In each
iteration, we pack each block M̃k in sequence but only pack ϵ|M̃k| bins (assume that ϵ|M̃k|
is an integer). This forms an instance under the identical case with ϵ|M̃k| bins and therefore
we can invoke Algorithm 2 to solve it.

For 1 ≤ k ≤ t2, block M̃k contains a single bin with budget B̃k. Basically, we can use
Greedy to pack elements. Likewise, we do not use the full budget at a time. Instead, we
also run 1/ϵ iterations. In each iteration, we pack elements using budget (ϵ − ϵ2)B̃k. To avoid
exceeding the budget, we only pack small elements u satisfying c(u) ≤ ϵ2B̃k. To ensure this,
we need to enumerate large-valued and large-cost elements in this bin. The overall procedure
is depicted as Algorithm 3.

X. Sun, J. Zhang, and Z. Zhang 98:11

Algorithm 3 The Final Algorithm for SMKP.

Input: elements N , bins M , budgets {Bj}j∈M , profit f , cost c, constant ϵ > 0.
1 Let s = 1/(16ϵ9) and t = 1/(4ϵ3).
2 Let C = ∅.
3 (M̃, {B̃j}

j∈M̃
, {M̃k}r

k=0) = Block(M, {Bj}j∈M , t).
4 foreach feasible solution {Ej}t2

j=1 such that | ∪m
j=1 Ej | ≤ s do \\ Ej = ∅ for j > t2

5 Let E = ∪t2

j=1Ej .
6 Let Sj = Ej for 1 ≤ j ≤ t2 and Sj = ∅ for t2 < j ≤ k.
7 for i = 1 to 1/ϵ do
8 for k = 1 to r do \\ handle blocks one by one
9 if k ≤ t2 then \\ each block contains a single bin

10 Let D = {u ∈ N \ E | f(u | E) > 1
s · f(E)}.

11 Let Lk = {u ∈ N \ E | c(u) > ϵ2(B̃k − c(Ek))}.
12 Rk = Greedy(N \ (E ∪ D ∪ Lk), (ϵ − ϵ2)(B̃k − c(Ek)), f(· | ∪m

j=1Sj),
c(·)).

13 Sk+1 = Sk+1 ∪ Rk.
14 else \\ each block contains ≥ t bins
15 {Rj}

j∈M̃k
= Identical-case(N \ E, B̃k, ϵ|M̃k|, f(· | ∪m

j=1Sj), c(·), ϵ).
16 Sj = Sj ∪ Rj for j ∈ M̃k.
17 end
18 end
19 end
20 C = C ∪ {{Sj}m

j=1}.
21 end
22 return arg max{f(∪m

j=1Sj) | {Sj}m
j=1 ∈ C}.

▶ Theorem 11. Algorithm 3 achieves a 1 − e−1 − O(ϵ) approximation ratio and uses a
polynomial number of queries.

Proof. Let ÕPT = ∪m
j=1ÕPT j be the optimal solution of the SMKP instance with bins M̃

and budgets {B̃j}
j∈M̃

. Let OPT ′ = ∪t2

j=1ÕPT j . Order elements in OPT ′ greedily according
to their marginal values such that o1 = arg maxo∈OP T ′ f(o), o2 = arg maxo∈OP T ′\{o1} f(o |
o1), etc. Denote by E the first s elements in OPT ′ (if |OPT ′| < s, then E = OPT ′). Let
Ej = E ∩ ÕPT j for 1 ≤ j ≤ t2. Then, {Ej}t2

j=1 will be enumerated during the foreach loop.
In the following, we focus on this particular set.

Let D = {u ∈ N | f(u | E) > 1
s · f(E)}. Since E is the first s elements in OPT ′, we

have f(o | E) ≤ 1
s · f(E) for any o ∈ OPT ′ \ E. Thus, D ∩ (OPT ′ \ E) = ∅ and therefore

OPT ′ \ E will not be excluded from the execution of Greedy over N \ (E ∪ D). Besides,
{ÕPT j \ Ej}t2

j=1 is a feasible solution given budgets {B̃j − c(Ej)}t2

j=1.
For 1 ≤ j ≤ t2, let Lj = {u ∈ N \E | c(u) > ϵ2(B̃j −c(Ej))}. Define OPT ∗ as follows. For

1 ≤ j ≤ t2, OPT ∗
j = ÕPT j \ Lj . For j > t2, OPT ∗

j = ÕPT j . Then, OPT ∗ = ∪m
j=1OPT ∗

j .
We have

f(OPT ∗ | E) = f((∪t2

j=1ÕPT j \ Lj) ∪ (∪m
j=t2+1ÕPT j) | E)

≥ f(∪m
j=1ÕPT j | E) − f(∪t2

j=1ÕPT j ∩ Lj | E)

ESA 2023

98:12 Simple Deterministic Approximation for Submodular Multiple Knapsack Problem

≥ f(ÕPT | E) −
t2∑

j=1

∑
u∈(ÕP T j\E)∩Lj

f(u | E)

≥ f(ÕPT | E) − t2

ϵ2s
· f(E)

= f(ÕPT | E) − ϵ · f(E).

The first two inequalities are due to submodularity. The third inequality holds since by
definition of Lj , ÕPT j \ E contains at most 1/ϵ2 elements in Lj , and f(u | E) ≤ 1

s f(E) due
to D ∩ (ÕPT j \ E) = ∅. The last equality follows from the choices of t and s. This implies
that invoking Greedy over N \ (E ∪ D ∪ Lj) for 1 ≤ j ≤ t2 only incurs little loss in the
profit.

Now we are prepared to provide a theoretical bound for Algorithm 3. Let g(·) = f(· | E).
For 1 ≤ i ≤ 1/ϵ and 1 ≤ k ≤ r, let Rik be the set returned in line 12 if k ≤ t2 and
Rik = ∪

j∈M̃k
Rj otherwise, where {Rj}

j∈M̃k
is the set returned in line 15. Then, the k-th

block M̃k packs ∪1/ϵ
i=1Rik by the end of Algorithm 3. Define T0 = ∅ and Ti = Ti−1 ∪ (∪r

k=1Rik)
for 1 ≤ i ≤ 1/ϵ.

For 1 ≤ i ≤ 1/ϵ and 1 ≤ k ≤ t2, by Lemma 2,

g(Rik | Ti−1 ∪ (∪k−1
k′=1Rik′)) ≥ (1 − e−(ϵ−ϵ2)) · g(OPT ∗

k | Ti−1 ∪ (∪k−1
k′=1Rik′))

≥ (ϵ − 2ϵ2) · g(OPT ∗
k | Ti).

The last inequality holds due to 1 − e−x ≥ x − x2/2 for x ≥ 0 and submodularity.
For 1 ≤ i ≤ 1/ϵ and t2 < k ≤ r, by Lemma 6,

g(Rik | Ti−1 ∪ (∪k−1
k′=1Rik′)) ≥ (1 − e−ϵ(1−2ϵ)) · g(OPT ∗

k | Ti−1 ∪ (∪k−1
k′=1Rik′))

≥ (ϵ − 3ϵ2) · g(OPT ∗
k | Ti).

Again, the last inequality holds due to 1 − e−x ≥ x − x2/2 for x ≥ 0 and submodularity.
Summing up over 1 ≤ k ≤ r, we have

g(Ti) − g(Ti−1) =
r∑

k=1
g(Rik | Ti−1 ∪ (∪k−1

k′=1Rik′))

≥
r∑

k=1
(ϵ − 3ϵ2) · g(OPT ∗

k | Ti)

≥ (ϵ − 3ϵ2) · g(OPT ∗ | Ti)
≥ (ϵ − 3ϵ2) · (g(OPT ∗) − g(Ti)).

The last two inequalities are due to submodularity and monotonicity, respectively. By adding
g(OPT ∗) to both sides and move g(Ti) to the right in the above inequality,

g(OPT ∗) − g(Ti−1) ≥ (1 + ϵ − 3ϵ2)(g(OPT ∗) − g(Ti)).

This leads to

g(OPT ∗) − g(Ti) ≤ 1
(1 + ϵ − 3ϵ2)i

· g(OPT ∗).

Hence, by plugging i = 1/ϵ,

g(T1/ϵ) ≥
(

1 − 1
(1 + ϵ − 3ϵ2)1/ϵ

)
· g(OPT ∗) =

(
1 − e− 1

ϵ ln(1+ϵ−3ϵ2)
)

· g(OPT ∗)

≥ (1 − e− 1
ϵ (ϵ−3ϵ2−(ϵ−3ϵ2)2/2)) · g(OPT ∗) ≥ (1 − e−1 − O(ϵ)) · g(OPT ∗).

X. Sun, J. Zhang, and Z. Zhang 98:13

The second inequality holds since ln(1 + x) ≥ x − x2/2 for x > 0. Finally, recall that
g(·) = f(· | E), we have

f(T1/ϵ) = f(E) + f(T1/ϵ | E) ≥ f(E) + (1 − e−1 − O(ϵ)) · f(OPT ∗ | E)

≥ f(E) + (1 − e−1 − O(ϵ)) · (f(ÕPT | E) − ϵf(E))
≥ (1 − e−1 − O(ϵ)) · f(OPT). ◀

5 Conclusion

In this paper, we present a deterministic (1 − e−1 − ϵ)-approximation algorithm for SMKP.
Our algorithm is inspired by the viewpoint regarding SMKP instances as exponential-size
instances of submodular maximization subject to a cardinality or partition matroid constraint.
Thus our algorithm is conceptually much simpler than that of Fairstein et al. [9].

As pointed out by [9], it remains open to remove the loss of ϵ in the approximation
ratio. As a first step, we present a (1 − e−1)-approximation algorithm for SMKP when
the number of bins m is constant in the full version of this paper. Recently, a randomized
0.385-approximation algorithm for non-monotone SMKP was proposed in [10]. It is an
interesting question to design deterministic algorithms for this problem.

References
1 Ashwinkumar Badanidiyuru and Jan Vondrák. Fast algorithms for maximizing submodular

functions. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 1497–1514, 2014.
doi:10.1137/1.9781611973402.110.

2 Niv Buchbinder and Moran Feldman. Deterministic algorithms for submodular maximization
problems. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 392–403, 2016.
doi:10.1137/1.9781611974331.ch29.

3 Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. A tight linear time (1/2)-
approximation for unconstrained submodular maximization. In 53rd Annual IEEE Symposium
on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23,
2012, pages 649–658, 2012. doi:10.1109/FOCS.2012.73.

4 Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. Submodular maximization
with cardinality constraints. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 1433–
1452, 2014. doi:10.1137/1.9781611973402.106.

5 Chandra Chekuri and Sanjeev Khanna. A PTAS for the multiple knapsack problem. In
Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, January
9-11, 2000, San Francisco, CA, USA., pages 213–222, 2000. URL: http://dl.acm.org/
citation.cfm?id=338219.338254.

6 Wenceslas Fernandez de la Vega and George S. Lueker. Bin packing can be solved within
1+epsilon in linear time. Combinatorica, 1(4):349–355, 1981. doi:10.1007/BF02579456.

7 Alina Ene and Huy L. Nguyen. Constrained submodular maximization: Beyond 1/e. In
IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-11
October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 248–257, 2016.
doi:10.1109/FOCS.2016.34.

8 Alina Ene and Huy L. Nguyen. A nearly-linear time algorithm for submodular maximization
with a knapsack constraint. In 46th International Colloquium on Automata, Languages,
and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece., pages 53:1–53:12, 2019.
doi:10.4230/LIPIcs.ICALP.2019.53.

ESA 2023

https://doi.org/10.1137/1.9781611973402.110
https://doi.org/10.1137/1.9781611974331.ch29
https://doi.org/10.1109/FOCS.2012.73
https://doi.org/10.1137/1.9781611973402.106
http://dl.acm.org/citation.cfm?id=338219.338254
http://dl.acm.org/citation.cfm?id=338219.338254
https://doi.org/10.1007/BF02579456
https://doi.org/10.1109/FOCS.2016.34
https://doi.org/10.4230/LIPIcs.ICALP.2019.53

98:14 Simple Deterministic Approximation for Submodular Multiple Knapsack Problem

9 Yaron Fairstein, Ariel Kulik, Joseph (Seffi) Naor, Danny Raz, and Hadas Shachnai. A (1-e-1-
ϵ)-approximation for the monotone submodular multiple knapsack problem. In 28th Annual
European Symposium on Algorithms, ESA 2020, September 7-9, 2020, Pisa, Italy (Virtual
Conference), volume 173 of LIPIcs, pages 44:1–44:19. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020. doi:10.4230/LIPIcs.ESA.2020.44.

10 Yaron Fairstein, Ariel Kulik, and Hadas Shachnai. Modular and submodular optimization with
multiple knapsack constraints via fractional grouping. In 29th Annual European Symposium on
Algorithms, ESA 2021, September 6-8, 2021, Lisbon, Portugal (Virtual Conference), volume
204 of LIPIcs, pages 41:1–41:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPIcs.ESA.2021.41.

11 Moran Feldman. Maximization problems with submodular objective functions. Technion-Israel
Institute of Technology, Faculty of Computer Science, 2013.

12 Moran Feldman, Joseph Naor, and Roy Schwartz. A unified continuous greedy algorithm for
submodular maximization. In IEEE 52nd Annual Symposium on Foundations of Computer
Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 570–579, 2011.
doi:10.1109/FOCS.2011.46.

13 Moran Feldman, Zeev Nutov, and Elad Shoham. Practical budgeted submodular maximization.
Algorithmica, 85(5):1332–1371, 2023. doi:10.1007/s00453-022-01071-2.

14 Yuval Filmus and Justin Ward. A tight combinatorial algorithm for submodular maximization
subject to a matroid constraint. In 53rd Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, pages 659–668, 2012.
doi:10.1109/FOCS.2012.55.

15 Marshall L. Fisher, George L. Nemhauser, and Laurence A. Wolsey. An analysis of approxim-
ations for maximizing submodular set functions - II. In Polyhedral combinatorics, pages 73–87.
Springer, 1978.

16 Shayan Oveis Gharan and Jan Vondrák. Submodular maximization by simulated annealing.
In Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2011, San Francisco, California, USA, January 23-25, 2011, pages 1098–1116, 2011.
doi:10.1137/1.9781611973082.83.

17 Klaus Jansen. Parameterized approximation scheme for the multiple knapsack problem.
In Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2009, New York, NY, USA, January 4-6, 2009, pages 665–674, 2009. doi:10.1137/1.
9781611973068.73.

18 Hans Kellerer. A polynomial time approximation scheme for the multiple knapsack problem.
In Randomization, Approximation, and Combinatorial Algorithms and Techniques, RANDOM-
APPROX’99, Berkeley, CA, USA, August 8-11, 1999, Proceedings, pages 51–62, 1999. doi:
10.1007/978-3-540-48413-4_6.

19 David Kempe, Jon M. Kleinberg, and Éva Tardos. Maximizing the spread of influence through
a social network. In Proceedings of the Ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Washington, DC, USA, August 24 - 27, 2003, pages
137–146. ACM, 2003. doi:10.1145/956750.956769.

20 Ariel Kulik, Roy Schwartz, and Hadas Shachnai. A refined analysis of submodular greedy.
Oper. Res. Lett., 49(4):507–514, 2021. doi:10.1016/j.orl.2021.04.006.

21 Jon Lee, Vahab S. Mirrokni, Viswanath Nagarajan, and Maxim Sviridenko. Non-monotone
submodular maximization under matroid and knapsack constraints. In Proceedings of the 41st
Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31
- June 2, 2009, pages 323–332. ACM, 2009. doi:10.1145/1536414.1536459.

22 Jon Lee, Maxim Sviridenko, and Jan Vondrák. Submodular maximization over multiple
matroids via generalized exchange properties. Math. Oper. Res., 35(4):795–806, 2010. doi:
10.1287/moor.1100.0463.

https://doi.org/10.4230/LIPIcs.ESA.2020.44
https://doi.org/10.4230/LIPIcs.ESA.2021.41
https://doi.org/10.1109/FOCS.2011.46
https://doi.org/10.1007/s00453-022-01071-2
https://doi.org/10.1109/FOCS.2012.55
https://doi.org/10.1137/1.9781611973082.83
https://doi.org/10.1137/1.9781611973068.73
https://doi.org/10.1137/1.9781611973068.73
https://doi.org/10.1007/978-3-540-48413-4_6
https://doi.org/10.1007/978-3-540-48413-4_6
https://doi.org/10.1145/956750.956769
https://doi.org/10.1016/j.orl.2021.04.006
https://doi.org/10.1145/1536414.1536459
https://doi.org/10.1287/moor.1100.0463
https://doi.org/10.1287/moor.1100.0463

X. Sun, J. Zhang, and Z. Zhang 98:15

23 George L. Nemhauser and Laurence A. Wolsey. Best algorithms for approximating the
maximum of a submodular set function. Math. Oper. Res., 3(3):177–188, 1978. doi:10.1287/
moor.3.3.177.

24 George L. Nemhauser, Laurence A. Wolsey, and Marshall L. Fisher. An analysis of approxim-
ations for maximizing submodular set functions – I. Math. Program., 14(1):265–294, 1978.
doi:10.1007/BF01588971.

25 Maxim Sviridenko. A note on maximizing a submodular set function subject to a knapsack
constraint. Oper. Res. Lett., 32(1):41–43, 2004. doi:10.1016/S0167-6377(03)00062-2.

26 Jan Vondrák. Optimal approximation for the submodular welfare problem in the value oracle
model. In Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria,
British Columbia, Canada, May 17-20, 2008, pages 67–74, 2008. doi:10.1145/1374376.
1374389.

27 Jan Vondrák, Chandra Chekuri, and Rico Zenklusen. Submodular function maximization via
the multilinear relaxation and contention resolution schemes. In Proceedings of the 43rd ACM
Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages
783–792, 2011. doi:10.1145/1993636.1993740.

28 Yuichi Yoshida. Maximizing a monotone submodular function with a bounded curvature
under a knapsack constraint. SIAM J. Discret. Math., 33(3):1452–1471, 2019. doi:10.1137/
16M1107644.

ESA 2023

https://doi.org/10.1287/moor.3.3.177
https://doi.org/10.1287/moor.3.3.177
https://doi.org/10.1007/BF01588971
https://doi.org/10.1016/S0167-6377(03)00062-2
https://doi.org/10.1145/1374376.1374389
https://doi.org/10.1145/1374376.1374389
https://doi.org/10.1145/1993636.1993740
https://doi.org/10.1137/16M1107644
https://doi.org/10.1137/16M1107644

	1 Introduction
	1.1 Technique Overview
	1.1.1 The Identical Case
	1.1.2 The General Case

	1.2 Related Work
	1.3 Organization

	2 Preliminaries
	2.1 The Greedy Algorithm

	3 The identical Case
	4 The General Case
	4.1 Reshape the Instance
	4.2 The Final Algorithm

	5 Conclusion

