
10th Conference on Algebra and
Coalgebra in Computer Science

CALCO 2023, June 19–21, 2023, Indiana University Bloomington,
IN, USA

Edited by

Paolo Baldan
Valeria de Paiva

LIPIcs – Vo l . 270 – CALCO 2023 www.dagstuh l .de/ l ip i c s

Editors

Paolo Baldan
University of Padova, Italy
paolo.baldan@unipd.it

Valeria de Paiva
Topos Institute, Berkeley, CA, USA
valeria@topos.institute

ACM Classification 2012
Theory of computation → Models of computation; Theory of computation → Modal and temporal
logics; Theory of computation → Categorical semantics; Theory of computation → Algebraic semantics;
Theory of computation → Quantum computation theory; Software and its engineering → Context specific
languages

ISBN 978-3-95977-287-7

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-287-7.

Publication date
September, 2023

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.CALCO.2023.0

ISBN 978-3-95977-287-7 ISSN 1868-8969 https://www.dagstuhl.de/lipics

https://orcid.org/0000-0001-9357-5599
mailto:paolo.baldan@unipd.it
https://orcid.org/0000-0002-1078-6970
mailto:valeria@topos.institute
https://www.dagstuhl.de/dagpub/978-3-95977-287-7
https://www.dagstuhl.de/dagpub/978-3-95977-287-7
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.CALCO.2023.0
https://www.dagstuhl.de/dagpub/978-3-95977-287-7
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Reykjavik University, IS and Gran Sasso Science Institute, IT)
Christel Baier (TU Dresden, DE)
Roberto Di Cosmo (Inria and Université de Paris, FR)
Faith Ellen (University of Toronto, CA)
Javier Esparza (TU München, DE)
Daniel Král’ (Masaryk University, Brno, CZ)
Meena Mahajan (Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)
Chih-Hao Luke Ong (University of Oxford, GB)
Phillip Rogaway (University of California, Davis, US)
Eva Rotenberg (Technical University of Denmark, Lyngby, DK)
Raimund Seidel (Universität des Saarlandes, Saarbrücken, DE and Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Wadern, DE)
Pierre Senellart (ENS, Université PSL, Paris, FR)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

CALCO 2023

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Paolo Baldan and Valeria de Paiva . 0:vii–0:viii

Conference Organization
. 0:ix–0:x

Invited Talks

Integrating Cost and Behavior in Type Theory
Robert Harper . 1:1–1:2

Local Completeness for Program Correctness and Incorrectness
Roberto Bruni . 2:1–2:2

A Tour on Ecumenical Systems
Elaine Pimentel and Luiz Carlos Pereira . 3:1–3:15

The Metatheory of Gradual Typing: State of the Art and Challenges
Jeremy G. Siek . 4:1–4:1

Machine-Checked Computational Mathematics
Assia Mahboubi . 5:1–5:1

Regular Papers

Forward and Backward Steps in a Fibration
Ruben Turkenburg, Harsh Beohar, Clemens Kupke, and Jurriaan Rot 6:1–6:18

Structural Operational Semantics for Heterogeneously Typed Coalgebras
Harald König, Uwe Wolter, and Tim Kräuter . 7:1–7:17

Interpolation Is (Not Always) Easy to Spoil
Andrzej Tarlecki . 8:1–8:19

String Diagram Rewriting Modulo Commutative (Co)Monoid Structure
Aleksandar Milosavljević, Robin Piedeleu, and Fabio Zanasi . 9:1–9:17

Strongly Finitary Monads for Varieties of Quantitative Algebras
Jiří Adámek, Matěj Dostál, and Jiří Velebil . 10:1–10:14

Generators and Bases for Monadic Closures
Stefan Zetzsche, Alexandra Silva, and Matteo Sammartino . 11:1–11:19

Bisimilar States in Uncertain Structures
Jurriaan Rot and Thorsten Wißmann . 12:1–12:17

A Category for Unifying Gaussian Probability and Nondeterminism
Dario Stein and Richard Samuelson . 13:1–13:18

Fractals from Regular Behaviours
Todd Schmid, Victoria Noquez, and Lawrence S. Moss . 14:1–14:18

10th Conference on Algebra and Coalgebra in Computer Science (CALCO 2023).
Editors: Paolo Baldan and Valeria de Paiva

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

Coinductive Control of Inductive Data Types
Paige Randall North and Maximilien Péroux . 15:1–15:17

Weakly Markov Categories and Weakly Affine Monads
Tobias Fritz, Fabio Gadducci, Paolo Perrone, and Davide Trotta 16:1–16:17

Many-Valued Coalgebraic Logic: From Boolean Algebras to Primal Varieties
Alexander Kurz and Wolfgang Poiger . 17:1–17:17

Composition and Recursion for Causal Structures
Henning Basold and Tanjona Ralaivaosaona . 18:1–18:17

Aczel-Mendler Bisimulations in a Regular Category
Jérémy Dubut . 19:1–19:18

(Co)algebraic pearls

Completeness for Categories of Generalized Automata
Guido Boccali, Andrea Laretto, Fosco Loregian, and Stefano Luneia 20:1–20:14

On Kripke, Vietoris and Hausdorff Polynomial Functors
Jiří Adámek, Stefan Milius, and Lawrence S. Moss . 21:1–21:20

Early Ideas

CRDTs, Coalgebraically
Nathan Liittschwager, Stelios Tsampas, Jonathan Castello, and Lindsey Kuper . . . 22:1–22:5

Amortized Analysis via Coinduction
Harrison Grodin and Robert Harper . 23:1–23:6

Higher-Order Mathematical Operational Semantics
Sergey Goncharov, Stefan Milius, Lutz Schröder, Stelios Tsampas, and
Henning Urbat . 24:1–24:3

Preface

This volume contains the proceedings of the 10th Conference on Algebra and Coalgebra in
Computer Science (CALCO), held at Indiana University, from June 19th to June 21st, 2023,
under the auspices of IFIP WG 1.3 “Foundations of System Specification”. Previous CALCO
editions took place in Salzburg (Austria, 2021), London (UK, 2019), Ljubljana (Slovenia,
2017), Nijmegen (the Netherlands, 2015), Warsaw (Poland, 2013), Winchester (UK, 2011),
Udine (Italy, 2009), Bergen (Norway, 2007), Swansea (Wales, 2005).

CALCO is a high-level, bi-annual conference formed by joining CMCS (the International
Workshop on Coalgebraic Methods in Computer Science) and WADT (the Workshop on
Recent Trends in Algebraic Development Techniques). It provides a forum to present and
discuss results of theoretical nature on the mathematics of algebras and coalgebras, the
way these results can support methods and techniques for software development, as well
as experience reports concerning the transfer of the resulting technologies into industrial
practice. Typical topics of interest include:

models and logics
algebraic and coalgebraic semantics methodologies in software and systems engineering
specialised models and calculi
system specification and verification
tools supporting algebraic and coalgebraic methods
string diagrams and network theory
quantum computing.

Following on the tradition started in 2015, also this year’s edition was co-located with
the conference Mathematical Foundations of Programming Semantics (MFPS).

The conference featured invited talks by Roberto Bruni, Jeremy Siek and Elaine Pimentel
and a Special Session on “Category theory in Machine Learning”, organised by Brendan Fong,
Brandon Shapiro and Fabio Zanasi, with talks by Jean-Simon Pacaud Lemay on “Differential
Categories and Machine Learning”, Brandon Shapiro on “A dynamic monoidal category
for deep learning” and Prakash Panangaden on “Is there a place for semantics in machine
learning?”. Moreover, Assia Mahboubi and Bob Harper were joint invited speakers for
CALCO and MFPS, and there was a joint special session on “Machine-checked Mathematics”
organised by Assia Mahboubi, with talks by Floris Van Doorn on “Formalizing sphere
eversion using Lean’s mathematical library”, Yannick Forster on “Synthetic Computability
in Constructive Type Theory” and Andrei Popescu on “On the exquisite pleasure of doing
coinduction and corecursion in Isabelle”.

In addition, there were 19 contributed talks, of which 15 were regular papers, 2 (co)algebraic
pearls, and 3 early ideas papers. This volume collects the abstracts of the five invited talks,
as well as the peer-reviewed papers. We are grateful to the Program Committee members
for their hard work in reviewing and selecting the papers.

The Program Committee has also chosen the Best Paper of the conference. The selection
process led to the assignment of an ex-aequo award to two papers, namely “Aczel-Mendler
Bisimulations in a Regular Category” by Jérémy Dubut, and “Fractals from Regular Beha-
viours” by Todd Schmid, Victoria Noquez, Lawrence S. Moss. It was instead the duty of the
audience to select the Best Talk. This has been awarded to Dario Stein for his presentation of
the paper “A Category for Unifying Gaussian Probability and Nondeterminism”, coauthored
with Richard Samuelson. Our warmest congratulations to the authors!
10th Conference on Algebra and Coalgebra in Computer Science (CALCO 2023).
Editors: Paolo Baldan and Valeria de Paiva

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:viii Preface

We would also like to extend our warm thanks to the local organiser, Larry Moss, for his
tireless support throughout all phases of the organization, despite the challenges of managing
a hybrid conference. We are grateful to Thorsten Wißmann, who served as the publicity chair,
as well as Stefan Milius and Alexandra Silva, the former and current chairs of the CALCO
steering committee. Additionally, we greatly benefited from the expertise and guidance
of Fabio Gadducci and Alexandra Silva, chairs of the previous CALCO edition. Our last
acknowledgement goes to Michael Wagner and the LIPIcs team, who provided continuous,
accurate and friendly support in the production of these proceedings.

Paolo Baldan and Valeria de Paiva

Conference Organization

Programme Committee

Andreas Abel (Gothenburg University)
Natasha Alechina (Utrecht University)
Giorgio Bacci (Aalborg University)
Paolo Baldan (University of Padua)
Nicolas Behr (CNRS Université Paris Cité)
Georgiana Caltais (University of Twente)
Valentina Castiglioni (Reykjavik University)
Vincenzo Ciancia (Consiglio Nazionale delle Ricerche, Pisa)
Thomas Colcombet (CNRS, IRIF, Université de Paris)
Valeria de Paiva (Topos Institute, Berkeley)
Martin Escardo (University of Birmingham)
Fabio Gadducci (University of Pisa)
Holger Giese (Hasso Plattner Institute at the University of Potsdam)
Patricia Johann (Appalachian State University)
Michael Johnson (Macquarie University)
Sara Kalvala (University of Warwick)
Shin-Ya Katsumata (National Institute of Informatics, Tokyo)
Sandra Kiefer (University of Oxford)
Aleks Kissinger (University of Oxford)
Sławomir Lasota (University of Warsaw)
Carlos Gustavo Lopez Pombo (University of Buenos Aires)
Peter Ölveczky (University of Oslo)
Fernando Orejas (Universitat Politècnica de Catalunya)
Mehrnoosh Sadrzadeh (University College London)
Peter Selinger (Dalhousie University)
Ionut Tutu (Simion Stoilow Institute of Mathematics of the Romanian Academy)
Henning Urbat (FAU Erlangen-Nürnberg)
Tarmo Uustalu (Reykjavik University)
Thorsten Wißmann (FAU Erlangen-Nürnberg)

Program Committee Chairs

Paolo Baldan (University of Padua)
Valeria de Paiva (Topos Institute, Berkeley)

Additional reviewers

Christian Adriano
Benedikt Ahrens
Quentin Aristote
Laura Bussi
Pierre Cagne
Kostia Chardonnet

10th Conference on Algebra and Coalgebra in Computer Science (CALCO 2023).
Editors: Paolo Baldan and Valeria de Paiva

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:x Conference Organization

Alessandro Di Giorgio
David Gabelaia
Bart Jacobs
Prabhat Jha
Radu Mardare
Hernan Melgratti
Stefan Milius
Joshua Moerman
Nima Motamed
Renato Neves
Lê Thành Dũng Nguyễn
Cécilia Pradic
Exequiel Rivas
Sven Schneider
Sven Schneider
Davide Trotta
Niccolò Veltri
Kazuki Watanabe
Stefan Zetzsche

Integrating Cost and Behavior in Type Theory
Robert Harper #

Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA

Abstract
The computational view of intuitionistic dependent type theory is as an intrinsic logic of (functional)
programs in which types are viewed as specifications of their behavior. Equational reasoning is
particularly relevant in the functional case, where correctness can be formulated as equality between
two implementations of the same behavior. Besides behavior, it is also important to specify and
verify the cost of programs, measured in terms of their resource usage, with respect to both sequential
and parallel evaluation. Although program cost can – and has been – verified in type theory using
an extrinsic formulation of programs as data objects, what we seek here is, instead, an intrinsic
account within type theory itself.

In this talk we discuss Calf, the Cost-Aware Logical Framework, which is an extension of
dependent call-by-push-value type theory that provides an intrinsic account of both parallel and
sequential resource usage for a variety of problem-specific measures of cost. Thus, for example, it is
possible to prove that insertion sort and merge sort are equal as regards behavior, but differ in terms
of the number of comparisons required to achieve the same results. But how can equal functions
have different cost? To provide an intrinsic account of both intensional and extensional properties
of programs, we make use of Sterling’s notion of Synthetic Tait Computability, a generalization of
Tait’s method originally developed for the study of higher type theory.

In STC the concept of a “phase” plays a central role: originally as the distinction between
the syntactic and semantic aspects of a computability structure, but more recently applied to the
formulation of type theories for program modules and for information flow properties of programs.
In Calf we distinguish two phases, the intensional and extensional, which differ as regards the
significance of cost accounting – extensionally it is neglected, intensionally it is of paramount
importance. Thus, in the extensional phase insertion sort and merge sort are equal, but in the
intensional phase they are distinct, and indeed one is proved to have optimal behavior as regards
comparisons, and the other not. Importantly, both phases are needed in a cost verification – the
proof of the complexity of an algorithm usually relies on aspects of its correctness.

We will provide an overview of Calf itself, and of its application in the verification of the cost
and behavior of a variety of programs. So far we have been able to verify cost bounds on Euclid’s
Algorithm, amortized bounds on batched queues, parallel cost bounds on a joinable form of red-black
trees, and the equivalence and cost of the aforementioned sorting methods. In a companion paper at
this meeting Grodin and I develop an account of amortization that relates the standard inductive
view of instruction seequences with the coinductive view of data structures characterized by the
same operations. In ongoing work we are extending the base of verified deterministic algorithms to
those taught in the undergraduate parallel algorithms course at Carnegie Mellon, and are extending
Calf itself to account for probabilistic methods, which are also used in that course.

(This talk represents joint work with Yue Niu, Harrison Grodin, and Jon Sterling.)

2012 ACM Subject Classification Theory of computation → Type theory; Theory of computation
→ Design and analysis of algorithms; Theory of computation → Logic and verification

Keywords and phrases type theory, analysis of algorithms, program verification

Digital Object Identifier 10.4230/LIPIcs.CALCO.2023.1

Category Invited Talk

Related Version ACM POPL 2022 : https://doi.org/10.1145/3498670

Supplementary Material Software: https://github.com/jonsterling/agda-calf
archived at swh:1:dir:790153bb2b1e4c1fa942283307af0ebe070d14a8

© Robert Harper;
licensed under Creative Commons License CC-BY 4.0

10th Conference on Algebra and Coalgebra in Computer Science (CALCO 2023).
Editors: Paolo Baldan and Valeria de Paiva; Article No. 1; pp. 1:1–1:2

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rwh@cs.cmu.edu
https://orcid.org/0000-0002-9400-2941
https://doi.org/10.4230/LIPIcs.CALCO.2023.1
https://doi.org/10.1145/3498670
https://github.com/jonsterling/agda-calf
https://archive.softwareheritage.org/swh:1:dir:790153bb2b1e4c1fa942283307af0ebe070d14a8;origin=https://github.com/jonsterling/agda-calf;visit=swh:1:snp:e83490152f6c3f626353a695b949262671372886;anchor=swh:1:rev:2d6d3fceb413fcc57cedd1b0ca66b70324a65a0b
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 Integrating Cost and Behavior in Type Theory

Funding This research was sponsored by the Air Force Office of Scientific Research (AFOSR)
under award number A210038S0002 and the National Science Foundation under award number
CCF1901381. The views and conclusions contained in this document are those of the author and
should not be interpreted as representing the official policies, either expressed or implied, of any
sponsoring institution, the U.S. government or any other entity.

Local Completeness for Program Correctness and
Incorrectness
Roberto Bruni # Ñ

Computer Science Department, University of Pisa, Italy

Abstract
Program correctness techniques aim to prove the absence of bugs, but can yield false alarms because
they tend to over-approximate program semantics. Vice versa, program incorrectness methods are
aimed to detect true bugs, without false alarms, but cannot be used to prove correctness, because they
under-approximate program semantics. In this invited talk we will overview our ongoing research on
the use of the abstract interpretation framework to combine under- and over-approximation in the
same analysis and distill a logic for program correctness and incorrectness.

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of
computation → Programming logic; Theory of computation → Hoare logic; Theory of computation
→ Abstraction

Keywords and phrases Program analysis, program verification, Hoare logic, incorrectness logic,
abstract interpretation, local completeness

Digital Object Identifier 10.4230/LIPIcs.CALCO.2023.2

Category Invited Talk

Funding Research supported by Italian MIUR PRIN2017 project no. 201784YSZ5 “AnalysiS of
PRogram Analyses (ASPRA)”, INdAM – GNCS Project, code no. CUP_E53C22001930001 and by
a Meta research gift.

1 Extended abstract

Floyd-Hoare logic for program correctness [12, 13] was an eye-opening contribution to the
use of over-approximation in program verification aimed to prove the absence of errors.
From the perspective of programmers, the benefit of the feedback provided by program
correctness analyses within the software development ecosystem is appreciated if warnings
are reported early and truly [11]. The use of over-approximation is necessary to make the
correctness problem tractable and to develop automatic tools, but inevitably it introduces
some imprecision. As a consequence verification tools can produce false alarms, i.e., potential
errors that are reported by the analysis but that do not correspond to any execution.

Possibly inspired by the consequence rule of Reverse Hoare logic [10], Peter O’Hearn’s
recent studies on the use of under-approximation in program analysis have led to the
definition of a logic for program incorrectness [17, 18, 19, 16, 14], which, dualising the
over-approximation approach of Hoare logic, can be used to exhibit the presence of errors,
without false alarms, but not for proving program correctness.

In this talk we will overview our ongoing research [3, 5, 4, 1, 6, 15, 2] on the use of the
abstract interpretation framework [8, 9, 7] to combine under- and over-approximation in
the same analysis and distill a logic for program correctness and incorrectness. Any triple
provable in the logic can be used either to guarantee the correctness of the program or to
expose some (true) errors. A key role is played by the notion of locally complete abstraction
that provides the necessary proof obligations in logic derivations. Notably different abstract
domains can be combined in the same derivation and the logic can be instantiated to different
settings, like imperative programming languages and strategy languages for rewrite systems.

© Roberto Bruni;
licensed under Creative Commons License CC-BY 4.0

10th Conference on Algebra and Coalgebra in Computer Science (CALCO 2023).
Editors: Paolo Baldan and Valeria de Paiva; Article No. 2; pp. 2:1–2:2

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:roberto.bruni@unipi.it
http://www.di.unipi.it/~bruni
https://orcid.org/0000-0002-7771-4154
https://doi.org/10.4230/LIPIcs.CALCO.2023.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Local Completeness for Program Correctness and Incorrectness

References
1 Flavio Ascari, Roberto Bruni, and Roberta Gori. Limits and difficulties in the design of

under-approximation abstract domains. In Proc. of FOSSACS 2022, volume 13242 of LNCS,
pages 21–39. Springer, 2022. doi:10.1007/978-3-030-99253-8_2.

2 Flavio Ascari, Roberto Bruni, and Roberta Gori. Logics for extensional, locally complete
analysis via domain refinements. In Proc. of ESOP 2023, volume 13990 of LNCS, pages 1–27.
Springer, 2023. doi:10.1007/978-3-031-30044-8_1.

3 Roberto Bruni, Roberto Giacobazzi, Roberta Gori, and Francesco Ranzato. A logic for locally
complete abstract interpretations. In Proc. of LICS 2021, Distinguished Paper, pages 1–13.
IEEE, 2021. doi:10.1109/LICS52264.2021.9470608.

4 Roberto Bruni, Roberto Giacobazzi, Roberta Gori, and Francesco Ranzato. Abstract interpret-
ation repair. In Proc. of PLDI’22, pages 426–441. ACM, 2022. doi:10.1145/3519939.3523453.

5 Roberto Bruni, Roberto Giacobazzi, Roberta Gori, and Francesco Ranzato. A correctness and
incorrectness program logic. J. ACM, 70(2):15:1–15:45, 2023. doi:10.1145/3582267.

6 Marco Campion, Mila Dalla Preda, and Roberto Giacobazzi. Partial (in)completeness in
abstract interpretation: limiting the imprecision in program analysis. Proc. ACM Program.
Lang., 6(POPL):1–31, 2022. doi:10.1145/3498721.

7 Patrick Cousot. Principles of Abstract Interpretation. MIT Press, 2021.
8 Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In Proc. of POPL 1977,
pages 238–252. ACM, 1977. doi:10.1145/512950.512973.

9 Patrick Cousot and Radhia Cousot. Systematic design of program analysis frameworks. In
Proc. ACM POPL 1979, pages 269–282. ACM, 1979. doi:10.1145/567752.567778.

10 Edsko de Vries and Vasileios Koutavas. Reverse Hoare logic. In Proc. of SEFM 2011, pages
155–171. Springer Berlin Heidelberg, 2011. doi:10.1007/978-3-642-24690-6_12.

11 Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W. O’Hearn. Scaling static
analyses at Facebook. Commun. ACM, 62(8):62–70, 2019. doi:10.1145/3338112.

12 Robert W. Floyd. Assigning meanings to programs. Proceedings of Symposium on Applied
Mathematics, 19:19–32, 1967.

13 C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12(10):576–
580, October 1969. doi:10.1145/363235.363259.

14 Quang Loc Le, Azalea Raad, Jules Villard, Josh Berdine, Derek Dreyer, and Peter W. O’Hearn.
Finding real bugs in big programs with incorrectness logic. Proc. ACM Program. Lang.,
6(OOPSLA1):1–27, 2022. doi:10.1145/3527325.

15 Marco Milanese and Francesco Ranzato. Local completeness logic on Kleene algebra with
tests. In Proc. of SAS 2022, volume 13790 of LNCS, pages 350–371. Springer, 2022. doi:
10.1007/978-3-031-22308-2_16.

16 Bernhard Möller, Peter W. O’Hearn, and Tony Hoare. On algebra of program correctness and
incorrectness. In Proc. of RAMiCS 2021, volume 13027 of LNCS, pages 325–343. Springer,
2021. doi:10.1007/978-3-030-88701-8_20.

17 Peter W. O’Hearn. Incorrectness logic. Proc. ACM Program. Lang., 4(POPL):10:1–10:32,
2020. doi:10.1145/3371078.

18 Azalea Raad, Josh Berdine, Hoang-Hai Dang, Derek Dreyer, Peter W. O’Hearn, and Jules
Villard. Local reasoning about the presence of bugs: Incorrectness separation logic. In
Proc. of CAV 2020, Part II, volume 12225 of LNCS, pages 225–252. Springer, 2020. doi:
10.1007/978-3-030-53291-8_14.

19 Azalea Raad, Josh Berdine, Derek Dreyer, and Peter W. O’Hearn. Concurrent incorrectness
separation logic. Proc. ACM Program. Lang., 6(POPL):1–29, 2022. doi:10.1145/3498695.

https://doi.org/10.1007/978-3-030-99253-8_2
https://doi.org/10.1007/978-3-031-30044-8_1
https://doi.org/10.1109/LICS52264.2021.9470608
https://doi.org/10.1145/3519939.3523453
https://doi.org/10.1145/3582267
https://doi.org/10.1145/3498721
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/567752.567778
https://doi.org/10.1007/978-3-642-24690-6_12
https://doi.org/10.1145/3338112
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/3527325
https://doi.org/10.1007/978-3-031-22308-2_16
https://doi.org/10.1007/978-3-031-22308-2_16
https://doi.org/10.1007/978-3-030-88701-8_20
https://doi.org/10.1145/3371078
https://doi.org/10.1007/978-3-030-53291-8_14
https://doi.org/10.1007/978-3-030-53291-8_14
https://doi.org/10.1145/3498695

A Tour on Ecumenical Systems
Elaine Pimentel # Ñ

Department of Computer Science, University College London, UK

Luiz Carlos Pereira #

Department of Philosophy, UERJ, Brazil

Abstract
Ecumenism can be understood as a pursuit of unity, where diverse thoughts, ideas, or points of
view coexist harmoniously. In logic, ecumenical systems refer, in a broad sense, to proof systems for
combining logics. One captivating area of research over the past few decades has been the exploration
of seamlessly merging classical and intuitionistic connectives, allowing them to coexist peacefully.
In this paper, we will embark on a journey through ecumenical systems, drawing inspiration from
Prawitz’ seminal work [35]. We will begin by elucidating Prawitz’ concept of “ecumenism” and
present a pure sequent calculus version of his system. Building upon this foundation, we will expand
our discussion to incorporate alethic modalities, leveraging Simpson’s meta-logical characterization.
This will enable us to propose several proof systems for ecumenical modal logics. We will conclude
our tour with some discussion towards a term calculus proposal for the implicational propositional
fragment of the ecumenical logic, the quest of automation using a framework based in rewriting
logic, and an ecumenical view of proof-theoretic semantics.

2012 ACM Subject Classification Theory of computation → Proof theory; Theory of computation →
Modal and temporal logics; Theory of computation → Logic and verification; Theory of computation
→ Type theory

Keywords and phrases Intuitionistic logic, classical logic, modal logic, ecumenical systems, proof
theory

Digital Object Identifier 10.4230/LIPIcs.CALCO.2023.3

Category Invited Talk

Funding Elaine Pimentel: Pimentel has received funding from the European Union’s Horizon 2020
research and innovation programme under the Marie Skłodowska-Curie grant agreement Number
101007627.
Luiz Carlos Pereira: Pereira is supported by the following projects: CAPES/PRINT, CNPq-
313400/2021-0, and CNPq-Gaps and Gluts.

Acknowledgements We want to thank Dag Prawitz for the friendship and inspiration, and our
co-authors in this endeavour: Valeria de Paiva, Sonia Marin, Emerson Sales, Delia Kesner, Mariana
Milicich, Victor Nascimento and Carlos Olarte.

1 Introduction

What is a proof? In the context of logic and mathematics, a proof is a logical argument
that establishes the correctness of a claim based on a set of assumed axioms and definitions,
together with previously proven statements. Nevertheless, since the construction methods of
these arguments may vary, a proof that appears satisfactory to a classical logician may not
necessarily meet the criteria for an intuitionistic logician. For instance, constructive logicians
do not accept mathematical proofs that explicitly employ the principle of excluded middle.
But does this discrepancy solely pertain to proof methods? What is the real nature of this
disagreement?

© Elaine Pimentel and Luiz Carlos Pereira;
licensed under Creative Commons License CC-BY 4.0

10th Conference on Algebra and Coalgebra in Computer Science (CALCO 2023).
Editors: Paolo Baldan and Valeria de Paiva; Article No. 3; pp. 3:1–3:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:e.pimentel@ucl.ac.uk
https://sites.google.com/site/elainepimentel/
https://orcid.org/0000-0002-7113-0801
mailto:luiz@inf.puc-rio.br
https://orcid.org/0000-0003-3753-3647
https://doi.org/10.4230/LIPIcs.CALCO.2023.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 A Tour on Ecumenical Systems

According to Prawitz [35] the accuracy of an inference relies on the assigned meaning of
the logical constants, and classical and intuitionistic logicians differ in their interpretations
to some of them. The case of disjunction is central in this discussion, since asserting that

A ∨ B is valid only if it is possible to give a proof of either A or B

often claimed to be enough for determining meaning of disjunction in intuitionistic logic,
clearly does not correctly determine the meaning of the classical disjunction. In Prawitz’ view,
classical and intuitionistic logicians would also not agree on the meanings for the implication
and existential quantifier, while they would share the same view regarding conjunction,
negation, the constant for the absurd and the universal quantifier.

To explore the meanings of all these connectives collectively, Prawitz proposed an all-
encompassing language known as ecumenical logic, which codifies both classical and intu-
itionistic reasoning based on a uniform pattern of meaning explanations. In the ecumenical
language, the classical and intuitionistic constants coexist harmoniously: the subscript c is
added when denoting the classical meaning, while the subscript i represents the intuitionistic
meaning. This provides a neutral ground for the contestants, as described by Prawitz

“The classical logician is not asserting what the intuitionistic logician denies. For
instance, the classical logician asserts A ∨c ¬A to which the intuitionist does not
object; he objects to the universal validity of A ∨i ¬A, which is not asserted by the
classical logician.”

We embraced Prawitz’s agenda in a series of works, delving into various aspects of ecumenism.
In [32], we presented LE, a single-conclusion sequent calculus for Prawitz’ original natural
deduction ecumenical system. Using proof-theoretic methods, we showed that the ecumenical
entailment is intrinsically intuitionistic, but it turns classical in the presence of classical
succedents. We then produced a nested sequent version of the original sequent system
and showed all of them sound and complete with respect to (first-order extension of) the
ecumenical Kripke semantics [31]. Finally, we analysed fragments of the systems presented,
coming to well known intuitionistic calculi and a sequent system for classical logic amenable
to a treatment by goal directed proof search.

In [22], we lifted this discussion to modal logics, presenting an extension of LE with the
alethic modalities of necessity and possibility. Our proposal for ecumenical modal logics
comes in the light of Simpson’s meta-logical interpretation of modalities [40] by embedding
the expected semantical behavior of the modal operator into ecumenical first-order logic.
This resulted in a labelled ecumenical modal system, amenable for modal extensions.

It turns out that the inference rules in the systems presented in [32, 22] are not pure [11]
or separable [25], in the sense that the introduction rules for some connectives strongly depend
on the presence of negation. In [23] we presented a pure label free calculus for ecumenical
modalities, where every basic object of the calculus can be read as a formula in the language
of the logic. For that, we used nested systems [7, 16, 6, 33] with a stoup [14], together with a
new notion of polarities for ecumenical formulae.

Recently [24] all these aforementioned studies were revisited, and we started from a pure
ecumenical first-order system and naturally expanded it to the modal case. Such pure systems
allowed for a clearer notion of the meaning for connectives (including modalities), faithfully
matching Prawitz’ original intention, and the tradition of the proof-theoretic semantics’
school [38, 39].

Proof-theoretic semantics aims not only to elucidate the meaning of a logical proof, but
also to provide means for its use as a basic concept of semantic analysis. Hence while logical
ecumenism provides a medium in which meaningful interactions may occur between classical

E. Pimentel and L. C. Pereira 3:3

Intuitionistic and neutral Rules

A, B, Γ ⇒ C

A ∧ B, Γ ⇒ C
∧L

Γ ⇒ A Γ ⇒ B
Γ ⇒ A ∧ B

∧R
A, Γ ⇒ C B, Γ ⇒ C

A ∨i B, Γ ⇒ C
∨iL

Γ ⇒ Aj

Γ ⇒ A1 ∨i A2
∨iRj

A →i B, Γ ⇒ A B, Γ ⇒ C

Γ, A →i B ⇒ C
→i L

Γ, A ⇒ B

Γ ⇒ A →i B
→i R

¬A, Γ ⇒ A

¬A, Γ ⇒ ⊥ ¬L
Γ, A ⇒ ⊥
Γ ⇒ ¬A

¬R ⊥, Γ ⇒ A
⊥L

A[y/x], ∀x.A, Γ ⇒ C

∀x.A, Γ ⇒ C
∀L

Γ ⇒ A[y/x]
Γ ⇒ ∀x.A

∀R
A[y/x], Γ ⇒ C

∃ix.A, Γ ⇒ C
∃iL

Γ ⇒ A[y/x]
Γ ⇒ ∃ix.A

∃iR

Classical rules

A, Γ ⇒ ⊥ B, Γ ⇒ ⊥
A ∨c B, Γ ⇒ ⊥ ∨cL

Γ, ¬A, ¬B ⇒ ⊥
Γ ⇒ A ∨c B

∨cR
A →c B, Γ ⇒ A B, Γ ⇒ ⊥

A →c B, Γ ⇒ ⊥ →c L

Γ, A, ¬B ⇒ ⊥
Γ ⇒ A →c B

→c R
pi, Γ ⇒ ⊥
pc, Γ ⇒ ⊥ Lc

Γ, ¬pi ⇒ ⊥
Γ ⇒ pc

Rc

A[y/x], Γ ⇒ ⊥
∃cx.A, Γ ⇒ ⊥ ∃cL

Γ, ∀x.¬A ⇒ ⊥
Γ ⇒ ∃cx.A

∃cR

Initial, cut and Structural Rules

pi, Γ ⇒ pi
init

Γ ⇒ A A, Γ ⇒ C

Γ ⇒ C
cut Γ ⇒ ⊥

Γ ⇒ A
W

Figure 1 Ecumenical sequent system LE. In rules ∀R, ∃iL, ∃cL, the eigenvariable y is fresh; p is
atomic.

and intuitionistic logic, proof-theoretic semantics provides a way of clarifying what is at stake
when one accepts or denies reductio ad absurdum as a meaningful proof method. In [26] we
closed this circle, by showing how to coherently combine both approaches by providing not
only a medium in which classical and intuitionistic logics may coexist, but also one in which
classical and intuitionistic notions of proof may coexist.

Finally, building on Girard’s original idea of stoup, we presented in [30] an ecumenical
pure natural deduction system (NEp) for the propositional fragment, which seems to be a
promising step towards the proposal of a ecumenical term calculus.

In this text, we will synthesise the main aspects of the op. cit., thus providing a tour on
ecumenical systems inspired by Prawitz seminal work [35].

2 Ecumenical systems

In [35] Dag Prawitz proposed a natural deduction system where classical and intuitionistic
logics could coexist in peace. The language L used for ecumenical systems is described as
follows. We will use a subscript c for the classical meaning and i for the intuitionistic one,
dropping such subscripts when formulae/connectives can have either meaning.

Classical and intuitionistic n-ary predicate symbols (pc, pi, . . .) co-exist in L but have
different meanings. The neutral logical connectives {⊥, ¬, ∧, ∀} are common for classical and
intuitionistic fragments, while {→i, ∨i, ∃i} and {→c, ∨c, ∃c} are restricted to intuitionistic
and classical interpretations, respectively.

In [32] we presented the system LE (Figure 1), the sequent counterpart of Prawitz’ natural
deduction system. Sequents are build over L-formulae, and have the form Γ ⇒ A, where
Γ is a multiset. Moving from natural deduction to sequent systems allowed us to carefully
analyse the ecumenical notion of entailment.

CALCO 2023

3:4 A Tour on Ecumenical Systems

Denoting by ⊢S A the fact that the formula A is a theorem in the proof system S, we
showed that the ecumenical entailment Γ ⇒ A is intrinsically intuitionistic, in the following
sense.

▶ Theorem 1. Let Γ, A be a multiset of ecumenical formulae. Then Γ ⇒ A is provable in
the system LE iff ⊢LE

∧
Γ →i A

But when A is classical, that is, built from classical atomic predicates using only the
connectives: →c, ∨c, ∃c, ¬, ∧, ∀ and the unit ⊥, then entailments can be read classically.

▶ Theorem 2. Let Ac be a classical formula and Γ be a multiset of ecumenical formulae.
Then

⊢LE
∧

Γ →c Ac iff ⊢LE
∧

Γ →i Ac.

This justifies the ecumenical view of entailments in Prawitz’s original proposal.
In [32] the system LE was presented also in a nested sequent version, and all the systems

were shown sound and complete w.r.t. (the first-order extension of) the ecumenical Kripke
semantics in [31]. Finally, in that work we analysed several fragments of the systems
presented.

3 The quest for purity

Although being a powerful tool for describing proof-theoretical properties of Prawitz’ ecu-
menical logic, LE is not satisfactory as a logical system since it is not pure [11]: the definition
of classical connectives depend on other connectives. For example, introducing ∃c on the
right depends on the presence of negation and the universal quantifier.

One way of purifying systems is by introducing the notion of polarities. As in linear
logic [13], it is possible to polarise formulae [1] into positive and negative in both classical [14,
18] and intuitionistic [19] logics, where the application of rules is determined by the polarity
of the active formula.

The choice of polarization of formulae may vary from system to system, though, as it
depends on their intended behaviour. The following rules for the conjunction of positive/neg-
ative formulae, represented by P, Q and N, M respectively, are characteristic examples of
the use of polarities in sequent systems

Γ1 ⇒ ∆1, P Γ2 ⇒ ∆2, Q

Γ1, Γ2 ⇒ ∆1, ∆2, P ∧ Q
∧P

Γ ⇒ ∆, N Γ ⇒ ∆, M

Γ ⇒ ∆, M ∧ N
∧N

In this case, polarities determine the multiplicative/additive behaviour of the rules for
conjunction.

Another way of controlling rule applications is by separating the contexts into bins. For
example, sequents may be restricted for having the form Γ ⇒ ∆; Σ, where Γ, ∆, Σ represent
sets or multisets of formulae, and the stoup Σ is limited to containing at most one formula.
In such systems, it is common that the active formula in the conclusion of a rule is placed in
the stoup.

Usually, in sequent systems polarities and stoup come together. Structural rules then
control the movement of formulae in derivations, as in the following decision and store rules

Γ ⇒ ∆; P

Γ ⇒ ∆, P ; · D
Γ ⇒ ∆, N ; ·
Γ ⇒ ∆; N

store

E. Pimentel and L. C. Pereira 3:5

On a bottom-up reading of these rules, while in D positive formulae can be chosen to be
“focused on”, in store negative formulae are stored in the classical context. This often enables
for a two-phase proof construction, where the focused formula P is systematically decomposed
until reaching a leaf or a negative sub-formula N . In this last case, focusing is lost and N is
stored, allowing for the beginning of a new focused phase.

Finally, in sequent systems combining polarities and stoup the cut rule can assume
different forms, depending on the polarity or the placement of the cut-formula (or both).
The following are typical examples of positive and negative cut rules.

Γ1 ⇒ ∆1; P P, Γ2 ⇒ ∆2; Σ
Γ1, Γ2 ⇒ ∆1, ∆2; Σ

cutP
Γ1 ⇒ ∆1, N ; · N, Γ2 ⇒ ∆2; Σ

Γ1, Γ2 ⇒ ∆1, ∆2; Σ
cutN

In [24] we made use of polarities and stoups for proposing the pure ecumenical first-order
sequent system LCE. Sequents with a stoup in LCE are built over L-formulae and have the
form Γ ⇒ ∆; Σ. Intuitionistic formulae are positive and dealt in the stoup, while classical
formulae are negative and their rules are handled by the classical context ∆.

The following states that LCE is correct and complete w.r.t. LE.

▶ Theorem 3. The sequent Γ ⇒ ∆; Σ is provable in LCE iff Γ, ¬∆ ⇒ Σ is provable in LE.

Moreover, it shows that a formula in the classical context actually corresponds to its
negated version in the left context. This is justified by the fact that if Ac is classical, then
⊢LE Γ, ¬Ac ⇒ ⊥ iff ⊢LE Γ ⇒ Ac

1.
Moving now to the natural deduction setting, in [30] we gave an ecumenical view to

Parigot’s natural deduction stoup mechanism [29]. This allowed the definition of the pure
harmonic natural deduction system NEp (depicted in Figure 2) for the propositional fragment
of Prawitz’ ecumenical logic.

While polarities are not considered in NEp, the stoup controls the shape of derivations.
The inference rules manipulate stoups with a context, which are expressions of the form ∆; Σ,
extensions of natural deduction formulae where Σ is the stoup and ∆ is its accompanying
context (similar to alternatives in [36]).

As a derivation example, the following version of Peirce’s Law is provable in NEp.

[·; ((A →c B) →c A)]3

[·; A]1
D

A; · WcA, B; ·
1 →c-int

A; (A →c B)
[·; A]2

D
A; ·

2 →c-elim
A, A; ·

C
A; ·

3 →c-int
·; (((A →c B) →c A) →c A)

More interestingly, any sequent of the form (((A →j B) →k A) →c A) with j, k ∈ {i, c} is
provable in NEp. That is, provability is maintained if the outermost implication is classical.

NEp’s normalisation procedure is really interesting, since the presence of stoups enables
two kinds of compositions on derivations: in the stoup or in the classical context (see [30] for
the details). This reflects, in the natural deduction setting, the two forms of cut for sequent
systems with stoup shown above.

1 Actually the “if” part is valid for any ecumenical formula.

CALCO 2023

3:6 A Tour on Ecumenical Systems

Intuitionistic and neutral Rules

Γ [·; A]
Π

∆; B →i-int
∆; A → B

Γ1
Π1

∆1; A →i B

Γ2
Π2

∆2; A
→i-elim∆1, ∆2; B

Γ
Π

∆; Ai ∨i-int
∆; A1 ∨i A2

Γ1
Π1

∆1; A ∨i B

[·; A] Γ2

Π2

∆2; Σ

[·; B] Γ3

Π3

∆3; Σ
∨i-elim∆1, ∆2, ∆3; Σ

Classical rules

[·; A] Γ
Π

∆, B; · →c-int
∆; A →c B

Γ1
Π1

∆1; A →c B

Γ2
Π2

∆2; A

[·; B] Γ3

Π3

∆3; ·
→c-elim∆1, ∆2, ∆3; ·

Γ
Π

∆, A, B; · ∨c-int
∆; A ∨c B

Γ1
Π1

∆1; A ∨c B

[·; A] Γ2

Π2

∆2; ·

[·; B] Γ3

Π3

∆3; ·
∨c-elim∆1, ∆2, ∆3; ·

Hypothesis formation and structural rules

·; A

Γ
Π

∆; A
D∆, A; ·

Γ
Π

∆; · Wi∆; A

Γ
Π

∆; Σ Wc∆, A; Σ

Γ
Π

∆, A, A; Σ
C∆, A; Σ

Figure 2 Ecumenical natural deduction system with stoup NEp.

The design of the proof system is not only a matter of taste: it also allows for adequate
proposals for extensions and/or applications. As an example, in [29] Parigot shows that, when
trying to establish a link between control operators and classical constructs, a satisfactory
notion of reduction for usual natural deduction (with the classical absurdity rule [34]) is hard
to achieve. According to him

“The difficulties met in trying to use ¬¬A → A (or the classical absurdity rule) as a
type for control operators is not really due to classical logic, but much more to the
deduction system in which it is expressed. It is not easy to find a satisfactory notion
of reduction in usual natural deduction because of the restriction to one conclusion
which forbids the most natural transformations of proofs (they often generate proofs
with more than one conclusion). Of course, as a by-product of our work, we can get
possible adequate reductions for usual natural deduction, but none of them can be
called “the” canonical one.”

Parigot’s solution for tackling the subject reduction problem was exactly to adopt a system
with stoup, where the double negated formulae are stored in the classical context. This
served as inspiration to the ongoing work on an ecumenical term calculus, where the λµ

internalization of stoups and the continuation-passing aspect of general rules [37] are naturally
mixed together.

E. Pimentel and L. C. Pereira 3:7

On the other hand, the use of polarities and stoup in the sequent setting not only allows
for a better proof theoretic view of Prawitz’ original proposal, but it also serves as a solid
ground for smoothly accommodating modalities [24].

4 Ecumenical modalities

In [22] we lifted the discussion about ecumenism to modal logics, by presenting an extension
of EL with the alethic modalities of necessity and possibility. On doing so, there were many
choices to be made and many relevant questions to be asked, e.g.: what is the ecumenical
interpretation of ecumenical modalities? Should we add classical, intuitionistic, or neutral
versions for modal connectives? We proposed an answer for these questions in the light of
Simpson’s meta-logical interpretation of modalities [40] by embedding the expected semantical
behavior of the modal operator into the ecumenical first order logic.

Formally, the language of (propositional, normal) modal formulae consists of the proposi-
tional fragment of the classical language enhanced with the unary modal operators □ and
✸ concerning necessity and possibility, respectively [2]. Given a variable x, we recall the
standard translation [·]x from modal formulae into first-order formulae with at most one free
variable, x, as follows: if p is atomic, then [p]x = p(x); [⊥]x = ⊥; for any binary connective
⋆, [A ⋆ B]x = [A]x ⋆ [B]x; for the modal connectives

[□A]x = ∀y(R(x, y) → [A]y) [✸A]x = ∃y(R(x, y) ∧ [A]y)

where R(x, y) is a binary predicate. R(x, y) then represents the accessibility relation R in a
Kripke frame.

A (object-)modal logic OL is then characterized by the respective interpretation of the
modal model in the meta-theory ML (called meta-logical characterization [40]) as follows

⊢OL A iff ⊢ML ∀x.[A]x

Hence, if ML is classical logic (CL), the former definition characterizes the classical modal
logic K [2], while if it is intuitionistic logic (IL), then it characterizes the intuitionistic modal
logic IK [40]. In [22], we adopted EL as the meta-theory, hence characterizing the ecumenical
modal logic EK.

The ecumenical translation [·]ex from propositional ecumenical formulae into LE is defined
in the same way as the modal translation [·]x. For the case of modal connectives, observe
that, due to Theorem 1, the interpretation of ecumenical consequence should be essentially
intuitionistic. This implies that the box modality is a neutral connective. The diamond, on
the other hand, has two possible interpretations: classical and intuitionistic, since its leading
connective is an existential quantifier. Hence we should have the ecumenical modalities:
□,✸i,✸c, determined by the translations

[□A]ex = ∀y(R(x, y) →i [A]ey)

[✸iA]ex = ∃iy(R(x, y) ∧ [A]ey) [✸cA]ex = ∃cy(R(x, y) ∧ [A]ey)

Setting LM as the ecumenical modal language (that is, built from L with ecumenical
modalities), the translation above naturally induces the labelled language LL of labelled
modal formulae, determined by labelled formulae of the form x : A with A ∈ LM and
relational atoms of the form xRy, where x, y range over a set of variables.

In [22] we proposed a non-pure labelled calculus for ecumenical modal logic. In [24] we
achieved purity, as expected, by using polarities and sequents with stoup. Labelled sequents
with stoup have the form Γ ⇒ ∆; x : A, where Γ is a multiset containing labelled modal

CALCO 2023

3:8 A Tour on Ecumenical Systems

formulae and relational atoms, and ∆ is a multiset containing labelled modal formulae. The
notion of polarities can be lifted from LCE to modalities smoothly, both for labelled and
non-labelled calculi. In the former, relational atoms are not polarizable.

In Figure 3 we present the pure, labelled ecumenical modal system labEK [24]. Observe
that

⊢labEK x : ✸cA ↔i x : ¬□¬A

On the other hand, □ and ✸i are not inter-definable. However, if Ac is classical, then

⊢labEK x : □Ac ↔i x : ¬✸c¬Ac

This means that, when restricted to the classical fragment, □ and ✸c are duals. This reflects
well the ecumenical nature of the defined modalities.

We conclude this section by showing the delicate line separating ecumenical and classical
systems. We show how even slight alterations within ecumenical systems can lead to their
eventual breakdown and a collapse into the classical framework.

The first example is valid for first-order and modal cases (see [24]).

▶ Example 4. If the cut rule

Γ ⇒ ∆, x : A; Π∗ x : A, Γ ⇒ ∆; Π
Γ ⇒ ∆; Π cut

was admissible in labEK for an arbitrary formula A, then · ⇒ ·; x : A ∨i ¬A would have the
proof

x : A ⇒ x : A ∨i ¬A; x : A
initi

x : A ⇒ x : A ∨i ¬A; x : A ∨i ¬A
∨i

x : A ⇒ x : A ∨i ¬A; · D

· ⇒ x : A ∨i ¬A; ¬A
¬R

· ⇒ x : A ∨i ¬A; x : A ∨i ¬A
∨i

· ⇒ x : A ∨i ¬A; · D
x : A ∨i ¬A, Γ ⇒ ·; x : A ∨i ¬A

initi

· ⇒ ·; x : A ∨i ¬A
cut

Remember that x : A ∨i ¬A is positive, hence it can not be the cut-formula in cutN .

The second interesting example regards extensions of the modal logic EK, which can be
defined by adding extra modal axioms. Many of such axioms can be specified as formulas in
first-order logic. For example, in the ecumenical setting, the axiom T : □A →i A∧A →i ✸iA

is specified by the first-order formula ∀x.R(x, x), which corresponds to the rule2

xRx, Γ ⇒ ∆; Π
Γ ⇒ ∆; Π T

The addition of T to EK yields the system EKT [22]. The next example shows that adding
the axiom ¬✸i¬A →i ✷A to EKT has a disastrous propositional consequence.

2 See [21] for a general framework using polarities and focusing for transforming axioms into rules in the
first-order setting and [40, 43, 27] for other seminal works on the subject.

E. Pimentel and L. C. Pereira 3:9

▶ Example 5. The following is a derivation of x : A ∨i ¬A in EKT, assuming ¬✸i¬A →i ✷A

as an axiom3

xRy, y : A, y : ¬(A ∨i ¬A) ⇒ ·; y : A
init

xRy, y : A, y : ¬(A ∨i ¬A) ⇒ ·; y : ⊥
¬L, ∨iR1

xRy, y : ¬(A ∨i ¬A) ⇒ ·; x : ⊥
¬L, ∨iR2, ¬R

x : ✸i¬(A ∨i ¬A) ⇒ ·; x : ⊥
✸iL

⇒ ·; x : ¬✸i¬(A ∨i ¬A) ¬R

⇒ ·; x : ✷(A ∨i ¬A)
eq

xRx, x : (A ∨i ¬A) ⇒ ·; x : A ∨i ¬A
init

xRx, x : ✷(A ∨i ¬A) ⇒ ·; x : A ∨i ¬A
✷L

x : ✷(A ∨i ¬A) ⇒ ·; x : A ∨i ¬A
T

⇒ ·; x : A ∨i ¬A
cutP

where eq represents the proof steps of the substitution of a boxed formula for its diamond
version.4 That is, if ✷ and ✸i are inter-definable, then A ∨i ¬A is a theorem and EKT
collapses to classical KT.

4.1 A nested system for ecumenical modal logic

In [23] we went one step ahead and proposed a pure label free calculus for ecumenical
modalities, where every basic object of the calculus can be read as a formula in the language
of the logic. The price to pay for getting rid of labels was having to extend sequent systems
with nestings [7, 16, 6, 33].

This not only allowed for establishing the meaning of modalities via the rules that
determine their correct use (logical inferentialism [5]), but it also places ecumenical systems
as a unifying framework for modalities of which well known modal systems are fragments.

We shall briefly describe the general idea behind a pure label free calculus for ecumenical
modalities. First of all, inspired by [41], we adopt the following notation for (one-sided)
sequents with stoup:

formulae in the left context Γ (left inputs) will be marked with a full circle •;
formulae in the classical right context ∆ (right inputs) will be marked with a triangle ▽;
the formula in the stoup Σ (right output) will be marked with a white circle ◦.

Hence, for example, the sequent with stoup C ∧ D ⇒ ✸cA; ¬B will be written as C ∧
D•,✸cA▽, ¬B◦.

Second, we substitute labels for nestings, where a single sequent is replaced with a tree of
sequents, whose nodes are multisets of formulae, with the relationship between parent and
child in the tree represented by bracketing [·].

For example, the labelled sequent with stoup xRy, xRz, z : C ∧ D ⇒ x : ✸cA; y : ¬B

corresponds to the nested sequent ✸cA▽, [¬B◦], [C ∧ D•], which in turn represents the
following tree of sequents with stoup

⇒ ·; ¬B C ∧ D ⇒ ·; ·

⇒ ✸cA; ·

3 Observe that ⊢labEK x : ✷A →i ¬✸i¬A.
4 We have presented a proof with cut for clarity, but remember that labEK has the cut-elimination

property [24].

CALCO 2023

3:10 A Tour on Ecumenical Systems

Intuitionistic and neutral Rules

Γ, x : A, x : B ⇒ ∆; Π
Γ, x : A ∧ B ⇒ ∆; Π ∧L

Γ ⇒ ∆; x : A Γ ⇒ ∆; x : B

Γ ⇒ ∆; x : A ∧ B
∧R

Γ, x : A ⇒ ∆; Π Γ, x : B ⇒ ∆; Π
Γ, x : A ∨i B ⇒ ∆; Π ∨iL

Γ ⇒ ∆; x : Aj

Γ ⇒ ∆; x : A1 ∨i A2
∨iRj

Γ, x : A →i B ⇒ ∆; x : A Γ, x : B ⇒ ∆; Π
Γ, x : A →i B ⇒ ∆; Π →i L

Γ, x : A ⇒ ∆; x : B

Γ ⇒ ∆; x : A →i B
→i R

Γ, x : ¬A ⇒ ∆; x : A

Γ, x : ¬A ⇒ ∆; · ¬L
Γ, x : A ⇒ ∆; ·
Γ ⇒ ∆; x : ¬A

¬R

Classical Rules

Γ, x : A →c B ⇒ ∆; x : A Γ, x : B ⇒ ∆; ·
Γ, x : A →c B ⇒ ∆; · →c L

Γ, x : A ⇒ x : B, ∆; ·
Γ ⇒ x : A →c B, ∆; · →c R

Γ, x : A ⇒ ∆; · Γ, x : B ⇒ ∆; ·
Γ, x : A ∨c B ⇒ ∆; · ∨cL

Γ ⇒ x : A, x : B, ∆; ·
Γ ⇒ x : A ∨c B, ∆; · ∨cR

Γ, x : pi ⇒ ∆; ·
Γ, x : pc ⇒ ∆; · Lc

Γ ⇒ x : pi, ∆; ·
Γ ⇒ x : pc, ∆; · Rc

Modal rules

xRy, y : A, x : ✷A, Γ ⇒ ∆; Π
xRy, x : ✷A, Γ ⇒ ∆; Π □L

xRy, Γ ⇒ ∆; y : A

Γ ⇒ ∆; x : ✷A
□R

xRy, y : A, Γ ⇒ ∆; Π
x : ✸iA, Γ ⇒ ∆; Π ✸iL

xRy, Γ ⇒ ∆; y : A

xRy, Γ ⇒ ∆; x : ✸iA
✸iR

xRy, y : A, Γ ⇒ ∆; ·
x : ✸cA, Γ ⇒ ∆; · ✸cL

xRy, Γ ⇒ y : A, x : ✸cA, ∆; ·
xRy, Γ ⇒ x : ✸cA, ∆; · ✸cR

Initial, Decision and Structural Rules

Γ, x : A ⇒ ∆; x : A
initi Γ, x : A ⇒ x : A, ∆; Π initc

Γ ⇒ x : P, ∆; x : P

Γ ⇒ x : P, ∆; · D
Γ ⇒ x : N, ∆; ·
Γ ⇒ ∆; x : N

store
Γ ⇒ ∆; ·

Γ ⇒ ∆; x : A
W

Cut Rules

Γ ⇒ ∆; x : P x : P, Γ ⇒ ∆; Π
Γ ⇒ ∆; Π

cutP
Γ ⇒ ∆, x : N ; Π∗ x : N, Γ ⇒ ∆; Π

Γ ⇒ ∆; Π
cutN

Figure 3 Ecumenical pure modal labelled system labEK. In rules □R,✸iL,✸cL, the eigenvariable
y does not occur free in any formula of the conclusion; N is negative and P is positive; p is atomic;
Π∗ is either empty or some z : P ∈ ∆.

E. Pimentel and L. C. Pereira 3:11

The modal rules in nested systems then govern the transfer of (modal) formulae between
the different sequents, and they are local, in the sense that it is sufficient to transfer only one
formula at a time.

In [24] we presented the nested ecumenical modal system nEK. We will highlight next
some of its rules. Starting with modalities, the nested rules for the intuitionistic diamond are

Γ{[A•]}
Γ{✸iA

•}
✸•

i

Λ1{[A◦, Λ2]}
Λ1{✸iA

◦, [Λ2]}
✸◦

i

where Λ represents a nested context containing only input formulae5. In the worlds-as-
nestings interpretation [12], doing proof search in a system containing these rules actually
corresponds to moving bottom-up on a Kripke structure: in rule ✸•

i , assuming ✸iA in a
certain nesting (corresponding to a world, say, x) is equivalent to creating a new nesting
(corresponding to a fresh world, say, y related to x) and assuming A there (compare with
rule ✸iL in Figure 3).

Polarities determine the mobility of formulae between contexts, via the decision and store
rules.

Γ∗{P▽, P ◦}
Γ⊥◦{P▽}

D Λ{N▽, ⊥◦}
Λ{N◦} store

In a bottom-up reading, a positive formula is chosen to be “focused on” in the decision rule
D, while a negative formula in the stoup can be stored in the classical context by using the
rule store, just as described in Section 3.

Finally, the positive and negative nested versions of the cut rule are given by

Γ∗{P ◦} Γ{P •}
Γ{∅} cut◦ ΓP {N▽} Γ{N•}

Γ{∅} cut▽

where ΓP denotes that the context contains either ⊥◦ or P ◦ for some P▽ ∈ Γ. In [24] showed
that both cut rules are admissible in nEK. Moreover, nEK was shown to be sound and
complete w.r.t. an ecumenical birelational model. Since the same result holds for the labelled
system labEK, the two systems are equivalent. Finally, the op.cit. also brings a discussion
about fragments, axioms and extensions of ecumenical modal logics.

5 What is next?

There are still many paths to be traversed on this journey. We finish this text by discussing
some future ideas and presenting related work.

Computational interpretation. As mentioned at the end of Section 3, we have been
exploring the computational counterpart of the implicational fragment of the ecumenical
logic, extending the paradigm “proofs-as-programs” to ecumenical proofs. There are two main
challenges on this enterprise: (i) finding an adequate deduction system in which the classical
and intuitionistic logical behaviours can be faithfully captured in a term calculus; (ii) dealing
with general ecumenical natural deduction rules. In [30] we tackled part (i) by proposing the
ecumenical pure natural deduction system NEp, where the λµ internalization of stoups can

5 Observe that rules are applied anywhere in the nesting structure, which is represented by contexts with
a hole of the form Γ{ }.

CALCO 2023

3:12 A Tour on Ecumenical Systems

be easily adapted to the ecumenical case. Regarding, (ii), we are currently investigating the
possibility of formulating an ecumenical version of the call-by-name lambda-calculus with
generalized applications presented in [37] which integrates a notion of distant reduction that
allows to unblock β-redexes without resorting to the permutative conversions of generalized
applications.

Automated theorem proving. In [28] we developed an algorithmic-based approach for
proving inductive properties of propositional sequent systems such as admissibility, invertibil-
ity, cut-elimination, and identity expansion. The proposed algorithms are based on rewrite
and narrowing techniques. They have been fully mechanized in the L-Framework, thus
offering both proof-search algorithms and semi-decision procedures for proving theorems and
meta-theorems of several logical systems. We have started implementing the sequent-based
systems mentioned in this text in the L-Framework, proving proof-theoretic properties to
some of them. The next step is to specify nested sequent systems, which turns out to be a
real challenge.

Proof-theoretic semantics. Together with logical ecumenism, proof-theoretic semantics
[38, 39] is another approach to logic currently providing interesting contributions to the
debate concerning philosophical grounds for the validity of classical and intuitionistic logics.
While logical ecumenism proposes an unified framework in which two “rival” logics may
peacefully coexist, proof-theoretic semantics aims not only to elucidate the meaning of a
logical proof, but also to provide means for its use as a basic concept of semantic analysis.
In [26] we showed how to coherently combine both approaches by providing not only a medium
in which classical and intuitionistic logics may coexist, but also one in which classical and
intuitionistic notions of proof may coexist. We did not, however, provided a proof-theoretic
semantics for Prawitz’ original system, or any of the systems presented here – this is future
work.

Related work

Given that ecumenical systems refer, in a broad sense, to proof systems for combining logics,
the related work on this subject is extensive and encompasses numerous other works. We
will mention few which serve as reference to the present work.

Peter Krauss [17] and Gilles Dowek [10] explored the same ecumenical ideas as the ones
shown in this text. Their main motivation was mathematical: to explore the possibility
of hybrid readings of axioms and proofs in mathematical theories, i.e., the occurrences of
classical and intutionistic operators in mathematical axioms and proofs, in order to propose a
new and original method of constructivisation of classical mathematics. Krauss applied these
ideas in basic algebraic number theory and Dowek considered the example of an ecumenical
proof of a simple theorem in basic set theory.

Dowek’s original work has been further explored in [3] and [4]. In that works, a (type)
theory in λΠ-calculus modulo theory is investigated, where proofs of several logical systems
can be expressed.

Regarding proof systems, there is the seminal work of Girard in [15] and the more
recent work of Liang and Miller [18]. Their work is based on polarities and focusing, using
translations into linear logic.

A complete different approach comes from the school of combining logics [9, 20, 8], where
Hilbert like systems are built from a combination of axiomatic systems.

E. Pimentel and L. C. Pereira 3:13

Finally, we would like to cite Tesi and Negri’s work on an ecumenical approach to infinitary
logic [42], where a labelled sequent calculus combining classical and intuitionistic connectives
is proposed.

References
1 Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. J. Log. Comput.,

2(3):297–347, 1992. doi:10.1093/logcom/2.3.297.
2 Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic. Cambridge

Tracts in Theoretical Computer Science. Cambridge University Press, 2001. doi:10.1017/
CBO9781107050884.

3 Frédéric Blanqui, Gilles Dowek, Émilie Grienenberger, Gabriel Hondet, and François Thiré.
Some axioms for mathematics. In Naoki Kobayashi, editor, 6th International Conference on
Formal Structures for Computation and Deduction, FSCD 2021, July 17-24, 2021, Buenos
Aires, Argentina (Virtual Conference), volume 195 of LIPIcs, pages 20:1–20:19. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.FSCD.2021.20.

4 Frédéric Blanqui, Gilles Dowek, Émilie Grienenberger, Gabriel Hondet, and François Thiré.
A modular construction of type theories. Log. Methods Comput. Sci., 19(1), 2023. doi:
10.46298/lmcs-19(1:12)2023.

5 Robert Brandom. Articulating Reasons: An Introduction to Inferentialism. Harvard University
Press, 2000.

6 Kai Brünnler. Deep sequent systems for modal logic. Arch. Math. Log., 48:551–577, 2009.
7 Robert A. Bull. Cut elimination for propositional dynamic logic wihout *. Zeitschr. f. math.

Logik und Grundlagen d. Math., 38:85–100, 1992.
8 Carlos Caleiro and Jaime Ramos. Combining classical and intuitionistic implications.

In Boris Konev and Frank Wolter, editors, Frontiers of Combining Systems, 6th In-
ternational Symposium, FroCoS 2007, Liverpool, UK, September 10-12, 2007, Proceed-
ings, volume 4720 of Lecture Notes in Computer Science, pages 118–132. Springer, 2007.
doi:10.1007/978-3-540-74621-8_8.

9 Luis Fariñas del Cerro and Andreas Herzig. Combinig classical and intuitionistic logic, or:
Intuitionistic implication as a conditional. In Franz Baader and Klaus U. Schulz, editors,
Frontiers of Combining Systems, First International Workshop FroCoS 1996, Munich, Ger-
many, March 26-29, 1996, Proceedings, volume 3 of Applied Logic Series, pages 93–102. Kluwer
Academic Publishers, 1996.

10 Gilles Dowek. On the definition of the classical connectives and quantifiers. Why is this a
Proof?, Festschrift for Luiz Carlos Pereira, 27:228–238, 2016.

11 Michael Dummett. The Logical Basis of Metaphysics. Cambridge, Mass.: Harvard University
Press, 1991.

12 Melvin Fitting. Nested sequents for intuitionistic logics. Notre Dame Journal of Formal Logic,
55(1):41–61, 2014. doi:10.1215/00294527-2377869.

13 Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
14 Jean-Yves Girard. A new constructive logic: Classical logic. Math. Struct. Comput. Sci.,

1(3):255–296, 1991. doi:10.1017/S0960129500001328.
15 Jean-Yves Girard. On the unity of logic. Ann. Pure Appl. Logic, 59(3):201–217, 1993.

doi:10.1016/0168-0072(93)90093-S.
16 Ryo Kashima. Cut-free sequent calculi for some tense logics. Studia Logica, 53(1):119–136,

1994. doi:10.1007/BF01053026.
17 Peter Krauss. A constructive refinement of classical logic. Draft, 1992.
18 Chuck Liang and Dale Miller. A focused approach to combining logics. Ann. Pure Appl. Logic,

162(9):679–697, 2011. doi:10.1016/j.apal.2011.01.012.

CALCO 2023

https://doi.org/10.1093/logcom/2.3.297
https://doi.org/10.1017/CBO9781107050884
https://doi.org/10.1017/CBO9781107050884
https://doi.org/10.4230/LIPIcs.FSCD.2021.20
https://doi.org/10.46298/lmcs-19(1:12)2023
https://doi.org/10.46298/lmcs-19(1:12)2023
https://doi.org/10.1007/978-3-540-74621-8_8
https://doi.org/10.1215/00294527-2377869
https://doi.org/10.1017/S0960129500001328
https://doi.org/10.1016/0168-0072(93)90093-S
https://doi.org/10.1007/BF01053026
https://doi.org/10.1016/j.apal.2011.01.012

3:14 A Tour on Ecumenical Systems

19 Chuck C. Liang and Dale Miller. Focusing and polarization in intuitionistic logic. In Jacques
Duparc and Thomas A. Henzinger, editors, Computer Science Logic, 21st International
Workshop, CSL 2007, 16th Annual Conference of the EACSL, Lausanne, Switzerland, September
11-15, 2007, Proceedings, volume 4646 of Lecture Notes in Computer Science, pages 451–465.
Springer, 2007. doi:10.1007/978-3-540-74915-8_34.

20 Paqui Lucio. Structured sequent calculi for combining intuitionistic and classical first-order
logic. In Hélène Kirchner and Christophe Ringeissen, editors, Frontiers of Combining Systems,
Third International Workshop, FroCoS 2000, Nancy, France, March 22-24, 2000, Proceedings,
volume 1794 of Lecture Notes in Computer Science, pages 88–104. Springer, 2000. doi:
10.1007/10720084_7.

21 Sonia Marin, Dale Miller, Elaine Pimentel, and Marco Volpe. From axioms to synthetic
inference rules via focusing. Ann. Pure Appl. Log., 173(5):103091, 2022. doi:10.1016/j.apal.
2022.103091.

22 Sonia Marin, Luiz Carlos Pereira, Elaine Pimentel, and Emerson Sales. Ecumenical modal
logic. In DaLí 2020, volume 12569 of LNCS, pages 187–204. Springer, 2020. doi:10.1007/
978-3-030-65840-3_12.

23 Sonia Marin, Luiz Carlos Pereira, Elaine Pimentel, and Emerson Sales. A pure view of
ecumenical modalities. In Alexandra Silva, Renata Wassermann, and Ruy J. G. B. de Queiroz,
editors, Logic, Language, Information, and Computation - 27th International Workshop,
WoLLIC 2021, Virtual Event, October 5-8, 2021, Proceedings, volume 13038 of Lecture Notes
in Computer Science, pages 388–407. Springer, 2021. doi:10.1007/978-3-030-88853-4_24.

24 Sonia Marin, Luiz Carlos Pereira, Elaine Pimentel, and Emerson Sales. Separability and
harmony in ecumenical systems. CoRR, abs/2204.02076, 2022. doi:10.48550/arXiv.2204.
02076.

25 Julien Murzi. Classical harmony and separability. Erkenntnis, 85:391–415, 2020.
26 Victor Nascimento, Luiz Carlos Pereira, and Elaine Pimentel. An ecumenical view of proof-

theoretic semantics, 2023. arXiv:2306.03656.
27 Sara Negri. Proof analysis in modal logic. J. Philosophical Logic, 34(5-6):507–544, 2005.

doi:10.1007/s10992-005-2267-3.
28 Carlos Olarte, Elaine Pimentel, and Camilo Rocha. A rewriting logic approach to specification,

proof-search, and meta-proofs in sequent systems. CoRR, abs/2101.03113, 2021. arXiv:
2101.03113.

29 Michel Parigot. λµ-calculus: An algorithmic interpretation of classical natural deduction. In
LPAR: Logic Programming and Automated Reasoning, International Conference, volume 624
of LNCS, pages 190–201. Springer, 1992.

30 Luiz Carlos Pereira and Elaine Pimentel. On an ecumenical natural deduction with stoup - part
I: the propositional case. CoRR, abs/2204.02199, 2022. doi:10.48550/arXiv.2204.02199.

31 Luiz Carlos Pereira and Ricardo Oscar Rodriguez. Normalization, soundness and completeness
for the propositional fragment of Prawitz’ ecumenical system. Revista Portuguesa de Filosofia,
73(3-3):1153–1168, 2017.

32 Elaine Pimentel, Luiz Carlos Pereira, and Valeria de Paiva. An ecumenical notion of entailment.
Synthese, 198(22-S):5391–5413, 2021. doi:10.1007/s11229-019-02226-5.

33 Francesca Poggiolesi. The method of tree-hypersequents for modal propositional logic. In
Towards Mathematical Philosophy, volume 28 of Trends In Logic, pages 31–51. Springer, 2009.

34 Dag Prawitz. Natural Deduction, volume 3 of Stockholm Studies in Philosophy. Almqvist and
Wiksell, 1965.

35 Dag Prawitz. Classical versus intuitionistic logic. In Bruno Lopes Edward Hermann Haeusler,
Wagner de Campos Sanz, editor, Why is this a Proof?, Festschrift for Luiz Carlos Pereira,
volume 27, pages 15–32. College Publications, 2015.

36 Greg Restall. Speech acts & the quest for a natural account of classical proof. Available at
https://consequently.org/writing/, 2021.

https://doi.org/10.1007/978-3-540-74915-8_34
https://doi.org/10.1007/10720084_7
https://doi.org/10.1007/10720084_7
https://doi.org/10.1016/j.apal.2022.103091
https://doi.org/10.1016/j.apal.2022.103091
https://doi.org/10.1007/978-3-030-65840-3_12
https://doi.org/10.1007/978-3-030-65840-3_12
https://doi.org/10.1007/978-3-030-88853-4_24
https://doi.org/10.48550/arXiv.2204.02076
https://doi.org/10.48550/arXiv.2204.02076
https://arxiv.org/abs/2306.03656
https://doi.org/10.1007/s10992-005-2267-3
https://arxiv.org/abs/2101.03113
https://arxiv.org/abs/2101.03113
https://doi.org/10.48550/arXiv.2204.02199
https://doi.org/10.1007/s11229-019-02226-5
https://consequently.org/writing/

E. Pimentel and L. C. Pereira 3:15

37 José Espírito Santo, Delia Kesner, and Loïc Peyrot. A faithful and quantitative notion
of distant reduction for generalized applications. In Patricia Bouyer and Lutz Schröder,
editors, Foundations of Software Science and Computation Structures - 25th International
Conference, FOSSACS 2022, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings,
volume 13242 of Lecture Notes in Computer Science, pages 285–304. Springer, 2022. doi:
10.1007/978-3-030-99253-8_15.

38 Peter Schroeder-Heister. Uniform proof-theoretic semantics for logical constants (abstract).
Journal of Symbolic Logic, 56:1142, 1991.

39 Peter Schroeder-Heister. Validity concepts in proof-theoretic semantics. Synthese, 148(3):525–
571, 2006.

40 Alex K. Simpson. The Proof Theory and Semantics of Intuitionistic Modal Logic. PhD thesis,
College of Science and Engineering, School of Informatics, University of Edinburgh, 1994.

41 Lutz Straßburger. Cut elimination in nested sequents for intuitionistic modal logics. In
Proceedings of FOSSACS 2013, pages 209–224, 2013. doi:10.1007/978-3-642-37075-5_14.

42 Matteo Tesi and Sara Negri. Neighbourhood semantics and labelled calculus for intuitionistic
infinitary logic. J. Log. Comput., 31(7):1608–1639, 2021. doi:10.1093/logcom/exab040.

43 Luca Viganò. Labelled Non-Classical Logics. Kluwer Academic Publishers, 2000.

CALCO 2023

https://doi.org/10.1007/978-3-030-99253-8_15
https://doi.org/10.1007/978-3-030-99253-8_15
https://doi.org/10.1007/978-3-642-37075-5_14
https://doi.org/10.1093/logcom/exab040

The Metatheory of Gradual Typing:
State of the Art and Challenges
Jeremy G. Siek # Ñ

Computing Laboratory, Indiana University, Bloomington, IN, USA

Abstract
Gradually typed languages offer both static and dynamic checking of program invariants, from simple
properties such as type safety, to more advanced ones such as information flow control (security),
relational parametricity (theorems for free), and program correctness. To ensure that gradually
typed languages behave as expected, researchers prove theorems about their language designs. For
example, the Gradual Guarantee Theorem states that a programmer can migrate their program to
become more or less statically checked and the resulting program will behave the same (modulo
errors). As another example, the Noninterference Theorem (for information flow control) states that
high security inputs do not affect the low security outputs of a program. These theorems are often
proved using simulation arguments or via syntactic logical relations and modal logics. Sometimes
the proofs are mechanized in a proof assistant, but often they are simply written in LaTeX. However,
as researchers consider gradual languages of growing complexity, the time to conduct such proofs,
and/or the likelihood of errors in the proofs, also grows. As a result there is a need for improved
proof techniques and libraries of mechanized results that would help to streamline the development
of the metatheory of gradually typed languages.

2012 ACM Subject Classification Software and its engineering → Semantics; Theory of computation
→ Operational semantics

Keywords and phrases gradual typing, type safety, gradual guarantee, noninterference, simulation,
logical relation, mechanized metatheory

Digital Object Identifier 10.4230/LIPIcs.CALCO.2023.4

Category Invited Talk

Funding Parts of this work were funded by NSF award 1763922.

© Jeremy G. Siek;
licensed under Creative Commons License CC-BY 4.0

10th Conference on Algebra and Coalgebra in Computer Science (CALCO 2023).
Editors: Paolo Baldan and Valeria de Paiva; Article No. 4; pp. 4:1–4:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jsiek@idiana.edu
https://homes.soic.indiana.edu/jsiek/
https://orcid.org/0000-0002-9894-4856
https://doi.org/10.4230/LIPIcs.CALCO.2023.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Machine-Checked Computational Mathematics
Assia Mahboubi # Ñ

Nantes Université, École Centrale Nantes, CNRS, INRIA, LS2N, UMR 6004, F-44000 Nantes,
France
Vrije Universiteit Amsterdam, The Netherlands

Abstract
This talk shall discuss the potential impact of formal methods, and in particular, of interactive
theorem proving, on computational mathematics.

Geared with increasingly fast computer algebra libraries and scientific computing software,
computers have become amazing instruments for mathematical guesswork. In fact, computer
calculations are even sometimes used to substantiate actual reasoning steps in proofs, later published
in major venues of the mathematical literature. Yet surprisingly, little of the now standard techniques
available today for verifying critical software (e.g., cryptographic components, airborne commands,
etc.) have been applied to the programs used to produce mathematics. In this talk, we propose to
discuss this state of affairs.

2012 ACM Subject Classification Computing methodologies → Theorem proving algorithms; Theory
of computation → Type theory

Keywords and phrases Type theory, computer algebra, interactive theorem proving

Digital Object Identifier 10.4230/LIPIcs.CALCO.2023.5

Category Invited Talk

Funding This project has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (grant agreement No.
101001995).

© Assia Mahboubi;
licensed under Creative Commons License CC-BY 4.0

10th Conference on Algebra and Coalgebra in Computer Science (CALCO 2023).
Editors: Paolo Baldan and Valeria de Paiva; Article No. 5; pp. 5:1–5:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Assia.Mahboubi@inria.fr
http://people.rennes.inria.fr/Assia.Mahboubi/
https://orcid.org/0000-0002-0312-5461
https://doi.org/10.4230/LIPIcs.CALCO.2023.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Forward and Backward Steps in a Fibration
Ruben Turkenburg #

Radboud University, Nijmegen, The Netherlands

Harsh Beohar #

University of Sheffield, UK

Clemens Kupke #

Strathclyde University, Glasgow, UK

Jurriaan Rot #

Radboud University, Nijmegen, The Netherlands

Abstract
Distributive laws of various kinds occur widely in the theory of coalgebra, for instance to model
automata constructions and trace semantics, and to interpret coalgebraic modal logic. We study
steps, which are a general type of distributive law, that allow one to map coalgebras along an
adjunction. In this paper, we address the question of what such mappings do to well known notions
of equivalence, e.g., bisimilarity, behavioural equivalence, and logical equivalence.

We do this using the characterisation of such notions of equivalence as (co)inductive predicates
in a fibration. Our main contribution is the identification of conditions on the interaction between
the steps and liftings, which guarantees preservation of fixed points by the mapping of coalgebras
along the adjunction. We apply these conditions in the context of lax liftings proposed by Bonchi,
Silva, Sokolova (2021), and generalise their result on preservation of bisimilarity in the construction
of a belief state transformer. Further, we relate our results to properties of coalgebraic modal logics
including expressivity and completeness.

2012 ACM Subject Classification Theory of computation → Categorical semantics

Keywords and phrases Coalgebra, Fibration, Bisimilarity

Digital Object Identifier 10.4230/LIPIcs.CALCO.2023.6

Funding Ruben Turkenburg, Jurriaan Rot: Partially supported by the NWO grant OCENW.M20.053.
Harsh Beohar : Partially supported by the EPSRC grant EP/X019373/1.
Clemens Kupke: Partially supported by Leverhulme Trust Research Project Grant RPG-2020-232.

1 Introduction

The theory of coalgebras provides a general perspective on state-based systems, parametric
in an endofunctor which models the type of system [19]. Accordingly, many interesting
constructions on state-based systems arise as functors between categories of coalgebras.

These functors between categories of coalgebras often arise as liftings of left or right
adjoints between the underlying base categories. Such liftings are central to, for instance,
coalgebraic approaches to trace semantics and determinisation [13, 20, 33, 6, 22, 32] as well
as testing semantics and algebraic semantics of modal logics [27, 31, 5, 24, 8, 23].

A central question is how these constructions on coalgebras affect behavioural equivalence.
For instance, determinisation of automata turns a coalgebra on, e.g., the category Set of
sets and functions, into a coalgebra on the category of Eilenberg-Moore algebras for a
monad, so that the canonical notion of behavioural equivalence changes from bisimilarity to
language semantics. Subsequently, the algebraic structure may be forgotten again, turning
the determinised coalgebra back into a Set coalgebra, and this simple operation does not

© Ruben Turkenburg, Harsh Beohar, Clemens Kupke, and Jurriaan Rot;
licensed under Creative Commons License CC-BY 4.0

10th Conference on Algebra and Coalgebra in Computer Science (CALCO 2023).
Editors: Paolo Baldan and Valeria de Paiva; Article No. 6; pp. 6:1–6:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ruben.turkenburg@ru.nl
https://orcid.org/0000-0001-7336-9405
mailto:h.beohar@sheffield.ac.uk
https://orcid.org/0000-0001-5256-1334
mailto:clemens.kupke@strath.ac.uk
https://orcid.org/0000-0002-0502-391X
mailto:jrot@cs.ru.nl
https://orcid.org/0000-0002-1404-6232
https://doi.org/10.4230/LIPIcs.CALCO.2023.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Forward and Backward Steps in a Fibration

affect behavioural equivalence. But when determinisation is not given by a distributive law,
such as in the construction of belief-state transformers in [4], proving that this “forgetting”
preserves and reflects behavioural equivalence can be non-trivial (see op. cit. , [35]).

A different type of example of a construction given by a lifting of an adjoint is the
algebraic semantics of modal logic, where the semantics yields a transformation that takes a
coalgebra (e.g., a Kripke model) and turns it into an algebra (here viewed as a coalgebra
on an opposite category, for uniformity of the presentation). As we show later, one form of
preservation of behavioural equivalence amounts to adequacy and expressivity of the logic.

We propose an abstract framework to analyse whether a coalgebra lifting of an adjoint
preserves behavioural equivalence. The basic infrastructure is as follows.

We use functor liftings in fibrations, which is a standard approach to define coalgebraic
bisimilarity [17] and other (co)inductive predicates [14]. This approach to define coin-
ductive predicates beyond bisimilarity has recently been used, for instance, in general
expressivity proofs of modal logics [29, 26], closely connected to the current paper.
We use the notion of a step to lift left and right adjoints to categories of coalgebras. Steps
are a variant of distributive laws (also known as morphisms of endofunctors) over a left
or right adjoint, named as such in [32] but widely used before. They are relevant in all of
the above-mentioned examples on language semantics, determinisation and modal logic.

This paper connects steps and fibrations, to speak generally about preservation of coinductive
(and inductive) predicates by coalgebra constructions. The key technical idea is to use a
variant of fibred adjunctions [21]. We start with an adjunction and a step, and assume a
fibration and functor lifting on both sides of the adjunction to formulate the coinductive
predicates that we wish to relate. We then lift this adjunction to the total categories of
the fibrations involved [16]. This setting allows us to formulate sufficient conditions for
preservation of coinductive predicates by coalgebra constructions induced by steps.

There are two main variants of this abstract story: one that starts from a step that lifts
the left adjoint to coalgebras, and one for lifting the right adjoint. The first allows us, for
instance, to speak about adequacy and expressivity of modal logics, without referring to
initial algebras. This connects to recent work that uses Galois connections [1], and in fact we
recover those Galois connections from our adjunctions between fibrations. We also study
an example that has not occurred in previous abstract frameworks for expressivity: proving
expressivity of a logic by relating it to apartness instead of bisimilarity [12, 11].

The second variant – constructions arising as liftings of right adjoints – includes preserva-
tion of bisimilarity on belief-state transformers [4]. More generally, it follows from our results
that any right adjoint in a lax lifting situation preserves and reflects bisimilarity (assuming
split monos instead of injectivity), generalising the result for belief-state transformers. By
using opposite categories we also get a very different example in this context, which connects
preservation of coinductive predicates to completeness of coalgebraic modal logic.

2 Preservation of coinductive predicates in lattices

Before moving to the general theory of fibrations and steps, we start with introductory
examples on preservation of (co)inductive predicates in the context of lattices, forming a
special (and well-known) case of steps on Galois connections. In subsequent sections, we will
use the structure of steps, being certain natural transformations allowing us to transform
coalgebras along an adjunction. A similar structure is already known in order theory, where
we may consider inequalities between compositions of monotone maps, as in:

∆ Γ
f

b

g

l

⊣ (1)

R. Turkenburg, H. Beohar, C. Kupke, and J. Rot 6:3

with ∆ and Γ lattices, and f, g, b, l monotone maps. We call the inequality bg ≤ gl a forward
step, and gl ≤ bg a backward step. Central to our study of steps is the following standard
result found in, e.g., [9], relating them to preservation of greatest fixed points (which we
denote here using the operator ν).

▶ Lemma 1. Given the setting of (1):
1. If gl ≤ bg, then g(νl) ≤ νb;
2. If bg ≤ gl, then g(νl) ≥ νb.

Now, if bg = gl in the setting of (1), the inequalities combine to give g(νl) = νb. This has
been shown more generally in the context of coalgebras in [17], where the equality bg = gl is
instead a natural isomorphism BG GL∼ , with F,G,B,L functors. It is shown in op. cit.
that this allows the lifting of the adjunction F ⊣ G to coalgebras (generalising post-fixed
points) so that the right adjoint preserves the final coalgebra (generalising the greatest fixed
point) as right adjoints preserve limits.

2.1 Example: Closed and Convex Relations
We will first consider two instances where the lattices consist of relations on sets on one side,
and relations with either topological or convex structure on the other, i.e.:

RelX CRelX RelA ConRelA
c

b

u

v

⊣ h

b

u

d

⊣ (2)

where CRelX consists of closed relations on a compact Hausdorff space X and ConRelA consists
of convex relations on a convex algebra A. The monotone maps v, d will be such that the post-
fixed points are bisimulations and the greatest fixed points are bisimilarity on systems with
topological (X) or convex (A) structure, and the maps b characterise bisimulations/bisimilarity
on systems where this structure has been forgotten (X and A respectively). Lemma 1, thus,
tells us how bisimilarity on each side can be related via the right adjoint.

These settings arise in examples of ultrafilter extensions for coalgebras and the trans-
formation of probabilistic automata into belief-state transformers. In the first instance, the
closed relations can in fact be restricted to Stone topological spaces (those compact Hausdorff
spaces which are zero-dimensional), where we consider coalgebras for the Vietoris functor
in Stone. It is shown in [2] that these coalgebras correspond to descriptive frames, which
arise in the first stage of the construction of the ultrafilter extension of a Kripke frame
given in [28]. The second stage given there is to transport these back to a coalgebra in
Set. The construction of a belief-state transformer from a probabilistic automaton (PA) has
a similar structure, where the second stage is to transport a system with extra algebraic
structure back to a Set coalgebra. In each case, it is important that behavioural equivalence
is preserved and reflected in the second stage, shown in [2, 4] respectively for the above
examples. These results are recovered already in [35]. However, the approach taken there
does not immediately apply to the examples of adequacy and expressivity of modal logics, so
we prefer the conditions given in the current paper for their generality.

2.2 Example: Expressivity
Another example relates to work on expressivity of coalgebraic logics [29, 1, 24, 23], where
we wish to relate bisimilarity and logical equivalence (or indistinguishability). The lattices
involved are equivalence relations on the carrier X of a coalgebra and predicates on 2X .

ERelX Predop
2X

f

b

g

l

⊣ (3)

CALCO 2023

6:4 Forward and Backward Steps in a Fibration

This gives us the setting shown in (3), where we define g(Γ ⊆ 2X) = {(x, y) | ∀S ∈ Γ. x ∈
S ⇐⇒ y ∈ S}. In words, we relate those elements which are in exactly the same sets of
Γ. Next, the action of f on an equivalence relation R is to give those subsets which are
closed under R, i.e., they are a union of equivalence classes of R. More formally, we have
f(R) = {Γ ⊆ X | ∀(x, y) ∈ R. x ∈ Γ ⇐⇒ y ∈ Γ}.

The monotone map b is taken to be such that the greatest fixed point is bisimilarity. The
map l is dual to the map whose least fixed point we can think of as those predicates obtainable
as the interpretation of a formula of a modal logic. In essence, these are the formulas which
we generate from some propositional constants and applications of the operators of our logic.

Applying g to these “reachable” predicates gives an equivalence relating states which
satisfy exactly the same formulas. This is exactly logical equivalence, and the above picture
then allows us to relate this to bisimilarity. Namely, if g(νl) ≥ νb, then bisimilarity implies
logical equivalence, which is precisely adequacy of the logic. If, conversely, g(νl) ≤ νb, then
logical equivalence implies bisimilarity, called expressivity of the logic.

Now, Lemma 1 gives us a way to obtain these inclusions via inequalities capturing the
interaction between the logic and behaviour in a rather general way. Later, we will show in
more detail how these conditions relate to existing approaches to the semantics of coalgebraic
modal logic and the properties of adequacy and expressivity.

3 Fibrations and Bisimulations

We give the basic definitions related to fibrations (for details see [21]).
Given a functor p : E → C, a morphism b : R → S in E is (p-)Cartesian over f : X → Y

in C, if pb = f and for every c : T → S s.t. pc = f ◦ g for some g : pT → X, there is a unique
d : T → R with c = b ◦ d. A functor p : E → C is now a (Grothendieck) fibration if for all
objects S ∈ E and arrows f : X → pS, there is a Cartesian arrow b : R → S in E with pb = f

(and thus also pR = X). We say that R is above pR and b : R → S is above pb : pR → pS.
We will also call C the base category and E the total category of the fibration.

For an object X ∈ C, the fibre above X is the category EX whose objects are those
objects in E above X, and arrows are above the identity on X. A choice of Cartesian lifting
for every f : X → Y in C is called a cleavage, and any cleavage defines, for each such f ,
a reindexing functor f∗ : EY → EX defined on objects exactly by the choice of Cartesian
arrow f(S) : f∗(S) → S. We assume below that reindexing functors have left adjoints∐

f ⊣ f∗ (called direct-image). This is equivalent to the condition that both p : E → C and
pop : Eop → Cop are fibrations, in which case, p is also called a bifibration.

Given fibrations p : E → C and q : F → D, a morphism of fibrations from p to q is a pair
of functors (F : E → F, F : C → D) such that q ◦ F = F ◦ p. In that case, for every object we
have a restriction FX : EX → EF X , denoted by F if the type is clear from the context. We
will also call F a lifting of F . If F preserves Cartesian morphisms, it is called fibred. This is
equivalent to having the equation FX ◦ f∗ = (Ff)∗ ◦ FY for all morphisms f : X → Y .

We will work with fibrations with the additional assumption that the fibres form complete
lattices and reindexing preserves meets, i.e., the fibrations have fibred meets:

▶ Assumption 2. We assume that for any fibration p : E → C, the fibres EX form complete
lattices and reindexing preserves meets. We will also call such a fibration a CLat∧-fibration.

This ensures that the fibrations have many desirable properties, while being general enough
for our purposes of defining coinductive predicates. In particular, such fibrations are always
bifibrations. For a more detailed treatment of CLat∧-fibrations see, e.g., [25, 34].

R. Turkenburg, H. Beohar, C. Kupke, and J. Rot 6:5

3.1 Subobject and Relation fibrations
Take a category C which is complete and well-powered (subobjects of a given object form a
set). Then, the category Pred(C) is defined as follows: objects are subobjects f : S ↣ X, i.e.,
equivalence classes of monos; and morphisms are maps u : X → Y in C such that there is a
(necessarily unique) arrow making the diagram on the left in (4) commute. Then the functor
p : Pred(C) → C sending a subobject f : S ↣ X to X, is a fibration, with reindexing given
by pullbacks, referred to as the predicate fibration. Since the base category is complete and
well-powered, the fibres Pred(C)X are complete lattices [7, Cor. 4.2.5]. Since reindexing is
defined by pullback, it preserves meets, so that p is a CLat∧-fibration.

S T

X Yu

Rel(C) Rel′(C) Pred(C)

C C × C C

⌟ ⌟

∆ ×

(4)

As C is complete, it furthermore has products, so we can form the relation fibration
Rel(C) via the pullbacks as on the right in (4). The fibration Rel′(C) consists of relations
on all pairs of objects (X,Y) ∈ C × C, whereas we will use the fibration Rel(C) consisting
of relations for which X = Y . By this definition, we obtain that an object of Rel(C) is a
subobject R ↣ X × X of the product of X with itself. The functor part of the fibration
sends a relation R ↣ X × X to X and a morphism to the underlying arrow u : X → Y ,
analogously to (4). By the same argument as for Pred(C), Rel(C) is a CLat∧-fibration.

▶ Example 3. In Set, subobjects are just subsets U ⊆ X, and reindexing is inverse image,
i.e., f∗(V ⊆ Y) = {x ∈ X | f(x) ∈ V }. Similarly, relations are subsets R ⊆ X × X, with
f∗(S ⊆ Y × Y) = {(x1, x2) ∈ X ×X | (f(x1), f(x2)) ∈ S}. Notice Set is complete, and the
collection of subsets of a set is its powerset which is again a set. Each powerset is thus a
complete lattice with join and meet given by union and intersection, respectively.

For a monad T : Set → Set, let EM(T) be the category of Eilenberg-Moore algebras. Then
Pred(EM(T)) consists of subalgebras, and Rel(EM(T)) consists of congruences, i.e., relations
that are closed under the algebra structure (not necessarily equivalence relations).

We can restrict Rel(C) to the category ERel(C) of equivalence relations, defined internally
(e.g., [21]), and define reindexing and meets for equivalence relations in the same way as for
relations since these are defined as pullbacks. This turns ERel(C) → C into a CLat∧-fibration.

3.2 Predicate and Relation liftings
Here we recall a method for lifting functors to predicates and relations based on factorisation
systems. For a factorisation system (E ,M), we refer to elements of E as abstract epis and
write them as · ·, and maps in M abstract monos written as · ·. As an example, for
Set we can take E to be the class of all surjective functions, and M to be the class of all
injective functions. The factorisation of a function f : X → Y is the image factorisation,
where e : X Im(f) acts as f and m : Im(f) Y embeds the image of f into the original
codomain Y . Another important example is that of regular categories, where maps factorise
as a regular epi (i.e., an epi which is the coequaliser of some parallel pair of morphisms)
followed by a mono. In fact, the existence of such factorisations is part of the defining
property of a regular category.

CALCO 2023

6:6 Forward and Backward Steps in a Fibration

Assuming a category D with a factorisation system (E ,M) such that all maps in M are
monos, we can define the (canonical) predicate and relation liftings Pred(F) and Rel(F) of
a functor F : C → D via the following factorisations, where p : P ↣ X is a predicate and
r : R↣ X ×X a relation:

FP FX FR F (X ×X) FX × FX

Pred(F)(P) Rel(F)(R)

F p

e

F r

e

⟨F π1,F π2⟩

m m
(5)

By the assumption that all maps in M are monos, the above constructions define functors
Pred(F) : Pred(C) → Pred(D) and Rel(F) : Rel(C) → Rel(D) respectively, with the actions
on arrows defined by orthogonality.

3.3 Invariants and Coinductive Predicates
We will now recall the notion of coinductive invariants and predicates, defined as post and
greatest fixed points of certain monotone maps respectively (see also [19, 14]). Assumption 2
ensures that the monotone maps always have such fixpoints.

Assuming a fibration p : E → C, a coalgebra f : X → BX with X in C, and a lifting
B : E → E of B : C → C, we can define a monotone map f∗ ◦BX : EX → EX using reindexing.
Instantiating this to the category Set, and the fibration with Rel(Set) as total category, we can
consider the canonical relation lifting (5) of B, given explicitly by Rel(B)(R) = {(y1, y2) ∈
BX ×BX | ∃z ∈ BR.Bπ1(z) = y1 ∧Bπ2(z) = y2}. As mentioned earlier, reindexing for the
relation fibration is given by pullbacks, which amounts to taking the inverse image, so that:

f∗ ◦ Rel(B)(R) = {(x1, x2) ∈ X ×X | ∃z ∈ BR.Bπ1(z) = f(x1) ∧Bπ2(z) = f(x2)} (6)

Taking a post-fixed point R ≤ f∗ ◦ Rel(B)(R) of such a monotone map (also called an
invariant), we recover the usual notion of coalgebraic bisimulation. The greatest fixed point
ν(f∗ ◦ Rel(B)(−)) is then bisimilarity.

More generally, for a lifting B of B, we call such a greatest fixed point the coinductive
predicate defined by B on f . This covers many more examples than bisimilarity. For a
simple instance, take B to be the powerset functor P : Set → Set, and P : Pred → Pred
with B(P ⊆ X) = {S ⊆ X | P ∩ S ≠ ∅}. A P-coalgebra is a transition system, and the
coinductive predicate on it defined by P is the set of all states which have an infinite path.
For other examples of coinductive predicates defined in this way see, e.g., [14, 3, 34, 18, 25].

4 Lifting adjunctions in a fibration

Let F ⊣ G : D → C be an adjunction, and assume fibrations p : E → C and q : F → D. Further,
assume an adjunction F ⊣ G : F → E, as in (7). If we have q ◦ F = F ◦ p, p ◦G = G ◦ q, and
the unit and counit of the adjunction F ⊣ G are above the unit and counit of the adjunction
F ⊣ G respectively, then we say that F ⊣ G is a lifting of the adjunction F ⊣ G (alternatively,
this is an adjunction in Cat→, the 2-category of functors and commuting squares [16]).

E F

C D

p

F

q
G

⊣

F

G

⊣

(7)

R. Turkenburg, H. Beohar, C. Kupke, and J. Rot 6:7

This definition differs from the usual notion of a fibred adjunction, as we do not assume
fibredness of either adjoint. However, it has been shown in [36, Lemma 4.5] for fibrations over
a single base category, and later generalised in [16, Lemma 3.3.3] to fibrations over arbitrary
base categories, that the right adjoint in a lifting of an adjunction is in fact always fibred.
Dually, we have that the left adjoint is co-fibred (i.e., it preserves op-Cartesian maps).

A family of instances is given by predicate and relation liftings.

▶ Lemma 4. Let C,D be complete and well-powered categories with factorisation systems
(E1,M1), (E2,M2) with M1 and M2 consisting of monos. Given an adjunction F ⊣ G : D →
C such that F (E1) ⊆ E2, the predicate and relation liftings form liftings of the adjunction:

Pred(C) Pred(D) Rel(C) Rel(D)

C D C D

Pred(F)

Pred(G)

⊣

Rel(F)

Rel(G)

⊣
F

G

⊣ F

G

⊣

(8)

From these liftings, especially the case for predicates, we can lift also to quotients and
equivalence relations given some extra conditions. For a category C, we denote by Quot(C) the
category of co-subobjects of objects of C, that is, equivalence classes of epimorphisms. This
is exactly the category Pred(Cop)op, so that also Pred(Cop) ≃ Quot(C)op and Quot(Cop) ≃
Pred(C)op. Further, we can define quotient lifting dually to predicate lifting. The following
is then the dual of the above result.

▶ Corollary 5. Let C,D be co-complete and co-well-powered categories with factorisation
systems (E1,M1), (E2,M2) with E1, E2 consisting of epis. Then, given an adjunction F ⊣
G : D → C, s.t. G(M1) ⊆ M2, the quotient liftings form a lifting of the adjunction:

Quot(C) Quot(D)

C D

Quot(F)

Quot(G)

⊣

F

G

⊣

(9)

As discussed above, predicates and quotients in the opposite category are (as objects)
exactly quotients and predicates in the original category respectively. In the following result,
we take a dual adjunction, so that the lifting gives an adjunction between predicates and
quotients. We further give conditions under which the quotients correspond to equivalence
relations (ERel). We then have adjunctions between predicates and equivalence relations,
which we require for our applications to modal logic in Section 6.

▶ Corollary 6. Let C and D be complete, well-powered and co-complete, co-well-powered
categories respectively, with factorisation systems (E1,M1), (E2,M2) with M1 consisting of
monos, and E2 consisting of epis. Suppose also an adjunction F ⊣ G : Dop → C, such that
F (E1) ⊆ M2. If D is an (Barr) exact category in which all epis are regular, we obtain a
lifting of the adjunction as on the left below. If instead C is exact and all epis are regular we
obtain the lifting of the adjunction as on the right:

CALCO 2023

6:8 Forward and Backward Steps in a Fibration

Pred(C) ERel(D)op ERel(C) Pred(D)op

C Dop C Dop

Pred(F)

Pred(G)

⊣

Quot(F)

Quot(G)

⊣

F

G

⊣

F

G

⊣

(10)

Our goal is now to relate liftings of adjunctions to adjunctions defined between fibres.
In [21] it is shown how this can be done for fibrations over a single base category. Also
studied in [15, 16] is how adjunctions between fibrations with distinct base categories arise
from adjunctions between fibrations with a common base category.

▶ Lemma 7. Suppose we have a lifted adjunction as in (7). Then we also have the following
adjunctions between fibres, for all objects X of C and Y of D, where η and ε are the unit
and counit of the adjunction F ⊣ G respectively.

EX FF X EGY FY

F

η∗
X ◦G

⊣

∐
εY

◦F

G

⊣ (11)

Returning to the example of adjunctions for predicate and relation liftings (Lemma 4),
Lemma 7 allows us to obtain adjunctions between fibres, which are of interest when we study
invariants and coinductive predicates in the coming section. In particular, we recover the
adjunctions from Section 2.

▶ Example 8 (Eilenberg-Moore). For the case of an adjunction monadic over Set, each
category (Set and EM(T) for a monad T) has a (RegEpi,Mono)-factorisation system as they
are regular. Also, the abstract epis are preserved by left adjoints and these categories are
complete and well-powered. We thus obtain a lifting of any monadic adjunction to predicates,
relations and quotients by Lemma 4 and Corollary 5. Furthermore, the adjunction between
fibres as on the right in Equation (11) then exactly instantiates to the adjunctions discussed
in Section 2.1 for the cases of compact Hausdorff spaces and convex algebras. The left adjoint
in each case takes the closure or convex hull of a relation on a set.

In fact, each of these “local” adjunctions implies the existence of the other. Note that we
do not assume a (global) lifted adjunction, so we must assume (co-)fibredness explicitly.

▶ Lemma 9. Suppose we have an adjunction F ⊣ G : D → C and bifibrations p : E → C,
q : F → D. Also, suppose G is a fibred lifting of G and F is a co-fibred lifting of F . Then we
have a adjunctions FX ⊢ η∗

X ◦GF X for all X iff we have adjunctions
∐

εY
◦FGY ⊢ GY for

all Y , that is, the adjunctions in (11) can be derived from each other.

Due to results of [16, 15] on factorisation of fibred adjunctions, we can also go from
the existence of adjunctions between fibres (above all objects of our base category) to an
adjunction between the total categories. As mentioned before, we drop the requirement of
fibredness as much as possible.

▶ Lemma 10. Suppose we have an adjunction F ⊣ G : D → C and fibrations p : E → C and
q : F → D. Then the following are equivalent
1. A lifting of the adjunction to F ⊣ G : F → E

2. A fibred lifting G of G and for each object Y of D, a left adjoint to G : FY → EGY

3. A fibred lifting G of G and for each object Y of D, G : FY → EGY preserves meets.

R. Turkenburg, H. Beohar, C. Kupke, and J. Rot 6:9

This allows us, under certain conditions, to lift an adjunction to equivalence relations.

▶ Lemma 11. In the context of Lemma 4 and assuming that we use a factorisation system
on C with all abstract epis being split epi, Rel(G) maps equivalence relations to equivalence
relations. Further, its restriction to equivalence relations has a left adjoint F , forming a
lifting of the adjunction between base categories.

▶ Remark 12. The condition on abstract epis of Lemma 11 is stronger than our earlier as-
sumption that the left adjoint preserves abstract epis, as having a factorisation system (E ,M)
with E ⊆ SplitEpi and M ⊆ Mono implies that in fact E = SplitEpi (cf. [19, Exercise 4.4.2])
and split epis are absolute in the sense that all functors preserve them.

5 Comparing coinductive predicates along steps

In this section, we consider endofunctors in the setting of an adjunction, and will study
coalgebras for these endofunctors – and sometimes algebras, viewed as coalgebras in an
opposite category. These endofunctors are connected via the notion of a step [32], which is a
natural transformation that allows one to transport coalgebras along the adjunction. More
formally, steps give rise to liftings of the right and left adjoint (depending on which kind of
step) to categories of coalgebras. The key question that we address in this section is whether
these liftings to categories of coalgebras preserve a coinductive predicate of interest.

▶ Definition 13. Consider an adjunction with endofunctors as follows:

C D
F

B

G

⊣

L (12)

Then a forward step is a natural transformation δ : BG → GL and a backward step is a
natural transformation ι : GL → BG.

Due to the adjunction F ⊣ G, a natural transformation δ : BG → GL has a mate δ̂ : FB → LF

given by δ̂ = εLF ◦FδF ◦ηF B . This then gives rise to liftings of F and G to coalgebras, called
step-induced coalgebra liftings and denoted F̂ : CoAlg(B) → CoAlg(L) and Ĝ : CoAlg(L) →
CoAlg(B) respectively. These are defined on objects by

f : X → BX 7→ δ̂X ◦ Ff : FX → LFX (13)
g : Y → LY 7→ ιY ◦Gg : GY → BGY (14)

On arrows, they act simply as F and G. This is well defined due to functoriality of F and G
and naturality of the involved steps.
▶ Remark 14. The names “forward” and “backward” steps are from [35], where they are
assumed to be one-sided inverses. In the current paper, we make no such assumption and
study forward and backward steps independently from each other. In [32] only what we refer
to as a forward step appears. There is a clear asymmetry between the two; forward steps have
a mate correspondence, and at least two other equivalent presentations via transposing along
the adjunction. For backward steps there seem to be no such equivalent characterisations, as
the left adjoint is on the “wrong” side.

▶ Example 15. An example of such transformations occurs in a determinisation procedure
for probabilistic automata given in [4]. There, the functors B and L are taken to be B = PA

and L = PA
c with A a set of labels and Pc the convex powerset on EM(D), equivalent to

CALCO 2023

6:10 Forward and Backward Steps in a Fibration

the category of convex algebras. Note that we allow the empty set in the definition of
Pc(X) = {S ⊆ X | S convex}. It is shown in op. cit. that there is an injective natural
transformation ι : U ◦ PA

c → PA ◦ U , induced by an analogous transformation for B = P
and L = Pc. Such a transformation without labels simply includes convex subsets into the
powerset. This has a componentwise inverse which forms, for each subset, its convex hull.

Aside from this example, which we will revisit later, steps occur, e.g., as the one-step
semantics of coalgebraic modal logics (more usually, the mate of a forward step) [31, 24, 32],
and have been used to construct ultrafilter extensions of coalgebras [28]. In the case of
ultrafilter extensions for powerset coalgebras, the steps are those defining a weak lifting in
the sense of Garner [10]; the forward step forms the topological closure of all subsets, and
the backward step includes closed subsets into the powerset.

5.1 Comparing coinductive predicates
We have now seen how steps defined for an adjunction with endofunctors on each of the
categories allow us to map coalgebras along this adjunction. Further, when we have fibrations
on each of the categories of the adjunction, and liftings of the involved functors, we can
define predicates on these coalgebras. Next, we will combine these transformations and give
conditions on the steps and liftings, which allow us to link predicates on a coalgebra with
predicates on the coalgebra obtained by applying a step-induced lifting.

▶ Assumption 16. Throughout this section, we assume a lifting F ⊣ G : F → E of an
adjunction F ⊣ G : D → C, together with endofunctors B,L on C and D and liftings B and
L to E and F respectively.

These assumptions give us coinductive predicates on B-coalgebras, using B, and on L-
coalgebras, using L. This setting allows us to put conditions on forward and backward steps.
These conditions, in turn, allow us to obtain steps at the level of the induced adjunctions
between fibres, which puts us back into the setting of Section 2. In particular, it allows us to
apply Lemma 1 to preserve the relevant coinductive predicates. We now explain this in more
detail for backward and forward steps separately.

5.1.1 Preservation via backward steps
Consider a backward step ι : GL → BG. Given an L-coalgebra (Y, g) together with this
backward step and Assumption 16, we have the following setting.

EGY FY(ιY ◦Gg)∗◦B

∐
εY

◦F

G

⊣

g∗◦L (15)

The greatest fixed point ν(g∗ ◦ L) is a coinductive predicate on the L-coalgebra (Y, g). The
greatest fixed point ν((ιY ◦Gg)∗ ◦B) is instead a coinductive predicate on the B-coalgebra
obtained by applying the lifting Ĝ : CoAlg(L) → CoAlg(B) induced by the step ι to (Y, g).
Like in Section 2, we ask whether the right adjoint GY preserves the greatest fixed point,
that is, maps ν(g∗ ◦ L) to ν((ιY ◦Gg)∗ ◦B).

The following result gives a sufficient condition for constructing a step in the above
adjunction between fibres; this condition is in terms of the backward step ι and the liftings.

R. Turkenburg, H. Beohar, C. Kupke, and J. Rot 6:11

▶ Lemma 17. For a (backward) step ι : GL → BG and an L-coalgebra g : Y → LY :
1. If G ◦ L ≤ ι∗ ◦B ◦G, then GY ◦ g∗ ◦ LY ≤ (ιY ◦Gg)∗ ◦BGY ◦GY ;
2. If ι∗ ◦B ◦G ≤ G ◦ L, then GY ◦ g∗ ◦ LY ≥ (ιY ◦Gg)∗ ◦BGY ◦GY .

We note that the condition of Item 1 is equivalent to having a lifting ι : GL → BG of ι,
using the existence of a Cartesian lifting of ι. The inequality of Item 2 often requires further
assumptions and more work. We will give some instances where it is satisfied in Section 6.
Together, the assumptions are equivalent to ι itself being a Cartesian map. Using Lemmas 1,
7, and 17 we obtain the following preservation result for coinductive predicates.

▶ Corollary 18. Suppose we have a (backward) step ι : GL → BG. Then for any g : Y → LY :
1. If G ◦ L ≤ ι∗ ◦B ◦G, then GY (ν(g∗ ◦ LY)) ≤ ν((ιY ◦Gg)∗ ◦BGY);
2. If ι∗ ◦B ◦G ≤ G ◦ L, then GY (ν(g∗ ◦ LY)) ≥ ν((ιY ◦Gg)∗ ◦BGY).

Corollary 18 thus gives sufficient conditions for GY to map the greatest fixed point of the
coinductive predicate on an L-coalgebra (Y, g) to the greatest fixed point of the coinductive
predicate on the B-coalgebra Ĝ(Y, g) constructed via ι, in the setting of (15).
▶ Remark 19. It is in fact not necessary that ι is natural; that is, Lemma 17 and Corollary 18
go through even if ι is just a collection of arrows.

5.1.2 Preservation via forward steps
We proceed to focus on forward steps. Recall from Lemma 7 that the lifted adjunction
between fibrations induces two types of adjunctions between fibres; for backward steps we
used one of them, for forward steps we use the other. We thus work in the following setting:

EX FF Xf∗◦B

F

η∗
X ◦G

⊣
(δ̂X ◦F f)∗◦L (16)

where (X, f) is a B-coalgebra. We have the following result on constructing steps in this
adjunction between fibres.

▶ Lemma 20. Suppose we have a (forward) step δ : BG → GL, then for f : X → BX:
1. If δ∗◦G◦L ≤ B◦G and B is fibred, then η∗

X ◦GF X ◦(δ̂X ◦Ff)∗◦LF X ≤ f∗◦BX ◦η∗
X ◦GF X ;

2. If B ◦G ≤ δ∗ ◦G ◦ L, then η∗
X ◦GF X ◦ (δ̂X ◦ Ff)∗ ◦ LF X ≥ f∗ ◦BX ◦ η∗

X ◦GF X

Similarly to backward steps, we get the following result from Lemmas 1, 7, and 20, giving
a sufficient condition for preservation of the coinductive predicate by the right adjoint in (16).

▶ Corollary 21. Suppose we have a (forward) step δ : BG → GL and a lifting of the adjunction
as in Equation (7). Then for f : X → BX:
1. If δ∗ ◦G ◦L ≤ B ◦G and B is fibred, then η∗

X ◦GF X(ν((δ̂X ◦Ff)∗ ◦LF X)) ≤ ν(f∗ ◦BX);
2. If B ◦G ≤ δ∗ ◦G ◦ L, then η∗

X ◦GF X(ν((δ̂X ◦ Ff)∗ ◦ LF X)) ≥ ν(f∗ ◦BX)
▶ Remark 22. Contrary to the case of backward steps (see Remark 19), for forward steps
we use naturality, in the proof of Lemma 20. That proof is more involved than that of
Lemma 17, emphasising again the asymmetry between forward and backward steps.

▶ Remark 23. We have assumed that the adjunction between base categories lifts to the
total categories of the fibrations, even though the results in Corollary 21 and Corollary 18
are about the adjunctions between fibres. Therefore, one might be tempted to only assume
these adjunctions between fibres instead of an adjunction between total categories. However,

CALCO 2023

6:12 Forward and Backward Steps in a Fibration

in Lemma 17 and Lemma 20 (on which the aforementioned results rely) we also use that the
right adjoint G is fibred, and if we additionally assume this then it is equivalent to having
an adjunction between the total categories (Lemma 10).

▶ Remark 24. Our focus is on the separate analysis of ι and δ. If we assume instead
that: ι and δ both exist; their liftings form an isomorphism ι : GL ≃ BG; and we have
a fibred lifting G of G such that its restriction to fibres preserves meets, then we have
GY (ν(g∗ ◦ LY)) = ν((ιY ◦Gg)∗ ◦BGY) where ι = pι, for any L-coalgebra (Y, g). Restricting
ourselves to fibrations over a single base category, B = L, and a lifting of the identity between
the total categories, we recover [34, Prop. 6.2].

6 Examples

6.1 Lax liftings

Our first application of the results of the previous section continues on from Example 15,
where we are now able to apply Corollary 18 to show the preservation and reflection of
bisimilarity by the second stage of the construction given in the example.

That construction goes from probabilistic automata, which combine probabilistic trans-
itions with non-deterministic choice, to belief-state transformers, where the probabilities
occur in the state space rather than on the transitions. It has its roots in the generalised de-
terminisation procedure of [33], but requires an alternative approach due to the non-existence
of a lifting of the powerset monad to convex algebras. The determinisation starts from a
monadic adjunction over Set, and then proceeds in two steps: first a lifting of the left adjoint
gives a “determinised” system with algebraic structure, then a lifting of the right adjoint
forgets this structure to give a system in Set. Here, we consider the second stage and take a
lifting of the adjunction and endofunctors B and L to Rel fibrations as in (17), so that we
may apply our earlier results to show preservation and reflection of bisimilarity.

Rel(Set) Rel(EM(T))

Set EM(T)

Rel(F)
Rel(B)

Rel(U)
Rel(L)⊣

F
B

U
L

⊣

(17)

The lifting of the right adjoint to coalgebras uses a ι which comes from a so-called lax
lifting [4]. Given a functor B : Set → Set, a lax lifting of B is a functor L : EM(T) → EM(T)
such that there is an injective natural transformation ι : U ◦ L → B ◦ U . We show the
following result for transformations that are componentwise split mono, and then show how
this applies to the example of probabilistic automata.

▶ Lemma 25. The lifting Û : CoAlg(L) → CoAlg(B) induced by a componentwise split mono
transformation ι : U ◦ L → B ◦ U preserves and reflects bisimilarity.

Taking B = PA and L = PA
c in the setting of Equation (17) (recall also Example 15),

we have a componentwise split mono ι because we have an injective transformation, and
U ◦ PA

c (X) is only empty when A is empty, in which case also PA ◦ U(X) is empty. In [35], a
similar result is shown for behavioural equivalence instead of bisimilarity in case the functor
B preserves weak pullbacks.

R. Turkenburg, H. Beohar, C. Kupke, and J. Rot 6:13

6.2 Expressivity
In this subsection, we will establish the well-known expressivity of modal logic with respect to
P-bisimilarity using our abstract framework. Note that for simplicity we consider (unlabelled)
transition systems modelled as P-coalgebra with P : Set → Set the (full) powerset functor.

We relate bisimilarity to the logic defined by the following grammar:

ϕ ::= ♢
(∧

i∈I

ϕi ∧
∧
i∈J

¬ϕi

)
There are no size restrictions on I and J , so that the collection of formulas forms a proper
class. As a consequence, the usual syntax based on initial algebras (living in Set) is not
well founded. While this expressivity result is not new – [30] shows expressivity of a similar
infinitary modal logic for P-bisimilarity – we include this example as it demonstrates that
this fundamental expressivity result of modal logic fits into our general framework. So, these
considerations leads to the contravariant adjoint situation between Set and Setop as depicted
in (18).

Now taking inspiration from [24] where this is done for the finitary case, we consider the
coalgebraic modal logic (L, δ), where the syntax is given by the endofunctor L = P(2 × −)
on Set and the “one-step” semantics δ : P2− → 2L is defined as follows:

δX(S)(U) =
∨

φ∈S

(∧
(1,x)∈U

φ(x) ∧
∧

(0,x)∈U

¬φ(x)
)
.

Note that the step-induced coalgebra lifting of δ turns a transition system with set X of states
into an L-algebra on 2X (cf. (13)). This gives an abstract notion of definability: precisely
those sets φ ∈ 2X which are “reachable”, that is, contained in the least subalgebra of all
predicates on LX. So we consider the fibrations Pred and ERel of predicates and equivalence
relations (see (18)) on Set (note ERel is chosen since P-bisimilarity is an equivalence).

ERel Predop

Set Setop

Pred(F)
Rel(P)

Pred(G)

⊣ Pred(L)

F =2−

P L=P(2×−)

G=2−

⊣

(18)

Next we define the corresponding liftings of the functor in order to invoke Corollary 21
in proving expressivity of our logic. For a predicate P ↣ Y we fix Pred(2−)(P) = {(φ,ψ) |
∀p ∈ P.φ(p) ↔ ψ(p)} and Pred(L)(P) = (P(2 × P) ↣ P(2 × Y)).
▶ Remark 26. It should be noted that the Galois connection (cf. Section 2) between the
lattices ERelX ,Predop

2X can be reconstructed from the adjunction between the total categories
ERel and Predop. In particular, Lemma 7 gives: F ⊣ η∗

X ◦G : Predop
F X → ERelX . Moreover,

η∗
X ◦G = g (recall g from Section 2).

Now adequacy and expressivity of our logic L follows by proving their corresponding sufficient
condition (cf. Corollary 21) as in the following proposition.

▶ Proposition 27. For any P ↣ X, we have δ∗(Pred(G) Pred(L)(P)) = Rel(P) Pred(G)(P).

6.3 Apartness
In this subsection, we again consider (unlabelled) transition systems and rather show how
our framework allows us to prove the dual of the Hennessy-Milner theorem: two states are
P-apart [12, 11] (i.e., not bisimilar) iff there is a distinguishing formula between them.

CALCO 2023

6:14 Forward and Backward Steps in a Fibration

ERelfop ERel Predop

Set Set Setop

¬

¬

Pred(F)

Pred(G)

⊣ Pred(L)

P
F =2−

L=P(2×−)

G=2−

⊣

(19)

Recall that an apartness relation R on a set X is an irreflexive, symmetric, and co-transitive
relation (i.e., ∀x, y ∈ X.x R y → ∀z ∈ Z. (x R z ∨ y R z)). Following [12], the fibration
of apartness relations on Set can be seen as the fibred opposite of ERel. In particular, the
functor ¬ maps a tuple (X,R) (when R is an equivalence/apartness on X) to the tuple
(X,¬R). Note that, alternatively, one can also directly recover the above adjoint situation
from (10). Moreover, on fibres, the functor ¬ ◦ Pred(G) takes a predicate P ↣ X and
produces an apartness relation P¬G on 2X given as follows:

φP¬Gφ
′ ⇐⇒ ∃x ∈ P . (φ #x φ

′ ∨ φ′ #x ϕ), where φ #x φ
′ ⇐⇒ φ(x) ∧ ¬φ′(x).

For the lifting ERelfop(P), we consider the following definition1:

U ERelfop(P)(R) V ⇐⇒ ∃x ∈ U. ∀y ∈ V . x R y ∨ ∃y ∈ V . ∀x ∈ U. x R y

Now we are in the position to use Corollary 21 and establish the dual of Hennessy-Milner
theorem, which was also recently shown in [11] though for image-finite transition systems.

▶ Proposition 28. For any P ↣ X, ERelfop(P)(P¬G) = δ∗(¬ Pred(G) Pred(L)(P)).

6.4 Completeness
We now turn to the example of completeness of (finitary) basic modal logic by using a
backward step ι. Consider the functor B = P with the dual adjunction of Equation (20) for
F = homSet(−, 2) and G = homBA(−, 2).

Set BAop
F

B

G

⊣

L (20)

We obtain basic modal logic as coalgebraic modal logic for B using the predicate lifting
■ : F → F ◦ B where for X ∈ Set and U ∈ FX we put ■X(U) = {V ∈ BX | V ⊆ U}.
Consider a sound and complete deduction system D for propositional logic. We define modal
derivability ⊢ML by extending D with the derivation rules

a ↔ b ∧ c
□a ↔ □b ∧ □c

a ↔ ⊤
□a ↔ ⊤

We call a set of formulas Φ inconsistent if there are formulas φ1, . . . , φn ∈ Φ such that
⊢ML φ1 ∧ · · · ∧ φn →⊥, otherwise Φ is consistent. Our goal is to prove completeness of the
logic, i.e., we would like to show that any consistent set of formulas Φ is satisfied in some
B-coalgebra. The proof usually proceeds via a canonical model construction, that equips
the set of maximally consistent sets of formulas (“theories”) with a B-coalgebra structure.

1 Note that our definition differs from the lifting of an apartness relation given in [12], where the two logical
formulae (∃x ∈ U. ∀y ∈ V. x R y and ∃y ∈ V . ∀x ∈ U. x R y) are composed incorrectly by conjunction.

R. Turkenburg, H. Beohar, C. Kupke, and J. Rot 6:15

We will adjust this by viewing canonical models as fixpoints of a construction that defines
models on possibly inconsistent theories and iteratively removes inconsistent theories until
only consistent ones are left. An issue is that inconsistent theories will not have a model
and thus we cannot define a meaningful B-coalgebra structure on them. Instead, we leave
the coalgebra structure “undefined”. To model such a partial B-coalgebra structure we
switch to B⊥-coalgebras with B⊥ = 1 +B. The intuition behind our construction is that the
coalgebra structure maps a theory to inl(∗) iff it is inconsistent. Ultimately we are left with a
B-coalgebra based on the set of all consistent theories. The full setup is as in Equation (21).

Pred Congop

Set BAop

F

B⊥

G

⊣

L

F

B⊥=1+P L

G

⊣

(21)

Here Cong denotes the category of congruences over Boolean algebras, i.e., objects are pairs
(A,≡) with A being a Boolean algebra and ≡ ⊆ A × A being a congruence on A. It is
well known that Cong is isomorphic to the category Quot of quotients of Boolean algebras.
Therefore the above situation can be seen to meet the requirements of Cor. 6 and we obtain
suitable liftings F and G of F and G, respectively.

Given a congruence ≡ ⊆ A × A, the predicate G(≡) on GA can be given by u ∈
G(≡) iff ∀a ∈ u.a ̸≡ ⊥ (equivalently to the “canonical” lifting of Corollary 6, so that we have
a left adjoint). Intuitively, G(≡) contains all ultrafilters that are consistent with respect
to ≡. The lifting B⊥ of B⊥ = 1 + B is defined using the canonical predicate lifting for B,
i.e., for all t ∈ B⊥X and a predicate U ⊆ X we have t ∈ B⊥(U) iff t = inr(V) for some
V ⊆ U . Finally, the lifting L of L is defined by letting (LA,≡LA) be the smallest Boolean
congruence containing □a ∧ □b ≡LA □c for a ∧ b ≡ c and □a ≡LA ⊤ for a ≡ ⊤. We turn
now to the definition of a suitable backward step ι : GL → B⊥G that will allow us to prove
completeness. To this aim we let u ∈ GLA and consider the following intersection:

sem(u) =
⋂

□a∈u

■â ∩
⋂

□a ̸∈u

BGA \ ■â

where â = {v ∈ GA | a ∈ v}. We define a ι by selecting for each u ∈ GLA an element
t ∈ sem(u) if such an element exists and by putting ιA(u) := inr(t). Otherwise we put
ιA(u) = inl(∗). Note that with this definition ι will not necessarily be natural, but this is not
required in our setting. In addition, using topological machinery, we could ensure naturality
of ι by requiring ι(u) to be closed in the Vietoris topology (cf. e.g. [28]).

We now show that ιA(u) = inl(∗) iff u ̸∈ GL(≡) = G(≡LA), by case distinction:
Case u ̸∈ G(≡LA) because there exists a, b, c ∈ A with a∧ b ≡ c but □a,□b ∈ u and □c ̸∈ u.

Then sem(u) ⊆ ■â ∩ ■b̂ ∩BGA \ ■ĉ and the latter is empty because any element would
need to contain an ultrafilter v ∈ GA with a ∈ v, b ∈ v and c ̸∈ v which contradicts the
assumption that a ∧ b ≡ c and v ∈ G(≡A).

Case All other cases with u ̸∈ G(≡LA) can be proven in the same way as the first case.
Case u ∈ G(≡LA). In this case one can use compactness to argue that sem(u) is non-empty:

by compactness and the definition of ■, if sem(u) = ∅, there would need to be some
□a ∈ u and {□a1, . . . ,□ak} ⊆ LA \ u such that ■â∩

⋂k
j=1 BGA \■âj = ∅ which can be

seen to entail that a ≤ aj for some j ∈ {1, . . . , k}. By monotonicity of □ (a well-known
consequence of the axiomatisation above) we obtain □a ≤LA □aj . Therefore, as □a ∈ u

CALCO 2023

6:16 Forward and Backward Steps in a Fibration

and u ∈ G(≡LA) by assumption, we get □aj ∈ u which is a contradiction. This shows
that sem(u) ̸= ∅ as required. Note that in the standard completeness proof of coalgebraic
modal logic this case is the key step, proving so-called one-step completeness of the logic.

The claim above can be used to show that G ◦ L = ι∗ ◦B⊥ ◦G. Furthermore, for a given
g : LA → A we observe that ν((ιA ◦Gg)∗ ◦ (B⊥)A) consists precisely of those ultrafilters in
GA on which (ιA ◦Gg) restricts to a B-coalgebra structure, i.e., that cannot reach a state
u ∈ GA for which (ιA ◦Gg)(u) = inl(∗). On the other hand, spelling out the definitions one
can show that for an L-algebra g : LA → A, µ(

∐
g ◦LA) yields the least congruence ≡ over

A that satisfies the modal axioms. Corollary 18 then implies that any ultrafilter u ∈ GA

satisfying ν((ιA ◦ Gg)∗ ◦ (B⊥)A) is ≡-consistent (“soundness”) and that any ≡-consistent
ultrafilter of A is satisfiable (“completeness”). Here satisfiable simply means that there is
B-coalgebra structure defined on u. To establish a precise connection with with the standard
notions of soundness and completeness, one would need to define the usual semantics of □
via a forward step δ. Standard completeness then follows when starting from the Boolean
algebra consisting of all modal formulas quotiented by equivalence in propositional logic.

7 Related and future work

In [35] we studied a preservation result assuming both a forward step δ and a backward step ι,
which form one-sided inverses, that is, δ ◦ ι = id. In the current paper, we treat preservation
of coinductive predicates by forward and backward steps as separate cases, which we realise
by formulating the conditions in a purely fibrational way instead of assuming inverses. This
allows us, for instance, to provide a general preservation result for lax liftings (Section 6.1),
which can not be obtained from the results in op. cit. : the latter requires a natural inverse
δ, which is not part of the assumptions of a lax lifting (only componentwise inverses are
assumed), and can in fact be non-trivial to provide; for instance, in [35] the argument for
existence went via weak distributive laws. Moreover, in the current paper we are more
general by moving from the relation fibration to general CLat∧-fibrations; this allows us, for
instance, to use fibrations of predicate and equivalence relation fibrations, as we do in the
analysis of expressivity and completeness.

In [29] a general approach to expressivity of logics with respect to coinductive predicates
is proposed. In that paper, there is a fibration only on one of the two categories, and the
coinductive predicate of interest is related to logical equivalence. Logical equivalence is
defined there via the semantics of the logic, which is in turn obtained via the universal
property of an initial algebra. In contrast, in the current paper, we do not use initial algebras
and instead obtain logical equivalence by characterising “modally definable” on the coalgebra
of interest, which yields a notion of logical equivalence by applying the right adjoint in a
Galois connection between equivalence relations and predicates. This Galois connection was
also used in [23], and in the recent [1] as the starting point for proving expressivity. Here,
instead, we obtain this Galois connection from an adjunction between fibrations.

Future Work. In [1] it was shown how the functional characterising bisimilarity can be
synthesised from a “logic” function. Using the notations of this paper, this meant defining B
in terms of L. This question and its symmetric one (constructing L from B) are of interest
at the global level of contravariant adjunctions. An answer to these questions would pave the
way not only for sufficient conditions for expressivity, but also provide the means to establish
them in a more structured manner. Last, it would be interesting to try and apply our results
on comparing coinductive predicates and lifting adjunctions in the quantitative setting of
(pseudo-)metrics.

R. Turkenburg, H. Beohar, C. Kupke, and J. Rot 6:17

References
1 Harsh Beohar, Sebastian Gurke, Barbara König, and Karla Messing. Hennessy-Milner theorems

via Galois connections. In CSL, volume 252 of LIPIcs, pages 12:1–12:18. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2023.

2 Nick Bezhanishvili, Gaëlle Fontaine, and Yde Venema. Vietoris bisimulations. J. Log. Comput.,
20(5):1017–1040, 2010.

3 Filippo Bonchi, Barbara König, and Daniela Petrisan. Up-to techniques for behavioural
metrics via fibrations. In CONCUR, volume 118 of LIPIcs, pages 17:1–17:17. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2018.

4 Filippo Bonchi, Alexandra Silva, and Ana Sokolova. Distribution bisimilarity via the power of
convex algebras. Log. Methods Comput. Sci., 17(3), 2021.

5 Marcello M. Bonsangue and Alexander Kurz. Duality for logics of transition systems. In
FoSSaCS, volume 3441 of Lecture Notes in Computer Science, pages 455–469. Springer, 2005.

6 Marcello M. Bonsangue, Stefan Milius, and Alexandra Silva. Sound and complete axio-
matizations of coalgebraic language equivalence. ACM Trans. Comput. Log., 14(1):7:1–7:52,
2013.

7 Francis Borceux. Handbook of categorical algebra: volume 1, Basic category theory, volume 1.
Cambridge University Press, 1994.

8 Liang-Ting Chen and Achim Jung. On a categorical framework for coalgebraic modal logic.
In MFPS, volume 308 of Electronic Notes in Theoretical Computer Science, pages 109–128.
Elsevier, 2014.

9 Brian A. Davey and Hilary A. Priestley. Introduction to Lattices and Order, Second Edition.
Cambridge University Press, 2002.

10 Richard Garner. The Vietoris monad and weak distributive laws. Appl. Categorical Struct.,
28(2):339–354, 2020.

11 Herman Geuvers. Apartness and distinguishing formulas in hennessy-milner logic. In A
Journey from Process Algebra via Timed Automata to Model Learning, volume 13560 of Lecture
Notes in Computer Science, pages 266–282. Springer, 2022.

12 Herman Geuvers and Bart Jacobs. Relating apartness and bisimulation. Log. Methods Comput.
Sci., 17(3), 2021.

13 Ichiro Hasuo, Bart Jacobs, and Ana Sokolova. Generic trace semantics via coinduction. Log.
Methods Comput. Sci., 3(4), 2007.

14 Ichiro Hasuo, Toshiki Kataoka, and Kenta Cho. Coinductive predicates and final sequences in
a fibration. Math. Struct. Comput. Sci., 28(4):562–611, 2018.

15 Claudio Hermida. On fibred adjunctions and completeness for fibred categories. In COM-
PASS/ADT, volume 785 of Lecture Notes in Computer Science, pages 235–251. Springer,
1992.

16 Claudio Hermida. Fibrations, logical predicates and indeterminates. PhD thesis, University of
Edinburgh, UK, 1993.

17 Claudio Hermida and Bart Jacobs. Structural induction and coinduction in a fibrational
setting. Inf. Comput., 145(2):107–152, 1998.

18 Jesse Hughes and Bart Jacobs. Simulations in coalgebra. Theor. Comput. Sci., 327(1-2):71–108,
2004.

19 Bart Jacobs. Introduction to Coalgebra: Towards Mathematics of States and Observation,
volume 59 of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,
2016.

20 Bart Jacobs, Alexandra Silva, and Ana Sokolova. Trace semantics via determinization. J.
Comput. Syst. Sci., 81(5):859–879, 2015.

21 Bart P. F. Jacobs. Categorical Logic and Type Theory, volume 141 of Studies in logic and the
foundations of mathematics. North-Holland, 2001.

CALCO 2023

6:18 Forward and Backward Steps in a Fibration

22 Henning Kerstan, Barbara König, and Bram Westerbaan. Lifting adjunctions to coalgebras to
(re)discover automata constructions. In CMCS, volume 8446 of Lecture Notes in Computer
Science, pages 168–188. Springer, 2014.

23 Bartek Klin. The least fibred lifting and the expressivity of coalgebraic modal logic. In
CALCO, volume 3629 of Lecture Notes in Computer Science, pages 247–262. Springer, 2005.

24 Bartek Klin. Coalgebraic modal logic beyond sets. In MFPS, volume 173 of Electronic Notes
in Theoretical Computer Science, pages 177–201. Elsevier, 2007.

25 Yuichi Komorida, Shin-ya Katsumata, Nick Hu, Bartek Klin, and Ichiro Hasuo. Codensity
games for bisimilarity. In LICS, pages 1–13. IEEE, 2019.

26 Yuichi Komorida, Shin-ya Katsumata, Clemens Kupke, Jurriaan Rot, and Ichiro Hasuo.
Expressivity of quantitative modal logics : Categorical foundations via codensity and approx-
imation. In LICS, pages 1–14. IEEE, 2021.

27 Clemens Kupke, Alexander Kurz, and Dirk Pattinson. Algebraic semantics for coalgebraic
logics. In CMCS, volume 106 of Electronic Notes in Theoretical Computer Science, pages
219–241. Elsevier, 2004.

28 Clemens Kupke, Alexander Kurz, and Dirk Pattinson. Ultrafilter extensions for coalgebras. In
CALCO, volume 3629 of Lecture Notes in Computer Science, pages 263–277. Springer, 2005.

29 Clemens Kupke and Jurriaan Rot. Expressive logics for coinductive predicates. Log. Methods
Comput. Sci., 17(4), 2021.

30 Lawrence S. Moss. Coalgebraic logic. Ann. Pure Appl. Log., 96(1-3):277–317, 1999.
31 Dusko Pavlovic, Michael W. Mislove, and James Worrell. Testing semantics: Connecting

processes and process logics. In AMAST, volume 4019 of Lecture Notes in Computer Science,
pages 308–322. Springer, 2006.

32 Jurriaan Rot, Bart Jacobs, and Paul Blain Levy. Steps and traces. J. Log. Comput., 31(6):1482–
1525, 2021.

33 Alexandra Silva, Filippo Bonchi, Marcello M. Bonsangue, and Jan J. M. M. Rutten. Gen-
eralizing determinization from automata to coalgebras. Log. Methods Comput. Sci., 9(1),
2013.

34 David Sprunger, Shin-ya Katsumata, Jérémy Dubut, and Ichiro Hasuo. Fibrational bisimu-
lations and quantitative reasoning. In CMCS, volume 11202 of Lecture Notes in Computer
Science, pages 190–213. Springer, 2018.

35 Ruben Turkenburg, Clemens Kupke, Jurriaan Rot, and Ezra Schoen. Preservation and
reflection of bisimilarity via invertible steps. In FoSSaCS, volume 13992 of Lecture Notes in
Computer Science, pages 328–348. Springer, 2023.

36 Glynn Winskel. A compositional proof system on a category of labelled transition systems.
Inf. Comput., 87(1/2):2–57, 1990.

Structural Operational Semantics for
Heterogeneously Typed Coalgebras
Harald König #

Fachhochschule für die Wirtschaft Hannover, Germany
Western Norway University of Applied Sciences, Bergen, Norway

Uwe Wolter #

University of Bergen, Norway

Tim Kräuter #

Western Norway University of Applied Sciences, Bergen, Norway

Abstract
Concurrently interacting components of a modular software architecture are heterogeneously struc-
tured behavioural models. We consider them as coalgebras based on different endofunctors. We
formalize the composition of these coalgebras as specially tailored segments of distributive laws
of the bialgebraic approach of Turi and Plotkin. The resulting categorical rules for structural
operational semantics involve many-sorted algebraic specifications, which leads to a description of
the components together with the composed system as a single holistic behavioural system. We
evaluate our approach by showing that observational equivalence is a congruence with respect to the
algebraic composition operation.

2012 ACM Subject Classification Theory of computation → Semantics and reasoning

Keywords and phrases Coalgebra, Bialgebra, Structural operational semantics, Compositionality

Digital Object Identifier 10.4230/LIPIcs.CALCO.2023.7

Funding Harald König: The author thanks the University of Bergen for support of this project.

Acknowledgements The authors thank the anonymous referees for their helpful suggestions that
have helped to improve this article.

1 Introduction

In a modular and component-based software architecture of a compound system the individual
components interact concurrently. Categorically, these individual state-based components
are modelled as coalgebras. However, in a landscape of multiple interacting systems these
behavioural models are heterogeneously typed: There are deterministic or non-deterministic
labelled transition systems as well as probabilistic systems, systems with or without termin-
ation, with or without output and so on, see [24], Chapter 3. Hence the coalgebras of the
individual components are based on different endofunctors.

Reasoning about the correct behaviour of a compound system often requires establishing
correctness of each local component and furthermore using theoretical means, which guarantee
that global behaviour is determined by local behaviours. In [9], this modular method is
called compositionality and a precise formulation of it requires the use of a framework, which
captures the operational semantics of concurrent processes. Such a framework is given by
transition rules of structural operational semantics (SOS). Conditional rules of the form

x
a // x′ y

b // y′

op(x, y) c // op(x′, y′)
(1)

© Harald König, Uwe Wolter, and Tim Kräuter;
licensed under Creative Commons License CC-BY 4.0

10th Conference on Algebra and Coalgebra in Computer Science (CALCO 2023).
Editors: Paolo Baldan and Valeria de Paiva; Article No. 7; pp. 7:1–7:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:harald.koenig@fhdw.de
https://orcid.org/0000-0001-6304-6311
mailto:uwe.wolter@uib.no
https://orcid.org/0000-0002-7553-9858
mailto:tkra@hvl.no
https://orcid.org/0000-0003-1795-0611
https://doi.org/10.4230/LIPIcs.CALCO.2023.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 SOS for Heterogeneously Typed Coalgebras

generate systems, whose states are closed terms over an algebraic signature [1]. Well-known
rule formats are GSOS1 [3] and tyft/tyxt [8]. For some of these rule formats one can prove
compositionality to hold, whereas counterexamples can be provided for other formats [8].

In this paper, we propose a formal structure, which describes the composition of hetero-
geneously typed coalgebras with the help of structural operational semantics. For this, it is
important to provide a suitable rule format, which guarantees compositionality (and hopefully
other similar requirements) in heterogeneous environments. Since we deal with supposedly
arbitrarily varying behavioural specifications, we need more general rule formats, which
cannot be expected to be homogeneous like GSOS or tyft/tyxt. An adequate generalization
of transition rules in the context of coalgebraic specifications are natural transformations
between functors, whose domain and codomain reflect the transition from n(≥ 2) local
systems to one compound system, i.e., functors of type SET n → SET . We will show that
these so-called interaction laws (see Def. 12) can be embedded into distributive laws

λ : Σ⃗B⃗ ⇒ B⃗Σ⃗

for suitable endofunctors Σ⃗ and B⃗. Distributive laws are part of a bialgebraic approach,
which has been described in [14], but was originally proposed by Turi and Plotkin [27]. Here
B⃗ (and also Σ⃗) is a SET n+1-endofunctor, which simultaneously covers the behaviours of the
n heterogeneously typed coalgebras and a specification of the compound system, which has
to comprise the commonalities of the local system behaviours. The algebraic syntax functor
Σ⃗ contains the operation(s), which realize(s) the transition from the local components (input
of the operation) to the global view of the composed system (output). We evaluate our
approach by proving compositionality to hold for interaction laws.

Whereas in process algebras like CCS or CSP2 this transfer of observational indistin-
guishability during syntactical build-up of process terms has to be guaranteed [8], we rather
want compositionality, when individual software components are composed into a global
compound network. Whereas [14] circumscribes compositionality as observational equival-
ence (w.r.t. final semantics) being a congruence (i.e. the coinductive extension is an algebra
homomorphism), we propose a slightly adapted definition tailored to the specific situation of
heterogeneously typed interacting systems.

Our work was inspired by practical scenarios, where the coupling of behavioural models
with other executable models like test runners or event injectors is of crucial importance [19].
Furthermore, recently, systematic approaches to co-simulation for large-scale system assess-
ment have gained popularity [20]. Here, a typical scenario is the interaction with probabilistic
systems [2, 26], which requires a concrete language for their interaction [5, 19]. While
these DSLs3 are already well-established, they lack theoretical underpinning in the form of
transition rules to reason about correctness properties.

Hence, we answer the main question

How can we apply (parts of) the bialgebraic theory to understand the interaction of
heterogeneously typed behavioural components?

by providing the following contributions and novelties:
A proof for the preservation of observational equivalence, when n local components are
based on different behavioural specifications B1, . . . , Bn, by embedding interaction laws
into distributive laws.

1 General Structured Operational Semantics
2 Calculus of Communicating Systems [21], Communicating Sequential Processes [10]
3 Domain Specific Languages

H. König, U. Wolter, and T. Kräuter 7:3

An ensemble of n separated individual components together with the specification of its
composition is formalised in one holistic many-sorted approach, i.e., as coalgebras for an
endofunctor B⃗ : SET n+1 → SET n+1.

The paper is organized as follows: Sect. 2 clarifies notation, Sect. 3 presents the general
setting based on practical scenarios as well as a motivating example, Sect. 4 recapitulates
the survey [14] in some detail to make the content complete and comprehensible, and Sect. 5
presents the above mentioned novelties in detail: The linkage of the definitions of Interaction
Law (in Def.12) and Congruence (adapted to the heterogeneous case in Def. 17) yield an
adequate definition of compositionality and we can obtain our main statements: Theorem 21
proves compositionality to hold for interaction laws and Corollary 22 adapts the statement
of the theorem to practical needs.

2 Basic Notation

We use the following notations: SET is the category of sets and total mappings. For two
sets A and X we write XA for the set of all total maps from A to X. A special set is 1,
which denotes any singleton set, e.g. (1 + X)A is the set of all partial maps from A to X.

For functors we will use calligraphic letters like F , G, and, especially, letter B for
behavioural and greek letter Σ for algebraic specifications. Categories are denoted C or D,
an application of a functor F : C → D will be written F(X) for X ∈ |C| (or short X ∈ C),
the collection of objects of C, whereas an application of F to a morphism α : X → Y does
not use parentheses: Fα : F(X) → F(Y). Composition of functors F and G (if it is possible)
is always written GF (G applied after F). Special functors are IDC, the identity functor on
C, and ℘fin, the powerset functor assigning to a set the set of its finite subsets.

It is often convenient to give a definition (on objects) of a functor without explicitly naming
its formal parameters, e.g. a functor B mapping a set X to the set (1+X)A (see above) is often
denoted B = (1 + _)A. Furthermore, when we give the complete definition of functors F , we

often combine object and morphism mapping by writing X
f

// Y 7→ F(X) Ff
// F(Y) .

As usual, a natural transformation ν between functors F and G with common domain
and codomain, written ν : F ⇒ G, is a family (νX : F(X) → G(X))X∈|C| compatible with
morphism mapping. For appropriate functors H and H′ we denote with Hν the family (HνX :
HF(X) → HG(X))X∈|C| and with νH′ the family (νH′(X) : FH′(X) → GH′(X))X∈|C|.

For an endofunctor B : C → C a B-coalgebra is a C-morphism X
α // B(X) , called

the structure map and written (X, α) or - if X is clear from the context - just α. A coalgebra
morphism from (X, α) to (Y, β) is a C-morphism f : X → Y such that β ◦ f = Bf ◦ α.
Instead of f we sometimes write (f, Bf) to stress the fact that commutativity involves Bf ,
as well. The resulting category of all coalgebras for B : C → C will be denoted B-Coalg.
If it admits a final object (Z, ζ) and if (X, α) ∈ B-Coalg, we denote with uα : X → Z the
coinductive extension of α, i.e. the unique B-Coalg-morphism into the final object.

Likewise for an endofunctor Σ : C → C a Σ-algebra is a C-morphism Σ(X) a // X

written (a, X). An algebra morphism from (a, X) to (b, Y) is a C-morphism f : X → Y such
that b ◦ Σf = f ◦ a. Instead of f we sometimes write (Σf, f). The resulting category of all
algebras will be denoted Σ-Alg.

For morphisms in combination with cartesian products, we use the following notations:
If f : A → B and g : A → B′, then ⟨f, g⟩ : A → B × B′ denotes the uniquely determined
resulting morphism. Likewise for g : A′ → B′, f × g : A × A′ → B × B′.

CALCO 2023

7:4 SOS for Heterogeneously Typed Coalgebras

3 General Setting and Example

Multiple interacting components of software architectures collectively realize the requirements
of business domains. Describing the interactions between these systems and checking their
global behavioural consistency is a general, well-known challenge in software engineering [4].
To address this challenge, model-driven software engineering utilizes abstract representations
of the constituting systems and their interactions. Such a setting thus consists of an ensemble
of heterogeneously structured components, which must guarantee the desired global behaviour.

In the sequel, we will speak of local or individual components, which are assembled into a
global or compound system. As in [24], ”system” is also used as a superordinate term for all
kinds of artifacts, whether they are composite or not.

Using a general and formal coordination language for the interaction of behavioural
components in the form of transition rules requires agreement on key concepts of behavi-
oural systems. It turns out that the concepts ”State” and (observational) ”State Change”
are common to almost all behavioural specifications, cf. the introductory remarks of [12].
Coalgebras (X, α) for some endofunctor B : C → C on some category C comprise exactly
these concepts: The structure map α assigns to each x in the state space X the observable
causality exhibited in state x. The different natures of causalities (behaviour) are specified
by different endofunctors B.

Towards a formal underpinning for the described setting, we need to understand how
aligning individual components by specifying their interactions on the one hand, and automatic
generation (computation) of global execution behaviour of the compound system, on the other
hand, are carried out. For this, we assume n behavioural specifications Bi : SET → SET to
be given for some n ≥ 2 and fix individual behavioural systems (Si, αi) ∈ Bi-Coalg.

As an example, we refer to the use case depicted in Fig. 1, where an instance of a
T-Junction-Controller regulates the interaction of three TrafficLights A, B, and C. The
T-junction controller (component (S1, α1)) and the behaviour of one traffic light (e.g.,
component (S2, α2)) are shown in the top and the bottom left part of Fig. 1. The resulting
compound system is hinted at in the bottom right part. The operation, which takes as input
the local components and ”generates” the semantics of the compound system is visualized by
arrows between the systems (blue in a colour display).

Whereas each traffic light is specified as a labelled transition system, the TJunction may
be modelled as a BPMN4-model. The BPMN model specifies different phases to handle (P1
and P 2). They are shown in the BPMN model and also in the two different snapshots of the
compound system. The interaction with approaching vehicles may be modelled with a third
formalism, e.g., a probabilistic transition system, which simulates exponentially distributed
arrivals of buses or cars at one of the traffic lights. Aligning individual components by means
of coordination languages, cf. [5], requires specifying coordination points (communication
channels), e.g., if a request e of some approaching bus triggers the switch to phase 2 in
the TJunction controller (an observation o), this transition must synchronize with input
i = turnRed of traffic light A and C. Moreover, B must simultaneously turn green. These
synchronisations can be formalized with synchronization algebras, cf. [22], in this simple case,
a partial map φ : O × I → Act, where O is the set of outputs of the controller like throw
events or service calls in automatic tasks, I is the set of possible inputs to the respective
traffic light, and Act is the set of observable actions of the compound system.

4 Business Process Model and Notation

H. König, U. Wolter, and T. Kräuter 7:5

Figure 1 TJunction traffic control system and its individual components.

The global execution behaviour can be described by premises (transitions of the local
components) and conclusions (the resulting actions taken by the compound system). If, for

instance, x
e/o

// x′ in the BPMN-model and y
i // y′ are possible, then z

φ(o,i)
// z′ is

a global interaction of the components. Note that we obtain a respective conditional rule,
but with different formats in its premises and conclusions: There is the Mealy-like notation
in the first premise specifying output o in the BPMN process, when event e occurs, whereas
the second premise specifies that the labelled transition system behaves like y′, if, in state
y, input i occurred. Furthermore, the compound system may be non-deterministic, such
that the conclusion reads, “The system may behave like z′, if in state z, action φ(o, i) was
performed”.

Formally the interaction operation, which takes as input n states of the local components
and outputs a state of the compound system, is based on an n-ary operation symbol
op = interact : s1s2 · · · sn → sn+1 of a suitable algebraic signature Σ, where sorts s1, s2, ...

reflect the structurally separated but interacting local components, and the compound system
is based on a new behavioural specification B and requires a new sort sn+1 ̸∈ {s1, ..., sn}.

We summarise the transfer from practical concepts to the bialgebraic formalism:
1. The individual components are based on behavioural endofunctors B1, ..., Bn and the

compound system’s behaviour is specified by another endofunctor B. The individual
components are coalgebras (Si, αi) ∈ Bi-Coalg, from which the states of the compound
system (S, α) ∈ B-Coalg arise as output of an application of an n-ary algebraic operation
op which has as input the states of the individual components.

2. The semantics of the compound system is formalized by SOS rules of the form

x1
E1 // x′

1 . . . xn
En // x′

n

op(x1, . . . , xn) F // op(x′
1, . . . , x′

n)

where Ei and F are differently structured terms over the coordination points, and xi, x′
i

are states of the individual component (Si, αi) for all i ∈ {1, ..., n}.

CALCO 2023

7:6 SOS for Heterogeneously Typed Coalgebras

4 Background: Distributive Laws and Bialgebras

In this section, we recapitulate parts of [14] which are necessary to make the content of
Sect. 5 complete and comprehensible. As in [18], we extend behavioural specifications B only
to copointed coalgebras (see Def. 2 below), i.e. we consider the assignment X 7→ X × B(X)
instead of B(X) in order to be able to use current states in the formulation of the conclusion
of SOS rules. However, we do not generalise it further, i.e. we neither make use of free
extensions for the algebraic specification functor as in the original work [27] nor cofree
extensions of the behaviour functor, cf. [14].

Let C be an arbitrary category with finite products. The classical theory works with one
fixed behavioural specification B : C → C and an algebraic specification Σ : C → C which
usually specifies the syntactical assembly of process terms (such as prefixing, alternative, and
parallel, as well as interaction). In contrast to that, in Sect. 5, we will use Σ for the assembly
of the compound system from the local components. Furthermore, let’s define the functor

H :
{

C → C

X
f

// Y 7→ X × B(X) f×Bf
// Y × B(Y) .

(2)

Pairs (H : C → C, ε : H ⇒ IDC) are usually called copointed functors in the literature,
e.g. [14], i.e. H comes equipped with a comonadic ”counit” ε. In our particular definition
H is accompanied with counit π1 : H ⇒ IDC, where π1 = ((π1)X : X × B(X) → X) is the
componentwise first projection. We will use only these special copointed functors.

▶ Definition 1 (Distributive Law over H). A Distributive Law of Σ over H is a natural
transformation

λ : ΣH ⇒ HΣ

which is compatible with the counit, i.e. such that (π1)Σ ◦ λ = Σπ1 : ΣH ⇒ Σ. ⌟

The extension from the original behavioural specification functor B to H also requires to
consider special coalgebras for H [18]:

▶ Definition 2 (Copointed H-Coalgebra). Let H be given as above. The category of copointed
H-coalgebras, written H-Coalgco, is the full subcategory of H-Coalg with those objects (X, α)
satisfying (π1)X ◦ α = idX . ⌟

▶ Proposition 3 (Copointed H-Coalgebras are B-Coalgebras). The assignment (X, α) 7→
(X, (π2)X ◦ α) extends to an isomorphism between categories H-Coalgco and B-Coalg. ⌟

There is a canonical assignment from distributive laws over H to natural transformations

ρ : ΣH ⇒ BΣ (3)

given by λ 7→ (π2)Σ ◦ λ. Using counit compatibility from Def. 1, the assignment

ρ 7→ ⟨Σπ1, ρ⟩ (4)

turns out to be inverse to the former, see Theorem 10 in [18]. Thus

▶ Proposition 4 (Equivalent Representation of Distributive Laws). The assignments (3)
and (4) yield a bijection between distributive laws over H and natural transformations
ρ : ΣH ⇒ BΣ. ⌟

H. König, U. Wolter, and T. Kräuter 7:7

Note that natural transformations as in (3) are special cases of GSOS laws, where the syntax
functor Σ is replaced by its free extension Σ∗ in the codomain of ρ, thus enabling arbitrary
terms in the target of the SOS rule conclusion.

Because λ is a natural transformation,

Σλ :
{

H-Coalgco → H-Coalgco

(X, h) 7→ (Σ(X), λX ◦ Σh)

and its dual construction

Hλ :
{

Σ-Alg → Σ-Alg

(g, X) 7→ (Hg ◦ λX , H(X))

extend to endofunctors, where the first indeed maps to H-Coalgco by the compatibility of
counits in Def. 1. Σλ applied to a coalgebra yields behaviour of algebraically composed states
and will play a major role in Sect. 5. Hλ will be used only in the present section.

For a distributive law λ, there is a new category, which yields a combination of operational
and denotational models w.r.t. functors B (and thus H) and Σ:

▶ Definition 5 (Category of λ-Bialgebras). Let λ : ΣH ⇒ HΣ be a distributive law according
to Def.1. The category λ-Bialg has objects arrow-pairs Σ(X) g

// X
h // H(X) with

copointed (X, h) and for which

Hg ◦ λX ◦ Σh = h ◦ g (5)

Morphisms are those f : X → Y , which are simultaneously Σ-Alg- and H-Coalgco-morphisms.

Using (5), one obtains

▶ Proposition 6 ([14], Prop. 12). There are the isomorphisms

Σλ-Alg ∼= λ-Bialg ∼= Hλ-Coalg

where e.g. the second one is based on the assignment

(Σ(X) g
// X

h // H(X)) 7→ ((g, X) (Σh,h)→ Hλ(g, X))

on objects of the respective categories. ⌟

A consequence of this fact is the following proposition, for which we include a proof, because
we need parts of it in Sect. 5:

▶ Proposition 7 (Initial and Final Bialgebras, [14], Sect. 4.3). If Σ admits an initial algebra
(a, A) and if H-Coalgco has the final (copointed) coalgebra (Z, ζ), then the former uniquely

extends to an initial object Σ(A) a // A
hλ // H(A) of λ-Bialg and the latter uniquely

extends to a final object Σ(Z) gλ

// Z
ζ

// H(Z) of λ-Bialg.

Proof. By Prop. 6 we can look for an initial object in Hλ-Coalg. But for any endofunctor
H : D → D the carrier of the initial object in H-Coalg is just the initial object in D, if it exists.
Hence for H = Hλ and D = Σ-Alg, we obtain the initial Hλ-Coalg-object a

(Σhλ,hλ)−→ Hλa,
where hλ : A → H(A) is the unique Σ-Alg-morphism out of the initial object. By the
definition of Hλ this yields the commutative diagram

Σ(A)

Σhλ

��

a // A

hλ

��

ΣH(A)
Ha◦λA

// H(A)

(6)

CALCO 2023

7:8 SOS for Heterogeneously Typed Coalgebras

turning Σ(A) a // A
hλ // H(A) into a λ-Bialg-object (because hλ is copointed by the

following Prop. 8) but also the initial λ-Bialg-object due to the assignment given in Prop. 6.
The unique extension of the final object is dually obtained yielding the final λ-bialgebra

Σ(Z) gλ

// Z
ζ

// H(Z) for the unique H-Coalgco-morphism gλ to the final object. ◀

Using counit compatibility of π1 in Def. 1 and initiality of (a, A), one also obtains

▶ Proposition 8 (Copointedness of hλ). hλ is a copointed H-coalgebra. ⌟

The initial and final bialgebras from the proof of Prop. 7 yield a unique arrow f : A → Z in
the commutative diagram

Σ(A)

Σf

��

a // A

f

��

hλ // H(A)

Hf

��

Σ(Z) gλ // Z
ζ

// H(Z)

(7)

f is simultaneously the coinductive extension of hλ, i.e. its behavioural semantics, and the
inductive extension of gλ, i.e. the evaluation of Σ-terms in (gλ, Z). The former statement is
the important one. It gives the key statement of this section:

▶ Observation 9. The coinductive extension of copointed hλ is an algebra homomorphism
from the initial Σ-algebra. ⌟

5 From Local Components to Compound Systems Coalgebraically

5.1 The Theoretical Setting
Let (S1, α1) ∈ B1-Coalg, . . . , (Sn, αn) ∈ Bn-Coalg be n individual, local components and
B a behavioural specification for the compound system, see item 1 in the summary on
page 5. Related local components’ interactions are based on an n-ary operation symbol
op := interact and coordination points of B1, . . . , Bn together with a synchronisation
algebra5 φ establish transition rules, cf. item 2 of the summary.

▶ Example 10 (See Sect. 3). A BPMN model can be encoded with the functor

B1 = (1 + O × _)E ,

where E are state-changing events like a timer event in the TJunction Controller, cf. Fig. 1.
The set O defines outputs, e.g., SwitchToP2 ∈ O, which must be synchronized with a call to
a traffic light to turn red. Let (S1, α1) ∈ B1-Coalg be such a component. Traffic lights are
deterministic labelled transition systems based on

B2 = (1 + _)I ,

where, for instance, I = {A.turnRed, A.turnGreen, . . .} is the input set I of traffic light A.
Let (S2, α2) ∈ B2-Coalg be such a component.

5 For arbitrary n, these synchronisation descriptions will no longer be binary.

H. König, U. Wolter, and T. Kräuter 7:9

We define Act := O +I +{τ} and expect the compound system to change state depending
on the used coordination points6. For this, we extend the involved sets by an idle action ∗,
i.e. X∗ := X + {∗} for X ∈ {O, I, Act}, cf. [22]. As usual, a transition with ∗ from state x to
x′ is possible, if and only if x = x′. We assume a synchronisation algebra φ : O∗ × I∗ → Act∗
for the synchronisation of a BPMN model with one traffic light. In the above example, we
might have φ(SwitchToP2, A.turnRed) = τ (modelling a silent synchronisation), whereas
some other value combinations like φ(SwitchToP2, A.turnGreen) are undefined. Whenever
an output o is uncoupled, i.e., whenever the first component can evolve independently from
the second for a transition with o, we let φ be undefined for pairs (o, i) for all i ∈ I, and
define φ(o, ∗) := o. This is true, for example, if o is an outgoing signal like ”B is green”,
which does not change the state of any traffic light, cf. Fig. 1. Similarly φ is undefined for
(o, i) for all o ∈ O and φ(∗, i) = i for uncoupled i. Finally, φ(o, i) = ∗ ⇐⇒ o = i = ∗, cf.[22].

The underlying algebraic signature will have three sorts: s1 and s2 for the states of the
two local components and s3 for the compound system. Because resulting transitions can
be silent for different coordinations and hence result in non-determinism of the compound
system, we define

B := ℘fin(Act × _) ⌟

The original work of [27] shows a one-to-one correspondence between sets of GSOS laws
and natural transformations. We will show how we can follow this approach along the
above-stated example. When we mention SOS rules, we exemplarily use notations in the
context of our examples. Furthermore, whenever we write down φ(o, i), we automatically
assume this value to be defined.

The family of SOS-rules x
e/o

// x′ y
i // y′

op(x, y)
φ(o,i)

// op(x′, y′)

o∈O∗,i∈I∗

(8)

describes the operational semantics of the compound system as a heterogenous interaction
law. E.g., the controller’s command to make traffic light A change to red is the law for
b := SwitchToP2 and i = A.turnRed.

In the example, the state space S of the compound system must take into consideration
the original state spaces by pairing S1 and S2, i.e., in this example

S = S1 × S2. (9)

Of course, in the general case, S can depend arbitrarily on the state spaces S1, ..., Sn of the
local components.

5.2 Interaction Laws and Induced Coalgebra
In this section, we formalize the construction of the compound system from the local
components, if its operational semantics is given as an SOS rule like in (8). This rule does
not depend on concrete state spaces, hence it can be seen as an interaction law between

6 As usual, τ models silent (unobservable) transitions.

CALCO 2023

7:10 SOS for Heterogeneously Typed Coalgebras

systems of arbitrary state spaces X and Y . We claim that it can be encoded as a map, which
decomposes into two factors, the first reflecting the premises given by the transitions of α1
and α2, and a second factor ρX,Y , which reflects the conclusions:

X × Y
⟨id,α1⟩×⟨id,α2⟩

// X × B1(X) × Y × B2(Y)
ρX,Y

// B(X × Y) (10)

We first define ρX,Y in the context of our example:

▶ Example 11 (Example 10 ctd). Recall that we call o ∈ O coupled, if there is i ∈ I such
that φ(o, i) is defined and vice versa for i ∈ I. Otherwise, it is called uncoupled. Then, for
B1 = (1 + O × _)E , B2 = (1 + _)I , and B = ℘fin(Act × _), we can define

ρX,Y (x, f1, y, f2) = {(φ(o, i), (x′, y′)) | o ̸= ∗ ̸= i, (o, x′) ∈ f1(E), y′ = f2(i)}
∪ {(o, (x′, y)) | (o, x′) ∈ f1(E), o uncoupled}
∪ {(i, (x, y′)) | y′ = f2(i), i uncoupled}

where f1 : E → 1 + O × X an f2 : I → 1 + Y . It is easy to see that (ρX,Y)(X,Y)∈|SET |2 is
natural in its parameters X and Y . ⌟

As in the classical theory, natural transformations as in Example 10 can now be used
to define SOS-rules. For this let’s define the copointed versions Hi := SET → SET of
the functors Bi as in (2) for i ∈ {1, ..., n}. The special assignment (S1, S2) 7→ S1 × S2
from (9) extends to a functor Σ : SET 2 → SET which yields natural transformation
ρ : Σ(H1 × H2) ⇒ BΣ : SET 2 → SET in Example 11. However, we don’t want to exclude
additional dependencies, when constructing states of the compound system. E.g. additional
supervising components or intermediate components like message queues may let the overall
state space differ from the pure cartesian product of the local state spaces. Hence, we are
interested in an arbitrary functor Σ : SET n → SET for some n ≥ 2 and correspondingly
adapted natural transformations. Thus the appropriate definition in our context is

▶ Definition 12 (Interaction Law). Let Σ : SET n → SET be an arbitrary functor, B1, . . . , Bn,
and B be SET -endofunctors, and functors Hi : SET → SET be defined as in (2), i.e.
Hi(X) = X × Bi(X) for all X ∈ SET and all i ∈ {1, . . . , n}. An interaction law is a natural
transformation

ρ : Σ(H1 × · · · × Hn) ⇒ BΣ : SET n → SET . ⌟

Similarly to the definition of Σλ in Sect. 4, this yields an assignment

Σρ :
{

B1-Coalg × · · · × Bn-Coalg −→ B-Coalg

((S1, α1), . . . , (Sn, αn)) 7→ (Σ(S1, ..., Sn), ρS1,...,Sn ◦ Σ(⟨idS1 , α1⟩, . . . , ⟨idSn , αn⟩)) (11)

which becomes a functor, because ρ is a natural transformation. Any n-tuple (f1, ..., fn) with
fi a Bi-Coalg-morphism is mapped by Σρ to the B-Coalg-morphism Σ(f1, ..., fn).

▶ Definition 13 (ρ-Induced Coalgebra). Given (S1, α1) ∈ B1-Coalg, . . . , (Sn, αn) ∈ Bn-Coalg

and an interaction law ρ, the B-coalgbra Σρ((S1, α1), . . . , (Sn, αn)) is called the ρ-induced
coalgebra of (S1, α1), . . . , (Sn, αn). If the carrier sets are clear from the context, we just
write Σρ(α1, ..., αn) for the ρ-induced coalgebra. ⌟

Hence, the ρ-induced coalgebra is the compound system arising from the local components,
when an SOS rule like (8), which is reflected in interaction law ρ, is applied.

▶ Example 14 (Example 10 ctd). In the example, we obtain the desired compound system, a
B-coalgebra with state space S1 × S2 behaving as specified by the local components and the
SOS-laws from (8). ⌟

H. König, U. Wolter, and T. Kräuter 7:11

5.3 Compositionality

Verification of correctness of composed systems should be guaranteed, if its components are
already correct. Moreover, semantics preserving refactorings of local components should also
preserve the semantics of the compound system. These behavioural correctness issues are
often based on observational equivalence, hence we want observational equivalence to be
preserved after the construction of the compound system from the local components. In this
section, we formally define these aspects in the context of our setting.

▶ Definition 15 (Observational Equivalence). Let F : SET → SET , such that F-Coalg admits
a final object (Z, ζ). Let (X, α) ∈ F-Coalg and uα : X → Z be its coinductive extension.
Two states x, x′ ∈ X are said to be observationally equivalent, written x ∼α x′, if (x, x′) is
contained in the kernel relation ker(uα), i.e. if uα(x) = uα(x′). ⌟

For future use, we state the following proposition, which easily follows, because for any
F -Coalg-morphism f : (X, α) → (Y, β), the coinductive extension satisfies uα = uβ ◦ f :

▶ Proposition 16 (Observational Equivalence). With the same ingredients as in Def. 15,
two states x1, x2 ∈ X are observationally equivalent, if there is an F-Coalg-morphism
f : (X, α) → (Y, β) such that f(x1) = f(x2).7 ⌟

Let (uαi
)i∈{1,...,n} be the coinductive extensions of our local components,

∼i = ker(uαi
), (12)

and some operation op : S1 ×· · ·× Sn → A be given for some state set A of some B-coalgebra.
Furthermore, let ∼ be the kernel relation of its coinductive extension, then preservation of
observational equivalence under op means

∀i ∈ {1, ..., n} : xi ∼i x′
i ⇒ op(x1, ..., xn) ∼ op(x′

1, ..., x′
n), (13)

i.e. observational equivalence is a compatible w.r.t. operation op. It is well-known that a
general definition of congruence on an algebra a : F(A) → A for an endofunctor F : C → C

is as follows: A monomorphism R //
⟨π1,π2⟩

// A × A is a congruence on a, if there is an algebra
r : F(R) → R, for which the diagram

F(A)

a

��

F(R)

r

��

F(π1)
oo

F(π2)
// F(A)

a

��

A R
π1

oo
π2

// A

(14)

commutes, cf. Theorem 3.3.5. in [12].
However, in the case of separated heterogeneously typed state sets of the local systems, a

general definition of congruence must be based on the above-defined functor Σ : SET n → SET .

7 Note that this proposition can even better be taken as the definition for observational equivalence,
because it does not depend on the existence of a final object. We found it, however, more demonstrative
to use Def. 15 for it.

CALCO 2023

7:12 SOS for Heterogeneously Typed Coalgebras

▶ Definition 17 (a-compatibility). Let A1, ..., An, A be sets and

a : Σ(A1, ..., An) → A

be a map. Furthermore let (Ri ⊆ Ai × Ai)i∈{1,...,n} and R ⊆ A × A be a collection of n + 1
binary relations with projections πi

1, πi
2 : Ri → Ai for all i and π1, π2 : R → A. The relation

tuple (R1, ..., Rn, R) is said to be a-compatible, if there is a map r, such that the following
diagram commutes:

Σ(A1, ..., An)

a

��

Σ(R1, ..., Rn)

r

��

Σ(π1
1 ,...,πn

1)
oo

Σ(π1
2 ,...,πn

2)
// Σ(A1, ..., An)

a

��

A R
π1

oo
π2

// A

⌟

▶ Example 18 (op-compatibility). Let Ri = ∼i and R = ∼, cf. (12), then it is easy to see
that in the case Σ(X1, ..., Xn) = X1 × · · · × Xn op-compatibility yields (13). ⌟

▶ Observation 19. a-compatibility of (R1, ..., Rn, R) can thus be read as an implication:
If pairs (ai, a′

i) are related via Ri, then a-images of corresponding elements of the set
Σ(A1, ..., An) are related as well. ⌟

Of course, the meaning of the term ”corresponding” depends on the action of Σ.
It is not self-evident that observational equivalence is compatible with the syntactic

structure of process terms in transition rules, see the counterexamples in [8] or violations of
compositionality in the context of the π-calculus [21], Chapt. 12.4. However, in our setting,
we can prove that interaction laws preserve observational equivalence. Note that this is
almost evident in the above example, where n = 2 and Σ(X, Y) = X × Y , because the
image of the pair of coinductive extensions uα1 : S1 → ... and uα2 : S2 → ... of functor Σρ is
the B-coalgebra-morphism u = uα1 × uα2 , for which ((x1, x2), (x′

1, x′
2)) ∈ ker(uα1 × uα2), if

(x1, x′
1) ∈ ker(uα1) and (x2, x′

2) ∈ ker(uα2), which yields the desired result by Prop. 16.
The proof idea for the general case is to keep the local state spaces and the state space for

the compound system separated as systems in their own right by assigning different sorts of
the underlying algebraic specification to them and then apply (7) (i.e observation 9). For this,
we must formalise the whole setting of system components and their interaction in one holistic
many-sorted approach as follows. Recall that we assume (S1, α1) ∈ B1-Coalg, . . . , (Sn, αn) ∈
Bn-Coalg to be n individual, local components, then we define the endofunctor

Σ⃗ :
{

SET n+1 → SET n+1

(X1, ..., Xn, Xn+1) 7→ (S1, ..., Sn, Σ(X1, ..., Xn))

with Σ⃗(h1, ..., hn, hn+1) := (id, ..., id︸ ︷︷ ︸
n times

, Σ(h1, . . . , hn)) on function tuples. Intuitively, we define

an algebraic signature with sorts s1, ..., sn, sn+1 and ”constants” of sort si the elements of Si

(for 1 ≤ i ≤ n), as well as operation symbols with codomain sn+1. Thus the term algebra
has carrier sets S1, ..., Sn, whereas the carrier of sort sn+1 comprises all terms arising from a
single application of an operation symbol. We obtain

▶ Proposition 20 (Initial Object of Σ⃗). Σ⃗-Alg possesses an initial object with carrier 0 :=
(S1, ..., Sn, Σ(S1, ..., Sn)) = Σ⃗(0) and structure map id0 : Σ⃗(0) → 0.

H. König, U. Wolter, and T. Kräuter 7:13

Proof. Given a Σ⃗-algebra (f1, . . . , fn, fn+1) : Σ⃗(X1, . . . , Xn, Xn+1) → (X1, . . . , Xn, Xn+1),
it is easy to see that

0
(f1,...,fn,fn+1◦Σ(f1,...,fn))

// (X1, . . . , Xn, Xn+1)

establishes the unique algebra homomorphism from id0 to the given algebra. ◀

▶ Theorem 21 (Interaction Laws preserve Observational Equivalence). Let B1, . . . , Bn, and
B be n + 1 SET -endofunctors, such that all corresponding categories of coalgebras admit a
final coalgebra. Let (S1, α1) ∈ B1-Coalg, . . . , (Sn, αn) ∈ Bn-Coalg and uα1 , ..., uαn be their
coinductive extensions. For functor Σ : SET n → SET let an interaction law ρ be given as
in Def. 12, and Σρ(α1, ..., αn) be the ρ-induced B-coalgebra, cf. (11) and Def. 13, together
with its coinductive extension u. Then the family (ker(uα1), ..., ker(uαn

), ker(u)) of kernel
relations is idΣ(S1,...,Sn)-compatible.

Thus by observation 19: If pairs (xi, x′
i) are observationally equivalent w.r.t. αi, then

corresponding elements in the set Σ(S1, ..., Sn) are observationally equivalent w.r.t. the
ρ-induced coalgebra Σρ(α1, ..., αn). Thus observational equivalence carries over from the
local components to the compound system.

Proof. To make reading easier, we give the proof of Theorem 21 for the special case n = 2.
It easily carries over to the general case. Let H1, H2, and H be the copointed versions of
B1, B2, and B as in (2) and with this

H⃗ := H1 × H2 × H : SET 3 → SET 3

Let B⃗ := B1 × B2 × B : SET 3 → SET 3, then we have obtained the setting of Sect. 4 with
C = SET 3, H := H⃗, and B := B⃗. Furthermore, we define

ρ⃗ := (α1, α2, ρ) : Σ⃗H⃗ ⇒ B⃗Σ⃗ : SET 3 → SET 3. (15)

which is a natural transformation, because (α1,X1 = α1)X1∈|SET | and (α2,X2 = α2)X2∈|SET |
are independent of their parameters X1, X2, resp. By Prop. 4 it corresponds to a distributive
law λ⃗ : Σ⃗H⃗ ⇒ H⃗Σ⃗ of Σ⃗ over H⃗, where by (4)

λ⃗ = ⟨Σ⃗π1, ρ⃗⟩. (16)

Following the notation of Prop. 20, (6) becomes

Σ⃗(0)

Σ⃗h
λ⃗

��

0

h
λ⃗

��

Σ⃗H⃗(0)
λ⃗0

// H⃗(0)

(17)

The first component h1
λ⃗

of hλ⃗ is the composition of the first components of the left and bottom
arrow: h1

λ⃗
= λ⃗1

0 ◦ (Σ⃗hλ⃗)1 = ⟨idS1 , α1⟩ ◦ idS1 , because Σ⃗ is constant in the first component
and similarly for the second component, hence

(h1
λ⃗
, h2

λ⃗
) = (⟨idS1 , α1⟩, ⟨idS1 , α2⟩). (18)

Thus, the third component of Σ⃗hλ⃗ equals Σ(⟨idS1 , α1⟩, ⟨idS2 , α2⟩). By (16) the third com-
ponent of λ⃗0 is the pair of the third component of (Σ⃗π1)0 and ρ(S1,S2), hence

h3
λ⃗

= ⟨idΣ(S1,S2), ρS1,S2 ◦ Σ(⟨idS1 , α1⟩, ⟨idS2 , α2⟩)⟩ = ⟨idΣ(S1,S2), Σρ(α1, α2)⟩ (19)

CALCO 2023

7:14 SOS for Heterogeneously Typed Coalgebras

by Def. 13. Let (1, ζ) be the final B⃗-coalgebra (which exists, because it is taken compon-
entwise), then by Prop. 3 (1, ⟨id, ζ⟩) is final in H⃗-Coalgco and (7) is reflected in the left two
squares in

Σ⃗(0)

Σ⃗u⃗
��

0

u⃗

��

h
λ⃗

//

(α1,α2,Σρ(α1,α2))
))

H⃗(0)

H⃗u⃗
��

(π2)0

// B⃗(0)

B⃗u⃗
��

Σ⃗(1)
g

λ⃗

// 1
⟨id,ζ⟩

//

ζ

55H⃗(1)
(π2)1

// B⃗(1)

(20)

with u⃗ = (uα1 , uα2 , u), see observation 9. By (15), (18), and (19) the triangle in the top right
commutes.

Thus the coinductive extension u⃗ of the B⃗-coalgebra (α1, α2, Σρ(α1, α2)) is a Σ⃗-algebra
homomorphism and it is well-known that this makes u⃗’s kernel relation a congruence in
the sense of (14) for F := Σ⃗, see [12], Sect. 3.2., where A = (S1, S2, Σ(S1, S2)) = F(A),
R = (ker(uα1), ker(uα2), ker(u)), hence F(R) = (S1, S2, Σ(ker(uα1), ker(uα2)). Considering
the third components only, shows that the family of kernel relations (R1 := ker(uα1), R2 :=
ker(uα2), R := ker(u)) is idΣ(S1,S2)-compatible as desired. ◀

From Theorem 21 we also obtain

▶ Corollary 22 (Sufficient Criterion for Compositionality). Let B1, . . . , Bn, B and Σ : SET n →
SET be given as above. Let for all i ∈ {1, ..., n} the SET -endofunctors Hi and H be given
as in (2), then compositionality holds for the heterogeneous scenario, if the computation of
the compound system can be described by a natural transformation

ρ : Σ(H1 × · · · × Hn) ⇒ BΣ : SET n → SET . ⌟

6 Related Work

Practical approaches. The general idea of transforming different behavioural formalisms
to a single semantic domain in order to reason about crosscutting concerns is nothing
new [6]. We mention only a few approaches: [17] developed consistency checking for sequence
diagrams and statecharts based on CSP, while Petri nets were used for the same scenario
in [29]. Nevertheless, all approaches utilize fixed types of transition systems and no common
framework, which can capture all possible types of transition structures. In recent years,
co-simulation of coupled heterogeneous systems has become popular and there is already
a plethora of work on that topic [7]. In particular [5] tackles the problem of coordinating
different models using a dedicated coordination language. However, the majority of these
approaches lack theoretical underpinnings, and, to the best of our knowledge, co-simulated
comprehensive behaviour has not been formulated coalgebraically.

SOS Framework, Distributive Laws and Compositionality. All important variants of SOS
rules are described in [1] and we took most of its coalgebraic abstraction from the original
work [27], further elaborated in [14], especially for copointed functors in [18], and probably
formulated in the most general way in [12]. All important variations of distributive laws
and connected aspects of compositionality are surveyed in Chapter 8 of [14]. Moreover,
compositionality in the bialgebraic approach is a facet of the microcosm principle: The

H. König, U. Wolter, and T. Kräuter 7:15

behavior of a composed system involves an outer operator on B-Coalg, the composition of
behaviors is an inner operator on the final object of B-Coalg, see [9], where the compositionality
property is derived from a formalization of the microcosm principle for Lawvere theories.

Heterogeneity appears whenever different behavioral paradigms shall be combined. One of
the first examples are hybrid systems, which combine discrete and continuous dynamics [11].
However, reasoning about operational semantics of arbitrary heterogeneously typed transition
structures is usually treated by common abstractions of the different systems: E.g. the
coordination of a Mealy machine and a probabilistic system can be investigated by reducing
both systems to labelled transition systems and formulating interactions with LTS-based SOS
rules. A different approach, which is closer to ours, is described in [13], where the combination
of two distributive laws based on different behavioral specifications is investigated: So-called
heterogeneous transition systems simultaneously carry two different coalgebraic stuctures
B and B′ and behavioural descriptions are based on natural transformations of the form
Σ(B × B′) ⇒ (B × B′)Σ. However, the authors do not pick up the holistic view of our
approach and do not investigate compositionality.

Categorically, heterogeneity leads to the general theory of (co-)institutions. [23] proves
three different types of logics for coalgebras to be institutions. Another approach are
parametrized endofunctors as comprehensive behavioural specifications, where the overall
structure can be studied in terms of cofibrations [16]. [28] investigates co-institutions purely
dual to classical institutions [25].

7 Future Work

We investigated the synchronisation of n local components to obtain a compound system.
The idea was to introduce n + 1 sorts, which reflects the fact that the resulting compound
system is obtained in one step from the locals. That excludes step-by-step synchronisation,
i.e. the assembly of some components to an intermediate composed system, which in a later
step is combined with other components, before the resulting global operational semantics
is reached. The challenge in future work is to cope with an unsteady number of sorts for
the arising intermediate systems. Similarly, our approach cannot directly be applied to
asynchronous communications via intermediate components like message queues, object
spaces, etc. It is a goal to derive formal underpinnings also in these cases.

Moreover, it is worth thinking about other types of extensions or refinements of local
components and how they cause an impact on the composed system. If, for instance, a local
system is conservatively extended [1], then we can ask the question whether the compound
system is also conservatively extended. Furthermore, it is an open question, whether extensive
refinements of the local systems and their interaction specifications can still be handled with
interaction laws.

Finally, if additional system properties are imposed on the local behavioural models by
modal logic formulae, the question arises, whether the use of co-forgetful functors in the
translation of these formulae to the compound system [15] matches the framework proposed
in the present paper. Altogether, the goal is to extend the first iteration of our work and, in
future steps, develop more insight into the topic.

CALCO 2023

7:16 SOS for Heterogeneously Typed Coalgebras

References
1 Luca Aceto, Wan J. Fokkink, and Chris Verhoef. Structural operational semantics. In Jan A.

Bergstra, Alban Ponse, and Scott A. Smolka, editors, Handbook of Process Algebra, pages
197–292. North-Holland / Elsevier, 2001. doi:10.1016/b978-044482830-9/50021-7.

2 Falk Bartels. On generalised coinduction and probabilistic specification formats: distributive
laws in coalgebraic modelling. Academisch Proefschrift, Vrije Universiteit Amsterdam, 2004.

3 Bard Bloom, Sorin Istrail, and Albert R. Meyer. Bisimulation can’t be traced. In Jeanne
Ferrante and Peter Mager, editors, Conference Record of the Fifteenth Annual ACM Symposium
on Principles of Programming Languages, San Diego, California, USA, January 10-13, 1988,
pages 229–239. ACM Press, 1988. doi:10.1145/73560.73580.

4 Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-driven software engineering in
practice. Synthesis lectures on software engineering, 3(1):1–207, 2017.

5 Julien Deantoni. Modeling the behavioral semantics of heterogeneous languages and their
coordination. In 2016 Architecture-Centric Virtual Integration (ACVI), pages 12–18. IEEE,
2016.

6 Gregor Engels, Jochen Malte Küster, Reiko Heckel, and Luuk Groenewegen. A methodology
for specifying and analyzing consistency of object-oriented behavioral models. In A Min Tjoa
and Volker Gruhn, editors, Proceedings of the 8th European Software Engineering Conference
held jointly with 9th ACM SIGSOFT International Symposium on Foundations of Software
Engineering 2001, Vienna, Austria, September 10-14, 2001, pages 186–195. ACM, 2001.
doi:10.1145/503209.503235.

7 Cláudio Gomes, Casper Thule, David Broman, Peter Gorm Larsen, and Hans Vangheluwe.
Co-simulation: a survey. ACM Computing Surveys (CSUR), 51(3):1–33, 2018.

8 Jan Friso Groote and Frits Vaandrager. Structured operational semantics and bisimulation as
a congruence. Information and computation, 100(2):202–260, 1992.

9 Ichiro Hasuo, Bart Jacobs, and Ana Sokolova. The microcosm principle and concurrency in
coalgebra. In International Conference on Foundations of Software Science and Computational
Structures, pages 246–260. Springer, 2008.

10 Charles Antony Richard Hoare. Communicating sequential processes. Communications of the
ACM, 21(8):666–677, 1978.

11 Bart Jacobs. Object-oriented hybrid systems of coalgebras plus monoid actions. Theoretical
Computer Science, 239(1):41–95, 2000.

12 Bart Jacobs. Introduction to Coalgebra: Towards Mathematics of States and Observation,
volume 59 of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,
2016. doi:10.1017/CBO9781316823187.

13 Marco Kick, John Power, and Alex Simpson. Coalgebraic semantics for timed processes.
Information and Computation, 204(4):588–609, 2006.

14 Bartek Klin. Bialgebras for structural operational semantics: An introduction. Theor. Comput.
Sci., 412(38):5043–5069, 2011. doi:10.1016/j.tcs.2011.03.023.

15 Harald König and Uwe Wolter. Consistency of heterogeneously typed behavioural models: A
coalgebraic approach. In Yamine Aït Ameur and Florin Craciun, editors, Theoretical Aspects
of Software Engineering - 16th International Symposium, TASE 2022, Cluj-Napoca, Romania,
July 8-10, 2022, Proceedings, volume 13299 of Lecture Notes in Computer Science, pages
308–325. Springer, 2022. doi:10.1007/978-3-031-10363-6_21.

16 Alexander Kurz and Dirk Pattinson. Coalgebras and modal logic for parameterised endofunctors.
Centrum voor Wiskunde en Informatica, 2000.

17 Jochen Malte Küster. Towards Inconsistency Handling of Object-Oriented Behavioral Models.
Electron. Notes Theor. Comput. Sci., 109:57–69, 2004. doi:10.1016/j.entcs.2004.02.056.

18 Marina Lenisa, John Power, and Hiroshi Watanabe. Category theory for operational semantics.
Theor. Comput. Sci., 327(1-2):135–154, 2004. doi:10.1016/j.tcs.2004.07.024.

https://doi.org/10.1016/b978-044482830-9/50021-7
https://doi.org/10.1145/73560.73580
https://doi.org/10.1145/503209.503235
https://doi.org/10.1017/CBO9781316823187
https://doi.org/10.1016/j.tcs.2011.03.023
https://doi.org/10.1007/978-3-031-10363-6_21
https://doi.org/10.1016/j.entcs.2004.02.056
https://doi.org/10.1016/j.tcs.2004.07.024

H. König, U. Wolter, and T. Kräuter 7:17

19 Dorian Leroy, Erwan Bousse, Manuel Wimmer, Tanja Mayerhofer, Benoit Combemale, and
Wieland Schwinger. Behavioral interfaces for executable DSLs. Software and Systems Modeling,
19(4):1015–1043, 2020.

20 Giovanni Liboni and Julien Deantoni. Cosim20: An integrated development environment for
accurate and efficient distributed co-simulations. In Proceedings of the 2020 International
Conference on Big Data in Management, pages 76–83, 2020.

21 Robin Milner. Communicating and Mobile Systems: The π-Calculus. Cambridge University
Press, 1999.

22 Mogens Nielsen and Glynn Winskel. Models for concurrency. In Handbook of Logic in Computer
Science, Volume 4. Oxford Science Publications, 1995.

23 Dirk Pattinson. Translating logics for coalgebras. In International Workshop on Algebraic
Development Techniques, pages 393–408. Springer, 2002.

24 Jan J. M. M. Rutten. Universal coalgebra: a theory of systems. Theor. Comput. Sci.,
249(1):3–80, 2000. doi:10.1016/S0304-3975(00)00056-6.

25 Donald Sannella and Andrzej Tarlecki. Foundations of Algebraic Specification and Formal
Software Development. Monographs in Theoretical Computer Science. An EATCS Series.
Springer, 2012. doi:10.1007/978-3-642-17336-3.

26 Ana Sokolova. Probabilistic systems coalgebraically: A survey. Theoretical Computer Science,
412(38):5095–5110, 2011.

27 Daniele Turi and Gordon Plotkin. Towards a mathematical operational semantics. In
Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science, pages 280–291.
IEEE, 1997.

28 U. Wolter. (Co)Institutions for Coalgebras. Reports in Informatics 415, Dep. of Informatics,
University of Bergen, 2016.

29 Shuzhen Yao and Sol M Shatz. Consistency checking of UML dynamic models based on Petri
net techniques. In 2006 15th International Conference on Computing, pages 289–297. IEEE,
2006.

CALCO 2023

https://doi.org/10.1016/S0304-3975(00)00056-6
https://doi.org/10.1007/978-3-642-17336-3

Interpolation Is (Not Always) Easy to Spoil
Andrzej Tarlecki # Ñ

Institute of Informatics, University of Warsaw, Poland

Abstract
We study a version of the Craig interpolation theorem as formulated in the framework of the theory
of institutions. This formulation proved crucial in the development of a number of key results
concerning foundations of software specification and formal development. We investigate preservation
of interpolation under extensions of institutions by new models and sentences. We point out that
some interpolation properties remain stable under such extensions, even if quite arbitrary new models
or sentences are permitted. We give complete characterisations of such situations for institution
extensions by new models, by new sentences, as well as by new models and sentences, respectively.

2012 ACM Subject Classification Theory of computation → Logic; Theory of computation → Logic
and verification

Keywords and phrases interpolation, institutions, institutional abstract model theory, specification
theory

Digital Object Identifier 10.4230/LIPIcs.CALCO.2023.8

Acknowledgements Thanks to the anonymous reviewers for a number of useful comments.

1 Introduction

The Craig interpolation theorem [12] states that when an implication φ⇒ψ between premise
φ and conclusion ψ holds then there is an interpolant θ built using the symbols the premise
and the conclusion have in common that witnesses this implication, that is, such that both
φ⇒ θ and θ ⇒ ψ hold. This is one of the fundamental properties of the classical first-order
logic, with numerous consequences and links with other key properties developed in the
framework of classical model theory [11].

In the area of foundations of system specification and formal development, interpolation
proved indispensable for a number of most fundamental features of various approaches.
This was perhaps first pointed out in [27], where it was used to ensure composability of
subsequent implementation steps (later refined in various forms of the so-called modularisation
theorem [42, 41]). In the work on module algebra [3] the interpolation was necessary to
obtain crucial distributive laws for their export operator ([31] joined the two threads). The
proofs of completeness of proof calculi for consequences of structured specifications rely on
interpolation [10, 5] (in fact, no “good” sound and complete such proof calculus may exist
without an appropriate interpolation property for the underlying logic [36]). These and
further results concerning completeness of various reasoning systems necessary in the process
of reliable software development involve interpolation explicitly, but the same idea that
showing properties of a union of a number of extensions of a basic theory must rely on some
form of interpolation (perhaps disguised as the Robinson consistency [32]) is omnipresent in
both practical and foundational aspects of computing.

Applications of logic in computer science face the problem of dealing with numerous
logical systems. This follows from the real needs of software development, based on the
multitude of application areas as well as of programming paradigms, features and languages.
This led to various attempts to abstract away from a specific logical system in use. Such an
independence of the foundations for software specification has been successfully achieved by

© Andrzej Tarlecki;
licensed under Creative Commons License CC-BY 4.0

10th Conference on Algebra and Coalgebra in Computer Science (CALCO 2023).
Editors: Paolo Baldan and Valeria de Paiva; Article No. 8; pp. 8:1–8:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tarlecki@mimuw.edu.pl
http://www.mimuw.edu.pl/~tarlecki
https://doi.org/10.4230/LIPIcs.CALCO.2023.8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Interpolation Is (Not Always) Easy to Spoil

relying on the concept of an institution, introduced by Goguen and Burstall as a formalisation
of the concept of a logical system [25]. See for instance [35] for an exhaustive account of such
ideas, with further examples in the development of specification formalisms such as Casl [1].

It has been realised quite early that institutions also offer a framework for developing a
very abstract version of model theory, going beyond what has been studied within abstract
model theory following [2]. This was noted in [37] and expanded in many crucial directions
by Diaconescu and his group; his monograph [13] offers an overview of this work, with later
developments scattered through numerous articles (see e.g. [16] and references there).

In the institutional model theory the interpolation property is formulated so that it can be
studied (and used) for logical systems departing considerably from the first-order logic. This
was put forward in [37], but we use here a still more refined formulation of interpolation given
in [34, 14]. This formulation uses logical entailment (rather than implication), sets of sentences
(rather than individual sentences) and, most crucially, works over arbitrary commutative
squares of signature morphisms (rather than over union/intersection squares only), and so
caters for instance for the logical systems where one lacks compactness, conjunction and
other classical connectives, and even the concept of the set of symbols used in a formula and
union/intersection of signatures may not be directly available. The key point of many of the
applications mentioned above is the need to abstract away from signature inclusions and deal
with interpolation properties with other signature morphisms considered. Subsequent work
included development of generic model-theoretic proof techniques to establish interpolation
for institutions satisfying a number of structural properties. This led to new interpolation
results concerning various logical systems, as well as to studying interpolation in even more
general context of non-standard entailment relations [14, 6, 24, 30, 15, 22, 23, 17].

The need for the use of many logical systems leads to the need for establishing their
properties, including the interpolation property we study here. Rather than doing this
for each system anew, it is desirable to ensure the required properties in the course of
systematic construction of new logics, perhaps along the lines aimed at for instance in [29, 28]
or [8, 7, 9]. Typically, the new logics are linked with the original ones by institution
(co)morphisms [25, 26]. An important line of research was to clarify sufficient conditions on
the institution (co)morphisms involved to allow interpolation properties to be “transferred”
between the institutions they link [18, 22].

We address a perhaps more basic question that arises in this framework: namely, when
interpolation properties can be spoiled by extending a logic by new abstract models or
sentences. Looking at the standard formulation, it seems that the answer is always positive.
To spoil an interpolant for the premise and the conclusion of a true implication, just add a
new model that satisfies the premise but not the interpolant, or the interpolant but not the
conclusion, thus spoiling the required implication between the premise and the interpolant,
or between the interpolant and the conclusion. This should work, except for the trivial cases
when the signature of the premise includes or is included in the signature of the conclusion.
At a closer look though, when one considers arbitrary signature morphisms, adding new
models for the signature of the premise or for the signature of the conclusion may result in
new models for their union signature, and ruin the implication considered.

We explore the consequences of this observation, and give exact characterisations of
the situations where interpolation is stable under extensions of institutions. Equivalently,
looking at the other side of this coin, we obtain the exact characterisation of the situations
where new models or sentences may spoil the interpolation property. More precisely: we
consider separately institution extensions where only new models, only new sentences, and
both new models and sentences, respectively, are permitted. In each of these three cases

A. Tarlecki 8:3

complete characterisations are given, formulating necessary and sufficient conditions for a
commutative square of signature morphisms under which no such institution extension may
spoil interpolation properties over this square.

2 Institutions

2.1 Notational preliminaries
For any function f : X → Y , given a set X ′ ⊆ X, f(X ′) = {f(x) | x ∈ X ′} ⊆ Y is the image
of X ′ w.r.t. f , and for Y ′ ⊆ Y , f−1(Y ′) = {x ∈ X | f(x) ∈ Y ′} is the coimage of Y ′ w.r.t. f

Throughout the paper we freely use the basic notions from category theory (category,
functor, natural transformation, pushout, etc). Composition in any category is denoted by “;”
(semicolon) and written in the diagrammatic order. For instance, f : A → B is a retraction if
for some g : B → A we have g;f = idB , and f : A → B is a coretraction if for some g : B → A

we have f ;g = idA. The collection of objects of any category K is written as |K|. The
category of sets is denoted by Set, and the (quasi-)category of classes by Class.

2.2 Institutions
In the foundations of software specification and development [35] it is standard by now to
abstract away from the details of the logical system in use, relying on the formalisation of a
logical system as an institution [25]. An institution INS consists of:

a category SignINS of signatures;
a functor SenINS : SignINS → Set, giving a set SenINS(Σ) of Σ-sentences for each
signature Σ ∈ |SignINS|;
a functor ModINS : Signop

INS → Class, giving a class (or a discrete category)1

ModINS(Σ) of Σ-models for each signature Σ ∈ |SignINS|; and
a family ⟨|=INS,Σ ⊆ ModINS(Σ) × SenINS(Σ)⟩Σ∈|SignINS| of satisfaction relations

such that for any signature morphism σ : Σ → Σ′ the induced translations ModINS(σ)
of models and SenINS(σ) of sentences preserve the satisfaction relation, that is, for any
φ ∈ SenINS(Σ) and M ′ ∈ ModINS(Σ′) the following satisfaction condition holds:

M ′ |=INS,Σ′ SenINS(σ)(φ) iff ModINS(σ)(M ′) |=INS,Σ φ.

The subscripts INS and Σ are typically omitted. For any signature morphism σ : Σ → Σ′,
the translation Sen(σ) : Sen(Σ) → Sen(Σ′) is denoted by σ : Sen(Σ) → Sen(Σ′), and
the reduct Mod(σ) : Mod(Σ′) → Mod(Σ) by _ σ : Mod(Σ′) → Mod(Σ). For instance,
the satisfaction condition may be re-stated as: M ′ |= σ(φ) iff M ′

σ |= φ, and given the
notation for image and coimage, for Φ ⊆ Sen(Σ), σ(Φ) = {σ(φ) | φ ∈ Φ} ⊆ Sen(Σ′), and
for M ⊆ Mod(Σ), M −1

σ = {M ′ ∈ Mod(Σ′) | M ′
σ ∈ M}. For any signature Σ, the

satisfaction relation extends to sets of Σ-sentences and classes of Σ-models. For Φ ⊆ Sen(Σ),
the class of models of Φ is Mod(Φ) = {M ∈ Mod(Σ) | M |= Φ}, and for M ⊆ Mod(Σ), the
theory of M is Th(M) = {φ ∈ Sen(Σ) | M |= φ}. The latter notation is also used for the
theory generated by a set of sentences: for Φ ⊆ Sen(Σ), Th(Φ) = Th(Mod(Φ)).

Each satisfaction relation determines a (semantic) entailment between sets of sentences:
Φ ⊆ Sen(Σ) entails Ψ ⊆ Sen(Σ) (or Ψ is a consequence of Φ), written Φ |= Ψ, when
Ψ ⊆ Th(Φ). The satisfaction condition implies that the semantic entailment is preserved under

1 We disregard here model morphisms, irrelevant for the purposes of this paper.

CALCO 2023

8:4 Interpolation Is (Not Always) Easy to Spoil

translation along signature morphisms: for any σ : Σ → Σ′, if Φ |= Ψ then σ(Φ) |= σ(Ψ). If the
opposite implication holds as well, i.e. Φ |= Ψ iff σ(Φ) |= σ(Ψ) for all Φ,Ψ ⊆ Sen(Σ), we say
that σ : Σ → Σ′ is conservative. It is well-known that if the reduct _ σ : Mod(Σ′) → Mod(Σ)
is surjective then σ : Σ → Σ′ is conservative.2

We typically decorate the names for institution components and for other derived notions
by primes, indices, etc, to identify the institution they refer to, and rely on this convention
whenever the institution is clear from the context. So, for instance, Mod1 is the model
functor in an institution INS1, |=′ is the satisfaction relation (and entailment) in INS′, etc.

Examples of institutions abound, see e.g. [35, 13]. We just sketch three standard examples.

▶ Example 1. The institution FO of (many-sorted) first-order logic has signatures that
consist of sets of sort names, of operation names with indicated arities and result sorts, and
of predicate names with indicated arities. Terms and atomic formulae are defined as usual,
and first-order formulae are built using the usual Boolean connectives (including nullary
false) and quantification. First-order sentences are closed formulae (i.e. formulae with no
free occurrences of variables). First-order models consist of many-sorted carrier sets (one
set for each sort name), functions to interpret operation names and relations to interpret
predicate names, in accordance with their arities and result sorts. Satisfaction of first-order
sentences in first-order models is defined as usual. Signature morphisms map sort names to
sort names, operation names to operation names and predicate names to predicate names
preserving their arities and result sorts. For any such morphism, translation of sentences
is defined by renaming sort, operation and predicate names as indicated by the morphism,
and model reducts are defined by interpreting the symbols of the source signature as the
symbols they are mapped to in the target signature are interpreted in the argument model.
This indeed defines an institution [25]. We assume that carrier sets in first-order models are
nonempty. The variant of FO where empty carrier sets are allowed in models is denoted
by FO∅. Another variant is the institution FOEQ of first-order logic with equality, with a
binary equality predicate for each sort, interpreted as the identity relation in all models.

The institution EQ of (many-sorted) equational logic may be defined as the restriction of
FOEQ to the signatures with no predicates other than equalities (models are usually called
algebras then), and sentences limited to universally quantified equalities. EQ∅ is the variant
of EQ with empty carriers permitted. See [35, 13] for an explicit definition.

The institution PL of propositional logic has finite sets of propositional variables as signa-
tures, with signature morphisms being arbitrary functions between those sets. Propositional
sentences are built from propositional variables using the usual Boolean connectives (with
obvious translations under functions renaming propositional variables). Models over a signa-
ture are given as subsets of this signature (consisting of the propositional variables that are
satisfied in the model) with reducts w.r.t. signature morphisms given as their coimage. With
the usual satisfaction of propositional sentences in such models, the satisfaction condition is
easy to check. In fact, the institution PL of propositional logic may be viewed as a restriction
of the institution of first-order logic to finite signatures with no sort names (and hence no
operation names and nullary predicates only).

In the institutions FO, EQ, and PL all injective signature morphisms induce surjective
reducts, and so are conservative. This need not be the case for non-injective morphisms. In
FO∅ in EQ∅, the variants of FO and of EQ where empty carriers are permitted, not all
injective signature morphisms are conservative.

2 Some authors use “conservative” for signature morphisms that induce surjective reducts [26]. Our more
permissive definition seems closer to the standard definition of a conservative theory interpretation [11].

A. Tarlecki 8:5

In the above examples all the signatures, sentences and models are quite familiar, and link
with many intuitions and implicit assumptions. However, when exploiting the generality of the
concept and working with an arbitrary institution, such connotations should be dropped. All
the entities involved (signatures, their morphisms, sentences, models, satisfaction relations)
are considered entirely abstract, with completely unknown structure and properties. It is
perhaps surprising how far one can go with developments of the foundations for software
specification [35] and an abstract version of model theory [13] in such an abstract setting.

2.3 Extending institutions by models and sentences

We introduce two basic ways of extending institutions, by adding new “abstract” models,
and new “abstract” sentences, respectively. The definitions are shaped after the definition
of constraints in [25, 35]. The basic observation is that when a new sentence is added over
a signature, with some predefined notion of satisfaction in the institution models, it must
also be “fitted” to other signatures to mimic its translation along signature morphisms
with this signature as a source. Hence, together with each new sentence, we also add its
“formal translations” along signature morphisms. The satisfaction of such formal translations
is determined by the satisfaction condition. Similarly, when we add a new model over a
signature – apart from the model itself, we must also add its “formal reducts”.

Consider and arbitrary institution INS = ⟨Sign,Sen,Mod, ⟨|=Σ⟩Σ∈|Sign|⟩.
Suppose that for each signature we are given a set of (new) “sentences” with predefined

satisfaction relation in the INS-models, which may be organised as a signature-indexed
family of sets with relations: NS = ⟨NSΣ, |=NS

Σ ⊆ Mod(Σ) × NSΣ⟩Σ∈|Sign|.3

The extension of INS by sentences NS is INS+ = ⟨Sign,Sen+,Mod, ⟨|=+
Σ⟩Σ∈|Sign|⟩,

where for Σ ∈ |Sign|, Sen+(Σ) = Sen(Σ) ∪ {⌈τ(φ′)⌉ | φ′ ∈ NSΣ′ , τ : Σ′ → Σ}.4 Then
for M ∈ Mod(Σ), M |=+

Σ φ iff M |=Σ φ for φ ∈ Sen(Σ), and for φ′ ∈ NSΣ′ , τ : Σ′ → Σ,
M |=+

Σ ⌈τ(φ′)⌉ iff M τ |=NS
Σ′ φ′. Finally, for σ : Σ → Σ′′, Sen+(σ)(φ) = Sen(σ)(φ) for

φ ∈ Sen(Σ), and for φ′ ∈ NSΣ′ , τ : Σ′ → Σ, Sen+(σ)(⌈τ(φ′)⌉) = ⌈(τ ;σ)(φ′)⌉.
This defines an institution where for Σ ∈ |Sign|, the new sentences φ ∈ NSΣ are present

as ⌈idΣ(φ)⌉. Such an extension does not affect entailments between sets of INS-sentences.
Suppose then that for each signature we are given a class of (new) “models” with predefined

satisfaction relation for the INS-sentences, organised as a signature-indexed family of classes
with relations: NM = ⟨NMΣ, |=NM

Σ ⊆ NMΣ × Sen(Σ)⟩Σ∈|Sign|.
The extension of INS by models NM is INS+ = ⟨Sign,Sen,Mod+, ⟨|=+

Σ⟩Σ∈|Sign|⟩,
where for Σ ∈ |Sign|, Mod+(Σ) = Mod(Σ) ∪ {⌈M ′

τ ⌉ | M ′ ∈ NMΣ′ , τ : Σ → Σ′}.5

Then for φ ∈ Sen(Σ), M |=+
Σ φ iff M |=Σ φ for M ∈ Mod(Σ), and for M ′ ∈ NMΣ′ ,

τ : Σ → Σ′, ⌈M ′
τ ⌉ |=+

Σ φ iff M ′ |=NS
Σ′ τ(φ). Finally, for σ : Σ′′ → Σ, Mod+(σ)(M) = M σ

for M ∈ Mod(Σ), and for M ′ ∈ NSΣ′ , τ : Σ → Σ′, Mod+(σ)(⌈M ′
τ ⌉) = ⌈M ′

σ;τ ⌉.
This defines an institution where for Σ ∈ |Sign|, the new models M ∈ NMΣ are present

as ⌈M idΣ⌉. Such an extension may spoil some entailments between sets of INS-sentences:
for Φ,Ψ ⊆ Sen(Σ) if Φ |=+ Ψ then Φ |= Ψ but the opposite implication may fail.

3 To avoid any foundational problems below, we may assume that Sign is small, or that it is locally small
and NSΣ ̸= ∅ for a set of signatures Σ only.

4 ⌈τ(φ′)⌉ is just our syntax for the sentence φ′ ∈ NSΣ′ formally “fitted” by τ : Σ′ → Σ to the signature
Σ; we assume that no sentences of the form ⌈τ(φ′)⌉ are present in INS.

5 ⌈M ′
τ ⌉ is just our syntax for the model M ′ ∈ NMΣ′ formally “fitted” by τ : Σ → Σ′ to the signature

Σ; we assume that no models of the form ⌈M ′
τ ⌉ are present in INS.

CALCO 2023

8:6 Interpolation Is (Not Always) Easy to Spoil

When using these constructions, we often present new sentences NS and new models
NM somewhat informally, avoiding much of the notational burden. We disregard the formal
distinction between φ ∈ NSΣ and ⌈idΣ(φ)⌉, and between M ∈ NMΣ and ⌈M idΣ⌉. For
Σ ∈ |Sign|, we may define the satisfaction relations |=NS

Σ indirectly by defining Mod+(φ) ⊆
Mod(Σ) for φ ∈ NSΣ (then for M ∈ Mod(Σ), M |=NS

Σ φ iff M ∈ Mod+(φ)), and |=NM
Σ

by defining Th+(M) ⊆ Sen(Σ) for M ∈ NMΣ (then for φ ∈ Sen(Σ), M |=NM
Σ φ iff

φ ∈ Th+(M)).

▶ Example 2. We may define an extension of the institution PL of propositional logic by
sentences, adding for each signature Σ a new sentence evenΣ defined to hold in models that
contain an even number of propositional variables. In the resulting extension PL+ of PL,
for any σ : Σ → Σ′, Sen+(σ)(evenσ) is ⌈σ(evenΣ)⌉, which is distinct from evenΣ′ . Indeed,
putting Sen+(σ)(evenΣ) = evenΣ′ would violate the satisfaction condition for some σ.

▶ Example 3. We may also define an extension of PL by models, adding for each signature
Σ and Σ-model M , a new model M̃ , where the satisfaction of propositional sentences in M̃

is defined by interpreting propositional connectives as usual, but the truth of propositional
variables is determined separately for each occurrence, from left to right, and after each
occurrence the values of all propositional variables are “swapped” (from true to false and vice
versa). Thus, for instance the sentence p∧ q holds in M̃ if p ∈ M and q ̸∈ M , and p∨ p holds
in any model M̃ . In the resulting extension PL+, for any signature Σ and M ∈ Mod(Σ), for
any σ : Σ′ → Σ, M̃ σ (that is, Mod+(σ)(M̃)) and M̃ σ are distinct Σ′-models, even though
they are logically equivalent (satisfy exactly the same propositional sentences).

2.4 Institution morphisms
The are a number of standard notions to capture relationships between different institutions,
with institution morphisms [25] and comorphisms [26] perhaps the most common.

For any institutions INS and INS′, an institution morphism µ : INS → INS′ consists of:
a functor µSign : Sign → Sign′,
a natural transformation µSen : µSign ;Sen′ → Sen, i.e., a family of functions
µSen

Σ : Sen′(µSign(Σ)) → Sen(Σ) natural in Σ ∈ |Sign|, and
a natural transformation µMod : Mod → (µSign)op;Mod′, i.e., a family of functions
µMod

Σ : Mod(Σ) → Mod′(µSign(Σ)) natural in Σ ∈ |Sign|
such that for all Σ ∈ |Sign|, φ′ ∈ Sen′(µSign(Σ)) and M ∈ Mod(Σ), M |=Σ µSen

Σ (φ′) iff
µMod

Σ (M) |=′
µSign(Σ) φ

′ (this is referred to as the satisfaction condition for µ). Institution
morphisms compose in the obvious, component-wise manner [25].

Semantic entailment is preserved by translation under institution morphisms: for any
signature Σ ∈ |Sign| and sets of sentences Φ′,Ψ′ ⊆ Sen′(µSign(Σ)), if Φ′ |=′ Ψ′ then
µSen

Σ (Φ′) |= µSen
Σ (Ψ′). If the translation of models µMod

Σ : Mod(Σ) → Mod′(µSign(Σ)) is
surjective then also the opposite implication holds, and Φ′ |=′ Ψ′ iff µSen

Σ (Φ′) |= µSen
Σ (Ψ′).

For instance, there is an obvious institution morphism from the institution FO of first-
order logic to the institution PL of propositional logic (removing from signatures everything
but nullary predicates). For further examples of institution morphisms we refer to [35, 13].

In this paper we deal only with institution morphisms that leave the signature category
intact, that is, where the signature functor is the identity. This also allows us to disregard
institution comorphisms, since essentially they are the same as institution morphisms then.

A. Tarlecki 8:7

An institution morphism µ : INS → INS′ is logically trivial if it is the identity on
signatures and surjective on sentences and models, that is, Sign′ = Sign and µSign =
idSign, and for all signatures Σ ∈ |Sign|, the functions µSen

Σ : Sen′(Σ) → Sen(Σ) and
µMod

Σ : Mod(Σ) → Mod′(Σ) are surjective. The following fact justifies this terminology:6

▶ Fact 4. Logically trivial institution morphisms identify only sentences and models that are
logically equivalent.

Special institution morphisms relate institutions with their extensions by new sentences
and by new models, respectively, introduced in Sect. 2.3. If INS+

NS
is the extension of

INS by new sentences NS then there is an institution morphism µNS : INS+
NS

→ INS,
where µSign

NS
and µMod

NS
are identities (the former is the identity functor on Sign, the latter

is the identity natural transformation on Mod : Signop → Class), and for Σ ∈ |Sign|,
µSen

NS
: Sen(Σ) → Sen+

NS
(Σ) are inclusions. Similarly, if INS+

NM
is the extension of INS by

new models NM then there is an institution morphism µNM : INS → INS+
NM

, where µSign
NM

and µSen
NM

are identities, and for Σ ∈ |Sign|, µMod
NM

: Mod(Σ) → Mod+
NM

(Σ) are inclusions.

▶ Fact 5. Let INS′ and INS′′ be institutions with a common signature category Sign. Con-
sider an institution morphism µ : INS′ → INS′′ with µSign = idSign. Then for some institu-
tion INS, extension INS+

NS
of INS by new sentences, extension INS+

NM
of INS by new mod-

els, and logically trivial institution morphisms µ′ : INS′ → INS+
NS and µ′′ : INS+

NM
→ INS′′

we have µ = µ′;µNS ;µNM ;µ′′: INS′ µ′

−→ INS+
NS

µNS−−−→ INS
µNM−−−→ INS+

NM

µ′′

−→ INS′′︸ ︷︷ ︸
µ

Proof (hint): Use INS = ⟨Sign,Sen′′,Mod′, ⟨|=Σ⟩Σ∈|Sign|⟩, where for Σ ∈ Sign, M ′ ∈
Mod′(Σ) and φ′′ ∈ Sen′′(Σ), M ′ |=Σ φ′′ iff M ′ |=′

Σ µSen
Σ (φ′).

3 Interpolation

3.1 Classical interpolation

The well-known Craig interpolation theorem [12] states that if an implication between two
first-order formulae φ⇒ψ holds then there is a formula θ that uses only the symbols common
to φ and ψ such that both φ⇒ θ and θ⇒ψ hold; θ is then called an interpolant for φ and ψ.
This is one of the key properties of first-order logic, with numerous applications, including
simpler proofs of similarly famous and important results like the Robinson consistency [32]
and Beth definability [4] theorems. The interpolation property has been investigated (and
proved or disproved) for many standard extensions (and fragments) of first-order logic [40] as
well as for other logical systems, for instance for various modal and intuitionistic logics [21].

The above statement of the interpolation property implicitly involves the following
union/intersection square of signatures:

6 Due to the page limit imposed, proofs are either omitted here or reduced to hints only.

CALCO 2023

8:8 Interpolation Is (Not Always) Easy to Spoil

Σp ∩ Σc

θ

φ⇒ θ Σp Σc θ ⇒ ψ

φ⇒ ψ

Σp ∪ Σc

❅
❅

❅■

�
�
�✒

�
�
�✒

❅
❅

❅■

where Σp and Σc are (first-order) signatures for φ and ψ, respectively, and the arrows indicate
signature inclusions.

As hinted at in Sect. 1, interpolation proved indispensable for many foundational aspects
of computer science, in particular in the area of software specification and development.
However, the classical formulation of Craig’s interpolation for many applications requires
some generalisations, which perhaps do not bring much new insight in the framework of
first-order logic, but may be important when other logical systems are considered.

To begin with, the use of implication should be replaced by entailment. Then, we should
deal with entailments between sets of sentences, rather than between individual sentences
(strictly speaking, this is needed for the premise φ and especially for the interpolant θ – for
notational symmetry, we do this for the conclusion ψ as well). Both these generalisations
are irrelevant for first-order logic, where implication captures semantic entailment, and a set
of sentences in the premise of each single-conclusion entailment may always be replaced by
a single sentence (since the logic is compact and has conjunction). However, for instance,
working in equational logic we have no implication available, and interpolants cannot be
always expressed as a single equation – even though the interpolation property holds if sets
of equations are permitted as interpolants [33].

Perhaps most importantly, for instance in applications where parameterised specifications
and their “pushout-style” instantiations [42, 20] are involved, we have to go beyond union/in-
tersection squares of signatures and inclusions to relate the signatures. More general classes
of signature squares are needed, with non-injective signature morphisms necessary to capture
for instance morphisms used to “fit” actual to formal parameters. Typically in applications
at least pushouts of signature morphisms are involved, sometimes additionally restricted to
indicated classes of morphisms permitted at the “bottom-left” and “bottom-right” of the
squares, respectively [42, 41, 5, 13, 30]. However, for the purposes of this paper we will
consider interpolation properties for an arbitrary commutative square of signature morphisms.

3.2 Interpolation in an institution

Throughout the rest of this paper, let INS = ⟨Sign,Sen,Mod, ⟨|=Σ⟩Σ∈|Sign|⟩ be an arbitrary
institution, and we study interpolation properties over the following commutative square (∗)
of signature morphisms:7

7 To help memorising the notation: p for premise, c for conclusion, u for union and i for intersection (or
interpolant).

A. Tarlecki 8:9

Σi

Σp Σc

Σu

❅
❅

❅■

�
�
�✒

�
�
�✒

❅
❅

❅■

σip σic

σpu σcu

(∗)

Let Φ ⊆ Sen(Σp) and Ψ ⊆ Sen(Σc) be such that σpu(Φ) |=Σu σcu(Ψ). An interpolant for Φ
and Ψ (over diagram (∗)) is a set Θ ⊆ Sen(Σi) of Σi-sentences such that Φ |=Σp σip(Θ) and
σic(Θ) |=Σc Ψ.

Σi

Θ

Φ |= σip(Θ) Σp Σc σic(Θ) |= Ψ

σpu(Φ) |= σcu(Ψ)
Σu

❅
❅

❅■

�
�
�✒

�
�
�✒

❅
❅

❅■

σip σic

σpu σcu

To simplify some further statements, if σpu(Φ) ̸|=Σu σcu(Ψ) then we say that any set Θ ⊆
Sen(Σi) is an interpolant for Φ and Ψ (over diagram (∗)).

We say that a commutative square (∗) of signature morphisms admits interpolation if
there is an interpolant for every Φ ⊆ Sen(Σp) and Ψ ⊆ Sen(Σc) such that σpu(Φ) |= σcu(Ψ).

▶ Example 6. In the institution FO of first-order logic, and in any of its variants mentioned
in Example 1, if the square (∗) is a pushout and at least one of σip : Σi → Σp, σic : Σi → Σc
is injective on sorts then (∗) admits interpolation; otherwise interpolation may fail for
(∗) (see [6]). In the institution EQ of equational logic if the square (∗) is a pushout and
σic : Σi → Σc is injective then (∗) admits interpolation; otherwise interpolation may fail
for (∗), and in EQ∅, where empty carriers are permitted, interpolation may fail even for
union/intersection squares of signatures (see [39]). In the institution PL of propositional
logic, all pushouts admit interpolation.

It is well known that the interpolation property of a logical system is fragile. When the
logic is extended, when new models or sentences are added, the interpolation property may
easily be spoiled. Clearly, this may happen when entirely new signatures are added, with
new models and sentences over them. Therefore, in this paper we consider the category of
signatures to be fixed, and consider only such extensions of institutions that preserve it.

Throughout the rest of the paper we study how the interpolation property may be
spoiled by adding new models or sentences. This will be done from a “local” perspective, for
particular commutative squares of signature morphisms, as well as for particular interpolants.

We say that an interpolant Θ ⊆ Sen(Σi) for Φ ⊆ Sen(Σp) and Ψ ⊆ Sen(Σc) (over
diagram (∗)) is stable under extensions of the institution by models if for every extension
INS+ of INS by new models, Θ is an interpolant for Φ and Ψ in INS+; otherwise we say
that the interpolant Θ is fragile. Note that adding new sentences cannot spoil a particular
interpolant, but may spoil interpolation property for a given diagram.

CALCO 2023

8:10 Interpolation Is (Not Always) Easy to Spoil

3.3 Interpolants may be stable
▶ Lemma 7. Consider the diagram (∗) of signature morphisms.
1. If σip : Σi → Σp is such that Sen(σip) : Sen(Σi) → Sen(Σp) is surjective and σcu : Σc →

Σu is conservative then (∗) admits interpolation.
2. If σic : Σi → Σc is such that Sen(σic) : Sen(Σi) → Sen(Σc) is surjective and σpu : Σp →

Σu is conservative then (∗) admits interpolation.
Proof (hint): An interpolant for Φ ⊆ Sen(Σp) and Ψ ⊆ Sen(Σc) is σ−1

ip (Φ) under 1., or
σ−1

ic (Ψ) under 2.

A trivial special case here is when σip and σcu, or σic and σpu, are isomorphisms, which
can be further refined as follows:

▶ Corollary 8. The diagram (∗) of signature morphisms admits interpolation if
1. σip : Σi → Σp is a retraction and σcu : Σc → Σu is a coretraction, or
2. σic : Σi → Σc is a retraction and σpu : Σp → Σu is a coretraction.
Proof (hint): The requirements here imply the respective conditions in Lemma 7.

This shows that if the signature morphisms in (∗) satisfy the premises of Cor. 8 then the
diagram enjoys a stable interpolation property, which cannot be spoiled by any institution
extension that leaves the category of signatures unchanged! No matter how we add new
models or sentences, the interpolation property is ensured by the properties of the signature
morphisms involved, and the implied properties of the translations of sentences and reducts
of models they induce in the institution and in any of its extensions.

The conditions stated in Cor. 8 are in fact quite strong and in many practical situations
do not depart too far from the trivial case when Σp is (up to isomorphism) included in
Σc or vice versa. Namely, when the diagram (∗) is a pushout then condition 1. implies
that σcu : Σc → Σu is an isomorphism, and condition 2. implies that σpu : Σp → Σu is an
isomorphism. Dually, when (∗) is a pullback then condition 1. implies that σip : Σi → Σp is
an isomorphism, and condition 2. implies that σic : Σi → Σc is an isomorphism.

▶ Fact 9. Let µ : INS → INS′ be a logically trivial institution morphism. Diagram (∗) in
the category of signatures admits interpolation in INS iff it admits interpolation in INS′.

Facts 5 and 9 imply that for our study of the fragility of interpolation institution extensions
by new models and by new sentences are of primary importance.

4 Spoiling an interpolant by new models

Recall that we study interpolation over a commutative square of signature morphisms
(∗) in an institution INS = ⟨Sign,Sen,Mod, ⟨|=Σ⟩Σ∈|Sign|⟩. Throughout this section, let
Φ ⊆ Sen(Σp) and Ψ ∈ Sen(Σc) be such that σpu(Φ) |= σcu(Ψ), and let Θ ⊆ Sen(Σi) be an
interpolant for Φ and Ψ in INS.

▶ Lemma 10. Suppose that there exists a set of Σp-sentences Φ• ⊇ Φ such that σip(Θ) ̸⊆ Φ•

and for all signature morphisms τ : Σu → Σp, if τ(σpu(Φ)) ⊆ Φ• then τ(σcu(Ψ)) ⊆ Φ•. Then
the interpolant Θ for Φ and Ψ is not stable under extensions of INS by models.
Proof (hint): Extend INS by a new Σp-model M with Th+(M) = Φ•. Then still σpu(Φ) |=+

σcu(Ψ), but Φ ̸|=+ σip(Θ).

The key property of the set Φ• in the above lemma is that it cannot be used to separate
σpu(Φ) from σcu(Ψ) via any morphism τ : Σu → Σp. More formally, for any signatures
Σ,Σ′ ∈ |Sign|, we say that Υ ⊆ Sen(Σ) never separates Φ′ ⊆ Sen(Σ′) from Ψ′ ⊆ Sen(Σ′)

A. Tarlecki 8:11

when for all morphisms τ : Σ′ → Σ, if τ(Φ′) ⊆ Υ then τ(Ψ′) ⊆ Υ. For any set Φ ⊆ Sen(Σ),
we denote by [Φ′ Σ′

❀
Σ

Ψ′](Φ) the least set of Σ-sentences that contains Φ and never separates Φ′

from Ψ′ (it exists since the family of such sets is closed under intersection and is nonempty).

▶ Corollary 11. If σip(Θ) ̸⊆ [σpu(Φ) Σu
❀
Σp
σcu(Ψ)](Φ) then the interpolant Θ for Φ and Ψ is not

stable under extensions of INS by models.

▶ Lemma 12. Suppose that there exists a set of Σc-sentences Ψ◦ ⊆ Sen(Σc) such
that Ψ ∩ Ψ◦ ̸= ∅, σic(Θ) ∩ Ψ◦ = ∅ and for all signature morphisms τ : Σu → Σc, if
τ(σcu(Ψ)) ∩ Ψ◦ ̸= ∅ then τ(σpu(Φ)) ∩ Ψ◦ ̸= ∅. Then the interpolant Θ for Φ and Ψ is
not stable under extensions of INS by models.
Proof (hint): Extend INS by a new Σc-model N with Th+(N) = Sen(Σc) \ Ψ◦. Then still
σpu(Φ) |=+ σcu(Ψ), but σip(Θ) ̸|=+ Ψ.

To refine Lemma 12 in the style of Cor. 11, notice that the requirement on Ψ◦ ⊆ Set(Σc)
that for τ : Σu → Σc, if τ(σcu(Ψ)) ∩ Ψ◦ ̸= ∅ then τ(σpu(Φ)) ∩ Ψ◦ ≠ ∅, means that the set
Sen(Σc) \ Ψ◦ never separates σpu(Φ) from σcu(Ψ).

▶ Corollary 13. If Ψ ̸⊆ [σpu(Φ) Σu
❀
Σc
σcu(Ψ)](σic(Θ)) then the interpolant Θ for Φ and Ψ is not

stable under extension of INS by models.

Corollaries 11 and 13 present sufficient conditions that ensure that a particular interpolant
may be spoiled by an extension of the institution by new models. In fact, these conditions
jointly are also necessary:

▶ Theorem 14. The interpolant Θ for Φ and Ψ is stable under extensions of INS by models
if and only if the following conditions hold:
1. σip(Θ) ⊆ [σpu(Φ) Σu

❀
Σp
σcu(Ψ)](Φ), and

2. Ψ ⊆ [σpu(Φ) Σu
❀
Σc
σcu(Ψ)](σic(Θ)).

Proof (hint): In any extension INS+ of INS by models such that σpu(Φ) |=+ σcu(Ψ), if
Φ ̸|=+ σip(Θ) then 1. fails, and if σic(Θ) ̸|=+ Ψ then 2. fails, which proves the “if” part. The
“only if” part follows by Corollaries 11 and 13.

The above theorem gives precise conditions that ensure stability of a particular interpolant
under extensions of the institution by new models. Equivalently, this is a precise character-
isation of specific interpolation properties that can be spoiled by adding new abstract models.
It should be stressed that the conditions in use are purely “syntactic” – they do not refer to
the semantic properties of the sets of sentences involved, and depend on a specific syntactic
form of the sentences, and the conclusions may change when the sentences considered are
replaced by semantically equivalent sentences that are of a different syntactic form.

▶ Example 15. Consider a trivial example in the institution PL of propositional logic. In
the diagram (∗), let Σp = {p, r}, Σc = {p, q}, Σu = Σp ∪ Σc = {r, p, q}, Σi = Σp ∩ Σc = {p},
and the four signature morphisms are inclusions.

Let φ be r ∧ p and ψ be p ∨ q.8 Clearly, φ |= ψ, and φ and ψ have a number of
distinct interpolants in PL. One such interpolant for φ and ψ is p. Consider the PL-model
M = {r} ∈ ModPL(Σp). Let PL+ be an extension of PL by a new Σp-model M̃ (with

8 When convenient, we write φ for {φ}, relying on the context to impose such identification of a sentence
with the one-element set that contains it.

CALCO 2023

8:12 Interpolation Is (Not Always) Easy to Spoil

interpretation of propositional sentences “swapping” the valuation of propositional variables,
as in Example 3). Then M̃ |=+ r ∧ p while M̃ ̸|=+ p, and so p is not an interpolant for φ and
ψ in PL+. In fact, Φ• = {φ ∈ SenPL(Σp) | M̃ |=+ φ} satisfies the premises of Lemma 10.

Moreover, one can easily calculate that [r ∧ p
Σu
❀
Σp
p ∨ q](r ∧ p) = {r ∧ p, p ∨ r, p ∨ p} ⊆

SenPL(Σp) (there are exactly two morphisms from Σu to Σp that map r ∧ p to r ∧ p, they
are identities on {p, r} and map q to any of the symbols in Σp). Thus, by Cor. 11, any
interpolant for φ and ψ other than p ∨ p may be spoiled by extending PL by new models.

Indeed, p∨ p is an interpolant for φ and ψ. Since no morphism from Σu to Σc maps r ∧ p
to p ∨ p, we have [r ∧ p

Σu
❀
Σc
p ∨ q](p ∨ p) = {p ∨ p} ⊆ SenPL(Σc), and so by Cor. 13 in some

extension of PL by new models p∨p is not an interpolant for φ and ψ. For instance, consider
PL-model N = {q} ∈ ModPL(Σc). Let PL+ be the extension of PL by a new Σc-model
Ñ (with interpretation of propositional sentences “swapping” the valuation of propositional
variables, as in Example 3). Then Ñ |=+ p ∨ p while Ñ ̸|=+ p ∨ q, and so p ∨ p is not an
interpolant for φ and ψ in PL+. Summing up: none of the interpolants for φ and ψ in PL
is stable under extensions of PL by new models.

Let now φ′ be (p ∨ r) ∧ (p ∨ ¬r) and ψ′ be (p ∨ q) ∧ (p ∨ ¬q). Perhaps the most obvious
interpolant for φ′ and ψ′ is p. This interpolant, however, is fragile. Namely,

[φ′ Σu
❀
Σp
ψ′]((p ∨ r) ∧ (p ∨ ¬r)) = {(p ∨ r) ∧ (p ∨ ¬r), (p ∨ p) ∧ (p ∨ ¬p)} ⊆ SenPL(Σp).

Thus, by Cor. 11, p is not an interpolant for φ′ and ψ′ in an extension of PL by new models.
Another interpolant for φ′ and ψ′ in PL is (p ∨ p) ∧ (p ∨ ¬p). Since (p ∨ p) ∧ (p ∨ ¬p) ∈

[φ′ Σu
❀
Σp
ψ′]((p ∨ r) ∧ (p ∨ ¬r)), Cor. 11 cannot be used here to conclude that this interpolant

gets spoiled in an extension of PL by new models. Moreover,

[φ′ Σu
❀
Σc
ψ′]((p ∨ p) ∧ (p ∨ ¬p)) = {(p ∨ p) ∧ (p ∨ ¬p), (p ∨ q) ∧ (p ∨ ¬q)} ⊆ SenPL(Σc).

Consequently, Cor. 13 does not apply here either, and by Thm. 14 the interpolant (p ∨ p) ∧
(p ∨ ¬p) for φ′ and ψ′ in PL is stable under extensions of PL by new models.

5 Spoiling interpolation by new models

As in the previous section, consider an institution INS = ⟨Sign,Sen,Mod, ⟨|=Σ⟩Σ∈|Sign|⟩,
commutative square of signature morphisms (∗), and sets of sentences Φ ⊆ Sen(Σc) and
Ψ ∈ Sen(Σc) such that σpu(Φ) |= σcu(Ψ). Theorem 14 gives the exact characterisation of
interpolants that are stable under extensions of INS by new models. Of course, this also
characterises interpolants that are fragile. In this section we characterise situations where all
interpolants for the premise Φ and conclusion Ψ may be spoiled at once.

▶ Corollary 16. Let Φ∗ = [σpu(Φ) Σu
❀
Σp
σcu(Ψ)](Φ) and Ψ∗ = [σpu(Φ) Σu

❀
Σc
σcu(Ψ)](σic(σ−1

ip (Φ∗))).

If Ψ ̸⊆ Ψ∗ then there is an extension INS+ of INS by models such that there is no interpolant
for Φ and Ψ in INS+.
Proof (hint): Extend INS by a new Σp-model M with Th(M)+ = Φ∗ and a new Σc-model
N with Th+(N) = Ψ∗.

The converse of Cor. 16 does not hold, since the conclusion follows as well when we limit our
attention to consequences of Φ, rather than all sentences in Φ∗ = [σpu(Φ) Σu

❀
Σp
σcu(Ψ)](Φ).

A. Tarlecki 8:13

To avoid repetition, for the rest of this section let Θ∗ = σ−1
ip ([σpu(Φ) Σu

❀
Σp
σcu(Ψ)](Φ)∩Th(Φ))

(that is, more explicitly: Θ∗ = {θ ∈ Sen(Σi) | σip(θ) ∈ [σpu(Φ) Σu
❀
Σp
σcu(Ψ)](Φ),Φ |= σip(θ)}).

▶ Lemma 17. If Ψ ̸⊆ [σpu(Φ) Σu
❀
Σc
σcu(Ψ)](σic(Θ∗)) then no interpolant for Φ and Ψ is stable

under extensions of INS by models.
Proof (hint): For any interpolant Θ for Φ and Ψ, if Θ ̸⊆ Θ∗ then Θ is not stable by Cor. 11,
and if Θ ⊆ Θ∗ by Cor. 13.

The thesis of Lemma 17 seems weaker that that of Cor. 11 – but only superficially so:

▶ Lemma 18. If no interpolant for Φ and Ψ is stable under extensions of INS by models
then in some extension of INS by models Φ and Ψ have no interpolant at all.

▶ Corollary 19. If Ψ ̸⊆ [σpu(Φ) Σu
❀
Σc
σcu(Ψ)](σic(Θ∗)) then in some extension of INS by models

Φ and Ψ have no interpolant at all.

▶ Theorem 20. There is an interpolant for Φ and Ψ in every extension of INS by models
if and only if Ψ ⊆ [σpu(Φ) Σu

❀
Σc
σcu(Ψ)](σic(Θ∗)) and σic(Θ∗) |= Ψ.

Proof (hint): For the “if” part: under the assumptions, Θ∗ is a stable interpolant for Φ and
Ψ. For the “only if” part: any stable interpolant Θ for Φ and Ψ satisfies Θ ⊆ Θ∗.

▶ Example 21. Recall Example 15. As argued there, every interpolant for r ∧ p and p ∨ q in
PL is fragile. Theorem 20 leads to the same conclusion, of course. Namely, as in Example 15,
[r ∧ p

Σu
❀
Σp
q ∨ p](r ∧ p) = {r∧p, p∨r, p∨p}. Then, using the notation Θ∗ defined above for the

case at hand, Θ∗ = {p∨ p}. Recalling from Example 15 again: [r ∧ p
Σu
❀
Σc
p ∨ q](Θ∗) = {p∨ p},

and so p ∨ q ̸∈ [r ∧ p
Σu
❀
Σc
p ∨ q](Θ∗). Thus, by Thm. 20 and Lemma 18, there is an extension

of PL by models in which r ∧ p and p ∨ q have no interpolant.
As in Example 15, let now φ′ be (p∨ r) ∧ (p∨ ¬r) and ψ′ be (p∨ q) ∧ (p∨ ¬q), and we get

[φ′ Σu
❀
Σp
ψ′](φ′) = {(p ∨ r) ∧ (p ∨ ¬r), (p ∨ p) ∧ (p ∨ ¬p)}. Therefore, using the notation Θ∗ for

the current case, Θ∗ = {(p∨ p) ∧ (p∨ ¬p}, and then (p∨ q) ∧ (p∨ ¬q) ∈ [φ′ Σu
❀
Σp
ψ′](Θ∗). Thus,

by Thm. 20, (p ∨ r) ∧ (p ∨ ¬r) and (p ∨ q) ∧ (p ∨ ¬q) have an interpolant in every extension
of PL by models, and indeed, in Example 15 we argued independently that (p∨ p) ∧ (p∨ ¬p)
is such an interpolant.

6 Spoiling interpolation by new sentences

As before, in an institution INS = ⟨Sign,Sen,Mod, ⟨|=Σ⟩Σ∈|Sign|⟩ we study interpolation
over a commutative square of signature morphisms (∗).

Changes to a logical system that may arise when new sentences are introduced are in no
sense dual to those resulting from extending the logical system by new models. In particular,
new sentences do not modify the entailments between the sentences of the original system, so
we cannot expect that we may spoil interpolants for old sentences. However, new sentences
(over the premise and conclusion signatures) may lead to new entailments σpu(Φ) |=+ σcu(Ψ)
with no interpolant for Φ and Ψ. On the other hand, adding appropriate new sentences (over
the interpolant signature) may restore (or establish) the interpolation property.

CALCO 2023

8:14 Interpolation Is (Not Always) Easy to Spoil

The first rough idea (see for instance the semantic characterisation of interpolation
in [13]) is that to spoil interpolation for the diagram (∗), we look for a class K ⊆ Mod(Σi)
that is not definable in INS, and then build an extension INS+ of INS by new sentences
φ ∈ Sen+(Σp) and ψ ∈ Sen+(Σc) such that Mod+(φ) = K −1

σip and Mod+(ψ) = K −1
σic . Then

σpu(φ) |=+ σcu(ψ), and it may seem that there should be no interpolant for φ and ψ, since
such an interpolant would have to define K. However, the latter need not be true in general.

One technical nuance is that a set Θ ⊆ Sen+(Σi) of sentences may be an interpolant
for φ and ψ if Mod+(Θ) ⊃ K but no model in Mod+(Θ) \ K has a σic-expansion to a model
in Mod(Σc). Another technicality is that the requirement that Mod+(φ) = K −1

σip may be
weakened to Mod+(φ) σip = K. At the conclusion side, it is enough to assume that all σic-
expansions of the models in K are in Mod(ψ), K −1

σic ⊆ Mod(ψ), or equivalently, no model in
K is a σic-reduct of a Σc-model outside Mod(ψ), K ⊆ Mod(Σi) \ ((Mod(Σc) \ Mod(ψ)) σic).
We may also permit a gap between Mod+(φ) σip and Mod(Σi) \ ((Mod(Σc) \ Mod(ψ)) σic)
as long as no definable class separates them.

Most importantly though, adding new sentences over signatures Σp and Σc may result in
adding new Σi-sentences (as translations of the added sentences), and some Σi-model classes
that are not definable in INS may become definable in INS+. The following notion will
be used to take care of this: for any signature Σ ∈ |Sign| and collection F = {⟨Σj ,Mj⟩ |
Σj ∈ |Sign|,Mj ⊆ Mod(Σj), j ∈ J },9 we say that a class M ⊆ Mod(Σ) of Σ-models is
definable in INS from F if for some family of signature morphisms τl : Σjl

→ Σ where jl ∈ J ,
l ∈ L, and a set Φ ⊆ Sen(Σ) of Σ-sentences we have M =

⋂
l∈L Mjl

−1
τl

∩ Mod(Φ).

▶ Theorem 22. There is an extension INS+ of INS by new sentences in which the diagram
(∗) does not admit interpolation if and only if there are classes of models M ⊆ Mod(Σp)
and N ⊆ Mod(Σc) such that
1. M −1

σpu ⊆ N −1
σcu and

2. no class of models K ⊆ Mod(Σi) such that M σip ⊆ K and K −1
σic ⊆ N is definable in

INS from {⟨Σp,M⟩, ⟨Σc,N ⟩}.

Proof (hint): For the “if” part, extend INS by new sentences that define M and N ,
respectively. For the “only if” part, if in an extension INS+ of INS by new sentences
there is no interpolant for Φ+ ⊆ Sen+(Σp) and Ψ+ ⊆ Sen+(Σc) then M = Mod(Φ+) and
N = Mod(Ψ+) satisfy 1. and 2.

▶ Example 23. Consider an example in the institution FOEQ of first-order logic with
equality. Let all the signatures in the diagram (∗) extend Σi , which has sort Nat, constant
0: Nat and operation s : Nat → Nat. In addition, Σp has bop : Nat × Nat → Nat and Σc has
_ + _ : Nat × Nat → Nat. Finally, Σu = Σp ∪ Σc, and all morphisms in (∗) are inclusions.

Let M ⊆ Mod(Σp) be the class of all models with the carrier set freely generated by 0
and s (where each element is the value of exactly one of the terms of the form sn(0)). Let
then N ⊆ Mod(Σc) be the class of models that satisfy the following implication:

ψ ≡ (∀x, y:Nat. x+ 0 = x ∧ x+ s(y) = s(x+ y)) ⇒ ∀x, y:Nat. x+ y = y + x

Let FO+
EQ be the extension of FOEQ by a new Σp-sentence φ (and its formal translations)

such that Mod+(φ) = M. No Σc-sentence is added, since N is already definable in FOEQ.
Clearly, M −1

σpu ⊆ N −1
σcu , and so σpu(φ) |=+ σcu(ψ).

9 J is a set of indices; we introduce such sets of indices whenever convenient.

A. Tarlecki 8:15

However, no class of models K ⊆ Mod(Σi) that is definable by first-order sentences
excludes non-standard models of natural numbers (with “infinitary” elements). Moreover,
there is no signature morphism from Σp to Σi . Therefore, if M σip ⊆ K ⊆ Mod(Σi) and
K is definable in FOEQ from {⟨Σp,M⟩} then K −1

σic ̸|=+ ψ (addition need not commute on
“infinitary” arguments). Consequently, φ and ψ have no interpolant in FO+

EQ.
If we remove the binary operation bop from Σp (and replace it by a unary operation

uop : Nat → Nat) the situation becomes quite different. We have then a (unique) signature
morphism τ : Σp → Σi , and the sentence ⌈τ(φ)⌉ ∈ Sen+(Σi) defines up to isomorphism the
standard model of natural numbers, and therefore is an interpolant for φ and ψ.

For institutions like PL, where all classes of models are definable, it might seem that
all commutative squares of signature morphisms admit interpolation, and no extension by
sentences may spoil this property. However, this need not be the case in general, since for
classes of models M ⊆ Sen(Σp) and N ⊆ Sen(Σc) such that M −1

σpu ⊆ N −1
σcu , the inclusion

M σip ⊆ Mod(Σi) \ ((Mod(Σc) \ N) σic) may fail, and then no class K ⊆ Mod(Σi) satisfies
M σip ⊆ K and K −1

σic ⊆ N .
The diagram (∗) admits weak amalgamation if for all models M ∈ Mod(Σp) and

N ∈ Mod(Σc) such that M σip = N σic there is a model K ∈ Mod(Σu) such that K σpu = M

and K σcu = N . The diagram (∗) admits amalgamation if such a model K ∈ Mod(Σu) is
always unique. This is a standard property used extensively in “institutional” foundations of
software specifications. Amalgamation (and hence weak amalgamation) holds for pushouts
in all the sample institutions and their variants we defined in Example 1; it fails for some
non-pushout diagrams though.

▶ Corollary 24. If the diagram (∗) does not admit weak amalgamation then it does not
admit interpolation in some extension of the institution by new sentences, nor in its further
extensions by new sentences.
Proof (hint): If M ∈ Mod(Σp) and N ∈ Mod(Σc) give a counterexample to the weak
amalgamation for (∗) then {M} and Mod(Σc) \ {N} satisfy 1. and 2. in Thm. 22.

▶ Theorem 25. Assume that in INS each class of Σi-models is definable by a set of Σi-
sentences. Then the diagram (∗) admits interpolation in every extension of INS by new
sentences if and only if it admits weak amalgamation.
Proof (hint): Assuming weak amalgamation for (∗), for M ⊆ Mod(Σp) and N ⊆ Mod(Σc),
if M −1

σpu ⊆ N −1
σcu then (M σip) −1

σic ⊆ N .

7 Spoiling interpolation by new models and sentences

As so far, we study interpolation over a commuting diagram of signature morphisms (∗) in an
institution INS = ⟨Sign,Sen,Mod, ⟨|=Σ⟩Σ∈|Sign|⟩. In this section we consider the stability
of interpolation under institution extensions by new models and sentences.

An extension of an institution INS by new models and sentences is an extension INS++

by new sentences of an extension INS+ by new models of the institution INS.
The order of the extensions in the above definition is irrelevant. To see this, suppose

that INS+ extends INS by models NM = ⟨NMΣ, |=NM
Σ ⊆ NMΣ × Sen(Σ)⟩Σ∈|Sign|, and

INS++ extends INS+ by sentences NS = ⟨NSΣ, |=NS
Σ ⊆ Mod+(Σ) × NSΣ⟩Σ∈|Sign| (see

Sect. 2.3 for the definitions and notation). Then define INS′ as the extension of INS by
sentences NS ′ = ⟨NSΣ, |=NS′

Σ ⊆ Mod(Σ) × NSΣ⟩Σ∈|Sign|, where M |=NS′

Σ φ iff M |=NS
Σ φ

for Σ ∈ |Sign|, M ∈ Mod(Σ) and φ ∈ NSΣ. Then INS++ coincides with the extension of

CALCO 2023

8:16 Interpolation Is (Not Always) Easy to Spoil

INS′ by models NM′ = ⟨NMΣ, |=NM′

Σ ⊆ NMΣ × Sen′(Σ)⟩Σ∈|Sign|, where for Σ ∈ |Sign|
and M ∈ NMΣ, M |=NM′

Σ φ iff M |=NM
Σ φ for φ ∈ Sen(Σ), and for τ : Σ′ → Σ, φ′ ∈ NSΣ′ ,

M |=NM′

Σ ⌈τ(φ′)⌉ iff ⌈M τ ⌉ |=NS
Σ′ φ′.

Obviously, we have “sinks” of institution morphisms that link institution INS and its
extension INS++ by models and sentences, but in general there is no institution morphism
between INS and INS++. Their relationship can be captured by another kind of mapping
between institutions, where sentences and models translate covariantly [38, 26].

Corollary 8 gives sufficient conditions that ensure that interpolation over a diagram (∗) is
stable under extensions of the institution by new models and sentences. The key result here
is that these conditions are necessary:

▶ Theorem 26. The diagram (∗) admits interpolation in all extensions of INS by new
sentences and models if and only if at least one of the following conditions holds:
1. σip : Σi → Σp is a retraction and σcu : Σc → Σu is a coretraction, or
2. σic : Σi → Σc is a retraction and σpu : Σp → Σu is a coretraction.
Proof (hint): For the “only if” part, let INS++ extend INS by a new Σp-model M and a
new Σc-model N that do not satisfy any INS-sentences and then by a new Σp-sentence φ
and a new Σc-sentence ψ such that

Mod++(φ) = {M} ∪ {⌈N τpi ;σic ⌉ | τpi : Σp → Σi , τpi ;σip = idΣp}
Mod++(ψ) = {⌈M σcu ;τup⌉ | τup : Σu → Σc, σpu;τup = idΣp} ∪

{⌈N τcc ⌉ | τcc : Σc → Σc, τcc ̸= idΣc }
If condition 1. fails then σpu(φ) |=++ σcu(ψ). If condition 2. fails then for any Θ ⊆ Sen++(Σi),
if φ |=++ σip(Θ) then σic(Θ) ̸|=++ ψ.

8 Final remarks

In this paper we deal with a general interpolation property, recalling its formulation for an
arbitrary logical system formalised as an institution. We study behaviour of interpolation
properties over an arbitrary commutative square of signature morphisms under extensions
of the institution by new models and sentences. We give an exact characterisation of the
situations when a particular interpolant for a premise and a conclusion remains stable under
institution extensions by new models (Thm. 14), or looking at this from the other side, when
a particular interpolant for a premise and a conclusion is spoiled in some extension of the
institution by new models. Another result (Thm. 20) gives sufficient and necessary conditions
under which no interpolant for a given premise and conclusion may survive all extensions
of the institution by new models, or turning to the positive view, when no extension by
new models may spoil the interpolation property for a given premise and conclusion. Then
we turn to institution extensions by new sentences, and give an exact characterisation of
commutative squares of signature morphisms where adding new sentences may lead to the lack
of interpolation (Thm. 22). Incidentally, we clarify here the role of the weak amalgamation
property as a necessary condition without which interpolation fails if adding new sentences
is permitted (Cor. 24). Finally, we give exact characterisation of commutative squares of
signature morphisms where interpolation is ensured for all extensions of the institution by
new models and sentences (Thm. 26).

We have carried out our study for the Craig interpolation property. However, in ap-
plications a stronger formulation of interpolation is needed: so-called Craig-Robinson (or
parameterised) interpolation [19, 13, 35], where the conclusion is required to follow only
when an additional “parameter” set of sentences over the signature of the conclusion is added

A. Tarlecki 8:17

to the premise and, respectively, to the interpolant. In first-order logic Craig-Robinson
interpolation can easily be derived from the Craig interpolation property, but in general,
in logical systems that lack compactness and standard logical connectives, this need not
be the case. We do not treat explicitly Craig-Robinson interpolation here, to avoid extra
complication of notation, but the concepts and techniques we use carry over to this case as
well, and so the results may easily be adjusted to cover this more general property.

In many applications, the class of signature morphisms and of their commutative squares
for which the interpolation property is required may be considerably restricted. Typically,
signature pushouts are of the utmost importance, with further restrictions on the classes of
morphisms used. In fact, this is often necessary, since many institutions involved (including the
many-sorted first-order logic FO and equational logic EQ) simply do not admit interpolation
for arbitrary signature pushouts. It would be interesting to check how such extra requirements
on the signature morphisms involved interact with our characterisation theorems.

References
1 Egidio Astesiano, Michel Bidoit, Hélène Kirchner, Bernd Krieg-Brückner, Peter D. Mosses,

Donald Sannella, and Andrzej Tarlecki. CASL: the Common Algebraic Specification Language.
Theoretical Computer Science, 286(2):153–196, 2002. doi:10.1016/S0304-3975(01)00368-1.

2 Jon Barwise. Axioms for abstract model theory. Annals of Mathematical Logic, 7:221–265,
1974. doi:10.1016/0003-4843(74)90016-3.

3 Jan A. Bergstra, Jan Heering, and Paul Klint. Module algebra. Journal of the Association for
Computing Machinery, 37(2):335–372, 1990. doi:10.1145/77600.77621.

4 Evert W. Beth. On Padoa’s method in the theory of definition. Indagationes Mathematicae
(Proceedings), 56:330–339, 1953. doi:10.1016/S1385-7258(53)50042-3.

5 Tomasz Borzyszkowski. Logical systems for structured specifications. Theoretical Computer
Science, 286(2):197–245, 2002. doi:10.1016/S0304-3975(01)00317-6.

6 Tomasz Borzyszkowski. Generalized interpolation in first-order logic. Fundamenta
Informaticae, 66(3):199–219, 2005. URL: http://content.iospress.com/articles/
fundamenta-informaticae/fi66-3-01.

7 Carlos Caleiro, Paula Gouveia, and Jaime Ramos. Completeness results for fibred parchments:
Beyond the propositional base. In Martin Wirsing, Dirk Pattinson, and Rolf Hennicker,
editors, Recent Trends in Algebraic Development Techniques. Selected Papers from the 16th
International Workshop on Algebraic Development Techniques, volume 2755 of Lecture Notes
in Computer Science, pages 185–200. Springer, 2003. doi:10.1007/978-3-540-40020-2_10.

8 Carlos Caleiro, Paulo Mateus, Jaime Ramos, and Amílcar Sernadas. Combining logics:
Parchments revisited. In Maura Cerioli and Gianna Reggio, editors, Recent Trends in Algebraic
Development Techniques. Selected Papers from the 15th Workshop on Algebraic Development
Techniques Joint with the CoFI WG Meeting, volume 2267 of Lecture Notes in Computer
Science, pages 48–70. Springer, 2001. doi:10.1007/3-540-45645-7_3.

9 Carlos Caleiro, Amílcar Sernadas, and Cristina Sernadas. Fibring logics: Past, present and
future. In Sergei N. Artëmov, Howard Barringer, Artur S. d’Avila Garcez, Luís C. Lamb, and
John Woods, editors, We Will Show Them! Essays in Honour of Dov Gabbay, Volume One,
pages 363–388. College Publications, 2005.

10 María Victoria Cengarle. Formal Specifications with Higher-Order Parameterization. PhD
thesis, Ludwig-Maximilians-Universität München, Institut für Informatik, 1994.

11 Chen-Chung Chang and H. Jerome Keisler. Model Theory. North-Holland, third edition, 1990.
12 William Craig. Linear reasoning. A new form of the Herbrand-Gentzen theorem. The Journal

of Symbolic Logic, 22(3):250–268, 1957. doi:10.2307/2963593.
13 Rǎzvan Diaconescu. Institution-Independent Model Theory. Birkhäuser, 2008. doi:10.1007/

978-3-7643-8708-2.

CALCO 2023

https://doi.org/10.1016/S0304-3975(01)00368-1
https://doi.org/10.1016/0003-4843(74)90016-3
https://doi.org/10.1145/77600.77621
https://doi.org/10.1016/S1385-7258(53)50042-3
https://doi.org/10.1016/S0304-3975(01)00317-6
http://content.iospress.com/articles/fundamenta-informaticae/fi66-3-01
http://content.iospress.com/articles/fundamenta-informaticae/fi66-3-01
https://doi.org/10.1007/978-3-540-40020-2_10
https://doi.org/10.1007/3-540-45645-7_3
https://doi.org/10.2307/2963593
https://doi.org/10.1007/978-3-7643-8708-2
https://doi.org/10.1007/978-3-7643-8708-2

8:18 Interpolation Is (Not Always) Easy to Spoil

14 Răzvan Diaconescu. An institution-independent proof of Craig interpolation theorem. Studia
Logica, 77(1):59–79, 2004. doi:10.1023/B:STUD.0000034185.62660.d6.

15 Răzvan Diaconescu. Interpolation for predefined types. Mathematical Structures in Computer
Science, 22(1):1–24, 2012. doi:10.1017/S0960129511000430.

16 Răzvan Diaconescu. Three decades of institution theory. In Jean-Yves Béziau, editor, Universal
Logic: An Anthology, pages 309–322. Birkhäuser, 2012.

17 Răzvan Diaconescu. Generalised graded interpolation. International Journal of Approximate
Reasoning, 152:236–261, 2023. doi:10.1016/j.ijar.2022.10.018.

18 Răzvan Diaconescu. Borrowing interpolation. J. Logic and Computation, 22(3):561–586, 2011.
doi:10.1093/logcom/exr007.

19 Theodosis Dimitrakos and Thomas S.E. Maibaum. On a generalised modularization theorem.
Information Processing Letters, 74(1–2):65–71, 2000. doi:10.1016/S0020-0190(00)00037-5.

20 Hartmut Ehrig, Hans-Jörg Kreowski, James W. Thatcher, Eric G. Wagner, and Jesse B.
Wright. Parameter passing in algebraic specification languages. Theoretical Computer Science,
28(1–2):45–81, 1984. doi:10.1016/0304-3975(83)90065-8.

21 Dov M. Gabbay and Larisa Maksimova. Interpolation and Definability: Modal and Intuitionistic
Logics. Oxford University Press, 2005. doi:10.1093/acprof:oso/9780198511748.001.0001.

22 Daniel Găină. Interpolation in logics with constructors. Theoretical Computer Science,
474:46–59, 2013. doi:10.1016/j.tcs.2012.12.002.

23 Daniel Găină. Downward Löwenheim–Skolem theorem and interpolation in logics with
constructors. Journal of Logic and Computation, 27(6):1717–1752, 2015. doi:10.1093/
logcom/exv018.

24 Daniel Găină and Andrei Popescu. An institution-independent proof of the Robinson consist-
ency theorem. Studia Logica, 85:41–73, 2007. doi:10.1007/s11225-007-9022-4.

25 Joseph A. Goguen and Rodney M. Burstall. Institutions: Abstract model theory for specifica-
tion and programming. Journal of the Association for Computing Machinery, 39(1):95–146,
1992. doi:10.1145/147508.147524.

26 Joseph A. Goguen and Grigore Roşu. Institution morphisms. Formal Aspects of Computing,
13(3–5):274–307, 2002. doi:10.1007/s001650200013.

27 Thomas S.E. Maibaum, Martin R. Sadler, and Paolo A.S. Veloso. Logical specification and
implementation. In Mathai Joseph and Rudrapatna Shyamasundar, editors, Foundations of
Software Technology and Theoretical Computer Science, pages 13–30. Springer, 1984. doi:
10.1007/3-540-13883-8_62.

28 Till Mossakowski, Wiesław Pawłowski, Donald Sannella, and Andrzej Tarlecki. Parchments for
CafeOBJ logics. In Shusaku Iida, José Meseguer, and Kazuhiro Ogata, editors, Specification,
Algebra, and Software - Essays Dedicated to Kokichi Futatsugi, volume 8373 of Lecture Notes
in Computer Science, pages 66–91. Springer, 2014. doi:10.1007/978-3-642-54624-2_4.

29 Till Mossakowski, Andrzej Tarlecki, and Wiesław Pawłowski. Combining and representing
logical systems using model-theoretic parchments. In Francesco Parisi-Presicce, editor, Recent
Trends in Data Type Specification. Selected Papers from the 12th International Workshop on
Specification of Abstract Data Types, volume 1376 of Lecture Notes in Computer Science, pages
349–364. Springer, 1998. doi:10.1007/3-540-64299-4_44.

30 Andrei Popescu, Traian Florin Şerbănuţă, and Grigore Roşu. A semantic approach to
interpolation. Theoretical Computer Science, 410(12–13):1109–1128, 2009. doi:10.1016/j.
tcs.2008.09.038.

31 Gerard R. Renardel de Lavalette. Interpolation in computing science: The semantics of
modularization. Synthese, 164(3):437–450, 2008. doi:10.1007/s11229-008-9358-y.

32 Abraham Robinson. A result on consistency and its application to the theory of definition.
Indagationes Mathematicae (Proceedings), 59:47–58, 1956. doi:10.1016/S1385-7258(56)
50008-X.

33 Pieter Hendrik Rodenburg. A simple algebraic proof of the equational interpolation theorem.
Algebra Universalis, 28:48–51, 1991. doi:10.1007/BF01190411.

https://doi.org/10.1023/B:STUD.0000034185.62660.d6
https://doi.org/10.1017/S0960129511000430
https://doi.org/10.1016/j.ijar.2022.10.018
https://doi.org/10.1093/logcom/exr007
https://doi.org/10.1016/S0020-0190(00)00037-5
https://doi.org/10.1016/0304-3975(83)90065-8
https://doi.org/10.1093/acprof:oso/9780198511748.001.0001
https://doi.org/10.1016/j.tcs.2012.12.002
https://doi.org/10.1093/logcom/exv018
https://doi.org/10.1093/logcom/exv018
https://doi.org/10.1007/s11225-007-9022-4
https://doi.org/10.1145/147508.147524
https://doi.org/10.1007/s001650200013
https://doi.org/10.1007/3-540-13883-8_62
https://doi.org/10.1007/3-540-13883-8_62
https://doi.org/10.1007/978-3-642-54624-2_4
https://doi.org/10.1007/3-540-64299-4_44
https://doi.org/10.1016/j.tcs.2008.09.038
https://doi.org/10.1016/j.tcs.2008.09.038
https://doi.org/10.1007/s11229-008-9358-y
https://doi.org/10.1016/S1385-7258(56)50008-X
https://doi.org/10.1016/S1385-7258(56)50008-X
https://doi.org/10.1007/BF01190411

A. Tarlecki 8:19

34 Grigore Roşu and Joseph A. Goguen. On equational Craig interpolation. Journal of Universal
Computer Science, 6(1):194–200, 2000. doi:10.3217/jucs-006-01-0194.

35 Donald Sannella and Andrzej Tarlecki. Foundations of Algebraic Specification and Formal
Software Development. Monographs in Theoretical Computer Science. An EATCS Series.
Springer, 2012. doi:10.1007/978-3-642-17336-3.

36 Donald Sannella and Andrzej Tarlecki. Property-oriented semantics of structured spe-
cifications. Mathematical Structures in Computer Science, 24(2):e240205, 2014. doi:
10.1017/S0960129513000212.

37 Andrzej Tarlecki. Bits and pieces of the theory of institutions. In David H. Pitt, Samson
Abramsky, Axel Poigné, and David E. Rydeheard, editors, Proceedings of the Tutorial and
Workshop on Category Theory and Computer Programming, volume 240 of Lecture Notes in
Computer Science, pages 334–360. Springer, 1986. doi:10.1007/3-540-17162-2_132.

38 Andrzej Tarlecki. Towards heterogeneous specifications. In Dov Gabbay and Maarten de Rijke,
editors, Frontiers of Combining Systems 2, volume 7 of Studies in Logic and Computation,
pages 337–360. Research Studies Press, 2000.

39 Andrzej Tarlecki. Some nuances of many-sorted universal algebra: A review. Bulletin
of the European Association for Theoretical Computer Science, 104:89–111, 2011. URL:
http://eatcs.org/beatcs/index.php/beatcs/article/view/121.

40 Jouko Väänänen. The Craig interpolation theorem in abstract model theory. Synthese,
164:401–420, 2008. doi:10.1007/s11229-008-9357-z.

41 Paulo A.S. Veloso. On pushout consistency, modularity and interpolation for logical spe-
cifications. Information Processing Letters, 60(2):59–66, 1996. doi:10.1016/S0020-0190(96)
00146-9.

42 Paulo A.S. Veloso and Thomas S.E. Maibaum. On the modularization theorem for logical spe-
cifications. Information Processing Letters, 53(5):287–293, 1995. doi:10.1016/0020-0190(94)
00203-B.

CALCO 2023

https://doi.org/10.3217/jucs-006-01-0194
https://doi.org/10.1007/978-3-642-17336-3
https://doi.org/10.1017/S0960129513000212
https://doi.org/10.1017/S0960129513000212
https://doi.org/10.1007/3-540-17162-2_132
http://eatcs.org/beatcs/index.php/beatcs/article/view/121
https://doi.org/10.1007/s11229-008-9357-z
https://doi.org/10.1016/S0020-0190(96)00146-9
https://doi.org/10.1016/S0020-0190(96)00146-9
https://doi.org/10.1016/0020-0190(94)00203-B
https://doi.org/10.1016/0020-0190(94)00203-B

String Diagram Rewriting
Modulo Commutative (Co)Monoid Structure
Aleksandar Milosavljević #

University College London, UK

Robin Piedeleu #

University College London, UK

Fabio Zanasi #

University College London, UK
University of Bologna, Italy

Abstract
String diagrams constitute an intuitive and expressive graphical syntax that has found application
in a very diverse range of fields including concurrency theory, quantum computing, control theory,
machine learning, linguistics, and digital circuits. Rewriting theory for string diagrams relies on
a combinatorial interpretation as double-pushout rewriting of certain hypergraphs. As previously
studied, there is a “tension” in this interpretation: in order to make it sound and complete, we
either need to add structure on string diagrams (in particular, Frobenius algebra structure) or pose
restrictions on double-pushout rewriting (resulting in “convex” rewriting). From the string diagram
viewpoint, imposing a full Frobenius structure may not always be natural or desirable in applications,
which motivates our study of a weaker requirement: commutative monoid structure. In this work
we characterise string diagram rewriting modulo commutative monoid equations, via a sound and
complete interpretation in a suitable notion of double-pushout rewriting of hypergraphs.

2012 ACM Subject Classification Theory of computation → Rewrite systems

Keywords and phrases String diagrams, Double-pushout rewriting, Commutative monoid

Digital Object Identifier 10.4230/LIPIcs.CALCO.2023.9

Related Version Full Version: https://arxiv.org/abs/2204.04274

Funding RP and FZ acknowledge support from epsrc grant EP/V002376/1.

Acknowledgements We thank Tobias Fritz for helpful discussion and the anonymous reviewers of
CALCO for their suggestions.

1 Introduction

String diagrams [28] are a diagrammatic syntax for reasoning algebraically about component-
based systems, which in the last few years have found application across diverse fields,
including quantum computation [23], digital [20] and electrical circuits [3, 10] , machine
learning [15], concurrency theory [9], control theory [1, 12], and linguistics [29] amongst
others. Compared to traditional syntax, the use of string diagrams allows to neatly visualise
resource exchange and message passing between different parts of a system, which is pivotal
in studying subtle interactions such as those arising in concurrent processes and quantum
computation. Moreover, we can reason with string diagrams both combinatorially and as
syntactic, inductively defined objects, which enables forms of compositional analysis typical
of programming language semantics.

A cornerstone of string diagrammatic approaches is the possibility of performing diagram-
matic reasoning: transforming a string diagram according to a certain rewrite rule, which
replaces a sub-diagram with a different one. A set of such rules, which typically preserve
the semantics of the model, may represent for instance a compilation procedure [27], the
realisation of a specification [12], or a refinement of system behaviour [8].

© Aleksandar Milosavljević, Robin Piedeleu, and Fabio Zanasi;
licensed under Creative Commons License CC-BY 4.0

10th Conference on Algebra and Coalgebra in Computer Science (CALCO 2023).
Editors: Paolo Baldan and Valeria de Paiva; Article No. 9; pp. 9:1–9:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:aleksmil000@gmail.com
mailto:r.piedeleu@ucl.ac.uk
https://orcid.org/0000-0002-3945-2704
mailto:f.zanasi@ucl.ac.uk
https://orcid.org/0000-0001-6457-1345
https://doi.org/10.4230/LIPIcs.CALCO.2023.9
https://arxiv.org/abs/2204.04274
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 String Diagram Rewriting Modulo Commutative (Co)Monoid Structure

Compared to traditional term rewriting, a mathematical theory of string diagram rewriting
poses new challenges. Formally, string diagrams are graphical representations of morphisms
in a category, typically assumed in applications to be a symmetric monoidal category (SMC).
In order to perform a rewrite step, we need to match the left-hand side of a rewrite rule to a
sub-diagram of a given string diagram. For instance, consider the rewrite rule as on the left
below, and the string diagram on the right.

m
e

⇒
m

e

Morally, there is a match for the rule in the string diagram. The issue is that, strictly
speaking, such a match does not happen on the nose: we need first to apply the laws of
SMCs in order to transform the string diagram into an equivalent one, with the wires into m

uncrossed. At this point we have clearly isolated the sub-diagram and are able to perform
the rewrite step.

m
e

=
m

e

As seen in this example, string diagram rewriting is performed modulo certain structural
laws, which reflect the categorical structure in which the string diagrams live. However, from
a practical viewpoint, this form of rewriting is not really feasible, as each rewrite step would
require us to inspect all string diagrams equivalent to a given one looking for redexes.

This issue can be solved via an interpretation of string diagrams as certain hypergraphs,
and of string diagram rewriting as double-pushout rewriting (DPO) [14] of such hypergraphs.
We refer to [5, 6, 7] for a systematic introduction to this approach. In a nutshell, the benefit of
working with such an interpretation is that an equivalence class of string diagrams corresponds
to just one hypergraph, meaning that our search for redexes is drastically simplified. However,
there is a mismatch: if we want to rewrite string diagrams in a SMC, then soundness is only
ensured by adopting a restricted notion of DPO rewriting, called convex DPO rewriting [4].
Conversely, if we want to work with arbitrary DPO rewriting steps, then the corresponding
notion of string diagram rewriting does not rewrite only modulo the laws of SMCs, but
requires a special commutative Frobenius algebra on each object of the category. Recall
that a Frobenius algebra consists of a commutative monoid and a commutative comonoid,
interacting with each other via the so-called Frobenius law [13].

When modelling a certain class of systems with string diagrams, assuming that such
Frobenius structure exists is not always reasonable, or desirable. A first class of such examples
are matrix-like semantic structures, which are axiomatised by bialgebra equations – see
e.g. [30] for a survey. It is known that if the monoid and the comonoid both obey the
Frobenius and the bialgebra laws, then the equational theory trivialises, cf. [17, Ex. 4.3]. A
second important class are semantic structures for probability theory, which usually feature
a commutative comonoid structure, but no Frobenius equations – introducing Frobenius
structure amounts to allowing unnormalised probabilities, cf. [22, 18]. These categories,
sometimes called CD-categories, also play a special role in the study of algebraic theories,
because they model the cartesian handling of variables [11].

All these models motivate the study of rewriting for structures intermediate between plain
symmetric monoidal and equipped with Frobenius algebras. More specifically, we focus on
string diagrams in categories where each object comes with a commutative monoid structure.

A. Milosavljević, R. Piedeleu, and F. Zanasi 9:3

(s; t); u ≡ s; (t; u), idn; s ≡ s ≡ s; idm, (s⊕ t)⊕ u ≡ s⊕ (t⊕ u), id0 ⊕ s ≡ s ≡ s⊕ id0,

idm ⊕ idn ≡ idm+n, σm,n; σn,m ≡ idm+n, (s⊕ idm); σm,n ≡ σm,o; (idm ⊕ s)
(s; u)⊕ (t; v) ≡ (s⊕ t); (u⊕ v), (σm,n ⊕ ido); (idn ⊕ σm,o) ≡ σm,n+o,

Figure 1 Laws of symmetric monoidal categories in a prop, where n, m, o range over N.

From a rewriting viewpoint, this case is particularly significant because symmetries in a
SMC may always create redexes for the commutativity axiom of the monoid multiplication,
yielding a non-terminating rewrite system:

⇒ = ⇒ ⇒ . . .

Therefore, rather than taking commutativity as a rewrite rule, we need to find an alternative
representation of string diagrams (and of string diagram rewriting) that is invariant modulo
the axioms of commutative monoids (and the laws of SMCs), which is the focus of this paper.
Our contribution is two-fold:

we identify which class of hypergraphs provides an adequate interpretation of string
diagrams in a SMC with commutative monoid structure, and organise them into a SMC.
This characterisation will take the form of an isomorphism between the SMC of string
diagrams and the SMC of hypergraphs.1
We identify which notion of double-pushout hypergraph rewriting interprets string diagram
rewriting modulo the axioms of commutative monoids in a sound and complete way.

Note that all of the theory developed in this work can be easily dualised to obtain a framework
for rewriting modulo commutative comonoid structure, which justifies the title and makes it
relevant also for the aforementioned CD categories.
Synopsis. Section 2 recalls background on string diagrams and hypergraphs. Section 3
shows the hypergraph characterisation of string diagrams with a chosen commutative monoid
structure. Section 4 shows how string diagram rewriting may be characterised in terms
of DPO hypergraph rewriting. We summarise our work and suggest future directions in
Section 5. Additional details and missing proofs can be found in [26].

2 Preliminaries

We recall some basic definitions, using the same terminology as [5].

▶ Definition 1 (Theories and Props). A symmetric monoidal theory is a pair (Σ, ε), where
Σ is a monoidal signature i.e. a set of operations o : m → n with a fixed arity m and
coarity n, and ε is a set of equations, i.e. pairs ⟨l, r⟩ of Σ-terms l, r : v → w with the
same arity and coarity. Σ-terms are constructed by combining the operations in Σ, identities
idn : n → n and symmetries σm,n : m + n → n + m for each m, n ∈ N , by sequential (;)
and parallel (⊕) composition. A prop is a symmetric strict monoidal category (C , +, 0) for
which Ob(C) = N, the monoidal unit is 0 ∈ N, and the monoidal product on objects is given
by addition. The prop freely generated from a symmetric monoidal theory (Σ, ε) has, as

1 Simultaneously to a preprint of our work (arXiv:2204.04274), a preprint showing a result closely related
to this first contribution also appeared on ArXiv. We comment on their relation in Section 5.

CALCO 2023

9:4 String Diagram Rewriting Modulo Commutative (Co)Monoid Structure

morphisms, the Σ-terms modulo ε and the laws of symmetric monoidal categories recalled
in Fig. 1. Given two props C and D , a functor F : C → D is called a prop-morphism
from C to D if it is an identity-on-objects strict symmetric monoidal functor. Props and
prop-morphisms form a category we call PROP.

▶ Example 2 (Monoids and Functions). Particularly relevant to our development are the prop
F of functions and the prop CMon of commutative monoids. F has morphisms f : m→ n the
functions from the set {0, . . . , m− 1} to {0, . . . , n− 1}, with monoidal product on functions
being their disjoint union. The prop CMon is freely generated by the signature consisting
of µ : 2→ 1 (multiplication) and η : 0→ 1 (unit), and equations expressing commutativity,
unitality and associativity of µ.

The theory of commutative monoids presents the prop of functions, in the sense that
CMon ∼= F – see e.g. [24].

▶ Example 3 (Cospans). A second prop important for our purposes is the one of cospans.
When interpreting string diagrams as hypergraphs, it is fundamental to record the information
of what wires are available for composition on the left and right hand side of the diagram:
this is achieved by considering cospans of hypergraphs, with the cospan structure indicating
which nodes constitute the left and the right interface of the hypergraph.

Given a category C with finite colimits, let Csp(C) be the category with the same objects
as C and morphisms X → Y the cospans from X to Y , that is, pairs of arrows X −→ A←− Y ,
for any object A (called the carrier of the cospan). Composition of cospans X

f−→ A
h←− Z

and Z
h−→ B

i←− Y is defined by pushout of the span formed by the middle legs, i.e., it is
the2 cospan X

f ;p−−→ Q
i;q←− Y where A

p−→ Q
q←− B is the pushout of A

h←− Z
i−→B. Csp(C) is

symmetric monoidal with the monoidal unit being the initial object 0 ∈ C and the monoidal
product given by the coproduct in C of the two maps of each cospan.

Hypergraphs [2] generalise graphs by replacing edges with ordered and directed hyperedges,
which may have lists of source and target nodes instead of just individual ones. Hypergraphs
and hypergraph homomorphisms form a category Hyp. As observed in [5], this category may
also be defined as a presheaf topos – this is particularly convenient for calculating (co)limits
and to ensure that it is adhesive [25], a fundamental property for DPO rewriting. More
precisely, Hyp is isomorphic to the functor category FI, where I has objects the pairs of
natural numbers (k, l) ∈ N × N and an extra object ⋆, with k + l arrows from (k, l) to ⋆,
for all k, l ∈ N. A hypergraph G is therefore given by a set G⋆ of nodes, and sets Gk,l of
hyperedges for each (k, l) ∈ N×N, with source maps si : Gk,l → G⋆ for 1 ≤ i ≤ k and target
maps tj : Gk,l → G⋆, 1 ≤ j ≤ l. A monoidal signature Σ yields a directed hypergraph GΣ
with only a single node and a hyperedge for every Σ-operation o : k → l with k sources and
l targets (i.e., in Gk,l). We can use this observation to define the category of Σ-labelled
hypergraphs as follows.

▶ Definition 4. The slice category Hyp ↓ GΣ is called the category of Σ-labelled hypergraphs
and denoted by HypΣ.

As proven in [5], morphisms in a prop freely generated by a signature Σ may be faithfully
interpreted as discrete cospans of Σ-labelled hypergraphs, where the cospan structure repres-
ents the interfaces (left and right) of the string diagram. Motivated by this characterisation,

2 Note composition is only defined up-to-isomorphism. Strictly speaking, to obtain a (1-)category, we take
as morphisms isomorphism classes of cospans (isomorphisms are invertible maps between the carriers
that make the obvious diagram commute). We will gloss over this aspect to keep notation light and
because the bicategorical aspects do not feature in our development.

A. Milosavljević, R. Piedeleu, and F. Zanasi 9:5

we recall from [5] the faithful, coproduct-preserving functor D : F→ HypΣ mapping every
object i ∈ Ob(F) = N to the discrete hypergraph with set of nodes i = {0, . . . , i − 1} and
mapping each function to the induced hypergraph homomorphism. We can define the cat-
egory CspD(HypΣ) of discrete cospans of hypergraphs as the full subcategory of Csp(HypΣ)
(cf. Example 3) on discrete hypergraphs.

3 The Combinatorial Interpretation

In this section we prove that a freely generated prop with a chosen commutative monoid
structure is isomorphic to a category of cospans of hypergraphs with certain restrictions
(Theorem 21 below).

As shown in [6], the standard interpretation of string diagrams in a prop as cospans
of hypergraphs is not full. In order to characterise the image of the interpretation, it is
necessary to restrict ourselves to a class of so-called acyclic and monogamous cospans. In
order to prove our result for props with a chosen commutative monoid structure, we may
relax this notion to right-monogamous cospans, which we now introduce.

▶ Definition 5 (Degree of a node [6]). The in-degree of a node v in hypergraph H is the
number of pairs (h, i) where h is a hyperedge with v as its ith target. Similarly, the out-degree
of v is the number of pairs (h, j) where h is a hyperedge with v as its jth source.

▶ Definition 6 (Terminal node). We say that a node v of a hypergraph H is terminal if its
out-degree is 0, i.e., if there are no hyperedges of H with source v.

Given m
f−→ H

g←− n in CspD(HypΣ), we call inputs of H the set in(H), defined as the image
of f and outputs, the set out(H) defined as the image of g.

▶ Definition 7 (Right-monogamy). We say that a cospan m
f−→ H

g←− n is right-monogamous
if g is mono and out(H) is the set of terminal nodes of H.

Compared to monogamy [6], right-monogamy does not impose any requirement on f , and
only constraints the out-degree of nodes (not the in-degree).

Acyclicity is a standard condition which forbids (directed) loops in a hypergraph,
cf. [6, Definition 20] Similarly to monogamous cospans [6], one may verify that acyclic
right-monogamous cospans in CspD(HypΣ) form a sub-prop of CspD(HypΣ), denoted by
RMACspD(HypΣ).

▶ Example 8. Let us use blue frames to indicate the left and the right interface of a cospan,
natural numbers to indicate how the cospan legs are defined, and rounded rectangles to
represent hyperedges. The cospan depicted below is right-monogamous.

0
1
2
3
4

5
3,51,2

4

v2 v3

v1

v0

0
A B

C
(1)

The notion of right-monogamy is justified by its connection to commutative monoids,
and crystallised in the following result. Below, the empty set in RMACspD(Hyp∅) refers to
the empty signature Σ = ∅.

▶ Proposition 9. There is an isomorphism of props CMon ∼= RMACspD(Hyp∅).

CALCO 2023

9:6 String Diagram Rewriting Modulo Commutative (Co)Monoid Structure

In particular, the isomorphism interprets the comultiplication and unit as follows:

7→ 7→

The fundamental observation leading to Proposition 9 is that the prop of ∅-labelled hyper-
graphs is isomorphic to F. Right-monogamous cospans in this category coincide with cospans
of the form m

f−→ n
id←− n, and can thus be thought of as morphisms in F. Paired with the

fact that CMon ∼= F (cf. Example 2), we obtain the above result – see [26] for more details.
Following this result, we will sometimes refer abusively to certain functions f as cospans,
assuming implicitly that we mean the cospan m

f−→ n
id←− n.

When referring to “string diagrams with a chosen commutative monoid structure”, we
mean morphisms of the prop SΣ + CMon, the coproduct of the free props over signature Σ
and CMon. Intuitively, such morphisms are obtained by freely combining Σ-terms with terms
of the theory of commutative monoids, then quotienting by the laws of symmetric monoidal
categories and those of CMon. For a formal definition of the coproduct of props, see [30].
Our next goal, and the core result of this section, is extending Proposition 9 to the case where
Σ is non-empty, i.e., an isomorphism between SΣ + CMon and RMACspD(HypΣ). This
will allow us to refer to RMACspD(HypΣ) as the combinatorial characterisation of string
diagrams in SΣ + CMon, and study their rewriting as DPO-rewriting in RMACspD(HypΣ).

In order to relate SΣ + CMon and RMACspD(HypΣ), we will use a strategy analogous
to the one used in [6] for theories with symmetric monoidal structure only. In essence, we
want to show that RMACspD(HypΣ) has the universal property of the coproduct. Consider

SΣ
J·K−→ RMACspD(HypΣ) |·|←− CMon

where J·K : SΣ → RMACspD(HypΣ) is the faithful prop morphism defined in [6], and
| · | : CMon→ RMACspD(HypΣ) is defined by composing the isomorphism of Proposition 9
with the obvious faithful prop morphism RMACspD(Hyp∅)→ RMACspD(HypΣ). To show
that RMACspD(HypΣ) has the universal property of the coproduct, the fundamental step
is investigating how right-monogamous acyclic cospans can be factorised into a composite
cospan M0;D0; . . . ;Ml;Dl that alternates between monogamous acyclic cospans that are
in the image J·K : SΣ → RMACspD(HypΣ) and discrete right-monogamous acyclic cospans
that are in the image of | · | : CMon→ RMACspD(HypΣ).

3.1 Weak decomposition
First, we need to show how to decompose right-monogamous cospans of hypergraphs in the
same way that we can take sub-diagrams of string diagrams.

Formally, a sub-diagram c of some larger string diagram d can be defined as a sub-
term (modulo the laws of symmetric monoidal categories) of d. It is not difficult to show
(by induction) that we can always find some k ∈ N and diagrams c1, c2 such that d =
c1; (idk ⊕ l); c2, that is, such that d decomposes as

c
mn

i jd
n m =

k

c2c1 (2)

In fact, we could also take this decomposition as a definition of sub-diagrams. We turn to
the corresponding notion of sub-structure for cospans of hypergraphs.

In the plain symmetric monoidal case, not all sub-hypergraphs of the cospan representation
of a string diagram d correspond to sub-diagrams of d. Those that do have the additional
properties of being convex [6].

A. Milosavljević, R. Piedeleu, and F. Zanasi 9:7

▶ Definition 10 (Convex sub-hypergraph). A sub-hypergraph H ⊆ G is convex if, for any
nodes v, v′ in H and any path p from v to v′ in G, every hyperedge in p is also in H.

▶ Example 11. v2v0
A is a convex sub-hypergraph of the hypergraph in Example 8.

The following lemma shows that convex sub-hypergraphs is the right counterpart of that
of sub-diagram, in the hypergraph world. Note the correspondence between (3) below and (2)
above.

▶ Lemma 12 (Weak decomposition). Let G = m −→ G←− n be a right-monogamous acyclic
cospan and L be a convex sub-hypergraph of G. We can decompose G as

(m −→ C̃1 ←− i + k) ;

 k
id−→ k

id←− k⊕
i −→ L←− j

 ; (j + k −→ C2 ←− n) (3)

for some k ∈ N and where all the above cospans are right-monogamous acyclic.

▶ Example 13. Consider the diagram below with its corresponding cospan representation:

B

0 10 1

B

For the convex sub-hypergraph L := B , there are two possible choices of weak decompos-
ition, depending on where we attach the second leg of the monoid multiplication that appears

in the corresponding string diagram: 0 10
B

1 or
0

20
B1

1, 2 .

Note that this situation differs from the plain symmetric monoidal case [6], where i −→ L←− j

is unique, given L. With commutative monoids, the non-uniqueness comes from having to
choose whether we include the monoid structure nodes in the cospan i −→ L←− j or in the
surrounding two cospans. Of course there is a minimal such cospan, that corresponds to the
sub-diagram in the diagrammatic decomposition, but we sometimes need the flexibility to
choose another decomposition.

3.2 Factorisation into levels
Now we tackle the factorisation of cospans in RMACspD(HypΣ) into alternating monogamous
cospans and right-monogamous discrete cospans, to prove that RMACspD(HypΣ) ∼= SΣ +
CMon, our main characterisation theorem (Theorem 21).

As we saw, the hypergraphs that correspond to plain string diagrams (in symmetric
monoidal categories) are monogamous: nodes are precisely the target and source of one
hyperedge. The commutative monoid structure relaxes this requirement for targets. For our
last decomposition, we would like to identify nodes that can only appear in the hypergraph
representation of diagrams that contain some occurrence of the commutative monoid structure
(multiplication or unit), that is, nodes that do not simply represent plain wires. The following
definition formalises this idea.

▶ Definition 14. Let m −→ G←− n be a right-monogamous acyclic cospan. We say that the
node v in G is left-amonogamous if:

it is in in(G) and its in-degree is not equal to 0, or
it is not in in(G) and its in-degree is not equal to 1

CALCO 2023

9:8 String Diagram Rewriting Modulo Commutative (Co)Monoid Structure

▶ Example 15. In the cospan (1), v2 and v3 are left-amonogamous, while v0 and v1 are not.

▶ Definition 16 (Order of nodes and level of hyperedges). Let m −→ G ←− n be a right-
monogamous acyclic cospan. We define the order of a node v to be the largest number of
left-amonogamous nodes preceding it (including itself) on a path leading to v. The level of a
hyperedge is the largest number of left-amonogamous nodes on a path ending with v.

▶ Example 17. In the cospan (1), hyperedges A and C are level-0 hyperedges, and hyperedge
B is a level-1 hyperedge.

Recall that we want to obtain a factorisation of any cospan into an alternating composition
of discrete right-monogamous cospans – corresponding to diagrams with no generating boxes
from the chosen signature – and monogamous cospans – corresponding to plain string
diagrams over the chosen signature. We will do this by induction on the maximum level
of hyperedges, effectively stripping the necessary cospans (discrete right-monogamous and
monogamous) at each level as we move from left to right.

The following lemma will be used at each induction step: here, we require the decomposi-
tion to not only alternate between monogamous and discrete right-monogamous cospans, but
to also keep track of the order of terminal nodes. Diagrammatically, we want a decomposition
of a right-monogamous cospan into the following form:

d
m

n − k

k

i g′m j

with m corresponding to a monogamous cospan, and d to a discrete right-monogamous one,
and g′ is the rest of the decomposition. Here, the first k wires are the terminal order-0
nodes of the overall composite. Keeping track of where terminal nodes of each order are
located is an important technical complication that will be needed to prove that the map
that we construct out of RMACspD(HypΣ) to show it satisfies the universal property of the
coproduct SΣ + CMon, is a monoidal functor. Recall that, following Proposition 9, we refer
abusively to permutations π : n→ n below as cospans, assuming implicitly that we mean
the cospan n

π−→ n
id←− n.

▶ Lemma 18 (Level-0 decomposition). Let m −→ G ←− n be a right-monogamous acyclic
cospan whose order-0 terminal nodes are the first k nodes of n. Then there exists a unique
decomposition of G as M; (idk ⊕ (D;G′)), where (A) M is monogamous acyclic and contains
precisely all the level-0 hyperedges; (B) D is discrete right-monogamous and contains precisely
all order-1 left-amonogamous nodes; (C) G′ is right-monogamous acyclic and has no left-
amonogamous nodes without any in-connections.

Moreover, any two such factorisations differ only by permutations of the terminal nodes
of the factors, i.e., if G = M; (idk ⊕ (D;G′)) = M′; (idk ⊕ (D′;G′′)), then there exists
permutations π, θ such that M′ =M; π, π; (idk ⊕ (D′;G′)) = idk ⊕ (D;G′), and D′ = D; θ,
θ;G′′ = G′.

Note that the non-uniqueness of the decomposition comes from two distinct sources: 1)
arbitrary ordering of nodes on the boundaries of cospans, and 2) the commutativity of the
monoid multiplication which can absord any permutation of the wires that it merges.

▶ Lemma 19 (Factorisation into levels). Any right-monogamous acyclic cospan G = m −→ G←−
n can be factored intoM0;

(
idk0⊕(D0; . . . ;Ml; (idkl

⊕Dl) . . .)
)
; π for some permutation π and

where, for each i, (A)Mi is monogamous acyclic and contains precisely the level i hyperedges
of G, and (B) Di is discrete right-monogamous, contains all order i + 1 left-amonogamous
nodes and all order-i terminal nodes of G.

A. Milosavljević, R. Piedeleu, and F. Zanasi 9:9

Proof. First, let ki be the set of order-i terminal nodes of G. We then define the permutation
π to be the reordering of n such that the order-0 terminal nodes are the first k0 nodes, the
order-1 are the next k1 terminal nodes and, more generally, the order-i + 1 nodes are the
first ki+1 terminal nodes after the first

∑i
i=j kj nodes.

We can now prove the lemma using induction on the highest order of left-amonogamous
nodes in G; π−1, using Lemma 18.

For the base case we note that any right-monogamous acyclic cospan without any left-
amonogamous nodes is simply monogamous acyclic.

For the induction hypothesis, we assume that the statement holds for all the right-
monogamous acyclic cospans with the maximum order of left-amonogamous nodes strictly
less than r, where r is a positive integer. For the inductive case, suppose that G; π−1 is a
cospan whose highest order of left-amonogamous nodes is r. Then, by Lemma 18 (Level-0
decomposition), it can be factored into G; π−1 =M0; (idk0 ⊕ (D0;G′)) where the first cospan
is monogamous acyclic and contains all level 0 hyperedges of G, and D0 is discrete right
monogamous with all order 1 left-amonogamous nodes of G; π−1 and k0 all order 0 terminal
nodes of G; π−1. Now, every node in G′ corresponding to an order i left-amonogamous
node in G; π−1, is now an order i − 1 left-amonogamous. Thus, the highest order of left-
amonogamous nodes in G′ is r − 1 and, by the induction hypothesis, G′ can be factored
into M1;

(
idk1 ⊕ (D1; . . . ;Ml; (idkl

⊕Dl) . . .)
)

as in the statement of the lemma. Therefore,
the composite M0;

(
idk0 ⊕ (D0; . . . ;Ml; (idkl

⊕ Dl) . . .)
)

=M0; (idk0 ⊕ (D0;G′)) = G; π−1

satisfies conditions (A) and (B) of the lemma andM0;
(
idk0⊕(D0; . . . ;Ml; (idkl

⊕Dl) . . .)
)
; π

is the factorisation we are looking for. ◀

We will also need the following simpler form of the factorisation into levels, which matches
closely the leading intuition of a factorisation into an alternating composition of monogamous
and discrete right-monogamous cospans.

▶ Corollary 20. Any right-monogamous acyclic cospan G = m −→ G←− n can be factorised
into an alternating sequence of monogamous cospans and discrete right-monogamous cospans,
i.e., as M0;D0; . . . ;Ml;Dl.

Moreover any two such factorisations differ only by permutations of the terminal nodes
of each factor, i.e., if M0;D0 . . . ;Ml;Dl =M′

0;D′
0; . . . ;M′

l;D′
l, there exists permutations

πi, θi such that M′
i =Mi; πi, πD′

i = Di and D′
i = Di; θi, θiM′

i+1 =Mi+1.

Proof. Since identities can be seen as monogamous cospans or discrete right-monogamous,
and a permutation can be seen as discrete right-monogamous cospan, if we can get a
factorisation of G into levels as in Lemma 19, we also obtain a factorisation as in the
statement of this lemma.

Finally, we can prove by induction, using from the second part of the statement of
Lemma 18 that any two such factorisations differ only by some permutation of the factors. ◀

We are now able to conclude with our characterisation theorem.

▶ Theorem 21. There exists an isomorphism ⟨⟨·⟩⟩ : SΣ + CMon→ RMACspD(HypΣ).

Proof. Let us define ⟨⟨·⟩⟩ as a copairing (in PROP) of the faithful functors J·K : SΣ →
RMACspD(HypΣ) and | · | : CMon→ RMACspD(HypΣ). It suffices to show that the prop
RMACspD(HypΣ) satisfies the universal property of the coproduct SΣ + CMon in PROP:

SΣ RMACspD(HypΣ) CMon

A

J·K

α
∃!γ

|·|

β

CALCO 2023

9:10 String Diagram Rewriting Modulo Commutative (Co)Monoid Structure

Given a prop A and prop-morphisms α : SΣ → A , β : CMon → A, we need to prove
there exists a unique prop-morphism γ : RMACspD(HypΣ) → A, such that the diagram
above commutes. Now, since prop-morphisms are identity-on-objects functors, it is sufficient
to consider what happens to the arrows of the above props. Since the diagram needs to
commute, for any arrow s in SΣ and for any arrows c in CMon we want γ(JsK) = α(s) and
γ(|c|) = β(c). But, by Corollary 20, any cospan G in RMACspD(HypΣ) can be factorised as
an alternating sequence of monogamous cospans and discrete right-monogamous cospans, i.e.,
as G =M0;D0 . . . ;Ml;Dl where Mi = JsiK for some si in SΣ and Di = |ci| for some ci in
CMon. Then γ(hi) is uniquely defined by the conditions γ(JsiK) = α(si) and γ(|ci|) = β(ci):
let γ(G) = γ (M0;D0; . . . ;Ml;Dl) = α(s0)β(c0) . . . α(sl)β(cl). We now verify that γ is
well-defined and functorial.

Well-definedness. Since the factorisation of G into levels is not unique, we need to show
that γ is well-defined, i.e., that any two such factorisations will define the same value of
γ(G). Consider another factorisation G =M′

0;D′
0; . . . ;M′

l;D′
l obtained from Corollary 20.

Then there exists permutations πi, θi such that M′
i =Mi; πi, πiD′

i = Di and D′
i = Di; θi,

θiM′
i+1 =Mi+1. In addition, M′

i = Js′
iK for some s′

i in SΣ, D′
i = |c′

i| for some c′
i in CMon.

To show well-definedness of γ, we will use the following facts:
1. since SΣ, CMon and A are props, they all contain a copy of the prop of permutations so

we will abuse notation slightly and use the same names to refer to the same permutation
in all of them;

2. prop morphisms preserve permutations so that α(π) = β(π) = γ(π) = J·K π = | · |π = π

for any permutation π;
3. by definition of γ it is clear that γ(G; π) = γ(G); π and γ(π;G) = π; γ(G).
Now, we have

γ(M0;D0; . . . ;Ml;Dl) = γ(M0); γ(D0); . . . ; γ(Ml); γ(Dl)
= γ(M0); γ(π0;D′

0); . . . ; γ(Ml); γ(πl;D′
l)

= γ(M0); π0; γ(D′
0); . . . ; γ(Ml); πl; γ(D′

l)
= γ(M0; π0); γ(D′

0); . . . ; γ(Ml; πl); γ(D′
l)

= γ(M′
0); γ(D′

0); . . . ; γ(M′
l); γ(D′

l) = γ(M′
0;D′

0; . . . ;M′
l;D′

l)

Monoidal functoriality. First, γ preserves monoidal products, as the decomposition of a
monoidal product is obtained by taking a monoidal product of monogamous acyclic cospans,
and a monoidal product of discrete right monogamous cospans, for each level separately.
Second, consider two cospans G = m −→ G ←− n and H = n −→ G ←− o. We can factorise
H as M0;D0; . . . ;Ml;Dl. Hence, if we can show that γ(G;M;D) = γ(G); γ(M;D), for M
monogamous and D discrete right-monogamous, a simple induction will allow us to conclude
that γ(G;H) = γ(G); γ(H). In fact, to show the induction step, it is enough to show that
γ(G; (M⊕ idn−k+l)) = γ(G); γ(M⊕ idn−k+l) whereM consists of a single hyperedge h, with
k source nodes and l ≤ n target nodes – we can recover the general case of all monogamous
cospans by performing another induction on the number of hyperedges in M.

Now, we need to understand to what level in G; (M⊕ idn−k+l) the single hyperedge h

of M belongs. By the definition of the level of hyperedges (Definition 16), h will belong
to level i of in G; (M⊕ idn−k+l) if the node with the largest order in the first k terminal
nodes of G is i. If we assume without loss of generality (as we can always post-compose
with a permutation to achieve this), that the terminal nodes of G are ordered by order
size, this implies that the factorisation of G; (M⊕ idn−k+l) into levels is G≤i; (M⊕ G>i)

A. Milosavljević, R. Piedeleu, and F. Zanasi 9:11

where G>i and G≤i are obtained from the factorisation M0;
(
idk0 ⊕ (D0; . . . ;Ml; (idkl

⊕
Dl) . . .)

)
of G (from Lemma 19) as follows: G≤i := M0;

(
idk0 ⊕ (D0; . . . ;Mi) . . .

)
and

G>i := Di;Mi+1;
(
idki+1 ⊕ (Di+1; . . . ;Ml; (idkl

⊕Dl) . . .)
)
. Note that, by construction, we

have G = G≤i; (idki ⊕ G>i). Thus

G; (M⊕ idn−k+l) = G≤i; (idki ⊕ G>i); (M⊕ idn−k+l)
= G≤i;

(
(idki

;M)⊕ (G>i; idn−k+l)
)

= G≤i; (M⊕G>i)

by the interchange and unitality axioms of symmetric monoidal categories (see Fig. 1).
The intuition now is that we are able to slide the hyperedge h back to level i into the

decomposition of G and that the operation of sliding back – which only uses the monoidal
product and composition with identities – is preserved by γ. This will be sufficient to prove
functoriality of γ. We have

γ(G; (M⊕ idn−k+l)) = γ(G≤i; (M⊕G>i))
= γ(G≤i); γ(M⊕G>i)
= γ(G≤i);

(
γ(M)⊕ γ(G>i)

)
= γ(G≤i);

(
γ(idki

)⊕ γ(G>i)
)
;
(
γ(M)⊕ γ(idn−k+l)

)
where the second equality holds because G≤i; (M⊕G>i) is the factorisation of G;M through
which we define γ; the third equality holds because γ preserves monoidal products and
the remaining equalities use the interchange and unitality laws of symmetric monoidal
categories as above. Finally, by definition of γ, γ(G≤i); (γ(idki

) ⊕ γ(G>i)) = γ(G) and,
since γ also preserves monoidal products, we can conclude that γ(G; (M⊕ idn−k+l)) =
γ(G); γ(M⊕ idn−k+l)) as we wanted to show. ◀

4 Characterisation of String Diagram Rewriting

Now that we have a characterisation theorem for SΣ + CMon, we are ready to interpret
rewriting modulo commutative monoid structure as DPO rewriting, and to show that such a
correspondence is sound and complete. We first recall formally the former notion of rewriting.

▶ Definition 22 (String Diagram Rewriting Modulo CMon). Let d, e : n→ m and l, r : i→ j

be pairs of morphisms in SΣ + CMon. We say that d rewrites into e modulo commutative
monoid structure according to the rewrite rule R = ⟨l, r⟩, notation d⇒R e, if, in SΣ+CMon,
we have:

l

mn
i jd

n m =
k

c2c1
r

mn
i jen m =

k

c2c1 (4)

As studied in [5, 6], rewriting of string diagrams may be interpreted as DPO rewriting
of the corresponding hypergraphs. The relevant notion is the one of DPO rewriting “with
interfaces” (originally used for a single interface in [16], and adapted for two interfaces in [4]),
which ensures preservation of the interfaces described by the cospan structure.

CALCO 2023

9:12 String Diagram Rewriting Modulo Commutative (Co)Monoid Structure

▶ Definition 23 (DPO Rewriting (with interfaces)). Consider a DPO rewrite rule R =
L

[a1,a2]←−−−− i + j
[b1,b2]−−−−→ R given by cospans i

a1−→ L
a2←− and i

b1−→ R
b2←− in HypΣ. We say that

cospan n
q1−→ D

q2←− m rewrites into n
p1−→ E

p2←− m with rule R, written (n→ D ← m) ↪→R

(n −→ E ←− m), if there is a cospan i + j → C ← n + m (called the pushout complement)
making the diagram below commutes with the two squares being pushouts.

L

f ��

i + j

��⌝ ⌜

[a1,a2]oo [b1,b2] // R

��
D Coo // E

n + m

OO

[p1,p2]

99

[q1,q2]

ee

However, unless string diagram rewriting happens modulo the laws of Frobenius algebras,
not all DPO rewrites are sound for string diagram rewriting: some pushout complements
may yield as outcome of the rewriting hypergraphs that are not in the image of any string
diagram [6]. To avoid these situations, [6] introduced the notion of boundary complements
and convex matching. The former guarantees that inputs can only be connected to outputs
and vice-versa, while the latter are matches that do not contain directed paths from outputs
to inputs, i.e., monomorphisms whose image is convex. However, these notions were designed
for monogamous hypergraphs, and string diagram rewriting modulo symmetric monoidal
structure. In order to capture the correct notion of DPO rewriting for right-monogamous
hypergraphs, and rewriting modulo commutative monoid structure, we need to relax the first
slightly to that of weak boundary complements.

L

f
��

(†)

i + j
a=[a1,a2]oo

c=[c1,c2]
��⌝

G L⊥
g

oo

n + m
[b1,b2]

hh

[d1,d2]

OO

▶ Definition 24 (Weak boundary complement). For right-monogamous acyclic cospans i
a1−→

L
a2←− j and n

b1−→ G
b2←− m and a morphism f : L→ G, a pushout complement as on the right

above is called a weak boundary complement if: (A) given two nodes in L that are mapped to
the same node in G by f, they must be in the image of a2; (B) c1 is mono; (C) no two nodes
are both in the image of c1 and c2; (D) there exist d1 : n→ L⊥ and d2 : m→ L⊥ making the
above diagram commute and such that n + j

[c2,d1]−−−−→ L⊥ [c1,d2]←−−−− m + i is right-monogamous.

Intuitively, the complement L⊥ is G with an L-shaped hole:

l

l⊥

mn
i j

g
n m

=

l⊥

mn

i
j

where g : n → m, l : i → j, and l⊥ : n + j → m + i are diagrams for the cospans
n −→ G ←− m,i −→ L ←− j, and n + j −→ L⊥ ←− m + i respectively, i.e. such that ⟨⟨g⟩⟩ =
(n −→ G ←− m),⟨⟨l⟩⟩ = i −→ L ←− j, and ⟨⟨l⊥⟩⟩ = n + j −→ L⊥ ←− m + i. (Recall that

A. Milosavljević, R. Piedeleu, and F. Zanasi 9:13

⟨⟨·⟩⟩ : SΣ + CMon→ RMACspD(HypΣ) is the isomorphism established by Theorem 21; we
will use it quite liberally from now on in order to manipulate cospans as string diagrams
when convenient). Boundary complements restrict the shape that these can take. Let us
explain the conditions of Definition 24 in plainer language.

Condition (A) allows matches to occur in a diagram G that contains the sub-diagram L

potentially with some nodes identified, i.e. wires connected by the monoid multiplication
(see Example 26 below. However, these can only occur as terminal nodes, that is, in the
image of a2, the right boundary of the subdiagram L.
Plain boundary complements [6] require c1, c2 to be jointly monic. This enforces two
distinct properties: it prevents nodes from the left and right boundaries of the match
to be identified, and it prevents nodes from within each of the two boundary sides to
be identified. Here, we need to relax the second condition to allow nodes in the right
boundary of the match to be identified. This is what conditions (B) and (C) give us.
Condition (D) forces the boundary of the complement, both with the subdiagram L and
those of the larger diagram G, to be right-monogamous. In other words, we want the
cospan n + j

[c2,d1]−−−−→ L⊥ [c1,d2]←−−−− m + i depicted above to be right-monogamous.

The last ingredient we require is the same as in [6]: we require the match to be convex.

▶ Definition 25 (Convex matching [6]). f : L→ G in HypΣ is a convex match if its image
is a convex sub-hypergraph of G.

▶ Example 26. Consider the diagram below

A in
A

=
A

As cospans of hypergraphs, this corresponds to the convex matching below

i0
i1, j1

i0

i1

n0

n1
m0

n1

j0

m0
A

A

a c

d
f f(a)

f(b)
f(b), f(c), f(e)

a1 a2 b1 b2
j0

j1b

n0

with the following weak boundary complement:

n0

n1
m0

n0

m0
n1

i0

i1

d1 d2

c1 c2

i1

i0
j0, j1

j0

j1

▶ Definition 27 (Weakly Convex DPO Rewriting). We call a DPO rewriting step as in
Definition 23 weakly convex if f : L → D is a convex matching and i + j → C is a weak
boundary complement in the leftmost pushout square.

Note that, contrary to boundary complements in the symmetric monoidal case [6], weak
boundary complements are not necessarily unique if they exist. We can now conclude
the soundness and completeness of weakly convex DPO rewriting for string diagrams with
commutative monoid structure.

CALCO 2023

9:14 String Diagram Rewriting Modulo Commutative (Co)Monoid Structure

▶ Theorem 28. Let R = ⟨l, r⟩ be a rewrite rule on SΣ + CMon. Then,

d⇒R e iff ⟨⟨d⟩⟩ ↪→⟨⟨R⟩⟩ ⟨⟨e⟩⟩ (5)

Proof. For the direction from left to right we proceed as follows. From the definition of
rewriting, and given the assumption d⇒R e, we have equalities as in (4). We now interpret
the string diagrams involved, obtaining right-monogamous cospans:(

n
q1−→ D

q2←− m
)

:= ⟨⟨d⟩⟩
(

n
p1−→ E

p2←− m
)

:= ⟨⟨e⟩⟩(
i

a1−→ L
a2←− j

)
:= ⟨⟨l⟩⟩

(
i

b1−→ R
b2←− j

)
:= ⟨⟨r⟩⟩(

n
x1−→ C1

x2←− k + i
)

:= ⟨⟨c1⟩⟩
(

k + j
y1−→ C2

y2←− m
)

:= ⟨⟨c2⟩⟩

(6)

From the last two cospans above, by simply rearranging nodes on the interface from the left
to the right and viceversa, we obtain:

i + k
x̃1−→ C̃1

x̃2←− n k + j
ỹ1−→ C̃2

ỹ2←− m

We now define a cospan i + j −→ C ←− n + m as:

(
i + j

z1−→ i + k + j
z2←− i + k + k + j

)
;

 i + k
x̃1−→ C̃1

x̃2←− n⊕
k + j

ỹ1−→ C̃2
ỹ2←− m

 (7)

where z1 : (i + j) → (i + k + j) is the inclusion map, z2 : (i + k + k + j) → (i + k + j) is
defined as idi + µk + idj , with µk : k + k → k mapping both copies of node i ∈ {0, . . . , k− 1}
to i. Intuitively, i + j −→ C ←− n + m represents the string diagram where we have rearranged
interface nodes n and i on the opposite interface. One may verify that:(

0 −→ D
[q1,q2]←−−−− n + m

)
=

(
0 −→ L

[a1,a2]←−−−− i + j

)
; (i + j −→ C ←− n + m)(

0 −→ E
[p1,p2]←−−−− n + m

)
=

(
0 −→ R

[b1,b2]←−−−− i + j

)
; (i + j −→ C ←− n + m)

(8)

Recall that composition of cospans is obtained via pushouts, hence the two equalities of (8)
yield a DPO rewriting step ⟨⟨d⟩⟩ ↪→⟨⟨R⟩⟩ ⟨⟨e⟩⟩ as in Definition 23. Since l is simply a sub-string
diagram of d, the mapping from L to D is a convex match. Furthermore, note that no two
nodes from i + k can be identified with each other, hence i→ C is mono, and no node from
i can be identified with any node in j or m. As m→ C is trivially mono, we have that C is
indeed a weak boundary complement.

Now we deal with the converse implication. Assume ⟨⟨d⟩⟩ ↪→⟨⟨R⟩⟩ ⟨⟨e⟩⟩, where ⟨⟨d⟩⟩, ⟨⟨e⟩⟩, ⟨⟨l⟩⟩,
and ⟨⟨r⟩⟩ are defined as the cospans in (6). By assumption, and since composition of cospans
is performed via pushouts, there exists a weak boundary complement i + j

[c1,c2]−−−−→ L⊥ [d1,d2]←−−−−
n + m such that

⟨⟨d⟩⟩ = (0 −→ i
µi←− i + i); (idi ⊕ ⟨⟨l⟩⟩); (i + j

[c1,c2]−−−−→ L⊥ [d1,d2]←−−−− n + m)

⟨⟨e⟩⟩ = (0 −→ i
µi←− i + i); (idi ⊕ ⟨⟨r⟩⟩); (i + j

[c1,c2]−−−−→ L⊥ [d1,d2]←−−−− n + m)

A. Milosavljević, R. Piedeleu, and F. Zanasi 9:15

We can now apply Lemma 12 (weak decomposition) to n + j
[c2,d1]−−−−→ L⊥ [c1,d2]←−−−− m + i, with

the convex sub-hypergraph of L⊥ given by the image of i and j, to obtain a decomposition
of n + j

[c2,d1]−−−−→ L⊥ [c1,d2]←−−−− m + i as

(n+j −→ C1 ←− k + i+j) ; (k + i+j
idk⊕σj

i−−−−−→ k +j + i←− k +j + i) ; (k +j + i −→ C2 ←− m+ i)

for some k ∈ N, right monogamous cospans n −→ C1 ←− i + k and j + k −→ C2 ←− m, and
where σj

i : i + j → j + i the map that swaps the two components i and j. By fullness of ⟨⟨·⟩⟩
we have c1, c2 such that ⟨⟨c1⟩⟩ = n −→ C1 ←− i + k and ⟨⟨c2⟩⟩ = j + k −→ C2 ←− m; moreover we
have, by construction:

⟨⟨d⟩⟩ =
(
idn ⊕ (0 −→ i

µi←− i + i)
)
; ⟨⟨

mn

ij

k
c2c1

i
l

i

i ⟩⟩;
(
idm ⊕ i + i

µi−→ i←− 0)
)

⟨⟨e⟩⟩ =
(
idn ⊕ (0 −→ i

µi←− i + i)
)
; ⟨⟨

mn

ij

k
c2c1

i
r

i

i ⟩⟩;
(
idm ⊕ (i + i

µi−→ i←− 0)
)

Computing these cospans, we obtain ⟨⟨d⟩⟩ = ⟨⟨c1⟩⟩; (⟨⟨idk⟩⟩⊕⟨⟨l⟩⟩); ⟨⟨c2⟩⟩ and ⟨⟨e⟩⟩ = ⟨⟨c1⟩⟩; (⟨⟨idk⟩⟩⊕
⟨⟨r⟩⟩); ⟨⟨c2⟩⟩. By monoidal functoriality of ⟨⟨·⟩⟩, we thus have ⟨⟨d⟩⟩ = ⟨⟨(c1; (idk⊕l); c2)⟩⟩ and ⟨⟨e⟩⟩ =
⟨⟨(c1; (idk ⊕ r); c2)⟩⟩. Finally, since ⟨⟨·⟩⟩ is faithful, we can conclude that d = c1; (idk ⊕ l); c2
and e = c1; (idk ⊕ r); c2. This is precisely what it means to apply the rule ⟨l, r⟩ to d, so that
d⇒R e as we wanted to prove. ◀

5 Conclusions and Future Work

The main contribution of this work is twofold. First, with Theorem 21, we identified a
combinatorial representation of string diagrams modulo commutative monoid structure.
This correspondence relies on introducing a notion of right monogamous cospans, which is
intermediate between the “vanilla” cospans characterising string diagrams modulo Frobenius
structure, and the monogamous cospans characterising string diagrams modulo symmetric
monoidal structure. The characterisation result relies on a factorisation result for right
monogamous cospans, which requires some ingenuity: compared with similar theorems
in [5, 6] the increased sophistication is due to the fact that there is additional structure to
consider both on the side of string diagrams (in contrast with [6, Theorem 25], which only
accounts for symmetric monoidal structure) and of hypergraphs (in contrast with [5, Theorem
4.1], which accounts for generic hypergraph without monogamicity conditions). Note the
work [19], which appeared at the same time as a preprint of our work [26], provides a result
dual to Theorem 21: instead of monoids, they consider props with a chosen commutative
comonoid structure – called “CD-categories” or “gs-categories”. On the side of hypergraphs,
instead of restricting monogamicity to right-monogamicity, they consider left-monogamicity,
which is essentially the dual notion.

The second contribution of our paper, Theorem 28, showed a correspondence between
string diagrams rewriting modulo commutative monoid structure and a certain variant of
DPO hypergraph rewriting. In order to ensure soundness and completeness, we introduced
a suitable restriction of DPO rewriting, called weakly convex to echo the convex rewriting
characterising string diagrams in a symmetric monoidal category [6]. A subtlety in this result
was identifying a notion of boundary complement which, even though could not be unique
“on-the-nose” as the one considered in the more restrictive convex rewriting, it was sufficiently
well-behaved for the purpose of showing the correspondence with string diagram rewriting.

CALCO 2023

9:16 String Diagram Rewriting Modulo Commutative (Co)Monoid Structure

Going forward, we believe our approach could be extended to coloured props in a rather
straightforward way, following the analogous developments in [31, 6]. Other interesting
directions to pursue are the study of confluence [7] and the characterisations of notions
of rewriting modulo structures intermediate between commutative monoid and Frobenius
algebra – comparison with the very recent work on rewriting in traced comonoid structure [21]
seems particularly promising in this regard. In terms of case studies, as mentioned in the
introduction, our work paves the way for studying rewriting of theories which do not host
a Frobenius structure, but at the same time include commutative (co)monoid equations,
which would immediately lead to non-termination if taken as rewrite rules. Categories of
matrix-like structures, based on Hopf algebras which would become degenerate if added
Frobenius equations (see eg. [30] for an overview), seem a particularly fitting candidate for
investigation.

References
1 John Baez and Jason Erbele. Categories in control. Theory and Applications of Categories,

30:836–881, 2015. URL: http://arxiv.org/abs/1405.6881.
2 C. Berge. Graphs and Hypergraphs. Elsevier Science Ltd., GBR, 1985.
3 Guillaume Boisseau and Pawel Sobocinski. String diagrammatic electrical circuit theory. In

ACT, volume 372 of EPTCS, pages 178–191, 2021.
4 Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Pawel Sobocinski, and Fabio Zanasi. Rewrit-

ing modulo symmetric monoidal structure. In Martin Grohe, Eric Koskinen, and Natarajan
Shankar, editors, Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Com-
puter Science, LICS ’16, New York, NY, USA, July 5-8, 2016, pages 710–719. ACM, 2016.
doi:10.1145/2933575.2935316.

5 Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Pawel Sobocinski, and Fabio Zanasi. String
diagram rewrite theory I: Rewriting with Frobenius structure, 2020. doi:10.48550/ARXIV.
2012.01847.

6 Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Pawel Sobocinski, and Fabio Zanasi. String
diagram rewrite theory II: Rewriting with symmetric monoidal structure, 2021. doi:10.48550/
ARXIV.2104.14686.

7 Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Paweł Sobociński, and Fabio Zanasi. String
diagram rewrite theory III: Confluence with and without Frobenius, 2021. doi:10.48550/
ARXIV.2109.06049.

8 Filippo Bonchi, Joshua Holland, Dusko Pavlovic, and Pawel Sobocinski. Refinement for
signal flow graphs. In CONCUR, volume 85 of LIPIcs, pages 24:1–24:16. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2017.

9 Filippo Bonchi, Joshua Holland, Robin Piedeleu, Pawel Sobocinski, and Fabio Zanasi. Diagram-
matic algebra: from linear to concurrent systems. Proc. ACM Program. Lang., 3(POPL):25:1–
25:28, 2019. doi:10.1145/3290338.

10 Filippo Bonchi, Robin Piedeleu, Pawel Sobocinski, and Fabio Zanasi. Graphical affine algebra.
In 34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019, Vancouver,
BC, Canada, June 24-27, 2019, pages 1–12. IEEE, 2019. doi:10.1109/LICS.2019.8785877.

11 Filippo Bonchi, Pawel Sobocinski, and Fabio Zanasi. Deconstructing Lwvere with distributive
laws. J. Log. Algebraic Methods Program., 95:128–146, 2018.

12 Filippo Bonchi, Pawel Sobocinski, and Fabio Zanasi. A survey of compositional signal flow
theory. In IFIP’s Exciting First 60+ Years, volume 600 of IFIP Advances in Information and
Communication Technology, pages 29–56. Springer, 2021.

13 Aurelio Carboni and R. F. C. Walters. Cartesian bicategories I. J Pure Appl Algebra, 49:11–32,
1987.

http://arxiv.org/abs/1405.6881
https://doi.org/10.1145/2933575.2935316
https://doi.org/10.48550/ARXIV.2012.01847
https://doi.org/10.48550/ARXIV.2012.01847
https://doi.org/10.48550/ARXIV.2104.14686
https://doi.org/10.48550/ARXIV.2104.14686
https://doi.org/10.48550/ARXIV.2109.06049
https://doi.org/10.48550/ARXIV.2109.06049
https://doi.org/10.1145/3290338
https://doi.org/10.1109/LICS.2019.8785877

A. Milosavljević, R. Piedeleu, and F. Zanasi 9:17

14 A. Corradini, Ugo Montanari, Francesca Rossi, H. Ehrig, Reiko Heckel, and Michael Löwe.
Basic concepts and double pushout approach. Algebraic Approaches to Graph Transformation,
pages 163–246, January 1997.

15 Geoffrey S. H. Cruttwell, Bruno Gavranovic, Neil Ghani, Paul W. Wilson, and Fabio Zanasi.
Categorical foundations of gradient-based learning. In ESOP, volume 13240 of Lecture Notes
in Computer Science, pages 1–28. Springer, 2022.

16 Hartmut Ehrig and Barbara König. Deriving bisimulation congruences in the DPO approach to
graph rewriting. In Igor Walukiewicz, editor, Foundations of Software Science and Computation
Structures, pages 151–166, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

17 Brendan Fong and Fabio Zanasi. Universal constructions for (co)relations: categories, monoidal
categories, and props. Log. Methods Comput. Sci., 14(3), 2018.

18 Tobias Fritz. A synthetic approach to markov kernels, conditional independence and theorems
on sufficient statistics. Advances in Mathematics, 370:107239, August 2020. doi:10.1016/j.
aim.2020.107239.

19 Tobias Fritz and Wendong Liang. Free gs-monoidal categories and free Markov categories,
2022. doi:10.48550/ARXIV.2204.02284.

20 Dan R. Ghica, Achim Jung, and Aliaume Lopez. Diagrammatic semantics for digital circuits.
In Valentin Goranko and Mads Dam, editors, 26th EACSL Annual Conference on Computer
Science Logic, CSL 2017, August 20-24, 2017, Stockholm, Sweden, volume 82 of LIPIcs, pages
24:1–24:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.
CSL.2017.24.

21 Dan R. Ghica and George Kaye. Rewriting modulo traced comonoid structure. CoRR,
abs/2302.09631, 2023.

22 Bart Jacobs, Aleks Kissinger, and Fabio Zanasi. Causal inference via string diagram surgery:
A diagrammatic approach to interventions and counterfactuals. Math. Struct. Comput. Sci.,
31(5):553–574, 2021.

23 Aleks Kissinger, John van de Wetering, and Renaud Vilmart. Classical simulation of quantum
circuits with partial and graphical stabiliser decompositions, 2022. doi:10.48550/ARXIV.2202.
09202.

24 Stephen Lack. Composing props. Theory and Applications of Categories, 13(9):147–163, 2004.
25 Stephen Lack and Paweł Sobociński. Adhesive and quasiadhesive categories. RAIRO -

Theoretical Informatics and Applications - Informatique Théorique et Applications, 39(3):511–
545, 2005. doi:10.1051/ita:2005028.

26 Aleksandar Milosavljevic, Robin Piedeleu, and Fabio Zanasi. String diagram rewriting modulo
commutative (co)monoid structure. arXiv:2204.04274, 2023.

27 Koko Muroya and Dan R. Ghica. The dynamic geometry of interaction machine: A token-
guided graph rewriter. Log. Methods Comput. Sci., 15(4), 2019.

28 Robin Piedeleu and Fabio Zanasi. An introduction to string diagrams for computer scientists.
arXiv:2305.08768, 2023.

29 Mehrnoosh Sadrzadeh, Stephen Clark, and Bob Coecke. The Frobenius anatomy of word
meanings I: subject and object relative pronouns. J. Log. Comput., 23(6):1293–1317, 2013.

30 Fabio Zanasi. Interacting Hopf Algebras- the Theory of Linear Systems. (Interacting Hopf
Algebras - la théorie des systèmes linéaires). PhD thesis, École normale supérieure de Lyon,
France, 2015. URL: https://tel.archives-ouvertes.fr/tel-01218015.

31 Fabio Zanasi. Rewriting in free hypergraph categories. In GaM@ETAPS, volume 263 of
EPTCS, pages 16–30, 2017.

CALCO 2023

https://doi.org/10.1016/j.aim.2020.107239
https://doi.org/10.1016/j.aim.2020.107239
https://doi.org/10.48550/ARXIV.2204.02284
https://doi.org/10.4230/LIPIcs.CSL.2017.24
https://doi.org/10.4230/LIPIcs.CSL.2017.24
https://doi.org/10.48550/ARXIV.2202.09202
https://doi.org/10.48550/ARXIV.2202.09202
https://doi.org/10.1051/ita:2005028
https://tel.archives-ouvertes.fr/tel-01218015

Strongly Finitary Monads for Varieties of
Quantitative Algebras
Jiří Adámek #

Department of Mathematics, Faculty of Electrical Engineering,
Czech Technical University in Prague, Czech Republic
Institute for Theoretical Computer Science, Technische Universität Braunschweig, Germany

Matěj Dostál #

Department of Mathematics, Faculty of Electrical Engineering,
Czech Technical University in Prague, Czech Republic

Jiří Velebil #

Department of Mathematics, Faculty of Electrical Engineering,
Czech Technical University in Prague, Czech Republic

Abstract
Quantitative algebras are algebras enriched in the category Met of metric spaces or UMet of
ultrametric spaces so that all operations are nonexpanding. Mardare, Plotkin and Panangaden
introduced varieties (aka 1-basic varieties) as classes of quantitative algebras presented by quantitative
equations. We prove that, when restricted to ultrametrics, varieties bijectively correspond to strongly
finitary monads T on UMet. This means that T is the left Kan extension of its restriction to finite
discrete spaces. An analogous result holds in the category CUMet of complete ultrametric spaces.

2012 ACM Subject Classification Theory of computation → Equational logic and rewriting

Keywords and phrases quantitative algebras, ultra-quantitative algebras, strongly finitary monads,
varieties

Digital Object Identifier 10.4230/LIPIcs.CALCO.2023.10

Related Version Full Version: https://arxiv.org/abs/2210.01565

Funding Jiří Adámek: J. Adámek acknowledges the support by the Grant Agency of the Czech
Republic under the grant 22-02964S.
Matěj Dostál: M. Dostál acknowledges the support by the Grant Agency of the Czech Republic
under the grant 22-02964S.

1 Introduction

Quantitative algebraic reasoning was formalized in a series of articles of Bacci, Mardare,
Panangaden and Plotkin [5, 15, 16, 6] as a tool for studying computational effects in
probabilistic computation. Those papers work with algebras in the category Met of metric
spaces or CMet of complete metric spaces. Quantitative algebras are algebras acting on
a (complete) metric space A so that every n-ary operation is a nonexpanding map from
An, with the maximum metric, to A. If the underlying metric is an ultrametric, we speak
about ultra-quantitative algebras. Mardare et al. introduced quantitative equations, which
are formal expressions t =ε t

′ where t and t′ are terms and ε ≥ 0 is a rational number. A
quantitative algebra A satisfies this equation iff for every interpretation of the variables the
elements of A corresponding to t and t′ have distance at most ε. A variety (called 1-basic
variety in [15]) is a class of quantitative algebras presented by a set of quantitative equations.
Classical varieties of algebras are well known to correspond bijectively to finitary monads
T on Set (preserving directed colimits): every variety is isomorphic to the category SetT of

© Jiří Adámek, Matěj Dostál, and Jiří Velebil;
licensed under Creative Commons License CC-BY 4.0

10th Conference on Algebra and Coalgebra in Computer Science (CALCO 2023).
Editors: Paolo Baldan and Valeria de Paiva; Article No. 10; pp. 10:1–10:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:j.adamek@tu-bs.de
mailto:dostamat@fel.cvut.cz
https://orcid.org/0000-0002-4373-0471
mailto:velebil@fel.cvut.cz
https://doi.org/10.4230/LIPIcs.CALCO.2023.10
https://arxiv.org/abs/2210.01565
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Strongly Finitary Monads for Varieties of Quantitative Algebras

algebras for T, and vice versa. The question whether an analogous correspondence holds
for quantitative algebras has been posed in [1] and [17]. For ultra-quantitative algebras we
answer this by working with enriched (i.e. locally nonexpanding) monads on the category Met
of metric spaces, and its full subcategories UMet of ultrametric spaces and CUMet of complete
ultrametric spaces. An enriched monad is strongly finitary if it is a left Kan extension of its
restriction to finite discrete spaces. We characterize these monads as the enriched finitary
monads preserving precongruences. Every strongly finitary monad on Met, UMet or CUMet
is proved to be the free-algebra monad of a variety of quantitative algebras (Theorem 52 and
Theorem 56).

For UMet and CUMet we also prove the converse: for every variety of ultra-quantitative
algebras the free-algebra monad is strongly finitary (Theorem 47). We conclude that varieties
bijectively correspond to strongly finitary monads on UMet or CUMet. It is an open problem
whether this also holds for Met.

Related Work
A closely related result holds for partially ordered algebras (with nonexpanding operations).
Here varieties are presented by inequations between terms. Kurz and Velebil [13] proved that
they bijectively correspond to strongly finitary monads on the category Pos of posets.

The main tool of Mardare et at. ([15, 16]) are ω-basic equations: for a finite set of
expressions xi =δi yi (where xi, yi are variables and δi ≥ 0) and for terms t and t′ one writes
xi =δi

yi ⊢ t =ε t
′. An algebra A satisfies this equation if, for every interpretation f of the

variables satisfying d(f(xi), f(yi)) ≤ δi for all i, the elements corresponding to t and t′ have
distance at most ε. A class of quantitative algebras presented by such equations is called
an ω-basic variety. Unfortunately, the free-algebra monad of an ω-basic variety need not
be finitary ([1], Example 4.1). Monads on UMet corresponding to ω-basic varieties were
characterized in [1], Corollary 4.15.

Full proofs of the results presented in this extended abstract can be found in [3].

2 Strongly Finitary Functors

In this section we introduce strongly finitary functors, and present some of their properties.
Later we prove a bijective correspondence of varieties and strongly finitary monads for UMet
and CUMet.

▶ Assumption 1. Throughout our paper we work with categories and functors enriched
over a symmetric monoidal closed category (V ,⊗, I). We recall these concepts shortly. Our
leading examples of V are metric spaces, ultrametric spaces and partially ordered sets.

▶ Definition 2 ([8], 6.12). A symmetric monoidal closed category is given by a category
V , a bifunctor ⊗ : V × V → V and an object I. Moreover, natural isomorphisms are given
expressing that ⊗ is commutative and associative, and has the unit I (all up to coherent natural
isomorphisms). Finally, for every object Y a right adjoint of the functor − ⊗ Y : V → V is
given. We denote it by [Y,−] and denote the morphism corresponding to f : X ⊗ Y → Z by
f̂ : Y → [X,Z].

Often ⊗ is the categorical product and I the terminal object; then V is cartesian closed.

▶ Example 3.
(1) V = Pos, the category of posets, is cartesian closed, [X,Y] is the poset of all monotone

maps f : X → Y ordered pointwise. Here f̂ = curryf is the curried form of f .

J. Adámek, M. Dostál, and J. Velebil 10:3

(2) V = Met, the category of (extended) metric spaces and nonexpanding maps. Objects are
metric spaces defined as usual, except that the distance ∞ is allowed. Nonexpanding
maps are those maps f : X → Y with d(x, x′) ≥ d(f(x), f(x′)) for all x, x′ ∈ X.
A product of metric spaces X × Y is the metric space on the cartesian product with the
maximum metric

d((x, y), (x′, y′)) = max{d(x, x′), d(y, y′)}.

This category is not cartesian closed: curryfication is not bijective. However, Met is
symmetric closed monoidal w.r.t. the tensor product X⊗Y which is the cartesian product
with the addition metric

d((x, y), (x′, y′)) = d(x, x′) + d(y, y′).

Here [X,Y] is the metric space Met(X,Y) of all morphisms f : X → Y with the
supremum metric: the distance of f, g : X → Y is

d(f, g) = sup
x∈X

d(f(x), g(x)).

And I is the singleton space.
(3) The cartesian closed category UMet of (extended) ultrametric spaces is the full subcategory

of Met on spaces satisfying the following stricter triangle inequality:

d(x, y) ≤ max{d(x, z), d(z, y)}.

Here the curryfication of morphisms f : X × Y → Z to f̂ : Y → [X,Z] is bijective.
(4) The category CMet of complete metric spaces is the full subcategory of Met on spaces

with limits of all Cauchy sequences. It has the same symmetric closed monoidal structure
as above: if X and Y are complete spaces, then so are X ⊗ Y and [X,Y].
Analogously to (3) the category CUMet of complete ultrametric spaces is cartesian closed.

▶ Convention 4. By a category C we always mean a category enriched over V . It is given by
(1) a class obC of objects,
(2) an object C (X,Y) of V (called the hom-object) for every pair X,Y in obC ,
(3) a ’unit’ morphism uX : I → C (X,X) in V for every object X ∈ obC , and
(4) ’composition’ morphisms

cX,Y,Z : C (X,Y) ⊗ C (Y,Z) → C (X,Z)

for all X,Y, Z ∈ obC , subject to commutative diagrams expressing the associativity of
composition and the fact that uX are units of composition. For details see [8], 6.2.1.

▶ Example 5.
(1) If V = Met then C is an ordinary category in which every hom-set C (X,Y) carries a

metric such that composition is nonexpanding. Analogously for V = CMet or UMet.
(2) If V = Pos then each hom-set C (X,Y) carries a partial order such that composition is

monotone.

Let us recall the concept of an enriched functor F : C → C ′ for (enriched) categories C

and C ′. It assigns
(1) an object FX ∈ obC ′ to every object X ∈ obC , and
(2) a morphism FX,Y : C (X,Y) → C ′(FX,FY) of V to every pair X,Y ∈ obC so that

the expected diagrams expressing that F preserves composition and identity morphisms
commute.

CALCO 2023

10:4 Strongly Finitary Monads for Varieties of Quantitative Algebras

▶ Convention 6. By a functor we always mean an enriched functor. We use ’ordinary
functor’ in the few cases where a non-enriched functor is meant.

▶ Example 7.
(1) For categories enriched over Met a functor F : C → C ′ is an ordinary functor which is

locally nonexpanding: given f, g ∈ C (X,Y) we have d(f, g) ≥ d(Ff, Fg). Analogously
for CMet or UMet.

(2) For categories enriched over Pos functors F are the locally monotone ordinary functors:
given f ≤ g in C (X,Y), we get Ff ≤ Fg in C (FX,FY).

▶ Remark 8.
(1) In general one also needs the concept of an enriched natural transformation between

parallel (enriched) functors. However, if V is one of the categories of Example 3, this
concept is just that of an ordinary natural transformation between the underlying
ordinary functors.

(2) Given two categories D ,C , we denote by [D ,C] the category of all functors F : D → C

enriched by assigning to every pair of functors F,G : D → C an appropriate object
[F,G] of V of all natural transformations.
In case V = Met, UMet or CMet the distance of τ, τ ′ : F → G in [F,G] is
supX∈obD d(τX , τ

′
X).

▶ Notation 9.
(1) Every set X is considered as a discrete poset: x ⊑ x′ iff x = x′. This is the coproduct∐

X I in Pos. Analogously, X is considered as a discrete metric space: all distances of
x ̸= x′ are ∞. This is the coproduct

∐
X I in Met (and also in UMet and CUMet).

(2) For the category Setf of finite sets and mappings we define a functor

K : Setf → V , X 7→
∐
X

I.

Thus for V = Met, CMet, UMet or Pos it assigns to every finite set the corresponding
discrete object.

(3) Let us recall the concept of the (enriched) left Kan extension of a functor F : A → C

along a functor K : A → C [11]: this is an endofunctor LanKF : C → C endowed with
a universal natural transformation τ : F → (LanKF) ·K. The universal property states
that given a natural transformation σ : F → G ·K for any endofunctor G : C → C , there
exists a unique natural transformation σ : LanKF → G with σ = σK · τ . The functor
LanKF is unique up to a natural isomorphism.

▶ Definition 10 (Kelly and Lack [12]). An endofunctor F of V is strongly finitary if it is a
left Kan extension of its restriction F ·K to Setf . Shortly: F = LanK(F ·K).

▶ Example 11.
1. For every natural number n the endofunctor (−)n of the n-th power is strongly finitary

on Met, UMet and CUMet.
2. A coproduct of strongly finitary functors is strongly finitary.

▶ Theorem 12 ([12]). If V is cartesian closed, then strongly finitary endofunctors are closed
under composition.

▶ Open Problem 13. Are all strongly finitary endofunctors on Met closed under composition?

J. Adámek, M. Dostál, and J. Velebil 10:5

In order to characterize strong finitarity for endofunctors on V = Met, UMet and CMet,
we apply Kelly’s concept of density presentation that we now recall. For that we first shortly
recall weighted colimits.

▶ Definition 14 ([8, 11]).
(1) A weighted diagram in a category C is given by a functor D : D → C together with a

weight W : Dop → V . A weighted colimit is an object C = colimWD of C together with
isomorphisms in V :

ψX : C (C,X) → [Dop,C](W,C (D−, X))

natural in X ∈ obC .
(2) The unit of this colimit is the natural transformation ν = ψC(idC) : W → C (D−, C).
(3) A functor F : C → C ′ preserves this colimit if colimW (F ·D) = FC with the unit having

components Fνd for d ∈ D .

In all categories of Example 3 weighted colimits (for all D small) exist.

▶ Example 15. (Conical) directed colimits are the special case where D is a directed poset
(every finite subset has an upper bound), and the weight W is trivial: the constant functor
with value 1 (the terminal object).
(1) In Pos directed colimits are formed on the level of the underlying sets. They commute

with finite products.
(2) Directed colimits in Met, UMet and CMet also exist, but they are not formed on the level

of the underlying sets. For example, consider the diagram of metric space An = {0, 1}
with dn(0, 1) = 2−n, where the connecting maps are id : An → An+1 (n < ω). The
colimit is a singleton space.

▶ Lemma 16. In Met, UMet and CUMet every space is a directed colimit of all of its finite
subspaces.

▶ Theorem 17. Directed colimits in Met, UMet or CMet commute with finite products.

Proof sketch.
(1) For a directed diagram (Di)i∈I in Met, cocones ci : Di → C forming a colimit were

characterized in [4], Lemma 2.4, by the following properties: (a) C =
⋃

i∈I ci[Di], and (b)
for every i ∈ I, given y, y′ ∈ Di we have d(ci(y), ci(y′)) = infj≥i d(fj(y), fj(y′)), where
fj : Di → Dj denotes the connecting map.
Given another directed diagram (D′

i)i∈I with a cocone c′
i : D′

i → C ′ satisfying (a) and
(b), it is our task to prove that the cocone ci × c′

i : Di ×D′
i → C × C ′ satisfies (a), (b),

too. Since I is directed, (a) is clear, and (b) needs just a short computation.
(2) The argument for UMet is the same.
(3) For directed colimits in CMet the characterization of colimit cocones is analogous: (b)

is unchanged, and in (a) one states that
⋃

i∈I ci[Di] is dense in C. The proof is then
analogous to (1). ◀

▶ Definition 18. A functor is finitary if it preserves directed colimits.

▶ Example 19.
(1) An endofunctor of Set is strongly finitary iff it is finitary.
(2) An endofunctor of Pos is strongly finitary iff it is finitary and preserves reflexive coinserters,

see [2].

CALCO 2023

10:6 Strongly Finitary Monads for Varieties of Quantitative Algebras

▶ Notation 20. Let K : A → C be a functor. We denote by K̃ : C → [A op,V] the functor
with K̃C = C (K−, C).

For example, the functor K : Setf → Met yields K̃ : Met → [Setop
f ,Met] taking a metric

space M to the functor M (−) : Setop
f → Met of finite powers of M .

▶ Definition 21 ([11]). A density presentation of a functor K : A → C is a collection of
weighted colimits in C such that
(a) K̃ preserves those colimits, and
(b) C is the (iterated) closure of the image K[A] under those colimits.

▶ Example 22. A density presentation of the functor K : Setf → Met (Notation 9) is given
by all directed colimits and all precongruences (a name borrowed from [9]) which we now
present. They express every metric space as a colimit of discrete spaces. (The weight used
for precongruence is, however, not discrete.)

▶ Notation 23. For every metric space M let |M | denote its underlying set (a discrete
metric space).

▶ Definition 24.
(1) We define the basic weight W0 : Dop

0 → Met as follows. The category D0 consists of
a. the linearly ordered set of all rational numbers ε ≥ 0,
b. two parallel cocones of it λε, ρε : ε → a, and
c. a morphism σε : a → ε splitting that pair: λε · σε = id = ρε · σε (for all ε). The posets

D0(λε, ρε) are all discrete.
The values of W0 are W0a = {0} and W0ε = {l, r} with d(l, r) = ε. The morphisms
W0λε,W0ρε : {0} → {l, r} are given by 0 7→ l, 0 7→ r, respectively, and W0σε is clear.

(2) For every metric space M we define its precongruence as the weighted diagram DM :
D0 → Met with the basic weight W0, where DMa = |M | and DMε ⊆ |M | × |M | is the
discrete space of all pairs of distance at most ε. Here Dλε, Dρε : DMε → |M | are the
projections πl and πr, respectively, and D0σε : |M | → DMε is the diagonal. The diagram
DM assigns to the morphism ε ≤ ε′ the inclusion map of the subset DMε of DMε′.

▶ Proposition 25. Every metric space M is the weighted colimit of its precongruence in Met.

Proof. For every space X, to give a natural transformation τ : W0 → [Dop
0 ,Met](DM −, X)

means to specify a map f = τa(0) : |M | → X together with maps τε(l), τε(r) : DMε → X such
that τε(l) = f · πl and τε(r) = f · πr. Thus τ is determined by f , and the last equations are
equivalent to f : M → X being nonexpanding. The desired isomorphism ψX of Definition 14
is given by ψX(τ) = f . ◀

▶ Remark 26. To define precongruences in UMet, we just use the codomain restrictions
W0 : Dop

0 → UMet and DM : D0 → UMet. Again, every ultrametric space is the weighted
colimit of its precongruence in UMet. Analogously for CUMet.

▶ Example 27. The categories Met, UMet, CMet and CUMet have a density presentation of
K (Notation 9) consisting of all directed diagrams and precongruences of finite spaces. Indeed,
in Definition 21 Condition (a) follows from Example 15. For Condition (b) observe that
finite metric spaces are obtained from Setf as colimits of precongruences by Proposition 25,
and every metric space is a directed colimit of all of its finite subspaces in Met. Analogously
for the three subcategories of Met.

J. Adámek, M. Dostál, and J. Velebil 10:7

The importance of the concept of density presentation for our paper stems from the
following result of Kelly:

▶ Theorem 28 ([11], Theorem 5.29). Given a density presentation of a functor K : A → C ,
an endofunctor T of C fulfils T = LanK(T ·K) iff it preserves the colimits of that presentation.

▶ Corollary 29. An endofunctor of Met, UMet, CMet or CUMet is strongly finitary iff it
preserves directed colimits and colimits of precongruences.

This follows from Theorem 28 and the example above.

3 Varieties of Quantitative Algebras

We now prove that varieties of ultra-quantitative algebras bijectively correspond to strongly
finitary monads on UMet. These are monads carried by a strongly finitary endofunctor.
Throughout this section Σ = (Σn)n∈N denotes a signature, and V is a specified countable set
of variables.

▶ Notation 30.
(1) Following Mardare, Panangaden and Plotkin [15], a quantitative algebra is a metric

space A endowed with a nonexpanding operation σA : An → A for every σ ∈ Σn (w.r.t.
the maximum metric (Example 3)). We denote by Σ-Met the category of quantitative
algebras and nonexpanding homomorphisms. Its forgetful functor is denoted by UΣ :
Σ-Met → Met.

(2) If A is an ultrametric space we speak about an ultra-quantitative algebra and denote the
corresponding category by Σ-UMet.

(3) Analogously, a complete ultra-quantitative algebra is an ultra-quantitative algebra carried
by a complete metric space. The category Σ-CUMet is the corresponding full subcategory
of Σ-UMet. We again use UΣ : Σ-CUMet → CUMet for the forgetful functor.

▶ Example 31.
(1) A free quantitative algebra on a metric space M is the usual algebra TΣM of terms on

variables from |M |. That is, the smallest set containing |M | and such that for every n-ary
symbol σ and every n-tuple of terms ti (i < n) we obtain a composite term σ(ti)i<n. To
describe the metric, let us introduce the following equivalence ∼ on TΣM (similarity of
terms): it is the smallest equivalence turning all variables of |M | into one class, and such
that σ(ti)i<n ∼ σ′(t′i)i<n′ holds iff σ = σ′ and ti ∼ t′i for all i < n. The metric of TΣM

extends that of M as follows: d(t, t′) = ∞ if t is not similar to t′. For similar terms
t = σ(ti) and t′ = σ(t′i) we put d(t, t′) = maxi<n d(ti, t′i).

(2) If M is an ultrametric space, the space TΣM is clearly ultrametric, too. This is the free
quantitative algebra in Σ-UMet.

(3) If M is a complete space, TΣM is also complete, and this is the free quantitative algebra
on M in Σ-CMet.

In particular, if we consider the specified set V of variables as a discrete metric space, then
TΣV is the discrete algebra of usual terms. For every algebra A and every interpretation of
variables f : V → A (in Met, UMet or CUMet) we denote by f ♯ : TΣV → A the corresponding
homomorphism: it interprets terms in A.

CALCO 2023

10:8 Strongly Finitary Monads for Varieties of Quantitative Algebras

▶ Definition 32 ([15]). By a quantitative equation (aka 1-basic quantitative equation) is
meant a formal expression t =ε t

′ where t, t′ are terms in TΣV and ε ≥ 0 is a rational
number. An algebra A in Σ-Met (Σ-UMet or Σ-CUMet) satisfies that equation if for every
interpretation f : V → A we have d(f ♯(t), f ♯(t′)) ≤ ε. We write t = t′ in case ε = 0.

By a variety, aka 1-basic variety, of quantitative (or ultra-quantitative or complete ultra-
quantitative) algebras is meant a full subcategory of Σ-Met (or Σ-UMet or Σ-CUMet, resp.)
specified by a set of quantitative equations.

▶ Example 33.
(1) Quantitative monoids are given by the usual signature: a binary symbol · and a constant

e, and by the usual equations: (x · y) · z = x · (y · z), e · x = x, and x · e = x.
(2) Almost commutative monoids are quantitative monoids in which the distance of ab and

ba is always at most 1. They are presented by the quantitative equation x · y =1 y · x.
(3) Quantitative semilattices are commutative, idempotent quantitative monoids, see [15],

Section 9.1.

▶ Proposition 34 (See [15]). Every variety V of quantitative algebras has free algebras: the
forgetful funtor UV : V → Met has a left adjoint FV : Met → V.

▶ Notation 35. We denote by TV the free-algebra monad of a variety V on Met. Its
underlying functor is TV = UV · FV . As usual, MetTV denotes the Eilenberg-Moore category
of algebras for TV .

▶ Example 36. For V = Σ-Met we have seen the monad TΣ in Example 31: TΣM is the
metric space of all terms over M . Observe that TΣ is a coproduct of endofunctors (−)n, one
summand for each similarity class of terms on n variables over M (which is independent of
the choice M). Thus TΣ is a strongly finitary monad: see Example 11.

▶ Remark 37.
(1) Recall the comparison functor KV : V → MetTV : it assigns to every algebra A of V the

algebra on UVA for TV given by the unique homomorphism α : FVUVA → A extending
idUV A. More precisely: KVA = (UVA,UVα).

(2) By a concrete category over Met is meant a category V together with a faithful ’forgetful’
functor UV : V → Met. For example a variety, or MetT for every monad T. A concrete
functor is a functor F : V → W with UV = UWF . For example, the comparison functor
KV .

▶ Proposition 38. Every variety V of quantitative algebras is concretely isomorphic to
the category MetTV : the comparison functor KV : V → MetTV is a concrete isomorphism.
Analogously for UMet and CUMet.

Proof. For classical varieties (over Set) this is proved in [14], Theorem VI.8.1. The proof for
Met in place of Set is analogous. ◀

▶ Example 39 ([15], Theorem 9.3). For the variety V of quantitative semilattices (Ex-
ample 3.4 (3)) the monad TV assigns to a metric space M the space of all finite subsets of
M with the Hausdorff metric:

d(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(b, A)}.

Here, d(a,B) = infb∈B d(a, b). In particular, d(A, ∅) = ∞ for all A ̸= ∅.

J. Adámek, M. Dostál, and J. Velebil 10:9

▶ Notation 40.
(1) Given a natural number n denote by [n] the signature of one n-ary symbol δ. If a term

t ∈ TΣV contains at most n variables (say, all variables of t are among x0, . . . , xn−1), we
obtain a monad morphism t : T[n] → TΣ as follows. For every space M the function
tM takes a term s using the single symbol δ and substitutes each occurence of δ by
t(x0, . . . , xn−1). More precisely: tM : T[n]M → TΣM is defined by xi 7→ xi (i < n) and
δ(s0, . . . , sn−1) 7→ t(tM (s0), . . . , tM (sn−1)).

(2) Every metric space A defines the continuation monad ⟨A,A⟩ on Met assigning to X ∈ Met
the space ⟨A,A⟩X = [[X,A], A]. More precisely: the functor [−, A] : Met → Metop is
self-adjoint, and ⟨A,A⟩ is the monad corresponding to that adjunction.

(3) Let T be a monad on Met and α : TA → A an algebra for it. We denote by α̂X : TX →
⟨A,A⟩X the morphism which is adjoint to the following composite

[X,A] ⊗ TX
T (−)⊗T X−−−−−−−→ [TX, TA] ⊗ TX

ev−→ TA
α−→ A.

▶ Theorem 41 ([10]). Given an algebra α : TA → A for a monad T on Met, UMet or
CUMet, the morphisms α̂X above form a monad morphism α̂ : T → ⟨A,A⟩. Moreover, every
monad morphism from T to ⟨A,A⟩ has that form for a unique algebra (A,α).

▶ Lemma 42. Let A be a Σ-algebra expressed as a monad algebra α : TΣA → A. It satisfies
a quantitative equation l =ε r iff the distance of α̂ · l, α̂ · r : T[n] → ⟨A,A⟩ is at most ε.

▶ Notation 43.
1. The category of finitary monads on Met (and monad morphisms) is denoted by Mndf(Met).

It is enriched via the supremum metric: the distance of morphisms σ, τ : T → T′ in
Mndf(Met) is supX∈Met d(σX , τX). We use the same enrichment for its full subcategory
of strongly finitary monads, denoted by Mndsf(Met).

2. Analogously for monads on UMet we use Mndf(UMet) and Mndsf(UMet). Again for CUMet
we use Mndf(CUMet) and Mndsf(CUMet).

▶ Lemma 44. The category Mndf(UMet) has weighted colimits, and Mndsf(UMet) is closed
under them.

Proof sketch.
(1) The category Mndc(UMet) of countably accessible monads, i.e., monads preserving

countably directed colimits (enriched again by the supremum metric), is locally countably
presentable as an enriched category, thus it has weighted colimits.

(2) Both Mndf(UMet) and Mndsf(UMet) are coreflective subcategories of Mndc(UMet). The
coreflection of a countably accessible monad T in Mndsf(UMet) is given by the left Kan
extension T̃ = LanK(T · K). Analogously for Mndf(UMet): let K : UMetf → UMet be
the full embedding of all finite metric spaces. The coreflection is T̃ = LanK(T ·K). ◀

▶ Remark 45.
1. The same result holds for the base category CUMet.
2. Unfortunately, we do not know whether the above result holds for Met. The problem is

that for the coreflection of a monad T in Mndsf(Met) to be given by T̃ = LanKT · K,
we need to know that T̃ · T̃ is strongly finitary. Whereas this holds in every cartesian
closed category by [12], thus in UMet and CUMet, we do not know whether it also holds
for monads on Met.

3. The categories Met and UMet have a factorization system (E ,M) where E consists
of surjective morphisms and M of isometric embeddings, i.e., morphisms preserving
distances.

CALCO 2023

10:10 Strongly Finitary Monads for Varieties of Quantitative Algebras

▶ Lemma 46. Every monad morphism α : TΣ → S in the category Mndf(UMet) factorizes
as a morphism TΣ → S with surjective components followed by a morphism S → S whose
components are isometric embeddings.

▶ Theorem 47. For every variety V of ultra-quantitative algebras the free-algebra monad
TV is strongly finitary on UMet.

Proof sketch.
(1) Let V be given by a signature Σ and quantitative equations li =εi ri (i ∈ I), each

containing ni variables. For every i ∈ I we consider the signature [n(i)] of one symbol
δi of arity n(i). Then the terms li, ri yield the corresponding monad morphisms li, ri :
T[n(i)] → TΣ of Notation 40. An algebra α : TΣA → A lies in V iff the distance of
α̂ · li, α̂ · ri : T[n(i)] → ⟨A,A⟩ is at most εi for each i (Lemma 42).

(2) We verify that TV is a weighted colimit of strongly finitary monads in Mndf(UMet).
Then TV is strongly finitary by Lemma 44. The domain D of the weighted diagram
D : D → Mndf(UMet) is the discrete category I (indexing the equations) enlarged by a
new object a, and by morphisms λi, ρi : i → a (for every i ∈ I) of distance εi. Then put
Di = T[n(i)] and Da = TΣ; further Dλi = li and Dρi = ri. The weight W : Dop → Met
takes i to the space {l, r} with d(l, r) = εi and a to {0}. We define Wλi(0) = l and
Wρi(0) = r. The monads TΣ and T[n(i)] are strongly finitary by Example 36. Proving
that TV = colimWD will finish the proof by Lemma 44.
We denote by T the weighted colimit T = colimWD in Mndf(UMet). The proof is
concluded by proving that V is isomorphic, as a concrete category, to the category UMetT

of algebras for T. Then T is the free-algebra monad of V. For T we have the unit
ν : W → [Dop,Mndf(UMet)](D−,T) (Definition 14). Its component νa assigns to 0 a
monad morphism γ = νa(0) : TΣ → T, whereas for i ∈ I the component νi is given by
l 7→ γ ·li and r 7→ γ ·ri. Since νi is nonexpanding, we conclude that γ ·λi, γ ·ρi : T[n(i)] → T
have distance at most εi. We thus obtain a functor E : UMetT → V assigning to every
algebra α : TA → A the Σ-algebra corresponding to α · γA : TΣA → A: it satisfies
li =εi ri due to Lemma 42. Moreover, γ has surjective components, which can be derived
from Lemma 46. Therefore, E is a concrete isomorphism, which concludes the proof. ◀

▶ Remark 48. The same result holds for varieties of quantitative algebras in CUMet.

▶ Open Problem 49. Is the free-algebra monad of every variety of quantitative algebras
strongly finitary on Met?

▶ Construction 50. In the reverse direction we assign to every strongly finitary monad
T = (T, µ, η) on Met, UMet or CUMet a variety VT, and prove that T is its free-algebra
monad.

For every morphism k : X → A in Met together with an algebra α : TA → A, let us
denote by

k∗ = α · Tk : TX → A

the corresponding homomorphism in MetT. Recall our fixed set V = {xi | i ∈ N} of variables,
and form, for each n ∈ N, the finite discrete space Vn = {xi | i < n}. The signature we use
has as n-ary symbols the elements of the space TVn:

Σn = |TVn| for n ∈ N.

The variety VT is given by the following quantitative equations, where each symbol σ ∈ Σn

is considered as the term σ(x0, . . . , xn−1), and n,m range over N:

J. Adámek, M. Dostál, and J. Velebil 10:11

(1) σ =ε σ
′ for all σ, σ′ ∈ Σn with d(σ, σ′) ≤ ε in TVn.

(2) k∗(σ) = σ(k(xi))i<n for all σ ∈ Σn and all maps k : Vn → Σm in Set.
(3) ηVn

(xi) = xi for all i < n.

▶ Lemma 51. Every algebra α : TA → A in MetT yields an algebra A in VT with operations
σA : An → A defined by

σA(a(xi)) = a∗(σ) for all σ ∈ Σn and a : Vn → A.

Moreover, every homomorphism in MetT is also a Σ-homomorphism between the corresponding
algebras in VT.

Proof sketch.
(a) The mapping σA is nonexpanding: given d((ai)i<n, (bi)i<n) = ε in An, the corresponding

maps a, b : Vn → A fulfil d(a, b) = ε. Since T is enriched, this yields d(Ta, Tb) ≤ ε.
Finally α is nonexpanding and a∗ = α · Ta, b∗ = α · Tb, thus d(a∗, b∗) ≤ ε. In particular
d(a∗(σ), b∗(σ)) ≤ ε.

(b) The quantitative equations (1)-(3) hold:
Ad (1) Given l, r ∈ TVn with d(l, r) ≤ ε, then for every map a : Vn → A we have
d(a∗(l), a∗(r)) ≤ ε. Thus d(lA(ai), rA(ai)) ≤ ε for all (ai) ∈ An.

Ad (2) Given a : Vn → A we prove (k∗(σ))A(aj) = σA(k(xi))(aj). The left-hand side is
a∗(k∗(σ)) = (a∗k)∗(σ) since a∗ · k∗ = (a∗ · k)∗ holds in general. The right-hand one is
a∗(σA(k(xi))) = (a∗k)∗(σ), too.

Ad (3) Recall that α ·ηA = id and Ta ·ηVn = ηA ·a for every map a : Vn → A. Therefore

(ηVn(xi))A(aj) = a∗(ηVn(xi))
= α · Ta · ηVn(xi)
= a(xi) = ai.

(c) Given a morphism h : (A,α) → (B, β) in MetT (i.e., h · α = β · Th) we are to prove
that h · σA = σB · hn for all σ ∈ TVn. This follows easily from h · a∗ = (h · a)∗ for each
a : Vn → A. ◀

▶ Theorem 52. Every strongly finitary monad T on UMet is the free-algebra monad of the
variety VT.

Proof. For every ultrametric space M we need to prove that the Σ-algebra associated with
(TM,µM) in Lemma 51 is free in VT w.r.t. the universal map ηM . Then the theorem follows
from Proposition 38.

We have two strongly finitary monads, T and the free-algebra monad of VT (Theorem 47).
Thus, it is sufficient to prove the above for finite discrete spaces M . Then this extends to all
finite spaces because we have M = colimW0DM (Lemma 25) and both monads preserve this
colimit by Theorem 28. Since they coincide on all finite discrete spaces, they coincide on all
finite spaces. Finally, the above extends to all spaces M : by Lemma 16 we have a directed
colimit M = colim

i∈I
Mi of the diagram of all finite subspaces Mi (i ∈ I) which both monads

preserve.
Given a finite discrete space M , we can assume without loss of generality M = Vn for

some n ∈ N. For every algebra A in VT and an interpretation f : Vn → A, we prove that
there exists a unique Σ-homomorphism f : TVn → A with f = f · ηVn

.

CALCO 2023

10:12 Strongly Finitary Monads for Varieties of Quantitative Algebras

Existence. Define f(σ) = σA(f(xi))i<n for every σ ∈ TVn. The equality f = f · ηVn

follows since A satisfies the equations (3) above: ηVn
(xi) = xi, thus the operation of

A corresponding to ηVn
(xi) is the i-th projection. The map f is nonexpanding: given

d(l, r) ≤ ε in TVn, the algebra A satisfies the equation (1) above: l =ε r. Therefore given
an n-tuple f : Vn → A we have

d(lA(f(xi)), rA(f(xi))) ≤ ε.

To prove that f is a Σ-homomorphism, take an m-ary operation symbol τ ∈ TVm. We
prove f · τVm

= τA · fm. This means that every k : Vm → TVn fulfils

f · τVm(k(xj))j<m = τA · fm(k(xj))j<m.

The definition of f yields that the right-hand side is τA(k(xj)A(f(xi))). Due to equation
(2) in Construction 50 with τ in place of σ, this is k∗(τ)A(f(xi)). The left-hand side
yields the same result since

τA · fm(k(xj)) = τA(k(xj))A(f(xi)) = k∗(τ)A(f(xi)).

Uniqueness. Let f be a nonexpanding Σ-homomorphism with f = f · ηVn
. In TVn the

operation σ asigns to ηVn
(xi) the value σ. (Indeed, for every a : n → |TVn| we have

σT Vn
(ai) = a∗(σ) = µVn

· Ta(σ). Thus due to µ · Tη = id we get σT Vn
(ηVn

(xi)) =
µVn · TηVn(σ) = σ.) Since f is a homomorphism, we conclude

f(σ) = σA(f · ηVn
(xi)) = σA(f(xi))

which is the above formula. ◀

▶ Corollary 53. Varieties of ultra-quantitative algebras correspond bijectively, up to iso-
morphism, to strongly finitary monads on UMet.

Indeed, a stronger result can be deduced from Theorems 47 and 52: let Var(UMet) denote
the category of varieties of quantitative algebras and concrete functors (Remark 37 (2)).
Recall that Mndsf(UMet) denotes the category of strongly finitary monads.

▶ Theorem 54. The category Var(UMet) of varieties of ultra-quantitative algebras is equivalent
to the dual of the category Mndsf(UMet) of strongly finitary monads on UMet.

Proof. Morphisms φ : S → T between monads in Mndsf(UMet) bijectively correspond
to concrete functors φ : UMetT → UMetS ([7], Theorem 3.3): φ assigns to an algebra
α : TA → A of UMetT the algebra α · φA : SA → A in UMetS. We know that for every
variety V the comparison functor KV is invertible (Proposition 38). This yields a functor
Φ : Var(UMet)op → Mndsf(UMet) assigning to a variety V the monad TV (Theorem 47).
Given a concrete functor F : V → W between varieties, there is a unique monad morphism
φ : TW → TV such that φ = KW · F · K−1

V : UMetTV → UMetTW . We define ΦF = φ

and get a functor which is clearly full and faithful. Thus Theorem 52 implies that Φ is an
equivalence of categories. ◀

4 Varieties of Complete Quantitative Algebras

If we take CUMet as our base category, the development of Section 3 works for Σ-CUMet as
well. The main difference is in Lemma 46: instead of the factorization system in UMet of
Remark 45, we use the factorization system in CUMet where E = dense morphisms f : A → B

J. Adámek, M. Dostál, and J. Velebil 10:13

(f [A] is a dense subset of B) and M = isometric embeddings of closed subspaces. Another
difference is that for the enrichment of the category Mndf(CUMet) of finitary monads (cf.
Notation 43) we must verify that the metric space of monad morphisms (with the supremum
metric) is complete; this is easy.

By Example 31 (2) for every complete space M the space TΣM is complete. The resulting
monad TΣ on the category CUMet is strongly finitary (as in Example 36).

▶ Example 55. We describe the monad T of free complete ultra-quantitative semilattices.
It assigns to every complete ultrametric space M the space TM of all compact subsets with
the Hausdorff metric (Example 39).

This holds for separable complete spaces: see [15], Theorem 9.6. To extend this result to
all complete spaces, first observe that the subset Z of TM of all finite sets is dense. Indeed,
every compact set K ⊆ M lies in the closure of Z: given ε > 0, let K0 ⊆ K be a finite set
such that ε-balls with centers in K0 cover K. Then K0 ∈ Z and the Hausdorff distance of
K0 and K is at most ε.

Given a complete ultrametric space M , let Xi (i ∈ I) be the collection of all countable
subsets. Each closure Xi is a complete separable space, and M =

⋃
i∈I Xi is a directed

colimit preserved by T . Since TXi is the space of all compact subsets of Xi, and since finite
subsets of M form a dense set, we conclude that TM is the space of all compact subsets
of M .

Every variety V of complete ultrametric quantitative algebras yields a monad TV on
CUMet which is strongly finitary, and V is isomorphic to UMetTV . The proof is analogous to
that of Theorem 47, just at the end we use the above factorization system of CUMet. The
proof that every strongly finitary monad on CUMet is the free-algebra monad of a variety is
completely analogous to that of Theorem 52. We thus obtain

▶ Theorem 56. The category Var(CUMet) of varieties of complete ultra-quantitative algebras
is equivalent to the dual of the category Mndsf(CUMet) of strongly finitary monads on CUMet.

5 Conclusions and Open Problems

Varieties (aka 1-basic varieties) of quantitative algebras of Mardare et al. [15, 16], restricted
to ultrametrics, correspond bijectively to strongly finitary monads on the category UMet.
This is the main result of our paper. It is in surprising contrast to the fact that ω-varieties
in op. cit. (where distance restrictions on finitely many variables in equations are imposed)
do not even yield finitary monads in general, as demonstrated in [1].

For varieties in Met we do not whether the same is true.

▶ Open Problem 57. Is the free-algebra monad of every variety of quantitative algebras
strongly finitary?

Our proof would show this is the case provided that strongly finitary endofunctors on
Met are closed under composition.

For varieties of complete ultra-quantitative algebras the same result holds: they correspond
bijectively to strongly finitary monads on CUMet. This relates the quantitative algebraic
reasoning of Mardare et al. closely to the classical equational reasoning of universal algebra
where varieties are known to correspond to finitary (= strongly finitary) monads on Set [14].

▶ Open Problem 58. Characterize monads on Met or CMet corresponding to ω-varieties of
quantitative algebras.

CALCO 2023

10:14 Strongly Finitary Monads for Varieties of Quantitative Algebras

In [1] a partial answer has been given: enriched monads on UMet corresponding to
ω-varieties of ultra-quantitative algebras are precisely the enriched monads preserving
(1) directed colimits of split monomorphisms and
(2) surjective morphisms.

References
1 J. Adámek. Varieties of quantitative algebras and their monads. In Proceedings of the 37th

Annual Symposium on Logic in Computer Science (LICS 2022), pages 1–12, 2022.
2 J. Adámek, M. Dostál, and J. Velebil. A categorical view of varieties of ordered algebras.

Math. Struct. Comput. Sci., 32(4):349–373, 2022.
3 J. Adámek, M. Dostál, and J. Velebil. Quantitative algebras and a classification of metric

monads, 2023. arXiv:2210.01565.
4 J. Adámek and J. Rosický. Approximate injectivity and smallness in metric-enriched categories.

J. Pure Appl. Algebra, 226:1–30, 2022.
5 G. Bacci, R. Mardare, P. Panaganden, and G. D. Plotkin. An algebraic theory of Markov

processes. In Proceedings of Logic in Computer Science (LICS 2018), pages 679–688. ACM,
2018.

6 G. Bacci, R. Mardare, P. Panaganden, and G. D. Plotkin. Tensors of quantitative equational
theories. In Proceedings of Coalgebraic and Algebraic Methods in Computer Science (CALCO
2021), 2021.

7 M. Barr and Ch. Wells. Toposes, triples and theories. Springer-Verlag, New York, 1985.
8 F. Borceux. Handbook of Categorical Algebra: Volume 2, Categories and Structures. Cambridge

Univ. Press, 1994.
9 J. Bourke and R. Garner. Monads and theories. Adv. Math., 351:1024–1071, 2019.

10 E. J. Dubuc. Kan Extensions in Enriched Category Theory, volume 145 of Lecture Notes in
Mathematics. Springer-Verlag, 1970.

11 G. M. Kelly. Basic concepts of enriched category theory. Number 64 in London Math. Soc.
Lecture Notes Series. Cambridge Univ. Press, 1982. Also available as Repr. Theory Appl.
Categ. 10 (2005).

12 G. M. Kelly and S. Lack. Finite-product-preserving functors, Kan extensions and strongly-
finitary 2-monads. Appl. Categ. Structures, 1:85–94, 1993.

13 A. Kurz and J. Velebil. Quasivarieties and varieties of ordered algebras: regularity and
exactness. Math. Structures Comput. Sci., pages 1–42, 2016.

14 S. Mac Lane. Categories for the working mathematician. Springer, 2nd edition, 1998.
15 R. Mardare, P. Panangaden, and G. D. Plotkin. Quantitative algebraic reasoning. In Proceedings

of Logic in Computer Science (LICS 2016), pages 700–709. IEEE Computer Science, 2016.
16 R. Mardare, P. Panangaden, and G. D. Plotkin. On the axiomatizability of quantitative

algebras. In Proceedings of Logic in Computer Science (LICS 2017), pages 1–12. IEEE
Computer Science, 2017.

17 M. Mio, R. Sarkis, and V. Vignudelli. Beyond nonexpansive operations in quantitative algebraic
reasoning. In Proceedings of Logic in Computer Science (LICS 2022), pages 1–13, 2022. Article
52.

Generators and Bases for Monadic Closures
Stefan Zetzsche1 # Ñ

Amazon Web Services, London, UK
University College London, UK

Alexandra Silva # Ñ

Cornell University, Ithaca, NY, USA
University College London, UK

Matteo Sammartino # Ñ

Royal Holloway, University of London, UK
University College London, UK

Abstract
It is well-known that every regular language admits a unique minimal deterministic acceptor.
Establishing an analogous result for non-deterministic acceptors is significantly more difficult, but
nonetheless of great practical importance. To tackle this issue, a number of sub-classes of non-
deterministic automata have been identified, all admitting canonical minimal representatives. In
previous work, we have shown that such representatives can be recovered categorically in two steps.
First, one constructs the minimal bialgebra accepting a given regular language, by closing the
minimal coalgebra with additional algebraic structure over a monad. Second, one identifies canonical
generators for the algebraic part of the bialgebra, to derive an equivalent coalgebra with side effects
in a monad. In this paper, we further develop the general theory underlying these two steps. On the
one hand, we show that deriving a minimal bialgebra from a minimal coalgebra can be realized by
applying a monad on an appropriate category of subobjects. On the other hand, we explore the
abstract theory of generators and bases for algebras over a monad.

2012 ACM Subject Classification Theory of computation → Abstract machines

Keywords and phrases Monads, Category Theory, Generators, Automata, Coalgebras, Bialgebras

Digital Object Identifier 10.4230/LIPIcs.CALCO.2023.11

Funding Stefan Zetzsche: Prior to their affiliation with Amazon Web Services, supported by GCHQ
via the VeTSS grant Automated Black-Box Verification of Networking Systems (4207703/RFA 15845)
and by the ERC via the Consolidator Grant AutoProbe (101002697).
Alexandra Silva: Supported by the ERC via the Consolidator Grant AutoProbe (101002697) and by
a Royal Society Wolfson Fellowship.
Matteo Sammartino: Supported by the EPSRC Standard Grant CLeVer (EP/S028641/1).

1 Introduction

The existence of a unique minimal deterministic finite automaton is an important property
of regular languages [30]. Establishing a similar result for non-deterministic finite automata
is of great importance, as non-deterministic automata can be exponentially more succinct
than deterministic ones, but turns out to be surprisingly difficult. The main problem is that
a regular language can be accepted by several size-minimal NFAs that are not isomorphic.
An example illustrating the situation is displayed in Figure 1a.

To tackle the issue, a number of sub-classes of non-deterministic automata admitting
canonical representatives have been identified [15, 16, 44, 29]. One such example is the
canonical residual finite state automaton (short canonical RFSA, also known as jiromaton),

1 This paper is the result of work done prior to the author’s affiliation with Amazon Web Services.

© Stefan Zetzsche, Alexandra Silva, and Matteo Sammartino;
licensed under Creative Commons License CC-BY 4.0

10th Conference on Algebra and Coalgebra in Computer Science (CALCO 2023).
Editors: Paolo Baldan and Valeria de Paiva; Article No. 11; pp. 11:1–11:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:stefanzetzsche@gmail.com
https://zetzsche.st
mailto:alexandra.silva@gmail.com
https://alexandrasilva.org
mailto:Matteo.Sammartino@rhul.ac.uk
https://matteosammartino.com
https://doi.org/10.4230/LIPIcs.CALCO.2023.11
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Generators and Bases for Monadic Closures

a

b

c

b, c

a, c

a, b

b, c

a, c

a, b

a

b

c

(a) Two non-isomorphic size-minimal NFA ac-
cepting {ab, ac, ba, bc, ca, cb} ⊆ {a, b, c}∗ [7].

X P(X) 2A∗

2 × P(X)A 2 × (2A∗
)A

k

{−}

k♯

obs

⟨ε,δ⟩

2×obsA

X TX Ω

FTX FΩ
k

η

k♯

obs

ω

F obs

.

(b) Classical and generalised determinisation of
automata with side-effects in a monad [36].

Figure 1 Non-isomorphic NFAs and generalised determinisation.

which is minimal among non-deterministic automata accepting joins of residual languages [16].
In previous work [46], we have presented a categorical framework that unifies constructions
and correctness proofs of canonical non-deterministic automata and unveils new ones.

The framework adopts the well-known representation of automata as coalgebras [20, 34, 33]
and side-effects like non-determinism as monads [26, 27, 28]. For instance, an NFA (without
initial states) is represented as a coalgebra (X, k) with side-effects in the powerset monad
(P, {−}, µ), where X is the set of states, k : X → 2×P(X)A combines the function classifying
each state as accepting or rejecting with the function giving the set of next states for each
input, {−} creates singleton sets, and µ takes the union of a set of sets.

To derive canonical non-deterministic acceptors, the framework suggests a procedure that
is closely related to the so-called powerset construction. As depicted at the top of Figure 1b,
the latter converts a non-deterministic finite automaton (X, k) into an equivalent deterministic
finite automaton (PX, k♯), where k♯ is obtained by lifting k to the subsets of X, the tuple ⟨ε, δ⟩
is the automaton of languages, and the morphism obs assigns language semantics to each set
of states. As seen at the bottom of Figure 1b, the construction can be generalised by replacing
the functor 2 × (−)A with any (suitable) functor F describing the automaton structure,
and P with a monad T describing the automaton side-effects, to transform a coalgebra
k : X → FTX with side-effects in T into an equivalent coalgebra k♯ : TX → FTX [36].
Under this perspective, Ω ω−→ FΩ is the so-called final coalgebra, providing a semantic universe
that generalises the automaton of languages. The deterministic automata resulting from
such determinisation constructions have additional algebraic structure: the state space P(X)
defines a free complete join-semilattice (CSL) over X and k♯ is a CSL homomorphism. More
generally, TX defines a (free) algebra for the monad T , and k♯ is a T -algebra homomorphism,
thus constituting a so-called bialgebra over a distributive law relating F and T [9, 38].

Using the powerset construction, a canonical succinct acceptor for a regular language
L ⊆ A∗ over an alphabet A can be obtained in two steps:
1. One constructs the minimal (pointed) coalgebra ML for the functor F = 2 × (−)A

accepting L. For the case A = {a, b} and L = (a+ b)∗a, the coalgebra ML is depicted in
Figure 2a. Generally, it can be obtained via the Myhill-Nerode construction [30]. One
then equips the former with additional algebraic structure in a monad T (which is related
to F via a typically canonically3 induced distributive law). This can be done by applying
the generalised determinisation procedure to ML, when seen as coalgebra with trivial
side-effects in T . By identifying semantically equivalent states one consequently derives
the minimal (pointed) bialgebra for L. If T = P is the powerset monad, the minimal
bialgebra for the language L = (a+ b)∗a is depicted in Figure 2b.

2. One exploits the algebraic structure underlying the minimal bialgebra for L to “reverse” the
generalised determinisation procedure. That is, one identifies a minimal set of generators
that spans the full algebraic structure, to derive an equivalent succinct automaton with

S. Zetzsche, A. Silva, and M. Sammartino 11:3

x y

b

a

a

b

(a) The minimal DFA.

[∅] [{x}] [{y}]

a, b
b

a

b

a

∨ [{x}] [{y}] [∅]
[{x}] [{x}] [{y}] [{x}]
[{y}] [{y}] [{y}] [{y}]
[∅] [{x}] [{y}] [∅]

(b) The minimal CSL-structured DFA.

[{x}] [{y}]

a, b

a

a, b

a

(c) The canonical RFSA.

Figure 2 Three automata accepting the language (a + b)∗a ⊆ {a, b}∗.

side-effects in T . For example, by choosing the join-irreducibles2 for the CSL underlying
the minimal bialgebra in Figure 2b as generators (in this case, the join-irreducibles are
given by all non-zero states), one recovers the canonical acceptor in Figure 2c.

In this paper, we further develop the general theory underlying these two steps. First, we
generalise the closure of a subset of an algebraic structure as a functor between categories of
subobjects relative to a factorisation system. We then equip the functor with the structure
of a monad. We investigate the closure of a particular subclass of subobjects: the ones that
arise from the image of a morphism. We show that deriving a minimal bialgebra from a
minimal coalgebra can be realized by applying the monad to a subobject in this class. Second,
we define a category of algebras with generators, which is in adjunction with the category
of Eilenberg-Moore algebras, and, under certain assumptions, monoidal. We generalise the
matrix representation theory of vector spaces and discuss bases for bialgebras. We compare
our ideas with an approach that generalises bases as coalgebras [19]. We find that a basis
in our sense induces a basis in the sense of [19], and identify assumptions under which the
reverse is true, too. We characterise generators for finitary varieties in the sense of universal
algebra and relate our work to the theory of locally finitely presentable categories.

2 Preliminaries

We assume basic knowledge of category theory (including functors, natural transformations,
adjunctions), for an overview see e.g. [8].

We briefly recall the definitions of coalgebras, monads, and Eilenberg-Moore algebras.
A coalgebra for an endofunctor F on a category C is a tuple (X, k) consisting of an object
X in C and a morphism k : X → FX. A homomorphism f : (X, kX) → (Y, kY) between
coalgebras for F is a morphism f : X → Y in C satisfying kY ◦ f = Ff ◦ kX . The category
of coalgebras for F and homomorphisms is denoted by Coalg(F).

A monad on a category C is a tuple (T, η, µ) consisting of an endofunctor T : C → C

and natural transformations η : idC ⇒ T and µ : T 2 ⇒ T satisfying µ ◦ Tµ = µ ◦ µT and
µ ◦ ηT = idT = µ ◦ Tη. A morphism (F, α) : (C, S) → (D, T) between a monad S on a
category C and a monad T on a category D consists of a functor F : C → D and a natural
transformation α : TF ⇒ FS satisfying α◦ηTF = FηS and FµS◦αS◦Tα = α◦µTF [37]. The
composition of two monad morphisms (F, α) : (C, S) → (D, T) and (G, β) : (D, T) → (E, U)
is the monad morphism (GF,Gα ◦ βF) : (C, S) → (E, U) [37]. Two well-known monads on
the category of sets and functions are the powerset monad P and the free K-vector space
monad VK [46].

2 A join-irreducible is a non-zero element a satisfying, for all y, z ∈ L with a = y ∨ z, that a = y or a = z.

CALCO 2023

11:4 Generators and Bases for Monadic Closures

An Eilenberg-Moore algebra over a monad T on C is a tuple (X,h) consisting of an
object X in C and a morphism h : TX → X satisfying h ◦ µX = h ◦ Th and h ◦ ηX = idX .
A homomorphism f : (X,hX) → (Y, hY) between Eilenberg-Moore algebras over T is a
morphism f : X → Y in C satisfying hY ◦ Tf = f ◦ hX . The category of Eilenberg-Moore
algebras over T is denoted by CT . One can show that the category of algebras over P is
isomorphic to the category of complete join-semi lattices, and the category of algebras over
VK is isomorphic to the category of K-vector spaces.

We now introduce other notions that are necessary to follow our technical development:
distributive laws, bialgebras, and generators and bases for algebras over a monad.

Distributive laws have originally occurred as a way to compose monads [9], but now also
exist in a wide range of other forms [38]. For our case it is sufficient to consider distributive
laws between a monad and an endofunctor, sometimes called Eilenberg-Moore laws [21].

▶ Definition 1 (Distributive Law). A distributive law between a monad T and an endofunctor
F on C is a natural transformation λ : TF ⇒ FT satisfying FηX = λX ◦ηFX and λX ◦µFX =
FµX ◦ λTX ◦ TλX .

Given a distributive law, one can model the determinisation of a system with dynamics
in F and side-effects in T by lifting a FT -coalgebra (X, k) to the F -coalgebra (TX, k♯),
where k♯ := (FµX ◦ λTX) ◦ Tk. As one verifies, k♯ is a T -algebra homomorphism of type
(TX, µX) → (FTX,FµX ◦ λTX). There exists a distributive law for which the lifting k♯ is
the DFA in CSL obtained from an NFA k via the classical powerset construction [36].

The example illustrates the concept of a bialgebra: the algebraic part (TX, µX) and the
coalgebraic part (TX, k♯) of a lifted automaton are compatible along the distributive law λ.

▶ Definition 2 (Bialgebra). A λ-bialgebra is a tuple (X,h, k) consisting of a T -algebra (X,h)
and an F -coalgebra (X, k) satisfying Fh ◦ λX ◦ Tk = k ◦ h.

A homomorphism between λ-bialgebras is a morphism between the underlying objects
that is simultaneously a T -algebra homomorphism and an F -coalgebra homomorphism. The
category of λ-bialgebras and homomorphisms is denoted by Bialg(λ).

The generalised determinisation can be rephrased as a functor expT that expands a
F -coalgebra with side-effects in T into a λ-bialgebra. We will also refer to the functor freeT
that arises from expT by pre-composition with the canonical embedding of F -coalgebras into
FT -coalgebras, therefore assigning to a F -coalgebra the λ-bialgebra it freely generates.

▶ Lemma 3 ([21]).
Defining expT (X, k) := (TX, µX , FµX ◦ λTX ◦ Tk) and expT (f) := Tf yields a functor
expT : Coalg(FT) → Bialg(λ).
Defining freeT (X, k) := (TX, µX , λX ◦ Tk) and freeT (f) := Tf yields a functor freeT :
Coalg(F) → Bialg(λ) satisfying freeT (X, k) = expT (X,FηX ◦ k).

The last ingredient is a generalisation of generators for structures such as vector spaces.

▶ Definition 4 (Generator and Basis [46]). A generator for a T -algebra (X,h) is a tuple (Y, i, d)
consisting of an object Y , a morphism i : Y → X, and a morphism d : X → TY such that
(h ◦ Ti) ◦ d = idX . A generator is called a basis if it additionally satisfies d ◦ (h ◦ Ti) = idTY .

A generator for a T -algebra is called a scoop by Arbib and Manes [6]. Intuitively, a set Y
embedded into an algebraic structure X via i is a generator for the latter if every element
x ∈ X admits a decomposition into a formal combination d(x) ∈ TY of elements of Y that
evaluates to x via the interpretation h ◦ Ti. If the decomposition is moreover unique, that is,

S. Zetzsche, A. Silva, and M. Sammartino 11:5

h ◦ Ti is not only a surjection with right-inverse d, but a bijection with two-sided inverse d,
then a generator is called a basis. Every T -algebra (X,h) is generated by (X, idX , ηX) and
admits a basis iff it is isomorphic to a free algebra.

▶ Example 5.
A tuple (Y, i, d) is a generator for a P-algebra L = (X,h) ≃ (X,∨h) iff x = ∨hy∈d(x)i(y)
for all x ∈ X, where we write ∨h for the complete join-semilattice structure induced by
h. In the case that Y ⊆ X is a subset, one typically defines i(y) = y for all y ∈ Y . If L
satisfies the descending chain condition, which is in particular the case if X is finite, then
defining i(y) = y and d(x) = {y ∈ J(L) | y ≤ x} turns the set of join-irreducibles J(L)
into a size-minimal generator (J(L), i, d) for L [46].
A tuple (Y, i, d) is a generator for a VK-algebra V = (X,h) ≃ (X,+h, ·h) iff x =∑h

y∈Y d(x)(y) ·h i(y) for all x ∈ X, where we write +h and ·h for the K-vector space
structure induced by h. As every vector space can be equipped with a basis, every
VK-algebra V admits a basis. One can show that a basis is a size-minimal generator [46].

A central result in [46] shows that it is enough to find generators for the underlying
algebra of a bialgebra to derive an equivalent free bialgebra. This is because the algebraic
and coalgebraic components are tightly intertwined via a distributive law.

▶ Proposition 6 ([46]). Let (X,h, k) be a λ-bialgebra and let (Y, i, d) be a generator for the
T -algebra (X,h). Then h◦Ti : expT (Y, Fd◦k◦i) → (X,h, k) is a λ-bialgebra homomorphism.

3 Step 1: Closure

In this section, we further explore the categorical construction of minimal canonical acceptors
given in [46]. In particular, we show that deriving a minimal bialgebra from a minimal
coalgebra by closing the latter with additional algebraic structure has a direct analogue in
universal algebra: taking the closure of a subset of an algebra.

3.1 Factorisation Systems and Subobjects
In the category of sets and functions, every morphism can be factored into a surjection onto
its image followed by an injection into the codomain of the morphism. In this section we
recall a convenient abstraction of this phenomenon for arbitrary categories. The ideas are
well established [13, 32, 25]. We choose to adapt the formalism of [2].

▶ Definition 7 (Factorisation System). Let E and M be classes of morphisms in a category C.
We call the tuple (E,M) a factorisation system for C if the following three conditions hold:
(F1) Each of E and M is closed under composition with isomorphisms.
(F2) Each morphism f in C can be factored as f = m ◦ e, with e ∈ E and m ∈ M.
(F3) Whenever g ◦ e = m ◦ f with e ∈ E and m ∈ M, there exists a unique diagonal d, such

that f = d ◦ e and g = m ◦ d.

We use double headed (↠) and hooked (↪→) arrows to indicate that a morphism is in E

or M, respectively. If f factors into e and m, we call the codomain of e, or equivalently, the
domain of m, the image of f and denote it by im(f).

One can show that each of E and M contains all isomorphisms and is closed under
composition [2, Prop. 14.6]. From the uniqueness of the diagonal one can deduce that
factorisations are unique up to unique isomorphism [2, Prop. 14.4]. It further follows that E

has the right cancellation property, that is g ◦ f ∈ E and f ∈ E implies g ∈ E. Dually, M has
the left cancellation property, that is, g ◦ f ∈ M and g ∈ M implies f ∈ M [2, Prop. 14.9].

CALCO 2023

11:6 Generators and Bases for Monadic Closures

TX TY

X Y

hX

Tf

hY

f

X im(f)

Y

e

f
m

TX T im(f)

im(f) Y

e◦hX

Te

hY ◦Tm
him(f)

m

Figure 3 Factorising a T -algebra homomorphism via the factorisation system of a base category.

As intended, in the category of sets and functions, surjective and injective functions,
or equivalently, epi- and monomorphisms, constitute a factorisation system [2, Ex. 14.2].
More involved examples can be constructed for e.g. the category of topological spaces or the
category of categories [2, Ex. 14.2]. We are particularly interested in factorisation systems
for the categories of algebras over a monad and coalgebras over an endofunctor.

The naive categorification of a subset Y ⊆ X is a monomorphism Y → X. Since in the
category of sets epi- and monomorphism constitute a factorisation system, we may generalise
subsets to arbitrary categories C with a factorisation system (E,M) in the following way:

▶ Definition 8 (Subobjects). A subobject of an object X ∈ C is a morphism mY : Y ↪→ X ∈
M. A morphism f : mY1 → mY2 between subobjects of X consists of a morphism f : Y1 → Y2
such that mY2 ◦ f = mY1 .

The category of (isomorphism classes of) subobjects of X is denoted by Sub(X).
As M has the left cancellation property, every morphism between subobjects in fact lies

in M. We work with isomorphism classes of subobjects since factorisations of morphisms are
only defined up to unique isomorphism. For epi-mono factorizations, there is at most one
morphism between any two subobjects, that is, Sub(X) is simply a partially ordered set.

3.2 Factorising Algebra Homomorphisms
In this section, we recall that if one is given a category C with a factorisation system (E,M)
and a monad T on C that preserves E (that is, satisfies T (e) ∈ E for all e ∈ E), it is possible to
lift the factorisation system of the base category C to a factorisation system on the category
of Eilenberg-Moore algebras CT .

The result appears in e.g. [45] and may be extended to algebras over an endofunctor. It
can also be stated in its dual version: if an endofunctor on C preserves M, it is possible to
lift the factorisation system of C to the category of coalgebras [22, 45].

The induced factorisation system for CT consists of those algebra homomorphisms, whose
underlying morphism lies in E or M, respectively. Clearly in such a system condition (F1)
holds. The next result shows that it also satisfies (F3).

▶ Lemma 9 ([45, Lem. 3.6]). Whenever g◦e = m◦f for T -algebra homomorphisms f, g, e,m,
with e ∈ E and m ∈ M, there exists a unique diagonal T -algebra homomorphism d, such that
f = d ◦ e and g = m ◦ d.

Let us now show that the proposed factorisation system satisfies (F2). Assume we are
given a homomorphism f as on the left of Figure 3. Using the factorisation system of the
base category C, we can factorise it, as ordinary morphism, into e ∈ E and m ∈ M. In
consequence the outer square of the diagram on the right of Figure 3 commutes. Since by
assumption the morphism Te is again in E, we thus find a unique diagonal him(f) in C that
makes the triangles on the right of Figure 3 commute. The result below shows that him(f)
equips im(f) with the structure of a T -algebra.

▶ Lemma 10 ([45, Prop. 3.7]). (im(f), him(f)) is an Eilenberg-Moore T -algebra.

S. Zetzsche, A. Silva, and M. Sammartino 11:7

C/X CT /X

Sub(X) Sub(X)(·)X

(a) Decomposition.

C/X CT /X

Sub(X) Sub(X)(·)X

(b) Commutativity.

Figure 4 A high-level perspective on the subobject closure functor defined in Proposition 11.

We thus obtain a factorisation of f : (X,hX) → (Y, hY) into Eilenberg-Moore T -algebra
homomorphisms e : (X,hX) ↠ (im(f), him(f)) and m : (im(f), him(f)) ↪→ (Y, hY).

3.3 The Subobject Closure Functor
While subobjects in the category of sets generalise subsets, subobjects in the category of
algebras generalise subalgebras. By taking the algebraic closure of a subset of an algebra one
can thus transition from one category of subobjects to the other.

In this section, we generalise this phenomenon from the category of sets to more general
categories. As before, we assume a base category C with a factorisation system (E,M) and a
monad T on C that preserves E. Our aim is to construct, for any T -algebra X with carrier
X, a functor from the subobjects Sub(X) in C to the subobjects Sub(X) in CT that assigns
to a subobject of X its closure, that is, the least T -subalgebra of X containing it.

Recall the free Eilenberg-Moore algebra adjunction. For any object Y in C and T -
algebra X = (X,h), it maps a morphism φ : Y → X to the T -algebra homomorphism
φ♯ := h ◦ Tφ : (TY, µY) → X. In Section 3.1 we have seen that the factorisation system of
C naturally lifts to a factorisation system on the category of T -algebras. In particular, we
know that up to isomorphism the homomorphism φ♯ admits a factorisation into algebra
homomorphisms of the form φ♯ = mim(φ♯) ◦eim(φ♯). If the morphism φ is given by a subobject
mY , let Y := (im(m♯

Y), him(m♯
Y

)), then above construction yields a second subobject mY :

mY : Y → X ∈ M mY : Y → X ∈ M.

Since for any morphism f : mY1 → mY2 between subobjects of X one has mY1
◦eY1

= mY2
◦

(eY2
◦ Tf), there exists a unique homomorphism f : mY1

→ mY2
satisfying f ◦ eY1

= eY2
◦ Tf .

The following result shows that above constructions are compositional.

▶ Proposition 11. Assigning mY 7→ mY and f 7→ f yields a functor (·)
X

: Sub(X) → Sub(X).

Mapping an algebra homomorphism with codomain X to the M-part of its factorisation
extends to a functor from the slice category over X (in which we here and in the following
identify isomorphic objects) to the category of subobjects of X. Similarly, one observes that
the free Eilenberg-Moore algebra adjunction gives rise to a functor from the slice category over
X to the slice category over X. Finally, it is clear that there exists a functor from the category
of subobjects of X to the slice category over X. The functor defined in Proposition 11 can
thus be recognised as the composition in Figure 4a.

3.4 The Subobject Closure Monad
In this section, we show that the functor in Proposition 11 induces a monad on the category
of subobjects Sub(X). As before, we assume a base category C with a factorisation system
(E,M) and a monad T = (T, η, µ) on C that preserves E.

CALCO 2023

11:8 Generators and Bases for Monadic Closures

Y Y

Y X

1

e
Y

◦ηY

ηXmY

mY

m
Y

T 2Y Y

Y X

e
Y

◦Te
Y

e
Y

◦µY

µX
mY

m
Y

m
Y

(a) Induced unit ηX and multiplication µX of the
monad in Theorem 13.

(Sub(A), (·)
A
) (Sub(B), (·)

B
)

(C, T)
(UA,αA)

(f∗,αf)

(UB,αB)

(b) Commutativity of the monad morphisms in
Lemma 14 and Lemma 15.

Figure 5 Structure and properties of the monad in Theorem 13.

We begin by establishing the following two technical identities, which assume a T -algebra
X = (X,h) and a subobject mY : Y → X ∈ M.

▶ Lemma 12. mY ◦ eY ◦ ηY = mY and mY ◦ eY ◦ µY = m
Y

◦ e
Y

◦ TeY .

In consequence, we can define candidates for the monad unit ηX and the monad multiplic-
ation µX, respectively, as the unique diagonals in Figure 5a. By construction both morphisms
are homomorphisms of subobjects: ηXmY

: mY → mY and µX
mY

: m
Y

→ mY . The remaining
proofs of naturality and the monad laws are covered below. By a slight abuse of notation,
we write (·)

X
for the endofunctor on Sub(X) that arises by post-composition of the functor

in Proposition 11 with the canonical forgetful functor from Sub(X) to Sub(X).

▶ Theorem 13. ((·)
X
, ηX, µX) is a monad on Sub(X).

We will now show that the mapping of an algebra X to the monad (·)
X

in Theorem 13
extends to algebra homomorphisms. To this end, for any algebra homomorphism f : A → B
in M, let f∗ : Sub(A) → Sub(B) be the induced functor defined by f∗(mX) = f ◦mX and
f∗(g) = g. The result below shows that f∗ can be extended to a morphism between monads.

▶ Lemma 14. For any f : A → B ∈ M, there exists a monad morphism (f∗, α) :
(Sub(A), (·)

A
) → (Sub(B), (·)

B
).

The next statement establishes that the canonical forgetful functor U : Sub(X) → C

defined by U(mY) = Y and U(f) = f extends to a morphism between monads.

▶ Lemma 15. There exists a monad morphism (U,α) : (Sub(X), (·)
X
) → (C, T).

We conclude with the observation that the monad morphism defined in Lemma 14
commutes with the monad morphisms defined in Lemma 15.

▶ Lemma 16. Figure 5b commutes for any algebra homomorphism f : A → B ∈ M.

3.5 Closing an Image
In this section we investigate the closure of a particular class of subobjects: the ones that
arise by taking the image of a morphism. We then show that deriving a minimal bialgebra
from a minimal coalgebra by equipping the latter with additional algebraic structure can be
realized as the closure of a subobject in this class.

As before, we assume a category C with a factorisation system (E,M) and a monad T on
C that preserves E. Suppose that X = (X,hX) is a T -algebra and f : Y → X a morphism in
C. On the one hand, there exists a factorisation of f in C:

f = Y
eim(f)
↠ im(f)

mim(f)
↪→ X.

S. Zetzsche, A. Silva, and M. Sammartino 11:9

On the other hand, there exists a factorisation of the lifing f ♯ = hX ◦ Tf in the category of
Eilenberg-Moore algebras CT :

f ♯ = (TY, µY)
eim(f♯)
↠ (im(f ♯), him(f♯))

mim(f♯)
↪→ (X,hX).

The next result shows that, up to isomorphism, the closure of the subobject mim(f) with
respect to the algebra X is given by the subobject mim(f♯).

▶ Lemma 17. mim(f)
X = mim(f♯) in Sub(X).

The following example shows that closing a minimal Moore automaton with additional
algebraic structure can be realised by applying a monad of the type in Theorem 13.

▶ Example 18 (Closure of Minimal Moore Automata). Let F be the set endofunctor with
FX = B × XA, for fixed sets A and B. As F preserves monomorphisms, the canonical
epi-mono factorisation system of the category of sets lifts to the category Coalg(F), which
consists of unpointed Moore automata with input A and output B.

For any language L : A∗ → B, there exists a size-minimal Moore automaton ML that
accepts L. It can be recovered as the epi-mono factorisation of the final F -coalgebra
homomorphism obs : A∗ → Ω, that is, ML = mim(obs). In more detail, Ω is carried by
BA

∗ , obs satisfies obs(w)(v) = L(wv), and A∗ is equipped with the F -coalgebra structure
⟨ε, δ⟩ : A∗ → B × (A∗)A defined by ε(w) = L(w) and δ(w)(a) = wa [41].

Any algebra structure h : TB → B over a set monad T induces a canonical3 distributive
law λ between T and F with FX = B ×XA. It is well-known that λ-bialgebras are algebras
over the monad Tλ on Coalg(F) defined by Tλ(X, k) = (TX, λX ◦ Tk) and Tλf = Tf [40].
One such Tλ-algebra is the final F -coalgebra Ω, when equipped with a canonical T -algebra
structure induced by finality [21, Prop. 3].

The functor Tλ preserves epimorphisms in the category Coalg(F), if T preserves epimorph-
isms in the category of sets. The latter is the case for every set functor. By Theorem 13,
there thus exists a well-defined monad (·) on Sub(Ω).

By construction, the minimal Moore automaton ML lives in Sub(Ω). Reviewing the
constructions in [46] shows that the minimal λ-bialgebra ML for L is given by the image of
the lifting of obs, that is, ML = mim(obs♯). From Lemma 17 it thus follows ML = ML. In
other words, the minimal λ-bialgebra for L can be obtained from the minimal F -coalgebra
for L by closing the latter with respect to the Tλ-algebra structure of Ω.

For an example of the monad unit, observe how the minimal coalgebra in Figure 2a
embeds into the minimal bialgebra in Figure 2b.

The situation can be further generalised. We assume that i) C is a category with an
(E,M)-factorisation system; ii) λ is a distributive law between a monad T on C that preserves
E and an endofunctor F on C that preserves M; iii) (Ω, hΩ, kΩ) is a final λ-bialgebra.

▶ Theorem 19. There exists a functor (·) : Sub(Ω, kΩ) → Sub(Ω, hΩ, kΩ) that yields a
monad on Sub(Ω, kΩ) and satisfies mim(obs(X,k)) ∼= mim(obsfreeT (X,k)) in Sub(Ω, hΩ, kΩ), for
any F -coalgebra (X, k).

3 Given an algebra h : T B → B for a set monad T , one can define a distributive law λ between T and F
with F X = B × XA by λX := (h × st) ◦ ⟨T π1, T π2⟩ : T F X → F T X [18]. (We write st for the usual
strength function st : T (XA) → (T X)A defined by st(U)(a) = T (eva)(U), where eva(f) = f(a).)

CALCO 2023

11:10 Generators and Bases for Monadic Closures

To recover Example 18 as a special case of Theorem 19, one instantiates the latter for
the set endofunctor F with FX = B ×XA and the canonical F -coalgebra with carrier A∗.

Finally, using analogous functors to the ones present in Figure 4a, we observe that, as a
consequence of Lemma 17, the diagram in Figure 4b commutes.

4 Step 2: Generators and Bases

One of the central notions of linear algebra is the basis: a subset of a vector space is called
basis, if every vector can be uniquely written as a linear combination of basis elements.

Part of the importance of bases stems from the convenient consequences that follow from
their existence. For example, linear transformations between vector spaces admit matrix
representations relative to pairs of bases [23], which can be used for efficient calculations. The
idea of a basis however is not restricted to the theory of vector spaces: other algebraic theories
have analogous notions of bases – and generators, by waiving the uniqueness constraint –, for
instance modules, semi-lattices, Boolean algebras, convex sets, and many more. In fact, the
theory of bases for vector spaces is special only in the sense that every vector space admits a
basis, which is not the case for e.g. modules.

In this section, we use the abstraction of generators and bases given in Definition 4 to lift
results from one theory to the others. For example, one may wonder if there exists a matrix
representation theory for convex sets that is analogous to the one of vector spaces.

4.1 Categorification
This section introduces a notion of morphism between algebras with a generator or a basis.

▶ Definition 20. The category GAlg(T) of algebras with a generator over a monad T is
defined as: objects are pairs (Xα, α), where Xα = (Xα, hα) is a T -algebra with generator α =
(Yα, iα, dα); a morphism (f, p) : (Xα, α) → (Xβ , β) consists of a T -algebra homomorphism
f : Xα → Xβ and a Kleisli-morphism p : Yα → TYβ, such that the diagram below commutes:

Xα TYα Xα

Xβ TYβ Xβ

dα

f p♯

i♯α

f
dβ

i♯
β

. (1)

Given (f, p) : (Xα, α) → (Xβ , β) and (g, q) : (Xβ , β) → (Xγ , γ), their composition is defined
componentwise as (g, q) ◦ (f, p) := (g ◦ f, q · p), where q · p := µYγ ◦ Tq ◦ p denotes the usual
Kleisli-composition.

The category BAlg(T) of algebras with a basis is defined as full subcategory of GAlg(T).
Let F : CT → GAlg(T) be the functor with F (X) := (X, (X, idX , ηX)) and F (f : X →

Y) := (f, ηY ◦ f), and U : GAlg(T) → CT the forgetful functor defined as the projection on
the first component. Then F and U are in an adjoint relation:

▶ Lemma 21. F ⊣ U : GAlg(T) ⇆ CT .

4.2 Products
In this section we show that, under certain assumptions, the monoidal product of a category
naturally extends to a monoidal product of algebras with bases within that category. As a
natural example we obtain the tensor-product of vector spaces with fixed bases.

S. Zetzsche, A. Silva, and M. Sammartino 11:11

We assume basic familiarity with monoidal categories. A monoidal monad T on a
monoidal category (C,⊗, I) is a monad which is equipped with natural transformations
TX,Y : TX ⊗ TY → T (X ⊗ Y) and T0 : I → TI, satisfying certain coherence conditions
(see e.g. [35]). One can show that, given such additional data, the monoidal structure of
C induces a monoidal category (CT ,⊠, (TI, µI)), if two appropriately defined4 assumptions
(A1) and (A2) are satisfied [35, Cor. 2.5.6]. The two monoidal products ⊗ and ⊠ are related
via the natural embedding qXα,Xβ

◦ ηXα⊗Xβ
, in the following referred to as ιXα,Xβ

. One can
prove that the product TYα ⊠ TYβ is given by T (Yα ⊗ Yβ) and the coequaliser qTYα,TYβ

by
µYα⊗Yβ

◦ T (TYα,Yβ
), where we abbreviate the free algebra (TY, µY) as TY [35].

With the previous remarks in mind, we are able to claim the following.

▶ Lemma 22. Let T be a monoidal monad on (C,⊗, I) satisfying (A1) and (A2). Let
α = (Yα, iα, dα) and β = (Yβ , iβ , dβ) be generators (bases) for T -algebras Xα and Xβ. Then
α⊠β = (Yα⊗Yβ , ιXα,Xβ

◦(iα⊗iβ), (dα⊠dβ)) is a generator (basis) for the T -algebra Xα⊠Xβ.

▶ Corollary 23. Let T be a monoidal monad on (C,⊗, I) such that (A1) and (A2) are satisfied.
The definitions (Xα, α)⊠(Xβ , β) := (Xα⊠Xβ , α⊠β) and (f, p)⊠(g, q) := (f⊠g, TYα′ ,Yβ′ ◦(p⊗q))
yield monoidal structures with unit ((TI, µI), (I, ηI , idTI)) on GAlg(T) and BAlg(T).

We conclude by instantiating above construction to the setting of vector spaces.

▶ Example 24 (Tensor Product of Vector Spaces). Recall the free K-vector space monad
VK defined by VK(X) = X → K and VK(φ)(y) =

∑
x∈f−1(y) φ(x). Its unit is given by

ηX(x)(y) = [x = y] and its multiplication by µX(Φ)(x) =
∑
φ∈KX Φ(φ) · φ(x).

The category of sets is monoidal (in fact, cartesian) with respect to the cartesian
product × and the singleton set {∗}. The monad VK is monoidal when equipped with
(VK)X,Y (φ,ψ)(x, y) := φ(x) · ψ(y) and (VK)0(∗)(∗) := 1K [31]. The category of VK-algebras
is isomorphic to the category of K-vector spaces, and satisfies (A1) and (A2). The monoidal
structure induced by VK is the usual tensor product ⊗ with the unit field VK({∗}) ≃ K.

Lemma 22 captures the well-known fact that the dimension of the tensor product of two
vector spaces is the product of the respective dimensions. The structure maps of the product
generator map (yα, yβ) to the vector i(yα) ⊗ i(yβ), and x to (dα ⊗ dβ)(x), where

dα ⊗ dβ = dα × dβ : Xα ⊗ Xβ → (VK(Yα), µYα) ⊗ (VK(Yβ), µYβ) ≃ (VK(Yα × Yβ), µYα⊗Yβ)

is the unique linear extension of the bilinear map defined by

(dα × dβ)(xα, xβ)(yα, yβ) := dα(xα)(yα) · dβ(xβ)(yβ).

4.3 Kleisli Representation Theory
In this section we use our category-theoretical definition of a basis to derive a representation
theory for homomorphisms between algebras over monads that is analogous to the matrix
representation theory for linear transformations between vector spaces.

In more detail, recall that a linear transformation L : V → W between k-vector spaces
with finite bases α = {v1, ..., vn} and β = {w1, ..., wm}, respectively, admits a matrix
representation Lαβ ∈ Matk(m,n) with L(vj) =

∑
i(Lαβ)i,jwi, such that for any vector v in

4 (A1) For any two algebras Xα = (Xα, hα) and Xβ = (Xβ , hβ) the coequaliser qXα,Xβ
of the algebra

homomorphisms T (hα ⊗hβ) and µXα⊗Xβ
◦T (TXα,Xβ

) of type (T (T Xα ⊗T Xβ), µT Xα⊗T Xβ
) → (T (Xα ⊗

Xβ), µXα⊗Xβ
) exists (we denote its codomain by Xα ⊠ Xβ := (Xα ⊠ Xβ , hα⊠β)). (A2) Left and right-

tensoring with the induced functor ⊠ preserves reflexive coequalisers.

CALCO 2023

11:12 Generators and Bases for Monadic Closures

A = Lα′α′ =
(

0 −1
1 0

)
, Lαα =

(
3 2

−5 −3

)
, P =

(
−1 1
2 −1

)
, P−1 =

(
1 1
2 1

)

Figure 6 The basis representation of the counter-clockwise rotation by 90 degree L : R2 → R2,
L(v) = Av with respect to α = {(1, 2), (1, 1)} and α′ = {(1, 0), (0, 1)} satisfies Lα′α′ = P −1LααP .

V the coordinate vectors L(v)β ∈ km and vα ∈ kn satisfy the equality L(v)β = Lαβvα. A
great amount of linear algebra is concerned with finding bases such that the corresponding
matrix representation is in an efficient shape, for instance diagonalised. The following
definitions generalise the situation by substituting Kleisli morphisms for matrices.

▶ Definition 25. Let α = (Yα, iα, dα) and β = (Yβ , iβ , dβ) be bases for T -algebras Xα =
(Xα, hα) and Xβ = (Xβ , hβ), respectively. The basis representation fαβ of a T -algebra
homomorphism f : Xα → Xβ with respect to α and β is defined by

fαβ := Yα
iα−→ Xα

f−→ Xβ
dβ−→ TYβ . (2)

Conversely, the morphism pαβ associated with a Kleisli morphism p : Yα → TYβ with respect
to α and β is defined by

pαβ := Xα
dα−→ TYα

Tp−→ T 2Yβ
µYβ−→ TYβ

Tiβ−→ TXβ
hβ−→ Xβ . (3)

The associated morphism is the linear transformation between vector spaces induced by
some matrix of the right type. The following result confirms this intuition.

▶ Lemma 26. The function (3) is a T -algebra homomorphism pαβ : Xα → Xβ.

The next result establishes a generalisation of the observation that for fixed bases,
constructing a matrix representation of a linear transformation and associating a linear
transformation to a matrix of the right type are mutually inverse operations.

▶ Lemma 27. The operations (2) and (3) are mutually inverse.

At the beginning of this section we recalled the soundness identity L(v)β = Lαβvα for
the matrix representation Lαβ of a linear transformation L. The next result is a natural
generalisation of this statement.

▶ Lemma 28. fαβ is the unique Kleisli-morphism such that fαβ · dα = dβ ◦ f . Conversely,
pαβ is the unique T -algebra homomorphism such that p · dα = dβ ◦ pαβ.

The next result establishes the compositionality of the operations (2) and (3). For
example, the matrix representation of the composition of two linear transformations is given
by the multiplication of the matrix representations of the individual linear transformations.

▶ Lemma 29. gβγ · fαβ = (g ◦ f)αγ and qβγ ◦ pαβ = (q · p)αγ .

The previous statements may be summarised as functors between appropriately defined5

categories AlgB(T) and KlB(T).

5 Let AlgB(T) be the category in which objects are given by pairs (Xα, α), where Xα is a T -algebra with
basis α = (Yα, iα, dα), and a morphism f : (Xα, α) → (Xβ , β) consists of a T -algebra homomorphism
f : Xα → Xβ . Let KlB(T) be the category in which objects are the same ones as for AlgB(T), and a
morphism p : (Xα, α) → (Xβ , β) consists of a Kleisli-morphism p : Yα → T Yβ .

S. Zetzsche, A. Silva, and M. Sammartino 11:13

▶ Corollary 30. There exist isomorphisms of categories BAlg(T) ≃ AlgB(T) ≃ KlB(T).

Assume we are given bases α, α′ and β, β′ for T -algebras (Xα, hα) and (Xβ , hβ), respect-
ively. The following result clarifies how the representations fαβ and fα′β′ are related.

▶ Proposition 31. There exist Kleisli isomorphisms p and q such that fα′β′ = q · fαβ · p.

Above result simplifies if one restricts to an endomorphism: the basis representations are
similar. This generalises the situation for vector spaces, cf. Figure 6.

▶ Proposition 32. There exists a Kleisli isomorphism p with Kleisli inverse p−1 such that
fα′α′ = p−1 · fαα · p.

4.4 Bases for Bialgebras
This section is concerned with generators and bases for bialgebras. It is well-known [40] that
an Eilenberg-Moore law λ between a monad T and an endofunctor F induces simultaneously
i) a monad Tλ = (Tλ, µ, η) on Coalg(F) by Tλ(X, k) = (TX, λX ◦ Tk) and Tλf = Tf ; and
ii) an endofunctor Fλ on CT by Fλ(X,h) = (FX,Fh ◦ λX) and Fλf = Ff , such that the
algebras over Tλ, the coalgebras of Fλ, and λ-bialgebras coincide. We will consider generators
and bases for Tλ-algebras, or equivalently, λ-bialgebras.

By Definition 4, a generator for a λ-bialgebra (X,h, k) consists of a F -coalgebra (Y, kY)
and morphisms i : Y → X, d : X → TY , such that the three squares on the left of (4)
commute:

Y X

FY FX

i

kY k
Fi

X TY

FX FTY

d

k λY ◦TkY

Fd

TY TX

X X

Ti

hd
idX

TX X

TY TY

h

dTi
idT Y

. (4)

A basis for a bialgebra is a generator such that the diagram on the right of (4) commutes.
By forgetting the F -coalgebra structure, every generator for a bialgebra is in particular

a generator for its underlying T -algebra. By Proposition 6 there exists a λ-bialgebra
homomorphism i♯ := h ◦Ti : expT (Y, Fd ◦ k ◦ i) → (X,h, k). The next result establishes that
there exists a second equivalent free bialgebra with a different coalgebra structure.

▶ Lemma 33. Let (Y, kY , i, d) be a generator for (X,h, k). Then i♯ : TY → X is a λ-bialgebra
homomorphism i♯ : freeT (Y, kY) → (X,h, k).

If one moves from generators to bases for bialgebras, both structures coincide.

▶ Lemma 34. Let (Y, kY , i, d) be a basis for (X,h, k), then freeT (Y, kY) = expT (Y, Fd◦k◦ i).

▶ Example 35 (Canonical RFSA). Recall the minimal pointed bialgebra (X,h, k) for the
language L = (a+ b)∗a depicted in Figure 2b. Let (J(X), i, d) be the generator for X = (X,h)
defined as follows: the carrier J(X) consists of the join-irreducibles for X, the embedding
satisfies i(y) = y, and the decomposition is given by d(x) = {y ∈ J(X) | y ≤ x}). We
used (J(X), i, d) to recover the canonical RFSA for L depicted in Figure 2c as the coalgebra
(J(X), Fd ◦ k ◦ i). Examining the graphs shows that k restricts to the join-irreducibles J(X),
suggesting α = (J(X), k, i, d) as a possible generator for the full bialgebra. However, the
a-action on [{y}] implies the non-commutativity of the second diagram on the left of (4). The
issue can be fixed by modifying d via d([{y}]) := {[{y}]}. In consequence free(J(X)), k) and
exp(J(X), Fd ◦ k ◦ i) coincide (even though the assumptions of Lemma 34 are not satisfied).

CALCO 2023

11:14 Generators and Bases for Monadic Closures

We close this section by observing that a basis for the underlying algebra of a bialgebra
is sufficient for constructing a generator for the full bialgebra.

▶ Lemma 36. Let (X,h, k) be a λ-bialgebra and (Y, i, d) a basis for the T -algebra (X,h).
Then (TY, FµY ◦ λTY ◦ T (Fd ◦ k ◦ i), h ◦ Ti, ηTY ◦ d) is a generator for (X,h, k).

4.5 Bases as Coalgebras
In this section, we compare our approach to an alternative perspective on the generalisation
of bases. More specifically, we are interested in the work of Jacobs [19], where a basis is
defined as a coalgebra for the comonad on the category of Eilenberg-Moore algebras induced
by the free algebra adjunction. Explicitly, a basis for a T -algebra (X,h), in the sense of [19],
consists of a T -coalgebra (X, k) such that the following three diagrams commute:

TX T 2X

X TX
h

Tk

µX

k

X TX

X
idX

k

h

X TX

TX T 2X
k

k

TηX

Tk

. (5)

The next result shows that a basis as in Definition 4 induces a basis in the sense of [19].

▶ Lemma 37. Let (Y, i, d) be a basis for a T -algebra (X,h), then (5) commutes for k := Ti◦d.

Conversely, assume (X, k) is a T -coalgebra structure satisfying (5) and ik : Yk → X an
equaliser of k and ηX . If the underlying category is the usual category of sets, the equaliser
of any two functions exists. If Yk non-empty, one can show that the equaliser is preserved
under T , that is, Tik is an equaliser of Tk and TηX [19]. By (5) we have Tk ◦ k = TηX ◦ k.
Thus there exists a unique morphism dk : X → TYk such that Tik ◦ dk = k, which can be
shown to be the inverse of h ◦ Tik [19]. In other words, G(X, k) := (Yk, ik, dk) is a basis
for (X,h) in the sense of Definition 4. In the following let F (Y, i, d) := (X,T i ◦ d) for an
arbitrary basis of (X,h).

▶ Lemma 38. Let (Y, i, d) be a basis for a T -algebra (X,h) and k := Ti◦d. Then ηX ◦i = k◦i
and Tk ◦ (ηX ◦ i) = TηX ◦ (ηX ◦ i).

▶ Corollary 39. Let α := (Y, i, d) be a basis for a set-based T -algebra (X,h) and k := Ti ◦ d.
Let ik : Yk → X be an equaliser of k and ηX , and Yk non-empty, then (id(X,h))α,GFα : Y →
TYk is the unique morphism ψ making the diagram below commute:

Y TYk TX T 2X
ψ

ηX ◦i

T ik

Tk

TηX

.

4.6 Signatures, Equations, and Finitary Monads
Most of the algebras over set monads one usually considers generators for constitute finitary
varieties in the sense of universal algebra. In this section, we will briefly explore the
consequences for generators that arise from this observation. The constructions are well-
known; we include them for completeness.

Let Σ be a set, whose elements we think of as operations, and ar : Σ → N a function
that assigns to an operation its arity. Any such signature induces a set endofunctor HΣ
defined on a set as the coproduct HΣX =

∐
σ∈Σ X

ar(σ), and consequently, a set monad SΣ
that assigns to a set V of variables the initial algebra SΣV = µX.(V +HΣX), i.e. the set of

S. Zetzsche, A. Silva, and M. Sammartino 11:15

Σ-terms generated by V (see e.g. [39]). One can show that the categories of HΣ-algebras and
SΣ-algebras are isomorphic. A SΣ-algebra X satisfies a set of equations E ⊆ SΣV × SΣV , if
for all (s, t) ∈ E and valuations v : V → X it holds v♯(s) = v♯(t), where v♯ : (SΣV, µV) → X
is the unique extension of v to a SΣ-algebra homomorphism [4]. The set of SΣ-algebras that
satisfy E is denoted by Alg(Σ, E). As one verifies, the forgetful functor U : Alg(Σ, E) → Set
admits a left-adjoint F : Set → Alg(Σ, E), thus resulting in a set monad TΣ,E with underlying
endofunctor U ◦ F that preserves directed colimits. The functor U can be shown to be
monadic, that is, the comparison functor K : Alg(Σ, E) → SetTΣ,E is an isomorphism [24]. In
other words, the category of Eilenberg-Moore algebras over TΣ,E and the finitary variety of
algebras over Σ and E coincide. In fact, set monads preserving directed colimits (sometimes
called finitary monads [4]) and finitary varieties are in bijection.

The following result characterises generators for algebras over TΣ,E . It can be seen as a
unifying proof for observations analogous to the one in Example 5.

▶ Lemma 40. A morphism i : Y → X is part of a generator for a TΣ,E-algebra X iff every
element x ∈ X can be expressed as a Σ-term in i[Y] modulo E, that is, there is a term
d(x) ∈ SΣY such that i♯(Jd(x)KE) = x.

4.7 Finitely Generated Objects

In this section, we relate our abstract definition of a generator to the theory of locally finitely
presentable categories, in particular, to the notions of finitely generated and finitely presentable
objects, which are categorical abstractions of finitely generated algebraic structures.

For intuition, recall that an element x ∈ X of a partially ordered set is compact, if for each
directed set D ⊆ X with x ≤

∨
D, there exists some d ∈ D satisfying x ≤ d. An algebraic

lattice is a partially ordered set that has all joins, and every element is a join of compact
elements. The naive categorification of compact elements is equivalent to the following
definition: a object Y in C is finitely presentable (generated), if HomC(Y,−) : C → Set
preserves filtered colimits (of monomorphisms). Consequently, one can categorify algebraic
lattices as locally finitely presentable (lfp) categories, which are cocomplete and admit a set
of finitely presentable objects, such that every object is a filtered colimit of that set [4].

In [3, Theor. 3.5] it is shown that an algebra X over a finitary monad T on an lfp category
C is a finitely generated object of CT iff there exists a finitely presentable object Y of C and
a morphism i : Y → X, such that i♯ : (TY, µY) → X is a strong6 epimorphism in CT . Below,
we give a variant of this statement where instead the carrier of i♯ is a split7 epimorphism in
C, which is the case iff X admits a generator in the sense of Definition 4.

▶ Proposition 41. Let C be a lfp category in which strong epimorphisms split and T a finitary
monad on C preserving epimorphisms. Then an algebra X over T is a finitely generated object
of CT iff it is generated by a finitely presentable object Y in C in the sense of Definition 4.

6 An epimorphism e : A → B is said to be strong, if for any monomorphism m : C → D and any
morphisms f : A → C and g : B → D such that g ◦ e = m ◦ f , there exists a diagonal monomorphism
d : B → C such that f = d ◦ e and g = m ◦ d.

7 A morphism e : A → B is called split, if there exists a morphism s : B → A such that e ◦ s = idB . Any
morphism that is split is necessarily a strong epimorphism.

CALCO 2023

11:16 Generators and Bases for Monadic Closures

5 Related Work

A central motivation for this paper has been our broad interest in active learning algorithms
for state-based models [5]. One of the challenges in learning non-deterministic models is the
common lack of a unique minimal acceptor for a given language [16]. The problem has been
independently approached for different variants of non-determinism, often with the common
idea of finding a subclass admitting a unique representative [17, 10]. Unifying perspectives
were given by van Heerdt [43, 41, 42] and Myers et al. [29]. One of the central notions in the
work of van Heerdt is the concept of a scoop, originally introduced by Arbib and Manes [6].

In [46] we have presented a categorical framework that recovers minimal non-deterministic
representatives in two steps. The framework is based on ideas closely related to the ones
in [29], adopts scoops under the name generators, and strengthens the former to the notion
of a basis. In a first step, it constructs a minimal bialgebra by closing a minimal coalgebra
with additional algebraic structure over a monad. In a second step, it identifies generators
for the algebraic part of the bialgebra, to derive an equivalent coalgebra with side effects
in a monad. In this paper, we generalise the first step as application of a monad on an
appropriate category of subobjects with respect to a (E,M)-factorisation system, and explore
the second step by further developing the abstract theory of generators and bases.

Categorical factorisation systems are well-established [13, 32, 25]. Among others, they
have been used for a general view on the minimisation and determinisation of state-based
systems [2, 1, 45]. In Section 3 we use the formalism of [2]. In Section 3.1 we have shown that
under certain assumptions factorisation systems can be lifted to the categories of algebras
and coalgebras. We later realised that the constructions had recently been published in [45].

The notion of a basis for an algebra over an arbitrary monad has been subject of previous
interest. Jacobs, for instance, defines a basis as a coalgebra for the comonad on the category
of algebras induced by the free algebra adjunction [19]. In Section 4.5 we show that a basis
in our sense always induces a basis in their sense, and, conversely, it is possible to recover
a basis in our sense from a basis in their sense, if certain assumptions about the existence
and preservation of equalisers are given. As equalisers do not necessarily exist and are not
necessarily preserved, our approach carries additional data and thus can be seen as finer.

6 Discussion and Future Work

We have generalised the closure of a subset of an algebraic structure as a monad between
categories of subobjects relative to a factorisation system. We have identified the closure of a
minimal coalgebra as an instance of the closure of subobjects that arise by taking the image
of a morphism. We have extended the notion of a generator to a category of algebras with
generators, and explored its characteristics. We have generalised the matrix representation
theory of vector spaces and discussed bases for bialgebras. We compared our ideas with
a coalgebraic generalisation of bases, explored the case in which a monad is induced by a
variety, and related our notion to finitely generated objects in finitely presentable categories.

In [46] we have shown that generators and bases in our sense are central ingredients in
the definitions of minimal canonical acceptors. Many such acceptors admit double-reversal
characterisations [14, 15, 29, 44]. Duality based characterisations as the former have been
shown to be closely related to minimisation procedures with respect to factorisation systems
[12, 11, 45]. In the future, it would be interesting to further explore the connection between
the minimality of generators on the one side, and the minimality of an acceptor with respect
to a factorisation system on the other side.

S. Zetzsche, A. Silva, and M. Sammartino 11:17

Another interesting question is whether the construction that underlies our definition of a
monad in Theorem 13 could be introduced at a more general level of an arbitrary adjunction
between categories with suitable factorisation systems, such that the adjunction between the
base category C and the category of Eilenberg-Moore algebras CT is a special case.

References
1 Jiri Adamek, Filippo Bonchi, Mathias Hülsbusch, Barbara König, Stefan Milius, and Alexandra

Silva. A coalgebraic perspective on minimization and determinization. In International
Conference on Foundations of Software Science and Computational Structures, pages 58–73.
Springer, 2012. doi:10.1007/978-3-642-28729-9_4.

2 Jiri Adamek, Horst Herrlich, and George E Strecker. Abstract and concrete categories: The
joy of cats. Reprints in Theory and Applications of Categories, 2009.

3 Jiri Adamek, Stefan Milius, Lurdes Sousa, and Thorsten Wißmann. Finitely presentable
algebras for finitary monads. Theory and Applications of Categories, 34(37):1179–1195, 2019.

4 Jiri Adamek and Jiri Rosicky. Locally Presentable and Accessible Categories, volume 189.
Cambridge University Press, 1994. doi:10.1017/CBO9780511600579.

5 Dana Angluin. Learning regular sets from queries and counterexamples. Information and
Computation, 75(2):87–106, 1987. doi:10.1016/0890-5401(87)90052-6.

6 Michael A Arbib and Ernest G Manes. Fuzzy machines in a category. Bulletin of the Australian
Mathematical Society, 13(2):169–210, 1975. doi:10.1017/S0004972700024412.

7 André Arnold, Anne Dicky, and Maurice Nivat. A note about minimal non-deterministic
automata. Bulletin of the EATCS, 47:166–169, 1992.

8 Steve Awodey. Category Theory. Oxford University Press, Inc., 2010.
9 Jon Beck. Distributive laws. In Seminar on Triples and Categorical Homology Theory, pages

119–140. Springer, 1969. doi:10.1007/BFb0083084.
10 Sebastian Berndt, Maciej Liśkiewicz, Matthias Lutter, and Rüdiger Reischuk. Learning

residual alternating automata. In Thirty-First AAAI Conference on Artificial Intelligence,
2017. doi:10.1609/aaai.v31i1.10891.

11 Filippo Bonchi, Marcello M Bonsangue, Helle H Hansen, Prakash Panangaden, Jan Rutten,
and Alexandra Silva. Algebra-coalgebra duality in brzozowski’s minimization algorithm. ACM
Transactions on Computational Logic (TOCL), 15(1):1–29, 2014. doi:10.1145/2490818.

12 Filippo Bonchi, Marcello M Bonsangue, Jan Rutten, and Alexandra Silva. Brzozowski’s
algorithm (co)algebraically. In Logic and Program Semantics, pages 12–23. Springer, 2012.
doi:10.1007/978-3-642-29485-3_2.

13 Aldridge K Bousfield. Constructions of factorization systems in categories. Journal of Pure
and Applied Algebra, 9(2-3):207–220, 1977. doi:10.1016/0022-4049(77)90067-6.

14 Janusz A Brzozowski. Canonical regular expressions and minimal state graphs for definite
events. In Proc. Symposium of Mathematical Theory of Automata, volume 12, pages 529–561,
1962.

15 Janusz A. Brzozowski and Hellis Tamm. Theory of átomata. Theor. Comput. Sci., 539:13–27,
2014. doi:10.1016/j.tcs.2014.04.016.

16 François Denis, Aurélien Lemay, and Alain Terlutte. Residual finite state automata. In
Annual Symposium on Theoretical Aspects of Computer Science, pages 144–157. Springer, 2001.
doi:10.1007/3-540-44693-1_13.

17 Yann Esposito, Aurélien Lemay, François Denis, and Pierre Dupont. Learning probabilistic
residual finite state automata. In International Colloquium on Grammatical Inference, pages
77–91. Springer, 2002. doi:10.1007/3-540-45790-9_7.

18 Bart Jacobs. A bialgebraic review of deterministic automata, regular expressions and
languages. In Algebra, Meaning, and Computation, pages 375–404. Springer, 2006. doi:
10.1007/11780274_20.

CALCO 2023

https://doi.org/10.1007/978-3-642-28729-9_4
https://doi.org/10.1017/CBO9780511600579
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1017/S0004972700024412
https://doi.org/10.1007/BFb0083084
https://doi.org/10.1609/aaai.v31i1.10891
https://doi.org/10.1145/2490818
https://doi.org/10.1007/978-3-642-29485-3_2
https://doi.org/10.1016/0022-4049(77)90067-6
https://doi.org/10.1016/j.tcs.2014.04.016
https://doi.org/10.1007/3-540-44693-1_13
https://doi.org/10.1007/3-540-45790-9_7
https://doi.org/10.1007/11780274_20
https://doi.org/10.1007/11780274_20

11:18 Generators and Bases for Monadic Closures

19 Bart Jacobs. Bases as coalgebras. In Algebra and Coalgebra in Computer Science, pages
237–252. Springer, 2011. doi:10.1007/978-3-642-22944-2_17.

20 Bart Jacobs. Introduction to Coalgebra: Towards Mathematics of States and Observation.
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 2016. doi:
10.1017/CBO9781316823187.

21 Bart Jacobs, Alexandra Silva, and Ana Sokolova. Trace semantics via determinization. In
International Workshop on Coalgebraic Methods in Computer Science, pages 109–129. Springer,
2012. doi:10.1007/978-3-642-32784-1_7.

22 Alexander Kurz. Logics for Coalgebras and Applications to Computer Science. PhD thesis,
Ludwig-Maximilians-Universität München, 2000.

23 Serge Lang. Algebra. Graduate Texts in Mathematics, 2002. doi:10.1007/
978-1-4613-0041-0.

24 Saunders Mac Lane. Categories for the Working Mathematician, volume 5. Springer, 2013.
doi:10.1007/978-1-4757-4721-8.

25 Saunders MacLane. Duality for groups. Bulletin of the American Mathematical Society,
56(6):485–516, 1950.

26 Eugenio Moggi. Computational Lambda-Calculus and Monads. University of Edinburgh,
Department of Computer Science, Laboratory for Foundations of Computer Science, 1988.

27 Eugenio Moggi. An Abstract View of Programming Languages. University of Edinburgh,
Department of Computer Science, Laboratory for Foundations of Computer Science, 1990.

28 Eugenio Moggi. Notions of computation and monads. Information and Computation, 93(1):55–
92, 1991. doi:10.1016/0890-5401(91)90052-4.

29 Robert S. R. Myers, Jiri Adamek, Stefan Milius, and Henning Urbat. Coalgebraic constructions
of canonical nondeterministic automata. Theoretical Computer Science, 604:81–101, 2015.
doi:10.1016/j.tcs.2015.03.035.

30 Anil Nerode. Linear automaton transformations. Proceedings of the American Mathematical
Society, 9(4):541–544, 1958. doi:10.2307/2033204.

31 Louis Parlant, Jurriaan Rot, Alexandra Silva, and Bas Westerbaan. Preservation of Equations
by Monoidal Monads. In 45th International Symposium on Mathematical Foundations of
Computer Science (MFCS 2020), volume 170 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 77:1–77:14. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020. doi:
10.4230/LIPIcs.MFCS.2020.77.

32 Emily Riehl. Factorization systems, 2008. URL: https://math.jhu.edu/~eriehl/
factorization.pdf.

33 Jan Rutten. Universal coalgebra: A theory of systems. Theoretical Computer Science,
249(1):3–80, 2000. doi:10.1016/S0304-3975(00)00056-6.

34 Jan Rutten. The method of coalgebra: Exercises in coinduction, 2019.
35 Gavin J Seal. Tensors, monads and actions. Theory and Applications of Categories, 28(15):403–

433, 2013.
36 Alexandra Silva, Filippo Bonchi, Marcello M Bonsangue, and Jan Rutten. Generalizing the

powerset construction, coalgebraically. In IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS 2010), volume 8, pages
272–283. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2010. doi:10.4230/LIPIcs.
FSTTCS.2010.272.

37 Ross Street. The formal theory of monads. Journal of Pure and Applied Algebra, 2(2):149–168,
1972. doi:10.1016/0022-4049(72)90019-9.

38 Ross Street. Weak distributive laws. Theory and Applications of Categories, 22:313–320, 2009.
39 Daniele Turi. Functorial Operational Semantics. PhD thesis, Vrije Universiteit Amsterdam,

1996.
40 Daniele Turi and Gordon Plotkin. Towards a mathematical operational semantics. In

Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science, pages 280–291.
IEEE, 1997. doi:10.1109/LICS.1997.614955.

https://doi.org/10.1007/978-3-642-22944-2_17
https://doi.org/10.1017/CBO9781316823187
https://doi.org/10.1017/CBO9781316823187
https://doi.org/10.1007/978-3-642-32784-1_7
https://doi.org/10.1007/978-1-4613-0041-0
https://doi.org/10.1007/978-1-4613-0041-0
https://doi.org/10.1007/978-1-4757-4721-8
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/j.tcs.2015.03.035
https://doi.org/10.2307/2033204
https://doi.org/10.4230/LIPIcs.MFCS.2020.77
https://doi.org/10.4230/LIPIcs.MFCS.2020.77
https://math.jhu.edu/~eriehl/factorization.pdf
https://math.jhu.edu/~eriehl/factorization.pdf
https://doi.org/10.1016/S0304-3975(00)00056-6
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.272
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.272
https://doi.org/10.1016/0022-4049(72)90019-9
https://doi.org/10.1109/LICS.1997.614955

S. Zetzsche, A. Silva, and M. Sammartino 11:19

41 Gerco van Heerdt. An abstract automata learning framework. Master’s thesis, Radboud
University Nijmegen, 2016.

42 Gerco van Heerdt. CALF: Categorical Automata Learning Framework. PhD thesis, University
College London, 2020.

43 Gerco van Heerdt, Matteo Sammartino, and Alexandra Silva. Learning automata with
side-effects. In Coalgebraic Methods in Computer Science, pages 68–89. Springer, 2020.
doi:10.1007/978-3-030-57201-3_5.

44 Jean Vuillemin and Nicolas Gama. Efficient equivalence and minimization for non deterministic
xor automata. Technical report, Ecole Normale Supérieure, 2010.

45 Thorsten Wißmann. Minimality notions via factorization systems and examples. Logical
Methods in Computer Science, 18(3), 2022. doi:10.46298/lmcs-18(3:31)2022.

46 Stefan Zetzsche, Gerco van Heerdt, Matteo Sammartino, and Alexandra Silva. Canonical
automata via distributive law homomorphisms. Electronic Proceedings in Theoretical Computer
Science, 351:296–313, 2021. doi:10.4204/eptcs.351.18.

CALCO 2023

https://doi.org/10.1007/978-3-030-57201-3_5
https://doi.org/10.46298/lmcs-18(3:31)2022
https://doi.org/10.4204/eptcs.351.18

Bisimilar States in Uncertain Structures
Jurriaan Rot # Ñ

Radboud University, Nijmegen, The Netherlands

Thorsten Wißmann # Ñ

Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
Radboud University, Nijmegen, The Netherlands

Abstract
We provide a categorical notion called uncertain bisimilarity, which allows to reason about bisimilarity
in combination with a lack of knowledge about the involved systems. Such uncertainty arises naturally
in automata learning algorithms, where one investigates whether two observed behaviours come
from the same internal state of a black-box system that can not be transparently inspected. We
model this uncertainty as a set functor equipped with a partial order which describes possible future
developments of the learning game. On such a functor, we provide a lifting-based definition of
uncertain bisimilarity and verify basic properties. Beside its applications to Mealy machines, a
natural model for automata learning, our framework also instantiates to an existing compatibility
relation on suspension automata, which are used in model-based testing. We show that uncertain
bisimilarity is a necessary but not sufficient condition for two states being implementable by the
same state in the black-box system. We remedy the lack of sufficiency by a characterization of
uncertain bisimilarity in terms of coalgebraic simulations.

2012 ACM Subject Classification Theory of computation

Keywords and phrases Coalgebra, Relation Lifting, Bisimilarity, Mealy Machines, ioco

Digital Object Identifier 10.4230/LIPIcs.CALCO.2023.12

Related Version Full Version: https://arxiv.org/abs/2303.15279

Funding Jurriaan Rot: Partially supported by the NWO grant OCENW.M20.053.
Thorsten Wißmann: Supported by the NWO TOP project 612.001.852 (until 2022) and the DFG
project 419850228 (since 2023)

1 Introduction

Inspired from constructive mathematics, Geuvers and Jacobs [6] introduced apartness relations
on coalgebraic systems, complementing bisimilarity. While bisimilarity is a coinductive
characterization of behavioural equivalence, apartness is inductive, and allows constructing
finite proofs of difference in behaviour.

Although apartness and bisimilarity are just different sides of the same coin, the angle
of ‘apartness’ turned out to be fruitful in the recent L# automata learning algorithm [21].
This algorithm works in the active learning setting of Angluin [1], where a learner tries to
reconstruct the implementation of an automaton (or concretely a Mealy machine in [21]) from
only its black-box behaviour. In L#, a crucial task of the learner is to determine whether two
input words w, v lead to the identical or to distinct states in the black box. Throughout the
learning game, the learner makes more and more observations. If at some point the learner
finds out that the states qw, qv reached by w and v respectively have different behaviours,
then qw and qv are provably different – called apart. For that, it is not required that we
know the entire semantics of qw and qv; instead, it suffices to observe one aspect of their
behaviour in which they differ in incompatible ways.

© Jurriaan Rot and Thorsten Wißmann;
licensed under Creative Commons License CC-BY 4.0

10th Conference on Algebra and Coalgebra in Computer Science (CALCO 2023).
Editors: Paolo Baldan and Valeria de Paiva; Article No. 12; pp. 12:1–12:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:j.rot@cs.ru.nl
http://jurriaan.me
https://orcid.org/0000-0002-1404-6232
mailto:thorsten.wissmann@fau.de
https://thorsten-wissmann.de
https://orcid.org/0000-0001-8993-6486
https://doi.org/10.4230/LIPIcs.CALCO.2023.12
https://arxiv.org/abs/2303.15279
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Bisimilar States in Uncertain Structures

p0

p1 p2

i/a j/a

q0

q1

i/a

r0

r1 r2

i/a j/b

s0

s1

j/b

simulates simulates simulates

uncertain bisimilar
apart

apart

Figure 1 Partial Mealy machine for the input alphabet {i, j} and output alphabet {a, b}.

Once states turn out to be apart, they stay so throughout the entire remaining learning
game, no matter which further observations of the black box are made. Thus, the apartness
relation grows monotonically as the learning game progresses. This beauty of monotonicity
breaks if we consider bisimilarity: as long as states qw, qv have not been proven different yet,
should they be considered bisimilar? Or do we just have insufficiently much information at
hand? If we do not know the number of states in the black box, we can never consider states
qw, qv bisimilar with 100% certainty during the learning process.

In the present work, we close this gap by introducing the notion of uncertain bisimilarity,
which expresses that two states might be bisimilar – but we are not certain about it, because
we simply did not observe any reason yet that would disprove bisimilarity. The main idea is
exemplified by the Mealy machine in Figure 1: states p0 and r0 are apart, because p0 has
output a on input j whereas r0 yields a different output b on input j. By the same input j,
we can tell that p0 and s0 are apart, even though we do not yet know the behaviour of s0 on
input i. Furthermore, states q0 and s0 can either turn out to be apart or to be bisimilar,
depending on their outputs on input j. Thus, we call q0 and s0 uncertain bisimilar. If we for
instance try to explore the output of q0 on input j, then depending on the output, q0 will be
identical to p0 or r0. Until we know this, q0 is simulated by both p0 and by r0. Simulation
is a special case of uncertain bisimilarity, because it not only says that the behaviours are
compatible, but that one behaviour is even included in the other.

Our aim is to establish a theory of uncertain bisimilarity at the level of coalgebras,
including the motivating example of Mealy machines. Working with bisimulation relations
and bisimilarity benefits from a rich categorical theory. In particular, they are themselves
coalgebras in the category of relations [8, 11]. Here, the coalgebraic type functor considered
on relations is a lifting of the original coalgebraic type functor for the systems of interest.

In the present paper, we incorporate the explicit treatment of the lack of knowledge which
is omnipresent in the learning setting. Formally, we do this by equipping the type functor
with a partial order. This order s ⊑ t represents that the behaviour s observed so far might
be extended to behaviour t after additional observations. This order immediately induces
two further notions of lax coalgebra morphisms.

Contributions. With such a partial order on the type functor, we will:
Define a generic system equality notion, called uncertain bisimilarity, derived from the
relation lifting of the type functor.
We show basic properties of the relation such as reflexivity and symmetry. It is immediate
that uncertain bisimilarity is not transitive, and thus, no equivalence relation.
As instances, we discuss (partial) Mealy machines as the running example. Moreover, we
cover suspension automata, for which uncertain bisimilarity instantiates to an existing
compatibility notion, used in the ioco conformance relation from model-based testing [22].

J. Rot and T. Wißmann 12:3

It is a standard result that standard coalgebraic bisimilarity coincides with being identi-
fiable by coalgebra morphisms (under often-met assumptions on the type functor, see
e.g. [18]). We show that uncertain bisimilarity is not characterized via identifiability in
lax coalgebra morphisms – for the running example of Mealy machines.
Instead, we show that uncertain bisimilarity is characterized via coalgebraic simulations –
for two definitions of coalgebraic simulation. Concretely, two states are uncertain bisimilar
if there is a state in another coalgebra that simulates both (e.g. r0 simulates both q0 and
s0 in Figure 1).

2 Preliminaries

We first establish the basic coalgebraic notions used in the technical development later, see
e.g. [11]. We assume that the reader is familiar with basic concepts from category theory.

▶ Definition 2.1. For a functor F : C → C, an F -coalgebra (C, c) is an object C ∈ C (the
carrier) together with a morphism c : C → FC in C (the structure). For two F -coalgebras,
a coalgebra morphism h : (C, c) → (D, d) is a morphism h : C → D satisfying Fh · c = d · h.
We denote the category of F -coalgebras by Coalg(F).

Most of our coalgebras will live in the category Set of sets and maps and our leading
example is the functor modelling Mealy machines:

▶ Example 2.2.
1. For fixed sets I and O of input and output symbols, consider the functor

MT : Set → Set MT X = (O × X)I .

An MT -coalgebra is then a set C together with a map c : C → (O × C)I which sends
each state q ∈ C and input symbol i ∈ I to a pair of an output symbol and a successor
state to which the Mealy machine transitions: c(q)(i) ∈ O × C. We write

q
i/o−−→ q′

to specify that c(q)(i) = (o, q′). In the name of the functor, the index T shall indicate
that the Mealy machine is total, in the sense that it is defined for every input i ∈ I.

2. The finitary powerset functor Pf sends each set X to the set of its finite subsets PfX =
{S ⊆ X | S finite} and maps f : X → Y to direct images: Pff : PfX → PfY , Pff(S) :=
{f(x) | x ∈ S}.

A canonical domain for the semantics of coalgebras is the final coalgebra:

▶ Definition 2.3. The final F -coalgebra is the final object in Coalg(F). Concretely, a
coalgebra (D, d) is final if for every (C, c) in Coalg(F) there is a unique coalgebra morphism
h : (C, c) → (D, d). If it exists, we denote the final coalgebra for F by (νF, τ) and the induced
unique morphism for (C, c) by J−K : (C, c) → (νF, τ).

▶ Example 2.4. The final MT -coalgebra is carried by the set νMT = OI+ – the set of all
maps I+ → O from non-empty words I+ to O.

Equivalently, we can characterize the semantics νMT in terms of maps I∗ → O∗ that
interact nicely with the prefix-order on words:

▶ Notation 2.5. For words v, w ∈ I∗ (in particular also for non-empty words I+ ⊆ I∗), we
write v ≤ w to denote that v is a prefix of w. The length of a word w is denoted by |w| ∈ N.

CALCO 2023

12:4 Bisimilar States in Uncertain Structures

Then, we can characterize νMT as maps I∗ → O∗ that preserve length and prefixes of words:

νMT
∼= {f : I∗ → O∗ | for all w ∈ I∗ : |f(w)| = |w| and for all v ≤ w : f(v) ≤ f(w)}

3 A Lax Coalgebra Morphism Lacks Knowledge

In the learning game for Mealy machines, the learner tries to reconstruct the internal
implementation of a Mealy machine

c : C → MT C = (O × C)I

by only its black-box behaviour. For that, one assumes a distinguished initial state q0 ∈ C

and it is the task of the learner to construct a Mealy machine with the same behaviour
Jq0K as that of q0. Being in a block-box setting means that the learner knows neither C

or c. Instead, the learner can enter a word i1, . . . , in ∈ I of input symbols from the input
alphabet I to the black box, referred to as a query, and then observe the output symbols
o1, . . . , on ∈ O. More precisely, the learner observes the output symbols

ok = Jq0K(i1 · · · ik︸ ︷︷ ︸
∈ I+

) ∈ O for every 1 ≤ k ≤ n (with J−K as in Example 2.4).

On this query, the black box reveals the output o1 ∈ O of the initial state for input i1.
But after performing only this query, we still don’t know the output for all the other input
symbols i′

1 ∈ I, i′
1 ̸= i1 with which we could have started the input word.

After such a query, the black box returns to the initial state q0 in order to be ready
for the next query. In concrete learning scenarios this reset to initial state is for example
realized by resetting the actual hardware of a system that is learned. When learning network
protocol implementations, this reset-behaviour is realized by opening a separate network
connection (or session) for each new input query.

The L# algorithm (for Mealy machines) gathers all the information from the performed
input queries in an observation tree. This bundles the observations of the experiments so far
in a single data structure. However, this structure is not an MT -coalgebra itself, because the
knowledge about the outputs for some inputs i ∈ I in some states in the tree will be lacking.

We can model this lack of knowledge by the following functor

M : Set → Set MX = ({?} + O × X)I . (1)

The element ‘?’ models that we do not know the transition yet.

▶ Notation 3.1. We abbreviate partial functions via (X ⇀ Y) := ({?} + Y)X .

So we can also write MX = (I ⇀O ×X). Compared to MT , a state q in an M-coalgebra
d : D → MD is either undefined for an input i ∈ I, i.e. d(q)(i) = ?, or has a transition
defined, i.e. we have both an output o ∈ O and a successor state q′ ∈ D with

d(q)(i) = (o, q′) or using notation: q
i/o−−→ q′.

This kind of partiality in M models that whenever the learner sends a word w ∈ I+, the
black box reveals the output symbols of all transitions along the way of processing w. Thus,
the semantics of states q ∈ D in such a partial Mealy machine, i.e. an M-coalgebra, can be
characterized by:

νM := {f : I+ ⇀ O | for all v ≤ w if f(w) ∈ O then f(v) ∈ O}. (2)

This monotonicity condition describes that whenever a learner has observed the behaviour
for an input word w ∈ I+, then we also have observed the outputs of all the prefixes v ≤ w.

J. Rot and T. Wißmann 12:5

C D

FC FD

h

c ⊑ d

F h

Figure 2 Diagrammatic notation of a lax F -
coalgebra morphism h : (C, c) ⊑ (D, d).

C D

FC FD

h

c ⊒ d

F h

Figure 3 Diagrammatic notation of an oplax
F -coalgebra morphism h : (C, c) ⊒ (D, d).

▶ Proposition 3.2. The final M-coalgebra (νM, τ) is characterized by (2) and the map

τ : νM → (I ⇀ O × νM) τ(f) = i 7→

{
? if f(i) = ?
(o, w 7→ f(i w)) if f(i) ∈ O

The structure sends every f ∈ νM to a successor structure of type M(νM). For i ∈ I, this
successor structure yields τ(f)(i) ∈ {?} + O × νM.

During the learning process, the learner might be able to modify the coalgebra after the
output of state q on input i has been observed. In this sense, we increase knowledge, and
this can be modelled by the usual order on partial functions:

▶ Definition 3.3. For partial functions t, s : A ⇀ B, we fix the partial order

t ⊑A⇀B s
def⇐⇒ ∀i ∈ I : t(i) ∈ {s(i), ?}.

The functor MX = (I ⇀ O × X) inherits the poset structure (MX, ⊑) from partial maps.

The equivalence means that for every input i ∈ I, the value of t(i) is either undefined
(t(i) = ?) or agrees with ith entry in the other successor structure (t(i) = s(i)). The partial
order itself represents how the behaviour can possibly be completed if we found out more
information about the full Mealy machines. That is, the partial order shows possible options
in the future learning process.

This principle also works for other system types, so we generally assume (e.g. [9]):

▶ Assumption 3.4. Fix a functor FPos : Set → Pos and define:
F := U · FPos, where U : Pos → Set is the usual forgetful functor.
Let ⊑F X be the order on FPosX, i.e. we have FPosX = (FX, ⊑F X).

The functoriality of FPos means that for every f : X → Y , the map Ff : FX → FY is
monotone. This partial order gives rise to a lax notion of coalgebra morphisms:

▶ Definition 3.5. A lax F -coalgebra morphism h : (C, c) ⊑ (D, d) between F -coalgebras
is a map h : C → D such that for all x ∈ C we have Fh(c(x)) ⊑F D d(h(x)). We write ⊑ in
squares to indicate lax commutativity as shown in Figure 2. Dually, an oplax F -coalgebra
morphism h : (C, c) ⊒ (D, d) is a map h : C → D such that for all x ∈ C, we have
Fh(c(x)) ⊒F D d(h(x)), and denoted in diagrams as shown in Figure 3. In contrast, we write
⟲ to emphasize proper commutativity.

Lax coalgebra morphisms could also be called functional simulations, because they are
simulations (a special kind of relation) and they are functional (a property on relations).
Intuitively, h : (C, c) ⊑ (D, d) means that (D, d) has at least as many transitions as (C, c).
Conversely, h : (C, c) ⊒ (D, d) means that (D, d) has possibly fewer transitions than
(C, c).

CALCO 2023

12:6 Bisimilar States in Uncertain Structures

q0

q1

i/o

(T, t)

p0

p1 p2

i/o j/o

(T ′, t′)

r0

r1

i/o

j/o

(B, b)
g

g

h

h

h

Figure 4 Two lax M-coalgebra morphism g : (T, t) ⊑ (T ′, t′) and h : (T ′, t′) ⊑ (B, b) for
MX = ({?} + O × X)I with I = {i, j}, O = {o}.

In the learning game, lax coalgebra homomorphisms arise naturally, because there, all
observations are collected in an observation tree (T, t). This observation tree is an F -coalgebra
that admits a lax F -coalgebra morphism h : (T, t) → (B, b) to the black-box (B, b) that needs
to be learned. An example of lax morphisms for Mealy machines is visualized in Figure 4.

Of course, the learner only sees the observation tree (T, t) but neither (B, b) nor h. But,
the learner can make use of the fact that there is some lax coalgebra morphism, and can use
it to deduce properties of (B, b). The correctness proof of the L# learning algorithm [21] in
fact relies on the existence of such a lax coalgebra morphism.

Suspension automata. Related to automata learning is the application of conformance
testing of state-based systems. In particular, the ioco (input output conformance) relation
from testing theory [19] nicely fits into the coalgebraic theory too, while using a non-trivial
order on the functor. Specifically, we will focus on suspension automata, and later recover
the notion of ioco-compatibility from [22], see Definition 5.10. Suspension automata are a
subclass of deterministic labelled transition systems. They are coalgebras for the following
functor:

▶ Definition 3.6. For partial maps which are defined on at least one input we write

(A ⇀ne B) := {f : A ⇀ B | ∃a ∈ A : f(a) ̸= ?}.

For a fixed set of inputs I and outputs O, define the suspension automaton functor

SX := (I ⇀ X) × (O ⇀ne X).

▶ Notation 3.7. We denote the projections from (subsets of) the cartesian product X × Y

by π1 : X × Y → X and π2 : X × Y → Y .

Following existing presentations [22, 19], it is not hard to see that suspension automata are
coalgebras for this functor:

▶ Definition 3.8. A suspension automaton is a finite S-coalgebra, i.e. a finite set of states
C and a map c : C → SC. For a given coalgebra (C, c), we write ? for input transitions and
! for output transitions:

x
?a−→ y

def⇐⇒ π1(c(x))(a) = y and x
!a−→ y

def⇐⇒ π2(c(x))(a) = y

J. Rot and T. Wißmann 12:7

3 1 2

4 6 5

!x?a

?a
!w !w

!x, !y

?a

!y

!z

(C, c)

1′ 2′

6′ 5′

?a, !x

!w
?a

?a, !y

?a

!z

(D, d)

h

1 7→ 1′

2 7→ 2′

3 7→ 2′

4 7→ 5′

5 7→ 5′

6 7→ 6′

Figure 5 Examples of suspension automata and a lax S-coalgebra morphism between them.

In other words, a suspension automaton is a deterministic LTS where the set of labels is
partitioned into inputs and outputs. For some of the inputs and for some of the outputs, a
suspension automaton in some state x can make a transition to another state. But every
state is non-blocking in the sense that for every state x there is at least one output o ∈ O

such that x can make a transition x
!o−→ y.

The ioco compatibility relation (recalled in Definition 5.10) is characterized by a bisimu-
lation game with an alternating flavour, which can be captured by reversing the order in the
output part of the functor S:

▶ Definition 3.9. For (si, so) ∈ SX and (ti, to) ∈ SX we put:

(si, so) ⊑SX (ti, to) def⇐⇒ si ⊑ ti︸ ︷︷ ︸
in I ⇀ X

and to ⊑ so︸ ︷︷ ︸
in O ⇀ X

In other words, when ascending in the order of S, input transitions can be added and output
transitions can be removed if there is still at least one output transition afterwards.

▶ Example 3.10. We recall two examples of suspension automata from van den Bos et
al. [22, Fig. 1] in Figure 5. With the order on S (Definition 3.9), there is a lax coalgebra
morphism h : (C, c) → (D, d) between them that identifies some of the states: h(3) = h(2)
and h(4) = h(5). The map h is only a lax coalgebra morphism because there is no input
transition for a from 5 (or 4) to 6 in (C, c), but we have 5′ ?a−→ 6′ in (D, d). Conversely, there
is an output transition 4 !x−→ 6 in (C, c) but there is no transition h(4) = 5′ !x−→ 6′ = h(6) in
(D, d). Summarizing the above two points, we have:

π1(Sh(c(5))) =⊏ π1(d(h(5))) and π2(Sh(c(4))) =⊐ π2(d(h(4)))

The partial order on the functor does not only relax the notion of morphism, but also
gives rise to a new coalgebraic bisimulation notion, which we introduce in Section 5.

4 Bisimulation Notions are Liftings

In this section we recall coalgebraic bisimulation through the lens of relation liftings; for an
extensive introduction see [11]. We start by fixing some notation regarding relations.

▶ Notation 4.1. Given relations R ⊆ X × Y and S ⊆ Y × Z, the composition R ◦ S is given
by: R ◦ S := {(x, z) ∈ X × Z | ∃y ∈ Y : (x, y) ∈ R and (y, z) ∈ Z}. We denote the converse
of R by Rop = {(y, x) | (x, y) ∈ R}. The equality relation (also called the diagonal) on a set

CALCO 2023

12:8 Bisimilar States in Uncertain Structures

X is denoted by EqX = {(x, x) | x ∈ X}. Given a map f : X → Y and a relation U ⊆ Y × Y ,
inverse image is denoted by (f × f)−1(U) = {(x1, x2) | (f(x1), f(x2)) ∈ U}. The kernel
relation of f is given by ker f = {(x1, x2) | f(x1) = f(x2)}. Note that ker f = (f ×f)−1(EqY).

For a structural study of (bi)simulation notions on coalgebras, we consider the fibred
category of relations:

▶ Definition 4.2. The category Rel has objects (X, R), where X is a set and R ⊆ X × X,
i.e. R is a relation on X. The morphisms f : (X, R) → (Y, S) in Rel are maps f : X → Y

that preserve the relation, i.e. (x1, x2) ∈ R implies (f(x1), f(x2)) ∈ S. The obvious forgetful
functor is p : Rel → Set, given by p(X, R) = X.

The forgetful functor p is a fibration; for a thorough introduction, see the first chapter of
Jacobs’ book [10]. We can express the preservation property of the morphisms in Rel in a
point-free way: f : X → Y is a map from (X, R) to (Y, S) in Rel if and only if

R ⊆ (f × f)−1(S).

Equality extends to a functor Eq : Set → Rel, given by Eq(X) = (X, EqX) and Eq(f) = f .
This is well-defined since we have EqX ⊆ (f × f)−1(EqY) for every map f : X → Y .

To study relations on F -coalgebras – most notably notions of behavioural equivalence
and inclusion – we lift the type functor F from Set to an endofunctor F̂ on Rel.

Rel Rel

Set Set

F̂

p p

F

For all set functors, such a lifting exists in a canonical way:

▶ Definition 4.3. For a functor F : Set → Set, the relation lifting F̂ : Rel → Rel is given by

F̂ (R ⊆ X × X) = {(x, y) ∈ FX × FX | ∃t ∈ FR : Fπ1(t) = x and Fπ2(t) = y}.

Hence, F̂ transforms relations on X into relations on FX. Before we proceed, we list several
standard properties of the relation lifting:

▶ Lemma 4.4 [11]. For every functor F : Set → Set, we have
1. Monotonicity: if R ⊆ S then F̂ (R) ⊆ F̂ (S).
2. Preservation of equality: Eq ◦ F ⊆ F̂ ◦ Eq.
3. Preservation of converse: F̂ (Rop) = (F̂ (R))op for all R ⊆ X × X.
4. Preservation of inverse images: For a map f : X → Y and relation S ⊆ Y × Y , we have

F̂ ((f × f)−1(S)) ⊆ (Ff × Ff)−1(F̂ (S)) .

Moreover, if F preserves weak pullbacks, then this is an equality.

As a consequence of monotonicity and preservation of inverse images, F̂ indeed extends to a
lifting of F , given on morphisms by F̂ (f) = F (f).

▶ Example 4.5. In our example of (partial) Mealy machines as coalgebras for MX =
({?} + O × X)I , a relation R ⊆ X × X is lifted to the relation M̂R ⊆ MX × MX given by

(s, t) ∈ M̂R iff for all i ∈ I : (s(i) = ? and t(i) = ?) or
(s(i), t(i)) ∈ {

(
(o, x), (o, y)

)
| o ∈ O, (x, y) ∈ R}

J. Rot and T. Wißmann 12:9

Thus, successor structures s, t ∈ MR are related by M̂R if s and t have transitions defined
for the same inputs i ∈ I, and for all inputs i ∈ I for which s(i) = (o, x) and t(i) = (o′, y) are
defined, both have the same output o = o′, and the successor states are related (x, y) ∈ R.

The relation lifting is reminiscent of the criterion of a relation R ⊆ C × C being a
bisimulation on Mealy machines. However, in relation liftings, we can distinguish between
the relation R on the successor states on the one hand and the relation on the predecessor
states on the other hand. If we let the relation on predecessor and successor states coincide,
then the relation lifting gives rise to bisimilarity as follows [8, 11].

▶ Definition 4.6. A relation R ⊆ C × C on the state space of a coalgebra c : C → FC is
a bisimulation if R ⊆ (c × c)−1(F̂ (R)). States x, y ∈ C are called bisimilar if there is a
bisimulation relating them.

Note that (c × c)−1(F̂ (−)) : RelC → RelC is a monotone map on the complete lattice
RelC = P(C × C) of relations on C, ordered by inclusion. A bisimulation is thus a post-fixed
point for this map, and bisimilarity is the greatest post-fixed point, which is also the greatest
fixed point by the Knaster-Tarski theorem. Characterizing bisimilarity as the greatest fixed
point of a monotone map is standard in the classical theory of coinduction [16].

▶ Remark 4.7 (Disjoint union of coalgebras). In the definition of bisimulation, we consider a
relation R on the state space of a single coalgebra c : C → FC. This bisimulation notion
straightforwardly generalizes to states of different F -coalgebras x ∈ C, and y ∈ D

d−→ FD,
because we can consider the bisimulation notion on the disjoint union (i.e. coproduct) of the
coalgebras (C, c) and (D, d):

C + D
c+d−−−−→ FC + FD

[F inl,F inr]−−−−−−−→ F (C + D)

where inl : C → C + D and inr : D → C + D are the coproduct injections and [−, −] is case
distinction (i.e. the universal mapping property of the coproduct). So by the bisimilarity of x

and y we mean the bisimilarity of inl(x) and inr(y) in the above combined coalgebra. One can
easily see that this generalization is well-defined: in the special case where (D, d) := (C, c),
states x, y in C are bisimilar iff inl(x), inr(y) are bisimilar in the coalgebra on C + C.

▶ Example 4.8. The relation lifting for M (Example 4.5) thus gives rise to the following: a
bisimulation on a coalgebra c : C → MC is a relation R ⊆ C × C such that

R ⊆ (c × c)−1(M̂R).

Spelling out the inclusion yields that R is a bisimulation iff for all (x, y) ∈ R and i ∈ I:
1. c(x)(i) = ? iff c(y)(i) = ?,
2. if c(x)(i) = (o, x′) ∈ O × C, then c(y)(i) = (o, y′) for some y′ ∈ C with (x′, y′) ∈ R, and
3. if c(y)(i) = (o, y′) ∈ O × C, then c(x)(i) = (o, x′) for some x′ ∈ C with (x′, y′) ∈ R.
For example, the leaf states q1, p1, p2, r1 in Figure 4 are all pairwise bisimilar. However, q0
and p0 are not bisimilar: q0 can not mimic the j-transition of p0. Similarly, q0 and r0 are
not bisimilar (and also p0 and r0 are not bisimilar).

In order to still express the compatibility of q0 and p0, we relax the notion of coalgebraic
bisimilarity in the next section.

CALCO 2023

12:10 Bisimilar States in Uncertain Structures

5 Uncertain Bisimilarity

So far, we have not considered the order ⊑ when discussing bisimulations on coalgebras
for a functor F satisfying Assumption 3.4. By taking the order into account, we introduce
the notion of uncertain bisimilarity. In particular, in the example of Mealy machines it
captures a notion of equivalence where ‘unknown’ transitions are ignored. Since we stick to
the principle that bisimulation notions are coalgebras in Rel, we only need to make use of the
order ⊑ when defining a functor on Rel. The desired bisimulations will then be coalgebras
for this functor:

▶ Definition 5.1. The uncertain relation lifting of F is defined on a relation R ⊆ X × X by

F̂⊑(R) := ⊑F X ◦ F̂ (R) ◦ ⊒F X

▶ Remark 5.2. Definition 5.1 is inspired by the notion of simulation on coalgebras by Hughes
and Jacobs [9]. In their work, a simulation on a coalgebra (C, c) is a relation R such that

R ⊆ (c × c)−1(⊑F C ◦ F̂ (R) ◦ ⊑F C)

The lifting ⊑ ◦ F̂ (−) ◦ ⊑ of F is referred to in op. cit. as the lax relation lifting.

▶ Definition 5.3. An uncertain bisimulation R on a coalgebra c : C → FC is a relation
R ⊆ C × C with R ⊆ (c × c)−1(F̂⊑(R)). States x, y ∈ C are called uncertain bisimilar if
there is an uncertain bisimulation relating them. Complementarily, x, y ∈ C are called apart
if there is no uncertain bisimulation relating them.

The uncertainty here expresses that in the learning setting, we are not entirely certain that
the two states are bisimilar. With an extension of the system by a future observation, they
might turn out to be non-bisimilar. With this intuition, the opposite property is simply
called apart: whenever two states are separated, they will stay so no matter how the system
might be extended by further transitions.

When unfolding the definitions, we obtain the following explicit characterization:

▶ Lemma 5.4. A relation R ⊆ C × C on c : C → FC is an uncertain bisimulation if and
only if for every (x, y) ∈ R there exists t ∈ FR such that

c(x) ⊑ Fπ1(t) and c(y) ⊑ Fπ2(t).

When representing the witnesses t as a choice function, then we equivalently have a map
r : R → FR making the projections π1, π2 oplax coalgebra morphisms (R, r) ⊒ (C, c):

C R C

FC FR FC

c ⊑ ⊒r

π1 π2

c

F π1 F π2

This characterization instantiates to partial Mealy machines as:

▶ Lemma 5.5. For partial Mealy machines c : C → MC a reflexive relation R ⊆ C × C is
an uncertain bisimulation if and only if for all (x, y) ∈ R and i ∈ I we have:

x
i/o−−→ x′ and y

i/o′

−−→ y′ imply o = o′ and (x′, y′) ∈ R. (3)

J. Rot and T. Wißmann 12:11

This condition is vacuously satisfied for all (x, y) ∈ R and i ∈ I whenever x or y have
no i-transition defined. In this characterization, we use the mild assumption of R being
reflexive in order to be able to define the coalgebra structure r : R → FR of Lemma 5.4 in
the case where only one of the related states has an i-transition defined. Even without R

being reflexive, every uncertain bisimulation R satisfies (3). Conversely, for every relation R

satisfying (3), the relation Eq ∪ R is an uncertain bisimulation (i.e. we implicitly work with
reflexive closure as an up-to technique [3]).

The characterization in Lemma 5.5 leads to the following coinduction principle:

▶ Proposition 5.6. States x, y in a partial Mealy machine c : C → MC are uncertain
bisimilar iff

for all w ∈ I+ : JxK(w) ∈ O and JyK(w) ∈ O =⇒ JxK(w) = JyK(w)

Dually, x and y are apart iff there is some w ∈ I+ for which both are defined but differ:
? ̸= JxK ̸= JyK ≠ ?. Thus, this instance matches the explicit definition of apart states in the
context of the L# learning algorithm [21, Def. 2.6].

Recall that the final coalgebra semantics of a state x ∈ C is a partial map JxK : I+ ⇀ O

(in νM, Proposition 3.2). This map sends each input word w ∈ I+ to the output symbol of
the last transition of the run of w, if such a run exists. If not all required transitions exist,
then the partial map is undefined (i.e. JxK(w) = ?). The characterization in Proposition 5.6
states that two states are uncertain bisimilar if for all input words w ∈ I+, whenever both
behaviours JxK, JyK are defined, then they must agree.

▶ Example 5.7. If there is a natural transformation ⊤ : 1 → F such that ⊤X is the greatest
element of FX, then all states in any F -coalgebra are uncertain bisimilar.

▶ Example 5.8. For the inclusion order ⊆ on the finitary powerset functor Pf , any two states
x, y in any Pf-coalgebra c : C → PfC are uncertain bisimilar. Essentially, the issue is that
any pair of elements s, t ∈ PfC has an upper bound in (PfC, ⊆).

▶ Example 5.9. We re-obtain ordinary bisimilarity as the instance where the order ⊑ on
FX is the discrete poset structure: ⊑F C := EqF C .

The instance for suspension automata has explicitly been studied in the literature [22]:

▶ Definition 5.10 [22, Def. 15]. A relation R ⊆ C×C on a suspension automaton c : C → SC

is an (ioco) compatibility relation if for all (x, y) ∈ R we have:

1. for all x
?a−→ x′ and y

?a−→ y′ we have (x′, y′) ∈ R

2. there exists o ∈ O such that x
!o−→ x′, y

!o−→ y′, and (x′, y′) ∈ R.

▶ Proposition 5.11. A reflexive relation on a suspension automaton is a ioco compatibility
relation iff it is an uncertain bisimulation (for S with the order from Definition 3.9).

In the proof it is relevant that the output transitions of suspension automata are non-
empty partial maps C → (O ⇀ne C). Non-emptiness means that whenever there is a coalgebra
structure r : R → SR on a relation R ⊆ C × C, then all related states (x, y) ∈ R have at
least one common output o ∈ O. This is reflected by the existentially quantified condition in
the definition of ioco compatibility.

CALCO 2023

12:12 Bisimilar States in Uncertain Structures

5.1 Properties
Having discussed instances, we now uniformly establish general properties of uncertain bisim-
ilarity. We start by listing properties of uncertain relation lifting, analogous to Lemma 4.4.

▶ Lemma 5.12. For any functor FPos : Set → Pos, we have the following properties of
uncertain relation lifting:
1. Monotonicity: if R ⊆ S then F̂⊑(R) ⊆ F̂⊑(S).
2. Preservation of equality: Eq ◦ F ⊆ F̂⊑ ◦ Eq.
3. Preservation of converse: F̂⊑(Rop) = (F̂⊑(R))op for all R ⊆ X × X.
4. Preservation of inverse images: For a map f : X → Y and relation S ⊆ Y × Y , we have

F̂⊑((f × f)−1(S)) ⊆ (Ff × Ff)−1(F̂⊑(S)) .

Similar to the case of F̂ , by monotonicity and preservation of inverse images, F̂⊑ extends to
a lifting of F . Uncertain bisimilarity is reflexive and symmetric:

▶ Lemma 5.13. The equality relation EqC on any coalgebra (C, c) is an uncertain bisimulation,
and if R ⊆ C × C is an uncertain bisimulation then so is Rop.

Unsurprisingly, uncertain bisimilarity is not transitive: even though two states x and z are
certainly non-bisimilar (i.e. not uncertain bisimilar), there can be a state y that is uncertain
bisimilar to both x and z (e.g. p0, q0, s0 in Figure 1). Similarly, ioco compatibility is known
to not be transitive in general [22, Ex. 17].

This lack of transitivity makes it non-trivial to characterize uncertain bisimilarity in terms
of being identifiable by a morphism, in the way it holds for normal bisimilarity. Still, we can
show some preservation results that match the intuition that the order ⊑ adds transitions (or
other information). Since uncertain bisimilarity of two states means that there is no conflict
in their existing transition behaviour, they stay uncertain bisimilar if we omit transitions:

▶ Lemma 5.14. Uncertain bisimilarity is preserved by oplax morphisms: whenever states x, y

in (C, c) are uncertain bisimilar, then for every oplax coalgebra morphism h : (C, c) → (D, d),
the states h(x) and h(y) are uncertain bisimilar in (D, d).

Conversely, we can show that if two states can be identified by a lax coalgebra morphism,
then they are uncertain bisimilar. For the corresponding proof for (canonical) relation liftings
F̂ , one uses weak pullback preservation as a sufficient condition for preservation of inverse
images. For uncertain bisimilarity we will simply make preservation of inverse images an
assumption, referred to as stability. This terminology follows Hughes and Jacobs [9], who
define a similar condition for their lax relation lifting.

▶ Definition 5.15. The functor FPos is called stable if F̂⊑ commutes with inverse images on
reflexive relations, i.e. the inclusion in Item 4 of Lemma 5.12 is an equality if S is reflexive.

▶ Remark 5.16. Contrary to the variant in [9], we require the converse of Lemma 5.12.4 only
for reflexive relations. The reason is that even for the case of Mealy machines, F = M, the
converse of Lemma 5.12.4 does not hold if we drop that assumption.

▶ Example 5.17. M̂⊑ is stable.

▶ Lemma 5.18. Suppose that FPos is stable. Then any lax coalgebra morphism h : (C, c) ⊑

(D, d) reflects uncertain bisimilarity, that is, if R ⊆ D×D is a reflexive uncertain bisimulation
relation then so is (h × h)−1(R).

J. Rot and T. Wißmann 12:13

p x x′

q y

q′ z z′

w/o

w/o

v/o

v/o

w/o

i/a

i/b

Figure 6 Mealy machine of Example 5.20

JpK(w) = o JqK(w) = o

JpK(wi) = a JqK(wi) = ?
JpK(v) = o JqK(v) = o

JpK(vw) = o JqK(vw) = o

JpK(vv) = o JqK(vv) = ?
JpK(vvw) = o JqK(vvw) = ?
JpK(vvwi) = b JqK(vvwi) = ?
JpK(vwi) = ? JqK(vwi) = b

Figure 7 . . . and its semantics.

As a consequence, under the assumption of stability, if states x, y of a coalgebra are identified
by a lax homomorphism h then they are uncertain bisimilar.

▶ Corollary 5.19. Suppose that FPos is stable. Then the kernel ker h of a lax coalgebra
morphism h : (C, c) ⊑ (D, d) is an uncertain bisimulation.

This gives half a characterization theorem of uncertain bisimilarity (assuming stability):

States x, y can be identified
by a lax coalgebra morphism

=⇒ States x, y are
uncertain bisimilar

(4)

For standard bisimilarity, the converse direction also holds: whenever states x, y are bisimilar
(in the ordinary sense), then they can be identified by an (ordinary) coalgebra morphism.
For uncertain bisimilarity however, the converse direction even fails when restricting to
tree-shaped Mealy machines:

▶ Example 5.20. Consider the partial Mealy machine (C, c) in Figure 6 for I = {v, w, i}
and O = {a, b, o}. In this machine, p and q are uncertain bisimilar, because their semantics
matches on all defined input words, as verified in Figure 7 (using Proposition 5.6). However,
there is no lax coalgebra morphism f : (C, c) ⊑ (D, d) with f(p) = f(q). To see this, first
observe that for any such f , we can derive the following equalities:

f(p) w/o−−→ f(x) and f(q) w/o−−→ f(y) implies f(x) = f(y) ,

f(p) v/o−−→ f(q) w/o−−→ f(y) and f(q) v/o−−→ f(q′) w/o−−→ f(z) implies f(y) = f(z)

and hence f(x) = f(z). By Corollary 5.19 this means x and z are uncertain bisimilar; but i

witnesses that x and z are apart – a contradiction! Thus, there is no f : (C, c) → (D, d) with
f(p) = f(q).

5.2 Characterization via Simulations
We can remedy the failure of the converse direction of (4) by going from functional simulations
(i.e. lax coalgebra morphisms) to proper simulations in the sense of spans of (lax) morphisms.

There are multiple ways to define simulations between coalgebras for functors F : Set → Set
equipped with an order ⊑. The way that Hughes and Jacobs [9] define simulations (see also
Remark 5.2) between coalgebras (C, c) and (D, d) corresponds to a relation R ⊆ C × D and
a structure r : R → FR making the projections oplax and lax morphisms:

CALCO 2023

12:14 Bisimilar States in Uncertain Structures

π1 : (R, r) ⊒ (C, c)
π2 : (R, r) ⊑ (D, d) that is, diagrammatically:

C R D

FC FR FD

c ⊑ ⊑r

π1 π2

d

F π1 F π2

Note that due to using both lax and oplax morphisms, such a simulation is subtly different
from the diagram in Lemma 5.4. We can now show that this span-based definition of
simulation characterizes uncertain bisimilarity:

▶ Proposition 5.21. Given that FPos is stable, the following are equivalent for all states x, y

in a coalgebra c : C → FC:
1. x and y are uncertain bisimilar.
2. There is a state z ∈ D in another coalgebra (D, d) and a simulation S ⊆ C × D in the

style of Hughes and Jacobs such that (x, z) ∈ S and (y, z) ∈ S.

The second item intuitively means that the states x and y can be ‘identified’ by a
simulation. We obtained a converse to the implication in (4) when replacing ‘lax coalgebra
morphism’ with ‘simulation’. In the proof of the first direction (top to bottom), we use
that in sets, every surjective function e : X → Y has a right-inverse a : Y → X (i.e. with
e ◦ a = idY), using the axiom of choice. In the second direction (bottom to top), we use the
stability of FPos.

Another slightly different notion of simulation on coalgebras arises from the approach to
bisimilarity via open maps [12, 23]. Here, a simulation between (C, c) and (D, d) is again a
relation R ⊆ C × D equipped with a coalgebra structure r : R → FR such that
1. the projection π1 is a coalgebra morphism π1 : (R, r) → (C, c), and
2. the projection π2 is a lax coalgebra morphism π2 : (R, r) ⊑ (D, d):

C R D

FC FR FD

c ⟲ ⊑r

π1 π2

d

F π1 F π2

Hence, any open-map-style simulation is also a simulation in the style of Hughes and Jacobs.
In our leading examples, the converse inclusion also holds, as we show in the following.
▶ Remark 5.22. The above definition of simulation is reminiscent of Fiore’s ordered categorical
bisimulation [5, Def. 6.1], for which the partial order comes from the base category being
Pos-enriched, i.e. a partial order on every hom set hom(A, B) is assumed. In contrast, we
only require a partial order on FX, i.e. the partial order is part of the functor data, not the
category.

In order to show the equivalence of open-map-style simulations to that by Hughes and
Jacobs, we impose another assumption on the functor:

▶ Definition 5.23. We call the order ⊑ on the functor F restricting if for all maps f : X → Y

and all s ∈ FX, t ∈ FY we have

t ⊑F Y Ff(s) =⇒ there is some s′ ⊑ s with t = Ff(s′). (5)

The idea behind s′ is that it is the restriction of s to those transitions that are defined in t,
so that Ff : FX → FY maps s′ to t:

▶ Example 5.24. The functor M for partial Mealy machines is restricting: for f : X → Y ,
s ∈ MX, and t ⊑MY Mf(s), define

s′ ∈ MX = ({?} + O × X)I by s′(i) =
{

? if t(i) = ?
s(i) otherwise.

J. Rot and T. Wißmann 12:15

This definition makes s′ ⊑ s true because for all i ∈ I, whenever s′(i) is defined (i.e. s′(i) ̸= ?)
then s(i) is defined, too. The inequality t ⊑MY Mf(s) implies

(s′(i) = ? ⇐⇒ t(i) = ?) for all i ∈ I

and moreover, whenever s′(i) = (o, x) for i ∈ I, then t(i) = s(i) = s′(i). Hence, Mf(s′) = t.

▶ Remark 5.25. In the definition of restricting, we have t ⊑ Ff(s) as the condition and then
construct some s′ with s′ ⊑ s. Thus, one might be tempted to think that there is a Galois
connection hidden. Note however, that this is not the case in the example of partial Mealy
machines because the construction of s′ does depend on s! Hence, it is not possible to
construct an adjoint map FY → FX in general.

▶ Lemma 5.26. If F is restricting, then for every oplax morphism h : (C, c) ⊒ (D, d),
there is a structure c′ : C → FC such that c′(x) ⊑ c(x) for all x ∈ C making h a (proper)
coalgebra morphism.

C D

FC FD

c

h

⊒ d

F h

=⇒ ∃c′ :
C D

FC FD

c c′

h

⊒ ⟲ d

F h

This lemma turns Hughes/Jacobs simulations into simulations in the style of open maps:

▶ Lemma 5.27. Given that ⊑ is restricting, the following are equivalent for any relation
S ⊆ C × D on coalgebras (C, c), (D, d):
1. there is a map S → FS making S a simulation in the style of Hughes and Jacobs.
2. there is a map S → FS making S a simulation in the style used in open maps.

Thus, we can combine Lemma 5.27 and the previous characterization Proposition 5.21:

▶ Theorem 5.28. Given that FPos is stable and that ⊑ is restricting, the following are
equivalent for all states x, y in a coalgebra c : C → FC:
1. x and y are uncertain bisimilar.
2. There is a state z ∈ D in another coalgebra (D, d) and a simulation S ⊆ C × D in the

style of Hughes and Jacobs such that (x, z) ∈ S and (y, z) ∈ S.
3. There is a state z ∈ D in another coalgebra (D, d) and an open-map-style simulation

S ⊆ C × D such that (x, z) ∈ S and (y, z) ∈ S.

▶ Example 5.29. For partial Mealy machines, the abstract definitions of simulation instantiate
to the usual notion of simulation between (C, c) and (D, d) when considering the Mealy
machines as deterministic LTSs for the alphabet I × O: a simulation is a relation R ⊆ C × D

such that for all (x, z) ∈ R and x
i/o−−→ x′ there is some z′ ∈ D such that z

i/o−−→ z′ and
(x′, z′) ∈ R. The characterization in Proposition 5.21 shows that for all states x, y ∈ C in
c : C → MC we have

x and y are
uncertain bisimilar

⇐⇒ There is a state z in some d : D → MD

such that z simulates x and y

▶ Example 5.30. For the compatibility relation on suspension automata, a similar equivalence
holds. In the specific simulation notion (called coinductive ioco relation [22, Def. 4]), the
input transitions are preserved in the usual direction and the output transitions are preserved
in the converse direction. Then, it is shown that states x, y in a suspension automaton are
compatible iff there is a state z in another suspension automaton which conforms (according
to the ioco relation) to both x and y [22, Lem. 24.2].

CALCO 2023

12:16 Bisimilar States in Uncertain Structures

6 Conclusions and Future Work

We introduced uncertain bisimilarity, a notion to talk about behavioural compatibility on a
coalgebraic level of generality. Instances include both partial Mealy machines and the ioco
conformance relation from model-based testing. The setting is tailored towards the lack of
knowledge in automata learning games. We are optimistic that this generalization provides a
step from the L# learning algorithm [21] towards new coalgebra learning algorithms. While
previous categorical frameworks [2, 20, 7, 4] generalize Angluin’s classical L∗ algorithm,
the development of a variant of L# at a high level of generality could be useful, as the
experiments [21] point to a better performance in the case of Mealy machines.

So far, we have shown that uncertain bisimilarity is equivalent to being simulated by a
common state. A similar observation might be lifted to the final coalgebra by defining a
suitable simulation order on the final coalgebra. In this context it would be interesting to
explicitly connect our results to the similarity quotients in [15].

Standard coalgebraic bisimilarity can also be characterized as indistinguishability via
formulas of coalgebraic modal logic [17, 13]. We are confident that uncertain bisimilarity
can be characterized in similar terms. Since it is a coinductively defined relation involving a
non-standard relation lifting, a good starting point may be the framework in [14], although
that does not provide a canonical construction of a logic but only the infrastructure for
proving expressiveness and adequacy. To obtain such a logic, it should be feasible to transfer
modalities from an existing system type functor (e.g. MT) to the functors involving order
and partial behaviours (e.g. M), such that properties like adequacy or even expressiveness
are inherited. These distinguishing modal formulas can then serve as witnesses for disproving
uncertain bisimilarity, that is, for showing apartness.

The relation lifting based definition of uncertain bisimilarity makes it amenable to the use
of coalgebraic up-to techniques as developed in [3]. This could be helpful in the development of
efficient algorithms for checking uncertain bisimilarity, which could be particularly interesting
to check compatibility of ioco specifications as studied in [22].

References
1 Dana Angluin. Learning regular sets from queries and counterexamples. Inf. Comput.,

75(2):87–106, 1987.
2 Simone Barlocco, Clemens Kupke, and Jurriaan Rot. Coalgebra learning via duality. In

FoSSaCS, volume 11425 of Lecture Notes in Computer Science, pages 62–79. Springer, 2019.
3 Filippo Bonchi, Daniela Petrisan, Damien Pous, and Jurriaan Rot. A general account of

coinduction up-to. Acta Informatica, 54(2):127–190, 2017.
4 Thomas Colcombet, Daniela Petrisan, and Riccardo Stabile. Learning automata and trans-

ducers: A categorical approach. In CSL, volume 183 of LIPIcs, pages 15:1–15:17. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

5 Marcelo P. Fiore. A coinduction principle for recursive data types based on bisimulation. Inf.
Comput., 127(2):186–198, 1996. doi:10.1006/inco.1996.0058.

6 Herman Geuvers and Bart Jacobs. Relating apartness and bisimulation. Logical Methods in
Computer Science, Volume 17, Issue 3, July 2021. doi:10.46298/lmcs-17(3:15)2021.

7 Gerco van Heerdt. CALF: Categorical Automata Learning Framework. Phd thesis, University
College London, October 2020.

8 Claudio Hermida and Bart Jacobs. Structural induction and coinduction in a fibrational
setting. Inf. Comput., 145(2):107–152, 1998.

9 Jesse Hughes and Bart Jacobs. Simulations in coalgebra. Theor. Comput. Sci., 327(1-2):71–108,
2004.

https://doi.org/10.1006/inco.1996.0058
https://doi.org/10.46298/lmcs-17(3:15)2021

J. Rot and T. Wißmann 12:17

10 Bart Jacobs. Categorical Logic and Type Theory. Number 141 in Studies in Logic and the
Foundations of Mathematics. North Holland, Amsterdam, 1999.

11 Bart Jacobs. Introduction to Coalgebra: Towards Mathematics of States and Observation,
volume 59 of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,
2016.

12 André Joyal, Mogens Nielsen, and Glynn Winskel. Bisimulation from Open Maps. Information
and Computation, 127:164–185, 1996. doi:10.1006/inco.1996.0057.

13 Clemens Kupke and Dirk Pattinson. Coalgebraic semantics of modal logics: An overview.
Theor. Comput. Sci., 412(38):5070–5094, 2011.

14 Clemens Kupke and Jurriaan Rot. Expressive logics for coinductive predicates. Log. Methods
Comput. Sci., 17(4), 2021.

15 Paul Blain Levy. Similarity quotients as final coalgebras. In FoSSaCS, volume 6604 of Lecture
Notes in Computer Science, pages 27–41. Springer, 2011.

16 Davide Sangiorgi. An introduction to Bisimulation and Coinduction. Cambridge University
Press, 2012.

17 Lutz Schröder. Expressivity of coalgebraic modal logic: The limits and beyond. Theor. Comput.
Sci., 390(2-3):230–247, 2008.

18 Sam Staton. Relating coalgebraic notions of bisimulation. Log. Methods Comput. Sci., 7(1),
2011.

19 Jan Tretmans. Model based testing with labelled transition systems. In Robert M. Hierons,
Jonathan P. Bowen, and Mark Harman, editors, Formal Methods and Testing, An Outcome of
the FORTEST Network, Revised Selected Papers, volume 4949 of Lecture Notes in Computer
Science, pages 1–38. Springer, 2008. doi:10.1007/978-3-540-78917-8_1.

20 Henning Urbat and Lutz Schröder. Automata learning: An algebraic approach. In LICS,
pages 900–914. ACM, 2020.

21 Frits Vaandrager, Bharat Garhewal, Jurriaan Rot, and Thorsten Wißmann. A new approach
for active automata learning based on apartness. In Tools and Algorithms for the Construction
and Analysis of Systems - 28th International Conference, TACAS 2022, Lecture Notes in
Computer Science. Springer, April 2022.

22 Petra van den Bos, Ramon Janssen, and Joshua Moerman. n-complete test suites for IOCO.
Softw. Qual. J., 27(2):563–588, 2019. doi:10.1007/s11219-018-9422-x.

23 Thorsten Wißmann, Jérémy Dubut, Shin-ya Katsumata, and Ichiro Hasuo. Path category for
free. In Mikołaj Bojańczyk and Alex Simpson, editors, FoSSaCS 2019, pages 523–540, Cham,
April 2019. Springer International Publishing. doi:10.1007/978-3-030-17127-8_30.

CALCO 2023

https://doi.org/10.1006/inco.1996.0057
https://doi.org/10.1007/978-3-540-78917-8_1
https://doi.org/10.1007/s11219-018-9422-x
https://doi.org/10.1007/978-3-030-17127-8_30

A Category for Unifying Gaussian Probability and
Nondeterminism
Dario Stein #

iHub, Radboud University Nijmegen, The Netherlands

Richard Samuelson #

Humming Inc., Tacoma, WA, USA

Abstract
We introduce categories of extended Gaussian maps and Gaussian relations which unify Gaussian
probability distributions with relational nondeterminism in the form of linear relations. Both
have crucial and well-understood applications in statistics, engineering, and control theory, but
combining them in a single formalism is challenging. It enables us to rigorously describe a variety
of phenomena like noisy physical laws, Willems’ theory of open systems and uninformative priors
in Bayesian statistics. The core idea is to formally admit vector subspaces D ⊆ X as generalized
uniform probability distribution. Our formalism represents a first bridge between the literature
on categorical systems theory (signal-flow diagrams, linear relations, hypergraph categories) and
notions of probability theory.

2012 ACM Subject Classification Theory of computation → Probabilistic computation; Theory of
computation → Categorical semantics; Mathematics of computing → Probability and statistics

Keywords and phrases systems theory, hypergraph categories, Bayesian inference, category theory,
Markov categories

Digital Object Identifier 10.4230/LIPIcs.CALCO.2023.13

Related Version Previous Version: https://arxiv.org/abs/2204.14024v1 [32]

Acknowledgements It has been useful to discuss this work with many people. Particular thanks go
to Tobias Fritz, Bart Jacobs, Dusko Pavlovic, Sam Staton and Alexander Terenin.

1 Introduction

Modelling the behavior of systems under uncertainty is of crucial importance in engineering
and computer science. We can distinguish two different kinds of uncertainty:

Probabilistic uncertainty means we may not know the exact value of some quantity,
like a measurement error, but we do know the statistical distribution of such errors. A
typical such distribution is the normal (Gaussian) distribution N (µ, σ2) of mean µ and
variance σ2.
Nondeterministic uncertainty models complete ignorance of a quantity. We know which
values the quantity may feasibly assume but have no statistical information beyond that.
Nondeterministic uncertainty can be modelled using subsets R ⊆ X which identify the
feasibles values. In practice, such subsets are often characterized by equational constraints
such as natural laws.

Systems may be subject to both probabilistic and nondeterministic constraints, but describing
such systems mathematically is more challenging. A classical treatment is Willems’ theory of
open stochastic systems [38, 37], where “openness” in his terminology refers to nondeterminism
or lack of information. We recall a simple example:

© Dario Stein and Richard Samuelson;
licensed under Creative Commons License CC-BY 4.0

10th Conference on Algebra and Coalgebra in Computer Science (CALCO 2023).
Editors: Paolo Baldan and Valeria de Paiva; Article No. 13; pp. 13:1–13:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dario.stein@ru.nl
mailto:richard@heyhumming.com
https://doi.org/10.4230/LIPIcs.CALCO.2023.13
https://arxiv.org/abs/2204.14024v1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Combining Gaussian Probability with Nondeterminism

30 35 40 45 50 55 60
0.0

0.1

0.2

0.3

0.4

0.5

de
ns

ity

Noisy measurement
Prior X
Measurement Y
Posterior X|(Y=40)

Figure 1 Gaussian prior and posterior in a noisy measurement example.

▶ Example 1 (Noisy resistor). For a resistor of resistance R, Ohm’s law constrains pairs (V, I)
of voltage and current to lie in the subspace D = {(V, I) : V = RI}. This is a relational
constraint – values must lie in D, but we have no further statistical information about which
values the system takes. In a realistic system, thermal noise is always present; such a noisy
system is better modelled by the equation

V = RI + ϵ (1)

where ϵ ∼ N (0, σ2) is a Gaussian random variable with some small variance σ2. Willems
notices that the variables V, I are not random variables in the usual sense; we have not
associated any distribution to them. On the other hand, the quantity V − RI is a honest
random variable. Furthermore, if we supply a fixed voltage V0, we can solve for I and

I = R−1(V0 − ϵ) (2)

becomes a classical (Gaussian) random variable. Willems calls this “interconnection” of
systems.

Willems models the “openness” of the stochastic systems by endowing the outcome space R2

with an unusually coarse σ-algebra E to formalize the lack of information. Measurable sets
are restricted to the form {(V, I) : V −RI ∈ A} for A ⊆ R Borel. The Gaussian probability
measure is then only defined on E , which essentially makes it a measure on the quotient
space R2/D. We purely formally define an extended Gaussian distributions on a space X
as a pair (D,ψ) of a subspace D and a Gaussian distribution on X/D. In particular, we
can think of any subspace D as an extended Gaussian distribution (D, 0). Operationally,
sampling a point x ∼ D means picking it nondeterministically from D. Every extended
Gaussian distribution can be seen as a formal sum ψ +D of a Gaussian contribution ψ and
a nondeterministic contribution D.

In our approach, the noisy resistor is described by a single extended Gaussian distribution
where D is the subspace for for Ohm’s law, and ψ is Gaussian noise in a direction orthogonal
to D. The marginals V, I are themselves extended Gaussian distributions: we find that V ∼ R
and I ∼ R, that is they are picked nondeterministically from the real line, so in this sense we
have no information about them. We also find that V −RI ∼ N (0, σ2) follows a classical
Gaussian distribution without any nondeterministic contribution. The interconnection (2) is
obtained as an instance of probabilistic conditioning V = V0. We compare our approach to
the one of Willems in Section 5.1.
We now describe a completely different situation where it makes sense to admit subspaces as
idealized probability distributions, namely uninformative priors in Bayesian inference:

D. Stein and R. Samuelson 13:3

▶ Example 2 (Uninformative Priors). Our prior experience tell us that we expect the mass
X of some object to be normally distributed with mean 50 and variance 100. We use a
noisy scale to obtain a measurement of Y = 40. If the scale error has variance of 25, we can
compute our posterior belief over X, which turns out to be 1 X|(Y = 40) ∼ N (42, 20). Here,
the influence of the prior has corrected the predicted value to lie slightly above the measured
value, and have smaller overall variance (see Figure 1).

If we had no prior information at all about X, the posterior should simply reflect the
measurement uncertainty N (40, 25). We can model this by putting a larger and larger
variance on X. However, the limit of distributions N (50, σ2) for σ2 →∞ does not exist in
any measure-theoretic sense, because it would approach the zero measure on every measurable
set. There exists no uniform probability distribution over the real line. In practice, one can
sometimes pretend (using the method of improper priors, e.g. [19, 22]) that X is sampled
from the Lebesgue measure λ (with constant density 1). This measure fails to be normalized,
however the resulting density calculations may yield the correct probability measures.

Our theory of extended Gaussians avoids unnormalized measures altogether: The non-
deterministic distribution X ∼ R is used as the uninformative prior on X, which gives the
desired results, and R can be seen as the limit of N (50, σ2) for σ2 →∞ in an appropriate
sense.

1.1 Contribution
The paper is devoted to making our manipulations of subspaces as generalized probability
distributions rigorous. We introduce a class of mathematical objects called extended Gaussian
distributions and show that such distributions can be manipulated (combined, pushed forward,
marginalized) as if they were ordinary probability distributions. Importantly, extended
Gaussians remain closed under taking conditional distributions, which means we can use
them in applications such as statistical learning and Kalman filtering. The subspace R, seen
as a uniform distribution, formalizes the role of an improper prior.

Describing distributions on a space X is only the first step. In order to build up systems
in a compositional way, we need to understand transformations between spaces X → Y .
Category theory is a widely used language to study the composition of different kinds of
systems. We identify two relevant flavors in the literature

categorical and diagrammatic methods for engineering and control theory, such as graphical
linear algebra (e.g. [28]), cartesian bicategories (e.g. [6]) and signal-flow diagrams
([4, 3, 5, 2, 1]). A central notion is that of a hypergraph category [13], and prototypical
models are the categories of linear maps or linear relations. Willems’ system theory has
been explored in these terms [12], but probability is absent from these developments.
categorical models of probability, such as copy-delete categories [7] and Markov categories
[15, 17, 16, 18]. Prototypical models are stochastic matrices, or the category Gauss of
affine-linear maps with Gaussian noise.

Despite these developments, it has been challenging to combine probability and nondetermin-
ism into a single model – mathematical obstructions to achieving this are described in [39, 21].
Our work is a first successful step in combining these bodies of literature: We define a category
GaussEx of extended Gaussian maps which can seen both as extending linear relations with

1 see appendix 6.2 for the calculation

CALCO 2023

13:4 Combining Gaussian Probability with Nondeterminism

probability, or extending Gaussian probability with nondeterminism (or improper priors).
Gaussian probability is a very expressive fragment of probability with a variety of useful
applications (Gaussian processes, Kalman filters, Bayesian Linear Regression).

Our definition of the Markov category GaussEx uses a special case of the widely studied
construction of decorated cospans [9, 11, 14, 12]. We recall that GaussEx has conditionals,
which is the categorical formulation of conditional probability used to formalize inference
problems like Example 2.

We then define a hypergraph category of Gaussian relations, which allows arbitrary
decorated cospans to allow the possibility of failure and explicit conditioning in the categorical
structure. Hypergraph categories are highly symmetrical categories with an appealing duality
theory. To our knowledge, probabilistic models of hypergraph categories are novel. The self-
duality of hypergraph categories is reflected in the duality between covariance and precision
forms, which takes a particularly canonical form for extended Gaussians. We elaborate this
in Section 5.2.

The following table summarizes the relationships between our constructions:

(adding Gaussian noise)
linear maps Gaussian maps

(adding nondeterminism) total linear relations extended Gaussian maps
(adding failure) linear relations Gaussian Relations

1.2 Outline
We assume basic familiarity of the reader with linear algebra, (monoidal) categories and string
diagrams; an overview can be found in the appendix Section 6. All categories considered
will be symmetric monoidal and have a copy-delete structure. All vector spaces are assumed
finite dimensional.

We begin Section 2 with a recap of Gaussian probability and continue to define extended
Gaussian distributions as Gaussian distributions on quotient spaces. We extend this definition
to a notion of extended Gaussian map in Section 3 and establish the structure of a Markov
category. We give the construction both in elementary terms and using the formalism of
decorated cospans in Section 3.2.

In Section 4, we define a hypergraph category of Gaussian relations, which extends
extended Gaussian maps with the possibility of failure and conditioning. This makes use of
the discussion of conditionals in Section 4.1.

The idea of extended Gaussian distributions has appeared in several places independently,
for different motivations. We conclude the paper with an extended “Related Works” Section 5,
which compares these approaches in detail, and gives perspective in terms of measure theory,
topology, and program semantics.

2 Extended Gaussian Distributions

We begin with a short review of Gaussian probability; we assume basic concepts of linear
algebra but have summarize the terminology in the appendix (Section 6.3). For a more
detailed introduction to Gaussian probability see e.g. [35, 24].

The normal distribution or Gaussian distribution N (µ, σ2) of mean µ and variance σ2 is
defined by having the density function

f(x) = 1√
2πσ2

exp
(
− (x− µ)2

2σ2

)

D. Stein and R. Samuelson 13:5

with respect to the Lebesgue measure. This is generalized to multivariate normal distributions
as follows: Every Gaussian distribution on Rn can be written uniquely as N (µ,Σ) where
µ ∈ Rn is its mean and Σ ∈ Rn×n is a symmetric positive-semidefinite matrix called its
covariance matrix. Note that a vanishing covariance matrix is explicitly allowed; in that
case the Gaussian reduces to a point-mass δx = N (x, 0). We will sometimes abbreviate the
point-mass δx by x if the context is clear.

We write Gauss(Rn) for the set of all Gaussian distributions on Rn. The support of
N (µ,Σ) is the affine subspace µ + col(Σ) where col(Σ) is the column space (image) of Σ.
Gaussian distributions transform as follows under linear maps: If A ∈ Rm×n is a matrix,
then the pushforward distribution is given by

A∗(N (µ,Σ)) = N (Aµ,AΣAT) (3)

Product distributions are formed as follows

N (µ,Σ)⊗N (µ′,Σ′) = N
((

µ

µ′

)
,

(
Σ 0
0 Σ

))
(4)

We write addition + between distributions to indicate the distribution of the sum of two
independent variables (convolution). For example, if X,Y ∼ N (0, 1) are independent, then
X + Y ∼ N (0, 2) because variance is additive for independent variables. We have

N (µ,Σ) +N (µ′,Σ′) = N (µ+ µ′,Σ + Σ′)

which can be confirmed by first forming the product distribution (4) and pushing forward
under the addition map (3). The set Gauss(Rn) forms a commutative monoid with convolu-
tion + and neutral element 0.

We now wish to a combine Gaussian distributions on Rn with uninformative (nondetermin-
istic) distributions along a vector subspace D.

▶ Definition 3. An extended Gaussian distribution on Rn is a pair (D,ψ) of a subspace
D ⊆ Rn and a Gaussian distribution µ on the quotient Rn/D. Following [38], we call the
space D the (nondeterministic) fibre of the extended Gaussian. We write GaussEx(Rn) for
the set of all extended Gaussian distributions on Rn.

There are several equivalent ways to formalize the notion of a Gaussian distribution over
this quotient space.
1. We identify the quotient space Rn/D with a complementary subspace K of D, and give a

Gaussian distribution on that space. This has the advantage of only involving Euclidean
spaces, and we can use matrices to represent linear maps.

2. We develop a coordinate-free definition of Gaussian distributions on arbitrary vector
spaces X so we can then interpret the construction Gauss(Rn/D) directly. This will be
useful for the duality results in Section 5.2.

3. Willems keeps the spaces Rn but equips them with restricted σ-algebras. This corresponds
to a quotient on the level of measurable spaces. We discard this perspective for now but
will return to it in Section 5.1.

For now, it doesn’t matter which formalization we choose. We will build intuitions with
some examples:

CALCO 2023

13:6 Combining Gaussian Probability with Nondeterminism

1. Every Gaussian distribution ψ becomes an extended Gaussian distribution with D = 0;
that is the nondeterministic contribution vanishes (is constantly zero).

2. Every subspace D becomes an extended Gaussian distribution with ψ = 0; that is the
probabilistic contribution vanishes. By slight abuse of notation, we will simply write D or
ψ for the embedding of subspaces or distributions into extended Gaussian distributions.

3. If the nondeterministic fibre D = Rn is the whole space, then Gauss(Rn/D) = {0}. Hence,
the only extended Gaussian with fibre D is the subspace D itself. This distribution
expresses total ignorance.

4. We can easily classify all extended Gaussian distributions on R. The fibre D must be
either 0 or R, so we have GaussEx(R) = Gauss(R) ∪̇ {R}.

5. The possible pairs (V, I) satisfying Ohm’s law are given by the subspace D = {(V, I) :
V = RI}. For noisy Ohm’s law, we let ϵ ∼ N (0, σ2) and notice that the random vector
w = (−1, R) · ϵ is orthogonal to D. Its covariance matrix is

Σw =
(

1 −R
−R R2

)
and thus the distribution of the noisy law is given by (N (0,Σw), D).

We may think of the extended distribution (D,ψ) as being composed of nondeterminstic
noise along the space D, and Gaussian noise ψ. It is evocative to write the extended Gaussian
distribution as a formal sum ψ +D of distribution and a subspace. The distribution ψ is not
unique because the nondeterministic noise absorbs components of ψ that are parallel to D.
This is analogous to how we use notation like 3 + 2Z for elements of quotient groups (cosets).
This notation is formally justified by the formula for addition of extended Gaussians, as
discussed next.

2.1 Transformations of Extended Gaussians
Extended Gaussian distributions support the same basic transformations as ordinary Gaus-
sians. If A is a matrix, we push forward the Gaussian and nondeterministic contribution
separately,

A∗(ψ +D) = A∗ψ +A[D]

where A[D] = {Ax : x ∈ D} denotes the image subspace. Tensor and sum are similarly
component-wise

(µ+D)⊗ (ψ + E) = (µ⊗ ν) + (D × E) (µ+D) + (ν + E) = (µ+ ν) + (D + E)

Well-definedness is a corollary of the next section, because those operations are special cases
of the categorical structure of GaussEx.

▶ Example 4. The subspace R ∈ GaussEx(R) absorbs all additive contributions, e.g. 42+R =
N (0, 1) + R = R

3 A Category of Extended Gaussian maps

After defining extended Gaussians on Euclidean spaces X, the next challenge is to develop
a notion of extended Gaussian map X → Y between spaces. We wish to define a category
GaussEx such that we recover extended Gaussian distributions as maps out of the unit space
0, i.e. GaussEx(X) ∼= GaussEx(0, X). The operations of pushforward, product and sum of

D. Stein and R. Samuelson 13:7

distributions will be simple instances of categorical and monoidal composition in the category
GaussEx. For purely Gaussian probability, the appropriate definition of a map is a linear
function together with Gaussian noise, informally written f(x) = Ax+N (b,Σ). We begin
by analyzing this construction before generalizing it to the extended Gaussian case.

3.1 Decorated Linear Maps and the Category Gauss
We write Vec for the category of finite dimensional vector spaces. The category Gauss [15]
is defined as follows: Objects are vector spaces X, and morphisms X → Y are pairs (f, ψ)
of a linear map f : X → Y and a Gaussian distribution ψ ∈ Gauss(Y). The identity is
given by (idX , 0) and composition is given by pushing forward and addition of the noise,
(f, ξ) ◦ (g, ψ) = (fg, ξ + f∗ψ).

It is straightforward to generalize the pattern of this construction: The set of distributions
Gauss(X) is a commutative monoid (Gauss(X),+, 0) and the assignment X 7→ Gauss(X)
becomes a lax monoidal functor Gauss : Vec → CMon from vector spaces to commutative
monoids. By understanding a commutative monoid as a one-object category, the functor
Gauss : Vec → Cat is an indexed category, and the category Gauss is the monoidal op-
Grothendieck construction associated to this functor [26].

We do not use any special properties of Gaussian distributions, other than that they can
be added and pushed forward. In other words, can think of the distribution ψ as a purely
abstract decoration on the codomain of the linear map f . Any functor S : Vec → CMon
can be used to supply such a decoration, because it it automatically inherits a lax monoidal
structure (see below). In concrete terms, the op-Grothendieck construction can be described
as decorated linear maps:

▶ Definition 5. Let S : Vec→ CMon be a functor. The category LinS of S-decorated linear
maps is defined as follows
1. Objects are vector spaces X
2. Morphisms are pairs (f, s) where f : X → Y is a linear map and s ∈ S(Y)
3. Composition is defined as follows: for g : X → Y , f : Y → Z, s ∈ S(Y), t ∈ S(Z) let

(f, t) ◦ (g, s) = (fg, t+ S(f)(s))

Note that addition takes place in the commutative monoid S(Z).

There is a faithful inclusion Vec→ LinS sending f to (f, 0). We argue that LinS has the
structure of a symmetric monoidal category with the tensor X ⊗ Y = X × Y on objects.
For this, we first observe that S is automatically lax monoidal: For (s, t) ∈ S(X) × S(Y),
let s⊕ t = S(iX)(s) + S(iY)(t) where iX : X → X × Y, iY : Y → X × Y are the biproduct
inclusions. We can now define the tensor of decorated map as (f, s)⊗ (g, t) = (f × g, s⊕ t).
The monoidal category LinS is in general not cartesian; it does however inherit copy and
delete maps from Vec. The category LinS is a Markov category if and only if deleting is
natural, i.e. S(0) ∼= 0, where 0 denotes the terminal vector space/commutative monoid.

▶ Example 6. The following categories are instances of decorated linear maps:
1. For S(X) = 0, LinS is equivalent to Vec.
2. For S(X) = X, LinS is equivalent to the category of affine-linear maps. A map X → Y

consists of a pair (f, y) with f : X → Y linear and y ∈ Y .
3. For S(X) = Gauss(X), LinS is (by construction) the category Gauss

CALCO 2023

13:8 Combining Gaussian Probability with Nondeterminism

3.2 Decorated Cospans and Linear Relations
Like for Gauss, we wish to define an extended Gaussian map as a linear map with extended
Gaussian noise. The naive approach of considering linear maps decorated by S = GaussEx is
not fruitful, because the quotient by the nondeterministic fibre is not properly taken into
account: For example, for any two linear maps f, g : Rn → R, the decorated maps f + R and
g + R should be considered equal (Example 4). We can remedy this by considering maps
into the quotient X → R/R. This kind of behavior is precisely captured by (total) linear
relations.

▶ Lemma 7 (Section 6.3). To give a total linear relation R ⊆ X × Y is to give a subspace
D ⊆ Y and a linear map X → Y/D.

▶ Definition 8. An extended Gaussian map X → Y is a tuple (D, f, ψ) where D ⊆ Y is a
subspace, f : X → Y/D and ψ ∈ Gauss(Y/D).

In order to describe composition of such maps, it is convenient to use the formalism of
decorated cospans, which we recall now:

A cospan in a category C with finite colimits is a diagram of the form X
f−→ P

g←− Y . We
will identify two cospans if there exists an isomorphism P ∼= P ′ commuting with the legs.
Equivalence classes of cospans can be seen as morphisms between X and Y in a category
Cospan(C), where composition is given by pushout

X W

X X P Q

X Y Z

⌟idX idX

(5)

The following classes of cospans deserve special attention:
1. a cospan whose right leg is an isomorphism is the same thing as a map X → Y

2. a relation is a span X ← R→ Y which is jointly monic. Dually, a co-relation is a cospan
X → P ← Y which is jointly epic [11].

3. a partial map is a span X ← R → Y whose left leg is monic [8]. Dually we define a
copartial map to be a cospan X → P ← Y whose right leg is epic.

Just as partial maps are maps out of subobjects, copartial maps are maps into quotients. It is
worth noting that while the pushout of copartial maps is again a copartial map, co-relations
are not closed under pushout. Instead, the an image factorization has to be used to compose
them [11]. Lemma 7 can be rephrased as follows:

▶ Proposition 9. To give a copartial map X
f−→ P

p←− Y in Vec is to give a total linear
relation X → Y . The relation is obtained as R = {(x, y) : f(x) = p(y)}.

We now use the abstract theory of decorated cospans [9, 10, 14] to add Gaussian probability
to the cospans:

▶ Definition 10 ([9]). Given a lax monoidal functor S : (C,+)→ (Set,×), an S-decorated
cospan is a cospan X → P ← Y together with a decoration s ∈ S(P). Given composable
cospans like in (5), the decoration of the composite is computed by the canonical morphism
S(P) × S(Q) → S(P + Q) → S(W). The category of S-decorated cospans is written
SCospan(C).

D. Stein and R. Samuelson 13:9

The category Gauss is a special case of the decorated cospan construction, for cospans
whose right leg is an identity. We can now define:

▶ Definition 11. The category GaussEx of extended Gaussian maps is defined as the category
of copartial maps in Vec, decorated by the functor Gauss : Vec→ CMon→ Set.

Categories of decorated cospans are hypergraph categories [9, § 2] their monoidal structure
is given by the coproduct +. As the subcategory of decorated copartial maps, extended
Gaussians do inherit the symmetric monoidal and copy-delete structure, but are not a
hypergraph category. To obtain a useful hypergraph category of Gaussian probability, we
must study conditioning.

4 A Hypergraph Category of Gaussian Relations

A hypergraph category extends the structure of a copy-delete category in two important
ways
1. there is a multiplication µX : X ⊗ X → X on every object, which we think of as a

comparison operation. It succeeds if both inputs are equal (and return the input),
and fails otherwise. In linear relations, comparison is the relation {(x, x, x) : x ∈ X}.
Multiplication is dual to copying. In a probabilistic setting, we propose to think of the
comparison as conditioning on equality. The “cap” X ⊗X → I is denoted as =:= [25, 33].

2. there is a unit uX : I → X on every object, dual to deletion. The unit is neutral with
respect to the multiplication, i.e. conditioning on the unit has no effect. This suggests we
should think of the unit as a uniform distribution, or an improper prior. Both in linear
relations and extended Gaussians, the unit is the subspace X ⊆ X.

We arrive at the following synthetic dictionary for probabilistic inference and constraints
in hypergraph categories:

delete comparison condition uniform uniform
diagonal

copy

Figure 2 Dictionary for hypergraph categories.

For example, the noisy measurement example Example 2 can be expressed in the following
convenient way using hypergraph structure

N (50, 100)

N (−, 25)

40

=

N (42, 20)

We begin by recalling how conditioning works in the category Gauss, and prove that
extended Gaussians remain closed under conditioning. We then define a hypergraph category
GaussRel of Gaussian relations in which conditioning is internalized using a comparison
operation.

CALCO 2023

13:10 Combining Gaussian Probability with Nondeterminism

4.1 Conditioning
Gaussian distributions are self-conjugate; that is conditional distributions of Gaussians are
themselves Gaussian. More precisely, given a joint distribution ψ ∈ Gauss(X × Y), the map
which sends x 7→ ψ|X=x is a Gaussian map X → Y . This is captured using the following
categorical definition:

▶ Definition 12 ([15, Definition 11.5]). A conditional for a morphism f : A → X ⊗ Y in
a Markov category is a morphism f|X : X ⊗ A → Y which lets us reconstruct f from its
X-marginal as f(x, y|a) = f|X(y|x, a)fX(y|a). In string diagrams, it satisfies

f =
f

f |X

A

A

XY

X Y

The category Gauss has all conditionals. By picking a convenient complement to the fibre D,
we can reduce the problem of conditioning in GaussEx to conditioning in Gauss.

▶ Theorem 13. GaussEx has conditionals.

Proof. In the appendix (Section 6.5). ◀

4.2 Gaussian Relations
One difficulty of conditioning is that it introduces the possibility of failure. For example, the
condition 0 =:= 1 is infeasible. In general, given a joint distribution ψ ∈ Gauss(X × Y), we
can only condition ψ|X=x if x lies in the support of the marginal ψX . The dependence on
supports is carefully analyzed in the “Cond” construction of [34].

We define a hypergraph category GaussRel of Gaussian relations as follows

GaussRel(X,Y) def= GaussEx(X × Y) + {⊥}

That is, a Gaussian relation is either a joint extended Gaussian distribution, or a special
failure symbol ⊥ which represents infeasibility. Failure is strict in all categorical operations,
i.e. composing or tensoring anything with failure is again failure.

Most of the categorical structure of GaussRel is easy to define.
1. any morphism f ∈ GaussEx(X,Y) can be embedded into GaussRel as its name ⌈f⌉ given

by I uX−−→ X
copyX−−−−→ X ⊗X idX ⊗f−−−−→ X ⊗ Y

2. the identity is the diagonal relation D = {(x, x) : x ∈ X} ∈ GaussEx(X ×X)
3. copying and comparison are the both given by the relation {(x, x, x) : x ∈ X}

Composition of Gaussian relations requires conditioning: Given R ∈ GaussRel(X,Y) and
S ∈ GaussRel(Y,Z), we compose them as follows: If any of them is ⊥, return ⊥. Otherwise
form the tensor R⊗ S ∈ GaussEx(X ⊗ Y ⊗ Y ⊗ Z), and condition the two copies of Y to be
equal. If that condition is infeasible, return ⊥.

D. Stein and R. Samuelson 13:11

4.3 Decorated cospans as generalized statistical models
We can get a clearer view of composition GaussRel by using decorated cospans. Recall that
decorated copartial functions X → P ← Y corresponded to extended Gaussian maps X → Y .
If we allow arbitrary cospans, we know that the category GaussCospan(Vec) is a hypergraph
category by construction. We now explain how to view such a cospan as a kind of generalized
statistical model, whose “solution” is a Gaussian relation.

▶ Theorem 14. We have a functor of hypergraph categories

F : GaussCospan(Vec)→ GaussRel

which sends the decorated cospan X f−→ P
g←− Y with decoration ψ ∈ Gauss(P) to the Gaussian

relation described by the solution to the following inference problem: Initialize x ∼ X and
y ∼ Y with an uninformative prior. Then condition f(x)−g(x) =:= ψ, and return the posterior
distribution in GaussEx(X × Y), or ⊥ if the condition was infeasible.

Decorated cospans thus have an interpretation as a generalized kind of statistical model,
and Gaussian relations can be understood as equivalence classes of such cospans which have
the same solution. This approach is systematically explored with the Cond construction
of [34], and indeed we can see GaussRel as a concrete representation of Cond(GaussEx).

5 Related Work and Applications

5.1 Open Linear Systems and σ-algebras
Recall that a probability space is a tuple (X, E , P) of a set X, a σ-algebra E and a probability
measure P : E → [0, 1]. A random variable is a function V : X → R which is (E ,B(R))-
measurable, where B(R) denotes the Borel σ-algebra.

Willems defines an n-dimensional linear stochastic system to be a probability space of the
form (Rn, E , P) for which there exists a “fibre” subspace D ⊆ Rn such that the σ-algebra E is
given by the Borel subsets of Rn/D in the following sense: Pick any complementary subspace
K with K ⊕D = Rn. Then, the events V ∈ E are precisely Borel cylinders parallel to D, i.e.
of the form V = A+D for A ∈ B(K). As an aside, we might wonder in which sense the the
algebra E is a quotient construction. The measurable projection p : (Rn, E)→ (K,B(K)) is
not an isomorphism of measurable spaces; after all, the underlying function is not invertible.
It is however an isomorphism in the category of probability kernels, namely the inclusion
i : K → Rn is an inverse when considered as a stochastic map. This is because the Dirac
measures δx and δipx are equal on E . This phenomenon of “weak quotients” is nicely explained
in [27, Appendix A].

A linear system is called Gaussian if the measure P on K is a normal distribution. We
notice that this agrees precisely with our definition of an extended Gaussian distribution
on Rn with fibre D. A linear system is classical only if D = 0, in the sense that only in
this case the measure P is defined on the whole algebra B(R). In the case D = Rn, the
σ-algebra becomes E = {∅,Rn} and we cannot answer any nontrivial questions about the
system (Example 4).

Willems gives explicit formulas for combining Gaussian linear systems (“tearing, zooming
and linking”) [38]. These operations have been treated in categorical form in [12] but not for
probabilistic systems. One fundamental operation in Willems’ calculus is the interconnection
of systems: Two probability systems (X, E1, P1), (X, E2, P2) on the same state space X are
called complementary if for all E1, E

′
1 ∈ E1 and E2, E

′
2 ∈ E2, we have

E1 ∩ E2 = E′
1 ∩ E′

2 ⇒ P1(E1)P2(E2) = P1(E′
1)P2(E′

2)

CALCO 2023

13:12 Combining Gaussian Probability with Nondeterminism

That is, the product of probabilities P1(E1)P (E2) depends only on the intersection E1 ∩E2.
The two probability measures P1, P2 can now be joined together on the larger σ-algebra
E = σ(E1 ∪ E2) by defining P (E1 ∩ E2) = P (E1)P (E2). This is what happens in Example 1
when connecting a noisy resistor to a voltage source: The underspecified σ-algebras gets
enlarged and nondeterministic relationships become become probabilistic ones. It seems to
us that interconnection is a special case of the composition of Gaussian relations.

It is furthermore interesting that Willems uses the term open for probability systems
with an underspecified σ-algebra on X, while in category theory, we think of open systems as
morphisms Y → X. A remarkable feature is that the σ-algebra, which in measure-theoretic
probability is considered a property of the objects in question (i.e. measurable spaces), is here
part of the morphisms. The cospan perspective unifies this, for in a cospan Y

f−→ Q
q←− X,

we can equip X with the σ-algebra generated by the quotient map q.

5.2 Variance-Precision Duality
We recall the coordinate-free description of Gaussian probability and use it to show that
extended Gaussians are highly symmetric objects, which enjoy an improved duality theory
over ordinary Gaussians (reflecting the hypergraph structure of Gaussian relations). This
also points towards future research to understand GaussEx as a topological completion of
ordinary Gaussians. Work in this direction is the variance-information manifold of [23]. For
simplicity, we will consider only Gaussians of mean zero.

If the covariance matrix Σ ∈ Rn×n is invertible, then its inverse Ω = Σ−1 is known as
precision or information matrix. Precision is dual to covariance, in the sense that while
covariance is additive for convolution +, precision is additive for conditioning.

Σψ1+ψ2 = Σψ1 + Σψ2 , Ωψ1∩ψ2 = Ωψ1 + Ωψ2

The latter equation is reminiscent of logdensities, which add when conditioning. Indeed, the
precision matrix appears in the density function of the multivariate Gaussian distribution
f(x) ∝ exp

(
− 1

2 (x− µ)TΩ(x− µ)
)
.

If we allow singular covariance matrices Σ, we still have well-defined Gaussian distributions
albeit with non-full support; however the information matrix ceases to exist (and the
distribution no longer has a density with respect to the n-dimensional Lebesgue measure).
Not only does this break the duality, but we are left to wonder which kind of distribution
corresponds to singular precision matrices: The answer is extended Gaussian distributions
with nonvanishing fibre.

In a coordinate-free way, the covariance of a distribution ψ ∈ Gauss(X) is the bilinear
form on the dual space Σ : X∗×X∗ → R given by Σ(f, g) def= E[f(U)g(U)]−E[f(U)]E[g(U)].
This form is symmetric and positive semidefinite. The precision form Ω is instead of type
Ω : X ×X → R. The duality between the two forms can be stated as follows:

▶ Theorem 15. The following data are equivalent for every f.d.-vector space X
1. pairs ⟨S,Ω⟩ of a subspace S ⊆ X and a bilinear form Ω : S × S → R
2. pairs ⟨F,Σ⟩ of a subspace F ⊆ X∗ and a bilinear form Σ : F × F → R

At the core of this duality lies the notion of the annihilator of a subspace, here denoted (−)⊥.
In brief, the correspondences are as follows

precision S = ker(Σ)⊥ ker(Ω) = D

covariance F = D⊥ ker(Σ) = S⊥

We give a proof of the duality in the appendix (Section 6.3).

D. Stein and R. Samuelson 13:13

5.3 Statistical Learning and Probabilistic Programming

It is unsurprising that notions equivalent to extended Gaussians have appeared in the statistics
(e.g. in [22]). A novel perspective on statistical inference which more closely matches the
categorical semantics is probabilistic programming, a powerful and flexible paradigm which
has gained traction in recent years (e.g. [36, 29, 20]). In [34], we argued that the exact
conditioning operation (conditioning on equality) described in Section 4.2 is a fundamental
primitive in such programs, and enjoys good logical properties. We presented a programming
language for Gaussian probability featuring a first-class exact conditioning operator (=:=),
with Python/F# implementations available under [30]. For example, the noisy measurement
example expressed as a probabilistic program reads

x = normal(50, 100)

y = normal(x, 25)

y =:= 40

return x

This language uses Gaussian distributions only, but it can effortlessly be extended to use
extended Gaussian distributions, which are likewise closed under conditioning (Theorem 13).

The behavior of the conditioning operator (=:=) can be quite subtle, and it is difficult
to decide when two programs are observationally equivalent. The denotational semantics
defined in [34] on the basis of the category Cond(Gauss) is fully abstract, but it is still lacking
a concrete description of when two different programs fragements have the same behavior in
all contexts. This is remedied by passing to the concrete description of GaussRel. In terms of
Section 4.3, a program denotes a decorated cospan over Vec, and contextual equivalence is
precisely the equivalence relation Theorem 14.

The correspondence between probabilistic programs and categorical models of probability
(with conditioning) is elaborated in detail in [31].

References
1 John C. Baez, Brandon Coya, and Franciscus Rebro. Props in network theory, 2018. arXiv:

1707.08321.
2 John C. Baez and Jason Erbele. Categories in control. Theory Appl. Categ., 30:836–881, 2015.

arXiv:1405.6881.
3 Filippo Bonchi, Paweł Sobociński, and Fabio Zanasi. A categorical semantics of signal flow

graphs. In CONCUR 2014–Concurrency Theory: 25th International Conference, CONCUR
2014, Rome, Italy, September 2-5, 2014. Proceedings 25, pages 435–450. Springer, 2014.

4 Filippo Bonchi, Pawel Sobocinski, and Fabio Zanasi. The calculus of signal flow diagrams I:
linear relations on streams. Inform. Comput., 252, 2017.

5 Filippo Bonchi, Paweł Sobociński, and Fabio Zanasi. Interacting Hopf algebras. Journal of
Pure and Applied Algebra, 221(1):144–184, 2017.

6 A. Carboni and R.F.C. Walters. Cartesian bicategories i. Journal of Pure and Applied Algebra,
49(1):11–32, 1987. doi:10.1016/0022-4049(87)90121-6.

7 Kenta Cho and B. Jacobs. Disintegration and Bayesian inversion via string diagrams. Math-
ematical Structures in Computer Science, 29:938–971, 2019.

8 J Robin B Cockett and Stephen Lack. Restriction categories i: categories of partial maps.
Theoretical computer science, 270(1-2):223–259, 2002.

9 Brendan Fong. Decorated cospans. arXiv preprint arXiv:1502.00872, 2015.

CALCO 2023

https://arxiv.org/abs/1707.08321
https://arxiv.org/abs/1707.08321
https://arxiv.org/abs/1405.6881
https://doi.org/10.1016/0022-4049(87)90121-6

13:14 Combining Gaussian Probability with Nondeterminism

10 Brendan Fong. The Algebra of Open and Interconnected Systems. PhD thesis, University of
Oxford, September 2016.

11 Brendan Fong. Decorated corelations, 2017. arXiv:1703.09888.
12 Brendan Fong, Paweł Sobociński, and Paolo Rapisarda. A categorical approach to open and

interconnected dynamical systems. In Proceedings of the 31st annual ACM/IEEE symposium
on Logic in Computer Science, pages 495–504, 2016.

13 Brendan Fong and David I. Spivak. Hypergraph categories. ArXiv, abs/1806.08304, 2019.
14 Brendan Fong and David I Spivak. An invitation to applied category theory: seven sketches in

compositionality. Cambridge University Press, 2019.
15 T. Fritz. A synthetic approach to Markov kernels, conditional independence and theorems on

sufficient statistics. Adv. Math., 370, 2020.
16 T. Fritz and Paolo Perrone. A probability monad as the colimit of spaces of finite samples.

arXiv: Probability, 2017.
17 Tobias Fritz, Tomáš Gonda, and Paolo Perrone. De Finetti’s theorem in categorical probability,

2021. arXiv:2105.02639.
18 Tobias Fritz and Eigil Fjeldgren Rischel. Infinite products and zero-one laws in categorical

probability. Compositionality, 2, August 2020. doi:10.32408/compositionality-2-3.
19 Andrew Gelman, John B. Carlin, Hal S. Stern, and Donald B. Rubin. Bayesian Data Analysis.

Chapman and Hall/CRC, 2nd ed. edition, 2004.
20 Noah D Goodman, Joshua B. Tenenbaum, and The ProbMods Contributors. Probabilistic

Models of Cognition. http://probmods.org, 2016. Accessed: 2021-3-26.
21 Alexandre Goy and Daniela Petrişan. Combining probabilistic and non-deterministic choice

via weak distributive laws. In Proceedings of the 35th Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS ’20, New York, NY, USA, 2020. Association for Computing
Machinery. doi:10.1145/3373718.3394795.

22 Jakob Nebeling Hedegaard. Gaussian random fields – infinite, improper and intrinsic. Master’s
thesis, Aalborg University, 2019.

23 A.T. JAMES. The variance information manifold and the functions on it. In Multivariate Ana-
lysis–III, pages 157–169. Academic Press, 1973. doi:10.1016/B978-0-12-426653-7.50016-8.

24 Steffen Lauritzen and Frank Jensen. Stable local computation with conditional Gaussian
distributions. Statistics and Computing, 11, November 1999. doi:10.1023/A:1008935617754.

25 Elena Di Lavore and Mario Román. Evidential decision theory via partial markov categories,
2023. arXiv:2301.12989.

26 Joe Moeller and Christina Vasilakopoulou. Monoidal Grothendieck construction. arXiv preprint
arXiv:1809.00727, 2018.

27 SEAN MOSS and PAOLO PERRONE. A category-theoretic proof of the ergodic decomposition
theorem. Ergodic Theory and Dynamical Systems, pages 1–27, 2023. doi:10.1017/etds.2023.
6.

28 João Paixão, Lucas Rufino, and Paweł Sobociński. High-level axioms for graphical linear algebra.
Science of Computer Programming, 218:102791, 2022. doi:10.1016/j.scico.2022.102791.

29 Sam Staton. Commutative semantics for probabilistic programming. In Hongseok Yang, editor,
Programming Languages and Systems, pages 855–879, Berlin, Heidelberg, 2017. Springer Berlin
Heidelberg.

30 Dario Stein. GaussianInfer. https://github.com/damast93/GaussianInfer, 2021.
31 Dario Stein. Structural Foundations for Probabilistic Programming Languages. PhD thesis,

University of Oxford, 2021.
32 Dario Stein. Decorated linear relations: Extending gaussian probability with uninformative

priors, 2022. arXiv:2204.14024.
33 Dario Stein and Sam Staton. Compositional semantics for probabilistic programs with exact

conditioning (long version). In Proceedings of Thirty-Sixth Annual ACM/IEEE Conference on
Logic in Computer Science (LICS 2021), 2021.

https://arxiv.org/abs/1703.09888
https://arxiv.org/abs/2105.02639
https://doi.org/10.32408/compositionality-2-3
http://probmods.org
https://doi.org/10.1145/3373718.3394795
https://doi.org/10.1016/B978-0-12-426653-7.50016-8
https://doi.org/10.1023/A:1008935617754
https://arxiv.org/abs/2301.12989
https://doi.org/10.1017/etds.2023.6
https://doi.org/10.1017/etds.2023.6
https://doi.org/10.1016/j.scico.2022.102791
https://arxiv.org/abs/2204.14024

D. Stein and R. Samuelson 13:15

34 Dario Stein and Sam Staton. Compositional semantics for probabilistic programs with exact
conditioning (long version), 2021. arXiv:2101.11351.

35 Alexander Terenin. Gaussian Processes and Statistical Decision-making in Non-Euclidean
spaces. PhD thesis, Imperial College London, 2022.

36 Jan-Willem van de Meent, Brooks Paige, Hongseok Yang, and Frank Wood. An introduction
to probabilistic programming, 2018. arXiv:1809.10756.

37 Jan C. Willems. Constrained probability. In 2012 IEEE International Symposium on Inform-
ation Theory Proceedings, pages 1049–1053, 2012. doi:10.1109/ISIT.2012.6283011.

38 Jan C. Willems. Open stochastic systems. IEEE Transactions on Automatic Control, 58(2):406–
421, 2013. doi:10.1109/TAC.2012.2210836.

39 Maaike Zwart and Dan Marsden. No-go theorems for distributive laws. In Proceedings of the
34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’19. IEEE Press,
2019.

6 Appendix

6.1 Glossary: Category Theory
We assume basic familiarity of the reader with monoidal category theory and string diagrams.
All relevant categories in this article are symmetric monoidal.

A copy-delete category [7] (or gs-monoidal category) is a symmetric monoidal category
(C,⊗, I) where every object X is coherently equipped with the structure of a commutative
comonoid, which is used to model copying (copyX : X → X ⊗ X) and discarding (delX :
X → I) of information. In string diagrams, the comonoid axioms are rendered as

= == =

Neither deleting nor copying are assumed to be natural in a copy-delete category. A Markov
category is a copy-delete category where deleting is natural, or equivalently, the monoidal
unit I is terminal. Markov categories typically model probabilistic or nondeterministic
computation without possibility of failure, such as stochastic matrices, Gauss or total (linear)
relations.

Copy-delete categories can model unnormalized probabilistic computation, or the potential
of failure. The categories of partial functions or (linear) relations are typical examples of
copy-delete categories that are not Markov categories.

A hypergraph category [13] is a symmetric monoidal category with a particularly powerful
self-duality: Every object is equipped with a special commutative Frobenius algebra structure.

6.2 Noisy measurement example
▶ Example 16. We elaborate the noisy measurement example from the introduction. Formally,
we introduce random variables

X ∼ N (50, 100)
Y ∼ N (X, 25)

The vector (X,Y) is multivariate Gaussian with mean (50, 50) and covariance matrix

Σ =
(

100 100
100 125

)

CALCO 2023

https://arxiv.org/abs/2101.11351
https://arxiv.org/abs/1809.10756
https://doi.org/10.1109/ISIT.2012.6283011
https://doi.org/10.1109/TAC.2012.2210836

13:16 Combining Gaussian Probability with Nondeterminism

The conditional distribution X|(Y = 40) is N (µ = 42, σ2 = 20).

Proof. The random vector (X,Y) has joint density function

f(x, y) = 1
2π ·
√

100 · 25
exp

(
− (x− 50)2

2 · 100

)
· exp

(
− (y − x)2

2 · 25

)
The conditional density of x given y has the form

f(x|y) = f(x, y)∫
f(x, y)dx

By expanding and “completing the square”, it is easy to check that

f(x, 40) ∝ exp
(
− (x− 50)2

200 − (40− x)2

50

)
∝ exp

(
− (x− 42)2

2 · 20

)
is again a Gaussian density, from which we read off µ = 42 and σ2 = 20. ◀

6.3 Glossary: Linear Algebra
All vector spaces in this paper are assumed finite dimensional. For vector subspaces U, V ⊆ X,
their Minkowski sum is the subspace U+V = {u+v : u ∈ U, v ∈ V }. If furthermore U∩V = 0,
we call their sum a direct sum and write U ⊕ V . A complement of U is a subspace V such
that U ⊕ V = X. An affine subspace W ⊆ X is a subset of the form x+ U for some x ∈ X
and a (unique) vector subspace U ⊆ X. The space W is called a coset of U and the cosets of
U organize into the quotient vector space X/U = {x+ U : x ∈ X}.

An affine-linear map f : X → Y between vector spaces is a map of the form f(x) = g(x)+y
for some linear function g : X → Y and y ∈ Y . Vector spaces and affine-linear maps form a
category Aff.

A linear relation R ⊆ X × Y is a relation which is also a vector subspace of X × Y . We
write R(x) def= {y ∈ Y : (x, y) ∈ R}. A relation R ⊆ X × Y is called total if R(x) ̸= ∅ for all
x ∈ X. Linear relations and total linear relations are closed under the usual composition
of relations. We denote by LinRel and LinRel+ the categories whose objects are vector
spaces, and morphisms are linear relations and total linear relations respectively. LinRel is a
hypergraph category, while LinRel+ is a Markov category.

The following lemma is crucial for relating linear relations and cospans: Every left-total
linear relation can be written as a “linear map with nondeterministic noise” x 7→ f(x) +D.

▶ Proposition 17. Let R ⊆ X × Y be a left-total linear relation. Then
1. R(0) is a vector subspace of Y
2. R(x) is a coset of R(0) for every x ∈ X
3. the assignment x 7→ R(x) is a well-defined linear map X → Y/R(0)
4. every linear map X → Y/D is of that form for a unique left-total linear relation.

Proof. For 1, consider y, y′ ∈ R(0) (by assumption nonempty), then by linearity of R

(0, y) ∈ R, (0, y′) ∈ R⇒ (0, αy + βy′) ∈ R

so R(0) is a vector subspace. For 2, we can find some w ∈ R(x) and wish to show that
R(x) = w +R(0). Indeed if y ∈ R(x) then (x, y)− (x,w) = (0, y − w) ∈ R so y − w ∈ R(0),
hence y ∈ w + R(0). Conversely for all z ∈ R(0) we have (x,w + z) = (x,w) + (0, z) ∈ R

D. Stein and R. Samuelson 13:17

so w + z ∈ R(x). This completes the proof that R(x) is a coset. For 3, the previous point
shows that the map ρ : x 7→ R(x) is a well-defined map X → Y/R(0). It remains to show
it is linear. That is, if w ∈ R(x) and z ∈ R(y) then αw + βz ∈ R(αx + βy). This follows
immediately from the linearity of R. For the last point 4, given a linear map f : X → Y/V

we construct the relation

(x, y) ∈ R⇔ y ∈ f(x)

which is left-total because f(x) ̸= ∅. To see that R is linear, let (x, y) ∈ R, (x′, y′) ∈ R
meaning y − z ∈ V and y′ − z ∈ V for representatives z, z′ of f(x), f(x′). Linearity of f
means that αz + βz′ is a representative of f(αx+ βx′). Thus

αy + βy′ − (αz + βz′) = α(y − z) + β(y′ − z′) ∈ V ◀

6.4 Annihilators
For subspaces D ⊆ X and F ⊆ X∗, the subspaces D⊥ ⊆ X∗, F⊥ ⊆ X are defined as

D⊥ def= {f ∈ X∗ : f |D = 0}, F⊥ def= {x ∈ X : ∀f ∈ F, f(x) = 0} (6)

▶ Proposition 18.
1. Taking annihilators is order-reversing and involutive
2. If D ⊆ S ⊆ X, then S⊥ ⊆ D⊥ ⊆ X∗ and we have a canonical isomorphism

(S/D)∗ ∼= D⊥/S⊥ (7)

and similarly for K ⊆ F ⊆ X∗, we have

(F/K)∗ ∼= K⊥/F⊥ (8)

3. We have

(V +W)⊥ = V ⊥ ∩W⊥

(F ∩W)⊥ = F⊥ +G⊥

If D ⊆ X and f : X → Y , then

(f [D])⊥ = {g ∈ Y ∗ : gf ∈ D⊥}

If U ⊆ X,V ⊆ Y , we have a canonical isomorphism

(U × V)⊥ ∼= U⊥ × V ⊥

Proof. Standard. An explicit description of the canonical iso (7) is given as follows.
1. We define α : D⊥/S⊥ → (S/D)∗ as follows. If f ∈ D⊥, then f is a function X → R such

that f |D = 0. The restriction f |S : S → R thus descends to the quotient S/D → R, and
we let α̃(f) = f |S . To check this is well-defined, notice that the kernel of α̃ consists of
those f ∈ X∗ such that f |S = 0, that is S⊥.

2. We define α−1 : (S/D)∗ → D⊥/S⊥ as follows. An element f ∈ (S/D)∗ is a function
f : S → R with S|D = 0. Find any extension of f to a linear function f̄ : X → R (such an
extension exists because S is a retract of X). Then still f̄ |D = 0, so f̄ ∈ D⊥. It remains
to show that the choice of extension does not matter in the quotient D⊥/S⊥. Indeed if
f̄2 is another extension, then (f̄ − f̄2)|S = f − f = 0, hence (f̄ − f̄2) ∈ S⊥. ◀

CALCO 2023

13:18 Combining Gaussian Probability with Nondeterminism

6.5 Conditionals
The existence proof of conditionals in GaussEx relies on the ability to pick a convenient
complement to a subspace, as constructed by the following lemma:

▶ Lemma 19. Let V ⊆ X × Y be a vector subspace, and let VX ⊆ X be its projection. Then
there exists a complement K ⊆ X × Y of V such that KX is a complement of VX .

Proof. We give an explicit construction, where in fact we can choose K to be a cartesian
product of subspaces U ×W . Let

VX = {x : (x, y) ∈ V } H = {y : (0, y) ∈ V }

We argue that if U ⊕ VX = X and W ⊕ H = Y , then (U ×W) ⊕ V = X × Y . First we
prove that (U ×W) ∩ V = 0: Indeed, if (u,w) ∈ V for u ∈ U,w ∈W , then u ∈ VX , but that
implies u = 0. So we know (0, w) ∈ V , i.e. w ∈ H. Thus w = 0.

It remains to show that we can write every (x, y) as (u+ v1, w + v2) with u ∈ U,w ∈W
and (v1, v2) ∈ V .
1. We can write x = u+ v1 with u ∈ U and v1 ∈ VX .
2. We claim that there exists a b ∈W such that (v1, b) ∈ V . Because v1 ∈ VX , there exists

some b′ ∈ Y such that (v1, b
′) ∈ V . We now decompose b′ = b+ h for b ∈W,h ∈ H. By

definition of H, we have (0, h) ∈ V , so (v1, b) = (v1, b
′)− (0, h) ∈ V .

3. Write y = w′ + h with w′ ∈ W,h ∈ H and define w = w′ − b and v2 = h+ b. Then we
have w ∈W and (v1, v2) = (v1, b) + (0, h) ∈ V , and as desired

(u,w) + (v1, v2) = (x,w′ − b+ h+ b) = (x,w′ + h) = (x, y). ◀

We can now prove the existence of conditionals in GaussEx.

Proof of Theorem 13. Let φ ∈ GaussEx(A,X × Y) be given by (D, f̃ , ψ̃) where f̃ : A →
(X×Y)/D, D ⊆ X×Y and ψ ∈ Gauss((X×Y)/D). By Lemma 19, we can pick a complement
K ⊆ X × Y of D such that KX is a complement of DX in X. Under the identification
(X × Y)/D ∼= K, we replace f̃ , ψ̃ with f : A→ X × Y and ψ ∈ Gauss(X × Y).

Now we consider the morphism x 7→ f(x) + ψ in Gauss(A,X × Y) and find a conditional
f |X ∈ Gauss(X ×A, Y). Informally, this means we can obtain (X1, Y1) ∼ f(a) +ψ as follows:

X1 ∼ fX(a) + ψX , Y1 ∼ g(x, a) + ξ

Similarly we can use conditionals in LinRel+ to find a linear function h : X → Y and a
subspace H ⊆ Y such that (X2, Y2) ∼ D can be obtained as

X2 ∼ DX , Y2 ∼ h(X2) +H

Thus a joint sample (X,Y) ∼ f(x) + ψ +D can be obtained using the following process

X1 ∼ fX(a) + ψX , X2 ∼ DX , X = X1 +X2

Y1 ∼ g(X1, a) + ξ, Y2 ∼ h(X2) +H, Y = Y1 + Y2

By construction we have X1 ∈ KX , X2 ∈ DX . BecauseK was chosen such that KX⊕DX = X,
we can extract the individual values of X1, X2 from X via the projections PKX

, PDX
: X → X.

A conditional for φ is thus given by the formula

φ|X(x, a) = g(PKX
(x), a) + h(PDX

(x)) + ξ +H ◀

Fractals from Regular Behaviours
Todd Schmid # Ñ

University College, London, UK

Victoria Noquez #

St. Mary’s College of California, Moraga, CA, USA

Lawrence S. Moss # Ñ

Indiana University, Bloomington, IN, USA

Abstract
We are interested in connections between the theory of fractal sets obtained as attractors of iterated
function systems and process calculi. To this end, we reinterpret Milner’s expressions for processes
as contraction operators on a complete metric space. When the space is, for example, the plane,
the denotations of fixed point terms correspond to familiar fractal sets. We give a sound and
complete axiomatization of fractal equivalence, the congruence on terms consisting of pairs that
construct identical self-similar sets in all interpretations. We further make connections to labelled
Markov chains and to invariant measures. In all of this work, we use important results from process
calculi. For example, we use Rabinovich’s completeness theorem for trace equivalence in our own
completeness theorem. In addition to our results, we also raise many questions related to both
fractals and process calculi.

2012 ACM Subject Classification Theory of computation → Process calculi

Keywords and phrases fixed-point terms, labelled transition system, fractal, final coalgebra, equa-
tional logic, completeness

Digital Object Identifier 10.4230/LIPIcs.CALCO.2023.14

Funding Todd Schmid: Partially funded by ERC Grant Autoprobe (grant agreement 10100269).
Lawrence S. Moss: Supported by grant #586136 from the Simons Foundation.

Acknowledgements We would like to thank Alexandra Silva and Dylan Thurston for helpful
discussions. The images in Figures 1 and 2 were made using SageMath and GIMP.

1 Introduction

Hutchinson noticed in [13] that many familiar examples of fractals can be captured as the
set-wise fixed-point of a finite family of contraction (i.e., distance shrinking) operators on
a metric space. He called these spaces (strictly) self-similar, since the intuition behind the
contraction operators is that they are witnesses for the appearance of the fractal in a proper
(smaller) subset of itself. For example, the famous Sierpiński gasket is the unique nonempty
compact subset of the plane left fixed by the union of the three operators σa, σb, σc : R2 → R2

in Figure 1. The Sierpiński gasket is a scaled-up version of each of its thirds.
The self-similarity of Hutchinson’s fractals hints at an algorithm for constructing them:

Each point in a self-similar set is the limit of a sequence of points obtained by applying the
contraction operators one after the other to an initial point. In the Sierpiński gasket, the
point (1/4,

√
3/4) is the limit of the sequence

p, σb(p), σbσa(p), σbσaσa(p), σbσaσaσa(p), . . . (1)

where the initial point p is an arbitrary element of R2 (note that σb is applied last). Hutchinson
showed in [13] that the self-similar set corresponding to a given family of contraction operators
is precisely the collection of points obtained in the manner just described. The limit of the

© Todd Schmid, Victoria Noquez, and Lawrence S. Moss;
licensed under Creative Commons License CC-BY 4.0

10th Conference on Algebra and Coalgebra in Computer Science (CALCO 2023).
Editors: Paolo Baldan and Valeria de Paiva; Article No. 14; pp. 14:1–14:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:toddwayneschmid@gmail.com
http://www.toddtoddtodd.net/
https://orcid.org/0000-0002-9838-2363
mailto:vln1@stmarys-ca.edu
https://orcid.org/0000-0001-5517-0929
mailto:lmoss@indiana.edu
https://iulg.sitehost.iu.edu/moss/
https://orcid.org/0000-0002-9908-5774
https://doi.org/10.4230/LIPIcs.CALCO.2023.14
https://www.sagemath.org/
https://www.gimp.org/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Fractals from Regular Behaviours

sequence in (1) does not depend on the initial point p because σa, σb, σc are contractions.
Much like digit expansions to real numbers, every stream of a’s, b’s, and c’s corresponds to a
unique point in the Sierpiński gasket. The point (1/4,

√
3/4), for example, corresponds to

the stream (b, a, a, a, . . .) ending in an infinite sequence of a’s. Conversely, every point in the
Sierpiński gasket comes from (in general more than one) corresponding stream.

From a computer science perspective, the languages of streams considered by Hutchinson
are the traces observed by one-state labelled transition systems, like the one in Figure 1. We
investigate whether one could achieve a similar effect with languages of streams obtained from
labelled transition systems having more than one state. Observe, for example, Figure 2. This
twisted version of the Sierpiński gasket is constructed from a two-state labelled transition
system. Each point in the twisted Sierpiński gasket corresponds to a stream of a’s, b’s, and
c’s, but not every stream corresponds to a point in the set: The limit corresponding to
(c, a, b, c, c, c, . . .) is (3/4,

√
3/8), for example.

A labelled transition system paired with an interpretation of its labels as contractions on a
complete metric space is the same data as a directed-graph iterated function system (GIFS), a
generalization of iterated function systems introduced by Mauldin and Williams [18]. GIFSs
generate their own kind of self-similar set, and much work has been done to understand the
geometric properties of fractal sets generated by GIFSs [7–10,18]. We take this work in a
slightly different direction by presenting a coalgebraic perspective on GIFSs, seeing each
labelled transition system as a “recipe” for constructing fractal sets.

In analogy with the theory of regular languages, we call the fractals generated by finite
labelled transition systems regular subfractals, and give a logic for deciding if two labelled
transition systems represent the same recipe under all interpretations of the labels. By
identifying points in the fractal set generated by a labelled transition system with traces
observed by the labelled transition system, it is reasonable to suspect that two labelled
transition systems represent equivalent fractal recipes – i.e., they represent the same fractal
under every interpretation – if and only if they are trace equivalent. This is the content of
Theorem 4.4, which allows us to connect the theory of fractal sets to mainstream topics in
computer science.

Labelled transition systems are a staple of theoretical computer science, especially in
the area of process algebra [1], where a vast array of different notions of equivalence and
axiomatization problems have been studied. We specifically use a syntax introduced by
Milner in [22] to express labelled transition systems as terms in an expression language with
recursion. This leads us to a fragment of Milner’s calculus consisting of just the terms that
constitute recipes for fractal constructions. Using a logic of Rabinovich [25] for deciding
trace equivalence in Milner’s calculus, we obtain a complete axiomatization of fractal recipe
equivalence.

xa, b, c

σa

[
r

s

]
=

[1
2 r + 1

4
1
2 s +

√
3

4

]
σb

[
r

s

]
=

[
1
2 r
1
2 s

]
σc

[
r

s

]
=

[
1
2 r + 1

2
1
2 s

]

Figure 1 The Sierpiński gasket is the unique nonempty compact subset S of R2 such that
S = σa(S) ∪ σb(S) ∪ σc(S). Each of its points corresponds to a stream emitted by the state x.

T. Schmid, V. Noquez, and L. S. Moss 14:3

x

b, c

a
b, c

σa

[
r

s

]
=

[1
2 r + 1

4
1
2 s +

√
3

4

]
σb

[
r

s

]
=

[
r
2
s
2

]
σc

[
r

s

]
=

[
r
2 + 1

2
s
2

]
Figure 2 A twisted Sierpińksi gasket, depicted in red. In the construction of this set, σb and

σc are applied twice to a single copy of σa applied to the set. This has the effect of systematically
removing the “top” part of the Sierpiński gasket from its bottom thirds.

In his study of self-similar sets, Hutchinson also makes use of probability measures
supported on self-similar sets, called invariant measures. Each invariant measure is specified
by a probability distribution on the set of contractions generating its support. In the
last technical section of the paper, we adapt the construction of invariant measures to a
probabilistic version of labelled transition systems called labelled Markov chains, which
allows us to give a measure-theoretic semantics to terms in a probabilistic version of Milner’s
specification language, the calculus introduced by Stark and Smolka [27]. Our measure-
theoretic semantics of probabilistic process terms can be seen as a generalization of the trace
measure semantics of Kerstan and König [14]. We offer a sound axiomatization of equivalence
under this semantics and pose completeness as an open problem.

In sum, the contributions of this paper are as follows.
In Section 3, we give a fractal recipe semantics to process terms using a generalization of
iterated function systems.
In Section 4, we show that two process terms agree on all fractal interpretations if and
only if they are trace equivalent. This implies that fractal recipe equivalence is decidable
for process terms, and it allows us to derive a complete axiomatization of fractal recipe
equivalence from Rabinovich’s axiomatization [25] of trace equivalence of process terms.
Finally, we adapt the fractal semantics of process terms to the probabilistic setting in
Section 5 and propose an axiomatization of probabilistic fractal recipe equivalence.

We start with a brief overview of trace semantics in process algebra and Rabinovich’s Theorem
(Theorem 2.7) in Section 2.

2 Labelled Transition Systems and Trace Semantics

Labelled transition systems are a widely used model of nondeterminism. Given a fixed finite
set A of action labels, a labelled transition system (LTS) is a pair (X, α) consisting of a
set X of states and a transition function α : X → P(A × X). We generally write x a−→α y

if (a, y) ∈ α(x), or simply x a−→ y if α is clear from context, and say that x emits a and
transitions to y.

Given a state x of an LTS (X, α), we write ⟨x⟩α for the LTS obtained by restricting the
relations a−→ to the set of states reachable from x, meaning there exists a path of the form
x a1−→ x1 −→ · · · −→ xn−1

an−−→ xn. We refer to ⟨x⟩α as either the LTS generated by x, or as the
process starting at x. An LTS (X, α) is locally finite if ⟨x⟩α is finite for all states x.

CALCO 2023

14:4 Fractals from Regular Behaviours

ae a−→ e
e1

a−→ f

e1 + e2
a−→ f

e2
a−→ f

e1 + e2
a−→ f

e[µv e/v] a−→ f

µv e a−→ f

Figure 3 The relation a−→ ⊆ Term × Term defining (Term, γ).

Traces

In the context of the current work, nondeterminism occurs when a process branches into
multiple threads that execute in parallel. Under this interpretation, to an outside observer
(without direct access to the implementation details of an LTS), two processes that emit the
same set of sequences of action labels are indistinguishable.

Formally, let A∗ be the set of words formed from the alphabet A. Given a state x of an
LTS (X, α), the set trα(x) of traces emitted by x is the set of words a1 . . . an ∈ A∗ such that
there is a path of the form x a1−→ x1 −→ · · · −→ xn−1

an−−→ xn through (X, α). Two states x and
y are called trace equivalent if tr(x) = tr(y). Each trace language tr(x) is prefix-closed, which
for a language L means that w ∈ L whenever wa ∈ L.

Trace equivalence is a well-documented notion of equivalence for processes [3, 11], and we
shall see it in our work on fractals as well.

▶ Definition 2.1. A stream is an infinite sequence (a1, a2, . . .) of letters from A. A state x

in an LTS (X, α) emits a stream (a1, . . .) if for any n > 0, a1 · · · an ∈ tr(x). We write str(x)
for the set of streams emitted by x.

In our construction of fractals from LTSs, points are represented only by (infinite) streams.
We therefore focus primarily on LTSs with the property that for all states x, tr(x) is precisely
the set of finite prefixes of streams emitted by x. We refer to an LTS (X, α) satisfying this
condition as productive. Productivity is equivalent to the absence of deadlock states, states
with no outgoing transitions.

▶ Lemma 2.2. Let (X, α) be an LTS. Then the following are equivalent: (i) for any x, y ∈ X,
str(x) = str(y) if and only if tr(x) = tr(y); (ii) for any x ∈ X, α(x) ̸= ∅.

Specification

We use the following language for specifying processes: Starting with a fixed countably
infinite set {v1, v2, . . . } of variables, the set of terms is given by the grammar

v | ae | e1 + e2 | µv e

where v is vi for some i ∈ N, a ∈ A, and e, e1, e2 are terms.
Intuitively, the process ae emits a and then turns into e, and e1 + e2 is the process that

nondeterministically branches into e1 and e2. The process µv e is like e, but with instances
of v that appear free in e acting like goto expressions that return the process to µv e.

▶ Definition 2.3. A (process) term is a term e in which every occurrence of a variable v

appears both within the scope of a µv (−) (e is closed) and within the scope of an a(−) (e
is guarded). The set of process terms is written Term. The set of process terms themselves
form the LTS (Term, γ) defined in Figure 3.

In Figure 3, we use the notation e[g/v] to denote the expression obtained by replacing
each free occurrence of v in e (one which does not appear within the scope of a µv (−)
operator) with the expression g. Given e ∈ Term, the process specified by e is the LTS ⟨e⟩γ .

T. Schmid, V. Noquez, and L. S. Moss 14:5

(ID) e + e ≡ e

(CM) e2 + e1 ≡ e1 + e2

(AS) e1 + (e2 + e3) ≡ (e1 + e2) + e3

(DS) a(e1 + e2) ≡ ae1 + ae2

(FP) µv e ≡ e[µv e/v]

(CN)
(∀i) ei ≡ fi

g[e⃗/v⃗] ≡ g[f⃗/v⃗]

(AE)
µw e ≡ µv e[v/w]

(UA)
g ≡ e[g/v]
g ≡ µv e

Figure 4 The axioms and rules of the provable equivalence relation in addition to those of
equational logic (not shown). Here, e, ei, f, fi, g ∈ Term for all i. In (CN), g has precisely the free
variables v1, . . . , vn, and no variable that appears free in fi is bound in g for any i. In (AE), v does
not appear free in e.

▶ Remark 2.4. The set of process terms, as we have named them, is the fragment of Milner’s
fixed-point calculus from [22] consisting of only the terms that specify productive LTSs.

Labelled transition systems specified by process terms are finite and productive, and
conversely, every finite productive process is trace-equivalent to some process term.

▶ Lemma 2.5 ([22, Proposition 5.1]). For any e ∈ Term, the set of terms reachable from e in
(Term, γ) is finite. Conversely, if x is a state in a finite productive LTS (X, α), then there is
a process term e such that tr(e) = trα(x).

Axiomatization of trace equivalence

Given an interpretation of process terms as states in an LTS, and given the notion of
trace equivalence, one might ask if there is an algebraic or proof-theoretic account of trace
equivalence of process terms. Rabinovich showed in [25] that a complete inference system for
trace equivalence can be obtained by adapting earlier work of Milner [22]. The axioms of the
complete inference system include equations like e1 + e2 = e2 + e1 and a(e1 + e2) = ae1 + ae2,
which are intuitively true for trace equivalence.

To be more precise, given any function with domain Term, say σ : Term → Z, call an
equivalence relation ∼ sound with respect to σ if e ∼ f implies σ(e) = σ(f), and complete
with respect to σ if σ(e) = σ(f) implies e ∼ f . Then the smallest equivalence relation ≡ on
Term containing all the pairs derivable from the axioms and inference rules appearing in
Figure 4 is sound and complete with respect to tr = trγ : Term → P(A∗).

▶ Definition 2.6. Given e1, e2 ∈ Term, we say that e1 and e2 are provably equivalent if
e1 ≡ e2, and call ≡ provable equivalence.

▶ Theorem 2.7 (Rabinovich [25]). Let e1, e2 ∈ Term. Then e1 ≡ e2 iff tr(e1) = tr(e2).

▶ Example 2.8. Consider the processes specified by e1 = µw µv (a1a2v + a1a3w) and
e2 = µv (a1(a2v + a3v)). The traces emitted by both e1 and e2 are those that alternate
between a1 and either a2 or a3. We can show these expressions are trace equivalent via the
formal deduction in Figure 5.

Rabinovich’s theorem tells us that, up to provable equivalence, our specification language
consisting of process terms is really a specification language for languages of traces. In what
follows, we are going to give an alternative semantics to process terms by using LTSs to

CALCO 2023

14:6 Fractals from Regular Behaviours

e1 = µw µv (a1a2v + a1a3w)
(FP)
≡ µv (a1a2v + a1a3e1)

(FP)
≡ a1a2e1 + a1a3e1

(DS)
≡ a1(a2e1 + a3e1)

(UA)
≡ µv (a1(a2v + a3v))

e1

a3e1

a2f1

f1

a1

a1

a3 a2a1

a1

e2

a2e2 + a3e2

a1a2, a3

Figure 5 Deducing e1 ≡ e2. Above, f1 = µv (a1a2v + a1a3e1).

generate fractal subsets of metric spaces. The main result of our paper is that these two
semantics coincide: Two process terms are trace equivalent if and only if they generate the
same fractals. This is the content of Sections 3 and 4 below.

3 Fractals from Labelled Transition Systems

In the Sierpiński gasket S from Figure 1, every point of S corresponds to a stream of letters
from the alphabet {a, b, c}, and every stream corresponds to a unique point. To obtain
the point corresponding to a particular stream (a1, a2, a3, . . .) with each ai ∈ {a, b, c}, start
with any p ∈ R2 and compute the limit limn∈N σa1 · · · σan

(p). The point in the fractal
corresponding to (a1, a2, a3, . . .) does not depend on p because σa, σb, σc in Figure 1 are
contraction operators.

▶ Definition 3.1. Given a metric space (M, d), a contraction operator on (M, d) is a function
h : M → M such that for some r ∈ [0, 1), d(h(x), h(y)) ≤ r d(x, y) for any x, y ∈ M . The
number r is called a contraction coefficient of h. The set of contraction operators on (M, d)
is written Con(M, d).

For example, with the Sierpiński gasket (Figure 1) associated to the contractions σa, σb,
and σc, r = 1/2 is a contraction coefficient for all three maps. Now, given p, q ∈ R2,

d(σa1 · · · σan
(p), σa1 · · · σan

(q)) ≤ 1
2n

d(p, q)

for all n, so it follows that limn∈N σa1 · · · σan
(p) = limn∈N σa1 · · · σan

(q). For any finite set of
contraction operators {σa1 , . . . , σan} indexed by A and acting on a complete metric space
(M, d), every stream from A corresponds to a unique point in M .

▶ Definition 3.2. A contraction operator interpretation is a function σ : A → Con(M, d).
We usually write σa = σ(a). Given σ : A → Con(M, d) and a stream (a1, . . .) from A, define

σω : Aω → M σω(a1, . . .) = lim
n∈N

σa1 · · · σan
(x) (2)

where x ∈ M is arbitrary. The self-similar set corresponding to a contraction operator
interpretation σ is the set Sσ = {σω(a1, . . .) | (a1, . . .) is a stream from A}.

▶ Remark 3.3. Note that in (2), the contraction operators corresponding to the initial trace
(a1, . . . , an) are applied in reverse order. That is, σan is applied before σan−1 , σan−2 is applied
before σan−1 , and so on.

T. Schmid, V. Noquez, and L. S. Moss 14:7

Regular Subfractals

Generalizing the fractals of Mandelbrot [17], Hutchinson introduced self-similar sets in [13]
and gave a comprehensive account of their theory. In op. cit., Hutchinson defines a self-similar
set to be the invariant set of an iterated function system. In our terminology, an iterated
function system is equivalent to a contraction operator interpretation of a finite set A of
actions, and the invariant set is the total set of points obtained from streams from A. The
fractals constructed from a LTS paired with a contraction operator interpretation generalize
Hutchinson’s self-similar sets to nonempty compact sets of points obtained from certain
subsets of the streams, namely the subsets emitted by the LTS.

Write K(M, d) for the set of nonempty compact subsets of (M, d). Given a state x of
a productive LTS (X, α) and a contraction operator interpretation σ : A → Con(M, d), we
define J−Kα,σ : X → K(M, d) by

JxKα,σ = {σω(a1, . . .) | (a1, . . .) emitted by x} (3)

and call this the set generated by the state x. As we will see, JxKα,σ is always nonempty and
compact.

▶ Definition 3.4. Given a process term e ∈ Term and a contraction operator interpretation
σ : A → Con(M, d), the regular subfractal semantics of e corresponding to σ is JeKσ = JeKγ,σ.

For example, the set of points depicted in Figure 2 is the regular subfractal semantics of
µv (av + b(bv + cv) + c(bv + cv)) corresponding to the interpretation σ given in that figure.
The regular subfractal semantics of e is a proper subset of the Sierpiński Gasket, and in
particular does not contain the point corresponding to (c, a, b, c, b, c, . . .).

Systems and Solutions

Self-similar sets are often characterized as the unique nonempty compact sets that solve
systems of equations of the form

K = σ1(K) ∪ · · · ∪ σn(K)

with each σi a contraction operator on a complete metric space. For example, the Sierpiński
gasket is the unique nonempty compact solution to K = σa(K) ∪ σb(K) ∪ σc(K). In this
section, we are going to provide a similar characterization for regular subfractals that will
play an important role in the completeness proof in Section 4.

One way to think of an n-state LTS (X, α) is as a system of formal equations

xi = ak1xj1 + · · · + akm
xjm

indexed by X = {x1, . . . , xn}, where xi
akl−−→α xjl

for k1, . . . , km, j1, . . . , jm ≤ n.

▶ Definition 3.5. Given a contraction operator interpretation σ : A → Con(M, d), and an
LTS (X, α), we call a function φ : X → K(M, d) a (σ-)solution to (X, α) if for any x ∈ X,

φ(x) =
⋃

x
a−→y

σa(φ(y))

▶ Example 3.6. Let S be the Sierpiński gasket as a subset of R2. Let (X, α) be the LTS in
Figure 1. Then we have a single state, x, with x

a,b,c−−−→ x. The function φ : X → K(R2, d)
given by φ(s) = S is a solution to (X, α), because S = σa(S) ∪ σb(S) ∪ σc(S).

CALCO 2023

14:8 Fractals from Regular Behaviours

Finite productive LTSs have unique solutions.

▶ Lemma 3.7. Let (M, d) be a complete metric space, σ : A → Con(M, d), and (X, α) be a
finite productive LTS. Then (X, α) has a unique solution φα.

The proof of Lemma 3.7 makes use of the Hausdorff metric on K(M, d), defined

d(K1, K2) = max
{

sup
u∈K1

inf
v∈K2

d(u, v), sup
v∈K2

inf
u∈K1

d(u, v)
}

(4)

This equips K(M, d) with the structure of a metric space. If M is complete, so is K(M, d).
Incidentally, we need to restrict to nonempty sets in (4). This is the primary motivation
for the guardedness condition which we imposed on our terms. We also recall the Banach
fixed-point theorem, which allows for the computation of fixed-points by iteration.

▶ Theorem 3.8 (Banach [2]). Let (M, d) be a complete nonempty metric space and f : M → M

a contraction map. Then limn∈N fn(q) is the unique fixed-point of f .

Fix a complete nonempty metric space (M, d), a productive finite LTS (X, α), and a
contraction operator interpretation σ : A → Con(M, d). To compute the solution to (X, α),
we iteratively apply a matrix-like operator to the set K(M, d)X of vectors [Kx1 , . . . , Kxn

]
with entries in K(M, d) indexed by X. Formally, we define

[α]σ : K(M, d)X → K(M, d)X ([α]σK⃗)x =
⋃

x
a−→y

σa(Ky)

for each x ∈ X. Intuitively, [α]σ acts like an X × X-matrix of unions of contractions.

Proof of Lemma 3.7. Every fixed-point of [α]σ corresponds to a solution of (X, α). Given
a fixed-point F⃗ , i.e., [α]σF⃗ = F⃗ , and defining φ : X → K(M, d)X by φ(x) = Fx, we see that

φ(x) = Fx = ([α]σF⃗)x =
⋃

x
a−→y

σa(Fy) =
⋃

x
a−→y

σa(φ(y))

Conversely, if φ : X → K(M, d) is a solution to (X, α), then defining Fx = φ(x) we have

Fx = φ(x) =
⋃

x
a−→y

σa(φ(y)) =
⋃

x
a−→y

σa(Fy) = ([α]σF⃗)x

for each x ∈ X. Thus, it suffices to show that [α]σ has a unique fixed-point. By the Banach
Fixed-Point Theorem 3.8, we just need to show that [α]σ is a contraction operator. That is,
[α]σ ∈ Con(K(M, d)), where d is the Hausdorff metric. This point is standard in the fractals
literature; cf. [13]. ◀

Fractal Semantics and Solutions

Recall that the fractal semantics of a process term e with respect to a contraction operator
interpretation σ : A → Con(M, d) is the set JeKσ of limits of streams applied to points in the
complete metric space (M, d).

▶ Theorem 3.9. Let (X, α) be a finite productive LTS and let x ∈ X. Given a complete
metric space (M, d), and σ : A → Con(M, d),
1. JxKα,σ ∈ K(M, d), i.e., JxKα,σ is nonempty and compact.
2. J−Kα,σ : X → K(M, d) is the unique solution to (X, α).

T. Schmid, V. Noquez, and L. S. Moss 14:9

In particular, (Term, γ) is locally finite, and so by Lemma 3.7 has a unique solution.
Theorem 3.9 therefore implies that this solution is J−Kσ.

Given a solution φ and a state x, call φ(x) the x-component of the solution φ. We
obtain the following, which can be seen as an analogue of Kleene’s theorem for regular
expressions [15], as a direct consequence of Theorem 3.9.

▶ Theorem 3.10. A subset of a self-similar set is a regular subfractal if and only if it is a
component of a solution to a finite productive LTS.

4 Fractal Equivalence is Traced

We have seen that finite productive LTSs (LTSs that only emit infinite streams) can be
specified by process terms. We also introduced a family of fractal sets called regular
subfractals, those subsets of self-similar sets obtained from the streams emitted by a finite
productive LTS. An LTS itself is representative of a certain system of equations, and set-wise
the system of equations is solved by the regular subfractals corresponding to it. Going from
process terms to LTSs to regular subfractals, we see that a process term is representative of
a sort of uninterpreted fractal recipe, which tells us how to obtain a regular subfractal from
an interpretation of action symbols as contractions on a complete metric space.

▶ Definition 4.1. Given e, f ∈ Term, we write e ≈ f if for every complete metric space
(M, d) and every contraction operator interpretation σ : A → Con(M, d), JeKσ = JfKσ. We
say that e and f are fractal equivalent or that they are equivalent fractal recipes when e ≈ f .

▶ Theorem 4.2. Let e, f ∈ Term. Then e ≈ f if and only if str(e) = str(f).

In essence, this is a soundness/completeness theorem for our version of Rabinovich’s
logic with respect to its fractal semantics that we presented. Our proof relies on the logical
characterization of trace equivalence that we saw in Theorem 2.7.

▶ Lemma 4.3 (Soundness). For any e, f ∈ Term, if e ≡ f , then e ≈ f .

▶ Theorem 4.4 (Completeness). For any e, f ∈ Term,if e ≈ f , then e ≡ f .

Proof. Consider the space (Aω, d) of streams from A with the metric below:

d((a1, . . .), (b1, . . .)) = inf
{

2−n
∣∣ (∀i ≤ n) ai = bi

}
This space is the Cantor set on A symbols, a compact metric space. For any productive LTS
(X, α) and x ∈ X, str(x) is a nonempty closed subset of (Aω, d), for the following reason:
Given a Cauchy sequence {(a(i)

1 , . . .)}i∈N in str(x), let (a1, . . .) be its limit in (Aω, d). Then
x emits every finite initial segment of (a1, . . .) because for any N ∈ N there is an m ∈ N such
that (a1, . . . , am, a

(m)
m+1, . . .) ∈ str(x) for m > N . By compactness of (Aω, d), we therefore

have str(x) ∈ K(Aω, d), so str : X → K(Aω, d).
For each a ∈ A, let σa : Aω → Aω be the map σa(a1, . . .) = (a, a1, . . .). Then σ : A →

Con(Aω, d). By construction, str(x) =
⋃

x
a−→y

σa(str(y)) for any x ∈ X. By the uniqueness
of fixed points we saw in Lemma 3.7, we therefore have str(x) = JxKα,σ.

To finish the proof, consider (Term, γ). If e, f ∈ Term and e ≈ f , then in particular,
str(e) = str(f), because str = J−Kγ,σ with σ : A → Con(Aω, d) as above. Since (Term, γ) is
productive, tr(e) = str(e) and tr(f) = str(f), so in particular, e and f are trace equivalent.
By Rabinovich’s Theorem, Theorem 2.7, e ≡ f , as desired. ◀

CALCO 2023

14:10 Fractals from Regular Behaviours

5 A Calculus of Subfractal Measures

Aside from showing the existence of self-similar sets and their correspondence with contraction
operator interpretations (in Hutchinson’s terminology, iterated function systems), Hutchinson
also shows that every probability distribution on the contractions corresponds to a unique
measure, called the invariant measure, that satisfies a certain recursive equation and whose
support is the self-similar set. In this section, we replay the story up to this point, but
with Hutchinson’s invariant measure construction instead of the invariant (self-similar) set
construction. We make use of a probabilistic version of LTSs called labelled Markov chains,
as well as a probabilistic version of Milner’s specification language introduced by Stark and
Smolka [27] to specify fractal measures. Similar to how fractal equivalence coincides with
trace equivalence, fractal measure equivalence is equivalent to a probabilistic version of trace
equivalence due to Kerstan and König [14].

Invariant measures

Recall that a Borel probability measure on a metric space (M, d) is a [0, ∞]-valued function
ρ defined on the Borel subsets of M (the smallest σ-algebra containing the open balls of
(M, d)) that is countably additive and assigns ρ(∅) = 0 and ρ(M) = 1.

Hutchinson shows in [13] that, given σ : A → Con(M, d), each probability distribution
ρ : A → [0, 1] on A gives rise to a unique Borel probability measure ρ̂, called the invariant
measure, satisfying the equation below and supported by the self-similar set Sσ:

ρ̂(B) =
∑
a∈A

ρ(a) σ#
a ρ̂(B)

Here and elsewhere, the pushforward measure f#ρ̂ with respect to a continuous map f is
defined by f#ρ̂(B) = ρ̂(f−1(B)) for any Borel subset B of (M, d).

We can view the specification ρ of the invariant measure ρ̂ as a one-state Markov process
with a loop labelled with each letter from A, similar to how self-similar sets are specified with
a one-state productive LTS. We can adapt this construction to multiple states by moving
from probability distributions on A to labelled Markov chains, where again, the labels are
interpreted as contraction maps.

Labelled Markov Chains

Let D denote the finitely supported probability distribution functor on the category of sets.

▶ Definition 5.1. A labelled Markov chain (LMC) is a pair (X, β) consisting of a set X of
states and a function β : X → D(A × X). A homomorphism of LMCs h : (X, βX) → (Y, βY)
is a function h : X → Y such that D(h) ◦ βX = βY ◦ h. We write x

r|a−−→β y if β(x)(a, y) = r,
often dropping the symbol β if it is clear form context.

As we have already seen, given a contraction operator interpretation σ : A → Con(M, d),
every state x of a productive LTS (X, α) with labels in A corresponds to a regular subfractal
JxKα,σ of Sσ. This regular subfractal is defined to be the continuous image of the set str(x)
under the map σω : (Aω, dσ) → (M, d), where dσ is determined by the contraction coefficients
of the σa’s as follows: Given a nonzero contraction coefficient ca of σa for each a ∈ A, define
dσ((a1, . . .), (b1, . . .)) =

∏n
i=1 cai , where n is the least index such that an+1 ̸= bn+1. The

family JxKα,σ is characterized by its satisfaction of the equations representing the LTS (X, α).

T. Schmid, V. Noquez, and L. S. Moss 14:11

Every LMC (X, β) has an underlying LTS (X, β̄), where β̄(x) = {(a, y) | β(x)(a, y) > 0}.
For each x ∈ X, we are going to define a probability measure β̂σ(x) on Sσ whose support
is JxKβ̄,σ, and that satisfies a recursive system of equations represented by the LMC (X, β).
Roughly, β̂σ(x) is the pushforward of a certain Borel probability measure β̂(x) on Aω that
does not depend on the contraction operator interpretation σ.

We begin by topologizing Aω, using as a basis the sets of the form

Ba1···an
= {(a1, . . . , an, b1, . . .) | (b1, . . .) ∈ Aω}

Given a state x of a LMC (X, β) and a word w = a1 · · · an, we follow Kerstan and König [14]
and define the trace measure of the basic open set Bw by

β̂(x)(Bw) =
∑

{r1 · · · rn | x
r1|a1−−−→ x1 −→ · · · rn|an−−−→ xn} (5)

where β̂(Bϵ) = β̂(Aω) = 1. This defines a unique Borel probability measure on (Aω, d).

▶ Proposition 5.2. Let j : A∗ → [0, 1] satisfy j(w) =
∑

a∈A j(wa) for any w ∈ A∗ and
j(ϵ) = 1, where ϵ is the empty word. Then there is a unique Borel probability measure ρ on
(Aω, d) such that for any w ∈ A∗, ρ(Bw) = j(w).

Proof. This is an easy consequence of the Identity and Extension Theorems for σ-finite
premeasures. See Propositions 2.3 to 2.5 of [14]. ◀

In particular, given any LMC (X, β), β̂(x)(Bw) =
∑

a∈A β̂(x)(Bwa), so there is a unique
Borel probability measure β̂(x) on Aω such that (5) holds for any basic open set Bw.

▶ Definition 5.3. Let (X, β) be a LMC, and σ : A → Con(M, d) be a contraction operator
interpretation in a complete metric space. For each x ∈ X, we define the regular subfractal
measure corresponding to x to be β̂σ(x) = σ#

ω β̂(x).

Intuitively, the regular subfractal measure of a state in a LMC under a contraction
operator interpretation computes the probability that, if run stochastically according to the
probabilities labelling the edges, the sequence of points of M observed in the run eventually
lands within a given Borel subset of (M, d).

Systems of Probabilistic Equations

Given a complete metric space (M, d), let P(M, d) be the set of Borel probability measures
on (M, d). In previous sections, we made use of the fact that, when σ : A → Con(M, d),
we can see K(M, d) as a semilattice with operators, i.e., union acts as a binary operation
∪ : K(M, d)2 → K(M, d) and each σa : K(M, d) → K(M, d) distributes over ∪. Analogously,
equipped with σ : A → Con(M, d), P(M, d) is a convex algebra with operators. Formally, for
any r ∈ [0, 1], there is a binary operation ⊕r : P(M, d)2 → P(M, d) defined (ρ1 ⊕r ρ2)(B) =
rρ1(B) + (1 − r)ρ2(B), over which each σ#

a distributes, i.e.,

σ#
a (ρ1 ⊕r ρ2) = σ#

a ρ1 ⊕r σ#
a ρ2

We also make use of a summation notation defined by

r1 · ρ1 ⊕ · · · ⊕ rn · ρn = ρn ⊕rn

(
r1

1 − rn
· ρi ⊕ · · · ⊕ rn−1

1 − rn
· ρi

)
for any r1, . . . , rn ∈ [0, 1).

CALCO 2023

14:12 Fractals from Regular Behaviours

Given a contraction operator interpretation, an LMC (X, β) can be thought of as a system
of equations with one side a polynomial term in a convex algebra with operators,

xi = ri1 · ai1xk1 ⊕ ri2 · ai2xk2 ⊕ · · · ⊕ rim · aimxkm

where X = {x1, . . . , xn} and xi
rij |aij−−−−→ xkm

for each i, j ≤ m.

▶ Definition 5.4. Let (X, β) be a LMC, and let σ : A → Con(M, d). A solution to (X, β) is
a function φ : X → P(M, d) such that for any x ∈ X and any Borel set B,

φ(x)(B) =
∑

x
r|a−−→y

r σ#
a (φ(y))(B)

Every finite LMC admits a unique solution, and moreover, the unique solution is the
regular subfractal measure from Definition 5.3.

▶ Theorem 5.5. Let (X, β) be a LMC, x ∈ X, and σ : A → Con(M, d). Then the map
β̂σ : X → P(M, d) is the unique solution to (X, β).

Since the support of β̂(x) is precisely str(x), the support of β̂σ(x) is precisely σω(str(x)),
which we have already seen is the regular subfractal determined by the state x of the
underlying LTS of (X, β).

Probabilistic Process Algebra

Finally, we introduce a syntax for specifying LMCs. Our specification language is essentially
the productive fragment of Stark and Smolka’s process calculus [27], meaning that the
expressions do not involve deadlock and all variables are guarded.

▶ Definition 5.6. The set of probabilistic terms is given by the grammar

v | ae | e1 ⊕r e2 | µv e

Here r ∈ [0, 1], and otherwise we make the same stipulations as in Definition 2.3. The set of
probabilistic process terms PTerm consists of the closed and guarded probabilistic terms.

Instead of languages of streams, the analog of trace semantics appropriate for probabilistic
process terms is a measure-theoretic semantics consisting of trace measures introduced earlier
in this section (Equation (5)).

▶ Definition 5.7. We define the LMC (PTerm, δ) in Figure 6 and call it the syntactic
LMC. The trace measure semantics trm(e) of a probabilistic process term e is defined
to be trm(e) = δ̂(x). Given σ : A → Con(M, d), the subfractal semantics of e ∈ PTerm
corresponding to σ is δ̂σ(e).

Intuitively, the trace measure semantics of a process term e assigns a Borel set of streams
B the probability that e eventually emits a word in B. Trace measure semantics can be
computed inductively as follows.

▶ Lemma 5.8. For any w ∈ A∗, a ∈ A, e, ei ∈ PTerm, and r ∈ [0, 1], trm(e)(Aω) = 1 and

trm(ae)(Bw) =
{

trm(e)(Bu) w = au

0 otherwise

trm(e1 ⊕r e2)(Bw) = r trm(e1)(Bw) + (1 − r) trm(e2)(Bw)
trm(µv e)(Bw) = trm(e[µv e/v])(Bw)

T. Schmid, V. Noquez, and L. S. Moss 14:13

δ(ae)(b, f) =
{

1 f = e and b = a

0 otherwise

δ(e1 ⊕r e2)(b, f) = rδ(e1)(b, f) + (1 − r)δ(e2)(b, f)
δ(µv e)(b, f) = δ(e[µv e/v])(b, f)

Figure 6 The LMC structure (PTerm, δ). Above, a, b ∈ A,
∑

ri = 1, and e, ei, f ∈ PTerm.

(ID) e ⊕r e ≡ e

(CM) e1 ⊕r e2 ≡ e2 ⊕1−r e1

(AS) (e1 ⊕r e2) ⊕s e3 ≡ e1 ⊕rs (e2 ⊕ s(1−r)
1−rs

e3)

(DS) a(e1 ⊕r e2) ≡ ae1 ⊕r ae2

(FP) µv e ≡ e[µv e/v]

(CN)
(∀i) ei ≡ fi

g[e⃗/v⃗] ≡ g[f⃗/v⃗]

(AE)
µw e ≡ µv e[v/w]

(UA)
g ≡ e[g/v]
g ≡ µv e

Figure 7 Axioms for probabilistic trace equivalence. Above, e, e1, e2 ∈ PTerm, a ∈ A, r, s ∈ [0, 1],
and rs ̸= 1. Also, in (AE), v is not free in e.

Similar to the situation with trace semantics and regular subfractals, trace measure
semantics and subfractal measure semantics identify the same probabilistic process terms.

▶ Theorem 5.9. Let e, f ∈ PTerm. Then trm(e) = trm(f) if and only if for any contraction
operator interpretation σ : A → Con(M, d), δ̂σ(e) = δ̂σ(f).

Axiomatization

Figure 7 outlines an inference system for determining when the subfractal measures corres-
ponding to two expressions coincide.

▶ Definition 5.10. Given e, f ∈ PTerm, write e ≡ f and say that e and f are provably
equivalent if the equation e = f can be derived from inference rules in Figure 7.

▶ Theorem 5.11 (Soundness). For any e, f ∈ PTerm, if e ≡ f , then for any complete metric
space (M, d) and any σ : A → Con(M, d), δ̂σ(e) = δ̂σ(f).

Unlike the situation with trace equivalence, it is not known if these axioms are complete
with respect to subfractal measure semantics. We leave this as a conjecture.

▶ Conjecture 5.12 (Completeness). Figure 7 is a complete axiomatization of trace measure
semantics. That is, for any e, f ∈ PTerm, if for any complete metric space (M, d) and any
σ : A → Con(M, d) we have δ̂σ(e) = δ̂σ(f), then e ≡ f .

We expect that Conjecture 5.12 can be proven in a similar manner to Theorem 4.4.

6 A Question about Regular Subfractals

Certain regular subfractals that have been generated by LTSs with multiple states happen
to coincide with self-similar sets using a different alphabet of action symbols and under a
different contraction operator interpretation. For example, the twisted Sierpiński gasket in
Figure 2 is the self-similar set generated by the iterated function system consisting of the
compositions σa, σbσb, σbσc, σcσb, and σcσc.

CALCO 2023

14:14 Fractals from Regular Behaviours

▶ Question 1. Is every regular subfractal a self-similar set? In other words, are there regular
subfractals that can only be generated by a multi-state LTS?

▶ Example 6.1. To illustrate the subtlety of this question, consider the following LTS.

x
b

a b

The state x emits (a, a, . . .) (an infinite stream of a’s) and (a, . . . , a, b, b, . . .), a stream with
some finite number (possibly 0) of a’s followed by an infinite stream of b’s. Now let M = R
with Euclidean distance and consider the contraction operator interpretation σa(r) = 1

2 r and
σb(r) = 1

2 r + 1
2 . Let K = {0} ∪ { 1

2n |n ≥ 0}. Then K is the component of the solution at x.
This example is interesting because unlike the Twisted Sierpiński gasket in Figure 2, there is
no obvious finite set of compositions σa and σb such that K is the self-similar set generated
by that iterated function system.

There is an LTS (X, α) with X a singleton set {x}, and a contraction operator inter-
pretation σx whose solution is K. We take the set of action labels underlying X to be
B = {f, g, h} and use the contraction operator interpretation σf (r) = 0, σg(r) = 1 and
σh(r) = 1

2 r. It is easy to verify that K =
⋃

i∈{f,g,h} σi(K).
But we claim that K is not obtainable using a single-state LTS and the same contractions

σa(r) = 1
2 r and σb(r) = 1

2 r + 1
2 , or using any (finite) compositions of σa and σb. Indeed,

suppose there were such a finite collection σ1, . . . σn consisting of (finite) compositions of σa

and σb such that K =
⋃n

i=1 σi(K). Since 1 ∈ K, we must be using the stream (b, b, b, . . .)
(since if there is an a at position n, the number obtained would be ≤ 1 − 1

2n < 1), so some σi

must consist of a composition of σb some number m ≥ 1 of times with itself. Similarly, the
only way to obtain 0 is with (a, a, a, . . .), so there must be some σj which is a composition of
σa some number of times p ≥ 1 with itself. But then limn→∞ σi ◦σj ◦σn

i (r) = 1− (2p−1
2m+p) > 1

2 ,
since m, p ≥ 1. That point must be in the subset of R generated by this LTS. However, it is
not in K, since 1

2 < 1 − (2p−1
2m+p) < 1.

More generally, we cannot obtain K using a single-state LTS even if we allowed finite
sums of compositions of σa and σb.

Once again, it is possible to find a single state LTS whose corresponding subset of R
is K, but to do this we needed to change the alphabet and also the contractions. Perhaps
un-coincidentally, the constant operators are exactly the limits of the two contractions from
the original interpretation. Our question is whether this can always be done.

On the other hand, the thesis of Boore [7] may contain an answer to Question 1. Boore
presents a (family) of 2-state GIFS whose attractors, total unions of their regular subfractals,
are not self-similar. Attractors of GIFSs are not precisely the same as regular subfractals, so
additional work is required to adapt Boore’s work to answer Question 1.

7 Related Work

This paper is part of a larger effort of examining topics in continuous mathematics from the
standpoint of coalgebra and theoretical computer science. The topic itself is quite old, and
originates perhaps with Pavlovic and Escardó’s paper “Calculus in Coinductive Form” [23].
Another early contribution is Pavlovic and Pratt [24]. These papers proposed viewing some
structures in continuous mathematics – the real numbers, for example, and power series
expansions – in terms of final coalgebras and streams. The next stage in this line of work was
a set of papers specifically about fractal sets and final coalgebras. For example, Leinster [16]

T. Schmid, V. Noquez, and L. S. Moss 14:15

offered a very general theory of self-similarity that used categorical modules in connection
with the kind of gluing that is prominent in constructions of self-similar sets. In a different
direction, papers like [4] showed that for some very simple fractals (such as the Sierpiński
gasket treated here), the final coalgebras were Cauchy completions of the initial algebras.

Generalizations of IFSs. Many generalizations of Hutchinson’s self-similar sets have ap-
peared in the literature. The generalization that most closely resembles our own is that of
an attractor for a directed-graph iterated function system (GIFS) [18]. A LTS paired with
a contraction operator interpretation is equivalent data to that of a GIFS, and equivalent
statements to Lemma 3.7 can be found for example in [9, 18,19]. As opposed to the regular
subfractal corresponding to one state, as we have studied above, the geometric object studied
in the GIFSs literature is typically the union of the regular subfractals corresponding to all
the states (in our terminology), and properties such as Hausdorff dimension and connectivity
are emphasized. We also distinguish our structures from GIFSs because we need to allow the
interpretations of the labels to vary in our semantics.

Another generalization is Mihail and Miculescu’s notion of attractor for a generalized
iterated function system [19]. A generalized IFS is essentially that of Hutchinson’s IFS
with multi-arity contractions – equivalent to a single-state labelled transition system where
labels have “higher arity”. A common generalization of GIFSs and generalized IFSs could
be achieved by considering coalgebras of the form X → P(

∐
n∈N An × Xn) and interpreting

each a ∈ An as an n-ary contraction. We suspect that a similar story to the one we have
outlined in this paper is possible for this common generalization.

Process algebra. The process terms we use to specify labelled transition systems and
labelled Markov chains are fragments of known specification languages. Milner used process
terms to specify LTSs in [22], and we have repurposed his small-step semantics here. Stark and
Smolka use probabilistic process terms to specify labelled Markov chains (in our terminology)
in [27], and we have used them for the same purpose. Both of these papers also include
complete axiomatizations of bisimilarity, and we have also repurposed their axioms.

However, fractal semantics is strictly coarser than bisimilarity, and in particular, bisim-
ilarity of process terms is trace equivalence. Rabinovich added a single axiom to Milner’s
axiomatization to obtain a sound and complete axiomatization of trace equivalence of ex-
pressions [25], which allowed us to derive Theorem 4.4. In contrast, the axiomatization of
trace equivalence for probabilistic processes is only well-understood for finite traces, see Silva
and Sokolova’s [26], which our probabilistic process terms do not exhibit. We use the trace
semantics of Kerstan and König [14] because it takes into account infinite traces. Infinite
trace semantics has yet to see a complete axiomatization in the literature.

Other types of syntax. In this paper, we used the specification language of µ-terms as
our basic syntax. As it happens, there are two other flavors of syntax that we could have
employed. These are iteration theories [5], and terms in the Formal Language of Recursion
FLR, especially its FLR0 fragment. The three flavors of syntax for fixed point terms are
compared in a number of papers: In [12], it was shown that there is an equivalence of
categories between FLR0 structures and iteration theories, and Bloom and Ésik make a
similar connection between iteration theories and the µ-calculus in [6]. Again, these results
describe general matters of equivalence, but it is not completely clear that for a specific
space or class of spaces that they are equally powerful or equally convenient specification
languages. We feel this matter deserves some investigation.

CALCO 2023

14:16 Fractals from Regular Behaviours

Equivalence under hypotheses. A specification language fairly close to iteration theories
was used by Milius and Moss to reason about fractal constructions in [21] under the guise of
interpreted solutions to recursive program schemes [20]. Moreover, [21] contains important
examples of reasoning about the equality of fractal sets under assumptions about the
contractions. Based on the general negative results on reasoning from hypotheses in the
logic of recursion [12], we would not expect a completeness theorem for fractal equivalence
under hypotheses. However, we do expect to find sound logical systems which account for
interesting phenomena in the area.

8 Conclusion

This paper connects fractals to trace semantics, a topic originating in process algebra. This
connection is our main contribution, because it opens up a line of communication between two
very different areas of study. The study of fractals is a well-developed area, and like most of
mathematics it is pursued without a special-purpose specification language. When we viewed
process terms as recipes for fractals, we provided a specification language that was not present
in the fractals literature. Of course, one also needs a contraction operator interpretation to
actually define a fractal, but the separation of syntax (the process terms) and semantics (the
fractals obtained using contraction operator interpretations of the syntax) is something that
comes from the tradition of logic and theoretical computer science. Similarly, the use of a
logical system and the emphasis on soundness and completeness is a new contribution here.

All of the above opens questions about fractals and their specifications. Our most concrete
question was posed in Section 6. We would also like to know if we can obtain completeness
theorems allowing for extra equations in the axiomatization. Lastly, and most speculatively,
since LTSs (and other automata) appear so frequently in decision procedures from process
algebra and verification, we would like to know if our semantics perspective on fractals can
provide new complexity results in fractal geometry.

We hope we have initiated a line of research where questions and answers come from
both the analytic side and from theoretical computer science.

References

1 Jos C. M. Baeten. A brief history of process algebra. Theor. Comput. Sci., 335(2-3):131–146,
2005. doi:10.1016/j.tcs.2004.07.036.

2 Stefan Banach. Sur les opérations dans les ensembles abstraits et leur application aux équations
intégrales. Fundamenta Mathematicae, 3:133–181, 1922.

3 Jan A. Bergstra, Alban Ponse, and Scott A. Smolka, editors. Handbook of Process Algebra.
North-Holland / Elsevier, 2001. doi:10.1016/b978-0-444-82830-9.x5017-6.

4 Prasit Bhattacharya, Lawrence S. Moss, Jayampathy Ratnayake, and Robert Rose. Fractal sets
as final coalgebras obtained by completing an initial algebra. In Franck van Breugel, Elham
Kashefi, Catuscia Palamidessi, and Jan Rutten, editors, Horizons of the Mind. A Tribute to
Prakash Panangaden - Essays Dedicated to Prakash Panangaden on the Occasion of His 60th
Birthday, volume 8464 of Lecture Notes in Computer Science, pages 146–167. Springer, 2014.

5 Stephen L. Bloom and Zoltán Ésik. Iteration Theories - The Equational Logic of Iterative
Processes. EATCS Monographs on Theoretical Computer Science. Springer, 1993. doi:
10.1007/978-3-642-78034-9.

6 Stephen L. Bloom and Zoltán Ésik. Solving polynomial fixed point equations. In Mathematical
foundations of computer science 1994 (Košice, 1994), volume 841 of Lecture Notes in Comput.
Sci., pages 52–67. Springer, Berlin, 1994.

https://doi.org/10.1016/j.tcs.2004.07.036
https://doi.org/10.1016/b978-0-444-82830-9.x5017-6
https://doi.org/10.1007/978-3-642-78034-9
https://doi.org/10.1007/978-3-642-78034-9

T. Schmid, V. Noquez, and L. S. Moss 14:17

7 Graeme C. Boore. Directed graph iterated function systems. PhD thesis, University of St.
Andrews, 2011. URL: http://hdl.handle.net/10023/2109.

8 G. A. Edgar and R. Daniel Mauldin. Multifractal decompositions of digraph recursive
fractals. Proceedings of the London Mathematical Society, s3-65(3):604–628, 1992. doi:
10.1112/plms/s3-65.3.604.

9 Gerald A. Edgar. Measure, Topology, and Fractal Geometry. Springer New York, NY, 1 edition,
1990. doi:10.1007/978-1-4757-4134-6.

10 Kenneth J. Falconer. The Geometry of Fractal Sets. Cambridge Tracts in Mathematics. Cam-
bridge University Press, 1986. URL: https://www.cambridge.org/us/academic/subjects/
mathematics/abstract-analysis/geometry-fractal-sets.

11 C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666–677, 1978.
doi:10.1145/359576.359585.

12 A. J. C. Hurkens, Monica McArthur, Yiannis N. Moschovakis, Lawrence S. Moss, and Glen T.
Whitney. Erratum: “The logic of recursive equations”. J. Symbolic Logic, 64, 1999.

13 John E. Hutchinson. Fractals and self similarity. Indiana University Mathematics Journal,
30(5):713–747, 1981. URL: http://www.jstor.org/stable/24893080.

14 Henning Kerstan and Barbara König. Coalgebraic Trace Semantics for Continuous Probabilistic
Transition Systems. Logical Methods in Computer Science, Volume 9, Issue 4, December 2013.
doi:10.2168/LMCS-9(4:16)2013.

15 S. C. Kleene. Representation of events in nerve nets and finite automata. In Claude Shannon
and John McCarthy, editors, Automata Studies, pages 3–41. Princeton University Press,
Princeton, NJ, 1956.

16 Tom Leinster. A general theory of self-similarity. Adv. Math., 226(4):2935–3017, 2011.
17 Benoit B. Mandelbrot. Fractals: Form, Chance, and Dimension. Mathematics Series. W. H.

Freeman, 1977. URL: https://books.google.com/books?id=avw_AQAAIAAJ.
18 R Daniel Mauldin and S. C. Williams. Hausdorff dimension in graph directed constructions.

Transactions of the American Mathematical Society, 309(2):811–829, 1988. doi:10.1090/
S0002-9947-1988-0961615-4.

19 Alexandru Mihail and Radu Miculescu. Generalized ifss on noncompact spaces. Fixed Point
Theory and Applications, 1(584215), 2010. doi:10.1155/2010/584215.

20 Stefan Milius and Lawrence S. Moss. The category-theoretic solution of recursive program
schemes. Theor. Comput. Sci., 366(1-2):3–59, 2006. doi:10.1016/j.tcs.2006.07.002.

21 Stefan Milius and Lawrence S. Moss. Equational properties of recursive program scheme
solutions. Cah. Topol. Géom. Différ. Catég., 50(1):23–66, 2009.

22 Robin Milner. A complete inference system for a class of regular behaviours. J. Comput. Syst.
Sci., 28(3):439–466, 1984. doi:10.1016/0022-0000(84)90023-0.

23 Dusko Pavlovic and Martín Hötzel Escardó. Calculus in coinductive form. In Thirteenth
Annual IEEE Symposium on Logic in Computer Science, Indianapolis, Indiana, USA, June
21-24, 1998, pages 408–417. IEEE Computer Society, 1998.

24 Dusko Pavlovic and Vaughan R. Pratt. The continuum as a final coalgebra. Theor. Comput.
Sci., 280(1-2):105–122, 2002.

25 Alexander Moshe Rabinovich. A complete axiomatisation for trace congruence of finite state
behaviors. In Stephen D. Brookes, Michael G. Main, Austin Melton, Michael W. Mislove,
and David A. Schmidt, editors, Mathematical Foundations of Programming Semantics, 9th
International Conference, New Orleans, LA, USA, April 7-10, 1993, Proceedings, volume
802 of Lecture Notes in Computer Science, pages 530–543. Springer, 1993. doi:10.1007/
3-540-58027-1_25.

26 Alexandra Silva and Ana Sokolova. Sound and complete axiomatization of trace semantics
for probabilistic systems. In Michael W. Mislove and Joël Ouaknine, editors, Twenty-seventh
Conference on the Mathematical Foundations of Programming Semantics, MFPS 2011, Pitts-
burgh, PA, USA, May 25-28, 2011, volume 276 of Electronic Notes in Theoretical Computer
Science, pages 291–311. Elsevier, 2011. doi:10.1016/j.entcs.2011.09.027.

CALCO 2023

http://hdl.handle.net/10023/2109
https://doi.org/10.1112/plms/s3-65.3.604
https://doi.org/10.1112/plms/s3-65.3.604
https://doi.org/10.1007/978-1-4757-4134-6
https://www.cambridge.org/us/academic/subjects/mathematics/abstract-analysis/geometry-fractal-sets
https://www.cambridge.org/us/academic/subjects/mathematics/abstract-analysis/geometry-fractal-sets
https://doi.org/10.1145/359576.359585
http://www.jstor.org/stable/24893080
https://doi.org/10.2168/LMCS-9(4:16)2013
https://books.google.com/books?id=avw_AQAAIAAJ
https://doi.org/10.1090/S0002-9947-1988-0961615-4
https://doi.org/10.1090/S0002-9947-1988-0961615-4
https://doi.org/10.1155/2010/584215
https://doi.org/10.1016/j.tcs.2006.07.002
https://doi.org/10.1016/0022-0000(84)90023-0
https://doi.org/10.1007/3-540-58027-1_25
https://doi.org/10.1007/3-540-58027-1_25
https://doi.org/10.1016/j.entcs.2011.09.027

14:18 Fractals from Regular Behaviours

27 Eugene W. Stark and Scott A. Smolka. A complete axiom system for finite-state probabilistic
processes. In Gordon D. Plotkin, Colin Stirling, and Mads Tofte, editors, Proof, Language,
and Interaction, Essays in Honour of Robin Milner, pages 571–596. The MIT Press, 2000.

Coinductive Control of Inductive Data Types
Paige Randall North
Department of Mathematics and Department of Information and Computing Sciences, Utrecht
University, The Netherlands

Maximilien Péroux
Department of Mathematics, University of Pennsylvania, Philadelphia, PA, USA

Abstract
We combine the theory of inductive data types with the theory of universal measurings. By doing so,
we find that many categories of algebras of endofunctors are actually enriched in the corresponding
category of coalgebras of the same endofunctor. The enrichment captures all possible partial
algebra homomorphisms, defined by measuring coalgebras. Thus this enriched category carries more
information than the usual category of algebras which captures only total algebra homomorphisms.
We specify new algebras besides the initial one using a generalization of the notion of initial algebra.

2012 ACM Subject Classification Theory of computation → Categorical semantics; Theory of
computation → Algebraic semantics; Theory of computation → Type structures

Keywords and phrases Inductive types, enriched category theory, algebraic data types, algebra,
coalgebra

Digital Object Identifier 10.4230/LIPIcs.CALCO.2023.15

Related Version Full Version: https://arxiv.org/abs/2303.16793

Funding Paige Randall North: This material is based upon work supported by the Air Force Office
of Scientific Research under award number FA9550-21-1-0334.

1 Introduction

In both the tradition of functional programming and categorical logic, one takes the perspect-
ive that most data types should be obtained as initial algebras of certain endofunctors (to use
categorical language). For instance, the natural numbers are obtained as the initial algebra
of the endofunctor X 7→ X + 1, assuming that the category in question (often the category
of sets) has a terminal object 1 and a coproduct +. Much theory has been developed around
this approach, which culminated in the notion of W-types [5].

In another tradition, for k a field, it has been long understood (going back at least to
Wraith, according to [3], and Sweedler [10]) that the category of k-algebras is naturally
enriched over the category of k-coalgebras, a fact which has admitted generalization to
several other settings (e.g. [3, 11, 8, 6]). In this paper, we extend this theory to the setting
of an endofunctor on a category – in particular those endofunctors that are considered in the
theory of W-types.

This work is thus the beginning of a development of an analogue of the theory of W-
types – not based on the notion of initial objects in a category of algebras, but rather on
generalized notions of initial objects in a coalgebra enriched category of algebras. Our main
result (Theorem 31) states that the categories of algebras of endofunctors considered in the
theory of W-types are often enriched in their corresponding categories of coalgebras. The
hom-coalgebras of our enriched category carry more information than the hom-sets in the
unenriched category that is usually considered in the theory of W-types. Because of our
passage to the enriched setting, we have more precise control than in the unenriched setting,

© Paige Randall North and Maximilien Péroux;
licensed under Creative Commons License CC-BY 4.0

10th Conference on Algebra and Coalgebra in Computer Science (CALCO 2023).
Editors: Paolo Baldan and Valeria de Paiva; Article No. 15; pp. 15:1–15:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CALCO.2023.15
https://arxiv.org/abs/2303.16793
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Coinductive Control of Inductive Data Types

and we are able to specify more data types than just those which are captured by the theory
of W-types. We do this by generalizing the notion of initial algebra, taking inspiration from
the notion of weighted limits. This general theory is presented in Section 3.

But first, in Section 2, we begin our paper with an enlightening example which serves
as an illustration of the relevance of our enriched theory and as a motivation for the more
general setting. Therein, we provide explicit calculations for the case of algebras over the
endofunctor X 7→ X + 1 on Set. In that example, we illustrate that it is appropriate to
interpret the elements of the hom-coalgebras as partial homomorphisms.

Indeed, in the classical Sweedler theory, the enrichment in coalgebras can also be under-
stood as encoding a notion of partial homomorphism. Though we do not study k-algebras in
this paper, we conclude this introduction with details of that classical theory. A measuring
from a k-algebra A to a k-algebra B, in the sense of Sweedler [10], is a k-coalgebra C together
with a linear homomorphism ϕ : C ⊗k A → B that is compatible with the multiplication and
identities of A and B. A measuring from A to B is equivalently a k-coalgebra C together
with a k-linear map ϕ : C → A → B such that

ϕc(aa′) =
n∑

i=1
ϕ

c
(1)
i

(a)ϕ
c

(2)
i

(a′), and ϕc(1A) = ε(c)1B ,

for all c ∈ C and a, a′ ∈ A where ∆(c) =
∑n

i=1 c
(1)
i ⊗ c

(2)
i is the comultiplication ∆: C →

C ⊗k C and ε : C → k is the counit of C. Therefore the k-linear maps ϕc : A → B can be
regarded as partial algebra homomorphisms, and the elements c ∈ C can be interpreted as
measuring how far each partial homomorphism ϕc is from being a total homomorphism. For
instance when ∆(c) = c ⊗ c, we have that ϕc : A → B is a total algebra homomorphism. Now
we proceed to tell an analogous story about endofunctors.

2 Illustrative example: id + 1

In this section, we illustrate our results in the context of one example: the endofunctor that
sends X 7→ X + 1 (the coproduct of X and a terminal set 1) in Set, the category of sets. The
initial algebra of this endofunctor is N, the natural numbers, and thus this endofunctor is
one of the most basic and important examples in the theory of W-types.

This section is one very long worked example of our general, categorical theory which
follows in Section 3.

We first review the classical story in Section 2.1, and afterwards our goal is to explain
how the category of algebras is naturally enriched in the category of coalgebras of this
functor and how we can use this extra structure to generalize the notion of initial algebra to
capture more algebras than just N. So, in Section 2.2 we explore by hand a notion of partial
homomorphism between algebras that will be captured more formally later in the enrichment.
Next, in Section 2.3, we explore the structure that this enrichment gives us. In Section 2.4,
we introduce a computational tool and compute explicitly some of the hom-objects of our
enrichment. Finally, in Section 2.5, we use this extra structure to generalize the notion of
initial object, and we describe some of the algebras that can be specified in this way.

Note that many of the proofs in this paper were relegated to the appendices, which do
not appear with this, published, version. Thus, we repeatedly reference proofs in the full
version, [7].

P. R. North and M. Péroux 15:3

2.1 Preliminaries
Here, we review the established theory regarding algebras and coalgebras of id + 1 that we
will use. See, for instance, [9, Ch. 3] for details.

We let Alg denote the category of algebras of id + 1, and we let CoAlg denote the category
of coalgebras of id + 1. Recall that an algebra is a pair (A, α) of a set A together with
a function α : A + 1 → A (equivalently, a successor endofunction α|A : A → A and a
zero α|1 : 1 → A), and a coalgebra is a pair (C, χ) of a set C together with a function
χ : C → C + 1, i.e., a partial endofunction. The initial object of Alg is (N, αN), where N is
the usual natural numbers, αN|N is the usual successor function x 7→ x + 1 and αN|1 picks
out 0 ∈ N. The terminal object of CoAlg is (N∞, χN∞) where N∞ is the extended natural
numbers N + {∞}, and the map χN∞ : N∞ → N∞ + 1 takes 0 ∈ N∞ to the element t ∈ 1
and all other x ∈ N∞ to x − 1 ∈ N∞.

Note that because N is initial in Alg, any algebra (A, αA) gets a function !A : N → A, and
thus it will be useful write nA for !A(n). That is, 0A is the zero of A, 1A is the successor of
0A, etc. For a ∈ A, we will often also write a + 1 as shorthand for αA(a) (especially when
the algebra structure morphism, here αA, does not have an explicit name).

Dually, because N∞ is terminal in CoAlg, there is a function J−K : C → N∞ for any
coalgebra (C, χA), and we will say that the index of a c ∈ C is JcK. Then the elements of C

that have index 0 are those c such that χC(c) = t, those that have index 1 are all those other
c such that χ2

C(c) = t, etc. For c ∈ C where JcK ̸= 0, we will also often write c − 1 to denote
χC(c) (especially when the coalgebra structure morphism does not have an explicit name).

Besides N, the initial algebra, we will often consider preinitial algebras, that is, algebras
A for which !A : N → A is epic. The nontrivial preinitial algebras are of the form n :=
({0, 1, ..., n}, αn) for any n ∈ N. Here, αn is the algebra structure that {0, 1, ..., n} inherits as
the quotient of N in Set that identifies all m ≥ n (see [7, Example 39] and the preceding [7,
Lemma 38]).

Dually, besides N∞, we will often consider subterminal coalgebras, that is, coalgebras
C for which J−K : C → N∞ is monic. The nontrivial ones are n◦ with underlying subset
{0, 1, ..., n} of N∞, N− with underlying subset N, and I with underlying subset {∞}. These
all inherit coalgebra structures from N∞ (see [7, Example 43] and the preceding [7, Lemma
42]).

2.2 Partial homomorphisms
Consider algebras A and B. We are, first of all, most interested in algebra homomorphisms
f : A → B (which we might call total algebra homomorphisms to distinguish them from the
notion of partial algebra homomorphisms which we are about to introduce). This means
that we have (H1) f(0A) = 0B and (H2) f(a + 1) = f(a) + 1 for all a ∈ A. If A is N, we
know that there is a total algebra homomorphism N → B, and we can use (H1) and (H2) to
inductively construct this homomorphism.

But depending on the nature of A and B, it might happen that we can only guarantee
(H1) and (H2) hold for some, but not all, a ∈ A, and thus an attempt to construct a total
algebra homomorphism A → B inductively might fail at some point. Perhaps A is a preinitial
algebra n and B is N. We can try to construct a total homomorphism, so we set f(0n) := 0N

following (H1), f(1n) := 1N following (H2), etc. This works until we get to nn. Since nn is
the successor of both (n − 1)n and nn, (H2) tells us to send nn both to nN and (n + 1)N. We
might say that induction worked only up to the nth step, or that we can define a n-partial
homomorphism.

CALCO 2023

15:4 Coinductive Control of Inductive Data Types

We formalize this idea in the following way, in which we inductively construct partial
homomorphisms in an attempt to approximate a total homomorphism. In our first attempt
at formalizing this idea, Construction 1 below, we make the simplifying assumption that A

is preinitial – simplifying because then there is at most one homomorphism A → B. We will
almost immediately drop this assumption in the more general Definition 2.

▶ Construction 1 (Partial induction). We seek to inductively approximate a homomorphism
A → B when A is preinitial. We define a sequence of functions fc : A → B as follows.
Initial step (P1). Define f0 : A → B by f0(a) := 0B for all a ∈ A.
Inductive step. Define fc+1 : A → B by:

(P2) fc+1(0A) := 0B;
(P3) fc+1(a + 1) := fc(a) + 1.

We stop when fc+1 is not well-defined.
If we have defined fc for all c ∈ N, then we will say that we have defined an ∞-partial

homomorphism. Otherwise, if we have only defined fc for all c ∈ {0, ..., n}, we will say that
we have defined an n-partial homomorphism.

Since A is preinitial, it is of the form n or N, and so every element is of the form xA

for x ∈ N. Thus, fc(xA) is xB for x ≤ c and otherwise cB. In particular, if A = n, then
fn = fm for all m ≥ n. Now we can see that there is an ∞-partial homomorphism A → B

if and only if there is a total homomorphism f : A → B. Indeed, if we have an ∞-partial
homomorphism A → B consisting of an fc : A → B for all c ∈ N, then we can define a
“diagonal” total homomorphism f : A → B by f(xA) := fx(xA). Conversely, if we have a
total homomorphism f : A → B, there is no obstruction to the inductive steps in defining a
∞-partial homomorphism. Thus, we can conflate the notions of a ∞-partial homomorphism
and a total homomorphism A → B when A is preinitial.

Notice that in the term “n-partial homomorphism” in the above Construction 1, n takes
values in N∞, the terminal coalgebra of our endofunctor. In fact, the above construction
follows the similar pattern of the measurings of algebras over a field that we mentioned in
the introduction. So now we make the following definition in which we encode the coalgebra
directly. This allows us to generalize Construction 1, dropping the hypothesis that A is
preinitial.

▶ Definition 2 (Measuring, cf. Definition 18 and Proposition 23). Consider algebras A and B

and a coalgebra C. A measuring from A to B by C is a function f : C → A → B such that:
(M1) fc(0A) = 0B for all c ∈ C;
(M2) fc(a + 1) = 0B for all JcK = 0 and for all a ∈ A;
(M3) fc(a + 1) = fc−1(a) + 1 for JcK ≥ 1 and for all a ∈ A.

We write µC(A, B) for the set of measurings from A to B. This defines a functor
µ : CoAlgop × Algop × Alg → Set.

For a measuring f and an element c ∈ C, we call fc a C-partial homomorphism.

▶ Example 3. Suppose that A is preinitial, so that in particular every element of A is of the
form 0A or a + 1.

Then there is a measuring from A to B by n◦ if the induction of Construction 1 creates
an n-partial homomorphism, and in this case the functions of the form fc constructed in
Construction 1 are the same as those specified in Definition 2.

There is a measuring by N− if the induction never fails, and again the functions fc from
Construction 1 and Definition 2 coincide. Now, note that exhibiting a measuring by N∞

amounts to exhibiting a measuring by N− together with a total algebra homomorphism f∞.
For such an A, then, exhibiting a measuring by N− is equivalent to exhibiting one by N∞.

P. R. North and M. Péroux 15:5

The reader might wonder why Definition 2 does not require (M2′) fc(x) = 0B for any
JcK = 0 and any x, but rather only requires fc(x) = 0B when JcK = 0 and x is either the zero
or a successor. In the previous example, when A is preinitial, every x ∈ A is either the zero
or a successor, so there is no difference between these two requirements. In the following
example, we consider an algebra A where this is not the case, and illustrate why we only
stipulate (M2) and not (M2′).

▶ Example 4. Consider the algebra A with underlying set N + N, where we will notate the
elements of the first copy of N as nA, and the elements of the second copy as n′. The zero
of A is then 0A and the successors are given by nA + 1 := (n + 1)A and n′ + 1 := (n + 1)′.
Total homomorphisms A → N are determined by the image of 0′ in N.

If we require (M2′) instead of (M2) in Definition 2, then in a measuring by N∞, f0(0′) = 0N

by (M2′), and in general fn(n′) = nN by (M3).
However, following Definition 2 as written, in a measuring by N∞, f0(0′) may be anything,

say z ∈ N and then general fn(n′) = (z + n)N.
Thus, Definition 2 does generalize the idea of inductively approximating a total homo-

morphism A → N from Construction 1.

Now notice another difference between Construction 1 and Definition 2. In Construction 1
we continue the induction as far as we can, but there is nothing of this flavor in Definition 2.
For instance, if there is a total algebra homomorphism A → B, then in the process described
by Construction 1, we will inductively construct fc for all c ∈ N. However, following
Definition 2, we could say that A → B is measured by 0 (which only amounts to exhibiting
f0), without making any claim about it being measured by other coalgebras – it does not
ask us to find any kind of maximum coalgebra C that measures A → B. To remedy this, we
make the following definition.

▶ Definition 5 (Universal measuring, cf. Definition 20). Let A and B be algebras.
We define the category of measurings from A to B to be the category whose objects are

pairs (C; f) of a coalgebra C and a measuring f : C → A → B, and whose morphisms
(C; f) → (D; g) are coalgebra homomorphisms d : C → D such that f = gd.

The universal measuring from A to B, denoted (Alg(A, B); u), is the terminal object in
the category of measurings from A to B. That is, if (C; f) is a measuring from A to B, then
there is a unique morphism ! : C → Alg(A, B) that makes the following diagram commute.

C A → B

Alg(A, B)

f

! u

▶ Example 6. Again, suppose that A is preinitial. In this case, the universal measuring is a
subterminal coalgebra [7, Lemma 37]. We have shown that if the induction of Construction 1
creates an n-partial homomorphism, then the maximum subterminal coalgebra that measures
A → B is n◦, so this is the universal measuring. And if the induction of Construction 1
creates an total homomorphism, then the maximum subterminal coalgebra that measures
A to B is N∞ itself, so this is the universal measuring. We will also show this fact more
directly (i.e., without reference to [7, Lemma 37]) in Section 2.4 below.

Since composing an arbitrary coalgebra homomorphism C → Alg(A, B) with u produces
a measuring C → A → B, we obtain a bijection, natural in C, A, B,

µC(A, B) ∼= CoAlg(C, Alg(A, B))

CALCO 2023

15:6 Coinductive Control of Inductive Data Types

showing that µ−(A, B) is represented by Alg(A, B). In Theorem 25, we will see that Alg(A, B)
always exists (for this and other endofunctors of interest). The coalgebra Alg(A, B) will
constitute the hom-coalgebra from A to B of our enriched category of algebras (Theorem 31).

Now, note that a measuring by the coalgebra I is a total algebra homomorphism. Thus,

Alg(A, B) ∼= µI(A, B) ∼= CoAlg(I, Alg(A, B))

and so we find the hom-sets of the category of algebras can be easily extracted from
Alg(A, B) – a statement that aligns with our intuition that Alg(A, B) is the set of total
algebra homomorphisms and Alg(A, B) is the coalgebra of partial algebra homomorphisms.

2.3 Composing partial homomorphisms
We will only prove that the universal measuring coalgebras form the hom-objects of our
enriched category in Theorem 31, but we can already work out how this enrichment behaves.
Thus, in this section, we describe the composition and identities of this enriched category.

Given algebras A, B, and T , we can always compose total homomorphisms f : A → B

and g : B → T to form a total homomorphism g ◦ f : A → T . We wish to do the same
for our partial homomorphisms. Consider coalgebras C and D, a C-partial homomorphism
fc : A → B, and a D-partial homomorphism gd : B → T . We can compose gd and
fc as functions to obtain gd ◦ fc : A → T , and we claim that this is a (D × C)-partial
homomorphism. Indeed D × C has a coalgebra structure where J(d, c)K = min(JdK, JcK) and
(d, c) − 1 = (d − 1, c − 1) if J(d, c)K > 0 for (d, c) ∈ D × C. This induces a symmetric monoidal
structure on CoAlg for which I is the unit (Proposition 30), and one can verify that gd ◦ fc is
a (D × C)-partial homomorphism.

Now we have constructed a function

µD(B, T) × µC(A, B) −→ µD×C(A, T)
(g, f) 7−→ g ◦ f

where g ◦ f : (D × C) → A → T is defined by (g ◦ f)(d,c) = gd ◦ fc. Thus, by the universal
property of Alg, we obtain a function

CoAlg(D, Alg(B, T)) × CoAlg(C, Alg(A, B)) −→ CoAlg(D × C, Alg(A, T)).

Applying this function to (idAlg(B,T), idAlg(A,B)), we obtain a composition morphism ◦ :
Alg(B, T) × Alg(A, B) → Alg(A, T) such that for (d, c) ∈ Alg(B, T) × Alg(A, B), we have
ud ◦ uc = ud◦c (where u is as in Definition 20).

Similarly, for any algebra A we might ask if there is an identity idA : I → Alg(A, A).
We showed above that Alg(A, A) ∼= CoAlg(I, Alg(A, A)). Thus, we take the image of idA ∈
Alg(A, A) under this bijection.

We leave it as an exercise for the interested reader to show by hand that this constitutes
an enrichment of Alg in (CoAlg, ⊗, I), i.e., that all the axioms for an enriched category
are satisfied by this choice of composition and identities. We will instead leave this result
(Theorem 31) to the general setting.

2.4 The convolution algebra
We now give an alternative representation of µC(A, B) that can be directly defined and
computed. In this section, we will be able to use it to compute Alg(A, B) without appealing
to [7, Lemma 37].

P. R. North and M. Péroux 15:7

In Definition 2, we defined µC(A, B) to be a certain subset of Set(C, Set(A, B)) ∼=
Set(A, Set(C, B)). We now identify that subset as the subset of (total) algebra homomorph-
isms A → Set(C, B) with a particular convolution algebra structure on Set(C, B).

▶ Definition 7 (Convolution algebra, cf. Definition 27). Given a coalgebra (C, χC) and an
algebra (B, αB), define the convolution algebra [C, B] to be the algebra whose underlying set
is Set(C, B), whose zero is the constant function C → B at 0B, and where f + 1 is defined by

(f + 1)(c) =
{

0B if JcK = 0;
f(c − 1) + 1 if JcK > 0.

This defines a functor [−, −] : CoAlgop × Alg → Alg.

Given a coalgebra (C, χC) and an algebra (B, αB), a function m : C → A → B is
a measuring if and only if the associated m̃ : A → C → B (under the bijection −̃ :
Set(C, Set(A, B)) → Set(A, Set(C, B))) underlies a homomorphism A → [C, B] of algebras.
Indeed, (M1) of Definition 2 for m is equivalent to (H1) m̃(0A) = 0[C,B] and criteria (M2)
and (M3) for f are equivalent to (H2) m̃(a + 1) = m̃(a) + 1.

Therefore, we find the following string of bijections, natural in C, A, B,

µC(A, B) ∼= CoAlg(C, Alg(A, B)) ∼= Alg(A, [C, B]) (1)

so that we see that µC(−, B) is represented by [C, B]. We can even find a representation for
µC(−, B), but we will leave this for the more general setting (Theorem 22). The interested
reader is encouraged to calculate that other representation in this example.

In practice, when we want to compute Alg(A, B), we will compute [C, B] and then apply
the universal property above. We do that now, computing some of the results of Example 6
without appealing to [7, Lemma 37].

▶ Example 8. We compute Alg(n, B) using the right-hand bijection in Equation (1).
We first observe the following for any coalgebra Z.

Alg(n, Z) ∼=

{
∗ if nZ = (n + 1)Z

∅ otherwise

Since we are considering Z := [C, B], we need to understand when n[C,B] = (n + 1)[C,B]. By
definition, 0[C,A] is the constant function at 0A. Then 1[C,A] is the function that takes every
c ∈ C of index 0 to 0B , and every other c ∈ C to 1B . Inductively, we can show that n[C,B](c) =
min(JcK, n)B . Thus, n[C,B] = (n + 1)[C,B] means that min(JcK, n)B = min(JcK, n + 1)B for all
c ∈ C, and this holds if and only if JcK ≤ n for all c ∈ C or nB = (n + 1)B . Now we have the
following.

CoAlg(C, Alg(n, B)) ∼= Alg(n, [C, B]) ∼=

∗ if JcK ≤ n for all c ∈ C

∗ if nB = (n + 1)B

∅ otherwise
(2)

In the case that nB = (n + 1)B , we find that Alg(n, B) has the universal property of the
terminal object, N∞.

Now suppose that nB ̸= (n + 1)B. Since CoAlg(C, n◦) = ∗ if and only if JcK ≤ n for all
c ∈ C, Alg(n, B) has the universal property of n◦.

CALCO 2023

15:8 Coinductive Control of Inductive Data Types

Now we have calculated the following

Alg(n, B) =
{

N∞ if nB = (n + 1)B

n◦ otherwise

This aligns with our expectations, since there is a total homomorphism n → B if nB = (n+1)B

but there is only an n-partial homomorphism n → B otherwise.
Finally, note that taking B := N, we have calculated Alg(n, N), the dual (Definition 29)

of n, to be n◦.

2.5 Generalizing initial objects
Now we turn to the question of specifying algebras other than N via a generalization of the
notion of initial algebra.

The fact that N is the initial object in Alg means that the algebra structure on an algebra
A specifies exactly one total algebra homomorphism N → A, and this can be constructed
inductively. Now we have introduced the notion of partial homomorphism which can be
constructed by partial induction (Construction 1). Thus, we might ask if we can formalize a
notion of being initial with respect to partial homomorphisms and partial induction.

Our calculations in this section so far have perhaps given us the intuition that the algebra
n represents n-partial homomorphisms in the way that N represents total homomorphisms.
Indeed, from Equation (2), there is a unique measuring f : n◦ → n → B for any algebra B.
Now we try to capture and elucidate this fact by rephrasing it to say that n is a certain kind
of initial object with respect to such partial homomorphisms.

There are multiple equivalent definitions of initial object, and we choose the one that is
amenable to generalization. We choose to define an initial object in a category C as an object
I ∈ C such that there is a unique function 1 → C(I, X) for all X ∈ C. Now we have brought
to the surface a parameter, here 1, that we can vary, inspired by the theory of weighted
limits.

▶ Definition 9 (C-initial algebra, cf. Definition 35). For a coalgebra C, we define a C-initial
algebra to be an algebra A such that there is a unique coalgebra morphism C → Alg(A, X)
for all algebras X.

▶ Remark 10. One may wonder what would happen if for a set S, we defined an S-initial
algebra to be an algebra A such that there is a unique function S → Alg(A, X) for all
X ∈ Alg. But every algebra is an ∅-initial algebra, and an S-initial algebra is an initial
algebra for any S ̸= ∅ (because functions S → T are unique only when S = ∅ or T ∼= 1).
Thus, we need to consider Alg(A, X) and not just Alg(A, X) to obtain interesting C-initial
algebras.

▶ Example 11. We have shown in Example 8 that n is an n◦-initial algebra.
Since Alg(A, X) ∼= CoAlg(I, Alg(A, X)), the initial algebra N is the (only) I-initial algebra.

In fact, since Alg(N, X) = N∞ for all X by [7, Lemma 37] or by a similar computation
to Example 8, we find that N is a C-initial algebra for any subterminal coalgebra (i.e.,
∅, n◦, N−, N∞).

Now we see that for instance, both n and N are n◦-initial algebras. Thus, n◦-initial
algebras are not determined up to isomorphism as initial algebras are. This captures the fact
that for an algebra B, we can construct n-partial homomorphisms from both n and N to B.

P. R. North and M. Péroux 15:9

▶ Definition 12 (Terminal C-initial algebra, cf. Definition 35). Consider the category whose
objects are C-initial algebras, and whose morphisms A → B are total algebra homomorphisms
A → B. Then we call the terminal object of this category the terminal C-initial algebra.

▶ Example 13. Since the only I-initial algebra is N, it is also the terminal C-initial algebra.

We want to show that n is the terminal n◦-initial algebra. However, we need another
computational tool. This is in fact an alternate generalization of the notion of initial algebra.

Above, we might have observed that an initial object can be characterized as the limit of
the identity functor and then, following the theory of weighted limits, considered objects
limC idAlg with the following universal property.

Alg(A, limC idAlg) ∼= limX∈Alg CoAlg(C, Alg(A, X))

We can immediately calculate (Proposition 36) that limC idAlg is C∗ := [C, N], the dual of C

(Definition 29). By the bijection above, there is a unique total algebra homomorphism from
each C-initial object to limC idAlg. This will help us understand the possible structure that a
C-initial object can have. But first, we must understand the structure of C∗.

▶ Example 14. Let C := n◦. Then elements of [n◦, N] are sequences of n+1 natural numbers.
The successor of a sequence (ai)n

i=0 is (bi)n
i=0 where b0 = 0 and bi+1 = ai + 1. Notice that

the successor of (bi)n
i=0 is (ci)n

i=0 where c0 = 0, c1 = 1 and otherwise ci+2 = ai + 2. Thus, we
can inductively show that the (n + 1)-st successor of any element of [n◦, N] is the sequence
(i)n

i=0, and the successor of this sequence is itself.
We claim that the unique morphism ![n◦,N] : N → [n◦, N] factors through n. We have

m[n◦,N] = (min(i, m))n
i=0. Thus, the restriction of the map ![n◦,N] to {0, ..., n} ⊂ N is injective,

and n[n◦,N] = m[n◦,N] for all m ≥ n.

▶ Example 15. Now we can show that n is the terminal n◦-initial algebra. In this calculation,
we use of the law of excluded middle for the only time in this paper.

Consider an n◦-initial algebra A.
First, we show that every a ∈ A is either the basepoint or a successor. So suppose that

there is an element a ∈ A that is not a basepoint or successor, and consider an algebra B

with more than one element. Then for any b ∈ B and any measure f : n◦ → A → B, we
can form a measure f̃ : n◦ → A → B such that f̃n(a) = b and f̃ agrees with f everywhere
else, since Definition 2 imposes no requirements on f̃n(a). Thus, there are multiple measures
n◦ → A → B, equivalently total algebra homomorphisms n◦ → Alg(A, B), so we find a
contradiction.

Now, we consider the unique map A → [n◦, N] and claim that this factors through the
injection n → [n◦, N], so that there is a unique A → n. Since every element of A is either a
basepoint or a successor, every element of A is either of the form nA or has infinitely many
predecessors. The elements of the form nA are mapped those to of the form n[n◦,N], and the
elements who have infinitely many predecessors can only be mapped to the “top element”
n[n◦,N] = (i)n

i=0, since this is the only element which has an m-th predecessor for any m ∈ N.
Thus, the unique A → [n◦, N] indeed factors through n.

Thus we have shown how to specify algebras of the form n in a way analogous to the
specification of N as an initial algebra. After determining an algebra structure on a set A,
we obtain a unique n-partial algebra homomorphism n → A.

CALCO 2023

15:10 Coinductive Control of Inductive Data Types

3 General theory

In this section, we now generalize the results of the previous section. So fix a symmetric
monoidal category (C, ⊗, I) and a lax symmetric monoidal endofunctor (F, ∇, η) (defined
below in Definition 16) on C.

3.1 Measuring coalgebras
In this section, we define the general notion of measuring for F . Note that in Section 2.2
above, it was convenient to define a measuring to be a certain kind of function C → A → B,
but here we first define the notion of measuring without requiring the monoidal structure to
be closed. That is, we define a measuring to be a certain kind of function C ⊗ A → B.

▶ Definition 16. That (F, ∇, η) is a lax symmetric monoidal endofunctor means that F is
an endofunctor on C with
(L1) a natural transformation ∇X,Y : F (X) ⊗ F (Y) −→ F (X ⊗ Y), for all X, Y ∈ C; and
(L2) a morphism η : I → F (I) in C;
such that (F, ∇, η) is associative, unital and commutative, as described in [7, Appendix A.2].

▶ Example 17. In Section 2, we considered the (cartesian closed) symmetric monoidal
category (Set, ×, 1). For the endofunctor id+1, we define ∇X,Y : (X+1)×(Y +1) → (X×Y)+1
to take (x, y) 7→ (x, y), (t, y) 7→ t, (x, t) 7→ t, (t, t) 7→ t for x ∈ X, y ∈ Y, t ∈ 1. We define
η : 1 → 1 + 1 to be the inclusion into the first summand.

▶ Definition 18 (Measuring, cf. Definition 2). Consider algebras (A, α) and (B, β), and a
coalgebra (C, χ). We call a map ϕ : C ⊗ A → B a measuring from A to B if it makes the
following diagram commute.

F (C) ⊗ F (A) F (C ⊗ A) F (B)

C ⊗ F (A)
C ⊗ A B

∇C,A F (ϕ)

β

χ⊗id

id⊗α ϕ

We denote by µC(A, B) the set of all measurings C ⊗ A → B.

If ϕ : C ⊗A → B is a measuring, a : (A′, α′) → (A, α) and b : (B, β) → (B′, β′) are algebra
homomorphisms, and c : (C ′, χ′) → (C, χ) is a coalgebra homomorphism, then one can check
that the composite

C ′ ⊗ A′ C ⊗ A B B′c⊗a ϕ b

is a measuring. Therefore, the assignment C, A, B 7→ µC(A, B) underlies a functor

µ : CoAlgop × Algop × Alg −→ Set.

We shall see that this functor is representable in each of its variables under reasonable
hypotheses.

▶ Example 19. The monoidal unit I of C is a coalgebra via the lax symmetric monoidal
structure η : I → F (I). Thus morphisms A → B in C are in bijection with morphisms
I⊗A → B in C, and one can check that a morphism A → B in C is an algebra homomorphism
if and only if I ⊗ A → B is a measure. Thus, µI(A, B) ∼= Alg(A, B).

P. R. North and M. Péroux 15:11

▶ Definition 20 (Universal measuring, cf. Definition 5). Let A and B be algebras.
We define the category of measurings from A to B to be the category whose objects are

pairs (C; f) of a coalgebra C and a measuring f : C ⊗ A → B, and whose morphisms
(C; f) → (D; g) are coalgebra homomorphisms d : C → D such that f = g(d ⊗ A).

The universal measuring from A to B, denoted (Alg(A, B), ev), is the terminal object (if
it exists) in the category of measurings from A to B. That is, if (C; f) is a measuring from
A to B, then there is a unique morphism ! : C → Alg(A, B) that makes the following diagram
commute.

C ⊗ A B

Alg(A, B) ⊗ A

f

!⊗A ev

If a universal measuring (Alg(A, B), ev) exists, then we obtain a representation Alg(A, B)
for µ−(A, B) : CoAlgop → Set. That is, we have the following bijection, natural in C, A, B.

µC(A, B) ∼= CoAlg(C, Alg(A, B)).

In the following sections, we will show that if C is closed and locally presentable and F is
accessible, then the universal measuring always exists.

3.2 Local presentability, accessibility, and the measuring tensor
We will now usually require that C be locally presentable and F is accessible [2, Def. 1.17 & 2.17].
Then Alg and CoAlg are also locally presentable, the forgetful functor Alg → C has a left
adjoint Fr, and the forgetful functor CoAlg → C has a right adjoint Cof [2, Cor. 2.75 & Ex. 2.j].
We will also use that these categories, as locally presentable categories, are complete and
cocomplete.

▶ Example 21. Set is locally presentable and id + 1 is accessible.

If C is locally presentable and F is accessible, then for a coalgebra (C, χ), and algebras
(A, α) and (B, β), a map ϕ : C ⊗ A → B uniquely determines an algebra homomorphism
ϕ′ : Fr(C ⊗ A) → (B, β). Notice then that a map ϕ : C ⊗ A → B is a measuring if and only if
both composites from Fr(C ⊗ FA) to (B, β) coincide in the following diagram.

Fr(C ⊗ FA) Fr(C ⊗ A) (B, β)
Fr(idC ⊗α)

f

ϕ′

In the above, f is obtained as adjunct under the free-forgetful adjunction of the composition

C ⊗ FA FC ⊗ FA F (C ⊗ A) F (Fr(C ⊗ A)) Fr(C ⊗ A),χ⊗id ∇C,A F (i) αFr

in which i is the unit of the free-forgetful adjunction and αFr is the algebra structure on the
free algebra Fr(C ⊗ A). We have now shown the following.

▶ Theorem 22. Suppose that C is locally presentable and F is accessible. Consider a coalgebra
C and an algebra A. Then the coequalizer of the following diagram in Alg exists, and we
denote it by C ▷ A and call it the measuring tensor of C and A.

Fr(C ⊗ FA) Fr(C ⊗ A) C ▷ A.
coeq

CALCO 2023

15:12 Coinductive Control of Inductive Data Types

Given any algebra B, a measuring ϕ : C ⊗ A → B uniquely corresponds to an algebra
homomorphism C ▷ A → B. In other words, we obtain a natural identification

µC(A, B) ∼= Alg(C ▷ A, B).

That is, the functor µC(A, −) : Alg → Set is represented by C ▷ A.

In the following sections, we will also construct representing objects for µC(−, B) and
µ−(A, B).

3.3 Measurings as partial homomorphisms
Now we will often assume that the symmetric monoidal structure of C is closed. Whenever we
do, we will denote the internal hom by C(−, −). In this section, we provide a dual description
of measurings when C is closed, generalizing Definition 2.

Note that since F is lax monoidal, it is also lax closed: that is, there is a map

∇̃X,Y : F (C(X, Y)) −→ C(FX, FY)

natural in X, Y ∈ C. Indeed, this is the adjunct under the adjunction − ⊗ FX ⊣ C(FX, −)
of the composition

F (C(X, Y)) ⊗ F (X) F (C(X, Y) ⊗ X) F (evX)−−−−→ F (Y),
∇C(X,Y),X

in which evX is the counit of the adjunction − ⊗ X ⊣ C(X, −).
Given a closed monoidal structure, we can connect the notion of measuring with our

notion of partial homomorphism from Section 2.

▶ Proposition 23 (cf. Definition 2). Suppose that C is closed. Given algebras (A, α) and
(B, β) and a coalgebra (C, χ), a map ϕ : C ⊗ A → B is a measuring if and only if its adjunct
ϕ̃ : C → C(A, B) fits in the following commutative diagram

F (C) F (C(A, B)) C(FA, FB)
C

C(A, B) C(FA, B)

F (ϕ̃) ∇̃A,B

β∗

χ

ϕ̃ α∗

where α∗ denotes precomposition by α and β∗ denotes postcomposition by β. We shall also
refer to the pair (C; ϕ̃) as a measuring.

▶ Example 24. Note that the cartesian monoidal structure on Set is closed, and that the
above recovers Definition 2.

This approach allows us to reformulate the notion of measuring as certain coalgebra
homomorphisms which we now describe. If C is locally presentable and F is accessible, then
given a coalgebra (C, χ) and algebras (A, α) and (B, β), a map ϕ : C → C(A, B) in C uniquely
determines a coalgebra homomorphism ϕ′ : (C, χC) → Cof(C(A, B)). A map ϕ : C → C(A, B)
is a measuring if and only if both composites from (C, χC) to Cof

(
C(FA, B)

)
in the following

diagram coincide.

(C, χC) Cof
(
C(A, B)

)
Cof

(
C(FA, B)

)ϕ′ Cof(C(α,B))

f

P. R. North and M. Péroux 15:13

In the above, f is the adjunct under the cofree-forgetful adjunction of the following composite.

Cof(C(A, B)) F
(
Cof(C(A, B))

)
F

(
C(A, B)

)
C(F (A), F (B)) C(F (A), B).χCof F (ε) ∇̃A,B β∗

Here χCof is the coalgebraic structure on the cofree coalgebra, and ε is the counit of the
cofree-forgetful adjunction.

Now we can use this to guarantee the existence of a universal measuring.

▶ Theorem 25 (Proof in [7, Appendix A.3]). Suppose that C is locally presentable and closed
and that F is accessible. Given algebras A and B, then the universal measuring coalgebra
Alg(A, B) exists and is obtained as the following equalizer diagram in CoAlg

Alg(A, B) Cof
(
C(A, B)

)
Cof

(
C(F (A), B)

)
,

eq

with ẽv : Alg(A, B) → C(A, B) obtained as the composition of the equalizer map eq together
with the counit Cof

(
C(A, B)

)
→ C(A, B) of the cofree-forgetful adjunction.

▶ Corollary 26. Suppose that C is locally presentable and closed and that F is accessible.
Given algebras A and B, the functor µ−(A, B) : CoAlgop → Set is represented by Alg(A, B).

3.4 Measuring via the convolution algebra
We will now describe the last representable object for the measuring functor.

▶ Definition 27 (Convolution algebra, cf. Definition 7). Suppose that C is closed. Given a
coalgebra (C, χ) and an algebra (A, α) in C, we define an algebra structure on C(C, A), called
the convolution algebra, which is denoted [(C, χ), (A, α)] or simply [C, A], as follows. The
algebra structure F [C, A] → [C, A] is the composition

F (C(C, A)) C(FC, FA) C(C, A),∇̃C,A α∗χ∗

where α∗χ∗ denotes postcomposition by α and precomposition by χ. The convolution algebra
construction lifts the internal hom to a functor

[−, −] : CoAlgop × Alg −→ Alg.

The convolution algebra provides a representing object for µC(−, B) : Algop → Set.
Indeed, we have the following bijection natural in C, A, B.

µC(A, B) ∼= Alg(A, [C, B]).

In other words, a measuring ϕ : C ⊗ A → B corresponds to an algebra homomorphism
ϕ′ : A → [C, B] under the bijection C(C ⊗ A, B) ∼= C(A, C(C, B)). Indeed, notice that ϕ′

is a homomorphism if and only if the following diagram, adjunct to the one appearing in
Definition 18, commutes.

F ([C, B]) [F (C), F (B)]

F (A)

A [C, B]

∇̃C,B

β∗χ∗

F (ϕ′)

α ϕ′

CALCO 2023

15:14 Coinductive Control of Inductive Data Types

▶ Remark 28. The convolution algebra also provides an alternative characterization of
the algebra C ▷ A and coalgebra Alg(A, B). As limits in Alg and colimits in CoAlg are
determined in C [1] and the internal hom C(−, −) : Cop × C → C preserves limits, the functor
[−, −] : CoAlgop × Alg → Alg also preserves limits. Moreover, fixing a coalgebra C, the
induced functor [C, −] : Alg → Alg is accessible since filtered colimits in Alg are computed in
C (see [1, 5.6]). Therefore, by the adjoint functor theorem [2, 1.66], the functor [C, −] is a
right adjoint. Its left adjoint is precisely C ▷ − : Alg → Alg. Indeed, for any algebras A and
B, we obtain the following bijection, natural in C, A, B.

Alg
(
C ▷ A, B

) ∼= Alg
(
A, [C, B]

)
.

Notice we can also determine the universal measuring by using the adjoint functors. Fixing
now an algebra B, the opposite functor [−, B]op : CoAlg → Algop preserves colimits, where
the domain is locally presentable and the codomain is essentially locally small. By the adjoint
functor theorem [2, 1.66] and [4, 5.5.2.10], this functor is a left adjoint. Its right adjoint is
precisely the functor Alg(−, B) : Algop → CoAlg. Indeed, for any algebra A and B and any
coalgebra C, we have the following bijection, natural in C, A, B.

CoAlg
(
C, Alg(A, B)

) ∼= Alg
(
A, [C, B]

)
.

Combining the identifications, we see that the measuring functor is representable in each
factor:

µC(A, B) ∼= CoAlg
(
C, Alg(A, B)

) ∼= Alg
(
A, [C, B]

) ∼= Alg
(
C ▷ A, B

)
.

In other words, for any algebra A and B and any coalgebra C, the following data are
equivalent.

C ⊗ A → B C → C(A, B) C → Alg(A, B) A → [C, B] C ▷ A → B

measuring measuring coalgebra algebra algebra
homomorphism homomorphism homomorphism

▶ Definition 29. Assuming that C is locally presentable and F is accessible, Alg has an
initial object which we denote by N .

Let (−)∗ : CoAlgop → Alg denote the functor [−, N], and call C∗ the dual algebra of C

for any coalgebra C.
Let (−)◦ : Algop → CoAlg denote the functor Alg(−, N), and call A◦ the dual coalgebra

of A for any algebra A.
These functors form a dual adjunction since we have the following bijection, natural in

C, A:

Alg(A, C∗) ∼= CoAlg(C, A◦).

3.5 Measuring as an enrichment
We now come to the main punchline of the general theory presented in this paper: that
Alg(−, −) gives the category of algebras an enrichment in coalgebras. First, we describe how
to compose measurings.

▶ Proposition 30. The category CoAlg has a symmetric monoidal structure for which the
forgetful functor CoAlg → C is strong symmetric monoidal.

P. R. North and M. Péroux 15:15

Proof. Suppose (C, χC) and (D, χD) are coalgebras. Then C ⊗D has the following coalgebra
structure.

C ⊗ D F (C) ⊗ F (D) F (C ⊗ D)χC ⊗χD ∇C,D

The morphism η : I → F (I) provides the coalgebraic structure on I. One can verify that
(CoAlg, ⊗, (I, η)) is a symmetric monoidal category (see details in [7, Appendix A.4]). ◀

Now we can prove our main theorem.

▶ Theorem 31 (Proof in [7, Appendix A.5]). Suppose that C is locally presentable and closed
and that F is accessible. Then the category Alg is enriched, tensored, and powered over the
symmetric monoidal category CoAlg respectively via

Algop × Alg
Alg(−,−)
−−−−−−→ CoAlg, CoAlg × Alg −▷−−−−→ Alg, CoAlgop × Alg [−,−]−−−→ Alg.

▶ Example 32 (Details in [7, Appendix A.7]). Suppose that C is locally presentable and closed.
The following endofunctors on C are accessible and lax symmetric monoidal.
(id) The identity endofunctor idC .
(A) The constant endofunctor that sends each object to a fixed commutative monoid A in C.
(GF) The composition GF of accessible, lax symmetric monoidal endofunctors F and G.
(F ⊗ G) The pointwise tensor product F ⊗ G of accessible, lax symmetric monoidal endo-

functors F and G, assuming C is closed.
(F + G) The pointwise coproduct F + G of an accessible, lax symmetric monoidal en-

dofunctor F and an accessible endofunctor G equipped with natural transformations
GX ⊗GY → G(X ⊗Y), λ : FX ⊗GY → G(X ⊗Y), ρ : GX ⊗FY → G(X ⊗Y) satisfying
the axioms described in [7, Appendix A.7], assuming C is closed.

(idA) The exponential idA for any object A of C, assuming the monoidal product on C is
cartesian closed.

(W -types) A polynomial endofunctor associated to a morphism f : X → Y in Set, given a
commutative monoid structure on Y and an oplax symmetric monoidal structure on the
preimage functor f−1 : C → Set.

(d.e.s.) A discrete equational system, assuming that the monoidal structure on C is cocarte-
sian and that C has binary products that preserve filtered colimits.

On some occasions, the category of coalgebras of F can be interesting while its category
of algebras is less so. For instance, given an alphabet Σ, coalgebras over the endofunctor
F (X) = 2 × XΣ in Set are automata but the initial algebra remains ∅. To remedy this, we
can extend our main result into the following theorem.

▶ Theorem 33 (Proof in [7, Appendix A.6]). Suppose that C is locally presentable and closed
and that F is also accessible. Let G : C → C be a C-enriched functor that is accessible. Then
AlgGF is enriched, tensored and powered over CoAlgF .

▶ Example 34. If F (X) = 2 × XΣ, we could consider G = id + 1, and thus AlgGF has N as
an initial object and remains enriched in automata.

The enrichment of algebras in coalgebras specify a pairing of coalgebras

Alg(B, T) ⊗ Alg(A, B) −→ Alg(A, T),

CALCO 2023

15:16 Coinductive Control of Inductive Data Types

regarded as an enriched composition, for any algebras A, B and T . In more details, the
above coalgebra homomorphism is induced by the measuring of(

Alg(B, T) ⊗ Alg(A, B)
)

⊗ A Alg(B, T) ⊗ B T.
id⊗evA,B evB,T

In other words, the enrichment is recording precisely that we can compose a measuring
C ⊗ A → B with D ⊗ B → T to obtain a measuring (D ⊗ C) ⊗ A → T . In particular, our
above discussion shows that Alg(A, A) is always a monoid object in the symmetric monoidal
category (CoAlg, ⊗, I).

3.6 General C-initial objects
Now we generalize Section 2.5. We can use the extra structure in the enriched category of
algebras to specify more algebras than we could in the unenriched category of algebras.

▶ Definition 35 (C-initial algebra, cf. Definition 9 and Definition 12). Suppose that C is locally
presentable and closed and that F is accessible.

Given a coalgebra C, we say an algebra A is a C-initial algebra if there exists a unique
map C → Alg(C, X), for all algebras X.

The terminal C-initial algebra is the terminal object, if it exists, in the subcategory of
Alg spanned by the C-initial algebras.

We end with a result that helped us calculate some terminal C-initial algebras in
Section 2.5.

▶ Proposition 36 (Proof in [7, Appendix A.8]). Suppose that C is locally presentable and
closed and that F is accessible. There is a unique map from any C-initial algebra to C∗.

4 Conclusions & Vista

In this paper, we have shown that given a closed symmetric monoidal category C and an
accessible lax symmetric monoidal endofunctor F on C, the category of algebras of F is
enriched, tensored, and cotensored in the category of coalgebras of F . The algebras of
such a functor are of central importance in theoretical computer science, and we hope that
identifying such extra structure can shed light on these studies. Indeed, we have demonstrated
one use case: we can now specify C-initial algebras in an analogous way to initial algebras.
We identified a large class of examples of endofunctors that are encompassed by our theory.
Thus, we have established the beginning of an enriched analogue of the theory of W -types.
We have also worked out concretely the results for the endofunctor id + 1 on Set, which
suggested a meaningful interpretation of the enrichment as partial algebra homomorphisms.

In future work, we will present similar meaningful interpretations for other endofunctors
of our theory. Our future plans involve incorporating features, such as C-initial algebras, of
this new enriched theory into concrete programming languages like Haskell or Agda.

We also seek to extend the results of Example 15 into more general settings and provide
conditions for the existence of the terminal C-initial algebras. We will also develop more
robust theory from Theorem 33. Our partial algebra homomorphisms remain total functions:
it would be interesting to develop a theory that encodes maps that are partial both as
a function and as algebra homomorphisms. Lastly in Example 32, when we consider the
constant functor at an object A, we must choose a commutative monoid structure on A.
What if we had two different monoidal structures on A? There are other such choices that
are needed in Example 32, for instance in our motivating example of W-types. We seek to
understand how these choices interact with one another.

P. R. North and M. Péroux 15:17

References
1 Jiří Adámek and Hans-E. Porst. On varieties and covarieties in a category. Mathematical

Structures in Computer Science, 13(2):201–232, 2003. doi:10.1017/S0960129502003882.
2 Jiří Adámek and Jiří Rosický. Locally presentable and accessible categories, volume 189 of

London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge,
1994. doi:10.1017/CBO9780511600579.

3 Martin Hyland, Ignacio López Franco, and Christina Vasilakopoulou. Hopf measuring
comonoids and enrichment. Proc. Lond. Math. Soc. (3), 115(5):1118–1148, 2017. doi:
10.1112/plms.12064.

4 Jacob Lurie. Higher topos theory, volume 170 of Annals of Mathematics Studies. Princeton
University Press, Princeton, NJ, 2009. doi:10.1515/9781400830558.

5 Per Martin-Löf. Intuitionistic type theory. Naples: Bibliopolis, 1984.
6 Dylan McDermott, Exequiel Rivas, and Tarmo Uustalu. Sweedler theory of monads. In

Patricia Bouyer and Lutz Schröder, editors, Foundations of Software Science and Computation
Structures, pages 428–448, Cham, 2022. Springer International Publishing. doi:10.1007/
978-3-030-99253-8_22.

7 Paige Randall North and Maximilien Péroux. Coinductive control of inductive data types,
2023. arXiv:2303.16793.

8 Maximilien Péroux. The coalgebraic enrichment of algebras in higher categories. Journal of
Pure and Applied Algebra, 226(3):106849, 2022. doi:10.1016/j.jpaa.2021.106849.

9 Jan Rutten. The Method of Coalgebra: exercises in coinduction. C, 2019. URL: https:
//ir.cwi.nl/pub/28550/.

10 Moss E. Sweedler. Hopf algebras. Mathematics Lecture Note Series. W. A. Benjamin, Inc.,
New York, 1969.

11 Christina Vasilakopoulou. Enriched duality in double categories: V-categories and V-
cocategories. J. Pure Appl. Algebra, 223(7):2889–2947, 2019. doi:10.1016/j.jpaa.2018.
10.003.

CALCO 2023

https://doi.org/10.1017/S0960129502003882
https://doi.org/10.1017/CBO9780511600579
https://doi.org/10.1112/plms.12064
https://doi.org/10.1112/plms.12064
https://doi.org/10.1515/9781400830558
https://doi.org/10.1007/978-3-030-99253-8_22
https://doi.org/10.1007/978-3-030-99253-8_22
https://arxiv.org/abs/2303.16793
https://doi.org/10.1016/j.jpaa.2021.106849
https://ir.cwi.nl/pub/28550/
https://ir.cwi.nl/pub/28550/
https://doi.org/10.1016/j.jpaa.2018.10.003
https://doi.org/10.1016/j.jpaa.2018.10.003

Weakly Markov Categories
and Weakly Affine Monads
Tobias Fritz #

Department of Mathematics, Universität Innsbruck, Austria

Fabio Gadducci #

Department of Computer Science, University of Pisa, Italy

Paolo Perrone #

Department of Computer Science, University of Oxford, UK

Davide Trotta #

Department of Computer Science, University of Pisa, Italy

Abstract
Introduced in the 1990s in the context of the algebraic approach to graph rewriting, gs-monoidal
categories are symmetric monoidal categories where each object is equipped with the structure of
a commutative comonoid. They arise for example as Kleisli categories of commutative monads
on cartesian categories, and as such they provide a general framework for effectful computation.
Recently proposed in the context of categorical probability, Markov categories are gs-monoidal
categories where the monoidal unit is also terminal, and they arise for example as Kleisli categories
of commutative affine monads, where affine means that the monad preserves the monoidal unit.

The aim of this paper is to study a new condition on the gs-monoidal structure, resulting in
the concept of weakly Markov categories, which is intermediate between gs-monoidal categories
and Markov ones. In a weakly Markov category, the morphisms to the monoidal unit are not
necessarily unique, but form a group. As we show, these categories exhibit a rich theory of
conditional independence for morphisms, generalising the known theory for Markov categories. We
also introduce the corresponding notion for commutative monads, which we call weakly affine, and
for which we give two equivalent characterisations.

The paper argues that these monads are relevant to the study of categorical probability. A case at
hand is the monad of finite non-zero measures, which is weakly affine but not affine. Such structures
allow to investigate probability without normalisation within an elegant categorical framework.

2012 ACM Subject Classification Theory of computation → Models of computation

Keywords and phrases String diagrams, gs-monoidal and Markov categories, categorical probability,
affine monads

Digital Object Identifier 10.4230/LIPIcs.CALCO.2023.16

Funding Tobias Fritz : FWF P 35992-N.
Fabio Gadducci: MIUR PRIN 2017FTXR “IT-MaTTerS”.
Paolo Perrone: ERC Grant “BLaSt – A Better Language for Statistics”.
Davide Trotta: MIUR PRIN 2017FTXR “IT-MaTTerS”.

1 Introduction

The idea of gs-monoidal categories, which are symmetric monoidal categories equipped with
copy and discard morphisms making every object a comonoid, was first introduced in the
context of algebraic approaches to term graph rewriting [4], and then developed in a series of
papers [5, 6, 7]. Two decades later, similar structures have been rediscovered independently
in the context of categorical probability theory, in particular in [2] and [10], under the
names of copy-discard (CD) categories and Markov categories. While “CD-categories” and
“gs-monoidal categories” are synonyms, Markov categories have the additional condition that

© Tobias Fritz, Fabio Gadducci, Paolo Perrone, and Davide Trotta;
licensed under Creative Commons License CC-BY 4.0

10th Conference on Algebra and Coalgebra in Computer Science (CALCO 2023).
Editors: Paolo Baldan and Valeria de Paiva; Article No. 16; pp. 16:1–16:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tobias.fritz@uibk.ac.at
mailto:fabio.gadducci@unipi.it
https://orcid.org/0000-0003-0690-3051
mailto:paolo.perrone@cs.ox.ac.uk
https://orcid.org/0000-0002-9123-9089
mailto:trottadavide92@gmail.com
https://orcid.org/0000-0003-4509-594X
https://doi.org/10.4230/LIPIcs.CALCO.2023.16
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Weakly Markov Categories and Weakly Affine Monads

the monoidal unit is the terminal object (i.e. every morphism commutes with the discard
maps), a condition corresponding to normalisation of probability. See [16, Remark 2.2] for a
more detailed history of these ideas.

A canonical way of obtaining a gs-monoidal category is as the Kleisli category of a
commutative monad on a cartesian monoidal category. As argued in [24], commutative
monads can be seen as generalising theories of distributions of some kind, and the fact
that their Kleisli categories are gs-monoidal can be seen as the correspondence between
distributions and (possibly unnormalised) probability theory. In particular, when the monad
is affine (i.e. it preserves the monoidal unit [23, 19]), the Kleisli category is Markov – this
can be seen as the correspondence between normalised distributions and probability theory.

In this work we introduce and study an intermediate notion between gs-monoidal and
Markov categories, which we call weakly Markov categories. These are defined as gs-monoidal
categories where for every object its morphisms to the monoidal unit form a group (Defini-
tion 3.2). Weakly Markov categories can be interpreted intuitively as gs-monoidal categories
where each morphism is discardable up to an invertible normalisation (see Proposition 3.4 for
the precise mathematical statement). The choice of the name is due to the fact that every
Markov category is (trivially) weakly Markov.

In parallel to weakly Markov categories, we also introduce weakly affine monads, which
are commutative monads on cartesian monoidal categories preserving the (internal) group
structure of the terminal object (Definition 3.5). As a particular concrete example of relevance
to probability and measure theory, we consider the monad of finite non-zero measures on Set
(Example 3.7), and we use it as a running example in the rest of the work. As we show (see
Proposition 3.6), a commutative monad on a cartesian monoidal category is weakly affine if
and only if its Kleisli category is weakly Markov, analogously to what happens with affine
monads and Markov categories.

Markov categories come equipped with a notion of conditional independence, which has
been one of the main motivations for their use in categorical probability and statistics
[2, 10, 15]. It is noteworthy that a notion of conditional independence can also be given
for any gs-monoidal category. As we show, for weakly Markov categories it has convenient
properties that can be considered “up-to-normalisation” versions of their corresponding
Markov-categorical counterpart. These concepts allow us to provide an equivalent condition
for weak affinity of a monad, namely a pullback condition on the associativity diagram of the
structural morphisms cX,Y : TX × TY → T (X × Y) (Theorem 4.7), widely generalising the
elementary statement that a monoid is a group if and only if its associativity diagram is a
pullback (Proposition 2.1). As such, we believe that weakly affine monads are relevant to the
study of categorical probability, as they allow to investigate probability without normalisation
within an elegant categorical framework.

Categorical probability

In the past few years, we have seen a rapid increase in the interest for categorical methods in
probability and information theory, and we briefly sketch the basic ideas in order to provide
context for this paper.

The first works on categories of stochastic maps, almost as old as category theory and
information theory themselves, have been proposed by Lawvere [25] and independently by
Chentsov [1]. Subsequently, similar intuitions have been expressed in terms of monads by
Giry [18], as well as by Świrszcz in the context of convex analysis [29], and by Jones and
Plotkin in computer science [22]. These monads are collectively and informally known as
probability monads.

T. Fritz, F. Gadducci, P. Perrone, and D. Trotta 16:3

Today, Markov categories [2, 10], which generalise categories of stochastic maps and
Kleisli categories of probability monads, have been used to express probabilistic concepts
synthetically, i.e. in terms of basic axioms that the categories satisfy, and of which the usual
measure-theoretic proofs are a concrete instance.

The advantages of a categorical approach to probability theory are multiple. First of
all, it facilitates an almost-verbatim translation of probabilistic ideas into programming
languages, in particular probabilistic programming languages, even in the case of highly
complex models. Also, categorical probability comes with a graphical formalism similar to
the one of Bayesian networks (see [15] for more details), allowing to represent the structure
of stochastic interactions in terms of a graph, for easier interpretation by a human. It is a
high-order language, in the sense that it expresses visually some ideas of measure-theoretic
significance without requiring measure theory itself, similar to how high-level programming
languages spare the programmer from working directly with machine code. Finally, the
categorical formalism complements the traditional measure-theoretic one in the sense that
several concepts which are hard to express or prove with one method are easier to approach
using the other method, once the main structures are in place. In this sense, categorical
probability is a novel, additional box of tools which provides shortcuts to proofs that would
otherwise be lengthy and counterintuitive.

Among concepts that have been expressed and proven this way, we have de Finetti’s
theorem [14], the Kolmogorov extension theorem and the Kolmogorov and Hewitt-Savage
zero-one laws [17], a categorical d-separation criterion [15], theorems on multinomial and
hypergeometric distributions [21], theorems on sufficient statistics [10] and on comparison of
statistical experiments [13], data processing inequalities in information theory [27], the ergodic
decomposition theorem in dynamical systems [26], and results on fresh name generation in
theoretical computer science [12].

Outline

In Section 2 we review the main structures used in this work, in particular group and monoid
objects, gs-monoidal and Markov categories, and their interaction with commutative monads.

In Section 3 we define the main original concepts, namely weakly Markov categories and
weakly affine monads. We study their relationship and we prove that a commutative monad
on a cartesian monoidal category is weakly affine if and only if its Kleisli category is weakly
Markov (Proposition 3.6). We then turn to concrete examples using finite measures and
group actions (Section 3.3).

In Section 4 we extend the concept of conditional independence from Markov categories
to general gs-monoidal categories. We specialise to the weakly Markov case and show that
the situation is then similar to what happens in Markov categories, but in a certain precise
sense only up to normalisation. We use this formalism to equivalently reformulate weak
affinity in terms of a pullback condition (Theorem 4.7). Together with the newly introduced
concepts, this result can be considered the main outcome of our work.

Finally, in the concluding Section 5, we pose further questions, such as when we can
iterate the construction of weakly Markov categories by means of weakly affine monads, and
the relation to strongly affine monads in the sense of Jacobs [20].

2 Background

In this section, we develop some relevant background material for later reference. To begin,
the following categorical characterisation of groups will be useful to keep in mind.

CALCO 2023

16:4 Weakly Markov Categories and Weakly Affine Monads

▶ Proposition 2.1. A monoid (M, m, e) in Set is a group if and only if the associativity
square

M × M × M M × M

M × M M

id ×m

m×id

m

m

(1)

is a pullback.

Proof. The square (1) is a pullback of sets if and only if given a, g, h, c ∈ M such that
ag = hc, there exists a unique b ∈ M such that g = bc and h = ab. First, suppose that G is
a group. Then the only possible choice of b is

b = a−1h = gc−1

which is unique by uniqueness of inverses.
Conversely, suppose that (1) is a pullback. We can set g, h = e and c = a so that

ae = ea = a. Instantiating the pullback property on these elements gives b such that ab = e

and ba = e, that is, b = a−1. ◀

Proposition 2.1 holds generally for a monoid object in a cartesian monoidal category,
where the element-wise proof still applies thanks to the following standard observation.

▶ Remark 2.2. Given an object M in a cartesian monoidal category D, there is a bijection
between internal monoid structures on M and monoid structures on every hom-set D(X, M)
such that pre-composition with any f : X → Y defines a monoid homomorphism

D(Y, M) −→ D(X, M).

The proof is straightforward by the Yoneda lemma. It follows that Proposition 2.1 holds for
internal monoids in cartesian monoidal categories in general.

For the consideration of categorical probability, we now recall the simplest version of
a commutative monad of measures. It works with measures taking values in any semiring
instead of [0, ∞) (see e.g. [8, Section 5.1]), but we restrict to the case of [0, ∞) for simplicity.

▶ Definition 2.3. Let X be a set. Denote by MX the set of finitely supported measures
on X, i.e. the functions m : X → [0, ∞) that are zero for all but a finite number of x ∈ X.
Given a function f : X → Y , denote by Mf : MX → MY the function sending m ∈ MX to
the assignment

(Mf)(m) : y 7−→
∑

x∈f−1(y)

m(x).

This makes M into a functor, and even a monad with the unit and multiplication maps

X MX

x δx,

δ MMX MX

ξ Eξ,

E

where

δx(x′) =
{

1 x = x′,

0 x ̸= x′,
(Eξ)(x) =

∑
m∈MX

ξ(m) m(x).

Call M the measure monad on Set.

T. Fritz, F. Gadducci, P. Perrone, and D. Trotta 16:5

Denote also by DX ⊆ MX the subset of probability measures, i.e. those finitely supported
p : X → [0, ∞) such that∑

x∈X

p(x) = 1.

D forms a sub-monad of M called the distribution monad.

It is known that M is a commutative monad [8]. The corresponding lax monoidal structure

MX × MY
c−→ M(X × Y)

is exactly the formation of product measures given by c(m, m′)(x, y) = m(x)m′(y). Also
D is a commutative monad with the induced lax monoidal structure, since the product of
probability measures is again a probability measure.

2.1 GS-monoidal and Markov categories
We recall here the basic definitions adopting the graphical formalism of string diagrams,
referring to [28] for some background on various notions of monoidal categories and their
associated diagrammatic calculus.

▶ Definition 2.4. A gs-monoidal category is a symmetric monoidal category (C, ⊗, I)
with a commutative comonoid structure on each object X consisting of a comultiplication
and a counit

X

=

X

=copyX delX

which satisfy the commutative comonoid equations

X

=

X

=

X X X X

=

These comonoid structures must be multiplicative with respect to the monoidal structure,
meaning that it satisfies the equations

X

=

=

I

X ⊗ Y Y X ⊗ Y

=

X Y

=

I

CALCO 2023

16:6 Weakly Markov Categories and Weakly Affine Monads

▶ Definition 2.5. A morphism f : X → Y in a gs-monoidal category is called copyable or
functional if

X

f f

Y Y

=

X

Y Y

f

It is called discardable or full if

X

=

X

f

▶ Example 2.6. The category Rel of sets and relations with the monoidal operation
⊗ : Rel × Rel → Rel given by the direct product of sets is a gs-monoidal category [7]. In
this gs-monoidal category, the copyable arrows are precisely the partial functions, and the
discardable arrows are the total relations.

▶ Remark 2.7. It is well-known that if every morphism is copyable and discardable, or
equivalently if the copy and discard maps are natural, then the monoidal product is the
categorical product, and thus the category is cartesian monoidal [9]. In other words, the
following conditions are equivalent for a gs-monoidal category C

C is cartesian monoidal;
every morphism is copyable and discardable;
the copy and discard maps are natural.

In recent work [11] it has been shown that gs-monoidal categories naturally arise in
several ways, such as Kleisli categories of commutative monads or span categories. In the
following proposition, we recall the result regarding Kleisli categories.

▶ Proposition 2.8. Let T be a commutative monad on a cartesian monoidal category D.
Then its Kleisli category KlT is canonically a gs-monoidal category with the copy and discard
structure induced by that of D.

▶ Example 2.9. The Kleisli categories of the monads M and D of Definition 2.3 are
gs-monoidal. We can write their Kleisli categories concretely as follows

a morphism k : X → Y of KlM is a matrix with rows indexed by Y and columns indexed
by X, and non-negative entries k(y|x) such that for each x ∈ X, the number k(y|x) is
non-zero only for finitely many y;
a morphism k : X → Y of KlD is a morphism of KlM such that moreover, for all x ∈ X,
the sum of each column satisfies∑

y∈Y

k(y|x) = 1

If X and Y are finite, such a matrix is called a stochastic matrix.

In both categories, identities are identity matrices, composition is matrix composition,
monoidal structure is the cartesian product on objects and the Kronecker product on matrices,
and the copy and discard maps are the images of the standard copy and discard maps on
Set under the Kleisli inclusion functor.

T. Fritz, F. Gadducci, P. Perrone, and D. Trotta 16:7

Markov categories [10] represent one of the more interesting specialisations of the notion
of gs-monoidal category. Based on the interpretation of their arrows as generalised Markov
kernels, they are considered the foundation of a categorical approach to probability theory.

▶ Definition 2.10. A gs-monoidal category is said to be a Markov category if any (hence
all) of the following equivalent conditions are satisfied

the monoidal unit is terminal;
the discard maps are natural;
every morphism is discardable.

We recall from [23, 19] the notion of affine monad.

▶ Definition 2.11. A monad T on a cartesian monoidal category is called affine if T1 ∼= 1.

It was observed in [10, Corollary 3.2] that if the monad preserves the terminal object,
then every arrow of the Kleisli category is discardable, and this makes the Kleisli category
into a Markov category. Since the converse is easy to see, we have the following addendum
to Proposition 2.8.

▶ Proposition 2.12. Let T be a commutative monad on a cartesian monoidal category D.
Then KlT is Markov if and only if T is affine.

▶ Example 2.13. The distribution monad D of Definition 2.3 is affine, and so its Kleisli
category (Example 2.9) is a Markov category. It is one of the simplest examples of categories
of relevance for categorical probability.

The measure monad M is not affine, as it is easy to see that M1 ∼= [0, ∞), and so its
Kleisli category is not Markov.

3 Weakly Markov categories and weakly affine monads

In this section, we introduce an intermediate level between gs-monoidal and Markov called
weakly Markov, and its corresponding notion for monads, which we call weakly affine.

3.1 The monoid of effects
In a gs-monoidal category C we call a state a morphism from the monoidal unit p : I → X,
and effect a morphism to the monoidal unit a : X → I. As is standard convention, we
represent such morphisms as triangles as follows

X

a

p

X

Effects, i.e. elements of the set C(X, I), form canonically a commutative monoid as follows:
the monoidal unit is the discard map X → I, and given a, b : X → I, their product ab is
given by copying1

X

a b

1 See also e.g. the ⊙ product in [3, Proposition 3.10].

CALCO 2023

16:8 Weakly Markov Categories and Weakly Affine Monads

If a morphism f : X → Y is copyable and discardable, the pre-composition with f induces a
morphism of monoids C(Y, I) → C(X, I).

▶ Remark 3.1. The monoidal unit I of a monoidal category is canonically a monoid object
via the coherence isomorphisms I ⊗ I ∼= I and I ∼= I. However, in a general (i.e. not
necessarily cartesian) gs-monoidal category C, the monoid structure on C(X, I) is not, as in
Remark 2.2, coming from considering the presheaf represented by I. Indeed, in order for
Remark 2.2 to hold, we would need that every pre-composition is a morphism of monoids.
As remarked above, this fails in general unless all morphisms are copyable and discardable
(i.e. if C is not cartesian monoidal).

Let us now consider the case where the gs-monoidal structure comes from a commutative
monad on a cartesian monoidal category D. In this case, the monoid structure on Kleisli
morphisms X → 1 does come from the canonical internal monoid structure on T1 (and
from the one on 1) in D. Indeed, T1 is a monoid object with the following unit and
multiplication [24, Section 10]

1 T1,
η

T1 × T1 T (1 × 1) T1.
c1,1 ∼=

For example, for the monad of measures M , we obtain M1 = [0, ∞) with its usual multiplic-
ation. The resulting monoid structure on Kleisli morphisms X → 1 is now given as follows.
The unit is given by

X 1 T1,
delX η

and the multiplication of Kleisli morphisms f, g : X → 1 represented by f ♯, g♯ : X → T1 is
the Kleisli morphism represented by

X X × X T1 × T1 T (1 × 1) T1.
copyX f♯×g♯ c1,1 ∼=

For the monad of measures M , Kleisli morphisms X → 1 are represented by functions
X → [0, ∞), and this description shows that their product is the point-wise product.

For a general C, the commutative monoid C(X, I) acts on the set C(X, Y): given a : X → I

and f : X → Y , the resulting a · f is given as follows

X

a

Y

f

:=a · f

X

Y

It is straightforward to see that this indeed amounts to an action of the monoid C(X, I) on
the set C(X, Y). For the monad of measures M , this action is given by point-wise rescaling.

Moreover, for a general C the operation

C(X, Y) × C(X, Z) −→ C(X, Y ⊗ Z)
(f, g) 7−→ f · g := (f ⊗ g) ◦ copyX

commutes with this action in each variable (separately).

T. Fritz, F. Gadducci, P. Perrone, and D. Trotta 16:9

3.2 Main definitions
▶ Definition 3.2. A gs-monoidal category C is called weakly Markov if for every object X,
the monoid C(X, I) is a group.

Clearly, every Markov category is weakly Markov: for every object X, the monoid C(X, I)
is the trivial group.

▶ Definition 3.3. Given two parallel morphisms f, g : X → Y in a weakly Markov category
C, we say that f and g are called equivalent, denoted f ∼ g, if they lie in the same orbit
for the action of C(X, I), i.e. if there is a ∈ C(X, I) such that a · f = g.

Note that if a · f = g for some a, then a is unique. This can be seen by discarding Y in
the following diagram

X

a

Y

f
=

X

Y

g

which shows that taking a := (delY f)−1 · (delY g) is the only possibility. In other words, the
action of C(X, I) on C(X, Y) is free, i.e. it has trivial stabilisers.

For the next statement, let us first call the mass of a morphism f : X → Y in a gs-
monoidal category C the morphism mf := delY ◦ f : X → I. Note that f is discardable if
and only if mf = delX , i.e. if its mass is the unit of the monoid C(X, I).

▶ Proposition 3.4. Every morphism f : X → Y in a weakly Markov category is equivalent
to a unique discardable morphism.

We call the discardable morphism the normalisation of f and denote it by nf : X → Y .

Proof. Consider the mass mf , and denote its group inverse by m−1
f . The morphism nf :=

m−1
f · f is discardable and equivalent to f . Suppose now that d : X → Y is discardable and

equivalent to f , i.e. there exists a : X → I such that d = a · f . Since d is discardable

X

a f
=

X

d

X

=

which means that a = m−1
f , i.e. d = nf . ◀

In other words, every morphism f can be written as its mass times its normalisation.
Let us now look at the Kleisli case.

▶ Definition 3.5. A commutative monad T on a cartesian monoidal category is called
weakly affine if T1 with its canonical internal commutative monoid structure is a group.

This choice of terminology is motivated by the following proposition, which can be seen
as a “weakly” version of Proposition 2.12.

▶ Proposition 3.6. Let D be a cartesian monoidal category and T a commutative monad on
D. Then the Kleisli category of T is weakly Markov if and only if T is weakly affine.

CALCO 2023

16:10 Weakly Markov Categories and Weakly Affine Monads

Proof. First, suppose that T1 is an internal group, and denote by ι : T1 → T1 its inversion
map. The inverse of a Kleisli morphism a : X → 1 in KlT (X, 1) represented by a♯ : X → T 1
is represented by ι ◦ a♯: indeed, the following diagram in D commutes

X X × X

T1 T1 × T1 T1 × T1 T (1 × 1)

1 T1

delX

a♯

copyX

a♯×a♯
a♯×(ι◦a♯)

delT 1

copyT 1 id ×ι

c1,1

∼=
η

where the bottom rectangle commutes since ι is the inversion map for T1. The analogous
diagram with ι × id in place of id ×ι similarly commutes.

Conversely, suppose that for every X, the monoid structure on KlT (X, 1) has inverses.
Then in particular we can take X = T 1, and the inverse of the Kleisli morphism id : T 1 → T 1
is an inversion map for T1. ◀

This result can also be thought of in terms of the Yoneda embedding, via Remark 2.2:
since the Yoneda embedding preserves and reflects pullbacks (and all limits), the associativity
square for T1 is a pullback in D if and only if the associativity squares of all the monoids
D(X, T1) are pullbacks. Note that Remark 2.2 applies since we are assuming that D is
cartesian monoidal. In the proof of Proposition 3.6, this is reflected by the fact in the main
diagram, the morphism a♯ commutes with the copy maps.

3.3 Examples of weakly affine monads

Every affine monad is a weakly affine monad. Below you find a few less trivial examples.

▶ Example 3.7. Let M∗ : Set → Set be the monad assigning to every set the set of finitely
supported discrete non-zero measures on M∗, or equivalently let M∗(X) for any set X be
the set of non-zero finitely supported functions X → [0, ∞). It is a sub-monad M∗ ⊆ M ,
meaning that the monad structure is defined in terms of the same formulas as for the monad
of measures M (Definition 2.3). Similarly, the lax structure components

cX,Y : M∗X × M∗Y −→ M∗(X × Y)

are also given by the formation of product measures, or equivalently point-wise products of
functions X → [0, ∞).

Since M∗1 ∼= (0, ∞) ≇ 1, this monad is not affine. However the monoid structure of
(0, ∞) induced by M∗ is the usual multiplication of positive real numbers, which form a
group. Therefore M∗ is weakly affine, and its Kleisli category is weakly Markov.

On the other hand, if the zero measure is included, we have M1 ∼= [0, ∞) which is not a
group under multiplication, so M is not weakly affine.

▶ Example 3.8. Let A be a commutative monoid. Then the functor TA := A × − on Set
has a canonical structure of commutative monad, where the lax structure components cX,Y

are given by multiplying elements in A while carrying the elements of X and Y along.
Since TA1 ∼= A, the monad TA is weakly affine if and only if A is a group, and affine if

and only if A ∼= 1.

T. Fritz, F. Gadducci, P. Perrone, and D. Trotta 16:11

▶ Example 3.9. As for negative examples, consider the free abelian group monad F on Set.
Its functor takes a set X and forms the set FX of finite multisets (with repetition, where
order does not matter) of elements of X and their formal inverses. We have that F1 ∼= Z,
which is an abelian group under addition. However, the monoid structure on F1 induced by
the monoidal structure of the monad corresponds to the multiplication on Z, which does not
have inverses. Therefore F is not weakly affine.

4 Conditional independence in weakly Markov categories

Markov categories have a rich theory of conditional independence in the sense of probability
theory [15]. It is noteworthy that some of those ideas can be translated and generalised to
the setting of weakly Markov categories.

▶ Definition 4.1. A morphism f : A → X1 ⊗ · · · ⊗ Xn in a gs-monoidal category C is said to
exhibit conditional independence of the Xi given A if and only if it can be expressed
as a product of the following form

A

g1 g2 gn

X1 X2 Xn
...

Note that this formulation is a bit different from the earlier definitions given in [2,
Definition 6.6] and [10, Definition 12.12], which were formulated for morphisms in Markov
categories and state that f exhibits conditional independence if the above holds with the gi

being the marginals of f , which are

fi

A

Xi

:= f

A

Xi

· · · · · ·

Indeed, in a Markov category, conditional independence in our sense holds if and only if it
holds with gi = fi [10, Lemma 12.11]. We also say that f is the product of its marginals.

▶ Example 4.2. In the Kleisli category of the distribution monad D, which is Markov, a
morphism f : A → X ⊗ Y exhibits conditional independence if and only if its value at every
a ∈ A is the product of its marginals [10, Section 12].

Here is what conditional independence looks like in the Kleisli case.

▶ Proposition 4.3. Let D be a cartesian monoidal category and T a commutative monad on
D. Then a Kleisli morphism represented by f ♯ : A → T (X1 × · · · × Xn) exhibits conditional
independence of the Xi given A if and only if it factors as

A

TX1 × · · · × TXn T (X1 × · · · × Xn)

(g♯
1,...,g♯

n)
f♯

c

for some Kleisli maps g♯
i : A → TXi, where the map c above is the one obtained by iterating

the lax monoidal structure (which is unique by associativity).

CALCO 2023

16:12 Weakly Markov Categories and Weakly Affine Monads

Proof. In terms of the base category D, a Kleisli morphism in the form of Definition 4.1
reads as follows

A A × · · · × A TX1 × · · · × TXn T (X1 × · · · × Xn).copy g♯
1×···×g♯

n c

Therefore f ♯ : A → T (X1 × · · · × Xn) exhibits the conditional independence if and only if it
is of the form above. ◀

▶ Example 4.4. In the Kleisli category of the measure monad M , and for any objects, the
morphism A → X1 ⊗ · · · ⊗ Xn given by the zero measure on every a ∈ A exhibits conditional
independence of its outputs given its input. For example, for A = 1, the zero measure on
X × Y is the product of the zero measure on X and the zero (or any other) measure on Y .
Notice that both marginals of the zero measure are zero measures – therefore, the factors
appearing in the product are not necessarily related to the marginals.

In a weakly Markov category, the situation is similar to the Markov case discussed
above, but up to equivalence: an arrow exhibits conditional independence if and only if it is
equivalent to the product of its marginals.

▶ Proposition 4.5. Let f : A → X1 ⊗ · · · ⊗ Xn be a morphism in a weakly Markov category
C. Then f exhibits conditional independence of the Xi given A if and only if it is equivalent
to the product of all its marginals.

Proof. Denote the marginals of f by f1, . . . , fn. Suppose that f is a product as in Defini-
tion 4.1. By marginalising, for each i = 1, . . . , n we get

A

g1 gn
...

Xi

...gi−1 gi gi+1

=

A

Xi

fi

Therefore for each i we have that fi ∼ gi.
Conversely, suppose that f is equivalent to the product of its marginals, i.e. that there

exists a : X → I such that f is equal to the following

A

f1 fn

X1 Xn

...
a

One can then choose gi = fi for all i < n, and gn = a · fn, so that f is in the form of
Definition 4.1. ◀

▶ Remark 4.6. For n = 2, a morphism f : A → X ⊗ Y in a weakly Markov category C
exhibits conditional independence of X and Y given A if and only if the equation below holds

A

Y

A

=f

X

f

Y

f

X

f

Indeed this arises as a consequence of Proposition 4.5 by noting that both sides of the
equation describe the same element of C(A, I) upon marginalising.

T. Fritz, F. Gadducci, P. Perrone, and D. Trotta 16:13

4.1 Main result
The concept of conditional independence for weakly Markov categories allows us to give an
equivalent characterisation of weakly affine monads. The condition is a pullback condition
on the associativity diagram, and it recovers Proposition 2.1 when applied to the monads of
the form A × − for A a commutative monoid.

▶ Theorem 4.7. Let D be a cartesian monoidal category and T a commutative monad on D.
Then the following conditions are equivalent
1. T is weakly affine;
2. the Kleisli category KlT is weakly Markov;
3. for all objects X, Y , and Z, the following associativity diagram is a pullback

T (X) × T (Y) × T (Z) T (X) × T (Y × Z)

T (X × Y) × T (Z) T (X × Y × Z)

id ×cY,Z

cX,Y ×id cX,Y ×Z

cX×Y,Z

(2)

In order to prove the theorem above, we will exploit the following property of weakly
Markov categories.

▶ Lemma 4.8 (localised independence property). Let C be a weakly Markov category. Whenever
a morphism f : A → X ⊗ Y ⊗ Z exhibits conditional independence of X ⊗ Y (jointly) and
Z given A, as well as conditional independence of X and Y ⊗ Z given A, then it exhibits
conditional independence of X, Y , and Z given A.

Proof of Lemma 4.8. Let us then assume that f : A → X ⊗ Y ⊗ Z exhibits conditional
independence of X ⊗Y (jointly) and Z given A, as well as conditional independence of X and
Y ⊗ Z given A. By marginalising out X, we have that fY Z exhibits conditional independence
of Y and Z given A. Since by hypothesis f exhibits conditional independence of X and
Y ⊗ Z given A, by Proposition 4.5 it follows that f is equivalent to the product of fX and
fY Z . But, again by Proposition 4.5, fY Z is equivalent to the product of fY and fZ , so it
follows that f is equivalent to the product of all its marginals. Using Proposition 4.5 in
the other direction, this means that f exhibits conditional independence of X, Y , and Z

given A. ◀

We are now ready to prove the theorem.

Proof of Theorem 4.7. We already know that 1 ⇔ 2: see Proposition 3.6. We then focus
on the correspondence between the first and third item.

1 ⇒ 3: By the universal property of products, a cone over the cospan in (2) consists of
maps g♯

1 : A → TX, g♯
23 : A → T (Y × Z), g♯

12 : A → T (X × Y) and g♯
3 : A → TZ such that

the following diagram commutes

A

T (X) × T (Y) × T (Z) T (X) × T (Y × Z)

T (X × Y) × T (Z) T (X × Y × Z)

(g♯
1,g♯

23)

(g♯
12,g♯

3)
id ×cY,Z

cX,Y ×id cX,Y ×Z

cX×Y,Z

CALCO 2023

16:14 Weakly Markov Categories and Weakly Affine Monads

By Proposition 4.3, this amounts to a Kleisli morphism f ♯ : A → T (X × Y × Z) exhibiting
conditional independence of X and Y ⊗ Z given A, as well as of X ⊗ Y , and Z given A. By
the localised independence property (Lemma 4.8), we then have that f exhibits conditional
independence of all X, Y and Z given A, and so, again by Proposition 4.3, f ♯ factors through
the product TX × TY × TZ. More specifically, by marginalising over Z, we have that
g♯

12 factors through TX × TY , i.e. the following diagram on the left commutes for some
h♯

1 : A → TX and h♯
2 : A → TY , and similarly, by marginalising over X, the diagram on the

right commutes for some ℓ♯
2 : A → TY and ℓ♯

3 : A → TZ

A

TX × TY T (X × Y)

(h♯
1,h♯

2)
g♯

12

cX,Y

A

TY × TZ T (Y × Z)

(ℓ♯
2,ℓ♯

3)
g♯

23

cY,Z

In other words, we have that the upper and the left curved triangles in the following diagram
commute

A

T (X) × T (Y) × T (Z) T (X) × T (Y × Z)

T (X × Y) × T (Z) T (X × Y × Z)

(g♯
1,g♯

23)

(g♯
12,g♯

3)

(g♯
1,ℓ♯

2,ℓ♯
3)

(h♯
1,h♯

2,g♯
3)

id ×cY,Z

cX,Y ×id cX,Y ×Z

cX×Y,Z

By marginalising over Y and Z, and by weak affinity of T , there exists a unique a♯ : A → T 1
such that h1 = a · g1. Therefore

g12 = h1 · h2 = (a · g1) · h2 = g1 · (a · h2),

and so in the diagram above we can equivalently replace h1 and h2 with g1 and a · h2.
Similarly, by marginalising over X and Y , there exists a unique c♯ : A → T1 such that
ℓ3 = c · g3, so that

g23 = ℓ2 · ℓ3 = ℓ2 · (c · g3) = (c · ℓ2) · g3

and in the diagram above we can replace ℓ2 and ℓ3 with c · ℓ2 and g3, as follows

A

T (X) × T (Y) × T (Z) T (X) × T (Y × Z)

T (X × Y) × T (Z) T (X × Y × Z)

(g♯
1,g♯

23)

(g♯
12,g♯

3)

(g♯
1,(c·ℓ2)♯,g♯

3)

(g♯
1,(a·h2)♯,g♯

3)
id ×cY,Z

cX,Y ×id cX,Y ×Z

cX×Y,Z

Now, marginalising over X and Z, we see that necessarily a · h2 = c · ℓ2. Therefore there is a
unique map A → TX × TY × TZ making the whole diagram commute, which means that
(2) is a pullback.

T. Fritz, F. Gadducci, P. Perrone, and D. Trotta 16:15

3 ⇒ 1: If T is weakly affine, then taking X = Y = Z = 1 in (2) shows that this monoid
must be an abelian group: we obtain a unique arrow ι : T1 → T1 making the following
diagram commute

T1

T1 × T1 × T1 T1 × T (1 × 1) T1 × T1

T (1 × 1) × T1 T (1 × 1 × 1) T (1 × 1)

T1 × T1 T (1 × 1) T1

(id,ι,id)

(id,η1delT 1)

(η1delT 1,id)

id ×c1,1

c1,1×id c1,1×1

∼=

c1,1

c1×1,1

∼= ∼=

∼=

∼=

c1,1 ∼=

and the commutativity shows that ι satisfies the equations making it the inversion map for a
group structure. ◀

▶ Example 4.9. In the Kleisli category of the measure monad KlM (which is not weakly
affine) consider the following diagram

MX × MY × MZ MX × M(Y × Z)

M(X × Y) × MZ M(X × Y × Z)

id ×cY,Z

cX,Y ×id cX,Y ×Z

cX×Y,Z

In the top-right corner MX ×M(Y ×Z), take the pair (0, p) where p is any non-zero measure
on Y × Z, and similarly, in the bottom-left corner take the pair (q, 0) where q is any non-zero
measure on X × Y . Following the diagram, both pairs are mapped to the zero measure in
the bottom-right corner. If the diagram was a pullback, we would be able to express the
top-right and bottom-left corners as coming from the same triple in MX × MY × MZ, that
is, there would exist a measure m on Y such that m · 0 = p and 0 · m = q. Since p and q are
non-zero, this is not possible.
▶ Remark 4.10. It is worth noting that the pullback condition on the associativity square
is not equivalent to the localised independence property of Lemma 4.8: recall that a zero
measure always exhibits conditional independence of all its outputs (Example 4.4). Therefore,
for zero measures, the localised independence property is always trivially valid, and hence
the Kleisli category of the measures monad M satisfies it in general. However, the example
above shows explicitly that the pullback property fails.

For now it is an open question whether the localised independence property for a Kleisli
category is reflected by an equivalent condition on the monad.

5 Conclusions and future work

Our paper introduces weakly Markov categories and weakly affine monads and explore their
relationship. More explicitly, our main result (Theorem 4.7) establishes a tight correspondence
between the algebraic properties of T1 and the universal properties of certain commutative
squares given by the structural arrows of T for a commutative monad T on a cartesian
category. We believe that this theorem suggests at least two directions

generalising the statement to weakly affine monads on weakly Markov categories;
generalising other Markov-categorical notions, such as the positivity axiom, to weakly
Markov or even gs-monoidal categories.

We will provide further details on these potential directions in what follows.

CALCO 2023

16:16 Weakly Markov Categories and Weakly Affine Monads

Regarding possible generalisations. In Theorem 4.7, we provide a characterisation of
weakly affine monads on cartesian monoidal categories. Taking inspiration from the case of
affine monads on Markov categories [10, Corollary 3.2], it seems natural to consider whether
our main result can be extended to commutative monads on weakly Markov categories.

However, this problem is non-trivial and requires clever adjustments to the main definitions.
The crucial point is that, in general, the structure of the internal group of T 1 and the structure
of the group D(X, T1) are not necessarily related in the current definitions. One approach
could be to introduce a form of compatibility for T 1 and D(X, T 1) by defining a weakly affine
monad on a weakly Markov category as a commutative monad such that T1 is an internal
group and D(X, T 1) is a group with the composition and units induced by those of T 1. With
this change, for example, Proposition 3.6 would work for any weakly Markov category, but
Theorem 4.7 would likely fail as its proof involves the universal property of products.

On the positivity axiom. A strong monad T on a cartesian monoidal category is strongly
affine [20] if for every pair of objects X and Y the following diagram is a pullback

X × TY T (X × Y)

X TX

π1

s

T π1

η

where s denotes the strength and η denotes the unit of the monad. Every strongly affine
monad is affine. The corresponding condition on the Markov category KlT has recently been
characterised as an information flow axiom called positivity [12, Section 2].

For a generic commutative monad, the diagram above may even fail to commute (take the
measure monad M and start with (x, 0) in the top left corner). One can however consider
the following diagram, which reduces to the one above (up to isomorphism) in the affine case

X × TY T (X × Y)

X × T1 T (X × 1) ∼= TX

id ×T (delY)

s

T (id ×delY)

s

and which always commutes by naturality of the strength. One can then call the monad T

positive if this second diagram is a pullback. Upon defining positive gs-monoidal categories
analogously to positive Markov categories, one may conjecture that T is positive if and only
if KlT is positive. This would generalise the existing result for Markov categories.

References
1 Nikolai N. Chentsov. The categories of mathematical statistics. Doklady Akademii Nauk SSSR,

164(3):511–514, 1965.
2 Kenta Cho and Bart Jacobs. Disintegration and Bayesian inversion via string diagrams.

Mathematical Structures in Computer Science, 29(7):938–971, 2019.
3 Bob Coecke, Bill Edwards, and Robert W. Spekkens. Phase groups and the origin of non-locality

for qubits. In Bob Coecke, Prakash Panangaden, and Peter Selinger, editors, QPL@MFPS
2009, volume 270 of ENTCS, pages 15–36. Elsevier, 2009.

4 Andrea Corradini and Fabio Gadducci. A 2-categorical presentation of term graph rewriting.
In Eugenio Moggi and Giuseppe Rosolini, editors, CTCS 1997, volume 1290 of LNCS, pages
87–105. Springer, 1997.

5 Andrea Corradini and Fabio Gadducci. An algebraic presentation of term graphs, via gs-
monoidal categories. Applied Categorical Structures, 7(4):299–331, 1999.

T. Fritz, F. Gadducci, P. Perrone, and D. Trotta 16:17

6 Andrea Corradini and Fabio Gadducci. Rewriting on cyclic structures: equivalence between the
operational and the categorical description. RAIRO - Theoretical Informatics and Applications
- Informatique Théorique et Applications, 33(4-5):467–493, 1999.

7 Andrea Corradini and Fabio Gadducci. A functorial semantics for multi-algebras and partial
algebras, with applications to syntax. Theoretical Computer Science, 286(2):293–322, 2002.

8 Dion Coumans and Bart Jacobs. Scalars, monads, and categories. In Chris Heunen, Mehrnoosh
Sadrzadeh, and Edward Grefenstette, editors, Quantum Physics and Linguistics - A Composi-
tional, Diagrammatic Discourse, pages 184–216. Oxford University Press, 2013.

9 Thomas Fox. Coalgebras and cartesian categories. Communications in Algebra, 4(7):665–667,
1976.

10 Tobias Fritz. A synthetic approach to Markov kernels, conditional independence and theorems
on sufficient statistics. Advances in Mathematics, 370:107239, 2020.

11 Tobias Fritz, Fabio Gadducci, Davide Trotta, and Andrea Corradini. Lax completeness for
gs-monoidal categories. CoRR, abs/2205.06892, 2022.

12 Tobias Fritz, Tomáš Gonda, Nicholas G. Houghton-Larsen, Paolo Perrone, and Dario Stein.
Dilations and information flow axioms in categorical probability. CoRR, abs/2211.02507, 2022.

13 Tobias Fritz, Tomáš Gonda, Paolo Perrone, and Eigil F. Rischel. Representable Markov categor-
ies and comparison of statistical experiments in categorical probability. CoRR, abs/2010.07416,
2020.

14 Tobias Fritz, Tomáš Gonda, and Paolo Perrone. de Finetti’s theorem in categorical probability.
Journal of Stochastic Analysis, 2(4):6:1–6:26, 2021.

15 Tobias Fritz and Andreas Klingler. The d-separation criterion in categorical probability.
Journal of Machine Learning Research, 24(46):1–49, 2023.

16 Tobias Fritz and Wendong Liang. Free gs-monoidal categories and free Markov categories.
Applied Categorical Structures, 31(2):21:1–21:31, 2023.

17 Tobias Fritz and Eigil F. Rischel. Infinite products and zero-one laws in categorical probability.
Compositionality, 2(3), 2020.

18 Michèle Giry. A categorical approach to probability theory. In Bernhard Banaschewski, editor,
Categorical Aspects of Topology and Analysis, volume 915 of LNM, pages 68–85. Springer, 1982.

19 Bart Jacobs. Semantics of weakening and contraction. Annals of Pure and Applied Logic,
69(1):73–106, 1994.

20 Bart Jacobs. Affine monads and side-effect-freeness. In Ichiro Hasuo, editor, CMCS 2016,
volume 9608 of LNCS, pages 53–72. Springer, 2016.

21 Bart Jacobs. Multinomial and hypergeometric distributions in Markov categories. In Ana
Sokolova, editor, MFPS XXXVII, volume 351 of ENTCS, pages 98–115, 2021.

22 Claire Jones and Gordon D. Plotkin. A probabilistic powerdomain of evaluations. In LICS
1989, pages 186–195. IEEE Computer Society, 1989.

23 Anders Kock. Bilinearity and cartesian closed monads. Mathematica Scandinavica, 29(2):161–
174, 1971.

24 Anders Kock. Commutative monads as a theory of distributions. Theory and Applications of
Categories, 26:97–131, 2012.

25 Francis W. Lawvere. The category of probabilistic mappings. Unpublished notes, 1962.
26 Sean Moss and Paolo Perrone. A category-theoretic proof of the ergodic decomposition theorem.

Ergodic Theory and Dynamical Systems, 2023. To appear, available at arXiv:2207.07353.
27 Paolo Perrone. Markov categories and entropy. CoRR, abs/2212.11719, 2022.
28 Peter Selinger. A survey of graphical languages for monoidal categories. In Bob Coecke, editor,

New Structures for Physics, volume 813 of LNP, pages 289–355. Springer, 2011.
29 Tadeusz Świrszcz. Monadic functors and convexity. Bulletin de l’Académie Polonaise des

Science, Série des Sciences Mathématiques, Astronomiques et Physiques, XXII(1):39–42, 1974.

CALCO 2023

https://arxiv.org/abs/2207.07353

Many-Valued Coalgebraic Logic: From Boolean
Algebras to Primal Varieties
Alexander Kurz #

Fowler School of Engineering, Chapman University, Orange, CA, USA

Wolfgang Poiger #

Department of Mathematics, University of Luxembourg, Esch-sur-Alzette, Luxembourg

Abstract
We study many-valued coalgebraic logics with primal algebras of truth-degrees. We describe a way
to lift algebraic semantics of classical coalgebraic logics, given by an endofunctor on the variety of
Boolean algebras, to this many-valued setting, and we show that many important properties of the
original logic are inherited by its lifting. Then, we deal with the problem of obtaining a concrete
axiomatic presentation of the variety of algebras for this lifted logic, given that we know one for the
original one. We solve this problem for a class of presentations which behaves well with respect to a
lattice structure on the algebra of truth-degrees.

2012 ACM Subject Classification Theory of computation → Modal and temporal logics; Theory of
computation → Categorical semantics; Theory of computation → Algebraic semantics

Keywords and phrases coalgebraic modal logic, many-valued logic, primal algebras, algebraic
semantics, presenting functors

Digital Object Identifier 10.4230/LIPIcs.CALCO.2023.17

Funding Wolfgang Poiger : Supported by the Luxembourg National Research Fund under the project
PRIDE17/12246620/GPS.

1 Introduction

Both many-valued modal logics (see, e.g., [10, 8, 5, 12, 36]) and two-valued coalgebraic logics
(see, e.g., [27, 29, 17, 18]) have received increased attention in recent years. Nonetheless, the
literature on the combination of these two topics seems, as of yet, sparse (examples include
[2, 1, 23]). In this paper, we use methods from universal algebra and category-theory to
study algebraic semantics of many-valued coalgebraic logics.

In the classical (two-valued) case, algebraic semantics for coalgebraic logics have been
described in [17] as follows. Given an endofunctor T on the category Set, an abstract
coalgebraic logic for T consists of an endofunctor L on the variety BA of Boolean algebras
together with a natural transformation δ determining the semantics (see Definition 1). One
can then relate T-coalgebras and L-algebras via δ and a dual adjunction between Set and
BA. In particular, we call such a coalgebraic logic concrete if the functor L comes equipped

Set BA δ : LP ⇒ PT
P

S
T L

Figure 1 Classical abstract coalgebraic logic for T.

with a presentation by operations and equations in the sense of [4, 20, 22]. Essentially, this
corresponds to an axiomatization of the variety Alg(L) of L-algebras. For example, considering
classical modal logic, where T = P is the covariant powerset functor (that is, T-coalgebras
are Kripke frames), the functor L has a presentation by one unary operation □ with two
equations □(x ∧ y) = □x ∧ □y and □1 = 1 (that is, L-algebras are modal algebras).

© Alexander Kurz and Wolfgang Poiger;
licensed under Creative Commons License CC-BY 4.0

10th Conference on Algebra and Coalgebra in Computer Science (CALCO 2023).
Editors: Paolo Baldan and Valeria de Paiva; Article No. 17; pp. 17:1–17:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:akurz@chapman.edu
mailto:wolfgang.poiger@uni.lu
https://doi.org/10.4230/LIPIcs.CALCO.2023.17
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Many-Valued Coalgebraic Logic: From Boolean Algebras to Primal Varieties

It is well-known that the variety BA is generated by the two-element Boolean algebra 2,
that is BA = HSP(2). In this paper, we consider the many-valued case where BA is replaced
by a variety A = HSP(D), generated by another finite algebra D. More specifically, we study
the case where the algebra D is primal.

An algebra D with carrier set D is primal [11, 31, 7] if every map f : Dk → D is definable
by a term tf (x1, . . . , xk) of D. It is well-known that the Boolean algebra 2 is primal,
and primal algebras (e.g., the Post-chains, see Example 6) may be seen as many-valued
generalizations of this algebra. Indeed, Hu [13] showed that if D is primal, then the variety A
it generates is categorically equivalent to the variety of Boolean algebras BA (and vice versa).
Utilizing such a categorical equivalence, we lift an abstract coalgebraic logic (L, δ) over BA to
an abstract coalgebraic logic (L′, δ′) over A (see Figure 4). The logic thus obtained inherits
many useful properties of the original one, such as (one-step) completeness and expressivity.

In particular, if L has a presentation by operations and equations, the same is true for L′,
so at first glance it may seem straightforward to lift concrete coalgebraic logics in a similar
manner. However, as we illustrate in this paper, this task turns out to be far from trivial.
While the lifting guarantees the existence of a presentation of L′, it offers no indication of
what this presentation looks like or how it can be explicitly obtained from a presentation of L.
To answer these questions, we delve deeper into the algebraic structure of D. For certain
classes of functors L, we show that there is a systematic way to obtain a presentation of L′

directly from a presentation of L. In particular, this method applies to classical modal logic
as described above.

This work should be seen in the larger context of many-valued coalgebraic logics which
have been of interest to the community for a range of potential applications, from AI and
cyber-physical systems to the reasoning about software quality. Another (not necessarily
coalgebraic) application of many-valued reasoning are semiring-based algorithms for solving
soft constraints (see, e.g., [34] for a recent example). From the point of view of some of these
applications of many-valued logics, a restriction of our approach is that the dualising algebra
of truth-degrees is finite and, correspondingly, the topological duality is zero-dimensional.
It remains to be seen in future work whether the techniques we develop to extend Boolean
modal logics to many-valued modal logics can be generalized to a continuum of truth-degrees.
Our next step, still keeping to the finite case, will be to generalize from primal to semi-primal
algebras of truth values (see Question 3).

The paper is structured as follows. In Section 2, we give an overview of coalgebraic logic
(Subsection 2.1) and of primal algebras (Subsection 2.2). In Section 3, we show how to lift
abstract coalgebraic logics over BA to ones over A (see Definition 11), and we show that
important properties are preserved under this lifting (see Theorem 12). In Section 4, we
present some methods which, under various circumstances, allow us to obtain a presentation
of the lifted logic from a presentation of the original one (see Theorems 15 and 18). We also
show how these methods can be applied to classical modal logic (see Example 17) and to
neighborhood semantics (see Example 19). Lastly, in Section 5, we give a short summary
and collect some open questions for further research.

2 Preliminaries

In this section, we recall the most important notions used in this paper. In Subsection 2.1, we
give a short summary of coalgebraic logics and their algebraic semantics [17]. We distinguish
between abstract coalgebraic logics, in which the algebraic semantics correspond to an
endofunctor L on a variety without further specification, and concrete coalgebraic logics,

A. Kurz and W. Poiger 17:3

in which this functor L is given together with an explicit presentation by operations and
equations [4]. We also recall two important properties of coalgebraic logics, namely one-step
completeness [29, 17] and expressivity [30, 16, 35, 15].

In Subsection 2.2, we recall the definition of primality [11] and provide some examples of
primal algebras which have previously been considered in logic. Note that the unary terms
T1 and T0 defined in Example 7 reoccur in later sections of this paper. Regarding the variety
generated by a primal algebra, we recall Hu’s Theorem [13, 14].

2.1 Abstract and Concrete Coalgebraic Logics
Coalgebraic (modal) logic, introduced by Moss [27], offers a uniform framework for the logical
study of transition systems modeled by coalgebras. In this paper, we follow the approach to
coalgebraic logic developed in [17] (for an overview of the various approaches to coalgebraic
logic we refer the reader to [18]). It builds on the following dual adjunction between the
category Set and the variety BA of Boolean algebras, defined by two contravariant functors
P : Set → BA and S : BA → Set. Intuitively, the functor P is the contravariant powerset
functor and S is the functor sending a Boolean algebra to its set of ultrafilters. Formally, we
will describe them in a way which is more convenient to generalize to other algebras later on.

The functor P : Set → BA assigns the Boolean algebra P(X) = 2X to the set X, where
2 = ({0, 1}, ∧, ∨, ¬, 0, 1) is the two-element Boolean algebra. A map f : X → X ′ gets sent to
Pf : 2X′ → 2X defined by composition β 7→ β ◦ f .

The functor S assigns the set of homomorphisms S(B) = BA(B, 2) to a Boolean algebra
B ∈ BA (note that BA(B, 2) can be identified with the set of ultrafilters of B) and sends
a homomorphism h : B → B′ to the map Sh : BA(B′, 2) → BA(B, 2), again defined by
composition u 7→ u ◦ h.

It is well-known that P and S form a dual adjunction between the categories Set and
BA. The corresponding natural transformations η : 1BA ⇒ PS and ε : 1Set ⇒ SP are given by
evaluations, that is, for for all B ∈ BA and X ∈ Set we have

ηB : B → 2BA(B,2) εX : X → BA(2X , 2)
b 7→ evb x 7→ evx

where evb(h) = h(b) and evx(f) = f(x).
Classical coalgebraic logics are built “on top” of this dual adjunction, relating coalgebras

over the base category Set to algebras over the base category BA. Since we are not only
interested in the classical case (that is, we aim to replace BA by other varieties later on), we
use the following general definition.

▶ Definition 1 (Abstract coalgebraic logic). Let V be a variety, Π: Set → V and Σ: V → Set
be two contravariant functors forming a dual adjunction and let T be an endofunctor on Set.
An abstract coalgebraic logic for T is a pair (L, δ), consisting of an endofunctor L on V and
a natural transformation δ : LΠ ⇒ ΠT.

Set V δ : LΠ ⇒ ΠT
Π

Σ
T L

Figure 2 Abstract coalgebraic logic for T over a variety V.

CALCO 2023

17:4 Many-Valued Coalgebraic Logic: From Boolean Algebras to Primal Varieties

Given a T-coalgebra γ : X → T(X), applying Π yields Πγ : ΠT(X) → Π(X). Composing
with δX , we obtain an L-algebra Πγ ◦ δX : LΠ(X) → Π(X). To illustrate these notions, we
recall how classical modal logic arises as a special case of a coalgebraic logic (for more details
see [17]).

▶ Example 2 (Classical modal logic). For a general introduction to classical modal logic, we
refer the reader to [3]. The category of Kripke frames with bounded morphisms is isomorphic
to the category Coalg(P) of coalgebras for the covariant powerset functor P : Set → Set.

The variety of modal algebras, on the other hand, can be identified with the category Alg(L)
of algebras for an endofunctor L : BA → BA defined as follows. If B is a Boolean algebra,
L(B) is the free Boolean algebra generated by the set of formal expressions {□b | b ∈ B},
quotiented by the equations □1 = 1 and □(b1 ∧ b2) = □b1 ∧ □b2.

The corresponding natural transformation δ : LP ⇒ PP is defined as follows. For a set X,
the component δX : LP(X) → PP(X) is the unique homomorphism which maps a generator
□Y (where Y ⊆ X) to {Z ⊆ X | Z ⊆ Y }. For a Kripke frame γ : W → P(W), the algebra
Pγ ◦ δW is known as the complex algebra of the frame.

In this example, the category Alg(L) is a variety, since the functor L has a presentation
by one unary operation □ and two equations □1 = 1 and □(x ∧ y) = □x ∧ □y. For further
information about presentations of functors by operations and equations we refer the reader
to [4, 20, 22].

▶ Definition 3 (Concrete coalgebraic logic). A concrete coalgebraic logic is an abstract
coalgebraic logic (L, δ) together with a presentation of the functor L by operations and
equations.

It is shown in [22, Theorem 4.7] that an endofunctor L on a variety has a presentation by
operations and equations if and only if it preserves sifted colimits.

Two important properties of coalgebraic logics are (one-step) completeness [29, 17] and
expressivity [30, 16, 35, 15].

▶ Definition 4 (One-step completeness, expressivity). A coalgebraic logic (L, δ) is called
one-step complete if δ is a component-wise monomorphism, and
expressive if the adjoint-transpose δ† of δ is a component-wise monomorphism.

Classical modal logic (see Example 2) is one-step complete but not expressive. However,
if we replace P by the finite powerset functor Pfin (i.e., if we only consider image-finite
Kripke frames), the logic becomes expressive.

2.2 Primal Algebras

It is well-known that every function f : {0, 1}k → {0, 1} (where k ≥ 1) is term-definable
in the two-element Boolean algebra 2. In 1953, Foster [11] initiated the general study of
algebras with this property, introducing the following notion.

▶ Definition 5 (Primal algebra). A finite algebra D with carrier set D is called primal if
every function f : Dk → D (where k ≥ 1) is term-definable in D.

Next we give some examples of primal algebras which have a connection to logic, starting
with a well-known example of an early many-valued logic.

A. Kurz and W. Poiger 17:5

▶ Example 6 (Post chain). The (n + 1)-element Post chain is the algebra

Pn =
(
{0, 1

n , . . . , n−1
n , 1}, ∧, ∨,′ , 0, 1

)
,

where ∧ and ∨ are the usual lattice operations and the unary operation ′ is defined by 0′ = 1
and (i

n)′ = (i−1
n) for 0 < i ≤ n. For every n ≥ 1, the algebra Pn is primal [11, Theorem 35].

In our next example, we show that every finite bounded lattice can be turned into a
primal algebra in a canonical way. Modal expansions of similar structures have been studied
in [25].

▶ Example 7. Let (L, ∧, ∨, 0, 1) be a finite bounded lattice. Consider the algebra

L = (L, ∧, ∨, {Tℓ}ℓ∈L, {ℓ̂}ℓ∈L),

with unary operations

Tℓ(x) =
{

1 if x = ℓ

0 if x ̸= ℓ

as well as constants ℓ̂ for every ℓ ∈ L (in particular, for the bounds 0 and 1). The algebra
L is primal. For instance, every unary function f : L → L is definable by the “generalized
disjunctive normal form”

tf (x) =
∨
ℓ∈L

(Tℓ(x) ∧ f̂(ℓ)).

We can proceed similarly with functions f : Lk → L of higher arity, using the terms
T(ℓ1,...,ℓk)(x1, . . . , xk) = Tℓ1(x1) ∧ · · · ∧ Tℓk

(xk) for every (ℓ1, . . . , ℓk) ∈ Lk.

Other examples of primal algebras in logic which we don’t describe in detail here include
the four-valued bilattice studied in [32] and the “Boolean-like” algebras studied in [33].

Not surprisingly, primal algebras have a lot in common with the two-element Boolean
algebra. From a category-theoretical perspective, this resemblance is subsumed by Hu’s
Theorem, which we will state now.

▶ Theorem 8 (Hu’s Theorem [13, 14]). A variety A is categorically equivalent to BA if and
only if there is a primal algebra D ∈ A such that A = HSP(D).

In the following sections we will relate “classical” coalgebraic logics (L, δ), where L is an
endofunctor on BA, to “primal” coalgebraic logics (L′, δ′) where L′ is an endofunctor on the
variety A generated by a primal algebra. Even though Theorem 8 implies that BA and A
are categorically equivalent, we will see that this is a non-trivial task, since presentations of
functors are usually not preserved under categorical equivalences.

3 Lifting Abstract Coalgebraic Logics

For the remainder of this paper, we adopt the following framework.

▶ Assumption 9. Let D be a primal algebra, based on a bounded lattice D♭ = (D, ∧, ∨, 0, 1).

We use A = HSP(D) to denote the variety generated by D. Note that the assumption that
D comes equipped with a lattice structure can essentially be made without loss of generality,
since every possible lattice-order on D is term-definable in a primal algebra D.

CALCO 2023

17:6 Many-Valued Coalgebraic Logic: From Boolean Algebras to Primal Varieties

Set BA

A

P

S

P′

S′ S

P

Figure 3 Functors between Set, BA and A.

To set the scene, we now describe various functors relating our base categories Set, BA
and A. The entire constellation is summarized in Figure 3.

Due to Theorem 8, we know that A is categorically equivalent to BA. Since D is based
on a bounded lattice, we have an explicit algebraic description of two functors S : A → BA
and P : BA → A establishing such an equivalence [21].

The Boolean skeleton functor S : A → BA sends an algebra A ∈ A to the Boolean algebra

S(A) = (S(A), ∧, ∨, T0, 0, 1)

on the carrier set

S(A) = {a ∈ A | T1(a) = a}.

Here, ∧ and ∨ are the lattice operations of A, and T0 and T1 are terms defining the unary
operations from Example 7 (such terms exist since D is primal), interpreted in A. It is shown
in [26, Lemma 3.11] that S(A) forms a Boolean algebra. To a homomorphism g : A → A′

the functor S assigns its restriction Sg = g|S(A).
The Boolean power functor P : BA → A sends a Boolean algebra B to the Boolean power

D[B] defined as follows [11, 6]. The carrier set of D[B] is the set of functions ξ : D → B

which satisfy ξ(d1) ∧ ξ(d2) = 0 for all d1 ̸= d2 and
∨

{ξ(d) | d ∈ D} = 1 (for the definition of
the algebra operations we refer the reader to [6]). To a Boolean homomorphism h : B → B′

the functor P assigns the homomorphism defined by composition Ph(ξ) = h ◦ ξ.
A proof of the fact that S and P form a categorical equivalence between BA and A may

be found in [21, Corollary 4.12].
The contravariant functors P : Set → BA and S : BA → Set were already described in

Subsection 2.1, and the contravariant functors P′ : Set → A and S′ : A → BA are defined
similarly.

That is, the functor P′ assigns the algebra P′(X) = DX to a set X and sends a map
f : X → X ′ to the homomorphism P′f : DX′ → DX defined by composition α 7→ α ◦ f .

The functor S′ assigns the set of homomorphisms S′(A) = A(A, D) to an algebra A ∈ A
and sends a homomorphism h : A → A′ to the map S′h : A(A′, D) → A(A, D) defined by
composition u 7→ u ◦ h. Like in the case where D = 2, the functors P′ and S′ establish a dual
adjunction between Set and A. The corresponding natural transformations η′ : 1A ⇒ P′S′

and ε′ : 1Set ⇒ S′P′ are again given by evaluations (see Subsection 2.1).
We collect some useful properties of the functors appearing in Figure 3 and the natural

transformations corresponding to the two dual adjunctions in the following.

▶ Proposition 10. The functors P,S,P′,S′, P,S and the natural transformations ε, η, ε′, η′

satisfy the following properties.
(a) ΦA : A(A, D) → BA(S(A), 2) given by restriction u 7→ u|S(A) defines a natural iso-

morphism S′ ∼= SS. There also exists a natural isomorphism S ∼= S′P.

A. Kurz and W. Poiger 17:7

(b) ΨX : 2X → S(DX), which identifies 2X with a subset of DX in the obvious way defines
a natural isomorphism P ∼= SP′. There also exists a natural isomorphism P′ ∼= PP.

(c) ε = SΨ ◦ ΦP′ ◦ ε′ and Sη′ = ΨS′ ◦ PΦ ◦ ηS.

Proof. In both (a) and (b), the second statement is an immediate consequence of the first
one because P and S form a categorical equivalence. A proof of the first part of (a) can be
found in [21, Proposition 4.3].

For the first part of (b), note that ΨX is well-defined since β ∈ 2X satisfies T1(β(x)) = β(x)
in every component x ∈ X. Since the Boolean operations are defined component-wise, it is a
homomorphism, and it is clearly injective. It is also surjective, since whenever an element
α ∈ DX has a component with α(x) /∈ {0, 1}, we have T1(α(x)) ̸= α(x). Naturality is
straightforward by definition.

For (c), we need to show that the following diagrams commute for all X ∈ Set and A ∈ A.

X BA(2X , 2) S(A) S(DA(A,D))

A(DX , D) BA(S(DX), 2) 2BA(S(A),2) 2A(A,D)

εX

ε′
X

Sη′
A

ηS(A)

ΦDX

SΨX

PΦA

ΨA(A,D)

For the diagram on the left, given x ∈ X, we compute

SΨX ◦ ΦDX ◦ ε′
X(x) = SΨX ◦ ΦDX (evx) = SΨX(evx|S(DX)) = evx|S(DX) ◦ ΨX ,

which, on β ∈ 2X , is given by evx|S(DX) ◦ ΨX(β) = evx|S(DX)(β) = β(x). Thus, it coincides
with εX(x)(β) = evx(β) = β(x).

For the diagram on the right, given b ∈ S(A), similarly we compute

ΨA(A,D) ◦ PΦA ◦ ηS(A)(b) = ΨA(A,D) ◦ PΦA(evb) = ΨA(A,D)(evb ◦ ΦA),

which is given on u ∈ A(A, D) by ΨA(A,D)(evb ◦ ΦA)(u) = ΨA(A,D)(evb(u|S(A))) = u(b).
This coincides with Sη′

A(b)(u) = η′
A|S(A)(b)(u) = u(b), finishing the proof. ◀

Suppose we are given an endofunctor T on Set and an abstract coalgebraic logic (L, δ)
for T which is classical in the sense that L is an endofunctor on BA. We now lift this to an
abstract coalgebraic logic (L′, δ′) where L′ is an endofunctor on A. The entire situation is
summarized in Figure 4.

▶ Definition 11 (Lifting of a coalgebraic logic). Let (L, δ) be an abstract coalgebraic logic for
T : Set → Set with L : BA → BA. Then

L′ = PLS and δ′ = Pδ

defines an abstract coalgebraic logic (L′, δ′) for T, which we call the lifting of (L, δ) to A.

This is well-defined since, by Proposition 10(b), the natural transformation Pδ : PLP → PPT
can be identified with one from PLP ∼= PLSP′ = L′P′ to PPT ∼= P′T.

▶ Theorem 12. Let (L′, δ′) be the lifting of a coalgebraic logic (L, δ) to A.
(a) If L has a presentation by operations and equations, then L′ has one as well.
(b) If (L, δ) is one-step complete, then so is (L′, δ′).
(c) If (L, δ) is expressive, then so is (L′, δ′).

CALCO 2023

17:8 Many-Valued Coalgebraic Logic: From Boolean Algebras to Primal Varieties

Set BA

A

P

S

P′

S′ S

P

T L

L′

Figure 4 Classical coalgebraic logic and its lifting.

Proof.
(a) Recall that an endofunctor on a variety has a presentation if and only if it preserves sifted

colimits [22, Theorem 4.7]. Of course, if L preserves sifted colimits then, by definition, so
does L′.

(b) If δ is a component-wise monomorphism, then so is δ′, since P preserves monomorphisms.
(c) We show that (δ′)† = δ†S holds up to natural isomorphism, from which the statement

follows since it implies that if δ† is a component-wise monomorphism, then so is (δ′)†.
So we want to show that the following diagram commutes.

TS′ S′P′TS′ S′L′P′S′ S′L′

TSS SPTSS SLPSS SLS

ε′TS′ S′δ′S′ S′L′η′

εTSS SδSS SLηS

D1 D2 D3

Here, by definition, the top edge of the diagram is the adjoint-transpose (δ′)† and
the bottom edge is δ†S. All vertical arrows are natural isomorphisms obtained via Φ
and Ψ from Proposition 10. The diagram D2 commutes by definition of δ′, using that
S′δ′ = S′Pδ and S′P ∼= S by Proposition 10(a). To finish the proof we show that D1 and
D3 commute as well.
To see that D1 commutes, we apply the first equation of Proposition 10(c) to compute

SPTΦ ◦ SΨTS′ ◦ ΦP′TS′ ◦ ε′TS′ = SPTΦ ◦ (SΨ ◦ ΦP′ ◦ ε′)TS′ = SPTΦ ◦ εTS′,

which coincides with εTSS ◦ TΦ.
Similarly, to see that D3 commutes we apply the second equation of Proposition 10(c)
to compute

SLηS ◦ SLPΦ ◦ SLΨS′ ◦ ΦL′P′S′ = SL(ΨS′ ◦ PΦ ◦ ηS) ◦ ΦL′P′S′ = SLSη′ ◦ ΦL′P′S′,

which coincides with ΦL′ ◦ S′L′η′. ◀

If (L, δ) is a concrete coalgebraic logic for T with L : BA → BA, then the initial L-algebra
exists and corresponds to the Lindenbaum-Tarski algebra of the variety Alg(L). If (L, δ) is
a coalgebraic logic for T and γ : X → T(X) is a coalgebra, then the unique map from the
Lindenbaum-Tarski algebra into the L-algebra Pγ ◦ δX determines semantics of formulas.
In this context, it is known that one-step completeness of (L, δ) implies completeness for

A. Kurz and W. Poiger 17:9

the resulting logic [20, Theorem 6.15]. Since the proof only uses properties of BA which are
invariant under categorical equivalence, it can easily be adapted to coalgebraic logics over A.
Thus, parts (a) and (b) of Theorem 12 imply the following.

▶ Corollary 13. Let (L′, δ′) be the lifting of the coalgebraic logic (L, δ), where L has a
presentation. If (L, δ) is complete, then so is (L′, δ′).

So we showed that the lifting (L′, δ′) of a coalgebraic logic (L, δ) inherits desirable
properties from the original logic, which is satisfactory from a theoretical point of view. From
a more “practical” point of view, one important question still needs to be answered, namely
that of a concrete presentation of L′ and its relationship to a presentation of L. Indeed,
Theorem 12(a) only states that the existence of a presentation is preserved, without any
explicit way of obtaining it from the original one. In the following section, we give some
partial solutions to this problem.

4 Lifting Presentations of Functors

We aim to relate presentations of L : BA → BA to presentations of the corresponding lifted
functor L′ = PLS : A → A. Not surprisingly, to do this we need to delve deeper into the
algebraic structure of D.

Since D is based on a bounded lattice and primal (Assumption 9), for every d ∈ D, the
unary function τd : D → D defined by

τd(x) =
{

1 if d ≤ x

0 if d ̸≤ x

is well-defined and term-definable in D. Note that τ0, being of constant value 1, carries
no relevant information. Thus, we only consider τd for d ∈ D+ := D\{0} in the following.
Also note that τ1 coincides with T1 from Example 7. Given an element e ∈ D, the map
τ(·)(e) : D+ → 2 defined by d 7→ τd(e) fully determines the element e via

e =
∨

{d | τd(e) = 1}.

In the following, we characterize all maps of this form by their lattice-theoretic properties.

▶ Lemma 14. Let T : D+ → 2 be a map which, for all d1, d2 ∈ D+, satisfies

T (d1 ∨ d2) = T (d1) ∧ T (d2). (1)

Then T = τ(·)(e) for e =
∨

{d | T (d) = 1}.

Proof. The case e = 0 can only occur if T (d) = 0 for all d ∈ D+, which implies T (d) = 0 =
τd(0) for all d ∈ D. Now assume that e ̸= 0. First we show that T (e) = 1. Since e is a finite
join we apply (1) to find

T (e) = T (
∨

{d | T (d) = 1}) =
∧

{T (d) | T (d) = 1} = 1.

Furthermore, since (1) implies that T is order-reversing, we have T (c) = 1 for all c ≤ e

as well. Now let c ̸≤ e. Then we have T (c) = 0, since otherwise T (c) = 1 leads to the
contradiction

e =
∨

{d | T (d) = 1} ≥ e ∨ c > e.

Altogether, we have shown that T (d) = 1 if and only if e ≥ d, so T (d) = τd(e). ◀

CALCO 2023

17:10 Many-Valued Coalgebraic Logic: From Boolean Algebras to Primal Varieties

Suppose that L : BA → BA has a presentation by one unary operation □ and equations
which are satisfied by the terms τd, in the sense that all the equations obtained by replacing
□ by any τd hold in D. Prominent examples of such equations are □(x ∧ y) = □x ∧ □y and
□1 = 1 from Example 2.

Under these circumstances, we can find a presentation of the corresponding lifted functor
L′ : A → A as follows. The idea is to “approach” a presentation of L′ by introducing a modal
operator for every d ∈ D+, intended to correspond to τd□ for the “lifted” □′. However, only
if these modal operators are “consistent” in the sense of Lemma 14, we can replace them by
a single operator again.

For simplicity, we only consider the case of one unary operation in the following, but there
is a straightforward generalization of Theorem 15 to presentations of L by one operation
which is not necessarily unary (the operations □d and □′ will simply have the same arity).

▶ Theorem 15. Let L : BA → BA have a presentation by one unary operation □ and equations
which are satisfied (in D) by all τd, d ∈ D+. Let L′ = PLS.
(a) The functor L′ can be presented by unary operations □d for every d ∈ D+ and the

following equations.
The equations for □, where □ is replaced by □1.
□1τd(x) = □dx for all d ∈ D+.
T1(□dx) = □dx for all d ∈ D+.

(b) If, in the variety Alg(L′) axiomatized by the presentation of (a), the equation

□d1∨d2x = □d1x ∧ □d2x (2)

holds, then L′ can also be presented by one unary operation □′ and the following equations.
The equations for □, where □ is replaced by □′.
□′τd(x) = τd(□′x) for all d ∈ D+.

Proof.
(a) Let L+ : A → A be the functor presented by the operations □d and equations as in the

statement. We want to show that L′ is naturally isomorphic to L+. Since both these
functors are finitary (because they preserve sifted colimits, in particular they preserve
filtered colimits), it suffices to show that their restrictions to finite algebras are naturally
isomorphic. The restrictions of P and S to the categories Setfin of finite sets and BAfin

of finite Boolean algebras form a dual equivalence. Similarly, the restrictions of P′ and
S′ form a dual equivalence between Setfin and Afin . Therefore, it suffices to show that

S′L+P′ ∼= SLP,

since, due to Proposition 10, for the right-hand side we have further natural isomorphisms
SLP ∼= S′PLSP′ = S′L′P′. Spelling this out, we want to find a bijection between the sets
of homomorphisms A(L+(DX), D) and BA(L(2X), 2) which is natural in X ∈ Set. By
definition of L+, the set A(L+(DX), D) can be naturally identified with the collection of
all maps (whose domain is simply a set of formal expressions)

f : {□da | d ∈ D+, a ∈ DX} → D, where f respects the equations of L+.

Similarly, the set BA(L(2X), 2) can be naturally identified with the collection of all maps

g : {□b | b ∈ 2X} → 2, where g respects the equations of L.

A. Kurz and W. Poiger 17:11

Given f as above, we assign to it gf defined by

gf (□b) = f(□1b).

This is well-defined, since T1(f(□1b)) = f(□1b) implies f(□1b) ∈ 2, and gf respects the
equations of L, because f does for □ replaced by □1.
Conversely, given g as above, we assign to it fg defined by

fg(□da) = g(□τd(a)).

Since the equations of L are satisfied by τd and respected by g, they are also respected
by fg. The remaining equations of L+ are respected by fg, since, for all d ∈ D+ we can
directly verify

fg(□1τd(a)) = g(□T1(τd(a))) = g(□τd(a)) = fg(□da),

where we used T1(τd(a)) = τd(a) since τd(a) ∈ 2X and

T1(fg(□da)) = T1(g(□τda)) = g(□τda) = fg(□da),

where we used T1(g(□τda)) = g(□τda) since g(□τda) ∈ 2.
Now we show that these two assignments are mutually inverse. For this we compute

fgf
(□da) = gf (□τda) = f(□1τda) = f(□da),

where in the last equation we used that f respects the corresponding equation of L+ and

gfg (□b) = fg(□1b) = g(□T1(b)) = g(□b),

where in the last equation we used b ∈ 2X again.
For naturality, we need to show that, given a map m : X1 → X2, the following diagram
commutes.

A(L+(DX1), D) BA(L(2X1), 2)

A(L+(DX2), D) BA(L(2X2), 2)

g(·)

S′L+P′m SLPm

g(·)

Let f : {□da | d ∈ D+, a ∈ DX1} → D be given as before. On the one hand, for α ∈ DX2

and β ∈ 2X2 we have S′L+P′m(f)(□dα) = f(□d(α◦m)) and therefore gS′L+P′m(f)(□β) =
f(□1(β ◦m)). On the other hand, SLPm(gf)(□β) = gf (□(β ◦m)) = f(□1(β ◦m)). Thus,
the diagram commutes.

(b) Let L⋆ : A → A be defined by one unary operation □′ and equations as in the statement
and let L+ be defined as in the proof of (a). For the same reason as before, it suffices to
show

S′L⋆P′ ∼= S′L+P′.

Again, S′L+P′(X) = A(L+(DX), D) is essentially the collection of maps

f : {□da | d ∈ D+, a ∈ DX} → D, where f respects the equations of L+,

CALCO 2023

17:12 Many-Valued Coalgebraic Logic: From Boolean Algebras to Primal Varieties

and S′L⋆P′(X) is essentially the collection of maps

h : {□a | a ∈ DX} → D, where h respects the equations of L⋆.

Given h as above, we assign to it

fh(□da) = h(□′τda).

Checking that this is well-defined is routine by now, the only non-trivial part being

T1(fh(□da) = T1(h(□′τd(a))) = h(□′T1(τd(a))) = fh(□da),

which uses the fact that h respects the corresponding equation □′T1(x) = T1(□′x) of L⋆.
Conversely, given f as above, we assign to it

hf (□′a) =
∨

{c | f(□ca) = 1}.

First, given d ∈ D+, using that τc ◦ τd = τd holds for all c ∈ D+, we note

hf (□′τd(a)) =
∨

{c | f(□cτd(a)) = 1} =
∨

{c | f(□1τc(τd(a))) = 1} =
∨

{c | f(□da) = 1}.

Since, on the right-hand side, the formula f(□da) = 1 is independent of c, this join is
either equal to

∨
∅ = 0 if f(□da) = 0 or

∨
D+ = 1 if f(□da) = 1. On the other hand,

by assumption we can apply Lemma 14, which yields

τd(hf (□′a)) = τd(
∨

{c | f(□ca) = 1}) = f(□da)

as well. The two assignments thus defined are mutually inverse since

fhf
(□da) = hf (□′τd(a)) =

∨
{c | f(□cτd(a)) = 1} = f(□da)

holds again by Lemma 14 and

hfh
(□′a) =

∨
{c | h(□′τc(a)) = 1} =

∨
{c | τc(h(□′a)) = 1} = h(□′a).

Analogous to (a), it is straightforward to show that the isomorphism thus defined is
natural. ◀

In particular, part (b) of this theorem applies if the “original” operation □ preserves
meets, as shown in the following.

▶ Corollary 16. Let L be as in Theorem 15, such that □(x ∧ y) = □x ∧ □y holds in the
variety Alg(L). Then L′ = PLS can be presented by one unary operation □′ and the following
equations.

The equations for □, where □ is replaced by □′.
□′τd(x) = τd(□′x) for all d ∈ D+.

Proof. We verify equation (2) from Theorem 15(b) by

□d1∨d2x = □1τd1∨d2(x) = □1(τd1(x) ∧ τd2(x)) = □1τd1(x) ∧ □1τd2(x) = □d1x ∧ □d2x,

and the statement immediately follows from there. ◀

A. Kurz and W. Poiger 17:13

If (L, δ) is a concrete coalgebraic logic for T, where L : BA → BA is endowed with a
presentation such that the conditions of Theorem 15 are satisfied, it is now easy to describe
the lifting (L′, δ′) as a concrete coalgebraic logic as well. The only missing piece is an explicit
description of the natural transformation δ′ : L′P′ ⇒ P′T. Similar to the proof of Theorem
15, for a set X, the component δ′

X : L′(DX) → DT(X) is defined on Y ∈ T(X) by

δ′
X(□da)(Y) = δX(□τd(a))(Y).

Given that the additional condition of part (b) of Theorem 15 is also satisfied, it can be
described as

δ′
X(□a)(Y) =

∨
{d | δ(□τd(a)) = 1}.

In the following, we show that the machinery developed works well with respect to the
way classical modal logic is described as a concrete coalgebraic logic in Example 2.

▶ Example 17 (Lifting classical modal logic). Let (L, δ) be the coalgebraic logic for P which
corresponds to classical modal logic as in Example 2, in particular L : BA → BA is presented
by a unary operation □ and the equations □(x ∧ y) = □x ∧ □y and □1 = 1.

Let (L′, δ′) be the lifting of (L, δ) to A. By Corollary 16, we know that L′ has a presentation
by a unary operation □′ and equations

□′(x ∧ y) = □′x ∧ □′y, □′1 = 1 and τd(□′x) = □′τd(x) for all d ∈ D+.

The natural transformation δ′ has components δ′
X : L′(DX) → DP(X), defined by

δ′
X(□′a)(Y) =

∨
{d | δX(□τd(a))(Y) = 1}.

Now, since δX(□τd(a))(Y) = 1 ⇔ ∀y ∈ Y : τd(a(y)) = 1 ⇔ ∀y ∈ Y : a(y) ≥ d we can rewrite
this as∨

{d | δX(□τd(a))(Y) = 1} =
∨

{d |
∧

y∈Y

a(y) ≥ d} =
∨

{d | τd(
∧

y∈Y

a(y)) = 1} =
∧

y∈Y

a(y).

Thus, this corresponds to the usual semantics of a many-valued box over Kripke frames
defined via meet (see, e.g., [5, 12]). Since we know that (L, δ) is one-step complete (and thus
complete), by Theorem 12(b) (and Corollary 13) the logic (L′, δ′) is one-step complete (and
thus complete) as well (similar results are shown in [25, 12]). Furthermore, from Theorem
12(c) we conclude that, replacing P by the finite-powerset functor Pfin, the logic (L′, δ′) is
expressive for image-finite frames (this can also be proved directly along the lines of [24]).

The applicability of Theorem 15 does depend on the specific choice of a presentation of L.
For instance, the functor L in the example above can also be presented by one unary operator
♢ with equations ♢(x ∨ y) = ♢x ∨ ♢y and ♢0 = 0. If D is not linear, it is easy to check that
τd(x ∨ y) = τd(x) ∨ τd(y) does not hold in general (simply choose incomparable elements
x and y and set d = x ∨ y). Therefore, this presentation can not be lifted by this method.
However, the following order-dual version of Theorem 15 can be applied in this case.

For every d ∈ D− := D\{1}, the unary operation κd : D → D defined by

κd(x) =
{

1 if d ≥ x

0 if d ̸≥ x

is term-definable in D. Not surprisingly, the following can be shown completely analogous to
what we did before.

CALCO 2023

17:14 Many-Valued Coalgebraic Logic: From Boolean Algebras to Primal Varieties

▶ Theorem 18. Let L : BA → BA have a presentation by one unary operation ♢ and equations
which are satisfied by all κd, d ∈ D−. Let L′ = PLS.
(a) The functor L′ can be presented by unary operations ♢d for every d ∈ D− and the

following equations.
The equations for ♢, where ♢ is replaced by ♢0.
♢0T0(κd(x)) = ♢dx for all d ∈ D−.
T1(♢dx) = ♢dx for all d ∈ D−.

(b) If, in the variety Alg(L′) axiomatized by the presentation of (a), the equation

♢d1∧d2x = ♢d1x ∨ ♢d2x (3)

holds, then L′ can also be presented by one unary operation ♢′ and the following equations.
The equations for ♢, where ♢ is replaced by ♢′.
♢′κd(x) = κd(♢′x) for all d ∈ D−.

Analogous to Corollary 16, equation (3) of Theorem 18 can be deduced if ♢(x∨y) = ♢x∨♢y

holds in Alg(L). Thus, another way to concretely present the lifting (L′, δ′) of classical modal
logic (Example 17) is by one unary operation ♢′ satisfying

♢′(x ∨ y) = ♢′x ∨ ♢′y, ♢′1 = 1 and κd(♢′x) = ♢′κd(x) for all d ∈ D−.

The semantics of ♢′ are (as usual for many-valued diamonds over Kripke frames) defined by
joins, that is, for a ∈ DX and Y ∈ P(X) we have δ′

X(♢′a)(Y) =
∨

y∈Y a(y).
We finish this section with an example to illustrate a situation where part (a) of Theorem 15

can be applied, but part (b) can not.

▶ Example 19 (Neighborhood frames). To deal with non-normal modal logics, one typically
considers neighborhood semantics (for an introduction see, e.g., [28]). Neighborhood frames
are coalgebras for the neighborhood functor N : Set → Set, given by N = ℘ ◦ ℘, where ℘ is
the contravariant powerset functor.

Let (L, δ) be the following concrete coalgebraic logic over N . The functor L : BA → BA
has a presentation by one unary operation □ and no (i.e., the empty set of) equations. The
natural transformation δ has components δX : L(2X) → 2N (X) defined by

δX(□b)(N) = N(b),

in other words, δX(□b)(N) = 1 if and only if the subset b ∈ 2X is an element of the collection
of neighborhoods N .

Since the presentation of L doesn’t include any equations, it trivially satisfies the conditions
of Theorem 15. Therefore, the lifting (L′, δ′) of the above logic to A can be described as
follows. The functor L′ : A → A has a presentation by unary operations □d for all d ∈ D+

with equations

□1τd(x) = □dx and T1(□dx) = □dx for all d ∈ D+.

The semantics δ′ can be described by

δ′
X(□da)(N) = δX(□τd(a))(N) = N(τd(a)),

which means that δ′
X(□da) = 1 if and only if the subset {x ∈ X | a(x) ≥ d} is an element

of the collection of neighborhoods N . Since (L, δ) is one-step complete, we again have that
(L′, δ′) is complete.

A. Kurz and W. Poiger 17:15

Therefore, it can easily be shown by counter-example that □d1∨d2x = □d1x ∧ □d2x does
not hold in Alg(L′), which means that the above presentation can not be simplified to the
one using a single unary operation via Theorem 15(b). At this point, the question whether
or not the presentation can be simplified differently remains open.

However, if we replace the functor N by the one which only allows collections of neigh-
borhoods which are closed under finite intersections and supersets, we know that there is a
corresponding concrete coalgebraic logic (L, δ) such that the presentation of L contains the
equation □(x ∧ y) = □x ∧ □y. Thus, Corollary 16 applies in this case.

This concludes the main sections of this paper. In the last section we briefly summarize
our results and discuss some potential directions for future research along similar lines.

5 Conclusion and Open Questions

We showed how to lift classical coalgebraic logics (L, δ) over BA to many-valued coalgebraic
logics (L′, δ′) over A, the variety generated by a primal algebra D. On the level of abstract
coalgebraic logics, it can be shown by purely category-theoretical means that the logic thus
lifted inherits important properties like one-step completeness and expressivity from the
original logic. On the level of concrete coalgebraic logics, we showed how one may lift a given
presentation of L by operations and equations to a presentation of L′, making use of algebraic
properties and a lattice structure of D. As of yet, there is no fully general method to do this.
However, prominent examples like the modal logics for Kripke frames and neighborhood
frames are covered by our results. In the following, we propose some open questions for
future research.

As Example 19 illustrates, applying Theorem 15 does not always yield a presentation by
a single unary operation. However, such a presentation could still exist in such situations.

▶ Question 1. Suppose that L : BA → BA has a presentation by a single unary operation and
equations. Does there always exist a presentation of L′ by a single unary operation as well?

If it is true, a follow-up question would be how these two presentations relate to each
other in general. If it is false, a follow-up problem would be to classify the presentations of L
for which it is true.

The following question arises if we start with a presentation of L with more than one,
possibly infinitely-many, operations (for example, the multi-modal logic for the distribution
functor described in [9]).

▶ Question 2. Given that the functor L : BA → BA has a presentation by more than one
operations operations and equations, can we still obtain a presentation of L′ with methods
similar to the ones developed in this paper?

Further generalizations of results of this paper may be obtained by weakening Assumption 9
about D being primal. We summarize this in the following general question.

▶ Question 3. Let V be some variety generated by some algebra. Is there a canonical way to
lift abstract coalgebraic logics (L, δ) over BA to abstract coalgebraic logics (L′, δ′) over V and
to relate presentations of L and L′?

We plan to generalize the results of this paper to the case of D being semi-primal in
future work (the first step towards that direction has been taken in [21], where we study the
category-theoretical relationship between V and BA in this case).

Lastly, one could keep Assumption 9, but change the approach to coalgebraic logic (for
an overview of the various approaches see [18]).

CALCO 2023

17:16 Many-Valued Coalgebraic Logic: From Boolean Algebras to Primal Varieties

▶ Question 4. Develop and study the theory of coalgebraic logic with a primal algebra D of
truth-degrees using other approaches to coalgebraic logic.

Many-valued nabla modalities and many-valued predicate liftings have, for example, been
investigated in [2] and [1, 23]. As follow-up research, one could study the relationship between
the various approaches to coalgebraic logic in the many-valued setting (similar to [19]).

References
1 M. Bílková and M. Dostál. Expressivity of many-valued modal logics, coalgebraically. In

J. Väänänen, Å. Hirvonen, and R. de Queiroz, editors, Logic, Language, Information, and
Computation, pages 109–124. Springer Berlin Heidelberg, 2016.

2 M. Bílková, A. Kurz, D. Petrişan, and J. Velebil. Relation lifting, with an application to the
many-valued cover modality. Logical Methods in Computer Science, 9(4):739–790, 2013.

3 P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 2001.

4 M. M. Bonsangue and A. Kurz. Presenting functors by operations and equations. In L. Aceto
and A. Ingólfsdóttir, editors, Foundations of Software Science and Computation Structures,
pages 172–186. Springer Berlin Heidelberg, 2006.

5 F. Bou, F. Esteva, L. Godo, and R. O. Rodríguez. On the minimum many-valued modal logic
over a finite residuated lattice. Journal of Logic and Computation, 21(5):739–790, 2011.

6 S. Burris. Boolean powers. Algebra Universalis, 5:341–360, 1975.
7 S. Burris and H.P. Sankappanavar. A Course in Universal Algebra. Graduate Texts in

Mathematics. Springer, 1981.
8 X. Caicedo and R. Rodriguez. Standard Gödel modal logics. Studia Logica, 94:189–214, 2010.
9 C. Cîrstea and D. Pattinson. Modular construction of modal logics. In P. Gardner and

N. Yoshida, editors, CONCUR 2004 - Concurrency Theory, pages 258–275. Springer Berlin
Heidelberg, 2004.

10 M. C. Fitting. Many-valued modal logics. Fundamenta Informaticae, 15(3-4):35–254, 1991.
11 A. L. Foster. Generalized "Boolean" theory of universal algebras. Part i. Mathematische

Zeitschrift, 58:306–336, 1953.
12 G. Hansoul and B. Teheux. Extending Łukasiewicz logics with a modality: Algebraic approach

to relational semantics. Studia Logica, 101:505–545, 2013.
13 T.-K. Hu. Stone duality for primal algebra theory. Mathematische Zeitschrift, 110:180–198,

1969.
14 T.-K. Hu. On the topological duality for primal algebra theory. Algebra Universalis, 1:152–154,

1971.
15 B. Jacobs and A. Sokolova. Exemplaric expressivity of modal logics. Journal of Logic and

Computation, 20(5):1041–1068, 2009.
16 B. Klin. Coalgebraic modal logic beyond sets. Electronic Notes in Theoretical Computer Science,

173:177–201, 2007. Proceedings of the 23rd Conference on the Mathematical Foundations of
Programming Semantics (MFPS XXIII).

17 C. Kupke, A. Kurz, and D. Pattinson. Algebraic semantics for coalgebraic logics. Electronic
Notes in Theoretical Computer Science, 106:219–241, 2004.

18 C. Kupke and D. Pattinson. Coalgebraic semantics of modal logics: An overview. Theoretical
Computer Science, 412(38):5070–5094, 2011.

19 A. Kurz and R. Leal. Modalities in the Stone age: A comparison of coalgebraic logics.
Theoretical Computer Science, 430:88–116, 2012. Mathematical Foundations of Programming
Semantics (MFPS XXV).

20 A. Kurz and D. Petrişan. Presenting functors on many-sorted varieties and applications.
Information and Computation, 208(12):1421–1446, 2010.

21 A. Kurz, W. Poiger, and B. Teheux. New perspectives on semi-primal varieties. Preprint
available at https://arxiv.org/abs/2301.13406, 2023.

https://arxiv.org/abs/2301.13406

A. Kurz and W. Poiger 17:17

22 A. Kurz and J. Rosický. Strongly complete logics for coalgebras. Logical Methods in Computer
Science, 8(3):1–32, 2012.

23 C.-Y. Lin and C.-J. Liau. Many-valued coalgebraic modal logic: One-step completeness and
finite model property. Preprint available at https://arxiv.org/abs/2012.05604, 2022.

24 M. Marti and G. Metcalfe. Expressivity in chain-based modal logics. Archive for Mathematical
Logic, 57:361–380, 2018.

25 Y. Maruyama. Algebraic study of lattice-valued logic and lattice-valued modal logic. In
R. Ramanujam and S. Sarukkai, editors, Logic and Its Applications. ICLA, pages 170–184.
Springer Berlin Heidelberg, 2009.

26 Y. Maruyama. Natural duality, modality, and coalgebra. Journal of Pure and Applied Algebra,
216(3):565–580, 2012.

27 L. S. Moss. Coalgebraic logic. Annals of Pure and Applied Logic, 96(1):277–317, 1999.
28 E. Pacuit. Neighborhood Semantics for Modal Logic. Short Textbooks in Logic. Springer, 2017.
29 D. Pattinson. Coalgebraic modal logic: Soundness, completeness and decidability of local

consequence. Theoretical Computer Science, 309(1):177–193, 2003.
30 D. Pattinson. Expressive logics for coalgebras via terminal sequence induction. Notre Dame

Journal of Formal Logic, 45(1):19–33, 2004.
31 R. W. Quackenbush. Primality: The influence of Boolean algebras in universal algebra. In

Georg Grätzer. Universal Algebra. Second Edition, pages 401–416. Springer, New York, 1979.
32 U. Rivieccio, A. Jung, and R. Jansana. Four-valued modal logic: Kripke semantics and duality.

Journal of Logic and Computation, 27(1):155–199, 2017.
33 A. Salibra, A. Bucciarelli, A. Ledda, and F. Paoli. Classical logic with n truth values as a

symmetric many-valued logic. Foundations of Science, 28:115–142, 2023.
34 A. Schiendorfer, A. Knapp, G. Anders, and W. Reif. MiniBrass: Soft constraints for MiniZinc.

Constraints, 23(4):403–450, 2018.
35 L. Schröder. Expressivity of coalgebraic modal logic: The limits and beyond. Theoretical

Computer Science, 390(2):230–247, 2008. Foundations of Software Science and Computational
Structures.

36 A. Vidal, F. Esteva, and L. Godo. On modal extensions of product fuzzy logic. Journal of
Logic and Computation, 27(1):299–336, 2017.

CALCO 2023

https://arxiv.org/abs/2012.05604

Composition and Recursion for Causal Structures
Henning Basold # Ñ

LIACS, Leiden University, The Netherlands

Tanjona Ralaivaosaona #

LIACS, Leiden University, The Netherlands

Abstract
Causality appears in various contexts as a property where present behaviour can only depend on
past events, but not on future events. In this paper, we compare three different notions of causality
that capture the idea of causality in the form of restrictions on morphisms between coinductively
defined structures, such as final coalgebras and chains, in fairly general categories. We then focus
on one presentation and show that it gives rise to a traced symmetric monoidal category of causal
morphisms. This shows that causal morphisms are closed under sequential and parallel composition
and, crucially, under recursion.

2012 ACM Subject Classification Theory of computation → Categorical semantics

Keywords and phrases Causal morphisms, Final Coalgebras, Final Chains, Metric Maps, Guarded
Recursion, Traced Symmetric Monoidal Category

Digital Object Identifier 10.4230/LIPIcs.CALCO.2023.18

1 Introduction

Causality appears in various fields of science as the property that the output of a system at
given time only depends on past and present inputs. This is particularly well-understood
for computations on streams and various approaches to define causal maps on streams have
been proposed [7]. More generally, distributive laws have been identified to give rise, and in
the category of sets also coincide with, causal maps [14]. Such distributive laws provide a
very neat formalism for constructing simultaneously several causal maps but are notoriously
difficult to use in compositional specifications [5]. Our aim here is to provide a compositional
framework for causal maps, in which such maps can be constructed by sequential composition,
parallel composition and recursion. This framework is built around the idea of graphical
calculi that arise from traced monoidal categories that allow us to construct and reason
about morphisms with string diagrams.

The first question that arises is what causal maps are in general. A robust definition
can be given by considering maps on final coalgebras. Suppose that F is a functor on some
category C and that it has a final coalgebra with carrier νF , which arises as the limit of
a sequence of approximations that we denote by ΦF . The final coalgebra νF comes with
projections pi : νF → (ΦF)i that allow us to inspect an element in νF up to stage i of the
approximation. Intuitively, a map f : νF → νF is causal if the ith approximation of its
output only depends on the ith approximation of the input. This notion has been formalised
by Rot and Pous [14] and we recap the formal definition in Section 3. For the purpose of
this introduction, it suffices to say that one can show that causal maps can equivalently be
represented by chain maps ΦF → ΦF , which are families of maps for every approximation
stage that are consistent across approximation stages. Formally, one considers ΦF as a
diagram in C and a chain map is then a natural transformation.

Thus, there are two equivalent ways of approaching causality. Why would we choose one
over the other? Causal maps on final coalgebras have the advantage that they are easy to
understand and calculate. However, to attain our goal of compositional reasoning for causal
maps, it is better to let go of these for a moment and work with chain maps instead. This

© Henning Basold and Tanjona Ralaivaosaona;
licensed under Creative Commons License CC-BY 4.0

10th Conference on Algebra and Coalgebra in Computer Science (CALCO 2023).
Editors: Paolo Baldan and Valeria de Paiva; Article No. 18; pp. 18:1–18:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:h.basold@liacs.leidenuniv.nl
https://liacs.leidenuniv.nl/~basoldh/
https://orcid.org/0000-0001-7610-8331
mailto:t.f.r.ralaivaosaona@liacs.leidenuniv.nl
https://doi.org/10.4230/LIPIcs.CALCO.2023.18
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Composition and Recursion for Causal Structures

gives us access to powerful tools for recursion that is akin to that of domain theory [4, 3].
Using these tools and some ideas from monoidal categories, we will be able to draw diagrams
such as those in Figure 1.

f τ2τ1

σ

g τ3

σ σ

Figure 1 Circuit with feedback loops and parameters.

The interpretation of Figure 1 is that f and g are two causal maps that connected in
various ways, including recursive feedback loops. Each of the maps has a small feedback loop
and then they are tied together in one big loop. On the loops are small boxes that can be
seen as registers that store information in between computation steps. It should be noted
that this is an analogy that works well for streams but may fail for other cases. However, we
like to place these boxes in the loop because we will show that the feedback is only defined if
an initial condition is provided, which can be interpreted as initial values in the registers.
Next, there are blue edges with labels τk. These edges are parameters of the maps that we
cannot do recursion with but have more flexible types. This can be useful if we consider
causal maps that have additional inputs and outputs that may not even stem from final
coalgebras.

The approach to compositional reasoning for causal maps we propose based on the above
ideas is that one starts with a set of known causal maps, obtained either directly as chain
maps or the construction we provide in the paper. Then one can build arbitrarily complex
compositions and loops around these maps using the formalism of traced monoidal and
tensored categories. Once construction and reasoning are done, causal maps can be easily
obtained from the chain maps by taking limits. All of this works fairly generally, as long as
the assumptions in Section 2.2 are fulfilled and that suitable initial conditions for recursion
are provided.

Contributions and Outline
We contribute in Section 4 a framework for working compositionally with chain maps. This
framework consists of a construction of string diagrams that differentiate between interfaces
for recursion and for parameters. These come about as certain symmetric monoidal, enriched,
and tensored categories. For such categories, we show that a trace operator can be obtained
relative to the recursion interface of morphisms. To enable the use of this framework, we
prove in Section 3 the correspondence between chain maps and causal maps, from which we
obtain a very flexible method of composition and recursion for causal maps. We also show in
Section 3.1 a third way to define causal maps in terms of a metric that is induced on νF

by the diagram ΦF . This metric view allows us to understand causality better in certain
examples, like streams and partial computations. In Section 5, we discuss applications to
probabilistic computations and we pay particular attention to linear maps, which turn out
to be automatically causal. Our framework provides then an alternative view on the various
calculi for linear circuits. We end with some concluding remarks in Section 6.

Before we begin with the actual work, we recall in the following Section 2 some background
on (enriched) monoidal categories and guarded recursion, and we prove some small results to
get the theory of the ground.

H. Basold and T. Ralaivaosaona 18:3

2 Preliminaries

We follow the convention to use boldface letters C for categories, capital letters such as X for
objects, lower case letters for morphisms, capital letters such as F for functors, small Greek
letters like µ for natural transformations, and α, β for ordinals. We denote by ω the ordinal
of the natural numbers. Finally, σ, τ, γ will be for αop-indexed diagrams in some category.

Recall [11] that a symmetric monoidal category (SMC) is a category C with tensor product
functor ⊗ : C×C→ C and a tensor unit I ∈ C with the associativity, unit and symmetry
isomorphisms. An SMC is closed if for every object X ∈ C, the functor Id⊗X : C→ C has a
right-adjoint. In particular, a Cartesian closed category (CCC) is a closed SMC with products
acting as tensor and exponentials as their right adjoint: −×X ⊣ −X . Let V be a SMC. A
V-category C is a V-enriched category, which means that its morphisms C(X, Y) are objects
in V, and composition and identity are morphisms cX,Y,Z : C(Y, Z)⊗C(X, Y)→ C(X, Z)
and uX : I → C(X, X) in V subject to the corresponding associativity and unit axioms [10, 6].
For morphisms f : X → Y in a Cartesian closed category C, we denote by ⌈f ⌉ : 1→ Y X the
“code” of f given by the Cartesian closure. The CCC C is a C-category (self-enriched) by
taking ⌈ id ⌉ : 1→ XX as unit and the composition compX,Y,Z : ZY × Y X → ZX is given by
the exponential adjunction. A functor F : C→ C is called strong if there is a natural family
of morphisms FX,Y : Y X → FY F X , such that FX,Y ◦ ⌈f ⌉ = ⌈Ff ⌉ for all f : X → Y . This
makes F a C-functor for the self-enrichment of C.

Let C be a category and F : C→ C a functor. An F -coalgebra (or just coalgebra) is a
morphism c : X → FX in C. If we need to be explicit about the carrier X, we also write
(X, c). A coalgebra homomorphism from (X, c) to (Y, d) is a morphism f : X → Y in C,
satisfying Ff ◦c = d◦f . A coalgebra (Y, d) is final if it is final in the category of F -coalgebras
CoAlg(F), i.e., if for every coalgebra (X, c) there exists a unique coalgebra homomorphism
from (X, c) to (Y, d).

Given a category C, the category of descending α-chains in C, here denoted by ←−C, is
the functor category [αop, C]. Objects of ←−C are functors σ : αop → C, which assign each
i < α an object σi of C and each pair i ≤ j a morphism σ(i ≤ j) : σj → σi in C. A
morphism f : σ → τ in ←−C is a natural transformation, which means that it is an α-indexed
family of morphisms such that fi ◦ σ(i ≤ j) = τ(i ≤ j) ◦ fj holds. Such f will often be
called a chain map for simplicity. We also record here that the chain category construction
gives rise to a 2-functor

←−−
(−) : Cat → Cat on the category of categories. In particular, a

functor F : C→ D gives rise to a functor ←−F : ←−C→←−D by post-composition with diagrams
(point-wise application) and similarly for natural transformations. Finally, let us denote by
K : C→←−C the constant functor which assigns an object X of C to the constant chain given
by KXi = X and KX(i ≤ j) = idX . If C has αop-limits, then we assume them to be given
as an adjunction ⟨K ⊣ L, η, ϵ⟩ : C→←−C , where L : ←−C→ C assigns to a chain its limit.

2.1 Domain Theory of Chains
It is well known [1, 8] that if F : C→ C has a final coalgebra, then there is a limit ordinal α

for which F is αop-continuous (preserves limits of αop-diagrams) and the final coalgebra is
given by the limit of the so-called final chain. The main tool of this paper is this final chain
and we shall therefore recap recursion theory for such chains, see [13, 4, 3].

The category ←−C of αop-chains has properties that are akin to that of domains used in
recursion theory, with the main difference that fixed point theorems require guardedness via
the so-called later modality. We assume in what follows that C is Cartesian closed, which
implies that ←−C is also a CCC, and that C has sufficiently many limits, cf. Section 2.2.

CALCO 2023

18:4 Composition and Recursion for Causal Structures

The later modality is a functor ▶ : ←−C→←−C defined on objects by (▶σ)i = limj<i σj and
it comes with a natural transformation next : Id→ ▶. Since products preserve limits, there
are natural isomorphisms δ▶σ,τ : ▶σ × ▶ τ → ▶(σ × τ) and ε▶ : 1 → ▶1. If ω is used as
indexing ordinal, one can easily show that (▶σ)0 ∼= 1 and (▶σ)n+1 ∼= σn via a chain map.

We are interested in the category ←−C here because it allows us to do so-called guarded
recursion, which comes in the form of fixed point solution theorems for morphism and for
functors analogue to those occurring in domain theory. However, what differentiates guarded
recursion from domain theory is that we only find fixed points of contractive morphisms.
A solution or fixed point of a morphism h : τ × γ → γ in ←−C is a morphism s : τ → γ with
s = h ◦ ⟨idτ , s⟩. We call a morphism h : τ × γ → γ contractive if there is g : τ ×▶ γ → γ with
h = g ◦ (idτ ×nextγ). The main point is now that any contractive morphism h has a solution
in ←−C.

The isomorphisms δ▶ and ε▶ make ▶ a (strong) monoidal functor and thus allow us
to change the enriching base and obtain a ←−C-category ←−C▶ with the same objects as ←−C
but ←−C▶(σ, τ) = ▶(τσ) as morphism object. The monoidal natural transformation next
induces a ←−C-functor Next: ←−C→←−C▶ by putting Nσ,τ = nextτσ : τσ → ▶(τσ). A ←−C-functor
F : ←−C→←−C is called locally contractive if there is a←−C-functor G : ←−C▶ →

←−C with G◦Next = F .
Explicitly, there is a family of morphisms Gσ,τ : ▶(στ)→ FσF τ with Fσ,τ = Gσ,τ ◦ nextστ ,
Gσ,σ ◦▶ ⌈ id ⌉ ◦ ε▶ = ⌈ id ⌉ and comp ◦ (Cσ,τ × Cγ,σ) = Cγ,τ ◦▶ comp ◦ δ▶.

Throughout this paper, we will use that ▶ is locally contractive, and that if F and G are←−C-functors and at least one of them is locally contractive, then F ◦G is locally contractive.
Moreover, we will need the following result.

▶ Lemma 1. Given a functor F : C → C, the functor ←−F : ←−C → ←−C is a ←−C-functor if and
only if F is a C-functor.

What makes locally contractive functor interesting, is that they admit unique fixed points:
Given a locally contractive functor F : ←−C→←−C, there is a unique chain νF with isomorphisms
obs : νF → F (νF) and fold = obs−1 : F (νF) → νF . In this paper, we pick coinduction as
our main principle and consider (νF, obs) as final object in CoAlg(F).

▶ Lemma 2. There is a functor Φ: Endo(C)→←−C given on objects by ΦF = ν
(
▶
←−
F

)
, which

exists because ▶ ◦
←−
F is locally contractive. We call ΦF the final chain of F .

Proof. Given a natural transformation α : F → G, we define Φα coinductively as in the
following diagram.

ΦF ΦG

▶
←−
F (ΦF)

▶
←−
G(ΦF) ▶

←−
G(ΦG)

obs

obs

▶ αΦF

Φα

▶
←−
G(Φα)

Preservation of identities and composition follow by standard arguments from finality. ◀

If F preserves αop-limits, that is, if L
←−
F ∼= FL, then the limit adjunction K ⊣ L lifts to

an adjunction K ⊣ L with K : CoAlg(F)→ CoAlg
(
▶
←−
F

)
, see [3]. In particular, L(ΦF, obs)

is a final F -coalgebra with carrier L(ΦF).

H. Basold and T. Ralaivaosaona 18:5

2.2 Assumptions
Given the above, we assume the following for the remainder of the paper: C is a Cartesian
closed category; α is a limit ordinal; C has αop-limits and ∂(α ↓ i)op-limits, where ∂(α ↓ i)
is the category that contains all j < i; F is a strong functor on C that preserves αop-limits.

3 Causality

In this section, we extend the definition of ω-causal operators [14, Def. 8.1] to arbitrary
categories but we do not define causal algebra. Although, our definition can be easily
extended to causal algebras. For this purpose, we assume that F preserves αop-limits and
thus LΦF can be taken as the carrier νF of a final F -coalgebra. We denote by (νF, (pi)i<α),
the universal cone defining a limit for ΦF and we define causal morphisms on νF as follows.

▶ Definition 3. A morphism f : νF → νF is causal if for every object X of C, morphisms
e1, e2 : X → νF and i < α: if pi ◦ e1 = pi ◦ e2, then pi ◦f ◦ e1 = pi ◦f ◦ e2. Diagrammatically:

νF

X (ΦF)i

νF

pie1

e2 pi

=⇒

νF νF

X (ΦF)i

νF νF

f

pie1

e2
f

pi

We denote the set of causal morphisms on νF by Caus(νF, νF) ⊆ C(νF, νF).

In the following theorem we compare two characterisations of causal morphisms on νF .

▶ Theorem 4. There is a map λ : ←−C(ΦF, ΦF)→ Caus(νF, νF) with λ(g) = Lg. If there is
a section s : ΦF → KLΦF of ϵΦF in ←−C, i.e. ϵΦF ◦ s = idΦF , then λ is an isomorphism.

Proof. We define λ :←−C(ΦF, ΦF)→ Caus(νF, νF) such that for each g : ΦF → ΦF , λ(g) =
Lg. To show that λ(g) is causal we need to prove, by Definition 3, that if diagram (1)
below commutes, then the outer diagram must also commute, for any ρ ∈

←−C and morphisms
e1, e2 : ρ→ νF . In the diagram, we use LΦF for νF .

LΦF LΦF

ρ (1) (ΦF)i (ΦF)i

LΦF LΦF

pi (2)

Lg

pi

e1

e2

gi

pi (2)

Lg

pi

To prove that the outer diagram commutes, it is enough to prove that diagram (2) commutes.
Because of naturality of the counit ϵ of the adjunction ⟨K ⊣ L, η, ϵ⟩, the diagram below
commutes.

KLΦF KLΦF

ΦF ΦF

KLg

ϵΦF ϵΦF

g

CALCO 2023

18:6 Composition and Recursion for Causal Structures

Hence diagram (2) commutes, as being the ith component of the above commuting diagram.
Therefore, λ(g) is causal.

Given the section s : ΦF → KLΦF , we define an inverse χ : Caus(νF, νF)→←−C(ΦF, ΦF)
of λ on causal maps f : νF → νF by letting χ(f) = ΦF

s−→ KLΦF
Kf−−→ KLΦF

ϵΦF−−→ ΦF .
χ(g) is a chain map in ←−C because it is a composition of chain maps in ←−C. We have,
(χ ◦ λ)(g) = g, since the following diagram commutes by naturality of ϵ and s being a section.

ΦF KLΦF KLΦF

ΦF ΦF

s

idΦF

KLg

ϵΦF ϵΦF

g

We also have (λ ◦ χ)(f) = f : The following diagram commutes because of causality of f ,
naturality of η, and the triangular axiom of adjunction.

LKLΦF LKLΦF

LΦF LΦF LΦF

LKLΦF LKLΦF

LKf

LϵΦF

f

ηLΦF

Ls

ηLΦF

idLΦF

LKf
LϵΦF

Thus λ is an isomorphism with inverse χ. ◀

Importantly, this characterisation allows us to exploit all the domain-theoretic tools that
are available in ←−C to compose and reason about causal morphisms.

Let us pause for a moment to take a look at some examples in the category Set. First
of all, we note that we generally get the required section in Theorem 4 because the limit
projections split if the involved chains are non-empty. Thus, chain and causal maps are
equivalent in Set. Let us explore more concretely the familiar examples of streams and
partial computations.

▶ Example 5. Let S : Set→ Set be the functor defined by S(X) = R×X, for some set R.
The set Rω consists of streams over R, defined by Rω = [N, R]. If we use ω as ordinal for
indexing, then the final chain ΦS is isomorphic to the following chain.

1 R R2 R3 · · ·! π1 π2

That is, (ΦS)0 ∼= 1 and for every i ∈ N, (ΦS)i
∼= Ri via a chain map. Indeed, LΦS ∼= Rω with

the projections (pi)i∈N, such that pi : Rω → Ri giving for every s ∈ Rω its first i elements. It
is well known [7] that a function f : Rω → Rω is causal if and only if for all k ∈ N, s, t ∈ Rω,
if s(i) = t(i) for all i ≤ k, then f(s)(k) = f(t)(k). Which implicitly includes every i ≤ k,
that is f(s)(i) = f(t)(i), and that is exactly Definition 3. From Theorem 4, we now obtain
that we can equivalently see f as a chain map χ(f) : ΦS → ΦS, where for u ∈ Rn we have
χ(f)n+1(u) = f(u : s) for any stream s ∈ Rω. Note that this requires that R is inhabited.

▶ Example 6. For the functor N : Set→ Set given by N(X) = X + 1, where 1 = {∗}, one
has νN ∼= N ∪ {∞}. and we use ω as indexing ordinal. The final chain ΦN is isomorphic to
the following chain, in which [n] = {k ∈ N | 0 ≤ k < n}.

[0] [1] [2] [3] · · ·! q1 q2

H. Basold and T. Ralaivaosaona 18:7

The projections qi are the identity on numbers below i and truncate all higher numbers.
Pictorially this looks as follows.

[0] [1] [2] · · ·

0 0 0 · · ·

1 1 · · ·

2 · · ·

q0 q1 q2

One can show [14, Ex. 8.4] that a map f : νN → νN is causal if for all n, m and i ≤ min(n, m),
then f(n) = f(m) or i ≤ min(f(n), f(m)).

One may wonder where the last condition in Example 6 comes from. Let us, therefore,
digress for a moment and explore yet another characterisation of causal morphisms.

3.1 Causality and Metric Maps
For the purpose of comparing causal maps with metric maps, we assume additionally that C
is locally small and that it has a generator G, which is an object such that the hom-functor
C(G,−) : C→ Set is faithful. We will denote this functor by E = C(G,−) and its action on
a morphism f : X → Y by f∗ : EX → EY . One can think of x ∈ EX as element of X and
f∗(x) ∈ EX as its image under f . Moreover, we need that the functor F is ωop-continuous.
These assumptions allow us to define a metric on final coalgebras and then prove that metric
maps correspond to causal maps.

Let d : E(νF)× E(νF)→ [0, 1] be the metric defined for e1, e2 ∈ E(νF) as follows.

d(e1, e2) = sup
{

2−i
∣∣ pi ◦ e1 ̸= pi ◦ e2, i ∈ N

}
= inf

{
2−i

∣∣ pi ◦ e1 = pi ◦ e2, i ∈ N
}

One can easily observe from Definition 3 that two outputs of causal morphisms f∗ should
not be more distant than their corresponding inputs. That is, causal functions are metric
maps, in the following sense.

▶ Definition 7. Let (X, dX), (Y, dY) be two metric spaces. A function f : X → Y is a metric
map when for any elements x, y ∈ X, the following condition is fulfilled.

dY (f(x), f(y)) ≤ dX(x, y)

Metric spaces and metric maps form a category Met.

Now we can show the correspondence between causal morphisms and metric maps.

▶ Theorem 8. The following are equivalent:
1. f ∈ Caus(νF, νF)
2. f ∈Met((νF, d), (νF, d))

Proof. (1→ 2) By the universal property of sup, we need to prove 2−l ≤ d(x, y) for all l

with pl ◦ f∗(x) ̸= pl ◦ f∗(y). Given such an l, we get by causality of f that pl ◦ x ̸= pl ◦ y and
hence 2−l ≤ d(x, y). As this holds for all l, we get d(f∗(x), f∗(y)) ≤ d(x, y).

(2→ 1) Conversely, let us assume that f is a metric map. That is
d(f∗(x), f∗(y) ≤ d(x, y), which implies that l ≥ k. Hence, we have for all i < k the following.

pi ◦ x = pi ◦ y =⇒ f ◦ pi ◦ x = f ◦ pi ◦ y

Since f is a metric map, we also have pi ◦ f∗(x) = pi ◦ f∗(y). Thus f is causal. ◀

CALCO 2023

18:8 Composition and Recursion for Causal Structures

Birkedal et al. [4] show that there is an adjunction between certain metric spaces and
←−−Set, and that there is a one-to-one correspondence between contractive maps in the metric
sense and contractive maps in ←−−Set, see Section 2.1. One can think of Theorem 8 as a partial
generalisation of this result, although we are mostly interested in it here to understand
causality better in some examples.

▶ Example 9. Recall that we cited in Example 6 a rather odd looking characterisation of
causal maps on partial computations. We can derive this characterisation from Theorem 8
as follows. Since if n = m we must have f(n) = f(m), suppose without loss of generality
n ≠ m. For i ≤ min(n, m), we get d(n, m) = 2−(min(n,m)+1). If f is causal, we either have
f(n) = f(m) or d(f(n), f(m)) = 2−(min(f(n),f(m))+1) ≤ d(n, m). By inspecting the two sides,
we get that i ≤ min(n, m) ≤ min(f(n), f(m)), which is what we wanted to prove.

The results in Theorem 4 and Theorem 8 can be summed up as in the following diagram.

Caus(νF, νF)

←−C(ΦF, ΦF) Met((νF, d), (νF, d))

∼= ∼=

∼=

4 Composition and Recursion

In this section, we construct for a fixed chain σ a symmetric monoidal category Pσ together
with a trace-like operator. This category allows us to construct diagrams of arbitrary causal
morphisms with feedback loops. The SMC Pσ will have as morphisms something one may
think of building blocks with two kinds of interfaces: one for things of type σ over which
we do recursion via traces and one type for parameter of arbitrary type. The diagram in
Figure 1 displays the kind of circuit that we intend to build. Here, we build a circuit out
of two causal morphisms f and g, where τk are types of the parameters (blue wires) and
the three loops going through small boxes indicate recursive feedback that goes through a
register that can store elements of type σ (black wires). Such diagrams can be built, in the
usual way, by parallel and sequential composition of morphisms and by looping interfaces of
type σ back to inputs. What is not allowed are loops of types other than σ.

Let us first explain the nature of Pσ and then we prove that it is a traced SMC. Recall
that we can associate to any SMC, in this case, ←−C, a canonical PROP [12] Hσ with objects
being natural numbers and morphisms given by Hσ(n, m) =←−C(σn, σm). In fact, any PROP
is of this form [2]. In Hσ, we could build diagrams with only black wires and our result
Corollary 18 below will have as special case that this category is a traced SMC. However, we
wish to have the extra flexibility of additional parameters, which we can achieve by creating
a symmetric monoidal ←−C-category that is tensored over ←−C.

▶ Theorem 10. Let (V,⊗, I) be a closed SMC and v ∈ V some object. Denote by Hv the
V-enriched PROP with natural numbers as objects and morphisms v⊗n → v⊗m where v⊗n is
the n-fold tensor product of v. There is a V-enriched SMC Pv with a fully faithful monoidal
V-functor (−) : Hv → Pv that is tensored over V, which means that there is a monoidal
functor ⊙ : V ×Pv → Pv with natural isomorphisms Pv(u ⊙X, Y) ∼= V(u, Pv(X, Y)) for
u ∈ V and X, Y ∈ Pv.

Proof. We define Pv to have as objects pairs (u, n) with u ∈ V and n ∈ N, and as morphisms
we take

Pv((u, n), (w, m)) = V
(
u⊗ v⊗n, w ⊗ v⊗m

)
.

H. Basold and T. Ralaivaosaona 18:9

Since V is closed, this makes Pv immediately a V-category. It is also symmetric monoidal
with the product (u, n) ⊗Pv

(w, m) = (u ⊗ w, n + m) and unit IPv
= (I, 0). The functor

Hv → Pv is given by n = (I, n) and f = I ⊗ f . It is obviously monoidal and faithful,
and that it is full follows from I being the monoidal unit. Finally, the tensor is defined by
u⊙ (w, n) = (u⊗ w, n) and we get immediately

Pv(u⊙ (x, n), (y, m)) = Pv((u⊗ x, n), (y, m))
= V

(
u⊗ x⊗ v⊗n, y ⊗ v⊗m

)
∼= V

(
u⊗, V

(
x⊗ v⊗n, y ⊗ v⊗m

))
= V(u⊗, Pv((x, n), (y, m)))

by V being closed. Thus Pv is also tensored over V. ◀

We now apply Theorem 10 to our situation of αop-chains to obtain for σ ∈
←−C a←−C-category

Pσ with pairs (τ, n) of τ ∈
←−C and n ∈ N and

Pσ((τ, n), (γ, m)) =←−C(τ × σn, γ × σm)

as hom-objects. We denote the monoidal product of Pσ simply by ⊗ and its unit by I. Since
morphisms in Pσ are particular morphisms in ←−C, we make no distinction between, e.g.,
id(τ,n) and idτ×σn to lighten notation a bit.

Our goal now is to enable recursion in Pσ via a trace operator [9]. Except that our trace
will be relative to Hσ in the sense that there is a family of maps

Trk
X,Y : Pσ(X ⊗ k, Y ⊗ k)→ Pσ(X, Y)

indexed by X, Y ∈ Pσ and k ∈ Hσ that fulfils the usual trace axioms. Since the functor
Hσ → Pσ is fully faithful, this will expose Hσ as a proper traced SMC.

Whenever morphisms are defined by recursive equations, one has to provide boundary
conditions to obtain a well-defined solution to the equations, even if they are implicit. In
analogy with registers to create well-defined feedback loops as in Figure 1, an initial value
that we place in the registers will take the role of boundary conditions in our case.

▶ Definition 11. We call a morphism i : ▶σ → σ in ←−C an initial value. It gives rise to a
morphism on powers of σ by îk = ▶

(
σk

) δ▶

−−→ (▶σ)k ik

−→ σk. A morphism g : n→ m in Hσ

is compatible with i if îm ◦▶ g = g ◦ în.

If σ ∈ [ωop, C], then an initial value i : ▶σ → σ consists of morphisms i0 : 1→ σ0 and
in+1 : σn → σn+1 that are compatible with the chain σ. In the case of streams, see Example 5,
i : ▶(ΦS)→ ΦS picks out an element i1 : 1→ R that all ik : Rk → Rk+1 have to return as
the first element. Compatibility of g with i means then that g1 ◦ i1 = i1, which is for example
the case when i1 returns 0 and g is linear, see Section 5.1.

A good source of initial values for the final chain is pointed functors.

▶ Proposition 12. If F : C→ C is a pointed functor, i.e., comes with a natural transformation
η : Id→ F , then there is an initial value ▶ΦF → ΦF .

Proof. The initial value is defined as the composite ▶ΦF
▶←−η ΦF−−−−−→ ▶

←−
F ΦF

fold−−→ ΦF . ◀

In what follows, we assume an initial value to be given and construct the trace relative to
it. Since ←−C is Cartesian closed, we find that the morphism involved in our relative trace has
a special shape.

We give the definition of morphisms with k-feedback loops as follows.

CALCO 2023

18:10 Composition and Recursion for Causal Structures

▶ Definition 13. A k-feedback morphism f ∈ Pσ((τ, n)⊗Pσ k, (γ, m)⊗Pσ k) is of the form

f = ⟨fout, ffb⟩

such that fout ∈ Pσ((τ, n)⊗Pσ k, (γ, m)) refers to the output of f and ffb ∈ Pσ((τ, n)⊗Pσ k, k)
refers to the k-feedback loops of f , given by ffb = îk ◦ nextσk ◦ ffb, where îk ∈ Pσ(k, k) such
that (̂ik)i : (σi)k → (σi+1)k.

The first step to defining a trace operator is to figure out the behaviour of the register
involved in a feedback loop. To this end, let h : (τ, n) ⊗ k → k be a morphism in Pσ

and consider the morphism îk ◦ nextσk ◦ h : τ × σn × σk → σk, which is contractive with
îk ◦ ▶h ◦ δ▶ ◦ (nextτ×σn × id) because next is a monoidal natural transformation, as the
following diagram shows, where X = τ × σn.

X ×▶(σk) X × σk σk

▶X ×▶(σk) ▶(X × σk) ▶(σk) σk

h

next

id×next

next×id

δ▶ ▶ h

next

îk

next×next

We denote by s(h) : (τ, n)→ k a solution for îk ◦nextσk ◦h, that is, the unique morphism
fulfilling the following equation.

s(h) = îk ◦ nextσk ◦ h ◦ ⟨id(τ,n), s(h)⟩ (1)

We collect some properties of s(h) that we need to prove the trace axioms.

▶ Lemma 14. For any h : (τ, n)⊗ k → k and g : (τ ′, n′)→ (τ, n) morphisms in Pσ, if s(h)
is a solution for îk ◦ nextσk ◦ h, then s(h) ◦ g is a solution for îk ◦ nextσk ◦ h ◦ (g × idk).

Proof. s(h) ◦ g is a solution for îk ◦ nextσk ◦ h ◦ (g × idk), because

s(h) ◦ g = îk ◦ nextσk ◦ h ◦ ⟨id(τ,n), s(h)⟩ ◦ g by def. of s(h)
= îk ◦ nextσk ◦ h ◦ ⟨g ◦ id(τ ′,n′), s(h) ◦ g⟩
= îk ◦ nextσk ◦ h ◦ (g × idk) ◦ ⟨id(τ ′,n′), s(h) ◦ g⟩ ◀

The following lemma will allow us to prove the sliding axiom for tracing, but only for
chain maps that are compatible with the initial value.

▶ Lemma 15. Suppose h′ : (τ, n) ⊗ k → k′ and g : k′ → k that is compatible with i. If
s(h′ ◦ (id(τ,n))⊗ g) is a solution for îk′ ◦ nextσk′ ◦h′ ◦ (id(τ,n)⊗g), then g ◦ s(h′ ◦ (id(τ,n))⊗ g)
is a solution for îk ◦ nextσk ◦ g ◦ h′.

Proof. Let sk′ = s(h′ ◦ (id(τ,n))⊗ g), then g ◦ sk′ is a solution for îk ◦ nextσk ◦ g ◦ h′, because

g ◦ sk′
= g ◦ îk

′
◦ nextσk′ ◦ h′ ◦ ⟨id(τ,n), g ◦ sk′

⟩,

= îk ◦▶ g ◦ nextσk′ ◦ h′ ◦ ⟨id(τ,n), g ◦ sk′
⟩ g compatible with i

= îk ◦ nextσk ◦ g ◦ h′ ◦ ⟨id(τ,n), g ◦ sk′
⟩ ◀

We propose a definition of a trace in Pσ in the following theorem, followed by a proof
that it satisfies the axioms of a trace [9].

H. Basold and T. Ralaivaosaona 18:11

▶ Theorem 16. For any X, Y, k ∈ Pσ, we define Trk
X,Y : Pσ(X ⊗ k, Y ⊗ k)→ Pσ(X, Y) by

Trk
X,Y (f) = fout ◦ ⟨idX , s(ffb)⟩ (2)

a family of morphisms that satisfy the axioms of a trace, with the exception that dinaturality
is relative to i-compatible morphisms.

Proof.
1. Naturality on (τ, n): Trk

−,(γ,m) : Pσ(− ⊗ k, (γ, m) ⊗ k) → Pσ(−, (γ, m)) is a natural
transformation.
Let f : (τ, n)⊗ k → (γ, m)⊗ k be k-feedback and g : (τ ′, n′)→ (τ, n), both morphisms in
Pσ. We need to show that

Trk
(τ ′,n′),(γ,m)(f ◦ (g ⊗ idk)) = Trk

(τ,n),(γ,m)(f) ◦ g. (3)

Since f is k-feedback, we have

(f ◦ (g ⊗ idk))out = fout ◦ (g ⊗ idk) and (f ◦ (g ⊗ idk))fb = ffb ◦ (g ⊗ idk). (4)

Hence, by Equation (2),

Trk
(τ ′,n′),(γ,m)(f ◦ (g ⊗ idk)) = fout ◦ (g ⊗ idk) ◦ ⟨id(τ ′,n′), s(ffb ◦ (g ⊗ idk))⟩ (5)

where s(ffb ◦ (g ⊗ idk)) is a solution for îk ◦ nextσk ◦ ffb ◦ (g ⊗ idk), and

s(ffb ◦ (g ⊗ idk)) = îk ◦ nextσk ◦ ffb ◦ (g ⊗ idk) ◦ ⟨id(τ ′,n′), s(ffb ◦ (g ⊗ idk))⟩.

We also have, Trk
(τ,n),(γ,m)(f) ◦ g = fout ◦ ⟨id(τ,n), s(ffb)⟩ ◦ g, such that, s(ffb) being the

fixed point of îk ◦ nextσk ◦ ffb and s(ffb) = îk ◦ nextσk ◦ f1 ◦ ⟨id(τ,n), s⟩.
By Lemma 14, we get

Trk
(τ ′,n′),(γ,m)(f ◦ (g ⊗ idk)) = fout ◦ (g ⊗ idk) ◦ ⟨id(τ ′,n′), s(ffb) ◦ g⟩,

= fout ◦ ⟨id(τ,n), s(ffb)⟩ ◦ g,

= Trk
(τ,n),(γ,m)(f) ◦ g.

Hence, Equation (3).
2. Naturality on (γ, m): Trk

(τ,n),− : Pσ((τ, n) ⊗ k,− ⊗ k) → Pσ((τ, n),−) is a natural
transformation.
Let f : (τ, n)⊗ k → (γ, m)⊗ k and g : (γ, m)→ (γ′, m′), we need to show that

Trk
(τ,n),(γ′,m′)((g ⊗ idk) ◦ f) = g ◦ Trk

(τ,n),(γ,m)(f). (6)

For the k-feedback morphism (g ⊗ idk) ◦ f ,

((g ⊗ idk) ◦ f)out = g ◦ fout, and ((g ⊗ idk) ◦ f)fb = ffb.

By definition, Trk
(τ,n),(γ′,m′)((g ⊗ idk) ◦ f) = g ◦ fout ◦ ⟨id(τ,n), s(ffb)⟩, and

g ◦ Trk
(τ,n),(γ,m)(f) = g ◦ fout ◦ ⟨id(τ,n), s(ffb)⟩. Hence, Equation (6).

3. Dinaturality on k: Tr−(τ,n),(γ,m) : Pσ((τ, n) ⊗ −, (γ, m) ⊗ −) → Pσ((τ, n), (γ, m)) is a
dinatural transformation, on the full subcategory Hσ with objects of the form n = (K1, n)
for all n ∈ N, and if iσk at every k ∈ N satisfies for each g : k → k′, g ◦ îk = îk′ ◦▶ g.

CALCO 2023

18:12 Composition and Recursion for Causal Structures

Let f : (τ, n)⊗ k → (γ, m)⊗ k′ and g : k′ → k, we need to show that

Trk
(τ,n),(γ,m)((id(γ,m)⊗g) ◦ f) = Trk′

(τ,n),(γ,m)(f ◦ (id(τ,n)⊗g)). (7)

Note that (id(γ,m)⊗g) ◦ f is k-feedback with ((id(γ,m)⊗g) ◦ f)out =
fout, and ((id(γ,m)⊗g) ◦ f)fb = (g ◦ f)fb; and f ◦ (id(τ,n)⊗g) is k′-feedback, with
(f ◦ (id(τ,n)⊗g))out = fout ◦ (id(τ,n)⊗g), and (f ◦ (id(τ,n)⊗g))fb = ffb ◦ (id(τ,n)⊗g); such
that fout : τ × σn × σk → γ × σm and ffb : τ × σn × σk → σk′

.

Then, by Theorem 16, we have

Trk
(τ,n),(γ,m)((id(γ,m)⊗g) ◦ f) = fout ◦ ⟨id(τ,n), s(g ◦ fk′)⟩; (8)

and

Trk′

(τ,n),(γ,m)(f ◦ (id(τ,n)⊗g)) = fout ◦ (id(τ,n)⊗g) ◦ ⟨id(τ,n), s(fk′ ◦ (id(τ,n)⊗g))⟩,

= fout ◦ ⟨id(τ,n), g ◦ s(fk′ ◦ (id(τ,n)⊗g))⟩.

Let sk′ = s(fk′ ◦ (id(τ,n)⊗g)), a solution for iσk′ ◦ nextσk′ ◦ fk′ ◦ (id(τ,n)⊗g), then by
Lemma 15, g ◦ sk′ is a solution for îk ◦ nextσk ◦ g ◦ fk′ . Hence, we can substitute s(g ◦ fk′)
in Equation (8), by g ◦ sk′ , and we get

Trk
(τ,n),(γ,m)((id(γ,m)⊗g) ◦ f) = fout ◦ ⟨id(τ,n), s(g ◦ fk′)⟩,

= fout ◦ ⟨id(τ,n), g ◦ sk′
⟩,

= Trk′

(τ,n),(γ,m)(f ◦ (id(τ,n)⊗g)).

▶ Remark 17. In the case where we do not have g ◦ iσk = i
σk′ ◦▶ g, dinaturality is not

satified.
We have now seen that trace in Theorem 16 is a family of natural morphisms, we are left
to check if they fulfill the three axioms of trace in [9], for symmetric monoidal categories.

4. Vanishing 1: Let f : (τ, n) ⊗ 0 → (γ, m) ⊗ 0 and ιr : − ⊗1 → −, where ιr is the right
unitor. Then we need to show, that

Tr0
(τ,n),(γ,m)(f) = ιr(γ,m) ◦ f ◦ ι−1

r(τ,n). (9)

Note that Tr0
(τ,n),(γ,m) : Pσ((τ, n), (γ, m))→ Pσ((τ, n), (γ, m))

In this case, f is 0-feedback, therefore fout = f . Hence

Tr0
(τ,n),(γ,m)(f) = f

= ιr(γ,m) ◦ f ◦ ι−1
r(τ,n).

5. Vanishing 2: Let f : (τ, n)⊗ 1⊗ 1→ (γ, m)⊗ 1⊗ 1 We need to show that

Tr2
(τ,n),(γ,m)(f) = Tr1

(τ,n),(γ,m)(Tr1
(τ,n+1),(γ,m+1)(f)) (10)

We have, f is a 2-feedback with f = ⟨fout, f2⟩ = ⟨fout, f21, f1⟩ = ⟨fout,2out, f1⟩. Then,

Tr1
(τ,n+1),(γ,n+1)(f) = f1 ◦ ⟨id(τ,n+1), s1⟩ (11)

such that s1 is a a solution for î1 ◦ nextσ ◦ f1. Then

Tr1
(τ,n),(γ,m)(Tr1

(τ,n+1),(γ,m+1)(f)) = (f1 ◦ ⟨id(τ,n+1), s1⟩)1 ◦ ⟨id(τ,n), s2⟩, (12)

H. Basold and T. Ralaivaosaona 18:13

such that s2 is a solution for î1 ◦ nextσ ◦ (fout,2out ◦ ⟨id(τ,n+1), s1⟩)2 and
s2 = î1 ◦ nextσ ◦ f21 ◦ ⟨id(τ,n+1), s1⟩ ◦ ⟨id(τ,n), s2⟩, where

(fout,2out ◦ ⟨id(τ,n+1), s1⟩)1 =fout ◦ ⟨id(τ,n+1) s1⟩ and
(fout,2out ◦ ⟨id(τ,n+1), s1⟩)2 =f21 ◦ ⟨id(τ,n+1), s1⟩ .

Hence Tr1
(τ,n),(γ,m)(Tr1

(τ,n+1),(γ,m+1)(f)) = fout ◦⟨id(τ,n+1), s1⟩◦⟨id(τ,n), s2⟩. On the other
hand, We have f = ⟨fout, ⟨f21, f1⟩⟩, and Tr2

(τ,n),(γ,m)(f) = fout ◦ ⟨id(τ,n), s⟩, where s is
a solution for î2 ◦ nextσ2 ◦ ⟨f21, f1⟩. We can show that t = ⟨s2, s1 ◦ ⟨id(τ,n), s2⟩⟩ is a
solution for î2 ◦nextσ2 ◦ ⟨f21, f1⟩. We have ⟨id(τ,n+1), s1⟩ ◦ ⟨id(τ,n), s2⟩ = ⟨id(τ,n), t⟩, where
t = ⟨s2, s1 ◦ ⟨id(τ,n), s2⟩⟩ = î2 ◦ nextσ2 ◦ ⟨f21, f1⟩ ◦ ⟨⟨id(τ,n), t⟩. Therefore, t is a solution
for î2 ◦ nextσ2 ◦ ⟨f21, f1⟩. Thus, we have the following.

Tr2
(τ,n),(γ,m)(f) = fout ◦ ⟨id(τ,n), t⟩

= Tr1
(τ,n),(γ,m)(Tr1

(τ,n+1),(γ,m+1)(f))

6. Superposing: Let f : (τ, n)⊗ 1→ (γ, m)⊗ 1 and g : (τ ′, n′)→ (γ′, m′), we need to show
that

g ◦ Tr1
(τ,n),(γ,m)(f) = Tr1

(τ ′,n′)⊗(τ,n),(γ′,m′)⊗(γ,m)(g ⊗ f) . (13)

We have Tr1
(τ ′,n′)⊗(τ,n),(γ′,m′)⊗(γ,m)(g ⊗ f) = (g ⊗ f1) ◦ ⟨id(τ ′,n′)⊗(τ,n), s⟩, where s is a

solution for î1 ◦ nextσ ◦ (g ⊗ f)2 = î1 ◦ nextσ ◦ f1 ◦ π(τ,n+1). If s(f1) is a solution for
î1 ◦ nextσ ◦ f1, then s(f1) ◦ π(τ,n) is a solution for î1 ◦ nextσ ◦ f1 ◦ π(τ,n+1), because of the
following

s(f1) ◦ π(τ,n) = î1 ◦ nextσ ◦ f1 ◦ ⟨id(τ,n), s(f1)⟩ ◦ π(τ,n),

= î1 ◦ nextσ ◦ f1 ◦ ⟨π(τ,n) ◦ id(τ ′,n′)⊗(τ,n), s(f1) ◦ π(τ,n)⟩.

By definition, Tr1
(τ,n),(γ,m)(f) = f1 ◦ ⟨id(τ,n), s(f1)⟩. Hence,

Tr1
(τ ′,n′)⊗(τ,n),(γ′,m′)⊗(γ,m)(g ⊗ f) = (g ⊗ f1) ◦ ⟨id(τ ′,n′)⊗(τ,n), s(f1) ◦ π(τ,n)⟩

= g ⊗ Tr1
(τ,n),(γ,m)(f)

Therefore, we have Equation (13).
7. Yanking: We need to show, for the component at (1, 1) of the braiding, i.e. ξ1,1, that

Tr1
(1,1)(ξ1,1) = id1. (14)

Note that ξ1,1 = ⟨π1, π2⟩ , Tr1
(1,1)(ξ1,1) = π1 ◦ ⟨id1, s(π2)⟩, where s(π2) is a solution for

π2. id1 is a solution for π2. Hence, Equation (14).
The dinaturality of Tr−(τ,n),(γ,m) is only on Pσ, and only fulfilled if for any g ∈

←−C(k, k),
îk ◦▶ g = g ◦ îk′ . ◀

The following is a consequence of Theorem 16.

▶ Corollary 18. Trk
n,m is a trace operator on Hσ if all g : k → k are i-compatible.

Proof. This follows from Theorem 16 because the functor Hσ → Pσ is fully faithful. ◀

Going back to causality, by definition Trk
(τ,n),(γ,m)(f) is a morphism in ←−C. Therefore

L(Trk
(τ,n),(γ,m)(f)) is causal by Theorem 4. As Theorem 4 establishes a bijective correspond-

ence, we find that Caus(νF, νF) is closed under sequential composition, parallel composition
and under recursion via trace. In the following section, we show some applications of this.

CALCO 2023

18:14 Composition and Recursion for Causal Structures

5 Applications

Before we come to concrete applications, we mention here that distributive laws, that is,
natural transformations δ : GF → FG, induce morphisms δ̂ : ←−GΦF → ΦF [3]. In particular,
distributive laws δ : ΣnF → FΣn for the functor Σn : C→ C given by Σn(X) = Xn allow
us to define n-ary causal morphisms. If, moreover, F is pointed with η : Id → F and
δ ◦Σnη = ηΣn, the induced map δ̂ : (ΦF)n → ΦF is compatible with the initial value induced
by η, see Proposition 12.

5.1 Linear Stream Functions
In this section, we look into functions over the set Rω of all streams over a commutative
ring (R, +, ., 0, 1). The set Rω is a commutative ring, with the pointwise addition +, the
convolution product ×, together with their respective unit stream, see [15]. Moreover, for
any n ∈ N, (Rω)n is an Rω-module and module homomorphisms are Rω-linear systems in
the following sense.
▶ Definition 19. A system ⟨f1, · · · , fm⟩ : (Rω)n → (Rω)m is Rω-linear if for every
i ∈ {1, · · · , m}, fi : (Rω)n → Rω is Rω-linear, i.e., for all streams u, v ∈ Rω and
(s1, · · · , sn), (t1, · · · , tn) ∈ (Rω)n

f((u× (s1, · · · , sn)) + (v × (t1, · · · , tn))) = (u× f(s1, · · · , sn)) + (v × f(t1, · · · , tn))

where f(s1, · · · , sn) = (z1 × s1) + · · ·+ (zn × sm) for some fixed rational streams1

z1, · · · , zn ∈ Rω.
We consider the above linear systems because they are characterization of finite stream

circuits, possibly with feedback loops under the condition that each loop passes through at
least one register, see [15].
▶ Theorem 20. Every linear stream operator f : (Rω)n → Rω is causal.
Proof. For every (s1, · · · , sn), (t1, · · · , tn), (z1, · · · , zn) ∈ (Rω)n and k ∈ N, we assume for all
i ≤ k and 1 ≤ j ≤ n that sj(i) = tj(i). We have f(s1, · · · , sn)(k) =

∑n
j=1

∑k
i=0 zj(i)·sj(k−i)

and f(t1, · · · , tn)(k) =
∑n

j=1
∑k

i=0 zj(i) · tj(k − i).
For all i ≤ k, k− i ≤ k. Hence, sj(k− i) = tj(k− i) for all 1 ≤ j ≤ n. Thus, for all k ∈ N,

f(s1, · · · , sn)(k) = f(t1, · · · , tn)(k). ◀

We have seen that Rω ∼= LΦS where ΦS is isomorphic to an ωop-chain as described in
Example 5. We aim to define stream circuits with feedback loops with initial condition [15]
as the trace of functions on the final chain ΦS.

Consider the pointed functor (S, ηS), where S = R× Id, the functor from Example 5 and
ηS : Id→ S is a natural transformation defined for a fixed r ∈ R such that µX(u) = (r, u),
for every u ∈ X . Then we get a chain map i : ▶ΦS → ΦS defined by i0 : 1→ R and
in : Rn → Rn+1 with in(u) = (r, u) for every n ∈ N and u ∈ Rn. Moreover,
(πn ◦ in)(u) = (r, πn−1(u)) as given in the following.

1 1 R R2 · · ·

1 R R2 R3 · · ·

! i0 i1 i2

! ! π1

! π1 π2

1 A rational stream is a product of polynomial streams and inverse of a polynomial stream, see [15,
Def. 3.32].

H. Basold and T. Ralaivaosaona 18:15

The morphism next : ΦS → ▶ΦS is defined for every n ∈ N by nextn : Rn+1 → Rn such
that nextn = πn. Hence, for every u ∈ Rn+1, (in ◦ nextn)(u) = (r, πn−1(u)). Note that, for
r = 0 the latter can be implemented by a register with initial value 0 [15] and the trace of a
function f : (ΦS)n+1 → (Φ)m+1, given by f = ⟨fout, ffb⟩ such that fout : (ΦS)n+1 → (ΦS)m

and ffb : (ΦS)n+1 → ΦS ,is defined by

Trk
n,m(f) = fout ◦ ⟨idn, s(ffb)⟩

where s(ffb) is a fixed point for i ◦ next ◦ ffb.
Since the trace of a chain map is a chain map, it is as well causal by Theorem 4.

5.2 Probabilistic Computations

Let us denote by D : Set→ Set the (functor of the) finite probability distribution monad.
The elements of D(X) are maps d : X → [0, 1] that have only finitely many elements in
the support supp(d) = {x ∈ X | d(x) ̸= 0} and such that

∑
x∈supp(d) d(x) = 1. On maps

f : X → Y , D is defined by D(f)(d)(y) =
∑

f(x)=y d(x). We can now consider probabilistic
stream systems, also known as labelled Markov chains, which are coalgebras for the composed
functor DR = D(R× Id).

sp ∆

Figure 2 Diagram for computing discounted sum dsp.

Let us construct a discounted sum operation dsp : ΦDR → ΦDR for p ∈ [0, 1] as the
diagram displayed in Figure 2. First of all, the convex sum induces a distributive law
cp : Σ2DR → DR given by cp

X(d1, d2)(r, x, y) = pd1(r, x) + (1 − p)d2(r, y). This gives us a
causal map ĉp : (ΦDR)2 → ΦDR. Finally, we obtain dsp as Tr(∆◦ ĉp), where ∆ is the diagonal
map ΦDR → (ΦDR)2.

Note that ĉp is not compatible with the initial value induced by the unit ηD of the
distribution monad, which is defined by ηDX(x) = 1. In particular, we obtain
(sp ◦ Σ2ηD)(x, y) = pηD(x) + (1− p)ηD(y) and this is not a Dirac distribution given by ηD,
unless x = y.

5.3 Remark

A potential example that one could additionally consider is the category of presheaves
PSh(P) = [P op, Set] on a preordered set P . The category PSh(P) is Cartesian closed and
for a limit preserving functor F , the carrier of a final coalgebra for F is a presheaf, which is a
functor νF : P op → Set. Hence a causal morphism f : νF → νF is a natural transformation
and the corresponding chain map is a morphism between a final chain, which is a diagram in←−−−−−
PSh(P) = [αop, PSh(P)] = [αop, [P op, Set]], for a limit ordinal α. Moreover, PSh(P) has a
generator. Therefore, one could investigate the meaning of causality using theorem 4 and
theorem 8.

CALCO 2023

18:16 Composition and Recursion for Causal Structures

6 Summary, Related Work and Future Work

We have defined causal morphisms on the carrier of a final coalgebra νF for a limit preserving
endofunctor F on arbitrary cartesian closed categories C. We have seen, based on the
construction of a final coalgebra via final chains, that there is a one-to-one correspondence
between causal maps in Caus(νF, νF) and chain maps in←−C(ΦF, ΦF), where νF is isomorphic
to the limit of ΦF . For a locally small category with a generator, we equipped νF with a
metric and found out that causal morphisms are metric maps and vice versa. Additionally,
we have constructed on a category of descending chains a (parameterised) traced symmetric
monoidal category, on which causal morphisms (simply chain maps between final chains) are
closed under sequential and parallel composition and under recursion via the trace operator.

[16] and [14] both give a definition of causal functions via finite approximations, but
both work on Set and give the equivalence between causal functions on final coalgebras and
morphisms on their finite approximations. We can easily extend our definition to causal
algebras, as in [14], which gives us the inspiration to more general notion of causality. [16]
introduced recursion in their work, which could be achieved in a traced symmetric monoidal
category. They also defined linear causal maps, but for our case, it is enough to talk about
linearity since we show that linear maps are causal.

For future work, we consider working on other cartesian closed categories such as G−Set
of sets with group actions from G, particularly nominal set; and also on the CCC of quasi-
Borel spaces on which one can formalize some probability theory. One could use monoidal
closed categories instead of cartesian closed and see how everything works out. We would
also like to extend the notion of causality to more general continuity properties.

References
1 J Adámek, S Milius, and LS Moss. Initial algebras, terminal coalgebras, and the theory of

fixed points of functors, 2019.
2 John C. Baez, Brandon Coya, and Franciscus Rebro. Props in Network Theory, June 2018.

arXiv:1707.08321.
3 Henning Basold. Coinduction in Flow: The Later Modality in Fibrations. In Markus

Roggenbach and Ana Sokolova, editors, 8th Conference on Algebra and Coalgebra in Computer
Science (CALCO 2019), volume 139 of LIPIcs, pages 8:1–8:22, Dagstuhl, Germany, 2019.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.CALCO.2019.8.

4 Lars Birkedal, Rasmus Ejlers Møgelberg, Jan Schwinghammer, and Kristian Støvring. First
steps in synthetic guarded domain theory: Step-indexing in the topos of trees. LMCS, 8(4),
2012. doi:10.2168/LMCS-8(4:1)2012.

5 Jasmin Christian Blanchette, Aymeric Bouzy, Andreas Lochbihler, Andrei Popescu, and
Dmitriy Traytel. Friends with Benefits. In Hongseok Yang, editor, Programming Languages
and Systems, Lecture Notes in Computer Science, pages 111–140, Berlin, Heidelberg, 2017.
Springer. doi:10.1007/978-3-662-54434-1_5.

6 Francis Borceux. Handbook of Categorical Algebra: Volume 2: Categories and Structures,
volume 2 of Encyclopedia of Mathematics and Its Applications. Cambridge University Press,
Cambridge, 1994. doi:10.1017/CBO9780511525865.

7 Helle Hvid Hansen, Clemens Kupke, and Jan Rutten. Stream differential equations: specifica-
tion formats and solution methods. arXiv preprint arXiv:1609.08367, 2016.

8 Bart Jacobs. Introduction to coalgebra, volume 59. Cambridge University Press, 2017.
9 André Joyal, Ross Street, and Dominic Verity. Traced monoidal categories. In Mathematical

proceedings of the cambridge philosophical society, volume 119, pages 447–468. Cambridge
University Press, 1996.

https://arxiv.org/abs/1707.08321
https://doi.org/10.4230/LIPIcs.CALCO.2019.8
https://doi.org/10.2168/LMCS-8(4:1)2012
https://doi.org/10.1007/978-3-662-54434-1_5
https://doi.org/10.1017/CBO9780511525865

H. Basold and T. Ralaivaosaona 18:17

10 Max Kelly. Basic Concepts of Enriched Category Theory. Number 64 in Lecture Notes in
Mathematics. Cambridge University Press, reprints in theory and applications of categories,
no. 10 (2005) edition, 1982.

11 Saunders Mac Lane. Categories for the Working Mathematician. Number 5 in Graduate Texts
in Mathematics. Springer, 2 edition, 1998.

12 Saunders MacLane. Categorical algebra. Bulletin of the American Mathematical Society,
71(1):40–106, 1965.

13 Luís Monteiro. Observation systems. Electronic Notes in Theoretical Computer Science,
33:261–275, 2000.

14 Jurriaan Rot and Damien Pous. Companions, causality and codensity. Logical Methods in
Computer Science, 15, 2019.

15 Jan JMM Rutten. A tutorial on coinductive stream calculus and signal flow graphs. Theoretical
Computer Science, 343(3):443–481, 2005.

16 David Sprunger and Bart Jacobs. The differential calculus of causal functions. arXiv preprint
arXiv:1904.10611, 2019.

CALCO 2023

Aczel-Mendler Bisimulations in a Regular Category
Jérémy Dubut #

National Institute of Advanced Science and Technology, Tokyo, Japan

Abstract
Aczel-Mendler bisimulations are a coalgebraic extension of a variety of computational relations
between systems. It is usual to assume that the underlying category satisfies some form of axiom of
choice, so that the theory enjoys desirable properties, such as closure under composition. In this paper,
we accommodate the definition in a general regular category – which does not necessarily satisfy
any form of axiom of choice. We show that this general definition 1) is closed under composition
without using the axiom of choice, 2) coincides with other types of coalgebraic formulations under
milder conditions, 3) coincides with the usual definition when the category has the regular axiom of
choice. We then develop the particular case of toposes, where the formulation becomes nicer thanks
to the power-object monad, and extend the formalism to simulations. Finally, we describe several
examples in Stone spaces, toposes for name-passing, and modules over a ring.

2012 ACM Subject Classification Theory of computation → Models of computation; Theory of
computation → Semantics and reasoning

Keywords and phrases Regular Categories, Toposes, Bisimulations, Coalgebra

Digital Object Identifier 10.4230/LIPIcs.CALCO.2023.19

Related Version Full Version: https://arxiv.org/abs/2303.04442

Funding The author is supported by JST, CREST Grant Number JPMJCR22M1, Japan.

1 Introduction

Bisimulations and coalgebra have a rich literature and theory (see for example the text-
book [13]). They cover a large variety of systems: non-deterministic, probabilistic [8, 7],
quantum [1], name-passing [22], Kripke models [5], and so on. The reason for this success is
that, if the underlying notions are on very different types of systems, those share common
grounds: relations with logic, games, fixpoints, or even some form of decidability that have the
same flavour. This suggested that those theories could be abstracted away into a meta-theory
that would witness the essence of these common grounds.

In the present paper, we are interested in Aczel-Mendler bisimilarity [2], which defines a
bisimulation as an abstract relation (that is, a subobject of a product) which itself carries
a structure of coalgebra, and from which we can recover the coalgebra structures of the
systems we are comparing by projections. This abstract notion has the privilege to be very
close to usual notions of bisimulations in terms of relations, but this comes with the cost
that they are too set-flavoured. For example, some basic properties (such as closure under
composition, or their relation to bisimulation maps) only hold when the underlying category
has some form of axiom of choice.

These issues prevent the usage of Aczel-Mendler bisimulations in some interesting cat-
egories. Regular categories, and particularly toposes, are a class of categories which enjoy
very nice properties, and particularly that they have a very convenient theory of relations,
crucial for abstract bisimulations. However, they do not satisfy the axiom of choice. This is
the case for example of the effective topos [12], which encompass in a category concepts such
as decidable sets and computable functions, or the topos of nominal sets [18] which models

© Jérémy Dubut;
licensed under Creative Commons License CC-BY 4.0

10th Conference on Algebra and Coalgebra in Computer Science (CALCO 2023).
Editors: Paolo Baldan and Valeria de Paiva; Article No. 19; pp. 19:1–19:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jeremy.dubut@aist.go.jp
https://orcid.org/0000-0002-2640-3065
https://doi.org/10.4230/LIPIcs.CALCO.2023.19
https://arxiv.org/abs/2303.04442
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Aczel-Mendler Bisimulations in a Regular Category

name-passing, or more generally, infinite systems that have some form of decidability. Being
able to abstract bisimulations in such categories then becomes crucial, as a possible way to
obtain some general decidability results.

The rest of the paper is organised as follows. In Section 2, we recall some necessary
knowledge about relations in a general category and allegories, and particularly maps. In
Section 3, we recall the definition of Aczel-Mendler bisimulations, and some of their properties
that only hold under some form of the axiom of choice. We then extend them to regular
AM-bisimulations that work nicely in any regular category. In Section 4, we describe a nicer
reformulation of regular AM-bisimulations in toposes, thanks to the power-object monad.
In Section 5, we extend this nicer formulation to simulations. Finally, in Section 6, we
investigates examples of regular AM-bisimulations, for Stone spaces, toposes of name-passing,
and for linear weighted systems.

Contributions

Our contributions can be summarised as follows: 1) An extension of the theory of Aczel-
Mendler bisimulations that works in any regular category, without any usage of the axiom
of choice. In particular, we prove that the closure under composition (Proposition 27)
and the coincidence with other notions of coalgebraic bisimulations (Theorem 29) does not
utilise the axiom of choice. 2) A nicer formulation in the case of toposes thanks to the
power-object monads, whose connection to tabulations of coalgebra homomorphisms can be
proved (Corollary 38), again without the axiom of choice. 3) We extend this nicer formulation
to simulations in a topos (Section 5).

Background and Related Work

Section 2 is a summary of what is needed from the textbook [9] about allegories and
particularly allegories of relations. Applications of allegories, and their extensions, to computer
science cover fuzzy logic [25], compilation of logic programs [3], and generic programming [4].
Topos theory has a rich literature on different aspects. We recommend [14, 15] for a thorough
reference on the matter. Coalgebra theory, and particularly bisimulations for them, also has
a recent rich literature. Most of the development in this paper about bisimulations relies
on concepts that can be found in the textbook [13]. A careful comparison between various
notion of coalgebraic bisimilarities has been done in [23]. Aczel-Mendler bisimulations can
be traced back to [2]. Simulations has been studied in the coalgebraic language in [11] for
example. The connection with bisimulation and simulation maps in a categorical framework
is also the core of the theory of open maps [16, 26].

Notations

Given two morphisms f : X −→ Y and g : X ′ −→ Y ′ in a category with binary products,
we denote the pairing by ⟨f, g⟩ : X −→ Y × Y ′ (if X = X ′), and the product by f × g :
X ×X ′ −→ Y × Y ′.

2 Allegory of Relations

In this section, we cover the general notion of relations in a category, and in particular that
they form a tabular allegory. Definitions, propositions, and proofs can be found in [9].

J. Dubut 19:3

2.1 Subobjects and Factorisations
In this paper, subobjects will play a crucial role throughout. Let us then spend some time on
their definition. Fix an object A of C. There is a preorder on the class of monos of the form
m : X ≻→ A defined by m : X ≻→ A ⊑ m′ : X ′ ≻→ A if and only if there is a morphism
u : X −→ X ′ such that m′ · u = m. In this case, u is unique and is a mono. A subobject
of A is then an equivalence class of monos with m : X ≻→ A ≡ m′ : X ′ ≻→ A if m ⊑ m′

and m ⊒ m′, that is, there are u and u′ such that m′ · u = m and m · u′ = m′. In this case,
u and u′ are inverse of each other. The preorder on the monos becomes a partial order on
subobjects, also denoted by ⊑. Throughout the paper, when reasoning on subobjects, we
will instead reason on a representing mono. This is harmless when dealing with notions such
as pullbacks and factorisations that are unique only up to isomorphims.

▶ Example 1. In Set, since monos are injective functions, subobjects of a set are in bijection
with its subsets. The order ⊑ then corresponds to the usual inclusion ⊆ of sets.

Given a morphism f : A −→ B, there is a particular subobject of B called the image
of f . In general, it is defined as the smallest (for ⊑) subobject Im(f) of B such that f can
be factorised as m · e, where m is any representing mono. The existence of the image is not
guaranteed in general. It is however when the category C has a nice (epi,mono)-factorisation
system, as it is the case for regular categories (and so for toposes). In a regular category,
every morphism f can be uniquely (up to unique isomorphism) factorised as m · e, where m
is a mono and e is a regular epi, and furthermore, this factorisation is the image factorisation.
In addition, this factorisation is functorial and is preserved by pullbacks, meaning that if we
have a commutative diagram of the following form (outer rectangle):

A Im(f) B

A′ Im(f’) B′

g h

f

f ′

e

e′

m

m′

k

there is a (dotted) morphism that makes the two squares commute, and if the outer rectangle
is a pullback, then the rightmost square is also a pullback.
▶ Remark 2 (Pullbacks vs. weak-pullbacks). The preservation of images by pullbacks and the
functoriality also imply the preservation of images by weak pullbacks, in the sense that, if
the outer rectangle is a weak pullback, then the rightmost square is also a weak pullback.

▶ Example 3. In Set, the image of a function is the usual notion of image, that is, the
subset {f(a) | a ∈ A} of B. Since Set is regular, and regular epis are surjective functions,
the image factorisation is given by the (surjection,injection)-factorisation of the function f .

2.2 Relations in a Regular Category
From now on, let us assume that the category C is regular, that is, it has finite limits
and a pullback-stable (regular epi,mono)-factorisation as described in the previous section.
Everything in this section can be done in locally regular category, but less conveniently. In
general:

▶ Definition 4. A relation from X to Y is a subobject of X × Y .

CALCO 2023

19:4 Aczel-Mendler Bisimulations in a Regular Category

Objects of C and relations between them form a category, denoted by Rel(C). The
composition is defined as follows. Let mr : R ≻→ X × Y and ms : S ≻→ Y × Z be two
monos, representing two relations, r from X to Y and s from Y to Z. Form the following
pullback and (regular epi,mono)-factorisation:

R ⋆ S

R

S

Y

µ1

µ2

π2 · mr

π1 · ms

R ⋆ S X × Z

R; S

⟨π1 · mr · µ1, π2 · ms · µ2⟩

er;s mr;s

The composition r; s from X to Z is then the subobject represented by the mono part mr;s.
▶ Remark 5 (Pullbacks vs. weak pullbacks, continued). In the definition of the composition,
we chose to form a pullback, because we know it exists. However, the definition is unchanged
if we take any weak pullback instead.
The identity relation ∆X is represented by the diagonal ⟨id, id⟩ : X ≻→ X ×X.

▶ Proposition 6. Rel(C) is a category.

▶ Example 7. In Set, the composition of relations is the usual one:

R;S = {(x, z) ∈ X × Z | ∃y ∈ Y. (x, y) ∈ R ∧ (y, z) ∈ S},

while the identity relation is the usual diagonal ∆X = {(x, x) | x ∈ X}.

Of course, Rel(C) has much more structure. First, since subobjects are naturally ordered
by ⊑, and that this order is compatible with the composition, Rel(C) has a structure of
locally ordered 2-category. Furthermore, it comes equipped with an anti-involution which
makes it into a dagger 2-poset. This means there is a functor (_)† : Rel(C)op −→ Rel(C)
such that for every relation R, R†† = R and for every other relation S with R ⊑ S, R† ⊑ S†.
This involution is given by the inverse of a relation, as follows. If the relation r is represented
by the mono mr : R ≻→ X×Y , then r† is represented by mr† = ⟨π2, π1⟩·mr : R ≻→ Y ×X.
Finally, the meet of two relations for the partial order ⊑ is defined and is called the intersection.
Given mr : R ≻→ X × Y and ms : S ≻→ X × Y representing r and s respectively, the
intersection r ∩ s is then represented by the pullback of mr and ms. Altogether:

▶ Theorem 8. Rel(C) is an allegory, meaning that all this data satisfies the modular law:

(R;S) ∩ T ⊑ (R ∩ (T ;S†));S.

▶ Example 9. In Set, R† is the usual inverse of the relation R: R† = {(y, x) | (x, y) ∈ R}.
The intersection ∩ is the intersection of relations as sets. Finally, the modular law is trivial
in Rel(Set). More generally, this law is crucial to make adjoints in an allegory behave like
direct/inverse images, (see next section, and the Frobenius reciprocity [17]).

2.3 Maps in Allegories
From an allegory (intuitively of relations), it is possible to recover the morphisms of the
original category through the notion of maps. In a general allegory A, a map is a morphism
which is a left adjoint (in the 2-categorical sense). Maps form a subcategory of A denoted by
Map(A). In the case of an allegory of relations:

▶ Theorem 10. Map(Rel(C)) is isomorphic to C.

J. Dubut 19:5

The reason for it is that maps (left adjoints) in Rel(C) are precisely the relations represented
by a mono of the form ⟨id, f⟩ for some morphism f of C, justifying the remark from Example 9
that left adjoints in an allegory behave like direct images. Similarly, their right adjoints
are relations represented by ⟨f, id⟩, corresponding to inverse images. This also implies that
Rel(C) is tabular, that is, it is generated by maps in the following sense. A tabulation of a
morphism ϕ : X −→ Y in an allegory is a pair of maps ψ : Z −→ X and ξ : Z −→ Y such
that ϕ = ψ†; ξ and ψ;ψ† ∩ ξ; ξ† = idZ .

▶ Theorem 11. In an allegory of relations, the tabulations of a relation R are exactly those
pairs of relations (S, T) represented by monos of the form ⟨id, f⟩ and ⟨id, g⟩ respectively,
with f and g jointly monic, and such that R = S†;T . In particular, every relation has a
tabulation, that is, Rel(C) is tabular.

The intuition of this theorem is that relations are precisely jointly monic spans.

▶ Example 12. In Set, maps are graphs of functions, that is, relations of the form {(x, f(x)) |
x ∈ X} for some function f : X −→ Y . Consequently, every relation R is the same as the span
of f : R −→ X (x, y) 7→ x and g : R −→ Y (x, y) 7→ y, that is, R = {(f(r), g(r)) | r ∈ R}.

3 Aczel-Mendler Bisimulations, in Regular Categories

We now start investigating our original problem: a nice general theory of bisimulations
in terms of relations. The development of this section will start with the notion of Aczel-
Mendler bisimulations [2], where systems are described as coalgebras. We will witness that
one bottleneck of this theory is the role of the axiom of choice that is necessary to prove even
some basic properties of this notion of bisimulation. This prevents to use this notion in most
regular categories. We will then show that we can fix this issue by a careful use of relations.

3.1 Systems as Coalgebras
In this section, we briefly recall coalgebras, and how to model systems with them. For a
more complete introduction, see for example [13].

Coalgebras require two ingredients: a category C that describes the type of state spaces
of our systems and an endofunctor F on C that describes the type of allowed transitions. A
coalgebra is then a morphism of type α : X −→ FX. Intuitively, X is the state space of the
system and α maps a state to the collection of transitions from this state.

▶ Example 13. For example, deterministic transition systems labelled in the alphabet Σ
can be modelled with the Set-functor X 7→ Σ ⇒ X, mapping X to the set of functions
from Σ to X. A coalgebra for this functor is a function X → Σ ⇒ X. It maps a state
to a function from Σ to X, describing what is the next state after reading a particular
letter. Non-deterministic labelled transition systems can be described using the functor
X 7→ P(Σ ×X). A coalgebra then maps a state to a set of transitions, given by a letter
and a state, describing the states we can reach from another state reading a particular
letter. Another typical example are probabilistic systems, that can be described using the
distribution functor D. A transition for those systems is then a distribution on the states,
describing what is the probability to reach a state in the next step.

A morphism of coalgebras from α : X −→ FX to β : Y −→ FY is a morphism
f : X −→ Y of C such that β · f = Ff · α. Coalgebras on F and morphisms of coalgebras
form a category, which we denote by CoAlg(F).

CALCO 2023

19:6 Aczel-Mendler Bisimulations in a Regular Category

3.2 Aczel-Mendler Bisimulations of Coalgebras
In this section, we follow closely the development of [13]. We recall the definition of Aczel-
Mendler bisimulations and give some of their properties.

▶ Definition 14. We say that a relation is an Aczel-Mendler bisimulation (AM-bisimulation
for short) from the coalgebra α : X −→ FX to β : Y −→ FY , if for any mono r : R ≻→
X × Y representing it, there is a morphism W : R −→ FR, called witness, such that:

R

X × Y

F R

F (X) × F (Y)

F (X × Y)

α × β

W

⟨F π1, F π2⟩
r

F r

▶ Example 15. In the case of non-deterministic labelled transition systems, AM-bisimulations
correspond to usual strong bisimulations. The function W maps a pair (x, y) of states of α
and β to a subset of triples (a, x′, y′) such that (a, x′) ∈ α(x), (a, y′) ∈ β(y), and (x′, y′) ∈ R.
The commutation means that the set of transitions α(x) from x exactly corresponds to the
set {(a, x′) | ∃y′. (a, x′, y′) ∈ W (x, y)}, and similarly for y. This implies the property of a
bisimulation: if there is a transition (a, x′) from x, then there is a transition (a, y′) from y

with (x′, y′) ∈ R; and vice versa.

We show now that AM-bisimulations behave well under the regular axiom of choice:

▶ Proposition 16. Assume that C has the regular axiom of choice, that is, every regular epi
is split, and that F preserves weak pullbacks. Then the following is a dagger 2-poset, denoted
by Bis(F): objects are coalgebras on F , morphisms are AM-bisimulations, ⊑, identities,
composition, and (_)† are defined as in Rel(C). That is, diagonals are AM-bisimulations,
and AM-bisimulations are closed under composition and inverse.

Proof. Let us focus on proving that Aczel-bisimulations are closed under composition. We
then have two witnesses:

R1

X × Y

F R1

F (X) × F (Y)

F (X × Y)

α × β

W1

⟨F π1, F π2⟩

r1

F r1

R2

Y × Z

F R2

F (Y) × F (Z)

F (Y × Z)

β × γ

W2

⟨F π1, F π2⟩

r2

F r2

We then want to construct a morphism W : R1;R2 −→ F (R1;R2) such that

R1; R2

X × Z

F (R1; R2)

F (X) × F (Z)

F (X × Z)

α × γ

W

⟨F π1, F π2⟩

r1; r2

F (r1; r2)

Since F preserves weak pullbacks and by definition of composition, we have the following
weak pullback and (regular epi,mono)-factorisation:

F (R1 ⋆ R2)

F R1

F R2

F Y

F µ1

F µ2

F (π2 · r1)

F (π1 · r2)

R1 ⋆ R2 X × Z

R1; R2

⟨π1 · r1 · µ1, π2 · r2 · µ2⟩

er1;r2 r1; r2

J. Dubut 19:7

Denote by s the section of er1;r2 , which exists by the regular axiom of choice. By the universal
property of weak pullbacks, we have ϕ : R1;R2 −→ F (R1 ⋆ R2), such that

F (R1 ⋆ R2)

F R1

F R2

F Y

R1; R2

F µ1

F µ2

F (π2 · r1)

F (π1 · r2)
W1 · µ1 · s

W2 · µ2 · s
ϕ

Now W = Fer1;r2 · ϕ is the expected witness:
⟨F π1, F π2⟩ · F (r1; r2) · W = ⟨F π1, F π2⟩ · F (r1; r2) · F er1;r2 · ϕ (definition of W)

= ⟨F π1, F π2⟩ · F ⟨π1 · r1 · µ1, π2 · r2 · µ2⟩ · ϕ

(definition of r1; r2)
= F (π1 · r1) × F (π2 · r2) · ⟨F (µ1) · ϕ, F (µ2) · ϕ⟩

(computation on products)
= F (π1 · r1) × F (π2 · r2) · ⟨W1 · µ1 · s, W2 · µ2 · s⟩

(definition of ϕ)
= α × γ · ⟨π1 · r1 · µ1, π2 · r2 · µ2⟩ · s

(definition of the Wi and computation on products)
= α × γ · (r1; r2) (definition of s)

◀

▶ Remark 17. The preservation of weak pullbacks is a crucial property for a functor related to
relations. More surprisingly, the dependence on the axiom of choice is necessary for proving
the closure under composition. This was already observed in [13, 23].

In the proof we make the following usage of the regular axiom of choice: we need that the
epi part er1;r2 : R1 ⋆ R2 −→→ R1;R2 of a (regular epi,mono)-factorisation to be split, that is,
has a section s : R1;R2 ≻→ R1 ⋆ R2. In Set, R1 ⋆ R2 is given by triples (x, y, z) such that
(x, y) ∈ R1 and (y, z) ∈ R2, so this section is then a choice of such a y for every (x, z) in the
composition. This kind of choice is usual for example to prove that strong bisimulations are
closed under composition: assuming that one has a transition (a, x′) from x, to prove that
one also has such a transition from z, one should pick an intermediate y, prove that there is
such a transition for y using that R1 is a bisimulation, then concluding using the fact that
R2 is a bisimulation.

In this dagger 2-poset of bisimulations, we can also talk about maps and tabulations,
as we did for relations. Furthermore, since the 2-categorical structure of Bis(F) is given
by that of Rel(C), and particularly that the local posets of bisimulations are embedded in
the corresponding local poset of relations, results from Section 2.3 can be used here. In
particular, we can prove the following:

▶ Theorem 18. Map(Bis(F)) is isomorphic to CoAlg(F).

Using results from Section 2.3, proving this theorem boils down to proving that bisimula-
tions that are maps are precisely graphs of coalgebra morphisms:

▶ Proposition 19. A morphism h : X −→ Y of C is a coalgebra morphism from α to β if
and only if the mono ⟨id, h⟩ : X ≻→ X × Y represents an AM-bisimulation from α to β.

Using this characterisation of maps for AM-bisimulations, and using the tabularity of the
allegory of relations, we can prove that an AM-bisimulation can be described as a span of

CALCO 2023

19:8 Aczel-Mendler Bisimulations in a Regular Category

morphism of coalgebras, under some form of axiom of choice (see [13]). We can formulate
this in terms of tabulations:

▶ Proposition 20. If U is an AM-bisimulation from α to β, and if f : Z −→ X, g : Z −→ Y

is a tabulation of U , then there is a coalgebra structure γ on Z such that f is a coalgebra
morphism from γ to α and g is a coalgebra morphism from γ to β.

▶ Corollary 21. Assume C has the regular axiom of choice. Assume given two coalgebras
α : X −→ F (X) and β : Y −→ F (Y), and two points p : ∗ −→ X and q : ∗ −→ Y . There
is an AM-bisimulation r : R ≻→ X × Y from α to β, and a point c : ∗ −→ R such that
r · c = ⟨p, q⟩ if and only if there is a span X

f←−− Z
g−−→ Y , an F -coalgebra structure

γ on Z such that f is a coalgebra morphism from γ to α and g from γ to β, and a point
w : ∗ −→ Z such that f · w = p and g · w = q.

▶ Remark 22. Here ∗ is usually the final object of C, but it can be any object used to describe
initial states in the systems under consideration.

3.3 Picking vs. Collecting: AM-Bisimulations for Regular Categories
We have seen that several results about AM-bisimulations depend on the regular axiom of
choice, preventing its use in more exotic toposes and regular categories. Actually, the only
occurrences are of similar flavour: one wants to prove some property of elements (x, z) in a
composition of relations, and for that, one has to pick a witness y in between. The main
idea of our proposal is that, instead of picking a witness (which would require the axiom
of choice), it is enough to collect all the witnesses, prove properties about all of them, and
make sure that there is enough of them. This can be done in any regular category as follows:

▶ Definition 23. We say that a relation is a regular AM-bisimulation from the coalgebra
α : X −→ FX to β : Y −→ FY , if for any mono r : R ≻→ X × Y representing it, there is
another relation represented by w : W ≻→ FR×R such that π2 ◦ w is a regular epi and:

W

R X × Y

F R

F (X) × F (Y)

F (X × Y)

π2 ◦ w

π1 ◦ w ⟨F π1, F π2⟩

α × β
r

F r

The intuition is as follows: W collects all the witnesses that R is a bisimulation. In
particular, for a given pair (x, y) in R, there might be several witnesses. The fact π2 ◦ w is a
regular epi guarantees that every pair of R has at least one witness. Of course, we have to
prove that this extends plain AM-bisimulations:

▶ Proposition 24. If C is a regular category with the regular axiom of choice, then a relation
is a regular AM-bisimulation if and only if it is a AM-bisimulation.

Also, regular bisimulations are closed under composition. This requires a milder condition
on F as already observed in [23].

▶ Definition 25. We say that F covers pullbacks if for every pair of pullbacks:

R

X

Y

Z

u

v

f

g

R′

F X

F Y

F Z

u′

v′

F f

F g

J. Dubut 19:9

the unique morphism γ : FR −→ R′ such that u′ ◦ γ = Fu and v′ ◦ γ = Fv is a regular epi.

▶ Remark 26. When F preserves weak pullbacks, then F covers pullbacks. When C has the
regular axiom of choice, then both notions coincide.

▶ Proposition 27. When F covers pullbacks, then regular AM-bisimulations are closed under
composition.

In [23], Staton described conditions for several coalgebraic notions of bisimulations to
coincide. In this picture, AM-bisimulations were quite weak, as they would coincide with
other notions only under some form of axiom of choice (again). Here, we will show that the
picture is much nicer with regular AM-bisimulations.

▶ Definition 28. A relation from X to Y is a Hermida-Jacobs bisimulation (HJ-bisimulation
for short) from α : X −→ FX to β : Y −→ FY if if there is a mono r : R ≻→ X × Y
representing it and a morphism w : R −→ FR where FR is obtained by the (epi,mono)-
factorisation on the left, and such that the square on the right commutes:

F R F X × F Y

F R

⟨F π1, F π2⟩ · F r

er mr

R

X × Y

F R

F X × F Y

r

w

α × β

mr

A relation is a behavioural equivalence from α : X −→ FX to β : Y −→ FY if it
is represented by a pullback of coalgebra homomorphisms, that is, if there are a coalgebra
γ : Z −→ FZ and two coalgebra homomorphisms f : α −→ γ and g : β −→ γ such that
the mono ⟨u, v⟩ : R ≻→ X × Y obtained from their pullback in C represents it.

R

X

Y

Z

u

v

f

g

▶ Theorem 29. Assume that C is a regular category. Then:
a relation is a regular AM-bisimulation if and only if it is a HJ-bisimulation,
if C has pushouts, then a regular AM-bisimulation is included in a behavioural equivalence,
if F covers pullbacks, then a behavioural equivalence is a regular AM-bisimulation.

The last two bullets are a consequence of the first bullet and [23]. In Section 3.2,
we described that AM-bisimilarity coincides with the existence of a span of coalgebra
homomorphisms. This can also be formulated in the context of regular AM-bisimulations.
The witness w : W ≻→ FR × R can be seen as a coalgebra in Rel(C) (although F is
technically not a functor on it). The coalgebra α : X −→ FX can also be seen as a coalgebra
in Rel(C) as ⟨α, id⟩ : X ≻→ FX×X. Then π1 ◦r can be seen as a coalgebra homomorphism
from w to α, since the following diagram commutes

W

X

F R × R

F X × X

π1 · r · π2 · w F (π1 ◦ r) × π1 ◦ r

⟨α, id⟩

w

CALCO 2023

19:10 Aczel-Mendler Bisimulations in a Regular Category

4 The Case of Toposes

Here, we investigate the particular case of toposes. The first part of this section recalls
folklore about toposes and particularly power-objects, namely, that they form a commutative
monad whose Kleisli category is isomorphic to the category of relations. Finally, we will
show that regular AM-bisimulations can be formulated much more nicely in this context.

4.1 Toposes, as Relation Classifiers
▶ Definition 30. A topos is a finitely complete category with power objects. The latter
condition means that for every object X, there is a mono∈X : EX ≻→ X ×PX such that for
every mono of the form m : R ≻→ X × Y there is a unique morphism ξm : Y −→ PX such
that there is a pullback diagram of the form:

R

X × Y

EX

X × PX

m ∈X

θm

id × ξm

This formulation passes to relations since ξm = ξm′ if and only if m and m′ represent the
same relation r. In that case, we will write ξr for ξm = ξm′ . Another formulation of toposes
uses sub-object classifiers which can be recovered as T =∈1: 1 ≃ E1 → 1× P1 ≃ P1 = Ω.
The formulation by power-objects implies that a topos is cartesian closed, which is not the
case of the sub-object classifier alone. Conversely, PX is equal to ΩX and∈X is any mono
corresponding to the evaluation morphism X × ΩX → Ω of the cartesian-closed structure.

▶ Example 31. In Set, PX is given by the usual power-set and EX is the subset of X ×PX
consisting of pairs (x, U) such that x ∈ U . In Scha – the Schanuel topos Scha [18], equivalent
to the category of nominal sets and equivariant functions – PX is the nominal set of finitely
supported subsets of X. In Eff – the effective topos [12], intuitively, the category of effective
set and computable functions – PX is intuitively given by the set of decidable subsets of X
(although the formal description is much harder).

4.2 The Power-Object Monad
The following is a folklore result about power-objects, that can be proved for example by
noticing that the proof in Set does not use either the law of excluded-middle nor the axiom
of choice and the fact that any such statement is true in any topos:

▶ Theorem 32. In a topos C, P extends to a commutative monad whose Kleisli category is
isomorphic to the category of relations Rel(C).

Let us describe some parts of this statement that will be useful in the following discussion.
First, the structure of covariant functor (not to be confused with the more traditional
contravariant structure) is given as follows. Given a morphism f : X −→ Y , Pf : PX −→
PY is defined as follows. Consider first the following (epi,mono)-factorisation:

EX Y × PX

Ef

(f × id)·∈X

ef mf

Then Pf : PX −→ PY is the unique morphism corresponding to mf .

J. Dubut 19:11

The unit ηX : X −→ PX is defined as ξ∆X
, that is, the unique morphism such that

there is a pullback of the form:

X

X × X

X

X × PX

⟨id, id⟩

θX

id × ηX

∈X

for some θX . The multiplication µX : PPX −→ PX is defined as the unique morphism
associated with the composition of relations∈X;∈PX.

4.3 AM-Bisimulations in a Topos
Since toposes are regular categories, the notion of regular AM-bisimulation makes sense. We
show here that it can be reformulated as follows.

▶ Definition 33. We say that a relation is a toposal AM-bisimulation from the coalgebra
α : X −→ FX to β : Y −→ FY , if for any mono r : R ≻→ X × Y representing it, there is
a morphism W : R −→ PFR such that:

R

X × Y

PF R

F (X) × F (Y)

PF (X × Y)

PF (X) × PF (Y)

⟨PF π1, PF π2⟩

ηF (X) × ηF (Y)

α × β

W

r

PF r

In other words, an F -toposal AM-bisimulation between α and β is a PF -AM-bisimulation
between η · α and η · β. Intuitively, this means that toposal bisimulations look at systems as
non-deterministic. This allows to collect witnesses as a morphism W : R −→ PFR instead
of picking some, very much like regular AM-bisimulations.

We have to make sure that toposal and regular AM-bisimulations coincide.

▶ Proposition 34. Assume that C is a topos. Then for every relation U from X to Y , every
coalgebra α : X −→ FX and β : Y −→ FY , U is a toposal AM-bisimulation from α to β if
and only if it is a regular AM-bisimulation between them.

This nicer formulation allows us to prove a much nicer tabularity property, which could
only be informally described for regular AM-bisimulations:

▶ Proposition 35. Assume that C is a topos and that F covers pullbacks. Then the following
is a dagger 2-poset: objects are coalgebras on F , morphisms are toposal AM-bisimulations,
⊑, identities, composition, and (_)† are defined as in Rel(C).

▶ Remark 36. This Proposition is similar to Proposition 16, without the axiom of choice and
assuming only that F covers pullbacks, but by replacing plain AM-bisimulations by toposal
AM-bisimulations.

Obviously, the category of maps of the dagger 2-poset of toposal bisimulations is then not
isomorphic to CoAlg(F), but to the category of F -coalgebras with PF -coalgebra morphisms
between them. Then tabularity can be formulated as follows:

▶ Proposition 37. If U is a toposal bisimulation from the F -coalgebra α to the F -coalgebra β,
and if f : Z −→ X, g : Z −→ Y is a tabulation of U , then there is a PF -coalgebra structure
γ on Z such that f is a PF -coalgebra morphism from γ to ηX · α and g is a PF -coalgebra
morphism from γ to ηY · β.

CALCO 2023

19:12 Aczel-Mendler Bisimulations in a Regular Category

▶ Corollary 38. Assume given two coalgebras α : X −→ F (X) and β : Y −→ F (Y), and
two points p : ∗ −→ X and q : ∗ −→ Y . There is a toposal bisimulation r : R ≻→ X × Y
from α to β, and a point c : ∗ −→ R such that r · c = ⟨p, q⟩ if and only if there is a span
X

f←−− Z
g−−→ Y , a PF -coalgebra structure γ on Z, and a point w : ∗ −→ Z such that f

is a PF -coalgebra morphism from γ to ηX · α, g from γ to ηY · β, f · w = p, and g · w = q.

5 From Bisimulations to Simulations

In this section, we extend the analysis of the previous sections to deal with simulations.
Classically, simulations for coalgebras require a notion of order on morphisms of the form
X −→ FY , to allow one to define that there is fewer transitions coming out of a state
than another. This allows to easily modify the definition of AM-bisimulations to obtain
AM-simulations. We will show that toposal bisimulations can also be extended to simulations
in a nice way to mitigate those issues. The only reason we chose to stay in a topos and not
in a general regular category is because theorems have a nicer formulation there, but most of
the discussion here can be done in a regular category.

5.1 Order-Structure on Functors, and Lax Coalgebra Morphisms
We want to be able to compare two morphisms of the form X −→ FY . So assuming a
preorder ≤ on each Hom-set C(X,FY), we can define lax morphisms of coalgebras, as follows:

▶ Definition 39. A lax morphism of coalgebras from α : X −→ FX to β : Y −→ FY is a
morphism f : X −→ Y of C such that Ff · α ≤ β · f in C(X,FY).

Unfortunately, coalgebras and lax morphisms of coalgebras do not form a category in general,
and some axioms are required for the interaction of ≤ with the composition.

▶ Definition 40. A good order structure on F is a preorder ≤ on each C(X,FY) such that:
1) if α ≤ β in C(X,FY), f : X ′ −→ X, and g : Y −→ Y ′, then Fg · α · f ≤ Fg · β · f in
C(X ′, FY ′); 2) if h : X −→ FZ, k : X −→ FY , g : Y −→ Z, and h ≤ Fg · k in C(X,FZ),
then there is k′ : X −→ FY such that k′ ≤ k in C(X,FY) and h = Fg · k′.

▶ Lemma 41. When ≤ is a good order structure on F , then coalgebras and lax morphisms
of coalgebras form a category, denoted by CoAlglax(F).

▶ Example 42. When F is the functor modelling non-deterministic labelled systems and ≤
is given by point-wise inclusion, lax morphisms are exactly morphisms in the sense of [16].
Those morphisms are intuitively morphisms whose graphs are simulations. More generally,
we will see that lax morphisms are simulation maps.

5.2 AM-Simulations
▶ Definition 43. We say that a relation is an AM-simulation from the coalgebra α : X −→
FX to β : Y −→ FY , if for any mono r : R ≻→ X×Y representing it, there is a morphism
W : R −→ FR such that:

R

X × Y

F R

F (X) × F (Y)

F (X × Y)

≤ × ≥

α × β

W

⟨F π1, F π2⟩
r

F r

meaning that α · π1 · r ≤ Fπ1 · Fr ·W and β · π2 · r ≥ Fπ2 · Fr ·W.

J. Dubut 19:13

▶ Proposition 44. When ≤ is a good order structure, it is equivalent to require that the left
inequality is actually an equality α · π1 · r = Fπ1 · Fr ·W.

▶ Example 45. When F : X 7→ P(Σ×X), AM-simulations correspond to strong simulations.
The left part of the commutativity means that for every (x, y) ∈ R and (a, x′) ∈ α(x), there is
y′ such that (a, (x′, y′)) ∈W (x, y). The right part then implies that necessarily (a, y′) ∈ β(y).

Much as in the case of AM-bisimulations, diagonals (and actually all AM-bisimulations)
are AM-simulations and AM-simulations are closed under composition, only under some con-
ditions. However, they are not closed under inverse. These observations can be encompassed
as follows:

▶ Proposition 46. When C has the regular axiom of choice and F preserves weak pullbacks,
then the following is a locally ordered 2-category: objects are F -coalgebras, morphisms are
AM-simulations, identitites, compositions, and ⊑ are given by Rel(C). We denote this
category by Sim(F).

We can formalise the relationship between lax coalgebra morphisms and simulation maps:

▶ Theorem 47. Maps in Rel(C) that are AM-simulations are precisely lax morphisms of
coalgebra.

Note that this theorem cannot have a form as nice as Theorem 18 because AM-simulations
are not closed under inverse, and the right adjoint of a map has to be its inverse. At this
point, we can also describe the tabulations of AM-simulations:

▶ Proposition 48. If U is an AM-simulation from α to β, and if f : Z −→ X, g : Z −→ Y

is a tabulation of U then, there is a coalgebra structure γ on Z such that f is a coalgebra
morphism from γ to α and g is a lax coalgebra morphism from γ to β.

▶ Corollary 49. Assume C has the regular axiom of choice. Assume given two coalgebras
α : X −→ F (X) and β : Y −→ F (Y), and two points p : ∗ −→ X and q : ∗ −→ Y . There
is an AM-simulation r : R ≻→ X×Y from α to β, and a point c : ∗ −→ R with r ·c = ⟨p, q⟩
if and only if there is a span X

f←−− Z
g−−→ Y , an F -coalgebra structure γ on Z such that

f is a coalgebra morphism from γ to α and g is a lax coalgebra morphism from γ to β, and
a point w : ∗ −→ Z such that f · w = p and g · w = q.

This formalises some observations that simulations are spans of a bisimulation map and a
simulation map (see [24] for examples of this fact in the context of open maps).

5.3 Extending the Order-Structure
In Section 5.1, we started by assuming a relation ≤ on the Hom-sets of the form C(X,FY)
satisfying some properties. This good order structure was necessary to prove the properties
of Section 5.2. In the coming section, we will pass again from plain to toposal, by considering
F -coalgebras as PF -coalgebras. It is then needed to extend good order structures on F to
good order structures on PF .

Assume given a relation ≤ on all Hom-sets of the form C(X,FY). We define ≤P on
C(X,PFY) as follows. A morphism f : X −→ PFY uniquely (up to isos) corresponds to
a mono of the form mf : Rf −→ FY ×X by definition of P. Then given two morphisms
f, g : X −→ PFY , f ≤P g if there exist a morphism u : Z −→ Rg and an epi e : Z −→→ Rf

such that: π1 ·mf · e ≤ π1 ·mg · u and π2 ·mf · e = π2 ·mg · u.

CALCO 2023

19:14 Aczel-Mendler Bisimulations in a Regular Category

▶ Example 50. The order ≤P seems complicated but can be interpreted easily in Set, when
the order structure on C(X,FY) is a point-wise order, assuming that FY itself is preordered.
Indeed, given two functions f, g : X −→ PFY , f ≤P g if and only if for every x ∈ X, and
every a ∈ f(x) ⊆ FY there is b ∈ g(x) such that a ≤ b in F (Y).

To make it consistent with the previous section, we show that this preserves goodness:

▶ Proposition 51. ≤P is a good order structure if ≤ is.

5.4 Toposal AM-Simulations
With all those ingredients, we can easily deduce the right notion of AM toposal-simulations:

▶ Definition 52. We say that a relation is a toposal AM-simulation from the coalgebra
α : X −→ FX to β : Y −→ FY , if for any mono r : R ≻→ X × Y representing it, there is
a morphism W : R −→ PFR such that:

R

X × Y

PF R

F (X) × F (Y)

PF (X × Y)

PF (X) × PF (Y)

⟨PF π1, PF π2⟩

ηF (X) × ηF (Y)

≤P × ≥P

α × β

W

r

PF r

Plain and toposal AM-simulations also coincide under the axiom of choice:

▶ Proposition 53. Assume that C has the regular axiom of choice. Then for every relation
U from X to Y , every coalgebra α : X −→ FX and β : Y −→ FY , U is an AM-simulation
from α to β if and only if it is a toposal AM-simulation between them.

Finally, we can prove the closure under composition and the characterisation with spans
without the axiom of choice:

▶ Proposition 54. Proposition 46 holds without regular axiom of choice when replacing
AM-simulations by toposal AM-simulations.

▶ Theorem 55. Assume given two coalgebras α : X −→ F (X) and β : Y −→ F (Y), and
two points p : ∗ −→ X and q : ∗ −→ Y . There is a toposal AM-simulation r : R ≻→ X×Y
from α to β, and a point c : ∗ −→ R such that r · c = ⟨p, q⟩ if and only if there is a
span X

f←−− Z
g−−→ Y , a PF -coalgebra structure γ on Z such that f is a PF -coalgebra

morphism from γ to ηX ·α and g a lax PF -coalgebra morphism from γ to ηY · β, and a point
w : ∗ −→ Z such that f · w = p and g · w = q.

6 Examples

In this section, let us develop some examples in different regular categories.

6.1 Vietoris Bisimulations
In [5], Bezhanishvili et al. are studying bisimulations for the Vietoris functor – the functor
mapping a topological space to it set of closed subspaces equipped with a suitable topology –
in the category Stone of Stone spaces and continuous functions. More concretely, they show
that so-called descriptive models coincide with coalgebras of the form X → V(X)×A where
V is the Vietoris functor and A is some fixed Stone space (usually, A = PS =

∏
s∈S{0, 1}

J. Dubut 19:15

equipped with the product topology and {0, 1} equipped with the discrete topology). They
are interested in describing relation liftings (much as the one defining HJ-bisimulations)
that coincide with behavioural equivalences. They actually proved that in this case AM-
bisimilarity does not coincide with behavioural equivalence, and that the main reason is
because the Vietoris functor does not preserves weak-pullbacks. In [23], Staton proved that
the Vietoris functor is a so-called S-powerset functor, and that in particular it covers pullbacks.
Together with the (well-known) fact that the category of Stone spaces is regular and has
pushouts, Theorem 29 holds in this case, and all three notions – regular AM-bisimulations,
HJ-bisimulations, and behavioural equivalences – coincide.

Let us develop the counter-examples described in [5]. Let N being N∪{∞}, obtained as the
Alexandroff-compactification of N equipped with the discrete topology. Concretely, the open
sets of N are {U ⊆ N}∪ {U ∪{∞} | U ⊆ N∧∃n ∈ U.∀m ≥ n.m ∈ u}. Denote N⊕N⊕N, the
coproduct of three copies of N, by 3N. Let us also consider A = P(N×{+,−}) as above. Define
the continuous function τ : 3N −→ V(3N) as follows: τ(i1) = {i2, i3} and τ(i2) = τ(i3) =
∅, where ij denotes the j-th copy of i ∈ N. Define two continuous functions λ, λ′ : 3N −→ A

λ(i1) = λ′(i1) = {} for all i ∈ N; λ(∞j) = λ′(∞j) = {} for j ∈ {2, 3}; λ(i2) = λ′(i2) = {i+},
λ(i3) = λ′(i3) = {i−}, for i odd; λ(i2) = λ′(i3) = {i+}, λ(i2) = λ′(i3) = {i−} for i even.
Altogether, this defines two coalgebras α = ⟨τ, λ⟩ and β = ⟨τ, λ′⟩. In [5], they proved that the
following relation (for Stone spaces, relations coincide with closed subspaces of a product):

R = {(i1, i1) | i ∈ N} ∪ {(i2, i2), (i3, i3) | i ∈ N odd} ∪ {(i2, i3), (i3, i2) | i ∈ N even}
∪ {(∞j ,∞k) | j, k ∈ {2, 3}}

is a Vietoris bisimulation but not an AM-bisimulation. We can reformulate this as:

▶ Theorem 56. R is a regular AM-bisimulation but not an AM-bisimulation.

For the second part of this statement, this means that there is no continuous function
W : R −→ V(R)×A satisfying the requirement of an AM-bisimulation. However, there is a
relation W ⊆ R× V(R)×A that satisfies the requirement of a regular AM-bisimulation as:

W = {((i1, i1), {(i2, i2), (i3, i3)}, {}) | i ∈ N odd}
∪ {((i1, i1), {(i2, i3), (i3, i2)}, {}) | i ∈ N even}
∪ {((∞1,∞1), {(∞2,∞2), (∞3,∞3)}, {}), ((∞1,∞1), {(∞2,∞3), (∞3,∞2)}, {})}
∪ {((ij , ik),∅, λ(ij)) | i ∈ N ∧ (ij , ik) ∈ R}

The interesting part is that (∞1,∞1) is related to two elements, and that if one of them is
removed, then W is not closed anymore, and so not a relation in Stone. This explains why
this relation cannot be restricted to the graph of a continuous function.

6.2 Toposes for Name-Passing
In [23], Staton studies models of name-passing and their bisimulations. Three toposes and
functors are presented to model different parts of the theory. The first topos is the category of
name substitution, which is the category of presheaves over non-empty finite subsets of a fixed
countable set, together with all functions between them. It comes with a functor combining
non-determinism and name-binding. This functor satisfies strong properties: in particular,
AM-bisimulations coincide with HJ-bisimulations, and the largest AM-bisimulation coincide
with the largest behavioural equivalence. This framework is already nice as AM-bisimulations
describe precisely open bisimulations [20].

CALCO 2023

19:16 Aczel-Mendler Bisimulations in a Regular Category

The second topos is a refinement of the first one, as the category of functors over all
finite subsets of the given countable set, together with injections. The proposed functor
in this case is less nice: it does not preserve weak-pullbacks and AM-bisimulations do not
coincide with HJ-bisimulations anymore. However, it is nice enough in our theory: it covers
pullbacks, and the category is a topos, so regular and with pushouts, then HJ-bisimulations
coincide with regular AM-bisimulations, and their existence coincides with the existence of a
behavioural equivalence.

For this topos, it is remarked in [23] that if a relation is a HJ-bisimulation (so a regu-
lar/toposal AM-bisimulation), then its ¬¬-completion is an AM-bisimulation, which means in
particular that this framework for name-passing is much nicer when restricting to ¬¬-sheaves.
One main reason for that is that the sheaf topos for the ¬¬-topology satisfies the axiom of
choice when the base topos is a presheaf topos over a poset [19], which is the case here.

6.3 Weighted Linear Systems
In [6], Bonchi et al. are studying linear weighted systems, that is, coalgebras for the
endofunctor X 7→ K ×XA on KVect, in the category of K-vector spaces, with K a field,
and A a set. The following discussion can also be made in the category of modules over a
ring. The category KVect is abelian, and so is regular and has pushouts. The endofunctor
actually preserves pullbacks, so the three notions of bisimilarity coincide by Theorem 29.
In this paper, they are interested in linear bisimulations, which coincide with behavioural
equivalence, and so to the other two notions of bisimilarities.

In perspective, usual weighted systems are described in the category Set, with the functor
X 7→ A⇒ K(X) where K(X) is the set of functions from X to K which takes finitely many
non-zero values. In this context, this functor does not even cover pullbacks in general, and
they actually prove that AM-bisimilarity (and so regular AM-bisimilarity since Set has the
regular axiom of choice) does not coincide with behavioural equivalence.

7 Conclusion

This paper introduces some foundations of the theory of bisimulations and simulations in a
general regular category, mitigating some known issues about Aczel-Mendler bisimulations.
The relations and power objects are the key ingredients for this mitigation: if the axiom of
choice allows to pick some witnesses of bisimilarity, the relations and power objects allow to
collect them up without need to choose. This paves the way to the study of such bisimulations
in more exotic regular categories and toposes.

One direction of future work is to investigate regular AM-bisimulations for probabilistic
systems, compared to what is done in [8, 7] for behavioural equivalences. The main challenge
is to find a suitable regular category of “probabilistic space” and a “probabilistic distribution
functor” that covers pullbacks. For the first property, the work on Quasi-Borel spaces [10],
producing a quasi-topos, is of interest. For the second one, looking at categories of σ-frames
(see for example [21]), for which pullbacks do not coincide with pullbacks in the category of
measurable spaces is a solution under investigation.

References
1 Samson Abramsky. Coalgebras, Chu spaces, and representations of physical systems. Journal

of Philosophical Logic, 42:551–574, 2013.
2 Peter Aczel and Nax Mendler. A final coalgebra theorem. In Proceedings of Category Theory

and Computer Science, volume 389 of Lecture Notes in Computer Science. Springer, 1999.

J. Dubut 19:17

3 Emilio Jesús Gallego Arias and James B. Lipton. Logic Programming in Tabular Alegories.
In Technical Communications of the 28th International Conference on Logic Programming
(ICLP’12), Leibniz International Proceedings in Informatics, pages 334–347. Schloss Dagstuhl,
2012.

4 Roland Backhouse and Paul Hoogendijk. Final dialgebras: from categories to allegories.
Theoretical Informatics and Application, 33:401–426, 1999.

5 Nick Bezhanishvili, Gaelle Fontaine, and Yde Yenema. Vietoris bisimulations. Journal of
Logic and Computation, 20(5):1017–1040, 2010.

6 Filippo Bonchi, Marcello Bonsangue, Michele Boreale, Jan Rutten, and Alexandra Silva. A
coalgebraic perspective on linear weighted automata. Information and Computation, 211:77–
105, 2012.

7 Vincent Danos, Josée Desharnais, Francois Laviolette, and Prakash Panangaden. Bisimulation
and cocongruence for probabilistic systems. Information and Computation, 204(4):503–523,
2006. doi:10.1016/j.ic.2005.02.004.

8 Josée Desharnais, Abbas Edalat, and Prakash Panangaden. Bisimulation for Labelled Markov
Processes. Information and Computation, 179(2):163–193, 2003. doi:10.1006/inco.2001.
2962.

9 Peter Freyd and Andre Scedrov. Categories, Allegories, volume 39 of Mathematical Library.
North-Holland, 1990.

10 Chris Heunen, Ohad Kammar, Sam Staton, and Hongseok Yang. A convenient category for
higher-order probability theory. In Proceedings of the 32nd Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS’17), 2017.

11 Jesse Hughes and Bart Jacobs. Simulations in coalgebra. Theoretical Computer Science,
327(1-2):71–108, 2004.

12 J. Martin E. Hyland. The effective topos. In The L.E.J. Brouwer Centenary Symposium,
volume 110 of Studies in Logic and the Foundations of Mathematics, pages 165–216, 1982.

13 Bart Jacobs. Introduction to Coalgebra: Towards Mathematics of States and Observation,
volume 29 of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,
2017.

14 Peter T. Johnstone. Sketches of an Elephant: A Topos Theory Compendium, volume 1. Oxford
University Press, 2002.

15 Peter T. Johnstone. Sketches of an Elephant: A Topos Theory Compendium, volume 2. Oxford
University Press, 2002.

16 André Joyal, Mogens Nielsen, and Glynn Winskel. Bisimulation from Open maps. Information
and Computation, 127:164–185, 1996.

17 F. William Lawvere. Equality in hyperdoctrines and comprehension schema as an adjoint
functor. In Proceedings of the AMS Symposium on Pure Mathematics XVII, pages 1–14, 1970.

18 F. William Lawvere. Qualitative Distinctions between some Toposes of Generalized Graphs.
Contemporary Mathematics, 92, 1989.

19 Saunders MacLane and Ieke Moerdijk. Sheaves in Geometry and Logic: A First Introduction
to Topos Theory. Springer New-York, 1992.

20 Davide Sangiorgi. A theory of bisimulations for the π-calculus. Acta Informatica, 33:69–97,
1996.

21 Alex Simpson. Measure, randomness and sublocales. Annals of Pure and Applied Logic,
163(11):1642–1659, 2012.

22 Sam Staton. Name-passing process calculi: operational models and structural operational
semantics. PhD thesis, University of Cambridge, 2008.

23 Sam Staton. Relating Coalgebraic Notions of Bisimulation. Logical Methods in Computer
Science, 7:1–21, 2011.

24 Paulo Tabuada. Open Maps, Alternating Simulations and Control Synthesis. In Proceedings
of the 15th International Conference in Concurrency Theory (CONCUR’04), volume 3170 of
Lecture Notes in Computer Science, pages 466–480. Springer, 2004.

CALCO 2023

https://doi.org/10.1016/j.ic.2005.02.004
https://doi.org/10.1006/inco.2001.2962
https://doi.org/10.1006/inco.2001.2962

19:18 Aczel-Mendler Bisimulations in a Regular Category

25 Michael Winter. Goguen Categories: A Categorical Approach to L-fuzzy Relations. Number 25
in Trends in Logic. Springer, 2007.

26 Thorsten Wißman, Jérémy Dubut, Shin-ya Katsumata, and Ichiro Hasuo. Path Category for
Free: Open Morphisms from Coalgebras with Non-deterministic Branching. In Proceedings
of the 22nd International Conference on Fondations of Software Science and Computation
Structures (FoSSaCS’19), volume 11425 of Lecture Notes in Computer Science. Springer, 2019.

Completeness for Categories of Generalized
Automata
Guido Boccali #

University of Torino, Italy

Andrea Laretto #

Tallinn University of Technology, Estonia

Fosco Loregian #

Tallinn University of Technology, Estonia

Stefano Luneia #

University of Bologna, Italy

Abstract
We present a slick proof of completeness and cocompleteness for categories of F -automata, where the
span of maps E

d←− E ⊗ I
s−→ O that usually defines a deterministic automaton of input I and output

O in a monoidal category (K,⊗) is replaced by a span E ← F E → O for a generic endofunctor
F : K → K of a generic category K: these automata exist in their “Mealy” and “Moore” version and
form categories F -Mly and F -Mre; such categories can be presented as strict 2-pullbacks in Cat and
whenever F is a left adjoint, both F -Mly and F -Mre admit all limits and colimits that K admits.
We mechanize our main results using the proof assistant Agda and the library agda-categories.

2012 ACM Subject Classification Theory of computation → Automata extensions; Theory of
computation → Automata over infinite objects; Theory of computation → Formal languages and
automata theory; Theory of computation → Formalisms

Keywords and phrases Deterministic automata, Moore machines, Mealy machines, coalgebras,
cocomplete category

Digital Object Identifier 10.4230/LIPIcs.CALCO.2023.20

Category (Co)algebraic pearls

Supplementary Material Software (Source Code): https://github.com/iwilare/categorical-automata
archived at swh:1:dir:5e12eb2d97e15118b9018d5b5f8254fd6f6e24f3

Funding Fosco Loregian: The author was supported by the ESF funded Estonian IT Academy
research measure (project 2014-2020.4.05.19-0001).

Acknowledgements À René, parce qu’il faut ruser pour te lire.

1 Introduction

One of the most direct representations of deterministic automata in the categorical settings
consists (cf. [1, 4, 5]) of a span of morphisms E

d←− E × I
s−→ O, where the left leg provides a

notion of dynamics or next state function, given a current state E and an input I, and the
right leg provides an final state or output O.

According to whether the output morphism depends on both the current state and an
input or just on the state, one can then talk about classes of Mealy and Moore automata,
respectively. This perspective of “automata in a category” naturally captures the idea that
morphisms of a category can be interpreted as a general abstraction of processes/sequential
operations.

© Guido Boccali, Andrea Laretto, Fosco Loregian, and Stefano Luneia;
licensed under Creative Commons License CC-BY 4.0

10th Conference on Algebra and Coalgebra in Computer Science (CALCO 2023).
Editors: Paolo Baldan and Valeria de Paiva; Article No. 20; pp. 20:1–20:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:guidoboccali@gmail.com
mailto:anlare@ttu.ee
mailto:folore@ttu.ee
https://orcid.org/0000-0003-3052-465X
mailto:stefano.luneia@gmail.com
https://github.com/agda/agda-categories
https://doi.org/10.4230/LIPIcs.CALCO.2023.20
https://github.com/iwilare/categorical-automata
https://archive.softwareheritage.org/swh:1:dir:5e12eb2d97e15118b9018d5b5f8254fd6f6e24f3;origin=https://github.com/iwilare/categorical-automata;visit=swh:1:snp:df4b14980797eb2b20d98344fa43e332bd7e7ec9;anchor=swh:1:rev:26428a154c1fab53ad22ca9c2fadaad1766400cc
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Completeness for Categories of Generalized Automata

The above notion of deterministic automaton carries over to any monoidal category, on
which the various classical notions of automata, e.g., minimization, bisimulation, powerset
construction, can be equivalently reconstructed; this is studied, to a large extent, in the
monograph [5].

In [1, 7], automata are generalized to the case in which, instead of taking spans from
the monoidal product of states and inputs E ⊗ I, one considers spans E ← FE → O for
a generic endofunctor F : K → K, providing an abstraction for the ambient structure that
allows the automata to advance to the “next” state and give an output.

A general theorem asserting that the category of Mealy and Moore automata MlyK(I, O),
MreK(I, O) in a monoidal category (K,⊗) are complete and cocomplete whenever K is itself
complete and cocomplete can be obtained with little conceptual effort, cf. [5, Ch. 11], but
the proof given therein is a bit ad-hoc, and provides no intuition for why finite products and
terminal objects tend to be so complicated.

With just a little bit more category-theoretic technology, some general considerations can
be made about the shape of limits in such settings: colimits and connected limits can be
computed as they are computed in K (as a consequence of the fact that the forgetful functor
from the category of machines creates them, cf. [16]), whereas products (and in particular the
empty product, the terminal object) have dramatically different shapes than those provided
in K. The profound reason why this happens is the fact that such a terminal object (which
we refer to O∞) coincides with the terminal coalgebra of a specific endofunctor, which, for
Moore or Mealy automata, is respectively given by A 7→ O ×RA and A 7→ RO ×RA. The
complicated shape of the terminal object O∞ in MlyK(I, O) is then explained by Adámek’s
theorem, which presents the terminal object O∞ as an (usually intricate) inverse limit in K.

In this paper, we show that under the same assumption of completeness of the underlying
category K, the completeness of F -automata can be obtained by requiring that the endofunctor
F admits a right adjoint R. The proof we provide follows a slick argument proving the
existence of (co)limits by fitting each MlyK(I, O) and MreK(I, O) into a strict 2-pullback in
Cat, and deriving the result from stability properties of limit-creating functors.

1.1 Outline of the paper
The present short note develops as follows:

First (Section 2) we introduce the language we will employ and the structures we will
study:1 categories of automata valued in a monoidal category (K,⊗) (in two flavours:
“Mealy” machines, where one considers spans E ← E ⊗ I → O, and “Moore”, where
instead one consider pairs E ← E ⊗ I, E → O) and of F -automata, where F is an
endofunctor of K (possibly with no monoidal structure). “Mealy” automata are known as
“deterministic automata” in today’s parlance, but since we need to distinguish between
the two kinds of diagram from time to time, we stick to an older terminology.
Then (Theorem 3.6), to establish the presence of co/limits of shape J in categories of
F -automata, under the two assumptions that F : K → K is a left adjoint in an adjunction
F η

ϵ
R, and that co/limits of shape J exist in the base category K.

Last (Subsection 3.1), to address the generalisation to F -machines of the “behaviour as
an adjunction” perspective expounded in [18, 19].

1 An almost identical introductory short section appears in [2], of which the present note is a parallel
submission –although related, the two manuscripts are essentially independent, and the purpose of this
repetition is the desire for self-containment.

G. Boccali, A. Laretto, F. Loregian, and S. Luneia 20:3

Similarly to the situation for Mealy/Moore machines, where F = ⊗ I, discrete limits in
F -Mly and F -Mre exist but tend to have a shape that is dramatically different than the one
in K.

A number of examples of endofunctors F that satisfy the previous assumption come
from considering F as the (underlying endofunctor of the) comonad LG of an adjunction
L ⊣ G ⊣ U , since in that case LG ⊣ UG: the shape-flat and flat-sharp adjunctions of a
cohesive topos [13, 14], or the base-change adjunction Lanf ⊣ f∗ ⊣ Ranf for a morphism
of rings, or more generally, G-modules in representation theory, any essential geometric
morphism, or any topological functor V : E → B [3, Prop. 7.3.7] with its fully faithful left
and right adjoints L ⊣ V ⊣ R gives rise to a comodality LV , left adjoint to a modality RV .

The results we get are not particularly surprising; we have not, however, been able to
trace a reference addressing the co/completeness properties of F -Mly, F -Mre nor an analogue
for the “behaviour as an adjunction” theorems expounded in [18, 19]; in the case F = ⊗ I

co/completeness results follows from unwieldy ad-hoc arguments (cf. [5, Ch. 11]), whereas in
Theorem 3.6 we provide a clean, synthetic way to derive both results from general principles,
starting by describing F -Mly and F -Mre as suitable pullbacks in Cat, in Proposition 3.5.

We provide a mechanisation of our main results using the proof assistant Agda and the
library agda-categories: we will add a small Agda logo () next to the beginning of a
definition or statement whenever it is accompanied by Agda code: this is a hyperlink pointing
directly to the formalisation files. The full development is freely available for consultation
and is available at https://github.com/iwilare/categorical-automata.

2 Automata and F -automata

The only purpose of this short section is to fix notation; classical comprehensive references
for this material are [1, 5]; in particular, [1, Ch. III] is entirely devoted to the study of what
here are called F -Moore automata, possibly equipped with an “initialization” morphism.

2.1 Mealy and Moore automata
For the entire subsection, we fix a monoidal category (K,⊗, 1).

▶ Definition 2.1 (Mealy machine). () A Mealy machine in K of input object I and output
object O consists of a triple (E, d, s) where E is an object of K and d, s are morphisms in a
span

e :=
(

E E ⊗ I
doo s // O

)
(2.1)

▶ Remark 2.2 (The category of Mealy machines). Mealy machines of fixed input and output
I, O form a category, if we define a morphism of Mealy machines f : (E, d, s)→ (T, d′, s′) as
a morphism f : E → T in K such that

E

f

��

E ⊗ I
doo

f⊗I

��

s // O

T T ⊗ I
d′

oo
s′

// O

(2.2)

Clearly, composition and identities are performed in K.
The category of Mealy machines of input and output I, O is denoted as MlyK(I, O).

CALCO 2023

https://github.com/agda/agda-categories
https://github.com/iwilare/categorical-automata
https://github.com/iwilare/categorical-automata
https://github.com/iwilare/categorical-automata/blob/published-version-2023/Mealy.agda

20:4 Completeness for Categories of Generalized Automata

▶ Definition 2.3 (Moore machine). () A Moore machine in K of input object I and output
object O is a diagram

m :=
(

E E ⊗ I ; E
doo s // O

)
(2.3)

▶ Remark 2.4 (The category of Moore machines). Moore machines of fixed input and output
I, O form a category, if we define a morphism of Moore machines f : (E, d, s)→ (T, d′, s′) as
a morphism f : E → T in K such that

E

f

��

E ⊗ I
doo

f⊗I

��

E

f

��

s // O

T T ⊗ I
d′

oo T
s′

// O

(2.4)

2.2 F -Mealy and F -Moore automata
The notion of F -machine arises by replacing the tensor E ⊗ I in (2.1) with the action FE of
a generic endofunctor F : K → K on an object E ∈ K, in such a way that a Mealy/Moore
machine is just a (⊗ I)-Mealy/Moore machine; cf. [7, ff. 2.1.3°], or Chapter III of the
monograph [1]. This natural idea acts as an abstraction for the structure that allows the
machine to advance to the “next” state and give an output, and it leads to the following two
definitions (where we do not require K to be monoidal).
▶ Definition 2.5 (F -Mealy machine). () Let O ∈ K be a fixed object. The objects of
the category F -Mly/O (or simply F -Mly when the object O is implicitly clear) of F -Mealy
machines of output O are the triples (E, d, s) where E ∈ K is an object and s, d are morphisms
in K that fit in the span

E FE
doo s // O (2.5)

A morphism of F -Mealy machines f : (E, d, s)→ (T, d′, s′) consists of a morphism f : E → T

in K such that

E

f

��

FE
doo

F f

��

s // O

T FT
d′

oo
s′

// O

(2.6)

Unsurprisingly, we can generalise in the same fashion Definition 2.3 to the case of a generic
endofunctor F : K → K.
▶ Definition 2.6 (F -Moore machine). () Let O ∈ K be a fixed object. The objects of
the category F -Mre/O (or simply F -Mre when the object O is implicitly clear) of F -Moore
machines of output O are the triples (E, d, s) where E ∈ K is an object and s, d are a pair of
morphisms in K

E FE ; E
doo s // O (2.7)

A morphism of F -Moore machines f : (E, d, s)→ (T, d′, s′) consists of a morphism f : E → T

in K such that

E

f

��

FE
doo

F f

��

E

f

��

s // O

T FT
d′

oo T
s′

// O

(2.8)

https://github.com/iwilare/categorical-automata/blob/published-version-2023/Moore.agda
https://github.com/iwilare/categorical-automata/blob/published-version-2023/FMealy.agda
https://github.com/iwilare/categorical-automata/blob/published-version-2023/FMoore.agda

G. Boccali, A. Laretto, F. Loregian, and S. Luneia 20:5

▶ Remark 2.7 (Interdefinability of notions of machine). All the concepts of machine introduced
so far are interdefinable, provided we allow the monoidal base K to change (cf. [7, ff.
Proposition 30]): a Mealy machine is, obviously, an F -machine where F : K → K is the functor
⊗ I : E 7→ E ⊗ I; an F -machine consists of a Mealy machine in a category of endofunctors:

in fact, F -machines are precisely the Mealy machines of the form E ← F ◦ E → O, where
E, O are constant endofunctors on objects of K and F is the input object: more precisely,
the category of F -machines is contained in the category Mly([K,K],◦)(F, cO), where cO is the
constant functor on O ∈ K, as the subcategory of those triples (E, d, s) where E is a constant
endofunctor.

3 Completeness and behaviour in F -Mly and F -Mre

The first result that we want to generalise to F -machines is the well-known fact that,
considering for example Mealy machines, if (K,⊗) has countable coproducts preserved by
each I ⊗ , then the span (2.1) can be “extended” to a span

E E ⊗ I+d+
oo s+

// O (3.1)

where d+, s+ can be defined inductively from components dn, sn : E ⊗ I⊗n → E, O.
Under the same assumptions, each Moore machine (2.3) can be “extended” to a span

E E ⊗ I∗d∗
oo s∗

// O (3.2)

where d∗, s∗ can be defined inductively from components dn, sn : E ⊗ I⊗n → E, O.2

▶ Remark 3.1. In the case of Mealy machines, the object I+ corresponds to the free semigroup
on the input object I, whereas for Moore machines one needs to consider the free monoid
I∗: this mirrors the intuition that in the latter case an output can be provided without any
previous input. Note that the extension of a Moore machine gives rise to a span of morphisms
from the same object E ⊗ I∗, i.e., a Mealy machine that accepts the empty string as input.
A similar construction can be carried over in the category of F -Mealy machines, using the
F -algebra map d : FE → E to generate iterates E

dn←− F nE
sn−→ O, for n ≥ 1.

From now on, let F be an endofunctor of a category K that has a right adjoint R.
Examples of such arise naturally from the situation where a triple of adjoints L ⊣ G ⊣ R is
given, since we obtain adjunctions LG ⊣ RG and GL ⊣ GR:

every homomorphism of rings f : A→ B induces a triple of adjoint functor between the
categories of A and B-modules (cf. [3, 4.7.4]);
similarly, every homomorphism of monoids f : M → N induces a “base change” functor
f∗ : N -Set→M -Set (this is usuall treated as a fact all category theorists know; however,
an elementary exposition of this fact can be found in [21, Prop. 4.1.4.11]);
every essential geometric morphism between topoi E ⇆ F , i.e. every triple of adjoints
f! ⊣ f∗ ⊣ f∗ (cf. [10, 1.16]);
every topological functor V : E → B [3, Prop. 7.3.7] with its fully faithful left and right
adjoints L ⊣ V ⊣ R (this gives rise to a comodality LV , left adjoint to a modality RV).

2 Assuming countable coproducts in K, the free monoid I∗ on I is the object
∑

n≥0 In; the free semigroup
I+ on I is the object

∑
≥1 In; clearly, if 1 is the monoidal unit of ⊗, I∗ ∼= 1 + I+, and the two objects

satisfy “recurrence equations” I+ ∼= I ⊗ I+ and I∗ ∼= 1 + I ⊗ I∗.

CALCO 2023

20:6 Completeness for Categories of Generalized Automata

▶ Construction 3.2 (Dynamics of an F -machine). () For any given F -Mealy machine

E FE
doo s // O (3.3)

we define the family of morphisms sn : F nE → O (for n ≥ 1) inductively, as the composites
s1 = FE

s−→ O

s2 = FFE
F d−−→ FE

s−→ O

sn = F nE
F n−1d−−−−→ F n−1E → · · · F F d−−−→ FFE

F d−−→ FE
s−→ O

(3.4)

Under our assumption that F has a right adjoint R, this is equivalent to the datum of their
mates s̄n : E → RnO for n ≥ 1 under the adjunction F n

ηn
Rn obtained by composition,

iterating the structure in F η
ϵ

R.
Such a sn is called the nth skip map. Observe that in case K has countable products, the

family of all nth skip maps (sn | n ∈ N≥1) is obviously equivalent to a single map of type
s̄∞ : E →

∏
n≥1 RnO.

▶ Remark 3.3. Reasoning in a similar fashion, one can define extensions s : E → O,
s ◦ d : FE → E → O, s ◦ d ◦ Fd : FFE → O, etc. for an F -Moore machine.
This is the first step towards the following statement, which will be substantiated and
expanded in Theorem 3.6 below:

▷ Claim 3.4. The category F -Mre of Definition 2.6 has a terminal object o = (O∞, d∞, s∞)
with carrier O∞ =

∏
n≥0 RnO; similarly, the category F -Mly has a terminal object with

carrier O∞ =
∏

n≥1 RnO. (Note the shift in the index of the product, motivated by the fact
that the skip maps for a Moore machine are indexed on N≥0, and on N≥1 for Mealy.)

The “modern” way to determine the presence of a terminal object in categories of automata
relies on the elegant coalgebraic methods in [9]; the interest in such completeness theorems
can be motivated essentially in two ways:

the terminal object O∞ in a category of machines tends to be “big and complex”, as
a consequence of the fact that it is often a terminal coalgebra for a suitably defined
endofunctor of K, so Adámek’s theorem presents it as inverse limit of an op-chain.
Coalgebra theory allows us to define a bisimulation relation between states of different
F -algebras (or, what is equivalent in our blanket assumptions, R-coalgebras), which in
the case of standard Mealy/Moore machines (i.e., when F = ⊗ I) recovers the notion
of bisimulation expounded in [9, Ch. 3].

The following universal characterisation of both categories as pullbacks in Cat allows us to
reduce the whole problem of completeness to the computation of a terminal object, and thus
prove Theorem 3.6.

▶ Proposition 3.5. ()
cx1) the category F -Mly of F -Mealy machines given in Definition 2.5 can be characterised

as the top left corner in the pullback square

F -Mly U ′
//

V ′

��

(F/O)

V

��
Alg(F)

U
// K

(3.5)

where F/O is the comma category defined by F and the constant functor on O, V is
the forgetful functor defined by the universal property of comma categories and U is the
canonical forgetful functor of F -algebras.

https://github.com/iwilare/categorical-automata/blob/published-version-2023/FMoore/Limits.agda#L44
https://github.com/iwilare/categorical-automata/blob/published-version-2023/AsPullbacks.agda.agda

G. Boccali, A. Laretto, F. Loregian, and S. Luneia 20:7

cx2) the category F -Mre of F -Moore machines given in Definition 2.6 can be characterised
as the top left corner in the pullback square

F -Mre U ′
//

V ′

��

(K/O)

V

��
Alg(F)

U
// K

(3.6)

where V is the forgetful functor from the slice category K/O to K, sending an arrow to its
domain and U is the canonical forgetful functor of F -algebras.

Proof. Straightforward inspection of the definition of both pullbacks. ◀

As a consequence of this characterization, by applying [16, V.6, Ex. 3] we can easily show the
following completeness result, provided we recall that in both (3.5) and (3.6) U is monadic,
and since F is a left adjoint, V preserves connected limits.

▶ Theorem 3.6 (Limits and colimits of F -machines). ()3

Let K be a category admitting colimits of shape J ; then, F -Mre and F -Mly have colimits
of shape J , and they are computed as in K;
Equalizers (and more generally, all connected limits) are computed in F -Mre and F -Mly
as they are computed in K; if K has countable products and pullbacks, F -Mre and F -Mly
also have products of any finite cardinality (in particular, a terminal object).

Proof of Theorem 3.6. It is worth unraveling the content of [16, V.6, Ex. 3], from which
the claim gets enormously simplified: the theorem asserts that in any strict pullback square
of categories

A U ′
//

V ′

��

B

V
��

C
U

// K

(3.7)

if U creates, and V preserves, limits of a given shape J , then U ′ creates limits of shape J .
Thus, thanks to Proposition 3.5, all connected limits (in particular, equalizers) are created in
the categories of F -Mealy and F -Moore machines by the functors U ′ : F -Mly→ (F/O) and
are thus computed as in (F/O), i.e. as in K; this result is discussed at length in [5, Ch. 10]
in the case of (⊗ I)-machines, i.e. classical Mealy machines, to prove the following:

assuming K is cocomplete, all colimits are computed in F -Mly as they are computed in
the base K;
assuming K has connected limits, they are computed in F -Mly as they are computed in
the base K.

Discrete limits have to be treated with additional care: for classical Moore machines (cf.
Definition 2.3) the terminal object is the terminal coalgebra of the functor A 7→ AI×O (cf. [9,
2.3.5]): a swift application of (the analogue of) Adámek’s theorem (for a Cartesian category
other than Set) yields the object [I∗, O]; for classical Mealy machines (cf. Definition 2.1)
the terminal object is the terminal coalgebra for A 7→ [I, O] × [I, A]; similarly, Adámek’s
theorem yields [I+, O].

3 We only provide a mechanization of the proof of existence of finite products: binary products, and a
terminal object.

CALCO 2023

https://github.com/iwilare/categorical-automata/blob/published-version-2023/FMoore/Limits.agda

20:8 Completeness for Categories of Generalized Automata

Adámek’s theorem then yields the terminal object of F -Mre as the terminal coalgebra
for the functor A 7→ O × RA, which is the O∞,0 of Claim 3.4, and the terminal object of
F -Mly as O∞,1 and for A 7→ RO × RA (in F -Mly). All discrete limits can be computed
when pullbacks and a terminal object have been found, but we prefer to offer a more direct
argument to build binary products.

Recall from Construction 3.2 the definition of dynamics map associated to an F -machine
e = (E, d, s).

Now, our claim is two-fold:
to1) the object O∞ :=

∏
n≥1 RnO in K carries a canonical structure of an F -machine

o = (O∞, d∞, s∞) such that o is terminal in F -Mly;
to2) given objects (E, dE , sE), (T, dT , sT) of F -Mly, the pullback

P∞ //

��

T

s̄T,∞

��
E

s̄E,∞
// O∞

(3.8)

is the carrier of an F -machine structure that exhibits p = (P∞, dP , sP) as the product of
e = (E, dE , sE), f = (T, dT , sT) in F -Mly.

In this way, the category F -Mly comes equipped with all finite products; it is easy to prove
a similar statement when an infinite number of objects (ei | i ∈ I) is given by using wide
pullbacks whenever they exist in the base category.

Observe that the object P∞ can be equivalently characterized as the single wide pullback
obtained from the pullback Pn of s̄E,n and s̄T,n (or rather, an intersection, since each
Pn → E × T obtained from the same pullback is a monomorphism):

P∞ //

��

. .
.

Pn

��
Pm

// E × T

(3.9)

Showing the universal property of P∞ will be more convenient at different times in one
or the other definition.

In order to show our first claim in to1, we have to provide the F -machine structure on
O∞, exhibiting a span

O∞ FO∞
d∞oo s∞ // O (3.10)

On one side, s∞ is the adjoint map of the projection π1 : O∞ → RO on the first factor; the
other leg d∞ is the adjoint map of the projection deleting the first factor, thanks to the
identification RO∞ ∼=

∏
n≥2 RnO; explicitly then, we are considering the following diagram:

O∞ FRO∞
ϵO∞oo FO∞

F π≥2oo F π1 // FRO
ϵO // O (3.11)

To prove the first claim, let’s consider a generic object (E, d, s) of F -Mly, i.e. a span

E FE
doo s // O (3.12)

and let’s build a commutative diagram

E

u

��

FE
s //

F u

��

doo O

O∞ FRO∞
ϵO∞oo FO∞

F π≥2oo F π1 // FRO
ϵO // O

(3.13)

G. Boccali, A. Laretto, F. Loregian, and S. Luneia 20:9

for a unique morphism u : E → O∞ =
∏

n≥1 RnO that we take exactly equal to s̄∞. The
argument that u makes diagram (3.13) commutative, and that it is unique with this property,
is now a completely straightforward diagram chasing.

Now let’s turn to the proof that the tip of the pullback in (3.8) exhibits the product of
(E, dE , sE), (T, dT , sT) in F -Mly; first, we build the structure morphisms sP , dP as follows:

dP is the dotted map obtained thanks to the universal property of P∞ from the commut-
ative diagram

FP∞
dP

$$

//

��

FE

��

$$
P∞ //

��

E

��

FT //

$$

FO∞

$$
T // O∞

(3.14)

sP : FP∞ → O is obtained as the adjoint map of the diagonal map P∞ → O∞ in (3.8)
composed with the projection π1 : O∞ → RO.

Let’s now assess the universal property of the object

P∞ FP∞
dPoo sP // O (3.15)

We are given an object z = (Z, dZ , sZ) of F -Mly and a diagram

O O O

FE

dE

��

sE

OO

FZ

sZ

OO

dZ

��

F v
//

F u
oo FT

sT

OO

dT

��
E Z

v
//

u
oo T

(3.16)

commutative in all its parts. To show that there exists a unique arrow [u, v] : Z → P∞

Z

[u,v]
��

u

~~

v

E P∞pE

oo
pT

// T

(3.17)

we can argue as follows, using the joint injectivity of the projection maps πn : O∞ → RnO:
first, we show that each square

Z
u //

v

��

E

s̄E,n

��
T

s̄T,n

// RnO

(3.18)

is commutative, and in particular that its diagonal is equal to the nth skip map of Z; this
can be done by induction, showing that the composition of both edges of the square with the
canonical projection O∞ → RnO equals s̄n,Z for all n ≥ 1. From this, we deduce that there
exist maps

Z
zn // Pn

// E × T (3.19)

CALCO 2023

20:10 Completeness for Categories of Generalized Automata

(cf. (3.9) for the definition of Pn) for every n ≥ 1, But now, the very way in which the zns
are defined yields that each such map coincides with ⟨u, v⟩ : Z → E × T , thus Z must factor
through P∞. Now we have to exhibit the commutativity of diagrams

Z

[u,v]
��

FZ

F [u,v]
��

dZoo sZ // O

P∞ FP∞
dP

oo
sP

// O

(3.20)

and this follows from a straightforward diagram chasing.
This concludes the proof. ◀

▶ Remark 3.7. Spelled out explicitly, the statement that o = (O∞, d∞, s∞) is a terminal
object amounts to the fact that given any other F -Mealy machine e = (E, d, s), there is a
unique uE : E → O∞ with the property that

E

uE

��

FE
s //

F uE

��

doo O

O∞ FO∞
d∞

oo
s∞

// O

(3.21)

are both commutative diagrams; a similar statement holds for F -Moore automata.

3.1 Adjoints to behaviour functors
In [18, 19] the author concentrates on building an adjunction between a category of machines
and a category collecting the behaviours of said machines.

Call an endofunctor F : K → K an input process if the forgetful functor U : Alg(F)→ K
has a left adjoint G; in simple terms, an input process allows to define free F -algebras.4

In [18, 19] the author concentrates on proving the existence of an adjunction

L : Beh(F) //
⊥ Mach(F) : Eoo (3.22)

where Mach(F) is the category obtained from the pullback

Mach(F) //

��

K→ ×K→

d1×d0

��
Alg(F)

U
// K

∆
// K ×K

(3.23)

∆ is the diagonal functor, Beh(F) is a certain comma category on the free F -algebra functor
G and d0, d1 are the domain and codomain functors from the arrow category.

Phrased in this way, the statement is conceptual enough to carry over to F -Mealy and
F -Moore machines (and by extension, to all settings where a category of automata can be
presented through a strict 2-pullback in Cat of well-behaved functors –a situation that given
(3.5), (3.6), (3.23) arises quite frequently).

4 Obviously, this is in stark difference with the requirement that F has an adjoint, and the two requests
are independent: if F is a monad, it is always an input process, regardless of F admitting an adjoint on
either side.

G. Boccali, A. Laretto, F. Loregian, and S. Luneia 20:11

▶ Theorem 3.8. () There exists a functor B : F -Mre → Alg(F)/(O∞,d∞), where the
codomain is the slice category of F -algebras and the F -algebra (O∞, d∞) is determined in
Claim 3.4. The functor B has a left adjoint L.

Proof. An object of Alg(F)/O∞ is a tuple ((A, a), u) where a : FA→ A is an F -algebra with
its structure map, and u : A→ O∞ is an F -algebra homomorphism, i.e. a morphism u such
that d∞ ◦ Fu = u ◦ a.
The functor B is defined as follows:

on objects e = (E, d, s) in F -Mre, as the correspondence sending e to the unique map
uE : E → O∞, which is an F -algebra homomorphism by the construction in (3.13);
on morphisms, f : (E, d, s)→ (F, d′, s′) between F -Moore machines, B acts as the identity,
ultimately as a consequence of the fact that the terminality of O∞ yields at once that
uF ◦ f = uE .

A putative left adjoint for B realises a natural bijection

F -Mre/O

(
L((A, a), u), (E, d, s)

) ∼= Alg(F)/O∞

(
((A, a), u), B(E, d, s)

)
(3.24)

between the following two kinds of commutative diagrams:

A

φ

��

F A
aoo

F φ

��
E F E

doo

A

φ

��

u // O∞
sT // O

E

uE

??

s
// O

F A

a

��

F φ //
F u

zz

F E

d

��
F O∞

dT ##

A
φ

//

u

��

E

||
s

��
O∞

sT

// O

(3.25)

There is a clear way to establish this correspondence. ◀

▶ Remark 3.9. () The adjunction in Theorem 3.8 is actually part of a longer chain of
adjoints obtained as follows: recall that every adjunction G : K⇆ H : U induces a “local”
adjunction G̃ : K/UA ⇆ H/A : Ũ where Ũ(FA, f : FA→ A) = Uf . Then, if F is an input
process, we get adjunctions

K/O∞

G̃ //
⊥ Alg(F)/(O∞,d∞)
Ũ

oo
L //
⊥ F -Mre.
B

oo (3.26)

4 Conclusion and Future Works

Our research is part of a bigger ongoing project [2] aimed to understand automata theory
from the point of view of formal category theory [6, 24, 25]. The endeavour has a long history
(the work of Naudé that we generalize a bit serves as a remarkable example in this direction),
and the technology of category-theoretic approaches is rapidly shifting towards 2-dimensional
categories as foundations for complex systems [15, 17, 20]. By leveraging simple universal
properties of pullbacks and comma objects in Cat, we have established a way for generating
“categories of automata and their behaviour”.

In fact, our findings hint at the existence of exciting possibilities for understanding
behavior coalgebraically within categories of automata. This approach, well-known and
fruitful in the literature, has been extensively studied by Jacobs [9, 8]. We are confident
that we can extend this line of research to derive insightful statements in the “internal

CALCO 2023

https://github.com/iwilare/categorical-automata/blob/published-version-2023/FMoore/Adjoints.agda
https://github.com/iwilare/categorical-automata/blob/published-version-2023/FMoore/Adjoints.agda#L194.agda

20:12 Completeness for Categories of Generalized Automata

language” of the category of automata under consideration. For instance, we can examine
bisimilarity as an internal equivalence relation in our categories of generalised automata,
utilizing the calculus of relations available in every regular category, and categorical algebra,
broadly intended. In our opinion, this exploration holds great potential for deepening our
understanding of automata theory and its applications.

In future works, we would like to further explore the properties of the adjunctions sketched
in this paper, emphasizing on applications. We also plan to delve deeper into the “coalgebraic
behavior” perspective, with particular care for its implications in different aspects of automata
theory. In [2] we exploit the fact that Mealy automata form a bicategory, building on prior
work [11]: it is a banality that the composition of 1-cells in such a bicategory amounts to the
so-called cascade product between a Mealy machine and a semiautomaton. Among many
different direction for future research, an exciting prospect is to prove the Krohn-Rhodes
theorem [12, 22, 23] by resorting to bicategorical properties.

Besides providing a guarantee of correctness, formalizing our results in a proof assistant
might also pave the way for “concrete” implementations of our theoretical results, where, for
instance, the proofs also act as concrete programs that allow the user to convert between
different automata in a provably correct way.

Overall, we believe our research started a foundational look to automata theory by
offering a novel perspective on known results. As category theorists, we are confident that
approaching familiar concepts from a higher vantage point yields invaluable insights, fostering
the advancement of the field and unlocking practical applications.

References
1 J. Adámek and V. Trnková. Automata and Algebras in Categories. Kluwer, 1990.
2 G. Boccali, A. Laretto, F. Loregian, and S. Luneia. Bicategories of automata, automata in

bicategories, 2023. arXiv:2303.03865.
3 F. Borceux. Handbook of categorical algebra. 2, volume 51 of Encyclopedia of Mathematics and

its Applications. Cambridge University Press, Cambridge, 1994. Categories and structures.
4 M. Droste, W. Kuich, and H. Vogler, editors. Handbook of Weighted Automata. Springer

Berlin Heidelberg, 2009. doi:10.1007/978-3-642-01492-5.
5 H. Ehrig, K.-D. Kiermeier, H.-J. Kreowski, and W. Kühnel. Universal theory of automata. A

categorical approach. XTeubner Studienbücher Informatik. Vieweg+Teubner Verlag Wiesbaden,
1974. doi:10.1007/978-3-322-96644-5.

6 J. W. Gray. Formal Category Theory: Adjointness for 2-Categories. Springer Berlin Heidelberg,
1974. doi:10.1007/bfb0061280.

7 R. Guitart. Tenseurs et machines. Cahiers de topologie et géométrie différentielle, 21(1):5–62,
1980. URL: http://www.numdam.org/item/CTGDC_1980__21_1_5_0/.

8 B. Jacobs. A bialgebraic review of deterministic automata, regular expressions and languages.
In Algebra, Meaning, and Computation, pages 375–404. Springer Berlin Heidelberg, 2006.

9 B. Jacobs. Introduction to Coalgebra: Towards Mathematics of States and Observation.
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 2016.

10 P. T. Johnstone. Topos theory. London Mathematical Society Monographs. No.10. London -
New York -San Francisco: Academic Press. XXIII, 367 p. 5 , 1977.

11 P. Katis, N. Sabadini, and R.F.C. Walters. Bicategories of processes. Journal of Pure and
Applied Algebra, 115(2):141–178, February 1997. doi:10.1016/s0022-4049(96)00012-6.

12 Kenneth Krohn and John Rhodes. Algebraic theory of machines. i. prime decomposition
theorem for finite semigroups and machines. Transactions of the American Mathematical
Society, 116(0):450–464, 1965. doi:10.1090/s0002-9947-1965-0188316-1.

13 F. W. Lawvere. Categories of spaces may not be generalized spaces as exemplified by directed
graphs. Revista colombiana de matemáticas, 20(3-4):179–186, 1986.

https://arxiv.org/abs/2303.03865
https://doi.org/10.1007/978-3-642-01492-5
https://doi.org/10.1007/978-3-322-96644-5
https://doi.org/10.1007/bfb0061280
http://www.numdam.org/item/CTGDC_1980__21_1_5_0/
https://doi.org/10.1016/s0022-4049(96)00012-6
https://doi.org/10.1090/s0002-9947-1965-0188316-1

G. Boccali, A. Laretto, F. Loregian, and S. Luneia 20:13

14 F. W. Lawvere. Axiomatic cohesion. Theory and Applications of Categories, 19:41–49, 2007.
15 A. H. Louie. Categorical system theory. Bulletin of Mathematical Biology, 45(6):1047–1072,

November 1983. doi:10.1007/bf02458830.
16 S. Mac Lane. Categories for the Working Mathematician, volume 5 of Graduate Texts in Math-

ematics. Springer-Verlag, New York, second edition, 1998. doi:10.1007/978-1-4757-4721-8.
17 D. J. Myers. Double categories of open dynamical systems (extended abstract). Electronic

Proceedings in Theoretical Computer Science, 333:154–167, February 2021.
18 G. Naudé. On the adjoint situations between behaviour and realization. Quaestiones Mathem-

aticae, 2:245–267, 1977. doi:10.1080/16073606.1977.9632546.
19 G. Naudé. Universal realization. Journal of Computer and System Sciences, 19(3):277–289,

1979. doi:10.1016/0022-0000(79)90005-9.
20 P. Schultz, D. I. Spivak, and C. Vasilakopoulou. Dynamical systems and sheaves. Applied

Categorical Structures, 28(1):1–57, April 2019. doi:10.1007/s10485-019-09565-x.
21 David I. Spivak. Category Theory for the Sciences. The MIT Press, 2014.
22 Howard Straubing. Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser

Boston, 1994. doi:10.1007/978-1-4612-0289-9.
23 Charles Wells. A krohn-rhodes theorem for categories. Journal of Algebra, 64(1):37–45, May

1980. doi:10.1016/0021-8693(80)90130-1.
24 R. J. Wood. Abstract pro arrows I. Cahiers de topologie et géométrie différentielle, 23(3):279–

290, 1982. URL: http://www.numdam.org/item/CTGDC_1982__23_3_279_0/.
25 R. J. Wood. Proarrows II. Cahiers de Topologie et Géométrie Différentielle Catégoriques,

26(2):135–168, 1985. URL: http://www.numdam.org/item/CTGDC_1985__26_2_135_0/.

A Agda formalization

Here we briefly comment here on our use of the Agda proof assistant to formalize some of
the main results of this paper.

In most cases we used it to formalize the most tricky aspects of the proofs, without
focusing on providing a complete formalization of all results shown in this work, for which
the pen-and-paper approach still has a considerable edge in terms of speed and effort. For
example, the proof mechanized for Theorem 3.6 concentrates only on explicitly defining
terminal and binary products, thus providing only a general insight on how non-connected
limits are computed. Our development consists of around 2000 LoC and, thanks to its
reusability, has been employed to formalize results in subsequent papers such as [2].

We use the library agda-categories as a starting point from which to build and prove
further theorems, without having to formalize basic notions of category theory from scratch.
Most of the proofs mechanized for this paper are straightforward and follow directly from the
universal properties of the objects under consideration; the most difficult part of our develop-
ment has been to identify the necessary properties to prove facts about inductively defined
objects (e.g., the interdependencies between the different lemma needed in Theorem 3.6) and
the lack of automation mechanisms to close the proofs, which can end up in particularly long
sequences of hom-reasoning steps.

Other minor issues arise from some architectural choices made in the agda-categories
library, which, following a well-established practice in formalizations of category theory,
defines categories as setoid-enriched, i.e., every category incorporates an internal notion
of equality between morphisms. This often results in better-behaved but weaker notions
of equalities between morphisms that more closely follow the principle of equivalence; for
example, in the large category Cat, equality of functors is defined as natural isomorphism
between functors, rather than strict equality on objects and arrows. This becomes problematic
when defining universal objects in Cat, such as the (strict) 2-pullbacks used in Proposition 3.5

CALCO 2023

https://doi.org/10.1007/bf02458830
https://doi.org/10.1007/978-1-4757-4721-8
https://doi.org/10.1080/16073606.1977.9632546
https://doi.org/10.1016/0022-0000(79)90005-9
https://doi.org/10.1007/s10485-019-09565-x
https://doi.org/10.1007/978-1-4612-0289-9
https://doi.org/10.1016/0021-8693(80)90130-1
http://www.numdam.org/item/CTGDC_1982__23_3_279_0/
http://www.numdam.org/item/CTGDC_1985__26_2_135_0/
https://github.com/agda/agda-categories
https://github.com/agda/agda-categories

20:14 Completeness for Categories of Generalized Automata

to characterize the categories F -Mly and F -Mre, since in this picture limits are actually
defined up to equivalence of categories –from the theoretical point of view, they are bilimits;
from the implementation point of view, the weak universal property is due to the lack of
uniqueness of identity proofs for arbitrary hom-equalities.

In practice this has been dealt with by working in the (large) category StrictCat where
equality of functors is defined strictly, which allows us to recover pullbacks between categories
and the characterizations shown in this paper.

On Kripke, Vietoris and Hausdorff Polynomial
Functors
Jiří Adámek #

Czech Technical University in Prague, Czech Republic
Technische Universität Braunschweig, Germany

Stefan Milius #

Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Lawrence S. Moss # Ñ

Indiana University, Bloomington, IN, USA

Abstract
The Vietoris space of compact subsets of a given Hausdorff space yields an endofunctor V on the
category of Hausdorff spaces. Vietoris polynomial endofunctors on that category are built from V ,
the identity and constant functors by forming products, coproducts and compositions. These functors
are known to have terminal coalgebras and we deduce that they also have initial algebras. We
present an analogous class of endofunctors on the category of extended metric spaces, using in
lieu of V the Hausdorff functor H. We prove that the ensuing Hausdorff polynomial functors have
terminal coalgebras and initial algebras. Whereas the canonical constructions of terminal coalgebras
for Vietoris polynomial functors take ω steps, one needs ω + ω steps in general for Hausdorff ones.
We also give a new proof that the closed set functor on metric spaces has no fixed points.

2012 ACM Subject Classification Theory of computation → Models of computation; Theory of
computation → Logic and verification

Keywords and phrases Hausdorff functor, Vietoris functor, initial algebra, terminal coalgebra

Digital Object Identifier 10.4230/LIPIcs.CALCO.2023.21

Category (Co)algebraic pearls

Related Version ArXiv version with omitted proofs: https://arxiv.org/abs/2303.11071

Funding Jiří Adámek: Supported by the grant No. 22-02964S of the Czech Grant Agency.
Stefan Milius: Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
– project number 470467389.
Lawrence S. Moss: Supported by grant #586136 from the Simons Foundation.

Acknowledgements We are grateful to Pedro Nora for discussions on the proof of Prop. 4.7.

1 Introduction

This paper presents results on terminal coalgebras and initial algebras for certain endofunctors
on the categories Haus of Hausdorff topological spaces and Met of extended metric spaces.
These results are based on the terminal coalgebra construction first presented by Adámek [2]
(in dual form) and independently by Barr [8]. Given an endofunctor F , iterate F on the
unique morphism ! : F1→ 1 to obtain the following ωop-chain

1 !←− F1 F !←−−− FF1 F F !←−−−− FFF1 F F F !←−−−−− · · · (1)

Assume that the limit exists, and denote it by Vω and the limit cone by ℓn : Vω → F n1
(n < ω). We obtain a unique morphism m : FVω → Vω such that for all n ∈ ωop we have

Fℓn =
(
FVω

m−−→ Vω
ℓn+1−−−−→ F n+11

)
. (2)

© Jiří Adámek, Stefan Milius, and Lawrence S. Moss;
licensed under Creative Commons License CC-BY 4.0

10th Conference on Algebra and Coalgebra in Computer Science (CALCO 2023).
Editors: Paolo Baldan and Valeria de Paiva; Article No. 21; pp. 21:1–21:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:j.adamek@tu-braunschweig.de
mailto:stefan.milius@fau.de
https://orcid.org/0000-0002-2021-1644
mailto:larry.moss@gmail.com
https://iulg.sitehost.iu.edu/moss/
https://orcid.org/0000-0002-9908-5774
https://doi.org/10.4230/LIPIcs.CALCO.2023.21
https://arxiv.org/abs/2303.11071
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 On Kripke, Vietoris and Hausdorff Polynomial Functors

If F preserves the limit Vω, then m is an isomorphism. Its inverse yields the terminal
coalgebra m−1 : Vω → FVω; shortly νF = Vω, and we say that the terminal coalgebra is
obtained in ω steps.

This technique of finitary iteration is the most basic and prominent construction of
terminal coalgebras. However finitary iteration requires that the limit in (1) exists and also
that it is preserved by the functor. It does not apply on Set to the finite power-set functor
Pf . For that functor FVω ̸∼= Vω. However, a modification of finitary iteration does apply, as
shown by Worrell [23]. One makes a second infinite iteration, iterating F on the morphism
m : FVω → Vω rather than on ! : F1→ 1, obtaining a chain

Vω
m←−− Vω+1

F m←−−− Vω+2
F F m←−−−−− · · · (3)

Its limit is denoted by Vω+ω = limn<ω Vω+n with the limit cone l̄n : Vω+ω → Vω+n, for n < ω.
Worrell’s insight was that this second limit, Vω+ω, is preserved by every finitary functor.
We prove that this also works for set functors built from Pf using product, coproduct,
and composition (which may be non-finitary). These are the Kripke polynomial functors
mentioned in our title.

We are interested in other settings where terminal coalgebras may be built using either
the limit of (1) or the limit of (3). We study fixed points of naturally occurring endofunctors
on Hausdorff spaces and metric spaces, endofunctors built from the Vietoris and Hausdorff
functors and several other natural constructions.

In the category Top a good analogy of Pf is the Vietoris functor V assigning to every
space X the space of all compact subsets equipped with the Vietoris topology (Section 4).
Hofmann et al. [11] define Vietoris polynomial functors as those endofunctors on Top built
from V , the constant functors, and the identity functor, using product, coproduct, and
composition. We study this on the subcategory Haus of Hausdorff spaces and use that
V : Haus→ Haus preserves limits of ωop-chains, a fact for which we present a new proof. This
implies that for Vietoris polynomial functors (defined as above but with V in lieu of Pf),
the terminal coalgebra exists and is the limit of (1). The original proof [11] uses a result by
Zenor [24] whose proof is incomplete. The existence of initial algebras follows.

We also present a result for the category Met of metric spaces and nonexpanding maps.
The role of the Vietoris functor is played by the Hausdorff functor H assigning to every
space X the space HX of all compact subsets with the Hausdorff metric.

Other contributions. In addition to the aforementioned results we show results obtained by
either varying the category or the endofunctor. For example, consider again the Hausdorff
polynomial functors. Whenever F is such a functor and the constants involved in its
construction are complete spaces, νF again turns out to be complete. Analogous results hold
for compact spaces, or ultrametric spaces. Finally, we present a proof of the description of
νPf and Vω for Pf exhibited by Worrell [23] (the latter without a proof).

We simplify a proof of a known negative result: the variation of H obtained by moving
from compact sets to closed sets has no fixed points.

Related work. Our work is more general and hence improves results of Abramsky [1],
Hofmann et al. [11], and Worrell [23].

There are numerous results about the existence and construction of terminal coalgebras
in the literature. At several places we discuss other possible approaches to our results.

J. Adámek, S. Milius, and L. S. Moss 21:3

2 Preliminaries

We review a few preliminary points. We assume that readers are familiar with basic notions
of category theory as well as algebras and coalgebras for an endofunctor. We denote by Set
the category of sets and functions, Top is the category of topological spaces and continuous
functions, and Met is the category of (extended) metric spaces (so we might have d(x, y) =∞)
and non-expanding maps: the functions f : X → Y where d(f(x), f(x′)) ≤ d(x, x′) holds for
every pair x, x′ ∈ X. Note that this class of morphisms is smaller than the class of continuous
functions between metric spaces.

▶ Remark 2.1. Consider an ωop-chain

X0
f0←−− X1

f1←−− X2
f2←−− · · · (4)

1. In Set, the limit L consists of all sequences (xn)n<ω, xn ∈ Xn that are compatible:
fn(xn+1) = xn for every n. The limit projections are the functions ℓn : L→ Xn defined
by ℓn((xi)) = xn.

2. In Top, the limit is again carried by the same set L as in Set, and the limit projections ℓn

are also the same. The topology on L has as a base the sets ℓ−1
n (U), for U open in Xn.

3. In Met, the limit is again carried by the same set L, and the same limit projections ℓn.
The metric on L is defined by d((xn), (yn)) = supn<ω d(xn, yn).

Smooth Monomorphisms. In addition to terminal coalgebras, we also study initial algebras
for the functors of interest in this paper. For this, we call on a general result which allows
one to infer the existence of the initial algebra for an endofunctor F from the existence of a
terminal coalgebra for F (or in fact of any algebra with monic structure).

For a class M of monomorphisms we denote by SubM(A) the collection of subobjects
of A represented by monomorphisms from M. To say that this is a dcpo means that it is a
set which (when ordered by factorization in the usual way) is a poset having directed joins.

▶ Definition 2.2 [4, Def. 3.1]. LetM be a class of monomorphisms closed under isomorphisms
and composition.
1. We say that an object A has smooth M-subobjects provided that SubM(A) is a dcpo

with bottom ⊥, where the least element and directed joins are given by colimits of the
corresponding diagrams of subobjects.

2. The class M is smooth if every object of A has smooth M-subobjects.
A category has smooth monomorphisms if the class of all monomorphisms is smooth.

▶ Example 2.3.
1. The categories Set and Top have smooth monomorphisms, and so does the full subcategory

of Hausdorff spaces. This is easy to see.
2. The category Met also has smooth monomorphisms (these are the injective non-expanding

maps) [4, Lemma A.1].
The full subcategory CMS of complete metric spaces does not have smooth monomorph-
isms. However, strong monomorphisms (isometric embeddings) are smooth in both Met
and CMS [4, Lemma A.2].

3. Strong monomorphisms (subspace embeddings) in Top are not smooth [3, Ex. 3.5].

▶ Theorem 2.4 [4, Cor. 4.4]. LetM be a smooth class of monomorphisms. If an endofunctor F

preserving M has a terminal coalgebra, then it has an initial algebra.

Note that loc. cit. states more: given any algebra m : FA↣ A where m lies inM, the initial
algebra exists and is a subalgebra of (A, m).

CALCO 2023

21:4 On Kripke, Vietoris and Hausdorff Polynomial Functors

3 Kripke Polynomial Functors

We turn to the first collection of functors mentioned in the title of this paper: the Kripke
polynomial functors on Set. The name stems from Kripke structures used in modal logic.
Our definition below is a slight generalization of the (finite) Kripke polynomial functors
presented by Jacobs [12, Def. 2.2.1]. (Kripke polynomial functors using the full power-set
functor were originally introduced by Rößiger [19].) We admit arbitrary products in lieu of
just arbitrary exponents.

▶ Definition 3.1. The Kripke polynomial functors F are the set functors built from the finite
power-set functor, constant functors and the identity functor, by using product, coproduct
and composition. In other words, Kripke polynomial functors are built according to the
following grammar:

F ::= Pf | A | Id |
∏

i∈I Fi |
∐

i∈I Fi | FF,

where A ranges over all sets (and is interpreted as a constant functor) and I is an arbitrary
index set.

▶ Remark 3.2. The constant functors could be omitted from the grammar since they are
obtainable from the rest of the grammar. The constant functor with value 1 is the empty
product. For each set A, the constant functor with value A is then a coproduct: A =

∐
a∈A 1.

▶ Example 3.3. The Kripke polynomial functor FX = Pf(A×X) is the type functor of
finitely branching labelled transition systems with a set A of actions.

▶ Remark 3.4. An endofunctor is finitary if it preserves directed colimits. Worrell [23]
proved that for every finitary set functor the terminal coalgebra is obtained in ω + ω steps.
We prove a version of Worrell’s result but for Kripke polynomial functors.

There are Kripke polynomial set functors which are not finitary. One example of such a
functor is F (X) = XN, where N is the set of natural numbers. There are also finitary set
functors which are not Kripke polynomial functors. One example is the functor assigning to
a set X the set of nonempty finite subsets of X.

Our proof below uses ideas from Worrell’s work [23].

▶ Theorem 3.5. Every Kripke polynomial functor F has a terminal coalgebra obtained in
ω + ω steps: νF = Vω+ω.

Proof.
1. We first observe that F preserves monomorphisms and intersections of monomorphisms.

This is clear for constant functors and for Id, and it is easy to see for Pf . Moreover, these
properties are clearly preserved by product, coproduct and composition.

2. Let (Xn)n<ω be an ωop-chain in Set. Then the canonical morphism m : F (lim Xn) →
lim FXn is monic. This is obvious for constant functors and Id. Let us check it for Pf .
Denote the limit projections by ℓn : lim Xn → Xn and pn : lim PfXn →PfXn (n < ω);
the canonical morphism m is unique such that pn · m = Pfℓn. Now given S ̸= T in
Pf(lim Xn), without loss of generality we can pick x ∈ T \ S. Using that the ℓn are
jointly monic, for every s ∈ S we can choose n < ω such that ℓn(x) ̸= ℓn(s). Since S

is finite, this choice can be performed independently of s ∈ S. Thus ℓn(x) ̸∈ ℓn[S], and
hence Pfℓn(T) ̸= Pf(S). Thus, Pfℓn is a jointly monic family. Since pn ·m = Pfℓn, we
see that m is monic.

J. Adámek, S. Milius, and L. S. Moss 21:5

3. An induction on Kripke polynomial functors F now shows that m : Vω+1 → Vω is monic.
We have seen this for the base case functors in item 2. The desired property that m

is monic is preserved by products, coproducts and composition. In particular, for a
composition FG note that the canonical morphism for FG is the composition

FG(lim Xn) F m−−−→ F (lim GXn) m′

−−−→ lim FGXn,

where m is the canonical morphism for G w.r.t. the given ωop-chain and m′ the one for
F and the ωop-chain (GXn)n<ω. So this morphism m′ · Fm is monic since both m and
m′ are so and F preserves monomorphisms by item 1.

4. Since F preserves monomorphisms, we see that Fm, FFm etc. are monic. We obtain a
decreasing chain of subobjects Vω+n ↣ Vω. Therefore, the limit Vω+ω = limn<ω Vω+n is
simply the intersection of these subobjects. From item 1 we know that F preserves this
limit. It follows that νF = Vω+ω, as desired. ◀

▶ Corollary 3.6. Every Kripke polynomial functor F on Set has an initial algebra.

This follows from Theorem 3.5, Example 2.3.1, and Theorem 2.4 since F preserves mono-
morphisms.

▶ Example 3.7 [23]. The functor Pf has a terminal coalgebra consisting of all finitely
branching strongly extensional trees (up to isomorphism of trees). Moreover, the limit Vω

consists of all compactly branching strongly extensional trees. We present a proof of these
results in Appendix A (Theorem A.15).

4 Vietoris Polynomial Functors

Hofmann et al. [11] proved that Vietoris polynomial functors on the category Haus of
Hausdorff spaces have terminal coalgebras obtained in ω steps. Our proof is slightly different
from theirs because we wish to avoid a result stated by Zenor [24] whose proof is incomplete.

Recall that a base of a topology is a collection B of open sets such that every open set is
a union of members of B. A subbase is a collection of open sets whose finite intersections
form a base. For every collection B of subsets of the space, there is a smallest topology for
which B is a (sub)base, the family of unions of finite intersections from B.

▶ Definition 4.1. 1. Let X be a topological space. We denote by V X the space of compact
subsets of X equipped with the “hit-and-miss” topology. This topology has as a subbase
all sets of the following forms:

U♢ = {R ∈ V X : R ∩ U ̸= ∅} (R hits U),

U□ = {R ∈ V X : R ⊆ U} (R misses X \ U),
(5)

where U ranges over the open sets of X. We call V X the Vietoris space of X, also known
as the hyperspace of X.

2. Recalling that the image of a compact set under a continuous function is also compact,
for a continuous function f : X → Y we put V f(A) = f [A] for every compact subset A

of X.

▶ Remark 4.2.
1. For a compact Hausdorff space X, Vietoris [22] defined V X to consist of all closed subsets

of X. These are the same as the compact subsets in this case. In the coalgebraic literature,
V X has also mostly been studied for spaces X which are compact Hausdorff. However,

CALCO 2023

21:6 On Kripke, Vietoris and Hausdorff Polynomial Functors

the “classic Vietoris space” (using closed subsets) does not yield a functor on Top (see
Hofmann et al. [11, Rem. 2.28]). Hofmann et al. [11, Def. 2.27] call the functor V in
Definition 4.1 the compact Vietoris functor.

2. Michael [16, Thm. 4.9.8] proved that X is Hausdorff iff so is V X.
3. Vietoris [22] originally proved that for a compact Hausdorff space X (the classic Vietoris

space) V X is compact Hausdorff, too.
4. A Stone space is a compact Hausdorff space having a base of clopen sets. If X is a Stone

space, so is V X; see [16, Thm. 4.9.9] or [13, Section III.4].

▶ Proposition 4.3. For every continuous function f : X → Y and every open U ⊆ Y ,
(f−1(U))♢ = (V f)−1(U♢), and (f−1(U))□ = (V f)−1(U□).

Proof. Let R ∈ V X. Observe that

R ∩ f−1(U) ̸= ∅ ⇐⇒ f [R] ∩ U ̸= ∅ ⇐⇒ f [R] ∈ U♢ ⇐⇒ R ∈ (V f)−1(U♢).

This proves our first assertion for all R. For the second assertion, we have

R ⊆ f−1(U) ⇐⇒ f [R] ⊆ U ⇐⇒ f [R] ∈ U□ ⇐⇒ R ∈ (V f)−1(U□). ◀

▶ Corollary 4.4. The mappings X 7→ V X and f 7→ V f form a functor V on Top.

Indeed, Proposition 4.3 shows that for every subbasic open set of V Y its inverse image
under V f is open in V X. This establishes continuity of V f .

▶ Notation 4.5. We denote by Haus, KHaus and Stone the full subcategories of Top given
by all Hausdorff spaces, all compact Hausdorff spaces and all Stone spaces, respectively. By
Remark 4.2.2–4, V restricts to these three full subcategories, and we denote the restrictions
by V as well.

▶ Remark 4.6.
1. The full subcategories Haus, KHaus and Stone are closed under limits in Top. In particular,

the inclusion functors preserve and reflect limits. In fact, KHaus is a full reflective
subcategory: the reflection of a space is its Stone-Čech compactification.

2. If an ωop-chain as in (4) consists of surjective continuous maps between compact Hausdorff
spaces, then each limit projection ℓn : limk<ω Xk → Xn is surjective, too. Moreover,
Eilenberg and Steenrod [9, Cor. 3.9] prove the surjectivity of projections for all codirected
limits of surjections between compact Hausdorff spaces; see also Ribes and Zalesskii [18,
Prop. 1.1.10]).

3. If X has a base B which is closed under finite unions, then the sets U♢ and U□ for U ∈ B
already form a subbase of V X. Indeed, given a set S of open subsets of X we have
(
⋃
S)♢ =

⋃
{U♢ : U ∈ S}. Moreover, it is easy to see that

(
⋃
S)□ =

⋃
{
(⋃
F

)□ : F ⊆ S finite};

“⊇” is trivial, and for “⊆” use compactness of R ∈ V X. Hence, if S consists of basic
open sets from B, then

⋃
F ∈ B due to its closure under finite unions. Thus, (

⋃
S)□ is a

union of sets of the form U□ for U ∈ B.

▶ Proposition 4.7. The functor V : Haus→ Haus preserves limits of ωop-chains.

Proof. Consider an ωop-chain as in (4). Let M = lim V Xn, with limit cone rn : M → V Xn.
Let m : V L→M be the unique continuous map such that V ℓn = rn ·m for all n < ω. We
shall prove that m is a bijection and then that its inverse is continuous, which proves that m

is an isomorphism.

J. Adámek, S. Milius, and L. S. Moss 21:7

1. Injectivity of m follows from the fact that V ℓn (n < ω) forms a jointly monic family,
as we will now prove. Suppose that A, B ∈ V L satisfy ℓn[A] = ℓn[B] for every n < ω.
We prove that A ⊆ B; by symmetry A = B follows. Given a ∈ A, we show that every
open neighbourhood of a has a nonempty intersection with B. Since B is closed, we then
have a ∈ B (otherwise L \B would be an open neighbourhood of a disjoint from B). It
suffices to prove the desired property for the basic open neighbourhoods ℓ−1

n (U) of a,
for U open in Xn (see Remark 2.1.2). Since ℓn[A] = ℓn[B] we have some b ∈ B which
satisfies ℓn(a) = ℓn(b). Then b ∈ ℓ−1

n (U) ∩B.
2. Surjectivity of m. An element of M is a sequence (Kn)n<ω of compact (hence closed)

subsets Kn ⊆ Xn such that fn[Kn+1] = Kn for every n < ω. We need to find a compact
set K ⊆ L such that ℓn[K] = Kn for every n < ω. With the subspace topology, Kn

is itself a compact space. The connecting maps fn : Xn+1 → Xn restrict to surjective
continuous maps Kn+1 ↠ Kn. Thus, the spaces Kn form an ωop-chain of surjections in
KHaus. Let K be the limit with projections pn : K ↠ Kn. Then K is a subset of L, and
each projection pn is the restriction of ℓn to Xn.
Let us check that the topology on K is the subspace topology inherited from L. A base
of the topology on K is the family of sets p−1

n (U) as U ranges over the open subset of
Kn. Each U is of the form V ∩Kn for some open V of Xn, and p−1

n (U) = ℓ−1
n (V) ∩K.

Thus p−1
n (U) is open in the subspace topology, and the converse holds as well.

The maps pn are surjective by Remark 4.6.2. Moreover, K is a compact space by
Remark 4.6.1. Thus, K is the desired compact set in V L such that pn[K] = Kn for all n.

3. Finally, we prove that the inverse k : M → V L, say, of m is continuous. We know that
the sets ℓ−1

n (U), for U open in Xn, form a base of L. Moreover, this base is closed under
finite unions. By Remark 4.6.3 and using Proposition 4.3 we obtain that V L has a
subbase given by the following sets

(V ℓn)−1(U♢) = (ℓ−1
n (U))♢ and (V ℓn)−1(U□) = (ℓ−1

n (U))□ for U open in Xn.

It suffices to show that the inverse images of these subbasic open sets of V L are open in
M . For V ℓ−1

n (U♢) with U open in Xn we use that V ℓn · k = rn clearly holds to obtain

k−1(
V ℓ−1

n (U♢) = r−1
n (U♢),

which is a basic open set of M by Remark 2.1.2. For the subbasic open sets V ℓ−1
n (U□)

the proof is similar. ◀

▶ Corollary 4.8. The restrictions of V to KHaus and Stone preserve limits of ωop-chains.

Indeed, use Remark 4.6.1.

▶ Remark 4.9. A codirected limit is the limit of a diagram whose scheme is of the form P op

for a directed poset P . Proposition 4.7 and Corollary 4.8 hold more generally for codirected
limits. The argument is the same. This proves a result stated in Zenor [24], but with an
incomplete proof.

The following definition is due to Kupke et al. [14] for Stone spaces, whereas Hofmann et
al. [11, Def. 2.29] use arbitrary topological spaces, but they later essentially restrict constants
to be (compact) Hausdorff, stably compact or spectral spaces.

▶ Definition 4.10. The Vietoris polynomial functors are the endofunctors on Top built
from the Vietoris functor V , the constant functors, and the identity functor, using product,
coproduct, and composition. Thus, the Vietoris polynomial functors are built according to
the following grammar

F ::= V | A | Id |
∏

i∈I Fi |
∐

i∈I Fi | FF,

where A ranges over all topological spaces and I is an arbitrary index set.

CALCO 2023

21:8 On Kripke, Vietoris and Hausdorff Polynomial Functors

▶ Theorem 4.11. Let F : Top→ Top be a Vietoris polynomial functor, and assume that all
constants in F are Hausdorff spaces. Then F has a terminal coalgebra obtained in ω steps,
and νF = Vω is a Hausdorff space.

Proof. An easy induction on Vietoris polynomial functors F shows that:
1. The functor F has a restriction F0 : Haus→ Haus.
2. The restriction F0 preserves surjective maps; the most important step being for V itself,

and this uses the fact when f : X → Y is continuous and X and Y are Hausdorff, the
inverse images of compact sets are compact.

3. The functor F0 preserves limits of ωop-chains; the most important step is done in Propos-
ition 4.7.

The terminal coalgebra result for F0 follows from the fact which we have mentioned in
Section 2: νF is the limit of the terminal-coalgebra ωop-chain F n

0 1 (n < ω). Since Haus is
closed under limits in Top and F n

0 1 = F n1, the functor F has the same terminal coalgebra
νF = lim F n1. ◀

▶ Corollary 4.12. Let F : Top→ Top be a Vietoris polynomial functor, and assume that all
constants in F are Hausdorff spaces. Then F has an initial algebra.

This follows from Theorem 4.11, Example 2.3.1 and Theorem 2.4, since an easy induction
shows that F preserves monomorphisms.

▶ Corollary 4.13. Let F : Top→ Top be a Vietoris polynomial functor in which all constants
are compact Hausdorff spaces and only finite coproducts are used. Then the terminal coalgebra
νF is a compact Hausdorff space.

Proof. The functor F restricts to an endofunctor on KHaus. Thus, the terminal-coalgebra
ωop-chain F n1 lies in KHaus. Moreover, KHaus is closed under limits in Top because it is a full
reflective subcategory (Remark 4.6.1). Thus, νF = limn<ω F n1 is compact Hausdorff. ◀

▶ Corollary 4.14. Let F : Top→ Top be a Vietoris polynomial functor in which all constants
are Stone spaces and only finite coproducts are used. Then the terminal coalgebra νF is a
Stone space.

The proof is similar.

▶ Remark 4.15. Corollary 4.13 essentially appears in work by Hofmann et al. [11, Thm. 3.42]
(except for the convergence ordinal). Corollary 4.14 is due to Kupke et al. [14]. Our proof
using convergence of the terminal-coalgebra chain is different than the previous ones.

▶ Example 4.16. The terminal coalgebra for V itself was identified by Abramsky [1]. By
what we have shown, it is Vω = lim V n1. An easy induction on n shows that V n1 is Pn

f 1
with the discrete topology; the key point is that each set Pn

f 1 is finite. The topology was
described in Remark 2.1.2: it has as a base the sets ∂−1

n (U) as U ranges over the subsets of
Pn

f 1. By Corollary 4.14, νF is a Stone space.
In Appendix A, we present for Pf a concrete description of Vω as the set of compactly

branching strongly extensional trees.

▶ Remark 4.17. Note that Theorem 4.11 also holds for Vietoris polynomial functors when we
take Haus as our base category. Hofmann et al. [11] consider other full subcategories of Top,
and they also study the completeness of the category of coalgebras for Vietoris polynomial
functors F (however, they restrict to using finite products and finite coproducts in their

J. Adámek, S. Milius, and L. S. Moss 21:9

definition of Vietoris polynomial functors). For a Vietoris polynomial functor F on Haus,
the category of coalgebras is complete [11, Cor. 3.41]. Moreover, every subfunctor of F has
a terminal coalgebra [11, Cor. 4.6].

▶ Remark 4.18. Hofmann et al. [11, Ex. 2.27(2)] also consider a related construction called
the lower Vietoris space of X. It is the set of all closed subsets of X with the topology
generated by all sets U♢, cf. (5). This again yields a functor on Top: a given continuous
function is mapped to A 7→ f [A], where f [A] denotes the closure of f [A]. Furthermore,
one has a corresponding notion of lower Vietoris polynomial functors. They prove that
for such functors F on the category of stably compact spaces (defined in [11]), Coalg F is
complete [11, Thm. 3.35]. Furthermore, if a lower Vietoris polynomial functor F on Top can
be restricted to that category, then it has a terminal coalgebra obtained by finite iteration:
νF = Vω [11, Thm. 3.36]. Similar results hold for the category of spectral spaces and spectral
maps.

▶ Remark 4.19. Let us mention a very general result which applies in many situations
to deliver a terminal coalgebra: Makkai and Paré’s Limit Theorem [15, Thm. 5.1.6]. It
implies that every accessible endofunctor F : A → A on a locally presentable category has
an initial algebra and a terminal coalgebra. (Indeed, the theorem implies that the category
of F -coalgebras is cocomplete.) This result cannot be used here because Haus is not locally
presentable: it does not have a small set of objects that is colimit-dense [3, Prop. 8.2].

▶ Open Problem 4.20.
1. Does every Vietoris polynomial functor on Top have a terminal coalgebra?
2. Does every Vietoris polynomial functor on KHaus as in Corollary 4.13 have an initial

algebra?

Item 1 above is equivalent to asking whether the result that νF exists for every Vietoris
polynomial functor would remain true if we allowed non-Hausdorff constants.

5 Hausdorff Polynomial Functors

Analogously to the Vietoris polynomial functors on Top, we introduce Hausdorff polynomial
functors on Met. Closer to the situation of Kripke polynomial functors on Set than to
Vietoris polynomial functors on Top, the Hausdorff polynomial functors on Met have terminal
coalgebras obtained in ω + ω steps.

▶ Notation 5.1. The Hausdorff functor H : Met→ Met maps a metric space X to the space
HX of all compact subsets of X equipped with the Hausdorff distance1 given by

d̄(S, T) = max
(
supx∈S d(x, T), supy∈T d(y, S)

)
, for S, T ⊆ X compact,

where d(x, S) = infy∈S d(x, y). In particular d̄(∅, T) =∞ for nonempty compact sets T . For
a non-expanding map f : X → Y we have Hf : S 7→ f [S].

▶ Remark 5.2.
1. The functors V : Top→ Top and H : Met→ Met are closely related: for compact metric

spaces X the Vietoris space V X is precisely the topological space induced by the Hausdorff
space HX.

1 The definition goes back to Pompeiu [17] and was popularized by Hausdorff [10, p. 293].

CALCO 2023

21:10 On Kripke, Vietoris and Hausdorff Polynomial Functors

2. Some authors define HX to consist of all nonempty compact subsets of X. However,
Hausdorff [10] did not exclude ∅, and the above formula works (as already indicated)
without such an exclusion.

▶ Remark 5.3.

1. For a complete metric space, HX is complete again (see e.g. Barnsley [7, Thm. 7.1]).
Thus H restricts to a functor on the category CMS of complete metric spaces, which we
denote by the same symbol H.

2. Let UMet denote the category of (extended) ultrametric spaces: the full subcategory of
Met given by spaces satisfying the following stronger version of the triangle inequality:

d(x, z) ≤ max{d(x, y), d(y, z)}.

If X is an ultrametric space, then so is HX. To see this, let S, T, U ∈ HX. Write p for
max{d̄(S, T), d̄(T, U)}. For each x ∈ S, there is some y ∈ T such that d(x, y) ≤ d̄(S, T).
For this y, there is some z ∈ U such that d(y, z) ≤ d̄(T, U). So

d(x, z) ≤ max{d(x, y), d(y, z)} ≤ max{d̄(S, T), d̄(T, U)} = p.

It follows that d(x, U) ≤ p. This for all x ∈ X shows that d(S, U) ≤ p. Note that
p = max{d̄(U, T), d̄(T, S)}. The same argument shows that supz∈U d(z, S) ≤ p. So we
have d̄(S, U) ≤ p. This proves the ultrametric inequality.
We again denote the restriction of the Hausdorff functor to UMet is denoted by H.

3. For a discrete metric space X (where all distances are 0 or ∞), HX is the discrete space
formed by all finite subsets of X.

4. For an arbitrary metric space X, the finite subsets of X form a dense set in HX. Indeed,
given a compact set S ⊆ X, for every ε > 0, there exists a finite set T ⊆ S such that S is
covered by ε-balls around the points in T . Therefore d(x, T) ≤ ε for all x ∈ S, and we
have d(y, S) = 0 for all y ∈ T . This implies that d̄(S, T) ≤ ε.

▶ Example 5.4. For the Hausdorff functor, a terminal coalgebra is carried by the space
of all finitely branching strongly extensional trees equipped with the discrete metric. This
follows from the finite power-set functor Pf having its terminal coalgebra formed by those
trees (Example 3.7). Indeed, the terminal-coalgebra chain Vi (i ∈ Ord) for H is obtained
by equipping the sets in the terminal-coalgebra chain for Pf with the discrete metric.
Furthermore, since limits in Met (or CMS) are set-based, we see that both chains converge
in exactly ω + ω steps. Therefore νH = Vω+ω.

It follows that, unlike the Vietoris functor, the Hausdorff functor does not preserve limits
of ωop-chains: the terminal-coalgebras chain for H(−) does not converge before ω + ω steps
(see Example 5.4.5.4). Thus this functor does not preserve the limit Vω = limn<ω Vn.

▶ Definition 5.5. Let (Xn)n<ω be an ωop-chain in Met. A cone rn : M → Xn is isometric if
for all x, y ∈M we have d(x, y) = supn∈N d(rn(x), rn(y)).

By Remark 2.1.3, limit cones of ωop-chains in Met are isometric.

J. Adámek, S. Milius, and L. S. Moss 21:11

▶ Proposition 5.6. The Hausdorff functor preserves isometric cones of ωop-chains.

Proof. Let (Xn)n<ω be an ωop-chain with connecting maps fn : Xn+1 → Xn. Given an
isometric cone ℓn : M → Xn (n < ω), we prove that the cone Hℓn : HM → HXn is also
isometric:

d̄(S, T) = sup
n<ω

d̄(ℓn(S), ℓn(T)) for all compact subset S, T ⊆M .

We can assume that S and T are nonempty and finite: since finite sets are dense in HM by
Remark 5.3.4, and the maps ℓn are (non-expanding whence) continuous, the desired equality
then holds for all pairs in HM . The case where S or T is empty is trivial.

Since every ℓn is non-expanding, we only need to prove that d̄(S, T) ≤ c holds for
c = supn<ω d̄(ℓn[S], ℓn[T]). For this, we show that for every ε > 0, d̄(S, T) ≤ c + ε. By
the definition of the Hausdorff metric d̄, it suffices to prove that for every x ∈ S we have
d(x, T) ≤ c + ε. By symmetry, we then also have d(y, S) ≤ c + ε for every y ∈ T .

Given y ∈ T we have d(x, y) = supn<ω d(ℓn(x), ℓn(y)). Thus, there is a k < ω such that

d(x, y) ≤ d(ℓk(x), ℓk(y)) + ε.

Since T is finite, we can choose k such that this inequality holds for all y ∈ T . By definition,

d̄(ℓk(x), ℓk[T]) = inf
y∈T

d(ℓk(x), ℓk(y)) in Xk.

Again using that T is finite, we can pick some y ∈ T such that d(ℓk(x), ℓk[T]) = d(ℓk(x), ℓk(y)).
With this y we conclude that

d(x, T) ≤ d(x, y) ≤ d(ℓk(x), ℓk(y))+ε = d(ℓk(x), ℓk[T])+ε ≤ d̄(ℓk[S], ℓk[T])+ε ≤ c+ε. ◀

▶ Remark 5.7. The Hausdorff functor preserves isometric embeddings and their intersections.
Indeed, for every subspace X of a metric space Y , a set S ⊆ X is compact in X iff it is so
in Y . Moreover, given S, T ∈ HX, their distances in HX and HY are the same. Thus, H
preserves isometric embeddings.

Given a collection Xi ⊆ Y (i ∈ I) of subspaces, a set S ⊆
⋂

i∈I Xi is compact in X iff it
is so in Y (and therefore in every Xi). Thus H preserves that intersection.

▶ Definition 5.8. The Hausdorff polynomial functors are the endofunctors on Met built
from the Hausdorff functor, the constant functors, and the identity functor, using product,
coproduct, and composition. Thus, the Hausdorff polynomial functors are built according to
the following grammar (cf. Definition 3.1):

F ::= H | A | Id |
∏

i∈I Fi |
∐

i∈I Fi | FF,

where A ranges over all metric spaces and I is an arbitrary index set.

▶ Theorem 5.9. Every Hausdorff polynomial functor F : Met→ Met has a terminal coalgebra
obtained in ω + ω steps: νF = Vω+ω.

Proof. An easy induction over the structure of Hausdorff polynomial functors shows that
each such functor F preserves:
1. isometric cones of ωop-chains, and
2. isometric embeddings and their intersections.
The most important step is done in Proposition 5.6 and Remark 5.7.

We conclude that in the terminal-coalgebra chain, the map m : Vω+1 → Vω from (2)
in the Introduction is an isometric embedding by item 1. By item 2, all of the maps
m, Fm, FFm, . . . in the chain (Vω+n)n<ω are isometric embeddings. Hence F preserves the
intersection of the ensuing subspaces of Vω viz. the limit Vω+ω = limn<ω Vω+n. Consequently,
we have νF = Vω+ω. ◀

CALCO 2023

21:12 On Kripke, Vietoris and Hausdorff Polynomial Functors

▶ Remark 5.10. Note that if a Hausdorff polynomial functor F uses only contants given
by complete metric spaces A, then it has a restriction to an endofunctor on CMS. Indeed,
by an easy induction on the structure of F one shows that FX is complete whenever X

is complete. Similarly, when F uses constants which are ultrametric spaces, then F has a
restriction on UMet.

Since CMS and UMet are closed under limits of ωop-chains in Met, we obtain the following

▶ Corollary 5.11. Every Hausdorff polynomial functor on CMet or UMet has a terminal
coalgebra obtained in ω + ω steps.

▶ Corollary 5.12. Every Hausdorff polynomial functor F on Met or CMS has an initial
algebra.

Indeed, since Hausdorff polynomial functors preserve isometric embeddings, this follows
from Theorem 5.9, Example 2.3.2, and Theorem 2.4.

▶ Remark 5.13. We mentioned another possible approach to terminal coalgebras in Re-
mark 4.19. Let us comment on the situation regarding the results on Met here. The
category Met is locally presentable (see e.g. [6, Ex. 2.3]). The Limit Theorem does imply
that on Met, the Hausdorff polynomial functors have terminal coalgebras. In more detail,
the Hausdorff functor is finitary: this was proved for its restriction to 1-bounded metric
spaces [5, Sec. 3], and the proof for H itself is the same. An easy induction then shows that
every Hausdorff polynomial functor is accessible, so that the Limit Theorem can be applied.
However, our elementary proof shows that the terminal coalgebra chain converges in ω + ω

steps. The proof of Makkai and Paré’s Limit Theorem does not yield such a bound.

6 Variation: the Closed Subset Functor on Met

We have been concerned with the Hausdorff functor taking a metric space M to the space of
its nonempty compact subsets. For two variations, let us consider Pcl : Met→ Met taking
M to the set of its closed subsets, and its subfunctor P ′

cl : Met→ Met taking M to the set
of its nonempty closed subsets. Both PclM and P ′

clM are given the Hausdorff metric. For a
non-expanding map f : X → Y , the non-expanding map Pclf : PclX →PclY sends a closed
subset S of X to the closure of f [S]. This makes Pcl and P ′

cl functors. Due to the empty
set, Pcl is a closer analog of H. It is natural to ask whether the positive results of Section 5
hold for these functors Pcl and P ′

cl. As proved by van Breugel [20, Prop. 8], the functor Pcl
has no terminal coalgebra. Turning to P ′

cl, this functor has an initial algebra given by the
empty metric space and a terminal coalgebra carried by a singleton metric space. But P ′

cl
has no other fixed points (see van Breugel et al. [21, Cor. 5]), where an object X is a fixed
point of an endofunctor F if FX ∼= X. We provide below a different, shorter proof.

▶ Remark 6.1.
1. A subset X of a metric space is δ-discrete if whenever x ̸= y are elements of X, d(x, y) ≥ δ.

Every subset of a δ-discrete set is δ-discrete, and every such set is closed. Moreover, if C

and D are different subsets of a δ-discrete set, then d̄(C, D) ≥ δ.
2. A subset S of an ordinal i is cofinal if for all j < i there is some k ∈ S with j ≤ k < i. If

S is not cofinal, then its complement i \ S must be so. (But it is possible that both S

and i \ S are cofinal in i.)

J. Adámek, S. Milius, and L. S. Moss 21:13

▶ Theorem 6.2. There is no isometric embedding P ′
clM →M when |M | ≥ 2.

Proof. Suppose towards a contradiction that ι : PclM →M were an isometric embedding
where |M | ≥ 2. If all distances in M are 0 or∞, then P ′

clM is the nonempty power-set of M .
In this case, our result follows from the fact that for |M | ≥ 2, M has more nonempty subsets
than elements. Thus we fix distinct points a, b ∈M of finite distance, and put δ = d(a, b)/2.
Let A = {x ∈M : d(x, a) ≤ δ}, and let B = M \A. (In case d(a, b) =∞, we need to adjust
this by setting δ =∞, and B to be the points whose distance to a is finite. But we shall not
present the argument in this case.)

We proceed to define an ordinal-indexed sequence of elements xi ∈ M . We also prove
that each set Si = {xj : j < i} is δ-discrete, and we put

Xi =
{

A if {j < i : xj ∈ A} is cofinal in i

B else.

For i = 0, put x0 = ι({a, b}). Given an ordinal i > 0, we put

xi = ι(Xi ∩ Si).

Being nonempty (since i > 0) and δ-discrete, Xi ∩ Si lies in P ′
clM .

The remainder of our proof consists of showing that for every ordinal i:

d(xj , xk) ≥ δ for 0 ≤ j < k ≤ i.

We proceed by transfinite induction. Assume that our claim holds for every k < i and then
prove it for i. The base case i = 0 is trivial. For i > 0, note first that it follows from the
induction hypothesis that Si is δ-discrete.

Hence, we need only verify that d(xj , xi) ≥ δ when 0 ≤ j < i. We argue the case Xi = A;
when Xi = B, the argument is similar, mutatis mutandis. For j = 0, recall that x0 = ι({a, b})
and xi = ι(A ∩ Si). Since b has distance at least δ from every element of A, we obtain
d̄({a, b}, A ∩ Si) ≥ δ. As ι is an isometric embedding, this distance is also d(x0, xi). Now
let j > 0. Since we have Xi = A, let k be such that j ≤ k < i and xk ∈ A. Now either
xj = ι(A ∩ Sj) or else xj = ι(B ∩ Sj).

In the first case, note that xk ∈ A ∩ Si since k < i, and xk /∈ Sj by the definition of Sj

since k ≥ j. So A ∩ Sj and A ∩ Si are different nonempty subsets of the δ-discrete set Si.
Hence, the distance between these sets is at least δ, and therefore we have d(xj , xi) ≥ δ.

In the second case, B ∩ Sj is a nonempty subset of B, and thus again it not equal to
A ∩ Si. So again we see that d(xj , xi) = d̄(B ∩ Sj , A ∩ Si) ≥ δ.

We now obtain the desired contradiction since (xi) is an ordinal-indexed sequence of
pairwise distinct elements of M . ◀

▶ Corollary 6.3.
1. The functor P ′

cl : Met→ Met has no fixed points except the empty set and the singletons.
2. The functor Pcl : Met→ Met admits no isometric embedding PclM →M , whence has

no fixed point.

Proof. The first item is immediate from Theorem 6.2. For the second one, observe that
the inclusion map e : P ′

clM →PclM is an isometric embedding. Assuming that there were
an isometric embedding ι : PclM → M , we see that M cannot be empty (since PclM is
nonempty) or a singleton (since then |PclM | = 2). Hence |M | ≥ 2. Moreover, we obtain an
isometric embedding ι · e : P ′

clM →M , contradicting Theorem 6.2. ◀

CALCO 2023

21:14 On Kripke, Vietoris and Hausdorff Polynomial Functors

7 Summary

We have investigated versions of the finite power-set functor for the categories Haus and
Met. Our main results are that the Vietoris functor V , and indeed all Vietoris polynomial
functors, have terminal coalgebras obtained in ω steps of the terminal-coalgebra chain. The
same holds for the Hausdorff polynomial functors on Met, but the iteration takes ω + ω steps
and so the underlying reasons are different.

Our work on the Kripke and Hausdorff polynomial functors highlights a technique which
we feel could be of wider interest. To prove that a terminal coalgebra exists in a situation
where the limit of the ωop-chain (1) is not preserved by the functor, one could try to find
preservation properties which imply that the limit of the ωop-chain (Vω+n)n was preserved.
In Set, we used finitarity and preservation of monomorphisms and intersections, and in Met
we used preservation of intersections, isometric embeddings, and isometric cones.

We have also seen that for the functor Pcl on Met, there is no fixed point and hence no
terminal coalgebra. We leave open the question of whether every Vietoris polynomial functor
on Top has a terminal coalgebra.

References
1 Samson Abramsky. A Cook’s Tour of the finitary non-well-founded sets. In We Will Show

Them: Essays in honour of Dov Gabbay, volume 1, pages 1–18. College Publications, 2005.
2 Jiří Adámek. Free algebras and automata realizations in the language of categories. Com-

ment. Math. Univ. Carolin., 15:589–602, 1974.
3 Jiří Adámek, Miroslav Hušek, Jiří Rosický, and Walter Tholen. Smallness in topology. preprint;

available at https://arxiv.org/abs/2302.00050, accepted for publication in Questiones
Mathematicae, 2023.

4 Jiří Adámek, Stefan Milius, and Lawrence S. Moss. Initial algebras without iteration. In Fabio
Gaducci and Alexandra Silva, editors, 9th Conference on Algebra and Coalgebra in Computer
Science (CALCO), volume 211 of LIPIcs, pages 5:1–5:20. Schloss Dagstuhl, 2021.

5 Jiří Adámek, Stefan Milius, Lawrence S. Moss, and Henning Urbat. On finitary functors and
their presentations. J. Comput. System Sci., 81(5):813–833, 2015.

6 Jiří Adámek and Jiří Rosický. Approximate injectivity and smallness in metric-enriched
categories. J. Pure Appl. Algebra, 226(6), 2022. Article 106974.

7 Michael F. Barnsley. Fractals Everywhere. Morgan Kaufmann, 2nd edition, 1993.
8 Michael Barr. Terminal coalgebras in well-founded set theory. Theoret. Comput. Sci., 114(2):299–

315, 1993.
9 Samuel Eilenberg and Norman Steenrod. Foundations of Algebraic Topology. Princeton

University Press, 1952.
10 Felix Hausdorff. Grundzüge der Mengenlehre. Veit & Comp., Leipzig, 1914.
11 Dirk Hofmann, Renato Neves, and Pedro Nora. Limits in categories of Vietoris coalgebras.

Math. Structures Comput. Sci., 29(4):552–587, 2019.
12 Bart Jacobs. Introduction to Coalgebra. Towards Mathematics of States and Observation.

Cambridge University Press, 2016.
13 Peter Johnstone. Stone Spaces. Cambridge Univ. Press, 1986.
14 Clemens Kupke, Alexander Kurz, and Yde Venema. Stone coalgebras. Theoret. Comput. Sci.,

327(1–2):109–132, 2004.
15 Michael Makkai and Robert Paré. Accessible Categories: the Foundation of Categorical Model

Theory, volume 104 of Contemporary Math. Amer. Math. Soc., Providence, RI, 1989.
16 Ernest Michael. Topologies on spaces of subsets. Trans. Amer. Math. Soc., 71:152–182, 1951.
17 Dimitrie Pompeiu. Sur la continuité des fonctions de variables complexes. Annales de la

Faculté des Sciences de la Université de Toulouse pour les Sciences Mathématiques et les
Sciences Physiques, 2ième Série, 7(3):265–315, 1905.

https://arxiv.org/abs/2302.00050

J. Adámek, S. Milius, and L. S. Moss 21:15

18 Luis Ribes and Pavel Zalesskii. Profinite Groups, volume 40 of Ergebnisse der Mathematik
und ihrer Grenzgebiete. Springer, 2nd edition, 2010.

19 Martin Rößiger. Coalgebras and modal logic. In Horst Reichel, editor, Proc. Coalgebraic
Methods in Computer Science (CMCS 2000), volume 33 of Electron. Notes Theor. Comput. Sci.,
pages 294–315. Elsevier, 2000.

20 Franck van Breugel. De Bakker-Zucker processes revisited. Inform. and Comput., 188(1):68–76,
2004.

21 Franck van Breugel, Camillo Costantini, and Stephen Watson. Isometries between a metric
space and its hyperspace, function space, and space of measures. Topology Appl., 137(1-3):51–57,
2004.

22 Leopold Vietoris. Bereiche zweiter Ordnung. Monatsh. Math. Phys., 32(1):258–280, 1922.
23 James Worrell. On the final sequence of a finitary set functor. Theoret. Comput. Sci.,

338:184–199, 2005.
24 Phillip Zenor. On the completeness of the space of compact subsets. Proc. Amer. Math. Soc.,

26(1):190–192, 1970.

A Trees and the Limit of the Terminal-Coalgebra Chain for Pf

We give the description of Vω for Pf due to Worrell [23]. We provide a full exposition to the
results which Worrell stated without proof.

A tree is a directed graph t with a distinguished node root(t) from which every other
node can be reached by a unique directed path. Every tree in our sense must have a root, so
there is no empty tree. All of our trees are unordered. We always identify isomorphic trees.

▶ Definition A.1.
1. We use the notation tx for the subtree of t rooted in the node x of t.
2. A tree t is extensional if for every node x distinct children y and z of x give different

(that is, non-isomorphic) subtrees ty and tz.
3. A graph bisimulation between two trees t and u is a relation between the nodes of t and

the nodes of u with the property that whenever x and y are related: (a) every child of x

is related to some child of y, and (b) every child of y is related to some child of x.
4. A tree bisimulation between two trees t and u is a graph bisimulation R with the additional

properties that that
a. The nodes root(t) and root(u) are related; the roots are not related to other nodes; and
b. whenever two nodes are related, their parents are also related.

5. Two trees are tree bisimilar if there is a tree bisimulation between them.
6. A tree t is strongly extensional if every tree bisimulation on it is a subset of the diagonal

∆t = {(x, x) : x ∈ t}.

In other words, t is strongly extensional iff distinct children x and y of the same node
define subtrees tx and ty which are not tree bisimilar.

▶ Remark A.2.
1. Every composition and every union of tree bisimulations is again a tree bisimulation. In

addition, the opposite relation of every tree bisimulation is a tree bisimulation: if R is a
tree bisimulation from t to u, then Rop is a tree bisimulation from u to t. Consequently,
the largest tree bisimulation on every tree is an equivalence relation.

2. A subtree s of a strongly extensional tree t is strongly extensional. Indeed, if R is a tree
bisimulation on s, then R ∪∆t is a tree bisimulation on t. Since R ∪∆t ⊆ ∆t, we have
R ⊆ ∆s.

CALCO 2023

21:16 On Kripke, Vietoris and Hausdorff Polynomial Functors

▶ Lemma A.3. If t and u are strongly extensional and related by a tree bisimulation, then
we have t = u.

Proof. Let R be a tree bisimulation between t and u. By Remark A.2, Rop · R is a tree
bisimulation on t, whence Rop ·R ⊆ ∆t by strong extensionality. But every node of t is related
to at least one node of u (use induction on the depth of nodes) implying that Rop ·R = ∆t.
Similarly, R ·Rop = ∆u. Thus, R (is a function and it) is an isomorphism of trees, and we
identify such trees. ◀

▶ Notation A.4.
1. Let T be the class of trees. We define maps ∂n : T → Vn = Pn

f 1 as follows: ∂0 is the
unique map to 1, and given the map ∂n and a tree t, we put

∂n+1(t) = {∂n(tx) : x is a child of the root of t}.

On the right we have a subset of Pn
f 1, and this is an element of Pn+1

f 1.
2. The trees t and u are Barr equivalent provided that ∂nt = ∂nu for all n. We write t ≈ u

in this case.
3. For every tree t, we define maps ρt

n : t → Vn = Pn
f 1 in the following way: ρt

0 is the
unique map t → 1, and for all nodes x of t, ρt

n+1(x) = {ρt
n(y) : y is a child of x in t}.

This family of maps ρt
n is a cone: we have ρt

n = vm,n · ρt
m for every connecting map

vm,n : Pm
f 1 → Pn

f 1, m ≥ n. Hence, there is a unique map ρt
ω : t → Vω such that

ℓn · ρt
ω = ρt

n for all n.

▶ Remark A.5. Note that Vn = Pn
f 1 may be described as the set of all extensional trees of

height at most n. Indeed, 1 is described as the singleton set consisting of the root-only tree,
and every finite set of extensional trees in Vn+1 = PfVn is represented by the extensional
tree obtained by tree-tupling the trees from the given set.

▶ Remark A.6.
1. If ρt

n+1(a) = ρt
n+1(b), then for all children a′ of a, there is some child b′ of b and

ρt
n(a′) = ρt

n(b′). This is easy to see from the definition of ρt
n+1.

2. For all trees t, ρt
i(root(t)) = ∂i(t). Furthermore, let b : t→ T be given by b(x) = tx. Then

ρt
i = ∂i · b.

▶ Definition A.7. Let x0, x1, . . . , be a sequence of nodes in a tree t, and let y also be a node
in t. We write lim xn = y to mean that for every n there is some m such that ρt

n(xp) = ρt
n(y)

whenever p ≥ m.
A tree t is compactly branching if for all nodes x of t, the set of children of x is sequentially

compact: for every sequence of (yn) of children of x there is a subsequence (wn) of (yn) and
some child z of x such that lim wn = z.

▶ Example A.8. The following tree t is not compactly branching:

t : y0 y1 · · ·y2

J. Adámek, S. Milius, and L. S. Moss 21:17

To see this, consider the sequence y0, y1, Note that for n ≥ m, ρt
n(yn) = ∂i(tyn) = tym .

We claim that for every subsequence (ykn
) of this sequence (yn) there is no yp such that

limn ykn
= yp. To simplify the notation, we only verify this for the sequence (yn) itself. It

does not converge to any fixed element ym because for p > m,

ρt
p(ym) = ∂p(tym) ̸= ∂p(typ) = ρt

p(yp).

In contrast, the following tree is compactly branching (also observe also that t ≈ t′):

t′ : z

...

y0 y1 · · ·y2

To check the compactness, consider a sequence of children of the root, say (xn). If there is
an infinite subsequence which is constant, then of course that sequence converges. If not,
then there is a subsequence of (xn), say (wn), where each wn is yk for some k ≥ n. In this
case, limn(wn) = z. This is because for all but finitely many n, ρt

n(z) = ∂n(tz) = twn =
∂n(twn

) = ρt
n(wn).

▶ Lemma A.9. If t and u are compactly branching, and if ρt
ω(root(t)) = ρu

ω(root(u)), then
there is a tree bisimulation between t and u which includes {(x, y) ∈ t× u : ρt

ω(x) = ρu
ω(y)}.

Proof. Given compactly branching trees t and u, we define a relation R ⊆ t× u inductively
by

x R y iff (1) x = root(t) and y = root(u), or x and y have R-related parents, and
(2) ρt

ω(x) = ρu
ω(y).

Let us check that R is a tree bisimulation. Suppose that (x, y) are related by R as above,
and let x′ be a child of x in t. Using Remark A.6.1 we see that for each n, there is some child
y′

n of y in u with ρt
n(x′) = ρu

n(y′
n). Consider the sequence y′

0, y′
1, Now ρt

n(x′) = ρu
n(y′

m)
if m ≥ n, since ρt

n and ρu
n form cones: ρt

n(x′) = vm,n · ρt
m(x′) = vm,n · ρu

m(y′
m) = ρu

n(y′
m).

By sequential compactness, there is a subsequence z0, z1, . . ., and also some child z∗ of y

such that lim zn = z∗. Being a subsequence, ρt
n(x′) = ρu

n(zm) whenever m ≥ n. Let us check
that for all n, ρt

n(x′) = ρu
n(z∗). To see this, fix n and let m ≥ n be large enough so that for

p ≥ m, ρu
n(zp) = ρu

n(z∗). Thus, ρt
n(x′) = ρu

n(zm) = ρu
n(z∗). Thus, ρt

ω(x′) = ρu
ω(z∗), which

shows x′ R z∗, as desired.
The other half of the verification that R is a tree bisimulation is similar. ◀

▶ Notation A.10. In this section, Vω denotes the limit of (1) for the finite power-set functor.
1. We take the elements of Vω to be compatible sequences (xn). That is, xn ∈ Pn

f 1 and
Pn

f !(xn+1) = xn for every n < ω. To save on notation, we write x for (xn). We consider
the relation ⇝ on Vω defined by

x⇝ y iff for all n, yn ∈ xn+1. (6)

2. Let L+ be the set of nonempty finite sequences from Vω. We write such a sequence with
the notation ⟨x1, . . . , xn⟩. We consider the relation ⇒ on L+ defined by

⟨x1, . . . , xn⟩ ⇒ ⟨y1, . . . , ym⟩ iff m = n + 1, x1 = y1, . . ., xn = yn, and xn ⇝ yn+1.

In other words, m = n + 1, ⟨y1, . . . , ym−1⟩ = ⟨x1, . . . , xn⟩, and xn ⇝ ym.

CALCO 2023

21:18 On Kripke, Vietoris and Hausdorff Polynomial Functors

3. For each x ∈ Vω, let trx be the tree whose nodes are the sequences ⟨x, x2, . . . , xn⟩ ∈ L+

whose first entry is x, with root the one-point sequence ⟨x⟩, and with graph relation the
restriction of ⇒. For readers familiar with tree unfoldings of pointed graphs, trx is the
tree unfolding of the graph (Vω,⇝) at the point x.

4. Finally, let

T = {trx : x ∈ Vω}. (7)

Recall the connecting maps Pn
f ! : Pn+1

f 1→Pn
f 1.

▶ Lemma A.11. Let x ∈ Vω.
1. For all k and all ⟨x, x2, . . . , xn⟩ ∈ trx, ρtrx

k (⟨x, x2, . . . , xn⟩) = xn
k .

2. Let R be a tree bisimulation on trx. If ⟨x, x2, . . . , xn⟩ R ⟨x, y2, . . . , yn⟩, then for all k,

ρtrx

k (⟨x, x2, . . . , xn⟩) = ρtrx

k (⟨x, y2, . . . , yn⟩).

3. The tree trx is strongly extensional and compactly branching, and ∂ω(trx) = ρtrx
ω (⟨x⟩) = x.

Proof.
1. By induction on k. For k = 0, our result is clear: the codomain of ρk is 1. Assume our

result for k, fix x ∈ L+ and ⟨x1, . . . , xn⟩ ∈ trx. We first prove that

{yk : xn ⇝ y} = xn
k+1. (8)

Indeed, if xn ⇝ y, then yk ∈ xn
k+1. Conversely, if a ∈ xn

k+1, we construct y ∈ Vω such
that xn ⇝ y with yk = a. Note that

xn
k = Pk

f !(xn
k+1) = PPk−1

f !(xn
k+1) = Pk−1

f ![xn
k+1].

Since a ∈ xn
k+1, we have Pk−1

f !(a) ∈ xn
k . So we let yk−1 = Pk−1

f !(a). We repeat this
argument to define yk−2, . . ., y1, y0; the point is that yk−i ∈ xn

k−i+1 for i = 0, . . . , k.
Choices are needed when we go the other way from k. Note that

Pk+1
f ![xn

k+2] = Pf(Pk+1
f !)(xn

k+2) = Pk+2
f !(xn

k+2) = xn
k+1.

Every set functor preserves surjective functions, and so Pk+1
f ! is surjective. Thus there

is some yk+1 ∈ xn
k+2 such that Pk+1

f !(yk+1) = yk. The same argument enables us to find
by recursion on i a sequence yk+i+1 ∈ xn

k+i+2 such that Pk+i+1
f !(yk+i+1) = yk+i. This

defines y such that xn ⇝ y according to (6) with yk = a.
The induction step is now easy:

ρtrx

k+1(⟨x, x2, . . . , xn⟩) = {ρtrx

k (⟨x, x2, . . . , xn, y⟩) : xn ⇝ y}
= {yk : xn ⇝ y} by induction hypothesis
= xn

k+1 by (8).

2. This again is an induction on k, and the steps are similar to what we have just seen. We
also note that tuples in trx related by a tree bisimulation must have the same length.

3. Note first that by item 1 with n = 1, we have ρtrx

k (⟨x⟩) = xk for all k. This implies that
ρtrx

ω (⟨x⟩) = x. For the strong extensionality, let R be a tree bisimulation on trx. Suppose
that ⟨x, x2, . . . , xn⟩ and ⟨x, y2, . . . , yn⟩ are related by R. Using items 1 and 2, we see that
for all k, we have xn

k = yn
k . Thus xn = yn. In addition, since R is a tree bisimulation,

J. Adámek, S. Milius, and L. S. Moss 21:19

the parents of the two nodes under consideration are also related by R. So the same
argument shows that xn−1 = yn−1. Continuing in this way shows that xn−2 = yn−2, . . .,
x2 = y2. Hence ⟨x, x2, . . . , xn⟩ = ⟨x, y2, . . . , yn⟩.
Finally, we verify that trx is compactly branching. To simplify the notation a little, we
shall show this for children of the root ⟨x⟩. So suppose we have an infinite sequence
⟨x, y1⟩, ⟨x, y2⟩, Recall that each set Pn

f 1 is finite. By successively thinning the
sequence y1, y2, . . ., we may assume that for all n ∈ ω and all p, q ≥ n, yn

p = yn
q . Let

z ∈ Vω be the ‘diagonal’ sequence zn = yn
n . Since every ⟨x, yn⟩ is a child of the root

⟨x⟩ (in symbols: ⟨x⟩ ⇒ ⟨x, yn⟩), we have x ⇝ yn. This implies that for all n, we have
zn = yn

n ∈ xn+1, whence x ⇝ z. Thus, ⟨x, z⟩ is a child of the root of trx. Recall from
item 1 that ρtrx

n (⟨x, z⟩) = zn. So we obtain the desired conclusion: lim⟨x, yn⟩ = ⟨x, z⟩. ◀

▶ Lemma A.12. For every tree t there is a Barr-equivalent tree t∗ ∈ T such that t∗ is
strongly extensional and compactly branching.

Proof. Given any tree t, we have x = ∂ω(t) ∈ Vω. For all n, xn = ∂n(t). The tree t∗ = trx

in Lemma A.11.3 is strongly extensional and compactly branching. Recall that the root of t∗

is ⟨x⟩. By Lemma A.11.1, we have that for all n < ω,

∂n(t∗) = ρt∗

n (root(trx)) = ρt∗

n (⟨x⟩) = xn = ∂n(t). ◀

▶ Lemma A.13. The set T defined in (7) is the set of all compactly branching, strongly
extensional trees.

Proof. By Lemma A.11.3 we know that every tree in T is strongly extensional and compactly
branching. For the reverse inclusion, let t be compactly branching and strongly extensional.
Let t∗ be as in Lemma A.12 for t. By Lemmas A.3 and A.9, t = t∗. Thus t ∈ T . ◀

▶ Definition A.14. Let D be the set of finitely branching strongly extensional trees. Let
δ : D →PfD take a strongly extensional tree t to the (finite) set of its subtrees tx.

In this definition, we use Remark A.2.2: a subtree of a strongly extensional tree is strongly
extensional.

▶ Theorem A.15 [23]. For the finite power-set functor Pf the following hold:
1. the maps ∂n : T →Pn

f 1 given by ∂n(trx) = xn form a limit of (2); thus, Vω
∼= T ,

2. the coalgebra (D, δ) is terminal.

Proof.
1. The map φ : Vω → T given by φ(x) = trx is obviously surjective. Suppose that trx = try.

The roots of these trees are ⟨x⟩ and ⟨y⟩. For all n, we have that

xn = ρtrx
n (⟨x⟩) = ρtry

n (⟨y⟩) = yn.

Thus ∂ω(⟨x⟩) = ∂ω(⟨y⟩). By Lemmas A.3 and A.9, x = y. So φ is injective. The formula
for ∂n comes from Lemma A.11.1.

2. We use Theorem 3.5. The map m : Vω+1 → Vω in (2) assigns to a finite set of trees in Vω

their tree-tupling. Its image is the set of all strongly extensional, compactly branching
trees which are finitely branching at the root. An easy induction on n shows that Vω+n

is the set of all compactly branching, strongly extensional trees t with the property that
the topmost n levels of t are finitely branching. With this description, Vω+n ⊆ D, and
the limit Vω+ω is simply the intersection D =

⋂
n Vω+n. This shows that the carrier set

of νPf is D. For the structure map δ, note that m : PfVω → Vω in (2) is tree-tupling, as
are Pfm, PfPfm, etc. It follows that in the intersection, D, the coalgebra structure is
the inverse of tree-tupling. ◀

CALCO 2023

21:20 On Kripke, Vietoris and Hausdorff Polynomial Functors

This concludes our work showing that for the finite power-set functor Pf , Vω is the set T

of strongly extensional, compactly branching trees, and the terminal coalgebra νPf is the
set D of finitely branching, strongly extensional trees.

CRDTs, Coalgebraically
Nathan Liittschwager #

University of California, Santa Cruz, CA, USA

Stelios Tsampas #

Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Jonathan Castello #

University of California, Santa Cruz, CA, USA

Lindsey Kuper #

University of California, Santa Cruz, CA, USA

Abstract
We describe ongoing work that models conflict-free replicated data types (CRDTs) from a coalgebraic
point of view. CRDTs are data structures designed for replication across multiple physical locations
in a distributed system. We show how to model a CRDT at the local replica level using a novel
coalgebraic semantics for CRDTs. We believe this is the first step towards presenting a unified theory
for specifying and verifying CRDTs and replicated state machines. As a case study, we consider
emulation of CRDTs in terms of coalgebra.

2012 ACM Subject Classification Theory of computation; Theory of computation → Semantics
and reasoning; Theory of computation → Distributed computing models; Theory of computation →
Concurrency; Theory of computation → Formal languages and automata theory

Keywords and phrases Coalgebra, Distributed Systems, Concurrency, Bisimulation

Digital Object Identifier 10.4230/LIPIcs.CALCO.2023.22

Category Early Ideas

Funding This material is based upon work supported by the National Science Foundation under
Grant No. CCF-2145367. Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the views of the National
Science Foundation.

1 Introduction

In distributed systems, data replication guards against machine failures and keeps data
physically close to clients who require low-latency access, but it introduces the problem of
keeping replicas consistent with one another in the face of network partitions and unpredictable
message latency. Conflict-free replicated data types (CRDTs) [14, 13] are data structures
whose operations must satisfy certain mathematical properties that can be leveraged to
ensure strong convergence, meaning that replicas are guaranteed to have equivalent state
given that they have received and applied the same (unordered) set of update operations.

A typical use case for CRDTs is that of a text document being made available to n

concurrent users via an online collaborative editor. We can model such a collaborative editing
application as a coalgebra

⟨update, query⟩ : X → XA × S,

where X is some black-box state (representing the editor internals), A a finite set of arguments,
e.g, add or delete a character at a particular location via update : X → XA, and S being the

© Nathan Liittschwager, Stelios Tsampas, Jonathan Castello, and Lindsey Kuper;
licensed under Creative Commons License CC-BY 4.0

10th Conference on Algebra and Coalgebra in Computer Science (CALCO 2023).
Editors: Paolo Baldan and Valeria de Paiva; Article No. 22; pp. 22:1–22:5

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nliittsc@ucsc.edu
https://orcid.org/0009-0005-5602-8509
mailto:stelios.tsampas@fau.de
https://orcid.org/0000-0001-8981-2328
mailto:jcaste14@ucsc.edu
https://orcid.org/0000-0002-8548-3683
mailto:lkuper@ucsc.edu
https://orcid.org/0000-0002-1374-7715
https://doi.org/10.4230/LIPIcs.CALCO.2023.22
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 CRDTs, Coalgebraically

observable state: the text string itself accessible through query : X → S. As a shorthand, we
use u and q for update and query, respectively.

Viewing each client as acting on the text document via u : X → XA, we can define
u∗ : X → XA∗ by recursion as an iterated update that consumes a list of commands σ ∈ A∗

and gives the current state: u∗(x)(⟨⟩) = x and u∗(x)(a · σ) = u∗(u(x)(a))(σ). Hence we may
understand that all client interactions are represented as words in σ ∈ A∗, and the state of
the object x ∈ X is generated by u∗(x)(σ). Observe that the coalgebra ⟨u, q⟩ : X → XA × S

is a
(
(−)A × S

)
-coalgebra, and hence by standard results [4]:

▶ Proposition 1. The final
(
(−)A × S

)
-coalgebra is given by

SA∗ ⟨ζ1,ζ2⟩−−−−→ (SA∗
)
A

× S,

where ζ1(φ)(a) = λ(σ ∈ A∗). φ(a·σ) and ζ2(φ) = φ(⟨⟩). That is, for any
(
(−)A ×S

)
-coalgebra

⟨u, q⟩ : X → XA ×S, there is a unique coalgebra homomorphism beh : X → SA∗ that satisfies
beh(x) = λ(σ ∈ A∗). q(u∗(x)(σ)).

The final coalgebra ⟨ζ1, ζ2⟩ : SA∗ → (SA∗)A ×S thus defines all possible infinite behaviors
of the collaborative text editor, under the assumption that it is implemented by some
centralized server that totally orders and executes all client requests. However, such a
centralized approach is often infeasible or simply undesirable. Instead, each client may be
working on a local copy – a replica – of the object and propagating changes between replicas.

To keep replicas consistent, specialized algorithms and communication middleware can be
used. For example, the state machine replication [11] approach guarantees strong consistency
(informally, where clients cannot tell that the data is replicated) by ensuring that each
replica executes the same sequence of commands. However, this approach requires expensive
coordination between replicas. CRDTs take a different approach: they avoid the need for
coordination by carefully constraining the state space X and the implementation of the
update and query methods, and sacrifice strong consistency in favor of strong convergence.
Under strong convergence, replicas that have received the same set of updates (in any order)
agree in state, but clients may observe differing intermediate states.

In this short paper, we propose studying CRDTs under a coalgebraic lens. We find that
CRDTs lend themselves to a coalgebraic interpretation: they are implemented as replicated
objects at multiple locations, where each replica has an opaque internal state, but publicly
available methods centered around calls to update or query; strong convergence and emulation
of CRDTs are primarily about observable behavior from perspective of a client. By taking
the coalgebraic approach, we can use the well-developed theory of universal coalgebra to
reason about strong convergence of CRDTs. Moreover, the coalgebraic approach lets us make
precise a notion of emulation of CRDTs that has until now been known only informally.

2 Coalgebraic Semantics of CRDTs

CRDTs may be specified in an operation-based (or op-based) style or in a state-based style.
Op-based CRDTs require that replicas transmit messages containing the effects of a local
update downstream to other replicas. Updates are applied to replicas in a way that respects
causality [5]: when an update is applied to replica i, any causally preceding updates must
have already been applied to i, but concurrently applied updates do not need to be restricted
to any particular order; an op-based CRDT converges regardless. State-based CRDTs, on
the other hand, converge by restricting their (observable) state to be a join-semilattice
⟨S, ⊔⟩, and updates are propagated between replicas by simply passing copies of state s ∈ S

N. Liittschwager, S. Tsampas, J. Castello, and L. Kuper 22:3

between replicas, and merging states via a least-upper-bound operator ⊔. The two styles are
equivalent in the sense that given a state-based CRDT, one can construct a corresponding
op-based CRDT that emulates it, and vice versa [14].

We show that the semantics of a CRDT can be described as a coalgebra c : X → F (X),
where F : Sets → Sets is a Kripke-polynomial functor [4], beginning with the semantics for
state-based CRDTs. Similarly to the text-editing example, the CRDT consists of a state
space X, a set S of observables, an update map u : X → XA and a query map q : X → S.
In addition, we assume an abstract set of events E and equip the CRDT with a “history”
morphism h : X → P(E), interpreted as a kind of log for events e ∈ E that have happened
at the replica. Intuitively, events are given by a map that “wraps” interactions (e.g., inputs
a ∈ A) with the environment and tag it with meta-data, such as a sequence number.

To model the least-upper-bound operator ⊔, we require a map merge : X → XS that
allows an object with state x to receive an input state s = q(x′) ∈ S from some other replica
x′, along with rules requiring that merge is inflationary wrt to queries. Strong convergence is
defined as the property ∀x, x′ ∈ X.(h(x) = h(x′) =⇒ q(x) = q(x′)), which CRDT coalgebras
must satisfy: when two replica states have observed the same set of events, then their query
state is the same.

▶ Definition 2. A state-based CRDT consists of a state space X, inputs A, events E, a
payload S where S = ⟨S, ⊔⟩ is a join-semilattice, and maps

⟨u, q, h, ξ, merge⟩ : X → XA × S × P(E) × P(E)A+S × XS ,

s.t. the following hold for all x ∈ X, s ∈ S, a ∈ A,
(i) q(merge(x)(s)) = q(x) ⊔ s;
(ii) q(x) ⊔ q(u(x)(a)) = q(u(x)(a));
(iii) h(u(x)(a)) = h(x) ∪ ξ(x)(a);
(iv) h(merge(x)(s)) = h(x) ∪ ξ(x)(s);
(v) ∀x′ ∈ X. (h(x) = h(x′) =⇒ q(x) = q(x′)).

Op-based CRDTs are similar, except they define local updates u : X → XA in terms
of two other methods: a side-effect free prepare method prep : X → MA and an effectful
apply method app → XM , where M is a set of messages. We assume M is equipped with
a partial order ≺hb, the so-called happens-before relation [5, 12]. This implies that M is
equipped with metadata sufficient for ≺hb to make sense. Say elements m, m′ are concurrent
and write m ∥ m′ if ¬((m ≺hb m′) ∨ (m′ ≺hb m)). Upon a client invoking a local update of
type a ∈ A, op-based CRDTs first generate a message m ∈ M with prep, and then send m

downstream to neighboring replicas using some communication middleware that ensures that
messages are delivered in an order consistent with causality [12]. The middleware delays
delivery of m to a replica with state x until a decider (assumed sufficient to ensure causality)
dlvr? : X → 2M returns “yes”, after which the message is applied with app. The decider
dlvr? can be implemented independently of the CRDT application. A common approach is
the vector clock protocol [8, 2].

▶ Definition 3. An operation-based CRDT consists of a state space X, inputs A, events E,
payload S, and maps

⟨u, q, h, ξ, dlvr?, prep, app⟩ : X → XA × S × P(E)M × P(E)E × 2E × EA × XE

s.t. the following hold for all x ∈ X, a ∈ A, m, m′ ∈ M

(i) u(x) = λ(a ∈ A).app(x)(prep(x)(a));
(ii) h(u(x)(a)) = h(x) ∪ ξ(x)(prep(x)(a));

CALCO 2023

22:4 CRDTs, Coalgebraically

(iii) h(app(x)(m)) = h(x) ∪ ξ(x)(m)
(iv) if dlvr?(x)(m) = dlvr?(x)(m′) = ⊤, then updates m, m commute. I.e., q(x′) = q(x′′)

where x′ = app(app(x)(m))(m′) and x′′ = app(app(x)(m′))(m).
(v) ∀x′ ∈ X. (h(x) = h(x′) =⇒ q(x) = q(x′))

Critically, the coalgebra above models a single replica, of which there are n many,
initialized from some starting state x0 ∈ X. Communication, from this point of view, is
abstracted to the communication middleware.

3 Emulation of CRDTs

Much existing work on CRDT semantics (e.g., [1, 3, 9, 7, 6, 10]) has treated op-based and
state-based CRDTs as distinct classes of objects, often only considering one class or the other.
The justification for this approach is that a state-based CRDT can emulate a corresponding
op-based CRDT, and vice versa [14]. Despite this commonly cited fact, a notion of emulation
is never made precise. Here we aim to fill this gap by showing that emulation of CRDTs may
be thought of in terms of bisimulation of transition systems.

▶ Definition 4. A transition system on a state space X with observations S is a coalgebra
⟨next, obs⟩ : X → P(X) × S s.t. x −→ x′ ⇐⇒ x′ ∈ next(x), and x ↓ s ⇐⇒ s = obs(x).
Given two transition systems ⟨next1, obs1⟩ : X → P(X)×S and ⟨next2, obs2⟩ : Y → P(Y)×S,
a relation R ⊆ X × Y is a bisimulation iff ∀(x, y) ∈ X × Y , if R(x, y), then

x ↓ s =⇒ y ↓ s;
x −→ x′ =⇒ ∃y′. y −→ y′;
y −→ y′ =⇒ ∃x′. x −→ x′.

It can be shown [4] that coalgebras c : X → F (X) may be mapped to transition systems
d : X → P(X).For the coalgebra of definition 2, define x −→ x′ ⇐⇒ (∃a ∈ A. u(x)(a) =
x′) ∨ (∃s ∈ S. merge(x)(s) = x′), and x ↓ s ⇐⇒ q(x) = s. The construction for definition
3 is similar, with the restriction that x −→ x′ ⇐⇒ (∃a ∈ A. u(x)(a) = x′) ∨ (∃m ∈
M. app(x)(m) = x′ ∧ dlvr?(x)(m)).

This translation to transition systems exposes the similarity of state-based and operation-
based CRDTs by revealing there are really only two “kinds” of transition steps: local steps
via u : X → XA and synchronization steps via merge : X → XS for state-based CRDTs,
and app : X → XM for operation-based CRDTs. For both kinds of CRDTs, the observable
payload is given by x ↓ s.

▶ Proposition 5 (Emulation of state-based CRDTS by op-based CRDTs). Let F, G : Sets →
Sets be appropriate functors s.t. given coalgebra X

⟨u,q,h,ξ,merge⟩−−−−−−−−−→ F (X) satisfying definition
2, with transition system semantics X

⟨next1,obs1⟩−−−−−−−→ P(X) × S. Then there is a coalgebra
Y

⟨u′,q′,h′,ξ′,dlvr?,prep,app⟩−−−−−−−−−−−−−−−−→ G(Y) satisfying definition 3 with transition semantics Y
⟨next2,obs2⟩−−−−−−−→

P(Y) × S s.t. there is a bisimulation relation R : X × Y between X
⟨next1,obs1⟩−−−−−−−→ P(X) × S to

Y
⟨next2,obs2⟩−−−−−−−→ P(Y) × S.

4 Future Work

There are two main directions for future work.
First, the semantics given here can be lifted to consider the semantics of CRDTs (and

possible state machine replication in general) from a more global point of view, i.e., as
interacting asynchronous processes.

N. Liittschwager, S. Tsampas, J. Castello, and L. Kuper 22:5

Second, the above proposition only gives one direction of the emulation result. The
other direction is left to future work. More generally, both operation-based and state-based
CRDTs need exhibit strong convergence, which can be thought of as a form of observational
equivalence, similar to how emulation is approached here. However, a more interesting
approach might be to frame both operation-based and state-based CRDTs as satisfying
strong convergence as a universal property, showing that the difference between CRDTs
amounts to nothing more than choice of construction.

References
1 Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek Zawirski. Replicated

data types: Specification, verification, optimality. In Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’14, pages 271–284, New
York, NY, USA, 2014. Association for Computing Machinery. doi:10.1145/2535838.2535848.

2 C. J. Fidge. Timestamps in message-passing systems that preserve the partial ordering.
Proceedings of the 11th Australian Computer Science Conference, 10(1):56–66, 1988.

3 Victor B. F. Gomes, Martin Kleppmann, Dominic P. Mulligan, and Alastair R. Beresford.
Verifying strong eventual consistency in distributed systems. Proc. ACM Program. Lang.,
1(OOPSLA), October 2017. doi:10.1145/3133933.

4 Bart Jacobs. Introduction to Coalgebra: Towards Mathematics of States and Observation,
volume 59 of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,
2016. doi:10.1017/CBO9781316823187.

5 Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun.
ACM, 21(7):558–565, July 1978. doi:10.1145/359545.359563.

6 Hongjin Liang and Xinyu Feng. Abstraction for conflict-free replicated data types. In
Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation, PLDI 2021, pages 636–650, New York, NY, USA, 2021. Association
for Computing Machinery. doi:10.1145/3453483.3454067.

7 Yiyun Liu, James Parker, Patrick Redmond, Lindsey Kuper, Michael Hicks, and Niki Vazou.
Verifying replicated data types with typeclass refinements in Liquid Haskell. Proc. ACM
Program. Lang., 4(OOPSLA), November 2020. doi:10.1145/3428284.

8 Friedemann Mattern. Virtual time and global states of distributed systems. In Parallel and
Distributed Algorithms, pages 215–226. North-Holland, 1989.

9 Kartik Nagar and Suresh Jagannathan. Automated parameterized verification of CRDTs. In
Isil Dillig and Serdar Tasiran, editors, Computer Aided Verification, pages 459–477, Cham,
2019. Springer International Publishing.

10 Abel Nieto, Léon Gondelman, Alban Reynaud, Amin Timany, and Lars Birkedal. Modular
verification of op-based CRDTs in separation logic. Proc. ACM Program. Lang., 6(OOPSLA2),
October 2022. doi:10.1145/3563351.

11 Fred B. Schneider. Implementing fault-tolerant services using the state machine approach: A
tutorial. ACM Comput. Surv., 22(4):299–319, December 1990. doi:10.1145/98163.98167.

12 Reinhard Schwarz and Friedemann Mattern. Detecting causal relationships in distributed
computations: In search of the holy grail. Distributed Computing, 7(3):149–174, March 1994.
doi:10.1007/BF02277859.

13 Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. A comprehensive study of
Convergent and Commutative Replicated Data Types. Research Report RR-7506, Inria – Centre
Paris-Rocquencourt; INRIA, January 2011. URL: https://hal.inria.fr/inria-00555588.

14 Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-free replicated
data types. In Xavier Défago, Franck Petit, and Vincent Villain, editors, Stabilization, Safety,
and Security of Distributed Systems, pages 386–400, Berlin, Heidelberg, 2011. Springer Berlin
Heidelberg.

CALCO 2023

https://doi.org/10.1145/2535838.2535848
https://doi.org/10.1145/3133933
https://doi.org/10.1017/CBO9781316823187
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/3453483.3454067
https://doi.org/10.1145/3428284
https://doi.org/10.1145/3563351
https://doi.org/10.1145/98163.98167
https://doi.org/10.1007/BF02277859
https://hal.inria.fr/inria-00555588

Amortized Analysis via Coinduction
Harrison Grodin # Ñ

Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA

Robert Harper # Ñ

Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA

Abstract
Amortized analysis is a program cost analysis technique for data structures in which the cost of
operations is specified in aggregate, under the assumption of continued sequential use. Typically,
amortized analyses are presented inductively, in terms of finite sequences of operations. We give an
alternative coinductive formulation and prove that it is equivalent to the standard inductive definition.
We describe a classic amortized data structure, the batched queue, and outline a coinductive proof
of its amortized efficiency in calf , a dependent type theory for cost analysis.

2012 ACM Subject Classification Theory of computation → Type theory; Theory of computation →
Logic and verification; Software and its engineering → Functional languages; Theory of computation
→ Program reasoning; Theory of computation → Categorical semantics

Keywords and phrases amortized analysis, coinduction, data structure, mechanized proof

Digital Object Identifier 10.4230/LIPIcs.CALCO.2023.23

Category Early Ideas

Supplementary Material
Software (Source Code): https://github.com/jonsterling/agda-calf [18], archived at swh:1:
dir:7750187b111d75acca1980e9abffae2d63ffbe69

Funding This material is based upon work supported by the United States Air Force Office of
Scientific Research under grant number FA9550-21-0009 (Tristan Nguyen, program manager) and
the National Science Foundation under grant number CCF-1901381. Any opinions, findings and
conclusions or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the AFOSR or NSF.

Acknowledgements We are grateful to Yue Niu, Max New, and David Spivak for insightful discussions
about this research.

1 Introduction

The calf framework is a dependent type theory that supports verification of both correctness
conditions and cost bounds [19], based on call-by-push-value [17]. Amortized analysis is a cost
analysis technique for data structures in which the operation costs are specified in aggregate,
under the assumption of continued sequential use [23]. In this work, we demonstrate how
amortized analysis can be understood as coalgebraic in calf .

In call-by-push-value, there are two sorts of types: value types A, B, C and computation
types X, Y , Z. The type FA is a computation type classifying computations that result in
a value of type A, and the type UX is a value type classifying suspended computations of
type X. Computation types beyond FA will be essential for amortized analysis; in particular,
we will make extensive use of products X × Y , coproducts Σa:AX(a), powers A → X, and
coinductive types νX. Y (X) [2], all of which are computation types.

Semantically, we will interpret value types in Set and computation types in the category
of C-sets, where C is a monoid representing cost, as is standard for cost analysis of functional

© Harrison Grodin and Robert Harper;
licensed under Creative Commons License CC-BY 4.0

10th Conference on Algebra and Coalgebra in Computer Science (CALCO 2023).
Editors: Paolo Baldan and Valeria de Paiva; Article No. 23; pp. 23:1–23:6

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hgrodin@cs.cmu.edu
https://www.harrisongrodin.com
https://orcid.org/0000-0002-0947-3520
mailto:rwh@cs.cmu.edu
https://www.cs.cmu.edu/~rwh/
https://orcid.org/0000-0002-9400-2941
https://doi.org/10.4230/LIPIcs.CALCO.2023.23
https://github.com/jonsterling/agda-calf
https://archive.softwareheritage.org/swh:1:dir:7750187b111d75acca1980e9abffae2d63ffbe69;origin=https://github.com/jonsterling/agda-calf;visit=swh:1:snp:970335e4251b980e4c493d29d8bb274821ef4d1e;anchor=swh:1:rev:75627cd7a08bc41ab32820eba6e3cc2d4573211a
https://archive.softwareheritage.org/swh:1:dir:7750187b111d75acca1980e9abffae2d63ffbe69;origin=https://github.com/jonsterling/agda-calf;visit=swh:1:snp:970335e4251b980e4c493d29d8bb274821ef4d1e;anchor=swh:1:rev:75627cd7a08bc41ab32820eba6e3cc2d4573211a
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Amortized Analysis via Coinduction

programs [7, 8, 15, 6]. This is a simplification of calf , avoiding modalities. As in calf , we
provide a primitive effect stepc(−) that incurs c units of abstract cost, interpreted using the
C-action. The C-action associated to a computation type justifies equations describing how
steps are incorporated into its elements:

stepc
X×Y (⟨x, y⟩) = ⟨stepc

X(x), stepc
Y (y)⟩

stepc
Σa:AX(a)(⟨a, x⟩) = ⟨a, stepc

X(x)⟩

stepc
A→X(λa. x) = λa. stepc

X(x)
stepc

νX. Y (X)(gen(a. y; a0)) = gen(a. stepc
Y (νX. Y (X))(y); a0)

In other words, cost at a product or power type is incurred pointwise, cost at a coproduct
type is pushed into the given summand, and cost at a coinductive type is propagated forward.
In this work, we will make use of the A-wide coproduct of a computation type X, also known
as the copower of X by A [16, 9], which we write as A ⋉ X ≜ Σ−:AX. Note that 1 ⋉ X is
isomorphic to X.

2 Cofree Comonads for Amortized Abstract Data Types

Throughout this paper, we will use queues as a running example of an abstract data type,
although the development generalizes to other sequential-use abstract data types. Queues
are an abstract type representing an ordered collection with a first-in-first-out data policy.
Let value type E be the type of elements; the queue operations can be written as follows:

enqueue[e] ∼ 1
dequeue ∼ E + 1

This signature describes an operation enqueue[e] for each e : E and an operation dequeue.
In a type theory with one sort of type, a machine offering these operations is given via

the following cofree comonad [12, 22, 21], interpreted in Set:

queue(X) ≜ νQ. (quit : X) × (enqueue : E → Q) × (dequeue : (E + 1) × Q)

Up to isomorphism, each operation corresponds to a product of its output type and Q,
using a function for an E-wide product. In call-by-push-value, though, we must distinguish
between a product of computation types and a copower of a value type and a computation
type. Since the result type of an operation is a value type, such as E + 1 for the dequeue
operation, we must use the latter. Thus, we may define the type of (amortized) queues as
follows, interpreted in the category of C-sets:

queue(X) ≜ νQ. (quit : X) × (enqueue : E → Q) × (dequeue : (E + 1) ⋉ Q)

The type queue(X) can be understood as “object-oriented” [4, 13, 5], since the use of a queue
involves a sequence of enqueue and dequeue projections terminated by a quit. Cost incurred
at this type is propagated forward, accumulating at all future quit components (of type X)
for end-of-use accounting.

3 Coinductive Amortized Analysis

Let C = (N, +, 0). We define two queue implementations of type queue(X) and prove their
amortized equivalence. Here, we let X = F1, requiring that the queues terminate with an
element of F1 (i.e., simply a cost in C).

H. Grodin and R. Harper 23:3

Listing 1 Single-list specification implementation of a queue.
spec -queue : list E → queue (F unit)
quit (spec -queue l) = ret triv
enqueue (spec -queue l) e = step 1 (spec -queue (l ++ [e]))
dequeue (spec -queue []) = ret (nothing , spec -queue [])
dequeue (spec -queue (e :: l)) = ret (just e , spec -queue l)

Listing 2 Amortized-efficient batched implementation of a queue.
batched -queue : list E → list E → queue (F unit)
quit (batched -queue bl fl) = step (Φ (bl , fl)) (ret triv)
enqueue (batched -queue bl fl) e = batched -queue (e :: bl) fl
dequeue (batched -queue bl []) with reverse bl
... | [] = ret (nothing , batched -queue [] [])
... | e :: fl = step (length bl) (ret (just e , batched -queue [] fl))
dequeue (batched -queue bl (e :: fl)) =

ret (just e , batched -queue bl fl)

▶ Example 1 (Specification Queue). One simple implementation of a queue, called spec-queue,
is given in Listing 1 by coinduction using copattern matching [1], using a single list as the
underlying representation type. The enqueue operation is annotated with one unit of cost;
however, this is unrealistic, since a full traversal of the list is performed for each enqueue
operation. We will treat this implementation as a client-facing specification, next defining a
queue that actually implements this cost model. ⌟

▶ Example 2 (Batched Queue). Now, we define an amortized-efficient implementation which
only incurs one large cost infrequently [10, 11, 3, 20]. This underlying representation type
of the implementation is two lists: the “front list”, fl, and the “back list”, bl. Elements
are enqueued to bl and dequeued from fl; if fl is empty when attempting to dequeue, the
current bl is reversed and used in place of fl going forward. The calf implementation, called
batched-queue, is shown in Listing 2. The quit case uses a potential function Φ(bl, fl) =
length(bl), as in the physicist’s method of amortized analysis [23], accounting for elements
enqueued on bl that were never moved to fl. ⌟

The amortized analysis is proved via a bisimulation; the theorem statement is analogous
to the traditional amortized analysis, using the potential function to accumulate payment [23].
Every enqueue to spec-queue pushes one unit of cost forward, while batched-queue pushes
length(bl) units of cost forward only on the occasional dequeue, retroactively using its surplus
potential from previous enqueue operations.

▶ Theorem 3 (Amortized Analysis of Batched Queue). For all lists bl and fl,

batched-queue bl fl = stepΦ(bl,fl)(spec-queue (fl ++ reverse bl)).

Proof. By routine coinduction, propagating cost forward over computation types. ◀

4 Relation to Inductive Amortized Analysis

Amortized analysis is typically framed algebraically, describing the cost incurred by a finite
sequence of operations. In the preceding sections we observed that the analysis is naturally

CALCO 2023

23:4 Amortized Analysis via Coinduction

Listing 3 Program evaluation at a queue.
eval : queue - program A → U (queue X) → A ⋉ X
eval (return a) q = a , Queue.quit q
eval (enqueue e p) q = eval p (Queue. enqueue q e)
eval (dequeue k) q =

bind (k (proj 1 (Queue. dequeue q))) λ p →
eval p (proj 2 (Queue. dequeue q))

viewed as coalgebraic. In fact these perspectives are equivalent. Define the free monad
corresponding to the queue operation signature given in Section 2:

program(A) ≜ µP. (return : A) + (enqueue : E × P) + (dequeue : U(E + 1 → FP))

An element of program(A) is a finite sequence of queue instructions terminated by returning
a value of type A. We may evaluate a program on a queue, by induction on the program:

eval : program(A) → U(queue(X)) → A ⋉ X

This expresses the usual notion of running a sequence of operations on a data structure; the
code is in Listing 3. Semantically, this definition corresponds to a morphism

program(A) ⋉ queue(X) → A ⋉ X

resembling a monad-comonad interaction law [21, 14], here adjusted for call-by-push-value.
Using eval, we may define an alternative notion of queue equivalence. Let q1, q2 : queue(X):

▶ Definition 4 (Sequence-of-Operations Queue Equivalence). Say q1 ≈ q2 iff for all types A

and programs p : program(A), it is the case that eval(p, q1) = eval(p, q2).

▶ Theorem 5 (Amortizing Sequences of Operations). It is the case that q1 = q2 iff q1 ≈ q2.

Proof. By routine (⇒) induction and (⇐) coinduction. ◀

Thus, coalgebraic amortized equivalence coincides with the traditional algebraic notion.
Unsurprisingly, a proof that q1 ≈ q2 shares the same core reasoning as a proof that q1 = q2;
however, it requires the auxiliary definitions of program(A) and eval.

5 Conclusion

Here, we developed a computation type of amortized queues in calf as the cofree comonad
of a functor based on the product, power, and copower computation type constructors,
built to propagate cost forward for end-of-use accounting. We defined specification and
amortized queue implementations and stated a theorem relating them via the physicist’s
method of amortized analysis. Finally, we observed that coinductive bisimulation coincides
with traditional sequence-of-operations reasoning in amortized analysis. Our results for
queues and two other simple amortized data structures are formalized in calf , which is
embedded in Agda [18].

In future work, we hope to extend this approach to support abstract data types with
binary and parallel operations, infinite sequences of operations, and situations in which an
amortized implementation may be less costly than the specification. Additionally, we hope
to better characterize the given constructions, accounting for the asymmetry present in
call-by-push-value. As abstract data types are described via a comonad on the category of
algebras for a monad, we also hope to connect to bialgebraic presentations of operational
semantics [24].

H. Grodin and R. Harper 23:5

References

1 Andreas Abel, Brigitte Pientka, David Thibodeau, and Anton Setzer. Copatterns: Program-
ming infinite structures by observations. ACM SIGPLAN Notices, 48(1):27–38, January 2013.
doi:10.1145/2480359.2429075.

2 Adriana Balan and Alexander Kurz. On Coalgebras over Algebras. Electronic Notes in
Theoretical Computer Science, 264(2):47–62, August 2010. doi:10.1016/j.entcs.2010.07.
013.

3 F. Warren Burton. An efficient functional implementation of FIFO queues. Information
Processing Letters, 14(5):205–206, July 1982. doi:10.1016/0020-0190(82)90015-1.

4 William R. Cook. Object-oriented programming versus abstract data types. In J. W. de
Bakker, W. P. de Roever, and G. Rozenberg, editors, Foundations of Object-Oriented Languages,
Lecture Notes in Computer Science, pages 151–178, Berlin, Heidelberg, 1991. Springer. doi:
10.1007/BFb0019443.

5 William R. Cook. On understanding data abstraction, revisited. In Proceedings of the
24th ACM SIGPLAN Conference on Object Oriented Programming Systems Languages and
Applications, OOPSLA ’09, pages 557–572, New York, NY, USA, October 2009. Association
for Computing Machinery. doi:10.1145/1640089.1640133.

6 Joseph W. Cutler, Daniel R. Licata, and Norman Danner. Denotational recurrence extraction
for amortized analysis. Proceedings of the ACM on Programming Languages, 4(ICFP):97:1–
97:29, August 2020. doi:10.1145/3408979.

7 Nils Anders Danielsson. Lightweight semiformal time complexity analysis for purely functional
data structures. ACM SIGPLAN Notices, 43(1):133–144, January 2008. doi:10.1145/1328897.
1328457.

8 Norman Danner, Daniel R. Licata, and Ramyaa Ramyaa. Denotational cost semantics for
functional languages with inductive types. In Proceedings of the 20th ACM SIGPLAN Inter-
national Conference on Functional Programming, ICFP 2015, pages 140–151, New York, NY,
USA, August 2015. Association for Computing Machinery. doi:10.1145/2784731.2784749.

9 Jeff Egger, Rasmus Ejlers Møgelberg, and Alex Simpson. Enriching an Effect Calculus
with Linear Types. In Erich Grädel and Reinhard Kahle, editors, Computer Science Logic,
Lecture Notes in Computer Science, pages 240–254, Berlin, Heidelberg, 2009. Springer. doi:
10.1007/978-3-642-04027-6_19.

10 David Gries. The Science of Programming. Springer New York, April 1989.
11 Robert Hood and Robert Melville. Real-time queue operations in pure LISP. Information

Processing Letters, 13(2):50–54, November 1981. doi:10.1016/0020-0190(81)90030-2.
12 Bart Jacobs. Mongruences and cofree coalgebras. In V. S. Alagar and Maurice Nivat, editors,

Algebraic Methodology and Software Technology, Lecture Notes in Computer Science, pages
245–260, Berlin, Heidelberg, 1995. Springer. doi:10.1007/3-540-60043-4_57.

13 Bart Jacobs. Objects And Classes, Co-Algebraically. In Burkhard Freitag, Cliff B. Jones,
Christian Lengauer, and Hans-Jörg Schek, editors, Object Orientation with Parallelism and
Persistence, The Kluwer International Series in Engineering and Computer Science, pages
83–103. Springer US, Boston, MA, 1996. doi:10.1007/978-1-4613-1437-0_5.

14 Shin-ya Katsumata, Exequiel Rivas, and Tarmo Uustalu. Interaction Laws of Monads and
Comonads. In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS ’20, pages 604–618, New York, NY, USA, July 2020. Association for Computing
Machinery. doi:10.1145/3373718.3394808.

15 G. A. Kavvos, Edward Morehouse, Daniel R. Licata, and Norman Danner. Recurrence
extraction for functional programs through call-by-push-value. Proceedings of the ACM on
Programming Languages, 4(POPL):15:1–15:31, December 2019. doi:10.1145/3371083.

16 Gregory Maxwell Kelly. Basic Concepts of Enriched Category Theory. CUP Archive, February
1982.

CALCO 2023

https://doi.org/10.1145/2480359.2429075
https://doi.org/10.1016/j.entcs.2010.07.013
https://doi.org/10.1016/j.entcs.2010.07.013
https://doi.org/10.1016/0020-0190(82)90015-1
https://doi.org/10.1007/BFb0019443
https://doi.org/10.1007/BFb0019443
https://doi.org/10.1145/1640089.1640133
https://doi.org/10.1145/3408979
https://doi.org/10.1145/1328897.1328457
https://doi.org/10.1145/1328897.1328457
https://doi.org/10.1145/2784731.2784749
https://doi.org/10.1007/978-3-642-04027-6_19
https://doi.org/10.1007/978-3-642-04027-6_19
https://doi.org/10.1016/0020-0190(81)90030-2
https://doi.org/10.1007/3-540-60043-4_57
https://doi.org/10.1007/978-1-4613-1437-0_5
https://doi.org/10.1145/3373718.3394808
https://doi.org/10.1145/3371083

23:6 Amortized Analysis via Coinduction

17 Paul Blain Levy. Call-By-Push-Value: A Functional/Imperative Synthesis. Springer Nether-
lands, Dordrecht, 2003. URL: http://link.springer.com/10.1007/978-94-007-0954-6,
doi:10.1007/978-94-007-0954-6.

18 Yue Niu, Jon Sterling, Harrison Grodin, and Robert Harper. calf : A Cost-Aware Logical
Framework. URL: https://github.com/jonsterling/agda-calf.

19 Yue Niu, Jonathan Sterling, Harrison Grodin, and Robert Harper. A cost-aware logical
framework. Proceedings of the ACM on Programming Languages, 6(POPL):9:1–9:31, January
2022. doi:10.1145/3498670.

20 Chris Okasaki. Purely Functional Data Structures. PhD thesis, Carnegie Mellon University,
1996. doi:10.1007/3-540-61628-4_5.

21 Gordon Plotkin and John Power. Tensors of Comodels and Models for Operational Semantics.
Electronic Notes in Theoretical Computer Science, 218:295–311, October 2008. doi:10.1016/
j.entcs.2008.10.018.

22 John Power and Olha Shkaravska. From Comodels to Coalgebras: State and Arrays. Electronic
Notes in Theoretical Computer Science, 106:297–314, December 2004. doi:10.1016/j.entcs.
2004.02.041.

23 Robert Endre Tarjan. Amortized Computational Complexity. SIAM Journal on Algebraic
Discrete Methods, 6(2):306–318, April 1985. doi:10.1137/0606031.

24 D. Turi and G. Plotkin. Towards a mathematical operational semantics. In Proceedings of
Twelfth Annual IEEE Symposium on Logic in Computer Science, pages 280–291, June 1997.
doi:10.1109/LICS.1997.614955.

http://link.springer.com/10.1007/978-94-007-0954-6
https://doi.org/10.1007/978-94-007-0954-6
https://github.com/jonsterling/agda-calf
https://doi.org/10.1145/3498670
https://doi.org/10.1007/3-540-61628-4_5
https://doi.org/10.1016/j.entcs.2008.10.018
https://doi.org/10.1016/j.entcs.2008.10.018
https://doi.org/10.1016/j.entcs.2004.02.041
https://doi.org/10.1016/j.entcs.2004.02.041
https://doi.org/10.1137/0606031
https://doi.org/10.1109/LICS.1997.614955

Higher-Order Mathematical Operational Semantics
Sergey Goncharov #

Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Stefan Milius #

Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Lutz Schröder #

Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Stelios Tsampas #

Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Henning Urbat #

Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Abstract
We present a higher-order extension of Turi and Plotkin’s abstract GSOS framework that retains the
key feature of the latter: for every language whose operational rules are represented by a higher-order
GSOS law, strong bisimilarity on the canonical operational model is a congruence with respect to
the operations of the language. We further extend this result to weak (bi-)similarity, for which
a categorical account of Howe’s method is developed. It encompasses, for instance, Abramsky’s
classical compositionality theorem for applicative similarity in the untyped λ-calculus. In addition,
we give first steps of a theory of logical relations at the level of higher-order abstract GSOS.

2012 ACM Subject Classification Theory of computation → Categorical semantics

Keywords and phrases Abstract GSOS, lambda-calculus, applicative bisimilarity, bialgebra

Digital Object Identifier 10.4230/LIPIcs.CALCO.2023.24

Category Early Ideas

Abstract GSOS. Turi and Plotkin’s Mathematical Operational Semantics [6] provides
an elegant categorical approach to modelling the operational semantics of process and
programming languages, and elucidates when and why such semantics are well-behaved. In
this framework the operational rules of a language are represented as a distributive law of a
monad over a comonad in a suitable category. An important example is that of GSOS laws,
viz. natural transformations of the form

ρX : Σ(X × BX) → BΣ⋆X,

for endofunctors Σ, B : C → C determining the syntax and behaviour of the language at hand
and the free (term) monad Σ⋆ generated by Σ. A GSOS law is thought of representing
a set of inductive transition rules that specify how programs are run. For example, the
choice of C = Set and BX = (PfX)L, where Pf is the finite powerset functor and L a set of
transition labels, leads to the well-known GSOS rule format for specifying labelled transition
systems. To every GSOS law ρ one can canonically associate an operational model given
by a coalgebra γ : µΣ → B(µΣ) on the initial algebra µΣ (the object of programs), and
dually a denotational model given by an algebra α : Σ(νB) → νB on the final coalgebra νB

(the object of abstract behaviours). In fact, γ and α respectively extend to an initial and
final ρ-bialgebra. These universal properties entail an important well-behavedness feature:
every language modelled by a GSOS law is compositional, that is, strong bisimilarity on its

© Sergey Goncharov, Stefan Milius, Lutz Schröder, Stelios Tsampas, and Henning Urbat;
licensed under Creative Commons License CC-BY 4.0

10th Conference on Algebra and Coalgebra in Computer Science (CALCO 2023).
Editors: Paolo Baldan and Valeria de Paiva; Article No. 24; pp. 24:1–24:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sergey.goncharov@fau.de
https://orcid.org/0000-0001-6924-8766
mailto:stefan.milius@fau.de
https://orcid.org/0000-0002-2021-1644
mailto:lutz.schroeder@fau.de
https://orcid.org/0000-0002-3146-5906
mailto:stelios.tsampas@fau.de
https://orcid.org/0000-0001-8981-2328
mailto:henning.urbat@fau.de
https://orcid.org/0000-0002-3265-7168
https://doi.org/10.4230/LIPIcs.CALCO.2023.24
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Higher-Order Mathematical Operational Semantics

operational model is a congruence w.r.t. the operations of the language. Compositionality
greatly simplifies reasoning, as it means that the behaviour of a program is determined by
the behaviour of its subprograms.

Higher-Order Abstract GSOS. In the past 25 years the abstract GSOS framework has been
successfully instantiated to a wealth of first-order languages, even fairly complex ones such
as CCS or the π-calculus. However, its application to higher-order languages, including the
λ-calculus, has been a long-standing open problem. The difficulty lies in the phenomenon that
higher-order programs represent both computation and data, which means that the behaviour
of a generic set X of programs should be described by a function space like BX = XX . Since
X occurs both co- and contravariantly, the map X 7→ BX is not functorial, hence abstract
GSOS does not apply.

In recent work [5] we introduced higher-order abstract GSOS, an extension of Turi and
Plotkin’s original framework designed to overcome this issue. The core idea is to replace
the behaviour endofunctor B : C → C by a behaviour bifunctor B : Cop × C → C of mixed
variance, and GSOS laws by higher-order GSOS laws, given by families of morphisms

ρX,Y : Σ(X × B(X, Y)) → B(X, Σ⋆(X + Y))

natural in Y ∈ C and dinatural in X ∈ C. For example, combinatory logics like Curry’s
SKI-calculus can be modelled by a higher-order GSOS law of a polynomial functor Σ over
the behaviour bifunctor B(X, Y) = Y + Y X on C = Set. For the untyped λ-calculus, we take
the presheaf category C = SetF (where F is the category of finite sets), a syntax endofunctor
Σ whose initial algebra is the presheaf of λ-terms, and a bifunctor B modelling β-reductions
and the substitution structure of λ-terms, building on earlier ideas by Fiore et al. [3].

Generalizing the first-order case, every higher-order GSOS law ρ induces an operational
model γ : µΣ → B(µΣ, µΣ), which extends to an initial higher-order ρ-bialgebra. However,
in sharp contrast to the first-order case, a final bialgebra usually fails to exist. Nonetheless,
higher-order GSOS laws admit a compositional semantics: under mild assumptions on C,
Σ and B, strong bisimilarity on the operational model is a congruence. For example, for
the λ-calculus, the operational model extends the transition system on λ-terms given by
β-reductions, and strong coalgebraic bisimilarity amounts to strong applicative bisimilarity.

With these foundations at hand, a number of interesting directions open up. In the
following we outline a few results, insights, and goals of our ongoing research.

Weak Bisimilarity. While the above compositionality result applies to strong bisimilarity,
notions of behavioural equivalence for higher-order languages are typically forms of weak
bisimilarity where computation steps (e.g. β-reductions) are unobservable and only function
applications are deemed relevant. A prime example is Abramsky’s applicative bisimilarity [1]
for the λ-calculus. Proving congruence results for weak bisimilarity is known to be challenging
for first-order languages and even more so for higher-order ones, where tailor-made proof
techniques such as Howe’s method are needed. We have recently established such a result
in the generality of higher-order abstract GSOS [7]: weak (bi-)similarity on the operational
model of a higher-order GSOS law is a congruence provided that its associated weak model
forms a lax higher-order bialgebra. This generalizes a corresponding result for first-order
abstract GSOS [2]. Our theorem holds in all categories C where relations are sufficiently
well-behaved, e.g. in all (co-)complete, well-powered and locally distributive categories. Its
proof is substantially more complex than in the strong case and requires the development
of several new techniques of independent interest, including an abstract categorical version

S. Goncharov, S. Milius, L. Schröder, S. Tsampas, and H. Urbat 24:3

of Howe’s method and the construction of relation liftings of behaviour bifunctors. As an
instance of the theorem we recover, e.g., an important property of the λ-calculus originally
proved by Abramsky [1]: applicative bisimilarity is a congruence, and hence provides a sound
and complete coinductive proof method for contextual equivalence of λ-terms.

A current aim is generalizing the above results from bisimilarity to behavioural distances,
e.g. for probabilistic λ-calculi [4], using liftings of bifunctors to quantale-valued relations.

Logical Relations. Besides Howe’s method, another important operational technique for
reasoning about higher-order languages is given by logical relations; for instance, they yield an
efficient proof of strong normalization for the simply typed λ-calculus. The idea is as follows:
on the set µΣ of programs one forms a predicate (or multi-ary relation) P that implies the
property of interest, e.g. normalization, and is compatible with function application, that
is, if a program computes a function f : µΣ → µΣ, then f respects P . One then shows
by structural induction that every program lies in P , whence P = µΣ. In practice logical
relations are usually invented ad hoc, but their generic flavour allows for a more systematic
approach based on higher-order abstract GSOS. In fact, the “f respects P ” assertion may be
neatly explained using bifunctorial relation liftings, and the generic parts of the structural
induction come for free for languages modelled by a higher-order GSOS law. We expect that
this approach can greatly reduce the proof obligations for arguments using logical relations.

References
1 S. Abramsky. The lazy λ-calculus. In Research topics in Functional Programming, pages

65–117. Addison Wesley, 1990.
2 Filippo Bonchi, Daniela Petrişan, Damien Pous, and Jurriaan Rot. Lax bialgebras and up-to

techniques for weak bisimulations. In CONCUR’15, pages 240–253, 2015.
3 Marcelo P. Fiore, Gordon D. Plotkin, and Daniele Turi. Abstract syntax and variable binding.

In LICS’99, pages 193–202. IEEE, 1999.
4 Francesco Gavazzo. Quantitative behavioural reasoning for higher-order effectful programs:

Applicative distances. In LICS’18, pages 452–461. ACM, 2018.
5 Sergey Goncharov, Stefan Milius, Lutz Schröder, Stelios Tsampas, and Henning Urbat. Towards

a higher-order mathematical operational semantics. In POPL’23, volume 7, pages 632–658.
ACM, 2023. arXiv:2210.13387.

6 Daniele Turi and Gordon D. Plotkin. Towards a mathematical operational semantics. In
LICS’97, pages 280–291. IEEE, 1997.

7 Henning Urbat, Stelios Tsampas, Sergey Goncharov, Stefan Milius, and Lutz Schröder. Weak
similarity in higher-order mathematical operational semantics. In LICS’23. IEEE, 2023.
arXiv:2302.08200.

CALCO 2023

https://arxiv.org/abs/2210.13387
https://arxiv.org/abs/2302.08200

	p000-Frontmatter
	Preface
	Conference Organization

	p001-Harper
	p002-Bruni
	1 Extended abstract

	p003-Pimentel
	1 Introduction
	2 Ecumenical systems
	3 The quest for purity
	4 Ecumenical modalities
	4.1 A nested system for ecumenical modal logic

	5 What is next?

	p004-Siek
	p005-Mahboubi
	p006-Turkenburg
	1 Introduction
	2 Preservation of coinductive predicates in lattices
	2.1 Example: Closed and Convex Relations
	2.2 Example: Expressivity

	3 Fibrations and Bisimulations
	3.1 Subobject and Relation fibrations
	3.2 Predicate and Relation liftings
	3.3 Invariants and Coinductive Predicates

	4 Lifting adjunctions in a fibration
	5 Comparing coinductive predicates along steps
	5.1 Comparing coinductive predicates
	5.1.1 Preservation via backward steps
	5.1.2 Preservation via forward steps

	6 Examples
	6.1 Lax liftings
	6.2 Expressivity
	6.3 Apartness
	6.4 Completeness

	7 Related and future work

	p007-Konig
	1 Introduction
	2 Basic Notation
	3 General Setting and Example
	4 Background: Distributive Laws and Bialgebras
	5 From Local Components to Compound Systems Coalgebraically
	5.1 The Theoretical Setting
	5.2 Interaction Laws and Induced Coalgebra
	5.3 Compositionality

	6 Related Work
	7 Future Work

	p008-Tarlecki
	1 Introduction
	2 Institutions
	2.1 Notational preliminaries
	2.2 Institutions
	2.3 Extending institutions by models and sentences
	2.4 Institution morphisms

	3 Interpolation
	3.1 Classical interpolation
	3.2 Interpolation in an institution
	3.3 Interpolants may be stable

	4 Spoiling an interpolant by new models
	5 Spoiling interpolation by new models
	6 Spoiling interpolation by new sentences
	7 Spoiling interpolation by new models and sentences
	8 Final remarks

	p009-Milosavljevic
	1 Introduction
	2 Preliminaries
	3 The Combinatorial Interpretation
	3.1 Weak decomposition
	3.2 Factorisation into levels

	4 Characterisation of String Diagram Rewriting
	5 Conclusions and Future Work

	p010-Adamek
	1 Introduction
	2 Strongly Finitary Functors
	3 Varieties of Quantitative Algebras
	4 Varieties of Complete Quantitative Algebras
	5 Conclusions and Open Problems

	p011-Zetzsche
	1 Introduction
	2 Preliminaries
	3 Step 1: Closure
	3.1 Factorisation Systems and Subobjects
	3.2 Factorising Algebra Homomorphisms
	3.3 The Subobject Closure Functor
	3.4 The Subobject Closure Monad
	3.5 Closing an Image

	4 Step 2: Generators and Bases
	4.1 Categorification
	4.2 Products
	4.3 Kleisli Representation Theory
	4.4 Bases for Bialgebras
	4.5 Bases as Coalgebras
	4.6 Signatures, Equations, and Finitary Monads
	4.7 Finitely Generated Objects

	5 Related Work
	6 Discussion and Future Work

	p012-Rot
	1 Introduction
	2 Preliminaries
	3 A Lax Coalgebra Morphism Lacks Knowledge
	4 Bisimulation Notions are Liftings
	5 Uncertain Bisimilarity
	5.1 Properties
	5.2 Characterization via Simulations

	6 Conclusions and Future Work

	p013-Stein
	1 Introduction
	1.1 Contribution
	1.2 Outline

	2 Extended Gaussian Distributions
	2.1 Transformations of Extended Gaussians

	3 A Category of Extended Gaussian maps
	3.1 Decorated Linear Maps and the Category {Gauss}
	3.2 Decorated Cospans and Linear Relations

	4 A Hypergraph Category of Gaussian Relations
	4.1 Conditioning
	4.2 Gaussian Relations
	4.3 Decorated cospans as generalized statistical models

	5 Related Work and Applications
	5.1 Open Linear Systems and sigma-algebras
	5.2 Variance-Precision Duality
	5.3 Statistical Learning and Probabilistic Programming

	6 Appendix
	6.1 Glossary: Category Theory
	6.2 Noisy measurement example
	6.3 Glossary: Linear Algebra
	6.4 Annihilators
	6.5 Conditionals

	p014-Schmid
	1 Introduction
	2 Labelled Transition Systems and Trace Semantics
	3 Fractals from Labelled Transition Systems
	4 Fractal Equivalence is Traced
	5 A Calculus of Subfractal Measures
	6 A Question about Regular Subfractals
	7 Related Work
	8 Conclusion

	p015-North
	1 Introduction
	2 Illustrative example: id + 1
	2.1 Preliminaries
	2.2 Partial homomorphisms
	2.3 Composing partial homomorphisms
	2.4 The convolution algebra
	2.5 Generalizing initial objects

	3 General theory
	3.1 Measuring coalgebras
	3.2 Local presentability, accessibility, and the measuring tensor
	3.3 Measurings as partial homomorphisms
	3.4 Measuring via the convolution algebra
	3.5 Measuring as an enrichment
	3.6 General C-initial objects

	4 Conclusions & Vista

	p016-Fritz
	1 Introduction
	2 Background
	2.1 GS-monoidal and Markov categories

	3 Weakly Markov categories and weakly affine monads
	3.1 The monoid of effects
	3.2 Main definitions
	3.3 Examples of weakly affine monads

	4 Conditional independence in weakly Markov categories
	4.1 Main result

	5 Conclusions and future work

	p017-Kurz
	1 Introduction
	2 Preliminaries
	2.1 Abstract and Concrete Coalgebraic Logics
	2.2 Primal Algebras

	3 Lifting Abstract Coalgebraic Logics
	4 Lifting Presentations of Functors
	5 Conclusion and Open Questions

	p018-Basold
	1 Introduction
	2 Preliminaries
	2.1 Domain Theory of Chains
	2.2 Assumptions

	3 Causality
	3.1 Causality and Metric Maps

	4 Composition and Recursion
	5 Applications
	5.1 Linear Stream Functions
	5.2 Probabilistic Computations
	5.3 Remark

	6 Summary, Related Work and Future Work

	p019-Dubut
	1 Introduction
	2 Allegory of Relations
	2.1 Subobjects and Factorisations
	2.2 Relations in a Regular Category
	2.3 Maps in Allegories

	3 Aczel-Mendler Bisimulations, in Regular Categories
	3.1 Systems as Coalgebras
	3.2 Aczel-Mendler Bisimulations of Coalgebras
	3.3 Picking vs. Collecting: AM-Bisimulations for Regular Categories

	4 The Case of Toposes
	4.1 Toposes, as Relation Classifiers
	4.2 The Power-Object Monad
	4.3 AM-Bisimulations in a Topos

	5 From Bisimulations to Simulations
	5.1 Order-Structure on Functors, and Lax Coalgebra Morphisms
	5.2 AM-Simulations
	5.3 Extending the Order-Structure
	5.4 Toposal AM-Simulations

	6 Examples
	6.1 Vietoris Bisimulations
	6.2 Toposes for Name-Passing
	6.3 Weighted Linear Systems

	7 Conclusion

	p020-Boccali
	1 Introduction
	2 Automata and -automata
	3 Completeness and behaviour in and
	4 Conclusion and Future Works
	A Agda formalization

	p021-Adamek
	1 Introduction
	2 Preliminaries
	3 Kripke Polynomial Functors
	4 Vietoris Polynomial Functors
	5 Hausdorff Polynomial Functors
	6 Variation: the Closed Subset Functor on Met
	7 Summary
	A Trees and the Limit of the Terminal-Coalgebra Chain for P_f

	p022-Liittschwager
	1 Introduction
	2 Coalgebraic Semantics of CRDTs
	3 Emulation of CRDTs
	4 Future Work

	p023-Grodin
	1 Introduction
	2 Cofree Comonads for Amortized Abstract Data Types
	3 Coinductive Amortized Analysis
	4 Relation to Inductive Amortized Analysis
	5 Conclusion

	p024-Goncharov

