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Preface

This volume contains the papers presented at the 26th International Conference on Approx-
imation Algorithms for Combinatorial Optimization Problems (APPROX 2023) and the
27th International Conference on Randomization and Computation (RANDOM 2023), which
were organized at Georgia Institute of Technology, Atlanta, GA, USA, September 11-13,
2023. APPROX focuses on algorithmic and complexity issues surrounding the development
of efficient approximate solutions to computationally-difficult problems, and the 2023 edition
was the 26th in the series. RANDOM is concerned with applications of randomness to
computational and combinatorial problems, and the 2023 edition was the 27th in the series.
Prior to 2003, APPROX took place in Aalborg (1998), Berkeley (1999), Saarbruücken (2000),
Berkeley (2001), and Rome (2002), while RANDOM took place in Bologna (1997), Barcelona
(1998), Berkeley (1999), Geneva (2000), Berkeley (2001), and Harvard (2002). Since 2003,
APPROX and RANDOM have been co-located, taking place in Princeton (2003), Cambridge
(2004), Berkeley (2005), Barcelona (2006), Princeton (2007), Boston (2008), Berkeley (2009),
Barcelona (2010), Princeton (2011), Boston (2012), Berkeley (2013), Barcelona (2014), Prin-
ceton (2015), Paris (2016), Berkeley (2017), Princeton (2018), and Boston (2019). In 2020,
2021, and 2022, the conferences were held online. We were delighted to return to an in-person
event in 2023!

Topics of interest for APPROX include approximation algorithms, hardness of approxim-
ation, small space, sub-linear time and streaming algorithms, online algorithms, approaches
that go beyond worst case analysis, distributed and parallel approximation, embeddings and
metric-space methods, mathematical-programming methods, spectral methods, combinatorial
optimization, algorithmic game theory, mechanism design and economics, computational-
geometry problems, approximate learning. Those at RANDOM include the design and
analysis of randomized algorithms, randomized complexity theory, pseudorandomness and
derandomization, random combinatorial structures, random walks/Markov chains, expander
graphs and randomness extractors, probabilistic proof systems, random projections and
embeddings, error-correcting codes, average-case analysis, smoothed analysis, property test-
ing, computational learning theory, and the role of (pseudo)randomness in other areas of
computer science such as cryptography, data privacy, and quantum information.

The volume contains 28 contributed papers selected by the APPROX Program Committee
out of 62 submissions, and 38 contributed papers selected by the RANDOM Program
Committee out of 67 submissions. We would like to thank all the authors who submitted
papers, the members of the program committees, and the external reviewers. We are grateful
for the guidance of the steering committees: Jarosław Byrka, Samir Khuller, Monaldo
Mastrolili, Laura Sanità, Chaitanya Swamy, László Végh, Virginia Vassilevska Williams, and
David P. Williamson for APPROX, and Oded Goldreich, Raghu Meka, Cris Moore, Anup
Rao, Omer Reingold, Dana Ron, Ronitt Rubinfeld, Amit Sahai, Ronen Shaltiel, Alistair
Sinclair, and Paul Spirakis for RANDOM.
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Abstract
We consider the classic 1-center problem: Given a set P of n points in a metric space find the point
in P that minimizes the maximum distance to the other points of P . We study the complexity of
this problem in d-dimensional ℓp-metrics and in edit and Ulam metrics over strings of length d. Our
results for the 1-center problem may be classified based on d as follows.

Small d. Assuming the hitting set conjecture (HSC), we show that when d = ω(log n), no
subquadratic algorithm can solve the 1-center problem in any of the ℓp-metrics, or in the edit or
Ulam metrics.
Large d. When d = Ω(n), we extend our conditional lower bound to rule out subquartic
algorithms for the 1-center problem in edit metric (assuming Quantified SETH). On the other
hand, we give a (1 + ϵ)-approximation for 1-center in the Ulam metric with running time
Õε(nd + n2√

d).

We also strengthen some of the above lower bounds by allowing approximation algorithms or
by reducing the dimension d, but only against a weaker class of algorithms which list all requisite
solutions. Moreover, we extend one of our hardness results to rule out subquartic algorithms for the
well-studied 1-median problem in the edit metric, where given a set of n strings each of length n,
the goal is to find a string in the set that minimizes the sum of the edit distances to the rest of the
strings in the set.
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1 Introduction

Given a set of points P in a metric space, finding the point that “best” represents P

is a fundamental question in both discrete and continuous optimization. Motivated by
applications ranging from machine learning to computational biology, this question has
naturally received a large amount of attention through the years.

The objective can be phrased in various ways: In the median problem, the goal is to find
the point p that minimizes the sum of the distances to the points in P ; in the mean problem,
it is the point that minimizes the sum of distances squared; while in the center problem,
it is the point p that minimizes the maximum distance from a point of P to p. When the
metric is the ℓ2 (Euclidean) metric, the question of computing the geometric median dates
back to the 17th century, when Torricelli was looking for a solution for the case |P | = 3, and
to whom Fermat described an explicit solution. More recently, the question of computing
the center has also become central in applications arising, e.g., in machine learning [11], to
compute the minimum enclosing ball of a set of points, or in computational biology, to find a
good representative of a set of strings (representing molecular sequences) (e.g., [30]). This
fundamental computational geometry problem which has applications to various domains, is
the problem we consider in this paper.

Formally, in the (often referred to as the discrete) 1-center problem, the input is a set of
points P in a metric space, and the goal is to find a point of P that minimizes the maximum
distance to the points in P . When doing data summarization or compression, the discrete
version often makes more sense: Given a set of, say n strings, taking the most representative
string among the input strings, or at least in the set of grammatically (or semantically)
meaningful strings is much more insightful than taking an arbitrary string as representative.
This also applies more globally, outputting a data element that has been observed provides a
better summary than a data element that has been forged by the algorithm and that may
be unlikely to exist in the real-world. From a computational complexity standpoint, this
problem can be easily solved in time O(|P |2f(d)) where f(d) is the time required to compute
the distance of two points. This can be done by enumerating all possible choices for the
center; and for each choice computing the distance from each point in P ; then outputting
the best center. However, is this naïve algorithm the best we can do?

The computational geometry community has done extensive work on the above question
since the 80s. For metrics such as ℓ1 or ℓ2, computing the center has received a large deal of
attention. When the dimension is assumed to be a constant, there exist barely subquadratic
algorithms for the ℓ2 metric, while there exists near-linear time algorithms for the ℓ1 case
(for a discussion on this we refer the reader to [35]). For the case of string metrics, such as
Ulam or Edit distance metrics, nothing better than the O(|P |2f(d)) (where d is the string
length) “brute-force” algorithm is known.

Understanding how fast the 1-center problem can be solved in these different metrics
is not only interesting from a computational complexity point of view, but also from the
perspective of an improved understanding of the geometry of these metrics. For example, is
the geometry of the ℓ1 metric “more amenable” for designing algorithms than the ℓ2 one? Is
the Edit distance metric hard for such problems? We also believe that understanding the
geometry of the Ulam and Edit distance metrics, which one may interpret as generalization
of the Hamming metric, is not only a very basic computational geometry question, but also
would likely lead to better algorithms for these widely-studied problems. We thus ask:

How fast can the 1-center problem be solved or approximated in
ℓp-metrics and stringology metrics such as Ulam or Edit distance?
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1.1 Our Results
In this paper, we take a step towards answering the above question by providing lower and
upper bounds on solving the 1-center problem in ℓp, Ulam, and Edit distance metrics.

Assuming the Hitting Set Conjecture (HSC), we provide a strong conditional lower bound
for the 1-center problem, in a pleathora of metrics.

▶ Theorem 1 (see Theorem 9, Corollary 12, and Corollary 14 for formal statement). Assuming
HSC, no algorithm running in time n2−o(1) can given as input a set of points/strings P
of dimension/length d solve the discrete 1-center problem in Edit/Ulam/ℓp metric, where
|P | = n, d = Ω̃(log n), and p ∈ R≥1 ∪ {0}.

Moreover, by assuming a stronger complexity theoretic assumption we can strengthen this
lower bound in the case when d = poly(n) for the Edit metric. For the sake of presentation,
we state our result below when d = n.

▶ Theorem 2 (see Theorem 15). Assuming Quantified SETH, no algorithm running in time
n4−o(1) can given as input a set of n strings of length d := n each, solve the discrete 1-center
problem in Edit metric.

It’s worth emphasizing that the above lower bound for the edit metric is a rare quartic
lower bound in fine-grained complexity. It’s true that, conceptually, it’s not unexpected
because there’s a quadratic hardness from the 1-center problem and a quadratic hardness
from edit distance, so we would expect the combined problem to be quartic. But we find it
noteworthy that this actually works on the technical level because complexity theory is full
of notorious examples where such “semi-stitching techniques” completely fail (for example
KRW games [20]).

Note that we cannot expect such lower bounds for the 1-center problem in ℓp-metrics
when d = n, as one can compute all pairwise distances within a point-set in subcubic time
using fast matrix multiplication.

Next, we complement the lower bounds by the following subcubic approximation scheme
for the 1-center in the Ulam metric.

▶ Theorem 3. There exists a 1 + ϵ approximation algorithm for the 1-center under Ulam
metric that runs in time Õϵ(nd+ n2

√
d).

It is worth emphasizing here that for the (discrete) 1-center problem in any metric space,
an arbitrary point in the input is a 2-approximate solution. Also note that exact 1-center in
Ulam metric can be solved in O(n2d) time. It remains an open problem to show a conditional
lower bound of n3−o(1) for computing the 1-center in the Ulam metric for n strings each of
length n.

Finally, we strengthen some of the lower bounds above, but against a weaker class of
algorithms, specifically, against algorithms which list all requisite solutions. Using the ideas
in [35, 10], assuming HSC, we rule out subquadratic algorithms that can list all optimal
solutions to the 1-center problem in the Euclidean metric even for very low d = o(log n)
dimensions. At a high level, this result contrasts with both ℓ1 and ℓ∞ metrics where the
1-center in o(log n) dimensions can be solved in n1+o(1) time.

▶ Theorem 4 (see Theorem 20 for formal statement). Assuming HSC, there is no n2−o(1)-time
algorithm listing all optimal solutions to the 1-center problem in 7log∗ n dimensions in the
Euclidean metric.
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In the same spirit as above, by applying the distributed PCP framework [2, 31] we extend
the lower bound in Theorem 1 against approximation algorithms which list all approximately
optimal 1-centers.

▶ Theorem 5 (see Theorem 22 for formal statement). Assuming HSC, there is some δ > 0, such
that no n2−o(1)-time algorithm can given as input a set of points/strings P of dimension/length
d, list all (1 + δ)-approximate solutions to the 1-center problem in the Edit/Ulam/ℓp metric,
where |P | = n, d = Ω̃(log n), and p ∈ R≥1 ∪ {0}.

One may compute all pairwise distances in Õ(n2) time for the inputs in Theorems 4 and 5,
and then obtain the list of all optimal and approximately optimal solutions efficiently. Our
theorems above say that one cannot do much better. It remains an intriguing open problem
to extend the above two conditional lower bounds but against standard decision algorithms.
We note that this involves breaking some technical barriers and in particular, developing
techniques that go beyond the dimensionality reduction techniques of [35, 10] and the
distributed PCP framework [2, 31] respectively.

We close this subsection by a short discussion about the Discrete 1-median problem in
ℓp-metrics and string metrics. For the case when d = n, we can prove a result similar to
Theorem 2 (see Remark 18). On the other hand for ℓp-metrics, one cannot prove a result
similar to Theorem 1 for the 1-median problem, because the 1-median problem in Hamming
and ℓ1-metrics admits a near linear time algorithm and for the Euclidean metric, it is even
unclear if the problem is in NP! (see discussion in [18].) Also note that by subsampling
coordinates, we can approximate 1-median in all ℓp-metrics to (1 + ε) factor, for any ε > 0
in near linear time.

1.2 Related Work
We now review the related work on the 1-center problem, and the related 1-median problem.
Both problems may be considered in the discrete or continuous settings. The discrete1 version
asks the center or median to be picked from an input set of points, while in the continuous
version, the “center” is an arbitrary element of the metric. See [13] for a discussion on these
two settings.

Below, we mainly discuss 1-center problem in stringology metrics as the literature on
related work in ℓp metrics is too vast to survey (but the interested reader may look at
[12, 25, 23, 16] and the references therein).

Metrics arising in stringology

We now review results on the 1-center problem in metric spaces arising from stringology
applications. Let Σ be an alphabet, often the binary alphabet {0, 1}. Consider the set of
strings Σ∗ = ΣL of length L, with a metric distance D : Σ∗ × Σ∗ 7→ R. Researchers have
mainly considered the following metrics defined over this space:

Edit distance (ED or Levenshtein distance): The minimum number of single-character
insertions, deletions, and substitutions required to change one string to the other.
Hamming distance or ℓ1 over binary alphabets (HD): A special case of edit distance,
where only substitutions are allowed.
Ulam distance (UD): Same as edit distance with the restriction that the input strings
may not contain any character more than once.

1 Sometimes called the medoid problem in contrast to median, generalized median, or Steiner string.
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For most of the above metrics, one need to incorporate into the running times obtained
for simpler metric such as ℓ1 or ℓ2 the time it takes to compute the exact or approximate
distance between any two points of the space. Naumovitz et al. [28] show how to approximate
UD within factor 1 + ε in time Õ(d/η +

√
d) if the distance is η. This result is tight up to

log factors.
Turning back to the 1-center and 1-median problem, note the discrete versions can be

solved exactly via O(n2) distance computations, giving trivial Õ(n2d)-time algorithms for
the case of UD. In Section 4, we show that this can be improved to Õ(n2

√
d) for 1 + ε

approximation if we combine two algorithms [26, 28] for computations of UD. Note that a
2-approximation is trivial, as we can output any string as the hub in the case of 1-center or
a random string in the case of 1-median.

Recently [9] made progress on obtaining better approximation algorithms for the con-
tinuous 1-Median problem in UD, where the median can be picked from anywhere in space,
by presenting the first polynomial-time constant-factor approximation algorithm with ap-
proximation guarantee smaller than 2 as well as an exact algorithm for the case where the
input contains three strings. They observe that if the average distance to median is Ω(d),
picking the best string as the median already gives an approximation better than two. Now
the problem is reduced to the above case if the total cost is mostly due to a small subset of
characters. Otherwise, they argue that one can deduce the relative ordering of a good portion
of the optimal median by looking at pairs of characters whose relative order is consistent in
most input strings.

Note that in the continuous case, for constant d or constant n, the median and center
problems are both solvable in polynomial time for string problems. De la Higuera and
Casacuberta [15] prove that median and center are both NP-hard. Nicolas and Rivals [29] lift
the restrictions and show that median and center are both NP-hard and W [1]-hard (when
parameterized by n, the number of strings), even for binary alphabets. Prior to these works,
NP-hardness of median was only known for ED when the substitutions have specific costs
for each pair of characters [33]. Li et al. [24, 25] give a PTAS for the HD 1-center problem,2
augmenting the LP-based PTAS for super-logarithmic d [5]. The HD 1-center problem is
known to be NP-hard [16, 23].3 Previously the best polynomial-time approximation ratio was
4
3 + ε in general [23, 19], with an exact algorithm known for constant d (optimal value) [34].

1.3 Organization of the Paper
In Section 2, we provide the formal definition of 1-center problem and the various hypotheses
used in the paper. In Section 3, we provide conditional lower bounds against exact algorithms
that compute 1-center when d = ω(log n). Next, in Section 4, we provide a subcubic
approximation algorithm for 1-center in Ulam metric when d = n. Finally, in Section 5, we
provide some hardness of approximation results (Theorem 5).

2 Preliminaries

▶ Definition 6 (Discrete 1-center). Let (X,∆) be a metric space. Given a set of points
P ⊆ X in the metric space, find x in P which minimizes the maximum distance to every
other point.

2 This is the closest string problem. They also give a PTAS for the closest substring problem, which
assumes that the cost of deletions from the input strings (∞ for HD) is zero.

3 Note that median is solvable exactly for HD.
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Perhaps the most popular assumption for proving conditional lower bounds for polynomial
time problems is the Orthogonal Vectors Hypothesis (OVH) that is implied by the Strong
Exponential Time Hypothesis (SETH). Unfortunately, the logical structure of these problems
makes reductions to our 1-center problems difficult. This was observed already by Abboud,
Vassilevska Williams, and Wang [3] in the context of 1-center in graphs (known as the Graph
Radius problem) and has lead them to introduce the hitting set conjecture (HSC): a stronger
variant of OVH that facilitates reductions to problems with different structure. A formal
barrier for establishing HSC (and similarly also any hardness results for 1-center) under
SETH was presented by Carmosino et al. [8].

▶ Definition 7 (HSC). For every ε > 0 there exists c > 1 such that no algorithm running
in time n2−ε can, given as input two collections of n-many subsets A and B of the universe
U := [c log n], determine if there exists S in A which has non-empty intersection with every
subset in B.

The difference between HSC and OVH is in the quantifiers: ∃∀ versus ∃∃. Studying
the polyline simplification problem, Bringmann and Chaudhury [6] proposed a further
strengthening with more quantifiers. Just like OVH is implied by SETH, an assumption
about k-SAT, so too can HSC and its generalizations with more quantifiers be based on
the hardness of a quantified version of k-SAT; an assumption called Quantified-SETH.
Interestingly, the previous papers using Quantified-SETH [6, 1] only needed its special case
where the quantifier structure is ∀∃; whereas in this paper we benefit from a ∃∀∃ structure
that has one more alternation.

The specific hardness assumption (implied by Quantified SETH) that we need is the
following; we refer to [6, 1] for further discussion on Quantified-SETH and to [3, 36] for
further discussion on HSC and on the need for assumptions with other quantifier structures.

▶ Definition 8 (∃∀∃∃OVH). For every ε > 0 there exists c > 1 such that no algorithm
running in time n4−ε can, given as input four collections of n-many subsets A,B, C, and D
of the universe U := [c log n], determine if there exists SA in A such that for all SB in B
there exist SC ∈ C and SD ∈ D such that the intersection SA ∩ SB ∩ SC ∩ SD = ∅ is empty.

3 Exact Lower Bounds for 1-center

In this section, we prove conditional lower bounds for the 1-center problem. We start with
some high-level remarks about the reductions and our contributions.

Previous work (for example [31, 14]) has already designed reductions from SETH and
OVH to closest pair kinds of questions for the metrics we consider, and our work can be
viewed as lifting these results to the 1-center question. As discussed in Section 2 this requires
a new starting assumption (either Quantified SETH or the Hitting Set Conjecture) that has
a different structure. Thus, technically, the main contribution is to adapt the gadgetry of
previous work into new reductions with a different structure. In some cases, fundamental
difficulties arise and we can only resolve them by requiring that the algorithm lists all
solutions.

In all our reductions, we first reduce to the Discrete 1-center with Facilities, where given
a set of clients C ⊆ X and a set of facilities F ⊆ X in the metric space, the goal is to
find x in F which minimizes the maximum distance to every point in C. We then reduce
a hard instance (F,C) of the Discrete 1-center with Facilities problem to an instance P
of the standard Discrete 1-center problem (without facilities) by adding a few additional
coordinates to points in F ∪ C and then introducing a new point/string s such that it is far
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from every point in C (in comparison to its distance from the points/strings in F ). Thus we
ensured that the 1-center of P := F ∪ C ∪ {s} must be from F . Nevertheless, for the sake of
compactness, this two step reduction in the proofs of this section is sometimes written as a
one step reduction.

This section is organized as follows. In Section 3.1, we show the conditional subquadratic
time lower bounds for 1-center in various metrics (Theorem 1). Next, in Section 3.2, we show
the conditional subquartic time lower bound for 1-center in edit metric (also Theorem 2)
and explain how to adapt it for 1-median. Finally, in Section 3.3, we show that there are no
subquadratic listing algorithms for Euclidean 1-center even in low dimensions (Theorem 4).

3.1 Subquadratic Lower Bounds for 1-center when d = ω(log n) in
String and ℓp-metrics

In this subsection, we show that subquadratic time algorithms for 1-center do not exist in
ℓp-metrics, Ulam metic, and edit metric, when d = ω(log n).

▶ Theorem 9 (Subquadratic Hardness of 1-center in ℓp-metrics). Let p ∈ R≥1∪{0}. Assuming
HSC, for every ε > 0, there exists c > 1 such that no algorithm running in time n2−ε can,
given as input a point-set P ⊆ {0, 1}d, solve the discrete 1-center problem in ℓp-metric, where
|P | = n and d = c log n.

Proof. Let (A := (S1, . . . , Sn),B := (T1, . . . , Tn), U) be an instance arising from HSC. We
construct a point-set P ⊆ {0, 1}d where |P | = 2n+ 1 and d = 5 · |U |+ 2. We build the two
maps τA : A → {0, 1}d, τB : B → {0, 1}d and a special point s ∈ {0, 1}d and the point-set P
is then simply defined to be the union of {s} and the images (range) of τA and τB, i.e.,

P := {τA(S) | S ∈ A} ∪ {τB(T ) | T ∈ B} ∪ {s}.

Let U := {u1, . . . , um}. We define our special point s as follows:

∀i ∈ [5m+ 2], si :=
{

0 if 1 ≤ i ≤ 3m
1 if 3m+ 1 ≤ i ≤ 5m+ 2

For any S ∈ A we define τA(S) as follows:

∀i ∈ [5m+ 2], τA(S)i :=



1 if ui ∈ S and 1 ≤ i ≤ m
0 if ui /∈ S and 1 ≤ i ≤ m
0 if ui−m ∈ S and m+ 1 ≤ i ≤ 2m
1 if ui−m /∈ S and m+ 1 ≤ i ≤ 2m
0 if 2m+ 1 ≤ i ≤ 4m+ 1
1 if 4m+ 2 ≤ i ≤ 5m+ 2

For any T ∈ B we define τB(T ) as follows:

∀i ∈ [5m+ 2], τB(T )i :=



1 if ui ∈ T and 1 ≤ i ≤ m
0 if ui /∈ T and 1 ≤ i ≤ m
0 if m+ 1 ≤ i ≤ 2m
0 if ui−2m ∈ T and 2m+ 1 ≤ i ≤ 3m
1 if ui−2m /∈ T and 2m+ 1 ≤ i ≤ 3m
0 if 3m+ 1 ≤ i ≤ 5m+ 2
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1:8 On Complexity of 1-Center in Various Metrics

Notice that for any S, S′ in A and T in B, we have

∥τA(S)− τB(T )∥p = (|S|+ |T | − 2 · |S ∩ T |+m− |S|+m− |T |+m+ 1)1/p

= (3m+ 1− 2 · |S ∩ T |)1/p
.

∥τA(S)− τA(S′)∥p ≤ (2m)1/p
.

∥τA(S)− s∥p = (2m+ 1)1/p
.

∥τB(T )− s∥p = (3m+ 2)1/p
.

Suppose there exists S in A such that it intersects with every subset T in B then τA(S)
has distance strictly less than (3m+ 1)1/p with τB(T ) for every T in B. Additionally, τA(S)
has distance at most (2m)1/p with τA(S′) for any S′ ∈ A and distance (2m+ 1)1/p with s.
Therefore, τA(S) is at distance at most (3m)1/p from every point in P .

On the other hand, if for every S in A there exists T in B such that S and T are disjoint,
then we show that for any point x in P there is a point y in P such that ∥x−y∥p ≥ (3m+1)1/p.
Suppose x := τB(T ) for some T ∈ B then we have x is at distance (3m+2)1/p from s. Similarly
if x := s then it is at distance (3m+2)1/p from every τB(T ) for all T ∈ B. Finally, if x := τA(S)
for some S ∈ A then from the soundness assumption we have that there exists T in B such
that S and T are disjoint. Thus, x is at distance (3m+ 1)1/p from τB(T ). ◀

▶ Remark 10. For the ℓ∞-metric, we can solve Discrete 1-center problem in O(nd2) time as
follows. Given input point-set P , for every coordinate i ∈ [d], determine a farthest pair of
points (ai, bi) in the point-set when restricted to that coordinate. Note that discrete 1-center
cost of P is equal to the cost of the discrete 1-center of the point-set {a1, ..., ad, b1, ...., bd}
when the center can be picked anywhere in P . Thus we can solve discrete 1-center in the
ℓ∞-metric in O(nd2) time, which is near linear time as long as d = no(1).

The quadratic lower bound for 1-center in Ulam metric follows from the below lemma.

▶ Lemma 11. Let Πd denote the set of all permutations over [d]. For every d ∈ N, there is
a function η : {0, 1}d → Π2d, such that for all a, b ∈ {0, 1}d the following holds:

ed(η(a), η(b)) = 2 · ∥a− b∥0.

Moreover, for any a ∈ {0, 1}d, η(a) can be computed in O(d) time.

Proof. Let a ∈ {0, 1}d. We define η(a) as follows:

∀i ∈ [2d], η(a)[i] =


i if i = 2k − 1 and ak = 0 for some k ∈ N
i if i = 2k and ak = 0 for some k ∈ N
i+ 1 if i = 2k − 1 and ak = 1 for some k ∈ N
i− 1 if i = 2k and ak = 1 for some k ∈ N

Fix some k ∈ [d] and a, b ∈ {0, 1}d. If ak = bk then notice that η(a)[2k] = η(b)[2k] and
η(a)[2k−1] = η(b)[2k−1]. If ak ̸= bk then η(a)[2k] = η(b)[2k−1] and η(a)[2k−1] = η(b)[2k].
Since the characters do not repeat, we have that the optimal distance is obtained by swapping
which amounts to two edit operations. ◀

▶ Corollary 12 (Subquadratic Hardness of 1-center in Ulam metric). Assuming HSC, for every
ε > 0 there exists c > 1 such that no algorithm running in time n2−ε can given as input a set
P of n many permutations of [d], solve the discrete 1-center problem in Ulam metric, where
|P | = n and d = c log n.
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The quadratic lower bound for 1-center in Edit metric follows from the below lemma.

▶ Lemma 13. For every d ∈ N, there is a function η : {0, 1}d → {0, 1}d′ , such that for all
a, b ∈ {0, 1}d the following holds:

ed(η(a), η(b)) = ∥a− b∥0.

Moreover, for any a ∈ {0, 1}d, η(a) can be computed in O(d log d) time.

Proof. Let l1, l2, . . . , ld be d strings of length 10 log d each made by realizing 10 log d 0/1 bits
uniformly at random. It follows that with high probability, the hamming distance as well as
the edit distance of each pair li, lj (i ̸= j) is Ω(log d) [22]. For a string a, we define η(a) in
the following way: we make a string of size d(10 log d+ 1) which consists of d consecutive
blocks. Each block i starts with ai and is followed by li. By putting all the blocks next to
each other we obtain a string of size d(10 log d+ 1) which we denote by η(a). We prove in
the following that ed(η(a), η(b)) = ∥a− b∥0 holds for each pair of strings a and b.

ed(η(a), η(b)) ≤ ∥a− b∥0 immediately follows from the fact that by only toggling the first
characters of some block of η(a) we can turn η(a) into η(b) and this transformation only costs
∥a− b∥0. Note that we only toggle the first characters of the blocks whose corresponding
characters in a and b are not the same.

Now, assume for the sake of contradiction that ed(η(a), η(b)) < ∥a − b∥0 holds. This
implies that for at least d− ∥a− b∥0 + 1 many blocks of a, the transformation cost is 0. In
other words, for each of these blocks, there is a substring of length 10 log d+ 1 in η(b) which
is completely the same as that block. Since the blocks are generated randomly, this can only
happen if for some i, the i’th block of η(a) is transformed into the i’th block of η(b) and
ai = bi. Thus, this implies that for at least d − ∥a − b∥0 + 1 different values of i we have
ai = bi which is contradiction. ◀

▶ Corollary 14 (Subquadratic Hardness of 1-center in Edit metric). Assuming HSC, for every
ε > 0 there exists c > 1 such that no algorithm running in time n2−ε can given as input a
point-set P ⊆ {0, 1}d solve the discrete 1-center problem in edit metric, where |P | = n and
d = c log n log log n.

Next we prove much higher lower bounds for the Edit metric when d is larger.

3.2 Subquartic Lower Bound for 1-center when d = n in Edit metric
We now present our lower bound under Quantified SETH which offers a conceptual novelty
since as discussed in Section 2 it is the first time (to our knowledge) that more than two
quantifier alternations are utilized.

▶ Theorem 15 (Subquartic Hardness of 1-center in Edit metric). Assuming Quantified SETH,
for every ε > 0 no algorithm running in time n4−ε can given as input a point-set P ⊆ {0, 1}n

solve the discrete 1-center problem in edit metric, where |P | = n.

Proof. Let us first reduce to the 1-center problem with facilities where there are two sets of
binary strings, a set of clients C and a set of facilities F and the goal is to decide if there
is a string in F that has ED at most τ to all strings in C. Given an instance A,B, C,D of
∃∀∃∃OVH we construct C and F as follows.

First we will use the following lemma that follows from the existing reductions from OVH
to ED [4, 7] (the latter reference gets the alphabet size down to 2).
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1:10 On Complexity of 1-Center in Various Metrics

▶ Lemma 16 ([7]). There are two linear time algorithms such that: each algorithm takes a
set (A or B) of n binary vectors of length d and constructs (independently of the other) a
binary string (sA or sB) of length O(nd) with the following property for a fixed value τ that
only depends on n, d: ED(sA, sB) < τ if there is a pair of orthogonal vectors vA ∈ A, vB ∈ B
and ED(sA, sB) ≥ τ otherwise.

For a set X ⊆ [d] let v(X) ∈ {0, 1}d be the natural encoding of the set as a binary vector
where v(X)[i] = 1 iff i ∈ X. Note that two vectors are orthogonal iff the two corresponding
sets are disjoint.

Now, for each set SA ∈ A define the set of n vectors A = {v(X) | SC ∈ C, X = SA ∩ SC}
representing the n sets that result from intersecting SA with any set in C. Similarly, for each
set SB ∈ B define the set of n vectors B = {v(X) | SD ∈ D, X = SB ∩ SD}.

It follows that there is an orthogonal pair vA ∈ A, vB ∈ B iff there exist SC ∈ C and
SD ∈ D such that SA ∩ SB ∩ SC ∩ SD = ∅. Therefore, if we use the algorithms in the above
lemma to encode each set A with a string sA and add it to the set of facilities F , and also
encode each set B with a string sB and add it into the set of clients C we get the reduction
we are after: By the definition of the ∃∀∃∃OVH problem, there is a string sA ∈ F such that
for all strings sB ∈ C we have ED(sA, sB) < τ if and only if the given ∃∀∃∃OVH instance is
a yes-instance.

Finally, we reduce to the basic 1-center problem (without facilities). Suppose that the
strings in F,C have length m. We simply construct an instance P ⊆ {0, 1}4m of 1-center as
follows.

P := {1m ◦ f ◦ 02m | f ∈ F} ∪ {1m ◦ c ◦ 12m | c ∈ C} ∪ {04m}.

The following simple facts about the ED of the transformed strings show that the optimal
center in P must be from {1m ◦ f ◦ 02m | f ∈ F} and its cost would be smaller than 2m+ τ

iff the original ∃∀∃∃OVH instance is a yes-instance.

▷ Claim 17. Let x, y be two binary strings of length m with ED exactly t.
ED(1m ◦ x ◦ 02m, 1m ◦ y ◦ 02m) ≤ m.
ED(1m ◦ x ◦ 02m, 04m) ≤ 2m.
ED(1m ◦ x ◦ 02m, 1m ◦ y ◦ 12m) = 2m+ t.
ED(1m ◦ x ◦ 12m, 04m) ≥ 3m.

The first and second items follow from the straightforward alignment of the strings. The
fourth item follows because ED(0ℓ, 1ℓ) = ℓ. The third item requires a bit more care. First,
to see that the ED is at most 2m+ t consider the alignment that maps x to y optimally at
cost t and then maps the other parts in the straightforward way at cost 2m. Now suppose for
contradiction that there was a better alignment. This alignment must match one of the new
letters (from the transformation) to x or y; otherwise it would yield an alignment between
x, y at cost smaller than t. But any alignment that matches the 1 letters on the left to x
or y can be corrected so that the 1m parts on the left are matched to each other, without
affecting the cost. Similarly, any matching between the letters on the right to x or y can be
corrected without increasing the cost. Suppose that a 0 from the right is matched to y. This
implies that one of the 1’s to the right of y must be deleted (because there are no longer
enough 0’s in the other string to get substituted with all of them), and a corrected alignment
that instead substitutes the 0 with a 1 (reducing the number of such deletions by one) and
leaves the mate in y unmatched does not have a higher cost. We refer the reader to [7] for
more formal proofs of such claims. ◀
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▶ Remark 18. The above reduction to Edit also work for the 1-median problem but with
two key differences. The first and main difference is that, since we take the sum instead
of the max, the cost in the objective may now be affected by non-orthogonal pairs and
it is no longer sufficient to have gadgets that give distance < τ or ≥ τ depending on the
orthogonality. Instead, we need gadgets that guarantee that the distance is either < τ or
exactly τ . Fortunately, such requirements can be accomplished, see e.g. Theorem 4 in [4].
The second difference is that we do not need the ∀ quantifier in the starting assumption; the
sum is powerful enough to support the (standard) ∃∃∃∃ structure type. Therefore, the lower
bounds for 1-median can be based on the standard SETH rather than the Quantified-SETH.

3.3 Subquadratic Lower Bounds for 1-center in Low dimensional
Euclidean space

In this subsection, we show that an algorithm with subquadratic running time does not exist
in the low dimensional Euclidean metric for the 1-center problem. Our proof essentially
adopts ideas developed in [35, 10]. We note that this result is surprising as there is a near
linear time algorithm for 1-center in the low dimensional ℓ1-metric.
▶ Remark 19. For the ℓ1-metric, we can solve Discrete 1-center problem in O(n22d) time
by using the isometric embedding of the ℓ1-metric to the ℓ∞-metric [27], and then noting
Remark 10.

▶ Theorem 20. Assuming HSC, there exists a constant η > 1 such that for every ε > 0, no
algorithm running in time n2−ε can given as input a point-set P ⊆ Rd and a positive real
α output all points in P whose 1-center cost in the Euclidean metric is at most α, where
|P | = n, d = ηlog∗ n, and representing each vector requires at most Õ(log n) bits.

Proof of Theorem 20. We prove the theorem statement by contradiction. Suppose for some
ε > 0 there is an algorithm T running in time n2−ε that can given as input a point-set
P ⊆ Rd and a positive real α output all points in P whose 1-center cost in the Euclidean
metric is at most α, where |P | = n, d = ηlog∗ n, and each vector is of at most k log n bit
entries (for some constant integer k).

Let (A := (S1, . . . , Sn),B := (T1, . . . , Tn), U) be an instance arising from HSC, where
|U | = c log n. We think of each set in A and B as its characteristic vector in {0, 1}c log n. We
show how we can decide this instance in n2− ε

2 time using T , thus contradicting HSC.
We need the following theorem from Chen [10].

▶ Theorem 21 (Chen [10]). Let b, ℓ be two sufficiently large integers. There is a reduction
ψb,ℓ : {0, 1}b·ℓ → Zℓ and a set Vb,ℓ ⊆ Z, such that for every x, y ∈ {0, 1}b·ℓ,

x · y = 0⇔ ψb,ℓ(x) · ψb,ℓ(y) ∈ Vb,ℓ

and

0 ≤ ψb,ℓ(x)i < ℓ6log∗(b)·b

for all possible x and i ∈ [ℓ]. Moreover, the computation of ψb,ℓ(x) takes poly(b · ℓ) time, and
the set Vb,ℓ can be constructed in O

(
ℓO(6log∗(b)·b) · poly(b · ℓ)

)
time.

We use the above theorem with ℓ = 7log∗ n and b = |U |/ℓ. Note that if ℓ = 7log∗ n then
log

(
ℓ6log∗(b)·b

)
= o(log n). All of the below construction details appears in [35, 10] and we

skip many of the calculations and claim proofs hereafter. Our contributions are mainly in
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using these previously known constructions in a new way to prove the theorem statement.
In particular, for every t ∈ Vb,ℓ we create an instance (Pt ⊆ R(ℓ+1)2+3, α :=

√
2n5 − 1) of

1-center as follows.
For every4 Si ∈ A (resp. Tj ∈ B) we first define a point pt

i ∈ Zℓ+1 (resp. qt
j ∈ Zℓ+1) as

follows:

pt
i := (ψb,ℓ(Si), t) (resp. qt

j := (ψb,ℓ(Tj),−1)).

It is then easy to verify that Si ∩ Tj = ∅ if and only if there exists some t ∈ Vb,ℓ such
that ⟨pt

i, q
t
j⟩ = 0. Next for every pt

i ∈ Zℓ+1 (resp. qt
j ∈ Zℓ+1) we define p̃t

i ∈ Z(ℓ+1)2 (resp.
q̃t

j ∈ Z(ℓ+1)2) as follows:

∀a, b ∈ [ℓ+ 1], p̃t
i(a, b) := pt

i(a) · pt
i(b) (resp. q̃t

j(a, b) := −qt
j(a) · qt

j(b)).

It is then straightforward to verify that ⟨pt
i, q

t
j⟩ = 0 if and only if ⟨p̃t

i, q̃
t
j⟩ ≥ 0.

Finally, we have our pointset Pt ∈ R(ℓ+1)2+3 defined as follows:

Pt :=
{(

p̃t
i,

√
n5 − ∥p̃t

i∥2
2, 0, 0

) ∣∣∣∣Si ∈ A
}

︸ ︷︷ ︸
P A

t

⋃ {(
−q̃t

j , 0,
√
n5 − ∥q̃t

j∥2
2,
√
n5

) ∣∣∣∣Tj ∈ B
}

︸ ︷︷ ︸
P B

t

∪
{

0⃗
}
,

where 0⃗ = (0, 0, . . . , 0).
It can then be verified that ⟨p̃t

i, q̃
t
j⟩ ≥ 0 if and only if the distance between(

p̃t
i,

√
n5 − ∥p̃t

i∥2
2, 0

)
and

(
−q̃t

j , 0,
√
n5 − ∥q̃t

j∥2
2

)
is at least

√
2n5; otherwise their distance

is at most
√

2n5 − 1. Also note that any pair of points in PA
t or any pair of points in PB

t

are at distance at most
√

2n5 − 1 from each other. Finallt, note that the distance between
any point in PB

t and 0⃗ is exactly
√

2n5 and the distance between any point in PA
t and 0⃗ is

exactly
√
n5.

We run T on (Pt, α :=
√

2n5 − 1) for every t ∈ Vb,ℓ. Let Ot ⊆ Pt be the output of
running T on (Pt, α). In other words for every t ∈ Vb,ℓ and every p ∈ Ot we have that for
every p′ ∈ Pt, ∥p− p′∥2 ≤

√
2n5 − 1.

We claim that there exists S in A such that it intersects with every subset T in B if and
only if there exists i ∈ [n] such that for all t ∈ Vb,ℓ, we have

(
p̃t

i,
√
n5 − ∥p̃t

i∥2
2, 0

)
∈ Ot.

Suppose there exists Si∗ in A such that it intersects with every subset T in B. Fix t ∈ Vb,ℓ.
We have that

(
p̃t

i∗ ,
√
n5 − ∥p̃t

i∗∥2
2, 0

)
is at distance at most

√
2n5 − 1 from every other point

in PA
t just from construction. Suppose there is

(
−q̃t

j , 0,
√
n5 − ∥q̃t

j∥2
2

)
∈ PB

t such that their
distance is greater than

√
2n5 − 1 then from the construction, their distance must be

√
2n5,

which implies that Si∗ ∩ Tj = ∅, a contradiction.
On the other hand, if for every S in A there exists T in B such that S and T

are disjoint then we show that for any point
(
p̃t

i,
√
n5 − ∥p̃t

i∥2
2, 0

)
there exists t ∈ Vb,ℓ

such that
(
p̃t

i,
√
n5 − ∥p̃t

i∥2
2, 0

)
/∈ Ot. Fix i ∈ [n]. Let Tj ∈ B such that Si ∩ Tj =

∅. Let t∗ := ψb,ℓ(Si) · ψb,ℓ(Tj). From Theorem 21 we have that t∗ ∈ Vb,ℓ. Thus(
p̃t∗

i ,
√
n5 − ∥p̃t∗

i ∥2
2, 0

)
and

(
−q̃t∗

j , 0,
√
n5 − ∥q̃t∗

j ∥2
2

)
in Pt∗ are at distance at least

√
2n5

and thus
(
p̃t∗

i ,
√
n5 − ∥p̃t∗

i ∥2
2, 0

)
/∈ Ot∗ .

Finally, note that the total run time was O(n2−ε · |Vb,ℓ|) = O(n2−ε log n) < n2− ε
2 . ◀

4 Recall that we think of Si and Tj through their characteristic vector.
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4 An n2.5 time 1 + ϵ Approximation Algorithm for 1-Center in Ulam
Metric when d = n

In this section, we consider the 1-center problem under Ulam metric. More precisely, we
consider a problem where n strings s1, s2, . . . , sn are given as input and our goal is to find a
string sk such that the maximum distance of sk from the rest of the strings is minimized.
Our focus here is on the Ulam metric.

We assume throughout this section that the length of all strings is equal to d. Our
algorithm for this case is two-fold. Let o be the value of the solution (i.e., the maximum
distance of the center of the strings to the rest of the strings is exactly equal to o). If o
is lower bounded by

√
d, previous work on Ulam distance gives us a 1 + ϵ approximate

solution for center in the following way: We iterate over all pairs of strings and each time we
estimate their Ulam distance via the algorithm of Naumovitz, Saks, and Seshadhri [28] for
approximating the Ulam distance of each pair. When the Ulam distance of two strings is
equal to u, their algorithm takes time Õϵ(d/u+

√
d) to 1 + ϵ approximate the solution. Thus,

we only run their algorithm up to a runtime of Õϵ(
√
d) to either obtain a 1 + ϵ approximate

solution for the Ulam distance or verify that the Ulam distance is smaller than
√
d. It follows

that if o ≥
√
d this information is enough for us to approximate the 1-center problem within

a factor 1 + ϵ and the runtime of the algorithm is bounded by Õϵ(n2
√
d). Thus, it only

remains to design an algorithm for the low-distance regime.
From here on, we assume that o ≤

√
d. In this case, we take an arbitrary string (say

s1) and compute the Ulam distance of that string to all the other strings. In addition to
this, we also keep track of the changes that convert s1 into all the strings. It follows that
since o ≤

√
d, the distance of s1 to all the strings is bounded by at most 2

√
d. Thus, via the

transformations we compute in this step, we would be able to make a transformation from
any si to any sj with at most 4

√
d operations (we can combine the transformation from s1

to si and the transformation from s1 to sj). Using this information, we can determine the
exact Ulam distance of every string si to every string sj in the following way:

We start with the non-optimal transformation from si to sj that uses at most 4
√
d

operations. We then split the characters from [1, . . . , d] into buckets such that in each bucket
all the characters are next to each other and they appear in the same order in the two
strings. To be more precise, consider the following procedure: color each character of si

and sj which is touched in the transformation (deleted, added, or changed) in red and the
rest blue. Each set of consecutive blue characters and each single red character makes a
bucket. It follows that because there is a transformation from si to sj with at most 4

√
d

operations, the total number of buckets would be bounded by O(
√
d). Moreover, there exists

an optimal transformation wherein either all characters of each buckets are deleted/inserted
or all characters of each bucket remain intact. This implies that we can compress the two
strings into smaller strings by replacing each bucket with a single character. The insertion
and deletion of these special characters then has a cost proportional to the size of the bucket.
This way, the size of the two strings would be bounded by O(

√
d) and thus we can compute

the Ulam distance of the two strings in time Õ(
√
d). Therefore, we can compute the center

of the strings in time Õϵ(nd+ n2
√
d).

▶ Theorem 3. There exists a 1 + ϵ approximation algorithm for the 1-center under Ulam
metric that runs in time Õϵ(nd+ n2

√
d).

Proof of Theorem 3. The outline of the algorithm along with its runtime analysis is given
earlier. Here we prove that the approximation factor of the algorithm is bounded by 1 + ϵ. In
case o ≥

√
d, we use the 1+ϵ approximation algorithm of Naumovitz, Saks, and Seshadhri [28]
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Algorithm 1 1-center of n strings under Ulam metric.

Data: s1, s2, . . . , sn

Result: 1-center
o←∞;
for i← 1 to n do

mx← −1;
for j ← 1 to n do

Run [28] on si and sj up to Õϵ(
√
d) steps;

if the algorithm terminates then
mx← max{mx, the output of the algorithm};

end
end
o← min{o,mx};

end
if o ̸= −1 then

return o;
end
else

o←∞;
for i← 1 to n do

tri ← optimal transformation between s1 and si;
end
for i← 1 to n do

mx← −1;
for j ← 1 to n do

(s∗
i , s

∗
j )← compressed versions of (si, sj) based on tri and trj ;

mx← max{mx, the Ulam distance of s∗
i and s∗

j};
end
o← min{o,mx};

end
return o;

end

for each pair of strings up to a runtime of Õϵ(
√
d). If the algorithm gives an estimation before

we terminate it, we take the value into account when determining the maximum distance
for the strings involved. It follows that since o ≥

√
d, then for each string sx, there is one

string sy whose distance to sx is at least
√
d and thus the maximum distance we determine

for each string is a 1 + ϵ approximation of the optimal value.

Next, we show that in case o ≤
√
d, our algorithm determines the Ulam distance of each

pair exactly and thus solves the 1-center problem correctly. In order to determine the Ulam
distance between si and sj , we begin with a transformation of size at most 4

√
d between

the two strings. We then mark all the characters that are either deleted or inserted in this
transformation and all the characters that are next to these characters. We then compress
the two strings in the following way: each marked character becomes a single character with
the same value. Each maximal interval of unmarked characters that are next to each other
also become a single character whose value represents the entire interval. Therefore, the
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compressed strings have O(
√
d) characters each. It follows that the Ulam distance of the

compressed strings is exactly equal to the Ulam distance of the original strings. Moreover,
even though for the compressed strings the operations have arbitrary costs, we can still solve
Ulam distance in time proportional to the length of the strings which results in an algorithm
with runtime Õ(

√
d) for computing Ulam distance between each pair. ◀

5 Hardness of Approximation of 1-center in String and ℓp-metrics

In this section, we prove hardness of approximation results for the 1-center problem. A
background on error correcting codes is detailed in Appendix A.

▶ Theorem 22 (Subquadratic Inapproximability of 1-center in ℓp-metrics). Let p ∈ R≥1 ∪ {0}.
Assuming HSC, for every ε > 0 there exists δ > 0 such that no algorithm running in time
n2−ε can given as input a point-set P ⊆ {0, 1}d and a positive real α output all points in P

whose 1-center cost in the ℓp-metric is at most α · (1 + δ), where |P | = n and d = Oε(log n).

Proof. Fix p ∈ R≥1 ∪ {0}. We prove the theorem statement by contradiction. Suppose for
some ε > 0 there is an algorithm T running in time n2−ε that can for every δ > 0, given as
input a point-set P ⊆ Rd and a positive real α output all points in P whose 1-center cost in
the ℓp-metric is at most α · (1 + δ), where |P | = n and d = Oε(log n) (dependency on ε will
become clear later in the proof).

Let (A := (S1, . . . , Sn),B := (T1, . . . , Tn), U) be an instance arising from HSC, where
|U | = c log n. We think of each set in A and B as its characteristic vector in {0, 1}c log n. We
show how we can decide this instance in n2− ε

2 time using T , thus contradicting HSC.
The construction below is exactly the same as the one suggested by Rubinstein [31]. We

however, use this construction to fit our purposes of proving lower bound for the 1-center
problem.

Algebrization. Fix T = 2c/ε. Let q be the smallest prime greater than T (i.e., q < 2 · T ).
Let m := c log n. Let C1

m/T and C2
m/T be the codes guaranteed in Theorem 26 over Fq2 with

block length ℓ ≤ λm/T .
Let C̃ ⊆ C2

m/T such that ω ∈ C̃ if and only if ω |[m/T ]= 0⃗ (i.e., ω has a zero entry
in each of the first m/T coordinates). For every ω ∈ C̃ we define two functions τω

A, τ
ω
B :

{0, 1}m → {0, 1}r, where r := q4(T +2) × ℓ. We can thus index every i ∈ [r] using elements in
FT

q2 × FT
q2 × [ℓ].

Fix x ∈ {0, 1}m. Let x = (x1, . . . , xT ) ∈ {0, 1}m where for all i ∈ [T ] we have xi ∈
{0, 1}m/T . We define τω

A(x) coordinate wise. Fix ζ ∈ [r] and we think of ζ as follows:

ζ =
(
(µA

1 , . . . , µ
A
T +2), (µB

1 , . . . , µ
B
T +2), j

)
∈ FT +2

q2 × FT +2
q2 × [ℓ]. (1)

We define τω
A(x)ζ to be 1 if and only if:∑

i∈[T +2]

µA
i · µB

i = ω(j) and ∀i ∈ [T ], µA
i = C1

m/T (xi)j , and µA
T +1 = 0, µA

T +2 = C1
m/T (1m/T )j .

Similarly, we define τω
B (x) coordinate wise. Fix ζ ∈ [r] and we think of ζ as in (1). We

define τω
B (x)ζ to be 1 if and only if:∑

i∈[T +2]

µA
i · µB

i = ω(j) and ∀i ∈ [T ], µB
i = C1

m/T (xi)j and µB
T +1 = C1

m/T (1m/T )j , µB
T +2 = 0.
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Construction. For every Si ∈ A, we define sω
i := τω

A(Si). Further, we define s̃ω
i =

(sω
i ,1

r − sω
i ,1

2r) ∈ {0, 1}4r. For every Tj ∈ B, we define tωj := τω
B (Tj). Further, we define

t̃ωj = (1r − tωj , tωj , 02r) ∈ {0, 1}4r.
We define the point-set Pω to be PA

ω := {s̃ω
i | Si ∈ A} ∪ PB

ω := {t̃ωj | Tj ∈ B} ∪ {14r}.
Let α := (2q4(T +2) − 4q2(T +1)) · ℓ+ 2r + ℓ. Let δ := 1/(4q4T − 4q2T −2 + 1).

Analysis. We run T on (Pω, α) for every ω ∈ C̃. Let Oω ⊆ Pω be the output of running T
on (Pω, α). In other words for every ω ∈ C̃ and every s ∈ Ot we have that for every s′ ∈ Pω,
∥s− s′∥p ≤ (1 + δ)1/p · α1/p.

We claim that there exists S in A such that it intersects with every subset T in B if and
only if there exists i ∈ [n] such that for all ω ∈ C̃, we have s̃ω

i ∈ Oω.
Suppose there exists Si∗ in A such that it intersects with every subset T in B. Fix ω ∈ C̃.

We have that s̃ω
i∗ is at distance at most (2r)1/p from every other point in PA

ω just from
construction. Suppose there is t̃ωj ∈ PB

ω such that their distance is greater than α1/p then
from the construction, their distance must be at least (1 + δ)1/p · α1/p, which implies that
Si∗ ∩ Tj = ∅, a contradiction.

On the other hand, if for every S in A there exists T in B such that S and T are disjoint
then we show that for any point s̃ω

i there exists ω ∈ C̃ such that s̃ω
i /∈ Oω. Fix i ∈ [n]. Let

Tj ∈ B such that Si ∩ Tj = ∅. Let ω∗ :=
∑

e∈[T ] C
1
m/T (Se

i ) · C1
m/T (T e

j ). From Theorem 26
we have that ω∗ ∈ C̃. Thus s̃ω∗

i and t̃ω
∗

j in Pω∗ are at distance at least (1 + δ)1/p · α1/p and
thus s̃ω∗

i /∈ Oω∗ . Also, note that for all ω ∈ C̃, we have that every point in PB
ω is at distance

at least (3r)1/p from 1
4r.

Finally, note that the total run time was O(n2−ε · |C̃|) = O(n2−ε+ c
T ) < n2− ε

2 . ◀

We remark that the above construction is the same as the one in [31] albeit for a different
problem (nearest neighbors problem).

Theorem 22 readily extend to the edit metric from the below statement and to the Ulam
metric from Lemma 11.

▶ Lemma 23 (Rubinstein [31]). For large enough d ∈ N, there is a function η : {0, 1}d →
{0, 1}d′ , where d′ = O(d log d), such that for all a, b ∈ {0, 1}d the following holds for some
constant λ > 0:

|ed(η(a), η(b))− λ · log d · ∥a− b∥0| = o(d′).

Moreover, for any a ∈ {0, 1}d, η(a) can be computed in 2o(d) time.
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A Error Correcting Codes

An error correcting code C over alphabet Σ is a function C : Σm → Σℓ where m and ℓ are
positive integers which are referred to as the message length and block length of C respectively.
Intuitively, the function C encodes an original message of length m to an encoded message
of length ℓ. The rate of a code ρ(C) is defined as the ratio between its message length and
its block length, i.e., ρ(C) = m/ℓ. The relative distance of a code, denoted by δ(C), is defined
as min

x ̸=y∈Σm
δ(C(x), C(y)) where δ(C(x), C(y)) is the relative Hamming distance between C(x)

and C(y), i.e., the fraction of coordinates on which C(x) and C(y) disagree.
In this paper, we require our codes to have some special algebraic properties which have

been shown to be present in algebraic geometric codes [17]. First, we will introduce a couple
of additional definitions.

▶ Definition 24 (Systematicity). Given s ∈ N, a code C : Σm → Σℓ is s-systematic if there
exists a size-s subset of [ℓ], which for convenience we identify with [s], such that for every
x ∈ Σs there exists w ∈ Σm in which x = C(w) |[s].

▶ Definition 25 (Degree-t Closure). Let Σ be a finite field. Given two codes C : Σm →
Σℓ, C ′ : Σm′ → Σℓ and positive integer t, we say that C ′ is a degree-t closure of C if,
for every w1, . . . , wr ∈ Σm and P ∈ F[X1, . . . , Xr] of total degree at most t, it holds that
ω := P (C(w1), . . . , C(wr)) is in the range of C ′, where ω ∈ Σℓ is defined coordinate-wise by
the equation ωi := P (C(w1)i, . . . , C(wr)i).

Below we provide a self-contained statement of the result we need; it follows from
Theorem 7 of [32], which gives an efficient construction of the algebraic geometric codes
based on [17]’s explicit towers of function fields.

▶ Theorem 26 ([17, 32]). There is a constant λ > 0 such that for any prime q ≥ 7, there are
two code families C1 = {C1

n}n∈N, C2 = {C2
n}n∈N such that the following holds for all n ∈ N,

C1
n and C2

n are n-systematic code with alphabet Fq2 ,
C1

n and C2
n have block length less than λn.

C2
n has relative distance ≥ 1/2,

C2
n is a degree-2 closure of C1

n, and,
Any codeword in C1

n or C2
n can be computed in poly(n) time.

We point the interested reader to [21] for a proof sketch of the above theorem.
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Abstract
We consider probabilistic embedding of metric spaces into ultra-metrics (or equivalently to a constant
factor, into hierarchically separated trees) to minimize the expected distortion of any pairwise
distance. Such embeddings have been widely used in network design and online algorithms. Our
main result is a polynomial time algorithm that approximates the optimal distortion on any instance
to within a constant factor. We achieve this via a novel LP formulation that reduces this problem
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1 Introduction

Embedding a finite metric space into simpler spaces such as trees, ultrametrics, and Euclidean
spaces (called “target metrics”) has a wide range of applications, and has been widely studied.
In such an embedding, the distance between any pair of points should be at least as large
as in the original space, while being at most a factor of α larger, where α is termed the
distortion of the embedding. The goal is to design an embedding into a given target metric
whose distortion is as small as possible. We will denote by n the number of points in the
metric space.

A lot of attention has focused on probabilistic embeddings, which construct a distribution
over metrics from the target space, for instance, a distribution over trees or ultrametrics.
The goal is now to bound the expected distortion for any pair of points relative to their
distance in the original metric space. Probabilistic embeddings typically allow for much
lower values of distortion. Indeed, when the target metric is a tree or an ultrametric,
deterministic embeddings have distortion Ω(n) [2], while probabilistic embeddings have
distortion α = O(log n) [20].

In this paper, we consider the problem of embedding metrics into a distribution over
ultrametrics, defined in Section 2. To within a constant factor on distortion, these metrics
embed into hierarchically separated trees (HSTs), and such embeddings have found myriad
uses in network design, data analysis and online algorithms. This is because most network
design problems such as Steiner tree or facility location are NP-Hard in general metric spaces,
but amenable to polynomial time algorithms on trees. If the objective function is a linear
combination of distances, the solution on the distribution over HSTs yields a α approximation
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algorithm for the input metric space, where α is the distortion of the embedding. Indeed,
recent breakthroughs in developing competitive algorithms for the celebrated randomized
k-server problem proceed via probabilistic embedding into HSTs [16, 4]. Other applications
include analysis of hierarchical clusterings [10, 31, 17], and approximation algorithms for
group Steiner trees [21], buy-at-bulk network design [3], and metric labeling [27].

In this context, it is known that in the worst case over input metric spaces, the distortion
of embedding into a distribution over ultrametrics is α = O(log n) [20], and this bound is
tight [25, 5]. However, these algorithms typically use fixed ball-growing procedures oblivious
to the actual metric. It is conceivable that any given metric can be embedded with much
lower distortion than such procedures imply. For instance, an entirely different algorithm can
embed doubling metrics into ultrametrics with distortion O(log ∆), where ∆ is the spread1

of the point set; this can be significantly better if ∆ = o(n) or independent of n [26]. Further,
many real-world social graphs have small diameter, often independent of the network size
n [32, 30] and again, it is conceivable that specifically tailored algorithms can embed these
better than what the worst case bounds imply.

In this paper, we therefore ask: Can we achieve the best possible (in terms of distortion)
probabilistic embedding of a given discrete metric space into ultrametrics in polynomial time?

1.1 Result
Our main result is positive:

▶ Theorem 1. Given any n-point metric space that can be embedded into a distribution
over ultrametrics with optimal distortion α, there is an algorithm with expected polynomial
running time2 that can find an embedding of distortion 16 · α.

Prior to our work, the best published approximation factor was O(log n) [20], which is
also the tight existence result. In contrast, we provide a nearly tight computational result,
which also yields improved instance-dependent approximation factors for problems like metric
labeling and buy-at-bulk network design, where the factor of O(log n) in the approximation
ratio improves to O(α).

1.2 Technique
Our algorithm for proving Theorem 1 proceeds via constructing an LP relaxation. In this
LP relaxation, the variables γr

jj′ represent the probability that j, j′ are separated in the HST
at radius (or level) r. This LP is our main non-trivial contribution. Note that though there
are LP formulations that embed metrics into trees [11, 27], we do not know how to solve
them to a o(log n) approximation factor.

We then use the randomized rounding technique for uniform metric labeling in [27] in
decreasing order of radius to construct a distribution over centers and assignments, while
relaxing γr

jj′ by a factor of 2. In the uniform metric labeling problem, the goal is to assign
one of k labels to the vertices of a graph with edge weights so that the total weight of the
edges whose end-points have different labels is minimized. In the algorithm of [27], they
encode the probability that two endpoints of an edge are separated as a random variable

1 Spread is the ratio of the largest to smallest distance in the metric space.
2 For any δ > 0, the algorithm can easily be converted to a 16 + δ approximation in deterministic

polynomial time, with the polynomial depending on n and log ∆
δ , where ∆ is the ratio of largest to

smallest distance in the metric space.
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in their LP, and then minimize an expected cost over these random variables. Our main
idea is that the event whether two nodes belong to the same subtree in the HST can be
similarly treated as a random variable in our LP. The expected “cost” of the labeling is
the contribution of these variables to the distortion, and these variables can be randomly
rounded via the same ideas as for metric labeling.

Note that the algorithm for general metric labeling [27] – where the labels lie in a metric
space and the weight of the edge is multiplied by the distance between the corresponding
labels – proceeds via embedding the metric over labels into an ultrametric. We effectively
reduce in the reverse direction and show that metric embedding reduces to (uniform) metric
labeling!

1.3 Related Work
The main technique for probabilistically embedding metrics into ultrametrics is low-diameter
decompositions. These involve decomposing the input metric space into small diameter
components via sampling radii from a suitable distribution and randomly partitioning based
on these radii. Starting with a result of [5], a sequence of results showed improving bounds
for such embeddings [6, 11, 20], culminating in the optimal distortion bound of O(log n).
Better results are known for special types of metrics [26]. All these decompositions proceed
by deriving absolute bounds on the probability that a pair of nodes end up in different
partitions; in contrast, we encode this probability as variables in an LP formulation.

Trees are more general spaces than ultrametrics, and the seminal work of [2] initiated the
study of embedding metrics into trees. Though the worst case bound for embedding into
a distribution over trees remains Θ(log n), better results are known for embedding specific
classes of metrics such as the shortest path metrics of k-outerplanar or small pathwidth
graphs [13, 23, 29]. The work of [11] provides an LP formulation for computing the optimal
distortion for embedding into a distribution over trees; however, their separation oracle –
the minimum communication cost spanning tree problem – is unlikely to admit a o(log n)
approximation. Our LP for ultrametrics, in contrast, is inspired by stochastic optimization
and metric labeling and shows a constant approximation.

The above works provide worst case guarantees on the distortion of the embedding,
while we provide an approximation result. Though other prior work has considered such
approximation guarantees [19, 24, 1, 15], these works focus on deterministic embeddings,
while ours consider approximations for probabilistic embeddings. The work of [1] provides a
polynomial time algorithm for optimally embedding a metric into a single ultrametric, and
the work of [15] shows an improved running time for obtaining such an embedding. However,
the optimal distortion for embedding into a single ultrametric might be Ω(n), while it is
O(log n) for embedding into a distribution. This result motivates the need for algorithms
that approximate the optimal probabilistic embedding. We note that the algorithm of [1]
does not extend to probabilistic embeddings.

Our LP is also similar in spirit to those in [28]. They give a 2-approximation to separating
decompositions (see [28] for formal definitions) by writing an LP using variables similar to
our variables γ for the separation probabilities. The key observation we make is that unlike
in their setting where there is a fixed separation probability, we need to optimize over the
separation probabilities at all levels of the HST simultaneously.

Stochastic Optimization. Our algorithms involve rounding a linear programming relaxation
to the optimal solution. This LP is inspired by similar LPs approximate stochastic optim-
ization, particularly those for stochastic knapsack [18], multi-armed bandits [22], Bayesian
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auctions [9, 12, 8], and stochastic matching [14]. The novel aspects of our work is the
formulation of probabilistic embeddings as a stochastic optimization problem, and viewing
the uniform metric labeling algorithm as a stochastic rounding procedure [27].

2 Terminology

▶ Definition 2 (Metric space). A metric space (N, d) is a finite set of n points N endowed
with a distance function d : N ×N → R+ ∪ {0}. This distance function has the following
properties:

d(x, x) = 0 for all x ∈ N ;
d(x, y) = d(y, x) for all x, y ∈ N ; and
d(x, z) ≤ d(y, z) + d(x, y) for all x, y, z ∈ N .

▶ Definition 3 (Embedding). Given two metric spaces (N, d) and (T, dT ), an embedding from
N to T is a function f : N → T .

With an abuse of notation, for x, y ∈ N , we use dT (x, y) to refer to dT (f(x), f(y)).
Our goal is to embed a given n point metric space into a probability distribution over

ultrametrics. An ultrametric and probabilistic embedding are defined below.

▶ Definition 4 (Ultrametric). A metric space (N, d) is an ultrametric if for all points
x, y, z ∈ N , we have d(x, z) ≤ max (d(x, y), d(y, z)) .

▶ Definition 5 (Probabilistic embedding). Given a metric space (N, d), an embedding is a
distribution over ultrametrics (N, dT ), where ultrametric T is chosen with probability pT . Let
F denote this distribution and S denote its support. The embedding should be non-contractive,
meaning that

∀x, y ∈ N, ∀T ∈ S, dT (x, y) ≥ d(x, y).

Further, this embedding has distortion α (where α ≥ 1) if

∀x, y ∈ N, ET ∼F [dT (x, y)] ≤ α · d(x, y).

Hierarchically Separated Trees. It is convenient to consider a specific type of ultrametric
termed hierarchically separated trees. These are defined as follows.

▶ Definition 6 (exact c-HST). A metric (N, d) is an exact c-HST (for c > 1) if the elements
of N are the leaves of a rooted tree T , all of whose leaves are at the same level. Each internal
node v of T is associated with a number δv. These numbers increase by a factor of exactly c

as we move up the tree, so that δv = c · δu whenever u is a child of v. Given leaves x, y ∈ N ,
let z be their least common ancestor in T . Then d(x, y) = δz.

The diameter of a c-HST with root r is δr. Note that a c-HST with diameter D decomposes
into c-HSTs with diameter D/c, where points in different parts are separated by distance
exactly D.

The following result shows that it suffices to consider embedding into exact c-HSTs.

▶ Lemma 7 ([7]). Given a metric space and its embedding into a distribution over ultrametrics
with distortion α, there is an embedding into a distribution over exact c-HSTs with distortion
α · c.
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3 Linear Programming Relaxation

The LP relaxation is not obvious, and we will present it in some detail. We are given a
metric space (N, d) whose smallest distance is 1 and largest distance is ∆. We will use exact
c-HSTs for c = 2; using any other value of c only yields a worse approximation factor, and
our presentation is simplified without the parameter c. By losing a factor of 2, we assume
that the optimal solution embeds this metric into a distribution over exact 2-HSTs. Let this
embedding have distortion q ≤ 2α if the optimal distortion for probabilistically embedding
into ultrametrics is α. Our goal therefore is to approximate q in polynomial time.

Given this optimal probabilistic embedding into 2-HSTs, let M denote the set of possible
δz values in powers of 2. Note that |M | = O(log ∆), since 1 ≤ δr ≤ 2∆ without loss of
generality.3

Consider some 2-HST in the optimal embedding of (N, d) and some r ∈ M . For any
sub-tree T ′ whose root z has δz = r, all nodes in T ′ have distance in the 2-HST at most
r from some node i ∈ T ′. Since this embedding is non-contractive, we have d(i, j) ≤ r for
all j ∈ T ′. We arbitrarily pick one i in this subtree as the “representative” of this subtree
and “assign” all other nodes in the subtree to i. Therefore, each node j is assigned to one
representative i at each level r ∈ M in the tree and this satisfies d(i, j) ≤ r. Now we can
define a graph Gr(N, Er) for each r ∈ M , where there is an edge (i, j) ∈ Er if and only if
d(i, j) ≤ r. Let Bi(r) = {j ∈ N, d(i, j) ≤ r}.

For (i, j) ∈ Er, define a variable xr
ij as the probability that j’s representative at level r

is i. Similarly, let zr
ijj′ be the probability that both j, j′ have i as their level r representative,

where we assume (i, j) ∈ Er and (i, j′) ∈ Er. Finally, let γr
jj′ be the probability that j and

j′ do not share a level r representative.
The LP relaxation with variables xr

ij , zr
ijj′ , and γr

jj′ , and is shown in Figure 1.

(LP1)

Minimize q (1)

∀j, j′,
∑
r∈M

r · γr
jj′ ≤ q · d(j, j′) (2)

∀i, r, j, j′ ∈ Bi(r) min(xr
ij , xr

ij′) ≥ zr
ijj′ (3)

∀j, j′, r
∑

i:j,j′∈Bi(r)

zr
ijj′ ≥ 1− γr

jj′ (4)

∀j, r
∑

i:j∈Bi(r)

xr
ij = 1 (5)

∀j, j′, r < d(j, j′) γr
jj′ = 1 (6)

∀i, j, j′, r γr
jj′ , xr

ij , zr
ijj′ ≥ 0. (7)

Figure 1 Linear program relaxation for embedding into 2-HSTs.

3 To see this, consider any HST in the support of the optimal probabilistic embedding. We can contract
all the internal nodes v of the HST with δv ≥ 2∆ into one node r with δr = 2∆. Clearly, this preserves
the non-contractivity property, since no pair of vertices are more than ∆ far apart. Furthermore, this
can only decrease the expected distortion of any edge.
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▶ Lemma 8. LP1 is feasible and is a 2-approximation to the distortion of the optimal
probabilistic embedding into ultrametrics.

Proof. Consider an optimal embedding of the input metric into 2-HSTs with distortion q.
As mentioned before, since q is a factor 2 approximation to optimal distortion of embedding
into ultrametrics, this means the objective is a 2-approximation. We only need to show that
there is a feasible solution to the LP with objective at most q.

Now, consider any 2-HST in the support of the optimal embedding. We interpret the
variables as described before. To interpret Equation (2), note that if (j, j′) have least common
level r, they are separated at levels r/2, r/4, r/8, and so on. Therefore, the contribution this
2-HST makes to the LHS of Equation (2) is r/2 + r/4 + · · · ≤ r. Taking expectation over all
2-HSTs in the optimal embedding, we have E[r] ≤ q · d(i, j), where q is the distortion of this
embedding. This shows that the constraint holds.

Equation (6) captures that the embedding is non-contractive: If d(j, j′) < r, then they are
separated at level r. The remaining constraints are interpreted as follows. Equation (3) says
j, j′ are co-assigned to i implies they were both individually assigned to i; Equation (5) says
each j ∈ N has a representative at each level r; and Equation (4) says that the probabilities
that j, j′ are co-assigned and not co-assigned at level r sum to at least 1.

One feasible solution to the LP is to assign each node j to itself at all levels, so that
xr

jj = 1 for all j ∈ N, r ∈M . Then zr
ijj′ = 0 and γr

jj′ = 1 for all j ̸= j′. This is feasible when
q = 2∆. ◀

4 Rounding and HST Construction

We first present a procedure in Algorithm 1 that generates partitions separately for each
level r. Essentially, our algorithm solves |M | instances of metric labeling, one for each level
r. This step adapts the rounding scheme in [27] for uniform metric labeling. Each “label” is
a possible representative at level r. The expected cost of this metric labeling is then used to
bound the expected distortion of the embedding.

To construct the HST itself, we inductively compute the tree in the following manner:
At level 2∆, every node is assigned the same representative. For every lower level r, the set
of nodes assigned to the same representative at level r

2 belong to the same subtree. These
nodes are then assigned new representatives at level r based on the metric labeling.

Algorithm 1 Rounding to Create Partitions.

1: for r ∈M in decreasing order do
2: S ← N ; P r

i = ∅ for all i ∈ N

3: while S ̸= ∅ do
4: Choose a center i ∈ N uniformly at random independent of past choices.
5: Choose ℓr

i ∈ [0, 1] uniformly at random independent of past choices.
6: For each j ∈ S ∩Bi(r), if xr

ij ≥ ℓr
i , assign j to P r

i and remove j from S.
7: end while
8: end for

We next combine these partitions into a 2-HST in Algorithm 2.

Analysis
We first consider Algorithm 1. The lemma below follows directly from the analysis of the
rounding algorithm for uniform metric labeling in [27]. For completeness, we provide the
proof here.
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Algorithm 2 Combining Partitions and Constructing the 2-HST.

1: Place a root node w at the highest level with δw = 2∆ and set Sw = N .
2: for r ∈M in decreasing order do
3: for each node w at the previous (parent) level with set Sw do
4: for each i with P r

i ∩ Sw ̸= ∅ do
5: Place a child node v with set Sv = P r

i ∩ Sw and δv = 2r

6: end for
7: end for
8: end for

▶ Lemma 9 (Lemma 3.2 in [27]). Consider some pair j, j′ with d(j, j′) = R. Consider some
level r ≥ R. For any (j, j′) ∈ E(G),

Pr[j, j′ separated at level r] ≤ 2γr
jj′ .

Proof. We assume |C| = n ≥ 2; the result is trivial for n = 1. Since we fix a phase r, we will
omit the superscript r from the proof below.

Suppose that both j, j′ ∈ S at some point in time. Then j is assigned to i with probability
xij

n , where 1
n is the probability that i is chosen; conditioned on this, j is assigned to i if ℓi ≤ xij .

Therefore, j is assigned to some center at this step with probability is
∑

i:j∈Bi

xij

n = 1
n .

Similarly, conditioned on both j, j′ ∈ S, the probability with which they are assigned
to center i ∈ C is min(xij ,xij′ )

n ≥ zijj′

n , so this pair is co-assigned with probability at least∑
i

zijj′

n ≥ 1−γjj′

n . This is therefore a lower bound on the probability with which both j and
j′ get assigned this step.

By the inclusion-exclusion principle on the pair (j, j′), conditioned on both j, j′ ∈ S, the
probability with which either j or j′ gets assigned is:

Pr[Either j or j′ assigned |j, j′ ∈ S] ≤ 1
n

+ 1
n
− 1− γjj′

n
= 1 + γjj′

n
. (8)

Since n ≥ 2 and γjj′ ≤ 1, the RHS above is at most 1. Therefore, the probability that both

j, j′ ∈ S at time t is at least
(

1− 1+γjj′

n

)t−1
. Conditioned on this event, they are co-assigned

at time step t with probability at least 1−γjj′

n . Therefore, we have

Pr[j, j′ not separated ] ≥
∞∑

t=1

(
1− 1 + γjj′

n

)t−1
· 1− γjj′

n
= 1− γjj′

1 + γjj′
.

Noting that Pr[j, j′ separated] ≤ 1− 1−γjj′

1+γjj′
≤ 2γjj′ , this completes the proof. ◀

The following two lemmas will now complete the proof of Theorem 1.

▶ Lemma 10. The construction in Algorithm 1 and Algorithm 2 is non-contractive.

Proof. Suppose d(j, j′) = R. Consider some level r ∈ M ∩ [R/4, R/2]. For this value of r,
there is no center i such that j, j′ ∈ Bi(r). Therefore, j, j′ lie in different partitions at this
level. Observing that Algorithm 2 sets δv = 2r for nodes v at level r, their common ancestor
u must have δu ≥ 4r ≥ R. Therefore, the embedding is non-contractive. ◀

▶ Lemma 11. In the output of Algorithm 2, the expected distortion of any distance is at
most 8q. This implies a 16 approximation to the optimal embedding into a distribution over
ultrametrics.
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Proof. Consider some pair j, j′ with d(j, j′) = R. Consider some level r ≥ R. By Lemma 9,

Pr[j, j′ separated at level r] ≤ 2γr
jj′ .

If r < R, note that γr
jj′ = 1, so the above inequality trivially holds.

If r∗ is the highest level at which j, j′ are separated, the distance in the embedding is
4r∗. As an upper bound, we simply add a distance of 4r for all levels r at which j, j′ are cut.
This yields:

E[ Distance in embedding between (j, j′)] ≤
∑
r∈M

4r · 2γr
jj′ ≤ 8q · d(j, j′).

Since q itself is a 2 approximation to the optimal distortion of embedding into ultrametrics,
this implies a 16 approximation to the distortion of embedding into a distribution over
ultrametrics. ◀

Running Time. Since each j gets assigned with probability 1/n each step, the expected
number of steps is O(n log n) per level, and there are O(log ∆) levels. Suppose we stop the
process after c · n ln ∆

δ steps. Then for large constant c, the probability that at some level,
all j have not been assigned is at most δ

∆ . In this event, we pretend the ultrametric distorts
all distances to ∆. The expected distortion now becomes a 16 + δ approximation. This
completes the proof of Theorem 1.

5 Conclusion

We have in effect reduced probabilistic metric embeddings to metric labeling, performing
the reverse of the reduction in [27] that reduces metric labeling to metric embedding. There
are some open questions that arise from this work. First, is there an exact polynomial time
algorithm for embedding into ultrametrics or even a PTAS? Second, can similar results be
obtained for the more general problem of embedding into tree metrics?
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Abstract
In submodular k-partition, the input is a submodular function f : 2V → R≥0 (given by an evaluation
oracle) along with a positive integer k and the goal is to find a partition of the ground set V into k

non-empty parts V1, V2, . . . , Vk in order to minimize
∑k

i=1 f(Vi). Narayanan, Roy, and Patkar [18]
designed an algorithm for submodular k-partition based on the principal partition sequence and
showed that the approximation factor of their algorithm is 2 for the special case of graph cut
functions (which was subsequently rediscovered by Ravi and Sinha [22]). In this work, we study
the approximation factor of their algorithm for three subfamilies of submodular functions – namely
monotone, symmetric, and posimodular and show the following results:
1. The approximation factor of their algorithm for monotone submodular k-partition is 4/3. This

result improves on the 2-factor that was known to be achievable for monotone submodular
k-partition via other algorithms. Moreover, our upper bound of 4/3 matches the recently shown
lower bound under polynomial number of function evaluation queries [23]. Our upper bound of
4/3 is also the first improvement beyond 2 for a certain graph partitioning problem that is a
special case of monotone submodular k-partition.

2. The approximation factor of their algorithm for symmetric submodular k-partition is 2. This
result generalizes their approximation factor analysis beyond graph cut functions.

3. The approximation factor of their algorithm for posimodular submodular k-partition is 2.
We also construct an example to show that the approximation factor of their algorithm for arbitrary
submodular functions is Ω(n/k).
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1 Introduction

A set function f : 2V → R is submodular if f(A) + f(B) ≥ f(A ∩ B) + f(A ∪ B) for every
A, B ⊆ V . An evaluation oracle for a function f : 2V → R takes a subset A ⊆ V as input
and returns f(A). We consider the submodular k-partition problem defined as follows: The
input consists of a non-negative submodular function f : 2V → R≥0 on a finite ground set V

via an evaluation oracle and an integer k ≥ 2. The goal is to find a partition V1, V2, . . . , Vk of
V into k non-empty parts in order to minimize

∑k
i=1 f(Vi). Namely, the goal is to compute
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min

∑
i∈[k]

f(Vi) : V1, V2, . . . , Vk is a partition of V, Vi ̸= ∅ ∀i ∈ [k]

 .

Throughout, we will assume that the input submodular function is non-negative and denote
the size of the ground set V by n. If k = 2, then the problem reduces to the classic submodular
minimization problem. We emphasize that our focus is on submodular k-partitioning when
k is part of input (see [4] for a discussion of the problem for fixed constant k). Submodular
k-partition formulates several interesting partitioning problems and we will discuss some of
the special cases below. For arbitrary submodular functions, the problem is NP-hard [10],
does not admit a (2 − ϵ)-approximation assuming polynomial number of function evaluation
queries [23], does not admit a n1/(log log n)c-approximation for every constant c assuming
the Exponential Time Hypothesis [6], and the best approximation factor that is known is
O(k) [19, 26].

In this work, we will be interested in the submodular k-partition problem for subfamilies
of submodular functions – namely monotone, symmetric, and posimodular submodular
functions. A set function f : 2V → R is
1. monotone if f(B) ≥ f(A) for every A ⊆ B ⊆ V ,
2. symmetric if f(A) = f(V − A) for every A ⊆ V , and
3. posimodular if f(A) + f(B) ≥ f(A − B) + f(B − A) for every A, B ⊆ V .
If the input submodular function is monotone/symmetric/posimodular, then we call the
associated submodular k-partition problem as monotone/symmetric/posimodular submodular
k-partition. We note that monotone submodular functions and symmetric submodular
functions are also posimodular1. Hence, posimodular submodular k-partition problem
generalizes both monotone submodular k-partition and symmetric submodular k-partition
problems. We now discuss the approximation status of symmetric/monotone/posimodular
submodular k-partition and some of their well-known special cases (see Table 1 for a
summary of approximation factors of symmetric/monotone/posimodular submodular k-
partition achieved by different approaches).

Monotone submodular k-partition. Special cases of monotone submodular k-partition
problem include matroid k-partition and coverage k-partition – the submodular functions
of interest here are matroid rank functions and coverage functions respectively. Matroid
k-partition captures several interesting problems: e.g., (1) partition the columns of a given
matrix into k non-empty parts to minimize the sum of the dimension of the subspace spanned
by the parts and (2) partition the edges of a given graph into k non-empty parts to maximize
the sum of the number of connected components formed by the parts. Coverage k-partition
also captures several interesting problems: e.g., (3) partition the vertices of a given graph
into k non-empty parts V1, V2, . . . , Vk in order to minimize

∑k
i=1 f(Vi), where f(P ) is the

number of edges incident to the vertex subset P ⊆ V . To gain a better understanding of
the difficulty in solving/approximating monotone submodular k-partition, we encourage the
reader to briefly think about the concrete special case of matrix column partitioning problem
(i.e., problem (1) described above which is seemingly a linear algebra problem) before reading
further.

1 In fact, monotone functions are posimodular since f(A) ≥ f(A − B) and f(B) ≥ f(B − A) for every
A, B ⊆ V . Symmetric submodular functions are posimodular: for every A, B ⊆ V , we have that
f(A) + f(B) = f(V − A) + f(B) ≥ f((V − A) ∪ B) + f((V − A) ∩ B) = f(V − (A − B)) + f(B − A) =
f(A − B) + f(B − A).
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Monotone submodular k-partition is NP-hard [23]. Moreover, it admits a simple (and fast)
(2 − 1/k)-approximation algorithm that will be denoted henceforth as the cheapest singleton
partitioning algorithm: return the partition V1 := {v1}, V2 := {v2}, . . . , Vk−1 := {vk−1}, Vk :=
V − {v1, . . . , vk−1}), where the n elements of the ground set are ordered as v1, . . . , vn such
that f({v1}) ≤ f({v2}) ≤ . . . ≤ f({vn}). Santiago [23] showed that this is a 2-approximation.
His analysis can be extended to show that it is in fact a (2 − 1/k)-approximation2 and this is
the best possible approximation factor for this algorithm3. Alternatively, the greedy splitting
algorithm presented in [26] achieves a (2 − 2/k)-approximation. On the inapproximability
front, Santiago [23] showed that there does not exist an algorithm that makes polynomial
number of function evaluation queries to obtain a (4/3 − ϵ)-approximation for every constant
ϵ > 0.

Symmetric submodular k-partition. Well-known special cases of symmetric submodular
k-partition problem are graph k-cut and hypergraph k-partition – the submodular functions
of interest here are the cut functions of an explicitly given graph and hypergraph respectively.
Graph k-cut is NP-complete [10] and does not have a polynomial-time (2−ϵ)-approximation for
every constant ϵ > 0 under the Small Set Expansion Hypothesis [12]. There are several known
approaches to achieve a 2-approximation for graph k-cut – (i) greedy splitting approach [24],
(ii) Gomory-Hu tree based approach [25], (iii) extreme sets based approach [13], (iv) principal
partition sequence based approach [2, 18, 22], and (v) covering-LP based approach [7, 15, 21].
Greedy splitting, Gomory-Hu tree, and extreme sets based approaches lead to a (2 − 2/k)-
approximation while the principal partition sequence and the covering-LP based approaches
lead to a (2 − 2/n)-approximation for graph k-cut. The principal partition sequence and the
covering-LP based approaches for graph k-cut have also been shown to be related to each
other [7]. The principal partition sequence based approach is the main algorithm of interest
to our work and we will discuss it in detail in Section 2.

For the more general problem of symmetric submodular k-partition, two of the approaches
discussed in the previous paragraph for graph k-cut have been generalized to obtain 2-
approximations – the greedy splitting approach [26] and the Gomory-Hu tree approach
lead to a (2 − 2/k)-approximation. Analyzing the approximation factor of the principal
partition sequence based approach for symmetric submodular k-partition was one of the
driving motivations of our work. On the inapproximability front, Santiago [23] showed that
there does not exist an algorithm that makes polynomial number of function evaluation
queries to obtain a (2 − ϵ)-approximation for every constant ϵ > 0.

2 The cheapest singleton partitioning algorithm returns a solution whose cost is f(V −
Vk) +

∑k−1
i=1 f({vi}) ≤ f(V ) +

∑k−1
i=1 f({vi}) ≤ f(V ) + (1 − 1/k)

∑k

i=1 f({vi}) ≤
(2 − 1/k) max{f(V ),

∑k

i=1 f({vi})} while the cost of an optimum k-partition is at least
max{f(V ),

∑k

i=1 f({vi})}. The lower bound on the cost of the optimum k-partition V ∗
1 , . . . , V ∗

k

is because
∑k

i=1 f(V ∗
i ) ≥ f(V ) by non-negativity and submodularity and moreover, if the optimum

partition is indexed such that min{j ∈ [n] : vj ∈ V ∗
i } ≤ min{j ∈ [n] : vj ∈ V ∗

i+1} for all i ∈ [k − 1], then
f(V ∗

i ) ≥ f({vi}) by monotonicity and hence,
∑k

i=1 f(V ∗
i ) ≥

∑k

i=1 f({vi}).
3 The best possible approximation factor for the cheapest singleton partitioning algorithm is 2−1/k as seen

from this example: Let f be the rank function of a partition matroid on a k-partition {S1, . . . , Sk} of the
ground set S where |Si| ≥ 2 for all i ∈ [k]. Then, the algorithm may return {{s1}, {s2}, . . . , {sk−1}, S −
{s1, . . . , sk−1}}, where si ∈ Si for all i ∈ [k − 1] and this k-partition has objective value 2k − 1, whereas
the partition {S1, . . . , Sk} has objective value k.
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3:4 Approximating Submodular k-Partition via Principal Partition Sequence

Posimodular submodular k-partition. The only natural family of posimodular submodular
functions that we are familiar with are symmetric submodular functions and monotone
submodular functions as well as their positive linear combinations. As mentioned before,
posimodular submodular k-partition is a unified generalization of symmetric submodular
k-partition and monotone submodular k-partition. To the best of authors’ knowledge, posi-
modular submodular k-partition has not been studied in the literature before and there are
no specialized algorithms or approximation factor analysis of existing algorithms for posi-
modular submodular k-partition. A slight modification to the analysis of the greedy splitting
algorithm presented in [26] shows that their algorithm achieves a (3 − 2/k)-approximation
for posimodular submodular k-partition – we refrain from presenting this analysis in the
interests of brevity. On the inapproximability front, since symmetric submodular functions
are also posimodular submodular, the lower bound for symmetric submodular k-partition
also holds for posimodular submodular k-partition, i.e., there does not exist an algorithm for
posimodular submodular k-partition that makes polynomial number of function evaluation
queries to obtain a (2 − ϵ)-approximation for every constant ϵ > 0.

1.1 Our Results
In this work, we investigate Narayanan, Roy, and Patkar’s [18] principal partition sequence
based algorithm for submodular k-partition. They showed that their algorithm achieves a 2-
approximation for graph k-cut (which was subsequently rediscovered by Ravi and Sinha [22]).
We show the following results:
1. Their algorithm achieves a 4/3-approximation for monotone submodular k-partition. This

result improves on the 2-factor that is known to be achievable via two different algorithms:
the cheapest singleton partitioning algorithm and the greedy splitting algorithm. Moreover,
our upper bound of 4/3 matches the lower bound shown by Santiago [23]. We will discuss
the significance of our upper bound result shortly.

2. Their algorithm achieves a 2-approximation for symmetric submodular k-partition. This
factor matches the 2-factor that is known to be achievable via two other algorithms: the
greedy splitting algorithm and the Gomory-Hu tree based algorithm, and also matches
the lower bound [12,23]. Our contribution here is generalizing the analysis of [18,22] to
beyond graph cut functions.

3. Their algorithm achieves a 2-approximation for posimodular submodular k-partition. This
result improves on the 3-factor that is known to be achievable via the greedy splitting
algorithm and matches the lower bound of 2 shown by Santiago [23].

See Table 1 for a comparison. Graph k-cut is the well-studied special case of symmetric
submodular k-partition/posimodular submodular k-partition, so we include that as the last
column in the table for comparison. Approximation factors in the row corresponding to
principal partition sequence are the main results of this work. In the last row of the table,
we include the known lower bounds on the approximation factor for comparison. The lower
bound for graph cut function is assuming the Small Set Expansion Hypothesis [12] while
the rest of the lower bounds are assuming polynomial number of function evaluation queries.
Dashes in the table indicate that either the approach does not extend or there has been no
analysis of the approximation factor of the approach for the subfamily.

We complement our upper bounds on the approximation factor of their algorithm with
matching lower bound constructions for each subfamily of submodular functions. Our
results show that the principal partition sequence based algorithm achieves the best possible
approximation factor for broad subfamilies of submodular functions, thus illustrating the
power and applicability of this algorithm. On the other hand, we show that the approximation
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factor of their algorithm for arbitrary submodular functions is Ω(n/k) via a lower bound
construction. This construction shows that their principal partition sequence based algorithm
cannot directly improve the approximation factor for submodular k-partition beyond the
current best O(k).

We briefly discuss the significance of our 4/3-approximation result for monotone submod-
ular k-partition. Firstly, prior to our results, there were no known families of submodular
functions for which the submodular k-partition problem could be approximated to a factor
better than 2. Our result for monotone submodular functions breaks this 2-factor barrier
for a broad family of submodular functions. Secondly, our result for monotone submodular
k-partition leads to a new approximation result even for a graph partitioning problem that
we describe now. For a graph G = (V, E) with edge weights w : E → R+, consider functions
d, f : 2V → R+ defined by d(S) := w(δ(S)) and f(S) := w(E[S]) + w(δ(S)) for every S ⊆ V ,
where δ(S) denotes the set of edges with exactly one end-vertex in S, E[S] denotes the set of
edges with both end-vertices in S, and w(F ) :=

∑
e∈F w(e) for every F ⊆ E. The function

d is the cut function of the graph and is symmetric submodular. The function f is the
coverage function of the graph and is monotone submodular. Submodular k-partition for
the function d is known as graph k-cut and it is known that graph k-cut does not admit a
(2− ϵ)-approximation under the Small Set Expansion Hypothesis [12]. In contrast, our results
show that coverage k-partition in graphs – i.e., submodular k-partition for the function f –
admits a 4/3-approximation. We note that coverage k-partition in graphs is NP-hard [23]
and its approximability is an intriguing open question.

Table 1 Approximation factors of symmetric/monotone/posimodular submodular k-partition
using different approaches. Result in the first row marked with an asterisk follows by slight
modifications to the known analysis of the approximation factor for symmetric submodular functions
given in [26].

Monotone Symmetric Posimodular Graph
Submodular Submodular Submodular Cut Function

Function Function Function
Greedy splitting 2 − 2/k [26] 2 − 2/k [26] 3 − 2/k [26]* 2 − 2/k [24]

Extreme Sets — — — 2 − 2/k [13]
Gomory-Hu tree — 2 − 2/k [Folklore] — 2 − 2/k [25]

Covering-LP — — — 2 − 2/k [7, 15]
Cheapest Singleton 2 − 1/k [23] — — —

Partitioning
Principal Partition 4/3 − 4/(9n + 3) 2 − 2/n 2 − 2/(n + 1) 2 − 2/n [18, 22]

Sequence (this work) (this work) (this work)
Lower Bound 4/3 − ϵ [23] 2 − ϵ [23] 2 − ϵ [23] 2 − ϵ [12]

Organization. We discuss the principal partition sequence based algorithm in Section 2. We
analyze the approximation factor of the algorithm with matching lower bound constructions
for monotone submodular k-partition in 3. Due to space limitations, we refer the reader
to the full version of the work [5] for the analysis of the approximation factor of the
constructionsalgorithm with matching lower bound constructions for symmetric submodular
k-partition and posimodular submodular k-partition. We exhibit an instance of submodular
k-partition where the algorithm achieves an approximation factor of Ω(n/k) in Section 4 and
conclude with certain open questions in Section 5.
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3:6 Approximating Submodular k-Partition via Principal Partition Sequence

1.2 Related work

The principal partition sequence based algorithm for submodular k-partition was introduced
by Narayanan, Roy, and Patkar [18]. We will formally define the principal partition sequence
of a submodular function and describe their algorithm in Section 2. They analyzed the
approximation factor of their algorithm for two variants of k-partitioning problems in
hypergraphs. These two variants are not special cases of symmetric/monotone/posimodular
submodular k-partition and are not of direct interest to our work. However, we describe
these variants to highlight the versatility of the principal partition sequence based approach
and also to shed light on the results of Narayanan, Roy, and Patkar’s work which do not
seem to be well-known in the literature. Given a hypergraph H = (V, E), a hyperedge cost
function c : E → R+, and an integer k, the goal is to find a partition P := {V1, V2, . . . , Vk}
of V into k non-empty parts that minimizes an objective of interest:

1. If the objective is the sum of cost of hyperedges that intersect at least two parts of P,
then the problem is known as hypergraph k-cut.

2. If the objective is the sum of cost of hyperedges relative to the partition P, where the
cost of a hyperedge e relative to P is c(e)(ℓ − 1) with ℓ being the number of parts of P
intersected by e, then the problem is known as normalized coverage k-partition4.

Narayanan, Roy, and Patkar [18] showed that their principal partition sequence based
algorithm achieves a r(1 − 1/n)-approximation for hypergraph k-cut, where r is the size of
the largest hyperedge and n is the number of vertices in the input hypergraph, and achieves
a (2 − 2/n)-approximation for normalized coverage k-partition. A consequence (of both of
their results) is that the principal partition sequence based algorithm achieves a (2 − 2/n)-
approximation for graph k-cut. Their principal partition sequence based algorithm for graph
k-cut is equivalent to the Lagrangean relaxation approach suggested by Barahona [2]. The
approximation factor of the principal partition sequence based algorithm for graph k-cut
being at most 2 was rediscovered by Ravi and Sinha [22] and for hypergraph k-cut being at
most r was rediscovered by Baïou and Barahona [1].

We mention that a slight modification to the analysis of the greedy splitting algorithm
presented in [26] shows that the greedy splitting algorithm achieves a (2−2/k)-approximation
for normalized coverage k-partition and hypergraph k-partition. We note that hypergraph
k-partition is a special case of symmetric submodular k-partition and is different from hyper-
graph k-cut (for definition of hypergraph k-partition, see discussion of symmetric submodular
k-partition at the beginning of the introduction). On the inapproximability front, it is known
that hypergraph k-cut does not admit an approximation factor of n1/(log log n)c , where c is a
constant, assuming the Exponential Time Hypothesis [6]. The best inapproximability result
for the more general submodular k-partition problem (mentioned in the introduction) follows
from this inapproximability for hypergraph k-cut.

4 We introduce this nomenclature because the problem is equivalent to finding a partition V1, V2, . . . , Vk

of the ground set V in order to minimize
∑k

i=1 f(Vi) − f(V ), where f : 2V → R+ is an explicitly given
coverage function (every coverage function can be uniquely represented using a hypergraph [3]). We
consider the subtraction of f(V ) as normalizing the objective since it is a trivial lower bound on the
sum of the function values of the parts:

∑k

i=1 f(Vi) ≥ f(V ) holds for every k-partition V1, V2, . . . , Vk

since f is a coverage function.
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2 Principal partition sequence based algorithm

In this section, we recall the principal partition sequence based algorithm for submodular
k-partition designed by Narayanan, Roy, and Patkar [18]. We begin with some notation.
Throughout this work, a partition of a set S is defined to be a collection of nonempty pairwise
disjoint subsets of S whose union is S, and a k-partition of a set S is defined to be a partition
of S with exactly k parts. For two distinct partitions P and Q of a set S, if every part of Q
is completely contained in some part of P then we say that Q refines P (equivalently, P is
a coarsening of Q). For two distinct partitions P and Q of a set S, we will say that Q is
obtained from P by refining only one part of P if there exists a part P ∈ P such that P /∈ Q
and every part Q ∈ Q satisfies either Q ⊊ P or Q ∈ P (i.e., either Q is a proper subset of
the part P or Q is a part of the partition P); we will denote such a part P ∈ P as the part
refined by Q.

Let f : 2V → R be a set function on ground set V . For a collection P of subsets of
V , we write f(P) :=

∑
P ∈P f(P ). We will say that a partition P = {P1, . . . , Pk} is an

optimal k-partition if f(P) ≤ f(Q) for every k-partition Q of V . We define the function
gf,P : R≥0 → R for a partition P of the ground set V and the function gf : R≥0 → R as
follows:

gf,P(b) := f(P) − b|P| and
gf (b) := min{gf,P(b) : P is a partition of V }.

We drop the subscript f and instead write gP and g respectively, if the function f is clear
from context. By definition, the function gf is piece-wise linear. It can be shown that gf

has at most |V | − 1 breakpoints. The next theorem shows that if the function f : 2V → R is
submodular, then there exists a sequence of partitions achieving the gf function values at
the breakpoints that have a nice structure; moreover, the breakpoints and such a sequence
of partitions can be computed in polynomial time given access to the evaluation oracle of
the submodular function f . We emphasize that the theorem holds for arbitrary submodular
functions (which may not be non-negative valued).

▶ Theorem 1 ([16,18]). Let f : 2V → R be a submodular function on a ground set V . Then,
there exists a sequence P1, P2, . . . , Pr of partitions of V and values b1, b2, . . . , br−1 such that
1. P1 = {V } and Pr = {{v} : v ∈ V },
2. For each j ∈ [r − 1], the partition Pj+1 is obtained from Pj by refining only one part of

Pj,
3. b1 < b2 < . . . < br−1,
4. g(bj) = gPj (bj) = gPj+1(bj) for each j ∈ [r − 1] and
5. g(b) = gP1(b) for all b ∈ (−∞, b1],

g(b) = gPj+1(b) for all b ∈ [bj , bj+1] for each j ∈ [r − 2], and
g(b) = gPr

(b) for all b ∈ [br−1, ∞).
Moreover, such a sequence P1, P2, . . . , Pr of partitions of V and values b1, b2, . . . , br−1 can
be computed in polynomial time given access to the evaluation oracle of the submodular
function f .

For a submodular function f : 2V → R, we will denote a sequence of partitions
P1, P2, . . . , Pr and the sequence of values b1, b2, . . . , br−1 satisfying the conditions given
in Theorem 1 as a principal partition sequence and the critical value sequence of f , respec-
tively. We note that this definition differs from those in [16,18] owing to the reversed indexing
order and the imposition of condition 2 – we note that the proofs given in those papers also
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3:8 Approximating Submodular k-Partition via Principal Partition Sequence

show that condition 2 holds (also see [22]). The principal partition sequence of submodular
functions is known in the literature as principal lattice of partitions of submodular functions
since there exists a lattice structure associated with the sequence of partitions. We choose to
call it as principal partition sequence in this work since the sequence suffices for our purpose.
For more on principal lattice of partitions of submodular functions and their computation,
we refer the reader to [2, 8, 9, 11,14,16–18,20].

We now discuss the principal partition sequence based algorithm for submodular k-
partition that was proposed by Narayanan, Roy, and Patkar [18]. This algorithm computes a
principal partition sequence satisfying all conditions in Theorem 1. If the sequence contains a
partition that has exactly k parts, then the algorithm returns this k-partition. Otherwise, the
algorithm returns a k-partition obtained by refining the partition in the sequence that has
the largest number of parts that is less than k. The refinement is based on the partition in
the sequence that has the fewest number of parts that is more than k. The formal description
of the refinement is given in Algorithm 1. Since the sequence P1, P2, . . . , Pr satisfying the
conditions of Theorem 1 can be computed in polynomial time, Algorithm 1 can indeed be
implemented to run in polynomial time. By design, the algorithm returns a k-partition. The
remainder of this work will focus on analyzing the approximation factor of the algorithm.

Algorithm 1 Principal partition sequence based algorithm for submodular k-partition.

Input: A submodular function f : 2V → R given by evaluation oracles and an integer
k ≥ 2.
Output: A k-partition P of V .
Use Theorem 1 to compute a principal partition sequence P1, P2, . . . , Pr of the submodular
function f satisfying all conditions stated in that theorem.
if |Pj | = k for some j ∈ [r] then

Return P := Pj .
end if
Let i ∈ {2, 3, . . . , r} so that |Pi−1| < k < |Pi|.
Let S ∈ Pi−1 be the part refined by Pi and P ′ be the parts of Pi contained in S.
Let P ′ = {B1, . . . , B|P′|} such that f(B1) ≤ f(B2) ≤ . . . ≤ f(B|P′|).
Return P := (Pi−1\{S}) ∪

{
B1, B2, . . . , Bk−|Pi−1|

}
∪
{⋃|P′|

j=k−|Pi−1|+1 Bj

}
.

To construct examples that exhibit tight lower bound on the approximation factor of
Algorithm 1, we will need the following proposition that identifies a special case under which
the principal partition is unique and consists only of two partitions – namely, the partition
into singletons and the partition that consists of only one part. We refer the reader to the
full version of this work for the proof [5].

▶ Proposition 2. Let f : 2V → R≥0 be a non-negative submodular function. Suppose that
for every partition P ̸= Q, {V } where Q := {{v} : v ∈ V }, the function f satisfies

f(P) − f(V )
|P| − 1 >

f(Q) − f(V )
|V | − 1 .

Then, the principal partition sequence of f is {V }, Q.
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3 Approximation factor analysis

In this section, we analyze the approximation factor of Algorithm 1 for various subfamilies
of submodular functions. We state and prove certain lemmas that will be useful for all
submodular functions (Lemmas 3 and 4). We analyze the approximation factor of Algorithm
1 for monotone submodular functions in Section 3.1. We refer the reader to the full version
of this work [5] for the analysis of the approximation factor of Algorithm 1 for symmetric
submodular functions and for posimodular submodular functions.

Our first lemma identifies a special case in which Algorithm 1 returns an optimum
k-partition. This special case was also identified by Narayanan, Roy, and Patkar. We
note that the following lemma holds for arbitrary submodular functions (which may not be
non-negative).

▶ Lemma 3 ([18]). Let k ≥ 2 be an integer, f : 2V → R be a submodular function on a
ground set V , and P1, P2, . . . , Pr be a principal partition sequence of the submodular function
f satisfying the conditions of Theorem 1. If there exists j ∈ [r] such that |Pj | = k, then Pj

is an optimal k-partition.

Proof. Let P∗ be a k-partition of V that minimizes f(P∗) and let bj be the value where
g(bj) = gPj

(bj). Then,

f(P∗) − bj · k = gP∗(bj) ≥ g(bj) = gPj (bj) = f(Pj) − bj |Pj | = f(Pj) − bj · k,

and hence, f(P∗) ≥ f(Pj). Therefore, Pj is indeed an optimal k-partition. ◀

In order to address the case where there is no j ∈ [r] such that |Pj | = k, we need the
following lemma that shows two lower bounds on the optimum value. The first lower bound
in the lemma holds for arbitrary submodular functions (which may not be non-negative)
while the second lower bound holds for non-negative submodular functions.

▶ Lemma 4. Let k ≥ 2 be an integer, f : 2V → R be a submodular function on a ground set
V , P∗ be a k-partition of V that minimizes f(P∗), and P1, P2, . . . , Pr be a principal partition
sequence of the submodular function f satisfying the conditions of Theorem 1. Suppose
|Pj | ̸= k for all j ∈ [r]. Let Pi−1, Pi be the partitions such that |Pi−1| < k < |Pi|. Then,

(i) f(P∗) ≥ |Pi|−k
|Pi|−|Pi−1| f(Pi−1) + k−|Pi−1|

|Pi|−|Pi−1| f(Pi) and
(ii) f(P∗) ≥ f(Pi−1) if f is non-negative.

Proof. We prove the two lower bounds below.
(i) Let bi−1 be the value such that gPi−1(bi−1) = gPi

(bi−1). Then, we have

f(Pi−1) − bi−1|Pi−1| = f(Pi) − bi−1|Pi| =⇒ bi−1 = f(Pi) − f(Pi−1)
|Pi| − |Pi−1|

. (1)

By condition 4 of Theorem 1, we also have

f(P∗) − bi−1 · k = gP∗(bi−1) ≥ g(bi−1) = gPi(bi−1) = f(Pi) − bi−1|Pi|
=⇒ f(P∗) ≥ f(Pi) + bi−1(k − |Pi|). (2)

Combining (1) and (2), we get

f(P∗) ≥ f(Pi) + f(Pi) − f(Pi−1)
|Pi| − |Pi−1|

(k − |Pi|)

= |Pi| − k

|Pi| − |Pi−1|
f(Pi−1) + k − |Pi−1|

|Pi| − |Pi−1|
f(Pi).
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(ii) Let P ∗
1 , . . . , P ∗

k be the parts of P∗ (in arbitrary order). Let k′ := |Pi−1|. We know that
k′ < k. Consider the k′-partition Q obtained as Q1 := P ∗

1 , Q2 := P ∗
2 , . . . , Qk′−1 :=

P ∗
k′−1, Qk′ := ∪k

j=k′P ∗
j . Then,

f(P∗) =
k∑

i=1
f(P ∗

i ) ≥

k′−1∑
i=1

f(P ∗
i )

+ f(∪k
j=k′P ∗

j ) =
k′∑

i=1
f(Qi) = f(Q).

The inequality above is due to submodularity and non-negativity. The partition Q is a
k′-partition. By Lemma 3, the partition Pi−1 is an optimal k′-partition. Hence,

f(Q) ≥ f(Pi−1).

The above two inequalities together imply that f(P∗) ≥ f(Pi−1). ◀

3.1 Monotone submodular functions

In this section, we bound the approximation factor of Algorithm 1 for monotone submodular
k-partitioning. The following is the main theorem of this section.

▶ Theorem 5. The approximation factor of Algorithm 1 for non-negative monotone submod-
ular k-partitioning is 4

3 − 4
9n+3 , where n is the size of the ground set.

The asymptotic approximation factor of 4/3 achieved by Algorithm 1 is the best possible
for non-negative monotone submodular k-partition: for every constant ϵ > 0, there does
not exist an algorithm that achieves a (4/3 − ϵ)-approximation using polynomial number of
function evaluation queries [23]. We will also exhibit examples to show the tightness of the
approximation factor for Algorithm 1 after proving the theorem. The proof of Theorem 5
follows from Lemma 3 and Lemma 6 shown below.

▶ Lemma 6. Let k ≥ 2 be an integer, f : 2V → R≥0 be a non-negative monotone submodular
function on a ground set V of size n, P∗ be a k-partition of V that minimizes f(P∗), and
P1, P2, . . . , Pr be a principal partition sequence of the submodular function f satisfying the
conditions of Theorem 1. Suppose |Pj | ̸= k for all j ∈ [r]. Then, the partition P returned by
Algorithm 1 satisfies

f(P) ≤
(

4
3 − 4

9n + 3

)
f(P∗).

Proof. Let Pi−1, Pi be the partitions such that |Pi−1| < k < |Pi|. Let S and P ′ =
{B1, B2, . . . , B|P′|} be as in Algorithm 1.

Firstly, since ∪|P′|
j=k−|Pi−1|+1Bj ⊆ S and f is monotone, we have that

f
(

∪|P′|
j=k−|Pi−1|+1Bj

)
≤ f(S).

Secondly, by our choice of B1, B2, . . . , Bk−|Pi−1|, we know that

k−|Pi−1|∑
j=1

f(Bj) ≤ k − |Pi−1|
|P ′|

f(P ′).
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Hence,

f(P) = f(Pi−1) − f(S) +
k−|Pi−1|∑

j=1
f(Bj) + f

 |P′|⋃
j=k−|Pi−1|+1

Bj


≤ f(Pi−1) +

k−|Pi−1|∑
j=1

f(Bj)

≤ f(Pi−1) + k − |Pi−1|
|P ′|

f(P ′)

= f(Pi−1) + k − |Pi−1|
|Pi| − |Pi−1| + 1(f(Pi) + f(S) − f(Pi−1)),

where the last equality follows from the fact that f(Pi−1) − f(S) + f(P ′) = f(Pi) and
|P ′| = |Pi| − |Pi−1| + 1. Rearranging, we have that

f(P) ≤ f(Pi−1)
|Pi| − |Pi−1| + 1(|Pi| − k + 1) + f(Pi)

|Pi| − |Pi−1| + 1(k − |Pi−1|)

+ f(S)
|Pi| − |Pi−1| + 1(k − |Pi−1|)

=
(

|Pi| − |Pi−1|
|Pi| − |Pi−1| + 1

)(
f(Pi−1)

|Pi| − |Pi−1|
(|Pi| − k + 1) + f(Pi) + f(S)

|Pi| − |Pi−1|
(k − |Pi−1|)

)
≤
(

|Pi| − |Pi−1|
|Pi| − |Pi−1| + 1

)(
f(P∗) + f(Pi−1)

|Pi| − |Pi−1|
+ f(S)

|Pi| − |Pi−1|
(k − |Pi−1|)

)
≤
(

|Pi| − |Pi−1|
|Pi| − |Pi−1| + 1

)(
f(P∗) + f(Pi−1)

|Pi| − |Pi−1|
(1 + k − |Pi−1|)

)
. (3)

where the second inequality above is by by Lemma 4(i) and the third inequality above is
because f(S) ≤ f(Pi−1). Inequality (3) implies that

f(P) ≤
(

|Pi| − |Pi−1|
|Pi| − |Pi−1| + 1

)(
f(P∗) + f(Pi−1) + f(Pi−1)

|Pi| − |Pi−1|
(1 + k − |Pi|)

)
≤
(

1 − 1
|Pi| − |Pi−1| + 1

)
(f(P∗) + f(Pi−1)) (since k < |Pi|)

≤ 2f(P∗),

where the last inequality is because f(Pi−1) ≤ f(P∗) by Lemma 4(ii). The above analysis
shows that the approximation factor is at most 2. We tighten the analysis now. As a
consequence of the above inequality, we may assume that f(P∗) ̸= 0 because if f(P∗) = 0,
then the returned k-partition P also satisfies f(P) = 0 and thus, is optimal. Let c :=
f(Pi−1)/f(P∗). By Lemma 4(ii), we have that f(Pi−1) ≤ f(P∗) and hence, c ∈ [0, 1]. For
convenience, we define A := k − |Pi−1| and B := |Pi| − k and note that A, B ≥ 1. Using this
notation, we may rewrite inequality (3) as

f(P) ≤
(

A + B

A + B + 1

)(
f(P∗) + 1 + A

A + B
f(Pi−1)

)
=
(

A + B

A + B + 1

)(
1 + 1 + A

A + B
· c

)
f(P∗). (4)

By Lemma 4(i), we have

f(P∗) ≥
(

B

A + B

)
f(Pi−1) +

(
A

A + B

)
f(Pi) =

(
B

A + B

)
cf(P∗) +

(
A

A + B

)
f(Pi).
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Rearranging, we have

f(Pi) ≤
(

1 − B

A + B
· c

)(
A + B

A

)
f(P∗) =

(
A + B

A
− B

A
· c

)
f(P∗).

Since P is obtained by coarsening Pi, we have f(P) ≤ f(Pi) by submodularity and non-
negativity of f . This implies

f(P) ≤
(

A + B

A
− B

A
· c

)
f(P∗). (5)

Combining inequalities (4) and (5), we have

f(P)
f(P∗) ≤ max

c∈[0,1]
min

{(
A + B

A + B + 1

)(
1 + 1 + A

A + B
· c

)
,

A + B

A
− B

A
· c

}
. (6)

Thus, in order to upper bound the approximation factor, it suffices to upper bound the right
hand side of inequality (6). Since

(
A+B

A+B+1

)(
1 + 1+A

A+B · c
)

and A+B
A − B

A · c are both linear
in c, with the former increasing and the latter decreasing as a function of c, the value

max
c∈R

min
{(

A + B

A + B + 1

)(
1 + 1 + A

A + B
· c

)
,

A + B

A
− B

A
· c

}

is achieved when the two terms are equal. Setting
(

A+B
A+B+1

)(
1 + 1+A

A+B · c∗
)

= A+B
A − B

A · c∗

and solving for c∗, we get

c∗ =
A+B

A − A+B
A+B+1

1+A
A+B+1 + B

A

=
B
A + 1

A+B+1
1+A

A+B+1 + B
A

.

Plugging c = c∗ into A+B
A − B

A · c yields

f(P)
f(P∗) ≤ max

c∈[0,1]
min

{
A + B

A + B + 1

(
1 + 1 + A

A + B
· c

)
,

A + B

A
− B

A
· c

}
≤ A + B

A
− B

A
· c∗ = 1 + B

A
(1 − c∗) = 1 + B

A

(
1 −

B
A + 1

A+B+1
1+A

A+B+1 + B
A

)

= 1 + AB

A + A2 + AB + B2 + B

≤ 1 + AB

3AB + A + B
(since A2 + B2 ≥ 2AB)

= 4
3 − 1

3 · A + B

3AB/2 + 3AB/2 + A + B

≤ 4
3 − 1

3 · A + B

3AB/2 + 3(A2 + B2)/4 + A + B
(since AB ≤ A2 + B2

2 )

= 4
3 − 1

3 · 1
3(A + B)/4 + 1

≤ 4
3 − 4

9n + 3 .

The last inequality above is because A + B = |Pi| − |Pi−1| ≤ n − 1. ◀
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▶ Remark 7. The approximation factor of Algorithm 1 for non-negative monotone submodular
functions is at least 4/3 − 4/(9n + 3). We show this for n = 3 using the following example:
Let V = {a, b, c}, k = 2, and f : 2V → R≥0 be defined by

f(∅) = 0, f({a}) = 1, f({b}) = f({c}) = 1 + ϵ,

f({a, b}) = f({a, c}) = 3
2 + ϵ, f({b, c}) = f(V ) = 2 + 2ϵ.

Submodularity and monotonicity of f can be verified by considering all possible subsets.
Moreover, the principal partition sequence of this instance is {V }, {{a}, {b}, {c}}. Thus,
Algorithm 1 returns the 2-partition {{a}, {b, c}}, whose objective value is 3+2ϵ. An optimum
2-partition is {{c}, {a, b}}, whose objective value is 5/2 + ϵ. Thus, the approximation factor
is 3+2ϵ

5/2+ϵ → 6
5 as ϵ → 0. We note that for n = 3, the approximation factor guaranteed by

Theorem 5 is 4
3 − 4

9n+3 = 6
5 .

We conclude the section by showing that there exist monotone submodular functions
for which the approximation factor of Algorithm 1 is at least 4/3 asymptotically (i.e., as
n → ∞).
▶ Lemma 8. For every odd positive integer n ≥ 5, there exists a function k = k(n) (i.e., k

is a function of n) and an instance of non-negative monotone submodular k-partition over
an n-element ground set such that the approximation factor of Algorithm 1 on that instance
is arbitrarily close to 4/3 − 4/(3n + 3).
Proof. Let n ≥ 5 be an arbitrary odd number, k = n+1

2 , and let V = {v1, . . . , vn} be the
ground set. Moreover, let U := {v1, . . . , v n−1

2
} and D := {v n+1

2
, . . . , vn} so that V = U ⊎ D.

Let g : 2U → R≥0 be a function over the ground set U defined by

g(S) =
{

1
2 + 1

2 · |S| if ∅ ̸= S ⊆ U,

0 if S = ∅.

and f : 2V → R≥0 be defined by

f(S) := min
{

g(S ∩ U) + (1 + ϵ)|S ∩ D|, n + 1
2

}
∀ S ⊆ V,

where ϵ > 0 is infinitesimally small. The function f satisfies f(∅) = 0, f(V ) = n+1
2 ,

f(U) = n+1
4 , f(D) = n+1

2 , f({v}) = 1 for each v ∈ U , and f({v}) = 1 + ϵ for each u ∈ D.
We will use Q to denote the partition of V into n singleton sets. The following claims show
properties about the function f . We refer the reader to the full version of this work for the
proof [5].
▷ Claim 9. The function f is submodular and monotone.
▷ Claim 10. For every partition P ̸= Q, {V }, the function f satisfies

f(P) − f(V )
|P| − 1 >

f(Q) − f(V )
n − 1 .

By Proposition 2, Algorithm 1 returns the partition {{v1}, . . . , {v n−1
2

}, D} (because
{v1}, . . . , {v n−1

2
} are the k − 1 singleton sets that minimize the f values), whose objective is

n−1
2 + n+1

2 = n. The partition {{v1, . . . , v n+1
2

}, {v n+3
2

}, . . . , {vn}} has objective n+1
4 + (1 +

ϵ) + (1 + ϵ) n−1
2 = 3n+3

4 + (n+1)ϵ
2 . The approximation factor is at least

n
3n+3

4 + (n+1)ϵ
2

→ 4
3 − 4

3n + 3 (as ϵ → 0).

This completes the proof of Lemma 8. ◀

APPROX/RANDOM 2023
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4 Lower bound for arbitrary submodular functions

In this section, we present an instance of submodular k-partition where Algorithm 1 achieves
an approximation factor of Ω(n/k). We emphasize that the submodular function in our
instance is not symmetric/monotone/posimodular.

Let V = {v0, v1, . . . , vn−1} be the ground set. We define a digraph D = (V, E(D)) and a
hypergraph H = (V, E(H)) on the same vertex set V as follows (see Fig.1):

E(D) = {v0vi : i ∈ [n − 1]} and
E(H) = {{v1, v2, . . . , vn−1}}.

Figure 1 Example in Section 4. The arcs belong to the digraph D and the hyperedge {v1, . . . , vn−1}
belongs to the hypergraph H.

For every subset S ⊆ V , we will use din
D (S) to denote the number of arcs in D whose

tails are in S̄ and heads are in S. We will use dH(S) to denote the number of hyperedges in
H that have at least one vertex in S and one vertex in S̄. Next, we define a set function
f : 2V → R≥0 by

f(S) := a · din
D (S) + dH(S) ∀S ⊆ V,

where a ≫ 1 is a large constant. We note that f is submodular because it is a positive linear
combination of two submodular functions (and it is not monotone/symmetric/posimodular).

▷ Claim 11. The principal partition sequence of f is {V }, {{vi} : i ∈ {0, 1, . . . , n − 1}}.

Proof. For convenience, we will use Q to denote the partition of V into singletons. By
Proposition 2 and the fact that f(V ) = 0, it suffices to prove that for every partition P of V

such that P is not Q or {V }, we have that

f(P)
|P| − 1 >

f(Q)
n − 1 . (7)

Let P0 ∈ P be the part that contains v0. Then, we have that f(P0) ≥ 1 if P0 ̸= {v0} and
f(P0) = 0 otherwise. For each part P ∈ P that does not contain v0, we have that f(P ) ≥ 1+a

if |P | = 1 and f(P ) ≥ 2+a if |P | ≥ 2. Since P ̸= Q, we have that either P0 ̸= {v0} or at least
one of the parts P ∈ P\{P0} has size |P | ≥ 2. Thus, f(P) =

∑
P ∈P f(P ) ≥ (1+a)(|P|−1)+1.

Moreover, we have f(Q) = (1 + a)(n − 1) and hence

f(P)
|P| − 1 ≥ (1 + a)(|P| − 1) + 1

|P| − 1 = 1 + a + 1
|P| − 1 > 1 + a = (1 + a)(n − 1)

n − 1 = f(Q)
n − 1 .

This proves inequality (7). ◁
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▷ Claim 12. The approximation factor of Algorithm 1 on input (f, k) is Ω(n/k).

Proof. We note that f({v0}) = 0 and f({vi}) = 1 + a for all i ∈ [n − 1]. By Claim 11,
on input (f, k), Algorithm 1 returns a partition P consisting of the k − 1 singleton parts
that minimizes f among all singleton sets and the complement of the union of these k − 1
singleton parts. Therefore, the returned partition P contains {v0} as a part and thus

f(P) =
∑

P ∈P:P ̸={v0}

f(P ) ≥ f(V − {v0}) = a(n − 1).

The second inequality follows from submodularity of the function f . Consider the k-partition
{{v1}, {v2}, . . . , {vk−1}, V − {v1, . . . , vk−1}}, which has objective (1 + a)(k − 1) + 1. This
implies that the optimum k-partition P∗ satisfies f(P∗) ≤ (1 + a)(k − 1) + 1. Thus, the
approximation factor of the solution returned by Algorithm 1 is

f(P)
f(P∗) ≥ a(n − 1)

(1 + a)(k − 1) + 1 → n − 1
k − 1 as a → ∞. ◁

5 Conclusion

The principal partition sequence of submodular functions was shown to exist by
Narayanan [16]. The principal partition sequence of submodular functions is known in
the literature as principal lattice of partitions of submodular functions since there exists a
lattice structure associated with the sequence of partitions [2, 8, 9, 11, 14, 17, 20]. We chose to
call it as principal partition sequence in this work since the sequence suffices for our purpose.
Narayanan, Roy, and Patkar [18] used the principal partition sequence to design an algorithm
for submodular k-partition. They analyzed the approximation factor of their algorithm for
certain subfamilies of submodular functions that arise from hypergraphs. In this work, we
investigated the approximation factor of their algorithm for three broad subfamilies of sub-
modular functions – namely monotone, symmetric, and posimodular submodular functions.
Our results show that the principal partition sequence based algorithm achieves the best
possible asymptotic approximation factor for all these three subfamilies. A novelty of our
contributions is the improvement in the approximability of monotone submodular k-partition
from 2 to 4/3, thus matching the inapproximability threshold. It would be interesting to
pin down the approximability of special cases of monotone submodular k-partition – e.g.,
matroid k-partition and coverage k-partition which are interesting by themselves since they
capture several interesting partitioning problems.
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1 Introduction

In experimental design problems, we are given vectors v1, . . . , vn ∈ Rd and a budget k ≥ d,
and the goal is to choose a subset S of k vectors so that

∑
i∈S viv⊤

i optimizes some objective
function that measures the “diversity” of the input data. The most popular and well-studied
objective functions are:

D-design: Maximizing (det(
∑

i∈S viv⊤
i )) 1

d .
A-design: Minimizing 1

d tr((
∑

i∈S vivi)−1).
E-design: Maximizing λmin(

∑
i∈S viv⊤

i ).

Experimental design problems have a long history and wide applications, from statistics
to machine learning to numerical linear algebra to graph algorithms. For more information
on these applications, we refer the reader to [13, 11, 1, 7, 6] and the references therein.

Although the objectives of D/A/E-design look quite different, we observe that there is a
natural generalization using eigenvalues that captures all three objectives as special cases.
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▶ Definition 1 (p-Norm of Inverse Eigenvalues). Given a d-dimensional real-symmetric matrix
A with eigenvalues λ1, . . . , λd > 0 and a natural number 0 ≤ p ≤ ∞, we define

Φp(A) :=
(

1
d

tr
(
A−p

)) 1
p

=
(

1
d

d∑
i=1

λ−p
i

) 1
p

, (1)

with Φ0(A) := limp→0+ Φp(A) and Φ∞(A) := limp→+∞ Φp(A).

Given p ≥ 0, we refer to the experimental design problem with the objective function Φp

as Φp-design. To see that Φp-design is a generalization of D/A/E-design, let A =
∑

i∈S vivT
i

and note that:
For p = ∞, Φ∞(A) = λmax(A−1) = 1/λmin(A), which is the inverse of the E-design
objective;
For p = 1, Φ1(A) = 1

d tr(A−1) is exactly the A-design objective;
For p = 0, Φ0(A) is the inverse of the D-design objective, as

Φ0(A) = lim
p→0+

(
1
d

d∑
i=1

λ−p
i

)1/p

=
( d∏

i=1
λ−1

i

)1/d

= det(A)−1/d,

where the second equality is a well-known fact (see, e.g., Exercise 28 in Chapter 5 of [16]).

It is known that Φp(A) is convex in A for any given 0 ≤ p ≤ ∞, and so the following is a
natural convex programming relaxation for Φp-design:

minimize
x∈Rn

Φp

( n∑
i=1

x(i) · viv⊤
i

)

subject to
n∑

i=1
x(i) ≤ k,

0 ≤ x(i) ≤ 1, for 1 ≤ i ≤ n.

(2)

To the best of our knowledge, there are no known approximation algorithms for the
general Φp-design problem, other than the special cases p = 0, 1,∞ which we summarize as
follows (the notation x ≳ y denotes that x ≥ cy for some large enough constant c):

There is a (1 + ε)-approximation algorithm for Φ0-design (D-design) when k ≳ d/ε [13, 9,
11, 6].
There is a (1+ε)-approximation algorithm for Φ1-design (A-design) when k ≳ d/ε [9, 11, 6].
There is a (1+ε)-approximation algorithm for Φ∞-design (E-design) when k ≳ d/ε2 [1, 7].

These results are tight in the sense that they match the known integrality gap lower bound
of the convex programming relaxation (2) (see [11] for integrality gap examples).

Note that there is a d/ε vs d/ε2 gap between the relaxations for D/A-design (p = 0, 1)
and for E-design (p =∞). The main question that we study in this paper is: How does the
integrality gap of the convex programming relaxation (2) change with varying value of p? In
particular, where does the transition from d/ε to d/ε2 happen?

1.1 Main Result
Our main result is that, when k ≳ min{dp/ε, d/ε2}, there is a (1+ε)-approximation algorithm
for Φp-design.
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▶ Theorem 2. Given an integer p ≥ 1, let x ∈ [0, 1]n be an optimal fractional solution to (2).
For any ε ∈ (0, 1), let γ = max{ε, 1/p}, if k ≳ d/(γε), then there is a randomized polynomial
time algorithm that returns an integral solution Z =

∑n
i=1 z(i) · viv⊤

i with z(i) ∈ {0, 1} for
1 ≤ i ≤ n such that

Φp

( n∑
i=1

z(i) · viv⊤
i

)
≤ (1 + ε) · Φp

( n∑
i=1

x(i) · viv⊤
i

)
and

n∑
i=1

z(i) ≤ k,

with probability at least 1−O
(

(d2+d/γ)2

ε2p2 · e−Ω(γ
√

d)
)
− e−Ω(εd/γ).

▶ Remark. Theorem 2 can be generalized to all real p ≥ 1, see Remark 11 for more details.
The p = 0 case can also be covered by Theorem 2, but with a different analysis from [6].

This is the first approximation algorithm for Φp-design for general p. Theorem 2 shows
that Φp-design for constant p admits as good an approximation algorithm as for D/A-design,
and there is a unifying algorithm to achieve this guarantee.

Note that, when p→ +∞, Φp becomes the E-design objective and γ = max{ε, 1/p} = ε.
Thus, Theorem 2 provides a nice interpolation between the d/ε bound for D/A-design and
the d/ε2 bound for E-design.

We further remark that our results can be generalized to the weighted setting to handle
multiple budget/knapsack constraints as in [6], but we omit the details to keep the presentation
cleaner as they are the same as in [6].

The proof of Theorem 2 is built on the randomized local search approach in [7] and [6],
but several new technical ideas are needed to handle higher moments that are introduced by
the higher p-norm. In Section 2, we will review the background and previous work, present
the algorithm and the overall structure of the analysis, and explain the new ideas in this
work. Then, in Section 3, we will present the details of the Φp experimental design.

1.2 Discussions and Future Directions
Our proof of Theorem 2 does not address the range p ∈ [0, 1). However, with a similar analysis
as in [6], exactly the same algorithm in this paper can achieve a (1 + ε)-approximation for
p = 0 (i.e., D-design) when k ≳ d/ε. It would be interesting to see whether the randomized
local search approach can be extended to Φp-design with p ∈ (0, 1). An obstacle to the
current analysis is that the Lieb-Thirring inequality used in the proof of Lemma 10 goes in
the wrong direction for p ∈ (0, 1).

If we plot the minimum required k for achieving the (1 + ε)-approximation for the Φp-
design as a function of p, Theorem 2 has ruled out a sharp transition of the curve at p = 1,
from d/ε to d/ε2. However, we do not know whether Theorem 2 is tight or not, in particular,
in the range of p ≥ 1/ε (see Figure 1 for a demonstration). It would be interesting to fully
characterize the whole curve.

1.3 Related Work
In this paper, we focus on generalizing the D/A/E-design with the p-norm objective in (1).
However, there are other different ways to extend D/A/E-design. For example, the Bayesian
framework of experimental design [2] extends the problem by adding a fixed matrix B (which
encodes some prior information, e.g., a multiple of identity) to the covariance matrix before
applying the objective function. When B = 0, we recover classical experimental design
problems. Tantipongpipat [14] provided an approximation algorithm for Bayesian A-design
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Figure 1 Known results on the minimum k required to achieve (1 + ε)-approximation for the
Φp-design (ignoring constant factors). The exact curve should lie within the shadowed area.

problem when B is a multiple of identity. Dereziński et. al. [3] studied approximation
algorithms for Bayesian A/D-design (together with C/V-design, i.e., two other objectives)
with a general PSD matrix B. Another example is using elementary symmetric polynomials
to generalize A/D-design [10]. Nikolov et. al. [11] extended their approximation algorithm
for A-design to tackle this family of generalized ratio objectives.

All these are interesting generalizations of D/A/E-design. It would be interesting to see
whether the randomized local search approach in [7, 6] and this paper can be applied to
these settings to obtain better results.

2 The Framework

In this section, we first review the randomized local search approach in Section 2.1. Then,
we present the full algorithm in Section 2.2 and state the main technical theorem. Then,
in Section 2.3, we provide the overall proof plan and the precise statements for analyzing
the randomized exchange algorithm, and then put together the statements to prove the
main technical theorem. Finally, we discuss the main difficulty and the new ideas needed to
analyze the Φp objective in Section 3.

2.1 Randomized Local Search Approach
The proof of Theorem 2 is built on the randomized local search approach in [6], which is based
on the regret minimization framework developed in [1] for experimental design problems
and the randomized spectral rounding techniques in [7]. We review this approach in this
subsection.

In [6], the first step is to solve (2) for D/A/E-design to obtain a solution x ∈ Rn, and then
to normalize the vectors vi’s so that

∑n
i=1 x(i) · viv⊤

i = I for using the regret minimization
framework in [1]. Then, the rounding algorithm starts from a random initial solution set S0
that is independently sampled according to x . Using the density matrix At maintained by
the regret minimization framework at each step t, the algorithm randomly chooses a pair of
vectors vit

and vjt
with the following probability distributions:

Pr(it = i) ∝
(
1 − x(i)

)
·
(

1 − α⟨viv⊤
i , A1/2

t ⟩
)

and Pr(jt = j) ∝ x(j) ·
(

1 + α⟨vjv⊤
j , A1/2

t ⟩
)

, (3)

and set St+1 ← St − vit
+ vjt

. Using the above randomized local search strategy, it can
be shown that the size of the solution is expected to stay around k, while the potential
function from the regret minimization framework [1] related to the minimum eigenvalue
is expected to improve as long as the minimum eigenvalue is less than 1 − ε. Freedman’s
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martingale inequality and a new concentration inequality for non-martingales are used in [7]
to prove that all these quantities are close to their expected values with high probability. This
randomized local search algorithm provides a (1± ε)-approximate solution for D/A/E-design
when k ≳ d/ε2.

The main contribution in [6] is to prove that the randomized local search algorithm can
be adapted to achieve (1± ε)-approximation for D/A-design when k ≳ d/ε, thus providing
a unifying approach to achieve the optimal integrality gap for D/A/E-design. Essentially,
the algorithm is the same as the one for E-design but only require that the solution to have
minimum eigenvalue 3/4 rather than 1− ε. For the analysis, the randomized local search
algorithm is conceptually divided into two phases. In the first phase, the algorithm will
find a solution with minimum eigenvalue at least 3/4 with high probability when k ≳ d/ε.
In the second phase, the minimum eigenvalue will maintain to be at least 1/4 with high
probability, and the objective value for D/A-design will improve to (1± ε) times the optimal
objective value in polynomial time with high probability. The analysis of the first phase
follows directly from earlier work on spectral rounding in [7]. The analysis of the second
phase includes two main parts: (1) to show that, in expectation, the probability distributions
in (3) for E-design are also good for making progress towards D/A-design objectives; (2) to
show that the progress in the objective value is concentrated around the expectation with a
martingale concentration argument. The condition that the minimum eigenvalue is at least
1/4 is very important in both parts in the second phase, and the optimality conditions for
the convex program (2) is crucially used in the second part in the second phase.

In this paper, we will extend the algorithm and the analysis described above and show
that the randomized local search algorithm provides a unifying approach for Φp-design for
all p.

2.2 The Algorithm
We present the full algorithm for Φp-design in this subsection.

Algorithm 1 Randomized Exchange Algorithm.

Input: m vectors u1, ..., um ∈ Rd, a budget k ≥ d, an accuracy parameter ε ∈ (0, 1).

1. Solve the convex programming relaxation (2) and obtain an optimal solution x ∈ [0, 1]m
with at most d2 + 1 fractional entries, i.e. |{i ∈ [m] | 0 < x(i) < 1}| ≤ d2 + 1. Let
X =

∑m
i=1 x(i) · uiu⊤

i .
2. Preprocessing: Let vi ← X −1/2ui for all i ∈ [m], so that

∑m
i=1 x(i) · viv⊤

i = Id.
3. Initialization: t ← 1, S0 ← ∅, γ = max{ ε

6 , 1
6p}, κ = max{ ε

2 , 1
2p}, M ← d

γ + d2 + 1, and
α←

√
d

γ .
4. Add i into S0 independently with probability x(i) for each i ∈ [m]. Let Y1 ←

∑
i∈S0

uiu⊤
i

and Z1 ←
∑

i∈S0
viv⊤

i .
5. While the termination condition (tr(Y −p

t ))
1
p ≤ (1 + ε)(tr(X−p))

1
p is not satisfied and

t ≤ 2M
γ + 2M

εp , do the following:
a. St ← Exchange(St−1).
b. Set Yt+1 ←

∑
i∈St

uiu⊤
i , Zt+1 ←

∑
i∈St

viv⊤
i and t← t + 1.

6. Return St−1 as the solution.
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4:6 Experimental Design for Any p-Norm

The main algorithm is almost the same as the one in [6], but with two additional
parameters γ, κ that will depend on the value of p. For A-design (when p = 1), the algorithm
in [6] is just a special case of the randomized exchange algorithm with parameter γ = 1

8 and
κ = 1. In this paper, the parameter γ is used to adjust the learning rate α of the regret
minimization framework and the parameter κ will be used in the exchange subroutine.

Algorithm 2 Exchange Subroutine.

Input: the current solution set St−1.

1. Compute the action matrix At := (αZt − ctI)−2, where Zt =
∑

i∈St−1
viv⊤

i and ct is the
unique scalar such that At ≻ 0 and tr(At) = 1.

2. Define S′
t :=

{
i ∈ St−1 | α⟨viv⊤

i , A1/2
t ⟩ ≤ 1

2 and ⟨viv⊤
i , Z−1

t ⟩ ≤ κ
}

.
3. Sample jt ∈ [m]\St−1 from the following probability distribution

Pr(jt = j) = x(j)
M
·
(
1 + α⟨vjv⊤

j , A1/2
t ⟩

)
, for j ∈ [m]\St−1 and

Pr(jt = ∅) = 1−
∑

j∈[m]\St−1

x(j)
M
·
(
1 + α⟨vjv⊤

j , A1/2
t ⟩

)
.

4. Sample it ∈ S′
t−1 from the following probability distribution

Pr(it = i) = 1− x(i)
M

·
(
1− α⟨viv⊤

i , A1/2
t ⟩

)
, for i ∈ S′

t−1 and

Pr(it = ∅) = 1−
∑

i∈S′
t−1

1− x(i)
M

·
(
1− α⟨viv⊤

i , A1/2
t ⟩

)
.

5. Return St := St−1 ∪ {jt}\{it}.

The exchange subroutine is also almost the same as in [6]. The key difference is to use
the new parameter κ to further restrict the set of vectors that are allowed to remove from
the current solution.
▶ Remark 3. Using the new analysis in this paper, the same algorithm in [6] (without
changing the parameters γ and κ) can achieve (1 + ε)-approximation for Φp-design when
k ≳ 2O(p)d/ε, with an exponential dependence on p in the budget requirement, much worse
than k ≳ min{dp/ε, d/ε2} in Theorem 2.

Main Technical Theorem
To prove Theorem 2, we will prove that the randomized exchange algorithm is a bicriteria
approximation algorithm, such that it returns a solution that is (1 + ε)-approximate in the
Φp objective and the size of the solution is not much larger than k.

▶ Theorem 4. Given ε ∈ (0, 1), if k ≳ d
γε , then the randomized exchange algorithm returns

a solution set S within 2M
γ + 2M

εp iterations such that(
tr
((∑

i∈S

uiu⊤
i

)−p)) 1
p ≤ (1 + ε) ·

(
tr
(
X −p

))1/p

with probability at least 1 − O
(

M2

ε2p2 · e−Ω(γ
√

d)), where X is an optimal fractional solution
to (2). Moreover, the solution set S satisfies |S| ≤ (1 + ε)k + O

(
d
γ + d

κ

)
with probability at

least 1− e−Ω(εd/ min{γ,κ}).
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With Theorem 4, we can prove Theorem 2 by first noticing that both γ and κ are chosen
in the order of Θ(max{ε, 1/p}) and then turning the bicriteria approximation result into a
true approximation with a scaling argument as in [6]. We omit the standard proof and refer
the readers to [6] for more details.

2.3 The Proof Plan
In this subsection, we provide the overall plan and the precise statements for analyzing the
randomized exchange algorithm, and then put together the statements to obtain the main
technical theorem.

2.3.1 Well-Defined Algorithm
First, we prove that the randomized exchange algorithm is well-defined. In particular, we need
to show that a fractional optimal solution to the convex relaxation (2) with at most O(d2)
fractional entries can be found in polynomial time, and also the probability distributions
in the exchange subroutine are well-defined for M = d2 + d

γ + 1. These can be established
using the same arguments (with a different value for γ) as in Lemma 4.2 and Claim 4.4 in [6].
Note that the modified exchange subroutine does not affect these arguments.

The following simple observation (Observation 4.3 in [6]) will be useful in the analysis of
the algorithm.

▶ Observation 5. For any t ≥ 0, it holds that i ∈ St for all i with x(i) = 1 and j ∈ [n]\St

for all j with x(j) = 0. This further implies that Pr(it = i) = 0 for all i with x(i) ∈ {0, 1}
and Pr(jt = j) = 0 for all j with x(j) ∈ {0, 1}.

2.3.2 Solution Size Bound
Then, we show that the algorithm returns a solution set S of size not much larger than k

with high probability.

▶ Theorem 6 (Variant of Theorem 3.12 of [7]). Let α =
√

d/γ and κ be the parameters used in
the randomized exchange algorithm. Suppose that the solution St of the randomized exchange
algorithm satisfies λmin

(∑
i∈St

viv⊤
i

)
< 1 for all t ∈ [τ ]. Then, for any given δ ∈ [0, 1],

Pr
[
|Sτ | ≤ (1 + δ) ·

n∑
i=1

x(i) +
(12d

γ
+ 2d

κ

)]
≥ 1− exp

(
− Ω

( δd

min{γ, κ}

))
.

When κ = 1, the above theorem follows directly from the one-sided spectral rounding
result in [7]. With smaller κ, we are restricting the set of vectors that can be swapped out
from the current solution. This would increase the chance of not removing a vector, and thus
increasing the size of the solution. Fortunately, we can show that the increase of the solution
size can be bounded by an additive d/κ term. The proof idea is similar to the one in [7], and
the main difference is a modified bound on the expected change of size. Please refer to the
appendices of the full arxiv version [5] for more details.

2.3.3 Approximation Guarantee
The most technical part of the proof is to establish the approximation guarantee. We follow
the analysis in [6] to conceptually divide the execution of the algorithm into two phases as
described in Section 2.1.
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In the first phase, we show that the minimum eigenvalue will reach 1− 2γ in O(M/γ)
iterations with high probability, which follows from the spectral rounding result in [7].

▶ Proposition 7 (Counterpart of Proposition 4.5 in [6]). The probability that the randomized
exchange algorithm has terminated successfully within 2M/γ iterations or there exists τ1 ≤
2M/γ with λmin(Zτ1) ≥ 1− 2γ is at least 1− exp(−Ω(

√
d)).

In the second phase, the minimum eigenvalue will be at least 1 − 5γ during the next
Θ
(

M
εp

)
iterations with good probability.

▶ Proposition 8 (Counterpart of Proposition 4.6 in [6]). Suppose λmin(Zτ1) ≥ 1− 2γ for some
τ1. In the randomized exchange algorithm, the probability that λmin(Zt) ≥ 1 − 5γ for all
τ1 ≤ t ≤ τ1 + 2M

εp is at least 1− 4M2

ε2p2 · e−Ω(γ
√

d).

Both of the proofs of Proposition 7 and Proposition 8 follow same arguments in [6] (with
a new parameter γ). We remark that the modified exchange subroutine with a restricted S′

t

does not affect these arguments, as removing less vectors only helps to improve the minimum
eigenvalue of the solution. We omit the proofs and refer the readers to [6].

The main technical contribution in this paper is to prove that the Φp objective will
improve to at most (1 + ε) times the optimal value during the second phase when the
minimum eigenvalue is at least 1− 5γ.

▶ Theorem 9. Given ε ∈ (0, 1), if p ≤ 1/ε and k ≳ pd
ε for some ε ∈ (0, 1), then the

probability that the following three events happen simultaneously during the execution of the
randomized exchange algorithm is at most exp(−Ω(γ

√
d)).

1. λmin(Zτ1) ≥ 1− 2γ for some τ1;
2. λmin(Zt) ≥ 1− 5γ for all τ1 ≤ t ≤ τ1 + 2M

εp ;
3. the randomized exchange algorithm has not terminated by time τ1 + 2M

εp .

2.3.4 Proof of Theorem 4
We put together the statements in this subsection to obtain Theorem 4.

Proof of Theorem 4. We start with analyzing the approximation guarantee in the theorem.
Firstly, consider the easier case p ≥ 1/ε, which implies that γ = ε/6. By Proposition 7,

there exists τ1 ≤ 2M/γ such that λmin(Zτ1) ≥ (1− ε/3) with probability 1− exp(−Ω(
√

d)).
We note that λmin(Zτ1) ≥ (1− ε/3) is equivalent to Yτ1 ≽ (1− ε/3)X , which is sufficient to
establish

(tr(Y −p
τ1

))1/p ≤ (1 + ε)(tr(X −p))1/p,

i.e., the approximation guarantee in the theorem. We remark that we do not need the
assumption k ≳ d/(γε) in the proof of this case.

Then, we consider the case of p ≤ 1/ε and define the bad events for the randomized
exchange algorithm:

B1: the algorithm has not terminated successfully within 2M/γ iterations and τ1 > 2M/γ

where τ1 is the first time such that λmin(Zτ1) ≥ 1− 2γ.
B2: there exists some τ1 ≤ t ≤ τ1 + 2M

εp such that λmin(Zt) < 1− 5γ.
B3: the termination condition (tr(Y −p

t ))
1
p ≤ (1 + ε)(tr(X−p))

1
p is not satisfied for all

τ1 ≤ t ≤ τ1 + 2M
εp .
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If none of the bad events happens, then either the algorithm has terminated successfully
within 2M/γ iterations or the termination condition will be satisfied at some time t ≤
τ1 + 2M

εp ≤
2M
γ + 2M

εp . So, the probability that the randomized exchange algorithm has not
satisfied the termination condition within 2M

γ + 2M
εp iterations is upper bounded by

Pr[B1 ∪B2 ∪B3] = Pr[B1] + Pr[B2 ∩ ¬B1] + Pr[B3 ∩ ¬B2 ∩ ¬B1]

≤ O
(

e−Ω(
√

d)
)

+ O

(
M2

ε2p2 · e
−Ω(γ

√
d)
)

+ O
(

e−Ω(γ
√

d)
)

≤ O

(
M2

ε2p2 · e
−Ω(γ

√
d)
)

,

where Pr[B1] is bounded in Proposition 7, Pr[B2 ∩ ¬B1] is bounded in Proposition 8, and
Pr[B3 ∩ ¬B2 ∩ ¬B1] is bounded in Theorem 9 (note that we need the assumption p ≤ 1/ε

and k ≳ pd/ε here). The termination condition implies the approximation guarantee directly.
Finally, we consider the size of the returned solution. Note that if λmin(Zt) ≥ 1 then

Yt ≽ X , which further implies that the termination condition is met at time t. Hence, we can
assume λmin(Zt) < 1 before the algorithm terminates. Therefore, we can apply Theorem 6
to conclude that the returned solution S satisfies |S| ≤ (1 + ε)k + O

(
d
γ + d

κ

)
with probability

at least 1− exp(−Ω( εd
min{γ,κ} )). ◀

2.4 New Ideas
The key in proving Theorem 9 is to bound the change of the objective value after an exchange.
For A-design (p = 1), there is a simple inequality bounding the change of the objective as

tr
((

Y − vv⊤ + ww⊤)−1
)
≤ tr

(
Y −1)+ v⊤Y −2v

1− ⟨vv⊤, Y −1⟩
− w⊤Y −2w

1 + ⟨ww⊤, Y −1⟩︸ ︷︷ ︸
progress

.

For general Φp-design, the change of the Φp function under rank-two updates is considerably
more complicated. Using Sherman-Morrison formula and Lieb-Thirring inequality, we can
bound the change of the Φp objective (in fact, the p-th power of the Φp objective) as follows:

tr
(
(Y + ww⊤ − vv⊤)−p

)
≤ tr(Y −p) +

p∑
i=1

(
p

i

)(
(−1)i (w⊤Y −1w)i−1 · w⊤Y −p−1w

(1 + w⊤Y −1w)i
+ (v⊤Y −1v)i−1 · v⊤Y −p−1v

(1 − v⊤Y −1v)i

)
.

There are many higher order terms introduced by the p-norm, and dealing with these is the
main technical difficulty in this paper.

As discussed in Remark 3, if we use the same algorithm in [6], with some careful
manipulations including applying Hölder’s inequality appropriately, we can achieve (1 + ε)-
approximation but with the much worst requirement that k ≳ 2O(p)d/ε. The reason is that
removing some “influential” vectors (even with relatively small probability) from the current
solution will blow up the expectation of the change of the objective function due to the
higher order terms in the above inequality.

To overcome this issue, we introduce the parameter κ and modify the randomized exchange
algorithm by restricting those vectors (in S′

t) that are allowed to swap out of the current
solution. This helps us to effectively bound those higher order terms in the above inequality
about the change of the objective function. But, with smaller κ, we are restricting the set of
vectors that can be swapped out from the current solution. This would increase the chance of
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not removing a vector, and thus increasing the size of the solution. Fortunately, we can show
that the increase of the solution size can be bounded by an additive d/κ term as described
in Theorem 6.

The analysis for A-design in [6] contains two parts: (1) bound the expected progress; (2)
prove the concentration of the total progress. The condition that the minimum eigenvalue is
at least 1/4 is very important in both parts, and the optimality conditions for the convex
program (2) is crucially used in the concentration argument. Interestingly, the optimality
condition of the convex program (2) is also crucial in bounding the expected progress for
Φp objective with higher p. Much effort in this paper is used to get the expectations of the
objective value right, while it was relatively easy for D/A-design (when p = 0, 1).

3 The Analysis of Φp Objective

The goal of this section is to prove Theorem 9. Since we are focusing on the case of p ≤ 1/ε

in Theorem 9, we can assume without loss of generality that

γ = max
{

ε

6 ,
1
6p

}
= 1

6p
and κ = max

{
ε

2 ,
1
2p

}
= 1

2p

in the remaining of this section. For ease of notation, we also assume the start time of
the second phase is τ1 = 1. To analyze progress of the algorithm in terms of the objective
function, we upper bound the change of tr(Y −p

t ) after a swap using the following lemma, for
which we will provide a proof in Section 3.1.

▶ Lemma 10. Let Y ≻ 0 be a d-dimensional positive definite matrix and p ≥ 1 be an integer.
For any w ∈ Rd and v ∈ Rd such that v⊤Y −1v < 1,

tr
(

(Y + ww⊤ − vv⊤)−p
)

≤ tr(Y −p) +
p∑

i=1

(
p

i

)(
(−1)i (w⊤Y −1w)i−1 · w⊤Y −p−1w

(1 + w⊤Y −1w)i
+ (v⊤Y −1v)i−1 · v⊤Y −p−1v

(1 − v⊤Y −1v)i

)
.

In the randomized exchange algorithm, we swap vectors uit
and ujt

in each iteration
where uit is in the current solution. Thus, u⊤

it
Y −1

t uit ≤ 1 always holds, and in fact it will be
clear later that u⊤

it
Y −1

t uit
is strictly less than 1. Hence, Lemma 10 can be applied repeatedly

to obtain that, for any τ ≥ 1,

tr(Y −p
τ+1)− tr(Y −p

1 ) ≤
τ∑

t=1

( p∑
i=1

(
p

i

) (u⊤
it

Y −1
t uit)i−1 · u⊤

it
Y −p−1

t uit

(1− u⊤
it

Y −1
t uit

)i︸ ︷︷ ︸
loss

(4)

−
p∑

i=1

(
p

i

)
(−1)i+1 (u⊤

jt
Y −1

t ujt)i−1 · u⊤
jt

Y −p−1
t ujt

(1 + u⊤
jt

Y −1
t ujt

)i︸ ︷︷ ︸
gain

)
.

We define gain gt, loss lt, and progress Γt in the t-th iteration as follows

gt :=
p∑

i=1

(
p

i

)
(−1)i+1 (u⊤

jt
Y −1

t ujt)i−1 · u⊤
jt

Y −p−1
t ujt

(1 + u⊤
jt

Y −1
t ujt

)i
,

lt :=
p∑

i=1

(
p

i

) (u⊤
it

Y −1
t uit

)i−1 · u⊤
it

Y −p−1
t uit

(1− u⊤
it

Y −1
t uit

)i
,

Γt := gt − lt.
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In Section 3.2, we will prove that if x is a fractional optimal solution to (2) and Zt has
lower-bounded minimum eigenvalue and the objective value of the current solution is far
from optimal, then the expected progress in the t-th iteration is large. Then, in Section 3.3,
we will prove that the total progress is concentrated around its expectation. Finally, we
complete the proof of Theorem 9 in Section 3.4.

3.1 Change of Objective Value in One Step
In [6], a rank-two update formula is used to compute the change of the objective value in one
step when p = 1. For general Φp-design, the rank-two update formula becomes considerably
more complicated, and instead we do the update in two smaller steps: We first use a rank-one
update to add ujt

to the current solution, then use another rank-one update to remove uit

from the current solution.

Proof of Lemma 10. Let Y1 = Y + ww⊤. By Sherman-Morrison formula [12], it holds that

tr(Y −p
1 ) = tr

((
Y −1 − Y −1ww⊤Y −1

1 + w⊤Y −1w

)p
)

= tr
((

Y −1/2
(

I − Y −1/2ww⊤Y −1/2

1 + w⊤Y −1w

)
Y −1/2

)p
)

.

Then, we can apply Lieb-Thirring inequality [8] to show that

tr(Y −p
1 ) ≤ tr

(
Y −p/2

(
I − Y −1/2ww⊤Y −1/2

1 + w⊤Y −1w

)p

Y −p/2
)

= tr
(

Y −p
(

I − Y −1/2ww⊤Y −1/2

1 + w⊤Y −1w

)p
)

.

Expanding by the binomial theorem,

tr(Y −p
1 ) ≤

p∑
i=0

(−1)i

(
p

i

)
tr
(

Y −p
(Y −1/2ww⊤Y −1/2

1 + w⊤Y −1w

)i
)

= tr(Y −p) +
p∑

i=1
(−1)i

(
p

i

)
(w⊤Y −1w)i−1 · w⊤Y −p−1w

(1 + w⊤Y −1w)i
. (5)

For Y2 = Y1 − vv⊤, we can apply similar argument to show that

tr(Y −p
2 ) ≤ tr(Y −p

1 ) +
p∑

i=1

(
p

i

)
(v⊤Y −1

1 v)i−1 · v⊤Y −p−1
1 v

(1− v⊤Y −1
1 v)i

.

Notice that Y1 = Y + ww⊤ ≽ Y and v⊤Y −1v < 1, thus it holds that

tr(Y −p
2 ) ≤ tr(Y −p

1 ) +
p∑

i=1

(
p

i

)
(v⊤Y −1v)i−1 · v⊤Y −p−1v

(1− v⊤Y −1v)i
. (6)

The lemma follows by combining (5) and (6). ◀

▶ Remark 11. Lemma 10 can be generalized to all real p ≥ 1 by invoking Newton’s generalized
binomial theorem in the proof. To guarantee the convergence of the generalized binomial
theorem, we need to ensure a stronger condition v⊤Y −1v ≤ 1

2 . This is not an issue for
our application, as our algorithm always removes vectors from the restricted set S′

t, which
guarantees that v⊤Y −1v ≤ 1

2 is satisfied. Given the new version of Lemma 10 with real
p, we can generalize the main result in this paper (i.e., Theorem 2) to all real p ≥ 1 with
essentially the same analysis.
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4:12 Experimental Design for Any p-Norm

3.2 Expected Progress
To analyze the expected progress, we need to use the following two lemmas. The first one is
an implication of the lower-bounded minimum eigenvalue condition, which is an analog of
Lemma 4.13 in [6], and we refer the readers to the appendices of the arxiv version of this
paper [5] for a proof.

▶ Lemma 12. For γ ≤ 1
6 , if Zt ≽ (1− 5γ)I, then

⟨viv⊤
i , Z−1

t ⟩ ≤ α⟨viv⊤
i , A

1
2
t ⟩ ≤ αλmin(Zt)⟨viv⊤

i , Z−1
t ⟩ ∀i ∈ [n].

The other one is an implication of the optimality condition of (2). The proof of the
lemma is similar to the one in [6] for A-design, see the appendices of the full arxiv version [5]
for more details.

▶ Lemma 13. Let x ∈ [0, 1]n be an optimal fractional solution of the convex programming
relaxation (2) for the p-norm problem. Then, for each 1 ≤ i ≤ n with 0 < x(i) < 1,

⟨X −p−1, uiu⊤
i ⟩ ≤

1
k
· tr(X −p).

Now, we are ready to lower bound the expected progress. We will first handle the expected
loss and expected gain separately in Lemma 14 and Lemma 15. Then, combine the two parts
to lower bound the expected progress in Lemma 17. For simplicity, we denote Et[·] as the
conditional expectation given what had happened up to time t, that is, E[· | St−1].

3.2.1 Expected Loss
The minimum eigenvalue lower bound (Lemma 12), the optimality condition (Lemma 13),
and the introduction of the new parameter κ in the randomized exchange algorithm are all
crucial in the following lemma.

▶ Lemma 14 (Expected Loss). Let St−1 be the solution set at time t and Zt =
∑

i∈St−1
viv⊤

i

for 1 ≤ t ≤ τ . Suppose x is an optimal solution of (2), λmin(Zt) ∈ [1− 5γ, 1), γ = 1/6p, and
κ = 1/2p. Then

Et[lt] ≤
p

M

(
tr(Y −p

t )− ⟨XSt−1 , Y −p−1
t ⟩

)
+ O

( p2d

kM

)
· tr(X −p),

where we denote XS :=
∑

i∈S x(i)uiu⊤
i for any set S ⊆ [n].

Proof. There are p terms in the loss term lt. We deal with the linear term and higher order
terms separately. Consider the linear term:

Et

[
p · u⊤

it
Y −p−1

t uit

1− u⊤
it

Y −1
t uit

]
=

∑
i∈S′

t−1

1− x(i)
M

(
1− α⟨viv⊤

i , A1/2
t ⟩

)
· p · u⊤

i Y −p−1
t ui

1− u⊤
i Y −1

t ui

=
∑

i∈S′
t−1

1− x(i)
M

(
1− α⟨viv⊤

i , A1/2
t ⟩

)
· p · u⊤

i Y −p−1
t ui

1− ⟨viv⊤
i , Z−1

t ⟩
,

where the second line follows by the definitions of Yt and Zt, which implies that

⟨viv⊤
i , Z−1

t ⟩ = u⊤
i Y −1

t ui. (7)
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Note that γ = 1/6p ≤ 1/6. Thus, we can apply the first inequality in Lemma 12 and then
relax S′

t−1 to St−1 to obtain that

Et

[
p · u⊤

it
Y −p−1

t uit

1− u⊤
it

Y −1
t uit

]
≤ p

M

∑
i∈St−1

(1− x(i)) · u⊤
i Y −p−1

t ui

= p

M

(
tr(Y −p

t )− ⟨XSt−1 , Y −p−1
t ⟩

)
. (8)

Then, we consider the remaining p− 1 higher order loss terms.

Et

[
p∑

l=2

(
p

l

) (u⊤
it

Y −1
t uit

)l−1 · u⊤
it

Y −p−1
t uit

(1− u⊤
it

Y −1
t uit

)l

]
︸ ︷︷ ︸

1

=
∑

i∈S′
t−1

1− x(i)
M

(
1− α⟨viv⊤

i , A1/2
t ⟩

) p∑
l=2

(
p

l

)
(u⊤

i Y −1
t ui)l−1 · u⊤

i Y −p−1
t ui

(1− u⊤
i Y −1

t ui)l
.

Again, by applying Lemma 12, it holds that

1 ≤
∑

i∈S′
t−1

1− x(i)
M

· u⊤
i Y −p−1

t ui ·
p∑

l=2

(
p

l

)
(u⊤

i Y −1
t ui)l−1

(1− u⊤
i Y −1

t ui)l−1 .

Notice that

λmin(Zt) ≥ 1− 5γ ⇐⇒ Yt ≽ (1− 5γ)X . (9)

Thus, by the assumption λmin(Zt) ≥ 1− 5γ, it follows that

1 ≤ (1− 5γ)−p−1

M

∑
i∈S′

t−1

(1− x(i)) · u⊤
i X −p−1ui ·

p∑
l=2

(
p

l

)
(u⊤

i Y −1
t ui)l−1

(1− u⊤
i Y −1

t ui)l−1 .

Using the fact that x is a fractional optimal solution to (2) and then applying Lemma 13, it
holds that

1 ≤ (1− 5γ)−p−1

kM
· tr(X −p)

∑
i∈S′

t−1

(1− x(i)) ·
p∑

l=2

(
p

l

)
(u⊤

i Y −1
t ui)l−1

(1− u⊤
i Y −1

t ui)l−1

≤ (1− 5γ)−p−1

kM
· tr(X −p)

p∑
l=2

(
p

l

) ∑
i∈S′

t−1

u⊤
i Y −1

t ui ·
(u⊤

i Y −1
t ui)l−2

(1− u⊤
i Y −1

t ui)l−1 .

Due to the definition of the set S′
t−1 and (7), it holds that u⊤

i Y −1
t ui ≤ κ for all i ∈ S′

t−1.
Thus,

1 ≤ (1− 5γ)−p−1

kM
· tr(X −p)

p∑
l=2

(
p

l

) ∑
i∈S′

t−1

u⊤
i Y −1

t ui ·
( κ

1− κ

)l−2
· 1

1− κ
.

Since
∑

i∈S′
t−1

u⊤
i Y −1

t ui ≤ ⟨Yt, Y −1
t ⟩ = d, we can further upper bound the 1 term by

1 ≤ (1− 5γ)−p−1d

kM
· tr(X −p) ·

p∑
l=2

(
p

l

)( κ

1− κ

)l

· 1− κ

κ2

= (1− 5γ)−p−1d

kM
· tr(X −p) · 1− κ

κ2

( 1
(1− κ)p

− 1− pκ

1− κ

)
≤ (1− 5γ)−p−1d

kM
· tr(X −p) · 1

κ2 ·
1

(1− κ)p
. (10)
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Combining (8) and (10), the expected loss can be bounded by

Et[lt] ≤
p

M

(
tr(Y −p

t )− ⟨XSt−1 , Y −p−1
t ⟩

)
+ (1− 5γ)−p−1d

κ2(1− κ)pkM
· tr(X −p)

≤ p

M

(
tr(Y −p

t )− ⟨XSt−1 , Y −p−1
t ⟩

)
+ O

( p2d

kM

)
· tr(X −p),

where the last inequality follows by the choice of γ and κ. ◀

3.2.2 Expected Gain
The analysis of the expected gain is slightly more complicated since the sampling probability
does not cancel out with the denominator term in gt as nicely as in the analysis of loss lt,
and so we will divide into two cases and use different arguments. Again, the lower bound of
the minimum eigenvalue (Lemma 12) and the optimality condition (Lemma 13) are crucial
in the following lemma, the proof of which is deferred to Appendix A due to the space limit.

▶ Lemma 15 (Expected Gain). Let St−1 be the solution set at time t and Zt =
∑

i∈St−1
viv⊤

i

for 1 ≤ t ≤ τ . Suppose x is an optimal solution to (2), λmin(Zt) ∈ [1− 5γ, 1), and γ = 1/6p.
Then

Et[gt] ≥
p

M

(
⟨X , Y −p−1

t ⟩ − ⟨XSt−1 , Y −p−1
t ⟩

)
−O

( p2d

kM

)
· tr(X −p).

3.2.3 Expected Progress
Finally, we apply Hölder’s inequality appropriately to compare the gain term and loss term.

▶ Lemma 16. Given positive definite matrices A, B ∈ Sd
++ and an integer p ≥ 1, it holds

that

⟨A, B−p−1⟩ ≥
(

tr(B−p)
tr(A−p)

)1/p

· tr(B−p).

Proof. Let A =
∑d

i=1 aiviv⊤
i be the eigendecomposition of A, and B =

∑d
i=1 biwiw⊤

i be the
eigendecomposition of B. Then,

tr(B−p) =
d∑

i=1

1
bp

i

=
∑

1≤i,j≤d

1
bp

i

⟨vi, wj⟩2

=
∑

1≤i,j≤d

a
p/(p+1)
j

bp
i

⟨vi, wj⟩2p/(p+1) · 1
a

p/(p+1)
j

⟨vi, wj⟩2/(p+1)

≤
( ∑

1≤i,j≤d

aj

bp+1
i

⟨vi, wj⟩2
)p/(p+1)

·
( ∑

1≤i,j≤d

1
ap

j

⟨vi, wj⟩2
)1/(p+1)

= ⟨A, B−p−1⟩p/(p+1) · tr(A−p)1/(p+1),

where the inequality follows by Hölder’s inequality. Then, the lemma follows by taking the
(p + 1)/p’s power of both sides and rearranging the terms. ◀

Now, we lower bound the expected progress by combining Lemma 14 and Lemma 15.
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▶ Lemma 17. Let St−1 be the solution set at time t and Zt =
∑

i∈St−1
viv⊤

i for 1 ≤ t ≤ τ .
Suppose x is an fractional optimal solution to (2), and λmin(Zt) ∈ [1− 5γ, 1), (tr(Y −2

t ))1/p ≥
λ · (tr

(
X −2))1/p for some λ ≥ 1 and for 1 ≤ t ≤ τ . Then

Et[Γt] ≥
(

p(λ− 1)λp

M
−O

( p2d

kM

))
· tr(X −p).

In particular, when λ > 1 + ε and k ≳ pd
ε , the expected progress is positive.

Proof. Combining the expected loss Lemma 14 and the expected gain Lemma 15, it follows
that

Et[Γt] ≥
p

M

(
⟨X , Y −p−1

t ⟩ − tr(Y −p
t )

)
−O

( p2d

kM

)
· tr(X −p).

Applying Lemma 16, we derive that

Et[Γt] ≥
p

M

(( tr(Y −p
t )

tr(X −p)

)1/p

· tr(Y −p
t )− tr(Y −p

t )
)
−O

( p2d

kM

)
· tr(X −p).

By the assumption that (tr(Y −p
t ))1/p ≥ λ(tr(X −p))1/p, or equivalently tr(Y −p

t ) ≥ λp tr(X −p),
we arrive at the final bound that

Et[Γt] ≥
p(λ− 1)

M
· tr(Y −p

t )−O
( p2d

kM

)
· tr(X −p) ≥

(
p(λ− 1)λp

M
−O

( p2d

kM

))
· tr(X −p). ◀

3.3 Martingale Concentration Argument
In this subsection, we prove that the total progress is concentrated around the expectation.
The proof uses the minimum eigenvalue assumption and the optimality characterization in
Lemma 13 to bound the variance of the random process. The proof idea is similar to the one
in [6], but we need some additional efforts to take care of the higher order terms that are
introduced by higher p-norm. We defer the detailed proof to Appendix A.

▶ Lemma 18. For any η > 0, it holds that

Pr
[

τ∑
t=1

Γt ≤
τ∑

t=1
Et[Γt]− η

⋂
min

1≤t≤τ
λmin(Zt) ≥ 1− 5γ

]

≤ exp
(
−Ω

(
η2kM

τp3
√

d(tr(X −p))2 + ηpM tr(X −p)

))
.

3.4 Proof of Theorem 9
We are ready to prove Theorem 9. Let τ = 2M

εp . We want to upper bound the probability
that the following three events happen simultaneously:

E1: The randomized exchange algorithm entered the second phase, i.e., λmin(Z1) ≥ 1−2γ

using the notation in this subsection.
E2: min1≤t≤τ λmin(Zt) ≥ 1− 5γ.
E3: The second phase of the algorithm has not terminated by time τ .

Suppose the event E3 happens. Then λ = min1≤t≤τ+1(tr(Y −p
t ))1/p/(tr(X−p))1/p > (1 + ε).

If the event E2 also happens, then Lemma 17 implies that
τ∑

t=1
Et [Γt] ≥ τ ·

(
p(λ− 1)λp

M
−O

( p2d

kM

))
· tr(X −p)

≥ 2M

εp
·
(

εp

M
− εp

2M

)
· tr(X −p) ≥ tr

(
X −p

)
, (11)

where the second inequality holds for k ≳ pd/ε with large enough constant.
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On the other hand, the initial solution of the second phase satisfies Z1 ≽ (1 − 2γ)I
(follows by E1), which implies that Y1 ≽ (1− 2γ)X . Thus, tr(Y −p

1 ) ≤ (1− 2γ)−p tr(X −p) ≤
(1− 1/3p)−p tr(X−p) ≤ 3 tr(X−p)/2, for p ≥ 1. When the event E2 happens, we know from
Lemma 12 that ⟨vit

v⊤
it

, Z−1
t ⟩ ≤ α · ⟨vitv⊤

it
, A

1
2
t ⟩ < 1

2 , and so we can apply (4) to deduce that

tr(Y −p
τ+1) ≤ tr(Y −p

1 )−
τ∑

t=1
Γt ≤

3
2 · tr

(
X −p

)
−

τ∑
t=1

Γt.

Since the algorithm has not terminated by time τ ,

tr(X −p) ≤ tr(Y −p
τ+1) =⇒

τ∑
t=1

Γt ≤
1
2 · tr

(
X −p

)
. (12)

Combining (11) and (12), E1 ∩ E2 ∩ E3 implies a large deviation of the progress from the
expectation such that

τ∑
t=1

Γt −
τ∑

t=1
Et[Γt] < −1

2 · tr(X
−p).

Thus, we can apply Lemma 18 with η = 1
2 · tr(X

−p) and τ = 2M
εp to conclude that

Pr [E1 ∩ E2 ∩ E3] ≤Pr
[

τ∑
t=1

Γt <

τ∑
t=1

Et [Γt]−
1
2 · tr(X

−p)
⋂

E2

]

≤ exp
(
− Ω

(
(tr(X −p))2 · kM(

2M
εp

)
p3
√

d · (tr(X −p))2 + pM · (tr(X −p))2

))

≤ exp
(
−Ω
( εk

p2
√

d

))
≤ exp

(
−Ω
(√d

p

))
= exp

(
−Ω
(

γ
√

d
))

,

where the last inequality holds by the assumption k ≳ pd/ε, and the last equality follows as
γ = 1/6p.
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A Omitted Proofs in Section 3

Proof of Lemma 15 (Expected Gain). We consider two separate cases:

S1 := {j ∈ [m]\St−1 | α⟨vjv⊤
j , A1/2

t ⟩ ≥ p · u⊤
j Y −1

t uj} and

S2 := {j ∈ [m]\St−1 | α⟨vjv⊤
j , A1/2

t ⟩ < p · u⊤
j Y −1

t uj}.

Then, the expected gain can be written as

Et[gt] =
∑
j∈S1

x(j)
M

·
(

1 + α⟨vjv⊤
j , A1/2

t ⟩
)

·
p∑

l=1

(
p

l

)
(−1)l+1 (u⊤

j Y −1
t uj)l−1 · u⊤

j Y −p−1
t uj

(1 + u⊤
j Y −1

t uj)l
(13)

+
∑
j∈S2

x(j)
M

·
(

1 + α⟨vjv⊤
j , A1/2

t ⟩
)

·
p∑

l=1

(
p

l

)
(−1)l+1 (u⊤

j Y −1
t uj)l−1 · u⊤

j Y −p−1
t uj

(1 + u⊤
j Y −1

t uj)l
. (14)

We analyze (13) and (14) separately. First, we consider (13) and rearrange the gt term a
bit, which will be easier for the analysis of (13).
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gt =
u⊤

jt
Y −p−1

t ujt

u⊤
jt

Y −1
t ujt

·
p∑

i=1

(
p

i

)
(−1)i+1

( u⊤
jt

Y −1
t ujt

1 + u⊤
jt

Y −1
t ujt

)i

=
u⊤

jt
Y −p−1

t ujt

u⊤
jt

Y −1
t ujt

(
1−

(
1−

u⊤
jt

Y −1
t ujt

1 + u⊤
jt

Y −1
t ujt

)p)
(15)

=
u⊤

jt
Y −p−1

t ujt

u⊤
jt

Y −1
t ujt

(
1− 1

(1 + u⊤
jt

Y −1
t ujt)p

)
. (16)

Thus, we can rewrite (13) as

(13) =
∑
j∈S1

x(j)
M
·
(

1 + α⟨vjv⊤
j , A1/2

t ⟩
)
·

u⊤
j Y −p−1

t uj

u⊤
j Y −1

t uj

(
1− 1

(1 + u⊤
j Y −1

t uj)p

)
.

By the definition of S1, it holds that

(13) ≥
∑
j∈S1

x(j)
M
· u⊤

j Y −p−1
t uj ·

1 + p · u⊤
j Y −1

t uj

u⊤
j Y −1

t uj

(
1− 1

(1 + u⊤
j Y −1

t uj)p

)
.

Let x = u⊤
j Y −1

t uj > 0 (as Yt ≻ 0). Then, it holds that

1 + px

x
·
(

1− 1
(1 + x)p

)
= 1 + px

x
· (1 + x)p − 1

(1 + x)p
= px(1 + x)p + (1 + x)p − 1− px

x(1 + x)p
≥ p.

Thus,

(13) ≥ p

M

∑
j∈S1

x(j) · u⊤
j Y −p−1

t uj . (17)

Then, we consider (14). As in the proof of Lemma 14, we separate (14) into two parts,
2 concerning the linear term and 3 concerning the remaining p− 1 higher order terms.

(14) =
∑
j∈S2

x(j)
M
·
(

1 + α⟨vjv⊤
j , A1/2

t ⟩
)
·

p · u⊤
j Y −p−1

t uj

1 + u⊤
j Y −1

t uj︸ ︷︷ ︸
2

−
∑
j∈S2

x(j)
M
·
(

1 + α⟨vjv⊤
j , A1/2

t ⟩
)
·

p∑
l=2

(
p

l

)
(−1)l

(u⊤
j Y −1

t uj)l−1 · u⊤
j Y −p−1

t uj

(1 + u⊤
j Y −1

t uj)l︸ ︷︷ ︸
3

.

The linear term 2 is easy to bound, we can control it by Lemma 12 (combined with (7))
so that

2 ≥ p

M

∑
j∈S2

x(j) · u⊤
j Y −p−1

t uj . (18)

Then, we upper bound the higher order terms 3 (notice that 3 does not con-
tain the minus sign). To upper bound 3 , for each j ∈ S2, we can assume∑p

l=2
(

p
l

)
(−1)l (u⊤

j Y −1
t uj)l−1·u⊤

j Y −p−1
t uj

(1+u⊤
j

Y −1
t uj)l

≥ 0 without loss of generality, as otherwise we can
simply ignore the j-th term. With this assumption and by the definition of S2, it follows that
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3 ≤ 1
M

∑
j∈S2

x(j)(1 + pu⊤
j Y −1

t uj)
p∑

l=2

(
p

l

)
(−1)l

(u⊤
j Y −1

t uj)l−1 · u⊤
j Y −p−1

t uj

(1 + u⊤
j Y −1

t uj)l

= 1
M

∑
j∈S2

x(j)u⊤
j Y −p−1

t uj · (1 + pu⊤
j Y −1

t uj)
p∑

l=2

(
p

l

)
(−1)l

(u⊤
j Y −1

t uj)l−1

(1 + u⊤
j Y −1

t uj)l
.

Using the assumption λmin(Zt) ≥ 1− 5γ and (9), it holds that

3 ≤ (1 − 5γ)−p−1

M

∑
j∈S2

x(j)u⊤
j X −p−1uj · (1 + pu⊤

j Y −1
t uj)

p∑
l=2

(
p

l

)
(−1)l (u⊤

j Y −1
t uj)l−1

(1 + u⊤
j Y −1

t .uj)l
.

Since x is an optimal solution to (2), we can apply Lemma 13 and derive that

3 ≤ (1− 5γ)−p−1

kM
· tr(X −p)

∑
j∈S2

x(j) · (1 + pu⊤
j Y −1

t uj)
p∑

l=2

(
p

l

)
(−1)l

(u⊤
j Y −1

t uj)l−1

(1 + u⊤
j Y −1

t uj)l

= (1− 5γ)−p−1

kM
· tr(X −p)·∑

j∈S2

x(j) ·
1 + pu⊤

j Y −1
t uj

u⊤
j Y −1

t uj

((
1−

u⊤
j Y −1

t uj

1 + u⊤
j Y −1

t uj

)p

− 1 +
pu⊤

j Y −1
t uj

1 + u⊤
j Y −1

t uj

)
.

Let x = u⊤
j Y −1

t uj , we want to upper bound

1 + px

x

((
1− x

1 + x

)p

− 1 + px

1 + x

)
=

1
x

((
1− x

1 + x

)p

− 1 + px

1 + x

)
+ p

((
1− x

1 + x

)p

− 1 + px

1 + x

)
.

For any y ∈ [0, 1], it holds that (1− y)p ≤ 1− py +
(

p
2
)
y2. Thus, it follows that

1
x

((
1− x

1 + x

)p

− 1 + px

1 + x

)
+ p

((
1− x

1 + x

)p

− 1 + px

1 + x

)
≤ 1

x
·
(

p

2

)
· x2

(1 + x)2 + p · px

1 + x
=
(

p

2

)
· x

1 + x
+ p2x

1 + x
≤ 2p2x.

Therefore, the 3 term can be further bounded by

3 ≤ 2(1− 5γ)−p−1 · p2

kM
· tr(X −p)

∑
j∈S2

x(j) · u⊤
j Y −1

t uj

≤ 2(1− 5γ)−p−1 · p2

kM
· tr(X −p)⟨X , Y −1

t ⟩.

Using (9), it holds that

3 ≤ 2(1− 5γ)−p−2 · p2d

kM
· tr(X −p) ≤ O

( p2d

kM

)
· tr(X −p), (19)

where the last inequality follows by the choice of γ.
Combining (17), (18) and (19), we can lower bound the expected gain by

Et[gt] ≥
p

M

( ∑
j∈[m]\St−1

x(j)u⊤
j Y −p−1

t uj

)
−O

( p2d

kM

)
· tr(X −p)

= p

M

(
⟨X , Y −p−1

t ⟩ − ⟨XSt−1 , Y −p−1
t ⟩

)
−O

( p2d

kM

)
· tr(X −p). ◀
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Proof of Lemma 18. We define two sequences of random variables {Xt}t and {Yt}t, where
Xt := Et[Γt] − Γt and Yt :=

∑t
l=1 Xl. It is easy to check that {Yt}t is a martingale with

respect to {St}t. We will use Freedman’s inequality (see, e.g., [4, 15]) to bound the probability
Pr[Yτ ≥ η ∩min1≤t≤τ λmin(Zt) ≥ 1− 5γ].

In the following, we first show that if the event min1≤t≤τ λmin(Zt) ≥ 1 − 5γ happens,
then we can upper bound Xt and Et[X2

t ] so that we can apply Freedman’s inequality. To
upper bound Xt, we first prove an upper bound on gt and lt.

Note that, if the event λmin(Zt) ≥ 1− 5γ happens, then Yt ⪰ (1− 5γ)X , which implies

u⊤
it

Y −p−1
t uit

≤ (1−5γ)−p−1u⊤
it

X −p−1uit
and u⊤

jt
Y −p−1

t ujt
≤ (1−5γ)−p−1u⊤

jt
X −p−1ujt

.

By Observation 5, for all the exchange pairs it, jt, it holds that x(it), x(jt) ∈ (0, 1). Thus,
we can apply Lemma 13 to show that ⟨X−p−1, uit

u⊤
it
⟩ ≤ 1

k · tr(X
−p) and ⟨X−p−1, ujt

u⊤
jt
⟩ ≤

1
k · tr(X

−p). Therefore, since γ = 1/6p,

u⊤
it

Y −p−1
t uit

≤ O
(1

k

)
· tr(X −p) and u⊤

jt
Y −p−1

t ujt
≤ O

(1
k

)
· tr(X −p). (20)

We first give a deterministic bound on gt. Let x = u⊤
jt

Y −p−1
t ujt

, according to (15), the
gain term gt can be written as

gt = u⊤
jt

Y −p−1
t ujt

· 1
x
·
(

1−
(

1− x

1 + x

)p
)

.

Since (1− y)p ≥ 1− py for y ∈ [0, 1] and p ≥ 1, we can bound gt by

0 ≤ gt ≤ u⊤
jt

Y −p−1
t ujt

· 1
x
· px

1 + x
≤ p · u⊤

jt
Y −p−1

t ujt
≤ O

(p

k

)
· tr(X −p),

where the last inequality follows from (20).
Then, we give an deterministic bound on lt. By the definition of S′

t−1 and (7), it holds
that 0 < u⊤

it
Y −1

t uit
= ⟨vit

v⊤
it

, Z−1
t ⟩ ≤ κ. Thus, we can bound lt by

0 ≤ lt =
p∑

i=1

(
p

i

) (u⊤
it

Y −1
t uit

)i−1 · u⊤
it

Y −p−1
t uit

(1− u⊤
it

Y −1
t uit)i

≤ u⊤
it

Y −p−1
t uit

·
p∑

i=1

(
p

i

)
κi−1

(1− κ)i

= u⊤
it

Y −p−1
t uit ·

1
κ
·
(

1
(1− κ)p

− 1
)

.

For κ = 1
2p , we can control lt such that

lt ≤ O(p) · u⊤
it

Y −p−1
t uit ≤ O

(p

k

)
· tr(X −p),

where the last inequality follows from (20).
With the above bounds on gt and lt, we can control the size of the martingale increment

by

|Xt| = |Et[Γt]− Γt| ≤ gt + lt ≤ O
(p

k

)
· tr(X −p).

Next, we upper bound Et[X2
t ] by

Et[X2
t ] ≤ |Xt| · Et[|Xt|] ≤ O

(p

k

)
· tr(X −p) ·

(
Et[gt] + Et[lt]

)
.
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Using Lemma 14, we bound the expected loss term by

Et[lt] ≤
p

M

(
tr(Y −p

t )− ⟨XSt−1 , Y −p−1
t ⟩

)
+ O

( p2d

kM

)
· tr(X −p)

≤ O
( p

M

)
· tr(X −p) + O

( p2d

kM

)
· tr(X −p)

≤ O
( p

M

)
· tr(X −p),

where the second inequality follows by the assumption that λmin(Zt) ≥ 1− 5γ happens (and
(9)), the last inequality follows by the assumption on k.

Then, with the expression of gt in (15), we write the expected gain as

Et[gt] =
∑

j∈[m]\St−1

x(j)
M
·
(

1 + α⟨vjv⊤
j , A

1
2
t ⟩
)
·

u⊤
j Y −p−1

t uj

u⊤
j Y −1

t uj

(
1−

(
1−

u⊤
j Y −1

t uj

1 + u⊤
j Y −1

t uj

)p)
.

Using the fact that (1 − y)p ≥ 1 − py for y ∈ [0, 1] and p ≥ 1, the expected gain can be
bounded by

Et[gt] ≤
∑

j∈[m]\St−1

p

M
· x(j) · u⊤

j Y −p−1
t uj ·

1 + α⟨vjv⊤
j , A

1
2
t ⟩

1 + u⊤
j Y −1

t uj

.

By (7), u⊤
j Y −1

t uj = ⟨vjv⊤
j , Z −1⟩. Then, by the second inequality in Lemma 12, it holds that

Et[gt] ≤
p

M
· αλmin(Zt) ·

m∑
j=1

x(j) · u⊤
j Y −p−1

t uj ≤
p

M
· α · ⟨X , Y −p−1

t ⟩,

where the last inequality holds as λmin(Zt) < 1 before the termination of the algorithm. By
the assumption that λmin(Zt) ≥ 1− 5γ happens (and (9)) and the choice of α =

√
d/γ and

γ = 1/6p, we obtain the bound that

Et[gt] ≤
p
√

d

γ(1− 5γ)p+1M
· tr(X −p) ≤ O

(p2
√

d

M

)
· tr(X −p).

Therefore,

Et[X2
t ] ≤ O

(p

k

)
·O
(p2
√

d

M

)
·
(

tr(X −p)
)2 = O

(p3
√

d

kM

)
·
(

tr(X −p)
)2

,

which implies

Wt :=
t∑

l=1
El[X2

l ] ≤ O
(τp3

√
d

kM

)
·
(

tr(X −p)
)2

, ∀t ∈ [τ ].

Finally, we can apply Freedman’s martingale inequality Theorem (see, e.g., [4, 15]) with

R = O
(p

k

)
· tr(X −p) and σ2 = O

(p3
√

dτ

kM

)
·
(

tr(X −p)
)2

to conclude that

Pr
[
Yτ ≥ η

⋂
min

1≤t≤τ
λmin(Zt) ≥ 1− 5γ

]
≤ Pr[∃t ∈ [τ ] : Yt ≥ η ∩Wt ≤ σ2] ≤ exp

(
− η2/2

σ2 + Rη/3

)
= exp

(
−Ω

(
η2kM

τp3
√

d(tr(X −p))2 + ηpM tr(X −p)

))
.

The lemma follows by noting that
∑τ

t=1 Γt ≤
∑τ

t=1 Et[Γt]− η is equivalent to Yτ ≥ η. ◀
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Abstract
We study the classic weighted maximum throughput problem on unrelated machines. We give a
(1 − 1/e − ε)-approximation algorithm for the preemptive case. To our knowledge this is the first
ever approximation result for this problem. It is an immediate consequence of a polynomial-time
reduction we design, that uses any ρ-approximation algorithm for the single-machine problem to
obtain an approximation factor of (1 − 1/e)ρ − ε for the corresponding unrelated-machines problem,
for any ε > 0. On a single machine we present a PTAS for the non-preemptive version of the problem
for the special case of a constant number of distinct due dates or distinct release dates. By our
reduction this yields an approximation factor of (1 − 1/e) − ε for the non-preemptive problem on
unrelated machines when there is a constant number of distinct due dates or release dates on each
machine.
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1 Introduction

We study the classic scheduling problem of maximizing weighted throughput. We are given a
set J of n jobs, where job j has release date rj , due date dj and nonnegative weight wj . The
jobs are to be scheduled on a set M of m machines so that no two jobs are ever processed
simultaneously on the same machine. Job j completes when it has been processed for an
amount equal to its processing time. If preemption is allowed, the processing of a job may be
interrupted and resumed later at no cost. The objective is to maximize the total weight of
jobs that complete by their due dates. This basic problem has been studied for decades, but
for most of its versions we have no tight approximability results.

We employ the standard 3-field notation α| β| γ of [18], where α stands for the machine
environment, β for the job characteristics and γ for the objective function. When β = pmtn

preemption is allowed. When α = 1 there is a single machine; α = P stands for m identical
parallel machines: job j has processing time pj on every machine i. When α = R the m

machines are unrelated: job j has processing time pij on machine i. In this paper we focus on
the most general machine environment of unrelated machines. The problem of maximizing
weighted throughput on unrelated machines without preemption is denoted by R|rj |

∑
wjŪj .
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5:2 Approximation Algorithms for Maximum Weighted Throughput

We provide a polynomial-time reduction that shows that a ρ-approximation algorithm
for the single-machine problem 1| rj , β|

∑
wjŪj yields a ((1 − 1/e)ρ − ε)-approximation for

R|rj , β|
∑

wjŪj , for any ε > 0 (cf. Theorem 2). For the preemptive version and using different
ideas, Kalyanasundaram and Pruhs gave a 6-approximate reduction from P |rj , pmtn|

∑
wjŪj

to the single-machine problem [13]. Pruhs and Woeginger [19] designed an FPTAS for
1| rj , pmtn|

∑
wjŪj , using a pseudopolynomial algorithm by Lawler [17]. Therefore, our

framework produces a (1 − 1/e − ε)-approximation algorithm for R| rj , pmtn|
∑

wjŪj . To
our knowledge this is the first approximation result for preemptive throughput maximization
on unrelated machines (see also [7]). Our reduction is based on a simple idea. We write a
Configuration LP for the parallel-machine setting and use the single-machine algorithm as
an approximate separation oracle for the dual. Except for the definition of what constitutes
a configuration, the LP and its dual are essentially the same as the ones in [8]. In the latter
a Knapsack subroutine was used as a separation oracle. We round the fractional primal LP
solution using the dependent rounding method of [21, 9]. Despite its simplicity, our reduction
is powerful enough to allow machine-dependent release and due dates: on machine i, job j

can be processed in the interval [rij , dij ]. Moreover, for the preemptive case, our algorithm
produces a schedule on the unrelated machines with the desirable property of no migrations:
every job is processed in its entirety on a single machine. For the non-preemptive case,
our approach shows the existence of a ((1 − 1/e)ρ∗ − ε)-approximation algorithm, where ρ∗
is the approximability threshold of 1| rj |

∑
wjŪj . Despite decades of research, the latter

threshold is yet to be determined; we only know that ρ∗ ≤ 1/2 [4, 2]. The best known bound
for the unweighted case (i.e., wj = 1, ∀j) is 0.6448 [12]. Currently, our reduction does not
improve on the best known non-preemptive algorithms for R| rj |

∑
wjŪj , which achieve a

ratio of 1/2 − ε [2, 4]. Since the single-machine problem is far from well-understood, special
cases have received considerable attention. Our method can translate all existing optimal
algorithms or approximation schemes for special cases of the single-machine problem to an
(1 − 1/e − ε) guarantee on unrelated machines. See Corollary 1 for a list of results.

The unrelated machines setting can be further extended by adding constraints on the
grouping of jobs. We provide one such extension. Every job j has a type tj from a finite set T

of types. Machines need to undergo preparation to accommodate different job types. For every
machine i, we are thus given a set Ei ⊆ 2T that specifies the allowed combinations of types that
may be processed on i in a feasible schedule. Denote this problem as R| rj , types |

∑
j wjŪj .

Using a ρ-approximate oracle for 1| rj , β|
∑

wjŪj we obtain a ((1 − 1/e)ρ − ε) guarantee for
R| rj , β, types |

∑
j wjŪj in time polynomial in

∑
i∈M |Ei|. To avoid clutter we present in

Theorem 2 the result where all jobs have the same type and provide the details for the more
general setting in the Appendix.

Our algorithm for R| rj , pmtn|
∑

wjŪj uses the FPTAS of [17, 19] for the preemptive
case on a single machine as a black box. For the single-machine non-preemptive case, the
dynamic program of Lawler [17] can produce an FPTAS only for the case of similarly ordered
release and due dates, i.e., di < dj implies ri ≤ rj for each pair of jobs i and j. The dynamic
program in [17] yields thus an FPTAS for the non-preemptive version when all jobs have
a common due date or a common release date. It takes significant effort and new ideas to
overcome the restriction of similarly ordered release and due dates. We show how to do this
and obtain a PTAS for the single-machine, non-preemptive version, when there is a constant
number of distinct due dates (or release dates) (cf. Theorems 8 and 9). At a high level our
PTAS combines the FPTAS of [17] with the ideas from the PTAS of Khan et al. [15] for
the Generalized Assignment Problem with a constant number of bins. More specifically,
our approach can be summarized as follows (we restrict our description to the case of a
constant number of distinct due dates; the arguments are symmetric for the constant number
of release dates). By guessing the jobs straddling the due dates, we split the schedule into
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Table 1 Summary of our main results for weighted throughput on unrelated machines; ρ∗ is the
approximability threshold of 1| rj |

∑
wjŪj .

Preemption m # distinct dj # distinct rj Previous This work
√

any any any − 1 − 1/e − ε (Cor. 1)
− any any any 1/2 − ε [2, 4] (1 − 1/e)ρ∗ − ε (Thm. 2)
− 1 O(1) any 1/2 − ε [2, 4] PTAS (Thm. 8)
− 1 any O(1) 1/2 − ε [2, 4] PTAS (Thm. 9)
− any O(1) any 1/2 − ε [2, 4] 1 − 1/e − ε (Cor. 1)
− any any O(1) 1/2 − ε [2, 4] 1 − 1/e − ε (Cor. 1)

bins of two different kinds: (i) bins with jobs whose release dates occur before the bin, and
(ii) bins with jobs whose release date may occur inside the bin. By partitioning the jobs of
J , we split the problem into a constant number of subproblems each defined on a disjoint
subset of jobs and where each subproblem contains only one bin of the second kind. This
allows us to apply the ideas of [17] on the bin of kind (ii), and the GAP ideas of [15] on the
bins of kind (i) simultaneously. The combination of all “parallel” subproblems defines the
dynamic programming state of our PTAS.

By the aforementioned reduction our PTAS yields a (1 − 1/e − ε)-approximation on
unrelated machines when on every machine the number of distinct due dates or release dates
is constant. Even for these special cases, we are not aware of any previous results that
improve upon the 1/2 − ε ratio of [2, 4]. We summarize our main results in Table 1.

Other related work. The single-machine problem without release dates 1| |
∑

j wjŪj is
equivalent in optimality with the problem of minimizing the total weight of late jobs. The
latter was one of Karp’s 21 NP-complete problems [14]. Without release dates, preemption
is of no use; therefore, 1| pmtn|

∑
j wjŪj is also NP-complete. Several versions of the

unweighted problem are hard. 1| rj |
∑

j Ūj is strongly NP-complete [10], and R| rj |
∑

j Ūj

is MAX SNP-hard [3]. P | pmtn|
∑

Ūj is NP-complete [16]. Chuzhoy et al. [6] provide a
(1 − 1/e − ε)-approximation algorithm for the Job Interval Selection Problem, in which for
every job we are given an explicit list of allowed intervals and the intervals selected for all
scheduled jobs must be disjoint. The objective is to maximize the number of scheduled jobs.
Because of the explicit list requirement, the running time of the algorithm of [6] becomes
pseudopolynomial when applied to R| rj |

∑
j Ūj . Hyatt-Denesik et al. [11] provide a PTAS

that works for unweighted jobs on identical machines, when m, the number of distinct release
dates, and the number of distinct due dates, are all bounded by a constant. A number of
further results for identical machines are given in [4, 12].

The paper is structured as follows. In Section 2 we provide the reduction from the
unrelated machines to the single-machine problem and the improved approximation bounds
that are obtained as a consequence. In Section 3 we present the PTAS for the single-machine
case when the number of distinct due dates is fixed. In Section 4 we outline the necessary
modifications to the algorithm from Section 3 in order to obtain a PTAS for the single-machine
when the number of distinct release dates is fixed.

2 Reduction to the single-machine case

In this section we provide a polynomial-time approximation-preserving reduction from
the problem with machine-dependent release and due dates, R| rij , dij , β|

∑
wjŪj , to

1| rj , β|
∑

wjŪj . We provide first a Configuration LP relaxation for R| rij , dij , β|
∑

wjŪj .
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For machine i ∈ M we define a set C(i) of configurations. A configuration C ∈ C(i) is
a schedule of a subset J ⊆ J of jobs on machine i such that (i) all jobs in J respect their
release and due dates on i (ii) there is no unnecessary idle time (iii) the β-constraints are met.
C(i) is a finite set whose size can be naively bounded by (n!)2n. We slightly abuse notation
and we also view a configuration C as the set of jobs in the corresponding schedule. Without
loss of generality we can assume that C(i) ∩ C(j) = ∅ for i, j ∈ M, i ≠ j. The configuration
LP, here denoted (CLP), is the formulation (1) of [8] and has a variable xC for each machine
i and configuration C ∈ C(i):

max
∑
j∈J

wj

 ∑
i∈M

∑
C∈C(i):j∈C

xC

 (CLP)

∑
C∈C(i)

xC ≤ 1 ∀i ∈ M (1)

∑
i∈M

∑
C∈C(i):j∈C

xC ≤ 1 ∀j ∈ J (2)

xC ≥ 0 ∀i ∈ M, ∀C ∈ C(i) (3)

The set of constraints (1) ensures that to each machine is assigned at most one config-
uration. Constraints (2) ensure that each job is assigned at most once. Clearly, an integer
solution to (CLP) corresponds to a feasible schedule for R| β|

∑
wjŪj . For a configuration

C, let w(C) :=
∑

j∈C wj . The dual of (CLP) is the following:

min
∑
i∈M

yi +
∑
j∈J

zj (D-CLP)

yi +
∑
j∈C

zj ≥ w(C) ∀i ∈ M, ∀C ∈ C(i) (4)

y, z ≥ 0 (5)

In what follows, we will use the notion of a ρ-approximate separation oracle for (D-CLP)
(see e.g., [8]), i.e., a polynomial-time algorithm that, given values y, z, either returns a violated
constraint, or guarantees that values y/ρ, z satisfy constraints (4)-(5). It is well-known (cf.
Lemma 2.2 in [8]) that such an oracle, combined with binary search on the optimal value,
implies a polynomial-time (ρ − δ)-approximate algorithm for solving (D-CLP), and hence
(CLP), for any constant δ > 0 (without any constraint violations). The facet complexity
ϕ of (D-CLP) is O(n log wmax), where wmax = maxj∈J wj . Since the coefficients of the
objective function are all 1, by well-known arguments the optimal value of (D-CLP) can be
represented by O(n2ϕ) bits and hence binary search on the optimum runs in polynomial-time
(see Corollary 10.2a in [20]). Our reduction is based on the following simple fact.

▶ Lemma 1. If there is a polynomial-time ρ-approximation algorithm Aβ for the problem
1| rj , β|

∑
wjŪj , then there is a ρ-approximate separation oracle for (D-CLP).

Proof. Given a candidate solution (y, z) to (D-CLP), the separation oracle has to solve |M |
instances of 1| β|

∑
wjŪj , one instance Ii for each i ∈ M.

We define instance Ii. We have a single machine and the n jobs in J where job j has
processing time pij , release date rij , due date dij . Job j has a (possibly negative) value
vj := wj − zj . There is a violated constraint (4) corresponding to machine i iff there is a
feasible schedule for Ii where the total value of the on-time jobs exceeds yi. Any such schedule
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can contain only jobs of positive value; therefore, we discard any job j with vj ≤ 0. If there
are no jobs of positive value, then the constraint cannot be violated for any configuration in
C(i) and we move to examine the next instance Ii+1.

We run algorithm Aβ on instance Ii. Aβ will return a feasible schedule whose value is
at least ρ-times the maximum value, for ρ ≤ 1. If this value exceeds yi we have identified a
violated constraint. Else the vectors (y/ρ, z) satisfy all constraints (4) for machine i. ◀

▶ Theorem 2. If there is a polynomial-time ρ-approximation algorithm Aβ for the
problem 1| rj , β|

∑
wjŪj , then there is a ((1 − 1/e)ρ − ε)-approximation algorithm for

R| rij , dij , β|
∑

wjŪj where ε > 0 is any constant of our choice.

Proof. By Lemma 1 and Lemma 2.2 in [8] the ρ-approximation algorithm Aβ for 1|β|
∑

wjŪj ,

can be used to compute a (ρ−δ)-approximate solution x∗ to (CLP), for some δ > 0. It remains
to round the fractional solution x∗ to an integer one. We use the dependent rounding method
of [21, 9] in the setting where we have a collection of m star graphs, each corresponding to
a machine i ∈ M and the subset of configurations from C(i) that have been assigned by a
non-zero amount by x∗ to i. We sample independently from m distributions, one for each
star, to produce an integer assignment x̂ of configurations to the machines. Each distribution
and the corresponding sampling method are designed using the technique of [21], so that,
with probability 1, each machine gets one configuration and the assignment of configurations
to a machine respects negative correlation. Moreover, the expectation of x̂C equals x∗

C .

Adapting slightly the analysis for the maximum coverage problem in [21] we obtain that the
expected total weight of the jobs that appear in at least one configuration in the support of
x̂ is at least (1 − 1/e) the value of the x∗ solution. For the sake of completeness we include
in Appendix A the relevant details from [21]. Every configuration chosen by x̂ corresponds
to a feasible schedule on the corresponding machine. To obtain the final schedule, for every
job j that appears in more that one configurations we arbitrarily delete all but one of its
occurrences. Note that every machine gets exactly one configuration by x̂, therefore the
occurrences of j happen each on a different machine. Since x∗ is (ρ − δ)-approximate we
obtain the theorem. ◀

The upcoming corollary collects applications of Theorem 2 to settings where an (F)PTAS
exists for the single machine case. The additive laxity of a job j is defined as dj − pj − rj .

For each application we provide the reference for the single-machine result. Note that the
algorithm in [1] finds an optimal solution.

▶ Corollary 1. There is a polynomial-time (1 − 1/e − ε)-approximation algorithm for
R| rij , dij , β|

∑
j wjŪj where jobs have machine-dependent release and due dates and β can

stand for the following: (i) preemption is allowed [17, 19] (ii) on every machine the number
of distinct release dates or the number of distinct due dates is constant (Theorems 8, 9)
(iii) on every machine the number of distinct processing times is constant and all jobs have
unit weights [11] (iv) for every machine i and job j, pij = pi, i.e., all jobs have the same
processing time on machine i [1] (v) on every machine the jobs have equal additive laxity [5]
(vi) on every machine release dates and due dates are similarly ordered [17, 19].

In all the results of Corollary 1, we used as a lower bound for the optimum the value
of (CLP), i.e., the value of a (fractional) schedule in which a job may be simultaneously
executed on more than one machine. On the other hand the algorithm of Theorem 2 produces
an integer solution where every scheduled job runs completely on one machine, i.e., in the
preemptive case it produces a schedule with no migrations. The following is immediate.
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▶ Corollary 2. The approximation ratio of (1 − 1/e − ε) for R| rij , dij , pmtn|
∑

j wjŪj holds
both for the problem version where a job may be simultaneously executed on two or more
machines and for the version where this is not allowed.

The above can be extended to the setting where jobs have different types, see Appendix B.

3 Constant number of distinct due dates

In this section we provide a PTAS for the setting where we have a single machine and the
number of distinct due dates is constant.

3.1 Preliminaries
For a set of jobs S, we denote by w(S) =

∑
j∈S wj its total weight, p(S) =

∑
j∈S pj its

total processing time. Wlog only jobs that meet their due dates are processed in a feasible
schedule. Given a schedule σ in which a set S of jobs is processed we denote by w(σ) the
quantity w(S). For a time interval B we denote its length by |B|. The jobs scheduled in B

are jobs that start and finish in the interval. We slightly abuse notation and denote by w(B)
the total weight of the jobs scheduled in B if an associated schedule is clear from the context.

We assume that the due dates of the n jobs take a value out of k possible numbers
D1 ≤ D2 ≤ . . . ≤ Dk. Let D0 := 0. We assume that time 0 coincides with the earliest
release date. Wlog the time horizon T = Dk. For an integer m, the notation m ∈ (i, k] (resp.
m ∈ [i, k]) stands for m = i+1, . . . , k (resp. m = i, . . . , k). Similarly m ∈ [i, k) is a shorthand
for m = i, . . . , k − 1. We denote by Ri, i ∈ [1, k], the set of jobs j s.t. Di−1 ≤ rj < Di.

3.2 A structure lemma
In this section we devise structural properties of a near-optimal solution and show how to
pre-compute in polynomial time some of its features.

Let OPT be an optimal solution for the problem 1| rj |
∑

wjŪj . Wlog w(OPT ) ≥ wmax.

Let ε1 > 0 be any constant. We apply the classic knapsack rounding in order to reduce
the job weights within a polynomial range: by rounding all job weights down to the closest
multiple of θ := ε1wmax/n, the total weight is still at least (1 − ε1)OPT , but now all job
weights are between 1 and O(n/ε1) in units of θ. In addition, we can impose the following
special structure:

We shift all scheduled jobs later, to start as late as possible: the schedule consists of
contiguous (i.e., without idle time) blocks of jobs, each finishing at a due date (with the
last block finishing at Dk).
In every interval [Di−1, Di), we can rearrange the jobs that start and finish within the
interval to be scheduled in non-decreasing order of release dates. Note that any jobs from
the set Ri that are scheduled in the interval, are scheduled last.

A job j straddles time t if j starts at or before t and finishes after t. Let S1, S2, . . . , Sk−1
be the jobs straddling due dates D1, . . . , Dk−1, and let si, fi be the starting and finishing
times of straddler Si. Note that due to the structure of OPT , some due dates may not have
a straddler, just like D0, Dk; in this case Si = ∅. Wlog we may assume that no job straddles
more than one due date. We will assume that we know the straddlers by enumerating all
O(nk) possibilities.

Let Km = (fm−1, sm) be the interval between the end of Sm−1 and the beginning of Sm,
and |Km| ≤ Dm − Dm−1 its length. Km is the concatenation of intervals B1

m, B2
m, . . . , Bm

m

in this order, so that Bh
m contains only the jobs of Rh scheduled in Km. We refer to these
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intervals as bins. Note that the jobs in each Bh
m are scheduled al late as possible, and each

bin straddles only release dates. Figure 1 shows bins B1
m, . . . , Bm−2

m , Bm−1
m , Bm

m of Km. The
following lemma will allow us to enumerate the bin sizes in polynomial time for the PTAS.

...

rhrh+1rh+2rh+3rh+4rh+5rh+6

Dm−1 Dm

B1
m

Bm−2
m

Bm−1
m

Bm
mSm−1 Sm

sm−1 smfm−1 fm

Figure 1 Bins B1
m, . . . , Bm−2

m , Bm−1
m , Bm

m of Km. Bin Bm
m contains jobs in Rm, i.e., with release

dates rh, rh+1, . . . , rh+5. Jobs with release date rh+6 will be scheduled in Bm−1
m .

▶ Lemma 3. Let ε > 0 be any given constant. Let be J ⊆ J be a set of jobs feasibly scheduled
in an interval I without idle time where I does not contain a due date. Then there is Ĵ ⊆ J ,
and a subinterval Î of I s. t. (i) Î has the same right endpoint as I, (ii) w(Ĵ) ≥ (1 − 3ε)w(J)
and p(Ĵ) ≤ |Î| ≤ |I|, (iii) the jobs in Ĵ can be feasibly scheduled without idle time in Î, and
(iv) |Î| takes values from a set of size O(n1/ε2 log1+ε |I|).

Proof. Let σ be the feasible schedule of the jobs of J in I. The set Ĵ and the corresponding
feasible schedule σ̂ are derived in two phases. We adapt the methods in [15] to account for
the presence of release dates in I. In Phase 1, we apply Theorem 11 of [15] for a single bin
that corresponds to interval I. We establish the existence of subsets X and Y of J. Define
J ′ = J − X − Y. By Theorem 11, for every j ∈ J ′, pj ≤ ε(|I| − p(X)). We produce a schedule
σ′ of X ∪ J ′ by deleting from σ the jobs of Y and replacing them by idle time. Schedule σ′

executes in the same interval I as σ. By Theorem 11, w(X ∪ J ′) ≥ (1 − ε)w(J).
In Phase 2, we extend the trimming method of [15] to show that there is R ⊆ J ′ s.t.

w(R) ≤ (2ε/(1−ε))w(J ′) and there is an integer β s.t. p(J ′ −R) ≤ (1+ε)β ≤ |I|−p(X). See
Appendix D.3. We set Ĵ = X ∪ (J ′ − R). We have that w(Ĵ) ≥ (1 − ε)(1 − 2ε/(1 − ε))w(J) =
(1 − 3ε)w(J). The schedule σ̂ results from σ′ by deleting all jobs in R and shifting jobs as
needed to the right to remove any idle time. This is feasible, since I doesn’t contain any due
dates. It suffices to set Î to an interval that ends at the right endpoint of I such that |Î|
equals p(Ĵ). By Theorem 11, there are O(n1/ε2) choices for the set X and accordingly that
many choices for p(X). The value p(J ′ − R) can be upper-bounded by a number that takes
O(log1+ε |I|) many values. Therefore |Î| takes values from a set of size O(n1/ε2 log1+ε |I|). ◀

We apply Lemma 3 with ε := ε2 to the jobs scheduled in OPT in each of the O(k2)
bins Bi

m, m ∈ [1, k], i ∈ [1, m]. There are sets Xi
m and integers ai

m such that there is a
near-optimal feasible schedule that assigns to each bin Bi

m a set Si
m of “small” jobs in

addition to Xi
m so that p(Si

m) ≤ (1 + ε2)ai
m . By enumerating all O(nO(k2/ε2

2)(log1+ε2 Dk)k2)
possibilities, we can assume that we have determined all the Xi

m’s and ai
m’s.

Let ÔPT be the solution of value at least (1 − 3ε2)(1 − ε1)w(OPT ) obtained from OPT

by replacing each bin Bi
m by a (smaller) bin B̂i

m with known size |B̂i
m| = p(Xi

m) + (1 +
ε2)ai

m . By Lemma 3 |B̂i
m| ≤ |Bi

m|. Then Km has been replaced by a (smaller) K̂m of size
K̂m =

∑m
i=1 |B̂i

m|, and all scheduled jobs are shifted as late as possible, while maintaining
S1, S2, . . . , Sk−1 as straddlers. Figure 2 shows ÔPT .

Expansion of Xi
m. Let |B̂i

m|′ := |B̂i
m| − p(Xi

m) be the bin space available for jobs other
than Xi

m in ÔPT , i.e., job sets J i
m s.t. p(J i

m) ≤ |B̂i
m|′. In order to be able to apply the

techniques of [15] later, we need to keep in ÔPT only jobs of J i
m that satisfy a property
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0

D1 Di−1 Di DK

t

... ...S1 Si−1 SiK̂1 K̂i−1 K̂i K̂k

r1r2rhrh+1rh+2rh+3rn−1rn

s1 si−1
sif1 fi−1 fi

rh+4

Figure 2 An approximate optimal schedule ÔP T . Note that the length of K̂i is at most the
length of the original Ki. Release dates are in non-increasing order. Ri contains all jobs with release
dates rh, rh+1, rh+2, rh+3.

stronger than the property pj ≤ ε(|Bi
m| − p(Xi

m)) guaranteed by Lemma 3 for all jobs of
J i

m. We apply the structure theorem of [15] (Theorem 11 in Appendix D) on each job set
J i

i+1, J i
i+2, . . . , J i

k for each i ∈ [1, k), to define job sets W i
m and U i

m with |W i
m| = O(1/ε2

3),
such that w(∪i,mU i

m) ≤ ε3ÔPT and

pj ≤ ε3(|B̂i
m|′ − p(W i

m)), ∀j ∈ J i
m − W i

m − U i
m.

Note that bins Bi
i , i = 1, 2, . . . , k do not participate in this process, and, therefore, W i

i := ∅.
We expand the sets Xi

m to include W i
m, i.e., we reset Xi

m := Xi
m ∪ W i

m for all i and m. The
sets W i

m can be enumerated in O(nk2/ε2
3) time.

▶ Definition 1. A job j is large if j ∈
⋃

i,m Xi
m.

▶ Definition 2. A job j is small for bin B̂i
m if j is not large and pj ≤ ε3(|B̂i

m|′ − p(W i
m)).

Since | ∪i,m Xi
m| = O(k2/(min{ε2, ε3})2), for the rest of the paper we will assume that

we have “guessed” all sets Xi
m of large jobs and their placement in bins. Keeping in ÔPT

only the large and small jobs, as defined in Definitions 1 and 2, ÔPT still achieves total
weight at least (1 − ε3)(1 − 3ε2)(1 − ε1)OPT .

Calculation of times si, fi. Since we can enumerate them in polynomial time, in what
follows we will assume that we have “guessed” sizes |K̂i|, i = 1, . . . , k. Starting from Dk, and
going backwards in time, we use these sizes to calculate times fk−1, sk−1, fk−2, sk−2, . . . , f1, s1.
We should only be careful in case si − |K̂i| − p(Si−1) < Di − Di−1, i.e., when the beginning
of K̂i is more than p(Si−1) time units after Di−1. In this case, we don’t allow Si−1 to be
scheduled after Di−1 (as a non-straddler), but we set si−1 := Di−1, and continue.

The following lemma summarizes the properties of ÔPT :

▶ Lemma 4 (Structure Lemma). There is a feasible schedule ÔPT of weight at least (1 −
ε3)(1 − 3ε2)(1 − ε1)OPT , such that:

Job weights are between 1 and O(n/ε1).
There are k known straddlers Si, with known starting and finishing times si, fi, i ∈ [1, k].
Jobs are scheduled in intervals K̂i ⊆ (fi−1, si) contiguously as late as possible, and in
Earliest Release Date (ERD) order. Each K̂i is adjacent to Si, and its size |K̂i| is known.
Only large and small jobs are scheduled; the large jobs can be computed in polynomial-time.

3.3 A PTAS for ÔP T

We order the jobs in Latest Release Date (LRD) ordering, i.e., in non-increasing release date
order r1 ≥ r2 ≥ . . . ≥ rn = 0. The algorithm will schedule the jobs one at a time, and a job
scheduled in some bin B̂i

m of K̂i is scheduled right before the jobs already scheduled in B̂i
m.

There are at most k2 different bins overall. Recall that all job weights are at most O(n/ε1),
hence there are O((n2/ε2

1)k2) different combinations of total weights for the bins.
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3.3.1 Intuition
When there is only one due date D1, the DP of [17] for non-preemptive maximum throughput
is applicable, because its requirement of similarly ordered release and due dates is met.
Crucially, the correctness of the algorithm is based on DP subproblems computing the
minimum total schedule time needed to achieve a total weight target (cf. Appendix C).
Unfortunately, this approach cannot work with more than one due date, because for a
given Ri, the notion of minimum total scheduling time is not well-defined for all its bins
simultaneously.

For a different approach that allows for simultaneous scheduling across all K̂m’s, one
may turn to [15], who give a very interesting PTAS for the Generalized Assignment Problem
(GAP) with a constant number of bins (cf. Appendix D). When discretizing the state space
of the dynamic program the algorithm of [15] augments bin capacities by a (1 + ε) factor. It
then employs trimming (see Appendix D.2) to remove a low-weight contiguous set of jobs,
which exists by the Pigeonhole Principle, so that the remaining jobs fit in the bins with
the original capacities restored. In our case, increasing the bin capacities may entail that
in some K̂m, jobs may end up scheduled to start before their release dates in (fm−1, sm).
(We remind the reader that fm−1 > Dm−1 is the completion time of the (m − 1)th straddler
and sm ≤ Dm is the start time of the mth straddler). Unfortunately, the trimming part of
[15] may fail when applied to such a block of jobs: it can only work if the jobs removed are
the latest ones in the block so that all the previous ones can be shifted later and meet their
release date. On the other hand, if all release dates of the jobs in the block occur before
Dm−1, then the whole procedure works as for GPA, without any problems. The two key
observations for deriving a PTAS for our problem are the following:
Obs1 We can break the problem into a constant number of subproblems that schedule disjoint

subsets of jobs: we are going to have one subproblem for each set Ri, i = 1, 2, . . . , k.
Obs2 The subproblem for Ri consists of at most k bins B̂i

i , B̂i
i+1, . . . , B̂i

k, each being a “slice”
of K̂i, K̂i+1, . . . , K̂k (recall that in each K̂m, jobs in Rg are scheduled before jobs in Rh

when g < h). Note that the release dates of jobs in Ri do not affect the scheduling of
bins B̂i

i+1, . . . , B̂i
k, since these release dates occur before Di and all those intervals start

after Di; for these bins the PTAS of [15] for GAP is applicable, when the bin capacities
|B̂i

i+1|, . . . , |B̂i
k| are given. This leaves bin B̂i

i , which is scheduled using the minimum
total processing time idea of [17], while respecting the total processing time and weight
targets of the rest of the bins and so that the release dates of Ri are respected.

Obs1 above together with the total processing times, |B̂i
i |, . . . , |B̂i

k|, for the bins for each
Ri, allows us to combine all “parallel” subproblems in a common DP state, computed by k

“parallel” applications of Obs2.

3.3.2 Scheduling of the jobs
Recall that we have “guessed” the large jobs Xi

m that have already been slotted for each bin
B̂i

m. We consider jobs one-by-one for scheduling in a Latest Release Date (LRD) ordering. If
large and small jobs have the same release date, the large jobs are scheduled first. Recall that
Lemma 3 allowed us to “guess” bin sizes |B̂i

m|. Let |B̂i
m|′ := |B̂i

m| − p(Xi
m) be the bin space

available for jobs small for B̂i
m, as defined in Definition 2. Note that given the (guessed)

|B̂i
m|′ and W i

m the algorithm can determine whether a job j is small for bin B̂i
m.

Resource augmentation. We increase the bin capacities allocated to small jobs |B̂i
m|′ in

each bin B̂i
m, m > i, and set |B̂i

m|′′ := (1 + ε3)|B̂i
m|′, and round the job processing times

according to the resource augmentation scheme of [15] (cf. Appendix D.1). The bin capacity
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allocated to the large jobs of the bin is not augmented. Now small jobs may have different
processing times for different bins; let pmj be the processing time of a small job j ∈ Ri

for bin B̂i
m (pmj = ∞ if j cannot be scheduled in B̂i

m, e.g., when it is not small for this
bin, according to definition 2). Let ÔPT a be the maximum throughput schedule for the
resource-augmented instance. The following lemma is a direct corollary of Lemma 1 in [15].

▶ Lemma 5. Schedule ÔPT is feasible for the resource-augmented instance, hence
w(ÔPT a) ≥ w(ÔPT ).

DP states and state transitions. Recall that jobs are scheduled one by one, in LRD
order. The DP table records whether a given state is feasible. It is initialized with value ∞,
indicating infeasibility, everywhere except for base-case-state (0, 0, . . . , 0) that is initialized
to value 1, indicating feasibility. Table entries that cannot be reached by legitimate state
transitions as described below will remain infeasible throughout the execution.

Assume that the first j − 1 jobs have been considered, and we are now considering
job j ∈ Ri. For brevity, we present the portion (substate) Si(j − 1) of the DP state
S(j − 1) = (S1(j − 1), S2(j − 1), . . . , Sk(j − 1)) that corresponds to the i-th “parallel”
subproblem, defined for jobs in Ri. It has the form of the following tuple:

Si(j − 1) = (Zj−1
i , W j−1

i , Zj−1
i+1 , W j−1

i+1 , . . . , Zj−1
k , W j−1

k ),

where Zj−1
m is the processing time used by the jobs in {1, 2, . . . , j − 1} ∩ Ri scheduled in B̂i

m,
and W j−1

m is their total weight. Scheduling job j ∈ Ri produces the following transitions
S(j − 1) → S(j):

Large job j ∈ Xi
m is scheduled in B̂i

m, m ≥ i : There is a transition to state S(j) with

Si(j) = (Zj−1
i , W j−1

i , . . . , Zj−1
m + pmj , W j−1

m + wj , . . . , Zj−1
k , W j−1

k ).

Job j is scheduled as small in a B̂i
m, m > i: We check whether the following conditions

hold: (i) dj is not violated, (ii) large jobs in Xi
m with release dates smaller than rj can

still be feasibly scheduled in B̂i
m, (iii) Zj−1

m + pmj ≤ |B̂i
m|′′, and (iv) there isn’t already a

feasible state T (j − 1) with

T i(j − 1) = (T, W j−1
i , . . . , Zj−1

m + pmj , W j−1
m + wj , . . . , Zj−1

k , W j−1
k )

such that T < Zj−1
i . Note that large jobs with release dates at least rj have already been

scheduled before j, so given Zi
m it is easy to check condition (iii) above. If all conditions

hold, then there is a transition to state S(j) with

Si(j) = (Zj−1
i , W j−1

i , . . . , Zj−1
m + pmj , W j−1

m + wj , . . . , Zj−1
k , W j−1

k ),

otherwise j is not scheduled in B̂i
m.

Job j is scheduled as small in B̂i
i : We check whether the following conditions hold: (i)

large jobs in Xi
i with release dates smaller than rj can still be feasibly scheduled in LRD

order in B̂i
i , (ii) Zj−1

i + pij ≤ |B̂i
i |′′, and (iii) the scheduling of j doesn’t violate rj . If all

conditions hold, then we consider the state T (j − 1) with

T i(j − 1) = (Z, W j−1
i + wj , Zj−1

i+1 , W j−1
i+1 , . . . , Zj−1

k , W j−1
k )

that, after scheduling the j −1 first jobs, achieves total weight W j−1
i +wj in B̂i

i , while the
rest of the state is the same as S(j − 1). If state T (j − 1) is not feasible, then we schedule
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j in B̂i
i as in the previous case. Otherwise, Z is well defined as a sum of processing times.

Then there is a transition to state S(j) with

Si(j) =
{

(Zj−1
i + pij , W j−1

i + wj , Zj−1
i+1 , W j−1

i+1 , . . . , Zj−1
k

, W j−1
k

), Zj−1
i + pij < Z

T i(j − 1), Zj−1
i + pij ≥ Z.

(6)

Job j is not scheduled: In this case S(j) = S(j − 1).

After the feasibility of all DP states S(j) = (S1(j), S2(j), . . . , Sk(j)) has been computed
for all j, we keep as a solution the feasible state S(n) with the maximum sum of total weights
in all bins, as well as the schedule S that achieves it.

▶ Lemma 6. The DP algorithm correctly outputs a feasible schedule S that is as good as
ÔPT a, if the latter exists.

Proof. First note that ÔPT a complies with the structure of Lemma 4. Let ÔPT a(j) be the
sub-schedule of ÔPT a containing only jobs 1, . . . , j in the LRD order. Note that ÔPT a(j)
continues to comply with the structure of Lemma 4. Let Z̄i

m(j), W̄ i
m(j) be the total processing

time and total weight scheduled in B̂i
m by ÔPT a(j).

▷ Claim 7. For j = 0, 1, . . . , n, there is a feasible state S(j) with substates

Si(j) = (Zi
i (j), W i

i (j), Zi
i+1(j), W i

i+1(j), . . . , Zi
k(j), W i

k(j)), i = 1, . . . , k

corresponding to jobs in Ri, produced by the DP after considering jobs 1, 2, . . . , j, such that

Zi
m(j) = Z̄i

m(j), W i
m(j) = W̄ i

m(j), ∀i, m : m > i, and Zi
i (j) ≤ Z̄i

i (j), W i
i (j) = W̄ i

i (j), ∀i.

Proof. The proof is by induction on j. For the base case j = 0, the feasible DP state
S(0) = (0, 0, . . . , 0) proves the claim trivially true. We assume that the claim is true up to
job j − 1, and we consider the case j ∈ Ri. Let S(j − 1) be the state which by the inductive
hypothesis corresponds to ÔPT a(j − 1). There are three cases to consider.

If j is not scheduled in the transition from ÔPT a(j − 1) to ÔPT a(j) then setting
S(j) = S(j − 1) satisfies the claim.

If ÔPT a(j) is obtained from ÔPT a(j − 1) by scheduling j in B̂i
m for some m > i, then

the transition from the state S(j − 1) to a state S(j) with the same placement of j as
ÔPT a(j − 1) is feasible, since it is feasible for ÔPT a(j), and S(j) satisfies the claim.

If ÔPT a(j) is obtained from ÔPT a(j − 1) by scheduling j in B̂i
i , then the transition

from state S(j − 1) of the inductive hypothesis to a state S(j) when the same placement
of j as in ÔPT a(j − 1) is tried, can follow one of two possibilities: (i) If there is another
feasible state T (j − 1) with Zi

i value T smaller than Zi
i (j − 1) + pj ≤ Z̄i

i (j − 1) + pj , W i
i

value U equal to W i
i (j − 1) + wj , and all other values equal to the values of S(j − 1), then

the transition followed by the DP (bottom branch of (6)) sets S(j) = T (j − 1) (which
means that j is not scheduled in S(j)), and the claim is satisfied. (ii) If there is no such
state T (j − 1), then by the inductive hypothesis Zi

i (j − 1) ≤ Z̄i
i (j − 1) which implies that

Zi
i (j − 1) + pj ≤ Z̄i

i (j − 1) + pj . In addition, the transition of the DP for this case (top
branch of (6)) is feasible, since it was feasible for ÔPT a(j − 1), and the new state S(j) it
produces again satisfies the claim. ◁

The claim proves that there is a path of feasible states of the DP that achieves the same
total weight as ÔPT a(j) for all j, and, therefore, there is a feasible state S(n) of total weight
equal to w(ÔPT a(n)) = w(ÔPT a). ◀
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Trimming. Schedule S corresponds to scheduling in a resource-augmented set of bins
B̂i

m, m > i. Following [15], we apply trimming (cf. Appendix D.2) to each one of them with
γ := 1 + ε3, δ := ε3, ε := ε3, for a total loss of at most 2ε3ÔPT a total weight. The resulting
schedule is feasible for the original problem without speed-up, and its total weight is at least
(1 − ε)OPT , where ε ≤ 1 − (1 − ε1)(1 − 3ε2)(1 − 3ε3).

Running time. Let us focus first on the subproblem for a fixed Ri. There are C :=
O(nO(k/ε2)(log1+ε Dk)k) choices for all the large sets and the bin sizes. For each choice we
run the DP for resource-augmented bin sizes, with rounded weight values, which gives a total
of O((n2/ε2)k · C) choices for the coordinates, except for the first one, of the substate Si().
By Claim 7, for every such combination of coordinates we keep one substate. To place job
j ∈ Ri we examine O(k) transitions. Taking into account that there are k sets R1, . . . , Rk,
we obtain a total running time of O((n log Dk)O(k2/ε2)).

▶ Theorem 8. There is a PTAS for the maximum weighted throughput problem on a single
machine with a constant number of distinct due dates.

Theorem 8 is used in part (ii) of Corollary 1.

4 Constant number of distinct release dates

The ideas behind Theorem 8 can easily be applied to provide a PTAS for the case of a
constant number of release dates. Let dmax = maxj∈J dj . The role of due dates is now played
by the k different release dates 0 = r1 ≤ r2 ≤ . . . ≤ rk, that define k intervals [ri, ri+1),
i ∈ [1, k − 1], and [rk, dmax). Note that release dates are now ordered in non-decreasing order.
Let Si be the straddler of ri, i ∈ [2, k] and S1 = ∅.

After the rounding of the job weights, we consider an optimal schedule OPT where jobs
are now shifted as early as possible. Intervals Km = (fm, sm+1) between straddlers Sm, Sm+1
are defined as before, and Lemma 3 applies to show the existence of a subset of the scheduled
jobs of Km that can now be scheduled in (smaller) intervals K̂m starting also at fm and
with polynomially many possible sizes. This is ensured by Lemma 3, modified to apply to
bins straddling only due dates, and by scheduling jobs within the bins in Earliest Due Date
(EDD) order and as early as possible. When empty space is created within a bin, we shift
jobs to the left on the time axis as needed so as to eliminate idle time. The only additional
change to Lemma 4 is that now jobs within each interval are scheduled in EDD order.

The PTAS description is virtually the same, with the role of Ri played by Di, the set
of jobs with due dates in [ri, ri+1). Bins B̂i

m, i ∈ [m, k], of K̂m are defined similarly to
Section 3.3, where B̂i

m contains jobs scheduled in K̂m with due date in K̂i. These bins appear
from left to right in K̂m, i.e., in order of increasing i. The DP transitions are also defined
similarly, to always respect (i) the due dates, (ii) the bin capacities, and (iii) the invariant
that the jobs from Di that are scheduled in B̂i

i occupy the minimum processing time, given
the processing time target for bins B̂i

m, m ∈ [1, i), and the total weight targets for bins B̂i
m,

m ∈ [1, i]. By the latter invariant, Lemma 6 applies also to this case. Hence we have:

▶ Theorem 9. There is a PTAS for the maximum weighted throughput problem on a single
machine with a constant number of distinct release dates.

Theorem 9 is used in part (ii) of Corollary 1.
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A Technical details for the proof of Theorem 2

We explain how the dependent rounding method of [21, 9] is used in the proof of Theorem 2.
The details in this section are a simple application of the work of Srinivasan [21] (see
also [9]) and we provide them here for the sake of completeness. Let x∗ be a (ρ − δ)-
approximate (fractional) solution of (CLP). Without loss of generality we can assume that∑

C∈C(i) x∗
C = 1, ∀i ∈ M.

Let C̄(i) be the configurations in C(i) with nonzero value in x∗. We define x(i) to be the
projection of the x∗ vector to the coordinates that correspond to configurations in C̄(i).
Denote |C̄(i)| by ti. Srinivasan [21] defines a distribution D(ti, x(i)) over vectors in {0, 1}ti

such that any vector X sampled from the distribution satisfies the following three properties:
(A1) (probability preservation) ∀C ∈ C̄(i), Pr[XC = 1] = x∗

C .

(A2) (degree preservation) Pr[|{C ∈ C̄(i) : XC = 1}| = 1] = 1.

(A3) (negative correlation) For all S ⊆ C̄(i) we have Pr[(
∧

C∈S(XC = 0)] ≤
∏

C∈S Pr[XC =
0] and Pr[(

∧
C∈S(XC = 1)] ≤

∏
C∈S Pr[XC = 1].

The existence of the distribution is established algorithmically:

▶ Theorem 10 ([21]). Given the vector x(i) there is a linear-time algorithm that generates a
sample from distribution D(ti, x(i)).

The rounding algorithm follows. It takes as input the vector x∗.

Algorithm 1 DependentRounding.

For all i ∈ M, do independently:

1. Using the algorithm of Theorem 10, sample from D(ti; x(i)) to obtain vector
X(i) ∈ {0, 1}ti . By Property (A2), X(i) has a unique entry equal to 1.
2. Assign the configuration C that corresponds to the nonzero entry of X(i) to
machine i.

For every i ∈ M and C ∈ C(i) s.t. X(i) = 1, we set x̂C = 1. The remaining entries of
x̂ are set to zero. The rest of the proof simply adapts the analysis of [21] for Maximum-
Coverage-type problems. Since the sets C̄(i) are pairwise disjoint we slightly abuse notation
and omit the machine superscript from the vectors X(i). For j ∈ J , let zj be the random
variable that takes value 1 if job j is assigned by Algorithm DependentRounding to at
least one machine and 0 otherwise. Let C denote

⋃
i∈M C(i).

Pr[zj = 1] =1 − Pr[
∧

C∈C:C∋j

(XC = 0)]

≥1 −
∏

C∈C:C∋j

Pr[XC = 0] (7)

=1 −
∏

C∈C:C∋j

(1 − x∗
C) (8)

Inequality (7) follows from the negative correlation property (A3), and equality (8) from
property (A1). Define z∗

j :=
∑

C∈C:C∋j x∗
C . This is the fractional amount by which job j

is scheduled, and the objective value of the solution x∗ is equal to
∑

j∈J wjz∗
j . Observe

that for every j, z∗
j ≤ 1. Using calculus we obtain that the expression in (8) is greater than

(1 − 1/e) · z∗
j .
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B Scheduling with job types

In this section we show how the proofs in Section 2 can be extended to accommodate job
types. Only jobs with certain types can be scheduled together on each machine and the
actual combination of types affects the job characteristics.

The extended problem is defined as follows. Every job j has a type tj from a finite set
T of types. For every machine i, we are given a set Ei ⊆ 2T that specifies the allowed
combinations of types that may be processed on i in a feasible schedule. We assume
from now that

∑
i∈M |Ei| is bounded by a polynomial in n and m. For machine i, let

Ei = {ei(1), . . . , ei(ki)} be the set of allowed combinations. In a feasible schedule, the set Ji

assigned to machine i must meet the following two additional constraints. C(i): all jobs in
Ji must have a type in ei(l) for some ei(l) ∈ Ei. We call this type combination ei(l) active
for machine i. C(ii): The jobs in Ji have processing times, release dates, and due dates that
depend on the active type ei(l), and are denoted pl

ij , rl
ij , dl

ij respectively.
We denote by R| rij , dij , types |

∑
j wjŪj the problem of maximizing weighted through-

put on unrelated machines under the additional constraints C(i) and C(ii). Using a ρ-
approximate oracle for 1| rj , β|

∑
wjŪj we show how to obtain a ((1 − 1/e)ρ − ε) guarantee

for R| rij , dij , β, types |
∑

j wjŪj . We outline only the necessary modifications in the proofs
of Section 2.

The definition of a configuration is now as follows. A configuration C ∈ C(i) is a schedule
of a subset J ⊆ J of jobs on machine i such that (i) all jobs in J have types from some set
ei(l) ∈ Ei (ii) job j in J has processing pl

ij and it must be scheduled in the interval [rl
ij , dl

ij ]
on i (iii) there is no unnecessary idle time (iv) the β-constraints are met.

In the proof of Lemma 1 instead of a single instance Ii for machine i we define ki

instances, one for every element of Ei. Instance Ii(l) is defined on job set Ji(l) = {j ∈ J |
j has type in ei(l)}. Job j in Ji(l) has processing time, release date, and due date pl

ij , rl
ij , dl

ij

respectively. Running algorithm Aβ on each instance Ii(l), l = 1, . . . , ki, will detect whether
there is a configuration C in C(i) with total value more than yi/ρ.

The rounding algorithm in the proof of Theorem 2 will return on every machine a
configuration C s.t. all jobs in C have a type from a set ei(l) ∈ Ei. The rest of the proof
holds as before, including the analogous extensions of Corollaries 1 and 2 to the setting with
types.

C FPTAS for similarly ordered release and due dates [17]

When release and due dates are similarly ordered, Lawler ([17], Section 6) observed that
there is a non-preemptive EDD (Earliest Due Date) optimal schedule, that can be computed
by the following DP:

Cj(w) = min{Cj−1(w), max{rj , Cj−1(w − wj)} + pj}, (9)

where Cj(w) is the minimum total scheduling time needed to achieve total weight at least
w, by a feasible schedule of the first j jobs in an EDD order. If the right-hand side of (9)
violates any di, then Cj(w) = ∞. While the running time of this DP is O(n2wmax), it can be
transformed into a FPTAS for maximum weighted throughput by rounding the job weights
as in the classic knapsack problem.

The FPTAS can be adapted to work with the setting of Section 3, since there is also
an optimal schedule that has all its jobs shifted as late as possible such that within each
contiguous block of jobs that does not contain a due date, jobs appear in earliest release date
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order. The correctness of the algorithm is not affected if we construct the optimal schedule in
a “towards the past” direction, starting at dmax, and examining the jobs in a Latest Release
Date (LRD) order.

For the setting of a constant number of distinct release dates (due dates), we exploit the
fact that the algorithm of [17] computes the optimal solution when all jobs have a common
due date (common release date).

D PTAS for GAP with a constant number of bins [15]

In the Generalized Assignment Problem (GAP), we are given m bins (machines in the
terminology of [15]), with bin i having volume capacity Bi, and n jobs with weight wj for
job j, as well as processing time pij when scheduled in bin i (note that if job j cannot go to
machine i, pij = ∞); the goal is to maximize the total weight of scheduled jobs. There are
no release or due dates.

Khan et al. [15] presented a PTAS for the case of constant m. They split the jobs into
“big” and small according to their processing times, by proving the following structural
theorem for any feasible GAP solution:

▶ Theorem 11 (Theorem 3 in [15]). Let S be a feasible solution to GAP, and let Si ⊆ S

be the jobs assigned to the i-th bin. Then for all ε > 0, there exist sets X and Y such that
|X| ≤ m/ε2 and w(Y ) ≤ εw(S) and

pij ≤ ε

Bi −
∑

j∈X∩Si

pij

 , ∀i, ∀j ∈ Si − X − Y.

Having guessed the set X together with the assignment of its jobs to bins, [15] turn to
the scheduling of the rest of the jobs that are small in the sense of Theorem 11. In order to
recover total weight at least (1−ε)w(S −X), the authors in [15] apply resource augmentation
for processing times (Section D.1), followed by a DP-based PTAS for scheduling the jobs
with their rounded processing times, and, lastly, trimming (Section D.2) is used in order to
remove a lengthy enough set of cheap jobs so as to restore the bin volume capacities to their
original values. We proceed to outline how resource augmentation and trimming are defined
in [15] and under what conditions they can be used for the throughput problem.

D.1 Resource augmentation

For every bin i, define a scaling factor µi := εBi/n. Also, define new bin volume capacity
B′

i := ⌊Bi/µi⌋ + n and new job processing times p′
ij := ⌈pij/µi⌉. Then there is an optimal

solution to maximum throughput that can be calculated by a PTAS, and the bin capacities
used are B′

j ≤ (1 + ε)Bj . Obviously, this optimal solution is at least as good as the optimal
solution that can be obtained with the original bin capacities. Khan et al. [15] show that if
the items (jobs) have size at most εBi after trimming the solution as in Section D.2 the bin
capacities can be restored to their original values while losing only an ε-fraction of weight
(profit).

Resource augmentation can be applied on a maximum throughput instance restricted to
an interval I on the time axis only when there are no release or due dates contained in I.
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D.2 Trimming
Khan et al. [15] designed the trimming method that follows for a knapsack instance. Suppose
that in bin i, there is a schedule of a set Si of jobs, without due dates or relase dates, s.t.
p(Si) = γBi, with γ ≤ 1 + δ and with total weight w(Si). Moreover, pij ∈ (0, εBi] for j ∈ Si.

Then for parameters δ, ε with δ ≤ ε, [15] show how to create empty space of length at least
δBi, without losing more than ((δ + ε)/(γ − ε))w(Sj) weight, and the scheduling of the
remaining jobs takes no more than Bi processing time.

This trimming technique of [15] can be extended to apply to a maximum throughput
schedule with different release dates and a common due date (different due dates and a
common release date). In this case, all jobs can be shifted as late (as early) as possible, to
create a new schedule ending at the due date (starting at the release date) with no idle time.
This can be achieved without violating any release (due) dates. We provide the details for
the case of the common due date in our Lemma 3.

D.3 Proof of Lemma 3
We provide the missing details for the existence of set R. We adjust the trimming method
of [15] in order to account for the existence in our setting of release dates and achieve the
parameters we need in the statement of the lemma. In particular let σ′ be the feasible
schedule of the set X ∪ J ′ in the interval I where for every j ∈ J ′, pj ≤ ε(|I| − p(X)). Let
B = |I| − p(X). We consider the set S of the subintervals of I that contain idle time or jobs
from J ′. Their length may vary and they may not be consecutive on the time axis as they
may be intermingled with the jobs of X. Clearly the total length of these subintervals equals
B. Let k = ⌊(1 − ε)/(2ε)⌋. Put a blue marker to the leftmost endpoint of a subinterval in S.

Moving to the right, sweep along the time axis within the subintervals of S only and put a
red marker after length εB, a blue marker after the next length εB and so on. Therefore the
markers alternate between red and blue. Proceed until you have placed k + 1 red markers
and k + 1 blue markers. The last marker will be red. Since

(k + 1)εB + kεB = (ε + 2ε⌊(1 − ε)/(2ε)⌋)B ≤ B

this is always possible. Number the markers from 0 to 2k + 1 from left to right. Consider
the set of jobs Si, i ∈ {0, 1, . . . , k} that are scheduled to a non-zero extent after blue marker
2i and up to red marker 2i + 1. These sets are pairwise disjoint. Let S∗

i = arg mink
i=0 w(Si).

It follows that w(Si∗) ≤ 1
k+1

∑k
i=0 w(Si) ≤ (2ε)/(1 − ε)w(J ′). Removing R := Si∗ will leave

empty space of εB. We have that p(J ′ − R) ≤ (1 − ε)B. Define the integer β ≥ 0 such that
(1 + ε)β ≤ B < (1 + ε)β+1. Then p(J ′ − R) ≤ (1 − ε2)(1 + ε)β .
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Abstract
In the sublinear geometric model, we are provided with an oracle access to a point set P of n points
in a bounded discrete space [∆]2, where ∆ = nO(1) is a polynomially bounded number in n. That is,
we do not have direct access to the points, but we can make certain types of queries and there is
an oracle that responds to our queries. The type of queries that we assume we can make in this
paper, are range counting queries where ranges are axis-aligned rectangles (that are basic primitives
in database [36, 11, 17], computational geometry [1, 2, 6, 5], and machine learning [35, 31, 29, 28]).
The oracle then answers these queries by returning the number of points that are in queried ranges.
Let Alg be an algorithm that (exactly or approximately) solves a problem P in the sublinear
geometric model. The query complexity of Alg is measured in terms of the number of queries
that Alg makes to solve P. In this paper, we study the complexity of the (uniform) Euclidean
facility location problem in the sublinear geometric model. We develop a randomized sublinear
algorithm that with high probability, (1 + ϵ)-approximates the cost of the Euclidean facility location
problem of the point set P in the sublinear geometric model using Õ(

√
n) range counting queries.

We complement this result by showing that approximating the cost of the Euclidean facility location
problem within o(log(n))-factor in the sublinear geometric model using the sampling strategy that
we propose for our sublinear algorithm needs Ω̃(n1/4) RangeCount queries. We leave it as an open
problem whether such a polynomial lower bound on the number of RangeCount queries exists
for any randomized sublinear algorithm that approximates the cost of the facility location problem
within a constant factor.
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1 Introduction

In the sublinear query model, we consider scenarios in which we do not have direct access to
the underlying data, but there is an oracle or a prophet who provides us metadata about the
data that we are interested in. An interesting real-world application of such scenarios is for
retail or ride hailing companies that have millions of customers. Often these giant companies
do outsourcing by hiring a party outside a company to perform temporary services to reduce
costs or optimize customers buying experience. Due to privacy concerns1, these companies do
not want to provide accurate and detailed information of their customers to the outsourced
companies. However, they can provide some sort of metadata (such as how many customers
are in an area or a neighborhood or how often customers in a town purchase particular goods
or use a service) that can help the outsourced company to perform its service.

1 See “Threat to Security and Confidentiality” in https://www.thebalancesmb.com/top-outsourcing-
disadvantages-2533777 and “Security and Privacy Concerns” in https://www.truppglobal.com/blog/
top-10-outsourcing-problems-and-how-to-solve-them#5-security-and-privacy-concerns
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6:2 Facility Location in the Sublinear Geometric Model

As a concrete example, let us consider a retail company that plans to open new stores or
lockers to provide fast and responsive support for its customers. To this end, the company
hires an (experienced) outsourced company to estimate the total cost of opening new stores
or lockers. Due to privacy concerns, the company does not want to provide information
about its customers, but it can provide aggregate data such as how many customers are in
an area or a neighborhood. An interesting question is how many times these aggregate data
should be provided so that the outsourced company can estimate a fairly accurate cost of
opening new stores or lockers.

Motivated by these applications, we study the (uniform) Euclidean facility location in
the sublinear geometric model which is a sublinear model suitable when the underlying data
is a point set in a d-dimensional Euclidean space. In particular, we seek to design sublinear
algorithms that approximate the cost of the Euclidean facility location problem when we do
not have access to the underlying point set, but instead, we can make queries and there is an
oracle who will respond and provide solutions to our queries. Next, we define the facility
location problem formally.

▶ Definition 1 ((uniform) Euclidean facility location). In the (uniform) Euclidean facility
location problem, we are given a point set P of size n in a bounded discrete space [∆]2,
where ∆ = nO(1) is a polynomially bounded number in n and an opening cost f > 0,
and the goal is to compute a set F ∗ ⊂ [∆]2 of facilities that minimizes the cost function
costF L(P, F ∗) =

∑
p∈P dist(p, F ∗) + f · |F | , where dist(p, F ∗) = minq∈F ∗ dist(p, q) is the

Euclidean distance of p to its nearest facility in F ∗. We denote the optimal facility location
cost of the point set P by OPTF L(P, f).

1.1 Sublinear geometric model
Let P ⊆ [∆]2 be a point set of size n in a 2-dimensional discrete space [∆]2 = {1, 2, 3, · · · , ∆}2,
where ∆ = nO(1) is a polynomially bounded number in n. For the simplicity of exposition,
we assume that ∆ = n. This means that the space [∆]2 is indeed, the space [n]2. We also
assume that every unit square (of side length one), can store at most one (weighted) point 2.

In the sublinear geometric model, we assume we do not have access to points of P directly,
but instead, we have query access to points of P . That is, we can make certain queries
with respect to point set P and there is an oracle that returns the solutions to our queries.
The type of queries that we assume are provided in the sublinear geometric model are
range counting queries where ranges are axis-aligned rectangles (that are basic primitives in
database [36, 11, 17], computational geometry [1, 2, 6, 5], and machine learning [35, 31, 29, 28]).
The oracle then answers these queries by returning the number of points in queried ranges.

Range counting queries. We assume that we have a query access to P where we query an
axis-aligned rectangle c ⊆ [n]2 and the oracle returns the number of points nc = |P ∩ c| that
are in rectangle c. We denote such a query by RangeCount(c). Let Alg be an algorithm
that (exactly or approximately) solves a problem P in the sublinear geometric model. The
query complexity of Alg is measured in terms of the number of RangeCount(c) queries
that Alg makes to solve P. Assume that the input of problem P is a point set P of size n.
If the number of RangeCount(c) queries that we ask is o(n), we say the query complexity
of problem P is sublinear in terms of its input set.

2 We make these explicit assumptions to simplify the notations in this paper.
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1.2 Our Contribution

Here, we state our main result.

▶ Theorem 2 (Facility location in sublinear geometric model). Let P be a point set of size
n in a discrete space [n]2. Let f > 0 be the opening cost for the facility location problem
and 0 < ϵ ≤ 1 be the error parameter. Then, there exists a randomized sublinear algorithm
that (w.h.p.) returns an (1 + ϵ)-estimator for the facility location cost of P in the sublinear
geometric model using Õ(

√
n) RangeCount queries.

We complement this result by showing that approximating the cost of the Euclidean
facility location problem within o(log(n))-factor in the sublinear geometric model using the
sampling strategy that we propose for Theorem 2 needs Ω̃(n1/4) RangeCount queries.
See Figure 2 in Section 4 for the illustration of the hard instance that we explain there.
We leave it as an open problem whether such a polynomial lower bound on the number of
RangeCount queries exists for any randomized sublinear algorithm that approximates the
cost of the facility location problem within a constant factor.

▶ Lemma 3 (Lower bound). There exists a facility location instance for which the sublinear
algorithm of Theorem 2 needs Ω(

4√n
log n ) RangeCount queries to estimate the cost of facility

location within o(log n)-factor in the sublinear geometric model.

Outline of the proof of Theorem 2. Our starting point to prove this theorem is to choose
a known polynomial-time approximation scheme (PTAS) for the Euclidean facility location
problem in the plane. Our goal would be to simulate such a PTAS in sublinear time to
obtain an estimator for the optimal cost of the facility location problem.

Known PTAS algorithms [7, 30, 15] are often based on partitioning the underlying space
of a point set. Two such PTAS algorithms are known. The first one was proposed by Arora,
Raghavan, and Rao [7] and later improved by Kolliopoulos and Rao [30] that partitions the
space into regions and then combine solutions of small regions using the dynamic programming
to obtain solutions for the bigger regions. The issue with extracting an estimator based on
this PTAS is that simulating the dynamic programming in sublinear time seems to be hard.

The second PTAS for this problem was proposed by Czumaj, Lammersen, Monemizadeh,
and Sohler [15] where they partition the underlying space [n]2 of a point set P into a set Λ
of cells in a way that they can solve the facility location instance inside each cell independent
of the facility location instances of the other cells. The independency that is provided by this
algorithm is a good choice for us. However, the problem with using this approach (in order
to develop an estimator) in the geometric sublinear model is we do not have access to Λ.

Overall Idea: We develop a sublinear algorithm that randomly samples cells of
a number of grids (of exponentially increasing granularity) that we impose on the
discrete space [n]2 and determines whether the sampled cells could be cells in the
set Λ or not. For those sampled cells that are in fact, cells in Λ, we solve the facility
location instance independently and compute a (1 + ϵ)-approximation of their facility
location costs. We then multiply their costs with proper weights to (1 + ϵ)-estimate
the optimal facility location cost OPTF L(P, f).

APPROX/RANDOM 2023



6:4 Facility Location in the Sublinear Geometric Model

Next we briefly describe the space partitioning and the PTAS that are developed in [15]
and then, we explain our sublinear algorithm in detail.

PTAS of [15]. Suppose we are given a point set P ⊂ [n]2 of size n. We impose a (nested)
grid set Glog(n)+1, Glog(n), · · · , G1, G0 on the space [n]2 where the grid Gi consists of cells of side
length 2i. We then randomly shift the border lines of the grids Glog(n)+1, Glog(n), · · · , G1, G0
as follows. We choose two random real numbers v1, v2 ∈ [0, n]. Then, we shift every border
line ℓ of every grid Gi using the random vector v = (v1, v2). Observe that after this random
shifting process, the point set P is enclosed in a rectangle of side length [2n]2. In the sublinear
geometric model, whenever we make range queries for ranges that are axis-aligned rectangles,
we first shift these rectangles using v and then query them.

c

parent(c)

parent(c)

c

A

root

B C

Figure 1 In the sub-figure A, a point set P ⊆ [∆]2 is given. The sub-figure B illustrates the
space partitioning Λ that is computed by the PTAS of [15]. A light cell c (dark gray square) that is
in the partition set Λ and its parent parent(c) (gray square) are shown. In the sub-figure C, the
nodes that correspond to c and parent(c) are also shown in the corresponding quadtree partitioning.

The PTAS [15] is based on partitioning heavy cells and detecting light cells, two notions
that we define next. Let c be an arbitrary cell in a grid Gi. We use the 3-approximation
algorithm due to Jain and Vazirani [26] (who developed it for facility location) to determine
if c is heavy or light. Let us call this algorithm Alg3

F L. We say an arbitrary c in a grid Gi is
a heavy cell if Alg3

F L(P ∩ c) outputs that the facility location cost of P ∩ c is at least δF L · f

where δF L = O(ϵ−2 log2 n). If the reported cost is less than δF L · f , c is a light cell.
Starting with the square [2n]2, if a cell c ∈ Gi is heavy, we then split it into its 4 children

c1, c2, c3, c4 (that are in the grid Gi−1) of equal side length and recurse for those children
that are heavy. At the end of this recursive algorithm, we let Λ be the set of all light cells
that are constructed in this way. Interestingly, for every cell c, we can solve the facility
location instance of the point subset P ∩ c independently. Later, we combine the solutions of
these independent instances to obtain a (1 + ϵ)-approximate solution of the optimal facility
location of P . See Figure 1 for an illustration of Λ.

Sublinear algorithm. Now, we outline our sublinear algorithm. This algorithm samples
cells of the grids Glog(n)+1, Glog(n), · · · , G1, G0 randomly and determine whether the sampled
cells can be in set Λ or not. If we sample enough cells from Λ uniformly at random, compute
a (1 + ϵ)-approximation of their costs and multiply their costs with proper weights, we can
approximate the optimal facility location cost OPTF L(P, f) within (1 + ϵ)-factor. However,
this is not an easy task in the sublinear geometric model as we have the following challenges:



M. Monemizadeh 6:5

Query Access: Given a cell c in a grid Gi:
We need to determine if c is heavy or light using Alg3

F L(P ∩ c).
If we know that we have sampled a cell c ∈ Λ, we need to compute a (1 + ϵ)-
approximation of its cost using a PTAS algorithm, say [15].

However, we do not have direct access to the points in P ∩ c. We can only make
range counting queries.
Many noisy empty cells: In any grid Gi for i ≤ 1

2 · log(n), we have Ω(n) cells
and plenty of them could be empty. Recall that |P | = n. Thus, a uniform random
sampling may need to sample many cells to hit a cell from Λ.

We first develop a tester algorithm (so-called HeavyTester) that using poly(ϵ−1 · log(n))
RangeCount queries determines if a cell c in a grid Gi is a heavy or a light cell. In case
that c is a light cell, the tester returns the facilities that (1 + ϵ)-approximates the optimal
facility location cost of the cell c. This already resolves the first challenge. Next, we deal
with the second challenge. We first develop a sublinear algorithm (so-called

√
n-Estimator)

that using Õ(
√

n) RangeCount queries distinguishes between the following two cases:
Low cost instances: The first case is if the optimal cost of P is upper-bounded by
O(

√
nf). If this is indeed the case, the algorithm

√
n-Estimator solves the facility

location instance of P and returns (1 + ϵ)-approximate solution (not the cost) of P .
High cost instances: The second case is if the optimal cost of P is Ω(

√
nf). For this

case, the algorithm
√

n-Estimator outputs that the cost of P is Ω(
√

nf).
From now on, we assume that the optimal facility location cost of P is Ω(

√
nf).

We develop a telescoping sampling that samples any arbitrary cell c in a grid Gi

with probability Pr [c] = nparent(c)
n , where parent(c) is the parent of c in the grid Gi+1 and

nparent(c) = |parent(c)∩P | is the number of points in parent(c) (See Figure 1 for the illustration
of a light cell and its parent.) The reason that we do the telescoping sampling based on
nparent(c) not nc = |c ∩ P | is that the cells in Λ are light, but their parents (and ancestors)
are heavy, so heavy parents have a minimum number of points that helps us to use known
concentration bounds [3, 32] to analyze the telescoping sampling.

For a grid Gi, we implement the telescoping sampling as follows. We start with the unique
cell c′ in grid Glog(n)+1 and split it into 4 sub-cells c1, c2, c3, c4 and query the number of
points inside each of them. Then, we sample the sub-cell cj for j ∈ [4] with probability ncj

nc′
.

Suppose we sample c1. We let c′ = c1 and recursively repeat the same process till we end up
with the parent of a cell c ∈ Gi. By the telescoping argument, a cell c ∈ Gi is sampled with
probability Pr [c] = nparent(c)

n .
Once we sample a cell c in a grid Gi with probability Pr [c] = nparent(c)

n , we test if c is a heavy
or a light cell using algorithm HeavyTester(c). If c is heavy or both c and parent(c) are
light, we do not do anything. If c is a light cell and its parent is a heavy cell, the cell c must be
in Λ. In this case, the tester returns set Fc of facilities that (1 + ϵ)-approximates the optimal
facility location cost of the instance c∩P . Let costϵ

F L(c, Fc, f) =
∑

p∈P ∩c dist(p, Fc)+ |Fc| ·f
be the facility location cost of c with respect to facility set Fc.

Next, we would like to assign a weight to the sampled cell c that is in Λ. For that, one
option would be to multiply costϵ

F L(c, Fc, f) by the term n
nparent(c)

. However, this may not
be possible. The problem is nparent(c) might be very small and so, the weight n

nparent(c)
may

be Ω(n) which essentially means if we want to use known concentration bounds such as the
Hoeffding bound [22], we need Ω(n) samples to approximate the optimal cost OPTF L(P, c).

We develop a novel sampling technique that samples (almost uniformly at random) those
light cells in a grid Gi whose parents have roughly the same number of points. To this end,
we first observe that from set Λ, we only need to consider those cells whose cost is at least

APPROX/RANDOM 2023



6:6 Facility Location in the Sublinear Geometric Model

τf where τ = O( ϵ
log(n) ). We call these cells significant light cells and we let Ψ be the set of

significant light cells of Λ. We show that in order to develop a (1 + ϵ)-estimator for facility
location, we can safely ignore insignificant light cells (those with cost less than τf) of Λ.

We then partition Ψ into likelihood classes Ψj
i , where Ψj

i is the set of those significant
light cells that are in the grid Gi and their parents have at least (1 + ϵ)j points and less
than (1 + ϵ)j+1. We consider only those likelihood classes Ψj

i whose size is |Ψj
i | ≥ β

√
n

where β = ( ϵ
log(n) )O(1). We call these classes contributing likelihood classes. We show that

non-contributing likelihood classes can be safely ignored.
We follow the steps below to show that if a likelihood class Ψj

i is contributing, we can
approximate the facility location cost of it within (1 + ϵ)-factor.

Step 1: We first show that if we sample any arbitrary cell c ∈ Ψj
i with probability

Pr [c] = nparent(c)
n , cell c is sampled almost uniformly at random from the set Ψj

i .
Step 2: Next, we prove that with high probability, we sample at least
poly(ϵ−1 log(n)) significant light cells from Ψj

i .
Step 3: We finally develop an estimator that (1 + ϵ)-approximates the size of Ψj

i .

Putting everything together, we obtain an estimator that (1+ϵ)-approximates the optimal
cost OPTF L(P, f) in the sublinear geometric model using Õ(

√
n) range counting queries.

1.3 Related Work
Sublinear algorithms have been studied extensively for problems in metric spaces. Czumaj
and Sohler [16] showed that we can (1 + ϵ)-approximate the weight of minimum spanning
tree in metric space in time Õ(n) = O(npoly(ϵ−1 log n)). Badoiu, Czumaj, Indyk, and
Sohler [8] showed that we can approximate the cost of facility location in metric space within
constant factor in time Õ(n), and Indyk [23] showed that we can return a constant factor
approximation of the k-median problem in metric spaces in time Õ(n). Interestingly, all
sublinear algorithms that we are aware of in metric spaces have Õ(n) running times. One
may ask if there exists any sublinear algorithm that is truly sublinear in n?

For sparse graphs this is indeed possible. Chazelle, Rubinfeld, and Trevisan [12] in a
seminal work showed that given a connected graph G (that is represented by adjacency lists)
of average degree d with edge weights in the set {1, ..., w}, we can (1 + ϵ)-approximate the
weight of the minimum spanning tree (MST) of G in time O(dwϵ−2 log( dw

ϵ )). Observe that
a graph with average degree d is a sparse graph as it can have at most O(nd) edges. Later,
Nguyen and Onak [33] in another seminal work initiated the study of sublinear algorithms for
Vertex Cover, Maximum Matching, Maximum Weight Matching, and Set Cover problems in
bounded-degree graphs. As an example, for the problem of estimating the size of maximum
matching, they showed how to approximate the size of the maximum matching up to an
additive error ϵn in time 2dO(1/ϵ) , where d is the maximum degree of a vertex in the graph G.
They obtained similar bounds for the aforementioned problems that approximate their size or
cost up to an (ϵn)-additive term. Yoshida, Yamamoto, and Ito[38] and then Behnezhad [10]
improve the running time (in fact, the query complexity) of Nguyen and Onak’s algorithm
for estimating the size of maximum matching and minimum vertex cover. As an example,
Behnezhad showed that we can approximate the size of maximal matching (i.e., 2-approximate
maximum matching) to within (ϵn)-additive error in time Õ((d + 1)/ϵ2).

What do we know for Euclidean spaces? Interestingly, very few sublinear algorithms have
been developed for optimization problems in Euclidean spaces. Indeed, we are aware of two
sublinear algorithms for problems in Euclidean spaces. The first work is due to Czumaj,
Ergün, Fortnow, Magen, Newman, Rubinfeld, and Sohler [14] who studied the problem of
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approximating the weight of Euclidean minimum spanning trees (EMST) in a sublinear time.
The authors show that if we are provided with oracle access to basic data structures in the
Euclidean space, we can estimate the weight of a EMST within (1 + ϵ)-factor.

In particular, they assume that we do not have access to a point set, but we can make
queries and there is an oracle that answers our queries. The type of queries that they are
allowed to make are minimum bounding box queries, range queries and approximate nearest
neighbor queries. They show that in order to (1 + ϵ)-approximate the weight of the Euclidean
minimum spanning tree in the plane (i.e., R2), we need to make Õ(

√
n) such queries.

The second sublinear algorithm that we are aware is for the minimum Euclidean bi-
chromatic matching due to Indyk [25]. This algorithm is more of a linear-time constant
factor approximation algorithm than a sublinear algorithm. Indyk assumed that we have
access to points, but the main issue is solving the minimum Euclidean bichromatic matching
problem using classical algorithms known for the maximum matching problem, say Hungarian
method takes O(n3) time. (See [37]). He showed we can approximate the cost of minimum
bichromatic matching within constant factor in near linear time and he showed that in time
Õ(n), we are able to do that. Later, Raghvendra and Agarwal [34] showed that in time Õ(n)
we can in fact, compute (1 + ϵ)-approximate Euclidean bichromatic matching.

The sublinear geometric model that we study in this paper is closely related to the
dynamic geometric streaming model [24, 19] and the Massively Parallel Computations
(MPC) model [27, 20]. In the the dynamic geometric streaming model [24, 19], Frahling
and Sohler [19] in a groundbreaking work showed that given a (polynomially in n bounded)
stream of insertions and deletions of points from an underlying space [∆]2 (where ∆ =
nO(1)), we can compute a (1 + ϵ)-approximate solution for the k-median, k-means, MaxCut,
maximum travelling salesperson, maximum spanning tree and average distance problems using
poly(kϵ−2 log(n)) space. Frahling, Indyk and Sohler [18] studied the problem of approximating
the weight of the Euclidean minimum spanning tree within (1 + ϵ) in the dynamic geometric
streaming model. Later, Czumaj, Lammersen, Monemizadeh, and Sohler [15] developed a
(1 + ϵ)-estimator for the cost of the Euclidean facility location using poly(ϵ−1 log(n)) space.

The Massively Parallel Computations (MPC) model was first introduced by Karloff, Suri,
and Vassilvitskii [27] and later extended by [9, 20]. Andoni, Nikolov, Onak, Yaroslavtsev [4]
studied the Euclidean minimum spanning tree and the minimum Euclidean bichromatic
matching problems in the MPC model. They showed O(1)-round MPC (1 + ϵ)-algorithm
for the Euclidean minimum spanning tree that uses Õ(

√
n) machines each one having local

space Õ(
√

n). For the minimum Euclidean bichromatic matching problem, they showed that
we can approximate the cost of minimum bichromatic matching within (1 + ϵ)-factor using
similar number of communication rounds, number of machines, and the space per machine.

2 Preliminaries

Rounding notations. For the sake of simplicity, we assume that the logarithm of a number
is always rounded down or up in an appropriate manner. As an example, if we want to
use a range [⌊log(a)⌋, · · · ] or a range [· · · , ⌈log(a)⌉] where a ∈ R, we write [log(a), · · · ] and
[· · · , log(a)] to simplify the notation, respectively.

Randomly shifted grids. Let P ⊆ [n]2 be a point set of size n. We consider log(n) + 1
grids Glog(n)+1, Glog(n), · · · , G1, G0 where the grid Gi consists of cells of side length 2i that
we impose on the space [n]2. We randomly shift the border lines of the grids as follows.
We choose two random real numbers v1, v2 ∈ [0, n] and we let v = (v1, v2) be the random
vector. Then, we shift every border line ℓ of every grid Gi using v. Observe that after this

APPROX/RANDOM 2023



6:8 Facility Location in the Sublinear Geometric Model

shift process, the point set P is enclosed in a rectangle of side length [2n]2. In the sublinear
geometric model, whenever we make range queries for ranges that are axis-aligned rectangles,
we first shift these rectangles using v and then query them.

We let G≥i = {Gi, Gi+1, · · · , Glog(n)} and G≤i = {Gi, Gi−1, · · · , G0}. Let c ∈ Gi be a cell
in a grid Gi. We denote by c ∩ P the subset of points that are inside the cell c or on the
border lines of c. We denote the number of points in c by nc = |c ∩ P |. We let ℓc be the side
length of c which is 2i in the grid Gi. We denote the parent of c which is in the grid Gi+1 by
parent(c). Let c′ ∈ G≥i be a cell that contains c (i.e., c ⊆ c′). We say c′ is an ancestor of c.
We denote the ancestor of c at a grid Gj≥i by ancestor(c, j). If c′ ∈ G>i, we say that c′ is a
proper ancestor of c. Similarly, let c′ ∈ G<i be a cell that is contained in the cell c. We say
c′ is a descendant of c. We denote the descendant of c at a grid Gj<i by descendant(c, j).

2.1 Space partitioning and PTAS of [15]
Let P ⊆ [2n]2 be a point set of size n and f > 0 be a positive real number. Let 0 < ϵ ≤ 1 be
the error parameter. As we explained in the introduction of this paper, Czumaj, Lammersen,
Monemizadeh, and Sohler [15] show a construction for the facility location problem that
partitions the space [2n]2 into a set Λ of disjoint cells for which we can solve the facility
location problem independently. We denote this algorithm by Algϵ

F L(P ) whose pseudocode
is given below.

Algorithm 1 Algϵ
F L - Czumaj, Lammersen, Monemizadeh, and Sohler [15].

Data: A point set P ⊆ [n]2, an opening cost f > 0, and a parameter 0 < ϵ ≤ 1.
1 Let c be the square [2n]2. Let Γ = {c} and Λ = ∅;
2 while Γ has a heavy cell c do
3 Let Γ = Γ\{c};
4 Let c1, c2, c3, c4 be children of c ; /* If c ∈ Gi, its children are in Gi−1 */
5 for ci ∈ {c1, c2, c3, c4} do
6 if ci is a heavy cell then
7 Γ = Γ ∪ {ci};
8 else
9 Λ = Λ ∪ {ci} ; /* ci is light */

10 for c ∈ Λ do
11 Let Fc be the set of facilities returned by the PTAS [30] for the point set P ∩ c;
12 Let costϵ

F L(c, Fc, f) =
∑

p∈P ∩c dist(p, Fc) + |Fc| · f be the cost of c ∩ P ;

13 return Set Λ and for every cell c ∈ Λ, set Fc of opened facilities and costϵ
F L(c, Fc, f);

The PTAS [15] is based on partitioning heavy cells and detecting light cells, two notions
that we define them next. Let c be an arbitrary cell in a grid Gi. We use the 3-approximation
algorithm due to Jain and Vazirani [26] to determine if c is heavy or light.

Heavy and light cells. Let c be a cell in a grid Gi. Let δF L = 220 · ( log n
ϵ )2. Let Fc be the

set of facilities returned by Alg3
F L(P ∩ c). We say c is a heavy cell if cost3

F L(c, Fc, f) =∑
p∈P ∩c dist(p, Fc) + |Fc| · f ≥ δF L · f ; otherwise it is a light cell.

▶ Lemma 4 ([15]). Let P ⊆ [2n]2 be a point set of size n and f ∈ R+ be a positive real
number. Let 0 < ϵ ≤ 1 be the error parameter. For the output of Algϵ

F L(P ) we have
For every cell c ∈ Λ, we have costϵ

F L(c, Fc, f) ≤ (1 + ϵ) · OPTF L(P ∩ c, f).
(1 − ϵ) · OPTF L(P, f) ≤ costϵ

F L(Λ, f) =
∑

c∈Λ costϵ
F L(c, Fc, f) ≤ (1 + ϵ) · OPTF L(P, f).
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3 Sublinear algorithm for facility location problem

In this section, we develop our sublinear algorithm for the facility location problem and prove
Theorem 2. We break this algorithm into four steps as follows:
1. Heavy tester: We first develop a tester algorithm for heavy cells.
2. Telescoping sampling: Then, we explain the telescoping sampling.
3. O(

√
n)-estimator: In the third step, we explain a

√
n-estimator for the Euclidean

facility location problem in the sublinear geometric model.
4. (1 + ϵ)-estimator: In the final step, we describe our (1 + ϵ)-estimator in the sublinear

geometric model and analyze it.

3.1 A tester algorithm for heavy cells

Here, we develop a tester algorithm in the sublinear geometric model that given an arbitrary
cell c in a grid Gi, makes poly(ϵ−1 · log(n)) RangeCount queries to distinguish between the
case that c is a heavy cell or a light one. The proof of the following lemma is in Appendix A.

▶ Lemma 5 (Heavy Tester). Let c be a cell in a grid Gi. Then, there exists a deterministic
tester algorithm that we call HeavyTester(c) so that

Testing heaviness: It makes O(ϵ−8 · log6(n)) RangeCount queries to determine if the
cell c is heavy or light.
Approximating a solution: If c is a light cell in set Λ, then HeavyTester(c) returns
a set Fc of facilities that (1 + ϵ)-approximates the optimal facility location cost of c.

3.2 O(
√

n)-approximate sublinear algorithm

Now, we explain an algorithm that distinguishes between the case that the facility location
cost of P is at most

√
n · f or it is greater than

√
n · f . For the former case, we return

(1 + ϵ)-approximate solution and for the latter, we obtain a lower bound
√

n · f for the cost.

Algorithm 2
√

n-Estimator.

Data: The discrete space [2n]2, an opening cost f > 0, and an error parameter
0 < ϵ ≤ 1.

Result: A
√

n-estimator Z for the facility location cost of a point set P ⊆ [2n]2.
1 Let c be the square [2n]2 and let Γ be an empty set. Let H = {c};
2 At any time, let costϵ

F L(Γ, f) =
∑

c′∈Γ costϵ
F L(c, Fc, f), where Fc is the set of

facilities that the randomized algorithm [15] Algϵ
F L returns for each cell c ∈ Γ;

3 while costϵ
F L(Γ, f) ≤

√
n · f and H ̸= ∅ do

4 Take an arbitrary cell c ∈ H and delete it from H;
5 if HeavyTester(c) returns that c is a heavy cell then
6 Let Cc = {c1, c2, c3, c4} be the four children of c in the grid Gi−1;
7 Let H = H ∪ Cc;
8 else
9 Add c to the set Γ;

10 Return Γ;

APPROX/RANDOM 2023



6:10 Facility Location in the Sublinear Geometric Model

Lemma 6 is similar to Lemma 22 and we explain Lemma 22 in detail later.

▶ Lemma 6. Let P ⊆ [∆]2 be a point set of size n. Let f > 0 be the opening cost and
0 < ϵ ≤ 1 be the error parameter. Then, the sublinear algorithm

√
n-Estimator uses

O(ϵ−9 log7(n) ·
√

n)) RangeCount queries and distinguishes between the following cases:
If the optimal facility location cost of P is O(

√
n · f), then this sublinear algorithm returns

a set of facilities that (1 + ϵ)-approximates the optimal facility location cost of P .
If the optimal facility location cost of P is Ω(

√
n · f), then this sublinear algorithm

O(
√

n)-approximates the optimal facility location cost OPT (P, f) of P . Moreover, it finds
an Ω(

√
n · f) lower-bound for the optimal facility location cost OPTF L(P, f) of P .

3.3 Telescoping sampling
In this section we develop a sampling mechanism that samples a cell c with probability
pc = nc

n . This will be used as a basic primitive that we later use for our (1 + ϵ)-estimator.

Algorithm 3 TelescopingSampling.

Data: A grid Gi

Result: A sampled cell c′ ∈ Gi such that the probability that any cell c′′ ∈ Gi is c′ is
Pr [c′ = c′′] = nc′′

n .
1 Let c be the cell in the grid Glog(n) and let j = log(n) ;
2 while j > i do
3 Split c into its four sub-cells c1, c2, c3, c4 that are in the grid Gj−1 and query the

number of points inside each of them using the subroutine RangeCount;
4 Sample the sub-cell ci for i ∈ [4] with probability nci

nc
;

5 Let c′ be the cell that is sampled in Step 4; // c′ is one of c1, c2, c3, c4.
6 Let c = c′ and j = j − 1;
7 Return c;

The proofs of the following lemmas are given in Appendix B.

▶ Lemma 7. Assume that we invoke Subroutine TelescopingSampling(Gi). Then, a cell
c that is returned by this subroutine is sampled with the probability that Pr [c] = nc

n .

▶ Lemma 8. Given a grid Gi, the number of RangeCount queries that we make in
Subroutine TelescopingSampling(Gi) is O(log n).

3.4 (1 + ϵ)-approximate sublinear algorithm
In this section, we prove Theorem 2. We first give the pseudocode of our main sublinear
algorithm. Next, we prove the correctness of our algorithm and analyze its query complexity.

3.5 Analysis
Let P be a point set of n points in discrete space [2n]2. Now, for the sake of the analysis,
assume that we run the following two processes.

In the first process, for point set P , we run the quadtree construction (for the facility
location problem) that we presented in Lemma 4 and it returns a set Λ of light cells.
In the second process, given RangeCount query access to point set P , we invoke
Algorithm 4 (1 + ϵ)-Estimator and it returns the estimator Z = A + B.
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Algorithm 4 (1 + ϵ)-Estimator.

Data: The discrete space [2n]2, an opening cost f > 0, and an error parameter 0 < ϵ.
Result: A (1 + ϵ)-estimator Z for the facility location cost of a point set P ⊆ [2n]2.

1 Let Z = 0, A = 0, and B = 0 ;
2 for i = log(n) + 1 down to 3

4 · log(n) do
3 for each cell c ∈ Gi do
4 if HeavyTester(c) returns that c is a heavy cell then
5 Let Cc = {c1, c2, c3, c4} be the four children of c in the grid Gi−1;
6 Invoke HeavyTester for the sub-cells Cc to find out which ones are

heavy;
7 for each light sub-cell c′ ∈ Cc if there exists any light cell do
8 Let costϵ

F L(c′, Fc′ , f) be the cost that the algorithm Algϵ
F L(c′) returns

for c. Let A = A + costϵ
F L(c, Fc′ , f);

9 for i = 3
4 · log(n) down to 1 do

10 Let Wi−1 = 0;
11 Let Xi−1 and Yi−1 be two vectors of length log1+ϵ(n) initialized to zero;
12 for ℓ = 1 to z = 214δ2

F L log5(n)ϵ−6 ·
√

n do
13 Let c be a cell sampled using Subroutine TelescopingSampling(Gi);
14 if HeavyTester(c) returns that c is a heavy cell then
15 Let Cc = {c1, c2, c3, c4} be the four children of c in the grid Gi−1;
16 Invoke HeavyTester for the sub-cells Cc to find out which ones are

heavy;
17 if at least one of the sub-cells Cc is a significant light cell then
18 Let j be the power of (1 + ϵ) where (1 + ϵ)j ≤ nc < (1 + ϵ)j+1;
19 Let C ′

c be the sub-cells in Cc that are significant light cells;
20 Let Yi−1[j] = Yi−1[j] + |C ′

c|;
21 for each significant light sub-cell c′ ∈ C ′

c do
22 Let costϵ

F L(c′, , Fc′ , f) be the cost that Algorithm Algϵ
F L(c′)

returns for c′. Let Xi−1[j] = Xi−1[j] + costϵ
F L(c′, Fc′ , f);

23 for j = 1 to log1+ϵ(n) do
24 Let wj

i = n
z(1+ϵ)j · Yi−1[j]. Let Wi−1 = Wi−1 + wj

i · Xi−1[j];

25 Let B = B + Wi−1;
26 Return Z = A + B;

Recall that for the quadtree construction in Lemma 4, we randomly shift the border lines of
cells of the quadtree using a random vector v. In the sublinear geometric model, we randomly
shift the border lines of axis-aligned rectangles (using v) that we use in RangeCount queries.
Lemma 4 shows that (1−ϵ) ·OPTF L(P, f) ≤

∑
c∈Λ costϵ

F L(c, Fc, f) ≤ (1+ϵ) ·OPTF L(P, f) .

We further split the set Λ into two subsets ΛA and ΛB. In particular, let ΛA be the
subset of light cells in Λ that are in the grids G 3

4 ·log(n), · · · , Glog(n)+1. Let ΛB = Λ\ΛA be
the subset of light cells in Λ that are in G1, · · · , G 3

4 ·log(n)−1. Our goal in this section is to
show that with a probability greater than 1 − 1/n5, the following three claims are correct:

The number of queries that Algorithm 4 (1 + ϵ)-Estimator makes is Õ(
√

n).
The term A is the cost of light cells of the set ΛA. That is, A =

∑
c∈ΛA

costϵ
F L(c, Fc, f) .
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The term B is an (1 + ϵ)-estimator for the cost of light cells of the set ΛB. That is,
(1 − ϵ) ·

∑
c∈ΛB

costϵ
F L(c, Fc, f) ≤ B ≤ (1 + ϵ) ·

∑
c∈ΛB

costϵ
F L(c, Fc, f) .

Once we prove these three claims, we have shown that Z is an (1 + ϵ)-estimator of the
optimal facility location cost OPTF L(P, f) what proves Theorem 2.

3.5.1 The estimator term A
The following two lemmas (whose proofs are given in Appendix C) show that (1) the number
of RangeCount queries that we make to compute estimator A is Õ(

√
n), and (2) the term

A approximates the facility location cost of light cells of set ΛA.

▶ Lemma 9. Let ΛA be the subset of light cells in Λ that are in the grids G≥ 3
4 ·log(n). Then,

All light cells of ΛA are detected by Algorithm 4 (1 + ϵ)-Estimator.
To compute estimator A, we make O(ϵ−8 · log6(n) ·

√
n) RangeCount queries.

▶ Lemma 10. A =
∑

c∈ΛA
costϵ

F L(c, Fc, f) .

3.5.2 The estimator term B
In this section, we prove that estimator B approximates the cost of light cells of ΛB within
(1 + ϵ)-factor. Let c ∈ Λ be an arbitrary light cell in the set Λ. Suppose that c is in a grid Gi.
Then, the parent of c that we denote it by parent(c) is a heavy cell in grid Gi+1.

▶ Definition 11 (Significant Light Cells). Let τ = ϵ
9 log(n) . We say a light cell c ∈ Λ is a

significant light cell if costϵ
F L(c, Fc, f) ≥ τf ; otherwise, we say c′ is an insignificant light cell.

We let Ψ = {c ∈ Λ : costϵ
F L(c, Fc, f) ≥ τf} be the set of light cells in Λ that are significant.

We denote by Ψi = {c ∈ Ψ : c ∈ Gi} the set of significant light cells in the grid Gi.

▶ Definition 12 (Heavy Parents of Significant Light Cells). We denote the set of heavy parents
of significant light cells Ψi by Γ(Ψi) = {c′ ∈ Gi+1 : ∃c ∈ Ψi such that c′ is parent(c)} .

Note that up to 4 cells in Ψi can have the same heavy parent.

▶ Definition 13 (Likelihood Classes). We partition Ψi into ϵ−1 log(n) likelihood classes Ψj
i

where a cell c ∈ Ψj
i if the number of points in its parent(c) is in the range (1 + ϵ)j ≤

nparent(c) < (1 + ϵ)j+1.

We denote the set of heavy parents of significant light cells that are in the class Ψj
i by

Γ(Ψj
i ) = {c′ ∈ Gi+1 : ∃c ∈ Ψj

i such that c′ = parent(c)} .

▶ Definition 14 (Contributing Likelihood Classes). Let β = ϵ2

2δF L·log2(n) . We say a class Ψj
i is

a contributing likelihood class if |Ψj
i | ≥ β

√
n ; otherwise, it is a non-contributing class.

Roadmap of the proof of Theorem 2. We first prove (in Lemma 22) that the cost of
significant light cells of Ψ = {c ∈ Λ : costϵ

F L(c, Fc, f) ≥ τf} is an (1 + ϵ)-approximation
of OPTF L(P, f). Therefore, when we develop a (1 + ϵ)-estimator for the facility location
problem, we can ignore insignificant light cells of Λ.

On the other hand, all significant light cells of Ψ are partitioned into likelihood classes Ψj
i .

Now imagine we have the lower bound OPTF L(P, f) ≥
√

n · f for OPTF L(P, f). Otherwise,
the estimator

√
n-Estimator of Lemma 6 makes O(ϵ−9 log7(n) ·

√
n)) RangeCount queries

and returns a set of facilities that (1 + ϵ)-approximates the optimal facility location cost
of P . Lemma 27 shows that we can safely ignore the contribution of the non-contributing
likelihood classes Ψj

i . Let us fix a contributing likelihood classes Ψj
i .
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In Lemma 15 we show that with probability at least 1 − 2/n5, the estimator wj
i in

Algorithm 4 (1 + ϵ)-Estimator is a (1 + ϵ)-approximation of the size of Ψj
i .

Lemma 16 shows that if we sample any arbitrary cell c ∈ Ψj
i with probability Pr [c] =

nparent(c)
n , the cell c is sampled almost uniformly at random from the set Ψj

i .
Lemma 17 proves that with probability at least 1−1/n20, Algorithm 4 (1+ϵ)-Estimator
samples at least poly(ϵ−1 · log(n)) significant light cells from Ψj

i .
In Lemma 18, we use these three tools to show that if a likelihood class Ψj

i is contributing,
we can approximate the facility location cost costϵ

F L(Ψj
i , f) to within (1 + ϵ)-factor. Putting

everything together, the estimator Z that is computed in Algorithm 4 (1 + ϵ)-Estimator is
an (1 + ϵ)-approximation of OPTF L(P, f) what proves Theorem 2.

The statements of Lemmas 22 and 27, and their proofs are given in Appendix D.

Approximating the number of cells of a contributing class. In this section, we show
that with high probability, the estimator wj

i in Algorithm 4 (1 + ϵ)-Estimator is a (1 + ϵ)-
approximation of the size of the contributing likelihood class Ψj

i .

▶ Lemma 15. Let Ψj
i be a contributing class. Then, with probability at least 1 − 2/n5, the

estimator wj
i in Algorithm 4 (1 + ϵ)-Estimator is a (1 + ϵ)-approximation of |Ψj

i |. That is,
Pr

[
(1 − ϵ) · |Ψj

i | ≤ wj
i ≤ (1 + ϵ) · |Ψj

i |
]

≥ 1 − 1/n5 .

Proof. We define z runs R1, · · · , Rz where during a run Rℓ we sample a cell c ∈ Gi+1. We
define a random variable Yℓ corresponding to the number of significant light sub-cells of a
heavy cell c ∈ Γ(Ψj

i ) that is sampled in the run Rℓ. Note that a heavy cell can have 0, 1, 2, 3, 4
significant light sub-cells. If a heavy cell c from the set Γ(Ψj

i ) is sampled using Subroutine
TelescopingSampling(Gi+1), the random variable Yℓ will be the number of significant
light sub-cells of c; otherwise Yℓ is zero. Then, we have E[Yℓ] =

∑
c∈Γ(Ψj

i
) Pr [c] · |C ′

c|, where
C ′

c is the set of significant light sub-cells of a heavy cell c ∈ Γ(Ψj
i ).

Recall that the likelihood class Ψj
i contains those cells c ∈ Ψi for which (1 + ϵ)j ≤

nparent(c) < (1 + ϵ)j+1 . Then, (1+ϵ)j

n ·
∑

c∈Γ(Ψj
i
) |Cc| ≤ E[Yℓ] ≤ (1+ϵ)j+1

n ·
∑

c∈Γ(Ψj
i
) |Cc| .

Next, we define the random variable Y = n
z(1+ϵ)j ·

∑z
ℓ=1 Yℓ for which we have |Ψj

i | =∑
c∈Γ(Ψj

i
) |Cc| ≤ E[Y ] ≤ (1 + ϵ) ·

∑
c∈Γ(Ψj

i
) |Cc| = (1 + ϵ) · |Ψj

i | .

Since the likelihood class Ψj
i is contributing, Lemma 28 tells us that for α = ϵ3

18δF L log3(n)

we have costϵ
F L(Ψj

i , f) =
∑

c∈Ψj
i

costϵ
F L(c, Fc, f) ≥ α

√
n · f . All cells in the likelihood

class Ψj
i are light which means that costϵ

F L(c, Fc, f) ≤ δF L · f . This essentially means that
|Ψj

i | ≥ α
√

n·f
δF L·f = α

δF L
·
√

n. We can assume that n ≥ 212ϵ−4 log2(n)( δF L

α )2, otherwise the facility
location instance of the point set P has at most poly(ϵ−1 log(n)) points, that can be (1 + ϵ)-
approximately solved using poly(ϵ−1 log(n)) RangeCount queries. Therefore, E[Y ] ≥ α

δF L
·√

n ≥ 60ϵ−2 log(n). Now, we use the Hoeffding bound [22] where we set M = 4 to obtain we
have Pr

[
|wj

i − |Ψj
i || ≥ ϵ · |Ψj

i |
]

= Pr
[∣∣E[Y ] − Y |

∣∣ ≥ ϵ · E[Y ]
]

≤ 2 exp(−( ϵ2·E[Y ]
12 )) ≤ 2/n5 .

Thus, with probability at least 1 − 2/n5, the estimator wj
i is within (1 + ϵ)-approximation

of |Ψj
i |. This proves the lemma. ◀

Almost uniformly sampling from a contributing class. Let Ψj
i be a contributing likelihood

class. Here we show that if we sample any arbitrary cell c ∈ Ψj
i with probability Pr [c] =

nparent(c)
n , the cell c is sampled almost uniformly at random. We later show that with

high probability, Algorithm 4 (1 + ϵ)-Estimator samples significant light cells from each
contributing likelihood class Ψj

i .
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▶ Lemma 16. Suppose we sample a cell c ∈ Ψj
i with probability Pr [c] = nparent(c)

n . Then, the
cells in Ψj

i are sampled almost uniformly at random. That is, the probability that we sample
a cell c ∈ Ψj

i is (1 − ϵ) · 1
|Ψj

i
|

≤ Pr [c] ≤ (1 + ϵ) · 1
|Ψj

i
|

.

Proof. Recall that for every light cell c ∈ Ψj
i , we have (1 + ϵ)j ≤ nparent(c) < (1 + ϵ)j+1.

Thus (1+ϵ)j

n ≤ Pr [c] = nparent(c)
n ≤ (1+ϵ)j+1

n . We conclude that the probability of sampling
light cells Ψj

i is within (1 + ϵ) of (1+ϵ)j

n . ◀

▶ Lemma 17. Let Ψj
i be a contributing class. Then, with probability at least 1 − 1/n20, a set

of at least x = 29δF Lϵ−3 log2(n) heavy cells are sampled from the set Γ(Ψj
i ).

Proof. Recall that z = 214δ2
F L log5(n)ϵ−6 ·

√
n. We define z runs R1, · · · , Rz where during

a run Rℓ we sample a cell c ∈ Gi+1. Next we study the probability of sampling a heavy cell
c ∈ Γ(Ψj

i ). We define an indicator random variable Yℓ corresponding to the run Rℓ which is
one if a heavy cell c ∈ Γ(Ψj

i ) is sampled using Subroutine TelescopingSampling(Gi+1) in
Line 14 (of Algorithm 4 (1 + ϵ)-Estimator) and zero otherwise. Then, we have E[Yℓ] =
Pr [Yℓ = 1] = 1

n ·
∑

c∈Γ(Ψj
i
) nc .

Based on Lemma 29, the number of points in the contributing likelihood class Ψj
i

must be at least n(Ψj
i ) =

∑
c∈Ψj

i
nc ≥ α

√
n

(1+ϵ) , for α = ϵ3

18δF L log3(n) . Therefore, E[Yℓ] =

1
n ·

∑
c∈Γ(Ψj

i
) nc ≥

α
√

n
(1+ϵ)

n ≥ α
(1+ϵ) · 1√

n
. Next, we define the random variable Y =

∑z
ℓ=1 Yℓ

whose expectation is E[Y ] =
∑z

ℓ=1
1
n ·

∑
c∈Γ(Ψj

i
) nc ≥ 210δF Lϵ−3 log2(n) .

Using the Chernoff bound [13] and since δF L = 220 · ( log n
ϵ )2, we obtain

Pr
[∣∣E[Y ] − Y |

∣∣ ≥ ϵ · E[Y ]
]

≤ 2 exp(−(ϵ2 · 210δF Lϵ−3 log2(n)
3 )) ≤ 1/n20 .

Thus, with probability at least 1 − 1/n20, we sample at least (1 − ϵ) · 210δF Lϵ−3 log2(n) ≥
29δF Lϵ−3 log2(n) heavy cells from the set Γ(Ψj

i ). Note that up to 4 cells in Λj
i can have the

same heavy parent and they are sampled together. This proves this lemma. ◀

An unbiased estimator for contributing classes. Next, we prove that having an estimation
of the size of a contributing likelihood class Ψj

i and assuming that we can sample cells in Ψj
i

almost uniformly at random, we can then (1 + ϵ)-approximate the facility location cost of
the contributing likelihood class Ψj

i .

▶ Lemma 18 (Estimator for Contributing Classes). Let Ψj
i be a contributing class. Suppose

we can sample a cell from Ψj
i almost uniformly at random. That is, the probability that we

sample a cell c ∈ Ψj
i is (1 − ϵ) · 1

|Ψj
i
|

≤ Pr [c] ≤ (1 + ϵ) · 1
|Ψj

i
|

. Let S be a sampled set of

x ≥ 29δF Lϵ−3 log2(n) light cells S = {c1, · · · , cx} ⊆ Ψj
i that are sampled almost uniformly

at random. Let y be an arbitrary number in the range [ |Ψj
i
|

(1−ϵ) ,
|Ψj

i
|

(1+ϵ) ]. Then, with probability
at least 1 − 1/n5, we have (1 − ϵ) ·

∑
c∈Ψj

i
costϵ

F L(c, Fc, f) ≤ y
x ·

∑x
ℓ=1 costϵ

F L(cℓ, Fcℓ
, f) ≤

(1 + ϵ) ·
∑

c′∈Ψj
i

costϵ
F L(c, Fc, f) .

Proof. We define x random variables X1, · · · , Xx where Xℓ corresponds to the cost of the
light cell cℓ sampled from Ψj

i . Then, since E[Xℓ] =
∑

c∈Ψj
i

Pr [c] · costϵ
F L(c, Fc, f), we have

(1 − ϵ) · 1
|Ψj

i
|

· costϵ
F L(Ψj

i , f) ≤ E[Xℓ] ≤ (1 + ϵ) · 1
|Ψj

i
|

· costϵ
F L(Ψj

i , f), where costϵ
F L(Ψj

i , f) =∑
c∈Ψj

i
costϵ

F L(c, Fc, f). By the linearity of expectation for the random variable X =
∑x

ℓ=1 Xℓ,
we obtain (1 − ϵ)2 · costϵ

F L(Ψj
i , f) ≤ y

x · E[X] ≤ (1 + ϵ)2 · costϵ
F L(Ψj

i , f).
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Recall that the minimum and the maximum facility location cost of a significant light cell
c ∈ Ψj

i are τ · f and δF L · f , respectively, where τ = ϵ
9 log(n) and δF L = 220 · ( log n

ϵ )2. Thus,
Xℓ ≤ δF L ·f . Also, E[Xℓ] ≥ (1− ϵ) · 1

|Ψj
i
|
·costϵ

F L(Ψj
i , f) ≥ (1− ϵ) · 1

|Ψj
i
|
·τ ·f |Ψj

i | = (1− ϵ)τf .

Therefore, E[X] ≥ x(1 − ϵ)τf ≥ 25δF Lϵ−2 log(n) · f . We use the Hoeffding bound [22]
where we set M = δF L · f and since f > 0 to obtain

Pr
[
(1 − ϵ)3 · costϵ

F L(Ψj
i , f) ≤ y

x
· E[X] ≤ (1 + ϵ)3 · costϵ

F L(Ψj
i , f)

]
= Pr [|X − E[X]| ≥ ϵ · E[X]] ≤ 2 · exp(−E[X] · ϵ2

3 · M
) ≤ 2 · exp(−25δF Lϵ−2 log(n) · fϵ2

3δF L · f
) ≤ 2

n5 .

We replace ϵ by ϵ/3 to finish the proof of this lemma. ◀

Finishing Proof of Theorem 2. Now we are ready to finish the proof of Theorem 2.
Lemma 18 shows that if a likelihood class Ψj

i is contributing, we can approximate the facility
location cost costϵ

F L(Ψj
i , f) to within (1 + ϵ)-factor if (1) we can sample x significant light

cells of Ψj
i almost uniformly at random, and (2) we can (1 + ϵ)-approximate the size |Ψj

i |.
Lemma 16 shows that if we sample any arbitrary cell c ∈ Ψj

i with probability Pr [c] =
nparent(c)

n , the cell c is sampled almost uniformly at random. Lemma 17 proves that with
probability at least 1 − 1/n20, Algorithm 4 (1 + ϵ)-Estimator samples at least x significant
light cells from each contributing likelihood class Ψj

i . Finally, Lemma 15, with probability at
least 1 − 2/n5, the estimator wj

i in Algorithm 4 (1 + ϵ)-Estimator is a (1 + ϵ)-approximation
of the size of the contributing likelihood class Ψj

i .
Recall that in Lemma 22 we proved that the cost of significant light cells of Ψ = {c ∈ Λ :

costϵ
F L(c, Fc, f) ≥ τf} is an (1+ ϵ)-approximation of OPTF L(P, f). Therefore, we can ignore

insignificant light cells of Λ. All significant light cells of Ψ are partitioned into likelihood
classes Ψj

i . Using Lemma 27, we can safely ignore the contribution of the non-contributing
likelihood classes Ψj

i . Putting everything together, the estimator Z that is computed in
Algorithm 4 (1 + ϵ)-Estimator is an (1 + ϵ)-approximation of OPTF L(P, f).

As for the query complexity of Algorithm 4 (1 + ϵ)-Estimator. In Lemma 9, to compute
the estimator A we use O(ϵ−8 · log6(n) ·

√
n) RangeCount queries. For the estimator B, we

sample z = 214δ2
F L log5(n)ϵ−6 ·

√
n cells using Subroutine TelescopingSampling(Gi) for

each grid Gi≤ 3
4 log(n). Therefore, we invoke the tester HeavyTester for less than 5z log(n)

cells (z times for the sampled cells and 4z for their children) where each such a call makes
O(ϵ−8 · log6(n)) RangeCount queries as is shown in Lemma 5. Therefore, in total, the
query complexity of the (1 + ϵ)-estimator Z is Õ(

√
n). This finishes the proof of Theorem 2.

4 Hard instance for the sublinear geometric model

In this section, we prove Lemma 3. See Figure 2 for the illustration of the hard instance that
we explain next.

Suppose the opening cost is f = n3/4. In the grid G 3
4 ·log(n), we have n1/2 cells each one

having side length n3/4. We choose a set A ⊂ G 3
4 ·log(n) of n1/4 cells arbitrarily and assign

n3/4 points to each such a cell. Observe that the sparsity of the grid G 3
4 ·log(n) is n1/4. That

is in average from every n1/4 cells in this grid, only one of them has n3/4 points and the rest
are empty. Note that every cell in A is heavy since it has at least f

n3/4 = 1 points.
At grids Gi and Gj for i = log(n)

2 and j = log(n)
4 , a cell has side length n1/2 and n1/4. We

sample a subset B ⊂ A of log(n) cells uniformly at random. A cell c ∈ B has a set Dc of√
n descendants in the grid G 1

2 ·log(n), each one having n
1
4 points equally distant (at distance
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6:16 Facility Location in the Sublinear Geometric Model

Figure 2 In this figure, cells of B are colored gray and cells in the set A\B are shown with a
net of dash-dotted lines. The rest of cells that are shown as white cells are empty cells. The cell
c ∈ B has

√
n descendants in the grid G 1

2 ·log(n) that are all heavy cells. The cell c′ ∈ A\B has n

descendants in the grid G 1
4 ·log(n) out of which n1/4 of them are heavy and the rest are empty cells.

n
3
8 ) from its top, bottom, left and right points. Every cell in Dc has n

1
4 = f

n1/2 points,
so it is a heavy cell in the grid G 1

2 ·log(n). In the optimal solution for the facility location
problem, we must open at least one facility within distance n1/2 of each heavy cell in the
grid G 1

2 ·log(n). Thus, the optimal cost of the facility location problem for the cell set B is at
least L = log(n) · n1/2

9 · f where in the denominator we have 9 since the points inside at most
9 cells (i.e., a grid of 3 × 3) in the grid G 1

2 ·log(n) can be assigned to one open facility that we
open in one of them, say the center one.

Each cell c′ ∈ A\B has n descendants in the grid Gj , but only n1/4 of them that are
chosen uniformly at random are heavy, i.e., has f

n1/4 = n1/2 points and the rest are empty
cells. Suppose that for each heavy descendant (in the grid Gj) of each cell c′ ∈ A\B,
we open at most one facility. The total cost of cells of the set A\B would be at most
U ≤ |A\B| · n1/4 · f

n1/4 · n1/4√
2 ≤

√
2n1/2 · f

Now, observe that with respect to the grids G≥ 3
4 ·log(n), all the cells in the set A look

exactly the same and they all have n3/4 points each. Since |B| = log(n) and |A| = n1/4, in
expectation we need to sample |A|

|B| = n1/4

log(n) cells so that we can have at least one cell from B

in the sampled set; otherwise, we cannot estimate the number of cells and the cost of each
cell in the set B and thus, we cannot approximate the cost of the facility location problem
within a factor better than Ω( L

U ) = Ω(log(n)).
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A Missing proof of Subsection 3.1

Proof of Lemma 5. Testing whether a cell c is a heavy or a light cell needs to find out
if c has a facility location cost of at least δF Lf or lower than this quantity. To this end,
we first develop a deterministic sublinear algorithm for the k-median problem that using
O(kϵ−4 log2(n)) RangeCount queries returns a (1+ϵ)-approximate solution. We then show
how we can use this sublinear algorithm to develop the tester algorithm HeavyTester.

What is interesting is the difference between the query complexity of the k-median and
the facility location problems in the sublinear geometric model. For the k-median problem,
we can report a (1 + ϵ)-approximate solution (not the cost) in the sublinear model using
O(kϵ−4 log2(n)) RangeCount queries. However, for the facility location, Lemma 3 shows
that we do not hope to o(log n)-approximate the cost of the facility location problem in the
sublinear geometric model using Ω(

4√n
log n ) RangeCount queries.

▶ Definition 19 (k-median problem). In the k-median problem, we are given a point set P ⊂
[2n]2 of size n in a discrete space and a number k ∈ N of centers. The goal is to return a set
C∗ ⊂ [2n]2 of k centers that minimizes the cost function costk-med(P, C∗) =

∑
p∈P dist(p, C∗),

where dist(p, C∗) = minc∈C∗ dist(p, c) is the Euclidean distance of p to its nearest center in
C∗. We denote the optimal k-median cost of the point set P by OPTk-med(P, k).

▶ Lemma 20 (Sublinear algorithm for k-median). Let P be a point set of size n in [2n]2. Let
k > 0 be the number of centers and 0 < ϵ ≤ 1 be the error parameter. Then, there exists a
deterministic sublinear algorithm that returns a (1 + ϵ)-approximate solution of the k-median
problem for P in the sublinear geometric model using O(kϵ−4 log2(n)) RangeCount queries.

Assume for a moment that this lemma is correct. We next explain the tester algorithm.

Algorithm HeavyTester(c). For every choice k ∈ {1, 2, · · · , δF L = 220 · ( log n
ϵ )2}, we run

the sublinear algorithm of Lemma 20 on the input set P ∩ c that reports a set Ck of k centers.
We then compute the k-median cost of P ∩ c using the center set Ck and add the opening
cost kf to the k-median cost to compute the facility location cost. Among all δF L runs, we
find the one that has the lowest facility location cost. If the lowest facility location cost is
less than δF L, we report that the cell c is a light cell, otherwise we report it as a heavy cell.
This finishes the description of the algorithm HeavyTester(c).
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Query complexity of HeavyTester(c). We invoke δF L parallel runs each choice k ∈ [δF L].
Each such a run needs O(kϵ−4 log2(n)) RangeCount queries using Lemma 20. Thus, using
O(δ2

F L · ϵ−4 log2(n)) = O(ϵ−8 · log6(n)) RangeCount queries, we can detect if the cell c is
a heavy cell or a light one. This finishes the proof of the first part of Lemma 5.

Now we prove the second part of this lemma. Imagine the case when c is a cell in the
set Λ. Recall that c ∈ Λ if c is a light cell and its parent(c) is a heavy cell. We run the
tester HeavyTester for c and parent(c). This tester is a deterministic algorithm and so,
it correctly reports c is a light cell and parent(c) is a heavy cell. Lemma 4 ensures that
for the correct guess of the number of facilities in c, the set Fc of facilities that the tester
HeavyTester(c) returns will satisfy the following what finishes the proof of Lemma 5.
costϵ

F L(c, Fc, f) =
∑

p∈P ∩c dist(p, Fc) + |Fc| · f ≤ (1 + ϵ) · OPTF L(P ∩ c, f) .

Proof of Lemma 20. We prove this lemma using a modification that we do to the quadtree
construction that Frahling and Sohler [19] developed for the k-median problem. The quadtree
construction in [19] is based on the notions of dense and sparse cells.

Dense and sparse cells: Let P be a point set of size n in [2n]2. Let 0 < ϵ ≤ 1 be
an error parameter. Let δk-med = 220 · k log(n)

ϵ3 . We say a cell c ∈ Gi of side length 2i is
dense if it contains nc ≥ δk-med · OP Tk-med(P,k)

2i points; otherwise it is a sparse cell.

Observe that for the definition of dense and sparse cells, we assume we know the optimal
k-median cost OPTk-med(P, k). In general, we can (1 + ϵ)-approximate OPTk-med(P, k) using
log(1+ϵ)(4n2) = O(ϵ−1 log(n)) guesses. To see this, observe that in the discrete space [2n]2,
the maximum pairwise distance between two points is at most 4n and the minimum distance
is 1. The set P has n points, so the ratio between the maximum and the minimum k-median
costs is at most n × 4n = 4n2. We then consider t = log(1+ϵ)(4n2) = O(ϵ−1 log(n)) parallel
guesses r0, · · · , rt for the optimal k-median cost OPTk-med(P, k) where rj = (1 + ϵ)j . We
must have an index j ∈ [t] for which (1 + ϵ)j ≤ OPTk-med(P, k) < (1 + ϵ)j+1 .

Sublinear algorithm for k-median based on quadtree construction of [19]. We run
the following algorithm for all O(ϵ−1 log(n)) guesses of OPTk-med(P, k) in parallel. Let us
consider the jth guess rj = (1 + ϵ)j for OPTk-med(P, k). We create a run j for the jth guess
for which we do the following.

Let Kj and Rj be two empty sets. Given the single square c = [2n]2 in the grid Glog(n)+1,
we build a tree similar to the quadtree as follows. In particular, suppose that we have a
cell c ∈ Gi. If c is sparse, we add c to Kj and stop; otherwise, (i.e., if c is dense), we split it
into 4 equal sub-cells c1, c2, c3, c4 (they are in the grid Gi−1) of the same side length and
recurse for those sub-cells that are dense. We add all non-empty sparse cells that are
constructed in this way to Kj . If during the run j, the size of Kj is more than O(kϵ−3 log(n)),
we immediately stop that run because that run corresponds to the guess (1 + ϵ)j that is
much smaller than the optimal k-median cost OPTk-med(P, k). At the end of this recursive
procedure, for each cell c ∈ Kj , we consider the center of c as the representative point rc of c

and assign the weight w(rc) = nc = |P ∩ c| to rc. Observe that for every cell c ∈ Kj , we need
one RangeCount query to find out w(rc) = nc = |P ∩ c|. Let Rj be the set of weighted
representative points that we compute in this way for the run j.

Next, we need to compute the k-median cost of the representative set Rj . To this
end, we use the deterministic (1 + ϵ)-approximation algorithm that Har-Peled and Ma-
zumdar [21] develop for the k-median problem. The running time of this algorithm is
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O(n + 2O((1+1/ϵ)kO(1) logO(1)(n)). We denote this algorithm by Algϵ
k-med. For the weighted

representative set Rj , we then invoke the Algϵ
k-med(Rj) that returns a set Cj of k cen-

ters and its k-median cost Γj = costk-med(Rj , Cj) =
∑

rc∈Rj
w(rc) · dist(p, Cj) , where

dist(p, Cj) = minc∈Cj dist(p, c) is the distance of p to its nearest center in Cj .
Among all parallel guesses r0, · · · , rt where [t = O(ϵ−1 log(n))], we choose the smallest

guess rj∗ = (1 + ϵ)j∗ for which we have (1 + ϵ)j∗ ≤ Γj∗ < (1 + ϵ)j∗+1. Let Kj∗ and Rj∗ be
the set of non-empty sparse cells and the set of representative points that correspond to the
guess (1 + ϵ)j∗ , respectively. We then have the following guarantee.

▶ Lemma 21 ([19]). Let P ⊆ [2n]2 be a point set of size n and k ∈ N be a natural number.
Let 0 < ϵ ≤ 1 be the error parameter. Then:

The number of non-empty sparse cells in Kj∗ (or, the number of representative points in
Rj∗) that are found using the above construction is |Kj∗ | = |Rj∗ | = O(kϵ−3 log(n)).
The output of Algorithm [21] Algϵ

k-med on input set Rj∗ is a set Cj∗ of k centers such
that (1 − ϵ)OPTk-med(P, k) ≤ Γj∗ = costk-med(Rj∗ , Cj∗) ≤ (1 + ϵ)OPTk-med(P, k) .

Query Complexity of sublinear algorithm for k-median. Let us consider a run j. Recall
that if during the run j, the size of Kj is more than O(kϵ−3 log(n)), we immediately stop
this run. Observe that for every cell c ∈ Kj , we need one RangeCount query to find out
its weight w(rc) = nc = |P ∩ c|. Thus, the number of RangeCount queries that we make
to build the set Kj is O(kϵ−3 log(n)). In addition, observe that the algorithm Algϵ

k-med(Rj)
does not make any RangeCount query. We have t = O(ϵ−1 log(n)) guesses for the optimal
k-median cost OPTk-med(P, k). Thus, the number of RangeCount queries that we make to
develop our sublinear algorithm for the k-median problem is O(kϵ−4 log2(n)). This finishes
the proof of Lemma 20. ◀

◀

B Missing proofs of Subsection 3.3

Proof of Lemma 7. Let us consider the ancestors ci+1, · · · , cj , · · · , clog(n) where cell cj for
i + 1 ≤ j ≤ log(n) is the ancestor of cell c in grid Gj . Observe that the probability that we
sample the cell c is Pr [c] = Pr

[
clog(n)−1|clog(n)

]
· Pr

[
clog(n)−2|clog(n)−1

]
· · · Pr [ci+1|ci+2] ·

Pr [c|ci+1] =
nclog(n)−1

n ·
nclog(n)−2
nclog(n)−1

· · · nci+1
nci+2

· nc

nci+1
= nc

n . ◀

C Missing proofs of Subsection 3.5.1

Proof of Lemma 9. Recall that the estimator A is for the contribution of those light cells in
Λ that are in the grids G 3

4 ·log(n)≤i≤log(n)+1. Let S be the set of all cells in G 3
4 ·log(n)≤i≤log(n)+1.

In total, all these grids have at most |S| ≤ 2n2

n6/4 + 1
4 · 2n2

n6/4 + · · · + 1
4i · 2n2

n6/4 + · · · + 1 ≤ 4
√

n

cells. For every heavy cell c ∈ S, its sub-cells c1, c2, c3, c4 are created and tested if they are
heavy or light cell. Recall that we run the HeavyTester algorithm for those sub-cells to
determine which ones are heavy or light. Using Lemma 5, to detect if a cell c is heavy or
light, the tester algorithm HeavyTester(c) uses O(ϵ−8 · log6(n)) RangeCount queries.

Let us consider an empty set T in the beginning. For each heavy cell c ∈ S, we add
its light sub-cells to the set T . The first claim of this lemma is proven by observing that
|T | ≤ 4|S| = 16

√
n. As for the second claim, we invoke the HeavyTester algorithm for

|S| + |T | ≤ 20
√

n cells each one uses O(ϵ−8 · log6(n)) RangeCount queries. ◀
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Proof of Lemma 10. Based on Lemma 5, the tester algorithm HeavyTester is a determin-
istic algorithm that correctly detects if an arbitrary cell c is heavy or light. Thus, Algorithm 4
(1 + ϵ)-Estimator detects all light cells ΛA. For every light cell c ∈ ΛA, Lemma 5 shows
that the Tester algorithm (1 + ϵ)-approximates the optimal cost OPT ϵ

F L(P ∩ c, f). Thus,
the term A is a (1 + ϵ)-estimator for the cost of light cells of the set ΛA. ◀

D Missing proofs of Subsection 3.5.2

The following lemma shows that we can safely remove insignificant light cells from the set Λ
and only consider significant light cells Ψ.

▶ Lemma 22. Let τ = ϵ
9 log(n) . Let Ψ = {c ∈ Λ : costϵ

F L(c, Fc, f) ≥ τf} be the set of light
cells in Λ that are significant. Then,

OPTF L(P, f) ≤ costϵ
F L(Ψ, f) =

∑
c∈Ψ

costϵ
F L(c, Fc, f) ≤ (1 + ϵ) · OPTF L(P, f) .

Proof. In order to prove Lemma 22, we first define charging heavy cells. We prove that at
most 3 log(n) insignificant light cells are created during the construction of any charging
heavy cells. We can assign all these insignificant light cells to the charging heavy cell whose
construction creates these cells. We show that the cost of a charging heavy c is at least
Ω(δF L · f). On the other hand, overall the total facility location cost of the insignificant light
cells that are assigned to c is at most ϵ · f that can be charged to costϵ

F L(c, Fc, f).

▶ Definition 23 (Charging heavy cell). Let c be a heavy cell having children c1, c2, c3, c4. We
say c is a charging heavy cell if all children c1, c2, c3, c4 are light.

▶ Lemma 24. Let c be a heavy cell. Then, either c is a charging heavy cell or at least one
of its descendants is a charging heavy cell.

Proof. For the sake of contradiction assume that c is not a charging heavy cell. As otherwise,
we have nothing to prove. Let c′ be a copy of c. Let c1, c2, c3, c4 be the four children of c′.
Let CH

c′ be the set of heavy children of c′. By our assumption, |CH
c | > 0. Let us pick a heavy

child of c′ from CH
c , say c1 is heavy. We let c′ = c1. Recursively, either all children of c′

are light or at least one of the children of c′ is heavy for which we recurse. This recursion
repeats for O(log n) times. At the end we either find a charging heavy cell or arrive at a cell
c ∈ G0 that has side length one and can store only one point pc. If that cell c is still heavy,
we can open a facility at pc of cost f which contradicts with the fact that the cost of c must
be at least δF L · f . Thus, the recursion will end by outputting a charging heavy cell. ◀

Let us fix a charging heavy cell c at a grid Gi. Let us consider the quadtree construction
that we explained for the facility location problem in Section 2.1. Starting from the root
of the quadtree that corresponds to the square [2n]2 going down to the cell c, we see the
ancestors of c. At any grid Gj>i, the ancestor(c, j) of c creates 4 children. At most 3 of
them are insignificant light cells and one is the ancestor(c, j − 1) of c at grid Gj−1 which is a
heavy cell. Suppose we assign all the insignificant light cells that ancestor(c, j) creates to c.
If there are more than one heavy cell among the children of ancestor(c, j), we can arbitrarily
assign the insignificant light children of ancestor(c, j) to either of them. Let Oc be the set of
all insignificant light cells that are assigned to c. We have the following bound for |Oc|.

▶ Corollary 25. Let c be a charging heavy cell. Let Oc be the set of all insignificant light
cells that are assigned to c. Then, |Oc| ≤ 3 log(n).
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▶ Corollary 26. Let c be a charging heavy cell. Let Oc be the set of all insignificant light
cells that are assigned to c. Then, the total facility location cost of insignificant light cells Oc

is costϵ
F L(Oc, f) =

∑
c′∈Oc

costϵ
F L(c′, Fc′ , f) ≤ ϵ

3 · f .

Now we finish the proof of Lemma 22. Recall that the charging heavy cell c has
cost costϵ

F L(c, Fc, f) ≥ δF L · f . On the other hand, the four children Cc = {c1, c2, c3, c4}
of c are light that are in the set Λ as we have seen in Lemma 4. This lemma shows
that for each cell c′ ∈ Cc we must have costϵ

F L(c′, Fc, f) ≤ (1 + ϵ) · OPTF L(P ∩ c′, f).
However,

∑
c′∈Cc

costϵ
F L(c′, Fc, f) ≥ δF L·f

4 . Otherwise, we can upper bound costϵ
F L(c, Fc, f)

by
∑

c′∈Cc
costϵ

F L(c′, Fc, f) ≤ δF L·f
4 which essentially means that c is light cell contradicting

our assumption that c is a charging heavy cell. Thus, δF L·f
4(1+ϵ) ≤

∑
c′∈Cc

costϵ
F L(c′,Fc,f)

(1+ϵ) ≤
min(

∑
c′∈Cc

OPTF L(P ∩ c′, f), OPTF L(P ∩ c′, f)) . Using Corollary 26, for the set Oc of
insignificant light cells that are assigned to c we have costϵ

F L(Oc, f) ≤ ϵ
3 · f which is less

than ϵ-fraction of the optimal facility location cost OPTF L(c, f) of c. Therefore, the overall
facility location cost of insignificant light cells in Λ is at most ϵ · OPTF L(P, f). Thus, for
set Ψ = {c ∈ Λ : costϵ

F L(c, Fc, f) ≥ τf} of significant light cells we have OPTF L(P, f) ≤
costϵ

F L(Ψ, f) =
∑

c∈Ψ costϵ
F L(c, Fc, f) ≤ (1 + ϵ) · OPTF L(P, f) . ◀

Next lemma shows that the cost of non-contributing classes Ψj
i is only ϵ

2 -fraction of the
optimal facility location cost of point set P . Thus, when we develop a sublinear algorithm
that (1 + ϵ)-approximates OPTF L(P, f), we can ignore the cost of non-contributing classes.

▶ Lemma 27. Suppose we know that OPTF L(P, f) ≥
√

n · f . Let Ψj
i be a likelihood class

that is non-contributing, i.e., |Ψj
i | < β

√
n, where β = ϵ2

2δF L·log2(n) . We can safely ignore the
contribution of the class Ψj

i toward the optimal facility location cost of the point set P .

Proof. Recall that the class Ψj
i consists of only light cells and that a cell c is light if

costϵ
F L(c, Fc, f) < δF L · f . Recall that we test whether a cell is light or heavy using the

tester algorithm HeavyTester of Lemma 5. Since |Ψj
i | < β

√
n, for β = ϵ2

2δF L·log2(n) , the
overall cost of the class Ψj

i is upper-bounded by costϵ
F L(Ψj

i , f) =
∑

c∈Ψj
i

costϵ
F L(c, Fc, f) ≤

ϵ2

2δF L·log2(n) ·
√

n · δF L · f ≤ ϵ2

2 log2 n
· OPTF L(P, f) .

Note that based on Definition 13, we can have at most ϵ−1 · log(n) classes for every grid
Gi and we have at log(n) + 1 grids. Thus, the total cost of non-contributing classes is at
most

∑log(n)+1
i=1

∑ϵ−1·log(n)
j=1 costϵ

F L(Ψj
i , f) ≤ ϵ

2 · OPTF L(P, f) . Thus we can safely ignore the
contribution of these grids toward the optimal facility location cost of the point set P . ◀

We first find a lower bound for the cost of contributing classes. Next, we obtain a lower
bound for the minimum number of points in a contributing likelihood class.

▶ Lemma 28. Let α = ϵ3

18δF L log3(n) and β = ϵ2

2δF L·log2(n) . Let Ψj
i be a likelihood class that is

contributing, i.e., |Ψj
i | ≥ β

√
n. Then, costϵ

F L(Ψj
i , f) =

∑
c∈Ψj

i
costϵ

F L(c, Fc, f) ≥ α
√

n · f .

Proof. A class Ψj
i is contributing if |Ψj

i | ≥ β
√

n. Moreover, every class Ψj
i consists of light

cells that are significant. A light cell c ∈ Λ is significant if costϵ
F L(c, Fc, f) ≥ τf , where

τ = ϵ
9 log(n) . Thus, we have the following lower bound for the facility location cost of the

class Ψj
i : costϵ

F L(Ψj
i , f) =

∑
c′∈Ψj

i
costϵ

F L(c′, f) ≥ |Ψj
i | · τ · f ≥ ϵ3

18δF L log3(n) ·
√

n · f . ◀

Next, using the lower bound that we obtained for the cost of contributing classes, we find
a lower-bound on the number of points in every contributing class. This will help us to prove
that can sample cells of contributing classes almost uniformly at random.
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▶ Proposition 29. For a contributing likelihood class Ψj
i we have n(Ψj

i ) =
∑

c∈Ψj
i

nc ≥ α
√

n
(1+ϵ) .

Proof. Let us consider a significant light cell c ∈ Ψj
i . Since Algorithm [15] Algϵ

F L is a
(1 + ϵ)-approximation algorithm for the facility location problem, we have costϵ

F L(c′, f) ≤
(1+ϵ)·OPTF L(P ∩c, f). This essentially means that OPTF L(P ∩c, f) ≥ costϵ

F L(c′,f)
(1+ϵ) ≥ τ

(1+ϵ) ·f .
Now we take the sum over the cells of Ψj

i , apply Lemma 28, and let α = ϵ3

18δF L log3(n) to

obtain
∑

c∈Ψj
i

OPTF L(P ∩ c, f) ≥
∑

c∈Ψj
i

costϵ
F L(c′,f)
(1+ϵ) ≥ |Ψj

i | · τ
(1+ϵ) · f ≥ α

√
n

(1+ϵ) · f .

We claim that n(Ψj
i ) =

∑
c∈Ψj

i
nc ≥ α

√
n

(1+ϵ) . As for the contradiction, suppose this claim is

not correct. That is assume that n(Ψj
i ) < α

√
n

(1+ϵ) . Then, imagine that we open one facility for
each point in Ψj

i . Since we assume that n(Ψj
i ) ≤ α

√
n

(1+ϵ) , the overall opening cost (in fact, the
facility location cost since the connection cost is zero) of Ψj

i is less than α
√

n
(1+ϵ) · f which can

not be the case. Thus, overall the cells in Ψj
i must have at least α

√
n

(1+ϵ) points. ◀
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Abstract
Fairness considerations have motivated new clustering problems and algorithms in recent years. In
this paper we consider the Priority Matroid Median problem which generalizes the Priority k-Median
problem that has recently been studied. The input consists of a set of facilities F and a set of clients
C that lie in a metric space (F ∪ C, d), and a matroid M = (F , I) over the facilities. In addition,
each client j has a specified radius rj ≥ 0 and each facility i ∈ F has an opening cost fi > 0. The
goal is to choose a subset S ⊆ F of facilities to minimize

∑
i∈F fi +

∑
j∈C d(j, S) subject to two

constraints: (i) S is an independent set in M (that is S ∈ I) and (ii) for each client j, its distance to
an open facility is at most rj (that is, d(j, S) ≤ rj). For this problem we describe the first bicriteria
(c1, c2) approximations for fixed constants c1, c2: the radius constraints of the clients are violated by
at most a factor of c1 and the objective cost is at most c2 times the optimum cost. We also improve
the previously known bicriteria approximation for the uniform radius setting (rj := L ∀j ∈ C).
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1 Introduction

Clustering and facility-location problems are widely studied in areas such as machine learning,
operations research, and algorithm design. Among these, center-based clustering problems in
metric spaces form a central topic and will be our focus. The input for these problems is a
set of clients C and a set of facilities F from a metric space (F ∪ C, d). The goal is to select
a subset of facilities S ⊆ F to open, subject to various constraints, so as to minimize an
objective that depends on the distances of the clients to the chosen centers; we use d(j, S) to
denote the quantity mini∈S d(j, i) which is the distance from j to S. Typical objectives are
of the form (

∑
j∈C d(j, S)p)1/p for some parameter p (the ℓp norm of the distances). When

the constraint on facilities is that at most k can be chosen (that is, |S| ≤ k), we obtain
several standard and well-studied problems such as k-Center (p =∞), k-Median (p = 1), and
k-Means (p = 2) problems. These problems are extensively studied from many perspectives
[15, 25, 10, 2, 5, 19, 16]. These are also well-studied in the geometric setting when F is the
continuous space Rℓ for some finite dimension ℓ. In this paper we restrict our attention to
the discrete setting, and in particular, to the median objective (p = 1).

The Matroid Median problem is a generalization of the k-Median clustering problem.
Here, the cardinality constraint k on S is replaced by specifying a matroid M = (F , I) on
the facility set F and requiring that S ∈ I (we refer a reader unfamiliar with matroids to
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7:2 Bicriteria Approximation Algorithms for Priority Matroid Median

Section 2 formal definitions and details). The k-Median clustering problem can be written as
an instance of Matroid Median where M is the uniform matroid of rank k. The Matroid
Median problem was first introduced by Krishnaswamy et al. [21] as a generalization of
k-Median and Red-Blue Median [14].

Motivated by the versatility of the Matroid Median problem, and several other consid-
erations that we will discuss shortly, in this paper we study the Priority Matroid Median
problem (PMatMed). Formally, in PMatMed we are given a set of clients C and facilities
F from a metric space (F ∪ C, d) where each facility i ∈ F has a facility opening cost fi,
and each client j ∈ C has a radius value rj . We are also given a matroid M = (F , I) over
the facilities. The goal is to select a subset of facilities S that is an independent set of the
matroid M where the objective

∑
j∈C d(j, S) +

∑
i∈S fi (i.e. the cost induced by selected

facilities) is minimized, and the radius constraint d(j, S) ≤ rj is satisfied for all clients j ∈ C.
Most of the center-based clustering problems are NP-Hard even in very restricted settings.

We focus on polynomial-time approximation algorithms which have an extensive history in
center-based clustering. Moreover, due to the nature of the constraints in PMatMed, we
can only obtain bicriteria approximation guarantees that violate both the objective and the
radius constraints. An (α, β)-approximation algorithm for PMatMed is a polynomial-time
algorithm that either correctly states that no feasible solution is possible or outputs a set
of facilities S ∈ I (hence satisfies the matroid constraint) such that (i) d(j, S) ≤ αrj for all
clients j ∈ C and (ii) the cost objective value of S is at most β ·OPT where OPT is the cost
of an optimum solution.

1.1 Motivation, Applications to Fair Clustering, and Related Work
Our study of PMatMed is motivated, at a high-level, by two considerations. First, there has
been past work that combines the k-Median objective with that of the k-Center objective.
Alamdari and Shmoys [3] considered the k-Median problem with the additional constraint
that each client is served within a given uniform radius L and obtained a (4, 8)-approximation.
Their work is partially motivated by the ordered median problem [24, 4, 8]. Kamiyama [18]
studied a generalization of this uniform radius requirement on clients to the setting of Matroid
Median and derived a (11, 16)-approximation algorithm. Note that this is a special case of
PMatMed where rj = L for each j. We call this the UniPMatMed problem.

Another motivation for studying PMatMed is the recent interest in fair clustering in the
broader context of algorithmic fairness. The goal is to capture and address social concerns
in applications that rely on clustering procedures and algorithms. Various notions of fair
clustering have been proposed. Chierchetti et al. [11] formulated the Fair k-Center problem:
clients belong to one or more groups based on various attributes. The objective is to return
a clustering of points where each chosen center services a representative number of clients
from every group. This notion has since been classified as one that seeks to achieve group
fairness. Several other group fair clustering problems have since been introduced and studied
[7, 20, 1, 13]. Subsequently, clustering formulations that aimed to encapsulate individual
fairness were explored which seek to ensure that each individual is treated fairly. One such
formulation was introduced by Jung et al. [17]. This formulation is related to the well-studied
k-Center clustering and is the following. Given n points in a metric space representing users,
and an integer k, find a set of k centers S such that d(j, S) is at most rj where rj denotes
the smallest radius around j that contains n/k points. Such a clustering is fair to individual
users since no user will be forced to travel outside their neighborhood. Jung et al. [17] showed
that the problem is NP-Hard and described a simple greedy algorithm that finds k centers
S such that d(j, S) ≤ 2rj for all j. Jung et al.’s model can be related to an earlier model
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of Plesník who considered the Weighted k-Center problem [25]. In Plesník’s version, each
user j specifies an arbitrary radius rj > 0 and the goal is to find k centers S to serve each
user within their radius requirement. Plesník showed that a simple variant of a well-known
algorithm for k-Center due to Hochbaum and Shmoys [15] yields a 2-approximation. Plesník’s
problem has been relabeled as the Priority k-Center problem in recent work [6].

Priority clustering. The model of Jung et al. motivated several variations and generalizations
of the Priority k-Center problem. Bajpai et al. [6] defined, and provided constant factor
approximations, for Priority k-Supplier (where facilities and clients are considered to be
disjoint sets), as well as Priority Matroid and Knapsack Center, where facilities are subject
to matroid and knapsack constraints, respectively. Mahabadi and Vakilian [23] explored and
developed approximation algorithms for Priority k-Median and Priority k-Means problems;
their motivation was to combine the individual fairness requirements in terms of radii
proposed by Jung et al., with the traditional objectives of clustering. They obtained bicriteria
approximation algorithms via local-search. The approximation bounds were later improved
via LP-based techniques. Chakrabarty and Negahbani [9] obtained an (8, 8)-approximation for
Priority k-Median and a (8, 16)-approximation for Priority k-Means. Vakilian and Yalcner [28]
further improved these results via a nice black box reduction of Priority k-Median to the
Matroid Median problem! Via their reduction they obtained (3, 7.081 + ϵ)-approximation
for the Priority k-Median problem (relying on the algorithm for Matroid Median from [22]).
They extended the algorithmic ideas from Matroid Median to handle ℓp norm objectives
and were thus able to derive algorithms for Priority k-Means as well. The advantage of the
reduction to Matroid Median is the guarantee of 3 on the radius dilation. This is optimal
even for the k-Supplier problem [15].

1.2 Results and Technical Contribution
In this paper, we define the PMatMed problem and derive the first (c1, c2)-bicriteria approxi-
mation algorithms where c1, c2 are both constants. There are different trade-offs between
c1 and c2 that we can achieve. Since PMatMed simultaneously generalizes k-Supplier and
Matroid Median, the best c1 we can hope for is 3, and the best c2 that we can hope for
is ≈ 8, which comes from current algorithms for Matroid Median [22, 27]. We prove the
following theorem which captures two results, one optimizing for the radius guarantee, and
the other for the cost guarantee.

▶ Theorem 1. There is a (21, 12)-approximation algorithm for the Priority Matroid Median
Problem. There is also a (36, 8)-approximation algorithm.

As we previously mentioned, [28], via their black box reduction to Matroid Median
achieve a (3, α) approximation for Priority k-Median where α is the best approximation for
Matroid Median. We conjecture that there is a (3, O(1))-approximation for PMatMed. This
is interesting and open even for the special case with uniform radii under partition matroid
constraint.

Our second set of results are for UniPMatMed. Recall that [18] obtained a (11, 16)-
approximation for this problem. We prove the following theorem that strictly dominates the
bound from [18]. In addition, we show that a tighter radius guarantee is achievable.

▶ Theorem 2. There is a (9, 8)-approximation algorithm for the Uniform Priority Matroid
Median Problem. For any fixed ϵ > 0 there is a (5 + 8ϵ, 4 + 2

ϵ )-approximation.
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▶ Remark 3. We believe that we can extend the ideas from this paper to obtain bicriteria
approximation algorithms for Priority Matroid objectives that involve the ℓp norm of distances
(Priority Matroid Median is when ℓp := 1). Such an approximation algorithm would result in
a radius factor dependent on p. [28] already showed that Matroid Median can be extended
to the p-norm objective.

Now, we give a brief overview of our technical approach. The reader may wonder about
the reduction of Priority k-Median to Matroid Median [28]. Can we make use of this for
PMatMed? Indeed one can employ the same reduction, however, the resulting instance is
no longer an instance of Matroid Median but an instance of Matroid Intersection Median
which is inapproximable [27]. The reduction works in the special case of Priority k-Median
since the intersection of a matroid with a cardinality constraint yields another matroid. We
therefore address PMatMed directly. Our approximation algorithms are based on a natural
LP relaxation. It is not surprising that we need to build upon the techniques for Matroid
Median since it is a special case. We build extensively on the LP-based 8-approximation for
Matroid Median given by Swamy [27] which improved the first constant factor approximation
algorithm of Krishnaswamy et al. [21]. Although the Matroid Median approximation has
been improved to 7.081 [22], the approach in [22] seems more difficult to adapt to PMatMed.

Our main technical contribution is to handle the non-uniform radii constraints imposed in
PMatMed in the overall approach for Matroid Median. We note that the rounding algorithms
for Matroid Median are quite complex, and involve several non-trivial stages: filtering, finding
half integral solutions via an auxiliary polytope, and finally rounding to an integral solution
via matroid intersection [21, 27, 22]. Kamiyama adapted the ideas in [21] to UniPMatMed
and his work involves four stages of reassigments that are difficult to follow. The non-uniform
radii case introduces additional complexity. We explain the differences between the uniform
radii case and the non-uniform radii case briefly. The LP relaxation opens fractional facilities
and assigns each client j to fractionally open facilities. In the LP for PMatMed we write
a natural constraint that j cannot be assigned to any facility i where d(i, j) > rj . Let C̄j

denote the distance paid by j in the LP solution. The preceding constraint ensures that
C̄j ≤ rj . For UniPMatMed, rj = L for all j ∈ C. LP-based approximation algorithms for
k-Median use filtering and other rounding steps by sorting clients in increasing order of
C̄j values since they are directly relevant to the objective. When one considers uniform
radius constraint, one can still effectively work with C̄j values since we have C̄j ≤ L for all j.
However, when clients have non-uniform radii we can have the following situation; there can
be clients j and k such that C̄j ≪ C̄k but rj ≫ rk. Thus the radius requirements may not
correspond to the fractional distances paid in the LP.

We handle the above mentioned complexity via two careful adaptations to Matroid Median
rounding. One of these changes occurs in the second stage of Matroid Median rounding,
where we construct a half-integral solution using an auxiliary polytope. We must take care to
ensure that the half-integral solution constructed in this stage is one that will not violate the
radius requirements for clients. To do so, we create additional constraints in the auxiliary
polytope. These constraints ensure the half-integral solution satisfies certain properties that
are crucial to obtain a constant factor radius guarantee.

The second change occurs in the first filtering stage and plays a role not only for adapting
Matroid Median to PMatMed, but also for each of our other results. We first provide an
abstract way to describe the filtering stage that allows us to specificy the order in which
points are considered, and the distances each point can travel to be reassigned. For our first
PMatMed result, the ordering and distances are based on both C̄j and rj . For UniPMatMed,
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we slightly alter the ordering and distances (using the above observations and some ideas
from [18]). Our remaining results will also involve changes to the filtering stage. This seems
to indicate that filtering plays a large role in the cost and radius trade-off.

Organization. In Section 2, we discuss preliminaries. In particular, we provide definitions
and relevant information regarding matroids, define PMatMed and provide its LP relaxation,
and discuss the generalized filtering procedure we will use in our algorithm. In Section 3
we present our algorithm for PMatMed and show that it can be used to obtain (21, 12)-
approximate solutions for instances of PMatMed. In Section 4, we describe how to modify our
algorithm for PMatMed to obtain a (9, 8)-approximate solution for instances of UniPMatMed,
and the remaining results. We also provide some details for the remaining results, and
(36, 8)-approximate solutions for instances of PMatMed. We defer the proofs of our results to
the Appendix.

2 Preliminaries

2.1 Matroids, Matroid Intersection and Polyhedral Results
We assume some basic knowledge about matroids, but provide a few relevant definitions for
sake of completeness; we refer the reader to [26] for more details. A matroid M = (S, I)
consists of a finite ground set S and a collection of independent sets I ⊆ 2S that satisfy
the following axioms: (i) ∅ ∈ I (non-emptiness of I) (ii) A ∈ I and B ⊂ A implies B ∈ I
(downward closure) and (iii) A, B ∈ I with |A| < |B| implies there is i ∈ B \ A such that
A ∪ {i} ∈ I (exchange property). The rank function of a matroid, rM : 2S → Z≥0 assigns to
each X ⊆ S the cardinality of a maximum independent subset in X. It is known that rM is
a monotone submodular function. The matroid polytope for a matroid M, denoted by PM
is the convex hull of the characteristic vectors of the independent sets of M. This can be
characterized via the rank function:

PM = {v ∈ RS | ∀X ⊆ S : v(X) ≤ rM (X) and ∀e ∈ S : v(e) ≥ 0}.

Assuming an independence oracle1 or a rank function oracle for M, one can optimize and
separate over PM in polynomial time. A partition matroid M = (S, I) is a special type of
matroid that is defined via a partition S1, S2, . . . , Sh of S and non-negative integers k1, . . . , kh.
A set X ⊆ S is independent, that is X ∈ I, iff |X ∩Si| ≤ ki for 1 ≤ i ≤ h. A simple partition
matroid is one in which ki = 1 for each i.

Given two matroids M = (S, I1) and N = (S, I2), on the same ground set, their
intersection is defined as M∩N := (S, I1 ∩ I2) consisting of sets that are independent in
both M and N . Computing a maximum weight independent set in the intersection can
be done efficiently. The convex hull of the characteristic vectors of the independent sets of
M∩N , denoted by PM,N , is simply the intersection of PM and PN ! That is

PM,N = {v ∈ RS
+ | ∀X ⊆ S : v(X) ≤ rM (X), v(X) ≤ rN (X)}.

Thus, one can optimize over PM,N if one has independence or rank oracles for M and N .
We will need these results later in the paper. See [26] for these classical results.

The input matroid M for Priority Matroid Median has ground set F i.e. the set of
facilities. Thus, an integer point of the polytope v∗ ∈ PM will represent a subset of facilities
that is an independent set of the matroid M.

1 An independence oracle returns whether A ∈ I for a given A ⊆ S.
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2.2 Priority Matroid Median
We provide below a more general definition of Priority Matroid Median that includes a notion
of client demands.

▶ Definition 4 (PMatMed). The input is a set of facilities F and clients C from a metric
space (F ∪ C, d). Each i ∈ F has an opening cost fi ≥ 0. Each client j ∈ C has a radius
value, rj ≥ 0 and a demand value aj ≥ 0. We are also given a matroid M = (F , I). The
goal is to choose a set S ∈ I to minimize

∑
i∈S fi +

∑
j∈C ajd(j, S)) with the constraint that

d(j, S) ≤ rj for each j ∈ C.

A PMatMed instance I is the tuple (F , C, d, f, r, a,M), where f ∈ RF and r, a ∈ RC .

2.3 LP relaxation for PMatMed
Our algorithm is based on an LP relaxation for a PMatMed instance I = (F , C, d, f, r, a,M)
that we describe next. We use i to index facilities in F , j to index clients in C. Recall that
rM denotes the rank function of the matroid M. The yi variables denote the fractional
amount a facility i is open, while the xij variables indicate the fractional amount a client j

is assigned to facility i.

min
∑
i∈F

fiyi +
∑

j

∑
i

ajd(i, j)xij (1a)

s.t.
∑
i∈F

xij ≥ 1 ∀j ∈ C (1b)

xij ≤ yi ∀i ∈ F , j ∈ C (1c)
xij = 0 ∀i ∈ F , j ∈ C : d(i, j) > rj (1d)

y ∈ PM (1e)
xij , yi ≥ 0 ∀i ∈ F , j ∈ C (1f)

Constraint 1b states that each client must be fully assigned to facilities, and constraint 1c
ensures that these facilities have indeed been opened enough to service clients. For integral
y, constraint 1e mandates that the facilities come from an independent set of the matroid
M. Finally, constraint 1d ensures that no client is assigned to a center that is farther than
its radius value.

We make a few basic observations about the LP relaxation. We assume that it is feasible
for otherwise the algorithm can terminate reporting that there is no feasible integral solution.
Indeed, the LP is solvable in polynomial time via the rank oracle forM. First, some notation.
For X ⊆ F , we let y(X) denote

∑
i∈X yi. For client j and radius parameter R we let B(j, R)

denote the set {i ∈ F | d(i, j) ≤ R} of facilities within R of j. Constraints 1b and 1d ensure
the following simple fact.

▶ Fact 5. Let (x, y) be a feasible solution to the PMatMed LP. Then y(B(j, rj)) ≥ 1 holds
∀j ∈ C.

Let COST (x, y) denote the cost of the LP using solution (x, y). Going forward, we will
assume that we are working with an optimum fractional solution to the LP relaxation for
the given instance.
▶ Remark 6. We say that y is feasible if y ∈ PM and y(B(j, rj)) ≥ 1 for all j ∈ C.
Given feasible y, a corresponding x satisfying the constraints and minimizing COST (x, y) is
determined by solving a min-cost assignment problem for each client j ∈ C separately.
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2.4 Filtering
Filtering is a standard step in several approximation algorithms for clustering and facility
location wherein one identifies a subset of well-separated and representative clients. Each
client is assigned to a chosen representative. In priority median problems there are two
criteria that dictate the filtering process. One is the radius upper bound rj for the client j.
The other is the LP distance C̄j =

∑
i d(i, j)x(i, j) paid by the client which is part of the

objective. Balancing these two criteria is important. To facilitate different scenarios later we
develop a slightly abstract filtering process. Building on a procedure introduced in [15, 25],
Filter takes in the metric and demands from a PMatMed instance I = (F , C, d, f, r, a,M),
as well as functions ϕ, λ : C → R+ that satisfy the following condition.

▶ Definition 7 (compatibility). Functions ϕ, λ : C → R+ are compatible if for any ordering
of clients j1, j2, . . . , jn where ϕ(j1) ≤ ϕ(j2) ≤ . . . ≤ ϕ(jn), it is the case that λ(j1) ≤ λ(j2) ≤
. . . ≤ λ(jn).

▶ Remark 8. This condition trivially holds when ϕ and λ are identical. The filtering stages
of many clustering approximation algorithms [6, 17, 9] utilize equal ϕ and λ functions. We
use both identical and non-identical settings for ϕ and λ in this paper.

The function ϕ encodes an ordering of clients, while λ represents a client’s coverage
distance. Filter chooses cluster centers in order of increasing ϕ values, and then “covers” any
remaining client k that is within distance 2 ·λ(k) from the newly added center j. The demand
from the covered points is transferred to the center that first covered them. The new demand
variables a′ represent the aggregated demand for the chosen centers. Filter returns the set of
cluster centers, the clusters assigned to each cluster center, and new demand assignments for
all clients.

Algorithm 1 Filter.
Require: Metric (F ∪ C, d), demands a, compatible functions ϕ, λ : C → R>0

1: U ← C ▷ The set of uncovered clients
2: C ← ∅ ▷ The set of cluster centers
3: ∀j ∈ C set a′

j := 0 ▷ Initialize new demand variables
4: while U ̸= ∅ do
5: j ← arg minj∈U ϕ(j)
6: C ← C ∪ {j}
7: D(j)← {k ∈ U : d(j, k) ≤ 2 · λ(k)} ▷ Note: D(j) includes j itself
8: a′

j =
∑

k∈D(j) ak ▷ Accumulate all demands of D(j) to j

9: U ← U\D(j)
10: end while
11: Return cluster centers C, {D(j) : j ∈ C}, updated demands a′ ∈ RC

The resulting cluster centers C ⊆ C, and the sets of clients relocated to each cluster center
{D(j) | j ∈ C} form a partition of the client set C. When the given ϕ and λ are compatible,
the returned clusters satisfy certain desirable properties, described in the following facts
which are relatively easy to see, and standard in the literature. For this reason we omit
formal proofs.

▶ Fact 9. The following statements hold for the output of Filter: (a) ∀j, j′ ∈ C, d(j, j′) >

2 max{λ(j), λ(j′)}. (b) {B(j, λ(j)) | j ∈ C} are mutually disjoint. (c) {D(j) | j ∈ C}
partitions C. (d) ∀j ∈ C, ∀k ∈ D(j), ϕ(j) ≤ ϕ(k) and λ(j) ≤ λ(k). (e) ∀j ∈ C, ∀k ∈
D(j), d(j, k) ≤ 2 · λ(k)

APPROX/RANDOM 2023
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Choosing ϕ and λ. As we remarked, the two criteria that influence the filtering process are
rj and C̄j . For the algorithm in Section 3 we choose ϕ(j) = λ(j) = min{rj , 2C̄j}. There are
other valid settings of compatible ϕ and λ that can be used in the filtering stage. Different
settings of ϕ and λ will result in different approximation factors for cost and radius. We
elaborate on this further in Section 4.

3 A (21, 12)-approximation for Priority Matroid Median

Our algorithm will follow the overall structure of the LP-based procedure used for approxi-
mating Matroid Median from [27], but will contain a few key alterations that allow us to
be mindful of the radius objective of PMatMed. Stage 1 of our algorithm involves filtering
the client set to construct an updated instance I ′ using the cluster centers and updated
demands. We will show that a solution to I ′ can be converted to a solution for I while
only incurring a small increase to the cost and radius. The focus then shifts to constructing
a solution for I ′. In Stage 2, we obtain a half-integral solution for the LP-relaxation for I ′

by working with an auxiliary polytope. In Stage 3, this half-integral solution is converted to
an integral solution for I ′. This is done via a reduction to matroid intersection. Finally,
we will show that this solution yields a (21, 12)-approximation for the original instance I .
Algorithm 2 is given as a summary of the various stages of our algorithm. The omitted
proofs from this section can be found in Appendix A.

Algorithm 2 Overview of bi-criteria approximation algorithm for PMatMed.

Input: PMatMed instance I = (F , C, d, f, r, a, M).
Output: (α, β)-approximate solution for I .

0: Solve LP for I and let (x, y) denote the optimal fractional solution. Use (x, y) and
radius values r to help set ϕ and λ.

1: Stage 1 - Run Filter((F ∪ C, d), a, ϕ, λ) which returns cluster centers C, and updated
client demands a′. Create an updated instance I ′ = (F , C, d, f, r, a′,M) (Section 3.1).

2: Stage 2 - Construct a half-integral solution (x̂, ŷ) for I ′ by setting up a polytope Q
with half-integral extreme points (Section 3.2).

3: Stage 3 - Convert the half-integral solution to an integral solution (x̃, ỹ) for I ′ by
setting up an instance of matroid intersection between the input matroid M, and a
partition matroid N constructed with respect to the half-integral solution (Section 3.3).

4: Convert the integral solution for I ′ to one for I (Lemma 10).

3.1 Stage 1: Filtering Clients
In this stage, we create a new instance of PMatMed from the initial one by using the Filter
process described in Section 2.4. Recall that Filter will return a set of cluster centers C ⊆ C,
and collections of clients that are relocated to each cluster center {D(j) | j ∈ C}. Filter also
returns a set of updated demands for all clients, a′. Now, using C and a′, we construct a
new instance of PMatMed I ′ = (F , C, d, f, r, a′,M). Here, we overload notation and take r
and a′ to denote the vector of radius values and demands, respectively, for cluster centers
(i.e. r, a′ ∈ RC). Notice that we do not lose any information by restricting a′ to C, since the
updated demands for relocated points are set to 0. Furthermore, we will reconcile the radius
objective for relocated points in the final solution at the end of the section.
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The solution (x, y) for instance I , when restricted to C, will still be a feasible solution
for the LP for I ′, since the new LP is made up of a subset of constraints from the original
LP. For updated instance I ′, we denote the cost of the LP solution (x, y) by COST ′(x, y).

COST ′(x, y) =
∑
i∈F

fiyi +
∑
j∈C

a′
j

∑
i∈F

d(i, j)xij =
∑
i∈F

fiyi +
∑
j∈C

a′
jC̄j

The next lemma shows that an integral solution to I ′ can be translated to an integer
solution for I by incurring a small additive increase to the cost objective. In subsequent
sections we will address how the translated solution also ensures that all clients are served
within a constant factor of their radius constraint.

▶ Lemma 10. The following is true of I ′: (a) COST ′(x, y) ≤ 2 · COST (x, y). (b) Any
integer solution (x′, y′) for I ′ can be converted to an integer solution for I that incurs an
additional cost of at most 4 · COST (x, y).

The following lemma follows directly from Fact 9.

▶ Lemma 11. Let k ∈ C be assigned to j ∈ C after Filter (i.e. k ∈ D(j)). Then, d(j, k) ≤
2λ(k) ≤ 2rk.

3.2 Stage 2: Constructing Half-Integral Solution (x̂, ŷ)
In the second stage the goal is to construct a half-integral solution to I ′. This means that
each cluster center/client j ∈ C will connect to at most two facilities. This is accomplished
by constructing a specific polytope Q with only facility variables, and a proxy objective
that also has only facility variables and arguing about the properties of Q and the objective
function.

To describe Q, we define, for each client j ∈ C, several facility sets that will play an
important role. Let Fj = {i ∈ F | d(i, j) = mink∈C d(i, k)} denote the set of facilities i for
which j is the closest client in C (ties are broken arbitrarily). Let F ′

j = {i ∈ Fj | d(i, j) ≤
λ(j)} ⊆ Fj . Let γj := mini/∈Fj

d(i, j) denote the distance between client j ∈ C and the
closest facility i not included in Fj . In other words, i in the definition of γj is the closest
facility to j that has some other closest cluster center j′ ∈ C such that j ̸= j′. Using γj , let
Gj = {i ∈ Fj | d(i, j) ≤ γj}. Finally, let ρj be the smallest distance such that y(B(j, ρj)) ≥ 1,
and Bj := B(j, ρj).2 See Figure 1.

We summarize some basic properties of the defined sets below.

▶ Fact 12. The following hold for all j ∈ C: (a) If j′ ̸= j, Fj ∩ Fj′ = ∅; (b) Fj contains
all the facilities i such that d(i, j) ≤ λ(j); (c) γj > λ(j); (d) F ′

j ⊆ Gj; (e) ρj ≤ rj, (f)∑
i∈F ′

j
xij ≥ 1/2 and when λ(j) = rj,

∑
i∈F ′

j
xij = 1;

Proof. (a) follows from definition of Fj , (b), (c), (d) follow from Fact 9(b) and definitions. (e)
follows from the LP constraint. We now prove (f). If λ(j) = rj , F ′

j = {i | d(i, j) ≤ rj}, and
by LP constraint

∑
i∈F ′

j
xij = 1. Otherwise λ(j) = 2C̄j < rj . Note that C̄j =

∑
i d(i, j)xij .

By averaging argument (Markov’s inequality) we have
∑

i:d(i,j)≤2C̄j
xij ≥ 1/2. This gives

the desired claim since F ′
j = {i | d(i, j) ≤ λ(j)}. ◀

2 Note that though it may be the case that y(B(j, ρj)) > 1, we can split facilities and define Bj as the
points of B(j, ρj) such that y(Bj) = 1.
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j′ 

j

γj′ 

γj

Fk

Gk

F′ k

Bk

ρj′ 

ρj

Figure 1 The F , F ′, G, and B sets for points j ∈ Cs and j′ ∈ Cb. Observe that for j, ρj ≤ γj ,
hence Bj ⊆ Gj .

At this point in the algorithm, in a departure from the Matroid Median algorithm of [27],
we need to be mindful of two cases. If ρj ≤ γj , in order to satisfy the radius requirements
of PMatMed, it is important to open one facility within radius ρj of j. If it is the case that
ρj > γj , it is not necessary to do so. To distinguish these two cases, we partition C into
Cs = {j ∈ C | ρj ≤ γj}, and Cb = {j ∈ C | ρj > γj}. For j ∈ Cs, it should be clear that
Bj ⊆ Gj . Using these sets, we define a polytope Q with facility variables vi, i ∈ F as follows.
It consists of the matroid constraints induced by M and a second set of constraints induced
by C and Cs as defined above. In particular, we require that all points j in C has at least
1/2 value assigned cumulatively to facilities within their F ′

j balls. We require points of Cs to
have exactly 1 assigned to facilities within Bj .

Q =
{

v ∈ RF
≥0 | ∀S ⊆ F : v(S) ≤ rM(S), ∀j ∈ C : v(F ′

j) ≥ 1/2 and v(Gj) ≤ 1,

∀j ∈ Cs : v(Bj) = 1
}

▶ Lemma 13. The extreme points of the polytope Q, if non-empty, are half-integral.

The proof of the preceding lemma is similar to those in previous works on Matroid
Median [21, 27]. We give a proof (found in Appendix A) for the sake of completeness since
the polytope we define is slightly different due to the separation of clients in C into Cs and
Cb in order to enforce an additional constraint.

We will now define a vector y′ that lies in Q which will prove that it is non-empty. Further,
we also define a linear objective function T (·) over vectors in Q to serve as a proxy for the
cost. Following the analysis for the improved bound in [27], we set up T (·) with some slack
so that the slack can be exploited in the analysis of the next step in the algorithm.

We define y′ ∈ RF
≥0 as follows. For all j ∈ C and i ∈ Gj , set y′

i = xij ≤ yi. For a facility
i /∈ ∪jGj set y′

i = 0. From this definition it should be clear that y′(Gj) ≤ 1 for all j ∈ C,
since

∑
i∈Gj

xij ≤ 1. Also, from Fact 12, y′(F ′
j) ≥ 1/2. For j ∈ Cs, it will be the case that

y′(Bj) = 1 since
∑

i∈Bj
xij = 1; we also know that for these points, y′(Gj) = y′(Bj).
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To build up to the definition of T , we first state the following lemma, which we will prove
in the proof of Lemma 17 (Appendix A).

▶ Lemma 14. Consider some j ∈ C, and let i and j′ be the facility and cluster used to
define γj (i.e. γj = d(i, j)) where i ∈ Fj′ for some j′ ̸= j. For every i′ ∈ F ′

j′ , d(i′, j) ≤ 3γj.

Keeping the preceding lemma in mind, we can use as proxy for j’s per-unit-demand cost
a function written in terms of the facility vector v. When y′(Gj) = 1, the cost for j can be
bounded by

∑
i∈Gj

d(i, j)y′
i ≤ C̄j . When y′(Gj) < 1, the preceding lemma indicates that

we can upper bound the cost of the solution by
∑

i∈Gj
d(i, j)y′

i + 3γj(1− y′(Gj)) ≤ 3 · C̄j .
Using these two bounds, we define T (·) for v ∈ Q as follows:

T (v) =
∑
i∈F

fivi +
∑
j∈C

a′
j

(
2

∑
i∈Gj

d(i, j)vi + 4γj(1− v(Gj))
)

For v such that v(F ′
j) ≥ 0.5 and v(Gj) ≤ 1 for all j ∈ C, the term a′

j(2
∑

i∈Gj
d(i, j)y′

i +
4γj(1−y′(Gj))) will upper bound j’s assignment cost with respect to v via Lemma 14. When
v(Gj) = v(Bj) = 1 for j ∈ Cs, j’s assignment cost will be at most a′

j(2
∑

i∈Bj
d(i, j)vi).

Indeed T (v) is an overestimate and we will use this in the next step.
We find an optimum half-integral solution ŷ to Q with objective T (v). It follows that

T (ŷ) ≤ T (y′). Now, we construct a half-integral solution (x̂, ŷ) from ŷ ∈ Q: For each cluster
center j ∈ C, if ŷ(Gj) = 1, set σ(j) = j. Otherwise, set σ(j) = arg minj′∈C:j′ ̸=j d(j, j′). Now,
the primary facility for each cluster center is the closest facility i ∈ F such that ŷi > 0 (this
will always be located in F ′

j), is denoted by i1(j), and thus x̂i1(j)j = ŷi1(j). A cluster center’s
secondary facility, denoted by i2(j), is the next option of facility for j to use, when it cannot
be completely serviced by its primary facility. If ŷi1(j) = 1, then j does not need a secondary
facility, since i1(j) has been completely opened, and will remain completely opened. When
ŷi1(j) < 1 and ŷ(Gj) = 1, then set i2(j) to be the second closest partially opened facility to j

(where ŷi2(j) > 0). Otherwise, when ŷi1(j) < 1 and ŷ(Gj) < 1, we now set i2(j) = i1(σ(j))
and x̂i1(j) = x̂i2(j) = 1/2. Note that if j ∈ Cs then ŷ(Bj) = 1 which implies that j’s primary
and secondary facilities are both in Bj and σ(j) = j. The following two claims are easy to
see.

▷ Claim 15. For all j ∈ C, d(j, σ(j)) ≤ 2γj .

▷ Claim 16. For all j ∈ Cs, ŷ(Gj) = 1. If ŷ(Gj) < 1, it must be the case that j ∈ Cb.

By Fact 9(b), each j will have a unique primary facility that is at least partially opened
in F ′

j . For points j ∈ Cs, their secondary facility must be in Bj . However, for points in
j ∈ Cb, i2(j) might not be in Gj or even Fj . As per Lemma 14, we know that j will be able
to find a partially open facility to be serviced by that is within distance 3γj < 3ρj . In the
following lemma, we derive our bound for the cost of (x̂, ŷ).

▶ Lemma 17. COST ′(x̂, ŷ) ≤ T (ŷ) ≤ T (y′) ≤ 4 · COST ′(x, y) ≤ 8 · COST (x, y).

Before moving on to the final stage of the algorithm, we prove a few lemmas that will be
relevant for our analysis of the radius dilation of the final solution. Lemma 18 allows us to
relate the radius of cluster center j to that of a client k in the original instance that was
relocated to j. We need such a lemma because even though we know that ϕ(j) = min{rj , 2C̄j}
and ϕ(j) ≤ ϕ(k) for all k ∈ D(j), we cannot assume that rj ≤ rk.

▶ Lemma 18. Suppose client k ∈ C is relocated to j ∈ C after filtering (k ∈ D(j)). Then
ρj ≤ 3rk.
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Proof. Note that y(B(k, rk)) ≥ 1 via the LP constraint. We have d(j, k) ≤ 2λ(k) ≤ 2rk

since λ(k) = min{rk, 2C̄k}. Via triangle inequality, B(k, rk) ⊆ B(j, 3rk). Thus ρj ≤ 3rk. ◀

Lemma 14 and Lemma 18 imply Lemma 19, which bounds the distance between relocated
points and the primary and secondary facilities of the cluster center they are relocated to.

▶ Lemma 19. Let k ∈ C and k ∈ D(j) for a cluster center j ∈ C. Then, d(j, i1(j)) ≤
λ(j) ≤ λ(k) ≤ rk. When j ∈ Cs, d(j, i2(j)) ≤ ρj ≤ 3rk. When j ∈ Cb, d(j, i2(j)) ≤
d(j, σ(j)) + d(i1(σ(j)), σ(j)) ≤ 3γj ≤ 3ρj ≤ 9rk.

▶ Remark 20. Notice that the v(Bj) = 1 constraint imposed for points j ∈ Cs ultimately did
not effect the cost analysis in Lemma 17. That is, we did not need to draw a distinction
between points in Cs and points in Cb in order to obtain COST ′(x̂, ŷ) ≤ 4 · COST ′(x, y).
The purpose of defining sets Cs and Cb and imposing an additional constraint for points in
Cs is to ensure certain radius guarantees. In particular, Lemma 19 would not hold if the
constraint v(Bj) = 1 for j ∈ Cs was not enforced in Q.

3.3 Stage 3: Converting to an Integral Solution
The procedure to convert the half-integral (x̂, ŷ) to an integral solution involves setting up a
matroid intersection instance consisting of the input matroid M and a partition matroid that
is constructed using the primary and secondary facilities from (x̂, ŷ) after another clustering
step. The solution to this instance will be used to construct an integral solution (x̃, ỹ) to I ′.

For j ∈ C set Ĉj = (d(i1(j), j) + d(j, σ(j)) + d(i2(j), σ(j)))/2. In cases where j has no
secondary facility, let i2(j) = i1(j). For each j ∈ C, define Sj = {i | x̂ij > 0} = {i1(j), i2(j)}.
Sj has either one or two facilities. In addition, the following holds and will be relevant later.

▷ Claim 21. When Sj ∩ Sj′ ̸= ∅, one of three cases can occur. (i) Sj ∩ Sj′ = {i1(j), i2(j)},
in which case σ(j) = j′ and σ(j′) = j; (ii) Sj ∩ Sj′ = {i1(j)}, and thus σ(j′) = j and
σ(j) ̸= j′ (a symmetric case occurs when switching j and j′); (iii) Sj ∩ Sj′ = {i2(j)} where
i2(j) = i2(j′), hence σ(j) = σ(j′) = p and p ̸= j, j′.

We construct a partition matroid N on ground set F via another clustering process to
create a set C ′ ⊆ C. Repeat the following two steps until no clients in C are left to consider:
(1) Pick j ∈ C with the smallest Ĉj value and add j to the set C ′ then (2) remove every
j′ ∈ C where Sj ∩ Sj′ ̸= ∅, and have j be the center of j′ (denoted by ctr(j′) = j). It is easy
to see that the sets Sj , j ∈ C ′ are mutually disjoint. Thus, a partition of F is induced by
{Sj | j ∈ C ′}, and the set F \ ∪j∈C′Sj . Set the capacity for each set of this partition to 1.

Now we consider the polytope that is intersection of the matroid polytopes of M and N :

R = {z ∈ RF
+ | ∀S ⊆ F : z(S) ≤ r(S), ∀j ∈ C ′ : z(Sj) ≤ 1}

The polytope R has integral extreme points via the classical result of Edmonds [12, 26].
The goal now is to figure out the set of facilities to open by optimizing a relevant objective

over R. First, we define a vector ŷ′ ∈ RF
+: if i ∈ Sj for some j ∈ C ′ we set ŷ′

i = x̂ij ≤ ŷi,
otherwise we set ŷ′

i = ŷi. Observe that ŷ′ is feasible for R and shows that R is not empty.
We now define a linear function H(·) over vectors in R. We will optimize H(·) over R to

obtain an integral extreme point ỹ and we will analyze its cost via ŷ′. For z ∈ RF
+, define

H(z) as follows.

H(z) =
∑

i

fizi +
∑
j∈C

Lj(z), where
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Lj(z) =


∑

i∈Sctr(j)
a′

jd(i, j)zi i1(j) ∈ Sctr(j)∑
i∈Sctr(j)

a′
j

(
d(j, σ(j)) + d(σ(j), i)

)
zi

+a′
j

(
d(i1(j), j)− d(j, σ(j))− d(i1(σ(j)), σ(j))

)
zi1(j) otherwise

Let ỹ ∈ R be an integer extreme point such that H(ỹ) ≤ H(ŷ′). We use this to define
an integral solution (x̃, ỹ) to the modified instance by assigning each j ∈ C ′ to the facility
opened from Sj i.e. the facility i ∈ Sj such that ỹi = 1. For each j′ ∈ C \ C ′, assign j′ to
either i1(j′) if it is open or the facility opened from Sctr(j′). Lj(ỹ) serves as a proxy and
upper bound for j’s assignment cost. When i1(j) /∈ Sctr(j), the second term of Lj(ỹ) will
adjust the distance j pays depending on whether i1(j) is opened or not. This adjustment is
not needed when i1(j) ∈ Sj or when i1(j) /∈ Sj is not opened, since in this case j must be
assigned to the center opened from Sctr(j). The following lemmas will show how the cost of
(x̃, ỹ) can be bounded by that of the half-integral solution (x̂, ŷ) from the previous stage.

▶ Lemma 22. COST ′(x̃, ỹ) is at most H(ỹ) ≤ H(ŷ′).

▶ Lemma 23. H(ŷ′) ≤ T (ŷ).

▶ Remark 24. We do not lose a factor in the cost when converting the half-integral solution to
an integral solution because the analysis in Stage 2 “overpays” for the half-integral solution.
We follow the approach from [27].

3.4 Cost and Radius Analysis for PMatMed
Lemmas 10, 17, 22, and 23 together imply the following bound on the cost of (x̃, ỹ) for
instance I with respect to the cost of the LP solution (x, y).

▶ Theorem 25. COST (x̃, ỹ) ≤ 12 · COST (x, y).

Proof. COST ′(x̃, ỹ) will be at most T (ŷ) (Lemmas 22 and 23), and T (ŷ) is at most 4 ·
COST ′(x, y) ≤ 8 · COST (x, y) (Lemma 17). Hence, (x̃, ỹ) will give a solution to I ′ of
cost at most 8 · COST (x, y). Lemma 10 tells us that translating an integer solution for I ′

to an integer solution for I will incur an additional cost of at most 4 · COST (x, y). All
together, COST (x̃, ỹ) ≤ COST ′(x̃, ỹ) + 4 ·COST (x, y) ≤ 8 ·COST (x, y) + 4 ·COST (x, y) =
12 · COST (x, y). ◀

To complete our analysis of the radius approximation factor, we must determine how far
points will be made to travel once the final centers are chosen. In Lemma 19 we guaranteed
that each cluster center j will not travel farther than 3ρj to reach its secondary facility.
However, in this final stage, we are assigning some cluster centers to others, and cannot
guarantee that their primary or secondary facility will be opened. We can still show that even
if a cluster center j from Cs gets assigned to a cluster center ℓ from Cb (i.e. that ctr(j) = ℓ),
j will still only travel a constant factor outside of ρj . Consequently, using Lemma 18 we can
show that each client k ∈ C will travel only a constant factor times its radius value rk.

▶ Lemma 26. Let k ∈ C, where k ∈ D(j) for j ∈ C. The final solution will open a facility i

such that d(i, j) ≤ 19rk.

Proof. There are several cases to consider but most of them are simple. We provide the
analysis for the case that gives the 19 factor, and other notable cases.
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i2( j) = i2(ℓ) = i1(p)

i1(ℓ)
i1( j)

p

ℓ j

≤ 2Ĉℓ

≤ 2 ̂Cℓ + d( j, i2( j))

Sℓ
Sj

Figure 2 The farthest a point j ∈ C will be from an opened center occurs when ctr(j) = ℓ,
σ(j) = σ(ℓ) = p, and i1(ℓ) is opened.

If j ∈ C ′, then either i1(j) or i2(j) will be opened in the final solution. Lemma 19
indicates that j will be assigned to a center that is at most 9rk away. If j /∈ C ′, it
must be the case that ctr(j) = ℓ where Sℓ ∩ Sj ̸= ∅, and Ĉℓ ≤ Ĉj . We claim that
Ĉj ≤ 1

2 (d(i1(j), j) + d(i2(j), j)) ≤ 1
2 (rk + 9rk) = 5rk where we used Lemma 19 to bound

d(i1(j), j) and d(i2(j), j)).
The farthest that j would have to travel occurs when j and ℓ share secondary facilities,

and ℓ’s primary facility is opened (see Figure 2). More precisely, this is when Sℓ ∩ Sj =
{i2(ℓ)} = {i2(j)} and σ(ℓ) = σ(j) = p where p is not j or ℓ, and i1(ℓ) is opened at the end
of Stage 3. In this case, we have

d(i1(ℓ), j) ≤ d(i1(ℓ), i2(ℓ)) + d(i2(ℓ), j) ≤ d(i1(ℓ), ℓ) + d(i2(ℓ), ℓ) + d(i2(j), j)

= 2Ĉℓ + d(i2(j), j) ≤ 2Ĉj + d(i2(j), j) ≤ 10rk + 9rk = 19rk. ◀

▶ Remark 27. Notice that in the last step of our proof for Lemma 26, we bound the distance
d(i1(ℓ), j) by d(i1, j) + 2d(i2(j), j), where d(i2(j), j) ≤ 9rk. Hence, the majority of the
distance that j is traveling, according to our analysis, is due to the distance between j and its
secondary facility. If we could guarantee that cluster center j has a reasonably close secondary
facility, we could improve this radius factor. We will explore this further in Section 4.3.

Using Lemmas 11 and 26, we have the following radius bound for the output of our
algorithm.

▶ Theorem 28. Let S be the output of the aforementioned approximation algorithm. For all
k ∈ C, d(k, S) ≤ 21rk.

Theorems 25 and 28 together give us Theorem 1.
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4 Exploring Cost and Radius Trade-offs

In this section, we will outline the remaining results for PMatMed and UniPMatMed. The
algorithms for these results are nearly identical to the one in the previous section. The
only change is in setting ϕ and λ (in the first step of Algorithm 2). These results suggest
that filtering plays a non-trivial role in the cost and radius trade-offs, and that further
improvements may be possible if one finds effective ways to filter points.

We begin with the (9, 8)-approximate solution for UniPMatMed. As we discussed in the
introduction, having uniform radii allows us to rely only on C̄j values obtained from the LP
solution. We will then discuss how we can extend this approach to the non-uniform case to
obtain a (36, 8)-approximate solution for PMatMed. Finally, we show how to further tighten
the radius guarantee for UniPMatMed.

4.1 (9, 8)-approximation for UniPMatMed
First, observe that instances of UniPMatMed can be written as instances of PMatMed, where
each rj := L for all j ∈ C. As such, our algorithm to obtain a (9, 8)-approximation for
UniPMatMed is the following: Run Algorithm 2 on UniPMatMed instance J , but in Line 0,
set ϕ(j) := C̄j and λ(j) := min{rj , 2C̄j}.

Notice that these assignments of ϕ and λ satisfy compatibility (Definition 7) only when
rj ’s are uniform. We explain this in more detail in Appendix B, and defer the analysis and
proofs for this result to that section.

4.2 (36, 8)-approximation for PMatMed
Building off the result for UniPMatMed, which is able to optimize for the cost by changing
ϕ(j), we show how to obtain a (36, 8)-approximate solution for PMatMed. To do so, we will
keep the same setting for ϕ(j) := C̄j as UniPMatMed, but will instead choose a λ that is
compatible for non-uniform radii. Our algorithm is as follows: Run Algorithm 2 on PMatMed
instance I , but in Line 0, set ϕ(j) := C̄j and λ(j) := 2C̄j .

Clearly, ϕ and λ are compatible. Furthermore, notice that this setting of ϕ is identical to
that of our algorithm of UniPMatMed. Since cost analysis for the filtering stage only uses ϕ

(and not λ), our analysis for cost will be identical to that of our analysis of UniPMatMed,
therefore we will have a cost guarantee of 8.

To analyze the radius guarantee, notice that while λ does not explicitly use radius values,
PMatMed LP has a constraint that ensures ∀j ∈ C C̄j ≤ rj . Therefore, λ(j) = 2C̄j ≤ 2rj .
Our initial setting of λ (λ(j) := min{rj , 2C̄j}) made it so λ(j) ≤ rj . Hence, the new setting
of λ will worsen the radius guarantee of the final solution. The analysis for this result can be
found in Appendix C.

4.3 Tighter radius guarantee for UniPMatMed
In the previous result for UniPMatMed, we set ϕ(j) := C̄j and λ := min{L, 2C̄j}. In the
second result for PMatMed, we showed how setting λ(j) := 2L would increase the radius
guarantee. Thus, in order to tighten the radius guarantee for UniPMatMed, we will again
change λ(j), but this time in a way that will allow points to have tighter radius bounds.

To build up to our new setting for λ, we first partition points in the original client set
into points that have relatively small, or tiny C̄j values, CT = {j ∈ C | C̄j ≤ ϵL} and points
that have large C̄j values, CL = {j ∈ C | C̄j > ϵL}. Now, our algorithm is as follows: Run
Algorithm 2 on PMatMed instance I , but in Line 0, set ϕ(j) := C̄j and λ(j) as defined
below.

APPROX/RANDOM 2023
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λ(j) =
{

2C̄j j ∈ CT

L j ∈ CL

Note that ϕ and λ will satisfy compatibility. Furthermore, this setting of λ improves the
radius bound of Section 4.1 since it forces cluster centers from CL to open their own primary
and secondary facilities (i.e. they will force σ(j) = j for cluster centers j that are from
CL). Any point j such that σ(j) ̸= j will be from CT , and furthermore σ(j) ∈ CT for all of
these points. Therefore, we are decreasing the distance between any point and its secondary
facility, for both points in CL and CT . As noted in Remark 27, this will help reduce the
radius guarantee.

To achieve the (5+8ϵ, 4+2/ϵ)-approximation result, we also make a change to Section 2.4
of Filter. Details about this change, as well as the full analysis for this result can be found in
the full version of this paper.
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Proof of Lemma 10. We first prove that COST ′(x, y) ≤ 2 · COST (x, y). The fractional
facility opening cost,

∑
i fiyi is identical in both. The difference in the client connection

cost is because the demands of clients in C \ C are relocated. Consider a client k ∈ C \ C

that is relocated to its cluster center j ∈ C (thus k ∈ D(j)). In COST (x, y) client k pays
akC̄k. In COST ′(x, y), the demand of k is moved to j and pays akC̄j . Thus, it suffices
to prove that C̄j ≤ 2C̄k. From Fact 9, ϕ(j) ≤ ϕ(k) ≤ 2C̄k. LP constraints 1d and 1c

APPROX/RANDOM 2023

https://doi.org/10.1145/3442188.3445906
https://doi.org/10.1287/moor.10.2.180
https://doi.org/10.1145/375827.375845
https://arxiv.org/abs/1908.09041
https://doi.org/10.1007/s00453-020-00688-5
https://doi.org/10.1109/TPAMI.2002.1017616
https://doi.org/10.1109/TPAMI.2002.1017616
https://arxiv.org/abs/2002.06742
https://arxiv.org/abs/2002.06742
https://doi.org/10.1016/0166-218X(87)90029-1
https://doi.org/10.1145/2963170
https://doi.org/10.1145/2963170
https://doi.org/10.48550/arXiv.2106.14043


7:18 Bicriteria Approximation Algorithms for Priority Matroid Median

of the LP for I ensures that C̄j ≤ rj for all j ∈ C. Hence, if C̄j > 2C̄k we would have
ϕ(j) = min{rj , 2C̄j} > 2C̄k which would be a contradiction to ϕ(j) ≤ ϕ(k). This shows that
C̄j ≤ 2C̄k.

Now we consider the second part. From Fact 9, d(j, k) ≤ 2λ(k) ≤ 2(2 · C̄k). Suppose the
cost of an integer solution to I ′ is α. We keep the same facilities for I and account for
the increase in connection cost when considering the original client locations. Consider a
client k ∈ C \ C that is relocated to center j ∈ C. If j connects to i in the integer solution
for I ′, k can connect to i in the solution to I , and its per unit connection cost increases by
at most d(j, k) ≤ 4C̄k. Thus the total increase in the connection cost when comparing to α

is upper bounded by
∑

j∈C

∑
k∈D(j) ak · 4C̄k ≤ 4 · COST (x, y). ◀

Proof of Lemma 13. Suppose Q is non-empty and v∗ is any extreme point. Then v∗ is the
unique solution of a linear system Av = b where A is a subset of the inequalities of Q with
A having full row and column rank (in particular the rows of A are linearly independent
vectors). A can be partitioned into A1 and A2 where A1 is a subset of the inequalities coming
from the matroid M (of the form v(S) = rM(S)), while A2 is a subset of the remaining
inequalities. Via the submodularity of the matroid rank function, it is known that one can
choose A1 such that the rows of A1 correspond to a laminar family of subsets of F [26]. We
observe that the non-matroidal system of inequalities in Q correspond to a laminar family of
sets over F : (a) the sets Gj , j ∈ C are disjoint and F ′

j ⊆ Gj for each j and (b) for j ∈ Cs,
we have Bj ⊆ Gj . See Figure 1.

Thus the rows of the matrix of A come from two laminar families of sets over F , and it is
known that such a matrix is totally uniodular [26]. Thus v∗ = A−1b where A−1 is an integer
matrix, and b is half-integral which implies that v∗ is half-integral. ◀

Proof of Lemma 17. We first show that T (y′) ≤ 4 · COST ′(x, y) (we already have T (ŷ) ≤
T (y′)). We know that COST ′(x, y) can be expressed as

∑
i fiyi +

∑
j a′

j · C̄j . For any j ∈ C,
observe that C̄j =

∑
i∈Gj

d(i, j)xij +
∑

i/∈Gj
d(i, j)xij and hence C̄j ≥

∑
i∈Gj

d(i, j)xij +
γj

∑
i/∈Gj

xij .

T (y′) ≤
∑

i

fiyi +
∑

j

a′
j

(
2

∑
i∈Gj

d(i, j)xij + 4γj

(
1−

∑
i∈Gj

xij

))
≤

∑
i

fiyi + 4
∑

j

a′
j · C̄j ≤ 4 · COST ′(x, y)

Next, we upper bound COST ′(x̂, ŷ) by T (ŷ). It suffices to focus on the assignment cost.
Consider j ∈ Cs. Its primary and secondary facilities are in Bj and it is easy to see that
its connection cost is precisely

∑
i∈Bj

d(i, j)x̂ij . Now consider j ∈ Cb. Recall that when
ŷ(Gj) = 1, the total assignment cost of j is at most

∑
i∈Gj

d(i, j)ŷi. When ŷ(Gj) < 1, j

connects to primary facility in F ′
j and a secondary facility. The second nearest facility will

not be in its Gj ball, i.e. i2(j) /∈ Fj . Let j′ ̸= j be client that defines γj . Via Lemma 14, we
have d(i2(j), j) ≤ 3γj . Assuming this, when ŷ(Gj) < 1, the total assignment cost of j is at
most

∑
i∈Gj

d(i, j)ŷi + 3γj(1− ŷ(Gj)). Based on these assignment cost upper bounds we see
that COST ′(x̂, ŷ) ≤ T (ŷ).

Now we prove Lemma 14. From Fact 9 we have 2 max{λ(j), λ(j′)} ≤ d(j, j′). Via triangle
inequality d(j, j′) ≤ d(j, i) + d(i, j′) ≤ 2γj . Thus 2λ(j′) ≤ 2γj which implies that λ(j′) ≤ γj .
Recall that F ′

j′ , from its definition, is contained in a ball of radius λ(j′) around j′. Thus, for
any facility i′ ∈ F ′

j′ , d(i′, j′) ≤ λ(j′) ≤ γj , Therefore, d(i′, j) ≤ d(j, j′) + d(j′, i′) ≤ 3γj . This
gives us the lemma.

Finally, using Lemma 10, we know that COST ′(x, y) ≤ 2 · COST (x, y), hence 4 ·
COST ′(x, y) ≤ 8 · COST (x, y). ◀
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Proof of Lemma 22. Since the facility costs of (x̃, ỹ) will remain as they are in H(ỹ), it
suffices to show that for all j ∈ C, the assignment cost of j is at most Lj(ỹ). When j ∈ C ′,
ctr(j) = j and the assignment cost of j will be exactly Lj(ỹ).

Now we consider two possibilities for j′ ∈ C \ C ′. Let ctr(j′) = j. If j′ gets assigned
to a center from Sj , there are two possible cases for the value of Lj′(ỹ). If i1(j′) ∈ Sj

then the assignment cost for j′ is exactly Lj′(ỹ). Otherwise, i1(j′) /∈ Sj and ỹi1(j′) = 0.
In this case Lj′(ỹ) =

∑
i∈Sj

a′
j′(d(j′, σ(j)) + d(i, σ(j)))ỹi. By triangle inequality, d(i, j′) ≤

d(i, σ(j′)) + d(j, σ(j′)), therefore the assignment cost of j′ is at most Lj′(ỹ).
If j′ is assigned to a center that is not from Sj , it is because ỹi1(j′) = 1 and i1(j′) /∈ Sj .

Here, the assignment cost of j′ is a′
j′d(i1(j′), j′). Let i ∈ Sj be such that ỹi = 1. The value

of Lj′(ỹ) is therefore

Lj′(ỹ) = a′
j

(
d(j′, σ(j′)) + d(i, σ(j′)) + d(i1(j′), j)− d(j′, σ(j′))− d(i1(σ(j)), σ(j))

)
= a′

j

(
d(i, σ(j′)) + d(i, i1(j′))− d(i1(σ(j)), σ(j))

)
Since i ∈ Sj cannot be closer to σ(j′) than the primary facility of σ(j′), we know that
d(i1(σ(j)), σ(j)) ≤ d(i, σ(j′)). Thus, the assignment cost of j′ is at most Lj′(ỹ). ◀

Proof of Lemma 23. For notational ease, let Qj(ŷ) := 2
∑

i∈Gj
d(i, j)ŷi + 4γj(1−

∑
i∈Gj

ŷi).
Thus, T (ŷ) =

∑
i fiŷi +

∑
j∈C a′

jQj(ŷ). As in the proof of the previous lemma, we focus
on just the assignment costs of clients, since clearly

∑
i fiŷ

′
i ≤

∑
i fiŷi. Specifically, we will

show that Lj(ŷ′) ≤ a′
jQj(ŷ) for all j ∈ C. For the remainder of the proof, we omit the term

a′
j from both sides of this inequality, since it remains fixed throughout our analysis.

First, we show Ĉj ≤ Qj(ŷ) for all j ∈ C. Recall that j has no secondary facility when
ŷi1(j) = 1, in which case i2(j) = i1(j). When ŷ(Gj) = 1, σ(j) = j and the primary and
secondary facilities of j are the only facilities in Gj where ŷi > 0. Since ŷ is half integral, we get
Ĉj = (d(i1(j), j)+d(i2(j), j))/2 =

∑
i∈Gj

d(i, j)ŷi ≤ Qj(ŷ). When ŷ(Gj) = 1/2, σ(j) = ℓ ̸= j

and i2(j) = i1(ℓ). In this case Ĉj = (d(i1(j), j) + d(j, ℓ) + d(i1(ℓ), ℓ))/2. Using Claim 15 and
definitions, d(j, ℓ)+d(ℓ, i1(ℓ)) ≤ 3γj . Therefore Ĉj ≤

∑
i∈Gj

d(i, j)ŷi+3γj(1−ŷ(Gj)) ≤ Qj(ŷ).
To prove Lj(ŷ′) ≤ a′

jQj(ŷ) we consider several cases.

1. j ∈ C ′: we have ctr(j) = j and i1(j) ∈ Sj .

Lj(ŷ′) =
∑
i∈Sj

d(i, j)ŷ′
i ≤

∑
i∈Sj

d(i, j)ŷi = 1
2(

(
d(i1(j), j) + d(i2(j), j)

)
≤ 1

2

(
d(i1(j), j) + d(i1(j), σ(j)) + d(i2(j), σ(j))

)
(via triangle ineq.)

= Ĉj ≤ Qj(ŷ).

2. j′ ∈ C \ C ′. Let ctr(j′) = j. We have Ĉj ≤ Ĉj′ .
a. i1(j′) ∈ Sj . Then i2(j) = i1(j′) hence σ(j) = j′.

Lj′(ŷ′) = 1
2(d(i1(j), j′) + d(i2(j), j′))

≤ 1
2(d(i1(j), j) + d(j, j′) + d(i2(j), j′)) (via triangle ineq.)

= Ĉj ≤ Ĉj′ ≤ Qj′(ŷ).

b. i1(j′) /∈ Sj : Then Sj ∩ Sj′ is either {i1(j)} or {i2(j)} (Claim 21). In both cases,
σ(j′) = ℓ ̸= j′ and therefore ŷ(Gj′) = ŷi1(j′) = 1/2. Hence

Lj′(ŷ′) = 1
2 ·

(
2d(j′, ℓ) + d(i1(j), ℓ) + d(i2(j), ℓ) + d(i1(j′), j′)− d(j′, ℓ)− d(i1(ℓ), ℓ)

)

APPROX/RANDOM 2023
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i. When Sj ∩ Sj′ = {i1(j)}, i1(j) = i2(j′) thus ℓ = j. Using the fact that d(i2(j), j) ≤
2Ĉj − d(i1(j), j), we have

Lj′ (ŷ′) = 1
2

(
2d(j′, j) + d(i1(j), j) + d(i2(j), j) + d(i1(j′), j′) − d(j′, j) − d(i1(j), j)

)
= 1

2

(
d(j, j′) + d(i2(j), j) + d(i1(j′), j′)

)
≤ 1

2

(
d(j, j′) + 2Ĉj − d(i1(j), j) + d(i1(j′), j′)

)
≤ 1

2

(
d(j, j′) + 2Ĉj′ − d(i1(j), j) + d(i1(j′), j′)

)
= d(j, j′) + d(i1(j′), j′).

ii. When Sj ∩Sj′ = {i2(j)}, i2(j) = i2(j′) = i1(ℓ) and so ℓ ̸= j, j′ and σ(j) = σ(j′) = ℓ.
Since 2Ĉj ≤ 2Ĉj′ , d(i1(j), j) + d(j, ℓ) ≤ d(i1(j′), j′) + d(j′, ℓ). Therefore,

Lj′(ŷ′) = 1
2

(
d(j′, ℓ) + d(i1(j), ℓ) + d(i1(j′), j′)

)
≤ 1

2

(
d(j′, ℓ) + d(i1(j), j) + d(j, ℓ) + d(i1(j′), j′)

)
(via triangle ineq.)

≤ 1
2

(
d(j′, ℓ) + d(i1(j′), j′) + d(j′, ℓ) + d(i1(j′), j′)

)
≤ d(i1(j′), j′) + d(j′, ℓ).

Thus, in both cases we have

Lj′(ŷ′) ≤ d(i1(j′), j′) + d(j′, ℓ)
≤ d(i1(j′), j′) + 2γj′ (via Claim 15)

≤ 2
∑

i∈Gj′

d(i, j′)ŷi + 4γj′(1−
∑

i∈Gj′

ŷi) = Qj′(ŷ) (since ŷ(Gj′) = 1/2).

This finishes the case analysis and the proof. ◀

B Uniform Priority Matroid Median

The UniPMatMed problem is a special case of the PMatMed problem in which all clients
have the same radius value L. An instance J of the UniPMatMed problem can be described
using the tuple (F , C, d, f, L, a,M). We will abuse notation and interpret L as not only a
single radius value, but also as a vector from RC where each entry is L; this will allow us to
use our algorithm for PMatMed on instances of UniPMatMed.

In this section we show how we can take advantage of the uniform radius requirement to
improve upon the (21, 12)-approximation for PMatMed. In particular, since we have C̄j ≤ L

for all j ∈ C, we can pick points in filtering in order of their C̄j values and set ϕ(j) := C̄j

for Filter. This setting of ϕ will be compatible with the setting of λ(j) := min{L, 2C̄j}.
Furthermore, Filter with these ϕ and λ functions is identical to the filtering step in Kamiyama’s
algorithm [18]. Notice that these same settings for PMatMed, i.e. ϕ(j) := C̄j and λ :=
min{rj , 2C̄j}, are not necessarily compatible. The uniform radius constraint also help us to
derive tighter bounds throughout the radius analysis of the PMatMed algorithm.

Using the above observations, our algorithm for UniPMatMed is the following: Run
Algorithm 2 on UniPMatMed instance J , but in Line 0, set ϕ(j) := C̄j and λ(j) :=
min{rj , 2C̄j}. Thus, the only change in the algorithm is the filtering step. We argue that
this algorithm yields a better approximation algorithm for UniPMatMed.

▶ Theorem 29 (Theorem 2a). There is a (9, 8)-approximation algorithm for UniPMatMed.
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B.1 Cost and Radius Analysis for UniPMatMed
Since our algorithm for UniPMatMed only slightly differs from the one in Section 3, we omit
several proofs that would be identical. The only change to the cost analysis occurs in the
filtering stage (Section 3.1). In particular, we can derive a tighter bound than in Lemma 10.
This ultimately leads to the improved cost bound, shown in Theorem 31.

▶ Lemma 30. The following is true of J ′. (a) COST ′(x, y) ≤ COST (x, y). (b) Any
integer solution (x′, y′) for J ′ can be converted to an integer solution for J that incurs an
additional cost of at most 4 · COST (x, y).

Recall that (x̃, ỹ) is the final integeral solution output by the algorithm.

▶ Theorem 31. COST (x̃, ỹ) ≤ 8 · COST (x, y).

We now analyze the radius guarantee and outline the changes in the analysis. First, we
have the following lemma in place of Lemma 11 which also follows directly from Fact 9.

▶ Lemma 32. Let k ∈ C be assigned to j ∈ C after using the Filtering procedure (i.e.
k ∈ D(j)). Then, d(j, k) ≤ 2λ(k) ≤ 2L.

Since all radius values are equal, we do not need Lemma 18 to relate the radius values of
different clients. We do need to update Lemma 19 and Lemma 26. These updated lemmas
are given below.

▶ Lemma 33. Let k ∈ C and k ∈ D(j) for a cluster center j ∈ C. Then (a) d(j, i1(j)) ≤
λ(j) ≤ λ(k) ≤ L and (b) when j ∈ Cs d(j, i2(j)) ≤ ρj ≤ L and (c) when j ∈ Cb d(j, i2(j)) ≤
d(j, σ(j)) + d(i1(σ(j)), σ(j)) ≤ 3γj ≤ 3ρj ≤ 3L.

The reasoning for the preceding lemma is the same as Lemma 19, except L is used in
place of rj and rk values. This results in the following update to Lemma 26

▶ Lemma 34. Let j ∈ C. The final solution will open a facility i such that d(i, j) ≤ 7L.

Lemma 32 and Lemma 34 give us the following improved radius bound for the solution
output by the algorithm. This, along with Theorem 31, proves Theorem 29.

▶ Theorem 35. Let S be the output of the aforementioned approximation algorithm for
UniPMatMed. For all k ∈ C, d(k, S) ≤ 9L.

C Analysis for (36, 8)-approximation for PMatMed

In this section we show how to obtain a (36, 8)-approximate solution for PMatMed. Our
algorithm is as follows: Run Algorithm 2 on PMatMed instance I , but in Line 0, set
ϕ(j) := C̄j and λ(j) := 2C̄j . Clearly, ϕ and λ are compatible. Furthermore, notice that this
setting of ϕ is identical to that of our algorithm of UniPMatMed. Since cost analysis for the
filtering stage of UniPMatMed only uses ϕ (and not λ), Lemma 30 and Theorem 31 hold in
this case as well. This is the reason why the cost factor guarantee will be 8.

Though our setting for λ does not use radius values, from the PMatMed LP constraint,
∀j ∈ C, C̄j ≤ rj holds. Therefore, λ(j) = 2C̄j ≤ 2rj . Previous settings of λ (where
λ(j) := min{rj , 2C̄j}) made it so λ(j) ≤ rj . Thus the new setting of λ can lead to a
weakening of the radius guarantee. First, we formalize the above observation in Fact 36
which we will use to update the radius analysis of Section 3.

APPROX/RANDOM 2023
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▶ Fact 36. The following holds after Filter when ϕ(j) := C̄j and λ(j) := 2C̄j: (a) C̄j ≤ rj,
and hence λ(j) = 2C̄j ≤ 2rj, (b) ∀k ∈ D(j) d(j, k) ≤ 2λ(k) ≤ 4Ck ≤ 4rk.

The following updated lemmas now hold in place of their counterparts from Section 3.
The proofs for these results are identical to those from Section 3 up to certain bounds that
change due to the above fact and the subsequent lemmas. These changes occur whenever
definitions of ϕ and λ are used in the analysis, and the following lemmas will be invoked in
place of their counterparts from Section 3.

▶ Lemma 37 (Updated Lemma 11). Let k ∈ C be assigned to j ∈ C after using the Filtering
procedure (i.e. k ∈ D(j)). Then, d(j, k) ≤ 2λ(k) ≤ 4rk.

▶ Lemma 38 (Updated Lemma 18). For some k ∈ C, where k ∈ D(j), ρj ≤ 5rk.

▶ Lemma 39 (Updated Lemma 19). Let k ∈ C where k ∈ D(j) for j ∈ C. (a) d(j, i1(j)) ≤
λ(j) ≤ λ(k) ≤ 2rk, (b) when j ∈ Cs, d(j, i2(j)) ≤ ρj ≤ 5rk, and (c) when j ∈ Cb,
d(j, i2(j)) ≤ d(j, σ(j)) + d(i1(σ(j)), σ(j)) ≤ 3γj ≤ 3ρj ≤ 15rk.

▶ Lemma 40 (Updated Lemma 26). Let k ∈ C, where k ∈ D(j) for j ∈ C. The final solution
will open a facility i such that d(i, j) ≤ 32rk.

Finally, using Lemma 37 Lemma 40, along with Theorem 31, we get the following result.

▶ Theorem 41 (Theorem 1(b)). There is a (36, 8)-approximation algorithm for Priority
Matroid Median.
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1 Introduction

We study a multi-commodity problem in directed graphs, which we call the pairwise weighted
spanner problem. In this problem, we are given a directed simple graph G = (V, E) with n

vertices, and a set of k terminal pairs D ⊆ V × V . Each edge e ∈ E is associated with a cost
given by the function c : E → R≥0 and a length given by the function ℓ : E → R≥0. We say
that the graph has unit lengths if ℓ(e) = 1 (respectively, unit costs if c(e) = 1) for all e ∈ E.
Each pair (s, t) ∈ D is associated with a target distance given by a function Dist : D → R≥0.
Let H = (V (H), E(H)) be a subgraph of G and dH(s, t) denote the distance from s to t

in H, i.e., the total length of a shortest s ; t path of edges in E(H). The cost of H is∑
e∈E(H) c(e). The goal is to find a minimum-cost subgraph H of G such that the distance

from s to t is at most Dist(s, t), namely, dH(s, t) ≤ Dist(s, t) for each (s, t) ∈ D.
The pairwise weighted spanner problem captures many network connectivity problems

and is motivated by common scenarios, such as constructing an electricity or an internet
network, which requires not only cost minimization but also a delivery time tolerance for
the demands. Each edge is thus associated with two “weights” in this setting: the cost
and the delivery time. This general formulation has been studied under many variants:
when the edges have general lengths and unit costs, one may ask for sparse subgraphs that
exactly maintain pairwise distances, i.e., distance preservers, or for sparse subgraphs that
approximately maintain pairwise distances, i.e., spanners; when the edges have general costs
and unit lengths, one may ask for cheap subgraphs that maintain pairwise connectivity, i.e.,
Steiner forests. Spanners and distance preservers are well-studied objects, which have found
applicability in domains such as distributed computation [7,49], data structures [4,55], routing
schemes [20, 47, 50, 52], approximate shorthest paths [8, 24, 25], distance oracles [8, 17, 48],
and property testing [6, 11]. Similarly, Steiner forests have been studied in the context
of multicommodity network design [30, 34], mechanism design and games [16, 42, 43, 53],
computational biology [40,51], and computational geometry [9, 13].

A slightly more special case of the pairwise weighted spanner problem was originally
proposed by Kortsarz [44] and Elkin and Peleg [27], where it was called the weighted s-spanner
problem. The precise goal in [27,44] is to find a minimum-cost subgraph that connects all the
pairs of vertices in G, and each Dist(s, t) = s · dG(s, t) for some integer s called the stretch of
the spanner. The work of [27] presents a comprehensive list of inapproximability results for
different variants of sparse s-spanners. Even in the special case where edges have unit costs
(i.e., the directed s-spanner problem defined below), the problem is hard to approximate
within a factor of O(2log1−ε n) unless NP ⊆ DTIME(npolylog n).

In the case when the edges have unit costs, the weighted s-spanner problem is called
the directed s-spanner problem. For low-stretch spanners, when s = 2, there is a tight
Θ(log n)-approximate algorithm [26,44]; with unit lengths and costs, when s = 3, 4, there are
Õ(n1/3)-approximation algorithms [10,23]. For s > 4 with general lengths, the best known
approximation is Õ(n1/2) [10].

The pairwise spanner problem considers graphs with unit edge costs, D can be any subset
of V ×V , and the target distances are general. The state-of-the-art is Õ(n4/5)-approximate for
general lengths [33] and min{Õ(k1/2+ε), Õ(n3/5+ε)}-approximation for unit lengths [19,33].
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When the target distances are infinite and the edges have unit lengths, the pairwise
weighted spanner problem captures the directed Steiner forest problem. For the directed
Steiner forest problem, there is an min{Õ(k1/2+ε), Õ(n2/3+ε)}-approximate algorithm for
general costs [10,18] and an Õ(n4/7)-approximate algorithm for unit costs [1].

1.1 Our contributions
1.1.1 Pairwise weighted spanners
To the best of our knowledge, none of the variants studied in the literature gives efficient
sublinear-factor approximation algorithms for the pairwise weighted spanner problem, even
in the case of unit edge length. Our main result for pairwise weighted spanners is stated as
follows and proved in Section 2.

▶ Definition 1 (Pairwise Weighted Spanner).
Instance: A directed graph G = (V, E) with n vertices and edge costs c : E → Q≥0,

edge lengths ℓ : E → {1, 2, 3, ..., poly(n)}, and a set D ⊆ V × V of vertex pairs and their
corresponding pairwise distance bounds Dist : D → Q≥0 (where Dist(s, t) ≥ dG(s, t)) for
every terminal pair (s, t) ∈ D.

Objective: Find a min-cost subgraph H of G such that dH(s, t) ≤ Dist(s, t) for all
(s, t) ∈ D.

▶ Theorem 2. For any constant ε > 0, there is a polynomial-time randomized algorithm
for Pairwise Weighted Spanner with approximation ratio Õ(n4/5+ε), which succeeds in
resolving all pairs in D with high probability.2

The Pairwise Weighted Spanner problem is equivalent to the problem of finding a
minimum-cost Steiner forest under pairwise distance constraints, and hence our result is
the first polynomial-time o(n)-approximate algorithm for the directed Steiner forests with
distance constraints. This problem is hard to approximate within a factor of O(2log1−ε n)
unless NP ⊆ DTIME(npolylog n) even for the special case when all vertex pairs are required
to be connected and the stretch s ≥ 5 [44].

1.1.2 All-pair weighted distance preservers
When the target distances are the distances in the given graph G, the spanner problem
captures the distance preserver problem. When edges have unit costs, there exists a distance
preserver of cost O(n) if the number of the source vertices is O(n1/3) [12]. When edges have
unit costs and lengths, the state-of-the-art result is Õ(n3/5+ε)-approximate [19]. We consider
the case where the terminal set consists of all vertex pairs and the subgraph is required
to preserve the distances of all vertex pairs. This problem is called All-pair Weighted
Distance Preserver. We prove the following in Section 3.

▶ Definition 3 (All-pair Weighted Distance Preserver).
Instance: A directed graph G = (V, E) with edge costs c : E → Q≥0, edge lengths

ℓ : E → {1, 2, 3, ..., poly(n)}.
Objective: Find a min-cost subgraph H of G such that dH(s, t) = dG(s, t), for all

(s, t) ∈ V × V .

2 Throughout our discussion, when we say high probability we mean probability at least 1− 1/n.
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▶ Theorem 4. For any constant ε > 0, there is a polynomial-time randomized algorithm for
All-pair Weighted Distance Preserver with approximation ratio Õ(n1/2+ε), which
succeeds in resolving all pairs in V × V with high probability.

Beside distance preservers, there are other previous special-case results for the all-pair
weighted spanner problem. When edges have unit costs, the state-of-the-art is an Õ(n1/2)-
approximation algorithm [10]. When there are no distance constraints, this problem is
termed the minimum strongly connected subgraph problem and is equivalent to the all-pair
Steiner forest problem. This problem is NP -hard and does not admit a polynomial-time
approximation scheme if NP ̸= P [39]. The best algorithm is a 3/2-approximation [54].

1.1.3 Online weighted spanners
Next, we turn to online weighted spanners. In the online problem, the directed graph, the
edge lengths, and the edge costs are given offline. The vertex pairs and the corresponding
target distances arrive one at a time, in an online fashion, at each time stamp. The algorithm
must irrevocably select edges at each time stamp and the goal is to minimize the cost, subject
to the target distance constraints. We call this problem the Online Pairwise Weighted
Spanner problem. For notation convenience, the vertex pair (si, ti) denotes the i-th pair
that arrives online.

▶ Definition 5 (Online Pairwise Weighted Spanner).
Instance: A directed graph G = (V, E) with edge costs c : E → Q≥0, edge lengths

ℓ : E → {1, 2, 3, ..., poly(n)}, and vertex pairs D = {(si, ti) ∈ V × V | i ∈ [k]} (k is
unknown) with their corresponding pairwise distance bounds Dist(si, ti) ∈ Q≥0 (where
Dist(si, ti) ≥ dG(si, ti)) arrive online one at a time.

Objective: Upon the arrival of (si, ti) with Dist(si, ti), construct a min-cost subgraph H

of G such that dH(si, ti) ≤ Dist(si, ti) by irrevocably adding edges from E.

The performance of an online algorithm is measured by its competitive ratio, namely the
ratio between the cost of the online solution and that of an optimal offline solution. With
unit edge costs, the best algorithm is Õ(n4/5)-competitive; with unit edge costs and lengths,
the state-of-the-art is min{Õ(k1/2+ε), Õ(n2/3+ε)}-competitive [33]. Our result for Online
Pairwise Weighted Spanner is stated as follows and proved in Section 4.

▶ Theorem 6. For any constant ε > 0, there is a polynomial-time randomized online
algorithm for Online Pairwise Weighted Spanner with competitive ratio Õ(k1/2+ε),
which succeeds in resolving all pairs in D with high probability.

In a special case of Pairwise Weighted Spanner where the source vertex s ∈ V is fixed,
we call this problem Single-source Weighted Spanner. Without distance constraints,
this problem is equivalent to the directed Steiner tree problem.3 The best algorithm for the
directed Steiner tree problem is O(kε)-approximate [15].

▶ Definition 7 (Single-source Weighted Spanner).
Instance: A directed graph G = (V, E) with edge costs c : E → Q≥0, edge lengths

ℓ : E → {1, 2, 3, ..., poly(n)}, and a set D ⊆ {s} × V of vertex pairs and their corresponding
pairwise distance bounds Dist : D → Q≥0 (where Dist(s, t) ≥ dG(s, t)) for every terminal
pair (s, t) ∈ D).

Objective: Find a min-cost subgraph H of G such that dH(s, t) ≤ Dist(s, t) for all
(s, t) ∈ D.

3 Throughout the paper, the term without distance constraints means that the target distances are infinity.
This is equivalent to the connectivity problem.
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When D ⊆ {s}×V , a single-source weighted spanner connects s to the sinks. We say that
s is the root of the single-source weighted spanner and the single-source weighted spanner is
rooted at s. The definition for a single-sink weighted spanner where the terminal pairs share
the same sink is defined similarly.

The online version of Single-source Weighted Spanner is termed Online Single-
source Weighted Spanner. For notation convenience, the vertex pair (s, ti) denotes the
i-th pair that arrives online.

▶ Definition 8 (Online Single-source Weighted Spanner).
Instance: A directed graph G = (V, E) with edge costs c : E → Q≥0, edge lengths ℓ :

E → {1, 2, 3, ..., poly(n)}, and vertex pairs D = {(s, ti) | ti ∈ V, i ∈ [k]} (k is unknown) with
their corresponding pairwise distance bounds Dist(s, ti) ∈ Q≥0 (where Dist(s, ti) ≥ dG(s, ti))
arrive online one at a time.

Objective: Upon the arrival of (s, ti) with Dist(s, ti), construct a min-cost subgraph H

of G such that dH(s, ti) ≤ Dist(s, ti) by irrevocably selecting edges from E.

The state-of-the-art result for online directed Steiner trees is Õ(kε)-competitive implied
by a more general online buy-at-bulk network design framework [14]. Our result is stated as
follows and proved in Section 4.

▶ Theorem 9. For any constant ε > 0, there is a polynomial-time randomized online
algorithm for Online Single-source Weighted Spanner with approximation ratio Õ(kε),
which succeeds in resolving all pairs in D with high probability.

Our online framework essentially generalizes the online Steiner forest problem by allowing
distance constraints when edge lengths are positive integers of magnitude poly(n). We
note that the online algorithms also imply efficient algorithms for the corresponding offline
problems with the same approximation ratios.

1.1.4 Summary
We summarize our main results for weighted spanners in Table 1 by listing the approximation
(competitive) ratios and contrast them with the corresponding known approximation (com-
petitive) ratios. We note that offline Õ(k1/2+ε)-approximate Pairwise Weighted Spanner
and offline Õ(kε)-approximate Single-source Weighted Spanner can be obtained by
our online algorithms.

1.2 High-level technical overview
Most of the literature on approximation algorithms for offline spanner problems [10,11,19,
21, 28, 33] partition the terminal pairs into two types: thin or thick. A pair (s, t) ∈ D is
thin if the graph Gs,t induced by feasible s ; t paths has a small number of vertices, and
thick otherwise. To connect each thick terminal pair (s, t), it is sufficient to sample vertices
from the graph G to hit Gs,t, and then add shortest-path in-and-out-arborescences rooted at
the sampled vertices. To connect each thin terminal pair (s, t), one uses a flow-based linear
program (LP) and then rounds the solution.

1.2.1 Pairwise Weighted Spanners
For this problem, the goal is to approximately minimize the total cost while maintaining
the required distances between terminal pairs, so it turns out that the approach for directed
Steiner forests [10, 28] is more amenable to this formulation. The approach for directed

APPROX/RANDOM 2023



8:6 Approximation Algorithms for Directed Weighted Spanners

Table 1 Summary of the approximation and competitive ratios. Here, n refers to the number
of vertices and k refers to the number of terminal pairs. All edge lengths are positive integers in
poly(n) and all edge costs are non-negative rational numbers. We note that Pairwise Weighted
Spanner without distance constraints is equivalent to the directed Steiner forest problem. The
all-pair weighted spanner problem without distance constraints is equivalent to the all-pair Steiner
forest problem or the minimum strongly connected subgraph problem.

Problem Our Results Previous Results

Pairwise
Weighted
Spanner

Õ(n4/5+ε) (Thm 2)
Õ(k1/2+ε) (Thm 6)

Õ(n4/5) (unit edge costs) [33]
Õ(n3/5+ε) (unit edge costs and lengths) [19]
min{Õ(k1/2+ε), Õ(n2/3+ε)} (without distance constraints) [10,18]
Õ(n4/7+ε) (unit edge costs and lengths, without distance
constraints) [1]

All-pair
Weighted
Spanner

Õ(n1/2+ε) (distance
preservers, Thm 4)

Õ(n1/2) (unit edge costs) [10]
3/2 (without distance constraints) [54]

Online
Pairwise
Weighted
Spanner

Õ(k1/2+ε) (Thm 6)
Õ(n4/5) (unit edge costs) [33]
min{Õ(k1/2+ε), Õ(n2/3+ε)} (unit edge costs and lengths) [33]
Õ(k1/2+ε) (without distance constraints) [14]

Single-
Source
Weighted
Spanner

Õ(kε) (also holds
for online, Thm 9)

O(kε) (without distance constraints) [15]
Õ(kε) (online, without distance constraints) [14]

Steiner forests [10,28] is slightly different, namely, thick pairs are connected by adding cheap
paths that contain at least one sampled vertex. In the Steiner forest algorithms, there are
usually three cases for the terminal pairs: 1) pairs that are thick and have low-cost connecting
paths, 2) the majority of the remaining pairs have high-cost connecting paths, and 3) the
majority of the remaining pairs have low-cost connecting paths.

With distance constraints, we have to modify the analysis for all three cases. The actual
implementation of the strategy requires several new ideas and it significantly departs from
the analysis of [10, 28] in several aspects, as we describe below.

In our first case, we cannot simply add cheap paths because they might violate the distance
requirement. Instead, we add feasible cheap paths that satisfy the distance requirements, in
order to connect the terminal pairs. For this purpose, we use the restricted shortest path
FPTAS from [37,45] as our subroutine.

The remaining two cases are resolved by using an iterative greedy algorithm based on
a density argument. In each iteration, the greedy algorithm constructs a partial solution
E′ ⊆ E with low density. We define the density of E′ to be the ratio of the total edge cost of
E′ to the number of pairs connected by E′. Iteratively adding low-density partial solutions
leads to a global solution of approximately minimum cost.

In the second case, [10,28] use the low-density junction trees (the union of an in-arboresence
and an out-arboresence rooted at the same vertex) from [18] in order to connect pairs
with high-cost paths. However, the junction tree approximation in [18] cannot handle the
distance constraints in our setting. Fortunately, with slight modifications, the junction tree
approximation from [19] can be made to handle our distance requirements.

In the third case, [10,28] formulate an LP where each edge has an indicator variable, then
round the LP solution, and argue that with high probability, one can obtain a low-density
partial solution that connects the terminal pairs with cheap paths. Two challenges arise
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in our setting. First, the LP formulation is different from the one in [10, 28] because we
have to handle both distance and cost requirements. We resolve these constraints by using a
different separation oracle from the previous literature [37,45], namely we use the FPTAS for
the resource-constrained shortest path problem from [38] (see Section A.1 for more details).
Secondly, in order to round the LP solution, we can no longer use the analysis in [10]. This
is because the LP rounding scheme uses a union bound that depends on the number of the
minimal subset of edges whose removal disconnects the terminal pairs (i.e., anti-spanners).
Since we have to handle both lengths and costs in the LP constraints, we consider all possible
subsets of edges and this is sufficient to achieve the Õ(n4/5+ε)-approximation.

1.2.2 All-pair Weighted Distance Preservers
For this problem, the solution takes advantage of the requirement that we have to exactly
preserve the all-pair distances. It turns out that the strategy for the spanner problems
[10,11,19,21,33] is more amenable. Recall that terminal pairs are either thin or thick.

To settle thick terminal pairs, most of the previous work that considers graphs with unit
edge cost samples vertices from the graph G to hit Gs,t, and then adds shortest-path in-and-
out-arborescences rooted at the sampled vertices. Note that the cost of an in-arborescence or
an out-arborescence is always n−1. However, with edge costs, it is not clear how the cheapest
shortest-path in-and-out arborescences can be obtained. Instead, we add cheap single-source
and single-sink weighted distance preservers rooted at the sampled vertices. This approach
requires using the algorithm for Online Single-source Weighted Spanner described
in details in Section 4. The key observation is that the terminal pairs of any single-source
(single-sink) weighted distance preserver is a subset of all vertex pairs. This implies that any
approximately optimal single-source (single-sink) weighted distance preserver must be cheap
compared to the cost of the optimal all-pair weighted distance preserver.

The approach that settles the thin pairs closely follows the algorithm in [10], which rounds
a fractional solution of the LP for all-pair spanners. Different from Pairwise Weighted
Spanner, we only have to handle the lengths in the LP constraints, so the analysis follows [10]
and we can get a better approximation ratio. Ultimately, the costs for settling thick and
thin pairs are both at most an Õ(n1/2+ε) factor of the optimal solution.

1.2.3 Online Weighted Spanners
The main challenge for the online pairwise weighted spanner problem is that the standard
greedy approach, which iteratively extracts low-density greedy solutions partially connecting
terminal pairs, is no longer applicable. Another challenge is to handle the distance constraints
for the terminal pairs that arrive online. Fortunately, the online spanner framework from [33]
already adapts both the approach introduced in [14], which constructs a collection of junction
trees in an online fashion, and the approach of [19], which judiciously handles distance
constraints when edges have unit lengths. Our online results are obtained by extending the
framework of [33] from graphs with unit edge costs to general edge costs.

1.3 Organization
In Section 2, we present the Õ(n4/5+ε)-approximation algorithm for Pairwise Weighted
Spanner. In Section 3, we present the Õ(n1/2+ε)-approximation algorithm for All-pair
Weighted Distance Preserver. In Section 4, we present the Õ(k1/2+ε)-competitive
algorithm for Online Pairwise Weighted Spanner and the Õ(kε)-competitive algorithm
for Online Single-source Weighted Spanner. We refer the reader to Appendix A for a
detailed description of related work and Appendix C for the concluding remarks.
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2 Pairwise Weighted Spanners

In this section, we prove Theorem 2. For ease of presentation, we assume that we have
a guess for the cost of the optimal solution - OPT for that instance as in [10, 28]. Let
τ denote the value of our guess. We set τ0 = mine∈E{c(e) | c(e) > 0}; then we carry
out multiple iterations of our overall procedure setting τ to be equal to an element in
{(τ0, 2 · τ0, 4 · τ0, . . . , 2i · τ, . . . ,

∑
e∈E c(e))} for those iterations. Finally, we take the cheapest

spanner from across all these iterations. Thus, it is sufficient to give the approximation
guarantee for the iteration when OPT ≤ τ ≤ 2 · OPT. We can obtain this guess in
O(log(

∑
e∈E c(e)/τ0)) iterations, which is polynomial in the input size.

We define some notions commonly used in the spanner and Steiner forest literature. Fix
some parameters β = n3/5 and L = τ/n4/5. We say that a path p(s, t) that connects a
specific terminal pair (s, t) is feasible if

∑
e∈p(s,t) ℓ(e) ≤ Dist(s, t). We say that p(s, t) is cheap

if the
∑

e∈p(s,t) c(e) ≤ L. We say that a terminal pair (s, t) ∈ D is thick if the local graph
Gs,t = (V s,t, Es,t) induced by the vertices on feasible s ; t paths of cost at most L has at
least n/β vertices; we say it is thin otherwise. We note that the definitions of thick and thin
pairs are slightly different from how they are defined in [10,28]. We say that a set E′ ⊆ E

settles (or resolves) a pair (s, t) ∈ D if the subgraph (V, E′) contains a feasible s ; t path.

2.1 Resolving thick pairs
Let S = {s | ∃t : (s, t) ∈ D} and T = {t | ∃s : (s, t) ∈ D}. We first settle the thick pairs
with high probability. We do this by sampling some vertices using Algorithm 1 and then
adding some incoming paths and outgoing paths from the samples to the vertices in S and T

respectively using Algorithm 2. We ensure that any path we build is both feasible and cheap
and we do that with the help of a black box for the Restricted Shortest Path problem.

Algorithm 1 Sample(G(V, E)).

1: R← ϕ, k ← 3β ln n.
2: Sample k vertices independently and uniformly at random and store them in the set R.
3: return R.

▷ Claim 10. Algorithm 1 selects a set of samples R such that with high probability any
given thick pair (s, t) has at least one vertex from its local graph in R.

In Algorithm 2, we call Algorithm 1 to get a set of samples R. For each u ∈ R, s ∈ S, t ∈ T ,
we try to add a shortest s ; u path and a shortest u ; v path each of cost at most L.

For this purpose, we use the restricted shortest path (bi-criteria path) problem from [45].

▶ Definition 11 (Restricted Shortest Path).
Instance: A directed graph G = (V, E), edge lengths ℓ : E → R≥0, edge costs c : E →

R≥0, a vertex pair (s, t) ∈ V × V , and a threshold T ∈ R>0.
Objective: Find a minimum cost s ; t path P such that

∑
e∈P ℓ(e) ≤ T .

The following lemma from [37,45] gives an FPTAS for Restricted Shortest Path.

▶ Lemma 12 ( [37, 45]). There exists an FPTAS for Restricted Shortest Path that
gives a (1 + ε, 1) approximation, i.e., the path ensures that

∑
e∈P ℓ(e) ≤ T and has a cost at

most 1 + ε times the optimal.
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Using Lemma 12 as our black box, we binary search for a path of length between
mine∈E{ℓ(e)} and n ·maxe∈E{ℓ(e)} that will give us a cheap s ; u path. Since the edge
lengths and thus the path lengths are all integers, this is possible in O(log(n ·maxe∈E{ℓ(e)}))
iterations which is polynomial in the input size. It is possible that we never find an s ; u

path of cost less than L, in which case we just ignore this (s, u) pair. We then do the same
for all the (u, t) pairs. See the full details in Algorithm 2.

Algorithm 2 Thick pairs resolver (G(V, E), {ℓ(e), c(e)}e∈E).

1: R← ϕ, G′ ← ϕ.
2: R← Sample(G(V, E)).
3: for u ∈ R do
4: for s ∈ S do
5: Use RSP to find the shortest s ; u path of cost at most L · (1 + ε) and add it to G′.
6: for u ∈ R do
7: for t ∈ T do
8: Use RSP to find the shortest u ; t path of cost at most L · (1 + ε) and add it to G′.
9: return G′

▶ Lemma 13. With high probability, the set of edges returned by Algorithm 2 resolves all
thick pairs in D with a total cost Õ(n4/5 · τ). Moreover, Algorithm 2 runs in polynomial time.

Proof. If some u ∈ R was originally in the local graph Gs,t, then Algorithm 2 would have
added at least one s ; u ; t path from Gs,t that is feasible and has cost less than 2L(1 + ε).
This is because if u was in the local graph of (s, t), then there exists an s ; u path of cost
less than L of some length ℓ ∈ [n ·maxe∈E{ℓ(e)}]. Since we binary search over the possible
values for ℓ and take the lowest possible one, we will find such a path with distance at most
the minimum length of an s ; t path that is cheap. Note that we could have a smaller
distance because we use a larger bound for cost for our path in comparison to the local
graph. Using Claim 10, such a cheap and feasible path will exist with a high probability for
all (s, t) ∈ D that are thick for some samples u ∈ R.

Now we analyze the cost of Algorithm 2. The cost from all the edges we add in Algorithm 2
would be O(n · k · L). This is because we pick k samples and each of them needs to add an
incoming and outgoing path of cost L(1 + ε) to at most n vertices. Plugging in the values
for k and L, we can see that the total cost would be Õ(n4/5 · τ). In addition, note that
Algorithm 2 will run in polynomial time because our binary search only needs to search the
integers in [mine∈E{ℓ(e)}, n ·maxe∈E{ℓ(e)}].4 ◀

2.2 Resolving thin pairs
Now we focus on the thin pairs after removing the settled thick pairs from the set D. The
density of a set of edges E′ is the ratio of the total cost of E′ to the number of pairs settled
by E′. We first describe how to efficiently construct a subset K of edges with density
Õ(n4/5+ε)τ/|D|. Then we iteratively find edge sets with that density, remove the pairs, and
repeat until we resolve all thin pairs. This gives a total cost of Õ(n4/5+ε · τ). We construct
K by building two other sets K1 and K2 and picking the smaller density of them. Let H be

4 Note that Algorithm 2 will still run in polynomial-time if we use an exhaustive search instead of a
binary search since the edge lengths are in poly(n).
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an optimal solution with cost τ . Let C be the set of demand pairs for which the minimum
cost of a feasible s ; t path in H is at least L (note that the local graph for these pairs
would be empty). We have two cases: 1) |D|/2 ≤ |C| ≤ |D| and 2) 0 ≤ |C| < |D|/2.

2.2.1 When |D|/2 ≤ |C| ≤ |D|

We will use the notion of junction tree as a black box for resolving this case. Informally,
junction trees are trees that satisfy significant demand at low cost. They have a root node r,

a collection of paths into r, and paths out of r to satisfy some of this demand. In our case,
we also need these paths to be cheap and short. The following is a formal definition of a
junction tree variant that fits the needs of our problem.

▶ Definition 14 (Distance-preserving Weighted Junction Tree). Let G = (V, E) be a directed
graph with edge lengths ℓ : E → R≥0, edge costs c : E → R≥0, and a set D ⊆ V × V

of ordered pairs and their corresponding pairwise distance bounds Dist : D → R (where
Dist(s, t) ≥ dG(s, t) for every terminal pair (s, t) ∈ D), and a root r ∈ V . We define
distance-preserving weighted junction tree to be a subgraph H of G that is a union of an
in-arboresences and an out-arboresences both rooted at r containing an s ; t path going
through the root r of length at most Dist(s, t), for one or more (s, t) ∈ D.

The density of a junction tree is defined as the ratio of the sum of costs of all edges in
the junction tree to the number of pairs settled by the junction tree.

▷ Claim 15. If |D|/2 ≤ |C| ≤ |D|, then there exists a distance-preserving weighted junction
tree of density O

(
n4/5 · τ/|D|

)
.

Proof. Let H be an optimal solution subgraph of G that connects all the costly thin pairs.
Take the paths in H connecting the pairs in C. The sum of the costs of all such paths is at
least |C|L. Now, let µ be the maximum number of these paths that any edge in G belongs to.
The sum of the costs of the paths is at most µ · τ and thus there must exist an edge belonging
to µ ≥ |C|L/τ paths. Pick such an arbitrary edge and call it the heavy-enough edge, and
call its source as the heavy-enough vertex, denoted hv. Now, consider a tree made by adding
feasible paths from s ∈ S to hv and hv to t ∈ T that satisfies at least µ pairs. We do not
add an edge if it is not in H. This ensures that the cost of this tree is less than τ . This tree
would connect at least µ pairs, and thus it would have a density at most τ/µ = τ2/(|C|L).

If L = τ/n4/5, then τ2/(|C|L) = n4/5 ·τ/|C|. If |D| > |C| > |D|/2, we have n4/5 ·τ/|C| =
O
(
n4/5 · τ/|D|

)
. We have proved the existence of a junction tree of the required density.

◁

The following lemma is essentially from [19] (Theorem 5.1). But the small yet important
modifications that we need are not covered in [19]. We refer the reader to the full version [32]
for the complete proof.

▶ Lemma 16. For any constant ε > 0, there is a polynomial-time approximation algorithm
for the minimum density distance-preserving junction tree as long as the edge lengths are
integral and polynomial in n. In other words, there is a polynomial time algorithm which,
given a weighted directed n vertex graph G = (V, E) where each edge e ∈ E has a cost
c(e) ∈ R≥0 and integral length ℓ(e) ∈ {1, 2, ..., poly(n)}, terminal pairs P ⊆ V × V , and
distance bounds Dist : P → N (where Dist(s, t) ≥ dG(s, t)) for every terminal pair (s, t) ∈ P ,
approximates the following problem to within an O(nε) factor:
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Find a non-empty set of edges F ⊆ E minimizing the ratio:

min
r∈V

∑
e∈F c(e)

|{(s, t) ∈ P |dF,r(s, t) ≤ Dist(s, t)}| (1)

where dF,r(s, t) is the length of the shortest path using edges in F which connects s to t while
going through r (if such a path exists).

▶ Lemma 17. When |D|/2 ≤ |C| ≤ |D|, we can get a set of edges K1 that has density at
most Õ(n4/5+ε · τ/|D|)

Proof. From Claim 15, there exists a distance-preserving weighted junction tree of density
at most O(n4/5 · τ/|D|). We use Lemma 16 to get a distance-preserving weighted junction
tree with density at most Õ(n4/5+ε · τ/|D|) and store the edges returned by it in K1. ◀

2.2.2 When 0 ≤ |C| < |D|/2
To handle this case, we build a linear program (LP) that fits our problem’s requirements,
solve it approximately with the help of a separation oracle, and finally round it to get a
set of edges with density Õ(n4/5+ε) · τ/|D|. The linear program is quite similar to the
one used in [10,28], but it has a subtle distinction that significantly changes the tools and
proof techniques we have to use. We will be referring to [28] quite frequently in this section
because [10] does not directly present a way to solve the LP (it relies on [28] for this).

2.2.2.1 Building and solving the linear program

We will need the following definition in order to set up a relevant LP. For (s, t) ∈ D, let
Π(s, t) be the set of all feasible s ; t paths of cost at most L, and let Π = ∪(s,t)∈DΠ(s, t).
Each edge e has a capacity xe, each path p ∈ Π carries fp units of flow, and ys,t is the total
flow through all paths from s to t. Define a linear program as follows:

min
∑
e∈E

c(e) · xe

subject to
∑

(s,t)∈D

ys,t ≥
|D|
2 ,

∑
Π(s,t)∋p∋e

fp ≤ xe ∀(s, t) ∈ D, e ∈ E,

∑
p∈Π(s,t)

fp = ys,t ∀(s, t) ∈ D,

0 ≤ ys,t, fp, xe ≤ 1 ∀(s, t) ∈ D, p ∈ Π, e ∈ E.

(2)

LP (2) tries to connect at least |D|/2 pairs from D using paths of cost at most L while
minimizing the total cost of the used edges. It is almost identical to the corresponding LP
in [10,28] for Steiner forests, except that we consider only feasible paths that are cheaper than
L, while they consider all paths that are cheaper than L. The crucial part of our approach is
the use of an FPTAS for the Restricted Shortest Path problem, which served as an
approximate separation oracle for the dual program. The proof of the following lemma is
provided in Appendix B.1.

▶ Lemma 18. Let OPT be the optimal value of an instance of Pairwise Weighted Spanner.
Then, the optimal value of LP (2) corresponding to that instance is at most OPT. In addition,
a solution for LP (2) of value at most (1 + ε) · OPT can be found in polynomial time.
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2.2.2.2 Rounding our solution

Now we need to round the solution of LP (2) appropriately to decide which edges we need to
include in our final solution. The overall structure of our rounding procedure is similar to
that of [10], but there are some important differences in the proof techniques we use here
because the nature of our problem prevents us from using some of the techniques used by [10].
Let {x̂e} ∪ {ŷs,t} be a feasible approximate solution to LP (2). Let K2 be the set of edges
obtained by running Algorithm 3 on {x̂e}.

Algorithm 3 Thin pair rounding [LP rounding] (xe).

1: E′′ ← ϕ .
2: for e ∈ E do
3: Add e to K2 with probability min{n4/5 ln n · xe, 1};
4: return E′′

The following lemma is an adaptation of Claim 2.3 from [10].

▷ Claim 19. Let A ⊆ E. If Algorithm 3 receives a fractional vector {x̂e} with nonnegative
entries satisfying

∑
e∈A x̂e ≥ 2/5, the probability that it outputs a set E′′ disjoint from A is

at most exp(−2n4/5 · ln n/5).

Proof. If A contains an edge e which has x̂e ≥ 1/(n4/5 ln n), then e is definitely included in
E′′. Otherwise, the probability that no edge in A is included in E′′ is

∏
e∈A

(1− n4/5 ln n · x̂e) ≤ exp
(
−
∑
e∈A

n4/5 ln n · x̂e

)
≤ exp

(
−2

5n4/5 ln n

)
. ◁

Let us now define anti-spanners which serve as a useful tool to analyze the rounding
algorithm for our LP. Our definition of anti-spanners is slightly different from Definition 2.4
in [10] to account for the fact we also have distance constraints.

▶ Definition 20. A set A ⊆ E is an anti-spanner for a terminal pair (s, t) ∈ E if (V, E \A)
contains no feasible path from s to t of cost at most L. If no proper subset of anti-spanner A

for (s, t) is an anti-spanner for (s, t), then A is minimal. The set of all minimal anti-spanners
for all thin edges is denoted by A.

The following lemma is an analogue of Claim 2.5 from [10].

▶ Lemma 21. Let A be the set of all minimal anti-spanners for thin pairs. Then |A| is
upper-bounded by |D| · 2(n/β)2/2.

Proof. Let PS(s, t) be the power set of all edges in the local graph for a given thin pair (s, t).
Since (s, t) is a thin pair we have at most n/β vertices and (n/β)2/2 edges in the local graph,
therefore |PS(s, t)| ≤ 2(n/β)2/2 for any (s, t) that is a thin pair. Now, every anti-spanner for
a specific demand pair (s, t) ∈ D is a set of edges and therefore corresponds to an element in
PS(s, t). Let PS thin =

⋃
(s,t) PS(s, t) where (s, t) ∈ D are thin pairs. Every anti-spanner

for a thin pair is a set of edges and therefore corresponds to an element in PS thin. We have
|A| ≤ |PS thin | ≤ |D| · 2(n/β)2/2 which proves the lemma. ◀

The rest of this discussion is quite similar to [10] although the exact constants and the
expressions involved are different because of the result in Lemma 21. Lemma 22 is similar to
Lemma 5.2 from [10].
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▶ Lemma 22. With high probability set K2 settles every thin pair (s, t) with ŷs,t ≥ 2/5.

Proof. For every thin pair (s, t) ∈ D with ŷs,t ≥ 2/5, if A is an anti-spanner for (s, t) then∑
e∈A x̂e ≥

∑
P ∈Π(s,t) f̂p ≥ 2/5, where f̂p is the value of the variable fp in LP (2) that

corresponds to the solution {x̂e} ∪ {ŷs,t}.
By Claim 19, the probability that A is disjoint from K2 is at most exp(−2n4/5 · ln n/5).

Further using Lemma 21, we can bound the number of minimal anti-spanners for thin pairs
and then if we apply union bound, we have the probability that K2 is disjoint from any anti
spanner for a thin pair is at most exp

(
−2n4/5 · ln n/5

)
· |D| · 2(n/β)2/2. In the worst case,

|D| is n2. Recall that β = n3/5, we have (n/β)2 = n4/5, so

exp
(
−2

5 · n
4/5 · ln n + ln

(
n2 · 2n4/5/2

))
= exp

(
−Θ(n4/5 ln n)

)
.

Thus we have shown that the probability K2 is disjoint from any anti-spanner for a thin pair
is exponentially small when ŷs,t ≥ 2/5. ◀

▶ Lemma 23. When 0 ≤ |C| < |D|/2, with high probability, the density of K2 is at most

Õ(n4/5 · τ/|D|).

Proof. Firstly notice that the expected cost of K2 would be at most n4/5 ln n · τ . We also
point out that the number of pairs (s, t) ∈ D for which ŷs,t < 2/5 is at most 5|D|/6 because
otherwise the amount of flow between all pairs is strictly less than |D|/2 which violates a
constraint of LP (2). Since with high probability all pairs for which ŷs,t ≥ 2/5 are satisfied,
this means that the expected density of K2 is at most

n4/5 ln n · τ
|D|/6 = 6n4/5 ln n · τ

|D|
= Õ(n4/5 · τ)

|D|
. ◀

Now we are ready to prove Theorem 2.

Proof of Theorem 2. Using Lemma 13 we can resolve all thick pairs with high probability
with cost at most Õ(n4/5+ε). Then, we can make two sets of edges K1 and K2 using a
distance-preserving weighted junction tree and by rounding the approximate solution to LP
(2) respectively. By Lemmas 17 and 23, we can see that at least one of them will have a
density at most Õ(n4/5 · τ/|D|). If we take the cheaper among them and keep iterating we
can resolve all thin pairs with a high probability and with cost at most Õ(n4/5+ε). ◀

3 All-pair Weighted Distance Preservers

In this section, we prove Theorem 4. Our proof structure for this subsection is very similar
to that of [10] except for our use of single sink and single source spanners.

As in Section 2, we assume that we have a guess for the cost of the optimal solution -
OPT for the given instance of All-pair Weighted Distance Preserver. Let τ denote
the value of our guess. Let us set β = n1/2. We say that a terminal pair (s, t) ∈ D is thick if
the local graph Gs,t = (V s,t, Es,t) induced by the vertices on feasible paths from s to t has
at least n/β vertices; we say it is thin otherwise. We note that the definitions of thick and
thin pairs are slightly different from how they are defined in Section 2 as we only care about
the feasibility of a path, not its cost. We say that a set E′ ⊆ E settles (or resolves) a pair
(s, t) ∈ D if the subgraph (V, E′) contains a feasible path from s to t.
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3.1 Thick pairs
We first resolve the thick pairs by randomly sampling vertices and building single-source
and single-sink spanners from the samples using Theorem 9. We then resolve thin pairs by
building a linear program, solving it, and rounding as in [10]. As mentioned earlier, our
definition of thick and thin pairs is different in this section when compared to Section 2, and
this allows us to use a much simpler proof (although one that will be effective only in the
case of weighted distance preservers as opposed to the more general weigthed spanners).

Algorithm 4 Thick pairs resolver - Distance preserver (G(V, E), {ℓ(e), c(e)}e∈E).

1: R← ϕ, G′ ← ϕ.
2: for i = 1 to β ln n do
3: v ← a uniformly random element of V.

4: Ssource
v ← a single-source distance preserver rooted at v with D = {v} × V .

5: Ssink
v ← a single-sink distance preserver rooted v with D = {v} × V .

6: G′ ← G′ ∪ Ssource
v ∪ Ssink

v , R← R ∪ {v}.
7: return G′

▶ Lemma 24. Algorithm 4 resolves all thick pairs for All-pair Weighted Distance
Preserver with high probability and cost Õ(nε · β · OPT) = Õ(n1/2+ε · OPT).

Proof. Let OPT(Ssource
v ) be the optimal costs of a single-source distance preserver rooted at

v with D = {v} × V and OPT(Ssink
v ) be the optimal costs of a single-sink distance preserver

rooted at v with D = {v} × V .
This theorem also gives an Õ(kδ)-approximation for the offline problem Single-source

Weighted Spanner for any constant δ > 0. Single-sink distance preservers can be obtained
by simply reversing the edges. The number of terminal pairs k = Θ(n2). By setting δ = ε/2
and the target distances to the exact distances in G for all vertex pairs, we observe that the
cost due to one sample in Algorithm 4 is at most Õ(nε(OPT(Ssource

v ) + OPT(Ssink
v ))). Note

that a distance preserver for all pairs also serves as a distance preserver for any subset of the
pairs and thus we have for any v ∈ V, OPT(Ssink

v ) ≤ OPT and OPT(Ssource
v ) ≤ OPT. Thus,

using Theorem 9, the cost of the G′ returned by Algorithm 4 is at most |R| · Õ(nε · OPT) ≤
Õ(nε · β · OPT).

Using a hitting set argument very similar to Claim 10, we can see that with high
probability, there is at least one sample v such that there is a s ; v ; t path for every
(s, t) ∈ V × V where dG′(s, v) + dG′(v, t) = dG(s, t).

The single-sink distance preserver gives us a s ; v path of length dG(s, v) and the
single-source distance preserver gives us a v ; t path of length dG(v, t). Thus, thick pairs
are resolved with high probability by the edges in G′. ◀

3.2 Thin pairs
To resolve thin pairs, we start by redefining anti-spanners by ignoring the path costs in
Definition 20.

▶ Definition 25. A set A ⊆ E is an anti-spanner for a demand pair (s, t) ∈ E if (V, E \A)
contains no feasible path from s to t. If no proper subset of anti-spanner A for (s, t) is an
anti-spanner for (s, t), then A is minimal. The set of all minimal anti-spanners for all thin
edges is denoted by A.
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Consider the following LP which is a slightly modified version of a similar LP from [10].

min
∑
e∈E

c(e) · xe subject to
∑
e∈A

xe ≥ 1 ∀A ∈ A and xe ≥ 0 ∀e ∈ E. (3)

Let OPT denote the optimal solution to the LP. We can obtain this in a way identical
to [10] as we only change the objective (which does not affect the separation oracle). Now, if
{x̂e} denotes the vector of xe’s in the solution to LP (3), then add every edge e ∈ E to G′

with probability min{
√

n · ln n · x̂e, 1}. We now state the following claim from [10].

▷ Claim 26. Given a feasible solution to LP (3), the rounding procedure produces a set of
edges E′′ that settles all thin pairs with high probability and has size at most 2OPT ·

√
n · ln n.

▶ Theorem 4. For any constant ε > 0, there is a polynomial-time randomized algorithm for
All-pair Weighted Distance Preserver with approximation ratio Õ(n1/2+ε), which
succeeds in resolving all pairs in V × V with high probability.

Proof of Theorem 4. Using Lemma 24 we can resolve all thick pairs with high probability
with cost at most Õ(n1/2+ε ·OPT) by running Algorithm 4. Then, using Claim 26, we can solve
and round LP (3) to resolve the thin pairs with high probability and cost Õ(OPT ·

√
n). ◀

4 Online Weighted Spanners

This section is dedicated to proving Theorems 6 and 9. The proof outline is as follows.
1. We first show that there exists an α-approximate solution consisting of distance-preserving

weighted junction trees (see Definition 14). Here, α = O(
√

k) for Pairwise Weighted
Spanner and α = 1 for Single-source Weighted Spanner.

2. We slightly modify the online algorithm from [33] to find an online solution consisting of
distance-preserving weighted junction trees by losing a factor of Õ(kε).

The main difference between the online approach and the offline approach in Section 2 is
that we cannot greedily remove partial solutions to settle the terminal pairs in the online
setting. Instead, we construct a distance-preserving weighted junction tree solution in an
online fashion.

▶ Definition 27. A distance-preserving weighted junction tree solution is a collection of
distance-preserving weighted junction trees rooted at different vertices, that satisfies all the
terminal distance constraints.

We construct a distance-preserving weighted junction tree solution online and compare
the online objective with the optimal distance-preserving weighted junction tree solution
with objective value OPTjunc. The following theorem is essentially from [33] for the case
when the edges have unit costs and lengths. However, the slight yet important modifications
that we need when edges have arbitrary positive costs and integral lengths in poly(n) are not
covered in [33]. We refer the reader to the full version [32] for the complete proof.

▶ Theorem 28. For any constant ε > 0, there exists a polynomial-time randomized online
algorithm for Online Pairwise Weighted Spanner that constructs a distance-preserving
weighted junction tree solution online with a cost at most Õ(kε)OPTjunc with high probability.

With this theorem, we are ready to prove Theorems 6 and 9.
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Proof for Theorems 6 and 9. Let OPT denote the cost of the optimal solution and α denote
the ratio between OPTjunc and OPT. It suffices to show that α = O(

√
k) for Pairwise

Weighted Spanner and α = 1 for Single-source Weighted Spanner because The-
orem 28 implies the existence of an Õ(αkε)-competitive online algorithm.

To show that α = 1 for Single-source Weighted Spanner, let H be an optimal
solution. We observe that H itself is a distance-preserving weighted junction tree rooted at
the source s that is connected to all the k sinks, so α = 1.

To show that α = O(
√

k) for Pairwise Weighted Spanner, we use a density argument
via a greedy procedure which implies an O(

√
k)-approximate distance-preserving weighted

junction tree solution. We recall the density notion in Section 2.2. The density of a distance-
preserving weighted junction tree is its cost divided by the number of terminal pairs that it
connects within the required distances.

Intuitively, we are interested in finding low-density distance-preserving weighted junction
trees. We show that there always exists a distance-preserving weighted junction tree with
density at most a

√
k factor of the optimal density. The proof of Lemma 29 closely follows the

one for the directed Steiner network problem in [18] and pairwise spanners [33] by considering
whether there is a heavy vertex that lies in si ; ti paths for distinct i or there is a simple
path with low density. The case analysis also holds when there is a distance constraint for
each (si, ti). We refer the reader to Appendix B.2 for the complete proof.

▶ Lemma 29. There exists a distance-preserving weighted junction tree J with density at
most OPT/

√
k.

Consider the procedure that finds a minimum density distance-preserving weighted
junction tree in each iteration, and continues on the remaining disconnected terminal pairs.
Suppose there are t iterations, and after iteration j ∈ [t], there are nj disconnected terminal
pairs. Let n0 = k and nt = 0. After each iteration, the minimum cost for connecting the
remaining terminal pairs in the remaining graph is at most OPT, so the total cost of this
procedure is upper-bounded by

t∑
j=1

(nj−1 − nj)OPT
√

nj−1
≤

k∑
i=1

OPT√
i
≤
∫ k+1

1

OPT√
x

dx = 2OPT(
√

k + 1− 1) = O(
√

k)OPT

where the first inequality uses the upper bound by considering the worst case when only one
terminal pair is removed in each iteration of the procedure. ◀
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A Related work

A.1 Resource-constrained Shortest Path
In the resource-constrained shortest path problem [38] for directed networks, each edge is
associated with r non-negative weights. Each type of weight i ∈ [r − 1] is associated with a
budget. The r-th weight denotes the cost of the edge. The goal is to find a minimum-cost
path that connects the single source to the single sink without violating the r − 1 budgets.
The results of [38] show that when r is a constant, there exists an FPTAS that finds a path
with a cost at most the same as the feasible minimum-cost path by violating each budget
by a factor of 1 + ε. When r = 2, this problem is equivalent to the restricted shortest path
problem [37,45], which has been used extensively in the LP formulations for spanners and
directed Steiner forests [10,19,21,28,33]. For our purpose, r = 3 because the LP formulation
implicitly considers whether there exists a feasible path between terminal pairs whose cost
exceeds a given threshold.

A.2 Undirected Bi-criteria Network Design
A general class of undirected bi-criteria network problems was introduced by [46]. A more
related problem to ours is the undirected Steiner tree problem. The goal is to connect a
subset of vertices to a specified root vertex. In the bi-criteria problem, the distance from the
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root to a target vertex is required to be at most the given global threshold. [46] presented a
bi-criteria algorithm for undirected Steiner trees that is O(log n)-approximate and violates
the distance constraints by a factor of O(log n). Following [46], [36] extends this result
to a more general buy-at-bulk bi-criteria network design problem, where the objective is
polylog(n)-approximate and violates the distance constraints by a factor of polylog(n).

Recently, [29, 35] studied the tree embedding technique used for undirected network
connectivity problems with hop constraints. For a positively weighted graph with a global
parameter h ∈ [n], the hop distance between vertices u and v is the minimum weight among
the u-v-paths using at most h edges. Under the assumption that the ratio between the
maximum edge weight and the minimum edge weight is poly(n), the tree embedding technique
allows a polylog(n)-approximation by relaxing the hop distance within a polylog(n) factor for
a rich class of undirected network connectivity problems.

A.3 Other related directed network problems

The more related directed network problems are variants of spanners and Steiner prob-
lems, including directed Steiner trees [15,56], directed Steiner network [18], fault-tolerance
spanners [21,22], and parameterized complexity analysis for directed s-spanners [31]. For a
comprehensive account of the vast literature, we refer the reader to the excellent survey for
spanners [2].

There is an extensive list of other related directed network problems, including distance
preservers [12, 19], approximate distance preservers [41], reachability preservers [1], and
buy-at-bulk network design [5]. One direction along this line of research is to study the
extremal bounds for the optimal subgraph in terms of the input parameters, instead of
comparing the costs of the approximate and optimal solution [1, 12, 41]. Another direction is
to consider the online problem where terminal pairs arrive online and the goal is to irrevocably
select edges so that the cost of the network is approximately minimized [3, 14,33].

B Missing Proofs in Section 2

B.1 Proof for Lemma 18

▶ Lemma 18. Let OPT be the optimal value of an instance of Pairwise Weighted Spanner.
Then, the optimal value of LP (2) corresponding to that instance is at most OPT. In addition,
a solution for LP (2) of value at most (1 + ε) · OPT can be found in polynomial time.

Proof. We recall LP (2):

min
∑
e∈E

c(e) · xe

subject to
∑

(s,t)∈D

ys,t ≥
|D|
2 ,

∑
Π(s,t)∋p∋e

fp ≤ xe ∀(s, t) ∈ D, e ∈ E,

∑
p∈Π(s,t)

fp = ys,t ∀(s, t) ∈ D,

0 ≤ ys,t, fp, xe ≤ 1 ∀(s, t) ∈ D, p ∈ Π, e ∈ E.

(2)
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Let us consider the dual of LP (2).

max
∑
e∈E

xe +
∑

(s,t)∈D

ys,t −W · |D|2 (4a)

subject to
∑

(s,t)∈D

z(s,t),e + c(e) ≤ xe ∀e ∈ E, (4b)

ys,t + ws,t ≥W ∀(s, t) ∈ D, (4c)

ws,t ≤
∑
e∈p

z(s,t),e ∀(s, t) ∈ D, p ∈ Π(s, t), (4d)

W, xe, ys,t, z(s,t),e ≥ 0 ∀(s, t) ∈ D, e ∈ E. (4e)

Our dual is slightly different from the dual in [10, 28]. Constraints in (4b), (4c), and
(4e) are identical, but constraints in (4d) are slightly different because the set of paths Π
we consider are different from the set of paths considered in [28]. As in [28], we could find
violating constraints for (4b), (4c), and (4e) in polynomial time. The only constraints that
require care are the constraints in (4d), which may be exponentially many.

When we consider a single (s, t) pair, [28] pointed out that their variant of constraints
in (4d) are equivalent to Restricted Shortest Path which is NP -hard, see [37, 45]. [28]
then uses an FPTAS [37,45] for Restricted Shortest Path as an approximate separation
oracle for those constraints. But we need a different separation oracle because the set of
paths Π allowed in our LP have two restrictions (as opposed to [28] which has only one) in
addition to an objective. We now define the Resource-constrained Shortest Path
problem that is presented in [38].

▶ Definition 30 (Resource-constrained Shortest Path (k-RCSP)).
Instance: A directed graph G = (V, E), with edge costs c : E → Q≥0, and a pair

(s, t). For each edge e ∈ E, we have a vector re = (r1,e, r2,e, . . . , rk,e) of size k where each
ri,e ∈ Q≥0 ∀i ∈ [k].

Objective: Find a minimum cost s ; t path P such that
∑

e∈P ri,e ≤ Ri, ∀i ∈ [k].

▷ Claim 31. 2-RCSP acts as a separation oracle for those constraints in equation (4d) that
correspond to a specific (s, t) ∈ D.

Proof. We can use one of the resource constraints in 2-RCSP for ensuring that the distance
constraints for (s, t) are satisfied and use the other resource constraint to ensure that
ws,t >

∑
e∈P z(s,t),e. In other words, we use one resource to model the edge lengths and

another to model the dual variable z{s,t},e. We can now try to find a minimum cost s ; t

path in this instance of 2-RCSP where costs for 2-RCSP are equivalent to the costs in our
instance of Pairwise Weighted Spanner. If the minimum cost obtained when we meet
these constraints is less than L, then we have a violating constraint and if not we do not
have one. ◁

The Resource-constrained shortest path problem is NP-hard [38]. So, we instead
get a separation oracle for an approximate variant of LP (4). Now, given resource constraints
R1, R2, . . . , Rk for the Resource-constrained shortest path problem, let OPTRCSP

be the cost of the minimum cost s ; t path that satisfies the resource constraints. An
(1; 1+ε, . . . , 1+ε)-approximation scheme finds an s ; t path whose cost is at most OPTRCSP ,
but the resource constraints are satisfied up to a factor of 1 + ε for that path.
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▶ Lemma 32 (RCSP – [38]). If k is a constant then there exists a fully polynomial time
(1; 1 + ε, . . . , 1 + ε)-approximation scheme for the k-RCSP that runs in time polynomial in
input size and 1/ε.

We have to be careful in our usage of Lemma 32. The FPTAS for the Restricted Shortest
Path problem from [45] cleanly serves the requirements of [28] as it is a (1+ε; 1) approximation
and it can strictly satisfy the constraints. [28] then uses these constraints to ensure that the
weight requirements are strictly met. But the FPTAS given by [38] does not strictly satisfy
the constraints since we need both the length and weight constraints to be satisfied strictly.

We overcome this obstacle by re-purposing the objective to handle the edge weights and by
carefully ensuring that any error in the path length caused by using the 1 + ε approximation
from [38] does not make us use an incorrect path. To ensure that we do not select an incorrect
path, it is sufficient to ensure that the potential error from [38] is less than any error that
is possible in our given input graph. Since the edge lengths are positive integers, observe
that for any two s ; t paths with different lengths, the length difference is at least one. In
addition, the path lengths are at most n ·maxe∈E{ℓ(e)}. Since all edge lengths are integral
and of magnitude poly(n), it is sufficient to have ε ≤ 1/(n ·maxe∈E{ℓ(e)}). Thus, we can fix
ε such that 1/ε = O(n · poly(n)) to ensure that the running time will remain polynomial in
input size and strictly satisfy the distance constraints.

Now, we take an approximate version of LP (4) which is the following LP

max
∑
e∈E

xe +
∑
s,t

ys,t −W · |D|2

subject to
∑
s,t

z(s,t),e + c(e) ≤ xe ∀e ∈ E,

ys,t + ws,t ≥W ∀(s, t) ∈ D,

(1 + ε) · ws,t ≤
∑
e∈p

z(s,t),e ∀(s, t) ∈ D, p ∈ Π(s, t),

W, xe, ys,t, z(s,t),e ≥ 0 ∀(s, t) ∈ D, e ∈ E.

(5)

We can exactly solve LP (5) using [38] and thus we can also exactly solve the dual of LP
(5) which would be:

min
∑
e∈E

c(e) · xe

subject to
∑

(s,t)∈D

ys,t ≥
|D|
2 ,

∑
Π(s,t)∋P ∋e

fp ≤ xe · (1 + ε) ∀(s, t) ∈ D, e ∈ E,

∑
P ∈Π(s,t)

fp = ys,t ∀(s, t) ∈ D,

0 ≤ ys,t, fp, xe ≤ 1 ∀(s, t) ∈ D, p ∈ Π, e ∈ E.

(6)

Let OPT(ε) and OPT be the optimal values to (6) and (2) respectively. Observe that
OPT(ε) ≤ OPT because the constraints in LP (6) are slacker than the constraints in (2) and
both these LPs are minimization LPs. Also note that if x̂(ε) is a feasible solution to (6),
then by replacing the value of every variable xe in x̂(ε) by min(1, xe · (1 + ε)), we get a new
solution x̂ which is a feasible solution to (2). The value of the optimal solution then is at
most (1 + ε) · OPT(ε) ≤ (1 + ε) · OPT. ◀
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B.2 Missing proof for Lemma 29
▶ Lemma 29. There exists a distance-preserving weighted junction tree J with density at
most OPT/

√
k.

Proof. Let G∗ (a subgraph of G) be the optimal pairwise weighted spanner solution with
cost OPT. The proof proceeds by considering the following two cases: 1) there exists a vertex
r ∈ V that belongs to at least

√
k si ; ti paths of distance at most Dist(si, ti) in G∗ for

distinct i, and 2) there is no such vertex r ∈ V .
For the first case, we consider the union of the si ; ti paths in G∗, each of distance at

most Dist(si, ti), that passes through r. This subgraph in G∗ contains an in-arborescence
and an out-arborescence both rooted at r, whose union forms a distance-preserving weighted
junction tree. This distance-preserving weighted junction tree has cost at most OPT and
connects at least

√
k terminal pairs, so its density is at most OPT/

√
k.

For the second case, each vertex r ∈ V appears in at most
√

k si ; ti paths in G∗. More
specifically, each edge e ∈ E also appears in at most

√
k si ; ti paths in G′. By creating√

k copies of each edge, all terminal pairs can be connected by edge-disjoint paths. Since
the overall duplicate cost is at most

√
k · OPT, at least one of these paths has cost at most√

k ·OPT/k. This path constitutes a distance-preserving weighted junction tree whose density
is at most OPT/

√
k. ◀

C Conclusion

In this paper, we presented algorithms for a variant of directed spanners that could also
handle costs on edges, in addition to the more standard setting of edge lengths. The proof
strategy for Theorem 2 follows a high-level structure that is similar to other results for
directed Steiner forests, but involves significant obstacles in each part of the proof due to the
addition of distance constraints. We overcome these obstacles by using the proper approaches.
For example, the Resource-constrained Shortest Path problem from [38] is carefully
adapted for our specifics. We also needed to carefully adapt many other parts of the proof,
such as the analysis of our junction-tree approximation and our rounding algorithm for the
LPs, to fit the addition of distance constraints.

We also present online algorithms for Online Pairwise Weighted Spanner and
Online Single-source Weighted Spanner. We use our result for Online Single-
source Weighted Spanner to solve a special case of Pairwise Weighted Spanner,
namely, All-pair Weighted Distance Preserver, and obtain a significantly better
approximation for that case.

We propose the following directions for future work:
Is it possible to get a better analysis for the rounding algorithm for Theorem 2 as in [10]?
This should improve the overall approximation factor for Pairwise Weighted Spanner
in Theorem 2.
Is there a hardness bound for Pairwise Weighted Spanner that is greater than the
existing hardness bounds for Steiner forests and unit-cost spanners?
Is there a better approximation factor for all-pair weighted spanners, i.e., an instance of
Pairwise Weighted Spanner where D = V × V ?
Can we get a result for pairwise weighted distance preserver that is better than using the
Pairwise Weighted Spanner results in Theorem 2?
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Abstract
Graph Burning models information spreading in a given graph as a process such that in each step
one node is infected (informed) and also the infection spreads to all neighbors of previously infected
nodes. Formally, given a graph G = (V, E), possibly with edge lengths, the burning number b(G) is
the minimum number g such that there exist nodes v0, . . . , vg−1 ∈ V satisfying the property that for
each u ∈ V there exists i ∈ {0, . . . , g − 1} so that the distance between u and vi is at most i.

We present a randomized 2.314-approximation algorithm for computing the burning number of
a general graph, even with arbitrary edge lengths. We complement this by an approximation lower
bound of 2 for the case of equal length edges, and a lower bound of 4/3 for the case when edges are
restricted to have length 1.

This improves on the previous 3-approximation algorithm and an APX-hardness result.
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1 Introduction

Graph Burning was introduced by Bonato et al. [4] as a model of information spreading and,
more specifically, as a model of contagion or influence in social networks. The idea is that
“infecting” several nodes in the network and spreading information from them may reach
the whole network very fast. Formally, it is defined as the following process, where burned
nodes in a graph represent the infected part of the network.

At time t = 0, no node of the graph is burned. At time t = 1, we choose a node and burn
it. At each time step t > 1, all neighbors of already burned nodes are also burned, and we
may choose another node to burn. The process stops when all nodes are burned. We call
the sequence of chosen nodes a burning schedule of the graph. The burning number b(G) of
a graph G is the minimum number of steps needed for all nodes of G to be burned.
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For a burning schedule of length ℓ, the node selected at time t ensures that all nodes
within distance ℓ− t from it will be burned. We can thus reformulate the Graph Burning
problem as looking for the minimal g such that all nodes of the graph can be covered by
some placement of g balls with unique radii from g − 1 to 0. Placing a ball with radius r at
node v thus ensures the coverage of all nodes within the ball and represents selecting node v

to be set on fire at time g − r in the original formulation of the problem. This formulation
also works naturally in the presence of arbitrary edge lengths.

The ball formulation emphasizes the relation of Graph Burning to the k-Center problem,
where we try to cover the graph by k balls of equal radius, with the objective of minimizing
the radius. In the non-uniform variant of the k-Center problem [7], different balls (centers)
can have different radii, and in particular, the variant with a constant number of different
radii is well-studied [11, 10]. Graph Burning can be viewed as an extreme version of the
Non-Uniform k-Center problem, where neither the number of centers nor the number of
distinct radii are fixed. This setting is challenging both for the design of efficient algorithms
and for proving lower bounds. Thus studying Graph Burning can help to develop new
techniques and insights that may be useful even for variants of k-Center and/or other facility
location problems.

1.1 State of the art
Adapting a well-known greedy 2-approximation algorithm for the k-Center problem, Bonato
and Kamali [5] gave a 3-approximation algorithm for Graph Burning. In fact, the approxim-
ation ratio of the algorithm is 3 − 2/b(G), which is a slight improvement if b(G) is small;
see also Appendix 3 for a review of this algorithm. Another (3− 2/b(G))-approximation
algorithm for arbitrary graphs was reported in [9]. In [5] it was stated as an open problem
to find an improved algorithm, but no (3− ε)-approximation algorithm for general graphs
was known before our work.

In previous work approximation algorithms and approximation schemes were developed
for trees [5] and other special graph classes [6], we refer to survey [3] for further references.
This stream of research is now subsumed by [15], where it is shown that for graphs of small
treewidth, a PTAS exists. The parameterized complexity of Graph Burning was studied
in [12, 13, 14].

On the hardness side, it is known that computing the burning number of a graph is
NP-complete even on simple classes of graphs such as trees or even disjoint unions of paths
with unit edge lengths [2]. Answering an open question from [5], Mondal et al. [17, 18] have
shown that Graph Burning is APX-hard, using a complex reduction from vertex cover in
cubic graphs, but did not give an explicit lower bound on the approximation ratio.

1.2 Our results
In this paper, we present a randomized (α + ε)-approximation algorithm for the Graph
Burning problem on graphs with arbitrary edge lengths, where α = 2e2/(e2 − 1) < 2.314 and
ε > 0 is arbitrarily small. This is the first improvement of the previous easy 3-approximation
algorithm based on k-Center results.

It has been speculated in [5] that an improved approximation algorithm will need to use
a better lower bound on the burning number, presumably combinatorial. We do not use
this line of attack. Instead, we use the power of randomization and analyze the following
procedure: we greedily process the yet uncovered nodes and, on each such node, we put
a center with radius chosen uniformly from a range 0, . . . , R for a carefully chosen R. This
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process is not easy to analyze, as the choices of nodes to be covered depend on the previous
random choices. Nevertheless, we are able to show that it has a martingale property and use
this to prove that the process succeeds with high probability.

On the hardness side, we give simple and explicit lower bounds on the approximation
ratio for Graph Burning. We first prove a lower bound of 2 on the approximation ratio for
graphs with edge lengths, which is close to our upper bound. This is an important insight
since the methods we use in our algorithms but also other current approaches work even in
the presence of arbitrary edge lengths, so they are all subject to this lower bound. We note
that the lower bound works even if all the edge lengths are equal. We also prove a lower
bound of 4/3 for graphs where all edges have length 1.

In [5] the authors note that known hardness results for related problems such as the
k-Center or Dominating Set problems do not apply to Graph Burning. Indeed, they cannot
be applied directly, as in approximations for Graph Burning we implicitly use both more
centers and larger radii of the balls. Lower bounds for this kind of bicriteria approximations
are naturally harder to show, which explains the slow progress on the inapproximability side.

We use a somewhat indirect reduction from the Dominating Set problem. For edges
of length 1 the reduction is more complicated, as we need to subdivide the edges of the
Dominating Set instance. As a consequence, when converting the dominating set to a Graph
Burning solution, we have to use larger radii to cover the new vertices, which decreases
the inapproximability bound. When other edge lengths are allowed, the subdivided edges
can be replaced by long edges, which leads to the improved lower bound of 2. This is close
to the performance of our algorithm.

Closing the remaining gap is an interesting open problem. We conjecture that the optimal
approximation ratio is 2 at least for the version with arbitrary edge lengths.

1.3 Paper overview
In Section 2 we introduce some notations and conventions. In Section 3, we review the
3-approximation algorithm in our framework, which amounts to using the same radius
for all centers. In Sections 4 and 5 we gradually introduce the building blocks of our
algorithm. We examine the possibility of using a constant number of different radii, which
leads to a deterministic algorithm for a logarithmic number of centers (Section 4). Then we
examine the possibility of randomly choosing among two radii in Section 5. This leads to an
approximation ratio below 3 and allows us to gently introduce the necessary probabilistic
machinery, including the martingale approach. In Section 6 we apply all the ingredients and
present the final 2.314-approximation algorithm. Finally, in Section 7 we present our lower
bounds.

2 Preliminaries

We start with a formal definition of Graph Burning.

▶ Definition 2.1. An instance of Graph Burning is an undirected graph G = (V, E) with
non-negative edge lengths. The distance d(u, v) is defined as the length of the shortest path
from u to v. We let n = |V |.

A center is a pair c = (v, r) with v ∈ V and r a non-negative integer; v denotes
the node where the center is placed and r denotes the radius. Given a center c we de-
note its radius by r(c). A solution of a Graph Burning instance is a set of centers
{(v0, 0), (v1, 1), . . . , (vg−1, g− 1)}. It is feasible if for any node w ∈ V there exists i < g such
that d(w, vi) ≤ i. The objective of the Graph Burning problem is to minimize g over all
feasible solutions. The minimum g is called the burning number of G and is denoted b(G).

APPROX/RANDOM 2023
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Conventions for the algorithms. When running our algorithms, we will be building up a set
of centers alg. We allow the set alg not to use all the radii between 0 and the maximal
radius. At the end of the algorithm, if needed, balls with the remaining radii can be placed
arbitrarily completing a feasible solution without changing the maximal radius.

The set {(v0, 0), . . . , (vn−1, n− 1)} is a trivial valid solution for any ordering of V =
{v0, . . . , vn−1}. Thus b(G) ≤ n even with arbitrary edge lengths. We assume that V ≠ ∅
and thus b(G) ≥ 1. For most of our algorithms, we will assume that the algorithm is given
an integer g, presumably the burning number, and its goal is to find a feasible solution of
size at most σg for some approximation ratio σ, or possibly fail if g is smaller than b(G). We
then try all n possible values of g in our final algorithm.

Notations for the optimum. In the analysis of our algorithms, we fix some optimal solution
opt using centers with unique radii from 0 to b(G) − 1. Furthermore, we assign each
node w ∈ V to a unique center copt(w) = (v, r) ∈ opt that is covering it (i.e., d(w, v) ≤ r),
thus creating a partition of the set of nodes of the graph. For every copt ∈ opt we denote
the set of nodes assigned to it as V (copt).

Good centers. For any center copt in the optimal solution, if the computed solution alg
contains a center calg = (v, r) where r ≥ 2r(copt) and v ∈ V (copt), then all nodes in V (copt)
are covered by calg. If such a calg exists, we say that copt is made good by calg.

▶ Definition 2.2. A center copt ∈ opt is good if there exists a calg = (v, r) ∈ alg with
r ≥ 2r(copt) and v ∈ V (copt).

Note that copt being good is not a necessary condition for all of V (copt) to be covered –
a well-placed center of radius r < 2r(copt), multiple smaller centers, and/or centers located
outside of V (copt) might cover all of V (copt).

We design our algorithms so that the (expected) number of good centers increases in
each step and rely on the fact that a solution alg is feasible whenever it makes all centers of
the optimum good. While it may happen that not all centers of opt become good, eventually
all nodes end up covered as the number of good centers is increasing and it cannot increase
beyond the number of centers in the optimal solution.

Classes of centers. Most of our algorithms divide the radii at their disposal using a series
of thresholds. The thresholds are given as a list q1, q2, q3, . . . of increasing numbers (not
necessarily integers). For a center copt ∈ opt, we define its class as the smallest i such that
using qi for v ∈ V (copt) ensures that copt becomes good:

▶ Definition 2.3. For a center copt ∈ opt we refer to the minimal i such that the threshold qi

is larger than or equal to 2r(copt) as the class of copt.

Procedure for selecting a radius. Whenever our algorithms need to use a radius to add
a center to alg, they call the procedure Select(q), which takes a number q (typically
a threshold) as its input. It then returns the minimal integer radius that has not yet been
used by the algorithm and is at least q.

This procedure guarantees that our algorithms always use centers of distinct radii, at the
cost of possibly increasing the largest radius and thus the size of the solution. In the analysis,
we then need to prove that the maximal radius used is (with high probability) small enough.

Notations. We use exp(x) to denote ex. We also use the convention that x/yz = x/(yz).
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3 Deterministic 3-approximation algorithm and overall approach

We revisit the 3-approximation algorithm from [4]. See Algorithm 1 for our formalization;
recall that we assume that the algorithm is given g. We use a single threshold q1 = 2(g − 1).
This means that all centers copt are class 1, as the optimum uses radii up to g − 1, while our
algorithm will use radii 2g − 2, 2g − 1 and so on.

Algorithm 1 The deterministic 3-approximation algorithm.

alg← ∅; q1 = 2g − 2
while an uncovered node exists do

Select an arbitrary uncovered node v

r = Select(q1)
Add center (v, r) to alg and update the set of uncovered nodes

return alg

Observe that whenever we select an uncovered node v, it is covered by some class 1
center copt(v) that is not good. Placing a center calg with radius at least q1 at v is guaranteed
to make copt(v) good. Thus, once we place g centers calg with radii at least q1, all centers of
opt will be good and the algorithm finishes. Note that all nodes might be covered without all
centers of opt being good, making the algorithm finish sooner. Either way, we are guaranteed
to never select a radius greater than q1 + g − 1 = 3g − 3, making this a 3-approximation
algorithm. More precisely, the algorithm uses 3g− 2 centers, as opposed to optimal b(G) ≤ g.
So the approximation ratio becomes 3− 2/b(G), as mentioned in the introduction.

4 Deterministic algorithm for small burning number

Let us now explore an approach that uses z thresholds equally spaced between 0 and 2(g− 1),
for some constant z. This means, disregarding rounding, that the optimum centers are
divided into z classes, where the class i has g/z centers of radii between (i− 1)g/z and ig/z.
The algorithm will aim to cover the centers of class i using thresholds approximately 2ig/z,
each for g/z nodes. As a result the largest radius can be bounded by 2g + g/z.

Similar to before, this algorithm will choose an uncovered node in each iteration as
a center for the approximate solution. This would work easily if we knew in advance the
class of the center copt covering the chosen node, so that we could use the corresponding
threshold in the algorithm. Instead, we try all the possible sequences of thresholds, using
each threshold for at most ⌈g/z⌉ nodes, matching the number of optimal centers of each
class. The analysis is somewhat subtle, as the node to be processed depends on the previous
choices of the algorithm, so the sequence of thresholds used in the optimum needs to be
constructed based on the nodes chosen by the algorithm.

Formalizing this idea with some attention to rounding and also the fact that the optimum
can use fewer than g centers, we obtain an algorithm that finds a Graph Burning solution
with objective at most (2 + 1/z)g in time O (zgpoly(n)) for any given integer z and g ≥ b(G);
see Algorithm 2.

▶ Theorem 4.1. If g ≥ b(G) then Algorithm 2 runs in O (zgpoly(n))-time and achieves an
approximation ratio of (2 + 1/z).

For the full proof of Theorem 4.1 see Appendix A. (For z ≥ g, the proof actually gives ratio
2− 1/g. We omit that in the statement, as in the relevant case z is small.)
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9:6 Approximation Algorithms and Lower Bounds for Graph Burning

Algorithm 2 Deterministic algorithm for small g.

if z > g then z ← g

Order V arbitrarily
qi ← 2gi/z − 2 for i ∈ {1, . . . , z}
Let S be a set of all possible sequences S = s0, s1, . . . , sg−1 with st ∈ {1, . . . , z}

such that each value is used at most ⌈g/z⌉ times
for S ∈ S do

alg← ∅
for t← 0, 1, . . . , g − 1 do

Let v be the first uncovered node; r ← Select(qst
)

Add center (v, r) to alg and update the set of uncovered nodes
if all nodes are covered then return alg

return Fail

The running time is polynomial if g ∈ O (log n) and z ∈ O (1), thus we get a deterministic
(2 + 1/z)-approximation algorithm in this case. We will later use this result in our final
algorithm with z = 4, ensuring an approximation ratio of 2 + 1/4 < 2.314 for small b(G).

5 Randomized approach with two classes of centers

As a warmup, in this section we introduce the main ideas of our techniques by considering
a simpler setup. In particular, let us only use two thresholds g − 1 and 2(g − 1), and choose
a radius randomly among the two values of the threshold; see Algorithm 3.

Algorithm 3 The randomized algorithm with two classes.

alg← ∅; qi ← i(g − 1) for i ∈ {1, 2}
while an uncovered node exists do

Select an arbitrary uncovered node v

Let kv ∈ {1, 2} be chosen uniformly at random, independently from other choices
r ← Select(qkv )
Add center (v, r) to alg and update the set of uncovered nodes

return alg

Note that, as the radii start with 0, the optimum has ⌈g/2⌉ class 1 centers and ⌊g/2⌋ class 2
centers. Observe that a class 1 center copt becomes good whenever we select an uncovered
node from V (copt). A class 2 center copt becomes good if we select an uncovered node from
V (copt) and then randomly decide to use threshold q2. If we were to make all centers of opt
good, we would use in expectation one radius per class 1 center and two radii per class 2
center, evenly distributed between threshold q1 and threshold q2. Since each class of centers
of opt contains roughly 0.5g centers, we expect at most 1.5g total radii being needed. Of
these, we expect half, i.e., 0.75g, to be at least the threshold q2 ≤ 2g. This indicates that
roughly a 2.75-approximation algorithm should be the result.

Using a detailed analysis it is indeed possible to prove that Algorithm 3 is a (2.75 + ε)-
approximation algorithm, improving on the previously known 3-approximation. For simplicity
and to introduce the key ideas for our main algorithm, we will however only prove that this
is a 2.9-approximation algorithm for g divisible by 10 (to avoid rounding issues), and then
move on to give our 2.314-approximation in the following section. We show that the following
holds with high probability:
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less than 1.6g centers calg are placed by Algorithm 3, and
less than 0.9g centers calg with radius at least q2 are placed, conditioned on the previous
event (i.e., that the algorithm uses less than 1.6g centers).

5.1 Total number of centers
We will use martingales to analyze the algorithm; see the textbooks [1, 16] for reference.
For convenience, we use a slight modification of the one-sided Azuma inequality for super-
martingales. This follows easily, as any supermartingale can be converted to a martingale by
shifting (increasing) the random variables appropriately.

▶ Definition 5.1. A sequence of random variables X0, X1, X2, . . . is a supermartingale if
and only if both |E [Xt] | <∞ and E [Xt+1 | X0, . . . , Xt] ≤ Xt for all t.

▶ Theorem 5.2 (Azuma Inequality). If X0, X1, X2, . . . is a supermartingale with |Xt−Xt−1| ≤
δ for all t, the following inequality holds:

Pr[Xt −X0 ≥ ∆] ≤ exp
(
−∆2

2δ2t

)
.

We will track the progress of our algorithm by defining a potential describing the difference
between the algorithm’s true and expected behaviour. Formally, let Ct be a random variable
denoting the set of centers of opt made good by the first t centers calg placed by Algorithm 3.
Let us define f(copt) as the class of copt. Finally, let the potential be

Φt = t−
∑

copt∈Ct

f(copt) .

The value f(copt) is chosen so that a center copt is expected to become good after the
algorithm selects f(copt) centers from V (copt). Thus, at a given moment, the sum in the
potential denotes the number of centers the algorithm was expected to select to make all
copt ∈ Ct good. If t, the actual number of centers of the algorithm, is smaller than the sum,
the potential is negative and the algorithm is progressing better than expected. If t is smaller
than the sum, the potential is positive and the algorithm is progressing worse than expected.
Our goal is to show that the potential is unlikely to be positive and large.

The random choice of a threshold influences whether the current copt(v) enters Ct.
Besides that, the random choices also possibly change the set of covered nodes, influencing
the later choices of the algorithm. Thus the changes of the potential in different steps are
not independent (even if the choices of thresholds are) and we need to analyze the process as
a martingale.

Observe that Φ0, Φ1, . . . is a sequence of random variables with Φ0 = 0. When we select
node v as the (t + 1)-st node to cover, only copt = copt(v) can become good. If center copt is
class 1, then f(copt) = 1 and we make it good with probability 1, which guarantees Φt+1 = Φt.
If center copt is class 2, f(copt) = 2. We make it good with probability at least 1/2 and in
this case Φt+1 = Φt − 1. Otherwise Φt+1 = Φt + 1. Thus E [Φt+1 | Φ0, . . . , Φt] ≤ Φt and
Φ0, Φ1, . . . is a supermartingale with Φ0 = 0 and δ = 1.

We have
∑

copt∈opt f(copt) ≤ 1.5g, corresponding to the fact that the expected number
of radii needed for the algorithm is 1.5g. Thus, if the algorithm does not stop before placing
1.6g centers, we have Φ1.6g = 1.6g−

∑
copt∈C1.6g

f(copt) ≥ 0.1g. We use Azuma’s inequality to
show that the probability of this happening is small, keeping in mind that Φ0 = 0 and δ = 1:

Pr [Φ1.6g ≥ 0.1g] ≤ exp
(
−0.01g2

3.2g

)
= exp

(
−g

320

)
.
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9:8 Approximation Algorithms and Lower Bounds for Graph Burning

5.2 Number of large centers
To show that less than 0.9g centers calg with radius at least q2 are placed among the
first 1.6g centers chosen by the algorithm, we use the standard Chernoff bound, see the
textbooks [1, 16].

▶ Theorem 5.3 (Chernoff bound). Suppose X1, . . . , XJ ∈ {0, 1} are independent random
variables. Let X =

∑
Xj and µ = E [X] =

∑
E [Xj ]. Then for any ε ∈ (0, 1],

Pr[X ≥ (1 + ε)µ] ≤ exp
(
−ε2µ

3

)
.

Suppose that the algorithm chooses J centers for some J ≤ 1.6g. Let Xj , j = 1, . . . , J ,
be a 0-1 indicator variable equal to 1 if we use a threshold q2 when choosing the j-th center
in the algorithm. Since every Xj is equal to 1 with probability 1/2 we have µ = E [

∑
Xj ] =

J/2 ≤ 0.8g. By Chernoff’s bound, the probability of using threshold 2 more than 0.9g times
is at most

Pr[X ≥ (1 + 1
8 )µ] ≤ exp

(−( 1
8 )2µ

3

)
≤ exp

(
−g

320

)
.

5.3 Final bound
▶ Theorem 5.4. The probability that Algorithm 3 uses a radius larger than or equal to 2.9g

is at most 2 exp (−g/320).

Proof. Using the previous two estimates, the probability that the algorithm uses more than
1.6g centers in total or more than 0.9g times threshold q2 is bounded by 2 exp (−g/320).

If none of these events happen, we distinguish two cases. Either the algorithm uses all
the radii between q1 and q2; then we use the fact that the total number of centers is at most
1.6g and thus the largest radius is at most q1 + 1.6g < 2.6g. Otherwise, radii q2 and larger
are used only when threshold q2 is selected, which happens at most 0.9g times and thus the
largest radius is less than q2 + 0.9g < 2.9g. ◀

6 Main randomized algorithm

The performance of Algorithm 3 can be further improved by using more thresholds. Ultimately,
this leads to using a range of integers as thresholds. In particular, for a given g we use all
integers up to approximately αg where α is the desired approximation ratio given by the
following definition.

▶ Definition 6.1. We set α = 2e2/(e2 − 1) < 2.314.

Let us present and analyze Algorithm 4 which is the key part of the final algorithm. For
any ε > 0, we shall show that its approximation ratio is at most (1 + ε)4α. We assume
that ε < 1 (as otherwise we could use the known 3-approximation), αg < |V | (as otherwise
a trivial solution is an α-approximation), g ≥ b(G) (as we will later iterate over all g) and
g ≥ 100/ε3 (as we will use Algorithm 2 otherwise).

6.1 Expected number of centers
Next we analyze the expected number of centers that the algorithm uses. This is the key
part that determines the approximation ratio and our choice of α. In particular, we set
α so that the expected number of centers used is αg. On one hand, the largest radius is
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Algorithm 4 The randomized algorithm for large g.

alg← ∅; R← (1 + ε)2αg

while an uncovered node exists do
Select an arbitrary uncovered node v

Let kv ∈ {0, . . . , ⌊R⌋}, be chosen uniformly and independently at random
r ← Select(kv)
Add center (v, r) to alg and update the set of uncovered nodes

return alg

necessarily at least the number of centers used, on the other hand, once the range of radii
exceeds the expected number of centers by a small factor, we will be able to show that with
high probability the largest radius used is not much larger than the expected number of
centers. This eventually gives an approximation factor arbitrarily close to the chosen α.

Similar to Section 5, the value f(copt) is chosen so that a center copt is expected to
become good after the algorithm selects f(copt) centers from V (copt).

▶ Definition 6.2. For any center copt of the optimum, define

f(copt) = αg

αg − 2r(copt) = 1
1− 2r(copt)

αg

.

▶ Lemma 6.3. For any given center copt, whenever Algorithm 4 selects a node in V (copt),
the probability that copt is made good is at least 1/f(copt). The expected number of nodes in
V (copt) selected by Algorithm 4 is bounded by E [|alg ∩ V (copt)|] ≤ f(copt).

Proof. Every time the algorithm selects a node in V (copt), the number of possible values for
uniformly random kv is 1 + ⌊R⌋ ≥ R ≥ αg. Thus the algorithm selects a radius r′ ≥ 2r(copt)
with probability at least p = 1− 2r(copt)/αg = 1/f(copt) and this makes copt good. Once
copt is made good, no more nodes in V (copt) are selected. Since the choices of kv are
independent, we get E [|alg ∩ V (copt)|] ≤ 1/p = f(copt). ◀

▶ Lemma 6.4. The expected total number of radii used by Algorithm 4 is at most αg.

Proof. Each node of G is in V (copt) for exactly one copt. Thus, by Lemma 6.3 and linearity
of expectation,

E [|alg|] = E

[ ∑
copt∈opt

|alg ∩ V (copt)|
]

=
∑

copt∈opt
E [|alg ∩ V (copt)|] ≤

∑
copt∈opt

f(copt) .

We have, using α = 2e2/(e2 − 1) in the penultimate step,

∑
copt∈opt

f(copt) =
g−1∑
r=0

αg

αg − 2r
<

∫ g

0

αg

αg − 2r
dr =

[
−αg

2 ln(αg − 2r)
]g

0

= αg

2 ln
(

αg

αg − 2g

)
= αg

2 ln
(

α

α− 2

)
= αg

2 ln
(
e2)

= αg . ◀

6.2 High-probability bound
Next, we need to prove that there is a low probability that Algorithm 4 will use significantly
more radii than expected. Similar to Section 5 we define a potential Φt comparing the number
of the algorithm’s centers to the expected progress and use martingale bounds to show that
the potential is unlikely to be large.
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9:10 Approximation Algorithms and Lower Bounds for Graph Burning

▶ Definition 6.5. Let Ct be a random variable denoting the set of centers of opt made good
by the first t centers calg placed by the algorithm and

Φt = t−
∑

copt∈Ct

f(copt) .

Observe that Φ0 = 0 and that Φ0, Φ1, . . . is a sequence of random variables, since
Ct depends on the random choices of the values kv in Algorithm 4. We now prove that
the potential is a supermartingale and thus we can use Azuma’s inequality to show that
Algorithm 4 is unlikely to use more than (1 + ε)αg radii.

▶ Lemma 6.6. Φ0, Φ1, . . . is a supermartingale with |Φt − Φt−1| ≤ 7 for all t.

Proof. Let v be the t-th selected node. Since v is not covered when it is selected, we have
copt(v) ̸∈ Ct−1. Only copt(v) can be made good by a center calg placed at v and thus Φt

is equal to either Φt−1 + 1 − f(copt(v)) or Φt−1 + 1. By Lemma 6.3, the probability p

of center copt(v) being made good is at least 1/f(copt(v)), making E [Φt|Φ0, . . . , Φt−1] =
p(Φt−1 + 1 − f(copt(v)) + (1 − p)(Φt−1 + 1) = Φt−1 + 1 − pf(copt(v)) ≤ Φt−1 and thus
Φ0, Φ1, . . . is a supermartingale.

As α = 2e2/(e2 − 1) > 16/7 and r(copt) < g, we get f(copt) < αg/(αg − 2g) < 8. Thus
Φt − Φt−1 is at least 1 − f(copt) ≥ −7 and at most 1, meaning that |Φt − Φt−1| ≤ 7 for
all t. ◀

▶ Lemma 6.7. The probability that Algorithm 4 uses at least (1 + ε)αg radii is at most 1/e.

Proof. We know that Φ0 = 0. By Lemma 6.4 we know that
∑

f(copt) ≤ αg. Thus, if the
process has not finished before using T = ⌈(1 + ε)αg⌉ radii, the value of ΦT is at least εαg.
By Lemma 6.6 we know that Φ0, Φ1, . . . is a supermartingale with differences at most 7.
From Azuma’s inequality (Theorem 5.2) for Xt = Φt, ∆ = εαg, T = ⌈(1 + ε)αg⌉ and δ = 7,
using also the bounds g ≥ 100/ε3 and ε < 1 we get

Pr [ΦT ≥ εαg] ≤ exp
(

−(εαg)2

2 · 72 · ⌈(1 + ε)αg⌉

)
< exp

(
−ε2g

100

)
<

1
e

. ◀

6.3 Bounding the maximum radius
The only possibility for Algorithm 4 to use a radius larger than R is due to the procedure
Select in which case the larger radii are used one by one in increasing order. In particular,
to use a radius larger than R + b, the algorithm must, for some x, generate at least b + x

values kv that are at least R− x and thus cause Select to pick a radius larger than R at
least b times. Using Chernoff bounds, we now show that this event is unlikely for b = εR.

▶ Lemma 6.8. Conditioned on the event that Algorithm 4 uses no more than (1 + ε)αg radii,
Algorithm 4 uses a radius of value at least (1 + ε)3αg with probability at most 1/100.

Proof. Recall that R = (1 + ε)2αg and let b = εR = (1 + ε)2εαg. Therefore, (1 + ε)3αg =
(1 + ε)R = R + b. We proceed to show that the probability of Algorithm 4 using radius
⌈R + b⌉ is small.

Let rmin be a random variable denoting the minimal radius such that all radii from
{rmin, . . . , ⌈R + b⌉} are used by Algorithm 4; if ⌈R + b⌉ is not used, rmin is undefined.
Algorithm 4 uses a radius at least R + b if and only if rmin is defined.
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Informally, the proof idea is as follows. We partition this event according to the value of
rmin, grouping its possible values into blocks of size b (disregarding rounding) so that block
i contains values in (R − ib, R − (i − 1)b] for i ∈ {1, . . . , ⌈1/ε⌉}. If rmin is in block 1, i.e.,
larger than R− b, it must be the case that kv was chosen larger than R− b at least b times.
In general, for block i, kv must have been chosen to be larger than R− ib at least ib times.
This probability decreases geometrically with i; this follows from Chernoff bounds, using
also the conditioning in the lemma, which implies that the number of chosen radii is smaller
than R by a constant factor (1 + ε).

For a full version of the proof, please see Appendix B. ◀

6.4 Final algorithm
We combine the preceding algorithms to get the final Algorithm 5.

Algorithm 5 The final algorithm.

Input: Graph G(V, E) and real number ε̄ > 0
Output: A burning schedule for G of length at most (α + ε̄)b(G)
ε← (1 + ε̄/α)1/4 − 1; ℓ← 100/ε3 ▷ Note that ε ∈ Θ(ε̄)
for g ← 1, . . . , ⌊|V |/α⌋ do

if g ≤ ℓ then
Use Algorithm 2 with z = 4 to get alg or Fail
if alg was found then return alg

else
Use Algorithm 4 to get alg
if alg uses no radius greater than (1 + ε)3αg − 1 then return alg

return a trivial solution {(v0, 0), . . . , (vn−1, n− 1)} for V = {v0, . . . , vn−1}

▶ Theorem 6.9. Algorithm 5 is an (α + ε̄)-approximation algorithm for any given ε̄ > 0 and
runs in time 2O(1/ε̄3)poly(n).

Proof. By Theorem 4.1, Algorithm 2 is guaranteed to succeed if run with g ≥ b(G) and it
never uses a radius greater than 2.25g − 1. Thus, if b(G) ≤ ℓ, Algorithm 5 always finds a
2.25-approximation.

If b(G) > ℓ, either Algorithm 2 succeeds with g < b(G), or we run Algorithm 4 while
increasing g. By Lemma 6.7, once g ≥ b(G), Algorithm 4 uses more than (1 + ε)αg radii
with probability at most 1/e. By Lemma 6.8, if Algorithm 4 uses at most (1 + ε)αg radii, it
uses a radius greater than (1 + ε)3αg − 1 with probability at most 1/100. Thus it succeeds
with probability at least 1/2. This probability is independent and increasing for each
successive iteration, ensuring that the expected number of failures is at most 2. Thus the
expected maximum radius is at most (1 + ε)3α(b(G) + 2)− 1. We get (1 + ε)3α(b(G) + 2) =
(1+ε)3αb(G)+2(1+ε)3α ≤ (1+ε)3αg+50 ≤ (1+ε)4αb(G)−1, using the value of α for the first
inequality and for the last one also the case condition b(G) > ℓ and ℓ ≥ 100/ε ≥ 51/ε(1+ε)3α.
By the choice of ε in the algorithm, the approximation ratio is at most (1 + ε)4α = α + ε̄.

Since Algorithm 5 iterating over the possible values of g multiplies the time complexity
by at most n, the running time is dominated by Algorithm 2, and thus it is bounded by
2O(ℓ)poly(n). Our choice of ε satisfies ε = Θ(ε̄) for a small ε̄ > 0 (using the fact that
(1 + ε)4 ≈ 1 + 4ε), thus we get ℓ = 100/ε3 = O

(
1/ε̄3)

and the bound in the theorem
follows. ◀

APPROX/RANDOM 2023



9:12 Approximation Algorithms and Lower Bounds for Graph Burning

We note that, instead of using Algorithm 2 for g ≤ ℓ, we can find an optimal solution by
exhaustive search in time nO(g), which is still polynomial. We prefer to use Algorithm 2 to
achieve FPT-type running time dependency on ε.

7 Lower bounds for Graph Burning

In this section, we first prove a lower bound of 2 for the approximation ratio of the Graph
Burning problem on a graph with edge lengths. We also prove a lower bound of 4/3 for
graphs with unit edge lengths.

Both results rely on a reduction from the Dominating Set problem defined as follows.

▶ Definition 7.1. A dominating set of an undirected graph G = (V, E) is a set D ⊆ V such
that each vertex of G either is in D or has a neighbor in D. In an instance of the Dominating
Set problem, we are given an undirected graph and our task is to find a dominating set of the
lowest possible size.

The hardness of approximation of Dominating Set is equivalent to that of Set Cover. After a
long line of research in PCP theory, the ultimate result is the following one.

▶ Theorem 7.2 (Dinur, Steurer [8]). For any ε > 0, there exists no (1− ε) ln n-approximation
algorithm for Dominating Set or Set Cover problems unless P = NP .

In the first reduction, we modify a Dominating Set instance by setting the length of all
edges to k for some integer k. We use the fact that in the burning schedule, the centers with
radii in [k, 2k) cover exactly their neighbors (due to the edge lengths). Thus a dominating
set of size t implies a burning schedule of length t + k in the graph with edge lengths, and a
graph burning schedule with length at most 2k implies a dominating set of size at most 2k.
By considering a carefully chosen k, this together with a (2− ε)-approximation algorithm for
Graph Burning gives an O (1)-approximation algorithm for Dominating Set, contradicting
Theorem 7.2.

Technically, we try all values of k and stop at the smallest k that yields a Graph Burning
solution of size at most 2k and thus a Dominating Set approximation. The number of possible
values of k is bounded by |V |. Testing only the chosen important values of k used in the
proof (i.e., approximately k = 2t/ε for testing size t Dominating Set) would be sufficient and
slightly more efficient, but we prefer to keep the algorithm simple.

▶ Theorem 7.3. For any constant ε > 0, there exists no (2− ε)-approximation algorithm
for the Graph Burning problem with arbitrary edge lengths unless P = NP . This holds even
for the case when restricted to Graph Burning instances with all edge lengths equal.

Proof. For a contradiction, assume that we have a (2−ε)-approximation algorithm for Graph
Burning with arbitrary but equal edge lengths. Let σ = ⌈1/ε⌉. We give a reduction that
results in an approximation algorithm for the Dominating Set problem with an approximation
ratio of at most 4σ ∈ O (1).

We use the reduction described above; see Algorithm 6 for a formal description.
First, we claim that the output D is always a dominating set. Indeed, if we stop at a

feasible solution with g ≤ 2k, any w ∈ G is covered by some center (vi, i) for i < 2k, i.e., the
distance between w and vi is less than 2k. Since the lengths of the edges are set to k, this
means that vi is a neighbor of or equal to w. In the fallback case, D = V is a dominating set.

Now assume that G has a dominating set {w0, . . . , wt−1} of size t. We claim that for any
given k, the burning number of G with edge lengths is at most k + t. Indeed, the set of
centers {(wi, k + i) | i = 0, . . . , t− 1} augmented by arbitrary centers with radii smaller than
k is a required feasible solution.
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Algorithm 6 Reduction using edge lengths.

Input: Dominating Set instance G = (V, E)
for k ← 1, . . . , ⌊|V |/2⌋ do

Set the length of each edge to k

Run the (2− ε)-approximation algorithm for Graph Burning on G,
obtaining a feasible solution {(v0, 0), (v1, 1), . . . , (vg−1, g − 1)} for some g.

if g ≤ 2k then return the set D = {v0, v1, . . . , vg−1}.
return the set D = V .

If t < |V |/4σ, consider k = 2σt ≤ |V |/2. The choice of k implies that εk ≥ 2t as
σ = ⌈1/ε⌉. The assumed (2− ε)-approximation algorithm for Graph Burning finds a feasible
solution of size at most (2− ε)(k + t), which is bounded by (2− ε)(k + t) < 2k− εk + 2t ≤ 2k.
Thus the algorithm stops for some k′ ≤ k with a dominating set D of size at most 2k = 4σt.

If t ≥ |V |/4σ, the reduction trivially gives a 4σ-approximation. Overall we have obtained
a 4σ-approximation for Dominating Set.

By Theorem 7.2, no O (1)-approximation algorithm for the Dominating Set problem
exists, unless P = NP . This yields the contradiction and the theorem. ◀

We can modify the previous reduction so that, instead of edges of length k, we subdivide
them into paths of unit-length edges. As a consequence, when converting the dominating
set to a Graph Burning solution, we have to use larger radii to cover the new vertices,
which degrades the inapproximability bound. Also, when converting a burning schedule to
a dominating set, we cannot use the subdivision points as elements of the dominating set.
Instead, we substitute any subdivision point with the two closest original vertices, i.e., the
endpoints of the subdivided edge.

▶ Theorem 7.4. For any constant ε > 0, there exists no (4/3− ε)-approximation algorithm
for the Graph Burning problem with unit edge lengths, unless P = NP .

Proof. For a contradiction, assume that we have a (4/3− ε)-approximation algorithm for
Graph Burning with unit-length edges. Let σ = ⌈1/ε⌉. We give a reduction that results in
an algorithm for Dominating Set with an approximation ratio of at most 8σ ∈ O (1). The
reduction follows the outline given above; see Algorithm 7 for a formal description.

Graph G′ is of polynomial size, and thus the whole reduction is polynomial. Furthermore,
if u, w ∈ V are vertices of the input graph G, then the distance between u and w in G′ is a
multiple of 2k. In particular, if u and w are not equal, their distance in G′ is equal to 2k if u

and w are neighbors in G, and their distance is at least 4k otherwise.
We claim that the output D is always a dominating set. Indeed, if we stop at a feasible

solution with g ≤ 4k, any w ∈ V is covered by some center (vi, i) for i < 4k, i.e., the distance
between w and vi is less than 4k. The construction of Di implies that the shortest path
between w and vi contains one of u ∈ Di. Thus the distance between u and w in G′ is less
than 4k and u and w are neighbors in G. It follows that D is a dominating set. In the
fallback case, D = V is a dominating set as well.

Now assume that G has a dominating set {w0, . . . , wt−1} of size t. We claim that
for any given k, the burning number of G′ is at most 3k + t. Indeed, the set of centers
{(wi, 3k + i) | i = 0, . . . , t− 1} augmented by 3k arbitrary centers with radii smaller than 3k

is a required feasible solution. Each vertex v in G′ has distance at most k to the closest
vertex in G, which in turn has distance at most 2k to a vertex in the dominating set. Thus
the balls of radius at least 3k at the vertices of the dominating set cover the whole G′.

APPROX/RANDOM 2023
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Algorithm 7 Reduction for unit edge lengths.

Input: Dominating Set instance G = (V, E)
for k = 1, . . . , |V | do

Create G′ from G by replacing each edge of G by a path of 2k new edges
with 2k − 1 new internal vertices.

Run the (4/3− ε)-approximation algorithm for Graph Burning on G′,
obtaining a feasible solution {(v0, 0), (v1, 1), . . . , (vg−1, g − 1)} for some g.

if g ≤ 4k then
for i = 0, 1, . . . , g − 1 do

if vi ∈ V then ▷ i.e., vi is a vertex of the input graph G

Di ← {vi}
else ▷ i.e., vi is a new internal vertex on an added path

Di ← {u, u′} where u, u′ ∈ V are such that vi is a new vertex
on the path in G′ that replaced the edge uu′ of G.

return the set D = D0 ∪D1 ∪ · · · ∪Dg−1.
return the set D = V .

If t < |V |/σ, consider k = σt ≤ |V |. The choice of k implies that t ≤ εk as σ = ⌈1/ε⌉.
The assumed (4/3− ε)-approximation algorithm for Graph Burning finds a feasible solution
of size at most (4/3− ε)(3k + t). We have(

4
3 − ε

)
(3k + t) ≤ 4k − 3εk + 4

3 t ≤ 4k − 3t + 4
3 t < 4k .

Thus the algorithm stops for some k′ ≤ k with a dominating set D of size at most 2 ·4k = 8σt,
since each set Di contains at most two vertices for each center vi of the burning schedule.

If t ≥ |V |/σ, the reduction trivially gives an σ-approximation. Altogether we have
obtained an 8σ-approximation algorithm for Dominating Set.

By Theorem 7.2, no O (1)-approximation algorithm for the dominating set problem exists,
unless P = NP . This yields the contradiction and the theorem. ◀
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in the next paragraph that there exists S∗ ∈ S such that s∗

t of S∗ is the class of copt(v(S∗, t)).
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Formally, for t = 1, 2, . . . we define s∗
t as the class of copt(v(S̄, t)) for an arbitrary extension

S̄ ∈ S of s∗
1, . . . , s∗

t−1. Such an S̄ ∈ S exists, as the optimum solution opt contains at most g

centers with no more than ⌈g/z⌉ centers of any given class. If v(S̄, t) is undefined (i.e., all
nodes are covered at this point), we choose s∗

t = s̄t. As v(S̄, t) and thus s∗
t depends only on

s∗
1, . . . , s∗

t−1, which is the initial segment of S̄, eventually S∗ is the sequence of the classes of
centers copt(v(S∗, t)).

It follows that using this S∗ in the loop makes all centers good, thus all nodes are covered
and the algorithm stops with a valid solution. ◀

▶ Theorem A.2 (Theorem 4.1). If g ≥ b(G) then Algorithm 2 runs in O (zgpoly(n))-time
and achieves an approximation ratio of (2 + 1/z).

Proof. Lemma A.1 implies that the algorithm returns a solution covering all nodes. We first
bound the maximal radius used and thus the approximation ratio. We distinguish two cases.

If z ≥ g, the algorithm uses z = g. Each threshold is used at most once, making the
maximal used radius at most qz = 2g − 2, giving a solution with 2g − 1 many centers, and
thus approximation ratio of 2− 1/g.

If z < g there are at least ⌊2g/z⌋ radii between any two consecutive thresholds as there
are at least ⌊2g/z⌋ integers in [qi, qi+1). We use the same threshold at most ⌈g/z⌉ times by
the definition of S. We have ⌈g/z⌉ ≤ ⌊2g/z⌋, as ⌈x⌉ ≤ ⌊2x⌋ for any x ≥ 1, while we use the
same threshold for at most ⌈g/z⌉ nodes by the definition of S. Thus the radii produced by
using a given threshold qi do not exceed the following threshold qi+1. Furthermore no more
than ⌈g/z⌉ nodes use the last threshold qz = 2g − 2, making the maximal used radius at
most 2g − 2 + ⌈g/z⌉ ≤ 2g + g/z − 1. Thus the objective value is at most 2g + g/z and the
ratio 2 + 1/z.

The runtime bound follows since the number of sequences of length g with numbers
from {1, . . . , z} is zg, and this gives an upper bound on the size of S. ◀

B Proof of Lemma 6.8

▶ Lemma B.1 (Lemma 6.8). Conditioned on the event that Algorithm 4 uses no more than
(1 + ε)αg radii, Algorithm 4 uses a radius of value at least (1 + ε)3αg with probability at most
1/100.

Proof. Recall that R = (1 + ε)2αg and let b = εR = (1 + ε)2εαg. Therefore, (1 + ε)3αg =
(1 + ε)R = R + b. We proceed to show that the probability of Algorithm 4 using radius
⌈R + b⌉ is small.

Let rmin be a random variable denoting the minimal radius such that all radii from
{rmin, . . . , ⌈R + b⌉} are used by Algorithm 4; if ⌈R + b⌉ is not used, rmin is undefined.
Algorithm 4 uses a radius at least R + b if and only if rmin is defined.

Informally, the proof idea is as follows. We partition this event according to the value of
rmin, grouping its possible values into blocks of size b (disregarding rounding) so that block
i contains values in (R − ib, R − (i − 1)b] for i ∈ {1, . . . , ⌈1/ε⌉}. If rmin is in block 1, i.e.,
larger than R− b, it must be the case that kv was chosen larger than R− b at least b times.
In general, for block i, kv must have been chosen to be larger than R− ib at least ib times.
This probability decreases geometrically with i; this follows from Chernoff bounds, using
also the conditioning in the lemma, which implies that the number of chosen radii is smaller
than R by a constant factor (1 + ε).

For i ∈ {1, . . . , ⌈1/ε⌉}, we define Ai as the event that rmin is defined and i is the smallest
integer such that R − ib < rmin. Exactly one of the events Ai occurs whenever rmin is
defined. The event Ai implies that the algorithm randomly generated kv greater than R− ib
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at least ib times, as by definition of rmin, choosing kv < rmin does not allow Select to
generate a radius equal to or larger than rmin and at the same time all at least ib radii
between rmin ≤ R− (i− 1)b and ⌈R + b⌉ are used.

By the conditioning in the lemma, we assume that the algorithm uses no more than
(1 + ε)αg radii. Let p be the probability that upon processing v, the algorithm generates
kv larger than R − ib. We have p ≤ ib/R, as out of ⌊R⌋ + 1 > R options for kv, there
are at most ib values larger than R − ib. Consider X which is a sum of J = ⌊(1 + ε)αg⌋
independent indicator random variables, each equal to 1 with probability ib/R. We have
Pr[Ai] ≤ Pr[X ≥ ib], as X overestimates the number of kv larger than R− ib in two ways:
First, we possibly increase the number of trials and second, we increase the probability of
the indicator variable to be 1 from p to ib/R.

Let µ = E [X]. We have µ = ⌊(1 + ε)αg⌋ · ib/R ≤ (1 + ε)αgib/R = ib/(1 + ε). As
g ≥ 100/ε3 ≥ 100, the rounding error is small, namely we have µ ≥ 99

100 (1 + ε)αg · ib/R =
99

100 ε(1 + ε)iαg, using also b = εR. Now we use Chernoff bound and get

Pr [Ai] ≤ Pr[X ≥ ib] ≤ Pr[X ≥ (1 + ε)µ] ≤ exp
(
−ε2µ

3

)
≤ exp

(− 99
100 ε3(1 + ε)iαg

3

)
≤ exp

(
−3

4ε3ig

)
≤ exp (−75i) ,

where we used 99
100 (1 + ε)α/3 > 3/4. We obtain that the probability of using radius at least

R + b is at most

Pr
[⋃

i

Ai

]
≤

∞∑
i=1

exp (−75i) ≤ 1/100 . ◀
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Abstract
We study the question of when an approximate search optimization problem is harder than the
associated decision problem. Specifically, we study a natural and quite general model of black-box
search-to-decision reductions, which we call branch-and-bound reductions (in analogy with branch-
and-bound algorithms). In this model, an algorithm attempts to minimize (or maximize) a function
f : D → R≥0 by making oracle queries to hf : S → R≥0 satisfying

min
x∈S

f(x) ≤ hf (S) ≤ γ ·min
x∈S

f(x) (1)

for some γ ≥ 1 and any subset S in some allowed class of subsets S of the domain D. (When the
goal is to maximize f , hf instead yields an approximation to the maximal value of f over S.) We
show tight upper and lower bounds on the number of queries q needed to find even a γ′-approximate
minimizer (or maximizer) for quite large γ′ in a number of interesting settings, as follows.

For arbitrary functions f : {0, 1}n → R≥0, where S contains all subsets of the domain, we show
that no branch-and-bound reduction can achieve γ′ ≲ γn/ log q, while a simple greedy approach
achieves essentially γn/ log q.
For a large class of MAX-CSPs, where S := {Sw} contains each set of assignments to the
variables induced by a partial assignment w, we show that no branch-and-bound reduction can
do significantly better than essentially a random guess, even when the oracle hf guarantees an
approximation factor of γ ≈ 1 +

√
log(q)/n.

For the Traveling Salesperson Problem (TSP), where S := {Sp} contains each set of tours
extending a path p, we show that no branch-and-bound reduction can achieve γ′ ≲ (γ−1)n/ log q.
We also prove a nearly matching upper bound in our model.

These results show an oracle model in which approximate search and decision are strongly
separated. (In particular, our result for TSP can be viewed as a negative answer to a question posed
by Bellare and Goldwasser (SIAM J. Comput. 1994), though only in an oracle model.) We also
note two alternative interpretations of our results. First, if we view hf as a data structure, then our
results unconditionally rule out black-box search-to-decision reductions for certain data structure
problems. Second, if we view hf as an efficiently computable heuristic, then our results show that
any reasonably efficient branch-and-bound algorithm requires more guarantees from its heuristic
than simply Eq. (1).

Behind our results is a “useless oracle lemma,” which allows us to argue that under certain
conditions the oracle hf is “useless,” and which might be of independent interest. See also the full
version [7].
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1 Introduction

We study branch-and-bound search-to-decision reductions for approximate optimization
problems. These are algorithms that attempt to find an approximate minimizer (or maximizer)
of a function f : D → R≥0 by making oracle queries to an oracle hf that yields an
approximation to minx∈S f(x) (or to maxx∈S f(x)) for certain subsets S ⊆ D.1 In the
introduction, we will typically assume that D = {0, 1}n.

1.1 Background and motivation
To explain our motivation, we first recall that any exact optimization problem comes in
two flavors. The decision problem asks us to compute minx∈{0,1}n f(x) (or to compute the
maximum) for some input objective function f .2 The search problem asks us to find an
x ∈ {0, 1}n that optimizes f(x). In practice, for many problems of interest, search and
decision seem to be more-or-less equally hard, in the sense that the fastest known algorithm
for the decision problem effectively already solves the search problem. In other words, often
it seems that the best way to determine whether something exists is to look for it. (Of course,
this is certainly not always the case!)

One can try to formally explain this phenomenon by showing a search-to-decision reduction.
In other words, to show that search and decision are essentially equivalent, we can prove
that we can efficiently solve the search problem using an oracle for the decision problem.

Indeed, there is a well known and very elegant greedy approach to search-to-decision
reductions that works for many exact optimization problems. Specifically, to minimize some
function f : {0, 1}n → R≥0, one can define fx1 : {0, 1}n−1 → R≥0 for a bit x1 ∈ {0, 1} to be
the function fx1(x′) := f(x1, x′), i.e., the function f with its first input bit set to x1. One
can then use a decision optimization oracle to find Vx1 := minx′∈{0,1}n−1 fx1(x′). (Here, we
are assuming for simplicity that the decision problem is expressive enough to represent fx1 .
More generally, one can define f0 and f1 to be restrictions of f onto some sets S0, S1 that
partition the domain.) Notice that Vx1 ≤ V1−x1 if and only if there is an x that minimizes f

1 The name “branch-and-bound reduction” comes from an analogy with branch-and-bound algorithms
for optimization problems, which are ubiquitous in both theory and practice. (See, e.g., [14] and the
references therein.) In the branch-and-bound literature, one typically uses some efficiently computable
heuristic hf to estimate minx∈S f(x) in order to find an (exact or approximate) minimizer of f . See
Section 1.4.

2 Formally, to make this a true decision problem, we should include a threshold r in the input, and
the problem should be to determine whether minx∈{0,1}n f(x) ≤ r. However, these two problems
are essentially equivalent, as a simple binary-search-based reduction shows. We therefore ignore such
subtleties.

https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.10
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and whose first bit is x1. We can then repeat the process on fx1 with x1 chosen such that
Vx1 is minimal, finding a second bit x2 ∈ {0, 1} such that there exists a minimizer with first
bit x1 and second bit x2, etc. Eventually, we will have found all of the bits of a minimizer x

of f .3
This elegant and natural idea has many applications. Perhaps most importantly, this

shows that if the decision problem of computing the minimal value of a function over subsets
of the domain is solvable in time TD(n), then the search problem of finding a minimizer
is solvable in time TS(n) ≤ O(n) · TD(n), so that the search and decision variants of this
problem are equivalent in quite a strong sense. Indeed, this reduction even shows a type of
“instance-wise equivalence,” in the sense that it shows that the search problem of minimizing
any specific function f is essentially equivalent to the problem of computing the minimal
value of simple restrictions of f . Slight variants of this simple greedy reduction work for
many exact optimization problems of interest, so that one can conclude that search and
decision are essentially equivalent (and even instance-wise equivalent) for many important
optimization problems. (However, Bellare and Goldwasser showed that this is not always
the case by proving that there exist search problems that are not solvable in polynomial
time but whose decision problems are solvable in polynomial time [2] (assuming a certain
reasonable complexity-theoretic conjecture).)

It is then natural to ask what happens when we move to approximate optimization
problems. Indeed, Feige first raised the question of whether approximation can be harder
than estimation [5], and Feige and Jozeph later showed that there exist problems for
which approximation is harder than estimation if and only if FP ̸= TFNP [6]. Here, we
have adopted Feige’s terminology, in which the task of finding x ∈ {0, 1}n such that
f(x) ≤ γ minx∈{0,1}n f(x) is called an approximation problem, while the task of determining
y ≥ 0 such that minx∈{0,1}n f(x) ≤ y ≤ γ minx∈{0,1}n f(x) is called an estimation problem.
In other words, approximation is the approximate search problem, and estimation is the
approximate decision problem.

In fact, if the estimation problem is NP-complete for some approximation factor γ,
then there is a certain rather weak sense in which approximation is provably equivalent
to estimation (where both problems have the same approximation factor γ). For example,
since such problems are polynomial-time equivalent to various exact optimization problems
for which the above search-to-decision reduction works (e.g., MAX-3-SAT), one can simply
combine reductions to and from such an exact optimization problem together with the
search-to-decision reduction described above to reduce approximation to estimation for
any NP-complete approximate optimization problem. However, this reduction is much less
satisfying than the “greedy” search-to-decision reduction described above because, e.g., it
can increase the size of the input instance by an arbitrary polynomial and will not in general
preserve properties of the input instance (i.e., it will not prove instance-wise equivalence).4

3 For a more concrete example, consider the maximization problem MAX-3-SAT. In this example, the
reduction iteratively finds an assignment (x1, . . . , xn) ∈ {0, 1}n that maximizes the number of satisfied
clauses one bit at a time, using a decision MAX-3-SAT oracle. Specifically, it uses its decision oracle to
determine x1 such that such an assignment exists with first bit x1, then to determine x2 such that such
an assignment exists with first two bits (x1, x2), etc.

4 For example, the greedy reduction described above implies that TS(n) ≤ O(n) · TD(n), where TS(n)
and TD(n) are “the fastest possible running times” for exact search and decision optimization problems.
In contrast, the above NP-completeness-based reduction only guarantees that TA,γ(n) ≤ TE,γ(nC)
where TA,γ(n) and TE,γ(n) are “the fastest possible running times” for approximation and estimation
respectively for some fixed optimization problem for which γ-estimation is NP-complete (each with
approximation factor γ), and C is an arbitrarily large constant. Since TE,γ(n) is superpolynomial in n
(unless P = NP), this is not a very useful conclusion. E.g., it could be the case that TE,γ(n) = 2n, while
TA,γ(n) = 2n100

. The fundamental issue is that this NP-completeness-based reduction can increase the
instance size n by an arbitrary polynomial.
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What we would really like is a simple reduction from approximation to estimation, that
is, a reduction roughly like the “greedy” search-to-decision reduction for exact optimization
described above. Such a reduction would ideally not increase the size n of the input instance.
And, it would be even better if such a reduction only called its oracle on “subinstances” of
the input instance, again in analogy with the simple greedy reduction. We might even be
willing to sacrifice in the approximation factor in exchange for this simplicity – reducing
γ′-approximation to γ-estimation for some γ′ > γ.

Indeed, we originally arrived at this question in the context of lattice problems, in which
preserving the size and structure of the input instance is often even more important than
preserving the approximation factor. (See, e.g., [13, 15, 16].)

1.2 Our model
Our definition of branch-and-bound reductions can be viewed as one way of formalizing such
“simple” reductions. Specifically, our model captures reductions that work via black-box
access to an estimation oracle for “subinstances,” i.e., an oracle hf that estimates the optimal
value of f up to a factor of γ over a subset S of the domain D.

In more detail, for an unknown objective function f : D → R≥0 over a domain D (from
some family of objective functions), such (possibly randomized) reductions have access to an
oracle hf : S → R≥0, where S ⊆ 2D is a collection of subsets of the domain D. We assume
that the oracle hf satisfies

min
x∈S

f(x) ≤ hf (S) ≤ γ ·min
x∈S

f(x)

for some not-too-large γ ≥ 1, i.e., that hf is a γ-approximate estimation oracle that solves
the estimation problem on restrictions of f to various subsets. The goal of such a reduction
is to find an explicit x such that f(x) ≤ γ′ minx∈D f(x) for some not-too-large γ′.

We measure the running time of the reduction entirely in terms of the number of queries
q made to this oracle. This makes our model quite strong in some sense. In particular,
the lower bounds that we describe below are lower bounds on the number of queries, and
therefore even rule out algorithms that perform a bounded number q of queries but otherwise
perform arbitrary unbounded computation. (To be clear, queries may even be adaptive, i.e.,
the result of a previous query may be used to decide what to query next.) And, we study the
best achievable approximation factor γ′ for the problem of optimizing f that is achievable
in this model, as a function of the number of queries q and the estimation approximation
factor γ.

We stress that the only information that these reductions have about the function f

comes from the oracle hf . In particular, these reductions do not take as input a description
of the function f . (Formally, the input to the reduction is actually empty.) This can be
viewed as a weakness of our model. But, it does capture a wide class of reductions, and
even more importantly, it is precisely this choice that will allow us to prove such strong
unconditional lower bounds on the approximation factor γ′ that is achievable after a certain
number of oracle queries (without, e.g., requiring us to prove that FP ̸= TFNP along the
way). Indeed, if we gave our reductions direct access to the input, then our model would
actually be stronger than the standard model(!), and we would therefore have little hope of
proving unconditional lower bounds in such a model.

We call reductions in our model branch-and-bound reductions in analogy with the paradigm
of branch-and-bound algorithms. (See Section 1.4.) E.g., the simplest branch-and-bound
reductions use a greedy approach like the one described above. In other words, they find
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x∗ ∈ {0, 1}n that approximately minimizes f : {0, 1}n → R≥0 as follows. The reduction first
branches, i.e., it chooses subsets S1, . . . , Sk ⊆ {0, 1}n that partition the input space {0, 1}n.
It then uses hf to compute values hf (S1), . . . , hf (Sk) such that hf (Si) ≈ minx∈Si

f(x). It
then chooses an i such that hf (Si) is minimal and repeats the procedure on Si – partitioning
Si into subsets T1, . . . , Tk ⊆ Si, computing estimates hf (Tj), selecting Tj that minimizes this
estimate, and so on. Eventually, the reduction is left with a single element x∗ ∈ {0, 1}n, and
we hope that f(x∗) is relatively close to the optimal value minx∈{0,1}n f(x). It is not hard
to see that this greedy reduction makes at most q ≤ k(n/ log k + 1) queries and outputs x∗

with

f(x∗) ≤ γn/ log k+1 min
x∈{0,1}n

f(x) ≈ γn/ log q min
x∈{0,1}n

f(x) .

(See Proposition 10 for a formal statement and proof.)
Even this quite large approximation factor γ′ ≈ γn/ log q has proven to be quite useful

in some rather specific contexts (e.g., [9, 16]). But, we of course would like to know if we
can do better. I.e., is there a branch-and-bound reductions that makes at most q queries
but achieves an approximation factor significantly better than γn/ log q? For example, a
significant improvement to this approximation factor would resolve an important open
problem in lattice-based cryptography [16]. (Indeed, this work originally arose from an effort
to improve [16].)

1.3 Our results
Our first main result shows that the greedy reduction described above is essentially optimal
in general. That is, there exist(s a distribution over) functions f : {0, 1}n → R≥0 and a γ-
approximate estimation oracle hf : 2{0,1}n → R≥0 such that no algorithm making significantly
fewer than q queries to hf can find x∗ ∈ {0, 1}n with f(x∗)≪ γn/ log q minx∈{0,1}n f(x). We
use the notation y ← Ahf () for sampling from the output distribution of the oracle algorithm
Ahf , which formally takes no input.

▶ Theorem 1 (Lower bound for arbitrary functions f . See Section 4). For every γ ≥ 1
and positive integer ℓ, there exists a distribution over functions f : {0, 1}n → R≥0 and a
γ-approximate estimation oracle hf : 2{0,1}n → R≥0 for f such that for any oracle algorithm
A making at most q queries to hf ,

Pr[x∗ ← Ahf () : f(x∗) ≤ γ′ min
x∈{0,1}n

f(x)] ≤ ε

where γ′ ≈ γn/ℓ and ε ≈ q2−ℓ.

This shows that there is no branch-and-bound search-to-decision reduction that performs
significantly better than the greedy reduction for all functions – even if it has an estimation
oracle that works for arbitrary subsets S of the domain. So, if we want to do better than the
generic greedy approach, we must place some restrictions on our objective function f . (In
particular, this shows that we cannot improve upon the search-to-decision reductions in [9, 16]
without using some specific properties of the relevant lattice-based objective functions f .)

We therefore turn our attention to specific classes of functions that have additional
structure. Specifically, we study branch-and-bound search-to-decision reductions for Max-
Constraint Satisfaction Problems (Max-CSPs), and the Traveling Salesperson Problem (TSP).
These problems are natural in this context in part because both of these problems are often
solved using branch-and-bound techniques in practice, for finding either exact solutions
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10:6 Simple Search-To-Decision Reductions

or approximate solutions. See, e.g., [3] for discussion of branch-and-bound algorithms for
Max-CSPs (specifically MAX-k-SAT), and [4] for discussion of branch-and-bound algorithms
for TSP.

In the case of Max-CSPs, we show a strong lower bound for any “reasonable” set of
constraints F . (See Section 6.) In this introduction, we discuss only the application of our
more general result to MAX-3-SAT for simplicity.

Our result holds for partial assignment queries. That is, our oracle hI for an instance I

takes as input a partial assignment w to the n input variables and outputs a γ-approximation
to the maximal number of constraints in the instance I satisfied by any assignment v that
matches w.5 This notion of a partial assignment arises naturally in this context (e.g., in
practical branch-and-bound algorithms for MAX–CSP).

Before we state our result, we note that it is trivial to find an assignment to a MAX-3-SAT
instance that satisfies roughly a 7/8 − o(1) fraction of the constraints. Indeed, a random
assignment suffices with high probability. So, we can easily output an assignment that
satisfies at least 7/8 − o(1) times as many clauses as an optimal assignment (with high
probability, using an algorithm that is actually independent of the instance). Our lower
bound shows that a branch-and-bound reduction cannot achieve an approximation factor of
better than 7/8 + o(1), even with a very good estimation oracle with approximation factor
β = 1− o(1). (Here, since we have switched from minimization to maximization, we have
switched to oracles h satisfying

β max
x∈S

f(x) ≤ hf (x) ≤ max
x∈S

f(x)

for some β ≤ 1.) In other words, no branch-and-bound reduction performs significantly
better than the algorithm that simply outputs a uniformly random assignment, even if the
estimation oracle is extremely powerful.

▶ Theorem 2 (Lower bound for MAX-3-SAT. See Section 6 for a more general result.). There
exists a distribution over MAX-3-SAT instances I such that for every β < 1, there is a
β-approximate estimation oracle hI such that for any oracle algorithm A making at most q

queries to hI ,

Pr[v∗ ← Ahf () : SATI(v∗) ≥ δ max
v∈{0,1}n

SATI(v)] ≤ ε

where δ = 7/8 + o(1) and ε ≈ q2−(1−β)2n.

Finally, we study (non-metric) TSP. Here, we consider a natural class of oracles that work
for subtour queries. That is, they take as input a path (v1, . . . , vk) of (distinct) vertices in
the input graph, and they output a γ-approximation to the minimal value of a tour that
contains the path (v1, . . . , vk). This naturally captures branch-and-bound reductions that,
e.g., “build a path one edge at a time.” We prove the following lower bound.

▶ Theorem 3 (Lower bound for TSP. See Section 5.). For every γ > 1 and positive integer
ℓ≪ n, there exists a distribution G of TSP instances and a γ-approximate estimation oracle
hG such that for any oracle algorithm A making at most q oracle queries,

Pr[c∗ ← AhG() : wG(c∗) ≤ γ′ ·min
c

wG(c)] ≤ ε ,

where γ′ ≈ (γ − 1)n/ℓ, ε ≈ qe−ℓ, and wG(c) is the weight of the tour c in G.

5 To formally represent this in our model, consider the function f : {0, 1}n → R≥0 such that f(v) is the
number of clauses satisfied by an assignment v. Then, hf takes as input subsets Sw ⊆ {0, 1}n consisting of
all assignments v that match a partial assignment w. E.g., {v = (v1, . . . , vn) ∈ {0, 1}n : v1 = 0, v82 = 1}.
Of course, it is far more natural to simply consider an oracle hI that takes w as input directly.
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We note in passing that this lower bound can be viewed as a partial answer to a question
posed by Bellare and Goldwasser [2], who asked whether a search-to-decision reduction was
possible for approximate TSP, and particularly one that preserves the approximation factor.
Theorem 3 rules out a large class of such reductions, even those achieving a significantly
worse approximation factor than what was considered in [2]. But, we only rule this out in an
oracle model.

Our lower bound for TSP is in some sense quite strong. For example, it shows that
a polynomial-time branch-and-bound reduction cannot achieve an approximation factor
γ′ < o(n/ log n), even with an estimation oracle that achieves a constant approximation
factor γ = O(1). However, it is not immediately obvious whether there is a nearly matching
upper bound. E.g., the natural greedy approach achieves an approximation factor of roughly
γ′ = γn/k using roughly nk queries, which is quite far from our lower bound. Perhaps our
lower bound can be improved?

As it happens, there is a nearly matching upper bound (specifically, a reduction that uses
roughly nt queries and achieves an approximation factor of roughly γn/t). So, our lower
bound is essentially tight in our model. But, the reduction achieving this upper bound is
inefficient and therefore rather unsatisfying. In other words, while the reduction uses relatively
few oracle queries, it performs additional computation that requires superpolynomial time,
as described in Theorem 14.6

1.4 Other interpretations of our model

Above, we have presented our model in terms of branch-and-bound reductions from approx-
imation problems to associated estimation problems. However, we note that there are at least
two different interpretations of our model (and results) that are perhaps just as interesting.

Branch-and-bound algorithms

We of course named our model of branch-and-bound reductions in analogy with branch-and-
bound algorithms. Such algorithms are ubiquitous in the study of optimization problems.
(See, e.g., [14] and the references therein.) To view our model in terms of branch-and-bound
algorithms, one simply needs to view the estimation oracle hf as some efficiently computable
heuristic. In other words, a branch-and-bound algorithm works by using some heuristic hf

to estimate the optimal value of f on various subsets until it has found an approximate
optimizer of f .

Though branch-and-bound algorithms are very natural, they seem to be quite difficult to
understand from a theoretical perspective. E.g., Nemhauser said “I have always wanted to
prove a lower bound about the behavior of branch and bound, but I never could” [11]. (See
also the third proposed research direction in [14].) Of course, part of the difficulty in proving
such lower bounds is simply coming up with a model that is sufficiently strong to capture
a wide class of branch-and-bound algorithms but weak enough to allow for provable lower
bounds.

6 The reduction first calls the oracle on all nk subpaths V = (v1, . . . , vk) of length k. It then finds (in
superpolynomial time) a way to combine subpaths V1, . . . , Vn/k together into a tour while minimizing
hG(V1) + · · ·+ hG(Vn/k). It is not hard to show that such a reduction achieves an approximation factor
of essentially γn/k.
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10:8 Simple Search-To-Decision Reductions

One can view our results as progress towards that goal. In particular, we prove lower
bounds for branch-and-bound algorithms with arbitrary estimation heuristics hf . That is,
any branch-and-bound algorithm that beats our lower bounds must use some property of the
heuristic hf that is stronger than the approximation guarantee

min
x∈S

f(x) ≤ hf (S) ≤ γ min
x∈S

f(x) .

Approximation vs. estimation for data structure problems

Yet another interpretation of our results is in terms of data structures for optimization
problems. For this interpretation, we focus on the problem of optimizing an arbitrary
function with arbitrary subset queries, as this is most natural in this context.

Specifically, consider the following very natural and simple data structure problem. We
are first given as input a function f : {0, 1}n → R≥0 (or, equivalently, a list of 2n numbers)
and allowed arbitrary time to preprocess it into some data structure H (with some constraint
on the size of H). Then, we receive as input some subset S ⊆ {0, 1}n. In the estimation
version of this problem, our goal is to estimate minx∈S f(x) using as few queries to H as
possible (i.e., reading as few bits or words from H as possible). In the approximation version,
our goal is to find an x∗ ∈ S such that f(x∗) is as small as possible, relative to minx∈S f(x)
(again, using as few queries to H as possible).

It is then natural to ask whether there is a black-box data-structure reduction from
approximation to estimation in this setting. Here, a black-box reduction means an algorithm
that solves the approximation problem using only the estimates obtained from the data
structure for the estimation problem – i.e., a branch-and-bound algorithm. Notice in
particular that, in the setting of data structures, the number of queries made by such a
reduction is the natural complexity measure.

Our lower bound on branch-and-bound reductions extends immediately to black-box
data-structure reductions as well. Specifically, no black-box data-structure reduction making
q estimate queries can achieve an approximation factor significantly better than γ′ ≈
γlog |S|/ log q.

1.5 Our techniques
Our main technical tool is a “useless oracle lemma.” The idea is that “an oracle cannot be
useful if most of its answers are predictable.” While this lemma is quite general, we focus
below on how it applies to our setting. (Very similar ideas are used in a different context in
the literature on submodular optimization. See, e.g., [18, 17].)

Suppose that we can construct a distribution over functions f together with a γ-
approximate estimation oracle hf : S → R≥0 such that for any fixed query S ∈ S,
hf (S) = g(S) with high probability over f , where g is some fixed function that does
not depend on f . E.g., our hard instance for arbitrary optimization has this property with
g(S) ≈ γn−log |S|. Then, the useless oracle lemma tells us that “an algorithm with oracle
access to hf is essentially no more powerful than an algorithm with no access to any oracle
that depends on f at all.” The specific statement is of course quantitative and depends on
the number of oracle queries and the probability that hf (S) ̸= g(S). (See Section 3. We do
not claim that this idea is original, though we do not know of prior work using it.)

With this tool in hand, our goal becomes to construct distributions of functions f together
with oracles hf such that (1) the oracle is “useless” in the sense described above; and (2) for
every fixed x ∈ {0, 1}n, f(x) ≥ γ′ minx′∈{0,1}n f(x′) with high probability over f (i.e., there is
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no way to choose an x independently of f such that f(x) is nearly optimal). This boils down
to finding a distribution over functions f such that (1) the random variable minx∈S f(x) is
highly concentrated; and (2) this quantity tends to be much larger as |S| becomes smaller. In
particular, concentration of minx∈S f(x) around some value g(S) (independent of f) implies
that we can set hf (S) ≈ g(S). And, if g(S) increases rapidly as |S| becomes smaller, then
the optimal value of f , minx∈{0,1}n f(x) ≈ g({0, 1}n) will in particular be much smaller than
g({x′}) for any fixed x′ ∈ {0, 1}n, causing our final approximation factor to be large.

Below, we briefly describe the distributions that we use and some of the intuition behind
them.

Arbitrary functions

For our lower bound against optimizing arbitrary functions (Theorem 1), we sample each value
f(x) independently (but not uniformly) from a distribution over the set {1, γ, γ2 . . . , γn/ℓ},
where 2ℓ is the number of queries made by the algorithm. We choose our distribution so that
any subset S ⊆ {0, 1}n of size roughly 2ℓk (1) contains at least one element with value either
γn/k−1 or γn/k with probability significantly larger than 1− 2−ℓ; and (2) does not contain
an element with value less than γn/k−2, except with probability significantly less than 2−ℓ.
We can then set hf (S) = γn/k, and we see that with high probability “any 2ℓ queries made
by the algorithm will reveal no information about the function f with high probability.”

TSP

For the Traveling Salesperson Problem, we sample the weight of each edge independently to
be either 1 or essentially γn, with equal probabilities. We then use the theory of random
graphs to argue that with high probability the value of an optimal tour containing any
subpath of length ℓ is highly concentrated around a value of roughly γℓn/2 + n− ℓ/2.

CSPs

For (“reasonable”) k-CSPs, we construct “a random instance with a random planted satisfying
assignment.” That is, we first sample a uniformly random assignment P ∼ [c]n.7 We then
repeatedly sample a k-tuple T = (t1, . . . , tk) ∈ [n]k and add to our CSP a random constraint
on the variables xt1 , . . . , xtk

that is satisfied by our planted assignment Pt1 , . . . , Ptk
. We do

this m = O(n) times to generate our CSP. (For simplicity, we are ignoring the possibility
that there might not exist any such constraint. In Section 6, we handle this carefully.)

Then, for any partial assignment w, we study ρw(P ), which is the maximum over all
assignments v ∈ [c]n extending w of the probability that v satisfies a constraint sampled as
above. It is easy to see via the Chernoff-Hoeffding bound that, for a fixed planted assignment
P , the maximum over all such v of the actual number of satisfied constraints in our instance
will be heavily concentrated around ρw(P ) ·m. The difficult step in our analysis is then
to prove that ρw(P ) is itself highly concentrated around its expectation EP [ρw(P )]. This
follows from a careful application of McDiarmid’s inequality.

7 Throughout this paper, for x ∈ N, [x] denotes the set {1, 2, . . . , x}.
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2 Preliminaries

Given an event E and a random variable X, we will write Pr[E | X] for the random variable
whose value in case X = x is Pr[E | X = x]. We will need the following concentration
inequalities.

▶ Lemma 4 (Chernoff-Hoeffding bound [8]). Suppose X1, . . . , Xn are independent random
variables, and let X :=

∑n
i=1 Xi. Then for any 0 < δ < 1,

Pr
[
|X − E[X]| ≥ δ E[X]

]
≤ 2 exp(−δ2 E[X]/3).

▶ Lemma 5 (McDiarmid’s inequality [12]). Suppose X1, . . . , Xn are independent random
variables, c1, . . . , cn are real numbers, and f : Rn → R is a function with the property that
for all i ∈ [n] and xi, x′

i ∈ R, |f(x1, . . . , xi, . . . , xn) − f(x1, . . . , x′
i, . . . , xn)| ≤ ci. Then for

all t > 0,

Pr
[
|f(X1, . . . , Xn)− E[f(X1, . . . , Xn)]| ≥ t

]
≤ 2 exp

( −t2

2
∑n

i=1 c2
i

)
.

3 Useless Oracles

We now present the technical tool that we will use for all of our lower bounds, which we call
the useless oracle lemma. (The authors do not claim that this result is original, though they
do not know of any prior work using a similar idea.)

To understand the lemma and its relation to branch-and-bound algorithms, suppose that
we sample the objective function f : D → R≥0 that our algorithm is meant to optimize from
some distribution, and then choose our heuristic hf according to f . And, recall that such an
algorithm’s “only access to this objective function f” is via oracle access to this heuristic
hf , which satisfies minx∈S f(x) ≤ hf (S) ≤ γ minx∈S f(x) for every S in some collection of
subsets S of the domain D.

Now, imagine that instead of giving our algorithm oracle access to hf , we give it oracle
access to some other function g, which is fixed (i.e., not a random variable) and therefore
independent of our choice of f . Notice that this is a rather cruel thing to do, since now our
algorithm cannot possibly hope to glean any information about f from its oracle queries. So,
at least intuitively, it should be quite easy to prove lower bounds against such algorithms.

The useless oracle lemma provides conditions that allow us to effectively replace the
oracle O = hf with the “useless” oracle g. In particular, it says that if (1) hf and g have the
property that Pr[hf (S) = g(S)] is large for all fixed S, and (2) our algorithm does not make
too many oracle queries; then the output of our algorithm is nearly the same whether it is
given access to hf or to g.

▶ Lemma 6 (The useless oracle lemma). Let g : S → R be a fixed function, and let O : S → R

be a distribution over oracles such that for all S ∈ S,

Pr[O(S) ̸= g(S)] ≤ p .

Then, for any oracle algorithm AO making at most q queries to O, the statistical distance
between AO() and Ag() is at most qp.
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Proof. Let S1, . . . , Sq ∈ S be the sequence of oracle queries made by AO. Notice that the Si

are random variables, and that Si might depend on O(Sj) for j < i (which is what makes the
lemma non-trivial). Let Ei be the event that there exists a j ≤ i such that O(Sj) ̸= g(Sj). It
suffices to prove that Pr[Eq] ≤ qp (because the two distributions are identical if we condition
on ¬Eq).

Notice that

Pr[Eq] = Pr[Eq−1] + Pr[O(Sq) ̸= g(Sq) and ¬Eq−1] .

Let S′
1, . . . , S′

q be the sequence of oracle queries made by Ag (as opposed to AO), and notice
that S′

i is independent of O by definition. In particular, this implies that Pr[O(S′
i) ̸= g(S′

i)] ≤
p. Therefore,

Pr[O(Sq) ̸= g(Sq) and ¬Eq−1] = Pr[O(S′
q) ̸= g(S′

q) and ¬Eq−1] ≤ Pr[O(S′
q) ̸= g(S′

q)] ≤ p .

It follows that Pr[Eq] ≤ p + Pr[Eq−1], which implies the result when combined with the
trivial fact that Pr[E1] ≤ p. ◀

▶ Corollary 7. Let f ∼ D be sampled over some distribution of functions f : D → R≥0,
and let S ⊆ 2D be a collection of subsets of D such that D ∈ S and {x} ∈ S for all x ∈ D.
Suppose that there exists some fixed function g : S → R≥0 such that

Pr[g(S)/γ ≤ min
x∈S

f(x) ≤ g(S)] ≥ 1− p

for all S ⊆ S and some p > 0, γ ≥ 1.
Then, there exists a γ-approximate heuristic hf : S → R≥0 for f such that for any

algorithm A making at most q oracle queries to hf ,

Pr[x∗ ← Ahf (), f(x∗) < γ′ min
x∈D

f(x)] ≤ (q + 2)p ,

where

γ′ := γ−1 ·min
x∈D

g({x})
g(D) .

Proof. We define

hf (S) :=
{

g(S) g(S)/γ ≤ minx∈S f(x) ≤ g(S)
minx∈S f(x) otherwise.

In other words, hf (S) is a γ-approximate heuristic that agrees with g(S) whenever it is
possible for a γ-approximate heuristic to do so (and when this is not possible, it simply
outputs the exact minimal value).

Notice that by assumption

Pr
f∼D

[hf (S) ̸= g(S)] ≤ p .

We may therefore apply the useless oracle lemma with O = hf to show that Ahf () is within
statistical distance qp of Ag(). So, it suffices to show that

Pr
f∼D

[x∗ ← Ag(), f(x∗) ≤ γ′ min
x∈D

f(x)] ≤ 2p .
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Indeed, since g is independent of f (as it is a fixed function), we have that for any r ≥ 0,

Pr
f∼D

[x∗ ← Ag(), f(x∗) ≤ r] =
∑
x∈D

Pr[x∗ ← Ag(), x∗ = x] · Pr
f∼D

[f(x) ≤ r] ≤ max
x∈D

Pr
f∼D

[f(x) ≤ r] .

By assumption, for any x ∈ D,

Pr[f(x) < min
x′∈D

g({x′})/γ] ≤ p ,

and similarly,

Pr[min
x′∈D

f(x′) > g(D)] ≤ p .

Therefore, for any x ∈ D,

Pr[f(x) < γ′ min
x′∈D

f(x′)] ≤ Pr[f(x) < min
x′∈D

g({x′})/γ] + Pr[min
x′∈D

f(x′) > g(D)] ≤ 2p ,

and the result follows. ◀

4 A Generic Optimization Problem

▶ Theorem 8. For any n, any γ ≥ 1, and any integer 1 ≤ α ≤ n, there exists a distribution
over functions f : {0, 1}n → R≥0 such that for any integer 1 ≤ k ≤ α and any S ⊆ {0, 1}n

with 2(k−1)n/α ≤ |S| ≤ 2kn/α,

Pr
f

[γα−k+1 ≤ min
x∈S

f(x) ≤ γα−k+2] ≥ 1− 4(n/α)2−n/α .

Proof. For each x ∈ {0, 1}n and integer 1 ≤ i ≤ α, we set f(x) = γi independently with
probability pi, where pi := δ · 2in/α−n for i = 1, . . . , α− 1 and pα := 1− p1− p2− · · · − pα−1,
with δ := n/α · 2−n/α < 1.

Notice that

pα = 1− δ ·
α−1∑
i=1

2in/α−n ≥ 1− δ .

In particular, this is non-negative, so that this is in fact a valid probability distribution. We
have

Pr
f

[γα−k+1 ≤ min
x∈S

f(x) ≤ γα−k+2] = 1−Pr[min
x∈S

f(x) < γα−k+1]−Pr[min
x∈S

f(x) > γα−k+2] .

We wish to argue that each of the probabilities on the right-hand side are smaller than, say,
2δ. First, we see that, for the non-trivial case k > 2,

Pr[min
x∈S

f(x) > γα−k+2] ≤ (1− pα−k+2)|S| ≤
(
e−pα−k+2

)2(k−1)n/α

= e−δ2n/α

≤ δ ,

where the second inequality uses the fact that 1− x ≤ e−x. Second,

Pr[min
x∈S

f(x) < γα−k+1] ≤ |S| · Pr[f(x) ≤ γα−k] ≤ 2kn/α · δ ·
α−k∑
i=1

2in/α−n ≤ 2δ ,

as needed. ◀
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▶ Corollary 9. For any integer n, any 1 ≤ ℓ ≤ n/3, and any γ ≥ 1, there exists a distribution
of functions f : {0, 1}n → R≥0 and a γ-approximate heuristic hf : 2{0,1}n → R≥0 for f such
that for any algorithm Ahf making at most q oracle queries to hf ,

Pr[x∗ ← Ahf (), f(x) < γ′ · min
x∈{0,1}n

f(x)] ≤ (q + 2) · ℓ2−ℓ+3

where γ′ := γ⌊n/ℓ⌋−1.

Proof. We apply Corollary 7 to the choice of f from Theorem 8, with g(S) := γα−k+2 for
the unique integer 1 ≤ k ≤ α satisfying 2(k−1)n/α ≤ |S| < 2kn/α where α := ⌊n/ℓ⌋ and
g({0, 1}n) := γ. Notice in particular that g({x})/g({0, 1}n) = γα. ◀

The following proposition shows that the lower bound of Corollary 9 is essentially tight.

▶ Proposition 10. For all integers n ≥ ℓ ≥ 1, there exists an algorithm Ah such that for all
functions f : {0, 1}n → R≥0, all γ ≥ 1, and all γ-approximate heuristics h : 2{0,1}n → R≥0 for
f , Ah makes at most ⌈n/ℓ⌉ ·2ℓ queries to h, and outputs x∗ with f(x∗) ≤ γ⌈n/ℓ⌉ minx∈S f(x).

Proof. The algorithm Ah is a natural greedy algorithm. It first partitions the domain
S0 = {0, 1}n into k := 2ℓ subsets S0

1 , . . . , S0
k and queries h on each subset. It sets S1 = S0

i for
some S0

i of minimum h value; that is, h(S0
i ) = min1≤j≤k h(S0

j ). It then repeats this process,
partitioning S1 itself into k subsets S1

1 , . . . , S1
k of size 2n−2ℓ, querying h on each one, setting

S2 to be any subset with minimum h value, and so on. After ⌈n/ℓ⌉ − 1 iterations, it finds a
subset S⌈n/ℓ⌉−1 with fewer than k elements. It then queries h on each singleton subset of
S⌈n/ℓ⌉−1 to find a singleton subset S⌈n/ℓ⌉ =: {x∗} of minimum h value, and outputs x∗.

It is clear that Ah makes at most ⌈n/ℓ⌉ · 2ℓ queries to h. Moreover, we trivially have
f(x∗) = minx∈S⌈n/ℓ⌉ f(x). And for each i, by the fact that h is a γ-approximate heuristic for
f , we have that

min
x∈Si+1

f(x) ≤ h(Si+1)

= min
1≤j≤k

h(Si
j)

≤ min
1≤j≤k

γ · min
x∈Si

j

f(x)

≤ γ min
x∈Si

f(x).

It is therefore clear by induction that the output x∗ satisfies f(x∗) ≤ γ⌈n/ℓ⌉ minx∈S f(x). ◀

In particular, when n = poly(ℓ), the greedy algorithm achieves γ′ = γÕ(n/ log q), and by
Corollary 9, this is the best approximation factor achievable (up to lower-order terms) by
any oracle algorithm that succeeds with constant probability.

5 The Traveling Salesperson Problem

We consider undirected weighted complete graphs on n vertices with no self-loops where all
edge weights are non-negative. For an edge e = {i, j} of a graph G, w(e) and w(i, j) denote
the weight of e.

We write Cn for the set of all Hamiltonian cycles in a complete n-vertex graph G. The
weight of a cycle c is the sum of the weights of its edges: w(c) =

∑n
i=1 w(ci, ci+1 mod n). For

0 ≤ k ≤ n− 1, let P k
n be the set of all length-k simple paths on an n-vertex graph:

P k
n = {(v0, . . . , vk) | v0, . . . , vk ∈ [n], v0, . . . , vk all distinct}.

APPROX/RANDOM 2023
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By OPT(G) we denote the weight of an optimal traveling salesperson (TSP) cycle in G,
and for a path p ∈ P k

n by OPT(G, p) we denote the minimum weight of a TSP cycle in G

containing p.
We will use the following result that says that a random graph contains a Hamiltonian

cycle with all but negligible probability.

▶ Lemma 11 (E.g., [1]). A uniform random undirected graph with n vertices contains a
Hamiltonian cycle with probability ≥ 1− 2−n+o(n).

We define a “useless oracle” for TSP in Theorem 12. Namely, for every approximation
factor γ > 1 and every probability of error (≈ e−t), we give a distribution of graphs such
that with high probability, the weight of an optimal Hamiltonian cycle extending a path
of length k essentially does not depend on the path, but only on its length k. Intuitively,
an approximate TSP oracle is useless for this distribution of graphs because (with high
probability) it reveals no information about the input graph.

▶ Theorem 12 (TSP useless oracle). For all γ > 1 and 1 ≤ t ≤ δn/2 where δ = (γ−1)/(γ+1),
there exists a distribution G over n-vertex graphs, and values v0, . . . , vn−1 such that

v0 ≤ n/γ and vn−1 ≥ (γ − 1)n2/(5t) ,

for all 0 ≤ k ≤ n− 1 and all paths p ∈ P k
n ,

Pr
G∼G

[
OPT(G, p) ∈ [vk, γvk]

]
≥ 1−O(e−δ2t/30) .

For reasons of space, we defer the proofs of this and subsequent theorems to the appendix.
They can also be found in the full version [7].

We are now ready to prove the main result of this section showing an essentially tight
bound on search to decision reductions with an approximate TSP oracle.

▶ Definition 13 (TSP oracle). A function hG is a γ-approximate TSP estimation oracle for
G ∈ Gn if for all 0 ≤ k ≤ n− 1, for all p ∈ P k

n ,

OPT(G, p) ≤ hG(p) ≤ γ OPT(G, p) .

▶ Theorem 14 (TSP oracle bounds). For every γ > 1 and positive integer ℓ ≤ δ3n/20 for
δ = (γ− 1)/(γ + 1), there exists a distribution G over n-vertex graphs G and a γ-approximate
TSP estimation oracle hG for G such that for any algorithm AhG making at most q queries
to hG,

Pr[c← AhG() : w(c) ≤ γ′ ·OPT(G)] ≤ ε ,

where γ′ := (γ − 1)δ2n/(150ℓ) and ε := O
(
q · e−ℓ

)
.

Furthermore, for every γ ≥ 1 and positive integer ℓ, there exists an algorithm AhG making
at most

(
n
ℓ

)
· ℓ! ≤ nℓ queries to a γ-approximate TSP estimation oracle hG that computes a

γn/(ℓ− 1)-approximation to TSP.

In particular, using q queries, one can achieve γ′ = γn/(log q − 1), but no algorithm that
succeeds with constant probability can do better than γ′ = O((γ − 1)n/ log q)).

6 Constraint Satisfaction Problems

Informally, a constraint satisfaction problem (CSP) consists of constraints applied to variables;
the goal is to find an assignment of values to variables that satisfies all or most of the
constraints. For example, graph coloring is a CSP, where each edge corresponds to the
constraint that the endpoints have different colors.
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A CSP is specified by a non-empty family of constraint functions F . Each constraint
function f ∈ F is a function f : [c]k → {0, 1}, where the alphabet size c and arity k

are fixed. An assignment assigns a value from [c] to each of the n variables x1, . . . , xn.
Formally, we represent this by a function v : [n]→ [c]. An assignment v satisfies a constraint
C = (f, (j1, . . . , jk)), written v |= C, if f(v(xj1), . . . , v(xjk

)) = 1. We write CSP(F) for
the CSP specified by F ; an instance I ∈ CSP(F) is simply a collection of constraints. For
simplicity, we allow duplicate constraints. As is standard, we say I is satisfiable if there is an
assignment v that satisfies all constraints of I. For example, the classical 3-SAT problem
is CSP(F3−SAT), where F3−SAT is the family of constraint functions defined by disjunctive
clauses (e.g., f(x1, x2, x3) = ¬x1 ∨ x2 ∨ x3).

We are interested in an approximation version of the constraint satisfaction problem,
namely MAX–CSP(F) [10]. MAX–CSP(F) is the computational problem whose instances I

are collections of m(I) constraints on variables x1, . . . , xn, and the objective is to find an
assignment v to these variables that maximizes the number of satisfied constraints.

A partial assignment assigns values to a subset of the n variables. Formally, a partial
assignment is represented by a partial function w : [n] → [c]. An assignment v extends w

if v agrees with w on all variables to which w assigns a value. Define SAT(I) to be the
maximum number of satisfied constraints over all assignments. Define SATI(w) in the same
way, except the maximum is taken over only the assignments extending w. In the special case
where w is a total assignment, this is simply the number of constraints satisfied (unsatisfied)
by that assignment. Similar to before, for β < 1, we define a function hI to be a β-heuristic
if β SATI(w) ≤ hI(w) ≤ SATI(w).

To state our lower bound for Max-CSPs in full generality, we must first define the hard
distribution Ds over instances I ∈ CSP(F). Ds is defined by the following sampling process.
All sampling steps are done uniformly at random. First we sample a “planted” assignment
P . Then, for each of s steps i = 1, 2, . . . , s, we sample an ordered tuple

(
x

J
(i)
1

, . . . , x
J

(i)
k

)
of k distinct variables, and sample a constraint function Fi that is satisfied by the input(

P
(
x

J
(i)
1

)
, . . . , P

(
x

J
(i)
k

))
. If there is no such Fi ∈ F , we write Ci = NULL to indicate that

we do not add a constraint; otherwise, Ci is the constraint (Fi, (J (i)
1 , . . . , J

(i)
k )). The sampled

instance I ∼ Ds consists of all non-NULL constraints Ci. Given an assignment v, it will be
convenient to write v |= i to mean that Ci ̸= NULL and v |= Ci.

Let a(F) := lim infn→∞ minv Pr[v does not satisfy Ci | Ci ̸= NULL]. That is, a(F) is
(close to, for sufficiently large n) the minimal achievable expected fraction of unsatisfied
constraints (in an instance drawn from Ds) over all fixed assignments v. Our lower bound
roughly states that even for satisfiable instances, it is hard to satisfy much more than a
(1− a(F)) fraction of constraints. Although the definition of a(F) looks complicated, it is
actually a fairly natural measure of the hardness of choosing a fixed assignment to satisfy
a random constraint from F . For example, it is not hard to see that a(F3−SAT) = 1/8,
and a(Fk−LIN) = 1/2. These are exactly the expected fraction of random constraints not
satisfied by any fixed assignment. We will write a for a(F) when F is clear from context.

Say that a constraint family F is constant satisfiable (resp. constant unsatisfiable) if there
is b ∈ [c] for which every f ∈ F has f(b, . . . , b) = 1 (resp. f(b, . . . , b) = 0).
▶ Theorem 15. For all constraint families F that are not constant unsatisfiable, there is
r > 0 such that for all 0 < ε < 1, there are (1 − ε)-approximate estimation oracles hI

such that for all oracle algorithms AhI making at most q queries to hI , letting I ∼ Ds and
v ← AhI (), for sufficiently large n,

Pr[SATI(v)/SATI ≥ (1 + δ)(1− a)] ≤ q exp(−(δ2 + ε2) · r · n),

where s = 1000k2 log(c)n/ε2.

APPROX/RANDOM 2023
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In particular, for any small δ > 0, for sufficiently large n, an arbitrary assignment satisfies a
1− a− δ fraction of constraints with overwhelming probability, but no algorithm can satisfy
a 1− a + δ fraction of constraints unless it makes exponentially many queries.

A few additional remarks are in order. The theorem is vacuous for trivially satisfiable
constraint families F , since the assignment v mapping every variable to b satisfies all
constraints, which implies a(F) = 0. But by the same logic, no non-trivial lower bound
on the approximation ratio is possible for such families. Fortunately, if F is not trivially
satisfiable, a(F) is strictly positive. To see this, fix an assignment v, and let b be the majority
value of v. By assumption, there is f∗ ∈ F such that f∗(b, . . . , b) = 0. Sample a random
constraint (f, (j1, . . . , jk)). Independent of (j1, . . . , jk), over the random choice of P , we have
that f∗(P (xj1), . . . , P (xjk

)) = 1 with probability at least 1/ck. Conditional on this, f is
chosen to be f∗ with probability at least 1/2ck . Hence f is chosen to be f∗ with probability at
least 1/ck · 1/2ck . Suppose n ≥ ck. For any assignment v, we have v(xj1) = · · · = v(xjk

) = b

with probability (over the random choice of j1, . . . , jk independent of P and f∗) at least
Πk−1

i=0 (n/c− i)/(n− i) ≥ Πk−1
i=0 (k − i)/(ck − i) (the last expression corresponds to the case

of n = ck and balanced v). Thus, for n ≥ ck, the random constraint is unsatisfied with
probability at least 1/ck · 1/2ck ·Πk−1

i=0 (k − i)/(ck − i) > 0; it follows a(F) > 0.
The trivial unsatisfiability condition is slightly less natural; however, some similar condi-

tion is necessary for lower bounds. Consider the problem of 3-coloring a graph to maximize
the number of edges with one green endpoint and one blue endpoint. This is clearly a
CSP. Starting with all nodes colored red, one can color two nodes blue and green and use
a heuristic to determine if there is an edge between them. Proceeding in this way, using
O(n2) queries, one can recover the whole graph and (using unbounded computation) recover
the optimal coloring. So, in our model, we cannot hope to rule out a branch-and-bound
algorithm for such a CSP. This CSP is ruled out by trivial unsatisfiability, because coloring
all nodes red makes the only constraint in the family (the blue-green constraint) output 0.
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A Omitted Proofs

A.1 Proof of Theorem 12
Proof. G is defined by independently setting the weight of each edge e as follows:

w(e) =
{

1 w.p. 1/2 ,

ω := 1 + (γ − 1)n/t w.p. 1/2 .

The following is the definition of vk:

vk =


n/γ if k = 0 ,

n if 1 ≤ k ≤ t ,

k(ω + 1)/(γ + 1) + n− k if t < k < n− t ,(
k/2 + n/(γ + 1)

)
(ω + 1)/2 if k ≥ n− t .

The definitions of v0 and vn−1 satisfy the first item of the theorem statement as v0 = n/γ,
and

vn−1 ≥ (n− 1)(ω + 1)/4 ≥ (n− 1)(γ − 1)n/(4t) ≥ (γ − 1)n2/(5t) .

It remains to bound from above PrG∼G
[

OPT(G, p) ̸∈ [vk, γvk]
]

for every fixed p ∈ P k
n . By

the Chernoff-Hoeffding bound (Lemma 4), for every ε ∈ (0, 1), p contains from (1− ε)k/2 to
(1 + ε)k/2 edges of weight ω with probability at least 1− 2e−ε2k/6. Therefore,

Pr
G∼G

[
w(p) ∈ [(1− ε)k(ω + 1)/2, (1 + ε)k(ω + 1)/2]

]
≥ 1−O

(
e−ε2k/6)

. (2)

Let G ∼ G, and let G′ be the graph consisting of the vertices of G not belonging to the
path p, and the edges of G of weight 1. Note that G′ is a uniformly random unweighted graph
with n − k − 1 vertices. By Lemma 11, G′ contains a Hamiltonian cycle with probability
1 − 2−(n−k−1)(1−o(1)). With probability at least 1 − (3/4)n−k−1 the endpoints of p are
connected by edges of weight 1 to a pair of consecutive points of the Hamiltonian cycle
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in G′. Thus, with probability at least 1−O
(
(3/4)n−k

)
, p can be extended to a TSP cycle

in G by taking a Hamiltonian path in G′, removing an edge from it, and connecting the two
endpoints to the endpoints of p by edges of weight 1. Hence,

Pr
G∼G

[OPT(G, p) = w(p) + n− k] ≥ 1−O
(
(3/4)n−k

)
. (3)

Now we consider the following four cases.
k = 0. For the distribution G, Lemma 11 implies that for every p ∈ P 0

n , OPT(G, p) =
OPT(G) = n with probability 1− 2−n+o(n) ≥ 1−O(e−δ2t/30).
1 ≤ k ≤ t. For each path p ∈ P k

n , OPT(G, p) ≥ n = vk, and, by (3), with probability at
least 1−O

(
(3/4)n−k

)
≥ 1−O

(
(3/4)n/2)

≥ 1−O(e−δ2t/30), we have that

OPT(G, p) = w(p) + n− k ≤ kω + n− k ≤ γn = γvk .

t < k < n− t. From (3), with probability 1−O
(
(3/4)t

)
, OPT(G, p) = w(p) + n− k. By

setting ε = δ, from (2), with probability at least 1−O(e−δ2t/6), w(p) ∈ [k(ω + 1)/(γ +
1), γk(ω + 1)/(γ + 1)]. Together these bounds give us that

OPT(G, p) = w(p) + n− k ∈ [vk, γvk]

with probability at least 1−O
(
(3/4)t

)
−O(e−δ2t/6) ≥ 1−O(e−δ2t/30).

k ≥ n − t. From (2) with ε = 1/2 − n
k(γ+1) ≥ 1/2 − 2/(γ + 3), with probability

1 − O(e−(1−4/(γ+3))2k/24) ≥ 1 − O(e−δ2t/30) (where we used that t ≤ δn/2 and k ≥
n(1− δ/2)), we have that

w(p) ∈ [(1− ε)k(ω + 1)/2, (1 + ε)k(ω + 1)/2] and
OPT(G, p) ∈ [w(p), w(p) + ω(n− k)]

⊆ [(1− ε)k(ω + 1)/2, (ω + 1)(n− (1− ε)k/2)]
= [

(
k/2 + n/(γ + 1)

)
(ω + 1)/2,

(
2n−

(
k/2 + n/(γ + 1)

))
(ω + 1)/2]

⊆ [vk, γvk]

for every k ≥ n− t ≥ n(1− δ) = 2n/(γ + 1). ◀

A.2 Proof of Theorem 14
We prove the first part of the theorem using Corollary 7. For this, we first denote by G the
distribution of graphs from Theorem 12, and by D the set of all cycles Cn. We define the
distribution D of functions fG : D → R≥0 computing the length of a given cycle in G ∼ G.
For a path p ∈ P k

n , we denote by Sp ⊆ Cn the set of cycles containing the path p, and we
define

S = {Sp : p ∈ P k
n , 0 ≤ k ≤ n− 1} .

It is easy to see that Cn ∈ S and for every cycle c ∈ Cn, {c} ∈ S. Now for a set Sp ∈ S
corresponding to a path p ∈ P k

n , we define g(Sp) = γvk. By Theorem 12 with t = 30ℓ/δ2, for
each Sp, Pr[g(Sp)/γ ≤ minc∈Sp f(c) ≤ g(Sp)] ≥ 1 − p for p = O

(
e−δ2t/30)

= O
(
e−ℓ

)
. Now

we apply Corollary 7 to our choices of f and g, and

γ′ := γ−1 ·min
c∈D

g({c})
g(D) ≥ γ−1 · vn−1/v0 ≥ (γ − 1)δ2n/(150ℓ) ,
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and have that

Pr
G∼G

[c← AhG(), w(c) ≤ γ′ OPT(G)] ≤ (q + 2) ·O
(
e−ℓ

)
≤ O

(
q · e−ℓ

)
.

To prove the “furthermore” part, we consider the following algorithm. Let G be an input
graph on n vertices, and let n be a multiple of ℓ−1. The algorithm first queries hG(p) for each
path p ∈ P ℓ−1

n of length ℓ− 1. Then the algorithm returns a cycle c = (c0, . . . , cn−1) ∈ Cn

that minimizes the sum

H(c) := hG(c0, . . . , cℓ−1) + hG(cℓ−1, . . . , c2(ℓ−1)) + . . . + hG(cn+1−ℓ, . . . , cn−1, c0) .

It is easy to see that the algorithm makes |P ℓ−1
n | =

(
n
ℓ

)
· ℓ! queries to hG.

Since for every path p ∈ P ℓ−1
n , w(p) ≤ hG(p), the weight of the resulting cycle does not

exceed H(c). Now it remains to show that minx∈Cn
H(x) ≤ γn OPT(G)/(ℓ − 1). To this

end, consider an optimal TSP cycle c′ ∈ Cn in G. Since for every subpath p ∈ P ℓ−1
n of c′,

hG(p) ≤ γ OPT(G), we have that

H(c) ≤ H(c′) ≤ γ OPT ·n/(ℓ− 1) .

A.3 Proof of Theorem 15
First, in the following lemma, we show that the “optimal satisfaction probability” ρw(P ) is
concentrated as a function of P .

▶ Lemma 16.

Pr
[
|ρw(P )− E[ρw(P )]| ≥ (ε/10)E[ρw(P )]

]
≤ 2 exp

(
− nε2 E[ρw(P )]2/(200k2)

)
.

Proof. Notice that for all assignments v, P and indices j ∈ [n], letting E be the event
(j = J

(i)
1 ) ∨ · · · ∨ (j = J

(i)
k ), we have

ρv(P ) = Pr[E] · Pr[v |= i | E, P ] + Pr[E] · Pr[v |= i | E, P ]

Observe that Pr[E] = k/n, and Pr[v |= i | E, P ] does not depend on P (j). Thus, defining

v⊕j =
{
¬v(x) x = j

v(x) x ̸= j,

we have

|ρv(P )− ρv(P ⊕j)| ≤ k/n.

It follows that for all partial assignments w,

|ρw(P )− ρw(P ⊕j)| ≤ k/n.

Indeed, if no v improves by more than k/n in success probability, the maximum success
probability over all v extending w cannot improve by more than k/n either. The desired
result follows by McDiarmid’s inequality (Lemma 5). ◀

It follows from the definition of a = a(F) and the Chernoff-Hoeffding bound that there is
a constant r′ > 0 such that for all assignments v:

Pr
I∼D

[SATI(v)/SATI ≥ (1+δ)(1−a)] = Pr
I∼D

[SATI(v) ≥ (1+δ)(1−a)m(I)] ≤ exp(−r′ ·δ2 ·n).
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(Informally, any fixed assignment is unlikely to satisfy much more than a 1− a fraction of
constraints.)

Notice that, for x, y > 0, if x ∈ [(1 − ε/3)y, (1 + ε/3)y], then x ∈ [(1 − ε)z, z], where
z = (1 + ε/3)y. Thus, by the useless oracle corollary (Corollary 7), Theorem 15 will follow
immediately from the claim below.

▷ Claim 17. Given a partial assignment w, let ρw(P ) = maxv:v extends w Pr[v |= i | P ].
There is a constant r > 0 such that

Pr
I∼Dm

[
|SATI(w)−mE[ρw(P )]| ≥ (ε/3)mE[ρw(P )]

]
≤ exp(−r · ε2 · n).

Proof. Fix a partial assignment w. We will argue that SATI(w) is concentrated conditional
on P . Fixing P and an assignment v, SATI(v) is the sum of m independent coin tosses
1(v |= i) with success probability ρv(P ). For the optimal v∗ extending w, we have
E[SATI(v)] = mρw(P ), and the Chernoff-Hoeffding bound gives

Pr
[
|SATI(v∗)−mρw(P )| ≥ (ε/10)mρw(P ) | P

]
≤ 2 exp(−ε2mρw(P )/600). (4)

Moreover, for any v extending w, SATI(v) is the sum of m independent coin tosses with a
smaller success probability ρv(P ) ≤ ρw(P ). Hence the upper bound of (4) holds, namely

Pr[SATI(v) ≥ (1 + ε/10)mρw(P ) | P ] ≤ exp(−ε2mρw(P )/600). (5)

Recall that SATI(w) is the maximum over all v extending w of SATI(v). Inequality (4) is
thus a high-probability lower bound on SATI(w), and (5) combined with a union bound
over the (at most cn) assignments v extending w gives a high-probability upper bound.
Specifically, plugging in m = 1000k2 log(c)n

ε2 , we have

Pr
[
|SATI(w)−mρw(P )| ≥ (ε/10)mρw(P ) | P

]
≤ (cn + 2) exp(−ε2mρw(P )/600)
≤ exp(−nρw(P )/(100k2)). (6)

Third, combining Inequality (6) with Lemma 16 yields

Pr
[
|SATI(w)−mE[ρw(P )]| ≤ (ε/3)mE[ρw(P )]

]
≤ 2 exp(−nε2 E[ρw(P )]2/(200k2)), (7)

where we have used E[ρw(P )] ≤ 1⇒ E[ρw(P )]2 ≤ E[ρw(P )].
To finish the proof, we show that E[ρw(P )] is bounded below by a constant independent of

n and w, if n ≥ ck. Since F is not trivially unsatisfiable, for all b ∈ [c], there is f∗ ∈ F with
f(b, . . . , b) = 1. As we argued before with trivial satisfiability, when a random constraint is
sampled, it is non-NULL and has constraint function f∗ with probability at least 1/ck · 1/2ck .
Letting the variable indices in the constraint be j1, . . . , jk, again for any assignment v (for
n ≥ ck) we have v(xj1) = · · · = v(xjk

) = b with probability at least Πk−1
i=0 (k − i)/(ck − i)

(again, the last expression corresponds to the case of n = ck and balanced v). Thus the
constraint is satisfied with probability at least 1/ck · 1/2ck ·Πk−1

i=0 (k − i)/(ck − i), as needed.
◁
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1 Introduction

In this paper, we study two problems, Red-Blue Set Cover and its generalization Circuit
Minimum Monotone Satisfying Assignment. Red-Blue Set Cover, a natural generalization
of Set Cover, was introduced by Carr et al. [5]. Circuit Minimum Monotone Satisfying
Assignment, a problem more closely related to Label Cover, was introduced by Alekhnovich
et al. [2] and Goldwasser and Motwani [12].

▶ Definition 1. In Red-Blue Set Cover, we are given a universe of (k + n) elements U

partitioned into disjoint sets of red elements (R) of size n and blue elements (B) of size k,
that is U = R ∪B and R ∩B = ∅, and a collection of sets S := {S1, · · · , Sm}. The goal is
to find a sub-collection of sets F ⊆ S such that the union of the sets in F covers all blue
elements while minimizing the number of covered red elements.
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11:2 Approximating Red-Blue Set Cover and Minimum Monotone Satisfying Assignment

Besides Red-Blue Set Cover, we consider the Partial Red-Blue Set Cover problem in
which we are additionally given a parameter k̂, and the goal is cover at least k̂ blue elements
while minimizing the number of covered red elements.

▶ Definition 2. The Circuit Minimum Monotone Satisfying Assignment problem of depth t,
denoted as MMSAt, is as follows. We are given a circuit C of depth t over Boolean variables
x1, . . . , xn. Circuit C has AND and OR gates: all gates at even distances from the root
(including the output gate at the root) are AND gates; all gates at odd distances are OR
gates. The goal is to find a satisfying assignment with the minimum number of variables xi

set to 1 (true).

Note that C computes a monotone function and the assignment of all ones is always a feasible
solution. Though the definitions of the problems are quite different, Red-Blue Set Cover and
MMSAt are closely related. Namely, Red-Blue Set Cover is equivalent to MMSA3.1 The
correspondence is as follows: variables x1, . . . , xn represent red elements; AND gates in the
third layer represent sets S1, . . . , Sm; OR gates in the second layer represent blue elements.
The gate for a set Sj is connected to OR gates representing blue elements of Sj and variables
xi representing red elements of Sj . It is easy to see that an assignment to x1, . . . , xn satisfies
the circuit if and only if there exists a sub-family F ⊆ S that covers all the blue elements,
and only covers red elements corresponding to variables xi which are assigned 1 (but not
necessarily all of them).

Background. Red-Blue Set Cover and its variants are related to several well-known prob-
lems in combinatorial optimization including group Steiner and directed Steiner problems,
minimum monotone satisfying assignment and ymmetric minimum label cover. Arguably, the
interest to the general MMSAt problem is mostly motivated by its connection to complexity
and hardness of approximation.

The Red-Blue Set Cover has applications in various settings such as anomaly detection,
information retrieval and notably in learning of disjunctions [5]. Learning of disjunctions over
{0, 1}m is one of the basic problems in the PAC model. In this problem, given an arbitrary
distribution D over {0, 1}m and a target function h∗ : {0, 1}m → {−1, +1} which denotes
the true labels of examples, the goal is to find the best disjunction f∗ : {0, 1}m → {−1, +1}
with respect to D and h∗ (i.e., f∗(x) computes a disjunction of a subset of coordinates of
x). The problem of learning disjunctions can be formulated as an instance of the (Partial)
Red-Blue Set Cover problem [4]: we can think of the positive examples as blue elements (i.e.,
h∗(x) = 1) and the negative examples as red elements (i.e., h∗(x) = −1). Then, we construct
a set Si corresponding to each coordinate i and the set Si contains an example x if the i-th
coordinate of x is equal to 1. Let C ⊂ {S1, · · · , Sm}. Then, the disjunction fC corresponding
to C, i.e., fC(x) :=

∨
Si∈C xi, outputs one on an example x if in the constructed Red-Blue

Set Cover instance, the element corresponding to x is covered by sets in C.
As we observe in Section 5, Red-Blue Set Cover is also related to the Min k-Union problem

which is a generalization of Densest k-Subgraph [8]. In Min k-Union, given a collection of
m sets S and a target number of sets k, the goal is to pick k sets from S whose union has
the minimum cardinality. Notably, under a hardness assumption, which is an extension of
the “Dense vs Random” conjecture for Densest k-Subgraph to hypergraphs, Min k-Union

1 Also observe that MMSA2 is equivalent to Set Cover.
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cannot be approximated better than Ω̃(m1/4−ε) [9]. In this paper, we prove a hardness of
approximation result for Red-Blue Set Cover by constructing a reduction from Min k-Union
to Red-Blue Set Cover.

1.1 Related work
Carr et al. [5] formulated the Red-Blue Set Cover problem and presented a 2

√
m-

approximation algorithm for the problem when every set contains only one blue element.
Later, Elkin and Peleg [11] showed that it is possible to obtain a 2

√
m log(n + k) approxim-

ation in the general case of the problem. This remained the best known upper bound for
Red-Blue Set Cover prior to our work. No non-trivial algorithms for MMSAt were previously
known for any t ≥ 4.

On the hardness side, Dinur and Safra [10] showed that MMSA3 is hard to approximate
within a factor of O(2log1−ϵ m) where ϵ = 1/ log logc m for any constant c < 1/2, if P ̸= NP .
As was observed by Carr et al. [5], this implies a factor of O(2log1−ϵ m) hardness for Red-Blue
Set Cover as well. The hardness result holds even for the special case of the problem where
every set contains only one blue and two red elements.

Finally, Charikar et al. [7] gave a lower bound on a variant of MMSA in which the circuit
depth t is not fixed. Assuming a variant of the Dense-vs-Random conjecture, they showed
that for every ε > 0, the problem does not admit an O(n1/2−ε) approximation, where n is
the number of variables, and an O(N1/3−ε) approximation, where N is the total number of
gates and variables in the circuit.

Learning of Disjunctions. While algorithms for Red-Blue Set Cover return a disjunction
with no error on positive examples, i.e., it covers all “blue” elements, it is straightforward to
make those algorithms work for the case with two-sided error. A variant of the problem with
a two-sided error is formally defined as Positive–Negative Partial Set Cover [15] where the
author showed that a f(m, n)-approximation for Red-Blue Set Cover implies a f(m + n, n)-
approximation for Positive-Negative Partial Set Cover. Our result also holds for Partial
Red-Blue Set Cover and a c-approximation for Partial Red-Blue Set Cover can be used to
output a c-approximate solution of Positive-Negative Partial Set Cover.

Awasthi et al. [4] designed an O(n1/3+α)-approximation for any constant α > 0. While
the proposed algorithm of Awasthi et al. is an agnostic learning of disjunctions (i.e., the
solution is not of form of disjunctions), employing an approximation algorithm of Red-Blue
Set Cover, produces a disjunction as its output (i.e., the algorithms for Red-Blue Set Cover
are proper learners).

Geometric Red-Blue Set Cover. The problem has been studied extensively in geometric
models. Chan and Hu [6] studied the setting in which R and B are sets of points in R2 and
S is a collection of unit squares. They proved that the problem still remains NP-hard in
this restricted instance and presented a PTAS for this problem. Madireddy and Mudgal [13]
designed an O(1)-approximation algorithm for another geometric variant of the problem,
in which sets are unit disks. The problem has also been studied in higher dimensions with
hyperplanes and axis-parallel objects as the sets [3, 14, 1].

1.2 Our Results
In this paper, we present new approximation algorithms for Red-Blue Set Cover, MMSA4,
and general MMSAt. Additionally, we offer a new conditional hardness of approximation
result for Red-Blue Set Cover. We also discuss the integrality gap of a basic SDP relaxation
of MMSAt strengthened by Sherali–Adams when t→∞.
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11:4 Approximating Red-Blue Set Cover and Minimum Monotone Satisfying Assignment

We start by describing our result for Red-Blue Set Cover.

▶ Theorem 3. There exists an O(m1/3 log4/3 n log k)-approximation algorithm for Red-Blue
Set Cover where m is the number of sets, n is the number of red elements, and k is the
number of blue elements.

As we demonstrate later, our algorithm also works for the Partial Red-Blue Set Cover.
Our approach partitions the instance into subinstances in which all sets have a bounded
number of red elements, say between r and 2r, and each red element appears in a bounded
number of sets. Utilizing the properties of this partition, we show that we can always find a
small collection of sets that preserves the right ratio of red to blue elements in order to make
progress towards an Õ(m1/3)-approximation algorithm.2 Then, by applying the algorithm
iteratively until all blue elements are covered, we obtain the guarantee of Theorem 3. In each
iteration, our analysis guarantees the feasibility of a local LP relaxation for which a simple
randomized rounding obtains the required ratio of blue to red vertices.

Now we describe our results for the MMSA problem.

▶ Theorem 4. There exists an Õ(N1/3)-approximation algorithm for MMSA4, where N is
the total number of gates and variables in the input instance.

Our algorithm for MMSA4 is inspired by our algorithm for MMSA3, though due to the
complexities of the problem, the algorithm is significantly more involved. In particular, there
does not seem to be a natural preprocessing step analogous to the partition we apply for
Red-Blue Set Cover, and so we need to rely on a higher-moment LP relaxation and a careful
LP-based partition which is built into the algorithm.

▶ Theorem 5. Let t ≥ 4. Define δ = 1
3 · 2

3−⌈t/2⌉. There exists an Õ(N1−δ)-approximation
algorithm for MMSAt where N is the total number of gates and variables in the input instance.

Our algorithm for general MMSAt applies a recursion on the depth t, with our algorithms
for Red-Blue Set Cover and MMSA4 as the basis of the recursion. Each recursive step relies
on an initially naive LP relaxation to which we add constraints as calls to the algorithm for
smaller depth MMSA reveal new violated constraints.

We complement our upper bound for Red-Blue Set Cover with a hardness of approximation
result.

▶ Theorem 6. Assuming the Hypergraph Dense-vs-Random Conjecture, for every ε > 0, no
polynomial-time algorithm achieves better than O(m1/4−ε/ log2 k) approximation for Red-Blue
Set Cover where m is the number of sets and k is the number of blue elements.

To show the hardness, we present a reduction from Min k-Union to Red-Blue Set Cover that
preserves the approximation up to a factor of polylog(k). Then, the hardness follows from
the standard conjectured hardness of Min k-Union [9]. In our reduction, all elements of the
given instance of Min k-Union are considered as the red elements in the constructed instance
for Red-Blue Set Cover and we further complement each set with a sample size of O(log k)
(with replacement) from a ground set of blue elements of size k. We prove that this reduction
is approximation-preserving up to a factor of polylog(k).

2 Here, we abuse the Õ notation to hide polylog factors of n, k.
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Organization. In Section 2, we restate Red-Blue Set Cover and introduce some notation.
In Section 3, we present our algorithm for Red-Blue Set Cover. We adapt this algorithm for
Partial Red-Blue Set Cover in Appendix A. Then, in Section 4 we give the algorithm for
MMSAt with t ≥ 5. This algorithm relies on the algorithm for MMSA4, which we describe
later in Section 6. We present a reduction from Min k-Union to Red-Blue Set Cover, which
yields a hardness of approximation result for Red-Blue Set Cover, in Section 5. The discussion
on hardness of the general MMSAt problem is deferred to the full version of the paper.

2 Preliminaries

To simplify the description and analysis of our approximation algorithm for Red-Blue Set
Cover, we restate the problem in graph-theoretic terms. Essentially we restate the problem
as MMSA3. Specifically, we think of a Red-Blue Set Cover instance as a tripartite graph
(B, J, R, E) in which all edges (E) are incident on J and either B or R. The vertices in
J represent the set indices, and their neighbors in B (resp. R) represent the blue (resp.
red) elements in these sets. Thus, our goal is to find a subset of the vertices in J that is a
dominating set for B and has a minimum total number of neighbors in R. For short, we will
denote the cardinality of these different vertex sets by k = |B|, m = |J |, and n = |R|.

Similarly, we think of a MMSA4 instance as a tuple (B, J, R, S, E). Here, B, J , and R

represent gates in the second, third, and fourth layers of the circuit (where layer i consists
of the gates at distance i − 1 from the root), respectively; S represents the variables; E

represent edges between gates/variables. Combinatorially, the goal is to obtain a subset of
J as above, along with a minimum dominating set in S for the red neighbors (in R) of our
chosen subset of J .

Notation. We use Γ(·) to represent neighborhoods of vertices, and for a vertex set U , we
use Γ(U) to denote the union of neighborhoods of vertices in U , that is

⋃
u∈U Γ(u). We also

consider restricted neighborhoods, which we denote by ΓT (u) := Γ(u)∩T or ΓT (U) = Γ(U)∩T .
We will refer to the cardinality of such a set, i.e. |ΓT (u)| as the T -degree of u.

▶ Remark 7. Note that, for every set index j ∈ J , the set Γ(j) is simply the set Sj in the
set system formulation of the problem, and the set ΓR(j) (resp. ΓB(j)) is simply the subset
of red (resp. blue) elements in the set with index j. Similarly, ΓJ(i) consists of indices j

representing those sets Sj that contain element i, for any i ∈ R ∪B.

For Red-Blue Set Cover algorithms, we introduce a natural notion of progress:

▶ Definition 8. We say that an algorithm for Red-Blue Set Cover makes progress towards
an O(A · log k)-approximation if, given an instance with an optimum solution containing
OPT red elements, the algorithm finds a subset Ĵ ⊆ J such that |ΓR(Ĵ)|

|ΓB(Ĵ)| ≤ A · OPT
|B| .

It is easy to see that if we have an algorithm which makes progress towards an A-
approximation, then we can run this algorithm repeatedly (with decreasing |B| parameter,
where initially |B| = k) until we cover all blue elements and obtain an O(A · log k)-
approximation. For brevity, all logarithms are implicitly base 2 unless otherwise specified,
that is, we write log(·) ≡ log2(·).
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11:6 Approximating Red-Blue Set Cover and Minimum Monotone Satisfying Assignment

3 Approximation Algorithm for Red-Blue Set Cover

We begin by excluding a small number of red elements, and binning the sets J into a small
number of bins with uniform red-degree. For an O(A)-approximation, the goal will be to
exclude at most A ·OPT red elements (we may guess the value of OPT by a simple linear or
binary search). This is handled by the following lemma:

▶ Lemma 9. There is a polynomial time algorithm, which, given an input (B, J, R, E) and
parameter n0, returns a set of at most log n pairs (Jα, Rα) with the following properties:

The sets Jα ⊆ J partition the set J .
The sets Rα ⊆ R form a nested collection of sets, and the smallest among them (i.e.,
their intersection) has cardinality at least n− n0. That is, at most n0 red elements are
excluded by any of these sets.
For every α there is some rα such that every set j ∈ Jα has Rα-degree (or restricted red
set size) |ΓRα

(j)| ∈ [rα, 2rα],
and for every α, every red element i ∈ Rα has Jα-degree at most (that is, the number of
red sets in Jα that contain i) |ΓJα

(i)| ≤ 2mrα log n
n0

.

Proof. Consider the following algorithm:
Let r be the maximum red-degree (i.e., maxj∈J degR(j)).
Repeat the following while J ̸= ∅:

Delete the top n0/ log n J-degree red elements from R, along with their incident edges.
After this deletion, let J ′ = {j ∈ J | degR(j) ∈ [r/2, r]}.
If J ′ is non-empty, add the current pair (J ′, R) to the list of output pairs (excluding
all elements deleted from R so far).
Remove the sets in J ′ from J (along with incident edges) and let r ← r/2.

By the decrease in r, it is easy to see that this partitions J into at most log n sets (or more
specifically, log of the initial maximum red set size, maxj∈J degR(j)). Also note that at
the beginning of each iteration, all red sets have size at most r, and so there are at most
mr edges to R, and the top n0/ log n J-degree red elements will have average degree (and
in particular minimum degree) at most mr/(n0/ log n). Thus, after removing these red
elements, all remaining red elements will have J-degree (and in particular J ′-degree) at most
the required bound of 2mrα log n

n0
where rα = r/2. Finally, since there at most log n iterations,

the total number of red elements removed across all iterations is at most n0. ◀

Our algorithm works in iterations, where at every iteration, some subset of blue elements
is covered and removed from B. However, nothing is removed from J or R. Thus the above
lemma applies throughout the algorithm. Note that for an optimum solution JOPT ⊆ J , for
at least one of the subsets Jα in the above partition, the sets in JOPT ∩ Jα must cover at
least a (1/ log n)-fraction of B. Thus, to achieve an O(A) approximation, it suffices to apply
the above lemma with parameter n0 = OPT ·A, and repeatedly make progress towards an
A-approximation within one of the subgraphs induced on (B, Jα, Rα). We will only pay at
most another OPT ·A in the final analysis by restricting our attention to these subinstances.

Let us fix some optimum solution JOPT ⊆ J in advance. For any α in the above partition,
let Jα

OPT = Jα∩JOPT be the collection of sets in Jα that also belong to our optimum solution,
and let Bα = ΓB(Jα

OPT) be the blue elements covered by the sets in Jα
OPT. Note that every

blue element must belong by the feasibility of JOPT to at least one Bα. In this context we
can show the following:
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▶ Lemma 10. For any α in the partition described in Lemma 9, there exists a red element
i0 ∈ Rα such that its optimum Jα-restricted neighbors ΓJα

OPT
(i0) cover at least |Bα|rα/OPT

blue elements.

Proof. Consider the following subgraph of (Bα, Jα
OPT, E(Bα, Jα

OPT)). For every blue element
ℓ ∈ Bα, retain exactly one edge to Jα

OPT. Let F̂ be this set of edges.
Thus the blue elements Bα have at least |Bα|rα paths through F̂ × E(Jα

OPT, Rα) to the
red neighbors of Jα

OPT in Rα. Since there are at most OPT such red neighbors, at least
one of them, say i0 ∈ ΓRα(Jα

OPT), must be involved in at least a 1/OPT fraction of these
paths. That is, at least |Bα|rα/OPT paths. Since the F̂ -neighborhoods of the vertices in
Jα

OPT are disjoint (by construction), these paths end in distinct blue elements, thus, at least
|Bα|rα/OPT elements in Bα. ◀

Of course, we cannot know which red element will have this property, but the algorithm
can try all elements and run the remainder of the algorithm on each one. Now, given a red
element i0 ∈ Rα, our algorithm proceeds as follows: Begin by solving the following LP.

max
∑
ℓ∈B

zℓ (1)∑
i∈Rα

yi ≤ OPT (2)

0 ≤ zℓ ≤ min{1,
∑

j∈ΓJα (i0)∩ΓJα (ℓ)

xj} ∀ℓ ∈ B (3)

0 ≤ xj ≤ yi ≤ 1 ∀j ∈ ΓJα
(i0), i ∈ ΓRα

(j) (4)

In the intended solution, xj is the indicator for the event that j ∈ ΓJα
OPT

(i0), yi is the
indicator variable for the event that red vertex i is in the union of red sets indexed by
ΓJα

OPT
(i0) (and therefore in the optimum solution), and zℓ is the indicator variable for the

event that the blue vertex ℓ ∈ B is is covered by some set in ΓJα
OPT

(i0). This LP is always
feasible (say, by setting all variables to 0), though since there are at most log n subinstances
in the partition, for at least one α we must have |Bα| ≥ |B|/ log n, and then by Lemma 10,
there is also some choice of i0 ∈ Rα for which the objective function satisfies∑

ℓ∈B

zℓ ≥
|Bα|rα

OPT ≥ |B|rα

OPT · log n
. (5)

The algorithm will choose α and i0 that maximize the rescaled objective function
∑

ℓ∈B zℓ/rα,
guaranteeing this bound. Finally, at this point, we perform a simple randomized rounding,
choosing every set j ∈ ΓJα(i0) independently with probability xj . The entire algorithm is
described in Algorithm 1.

Now let J∗ ⊆ Jα be the collection of sets added by this step in the algorithm. Let us
analyze the number of blue elements covered by J∗ and the number of red elements added to
the solution. First, noting that this LP acts as a max coverage relaxation for blue elements,
the expected number of blue elements covered will be at least (1 − 1/e) |B|rα

OPT·log n , by the
standard analysis and the bound (5).

Now let us bound the number of red elements added. Let J+ =
{

j ∈ ΓJα
(i0)

∣∣∣ xj ≥ OPT
rαÂ

}
for a value of Â to be determined later. By Constraint (4), every red neighbor i ∈ ΓRα

(J+)
will also have yi ≥ OPT/(rαÂ), and so by Constraint (2), there can be at most rαÂ such
neighbors. On the other hand, the expected number of red elements added by the remaining
sets j ∈ J∗ \ J+ is bounded by
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Algorithm 1 Approximation Algorithm for Blue-Red Set Cover.

Input: B, J, R, E

guess OPT ▷ e.g. using binary search
JALG = ∅ ▷ JALG stores the current solution
find decomposition {(Jα, Rα)}α as in Lemma 9, with n0 = OPT ·m1/3 log4/3 n log2 k.

while B ̸= ∅ do
for all α and i0 ∈ Rα do

Solve LP (1)-(4). Let LP(α, i0) be its objective value
end for
choose the value of α and i0 which maximizes LP(α, i0)/rα

let x, y, z be an optimal solution for this LP
use solution x and the method of conditional expectations to find J∗ ⊆ Jα

s.t. |ΓRα
(J∗)|/|ΓB(J∗)| ≤ O(1) ·m1/3 log4/3 n ·OPT/|B| ▷ see the proof for details

let JALG = JALG ∪ J∗

let B = B \ ΓB(J∗)
remove edges incident to deleted vertices from E

end while
return JALG

E

∣∣∣∣∣∣
⋃

j∈J∗\J+

ΓRα(j)

∣∣∣∣∣∣
 ≤ 2rαE [|J∗ \ J+|] by Rα-degree bounds for j ∈ Jα

= 2rα ·
∑

j∈ΓJα (i0)\J+

xj

≤ 2rα ·
OPT
rαÂ

|ΓJα
(i0) \ J+| by definition of J+

≤ 2OPT
Â

· 2mrα log n

OPT · Â
by Jα-degree bounds for i ∈ Rα

= 4mrα log n

Â2

These two bounds are equal when rαÂ = 4mrα log n/Â2, that is, when Â = (4m log n)1/3,
giving us a total bound on the expected number of red elements added in this step of

E[|ΓRα(J∗)|] ≤ 2rα(4m log n)1/3 ≤ 2rα(4m log n)1/3

(1− 1/e)|B|rα/(OPT · log n) · E[|ΓB(J∗)|].

Thus, E[|ΓRα(J∗)|] − 2(4m log4 n)1/3OPT
(1−1/e)|B| · E|ΓB(J∗)| ≤ 0. Using the method of conditional

expectations, we can derandomize the algorithm and find J∗ with a non-empty blue neighbor
set such that |ΓRα (J∗)|

|ΓB(J∗)| ≤ O(1) ·m1/3 log4/3 n · OPT
|B| . Thus, we make progress (according to

Definition 8) towards an approximation guarantee of Ã · k for Ã = O
(

m1/3 log4/3 n
)

, which,
as noted, ultimately gives us the same approximation guarantee for Red-Blue Set Cover,
proving Theorem 3.

4 Approximating MMSAt for t ≥ 5

We now turn to the general problem of approximating MMSAt for arbitrarily large (but
fixed) t. We will build on our approximation algorithm for MMSA4 (described in Section 6)
by recursively calling approximation algorithms for the problem with smaller values of t, and
using the result of this approximation as a separation oracle in certain cases.



E. Chlamtáč, Y. Makarychev, and A. Vakilian 11:9

We will denote the total size of our input by N , and we will denote our approximation
factor for MMSAt by At. We will only describe an algorithm for even depth. There is a very
slightly simpler but quite similar algorithm for odd depth, however the guarantee we are
able to achieve for MMSA2t−1 is nearly the same as for MMSA2t (up to an O(log N) factor).
Since MMSA2t−1 is essentially a special case of MMSA2t, we focus only on even levels.

▶ Lemma 11. For t ≥ 2, if MMSA2t can be approximated to within a factor of A2t, then we
can approximate MMSA2t+2 (and thus MMSA2t+1) to within O(

√
N ·A2t log N).

Proof. Denote our input as a layered graph with vertex layers V1, . . . , V2t+2. Ideally, we
would like to discard any vertex j ∈ V2t such that covering its neighbors Γ2t+1(j) requires
more than OPT vertices in V2t+2, however, checking this precisely requires solving Set Cover.
Instead, we discard any vertex j ∈ V2t for which the smallest fractional set cover3 in V2t+2
of its neighbors ΓV2t+1(j) has value greater than OPT. Such vertices cannot be included
without incurring cost greater than OPT and so we know they do not participate in any
optimum solution. We begin with the following basic LP:∑

h∈V2t+2

wh ≤ OPT (6)

yi ≤
∑

h∈Γ2t+2(i)

wh ∀i ∈ V2t+1 (7)

xj ≤ yi ∀j ∈ V2t, i ∈ ΓV2t+1(j) (8)
xj , yi, wh ∈ [0, 1] ∀j ∈ V2t∀i ∈ V2t+1∀h ∈ V2t+2 (9)

Note that, as stated, this LP is trivial. Indeed, in the absence of any additional constraints,
the all-zero solution is feasible. However, we will add new violated constraints as the algorithm
proceeds.

Given a solution to the above linear program, our algorithm for MMSA2t+2 is as follows:
Let V +

2t = {j ∈ V2t | xj ≥ 2(1 + ln N)/A2t+2}. Add these vertices to the solution.
Let V +

2t+2 = ΓV2t+2(ΓV2t+1(V +
2t )) be the neighbors-of-neighbors of V +

2t .
Apply a greedy (1 + ln N)-approximation for Set Cover to obtain a set cover (in V2t+2)
for ΓV2t+1(V +

2t ), and add this set cover to the solution as well.
Create an instance of MMSA2t by removing layers V2t+1, V2t+2, all vertices in V +

2t , as
well as their neighbors in V2t−1, that is, ΓV2t−1(V +

2t ), as these are already covered by V +
2t .

Apply an A2t-approximation algorithm for MMSA2t to this instance, and let UALG ⊆
V2t \ V +

2t be the result (or at least the portion belonging to layer 2t).
If |UALG| ≤ A2t+2/(2 + 2 ln N), add the vertices in UALG to the solution, as well as a
greedy set cover (in V2t+2) for the neighborhood ΓV2t+1(UALG).
Otherwise (if |UALG| > A2t+2/(2 + 2 ln N)), continue the Ellipsoid algorithm using the
new violated constraint∑

j∈V2t\V +
2t

xj ≥
⌊

A2t+2

2(1 + ln N)A2t

⌋
+ 1, (10)

and restart the algorithm (discarding the previous solution) using the new LP solution.

3 That is, min
{∑

h∈S

zh

∣∣∣∣ ∀i ∈ ΓV2t+1 (j) :
∑

h∈ΓV2t+2 (i)

zh ≥ 1; ∀h ∈ S : zh ≥ 0
}

.
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Let us now analyze this algorithm. By (8), we know that all neighbors i ∈ V2t+1 of V +
2t

have LP value yi ≥ 2(1 + ln N)/A2t+2. Thus, by (7), if for every vertex h ∈ V2t+2 we define
w+

h = wh ·A2t+2/(2 + 2 ln N), then this is a fractional Set Cover for the V2t+1-neighborhood
ΓV2t+1(V +

2t ), and by (6) it has total fractional value at most OPT ·A2t+2/(2 + 2 ln N). Thus,
the greedy Set Cover (1 + ln N)-approximation algorithm will cover this neighborhood using
at most OPT ·A2t+2/2 vertices in V2t+2. After this step, we may add at most OPT ·A2t+2/2
additional vertices in V2t+2 to our solution to obtain an A2t+2-approximation.

Now, suppose our MMSA2t approximation returns a set UALG of cardinality |UALG| ≤
A2t+2/(2 + 2 ln N). Clearly, adding to our solution the vertices of UALG and a V2t+2-Set
Cover for its neighborhood ΓV2t+1(UALG) gives a feasible solution to our MMSA2t+2 instance.
Moreover, since by our preprocessing, the neighborhood ΓV2t+1(j) of every j ∈ UALG has a
fractional Set Cover in V2t+2 of value at most OPT, it follows that the union of all these
neighborhoods, that is ΓV2t+1(UALG), has a fractional set cover in V2t+2 of value at most
OPT · |UALG| ≤ OPT ·A2t+2/(2 + 2 ln N). And so applying a greedy Set Cover algorithm for
the neighborhood ΓV2t+1(UALG) contributes at most an additional OPT ·A2t+2/2 vertices in
V2t+2 to our solution, as required.

Finally, let us examine the validity of the final step (the separation oracle). If the A2t-
approximation for MMSA2t was not able to find a solution of size at most A2t+2/(2 + 2 ln N),
then by definition, the value of any solution to our MMSA2t instance must be greater than
A2t+2/((2 + 2 ln N)A2t). This is a subinstance of our original instance, so any solution to our
original MMSA2t+2 instance must also contain more than A2t+2/((2 + 2 ln N)A2t) vertices
in V2t. Thus, Constraint (10) is valid for any optimum solution. But when is it violated?

By definition of V +
2t , the current total LP value of V2t \V +

2t is at most 2(1 + ln N)N/A2t+2.
And so the current LP solution violates (10) if

2(1 + ln N)N
A2t+2

≤ A2t+2

2(1 + ln N)A2t
⇐⇒ A2t+2 ≥ 2(1 + ln N)

√
N ·A2t.

Thus, we can obtain an approximation factor of A2t+2 = O(
√

N ·A2t log N) as claimed. ◀

Thus, by induction on t, with the guarantee of Theorem 4 for MMSA4 as the basis of the
induction, and Lemma 11 for the inductive steps, we get a general approximation algorithm
for MMSAt with approximation ratio O

(
N1− 1

3 23−⌈t/2⌉ · (log N)2+O(2−t/2)
)

.

5 Reduction from Min k-Union to Red-Blue Set Cover

In this section, we first present a reduction from Min k-Union to Red-Blue Set Cover and
then prove a hardness result for Red-Blue Set Cover. We start with formally defining the
Min k-Union problem.

▶ Definition 12 (Min k-Union). In the Min k-Union problem, we are given a set X of size
n, a family S of m sets S1, . . . , Sm, and an integer parameter k ≥ 1. The goal is to choose k

sets Si1 , . . . , Sik
so as to minimize the cost

∣∣∣⋃k
t=1 Sit

∣∣∣. We will denote the cost of the optimal
solution by OPTMU (X,S, k).

Note that Min k-Union resembles the Red-Blue Set Cover Cover problem: in both problems,
the goal is to choose some subsets Si1 , . . . , Sir

from a given family S so as to minimize the
number of elements or red elements in their union. Importantly, however, the feasibility
requirements on the chosen subsets Si1 , . . . , Sir are different in Red-Blue Set Cover Cover
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and Min k-Union; in the former, we require that the chosen sets cover all k blue points but
in the latter, we simply require that the number of chosen sets be k. Despite this difference,
we show that there is a simple reduction from Min k-Union to Red-Blue Set Cover.

▷ Claim 13. There is a randomized polynomial-time reduction from Min k-Union to Red-
Blue Set Cover that given an instance I = (X,S, k) of Min k-Union returns an instance
I ′ = (R, B, {S′

i}i∈[m]) of Red-Blue Set Cover satisfying the following two properties:
1. If S′

j1
, . . . , S′

jr
is a feasible solution for I ′ then k′ ≤ r and the cost of solution Sj1 , . . . , Sjk′

for Min k′-Union where k′ = ⌊k/ℓ⌋ and ℓ = ⌈loge k⌉+1 does not exceed that of S′
j1

, . . . , S′
jr

for Red-Blue Set Cover:

costMU (Sj1 , . . . , Sjk′ ) ≡

∣∣∣∣∣∣
k′⋃

t=1
Sit

∣∣∣∣∣∣ ≤
∣∣∣∣∣

r⋃
t=1

(S′
it
∩R)

∣∣∣∣∣ = costRB(S′
j1

, . . . , S′
jr

).

This is true always no matter what random choices the reduction makes.
2. OPTRB(R, B, {S′

i}i) ≤ OPTMU (X,S, k) with probability at least 1− 1/e.

Proof. We define instance I ′ as follows. Let R = X and B = [k]. For every i ∈ [m],
let Ri = Si; Bi be a set of ℓ elements randomly sampled from [k] with replacement, and
S′

i = Ri∪Bi. All random choices are independent. Now we verify that this reduction satisfies
the required properties.

Consider a feasible solution S′
j1

, . . . , S′
jr

for I ′. Since this solution is feasible, ∪r
t=1Bt = B.

Now |Bt| ≤ ℓ and thus r ≥ |B|/ℓ = k/ℓ ≥ k′, as required. Further,

costMU (Sj1 , . . . , Sjk′ ) ≡

∣∣∣∣∣∣
k′⋃

t=1
Sjt

∣∣∣∣∣∣ =

∣∣∣∣∣∣
k′⋃

t=1
Rjt

∣∣∣∣∣∣ ≤
∣∣∣∣∣

r⋃
t=1

Rjt

∣∣∣∣∣ ≡ costRB(S′
j1

, . . . , S′
jr

).

We have verified that item 1 holds. Now, let Si1 , . . . , Sik
be an optimal solution for I. We

claim that S′
i1

, . . . , S′
ik

is a feasible solution for I ′ with probability at least 1− 1/e. To verify
this claim, we need to lower bound the probability that Bi1 ∪ · · · ∪ Bik

= B. Indeed, set
Bi1 ∪ · · · ∪Bik

consists of kℓ elements sampled from B with replacement. The probability
that a given element b ∈ B is not in Bi1 ∪ · · · ∪Bik

is at most (1− 1/k)kℓ ≤ e−ℓ ≤ 1
ek . By

the union bound, the probability that there is some b ∈ B \ (Bi1 ∪ · · · ∪ Bik
) is at most

k × 1
ek = 1

e . Thus, there is no such b with probability at least 1 − 1/e and consequently
Bi1 ∪ · · · ∪ Bik

= B. In that case, the cost of solution S′
i1

, . . . , S′
ik

for Red-Blue Set Cover
equals

∣∣∣⋃k
i=1 R′

it

∣∣∣ =
∣∣∣⋃k

i=1 Sit

∣∣∣, the cost of the optimal solution for Min k-Union. ◁

▶ Corollary 14. Assume that there is an α(m, n) approximation algorithm A for Red-Blue
Set Cover (where α is a non-decreasing function of m and n).Then there exists a randomized
polynomial-time algorithm B for Min k-Union that finds k′ sets Si1 , . . . , Sik′ such that∣∣∣∣∣∣

k′⋃
t=1

Sit

∣∣∣∣∣∣ ≤ α(m, n)OPTMU (X,S, k).

The failure probability is at most 1/n.

Proof. We simply apply the reduction to the input instance of Min k-Union and then solve
the obtained instance of Red-Blue Set Cover using algorithm A. To make sure that the
failure probability is at most 1/n, we repeat this procedure ⌈loge n⌉ times and output the
best of the solutions we found. ◀
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▶ Theorem 15. Assume that there is an α(m, n) approximation algorithm A for Red-
Blue Set Cover (where α is a non-decreasing function of m and n). Then there exists an
O(log2 k)α(m, n) approximation algorithm for Min k-Union.

Proof. Our algorithm iteratively uses algorithm B from the corollary to find an approximate
solution. First, it runs B on the input instance and gets k1 = k′ sets. Then it removes the
sets it found from the instance and reduces the parameter k to k − k1. Then the algorithm
runs B on the obtained instance and gets k2 sets. It again removes the obtained sets and
reduces k to k−k1−k2 (here k is the original value of k). It repeats these steps over and over
until it finds k sets in total. That is, k1 + · · ·+ kT = k where T is the number of iterations
the algorithm performs.

Observe that each of the instances of Min k-Union constructed in this process has cost
at most OPTMU (X,S, k). Indeed, consider the subinstance It+1 we solve at iteration t + 1.
Consider k sets that form an optimal solution for (X,S, k). At most k1 + · · ·+ kt of them
have been removed from It+1 and thus at least k − k1 − · · · − kt are still present in It+1.
Let us arbitrarily choose k − k1 − · · · − kt sets among them. The chosen sets form a feasible
solution for It+1 of cost at most OPTMU (X,S, k).

Thus, the cost of a partial solution we find at each iteration t is at most α(m, n) ·
OPTMU (X,S, k). The total cost is at most α(m, n) · T · OPTMU (X,S, k). It remains to
show that T ≤ O(log2 k). We observe that the value of k reduces by a factor at least 1− 1/ℓ

in each iteration, thus after t iterations it is at most (1− 1/ℓ)tk. We conclude that the total
number of iterations T is at most O(ℓ log k) = O(log2 k), as desired. ◀

Now we obtain a conditional hardness result for Reb-Blue Set Cover from a corollary from
the Hypergraph Dense-vs-Random Conjecture.

▶ Corollary 16 (Chlamtáč et al. [9]). Assuming the Hypergraph Dense-vs-Random Conjecture,
for every ε > 0, no polynomial-time algorithm for Min k-Union achieves better than Ω(m1/4−ε)
approximation.

Theorem 6 immediately follows.

6 Approximation Algorithm for MMSA4

Consider an instance (B, J, R, S, E) of MMSA4. As we did for Red-Blue Set Cover, we will
focus on making progress towards a good approximation. Due to space constraints, we have
omitted most proofs for statements in this section. Complete proofs can be found in the full
version of the paper.

▶ Definition 17. We say that an algorithm for MMSA4 makes progress towards an O(A)-
approximation if, given an instance with an optimum solution containing at most OPT vertices
in S, the algorithm finds a subset Ĵ ⊆ J and a subset Ŝ ⊆ S such that ΓR(Ĵ) ⊆ ΓR(Ŝ) (a
valid partial solution) and |Ŝ|

|ΓB(Ĵ)| ≤ A · OPT
|B| .

As before, it is easy to see that given such an algorithm, we can run such an algorithm
repeatedly to obtain an actual Õ(A) approximation for MMSA4. In fact, in the rest of
this section we will only discuss an algorithm which makes progress towards an O(A)-
approximation.

For the sake of formulating an LP relaxation with a high degree of uniformity, we will
actually focus on a partial solution which covers a large fraction of blue elements in a uniform
manner:
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▶ Lemma 18. For any cover J0 ⊆ J of the blue elements B, there exist subsets J ′ ⊆ J0 and
B′ ⊆ B and a parameter ∆ > 0 with the following properties:

Every vertex j ∈ J ′ has B′-degree in the range degB′(j) ∈ [∆, 2∆].
Every blue element ℓ ∈ B′ has at least one neighbor in J ′

∆ and at most 2e ln(2k) neighbors.
We have the cardinality bound |B′| ≥ |B|/(log k log m).

Simplifying Assumptions. We can make the following assumptions which will be useful
in the analysis of our algorithm. First, we may assume that for every j ∈ J , the red
neighborhood ΓR(j) has a fractional set cover in S of weight at most OPT. That is, the
standard LP relaxation for covering ΓR(j) using S has optimum value at most OPT. If we
have guessed the correct value of OPT, then we know that no j ∈ J whose red neighborhood
cannot be covered with cost OPT can participate in an optimum solution, and can therefore
be discarded. We may also assume that for some ε > 0, the value ∆ above is at most k/mε.
The reason is that otherwise, the blue elements B′ can be covered with at most Õ(mε)
vertices in J , and we know that for each of these, its red neighborhood can be covered by a
set of size Õ(OPT) in S, and thus we can make progress towards an Õ(mε) approximation.

Guessing the value of ∆ ∈ [k] above and the value of the optimum OPT, we can write
the following LP relaxation:∑

h∈S

wh ≤ OPT (11)∑
ℓ∈B

zℓ ≥ |B|/(log k log m) (12)

zℓ ≤
∑

j∈ΓJ (ℓ)

xℓ
j ≤ 2e ln(2k)zℓ ∀ℓ ∈ B (13)

∆xj ≤
∑

ℓ∈ΓB(j)

xℓ
j ≤ 2∆xj ∀j ∈ J (14)

0 ≤ xℓ
j ≤ xj , zℓ ≤ 1 ∀ℓ ∈ B∀j ∈ J (15)∑

h∈ΓS(i)

wh ≥ yi ∀i ∈ R (16)

0 ≤ xj ≤ yi ∀(j, i) ∈ E(J, R) (17)

We further strengthen this LP by partially lifting the above constraints. Specifically, for every
a ∈ J ∪S, j ∈ J , h ∈ S, i ∈ R, and ℓ ∈ B we introduce variables X

(a)
h , X

(a)
ℓ , X

(a)
ℓ,j , X

(a)
j , X

(a)
i ,

and lift all the above constraints accordingly. For a precise definition, see Appendix B. For
any j ∈ J such that xj > 0 or h ∈ S such that wh > 0, we will denote the “conditioned”
variables by ŵ

(j)
h = X

(j)
h /xj , ẑ

(h)
ℓ = X

(h)
ℓ /wh, etc.

▶ Remark 19. The above linear program is a relaxation for the partial solution given by
Lemma 18. Specifically, given an optimal solution (JOPT, SOPT), applying the lemma to
J0 = JOPT, we have the following feasible solution: Set the variables zℓ and xj to be indicators
for B′ and J ′ as in the lemma, respectively, and the variables xℓ

j to be indicators for J ′ ×B′.
Set the the variables wh to be indicators for SOPT, and the variables yi to be indicators for
the red neighbors ΓR(J ′) of J ′.

Let us examine some useful properties of this relaxation. First of all, we note that it
approximately determines the total LP value of J (since the LP assigns total LP value Θ̃(|B|)
to B):
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▷ Claim 20. Any solution satisfying constraints (13)-(15), has total LP weight in J bounded
by 1

2∆
∑

ℓ∈B zℓ ≤
∑

j∈J xj ≤ 2e ln(2k)
∆

∑
ℓ∈B zℓ.

These constraints also determine a useful combinatorial property: in any feasible solution,
the number of blue neighbors a subset of J has is (at least) proportional to the LP value of
that set.

▷ Claim 21. For any solution satisfying constraints (13)-(15), and any subset of vertices
Ĵ ⊆ J , the number of blue neighbors of Ĵ is bounded from below by:

|ΓB(Ĵ)| ≥ 1
4e ln(2k) log k log m

· x(Ĵ)
x(J) · |B|.

A fractional variant of the above covering property for the blue vertices is the following:

▷ Claim 22. For any solution satisfying constraints (13)-(15), and any subset of vertices
Ĵ ⊆ J , at least ε|B| vertices ℓ ∈ B satisfy

∑
j∈ΓĴ (ℓ) xℓ

j ≥ 1
4 log k log m ·

x(Ĵ)
x(J) , where ε =

1
8e ln(2k) log k log m ·

x(Ĵ)
x(J) .

Let us now analyze the approximation guarantee of Algorithm 2. We begin by stating
simple lower bounds on the total LP value of the set J0 as well as the vertices in the set.

▶ Lemma 23. The set J0 defined in Algorithm 2 has LP value at least x(J)/(2 log m) and
the lower bound on the individual LP values in the set is bounded by x0 ≥ 1/m.

Next, we examine the bucketing of neighbors in S, and give a lower bound on the number
of vertices in these bucketed sets.

▶ Lemma 24. In Algorithm 2, for every vertex j ∈ J0, and every red neighbor i ∈ ΓR(j),
the bucketed set of neighbors Γ̂j(i) of i has cardinality bounded from below by |Γ̂j(i)| ≥
1/(6βji log |S| log(|S|2m)).

Proof. Fix vertices j ∈ J0 and i ∈ ΓR(j). Let us begin by examining our choice of βji.
Note that lifting Constraint 17, we get xj = X

(j)
j ≤ X

(j)
i (≤ xj), and so ŷ(j) = X

(j)
i /xj = 1.

Lifting Constraint (16), we thus get
∑

h∈ΓS(i) ŵ
(j)
h ≥ 1. Note that the total LP weight of the

set S′
ji = {h ∈ ΓS(i) | ŵ(j)

h ≤ 1/|S|2} is at most 1/|S| ≤ ŵ(j)(ΓS(i))/3. Therefore, the total
ŵ(j) LP weight of the bucketed sets Sji

s for s such that 2−s ≥ 1/|S|2 is at least 2
3 ŵ(j)(ΓS(i)),

and at least one of these bucketed sets has LP weight at least a 1/(2 log |S|)-fraction of this,
or at least ŵ(j)(ΓS(i))/(3 log |S|) ≥ 1/(3 log |S|). This gives a lower bound on the LP weight
of the bucket which defines βji. Also, the heaviest bucket cannot be Sji

s for s such that
2−s ≤ 1/|S|2, since even the total weight of these buckets is at most 1/|S| = o(1/(3 log |S|)).
In particular, this means that βji ≥ 1/|S|2. Moreover, for s such that 2−s = βji, since the
total conditional LP weight of Sji

s is at least 1/(3 log |S|), and every vertex in the set has
conditional LP value at most 2βji, the cardinality of the set must be at least 1/(6βji log |S|).

Now let us examine the second stage of bucketing. Note that for every h ∈ ΓS(i), we
have wh ≥ X

(j)
h = ŵ

(j)
h · xj ≥ βjix0 ≥ 1/(|S|2m) (and, of course, wh ≤ 1). Therefore, the

number of non-empty buckets Ŝji
t is at most log(|S|2m), and at least one of them must have

cardinality at least |Sji
s |/ log(|S|2m), which, along with our lower bound on |Sji

s | above, gives
us the required lower bound on |Γ̂j(i)|. ◀

Note that from the above proof, we also get upper-bounds on the number of values of βji

and γji that can produce non-empty buckets. In particular, we get the following bound:



E. Chlamtáč, Y. Makarychev, and A. Vakilian 11:15

▶ Observation 25. The total number of possible values for βji is at most 2 log |S|, and
the total number of possible values for γji is at most log(|S|2m). Along with the range of
values for D, the total number of triples ⟨β, γ, D⟩ for which JD

β,γ is non-empty is at most
2 log2 |S| log(|S|2m).

The algorithm proceeds by separating the buckets corresponding to parameters for which
the simple rounding (which samples a random subset of J of size Ω̃(J)) makes progress
towards an approximation guarantee of Õ(A). If a large fraction of vertices in J0 participate
exclusively in such buckets, then the algorithm applies this rounding. The following lemma
gives the analysis of the algorithm in this case.

▶ Lemma 26. In Algorithm 2, if |J1| < |J0|/2, then with high probability the algorithm
samples a subset JALG ⊆ J which covers an Ω̃(1)-fraction of blue vertices, and a subset of S

of size Õ(A ·OPT) which covers all the red neighbors of JALG.

Finally, we turn to the remaining case in Algorithm 2, when |J1| ≤ |J0|/2. The analysis
of this case rests on a back-degree argument similar (though significantly more involved) to
the argument in Lemma 10 for Red-Blue Set Cover. Indeed, we show the following:

▶ Lemma 27. If |J1| ≥ |J0|/2, then for β, γ, D, h0 and the set JALG as defined by the
algorithm in this case, we have

∑
j∈JALG

x̂
(h0)
j ≥ |J0|Dx0β

OPT · 1
4 log2 |S| log(|S|2m) log m

.
Furthermore, for every vertex j ∈ J̃ (as defined by the algorithm), we have x̂h0

j ∈
[x0β/(2γ), 4x0β/γ].

We can now show that in this case, the algorithm makes progress towards an Õ(m/A2)-
approximation. Trading this off with the progress towards an Õ(A)-approximation as
guaranteed by Lemma 26, we get an Õ(m1/3)-approximation by setting A = m1/3.

▶ Lemma 28. In Algorithm 2, if |J1| ≥ |J0|/2, then with high probability, the algorithm
makes progress towards an approximation guarantee of Õ(m/A2).

Proof. Let us first bound the number of blue vertices covered by JALG. By Lemma 27, we
have

x̂h0 (JALG) ≥ |J0|x0Dβ

OPT · 1
4 log2 |S| log(|S|2m) log m

≥ x(J0)Dβ

OPT · 1
4 log2 |S| log(|S|2m) log m

since ∀j ∈ J0 : 2x0 ≥ xj

≥ x(J)Dβ

OPT · 1
4 log2 |S| log(|S|2m) log m

by Lemma 23

> x(J) · A

x(J0) · 1
4 log2 |S| log(|S|2m) log m

. since ∀⟨β, γ, D⟩ ∈ P1 : βD

OPT >
A

x(J0)

Thus, since the conditioned LP solution satisfies the basic LP, we can apply Claim 21 to this
solution and get that the size of the blue neighborhood of JALG can be bounded by

|ΓB(JALG)| ≥ 1
4e ln(2k) log k log m

· A

x(J0) ·
1

4 log2 |S| log(|S|2m) log m
· |B|

= 1
16 ln(2k) log k log2 |S| log(|S|2m) log2 m

· A

x(J0) · |B|.

APPROX/RANDOM 2023



11:16 Approximating Red-Blue Set Cover and Minimum Monotone Satisfying Assignment

Note that by the LP constraints and Lemma 27, for every red neighbor i ∈ ΓR(JALG),
we have ŷh0

i ≥ xh0
i ≥ x0β/(2γ), and so by (16), the rescaled solution (ŵh0

h · 2γ/(x0β))h∈S

is a fractional set cover for ΓR(JALG). Thus, sampling every h ∈ S with probability
min{1, 2 ln n · ŵh0

h · 2γ/(x0β)} produces a valid set cover with high probability. It remains
to analyze the size of this set cover. Indeed, since ŵh0(S) ≤ OPT, our sampling procedure
produces a set of expected size

E[|SALG|] ≤
4γ ln n

x0β
·OPT

≤ 8 ln n · γ

β
· |J0|

x(J0) ·OPT since ∀j ∈ J0 : xj ≤ 2x0

≤ 8 ln n · γ

β
· m

x(J0) ·OPT

< 8 ln n · 1
A
· m

x(J0) ·OPT, since ∀⟨β, γ, D⟩ ∈ P1 : β

γ
> A

and so with high probability we have |SALG| = O(OPT ·m log n/(A · x(J0))).
Putting our two bounds together, we get that in this case, the algorithm makes progress

towards an approximation guarantee of

|B|
|ΓB(JALG)| ·

|SALG|
OPT = Õ(1) · x(J0)

A
· m

A · x(J0) = Õ(1) · m

A2 . ◀
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2

]
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Thus, repeating the rounding a polynomial number of times (in a given iteration), with all
but exponentially small probability we can find a set Ĵ ⊆ J that satisfies both

|ΓB(Ĵ)| ≥ E[|ΓB(J∗)|]
2 and |ΓRα(Ĵ)|] = Õ(rαA).

Now if E[|ΓB(J∗)|] ≤ 2k∗, then we have the required ratio and bound on the number of
new red elements by the previous analysis. If E[|ΓB(J∗)|] > 2k∗, then this will be the last
iteration, as we will cover at least the required k∗ additional blue elements, and the number
of red elements added at this final stage is at most Õ(rαA) ≤ Õ(A ·OPT), so we maintain
the desired approximation ratio.

B Additional LP Constraints for MMSA4

The following is a complete list of lifted constraints that we use in addition to the basic LP
relaxation for MMSA4:

X
(h)
j = X

(j)
h ∀j ∈ J, ∀h ∈ S

X
(j)
j = xj ∀j ∈ J∑

h∈ΓS(i)

X
(j)
h ≥ X

(j)
i ∀j ∈ J∀i ∈ R

X
(j)
j ≤ X

(j)
i ∀j ∈ J∀i ∈ ΓR(j)

0 ≤ X(j)
a ≤ xj ∀j ∈ J∀a ∈ {j} ∪R ∪ S∑

h′∈S

w
(h)
h′ ≤ OPT ∀h ∈ S∑

ℓ∈B

X
(h)
ℓ ≥ |B|/(log k log m)wh ∀h ∈ S

X
(h)
ℓ ≤

∑
j∈ΓJ (ℓ)

X
(h)
ℓ,j ≤ 2e ln(2k)X(h)

ℓ ∀h ∈ S∀ℓ ∈ B

∆X
(h)
j ≤

∑
ℓ∈ΓB(j)

X
(h)
ℓ,j ≤ 2∆X

(h)
j ∀h ∈ S∀j ∈ J

0 ≤ X
(h)
ℓ,j ≤ X

(h)
j , X

(h)
ℓ ≤ wh ∀h ∈ S∀ℓ ∈ B∀j ∈ J∑

h′∈ΓS(i)

X
(h)
h′ ≥ X

(h)
i ∀h ∈ S∀i ∈ R

X
(h)
j ≤ X

(h)
i ∀h ∈ S∀(j, i) ∈ E(J, R)

0 ≤ X(h)
a ≤ wh ∀h ∈ S∀a ∈ B ∪ J ∪R ∪ S
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Algorithm 2 Approximation Algorithm for MMSA4.

Input: B, J, R, S, E

Guess OPT, ∆ and solve the LP ▷ e.g. using binary search
Choose parameter s such that the LP weight of the bucket Js = {j ∈ J | 2−s ≤ xj ≤
2−(s−1)}, that is,

∑
j∈Js

xj is maximized, and let x0 = 2−s and J0 = Js.
for every j ∈ J0 and i ∈ ΓR(j) do

Choose a new parameter s such that the conditioned LP weight of the bucket
Sji

s = {h ∈ S | 2−s ≤ ŵ
(j)
h ≤ 2−(s−1)}, that is,

∑
h∈Sji

s
ŵ

(j)
h , is maximized, and let

βji = 2−s.
Choose parameter t such that the sub-bucket Ŝji

t = {h ∈ Sji
s | 2−t ≤ wh ≤ 2−(t−1)}

has maximum cardinality |Ŝji
t |, and let γji = 2−t and Γ̂j(i) = Ŝji

t .
end for
for every j ∈ J0 and β, γ do

Let ΓR
β,γ(j) = {i ∈ ΓR(j) | βji = β, γji = γ}.

Let ΓS
β,γ(j) =

⋃
i∈ΓR

β,γ
(j) Γ̂j(i).

end for
for every β, γ and D ∈ {2s−1 | s ∈ ⌈log |S|⌉} do

Let JD
β,γ = {j ∈ J0 | ΓR

β,γ(j) ̸= ∅, |ΓS
β,γ(j)| ∈ [D, 2D]}.

Let T D
β,γ = {⟨j, ΓR

β,γ(j), ΓS
β,γ(j)⟩ | j ∈ JD

β,γ(j)}.
end for
Let P1 = {⟨β, γ, D | β/γ > A, βD > A ·OPT/x(J0)⟩}, and J1 =

⋃
⟨β,γ,D⟩∈P1

JD
β,γ .

if |J1| < |J0|/2 then
Let JALG = ∅.
for all j ∈ J0 \ J1 do

Independently add j to JALG with probability x0.
end for
Let SALG = ∅.
for every β do

Let Sβ =
⋃

j∈JALG

⋃
γ ΓS

β,γ(j).
for all h ∈ Sβ do

Independently add h to SALG with probability min{1, β ·
12 log |S| log(|S|2m) ln n}.

end for
end for

else if |J1| ≥ |J0|/2 then
Choose ⟨β, γ, D⟩ ∈ P1 that maximize the cardinality |JD

β,γ |, and let J2 = JD
β,γ .

Let SD̃ = {h ∈ S | {j′ ∈ J2 | h ∈ ΓS
β,γ(j′)}| ∈ [D̃, 2D̃]} for every D̃ ∈ {2s−1 | s ∈

⌈log |J2|⌉}.
Choose D̃ that maximizes the cardinality |{⟨j, h⟩ ∈ J2 × SD̃ | h ∈ ΓS

β,γ(j)}|, and let
S̃ = SD̃.

Choose h0 ∈ S̃ that maximizes the total LP value
∑

j∈J2:ΓS
β,γ

(j)∋h0
x̂

(h0)
j .

Let JALG = {j ∈ J2 | h0 ∈ ΓS
β,γ(j)}.

Let SALG = ∅.
for every h ∈

⋃
j∈JALG

ΓS(ΓR(j)) do
Independently add h to SALG with probability min{1, ŵh0

h · 4γ ln n/(x0β)}.
end for

end if
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Abstract
In this paper, we study the weighted k-server problem on the uniform metric in both the offline
and online settings. We start with the offline setting. In contrast to the (unweighted) k-server
problem which has a polynomial-time solution using min-cost flows, there are strong computational
lower bounds for the weighted k-server problem, even on the uniform metric. Specifically, we
show that assuming the unique games conjecture, there are no polynomial-time algorithms with a
sub-polynomial approximation factor, even if we use c-resource augmentation for c < 2. Furthermore,
if we consider the natural LP relaxation of the problem, then obtaining a bounded integrality gap
requires us to use at least ℓ resource augmentation, where ℓ is the number of distinct server weights.
We complement these results by obtaining a constant-approximation algorithm via LP rounding,
with a resource augmentation of (2 + ε)ℓ for any constant ε > 0.

In the online setting, an exp(k) lower bound is known for the competitive ratio of any randomized
algorithm for the weighted k-server problem on the uniform metric. In contrast, we show that
2ℓ-resource augmentation can bring the competitive ratio down by an exponential factor to only
O(ℓ2 log ℓ). Our online algorithm uses the two-stage approach of first obtaining a fractional solution
using the online primal-dual framework, and then rounding it online.
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1 Introduction

The k-Server problem is a foundational problem in online algorithms and has been extens-
ively studied over the last 30 years [10]. In this problem, there are a set of k servers that
must serve requests arriving online at the vertices of an n-point metric space. The goal is
to minimize the total movement cost of the servers. The k-Server problem was defined
by Manasse et al. [22], who also showed a lower bound of k on the competitive ratio of
any deterministic algorithm for this problem. Koutsoupias and Papadimitriou [20] gave a
(2k − 1)-compeititive algorithm for k-Server. There has been much progress in the recent
past on obtaining randomized algorithms with polylogarithmic (in k and n) competitive
ratio [2, 13, 21, 14]. The Weighted k-Server version of this problem, introduced by Fiat
and Ricklin [17], allows the servers to have non-uniform positive weights; the cost of moving
a server is now scaled by its weight. In this paper, we consider the Weighted k-Server
problem on a uniform metric, namely when all n points of the metric space are at unit
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distance from each other, which means that the cost of moving a server between any two
distinct points is simply the weight of the server. Note that the corresponding unweighted
problem for the uniform metric is the extensively studied Paging problem [10]. Indeed, one
of the original motivations for studying the Weighted k-Server problem came from a
version of paging with non-uniform replacement costs for different cache slots [17]. In the rest
of this paper, we will implicitly assume that the underlying metric space is a uniform metric.

The original paper of Fiat and Ricklin [17] introducing the Weighted k-Server problem
(on uniform metrics) gave a deterministic algorithm with a competitive ratio of about 222k .
They also showed a lower bound of (k + 1)!/2 for deterministic algorithms. Chiplunkar
and Viswanathan [15] improved this lower bound to (k + 1)! − 1, and gave a randomized
algorithm that is 1.62k -competitive against adaptive online adversaries; this also implies
a deterministic competitive ratio of 22k+1 using the simulation technique of Ben-David et
al. [8]. Bansal, Elias, and Koumutsos [6] showed that this competitive ratio is essentially
tight for deterministic algorithms by showing a lower bound of 22k−4 . They also gave a
deterministic work function algorithm with a competitive ratio of 22k+O(log k) . If the number
of distinct server weights is ℓ and there are kj servers of weight Wj , then the competitive
ratio of their algorithm is exp(O(ℓk3 ∏ℓ

j=1(kj + 1))), which is an exponential improvement
over the general bound when ℓ is a constant. Unlike the k-Server and Paging problems, it
is unknown if randomization qualitatively improves the competitive ratio for Weighted
k-Server, although the best known lower bound for randomized algorithms against oblivious
adversaries is only singly exponential in k [1] as against the doubly exponential lower bound
for deterministic algorithms.

The above competitive ratios depend only on k, and are independent of the size n of
metric space. Moreover, the hard instances are for metric spaces with the number of points
n that are exponentially larger than the number of servers k. This is not a coincidence, since
better algorithms exist for smaller values of n. Indeed, the Weighted k-Server problem
can be modeled as a metrical task system, where each state ω is a configuration (specifying
the location of each of the k servers), and the distance between any two states ω, ω′ is the
cost to move between the configurations. Since there are N = nk states, one can obtain an
nk-competitive deterministic algorithm [11], and an O(poly(k log n))-competitive randomized
algorithm against oblivious adversaries [7, 3, 12, 16]; all these algorithms use poly(nk) time
to explicitly maintain and manipulate the entire metric space, and hence are not efficient.

In this paper we ask: is it possible to get efficient (randomized) online algorithms
that have competitive ratios of the form poly(k log n), or even better? Is it possible to get
such approximation ratios even in the offline setting? We show that obtaining improved
competitive or approximation ratios in polynomial time is possible, provided we allow for
resource augmentation in the number of servers.

Resource augmentation in online algorithms has been widely studied in paging and
scheduling settings (see e.g. [19, 23]). It is often a much needed assumption that allows
for obtaining bounded or improved competitive ratios for such problems. Bansal et al. [5]
studied the k-Server problem on trees under resource augmentation.

1.1 Our Results
Our first result establishes computational hardness of approximating the Weighted k-
Server problem in the offline setting. Unlike Paging or k-Server, which are exactly
solvable offline in polynomial time, we show that under the Unique Games conjecture, the
Weighted k-Server problem cannot be approximated to any subpolynomial factor even
when we allow c-resource augmentation for any constant c < 2.
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▶ Theorem 1 (Hardness). For any constant ε > 0, it is UG-hard to obtain an N 1/2−ε-
approximation algorithm for Weighted k-Server with two weight classes, even when we
are allowed c-resource augmentation for any constant c < 2. Here N represents the size of
the input (including the request sequence length).

Next, we show that the natural time indexed LP relaxation for Weighted k-Server
(see LP) has a large integrality gap, unless we allow for a resource augmentation of almost ℓ,
the number of distinct server weights.

▶ Theorem 2 (Integrality Gap). For any constant ε > 0, the integrality gap of the relaxation LP
for Weighted k-Server is unbounded, even with (ℓ − ε)-resource augmentation.

It is worth noting that an optimal fractional solution to LP can be easily rounded to
give an ℓ-approximation ratio with ℓ-resource augmentation. Indeed, we know that for
each request, there exists a weight class which services this request to an extent of at least
1/ℓ. We can then scale this fractional solution by a factor ℓ and reduce this problem to ℓ

instances of standard Paging problem. The integrality gap result shows that any rounding
algorithm with bounded competitive ratio must incur almost ℓ-resource augmentation. We
complement this integrality gap result with our main technical result, which gives an offline
O(1/ε)-approximation with (2 + ε)ℓ-resource augmentation, for any ε ∈ (0, 1).

▶ Theorem 3 (Offline Algorithm). Let I be an instance of Weighted k-Server with kj

servers of weight Wj for all j ∈ [ℓ]. For any ε ∈ (0, 1), there is a polynomial time algorithm
for I that uses at most 2(1 + ε)ℓ · kj servers of weights Wj for each j ∈ [ℓ] and has server
movement cost at most O(1/ε) times the optimal cost of I.

Finally, we obtain an online algorithm for Weighted k-Server with 2ℓ-resource aug-
mentation. The competitive ratio of the online algorithm is O(ℓ2 log ℓ). (In constrast to the
offline setting, it is no longer clear how to achieve an ℓ-competitive algorithm even if we
augment the number of servers by a factor of ℓ.)

▶ Theorem 4 (Online Algorithm). Let I be an instance of Weighted k-Server with kj

servers of weight Wj for all j ∈ [ℓ]. There is a randomized (polynomial time) online algorithm
for I that uses at most 2ℓkj servers of weights Wj for each j ∈ [ℓ] and has expected server
movement cost at most O(ℓ2 log ℓ) times the optimal cost of I.

Since ℓ ≤ k, the competitive ratio of the online algorithm is O(k2 log k). This implies
that an O(ℓ2)-resource augmentation achieves at least an exponential improvement in the
competitive ratio of the Weighted k-Server problem. Moreover, by rounding the weights
to powers of 2, we can assume that ℓ ≤ O(log W ), where W is the aspect ratio of the server
weights. Hence, the competitive ratio of the online algorithm is O(log2 W log log W ). Finally,
note that for ℓ = O(1), the above theorem gives a O(1)-competitive online algorithm with
O(1)-resource augmentation. This can be seen as a generalization of the classic result for the
Paging problem that achieves a randomized competitive ratio of O(log k

k−h+1 ) where the
algorithm’s cache has k slots while the adversary’s has only h < k slots [24].

1.2 Our Techniques
In this section, we give an overview of the main techniques in the paper. The UG hardness of
Weighted k-Server is based on a reduction from the Vertex Cover problem. Given an
instance of the vertex cover problem, the corresponding Weighted k-Server consists of one
point in the uniform metric space for each vertex of the graph. The main observation is that
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if we know the minimum vertex cover size, we can keep one heavy weight server at each point
corresponding to this vertex cover, which never change their positions. One can then generate
an input sequence where the optimal solution pays a small cost, whereas an algorithm which
does not cover an edge using heavy servers pays a much higher cost. The UG-hardness
result for Vertex Cover translates to a corresponding resource augmentation lower bound
for Weighted k-Server. Extending this approach to more than two weight classes (with
stronger lower bounds on resource augmentation) turns out to be more challenging because
the length of the input sequence becomes exponential in n. Instead, we show that the natural
LP relaxation has a large integrality gap. The large gap instance consists of cycling through
a sequence of subsets of the metric spaces with carefully varying frequency. The fractional
solution is able to maintain a low cost by uniformly spreading servers over such cycles, but
the integral solution is forced to service some of the cycles by small number of servers only.

Our main technical result shows how to round a solution to the LP relaxation. The
relaxation has both covering and packing type constraints, and the rounding carefully
addresses one set of constraints without violating the other. We first scale the LP by a factor
of about 2ℓ, thus increasing both the resource augmentation and the cost. As a result, each
request σt is covered to an extent of 2ℓ, and we can split this coverage across those weight
classes which cover σt to an extent of at least 1. Now for a fixed weight class, we consider
the requests which are covered by it to an extent of at least 1. We show how to integrally
round this solution so that this coverage property is satisfied and yet, we do not violate any
packing constraint. After this, we show that the packing constraints can be ignored. This
allows to scale down the LP solution by a factor ℓ (which saves the cost by this factor) and
uses total unimodularity of the constraint matrix to round it.

We extend our approximation algorithm to the online setting. The first step is to maintain
an online fractional solution to the LP relaxation. Standard (weighted) paging algorithms
for this problem rely on the fact that even the optimal offline algorithm needs to place a
server at a requested location. But this turns out to be trickier here as we do not know the
weight of the server which serves this location in the optimal solution. So we serve a request
by ensuring that fractional mass from each weight classes is transferred at the same rate.
The overall analysis proceeds by a careful accounting in the potential function. The online
fractional solution satisfies the stronger guarantee that each request is served by servers of a
particular weight class only. This allows us to reduce the rounding problem to independent
instances of the Paging problem.

We now give an overview of the rest of the submission. In §2, we give details of the
integrality gap construction; we defer the UG hardness proof to §A. The offline rounding of
the LP relaxation is given in §3, and then we extend this algorithm to the online case in §4.

1.3 Preliminaries
In the Weighted k-Server problem on the uniform metric, we are given a set of n points
V = {1, . . . , n}, such that d(v, v′) = 1 for each v ̸= v′. There are k servers, labeled 1, . . . , k,
with server i having weight wi ≥ 0. The input specifies a request sequence (σ1, . . . , σT )
of length T , with each request σt arriving at time t being a point in V . A solution
f : [k] × {0, . . . , T } → V specifies the position of each server at each time t ∈ [T ] (where the
initial positions f(i, 0) are specified as part of the problem statement) such that for each
time t there exists some server it such that f(it, t) = σt. The cost of the solution f is the
total weighted distance travelled by the servers, i.e.,

1/2

k∑
i=1

wi

T∑
t=1

1[f(i, t) ̸= f(i, t − 1)].
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The goal is to find a solution with the minimum cost. We say that an instance has ℓ weight
classes if the set {w1, . . . , wk} has cardinality ℓ. For an instance with ℓ different weight
classes, we denote the distinct weights by W1, . . . , Wℓ, and let kj denote the number of
servers of weight Wj , with

∑
j kj = k. For such an instance and a parameter c ≥ 1, we say

that the algorithm uses c-resource augmentation if it uses ⌊ckj⌋ servers of weight Wj for each
j = 1, . . . , ℓ.

We now describe the natural LP relaxation for Weighted k-Server. It has a variable
x(v, j, t) for each request time t, weight class j ∈ [ℓ] and vertex v ∈ V ; it denotes the
fractional mass of servers of weight Wj that are present at point v at time t. Let σt denote
the vertex requested at time t. It is easy to verify that this is a valid relaxation.

min 1/2
∑
j∈[ℓ]

Wj

∑
t

∑
v∈V

|xv,j,t − xv,j,t−1| (LP)

∑
v∈V

xv,j,t ≤ kj ∀t, j ∈ [ℓ] (1)∑
j∈[ℓ]

xσt,j,t ≥ 1 ∀t (2)

xv,j,t ≥ 0 ∀t, v ∈ V, j ∈ [ℓ]

2 An Integrality Gap for the Natural Linear Program

In this section, we show that the relaxation LP for Weighted k-Server has a large
integrality gap, unless we allow for a resource augmentation of almost ℓ, the number of
distinct server weights.

Recall that the ℓ weights are denoted W1 ≫ · · · ≫ Wℓ, and there are kj servers of weight
Wj . Our theorem is the following:

▶ Theorem 2 (Integrality Gap). For any constant ε > 0, the integrality gap of the relaxation LP
for Weighted k-Server is unbounded, even with (ℓ − ε)-resource augmentation.

An Instance for Two Classes. To gain some intuition, we first consider the special case of
ℓ = 2, and prove the result without giving any resource augmentation. There are n/2 servers
of weight W and n/4 servers of weight 1, thereby giving a total of k = 3n/4 servers. The input
is given in “phases”. Each phase is specified by a distinct subset S of V , where |S| = n/2.
During the phase corresponding to a subset S, we cycle through all subsets S′ of S with
|S′| = |S|/2 = n/4. Given such a subset S′ of S, we send requests which cycle through the
points in S′ for L times, where L is large enough.

One fractional solution for such a sequence is defined as follows: we assign 1/2 unit of
weight-W server at each of the n locations. During the phase for a subset S, we assign 1/2

unit of server of unit weight at each of the locations in S. The cost of the fractional solution
is at most Z :=

(
n

n/2
)

· n/4 (not accounting for the initial movement of the servers). However,
an integral solution either moves at least one heavy server, or else pays at least L during one
of the phases, thereby must pay at least min(W, L). Assuming W, L ≫ Z gives an arbitrarily
large integrality gap. (We can account for the initial movement of the fractional servers by
repeating the process some M times: the integral solution would pay at least min(W, L)
in each such iteration and the fractional solution would pay at most Z, so that the initial
movement cost would get amortized away.)
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The Instance for ℓ Classes. We extend this construction to larger values of ℓ by defining
phases in a recursive manner on a nested sequence of subsets of V , with each phase containing
several repetitions of the same sequence. Instead of decreasing by a factor 2, the number of
servers of each weight class now goes down by a factor of C ≥ ℓ. This allows the integrality
gap result to hold even when the integral solution is allowed a resource augmentation of
nearly ℓ.

For some r ≤ ℓ − 1, we call a tuple (S0, . . . , Sr) valid if (i) S0 = V and each Sj ⊆ Sj−1,
and (ii) |Sj | = |Sj−1|/C = n/Cj. The request sequence is generated by calling Algorithm 1
with the trivial valid sequence (S0 = V ). Given a valid tuple (S0, . . . , Sr), the procedure
cycles through all subsets S ⊆ Sr of size |Sr|/C and recursively calls Generate(S0, . . . , Sr, S);
this process is repeated Lr times. Finally, in the base case when r = ℓ − 1, it cycles through
all the locations in Sℓ for Lℓ−1 times. For a suitably large choice of M , we define for each
r ∈ [ℓ]:

Lr := Mr and Wr := M ℓ−r. (3)

Finally, the number of servers of weight Wr is given by kr := n
ℓCr−1 .

Algorithm 1 Procedure Generate(S0, S1, . . . , Sr).

1.1 Input: A valid tuple (S0, S1, . . . , Sr)
1.2 repeat
1.3 if r is equal to ℓ − 1 then
1.4 Send a request at each location in Sℓ−1.
1.5 else
1.6 for each subset S of Sr with |S| = |Sr|

C do
1.7 // Move 1/ℓ mass of servers of weight Wr+2 to S

1.8 Call Generate(S0, . . . , Sr, S).

1.9 until Lr iterations have occurred

Analyzing the Integrality Gap
We bound the cost of the optimal fractional solution for the above input sequence.

▶ Lemma 5. There is a fractional solution of total cost O(f(n)M ℓ−2) for the input sequence
constructed by Algorithm 1, where f(n) is a function solely of n.

Proof. Our fractional solution maintains the invariant: when the procedure
Generate(S0, . . . , Sr) is called, we have 1/ℓ fractional mass of servers of weight W1, . . . , Wr+1
respectively at each location in Sr. For the base case r = 0, we place 1/ℓ server mass at each
location in S0 = V ; recall that k1 = n/ℓ. For the inductive step, suppose this invariant is
satisfied for a certain value of r where 0 ≤ r < ℓ − 1; we need to show that it is satisfied for
r + 1 as well. Indeed, the induction hypothesis implies that we have 1/ℓ amount of server
mass of weight W1, . . . , Wr+1 at each location in Sr, and hence at each location in Sr+1.
Moreover, as line 1.7 indicates, we move 1/ℓ fractional mass of servers of weight Wr+2 to each
location in Sr+1 to satisfy the invariant condition. This costs Wr+2 kr+2/ℓ; moreover, this is
feasible because the total number of servers of weight Wr+2 needed is |Sr+1|

ℓ = n
ℓCr+1 = kr+2.

Finally, when r = ℓ − 1, the invariant shows that 1 unit of server mass is present at each of
the locations in Sℓ, and hence the requests generated in line 1.4 can be served without any
additional movement of servers.
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We now account for the movement cost. The total server movement cost during
Generate(S0, . . . , Sr) (not counting the movement costs in the recursive calls) is at most
O(Lr kr+1 Wr+2) = O(kr+1 M ℓ−2). Since kr+1 ≤ n and the number of calls to Generate is a
function only of n, the overall movement cost can be expressed as O(f(n) · M ℓ−2). (Again,
by repeating the entire process multiple times we can amortize away the initial movement
cost; we avoid this step for the sake of clarity.) ◀

The next lemma shows that any integral solution must have much higher cost.

▶ Lemma 6. Let ε > 0 be a small enough constant. Assume that the integral solution is
allowed (ℓ − ε)kr servers of weight Wr for each r ∈ [ℓ]. Any integral solution for the input
sequence generated by Algorithm 1 (with C = ℓ/ε) has movement cost at least M ℓ−1.

We defer the proof to Appendix B; combining Lemma 5 and Lemma 6 proves Theorem 2.

3 An Offline Algorithm via LP Rounding

We now show an algorithm for the offline setting, that rounds any fractional solution to the
LP relaxation (LP), and achieves the following guarantee:

▶ Theorem 3 (Offline Algorithm). Let I be an instance of Weighted k-Server with kj

servers of weight Wj for all j ∈ [ℓ]. For any ε ∈ (0, 1), there is a polynomial time algorithm
for I that uses at most 2(1 + ε)ℓ · kj servers of weights Wj for each j ∈ [ℓ] and has server
movement cost at most O(1/ε) times the optimal cost of I.

Instead of working with the relaxation (LP), we work with an equivalent relaxation which
turns out to be easier to interpret. For each vertex v ∈ V , index j ∈ [ℓ] and time interval I,
we have a variable yv,j,I , which denotes the fractional mass of server of weight Wj residing
at v during the entire time interval I. The variable xv,j,t used in (LP) can be expressed as
follows:

xv,j,t =
∑

I:t∈I

yv,j,I . (4)

Let I denote the set of all intervals during the request timeline. The new linear program
relaxation for Weighted k-Server is the following:

min 1/2
∑
j∈[ℓ]

Wj

∑
I∈I

∑
v∈V

yv,j,I (LP2)

s.t.
∑
j∈[ℓ]

∑
I:t∈I

yσt,j,I ≥ 1 ∀t (5)

∑
v∈V

∑
I:t∈I

yv,j,I ≤ kj ∀t, j ∈ [ℓ] (6)

yv,j,I ≥ 0 ∀t, j ∈ [ℓ], v ∈ V.

Note that the covering constraint (5) enforces having at least one unit of (fractional) server
mass at the location σt requested for each time t. The packing constraint (6) enforces that
the total (fractional) server mass of weight Wj used at any time t is at most the number of
servers of this weight, namely kj . Given a solution yv,j,I to LP2, the variables xv,j,t defined
using (4) define a feasible solution to LP of the same cost.

Fix any constant ε ∈ (0, 1). We now prove Theorem 3 by rounding an optimal fractional
solution yv,j,I to LP2. The rounding algorithm has two stages. The first stage scales and
discretizes the LP variables to integers such that
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Algorithm 2 Procedure ScaleRound(x, y, v, Wj).

2.1 Input: A fractional solution (yv,j,I , xv,j,t) to LP2, a location v and a weight Wj

2.2 Initialize variables yv,j,I to 0 for all intervals I.
2.3 (Scale): Define ỹv,j,I = (2 + ε/2) ℓ · yv,j,I and therefore,

x̃v,j,t =
∑

I:t∈I ỹv,j,I = (2 + ε/2) ℓ · xv,j,t for each I ∈ I.
2.4 (Round): for h = 1, 2, . . . , ℓ do
2.5 Initialize LastEvent = DOWN, LastTime = 0.
2.6 repeat
2.7 if LastEvent = UP then
2.8 Let t be the first DOWN after LastEvent
2.9 Update LastEvent = DOWN, LastTime = t.

2.10 else
2.11 (LastEvent = DOWN) Let t be the first UP after LastEvent
2.12 Add I = [LastTime, t) to Iv,j(h) and increase yv,j,I by 1.
2.13 Update LastEvent = DOWN, LastTime = t.

2.14 until we have reached the end of the timeline [0, T ]

1. the packing constraints are satisfied up to a factor of (2 + ε)ℓ,
2. the covering constraints are satisfied with a scaled covering requirement of ℓ instead of 1,

i.e.,
∑

j

∑
I:t∈I yσt,j,I ≥ ℓ, for all times t, and

3. the cost of the fractional solution increases by a factor of O(ℓ/ε).
In the second stage, we remove the packing constraints from the LP; this results in the
resulting interval covering LP being integral. Next, we scale the solution from the first stage
down by ℓ, getting a feasible fractional solution to the standard LP relaxation for the interval
covering problem. Finally, we use the integrality of the interval covering LP relaxation to
obtain an integral solution for LP2. We present these two stages in the next two sections.

3.1 Stage I: Scaling and Discretization
The first stage of the rounding algorithm operates independently on each location v ∈ V and
for each server weight Wj ; the formal algorithm ScaleRound(x, y, v, Wj) is given in Algorithm 2.
We work with both the yv,j,I variables and the equivalent xv,j,t variables defined in (4); this
representational flexibility makes it convenient to explain the algorithm. To begin, we scale
the LP variables yv,j,I by a factor (2 + ε/2)ℓ to obtain ỹv,j,I (we also define the auxiliary
variables x̃v,j,t by scaling xv,j,t similarly).

Discretization. Next we discretize the scaled variables ỹv,j,I and x̃v,j,t to nonnegative
integers yv,j,I and xv,j,t respectively. To start, let us describe the discretization of x̃v,j,t to
obtain xv,j,t. Intuitively, we would like to define xv,j,t as ⌊x̃v,j,t⌋, i.e., the largest step function
with unit step sizes entirely contained in x̃v,j,t, but this can amplify small fluctuations around
integer values, and hence may increases the cost. To avoid this, we introduce hysteresis in
our discretization, by setting different thresholds for increasing and decreasing the value of
x̃v,j,t. We view x̃v,j,t as a time-varying profile and define horizontal slabs in it corresponding
to the restriction of the range of x̃v,j,t to [h, h + 1) for some integer h. For each such slab, we
identify intervals I of width at most 1 and at least 1/2 and set the increase the corresponding
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yv,j,I value by 1. In more detail, for each such level h, we identify a subset Iv,j(h) of intervals
for which the corresponding yv,j,I variable is to be increased by 1. We identify an alternating
sequence of up and down events in the timeline [0, T ] as follows:

UP event: At time t, there is an UP event at level h if x̃v,j,t− < h and x̃v,j,t ≥ h, and the
previous event at level h was a DOWN event.
DOWN event: At time t, there is a DOWN event at level h if the previous event at level
h was an UP, and x̃v,j,t− > h − ε/2 and x̃v,j,t ≤ h − ε/2, or t = T , the end of the timeline.
(The reader should think of ε/2 as the “hysteresis gap” between the up and down events
at any level.)

To make the definition complete, we set x̃v,j,t to 0 at t = 0− and at t = T +, and start with a
DOWN at time 0. Finally, we add intervals stretching from each UP to the next DOWN to
the set Iv,j(h) of intervals. By construction, these intervals are mutually disjoint. Finally,
whenever an interval I is added to such a set Iv,j(h), we increment the corresponding variable
yv,j,I . Thus we have:

yv,j,I = |{h : I ∈ Iv,j(h)}|, and correspondingly, xv,j,t =
∑

I:t∈I

yv,j,I .

The next lemma shows that xv,j,t can be thought of as a discretized form of x̃v,j,t:

▶ Lemma 7. The following holds for variables xv,j,t:

x̃v,j,t − 1 < xv,j,t < x̃v,j,t + ε/2. (7)

Proof. Suppose x̃v,j,t ∈ [r, r + 1). Consider the for loop in line 2.4 in Algorithm 2 for a value
h ≤ r. We claim that at time t, the value of the variable LastEvent must be UP. Suppose
not. Let t′ be the value of LastTime at time t (i.e., t′ is the last time before and including t

when an UP or a DOWN occurred). Since a DOWN event happened at time t′, x̃v,j,t′ < h.
Since x̃v,j,t ≥ h, an UP event must occur during (t′, t], a contradiction. Therefore must have
added an interval containing time t to Iv,j(h). Thus, xv,j,t gets increased during each such
iteration, i.e., xv,j,t ≥ r > x̃v,j,t − 1. This proves the first inequality in (7).

We now prove the second inequality. Let h be an integer satisfying h ≥ x̃v,j,t + ε/2.

Consider the iteration of the for loop in Algorithm 2 for this particular value of h. We
claim that the value of the variable LastEvent at time t must be DOWN. Suppose not, and
let t′ denote the value of the variable LastTime. Then an UP happened at time t′ and
so x̃v,j,t′ ≥ h. Since x̃v,j,t ≤ h − ε/2, a DOWN event must have happened during (t′, t],
a contradiction. Hence, we do not add any interval containing time t to the set Iv,j(h).
Therefore, xv,j,t < x̃v,j,t + ε/2, which proves the second inequality in (7). ◀

The next lemma establishes the key properties of the variables yv,j,I and xv,j,t.

▶ Lemma 8. The following properties hold the for the variables yv,j,I :
(i) (Cost) The LP cost increases by at most O(ℓ/ε) when the original variables yv,j,I are

replaced by the new variables yv,j,I :∑
v,j,I

Wj · yv,j,I ≤ O(ℓ/ε) ·
∑
v,j,I

Wj · yv,j,I .

(ii) (Covering) The variables yv,j,I satisfy the scaled covering constraints of (LP2)∑
j,I:t∈I

yv,j,I ≥ ℓ ∀t.
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(iii) (Packing) The variables yv,j,I approximately satisfy the packing constraints of (LP2):∑
v,I:t∈I

yv,j,I ≤ (2 + ε)ℓkj ∀j ∈ [ℓ], t.

Proof. We first prove the cost bound: the cost of the solution yv,j,I is the weight of all
intervals added to the sets Iv,j(h) for all v, j, h. I.e.,∑

v,j,I

Wj · yv,j,I =
∑
v,j

Wj ·
∑
h∈[ℓ]

|Iv,j(h)|. (8)

Fix a vertex v and indices j, h. For a non-negative number x, and non-negative integer h,
define the h-level truncation of x to be trunch(x) := min(1, (x−h)+), where (a)+ := max(a, 0)
for any real a. Observe that x =

∑
h≥0 trunch(x). In fact, for any two non-negative integers

x and y:

|x − y| =
∑
h′≥0

|trunch′(x) − trunch′(y)|. (9)

Now let I1 = [s1, t1), . . . , Iu = [su, tu) be the intervals added to Iv,j(h) (in left to right order).
Define t0 = 0. We know that for any i ∈ [u], an UP happens at su and a DOWN happens at
tu. Therefore, trunch(x̃v,j,su

) − trunch(x̃v,j,tu−1) ≥ ε/2. Hence,

εWj/2 · |Iv,j(h)| ≤ WJ ·
u∑

i=1
|trunch(x̃v,j,su) − trunch(x̃v,j,tu−1)|

≤ Wj ·
T∑

t′=1
|trunch(x̃v,j,t−1) − trunch(x̃v,j,t)|,

where the last inequality follows from triangle inequality. Summing over all h and using (9),
we get

εWj/2 · yv,j,I ≤ Wj ·
T∑

t′=1
|x̃v,j,t−1) − x̃v,j,t|.

Summing over all vertices v and indices j ∈ [ℓ], we see that the cost of the solution yv,j,I is
at most 2/ε times that of ỹv,j,I . Finally, the fact that ỹv,j,I are obtained by scaling yv,j,I by
a factor (2 + ε/2)ℓ, we get the desired bound on the cost of yv,j,I solution.

Next, we prove the covering property. Since xv,j,t is a feasible solution to LP2, we have
for any time t:∑

j

xσt,j,t ≥ 1, and therefore,
∑

j

x̃σt,j,t ≥ (2 + ε/2)ℓ.

Using Lemma 7, we have x̃σt,j,t < xσt,j,t + 1, so∑
j∈ℓ

(xσt,j,t + 1) > (2 + ε/2)ℓ, and therefore,
∑

j

xσt,j,t > ℓ.

Finally, we prove the packing property. Since xv,j,t is a feasible solution to the LP, we
have for any j ∈ [ℓ] and time t,∑

v

xv,j,t ≤ kj , and therefore,
∑

v

x̃v,j,t ≤ (2 + ε/2)ℓkj .
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Again Lemma 7 gives x̃v,j,t > xv,j,t − ε/2, which implies∑
j

(xv,j,t − ε/2)+
< (2 + ε/2)ℓkj . (10)

Since xv,j,t is a nonnegative integer,

xv,j,t > 0 =⇒ xv,j,t ≥ 1 Lemma 7=⇒ x̃v,j,t > xv,j,t − ε/2 ≥ 1 − ε/2.

Since
∑

v x̃v,j,t ≤ kj , it follows that the number of locations v for which xv,j,t > 0 is at most
kj

1−ε/2
< 2kj , if ε < 1. Using this fact in Equation (10), we get∑

v

xv,j,t =
∑

v:xv,j,t>0
xv,j,t =

∑
v:xv,j,t>0

(xv,j,t − ε/2) +
∑

v:xv,j,t>0

ε/2

≤
∑

v

(xv,j,t − ε/2)+ + 2kj · ε/2 ≤ (2 + ε/2)ℓkj + εkj .

Since ℓ ≥ 2 (otherwise, we have the unweighted problem), we get∑
v

xv,j,t ≤ (2 + ε)ℓkj . ◀

3.2 Stage II: Weighted Interval Cover
In the second stage of the rounding algorithm, we first scale the (integer-valued) variables
yv,j,I down by a factor of ℓ to obtain new variables y∗

v,j,I :

y∗
v,j,I := yv,j,I/ℓ and therefore, x∗

v,j,t =
∑

I:t∈I

y∗
v,j,I = xv,j,t/ℓ. (11)

Our goal is to round the fractional variables y∗
v,j,I to {0, 1} values. In fact, our rounding

will ensure that if the rounded value equals 1 then y∗
v,j,I > 0. Since yv,j,I is integral, the

packing property in Lemma 8 implies that for any time t, vertex v, and index j ∈ [ℓ], there
are at most (2 + ε)ℓkj intervals I ∋ t for which yv,j,I > 0. The rounding property of our
algorithm will ensure that the final integral solution, which lies in the support of y∗

v,j,I , will
also satisfy that there are at most (2 + ε)ℓkj intervals containing any time t. Since we are
allowed a resource augmentation of (2 + ε)ℓ factor in the number of servers of weight Wj ,
we can serve the requests with the set of available servers. Henceforth, we can ignore the
packing constraint (6) for our rounded solution. As a result, the relaxation LP2 decouples
into n independent relaxations, one for each location v ∈ V .

In this decoupled instance, we get the following LP relaxation for each location v, where
for each class j ∈ [ℓ], we define Iv,j := {I | y∗

v,j,I > 0} as the set of intervals I with a nonzero
value of y∗

v,j,I and R(v) as the set of times t when v is requested:

min 1/2
∑
j∈[ℓ]

Wj ·
∑

I∈Iv,j

yv,j,I (LPv)

s.t.
∑

j

∑
I∈Iv,j :t∈I

yv,j,I ≥ 1 ∀t ∈ Rv

yv,j,I ≥ 0.

By the covering property of Lemma 8, the variables y∗
v,j,I defined in (11) are feasible solutions

for (LPv) for all locations v. Furthermore, by the lemma’s cost property (and the scaling
down by ℓ), the total cost

∑
v

∑
j Wj ·

∑
I y∗

v,j,I is at most O(1/ε) times the optimal cost of
(LP2).
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Finally, the constraint matrix for (LPv) satisfies the consecutive-ones property: if the
constraints are ordered chronologically, then a variable yv,j,I appears in the constraints
corresponding to times t ∈ I where σt = v, which is a contiguous subsequence of all times t

where σv = j. Constraint matrices with this property are totally unimodular (see, e.g., [18]).
Therefore, each of the solutions {y∗

v,j,I : j ∈ [ℓ], I ∈ Iv,j} for LPv can be rounded to a feasible
integral solution without any increase in cost, which proves Theorem 3.

4 Online Algorithm

In this section, we describe an efficient online algorithm for Weighted k-Server and prove
the following result:

▶ Theorem 4 (Online Algorithm). Let I be an instance of Weighted k-Server with kj

servers of weight Wj for all j ∈ [ℓ]. There is a randomized (polynomial time) online algorithm
for I that uses at most 2ℓkj servers of weights Wj for each j ∈ [ℓ] and has expected server
movement cost at most O(ℓ2 log ℓ) times the optimal cost of I.

We begin by re-writing the LP relaxation (LP2) in terms of the “anti-page” variables, as
in [4]. Recall that (LP2) has variables yv,j,I representing the (fractional) weight Wj server
mass present at location v during the interval I; instead we first rewrite it in terms of the
“page” variables xv,j,t, which denote the total amount of weight Wj server mass at location v

at time t, as given in (4). The objective of this LP in terms of xv,j,t is:∑
v,j,I

Wj · yv,j,I =
∑
v,j,I

Wj · (xv,j,t − xv,j,t−)+.

We can constrain any algorithm to values xv,j,t ∈ [0, 1] for all v, j, t (since having multiple
servers at a location is not beneficial). This allows us to work with non-negative anti-page
variables zv,j,t := 1 − xv,j,t. The objective, now rewritten in terms of these new variables
zv,j,t, becomes:∑

v,j,I

Wj · (xv,j,t − xv,j,t−)+ =
∑
v,j,I

Wj · (zv,j,t− − zv,j,t)+. (12)

We shall also maintain the following invariant for each server weight Wj and time t:∑
v

xv,j,t = kj ⇐⇒
∑

v

zv,j,t = n − kj ∀j, t. (13)

We write the covering constraint (5) (or equivalently (2)) in terms of zv,j,t as:∑
j

zσt,j,t ≤ ℓ − 1 (14)

The algorithm follows the standard relax-and-round paradigm in the online setting. The first
step is to compute a feasible fractional solution to an LP consisting of objective (12) and
constraints (13) and (14), in an online setting. We show in §4.1 that we can find a fractional
solution that uses O(ℓkj) servers of weight Wj for each class j, and has a competitive ratio
of O(ℓ2). The second step is to give an online rounding algorithm to convert this fractional
solution to an integral solution: our rounding algorithm given in §4.2 uses the standard
online rounding algorithm for the paging problem and increases the cost of the solution by a
constant factor.
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4.1 Online Fractional Algorithm
In this section, we give an online algorithm for maintaining a fractional solution to the LP
involving zv,j,t variables. We obtain the following result:

▶ Theorem 9. There is a deterministic (polynomial time) online fractional algorithm that
maintains the condition that for every request time t, there exists an index j ∈ [ℓ] such that
there is unit server mass of weight Wj at location σt at time t. The algorithm uses 2ℓkj

servers of weight Wj for each j ∈ [ℓ], and whose cost is at most O(ℓ2 log ℓ) times that of an
optimal fractional solution.

Note that the condition in the theorem is stronger than (14), the feasibility condition for
(LP2), because we are using server from a single weight class to service this request.

Consider a time t, and the request arriving at location σt. We first set zv,j,t = zv,j,t− for
all v ∈ V, j ∈ ℓ. Now the algorithm moves fractional server mass to σt until a relaxed version
of the covering constraint (14) for time t gets satisfied. The relaxed constraint is given by

∃j ∈ [ℓ] such that zσt,j,t ≤ 1 − 1
2ℓ

. (15)

Indeed, if the constraint is violated, then for each vertex v ̸= σt and each j ∈ [ℓ], if v has
non-zero server mass of weight Wj (i.e., zv,j,t < 1), then the algorithm moves server mass
of weight Wj from v to σt using the following differential equation. (The derivative is with
respect to a variable s which starts from 0 and increases at uniform rate.)

żv,j,t = 1
Wj |Sj |

· (zv,j,t + δ) ∀j ∈ [ℓ], ∀v ∈ Sj . (16)

Here, Sj ⊆ V denotes the instantaneous set of locations (i.e., at the current value of the
variable s) that have zv,j,t < 1, not including the location σt, and δ > 0 is a parameter that
we shall fix later. Correspondingly, we reduce zσt,j,t by the total amount of server mass of
weight Wj entering σt:

żσt,j,t = − 1
Wj |Sj |

·
∑
v∈Sj

(zv,j,t + δ) ∀j ∈ [ℓ]. (17)

Note that server mass is moved away other locations and into location σt only if zσt,j,t > 1− 1
2ℓ

for all j. Since zσt,j,t ≤ 1 for all j, it follows that zv,j,t ∈ [1 − 1
2ℓ , 1] for all j, t. Hence,

zv,j,t ≥ 1 − 1
2ℓ

for all j, t =⇒ |Sj | ≥ 2ℓkj − 1 ≥ 3ℓkj

2 ≥ 3 for all j, t, (18)

since ℓ ≥ 2, kj ≥ 1.
To analyze the algorithm, we use a potential function Φ. The potential function depends

on the offline (integral) optimal solution – let us call it O, and let optv,j,t be the indicator
variable for the location v containing a server of weight Wj at time t. The potential at time
t is defined as follows:

Φ(t) :=
∑

v,j:optv,j,t=0
Wj · ln

(
1 + δ

zv,j,t + δ

)
.

Let cost(t) denote the algorithm’s server movement cost at time t and costO(t) denote the
corresponding quantity for the optimum solution O. Our goal is to show that:

cost(t)
4ℓ

+ Φ(t + 1) − Φ(t) ≤ ln(1 + 1/δ) · costO(t). (19)

The following properties of Φ(t) can verified easily:
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Nonnegativity: Φ is always nonnegative, since zv,j,t ≤ 1.
Lipschitzness property: When the optimal solution moves a server of weight Wj from
one location to another, the increase in Φ is at most Wj · ln(1 + 1/δ).

The Lipschitzness property implies that (19) holds when O serves the request at σt. It
remains the analyze the cost and change in potential when the algorithm changes its solution.
Consider the process when we transfer server mass to σt.

We first bound the online algorithm’s cost. Since all the weight classes incur the same
server movement cost while transferring to σt, the movement cost is ℓ times the movement
cost incurred while transferring servers of a fixed class, say j⋆. The latter is at most

Wj⋆

∑
v∈Sj⋆

żv,j⋆,t
(16)= 1

|Sj⋆ |
∑

v∈Sj⋆

(zv,j⋆,t + δ) = |Sj⋆ | + 1 − kj⋆ + δ|Sj⋆ |
|Sj⋆ |

≤ 1 + δ. (20)

Thus, the upper bound on the cost(t)
4ℓ term in the LHS of (19) is at most 1+δ

4 ≤ 1/3 provided
δ ≤ 1/3.

Next, we lower bound the rate of decrease of potential Φ. We begin by bounding the rate
of decrease in potential due to because of server mass leaving all locations except σt:

∆− = −
∑

j∈[ℓ],v ̸=σt:optv,j,t=0

Wj

zv,j,t + δ
· żv,j,t

(16)= −
∑

j,v∈Sj :optv,j,t=0

1
zv,j,t + δ

· zv,j,t + δ

|Sj |

= −
∑

j

|{v ∈ Sj : optv,j,t = 0}|
|Sj |

(18)
≤ −

∑
j

|Sj | − kj

|Sj |
≤ −ℓ

(
1 − 2

3ℓ

)
= −ℓ + 2/3.

(21)

Next, we bound the rate of increase in potential due to server classes j ̸= j∗ because of server
mass entering σt:

∆+ =
∑
j ̸=j∗

Wj

zσt,j,t + δ
· żσt,j,t

(16)=
∑

j ̸=j∗,v∈Sj

Wj

zσt,j,t + δ
· zv,j,t + δ

|Sj |Wj

=
∑
j ̸=j∗

∑
v∈Sj

(zv,j,t + δ)
|Sj |(zσt,j,t + δ) =

∑
j ̸=j∗

(|Sj | − kj + (1 − zσt,j,t)) + δ · |Sj |
|Sj |(zσt,j,t + δ)

(18)
≤

∑
j ̸=j∗

(|Sj | − kj + 1/2ℓ) + δ · |Sj |
|Sj |(1 − 1/2ℓ + δ)

(18)
≤

∑
j ̸=j⋆

1 − 2/3ℓ + 1/6ℓ + δ

1 − 1/2ℓ + δ
≤ ℓ − 1,

provided δ = 1/2ℓ. Combining with (21), we see that the overall change in potential is
∆− + ∆+ ≤ −1/3. Consequently, we get that the change in potential pays for the increase
in the algorithm’s cost (divided by 4ℓ) – which shows (19) – when the fractional solution
changes.

This implies that we have an algorithm for maintaining zv,j,t that satisfies (15). In terms
of the competitive ratio, the algorithm loses 4ℓ in (19) and ln(1 + 1/δ) = O(log ℓ) in the
Lipschitzness of the potential function. Note that (15) implies that for all t, there exists j

such that xσt,j,t ≥ 1
2ℓ . We scale the fractional variables to obtain x̃v,j,t := min(2ℓxv,j,t, 1);

then, for all t, there exists j such that x̃σt,j,t = 1. Note that this satisfies the condition in
Theorem 9. Equivalently, the corresponding “anti-page” variables z̃v,j,t := 1 − x̃v,j,t satisfy
the following condition for all t:

∃j such that z̃σt,j,t = 0. (22)

The last scaling step creates a resource augmentation of 2ℓ, and increases the competitive
ratio to O(ℓ2 log ℓ). This completes the proof of Theorem 9.
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4.2 Rounding the Fractional Solution Online
We round the fractional solution for each weight class j separately. Let Tj represent the
request times t when (22) is satisfied by weight class j. Note that the solution z̃v,j,t for
weight class j represents a feasible fractional solution for an instance of the paging problem
with 2ℓkj cache slots, where there is a page request for each time t ∈ Tj at location σt.

We now invoke the following known online rounding algorithm for the paging problem
separately in each weight class j to complete the proof of Theorem 4.

▶ Lemma 10 ([9]). There is a randomized (polynomial time) online algorithm that converts
any feasible fractional solution for an instance of the Paging problem to an integral solution
using the same number of cache slots, and incurs constant times the cost of the fractional
solution.

5 Discussion

In this work, we have given the first efficient offline and online algorithms with non-trivial
guarantees for Weighted k-Server. Several interesting problems remains open:
1. For the case of two distinct weight classes, we show in Appendix A that it is UG-Hard to

obtain an Ω(N c)-approximation algorithm for some constant c > 0, even with (2 − ε)-
resource augmentation. Can we extend such a hardness result to more weight classes?
For example, can we show that for three distinct weight classes, it is UG-Hard to obtain a
C-approximation algorithm for any constant C, even with (3 − ε)-resource augmentation?
The principal reason why our hardness proof for ℓ = 2 does not extend here is because
one needs to recursively cycle through all subsets (of a certain size) of V to create an
integrality gap instance for the natural LP relaxation. If the size of these subsets is large,
then the length of the input becomes very large. If the size of these subsets is small, then
it is not clear how to extend this to a hardness proof.

2. In Section 3, we give an offline constant approximation algorithm which requires slightly
more than 2ℓ-resource augmentation. Can we get a constant approximation algorithm
(or even an optimal algorithm) with exactly ℓ-resource augmentation? We conjecture
that the integrality gap of LP is constant (or even 1) if the integral solution is allowed
ℓ-resource augmentation.

3. In the online case, we give a O(ℓ2 log ℓ)-competitive algorithm with 2ℓ-resource augment-
ation in Section 4. Can we get a constant-competitive algorithm with O(ℓ)-resource
augmentation, i.e., a result in the same vein as our offline algorithm?
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A The Unique Games Hardness

In this section, we consider the special case of Weighted k-Server when there are only two
weight classes. Assume wlog that the two distinct weights are 1 and W , where W ≫ 1. Our
first main result shows that getting a good approximation algorithm with (2 − ε)-resource
augmentation for any constant ε > 0 is as hard as getting a better-than-two approximation
for the vertex cover problem.

▶ Theorem 1 (Hardness). For any constant ε > 0, it is UG-hard to obtain an N 1/2−ε-
approximation algorithm for Weighted k-Server with two weight classes, even when we
are allowed c-resource augmentation for any constant c < 2. Here N represents the size of
the input (including the request sequence length).

Proof. We give a reduction from the Vertex Cover problem. Let d = d(ε) be a constant
to be fixed later, and let c < 2 be a constant as in the statement of the theorem. Let
I = (G = (V, E), t) be an instance of the Vertex Cover problem on n vertices. We know
that it is UG-hard to distinguish between the following two cases: (i) G has a vertex cover of
size at most t, or (ii) every vertex cover of G must have size strictly larger than ct.

We map I to an instance I ′ of Weighted k-Server as follows: the set of points in I ′

is given by V ∪ {v0}, where v0 is a special vertex. There are t servers of weight W = nd and
one server of unit weight. Let the edges in E be e1, . . . , em. A subsequence of the request
sequence consists of m phases, where we have a phase for each edge ei. During phase i

corresponding to edge ei = (ui, vi), the request sequence toggles between ui and vi for W

times. Finally, the subsequence is repeated W times. In other words, it is the following
sequence(

u1, v1, u1, v1, . . . , u1, v1︸ ︷︷ ︸
W times

, . . . , um, vm, um, vm, . . . , um, vm︸ ︷︷ ︸
W times

)W
.

We also have to specify the initial location of the servers. Assume that all servers are at
location v0 in the beginning. This completes the description of the instance I ′. Observe that
N , the number of requests in instance I ′ is O(m · n2d).

▷ Claim 11. Suppose G has a vertex cover of size at most t. Then the cost of the optimal
solution for I ′ is at most 2mW .

Proof. Let V ′ ⊆ V be a vertex cover of size t. Consider the following solution: we move the t

heavy servers from v0 to V ′ at the beginning. From now on, the heavy servers will not move at
all. During a phase corresponding to an edge ei = (ui, vi), we know that at least one of these
vertices will be occupied by a heavy server. If the other end-point, say vi, is not occupied by
a heavy server, we move the server of weight 1 to vi. Now we have two servers occupying ui

and vi respectively until the end of this phase. The total movement cost is incurred either at
the beginning (which is tW overall), or at the beginning of each phase (when the cost is 1).
Since there are mW phases, the overall cost is at most tW + mW ≤ 2mW . ◁
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▷ Claim 12. Suppose every vertex cover in G has size strictly larger than ct. Then cost of
the optimal solution for I ′, even with c-resource augmentation, is at least W 2.

Proof. Consider any solution for I ′. Recall that the input consists of W subsequences, call
these S1, . . . , SW , where each subsequence Sj consists of m phases, one for each edge of G.
We claim that during each such subsequence Sj , the solution must pay movement cost of at
least W . Indeed, consider a subsequence Sj . If the solution moves a heavy server during
Sj , then the claim follows directly. Else observe that the size of any vertex cover is strictly
larger than the number of heavy servers ct, so there is some edge ei = (ui, vi) not covered by
the heavy servers during Sj . Now the phase for ei in Sj would require the unit weight server
to toggle between ui and vi for W times. In either case, the cost of each subsequence is at
least W , and the overall cost of the solution is at least W 2. ◁

The above two results along with the UG-hardness result for Vertex Cover impliy that
it is UG-hard to obtain a W 2

2mW -approximation for Weighted k-Server with two weight
classes. This ratio is equal to W

2m ≥ nd−2 ≥ N 1/2−ε, assuming d is Ω(1/ε), which proves
Theorem 1. ◀

B Missing proofs from §2

▶ Lemma 6. Let ε > 0 be a small enough constant. Assume that the integral solution is
allowed (ℓ − ε)kr servers of weight Wr for each r ∈ [ℓ]. Any integral solution for the input
sequence generated by Algorithm 1 (with C = ℓ/ε) has movement cost at least M ℓ−1.

Proof of Lemma 6. We prove the following more general statement by reverse induction
on r: any integral solution for the sequence generated by Generate(S0, . . . , Sr) for a valid
tuple (S0, . . . , Sr) which does not use any server of weight class W1, . . . , Wr (at any location
in Sr) has cost at least M ℓ−1. It suffices to prove this statement, because the case when
r = 0 implies the lemma.

Consider the base case when r = ℓ − 1. Consider the sequence generated by such a
procedure Generate(S0, . . . , Sr) such that no server of weight W1, . . . , Wℓ−1 is used for serving
the requests at Sℓ−1. Thus all requests generated by this procedure must be served by servers
of weight Wℓ. Now, |Sℓ−1| = n

Cℓ−1 , whereas the number of weight Wℓ servers available to
the algorithm is (ℓ − ε)kℓ < n

Cℓ−1 . Therefore, during each iteration of the repeat-until loop
in lines 1.2–1.8 in Algorithm 1, at least one server of weight Wℓ must move. So the overall
movement cost during this input sub-sequence is at least Wℓ · Lℓ−1 = M ℓ−1. This proves the
base case.

The inductive case is proved in an analogous manner. Suppose the statement is true for
r + 1, and now consider the sub-sequence generated by Gen(S0, . . . , Sr) for some valid tuple
(S0, . . . , Sr). Assume that no server of weight W1, . . . , Wr is present at any node in Sr during
this time. We claim that the algorithm must incur movement cost of at least Wr+1 during
each iteration of the repeat-until loop. Indeed, fix such an iteration. Two cases arise: (a)
The algorithm moves a server of weight Wr+1 then the claim follows trivially, or (b) No server
of weight Wr+1 is moved during this period. Now observe that |Sr| = n

Cr , and the number of
weight Wr+1 servers available to the algorithm is (ℓ − ε)kr+1 = |Sr| − εkr+1 = |Sr|

(
1 − 1

C

)
.

Thus, there is a subset Sr+1 of S of size |Sr|
C = n

Cr+1 where no server of weight Wr+1 appears
during this input sub-sequence. Consider the recursive call Generate(S0, . . . , Sr, Sr+1) in
line 1.8. The induction hypothesis implies that the movement cost during this recursive call
is at least M ℓ−1 ≥ Wr+1.
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Thus, we have shown that the movement cost during each iteration of the repeat-until
loop during Generate(S0, . . . , Sr) is at least Wr+1. Since there are Lr such iterations, the
overall movement cost is at least Wr+1 ·Lr = M ℓ−1. This completes the proof of the induction
hypothesis, and implies the lemma. ◀
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Abstract
We give the first constant-factor approximation algorithm for quasi-bipartite instances of Directed
Steiner Tree on graphs that exclude fixed minors. In particular, for Kr-minor-free graphs our
approximation guarantee is O(r ·

√
log r) and, further, for planar graphs our approximation guarantee

is 20.
Our algorithm uses the primal-dual scheme. We employ a more involved method of determining

when to buy an edge while raising dual variables since, as we show, the natural primal-dual scheme
fails to raise enough dual value to pay for the purchased solution. As a consequence, we also
demonstrate integrality gap upper bounds on the standard cut-based linear programming relaxation
for the Directed Steiner Tree instances we consider.
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1 Introduction

In the Directed Steiner Tree (DST) problem, we are given a directed graph G = (V, E)
with edge costs c(e) ≥ 0 for all e ∈ E, a root node r ∈ V , and a collection of terminals
X ⊆ V \ {r}. The nodes in V \ (X ∪ {r}) are called Steiner nodes. The goal is to find
a minimum cost subset F ⊆ E such that there is an r − t path using only edges in F for
every terminal t ∈ X. Note any feasible solution that is inclusion-wise minimal must be an
arborescence rooted at r. Throughout, we let n denote |V |.

One key aspect of DST lies in the fact that it generalizes many other important problems,
e.g. Set Cover, (non-metric, multilevel) Facility Location, and Group Steiner Tree.
Halperin and Krauthgamer [23] showed Group Steiner Tree cannot be approximated
within O(log2−ϵ n) for any ϵ > 0 unless NP ⊆ ZTIME (npolylog (n)) and therefore the same
result holds for DST.

Building on a height-reduction technique of Calinescu and Zelikovsky [5, 36], Charikar et
al. give the best approximation for DST which is an O(|X|ϵ)-approximation for any constant
ϵ > 0 [8] and also an O(log3 |X|)-approximation in O(npolylog(|X|)) time (quasi-polynomial
time). More recently, Grandoni, Laekhanukit, and Li [21] obtained a quasi-polynomial time
O( log2 |X|

log log |X| )-approximation factor for Directed Steiner Tree which is the best possible
for quasi-polynomial time algorithms, assuming both the Projection Game Conjecture
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and NP ⊈
⋂

0<δ<1 ZTIME(2nδ ). Ghuge and Nagarajan [18] studied a variant of DST called
the Directed Tree Orienteering problem and presented an O( log |X|

log log |X| )-approximation
in quasi-polynomial time which yields the same approximation guarantee as in [21] for DST.

Methods based on linear programming have been less successful. Zosin and Khuller [38]
showed the integrality gap of a natural flow-based LP relaxation is Ω(

√
|X|) but n, the

number of vertices, in this example is exponential in terms of |X|. More recently, Li and
Laekhanukit [27] provided an example showing the integrality gap of this LP is at least
polynomial in n. On the positive side, [33] shows for ℓ-layered instances of DST that applying
O(ℓ) rounds of the Lasserre hierarchy to a slight variant of the natural flow-based LP
relaxation yields a relaxation with integrality gap O(ℓ · log |X|). This was extended to the
LP-based Sherali-Adams and Lovász-Schrijver hierarchies by [14].

We consider the cut-based relaxation (Primal-LP) for DST, which is equivalent to
the flow-based relaxation considered in [38, 27]; the flow-based relaxation is an extended
formulation of (Primal-LP). Let δin(S) be the set of directed edges entering a set S ⊆ V ,

minimize:
∑
e∈E

c(e) · xe (Primal-LP)

subject to: x(δin(S)) ≥ 1 ∀S ⊆ V \ {r}, S ∩X ̸= ∅ (1)
x ≥ 0

It is useful to note that if |X| = 1 (the shortest s− t path problem) or X ∪ {r} = V (the
minimum cost arborescence problem), the extreme points of (Primal-LP) are integral, see
[29] and [11] respectively.

The undirected variant of Steiner Tree has seen more activity1. A series of papers
steadily improved over the simple 2-approximation [37, 25, 30, 32] culminating in a ln 4 + ϵ

for any constant ϵ > 0 [4]. Bern and Plassmann [2] showed that unless P = NP there is
no approximation factor better than 96

95 for Steiner Tree. However, there is a PTAS for
Steiner Tree on planar graphs [3] and more generally [1] obtains a PTAS for Steiner
Forest on graphs of bounded-genus.

Another well-studied restriction of Steiner Tree is to quasi-bipartite graphs. These
are the instances where no two Steiner nodes are connected by an edge (i.e., V \ (X ∪ {r})
is an independent set). Quasi-bipartite instances were first studied by Rajagopalan and
Vazirani [31] in order to study the bidirected-cut relaxation of the Steiner Tree problem:
this is exactly (Primal-LP) where we regard both directions of an undirected edge as
separate entities. Feldmann et al. [13] studied Steiner Tree on graphs that do not have an
edge-induced claw on Steiner vertices, i.e., no Steiner vertex with three Steiner neighbours,
and presented a faster ln(4)-approximation than the algorithm of [4]. Currently, the best
approximation in quasi-bipartite instances of Steiner Tree is 73

60 -approximation [19].
A natural question is to study the complexity of DST on these restricted instances. Hibi

and Fujito [24] presented an O(log |X|)-approximation algorithm for this case. Assuming
P ̸= NP, this result asymptotically matches the lower bound (1− o(1)) · ln |X| for any ϵ > 0;
this lower bound comes from the hardness of Set Cover [12, 10] and the fact that the
quasi-bipartite DST problem generalizes the Set Cover problem. Friggstad, Könemann,
and Shadravan [15] showed that the integrality gap of (Primal-LP) is also O(log |X|) by a
primal-dual algorithm and again this matches the lower bound on the integrality gap of this

1 One usually does not specify the root node in Steiner Tree, the goal is simply to ensure all terminals
are connected.
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LP up to a constant. Chan et al. [7] studied the k-connected DST problem on quasi-bipartite
instances in which the goal is to find a minimum cost subgraph H such that there are k

edge-disjoint paths (in H) from r to each terminal in X. They gave an upper bound of
O(log |X| · log k) on the integrality gap of the standard cut-based LP (put k instead of 1 in
the RHS of the constraints in (Primal-LP)) by presenting a polynomial time randomized
rounding algorithm.

Very recently, [17] show a combinatorial O(log |X|)-approximation algorithm for DST
on planar graphs based on shortest path separators in planar graph by Thorup [35]. It is
also worth noting that Demaine, Hajiaghayi, and Klein [9] show that if one takes a standard
flow-based relaxation for DST in planar graphs and further constraints the flows to be
“non-crossing”, then the solution can be rounded to a feasible DST solution while losing
only a constant factor in the cost. To date, we do not know how to compute a low-cost,
non-crossing flow in polynomial time for DST instances on planar graphs.

It remains an open question whether DST on planar graphs admits a constant factor
approximation or even a PTAS, or not. We make some progress on this question. We show
quasi-bipartite DST on planar graphs and more generally graphs excluding a fixed minor
admit a constant factor approximation. In contrast to the approach in [17], our algorithm is
LP-based and bounds the integrality gap of the natural cut-based LP. Our algorithm also
works in the more general setting of minor-free graphs, whereas the DST approximation
in [17] is specific only to planar graphs.

1.1 Primal-Dual Approximations for Steiner Tree Problems

Consider the Node-Weighted Steiner Tree (NWST) problem which is similar to undir-
ected Steiner Tree except the weight function is on the Steiner vertices instead of edges
and can also be viewed as a special case of DST. Guha et al. [22] presented a primal-dual
algorithm with guarantee of O(ln n) which is asymptotically tight since NWST also general-
izes set cover. Könemann, Sadeghian, and Sanità [26] give an O(log n)-approximation using
the primal-dual framework for a generalization of NWST called Node-Weighted Prize
Collecting Steiner Tree2.

Demaine, Hajiaghayi, and Klein [9] considered a generalization of NWST called Node-
Weighted Steiner Forest (NWSF) on planar graphs and using the generic primal-dual
framework of Goemans and Williamson [20] they showed a 6-approximation and further they
extended their result to minor-free graphs. Later Moldenhauer [28] simplified their analysis
and showed an approximation guarantee of 3 for NWSF on planar graphs.

An interesting, non-standard use of the primal-dual scheme is in the work of Chakrabarty,
Devanur, and Vazirani [6] for undirected, quasi-bipartite instances of Steiner Tree. They
introduce a new “simplex-embedding” LP relaxation and their primal-dual scheme raises dual
variables with different rates. It is worth noting that although they also obtain upper bound
for the integrality gap of the so-called bidirected cut relaxation (BCR) of quasi-bipartite
instances of Steiner Tree, the algorithm and the simplex-embedding LP relaxation itself
are valid only in the undirected setting.

2 A key aspect of their algorithm is that it is also Lagrangian multiplier preserving.
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1.2 Our contributions
We present a primal-dual algorithm for quasi-bipartite DST on minor-free graphs.

Generally, it is difficult to effectively utilize primal-dual algorithms in directed network
design problems. This is true in our setting as well: we begin by showing a standard primal-
dual algorithm (similar to the primal-dual algorithm for the minimum-cost arborescence
problem) does not grow sufficiently-large dual to pay for the set of edges it purchases within
any constant factor.

We overcome this difficulty by highlighting different roles for edges in connecting the
terminals to the root. For some edges, we maintain two slacks: while raising dual variables
these two slacks for an edge may be filled at different rates (depending on the edge’s role
for the various dual variables being raised) and we purchase the edge when one of its slacks
is exhausted. Furthermore, unlike the analysis of standard primal-dual algorithms where
the charging scheme is usually more local (i.e., charging the cost of purchased edges to the
dual variables that are “close by”), we need to employ a more global charging scheme. Our
approach also provides an O(1) upper bound on the integrality gap of the natural cut-based
relaxation (Primal-LP) for graphs that exclude a fixed minor.

We summarize our results here.

▶ Theorem 1. There is an O(r ·
√

log r)-approximation algorithm for Directed Steiner
Tree on quasi-bipartite, Kr-minor free graphs. Moreover, the algorithm gives an upper
bound of O(r ·

√
log r) on the integrality gap of (Primal-LP) for DST instances on such

graphs.

▶ Remark 2. The running time of our algorithm is O(|V |c) where c is a fixed constant that is
independent of r. Also, we only require that every (simple) minor of the graph has bounded
average degree to establish our approximation guarantee. In particular, if every minor of the
input (quasi-bipartite) graph has degree at most d, then the approximation factor will be
O(d).

▶ Theorem 3. There is a 20-approximation algorithm for Directed Steiner Tree on
quasi-bipartite, planar graphs. Moreover, the algorithm gives an upper bound of 20 on the
integrality gap of (Primal-LP) for Directed Steiner Tree instances on such graphs.

We also verify that Steiner Tree (and, thus, Directed Steiner Tree) remains
NP-hard even when restricted to quasi-bipartite, planar instances. Similar results are known,
but we prove this one explicitly since we were not able to find this precise hardness statement
in any previous work.

▶ Theorem 4. Steiner Tree instances on bipartite planar graphs where the terminals are
on one side and the Steiner nodes are on the other side is NP-hard.

The above hardness result shows DST instances on quasi-bipartite, planar graphs is
NP-hard as well.

1.3 Organization of the paper
In Section 2, we state some definition and notation where we use throughout the paper. In
Section 3 we present an example that shows the most natural primal-dual algorithm fails to
prove our approximation results, this helps the reader understand the key difficulty we need
to overcome to make a primal-dual algorithm work and motivates our more refined approach.
In Section 4 we present our primal-dual algorithm and in Section 5 we present the analysis.
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The analysis contains three main subsections where in each section we present a charging
scheme. The first two charging schemes are straightforward but the last one requires some
novelty. Finally, we put all these charging schemes together in Subsection 5.4 and prove
Theorems 1 & 3. The proof of the hardness result (Theorem 4) is deferred to the full version
of the paper [16].

2 Preliminaries

In this paper, graphs are simple directed graphs unless stated otherwise. By simple we mean
there are no parallel edges3. Note that we can simply keep the cheapest edge in a group of
parallel edges if the input graph is not simple; the optimal value for DST problem does not
change.

Throughout this paper, we fix a directed graph G = (V, E), a cost function c : E → R≥0,
a root r, a set of terminals X ⊆ V \ {r}, and no edge between any two Steiner nodes, as the
input to the DST problem. We denote the optimal value for DST instance by OPT.

Given a subgraph G′ of G we define δin
G′(S) = {e = (u, v) ∈ E(G′) : u ∈ V \ S, v ∈ S}

(i.e., the set of edges in G′ entering S) we might drop the subscript if the underlying subgraph
is G itself. For an edge e = (u, v), we call u the tail and v the head of e. By a dipath we
mean a directed path in the graph. By SCCs of F ⊆ E we mean the strongly connected
components of (V, F ) that contains either the root node or at least one terminal node. So
for example, if a Steiner node is a singleton strongly connected component of (V, F ) then we
do not refer to it as an SCC of F . Due to the quasi-bipartite property, these are the only
possible strongly connected components in the traditional sense of (V, F ) that we will not
call SCCs. Observe F is a feasible DST solution if and only if each SCC is reachable from r.

An arborescence T = (V, E) rooted at r ∈ V is a directed tree oriented away from the
root such that every vertex in V is reachable from r. By height of a vertex u in T we mean
the number of edges between r (the root) and u in the dipath from r to u in T . We let Tu

denotes the subtree of T rooted at u.
Our discussions, algorithm, and the analysis rely on the concept of active sets, so we

define them here.

▶ Definition 5 (Violated set). Given a DST instance and a subset F ⊆ E, we say S ⊆ V \{r}
where S ∩X ̸= ∅ is a violated set with respect to F if δin

F (S) = ∅.

▶ Definition 6 (Active set). Given a DST instance and a subset F ⊆ E, we call a minimal
violated set (no proper subset of it, is violated) an active set (or active moat) with respect
to F .

We use the following definition throughout our analysis and (implicitly) in the algorithm.

▶ Definition 7 (F -path). We say a dipath P is a F -path if all the edges of P belong to
F ⊆ E. We say there is a F -path from a subset of vertices to another if there is a F -path
from a vertex of the first set to a vertex of the second set.

In quasi-biparitite graphs, active moat have a rather “simple” structure, our algorithm
will leverage the following properties.

▶ Lemma 8. Consider a subset of edges F and let A be an active set with respect to F .
Then, A consists of exactly one SCC CA of F , and any remaining in A \ CA are Steiner
nodes. Furthermore, for every Steiner node in A \ CA there are edges in F that are oriented
from the Steiner node to CA.

3 Two edges are parallel if their endpoints are the same and have the same orientation.
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Proof. By definition of violated sets, A does not contain r. If A contains only one terminal,
then the first statement holds trivially. So consider two terminals t and t′ in A. We show
there is a F -path from t to t′ and vice versa. Suppose not and wlog assume there is no
F -path from t′ to t. Let B := {v ∈ A : ∃F − path from v to t}. Note that B is a violated
set and B ⊆ A \ {t′} which violates the fact that A is a minimal violated set. Therefore,
exactly one SCC of F is in A.

Next we prove the second statement. Let s be a Steiner node (if exists) in A \ CA. If
there is no edge in F oriented from s to CA, then A \ {s} is a violated set, because the graph
is quasi-bipartite and the fact that A is a violated set itself, contradicting the fact that A is
a minimal violated set. ◀

Note that the above lemma limits the interaction between two active moats. More
precisely, two active moats can only share Steiner nodes that lie outside of the SCCs in the
moats.

▶ Definition 9 (The SCC part of active moats). Given a set of edges F and an active set A

(with respect to F ), we denote by CA the SCC (with respect to F ) inside A.

We use CA rather than CF
A because the set F will always be clear from the context.

Finally we recall bounds on the size of Kr-minor free graphs that we use at the end of
our analysis.

▶ Theorem 10 (Thomason 2001 [34]). Let G = (V, E) be a Kr-minor free graph with no
parallel edges. Then, |E| ≤ O(r ·

√
log r)|V | and this bound is asymptotically tight. The

constant in the O-notation in the above theorem is at most 3 for large enough r.

Bipartite planar graphs are K5-minor free, but we know of explicit bounds sizes. The
following is the consequence of Euler’s formula that will be useful in our tighter analysis for
quasi-bipartite, planar graphs.

▶ Lemma 11. Let G = (V, E) be a bipartite planar graph with no parallel edges. Then,
|E| ≤ 2 · |V |.

3 Standard primal-dual algorithm and a bad example

Given a DST instance with G = (V, E), r ∈ V as the root, and X ⊆ V − {r} as the terminal
set, we define S := {S ⊊ V : r /∈ S, and S ∩X ≠ ∅}. We consider the dual of (Primal-LP).

maximize:
∑
S∈S

yS (Dual-LP)

subject to:
∑

S∈S:
e∈δin(S)

yS ≤ c(e) ∀e ∈ E (2)

y ≥ 0

As we discussed in the introduction, a standard primal-dual algorithm solves arborescence
problem on any directed graph [11]. Naturally, our starting point was to investigate this
primal-dual algorithm for DST instances. We briefly explain this algorithm here. At the
beginning we let F := ∅. Uniformly increase the dual constraints corresponding to active
moats and if a dual constraint goes tight, we add the corresponding edge to F . Update
the active sets based on F (see Definition 6) and repeat this procedure. At the end, we
do a reverse delete, i.e., we go over the edges in F in the reverse order they have been
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added to F and remove it if the feasibility is preserved. Unfortunately, for DST instances in
quasi-bipartite planar graphs, there is a bad example (see Figure 1), that shows the total
growth of the dual variables is 2 + k · ϵ while the optimal solution costs 2 + k + k · ϵ for
arbitrarily large k. So the dual objective is not enough to pay for the cost of the edges in F

(i.e., we have to multiply the dual objective by O(k) to be able to pay for the edges in F ).

What is the issue and how can we fix it? One way to get an O(1)-approximation is to
ensure at each iteration the number of edges (in the final solution) whose dual constraints
are losing slack at this iteration is proportioned to the number of active moats. In the bad
example (Figure 1), when the bottom moat is paying toward the downward blue edges, there
are only two active moats but there are k downward blue edges that are currently being paid
for by the growing dual variables.

To avoid this issue, we consider the following idea: once the bottom active moat grew
enough so that the dual constraints corresponding to all the downward blue edges are tight
we purchase an arbitrary one of them, say (r, zk) for our discussion here. Once the top active
moat reaches z1 instead of skipping the payment for this edge (since the dual constraint for
(w2, z1) is tight), we let the active moat pay towards this edge again by ignoring previous
payments to the edge, and then we purchase it once it goes tight. Note that now we violated
the dual constraint for (w2, z1) by a multiplicative factor of 2. Do the same for all the other
downward blue edges (except (r, zk) that was purchased by the bottom moat). Now it is
easy to see that we grew enough dual objective to approximately pay for the edges that we
purchased. We make this notion precise by defining different roles for downward blue edges
in the next section. In general, each edge can serve up to two roles and has two “buckets” in
which it receives payment: each moat pays towards the appropriate bucket depending on the
role that edge serves for that moat. An edge is only purchased if one of its buckets is filled
and some tiebreaking criteria we mention below is satisfied.

4 Our primal-dual algorithm

As we discussed in the last section, we let the algorithm violate the dual constraint cor-
responding to an edge by a factor of 2 and hence we work with the following modified
Dual-LP:

maximize:
∑
S∈S

yS (Dual-LP-Modified)

subject to:
∑

S∈S:
e∈δin(S)

yS ≤ 2 · c(e) ∀e ∈ E (3)

y ≥ 0

Note that the optimal value of (Dual-LP-Modified) is at most twice the optimal value
of (Dual-LP) because consider a feasible solution y for the former LP then y

2 is feasible for
the latter LP.

Let us define the different buckets for each edge that are required for our algorithm.

Antenna, expansion and killer buckets. We say edge e = (u, v) is an antenna edge if
u /∈ X ∪ {r} and v ∈ X, in other words, if the tail of e is a Steiner node and the head of e is
a terminal. For every antenna edge we associate an antenna bucket with size c(e). For every
non-antenna edge e, we associate two buckets, namely expansion and killer buckets, each of
size c(e). The semantics of these labels will be introduced below.

APPROX/RANDOM 2023
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w1 w2 w3 wk−2 wk−1 wk
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ϵ

Figure 1 This is an example to show why a standard primal-dual algorithm fails. The square
vertices are terminals. The downward blue edges (i.e., (wi, zi−1)’s for 2 ≤ i ≤ k) have cost 1, the
upward blue edges (i.e., (zi, wi)’s for 1 ≤ i ≤ k) have cost ϵ. The cost of the black edges are 0 except
(w1, v) who has cost 1. Note any feasible solution contains all the blue edges and the cost of an
optimal solution is k + k · ϵ + 1. However, it is easy to see the total dual variables that are grown
using a standard primal-dual algorithm is 2 + k · ϵ.

Now we, informally, describe our algorithm, see Algorithm 1 for the detailed description.
Recall the definition of active moats (Definition 6).

Growth phase. At the beginning of the algorithm we set F := ∅ and every singleton terminal
is an active moat. As long as there is an active moat with respect to F do the following:
uniformly increase the dual variables corresponding to the active moats. Let e /∈ F be an
antenna edge with its head in an active moat, then the active moat pays towards the antenna
bucket of e. Now suppose e = (u, v) /∈ F is a non-antenna edge, so u ∈ X ∪ {r}. For every
active moat A that contains v, if CA (see Definition 9) is a subset of an active set A′ with
respect to F ∪ {e}, then A pays toward the expansion bucket of e and otherwise A pays
towards the killer bucket of e.

Uniformly increase the dual variables corresponding to active moats until a bucket for an
edge e becomes full (antenna bucket in case e is an antenna edge, and expansion or killer
bucket if e is a non-antenna edge), add e to F . Update the set of active moats A according
to set F .

Pruning. Finally, we do the standard reverse delete meaning we go over the edges in F in
the reverse order they have been added and if the resulting subgraph after removing an edge
is still feasible for the DST instance, remove the edge and continue.

The following formalizes the different roles of a non-antenna edge that we discussed above.

▶ Definition 12 (Relation between non-antenna edges and active moats). Given a subset of
edges F ⊆ E, let A be the set of all active moats with respect to F . Consider a non-antenna
edge e = (u, v) (so u ∈ X ∪ {r}). Suppose v ∈ A where A ∈ A. Then,
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e′′

e′Fl

Fl

Fl

A
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Figure 2 Above is a part of a graph at the beginning of iteration l in the algorithm. Fl denotes
the set F at this iteration. The circles are SCCs in (V, Fl). Blue circles are inside some active moats
shown with ellipses. The black dots s and s′ are Steiner nodes. The black edges and the zigzag
paths are in Fl. The edges e, e′, and e′′ have not been purchased yet (i.e., e, e′, e′′ /∈ Fl). Since CA is
a subset of an active moat namely A ∪ B ∪ {s} with respect to Fl ∪{e}, e is an expansion edge with
respect to A. However, e is a killer edge with respect to A′ and e′′ is a killer edge with respect to A.
Finally, e′ is a killer edge with respect to A′ (and A′′) because there is a Fl ∪{e′}-path from CA to
CA′ (and CA′′ ), therefore CA′ (and CA′′ ) cannot be inside an active moat with respect to Fl ∪{e′}.

we say e is an expansion edge with respect to A under F if there is a subset of vertices A′

that is active with respect to F ∪ {e} such that CA ⊊ A′,
otherwise we say e is a killer edge with respect to A.

For example, all exiting edges from r that are not in F is a killer edge with respect to any
active moat (under F ) it enters. See Figure 2 for an illustration of the above definition.

Intuition behind this definition. A non-antenna edge e = (u, v) is a killer edge with respect
to an active moat A, if and only if, there is a dipath in F ∪ {e} from r or CA′ to CA where
A′ ̸= A is an active moat with respect to F . Note that adding e to F will make the dual
variable corresponding to A stop growing and that is why we call e a killer edge with respect
to A. For example, in Figure 2, both e and e′ are killer edges with respect to A′. On the
other hand, if e = (u, v) is an expansion edge with respect to A, then CA will be a part
of a “bigger” active moat with respect to F ∪ {e} and hence the name expansion edge for
e. For example, in Figure 2, e is an expansion edge with respect to A because in F ∪ {e},
A ∪B ∪ {s} is an active moat whose SCC contains CA.

The complete description of the algorithm is given in Appendix A. Note that the purchased
edge el at iteration l enters some active moat at iteration l.

After the algorithm finishes, then we label non-antenna edges by expansion/killer as
determined by the following rule:

▶ Definition 13 (Killer and expansion edges). Consider iteration l of the algorithm where we
added a non-antenna edge el to F . We label el as expansion (killer) if the expansion (killer)
bucket of e becomes full at iteration l, break ties arbitrarily.

Following remark helps to understand the above definition better.

▶ Remark 14. It is possible that one bucket becomes full for an edge yet we do not purchase
the edge with that bucket label (killer or expansion) due to tiebreaking when multiple buckets
become full. For example, this would happen in our bad example for the downward blue
edges: their killer buckets are full yet all but one are purchased as expansion edges.

APPROX/RANDOM 2023
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Let us explain the growth phase of Algorithm 1 on the bad example in Figure 1. Since the
early iterations of the algorithm on this example are straightforward, we start our explanation
from the iteration where the active moats are A = {b, z1, z2, ..., zk} and A′ = {a, v}.

Every (wi, zi−1) for 2 ≤ i ≤ k is a killer edge with respect to A so A pays toward the
killer buckets of these edges. At the same iteration, (w1, v) is an expansion edge with respect
to A′ so A′ pays toward the expansion bucket of this edge. Now the respected buckets for
all mentioned edges are full. Arbitrarily, we pick one of these edges, let us say (wk, zk−1),
and add it to F . Then, A stops growing. In the next iteration, we only have one active
moat A′. Since (w1, v) is still expansion edge with respect to A′ and its (expansion) bucket
is full, in this iteration we add (w1, v) to F and after updating the active moats, again we
only have one active moat {a, v, w1} which by abuse of notation we denote it by A′. Next
iteration we buy the antenna edge (z1, w1) and the active moat now is A′ = {a, v, w1, z1}. In
the next iteration, the crucial observation is that the killer bucket of (w2, z1) is full (recall
the A payed toward the killer bucket of (w2, z1)); however, (w2, z1) is an expansion edge with
respect to A′ so A′ will pay towards its expansion bucket and then purchases it. Similarly,
the algorithm buys (wi, zi−1)’s except (wk, zk−1) because this edge is in F already (recall we
bought this edge with A). Finally, (r, zk) is a killer edge with respect to the active moat in
the last iteration and we purchase it.

5 The analysis

Because of the space constraints, we defer most of the proofs to the full version of the
paper [16] and defer to the full version.

The general framework for analyzing primal-dual algorithms is to use the dual constraints
to relate the cost of purchased edges and the dual variables. However, here we do not use
the dual constraints and rather we use the buckets we created for each edge. Recall F is
the solution output by Algorithm 1. We define F Killer to be the set of edges in F that was
purchased as killer edge (recall definition 13). Similarly define F Exp and F Ant. For each
iteration l, we denote by Fl the set F at this iteration, Al denotes the set of active moats with
respect to Fl, and ϵl is the amount we increased the dual variables (corresponding to active
moats) with at iteration l. Finally, Let y∗ be the dual solution for (Dual-LP-Modified)
constructed in the course of the algorithm. We use the following notation throughout the
analysis.

▶ Definition 15. Fix an iteration l. For any A ∈ Al, let

∆l
Killer(A) := {e ∈ F Killer : e is killer with respect to A under Fl},

in other words, ∆l
Killer(A) is the set of all killer edges in F such that they are killer edge with

respect to A at iteration l. Similarly define ∆l
Exp(A).

Let ∆l
Ant(A) := {e ∈ F Ant : e ∈ δin(A)}. Finally, we define

∆l(A) := ∆l
Killer(A) ∪∆l

Exp(A) ∪∆l
Ant(A).

Note ∆l
Killer(A), ∆l

Exp(A), and ∆l
Ant(A) are pairwise disjoint for any A ∈ Al.

Suppose we want to show that the performance guarantee of Algorithm 1 is 2 ·α for some
α ≥ 1, it suffices to show the following: for any iteration l we have∑

S∈Al

|∆l(S)| ≤ α · |Al|. (4)
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Once we have (4), then the (2 · α)-approximation follows easily:∑
e∈F

c(e) =
∑

e∈F Killer

∑
l

∑
S∈Al:

e∈∆l
Killer(S)

ϵl +
∑

e∈F Exp

∑
l

∑
S∈Al:

e∈∆l
Exp(S)

ϵl +
∑

e∈F Ant

∑
l

∑
S∈Al:

e∈∆l
Ant(S)

ϵl (5)

=
∑

l

ϵl ·
∑

S∈Al

|∆l(S)| (6)

≤ α ·
∑

l

|Al|ϵl (7)

= α ·
∑

S⊆V \{r}

y∗
S (8)

≤ α ·
(
2 ·OPT(Dual− LP)

)
(9)

= 2 · α ·OPT(Primal− LP) (10)
≤ 2 · α ·OPT, (11)

where the first equality follows from the algorithm, the second equality is just an algebraic
manipulation, (7) follows from (4). Equality (8) follows from the fact we uniformly increased
the dual variables corresponding to active moats by ϵl at iteration l, (9) follows from feasibility
of y∗

2 for (Dual-LP), and (10) follows from strong duality theorem for linear programming.
It remains to show (4) holds. Consider iteration l. Using the bound on the total degree of

nodes in G (using minor-free properties) to show (4), it suffices to bound the number of edges
in F̄Ant ∪ F̄Killer ∪ F̄Exp that are being paid by some active moat at iteration l, by O(|Al|).
We provide charging schemes for each type of edges, separately. Since G is quasi-bipartite,
it is easy to show that for each active moat A ∈ Al, there is at most one antenna edge in
F̄ that enters A, this is proved in Section 5.1. The charging scheme for killer edges is also
simple as one can charge a killer edge to an active moat that it kills; this will be formalized
in Section 5.2. However, the charging scheme for expansion edges requires more care and
novelty. The difficulty comes from the case that an expansion edge is not pruned because it
would disconnect some terminals that are not part of any active moat that e is entering this
iteration.

Our charging scheme for expansion edges is more global. In a two-stage process, we
construct an auxiliary tree that encodes some information about which nodes can be reached
from SCCs using edges in Fl (which is the information we used in the definition of expansion
edge). Then using a token argument, we leverage properties of our construction to show the
number of expansion edges is at most twice the number of active moats in any iteration.
These details are presented in 5.3. Finally, in Section 5.4 we put all the bounds we obtained
together and derive our approximation factors.

5.1 Counting the number of antenna edges in an iteration

Fix an iteration l. Recall Fl denotes the set F at iteration l, and Al denotes the set of active
moats with respect to Fl. It is easy to bound the number of antenna edges in F against |Al|.
We do this in the next lemma.

▶ Lemma 16. At the beginning of each iteration l, we have
∑

A∈Al

|∆l
Ant(A)| ≤ |Al|.

APPROX/RANDOM 2023
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5.2 Counting the number of killer edges in an iteration
We introduce a notion called alive terminal which helps us to bound the number of killer
edges at a fixed iteration against the number of active moats in that iteration. Also this
notion explains the name killer edge. Throughout the algorithm, we show every active moat
contains exactly one alive terminal and every alive terminal is in an active moat.

We consider how terminals can be “killed” in the algorithm by associating active moats
with terminals that have not yet been part of a moat that was killed. At the beginning of the
algorithm, we mark every terminal alive, note that every singleton terminal set is initially
an active moat as well. Let el = (u, v) be the edge that was added to Fl at iteration l. If
el = (u, v) is a non-antenna edge, then for every active set A such that el is a killer edge with
respect to A under Fl, mark the alive terminal in A as dead4. If el = (u, v) is an antenna
edge, then for every active moat A such that el ∈ δin(A) and CA is not in any active moat
with respect to Fl ∪{el}, then mark the alive terminal in A as dead5.

The important observation here is that by definition, if el is a killer edge, then there
must be an active set that satisfies the above condition, hence there is at least one alive
terminal that will be marked dead because of el. In the case that el is bought as killer edge,
arbitrarily pick an alive terminal tel

that dies because of el and assign el to tel
. Note that

tel
was alive until el was added to Fl.

▶ Definition 17. Fix an iteration l. We define

F
l

Killer :=
⋃

A∈Al

∆l
Killer(A),

in other words, F
l

Killer is the set of all killer edges in F such that some active moat(s) is
paying toward their killer bucket at iteration l.

Now we can state the main lemma of this section.

▶ Lemma 18. At the beginning of each iteration l, we have |F l

Killer| ≤ |Al|.

Note that the above lemma does not readily bound
∑

A∈Al

|∆l
Killer(A)| against |Al| which

is required to prove inequality (4). We need the properties of minor-free graphs to do so. In
the next section we prove a similar result for expansion edges and then using the properties
of the underlying graph, we demonstrate our approximation guarantee.

5.3 Counting the number of expansion edges in an iteration
The high level idea to bound the number of expansion edges is to look at the graph F ∪ Fl

and contract all SCCs6 of (V, Fl). Then, we construct an auxiliary tree that highlights the
role of expansion edges to the connectivity of active moats. Finally, using this tree we provide
our charging scheme and show the number of edges in F Exp that are being paid by some
active moats at iteration l is at most twice the number of active moats.

4 It is possible, el is bought as an expansion edge but kills some alive terminals. For example, in Figure
2 suppose e is being added to Fl at iteration l as an expansion edge (note that A pays toward the
expansion bucket of e). Then, we mark the alive terminal in A′ as dead because e is a killer edge with
respect to A′ under Fl.

5 For example, suppose the antenna edge el = (u, v) ∈ δin(A) is being added to Fl and u is in CA′ for
some active moat A′. Then, after adding el to Fl, we mark the alive terminal in A as dead.

6 Recall that we do NOT call a Steiner node that is a singleton strongly connected component of (V, Fl)
an SCC. So every SCC in (V, Fl) is either {r} or contains at least one terminal node.
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We fix an iteration l for this section. First let us recall some notation and definition that
we use extensively in this section. (i) F is the output solution of the algorithm. (ii) Fl ⊆ E

is the set of purchased edges in the growing phase up to the beginning of iteration l (i.e., set
F in the algorithm at iteration l). (iii) Al is the set of active moats with respect to Fl (see
Definition 6). Recall each A ∈ Al is consists of an SCC (with respect to edges in Fl) and
bunch of Steiner nodes. Denote by CA the SCC part of A.

We define an analogous of Definition 17 for expansion edges.

▶ Definition 19. Fix an iteration l. Then, we define

F
l

Exp :=
⋃

A∈Al

∆l
Exp(A),

in other words, F
l

Exp is the set of all expansion edges in F \Fl such that some active moat(s)
is paying toward their expansion bucket at iteration l.

This section is devoted to prove the following inequality.

▶ Lemma 20. At the beginning of each iteration l of the algorithm, we have |F l

Exp| ≤ 2 · |Al|.

Sketch of the proof. We start by giving a sketch of the proof of Lemma 20. Consider the
subgraph Fl ∪F of G. Contract every SCC of (V, Fl) and denote the resulting subgraph by H

(keeping all copies of parallel edges that may result). For every non-root, non-Steiner node
v ∈ V (H), we call v active if it is a contraction of an SCC that is a subset of an active moat
in Al, otherwise we call v inactive. Note that r is a singleton SCC in (V, Fl) and therefore
r ∈ V (H). We call an edge in E(H) an expansion edge, if its corresponding edge is in F

l

Exp.
Note that every non root vertex in V (H) is either labeled active/inactive, or it is a Steiner
node. Lemma 20 follows if we show the number of expansion edges in H is at most twice
the number of active vertices in H. As we stated at the beginning of this section, we use an
arborescence that highlights the role of expansion edges to the connectivity of active vertices
in H. A bit more formally, we show if every expansion edge is “good” with respect to the
arborescence, which is formalized below, then every expansion edge is “close” to an active
vertex in H and we use this in our charging scheme.

Given an arborescence T , define ElevelT (v) to be the expansion level of v with respect to
T , i.e., the number of expansion edges on the dipath from r to v in T .

▶ Definition 21. Given an arborescence T and an expansion edge e = (u, v), we say e is a
good expansion edge with respect to T if one of the following cases happens:

Type 1: If u has an active ancestor w such that ElevelT (w) = ElevelT (u).
Type 2: If e is not of type 1 and the subtree rooted at u has an active vertex w such that
ElevelT (w) ≤ ElevelT (u) + 1.

Every expansion edge that is not of type 1 or type 2, is called a bad expansion edge with
respect to T .

A starting point for an arborescence that every expansions edge is good, is a shortest
path arborescence rooted at r in H where each expansion edge has cost 1 and the rest of the
edges have cost 0. However, as Figure 3 shows, there could be some bad expansion edges in
this arborescence. For example, e is a bad expansion edge with respect to the arborescence
in Figure 3 (b). Since B2, the tail of e, is an inactive vertex, there must be an active vertex,
namely A3, that has a dipath from A3 to B2 in Fℓ. Then, we can “cut” the subtree rooted
at B2 and “paste” it under A3 as shown in Figure 3(c). It is easy to verify that now every
expansion edge is good with respect to the arborescence in Figure 3(c). We formalize this
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Figure 3 (a) shows subgraph Fl ∪F̄ of G, in particular, the SCCs of (V, Fl) are shown with circles
but the nodes inside SCCs are not shown for simplicity. The blue SCCs are inside some active moats
shown with dashed ellipses. Contracting all the SCCs result in the graph H discussed before. Black
edges are in Fl, blue edges are in F̄ \ Fl, and green edges are in F̄ l

Exp. In (b), we have a shortest path
arborescence rooted at r in H where the cost of edges is one if it is green and zero otherwise. Recall
the definition of H at the beginning of this sketched proof. Note that e is a bad expansion edge with
respect to this arborescence. In (c), we show how to construct an arborescence using cut-and-paste
procedure so that every expansion edge is a good expansion edge in the resulting arborescence.

“cut and paste” procedures in Algorithm 2 in the full version of the paper and prove the
output of the algorithm is an arborescence with the property that every expansion edge is
good. Given an arborescence that every expansion edge is good, we show there is a rather
natural charging scheme that proves Lemma 20.

Charging scheme. At the beginning we label every token unused. We process all the
vertices with height l. For each expansion edge whose tail has height l we assign an unused
token to it and change the label of the assigned token to used. Then we move to height
l − 1 and repeat the process. Fix height l. We do the following for every vertex u with this
height: if there is no expansion edge whose tail is u then mark u as processed. Otherwise let
(u, v1), ..., (u, vk) be all the expansion edges whose tail is u. Note that by definition of type 1
and 2, either (i) all (u, vi)’s are type 1 or (ii) all are type 2. Base on these two cases we do
the following:

(i) Let (u, v1), ..., (u, vk) be the expansion edges of type 1. For each 1 ≤ i ≤ k there is at
least one unused token in T ∗

vi
. Pick one such unused token and assign it to (u, vi) and

change its label to used. Mark u as processed.
(ii) Let (u, v1), ..., (u, vk) be the expansion edges of type 2. For each 1 ≤ i ≤ k there is

at least one unused token in T ∗
vi

. Pick one such unused token and assign it to (u, vi)
and change its label to used. Furthermore, after this there is at least one more unused
token in T ∗

u . Mark u as processed.
The proof of correctness of this charging scheme is based on induction on the height l. ◀

5.4 Putting everything together
Fix an iteration l. We use Lemmas 18 & 20 and the properties of graph G to bound∑
A∈Al

|∆l
Killer(A) ∪∆l

Exp(A)|. Consider an active moat A and its SCC CA. We show there is

at most one killer/expansion edge that enters CA. So the remaining killer/expansion edges
must enter some Steiner node in A \ CA. We use this fact later.
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▷ Claim 22. Fix an iteration l and an active moat A ∈ Al. There is at most one edge in
∆l

Killer(A) ∪∆l
Exp(A) whose head is in CA.

Consider the graph Fl ∪F . Remove all vertices that are not in an active moat at this
iteration. For each active moat A, remove all Steiner nodes in A \ CA that are not the head
of any edge in F

l

Killer ∪ F
l

Exp. Then, for each A ∈ Al contract CA to a single vertex and call
the contracted vertex by CA. Finally, if there are parallel edges, arbitrarily keep one of them
and remove the rest7. Call the resulting graph G′.

Now we relate the sum we are interested in to bound with the sum of the indegree of
vertices in G′.

▷ Claim 23. For each active moat A ∈ Al, we have

|∆l
Killer(A) ∪∆l

Exp(A)| ≤ |δin
G′(CA)|+ 1. (12)

Next, using Lemmas 18 & 20 we bound the number of vertices in G′.

▷ Claim 24. Fix an iteration l. Then, |V (G′)| ≤ 4 · |Al|.

Finally, we prove Theorems 1 & 3.

Proof of Theorem 1. Since G is Kr-minor free so does G′. So we can write∑
A∈Al

∣∣∆l
Killer(A) ∪∆l

Exp(A)
∣∣ ≤ ∑

A∈Al

(
|δin

G′(CA)|+ 1
)

= |E(G′)|+ |Al|

≤ O(r ·
√

log r) · 4 · |Al|+ |Al|

= O(r ·
√

log r)|Al|,

(13)

where the inequality follows from Claim 23 and the second inequality follows from Claim 24
together with Theorem 10.

Next we show (4) holds for α = O(r ·
√

log r).∑
A∈Al

|∆l(A)| =
∑

A∈Al

|∆l
Killer(A) ∪∆l

Exp(A)|+
∑

A∈Al

|∆l
Ant(A)|

≤ O(r ·
√

log r)|Al|+ |Al|

= O(r ·
√

log r)|Al|,

where inequality follows from inequality (13) and Lemma 16.
As we discussed at the beginning of Section 5 that if (4) holds for α then we have a

(2 · α)-approximation algorithm. Hence, Algorithm 1 is an O(r ·
√

log r)-approximation for
DST on quasi-bipartite, Kr-minor free graphs. ◀

Proof of Theorem 3. The proof is exactly the same as proof of Theorem 1 except instead of
O(r ·

√
log r) in (13) we have 2 because G′ is a bipartite planar graph, see Lemma 11. Now

we can write
∑

A∈Al

∣∣∆l
Killer(A) ∪∆l

Exp(A)
∣∣ ≤ 9 · |Al| and

∑
A∈Al

|∆l(A)| ≤ 10 · |Al|. Therefore,

(4) holds for α = 10 and hence we have a 20-approximation algorithm, as desired. ◀

7 Note that all the parallel edges are antenna edges and so removing them does not affect the quantity∑
A∈Al

|∆l
Killer(A) ∪ ∆l

Exp(A)| we are trying to bound.
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A Full description of the primal-dual algorithm

Algorithm 1 Primal-Dual Algorithm for DST on Quasi-Bipartite Graphs.
Input: Directed quasi-bipartite graph G = (V, E) with edge costs c(e) ≥ 0 for e ∈ E, a set
of terminal X ⊆ V \ ∅, and a root vertex r.
Output: An arborescence F rooted at r such that each
terminal is reachable from r in F .
A ← {{v} : v ∈ X}. {The active moats each iteration, initially all singleton terminal set.}
y∗ ← 0. {The dual solution}
F ← ∅. {The edges purchased}
l← 0. {The iteration counter}
bAnt

e ← 0, bExp
e ← 0 and bKiller

e ← 0. {The buckets}
Growing phase:
while until A ̸= ∅ do

Find the maximum value ϵ ≥ 0 such that the following holds:
(a) for every antenna edge e we have bAnt

e +
∑

A∈A:
e∈δin(A)

ϵ ≤ c(e).

(b) for every non-antenna edge e we have bExp
e +

∑
A∈A:

e is expansion
with resp. to A

ϵ ≤ c(e).

(c) for every non-antenna edge e we have bKiller
e +

∑
A∈A:

e is killer with
resp. to A

ϵ ≤ c(e).

Increase the dual variables y∗ corresponding to each active moat by ϵ.
for every antenna edge e do

bAnt
e ← bAnt

e +
∑

A∈A:
e∈δin(A)

ϵ.

end for
for every non-antenna edge e do

bExp
e ← bExp

e +
∑

A∈A:
e is expansion
with resp. to A

ϵ.

bKiller
e ← bKiller

e +
∑

A∈A:
e is killer with

resp. to A

ϵ.

end for
pick any single edge el ∈ ∪A∈Aδin(A) with one of (a)-(c) being tight (break ties
arbitrarily).
F ← F ∪ {el}.
update A based on the minimal violated sets with respect to F .
l← l + 1.

end while
Deletion phase:
F ← F .
for i from l to 0 do

if F \ {ei} is a feasible solution for the DST instance then
F ← F \ {ei}.

end if
end for
return F
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Abstract
The k-Steiner-2NCS problem is as follows: Given a constant (positive integer) k, and an undirected
connected graph G = (V, E), non-negative costs c on the edges, and a partition (T, V \ T ) of V into
a set of terminals, T , and a set of non-terminals (or, Steiner nodes), where |T | = k, find a min-cost
two-node connected subgraph that contains the terminals. The k-Steiner-2ECS problem has the
same inputs; the algorithmic goal is to find a min-cost two-edge connected subgraph that contains
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We present a randomized polynomial-time algorithm for the unweighted k-Steiner-2NCS problem,
and a randomized FPTAS for the weighted k-Steiner-2NCS problem. We obtain similar results for a
capacitated generalization of the k-Steiner-2ECS problem.

Our methods build on results by Björklund, Husfeldt, and Taslaman (SODA 2012) that give a
randomized polynomial-time algorithm for the unweighted k-Steiner-cycle problem; this problem
has the same inputs as the unweighted k-Steiner-2NCS problem, and the algorithmic goal is to find
a min-cost simple cycle C that contains the terminals (C may contain any number of Steiner nodes).
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1 Introduction

The k-Steiner-cycle problem is as follows: Given a constant k, and an undirected connected
graph G = (V, E), non-negative costs c on the edges, and a partition (T, V \T ) of V into a set
of terminals, T , and a set of non-terminals (or, Steiner nodes), where |T | = k, find a minimum-
cost simple cycle C that contains all the terminals (and any subset of Steiner nodes). Note
that this is an optimization problem and not a search problem. To the best of our knowledge,
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no polynomial-time (deterministic or randomized) algorithm is known for finding an optimal
solution of the (weighted) k-Steiner-cycle problem, even for k = 3; this problem has been
open for several decades, see [7]. Björklund, Husfeldt, and Taslaman (SODA 2012) [3] give a
randomized polynomial-time algorithm for the unweighted k-Steiner-cycle problem; also, see
Taslaman’s thesis [26]. Further research on the same problem is presented by Wahlström [27],
and by Fafianie and Kratsch [10]. The algorithm of [3] extends easily to a randomized FPTAS
for the weighted k-Steiner-cycle problem, by using techniques from Ibarra & Kim [15] and
Hochbaum & Shmoys [14], see Proposition 6. All the results in our paper are based on the
key result of Björklund et al. [3]. Below, in the section on related work, we discuss several
papers that pertain to the k-Steiner-cycle problem, but we stress that the methods and
techniques of these papers have no direct implications for the k-Steiner-cycle problem.

Network design encompasses a wide class of problems that find applications in sectors
like transportation, facility location, information security, resource connectivity, etc. Due
to its wide scope and usefulness, the area of network design has been studied for decades
and it has spawned major algorithmic innovations. Most of the problems in network design
are NP-Hard, and researchers in the area have focused on designing good approximation
algorithms. The nodes of a network are designated as terminals (i.e., “essential” nodes) or
non-terminals (i.e., Steiner nodes or “optional” nodes). A well-known goal of network design
is to construct cheap networks that can survive the failure of one element (i.e., one edge or
one node); “surviving” means that all the (remaining) terminals stay connected even after
the deletion of one element, that is, there exists a path between every pair of (remaining)
terminals after deleting one element.

In the Steiner-2ECS problem, the input is an undirected graph G = (V, E), a set of
terminals T ⊆ V , and non-negative costs c on the edges. The goal is to find a minimum-cost
2-edge-connected subgraph containing all the terminals. The Steiner-2NCS problem is defined
similarly, where the goal is to find a minimum-cost 2-node-connected subgraph containing all
the terminals. Both these problems are NP-Hard. The best known approximation algorithms
achieve an approximation ratio of two, see [29].

Another paradigm to address NP-Hard problems is to develop parameterized algorithms.
In this setting, a parameter of the input is chosen (e.g., the number of terminals, or the size
of an optimal solution) and the goal is to develop algorithms whose running time depends on
the input size and the parameter.

Feldmann, Mukherjee and van Leeuwen [11] presented parametrized algorithms for the
Steiner-2ECS and Steiner-2NCS problems (among others) where the parameter is the optimal
solution size, which is denoted by ℓ. They showed that if ℓ is bounded by a constant, then
these problems can be solved in polynomial time. In particular, they present a fixed parameter
tractable (FPT) algorithm that runs in time nO(1)f(ℓ) and computes an optimal solution,
where f(·) denotes some computable function.

Feldmann et al. [11] recently high-lighted the following open question in the area of
network design: Is there a polynomial-time algorithm for the Steiner-2NCS problem, where
the number of terminals is a constant? We use the term k-Steiner-2NCS problem (respectively,
k-Steiner-2ECS problem) to refer to the special case of the Steiner-2NCS problem (respectively,
Steiner-2ECS problem) with k terminals. Usually, we assume that the number of terminals
is a constant, i.e., k = O(1). We present a randomized polynomial-time algorithm for
the unweighted k-Steiner-2NCS problem. We also consider the weighted k-Steiner-2NCS
problem, and we provide a randomized fully polynomial time approximation scheme (FPTAS)
for this problem.
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We obtain similar results for the following generalization of the k-Steiner-2ECS problem:
In the k-Flexible Steiner Tree (k-FST) problem, the input consists of an undirected graph
G = (V, E), a partition of the edge-set E into a set S of safe edges and a set U of unsafe edges,
a set of terminals T ⊆ V with |T | = k, and non-negative costs c on the edges. The goal is to
find a minimum-cost connected subgraph H = (U, F ) such that T ⊆ U and for any unsafe
edge e ∈ F , the graph H − e is connected. This problem is equivalent to the capacitated
k-Steiner-2ECS problem, where the input is the same as that of the k-FST problem, except
that there is a a positive integral capacity u on the edges (instead of the partition E = S

⋃
U);

the goal is to find a minimum-cost connected subgraph H = (U, F ) such that T ⊆ U and
for any unit-capacity edge e ∈ F , the graph H − e is connected. (The two problems are
equivalent because the unsafe edges of the k-FST problem correspond to the unit-capacity
edges of the latter problem, and the safe edges of the k-FST problem correspond to edges
of capacity at least two of the latter problem.) We present a randomized polynomial-time
algorithm for the unweighted k-FST problem; this easily extends to a randomized FPTAS
for the weighted k-FST problem.

1.1 Our Results and Techniques
We prove that the k-Steiner-2NCS problem can be solved in randomized slicewise polynomial
time, and hence it is in the complexity class randomized XP.

▶ Theorem 1. For any η > 0, ϵ > 0 and constant k,
(i) there exists a randomized algorithm for the unweighted k-Steiner-2NCS problem that

outputs an optimal solution with probability 1− η in time O(
(

n
2k

)
·B(3k) ·

(3k
2

)k · 23k ·
nO(1) · log k

η ) = O
(

nO(k) · log 1
η

)
, where B(i) denotes the ith ordered Bell number.

(ii) there exists a randomized algorithm for the weighted k-Steiner-2NCS problem that runs
in time O(nO(k) · (1/ϵ)O(k) · log(1/η)) such that, with probability at least 1 − η, the
solution returned by the algorithm costs at most (1 + ϵ) times the cost of an optimal
solution.

Our methods build on results by Björklund, Husfeldt, and Taslaman (SODA 2012) [3] that
give a randomized polynomial-time algorithm for the unweighted k-Steiner-cycle problem.
Given an instance of the k-Steiner-2NCS problem, we guess an ear decomposition of an
optimal solution by enumeration, and repeatedly use the algorithm in [3] to construct an
optimal subgraph. It can be seen that naively attaching new ears does not lead to an
optimal solution. Hence, we also keep track of the high degree nodes in the optimal subgraph.
Subsequently, we obtain our randomized FPTAS for the weighted k-Steiner-2NCS problem,
by using the scaling techniques from Ibarra & Kim [15] and Hochbaum & Shmoys [14]. We
present similar results for the k-FST problem.

▶ Theorem 2. For any η > 0, ϵ > 0 and constant k,
(i) there exists a randomized algorithm for the unweighted k-FST problem that outputs an

optimal solution with probability 1− η in time O
(

nO(k) · log 1
η

)
.

(ii) there exists a randomized algorithm for the weighted k-FST problem that runs in time
O(nO(k) · (1/ϵ)O(k) · log(1/η)) such that, with probability at least 1 − η, the solution
returned by the algorithm costs at most (1 + ϵ) times the cost of an optimal solution.

Our methods here rely on the block decomposition of an optimal solution, in conjunction
with our results on the k-Steiner-2NCS problem. We use Theorem 1 to find the individual
blocks optimally, and then paste these blocks together using the results by Adjiashvili,

APPROX/RANDOM 2023
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Hommelsheim, Mühlenthaler, and Schaudt [1] who give a polynomial-time algorithm for
finding an optimal solution to the 2-FST problem; see Proposition 1 and Theorem 5 of [1].
As a corollary, we obtain the same results for the capacitated k-Steiner-2ECS problem.

▶ Corollary 3.
(i) The capacitated k-Steiner-2ECS problem can be solved in slicewise polynomial time with

high probability, hence, it is in randomized XP.
(ii) There exists a randomized FPTAS for the weighted capacitated k-Steiner-2ECS problem.

1.2 Related Work
1.2.1 k-Steiner-cycle problem
One of the key applications of the Graph Minors theory of Roberston and Seymour [23] is a
polynomial-time algorithm for the decision/search version of the k disjoints paths problem for
constant k. In this problem, we are given an undirected graph G = (V, E) and k source-sink
pairs si, ti, and the goal is to decide (or, find) if there exist k node-disjoint paths Pi where
the end-nodes of Pi are si and ti. The Graph Minors theory (as of now) cannot address the
optimization version of this problem.

There are many papers on the k disjoint paths problem, and a few on problems related
to the k-Steiner-cycle problem. Kawarabayashi [19] presented improved algorithms for the
search version of the latter problem, by improving on the methods from Graph Minors theory.
There are a few other relevant results from the last few decades; for example, Fleischner and
Woeginger present results for the unweighted 3-Steiner-cycle problem, see [13].

Recently, Lochet [21] and Bentert et al. [2] presented interesting algorithms for the
so-called k disjoint shortest paths problem, i.e., each of the paths Pi (of the disjoint paths
problem) is required to be a shortest path between si and ti; this problem is not directly
related to the optimization problems of interest to us.

1.2.2 k-Steiner-2NCS problem and k-Steiner-2ECS problem
Network design problems involving finding a cheapest subgraph subject to connectivity
requirements have been studied for decades. One of the simplest such problems is the
minimum spanning tree problem which is known to have polynomial-time algorithms. However,
increasing the connectivity requirements makes these problems intractable. The 2-edge-
connected spanning subgraph (2-ECSS) problem is Max-SNP-Hard, see [6]. In the weighted
setting, the best known approximation algorithm achieves an approximation ratio of two,
see Khuller and Vishkin [20]. The best known approximation ratio for the minimum-cost
2-node-connected spanning subgraph (2-NCSS) problem is two, see the survey by Nutov [22].

The analogous problems with Steiner nodes are usually harder. For instance, the minimum-
cost Steiner tree problem is already NP-Hard [18]. The best known approximation ratio for
this problem is ≈ 1.39, due to Byrka et al. [5]. The best known approximation ratios for the
(weighted) Steiner-2ECS/Steiner-2NCS problem is two, see [29, 16, 12].

In the context of parameterized algorithms, Dreyfus and Wagner [9] showed that the
Steiner tree problem can be solved in FPT time where the parameter is the number of
terminals. Feldmann et al. [11] showed that the Steiner-2ECS and Steiner-2NCS problems
can be solved in FPT time where the parameter is the size of an optimal solution.

Sami [24], in his master’s thesis, has some results related to our paper. He notes that there
is a reduction from the k-Steiner-2ECS problem to the k-Steiner-2NCS problem.

(
We can

“inflate” each node v of the graph G of the k-Steiner-2ECS problem to a complete graph, i.e.,
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clique, Cv on degG(v) nodes with edges of cost zero, and replace the edges incident to v in G

by edges incident to distinct nodes of Cv while preserving the edge costs.
)

Moreover, he shows
that the FPT (in the solution size parameter ℓ) algorithm of [11] for the k-Steiner-2ECS
problem can be combined with a result of Jordan [17] to give an FPT (in parameter k = |T |)
algorithm for the k-Steiner-2ECM problem where the solution subgraph may pick multiple
copies of any edge (and incurs cost ce for each copy of e).

Borradaile and Klein [4] presented a PTAS for the planar case of the Steiner-2ECM
problem (i.e., the multi-edge variant of the Steiner-2ECS problem).

2 Preliminaries

This section has definitions and preliminary results. Our notation and terms are consistent
with [8], and readers are referred to that text for further information.

Let G = (V, E) be a loopless multi-graph with non-negative costs c ∈ RE
≥0 on the edges.

We take G to be the input graph, and we use n to denote |V (G)|. For a set of edges F ⊆ E(G),
c(F ) :=

∑
e∈F c(e), and for a subgraph G′ of G, c(G′) :=

∑
e∈E(G′) c(e).

For a positive integer k, we use [k] to denote the set {1, . . . , k}.
For a graph H and a set of nodes S ⊆ V (H), ΓH(S) := {w ∈ V (H) \ S : v ∈ S, vw ∈

E(H)}, thus, ΓH(S) denotes the set of neighbours of S.
For a graph H and a set of nodes S ⊆ V (H), δH(S) denotes the set of edges that have

one end node in S and one end node in V (H) \ S; moreover, H[S] denotes the subgraph of
H induced by S, and H − S denotes the subgraph of H induced by V (H) \ S. For a graph
H and a set of edges F ⊆ E(H), H − F denotes the graph (V (H), E(H) \ F ). We may use
relaxed notation for singleton sets, e.g., we may use δH(v) instead of δH({v}), and we may
use H − v instead of H − {v}, etc.

We may not distinguish between a subgraph and its node set; for example, given a graph
H and a set S of its nodes, we use E(S) to denote the edge set of the subgraph of H induced
by S.

2.1 2EC, 2NC and related notions

A multi-graph H is called k-edge connected if |V (H)| ≥ 2 and for every F ⊆ E(H) of
size < k, H − F is connected. Thus, H is 2-edge connected if it has ≥ 2 nodes and the
deletion of any one edge results in a connected graph. A multi-graph H is called k-node
connected if |V (H)| > k and for every S ⊆ V (H) of size < k, H − S is connected. We use
the abbreviations 2EC for “2-edge connected,” and 2NC for “2-node connected.”

For any instance H, we use opt(H) to denote the minimum cost of a feasible subgraph
(i.e., a subgraph that satisfies the requirements of the problem). When there is no danger of
ambiguity, we use opt rather than opt(H).

By a bridge we mean an edge of a connected (sub)graph whose removal results in two
connected components, and by a cut-node we mean a node of a connected (sub)graph whose
deletion results in two or more connected components. A maximal connected subgraph
without a cut-node is called a block. Thus, every block of a given graph G is either a maximal
2NC subgraph, or a bridge (and its incident nodes), or an isolated node. For any node v of
G, let Γblocks

G (v) denote the set of 2NC blocks of G that contain v.
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2.2 Ear decompositions
An ear decomposition of a graph is a partition of the edge set into paths or cycles,
P0, P1, . . . , Pℓ, such that P0 is the trivial path with one node, and each Pi (1 ≤ i ≤ ℓ)
is either (1) a path that has both end nodes in Vi−1 = V (P0) ∪ V (P1) ∪ . . . ∪ V (Pi−1) but
has no internal nodes in Vi−1, or (2) a cycle that has exactly one node in Vi−1. For an ear
Pi, let int(Pi) denote the set of nodes V (Pi) \ Vi−1. Each of P1, . . . , Pℓ is called an ear ; note
that P0 is not regarded as an ear. We call Pi, i ∈ {1, . . . , ℓ}, an open ear if it is a path, and
we call it a closed ear if it is a cycle. An open ear decomposition P0, P1, . . . , Pℓ is one such
that all the ears P2, . . . , Pℓ are open. (The ear P1 is always closed.)

▶ Proposition 4 (Whitney [28]).
(i) A graph is 2EC ⇐⇒ it has an ear decomposition.
(ii) A graph is 2NC ⇐⇒ it has an open ear decomposition.

2.3 Algorithms for basic computations
There are well-known polynomial-time algorithms for implementing all of the basic computa-
tions in this paper, see [25]. We state this explicitly in all relevant results, but we do not
elaborate on this elsewhere.

3 FPTAS for k-Steiner-cycle

Björklund, Husfeldt, and Taslaman [3] presented a randomized algorithm for finding a
min-cost simple cycle that contains a given set of terminals T of an unweighted, undirected
graph G = (V, E) with a running time of 2knO(1), where k = |T | and n = |V |. In other words,
they present a randomized FPT-algorithm for the unweighted k-Steiner-cycle problem.

▶ Theorem 5. Consider a graph G = (V, E) and a set of terminals T ⊆ V of size k. Let
η > 0 be a parameter. A minimum-size k-Steiner-cycle can be found, if one exists, by a
randomized algorithm in time 2knO(1) log 1

η with probability at least 1− η.

We present a simple (randomized) FPTAS for the weighted k-Steiner-cycle problem,
based on the algorithm of [3].

▶ Proposition 6. Consider a graph G = (V, E) with nonnegative costs c ∈ RE
≥0 on the edges,

and a set of k terminals T ⊆ V . Let ε, η > 0 be some parameters. There is a randomized
algorithm that finds a (1 + ε)-approximate k-Steiner-cycle, if one exists, with probability at
least 1− η. The running time of the algorithm is O

(
2k · nO(1) ·

( 1
ε

)O(1) · log 1
η

)
.

Proof. Let E = {e1, e2, . . . , em} where ce1 ≤ ce2 ≤ · · · ≤ cem
. Let η′ := η/2. Let j ∈ [m]

denote the smallest index such that the graph (V, {e1, . . . , ej}) contains a k-Steiner-cycle.
Note that if G does not have a k-Steiner-cycle, then the weighted-version of the problem
is trivially infeasible. Using at most m applications of Theorem 5 with the η-parameter
set to η′, we can find the index j with probability at least 1 − η/2. Suppose that we
have the correct index j. Let β := c(ej). Let Q∗ denote an optimal k-Steiner-cycle in
G, and opt := c(Q∗) denote the optimal cost. By the definition of j, β ≤ opt ≤ nβ.
In particular, every edge in Q∗ has cost at most nβ. We now describe our randomized
algorithm for obtaining a k-Steiner-cycle with cost at most (1 + ε)opt. First, we discard
all edges e of G with cost ce > n β. Let µ := εβ/n; this is our “scaling parameter”.
For each edge e, define c̃e := µ · max(1, ⌈ce/µ⌉). Note that c̃e = µ if ce = 0.

(
Observe
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that this rounding introduces errors, but the total error incurred on any cycle is ≤ n µ ≤
ϵβ ≤ ϵopt.

)
Consider the graph G̃ = (Ṽ , Ẽ) obtained from G by replacing each edge e

by a path of c̃e/µ edges (of unit cost). Note that |Ṽ | ≤ |V | + |E| · (nβ)/µ = O(mn2/ε).
Using a single application of Theorem 5, we can obtain a minimum-size k-Steiner-cycle
Q̃ ⊆ Ẽ with probability at least 1− η/2 in O

(
2k ·

(
n2m

ε

)O(1) · log 1
η

)
time. Let Q denote the

k-Steiner-cycle in G corresponding to Q̃. By our choice of c̃, we have c(Q) ≤ c̃(Q) ≤ µ · |Q̃|.
Since the optimal k-Steiner-cycle Q∗ consists of at most n edges each with cost at most nβ,
the (unweighted) k-Steiner-cycle Q̃∗ in G̃ corresponding to Q∗ satisfies µ|Q̃∗| ≤ c̃(Q∗) ≤
c(Q∗) + nµ ≤ opt(1 + ε). By the above discussion, we can obtain a k-Steiner-cycle Q

satisfying c(Q) ≤ µ|Q̃| ≤ µ|Q̃∗| ≤ (1 + ε)opt with probability at least 1 − η. Clearly, the
overall running time is O

(
2k · nO(1) ·

( 1
ε

)O(1) · log 1
η

)
. ◀

4 Algorithms for k-Steiner-2NCS

In this section, we consider the k-Steiner-2NCS problem. First, we present a randomized
polynomial-time algorithm for finding an optimal subgraph for the special case of unweighted
k-Steiner-2NCS; then, using the method from Section 3 we extend our algorithm to a
(randomized) FPTAS for weighted k-Steiner-2NCS.

We denote an instance of the k-Steiner-2NCS problem by (G = (V, E), c ∈ RE
≥0, T ⊆ V );

G is the input graph with non-negative edge costs c, and T is the set of terminals, |T | ≥ 3
(we skip the easy case of |T | = 2). We assume (w.l.o.g.) that G is a feasible subgraph, that
is, all terminals are contained in one block of G.

For any graph H, let D3(H) denote the set of nodes that have degree ≥ 3 in H.

▶ Lemma 7. Let H = (V ′, E′) be an (edge) minimal 2NC subgraph that contains T . Then
H has an open ear decomposition P0, P1, . . . , Pℓ such that

(i) each of the ears Pi (i ∈ [ℓ]) contains a terminal as an internal node (i.e., int(Pi)∩T ̸= ∅),
and P0 contains a terminal,

(ii) |D3(H)| ≤ 2(|T | − 2).

Proof.
(i) Pick any terminal to be P0. Suppose we have constructed open ears P1, . . . , Pi−1 and

that each int(Pj)(j ∈ [i − 1]) contains a terminal. Let F = ∪i−1
j=1E(Pj). Let t be a

terminal in T \ V (F ) (we have the required ear decomposition, if T ⊆ V (F )). Suppose
i = 1; then, G has two openly disjoint paths between t and P0, and we take P1 to be
the edge-set of these two paths. Suppose i ≥ 2; then, G has a two-fan P between t and
V (F ) (i.e., P is the union of two paths between t and V (F ) that have only the node t

in common); we take Pi to be P .
(ii) Clearly, ℓ ≤ |T |−1 for the ear decomposition of part (i), and each of the ears P2, . . . , Pℓ

contributes at most 2 (new) nodes to D3(H). ◀

The next lemma states an extension of Proposition 4.

▶ Lemma 8. Let G = (V, E) be a graph, and let H = (V ′, E′) be a 2NC subgraph of G. Let
P be a path of G that has both end nodes in V ′. Then, H ∪P = (V ′ ∪ V (P ), E′ ∪E(P )) is a
2NC subgraph of G.

Each set S ⊆ V of size ≤ 2|T | − 4 is a candidate for D3(H) for a 2NC subgraph H that
contains T , and we call T ∪ S the set of marker nodes.

APPROX/RANDOM 2023
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Our algorithm has several nested loops. The outer-most loop picks a set S ⊆ V of size
≤ 2|T | − 4, and then applies the following main loop. Each iteration of the main loop
attempts to construct a 2NC subgraph that contains the set of marker nodes T ∪ S, by
iterating over all ordered partitions (T̃1, T̃2, . . . , T̃r) of T ∪ S such that |T̃1| ≥ 2 and the
number of sets in the partition, r, is a positive integer, r ≤ k = |T |.

Consider one of these ordered partitions (T̃1, T̃2, . . . , T̃r). We attempt to find a min-cost
Steiner-cycle C1 that contains T̃1 using the algorithm of [3]; if G has no Steiner-cycle that
contains T̃1, then this iteration has failed, otherwise, we take C1 to be the first (closed) ear
of an open ear decomposition of our candidate 2NC subgraph that contains T ∪ S. Then, for
i = 1, . . . , r − 1, we pick a pair of nodes si, ti ∈ T̃1 ∪ · · · ∪ T̃i, and attempt to find a min-cost
Steiner-path Pi+1 between si and ti that contains T̃i+1; if G has no such Steiner-path, then
this iteration has failed, otherwise, we augment the current subgraph H := C1 ∪P2 ∪ · · · ∪Pi

by Pi+1.
The algorithm maintains an edge-set F̂ ; initially, F̂ = E, and, at termination, F̂ is the

edge-set of a min-cost 2NC subgraph that contains T .
Pseudo-code for the algorithm is presented below.
We use ABHT-cycle(G, T̃1, η) to denote a call to the Steiner-cycle algorithm of [3] where

the inputs are the graph G, the terminal set T̃1 ⊆ V (G), and the desired probability of
failure η. With probability at least 1−η, this call either returns the edge-set of a minimum-size
cycle of G that contains all nodes of T̃1 or reports an error if G has no such cycle.

We use ABHT-path(G, T̃1, s, t, η) to denote a call to the following subroutine that
attempts to find an s, t-path of G that contains all nodes of T̃1. First, construct an auxiliary
graph G′ from G by adding a node u′ and two edges u′s, u′t. Then call ABHT-cycle(G′, T̃1 ∪
{u′, s, t}, η); report an error if the call returns an error, and, otherwise, return the path
obtained by deleting the node u′ (and its two incident edges) from the cycle returned by the
call.

Algorithm 1 A2NC(G, T, η) for the unweighted k-Steiner-2NCS problem.

η′ ← η/k

F̂ ← E

for S ⊆ V such that |S| ≤ 2k do
for r = 1, . . . , k do

for Ordered partitions (T̃1, . . . , T̃r) of T ∪ S such that |T̃1| ≥ 2 do
for i = 1, . . . , r − 1 and node pairs (si, ti) ∈ ∪i

j=1T̃i, where si ̸= ti do
H ← ABHT-cycle(G, T̃1, η′)

⋃r−1
i=1 ABHT-path(G, T̃i+1, si, ti, η′)

continue the loop if any call to any subroutine reports an error
if |E(H)| < |F̂ | then

F̂ ← E(H)
end if

end for
end for

end for
end for
return F̂

▶ Lemma 9. Let H∗ = (V ∗, E∗) be an optimal subgraph for k-Steiner-2NCS. Assume that
each of the calls to the subroutines (namely, ABHT-cycle,ABHT-path) returns a valid subgraph
whenever one exists. Let H = (U, F̂ ) denote the output of the above algorithm. Then H is a
2NC subgraph, U ⊇ T , and |F̂ | ≤ |E∗| = opt.
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Proof. By Lemma 7, H∗ has an open ear decomposition P1, P2, . . . , Pr∗ such that each of
the ears Pi contains at least one terminal as an internal node; hence, r∗ ≤ k = |T |. Let
S∗ = D3(H∗) be the set of nodes of degree ≥ 3 of H∗; clearly, |S∗| ≤ 2r∗ ≤ 2k.

For i = 1, . . . , r∗, let T ∗
i = Pi ∩ (T ∪ S∗). For i = 1, . . . , r∗ − 1, let (s∗

i , t∗
i ) denote the

end nodes of the ear Pi+1; clearly, (s∗
i , t∗

i ) ∈ ∪i
j=1(T ∗

i ).
Now consider the loop in the algorithm where S = S∗, r = r∗, T̃i = T ∗

i for i = 1, . . . , r∗

and (si, ti) = (s∗
i , t∗

i ) for i = 1, . . . , r∗ − 1. Observe that the calls to the subroutines
ABHT-cycle and ABHT-path return minimum-size subgraphs, hence, |ABHT-cycle(G, T̃1)| ≤ |P1|
and |ABHT-path(G, T̃i+1, si, ti)| ≤ |Pi+1| for i = 1, . . . , r∗ − 1. Since |E∗| =

∑r∗

i=1 |Pi|, we
conclude that the 2NC subgraph H found by this iteration satisfies |E(H)| ≤ |E∗|. Thus,
the algorithm outputs an optimal 2NC subgraph that contains T . ◀

4.1 Proof of Theorem 1
Proof. As seen in the proof of Lemma 9, if the subroutines ABHT-cycle and ABHT-path
run correctly when S = S∗, r = r∗, T̃i = T ∗

i for i = 1, . . . , r∗ and (si, ti) = (s∗
i , t∗

i ) for
i = 1, . . . , r∗ − 1 corresponding to an ear decomposition of an optimal solution H∗, then
the above algorithm outputs an optimal solution. During this loop, there are at most
r∗ ≤ k = |T | calls to the subroutines ABHT-cycle and ABHT-path. Hence, with probability at
least (1− η′)k ≥ 1− η, Algorithm A2NC outputs an optimal solution.

The running time is analyzed as follows: the term 2k ·
(

n
2k

)
= O(

(
n
2k

)
) comes from choosing

S ⊆ V, |S| ≤ 2k (in the outer-most loop), the term B(3k) comes from choosing ordered
partitions of S ∪ T , the term

(3k
2

)k comes from choosing the node pairs (si, ti) for the
r − 1(≤ k) calls to ABHT-path, and the term 23knO(1)log k

η comes from the running time of
the algorithm of [3] for the Steiner-cycle problem, with error probability η

k .
Having solved the unweighted k-Steiner-2NCS problem, we can directly use the methods

from Section 3 to obtain an FPTAS for the weighted k-Steiner-2NCS problem. ◀

5 FPTAS for k-FST and k-Steiner-2ECS

In this section we present a randomized polynomial-time algorithm for finding an optimal
subgraph for the special case of unweighted k-FST; then, using the method from Section 3,
we extend our algorithm to a (randomized) FPTAS for weighted k-FST. We assume that
k = |T | ≥ 3 is a positive integer. Note that the capacitated k-Steiner-2ECS problem can
be reduced to the k-FST problem by defining the set of safe edges to be the set of edges
with capacity at least 2 and defining the set of unsafe edges to be the set of edges with
capacity exactly 1. Hence the results in this section can also be applied to the capacitated
k-Steiner-2ECS problem.

Adjiashvili, Hommelsheim, Mühlenthaler, and Schaudt [1] give a polynomial-time al-
gorithm for finding an optimal solution to the 2-FST problem; see Proposition 1 and
Theorem 5 of [1]. We refer to their 2-FST algorithm as A2-FST. We refer to (inclusion-wise)
minimal feasible solutions to a 2-FST problem on G as 1-protected paths.

Informally speaking, our randomized polynomial-time algorithm for k-FST represents
minimal feasible solutions as 2NC blocks connected together using 1-protected paths. To
simplify our presentation, we first modify the k-FST instance G = (V, S ⊔ U, T ) as follows.
For each terminal v ∈ T , we create a new node v′ and a new safe edge vv′. Let T ′ denote
the set of these new nodes and let E′ denote the set of the new safe edges. Consider the
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modified instance G′ = (V ∪ T ′, (S ∪ E′) ⊔ U, T ′). Observe that (U, F ) is a feasible solution
to the original instance if and only if (U ∪ T ′, F ∪ E′) is a feasible solution to the modified
instance.

▶ Definition 10 (Block-Tree). A block-tree of a graph G is a tree B(G) with the following
properties:
1. The nodes of B(G) are in one-to-one correspondence with the 2NC blocks of G.
2. If two 2NC blocks are connected by a bridge in G, then the two corresponding nodes in

B(G) are adjacent.
3. For each cut-node v of G, the subgraph of B(G) induced by Γblocks

G (v) is connected
(Γblocks

G (v) is the set of 2NC blocks of G that contain v). In other words, the unique path
of B(G) between any two nodes of Γblocks

G (v) has all its internal nodes in Γblocks
G (v).

Informally speaking, a block-tree of a graph G represents how the 2NC blocks of G are
connected together. Each edge of the block-tree either represents a bridge of G or connects a
pair of 2NC blocks of G that share a common cut-node. Let H be a minimal feasible k-FST
solution. Due to the modification above, we may assume that every leaf of B(H) corresponds
to a block of H that contains exactly one terminal. Then any path in B(H) corresponds
to a 1-protected path of H that connects either (i) two cut-nodes, or (ii) a cut-node and a
terminal, or (iii) two terminals.

For our algorithmic application, nodes of B(H) of degree two are redundant, and this
motivates the notion of a “non-redundant” block-tree.

▶ Definition 11 (Condensed Block-Tree). A condensed block-tree of a graph G is a tree B̂(G)
obtained from a block-tree B(G) with the following properties:
1. The nodes of B̂(G) are nodes b of B(G) such that degB(G)(b) ̸= 2.
2. Two nodes b1 and b2 are adjacent in B̂(G) if and only if every internal node in the path

connecting b1 and b2 in B(G) has degree two.

Figure 1 The original graph G.

Figure 2 A block tree B(G) and the corresponding condensed block tree B̂(G).

For any minimal feasible solution H of k-FST and a condensed block-tree B̂(H), we refer to
the 2NC blocks of H that correspond to internal nodes of B̂(H) as high-degree blocks. The
leaves of B̂(H) correspond to the terminals. Edges of B̂(H) correspond to 1-protected paths
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in H that connect either (i) two high-degree blocks, or (ii) a high-degree block and a terminal,
or (iii) two terminals. The end-points of these 1-protected paths are either cut-nodes of H

or terminals. Note that some of these 1-protected paths could be trivial paths corresponding
to cut-nodes that are common to two high-degree blocks. We now state some useful lemmas
that follow from the handshaking lemma applied to B̂(H).

▶ Lemma 12. The number of internal nodes (i.e., non-leaf nodes) of B̂(H) is at most k − 2
where k is the number of terminals.

▶ Lemma 13. The total number of cut-nodes (with repetitions) in high-degree blocks of H is
at most 3k − 6 where k is the number of terminals.

Now, we describe our algorithm for unweighted k-FST. We guess (via enumeration)
the high-degree blocks of an optimal solution optsoln corresponding to some condensed
block-tree B̂(optsoln). The guess would include the number of high-degree blocks and the
cut-nodes in each of these high-degree blocks. This is done by picking 3k− 6 nodes of V with
replacement and then picking a partition P̂ of these 3k− 6 nodes into at most k− 2 sets. Let
r ≤ k−2 be the number of sets in the partition P̂ . Thus, P̂ = (X1, X2, . . . , Xr). For each set
Xi, we use algorithm A2NC to find Bi, a minimum size 2NC subgraph of G containing the
specified cut-nodes in Xi, possibly, with some additional Steiner nodes. Finally, we construct
a tree that connects these 2NC subgraphs and terminals via 1-protected paths using the
following subroutine.

First, for every pair of nodes (u, v) ∈ V ′ × V ′, we use algorithm A2-FST to find Gmin
uv , the

minimum size 1-protected path connecting u and v in G′. We then construct a complete
graph K(X1, . . . , Xr) with r + k nodes that has one node for each set Xi and one node
corresponding to each terminal {t}. The cost of an edge between two nodes of K corresponding
to node sets V1 and V2 is given by min{|E(Gmin

uv )| : u ∈ V1, v ∈ V2}. Note that if there is
no 1-protected path connecting a node in V1 to a node in V2, then we fix the cost of the
edge to be infinity. Thus an edge ē of K corresponds to a subgraph Gmin

ē in G′ which is the
minimum size 1-protected path whose end points are in V1 and V2 respectively. We then
find a minimum spanning tree T̄ in K. Note that if T̄ has infinite cost, then we output an
error. Else, we output the subgraph of G′ defined by Gmin(X1, . . . , Xr) := ∪ē∈T̄ Gmin

ē .

Algorithm 2 Ak-FST(G′, T ′, η) for the unweighted k-FST problem.

η′ ← η/k

H ← G′

for S = (v1, . . . , v3k−6) ∈ V 3k−6 do
for r = 1, . . . , k − 2 do

for partitions (X1, . . . , Xr) of S do
Ĥ ← Gmin(X1, . . . , Xr) ∪r

i=1 A2NC(G, Xi, η′)
continue the loop if any call to any subroutine reports an error
if |E(Ĥ)| < |EH| then

H ← Ĥ

end if
end for

end for
end for
return H
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▶ Lemma 14. Let H∗ = (V ∗, E∗) be an optimal subgraph for k-FST. Assume that each of
the calls to the subroutine A2NC(G, Xi, η′) returns a valid subgraph 2NC(G, Xi) whenever
one exists. Let H = (U, F ) denote the output of the above algorithm. Then, H is a feasible
k-FST solution and |F | ≤ |E∗| = opt.

Proof. We argue that the subgraph Ĥ in any iteration of the algorithm is a feasible k-FST solu-
tion. This holds because the algorithm finds 2NC subgraphs 2NC(G, Xi) and then connects
them to one another and to the terminals using the 1-protected paths in Gmin(X1, . . . , Xr).
Thus, T ⊆ V (Ĥ) and any unsafe edge e ∈ E(Ĥ) either lies in a 2NC subgraph of Ĥ or a
1-protected path in Ĥ, hence, Ĥ − e is connected.

Now consider a condensed block-tree B̂(H∗). Let B∗
1 , . . . , B∗

r∗ be the high-degree blocks
of H∗ and let X∗

i be the set of cut-nodes in B∗
i . By Lemma 13, the total number of cut-nodes

in all the high-degree blocks B∗
i is at most 3k − 6. We may assume that it is exactly 3k − 6

by duplicating a cut-node v ∈ X∗
1 multiple times. Consider the iteration of the algorithm

where r = r∗ and Xi = X∗
i for i = 1, . . . , r∗. Then,

|E(2NC(G, Xi))| ≤ |E(B∗
i )| ∀i = 1, . . . , r.

Recall that the nodes of B̂(H∗) correspond to the high-degree blocks B∗
i (and hence to the

node sets X∗
i ) or to the terminals {t}. Also an edge ē of B̂(H∗) between nodes corresponding

to node sets V1 and V2 represents a 1-protected path H∗
ē in H∗ whose end-points lie in V1 and

V2 respectively. Hence B̂(H∗) may be viewed as a subgraph of K(X1, . . . , Xr). Furthermore,
since any two nodes in H∗ have a 1-protected path between them, B̂(H∗) must be connected.
Finally, by construction of K, |E(H∗

ē )| ≥ c(ē) where c(ē) is the cost of the edge ē in K.
This implies that the cost of the minimum spanning tree in K is at most

∑
ē∈B̂(H∗) |E(H∗

ē )|.
Hence,

|E(Gmin(X1, . . . , Xr))| ≤
∑

ē∈B̂(H∗)

|E(H∗
ē )|.

Combining the two inequalities above we obtain

|E(Ĥ)| = |E(Gmin(X1, . . . , Xr) ∪r
i=1 2NC(G, Xi))|

≤ |E(Gmin(X1, . . . , Xr))|+
r∑

i=1
|E(2NC(G, Xi))|

≤
∑

ē∈B̂(H∗)

|E(H∗
ē )|+

r∑
i=1
|E(B∗

i )|

= |E∗|

The last equation holds because E∗ partitions into the edge-sets of the high-degree blocks B∗
i

and the edge-sets of the 1-protected paths H∗
ē . This completes the proof of the lemma. ◀

5.1 Proof of Theorem 2
Lemma 14 proves that algorithm Ak-FST outputs an optimal solution to the k-FST problem
with high probability. Let α denote the running time of the algorithm A2-FST and let β

denote the running time of the algorithm A2NC. Then, the running time of the algorithm
Ak-FST is bounded by

O(n2α · n3k−62kn2β · k2 log k) = O
(
α · β · n3k

)
.
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Since A2-FST has runtime nO(1) and A2NC has runtime nO(k), we can conclude that the
running time of the algorithm Ak-FST is O

(
nO(k) · log 1

η

)
.

Having solved the unweighted k-FST problem, we can directly use the methods from
Section 3 to obtain an FPTAS for the weighted k-FST problem.
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Abstract
Motivated by recent works on streaming algorithms for constraint satisfaction problems (CSPs),
we define and analyze oblivious algorithms for the Max-kAND problem. This is a class of simple,
combinatorial algorithms which round each variable with probability depending only on a quantity
called the variable’s bias. Our definition generalizes a class of algorithms defined by Feige and Jozeph
(Algorithmica ’15) for Max-DICUT, a special case of Max-2AND.

For each oblivious algorithm, we design a so-called factor-revealing linear program (LP) which
captures its worst-case instance, generalizing one of Feige and Jozeph for Max-DICUT. Then,
departing from their work, we perform a fully explicit analysis of these (infinitely many!) LPs. In
particular, we show that for all k, oblivious algorithms for Max-kAND provably outperform a special
subclass of algorithms we call “superoblivious” algorithms.

Our result has implications for streaming algorithms: Generalizing the result for Max-DICUT
of Saxena, Singer, Sudan, and Velusamy (SODA’23), we prove that certain separation results hold
between streaming models for infinitely many CSPs: for every k, O(log n)-space sketching algorithms
for Max-kAND known to be optimal in o(

√
n)-space can be beaten in (a) O(log n)-space under a

random-ordering assumption, and (b) O(n1−1/kD1/k) space under a maximum-degree-D assumption.
Even in the previously-known case of Max-DICUT, our analytic proof gives a fuller, computer-free
picture of these separation results.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis; The-
ory of computation → Streaming, sublinear and near linear time algorithms; Theory of computation
→ Discrete optimization

Keywords and phrases streaming algorithm, approximation algorithm, constraint satisfaction prob-
lem (CSP), factor-revealing linear program

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2023.15

Category APPROX

Related Version Full Version with Proofs: https://arxiv.org/abs/2305.04438

Supplementary Material Software (Source Code): https://github.com/singerng/oblivious-csps
archived at swh:1:dir:0662828b8cd21f298e6a1163db40e7b7d2253825

Funding This material is based upon work supported by the National Science Foundation Graduate
Research Fellowship Program under Grant No. DGE2140739. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the author and do not necessarily reflect
the views of the National Science Foundation.

Acknowledgements I would like to thank Madhu Sudan and Santhoshini Velusamy for generous
feedback and comments on the manuscript; Pravesh Kothari and Peter Manohar for helpful discus-
sions; and anonymous reviewers at APPROX whose feedback helped improve the presentation in
the paper.

1 Introduction

In this work, we study a restricted but natural class of randomized algorithms called oblivious
algorithms for a family of constraint satisfaction problems (CSPs) called Max-kAND for
k ≥ 2. In the Max-kAND problem, an algorithm is presented with a list of m constraints on

© Noah G. Singer;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2023).
Editors: Nicole Megow and Adam D. Smith; Article No. 15; pp. 15:1–15:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ngsinger@cs.cmu.edu
https://noahsinger.org
https://orcid.org/0000-0002-0076-521X
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.15
https://arxiv.org/abs/2305.04438
https://github.com/singerng/oblivious-csps
https://archive.softwareheritage.org/swh:1:dir:0662828b8cd21f298e6a1163db40e7b7d2253825;origin=https://github.com/singerng/oblivious-csps;visit=swh:1:snp:6d5a6f31f042921d8bfb7fcaa3d6f8932222d15d;anchor=swh:1:rev:3c8ac54ca723925db0870476fefbd82905b8ee15
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


15:2 Oblivious Algorithms for the Max-kAND Problem

n Boolean variables; each constraint is a disjunction on k literals (e.g., x1 ∧ ¬x4 ∧ ¬x5 for the
case of Max-3AND); and the goal is to satisfy the highest possible fraction of constraints. We
begin by introducing these problems and algorithms informally and discussing the context
and motivation for our work.

1.1 Background
Context on Max-kAND

Constraints of Max-kAND are maximally “precise” among all Boolean CSPs: each constraint
specifies exactly what its k variables must be assigned to in order for that constraint to
be satisfied.1 Numerous works have developed algorithms for Max-kAND [43, 22, 23, 8]
as well as NP-hardness-of-approximation results [44, 42, 34, 15, 35]; we now know that
Θ(k/2k)-approximations are the best achievable in polynomial time assuming P ̸= NP [8, 35].

Further attention has been devoted to important special cases of Max-kAND. One
particularly important example is the Max-DICUT problem, a special case of Max-2AND
where each constraint is of the form “x ∧ ¬y”. Max-DICUT can be viewed alternatively
as a directed graph optimization problem, where the goal is to find a directed cut (S, T )
maximizing the number of edges (s, t) such that s ∈ S and t ∈ T . Approximation algorithms
for Max-DICUT (and sometimes Max-2AND) were developed in [18, 16, 33, 30], and its
hardness-of-approximation was studied in [24]. Max-3AND was studied in [47, 45].

The importance of Max-kAND, the extensive work on its polynomial-time approximability,
and the “preciseness” of its constraints have inspired significant study on its approximability
in restricted algorithmic settings. For instance, Trevisan [43] showed that the natural linear
programming (LP) relaxation for Max-kAND beats the trivial (uniformly random rounding)
algorithm’s approximation ratio by a factor of 2, and that this LP’s “nice” structure allows
it to be solved (approximately) by distributed algorithms. Max-DICUT in particular has
been studied extensively in various restrictive algorithmic frameworks and models, including
“combinatorial” algorithms [21], spectral partitioning algorithms [46], local search algorithms
[1, 2], parallel algorithms [6], near-linear time algorithms [40], and online algorithms [5].

Oblivious algorithms for Max-kAND

In this paper, we define a restricted class of algorithms for Max-kAND called oblivious
algorithms (which were previously studied in the case of Max-DICUT by Feige and Jozeph [17]).
Oblivious algorithms fall into the paradigm of probabilistic rounding algorithms. These
algorithms somehow choose, for each variable v, a probability pv ∈ [0, 1], and then assign
xv to 1 w.p. pv and 0 w.p. 1 − pv (independently of all other variables); the goal is then to
choose these probabilities efficiently while ensuring that the resulting assignment satisfies
many of the constraints in expectation.

Informally, oblivious algorithms are probabilistic rounding algorithms which choose
rounding probabilities for each variable v in a “very local” way. It is simplest to define
these algorithms, as in [17], in the case of (the graph-theoretic view of) Max-DICUT. In this
context, oblivious algorithms choose a rounding probability for each vertex depending only
its bias. In a directed graph G, the bias of a vertex v is a real number in the interval [−1, +1],

1 In particular, as observed by Trevisan [43], an arbitrary Boolean predicate ϕ of arity k with r satisfying
assignments can be converted to r “disjoint” applications of Max-kAND constraints; this transformation
makes an instance of Max-CSP(ϕ) into an instance of Max-kAND and drops the value by a factor exactly
r. In turn, this means that algorithms for Max-kAND can approximate the acceptance probability of
k-bit probabalistically checkable proofs (PCP) verifiers.
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and is defined as the difference between v’s in- and out-degrees divided by its total degree.
(Note that the in- and out-degrees of a vertex completely describe what the vertex can “see”
about the graph around it by exploring paths of length 1.) The natural generalization of
bias to a variable in Max-kAND is the difference between its number of positive and negative
appearances in the instance, divided by the total number of appearances,2 and oblivious
algorithms again are those which round each variable depending only on its bias.

In this paper, we also define a class of algorithms called superoblivious algorithms. These
are a subclass of oblivious algorithms which round each variable depending only on the sign
of the bias (i.e., positive, negative, or zero) and not the magnitude; for instance, they ignore
the distinction between variables of bias +0.9 (95% of appearances are positive) and bias
+0.1 (55% of appearances are positive). A principal focus of this paper is showing that for
all k, oblivious algorithms can achieve strictly better approximation ratios vs. superoblivious
algorithms for Max-kAND, and we motivate this focus in the following section.

Max-kAND and streaming algorithms

Max-kAND and its special case Max-DICUT have recently received heavy attention in one
particular family of models, namely, those of streaming algorithms [20, 14, 7, 37, 36].3 In
these models, the algorithm has highly bounded space (relative to n, the number of variables
in the instance) and takes one or more passes over the list of constraints in the instance before
outputting an estimate for the value of the instance. It turns out that certain separation
results established between streaming models in [36, 37] are closely related to the distinction
between oblivious and superoblivious algorithms described in the previous subsection, and
to illuminate this connection, we pause to give a quick recap of these works on streaming
algorithms for CSPs.

Chou, Golovnev, and Velusamy [14] designed a O(log n)-space streaming algorithm which
(arbitrarily-close-to-)4/9-approximates the value of instances of Max-DICUT, and showed that
this algorithm is optimal in o(

√
n) space. Chou, Golovnev, Sudan, and Velusamy [12, 13]

vastly generalized this “dichotomy” result to hold for all CSPs (even over non-Boolean
alphabets): They showed that for every CSP predicate ϕ, there is a ratio α∗, below which
there are O(log n)-space approximation algorithms, and above which there are no o(

√
n)-space

algorithms.4
The recent works of Saxena, Singer, Sudan, and Velusamy [37, 36] demonstrated that

Max-DICUT exhibits a streaming-complexity-theoretic phenomenon previously unbeknownst
to any CSP: It admits approximation algorithms in certain streaming regimes which beat
the optimal o(

√
n)-space approximation ratio of 4/9 [14]. Specifically, better-than-4/9-

approximations are achievable either by (i) using Õ(
√

n) space or (ii) assuming that the input
stream of constraints is randomly ordered. These works relied heavily on the investigation by
Feige and Jozeph [17] of oblivious algorithms for Max-DICUT. Indeed, Feige and Jozeph [17]
constructed a 0.483 > 4/9-approximation oblivious algorithm for Max-DICUT, and the main
thrust of [37, 36] is to use stronger streaming models to “implement” the [17] algorithm by
sampling random edges and calculating the biases of their endpoints, thereby beating the
4/9-approximation of [14].

2 Or, more generally in weighted instances, the total weight of the clauses in which it appears positively
vs. those in which it appears negatively.

3 Other works in the broader area of approximation algorithms for CSPs in streaming models include
[3, 4, 29, 26, 27, 9, 10, 11, 19, 27, 28, 39]. See also Sudan’s survey [41] and the author’s undergraduate
thesis [38].

4 Technical note: The lower bounds in [12, 13] only hold in general for a special class of streaming
algorithms called sketching algorithms; we ignore this point in the exposition.

APPROX/RANDOM 2023
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The principal motivation for the current work is extending the results of [37, 36] to
Max-kAND for all k: That is, showing that tweaking the streaming model can lead to
improved approximations vs. the model studied in the dichotomy theorem of [12]. It is not
difficult to show that oblivious algorithms can be “implemented” in these modified streaming
settings, analogously to the Max-DICUT case. Thus, letting α∗

k denote the O(log n)-vs.-
Ω(

√
n)-space dichotomy threshold for Max-kAND, the goal becomes to show that oblivious

algorithms beat the ratio α∗
k. A recent work of Boyland, Hwang, Prasad, Singer, and

Velusamy [7] studied exactly this ratio, and showed that for each k, the optimal algorithm
for Max-kAND essentially “implements” a superoblivious algorithm. (Note that a priori one
cannot simulate a superoblivious algorithm in O(log n) space; the algorithm in [7] instead
measures some quantitative properties of the input instance which turn out to relate to the
behavior of a certain superoblivious algorithm.) In particular, the threshold ratio α∗

k equals
the ratio achieved by some superoblivious algorithm. Thus, to prove the separation results,
it suffices to show that oblivious algorithms strictly outperform superoblivious algorithms
(for all k); as mentioned above, this is the main focus of the current work.

Linear programming as a tool for analyzing approximation algorithms

The key technical ingredient in the current work is the definition and analysis of a so-called
factor-revealing linear program (LP). In such an LP, feasible solutions encode instances of the
problem at hand (i.e., Max-kAND); when we fix an algorithm in the designated class (i.e., an
oblivious algorithm), the objective function “reveals” the approximation ratio the algorithm
achieves on any given instance. Similar programs were first studied in depth for facility
location problems by Jain, Mahdian, Markakis, Saberi, and Vazirani [25], and have been
examined in other contexts such as online bipartite matching [31]. Our LP is a generalization
of the one developed by Feige and Jozeph [17] for Max-DICUT.

To show that there is a 0.483-approximation oblivious algorithm for Max-DICUT, Feige and
Jozeph [17] used computer analysis of their LP; as mentioned above, the fact that 0.483 > 4/9
– that is, oblivious algorithms outperform superoblivious algorithms for Max-DICUT – in
turn powered the works of [37, 36] in establishing that there are improved approximations
in stronger streaming models. However, this result of [17] was used as a black box. We
believe that our approach, which contrasts between “superoblivious” and more general
“oblivious” algorithms and attacks the corresponding LPs from an analytical perspective,
gives a more natural and systematic explanation for why Max-DICUT admits these improved
approximations – and implies that Max-kAND does as well, for all k.

1.2 Results
Next, we turn to statements of our results. In our notation, an oblivious algorithm for
Max-kAND is denoted Oblt,p

k , where t and p are, respectively, a bias partition which splits
the space of possible biases (i.e., the interval [−1, +1]) into discrete intervals, and a rounding
vector p specifying a probability with which to round variables for each of these intervals.
We denote by α(Oblt,p

k ) the approximation ratio achieved by this algorithm. (See Section 2
below for formal definitions of these objects.)

To state the theorems properly, we first define some relevant quantities which first arose
in the context of small-space sketching algorithms for Max-kAND in the work of Boyland et
al. [7]. We define

γk
def=

{
1
k k odd

1
k+1 k even,

(1)
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and

p∗
k

def= 1
2(1 + γk) (2)

and

α∗
k

def= 2 · (p∗
k(1 − p∗

k))⌊k/2⌋. (3)

That is, for even k, α∗
k = 2−(k−1)(1 − 1/(k + 1))k/2(1 + 1/(k + 1))k/2, and for odd k,

α∗
k = 2−(k−1)(1 − 1/k)(k−1)/2(1 + 1/k)(k−1)/2. In particular, at k = 2, we have p∗

k = 2/3 and
α∗

k = 4/9.
Our first theorem states that the optimal superoblivious algorithm for Max-kAND achieves

ratio α∗
k, and that this algorithm rounds with probability p∗

k:

▶ Theorem 1 (Characterization for superoblivious algorithms). For every k ≥ 2, there is
a unique superoblivious algorithm Oblt,p

k achieving ratio α(Oblt,p
k ) = α∗

k, and all other
superoblivious perform strictly worse. (In particular, for t = (0, 1), every rounding vector
p = (p) satisfies α(Oblt,p

k ) ≤ α∗
k, with equality if and only if p = p∗

k.)

Our main theorem then states that one can improve over these superoblivious algorithms
using other oblivious algorithms, and indeed, it suffices to consider only slight “perturbations”
of the optimal superoblivious algorithms:

▶ Theorem 2 (Main theorem: Better oblivious algorithms). For every k ≥ 2, there exists a
bias partition t and a rounding vector p such that the oblivious algorithm Oblt,p

k achieves
α(Oblt,p

k ) ⪈ α∗
k. (In particular, there exists ϵ∗ > 0 such that for all 0 < ϵ ≤ ϵ∗, there exists

0 < δ < 1 such that t = (δ, 1) and p = (p∗
k + ϵ) satisfy α(Oblt,p

k ) ⪈ α∗
k.)

These theorems are both proven by analyzing the dual of a certain natural “factor-
revealing” linear program. Arguably, this “dual” perspective systematizes the ad hoc analyses
of small-space sketching algorithms for Max-DICUT in [14] and for Max-kAND in [7]. Indeed,
the analysis in those paper examined certain systems of linear inequalities using “elementary”
reasoning (i.e., taking nonnegative linear combinations), and it is exactly this type of reasoning
which is captured by the technology of dual linear programs. Our perspective also sheds
direct light on why oblivious algorithms outperform the 4/9 ratio for Max-2AND was key to
the streaming separations established for Max-DICUT by Saxena et al. [37, 36].

Indeed, our results also have the following implications for streaming algorithms, general-
izing connections established by Saxena, Singer, Sudan, and Velusamy [37] for the special
case of Max-DICUT. We say an instance Ψ of Max-kAND is in input form if it is unweighted
(i.e., the weight of every clause is 1), though multiple copies of the same clause are allowed.
These instances will be the input to our algorithms though this is essentially without loss of
generality as general instances can be “rounded” to such instances via standard arguments.

▶ Theorem 3 (Random-order streaming algorithm). For all k ≥ 2, there exists α > α∗
k such

that for all ϵ > 0, the following holds. There is an O(log n)-space streaming algorithm which,
for every instance Ψ of Max-kAND in input form with n variables and poly(n) clauses, given
as input Ψ’s clauses in a randomly-ordered stream, outputs an (α − ϵ)-approximation to the
Max-kAND value of Ψ with probability 99/100.

▶ Theorem 4 (Bounded-degree streaming algorithm). For all k ≥ 2, there exists α > α∗
k such

that for all ϵ > 0, the following holds: For all D ≥ 2, there is an O(D1/kn1−1/k log n/ϵ2/k)-
space streaming algorithm which, for every instance Ψ of input form with n variables and
maximum degree ≤ D (i.e., every variable is contained in ≤ D clauses), given as input
Ψ’s clauses in an adversarially-ordered stream, outputs an (α∗

k + ϵ)-approximation to the
Max-kAND value of Ψ with probability 99/100.
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Table 1 The table below displays concrete approximation ratio for Max-kAND, for k ∈ {2, . . . , 5}.
In the second column, we write the trivial upper bound of 2−(k−1) on the approximation ratio of all
oblivious algorithms (and more generally all “local” algorithms) for Max-kAND (see Observation 7
below). In the third column, we write α∗

k, the approximation ratio achieved by the best superoblivious
algorithm (and also by the best o(

√
n)-space sketching algorithm [7]). In the fourth column,

we highlight that the only previously known CSP for which oblivious algorithms outperformed
superoblivious algorithms was Max-2AND (from [17]). In the fifth, we include approximation ratios
from our “perturbed superoblivious” algorithms, as in Theorem 2 with δ = 0.01 and ϵ = 0.001.
Finally, in the sixth column, we report ratios achieved by much more complex algorithms which we
constructed. These algorithms are parametrized by triples (ℓ, x, y), where ℓ specifies the number of
bias classes, and x, y specify a rounding vector. ℓ is chosen such that the number of variables, which
is roughly (2ℓ)k (see Section 3.1 below), is in at most the hundreds of thousands, in order for the
LP solver to run in a reasonable amount of time. The bias partition is a uniform partition of [0, 1]
into ℓ intervals and, imitating the algorithm in [17, Proof of Theorem 1.3], our rounding vector are
“two-piece piecewise-linear functions”: the first part of the vector, up to bias x, interpolates linearly
between probability 1

2 and y, and the second part interpolates linearly between probability y and 1.
The values in the last two columns were calculated with a Python script and the LP solver glpk; the
code is available online at https://github.com/singerng/oblivious-csps. For the final column,
the parameters (x, y) were chosen using a grid search; solving the final LPs took 1 hour, 56 minutes
on a 2021 Macbook Pro.

k Upper bound Superobl. Prev. New, pert. New, piecewise lin.
2 1/2 = 0.5 4/9 ≈ 0.4444 0.4835 [17] 0.4457 0.4844 @ (200, 0.5, 1.0)
3 1/4 = 0.25 2/9 ≈ 0.2222 0.2226 0.2417 @ (30, 0.7, 1.0)
4 1/8 = 0.125 72/625 = 0.1152 0.1157 0.1188 @ (11, 0.8, 0.8)
5 1/16 = 0.0625 36/625 ≈ 0.0576 0.0578 0.0589 @ (7, 0.95, 0.8)

Both of these results are interesting because, as shown by Boyland et al. [7] (analyzing
families of algorithms and lower bounds due to Chou et al. [12]), there are O(log n)-space
streaming algorithms which output (arbitrarily close to) α∗

k-approximations for adversarially-
ordered streams, and this is the best achievable ratio in o(

√
n) space.5 Therefore, our results

show that by relaxing either the adversarial-ordering assumption or the space bound, one
can achieve better algorithms (the latter under a bounded-degree assumption). Analogous
results to Theorems 3 and 4 were obtained for Max-DICUT by Saxena, Singer, Sudan, and
Velusamy [36] for the special case of Max-DICUT, there contrasting with algorithms and
lower bounds due to Chou, Golovnev, and Velusamy [14].

We also include some explicit improved approximation ratios calculated using computer
search and LP solvers in Table 1.

1.3 Technical overview
The first main technical step in the paper is to develop, for each oblivious algorithm Oblt,p

k

(defined by a bias partition t and a rounding vector p), a linear program (LP) which
characterizes the approximation ratio of Oblt,p

k ; this LP is contained in Lemma 11 below,
and is a generalization of the LP developed for oblivious algorithms in Max-DICUT in [17].
The LP has a simple structure: Each feasible solution corresponds to a certain family of
instances of Max-kAND on which Oblt,p

k produces the same approximation to the Max-kAND

5 Again, this lower bound is currently only known to hold for a subclass of streaming algorithms called
sketching algorithms, but the algorithm in Theorem 4 appears to be such an algorithm.

https://github.com/singerng/oblivious-csps
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value, and the objective equals this approximation value. In particular, we will assign to
each clause in an instance Ψ of Max-kAND a “pattern” based on the biases of and negations
on the variables, and use the observation that the probability that any particular clause is
satisfied depends only on its pattern.

Next, we formulate the dual LP for this original “primal” LP (see Lemma 12 below). Here
is where we benefit massively from the fact that the performance of oblivious algorithms
is captured by a linear program, because by the magic of LP duality, it is possible to
constructively show that oblivious algorithms perform well: While feasible solutions to the
primal LP upper-bound the ratio achieved by an oblivious algorithm Oblt,p

k , feasible solutions
to the dual LP lower-bound the ratio! In other words, to prove that an oblivious algorithm
performs well on all instances, it suffices to construct a single feasible dual solution.

To prove Theorem 2, we now want to compare the dual LP for superoblivious algorithms
and their “perturbations”, and show that we can get “improved” feasible solutions in the
latter case. It turns out that in this setting, the primal LP has O(k5) variables and only 7
inequality constraints; therefore the dual LP has 7 variables and O(k5) inequality constraints.
We make the crucial observation that in the superoblivious case there is an optimal dual
solution which is sparse: It is supported on only 3 variables. Since this dual solution is so
simple, we can analytically prove its feasibility for all k. The statement of the kind of dual
solution we are seeking is in Lemma 13 below.

And moreover, this inequality will show that in the superoblivious case, when we plug in
our special solution, all but 6 of the O(k5) dual constraints have slack! Thus, for very small
values of δ, it will be sufficient to slightly perturb this special solution in a way that makes
these 6 “core” constraints strictly satisfied. This involves careful analysis based on certain
elementary inequalities, using simple inequalities such as that 1−ϵ

1−kϵ > 1+ϵ
1+kϵ for all ϵ > 0 and

k > 1. The analysis outlined in this paragraph is omitted from this version of the paper; see
the full version.

1.4 Future questions

Streaming algorithms

We hypothesize that the bounded-degree assumption in Theorem 4 can be relaxed to give an
Õ(n1−1/k)-space algorithm for all instances (in input form with poly(n) clauses). Specifically,
Saxena, Singer, Sudan, and Velusamy [36] developed sketching techniques enabling such a
guarantee for Max-DICUT, the bounded-degree counterpart being provided by their earlier
work [37]; perhaps these ideas can be extended to Max-kAND.

More CSPs

It would also be interesting to extend the framework in this paper to more CSPs, both other
Boolean CSPs and to CSPs over larger alphabets. To the best of our knowledge, it is even
plausible that every CSP which admits nontrivial O(log n)-space sketching algorithms (as
analyzed in [13]) also admits “oblivious-style” approximation algorithms, which in turn yield
better sublinear-space streaming algorithms. A good starting point here would be to analyze
symmetric Boolean CSPs, since in that setting we know that all CSPs which do not support
one-wise distributions of satisfying assignments admit such nontrivial sketching algorithms
(see [12, Proposition 2.10]); this class includes Max-kAND, for which we developed such
results in this paper, but we could hope for improved “oblivious-style” algorithms for other
such CSPs, e.g. symmetric threshold functions.

APPROX/RANDOM 2023
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“Uniform” hard instances

In the special case of Max-DICUT, Feige and Jozeph [17] constructed what might be called a
uniformly hard instance of Max-DICUT: For this single instance, every oblivious algorithm
achieves a ratio less than than 0.49. (This strengthens the 1

2 bound from a “trivial” instance,
a single bidirected edge; see also Observation 7 below.) It would be interesting to construct
similar instances for Max-kAND, k ≥ 3, especially if such this construction could be made
analytic. We note that such an object corresponds to a feasible solution to the linear program
in Lemma 11 for which every choice of rounding vector has objective strictly less than 1

2 ,
and therefore for Max-kAND, any proof would require certifying that a certain degree-k
polynomial is bounded below 1

2 over p ∈ [0, 1].

An optimal rounding curve?

To construct an 0.483-approximate oblivious algorithm for Max-DICUT, Feige and Jozeph [17]
rounded vertices using (a discretization of) a sigmoid-shaped piecewise-linear function: This
function rounds vertices with bias b ∈ (0, 1] to 1 with probability

p(b) =
{

1
2 + b 0 ≤ b ≤ 1

2

1 1
2 ≤ b ≤ 1

.

But is it possible to analytically calculate the optimal rounding function (and is it unique)?
Given any discretization of biases into intervals, one could in principle enumerate all basic
feasible solutions to the LP, and then calculate the best rounding vector; that is, each
rounding vector will induce an objective function for the LP, and the best rounding vector
maximizes the minimum objective over all basic feasible solution. Towards this, it might
be helpful to get a handle on the vertices of this LP’s polytope, and whether there is some
simple way to enumerate them.

Outline
We define Max-kAND and oblivious algorithms formally in Section 2 and develop the linear-
programming characterization for the approximation ratio of oblivious algorithms, and some
other basic tools, in Section 3. We begin analyzing the dual LP to prove Theorem 2 in
Section 4. The remainder of the proof of Theorem 2, and the proofs of the remaining
theorems, are omitted; see the full version.

2 Definitions: Max-kAND and oblivious algorithms

We now give formal definitions for the Max-kAND problem and for oblivious algorithms.

The Max-kAND problem

For the remainder of the paper, we adopt a (nonstandard) convention which views variables in
Max-kAND as taking {−1, +1} values (as opposed to {0, 1}); this is for notational convenience
in defining bias and similar concepts.

▶ Definition 5 (Max-kAND). An instance of the Max-kAND problem on n variables is given
by a sequence of constraints C1, . . . , Cm, with Cj = (V +

j , V −
j , wj), consisting of “positive

variables” V +
j ⊆ [n] and “negative variables” V −

j ⊆ [n] with V +
j ∩V −

j = ∅ and |V +
j ∪V −

j | = k,
and a weight wj ≥ 0. An assignment for this problem is given by (x) = (x1, . . . , xn) ∈ {±1}n,
and the value of this assignment is
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valΨ(x) def=
∑m

j=1 1[xv = +1 ∀v ∈ V +
j ∧ xv = −1 ∀v ∈ V −

j ] · wj∑m
j=1 wj

.

The value of the instance Ψ is

valΨ
def= max

x∈{±1}n
valΨ(x).

Next, towards defining the bias of a variable in an instance, for any variable v ∈ [n], we
define its positive and negative weight:

w+
Ψ(v) def=

m∑
j=1

1[v ∈ V +
j ] · wj and w−

Ψ(v) def=
m∑

j=1
1[v ∈ V −

j ] · wj . (4)

Bias

Then, we define the bias of a variable as:6

biasΨ(v) def= w+
Ψ(v) − w−

Ψ(v)
w+

Ψ(v) + w−
Ψ(v)

. (5)

Bias partitions

Next, we define notations for a partition of the space of possible biases [−1, +1] into L = 2ℓ+1
intervals labeled by {−ℓ, . . . , +ℓ}. The data of such a partition is a “bias partition” vector
t = (t0, . . . , tℓ) with 0 ≤ t0 < · · · < t+ℓ = 1. Each such vector t defines a set of intervals
Intt

−ℓ, . . . , Intt
+ℓ such that each real number in [−1, +1] belongs to exactly one interval.

Specifically, we define:
Intt

0 := [−t0, +t0], and
Intt

−i := [−ti, −ti−1) and Intt
+i := (+ti−1, ti] for each i ∈ {1, . . . , ℓ}.

Our choice of which ends of these intervals are open and which are closed is an arbitrary
convention; the only important property of the decomposition of [−1, +1] into intervals is
that it is symmetric.

We also let t+
i and t−

i denote the upper and lower bounds on Intt
i , respectively, i.e.,

t+
i = sup Intt

i and t−
i = inf Intt

i , so that e.g., t+
i = ti for i ≥ 0, whereas t+

i = t−(i+1) for i < 0.

Oblivious algorithms

Given a partition of [−1, +1] into bias class intervals (defined by some vector t as in the
previous paragraph), we now define an algorithm which randomly rounds each variable of
an Max-kAND instance according to which interval its bias falls into. The data of such a
rounding scheme is a rounding vector p = (p1, . . . , pℓ) of probabilities; given this vector, a
vertex with bias in Intt

+i is rounded to 1 with probability pi.
More precisely, we define an oblivious algorithm as follows:

6 Throughout the paper, we assume every variable appears in at least one constraint, and therefore that
w+

Ψ(v) + w−
Ψ(v) > 0. (This is WLOG, since variables appearing in no constraints can be ignored for the

purposes of Max-kAND.)

APPROX/RANDOM 2023
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▶ Definition 6 (Oblivious algorithm for Max-kAND). Let L = 2ℓ + 1 ≥ 3 be an odd integer.
Let t = (t0, . . . , tℓ) be a bias partition and p = (p1, . . . , pℓ) a rounding vector. For any k ≥ 2,
the oblivious algorithm Oblt,p

k for Max-kAND behaves as follows: Given an instance Ψ, for
each variable v ∈ {1, . . . , n} independently:

If biasΨ(v) ∈ Intt
0, assign xv 7→ 1 w.p. 1

2 , xv 7→ −1 w.p. 1
2 .

If biasΨ(v) ∈ Intt
+i for i ∈ {1, . . . , ℓ}, assign xv 7→ 1 w.p. pi, xv 7→ −1 w.p. 1 − pi.

If biasΨ(v) ∈ Intt
−i for i ∈ {1, . . . , ℓ}, assign xv 7→ 1 w.p. 1 − pi, xv 7→ −1 w.p. pi.

We denote by Oblt,p
k (Ψ) the expected value of the assignment produced by this algorithm,7

and by

α(Oblt,p
k ) def= inf

Ψ

Oblt,p
k (Ψ)

valΨ

the approximation ratio achieved by this algorithm.

In the simplest interesting case, we have ℓ = 1, t = (0, 1), and p = (p). These algorithms,
which we call superoblivious algorithms, ignore the magnitude of the bias of each variable,
rounding only based on sign: E.g., negatively-biased variables are rounded to 1 w.p. 1 − p.

▶ Observation 7 (A “symmetric” hard instance). There is a simple lower-bound construction
which shows that no oblivious algorithm for Max-kAND can achieve a ratio better than 2−(k−1).
(Note that the constant α∗

k defined above, which according to Theorem 1 is the optimal ratio of
superoblivious algorithms, equals this upper bound times a “discounting” factor.) Consider any
k and the instance with two equally weighted constraints C+ = (+1, . . . , +1), (1, . . . , k) and
C− = (−1, . . . , −1), (1, . . . , k); that is, the two constraints want x1, . . . , xk to be all-(+1)’s
and all-(−1)’s, respectively. Every variable has bias zero so it will be rounded uniformly by
every oblivious algorithm, yielding value 2−k, while the “greedy” all-(+1)’s (or all-(−1)’s)
assignment achieves value 1

2 . (Indeed, this “lower bound” holds for any class of algorithms
which cannot “break the symmetry” between these two greedy assignments.) Thus, for every
oblivious algorithm Oblt,p

k , α(Oblt,p
k ) ≤ 2−(k−1).

▶ Observation 8 (Generalizing oblivious algorithms). There are a few natural ways to generalize
our definition of oblivious algorithms:

We could consider rounding functions which are not “antisymmetric”. That is, we could
round variables with bias +b and variables with bias −b with probabilities which are
not complementary. In particular, for b = 0, we could round bias-0 variables to 1 with
probability p ≠ 1

2 . However, on the instance described in the previous observation, such
an algorithm outputs an assignment of value 1

2 pk + 1
2 (1 − p)k, and this value is uniquely

maximized at p = 1
2 .

We could use “general rounding functions”, that is, arbitrary functions mapping each bias
value to a rounding probability, to round each vertex. Under this “rounding functions”
view, the above definition via intervals corresponds to “step fucntions” where the domain
is broken up into finitely many intervals on which the function is constant. However, the
focus of the current work is analyzing the approximation ratio of oblivious algorithms via
linear programming, and such “continuous” algorithms would not be (directly) amenable
to analysis via linear programming.

7 We abuse this notation and often think of Oblt,p
k (Ψ) as the output of the oblivious algorithm, i.e., we

think of the oblivious algorithm’s goal as outputting a (scalar) estimate of the value of the instance;
this holds especially in the context of streaming algorithms.
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We could use a “max” algorithm, taking an ensemble of oblivious algorithms and outputting
the best assignment produced by any of them.

For Max-2AND, Feige and Jozeph [17] showed that even allowing all these generalizations
simultaneously stills fall short of achieving the ultimate goal of a 1

2 -approximation, and they
described a specific instance witnessing this.

3 The linear-programming framework for oblivious algorithms

In this section, we develop a linear program which captures the “worst-case instance” for
any oblivious algorithm, and therefore can be used to calculate the approximation ratio
(Lemma 11), as well as the corresponding dual linear program (Lemma 12). These will be
applied to bound the approximation ratios of certain oblivious algorithms in the following
sections.

3.1 Clause patterns
Let PtnL

k denote the set of vectors c = (c+, c−) = (c+
−ℓ, . . . , c+

+ℓ, c−
−ℓ, . . . , c−

−ℓ) whose entries
are natural numbers and sum to k. These are useful because they describe each particular
clause from the perspective of an L-class oblivious algorithms. In particular, given a clause
C, we denote its pattern ptnt(C) = (c+

−ℓ, . . . , c+
+ℓ, c−

−ℓ, . . . , c−
−ℓ) ∈ PtnL

k where c+
i and c−

i

denote the number of positive and negative literals in C whose variables have bias class i,
respectively, for each i ∈ {−ℓ, . . . , +ℓ}. That is, e.g.,

c+
i = |{v ∈ V +

j : biasΨ(v) ∈ Intt
i }|.

Now, for any rounding vector p = (p1, . . . , pℓ), we define

probp(c) = 2−(c+
0 +c−

0 )
ℓ∏

i=1
p

c+
+i

+c−
−i

i (1 − pi)c−
+i

+c+
−i (6)

for each c ∈ PtnL
k .8 Then we have:

▷ Claim 9. Let Ψ be an instance of Max-kAND with clauses C1, . . . , Cm with weights
w1, . . . , wm, respectively. Then

Oblt,p
k (Ψ) =

∑m
j=1 probp(ptnt(Cj)) · wj∑m

j=1 wj
.

Proof. By linearity of expectation, it suffices to show that each clause Cj is satisfied w.p.
probp(ptnt(Cj)). We can rewrite

probp(c) = 2−c+
0 2−c−

0

ℓ∏
i=1

p
c+

+i

i p
c−

−i

i (1 − pi)c−
+i(1 − pi)c+

−i .

Recalling that each variable is assigned independently, and the clause is satisfied iff each
literal is, the above expression precisely represents the probability that the clause is satisfied.
(E.g., if there is a negative literal whose variable has bias class +i, this literal is satisfied
with probability 1 − pi; the number of such factors in the probability is c−

+i.) ◁

We observe that |PtnL
k | =

(
k+2L−1

2L−1
)

by the “stars-and-bars” formula. For instance, if L = 3
(as will be the case in the explicit analysis in the following sections), we have |PtnL

k | = O(k5).

8 In this expression we adopt the convention 00 = 1, i.e., if pi = 0 but c−
+i + c+

−i = 0 then we ignore the
factor 0.
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3.2 The factor-revealing linear program

We denote by PosPtnL
k ⊆ PtnL

k the space of clause patterns without negations, i.e., c such
that c−

−ℓ = · · · = c−
+ℓ = 0. For two vectors x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn, let

x ⊙ y = (x1y1, . . . , xnyn) denote their entrywise product. To design the linear program, we
will need the following useful proposition:

▶ Proposition 10 (Flipping). Let Ψ be an instance of Max-kAND, and for any assignment
y = (y1, . . . , yn) ∈ {±1}n, let flipy(Ψ) denote the instance of Max-kAND where we “flip”
the variables v with yv = −1; that is, each clause Cj = (V +

j , V −
j , wj) in Ψ becomes a

clause Dj = (U+
j , U−

j , wj) where U+
j = {v ∈ V +

j : yv = +1} ∪ {v ∈ V −
j : yv = −1} and

U−
j = {v ∈ V +

j : yv = −1} ∪ {v ∈ V −
j : yv = +1}. Then:

For every assignment x ∈ {±1}n, valΨ(x) = valflipy(Ψ)(x ⊙ y).
In particular, if x is an optimal assignment to Ψ, then x ⊙ y is an optimal assignment to
flipy(Ψ).
Oblt,p

k (Ψ) = Oblt,p
k (flipy(Ψ)).

Proof. Follows immediately from definitions. ◀

▶ Lemma 11 (Primal characterization). For every bias partition t = (t0, . . . , tℓ) and rounding
vector p = (p1, . . . , pℓ), the approximation ratio α(Oblt,p

k ) achieved by Oblt,p
k equals the value

of the following linear program:

minimize
∑

c∈PtnL
k

probp(c) · W (c)

s.t. W (c) ≥ 0 ∀c ∈ PtnL
k∑

c∈PosPtnL
k

W (c) = 1

t−
i (W +(i) + W −(i)) ≤ W +(i) − W −(i) ∀i ∈ {−ℓ, . . . , +ℓ}

W +(i) − W −(i) ≤ t+
i (W +(i) + W −(i)) ∀i ∈ {−ℓ, . . . , +ℓ}

where we define the linear functions

W +(i) =
∑

c∈PtnL
k

c+
i W (c) and W −(i) =

∑
c∈PtnL

k

c−
i W (c).

Proof. Let αalg denote the approximation ratio of Oblt,p
k , and αLP the minimum value of

the linear program. This proof generalizes [17, Proof of Theorem 1.2].

αLP ≤ αalg. We show that for every instance Ψ of Max-kAND, there is a feasible LP
solution {W (c)}c∈PtnL

k
of objective value Oblt,p

k (Ψ)/valΨ.
Towards this claim, by Proposition 10, we can assume WLOG that the all-(+1)’s as-

signment is optimal for Ψ. Also, we assume WLOG by rescaling that Ψ has total weight
1

valΨ , i.e.,
∑m

j=1 wj = 1
valΨ . Now, let C1, . . . , Cm denote the constraints of Ψ, and let

W (c) :=
∑m

j=1 1[ptnt(Cj) = c]wj . We claim that {W (c)}c∈PtnL
k

is feasible and has objective
value

∑
c∈PtnL

k
probp(c)W (c) = Oblt,p

k (Ψ)/valΨ.
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First, we check feasibility. Clearly all W (c)’s are nonnegative. Next, we have

valΨ = valΨ(+1) (all-(+1)’s is optimal)

=
∑m

j=1 wj1[|V −
j | = 0]∑m

j=1 wj
(def. of valΨ(+1))

=
∑

c∈PosPtnL
k

W (c)
1/valΨ

(def. of PosPtnL
k and total weight assumption)

which rearranges to
∑

c∈PosPtnL
k

W (c) = 1.
Now, recall the definitions of biasΨ, w+

Ψ, w−
Ψ from Section 2. Fix a bias class i ∈

{−ℓ, . . . , +ℓ}. For any variable v with bias class i, we have biasΨ(v) ∈ Intt
i , so t−

i ≤
biasΨ(v) ≤ t+

i , so multiplying through by w+
Ψ(v) + w−

Ψ(v), we get

t−
i (w+

Ψ(v) + w−
Ψ(v)) ≤ w+

Ψ(v) − w−
Ψ(v) ≤ t+

i (w+
Ψ(v) + w−

Ψ(v)).

Letting Vi denote the set of all variables in Ψ with bias class i, we can sum over these
equations to get

t−
i

∑
v∈Vi

(w+
Ψ(v) + w−

Ψ(v)) ≤
∑
v∈Vi

(w+
Ψ(v) − w−

Ψ(v)) ≤ t+
i

∑
v∈Vi

(w+
Ψ(v) + w−

Ψ(v)).

We claim that

W +(i) =
∑
v∈V

w+
Ψ(v),

and similarly W −(i) =
∑

v∈V w−
Ψ(v). These equalities imply that W (·) satisfies the feasibility

constraints, and it remains to prove them. Now recall w+
Ψ(v) =

∑m
j=1 1[v ∈ V +

j ]wj ; therefore,

∑
v∈V

w+
Ψ(v) =

m∑
j=1

∑
v∈V +

j

1[biasΨ(v) ∈ Intt
i ]wj ,

and j-th term in this sum is precisely c+
i where c = (c+, c−) = ptnt(Cj). The proof for

W −(i) is similar.
Finally, by Claim 9 and our assumption

∑m
j=1 wj = 1/valΨ, we have

Oblt,p
k (Ψ) =

∑m
j=1 wjprobp(ptnt(Cj))∑m

j=1 wj
=

∑
c∈PtnL

k
W (c) · probp(c)
1/valΨ

,

which rearranges to Oblt,p
k (Ψ)/valΨ =

∑
c∈PtnL

k
W (c) · probp(c), as desired.

αLP ≥ αalg. This argument is essentially converse to the former argument, but there are
two technical issues: (i) the linear program does not encode strict inequality constraints,
while an oblivious algorithm needs to (in the sense that e.g., if t0 = 0, then the algorithm
rounds vertices with bias 0 and bias +ϵ differently), and (ii) since an Max-kAND constraint
cannot use a variable twice, we might need many variables with the same bias in the instance
we create. We omit the proof here; see the full version. ◀
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▶ Lemma 12 (Dual characterization). For every bias partition t = (t0, . . . , tℓ) and rounding
vector p = (p1, . . . , pℓ), the approximation ratio α(Oblt,p

k ) achieved by Oblt,p
k equals the value

of the following linear program:

max z

s.t. 1[c ∈ PosPtnL
k ] · z

+
+ℓ∑

i=−ℓ

(
((1 − t−

i )c+
i − (t−

i + 1)c−
i )y−

i + ((t+
i − 1)c+

i + (1 + t+
i )c−

i )y+
i

)
≤ probp(c) ∀c ∈ PtnL

k

y−
i ≥ 0 ∀i ∈ {−ℓ, . . . , +ℓ}

y+
i ≥ 0 ∀i ∈ {−ℓ, . . . , +ℓ}

Proof. To place the primal LP (from Lemma 11) in a more standard form, we rewrite the
primal inequality t−

i (W +(i)+W −(i)) ≤ W +(i)−W −(i) as (t−
i −1)W +(i)+(t−

i +1)W −(i) ≤ 0;
expanding the definitions of W +(i) and W −(i), this is equivalent to (t−

i −1)
∑

c∈PtnL
k

c+
i W (c)+

(t−
i +1)

∑
c∈PtnL

k
c−

i W (c) ≤ 0. Similarly, the inequality W +(i)−W −(i) ≤ t+
i (W +(i)+W −(i))

becomes (1 − t+
i )

∑
c∈PtnL

k
c+

i W (c) − (1 + t+
i )

∑
c∈PtnL

k
c−

i W (c) ≤ 0. Therefore, the primal
LP is equivalent to the following standard-form LP:

minimize
∑

c∈PtnL
k

probp(c) · W (c)

s.t. W (c) ≥ 0 ∀c ∈ PtnL
k∑

c∈PosPtnL
k

W (c) = 1

(1 − t+
i )

∑
c∈PtnL

k

c+
i W (c) − (1 + t+

i )
∑

c∈PtnL
k

c−
i W (c) ≤ 0 ∀i ∈ {−ℓ, . . . , +ℓ}

(t−
i − 1)

∑
c∈PtnL

k

c+
i W (c) + (t−

i + 1)
∑

c∈PtnL
k

c−
i W (c) ≤ 0 ∀i ∈ {−ℓ, . . . , +ℓ}

By LP duality, the above LP has the same value as its dual LP, which is the LP in the
hypothesis.9 ◀

4 Proving Theorem 2 by analyzing “dual slack”

In this section, we outline the first step towards proving Theorem 2 by constructing dual
solutions which witness lower bounds on the approximation ratio of oblivious algorithms.
This first step is the following lemma, which gives a clean sufficient condition for a lower
bound on the approximation ratio by constructing a certain sparse dual solution and applying
the dual program (Lemma 12):

9 See e.g. [32, p. 85]). One has to be careful with the signs, since our primal LP is a minimization LP.
Instead, we can consider the LP which maximizes −

∑
c∈PtnL

k

probp(c) · W (c) (whose output is the
negation of our desired output).
Applying duality to this LP gives one which minimizes z′ such that 1[c ∈ PosPtnL

k ] · z′ +∑ℓ

i=−ℓ

(
((1 − t−

i )c+
i − (t−

i + 1)c−
i )y−

i + ((t+
i − 1)c+

i + (1 + t+
i )c−

i )y+
i

)
≥ −probp(c). Transforming to

a maximization problem equivalent to our original LP (since we had a negation!), we maximize −z′ such
that 1[c ∈ PosPtnL

k ] · z′ +
∑ℓ

i=−ℓ

(
((1 − t−

i )c+
i − (t−

i + 1)c−
i )y−

i + ((t+
i − 1)c+

i + (1 + t+
i )c−

i )y+
i

)
≥

−probp(c). Finally, we negate both sides of this inequality, and use the bijective transformation
z = −z′.
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▶ Lemma 13 (Sufficient conditions for good approximations). For every k ≥ 2 ∈ N, 0 ≤
γ, δ ≤ 1, let t = (δ, 1) and p = ( 1

2 (1 + γ)). The algorithm Oblt,p
k has approximation ratio

α(Oblt,p
k ) ≥ 2−(k−1)β if the following statement holds: There exist X, Y ≥ 0 such that:

(1 + δ)
(

1 − i + j

k

)
Y + (1 − δ) j

k
X ≤ β−1 (1 − γ)i (1 + γ)j ∀i, j ∈ N, i + j ≤ k

2 − (1 − δ)
(

1 − i + j

k

)
Y − (1 + δ) i

k
X ≤ β−1 (1 − γ)i (1 + γ)j ∀i, j ∈ N, i + j ≤ k

Proof. Consider applying the dual characterization of the approximation ratio (Lemma 12)
with the solution z = 2β/2k, y+

−1 = Xβ/(k2k), y+
0 = Y β/(k2k), and y+

+1 = y−
−1 = y−

0 =
y−

+1 = 0; it is sufficient to show that this solution is feasible. Note that t+
−1 = −δ and t+

0 = δ.
Thus, the feasibility constraints in Lemma 12 become

β

2k

(
1[c ∈ PosPtnL

k ] · 2 + ((−δ − 1)c+
−1 + (1 − δ)c−

−1)X

k
+ ((δ − 1)c+

0 + (1 + δ)c−
0 )Y

k

)
≤ probp(c) ∀c ∈ PtnL

k . (7)

By Equation (6), and since c+
−1 + c+

0 + c+
+1 + c−

−1 + c−
0 + c−

+1 = k, we have

probp(c) =
(1

2 − γ

2

)c+
−1+c−

+1
(1

2

)c+
0 +c−

0
(1

2 + γ

2

)c+
+1+c−

−1 = 2−k(1 − γ)c+
−1+c−

+1 (1 + γ)c+
+1+c−

−1 .

Thus, dividing through by β/2k, Equation (7) becomes

1[c ∈ PosPtnL
k ] · 2 + ((1 − δ)c−

−1 − (1 + δ)c+
−1)X

k
+ ((1 + δ)c−

0 − (1 − δ)c+
0 )Y

k

≤ β−1(1 − γ)c+
−1+c−

+1(1 + γ)c+
+1+c−

−1 ∀c ∈ PtnL
k . (8)

Finally, we claim that Equation (8) is implied by the hypothesis. Indeed, we consider
two cases. First, if c ∈ PosPtnL

k , then c−
−1 = c−

0 = c−
+1 = 0 and c+

0 = k − c+
−1 − c+

+1, so
Equation (8) becomes

2 − (1 + δ)
c+

−1
k

X − (1 − δ)
k − c+

−1 − c+
+1

k
Y ≤ β−1(1 − γ)c+

−1(1 + γ)c+
+1 .

This is precisely the second hypothesized inequality, for c+
−1 = i, c+

+1 = j. On the other hand,
if c ̸∈ PosPtnL

k , then we observe that replacing (c+
−1, c+

0 , c+
+1, c−

−1, c−
0 , c−

+1) 7→ (0, 0, 0, c−
−1 +

c+
−1, c−

0 + c+
0 , c−

+1 + c+
+1) fixes the RHS of Equation (8), while only increasing the LHS;

thus, it suffices to prove Equation (8) only in this extreme case. Hence, we can assume
c−

0 = k − c−
−1 − c−

+1, so Equation (8) becomes

(1 − δ)
c−

−1
k

X + (1 + δ)
k − c−

−1 − c−
+1

k
Y ≤ β−1(1 − γ)c−

+1(1 + γ)c−
−1 ,

which is precisely the first assumed condition for c−
−1 = j, c−

+1 = i. ◀

▶ Remark 14. We chose the specific family of dual solutions used in the proof of Lemma 13
by inspecting an LP solver’s output for k = 2 and k = 3. Our investigation also suggests
that this solution is unique in a certain sense: In the simplest case of k = 2 and δ = γ = 0,
it appears that every optimal feasible solution requires y+

−1 = 2/9, and further, the only
solution with only two nonzero y entries sets y+

0 = 1/9.
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Abstract
In the discrete bamboo garden trimming problem we are given n bamboo that grow at rates v1, . . . , vn

per day. Each day a robotic gardener cuts down one bamboo to height 0. The goal is to find a
schedule that minimizes the height of the tallest bamboo that ever exists.

We present a 10/7-approximation algorithm that is based on a reduction to the pinwheel problem.
This is consistent with the approach of earlier algorithms, but some new techniques are used that
lead to a better approximation ratio.

We also consider the continuous version of the problem where the gardener travels in a metric
space between plants and cuts down a plant each time he reaches one. We show that on the
star graph the previously proposed algorithm Reduce-Fastest is a 6-approximation and the known
Deadline-Driven Strategy is a (3 + 2

√
2)-approximation. The Deadline-Driven Strategy is also a

(9 + 2
√

5)-approximation on star graphs with multiple plants on each branch.
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1 Introduction

In the discrete bamboo garden trimming problem (BGT), first introduced by Gasieniec et
al. [8] we are given a set of n bamboo that grow at rates v1, . . . , vn per day, i.e. the height
of bamboo i extends by vi each day. We assume that these growth rates are arranged such
that v1 ≥ v2 ≥ · · · ≥ vn. Initially the height is set to zero. Each day a robotic gardener cuts
down one bamboo to height zero. The goal is to design a trimming schedule such that the
height of the tallest bamboo is minimized. Gasieniec et al. [8] gave a 2-approximation for
discrete BGT which has been improved by van Ee [14] to a 12

7 -approximation.
Both results are obtained by reducing BGT to the pinwheel scheduling problem. The

pinwheel scheduling problem is motivated by the communication between a satellite and its
ground station. The ground station wants to receive messages from n satellites. Time is
slotted and a satellite i sends a message for pi consecutive timeslots before switching to a
different message. Each timeslot the ground station receives a message from a single satellite.
This means in order to guarantee that no message is missed we need to find a schedule that
allocates at least one timeslot to satellite i in any interval of pi units of time. We discuss the
literature on pinwheel scheduling in Section 2.
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16:2 Bamboo Garden Trimming

If a BGT algorithm maintains a height of K then each bamboo i must be visited at
least once in a period of p∗

i := ⌊ K
vi

⌋ time steps. That is, there is a BGT schedule that
maintains height K for the input (v1, . . . , vn) if and only if the pinwheel problem (p∗

1, . . . , p∗
n)

is schedulable.
There are also a number of results that do not use the connection to the pinwheel problem,

using various greedy-type algorithms. The Deadline-Driven Strategy always cuts the bamboo
with the earliest deadline provided that the height of this bamboo has reached a certain
threshold. The deadline of a bamboo is the time it reaches the height the algorithm wants to
maintain. This algorithm has already been considered for discrete BGT and there it is a
2-approximation as shown by J. Kuszmaul [12].

A second simple algorithm is Reduce-Fastest which is a 2.62-approximation for discrete
BGT as shown by Bilò et al. [2] This algorithm always cuts the fastest plant which has
reached a certain threshold. A similar algorithm is Reduce-Max that always cuts the highest
bamboo and is a 4-approximation. Both of these algorithms are online algorithms based on
simple queries. This means they are flexible and can easily adapt to changes in the input
(the set of growth rates).

In the first part of this paper we present an algorithm based on a pinweel reduction that
improves the approximation ratio for discrete BGT to 10

7 . This algorithm combines a binary
search with the known technique of porous schedules for pinwheel scheduling. This marks
the first time that porous schedules are used to approximate the BGT problem.

In the second part, we consider the continuous version of the BGT problem, also introduced
by Gasieniec et al. [8]. In this version the bamboo are located in some metric space and the
gardener needs to travel between the bamboo to cut them. Cutting is done instantly and the
goal is to find a route that minimizes the maximum height of the bamboos. Gasieniec et
al. give a O(log n)-approximation algorithm that works in any metric space.

We consider the case where the underlying metric is a star graph. In this context we
study some of the simple algorithms above (compared to the relative complicatedness of a
pinwheel schedule) that achieve constant approximation ratios for this case.

1.1 Our results
For discrete BGT we propose a 10/7-approximation algorithm that is based on a reduction
to the pinwheel-problem. Previous work used only the sum of the speeds H as a lower bound
on the optimum value. We improve on this by using binary search in the interval [H, 2H]
and by planning to lose a certain factor in advance. By this we mean that all periods are
multiplied by our goal ratio after calculating them from the speeds, making it easier to find a
pinwheel schedule. We can show that our algorithm always finds a schedule of height at most
10K/7 if a schedule of height K exists. This is achieved by using the technique of porous
schedules which we will discuss in Section 2. Thus, the binary search is used to essentially
find the best possible lower bound for the optimal value within this framework.

The result can be improved to 7
5 using a computer-assisted proof. Unfortunately the

proof is too long to fit into the appendix but can be found under the link https://github.
com/Felixhhne/bamboo

In the continuous version of the problem we consider a star graph. We show that the
2.62-approximate algorithm Reduce-Fastest for discrete BGT, which can be seen as a special
instance of a star graph, still works on arbitrary star graphs with one bamboo on each branch
and we show that it is a 6-approximation in this case.

Furthermore the deadline driven algorithm gives us a (3+2
√

2)-approximation on the star.
This result can be extended to the case where there are multiple bamboo on each branch of the
star. Here we pay a price in the approximation ratio and achieve a (9 + 2

√
5)-approximation.

https://github.com/Felixhhne/bamboo
https://github.com/Felixhhne/bamboo
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1.2 Related work
Both the discrete and continuous version of BGT were first introduced by Gasieniec et al. [8].
They provide a variety of results. The first algorithm they present is Reduce-Fastest, which in
each step cuts the fastest growing bamboo above a certain height treshhold. This algorithm
is a 2.62-approximation as shown by Bilò el al. [2]. A similar algorithm is Reduce-Max
that always cuts the highest bamboo and is a 4-approximation. The final algorithm in
this set of algorithms based on simple queries is the Deadline-Driven Strategy which is a
2-approximation. The results for Reduce-Max as well as the Deadline-Driven Strategy are
from J. Kuszmaul [12].

Gasieniec et al. also give a fully offline 2-approximation algorithm that preprocesses the
input and reduces the problem to a pinwheel-instance. This approach has been improved by
van Ee [14] to a 12

7 -approximation.
There are other problems where the goal is to minimize the maximum height or backlog

reached on a machine. One example is the Minimum Backlog Problem [3, 1, 13] where an
adversary distributes water among a set of cups and the player may empty one or more cups
on their turn.

In the problem of Buffer minimization with conflicts [5] there is a set of machines on a
graph and load may arrive on these machines at any time. The algorithm runs machines to
decrease their load but machines that are adjacent to each other on the graph may not run
at the same time.

2 Pinwheel problems

We represent an instance of the pinwheel scheduling problem by the vector p = (p1, . . . , pn)
of periods with which each plant should be cut (or: each machine should be scheduled).

▶ Definition 1. The density of a pinwheel scheduling instance p = (p1, . . . , pn) is d(p) =∑n
i=1

1
pi

.

For example, the instance (2, 3) has density 5
6 and can be scheduled by repeating the

sequence 12. Because 121212 . . . is the only feasible schedule, the instance (2, 3, p3) can not
be scheduled regardless of the value of p3.

The pinwheel problem was first introduced by Holte et al. [11] and then picked up by
Chan and Chin [4]. They conjecture that any pinwheel instance with density up to 5/6
can be scheduled. The above example shows that a better guarantee is not possible. This
conjecture is supported by a variety of works, including Fishburn and Lagarias [7] who show
that any instance with p1 = 2 and density up to 5/6 can be scheduled. Dei Wing [6] shows
that the claim also holds for low-dimensional vectors with dimension up to 5 and more
recently Gasieniec et al. [9] improve this result further by proving the claim for instances
with up to 12 elements. Additionally they give a set of schedules that solve all schedulable
instances with at most 5 tasks.

Without loss of generality, the elements of the pinwheel instance are in nondecreasing order.
An obvious requirement for schedulability is d(p) ≤ 1. Hence, aside from the instance (1) an
instance can only be scheduled if p1 ≥ 2. Consequently we assume 2 ≤ p1 ≤ p2 ≤ · · · ≤ pn.

Given a pinwheel instance p = (p1, . . . , pn), a successful schedule for p is an infinite
sequence over {1, . . . , n} such that any subsequence of length pi contains at least one i. An
important consideration for pinwheel scheduling and BGT is the representation of a solution.
This is because in general an explicit representation of the schedule may take exponential
space. The solutions for pinwheel scheduling provided by Fishburn and Lagarias as well as
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Chan and Chin come in the form of fast online schedulers. These are algorithms that can
decide whether they can schedule an instance in polynomial time and then generate each
symbol of the schedule in constant time.

Porous schedules

Fishburn and Lagarias introduced the concept of porous schedules [7] as a useful tool in the
construction of pinwheel schedules.

Let p = (p1, . . . , pn). Let S be a subset of {1, . . . , n} and define U = {1, . . . , n} \ S. A
porous schedule for S (the set of scheduled tasks) is a schedule that allocates a slot for plant
i ∈ S at least once every pi positions, but also contains slots that are not allocated to any
plant. When writing out the schedule the first type of slot is denoted by i and the second
type, which we also call a hole, is denoted by . In this paper we will only consider schedules
that consist of infinite repeats of finite lists, and describe such a schedule by giving only that
list. Even that part may have exponential size as a function of the size of the input.

Let

DU = 1 −
∑
k /∈U

1
p∗

k

be the maximum possible density of the unscheduled machines.
For example, given the instance (2,4,8,9), we could set U = {3, 4}, which corresponds

to the (unscheduled) plants with speed 8 and 9, and S = {1, 2}, which corresponds to the
plants with speed 2 and 4. The schedule 12 (meaning 12 12 12 . . . ) is a porous schedule
for the scheduled tasks S, while U is the set of leftover plants that still need to be scheduled.

▶ Definition 2. Let p = (p1, . . . , pn) be a pinwheel instance and let f be a porous schedule
for S ⊆ {1, . . . , n}. Then for i ∈ U = {1, . . . , n} \ S, we define hi as the minimum number
of holes in pi consecutive positions of f .

Sometimes we also write the function h(x) to represent the minimum number of holes in
x consecutive positions. The set h = {hi|i ∈ U} is again a pinwheel instance unless there
exists an i with hi = 0. Of course, in general h might not be schedulable. Lemma 2 of [7]
explains how solving the pinwheel problem h can lead to a solution of p. A version of it is
given below.

▶ Lemma 3. Consider a pinwheel instance p and let a porous schedule f for a subset S of
the tasks. Let U := {1, . . . , n} \ S. If h = {hi|i ∈ U} is a schedulable pinwheel instance, then
p is schedulable.

Proof. By assumption, there is a schedule g : Z → U (that we can enumerate using a fast
online scheduler) for the input h. Let β be an order preserving map from the set of holes in
f to Z. Let f ′ = f except for the holes in f where f ′(k) = g(β(k)). Then f ′ is a schedule
for p. ◀

Let b ∈ [0, 1]. We say that b is a density guarantee for the pinwheel problem if all instances
p with d(p) ≤ b can be scheduled. This is always taken to mean that there exists a schedule
for p and we can efficiently find a fast online scheduler to generate the sequence. Our results
rely on the following theorem.

▶ Theorem 4 ([7]). The value 3/4 is a density guarantee for the pinwheel problem. For
instances with p1 = 2, the density guarantee is 5/6. In both instances, schedules can be found
in time O(n3).
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Note that solving or scheduling a pinwheel instance for our purposes means finding a
fast online scheduler but does not include explicitly writing out the schedule (not even just
the finite part that repeats). Chan and Chin give an algorithm that runs in time O(n3)
and schedules any instance with density at most 7

10 . Their algorithm achieves the following
guarantees based on p1:

p1 2 3 4 5 6 7 8 ≥ 9
guarantee 0.75 0.70 0.708 0.721 0.733 0.738 0.744 > 0.75

In particular this means any instance with p1 ≥ 9 and density at most 0.75 can be
scheduled in time O(n3). Fishburn and Lagarias find schedules for the remaining cases with
small values for p1 and density up to 0.75 based on the following idea.

They find a porous schedule for the first few elements and they extend this schedule using
the results from Chan and Chin and Lemma 3 to find a schedule for the remaining machines
that fits into the holes. For example for the instance (3, 4, p3, . . . ) we can create a porous
schedule 12 as discussed above which has a hole at every third position. The remaining
machines after removing machines 1 and 2 have density at most 3

4 − 1
3 − 1

4 = 1
6 , thus pi ≥ 6

for i ≥ 3. For this pattern of holes we get the values for hi by dividing the remaining periods
by 3. For p3 = 6, 7, 8 we get h3 = 2 which increases the density by a factor of not more than
4, thus the density of the resulting instance is at most 1

6 · 4 < 3
4 with the first element of the

new instance being 2. By the table of Chan and Chin this is schedulable. A similar argument
holds for p3 ≥ 9 with the density of the new schedule being not more than 7

10 . They further
refine this approach in the paper.

3 A 10/7-approximation for discrete BGT

We claim that H =
∑n

i=1 vi is a lower bound on the optimal value. As long as all bamboo
have height at most H ′ < H the sum of all bamboo heights increases by at least H − H ′ > 0
each step until it eventually exceeds nH ′. Then there must be a bamboo with height more
than H ′. On the other hand, there is an algorithm that produces a schedule of height 2H [8].
Thus, the optimal value is indeed somewhere in the interval [H, 2H].

Our algorithm is based on the following key result.

▶ Lemma 5. Consider a pinwheel instance p and a porous schedule f for a subset S of the
tasks. Let U := {1, . . . , n} \ S. If hi

pi
≥ DU for each i ∈ U in a porous schedule for S and

1
pi

≤ 3
4p∗

i
for all i ∈ U , then (p1, . . . , pn) is schedulable for Alg.

Proof. If hi

pi
≥ DU then∑

i∈U

1
hi

≤ 1
DU

∑
i∈U

1
pi

≤ 1
DU

3
4DU = 3

4 .

Thus the instance is schedulable by Lemma 3 and by Theorem 4. ◀

Our algorithm begins by defining periods for the pinwheel problem based on the growth
speeds. These periods are then multiplied by a certain factor to get an instance that is
easier to schedule. It would be easiest if we could multiply all periods by 4/3. That way we
would get an instance with density at most 3/4 which is therefore schedulable by Theorem 4.
However, the input for the pinwheel problem must be a set of natural numbers. This means
that we must round down after scaling the periods. Even when choosing a scaling factor
larger than 4/3 (in our case, 10/7), after rounding down there can still be some periods that
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become too small, resulting in a density that is too high. This means that we cannot rely on
the previous work as a black box. Typically, there will be a few difficult periods remaining.
For instance, the period 4 becomes ⌊ 10

7 · 4⌋ = 5 after scaling, and 5 becomes 7. Typically,
longer periods are easier to handle as the condition ⌊ 10

7 p∗⌋ ≥ 4
3 p∗ is often satisfied.

We overcome this difficulty by finding a porous schedule for the few difficult periods by
hand and then showing that the remaining periods can be scheduled in the holes. To do
this we need to consider some inputs for the pinwheel problem that were not considered in
previous works, since (as discussed) the overall density of the instance may still be above 3/4
at this point. Thus we need to find a porous schedule for the cases not covered by the table
of Chan and Chin and a schedule for the remaining machines.

Algorithm 1 Binary Search for BGT.

Let H =
∑n

i=1 vi and R = 10
7 . Using binary search in the interval [H, 2H] find the

smallest K such that the following procedure returns a valid schedule and return
this schedule.

1. Given K define p∗
i = ⌊ K

vi
⌋ and pi = ⌊Rp∗

i ⌋.
2. Solve the pinwheel problem (p1, . . . , pn).

In order to analyze Algorithm 1, we first show that whenever there exists a schedule for
the pinwheel problem p∗, then the algorithm can find a schedule for p.

Assume that there exists a schedule for p∗. Then d(p∗) ≤ 1. Whenever p∗
i

pi
≤ 3

4 for all i

we have d(p) ≤ 3
4 which means p is schedulable.

We can find schedules for cases that contain i with pi

p∗
i

> 3
4 by assigning those periods

to the subset S and applying Lemma 5. We create a porous schedule for S and define hi

for i ∈ U := {1, . . . , n} \ S as the minimum number of holes in pi consecutive positions of
the porous schedule. In some cases, the porous schedule is completely regular, with holes in
every k-th location (and only there). In that case we get

hi

pi
=

⌊ 1
k ⌊ 10

7 p∗
i ⌋⌋

⌊ 10
7 p∗

i ⌋

and for Lemma 5 we need to show that hi/pi ≥ DU . If we write p∗
i = 7a + b for some values

a, b then this means showing that

5a + ⌊ 1
k ⌊ 10

7 b⌋⌋
10a + ⌊ 10

7 b⌋
≥ DU .

▶ Lemma 6. If there is a schedule of height K then the procedure in Algorithm 1 finds a
schedule of height at most 10

7 K.

Proof. Let p∗
i = ⌊ K

vi
⌋. Assume there is a schedule of height K. Then there is a solution to

the pinwheel problem p∗ = (p∗
1, ..., p∗

n) and thus
∑n

i=1
1

p∗
i

≤ 1. If p∗
1 = 1 then there is only

one plant and the schedule is trivial. Thus we consider p∗
1 ≥ 2. The algorithm calculates the

periods pi = ⌊ 10p∗
i

7 ⌋ and solves the resulting pinwheel problem. Because of the definition of
p∗

i the resulting schedule has height at most 10K
7 .

We show that if a schedule of height K exists, there is always a schedule for the pinwheel
problem of Alg. If p∗

i ≥ 11 then 1
pi

is smaller then 1
p∗

i
by a factor of at least 3

4 since

1
pi

= 1
⌊10/7p∗

i ⌋
≤ 1

(10/7p∗
i − 1) ≤ 3

4
1
p∗

i

for p∗
i ≥ 11.
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The same is true for every other value of p∗
i except p∗

i = 2 and p∗
i = 4 which can easily

be verified. Thus if there is no p∗
i with value 2 or 4 the density of the pinwheel problem is at

most 3/4 and it can be scheduled. We now consider all cases where these values do occur
and use Lemma 5 to show that the pinwheel problem can be solved.

We denote these cases by listing the initial values of the instance p∗. For example, the
notation 4,4,5 means that we are considering the case where p∗

1 = p∗
2 = 4 and p∗

3 = 5. In that
case p = (5, 5, 7, . . . ) with zero or more plants after the first three.

For each case, we create a porous schedule for a subset S of periods in p. We then need
to show that hi

pi
≥ DU as well as 1

pi
≤ 3

4p∗
i

holds for all periods U that are not yet scheduled
by the porous schedule. If that is the case, then p is schedulable by Lemma 5.

2 We have pi/p∗
i ≥ 6/5 for all pi. This can easily be verified for p∗

i = 2 and p∗
i = 4 and it

holds for all other periods because for those periods we have pi/p∗
i ≥ 4/3. This means

the density in the pinwheel problem of Alg is at most 5/6. Since p1 = 2 this problem
can be solved.

3, 3, 4 and 3, 4, 4 In this case there are only three plants and the schedule is 123.

3, 4, p∗
3 ≥ 5 Then p = (4, 5, p3 ≥ 7, . . . ). Alg schedules plants 1 and 2 using the schedule

1 2 . Then DU = 5/12 and hi

pi
= ⌊ 1

2 ⌊ 10
7 p∗

i ⌋⌋
⌊ 10

7 p∗
i

⌋ . Let p∗ = 7a + b. Then hi

pi
= 5a+⌊ 1

2 ⌊ 10
7 b⌋⌋

10a+⌊ 10
7 b⌋ .

If 5a+⌊ 1
2 ⌊ 10

7 b⌋⌋
10a+⌊ 10

7 b⌋ ≥ DU then 5(a+1)+⌊ 1
2 ⌊ 10

7 b⌋⌋
10(a+1)+⌊ 10

7 b⌋ ≥ DU since 5
10 > DU .

Therefore if the inequality holds for a particular p∗
i , then it also holds for all subsequent

p∗
i that have the same remainder after division by 7. In particular, this means that if

there are 7 consecutive periods p∗
i with hi/pi ≥ DU then hi/pi ≥ DU also holds for all

subsequent periods p∗
i .

We can determine that hi/pi ≥ DU holds for p∗
i ≥ 5 by looking at enough periods (in

this case periods 5 to 11). This argument is repeated in many of the subsequent cases.
Appendix A contains tables that show the values for each case.

Furthermore 1
pi

≤ 3
4p∗

i
holds for p∗

i ≥ 5. This means we can schedule this case.

4, 4 Then p = (5, 5, . . . ). Alg schedules plants 1 and 2 using the schedule 1 2 . Then
DU = 1/2. For p∗ = 7a + b we get hi

pi
= 6a+h(⌊ 10

7 b⌋)
10a+⌊ 10

7 b⌋ . By looking at 7 periods we can
determine that hi/pi ≥ DU holds for p∗

i ≥ 4.

Since 1
pi

≤ 3
4p∗

i
holds for p∗

i ≥ 5 but not p∗
i = 4 we still need to consider the case where

p∗
1 = p∗

2 = p∗
3 = 4 but we can schedule this case for p∗

3 ≥ 5.

4, 4, 4 Then p = (5, 5, 5, . . . ). Alg schedules plants 1 to 3 using the schedule 123 . Then
DU = 1/4. Using the same approach as in the previous case we can determine that
hi/pi ≥ DU holds for p∗

i ≥ 4. As in the previous case this means we can schedule all cases
except the case where p∗

1 = · · · = p∗
4 = 4 since in this case 1

pi
≤ 3

4p∗
i

is not guaranteed.
However in this case there are only four plants and therefore this case can be scheduled
as well.

In all subsequent cases, all periods except the first are greater than 4. This means 1
pi

≤ 3
4p∗

i

holds for all periods after the first and we only need to verify hi/pi ≥ DU . We get the
following results.
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p∗ p Schedule DU p∗
i hi/pi

4, 5, ≥ 9 5, 7 1 2 11/20 − −
4, 5, 6 5, 7, 8 31 2 13 21 3 12 23/60 14a + b

10a+h(⌊ 10
7 b⌋)

20a+⌊ 10
7 b⌋

4, 5, 6, 6 5, 7, 8, 8 see 3,4,5
4, 5, 7 5, 7, 10 see next line
4, 5, 8 5, 7, 11 1 3 12 1 32 1 2 17/40 14a + b

11a+h(⌊ 10
7 b⌋)

20a+⌊ 10
7 b⌋

4, 6, ≥ 9 5, 8 1 1 2 1 2 7/12 21a + b
20a+h(⌊ 10

7 b⌋)
30a+⌊ 10

7 b⌋
4, 6, 6 5, 8, 8 see next line
4, 6, 7 5, 8, 10 1 3 1 2 13 2 37/84 21a + b

16a+h(⌊ 10
7 b⌋)

30a+⌊ 10
7 b⌋

4,6,8 5,8,11 1 3 1 2 1 32
1 1 23 1 2

11
24

21a + b
17a+h(⌊ 10

7 b⌋)
30a+⌊ 10

7 b⌋

4,6,8,8 5,8,11,11 1 3 1 24 1 32
1 4 1 23 1 42

1
3

21a + b
14a+h(⌊ 10

7 b⌋)
30a+⌊ 10

7 b⌋

4, 7 5, 10 see next line
4, 8 5, 11 1 2 1 5/8 7a + b

7a+h(⌊ 10
7 b⌋)

10a+⌊ 10
7 b⌋

4, ≥ 9 5, ≥ 12 1 3/4 7a + b
8a+⌊ 4

5 ⌊ 10
7 b⌋⌋

10a+⌊ 10
7 b⌋

◀

▶ Theorem 7. Algorithm 1 is a polynomial-time 10
7 -approximation.

Proof. The approximation ratio follows directly from Lemma 6. Since any height K that is
at least the optimal height is schedulable, the procedure in algorithm 1 finds a valid schedule
of height 10

7 K for any height that is at least Opt. This means the binary search settles on a
value that is at most Opt (since it is integer) and the algorithm returns a schedule of height
at most 10

7 times that value.
The porous schedules are given in the paper of Fishburn and Lagarias (in particular see

table 1 of [7]) and are thus available in O(1). Then the algorithm in [4] with runtime O(n3)
is used to schedule the remaining machines. This means pinwheel instances with density
at most 0.75 can be solved in time O(n3). In addition, as mentioned above Fishburn and
Lagarias show that instances with p1 = 2 and density up to 5

6 can also be solved in time
O(n3). ◀

4 Continuous BGT on a star

We now examine the continuous case of the BGT-problem. For this problem Gasieniec et al.
propose a O(log n)-approximation algorithm that works in any metric space. We consider
the star graph and show that many of the constant approximation factor algorithms for
discrete BGT can be extended to this case with only small losses in the approximation ratio.

4.1 Notation
Plants 1, . . . , n grow at the end of each of n branches on a star graph. We define di as the
time it takes the server to travel to plant i cut it and return to the center. The growth rate
of plant i is denoted by hi. Each round the server visits a plant and returns back to the
center.
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A schedule for continuous BGT on a star graph, is an infinite sequence over {1, . . . , n},
that describes the order plants are visited in. While BGT is an infinite problem, it is sufficient
to consider cyclic schedules. This is because any schedule that maintains a finite maximum
height of a must visit each plant i at least once in a

hib rounds, where b is the minimum
distance needed to visit a plant. This means a schedule for BGT (on a star) solves the
pinwheel problem with periods a

hib . Since any pinwheel schedule is cyclic (see Theorem 2.1
in [10]) the same is true for BGT schedules.

4.2 A lower bound for the star
Consider a cyclic schedule of length L. Let mi be the amount of times plant i is visited in a
segment of length L. Then L

mi
is the average period between visits of i.

▶ Lemma 8. The average height of p after a cut is hp(dp +
∑

i̸=p
mi

mp
di).

Proof. Consider a plant p. Let λ1, . . . , λmp
be the heights plant p reaches in the schedule.

The sum of all heights is the same as the sum of all distances that are traversed times the
speed of the plant, i.e.

∑mp

k=1 λk = hp

∑n
i=1 dimi. The average height is

1
mp

mp∑
k=1

λk = 1
mp

hp

n∑
i=1

dimi = hp(dp +
∑
i̸=p

mi

mp
di). ◀

Naturally the average height of p is a lower bound on the maximum height of p. This
inspires the following model: The algorithm may visit each plant i at a certain fixed period
fi. These periods do not need to match a feasible schedule and may even be fractional. We
only require that

∑n
i=1

1
fi

= 1 which means that the frequencies add up to one plant visited
per round. The height a plant p reaches in this model is defined as hp(dp +

∑
i̸=p

fp

fi
di).

By setting fi = L
mi

we get a solution for the new model with a height that is equal to the
average height of a schedule in the original model and not more than the maximum height.
This means a lower bound on the height in the new model is also a lower bound on the
average as well as maximum height for continuous BGT on a star graph.

▶ Lemma 9. R :=
∑n

i=1 hidi is a lower bound on the optimal height for continuous BGT on
a star graph.

Proof. Consider the new model. We set K =
∑n

i=1 hi and fi = K
hi

. Then
∑n

i=1
1
fi

= 1 and
this is a valid solution to the new model. Then the height of plant p is hp(dp +

∑
i̸=p

fp

fi
di) =

hp(dp +
∑

i̸=p
hi

hp
di) =

∑n
i=1 hidi = R.

It follows that all plants reach a height of R. Because of the requirement
∑n

i=1
1
fi

= 1
it is not possible to reach a maximum height lower than R, since visiting one plant more
often would mean visiting other plants less often. This means R is a lower bound on the
maximum height in the new model and therefore also a lower bound on the maximum height
for continuous BGT on a star graph. ◀

4.3 Algorithms on the star
The algorithm Reduce-Fastest(x), introduced by Gasieniec et al. [8], cuts the next fastest
growing bamboo among those with height at least x · R. The proof of the following lemma
is structured in a way similar to the proof by J. Kuszmaul for discrete BGT [13]; see the
appendix.
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▶ Lemma 10. Reduce-Fastest(2(R + Dhmax)) is a 6-approximation on the star.

Proof. Assume that at some point there is a bamboo bi that reaches height 3(R + Dhmax).
Let t1 be the most recent time bi reaches height 2(R + Dhmax) and t3 the time it reaches
height 3(R + Dhmax). Furthermore let t2 be the first time in between t1 and t2 where the
gardener visits the center. Since it takes at most distance D to visit a plant and return to
the center the height of bi is at most 2R + 3Dhmax at this time. We consider the set S of
bamboo that are cut at least once during the time interval [t2, t3). For bamboo j ∈ S, let
mj be the number of times the bamboo is cut in the interval [t2, t3).

Since bi already has height at least 2(R + Dhmax) when the algorithm decides to cut j

we have hj ≥ hi for all j ∈ S.
For mj ≥ 2 we have hj(t3 − t2) > 2(R + Dhmax)(mj − 1) or hj(t3−t2)

2(mj−1) > R + Dhmax

because bamboo bj needs to grow to height 2(R+Dhmax) at least mj −1 times in the interval
in order to be cut mj times. Meanwhile bamboo bi grows by at most R + Dhmax during this
interval and therefore R + Dhmax > hi(t3 − t2). It follows that hj > 2(mj − 1)hi ≥ mjhi.

During the interval the algorithm visits each plant bj ∈ S a total of mj times and travels
distance dj each time. Additionally distance di

2 is traversed to reach plant bi.

t3 − t2 =
∑
bj∈S

mjdj + di

2

<
∑
bj∈S

hjdj

hi
+ di

2 = 1
hi

∑
bj∈S

hjdj + di

2

≤ 1
hi

(R − hidi) + di

2 = R

hi
− di

2

This however means that the inverval is too short for plant bi to grow by height R

since this takes time R
hi

. This is a contradiction and thus no plant can reach height
3(R + Dhmax) ≤ 6L. ◀

Define L = max(R, Dh1), where D is the diameter of the star and h1 is the growth rate
of the fastest bamboo. This is a lower bound on Opt.

The Deadline-Driven algorithm always cuts the bamboo with the earliest deadline among
those with height at least L where the deadline is determined by some height the algorithm
wants to maintain. This means that in each round the algorithm chooses the plant with the
earliest deadline, travels towards this plant and cuts it before returning to the center. The
algorithm does not turn around when a more urgent plant reaches height L.

We say a plant is requested when it reaches height (1 +
√

2)L and before that this request
is initialized at the time the plant has height 0. This happens either after a cut or at the
beginning of the process. We choose the deadline as the time a bamboo reaches height
(3 + 2

√
2)L.

This means each request to cut a plant consists of an initialization time, a request time
and a deadline.

▶ Lemma 11. The Deadline-Driven algorithm maintains a height of (3 + 2
√

2)L.

Proof. Assume plant i reaches height (3 +
√

2)L at time T and is not cut. We scale the time
(and distance) such that L/hi = 1 which means plant i grows by L in one timestep. This is
possible because whenever we scale the length of all edges by a factor then the heights of all
plants reached in any schedule is scaled by the same factor. This holds for both Alg and
Opt which means the approximation ratio is unaffected. We can also see this as changing
the timescale using L/hi as our unit of time.
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Let t1 be the last time the algorithm is idle or busy processing a request with deadline
after T . Let time 0 be the most recent time before t1 where plant i has height 0.

This means between time t1 and T the algorithm is only processing requests with deadlines
at or before T and it is not idle. Let the set of these requests be S and let v be the earliest
request time among all request in S. We have i ∈ S, so v ≤ 1 +

√
2 and t1 ≥ v.

We further divide the set S into old requests S0 which are initialised before v and new
requests S1 which are initialised after v. The time required to process S0 is

∑
j∈S0

dj because
any bamboo with an old request must be visited once to fulfill the request. Afterwards the
bamboo either has a deadline after T and is not visited again or becomes part of the bamboo
with new requests. We next show that all bamboo with new requests also have an old request.
Consider the earliest new request for a bamboo. This new request gets initialized inbetween
v and T . This means there was a previous request for that bamboo with a deadline between
v and T . This request is an old request.

The time required to process S1 is
∑

j∈S1
mjdj where mj is the number of new requests

of bamboo j which are requests with initialization time after v and a deadline before or at T .
(Here j ∈ S means there is a request for bamboo j in the set of requests S. We may also see
S as a multi-set of bamboo instead.)

It is possible that just before v a request with a deadline after T arrives and is processed
by the algorithm. The algorithm traverses a distance of r to serve this request if it exists,
otherwise r = 0. This means t1 ≤ v + r.

We now show that
∑

j∈S0
dj +

∑
j∈S1

mjdj + v + r < T which contradicts the assumption
that plant i is not cut before time T .

We begin by finding upper bounds on the time required to process the requests in S.
A bamboo with an old request must grow by at least (2 +

√
2)L in time at most T − v to

have a deadline before T which means hj(T − v) ≥ (2 +
√

2)L. Meanwhile plant i grows by
(T − v)L in time (T − v), that is hi(T − v) = (T − v)L. It follows that

hj

hi
≥ 2 +

√
2

T − v
for j ∈ S0 (1)

A bamboo with new requests must reach the threshold (1 +
√

2)L exactly mj times in
time at most T −v in order to be requested mj times before T . Then hj(T −v) ≥ mj(1+

√
2).

It follows that

hj

hi
≥ mj

1 +
√

2
T − v

for j ∈ S1 (2)

We can now find upper bounds for the processing times of the requests in S. We first get

∑
j∈S0

dj

(1)
≤ 1

hi

T − v

2 +
√

2

∑
j∈S0

djhj <
T − v

2 +
√

2
R

hi

and then∑
j∈S1

mjdj

(2)
≤ 1

hi

T − v

1 +
√

2

∑
j∈S0

djhj <
T − v

1 +
√

2
R

hi

Given the timescale and because R ≤ L it takes time less than T −v
2+

√
2 to process the old

requests and less than T −v
1+

√
2 to process the new requests.

It remains to show T −v
2+

√
2 + T −v

1+
√

2 + v + r ≤ T .
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We have r ≤ L/h1 ≤ L/hi = 1 where the first inequality holds because otherwise plant 1
would grow by more than L in the time it takes to travel distance r and the second follows
from the ordering of the plants by their growth rate. Furthermore since v < 1 +

√
2 and the

earliest deadline of i is 3 + 2
√

2 we have T − v ≥ (2 +
√

2).
It follows

r ≤ 1 =
(

1
2 +

√
2

) (
2 +

√
2
)

≤
(

1
2 +

√
2

)
(T − v)

and then

r ≤
(

1
2 +

√
2

)
(T − v)

⇒
(

1
2 +

√
2

)
v + r ≤

(
1

2 +
√

2

)
T

⇒
(

1
2 +

√
2

)
v + r ≤

(
1

2 +
√

2

)
T +

(
1 − 1

2 +
√

2

)
T −

(
1 − 1

2 +
√

2

)
T

⇒
(

1 − 1
2 +

√
2

)
T +

(
1

2 +
√

2

)
v + r ≤ T

⇒
(

1 − 1
2 +

√
2

)
T −

(
1 − 1

2 +
√

2

)
v + v + r ≤ T

⇒ T − v

2 +
√

2
+ T − v

1 +
√

2
+ v + r ≤ T

This means we can process all requests (including the request for bi with deadline at time
T ) before time T and plant i does not grow above height (3 + 2

√
2)L. ◀

4.4 Extending the star graph
It is also possible to extend some of these results to an extended version of a star graph,
where several plants are placed on each branch at different distances from the center. We
again number the plants from 1 to n and the definition of hi and di remains the same.

This means that di is the time it takes the server to travel the path leading up to node
i from the center two times (once in both directions). Additionally we denote with δi the
time it takes the server to travel the singular edge, connected to node i from direction of the
center, two times (once in both directions). The definitions of di and δi are visualized in
Figure 1.

We assume that the speeds are decreasing on each branch. (If there is a plant a that is
further away than plant b on a branch and has the same speed or more, then plant b gets
visited whenever plant a is visited.)

For the star graph with multiple plants on each branch, there is more than one possibility
to accurately represent the schedule. One possibility is to list each visit to a plant, but it is
also possible to omit plants that are visited by the server in passing, as it travels to a plant
further on the branch. The representation we will be using, lists all plants that are visited in
a round, but omits the second visit, where the server passes the plant again on its way to
the center.

▶ Lemma 12. The value 1
2 R with R =

∑n
i=1 hiδi is a lower bound on the optimal height for

continuous BGT on a star graph with multiple plants on each branch.
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Figure 1 Multiple plants on each branch: example for values di and δi.

For the star with multiple plants on each branch we use the Deadline-Driven algorithm
with a small modification. Whenever the algorithm visits a bamboo bj on a branch it walks
double the distance and cuts all additional bamboo it encounters. These bamboo can be
removed from the graph since they are always cut together with bj . Then the distance
between bj and the next bamboo bi (i.e δi) on the branch is at least as much as the distance
from bj to the center (i.e. di − δi). In particular it follows that δi ≥ di − δi and thus di ≤ 2δi.

Furthermore for the bamboo with multiple plants our lower bound is 1
2 R with R :=∑n

i=1 hiδi and therefore we define L = max( 1
2 R, Dh1) to get a lower bound on Opt. For the

star with multiple plants on each branch the deadline is the point in time a plant reaches
height (9+2

√
5)L and it gets requested at height (4+2

√
5)L. The initialization time remains

the same.

▶ Lemma 13. The modified Deadline-Driven algorithm maintains a height of (9 + 2
√

5)L.

5 Conclusions

It is possible to achieve a better approximation ratio by setting R in algorithm 1 to a lower
value but this requires a much larger case analysis. This is because the periods pi will be
smaller. Using some computer assistance it is for example possible to achieve a ratio of 7

5 but
the length of the proof encourages finding new ideas. Using more cases, we could potentially
get even closer to the ratio 4/3, but we could never reach it as long as we can only rely on
pinwheel instances with density at most 3/4 being schedulable.

It should be noted that the pinwheel instances that our algorithm encounters are not
general ones. For instance, the 10/7-approximation never encounters the period 6. It is
conceivable that for the limited set of pinwheel instances that need to be considered, the
density guarantee could be improved. Finally, of course the conjecture by Chan and Chin
that all instances with density at most 5/6 are schedulable is still open. If that were proved,
we could potentially get close to 6/5 (instead of only to 4/3). An approximation scheme
currently seems out of reach.
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A Tables for checking hi/pi ≥ DU in the proof of Lemma 6

Case 3, 4, p∗
3 ≥ 5 with schedule 1 2 :

p∗
i pi hi hi/pi DU

5 7 3 0.429 0.417
6 8 4 0.5
7 10 5 0.5
8 11 5 0.45
9 12 6 0.5
10 14 7 0.5
11 15 7 0.47
12 17 8 0.47

Case 4, 4 with schedule 1 2

p∗
i pi hi hi/pi DU

4 5 3 0.6 0.5
5 7 4 0.57
6 8 4 0.5
7 10 6 0.6
8 11 6 0.54
9 12 7 0.58
10 14 8 0.57
11 15 9 0.6

Case 4, 4, 4 with schedule 123

p∗
i pi hi hi/pi DU

4 5 2 0.4 0.25
5 7 2 0.28
6 8 2 0.25
7 10 4 0.4
8 11 4 0.36
9 12 4 0.33
10 14 5 0.36
11 15 6 0.4

Case 4, 5 with schedule 1 2

p∗
i pi hi hi/pi DU

9 12 7 0.5833333333 0.55
10 14 8 0.5714285714
11 15 9 0.6
12 17 10 0.5882352941
13 18 10 0.5555555556
14 20 12 0.6
15 21 12 0.5714285714
16 22 13 0.5909090909

Case 4, 5, 6 with schedule 31 2 13 21
3 12

p∗
i pi hi hi/pi DU

7 10 5 0.5 0.38
8 11 5 0.45
9 12 5 0.42
10 14 6 0.43
11 15 7 0.47
12 17 8 0.47
13 18 8 0.44
14 20 10 0.5
15 21 10 0.48
16 22 10 0.45
17 24 11 0.45
18 25 12 0.48

19 27 13 0.48
20 28 13 0.46
21 30 15 0.5
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Case 4, 5, 8 with schedule 1 3 12 1 32
1 2

p∗
i pi hi hi/pi DU

7 10 5 0.5 0.425
8 11 5 0.45
9 12 6 0.5
10 14 7 0.5
11 15 7 0.47
12 17 8 0.47
13 18 9 0.5
14 20 11 0.55
15 21 11 0.52
16 22 11 0.5
17 24 12 0.5
18 25 13 0.52
19 27 14 0.525
20 28 14 0.5
21 30 16 0.53

Case 4, 6 with schedule 1 1 2 1 2

p∗
i pi hi h/p DU

9 12 7 0.58 0.583
10 14 9 0.64
11 15 10 0.67
12 17 10 0.59
13 18 11 0.61
14 20 13 0.65
15 21 13 0.62
16 22 14 0.64
17 24 15 0.63
18 25 16 0,64
19 27 17 0.63
20 28 18 0.64
21 30 20 0.67
22 31 20 0.65
23 32 20 0.63
24 34 22 0.65
25 35 23 0.66
26 37 24 0.65
27 38 25 0.66
28 40 26 0.65
29 41 26 0.63
30 42 27 0.649

Case 4, 6, 7 with schedule 1 3 1 2
13 2

p∗ p h h/p DA

7 10 6 0.6 0.440
8 11 6 0.54 0.458
9 12 7 0.58 0.458
10 14 8 0.57
11 15 8 0.53
12 17 10 0.58
13 18 10 0.55
14 20 11 0.55
15 21 12 0.57
16 22 12 0.55
17 24 14 0.58
18 25 14 0.56
19 27 15 0.56
20 28 16 0.57
21 30 16 0.53
22 31 17 0.55
23 32 18 0.56
24 34 19 0.56
25 35 19 0.54
26 37 20 0.54
27 38 21 0.55
28 40 22 0.55
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Case 4, 6, 8 with schedule 1 3 1 2
1 32 1 1 23 1 2

p∗ p h h/p DA

9 12 6 0.5 0.458
10 14 7 0.5
11 15 8 0.53
12 17 8 0.47
13 18 9 0.5
14 20 11 0.55
15 21 11 0.52
16 22 12 0.55
17 24 12 0.5
18 25 13 0.52
19 27 14 0.52
20 28 15 0.54
21 30 17 0.57
22 31 17 0.55
23 32 17 0.53
24 34 18 0.53
25 35 19 0.54
26 37 20 0.54
27 38 21 0.55
28 40 22 0.55
29 41 22 0.53
30 42 23 0.546

Case 4, 6, 8, 8 with schedule 1 3 1 24 1
32 1 4 1 23 1 42

p∗ p h h/p DA

4 5 2 0.4 0.333
5 7 3 0.43
6 8 3 0.375
7 10 4 0.4
8 11 4 0.36
9 12 5 0.42
10 14 6 0.43
11 15 7 0.47
12 17 7 0.41
13 18 7 0.39
14 20 9 0.45
15 21 9 0.43
16 22 10 0.45
17 24 10 0.42
18 25 11 0.44
19 27 12 0.44
20 28 12 0.43
21 30 14 0.47
22 31 14 0.45
23 32 14 0.44
24 34 15 0.44
25 35 16 0.46

Case 4, 8 with schedule 1 2 1

p∗ p h h/p DA

6 8 5 0.625 0.625
7 10 7 0.7
8 11 7 0.64
9 12 8 0.67
10 14 9 0.64
11 15 10 0.67
12 17 11 0.65
13 18 12 0.67

B Multiple plants on each branch

We now find a lower bound for continuous BGT on a star graph with multiple plants on each
branch. In this scenario, we make a distinction between cuts where the server comes from
the center, and cuts where the server comes from the direction opposite the center. For both
types of cuts, we find a lower bound on the maximum height a plant reaches in a particular
schedule.

Consider plant p, and let A be the set of plants that are on the same branch but further
from the center, and B the set of plants that are closer to the center on the same branch or
on another branch.

APPROX/RANDOM 2023
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Since the algorithm needs to visit the end of the branch at some point, p reaches a height
of at least hp

∑
i∈A δi. This happens as the server is coming from the direction opposite the

center and this is a lower bound on the maximum height.
Next, we develop a lower bound based on the cuts where the server comes from the

direction of the center. Consider a cyclic schedule of length L, where only the first cut of
each round, where the server comes from the center, is listed in this schedule. Each round
the algorithm visits a branch and possibly multiple plants. We define mi as the amount of
rounds plant i is visited in. Then L

mi
is the average period between visits of plant i, but only

counting the first cut each round where the server comes from the direction of the center.

▶ Lemma 14. The average height of p after a cut, with the server coming from the direction
of the center, is hp(δp +

∑
i∈B

mi

mp
δi).

Proof. Consider a plant p. Let λ1, . . . , λmp
be the heights plant p reaches in the schedule,

while only considering cuts coming from the center. The sum of these heights is the same as
the sum of all distances travelled to visit plants in set B ∪ {p} multiplied by the speed of the
plant. This means

∑mp

k=1 λk = hp

∑
i∈B∪{p} δimi. The average height is

1
mp

mp∑
k=1

λk = 1
mp

hp

∑
i∈B∪{p}

δimi = hp(δp +
∑
i∈B

mi

mp
δi) ◀

We now adapt our model. The algorithm may visit each plant i at a certain fixed period
fi. Let C be the set of all plants, that are closest to the center on their branch. We
require

∑
i∈C

1
fi

= 1, which means that the frequencies add up to one branch visited each
round. Furthermore, the periods of plants on the same branch should be non decreasing as
distance to the center increases. We define the height of a plant p as max(hp(

∑
i∈A δi, hp(δp +∑

i∈B
fp

fi
δi)).

By setting fi = L
mi

we get a solution for the new model with a height that is equal to the
average height of a schedule in the original model and not more than the maximum height.
A lower bound on the maximum height in this new model is then a lower bound on the
maximum height for continuous BGT on a star graph with multiple plants on each branch.

▶ Lemma 12. The value 1
2 R with R =

∑n
i=1 hiδi is a lower bound on the optimal height for

continuous BGT on a star graph with multiple plants on each branch.

Proof. Consider the new model. We set K =
∑n

i∈C hi and fi = K
hi

. Let Hp be the
maximum height that plant p reaches in the new model. By the definition of height we get
Hp ≥ hp

∑
i∈A δi as well as Hp ≥ hp(dp +

∑
i∈B

fp

fi
di). Then

2Hp ≥ hp

∑
i∈A

δi + hp(dp +
∑
i∈B

fp

fi
δi) =

∑
i∈A

hpδi + hpδp +
∑
i∈B

hiδi ≥
n∑

i=1
hiδi

The last inequality follows from the fact that the speeds are decreasing with distance to the
center and therefore hp ≥ hi for i ∈ A. It follows that all plants reach a height of at least 1

2 R

and again it is not possible to achieve a lower height on all plants, since visiting one plant
more often increases the height on other plants. ◀

▶ Lemma 13. The modified deadline driven algorithm maintains a height of (9 + 4
√

5)L.

Proof. Assume plant i reaches height (9+4
√

5)L at time T . We scale the time (and distance)
such that L/hi = 1 which means plant i grows by L in one timestep. The old and new
requests S0 and S1 as well as v and r are defined analogously to the proof for the star.
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The time required to process S0 is at most
∑

j∈S0
dj because any bamboo with an old

request must be visited once to fulfill the request and in the worst case we start from the
center traversing distance dj to fulfill the request. It is possible that the algorithm is more
efficient whenever plants with consecutive deadlines lie behind each other on the same branch.

Similarly the time required to process S1 is at most
∑

j∈S1
mjdj where mj is the number

of new requests on plant bj .
Therefore in order to arrive at a contradiction we again need to show

∑
j∈S0

dj +∑
j∈S1

mjdj + v + r < T which means plant i can be cut before time T .
Again we find upper bounds on the time required to process the old and new requests.

These bounds are slightly different due to the changes in the algorithm as well as the lower
bound.

A bamboo with an old request must grow by at least (5 + 2
√

5)L in time at most T − v

to have a deadline before T which means hj(T − v) ≥ (5 + 2
√

5)L. Meanwhile plant i grows
by (T − v)L in time (T − v), that is hi(T − v) = (T − v)L. It follows that

hj

hi
≥ 5 + 2

√
5

T − v
for j ∈ S0 (3)

A bamboo with new requests must grow by (4 + 2
√

5)L exactly mj times in time at most
T − v in order to have mj deadlines before T . Then hj(T − v) ≥ mj(4 + 2

√
5). It follows that

hj

hi
≥ mj

4 + 2
√

5
T − v

for j ∈ S1 (4)

We now get∑
j∈S0

dj

(3)
≤ 1

hi

T − v

5 + 2
√

5

∑
j∈S0

djhj ≤ 1
hi

T − v

5 + 2
√

5

∑
j∈S0

2δjhj <
T − v

5 + 2
√

5
2R

hi
≤ T − v

5 + 2
√

5
4L

hi

where we are using di ≤ 2δi in the second inequality and R ≤ 2L in the last inequality.
Analogously the following holds for the time required to process the new requests∑

j∈S1

mjdj

(4)
≤ 1

hi

T − v

4 + 2
√

5

∑
j∈S0

djhj ≤ 1
hi

T − v

4 + 2
√

5

∑
j∈S0

2δjhj <
T − v

4 + 2
√

5
2R

hi
≤ T − v

4 + 2
√

5
4L

hi

Given the timescale this means it takes time at most 4 T −v
5+2

√
5 to process the old requests

and at most 4 T −v
4+2

√
5 to process the new requests. Furthermore since v < 4 + 2

√
5 and the

earliest deadline of i is 9 + 4
√

5 we have T − v ≥ (5 + 2
√

5). It follows

r ≤ 1 =
(

1
5 + 2

√
5

)
(5 + 2

√
5) ≤

(
1

5 + 2
√

5

)
(T − v)

⇒
(

1
5 + 2

√
5

)
v + r ≤

(
1

5 + 2
√

5

)
T

⇒
(

1
5 + 2

√
5

)
v + r ≤

(
1

5 + 2
√

5

)
T +

(
1 − 1

5 + 2
√

5

)
T −

(
1 − 1

5 + 2
√

5

)
T

⇒
(

1 − 1
5 + 2

√
5

)
T +

(
1

5 + 2
√

5

)
v + r ≤ T

⇒
(

1 − 1
5 + 2

√
5

)
T −

(
1 − 1

5 + 2
√

5

)
v + v + r ≤ T

⇒ 4 T − v

5 + 2
√

5
+ 4 T − v

4 + 2
√

5
+ v + r ≤ T

This means we can process all requests (including the request for bi with deadline at time T )
before time T and plant i does not grow above height (9 + 4

√
5)L. ◀
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Abstract
We initiate the study of online problems with set delay, where the delay cost at any given time is
an arbitrary function of the set of pending requests. In particular, we study the online min-cost
perfect matching with set delay (MPMD-Set) problem, which generalises the online min-cost perfect
matching with delay (MPMD) problem introduced by Emek et al. (STOC 2016). In MPMD, m

requests arrive over time in a metric space of n points. When a request arrives the algorithm must
choose to either match or delay the request. The goal is to create a perfect matching of all requests
while minimising the sum of distances between matched requests, and the total delay costs incurred
by each of the requests. In contrast to previous work we study MPMD-Set in the non-clairvoyant
setting, where the algorithm does not know the future delay costs. We first show no algorithm
is competitive in n or m. We then study the natural special case of size-based delay where the
delay is a non-decreasing function of the number of unmatched requests. Our main result is the
first non-clairvoyant algorithms for online min-cost perfect matching with size-based delay that are
competitive in terms of m. In fact, these are the first non-clairvoyant algorithms for any variant of
MPMD. A key technical ingredient is an analog of the symmetric difference of matchings that may
be useful for other special classes of set delay. Furthermore, we prove a lower bound of Ω(n) for
any deterministic algorithm and Ω(log n) for any randomised algorithm. These lower bounds also
hold for clairvoyant algorithms. Finally, we also give an m-competitive deterministic algorithm for
uniform concave delays in the clairvoyant setting.
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1 Introduction

Studying online problems with delay is a line of work that has recently gained traction in
online algorithms (e.g. [4, 19,21,23]). In such problems, request arrive over time requiring
service. Delaying the service of a request accumulates a delay cost given by a delay function
associated with the request. The total cost of a solution is the cost of servicing all requests
plus the sum of all delay costs incurred by each request.

We initiate the study of online problems with set delay. In this model, we generalize the
notion of delay to one where the instantaneous delay cost at any point in time is determined
by an arbitrary monotone non-decreasing function of the set of pending requests, rather
than the sum of individual delay functions associated with each request. In particular, we
study the online min-cost perfect matching with set delay (MPMD-Set) problem, which
generalizes of the min-cost perfect matching with delays (MPMD) problem introduced by
Emek et al. [19].
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In MPMD, m requests arrive over time in a metric space of n points. Upon arrival of
a request the algorithm must choose to either match the request, incurring a cost equal to
the distance between the two requests, or to delay the request, incurring a cost given by a
delay function associated with the request. Prior results for MPMD have mostly focused
on each request sharing the same delay function (in particular, linear, concave, and convex)
and achieve competitive ratios that solely depend either on n or m. Moreover, existing
algorithms rely on clairvoyance, where the algorithm has full knowledge of future delay
costs. Furthermore, existing randomised algorithms rely on metric embeddings which require
knowledge of the metric space in advance.

In this paper, our main contribution is to study the more general MPMD-Set in the least
restrictive setting where the algorithm does not know the metric space in advance and has no
knowledge of future delay costs. We begin by showing that, in contrast to prior results, the
MPMD-Set problem does not admit a deterministic competitive ratio that solely depends on
n or m.

▶ Theorem 1. Every deterministic algorithm for MPMD-Set has competitive ratio Ω(Φ),
where Φ is the aspect ratio of the metric space.

Our lower bound holds even for simple instances where n and m are constants. Thus, we
restrict our attention to designing a competitive solution for the MPMD-Set problem where
the instantaneous delay cost at any point in time is a monotone non-decreasing function of
the number of unmatched requests at that time. We call such a delay cost function size-based
(See Section 2 for a formal definition). MPMD-Set with size-based delay (MPMD-Size)
has natural applications in practical settings with service-level agreements such as cloud
computing.1

Our main result is the first competitive algorithms for MPMD-Size, where the competitive
ratio is a function of the number of requests. At the core of our result is a reduction from
MPMD-Size to the well-known Metrical Task System (MTS) problem (defined in Section 1.1).

▶ Theorem 2. For any f(N)-competitive algorithm for MTS with N states, there is an
f(2m)-competitive algorithm for MPMD-Size.

We obtain our main result by applying state-of-the-art algorithms for MTS with some
modifications.

▶ Corollary 3. For MPMD-Size, there is an O(2m)-competitive deterministic algorithm and
an O(m4)-competitive randomised algorithm.

We emphasise that our algorithms are non-clairvoyant and do not need to know the metric
space in advance. To the best of our knowledge, this is the first non-clairvoyant online
algorithm for this problem. Non-clairvoyant algorithms nevertheless have been designed for
other online problems such as the Set Cover problem [4], the k-server problem [25], and
multi-level aggregation [26]. We also remark that every deterministic algorithm for known
variants of online matching with delays has a competitive ratio that depends on m.

We complement Corollary 3 with the following lower bounds.

▶ Theorem 4. Every deterministic algorithm for MPMD-Size has competitive ratio Ω(n).

▶ Theorem 5. Every randomised algorithm for MPMD-Size has competitive ratio Ω(log n).

1 In these settings, the service level agreement requires the cloud provider to provide a certain level of
service and the provider incurs penalties if the level is not met.
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Finally, we consider MPMD with uniform concave delay in the clairvoyant setting and
give the first deterministic algorithm for it. In this problem, we are given a non-negative,
non-decreasing concave function f . The delay cost incurred by a request r is f(wr) where
wr is the time between r’s arrival and when it was matched. The total delay cost is the sum
of the delay cost of each request.

▶ Theorem 6. There exists an O(m)-competitive deterministic algorithm for MPMD with
concave delay.

The correctness and competitiveness of our algorithm only relies on the fact that the time-
augmented space satisfies the properties of a metric space. Similar to previous deterministic
solutions for uniform linear delay, our algorithm does not need the metric space to be finite,
and does not need to know it in advance.

The proofs of theorems 4, 5 and 6 can be found in the full version.

1.1 Our Techniques
Our main technical contribution is an online reduction from the MPMD-Set problem to
MTS, which constitutes the proof of Theorem 2. The Metrical Task System (MTS) problem,
introduced by Borodin et al. [15], is a cost minimisation problem defined by a set of states
S = {s1, s2, ..., sk} and a cost matrix c that defines the cost of moving between states. The
input consists of an initial state S0 and a sequence of tasks T = (t1, ..., tℓ). Each task tj

is associated with a k-dimensional cost vector Cj whose i-th coordinate defines the cost of
servicing task tj in state si. For a given input task sequence T , a solution is a sequence of
states (called a schedule) σ = (S1, S2, ..., Sℓ), where Sj is the state that task j is processed in.
The total cost of a schedule consists of the costs associated with moving states (transition
cost), as well as the cost of processing the tasks (processing cost).The aim is to produce a
schedule of minimum cost.

We briefly outline the three main parts of the reduction below.

Step 1: MPMD-Set to MTS. The first part of the reduction transforms an instance of
MPMD-Set into an instance of MTS. A natural approach at a reduction to MTS is to use
the set of all possible matchings of requests as the set of states for the MTS instance. The
transition cost between two states is then the total length of the edges in the symmetric
difference of the corresponding matchings. Finally, there is a task for each timestep in the
matching problem and the cost of processing the task in a state is the instantaneous delay
incurred by the set of unmatched requests. Unfortunately, the number of states is equal
to the number of possible matchings between the requests which is ∼ ( m

e )m/2 e
√

m

(4e)1/4 for m

requests.
Instead, we use the set of all possible even-sized subsets of the requests as the set of MTS

states. Each state represents a set of requests that are matched. The set of input states thus
develops over time as more requests arrive. The initial state is the empty set.

We now define the transition costs of the MTS. We define a transition graph G(V, E)
where V is the set of even-sized subsets of requests. The transition graph G has an edge
between two states S and S′ if S ⊂ S′ and |S′| = |S| + 2. In other words, S2 consists of the
same requests as S1 with 2 additional requests, say p, q. The cost of the edge between the
two states is d(p, q), the distance between p and q in the original MPMD-Set instance. The
transition cost between any two states in the MTS instance is defined to be the minimum
cost path between the two corresponding nodes in G. The delay cost is translated into the
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vector costs associated with serving tasks: for any timestep t, the cost of servicing a task in
state is simply the instantaneous delay cost accumulated by the set of requests that have
arrived so far in the original MPMD-Set instance, that are not in that state.

Henceforth, we refer to an instance of MTS that is reduced from MPMD-Set as MPMD-
Set-MTS, and an MTS instance that is reduced from MPMD-Set with size-based delay as
MPMD-Size-MTS.

▶ Definition 7 (Monotone). A schedule σ = (S1, . . . , Sℓ) is monotone if every transition only
adds requests to the current state, i.e. Si−1 ⊆ Si for every i. In other words, the path never
involves moving to a strictly smaller state. An algorithm for MPMD-Set-MTS is monotone
if it always produces a monotone schedule.

It is easy to see that a monotone schedule can be converted into a solution for the MPMD-Set
instance without any increase in cost: when the schedule adds a set of requests S′ to its
current state, we add a min-cost perfect matching on S′ to our matching. However, when we
run existing MTS algorithms on the MPMD-Set-MTS instance, there is no guarantee that
they will return a monotone schedule.

Step 2: Converting to Monotone. Fortunately, it is possible to convert, in an online
manner, an arbitrary MPMD-Size-MTS solution to a monotone solution at no extra cost.
We do this by designing an online algorithm which, given an online sequence of states
σ = (S1, . . . , Sℓ), produces for each state Si a corresponding state S′

i such that the resulting
schedule produced by the algorithm is monotone. We refer to an algorithm that transforms
a given state as a state conversion algorithm.

Since the instantaneous delay in the MPMD-Size instance is a non-increasing function
of currently matched requests, for every task in the MPMD-Size-MTS instance created by
the reduction, the processing cost is a monotone non-increasing function of the state size.
Our algorithm will exploit this by maintaining the invariant that our state is always at least
large as that of σ. The technical crux here is to show that when our state is smaller, we
can augment our state in a cost-efficient manner. If the MTS states were matchings, we
can consider augmenting paths in the symmetric difference of our matching and that of σ.
Motivated by this, we define analogs of the symmetric difference and augmenting paths to
augment our state. We believe these ideas are useful for other interesting special classes of
set delay functions.

Step 3: Applying MTS algorithms. There are two issues that prevent us from applying
existing MTS algorithms directly. First, the cost bounds of all known algorithms for MTS
have an additive term that is equal to the diameter of the MTS state space, and the MTS
instance created by our reduction has state space with diameter much larger than the
optimal. The second issue is that our reduction creates an MTS instance whose state space
is constructed online, i.e. the states arrive over time. At a high level, the first issue can be
overcome by a guess-and-double approach. The second issue is a problem for randomised
MTS algorithms that rely on embedding the state space into a tree as a pre-processing step.
This is overcome by using the online embedding of [10]. See Section 4.3 for a more detailed
discussion.

Designing a deterministic algorithm for MPMD with Concave Delay. We use the (offline)
moat-growing framework (generally used for constrained connectivity problems) by Goemans
and Williamson [22], to design an online deterministic linear programming-based algorithm
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for MPMD with uniform concave delay. Our algorithm is a modification of an existing
linear programming-based algorithm due to Bienkowski et al. [12], who give a deterministic
competitive algorithm for MPMD with uniform linear delay. Their algorithm heavily relies
on the fact that, when the delay function is linear, requests accumulate delay cost at the
same rate at all times, regardless of their arrival time. The main challenge in applying
the framework to concave delay is that, unlike in the case of linear delay, the requests can
accumulate delay at different rates at any point in time, depending on their arrival time. See
the full version of the paper on ArXiv for a detailed discussion.

1.2 Related Work

MPMD was introduced by Emek et al. [19] where the delay functions associated with each
request are uniform linear. They designed a randomised algorithm that achieves a competitive
ratio of O(log2 n + log ∆), where n is the number of points in the metric space and ∆ is
its aspect ratio. Azar et al. [3] used a randomised HST embedding to provide a O(log n)-
competitive almost-deterministic algorithm, improving Emek et al.’s bound and removing
the dependency on the aspect ratio of the metric space. Furthermore, they provided a lower
bound of Ω(

√
log n) for any randomised algorithm in the case of linear delay. Ashlagi et

al. [1] improved this lower bound to Ω( log n
log log n ) and Ω(

√
log n

log log n ) for the bipartite case, which
are the best known so far. Liu et al. furthermore adapted the algorithm by Azar et al. to the
bipartite setting and improved the analysis of Emek et al.’s algorithm to O(log n). The next
deterministic algorithm for simple metrics was by Emek et al. [20] who proved a competitive
ratio of 3 for the simple metric space of 2 points. The first deterministic algorithm for general
metric spaces was by Bienkowski et al. [13] and their analysis resulted in a competitive
ratio of O(m2.46). Bienkowski et al. [12] and Azar et al. [6] concurrently and independently
improved this bound to O(m) and O(m0.59) respectively, introducing the first linear and
sub-linear deterministic solutions to the problem. The algorithms above assumed the delay
cost to be given by a uniform linear delay function associated with each individual request.

Liu et al. [27] was the first to consider convex delay functions and demonstrated an
interesting gap between the solutions for the case with linear delay and convex delay on a
uniform metric space by giving a deterministic asymptotically optimal O(m)-competitive
algorithm for the uniform metric space.

Azar et al. [8] subsequently considered the problem with concave delay and achieved an
O(1)-competitive deterministic algorithm for the single point metric space and an O(log n)
randomised algorithm for general metric spaces.

The above algorithms assumed all requests incurred delay in accordance with uniform
delay functions and regarded the delay function to be associated with each individual
request. Furthermore, all prior solutions to MPMD assumed clairvoyance. To the best of our
knowledge, no one has considered the non-clairvoyant generalisation of the problem where
the delay function depends on the set of unmatched requests.

Non-clairvoyant algorithms nevertheless have been designed for other online problems such
as the Set Cover problem [4,26], the k-server problem [25], and multi-level aggregation [26].

The notion of introducing delay to online problems originated well before it was applied
to online metric matching and finds applications in amongst others aggregating messages in
computer networks, aggregating orders in supply-chain management, and operating systems.
See [4, 5, 7, 9, 11, 14, 17, 18, 21, 23, 26, 28] for further reading. All problems above define the
cost of delay as a function associated with each request. To the best of our knowledge, no
online problems with delay have so far defined the cost of delay as an arbitrary function of
the set of unmatched requests.
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2 Preliminaries

In this section we introduce our notation and give formal definitions for set delay and
size-based delay functions, as well as MPMD-Set.

2.1 Min-cost Perfect Matching with Delay

The min-cost perfect matching with delays (MPMD) problem, introduced by Emek et. al [19]
is defined on a metric space (V, d), which consists of a set of points V and distance function
d : V ×V → R+. An online input instance over (V, d) is a sequence of requests R = (r1, ..., rm)
that arrive at points in the metric space over time. Each rk ∈ R has an associated position
and arrival time. We assume, without loss of generality, that time is divided into discrete
timesteps.

Upon the arrival of a request, the algorithm must choose to either match the request,
incurring a cost equal to the distance between the two requests in the metric space, or to
delay the request, incurring a cost given by a delay function associated with the request, in
the hope of finding a more suitable match in the near future.

A solution produced by an online matching algorithm is a sequence of matchings M =
(M0...Mfinal), where Mi is the matching associated with the ith timestep. Note that we
assume that requests only arrive at the start of a timestep. A solution M must satisfy the
following properties:

M0 = ∅
Mfinal is a perfect matching
For all i, Mi ⊆ Mi+1

We refer to the third property as monotonicity. The cost associated with a solution M
consists of the sum of the distances between matched requests in Mfinal plus the sum of the
delay costs incurred by all requests. The aim of an online matching algorithm is to produce
a sequence of matchings that satisfies the above properties with minimal cost.

In the original MPMD problem, the delay cost incurred by a request is the time between
its arrival and when it was matched. In MPMD-Set, the instantaneous delay incurred at a
timestep t can be an arbitrary function of the set of currently unmatched requests Ut. The
total delay cost is the sum over timesteps t of ft(Ut) where ft is a set delay function as
defined below.

▶ Definition 8 (Set delay function). Let U be a set of requests. We define a delay function
ft : 2U → R≥0, for any timestep t, to be a set delay function if it satisfies the following
properties:

ft(∅) = 0
A ⊆ B ⇒ ft(A) ≤ ft(B)
For all ∅ ̸= U ∈ 2V , we have

∑∞
t=0 ft(U) = ∞

The last property implies that all requests must eventually be matched.

In MPMD-Size, the set delay function is a size-based delay function, as defined below.

▶ Definition 9 (Size-based delay function). We define a delay function ft : 2U → R≥0 to
be size-based if, for any timestep t, it satisfies all properties of a set delay function and is
monotone non-decreasing as a function of the size of the set of requests U .
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3 A Lower Bound for MPMD-Set

In this section, we prove Theorem 1.

Proof of Theorem 1. Consider a four-point metric space (as depicted in figure 1) with three
points at distance ϵ from one another, and the fourth point (p4) at distance D from the other
points, where D is the diameter of the metric space.

Figure 1 A visualisation of the four-point metric space.

We define a request sequence of six requests R = (r1, r2, r3, r4, r5, r6) where the first four
requests arrive at time t = 0 and the latter two arrive at time t = 2. For each i ∈ {1...4}, we
place request ri on point pi. At t = 2, we then place request r5 on p3 and r6 on p4. In terms
of delay, we are working with the special case of deadline functions. A deadline function is a
delay function that is 0 up until some time d, called the deadline, and ∞ afterwards. When
the deadline of a request is reached, the algorithm must ensure that the request is matched.

At t = 0, request r1 reaches its deadline and hence the algorithm will need to match
two requests. Since the algorithm is non-clairvoyant, the algorithm has no knowledge of the
deadlines of future requests. We therefore assume without loss of generality that it matches
r1 to r3 and pays a distance cost of ϵ. At t = 1, r2 reaches its deadline and the algorithm is
forced to match it to r4 at a distance cost of D. At t = 2, the final two requests will arrive
and instantly reach their deadline. The algorithm will consequently need to match r5 to r6
at a distance cost of D. The total cost of ALG is 2D + ϵ.

The optimal offline solution OPT is to match r1 to r2 and match locally at t = 2 on points
p3 and p4. The total cost of OPT is therefore ϵ. The competitive ratio of the algorithm is
Ω(D/ϵ) and D/ϵ is the aspect ratio of the metric space, as desired. ◀

4 An Online Reduction from MPMD-Set to MTS

In this section, we prove Theorem 2 by defining a reduction from MPMD-Set to MTS.
We start by translating an arbitrary instance of MPMD-Set into an instance of MTS in
Section 4.1. In Section 4.2, we show that we can transform an arbitrary MPMD-Size-MTS
solution into a monotone solution of the same or less cost. As observed in the Introduction,
a monotone schedule directly corresponds to a solution for the online matching with delay
problem of equal cost. This completes the proof of Theorem 2. We finish this section with a
proof of Corollary 3.

4.1 Translating an instance of MPMD-Set into and instance of MTS
We define the set of internal states of the MTS instance to be the set of all possible subsets
of the requests that have arrived so far in the MPMD-Set instance. In order to define the
transition cost associated with moving between states, we define the following graph.
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▶ Definition 10 (Transition graph G). The nodes of G are the states of the MPMD-Set-MTS
instance. We define an undirected edge (S, S′) ∈ E between states S and S′ if S = S′ ∪ {r, r′}
and define its cost c(S, S′) to be d(r, r′). Paths in the transition graph are called transition
paths.

We define the transition cost c(S, S′) of moving between arbitrary states S and S′ in the
MTS instance to be the cost of the shortest path between them in the transition graph G.
Note that a path in G between states S, S′ corresponds to a sequence of transitions from S to
S′, where each edge in the path corresponds to a transition that either adds two requests or
removes two requests. Also, note that any schedule σ, produced by an online MTS algorithm,
corresponds to a path in the metric completion of G and the total transition cost incurred
by σ is simply the total cost of the path. Each task in the MTS instance is associated with a
given timestep in the MPMD-Set problem. The cost vector associated with each task is, for
every state S, the instantaneous delay cost accumulated by the set of requests not in S.

▶ Definition 11 (Ri). We define Ri to be the set of requests that have arrived up to and
including timestep i in the original MPMD-Set instance.

The total cost of a schedule σ = (S0, ..., ST ) can be expressed as follows.

cost(σ) =
T −1∑
i=0

c(Si, Si+1) + fi(Ri \ Si).

By construction, the cost associated with processing the tasks represent the delay cost
incurred by the requests, while the distance cost is represented by the transition costs
associated with moving between states.

4.2 Size-based delay functions admit monotone scheduling algorithms
In this subsection, we prove the existence of an online algorithm that converts an arbitrary
MPMD-Size-MTS solution into a monotone solution, without incurring any extra cost.

▶ Lemma 12. There exists an online algorithm that converts an arbitrary MPMD-Size-MTS
solution into a monotone solution of the same or less cost.

Proof. To prove Lemma 12, we define an online state conversion algorithm (Sensible-ALG)
which, for every state Si in a schedule σ, produced by an arbitrary online scheduling algorithm
(OSA), produces a state S′

i such that the cost of the schedule σ′ = (S′
0, . . . , S′

|σ|) is at most
the cost of the original schedule σ, and σ′ is monotone.

The state conversion algorithm aims to maintain the invariant that |S′
i| ≥ |Si| and the

main property of a monotone schedule, which is that S′
i−1 ⊆ S′

i for every i. At a high
level, it does this by adding requests to its current state when the invariant is violated that
allows it to also move closer to the current state of σ. The algorithm Sensible-ALG uses the
following analog of the symmetric difference of two matchings to augment its current state
in a cost-efficient manner.

▶ Definition 13 ((A, B)-difference graph). Let H be a (multi-)graph with vertex set R, and
A, B be states. The graph H is an (A, B)-difference graph if it is a T -join with T = A △ B:
for every r ∈ R, the degree of r in H is odd if and only if r ∈ A △ B.

For example, one way to obtain an (A, B)-difference graph is by taking a perfect matching
MA on A and a perfect matching MB on B and then taking the symmetric difference of MA

and MB .
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▶ Definition 14 (P -difference graph and realisable difference graphs). Let A, B be states and
P be a transition path between A and B. The P -difference graph diff(P ) is a (multi-)graph
on vertex set R where the multiplicity of the edge (p, q) is equal to the number of transitions
along the path P that adds or removes the {p, q}. An (A, B)-difference graph H is realisable
if it is the P -difference graph for a transition path P between A, B.

Note that if P is a transition path between states A, B, then a P -difference graph is an
(A, B)-difference graph. Moreover, if P is a shortest path between S and S′, then the total
cost of the edges in diff(P ) is exactly equal to c(S, S′). We also note that not all difference
graphs are realisable2

We now characterise the structure of difference graphs that correspond to shortest paths
in the transition graph.

▶ Definition 15 (Canonical difference graphs). Let H be an (A, B)-difference graph. We say
that H is canonical if it can be decomposed into a collection of ℓ := |A △ B|/2 edge-disjoint
paths Q1, . . . , Qℓ between disjoint pairs (pi, qi) of A △ B such that for each i, Qi consists of
a single edge (pi, qi) if either both p, q are in A \ B or both in B \ A, and Qi consists of two
edges (p, s), (s, q) for some other request s if exactly one of p, q is in A \ B and the other in
B \ A.

▶ Proposition 16. If H is a canonical (A, B)-difference graph, then H is realisable.

Proof. We show by induction on ℓ = |A △ B|/2 that there is a transition path P from A to
B. Consider the base case ℓ = 1. Suppose Q1 consists of a single edge (p, q). If p, q ∈ A \ B,
then we can transition directly from A to B by removing p, q; otherwise, we add p, q. Next,
suppose that Q1 consists of two edges (p, s), (s, q). Consider the case that p ∈ A \ B and
q ∈ B \ A. If s ∈ A ∩ B, then we can transition from A to B by first removing p, s and then
adding s, q; otherwise we first add s, q and then remove p, s. The case when q ∈ A \ B and
p ∈ B \ A follows similarly. In all of these cases, we have that H is exactly the P -difference
graph where P is the transition path corresponding to the sequence of transitions used.

Suppose the statement is true for ℓ up to k − 1 and let H be a canonical difference graph
with k edge-disjoint paths. Let A′ be the state after executing the above procedure on Q1
and P1 be the transition path corresponding to the sequence of transitions from A to A′. As
argued above, Q1 is the P1-difference graph. Since H \ Q1 is a canonical (A′, B)-difference
graph with k − 1 edge-disjoint paths, we can apply induction to get a transition path P2
from A′ to B such that H \ Q1 is the P2-difference graph. By concatenating P1 and P2, we
get a transition path P from A to B. Moreover, H is the P -difference graph, as desired. ◀

▶ Lemma 17. Let A, B be states. There exists a shortest path P in the transition graph
between A, B such that diff(P ) is canonical.

Proof. Since diff(P ) is an (A △ B)-join, it contains a collection of ℓ := |A △ B|/2 edge-disjoint
paths Q1, . . . , Qℓ connecting disjoint pairs of requests pi, qi ∈ A △ B.

We now shortcut these paths to produce a canonical (A, B)-difference graph H. In
particular, for each i, if pi, qi ∈ A \ B or pi, qi ∈ B \ A, add the edge (pi, qi) to H ; otherwise,
pi ∈ A \ B and qi ∈ B \ A (or vice versa), there must be an intermediate node si on the path

2 For example, consider the difference graph H consisting of requests p, q, r and edges (p, q) and (q, r).
Observe that H is an ({p, r}, ∅)-difference graph but there is no transition path P from {p, r} to ∅ such
that diff(P ) = H.
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Qi and we add the edges (pi, si), (si, qi). The existence of si is because if Qi only consists of
a single edge (pi, qi) then pi and qi must be both in A \ B or B \ A, otherwise the transition
in P that adds or removes pi, qi is invalid.

By triangle inequality, the total cost of the edges in H is at most that of Q1 ∪ · · · ∪ Qℓ

which in turn is contained in diff(P ). Since H is a canonical (A, B)-difference graph, there
exists a transition path P ′ with diff(P ′) = H. Since c(P ′) is equal to the total cost of the
edges in diff(P ′) = H, we get the lemma. ◀

▶ Proposition 18. Let A, B be states such that |A| = |B| + 2. Let P be a shortest path
in the transition graph between A, B such that diff(P ) is canonical and Q1, . . . , Qℓ be the
corresponding collection of |A △ B|/2 edge-disjoint paths connecting disjoint pairs of A △ B.
Then, one such path Qi is a single edge (p, q) with p, q ∈ A \ B.

This proposition follows from the fact that |A \ B| = |B \ A| + 2 and so there must be a path
Qi connecting p, q ∈ A \ B. By definition of canonical difference graphs, Qi is a single edge
(p, q).

We are now ready to formally define Sensible-ALG.

Description of Sensible-ALG. Our online algorithm takes as input a sequence of states
σ = (S1, . . . , S|σ|) produced by an online scheduling algorithm. We assume that σ satisfies
that for all 0 ≤ i < |σ|−1, Si and Si+1 are neighbours in G. This is without loss of generality:
if the input schedule does not satisfy these properties then we can add intermediate timesteps
and all states on the shortest path between Si and Si+1 such that it satisfies the above
property, and the cost remains the same. When a new state Si arrives, if |Si| ≤ |S′

i−1|, the
algorithm sets S′

i = S′
i−1; otherwise, it computes a shortest transition path P between Si

and S′
i−1 such that diff(P ) is canonical, and sets S′

i = S′
i−1 ∪ {p, q} where p, q ∈ Si \ S′

i−1
and (p, q) is a path in the path decomposition of diff(P ).

Since Sensible-ALG always transitions to a state that is a superset of its previous state,
its solution σ′ is monotone.

Next, we analyse the transition cost of σ′.

▶ Lemma 19.
∑|σ|−1

i=0 c(S′
i−1, S′

i) ≤
∑|σ|−1

i=0 c(Si−1, Si).

Proof. We prove this lemma by introducing the potential ϕi = c(Si, S′
i).

We claim that in each iteration i, the transition cost of σ′ is at most the transition cost
of σ plus the decrease in the potential.

▷ Claim 20. For all i, we have c(S′
i−1, S′

i) ≤ c(Si−1, Si) − (ϕi − ϕi−1).

Proof of Claim 20. By triangle inequality, we have

c(Si, S′
i−1) ≤ c(Si−1, Si) + c(Si−1, S′

i−1). (1)

Next, we will show that

c(S′
i−1, S′

i) ≤ c(Si, S′
i−1) − c(Si, S′

i). (2)

Combining these two inequalities yields the claim.
Observe that Inequality (2) holds when S′

i = S′
i−1. Suppose S′

i ̸= S′
i−1. In this case,

the algorithm computes the shortest path P between Si and S′
i−1 that is canonical and set

S′
i = S′

i−1 ∪ {p, q} where p, q ∈ Si \ S′
i−1 and (p, q) is a path in the path decomposition of

diff(P ). We have that diff(P ) \ (p, q) is a canonical (Si, S′
i)-difference graph and thus, by
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Proposition 16, corresponds to a transition path between Si, S′
i with length c(Si, S′

i−1) −
c(p, q) = c(Si, S′

i−1) − c(S′
i−1, S′

i). Thus, c(Si, S′
i) ≤ c(Si, S′

i−1) − c(S′
i−1, S′

i). Rearranging
this inequality yields Inequality (2). This completes the proof of the claim. ◁

Using Claim 20, we determine the total transition cost incurred by σ′ as follows.

|σ|∑
i=1

c(S′
i−1, S′

i) ≤
|σ|∑
i=1

c(Si−1, Si) −
|σ|∑
i=1

(ϕi − ϕi−1)

=
|σ|∑
i=1

c(Si−1, Si) − ϕ|σ| + ϕ0

≤
|σ|∑
i=1

c(Si−1, Si).

The last inequality holds because ϕ0 = 0 and the potential is non-negative. ◀

The cost of an MPMD-Set-MTS solution consists of the transitions cost, as well as the
processing cost. Since in every iteration i, we have |S′

i| ≥ |Si| and the processing cost of a
state is a monotone non-increasing function of the size of the state, we get that the total
processing cost of σ′ is at most that of σ. Together with Lemma 19, we get that the total
cost of σ′ is at most that of σ. This concludes the proof of Lemma 12. ◀

4.3 Applying MTS Algorithms to MPMD-Set-MTS
In this section, we prove Corollary 3. Consider an instance of MPMD-Set with m requests
in a metric space of n points and the instance of MPMD-Set-MTS created by applying
Theorem 2. Let N be the number of states of the MPMD-Set-MTS instance.

There are two issues that arise when applying MTS algorithms to MPMD-Set-MTS
directly.

4.3.1 Eliminating the Diameter
The first issue is that all known MTS algorithms have a cost bound of the form f(N) ·
cost(OPT ) + D where OPT is the optimal MTS solution and D is the diameter of the MTS
state space. Observe that D is at least the distance between the empty matching and the
max-cost perfect matching, i.e. the cost of the max-cost perfect matching. Unfortunately, the
cost of the max-cost perfect matching can be much larger than that of the optimal solution.
To overcome this, one could restrict the MTS solution to only use states whose distance
from the initial state is at most cost(OPT ). This can be achieved by setting the costs of the
other states to be infinite. This effectively reduces the diameter of the state space to at most
2 · cost(OPT ), and would give us a cost bound of O(f(N)) · cost(OPT ) + 2 · cost(OPT ). The
issue is that, since the MTS tasks arrive in an online fashion, the optimal solution remains
unknown until all tasks have arrived. To address this issue we use the Guess-and-Double
Method, which, maintains a guess of the value of the optimal solution as the tasks are
processed. This guess is used to determine the diameter of the state space used by the
algorithm. When the guess becomes too small, the value of the guess is increased and the
algorithm is simulated on the input that has already been processed, only this time on the
larger state space, to determine the state it would now be in, and processes the new tasks
accordingly. For the benefit of the reader, we give a high level overview of the method below.
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The Guess-and-Double Method. Let R = [r1, r2, ...rT ] be the sequence of tasks given by
the MTS problem. Let OPTt be the cost of the optimal solution for processing the tasks
that have arrived up to and including time t. At any time t we maintain a guess j such that

2j−1 < OPTt ≤ 2j . (3)

When our guess j no longer satisfies (3) we increase it’s value (thus doubling the radius
of the metric space) until it is back within our bounds. Each new guess instantiates a new
phase. At the start of each phase, we restart the MTS algorithm with a superset of the
previous state space, which now consists of all states within distance 2j from the original
start state. Note that by restart we mean that we simulate the MTS algorithm with the new
diameter on all tasks that have arrived so far, and process the new tasks in accordance with
the decisions made by the algorithm with the new diameter.

Our initial guess j satisfies 2j−1 < OPT1 ≤ 2j . We define MTSj to be the MTS algorithm
that operates on the given state space with diameter 2j . Let Rt = [r1, ..., rt] be the sequence
of tasks that have arrived up to and including timestep t. We define MTSj(Rt) to be the
state MTSj would end up in after processing Rt. The Guess-and-Double method, for every
timestep t, maintains a guess j that satisfies (3), and moves to MTSj(Rt).

Algorithm 1 Updating the guess and splitting the tasks into phases.

1 Initialise the first phase.
2 Choose j such that 2j−1 < OPT1 ≤ 2j .
3 for Every timestep t do
4 if 2j−1 < OPTt ≤ 2j then
5 Move to state MTSj(Rt)
6 end
7 else
8 End the previous phase and initialise a new phase.
9 Update the value of j such that 2j−1 < OPTt ≤ 2j .

10 Move to state MTSj(Rt)
11 end
12 end

Note that each time we update the value of our guess, the value of the optimal solution
has at least doubled since we made our last guess.

To analyse the total cost of the resulting schedule we look at two separate costs. The first
is the cost incurred within each phase. This includes the transition costs incurred during the
phase (from moving between states), plus the cost associated with servicing all tasks that
arrived during the phase in the states the algorithm moved through during the phase. We
refer to this cost as the internal phase cost. The second cost consist of the transition costs
incurred in moving between the last state of a phase i, and the first state of the consecutive
phase i + 1. We refer to this cost as the external phase cost.

We start by bounding the internal phase cost. Let cost(MTSj) denote the internal phase
cost of the phase associated with guess j. Because cost(MTSj) can be upper bounded by
the cost the algorithm would have incurred for processing all tasks that arrived prior to and
during the phase associated with guess j, we can bound cost(MTSj) as follows:

cost(MTSj) ≤ (O(f(N)) + 2) · cost(OPTj).
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Therefore, the total internal phase cost incurred over all k phases is

k∑
i=1

ALGi ≤ (O(f(N)) + 2) ·
k∑

i=1
cost(OPTi)

≤ 2 · (O(f(N)) + 2) · cost(OPTk).

Next, we bound the external phase cost. Let Si be the last state of a given phase i,
associated with a guess j, and let S′

i+1 be the first state of phase i + 1, associated with the
next guess j′. We bound c(Si, S′

i+1)3 as follows:
Let S0 be the empty start state.

c(Si, S′
i+1) ≤ c(Si, S0) + c(S′

i+1, S0).

For all consecutive phases i and i + 1, associated with guesses j and j′ respectively, it holds
that

c(Si, S0) ≤ (O(f(N)) + 2) · cost(OPTi)

and

c(S′
i+1, S0) ≤ (O(f(N)) + 2) · cost(OPTi+1).

We thus bound the cost over all k − 1 phase transitions as follows

k−1∑
i=1

c(Si, S′
i+1) ≤ 2 ·

k−1∑
i=1

(O(f(N)) + 2) · cost(OPTi+1)

≤ 4 · (O(f(N)) + 2) · cost(OPTk).

The total cost of the solution produced by the Guess-and-Double method can thus be bounded
by 6 · (O(f(N)) + 2) · cost(OPTk).

We can now use the O(N)-competitive deterministic algorithm of [15] to obtain our
deterministic algorithm for MPMD-Size.

4.3.2 The Need for an Online Embedding
The second issue stems from the fact that the reduction in Theorem 2 creates an MTS
instance where the states are arriving over time. This is because the states correspond to
matchings of requests and the requests are arriving online. This does not pose a problem for
the deterministic O(N)-competitive Work Function Algorithm of [15]. However, we cannot
directly apply the current-best randomised algorithm for MTS of [16] as it pre-computes a
probabilistic embedding of the MTS metric space into a hierarchically separated tree (HST).
Instead, we need to use a probabilistic online embedding into a HST together with the
O(log N)-competitive randomized algorithm for MTS on HSTs of [16]. Using the online
embedding of [24] adds a factor of O(log N log Φ) where Φ is the ratio of the largest distance
to the smallest distance in the MTS state space, i.e. the aspect ratio. However, Φ can be
arbitrarily large. We deal with this by proving that the Abstract Network Design Framework
of [10] can be extended to apply to MTS. For the benefit of the reader, we give a short
overview of the Abstract Network Design Framework.

3 Recall that we denote the transition cost of going from state Si to S′
i+1 by c(Si, S′

i+1).
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The Abstract Network Design Framework. In an instance of abstract network design,
the algorithm is given a connected graph G(V, E) with edge lengths d : E → R+. At each
timestep i, a requests that consists of a set of points in the graph, called terminals, arrive
in an online fashion. The algorithm provides a response Ri = (Gi, Ci), which consists of a
subgraph Gi ⊆ E, and a connectivity list Ci, which is an ordered subset of terminal pairs
from the terminals that have arrived so far, and determines what will become (and remain)
connected from this timestep onwards. The algorithm is given, at each timestep, a feasibility
function Fi : (C1, ..., Ci) → {0, 1} that maps a sequence of connectivity lists to either 0
(infeasible) or 1 (feasible). A solution Si, which consists of a sequence of responses for every
time step up to and including timestep i, is feasible if Fi(C1, ..., Ci) = 1 and all pairs in Cj

are connected in all Gi for all i ≥ j. To determine the cost of a solution to the first i requests
Si, the framework uses a load function ρi : 2{1,...,i} → R+, which takes as input the sequence
of timesteps in which the edge was used, and outputs a corresponding multiplier to the cost
of an edge d(e). It aims to model how the cost of using an edge grows as the edge is used
multiple times. The function must be subadditive, monotone non-decreasing, and satisfy
ρi(I) = 0 if and only if I = ∅. The total cost of a solution Si is defined as follows.

cost(Si) =
∑
e∈E

d(e) · ρ({j ≤ i : e ∈ Gj})

Extending the Abstract Network Design Framework. Though we can express the transition
cost of an instance of general MTS using this framework, we cannot express the cost vectors
associated with processing the tasks in MTS in the current state of the framework. In order
to address this issue, we propose the following alterations to generalise the framework.

We replace the feasibility function with a function F ′
i : (C1, ..., Ci) → R+, where

F ′
i (C1, ..., Ci) is the processing cost of the algorithm during timestep i if the solution

Si = ((G1, C1), . . . , (Gi, Ci)) is feasible, and ∞ otherwise.
We now re-define the cost of a solution to the first i requests Si to incorporate the total

processing cost incurred by the algorithm.

cost(Si) =
∑
e∈E

d(e) · ρ({j ≤ i : e ∈ Gj} +
i∑

l=1
F ′(C1, . . . , Cl)

Since the processing cost provided to the algorithm is independent of the metric space, it
follows that the processing cost remains unaffected by the online embedding. It therefore
does not affect the overhead due to the online embedding.

Note that the extension of this framework means it can now be used to model online
problems with delay, where the delay cost can be modelled as the processing cost.

Expressing MTS in the Abstract Network Design Framework. It remains to formulate the
general MTS problem in the Extended Abstract Network Design Framework defined above.

We define the terminal set of the ith request to be the set of states that have arrived so
far. We define the cost of an edge d((u, v)) to be the transition cost between states u, v. Let
Ti be the cost vector associated with processing task i, and Ti(w) be the cost of processing
task i in state w. Let v be the last terminal in Ci. The extended feasibility function Fi is
defined by Fi(C1, . . . , Ci) = Ti(v) if there is only a single ordered pair in each Cj for all j ≤ i

and the sequence of (C1, . . . , Ci) is a valid path. The load function is simply the cardinality
function because we pay the transition cost associated with the edge each time we transition
to a different state.
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Min-operator. Bartal et al. [10] show that if the problem can be captured by the Abstract
Network Design Framework and admits a min-operator, it is possible to reduce the overhead
due to the online embedding to O(log3 N).

▶ Definition 21 (Min-operator). An algorithm admits a min-operator with factor µ ≥ 1 if
there exists a competitive algorithm4 for the problem, and for any two deterministic online
algorithms A and B5, there exists a third online deterministic algorithm C such that the
cost of C satisfies cost(C) ≤ µ · min{cost(A), cost(B)}, where cost(A) and cost(B) are the
respective costs of algorithms A and B. If either algorithms A or B are randomised, the
expected cost of C must satisfy E[cost(C)] ≤ µ · min{E[cost(A)], E[cost(B)]}.

We have shown that the results by Bartal et al. [10] also hold for the extended Abstract
Network Design Framework. Since the MTS problem in general admits a min-operator [2],
using the framework of [10] allows us to reduce the overhead due to the online embedding to
O(log3 N) for an overall competitive ratio of O(log4 N).
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Abstract
In 1982 Papadimitriou and Yannakakis introduced the Exact Matching problem, in which given
a red and blue edge-colored graph G and an integer k one has to decide whether there exists
a perfect matching in G with exactly k red edges. Even though a randomized polynomial-time
algorithm for this problem was quickly found a few years later, it is still unknown today whether
a deterministic polynomial-time algorithm exists. This makes the Exact Matching problem an
important candidate to test the RP=P hypothesis.

In this paper we focus on approximating Exact Matching. While there exists a simple
algorithm that computes in deterministic polynomial-time an almost perfect matching with exactly
k red edges, not a lot of work focuses on computing perfect matchings with almost k red edges. In
fact such an algorithm for bipartite graphs running in deterministic polynomial-time was published
only recently (STACS’23). It outputs a perfect matching with k′ red edges with the guarantee that
0.5k ≤ k′ ≤ 1.5k. In the present paper we aim at approximating the number of red edges without
exceeding the limit of k red edges. We construct a deterministic polynomial-time algorithm, which
on bipartite graphs computes a perfect matching with k′ red edges such that k

3 ≤ k′ ≤ k.
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1 Introduction

In the Exact Matching problem (denoted as EM) one is given a graph G whose edges
are colored in red or blue and an integer k and has to decide whether there exists a perfect
matching M in G containing exactly k red edges. This problem was first introduced in 1982
by Papadimitriou and Yannakakis [20] who conjectured it to be NP-complete. However a
few years later, Mulmuley et al. [19] showed that the problem can be solved in randomized
polynomial-time, making it a member of the class RP. This makes it unlikely to be NP-hard.
In fact, while it is commonly believed that RP=P, the proof of this statement is a major
open problem in complexity theory. Since EM is contained in RP but a deterministic
polynomial-time algorithm for it is not known, the problem is a good candidate for testing
the RP=P hypothesis. Actually Mulmuley et al. [19] even showed that EM is contained in
RNC, which is the class of decision problems that can be solved by a polylogarithmic-time
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algorithm using polynomially many parallel processors while having access to randomness.
As studied in [22], derandomizing the perfect matching problem from this complexity class
is also a big open problem. This makes EM even more intriguing as randomness allows it
to be efficiently parallelizable but we don’t even know how to solve it sequentially without
randomness.

Due to this, numerous works cite EM as an open problem. This includes the above
mentioned seminal work on the parallel computation complexity of the matching problem [22],
planarizing gadgets for perfect matchings [14], multicriteria optimization [13], matroid
intersection [5], DNA sequencing [4], binary linear equation systems with small hamming
weight [2], recoverable robust assignment [10] as well as more general constrained matching
problems [3, 17, 21, 18]. Progress in finding deterministic algorithms for EM has only been
made for very restricted classes of graphs, thus illustrating the difficulty of the problem. There
exists a deterministic polynomial-time algorithm for EM in planar graphs and more generally
in K3,3-minor free graphs [25], as well as for graphs of bounded genus [11]. Additionally,
standard dynamic programming techniques on the tree decomposition of the graph can be
used to solve EM on graphs of bounded treewidth [7, 23]. Contrary to those classes of sparse
graphs, EM on dense graphs seems to be harder to solve. At least 4 articles study solely
complete and complete bipartite graphs [16, 12, 24, 15]. More recently those results were
generalized in [8] with a polynomial-time algorithm solving EM for constant independence
number1 α and constant bipartite independence number2 β. These algorithm have XP-time,
i.e. they run in time O(g(α)nf(α)) and O(g(β)nf(β)). This was further improved for bipartite
graphs in [9] where the authors showed an FPT algorithm parameterized by the bipartite
independence number β solving EM on bipartite graphs.

Approximating EM

Given the unknown complexity status of EM, it is natural to try approximating it. In
order to approximate EM, we need to allow for non-optimal solutions. Here two directions
can be taken: either we consider non-perfect matchings, or we consider perfect matchings
with not exactly k red edges. Yuster [25] took the first approach and showed an algorithm
that computes an almost perfect exact matching (a matching with exactly k red edges and
either n

2 or n
2 − 1 total edges3). This is as close as possible for this type of approximation.

However, there are two things to consider with Yuster’s algorithm: First, the algorithm itself
is very simple. Secondly, as long as a trivial condition on k is met, such an almost perfect
exact matching always exists. It is surprising that this approximation is achieved by such
simple methods in such generality. For the closely related budgeted matching problem, more
sophisticated methods have been used recently to achieve a PTAS [3] and efficient PTAS [1].
These methods also do not guarantee to return a perfect matching.

The alternative is to find approximations which always return a perfect matching, but with
possibly the wrong number of red edges. These kinds of approximations seem considerably
more difficult to tackle. It is puzzling how little is known about this type of approximation,
while the other type of approximation admits much stronger results. Very recently, El

1 The independence number of a graph G is defined as the largest number α such that G contains an
independent set of size α.

2 The bipartite independence number of a bipartite graph G is defined as the largest number β such that
G contains a balanced independent set of size 2β, i.e. an independent set using exactly β vertices from
each partition.

3 n is the number of vertices in the graph.
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Maalouly [7] presented a polynomial-time algorithm which for bipartite graphs outputs a
perfect matching containing k′ red edges with 0.5k ≤ k′ ≤ 1.5k. To the best of our knowledge,
this is the only result in this direction, despite the original EM problem being from 1982.
Moreover, note that this algorithm can return both a perfect matching with too many or
too few red edges. Hence El Maalouly’s algorithm is not an approximation algorithm in the
classical sense, as it only guarantees a two-sided, but not a one-sided, approximation.

Our contribution

We consider the problem of approximating EM, such that a perfect matching is always
returned, and such that the approximation is one-sided. We show the first positive result of
this kind. Formally, we consider the following optimization variant of EM:

Exact Matching Optimization (EM-opt)
Input: A graph G whose edges are colored red or blue; and an integer k.
Task: Maximize |R(M)| subject to the constraint that M is a perfect matching in G and

|R(M)| ≤ k, where R(M) is the set of red edges in M .

We consider bipartite graphs and prove:

▶ Theorem 1. There exists a deterministic polynomial-time 3-approximation for EM-opt
in bipartite graphs.

We remark that there are three kinds of input instances to EM-opt : First, instances
which are also YES-instances of EM, i.e. a perfect matching with k red edges exists. For
those instances, our algorithm returns a perfect matching with k′ red edges and 1

3 k ≤ k′ ≤ k.
Second, there are instances, where EM-opt is infeasible, in the sense that all perfect matchings
have k + 1 or more red edges. For such instances, our algorithm returns “infeasible”. Finally,
there are instances which are feasible, but the optimal solution to EM-opt has k∗ red edges
with k∗ < k. For such instances, our algorithm returns a perfect matching with k′ red edges
and 1

3 k∗ ≤ k′ ≤ k∗.
The main idea behind our approximation algorithm is to start with an initial perfect

matching, and then repeatedly try a small improvement step using dynamic programming.
Whenever a small improvement step is not possible, we prove that the graph is “rigid” in
a certain sense. We can prove that as a result of this rigidity, it is a good idea to guess a
single edge e and to enforce that this edge e is contained in the solution matching. This
paper contains concepts and lemmas, which make these ideas formal and may help for the
development of future approximation algorithms. Our new ideas are based on a geometric
intuition about the cycles appearing in such a “rigid” graph.

2 Preliminaries

2.1 Definitions and notations

All graphs considered are simple. Given a graph G = (V, E), a perfect matching M of G is a
subset of E such that every vertex in V is adjacent to exactly one edge in M . We introduce
two tools related to M : the weight function wM and the weighted directed graph GM . These
tools were first introduced in [8, 7]. They can be used to reason about EM, as is explained
further below.

APPROX/RANDOM 2023
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▶ Definition (Weight function wM ). Given a graph G = (V, E) whose edges are colored red
or blue and a perfect matching M on G, we define the weight function wM on the edges of G

as follows:

wM (e) =


0 if e is a blue edge
−1 if e ∈M is a red edge
+1 if e /∈M is a red edge

▶ Definition (Oriented and edge-weighted graph GM ). Given a bipartite graph G = (A⊔B, E)
whose edges are colored red or blue and a perfect matching M on G, the graph GM is the
oriented and edge-weighted graph such that:

the vertex set of GM is the vertex set A ⊔B of G;
the edge set of GM is the edge set of G such that edges in M are oriented from A to B

and edges not in M are oriented from B to A;
edges in GM are weighted according to the weight function wM .

For ease of notation, we identify subgraphs of G and GM with their edge sets. Any
reference to their vertices will be made explicit. Since every edge in GM has an undirected
unweighted version in G, every subgraph HM in GM can be associated to the subgraph H in
G of corresponding undirected and unweighted edge set, and vice versa. With a slight abuse of
notation, we therefore sometimes do not differentiate H of HM and denote them by the same
object. If E1 and E2 are two edge sets, then we denote by E1∆E2 := (E1 \ E2) ∪ (E2 \ E1)
their symmetric difference. Let H be a subgraph of GM . We use the following notations:

R(H) denotes the set of red edges in H.
E+(H) denotes the set of positive edges in H (i.e. the red edges in H not contained in
M).
E−(H) denotes the set of negative edges in H (i.e. the red edges in H contained in M).
wM (H) is the weight of H with respect to the edge weight function wM , i.e. wM (H) =
|E+(H)| − |E−(H)|.

Unless stated otherwise, all considered cycles and paths in GM are directed. Finally if C is a
directed cycle in GM , and P1 ⊆ C and P2 ⊆ C are sub-paths on C, we denote by C[P1, P2]
(respectively C(P1, P2)) the sub-path in C from P1 to P2 included (resp. excluded). If
wM (C) > 0 then we call C a positive cycle and if wM (C) ≤ 0 we call C a non-positive cycle.
A walk in a directed graph is a sequence of edges (e1, . . . , et) such that the end vertex of ei

is the start vertex of ei+1 for i = 1, . . . , t− 1. In contrast to a path, a walk may visit vertices
and edges twice. A walk is closed, if its start and end vertex are equal.

2.2 Observations on GM

In this subsection, we explain some simple observations, which we use later to reason about
our approximation algorithm. Let G be a bipartite graph and M be a perfect matching of G.
A cycle in G is said to be M-alternating if for any two adjacent edges in the cycle, one of
them is in M and the other is not. It is a well-known fact that if M and M ′ are two perfect
matchings, then M∆M ′ is a set of vertex-disjoint cycles that are both M -alternating and
M ′-alternating. We now make the following important observations on the bipartite graphs
G and GM and the weight function wM .

▶ Observation 2. A cycle C in G is M-alternating if and only if the corresponding cycle
CM in GM is directed.

Proof. This follows directly from the definition of GM . ◀
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▶ Observation 3. Let C be a directed cycle in GM . Then M ′ := M∆C is a perfect matching
whose number of red edges is |R(M ′)| = |R(M)|+ wM (C).

Proof. Since C is M -alternating, it is a well-known fact that M ′ is again a perfect matching.
The equation |R(M ′)| = |R(M)|+ wM (C), follows directly from the definition of wM . If an
edge in C is blue, it does not change the amount of red edges of M . If an edge in C is red, it
changes the number of red edges of M by ±1, depending on whether or not it is in M . ◀

▶ Observation 4. Let C1 and C2 be two directed cycles in GM that intersect at a vertex v.
Then C1 and C2 also intersect on an edge adjacent to v.

Proof. By Observation 2, C1 and C2 are M -alternating so they both contain exactly one
adjacent edge to v that is also contained in M . Since M is a perfect matching, there exists a
single adjacent edge to v in M . Thus C1 and C2 both contain this edge. ◀

2.3 Previous ideas
The first part of our algorithm for Theorem 1 presented in Section 3 is strongly inspired by
the algorithm in [7, Theorem 1] that computes a perfect matching with between 0.5k and
1.5k red edges. We summarize the main ideas here.

One can compute a perfect matching of minimum number of red edges in polynomial
time by using a maximum weight perfect matching algorithm (e.g. [6]) on the graph G where
red edges have weight 0 and blue edges have weight +1. The idea in [7] is to start with a
perfect matching of minimum number of red edges M . If 0.5k ≤ |R(M)| ≤ 1.5k then we are
already done and can output M . Otherwise |R(M)| < 0.5k (it cannot have more than k

red edges by minimality). In that case the algorithm iteratively improves M using positive
cycles. Indeed, assume for a moment that we could find a directed cycle C in GM such that
both wM (C) > 0 and |E+(C)| ≤ k, then the perfect matching M ′ := M∆C is such that

|R(M)| < |R(M ′)| = |R(M)|+ wM (C)
≤ |R(M)|+ |E+(C)| < 0.5k + k = 1.5k.

Thus we can iteratively compute such cycles C and replace M by M∆C. We make true
progress every time until 0.5k ≤ |R(M)| ≤ 1.5k.

An important observation proven in [7] is that we can determine in polynomial time if
such a cycle exists. We recall this result in Proposition 5.

▶ Proposition 5 (Adapted from [7, Proposition 11]). Let G := (V, E) be an edge-weighted
directed graph and t ∈ N be a parameter. There exists a deterministic polynomial-time
algorithm that, given G, determines whether or not there exists a directed cycle C in G with
w(C) > 0 and |E+(C)| ≤ t. If such a cycle C exists then the algorithm also outputs a cycle
C ′ with the same properties as C (i.e. w(C ′) > 0 and |E+(C ′)| ≤ t).

The idea of Proposition 5 is to flip the sign of all weights so that we are looking for a
negative cycle. Those can be found by shortest path algorithms: for example the Bellman-
Ford algorithm which relies on a dynamic program (DP). Each entry of this DP contains
the shortest distance between two vertices. The DP can be adapted so that it contains an
additional budget constraint corresponding to the number of negative edges (i.e. positive
before we flip the sign of the weight) a path is allowed to use. We also add in the entry of
the DP the last edge used in the path. This way, when looking at the entries corresponding
to the shortest path from a vertex v to the same vertex v we are able to determine whether
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18:6 An Approximation Algorithm for the Exact Matching Problem in Bipartite Graphs

or not there exists a negative cycle that uses no more than t negative edges (i.e. positive
before we flip the sign of the weight). If it is the case then the algorithm can output such a
cycle. We redirect the reader for a detailed proof of Proposition 11 in [7, Section 3.1]. We
finally remark that the proof in [7] is completed by showing that as long as M does not have
between 0.5k and 1.5k red edges, a cycle C with wM (C) > 0 and |E+(C)| ≤ k always exists.
However, to get a one-sided approximation, we need to guarantee the existence of a cycle C

with wM (C) > 0 and |E+(C)| ≤ k − |R(M)|. This might not be possible for certain graphs
if |R(M)| > 0. This means that the above result is not enough for our purpose, as it only
leads to a two-sided approximation.

2.4 Assumptions
In order to reduce the technical details needed to present our 3-approximation algorithm
of EM-opt, we show in this subsection that several simplifying assumptions can be made
about the input instance.

▷ Claim 6. We can assume without loss of generality that the input instance to EM-opt is
also a YES-instance of EM, i.e. there exists a perfect matching with exactly k red edges.

Proof. Fix an instance ⟨G, k⟩ of EM-opt. If the instance is feasible, let k∗ ≤ k be the number
of red edges in an optimal solution of EM-opt. Suppose A is an algorithm for EM-opt,
which given an instance ⟨G, k⟩ returns a 3-approximate solution to EM-opt if k = k∗, and
returns some arbitrary perfect matching otherwise. We devise an algorithm A′, which is a
3-approximation of EM-opt for the input ⟨G, k⟩. First, A′ computes in polynomial time
the perfect matchings Mmin and Mmax with the minimum and maximum number of red
edges. If it is not the case that |R(Mmin)| ≤ k ≤ |R(Mmax)|, then A′ returns “infeasible”.
Afterwards, A′ calls A as a subroutine for all k′ ∈ {|R(Mmin)|, . . . , k} and receives a perfect
matching Mk′ each time. Finally, A′ returns the best among all the matchings Mk′ that
are feasible for EM-opt. It is easy to see that A′ is a correct 3-approximation, since there
will be an iteration with k′ = k∗. If A has running time O(f), then A′ has running time
O(nf + fMat), where fMat denotes the time to deterministically compute a maximum weight
perfect matching. ◁

▷ Claim 7. We can assume without loss of generality that for every edge e ∈ E there exists
a perfect matching of G containing e.

Proof. If an edge is not contained in any perfect matching, it is irrelevant and it can be
deleted. We can therefore pre-process the graph and check for each edge in time O(f ′

Mat) if
it is irrelevant. Here f ′

Mat denotes the time to deterministically check if a graph has a perfect
matching, e.g. by running a maximum weight perfect matching algorithm. ◁

3 A 3-approximation of Exact Matching

In this section we are proving our main result, Theorem 1. Let G = (A⊔B, E) be a red-blue
edge-colored bipartite graph and k be an integer, such that they together form an instance
of EM-opt. We work under the assumptions of Section 2.4. In Algorithm 1 we show an
algorithm that given G and k outputs a perfect matching containing between 1

3 k and k red
edges. Let us discuss the general ideas before formally analysing the algorithm.

We reuse the idea from [7] to iteratively improve a perfect matching M by a small amount
until it has the right amount of red edges. This improvement is done by finding positive
cycles in GM with no more than 2

3 k positive edges (using the algorithm of Proposition 5). As
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Algorithm 1 The 3-approximation algorithm for EM-opt of Theorem 1.

Input: A bipartite graph G = (A ⊔B, E) and an integer k ≥ 0, such that they fulfill
the assumptions from Section 2.4.

Output: M , a perfect matching such that 1
3 k ≤ |R(M)| ≤ k.

1 Compute a perfect matching M of minimal number of red edges.
2 If |R(M)| ≥ 1

3 k then output M .
3 Otherwise compute a cycle C in GM with wM (C) > 0 and |E+(C)| ≤ 2

3 k, or
determine that no such cycle exists.

4 If such a cycle C exists, set M ←M∆C and go to Step 2.
5 Otherwise there are no positive cycles with |E+(C)| ≤ 2

3 k in GM . For every red edge
e ∈ R(G) do the following:

6 Compute the perfect matching Me containing e of minimal number of red edges.
7 If 1

3 k ≤ |R(Me)| ≤ k then output Me.
8 Output ⊥

opposed to the algorithm in [7], we do not want to “overshoot” the number of red edges, i.e.
the obtained perfect matching cannot have more than k red edges. We therefore constrain
the cycle to have |E+(C)| ≤ 2

3 k. This implies |R(M∆C)| ≤ k. However the issue with that
approach is that unlike in [7], we cannot guarantee that such a cycle always exists. So what
do we do if we are not able find a good cycle? The answer to this question turns out to be
the key insight behind our algorithm. For every edge e we define

Me ∈ arg min{|R(M)| : M is a perfect matching with e ∈M}

to be a perfect matching of G containing e with minimal number of red edges. Note that by
Claim 7, Me is properly defined. We also note that Me can be computed in polynomial time.

We claim that in the case that no good cycle is found, the set of matchings Me “magically”
fixes our problems. Specifically, we claim that at least one of the matchings Me is a sufficient
approximation. The rough intuition behind this is the following. The fact that no good
cycle exists means that the graph does not contain small substructures, which can be used
to modify the current solution M towards a better approximation. In a sense, the graph is
rigid. This rigidity means that maybe there could exist some edge e in the optimal solution
M∗, such that every perfect matching including e is already quite similar to M∗. Our
approximation algorithm simply tries to guess this edge e. After proving Lemma 8, the
remaining part of the paper is devoted to quantify and prove this structural statement.

▶ Lemma 8. Algorithm 1 runs in polynomial time and either outputs ⊥ or a correct 3-
approximation of EM-opt.

Proof. Note that the first inner loop is executed at most O(|V |) times, since wM (C) > 0 in
each iteration, thus |R(M)| is monotonously increasing. Furthermore, every iteration of the
loop is executed in polynomial time due to Proposition 5. The second loop is executed at
most O(|E|) times. The matching in Step 1, as well as the matchings Me can be computed
in polynomial time using a minimum weight perfect matching algorithm. In total, this
takes polynomial time. If the algorithm does not output ⊥, then it outputs either in Step 7
(which is obviously a 3-approximation), or in Step 2, which is a 3-approximation because
k/3 ≤ |R(M∆C)| = |R(M)|+ wM (C) ≤ |R(M)|+ |E+(C)| ≤ k. ◀

All it remains to prove is that Algorithm 1 never outputs ⊥. This happens if the conditions
in Step 2 and in Step 7 are not satisfied. In that regard, define the following critical tuple.
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▶ Definition (Critical tuple). Let (G, k, M∗, M) be such that G is a bipartite graph whose
edges are colored red or blue, k ≥ 0 is an integer and M∗ and M are perfect matchings of G.
The tuple (G, k, M∗, M) is said to be critical if:

All the assumptions in Section 2.4 hold.
M∗ is a perfect matching of G with exactly k red edges.
|R(M)| < 1

3 k.
If C is a directed cycle in GM such that wM (C) > 0 then |E+(C)| > 2

3 k.
For every edge e ∈ R(M∗ \M) we have |R(Me)| < 1

3 k.

Note that if Algorithm 1 outputs ⊥, we must have a critcal tuple. Indeed, for every edge
e ∈ R(M∗ \M), by minimality of Me, we have |R(Me)| ≤ k. So if the algorithm returns ⊥,
then it must be the case that |R(Me)| < k/3 for all e ∈ R(G) so in particular also for all
e ∈ R(M∗ \M). We will prove the following: critical tuples do not exist. This means that
Algorithm 1 never outputs ⊥ and is therefore a correct 3-approximation algorithm.

▶ Lemma 9. A tuple (G, k, M∗, M) can never be critical.

3.1 Overview of the main proof
In this section, we explain the idea behind the proof of our main lemma, Lemma 9. From
this point onward, consider a fixed tuple (G, k, M∗, M). We prove Lemma 9 by contradiction
and therefore assume that (G, k, M∗, M) is a critical tuple. The main strategy of the proof
is to find a set of cycles with contradictory properties. Such a set of cycles is called a target
set. We first introduce a special cycle, which we call the cycle C+.

▶ Definition (Cycle C+). C+ is the positive cycle in GM such that C+ ⊆M∆M∗.

We claim that C+ is well-defined and unique. Indeed, since |R(M)| < |R(M∗)|, the set of
cycles M∆M∗ has to contain at least one positive cycle. Furthermore, there are at most
k = |R(M∗)| positive edges in M∆M∗ and by the definition of a critical tuple, every positive
cycle contains at least 2

3 k of them. Hence there is no second positive cycle in M∆M∗.
We list the following simple observations. The last two state that there only exist two

different types of cycles in a critical tuple. These two types can be distinguished by examining
the number of positive edges in a cycle C. We will repeatedly make use of this key observation.

▶ Observation 10. Let (G, k, M∗, M) be a critical tuple. Then the following properties hold.
1. |E−(GM )| < 1

3 k.
2. 2

3 k < |E+(C+)| ≤ k

3. If C is a directed cycle in GM then wM (C) > 0 if and only if |E+(C)| > 2
3 k.

4. If C is a directed cycle in GM then wM (C) ≤ 0 if and only if |E+(C)| < 1
3 k.

Proof. (G, k, M∗, M) is a critical tuple so in particular |R(M)| < 1
3 k, thus the graph GM

contains at most 1
3 k negative edges. As a consequence, if C is a non-positive cycle then

|E+(C)| ≤ |E−(C)| and thus |E+(C)| < 1
3 k. Furthermore, in a critical tuple every positive

cycle contains at least 2
3 k positive edges, hence the third observation follows directly. In

particular, since C+ is a positive cycle, we have 2
3 k < |E+(C+)|. Finally the upper bound

on |E+(C+)| comes from the fact that positive edges in M∆M∗ are red edges in M∗, hence
M∆M∗ contains at most k = |R(M∗)| positive edges. In particualr |E+(C+)| ≤ k. ◀

▶ Definition (Target set). We call a set C of non-positive cycles in GM a target set if:
1. ∀e ∈ E+(C+) there exists a cycle in C containing e. (Condition 1)
2. ∀C ∈ C, C ∩ C+ is a single path. (Condition 2)
3. ∀e ∈ E−(GM ) there are at most two cycles in C containing e. (Condition 3)
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The following Lemma 11 shows that in order to prove our main lemma, Lemma 9, it suffices
to find a target set.

▶ Lemma 11. Let (G, k, M∗, M) be a critical tuple and C be a target set in GM . Then a
contradiction arises.

Proof. We can lower bound the sum of the weights of cycles in C.∑
C∈C

wM (C) ≥ 1 · |E+(C+)| − 2 · |E−(GM )|

>
2
3k − 2 · 1

3k (by Observation 10)

= 0

However
∑

C∈C wM (C) ≤ 0 since all cycles C ∈ C have non-positive weight wM (C) ≤ 0, so
this is a contradiction. ◀

Note that Condition 2 is not needed in the proof of Lemma 11. However Condition 2 will be
useful to achieve Condition 3.

The rest of the paper is structured as follows: First, we construct a set C of non-positive
cycles satisfying only Condition 1. This is explained in Section 3.2. After that, we explain in
Section 3.3 how to modify the initial set to additionally satisfy Condition 2. In Section 3.4
we show how to modify this set again to also satisfy Condition 3. Finally, the proof of
Lemma 9 is summarized in Section 3.5. To help visualize the reasonings on GM we provide
various illustrations. We focus only on the orientation of paths and cycles and not on actual
vertices and edges of GM so we omit them and draw paths and cycles using simple lines
whose orientation is indicated by an arrow. Individual edges and vertices will be indicated in
red.

3.2 Obtaining an initial set of cycles satisfying Condition 1
We explain how to obtain an initial set of non-positive cycles in GM which satisfies only
Condition 1. To this end, for a fixed critical tuple (G, k, M∗, M) consider the following
definition:

▶ Definition (Cycle Ce). Let e ∈ E+(C+). We define Ce ⊆M∆Me as the unique directed
cycle in M∆Me which contains the edge e.

Observe that Ce is well-defined, since e ∈ M∆Me. We claim that for all possible
e ∈ E+(C+) we have wM (Ce) ≤ 0. Indeed, positive edges in M∆Me are red edges in Me.
By the definition of a critical tuple and E+(C+) ⊆ R(M∗ \M), we have |R(Me)| < 1

3 k, thus
|E+(Ce)| < 1

3 k. Hence by Observation 10, Ce has non-positive weight in GM . As a direct
consequence, the set of cycles {Ce : e ∈ E+(C+)} is a set of non-positive cycles satisfying
Condition 1.

3.3 Modifying the set to satisfy Condition 2
We now show how to modify the initial set {Ce : e ∈ E+(C+)} into a set of non-positive cycles
such that both Conditions 1 and 2 hold. Consider a fixed critical tuple (G, k, M∗, M). If every
cycle Ce intersects C+ in a single path, then we would directly have Condition 2. However,
in reality the interaction between Ce and C+ can be a great amount more complicated.
One example is depicted in Figure 1. In order to analyse the interaction between these two
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cycles, we define multiple notions around them. First, we decompose the cycle Ce into jumps
and interjumps where jumps are the sub-paths of Ce outside of C+ and interjumps are the
sub-paths of Ce intersecting C+ between jumps.

P3

Q3

C+

e

Ce

P2

Q1

Q2

P4

Q4

P1

Figure 1 Decomposition of the cycle Ce (in blue) into 4 jumps Q1, Q2, Q3, Q4 and 4 interjumps
P1, P2, P3, P4. The first interjump P1 contains the edge e.

▶ Definition (Jumps and interjumps). Let e ∈ E+(C+). A jump of Ce is a sub-path Q ⊆ Ce

such that its endpoints are vertices of C+ but none of its inner vertices are in C+. Note that
Q ⊆ GM \ C+. An interjump of Ce is a sub-path of P ⊆ Ce contained in C+ such that its
endpoints are the endpoints of jumps of Ce. Note that P ⊆ C+.

▶ Definition (Decomposition of Ce into alternating jumps and interjumps). Let e ∈ E+(C+).
Decompose Ce into jumps Q1, . . . , Qℓ and interjumps P1, . . . Pℓ such that e ∈ P1 and Ce is
the concatenation of alternating jumps and interjumps:

Ce = P1Q1 . . . PjQj . . . PℓQℓ

Let Je = {Q1, Q2, . . . , Qℓ} be the set of jumps in Ce and Ie = {P1, P2, . . . , Pℓ} be the set of
interjumps in Ce.

Note that every jump in Ce must be followed by an interjump since all cycles considered are
M -alternating cycles which cannot intersect in a single vertex (by Observation 4). Figure 1
shows a cycle Ce and its decomposition into jumps and interjumps.

To understand the interplay between Ce and C+, we introduce the notion of forward
and backward motion based on a visual intuition. Consider the directed cycle C+ and
take the convention of always drawing it with an anticlockwise orientation. We say that
moving along C+ in the direction of its directed edges equals to an anticlockwise or forward
motion, while moving on the cycle C+ against the direction of its directed edges equals to
a clockwise or backward motion. We also want to interpret the direction a jump Q ∈ Je is
taking. However since Q is not a path in C+ there is no obvious rule whether it should be
seen as moving forward or backward. In fact, Figure 2 shows that the same jump can in
principle be interpreted either as following a forward or a backward motion. We introduce
the following rule which classifies all jumps as either a forward or a backward jump. We
follow the convention to draw forward jumps outside of C+, while we draw backward jumps
inside of C+. With this interpretation, in Figure 1 the jumps Q1, Q2 and Q4 are forward
and the jump Q3 is backward.
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C+

x

y

Q

CQ C+

x

y

Q C+

x

y

Q

Figure 2 Consider a jump Q (blue) from the vertex x to the vertex y in C+. Depending on the
weight of CQ (yellow highlight), the jump Q is either interpreted as following a forward (middle) or
a backward (right) motion.

▶ Definition (Cycle CQ and forward/backward jump). Let e ∈ E+(C+) and let Q be a jump
of Ce. We define CQ to be the unique directed cycle in the graph C+∪Q containing Q. Then:

if wM (CQ) > 0, we call Q a forward jump;
if wM (CQ) ≤ 0, we call Q a backward jump.

Let J f
e be the set of forward jumps in Ce and J b

e the set of backward jumps in Ce.

Observe that this is a valid definition, since the cycle CQ is unique and independent of
whether Q is a forward or a backward jump. We give a short informal explanation of why
we use the weight of CQ to distinguish between forward and backward jumps. A positive
cycle must contain a large number of positive edges (at least 2

3 k many, by Observation 10)
and most of the positive edges of CQ are contained in C+ (since Ce has at most 1

3 k positive
edges). So for a forward jump Qf , the cycle CQf

must have a large intersection with C+ to
be positive, i.e. Qf only skips a small portion of the cycle. Similarly, for a backward jump
Qb, the cycle CQb

must be a non-positive cycle so it cannot contain too many positive edges
and therefore cannot intersect a large part of C+.

Finally, we introduce the notion of the reach of a jump Q, which is intuitively the sub-path
of C+ the jump Q is “jumping over”. Figure 3 illustrates the reach of a forward jump and a
backward jump. We say that the jump Q covers the edges in the reach of Q.

▶ Definition (Reach of a jump). Let e ∈ E+(C+) and let Q be a jump of Ce.
If Q is a forward jump: the reach of Q is the sub-path of C+ defined as r(Q) := C+ \CQ.
If Q is a backward jump: the reach of Q is the sub-path of C+ defined as r(Q) := CQ \Q.

Qf

r(Qf )

C+

CQf

e

Qb

r(Qb)

C+

CQb

e

Figure 3 A forward jump Qf and a backward jump Qb (in blue). The respective reaches r(Qf )
and r(Qb) of the jumps are colored in purple and the cycles CQf and CQb are highlighted in yellow.
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We also extend the definition of the reach of a jump to the reach of Ce. Intuitively
the reach of Ce is the union of sub-paths of C+ the cycle Ce is jumping over. Here we
differentiate between the sub-paths that are jumped over using forward motions (forward
jumps or interjumps) and backward motions (backward jumps).

▶ Definition (Reach of Ce). Let e ∈ E+(C+). The forward reach rf (Ce) of Ce is defined as
the union of every interjump of Ce and the reach of every forward jump of Ce.

rf (Ce) :=
⋃

Q∈J f
e

r(Q) ∪
⋃

P ∈Ie

P

The backward reach rb(Ce) of Ce is defined as the union of the reaches of every backward
jump of Ce.

rb(Ce) :=
⋃

Q∈J b
e

r(Q)

The reach r(Ce) of Ce is defined as the union of the forward reach and the backward reach
of Ce.

r(Ce) := rf (Ce) ∪ rb(Ce)

All above definitions still hold when replacing Ce by a sub-path P of Ce. Since the
reach of a truncated jump is undefined, we will only consider sub-paths which endpoints
are vertices of C+. If P contains a sub-path of an interjump then the forward reach of P
contains this sub-path and not the entire interjump.

With those newly defined notions, we note that to achieve Condition 2, it suffices to
prove the following Lemma 12. Due to space contraints, we leave the proof to Appendix A.

▶ Lemma 12. Let (G, k, M∗, M) be a critical tuple. Every edge e ∈ E+(C+) is contained in
the backward reach of Ce, i.e. ∀e ∈ E+(C+) : e ∈ rb(Ce).

Indeed, we can then construct a set of non-positive cycles satisfying Conditions 1 and 2 as
explained in Lemma 13.

▶ Lemma 13. Let (G, k, M∗, M) be a critical tuple. There exists a set C of non-positive
cycles in GM satisfying Conditions 1 and 2, i.e. such that the following holds:
∀e ∈ E+(C+) there exists a cycle in C containing e.
∀C ∈ C, C ∩ C+ is a single path.

Proof. By Lemma 12, for each edge e ∈ E+(C+) there exists a backward jump Qe in Ce

that covers e. Since it is a backward jump, the cycle CQe formed by Qe and its reach is a
non-positive cycle. It also contains e and intersects C+ in a single path r(Qe). Hence the set
C := {CQe : e ∈ E+(C+), Qe ∈ J b

e , e ∈ r(Qe)} satisfies Conditions 1 and 2. ◀

3.4 Modifying the set to satisfy Condition 3
In the previous section we obtained a set C of non-positive cycles satisfying Conditions 1
and 2. To additionally satisfy Condition 3, which is that for every negative edge e ∈ E−(GM )
there exist at most two cycles in C containing e, we proceed in two steps. First we focus in
Lemma 15 on bounding the number of cycles containing a negative edge on the cycle C+.
Then we prove in Lemma 16 how to bound the number of cycles containing a negative edge
outside the cycle C+.
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Observation 14 shows with a simple argument that if a set of paths in C+ covers the
whole cycle C+, then it is enough to keep at most two paths covering the same edge in C+.
This is the key idea behind Lemma 15.

▶ Observation 14. If P ′ is a set of paths in C+, then there exists a subset P ⊆ P ′ such that⋃
P ′∈P′ P ′ =

⋃
P ∈P P and every e ∈ C+ is contained in at most two paths of P.

Proof. Let X =
⋃

P ′∈P′ P ′. Take P to be a minimal subset of P ′ such that
⋃

P ∈P P = X.
Suppose there exists an edge e ∈ C+ such that ∃P1, P2, P3 ∈ P with e ∈ P1∩P2∩P3. W.l.o.g.
suppose P1 contains an edge that is furthest before e on C+ among all edges of P1, P2 and
P3, and P2 contains an edge furthest after e. Then P3 ⊆ P1 ∪ P2, which contradicts the
minimality of P. So every edge is contained in at most two paths from P. ◀

▶ Lemma 15. Let (G, k, M∗, M) be a critical tuple and C be a set of non-positive cycles in
GM satisfying Conditions 1 and 2, i.e. such that:
∀e ∈ E+(C+) there exists a cycle in C containing e.
∀C ∈ C, C ∩ C+ is a single path.

Then there exists a set C′ ⊆ C of non-positive cycles satisfying the above Conditions 1 and 2
as well as the following property:
∀e ∈ E−(C+) there are at most two cycles in C containing e.

Proof. By Condition 2, we can associate to each cycle C of C the sub-path PC := C ∩ C+

intersecting with C+. Let P := {PC : C ∈ C} be the set of such intersecting paths. By
Condition 1 for every edge e ∈ E+(C+) there exists a path P ∈ P containing e. We can thus
apply Observation 14 to P and get a set P ′ ⊆ P such that for every edge e ∈ E+(C+) there
exists a path P ∈ P ′ containing e and every e ∈ C+ is contained in at most two paths from
P ′. Let C′ := {C : PC ∈ P ′} be the set of cycles associated to each path in P ′. Then C′ ⊆ C
still satisfies Conditions 1 and 2 and additionally for every edge e ∈ C+ at most two cycles
in C′ contain e. ◀

▶ Lemma 16. Let (G, k, M∗, M) be a critical tuple and C be a set of non-positive cycles in
GM satisfying Conditions 1 and 2, i.e. such that:
∀e ∈ E+(C+) there exists a cycle in C containing e.
∀C ∈ C, C ∩ C+ is a single path.

Then there exists a set C′ ⊆ C of non-positive cycles satisfying the above Conditions 1 and 2
as well as the following property:
∀e ∈ E−(GM \ C+) there are at most two cycles in C containing e.

Proof. We show how to reduce three non-positive cycles of C containing an edge e ∈
E−(GM \C+) into two non-positive cycles such that, when replacing the three cycles by the
two new cycles, Conditions 1 and 2 still hold. By repeating this transformation, the number
of cycles containing a negative edge e ∈ E−(GM \ C+) decreases until eventually at most
two cycles in C contain e.

Fix an edge e ∈ E−(GM \ C+) and three non-positive cycles CQ1 , CQ2 and CQ3 in C all
containing e. For i ∈ {1, 2, 3}, by Condition 2, CQi

intersects C+ in a single path. Hence let
r(Qi) = CQi ∩ C+ be this path and let Qi := CQi \ C+ be the remaining path of CQi not
intersecting C+. Let also si and fi be the first and last edge of Qi. We can assume w.l.o.g.
that the first edge of r(Qi) appears anti-clockwise on C+ in the order 1, 2, 3.

For (i, j) ∈ {(1, 2), (2, 3), (3, 1)} consider the walk Wij = Qj [sj , e] ∪ Qi(e, fi] that goes
from sj to fi. This is a valid walk since e ∈ Q1 ∩Q2 ∩Q3. Wij can use edges multiple times
so we identify Wij to its multi-edge set. As illustrated in Figure 4, we can extract a simple

APPROX/RANDOM 2023



18:14 An Approximation Algorithm for the Exact Matching Problem in Bipartite Graphs

C+

Qj

Qi

e

e′
sj

fi

C+

e

e′
sj

fi

Wij

C+

e

e′
sj

fi
Pij

Figure 4 Possible configuration appearing in the proof of Lemma 16. Two jumps Qi (blue) and
Qj (green) intersect in two different edges e ∈ Q1 ∩ Q2 ∩ Q3 and e′ ∈ Qi ∩ Qj . The first edge of Qj

is denoted sj and the last edge of Qi is denoted fi (red). The walk Wij (purple, middle) from sj to
fi is defined as Wij = Qj [sj , e] ∪ Qi(e, fi] and uses the edge e′ twice. The simple path Pij (purple,
right) is the simple sub-path from Wij starting at sj and ending at fi.

path Pij ⊆ Wij that goes from sj to fi. Let Cij = Pij ∪ C+[r(Qi), r(Qj)]. Cij is a simple
directed cycle since Pij is a simple path from sj to fi outside of C+ and C+[r(Qi), r(Qj)]
is a simple path on C+ from the endpoint of fi on C+ to the endpoint of sj on C+. An
example of this construction is shown in Figure 5. If Cij is a non-positive cycle, then we
can replace CQi and CQj by Cij in C and Conditions 1 and 2 would still hold. Indeed, by
construction Cij intersects C+ on the single path C+[r(Qi), r(Qj)] so Condition 2 holds.
Condition 1 holds because every edge e ∈ E+(C+) that is contained in CQi or CQj is in fact
in r(Qi) or r(Qj), which are both contained in Cij . Hence it remains to show that there
exists a pair (i, j) ∈ {(1, 2), (2, 3), (3, 1)} such that Cij is a non-positive cycle.

Suppose there exists a pair (i, j) ∈ {(1, 2), (2, 3), (3, 1)} such that r(Qi) and r(Qj) are
intersecting. Then we have:

|E+(Cij)| = |E+(Pij)|+ |E+(C+[r(Qi), r(Qj)])|
= |E+(Pij)|+ |E+(r(Qi) ∪ r(Qj))|
≤ |E+(Wij)|+ |E+(r(Qi))|+ |E+(r(Qj))| (because Pij ⊆Wij)
= |E+(Qj [sj , e])|+ |E+(Qi(e, fi])|+ |E+(r(Qi))|+ |E+(r(Qj))|
≤ |E+(Qj)|+ |E+(Qi)|+ |E+(r(Qi))|+ |E+(r(Qj))|
= |E+(CQi

)|+ |E+(CQj
)|

< 2 · 1
3k (by Observation 10)

where the second equality follows from C+[r(Qi), r(Qj)] ⊆ r(Qi)∪ r(Qj). By Observation 10,
Cij cannot be positive and hence is a non-positive cycle, so we get the desired result.

If none of the paths r(Q1), r(Q2), r(Q3) are intersecting then assume for the sake of
contradiction that C12, C23 and C31 are all positive. By Observation 10 this means that

|E+(C12)|+ |E+(C23)|+ |E+(C31)| > 3 · 2
3k = 2k.

However we also have for any pair (i, j) ∈ {(1, 2), (2, 3), (3, 1)} that

|E+(Cij)| = |E+(Pij)|+ |E+(C+[r(Qi), r(Qj)])|
≤ |E+(Wij)|+ |E+(C+[r(Qi), r(Qj)])| (because Pij ⊆Wij)
= |E+(Qj [sj , e])|+ |E+(Qi(e, fi])|+ |E+(C+[r(Qi), r(Qj)])|
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e

CQ1

CQ2

CQ3

C+

(a) Three non-positive cycles CQ1 (blue) CQ2 (green) and
CQ3 (purple) intersecting in a single negative edge e /∈ C+.

e

CQ3

C+

C12

e

CQ1

C+

C23

e CQ2

C31

C+

(b) The newly constructed cycles C12, C23 and C31 (in red from left to right). To construct C12 we
combine the two cycles CQ1 and CQ2 .

Figure 5 Construction of three cycles C12, C23 and C31 as done in the proof of Lemma 16. Note
that this is a simplified configuration where the pairwise intersection of two non-positive cycles
corresponds to the intersection of the three non-positive cycles CQ1 , CQ2 and CQ3 .

Hence the total number of positive edges in the three cycles is:

|E+(C12)|+ |E+(C23)|+ |E+(C31)|
≤ |E+(Q2[s2, e])|+ |E+(Q1(e, f1])|+ |E+(C+[r(Q1), r(Q2)])|

+ |E+(Q3[s3, e])|+ |E+(Q2(e, f2])|+ |E+(C+[r(Q2), r(Q3)])|
+ |E+(Q1[s1, e])|+ |E+(Q3(e, f3])|+ |E+(C+[r(Q3), r(Q1)])|

= |E+(Q1)|+ |E+(Q2)|+ |E+(Q3)|
+ |E+(C+)|+ |E+(r(Q1))|+ |E+(r(Q2))|+ |E+(r(Q3))|

= |E+(C+)|+ |E+(CQ1)|+ |E+(CQ2)|+ |E+(CQ3)|

< k + 3 · 1
3k = 2k (by Observation 10)

where we can apply Observation 10 because CQi
is non-positive for any i ∈ {1, 2, 3}. Hence

there has to exists a pair (i, j) ∈ {(1, 2), (2, 3), (3, 1)} such that Cij is non-positive. ◀

3.5 Constructing a target set
We can now prove Lemma 9.

Proof of Lemma 9. For the sake of contradiction let (G, k, M∗, M) be a critical tuple. Apply
Lemmas 13, 16 and 15 in that order consecutively and get a target set C. By Lemma 11,
this leads to a contradiction. Thus (G, k, M∗, M) cannot be a critical tuple. ◀
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As a consequence, Lemmas 8 and 9 together show that Algorithm 1 is a polynomial-time
algorithm that always outputs a perfect matching M containing between 1

3 k and k red edges.
This completes the proof of Theorem 1.

4 Conclusion

In this paper we formally define EM-opt, an optimization variant of the Exact Matching
problem and show a deterministic polynomial-time approximation algorithm for EM-opt
which achieves an approximation ratio of 3 on bipartite graphs. Although the algorithm is
fairly simple to present, the proof of its correctness is more complex. In the second part
of the algorithm we iterate over all edges e and compute a perfect matching of minimum
number of red edges containing e. Most of our work is put into proving that there exists
such a matching that approximates the optimal solution of EM-opt by a factor 3. As our
calculations are tight for an approximation ratio of 3, a natural continuation of our work
would be to improve this ratio, e.g. to 2. We speculate that the algorithm could be improved
by iterating over larger subsets of edges (of constant size) instead of one edge at a time and
that such an algorithm could give a better approximation and maybe even a PTAS. The
analysis of such an algorithm, however, remains quite challenging and new techniques and
insights might be needed. Another open problem is to find an approximation algorithm for
general graphs.
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A Proof of Lemma 12

This section is devoted to the proof of Lemma 12. The proof technique is a combination
of reasonings about forward and backward motion, shown in Lemmas 17 and 18, and an
interpolation argument.

Let’s start with a basic fact about sub-paths of Ce. Let es, ef be two distinct edges on
C+. The following lemma captures the intuitive fact that any path from es to ef must go
either in a clockwise motion, or in an anticlockwise motion. While doing so, it must traverse
all the edges between es and ef in that direction.

▶ Lemma 17. Let (G, k, M∗, M) be a critical tuple and fix an edge e ∈ E+(C+). If es, ef

are distinct edges in C+ and P = Ce[es, ef ] is a sub-path of Ce from es to ef , then either
C+[es, ef ] ⊆ rf (P) or C+[ef , es] ⊆ rb(P).

Proof. As a helpful tool, we consider the following definition of shadow. Let Q be a jump
of Ce from x to y, where x and y are vertices in C+. If Q is a forward jump, then the
shadow s(Q) of Q is the walk in C+, which starts at x and goes anticlockwise, until it
encounters y. If Q is a backward jump, then s(Q) is the walk in C+, which starts at x and
goes clockwise, until it encounters y. We remark that formally, since s(Q) can travel edges
in reverse direction, s(Q) is a walk in the undirected analogue of C+ in G. For an interjump
P from vertex x to y, the shadow of P is defined to be the path P itself. For a sub-path
P ⊆ Ce consisting of the concatenation of alternating jumps and interjumps the shadow s(P)
of P is the concatenation of the corresponding shadows of jumps and interjumps in the same
order.

By definition, the following basic observations hold. For any sub-path P ⊆ Ce, its
shadow s(P) is a walk contained in C+ such that it has the same start and end vertex as
P. Furthermore, the walk s(P) can be thought of as a sequence of steps, where every step
traverses one single edge of C+ either clockwise or anticlockwise. The set rf (P) is exactly
the set of edges which are traveled by the walk s(P) with an anticlockwise step. The set
rb(P) is exactly the set of edges which are traveled by the walk s(P) with a clockwise step.
The set r(P) is exactly the set of edges which are traveled by the walk s(P).

Now return to the statement of the lemma. The walk s(P) is a walk contained in C+,
starting with the edge es and ending with the edge ef . It is obvious that s(P) must either
traverse all of C+[es, ef ] with anticlockwise steps, or all of C+[ef , es] with clockwise steps.
This implies that either C+[es, ef ] ⊆ rf (P) or C+[ef , es] ⊆ rb(P). ◀

In the proof of Lemma 12, we will consider a set of forward jumps and interjumps in Ce

that cover all the cycle C+. However we want to avoid forward jumps covering the edge e.
The following Lemma 18 shows that this is possible under certain assumptions. Intuitively,
since e is already contained in an interjump of Ce, there is no need to include a forward
jump covering e in the set of forward jumps and interjumps covering C+. However one needs
to carefully select the forward jumps of the set, which explains the technicallity of the proof
below.

▶ Lemma 18. Let (G, k, M∗, M) be a critical tuple and fix an edge e ∈ E+(C+). If e /∈ rb(Ce),
then there exists a set of forward jumps Q ⊆ J f

e such that

C+ =
⋃

Q∈Q
r(Q) ∪

⋃
P ∈Ie

P

and ∄Qf ∈ Q with e ∈ r(Qf ).
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Proof. We prove the statement by constructing a tuple (P,R, e′), where e′ ∈ C+ is an edge
of C+, P = Ce[e, e′] is a sub-path of Ce and R is a set of jumps and interjumps of Ce. We
want (P,R, e′) to satisfy the following invariant.

▶ Invariant. A tuple (P,R, e′) satisfies the invariant if the following properties hold:
1. There is no forward jump Q in R such that e ∈ r(Q).
2. C+[e, e′] ⊆ rf (P).
3. C+(e′, e) ⊆ rf (R)

We also want to ensure that there is no forward jump Q in P with e ∈ r(Q). Indeed, in
that case, define Q to be the set of forward jumps in P ∪R. Then by Invariant 1, Q doesn’t
contain any forward jump Q with e ∈ r(Q). Also, by Invariants 2 and 3 of (P,R, e′):

C+ = C+[e, e′] ∪ C+(e′, e)
⊆ rf (P) ∪ rf (R)

⊆
⋃

Q∈Q
r(Q) ∪

⋃
P ∈Ie

P

which is the conclusion of Lemma 18.
We start with a tuple (P,R, e′) satisfying the invariant properties and then iteratively

modify the tuple in order to achieve the additional property that no forward jump in P
covers e. At first, e′ is the edge before e in Ce. Note that e′ ∈ C+ because e /∈ M and Ce

is M -alternating so e′ ∈M , and since C+ is also M -alternating, edges of M adjacent to e

must be in C+. Let P = Ce[e, e′] be a path starting in e and covering all edges of Ce and
let R = ∅ be an empty set. Clearly Invariants 1 and 3 holds for (P,R, e′). By Lemma 17
applied on P , either C+[e, e′] ⊆ rf (P) or C+[e′, e] ⊆ rb(P). However e /∈ rb(Ce) so the latter
is not possible. Hence (P,R, e′) satisfies all invariant properties. Let t be the number of
forward jumps Q in P with e ∈ r(Q). If t = 0, we are done.

P1 C+

e

e2

e1

Qf

e′

P2

Figure 6 To prove Lemma 18 we consider a path P = Ce[e, e′] that contains a jump Qf with
e ∈ r(Qf ). e1 and e2 are the edges before and after the jump Qf . We split P into two paths P1

(blue) and P2 (orange) that are respectively before and after the jump Qf .

If t > 0, we replace (P,R, e′) by another tuple (P ′,R′, e1) where P ′ contains t−1 forward
jumps covering e. We ensure that (P ′,R′, e1) also satisfies the invariant properties, so that
we can repeat the process until t = 0. Let Qf be the last forward jump in P covering e

APPROX/RANDOM 2023
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and let e1 and e2 be the first edges in C+ before and after Qf (see Figure 6). Consider the
sub-paths P1 = Ce[e, e1] and P2 = Ce[e2, e′] and define P ′ := P1 and R′ := R ∪ P2. By
definition, P ′ is the sub-path of P before Qf (excluded), hence it contains t − 1 forward
jumps covering e. It remains to show that (P ′,R′, e1) satisfies the invariant. By definition of
Qf , there is no forward jump in P2 covering e. Thus, since (P,R, e′) satisfies Invariant 1,
(P ′,R′, e1) also satisfies Invariant 1. We can apply Lemma 17 on P1 and get that either
C+[e, e1] ⊆ rf (P1) or C+[e1, e] ⊆ rb(P1). However e /∈ rb(Ce) so the latter case is not
possible, hence (P ′,R′, e1) satisfies Invariant 2. Finally, to prove that C+(e1, e) ⊆ rf (R′),
consider two cases. If C+(e1, e) ⊆ C+(e′, e) (as in Figure 6) then C+(e1, e) ⊆ rf (R) ⊆ rf (R′)
by Invariant 3 of (P,R, e′). Otherwise if C+(e′, e) ⊆ C+(e1, e), then the edges e2, e1, e′, e

appear in that order on C+. We can thus write C+(e1, e) = C+(e1, e′] ∪ C+(e′, e). By
Invariant 3 of (P,R, e′), we know that C+(e′, e) ⊆ rf (R). Note that C+(e1, e′] ⊆ C+[e2, e′].
Applying Lemma 17 on P2 we get that either C+[e2, e′] ⊆ rf (P2) or C+[e′, e2] ⊆ rb(P2).
But e ∈ C+[e′, e2] and e /∈ rb(Ce) so the latter case is not possible. Hence C+(e1, e′] ⊆ P2
and we thus have C+(e1, e) ⊆ rf (P2) ∪ rf (R) = rf (R′). So in both cases Invariant 3 holds
for (P ′,R′, e1). Therefore, we can safely replace (P,R, e′) by (P ′,R′, e1) and maintain the
invariant. ◀

We now have collected all the ingredients to prove the main result of this subsection. While
the previous lemmas were proven using an intuition on forward and backward motion,
Lemma 12 is proven using an interpolation argument.

Proof of Lemma 12. For the sake of contradiction, assume that there exists an edge e ∈
E+(C+) such that e /∈ rb(Ce). Apply Lemma 18 and let Q′ be the resulting set of forward
jumps. By identifying every jump in Q′ with its reach, we can apply Observation 14 and
get the resulting set Q ⊆ Q′. Consequently, C+ =

⋃
Q∈Q r(Q) ∪

⋃
P ∈Ie

P , there is no
jump Q ∈ Q covering e and every edge e′ ∈ C+ is contained in the reach of at most two
jumps of Q. Order the jumps in Q by the distance between e and their reach and write
Q = {Q1, Q2, . . . , Qt}. Define Qodd = {Q1, Q3, . . . } and Qeven = {Q2, Q4, . . . } to be the set
of jumps of respectively odd and even index. Since there is no forward jump in Q covering e,
the first and the last jump in Q are non-intersecting (otherwise the reach of one of them
would contain e). Additionally, the reach of a jump Qi can only intersect the reach of Qi−1
and Qi+1 (by the property obtained by Observation 14). Hence the reach of any two jumps
in Qodd as well as the reach of any two jumps in Qeven are not intersecting.

We can thus define two cycles C+
odd = C+ ∪ Qodd \ {r(Q1), r(Q3), . . . } and C+

even =
C+ ∪Qeven \ {r(Q2), r(Q4), . . . }. We show that at least one of them is non-positive using
Observation 10. Indeed, the number of positive edges in C+

odd is

|E+(C+
odd)| = |E+(C+)|+

∑
Q∈Qodd

|E+(Q)| −
∑

Q∈Qodd

|E+(r(Q))|

= |E+(C+)| −
∑

Q∈Qodd

mQ

where we define mQ := |E+(r(Q))|−|E+(Q)|. Assume for now that
∑

Q∈Qodd

mQ ≥
∑

Q∈Qeven

mQ

so that
∑

Q∈Q
mQ =

∑
Q∈Qodd

mQ +
∑

Q∈Qeven

mQ ≤ 2
∑

Q∈Qodd

mQ. So we get

|E+(C+
odd)| ≤ |E+(C+)| − 1

2
∑
Q∈Q

mQ
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and we also have∑
Q∈Q

mQ =
∑
Q∈Q
|E+(r(Q))| −

∑
Q∈Q
|E+(Q)|

=

 ∑
Q∈Q
|E+(r(Q))|+

∑
P ∈Ie

|E+(P )|

−
 ∑

P ∈Ie

|E+(P )|+
∑
Q∈Q
|E+(Q)|


≥ |E+(C+)| −

 ∑
P ∈Ie

|E+(P )|+
∑
Q∈Q
|E+(Q)|

 (by the construction of Q)

≥ |E+(C+)| − |E+(Ce)|

where the last inequality comes from the fact that Ce can contain jumps outside of Q. We
finally get the following bound on the number of positive edges in C+

odd.

|E+(C+
odd)| ≤ |E+(C+)| − 1

2(|E+(C+)| − |E+(Ce)|)

= 1
2 |E

+(C+)|+ 1
2 |E

+(Ce)|

<
1
2k + 1

2 ·
1
3k (by Observation 10)

= 2
3k

By Observation 10, we can conclude that C+
odd is a non-positive cycle. If

∑
Q∈Qodd

mQ ≤∑
Q∈Qeven

mQ then the same argument on C+
even shows that C+

even is a non-positive cycle. In
the following we assume that C+

odd is a non-positive cycle, but the reasoning can be adapted
for the case that C+

even is non-positive by interchanging odd by even.

C0
odd

Q1

Q3

Q5 C1
odd

Q1

Q3

Q5 C2
odd

Q1

Q3

Q5 C3
odd

Q1

Q3

Q5

Figure 7 A sequence of cycles C0
odd, C1

odd, C2
odd, C3

odd (in red from left to right) defined by sequen-
tially adding the jumps in Qodd = {Q1, Q3, Q5} to the cycle C+ and removing the corresponding
reach, as done in the proof of Lemma 12. Note that C0

odd = C+.

Define a sequence of cycles Ci+1
odd := Ci

odd ∪ Q2i+1 \ r(Q2i+1) for i ∈ |Qodd| starting at
C0

odd := C+ and ending at C+
odd. See Figure 7 for an example. The constructed Ci

odd’s are
simple cycles since the reaches in Qodd are non-intersecting. The sequence starts with a
positive cycle C+ and ends with a non-positive cycle C+

odd so there must exists an index i

such that Ci
odd is positive and Ci+1

odd is non-positive. However the number of positive edges in
the non-positive cycle Ci+1

odd is

|E+(Ci+1
odd )| = |E+(Ci

odd)|+ |E+(Q2i+1)| − |E+(r(Q2i+1)|
= |E+(Ci

odd)|+ |E+(CQ2i+1)| − |E+(C+)|

>
2
3k + 2

3k − k (by Observation 10)

= 1
3k

By Observation 10, this implies that Ci+1
odd is positive, but we previously argued that it is

non-positive. Hence it is not possible that e /∈ rb(Ce). ◀
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Abstract
Uniform cost-distance Steiner trees minimize the sum of the total length and weighted path lengths
from a dedicated root to the other terminals. They are applied when the tree is intended for signal
transmission, e.g. in chip design or telecommunication networks. They are a special case of general
cost-distance Steiner trees, where different distance functions are used for total length and path
lengths.

We improve the best published approximation factor for the uniform cost-distance Steiner tree
problem from 2.39 [15] to 2.05. If we can approximate the minimum-length Steiner tree problem
arbitrarily well, our algorithm achieves an approximation factor arbitrarily close to 1 + 1√

2 . This
bound is tight in the following sense. We also prove the gap 1 + 1√

2 between optimum solutions and
the lower bound which we and all previous approximation algorithms for this problem use.

Similarly to previous approaches, we start with an approximate minimum-length Steiner tree
and split it into subtrees that are later re-connected. To improve the approximation factor, we
split it into components more carefully, taking the cost structure into account, and we significantly
enhance the analysis.
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19:2 Tighter Approximation for the Uniform Cost-Distance Steiner Tree Problem

∑
{x,y}∈E(A)

c(p(x), p(y)) +
∑
t∈T

w(t)
∑

{x,y}∈E(A[r,t])

c(p(x), p(y))

 , (1)

where A[r,t] is the unique r-t-path in A. We call (1) the (total) cost of (A, p).
Given a Steiner tree A, we call

∑
{x,y}∈E(A)

c(p(x), p(y)) and
∑
t∈T

w(t)
∑

{x,y}∈E(A[r,t])

c(p(x), p(y))


its connection cost and its delay cost.

Usually the position p of vertices is clear from the context. Then, we simply write c(x, y)
instead of c(p(x), p(y)) and c(e) instead of c(x, y) for edges e = {x, y}. To shorten the
notation, we often also omit the underlying metric space from the notation and write only
(T, r, w) to denote an instance. A simple lower bound for the objective function, is given by

CSMT (T ∪ {r}) + D(T, r, w), (2)

where CSMT (T ∪ {r}) is the connection cost of a minimum-length Steiner tree for T ∪ {r},
i.e. a Steiner tree A for T ∪ {r} minimizing

∑
e∈E(A) c(e), and D(T, r, w) :=

∑
t∈T w(t)c(r, t)

is the sum of weighted root-sink distances.
The Uniform Cost-Distance Steiner Tree Problem was first mentioned by [17],

who considered the (general) cost-distance Steiner tree problem, where the connection
cost may be unrelated to the delay cost. Cost-distance Steiner trees are heavily used in
VLSI routing and interconnect optimization [11, 7]. Here, the weights arise as Lagrangean
multipliers when optimizing global signal delay constraints on an integrated circuit [11].
Uniform cost-distance Steiner trees are computed as a first step of a Steiner tree oracle in
global routing [11, 7].

The general cost-distance Steiner tree problem does not permit an approximation factor
better than Ω(log log |T |) unless NP ⊆ DTIME(|T |O(log log log |T |)) [6], while a randomized
O(log |T |)-factor approximation algorithm was given by [17] and [4]. Meyerson, Munagala
and Plotkin [17] observed that a constant factor approximation algorithm for the Uniform
Cost-Distance Steiner Tree Problem can be obtained using the shallow-light spanning
tree algorithm from [16]. The resulting factor is 3.57. Using shallow-light Steiner trees [12]
instead of spanning trees, the factor was improved to 2.87 independently by [10] and [18].
The first algorithm using the delay weights algorithmically was given by Khazraei and Held
[15]. They achieve an approximation factor of 1 + β, where β is the approximation factor for
computing a minimum-length Steiner tree. All these approaches compare against the lower
bound in (2).

Similarly to algorithms for shallow-light trees, the algorithm in [15] starts from an
approximately minimum Steiner tree, which is cut into a forest whose components are
connected to the root r individually. While [16] cut the tree whenever the path length is too
large, [15] cut off a subtree if its delay weight exceeds a certain threshold. Each cut-off tree
is later re-connected through a direct connection from the root through one of its terminals,
minimizing the resulting objective function.

The special case where we require a spanning tree instead of a Steiner tree and w(t) is
identical for all t ∈ T is known as the cable-trench problem. It does not permit a PTAS
unless P = NP [2].
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The Uniform Cost-Distance Steiner Tree Problem is related to the single-sink
buy-at-bulk problem where a set of demands needs to be routed from a set of sources to a
single sink using a pipe network that has to be constructed from a finite set of possible pipe
types with different costs and capacities [9, 19, 14]. The best known approximation factor
for this problem is 40.82 due to [8], who also achieve a factor of 20.41 for the splittable case.
If there is only one pipe type this problem is equivalent to the Uniform Cost-Distance
Steiner Tree Problem. In fact, the threshold-based tree cutting used in the proof of [15]
is similar to the algorithm in [9], but the re-connect to the root/sink differs.

1.1 Our contribution
In this paper, we improve the approximation algorithm in [15] for the Uniform Cost-
Distance Steiner Tree Problem.

▶ Theorem 1. The Uniform Cost-Distance Steiner Tree Problem can be approxi-
mated in polynomial time with an approximation factor of

β + β√
β2 + 1 + β − 1

,

where β ≥ 1 is the approximation guarantee for the minimum-length Steiner tree problem.

With the best known approximation factor for the minimum Steiner tree problem β =
ln(4) + ϵ [3, 20], this results in an approximation factor < 2.05 and for β = 1 this gives the
factor 1 + 1√

2 < 1.71, clearly improving upon the previously best factors 2.39 and 2.0 in [15].
The polynomial-time approximation scheme by [1] allows choosing β arbitrarily close to one
in the Euclidean and the Manhattan planes. However, general metric spaces do not allow
β ≤ 96

95 unless P = NP [5].
Assuming an ideal Steiner tree approximation factor of β = 1, our new approximation

factor is tight with respect to the lower bound (2). We prove the following result

▶ Theorem 2.

sup
T,c,w

OPT(T, r, w)
CSMT (T ∪ {r}) + D(T, r, w) = 1 + 1√

2
,

where OPT(T, r, w) denotes the optimum solution value for (T, r, w).

The algorithm in [15] starts from a short Steiner tree and iteratively splits off subtrees
whose delay weight exceeds a given threshold. We proceed similarly, but we also take the
structure of the subtrees into account and split off subtrees once they can be reconnected
efficiently.

While [15] obtain a running time of O(Λ + |T |2), where Λ is the time to compute an
initial β-approximate minimum Steiner tree, our running time is O(Λ + |T |) (assuming that
the metric c can be evaluated in constant time). Thus, it is very fast and applicable for large
chip design instances.

We would like to mention that in a preliminary unpublished paper we achieved worse
factors of 2.15 (β = ln(4)) and 1.80 (β = 1) [13] using a more complicated algorithm and
analysis. That paper also shows that the factor 1 + β in [15] is tight for that algorithm.

The remainder of this paper is structured as follows. In Section 2, we show that the
supremum in Theorem 2 is at least 1 + 1√

2 . Then, in Section 3 we will briefly summarize the
algorithm and proof from [15], as our work enhances it.

APPROX/RANDOM 2023
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(a) Illustration of the complete instance.
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sented by dashed lines in Figure 1a
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Figure 1 Instance defined in the proof of Theorem 3. Solid lines represent edges, each dashed
line represents a path. Black figures denote edge/path lengths, blue figures denote terminal weights.

Our improved splitting algorithm and analysis is presented in Section 4. The proof of
Theorem 1 is presented in Section 4.2. It also shows that the supremum in Theorem 2 is at
most 1 + 1√

2 . We finish with conclusions in Section 5.

2 Optimality Gap of Lower Bound

In this section, we will show that the gap between an optimum solution and the lower bound
in (2) can be as large as 1+ 1√

2 . Together with the approximation factor of our new algorithm
for β = 1 (Theorem 1), the gap is asymptotically 1 + 1√

2 .

▶ Theorem 3. There are instances I
(k)
k∈N with I(k) = (T (k), r(k), w(k)) (k ∈ N) for the uniform

cost-distance Steiner tree problem such that

lim
k→∞

OPT(k)

C(k) + D(k) = 1 + 1√
2

,

where OPT(k) is the optimum value for the instance I(k), while C(k) = CSMT (T (k) ∪ {r}),
D(k) := D(T (k), r(k), w(k)) denote minimum possible connection cost and the minimum
possible delay cost of I(k).

Proof. We will construct instances with underlying graph metrics induced by graphs indicated
in Figure 1a. For k ∈ N, we define the graph G(k) = (V (k), E(k)) by

V (k) = {r(k), c(k), t
(k)
1 , . . . , t

(k)
k , v

(k)
1 , . . . , v(k)

q }

and E(k) = E(k)
r,c ∪̇ E

(k)
c,t ∪̇ E

(k)
r,t ,

where q is chosen sufficiently large to provide sufficiently many inner path vertices v
(k)
i

(1 ≤ i ≤ q) in the following definitions of E
(k)
r,c , E

(k)
c,t and E

(k)
r,t : For 0 < δk < δ′

k < 1
k , E

(k)
r,c

contains edges of length δk forming a path of total length 2 between r(k) and c(k), and E
(k)
c,t

contains edges of length δ′
k, forming paths of length 1√

2 between c(k) and each t
(k)
i . Lastly,

E
(k)
r,t = {{r(k), t

(k)
i } | i = 1, . . . , k}
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connects each t
(k)
i directly to r(k) with an edge of length 1. The terminals are given by

T (k) = V (k) \ {r(k)}, and the delay weights w(k) : T (k) → R≥0 are defined as

w(k)(t) =
{

1√
2 if t ∈ {t

(k)
1 , . . . , t

(k)
k }

0 else.

Now, the lower bound becomes:

C(k) + D(k) = 2 + k√
2

+
k∑

i=1

1√
2

distG(k)(r(k), t
(k)
i ) = 2 + 2 k√

2
= 2 +

√
2 k. (3)

We claim that every optimum solution contains all edges of the form {r(k), t
(k)
i }. Addi-

tionally, we claim that all optimum solutions contain all edges of length δk and all but k

edges of length δ′
k. This determines the structure of an optimum solution up to the choice of

the k ommitted edges. The length of an optimum solution is (1 + 1√
2 )k + 2 − δ′

k k, and its
objective is

OPT(k) =
(

1 + 1√
2

)
k + 2 − δ′

kk + k√
2

= (1 +
√

2)k + 2 − δ′
kk. (4)

Combining (3) and (4), we see that

lim
k→∞

OPT(k)

C(k) + D(k) = lim
k→∞

(1 +
√

2)k + 2 − δ′
kk

2 +
√

2 k
= 1 +

√
2√

2
= 1 + 1√

2

as stated in the theorem.
To prove the first claim, assume there is an optimum solution Y ∗ not containing an edge

{r(k), t
(k)
i } for some i ∈ {1, . . . , k}. First, observe that any path from r(k) to t

(k)
i not using

the edge {r(k), t
(k)
i } contains c, so we have

distY ∗(r(k), t
(k)
i ) ≥ distG(k)(r(k), c(k)) + distG(k)(c(k), t

(k)
i ) = 1 + 1√

2
+ 1√

2
= 1 +

√
2.

Let e be the edge of length δ′
k adjacent to t

(k)
i . Then e ∈ E(Y ∗), as otherwise t

(k)
i would

be isolated in Y ∗. Now define Y ′ from Y ∗ by adding {r(k), t
(k)
i } and removing e. This

increases the connection cost by 1 − δ′
k. The delay cost decreases by at least

w(t(k)
i )

(
distY ∗(r(k), t

(k)
i ) − distY ′(r(k), t

(k)
i )
)

≥ 1 +
√

2 − 1√
2

= 1,

where we use distY ′(r(k), t
(k)
j ) ≤ distY ∗(r(k), t

(k)
j ) for j ̸= i. Thus, the total cost decreases by

at least 1 − (1 − δ′
k) = δ′

k, a contradiction to the optimality of Y ∗.
Now we prove the second claim: By the first claim all optimum solutions have the same

delay cost k√
2 . Hence, only the connection cost for the remaining terminals is relevant. From

each maximal path ending in c consisting only of short edges of length either δk or δ′
k, any

solution must contain either all edges or all but one. Furthermore, there must be such a
path from which the solution contains all edges, otherwise there would be no r-c-path. Since
δk < δ′

k, the shortest such configuration is to take all edges of length δk and all but k edges
of length δ′

k (namely all but one from each path). ◀
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Algorithm 1 (1 + β)-approximation algorithm by [15] using a parameter µ > 0.

Step 1 (initial arborescence):
First, compute a β-approximate minimum cost Steiner r-arborescence A0 for T ∪ {r}
with outdegree 0 at all sinks in T and outdegree 2 at all Steiner vertices in
V (A0) \ (T ∪ {r}).

Step 2 (split into branching):
Traverse A0 bottom-up. For each traversed edge (x, y) ∈ E(A0), if W(A0)y

> µ,
remove the edge (x, y) creating a new arborescence (A0)y in the branching.

Let A denote the set of all arborescences that were cut off from A0 this way.

Step 3 (Re-connect arborescences):
Re-connect each sub-arborescence A′ that was cut off in Step 2 as follows: Select a
vertex t ∈ T ′ := TA′ that minimizes the cost for serving the sinks in T ′ through the
r-arborescence A′ + (r, t), i.e. select a vertex t ∈ T ′ as a port for T ′ that minimizes

c(r, t) + CA′ +
∑

t′∈T ′

w(t′) · (c(r, t) + c(E(A′
[t,t′]))).

Let t1, . . . , t|A| ∈ T be the set of selected port vertices. Return the union of the final
branching and the port connections A0 + {(r, ti) : i ∈ {1, . . . , |A|} }.

3 The (1 + β)-approximation algorithm

For shorter formulas, we will use the following notation in the remainder of this paper. Let
A be an arborescence. By Av we denote the sub-arborescence rooted at v. Furthermore,
TA := V (A) ∩ T is the set of terminals in A, WA := w(TA) is the sum of delay weights in
A, CA := c(E(A)) is the connection cost of A and DA := DTA

:=
∑

t∈TA
w(t)c(r, t) the

minimum possible delay cost for connecting the sinks in TA (independent of the structure
of A).

Recall that β ≥ 1 is the approximation guarantee for the minimum-length Steiner tree
problem. The algorithm in [15] is described in Algorithm 1. After orienting its edges, we
can consider any solution A as an r-arborescence. We use arborescences instead of trees to
simplify the algorithmic notation.

3.1 Essential steps for a 1 + β approximation
We quickly recap the essential steps in the analysis of [15], which we will use in our analysis.
The cost to connect an arborescence A′ ∈ A to the root r can be estimated as follows:

▶ Lemma 4 (Khazraei and Held [15], Lemma 1). Let A′ ∈ A with corresponding terminal set
T ′. By the choice of the port t ∈ T ′, the r-arborescence (A′ + {r, t}) has a total cost at most

CA′ +
∑

e=(x,y)∈E(A′)

2WA′
y
(WA′ − WA′

y
)

WA′
c(e) +

(
1 + 1

WA′

)
DT ′ (5)

≤
(

1 + WA′

2

)
CA′ +

(
1 + 1

WA′

)
DT ′ (6)

≤ (1 + µ) CA′ +
(

1 + 1
µ

)
DT ′ . (7)
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r

1
0

0

0
0

1

(a) Minimum-length Steiner tree.

r

1
0

0

0
0

1

(b) Cost: 6 + (1 + 6) = 13.

r

1
0

0

0
0

1

(c) Cost: 6 + (1 + 1) = 8.

Figure 2 Weakness of Algorithm 1: (M, c) is induced by a complete graph with seven vertices
and unit weights. Delay weights are indicated by the blue node labels and µ = 1. Algorithm 1
might start with the minimum-length Steiner tree on the left. Then the algorithm will cut the edge
incident to r and reconnect the sub-arborescence resulting possibly in the solution in the middle.
On the right a better splitting is shown.

We sketch the proof in Appendix A, because we use an inequality that was not stated
explicitly in [15], Lemma 1. Note (from the proof) that only the bound (7) uses how the
arborescences A′ ∈ A were cut off during Step 2. In particular the bounds (5)-(6) will also
apply for our improvement.

A similar cost bound can be shown easily for the arborescence Ar containing the root r

after Step 2. Summing up the resulting cost bounds and choosing µ = 1
β , [15] obtain the

approximation factor (1 + β).

4 Improving the approximation ratio

Algorithm 1 suffers from the following weakness. Assume that after splitting we are given a
sub-arborescence A′ ∈ A with a high delay weight WA′ , a high connection cost CA′ , but a
low minimum possible delay cost DA′ , e.g. as shown in Figure 2.

In this section, we propose a refined splitting criterion that provides a better approximation
ratio. Instead of using a fixed threshold µ, we allow to split off sub-arborescences earlier if
their expected re-connection cost (5) is sufficiently cheap. The precise criterion is specified
in (8) (inside Algorithm 2). Observe that (8) provides cheaper solutions than (7), as one
occurrence of µ is replaced by µ

2 .
Then we show in Lemma 8 that every sub-arborescence of the remaining root component

has delay weight at most µ. This allows us to prove a similar improved cost bound for the
root component in Lemma 9.

In Section 4.2, we simply combine all sub-arborescences and choose µ to prove Theorem 1.
Theorem 2 follows as an immediate consequence.

4.1 Improving the splitting routine

Algorithm 2 shows our improved splitting step, which cuts off a sub-arborescence if we can
re-connect it cheaply, i.e. if (8) holds. With Lemma 4 we immediately get the following result
for the cut-off sub-arborescences:

APPROX/RANDOM 2023
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Algorithm 2 Modifying Step 2 of Algorithm 1.

Step 2 (split into branching):
Traverse A0 bottom-up. For each traversed edge (v, z) ∈ E(A0) consider Az := (A0)z:
If WAz

> 0 and

∑
e=(p,q)∈E(Az)

2W(Az)q
(WAz − W(Az)q

)
WAz

c(e) + DAz

WAz

≤ µ

2 (CAz + c(v, z)) + DAz

µ
, (8)

remove (v, z) creating a new arborescence Az.

▶ Lemma 5. Let A′ ∈ A be an arborescence that was cut off in Algorithm 2 and let eA′ be
the incoming edge in the root of the arborescence A′ which was deleted during this step. Then
the corresponding terminals in TA′ can be connected to the root r with total cost at most(

1 + µ

2

)
(CA′ + c(eA′)) +

(
1 + 1

µ

)
DA′ .

After the original Step 2 of Algorithm 1, it is clear that for all edges (r, x) ∈ δ+
A0

(r) of the
root component the total delay weight W(A0)x

is at most µ. We show that this also holds
after the modified Step 2 in Algorithm 2. However, the analysis is more complicated and
uses the following two functions.

▶ Definition 6. Let µ > 0 and Xµ := {(a, b, c) ∈ (µ, 2µ) × (0, µ)2 : c ≤ a − b < µ}. We
define the functions f, g : Xµ → R as

f(a, b, c) := 2(a − c)c
a

− µ

2 +
(

1
a

− 1
µ

)
· 1

1
a−b − 1

µ

·
(

µ

2 − 2((a − b) − c)c
a − b

)
g(a, b, c) := 2(a − c)c

a
− µ

2 +
(

1
a

− 1
µ

)
· 1

1
a−b − 1

µ

· µ

2 .

▶ Lemma 7. For all (a, b, c) ∈ Xµ, f(a, b, c) ≤ 0 and g(a, b, c) ≤ 0.

A proof of Lemma 7 based on algebraic transformations can be found in Appendix B.

▶ Lemma 8. After cutting off sub-arborescences with Algorithm 2, every child x ∈ Γ+
Ar

(r) of
r in the remaining root component Ar := (A0)r satisfies W(Ar)x

≤ µ.

Proof. Assume the opposite would be true. Let z be a vertex in Ar − r such that the weight
of the sub-arborescence Az := (Ar)z exceeds µ and the weight of every child arborescence
(Az)x is at most µ for all edges (z, x) ∈ δ+

Az
(z). We distinguish between two cases:

Case 1. z is a terminal. Then z is also a leaf and the left-hand side of (8) simplifies to

1
WAz

DAz
≤ 1

µ
DAz

since Az does not contain any edges. But then Az would have been cut-off in Step 2, a
contradiction.

Case 2. z is a Steiner vertex. Then z has two outgoing edges ex := (z, x), ey := (z, y) ∈
δ+

Az
(z) as shown in Figure 3. A single outgoing edge would contradict the choice of z. With

Ax := (Az)x or Ay := (Az)y this implies 0 < WAx
, WAy

≤ µ. If WAx
= µ, Lemma 4, (6)
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z

x y

e x

e
y

Ax Ay

Figure 3 Setting in the proof of Lemma 8 if z is not a terminal.

shows that Ax satisfied the bound (8) when it was considered in Step 2 and would have been
cut off. Analogously, WAy ̸= µ. Thus, WAx , WAy < µ. Since (8) does not hold for Ax, we
get (by transforming its negation)(

1
WAx

− 1
µ

)
︸ ︷︷ ︸

>0

DAx
>

∑
e=(u,v)∈E(Ax)

(
µ

2 −
2(WAx

− W(Ax)v
)W(Ax)v

WAx

)
c(e) + µ

2 c(ex)

Combining this with the analogue inequality for Ay and using DAz
= DAx

+ DAy
, we get(

1
WAz

− 1
µ

)
︸ ︷︷ ︸

<0

DAz

<

(
1

WAz

− 1
µ

)( ∑
e=(u,v)∈E(Ax)

1
1

WAx
− 1

µ

(
µ

2 −
2(WAx

− W(Ax)v
)W(Ax)v

WAx

)
c(e)

+
µ
2

1
WAx

− 1
µ

c(ex)

+
∑

e=(u,v)∈E(Ay)

1
1

WAy
− 1

µ

(
µ

2 −
2(WAy

− W(Ay)v
)W(Ay)v

WAy

)
c(e)

+
µ
2

1
WAy

− 1
µ

c(ey)
)

.

This inequality together with∑
e=(u,v)∈E(Az)

(2(WAz − W(Az)v
)W(Az)v

WAz

− µ

2

)
c(e)

=
∑

e=(u,v)∈E(Ax)

(2(WAz
− W(Az)v

)W(Az)v

WAz

− µ

2

)
c(e)

+
(2(WAz

− W(Az)x
)W(Az)x

WAz

− µ

2

)
c(ex)

+
∑

e=(u,v)∈E(Ay)

(2(WAz
− W(Az)v

)W(Az)v

WAz

− µ

2

)
c(e)

+
(2(WAz − W(Az)y

)W(Az)y

WAz

− µ

2

)
c(ey)

APPROX/RANDOM 2023
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yields

∑
e=(u,v)∈E(Az)

(2(WAz
− W(Az)v

)W(Az)v

WAz

− µ

2

)
c(e) +

(
1

WAz

− 1
µ

)
DAz

<
∑

e=(u,v)∈E(Ax)

f(WAz
, WAy

, W(Az)v
)c(e) +

∑
e=(u,v)∈E(Ay)

f(WAz
, WAx

, W(Az)v
)c(e)

+ g(WAz
, WAy

, W(Az)v
)c(ex) + g(WAz

, WAx
, W(Az)v

)c(ey).

By Lemma 7 and 0 < WAx
, WAy

< µ, the last term is non-positive. Therefore Az satisfied the
bound (8) when it was considered in Step 2 and would have been cut off, a contradiction. ◀

In [15] the final root arborescence Ar, which was not cut off in Step 2 of Algorithm 1,
was kept unaltered. Using Lemma 8, we show how to connect it in a better way.

▶ Lemma 9. Let Ar be the sub-arborescence of A0 rooted at r after the modified Step 2 of
Algorithm 1. The terminal set TAr can be connected to the root r with total cost at most(

1 + µ

2

)
CAr

+
(

1 + 1
µ

)
DAr

.

Proof. Let (r, x) ∈ δ+
Ar

(r) be arbitrary and Ax the arborescence of Ar − r rooted at x. We
show that the terminal set TAx

can be connected to the root r with total cost at most(
1 + µ

2

)
(CAx

+ c(r, x)) +
(

1 + 1
µ

)
DAx

.

Adding this cost for all edges in δ+
Ar

(r), we obtain the claim.
We distinguish between two cases:

Case 1.

WAx(CAx + c(r, x)) ≤ µ

2 (CAx + c(r, x)) + 1
µ

DAx .

By keeping the arborescence Ax connected through (r, x), the connection cost is CAx
+c(r, x).

In particular, for each terminal t ∈ TAx , the r-t-path in Ax + (r, x) has a length of at most
CAx

+ c(r, x). We therefore obtain a total cost of at most

(1 + WAx
)(CAx

+ c(r, x)) ≤
(

1 + µ

2

)
(CAx

+ c(r, x)) + 1
µ

DAx
.

Case 2.

WAx
(CAx

+ c(r, x)) >
µ

2 (CAx
+ c(r, x)) + 1

µ
DAx

. (9)

Therefore we have WAx
> 0 and obtain from (9) an upper bound on the minimum possible

delay cost of Ax

DAx
<
(

WAx
− µ

2

)
µ(CAx

+ c(r, x)). (10)
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We remove the edge (r, x) and connect the arborescence Ax to the root r. By Lemma 8,
WAx

≤ µ. As in Lemma 4 we obtain total cost of at most(
1 + WAx

2

)
CAx

+
(

1 + 1
WAx

)
DAx

=
(

1 + WAx

2

)
CAx

+
(

1 + 1
µ

)
DAx

+ µ − WAx

µWAx︸ ︷︷ ︸
≥0

DAx

(10)
≤
(

1 + WAx

2

)
CAx +

(
1 + 1

µ

)
DAx + µ − WAx

µWAx

(
WAx − µ

2

)
µ(CAx + c(r, x))

≤
(

1 − WAx

2 + 3
2µ − µ2

2WAx

)
(CAx + c(r, x)) +

(
1 + 1

µ

)
DAx .

With the following estimation we obtain the claimed bound

−WAx

2 + 3
2µ − µ2

2WAx

= µ

2 − 1
2

(√
WAx

− µ√
WAx

)2

≤ µ

2 . ◀

▶ Theorem 10. Algorithm 2 and the re-connect in Step 3 as well as of the root component
can be implemented to run in time O(|T |).

Proof. A naïve implementation would immediately result in a quadratic running time. We can
achieve a linear running time by computing all relevant information incrementally in constant
time per node during the bottom-up traversal. Details can be found in Appendix C. ◀

4.2 Proving Theorem 1 and Theorem 2
We start by analyzing the combination of all sub-arborescences.

▶ Theorem 11. Given an instance (T, r, w) of the Uniform Cost-Distance Steiner
Tree Problem, we can compute in O(Λ + |T |) time a Steiner tree with objective value at
most(

1 + µ

2

)
C +

(
1 + 1

µ

)
D, (11)

where C is the cost of a β-approximate minimum-length Steiner tree and D := D(T, r, w).
Here, Λ is the running time for computing a β-approximate minimum Steiner tree for T ∪{r}.

Proof. We run Algorithm 1 with two modifications:
1. The cut-off routine (Step 2) is modified according to Algorithm 2.
2. The arborescence Ar containing the root r after Step 2 may be re-connected to the root

r according to Lemma 9.

The total cost of the computed solution is upper bounded by the sum of the cost bounds
for these r-arborescences, which is (11). For the running time analysis, we consider the
individual steps of the algorithm:

In Step 1, a β-approximate minimum Steiner tree for T ∪ {r} is computed in time O(Λ)
and transformed into the arborescence A0 obeying the degree constraints in linear time as
in [15]. The linear running time of Step 2 and Step 3 follows from Theorem 10. ◀

Finally, we choose the threshold µ based on the quantities C and D to prove Theorem 1:

APPROX/RANDOM 2023
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Table 1 Comparison of approximation factors for the Uniform Cost-Distance Steiner Tree
Problem with different approximation factors β for the minimum-length Steiner tree problem.

Parameter β 1 ln(4) + ϵ 3
2 2

Algorithm 1 [15] 2.00000 2.38630 2.50000 3.00000
Theorem 1 1.70711 2.04782 2.15139 2.61804

Proof of Theorem 1. We make the following modification of the algorithm in Theorem 11:
If C = c(E(A0)) = 0, each r-t-path, t ∈ T , has length 0 in A0. So this is already an

optimal solution and we just return A0.
Otherwise, set µ :=

√
2D
C and the algorithm from Theorem 11 provides us with a solution

with total cost at most

C + D +
√

2
√

CD ≤ βCSMT (T ∪ {r}) + D +
√

2
√

βCSMT (T ∪ {r}) · D.

We divide this by the lower bound CSMT (T ∪ {r}) + D in (2). Now, the approximation
factor is at most the maximum of the function h : R>0 × R≥0 → R given by

h(x, y) := βx + y +
√

2
√

βxy

x + y
.

As we proof in Appendix D using algebraic reformulations,

h(x, y) ≤ β + β√
β2 + 1 + β − 1

,

proving the claimed approximation ratio. ◀

Using Theorem 1 we obtain the approximation factors shown in Table 1 (rounded to five
decimal digits) for some interesting values of β in Table 1.

Proof of Theorem 2. This is a direct consequence of Theorem 3 and Theorem 1 for
β = 1. ◀

5 Conclusion

We significantly improve the approximation factor for the Uniform Cost-Distance Steiner
Tree Problem. For the lower bound (2) it is best possible if the minimum-length Steiner
tree problem can be solved optimally.

This is achieved by an enhancement of the cut-off routine, where we do not simply cut
off by delay weight, but take the (cost) structure of the sub-arborescences into account.
Furthermore, the root component will be reconnected in a smarter way.

Our algorithm is very fast. After computing an approximate minimum-length Steiner
tree, the remaining cutting and re-assembling takes linear time, which previously took a
quadratic running time.

Based on the lower bound gap result, further attempts to improve the approximation
ratio should rather focus on improving the lower bound. However, this does not appear to
be easy.
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A Proof of Lemma 4

Proof (Lemma 4). Note that Lemma 1 in [15] states only the bound (7). The bounds (5)
and (6) follow immediately from their proof, which we will briefly sketch: We choose a
terminal t ∈ T ′ randomly with probability pt := w(t)

WA′
as the “port” vertex (only for the

analysis). Then we obtain:
The expected cost of (r, t) is E(c(r, t)) =

∑
t∈T ′ ptc(r, t) = 1

WA′
DT ′ .

The (deterministic) connection cost within A′ is CA′ .
The expected effective delay cost of (r, t) is

E(WA′ · c(r, t)) = WA′ ·
∑
t∈T ′

ptc(r, t) = DT ′ .

The expected delay weight served by an edge (x, y) ∈ E(A′) is

WA′
y

WA′
· (WA′ − WA′

y
) +

WA′ − WA′
y

WA′
· WA′

y
=

2WA′
y
(WA′ − WA′

y
)

WA′
≤ WA′

2 ,

where A′
y is the sub-arborescence of A′ − (x, y) containing y. The formula reflects the

expected component of (A′ − (x, y)) in which the port vertex is located. Summation over
all edges in A′ yields the following expected delay cost contribution of E(A′):∑

e=(x,y)∈E(A′)

2WA′
y
(WA′ − WA′

y
)

WA′
c(e) ≤ WA′

2 CA′ .

The addition of these four terms gives the expected total cost of connecting A′ to the
root r, and provides the bound in (5). The bounds (6)-(7) follow as (5) is maximized for
WA′

y
= 1

2 WA′ and WA′ ≤ 2µ or A′ is a (heavy) singleton. The deterministic best choice of
the “port” vertex in Algorithm 1 cannot be more expensive. ◀

B Proof of Lemma 7

Proof. Note that the functions f and g differ only in the last factor. Actually, because
of 1

a − 1
µ < 0, 1

1
a−b − 1

µ

> 0 and µ
2 − 2((a−b)−c)c

a−b ≤ µ
2 we get f(a, b, c) ≥ g(a, b, c) for all

(a, b, c) ∈ Xµ, so it is sufficient to show f(a, b, c) ≤ 0.
We have

f(a, b, c) = 4ca − 4c2 − µa

2a
+ (µ − a)(a − b)

a(µ + b − a)

(
µ(a − b) − 4c(a − b − c)

2(a − b)

)
= (µ − a)(4ca − 4c2 − µa) + b(4ca − 4c2 − µa)

2a(µ + b − a)

+ (µ − a) (µ(a − b) − 4c(a − b − c))
2a(µ + b − a)

= b(4ca − 4c2 − µa) + b(µ − a)(4c − µ)
2a(µ + b − a)

= b(4ca − 4c2 − µa + 4µc − µ2 − 4ca + µa)
2a(µ + b − a)

= − b(2c − µ)2

2a(µ + b − a)
≤ 0,

where µ + b − a > 0 by (a, b, c) ∈ Xµ. ◀
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C Detailed Proof of Theorem 10

Proof (Theorem 10). We will proof two claims:
1. Checking whether a branch should be cut off at the traversed vertex can be done in O(1)

time.
2. Choosing the ports can be done in linear time.
Then, we just observe that Step 2 traverses the initial tree once, which also needs linear time.

Proof of Claim 1. We keep track of five values for each node v and its correspond-
ing sub-arborescence Av := (A0)v: Wv := WAv , the weight inside Av, Dv := DAv ,
the minimum possible delay cost of Av, Cv := CAv

, the connection cost of Av, S1
v :=∑

e=(p,q)∈E(Av) Wq(Wv − Wq)c(e) and S2
v :=

∑
e=(p,q)∈E(Av) Wqc(e).

For leaves, we can compute these in constant time. For a node v with only one child
x (because the other has been cut off), we can compute the values as follows: Wv = Wx,
Dv = Dx, Cv = Cx + c(v, x), S1

v = S1
x, and S2

v = S2
x + Wxc(v, x).

Whenever we consider a node v with children x and y, and Ax := (Av)x and Ay := (Av)y,
we can compute the values for v like so: Wv = Wx + Wy, Dv = Dx + Dy, Cv = Cx + c(v, x) +
Cy + c(v, y),

and

S1
v =

∑
e=(p,q)∈E(Av)

Wq(Wv − Wq)c(e)

=

 ∑
e=(p,q)∈E(Ax)

Wq(Wv − Wq)c(e)

+ Wx(Wv − Wx)c(v, x)

+

 ∑
e=(p,q)∈E(Ay)

Wq(Wv − Wq)c(e)

+ Wy(Wv − Wy)c(v, y)

=

 ∑
e=(p,q)∈E(Ax)

Wq(Wx − Wq)c(e)

+

 ∑
e=(p,q)∈E(Ax)

WqWyc(e)


+ Wx(Wv − Wx)c(v, x)

+

 ∑
e=(p,q)∈E(Ay)

Wq(Wy − Wq)c(e)

+

 ∑
e=(p,q)∈E(Ay)

WqWxc(e)


+ Wy(Wv − Wy)c(v, y)

= S1
x + WyS2

x + Wx(Wv − Wx)c(v, x) + S1
y + WxS2

y + Wy(Wv − Wy)c(v, y)

and

S2
v = S2

x + Wxc(v, x) + S2
y + Wyc(v, y).

Proof of Claim 2. For each node v ∈ V (A′), the cost when using v as the port is

costv = c(r, v) + CA′ +
∑

t∈TA′

w(t) · (c(r, v) + c(E(A′
[v,t]))).

APPROX/RANDOM 2023
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So for an edge e = (x, y) ∈ E(A′) we have

costx − costy = c(r, x) − c(r, y) +
∑

t∈TA′

w(t)(c(r, x) − c(r, y)) +
∑

t∈TA′
y

w(t)c(e)

−
∑

t∈TA′ \TA′
y

w(t)c(e)

= (c(r, x) − c(r, y))(1 + WA′) + c(e)WA′
y

− c(e)(WA′ − WA′
y
).

This allows us to compute in constant time the cost for choosing y as the port from the
cost for choosing its parent x as the port. We take advantage of this property and first
compute the cost for using the root of A′ as the port in O(|E(A′)| + |TA′ |). Then, we find
the find the best “port” vertex in a top-down traversal in the claimed linear time. ◀

D Upper Bound on h(x, y)

We prove that for β ≥ 1, x, y ≥ 0, x + y > 0

h(x, y) := βx + y +
√

2
√

βxy

x + y

= β + (1 − β)y +
√

2
√

βxy

x + y

≤ β + β√
β2 + 1 + β − 1

.

Proof. For shorter notation, we set

a := β√
β2 + 1 + β − 1

> 0

and get

β

2a
+ 1 − β − a = 1

2
√

β2 + 1 − 1
2(β − 1) − β√

β2 + 1 + β − 1

= (
√

β2 + 1 − (β − 1))(
√

β2 + 1 + (β − 1)) − 2β

2(
√

β2 + 1 + β − 1)
= 0.

Therefore,

h(x, y) = β + (1 − β)y +
√

2
√

βxy

x + y
−

(
β
2a + 1 − β − a

)
y

x + y

= β +
√

2
√

βxy

x + y
−

(
β
2a − a

)
y

x + y

= β + a − ax

x + y
+

√
2
√

βxy

x + y
−

β
2a y

x + y

= β + a − a

x + y

(√
x −

√
β√
2a

√
y

)2

.

As a > 0, we obtain

h(x, y) ≤ β + a = β + β√
β2 + 1 + β − 1

. ◀
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α = 1 − 4/n, recover the integrality gap of 2 − 2/n of the standard linear programming relaxation,
where n is the number of vertices of the graph.
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We denote by OPT an optimal subset of vertices for this problem, and by w(OPT ) the total
weight of that solution. The vertex cover problem is known to be NP-complete [27] and
APX-complete [38]. Moreover, it was shown to be NP-hard to approximate within a factor
of 7/6 in [23], a factor later improved to 1.36 in [16]. It is in fact NP-hard to approximate
within a factor of 2 − ε for any fixed ε > 0 if the unique games conjecture is true [28].

A natural linear programming relaxation, as well as its dual, is given by:

min
∑
v∈V

wvxv

xu + xv ≥ 1 ∀(u, v) ∈ E

xv ≥ 0 ∀v ∈ V

max
∑
e∈E

ye

y(δ(v)) ≤ wv ∀v ∈ V

ye ≥ 0 ∀e ∈ E

For a given graph G, we denote the primal linear program by P (G) and the dual by D(G).
The integrality gap of the standard linear relaxation P (G) on a graph of n vertices is upper
bounded by 2 − 2/n, a bound which is attained on the complete graph. In fact, a more
fine-grained analysis shows that it is equal to 2 − 2/χf (G), where χf (G) is the fractional
chromatic number of the graph [45]. An integrality gap of 2 − ε is proved for a large class of
linear programs in [4]. It is also known that any linear program which approximates vertex
cover within a factor of 2 − ε requires super-polynomially many inequalities [10].

An important property of P (G) is the fact that any extreme point solution x∗ is half-
integral, i.e., x∗

v ∈ {0, 1
2 , 1} for any vertex v ∈ V [35]. This gives rise to a straightforward

rounding algorithm by solving P (G) and outputting all vertices whose LP variable is at least
a half, i.e., U := {v ∈ V | x∗

v ≥ 1
2 }. It is easy to see that this a 2-approximation, because

w(U) ≤ 2w(OPT ), see [24]. Moreover, it is known that P (G) is integral for any bipartite
graph [30]. As a consequence, the rounding algorithm returns an optimal solution if the
graph is bipartite. This raises the question of whether we can interpolate the rounding curve
of the standard linear program, depending on how close the graph is to being bipartite.

Set-up and algorithm
We consider the following setup. We are given a weighted non-bipartite graph G = (V, E, w)
and an optimal solution x∗ ∈ {0, 1

2 , 1} to P (G). We denote by Vα := {v ∈ V | x∗
v = α} the

vertices taking value α and by Gα = G[Vα] the subgraph of G induced by the vertices Vα for
any α ∈ {0, 1

2 , 1}. By a standard preprocessing step, we may assume that we only work on
the graph G1/2, since any c-approximate solution on this reduced graph can be lifted to a
c-approximate solution on the original graph by adding the nodes V1 to the solution [35]. In
addition, we suppose that we have knowledge of an odd cycle transversal S of G1/2, meaning
that G1/2 \ S is a bipartite graph. Equivalently, S intersects every odd cycle of G1/2. The
question of finding a good such odd cycle transversal is also tackled later in the paper.

We consider the following simple round and bipartize algorithm, detailed in Algorithm 1.
It first solves P (G), takes the vertices assigned value one by the linear program to the solution
and removes all the integral nodes from the graph to arrive at G1/2. The algorithm then
takes all the vertices in the set S to the solution, removes them from the graph and solves
another (now integral) linear program to get the optimal solution on the bipartite remainder.
These vertices are then also added to the solution.

The question studied is the following. What is the worst-case approximation ratio of
the algorithm and which weight functions are attaining it? Our motivation to study this
question comes from the structural difference between the polyhedron of P (G) for bipartite
and non-bipartite graphs. In particular, we are interested in identifying parameters of the
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Algorithm 1 Round and bipartize.
Input: Weighted graph G = (V, E, w), odd cycle transversal S ⊂ V1/2
Output: Vertex cover U ⊂ V

1: Solve the linear program P (G) to get V0 , V1/2 and V1
2: Solve the integral linear program P (G1/2 \ S) to get W ⊂ V1/2
3: return V1 ∪ S ∪ W

problem that enable us to derive more fine-grained bounds determining the approximation
ratio of the algorithm, and allow to interpolate the rounding curve of the standard linear
program from 1 to 2, depending on how far the graph is from being bipartite. As it turns
out, the odd girth, i.e., the length of the shortest odd cycle, is a key parameter determining
tight bounds on the approximation ratio. It is also a natural parameter, since a graph is
bipartite if and only if it does contain an odd cycle. The larger the odd girth, the closer the
graph is to being bipartite. It is also shown in [21] that graphs with a large odd girth admit
a small cardinality odd cycle transversal.

Contributions and high-level view

We first do a pre-processing step and show that we may without loss of generality focus
on weighted graphs G = (V, E, w) where the weights come from a certain weight space QW .
Each edge has a dual weight ye ≥ 0 with a total sum of y(E) = 1, and the weight on each
node is then determined by wv = y(δ(v)). This follows from the Nemhauser-Trotter theorem,
complementary slackness and an appropriate normalization.

We then do the analysis under the assumption that S is a stable set, highlighting the
main ideas of the analysis and the proof techniques. We show that the approximation ratio
is upper bounded by 1 + 1/ρ, where 2ρ − 1 denotes the odd girth of the graph G̃ := G/S,
where all the vertices in S are contracted into a single node. Note that the parameter range
is ρ ∈ [2, ∞], with ρ = ∞ naturally corresponding to the case where G̃ is bipartite. The
proof technique involves a key concept, that we call pairwise edge-separate feasible vertex
covers. Constructing k such covers allows to bound the approximation ratio by 1 + 1/k. The
construction of ρ such covers to get the result follows from a structural understanding of
the contracted graph G̃. As a byproduct, this structural understanding also allows to get
improved bounds on the integrality gap and the fractional chromatic number of 3-colorable
graphs. In particular, it even manages to compute an exact formula, depending on the odd
girth, for the integrality gap and the fractional chromatic number of the contracted graph G̃.

We then construct a class of weight functions W ⊂ QW where this upper bound holds
with equality, thus showing that this proof technique obtains tight bounds and might have
additional applications. This result can then be lifted to the case where S is a general set,
by introducing an additional parameter α counting the total dual sum of the weights on the
edges inside S, i.e. α = y(E[S]). This then leads to an approximation ratio interpolating the
rounding curve of the standard linear program with a tight bound of (1 + 1/ρ)(1 − α) + 2α

for any values of ρ ∈ [2, ∞] and α ∈ [0, 1].
We then discuss algorithmic applications to find good such sets S, connecting to the

MinUnCut and Colouring problems. Finally, we show that our analysis is optimal in the
following sense: the worst case bounds for ρ and α, which are ρ = 2 and α = 1 − 4/n, recover
the integrality gap of 2 − 2/n of the standard linear programming relaxation for a graph on
n vertices.

APPROX/RANDOM 2023
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Implications and related work

Our analysis falls into the framework of beyond the worst-case analysis [41]. In particular,
note that an odd cycle transversal always exists: we may simply take S = V1/2, which
recovers the standard 2-approximation algorithm for vertex cover. Depending on how S is
chosen, our algorithm can however admit significantly better approximation ratios.

Our algorithm also connects to learning-augmented algorithms, which have access to
some prediction in their input (e.g., obtained for instance through machine learning). This
prediction is assumed to come without any worst-case guarantees, and the goal is then to
take advantage of it by making the algorithm perform better when this prediction is good,
while still keeping robust worst-case guarantees when it is off [7, 33, 39, 31, 2, 3]. In our
case, assuming a prediction on the set S, robustness is guaranteed since we are never worse
than a 2-approximation. In fact, even if the predicted set is not an odd cycle transversal,
one may simply greedily add vertices to it until it becomes one, while still guaranteeing
a 2-approximation. Otherwise, our results provide a precise understanding of how the
approximation ratio improves depending on the predicted set S. In addition, once such a set
S is found, the parameters α and ρ can easily be computed to see the improved guarantee
on the approximation ratio. One may thus re-run the machine learning algorithm if the
parameters give a bound very close to the worst-case of 2.

The odd cycle transversal number oct(G) is defined as the minimum number of vertices
needed to be removed in order to make the graph bipartite. The minimum odd cycle
transversal problem has been studied in terms of fixed-parameter tractability [40, 29]. In
particular, it is the first problem where the iterated compression technique has been applied
[40], now a classical tool in the design of fixed-parameter tractable algorithms. The best
known approximation algorithm for it has a ratio of O(

√
log(n)) [1]. Another relevant concept

is the odd cycle packing number ocp(G), defined as the maximum number of vertex-disjoint
odd cycles of G and satisfying ocp(G) ≤ oct(G). The related maximum stable set problem
has been studied in terms of ocp(G) in [11, 5, 15, 19].

A key property implying the integrality of a polyhedron is the total unimodularity (TU)
of the constraint matrix describing the underlying problem, meaning that all the square
subdeterminants of the matrix are required to lie in {−1, 0, 1} (see for instance [43, 44]). In
general we believe it is an interesting question to study whether one may exploit the knowledge
of a TU substructure in an integer program to obtain improved approximation guarantees
through rounding algorithms. In our case, the knowledge of an odd cycle transveral S is
equivalent to the knowledge of an induced bipartite subgraph G′ = G \ S, for which P (G′) is
TU. We hope the techniques introduced for the pair (G, S) can help tackle other problems.

One technique which might also benefit from our analysis is iterative rounding, which
requires solving a linear program at each iteration [32]. Having a better analysis for the case
where the linear program becomes integral could potentially be used to reduce the number
of iterations and allow for better guarantees, since iterative rounding can terminate at this
step without losing solution quality.

Several different algorithms achieving approximation ratios of 2 − o(1) have been found
for the weighted and unweighted versions of the vertex cover problem: [26, 22, 9, 34, 8, 25].
Another large body of work is interested in exact fixed parameter tractable algorithms for
the decision version: [12, 6, 13, 14, 17, 36, 37, 46, 18].
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2 Preliminaries

We define R+ to be the non-negative real numbers and [k] := {1, . . . , k} to be the natural
numbers up to k ∈ N. For a vector x ∈ Rn, we denote the sum of the coordinates on a
subset by x(A) :=

∑
i∈A xi. A key property of P (G) was introduced by Nemhauser and

Trotter in [35]. It essentially allows to reduce an optimal solution x∗ ∈ {0, 1
2 , 1}V to a fully

half-integral solution by looking at the subgraph induced by the half-integral vertices. As
before, we denote by Vα := {v ∈ V | x∗

v = α} the vertices taking value α and by Gα = G[Vα]
the subgraph induced by the vertices Vα.

▶ Theorem 1 (Nemhauser, Trotter [35]). Let x∗ ∈ {0, 1
2 , 1}V be an optimal extreme point

solution to P (G). Then, w(OPT (G1/2)) = w(OPT (G)) − w(V1).

▶ Corollary 2. Let x∗ ∈ {0, 1
2 , 1}V be an optimal solution to P (G). If S ⊂ V1/2 is a feasible

vertex cover on G1/2 with approximation ratio at most ϕ, i.e., w(S) ≤ ϕ w(OPT (G1/2)), then
w(S) + w(V1) ≤ ϕ w(OPT (G)).

The previous corollary thus implies that we may restrict our attention to the graph G1/2,
since any ϕ-approximate solution on this reduced instance can be lifted to a ϕ-approximate
solution on the original graph by adding V1 to the solution. Note that on the weighted graph
G1/2, the solution ( 1

2 , . . . , 1
2 ) is optimal.

For a given set S ⊂ V , we define G′ := G \ S = (V ′, E′) to be the graph obtained by
removing the set S and all the incident edges to it. Hence, E = E′ ∪ δ(S) ∪ E[S] where
δ(S) = {(u, v) ∈ E | u ∈ S, v /∈ S} and E[S] := {(u, v) ∈ E | u ∈ S, v ∈ S}. We also denote
by G̃ := G/S = (Ṽ , Ẽ) the graph obtained by contracting all the vertices in S into a single
new node vS ∈ Ṽ . We allow for multiple edges, but no self-loops. The only edges present in
E but not in Ẽ are thus the ones with both endpoints in S, i.e., E[S].

3 Weight Space

By Corollary 2, we may assume that every weighted graph G we work with has the property
that the fully half-integral solution x = ( 1

2 , . . . , 1
2 ) is an optimal solution to the linear program

P (G). In this section, we characterize the weight functions satisfying this assumption. The
following lemma is a simple application of complementary slackness and the proof is omitted.

▶ Lemma 3. Let G = (V, E) be a graph and let w : V → R+ be a weight function. The
feasible solution ( 1

2 , . . . , 1
2 ) to the linear program P (G) is optimal if and only if there exists

y ∈ RE
+ satisfying y(δ(v)) = wv for every v ∈ V .

Such instances have been called edge-induced in [15, 19], in the sense that the dual values
on the edges are free parameters, and the weights on the nodes are determined once the dual
values are fixed. Such instances also satisfy:

w(V ) =
∑
v∈V

wv =
∑
v∈V

y(δ(v)) =
∑
v∈V

∑
e∈E

ye 1{e∈δ(v)} =
∑
e∈E

ye

∑
v∈V

1{e∈δ(v)} = 2 y(E).

Observe that the approximation ratio of a feasible solution U ⊂ V is defined as
w(U)/w(OPT (G)) and is invariant under scaling of the weights. We thus make a normaliza-
tion ensuring that the optimal LP solution has objective value one, i.e., w(V )/2 = y(E) = 1,
to get the following weight space polytope:

QW :=
{

w ∈ RV
+ | ∃y ∈ [0, 1]E such that y(E) = 1 and wv = y(δ(v)) ∀v ∈ V

}
.

APPROX/RANDOM 2023



20:6 Round and Bipartize for Vertex Cover Approximation

We end this section by showing that this normalization of the weight space allows us to get a
convenient lower bound on w(OPT (G)).

▶ Lemma 4. Let G = (V, E) be a graph. For any w ∈ QW , w(OPT (G)) ≥ 1.

Proof. Since w ∈ QW , we know that the fully half-integral solution is an optimal linear
programming solution, showing 1 = w(V )/2 ≤ w(OPT (G)), by feasibility of OPT (G). ◀

4 Round and Bipartize

4.1 Algorithm
This section is devoted to the analysis of the approximation ratio of the algorithm and is
the main contribution of the paper. We assume that we are given as input a pair (G, S)
consisting of a weighted graph and an odd cycle transversal S ⊂ V . By Corollary 2, we may
assume that the weight function satisfies w ∈ QW . By the previous section, there are dual
edge weights ye ≥ 0 such that wv = y(δ(v)) for every v ∈ V and which satisfy

∑
e∈E ye = 1.

The algorithm is now very simple. First, take the vertices in S ⊂ V to the cover and
remove them from the graph. Then solve the integral linear program P (G \ S) and take the
vertices having LP value one to the cover. The approximation ratio, given a weight function
w, is thus defined as

R(w) := w(S) + w(OPT (G \ S))
w(OPT (G)) . (1)

For simplicity of notation, we omit the dependence on w of OPT (G) and OPT (G \ S). As
a reminder, the bipartite graph G \ S is denoted by G′ = (V ′, E′). The vertex contracted
graph G/S is denoted by G̃ = (Ṽ , Ẽ) and the contracted node is denoted by vS .

4.2 Stable Set to Bipartite
We assume in this section that S is a stable set. We will then generalize the results obtained
here in a natural way to the most general setting of an arbitrary set S. We now state our
main theorem of this section.

▶ Theorem 5. Let (G, S) be the input to the rounding algorithm, with S being a stable set.
For any w ∈ QW , the approximation ratio satisfies R(w) ≤ 1 + 1/ρ, where 2ρ − 1 is the odd
girth of the contracted graph G̃ and satisfies ρ ∈ [2, ∞]. Moreover, this bound is tight and is
attained for a class of weight functions W ⊂ QW .

▶ Remark 6. We define the odd girth of a bipartite graph as being ∞.

▶ Definition 7. Let (G, S) be a pair consisting of a graph with an odd cycle transversal S.
For a feasible vertex cover U ⊂ V \ S of the bipartite graph G′ = G \ S, we define

EU :=
{

(u, v) ∈ E
∣∣ u ∈ U, v ∈ U or u ∈ U, v ∈ S

}
.

In words, these are the edges with either both endpoints in the cover U , or with one endpoint
in U and one in S.

▶ Definition 8. Let (G, S) be a pair consisting of a graph with an odd cycle transversal S.
Feasible vertex covers U1, . . . , Uk of the bipartite graph G′ = G \ S are defined to be pairwise
edge-separate if the edge sets {EU1 , . . . , EUk

} are pairwise disjoint.
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▶ Remark 9. We will often say that covers are pairwise edge-separate for the pair (G, S). It is
however worth emphasizing that these covers are defined on the bipartite graph G′ = G \ S.

This definition turns out to be the key concept for us in order to prove improved bounds
on the approximation ratio of the algorithm, as shown by the next lemma.

▶ Lemma 10. Let (G, S) be the input to the rounding algorithm, with S being a stable set.
If there exists k pairwise edge-separate feasible vertex covers of the bipartite graph G′ = G \ S,
then, for every w ∈ QW , the approximation ratio of the algorithm satisfies R(w) ≤ 1 + 1/k.

Proof. Let w ∈ QW and let y ∈ RE
+ be the corresponding dual solution satisfying wv = y(δ(v))

and y(E) = 1. We denote by {U1, . . . , Uk} the pairwise edge-separate covers of G′ = (V ′, E′).
We can now write down the weights of S and every feasible cover Ui with the help of the
dual variables:

w(S) =
∑
v∈S

wv =
∑
v∈S

y(δ(v)) = y(δ(S))

w(Ui) =
∑
v∈Ui

wv =
∑
v∈Ui

y(δ(v)) = y(E′) + y(EUi
) ∀i ∈ [k]

The first equality holds because S is a stable set and thus only has edges crossing the set.
The second equality holds because every Ui counts the dual value ye of every e ∈ E′ at least
once, by feasibility of the cover, and thus giving a contribution of y(E′). The edges in EUi

then give an additional contribution of y(EUi).
By Lemma 4, the approximation ratio satisfies:

R(w) = w(S) + w(OPT (G \ S))
w(OPT (G)) ≤ w(S) + w(OPT (G′)) ≤ w(S) + min

i∈[k]
w(Ui)

= y(δ(S)) + y(E′) + min
i∈[k]

y(EUi
) = 1 + min

i∈[k]
y(EUi

) ≤ 1 + 1
k

.

The last equality follows from the fact that E = E′ ∪ δ(S) and y(E) = 1. The last inequality
follows from the fact that the edge sets {EUi

}i∈[k] are pairwise disjoint and have a dual sum
of at most one, since the total sum of the edges of the graph is y(E) = 1. This minimum can
thus be upper bounded by 1/k. ◀

In order to prove the upper bound in Theorem 5, we thus need to construct ρ pairwise
edge-separate covers of G′ = G \ S. The key for being able to do that is to analyze the
structure of the contracted graph G̃ = G/S, where S is contracted into a single node vS .

▶ Lemma 11. Let (G, S) be a graph with an odd cycle transversal S. If the contracted graph
G̃ contains an odd cycle, then there exists ρ edge-separate feasible covers for the pair (G̃, vS),
where 2ρ − 1 is the odd girth of G̃.

Proof. We now dive deeper into the structure of the bipartite graph G \ S = G̃ \ vS . By
assumption, this graph admits a bipartition A ∪ B of the vertices. Let us assume that it
has k connected components A1 ∪ B1, . . . , Ak ∪ Bk, all of which are bipartite as well, where
A =

⋃
i Ai and B =

⋃
i Bi. We now fix an arbitrary such component Aj ∪ Bj .

If vS has an incident edge to both Aj and Bj , then this component contains (if including
vS) an odd cycle of G̃. This holds since any path between a node in Aj and a node in Bj

has odd length.
If vS has incident edges with only one side, we assume without loss of generality that
this side is Aj . One could simply switch both sides in the other case while still keeping a
valid bipartition of the graph G̃ \ vS .

APPROX/RANDOM 2023
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L0 L1 ... L2ρ−3

Figure 1 The layers of a bipartite graph G̃ \vS = (A∪B, E′) with ρ = 4. The blue square vertices
correspond to N(vS), where the two left ones are L0 = NA(vS) and the two right ones are NB(vS).

If vS does not have incident edges with either of the two sides, then Aj ∪Bj is a connected
component of G̃. We call such components dummy components and denote by Ad ∪ Bd

the bipartite graph formed by taking the union of all the dummy components.

We denote NA(vS) = N(vS) ∩ A and NB(vS) = N(vS) ∩ B. We now split the graph into
layers, where each layer corresponds to the nodes at the same shortest path distance from
NA(vS). More precisely, we define

Li :=
{

v ∈ A ∪ B | d(NA(vS), v) = i
}

for i ∈ {0, . . . , q} (2)

where d(NA(vS), v) represents the unweighted shortest path distance between v and a vertex
in NA(vS). The parameter q is defined to be the maximal finite distance from NA(vS) in the
graph G̃. An important observation is the fact that these layers are alternatingly included in
one side of the bipartition, see Figure 1 for an illustration of the construction.

If the graph G̃ is not connected, note that d(NA(vS), v) = ∞ for the vertices v lying
in dummy components. In order to add the dummy components to the layers and keep
alternation between the two sides of the bipartition, we define the last two layers to either
be {Lq+1 := Ad, Lq+2 := Bd} or {Lq+1 := Bd, Lq+2 := Ad}, depending on which side of
the bipartition the last connected layer Lq lies. We now have that Li ⊂ A if i is even, and
Li ⊂ B if i is odd. In fact,

A =
⌊l/2⌋⋃
i=0

L2i and B =
⌈l/2⌉⋃
i=1

L2i−1,

where the parameter l ∈ N represents the index of the last layer: if G̃ is connected, then
l = q, otherwise l = q + 2. Notice also that L0 = NA(vS). However, NB(vS) may now have
several different vertices in different layers, see Figure 1.

Let C ⊂ V be an arbitrary odd cycle of G̃. Notice that this cycle contains vS , a vertex
from NA(vS) and a vertex from NB(vS), since G̃ \ vS is bipartite and therefore does not
contain an odd cycle. Any odd cycle C in G̃ thus corresponds to an odd path between a
vertex in NA(vS) = L0 and a vertex in NB(vS). By the assumption that the shortest odd
cycle length of G̃ is 2ρ − 1, the first layer having a non-empty intersection with NB(vS) is
L2ρ−3. A shortest odd cycle of length 2ρ − 1 therefore corresponds to an odd path of length
2ρ − 3 between L0 and a vertex in L2ρ−3 ∩ NB(vS), see Figure 1 for an illustration. We now
define edges connecting two consecutive layers Li and Li+1 as follows:

E[Li, Li+1] := {(u, v) ∈ E′ | u ∈ Li, v ∈ Li+1} ∀i ∈ {0, . . . , l − 1}.

We also denote by

δA(vS) = {(vS , u) ∈ Ẽ | u ∈ A}, δB(vS) = {(vS , u) ∈ Ẽ | u ∈ B}

the incident edges to vS respectively connecting to A and B.
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EU4 = δA(vS)EU3 = δB(vS)

EU1 = E[L1,L2] EU2 = E[L3,L4]

Figure 2 The ρ feasible covers of G′ constructed in the proof of Lemma 11.

We are now ready to construct our desired ρ pairwise edge-separate covers of G̃ \ vS , that
we denote by U1, . . . , Uρ and illustrated in Figure 2. Firstly, notice that taking one side of
the bipartition is a feasible vertex cover. We thus define Uρ = A and Uρ−1 = B. Observe
that we then have EUρ

= δA(vS) and EUρ−1 = δB(vS). We now construct ρ − 2 additional
covers with the help of the layers. If ρ ̸= 2, fix a j ∈ [ρ − 2], and start the cover Uj by taking
the two consecutive layers L2j−1 and L2j . Complete this cover by taking remaining layers
alternatingly (hence always skipping one) until covering every edge of the graph. Notice that
this cover has an empty intersection with N(vS). We then have that

EUρ = δA(vS), EUρ−1 = δB(vS), EUj = E[L2j−1, L2j ] ∀j ∈ [ρ − 2],

which are all pairwise disjoint edge sets, finishing the proof. ◀

We now have all the tools to prove the upper bound of Theorem 5.

Proof. Asume first that ρ < ∞, meaning that G̃ contains an odd cycle. By Lemma 11,
there exists ρ pairwise edge-separate covers for the pair (G̃, vS). These covers are then still
edge-separate for the pair (G, S), since the bipartite graph is the same in both cases, i.e.
G′ = G̃ \ vS = G \ S. This finishes the proof by Lemma 10.

If ρ = ∞, then G̃ is bipartite, with a bipartition Ã ∪ B̃. Assume without loss of generality
that vS ∈ Ã. Note that Ẽ = E′ ∪ δ(vS) and thus 1 = y(Ẽ) = y(E′) + y(δ(vS)). Any feasible
cover of G′ = G \ S needs to count the dual value of every edge in E′ at least once. Taking
the cover Ã \ vS counts every edge in E′ exactly once, showing that w(OPT (G \ S)) = y(E′).
Hence, R(w) ≤ w(S) + w(OPT (G \ S)) = y(δ(vS)) + y(E′) = 1. ◀

We now show that this bound is tight and is attained for a class of weight functions
w ∈ W for any such graph G and stable set S. For the case where ρ = ∞, it is clear that
the approximation ratio always satisfies R(w) ≥ 1, showing that the bound in Theorem 5 is
tight for any w ∈ QW . We thus assume that ρ < ∞. Let C be all the shortest odd cycles (of
length 2ρ − 1) of the graph G̃, each of which is containing vS . For every such cycle C ∈ C, we
define the following dual function on the edges yC : Ẽ → R+: set both dual edges incident
to vS to 1/ρ and then alternatingly set the dual edges to 0 and 1/ρ along the odd cycle. For
any edge outside of C, set its dual value to 0. Such a solution clearly satisfies yC(Ẽ) = 1.
We now take the convex hull of all these functions:

Y :=
{

y : Ẽ → R+ | y =
∑
C∈C

λCyC ,
∑
C∈C

λC = 1, λC ≥ 0 ∀C ∈ C
}

.
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Figure 3 An example of a weight function w ∈ W obtained by a convex combination of two basic
weight functions of shortest odd cycles.

Because of the one-to-one correspondence between the edge sets Ẽ and E, due to the fact
that S is a stable set, we can naturally define a weight function on the original vertex set
once we fix a y ∈ Y by setting wv := y(δ(v)) for every v ∈ V . We define the space of all such
weight functions as W := {w : V → R+ | wv = y(δ(v)) ∀v ∈ V, y ∈ Y}.

▶ Theorem 12. For any weight function w ∈ W, the approximation ratio satisfies R(w) =
1 + 1/ρ, where 2ρ − 1 is the odd girth of G̃ and satisfies ρ ∈ [2, ∞).

Proof. Let C be the set of all the shortest odd cycles (of length 2ρ − 1) of the graph G̃ and
let w ∈ W with the corresponding y =

∑
C∈C λCyC . Notice that, for any subset of vertices

U ⊂ V ′ of the bipartite graph G′, we can count its weight as

w(U) =
∑
v∈U

wv =
∑
v∈U

y(δ(v)) =
∑
v∈U

∑
C∈C

λCyC(δ(v))

=
∑
v∈U

∑
C∈C

λC

ρ
1{v∈C} = 1

ρ

∑
C∈C

λC
∑
v∈U

1{v∈C} = 1
ρ

∑
C∈C

λC |U ∩ C|. (3)

The end of the proof now heavily uses the decomposition of G̃ into layers described in (2).
Notice that every odd cycle C ∈ C intersects each layer Li for i ∈ {0, . . . , 2ρ − 3} exactly
once. Therefore, by (3), w(Li) = 1/ρ for every i ∈ {0, . . . , 2ρ − 3}. We now claim that

w(OPT (G)) = 1, w(OPT (G′)) = ρ − 1
ρ

and w(S) = 2
ρ

.

The fact that w(OPT (G)) ≥ 1 follows from Lemma 4. For the reverse inequality, notice that
it is possible to take a feasible cover by taking exactly ρ layers in addition to the zero weight
vertices, for instance L0 ∪ L2 ∪ L3 ∪ L5 · · · ∪ L2ρ−3, showing w(OPT (G)) ≤ 1.

Observe now that w(OPT (G′)) = w(OPT (G \ S)) = w(OPT (G̃ \ vS)). After removal of
vS , every cycle C ∈ C becomes a path of length 2ρ − 3 (and thus consisting of 2ρ − 2 vertices),
with one vertex in each layer Li for i ∈ {0, . . . , 2ρ−3}. By feasibility, OPT (G′) has to contain
at least ρ − 1 vertices for every such path. Using (3), we infer w(OPT (G′)) ≥ (ρ − 1)/ρ. For
the reverse inequality, taking ρ − 1 layers alternatively, such as L0 ∪ L2 ∪ L4 · · · ∪ L2ρ−4, as
well as the zero weight vertices, builds a feasible cover of weight exactly (ρ − 1)/ρ.

Finally, notice that w(S) = w(vS) = 2/ρ because every C ∈ C contains vS . By combining
the three equalities, we get the desired result R(w) = 1 + 1/ρ. ◀

Integrality gap and fractional chromatic number
Observe that the graphs we work with in this section have chromatic number χ(G) = 3. We
focus now on the integrality gap and show again that the odd girth plays a key role. A
result that we use here is given by Singh in [45], which relates the integrality gap with the
fractional chromatic number of a graph: IG(G) = 2 − 2/χf (G).
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Figure 4 The plot of the approximation ratio R(w) with respect to the parameter α ∈ [0, 1].

▶ Theorem 13. Let G be a 3-colorable graph with color classes V = V1 ∪ V2 ∪ V3.

χf (G) ≤ 2 + min
i∈{1,2,3}

1
ρi − 1 , IG(G) ≤ 1 + min

i∈{1,2,3}

1
2ρi − 1

where 2ρi − 1 is the odd girth of the contracted graph G/Vi for each i ∈ {1, 2, 3}. Moreover,
equality holds if one color class only contains one vertex.

In particular, we manage to compute exact formulas of

χf (G̃) = 2 + 1
ρ − 1 , IG(G̃) = 1 + 1

2ρ − 1

for the contracted graph G̃. These statements generalize a result shown for the (odd) cycle
graph in [4, 42]. The proofs are left to the appendix due to space constraints and heavily use
the structural decomposition of the contracted graph G̃ into the layers (2), implying that it
may have further applications.

4.3 Arbitrary Set to Bipartite
We now consider the setting where S is now an arbitrary set. Our guarantee on the
approximation ratio will now also depend on the total sum of the dual variables on the edges
inside of the set S. We denote this sum by α := y(E[S]) ∈ [0, 1].

▶ Theorem 14. For any w ∈ QW , the approximation ratio satisfies

R(w) ≤
(

1 + 1
ρ

)
(1 − α) + 2α with α ∈ [0, 1] and ρ ∈ [2, ∞]

where 2ρ − 1 denotes the odd girth of the contracted graph G̃. Moreover, these bounds are
tight and are attained for any α ∈ [0, 1] and any ρ ∈ [2, ∞].

Proof. We only prove here the upper bound with ρ < ∞ and leave the remaining statements
to the appendix. The proof essentially follows the same arguments as the one of Lemma 10
with the α parameter incorporated, and we thus only highlight the main differences. We
decompose the weight of the set S with respect to the dual variables. The edges in E[S] are
counted twice, whereas the edges in δ(S) are counted once:

w(S) = 2α + y(δ(S)). (4)

APPROX/RANDOM 2023
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Consider the contracted graph G̃ = G/S = (Ṽ , Ẽ) and denote by vS the contracted node.
The edge set of this graph is now Ẽ = δ(S) ∪ E′ , since the edges in E[S] have been collapsed.
By Lemma 11, we can construct ρ edge-separate covers U1, . . . , Uρ ⊂ Ṽ \ vS for the pair
(G̃, vS). These covers are still edge-separate for the pair (G, S), implying

w(OPT (G \ S)) ≤ min
i∈[ρ]

w(Ui) = y(E′) + min
i∈[ρ]

y(EUi
) ≤ y(E′) + 1 − α

ρ
. (5)

The first inequality holds since every Ui is a feasible cover of G \ S. The second equality
holds by counting the weight of a cover Ui in terms of the dual edges. The last inequality
holds because the edge sets {EUi

}i∈[ρ] are pairwise disjoint, and their total dual sum is at
most 1 − α. Combining Lemma 4, (4) and (5),

R(w) ≤ 2α + y(δ(S)) + y(E′) + 1 − α

ρ
= 1 + α + 1 − α

ρ
=

(
1 + 1

ρ

)
(1 − α) + 2α. ◀

5 Algorithmic applications

We focus in this section on efficient ways to find odd cycle transversals with a low value for
the α parameter. In fact, once such a set S is found, there can also be freedom in the choice
of the dual solution in order to optimize the α parameter. This motivates the following
definition.

▶ Definition 15. Let (G, S, y, w) be a graph with an odd cycle transversal S ⊂ V , weights
w ∈ QW and a dual solution y ∈ RE

+. A tuple (G′, S′, y′, w′) is approximation preserving if

w(S) + w(OPT (G \ S)) ≤ w′(S′) + w′(OPT (G′ \ S′)).

Moreover, we say that α ∈ [0, 1] is valid for the pair (G, S) if there exists an approximation
preserving (G′, S′, y′, w′) such that α = y′(E[S′]).

Finding a valid α ∈ [0, 1] would directly allow us to use it in the bound of Theorem 14, where
the ρ parameter would correspond to the one of the approximation preserving graph. We
present here an application if a coloring of a graph can be found efficiently.

▶ Theorem 16. Let G = (V, E) be a graph with weights w ∈ QW that can be k-colored in
polynomial time for k ≥ 4. There exists an efficiently findable set S ⊂ V bipartizing the
graph and a valid α such that α ≤ 1 − 4/k, leading to an approximation ratio of

R(w) ≤ 2 − 4
k

(
1 − 1

ρ

)

Proof. Let us denote by V1, . . . , Vk the k independent sets defining the color classes of the
graph G. We assume without loss of generality that they are ordered by weight w(V1) ≤
w(V2) · · · ≤ w(Vk). Since w(V ) = 2, the two color classes with the largest weights satisfy
w(Vk−1) + w(Vk) ≥ 4/k. We define the bipartizing set to be the remaining color classes:
S := V1 ∪ · · · ∪ Vk−2. We denote by y ∈ RE

+ the dual solution satisfying complementary
slackness and y(E) = 1.

We now define an approximation preserving (G′, S′, y′, w′) in the following way. Let
G′ = Kk be the complete graph on k vertices, denoted by {v1, . . . , vk}. The weights are
defined to be

w′(vi) := w(Vi) and y′(vi, vj) := y(E[Vi, Vj ])
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for every i, j ∈ [k]. These clearly satisfy the complementary slackness condition y′(δ(vi)) =
w′(vi) for every i ∈ [k]. The bipartizing set is defined to be S′ := {v1, . . . , vk−2}. This tuple
is approximation preserving since w(S) = w′(S′) and w(OPT (G \ S)) ≤ w′(OPT (G′ \ S′)).
In order to prove the theorem, we still need to tweak the dual solution y′ to ensure α :=
y′(E[S′]) ≤ 1 − 4/k. Observe that w′(vk−1) + w′(vk) ≥ 4/k.

(i) If y′(vk−1, vk) = 0, then the result follows since in that case y′(δ(S′)) ≥ 4/k and thus
y′(E[S′]) ≤ 1 − 4/k.

(ii) If y′(E[S′]) = 0, then the result trivially follows as well.

Suppose thus that y′(E[S′]) > 0 and y′(vk−1, vk) > 0. Pick an arbitrary edge
(vi, vj) ∈ E[S′] satisfying y′(vi, vj) > 0 and consider the 4-cycle (vi, vj , vk−1, vk). Notice that
alternatively increasing and decreasing the dual values on the edges of this cycle by a small
amount ϵ > 0 gives another feasible dual solution satisfying the complementary slackness
condition. More formally, we set ϵ := min{y′(vi, vj), y′(vk−1, vk)}, decrease y′(vi, vj) and
y′(vk−1, vk) by ϵ, while increasing y′(vj , vk−1) and y′(vk, vi) by the same amount. Observe
that this leads to either (vi, vj) or (vk−1, vk) dropping to dual value zero. We can repeat
this procedure until either y′(E[S′]) = 0 or y′(vk−1, vk) = 0, finishing the proof of the
theorem. ◀

We now claim that this result is optimal in the following sense. Consider an n-vertex
graph. It is known that the integrality gap of the standard linear programming relaxation for
vertex cover is upper bounded by 2 − 2/n, a bound which is attained on the complete graph.
This implies that any approximation algorithm lower bounding w(OPT ) by comparing it to
the optimal LP solution, as we do in Lemma 4, cannot do better than 2 − 2/n in the worst
case. Setting ρ = 2 in Theorem 16, which corresponds to the worst case since ρ ∈ [2, ∞],
recovers this bound and a result of Hochbaum in [25].

We now make another connection with the MinUncut problem, which is defined on
a graph G = (V, E) with weights ye for every edge e ∈ E. The goal of the problem is to
find a cut of the graph which minimizes the total weight of uncut edges. This problem is
NP-hard and admits a O(

√
log(n)) approximation [1]. We call a MinUncut instance light

if its optimal solution is bounded above by y(E)/Ω(log(n)).

▶ Theorem 17. For any light MinUncut instance, combining the O(
√

log(n)) approximation
in [1] with Algorithm 1 outputs a vertex cover with approximation ratio at most R(w) ≤
1 + 1/ρ + o(1), where 2ρ − 1 is the odd girth of the contracted graph G̃ and satisfies ρ ∈ [2, ∞].

Proof. The key observation is that any feasible solution to the MinUncut problem of value
α gives an odd cycle transversal S satisfying y(E[S]) = α. Indeed, let (C, V \ C) be a feasible
solution, where the total weight of uncut edges is α. Observe that removing all the uncut
edges makes C and V \ C become stable sets, implying that the remaining graph is bipartite.
We then define S ⊂ V to be all the nodes incident to the uncut edges. Since removing all
the nodes in S also removes all the uncut edges, the remaining graph is bipartite. Moreover,
y(E[S]) = α.

By the lightness assumption and the weight space normalization, the optimal solution
α∗ satisfies α∗ ≤ y(E)/Ω(log(n)) = 1/Ω(log(n)). Running the O(

√
log(n)) approximation

algorithm then outputs a solution with value α ≤ O(
√

log(n)) α∗ ≤ 1/Ω(
√

log(n)) = o(1).
This therefore leads to an approximation guarantee of

R(w) =
(

1 + 1
ρ

)
(1 − α) + 2α = 1 + 1

ρ
+ α

(
1 − 1

ρ

)
≤ 1 + 1

ρ
+ o(1). ◀
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A Integrality Gap and Fractional Chromatic Number

We focus in this section on proving tight bounds for the integrality gap of 3-colorable graphs.
A key result that we use in this section is given by Singh in [45], which relates the integrality
gap with the fractional chromatic number of a graph. The latter is denoted as χf (G) and
is defined as the optimal solution of the following primal-dual linear programming pair.
We denote by I ⊂ 2V the set of all independent sets of the graph G. Solving these linear
programs is however NP-hard because of the possible exponential number of independent
sets.

min
∑
I∈I

yI∑
I∈I,v∈I

yI ≥ 1 ∀v ∈ V

yI ≥ 0 ∀I ∈ I

max
∑
v∈V

zv∑
v∈I

zv ≤ 1 ∀I ∈ I

zv ≥ 0 ∀v ∈ V

Note that χf (G) = 2 if and only if G is bipartite.

▶ Theorem 18 (Singh, [45]). Let G = (V, E) be a graph. The integrality gap of the vertex
cover linear programming relaxation P (G) is:

IG(G) = 2 − 2
χf (G) ,

where χf (G) is the fractional chromatic number of the graph G.

We first focus on graphs with the existence of a single vertex whose removal produces a
bipartite graph. The following theorem generalizes the result given for the cycle graph in
[4, 42] and turns out to be the same formula as for series-parallel graphs [20].

▶ Theorem 19. Let G = (V, E) be a non-bipartite graph and vp ∈ V such that G \ vp =
(A ∪ B, E′) is bipartite. Then,

χf (G) = 2 + 1
ρ − 1 ,

where 2ρ − 1 is the odd girth of G.

Proof of Theorem 19. We prove this theorem by constructing feasible primal and dual
solutions of objective value 2 + 1/(ρ − 1). By strong duality, these two solutions are then
optimal for their respective linear programs, hence proving the theorem.

We first construct the dual solution. Let C be the set of all the shortest odd cycles of G.
For any such cycle C ∈ C, define the dual solution zC ∈ RV by

zC
v =

{
1/(ρ − 1) if v ∈ C

0 if v ∈ V \ C



D. Kashaev and G. Schäfer 20:17

L0 L1 ... L2ρ−3

vp

Figure 5 An optimal dual solution constructed in the proof of Theorem 19. Each node on a
shortest odd cycle is assigned a fractional value of 1/(ρ − 1).

This solution is feasible since any independent set in an odd cycle of length 2ρ − 1 has size
at most ρ − 1. Indeed, fix an independent set I ∈ I, then:∑

v∈I

zC
v =

∑
v∈I∩C

1
ρ − 1 = |I ∩ C|

ρ − 1 ≤ 1.

Moreover, the objective value of this solution is:∑
v∈V

zC
v =

∑
v∈C

1
ρ − 1 = 2ρ − 1

ρ − 1 = 2 + 1
ρ − 1 .

Let us now construct the primal solution. We will do so by constructing 2ρ−1 independent
sets Ik ∈ I and assigning to each of them a fractional value of y(Ik) = 1/(ρ − 1). All the
other independent sets are assigned value zero. We split the bipartite graph G \ vp into the
layers

Li := {v ∈ A ∪ B | d(NA(vp), v) = i} for i ∈ {0, . . . , l}.

as explained in (2). As a reminder, any shortest odd cycle corresponds to a path between
L0 = NA(vp) and L2ρ−3 ∩ NB(vp). The original vertex set V is thus decomposed into
{vp} ∪ L0 ∪ · · · ∪ Ll, where each layer is an independent set and only has edges going out to
vp or its two neighbouring layers.

Let us first focus on the subgraph consisting of the vertices in {vp} ∪
⋃2ρ−3

i=0 Li, where
any shortest odd cycle has exactly one vertex per layer (per abuse of notation, we say
that {vp} is also a layer in this situation). For convenience of indexing, we rename these
layers as L̃1, . . . , L̃2ρ−1 where L̃1 = vp and L̃i = Li−2 for i > 1. We now create 2ρ − 1
independent sets on this subgraph in the following way. The first independent set is defined
as U1 = L̃1 ∪ L̃4 ∪ L̃6 · · · ∪ L̃2ρ−2, where we take the first layer L̃1, skip two before taking
the next one and then continue by taking the remaining layers alternatingly (hence always
skipping one), see Figure 6. Note that the layer following L̃2ρ−1 is assumed to be L̃1. This
procedure generates in fact a distinct independent set by starting at L̃k for any k ∈ [2ρ − 1]
and we denote the corresponding independent set by Uk. Notice that each layer is contained
in exactly ρ − 1 of the constructed independent sets {Uk | k ∈ [2ρ − 1]}.

We now focus on the subgraph consisting of the vertices in
⋃

i>2ρ−3 Li. We can construct
two different independent sets there by taking either the odd or even indexed layers, i.e.

R1 :=
⋃

i odd, i>2ρ−3
Li and R2 :=

⋃
i even, i>2ρ−3

Li.
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Figure 6 The 2ρ − 1 independent sets Ik constructed in the optimal primal solution. The blue
nodes correspond to {Uk | k ∈ [2ρ − 1]}, whereas the orange nodes correspond to {R1, R2}.

We now define our final 2ρ − 1 independent sets on the full graph as:

Ik :=
{

Uk ∪ R1 if vp /∈ Uk

Uk ∪ R2 if vp ∈ Uk

∀k ∈ [2ρ − 1].

These are in fact independent sets: in the first case, the first layer in R1 is L2ρ−1 whereas the
last layer in Uk has index at most 2ρ − 3, meaning that there are no two neighbouring layers.
In the second case, since vp ∈ Uk, we have that L2ρ−3 /∈ Uk, by construction of Uk. The last
layer in Uk thus has index at most 2ρ − 4, whereas the first layer in R2 is L2ρ−2, meaning
again that there are no two neighbouring layers. In addition, there is no edge between vp

and R2, because the only even indexed layer having edges sent to vp is L0 = NA(vp).
We now define our primal solution as

y(Ik) = 1
ρ − 1 ∀k ∈ [2ρ − 1],

and y(I) = 0 for every other independent set I ∈ I. We now show this is a feasible solution,
i.e. that every vertex v ∈ V belongs to at least ρ − 1 independent sets in {Ik | k ∈ [2ρ − 1]}.
For v ∈ {vp} ∪

⋃2ρ−3
i=0 Li, such a vertex lies by construction in exactly ρ − 1 independent sets

{Uk | k ∈ [2ρ − 1]}, and thus also of {Ik | k ∈ [2ρ − 1]}. For v ∈
⋃

i>2ρ−3 Li, if v belongs to
an even indexed layer, then it is contained in ρ − 1 of the desired independent sets. If it
belongs to an odd indexed layer, then it is contained in ρ of them. Therefore,

∑
I∈I,v∈I

yI =
2ρ−1∑
k=1

y(Ik) 1{v∈Ik} = 1
ρ − 1

2ρ−1∑
k=1

1{v∈Ik} ≥ 1.

The objective value of this primal solution is clearly 2 + 1/(ρ − 1). We have constructed
feasible primal and dual solutions with the same objective value. By strong duality, this
finishes the proof of the theorem. ◀
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We now consider the case where G = (V, E) is a graph with chromatic number χ(G) = 3.

▶ Theorem 20. Let G = (V, E) be a 3-colorable graph with color classes V = V1 ∪ V2 ∪ V3.
Then,

χf (G) ≤ 2 + min
i∈{1,2,3}

1
ρi − 1

where 2ρi − 1 is the odd girth of the contracted graph G/Vi for each i ∈ {1, 2, 3}. Moreover,
equality holds if one color class only contains one vertex.

Proof. We prove this theorem by constructing three feasible solutions of value 2 + 1/(ρi − 1)
for each i ∈ {1, 2, 3} to the primal linear program of the fractional chromatic number on the
graph G.

Fix an i ∈ {1, 2, 3} and consider the graph G̃ := G/Vi = (Ṽ , Ẽ) with odd girth 2ρi − 1.
We denote the contracted node by ṽ ∈ Ṽ . Since this graph is bipartite if we were to remove
ṽ, we know that its fractional chromatic number is equal to 2 + 1/(ρi − 1) by Theorem 19.
Let {Ĩk, k ∈ [2ρi − 1]} be the independent sets in the support of the optimal primal solution
of the graph G̃ constructed in the proof of this theorem. For each of these independent sets,
we extend them to the original graph in the following way:

Ik =
{

Ĩk if ṽ /∈ Ĩk

(Ĩk \ ṽ) ∪ Vi if ṽ ∈ Ĩk.

In words, if ṽ happens to belong to Ĩk, we replace it by Vi to get a valid independent set
in the original graph. Assigning fractional value y(Ik) = 1/(ρi − 1) for every k ∈ [2ρi − 1]
yields a feasible primal solution with objective value 2 + 1/(ρi − 1). Since we can do this for
every i ∈ {1, 2, 3}, and the optimal minimum value of the primal linear program is at most
the objective value of any of these feasible solutions, the proof is finished.

Moreover, this upper bound is in fact tight, since it holds with equality when one of the
color classes only contains one vertex by Theorem 19. ◀

B Arbitrary Set to Bipartite: Omitted Proofs

▶ Theorem 21. Let G = (V, E) be a graph and S ⊂ V such that G \ S = (A ∪ B, E′) is
bipartite. For any w ∈ QW , the approximation ratio satisfies

R(w) ≤ 1 + α with α ∈ [0, 1]

if the contracted graph G/S is bipartite.

Proof. The only change with respect to the previous proof is the bound on w(OPT (G \S)) in
(5). We denote the contracted graph by G̃ = G/S and by vS the contracted vertex. Suppose
G̃ admits the bipartition (Ã ∪ B̃, Ẽ) and assume without loss of generality that vS ∈ Ã. Note
that Ẽ = E′ ∪ δ(vS).

Any feasible cover of G \ S needs to count the dual value of every edge in E′ at least once.
Taking the cover Ã\vS counts every edge in E′ exactly once, showing that w(OPT (G \S)) =
y(E′). Hence, using y(E) = α + y(δ(S)) + y(E′) = 1, we get

R(w) ≤ 2α + y(δ(S)) + y(E′) = 1 + α. ◀
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▶ Theorem 22. Let α ∈ [0, 1] and let ρ ≥ 2. There exists a non-bipartite graph G = (V, E),
with weights (y, w) ∈ QY,W , and a set S ⊂ V with y(E[S]) = α, where G/S has odd girth
2ρ − 1 and which satisfies

R(w) =
(

1 + 1
ρ

)
(1 − α) + 2α.

Proof. An example of such a graph can be constructed as follows. We first construct G/S:
take an odd cycle of length 2ρ − 1 with a distinguished node vS and assign dual value
(1 − α)/ρ to both edges incident to it. Alternatively assign dual values 0 and (1 − α)/ρ along
the odd cycle for the remaining edges. In order to construct G, replace vS by a triangle S

with dual edges set to α, 0 and 0, where the two previous incident edges to vS are adjacent
to the endpoints of the edge with value α. Note that we replace it with a triangle instead of
a single edge in order to avoid G becoming bipartite. Similarly to the proof of Theorem 12,
one can check that

w(S) = 2α + 2 (1 − α)
ρ

; w(OPT (G \ S)) = (1 − α)(ρ − 1)
ρ

; w(OPT (G)) = 1.

Therefore,

R(w) = 2α + 2 (1 − α)
ρ

+ (1 − α)(ρ − 1)
ρ

=
(

1 + 1
ρ

)
(1 − α) + 2α. ◀

▶ Theorem 23. Let α ∈ [0, 1]. There exists a non-bipartite graph G = (V, E), with weights
(y, w) ∈ QY,W , and a set S ⊂ V with y(E[S]) = α, where G/S is bipartite and which satisfies

R(w) = 1 + α.

Proof. Let G be an arbitrary odd cycle. Consider an arbitrary edge (u, v) ∈ E and assign
it dual value α. The set S is defined to be S = {u, v}. Assign dual value zero to the edge
(u, w) ∈ E, where w is the second neighbour of u in the cycle. For the remaining edges,
arbitrarily assign dual values, while ensuring that they sum up to 1 − α. The fact that one
edge is equal to zero is necessary in order to get the exact formula w(OPT (G)) = 1, a feasible
cover showing w(OPT (G)) ≤ 1 being the following: take both endpoints of the edge (u, w)
and take remaining vertices alternatively (hence always skipping one) along the odd cycle.
All the edges are counted once, except for (u, w), which is counted twice but has value zero.
Moreover, w(S) = 2α + y(δ(S)) and w(OPT (G \ S)) = y(E′), where E′ is the edge set of the
bipartite graph G \ S. Therefore,

R(w) = 2α + y(δ(S)) + y(E′) = 1 + α. ◀
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Abstract
We consider the Generalized Makespan Problem (GMP) on unrelated machines, where we are given
n jobs and m machines and each job j has arbitrary processing time pij on machine i. Additionally,
there is a general symmetric monotone norm ψi for each machine i, that determines the load on
machine i as a function of the sizes of jobs assigned to it. The goal is to assign the jobs to minimize
the maximum machine load.

Recently, Deng, Li, and Rabani [8] gave a 3 approximation for GMP when the ψi are top-k
norms, and they ask the question whether an O(1) approximation exists for general norms ψ? We
answer this negatively and show that, under natural complexity assumptions, there is some fixed
constant δ > 0, such that GMP is Ω(logδ n) hard to approximate. We also give an Ω(log1/2 n)
integrality gap for the natural configuration LP.
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1 Introduction

We consider a question by Deng, Li and Rabani [8] about scheduling jobs to minimize
makespan on unrelated machines in the setting of more general norms. Recall that in the
unrelated machines setting, we are given n jobs and m machines where each job j ∈ [n]
has some arbitrary processing time pij on machine i ∈ [m]. Given an assignment of jobs to
machines, the load on a machine is the sum of the processing times of all the jobs assigned
to it. In a seminal result, Lenstra, Shmoys and Tardos [14] gave a 2-approximation for
minimizing the makespan (the maximum machine load). These results were later extended
to the problem of minimizing the ℓp-norm of the machine loads [1, 4, 13, 16].

In a breakthrough work [5], Chakrabarty and Swamy introduced a substantial gener-
alization of the problem to general symmetric monotone norms. Recall that a function
ϕ : Rm → R≥0 is a norm if it satisfies (i) ϕ(u) = 0 iff u = 0n, (ii) ϕ(αu) = |α|u for all u
and α ∈ R and, (iii) ϕ(u + v) ≤ ϕ(u) + ϕ(v). We say that ϕ is symmetric if ϕ(u) = ϕ(u′)
where u′ is some permutation of u, and it is monotone if ψ(u) ≤ ψ(v) for all u, v satisfying
0 ≤ u(i) ≤ v(i) for all i ∈ [m].

Surprisingly, they showed that for any arbitrary symmetric monotone norm ϕ : Rm → R≥0,
that determines the overall objective as a function of the individual machine loads, there is
an O(1) approximation. The approximation ratio was subsequently improved to 4 + ϵ [6]
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and more recently to 2 + ϵ [11], which remarkably almost matches the bound for makespan.
These results introduce several new ideas to handle general norms by relating them to the
special class of top-k norms1, and algorithmic techniques to work with them.

General inner and outer norms. An even further generalization was considered by Deng,
Li and Rabani [8], which we refer to as the generalized load-balancing (GLB) problem. Here,
additionally, each machine i also has an arbitrary symmetric monotone norm ψi : Rn → R≥0
referred to as the inner-norm, that determines the machine’s load as a function of the sizes
of the jobs assigned to it (note that all the results described previously have inner norm
ℓ1). Formally, given an assignment ρ : [n] → [m] of jobs to machines, the load on machine
i is load(i) = ψi(pρ

i ) where pρ
i is the vector of sizes of jobs assigned to i, i.e., pρ

i (j) = pij if
ρ(j) = i and 0 otherwise. The overall objective is ϕ(load), where load = (load(1), . . . , load(m))
is the vector of machine loads (where ϕ : Rm → R≥0 is the norm as in [5]). We shall refer
to ϕ as the outer-norm. Throughout this paper a general norm always means a symmetric
monotone norm.

In its full generality (when the ψi and ϕ are general), GLB becomes Ω(log n) hard
to approximate, as it generalizes2 the Set Cover problem when ψ = ℓ∞ and ϕ = ℓ1.
Interestingly, [8] gave a matching O(log n) approximation for general ψ and ϕ, based on
solving and rounding a novel configuration LP.

Generalized Makespan Problem (GMP). Given the Ω(log n) hardness for the general
case, [8] also consider the interesting and natural special case where the outer-norm ℓ∞, but
the inner norm is general (i.e., the goal is to minimize makespan but where the machine loads
are given by general inner-norms ψi). We refer to this problem as the Generalized Makepsan
Problem (GMP). In a sense, this problem can be considered as a “dual” of the problem
considered by Chakrabarty and Swamy (where the inner-norm is ℓ1, but the outer-norm is
general).

For GMP, Deng, Li and Rabani gave a 3-approximation for the special case when each
ψi is a top-k norm. The main open question they ask is whether an O(1) approximation
is achievable for general inner-norms. Apriori this seems quite plausible as there is close
connection between top-k norms and general norms (see e.g. [5, 6]). Moreover, the O(1)
approximation of Chakrabarty and Swamy [5] for the “dual” problem, also suggests that
GMP may have an O(1) approximation.

Our Results
Our main result is that GMP does not admit an O(1)-approximation under standard
complexity-theoretic assumptions, answering the main open problem in [8].

Our starting point is an integrality gap instance for the natural configuration LP for
GMP.

▶ Theorem 1. There is an instance of GMP with a symmetric monotone norm ψ, for which
the natural configuration LP has an integrality gap of Ω((log n)1/2).

1 The top-k norm of a non-negative vector v is the sum of its largest k entries.
2 Given subsets S1, . . . , Sm of [n], consider the scheduling instance on m machines (one per set) and n

jobs (one per element), with pij = 1 iff element j ∈ Si and pij = ∞ otherwise. That is, only jobs in Si

can be assigned to i. The point is that as ψ = ℓ∞, we have load(i) = 0 if no job is assigned to i, and
exactly 1 otherwise (even if all jobs in Si are assigned to i). As ϕ = ℓ1, the objective is exactly the
number of machines (sets) needed to cover all the jobs.
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The gap instance is based on a probabilistic construction and a key idea is to work with
a suitably chosen norm ψ, defined as the sum of top-k norms at various different scales, that
interacts nicely with properties of random set cover instances. This construction is described
in Section 3, and it forms a key gadget in our following hardness result.

▶ Theorem 2. There is a universal constant δ > 0, such that any polynomial-time ap-
proximation algorithm for GMP has approximation ratio Ω(logδ n) provided that NP ̸⊆
ZTIME(nO(log log n)).

Our construction for this hardness result builds on the ideas of Lund and Yannakakis
[15], who showed the Ω(log n) hardness of Set Cover by a gap reduction from the Label
Cover problem. However, we require some additional ideas as reducing the Label Cover
problem to a scheduling instance and exploiting the properties of the norm ψ requires much
more care. Specifically, even though our gadget in Theorem 1 has the Ω((log n)1/2) gap,
embedding it into Label Cover imposes extra constraints on the number of labels in the
Label Cover instance, and only leads to an Ω(logδ n) hardness, for some constant δ > 0.
Interestingly, this constant δ depends on the soundness parameter of label cover as a function
of the number of labels, based on Raz’s parallel repetition theorem [18] and its subsequent
improvements [10, 17].
▶ Remark. The constant δ can be computed explicitly, but we do not attempt to do this
here. This construction is described in Section 4. We remark that there are extensive work
on improving the soundness in PCP constructions as a function of the number of labels. The
best known result in this direction is due to Chan [7] that achieves soundness roughly L−1/2

for L labels. However, Chan’s result does not have perfect completeness and hence cannot
be used in our constructions. Roughly speaking, this is because each job must be assigned to
some machine (this is similar to the reason that one requires perfect completeness in reducing
label cover to set cover, as each element must be covered).
▶ Remark. In personal communication, Amey Bhangale has pointed out that in an unpublished
manuscript, they can show that assuming the 2-to-2 conjecture with perfect completeness,
there is a label cover instance with L labels that has perfect completeness and soundness
L−1/2. Using a such a label cover, our construction in Section 4 would imply a hardness of
Ω(log1/8 n) in Theorem 2. We note that currently, proving the 2-to-2 conjecture with perfect
completeness remains open, and in particular the breakthrough results of Khot, Minzer and
Safra [12] on the 2-to-2 conjecture assume imperfect completeness.

2 Preliminaries

2.1 (n, m, ℓ, β) Set-System
The constructions of the integrality gap instance in Section 3 and the reduction from label
cover to GMP presented in Section 4 both use the following set system as a building block.

▶ Definition 3 ((n,m, ℓ, β) Set-system). Let n,m, ℓ be positive integers, β ∈ (0, 1), U be a set
with |U | = n, and A1, . . . , Am be subsets of U . The sets (U ;A1, . . . , Am) form an (n,m, ℓ, β)
set-system if for every set I of at most ℓ indices from [m], |∪i∈IBi| ≤ (1 − β)|U |, where Bi

is either Ai or Ai.

Intuitively, an (n,m, ℓ, β) set-system has the property that any set cover which uses at
most ℓ subsets necessarily uses a complementary pair of subsets Ai and Ai. Moreover, any
collection of at most ℓ subsets that do not contain any complementary pair can cover at most
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a (1 − β) fraction of the elements in U . The following lemma shows that for a particular
choice of parameters n,m, ℓ, and β, there is a simple and efficient randomized construction
of an (n,m, ℓ, β) set-system.

▶ Lemma 4. For a sufficiently large positive integer n and a positive integer m ∈
[
√

log n, 2
√

log n] there exists an (n,m, ℓ, β) set-system (U ;A1, . . . , Am) with ℓ = m/10
and β = exp(−m) = exp(−O(

√
log n)). There is a polynomial-time algorithm that constructs

such a set system with high probability.

Proof. Let U be a set of n elements, and initialize m empty sets A1, . . . , Am. For each
element e ∈ U , sample a random index set J ⊂ [m] of size exactly m/2 and add e to sets Aj

for j ∈ J .
We show that this construction gives an (n,m, ℓ, β) set-system with high probability.

Consider an index set I ⊂ [m] with |I| = ℓ and a collection of sets Bi for i ∈ I such that each
Bi is either Ai or Ai. For a fixed e ∈ U , let p denote the probability that e is not contained
in ∪i∈IBi, i.e., p = Pr[e /∈ ∪i∈IBi]. We have,

p ≥
(
m− ℓ

m/2

)
/

(
m

m/2

)
≥

(
m− ℓ

m/2

)m/2
/

(
em

m/2

)m/2
≥

(
m− ℓ

em

)m/2
≥ exp(−0.6m),

where the second inequality uses that
(

n
k

)k ≤
(

n
k

)
≤

(
en
k

)k.
The probability that ∪i∈IBi contains a fixed subset of cardinality greater than or equal

to (1 − β)n is at most (1 − p)(1−β)n. By a union bound over at most
(

n
βn

)
n possible subsets

with cardinality at least (1 − β)n,

Pr [|∪i∈IBi| ≥ (1 − β)n] ≤
(
n

βn

)
n · (1 − p)(1−β)n ≤ (e/β)βn

n · e−(1−β)np

≤ exp (3nβ log(1/β) − np/2) ≤ exp(−np/4) ≤ exp(−n0.9),

where in the second to last inequality we use that 3β log(1/β) < p/4.
A union bound over the at most 2ℓ ·

(
m
ℓ

)
≤ exp(

√
log n) possible choices to pick the ℓ

sets Bi, gives that with high probability, the union of any ℓ sets Bi has cardinality less than
(1 − β)n. ◀

2.2 Label Cover
In Section 4, we prove the hardness of approximation of GMP via a reduction from the
standard label cover problem as defined below.

▶ Definition 5. A label cover instance L is defined by a tuple ((U, V,E), L,Π). Here (U, V,E)
is a bipartite graph with vertices U ∪ V and edges E ⊆ U × V ; L is a positive integer and Π
is a set of functions one for each edge e ∈ E i.e., Π = {πe : [L] → [L] | e ∈ E}. A labeling of
the vertices σ : U ∪ V → [L] is said to satisfy an edge e = (u, v) if πe(σ(u)) = σ(v). Given L,
the goal of the label cover problem is to find a labeling σ∗ that satisfies the maximum number
of edges in E. We use OPT (L) to denote the fraction of the edges in E satisfied by σ∗.

As we will need the explicit dependence between the number of labels and the soundness,
for completeness we sketch below the precise gap version of the label cover problem that we
will use.

▶ Lemma 6 (Hardness of Gap Label Cover). Given a label cover instance L = ((U, V,E), L,Π)
satisfying:
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(i) |U | = |V | = N

(ii) The degree of every vertex in U ∪ V is d = O((logN)c1) for some constant c1.
(iii) L =

√
logN

There is some constant c > 0, for which there is no polynomial-time algorithm to decide if
OPT (L) = 1 or OPT (L) ≤ (logN)−c provided that NP ̸⊆ DTIME(NO(log log N)).

Proof. Using a standard argument (see for ex., [9, 2]) one can obtain a reduction from a
3SAT-5 instance ϕ with t variables to a Label Cover instance L1 = ((U1, V1, E1), 8,Π), where
|U1| = |V1| = O(t) and the graph (U1, V1, E) is 15-regular. The instance L1 has the following
property: if ϕ has a satisfying assignment then OPT (L1) = 1; else if any assignment satisfies
at most (1 − ϵ) fraction of clauses in ϕ, then OPT (L1) ≤ (1 − Θ(ϵ)). By the PCP-theorem
[3] it follows that, for some constant ϵ0 > 0, deciding if OPT (L1) = 1 or OPT (L1) ≤ 1 − ϵ0
is NP-hard.

The following well-known construction [2] gives stronger inapproximability results for
label cover. We define the kth power of the label cover instance Lk = ((Uk, Vk, Ek), 8k,Πk),
where Uk, Vk are k-tuples of vertices in U1, V1 respectively, Ek is the set of all k-tuples of
edges in E1. The resulting graph has N = tO(k) vertices and is (15)k-regular. The new set
of labels3 consist of k-tuples of {1, . . . , 8}. For an edge e = (e1, . . . , ek) ∈ Ek, we define the
function πk

e (a1, . . . , ak) = (πe1(a1), . . . , πek
(ak)). Raz’s Parallel Repetition Theorem [18],

shows that for the label cover instance constructed above, there exists a constant α such
that OPT (Lk) ≤ (OPT (L1))αk.

We now pick k so that L =
√

logN . Since L = 8k and N = tO(k), this gives k =
Θ(log log t). This choice of k ensures that d = (15)k = (logN)c1 for some constant c1.
Moreover, if OPT (L1) ≤ (1 − ϵ0), then OPT (Lk) ≤ (1 − ϵ0)αk ≤ (log t)−c′ ≤ (logN)−c for
some positive constants c, c′. ◀

3 Integrality Gap for Configuration LP

We begin by describing the configuration LP for GMP. We then explain the high-level
ideas behind the gap construction and the properties we need from the norm ψ. We then
describe the norm ψ and the integrality gap instance formally and then prove Theorem 1.
As mentioned earlier, this gap instance and the norm ψ form the key gadget in our hardness
construction in Section 4.1, and understanding it is crucial to the results in Section 4.

Configuration LP. The most natural LP relaxation of GMP is to consider assignment
variables xij ∈ [0, 1] that determine the fraction of job j assigned to machine i, and impose
natural constraints. However, simple examples show that such an LP is too weak to handle
general norms ψ. A stronger relaxation is the configuration LP, where we have exponentially
many variables xi,C , one for each machine i, and a possible subset of jobs C that can be
feasibly assigned to machine i.

Let J denote the set of jobs, and M = [m] be the set of machines. For a machine i ∈ M ,
and subset C ⊆ J , let pi[C] = (pij ·1[j ∈ C])j∈J denote the vector of sizes of jobs in C. Let T
be a guess on the optimum makespan (we can do a binary search on T ). Call a configuration
C valid for machine i if the load ψi(pi[C]) of C on i is at most T . We will slightly abuse
notation and denote ψi(pi[C]) by ψi(C). Consider the following feasibility LP.

3 The labels are essentially numbers from 1 to 8k.
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∑
C⊆J

xi,C ≤ 1 ∀i ∈ M (1a)

∑
i∈M,C:j∈C

xi,C = 1 ∀j ∈ J (1b)

xi,C = 0 if ψi(C) > T (1c)

The first constraint says that each machine has at most one configuration. The second
constraint says that each job is assigned to a machine, and the last constraint ensures that
only valid configurations are considered and hence the generalized makespan on any machine
is at most T . This LP can be solved efficiently for any desired accuracy ϵ > 0 (so the
configurations satisfy ψi(C) ≤ (1 + ϵ)T ), see e.g., [8].

The main idea. We start with a simple instructive example, that motivates our choice of
the norm and the choice of parameters that lead to the Ω(

√
log n) integrality gap. Consider a

random set system on a universe U of n elements and m sets A1, . . . , Am where each element
independently lies in m/2 randomly chosen sets. We will set m ≪ log n. Create an unrelated
machine (in fact restricted assignment) scheduling instance I with m machines, where only
the jobs in Ai can be assigned to machine i (all other jobs have infinite size on i). As each
element lies in m/2 sets, the LP solution that picks the configuration Ai on each machine i
with xi,Ai

= 2/m is feasible, and uses only 2 machines in total.
However, in any integral solution, we claim that several machines must pick a non-trivial

fraction of jobs from their sets Ai. Roughly, this is because the union of any ℓ ≪ m sets
Ai still leaves about 2−ℓ|U | uncovered (as each element lies in a set with probability 1/2).
Hence in any feasible integral solution, for any ℓ > 0, at least ℓ machines must be assigned
at least 2−ℓ|U |/m jobs.

To exploit this, suppose we define ψ as the top-k norm with k ≈ Ω(2−ℓn/m), so that
any machine with ≥ k jobs incurs the same load, say T . Then in any integral solution, at
least ℓ machines have load T , while fractionally at most 2 machines (in total) have load T .
By creating m/2 disjoint copies I(1), . . . , I(m/2) of these set-cover instances, one would then
expect that fractionally each machine has load T , while integrally the average load becomes
Ω(ℓ).

Unfortunately, this does not quite work as stated above, because once there are several
instances I(1), . . . , I(m/2), as these jobs share the same machines, an algorithm can find a
low makespan even if it cannot figure out the good underlying set cover solution. In fact,
this is provably so, as [8] gave a 3-approximation when ψ is a Topk norm.

However, our key observation is that this idea can still be made to work by choosing
the instances I(1), . . . , I(m/2) at different scales (of the number of jobs and processing times)
and defining the norm ψ as a suitable mixture of the top-k norms at these different scales.
Roughly, this norm ψ still behaves as a top-k norm at each individual scale, but when jobs
from different scales are combined, it takes on a large value, which be used to create a large
gap in the reduction above.

Implementing this idea requires separating every two scales by Ω(2ℓ). So the ℓ scales
leads to instances with size about 2ℓ2 leading to the choice of ℓ = Θ(

√
log n) to produce the

Ω(ℓ) gap. We now give the details.

The Instance. The instance will have n jobs and m =
√

log n machines. We first create h =
m/8 disjoint set-cover instances I(1), . . . , I(h), where I(s) = (U(s);A1(s), A2(s), . . . , Am(s))
forms an (ns,m, ℓ, β) set-system with ℓ = m/10, β = exp(−m) and ns = (

√
n/2) ·exp(4ms) =

(
√
n/2)β−4s. Note that ns increases as β−4s with s, and n1 ≥

√
n and nh = n/2, and it is

easily checked that parameters for each I(s) satisfy the condition in Lemma 4.
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For each s ∈ [h], the elements in U(s) correspond to jobs with size p(s) = βs−1 (or infinite
if the job cannot be assigned to a machine). Each job j in U(s) has size pij = p(s) on machine
i iff j ∈ Ai(s) and pij = ∞ otherwise. We abuse the notation slightly to refer to the resulting
scheduling instance also as I(s). As the instances I(1), . . . , I(h) are at different scales in terms
of the number of jobs and processing times, we refer to jobs in I(s) as being in the s-th size
class 4.

We define the inner norm ψ =
∑

s∈[h] ψ
(s), where each ψ(s) is a scaled top-k norm given by

ψ(s)(v) =
Topβ2ns

(v)
(β2nsp(s))

. (2)

Each machine i will have the same inner norm ψi = ψ. Informally, ψ has the following key
property: for any subset C of Ai(s) with at least β2ns jobs, ψ(s)

i (C) = 1 and ψ
(s′)
i (C) ≈ 0

for s′ ̸= s. This in particular implies that ψi(Ai(s)) ≈ 1 for any class s. Moreover, if C is
an arbitrary subset of jobs with at least a β2 fraction of jobs from r distinct sets among
Ai(1), Ai(2), · · · , Ai(h), then ψi(C) ≈ r (roughly, each such size-class s affects a different
term ψ(s) of the norm). This property motivates the following definition.

▶ Definition 7 (Heavy Size Class). Given an assignment of jobs ρ : J → M , we say that size
class s ∈ [h] is heavy on machine i ∈ M , if at least β2ns jobs from Ai(s) are assigned to
machine i.

We now formally state and prove the property of the norm described above.

▶ Lemma 8. For any s ∈ [h] and i ∈ M , ψi(Ai(s)) = 1 + o(1). Furthermore, for an
assignment ρ : J → M , if C is the set of jobs assigned to machine i, then ψi(C) is at least
the number of heavy size classes s ∈ [h] on machine i.

Proof. We first show that ψi(Ai(s)) = 1 + o(1) by computing the value of ψ(s′) for different
s′. By the definition of ψ(s′),

ψ
(s′)
i (Ai(s)) =

Topβ2ns′ (pi[Ai(s)])
(β2ns′p(s′))

= min{β2ns′ , |Ai(s)|} · p(s)

(β2ns′p(s′))
=

(
min

{
1, |Ai(s)|

β2ns′

})
p(s)

p(s′)

For s = s′, this exactly equals 1 (as β ≪ 1 and |Ai(s)| ≈ ns

2 ).
For s′ < s, we have ψ(s′)

i (Ai(s)) ≤ p(s)

p(s′) = β(s−s′) ≤ β.

Finally, for s′ > s, we have

ψ
(s′)
i (Ai(s)) ≤ |Ai(s)|

β2ns′
· p

(s)

p(s′) ≤ ns

β2ns′
· p

(s)

p(s′) = β3(s′−s)−2 ≤ β.

Let us now consider an arbitrary set of jobs C assigned to machine i. By the monotonicity
of the norm,

ψ
(s)
i (C) ≥ ψ

(s)
i (C ∩Ai(s)) = min

{
1, |C ∩Ai(s)|

β2ns

}
≥ 1[s is heavy on i].

As ψi(C) =
∑

s∈[h]
ψ

(s)
i (C), it follows that ψi(C) is at least the number of heavy size classes

on i. ◀

4 The total number of jobs in the h instances is
∑h

i=1 ns ≈ n/2. To make the total number of jobs n, we
add dummy jobs that have processing time 0 on all machines.
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Fractional Solution. We claim that the following solution is feasible for the configuration
LP Equation (1) with T = 2: for each machine i ∈ M , set xi,Ai(s) = 2/m for each s ∈ [h].

Clearly, Equation (1a) is satisfied for each i ∈ M as there are h < m/2 sets of jobs
Ai(1), Ai(2), . . . , Ai(h), each with value 2/m. Equation (1b) is satisfied as each job j ∈ U(s),
for each s ∈ [h], lies in m/2 sets in A1(s), A2(s), . . . , Am(s). Equation (1c) is also satisfied
as ψi(Ai(s)) = 1 + o(1) < 2 = T by Lemma 8.

Integral Solution. We now show that any integral solution has generalized makespan
Ω(

√
log n).

▶ Lemma 9. For any assignment ρ : J → M , there is some machine with load Ω(
√

log n).

Proof. We first show that each size class is heavy on at least ℓ =
√

log n/10 machines.
Suppose this is not true for some size class s ∈ [h]. Let H ⊆ M be the set of machines on
which s is heavy, and so |H| < ℓ. As I(s) forms an (ns,m, ℓ, β) set-system, by Definition 3,
| ∪i∈H Ai(s)| ≤ (1 − β)ns, and hence at least βns jobs from U(s) are assigned to machines
i /∈ H . However, as any machine i /∈ H can have at most β2ns jobs from Ai(s), the machines
in i /∈ H can have is at most m ·β2ns < βns, contradicting that each job in U(s) was assigned
to some machine.

By averaging over machines, there exists a machine i on which at least (hℓ/m) = Ω(
√

log n)
size classes are heavy. By Lemma 8, this implies that ψi = Ω(

√
log n). ◀

This concludes the proof of Theorem 1.

4 Reduction from Label-Cover

We now prove Theorem 2 by reducing Label Cover to a GMP instance.

Overview. Our construction builds on the ideas used by Lund and Yannakakis [15] to show
the Ω(log n) hardness of set cover, using a gadget based on a natural Ω(log n) integrality gap
instance. We first give a rough sketch of their idea (see e.g. [2] for an excellent exposition),
and then explain the additional steps needed in our setting and why we only get a logδ n

hardness for some small δ > 0, despite the Ω(log1/2 n) integrality gap instance above.
Consider a label cover instance L = ((U, V,E), L,Π), as defined in Definition 5, with

label set [L] and vertex sets U and V . The main idea in [15] is the following. For each
edge e = (u, v) ∈ E, one associates a (n,m, ℓ, β)-system Ie = (Ue;Ae

1 . . . , A
e
m) (with disjoint

universes for each edge). The sets will be associated with labels for vertices (so that L = m)
and we associate the set Ae

πe(a) with label a for u and A
e

b with label b for vertex v. The
point is that in the completeness case, where the labels a′ and b′ for u and v satisfy e

(i.e., πe(a′) = b′), Ue can be covered by just the two corresponding sets Ae
πe(a′) and A

e

b′ .
Conversely, in the soundness case, if Ue is covered using less than ℓ sets, there must be a pair
of sets that are complements of each other, which can be used to produce a good labeling
for L.

To adapt this to our setting, suppose we create a job for each element in Ue, and m

machines per vertex, one for each label in [L]. Also suppose that for labels a, b, we set
the processing times of jobs in the set Ae

πe(a) to be finite on the a-th machine of vertex u

and the processing times of jobs in set Ae
b to be finite on the b-th machine of vertex v. In

the completeness case, any perfect labeling gives an assignment where jobs are assigned to
exactly one out of the m machines per vertex (similar to the value of the LP solution in
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the gap example in Section 3). However, the soundness argument fails, as a low makespan
assignment can spread jobs from Ue on multiple machines, and not give any information to
recover a good labeling (this is similar to the reason we needed multiple size classes in the
gap example in Section 3).

To get around this, for each e, we will use h different set systems Ie,1, . . . , Ie,h

(of geometrically increasing sizes) where the s-th set system is the following Ie,s =
(Ue(s);Ae

1(s), . . . , Ae
m(s)). Each vertex will have m machines, one for each label. The intended

solution is that if vertex u is assigned label a, then we pick the sets Ae
πe(a)(1), . . . , Ae

πe(a)(h),
and assign the corresponding jobs to the m machines for u with small makespan (this requires
some care so that for any label a, jobs from different classes s can be assigned to different
machines, but we ignore this issue here).

Using the properties of the norm ψ and the arguments in Section 3 for the integrality
gap, one can show that if h = Ω(m), then given any schedule with low makespan, one can
construct a good labeling thereby proving soundness. A key new idea here beyond [15] is to
show that there is some fixed size class s∗, such that the assignment of jobs in class s∗ gives
a small set of good candidate labels for a large fraction of edges. However, as the hardness
of Label-Cover is only Ω(Lc) for some small constant c as a function of the number of labels,
our resulting hardness is only Ω(logc′

n) for some small c′ > 0, instead of Ω(log1/2 n).

4.1 The Reduction
Suppose that we are given a label cover instance, L = ((U, V,E), L,Π) satisfying the
properties of Lemma 6, i.e., the number of vertices |U | = |V | = N , the degree of every
vertex is d = O((logN)c1) and the number of labels L =

√
logN . We now describe a

polynomial-time (randomized) reduction from L to a GMP instance I with machines M ,
jobs J and assign processing times for each machine i ∈ M and job j ∈ J .

Machines. For each vertex w ∈ U ∪ V , we create m = L =
√

logN machines. We denote
the set of machines corresponding to vertex w by Mw = {w1, . . . , wm}. We denote the set of
all machines by M =

⋃
w∈U∪V Mw. In total, we have 2N

√
logN machines.

Jobs. For each edge e ∈ E, we create O(N) jobs and partition them into h = m/8 size-
classes Ue(1), Ue(2), . . . , U e(h) of geometrically increasing size. More precisely, we pick the
number of jobs in the s-th set to be |Ue(s)| =

√
N · exp(4s

√
logN) which is always O(N)

since s ≤
√

logN/8. Therefore, the total number n of jobs created is poly(N). We also
remark that these sets can be constructed efficiently by the randomized procedure described
in Lemma 4 and that this is the only randomized step of the reduction.

Processing times. To assign processing times, for each edge e ∈ E and s ∈ [h], we
construct a (|Ue(s)|,m, ℓ, β) set system Ie,s = (Ue(s);Ae

1(s), . . . , Ae
m(s)) with ℓ = m/10 and

β = exp(−m). For every vertex u ∈ U , label a ∈ [L] and s ∈ [h], define the set

Su,a,s =
⋃

e∈δ(u)

Ae
πe(a)(s). (3)

Similarly for every vertex v ∈ V , label b ∈ [L] and s ∈ [h], define the set

Sv,b,s =
⋃

e∈δ(v)

Ae
b(s). (4)
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For every vertex w ∈ U ∪ V , label a ∈ [L] and size class s ∈ [h], we choose the processing
times of all the jobs in Sw,a,s to be p(s) = βs−1 on the machine wi if the index i satisfies
i ≡ (a+ s) (mod m). This way of assigning processing times ensures that for a fixed machine
wi and a label a, there is at most one set of jobs among Sw,a,1, Sw,a,2, . . . , Sw,a,h that have
finite processing time on wi. This is a useful property to have when we prove the completeness
of our reduction.

Norm. Define the norm ψ =
∑

s∈[h] ψ
(s), where each ψ(s) is a scaled top-k norm given by

ψ(s)(v) =
Topβ2ns

(v)
(β2nsp(s))

(5)

where ns =
∣∣∣⋃e∈δ(w) U

e(s)
∣∣∣ is the number of jobs of size class s contained in edges incident

to any vertex. Note that since the graph is d-regular this number is the same for each vertex.
The above reduction takes poly(N) time because there are only polynomially many jobs,

machines and the (n,m, ℓ, β) set systems required can be constructed efficiently by Lemma 4.

4.2 Analysis
The set of jobs Sw,a,s for any vertex w, label a and size class s, only contribute to the s-th
top-k term of ψ on machine wi. Similar to Definition 7, we define heavy and light size classes
and state a lemma whose proof is analogous to that of Lemma 8.

▶ Definition 10 (Heavy Size Class). For a vertex w, label a and size class s, consider the
set Sw,a,s of jobs and the machine wi satisfying i ≡ (a + s) (mod m). For an assignment
ρ : J → M , we say that size class s is heavy on machine wi, if ρ assigns at least β2ns jobs
from Sw,a,s to machine wi; otherwise, we say the size class s is light on machine wi.

▶ Lemma 11. For any vertex w, label a, size class s, and a machine wi satisfying i ≡ a+ s

(mod m), the norm ψwi
(Sw,a,s) = 1 + o(1). Furthermore, for an assignment ρ : J → M , let

S be the set of jobs assigned to machine wi. Then ψwi
(S) is at least the number of heavy

size classes heavy on wi.

4.2.1 Completeness
Given a labeling σ for the label cover instance L which satisfies all the edges, we use it to
construct an assignment of jobs ρ with a low makespan.

▶ Lemma 12. If the label cover instance L satisfies OPT (L) = 1, the instance I has an
assignment ρ : J → M with makespan less than 2.

Proof. Let σ be the labeling of vertices that satisfies all edges in the label cover instance L.
Consider the assignment ρ of jobs to machines constructed using σ in the following way: for
every vertex w ∈ U ∪ V , and size class s ∈ [h], assign the jobs in Sw,σ(w),s to machine wi

where the index i satisfies i ≡ σ(w) + s (mod m).
For an edge e = (u, v) ∈ E we first show that each job in the sets Ue(1), Ue(2), . . . , U e(h)

is assigned to some machine. For a size class s ∈ [h], the jobs in Su,σ(u),s are assigned to a
machine in Mu, and similarly, the jobs in Sv,σ(v),s are assigned to a machine in Mv. Since
πe(σ(u)) = σ(v), we infer that Ae

σ(v)(s) = Ae
πe(σ(u))(s) ⊆ Su,σ(u),s and Ae

σ(v)(s) ⊆ Sv,σ(v),s.
It follows that each job in Ue(s) is assigned to some machine.
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We now bound the makespan of the assignment by showing that each machine is assigned
jobs from at most one size class. For a vertex w and i ∈ [m] consider the machine wi. Since
h < m, there is at most one s ∈ [h] for which σ(w) + s ≡ i (mod m). Therefore, wi is
assigned jobs from at most one of the sets Sw,σ(w),1, Sw,σ(w),2, · · · , Sw,σ(w),h. Therefore, by
Lemma 11 its norm is at most 1 + o(1) < 2. ◀

4.2.2 Soundness

Next, we show that if the instance I has a makespan much less than ℓ, then OPT (L) is
large. Towards this end, we first prove some useful lemmas. Consider an assignment ρ with
makespan T ≤ ℓ/100. Call a size class s to be good for a vertex w if it is heavy on at most
32T of the machines w1, . . . , wm; if not define it to be bad. We first show that a large fraction
of size classes are good for any vertex.

▶ Lemma 13. There are at least 3h/4 good size classes for each vertex.

Proof. Let b be the number of bad size classes for some vertex w. By averaging over the m
machines on vertex w, there is a machine wi for which at least (32Tb)/m size classes are
heavy. By Lemma 11, wi has norm at least (32Tb)/m. As any machine has norm at most T ,
we get b ≤ m/32 = h/4 and hence the claim follows. ◀

Call a size class good for an edge (u, v) if it is good for both u and v. By Lemma 13 each
edge e has at least h/2 good size classes. By averaging over the edges e ∈ E, there must
exist a size class s∗ ∈ [h] which is good for at least |E|/2 edges.

We will fix the class s∗ henceforth, and use it to construct a good label cover solution by
assigning a suitable label to each vertex. These labels will only depend on the class s∗.

Constructing a good labeling. For each vertex w ∈ U ∪ V , we define L(w) to be the set
of all labels a such that size-class s∗ is heavy on wi where i ≡ (a+ s) (mod m). If no such
label exists, add an arbitrary label to L(w).

▶ Lemma 14. Let e = (u, v) be an edge for which s∗ is good. There exists a ∈ L(u) and
b ∈ L(v) such that πe(a) = b.

Proof. Assume there are no such labels a ∈ L(u) and b ∈ L(v) for which πe(a) = b. Since
|L(u)| + |L(v)| ≤ 64T < ℓ, then the union of all the sets Ae

πe(a)(s∗) and Ae
b(s∗) such that

a ∈ L(u) and b ∈ L(v) covers at most (1 − β)|Ue(s∗)| from Definition 3.
From the definition of a light size class, for all labels a /∈ L(u) (resp. b /∈ L(v)), at

most β2ns∗ = β2(|Ue(s∗)| · d) jobs from the sets Ae
πe(a)(s∗) (resp. Ae

b(s∗)) are assigned
to some machines on vertex u (resp. v) . Notice that the degree of the graph (U, V,E)
is d = O((logN)c1). So, the union of all the jobs assigned from the sets Ae

πe(a)(s∗) (resp.
Ae

b(s∗)) such that a /∈ L(u) (resp. b /∈ L(v)) has at most (2m · β2 · |Ue(s∗)| · d) < β|Ue(s∗)|
jobs which is a contradiction. ◀

For each vertex w, set σ(w) to be a label selected uniformly at random from L(w). We show
that σ satisfies a large fraction of edges of L completing the proof of soundness.

▶ Lemma 15. If the instance I has an assignment ρ : J → M with makespan T ≤ ℓ/100,
then OPT (L) ≥ 1/(2048T 2).
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Proof. Consider an edge e = (u, v) for which size class s∗ is good. In this case, we have
|L(u)| ≤ 32T and |L(v)| ≤ 32T . Also, by Lemma 14 there exists a ∈ L(u) and b ∈ L(w) for
which πe(a) = b. Therefore, πe(σ(u)) = σ(v) with probability at least 1/(32T )2. We have by
the analysis above that the number of edges for which s∗ is good is at least |E|/2. Therefore,
the expected number of edges satisfied by σ is at least |E|/(2(32)2T 2) = |E|/(2048T 2) and
the lemma follows. ◀

▶ Theorem 2. There is a universal constant δ > 0, such that any polynomial-time ap-
proximation algorithm for GMP has approximation ratio Ω(logδ n) provided that NP ̸⊆
ZTIME(nO(log log n)).

Proof. Suppose that we have an algorithm that in polynomial time can decide if the
GMP instance constructed has a makespan of at least T or at most 2. By the reduction
above, from Lemmas 12 and 15 this algorithm can also distinguish between label cover
instances that have value 1 and those that have value at most 1/2048T 2. Due to the
hardness of label cover (Lemma 6), this is not possible if 1/2048T 2 ≥ 1/(logN)c, i.e., if
T ≤ O((logN)c/2) = O((log n)c/2) since the number of jobs n = poly(N). This, in particular,
implies that any approximation algorithm for GMP has an approximation ratio of at least
Ω((log n)c/2) provided that NP ̸⊂ ZTIME(nO(log log n)). ◀

5 Concluding Remarks

We conjecture that GMP admits an O(
√

log n) approximation, based on suitably rounding
the configuration LP. However, we are unable to prove any o(log n) approximation even in
the restricted assignment case (note that the integrality gap and hardness instances in this
paper only use restricted assignment). Finding a o(log n) approximation algorithm for any
of these variants would be extremely interesting.
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Abstract

We consider the Bin Packing problem with a partition matroid constraint. The input is a set
of items of sizes in [0, 1], and a partition matroid over the items. The goal is to pack the items in
a minimum number of unit-size bins, such that each bin forms an independent set in the matroid.
This variant of classic Bin Packing has natural applications in secure storage on the Cloud, as well
as in equitable scheduling and clustering with fairness constraints.

Our main result is an asymptotic fully polynomial-time approximation scheme (AFPTAS) for
Bin Packing with a partition matroid constraint. This scheme generalizes the known AFPTAS for
Bin Packing with Cardinality Constraints and improves the existing asymptotic polynomial-time
approximation scheme (APTAS) for Group Bin Packing, which are both special cases of Bin Packing
with partition matroid. We derive the scheme via a new method for rounding a (fractional) solution
for a configuration-LP. Our method uses this solution to obtain prototypes, in which items are
interpreted as placeholders for other items, and applies fractional grouping to modify a fractional
solution (prototype) into one having desired integrality properties.

2012 ACM Subject Classification Theory of computation

Keywords and phrases bin packing, partition-matroid, AFPTAS, LP-rounding

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2023.22

Category APPROX

Related Version Full Version: https://arxiv.org/abs/2212.01025 [9]

Funding Ariel Kulik: This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 852780-ERC (SUBMODULAR).

1 Introduction

The bin packing (BP) problem involves packing a set of items in a minimum number of
containers (bins) of the same (unit) size. Bin Packing is one of the most studied problems in
combinatorial optimization. Indeed, in many real-life scenarios, a solution for BP is essential
for optimizing the allocation of resources. In this paper, we consider the Bin Packing problem
with a partition matroid constraint. The input is a set of items of sizes in [0, 1], and a
partition matroid over the items. The goal is to pack all the items in a minimum number of
unit-size bins, such that each bin forms an independent set in the matroid.

Formally, a bin packing with partition matroid (BPP) instance is a tuple I = (I, G, s, k),
where I is a set of items, G is a partition of I into groups, s : I → [0, 1] gives the item
sizes, and k : G → N>0 sets a cardinality constraint for each group. The instance matroid
of I is the partition matroid M = (I, S) where S = {S ⊆ I | ∀G ∈ G : |S ∩ G| ≤ k(G)}.
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A configuration of the instance I is a subset of items C ⊆ I such that
∑

ℓ∈C s(ℓ) ≤ 1 and
C ∈ S. That is, the total size of items in C is at most one, and for each group G ∈ G the
configuration C contains at most k(G) items from G. A packing of I is a partition of I into
m subsets called bins (A1, . . . , Am) such that Ab is a configuration for all b ∈ [m].1 The
objective is to find a packing of all items in a minimal number of bins. Indeed, the special
case where each group consists of a single item and k(G) = 1 for all G ∈ G is the classic Bin
Packing problem.

Bin Packing with Partition Matroid has natural application in secure storage of project
data in the Cloud. Computational projects of large data scale often rely on cloud computing.
Commonly, the project data is also stored in the cloud. In this setting, a main concern is
that a malicious entity might gain access to confidential data [13]. To strengthen security,
data is dispersed among multiple cloud storage devices [24]. Projects are fragmented into
critical tasks, so that access to several tasks cannot reveal substantial information about
the entire project. To this end, at most n(P ) tasks of each project P can be stored on a
single storage device. Viewing a cloud storage device as a bin and each project as a group
containing a collection of critical tasks (items), the problem of storing a set of projects on a
minimal number of (identical) storage devices yields an instance of BPP.

BPP arises also in machine scheduling. Consider the following variant of equitable
scheduling on a single machine [25]. The input is a set of n clients, each having a collection
of jobs with arbitrary processing times, and a single machine that is available at any day
for a limited amount of time. To ensure fairness, at most k jobs of the same client can be
processed in a single day, for some k ≥ 1. The objective is to complete processing all the
jobs in a minimum number of days, subject to the equitability constraints. An instance of
the problem can be cast as an instance of BPP, where days are the bins, jobs are the items,
and the set of jobs of each client forms a group.

Another application of BPP comes from clustering problems with fairness constraints,
where we have a set of items, each belongs to certain category, and we seek a partition of the
items into clusters (or, groups) with restriction on the number of items from each category
selected to each cluster, to ensure fairness. One real-life example is grouping students for
educational activities, in which there is some cost associated with each participating student,
and an overall budget for each group. The goal is to partition the students into a minimal
number of working groups subject to the budget constraints, such that each group is balanced
in terms of protected attributes like gender or race (since studies indicate that students
might learn better in a diverse group). This variant of the multi-fair capacitated grouping
problem [39] yields an instance of BPP.

Let OPT = OPT(I) be the value of an optimal solution for an instance I of a minimization
problem P . As in the Bin Packing problem, we distinguish between absolute and asymptotic
approximation. For α ≥ 1, we say that A is an absolute α-approximation algorithm for
P if for any instance I of P it holds that A(I)/OPT(I) ≤ α, where A(I) is the value of
the solution returned by A. Algorithm A is an asymptotic α-approximation algorithm if
A(I) ≤ αOPT(I) + o(OPT(I)) for any instance I of P. An asymptotic polynomial-time
approximation scheme (APTAS) is a family of algorithms (Aε)ε>0 such that, for every ε > 0,
Aε is a polynomial-time asymptotic (1 + ε)-approximation algorithm for P. An asymptotic
fully polynomial-time approximation scheme (AFPTAS) is an APTAS (Aε)ε>0 such that
Aε(I) runs in time poly(|I|, 1

ε ), where |I| is the encoding length of the instance I; that is,
there is a bivariate polynomial p such that Aε(I) runs in time p(|I|, 1

ε ) or less.

1 For any n ∈ N we denote by [n] the set {1, 2, . . . , n}.
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By known results for the special case of Bin Packing [20], BP cannot be approximated
within (absolute) ratio better than 3

2 , unless P=NP. Thus, we focus in this paper on
deriving better asymptotic approximation ratio for BPP. Given that classic BP admits an
AFPTAS [32, 26], it is natural to ask whether the same holds for the problem with the added
partition matroid constraint. We answer this question affirmatively.

▶ Theorem 1. There is an AFPTAS for BPP.

As a special case, our scheme improves upon the recent APTAS of Doron-Arad et al. [8] for
group bin packing (GBP), where the cardinality constraint of all groups is equal to one (i.e.,
k(G) = 1 ∀G ∈ G). This problem has been studied since the mid-1990’s [37, 31].2 Theorem 1
also generalizes the AFTPASs of [15, 30] for bin packing with cardinality constraints (BPCC),
the special case of BPP where all items belong to a single group (i.e., G = {I}).3

1.1 Our Technique
We derive our scheme via a new technique for rounding a (fractional) configuration LP (c-LP)
solution. Our technique interprets the standard c-LP solution as a prototype for a solution
which is then modified via a sequence of rounding steps; a polytope associated with the
prototype is used to ensure the prototype represents a valid solution following each of the
rounding steps.

High Level Approach

To obtain a packing of the input BPP instance I, our scheme partitions the set of items
I into subsets I1, . . . , Ir; for each subset of items Ij it generates a packing A′

1, . . . , A′
m of

the large items Lj ⊆ Ij (of sizes at least δ), and extends the packing (in the packing phase)
to include the small items Sj = Ij \ Lj using a greedy algorithm (see Section 2). For this
procedure to work, the following crucial properties must be satisfied.
1. The size s(ℓ) ≤ δ of a small item ℓ ∈ Sj is much smaller than the free space δ ≪ 1 − s(A′

b)
in a bin A′

b.
2. There is an upper bound kj,G on the number of large items from each group G ∈ G in

any bin A′
b.

3. For each group G ∈ G, there cannot be “too many” small items from G in Sj .
Figure 1 illustrates the packing of items in Ij . By the above properties, a main part of our
scheme deals with generation of a partition of I into I1, . . . , Ir and the corresponding partial
packings.4

Let C denote the set of configurations of a BPP instance I = (I, G, s, k). Our rounding
technique interprets the vectors x̄ ∈ RC

≥0 (i.e., vectors having a non-negative entry for each
configuration C ∈ C) as prototypes. The prototype x̄ ∈ RC

≥0 serves as a blueprint for a
(fractional) packing. Within the context of prototypes, each item ℓ ∈ C of a configuration C

is interpreted as a placeholder (or, “slot”) for items which can replace it. Also, some items
may be added, thus utilizing the available capacity of the configuration C (given by 1−s(C)),
while the items replacing the slots utilize the capacity s(C) of the configuration. The value
x̄C represents a solution in which x̄C configurations match the blueprint corresponding to C.

2 See Table 1 for a summary of known results for GBP.
3 An outline of the organization of this paper is given in Section 1.3.
4 See the details in Section 3.
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22:4 An AFPTAS for Bin Packing with Partition Matroid

Figure 1 The set Ij in the partition I1, . . . , Ir, along with a partial packing A′
1, . . . , A′

m of the
large items, Lj ; the set Sj of remaining small items is represented by circles, whose colors indicate
the groups. The items in Sj are added using a greedy algorithm.

A main building block in our scheme is an association of a polytope with each prototype.
A non-empty polytope indicates the feasibility of a prototype. The partition of I into
I1, . . . , Ir and S, and the generation of the partial packings (A′

1, . . . , A′
m) relies on integrality

properties of vertices in the polytope (associated with a prototype). However, for the
integrality properties to be useful, we must obtain a good prototype z̄, having a small number
of configurations on the support (i.e, {C ∈ C | z̄C > 0}), while the number of items in each
configuration on the support must be small. We give below a high level description of how
we construct a good prototype.

Figure 2 An illustration of the rounding process. Starting from a prototype x̄, we follow a
configuration C0. The eviction process generates a prototype ȳ, where the value x̄C0 is added to
ȳC1 . In the shifting phase, ȳ is transformed into a good prototype z̄ in which items are replaced by a
small number of representatives, and the entry ȳC1 is added to z̄C2 . The partition phase uses the
prototype z̄ to define a partition I1, . . . , Ir of the items, and an initial packing A1, . . . , Am for each
Ij (containing the bin Ab in our example). Finally, in the packing phase, the remaining small items
are added to the existing bins.

An initial prototype is obtained by solving a standard configuration-LP formulation of
the problem. In this prototype, each item serves as a placeholder for itself. The algorithm
modifies the prototype sequentially using two steps: eviction and shifting. The eviction step
reduces the number of items per configuration on the support of the prototype. The shifting
step reduces the overall number of distinct items used by configurations on the support.
Thus, after the shifting, an item (or, a slot) may be used as a placeholder for many other
items in the same group. Our construction in this step is non-trivial. Specifically, we use
the fractional grouping technique introduced in [16] constructively (see the full version of the
paper [9]). By the above, the number of configurations on the support of the constructed
prototype is small, and our scheme can easily find a packing of the instance. We illustrate
the main components of our multi-step rounding process in Figure 2.

Our technique may be useful in solving other packing problems, including, e.g., bin
packing with matching constraints (see Section 4).
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1.2 Prior Work
The special case of Group Bin Packing (GBP) (in which k(G) = 1 for all G ∈ G) was first
studied by Oh and Son [37]. This problem is a special case of bin packing with conflicts
(BPC), where the conflict graph is a cluster graph (see, e.g., [11] for a survey on recent results
on BPC). An approximation ratio of 2.5 follows from the results of Jansen and Öhring [31]
(for a generalization of GBP); this ratio was later improved by Epstein and Levin [14].
Better constants were given in several papers (e.g., [36, 1]). The best known asymptotic
approximation for GBP prior to our work is an APTAS due to Doron-Arad et al. [8]. We
summarize the known results for GBP in Table 1.

Table 1 Known Results for the special case of Group Bin Packing; V (I) = maxG∈G |G|. The
results of [31, 14, 1] for GBP follow as a special case from results for more general problems.

Authors Year Approximation
Oh and Son [37] 1995 1.7 · OPT(I) + 2.19 · V (I)

Jansen and Öhring [31] 1997 2.5 · OPT(I)

McCloskey and Shankar [36] 2005 2 · OPT(I) + V (I)

Epstein and Levin [14] 2008 7
3 · OPT(I)

Adany et al. [1] 2013 2 · OPT(I)

Doron-Arad et al. [8] 2021 APTAS

This paper 2023 AFPTAS

The APTAS of [8] for GBP is based on extensive guessing of properties of an optimal
solution which are then used as guidance for the assignment of items to bins; such enumeration
is commonly used in studies of BP (e.g., [3]). We note that the algorithm of [8] does not
round a solution for a configuration-LP, and cannot be viewed as a rounding algorithm in
general. The extensive guessing leads to running time that is exponential in 1

ε . For a special
case of GBP, where the maximum cardinality of a group is some constant, an AFPTAS
follows from a result of [27].

GBP was studied also in the context of scheduling on identical machines. Das and
Wiese [6] introduced the problem of makespan minimization with bag constraints. In this
generalization of the classic makespan minimization problem, each job belongs to a bag. The
goal is to schedule the jobs on a set of m identical machines, for some m ≥ 1, such that no
two jobs in the same bag are assigned to the same machine, and the makespan is minimized.
Das and Wiese [6] developed a PTAS for the problem with bag constraints. Later, Grage et
al. [21] obtained an EPTAS.

Another special case of BPP is Bin Packing with Cardinality Constraints (BPCC), in
which |G| = 1, i.e., we have a single group G with k(G) = k, for some integer k ≥ 1. BPCC
has been studied since the 1970’s [34, 35, 33, 4]. Epstein and Levin [15] presented an AFPTAS
which relies on rounding a non-standard configuration-LP formulation of the problem. Later,
Jansen et al. [30] gave an AFPTAS with improved additive term. The AFPTASs of [15, 30]
rely on the property that if k < 1

ε then only 1
ε items fit into a bin; thus, linear shifting can

be applied to the whole instance. We note that in a BPP instance (which consists of multiple
groups) the cardinality bound for each group may be small (or even equal to 1), yet the
number of items that can be packed in a single bin may be arbitrarily large. This is one
of several hurdles encountered when attempting to adapt the techniques of [15, 30] to our
setting of BP with a partition matroid constraint.

APPROX/RANDOM 2023
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In the matroid partitioning problem, we are given a ground set U and a matroid M =
(U, S), where S is a family of subsets of U , known as the independent sets of the matroid. We
seek a partition of U into as few independent sets as possible. The problem is polynomially
solvable for any matroid M over U using a combinatorial algorithm (see, e.g., [12, 19]).
When M is a partition matroid, the matroid partitioning problem can be viewed as a variant
of BPP with unbounded bin capacities.

The use of configuration-LP (c-LP) in approximation algorithms started in the seminal
paper of Karmakar and Karp on BP [32]. Their approach is to round the item sizes prior
to solving a c-LP. Similar approaches, in which item sizes are rounded or the instance is
restructured prior to solving the c-LP, can be found also in later works (e.g., [15]). Other
works obtain an integral solution by applying randomized rounding to the solution of a
standard c-LP. This includes the Round & Approx technique of Bansal et al. [2] and the
tight approximation for the separable assignment problem (SAP) due to Fleischer et al. [18].
In [28] and [29], Jansen combines techniques for 2D strip packing to round the solution of
c-LP for multiple knapsack. Our deterministic rounding technique deviates significantly from
these known approaches.

To the best of our knowledge, Bin Packing with Partition Matroid is studied here for the
first time.

1.3 Organization
In Section 2 we include some definitions and notation. Section 3 gives an overview of our
scheme, that is applied to a structured instance. Due to space constraints, the technical
sections along with most of the proofs are relegated to the full version of the paper [9]. In
Section 4 we give a summary and directions for future work.

2 Preliminaries

Let A be an algorithm that accepts as input ε > 0. We say the running time of A is
poly(|I|, 1

ε ) if there is a two-variable polynomial p(x, y) such that p(|I|, 1
ε ) is an upper bound

on the running time of A(I, ε). To allow a simpler presentation of the results, we assume
throughout the paper that the set of items I is {1, 2, . . . , n}, and the items are sorted in
non-increasing order by sizes, i.e., s(1) ≥ s(2) ≥ . . . s(n).

2.1 Tackling the Small Items
The classic asymptotic approximation schemes for Bin Packing (see, e.g., [17, 32]) rely on the
key property that small items can be added to a partial packing of the instance with little
overhead, using simple algorithms such as First-Fit (see, e.g., [40]). We note that packing
small items in the presence of a partition matroid constraint is more involved. Even for the
special case of BP with a cardinality constraint, the small items cannot be packed using
simple classic BP heuristics (see, e.g., [15]).

We show below that an efficient packing of the small items of a BPP instance can still be
found using a relatively simple algorithm; however, the setting in which the algorithm can
be applied is more restrictive, and items cannot be easily added to a partial packing of the
instance (i.e., a set of configurations). Furthermore, the quality of such a packing depends on
the cardinality bound of the BPP instance I = (I, G, s, k), defined by V (I) = maxG∈G

⌈
|G|

|k(G)|

⌉
.

Formally,
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▶ Lemma 2. Given a BPP instance I = (I, G, s, k) and δ ∈ (0, 0.5), such that s(ℓ) ≤ δ for
all ℓ ∈ I, there is an algorithm Greedy that returns in polynomial time a packing of I in at
most (1 + 2δ) · max {s(I), V (I)} + 2 bins.

The proof of Lemma 2 is given in [9].

2.2 Structuring the Instance
Our scheme initially transforms a given BPP instance into one having a structure which
depends on the parameter ε > 0. In this new instance, only a small number of groups may
contain relatively large items. Let K : (0, 0.1) → R, where K(ε) = ε−ε−2 for all ε ∈ (0, 0.1).
We use K for defining a structured instance.

▶ Definition 3. Given a BPP instance I = (I, G, s, k) and ε ∈ (0, 0.1), we say that I is
ε-structured if there is B ⊆ G such that |B| ≤ K(ε) and for all G ∈ G \ B and ℓ ∈ G it holds
that s(ℓ) < ε2.

Following the structuring step, our scheme proceeds to solve BPP on the structured
instance. As a final step, the packing found for the structured instance is transformed into a
packing of the original instance. This is formalized in the next result.

▶ Lemma 4. There is a pair of algorithms, Reduce and Reconstruct, which satisfy the
following.
1. Given a BPP instance J and ε > 0 such that ε−1 ∈ N, algorithm Reduce returns in time

poly(|I|, 1
ε ) an ε-structured BPP instance I, where OPT(I) ≤ OPT(J ).

2. Given a BPP instance J , ε > 0 such that ε−1 ∈ N, and a packing A′ for I = Reduce(J , ε)
of size m′, algorithm Reconstruct returns in time poly(|I|, 1

ε ) a packing A for the instance
J of size m, where m ≤ m′ + 13ε · OPT(J ) + 1.

The structured instance I is obtained from J by reassigning items of size at least ε2 from
all but a few groups to a new group. The reconstruction algorithm modifies the packing of
I such that each bin in the solution is a configuration of J . The proof of Lemma 4 (given
in [9]) is inspired by ideas of [6, 21, 8]. By Lemma 4, an AFTPAS for ε-structured BPP
instances implies an AFTPAS for general BPP instances.

3 Approximation Algorithm for ε-Structured Instances

In this section we give an overview of our scheme. For ε ∈ (0, 0.1) such that ε−1 ∈ N, let
I = (I, G, s, k) be an ε-structured BPP instance. Recall that a configuration of I is a subset
of items C ⊆ I such that

∑
ℓ∈C s(ℓ) ≤ 1, and |C ∩ G| ≤ k(G) for all G ∈ G. Let C(I) be

the set of all configurations of I; we use C when the instance I is clear from the context.
Also, for every item ℓ ∈ I let C[ℓ] = {C ∈ C | ℓ ∈ C} be the set of configurations of I that
contain ℓ. A key component in our scheme is the construction of a prototype of a packing; a
prototype gives a non-negative value to each configuration, which (informally) indicates the
selection of the configuration. Specifically,

▶ Definition 5. Given a BPP instance I, a prototype is a vector x̄ ∈ RC
≥0.

In the context of prototypes, each configuration C ∈ C is interpreted as a set of placeholders
called types. Each item j ∈ C is a slot-type, which is a placeholder for a smaller or equally sized
item of the same group. Also, the unused capacity of the configuration C (i.e., 1−s(C)) serves

APPROX/RANDOM 2023
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as a placeholder for additional items; we refer to this placeholder as the configuration-type C.
Thus, C is interpreted as the set of slot-types of j for each j ∈ C and the configuration-type
of C itself.

Intuitively, a slot-type (configuration-type) can be replaced by an item (items) which fit
into it. For any j ∈ I define group(j) = G, where G ∈ G is the unique group such that j ∈ G.
The subset of items that fit in place of the slot-type j ∈ I is

fit(j) = {ℓ ∈ group(j) | s(ℓ) ≤ s(j)} ∀j ∈ I. (1)

For our algorithm to work, the items which fit into the configuration-type C ∈ C must be
small relative to the unused capacity of C. We define the subset of items that fit into the
configuration-type C ∈ C by

fit(C) = {ℓ ∈ I | s(ℓ) ≤ min{ε2, ε · (1 − s(C))}} ∀C ∈ C. (2)

In words, fit(C) contains items of sizes smaller than ε2 and also at most ε-fraction of the
unused capacity of C. Figure 3 illustrates the above definitions.

For any prototype x̄ we define the x̄-polytope as a set of fractional packings, in which
items are fractionally assigned to slot-types and configuration-types. The set of types of
the instance I is I ∪ C. That is, the slot-types I and configuration-types C. A point in the
x̄-polytope has an entry for each pair of an item ℓ ∈ I and a type t ∈ I ∪ C which represents
the fractional assignment of the item to the type. Formally,

▶ Definition 6. Given a BPP instance I, the set C of configurations for I, and a prototype
x̄ of I, the x̄-polytope is the set containing all points γ̄ ∈ [0, 1]I×(I∪C) which satisfy the
following constraints.

γ̄ℓ,t = 0 ∀ℓ ∈ I, t ∈ I ∪ C s.t. ℓ /∈ fit (t) (3)∑
ℓ∈I

γ̄ℓ,C · s(ℓ) ≤ (1 − s(C)) · x̄C ∀C ∈ C (4)

∑
ℓ∈G

γ̄ℓ,C ≤ x̄C · (k(G) − |C ∩ G|) ∀G ∈ G, C ∈ C (5)

∑
ℓ∈I

γ̄ℓ,j ≤
∑

C∈C[j]

x̄C ∀j ∈ I (6)

∑
t∈I∪C

γ̄ℓ,t ≥ 1 ∀ℓ ∈ I (7)

Constraints (3) indicate that an item ℓ ∈ I cannot be assigned to type t if ℓ does not fit
in t. Constraints (4) set an upper bound on the total (fractional) size of items assigned to
each configuration-type C ∈ C. This bound is equal to the residual capacity of C times the
fractional number of bins packed with C, given by x̄C . Constraints (5) bound the number
of items in each group G assigned to configuration-type C; at most k(G) − |C ∩ G| items
in G can be added to C without violating the cardinality constraint of G. Constraints (6)
bound the number of items assigned to slot-type j ∈ I by the total selection of configurations
containing j in x̄. Finally, constraints (7) guarantee that each item is fully assigned to the
types.
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Figure 3 An example of items ℓ1, . . . , ℓ5 of sizes ε3, ε2, 0.2, 0.4, 0.6, respectively, along with a
configuration C = {j1, j2} ∈ C interpreted as the slot-types j1, j2 of sizes 0.5, 0.2 and the configuration-
type C. The colors of the items and slot-types indicate their corresponding groups. An arrow
indicates that the item on the left fits with a slot-type or with the configuration-type C.

Let supp(x̄) = {C ∈ C | x̄C > 0} be the support of x̄. Throughout this paper, we use
prototypes x̄ for which supp(x̄) is polynomial in the input size; thus, these prototypes have
sparse representations. Our scheme first converts an initial prototype x̄ (defined by a solution
for the configuration-LP) into a good prototype z̄ as defined below, and then constructs a
packing based on z̄. Let Q : (0, 0.1) → R where Q(ε) = exp(ε−17) for all ε ∈ (0, 0.1). Then,

▶ Definition 7. Given ε ∈ (0, 0.1) and an ε-structured BPP instance I, a prototype z̄ of I
is a good prototype if the z̄-polytope is non-empty, |supp(z̄)| ≤ Q(ε), and |C| ≤ ε−10 for all
C ∈ supp(z̄).

To construct a good prototype, our algorithm first finds an initial prototype x̄ using a
Configuration-LP of the problem.5 However, x̄ is not necessarily a good prototype, since it
may have a support of large size. Therefore, we apply a non-trivial rounding process, starting
from the initial prototype x̄, and eventually generate a good prototype z̄. We consider this
rounding process, along with the notions of prototype and x̄-polytope, the core technical
contribution of this paper. The next result summarizes the main properties of our algorithm
for finding a good prototype, presented in Section 3.1. We use ∥x̄∥ =

∑
C∈C x̄C to denote

the ℓ1-norm of a prototype x̄.

▶ Lemma 8. There is an algorithm Prototype that given ε ∈ (0, 0.1) and an ε-structured
BPP instance I, returns in time poly(|I|, 1

ε ) a good prototype z̄ of I such that ∥z̄∥ ≤
(1 + 19ε) · OPT(I) + Q(ε).

Given a good prototype z̄, our scheme finds an efficient packing of the instance. This phase
relies on integrality properties of the z̄-polytope, combined with a matching-based algorithm
and a greedy assignment of relatively small items using Algorithm Greedy (Lemma 2).

▶ Lemma 9. There is an algorithm Solution that given ε ∈ (0, 0.1), an ε-structured BPP
instance I, and a good prototype z̄ of I, returns in time poly(|I|, 1

ε ) a packing of I in at
most (1 + 2ε) · ∥z̄∥ + 5ε−22 · Q2(ε) bins.

The proof of Lemma 9 is given in Section 3.2. Using the above components, we obtain an
AFPTAS for ε-structured instances. The pseudocode of the scheme is given in Algorithm 1.

▶ Lemma 10. Given ε ∈ (0, 0.1), ε−1 ∈ N, and an ε-structured BPP instance I, Algorithm 1
returns in time poly(|I|, 1

ε ) a packing of I of size at most (1 + 60ε) · OPT(I) + (Q(ε))3.

5 See Section 3.1.
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Algorithm 1 AFPTAS(I, ε).

Input : An ε-structured instance I and ε ∈ (0, 0.1) such that ε−1 ∈ N
Output : A packing of I

1 Find a good prototype z̄ = Prototype(I, ε).
2 Return a packing Φ = Solution(I, ε, z̄).

Lemma 10 follows from Lemmas 8 and 9. Theorem 1 can be easily derived using
Lemmas 10 and 4. We give the full proofs in [9].

3.1 Algorithm Prototype
In this section we present Algorithm Prototype which finds a good prototype for a given
ε-structured instance. The algorithm uses an LP relaxation of the given BPP instance. For
ε ∈ (0, 0.1) such that ε−1 ∈ N, let I = (I, G, s, k) be an ε-structured BPP instance. Define
the configuration-LP of I as:

min
∑
C∈C

x̄C

s.t.
∑

C∈C[ℓ]

x̄C = 1 ∀ℓ ∈ I

x̄C ≥ 0 ∀C ∈ C

(8)

A solution for the LP (8) assigns to each configuration C ∈ C a real number x̄C ∈ [0, 1]
which indicates the fractional selection of C for the solution such that each item is fully
covered. Observe that a solution for (8) is in particular a prototype of I.

Note that the configuration-LP (8) has an exponential number of variables; thus, it cannot
be solved in polynomial time by applying standard techniques. A common approach for
solving such linear programs is to use a separation oracle for the dual program.

Consider the configuration maximization problem (CMP) in which we are given a BPP
instance I = (I, G, s, k) and a weight function w : I → R≥0; the objective is to find a
configuration C ∈ C such that

∑
ℓ∈C w(ℓ) is maximized. By a well known connection between

separation and optimization, an FPTAS for CMP implies an FPTAS for the configuration-LP
of I [22, 18, 23, 38]. CMP can be solved via an easy reduction to knapsack with partition
matroid, that is known to admit an FPTAS [10]. Thus, we have

▶ Lemma 11. There is an algorithm SolveLP that given a BPP instance I and ε > 0, returns
in time poly(|I|, 1

ε ) a solution for the configuration-LP of I of value at most (1 + ε)OPT,
where OPT is the value of an optimal solution for the configuration-LP of I.

We give the proof of Lemma 11 in [9]. A solution x̄ for the Configuration-LP (8) is a
prototype of the instance such that the x̄-polytope is non-empty; in particular, it contains
the point γ̄ where γ̄ℓ,j = 1 ∀ℓ, j ∈ I such that ℓ = j, and γ̄ℓ,t = 0 otherwise (note that this
property does not hold for the good prototype z̄ returned by Algorithm Prototype). Our
intermediate goal is an evicted prototype ȳ, having configurations of bounded cardinality on
its support, but with properties similar to those of solutions for (8). We say that an item
ℓ ∈ I is ε-large if s(ℓ) ≥ ε2. We use L(ε, I) to denote the set of ε-large items of an instance
I. If I and ε are known by context we simply use L (instead of L(ε, I)). We now formalize
the above.
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▶ Definition 12. Let ε ∈ (0, 0.1) such that ε−1 ∈ N and I an ε-structured BPP instance. A
prototype ȳ of I is called an evicted prototype if the following holds.
1. For all C ∈ supp(ȳ) it holds that |C| ≤ ε−10 and s(C \ L) ≤ ε.
2. There exists γ̄ in the ȳ-polytope such that γ̄ℓ,j = 0 for all ℓ, j ∈ I where ℓ ̸= j.
3.

∑
C∈C[ℓ] ȳC ≤ 2 for every ℓ ∈ I.

Given a solution x̄ for the configuration-LP (8), we construct an evicted prototype ȳ

with ∥ȳ∥ ≈ ∥x̄∥. Our technique fractionally maps each configuration C ∈ supp(x̄) to other
configurations, where relatively small items are discarded in the mapping. To show that the
ȳ-polytope is non-empty, we generate a point in the ȳ-polytope by assigning (fractionally)
discarded items to configuration-types (see Definition 6). The result of this process is outlined
in the next lemma.

▶ Lemma 13. There is an algorithm Evict which given ε ∈ (0, 0.1) such that ε−1 ∈ N, an
ε-structured BPP instance I, and a solution x̄ for the configuration-LP (8), returns in time
poly(|I|, 1

ε ) an evicted prototype ȳ such that ∥ȳ∥ ≤ (1 + ε)∥x̄∥.

A complete presentation of algorithm Evict and the proof of Lemma 13 are given in [9].
Observe that property 2 of Definition 12 allows γ̄ℓ,C > 0 for item ℓ ∈ I and a configuration-
type C ∈ C; the property that γ̄ℓ,j > 0 for ℓ ̸= j is obtained only in the next step. Moreover,
note that Evict does not return the vector γ̄ but only guarantees its existence.

Given an evicted prototype ȳ, our scheme uses algorithm Shift to generate a good
prototype z̄ with ∥z̄∥ ≈ ∥ȳ∥. As in algorithm Evict, we rely on a fractional mapping between
configurations to construct z̄; here, our goal is to significantly decrease |supp(z̄)| w.r.t.
|supp(ȳ)| while keeping the z̄-polytope non-empty. One key observation utilizes combinatorial
properties of the instance to show that items from most groups can be discarded in the
mapping (the items may be assigned to configuration-types in the z̄-polytope). Items of
the remaining groups are mapped to a small number of representatives, using a non-trivial
application of fractional grouping.

▶ Lemma 14. There is an Algorithm Shift that given ε ∈ (0, 0.1) such that ε−1 ∈ N, an
ε-structured BPP instance I and an evicted prototype ȳ, returns in time poly(|I|, 1

ε ) a good
prototype z̄ such that ∥z̄∥ ≤ (1 + 5ε)∥ȳ∥ + Q(ε).

An elaborate presentation of Algorithm Shift and the proof of Lemma 14 are given in [9].
Finally, Algorithm Prototype finds a good prototype by computing Algorithms SolveLP, Evict,
and Shift sequentially. We give the pseudocode in Algorithm 2. The proof of Lemma 8 easily
follows from Lemmas 11, 13, and 14; we give the proof in [9].

Algorithm 2 Prototype(I, ε).

Input : An ε-structured instance I and ε ∈ (0, 0.1) such that ε−1 ∈ N
Output : A good prototype

1 Find a solution for the configuration-LP of I; that is, x̄ = SolveLP(I, ε).
2 Find an evicted prototype ȳ = Evict(I, x̄, ε).
3 Return a good prototype z̄ = Shift(I, ȳ, ε).

APPROX/RANDOM 2023
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3.2 Algorithm Solution
In this section we show how integrality properties of a good prototype yield an efficient
packing of the instance. For ε ∈ (0, 0.1) such that ε−1 ∈ N, let I = (I, G, s, k) be an
ε-structured BPP instance. The next lemma shows that if a prototype x̄ has a small support,
and each configuration in the support contains a few items (as for good prototypes), then
the vertices of the x̄-polytope are almost integral. Thus, given a vertex λ̄ of such x̄-polytope,
the items assigned fractionally by λ̄ can be packed using only a small number of extra bins.

▶ Lemma 15. Let I be a BPP instance, k ∈ N≥1, and a prototype x̄ of I such that for all
C ∈ supp(x̄) it holds that |C| ≤ k and x̄C ∈ N. Then, for any vertex λ̄ in the x̄-polytope for
which constraints (7) hold with equality,∣∣{ℓ ∈ I | ∃t ∈ I ∪ C s.t. λ̄ℓ,t ∈ (0, 1)

}∣∣ ≤ 8k2 · |supp(x̄)|2.

The proof of Lemma 15 bears some similarity to a proof of [7], which shows the integrality
properties of a somewhat different polytope. We give the detailed proof in [9].

Given a good prototype z̄, our scheme finds a packing of the instance using a partition of
the items into slot-types and configuration-types; intuitively, items assigned to slot-types
are already packed (using the integrality property of the z̄-polytope) and items assigned to
configuration-types will be added using Greedy. This relies on the following construction.

For configurations S, C ∈ C, we say that S is allowed in C if each item ℓ ∈ S can be
mapped to a distinct slot j ∈ C, such that ℓ ∈ fit(j). We consider packings of a subset
of items to which we call a category. Each category is associated with (i) a configuration
C ∈ C such that all bins in the category are allowed in C, and (ii) a completion: a subset of
(unpacked) items bounded by total size and number of items per group, where each item fits
with C. This is formalized in the next definition.

▶ Definition 16. Let ε ∈ (0, 0.1), an ε-structured BPP instance I = (I, G, s, k), a configura-
tion C ∈ C, a packing B = (B1, . . . , Bm) of a subset of I (category), and D ⊆ I (completion).
We say that B is a category of C and D if the following holds.

For any i ∈ [m], Bi is allowed in C.
D ⊆ fit(C).
s(D) ≤ (1 − s(C)) · m.
For any G ∈ G it holds that |D ∩ G| ≤ m · (k(G) − |C ∩ G|).

The motivation behind this construction, is that Algorithm Greedy (Lemma 2) can be
used to assign the completion to the existing bins of the category using only a small number
of extra bins. Thus, our end-goal from the good prototype z̄ is to obtain an ε-nice partition:
a packing of a subset of I such that the bins in the packing are partitioned into a bounded
number of categories; also, we require that each item ℓ ∈ I is either in this packing or in a
completion of a category. The above constraints are analogous to constraints (3)-(7) of the
z̄-polytope, that is used for finding an assignment of the items to slots and configurations.
This is formalized in Definition 17. An example is given in Figure 4.

▶ Definition 17. Given ε ∈ (0, 0.1), an ε-structured BPP instance I = (I, G, s, k), an ε-nice
partition B of I is a packing (A1, ..., Am) of a subset of I, configurations H ⊆ C, categories
(BC)C∈H, and completions (DC)C∈H such that the following holds.

|H| ≤ ε−22Q2(ε).
{BC}C∈H is a partition of {Ai | i ∈ [m]}.
{DC}C∈H is a partition of I \

⋃
i∈[m] Ai.

For all C ∈ H it holds that BC is a category of C and DC .
The size of B is m.
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Figure 4 An example of an ε-nice partition, which consists of a packing in five bins partitioned
into two categories H = {BC1 , BC2 }. In addition, DC1 and DC2 are the completions of BC1 and
BC2 , respectively. Colors indicate groups: if the cardinality bound of the blue group is 1, then DC1

contains at most 2 blue items and DC2 cannot contain blue items.

To obtain an ε-nice partition, Algorithm Partition initially rounds up the entries of z̄ to
obtain the prototype z̄∗. It then finds a vertex λ̄ of the z̄∗-polytope, which is almost integral
by Lemma 15. Thus, with the exception of a small number of items, each item is fully assigned
either to a slot or to a configuration. Algorithm Partition uses λ̄ to construct an ε-nice
partition. We generate a category for each C ∈ supp(z̄∗) and let DC = {ℓ ∈ I |λ̄ℓ,C = 1} be
the set of all items assigned to C. We also generate z̄∗

C copies (bins) of each configuration
and replace its slots by items via matching.

▶ Lemma 18. There is an algorithm Partition that given ε ∈ (0, 0.1) such that ε−1 ∈ N, an
ε-structured BPP instance I, and a good prototype z̄ of I, returns in time poly(|I|, 1

ε ) an
ε-nice partition of I of size at most ∥z̄∥ + ε−22Q2(ε).

Algorithm Partition is presented in [9]. Given an ε-nice partition of size m, a packing of
the instance in roughly m bins is obtained using the next lemma.

▶ Lemma 19. There is a polynomial-time algorithm Pack which given ε ∈ (0, 0.1) such that
ε−1 ∈ N, an ε-structured BPP instance I, and ε-nice partition of I of size m, returns in
time poly(|I|, 1

ε ) a packing of I in at most (1 + 2ε)m + 2ε−22Q2(ε) bins.

Algorithm Pack utilizes Algorithm Greedy to add the items in a completion of a category
to the bins of this category, possibly using a few extra bins. Algorithm Pack and Algorithm
Greedy are presented in [9]. Finally, we construct Algorithm Solution, which first finds an
ε-nice partition and then use it to find a packing for the instance. We give the pseudocode
in Algorithm 3.

Proof of Lemma 9. By Lemma 18, B is an ε-nice partition with size at most ∥z̄∥+ε−22·Q2(ε).
Then, by Lemma 19, Φ is a full packing of I using at most (1 + 2ε) · ∥z̄∥ + 5ε−22 · Q2(ε) bins.
The running time is poly(|I|, 1

ε ) by Lemmas 18, 19. ◀

Algorithm 3 Solution(I, z̄, ε).

Input : ε ∈ (0, 0.1), ε−1 ∈ N, an ε-structured instance I, a good prototype z̄ of I
Output : A packing of I

1 Find an ε-nice partition B of I by Partition(I, z̄, ε).
2 Return a packing Φ = Pack(I, B, ε).

APPROX/RANDOM 2023
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4 Discussion

In this paper we present an AFPTAS for Bin Packing with Partition Matroid. While BPP
is a natural generalization of Bin Packing variants that have been studied in the past, to
the best of our knowledge it is studied here for the first time. Our result improves upon the
APTAS of [8] for the well studied special case of Group Bin Packing, and generalizes the
AFPTASs of [15, 30] for the special case of Bin Packing with Cardinality Constraints. Our
scheme applies a novel rounding method to solutions of the configuration-LP formulation of
the problem. The rounding process relies on the key notion of a prototype, in which items are
placeholders for other items, and sophisticated use of fractional grouping [16]. Our scheme
demonstrates the power of this fractional version of linear grouping in solving constrained
packing problems; it also shows how fractional grouping can be used constructively.

The rounding method introduced in this paper seems useful also for other settings. A
preliminary study shows we can apply our method to obtain a polynomial time approximation
scheme for Multiple Knapsack with Partition Matroid, a generalization of the Multiple
Knapsack problem (see, e.g., [5, 28]) in which the items assigned to each bin form an
independent set of a partition matroid. Furthermore, we can derive approximation algorithms
for Machine Scheduling with Partition Matroid, a generalization of the classic Machine
Scheduling problem in which the jobs assigned to a machine must be an independent set of a
partition matroid. We note that this problem is a generalization of Machine Scheduling with
Bag Constraints studied in [6, 21].

Another intriguing direction for future work is to apply our framework to Bin Packing
with other types of constraints. We give two potential examples. The problem of Bin Packing
with Partition Matroid is a special case of Bin Packing with Matroid, for which the input is a
set of items I, a size function s : I → [0, 1] and a matroid M. The objective is to partition I

into a minimal number of bins A1, . . . , Am such that Ab is an independent set of the matroid
M, and s(Ab) ≤ 1 for all b ∈ [m]. While this problem is a natural generalization of both Bin
Packing and Matroid Partitioning, we were unable to find any published results. It would be
interesting to obtain an APTAS for Bin Packing with Matroid using our framework. To this
end, the reduction of the instance to a structured instance and the fractional shifting (see
the full version of the paper [9]) need to be modified to tackle general matroids.

Finally, consider the Bin Packing with Matching Constraints problem (or, equivalently:
Bin Packing with Line Graph Conflicts). The input is a graph G = (V, E) and a size function
on the edges s : E → [0, 1]. The objective is to partition E into a minimal number of
bins A1, . . . , Am such that Ab ⊆ E is a matching in G, and s(Ab) ≤ 1 for all b ∈ [m]. Our
preliminary results suggest it may be possible to adapt the main components of our scheme
for solving this problem.

References
1 Ron Adany, Moran Feldman, Elad Haramaty, Rohit Khandekar, Baruch Schieber, Roy

Schwartz, Hadas Shachnai, and Tami Tamir. All-or-nothing generalized assignment with
application to scheduling advertising campaigns. In Integer Programming and Combinatorial
Optimization - 16th International Conference, IPCO, pages 13–24, 2013.

2 Nikhil Bansal, Alberto Caprara, and Maxim Sviridenko. A new approximation method for
set covering problems, with applications to multidimensional bin packing. SIAM Journal on
Computing, 39(4):1256–1278, 2010.

3 Nikhil Bansal, Marek Eliáš, and Arindam Khan. Improved approximation for vector bin
packing. In Proceedings of the twenty-seventh annual ACM-SIAM symposium on discrete
algorithms, pages 1561–1579. SIAM, 2016.



I. Doron-Arad, A. Kulik, and H. Shachnai 22:15

4 Alberto Caprara, Hans Kellerer, and Ulrich Pferschy. Approximation schemes for ordered
vector packing problems. Naval Research Logistics (NRL), 50(1):58–69, 2003.

5 Chandra Chekuri and Sanjeev Khanna. A polynomial time approximation scheme for the
multiple knapsack problem. SIAM Journal on Computing, 35(3):713–728, 2005.

6 Syamantak Das and Andreas Wiese. On minimizing the makespan when some jobs cannot be
assigned on the same machine. In 25th Annual European Symposium on Algorithms, ESA,
pages 31:1–31:14, 2017.

7 Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai. An APTAS for bin packing with clique-
graph conflicts. arXiv preprint, 2020. arXiv:2011.04273.

8 Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai. An APTAS for bin packing with clique-
graph conflicts. In 17th International Symposium on Algorithms and Data Structures, WADS,
pages 286–299, 2021.

9 Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai. Bin packing with partition matroid can
be approximated within o(opt) bins. arXiv preprint, 2022. arXiv:2212.01025.

10 Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai. An FPTAS for Budgeted Laminar Matroid
Independent Set. arXiv preprint, 2023. arXiv:2304.13984.

11 Ilan Doron-Arad and Hadas Shachnai. Approximating bin packing with conflict graphs via
maximization techniques. Proc. WG, 2023.

12 Jack Edmonds. Minimum partition of a matroid into independent subsets. J. Res. Nat. Bur.
Standards Sect. B, 69:67–72, 1965.

13 Ibtissam Ennajjar, Youness Tabii, and Abdelhamid Benkaddour. Securing data in cloud
computing by classification. In Proceedings of the 2nd international Conference on Big Data,
Cloud and Applications, pages 1–5, 2017.

14 Leah Epstein and Asaf Levin. On bin packing with conflicts. SIAM Journal on Optimization,
19(3):1270–1298, 2008.

15 Leah Epstein and Asaf Levin. AFPTAS results for common variants of bin packing: A new
method for handling the small items. SIAM Journal on Optimization, 20(6):3121–3145, 2010.

16 Yaron Fairstein, Ariel Kulik, and Hadas Shachnai. Modular and submodular optimization with
multiple knapsack constraints via fractional grouping. In 29th Annual European Symposium
on Algorithms, ESA, pages 41:1–41:16, 2021.

17 W Fernandez de La Vega and George S. Lueker. Bin packing can be solved within 1+ ε in
linear time. Combinatorica, 1(4):349–355, 1981.

18 Lisa Fleischer, Michel X Goemans, Vahab S Mirrokni, and Maxim Sviridenko. Tight approx-
imation algorithms for maximum separable assignment problems. Mathematics of Operations
Research, 36(3):416–431, 2011.

19 Harold N Gabow and Herbert H Westermann. Forests, frames, and games: algorithms for
matroid sums and applications. Algorithmica, 7(1):465–497, 1992.

20 Michael R Garey and David S Johnson. Computers and intractability. A Guide to the, 1979.
21 Kilian Grage, Klaus Jansen, and Kim-Manuel Klein. An EPTAS for machine scheduling with

bag-constraints. In The 31st ACM Symposium on Parallelism in Algorithms and Architectures,
pages 135–144, 2019.

22 Michael D Grigoriadis, Leonid G Khachiyan, Lorant Porkolab, and Jorge Villavicencio. Ap-
proximate max-min resource sharing for structured concave optimization. SIAM Journal on
Optimization, 11(4):1081–1091, 2001.

23 Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algorithms and combin-
atorial optimization, volume 2. Springer Science & Business Media, 2012.

24 Marcos Guerine, Murilo B Stockinger, Isabel Rosseti, Luidi G Simonetti, Kary ACS Ocaña,
Alexandre Plastino, and Daniel de Oliveira. A provenance-based heuristic for preserving results
confidentiality in cloud-based scientific workflows. Future Generation Computer Systems,
97:697–713, 2019.

APPROX/RANDOM 2023

https://arxiv.org/abs/2011.04273
https://arxiv.org/abs/2212.01025
https://arxiv.org/abs/2304.13984


22:16 An AFPTAS for Bin Packing with Partition Matroid

25 Klaus Heeger, Danny Hermelin, George B Mertzios, Hendrik Molter, Rolf Niedermeier, and
Dvir Shabtay. Equitable scheduling on a single machine. Journal of Scheduling, pages 1–17,
2022.

26 Rebecca Hoberg and Thomas Rothvoß. A logarithmic additive integrality gap for bin packing.
In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 2616–2625. SIAM, 2017.

27 Klaus Jansen. An approximation scheme for bin packing with conflicts. Journal of combinatorial
optimization, 3(4):363–377, 1999.

28 Klaus Jansen. Parameterized approximation scheme for the multiple knapsack problem. SIAM
Journal on Computing, 39(4):1392–1412, 2010.

29 Klaus Jansen. A fast approximation scheme for the multiple knapsack problem. In International
Conference on Current Trends in Theory and Practice of Computer Science, pages 313–324.
Springer, 2012.

30 Klaus Jansen, Marten Maack, and Malin Rau. Approximation schemes for machine scheduling
with resource (in-) dependent processing times. ACM Transactions on Algorithms (TALG),
15(3):1–28, 2019.

31 Klaus Jansen and Sabine R. Öhring. Approximation algorithms for time constrained scheduling.
Inf. Comput., 132(2):85–108, 1997.

32 Narendra Karmarkar and Richard M. Karp. An efficient approximation scheme for the one-
dimensional bin-packing problem. In 23rd Annual Symposium on Foundations of Computer
Science, pages 312–320. IEEE, 1982.

33 Hans Kellerer and Ulrich Pferschy. Cardinality constrained bin-packing problems. Annals of
Operations Research, 92:335–348, 1999.

34 Kenneth L Krause, Vincent Y Shen, and Herbert D Schwetman. Analysis of several task-
scheduling algorithms for a model of multiprogramming computer systems. Journal of the
ACM (JACM), 22(4):522–550, 1975.

35 KL Krause, Vincent Y Shen, and Herbert D Schwetman. Errata:“analysis of several task-
scheduling algorithms for a model of multiprogramming computer systems”. Journal of the
ACM (JACM), 24(3):527, 1977.

36 Bill McCloskey and AJ. Shankar. Approaches to bin packing with clique-graph conflicts.
Computer Science Division, University of California, 2005.

37 Y. Oh and S.H. Son. On a constrained bin-packing problem. Technical Report CS-95-14, 1995.
38 Serge A Plotkin, David B Shmoys, and Éva Tardos. Fast approximation algorithms for

fractional packing and covering problems. Mathematics of Operations Research, 20(2):257–301,
1995.

39 Tai Le Quy, Gunnar Friege, and Eirini Ntoutsi. Multiple fairness and cardinality constraints
for students-topics grouping problem. arXiv preprint, 2022. arXiv:2206.09895.

40 David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms.
Cambridge University Press, 2011.

https://arxiv.org/abs/2206.09895


Submodular Norms with Applications To
Online Facility Location and Stochastic Probing
Kalen Patton #

School of Mathematics, Georgia Tech, Atlanta, GA, USA

Matteo Russo #

DIAG, Sapienza Università di Roma, Italy

Sahil Singla #

School of Computer Science, Georgia Tech, Atlanta, GA, USA

Abstract
Optimization problems often involve vector norms, which has led to extensive research on developing
algorithms that can handle objectives beyond ℓp norms. Our work introduces the concept of
submodular norms, which are a versatile type of norms that possess marginal properties similar
to submodular set functions. We show that submodular norms can either accurately represent or
approximate well-known classes of norms, such as ℓp norms, ordered norms, and symmetric norms.
Furthermore, we establish that submodular norms can be applied to optimization problems such as
online facility location and stochastic probing. This allows us to develop a logarithmic-competitive
algorithm for online facility location with symmetric norms, and to prove logarithmic adaptivity gap
for stochastic probing with symmetric norms.
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1 Introduction

In the field of combinatorial optimization, norm objectives are frequently encountered.
Canonical problems, such as the min-weight spanning tree and the k-median, involve searching
for a feasible solution that minimizes the sum of costs, which is equivalent to the ℓ1 norm
of the edge cost vector. On the other hand, canonical problems like bottleneck spanning
tree and k-center aim to minimize the maximum of costs, which is equivalent to the ℓ∞
norm of the edge cost vector. However, because ℓ1 and ℓ∞ norms only capture the extreme
Utilitarian and Egalitarian objectives respectively, significant research has been devoted to
developing combinatorial optimization algorithms for more general norms (see references
in Section 1.3). Among the commonly studied norms are ℓp norms, ordered norms, Orlicz
norms, symmetric norms, and arbitrary monotone norms.

Over the past decade, there is also a lot of effort towards designing online and stochastic
algorithms for more general norms. For instance, remarkable progress has been made
in developing algorithms beyond ℓp norms for various problems, such as load balancing
[16, 17, 29, 30, 31, 32], set cover [7, 36], spanning trees [28], and bandits with knapsacks
[33, 32]. Notably, most of the recent progress is for the class of symmetric norms, i.e.,
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monotone norms that remain unchanged upon permutation of coordinates. This progress is
partly due to Ky Fan’s Dominance Theorem (refer to [11]), which reduces the problem of
designing algorithms for symmetric norms to ordered norms (see Section 1.1 for a formal
definition). Ordered norms are comparatively more manageable due to their explicit form.
Given this progress on some combinatorial problems for symmetric norms, a natural question
arises:

What general norms and what combinatorial problems admit algorithms with good
performance guarantees?

A challenge in making progress beyond symmetric norms is that such norms are not
explicit, e.g., they may not be well approximated by ordered norms. In this work we introduce
the class of submodular norms, which is a broad class of norms with marginals properties
mimicking submodular set functions. We show that submodular norms either capture or
approximate popular classes of norms like ℓp norms, ordered norms, and symmetric norms.
Moreover, submodular norms are amenable to some of the optimization problems that were
previously intractable like online facility location and stochastic probing.

1.1 Norms and Submodularity
We start with the definitions of monotone, symmetric, and ordered norms. We will be only
interested in norms defined in the positive orthant.

▶ Definition 1 (Monotone Norm). A monotone norm is a function ∥ · ∥ : Rn
+ → R+ and is

defined as

∥x∥ := sup
a∈A

∑
i

aixi,

i.e, by a max of non-negative linear functions over set A. This is equivalent to saying that
∥x∥ ≥ ∥y∥ whenever x ≥ y ≥ 0 coordinatewise (hence, the name monotone).

▶ Definition 2 (Symmetric Norm). A monotone norm ∥ · ∥ is a symmetric norm if, for any
vector x ∈ Rn

+ and for all of its coordinate permutations π : [n] → [n], ∥x∥ = ∥(xπ(i))i∈[n]∥.

We remark that any symmetric norm can be written as supa∈A⟨a, x↓⟩, where x↓ represents
the sorted (in descending order) vector x, and A is a set on non-negative descending vectors.
This follows from the fact that maxπ

∑
i aixπ(i) = ⟨a↓, x↓⟩ for non-negative vectors a, x. In

the special case where A is a singleton, we have ordered norms.

▶ Definition 3 (Ordered Norm). A monotone norm is an ordered norm if it can be written
as ∥x∥ =

∑
i aix

↓
i , where a1 ≥ . . . ≥ an ≥ 0.

Submodular Norms

Submodular set functions and their applications to optimization have been extensively
studied; see books [38, 22]. Intuitively, they capture the notion of decreasing marginal
gains. Although submodular functions were originally defined for discrete settings, the notion
has been generalized to arbitrary lattices, in particular to real vectors [8]. This leads to
the following notion of continuous submodularity, which has found several applications in
machine learning [12, 10] and will be crucial in our definition of submodular norms. We
discuss standard properties of continuous submodularity in Appendix A.1.
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▶ Definition 4 (Continuous Submodularity). A real-valued function f : Rn
+ → R+ is continu-

ously submodular if for all x, y ∈ Rn
+, we have f(x ∨ y) + f(x ∧ y) ≤ f(x) + f(y), where

x ∨ y and x ∧ y are the coordinate-wise max and min of x and y respectively.

Our first contribution is to define the following natural class of submodular norms.

▶ Definition 5 (Submodular Norm). A monotone norm ∥·∥ is submodular if it is continuously
submodular.

Examples of submodular norms include all ℓp norms and Ordered norms (see Observa-
tion 12). Moreover, the following theorem proved in Section 2.2 shows that any symmetric
norm can be approximated by a submodular norm.

▶ Theorem 6. Any symmetric norm can be O(log ρ) approximated by a submodular norm,
where ρ := ∥(1,1,...,1)∥

∥(1,0,0,...,0)∥ ≤ n. This approximation factor is tight up to O(loglog ρ) terms.

There is an intimate connection between submodular norms and submodular set functions.
Given a submodular norm ∥·∥, the set function f : 2[n] → R+ by f(S) := ∥1S∥ is submodular,
so every submodular norm is an extension of a submodular function. Moreover, if f is a
monotone submodular function with f(∅) = 0, then f can be extended to a submodular
norm ∥ · ∥ by the Lovász extension:

∥x∥ :=
∫ ∞

0
f({j : t ≤ xj})dt.

This observation that every submodular set function induces a continuously submodular norm
via its Lovász extension has appeared several times before [9, 8]. However, our definition of
submodular norms can capture many more natural norms. E.g., all ℓp norms are submodular
but for 1 < p < ∞ they cannot be written as a Lovász extension of a submodular set function
since the dual-norm unit ball has an infinite number of vertices.
▶ Remark 7. A commonly studied variant of continuous submodularity is DR-submodularity
[13, 20, 37]: a function f : Rd

+ → R+ is DR-submodular if it satisfies diminishing returns
meaning f(w + aei) − f(w) ≤ f(x + aei) − f(x) for all x, w ∈ Rd

+ with x ≤ w, i ∈ [d], and
a ≥ 0. It is known that continuous submodularity is equivalent to having this diminishing
returns inequality only when xi = wi; hence continuous submodularity is a weaker property.
The class of DR submodular functions turns out to be uninteresting when looking at norms
since the only DR-submodular norm is the ℓ1-norm (up to rescaling coordinate-wise). See
Appendix A.1 for proofs.

1.2 Applications
In addition to being a natural class of norms, submodular norms find multiple applications.
We will explore two specific applications-one in the domain of online algorithms and another
in the field of stochastic optimization.

Online Facility Location

In this problem we are given a metric space (M, d) equipped with metric d : M × M → R≥0,
along with a cost function f : M → R+ and a norm ∥ · ∥ : Rn

+ → R+. At each time step
i ∈ [n], an adversary produces a new request xi ∈ M and the algorithm decides to either
assign xi to the closest already-open facility in the set Fi−1, thereby incurring a connection
cost d(xi, Fi−1), or to open a new facility q and assign request xi to facility q, thereby

APPROX/RANDOM 2023



23:4 Submodular Norms with Applications

incurring a connection cost d(xi, q) and an opening cost f(q). Let F be the final set of
opened facilities, let Fi be the set of facilities opened until (and including) the i-th request,
and let d = (d1, . . . , dn) ∈ Rn

+ be the vector of connection costs di := d(xi, Fi). Our goal is
to minimize the total cost

∑
q∈F f(q) + ∥d∥.

Online facility location was introduced by Meyerson for ℓ1 norm [35], where he showed
an O(log n) competitive algorithm. A tight competitive ratio of Θ(log n/loglog n) was later
obtained by Fotakis [21]. When all requests are given up front (offline setting), it is a classical
NP-hard problem where we can design O(1) approximation algorithm, even for general
norms [27]. In the online setting, however, no non-trivial algorithm was previously known
beyond ℓ1 norms.

▶ Theorem 8. For online facility location problem with a submodular norm ∥ · ∥, there exists
a randomized online algorithm that obtains cost at most O(log ρ) ·

∑
z∈F ∗ f(z) + O(1) · ∥d∗∥,

where F ∗ and d∗ are the set of facilities and vector of assignment distances respectively given
by the offline optimum algorithm and ρ := ∥(1,1,...,1)∥

mini ∥ei∥ ≤ n · maxi ∥ei∥
mini ∥ei∥ .

Since any symmetric norm can be O(log ρ) approximated by a submodular norm by
Theorem 6, we get the following corollary.

▶ Corollary 9. For online facility location problem with a symmetric norm, there exists an
O(log ρ)-competitive randomized algorithm.

For concreteness, this corollary implies an O(log n)-competitive algorithm for ℓ1 norm,
which matches Meyerson’s bound [35], an O(1)-competitive algorithm for ℓ∞ norm, and an
O(log k)-competitive algorithm for Top-k norm. This is tight up to an O(log log ρ) factor for
any symmetric norm by the lower bound construction given in Theorem 31.

The proof of Theorem 8 relies on generalizing Meyerson’s algorithm beyond ℓ1 norms.
Meyerson’s algorithm constructs a new facility at each demand point xi with probabil-
ity d(xi, Fi−1)/f , thereby balancing the cost of assigning the demand against the cost
of constructing a new facility. A natural generalization of this algorithm to general
norms is to construct a new facility with probability δi/f , where marginal cost δi =
∥(d1, . . . , di−1, d(xi, Fi−1), 0, . . . , 0)∥ − ∥d≤i−1∥. Unfortunately, we will show that such an
algorithm is Ω(n)-competitive even for the ℓ∞ norm. Our crucial change to Meyerson’s
algorithm is to carefully define auxiliary assignment costs d̂i which upper bound the true costs
di. Now we use d̂i instead of di to calculate the marginal cost δi. Due to norm submodularity,
this underestimates the marginal costs, making the algorithm more inclined to assign demand
points instead of constructing new facilities.

Next, we discuss a stochastic optimization application of submodular norms.

Stochastic Probing

This problem is a natural stochastic generalization of constrained submodular maximiz-
ation. Here, we are given probability distributions of n independent random variables
X = (X1, . . . , Xn) ∈ R+, a downward-closed set family F ⊆ 2[n], and a monotone objective
f : Rn

+ → R+. The goal is to select a feasible set S ∈ F of variables in order to maximize
f(XS). The optimal strategy for this problem is generally adaptive, i.e., it selects elements of
S one at a time and may change its decisions based on observations of the selected variables.

Since adaptive strategies are complicated (could be an exponential-sized decision tree)
and hard to implement for many applications of stochastic probing, we are interested in
finding non-adaptive algorithms that maximize maxS∈F E[f(XS)]. The main question, which
has been studied in several papers [5, 24, 25, 26, 14, 19], is how much do we lose when we
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move from adaptive to non-adaptive algorithms, i.e., if Adap(X, F , f) denotes the optimal
adaptive strategy and NA(X, F , f) denotes the optimal non-adaptive algorithm, then what
is the maximum possible adaptivity gap Adap(X,F,f)

NA(X,F,f) .
For submodular set functions, the worst-case adaptivity gap is known to be 2 [26, 14].

An interesting conjecture posed in [26] is whether the adaptivity gap for XOS set functions
is poly-logarithmic in n, where an XOS set function f : 2[n] → R+ is a max over linear set
functions. Since a monotone norm is nothing but a max over linear functions (given by the
dual-norm unit ball), they form an extension of XOS set functions from the hypercube to all
non-negative real vectors. Thus, we can generalize the conjecture of [26] to the following:

▶ Conjecture 10. The adaptivity gap for stochastic probing with monotone norms is poly-
log(n).

Although we are not able to resolve this general conjecture, we make progress by resolving
it for all symmetric norms.

▶ Theorem 11. The adaptivity gap for stochastic probing with symmetric norms is O(log n).

The proof of this result relies on first approximating the symmetric norm by a submodular
norm as given in Theorem 6. Next, we generalize the technique of bounding adaptivity gaps
for submodular set functions in [14] to submodular norms.

1.3 Further Related Work

In recent years, there has been a surge of interest in the study of general norms. Some of the
combinatorial problems that have been studied beyond ℓp norms are load balancing [16, 17, 29,
30], k-clustering [15, 16], vector scheduling [32, 18, 31], set cover [7, 36], spanning trees [28],
and generalized assignment with convex costs [23, 32]. Beyond combinatorial optimization,
general norms have been recently studied for problems such as mean estimation with
statistical queries [34], nearest-neighbor search [4, 3], regression [2, 39], and communication
complexity [1].

Continuous submodular functions have been extensively studied in the machine learning
literature. We refer to the beautiful article of Bach [8] for their properties. Some of their
applications to combinatorial optimization are discussed in [6, 37] and to learning are discussed
in [40, 20]. The fact that submodular set function induces a norm via its Lovász extension
has found several applications for regression since they induce sparsity [9, 10].

Paper Outline

Our work revolves around submodular norms and combinatorial optimization problems where
the objective function is a submodular norm. In Section 2, we illustrate the key properties of
submodular norms and the extent to which they serve as a good proxy for other classes of
norms. In this respect, we identify a crucial parameter ρ that structurally characterizes a
given submodular norm and may be of independent interest. In Section 3, we leverage these
properties to derive a competitive algorithm for online facility location. Finally, in Section 4,
we provide an application of submodular norms to adaptivity gaps for stochastic probing.
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2 Submodular Norms

We study properties of submodular norms and how they relate to other commonly studied
norms.

2.1 Properties and Important Special Cases
We first discuss some common examples of submodular norms.

▶ Observation 12. The following norms are submodular:
1. All ℓp norms are submodular.
2. All Top-k and ordered norms are submodular.
3. For a matroid M = ([n], I), the matroid rank norm ∥x∥ := maxS∈I(

∑
i∈S xi) is submod-

ular.

Proof. To see that ℓp norms are submodular, it suffices to show that for any monotone
concave g : R+ → R+, and submodular f : Rn

+ → R+, the function g ◦ f is submodular. We
can then apply this when f = ∥x∥p

p and g(y) = y1/p.
To prove the claim, notice that for x, y ∈ Rn

+,

g(f(x ∨ y)) − g(f(x)) ≤ g(f(x ∨ y) − f(x) + f(x ∧ y)) − g(f(x ∧ y)) ≤ g(f(y)) − g(f(x ∧ y)).

On the other hand, Top-k norms and matroid rank norms are special cases of Lovász
extensions. The matroid rank norm is the Lovász extension of the rank function, and a Top-k
norm is a matroid rank norm for the k-uniform matroid. ◀

Submodular norms are also closed under several natural operations.

▶ Lemma 13. The following operations return a submodular norm:
1. Any rescaling of the coordinates of a submodular norm.
2. Sums of partial1 submodular norms.
3. Any conical combination of submodular norms is submodular.2

Proof. The first property follows since coordinate-wise rescaling of vectors commutes with
coordinate-wise max and min.

The second property follows from the fact that a partial submodular norm is a submodular
semi-norm (i.e., a norm without the requirement to be positive definite). A sum of semi-
norms remains a semi-norm, and from [8], a sum of continuously submodular functions is
continuously submodular.

Finally, it is folklore that conical combinations of norms are norms, and it is also easy to
show that such combinations also preserve continuous submodularity (see [8]). ◀

Besides their strict containment of many common norms, submodular norms are also
powerful because they can be used to approximate other norms. In Section 2.2, we will
discuss how symmetric norms can be approximated by submodular norms up to logarithmic
factors. In addition, we note in Section 2.3 that submodular norms may approximate a much
larger class of norms than just symmetric, although they are still far from the most general
class of monotone norms. These approximation relations are summarized in Figure 1.

1 Partial means norms defined on a subset of coordinates with every other coordinate treated as 0.
2 Let x1, . . . , xm ∈ Rn be real-valued vectors. We say that y =

∑
i∈[m] αixi is a conical combination of

the vectors if αi ≥ 0 for all i ∈ [m].
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Monotone Norms

Submodular Norms

Symmetric Norms

ℓp-norms

Ordered norms

Lovász extensions

√
n

n
≈ log n

Sum of partial ℓp-norms

Max of positive linear functionals
n

Figure 1 The containment relationships between monotone norms, submodular norms, and
symmetric norms, along with some examples. The “distances” shown indicate the worst-case
approximation factor (up to constants) for a norm in each outer class by a norm in the corresponding
inner class.

2.2 Approximation of Symmetric Norms
A major benefit of studying submodular norms is that they can approximate any symmetric
norm. Indeed, previous works have noted that symmetric norms can be approximated by an
ordered norm up to a factor of O(log n) [16, 32]. For our purposes, it will be useful to make
this approximation more precise by replacing log n with log ρ, where parameter ρ is defined
as follows:

▶ Definition 14. If e1, . . . , en denote the standard basis vector and let 1≤i :=
∑

1≤j≤i ej

denote the vector with 1s at the first i coordinates and 0 otherwise. Then for any monotone
norm ∥ · ∥ we define the parameter

ρ∥·∥ := ∥1≤n∥
mini∈[n] ∥ei∥

.

When the norm is clear from context, we simply write ρ = ρ∥·∥.

Notice that for symmetric norms, we have ρ = ∥1≤n∥
∥e1∥ ≤ n. One can think of ρ for symmetric

norms as a measure of how closely a norm behaves like ∥ · ∥1 (large ρ) versus ∥ · ∥∞ (small ρ).

▶ Observation 15. For ℓp norms, we have ρ∥·∥p
= n1/p. For Top-k norms, we have

ρ∥·∥Top-k = k.

As we will see, the parameter ρ appears again in both the upper and lower bound analysis
in Section 3 and Appendix B.3, making the improvement from log n to log ρ in Lemma 16
necessary for tight bounds in our applications.

▶ Lemma 16. For any symmetric norm ∥ · ∥ with ρ∥·∥ = ρ, there is an ordered norm ∥ · ∥′

such that ∥x∥ ≤ ∥x∥′ ≤ 2(log ρ + 1) · ∥x∥.

APPROX/RANDOM 2023
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Proof. Let ∥x∥ = maxa∈A⟨a, x↓⟩. Without loss of generality, assume ∥e1∥ = 1, so ∥1≤n∥ =
∥(1, . . . , 1)∥ = ρ.

Let 1 = m0 ≤ m1 ≤ · · · ≤ m⌊log ρ⌋ be such that mj is the least integer with ∥1≤mj
∥ ≥ 2j .

Let a0, . . . , a⌊log ρ⌋ ∈ A be such that ∥1≤mj ∥ = ⟨aj , 1≤mj ⟩.
Now consider the ordered norm ∥x∥′ := 2⟨a∗, x↓⟩, where a∗ =

∑
j aj . Clearly, we have

1
2(⌊log ρ⌋ + 1)∥x∥′ ≤ max

j
⟨aj , x↓⟩ ≤ max

a∈A
⟨a, x↓⟩ = ∥x∥.

Additionally, notice that for any x ∈ Rn
+, we can write x↓ =

∑
k∈[n] λk1≤k for some λk ≥ 0.

We have

∥x∥′ = 2
∑

j

∑
k

λk⟨aj , 1≤k⟩ ≥ 2
∑

k

λk max
j

⟨aj , 1≤k⟩ ≥†
∑

k

λk∥1≤k∥ ≥ ∥x∥.

Here, † follows from rounding each k down to the nearest mj and using

⟨aj , 1≤k⟩ ≥ ⟨aj , 1≤mj
⟩ = ∥1≤mj

∥ ≥ 1
2∥1≤k∥. ◀

Tightness of approximation

In the worst case where ρ = Ω(n), the log n factor turns out to be nearly the best possible
factor for approximation of a symmetric norm by a submodular norm. The following lemma
shows that the construction in Lemma 16 is tight up to O(loglog n) factors.

▶ Lemma 17. For any ε ∈ (0, 1/2), define

∥x∥ := max
k∈[n]

k−ε · ⟨1≤k, x↓⟩.

For any submodular norm ∥ · ∥′ such that ∥x∥′ ≥ ∥x∥ for all x ∈ Rn
+, there exists y ∈ Rn

+
such that ∥y∥′ ≥ C ε

1−ε (log n)1−ε∥y∥. Taking ε = 1
log log n gives ∥y∥′ ≥ Ω( log n

log log n )∥y∥.

Proof. Let y be defined by yk := kε−(k−1)ε

ε . A simple calculation yields that

k−(1−ε) ≤ yk ≤ (k − 1)−(1−ε).

Additionally, we have

∥y∥ = max
k∈[n]

k−ε ·
k∑

i=1
yi = max

k∈[n]
k−ε · kε

ε
= 1

ε
.

Now to estimate ∥y∥′, first note that we may assume ∥ · ∥′ to be symmetric, otherwise
replace ∥ · ∥′ with its average over all permutations of inputs. We will inductively show that
for j ∈ [n/log n], we have ∥y≤j∥′ ≥ bj := (log(j+1))1−ε

4(1−ε) .
For j = 1, we check

b1 ≤ 1
4(1 − ε) ≤ 1

2 ≤ 1 = ∥y≤1∥ ≤ ∥y≤1∥′.

Now assume the claim holds for a given j ≥ 1. Consider z ∈ Rd
+ defined by

zi =


yi 1 ≤ i ≤ j,

yj+1 j < i ≤ j + ℓ,

0 j + ℓ < i,
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where ℓ := ⌈(j + 1) log(j + 1)⌉. Notice that by submodularity and symmetry, we have

∥y≤j+1∥′ ≥ ∥y≤j∥′ + ∥z∥′ − ∥y≤j∥′

ℓ
≥ bj + ∥z∥′ − bj

ℓ
.

We see that

∥z∥′ ≥ ∥z∥ ≥ (j + ℓ)−ε · (j + ℓ)yj+1 ≥
(

j + ℓ

j + 1

)1−ε

≥ log(j + 1)1−ε
.

Thus, we have ∥z∥′ − bj ≥ 1
2 log(j + 1)1−ε. Finally, we have

∥y≤j+1∥′ ≥ bj + log(j + 1)1−ε

2ℓ
≥ bj + log(j + 1)−ε

4(j + 1) ≥ bj +
∫ j+2

j+1

(log x)−ε

4x
dx = bj+1. ◀

2.3 Beyond Symmetric Norms
Given that submodular norms allow us to approximate symmetric norms up to log n factors,
we may ask if other classes of norms can be similarly approximated. We note that there
exist submodular norms that are an Ω(n) factor away from any symmetric norm, which
suggests that symmetric norms are not the largest class of norms which are approximated by
submodular norms. Indeed, sums of partial ℓp or Top-k norms, such as those considered in [36],
are submodular but can be highly asymmetric. Thus, although we focus on approximating
symmetric norms by submodular norms, it is likely that many asymmetric norms admit
submodular approximations. However, we leave the problem of characterizing these norms
for future work.

In the following lemmas, we adopt the notation xS for x ∈ Rn and S ⊆ [n] to denote x

after zeroing out all entries except those at indices in S, as well as 1S to denote the indicator
vector of S.

▶ Lemma 18. There exists a submodular norm ∥ · ∥′ for which any symmetric norm ∥ · ∥
satisfying ∥x∥ ≤ ∥x∥′ for all x ∈ Rn

+, also has ∥y∥′ ≥ Ω(n) · ∥y∥ for some y ∈ Rn
+.

Proof. Let A := {1, . . . , n/2} and B := {n/2 + 1, . . . , n}. Define the norm ∥x∥′ := ∥xA∥∞ +
∥xB∥1. Notice that ∥ · ∥′ is a sum of partial ℓp norms, so it is submodular by Lemma 13. Now
suppose ∥ · ∥ is a symmetric norm with ∥x∥ ≤ ∥x∥′ for all x ∈ Rn

+. Then ∥1A∥ ≤ ∥1A∥′ = 1.
However, we also have ∥1B∥ = ∥1A∥ by symmetry, and ∥1B∥′ = n/2. Thus, taking y = 1B,
we have our lemma. ◀

In the most general setting of monotone norms, however, submodular norms cannot give
better than an Ω(

√
n) approximation. The proof of this fact is similar to the canonical proof

of the Ω(
√

n) factor gap between submodular set functions and XOS set functions.

▶ Lemma 19. There exists a monotone norm ∥ · ∥ for which any submodular norm ∥ · ∥′

satisfying ∥x∥ ≤ ∥x∥′ for all x ∈ Rn
+, also has ∥y∥′ ≥ Ω(

√
n) · ∥y∥ for some y ∈ Rn

+.

Proof. Partition [n] into
√

n blocks B1, . . . , B√
n, each of size

√
n. Define the norm ∥x∥ :=

maxk∈[
√

n]
(∑

i∈Bk
xi

)
. Now suppose ∥ · ∥′ is a submodular norm satisfying ∥x∥ ≤ ∥x∥′ for

all x ∈ Rn
+. We will construct y by starting with the zero vector and iteratively choosing one

element ik of each Bk to activate (set yik
= 1). Clearly ∥y∥ = 1, so we just need to show

∥y∥′ ≥ Ω(
√

n).
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Formally, let y(0) = 0, and for each k = 1, . . . ,
√

n
2 , do the following. If ∥y(k−1)∥′ ≥

√
n

2 ,
we are done and simply choose y = y(k−1). Otherwise, notice that ∥y(k−1) + 1Bk

∥′ ≥
∥y(k−1) + 1Bk

∥ =
√

n, so ∥y(k−1) + 1Bk
∥′ − ∥y(k−1)∥ ≥

√
n

2 . By submodularity, there exists
some ik ∈ Bk such that ∥y(k−1) +eik

∥′ ≥ ∥y(k−1)∥′ + 1
2

√
n

, for which we set y(k) := y(k−1) +eik

By induction, if we do not terminate early, we have ∥y(
√

n)∥′ ≥ n
2

√
n

=
√

n
2 . ◀

3 Online Facility Location with Submodular Norms

In this section, we illustrate how submodular norms can be applied to Online Facility Location.
Recall from Section 1.2, in this problem we are given a metric space (M, d) along with a
cost function f : M → R+. At each time step i ∈ [n], an adversary produces a new request
xi ∈ M, and the algorithm decides whether to assign xi to the closest open facility Fi−1 or
to open a new facility q and assign request xi to q. The goal is to minimize the total facility
opening costs plus a given norm ∥ · ∥ of the connection costs, i.e., min

∑
q∈F f(q) + ∥d∥,

where d = (d1, . . . , dn) ∈ Rn
+ is the vector of connection costs di := d(xi, Fi).

In the case of uniform costs, f(q) = f for all q, so the total facility opening cost becomes
f · |F |. We use d≤i = (d1, . . . , di, 0, . . . , 0) to denote the first i coordinates of vector d.

3.1 Uniform Costs
For now, we will focus on the case when facility costs are uniformly f .

▶ Theorem 20. Let ∥ · ∥ be a submodular norm, and let ρ := ρ∥·∥. For the ∥ · ∥ norm
online facility location problem with uniform facility costs f , there exists a randomized online
algorithm that obtains cost at most O(log ρ) · |F ∗|f + O(1) · ∥d∗∥, where F ∗ and d∗ are the
set of facilities and vector of assignment distances, respectively, given by the optimal offline
algorithm.

Notice that because our algorithm obtains a constant factor approximation for the
assignment costs, we have the following corollary.

▶ Corollary 21. There is an O(log ρ)-competitive algorithm for uniform costs online facility
location with symmetric norms.

Proof. Given the uniform cost facility location problem with a monotone symmetric norm
∥ · ∥, let F ∗ and d∗ be the set of facilities and assignments distances given by the optimal
offline algorithm. For our online algorithm, we will approximate ∥ · ∥ by a submodular norm
∥ · ∥′ using Lemma 16, and then run the algorithm in Theorem 20 on norm ∥ · ∥′. Since
log ρ = log ρ∥·∥ = Θ(log ρ∥·∥′), this algorithm will incur cost at most

|F |f +∥d∥ ≤ |F |f +∥d∥′ ≤ O(log ρ)|F ∗|f +O(1)∥d∗∥′ ≤ O(log ρ)|F ∗|f +O(log ρ)∥d∗∥. ◀

Proof outline for Theorem 20

We want to generalize Meyerson’s algorithm beyond ℓ1 norms and use submodularity to
complete the analysis. Meyerson’s algorithm constructs a new facility at each demand
point xi with probability d(xi, Fi−1)/f , thereby balancing the cost of assigning the demand
against the cost of constructing a new facility. To adapt this algorithm to more general
norms, it is natural to construct a new facility at xi with probability δi/f , where δi =
∥(d1, . . . , di−1, d(xi, Fi−1), 0, . . . , 0)∥ − ∥d≤i−1∥ is the marginal cost of assigning xi.
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Unfortunately, the above natural generalization of Meyerson’s algorithm can have an Ω(n)
competitive ratio. For instance, consider the star graph K1,n equipped with the standard
unweighted graph distance metric. Suppose that our construction costs are f = 1, our
submodular norm is the ℓ∞ norm, and the demand points are all the leaves of the star
graph. The optimal solution constructs a single facility at the center, yielding a total cost of
1 + ∥(1, . . . , 1)∥∞ = 2. On the other hand, the suggested algorithm constructs a facility for
every demand point, as δi = 2 for each i ≥ 2, incurring a total cost of n.

To get around this issue, we will define auxiliary assignment costs d̂i that upper bound
the true costs di. The key modification to the algorithm is that we will use d̂i instead of di for
calculating the marginals δi. By overestimating the assignment costs that we have incurred,
the algorithm underestimates potential marginal costs due to submodularity, making it
more inclined to assign demand points instead of constructing new facilities. Moreover, the
flexibility of the analysis allows us to show that the increased costs of d̂i still obtain an
O(log ρ) competitive ratio.

We now present the formal proof.

Proof of Theorem 20. To formalize the outline above, we will first inductively define our
auxiliary cost vector d̂ and the marginals δi by

d̂i := min
{

d(xi, Fi−1), max{z ≥ 0 : f ≥ ∥(d̂1, . . . , d̂i−1, z, 0, . . . , 0)∥ − ∥d̂≤i−1∥}
}

and

δi := ∥d̂≤i∥ − ∥d̂≤i−1∥.

Thus, d̂i is the assignment distance d(xi, Fi−1) capped such that δi ≤ f . For our algorithm,
we construct a facility at xi with probability δi/f , and assign xi to the nearest facility
otherwise. These are well-defined probabilities since δi ≤ f . To see the upper-bound di ≤ d̂i,
notice that if δi < f , then d̂i = d(xi, Fi−1) ≥ d(xi, Fi) = di. If δi = f , then di = 0 since a
facility is constructed at xi with probability 1, so di = 0 ≤ d̂i.

Let cost(i) := f · 1|Fi|>|Fi−1| + δi be the marginal increase in auxiliary cost at step i, so∑
i∈[n] cost(i) = f · |F | + ∥d̂∥. We will bound separately the cost of demand points that

arrive before and after the first nearby facility is constructed. Similar to Meyerson’s proof,
we have the following bound on costs incurred before a facility is constructed in a given set.

▷ Claim 22. Let A ⊆ [n] be a fixed set of indices, and let S ⊆ A be the subset of indices that
arrive before the first facility is constructed at any step in A. Then E[

∑
i∈S cost(i)] ≤ 2f .

The proof of this claim is essentially identical to Meyerson’s, so we will defer it to
Appendix B.1.

Now, let us enumerate our offline algorithm’s facility set as F ∗ = {c∗
1, . . . , c∗

K}, where
K = |F ∗|. Let C∗

1 , . . . , C∗
K be the offline clusters, i.e., C∗

k is the set of i ∈ [n] for which xi is
assigned to c∗

k.
Let r := ∥d∗∥

∥(1,...,1)∥ . We partition each cluster into rings as C∗
k =

⋃L
ℓ=0 Cℓ

k, where L =
⌈log ρ⌉,

C0
k := {i ∈ C∗

k : d(xi, c∗
k) ≤ r}, and

Cℓ
k := {i ∈ C∗

k : 2ℓ−1r ≤ d(xi, c∗
k) ≤ 2ℓr} for ℓ ∈ {1, . . . , L}.

Notice that this is a partition since

max
i∈C∗

k

d(xi, C∗
k) ≤ ∥d∗∥∞ ≤ ∥d∗∥

mini ∥ei∥
= rρ ≤ 2Lr.
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We will analyze the costs incurred by our algorithm on demand points in each ring.
Within each ring, we will consider two types of demands separately: long-distance demands
LDℓ

k and short-distance demands SDℓ
k, defined as

LDℓ
k := {i ∈ Cℓ

k : d(c∗
k, Fi−1) > 2ℓr} and SDℓ

k := {i ∈ Cℓ
k : d(c∗

k, Fi−1) ≤ 2ℓr}.

In other words, long (respectively, short) distance demands arrive before (respectively,
after) a facility has been constructed within the outer perimeter of its corresponding ring.
We now make the following claims.

▷ Claim 23. We have

E
[ L∑

ℓ=0

K∑
k=1

∑
i∈LDℓ

k

cost(i)
]

≤ 2(L + 1)Kf.

▷ Claim 24. We have

E
[ L∑

ℓ=0

K∑
k=1

∑
i∈SDℓ

k

cost(i)
]

≤ 8∥d∗∥.

These claims together give Theorem 20, since L = O(log ρ).
Notice that Claim 23 follows immediately from Claim 22 since long-distance demands

must arrive before a facility is constructed in C
(j)
ℓ . This implies E

[∑
i∈LDℓ

k
cost(i)

]
≤ 2f for

each ℓ and k.
To show Claim 24, let SD :=

⋃L
ℓ=0

⋃K
k=1 SDℓ

k. We seek to show that
∑

i∈SD cost(i) ≤ 8∥d∗∥.
Notice that if i ∈ SD0

k for some k, then we have d̂i ≤ d(xi, Fi−1) ≤ d(xi, c∗
k) + d(c∗

k, Fi−1) ≤
d∗

i + r. Similarly, if i ∈ SDℓ
k for some k and ℓ ̸= 0, we have d̂i ≤ 3d∗

i . Thus, we can say that
d̂i ≤ 3d∗

i + r for all i ∈ SD. This gives

E
[ ∑

i∈SD

cost(i)
]

≤ E
[ ∑

i∈SD

2δi

]
≤ 2E

[
∥d̂SD∥

]
≤ 2∥r1≤n +3d∗∥ = 2r∥1≤n∥+6∥d∗∥ ≤ 8∥d∗∥,

where the second inequality comes from the submodular property, the third comes from
norm monotonicity, and the last inequality is by choice of r. In particular, for the second
inequality, we crucially use the submodularity of the norm to say∑

i∈SD
δi =

∑
i∈SD

(
∥d̂≤i∥ − ∥d̂≤i−1∥

)
≤

∑
i∈SD

(
∥d̂SD∩[i]∥ − ∥d̂SD∩[i−1]∥

)
= ∥d̂SD∥. ◀

3.2 Non-Uniform Costs
In this section, we argue how one could develop the ideas of the previous section further to
extend the algorithm to Online Facility Location with different opening costs across facilities.
We will show how to modify Meyerson’s algorithm for non-uniform costs in a similar manner
to the uniform cost setting, but in a way that also handles new challenges that arise. We
motivate and describe the new algorithm, but to avoid clutter, we defer most of the proof
details to Appendix B.2.

▶ Theorem 8. For online facility location problem with a submodular norm ∥ · ∥, there exists
a randomized online algorithm that obtains cost at most O(log ρ) ·

∑
z∈F ∗ f(z) + O(1) · ∥d∗∥,

where F ∗ and d∗ are the set of facilities and vector of assignment distances respectively given
by the offline optimum algorithm and ρ := ∥(1,1,...,1)∥

mini ∥ei∥ ≤ n · maxi ∥ei∥
mini ∥ei∥ .
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Recall that previously, the algorithm’s only choice at step i was whether to construct
a facility at xi or not. In the non-uniform setting, it might not be feasible to only ever
construct at xi, since the cost of opening there might be prohibitively high. Meanwhile a
nearby location might have a much lower cost. Instead, the algorithm must consider all
possible cost levels at which it could construct and how far facilities at different cost levels
are from xi.

First, let us recap how Meyerson’s algorithm handles this in the ℓ1 norm setting. By
losing at most a factor of 2, we can assume that all opening costs are in some set {f1, . . . , fm},
where each fj is a power of 2. For each j ∈ [m], we define the W

(j)
i to be the set of facilities

which at step i are open or have opening cost at most fj :

W
(j)
i := Fi−1 ∪ {x ∈ M : f(x) ≤ fj}.

Additionally, W
(0)
i := Fi−1. Now Meyerson’s algorithm [35] will, for each j ∈ [m], open a

facility at the nearest location in Wj with probability d(xi,W
(j−1)
i

)−d(xi,W
(j)
i

)
fj

, capped at 1,
then assign xi to the nearest open facility. As in the uniform case, we can see that the
expected facility opening cost incurred is d(xi, W

(0)
i ) = d(xi, Fi−1). This allows us to again

consider a “long-distance” and “short-distance” phase within each ring of each optimal
cluster.

To adapt this algorithm to the submodular norm setting, the idea will again be to consider
construction probabilities, not based on the distances d(xi, W

(j)
i ), but instead based on the

marginal increase in an auxiliary assignment cost ∥d̂∥. However, the definition of d̂ is not as
straightforward as in the uniform cost setting. In particular, we need to satisfy di ≤ d̂i for
each i deterministically. However, without carefully controlling dependencies between facility
construction (for instance, by constructing independently for each j), it may be possible that
di = d(xi, Fi−1) if no facilities are constructed. This would force d̂i to be too large to serve
as a useful upper bound.

To avoid this, we instead construct facilities by sampling a single cost level fj at which to
build a facility. The probability of sampling fj is given by a version of the probabilities used
above. Suppose these probabilities sum to a value greater than 1. In that case, we crucially
limit the probabilities for smaller fj (corresponding to a facility at a greater distance) until
the total probability is capped at 1: We name these probabilities p

(j)
i ’s (Definition 30). This

ensures that the true assignment distance di is never too large, which allows us to pick a
conveniently small upper bound d̂i.

Algorithm 1 Non-Uniform Submodular Online Facility Location.

Data: Metric space (M, d) and online requests x1, . . . , xn

Result: Opened facilities set F and assignment of requests to facilities (at the time
of arrival)

for request xi, i = 1, . . . , n do
Sample j ∈ {0, . . . , m} according to the distribution given by p

(j)
i ;

Assign xi to the nearest location in W
(j)
i , constructing a facility there if necessary;

end

Our analysis proceeds by considering the partition of arrival indices into optimal clusters
[n] =

⋃
k∈[K] Ck, each with center c∗

k. Similarly to the uniform cost setting, we partition
each cluster into rings as C∗

k =
⋃L

ℓ=0 Cℓ
k, where L = ⌈log ρ⌉ and

C0
k := {i ∈ C∗

k : d(xi, c∗
k) ≤ r},

Cℓ
k := {i ∈ C∗

k : 2ℓ−1r ≤ d(xi, c∗
k) ≤ 2ℓr}, for ℓ ∈ [L].
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For each ring Cℓ
k, we divide the analysis into two main stages: the short-distance and

long-distance stages. We leave the formal definition of these stages for the proof details, but
intuitively, each demand is considered a long-distance demand until a facility is constructed
at a distance which is a constant multiple of the radius of Cℓ

k. After this happens, subsequent
demands in the ring are considered short-distance demands. In each of these stages, the
algorithm obtains the following.

▶ Lemma 25 (Short-Distance Stage). The expected cost incurred by the algorithm in the
short-distance stage is

E [ALGSD] = E
[ ∑

i∈SD
cost(i)

]
≤ 36∥d∗∥.

▶ Lemma 26 (Long-Distance Stage). The expected cost incurred in the long-distance stage is

E
[
ALGLD

]
≤ 48(log ρ + 1) ·

∑
k∈[K]

f(c∗
k).

It is now easy to see that Theorem 8 directly follows by combining Lemma 25 and
Lemma 26. The proofs of these lemmas, along with a more formal definition of the probabilities
p

(j)
i , are given in Appendix B.2.

4 Adaptivity Gaps for Stochastic Probing

In this section, we use submodular norms to prove small adaptivity gaps for the stochastic
probing problem. Recall the stochastic probing problem from Section 1.2: Given n independ-
ent random variables X = (X1, . . . , Xn) ∈ R+, a downward closed set family F ⊆ 2[n], and
a monotone objective f : Rn

+ → R+, the stochastic probing problem (X, F , f) is to open a
feasible set S ∈ F of variables to maximize f(XS).

Denote by Adap(X, F , f) the maximum expected objective achievable by an adaptive
algorithm, i.e., one which selects elements of S one at a time, and may change its strategy
based on its observations of the selected variables. We denote by NA(X, F , f) the maximum
expected objective by a non-adaptive algorithm, i.e., NA(X, F , f) := maxS∈F E[f(XS)].

▶ Theorem 27. If f is a submodular norm, then Adap(X, F , f) ≤ 2 · NA(X, F , f).

The following result for symmetric norms is an immediate corollary due to Theorem 6.

▶ Theorem 11. The adaptivity gap for stochastic probing with symmetric norms is O(log n).

Proof of Theorem 27. We follow the same proof approach as in [14]. Consider an adaptive
algorithm Adap, and a non-adaptive algorithm Alg which selects each S ∈ F with the same
probabilities as Adap, only non-adaptively. We will show by induction on n that Adap
achieves an expected objective at most twice that of Alg. This is trivially true for n = 1, so
we only need to show the inductive step.

We can compare the performance of these two algorithms by coupling their actions. Let’s
say Adap runs on random variables X = (X1, . . . , Xn), and let S ∈ F be the (random) set of
adaptively chosen variables. We can say Alg runs on variables Y = (Y1, . . . , Yn), i.i.d. copies
of X, by choosing the same set S as Adap. Without loss of generality, say that Adap starts
by selecting X1. Since 1 ∈ S deterministically, we have that Adap achieves reward

E[f(XS)] = E[f(X1)] + E
[
fX1(XS\{1}) | X1

]
≤ E[f(X1 ∨ Y1)] + E

[
fX1∨Y1(XS\{1}) | X1

]
≤ 2E[f(Y1)] + E

[
fX1∨Y1(XS\{1}) | X1, Y1

]
,
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where fx(Z) := f(x, Z) − f(x, 0) for Z = (Z2, . . . , Zn) ∈ Rn−1
+ . Notice that, since f is

submodular, we have fx is submodular and decreasing in x for all x ∈ R+.
Now, notice that Alg achieves reward

E[f(YS)] = E[f(Y1)] + E
[
fY1(YS\{1}) | X1

]
≥ E[f(Y1)] + E

[
fX1∨Y1(YS\{1}) | X1, Y1

]
.

Notice that given X1, the set S \ {1} ∈ F|−1 is adaptively chosen among the variables
X2, . . . , Xn by Adap. Thus, by induction we can say E

[
fX1∨Y1(XS\{1}) | X1, Y1

]
≤ 2 ·

E
[
fX1∨Y1(YS\{1}) | X1, Y1

]
. Combining this with the above inequalities gives

E[f(XS)] ≤ 2E[f(Y1)] + 2E
[
fX1∨Y1(YS\{1}) | X1, Y1

]
≤ 2E[f(YS)]. ◀

5 Conclusion

This paper introduces the concept of submodular norms and demonstrates their application in
proving the efficiency of optimization problems beyond traditional ℓp objectives. We provide
examples showcasing the utility of submodular norms in various scenarios. Specifically,
we establish bounds on the competitive ratio of online facility location problems and the
adaptivity gap of stochastic probing techniques when using symmetric norm objectives. These
bounds crucially depend on the norm parameter ρ, and are approximately tight in the case
of facility location. There are several natural directions for future work:

(i) General Monotone Norms: We have shown a logarithmic competitive ratio and ad-
aptivity gap for online facility location and stochastic probing, respectively, when the
objective is a symmetric norm or approximately a submodular norm. However, it
remains open whether poly-logarithm bounds exist for either problem when the norm
can be an arbitrary monotone norm.

(ii) Symmetric Norm Stochastic Probing. The logarithmic factor we get in our adaptivity
gap bound for symmetric norm stochastic probing comes from the loss in approximating
a symmetric norm by a submodular norm. However, it is not clear if such a loss
is necessary. It would be interesting to determine if the true adaptivity gap is sub-
logarithmic or even a constant.

(iii) Parameter ρ. Similar to online facility location, there are other optimization problems
(e.g., online fractional set cover) which are known to have differing performance guaran-
tees for ℓ1 and ℓ∞ objectives. We hypothesize that for such problems with symmetric
norm objectives, the parameter ρ could provide a way of interpolating between ℓ1
and ℓ∞.
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A Omitted Proofs from Section 2

A.1 Properties of Continuous Submodularity
As with submodular set functions, there are many equivalent definitions for continuous
submodularity which may be helpful in different settings. These are folklore properties, but
we prove them for completeness.

▶ Lemma 28. Let f : Rd
+ → R+. The following are equivalent.

1. f is continuously submodular.
2. For all x, y, z ∈ Rd

+ with Supp(y) ∩ Supp(z) = ∅, we have

f(x) + f(x + y + z) ≤ f(x + y) + f(x + z).

3. For all x, y ∈ Rd
+ with x ≤ w, and i ∈ [d] such that xi = wi, and a ≥ 0, we have

f(w + aei) − f(w) ≤ f(x + aei) − f(x).
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4. For all x ∈ Rd
+ and a, b ≥ 0 and distinct i, j ∈ [d], we have

f(x) + f(x + aei + bej) ≤ f(x + aei) + f(x + bej).

Proof of Lemma 28. (1 ⇐⇒ 2) Let x, y, z ∈ Rd
+ with y ⊥ z. Notice that for non-negative

vectors y, z, orthogonality implies that they have disjoint support. Hence, (x+y)∨(x+z) = x

and (x+y)∧(x+z) = x+y+z. Then 2 follows from the definition of continuous submodularity.
Likewise, if f satisfies condition 2, then applying condition 2 with x′ := x ∧ y, y′ := y{i:yi>xi},
and z′ := x{i:xi>yi} gives continuous submodularity.

(2 =⇒ 3) Simply take y = w − x and z = aei.
(3 =⇒ 4) Simply take w = a + bej .
(4 =⇒ 2) Let x(i,j) := x + y<i + z<j . Consider the sum

f(x + y) + f(x + z) − f(x) − f(x + y + z)

=
∑

i,j∈[d]

[
f(x(i,j) + yiei) + f(z(i,j)

i + bej) − f(x(i,j)) − f(x(i,j) + yiei + zjej)
]

.

By condition 4, every term in the RHS sum is non-negative, so the LHS is non-negative as
well. ◀

A commonly studied variant of continuous submodularity is DR-submodularity [13, 20, 37]:
a function f : Rd

+ → R+ is DR-submodular if it satisfies the stronger condition that for all
x, w ∈ Rd

+ with x ≤ w, i ∈ [d], and a ≥ 0, we have f(w + aei) − f(w) ≤ f(x + aei) − f(x).
In other words, f satisfies condition 3 of Lemma 28 even where wi ̸= xi. However, the only
DR-submodular norm is the ℓ1-norm.

▶ Lemma 29. Any DR-submodular norm is equivalent to ℓ1 up to rescaling the coordinates.

Proof. Suppose ∥ · ∥ : Rd
+ → R is a DR-submodular norm with ∥ei∥ = 1 for each i ∈ [d].

Clearly, ∥x∥ ≤
∑

xi = ∥x∥1 by triangle inequality. Suppose that ∥x∥ < ∥x∥1 for some
x ∈ Rd

+. Then for some i ∈ [d], we have ∥x≤i∥ − ∥x≤i−1∥ ≤ xi − ε, where ε > 0. By DR
submodularity, this means ∥x≤i−1 + kxiei∥ ≤ k(xi − ε) for all k ∈ N. However, with the
continuity of norms, this gives

xi − ε ≥ lim
k→∞

∥x≤i−1 + kxiei∥
k

= lim
k→∞

∥∥∥∥ 1
k

· x≤i−1 + xiei

∥∥∥∥ = ∥xiei∥ = xi,

which is a contradiction, so we have ∥x∥ = ∥x∥1. ◀

B Omitted Proofs from Section 3

B.1 Uniform Costs
▷ Claim 22. Let A ⊆ [n] be a fixed set of indices, and let S ⊆ A be the subset of indices that
arrive before the first facility is constructed at any step in A. Then E[

∑
i∈S cost(i)] ≤ 2f .

Proof. Consider the following game: For i ∈ A, a player is shown δi, and has to option to pay
a cost of δi to play a lottery, which has a δi

f chance of giving reward f . Since the expected
reward of playing the lottery is exactly the cost, the player is indifferent to playing at each
step. This means any strategy for the player has zero expected reward. In particular, the
strategy of playing the lottery only until the first win has an expected reward of 0.

Let R be the total lottery winnings of this strategy and C be the total cost of playing.
We have that E[R − C] = 0, and since at most one lottery is won, E[R] ≤ f . Thus,
E[R + C] = 2E[R] ≤ 2f . But R + C has exactly the distribution of

∑
i∈S cost(i), which gives

the desired result. ◁
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B.2 Non-uniform Costs

We now introduce the notation needed to prove that Algorithm 1 shows Theorem 8. Let us
recall that f : X → R+ is the cost function of opening a facility. First, we assume without
loss of generality that f(x) is a power of 2 for each x ∈ X.3 Let f (1) ≤ · · · ≤ f (m) be the
distinct cost levels, so 2f (i) ≤ f (i+1). Additionally, let f (0) := 0 for completeness. As before,
let Fi denote the set of facilities that have been opened after the arrival of xi, before the
arrival of xi+1.

▶ Definition 30. For each step i ∈ [n] and cost level j ∈ {0, . . . , m}, let us define
1. W

(j)
i := Fi−1 ∪ {x ∈ X : f(x) ≤ f (j)} to be the set of locations which are open or have

an opening cost at most f (j);
2. d̂

(j)
i := min{d(xi, W

(j)
i ), τi} to be the capped value of d

(j)
i (where cap τi is defined in

Item 6);
3. d̂i := d̂

(0)
i = min{d(xi, Fi−1), τi} for simplicity.

4. δ
(j)
i := d̂

(j)
i

d̂
(0)
i

(
∥d̂

(0)
≤i ∥ − ∥d̂

(0)
≤i−1∥

)
to be the fraction of marginal increase in assignment cost

we attribute to cost levels ≤ j;

5. p
(j)
i := δ

(j−1)
i

−δ
(j)
i

f(j) for j ≥ 1 to be the assigned probability of opening a facility in W
(j)
i ,

and p
(0)
i := 1 −

∑m
j=1 p

(j)
i ;

6. τi := arg max{τ ∈ R≥0 ∪ {+∞} |
∑m

j=1 p
(j)
i ≤ 1} to be the cap value, i.e., the largest

nonnegative cap such that
∑m

j=1 p
(j)
i ≤ 1. This exists as each p

(j)
i is monotone decreasing

in τi.

Given the above definitions, we notice that since d
(j)
i is decreasing in j, this means for

some j we have

0 = d̂
(m)
i ≤ d̂

(m−1)
i ≤ · · · ≤ d̂

(j+1)
i ≤ τi = d̂

(j)
i = · · · = d̂

(0)
i .

We shall prove the following theorem as discussed in Section 3.2.

▶ Theorem 8. For online facility location problem with a submodular norm ∥ · ∥, there exists
a randomized online algorithm that obtains cost at most O(log ρ) ·

∑
z∈F ∗ f(z) + O(1) · ∥d∗∥,

where F ∗ and d∗ are the set of facilities and vector of assignment distances respectively given
by the offline optimum algorithm and ρ := ∥(1,1,...,1)∥

mini ∥ei∥ ≤ n · maxi ∥ei∥
mini ∥ei∥ .

To prove this theorem, we will separately the so-called short distance demands SDℓ
k and

long distance demands LDℓ
k in each ring Cℓ

k. Formally, we define

LDℓ
k := {i ∈ Cℓ

k : d̂
(0)
i > (λ + 1)2ℓr}, LD :=

K⋃
k=1

L⋃
ℓ=0

LDℓ
k,

SDℓ
k := {i ∈ Cℓ

k : d̂
(0)
i ≤ (λ + 1)2ℓr}, SD :=

K⋃
k=1

L⋃
ℓ=0

SDℓ
k.

3 That is, by rounding costs down to powers of 2, we lose only a factor of 2.
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B.2.1 Short-distance stage
▶ Lemma 25 (Short-Distance Stage). The expected cost incurred by the algorithm in the
short-distance stage is

E [ALGSD] = E
[ ∑

i∈SD
cost(i)

]
≤ 36∥d∗∥.

Proof. Let us fix a set Cℓ
k. If ℓ = 0, then for all i ∈ SDℓ

k, we have that d̂i ≤ (λ + 1)r. If
ℓ > 0, we still have that d̂i ≤ (λ + 1)2ℓr ≤ 2(λ + 1)d∗

i . Summing up overall demands arriving
in the short distance stage we have,

E [ALGSD] ≤
∑
i∈SD

E[cost(i)] ≤
∑
i∈SD

2δ
(0)
i =

∑
i∈SD:d∗

i
≤r

2δ
(0)
i +

∑
i∈SD:d∗

i
>r

2δ
(0)
i

≤ 2 · ∥(d̂i)i∈SD:d∗
i

≤r∥ + 2 · ∥(d̂i)i∈SD:d∗
i

>r∥

≤ 2(λ + 1) · r · ∥(1 . . . 1)∥ + 4(λ + 1) · ∥d∗∥
≤ 6(λ + 1) · ∥d∗∥.

Here, the second inequality comes from the fact that we need to account for the facility
opening cost as well as the connection cost. Moreover, the third inequality holds by norm
submodularity, the fourth by what was argued earlier on distances, and the last by definition
of r. The lemma then follows from choosing λ = 5, which is needed for the proof of
Lemma 26. ◀

B.2.2 Long-distance stage
▶ Lemma 26 (Long-Distance Stage). The expected cost incurred in the long-distance stage is

E
[
ALGLD

]
≤ 48(log ρ + 1) ·

∑
k∈[K]

f(c∗
k).

Proof. Let us fix a cluster ring Cℓ
k, and let j∗

k be defined such that f(c∗
k) = f (j∗

k). Denote
by γ

(j)
i := d(c∗

k, W
(j)
i ), the distance at step i between the cluster center and a facility whose

opening cost is at most f (j). We denote by E(j)
ℓ the event that a facility is opened within

a γ
(j)
0 + 2ℓ+1r distance from optimal center c∗

k. It is easy to see that such an event occurs
whenever the algorithm constructs a facility of cost f (j) or higher for a demand in Cℓ

k. We
now analyze the expected cost accumulated by the algorithm before, and after E(j)

ℓ has
occurred. We denote by t

(j)
ℓ the time of event E(j)

ℓ occurrence.
Before E(j)

ℓ has occurred, we have
∑

i≤t
(j)
ℓ

E[cost(j)(i)] ≤ 2f (j), by the same reasoning as

Claim 22. Hence, we have that the total cost all levels j ≤ j∗
k before event E(j)

ℓ is∑
j≤j∗

k

∑
i∈LDℓ

k

i≤t
(j)
ℓ

E[cost(j)(i)] ≤ 2
∑
j≤j∗

k

f (j) ≤ 4f (j∗
k).

We seek to demonstrate that these costs make up a constant fraction of all costs during the
long-distance stage. Notice that by re-indexing, we can write

∑
j≤j∗

k

∑
i∈LDℓ

k

i<t
(j)
ℓ

E[cost(j)(i)] =
j∗

k
−1∑

j=0

∑
i∈LDℓ

k

t
(j)
ℓ

<i≤t
(j+1)
ℓ

j∗
k∑

j′=j+1

E[cost(j′)(i)] = E
j∗

k
−1∑

j=0

∑
i∈LDℓ

k

t
(j)
ℓ

<i≤t
(j+1)
ℓ

2(δ(j)
i − δ

(j∗
k

)
i ),
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i.e., these are also the costs that occur in the range {j + 1, . . . , j∗
k}, during each period

between event E(j)
ℓ and E(j+1)

ℓ . In particular, we will show for each term in the sum,
(δ

(j)
i

−δ
(j∗

k
)

i
)/δ

(0)
i

≥ λ−4/λ+1, so these costs comprise a constant fraction of the total expected
cost 2δ

(0)
i at each step i.

We start with the simple observation that

δ
(j)
i − δ

(j∗
k)

i

δ
(0)
i

= d̂
(j)
i − d̂

(j∗
k)

i

d̂
(0)
i

≥ d(xi, W
(j)
i )

d(xi, Fi−1) − d(xi, c∗
k)

d̂
(0)
i

,

by definition and subadditivity. We now proceed with bounding each term. Since E(j)
ℓ has

occurred, but we are still in the long distance stage, we have

(λ + 1)2ℓr < d̂
(0)
i ≤ d(xi, Fi−1) ≤ d(xi, c∗

k) + d(c∗
k, Fi−1) ≤ γ

(j)
i + 3 · 2ℓr.

This implies both d(xi, Fi−1) ≤ γ
(j)
i + 3 · 2ℓr and γ

(j)
i ≥ (λ − 2)2ℓr. Additionally, we have

d(xi, c∗
k) ≤ 2ℓr, and by triangle inequality, we have that γ

(j)
i ≤ d(xi, W

(j)
i ) + 2ℓr.

Altogether, we get

d(xi, W
(j)
i )

d(xi, Fi−1) − d(xi, c∗
k)

d̂
(0)
i

≥ γ
(j)
i − 2ℓr

γ
(j)
i + 3 · 2ℓ+1r

− 2ℓr

(λ + 1)2ℓr
≥ λ − 4

λ + 1 ,

as desired. Thus, the total cost of points in LDℓ
k is bounded as follows:

∑
i∈LDℓ

k

E[cost(i)] =
j∗

k−1∑
j=0

∑
i∈LDℓ

k

t
(j)
ℓ

<i≤t
(j+1)
ℓ

E[cost(i)] = E
j∗

k−1∑
j=0

∑
i∈LDℓ

k

t
(j)
ℓ

<i≤t
(j+1)
ℓ

2δ
(0)
i

≤ 2λ + 1
λ − 4 · E

j∗
k−1∑
j=0

∑
i∈LDℓ

k

t
(j)
ℓ

<i≤t
(j+1)
ℓ

(δ(j)
i − δ

(j∗
k)

i )

≤ 8λ + 1
λ − 4f (j∗

k).

We now sum across all concentric rings across all K optimal clusters, to obtain that

∑
i∈LD

E[cost(i)] =
K∑

k=1

L∑
ℓ=0

∑
i∈LDℓ

k

E[cost(i)] ≤ 8L

(
λ + 1
λ − 4

)
·

∑
k∈[K]

f (j∗
k),

and the claim follows from choosing λ = 5. ◀

B.3 Lower Bound
▶ Theorem 31. For any monotone norm ∥ · ∥, there exists a uniform-cost OFL problem with
norm ∥ · ∥ such that any online algorithm only achieves Ω

(
log σ

log log σ

)
competitive ratio, where

σ = ∥1≤n∥
maxi ∥ei∥ . Notice that for symmetric norms, σ = ρ.
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Proof. We may assume maxi ∥ei∥ = 1 (otherwise we rescale costs), so ∥1≤n∥ = σ. Let k be
the largest integer such that kk ≤ σ, so we have k = Θ

(
log σ

log log σ

)
. Assume k ≥ 2.

Now, let G = (V, E) be a complete N -ary tree with height k, where N is sufficiently large
(intuitively, think of N as infinite). For j = 0, . . . k − 1, each downwards edge from a node at
depth level j will have length k−j . We also define the facility opening cost to be k.

Let 0 ≤ m0 ≤ m1 ≤ · · · ≤ mk be defined such that mj is the least positive integer with
∥1≤mj

∥ ≥ kj . Notice that this implies ∥1≤mj
∥ ≤ ∥1≤mj−1∥ + ∥emj

∥ < kj + 1.
Our adversary will supply the demand locations as follows. First, they will choose a

random path v0v1 . . . vk from the root v0 to a leaf vk. Then, for j = 0, . . . , k, the adversary
supply vj as a demand repeated mj − mj−1 times (m0 times for j = 0).

In the offline setting, one may simply place a single facility at vk and assign all demands
to it. This gives

OPT = k + ∥d∗∥ ≤ k +
k−1∑
j=0

k−j∥1≤mj
∥ ≤ k +

k−1∑
j=0

k−j(kj + 1) = O(k).

In the online setting, we will show that no algorithm can achieve an expected cost of less
than Ω(k2).

Notice that any online algorithm, upon receiving a demand at vj , should only consider
the options of allocating the demand or constructing a facility at vj . Constructing a facility
anywhere else is strictly disadvantageous, as there is a negligible probability (by choice of
N) that the chosen location is in the subtree rooted at vj+1. Thus, after the algorithm
is complete, it will have constructed a set of facilities F ⊆ {v0, . . . , vk}, and each demand
will be allocated to the most recently constructed facility above it. Let d be the vector of
allocation distances.

If there is some j ≥ 2 such that vj , vj−1 ̸∈ F , then notice that every demand at vj will
have allocation distance at least k−j+2. Thus, we have

∥d∥ ≥ k−j+2∥1≤mj
− 1≤mj−1∥ ≥ k−j+2(∥1≤mj

∥ − ∥1≤mj−1∥) ≥ k2 − k − k−j+2 = Ω(k2)

However, if no such j exists, then |F | ≥ k/2, so construction costs are at least k2/2 =
Ω(k2). ◀

▶ Corollary 32. In the case of a symmetric norm ∥ · ∥, our lower bound becomes Ω
(

log ρ
log log ρ

)
as ρ = σ = ∥1≤n∥

∥e1∥ .
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Abstract
Maximum weight independent set (MWIS) admits a 1

k
-approximation in inductively k-independent

graphs [2, 40] and a 1
2k

-approximation in k-perfectly orientable graphs [34]. These are a parameterized
class of graphs that generalize k-degenerate graphs, chordal graphs, and intersection graphs of
various geometric shapes such as intervals, pseudo-disks, and several others [40, 34]. We consider a
generalization of MWIS to a submodular objective. Given a graph G = (V, E) and a non-negative
submodular function f : 2V → R+, the goal is to approximately solve maxS∈IG f(S) where IG is
the set of independent sets of G. We obtain an Ω( 1

k
)-approximation for this problem in the two

mentioned graph classes. The first approach is via the multilinear relaxation framework and a simple
contention resolution scheme, and this results in a randomized algorithm with approximation ratio
at least 1

e(k+1) . This approach also yields parallel (or low-adaptivity) approximations.
Motivated by the goal of designing efficient and deterministic algorithms, we describe two other

algorithms for inductively k-independent graphs that are inspired by work on streaming algorithms:
a preemptive greedy algorithm and a primal-dual algorithm. In addition to being simpler and faster,
these algorithms, in the monotone submodular case, yield the first deterministic constant factor
approximations for various special cases that have been previously considered such as intersection
graphs of intervals, disks and pseudo-disks.
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1 Introduction

Given a graph G = (V, E) a set S ⊆ V of vertices is an independent set (also referred to as a
stable set) if there is no edge between any two vertices in S. Let α(G) denote the cardinality of
a maximum independent set in G. Finding α(G) is a classical problem with many applications;
we refer to the search problem of finding a maximum cardinality independent set as MIS.
We also consider the weighted version where the input consists of G and a vertex weight
function w : V → Z+ and the goal is to find a maximum weight independent set; we refer
to the weighted problem as MWIS. MIS is NP-Hard, and moreover it is also NP-Hard to
approximate α(G) to within a 1

n1−ϵ -factor for any fixed ϵ > 0 [32, 41]. For this reason, MIS
and MWIS are studied in various special classes of graphs that capture interesting problems
while also being tractable. It is easy to see that graphs with maximum degree k admit a
1
k -approximation. In fact, the same approximation ratio holds for k-degenerate graphs – a
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graph G = (V, E) is a k-degenerate if there is an ordering of the vertices V = {v1, . . . , vn}
such that for each vi, |N(vi) ∩ {vi, . . . , vn}| ≤ k. A canonical example is the class of planar
graphs which are 5-degenerate.

In this paper we are interested in two parameterized classes of graphs called inductively
k-independent graphs [40] and k-perfectly orientable graphs [34]. These graphs are motivated
by the well-known class of chordal graphs, and capture several other interesting classes such
as intersection graphs of intervals, disks (and hence planar graphs), low-treewidth graphs,
t-interval graphs, and many others. A more recent example is the intersection graph of a
collection of pseudo-disks which were shown to be inductively 156-independent [38]. Graphs
in these classes can be dense and have large cliques. We formally define the classes.

Given a graph G = (V, E) and a vertex v we let N(v) denote the set of neighbors of v

(excluding v). A graph G = (V, E) with n vertices has a perfect elimination ordering if there is
an ordering of vertices V = {v1, . . . , vn} such that for each vi, α(G[N(vi)∩{vi, . . . , vn}]) = 1;
in other words N(vi) ∩ {vi, . . . , vn} is a clique. It is well-known that these graphs are the
same as chordal graphs.1 For example, the intersection graph of a given set of intervals is
chordal. One can generalize the perfect elimination property ordering of chordal graphs.

▶ Definition 1 ([34]). For a fixed integer k ≥ 1, G = (V, E) is k-simplicial if there is an
ordering of vertices V = {v1, . . . , vn} such that for each vi, G[N(vi) ∩ {vi, . . . , vn}] can be
covered by k cliques.

Note that if G[N(vi) ∩ {vi, . . . , vn}] is covered by k cliques then α(G[N(vi) ∩
{vi, . . . , vn}]) ≤ k. Hence one can define a class based on this weaker property.

▶ Definition 2 ([2, 40]). For a fixed integer k ≥ 1, G = (V, E) is inductively k-independent
if there is an ordering of vertices V = {v1, . . . , vn} such that for each vi, α(G[N(vi) ∩
{vi, . . . , vn}]) ≤ k. The inductive independence number of G is the minimum k for which G
is inductively k-independent.

Although inductively k-independent graphs generalize k-simplicial graphs there is no
known natural class of graphs that differentiates the two; typically one establishes inductive
k-independence via k-simpliciality. The ordering-based definition can be further relaxed
based on orientations of G.

▶ Definition 3 ([34]). For a fixed integer k ≥ 1, G = (V, E) is k-perfectly orientable if there
is an orientation H = (V, A) of G such that for each vertex v ∈ V, G[Sv] can be covered by k

cliques, where Sv = N+
H (v) is the out-neighborhood of v in H.

▶ Remark 4. In this paper we will use the term k-perfectly orientable for the following
class of graphs: there is an orientation H = (V, A) of G such that for each vertex v ∈ V,
α(G[Sv]) ≤ k where Sv = N+

H(v) is the out-neighborhood of v in H. This is more general
than the preceding definition. We observe that the algorithm in [34] for MWIS works also for
this larger class, although there are no known natural examples that differentiate the two.

We observe that if G is inductively k-independent then it is also k-perfectly orientable
according to our relaxed definition. Indeed, if v1, v2, . . . , vn is an ordering that certifies induc-
tive k-independence we simply orient the edges of G according to this ordering which yields
a DAG. The advantage of the k-perfect orientability is that it allows arbitrary orientations.
Note that a cycle is 1-perfectly orientable while it is 2-inductively independent. This factor

1 A graph is chordal iff there is no induced cycle of length more than 3.
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of 2 gap shows up in the known approximation bounds for MWIS in these two classes of
graphs. It is known that for arbitrarily large n there are 2-perfectly orientable graphs on
n vertices such that the graphs are not inductively

√
n-independent [5]. These come from

the intersection graphs of so-called 2-interval graphs. Thus, k-perfect orientability can add
substantial modeling power.

Akcoglu et al. [2] described a 1
k -approximation for the MWIS problem in graphs that

are inductively k-independent. They used the local-ratio technique, and subsequently [40]
derived it using a stack-based algorithm. Both algorithms require as input an ordering of
the vertices that certifies the inductive k-independent property. For k-perfectly orientable
graphs [34] described a 1

2k -approximation for the MWIS problem following the ideas in [5]
for a special case. Given a graph G = (V, E) and integer k there is an nO(k)-time algorithm
to check if G is inductively k-independent [40]. Typically, the proof that a specific class of
graphs is inductively k-independent for some fixed value of k, yields an efficient algorithm
that also computes a corresponding ordering. This is also true for k-perfect orientability.
We refer the reader to [30] for additional discussion on computational aspects of computing
orderings. In this paper we will assume that we are given both G and the ordering that
certifies inductive k-independence, or an orientation that certifies k-perfect orientability.

1.1 Independent sets with a submodular objective
We consider an extension of MWIS to submodular objectives. A real-valued set function
f : 2V → R is modular iff f(A)+f(B) = f(A∪B)+f(A∩B) for all A, B ⊆ V . It is easy to show
that f is modular iff there a weight function w : V → R where f(A) = w(A) =

∑
v∈A w(v).

A real-valued set function f : 2V → R is submodular if f(A) + f(B) ≥ f(A ∪B) + f(A ∩B)
for all A, B ⊆ V . An equivalent definition is via decreasing marginal value property: for any
A ⊂ B ⊂ V and v ∈ V −B, f(A + v)− f(A) ≥ f(B + v)− f(B). Here A + v is a convenient
notation for A ∪ {v}. f is monotone if f(A) ≤ f(B) for all A ⊆ B. We will confine our
attention in this paper to non-negative submodular functions and we will also assume that
f(∅) = 0. Given a graph G = (V, E) and a non-negative submodular function f : 2V → R+,
we consider the problem maxS⊆IG

f(S) where IG is the collection of independent sets in G.
This problem generalizes MWIS since a modular function is also submodular. We assume
throughout that f is available through a value oracle that returns f(S) on query S. Our
focus is on developing approximation algorithms for this problem in the preceding graph
classes, since even very simple special cases are NP-Hard.

Motivation and related work. Submodular function maximization subject to various
“independence” constraints has been a very active area of research in the last two decades.
There have been several important theoretical developments, and a variety of applications
ranging from algorithmic game theory, machine learning and artificial intelligence, data
analysis, and network analysis; see [10, 6, 22] for some pointers. We are motivated to consider
this objective in inductive k-independent graphs and k-perfectly orientable graphs for several
reasons. First, it is a natural generalization of MWIS. Second, various special cases of this
problem have been previously studied: Feldman [24] considered the case of interval graphs,
and Chan and Har-Peled considered the case of intersection graphs of disks and pseudo-disks
[16]. Third, previous algorithms have relied on the multilinear relaxation based approach
combined with contention resolution schemes for rounding. This is a computationally
expensive approach and also requires randomization. The known approximation algorithms
for MWIS in inductive k-independent graphs are based on simple combinatorial methods such
as local-ratio, and this raises the question of developing similar combinatorial algorithms for
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24:4 Independent Sets in Elimination Graphs with a Submodular Objective

submodular objectives. In particular, we are inspired by the connection to preemptive greedy
algorithms for submodular function maximization that have been developed in the context of
streaming algorithms [15, 3, 17]. Although a natural greedy algorithm has been extensively
studied for submodular function maximization [36, 28], the utility of the preemptive version
for offline approximation has not been explored as far as we are aware of. This is partly
due to the fact that the standard greedy algorithm works well for matroid like constraints.
More recently [35] developed a primal-dual based algorithm for submodular streaming
under b-matching constraints which is inspired by the stack based algorithm of [37] for the
modular setting; the latter has close connections to stack based algorithms for inductive
k-independent graphs [40]. The algorithm in [35] was generalized to matroid intersection
in [29]. Finally, at a meta-level, we are also interested in understanding the relationship in
approximability between optimizing with modular objectives and submodular objectives. For
many “independence” constraints the approximability of the problem with a submodular
objective is often within a constant factor of the approximability with a modular objective,
but there are also settings in which the submodular objective is provably harder (see [7]).
A substantial amount of research on submodular function optimization is for constraints
defined by exchange systems such as (intersections of) matroids and their generalizations
such as k-exchange systems [27] and k-systems [33, 14]. Independent sets in the graph classes
we consider provide a different parameterized family of constraints.

1.2 Results
We obtain an Ω( 1

k )-approximation for maxS⊆I f(S) in inductively k-independent graphs and
in k-perfectly orientable graphs. We explore different techniques to achieve these results
since they have different algorithmic benefits.

First, we obtain a randomized algorithm via the multilinear relaxation framework [21]
by considering a natural polyhedral relaxation and developing simple contention resolution
schemes (CRS). The CRS schemes are useful since one can combine the rounding with other
side constraints in various applications.

▶ Theorem 5. There is a randomized algorithm that given a k-perfectly orientable graph G

(along with its orientation) and a monotone submodular function f , outputs an independent
set S′ such that with high probability f(S′) ≥ ( 1

k+1 ·
1

(1+1/k)k ) maxA∈IG
f(A). For non-

negative functions there is an algorithm that outputs an independent set S′ such that with
high probability f(S′) ≥ 1

e(k+1) maxA∈IG
f(A).

The multilinear relaxation based approach yields parallel (or low-adaptivity) algorithms
with essentially similar approximation ratios, following ideas in [20, 23]. Although the
multilinear approach is general and powerful, there are two drawbacks; algorithmic complexity
and randomization which are inherent to the approach. An interesting question in the
submodular maximization literature is whether one can obtain deterministic algorithms via
alternate methods, or by derandomizing the multilinear relaxation approach. There have
been several results along these lines [9, 11, 31], and several open problems.

Motivated by these considerations we develop simple and efficient approximation algo-
rithms for inductively k-independent graphs. We show that a preemptive greedy algorithm,
inspired by the streaming algorithm in [17], yields a deterministic Ω( 1

k )-approximation
when f is monotone. This can be combined with a simple randomized approach when f

is non-monotone. Inspired by [35], we describe a primal-dual algorithm that also yields
a Ω( 1

k )-approximation; the primal-dual approach yields better constants and we state the
result below.
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▶ Theorem 6. There is a deterministic combinatorial algorithm that given an inductively
k-independent graph G (along with its orientation) and a monotone submodular function f ,
outputs an independent set S′ such that f(S′) ≥ 1

k+1+2
√

k
maxA∈IG

f(A). For non-negative
functions there is a randomized algorithm that outputs an independent set S′ such that
E[f(S′)] ≥ 1

2k+1+
√

8k
maxA∈IG

f(A). Both algorithms use O(|V (G)|) value oracle calls to f

and in addition take linear time in the size of G.

▶ Remark 7. We obtain deterministic 1/4-approximation for monotone submodular function
maximization for independent sets in chordal graphs, and hence also for interval graphs. This
matches the best ratio known via the multilinear relaxation approach [24], and is the first
deterministic algorithm as far as we know. Similarly, this is the first deterministic algorithm
for disks and pseudo-disks that were previously handled via the multilinear relaxation
approach [16]. Are there deterministic algorithms for k-perfectly orientable graphs? See
Section 5.
▶ Remark 8. Matchings in a graph G, when viewed as independent sets in the line graph H of
G, form an inductively 2-independent graph. In fact any ordering of the edges of G forms a
valid 2-inductive ordering of H. Thus our algorithm is also a semi-streaming algorithm. Our
approximation bound for monotone functions matches the approximation achieved in [35]
for matchings although we use a different LP relaxation and view the problem from a more
general viewpoint. However, for non-monotone functions, our ratio is slightly weaker, and
highlights some differences.

The primal-dual algorithm is a two-phase algorithm. The preemptive greedy algorithm is a
single phase algorithm. It gives slightly weaker approximation bounds when compared to the
primal-dual algorithm, but has the advantage that it can be viewed as an online preemptive
algorithm. Algorithms in such a model for submodular maximization were developed in
[12, 25]. Streaming algorithms for submodular function maximization in [15, 17] can be
viewed as online preemptive algorithms. Our work shows that there is an online preemptive
algorithm for independent sets of inductive k-independent graphs if the vertices arrive in the
proper order. There are interesting examples where any ordering of the vertices is a valid
k-inductive ordering.

Our main contribution in this paper is conceptual. We study the problem to unify and
generalize existing results, understand the limits of existing techniques, and raise some
directions for future research (see Section 5). As we mentioned, our techniques are inspired
by past and recent work on submodular function maximization [21, 24, 17, 35].

Organization

Section 2 sets up the relevant technical background on submodular functions. Section 3
describes the multilinear relaxation approach and proves Theorem 5. Section 4 describes
the primal-dual approach and proves Theorem 6. Section 5 concludes with a discussion of
some open problems. The description and analysis of the preemptive greedy algorithm can
be found in Appendix A.

2 Preliminaries

Let f : 2N → R≥0 be a real-valued nonnegative set function defined over a finite ground
set N . The function f is monotone if f(S) ≤ f(T ) for any nested sets S ⊆ T ⊆ N , and
submodular if it has decreasing marginal returns: if S ⊆ T ⊆ N are two nested sets and
e ∈ N \ T is an element, then f(S + e)− f(S) ≥ f(T + e)− f(T ). For two sets A, B ⊆ N ,
we denote the marginal value of adding B to A by fA(B) def= f(A ∪B)− f(A).
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24:6 Independent Sets in Elimination Graphs with a Submodular Objective

Incremental values

In this paper, there is always an implicit ordering < over the ground set N . For a set S ⊆ N
and an element e ∈ N , the incremental value of e in S, denoted ν(f, S, e), is defined as

ν(f, S, e) = fS′(e), where S′ = {s ∈ S : s < e}.

Incremental value has some simple but very useful properties, proved in [17, Lemmas 1–3]
and summarized in the following.

▶ Lemma 9. Let N be an ordered set and f : 2N → R a set function.
(a) For any set S ⊆ N , we have f(S) =

∑
e∈S

ν(f, S, e).

(b) Let S ⊆ T ⊆ N be two nested subsets of N and e ∈ N an element. If f is submodular,
then ν(f, T, e) ≤ ν(f, S, e).

(c) Let S, Z ⊆ N be two sets, and e ∈ S. If f is submodular, then ν(fZ , S, e) ≤ ν(f, Z ∪ S, e).

Multilinear Extension and Relaxation

▶ Definition 10. Given a set function f : 2N → R, the multilinear extension of f , denoted F ,
extends f to the product space [0, 1]N by interpreting each point x ∈ [0, 1]N as an independent
sample S ⊆ N with sampling probabilities given by x, and taking the expectation of f(S).
Equivalently,

F (x) =
∑

S⊆N

∏
i∈S

xi

∏
i̸∈S

(1− xi)

.

An independence family I over a ground set N is a subset of 2N that is downward
closed, that is, if A ∈ I and B ⊂ A then B ∈ I. A polyhedral/convex relaxation P for a
given independence family I over N is a polyhedra/convex subset of [0, 1]N such that for
each A ∈ I, χA ∈ P where χA is the characteristic vector of A (a vector in {0, 1}N with
a 1 in coordinate i iff i ∈ A). We say that P is a solvable relaxation for I if there is a
polynomial time algorithm to optimize a linear objective over P . Given a ground set N , and
a non-negative submodular function f over N , and an independence family I ⊆ 2N ,2 we are
interested in the problem maxS∈I f(S). For this general problem the multilinear relaxation
approach is to approximately solve the multilinear relaxation maxx∈P F (x) followed by
rounding – see [14, 21, 10]. For monotone f there is a randomized (1− 1/e)-approximation
to the multilinear relaxation when P is solvable [14]. For general non-negative functions
there is a 0.385-approximation [11].

Concave closure and relaxation

▶ Definition 11. Given a set function f : 2N → R, the concave closure of f , denoted f+,
extends f to the product space [0, 1]N as follows. For x ∈ [0, 1]N we let

f+(x) = max

{ ∑
S⊆N

αSf(S) :
∑
S∋i

αS = xi for all i ∈ N ,
∑

S

αS = 1, αS ≥ 0 for all S ⊆ N

}
.

2 We assume that an independence family is specified implicitly via an independence oracle that returns
whether a given A ⊆ N belongs to I.
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As the name suggests, f+ is a concave function over [0, 1]N for any set function f . The
definition of f+(x) involves the solution of an exponential sized linear program. The concave
closure of a submodular set function is in general NP-Hard to evaluate. Nevertheless, the
concave closure is useful indirectly in several ways. One can relate the concave closure
to the multilinear extension via the notion of correlation gap [1, 13, 39, 19]. We can
consider a relaxation based on the concave closure for the problem of maxS∈I f(S), namely,
maxx∈P f+(x) where P is a polyhedral or convex relaxation for the constraint set I. Although
we may not be able to solve this relaxation directly, it provides an upper bound on the
optimum solution and moreover, unlike the multilinear relaxation, the relaxation can be
rewritten as a large linear program when P is polyhedral.

Contention Resolution Schemes

Contention resolution schemes are a way to round fractional solutions for relaxations to
packing problems and they are a powerful and useful tool in submodular function maxi-
mization [21]. For a polyhedral relaxation P for I and a real b ∈ [0, 1], bP refers to the
polyhedron {bx | x ∈ P}.

▶ Definition 12. Let b, c ∈ [0, 1]. A (b, c)-balanced CR scheme π for a polyhedral relaxation
P for I is a procedure that for every bx ∈ bP and A ⊆ N , returns a random set πx(A) ⊆
A ∩ support(x) and satisfies the following properties:
(a) πx(A) ∈ I with probability 1 ∀A ⊆ N, x ∈ bP , and
(b) for all i ∈ support(x), P[i ∈ πx(R(x)) | i ∈ R(x)] ≥ c ∀x ∈ bP .
The scheme is said to be monotone if P[i ∈ πx(A1)] ≥ P[i ∈ πx(A2)] whenever i ∈ A1 ⊆ A2. A
(1, c)-balanced CR scheme is also called a c-balanced CR scheme. The scheme is deterministic
if π is a deterministic algorithm (hence πx(A) is a single set instead of a distribution). It is
oblivious if π is deterministic and πx(A) = πy(A) for all x, y and A, that is, the output is
independent of x and only depends on A. The scheme is efficiently implementable if π is a
polynomial-time algorithm that given x, A outputs πx(A).

3 Approximating via Contention Resolution Schemes

Let G = (V, E) be an inductively k-independent graph and let V = {v1, v2, . . . , vn} be
the corresponding order. Let I denote the set of independent sets of G. We consider the
following simple polyhedral relaxation for I where there is a variable xi for each vertex vi.
For notational simplicity we let Ai denote the set N(vi) ∩ {vi+1, . . . , vn} which is the set of
neighbors of vi that come after vi in the ordering.

xi +
∑

vj∈Ai

xj ≤ k for all i ∈ [n]

xi ∈ [0, 1] for all i ∈ [n]

This is a valid polyhedral relaxation for I. Indeed, consider an independent set S ⊆ V , and
let x be the indicator vector of S. Fix a vertex vi and consider the first inequality. If vi ∈ S,
then since Ai ⊆ N(vi), we have Ai ∩ S = ∅, and the left hand side (LHS) is 1. Otherwise∑

vj∈Ai
xj = |Ai ∩ S| ≤ α(Ai) ≤ k, so the LHS is at most k.

In fact, the 1
k -approximation for MWIS in [2, 40] are implicitly based on this relaxation.

Moreover, the relaxation has a polynomial number of constraints and hence is solvable. We
refer to this relaxation as QG and omit G when clear from the context. The multilinear
relaxation is to solve maxx∈QG

F (x).
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24:8 Independent Sets in Elimination Graphs with a Submodular Objective

Now we consider the case when G = (V, E) is a k-perfectly orientable graph. Let
H = (V, A) be an orientation of G. For a given v ∈ V we let N+

H (v) = {u ∈ V | (v, u) ∈ A}
denote the out-neighbors of v in H. We can write a simple polyhedral relaxation for
independent sets in G where we have a variable xv for each v ∈ V as follows:

xv +
∑

u∈N+
H

(v)

xu ≤ k for all v ∈ V

xv ∈ [0, 1] for all v ∈ V

To avoid notational overhead we will use QG to refer to the preceding relaxation for a
k-perfectly orientable graph G. In [34] a stronger relaxation than the preceding relaxation is
used to obtain a 1

2k -approximation for MWIS. It is not hard to see, however, that the proof
in [34] can be applied to the simpler relaxation above.

We will only consider k-perfectly orientable graphs in the rest of this section since the CR
scheme applies for this more general class and we do not have a better scheme for inductively
k-independent graphs. We consider two simple CR schemes for Q. The first is an oblivious
deterministic one. Given a set R it outputs S where S = {v ∈ R | N+

H (v) ∩R = ∅}. In other
words it discards from R any vertex v which has an out-neighbor in R. We claim that S is
an independent set. To see this suppose uv ∈ E(G). In H, uv is oriented as (u, v) or (v, u).
Thus, both u and v cannot be in S even if they are both are picked in R. It is also easy to
see that the scheme is monotone.

We now describe a randomized non-oblivious scheme which yields slightly better constants
and is essentially the same as the one from [24] where interval graphs were considered (a
special case of k = 1). This scheme works as follows. Given R and x it creates a subsample
R′ ⊆ R by sampling each v ∈ R independently with probability (1− e−xv )/xv (Note that
1− e−y ≤ y for all y ∈ [0, 1].). Equivalently R′ is obtained from x by sampling each v with
probability 1− e−xv . It then applies the preceding deterministic scheme to R′. Note that
this scheme is randomized and non-oblivious since it uses x in the sub-sampling step. It is
also easy to see that it is monotone.

We analyze the two schemes.

▶ Theorem 13. For each b ∈ [0, 1] there is a deterministic, oblivious, monotone (b/k, 1− b)
CR scheme for Q. There is a randomized monotone (b/k, e−b) CR scheme for Q.

Proof. Let x ∈ b
k Q and Let R be a random set obtained by picking each v ∈ V independently

with probability xv. We first analyze the deterministic CR scheme. Fix a vertex v ∈
support(x) and condition on v ∈ R. The vertex v is included in the final output iff
N+

H (v) ∩R = ∅. Since x ∈ b
k Q we have

∑
u∈N+(v) xu ≤ b− xv ≤ b.

P[v ∈ S | v ∈ R] = P[N+(v) ∩R = ∅] =
∏

u∈N+(v)

(1− xu) ≥ 1−
∑

u∈N+(v)

xu ≥ 1− b.

This shows that the scheme is a (b/k, 1− b) CR scheme.
Now we analyze the randomized scheme which follows [24]. Consider v ∈ R(x). We see

that v ∈ S conditioned on v ∈ R, if v ∈ R′ and R′ ∩N+(v) = ∅. Since the vertices are picked
independently,

P[v ∈ S | v ∈ R] = P[v ∈ R′ | v ∈ R] ·P[N+(v) ∩R′ = ∅] = (1− e−xv )
xv

∏
u∈N+(v)

e−xu

≥ (1− e−xv )
xv

e−(b−xv) ≥ (exv − 1)
xv

e−b ≥ e−b.

This finishes the proof. ◀
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One can apply the preceding CR schemes for QG along with the known framework via the
multilinear relaxation to approximate maxS∈I f(S). Let OPT be the value of an optimum
solution. For monotone functions the Continuous Greedy algorithm [14] can be used to find
a point x ∈ b

k Q such that F (x) ≥ (1 − e−b/k) OPT. When combined with the (b/k, 1 − b)
CR scheme this yields a (1 − e−b/k)(1 − b)-approximation. The randomized CR scheme
yields a (1 − e−b/k)e−b-approximation; this bound is maximized when b = k ln(1 + 1/k)
and the ratio is 1

k+1 ·
1

(1+1/k)k ≥ 1
e(k+1) . For non-negative functions one can use Measured

Continuous Greedy [26, 24] to obtain x ∈ b
k Q such that F (x) ≥ b

k e−b/k OPT. Combined
with the CR scheme this yields a ( b

k e−b(1+/k))-approximation. Setting b = k/(k + 1) yields a
1

e(k+1) -approximation.

▶ Theorem 14. There is a randomized algorithm that given a k-perfectly orientable graph G

(along with its orientation) and a monotone submodular function f , outputs an independent
set S′ such that with high probability f(S′) ≥ ( 1

k+1 ·
1

(1+1/k)k ) maxA∈I f(A). For non-negative
functions there is an algorithm that outputs an independent set S′ such that with high
probability f(S′) ≥ 1

e(k+1) maxA∈I f(A).

Efficiency and Parallelism

Approximately solving the multilinear relaxation is typically a bottleneck. [18] develops
faster algorithms via the multiplicative-weight update (MWU) based method. We refer the
reader to [18] for concrete running times that one can obtain in terms of the number of oracle
calls to f or F . Once the relaxation is solved, rounding via the CR scheme above is simple
and efficient. Another aspect is the design of parallel algorithms, or algorithms with low
adaptivity – we refer the reader to [4] for the motivation and set up. Via results in [20, 23],
and the CR scheme above, we can obtain algorithms with adaptivity O( log2 n

ϵ2 ) while only
losing a (1− ϵ)-factor in the approximation compared to the sequential approximation ratios.
We defer details.

4 Primal-Dual Approach for Inductively k-Independent Graphs

We now consider a primal-dual algorithm. This is inspired by previous algorithms for MWIS
in inductively k-independent graphs, and the work of Levin and Wajc [35] who considered a
primal-dual based semi-streaming algorithm for submodular function maximization under
matching constraints.

The stack based algorithm in [40] for MWIS is essentially a primal-dual algorithm. It is
instructive to explicitly consider the LP relaxation and the analysis for MWIS before seeing
the algorithm and analysis for the submodular setting. An interested reader can find this
exposition in the full version.

Following [35] we consider an LP relaxation based on the concave closure of f . For indepen-
dent sets in an inductively k-independent graph, we consider the relaxation maxx∈QG

f+(x).
We write this as an explicit LP and describe its dual. See Fig 1. The primal has a variable xi

for each vi ∈ V as we saw in the relaxation for MWIS. In addition to these variables, we have
variables αL, L ⊆ V to model the objective f+(x). The dual has three types of variables. µ

is for the equality constraint
∑

L αL = 1, yi is corresponds to the primal packing constraint
for xi coming from the independence constraint, and zi is for the equality constraint coming
from modeling f+(x).
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max
∑
S⊆V

αLf(L)

∑
L⊆V

αL = 1

∑
L∋vi

αL = xi i ∈ [n]

xi +
∑

vj∈Ai

xj ≤ k i ∈ [n]

xi ≥ 0 i ∈ [n]

min µ + k
n∑

i=1
yi

µ +
∑
vi∈L

zi ≥ f(L) L ⊆ V

yi +
∑

vj∈Bi

yj ≥ zi i ∈ [n]

yi ≥ 0 i ∈ [n]

Figure 1 Primal and Dual LPs via the concave closure relaxation for an inductively k-independent
graph G = (V, E) with a given ordering {v1, v2, . . . , vn}.

4.1 Algorithm for monotone submodular functions

We describe a deterministic primal-dual algorithm for the monotone case. The algorithm
and analysis are inspired by [35] and we note that the algorithm has some similarities to the
preemptive greedy algorithm. The primal-dual algorithm takes a two phase approach similar
to algorithm for the modular case. In the first phase it processes the vertices in the given
order and creates a set S ⊆ V . In the second phase it process the vertices in the reverse order
of insertion and creates a maximal independent set. Unlike the modular case, the decision to
add a vertex vi to S in the first phase is based on an inflation factor (1 + β). The formal
algorithm is described in Fig 2. The algorithm creates a feasible dual as it goes along – the
variables y, z, µ are from the dual LP. It also maintains and uses auxiliary weight variables
wi, 1 ≤ i ≤ n that will be useful in the analysis.

primal-dual-monotone-submod(f : 2V → R≥0,k ∈ N,β ∈ R>0).

1. Initialize an empty stack S. Let V = {v1, . . . , vn} be a k-independence ordering of V .
Set w, z, y ← 0n.

2. For i = 1, . . . , n:
A. Let Ci = N(vi) ∩ S = {u ∈ S : uvi ∈ E}
B. If (fS(vi) > (1 + β)

∑
vj∈Ci

wj) then
1. Call S.push(vi) and set xi ← 1.
2. Set wi ← fS(vi)−

∑
vj∈Ci

wj and yi ← (1 + β)wi.
C. Otherwise set zi ← fS(vi)

3. Let µ← f(S) and Ŝ ← ∅
4. While S is not empty:

A. v ← S.pop()
B. If Ŝ + vi is independent in G then set Ŝ ← Ŝ + vi.

5. Return Ŝ

Figure 2 Primal-dual algorithm for monotone submodular maximization. The algorithm creates
a feasible dual solution in the first phase along with a set Send. In the second phase it processes
Send in reverse order of insertion and creates a maximal independent set.
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Let Send be the set of vertices in the stack S at the end of the first phase. S is a
monotonically increasing set during the algorithm. Note that µ = f(Send) at the end of the
algorithm. We observe that for each i, the algorithm sets the variables wi, yi, zi exactly once
when vi is processed, and does not alter the values after they are set.

▶ Lemma 15. The algorithm primal-dual-monotone-submod creates a feasible dual solution
µ, ȳ, z̄ when f is monotone.

Proof. We observe that zi = 0 if vi ∈ Send and zi = ν
(
f, S−

vi
, vi

)
otherwise. By submodularity

it follows that if vi ̸∈ Send, zi ≥ fSend(vi) since S−
vi
⊆ Send.

Consider the first set of constraints in the dual of the form µ +
∑

vi∈L zi ≥ f(L) for
L ⊆ V . We have

µ +
∑
vi∈L

zi ≥ f(Send) +
∑

vi∈L\Send

fSend(vi) ≥ f(Send ∪ L) ≥ f(L).

We used submodularity in the second inequality and monotonicity of f in the last inequality.
Now consider the second set of constraints in the dual of the form yi +

∑
vj∈Bi

yj ≥ zi for
each i. If vi ∈ Send then zi = 0 and the constraint is trivially satisfied since the y variables
are non-negative. Assume vi ̸∈ Send. The algorithm did not add vi to S because

zi = ν
(
f, S−

vi
, vi

)
≤ (1 + β)

∑
vj∈Ci

wj =
∑

vj∈Ci

yj

which implies that the constraint for vi is satisfied. ◀

Feasibility of the dual solution implies an upper bound on the optimal value.

▶ Corollary 16. OPT ≤ f(Send) + k(1 + β)
∑n

i=1 wi.

We now lower bound the value of f(Ŝ).

▶ Lemma 17. f(Ŝ) ≥
∑n

i=1 wi.

Proof. A vertex vi is added to Send since ν
(
f, S−

vi
, vi

)
> (1 + β)

∑
vj∈Ci

wj . Moreover, we
have wi +

∑
vj∈Ci

wj = ν
(
f, S−

vi
, vi

)
via the algorithm. Therefore,

f(Ŝ) =
∑
vi∈Ŝ

ν
(

f, Ŝ, vi

)
≥

∑
vi∈Ŝ

ν
(
f, S−

vi
, vi

)
=

∑
vi∈Ŝ

(wi +
∑
j∈Ci

wj).

We see that for every i′ such that vi′ ∈ Send the term wi′ appears at least once in
∑

vi∈Ŝ(wi +∑
j∈Ci

wj); either vi′ ∈ Ŝ or if it is not then it was removed in the second phase since vi′ ∈ Ci

for some vi ∈ Ŝ. In the latter case wi′ appears in the
∑

j∈Ci
wj . Thus f(Ŝ) ≥

∑n
i=1 wi

(recall that wi = 0 if vi ̸∈ Send). ◀

We now upper bound f(Send) via the weights.

▶ Lemma 18. f(Send) ≤ 1+β
β

∑n
i=1 wi.

Proof. Let vi ∈ Send. Recall that ν
(
f, S−

vi
, vi

)
≥ (1 + β)

∑
j∈Ci

wj and wi = ν
(
f, S−

vi
, vi

)
−∑

j∈Ci
wj . This implies that wi ≥ β

1+β ν
(
f, S−

vi
, vi

)
. Therefore

f(Send) =
∑

vi∈Send

ν(f, Send, vi) =
∑

vi∈Send

ν
(
f, S−

vi
, vi

)
≤ 1 + β

β

∑
vi∈Send

wi,

as desired. ◀
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▶ Theorem 19. OPT ≤ (1 + β)(1/β + k)f(Ŝ). In particular, for β = 1√
k
, OPT ≤ (k + 1 +

2
√

k)f(Ŝ).

Proof. From Corollary 16 and Lemma 18 and Lemma 17,

OPT ≤ f(Send) + k(1 + β)
n∑

i=1
wi ≤

1 + β

β

n∑
i=1

wi + k(1 + β)
n∑

i=1
wi

≤ (1 + β)( 1
β

+ k)
n∑

i=1
wi ≤ (1 + β)( 1

β
+ k)f(Ŝ),

as desired. ◀

▶ Remark 20. For k = 1 we obtain a 1/4-approximation which yields a deterministic 1/4-
approximation for chordal graphs and interval graphs. For k = 2 we obtain a bound of
3 + 2

√
2 which is the same as what [35] obtain for matchings. Note that matchings can be

interpreted, via the line graph, as inductive 2-independent and in fact any ordering of the
edges is an inductive 2-independent order. This explains why the ordering does not matter.
[35] use a different LP relaxation for matchings, and hence it is a bit surprising that we
obtain the same bound for all 2-independent graphs. For the non-monotone case we obtain a
weaker bound for 2-independent graphs than what [35] obtain for matchings.

4.2 Non-monotone submodular maximization
We now consider the case of non-negative submodular function which may not be necessarily
monotone. This class of functions requires some additional technical care and a key lemma
that is useful in handling non-monotone function is the following.

▶ Lemma 21 ([8]). Let f : 2V → R+ be a non-negative submodular function. Fix a set
T ⊆ V . Let S be a random subset of V such that for any v ∈ V the probability of v ∈ S is at
most p for some p < 1. Then E[f(S ∪ T )] ≥ (1− p)f(T ).

We describe a randomized primal-dual algorithm which is adapted from the one form [35].
It differs from the monotone algorithm in one simple but crucial way; even when a vertex v

has good value compared to its conflict set it adds it to the stack only with probability p

which is a parameter that is chosen later.
As in the monotone case let Send be the set of vertices in the stack at the end of the

first phase (note that Send is now a random set). The analysis of the randomized version
of the algorithm is technically more involved. The sets Send, Ŝ and the dual variables are
now random variables. Since very high-value vertices can be discarded probabilistically, the
dual values constructed by the algorithm may not satisfy the dual constraints for each run of
the algorithm. Levin and Wajc [35] analyze their algorithm for matchings via an “expected”
dual solution. We do a more direct analysis via weak duality.

The following two lemmas are essentially the same as in the monotone case and they
relate the expected value of Ŝ and Send to the dual weight values.

▶ Lemma 22. For each run of the algorithm: f(Ŝ) ≥
∑n

i=1 wi and hence E
[
f(Ŝ)

]
≥∑n

i=1 E[wi].

▶ Lemma 23. For each run of the algorithm, f(Send) ≤ 1+β
β

∑n
i=1 wi and hence

E[f(Send)] ≤ 1 + β

β

n∑
i=1

E[wi].
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primal-dual-nonneg-submod(f : 2V → R≥0,k ∈ N,β ∈ R>0).

1. Initialize an empty stack S. Let V = {v1, . . . , vn} be a k-independence ordering of V .
Let w, y, z = 0n.

2. For i = 1, . . . , n:
A. Let Ci = N(vi) ∩ S = {u ∈ S : uvi ∈ E}
B. If (fS(vi) > (1 + β)

∑
vj∈Ci

wj), then with probability p:
1. Call S.push(vi) and xi ← 1
2. Set wi ← fS(vi)−

∑
vj∈Ci

wj and yi ← (1 + β)wi

C. Otherwise set zi ← fS(vi).
3. Set µ← f(S) and Ŝ ← ∅
4. While S is not empty:

A. v ← S.pop().
B. If Ŝ + vi is independent in G then set Ŝ ← Ŝ + vi

5. Return Ŝ

Figure 3 Randomized primal-dual algorithm for non-negative submodular maximization.

The next two lemmas provide a way to upper bound the optimum value via the expected
dual objective value.

▶ Lemma 24. For each vertex vi, let 1vi /∈Send indicate if vi is excluded from Send. Let
B′

i = Bi + vi. Then

E[f(vi |Si)1vi /∈Send ] ≤ max
{

1− p

p
, 1 + β

}
E[w(B′

i ∩ Send)].

Proof. Let Ei be the event that f(vi |Si) > (1 + β)w(Bi ∩ Si). Condition on Ēi, that is Ei

not occurring, in which case vi is not added to the stack. In this case we have

E
[
w(Bi)

∣∣ Ēi

]
= E

[
w(B′

i ∩ Send)
∣∣ Ēi

]
≥ 1

1 + β
E

[
f(vi |Si)

∣∣ Ēi

]
= 1

1 + β
E

[
f(vi |Si)1vi /∈Send

∣∣ Ēi

]
On the other hand, condition on Ei, we have

E[w(B′
i ∩ Send) |Ei]

(a)
≥ p E[f(vi |Si) |Ei]

(b)= p

1− p
E[f(vi |Si)1vi /∈Send |Ei].

(a) is because with probability p, we add v to the stack, in which case w(B′
i∩Send) ≥ f(vi |Si).

(b) is because conditional on Ei and f(vi |Si), vi /∈ Send with probability 1− p. We combine
the two bounds by taking conditional expectations, as follows:

E
[
f(vi | Si)1vi /∈Send

]
= E

[
f(vi | Si)1vi /∈Send

∣∣ Ei

]
P[Ei] + E

[
f(vi | Si)1vi /∈Send

∣∣ Ēi

]
P

[
Ēi

]
≤ 1 − p

p
E

[
w(B′

i ∩ Send)
∣∣ Ei

]
P[Ei] + (1 + β) E

[
w(B′

i ∩ Send)
∣∣ Ēi

]
P

[
Ēi

]
≤ max

{
1 − p

p
, 1 + β

}(
E

[
w(B′

i ∩ Send)
]

P[Ei] + E
[
w(B′

i ∩ Send)
]

P
[
Ēi

])
= max

{
1 − p

p
, 1 + β

}
E

[
w(B′

i ∩ Send)
]
,

as desired. ◀
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▶ Lemma 25. For any set T , E[f(Send ∪ T )] ≤ E[f(S)] + k max
{

1−p
p , 1 + β

}
E[w(Send)].

Proof. We have

E[f(T ∪ Send)− f(Send)]
(c)
≤ E

 ∑
vi∈T \Send

f(vi |Send)

 (d)
≤ E

 ∑
vi∈T \Send

f(vi |Si)


=

∑
vi∈T

E[f(vi |Si)1vi /∈Send ]

(e)
≤ max

{
1− p

p
, 1 + β

} ∑
vi∈T

E[w(B′
i ∩ Send)]

(f)
≤ max

{
1− p

p
, 1 + β

}
k E[w(Send)],

as desired up to rearrangement of terms. Here (c,d) is by submodularity. (e) is by the
Lemma 24. (f) is by k-inductive independence. ◀

We now put the lemmas together to relate E
[
f(Ŝ)

]
to the optimum.

▶ Lemma 26. Let T ∗ be an optimum independent set with OPT = f(T ∗). Then

OPT ≤
k max

{
1−p

p , 1 + β
}

+
(

1+β
β

)
1− p

E
[
f

(
Ŝ

)]
.

Proof. Let T be any independent set, in particular T ∗. We observe that the algorithm
ensures that for any vertex v, P[v ∈ Send] ≤ p and hence P

[
v ∈ Ŝ

]
≤ p.

(1− p)f(T ) ≤ E[f(T ∪ Send)] (Lemma 21)

≤ E[f(S)] + k max
{

1− p

p
, 1 + β

}
E[w(Send)] (Lemma 25)

≤
(

k max
{

1− p

p
, 1 + β

}
+

(
1 + β

β

))
E[w(Send)] (Lemma 23)

≤
(

k max
{

1− p

p
, 1 + β

}
+

(
1 + β

β

))
E

[
f

(
Ŝ

)]
(Lemma 22). ◀

It remains to choose p ∈ [0, 1] and β > 0 to minimize the RHS. Consider the term
max{(1− p)/p, 1 + β}. If (1− p)/p ≥ 1 + β, then p ≥ 1/2 (to force (1− p)/p ≥ 1), and the
RHS is minimized by taking β as large as possible – that is, such that 1 + β = (1− p)/p. If
(1− p)/p ≤ 1 + β, then the RHS is minimized by taking p as small as possible – that is, such
that (1− p)/p = 1/p− 1 = 1 + β. Thus (1− p)/p = 1 + β at the optimum. In terms of just
p, then, we have

OPT ≤
(

1
1− p

)(
k(1− p)

p
+ 1− p

1− 2p

)
E

[
f

(
Ŝ

)]
=

(
k

p
+ 1

1− 2p

)
E

[
f

(
Ŝ

)]
.

(Here we note that β = (1− 2p)/p, hence (1 + β)/β = (1− p)/(1− 2p).)
In the special case of k = 2, as in matching, the RHS is

OPT ≤
(

2
p

+ 1
1− 2p

)
E

[
f

(
Ŝ

)]
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The RHS is minimized by p = 1/3, giving an approximation factor of 9.
For general k, the minimum is 2k +

√
8k + 1.

It is easy to see that the primal-dual algorithm makes O(n) evaluation calls to f and the
overall running time is linear in the size of the graph. The results for the monotone and
non-negative functions, together yield Theorem 6.

5 Concluding Remarks and Open Problems

We described Ω( 1
k )-approximation algorithms for independent sets in two parameterized

families of graphs that capture several problems of interest. Although the multilinear relax-
ation based framework yields such algorithms, the resulting algorithms are computationally
expensive and randomized. We utilized ideas from streaming and primal-dual based algo-
rithms to give simple and fast algorithms for inductively k-independent graphs with the
additional property that they are deterministic for monotone functions. Our work raises
several interesting questions that we summarize below.

The CR scheme that we described in Section 3 is unable to distinguish k-perfectly
orientable graphs and inductive k-independent graphs. Is a better bound possible for
inductively k-independent graphs?
Our combinatorial algorithms only apply to inductively k-independent graphs. Can we
obtain combinatorial algorithms for k-perfectly orientable graphs? Even for MIS the only
approach appears to be via primal rounding of the LP solution [34].
Can we obtain deterministic Ω( 1

k )-approximation algorithms for these graph classes when
f is non-negative? Interval graphs seem to be a natural first step to consider.
Are better approximation ratios achievable? For instance, can we obtain better than
1/4-approximation for monotone submodular function maximization in interval graphs?
Can we prove better lower bounds under complexity theory assumptions or in the oracle
model for interval graphs or other concrete special cases of interest?
For both classes of graphs our algorithms are based on having an ordering that certifies
that they belong to the class. For MWIS in k-simplicial and k-perfectly orientable graphs,
[30] describes algorithms based on the Lovász number of a graph and the Lovász θ-function
of a graph, and these algorithms do not require an ordering. It may be feasible to extend
their approach to the submodular setting via the multilinear relaxation. However, the
resulting algorithms are computationally quite expensive. It would be interesting to
obtain fast algorithms for these classes of graphs (or interesting special cases) when the
ordering is not explicitly given.
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A A Preemptive Greedy Algorithm

We now describe a preemptive greedy algorithm for maximizing a monotone submodular
function f : 2V → R+ over independent sets of a inductively k-independent graph G = (V, E)
assuming that we are also given the ordering. The algorithm is simple and intuitive, and is
inspired by algorithms developed in the streaming model.
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The pseudocode for the algorithm is given in Figure 4, and is designed as follows. Starting
from an empty solution S = ∅, preemptive-greedy processes the vertices in the given
ordering one by one. When considering vi, the algorithm gathers the subset Ci ⊆ S of
all vertices in the current set S that are neighbors of vi (those that conflict with vi). The
algorithm has to decide whether to reject vi or to accept vi in which case it has to remove
Ci from S. It accepts vi if the marginal gain fS(vi)

def= f(S + vi)− f(S) of adding vi directly
to S is at least (1 + β) times the value

∑
u∈Ci

fS\Ci
(u). Here β > 0 is a parameter that is

fixed based on the analysis. After processing all vertices, we return the final set S.

preemptive-greedy(G = (V, E),f : 2V → R≥0,k ∈ N,β ∈ R>0).

1. Let S = ∅. Let V = {v1, . . . , vn} by a k-independence ordering of V
2. For i = 1, . . . , n:

A. Let Ci = N(vi) ∩ S = {u ∈ S : uvi ∈ E}
B. If fS(vi) ≥ (1 + β)

∑
u∈Ci

ν(f, S, u)
1. Set S ← (S \ Ci) + vi

3. Return S

Figure 4 The algorithm preemptive-greedy for finding an independent set in a inductively
k-independent graph to maximize a monotone submodular objective function.

preemptive-greedy for inductively k-independent graphs has the following approximation
bound. The proof is deferred to the subsection following the theorem statements.

▶ Theorem 27. Given an inductively k-independent graph with a k-inductive ordering, the
algorithm preemptive-greedy returns an independent set Ŝ such that for any independent
set T , f(T ) ≤ (k(1 + β) + 1)(1 + β−1)f(Ŝ).

preemptive-greedy can be extended to nonnegative (and non-monotone) submodular
functions with a constant factor loss in approximation by random sampling. As a preprocessing
step, we let V ′ randomly sample each vertex in V independently with probability 1/2. We
then apply preemptive-greedy to the subgraph G′ = G[V ′] induced by V ′. It is easy to see
that any subgraph of an inductively k-independent graph is also inductively k-independent.
The net effect of the random sampling is an approximation factor for nonnegative submodular
functions that is a factor 4 worse than for the monotone case. The modified algorithm, called
randomized-preemptive-greedy, is given in Figure 5.

▶ Theorem 28. Given an inductively k-independent graph with a k-inductive ordering, the
algorithm randomized-preemptive-greedy returns an independent set Ŝ such that for any
independent set T , f(T ) ≤ 4(k(1 + β) + 1)(1 + β−1)f(Ŝ).

randomized-preemptive-greedy(G = (V, E),f : 2V → R≥0,k ∈ N,β ∈ R>0).

1. Let V ′ ⊆ V sample each v ∈ V independently with probability 1/2
2. Let G′ = G[V ′] be the subgraph of G induced by V ′

3. Return preemptive-greedy(G′,f : 2V′ → R≥0,k ∈ N,β ∈ R>0).

Figure 5 The algorithm randomized-preemptive-greedy for finding an independent set in an
inductively k-independent graph to maximize a nonnegative submodular objective function.
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▶ Remark 29. The randomized strategy we outline is simple and oblivious. It loses a factor
of 4 over the monotone case. One could try to improve the approximation ratio by using
randomization within the algorithm which would make the analysis more involved. However,
we have not done this since the primal-dual algorithm yields better approximation bounds.
This subsampling strategy is not new and has been used previously in [25], and is also implicit
in [17].

The rest of the section is devoted to proving the claimed approximation guarantees.

A.1 Analysis of preemptive greedy

We follow the notation of [17]. Let Ŝ be the final set of vertices returned by preemptive-
greedy. It is easy to see that the algorithm returns an independent set. For each u ∈ V let
S−

u denote the set of vertices in S just before u is processed, and let S+
u denote the set after

u is processed. Thus a vertex u is added to S iff S+
u \ S−

u = {u}. Let U =
⋃

u∈V S+
u be the

set of all vertices that were ever (even momentarily) added to S. Alternatively, V \ U is the
set of vertices that are discarded by the algorithm when it considers them. For each vertex
u, let δu

def= f(S+
u )− f(S−

u ) be the value added to S from processing u. We have δu = 0 for
all u /∈ U , and f(Ŝ) =

∑
u∈V δu =

∑
u∈U δu.

Let T ⊆ V be an independent set in the given graph, in particular an optimum set. We
would like to compare f(Ŝ) with f(T ). Directly comparing T with Ŝ is difficult since Ŝ is
obtained by deleting vertices in S along the way; thus a vertex v ∈ T \ Ŝ may have been
discarded due to a vertex u ∈ S when v was considered but u may not be in Ŝ. Thus, the
analysis is broken into two parts that detour through U . First, we relate the value of f(Ŝ) to
the value of f(U). This part of the analysis bounds the amount of value lost by kicking out
vertices from S during the exchanges. We then relate f(U) and f(T ); this is easier because
any vertex in T is always compared against some subset of vertices in U . Chaining the
inequalities from f(Ŝ) to f(U) to f(T ) gives the final approximation ratio.

Relating f(Ŝ) to f(U)

The analysis is similar to that in [17]. We provide proofs for the sake of completeness. The
following claim is easy to see since elements before s can only be deleted from S as the
algorithm proceeds.

▷ Claim 30. Over the course of the algorithm, the incremental value ν(f, S, s) of an element
s ∈ S is nondecreasing.

For a vertex u ∈ U \ Ŝ we let u′ denote the vertex that caused u to be removed
from S. And we let χ(u) denote its incremental value just before it is removed. Therefore,
χ(u) = ν

(
f, S−

u′ , u
)
.

▶ Lemma 31. Let u ∈ U then δu ≥ β
∑

c∈Cu
ν(f, S−

u , c).

Proof. Since the vertex u was added to S when it was considered, we have δu =
f(S+

u ) − f(S−
u ) where S+

u = S−
u − Cu + u. The vertex u was added by the algorithm

since fS(u) ≥ (1 + β)
∑

c∈Cu
ν(f, S, c) where S = S−

u . Therefore β
∑

c∈Cu
ν(f, S−

u , c) ≤
fS−

u
(u)−

∑
c∈Cu

ν(f, S−
u , c). It suffices to prove that f(S+

u )−f(S−
u ) ≥ fS(u)−

∑
c∈Cu

ν(f, S, c)
which we do below. For notational convenience let A = S−

u − Cu.
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f(S+
u )− f(S−

u ) = f(A + u)− f(S−
u )

= fA(u) + f(A)− f(S−
u )

≥ fS−
u

(u)− (f(S−
u )− f(A)) by submodularity since A ⊆ S−

u

≥ fS−
u

(u)−
∑

c∈Cu

ν
(
f, S−

u , c
)

by submodularity and defn of ν. ◀

▶ Lemma 32.
∑

u∈U\Ŝ χ(u) ≤ β−1f(Ŝ).

Proof. Indeed,∑
u∈U\Ŝ

χ(u) =
∑
u∈U

∑
c∈Cu

χ(c) since {Cu : u ∈ U} partitions U \ Ŝ

≤
∑
u∈U

1
β

∑
u∈U

δu from Lemma 31

= 1
β

f(Ŝ). ◀

The next lemma shows that f(U) is not much larger than f(Ŝ).

▶ Lemma 33. f(U) ≤
(
1 + β−1)

f(Ŝ).

Proof. Let U ′ = U \ Ŝ and let U ′ = {vi1 , . . . , vih
} where i1 < i2 . . . < ih. We have

f(U) = f(Ŝ) + fŜ(U ′). It suffices to upper bound fŜ(U ′) by f(Ŝ)/β. For 1 ≤ j ≤ h let U ′
j =

{vi1 , . . . , vij
}. We have fŜ(U ′) =

∑h
j=1 fŜ∪U ′

j−1
(vij

). We claim that fŜ∪U ′
j−1

(vij
) ≤ χ

(
vij

)
.

This follows by submodularity and the fact that Ŝ ∪ U ′
j−1 is a superset of the vertices that

are in S when vij is deleted. Putting things together,

fŜ(U ′) =
h∑

j=1
fŜ∪U ′

j−1
(vij

) ≤
∑

u∈U ′

χ(u) ≤ 1
β

f(Ŝ)

where the last inequality follows from Lemma 32. ◀

Relating OPT to f(U)

It remains to bound f(T ) (for some competing set T ) to f(U) and hence to f(Ŝ). The
critical question, addressed in the following lemmas, is how to charge the value of elements
in T off to elements in U .

▶ Lemma 34. Let T ⊆ V be an independent set disjoint from U . Each element u ∈ U

appears in the conflict list Ct for at most k vertices t ∈ T .

Proof. Fix u ∈ U . The set T ∩N(u)∩ {v : v > u} consists of precisely the vertices t ∈ T for
which u ∈ Ct. As a subset of T , this set is certainly independent. By definition of k-inductive
independence, the cardinality of this set is at most k. ◀

▶ Lemma 35. Let T ⊆ V be an independent set. Then

fU (T ) ≤ k(1 + β)(1 + β−1)f(Ŝ).
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Proof. Since fU (T ) = fU (T \ U), it suffices to assume that T is disjoint from U . For each
vertex t ∈ T , since t is not in U , we have fS−

t
(t) ≤ (1 + β)

∑
c∈Ct

ν
(
f, S−

t , c
)
. Fix a vertex

u ∈ Ct. If u ∈ Ŝ, then u is in the final output; then we have ν
(
f, S−

t , u
)
≤ ν

(
f, Ŝ, u

)
because

the incremental value of an element in S is nondecreasing. If u /∈ Ŝ, and u was deleted
to make room for some later element u′, then we have ν

(
f, S−

t , u
)
≤ χ(u) again because

incremental values are nondecreasing.
By the preceding lemma, each element u ∈ U appears in Ct for at most k choices of t.

Therefore, in sum, we have

fU (T ) ≤
∑
t∈T

fS−
t

(t) by submodularity,

≤ (1 + β)
∑
t∈T

∑
c∈Ct

ν
(
f, S−

t , c
)

since t /∈ U,

≤ k(1 + β)

∑
u∈Ŝ

ν
(

f, Ŝ, u
)

+
∑

u∈U\Ŝ

χ(u)

 Lemma 34 and argument above,

≤ k(1 + β)

f(Ŝ) +
∑

u∈U\Ŝ

χ(u)


≤ k(1 + β)(1 + β−1)f(Ŝ) by Lemma 32

as desired. ◀

From here, it is relatively straightforward to get a final approximation bound.

▶ Theorem 36. Given an inductively k-independent graph with a k-inductive ordering, the
algorithm preemptive-greedy returns an independent set Ŝ such that for any independent
set T ,

f(T ) ≤ (k(1 + β) + 1)(1 + β−1)f(Ŝ).

Proof. Let T be an optimal solution. We have

f(T ) ≤ fU (T ) + f(U) ≤ (k(1 + β) + 1)(1 + β−1)f(Ŝ) (1)

via Lemma 35 and Lemma 33. ◀

The bound is minimized by taking β =
√

1 + k−1, which at which point

f(T ) ≤ (4k + 2 + o(1))f(Ŝ),

where the o(1) goes to 0 as k increases. For k = 1, the approximation ratio is 3 + 2
√

2.

A.2 Randomized preemptive greedy for nonnegative functions
Here we analyze the randomized-preemptive-greedy for non-negative submodular functions
that may not be monotone. A key observation is that the analysis of preemptive-greedy
does not invoke the monotonicity of f until the very end, in equation (1). In particular,
Lemma 35 and Lemma 33 hold for nonnegative submodular functions.

APPROX/RANDOM 2023



24:22 Independent Sets in Elimination Graphs with a Submodular Objective

(1) invokes monotonicity when it takes the inequality f(U ∪ T ) ≥ f(T ). Informally
speaking, by injecting randomization, we will be able recover a similar inequality, except
losing a factor of 4.

Fix a set T . Let V ′ sample each element in V with probability 1/2. Let T ′ = T ∩ V ′.
Conditional on V ′, we have

f(U) ≤
(
1 + β−1)

f
(

Ŝ
)

and

fU (T ′) ≤ k(1 + β)(1 + β)−1
f

(
Ŝ

)
via Lemma 33 and Lemma 35 respectively.

Now, conditional on T ′, U \ T = U \ T ′ is a randomized set, where any vertex v ∈ V
appears in U \ T with probability at most 1/2. By Lemma 21,

E[f(U ∪ T ′) |T ′] ≥ 1
2f(T ′).

We also have, via the concavity of F along any non-negative direction [39],

E[f(T ′)] = F (1
21T ) ≥ 1

2F (1T ) = 1
2f(T )

where 1T is the indicator vector of T .
Altogether, we have

f(T ) ≤ 2 E[f(T ′)] ≤ 4 E[f(U ∪ T ′)]

= 4 E[fU (T ′) + f(U)] ≤ 4(k(1 + β) + 1)(1 + β)−1 E
[
f

(
Ŝ

)]
,

as desired.
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between the points. A constant factor approximation algorithm was known for all those diversity
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Table 1 This table includes the notions of diversity considered by [11] (S = S1|...|St is used to
denote that S1 . . . St is a partition of S into t sets). We also include the best previously-known
approximation factors, both in the standard (offline) and coreset setting. If not explicitly stated, the
approximation factor holds for both the offline setting and the coreset setting. We note that the
previously known O(1)-approximate remote-pseudoforest offline algorithm is randomized, whereas
the rest of the previously known algorithms are deterministic.

Problem Diversity of the point set S Apx factor
Remote-edge minx,y∈S dist(x, y) O(1)
Remote-clique

∑
x,y∈S

dist(x, y) O(1)
Remote-tree wt(MST (S)), weight of the minimum spanning tree of S O(1)
Remote-cycle minC wt(C) where C is a TSP tour on S O(1)
Remote t-trees minS=S1|...|St

∑t

i=1 wt(MST (Si)) O(1)
Remote t-cycles minS=S1|...|St

∑t

i=1 wt(T SP (Si)) O(1)
Remote-star minx∈S

∑
y∈S\{x} dist(x, y) O(1)

Remote-bipartition minB wt(B), where B is a bipartition (i.e., bisection) of S O(1)
Remote-pseudoforest

∑
x∈S

miny∈S\{x} dist(x, y) O(1) (Offline)
O(log k) (Coreset)

Remote-matching minM wt(M), where M is a perfect matching of S O(log k)

neighbor is large. Remote-matching measures the diversity as the cost of minimum-weight-
matching. Various other measures have also been considered: Table 1 includes each of their
definitions along with the best known approximation factor for these measures known up to
date. In particular, by [11] it was known that all these measures except remote-pseudoforest
and remote-matching admit a constant factor approximation. More recently, [7] showed a
constant factor randomized LP-based algorithm for remote-pseudoforest. They also showed
the effectiveness of the remote-pseudoforest measure on real data over the other two common
measures (remote-edge and remote-clique). On the lower bound side, it was known by
[20] that for remote-matching, one cannot achieve an approximation factor better than 2.
However, despite the fact that there has been a large body of work on diversity maximization
problems [8, 3, 9, 10, 14], the following question had remained unresolved for over two
decades.

▶ Question 1. Is it possible to get an O(1) approximation algorithm for the remaining notion
of remote-matching?

Later following a line of work on diversity maximization in big data models of computa-
tions, [23] presented algorithms producing a composable coreset for the diversity maximization
problem under all the aformentioned diversity measures. An α-approximate composable
coreset for a diversity objective is a mapping that given a data set X, outputs a small subset
C ⊂ X with the following composability property: given multiple data sets X(1), · · · , X(m),
the maximum achievable diversity over the union of the composable coresets

⋃
i C(i) is within

an α factor of the maximum diversity over the union of those data sets
⋃

i X(i). It is shown
that composable coresets naturally lead to solutions in several massive data processing models
including distributed and streaming models of computations, and this has lead to recent
interest in composable coresets since their introduction [28, 6, 27, 22, 4, 15]. [23] showed
α-approximate compsable coresets again for all measures of diversity introduced by [11]. They
presented constant factor α-approximate composable coresets for all diversity measures except
remote-pseudoforest and remote-matching, where they provided only O(log k)-approximations
for these measures. Again the following question remained open.
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▶ Question 2. Is it possible to get a constant factor composable coreset for the remote-
pseudoforest and remote-matching objective functions?

In this work we answer above two questions positively and close the gap up to constants
for these problems.

Our Results

In this work, we resolve a longstanding open question of [11] by providing polynomial-time
O(1)-approximation algorithms for the remote-matching problem. We also resolve a main open
question of [23] by providing polynomial-time algorithms that generate O(1)-approximate
composable coresets for both the remote-pseudoforest and remote-matching problems. Hence,
our paper establishes O(1)-approximate offline algorithms and O(1)-approximate composable
coresets for all remaining diversity measures proposed in [11]. Specifically, we have the
following theorems.

▶ Theorem 3 (Remote-Matching, Offline Algorithm). Given a dataset X = {x1, . . . , xn} and
an integer k ≤ n

3 , w.h.p. Algorithm 4 outputs an O(1)-approximate set for remote-matching.

While we assume n is at least a constant factor bigger than k, this is usually a standard
assumption (for instance both the remote-pseudoforest and remote-matching algorithms
in [11] assume n ≥ 2k, and the O(1)-approximate remote-pseudoforest algorithm in [7]
assumes n ≥ 3k). We now state our theorems regarding composable coresets.

▶ Theorem 4 (Pseudoforest, Composable Coreset). Given a dataset X = {x1, . . . , xn} and
an integer k ≤ n, Algorithm 2 outputs an O(1/ε)-approximate composable coreset C for
remote-pseudoforest, of size at most O(k1+ε).

By this, we mean that if we partitioned the dataset X into X(1), . . . , X(m), and ran the
algorithm separately on each piece to obtain C(1), . . . , C(m), each C(i) will have size at most
O(k1+ε) and maxZ⊂C:|Z|=k PF(Z) ≥ Ω(ε) ·maxZ⊂X:|Z|=k PF(Z), where C =

⋃m
i=1 C(i).

▶ Theorem 5 (Minimum-Weight Matching, Composable Coreset). Given a dataset X =
{x1, . . . , xn} and an integer k ≤ n, Algorithm 3 outputs an O(1)-approximate composable
coreset C for remote-matching, of size at most 3k.

In all of our results, we obtain O(1)-approximation algorithms, whereas the previous
best algorithms for all 3 problems was an O(log k)-approximation algorithm, meaning the
diversity was at most Ω( 1

log k ) times the optimum. We remark that our composable coreset
in Theorem 4 has size k1+ε, for some arbitrarily small constant ε (to obtain a constant
approximation) which is possibly suboptimal. We hence ask an open question as to whether
an O(1)-approximate composable coreset for remote-pseudoforest, of size O(k), exists.

Finally, as an additional result we also prove an alternative method of obtaining an O(1)-
approximate offline algorithm for remote-pseudoforest. Unlike [7], which uses primal-dual
relaxation techniques, our techniques are much simpler and are based on ε-nets and dynamic
programming. In addition, our result works for all k ≤ n, whereas the work of [7] assumes
k ≤ n

3 and that k is at least a sufficiently large constant. Also, our algorithm is deterministic,
unlike [7]. We defer the statement and proof to the full version of the paper on arXiv.
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2 Preliminaries

2.1 Definitions and Notation
We use ρ(x, y) to represent the metric distance between two points x and y. For a point x and
a set S, we define ρ(x, S) = mins∈S ρ(x, s). Likewise, for two sets S, T , we define ρ(S, T ) =
mins∈S,t∈T ρ(S, T ). We define the diameter of a dataset X as diam(X) = maxx,y∈X ρ(x, y).

Costs and diversity measures

For a set of points Y = {y1, . . . , yk}, we use div(Y ), as a generic term to denote its diversity
which we measure by the following cost functions.

If k = |Y | is even, we define the minimum-weight matching cost MWM(Y ) as the
minimum total weight over all perfect matchings of Y . Equivalently,

MWM(Y ) := min
permutation π:[k]→[k]

k/2∑
i=1

ρ(yπ(2i), yπ(2i−1)).

Likewise, we define the pseudoforest cost PF(Y ), also known as the sum-of-nearest-neighbor
cost, of Y as

PF(Y ) :=
∑
y∈Y

ρ(y, Y \y).

Finally, we define the minimum spanning tree cost MST(Y ) of Y as the minimum total
weight over all spanning trees of Y . Equivalently,

MST(Y ) = min
G: spanning tree of [k]

∑
e=(i,j)∈G

ρ(yi, yj).

The pseudoforest cost and minimum spanning tree cost do not require Y to be even.

▶ Definition 6 (Diversity maximization). Given a dataset X, and a parameter k, the goal
of the diversity maximization problem is to choose a subset Y ⊂ X of size k with maximum
diversity, where in this work we focus on div(Y ) = MWM(Y ) and div(Y ) = PF(Y ).

We also define divk(X) to be this maximum achievable diversity, i.e., divk(X) =
maxY ⊂X,|Y |=k div(Y ). In particular we use MWMk(X), or the remote-matching cost of X,
as maxY ⊂X,|Y |=k MWM(Y ), and define PFk(X) = maxY ⊂X,|Y |=k PF(Y ). These objectives
are also known as k-matching and k-pseudoforest.

For a specific diversity maximization objective divk (such as MWMk), an α-approximation
algorithm (α ≥ 1) for div is an algorithm that, given any dataset X = {x1, . . . , xn}, outputs
some dataset Z ⊂ X of size k such that

div(Z) ≥ 1
α
· divk(X) = 1

α
· max

Y ⊂X:|Y |=k
div(Y ).

▶ Definition 7 (Composable coresets). We say that an algorithm A that acts on a dataset X

and outputs a subset A(X) ⊂ X forms an α-approximate composable coreset (α ≥ 1) for
div if, for any collection of datasets X(1), . . . , X(m), we have

divk

(
m⋃

i=1
A(X(i))

)
≥ 1

α
· divk

(
m⋃

i=1
X(i)

)
.
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Algorithm 1 The GMM Algorithm.

1: Input: data X = {x1, . . . , xn}, integer k.
2: y1 is an arbitrary point in X.
3: Initialize Y ← {y1}.
4: for p = 2 to k do
5: yp ← arg maxy∈X ρ(y, Y ), i.e., yp is the furthest point in X from the current Y =

{y1, . . . , yp−1}.
6: Y ← Y ∪ {yp}.
7: end for
8: Return Y .

Throughout the paper, for our coreset construction algorithms, we use X(1), · · · , X(m) to
denote the collection of the data sets. Note that since A(X(i)) ⊂ X(i), the diversity of the
combined coresets is always at most the diversity of the combined original datasets. We also
say that the coreset is of size k′ if |A(X(i))| ≤ k′ for each X(i). We desire for the size k′ to
only depend (polynomially) on k, and not on n.

2.2 The GMM Algorithm
The GMM algorithm [19] is an algorithm that was first developed for the k-center clustering,
but has since been of great use in various diversity maximization algorithms and dispersion
problems, starting with [30]. The algorithm is a simple greedy procedure that finds k

points Y in a dataset X that are well spread out. It starts by picking an arbitrary point
y1 ∈ X. Given y1, . . . , yp for p < k, it chooses yp+1 as the point that maximizes the distance
ρ(y, {y1, . . . , yp}) over all choices of y ∈ X. We provide pseudocode in Algorithm 1.

The GMM algorithm serves as an important starting point in many of our algorithms, as
well as in many of the previous state-of-the-art algorithms for diversity maximization. The
GMM algorithm has the following crucial property.

▶ Proposition 8. Suppose we run GMM for k steps to produce Y = {y1, . . . , yk}. Let
r = maxx∈X ρ(x, Y ). Then, every pair of points yi, yj has ρ(yi, yj) ≥ r.

3 Composable Coreset Constructions

In this section, we design algorithms for constructing O(1)-approximate composable coresets
for remote-pseudoforest and remote-matching. In this section, we provide a technical overview
and pseudocode for the algorithms, but defer the proof (and algorithm descriptions in words)
to Appendix A (for remote-pseudoforest) and Section 5 (for remote-matching).

3.1 Coreset Constructions: Technical Overview
For both remote-pseudoforest and remote-matching, we start by considering the heuristic of
GMM, where in each group we greedily select k points. For simplicity, suppose we only have
one group for now. After picking the set Y = {y1, . . . , yk} from GMM, define r to be the
maximum distance ρ(x, Y ) over all remaining points x. Then, Proposition 8 implies that all
distances ρ(yj , yj′) ≥ r for j, j′ ≤ k. Hence, running GMM will ensure we have a set of k

points with minimum-weight-matching or pseudoforest cost at least Ω(k · r). Hence, we only
fail to get an O(1)-approximation if the optimum remote-matching (or remote-pseudoforest)
cost is much larger than k · r.

APPROX/RANDOM 2023



25:6 Improved Diversity Maximization Algorithms for Matching and Pseudoforest

However, in this case, note that every point x ∈ X satisfies ρ(x, Y ) ≤ r, meaning every
point x is within r of some yi. This suggests that if the optimum cost is ω(k · r), achieved by
some points z1, . . . , zk, we could just map each zi to its closest yi, and this would change
each distance by no more than O(k · r). Hence, we can ostensibly use the GMM points to
obtain a cost within O(k · r) of the right answer, which is within an Ω(1) (in fact a 1− o(1))
multiplicative factor! Additionally, this procedure will compose nicely, because if we split the
data into m components X(1), . . . , X(m), each with corresponding radius r(1), . . . , r(m), then
each individual coreset has cost at least r(j) (so the combination has cost at least max r(i)),
whereas we never move a point more than r(i) ≤ max r(i).

The problem with this, however, is that we may be using each yj multiple times: for
instance, if both z1 and z2 are closest to y1, we would use y1 twice. Our goal is to find a
subset of k points, meaning we cannot duplicate any point.

Note that in this duplication, it is never necessary to duplicate a point more than k times.
So, if we could somehow pick k copies of each yi, we would have a coreset. However, note
that it is not crucial for each zi to be mapped to its closest GMM point yj : any point within
distance r of yj is also acceptable. Using this observation, it suffices to pick k points among
those closest to yj if possible - if there are fewer than k points, picking all of the points is
sufficient. It is also important to choose all of Y , in the case where the optimum cost is
only O(k · r). Together, this generates a composable coreset for both remote-matching and
remote-pseudoforest, of size only k2.

3.1.1 Improving the coreset for remote-matching
In the case of remote-matching, we can actually improve this to O(k). The main observation
here is to show that if a set Z of size k had two identical points, getting rid of both of them
does not affect the minimum-weight-matching cost. (This observation does not hold for
pseudoforest). One can similarly show that if the two points were close in distance, removing
both of the points does not affect the matching cost significantly. This also implies we can,
rather than removing both points, move them both to a new location as long as they are
close together. At a high level, this means that there must exist a near-optimal k-matching
that only has O(1) points closest to each yj : as a result we do not have to store k points for
each yj : only O(1) points suffice.

3.1.2 Improving the coreset for remote-pseudoforest
In the case of remote-pseudoforest, the improvement is more involved. Consider a single
group, and suppose GMM gives us the set Y = {y1, . . . , yk}. Let Xi represent the set of
points in X closest to Yi. The first observation we make is that if the optimal solution had
multiple points in a single Xi, each such point can only contribute O(r) cost. Assuming that
the optimum cost is ω(k · r), it may seem sufficient to simply pick 1 point in each Yi for the
coreset, as we can modify the optimum solution by removing points in Xi if there are two
or more of them. While this will allow us to obtain a set with nearly optimum cost, the
problem is the set has size less than k. So, we need to add additional points while preventing
the pseudoforest cost from decreasing by too much.

To develop intuition for how this can be accomplished, we first suppose that |X1|, |X2| ≥ k.
In this case, we could choose the coreset as X1 ∪X2 ∪ Y . We know there is a subset Z ⊂ Y

with pseudoforest cost close to optimum, though |Z| may be much smaller than k. However,
since y1, y2 are far away from each other (they were chosen first in the greedy procedure
of GMM), so all points in X1 and all points in X2 are far from each other. That means
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Algorithm 2 PFCoreset: O(1)-approximate remote-pseudoforest composable coreset algorithm.

1: Input: data X = {x1, . . . , xn}, integer k, parameter ε ∈ (0, 1].
2: if n < 2k1+ε + k then
3: Return X.
4: end if
5: Y = {y1, . . . , yk} ← GMM(x1, . . . , xn, k).
6: for i = 1 to n do
7: r̃i ← (k + 1)th largest value of ρ(xi, xj) across all j ≤ n.
8: end for
9: r̃ ← mini r̃i, x← arg mini r̃i

10: U ← k furthest points in X from x.
11: P ← k arbitrary points within distance r̃ of x.
12: S, T ← FindST(X, k, ε, r̃). {See Algorithm 5}
13: Return C ← P ∪ S ∪ T ∪ U ∪ Y .

that if we randomly choose either X1 or X2, and add enough points from the chosen set
so that we have k points, each point y ∈ Y , with 50% probability, is not close to the new
points added (because every point y must either be far from X1 or far from X2). Thus, the
expected distance from y to the closest new point is large.

In general, it is not actually important that the points come from X1 and X2: we just
need two sets S, T of k points such that ρ(S, T ), the minimum distance between s ∈ S and
t ∈ T , is large. Then, any point y cannot be close to points in both S and T . This also
composes nicely, because to find the final set of k points, we only need there to be two sets
S, T throughout the union of the coresets with large ρ(S, T ).

To find large S, T with large ρ(S, T ), we will require |X| ≥ k1+ε for some small constant
ε. For simplicity, we focus on the case when |X| ≥ k1.5. Suppose all but k points are in some
ball B of radius r. If there exists x that is within distance r/10 of k points (we can make
S these k points), then all points in S must be far away from the furthest k points from x

(which we can set as T ), or else we could have found a smaller ball B′. Otherwise, there are
two options.

1. The majority of points x ∈ X are within r/100 of at least
√

k other points, but no x ∈ X

is within r/10 of at least k other points. Intuitively (we will make this intuition formal in
Appendix A), a random set S0 of size O(

√
k) should be within r/100 of at least k other

points in total (we can make S these k points), but there are at least |X| − k · |S0| ≥ k

points (we can make T these points) that are not within r/10 of S0.

2. The majority of points aren’t within r/100 of even O(
√

k) points. In this case, we
can pick k of these points to form S, and they will not be within r/100 of at least
|X| −O(

√
k) · |S| ≥ k points. We make this intuition formal and prove the result for the

more general k1+ε.

3.2 Algorithm Pseudocode

We provide pseudocode for the remote-pseudoforest coreset in Algorithm 2 and for the remote-
matching coreset in Algorithm 3. The proofs, as well as algorithm descriptions in words, are
deferred to Section 5 (for remote-matching) and Appendix A (for remote-pseudoforest).

APPROX/RANDOM 2023
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Algorithm 3 MWMCoreset: O(1)-approximate remote-matching composable coreset algorithm.

1: Input: data X = {x1, . . . , xn}, integer k.
2: if n ≤ 3k then
3: Return X

4: else
5: Y = {y1, . . . , yk} ← GMM(x1, . . . , xn, k).
6: Initialize S1, . . . , Sk ← ∅.
7: for i = 1 to n do
8: Add i to Sj for j = arg min ρ(xi, yj).
9: end for

10: Initialize C ← Y .
11: for i = 1 to k/2 do
12: Find x, x′ ∈ X\C such that x, x′ are in the same Sj .
13: C ← C ∪ {x, x′}.
14: end for
15: Return C.
16: end if

4 Offline Remote-Matching Algorithm

In this section, we design O(1)-approximate offline algorithms for remote-matching. In this
section, we first provide a technical overview, then the algorithm description and pseudocode,
and finally we provide the full analysis.

4.1 Technical Overview
The remote-matching offline algorithm first utilizes some simple observations that we made
in Section 3.1. Namely, we may assume the largest minimum-weight matching cost of any
subset of k points is ω(k · r), or else GMM provides an O(1)-approximation. Next, if the
optimum solution was some Z = {z1, . . . , zk}, we can again consider mapping each zi to its
closest yj , at the cost of having duplicates. However, as noted in Section 3.1, we may delete
a point twice without affecting the matching cost: this means we can keep deleting a point
twice until each yj is only there 0 times (if the total number of zi’s closest to yj was even) or
1 time (if the total number of zi’s closest to yj was odd).

However, we have no idea what Z actually is, so we have no idea whether each yj should
be included or not. However, this motivates the following simpler problem: among the k

points Y , choose a (even-sized) subset of Y maximizing the matching cost.
One attempt at solving this problem is to choose {y1, . . . , yp} for some p ≤ k: this will

resemble an argument in [11]. The idea is that if we define rp to be the maximum value
ρ(x, {y1, . . . , yp}) over all x ∈ X, the same argument as Proposition 8 implies that all points
among y1, . . . , yp are separated by at least rp. Hence, for the best p we can obtain matching
cost Ω(max1≤p≤k p · rp). Conversely, it is known that the minimum-weight-matching cost of
any set of points Z is upper-bounded by the cost of the minimum spanning tree of Z. But
the minimum spanning tree has cost at most

∑k
p=1 rp, since we can create a tree by adding

an edge from each yp+1 to its closest center among y1, . . . , yp, which has distance rp. Since
max(p · rp) ≥ Ω

(
1

log k

)
·
∑k

p=1 rp (with equality for instance if rp = 1
p ), we can obtain an

O(log k)-approximation.
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For simplicity, we focus on the case where rp = Θ(1/p) for all 1 ≤ p ≤ k. We would hope
that either the minimum spanning tree cost of Y , which we call MST(Y ), is actually much
smaller than log k, or there is some alternative selection to obtain matching cost Ω(log k)
rather than O(1). Suppose that MST(Y ) = Ω(log k): furthermore, for simplicity suppose
the pth largest edge of the tree has weight 1

p . If we considered the graph on Y connecting
two points if their distance is less than 1

p , it is well-known that the graph must therefore
split into p disconnected components.

Now, for some fixed p suppose that we chose a subset Z of Y such that each connected
component in the graph above has an odd number of points in Z. Then, any matching must
send at least one point in each Z ∩ CCj (where CCj is the jth connected component) to a
point in a different connected component, forcing an edge of weight at least 1

p . Since each of
p connected components has such a point, together we obtain weight at least 1. In addition,
if we can ensure this property for p = 2, 4, 8, 16 . . . , k, we can in fact get there must be at
least 2i edges of weight 1/2i, making the total cost Ω(log k), as desired.

While such a result may not be possible exactly, it turns out that even a random subset
of Y satisfies this property asymptotically! Namely, if we choose each point y ∈ Y to be
in Z with 50% probability, each CCj is odd with 50% probability. So in expectation, for
all p, the number of connected components of odd size is p/2. Even if we make sure Z

has even size, this will still be true, replacing p/2 with Ω(p). Since this is true for all p in
expectation, by adding over powers of 2 for p, we will find k points with Ω(log k) matching
cost in expectation.

4.2 Algorithm Desciption and Pseudocode

Given a dataset X = {x1, . . . , xn}, we recall that the goal of the remote-matching problem is
to find a subset Z = {z1, . . . , zk} ⊂ X of k points, such that the minimum-weight matching
cost of Z, MWM(Z), is approximately maximized. In this subsection, we describe our
O(1)-approximate remote-matching algorithm. We also provide pseudocode in Algorithm 4.

Algorithm Description

The algorithm proceeds as follows. First, run the GMM algorithm for k steps, to obtain k

points Y = {y1, . . . , yk} ⊂ X. Define the subsets S1, . . . , Sk as a partitioning of X, where
x ∈ X is in Si if yi is the closest point to x in Y . (We break ties arbitrarily.) We use the
better of the following two options, with the larger minimum-weight matching cost.
1. Simply use Y = {y1, . . . , yk}.
2. Let Ẑ ⊂ Y be a uniformly random subset of Y . Initialize W to Ẑ if |Ẑ| is even, and

otherwise initialize W to Ẑ\ẑ for some arbitrary ẑ ∈ Ẑ. Now, if there exist two points
not in W ∪ Y but in the same subset Si, add both of them to W . Repeat this procedure
until |W | = k.

We will use whichever of Y or W has the larger minimum-weight matching cost. Since
minimum-weight matching can be computed in polynomial time, we can choose the better of
these two in polynomial time.

In Theorem 3, we assume n ≥ 3k. Because of this assumption, if |W | < k, then |W ∪Y | ≤
2k − 1, which means |X\(W ∪ Y )| ≥ k + 1. Hence, by Pigeonhole Principle, two of these
points must be in the same set Si, which means that the procedure described above is indeed
doable.

APPROX/RANDOM 2023
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Algorithm 4 MWMOffline: O(1)-approximate remote-matching algorithm.

1: Input: data X = {x1, . . . , xn}, even integer k.
2: Y = {y1, . . . , yk} ← GMM(x1, . . . , xn, k).
3: Initialize S1, . . . , Sk ← ∅.
4: for i = 1 to n do
5: Add i to Sj if j = arg min ρ(xi, yj).
6: end for
7: Z ← random subset of Y .
8: if |Z| is odd then
9: Remove an arbitrary element from Z

10: end if
11: Initialize W ← Z.
12: while |W | < k do
13: Find some x, x′ ∈ X\(W ∪ Y ), such that x, x′ are in the same subset Sj .
14: Add x, x′ to W .
15: end while
16: Return whichever of Y, W has larger minimum-weight matching cost.

4.3 Analysis
The first ingredient in proving Theorem 3 is the following lemma, which shows that assuming
the random subset Z we chose in Line 7 of Algorithm 4 is sufficiently good, the algorithm
produces an O(1)-approximation.

▶ Lemma 9. For some constant 1
2 ≥ α > 0, suppose that

MWM(Z) ≥ α · max
Z′⊂Y :|Z′| is even

MWM(Z ′).

Then, Algorithm 4 provides a 4
α -approximation for the remote-matching problem.

Proof. Let M be the optimal remote-matching cost. Let r be the maximum distance from
any point in X\Y to its closest point in Y . Note that ρ(yi, yj) ≥ r for all i, j ≤ k, by
Proposition 8.

First, suppose that M ≤ 2α−1 · r · k. In this case, because every pair in Y has pairwise
distance at least r, we have MWM(Y ) ≥ r · k

2 . Hence, MWM(Y ) ≥ α
4 ·M, which means we

have a 4
α -approximation.

Alternatively, suppose M ≥ 2α−1 · r · k. Let W0 ⊂ X be the set of p points that achieves
this, i.e., MWM(W0) = M . Consider the following multiset W̃0 of size p in Y , where each
point in W0 is mapped to its closest center in Y (breaking ties in the same way as in the
algorithm). Then, every pair of distances between W0 and W̃0 changes by at most 2r. This
means every matching has its cost change by at most k

2 · 2r = rk, so MWM(W̃0) ≥M − rk.

Now, let Z0 ⊂ Y be the set of points where yi ∈ Z0 if and only if yi is in W̃0 an odd
number of times. Then, MWM(W̃0) = MWM(Z0). To see why, first note that MWM(W̃0) ≤
MWM(Z0) since we can convert any matching of Z0 to a matching of W̃0 by simply matching
duplicate points in W̃0 until only Z0 is left. To see why MWM(W̃0) ≥ MWM(Z0), note that
if an optimal matching of W̃0 connected some copy of y to a point y′ ̸= y and another copy
of y to a point y′′ ̸= y, we can always replace the edges (y, y′) and (y, y′′) with (y, y) and
(y′, y′′), which by Triangle inequality will never increase the cost. We may keep doing this
until a maximal number of duplicate points are matched together, and only one copy of each
element in Z0 will be left. Hence, we have

MWM(Z0) = MWM(W̃0) ≥M − rk. (1)
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Similarly, let Z, W be the sets found in the algorithm described above, and let W̃ be the
multiset formed by mapping each point in W to its nearest center in Y . As in the case with
Z0 and W̃0, we have that for Z and W̃ , a point z is in Z if and only if z is in W̃ an odd
number of times. Hence, MWM(W̃ ) = MWM(Z). Likewise, each point in W̃ has distance
at most r from its corresponding point in W , which means MWM(W ) ≥ MWM(W̃ )− rk.
Hence, we have

MWM(Z) = MWM(W̃ ) ≤ MWM(W ) + rk. (2)

Overall, MWM(Z) ≥ α ·maxZ⊂Y :|Z| is even MWM(Z) ≥ α ·MWM(Z0), so

MWM(W ) ≥ MWM(Z)− rk ≥ α ·MWM(Z0)− rk

≥ α ·M − (1 + α)rk.

But note that M ≥ 2α−1rk, which means that (1 + α)rk ≤ α(1+α)
2 ·M ≤ 3

4 · α ·M . Hence,
MWM(W ) ≥ α

4 ·M , which again means we have a 4
α -approximation. ◀

The main technical lemma that we will combine with Lemma 9 shows that Z has the
desired property. We now state the lemma, but we defer the proof slightly, to Section 4.5.
We remark that the proof roughly follows the intuition described at the end of Section 4.1.

▶ Lemma 10. Let Ẑ be a random subset of Y where each element is independently selected
with probability 1/2. If |Ẑ| is even, we set Z = Ẑ, and if |Ẑ| is odd, we arbitrarily remove 1
element from Ẑ to generate Z. Then,

E[MWM(Z)] ≥ 1
16 · max

Z′⊂Y :|Z′| is even
MWM(Z ′).

Given Lemmas 9 and 10, we explain how combine them to prove Theorem 3.

Proof of Theorem 3. Suppose we generate a random subset Z of Y (possibly removing an
element), and suppose that MWM(Z) = α ·maxZ⊂Y :|Z| is even MWM(Z). Then, the output
of the algorithm has matching cost at least α

4 times the optimum k-matching cost MWMk(X),
by Lemma 9. However, by Lemma 10, E[α] ≥ 1

16 , which means that the expected matching
cost of the output is E[α]

4 ·MWMk(X) ≥ 1
64 ·MWMk(X).

If we want this to occur with high probability, note that the matching cost of the output
can never be more than MWMk(X). Hence, by Markov’s inequality, with at least 1

642 = 1
4096

probability, the output has matching cost at least 1
65 ·MWMk(X). If we repeat this O(1)

times and return the set with best matching cost, we can find a set of size k with matching
cost at least 1

65 ·MWMk(X), with probability at least 0.99. ◀

Before proving Lemma 10, we will need some additional preliminaries.

4.4 Preliminaries for Lemma 10
To prove Lemma 10, we will need several preliminary facts relating to the cost of a minimum
weight matching, as well as the cost of a minimum spanning tree of a set of points.

First, we have the following fact, bounding the minimum weight matching in terms of
the MST.

▶ Proposition 11 (Classical, see Proof of Lemma 5.2 in [11]). For any (finite, even sized) set
of data points Z in a metric space, MWM(Z) ≤ MST(Z).
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Next, given a subset Z of Y in a metric space, we can bound the minimum spanning tree
cost of Z in terms of the minimum spanning cost of Y .

▶ Proposition 12 (Classical, see [16]). Let Z ⊂ Y be (finite) sets of data points in some
metric space. Then, MST(Z) ≤ 2 ·MST(Y ).

Next, we equate the minimum spanning tree of a dataset Y with the number of connected
components in a family of graphs on Y . The following proposition essentially follows from the
same argument as in [12, Lemma 2.1]. We prove it here for completeness since the statement
we desire is not explicitly proven in [12].

▶ Proposition 13. Given a dataset Y in a metric space and a radius r > 0, define Gr(Y ) to
be the graph on Y that connects two data points if and only if their distance is at most r.
Define Pr(Y ) to be the number of connected components in Gr(Y ). Then,

MST(Y ) ∈
[

1
2 , 1
]
·

(∑
i∈Z

2i · (P2i(Y )− 1)
)

.

Proof. Note that if 2i is at least diam(Y ), the diameter of Y , P2i(Y ) = 1, which means we
may ignore the summation for i with 2i > diam(Y ). Hence, by scaling by some power of 2,
we may assume WLOG that diam(Y ) < 1, and that the summation is only over i < 0.

Now, for any t ≥ 0, let Qt(Y ) be the number of edges in the MST of Y with weight at
most 2−t and strictly more than 2−(t+1) (assuming we run Kruskal’s algorithm for MST).
Note that Rt(Y ) :=

∑
t′≥t Qt′(Y ) is the number of edges with weight at most 2−t. Note

that Rt(Y ) is precisely n− P2−t(Y ). To see why, note that the Rt(Y ) edges form a forest
with n − Rt(Y ) connected components. In addition, in the graph G2−t(Y ), none of the
n−Rt(Y ) components can be connected to each other, or else there would have been another
edge of weight at most 2−t that Kruskal’s algorithm would have had to add. Therefore,∑

t′≥t Qt′(Y ) = n−P2−t(Y ). By subtracting this equation from the same equation replacing
t with t + 1, we obtain

Qt(Y ) = P2−(t+1)(Y )− P2−t(Y ). (3)

Now, note that by definition of Qt(Y ), the cost of MST(Y ) is between
∑

t≥0 2−(t+1) ·Qt(Y )
and

∑
t≥0 2−t ·Qt(Y ). Equivalently, it equals α ·

(∑
t≥0 2−t ·Qt(Y )

)
, for some α ∈ [1/2, 1].

Therefore,

MST(Y ) = α ·

∑
t≥0

2−t ·Qt(Y )


= α ·

∑
t≥0

2−t · (P2−(t+1)(Y )− P2−t(Y ))


= α ·

∑
t≥0

(2−t − 2−(t+1))P2−(t+1)(Y )− P1(Y )


= α ·

∑
t≥1

2−tP2−t(Y )− 1


= α ·

∑
t≥1

2−t(P2−t(Y )− 1)

 .

The second-to-last line follows since the diameter is at most 1 so G1(Y ) has one connected
component, and the last line follows because

∑
t≥1 2−t = 1. ◀
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Finally, we need to consider the minimum weight matching cost in a hierarchically
well-separated tree (HST).

▶ Definition 14. A hierarchically-well seprated tree (HST) is a depth-d tree (for some integer
d ≥ 1) with the root as depth 0, and every leaf has depth d. For any node u in the tree of
depth 1 ≤ t ≤ d, each edge from u to its parent has weight 2−t. For two nodes v, w in the
HST, the distance dHST(v, w) is simply the sum of the edge weights along the shortest path
from v to w in the tree.

Note that for any two leaf nodes v, w in an HST, if their least common ancestor has
depth t, the distance between v and w is 2 ·

(
2−(t+1) + 2−(t+2) + · · ·+ 2−d

)
= 2 · (2−t− 2−d).

We will make use of the following result about points in an HST metric.

▶ Proposition 15 ([21], Claim 3). Let Z be a (finite, even sized) set of points that are leaves
in a depth-d HST. Let mi be the number of nodes at level i with an odd number of descendants
in Z. Then, with respect to the HST metric, the minimum weight matching cost equals

MWM =
d∑

i=0
2−i ·mi.

We remark that the corresponding statement in [21] has an additional additive factor
of n = |Z| in the right-hand side. This is because we include the bottom level in our sum
(which consists of n nodes each with exactly one descendant), whereas [21] does not.

4.5 Proof of Lemma 10
We are now ready to prove Lemma 10

Proof of Lemma 10. Assume WLOG (by scaling) that the diameter of Y is at most 1. Let
Z be a subset of Y with even size. By Proposition 11, MWM(Z) ≤ MST(Z). By Proposition
12, MST(Z) ≤ 2 ·MST(Y ). Combining these together, we have

max
Z⊂Y :|Z| even

MWM(Z) ≤ 2 ·MST(Y ). (4)

Now, for our dataset Y and any positive real r > 0, recall that Gr(Y ) is defined as
the graph on Y that connects two data points if their distance is at most r. In addition,
define Pr(Y ) to be the partitioning of Y into connected components based on Gr(Y ), and
recall that Pr(Y ) = |Pr(Y )| equals the number of connected components in Gr(Y ). Then,
Proposition 13 tells us that

MST(Y ) ≤
∑
i∈Z

2i · (P2i(Y )− 1). (5)

Now, consider the following “embedding” of Y into a depth-d hierarchically well-separated
tree (where we will choose d later) as follows. By scaling, assume WLOG that the diameter
of Y is 1. For each integer 0 ≤ t ≤ d, the nodes at level t will be the connected components
in G2−t(Y ), where the children of any node at depth t, represented by a subset Z of Y , are
simply the connected components in P2−(t+1)(Y ) contained in Z.

The distance dHST(yi, yj) between any two vertices yi, yj in the HST is precisely 2(2−t −
2−d) if yi, yj have common ancestor at level t of the HST. Note that if dHST(yi, yj) =
2(2−t − 2−d), then yi, yj are not in the same connected component of G2−(t+1) , which means
that ρ(yi, yj) > 2−(t+1). Importantly, this means that dHST(yi, yj) ≤ 4ρ(yi, yj) for all
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pairs i, j. Hence, for any subset Z ⊂ Y of even size, the minimum weight matching cost
MWMHST(Z) with respect to the HST metric is at most 4 times the true minimum weight
matching cost, i.e.,

MWMHST(Z) ≤ 4 ·MWM(Z). (6)

Finally, we consider selecting a random subset Ẑ ⊂ Y , and provide a lower bound for
MWMHST(Z), where Z = Ẑ if |Ẑ| is even and otherwise Z equals Ẑ after removing a single
(arbitrary) element. Note that for each node v of depth t, corresponding to a connected
component in P2−t(Y ), the probability that it has an odd number of descendants in Ẑ if Ẑ

is picked at random is precisely 1/2. This implies that the expectation of
∑d

i=0 2−i ·mi,

where mi is the number of nodes at level i with an odd number of descendants in Ẑ, is
1
2 ·
∑d

i=0 2−i · P2−i(Y ).
Note, however, that Ẑ has odd size with 1/2 probability. In this event, we remove an

arbitrary element of Ẑ, which may reduce each mi by 1. This only happens with 50%
probability, so after this potential removal of a point, the expectation of

∑d
i=0 2−i ·mi(Z),

where mi(Z) is the number of nodes at level i with an odd number of descendants in Z, is at
least 1

2 ·
∑d

i=0 2−i · (P2−i(Y )− 1). Since diam(Y ) is at most 1, this implies P2i(Y )− 1 = 0
for all i ≥ 1. Also, for i > d, 2−i · (P2−i(Y )− 1) ≤ 2−i · n. If we sum this up over all i > d,
this is still at most 2−d · n. Hence, we have that

EZ

[
d∑

i=0
2−i ·mi(Z)

]
≥ 1

2 ·
(∑

i∈Z
2i(P2i(Y )− 1)

)
− n · 2−d. (7)

In summary, we have that

max
Z′⊂Y :|Z′| even

MWM(Z ′) ≤ 2 ·MST(Y ) By Equation (4)

≤ 2 ·
∑
i∈Z

2i · (P2i(Y )− 1) By Equation (5)

≤ 4 ·
(
EZ

[
d∑

i=0
2−i ·mi(Z)

]
+ n · 2−d

)
By Equation (7)

= 4 ·
(
EZ [MWMHST(Z)] + n · 2−d

)
By Proposition 15

≤ 16 ·
(
EZ [MWM(Z)] + n · 2−d

)
. By Equation (6)

We can choose the depth of the HST to be arbitrarily large, which therefore implies that

EZ [MWM(Z)] ≥ 1
16 · max

Z′⊂Y :|Z′| even
MWM(Z ′). ◀

5 Coreset for Remote-Matching

In this section, we prove why the algorithm given in Algorithm 3 creates an O(1)-approximate
composable coreset. First, we describe the algorithm in words.

5.1 Algorithm Description
We start by running GMM on the dataset X for k steps, to return k points Y = {y1, . . . , yk}.
Again, let the subsets S1, . . . , Sk be a partitioning of X, where x ∈ X is in Si if yi is the
closest point in Y to x (breaking ties arbitrarily). Note that yi ∈ Si for all i.
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To create our coreset C for X, if |X| ≤ 3k we simply define C = X. Otherwise, we start
by initializing C to be Y , so C currently has size k. Next, for k/2 steps, we find any two
points in X\C that are in the same partition piece Si, and add both of them to C. Hence,
at the end |C| = 2k. Note that this procedure is always doable, since we are assuming
|X| ≥ 3k + 1, which means if we have picked at most 2k total elements, there are k + 1
remaining elements in X, of which at least 2 must be in the same Si by the pigeonhole
principle.

5.2 Analysis
In this subsection, we prove that the algorithm generates an O(1)-approximate composable
coreset, by proving Theorem 5.

Proof of Theorem 5. Suppose we run this algorithm for each of m datasets, X(1), . . . , X(m),

to generate coresets C(1), . . . , C(m). We wish to show that the optimum k-matching cost of
C =

⋃m
j=1 C(j) is at least Ω(1) times the optimum k-matching cost of X =

⋃m
j=1 X(j).

Let Y (j) = {y(j)
1 , . . . , y

(j)
k } represent the k points we obtained by running GMM on

X(j), and let r(j) be the maximum distance from any point in X(j)\Y (j) to its closest point
in Y (j). Then, note that all points in Y (j) are pairwise separated by at least r(j). Let
r = max1≤j≤m r(j).

First, suppose that the optimum k-matching cost of X is M ≤ 5r · k. In this case, for
the r(j) that equals r, the GMM algorithm finds k points that are pairwise separated by
at least r(j) = r. Since C(j) ⊃ Y (j), this means that the full coreset C contains k points
that are pairwise separated by r, which has k-matching cost at least r · k

2 . Hence, we have a
10-approximate coreset.

Alternatively, the optimum k-matching cost of X is M ≥ 5r · k. Let S
(j)
i represent the

set Si for X(j), and suppose W is an optimal set of k points in X with MWM(W ) = M .
Let W (j) = W ∩ X(j). Also, let W

(j)
i = W ∩ S

(j)
i and b

(j)
i be the parity of |W (j)

i |, i.e.,
b

(j)
i = 1 if |W (j)

i | is odd and b
(j)
i = 0 if |W (j)

i | is even. In addition, let W̃ be the multiset of
k points formed by mapping each point in W

(j)
i to y

(j)
i . In other words, W̃ consists of each

y
(j)
i repeated |W (j)

i | times. Note that since each W
(j)
i has distance at most r(j) ≤ r from

y
(j)
i , all pairwise distances change by at most 2r, which means the matching cost difference
|MWM(W̃ )−MWM(W )| ≤ 1

2 · 2r · k = rk. Also, note that W̃ only consists of points of the
form y

(j)
i , with the parity of the number of times y

(j)
i appears in W̃ equaling b

(j)
i .

Next, we create a similar set W ′ ⊂ C. For each j ≤ m, define k(j) = |W (j)|. We will
find a set (W ′)(j) ⊂ C(j) of size k(j), such that the parity of |(W ′)(j) ∩ S

(j)
i | equals b

(j)
i

for all i ≤ k. To do so, first note that if |X(j)| ≤ 3k, then C(j) = X(j), so we can just
choose (W ′)(j) = W (j). Otherwise, |X(j)| ≥ 3k + 1, and C(j) consists of 2k points. In
addition, C(j) ⊃ Z(j). Now, we start by including in (W ′)(j) each point y

(j)
i such that

b
(j)
i = 1. Since b

(j)
i = 1 means that |W (j)

i | is odd, for any fixed j the number of b
(j)
i = 1 is

at most k(j) and has the same parity as k(j). Now, as long as |(W ′)(j)| < k(j), this means
|C(j)\(W ′)(j)| ≥ k + 1, which means there are two points in C(j)\(W ′)(j) that are in the
same S

(j)
i , by pigeonhole principle. We can add both of them to (W ′)(j). We can keep

repeating this procedure until |(W ′)(j)| = k(j), and note that this never changes the parity
of each |(W ′)(j) ∩ S

(j)
i |.

Our set W ′ ⊂ C will just be
⋃m

j=1(W ′)(j). Note that |W ′| =
∑m

j=1 k(j) = k, and |W ′∩S
(j)
i |

has parity b
(j)
i , just like W . Hence, we can create the multiset W̃ ′ by mapping each point

w′ ∈W ′∩S
(j)
i to y

(j)
i . Again, each point moves by at most r, so all pairwise distances change

by at most 2r, which means that |MWM(W̃ ′)−MWM(W ′)| ≤ rk.
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Finally, we will see that MWM(W̃ ′) = MWM(W̃ ). Note that both W̃ and W̃ ′ are
multisets of y

(j)
i points, each repeated an odd number of times if and only if b

(j)
i = 1.

However, we saw in the proof of Lemma 9 that MWM(W̃ ) equals the minimum-weight
matching cost of simply including each point y

(j)
i exactly b

(j)
i times. This is because there

exists an optimal matching that keeps matching duplicate points together as long as it is
possible. The same holds for MWM(W̃ ′), which means MWM(W̃ ) = MWM(W̃ ′).

Overall, this means that |MWM(W ′) − MWM(W )| ≤ |MWM(W ′) − MWM(W̃ ′)| +
|MWM(W̃ ′) −MWM(W̃ )| + |MWM(W̃ ) −MWM(W )| ≤ rk + 0 + rk = 2rk. But since
we assumed that MWM(W ) = M ≥ 5rk, this means the k-matching for C is at least
M − 2rk ≥ M

2 . Hence, we get a 2-approximate coreset.
In either case, we obtain an O(1)-approximate coreset, as desired. ◀
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A Composable Coreset for Remote-Pseudoforest

In this section, we describe and analyze the composable coreset algorithm for remote-
pseudoforest.

A.1 Algorithm
In this subsection, we prove why the algorithm given in Algorithm 2 creates an O(1)-
approximate composable coreset. First, we describe the algorithm in words. We recall that
we have m datasets X(1), . . . , X(m): we wish to create a coreset C(j) of each X(j) so that⋃m

j=1 C(j) contains a set Z of k points such that PF(Z) ≥ Ω(1) · PFk

(⋃m
j=1 X(j)

)
.

A.1.1 Coreset Construction
Suppose that |X(j)| ≥ 2k1+ε + k. Let r̃(j) represent the smallest value such that there exists
a ball B̃(j) of radius r̃(j) around some x(j) ∈ X(j) that contains all but at most k of the
points in X(j). The point r̃(j) and a corresponding x(j), B̃(j) can be found in O(|X(j)|2)
time.

Choose U (j) to be the set of k points furthest from x(j). These will either be precisely
the k points outside B̃(j), or all of the points outside B̃(j) plus some points on the boundary
of B̃(j), to make a total of k points. In addition, we choose some arbitrary set P (j) ⊂ X(j)

of any k points in the ball B(j).
Next, we will choose sets S(j), T (j) ⊂ X(j) of size k, such that ρ(S(j), T (j)) ≥ ε

2 · r̃
(j). It

is not even clear that such sets exist, but we will show how to algorithmically find such sets
in O(|X(j)|2) time (assuming |X(j)| ≥ 2k1+ε + k).

Finally, we run the GMM algorithm on X(j) to obtain Y (j) = {y(j)
1 , y

(j)
2 , . . . , y

(j)
k }.

The final coreset will be C(j) := P (j) ∪ S(j) ∪ T (j) ∪ U (j) ∪ Y (j). Note that each of
P (j), S(j), T (j), U (j), Y (j) has size at most k, so |C(j)| ≤ 5k.

Alternatively, if |X(j)| < 2k1+ε + k, we choose the coreset to simply be X(j). For
convenience, in this setting, we define U (j) := X(j) and P (j), S(j), T (j), Y (j) to all be empty.

We have not yet described how to find S(j), T (j), let alone prove they even exist. We
now describe an O(|X(j)|2) time algorithm that finds S(j), T (j) ⊂ X(j) of size k, such that
ρ(S(j), T (j)) ≥ ε

2 · r̃
(j).

A.1.2 Efficiently finding S(j), T (j)

Here, we show that we can efficiently find S(j), T (j) from the coreset construction, as long as
|X(j)| ≥ 2k1+ε + k. We formalize this with the following lemma.

▶ Lemma 16. Let ε > 0 be a fixed constant, and consider a dataset X of size at least
2k1+ε + k, and suppose that no ball of radius smaller than r̃ around any x ∈ X contains all
but at most k points in X. (In other words, for every x ∈ X, there are at least k points in
X of distance at least r̃ from x.) Then, we in O(|X|2) time, we can find two disjoint sets
S, T ⊂ X, each of size k, such that ρ(S, T ) ≥ ε·r̃

2 .



S. Mahabadi and S. Narayanan 25:19

Proof. The algorithm works as follows. First, define r′ = ε·r̃
2 . For each point x ∈ X, and

for every nonnegative integer i, define Ni(x) as the set of points in X of distance at most
i · r′ from x. We can compute the set Ni(x) for all x ∈ X and 0 ≤ i ≤ 2/ε in O(|X|2) time,
as ε is a constant. Suppose there exists x ∈ X such that |N1/ε(x)| ≥ k. By our assumption
on r̃, there are at least k points of distance at least r̃ = 2

ε · r
′ from x (or else we could have

chosen r̃ to be smaller). Therefore, we can let S be a subset of size k from N1/ε(x) and T be
a subset of size k of points of distance at least 2

ε · r
′ from x. The minimum distance between

any s ∈ S and t ∈ T is at least r′ ·
( 2

ε −
1
ε

)
= r̃

2 .
Alternatively, every x ∈ X satisfies |N1/ε(x)| < k. Now, consider the following peeling

procedure. Let X0 := X: for each h ≥ 1, we will inductively create Xh ⊊ Xh−1 from
Xh−1, as follows. First, we pick an arbitrary point xh ∈ Xh−1. For any point x ∈ Xh−1
and any integer i ≥ 0, define Ni(xh; Xh−1) = Ni(xh) ∩ Xh−1 to be the set of points of
distance at most i · r′ from xh in Xh−1. By our assumption, we have that |N1/ε(xh; Xh−1)| ≤
|N1/ε(xh)| < k, so there exists some i(h) with 0 ≤ i(h) ≤ 1

ε , such that |Ni(h)+1(xh,Xh−1)|
|Ni(h)(xh,Xh−1)| ≤ kε

and |Ni(h)(xh, Xh−1)| ≤ k. Choose such an i = i(h), and let Xh := Xh−1\Ni(h)(xh, Xh−1).
We repeat this process until we have found the first Xℓ with |X\Xℓ| ≥ k. Note that

each removal process removes at least 1 and at most k elements, so |X\Xℓ| ≤ 2k. Let
Sh = Ni(h)(xh, Xh−1) = Xh−1\Xh for each 1 ≤ h ≤ ℓ, so X\Xℓ = S1 ∪ · · · ∪ Sℓ. Note,
however, that any point within distance r′ of some x ∈ Sh was either in S1 ∪ · · · ∪ Sh−1, or
was in Ni(h)+1(xh, Xh−1). In other words, every point of distance r′ of x ∈ S1 ∪ · · · ∪ Sℓ is in⋃ℓ

h=1 Ni(h)+1(xh, Xh−1). But this has size at most

ℓ∑
i=1

kε · |Ni(h)(xh, Xh−1)| = kε ·
ℓ∑

i=1
|Si| ≤ kε · 2k = 2k1+ε.

So, assuming that |X| ≥ 2k1+ε + k, defining S := S1 ∪ · · · ∪ Sℓ, we have that |S| ≥ k and
there are at least k points in X that are not within distance r′ = ε·r̃

2 of S. ◀

We include pseudocode for the algorithm described in the proof of Lemma 16, in Al-
gorithm 5.

A.2 Analysis
In this section, we prove that the algorithm indeed generates an O(1/ε)-approximate compos-
able coreset of size at most O(k1+ε). By making ε an arbitrarily small constant, this implies
we can find a constant-approximate composable coreset of size O(k1+ε) for any arbitrarily
small constant ε.

Let OPT represent the optimal set of k points in all of X =
⋃m

j=1 X(j), that maximizes
remote-pseudoforest cost. Our goal is to show that there exists a set of k points in

⋃
j(P (j) ∪

S(j) ∪ T (j) ∪ U (j) ∪ Y (j)) with pseudoforest cost at least Ω(PF(OPT)).
Let r(j) represent the maximum distance from any point in X(j) to its closest point in

Y (j). Note that by Proposition 8, PF(Y (j)) ≥ k · r(j). Hence, if PF(OPT) < 10 · k ·maxj r(j),
there exists some choice of j with PF(Y (j)) ≥ 0.1 · OPT and |Y (j)| = k. Hence, we get a
constant-factor approximation in this case. Otherwise, we may assume that PF(OPT) ≥
10 · k ·maxj r(j).

Next, for a fixed X(j), let X
(j)
i represent the set of points in X(j) closest to y

(j)
i among

all points in Y (j). Given the optimal solution OPT of k points, let OPT(j)
i = OPT∩X

(j)
i .
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Algorithm 5 FindST: Find two sets S, T of size k with large ρ(S, T ).

1: Input: data X = {x1, . . . , xn}, integer k, parameter ε ∈ (0, 1], radius r̃.
2: r′ ← ε·r̃

2 .
3: for x in X do
4: for i = 0 to 2/ε do
5: Ni(x) = {z ∈ X : ρ(x, z) ≤ i · r′}.
6: end for
7: if |N1/ε(x)| ≥ k then
8: S ← arbitrary subset of size k in N1/ε(x).
9: T ← arbitrary k points of distance at least r̃ from x.

10: Return S, T .
11: end if
12: end for
13: S = ∅, X0 ← X, h← 0
14: while |S| < k do
15: h← h + 1
16: xh ∈ Xh−1 chosen arbitrarily.
17: Find 0 ≤ i ≤ 1

ε such that |Ni+1(xh)∩Xh−1|
|Ni(xh)∩Xh−1| ≤ kε.

18: Sh ← Ni(xh) ∩Xh−1.
19: Xh ← Xh−1\Sh, S ← S ∪ Sh

20: end while
21: S ← arbitrary subset of size k in S

22: T ← arbitrary subset of k points of distance at least r′ from all points in S.
23: Return S, T .

Now, we will define sets G
(j)
i , G′

i
(j) based on the following cases.

1. If |X(j)| < 2k1+ε + k, define G
(j)
i = G′

i
(j) = OPT(j)

i for all i ≤ k.
2. Else, if y

(j)
i ∈ OPT(j)

i , define G
(j)
i as y

(j)
i ∪ (U (j) ∩OPT(j)

i ) and G′
i
(j) = OPT(j)

i .
3. Else, if OPT(j)

i \U (j) = ∅ (i.e., all points in OPT(j)
i happen to be in U (j)), define

G
(j)
i = G′

i
(j) = OPT(j)

i .

4. Else, define G
(j)
i = y

(j)
i ∪ (U (j) ∩ OPT(j)

i ), and define G′
i
(j) as OPT(j)

i with the slight
modification of moving a single (arbitrary) point in OPT(j)

i \U (j) to y
(j)
i .

We will define the sets G =
⋃

i,j G
(j)
i and G′ =

⋃
i,j G′

i
(j).

Importantly, the following five properties always hold for all i ≤ m, j ≤ k. (They
even hold in the setting when |X(j)| < 2k1+ε + k, because we defined U (j) = X(j) and
G

(j)
i = G′

i
(j) = OPT(j)

i .)
1. |G′

i
(j)| = |OPT(j)

i |. This means that |G′| = k.
2. G

(j)
i ⊂ G′

i
(j) ⊂ X

(j)
i . This means that G ⊂ G′.

3. G
(j)
i ⊂ U (j) ∪ Y (j). This means that G ⊂

⋃
j(U (j) ∪ Y (j)).

4. Every point in G′
i
(j)\G(j)

i is not in U (j). This means that
⋃

U (j) and G′\G are disjoint.
5. If G′

i
(j)\G(j)

i is nonempty, then y
(j)
i ∈ G

(j)
i , so G

(j)
i is also nonempty.

Now, note that from changing OPT to G′, we never move a point by more than maxj r(j),
which means that |PF(G′)−PF(OPT)| ≤ 2k ·maxj r(j). As we are assuming that PF(OPT) ≥
10k ·maxj r(j), we have PF(G′) ≥ 0.8·OPT. Next, if a point x is in G′

i
(j) but not in G

(j)
i , then
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x ∈ X(j)\U (j) and y
(j)
i ∈ G

(j)
i , which means that the cost of x with respect to G′ is at most

maxj r(j). So for any set A, if we define costA(x) for x ∈ A to denote miny∈A:y ̸=x ρ(x, y),
then∑

x∈G

costG′(x) ≥ PF(G′)−
∑

x∈G′\G

costG′(x) ≥ PF(G′)− k ·max
j

r(j) ≥ 0.7 ·OPT . (8)

We now try to find a set G′′ ⊃ G of size k with large pseudoforest cost, but this time
we must ensure that G′′ ⊂

⋃
j(P (j) ∪ S(j) ∪ T (j) ∪ U (j) ∪ Y (j)). In other words, to finish the

analysis, it suffices to prove the following lemma.

▶ Lemma 17. There exists G′′ ⊂
⋃

j(P (j) ∪ S(j) ∪ T (j) ∪U (j) ∪ Y (j)) of size at least k, such
that G′′ ⊃ G and

∑
x∈G costG′′(x) ≥ Ω(ε) · PF(OPT).

To see why Lemma 17 is sufficient to prove Theorem 4, since |G| ≤ k and |G′′| ≥ k we can
choose a set Ĝ of size k such that G ⊆ Ĝ ⊆ G′′. Then, Ĝ ⊂

⋃
j(P (j)∪S(j)∪T (j)∪U (j)∪Y (j))

and

PF(Ĝ) =
∑
x∈Ĝ

costĜ(x) ≥
∑
x∈G

costĜ(x) ≥
∑
x∈G

costG′′(x),

where the last inequality holds because the cost of x never increases from Ĝ to a larger set
G′′. Finally, by Lemma 17, this means PF(Ĝ) ≥ Ω(ε) · PF(OPT), as desired.

We now prove Lemma 17. First, we show how to construct G′′. Let g = |G|: note that
g ≤ k. If g = k, then in fact G = G′ and we can set G′′ = G, which completes the proof by
(8) and Property 3.

Hence, from now on, we may assume that g < k. Recall that X(j)\U (j) is contained in
a ball of radius r̃(j). Next, let r̃ be the radius of

⋃
j(X(j)\U (j)). (Note that for |X(j)| <

2k1+ε + k, X(j)\U (j) is empty.) We claim the following proposition.

▶ Proposition 18. There exist j, j′ ≤ m, possibly equal, such that ρ(S(j), T (j′)) ≥ ε
10 · r̃.

Proof. Let A ⊂ [m] be the subset of indices j such that |X(j)| ≥ 2k1+ε + k. Suppose
that r̃ ≤ 5 · maxj∈A r̃(j). Then, by setting j = j′ to be arg maxj⊂A r̃(j), we have that
ρ(S(j), T (j′)) ≥ ε

2 ·maxj∈A r̃(j) ≥ ε
10 · r̃.

Otherwise, r̃ > 5 · maxj∈A r̃(j). So, if we pick j arbitrarily, the distance between the
center of the ball B̃j and the furthest center B̃j′ must be at least 0.8 · r̃, or else the ball of
radius 0.8 · r̃ + maxj∈A r̃(j) < r̃ around the center of B̃j contains all of

⋃
j(X(j)\U (j)). Then,

d(S(j), T (j′)) ≥ 0.8 · r̃ − r̃(j) − r̃(j′) ≥ 0.4 · r̃, which is at least ε
10 · r̃. ◀

We now prove Lemma 17.

Proof. Recall that we already proved the lemma in the case that G = G′. So, we may
assume |G| < k and G′\G is nonempty. We claim that we can set G′′ to be one of G ∪ P (j),
G ∪ S(j), or G ∪ T (j′), for j, j′ chosen in Proposition 18.

First, note that P (j), S(j), and T (j′) have size k, so all three choices of G′′ have size at
least k.

First, note that G′\G is assumed to be nonempty, which means it is contained in⋃
j(X(j)\U (j)) by Property 4, which is contained in the radius r̃ ball. Therefore, G′\G has

nonempty intersection with X\(
⋃

j U (j)). Now, fix any point x ∈ G. If costG′(x) ≥ 3 · r̃,
then because G′\G has a point in the radius r̃ ball containing X\(

⋃
j U (j)) (and this point
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is not x since x ∈ G), x has distance at least r̃ from the radius r̃ ball. So, costG∪P (j)(x) ≥
costG′(x) − 2r̃ ≥ 1

3 · costG′(x). Alternatively, if costG′(x) < 3 · r̃, then costG∪S(j)(x) ≥
min(costG′(x), ρ(x, S(j))) and likewise, costG∪T (j′)(x) ≥ min(costG′(x), ρ(x, T (j′))). So,

costG∪S(j)(x) + costG∪T (j′)(x) ≥ min(costG′(x), ρ(S(j), T (j′)))

≥ min
(

costG′(x), ε

10 · r̃
)
≥ ε

30 · costG′(x).

In all cases, we have that

costG∪P (j)(x) + costG∪S(j)(x) + costG∪T (j′)(x) ≥ ε

30 · costG′(x),

so adding over all x ∈ G and choosing among the three choices randomly, we have that the
total cost in expectation is at least

1
3 ·
(∑

x∈G

ε

30 · costG′(x)
)

= ε

90 ·
∑
x∈G

costG′(x) ≥ ε

90 · 0.7 · PF(OPT) ≥ ε

150 · PF(OPT).

Hence, for one of the three choices of G′′, the pseudoforest cost is at least ε
150 ·PF(OPT). ◀
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We revisit the classic Pandora’s Box (PB) problem under correlated distributions on the box values.
Recent work of [13] obtained constant approximate algorithms for a restricted class of policies for the
problem that visit boxes in a fixed order. In this work, we study the complexity of approximating
the optimal policy which may adaptively choose which box to visit next based on the values seen so
far.

Our main result establishes an approximation-preserving equivalence of PB to the well studied
Uniform Decision Tree (UDT) problem from stochastic optimization and a variant of the Min-Sum
Set Cover (MSSCf ) problem. For distributions of support m, UDT admits a log m approximation,
and while a constant factor approximation in polynomial time is a long-standing open problem,
constant factor approximations are achievable in subexponential time [43]. Our main result implies
that the same properties hold for PB and MSSCf .

We also study the case where the distribution over values is given more succinctly as a mixture
of m product distributions. This problem is again related to a noisy variant of the Optimal Decision
Tree which is significantly more challenging. We give a constant-factor approximation that runs in
time nÕ(m2/ε2) when the mixture components on every box are either identical or separated in TV
distance by ε.
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1 Introduction

Many everyday tasks involve making decisions under uncertainty; for example driving to
work using the fastest route or buying a house at the best price. Although we don’t know
how the future outcomes of our current decisions will turn out, we can often use some prior
information to facilitate the decision making process. For example, having driven on the
possible routes to work before, we know which is usually the busiest one. It is also common
in such cases that we can remove part of the uncertainty by paying some additional cost.
This type of online decision making in the presence of costly information can be modeled
as the so-called Pandora’s Box problem, first formalized by Weitzman in [52]. In this
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problem, the algorithm is given n alternatives called boxes, each containing a value from a
known distribution. The exact value is not known, but can be revealed at a known opening
cost specific to the box. The goal of the algorithm is to decide which box to open next and
whether to select a value and stop, such that the total opening cost plus the minimum value
revealed is minimized. In the case of independent distributions on the boxes’ values, this
problem has a very elegant and simple optimal solution, as described by Weitzman [52]:
calculate an index for each box1, open the boxes in increasing order of index, and stop when
the expected gain is worse than the value already obtained.

Weitzman’s model makes the crucial assumption that the distributions on the values are
independent across boxes. This, however, is not always the case in practice and as it turns
out, the simple algorithm of the independent case fails to find the optimal solution under
correlated distributions. Generally, the complexity of the Pandora’s Box with correlations
is not yet well understood. In this work we develop the first approximately-optimal
policies for the Pandora’s Box problem with correlated values.

We consider two standard models of correlation where the distribution over values can be
specified explicitly in a succinct manner. In the first, the distribution over values has a small
support of size m. In the second the distribution is a mixture of m product distributions,
each of which can be specified succinctly. We present approximations for both settings.

A primary challenge in approximating Pandora’s Box with correlations is that the
optimal solution can be an adaptive policy that determines which box to open depending on
the instantiations of values in all of the boxes opened previously. It is not clear that such a
policy can even be described succinctly. Furthermore, the choice of which box to open is
complicated by the need to balance two desiderata – finding a low value box quickly versus
learning information about the values in unopened boxes (a.k.a. the state of the world or
realized scenario) quickly. Indeed, the value contained in a box can provide the algorithm
with crucial information about other boxes, and inform the choice of which box to open next;
an aspect that is completely missing in the independent values setting studied by Weitzman.

Contribution 1: Connection to Decision Tree and a general purpose
approximation
Some aspects of the Pandora’s Box problem have been studied separately in other contexts.
For example, in the Optimal Decision Tree problem (DT) [30, 43], the goal is to identify
an unknown hypothesis, out of m possible ones, by performing a sequence of costly tests,
whose outcomes depend on the realized hypothesis. This problem has an informational
structure similar to that in Pandora’s Box. In particular, we can think of every possible
joint instantiation of values in boxes as a possible hypothesis, and every opening of a box
as a test. The difference between the two problems is that while in Optimal Decision
Tree we want to identify the realized hypothesis exactly, in Pandora’s Box it suffices to
terminate the process as soon as we have found a low value box.

Another closely related problem is the Min Sum Set Cover [21], where boxes only have
two kinds of values – acceptable or unacceptable – and the goal is to find an acceptable value
as quickly as possible. A primary difference relative to Pandora’s Box is that unacceptable
boxes provide no further information about the values in unopened boxes.

One of the main contributions of our work is to unearth connections between Pandora’s
Box and the two problems described above. We show that Pandora’s Box is essentially
equivalent to a special case of Optimal Decision Tree (called Uniform Decision Tree

1 This is a special case of Gittins index [25].
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or UDT) where the underlying distribution over hypotheses is uniform – the approximation
ratios of these two problems are related within log-log factors. Surprisingly, in contrast,
the non-uniform DT appears to be harder than non-uniform Pandora’s Box. We relate
these two problems by showing that both are in turn related to a new version of Min
Sum Set Cover, that we call Min Sum Set Cover with Feedback (MSSCf ). These
connections are summarized in Figure 1. We can thus build on the rich history and large
collection of results on these problems to offer efficient algorithms for Pandora’s Box. We
obtain a polynomial time Õ(log m) approximation for Pandora’s Box, where m is the
number of distinct value vectors (a.k.a. scenarios) that may arise; as well as constant factor
approximations in subexponential time.

PB UMSSCfUMSSCf UDTSection 4 Section 5

Log-log factors Constant factors

Figure 1 A summary of our approximation preserving reductions.

It is an important open question whether constant factor approximations exist for
Uniform Decision Tree: the best known lower-bound on the approximation ratio is 4
while it is known that it is not NP-hard to obtain super-constant approximations under
the Exponential Time Hypothesis. The same properties transfer also to Pandora’s Box
and Min Sum Set Cover with Feedback. Pinning down the tight approximation ratio
for any of these problems will directly answer these questions for any other problem in the
equivalence class we establish.

The key technical component in our reductions is to find an appropriate stopping rule for
Pandora’s Box: after opening a few boxes, how should the algorithm determine whether a
small enough value has been found or whether further exploration is necessary? We develop
an iterative algorithm that in each phase finds an appropriate threshold, with the exploration
terminating as soon as a value smaller than the threshold is found, such that there is a
constant probability of stopping in each phase. Within each phase then the exploration
problem can be solved via a reduction to UDT. The challenge is in defining the stopping
thresholds in a manner that allows us to relate the algorithm’s total cost to that of the
optimal policy.

Contribution 2: Approximation for the mixture of distributions model
Having established the general purpose reductions between Pandora’s Box and DT, we
turn to the mixture of product distributions model of correlation. This special case of
Pandora’s Box interpolates between Weitzman’s independent values setting and the fully
general correlated values setting. In this setting, we use the term “scenario” to denote the
different product distributions in the mixture. The information gathering component of the
problem is now about determining which product distribution in the mixture the box values
are realized from. Once the algorithm has determined the realized scenario (a.k.a. product
distribution), the remaining problem amounts to implementing Weitzman’s strategy for that
scenario.

We observe that this model of correlation for Pandora’s Box is related to the noisy
version of DT, where the results of some tests for a given realized hypothesis are not
deterministic. One challenge for DT in this setting is that any individual test may give us

APPROX/RANDOM 2023
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very little information distinguishing different scenarios, and one needs to combine information
across sequences of many tests in order to isolate scenarios. This challenge is inherited by
Pandora’s Box.

Previous work on noisy DT obtained algorithms whose approximations and runtimes
depend on the amount of noise. In contrast, we consider settings where the level of noise is
arbitrary, but where the mixtures satisfy a separability assumption. In particular, we assume
that for any given box, if we consider the marginal distributions of the value in the box
under different scenarios, these distributions are either identical or sufficiently different (e.g.,
at least ε in TV distance) across different scenarios. Under this assumption, we design a
constant-factor approximation for Pandora’s Box that runs in nÕ(m2/ε2) (Theorem 18),
where n is the number of boxes. The formal result and the algorithm is presented in Section 6.

1.1 Related work
The Pandora’s Box problem was first introduced by Weitzman in the Economics literat-
ure [52]. Since then, there has been a long line of research studying Pandora’s Box and
its many variants ; non-obligatory inspection [19, 8, 7, 22], with order constraints [37, 9],
with correlation [13, 24], with combinatorial costs [6], competitive information design [18],
delegated version [5], and finally in an online setting [20]. Multiple works also study the
generalized setting where more information can be obtained for a price [12, 32, 15, 14] and
in settings with more complex combinatorial constraints [50, 26, 33, 1, 35, 36, 31].

Chawla et al. [13] were the first to study Pandora’s Box with correlated values, but they
designed approximations relative to a simpler benchmark, namely the optimal performance
achievable using a so-called Partially Adaptive strategy that cannot adapt the order in which
it opens boxes to the values revealed. In general, optimal strategies can decide both the
ordering of the boxes and the stopping time based on the values revealed. [13] designed an
algorithm with performance no more than a constant factor worse than the optimal Partially
Adaptive strategy.

In Min Sum Set Cover the line of work was initiated by [21], and continued with
improvements and generalizations to more complex constraints by [3, 46, 4, 51].

Optimal decision tree is an old problem studied in a variety of settings ([49, 48, 30, 29]),
while its most notable application is in active learning settings. It was proven to be NP-Hard
by Hyafil and Rivest [38]. Since then the problem of finding the best approximation algorithm
was an active one [23, 45, 42, 17, 10, 11, 30, 34, 16, 2], where finally a greedy log m for the
general case was given by [30]. This approximation ratio is proven to be the best possible [10].
For the case of Uniform decision tree less is known, until recently the best algorithm was the
same as the optimal decision tree, and the lower bound was 4 [10]. The recent work of Li et
al. [43] showed that there is an algorithm strictly better than log m for the uniform decision
tree.

The noisy version of optimal decision tree was first studied in [29]2, which gave an algorithm
with runtime that depends exponentially on the number of noisy outcomes. Subsequently,
Jia et al. in [40] gave an (min(r, h) + log m)-approximation algorithm, where r (resp. h) is
the maximum number of different test results per test (resp. scenario) using a reduction to
Adaptive Submodular Ranking problem [41]. In the case of large number of noisy outcome
they obtain a log m approximation exploiting the connection to Stochastic Set Cover [44, 39].

2 This result is based on a result from [27] which turned out to be wrong [47]. The correct results are
presented in [28]
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2 Preliminaries

In this paper we study the connections between three different sequential decision making
problems – Optimal Decision Tree, Pandora’s Box, and Min Sum Set Cover. We
describe these problems formally below.

Optimal Decision Tree

In the Optimal Decision Tree problem (denoted DT) we are given a set S of m scenarios
s ∈ S, each occurring with (known) probability ps; and n tests T = {Ti}i∈[n], each with cost
1. Nature picks a scenario s ∈ S from the distribution p but this scenario is unknown to the
algorithm. The goal of the algorithm is to determine which scenario is realized by running a
subset of the tests T . When test Ti is run and the realized scenario is s, the test returns a
result Ti(s) ∈ R.

Output. The output of the algorithm is a decision tree where at each node there is a test
that is performed, and the branches are the outcomes of the test. In each of the leaves there
is an individual scenario that is the only one consistent with the results of the test in the
unique path from the root to this leaf. Observe that there is a single leaf corresponding to
each scenario s. We can represent the tree as an adaptive policy defined as follows:

▶ Definition 1 (Adaptive Policy π). An adaptive policy π : ∪X⊆T RX → T is a function that
given a set of tests done so far and their results, returns the next test to be performed.

Objective. For a given decision tree or policy π, let costs(π) denote the total cost of all
of the tests on the unique path in the tree from the root to the leaf labeled with scenario
s. The objective of the algorithm is to find a policy π that minimizes the average cost∑

s∈S pscosts(π).
We use the term Uniform Decision Tree (UDT) to denote the special case of the problem
where ps = 1/m for all scenarios s.

Pandora’s Box

In the Pandora’s Box problem we are given n boxes, each with cost ci ≥ 0 and value vi.
The values {vi}i∈[n] are distributed according to known distribution D. We assume that D
is an arbitrary correlated distribution over vectors {vi}i∈[n] ∈ Rn. We call vectors of values
scenarios and use s = {vi}i∈[n] to denote a possible realization of the scenario. As in DT,
nature picks a scenario from the distribution D and this realization is a priori unknown to
the algorithm. The goal of the algorithm is to pick a box of small value. The algorithm can
observe the values realized in the boxes by opening any box i at its respective costs ci.

Output. The output of the algorithm is an adaptive policy π for opening boxes and a
stopping condition. The policy π takes as input a subset of the boxes and their associated
values, and either returns the index of a box i ∈ [n] to be opened next or stops and selects the
minimum value seen so far. That is, π : ∪X⊆[n]RX → [n] ∪ {⊥} where ⊥ denotes stopping.

APPROX/RANDOM 2023



26:6 Approximating Pandora’s Box with Correlations

Objective. For a given policy π, let π(s) denote the set of boxes opened by the policy prior
to stopping when the realized scenario is s. The objective of the algorithm is to minimize the
expected cost of the boxes opened plus the minimum value discovered, where the expectation
is taken over all possible realizations of the values in each box.3 Formally the objective is
given by

Es∼D

 min
i∈π(s)

vis +
∑

i∈π(s)

ci

,

For simplicity of presentation, from now on we assume that ci = 1 for all boxes, but we
show in the Appendix of the full version how to adapt our results to handle non-unit costs,
without any loss in the approximation factors.

We use UPB to denote the special case of the problem where the distribution D is uniform
over m scenarios.

Min Sum Set Cover with Feedback
In Min Sum Set Cover, we are given n elements and a collection of m sets S over them,
and a distribution D over the sets. The output of the algorithm is an ordering π over the
elements. The cost of the ordering for a particular set s ∈ S is the index of the first element
in the ordering that belongs to the set s, that is, costs(π) = min{i : π(i) ∈ s}. The goal of
the algorithm is to minimize the expected cost Es∼D[costs(π)].

We define a variant of the Min Sum Set Cover problem, called Min Sum Set Cover
with Feedback (MSSCf ). As in the original problem, we are given a set of n elements, a
collection of m sets S and a distribution D over the sets. Nature instantiates a set s ∈ S
from the distribution D; the realization is unknown to the algorithm. Furthermore, in this
variant, each element provides feedback to the algorithm when the algorithm “visits” this
element; this feedback takes on the value fi(s) ∈ R for element i ∈ [n] if the realized set is
s ∈ S.

Output. The algorithm once again produces an ordering π over the elements. Observe
that the feedback allows the algorithm to adapt its ordering to previously observed values.
Accordingly, π is an adaptive policy that maps a subset of the elements and their associated
feedback, to the index of another element i ∈ [n]. That is, π : ∪X⊆[n]RX → [n].

Objective. As before, the cost of the ordering for a particular set s ∈ S is the index of the
first element in the ordering that belongs to the set s, that is, costs(π) = min{i : π(i) ∈ s}.
The goal of the algorithm is to minimize the expected cost Es∼D[costs(π)].

Commonalities and notation
As the reader has observed, we capture the commonalities between the different problems
through the use of similar notation. Scenarios in DT correspond to value vectors in PB and
to sets in MSSCf ; all are denoted by s, lie in the set S, and are drawn by nature from a
known joint distribution D. Tests in DT correspond to boxes in PB and elements in MSSCf ;

3 In the original version of the problem studied by Weitzman [52] the values are independent across boxes,
and the goal is to maximize the value collected minus the costs paid, in contrast to the minimization
version we study here.
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we index each by i ∈ [n]. The algorithm for each problem produces an adaptive ordering
π over these tests/boxes/elements. Test outcomes Ti(s) in DT correspond to box values
vi(s) in PB and feedback fi(s) in MSSCf . We will use the terminology and notation across
different problems interchangeably in the rest of the paper.

2.1 Modeling Correlation
In this work we study two general ways of modeling the correlation between the values in the
boxes. Explicit Distributions. In this case, D is a distribution over m scenarios where
the j’th scenario is realized with probability pj , for j ∈ [m]. Every scenario corresponds
to a fixed and known vector of values contained in each box. Specifically, box i has value
vij ∈ R+ ∪ {∞} for scenario j.

Mixture of Distributions. We also consider a more general setting, where D is a
mixture of m product distributions. Specifically, each scenario j is a product distribution;
instead of giving a deterministic value for every box i, the result is drawn from distribution
Dij . This setting is a generalization of the explicit distributions setting described before.

3 Roadmap of the Reductions and Implications

In Figure 2, we give an overview of all the main technical reductions shown in Sections 4
and 5. An arrow A→ B means that we gave an approximation preserving reduction from
problem A to problem B. Therefore an algorithm for B that achieves approximation ratio
α gives also an algorithm for A with approximation ratio O(α) (or O(α log α) in the case
of black dashed lines). For the exact guarantees we refer to the formal statement of the
respective theorem. The gray lines denote less important claims or trivial reductions (e.g. in
the case of A being a subproblem of B).

PB

UMSSCfMSSCf

UDT

DT

Claim 7

Claim 16
Claim 16

Thm 8

Thm 17

Thm 8

Main Theorem (log factors)

Main Theorem (const. factors)

Minor Claim

Subproblem

Figure 2 Summary of all our reductions. Bold black lines denote our main theorems, gray dashed
are minor claims, and dotted lines are trivial reductions.

3.1 Approximating Pandora’s Box
Given our reductions and using the best known results for Uniform Decision Tree
from [43] we immediately obtain efficient approximation algorithms for Pandora’s Box.
We repeat the results of [43] below.

APPROX/RANDOM 2023



26:8 Approximating Pandora’s Box with Correlations

▶ Theorem 2 (Theorems 3.1 and 3.2 from [43]).
There is a O(log m/ log OPT)-approximation algorithm for UDT that runs in polynomial
time, where OPT is the cost of the optimal solution of the UDT instance.
There is a 9+ε

α -approximation algorithm for UDT that runs in time nÕ(mα) for any
α ∈ (0, 1).

Using the results of Theorem 2 combined with Theorem 8 and Claim 16 we get the
following corollary.

▶ Corollary 3. From the best-known results for UDT, we have that
There is a Õ(log m)-approximation algorithm for PB that runs in polynomial time4.
There is a Õ(1/α)-approximation algorithm for PB that runs in time nÕ(mα) for any
α ∈ (0, 1).

An immediate implication of the above corollary is that it is not NP-hard to obtain a
superconstant approximation for PB, formally stated below.

▶ Corollary 4. It is not NP-hard to achieve any superconstant approximation for PB assuming
the Exponential Time Hypothesis.

Observe that the logarithmic approximation achieved in Corollary 3 loses a log log m

factor (hence the Õ) as it relies on the more complex reduction of Theorem 8. If we
choose to use the more direct naive reduction (given in the full version of our paper) to
the Optimal Decision Tree where the tests have non-unit costs (which also admits a
O(log m)-approximation [34, 41]), we get the following corollary.

▶ Corollary 5. There exists an efficient algorithm that is O(log m)-approximate for Pan-
dora’s Box and with or without unit-cost boxes.

3.2 Constant approximation for Partially Adaptive PB

Moving on, we show how our reduction can be used to obtain and improve the results of [13].
Recall that in [13] the authors presented a constant factor approximation algorithm against
a Partially Adaptive benchmark where the order of opening boxes must be fixed up front.

In such a case, the reduction of Section 4 can be used to reduce PB to the standard Min
Sum Set Cover (i.e. without feedback), which admits a 4-approximation [21].

▶ Corollary 6. There exists a polynomial time algorithm for PB that is O(1)-competitive
against the partially adaptive benchmark.

The same result applies even in the case of non-uniform opening costs. This is because
a 4-approximate algorithm for Min Sum Set Cover is known even when elements have
arbitrary costs [46]. The case of non-uniform opening costs has also been considered for
Pandora’s Box by [13] but only provide an algorithm to handle polynomially bounded
opening costs.

4 If additionally the possible number of outcomes is a constant K, this gives a O(log m) approximation
without losing an extra logarithmic factor, since OPT ≥ logK m, as observed by [43].
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4 Connecting Pandora’s Box and MSSCf

In this section we establish the connection between Pandora’s Box and Min Sum Set
Cover with Feedback. We show that the two problems are equivalent up to logarithmic
factors in approximation ratio.

One direction of this equivalence is easy to see in fact: Min Sum Set Cover with
Feedback is a special case of Pandora’s Box. Note that in both problems we examine
boxes/elements in an adaptive order. In PB we stop when we find a sufficiently small value;
in MSSCf we stop when we find an element that belongs to the instantiated scenario. To
establish a formal connection, given an instance of MSSCf , we can define the “value” of each
element i in scenario s as being 0 if the element belongs to the set s and as being L + fi(s)
for some sufficiently large value L where fi(s) is the feedback of element i for set s. This
places the instance within the framework of PB and a PB algorithm can be used to solve it.
We formally describe this reduction in Section A of the Appendix.

▷ Claim 7. If there exists an α(n, m)-approximation algorithm for PB then there exists a
α(n, m)-approximation for MSSCf .

The more interesting direction is a reduction from PB to MSSCf . In fact we show
that a general instance of PB can be reduced to the simpler uniform version of Min Sum
Set Cover with Feedback. We devote the rest of this section to proving the following
theorem.

▶ Theorem 8 (Pandora’s Box to MSSCf ). If there exists an a(n, m) approximation
algorithm for UMSSCf then there exists a O(α(n + m, m2) log α(n + m, m2))-approximation
for PB.

Guessing a stopping rule and an intermediate problem
The feedback structure in PB and MSSCf is quite similar, and the main component in
which the two problems differ is the stopping condition. In MSSCf , an algorithm can stop
examining elements as soon as it finds one that “covers” the realized set. In PB, when the
algorithm observes a value in a box, it is not immediately apparent whether the value is
small enough to stop or whether the algorithm should probe further, especially if the scenario
is not fully identified. The key to relating the two problems is to “guess” an appropriate
stopping condition for PB, namely an appropriate threshold T such that as soon as the
algorithm observes a value smaller than this threshold, it stops. We say that the realized
scenario is “covered”.

To formalize this approach, we introduce an intermediate problem called Pandora’s
Box with costly outside option T (also called threshold), denoted by PB≤T . In this version
the objective is to minimize the cost of finding a value ≤ T , while we have the extra option
to quit searching by opening an outside option box of cost T . We say that a scenario is
covered in a given run of the algorithm if it does not choose the outside option box T .

We show that Pandora’s Box can be reduced to PB≤T with a logarithmic loss in
approximation factor, and then PB≤T can be reduced to Min Sum Set Cover with
Feedback with a constant factor loss. The following two results capture the details of these
reductions.

▷ Claim 9. If there exists an α(n, m) approximation algorithm for UMSSCf then there
exists an 3α(n + m, m2)-approximation for UPB≤T .
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▶ Main Lemma 10. Given a polynomial-time α(n, m)-approximation algorithm for UPB≤T ,
there exists a polynomial-time O(α(n, m) log α(n, m))-approximation for PB.

The relationship between PB≤T and Min Sum Set Cover with Feedback is relatively
straightforward and requires explicitly relating the structure of feedback in the two problems.
We describe the details in Section A of the Appendix.

Putting it all together. The proof of Theorem 8 follows by combining Claim 9 with
Lemmas 11 and 10 presented in the following sections. Proofs of Claims 7, 9 deferred to
Section A of the Appendix. The rest of this section is devoted to proving Lemmas 11 and 10.

4.1 Reducing Pandora’s Box to PB≤T

Recall that a solution to Pandora’s Box involves two components ; (1) the order in which
to open boxes and (2) a stopping rule. The goal of the reduction to PB≤T is to simplify
the stopping rule of the problem, by making values either 0 or ∞, therefore allowing us to
focus on the order in which boxes are opened, rather than which value to stop at. We start
by presenting our main tool, a reduction to Min Sum Set Cover with Feedback in
Section 4.1.1 and then improve upon that to reduce from the uniform version of MSSCf

(Section 4.1.2).

4.1.1 Main Tool
The high level idea in this reduction is that we repeatedly run the algorithm for PB≤T with
increasingly larger value of T with the goal of covering some mass of scenarios at every step.
The thresholds for every run have to be cleverly chosen to guarantee that enough mass is
covered at every run. The distributions on the boxes remain the same, and this reduction
does not increase the number of boxes, therefore avoiding the issues faced by the naive
reduction given in the full version of the paper. Formally, we show the following lemma.

▶ Main Lemma 11. Given a polynomial-time α(n, m)-approximation algorithm for PB≤T ,
there exists a polynomial-time O(α(n, m) log α(n, m))-approximation for PB.

Algorithm 1 Reduction from PB to PB≤T .

Input: Oracle A(T ) for PB≤T , set of all scenarios S.
1 i← 0 // Number of current Phase
2 while S ̸= ∅ do
3 Use A to find smallest Ti via Binary Search s.t.

Pr [accepting the outside option Ti] ≤ 0.2
4 Call the oracle A(Ti) on set S to obtain policy πi

5 S ← S\ {scenarios with total cost ≤ Ti}
6 end
7 for i← 0 to ∞ do
8 Run policy πi until it terminates and selects a box, or accumulates probing cost

Ti.
9 end

We will now analyze the policy produced by this algorithm.
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Proof of Main Lemma 11. We start with some notation. Given an instance I of PB, we
repeatedly run PB≤T in phases. Phase i consists of running PB≤T with threshold Ti on a
sub instance of the original problem where we are left with a smaller set of scenarios, with
their probabilities reweighted to sum to 1. Call this set of scenarios Si for phase i and the
corresponding instance Ii. After every phase i, we remove the probability mass that was
covered5, and run PB≤T on this new instance with a new threshold Ti+1. In each phase, the
boxes, costs and values remain the same, but the stopping condition changes: thresholds Ti

increase in every subsequent phase. The thresholds are chosen such that at the end of each
phase, 0.8 of the remaining probability mass is covered. The reduction process is formally
shown in Algorithm 1.

Accounting for the cost of the policy. We first note that the total cost of the policy in
phase i conditioned on reaching that phase is at most 2Ti: if the policy terminates in that
phase, it selects a box with value at most Ti. Furthermore, the policy incurs probing cost at
most Ti in the phase. We can therefore bound the total cost of the policy as ≤ 2

∑∞
i=0(0.2)iTi.

We will now relate the thresholds Ti to the cost of the optimal PB policy for I. To this end,
we define corresponding thresholds for the optimal policy that we call p-thresholds. Let π∗

I
denote the optimal PB policy for I and let cs denote the cost incurred by π∗

I when scenario
i is realized. A p-threshold is the minimum possible threshold T such that at most p mass of
the scenarios has cost more than T in PB, formally defined below.

▶ Definition 12 (p-Threshold). Let I be an instance of PB and cs be the cost of scenario
s ∈ S in π∗

I , we define the p-threshold as

tp = min{T : Pr [cs > T ] ≤ p}.

The following two lemmas relate the cost of the optimal policy to the p-thresholds, and
the p-thresholds to the thresholds Ti our algorithm finds. The proofs of both lemmas are
deferred to Section A.1 of the Appendix. We first formally define a sub-instance of the given
Pandora’s Box instance.

▶ Definition 13 (Sub-instance). Let I be an instance of {PB≤T , PB} with set of scenarios
SI each with probability pI

s . For any q ∈ [0, 1] we call I ′ a q-sub instance of I if SI′ ⊆ SI
and

∑
s∈SI′ pI

s = q.

▶ Lemma 14 (Optimal Lower Bound). Let I be the instance of PB. For any q < 1, any
α > 1, and β ≥ 2, for the optimal policy π∗

I for PB it that

cost(π∗
I) ≥

∞∑
i=0

1
βα
· (q)i

tqi/βα.

▶ Lemma 15. Given an instance I of PB; an α-approximation algorithm AT to PB≤T ;
and any q < 1 and β ≥ 2, suppose that the threshold T satisfies

T ≥ tq/(βα) + βα
∑

cs∈[tq,tq/(βα)]
s∈S

cs
ps

q
.

Then if AT is run on a q-sub instance of I with threshold T , at most a total mass of (2/β)q
of the scenarios pick the outside option box T .

5 Recall, a scenario is covered if it does not choose the outside option box.
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Calculating the thresholds. For every phase i we choose a threshold Ti such that Ti =
min{T : Pr [cs > T ] ≤ 0.2} i.e. at most 0.2 of the probability mass of the scenarios are not
covered. In order to select this threshold, we do binary search starting from T = 1, running
every time the α-approximation algorithm for PB≤T with outside option box T and checking
how many scenarios select it. We denote by Inti = [t(0.2)i , t(0.2)i/(10α)] the relevant interval
of costs at every run of the algorithm, then by Lemma 15 for β = 10, we know that for
remaining total probability mass (0.2)i, any threshold which satisfies

Ti ≥ t(0.2)i−1/10a + 10α
∑
s∈S

cs∈Inti

cs
ps

(0.2)i

also satisfies the desired covering property, i.e. at least 0.8 mass of the current scenarios is
covered. Therefore the threshold Ti found by our binary search satisfies the following

Ti = t(0.2)i−1/10a + 10α
∑
s∈S

cs∈Inti

cs
ps

(0.2)i
. (1)

Bounding the final cost. To bound the final cost, we recall that at the end of every phase
we cover 0.8 of the remaining scenarios. Furthermore, we observe that each threshold Ti is
charged in the above Equation (1) to optimal costs of scenarios corresponding to intervals of
the form Inti = [t(0.2)i , t(0.2)i/(10α)]. Note that these intervals are overlapping. We therefore
get

cost(πI) ≤ 2
∞∑

i=0

(0.2)iTi

= 2
∞∑

i=0

(0.2)it(0.2)i−1/10a + 10α
∑
s∈S

cs∈Inti

csps

 From equation (1)

≤ 4 · 10απ∗
I + 20α

∞∑
i=0

∑
s∈S

cs∈Inti

csps Using Lemma 14 for β = 10, q = 0.2

≤ 40α log α · π∗
I .

Where the last inequality follows since each scenario with cost cs can belong to at most log α

intervals, therefore we get the theorem. ◀

Notice the generality of this reduction; the distributions on the values are preserved, and
we did not make any more assumptions on the scenarios or values throughout the proof.
Therefore we can apply this tool regardless of the type of correlation or the way it is given
to us, e.g. we could be given a parametric distribution, or an explicitly given distribution, as
we see in the next section.

4.1.2 An Even Stronger Tool
Moving one step further, we show that if we instead of PB≤T we had an α-approximation
algorithm for UPB≤T we can obtain the same guarantees as the ones described in Lemma 11.
Observe that we cannot directly use Algorithm 1 since the oracle now requires that all
scenarios have the same probability, while this might not be the case in the initial PB
instance. The theorem stated formally follows.
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▶ Main Lemma 10. Given a polynomial-time α(n, m)-approximation algorithm for UPB≤T ,
there exists a polynomial-time O(α(n, m) log α(n, m))-approximation for PB.

We are going to highlight the differences with the proof of Main Lemma 11, and show
how to change Algorithm 1 to work with the new oracle, that requires the scenarios to have
uniform probability. The function Expand shown in Algorithm 2 is used to transform the
instance of scenarios to a uniform one where every scenario has the same probability by
creating multiple copies of the more likely scenarios. The function is formally described in
Algorithm 3 in Section A.2 of the Appendix, alongside the proof of Main Lemma 10.

Algorithm 2 Reduction from PB to UPB≤T .

Input: Oracle A(T ) for UPB≤T , set of all scenarios S, c = 1/10, δ = 0.1.
1 i← 0 // Number of current Phase
2 while S ̸= ∅ do
3 Let L =

{
s ∈ S : ps ≤ c · 1

|S|

}
// Remove low probability scenarios

4 S ′ = S \ L
5 UI = Expand(S ′)
6 In instance UI use A to find smallest Ti via Binary Search s.t.

Pr [accepting Ti] ≤ δ

7 Call the oracle A(Ti)
8 S ←

(
S ′ \ {s ∈ S ′ : cs ≤ Ti}

)
∪ L

9 end

5 Connecting MSSCf and Optimal Decision Tree

In this section we establish the connection between Min Sum Set Cover with Feedback
and Optimal Decision Tree. We show that the uniform versions of these problems are
equivalent up to constant factors in approximation ratio. The proofs of this section are
deferred to the full version of the paper in ArXiv.

▷ Claim 16. If there exists an α(n, m)-approximation algorithm for DT (UDT) then there
exists a (1 + α(n, m))-approximation algorithm for MSSCf (resp. UMSSCf ).

▶ Theorem 17 (Uniform Decision Tree to UMSSCf ). Given an α(m, n)-approximation
algorithm for UMSSCf then there exists an O(α(n + m, m))-approximation algorithm for
UDT.

The formal proofs of these statements can be found in the full version, here we sketch
the main ideas.

One direction of this equivalence is again easy to see. The main difference between
Optimal Decision Tree and MSSCf is that the former requires scenarios to be exactly
identified whereas in the latter it suffices to simply find an element that covers the scenario.
In particular, in MSSCf an algorithm could cover a scenario without identifying it by, for
example, covering it with an element that covers multiple scenarios. To reduce MSSCf to
DT we simply introduce extra feedback into all of the elements of the MSSCf instance
such that the elements isolate any scenarios they cover. (That is, if the algorithm picks an
element that covers some subset of scenarios, this element provides feedback about which of
the covered scenarios materialized.) This allows us to relate the cost of isolation and the
cost of covering to within the cost of a single additional test, implying Claim 16.
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Proof Sketch of Theorem 17. The other direction is more complicated, as we want to
ensure that covering implies isolation. Given an instance of UDT, we create a special element
for each scenario which is the unique element covering the scenario and also isolates the
scenario from all other scenarios. The intention is that an algorithm for MSSCf on this
new instance only chooses the special isolating element in a scenario after it has identified
the scenario. If that happens, then the algorithm’s policy is a feasible solution to the UDT
instance and incurs no extra cost. The problem is that an algorithm for MSSCf over the
modified instance may use the special covering element before isolating a scenario. We argue
that this choice can be “postponed” in the policy to a point at which isolation is nearly
achieved without incurring too much extra cost. This involves careful analysis of the policy’s
decision tree and we present details in the appendix.

Why our reduction does not work for DT. Our analysis above heavily uses the fact
that the probabilities of all scenarios in the UDT instance are equal. This is because
the “postponement” of elements charges increased costs of some scenarios to costs of other
scenarios. In fact, our reduction above fails in the case of non-uniform distributions over
scenarios – it can generate an MSSCf instance with optimal cost much smaller than that of
the original DT instance.

To see this, consider an example with m scenarios where scenarios 1 through m − 1
happen with probability ε/(m− 1) and scenario m happens with probability 1− ε. There are
m− 1 tests of cost 1 each. Test i for i ∈ [m− 1] isolates scenario i from all others. Observe
that the optimal cost of this DT instance is at least (1− ε)(m− 1) as all m− 1 tests need to
be run to isolate scenario m. Our construction of the MSSCf instance adds another isolating
test for scenario m. A solution to this instance can use this new test at the beginning to
identify scenario m and then run other tests with the remaining ε probability. As a result,
it incurs cost at most (1− ε) + ε(m− 1), which is a factor of 1/ε cheaper than that of the
original DT instance.

6 Mixture of Product Distributions

In this section we switch gears and consider the case where we are given a mixture of m

product distributions. Observe that using the tool described in Section 4.1.1, we can reduce
this problem to PB≤T . This now is equivalent to the noisy version of DT [28, 40] where for
a specific scenario, the result of each test is not deterministic and can get different values
with different probabilities.

Comparison with previous work. previous work on noisy decision tree, considers limited
noise models or the runtime and approximation ratio depends on the type of noise. For
example in the main result of [40], the noise outcomes are binary with equal probability. The
authors mention that it is possible to extend the following ways:

to probabilities within [δ, 1− δ], incurring an extra 1/δ factor in the approximation
to non-binary noise outcomes, incurring an extra at most m factor in the approximation

Additionally, their algorithm works by expanding the scenarios for every possible noise
outcome (e.g. to 2m for binary noise). In our work the number of noisy outcomes does not
affect the number of scenarios whatsoever.

In our work, we obtain a constant approximation factor, that does not depend in
any way on the type of the noise. Additionally, the outcomes of the noisy tests can be
arbitrary, and do not affect either the approximation factor or the runtime. We only require
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a separability condition to hold ; the distributions either differ enough or are exactly the
same. Formally, we require that for any two scenarios s1, s2 ∈ S and for every box i, the
distributions Dis1 and Dis2 satisfy |Dis1 −Dis2 | ∈ R≥ε ∪ {0}, where |A − B| is the total
variation distance of distributions A and B.

6.1 A DP Algorithm for noisy PB≤T

We move on to designing a dynamic programming algorithm to solve the PB≤T problem, in
the case of a mixtures of product distributions. The guarantees of our dynamic programming
algorithm are given in the following theorem.

▶ Theorem 18. For any β > 0, let πDP and π∗ be the policies produced by Algorithm DP(β)
described by Equation (2) and the optimal policy respectively and UB = m2

ε2 log m2T
cminβ . Then

it holds that

c(πDP) ≤ (1 + β)c(π∗).

and the DP runs in time nUB, where n is the number of boxes and cmin is the minimum cost
box.

Using the reduction described in Section 4.1.1 and the previous theorem we can get a
constant-approximation algorithm for the initial PB problem given a mixture of product
distributions. Observe that in the reduction, for every instance of PB≤T it runs, the chosen
threshold T satisfies that T ≤ (β + 1)c(π∗

T )/0.2 where π∗
T is the optimal policy for the

threshold T . The inequality holds since the algorithm for the threshold T is a (β + 1)
approximation and it covers 80% of the scenarios left (i.e. pays 0.2T for the rest). This is
formalized in the following corollary.

▶ Corollary 19. Given an instance of PB on m scenarios, and the DP algorithm described
in Equation (2), then using Algorithm 1 we obtain an O(1)-approximation algorithm for PB
that runs in nÕ(m2/ε2).

Observe that the naive DP, that keeps track of all the boxes and possible outcomes, has
space exponential in the number of boxes, which can be very large. In our DP, we exploit
the separability property of the distributions by distinguishing the boxes in two different
types based on a given set of scenarios. Informally, the informative boxes help us distinguish
between two scenarios, by giving us enough TV distance, while the non-informative always
have zero TV distance. The formal definition follows.

▶ Definition 20 (Informative and non-informative boxes). Let S ⊆ S be a set of scenarios.
Then we call a box k informative if there exist si, sj ∈ S such that

|Dksi
−Dksj

| ≥ ε.

We denote the set of all informative boxes by IB(S). Similarly, the boxes for which the above
does not hold are called non-informative and the set of these boxes is denoted by NIB(S).

Recursive calls of the DP. Our dynamic program chooses at every step one of the following
options:
1. open an informative box: this step contributes towards eliminating improbable scenarios.

From the definition of informative boxes, every time such a box is opened, it gives TV
distance at least ε between at least two scenarios, making one of them more probable
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than the other. We show (Lemma 21) that it takes a finite amount of these boxes to
decide, with high probability, which scenario is the one realized (i.e. eliminating all but
one scenarios).

2. open a non-informative box: this is a greedy step; the best non-informative box to open
next is the one that maximizes the probability of finding a value smaller than T . Given
a set S of scenarios that are not yet eliminated, there is a unique next non-informative
box which is best. We denote by NIB∗(S) the function that returns this next best
non-informative box. Observe that the non-informative boxes do not affect the greedy
ordering of which is the next best, since they do not affect which scenarios are eliminated.

State space of the DP. the DP keeps track of the following three quantities:
1. a list M which consists of sets of informative boxes opened and numbers of non-

informative ones opened in between the sets of informative ones. Specifically, M has the
following form: M = S1|x1|S2|x2| . . . |SL|xL

6 where Si is a set of informative boxes, and
xi ∈ N is the number of non-informative boxes opened exactly after the boxes in set Si.
We also denote by IB(M) the informative boxes in the list M .
In order to update M at every recursive call, we either append a new informative box bi

opened (denoted by M |bi) or, when a non-informative box is opened, we add 1 at the
end, denoted by M + 1.

2. a list E of m2 tuples of integers (zij , tij), one for each pair of distinct scenarios (si, sj)
with i, j ∈ [m]. The number zij keeps track of the number of informative boxes between
si and sj that the value discovered had higher probability for scenario si, and the number
tij is the total number of informative for scenarios si and sj opened. Every time an
informative box is opened, we increase the tij variables for the scenarios the box was
informative and add 1 to the zij if the value discovered had higher probability in si.
When a non-informative box is opened, the list remains the same.We denote this update
by E++.

3. a list S of the scenarios not yet eliminated. Every time an informative test is performed,
and the list E updated, if for some scenario si there exists another scenario sj such that
tij > 1/ε2 log(1/δ) and |zij − E[zij |si]| ≤ ε/2 then sj is removed from S, otherwise si is
removed7. This update is denoted by S++.

Base cases. if a value below T is found, the algorithm stops. The other base case is when
|S| = 1, which means that the scenario realized is identified, we either take the outside option
T or search the boxes for a value below T , whichever is cheapest. If the scenario is identified
correctly, the DP finds the expected optimal for this scenario. We later show that we make a
mistake only with low probability, thus increasing the cost only by a constant factor. We
denote by Nat(·, ·, ·) the “nature’s” move, where the value in the box we chose is realized,
and Sol(·, ·, ·) is the minimum value obtained by opening boxes. The recursive formula is
shown below.

Sol(M, E, S) =


min(T, cNIB∗(S) + Nat(M+1, E, S)) if |S| = 1
min

(
T, min

i∈IB(M)
(ci+ Nat(M |i, E, S))

, cNIB∗(S) + Nat(M+1, E, S)
)

else

6 If bi for i ∈ [n] are boxes, the list M looks like this: b3b6b13|5|b42b1|6|b2
7 This is the process of elimination in the proof of Lemma 21
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Nat(M, E, S) =
{

0 if vlast box opened ≤ T

Sol(M, E++, S++) else
(2)

The final solution is DP(β) = Sol(∅, E0,S), where E0 is a list of tuples of the form (0, 0),
and in order to update S we set δ = βcmin/(m2T ).

▶ Lemma 21. Let s1, s2 ∈ S be any two scenarios. Then after opening log(1/δ)
ε2 informative

boxes, we can eliminate one scenario with probability at least 1− δ.
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A Proofs from Section 4

▷ Claim 7. If there exists an α(n, m)-approximation algorithm for PB then there exists a
α(n, m)-approximation for MSSCf .

Proof of Claim 7. Let I be an instance of MSSCf . We create an instance I ′ of PB the
following way: for every set sj of I that gives feedback fij when element ei is selected,
we create a scenario sj with the same probability and whose value for box i, is either 0 if
ei ∈ sj or ∞fij

otherwise, where ∞fij
denotes an extremely large value which is different for

different values of the feedback fij . Observe that any solution to the PB instance gives a
solution to the MSSCf at the same cost and vice versa. ◁
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▷ Claim 9. If there exists an α(n, m) approximation algorithm for UMSSCf then there
exists an 3α(n + m, m2)-approximation for UPB≤T .

Before formally proving this claim, recall the correspondence of scenarios and boxes of
PB-type problems, to elements and sets of MSSC-type problems. The idea for the reduction
is to create T copies of sets for each scenario in the initial PB≤T instance and one element
per box, where if the price a box gives for a scenario i is < T then the corresponding element
belongs to all T copies of the set i. The final step is to “simulate” the outside option T , for
which we we create T elements where the k’th one belongs only to the k’th copy of each set.

Proof of Claim 9. Given an instance I of UPB≤T with outside cost box bT , we construct the
instance I ′ of UMSSCf as follows.

Construction of the instance. For every scenario si in the initial instance, we create T

sets denoted by sik where k ∈ [T ]. Each of these sets has equal probability pik = 1/(mT ).
We additionally create one element eB per box B, which belongs to every set sik for all k iff
vBi < T in the initial instance, otherwise gives feedback vBi. In order to simulate box bT

without introducing an element with non-unit cost, we use a sequence of T outside option
elements eT

k where eT
k ∈ sik for all i ∈ [m] i.e. element eT

ik belongs to “copy k” of every set 8.

Construction of the policy. We construct policy πI by ignoring any outside option elements
that πI′ selects until πI′ has chosen at least T/2 such elements, at which point πI takes the
outside option box bT . To show feasibility we need that for every scenario either bT is chosen
or some box with vij ≤ T . If bT is not chosen, then less than T/2 isolating elements were
chosen, therefore in instance of UMSSCf some sub-sets will have to be covered by another
element eB , corresponding to a box. This corresponding box however gives a value ≤ T in
the initial UPB≤T instance.

Approximation ratio. Let si be any scenario in I. We distinguish between the following
cases, depending on whether there are outside option tests on si’s branch.
1. No outside option tests on si’s branch: scenario si contributes equally in both policies,

since absence of isolating elements implies that all copies of scenario si will be on the
same branch (paying the same cost) in both πI′ and πI

2. Some outside option tests on i’s branch: for this case, from Lemma 22 we have that
c(πI(si)) ≤ 3c(πI′(si)).

Putting it all together we get

c(πI) ≤ 3c(πI′) ≤ 2α(n + m, m2)c(π∗
I′) ≤ 3α(n + m, m2)c(π∗

I),

where the second inequality follows since we are given an α approximation and the last
inequality since if we are given an optimal policy for UPB≤T , the exact same policy is also
feasible for any I ′ instance of UDT, which has cost at least c(π∗

I′). We also used that T ≤ m,
since otherwise the initial policy would never take the outside option. ◁

▶ Lemma 22. Let I be an instance of UPB≤T , and I ′ the instance of UMSSCf constructed
by the reduction of Claim 9. For a scenario si, if there is at least one outside option test run
in πI , then c(πI(si)) ≤ 3c(πI′(si)).

8 Observe that there are exactly T possible options for k for any set. Choosing all these elements costs T
and covers all sets thus simulating bT .
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Proof. For the branch of scenario si, denote by M the box elements chosen before there
were T/2 outside option elements, and by N the number of outside option elements in πI′ .
Note that the smallest cost is achieved if all the outside option elements are chosen first9.
The copies of scenario si can be split into two groups; those that were isolated before T/2
outside option elements were chosen, and those that were isolated after. We distinguish
between the following cases, based on the value of N .

1. N ≥ T/2: in this case each of the copies of si that are isolated after pays at least M +T/2
for the initial box elements and the initial sequence of outside option elements. For the
copies isolated before, we lower bound the cost by choosing all outside option elements
first.
The cost of all the copies in πI′ then is at least

Ki∑
j=1

T/2∑
k=1

cpℓ

T
k +

Ki∑
j=1

T∑
k=T/2+1

cpℓ

T
(T/2 + M) = cpi

T
2 ( T

2 + 1)
2T

+ cpi

T
2 (T/2 + M)

T

≥ cpi(3T/8 + M/2)

≥ 3
8pi(T + M)

Since N ≥ T/2, policy πI will take the outside option box for si, immediately after
choosing the M initial boxes corresponding to the box elements. So, the total contribution
si has on the expected cost of πI is at most pi(M + T ) in this case. Hence, we have that
si’s contribution in πI is at most 8

3 ≤ 3 times si’s contribution in πI′ .

2. N < T/2: policy πI will only select the M boxes (corresponding to box elements) and
this was sufficient for finding a value less than T . The total contribution of si on c(πI) is
exactly piM . On the other hand, since N < T/2 we know that at least half of the copies
will pay M for all of the box elements. The cost of all the copies is at least

Ki∑
j=1

T∑
k=N

cpℓ

T
M = cpi

T −N

T
M ≥ cpiM/2,

therefore, the contribution si has on c(πI′) is at least cpiM/2. Hence, we have c(πI) ≤
3c(πI′). ◀

A.1 Proofs from subsection 4.1.1
▶ Lemma 15. Given an instance I of PB; an α-approximation algorithm AT to PB≤T ;
and any q < 1 and β ≥ 2, suppose that the threshold T satisfies

T ≥ tq/(βα) + βα
∑

cs∈[tq,tq/(βα)]
s∈S

cs
ps

q
.

Then if AT is run on a q-sub instance of I with threshold T , at most a total mass of (2/β)q
of the scenarios pick the outside option box T .

9 Since the outside option tests cause some copies to be isolated and so can reduce their cost.
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Proof. Consider a policy πIq which runs π∗
I on the instance Iq; and for scenarios with cost

cs ≥ tq/(βα) aborts after spending this cost and chooses the outside option T . The cost of
this policy is:

c(π∗
Iq

) ≤ c(πIq
) =

T + tq/(βα)

βα
+

∑
cs∈[tq,tq/(10α)]

s∈S

cs
ps

q
, (3)

By our assumption on T , this cost is at most 2T/βα. On the other hand since AT is an
α-approximation to the optimal we have that the cost of the algorithm’s solution is at most

αc(π∗
Iq

) ≤ 2T

β

Since the expected cost of AT is at most 2T/β, then using Markov’s inequality, we get that
Pr [cs ≥ T ] ≤ (2T/β)/T = 2/β. Therefore, AT covers at least 1− 2/β mass every time. ◀

▶ Lemma 14 (Optimal Lower Bound). Let I be the instance of PB. For any q < 1, any
α > 1, and β ≥ 2, for the optimal policy π∗

I for PB it that

cost(π∗
I) ≥

∞∑
i=0

1
βα
· (q)i

tqi/βα.

Proof. In every interval of the form Ii = [tqi , tqi/(βα)] the optimal policy for PB covers at
least 1/(βα) of the probability mass that remains. Since the values belong in the interval Ii

in phase i, it follows that the minimum possible value that the optimal policy might pay is
tqi , i.e. the lower end of the interval. Summing up for all intervals, we get the lemma. ◀

A.2 Proofs from subsection 4.1.2
Algorithm 3 Expand: rescales and returns an instance of UPB.

Input: Set of scenarios S
1 Scale all probabilities by c such that c

∑
s∈S ps = 1

2 Let pmin = mins∈S ps

3 S ′ = for each s ∈ S create ps/pmin copies
4 Each copy has probability 1/|S ′|
5 return S ′

▶ Main Lemma 10. Given a polynomial-time α(n, m)-approximation algorithm for UPB≤T ,
there exists a polynomial-time O(α(n, m) log α(n, m))-approximation for PB.

Proof. The proof in this case follows the steps of the proof of Theorem 11, and we are only
highlighting the changes. The process of the reduction is the same as Algorithm 1 with
the only difference that we add two extra steps; (1) we initially remove all low probability
scenarios (line 3 - remove at most c fraction) and (2) we add them back after running UPB≤T

(line 8). The reduction process is formally shown in Algorithm 2.

Calculating the thresholds. For every phase i we choose a threshold Ti such that
Ti = min{T : Pr [cs > T ] ≤ δ} i.e. at most δ of the probability mass of the scen-
arios are not covered, again using binary search as in Algorithm 1. We denote by
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Inti = [t(1−c)(δ+c)i , t(1−c)(δ+c)i/(βα)] the relevant interval of costs at every run of the al-
gorithm, then by Lemma 15, we know that for remaining total probability mass (1−c)(δ +c)i,
any threshold which satisfies

Ti ≥ t(1−c)(δ+c)i−1/βα + βα
∑
s∈S

cs∈Inti

cs
ps

(1− c)(δ + c)i

also satisfies the desired covering property, i.e. at least (1− 2/β)(1− c)(δ + c) mass of the
current scenarios is covered. Therefore the threshold Ti found by our binary search satisfies

Ti = t(1−c)(δ+c)i−1/βα + βα
∑
s∈S

cs∈Inti

cs
ps

(1− c)(δ + c)i
. (4)

Following the proof of Theorem 11, Constructing the final policy and Accounting
for the values remain exactly the same as neither of them uses the fact that the scenarios
are uniform.

Bounding the final cost. Using the guarantee that at the end of every phase we cover
(δ + c) of the scenarios, observe that the algorithm for PB≤T is run in an interval of the
form Inti = [t(1−c)(δ+c)i , t(1−c)(δ+c)i/(βα)]. Note also that these intervals are overlapping.
Bounding the cost of the final policy πI for all intervals we get

πI ≤
∞∑

i=0
(1− c)(δ + c)iTi

=
∞∑

i=0

(1− c)(δ + c)it(1−c)(δ+c)i−1/βα + βα
∑
s∈S

cs∈Inti

csps

 From equation (4)

≤ 2 · βαπ∗
I + βα

∞∑
i=0

∑
s∈S

cs∈Inti

csps Using Lemma 14

≤ 2βα log α · π∗
I ,

where the inequalities follow similarly to the proof of Theorem 11. Choosing c = δ = 0.1 and
β = 20 we get the theorem. ◀



Stable Approximation Algorithms for Dominating
Set and Independent Set
Mark de Berg #

Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands

Arpan Sadhukhan #

Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands

Frits Spieksma #

Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands

Abstract
We study Dominating Set and Independent Set for dynamic graphs in the vertex-arrival model.
We say that a dynamic algorithm for one of these problems is k-stable when it makes at most k

changes to its output independent set or dominating set upon the arrival of each vertex. We study
trade-offs between the stability parameter k of the algorithm and the approximation ratio it achieves.
We obtain the following results.

We show that there is a constant ε∗ > 0 such that any dynamic (1 + ε∗)-approximation algorithm
for Dominating Set has stability parameter Ω(n), even for bipartite graphs of maximum
degree 4.
We present algorithms with very small stability parameters for Dominating Set in the setting
where the arrival degree of each vertex is upper bounded by d. In particular, we give a 1-stable
(d + 1)2-approximation, and a 3-stable (9d/2)-approximation algorithm.
We show that there is a constant ε∗ > 0 such that any dynamic (1 + ε∗)-approximation algorithm
for Independent Set has stability parameter Ω(n), even for bipartite graphs of maximum
degree 3.
Finally, we present a 2-stable O(d)-approximation algorithm for Independent Set, in the
setting where the average degree of the graph is upper bounded by some constant d at all times.
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1 Introduction

Given a simple, undirected graph G = (V, E), a dominating set is a subset D ⊂ V such that
each vertex in V is either a neighbor of a vertex in D, or it is in D itself. An independent set
is a set of vertices I ⊂ V such that no two vertices in I are neighbors. Dominating Set (the
problem of finding a minimum-size dominating set) and Independent Set (the problem of
finding a maximum-size independent set) are fundamental problems in algorithmic graph
theory. They have numerous applications and served as prototypical problems for many
algorithmic paradigms.

We are interested in Dominating Set and Independent Set in a dynamic setting,
where the graph G changes over time. In particular, we consider the well-known vertex-
arrival model. Here one starts with an empty graph G(0), and new vertices arrive one by one,
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along with their edges to previously arrived vertices. In this way, we obtain a sequence of
graphs G(t), for t = 0, 1, 2, . . .. Our algorithm is then required to maintain a valid solution
– a dominating set, or an independent set – at all times. In the setting we have in mind,
computing a new solution is not the bottleneck, but each change to the solution (adding or
deleting a vertex from the solution) is expensive. Of course we also want that the maintained
solution has a good approximation ratio. To formalize this, and following De Berg et al. [12],
we say that a dynamic algorithm is a k-stable ρ-approximation algorithm if, upon the arrival
upon each vertex, the number of changes (vertex additions or removals) to the solution
is at most k and the solution is a ρ-approximation at all times. In this framework, we
study trade-offs between the stability parameter k and the approximation ratio that can
be achieved. Ideally, we would like to have a so-called stable approximation scheme (SAS):
an algorithm that, for any given yet fixed parameter ε > 0 is kε-stable and gives a (1 + ε)
approximation algorithm, where kε only depends on ε and not on the size of the current
instance. (There is an intimate relation between local-search PTASs and SASs; we come
back to this issue in Section 2.)

The vertex-arrival model is a standard model for online graph algorithms, and our stability
framework is closely related to online algorithms with bounded recourse. However, there are
two important differences. First, computation time is free in our framework – for instance,
the algorithm may decide to compute an optimal solution in exponential time upon each
insertion – while in online algorithms with bounded recourse the update time is typically
taken into account. Thus we can fully focus on the the trade-off between stability and
approximation ratio. Secondly, we consider the approximation ratio of the solution, while
in online algorithm one typically considers the competitive ratio. Thus we compare the
quality of our solution at time t to the static optimum, which is simply the optimum for
the graph G(t). A competitive analysis, one the other hand, compares the quality of the
solution at time t to the offline optimum: the best solution for G(t) that can be computed
by a dynamic algorithm that knows the sequence G(0), . . . , G(t) in advance but must still
process the sequence with bounded recourse. See also the discussion in the paper by Boyar et
al. [6]. Thus approximation ratio is a much stronger notion that competitive ratio. As a case
in point, consider Dominating Set, and suppose that n singleton vertices arrive, followed
by a single vertex with edges to all previous ones. Then the static optimum for the final
graph is 1, while the offline optimum with bounded recourse is Ω(n).

Related work. We now review some of the most relevant existing literature on the online
version of our problems. (Borodin and El-Yaniv [5] give a general introduction to online
computation.) The classical online model, where a vertex that has been added to the
dominating set or to the independent set, can never be removed from it – that is, the
no-recourse setting – is e.g. considered by King and Tzeng [18] and Lipton and Tomkins [20].
They show that already for the special case of interval graphs no online algorithm has
constant competitive ratio; see also De et al. [9], who study these two problems for geometric
intersection graphs. For Dominating Set in the vertex-arrival model, Boyar et al. [6]
give online algorithms with bounded competitive ratio for trees, bipartite graphs, bounded
degree graphs, and planar graphs. They actually analyze both the competitive ratio and the
approximation ratio (which, as discussed earlier, can be quite different). A crucial difference
between the work of Boyar et al. [6] and ours is that they do not allow recourse: in their
setting, once a vertex is added to the dominating set, it cannot be removed.

To better understand online algorithmic behavior, various ways to relax classical online
models have been studied. In particular, for Independent Set, among others, Halldórsson
et al. [16] consider the option for the online algorithm to maintain multiple solutions. Göbel
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et al. [13] analyze a stochastic setting where, among other variants, a randomly generated
graph is presented in adversarial order (the prophet inequality model), and one where
an adversarial graph is presented in random order. In these settings they find constant
competitive algorithms for Independent Set on interval graphs, and more generally for
graphs with bounded so-called inductive independence number.

One other key relaxation of the online model is to allow recourse. Having recourse can
be seen as relaxing the irrevocability assumption in classical online problems, and allows
to assess the impact of this assumption on the competitive ratio, see Boyar et al. [7]. The
notion of (bounded) recourse has been investigated for a large set of problems. Without
aiming for completeness, we mention Angelopoulos et al. [1] and Gupta et al. [15] who
deal with online matching and matching assignments, Gupta et al. [14] who investigate the
set cover problem, and Berndt et al. [4] who deal with online bin covering with bounded
migration, and Berndt et al. [3] who propose a general framework for dynamic packing
problems. For these problems, it is shown what competitive or approximation ratios can be
achieved when allowing a certain amount of recourse (or migration). Notice that, in many
cases, an amortized interpretation of recourse is used; then the average number of changes to
a solution is bounded (instead of the maximum, as for k-stable algorithms defined above).
For instance, Lsiu and Charington-Toole [21] show that, for independent set, there is an
interesting trade-off between the competitive ratio and the amortized recourse cost: for any
t > 1, they provide a t-competitive algorithm for independent set using t− 1 recourse cost.
Their results however do not apply to our notion of stability.

Our contribution. We obtain the following results.
In Section 2, we show that the existence of a local-search PTAS for the static version of a
graph problem, implies, under certain conditions, the existence of a SAS for the problem
in the vertex-arrival model (whereas the converse need not be true). This implies that
for graphs with strongly sublinear separators, a SAS exists for Independent Set and
for Dominating Set when the arrival degrees – that is, the degrees of the vertices upon
arrival – are bounded by a constant.
In Section 3, we consider Dominating Set in the vertex-arrival model. Let d denote
the maximum arrival degree. We show (i) there does not exist a SAS even for bipartite
graphs of maximum degree 4, (ii) there is a 1-stable (d + 1)2-approximation algorithm,
and (iii) there is a 3-stable 9d

2 -approximation algorithm.
In Section 4, we consider Independent Set in the vertex-arrival model. We show that
there does not exist a SAS even for bipartite graphs of maximum degree 3. Further, we
give a 2-stable O(d)-approximation algorithm for the case where the average degree of
G(t) is bounded by d at all times.

2 Stable Approximation Schemes versus PTAS by local search

In this section we discuss the relation between Stable Approximation Schemes (SASs) and
Polynomial-Time Approximation Schemes (PTASs). Using known results on local-search
PTASs, we then obtain SASs for Independent Set for Dominating Set on certain graph
classes. While the results in this section are simple, they set the stage for our main results in
the next sections.

The goals of a SAS and a PTAS are the same: both aim to achieve an approximation
ratio (1 + ε), for any given ε > 0. A SAS, however, works in a dynamic setting with the
requirement that kε, the number of changes per update, is a constant for fixed ε, while a
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PTAS works in a static setting with the condition that the running time is polynomial for
fixed ε. Hence, there are problems that admit a PTAS (or are even polynomial-time solvable)
but no SAS [12].

One may think that the converse should be true: if a dynamic problem admits a SAS,
then its static version admits a PTAS. Indeed, we can insert the input elements one by one
and let the SAS maintain a (1 + ε)-approximation, by performing at most kε changes per
update. For a SAS, there is no restriction on the time needed to update the solution, but it
seems we can simply try all possible combinations of at most kε changes in, say, nO(kε) time.
This need not work, however, since there could be many ways to update the solution using
at most kε changes. Even though we can find all possible combinations in polynomial time,
we may not be able to decide which combination is the right one: the update giving the
best solution at this moment may get us stuck in the long run. The SAS can avoid this by
spending exponential time to decide what the right update is. Thus the fact that a problem
admits a SAS does not imply that it admits a PTAS.

Notwithstanding the above, there is a close connection between SASs and PTASs and,
in particular between SASs and so-called local-search PTASs: under certain conditions,
the existence of a local-search PTAS implies the existence of a SAS. For simplicity we will
describe this for graph problems, but the technique may be applied to other problems.

Let G = (V, E) be a graph and suppose we wish to select a minimum-size (or maximum-
size) subset S ⊂ V satisfying a certain property. Problems of this type include Dominating
Set, Independent Set, Vertex Cover, Feedback Vertex Set, and more. A local-
search PTAS for such a graph minimization problem starts with an arbitrary feasible
solution S – the whole vertex set V , say – and then it tries to repeatedly decrease the size
of S by replacing a subset Sold ⊂ S by a subset Snew ⊂ V \S such that |Snew| = |Sold|−1 and
(S \Sold)∪Snew is still feasible. (For a maximization problem we require |Snew| = |Sold|+ 1.)
This continues until no such replacement can be found.1 A key step in the analysis of a
local-search PTAS is to show the following, where n is the number of vertices.

Local-Search Property. If S is a feasible solution that is not a (1 + ε)-approximation
then there are subsets Sold, Snew as above with |Sold| ⩽ fε, for some fε depending only
on ε and not on n.

This condition indeed gives a PTAS, because we can simply try all possible pairs Sold, Snew,
of which there are O(n2fε).

Now consider a problem that has the Local-Search Property in the vertex-arrival model,
possibly with some extra constraint (for example, on the arrival degrees of the vertices). Let
G(t) denote the graph after the arrival of the t-th vertex, and let opt(t) denote the size of
an optimal solution for for G(t). We can obtain a SAS if the problem under consideration
has the following properties.

Continuity Property. We say that the dynamic problem (in the vertex-arrival model,
possibly with extra constraints) is d-continuous if |opt(t + 1) − opt(t)| ⩽ d. In other
words, the size of an optimal solution should not change by more than d when a new
vertex arrives. Note that the solution itself may change completely; we only require its
size not to change by more than d.
Feasibility Property. For maximization problems we require that any feasible solution
for G(t− 1) is also a feasible solution for G(t), and for minimization problems we require
that any feasible solution for G(t− 1) can be turned into a feasible solution for G(t) by

1 See the paper by Antunes etal [2] for a nice exposition on problems solved using local-search PTAS.
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adding the arriving vertex to the solution. (This condition can be relaxed to saying that
we can repair feasibility by O(1) modifications to the current solution, but for concreteness
we stick to the simpler formulation above.)

Note that Independent Set, Vertex Cover, and Feedback Vertex Set are 1-
continuous, and that Dominating Set is (d− 1)-continuous when the arrival degree of the
vertices is bounded by d ⩾ 2. Moreover, these problems all have the Feasibility Property.

For problems that have the Local-Search Property as well as the Continuity and Feasibility
Properties, it is easy to give a SAS. Hence, non-existence of SAS for a problem with Continuity
and Feasibility directly implies non-existence of local-search PTAS.2 We give the pseudocode
for minimization problems, but for maximization problems a similar approach works.

Algorithm 1 SAS-for-Continuous-Problems(v).

1: ✄ v is the vertex arriving at time t

2: Salg ← Salg(t− 1) ∪ {v} ✄ Salg is feasible for G(t) by the feasibility condition
3: while Salg is not a (1 + ε)-approximation do
4: Find sets Sold ⊂ Salg and Snew ⊂ V (t)\Salg with |Sold| ⩽ fε and |Snew| = |Sold|−1

such that (Salg \Sold)∪Snew is a valid solution, and set Salg ← (Salg \Sold)∪Snew.
5: Salg(t)← Salg

▶ Theorem 1. Any graph problem that has the Continuity Property, the Feasibility Property
and the Local-Search Property admits a SAS in the vertex arrival model, with stability
parameter (d + 1) · (2fε− 1) + 1 for minimization problems and d · (2fε + 1) for maximization
problems.

Proof. First consider a minimization problem. By the Feasibility Property and the working
of the algorithm, the solution that SAS-for-Continuous-Problems computes upon the
arrival of a new vertex is feasible. Moreover, it must end with a (1+ε)-approximation because
of the Local-Search Property. Before the while-loop we add v to Salg, and in each iteration
of the while-loop, at most fε vertices are deleted from Salg and at most fε − 1 vertices are
added. We claim that the number of iterations is at most ⌈(1 + ε)d⌉+ 1. Indeed, before the
arrival of v we have |Salg(t−1)| ⩽ (1+ε) · |opt(t−1)|, and we have |opt(t−1)−opt(t)| ⩽ d

by the Local-Search Property. Hence, after ⌈(1 + ε)d⌉+ 1 iterations we have

|Salg| = |Salg(t− 1)|+ 1− (⌈(1 + ε)d⌉+ 1)
⩽ (1 + ε) · |opt(t− 1)| − (1 + ε)d
⩽ (1 + ε) · (opt(t) + d)− (1 + ε)d
⩽ (1 + ε) · opt(t).

For a maximization problem the proof is similar. The differences are that we do not add an
extra vertex to Salg in step 2, that the number of changes per iteration is at most 2fε + 1,
and that the number of iterations is at most d. (We do not get the factor (1 + ε) because if
opt increases, then the error that we can make, which is ε · opt, also increases.) ◀

This general result allows us to obtain a SAS for a variety of problems, for graph classes for
which a local-search PTAS is known.

2 Dominating Set and Independent Set, even with maximum degree bounded by 3, do not admit
a PTAS assuming p ̸= np [8, 22]. In sections 3.1 and 4.1, by proving the non-existence of a SAS for
Dominating Set with maximum degree bounded by 4 and Independent Set with maximum degree
bounded by 3, we thus show non-existence of local-search PTAS, independent of the assumption of
p ̸= np.
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Recall that a balanced separator of a graph G = (V, E) with n vertices is a subset S ⊂ V

such that V \S can be partitioned into subsets A and B with |A| ⩽ 2n/3 and |B| ⩽ 2n/3 and
no edges between A and B. We say that a graph class3 G has strongly sublinear separators,
if any graph G ∈ G has a balanced separator of size O(nδ), for some fixed constant δ < 1.
Planar graphs, for instance, have separators of size O(

√
n) [19]. A recent generalization of

separators are so-called clique-based separators, which are separators that consist of cliques
and whose size is measured in terms of the number of cliques [10]. (Actually, the cost of a
separator S that is the union of cliques C1, . . . , Ck is defined as

∑k
i=1 log(|Ci|+ 1), but this

refined measure is not needed here.) Disk graphs (which do not have normal separators of
sublinear size) have a clique-based separator of size O(

√
n), for instance, and pseudo-disk

graphs have a clique-based separator of size O(n2/3) [11]. For graph classes with strongly
sublinear separators there are local-search PTASs for several problems. Combining that with
the technique above gives the following result.

▶ Corollary 2. The following problems admit a SAS in the vertex-arrival model.
(i) Independent Set on graph classes with sublinear clique-based separators.
(ii) Dominating Set on graph class with sublinear separators, when the arrival degree of

each vertex bounded by some fixed constant d.

Proof. As noted earlier, Independent Set is 1-continuous and Dominating Set is (d− 1)-
continuous. Moreover, these problems have the Feasibility Property. It remains to check the
Local-Search Property.

(i) Any graph class with a separator of size O(nδ) has the Local-Search Property for
Independent Set; see the paper by Her-Peled and Quanrud [17]. (In that paper they
show the Local-Search Property for graphs of polynomial expansion – see Corollary 26
and Theorem 3.4 – and graphs of polynomial expansion have sublinear separators.)
Theorem 1 thus implies the result for such graph classes. To extend this to clique-
based separators, we note that (for Independent Set) we only need the Local-Search
Property for graphs that are the union of two independent sets, namely the independent
set S and an optimal independent set Sopt. Such graphs are bipartite, so the largest
clique has size two. Hence, the existence of a clique-based separator of size O(nδ)
immediately implies the existence of a normal separator of size O(nδ).

(ii) For Dominating Set on graphs with polynomial expansion (hence, on graphs with
sublinear separators) the Local-Search Property holds [17, Theorem 3.15]. Theorem 1
thus implies an O(d · fε)-stable (1 + ε)-approximation algorithm, for some constant fε

depending only on ε. Hence, if d is a fixed constant , we obtain a SAS. ◀

3 Dominating Set

In this section we study stable approximation algorithms for Dominating Set in the vertex
arrival model. We first show that the problem does not admit a SAS, even when the maximum
degree of the graph is bounded by 4. After that we will describe two algorithms that achieve
constant approximation ratio with constant stability, in the setting where each vertex arrives
with constant degree.

Let G = (V, E) be a graph. For a subset S ⊂ V , we denote the open neighborhood of a sub-
set W ⊂ V in G by NG(W ), so NG(W ) := {v ∈ V \W : there is a w ∈W with (v, w) ∈ E}.
The closed neighborhood NG[W ] is defined as NG(W )∪W . When the graph G is clear from
the context, we may omit the subscript G and simply write N(W ) and N [W ].

3 We only consider hereditary graph classes, that is, graph classes G such that any induced subgraph of a
graph in G is also in G.
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3.1 No SAS for graphs of maximum degree 4
Our lower-bound construction showing that Dominating Set does not admit a SAS – in
fact, our construction will show a much stronger result, namely that there is a fixed constant
ε∗ > 0 such that any stable (1 + ε∗)-approximation algorithm must have stability Ω(n) – is
based on a certain type of expander graphs, as given by the following proposition. Note that
L (the left part of the bipartition of the vertex set) is larger by a constant fraction than R

(the right part of the bipartition), while the expansion property goes from L to R. The proof
of the following proposition was communicated to us by Noga Alon.

▶ Proposition 3. For any µ > 0 and any n that is sufficiently large, there are constants
0 < ε, δ < 1 such that there is a bipartite graph Gexp(L ∪R, E) with the following properties:
|L| = (1 + ε)n and |R| = n.
The degree of every vertex in G is at most 3.
For any S ⊂ L with |S| ⩽ δn we have |N(S)| ⩾ (2− 2µ)|S|

Proof. Let µ > 0 and let t be an integer so that t > 1/µ. Let ε ⩽ 1/32t+1 be a fixed
positive number. Let H = (A ∪B, EH) be a 3-regular bipartite graph with vertex classes A

and B, each of size (1 + ε)n, in which for every subset S ⊂ B of size at most δn we have
|N(S)| ⩾ (2 − µ)|S|, for some fixed real number δ = δ(µ) > 0. (It is known that random
cubic bipartite graphs have this property with high probability.) Now pick a set T ⊂ A of εn

vertices so that the distance between any pair of them is larger that 2t. Such a set exists, as
one can choose its members one by one, making sure to avoid the balls of radius 2t around
the already chosen vertices. This gives a set T of the desired size since ε32t+1 < 1. We define
Gexp to be the induced subgraph of H on the classes of vertices R = A \ T and L = B. It
remains to show that Gexp has the desired properties.

We have |L| = (1 + ε)n and |R| = n by construction, and the maximum degree of Gexp
is clearly at most 3. Now let S be a set of at most δn vertices in L. We have to show that
NGexp(S), its neighbor set in Gexp, has size at least (2− 2µ)|S|. We can assume without loss
of generality that S ∪NGexp(S) is connected in Gexp, since we can apply the bound to each
connected component separately and just add the inequalities. Note that this assumption
implies that S ∪NH(S) is also connected in H. Observe that the neighborhood NH(S) of S

in the original graph H , which is contained in B, is of size at least (2−µ)|S|, by the property
of H. If the set T of deleted vertices has at most µ|S| members in NH(S) then the desired
inequality holds and we are done. Otherwise T has more than µ|S| vertices that belong to
NH(S). But the distance between any two such vertices in H is larger than 2t (and so the
balls of radius t around them are disjoint), and since S ∪ NH(S) is connected this would
imply |S| > t|T ∩NH(S)| > tµ|S| > |S|, which is a contradiction. ◀

Now consider Dominating Set for a dynamic graph in the vertex-arrival model. Let
G(t) denote the graph at time t, that is, after the first t insertions. Let ε∗ > 0 be such
that ε∗ < min

(
ε

2+ε , 0.49δ
2(1+ε)

)
, where ε and δ are the constants in the expander construction

of Proposition 3. Consider a dynamic algorithm alg for Dominating Set such that
|Dalg(t)| ⩽ (1 + ε∗) ·opt(t) at any time t, where Dalg(t) is the output dominating set of alg
at time t and opt(t) is the minimum size of a dominating set for G(t). Let fε∗(n) denote
the stability of alg, that is, the maximum number of changes it performs on Dalg when a
new vertex arrives, where n is the number of vertices before the arrival.

We now give a construction showing that, for arbitrarily large n, there is a sequence of n

arrivals that requires fε∗(n) ⩾ 1
6(7+6ε)⌊δn⌋. To this end, choose N large enough such that

the bipartite expander graph Gexp = (L ∪R, E) from Proposition 3 exists for µ = 0.005 and
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u1 v1 w1

u2 v2 w2

u(1+ε)N

r1

r2

r3

rN
v(1+ε)N w(1+ε)N

(1 + ε)N bags, each with at most three vertices

L1

L2

L(1+ε)N

Figure 1 The lower-bound construction for Dominating Set.

|R| = N . Label the vertices in L as ℓ1, . . . , ℓ|L| and the vertices in R as r1, . . . , r|R|. Our
construction uses five layers of vertices, arriving one by one, as described next and illustrated
in Fig. 1.

Layer 1: The first layer consists of vertices u1, . . . , u(1+ε)N , each arriving as a singleton.
Layer 2: The second layer consists of vertices v1, . . . , v(1+ε)N , where each vi has an edge
to vertex ui from the first layer.
Layer 2: The third layer consists of vertices w1, . . . , w(1+ε)N , where each wi has an edge
to vi from the second layer.
Layer 4: Let Gexp = (L ∪ R, E) be the expander from Proposition 3. The fourth layer
consists of |L| = (1+ε)N bags, each with at most three vertices. More precisely, if deg(ℓi)
is the degree of vertex ℓi ∈ L in the expander Gexp, then bag Li has deg(ℓi) vertices.
Each vertex in Li has an edge to vertex wi from the third layer.
Layer 5: Finally, the fifth layer arrives. Each vertex in this layer corresponds to a vertex ri

from the bipartite expander Gexp and, with a slight abuse of notation, we will also denote
it by ri. If, in G exp, ri has an edge to some vertex ℓj in Gexp, then the corresponding
vertex ri in our construction will have an edge to some vertex in the bag Lj . Clearly, we
can do this in such a way that each vertex in any of the bags Li has an edge to exactly
one vertex ri. In addition to the edges to (vertices in) the bags, each vertex ri also has
an edge to the vertex vi from the second layer.

Let t1 be the time at which the last vertex of L(1+ε)N was inserted, and let t2 be the time
at which rN was inserted. Let G(t) denote the graph induced by all vertices inserted up to
time t. Thus G(t1) consists of the layers 1–4, and G(t2) consists of layers 1–5.

▶ Observation 4. For any t with t1 ⩽ t ⩽ t2 we have opt(t) ⩽ (2 + 2ε)N . Moreover,
opt(t2) ⩽ (2 + ε)N .

Proof. For any t1 ⩽ t ⩽ t2, the set D1 := {v1, . . . , v(1+ε)N} ∪ {w1, . . . , w(1+ε)N} forms a
dominating set for G(t). Moreover, D1 := {v1, . . . , v(1+ε)N}∪{r1, . . . , rN} forms a dominating
set for G(t2). ◀

We call a bag Li fully dominated by a set D of vertices if each vertex in Li is dominated by
some vertex in D. Observation 4 states that opt(t2) is significantly smaller than opt(t1),
which is because the vertices in R can fully dominate all bags. This means that Dalg(t2)
must contain most vertices of R, in order to achieve the desired approximation. Adding only
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a few vertices from R will be too expensive, however, since fully dominating a small number
of bags will be expensive, because of the expander property of Gexp. Hence, if the stability
parameter fε∗(n) is small, then alg cannot maintain the desired approximation ratio. Next
we make this proof idea precise.

▶ Lemma 5. Let Dalg(t2) denote the output dominating set for G(t2). Suppose Dalg(t2) ∩R

fully dominates at most δN bags Li. Then |Dalg(t2)| > (1 + ε∗) · opt(t2).

Proof. Let m < δN denote the number of bags fully dominated by Dalg(t2) ∩R. Consider a
bag Li that is not fully dominated by Dalg(t2) ∩R. Then Dalg(t2) must contain the vertex
wi or at least one vertex from the bag Li. Hence, the number of vertices in Dalg(t2) from
the third and fourth layer is at least (1 + ε)N −m. Moreover, Dalg(t2) must have at least
(1 + ε)N vertices from the first and second layer, to dominate all vertices from the first layer.
Observe that in order to fully dominate a bag Li by vertices in R, we need all vertices in R

with an edge to some vertex of Li. So if Dalg(t2) ∩ R fully dominates m ⩽ δN bags, then
|Dalg(t2)∩R| ⩾ 1.99m by the properties of the expander graph Gexp in Proposition 3. Hence,

|Dalg(t2)| > (1 + ε)N −m + (1 + ε)N + 1.99m ⩾ (2 + 2ε)N.

Observation 4 thus implies that |Dalg(t2)|
opt(t2) ⩾ 2+2ε

2+ε > 1 + ε∗. ◀

Lemma 5 means that, in order to achieve approximation ratio 1 + ε∗, the set Dalg(t2) ∩R

must fully dominate more than δN bags. Next we show that this cannot be done when the
stability parameter fε∗(n) is o(n).

▶ Lemma 6. Let t∗ be the first time when Dalg(t∗) ∩R fully dominates at least δN bags. If
fε∗(n) < 1

6(7+6ε)⌊δn⌋ then |Dalg(t∗)| > (1 + ε∗) · opt(t∗).

Proof. Let nt denote the number of vertices of the graph G(t), and observe that nt∗ ⩽
(7 + 6ε)N . Hence, fε∗(nt∗) ⩽ 1

6 δN . By definition of t∗, we know that just before time t∗ the
set Dalg ∩R fully dominates less than δN bags. Because alg is fε∗(n)-stable, the number of
vertices from R added to Dalg at time t∗ is at most fε∗(nt∗). Since these new vertices have
degree at most three, they can complete the full domination of at most 3fε∗(nt∗) bags. Thus,(

number of bags fully dominated by Dalg(t∗) ∩R
)

< δN + 3fε∗(nt∗) ⩽
3
2δN.

Let Li be a bag that is not fully dominated by Dalg(t∗) ∩R. Since Dalg(t∗) is a dominating
set, it must then contain the vertex wi or at least one vertex from Li. Hence, the number of
vertices in Dalg(t∗) from layers 3 and 4 is more than (1 + ε)N − 3

2 δN . In addition, Dalg(t∗)
must have at least (1 + ε)N vertices from layers 1 and 2. Finally, in order to fully dominate
a bag Li by vertices in R, we need all the vertices in R that have an edge to some vertex
of Li. In other words, Dalg(t∗) ∩R must contain all neighbors of the fully dominated bags.
Since Dalg(t∗) ∩R dominates at least δN bags, we know that |Dalg(t∗) ∩R| ⩾ 1.99 · δN , by
the properties of the expander graph in Proposition 3. Hence,

|Dalg(t∗)| > (1 + ε)N − 3
2δN + (1 + ε)N + 1.99 · δN

⩾

(
1 + 0.49δ

2 + 2ε

)
(2 + 2ε)N

⩾ (1 + ε∗) · opt(t∗). ◀

By Lemmas 5 and 6 we obtain the following result.

▶ Theorem 7. There is a constant ε∗ > 0 such that any dynamic (1 + ε∗)-approximation al-
gorithm for Dominating Set in the vertex arrival model, must have stability parameter Ω(n),
even when the maximum degree of any of the graphs G(t) is bounded by 4.

APPROX/RANDOM 2023
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3.2 Constant-stability algorithms when the arrival degrees are bounded
In the previous section we saw that there is no SAS for Dominating Set, even when
the maximum degree is bounded by 4. In this section we present stable algorithms whose
approximation ratio depends on the arrival degree of the vertices. More precisely, we give a
simple 1-stable algorithm with approximation ratio (d + 1)2 and a more complicated 3-stable
algorithm with approximation ratio 9d/2, where d is the maximum degree of any vertex upon
arrival. Note we only restrict the degree upon arrival: the degree of a vertex may further
increase due to the arrival of new vertices. This implies that deletions cannot be handled by
a stable algorithm with bounded approximation ratio: even with arrival degree 1 we may
create a star graph of arbitrarily large size, and deleting the center of the star cannot be
handled in a stable manner without compromising the approximation ratio.

A 1-stable (d + 1)2-approximation algorithm. Recall that G(t) denotes the graph after
the arrival of the t-th vertex. We can turn G(t) into a directed graph G⃗(t), by directing each
edge towards the older of its two incident vertices. In other words, when a new vertex arrives
then its incident edges are directed away from it.

Let N+[v] := {v} ∪ {out-neighbors of v in G⃗(t)}, where t is such that v is inserted at
time t. In other words, N+[v] contains v itself plus the neighbors of v immediately after
its arrival. Let optout(t) denote the minimum size of a dominating set in G⃗(t) under the
condition that every vertex v should be dominated by a vertex in N+[v]. We call such a
dominating set a directed dominating set. Note that a directed dominating set for G⃗(t) is
a dominating set in G(t) as well. The following lemma states that optout(t) is not much
larger than opt(t).

▶ Lemma 8. At any time t we have optout(t) ⩽ (d + 1) · opt(t).

Proof. Let Dopt(t) be a minimum dominating set for G(t). Let D :=
⋃

v∈Dopt(t) N+[v].
Observe that D is a directed dominating set for G⃗(t). Since every vertex arrives with degree
at most d, we have |N+[v]| = d + 1. The result follows. ◀

We call two vertices u, v unrelated if N+[u] ∩ N+[v] = ∅, otherwise u, v are related. The
following lemma follows immediately from the definition of optout(t).

▶ Lemma 9. Let U(t) be a set of pairwise unrelated vertices in G⃗(t). Then optout(t) ⩾ |U(t)|.

Our algorithm will maintain a directed dominating set Dalg(t) for G⃗(t) and a set U(t) of
pairwise unrelated vert. Since the initial graph is empty, we initialize Dalg(0) := ∅ and
U(0) := ∅. When a new vertex v arrives at time t, we proceed as follows.

Algorithm 2 Directed-DomSet(v).

1: ✄ v is the vertex arriving at time t

2: if N+[v] ∩Dalg(t− 1) ̸= ∅ then ✄ v is already dominated
3: Set Dalg(t)← Dalg(t− 1) and U(t)← U(t− 1)
4: else
5: if v is unrelated to all vertices u ∈ U(t− 1) then
6: Set U(t)← U(t− 1) ∪ {v} and Dalg(t)← Dalg(t− 1) ∪ {v}
7: else
8: Let u be a vertex related to v, that is, with N+[u] ∩N+[v] ̸= ∅.
9: Pick an arbitrary vertex w ∈ N+[u] ∩N+[v].

10: Set Dalg(t)← Dalg(t− 1) ∪ {w} and U(t)← U(t− 1).
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This leads to the following theorem.

▶ Theorem 10. There is a 1-stable (d + 1)2-approximation algorithm for Dominating Set
in the vertex-arrival model, where d is the maximum arrival degree of any vertex.

Proof. Clearly the set Dalg maintained by Directed-DomSet is a directed dominating set.
Moreover the algorithm is 1-stable as after each arrival, it either adds a single vertex to Dalg
or does nothing. It is easily checked that the set U maintained by the algorithm is always
a set of pairwise unrelated vertices, and that all vertices in Dalg are an out-neighbor of a
vertex in U or are in U themselves. Hence, by Lemmas 8 and 9, at any time t we have

|Dalg(t)| ⩽ (d + 1) · |U(t)| ⩽ (d + 1) · optout(t) ⩽ (d + 1)2 · opt(t),

which finishes the proof. ◀

In Appendix A we show that the approximation ratio Θ(d2) is tight for this algorithm.

A 3-stable (9d/2)-approximation algorithm. The algorithm presented above has optimal
stability, but its approximation ratio is Ω(d2). We now present an algorithm whose stability is
still very small, namely 3, but whose approximation ratio is only O(d). This is asymptotically
optimal, since, as is easy to see, any algorithm with constant stability must have approximation
ratio Ω(d). Our approach is somewhat similar to that of Liu and Toole-Charignon [21], but
a key difference is that we obtain a worst-case bound on the stability and they obtain an
amortized bound. Our algorithm works in phases, as explained next. Suppose we start a new
phase at time t and let Dalg(t− 1) be the output dominating set at time t− 1. The algorithm
then computes a minimum dominating set Dopt(t) for the graph G(t), which we call the
target dominating set. The algorithm will then slowly migrate from Dalg(t− 1) to Dopt(t),
by first adding the vertices in D+ := Dopt(t) \Dalg(t− 1) and then removing the vertices in
D− := Dalg(t − 1) \Dopt(t). This is done in ⌈|D+ ∪D−|/2⌉ steps. Vertices that arrive in
the meantime are also added to the dominating set, to ensure that the output remains a
dominating set at all time. After all vertices in D+ and D− have been added and deleted,
respectively, the next phase starts. Next we describe and analyze the algorithm in detail.

At the start of the whole algorithm, at time t = 0, we initialize Dalg(0) := ∅, and
D(0)+ = ∅ and D(0)− = ∅.

Algorithm 3 Set-and-Achieve-Target(v).

1: ✄ v is the vertex arriving at time t and G(t) is the graph after arrival of v

2: Dalg ← Dalg(t− 1) ∪ {v}
3: if D+(t− 1) = ∅ and D−(t− 1) = ∅ then ✄ start a new phase
4: Let Dopt(t) be a minimum dominating set for G(t).
5: Set D+(t)← Dopt(t) \Dalg(t− 1) and D−(t)← Dalg(t− 1) \Dopt(t).
6: else
7: Set D+(t)← D+(t− 1) and D−(t)← D−(t− 1)
8: Set m+ ← min(2, |D+(t)|). Delete m+ vertices from D+(t) and add them to Dalg.
9: Set m− ← min(2−m+, |D−(t)|). Delete m− vertices from D−(t) and delete the same

vertices from Dalg.
10: Dalg(t)← Dalg

APPROX/RANDOM 2023



27:12 Stable Approximation Algorithms for Dominating Set and Independent Set

The algorithm defined above is 3-stable, as it adds one vertex to Dalg in step 2 and then
makes two more changes to Dalg in steps 8 and 9. Next we prove that its approximation ratio
is bounded by 9d/2. Note that the size of a minimum dominating set can reduce over time,
due to the arrival of new vertices. The next lemma shows that this reduction is bounded.
Let max-opt(t) := max(opt(1), opt(2), . . . , opt(t)) denote the maximum size of any of the
optimal solutions until (and including) time t.

▶ Lemma 11. For any time t we have max-opt(t) ⩽ d · opt(t), where d is the maximum
arrival degree of any vertex.

Proof. Let t∗ ⩽ t be such that max-opt(t) = opt(t∗). Let Dopt(t) be an optimal dominating
set for G(t) and define V (t∗) to be the set of vertices of G(t∗). Let D be the set of vertices
in Dopt(t) that were not yet present at time t∗, and define D∗ := (Dopt(t) \D) ∪Nt∗(D),
where Nt∗(D) contains the neighbors of D in V (t∗). Then D∗ is a dominating set for G(t∗)
since any vertex in V (t∗) that is not dominated by a vertex in Dopt(t∗) \D is in D∗ itself.
Moreover, |D∗| ⩽ d · opt(t), since each vertex in D has at most d neighbors in V (t∗). ◀

We first bound the size of Dalg at the start of each phase. Note that in the proofs below,
D+(t) and D−(t) refer to the situation before the execution of line 8 and 9 in the algorithm
set-and-achieve-target.

▶ Lemma 12. If a new phase starts at time t, then Dalg(t− 1) ⩽ 3 ·max-opt(t− 1).

Proof. We proceed by induction on t. The lemma trivially holds at the start of the first
phase, when t = 1. Now consider the start of some later phase, at time t, and let tprev
be the previous time at which a new phase started. Recall that Dalg(t) = Dopt(tprev) ∪
{vertices arriving at times tprev, tprev + 1, . . . , t− 1}.

Moreover,

|D+(tprev)∪D−(tprev)| ⩽ |Dalg(tprev−1)|+|Dopt(tprev)| ⩽ 3·max-opt(tprev−1)+opt(tprev),

where the last inequality uses the induction hypothesis. From time tprev up to time t− 1,
the vertices from D+(tprev) ∪D−(tprev) are added/deleted in pairs, so

t − tprev =
⌈

3 · max-opt(tprev − 1) + opt(tprev)
2

⌉
⩽

⌈
4 · max-opt(tprev)

2

⌉
= 2 · max-opt(tprev).

Hence,

Dalg(t− 1) ⩽ opt(tprev) + (t− tprev)
⩽ max-opt(tprev) + 2 ·max-opt(tprev)
⩽ 3 ·max-opt(t− 1) ◀

The previous lemma bounds |Dalg| just before the start of each phase. Next we use this to
bound |Dalg| during each phase.

▶ Lemma 13. For any time t we have |Dalg(t)| ⩽ (9/2) ·max-opt(t).

Proof. Consider a time t. If a new phase starts at time t + 1 then the lemma follows
directly from Lemma 12. Otherwise, let tprev ⩽ t be the last time at which a new phase
started, and let tnext be the next time at which a new phase starts. Furthermore, let
t∗ := max{t′ : tprev ⩽ t′ < tnext and D+(t′) ̸= ∅}. In other words, t∗ is the last time step in
the interval [tprev, tnext) at which we still add vertices from D+ to Dalg. If D+(tprev) is empty
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then let t∗ = tprev. It is easy to see from the algorithm that |Dalg(t)| ⩽ |Dalg(t∗)|. Note that
Dalg(t∗) contains the vertices from Dalg(tprev − 1), plus the vertices from Dopt(tprev), plus
the vertices that arrived from time tprev to time t∗. Hence,

|Dalg(t∗)| ⩽ |Dalg(tprev − 1)|+ opt(tprev) + (t∗ − tprev + 1)
⩽ |Dalg(tprev − 1)|+ opt(tprev) + opt(tprev)

2
⩽ 3 ·max-opt(tprev − 1) + max-opt(tprev) + opt(tprev)

2
⩽ (9/2) ·max-opt(t).

Note that from the first to the second line we replaced (t∗− tprev + 1) by opt(tprev)/2, which
we can do because we add vertices from Dopt(tprev) in pairs. It may seem that we should
actually write

⌈opt(tprev)
2

⌉
here. When opt(tprev) is odd, however, then the algorithm can

already remove a vertex in D− from Dalg when the last vertex from D+ is added to Dalg.
(This is not true in the special case when D−(tprev) = ∅, but in that case the second term is
an over-estimation. Indeed, when D−(tprev) = ∅ then Dalg(tprev − 1) ⊆ Dopt(tprev) and so
|D+(tprev)| = |Dopt(tprev) \Dalg(tprev − 1)| < |opt(tprev − 1)|.) This finishes the proof. ◀

Putting Lemmas 11 and 13 together, we obtain the following theorem.

▶ Theorem 14. There is a 3-stable (9d/2)-approximation algorithm for Dominating Set
in the vertex-arrival model, where d is the maximum arrival degree of any vertex.

4 Stable Approximation Algorithms for Independent Set

In this section we first show that Independent Set does not admit a SAS, even when
restricted to graphs of maximum degree 3. Then we give an 2-stable O(d)-approximation
algorithm for graphs whose average degree is bounded by d.

4.1 No SAS for graphs of maximum degree 3
We prove our no-SAS result for Independent Set in a similar (but simpler) way as for
Dominating Set. Thus we actually prove the stronger result that there is a constant ε∗ > 0
such that any dynamic (1+ε∗)-approximation algorithm for Independent Set in the vertex
arrival model, must have stability parameter Ω(n), in this case even when the maximum
degree of any of the graphs G(t) is bounded by 3.

Let ε∗ > 0 be a real number less than min
(

0.82δ
1−0.82δ , ε

)
. Let alg be an algorithm that

maintains an independent set Ialg such that opt(t) ⩽ (1 + ε∗) · |Ialg(t)| at all times. Let
fε∗(n) denote the stability of alg, that is, the maximum number of changes it performs
on Ialg when a new vertex arrives, where n is the number of vertices before the arrival.
We will show that, for arbitrarily large n, there is a sequence of n arrivals that requires
fε∗(n) ⩾ 1

6(2+ε)⌊δn⌋. As before, choose N large enough such that the bipartite expander
graph Gexp = (L∪R, E) from Proposition 3 exists for µ = 0.005 and |R| = N . In our no-SAS
construction for Independent Set, we only need Gexp, not additional layers are needed.
Thus the construction is simply as follows.

First the vertices r1, . . . , rN from the set R arrive one by one, as singletons.
Next the vertices ℓ1, . . . , ℓ(1+ε)N from L arrive one by one (in any order), along with their
incident edges in Gexp.

▶ Lemma 15. Let t∗ be the first time when |Ialg(t) ∩ L| ⩾ δN . If fε∗(n) < 1
6(2+ε)⌊δn⌋ then

opt(t∗) > (1 + ε∗) · |Ialg(t∗)|.
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Proof. Let nt denote the number of vertices of the graph G(t), and observe that nt∗ ⩽ (2+ε)N .
Hence, fε∗(nt∗) ⩽ 1

6 δN . By definition of t∗, we know that just before time t∗ we have
|Ialg ∩ L| < δN . Because alg is fε∗(n)-stable, we have

|Ialg(t∗) ∩ L| ⩽ δN + f(ntf
) ⩽ 7

6δN.

Since µ = 0.005, from Proposition 3 we have |N(Ialg(t∗)∩L| ⩾ 1.99·δN . Hence |Ialg(t∗)∩R| ⩽
N − 1.99 · δN , and so

|Ialg(t∗)| = |Ialg(t∗) ∩R|+ |Ialg(t∗) ∩ L| ⩽ 7
6δN + N − 1.99 · δN < N − 0.82 δN

. We also have |opt(t∗)| ⩾ N . Hence, opt(t∗) > N
N−0.82δN |Ialg(t∗)| > (1 + ε∗) · |Ialg(t∗)|. ◀

▶ Theorem 16. There is a constant ε∗ > 0 such that any dynamic (1 + ε∗)-approximation al-
gorithm for Independent Set in the vertex arrival model, must have stability parameter Ω(n),
even when the maximum degree of any of the graphs G(t) is bounded by 3.

Proof. By Proposition 3 the maximum degree of the graph is always bounded by 3. Let
t = 2N + εN and let |Ialg(t) ∩ L| = M . We know by Lemma 15 that if alg is a (1 + ε∗)-
approximation and if fε∗(n) < 1

6(2+ε)⌊δn⌋ then M ⩽ δn. Hence |Ialg(t) ∩R| ⩽ N − 1.99M .
So we have

|Ialg(t)| = |Ialg(t) ∩R|+ |Ialg(t) ∩ L| ⩽ N − 1.99M + M ⩽ N.

But we have opt(t) = (1 + ε)N . Hence the approximation ratio at time t = 2N + εN is
greater than or equal to (1+ε)N

N = 1 + ε > 1 + ε∗ which is a contradiction. This finishes the
proof. ◀

4.2 Constant-stability algorithms when the average degree is bounded
A 2-stable O(d)-approximation algorithm. In this section we consider the setting where
the average degree of G(t) is upper bounded by some constant d at all times. It is easy to
observe that in this setting, if we allow just one change after each vertex arrival, then it’s
not possible to get a bounded approximation ratio. However, we are able to get a bounded
approximation ratio with only two changes per arrival.

It is not hard to see that if the maximum degree is bounded by some constant d∗, then a
simple greedy 1-stable algorithm maintains a O(d∗) approximation. Our idea is to maintain
an induced subgraph with a number of vertices that is linear in the number of vertices of
G(t), and whose maximum degree (rather than average degree) is bounded. We then use the
induced subgraph to generate an independent set. Below we make the idea precise.

First we define a (trivial) subroutine algorithm below which takes in an independent
set I∗ and a subset W ∗ of vertices as an input, and tries to add a vertex v from W ∗ \ I∗ to
I∗ such that I∗ ∪ {v} is still an independent set.

Algorithm 4 Greedy-Addition(I∗, W ∗).

1: if there exist a vertex v ∈W ∗ \ I∗ such that I∗ ∪ {v} is an independent set then
2: Set I∗ = I∗ ∪ {v}

Next we move on to describe our main algorithm, which uses Greedy-Addition as a
subroutine. Let ∆(G) denote the maximum degree of a graph G = (V, E). For a subset
W ⊂ V , define G[W ] to be the subgraph of G induced by W . Let V (t) denote the set of
vertices of G(t).
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Observe that by ordering the vertices of G(t) in increasing order of their degree and by
taking the first

⌈ 99
100 |V (t)|

⌉
vertices, we can construct a set V ∗(t) ⊆ V such that |V ∗(t)| ⩾

99
100 |V (t)| and ∆(G[V ∗(t)]) ⩽ 100d. (The number 100 has no special significance – it can
be chosen much smaller – but we use it for convenience.) The idea of our algorithm is to
maintain a vertex set W (t) ⊆ V (t) such that ∆(G[W (t)]) ⩽ 100d and the size of W (t) is
linear in |V (t)|. In order to maintain such a subset, we work in phase, as before: at the
start of each phase, the algorithm sets itself a target vertex set V ∗(t) of large size and with
∆(G[V ∗(t)]) ⩽ 100d. At time t, W +(t) and W −(t) denote the vertices that need to be added
and removed respectively from W (t) in order to achieve the target. This is done by the
algorithm presented next, where we initialize W +(t), W −(t), W (t) = ∅.

Algorithm 5 Set-Achieve-And-Use-Target(v).

1: ✄ v is the vertex arriving at time t and G(t) is the graph after arrival of v

2: if W +(t− 1) = ∅ and W −(t− 1) = ∅ then ✄ start a new phase
3: Choose V ∗(t) ⊆ V such that |V ∗(t)| ⩾ 99

100 |V (t)| and ∆(G[V ∗(t)]) ⩽ 100d.
4: Set W +(t)← V ∗(t) \W (t− 1) and W −(t)←W (t− 1) \ V ∗(t).
5: else
6: Set W +(t)←W +(t− 1) and W −(t)←W −(t− 1)
7: Set m− ← min(1, |W −(t)|). Delete m− vertices from W −(t) and delete the same vertices

from W (t). Call the vertex deleted(if any) as v∗.
8: Set Ialg(t)← Ialg(t− 1) \ {v∗}
9: Set m+ ← min(1 − m−, |W +(t)|). Delete m+ vertices from W +(t) and add them to

W (t).
10: Greedy-Addition(Ialg(t), W (t))

▶ Lemma 17. At the start of each phase – that is, at a time t such that W +(t− 1) = ∅ and
W −(t− 1) = ∅ – we have |W (t− 1)| ⩾ 495

1000 · |V (t)|.

Proof. We proceed by induction on t. The lemma trivially holds at the start of the first
phase, when t = 1. Now consider the start of some later phase, at time t, and let tprev be
the previous time at which a new phase started. Since the start of a phase is just after the
end of the previous phase we have |W (t− 1)| ⩾ 99

100 |V (tprev)|.
Observe that W +(tprev) and W −(tprev) are disjoint subsets of the vertices of V (tprev).

Hence |W +(tprev) ∪W −(tprev)| ⩽ |V (tprev)|. So (t− tprev) ⩽ |V (tprev)|, since we make one
change at a time. So |V (t)| ⩽ 2|V (tprev)| and we have

|W (t− 1)| ⩾ 99
100 · |V (tprev)| ⩾ 495

1000 · 2 · |V (tprev)| ⩾ 495
1000 · |V (t)|

This finishes the proof of the lemma. ◀

The previous lemma gives lower bound of |W (t)| at the start of each phase. Next we use
this to give a lower bound of |W (t)| at any time point t.

▶ Lemma 18. For any time t, we have |W (t)| ⩾ 485
1010 · |V (t)|.

Proof. Consider a time t. If a new phase starts at time t then the lemma follows directly
from Lemma 17. Otherwise, let tprev be the previous time at which a new phase started, and
let tnext be the next time at which a new phase starts.

APPROX/RANDOM 2023
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Let t∗ := max{t′ : tprev ⩽ t′ < tnext and W −(t′) ̸= ∅}. In other words, t∗ is the last
time step in the interval [tprev, tnext) at which we still delete vertices from W (t). It is easy
to see from the algorithm that in the interval [tprev, tnext), the value |W (t)|

|V (t)| is minimum at
t = t∗. Observe that |W −(tprev)| ⩽ 1

100 · |V (tprev)|, which implies (t∗−tprev) ⩽ 1
100 · |V (tprev)|.

Hence, |V (t∗)| ⩽ 101
100 |V (tprev)| and so by Lemma 17 we have

|W (t∗)| ⩾ 495
1000 · |V (tprev)| − 1

100 · |V (tprev)| = 485
1010 ·

101
100 · |V (tprev)| ⩾ 485

1010 · |V (t∗)|

This finishes the proof of the lemma. ◀

▶ Lemma 19. For any time t we have |W (t)|
|Ialg(t)| ⩽ c · d for some constant c.

Proof. Observe that at any time point t the maximum degree of G[W (t)] is bounded by 100d.
Choose a constant c such that c · d > 100d + 1. Hence if I ⊆W (t) is an independent set with
|I| < |W (t)|

c·d , then there always exist a vertex v ∈W (t) \ I such that {v} ∪ I is a independent
set. If not then all vertices in W (t) \ I have an edge to I. Now |W (t) \ I| ⩾ (c·d−1)

c·d |W (t)|, so
the average degree of I in G[W (t)] is greater than c · d− 1 > 100d, which is a contradiction.

Also observe that Ialg(t) ⊂W (t). Now we proceed by induction on t. The lemma holds
trivially for t = 0. Now suppose the lemma holds for t = k. There are two cases.

Case 1: At t=k+1, a vertex v∗ is deleted from W (t)
In this case initially Ialg(t) = Ialg(t − 1) \ {v∗}. Then the subroutine Greedy-Addition
tries to add a new vertex to Ialg(t). If |W (t)|

|Ialg(t)| ⩽ c · d before Greedy-Addition is initiated
then we are done. Else by the arguments above, we know that if |Ialg| < |W (t)|

c·d then the
subroutine Greedy-Addition can always add a vertex. In that case |Ialg(t)| ⩾ |Ialg(t− 1)|
and |W (t)| = |W (t− 1)| − 1, so |W (t)|

|Ialg(t)| ⩽
|W (t−1)|

|Ialg(t−1)| ⩽ c · d by induction.

Case 2: At t=k+1, a vertex v∗ is added to W (t)
If |W (t)|

|Ialg(t)| ⩽ c · d before Greedy-Addition is initiated then we are done. Else we know that
if |Ialg| < |W (t)|

c·d then the subroutine Greedy-Addition can always add a vertex. In that
case |Ialg(t)| = |Ialg(t− 1)|+ 1 and |W (t)| = |W (t− 1)|+ 1, so |W (t)|

|Ialg(t)| ⩽
|W (t−1)|

|Ialg(t−1)| ⩽ c · d by
induction. ◀

▶ Theorem 20. There is a 2-stable O(d)-approximation algorithm for Independent Set in
the vertex-arrival model where the average degree of G(t) is bounded by d at all times.

Proof. We know that the size of the maximum independent set at time t is trivially bounded
by |V (t)|. Now by Lemmas 18 and 19, we have,

|V (t)|
|Ialg(t)| ⩽

1010
485

|W (t)|
|Ialg(t)| ⩽

1010
485 · c · d

Hence the algorithm set-achieve-and-use-target is an O(d) approximation. Also observe
that the maximum number of changes to Ialg(t) occurs when there is a induced deletion of
a single vertex due to the deletion of a vertex from W (t) and then adding a vertex during
the execution of the subroutine algorithm Greedy-Addition. So clearly the stabilty of the
algorithm set-achieve-and-use-target is bounded by 2. ◀
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5 Concluding remarks

We studied the stability of dynamic algorithms for Dominating Set and Independent
Set in the vertex-arrival model. For both problems we showed that a SAS does not exist.
For Independent Set this even holds when the degrees of all vertices are bounded by 3
at all times. This is clearly tight, since a SAS is easily obtained on graphs of maximum
degree 2. For Dominating Set the no-SAS result holds for degree-4 graphs. A challenging
open problem is whether a SAS exists for Dominating Set for degree-3 graphs. We also
gave algorithms whose approximation ratio and/or stability depends on the (arrival or
average) degree. An interesting open problem here is: Is there a 1-stable O(d)-approximation
algorithm for Dominating Set, when the arrival degree is at most d? Finally, we believe
the concept of stability for dynamic algorithms, which purely focuses on the change in the
solution (rather than computation time) is interesting to explore for other problems as well.
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Figure 2 Example showing that Directed-DomSet has approximation ratio Ω(d2).
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Abstract
Bipartite maximum matching and its variants are well-studied problems under various models of
computation with the vast majority of approaches centering around various methods to find and
eliminate augmenting paths. Beginning with the seminal papers of Demange, Gale and Sotomayor
[DGS86] and Bertsekas [Ber81], bipartite maximum matching problems have also been studied in
the context of auction algorithms. These algorithms model the maximum matching problem as
an auction where one side of the bipartite graph consists of bidders and the other side consists of
items; as such, these algorithms offer a very different approach to solving this problem that do
not use classical methods. Dobzinski, Nisan and Oren [DNO14] demonstrated the utility of such
algorithms in distributed, interactive settings by providing a simple and elegant O(log n/ε2) round
maximum cardinality bipartite matching (MCM) algorithm that has small round and communication
complexity and gives a (1 − ε)-approximation for any (not necessarily constant) ε > 0. They leave
as an open problem whether an auction algorithm, with similar guarantees, can be found for the
maximum weighted bipartite matching (MWM) problem. Very recently, Assadi, Liu, and Tarjan
[ALT21] extended the utility of auction algorithms for MCM into the semi-streaming and massively
parallel computation (MPC) models, by cleverly using maximal matching as a subroutine, to give a
new auction algorithm that uses O(1/ε2) rounds and achieves the state-of-the-art bipartite MCM
results in the streaming and MPC settings.

In this paper, we give new auction algorithms for maximum weighted bipartite matching (MWM)
and maximum cardinality bipartite b-matching (MCbM). Our algorithms run in O

(
log n/ε8) and

O
(
log n/ε2) rounds, respectively, in the distributed setting. We show that our MWM algorithm can

be implemented in the distributed, interactive setting using O(log2 n) and O(log n) bit messages,
respectively, directly answering the open question posed by Demange, Gale and Sotomayor [DNO14].
Furthermore, we implement our algorithms in a variety of other models including the the semi-
streaming model, the shared-memory work-depth model, and the massively parallel computation
model. Our semi-streaming MWM algorithm uses O(1/ε8) passes in O(n log n · log(1/ε)) space
and our MCbM algorithm runs in O(1/ε2) passes using O

((∑
i∈L

bi + |R|
)

log(1/ε)
)

space (where
parameters bi represent the degree constraints on the b-matching and L and R represent the left
and right side of the bipartite graph, respectively). Both of these algorithms improves exponentially
the dependence on ε in the space complexity in the semi-streaming model against the best-known
algorithms for these problems, in addition to improvements in round complexity for MCbM. Finally,
our algorithms eliminate the large polylogarithmic dependence on n in depth and number of rounds
in the work-depth and massively parallel computation models, respectively, improving on previous
results which have large polylogarithmic dependence on n (and exponential dependence on ε in the
MPC model).

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis

Keywords and phrases auction algorithms, maximum weight bipartite matching, maximum b-
matching, distributed blackboard model, parallel work-depth model, streaming model, massively
parallel computation model

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2023.28

© Quanquan C. Liu, Yiduo Ke, and Samir Khuller;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2023).
Editors: Nicole Megow and Adam D. Smith; Article No. 28; pp. 28:1–28:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:quanquan@northwestern.edu
https://quanquancliu.com/
https://orcid.org/0000-0003-1230-2754
mailto:yiduoke2026@u.northwestern.edu
https://sites.northwestern.edu/yiduoke/
https://orcid.org/0009-0000-8118-948X
mailto:samir.khuller@northwestern.edu
https://www.mccormick.northwestern.edu/research-faculty/directory/profiles/khuller-samir.html
https://orcid.org/0000-0002-5408-8023
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.28
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


28:2 Scalable Auction Algorithms for Bipartite Maximum Matching Problems

Category APPROX

Related Version Full Version: https://arxiv.org/abs/2307.08979

Funding We gratefully acknowledge support from NSF-Award 2216970 (IDEAL Institute).

1 Introduction

One of the most basic problems in combinatorial optimization is that of bipartite matching.
This central problem has been studied extensively in many fields including operations research,
economics, and computer science and is the cornerstone of many algorithm design courses
and books. There is an abundance of existing classical and recent theoretical work on
this topic [25, 12, 13, 19, 20, 27, 29, 30, 6, 11, 31]. Bipartite maximum matching and its
variants are commonly taught in undergraduate algorithms courses and are so prominent
to be featured regularly in competitive programming contests. In both of these settings,
the main algorithmic solutions for maximum cardinality matching (MCM) and its closely
related problems of maximum weight matching (MWM) are the Hungarian method using
augmenting paths and reductions to maximum flow. Although foundational, such approaches
are sometimes difficult to generalize to obtain efficient solutions in other scalable models of
computation, e.g. distributed, streaming, and parallel models.

Although somewhat less popularly known, the elegant and extremely simple auction-
based maximum cardinality and maximum weighted matching algorithms of Demange, Gale,
and Sotomayor [10] and Bertsekas [8] solve the maximum cardinality/weighted matching
problems in bipartite graphs. Their MCM auction algorithms denote vertices on one side
of the bipartite input as bidders and the other side as items. Bidders are maintained in a
queue and while the queue is not empty, the first bidder from the queue bids on an item with
minimum price (breaking ties arbitrarily) from its neighbors. This bidder becomes the new
owner of the item. Each time an item is reassigned to a new bidder, its price increases by
some (not necessarily constant) ε > 0. If the assigned item still has price less than 1, the
bidder is added again to the end of the queue. Setting ε = 1

n+1 results in an algorithm that
gives an exact maximum cardinality matching in O(mn) time, where m and n refer to the
number of edges and vertices respectively. Such an algorithm intuitively takes advantage
of the fact that bidders prefer items in low demand (smaller price); naturally, such items
should also be matched in a maximum cardinality matching.

One of the bottlenecks in the original auction algorithm is the need to maintain bidders in
a queue from which they are selected, one at a time, to bid on items. Such a bottleneck is a key
roadblock to the scalability of such algorithms. More recently, Dobzinski, Nisan, and Oren [11]
extended this algorithm to the approximation setting for any (not necessarily constant) ε > 0.
They give a simple and elegant randomized (1− ε)-approximation algorithm for bipartite
MCM in O

(
log n

ε2

)
rounds of communication for any ε > 0. Furthermore, they illustrate an

additional advantage for this algorithm beyond its simplicity. They show that in a distributed,
interactive, blackboard setting, their auction MCM multi-round interactive algorithm uses
less communication bits than traditional algorithms for this problem. This interactive setting
is modeled via simultaneous communication protocols where agents simultaneously send a
single message in each round to a central coordinator and some state is computed by the
central coordinator after each round of communication. The goal in this model is to limit
the total number of bits sent in all of the agents’ messages throughout the duration of the
algorithm. They leave as an open question whether an interactive, approximation auction
algorithm that uses approximately the same number of rounds and bits of communication
can be found for the maximum weighted bipartite matching problem.
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Such an approach led to the recent simple and elegant paper of Assadi, Liu, and Tarjan [6]
that adapted their algorithm to the semi-streaming setting and removed the log n factor in
the semi-streaming setting from the number of passes to give an algorithm that finds an
(1− ε)-approximate maximum cardinality matching in O

(
1/ε2) passes, where in each pass a

maximal matching is found. Furthermore, they showed implementations of their algorithm in
the massively parallel computation (MPC) model, achieving the best-known bounds in both
of these settings. In this paper, we extend their algorithm to other variants of the problem on
bipartite graphs, including maximum weight matching and maximum cardinality b-matching
and achieve novel improvements in a variety of scalable models. The maximum cardinality
b-matching problem (MCbM) is a well-studied generalization of MCM. In MCbM, each
vertex is given an integer budget bv where each vertex can be matched to at most bv of their
neighbors; a matching of maximum cardinality contains the maximum possible number of
edges in the matching. The b-matching problem generalizes a number of real-life allocation
problems such as server to client request serving, medical school residency matching, ad
allocation, and many others. Although the problem is similar to MCM, often obtaining
efficient algorithms for this problem requires non-trivial additional insights. As indicated in
Ghaffari et al [16] b-matching problems can be considerably harder than matching.

Summary of Results. In this paper, we specifically give the following results. Our auction
algorithms and their analyses are described in detail in Section 3 and Section 4.

▶ Theorem 1 (Maximum Weight Bipartite Matching). There exists an auction algorithm
for maximum weight bipartite matching (MWM) that gives a (1− ε)-approximation for any
ε > 0 and runs in O

(
log n·log(1/ε)

ε8

)
rounds of communication (with high probability) and with

O
(
log2 n

)
bits per message. This algorithm can be implemented in the multi-round, semi-

streaming model using O (n · log n · log(1/ε)) space and O
(

log(1/ε)
ε7

)
passes. This algorithm

can be implemented in the work-depth model in O
(

m·log(1/ε)
ε6

)
work and O

(
log n·log(1/ε)

ε8

)
depth. Finally, our algorithm can be implemented in the MPC model using O(log(1/ε)/ε7)
rounds, O(n) space per machine, and O

(
m log(1/ε) log n

ε

)
total space.

The best-known algorithms in the semi-streaming model for the maximum weight bipartite
matching problem are the (1/ε)O(1/ε2) pass, O (n poly(log(n)) poly(1/ε)) space algorithm
of Gamlath et al. [15] and the O

(
log(1/ε)

ε2

)
pass, O

(
n log n

ε2

)
space algorithm of Ahn and

Guha [1]. To the best of our knowledge, our result is the first to achieve sub-polynomial
dependence on 1/ε in the space for the MWM problem in the semi-streaming model. Thus,
we improve the space bound exponentially compared to the previously best-known algorithms
in the streaming model. The best-known algorithms in the distributed and work-depth
models required poly(log n) in the number of rounds and depth, respectively [21]; in the
MPC setting, the best previously known algorithms have exponential dependence on ε [15].
We eliminate such dependencies in our paper and our algorithm is also simpler. A summary
of previous results and our results can be found in Table 1.

▶ Theorem 2 (Maximum Cardinality Bipartite b-Matching). There exists an auction algorithm
for maximum cardinality bipartite b-matching (MCbM) that gives a (1− ε)-approximation
for any ε > 0 and runs in O

(
log n

ε2

)
rounds of communication. This algorithm can be

implemented in the multi-round, semi-streaming model using O
((∑

i∈L bi + |R|
)

log(1/ε)
)

space and O
( 1

ε2

)
passes. Our algorithm can be implemented in the shared-memory work-depth

model in O
(

log3 n
ε2

)
depth and O

(
m log n

ε2

)
total work.
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The best-known algorithms for maximum cardinality bipartite b-matching in the semi-

streaming model is the O
(

log n
ε3

)
pass, Õ

(∑
i∈L∪R

bi

ε3

)
space algorithm of Ahn and Guha [1].

In the general, non-bipartite setting (a harder setting than what we consider), a very recent
(1− ε)-approximation algorithm of Ghaffari, Grunau, and Mitrović [16] runs in exp

(
2O(1/ε))

passes and Õ
(∑

i∈L∪R bi + poly(1/ε)
)

space. Here, we also improve the space exponentially
in 1/ε and, in addition, improve the number of passes by an O(log n) factor. More details
comparing our results to other related works are given in Section 1.1. Due to the space
constraints, most proofs in the following sections are deferred to the full version of our paper.
Our results as well as comparisons with previous work are given in Table 1.

Table 1 We assume the ratio between the largest weight edge and smallest weight edge in the
graph is poly(n). Results for general graphs are labeled with (general); results that are specifically
for bipartite graphs do not have a label. Upper bounds are given in terms of O(·) and lower bounds
are given in terms of Ω(·). “Space p.m.” stands for space per machine. The complexity measures for
the “blackboard distributed” setting is the total communication (over all rounds and players) in bits.

Model Previous Results Our Results

Blackboard
Distributed

MWM Ω(n log n) (trivial) [11] O
(

n log3(n)·log(1/ε)
ε9

)
Theorem 11

MCbM Ω(nb log n) trivial O
(

nb log2 n
ε2

)
Theorem 28

Streaming
MWM

O
( log(1/ε)

ε2

)
pass

O
(

n log n
ε2

)
space [1]

O
( log(1/ε)

ε7

)
pass

O (n · log n · log(1/ε)) space Theorem 13

MCbM

O(log n/ε3) pass

Õ

(∑
i∈L∪R

bi

ε3

)
space [2]

O
(

1
ε2

)
pass

O
((∑

i∈L
bi + |R|

)
log(1/ε)

)
space Theorem 30

MPC MWM

Oε(log log n) rounds
Oε(n poly(log n))

space p.m.
[15]

(general)
O
( log(1/ε)·log log n

ε7

)
rounds

O(n) space p.m. Theorem 17

Parallel
MWM

O (m · poly (1/ε, log n))
work

O (poly (1/ε, log n))
depth

[21]
(general)

O
(

m log(1/ε)
ε6

)
work

O
( log n·log(1/ε)

ε8

)
depth Theorem 15

MCbM N/A N/A

O
(

m log n
ε2

)
work

O
(

log3 n
ε2

)
depth Theorem 31

Concurrent, Independent Work. In concurrent, independent work, Zheng and Hen-
zinger [34] study the maximum weighted matching problem in the sequential and dynamic
settings using auction-based algorithms. Their simple and elegant algorithm makes use of
a sorted list of items (by utility) for each bidder and then matches the bidders one by one
individually (in round-robin order) to their highest utility item. They also extend their
algorithm to give dynamic results. Due to the sequential nature of their matching procedure,
they do not provide any results in scalable models such as the streaming, MPC, parallel, or
distributed models.

1.1 Other Related Works
There has been no shortage of work done on bipartite matching. In addition to the works we
discussed in the introduction, there has been a number of other relevant works in this general
area of research. Here we discuss the additional works not discussed in Section 1. These
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include a plethora of results for (1−ε)-approximate maximum cardinality matching as well as
some additional results for MWM and b-matching. Most of these works use various methods
to find augmenting paths with only a few works focusing on auction-based techniques. We
hope that our paper further demonstrates the utility of auction-based approaches in this
setting and will lead to additional works in this area in the future. Although our work focuses
on the bipartite matching problem, we also provide the best-known bounds for the matching
problem on general graphs here, although this is a harder problem than our setting. We
separate these results into the bipartite matching results, the general matching results, and
lower bounds.

General Matching. A number of works have considered MCM in the streaming setting,
providing state-of-the-art bounds in this setting. Fischer et al. [14] gave a deterministic
(1− ε)-approximate MWM algorithm in general graphs in the semi-streaming model that
uses poly(1/ε) passes, improving exponentially on the number of passes of Lotker et al. [28].
Very recently, Assadi et al. [4] provided a semi-streaming algorithm in optimal O(n) space
and O (log n log(1/ε)/ε) passes. They also provide a MWM algorithm that also runs in O(n)
space but requires Ω̃(n/ε) passes. Please refer to these papers and references therein for older
results in this area. Ahn and Guha [2] also considered the general weighted non-bipartite
maximum matching problem in the semi-streaming model and utilize linear programming
approaches for computing a (2/3− ε)-approximation and (1− ε)-approximation that uses
O(log(1/ε)/ε2) passes, O

(
n ·
(

log(1/ε)
ε2 + log n/ε

ε

))
space, and O

(
log n

ε4

)
passes, O

(
n log n

ε4

)
space, respectively.

Bipartite Matching. Ahn and Guha [2] also extended their results to the bipartite MWM
and b-Matching settings with small changes. Specifically, in the MWM setting, they give
a O(log(1/ε)/ε2) pass, O(n · ((log(1/ε))/ε2 + (log n/ε)/ε)) space algorithm. For maximum

cardinality b-matching, they give a O(log n/ε3) pass and Õ

(∑
i∈L∪R

bi

ε3

)
space algorithm.

For exact bipartite MWM in the semi-streaming model, Liu et al. [26] gave the first streaming
algorithm to break the n-pass barrier in the exact setting; it uses Õ(n) space and Õ(

√
m)

passes using interior point methods, SDD system solvers, and various other techniques to
output the optimal matching with high probability. Work on bipartite MWM prior to [26]
either required Ω(n log n) passes[22] or only found approximate solutions [1, 2, 23].

Lower Bounds. Several papers have looked at matching problems from the lower bound
side. Konrad et al. [24] considered the communication complexity of graph problems in
a blackboard model of computation (for which the simultaneous message passing model
of Dobzinski et al. [11] is a special variant). Specifically, they show that any non-trivial
graph problem on n vertices require Ω(n) bits [24] in communication complexity. In a
similar model called the demand query model, Nisan [32] showed that any deterministic
algorithm that runs in no(1) rounds where in each round at most n1.99 demand queries are
made, cannot find a MCM within a no(1) factor of the optimum. This is in contrast to
randomized algorithms which can make such an approximation using only O(log n) rounds.
For streaming matching algorithms, Assadi [3] provided a conditional lower bound ruling out
the possibilities of small constant factor approximations for two-pass streaming algorithms
that solve the MCM problem. Such a lower bound also necessarily extends to MWM and
MCbM. Goel et al. [17] provided a n1+Ω(1/ log log n) lower bound for the one-round message
complexity of bipartite (2/3 + ε)-approximate MCM (this also naturally extends to a space
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lower bound). For older papers on these lower bounds, please refer to references cited within
each of the aforementioned cited papers. Finally, Assadi et al. [5] showed that any streaming
algorithm that approximates MCM requires either nΩ(1) space or Ω(log(1/ε)) passes.

Unweighted to Weighted Matching Transformations. Current transformations for trans-
forming unweighted to weighted matchings all either:

lose a factor of 2 in the approximation factor [18, 33], or
increase the running time of the algorithm by an exponential factor in terms of 1/ε,
specifically, a factor of ε−O(1/ε) [7].

Thus, we cannot use such default transformations from unweighted matchings to weighted
matchings in our setting since all of the complexity measures in this paper have only
polynomial dependence on ε and all guarantee (1− ε)-approximate matchings. However, we
do make use of weighted to weighted matching transformations provided our original weighted
matching algorithms have only polylogarithmic dependence on the maximum ratio between
edge weights in the graph. Such transformations from weighted to weighted matchings do
not increase the approximation factor and also allows us to eliminate the polylogarithmic
dependence on the maximum ratio of edge weights.

2 Preliminaries

This paper presents algorithms for bipartite matching under various settings. The input
consists of a bipartite graph G = (L ∪ R, E). We denote the set of neighbors of any
i ∈ L, j ∈ R by N(i), N(j), respectively. We present (1− ε)-approximation algorithms where
ε ∈ (0, 1) is our approximation parameter. All notations used in all of our algorithms in this
paper are given in Table 2. The specified weight of an edge (i, j) will become the valuation
of the bidder i for item j. Due to space constraints, we defer most of our proofs to the full
version of our paper.

2.1 Scalable Model Definitions

In addition, we consider a number of scalable models in our paper including the blackboard
distributed model, the semi-streaming model, the massively parallel computation
(MPC) model, and the parallel shared-memory work-depth model.

Blackboard distributed model. We use the blackboard distributed model as defined in [11].
There are n players, one for each vertex of the left side of our bipartite graph (we assume
wlog that the left side of the graph contains more vertices). The players engage in a fixed
communication protocol using messages sent to a central coordinator. In other words,
players write on a common “blackboard.” Each players can receive a (not necessarily
identical) message in each round from the coordinator. Players communicate using rounds of
communication where in each round the player sends a message (of some number of bits) to
the central coordinator. In every round, players choose to send messages depending solely on
the contents of the blackboard and their private information. Termination of the algorithm
and the final matching are determined by the central coordinator and the contents of the
blackboard. The measure of complexity is the number of rounds of the algorithm and the
message size sent by each player in each round. One can also measure the total number of
bits send by all messages by multiplying the two.
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Table 2 Table of Notations.

Symbol Meaning

ε approximation parameter
L, R bidders, items, resp. WLOG |L| ≤ |R|

i, j, i′, j′ i ∈ L, j ∈ R, i′ ∈ L′, j′ ∈ R′, i′ (resp. j′) indicates copy of i (resp. j)
pj current price of item j

Di demand set of bidder i

(i, ai) bidder i ∈ L and currently matched item ai

oi the item matched to bidder i in OPT
ui the utility of bidder i which is calculated by 1 − pai

vi(j) the valuation of bidder i for item j, i.e. the weight of edge (i, j)
Ci, Cj copies of bidder i ∈ L, copies of item j ∈ R, resp.
L′, R′ L′ =

⋃
i∈L

Ci, R′ =
⋃

j∈R
Cj

E′, G′ E′ = {(i(k), j(l)) | (i, j) ∈ E, k ∈ [bi], l ∈ [bj ]}, G′ = (L′ ∪ R′, E′)
ci′ price cutoff for bidder i′

N ratio of the maximum weighted edge over the minimum weighted edge
vi the valuation function for bidder i

Gd induced subgraph consisting of (∪i∈LDi) ∪ L

M̂d a non-duplicate maximal matching in G′
d

M ′
d, Md produced matching in G′, corresponding matching in G, resp.

Mmax matching with largest cardinality produced

Semi-streaming model. In this paper, we use the semi-streaming model with arbitrary
ordered edge insertions. Edges are arbitrarily (potentially adversarially) ordered in the stream.
For this paper, we only consider insertion-only streams. The space usage for semi-streaming
algorithms is bounded by Õ(n). The relevant complexity measures in this model are the
number of passes of the algorithm and the space used.

Massively parallel computation (MPC) model. The massively parallel computation (MPC)
model is a distributed model where different machines communicate with each other via a
communication network. There are M machines, each with S space, and these machines
communicate with each using Q rounds of communication. The initial graph is given in terms
of edges and edges are partitioned arbitrarily across the machines. The relevant complexity
measures are the total space usage (M · S), space per machine S, and number of rounds of
communication Q.

Parallel shared-memory work-depth model. The parallal shared-memory work-depth model
is a parallel model where different processors can process instructures in parallel and read and
write from the same shared-memory. The relevant complexity measures for an algorithm in
this model are the work which is the total amount of computation performed by the algorithm
and the depth which is the longest chain of sequential dependencies in the algorithm.

3 An Auction Algorithm for (1 − ε)-Approximate Maximum Weighted
Bipartite Matching

We present the following auction algorithm for maximum (weighted) bipartite matching
(MWM) that is a generalization of the simple and elegant algorithm of Assadi et al. [6] to
the weighted setting. Our generalization requires several novel proof techniques and recovers
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the round guarantee of Assadi et al. [6] in the maximum cardinality matching setting when
the weights of all edges are 1. Furthermore, we answer an open question posed by Dobzinski
et al. [11] for developing a (1− ε)-approximation auction algorithm for maximum weighted
bipartite matching for which no prior algorithms are known. Throughout this section, we
denote the maximum ratio between two edge weights in the graph by R. Our algorithm can
also be easily extended into algorithms in various scalable models:

a semi-streaming algorithm which uses O (n · log n · log(1/ε)) space (the number of vertices
in the bipartite graph) and which requires O(log(1/ε)/ε7) rounds,
a shared-memory parallel algorithm using O

(
n log n

ε9

)
work and O

( 1
ε8

)
depth, and

an MPC algorithm using O(log(1/ε)/ε7) rounds, O(n) space per machine, and O
(

n log n
ε

)
total space.

In contrast, the best-known semi-streaming MWM algorithm of Ahn and Guha [1] requires
Õ(log(1/ε)/ε2) passes and Õ

(
n log n

ε2

)
space. Our paper shows a Õ(1/ε5) round algorithm

that instead uses O(n log(1/ε)) space. Since ε = Ω(1/n) (or otherwise we obtain an exact
maximum weight matching), our algorithm works in the semi-streaming model for all possible
values of ε whereas Ahn and Guha [1] no longer works in semi-streaming when ε is small
enough.

Our algorithm follows the general framework given in [6]. However, both our algorithm
and our analysis require additional techniques. The main hurdle we must overcome is the
fact that the weights may be much larger than the number of bidders and items. In that
case, if we use the MCM algorithm trivially in this setting, the number of rounds can be
very large, proportional to wmax

ε2 where wmax is the maximum weight of the edge. We avoid
this problem in our algorithm, instead obtaining only poly log n and ε dependence in the
number of rounds. Our main result in this section is the following (recall from Section 1).

▶ Theorem 1 (Maximum Weight Bipartite Matching). There exists an auction algorithm
for maximum weight bipartite matching (MWM) that gives a (1− ε)-approximation for any
ε > 0 and runs in O

(
log n·log(1/ε)

ε8

)
rounds of communication (with high probability) and with

O
(
log2 n

)
bits per message. This algorithm can be implemented in the multi-round, semi-

streaming model using O (n · log n · log(1/ε)) space and O
(

log(1/ε)
ε7

)
passes. This algorithm

can be implemented in the work-depth model in O
(

m·log(1/ε)
ε6

)
work and O

(
log n·log(1/ε)

ε8

)
depth. Finally, our algorithm can be implemented in the MPC model using O(log(1/ε)/ε7)
rounds, O(n) space per machine, and O

(
m log(1/ε) log n

ε

)
total space.

Before we give our algorithm, we give some notation used in this section.

Notation. The input bipartite graphs is represented by G = (L ∪R, E) where L is the set
of bidders and R is the set of items. Let N(v) denote the neighbors of node v ∈ L ∪R. We
use the notation i ∈ L to denote bidders and j ∈ R to denote items. For a bidder i ∈ L,
the valuation of i for items in R is defined as the function vi : R→ Z≥0 where the function
outputs a non-negative integer. If vi(j) > 0, for any j ∈ R, then j ∈ N(i). Each bidder can
match to at most one item. We denote the bidder item pair by (i, ai) where ai is the matched
item and ai = ⊥ if i is not matched to any item. For any agent i where ai ̸= ⊥, the utility
of a bidder i given its matched item ai is ui ≜ vi(ai)− pai

where pai
is the current price of

item ai. For an agent i where ai = ⊥, the utility of agent i is 0. We denote an optimum
matching by OPT. We use the notation i ∈ OPT to denote a bidder who is matched in
OPT and oi to denote the item matched to bidder i in OPT.
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Input Specifications. In this section, we assume all weights are poly(n) where n = |L|+ |R|.
We additionally assume the following characteristics about our inputs because we can perform
a simple pre-processing of our graph to satisfy these specifications. Provided an input graph
G = (L ∪ R, E) with weights vi(j) for every edge (i, j) ∈ E, we find the maximum weight
among all the weights of the edges, wmax = max(i,j)∈E (vi(j)). We rescale the weights of
all the edges by 1

wmax
and remove all edges with rescaled weight < ε⌈logε m⌉+1. This upper

bound of ε⌈logε m⌉+1 is crucial in our analysis.
In other words, we create a new graph G′ = (L∪R, E′) with the same set of bidders L and

items R. We associate the new weight functions v′
i with each bidder i ∈ L where (i, j) ∈ E′ if

vi(j) ≥ wmax · ε⌈logε m⌉+1 and v′
i(j) = vi(j)/wmax for each (i, j) ∈ E′. Provided that finding

the maximum weight edge can be done in O(1) rounds in the blackboard distributed and
MPC models, O(1) passes in the streaming model, and O(n + m) work and O(1) depth in the
parallel model, we assume the input to our algorithms is G′ (instead of the original graph G).
In other words, we assume all inputs G = (V, E) to our algorithm have scaled edge weights
and vi(j) for i ∈ L, j ∈ R are functions that return the scaled edge weights in the rest of this
section.

3.1 Detailed Algorithm
We now present our auction algorithm for maximum weighted bipartite matching in Al-
gorithm 1. The algorithm works as follows. Recall that we also assume the input to our
algorithm is the scaled graph. This means that the maximum weight of the scaled edges is
1 and there exists at least one edge with weight 1; hence, the maximum weight matching
will have value at least 1. We also initialize the tuples that keep track of matched items.
Initially, no items are assigned to bidders (Algorithm 1) and the prices of all items are set to
0 (Algorithm 1).

We perform ⌈ log2(N)
ε4 ⌉ phases of bidding (Algorithm 1). In each phase, we form the demand

set Di of each unmatched bidder i. The demand set is defined to be the set of items with non-
zero utility which have approximately the maximum utility value for bidder i (Algorithm 1).
This procedure is different from both MCM and MCbM (where no slack is needed in creating
the demand set) but we see in the analysis that we require this slack in the maximum utility
value to ensure that enough progress is made in each round. Then, we create the induced
subgraph consisting of all unmatched bidders and their demand sets (Algorithm 1). We find
an arbitrary maximal matching in this created subgraph (Algorithm 1) by first finding the
maximal matching in order of decreasing buckets (from highest – bucket with the largest
weights – to lowest). This means that we call our maximal matching algorithm O(log(N))
times first on the induced subgraph consisting of the highest bucket, removing the matches,
and then on the induced subgraph of the remaining edges plus the next highest bucket, and
so on. We use the folklore distributed maximal matching algorithm where in each round, a
bidder uniformly-at-random picks a neighbor to match; this algorithm is also used in [11] for
the maximal matching step. This simple algorithm terminates in O(log n) rounds with high
probability using O(log n) communication complexity. Such randomization is necessary to
obtain O(log n) rounds using O(log n) communication complexity.

We rematch items according to the new matching (Algorithm 1). We then increase the
price of each rematched item. The price increase depends on the weight of the matched edge
to the item; higher weight matched edges have larger increases in price than smaller weight
edges. Specifically, the price is increased by ε · vi(ai) where vi(ai) is the weight of the newly
matched edge between i and ai (Algorithm 1). The intuition behind this price increase is
that we want to increase the price proportional to the weight gained from the matching since
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Algorithm 1 Auction Algorithm for Maximum Weighted Bipartite Matching.
Input: A scaled graph G = (L∪R, E), parameter 0 < ε < 1, and the scaling factor wmax.
Output: An (1− 6ε)-approximate maximum weight bipartite matching.

1: For each bidder i ∈ L, set (i, ai) to ai = ⊥.
2: For each item j ∈ R, set pj = 0.
3: for d = 1, . . . , ⌈ log2(N)

ε4 ⌉ do
4: for each unmatched bidder i ∈ L do
5: Let Ui ≜ maxj∈N(i),vi(j)−pj>0 (vi(j)− pj).
6: Let Di ≜ {j ∈ R | pj < vi(j), vi(j)− pj ≥ Ui − ε · vi(j)}.
7: Create the subgraph Gd as the subgraph consisting of

(⋃
i∈L Di

)
∪ L and all edges.

8: Find any arbitrary maximal matching Md of Gd in order of highest bucket to lowest.
9: for (i, j) ∈Md do

10: match j to i by setting ai = j and ai′ = ⊥ for the previous owner i′ of j.
11: Increase the price of j to pj ← pj + ε · vi(j).
12: Let M ′ be the matched edges in this current iteration.
13: Return the matching M = arg maxM ′

(
wmax ·

∑
i∈L vi(ai)

)
as the approximate maximum

weight matching and (i, ai) ∈M as the matched edges.

the price increase takes away from the overall utility of our matching. If not much weight
is gained from the matching, then the price should not increase by much; otherwise, if a
large amount of weight is gained from the matching, then we can afford to increase the price
by a larger amount. We see later on in our analysis that this allows us to bucket the items
according to their matched edge weight into ⌈log(1/ε) m⌉ buckets. Such bucketing is useful in
ensuring that we have sufficiently many happy bidders with a sufficiently large total matched
weight. Finally, we return all matched items and bidders as our approximate matching and
the sum of the weights of the matched items as the approximate weight. Obtaining the
maximum weight of the matching in the original, unscaled graph is easy. We multiply the
edge weights by wmax and the sum of these weights is the total weight of our approximate
matching (Algorithm 1).

3.2 Analysis
In this section, we prove the approximation factor and round complexity of our algorithm.
We use the same definition of happy that is defined in [6].

▶ Definition 3 (ε-Happy [6]). A bidder i is ε-happy if ui ≥ vi(j)− pj − ε for every j ∈ R.

▶ Definition 4 (Unhappy). A bidder i is unhappy at the end of round d if they are unmatched
and their demand set is non-empty.

Note that a happy bidder may never be unhappy and vice versa. For this definition, we
assume that the demand set of a bidder can be computed at any point in time (not only
when the Algorithm computers it).

Approach. The main challenge we face in our MWM analysis is that it is no longer sufficient
to just show at least (1 − ε)-fraction of bidders in OPT are happy in order to obtain the
desired approximation. Consider this simple example. Suppose a given instance has an
optimum solution OPT with six matched bidders where one bidder is matched to an item
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via a weight-1 edge. It also has five additional bidders matched to items via weight- 1√
n

edges.
Suppose we set ε = 1/6 to be a constant. Then, requiring 5/6-fraction of the bidders in OPT
to be happy is not sufficient to get a 5/6-factor approximation. Suppose the five bidders
matched with edges of weight 1√

n
are the happy bidders. This is sufficient to satisfy the

condition that 5/6-fraction of the bidders in OPT are happy. However, the total combined
weight of the matching in this case is 5√

n
while the weight of the optimum matching is(

1 + 5√
n

)
. The returned matching is then a 5√

n
-approximate MWM and for large n, this is

much less than the desired 5/6-factor approximation.
Instead, we require a specific fraction of the total weight of the optimum solution, WOPT,

to be matched in our returned matching. We ensure this new requirement by considering
two types of unhappy bidders. Type 1 unhappy bidders are bidders who are unhappy in
round k − 1 and remain unmatched in round k. Type 2 unhappy bidders are bidders who
are unhappy in round k − 1 and become matched in round k. We show that there exists a
round where the following two conditions are satisfied:

1. We bucket the bidders in OPT according to the weight of their matched edge in OPT
such that bidders matched with similar weight edges are in the same bucket; there exists
a round where at most (ε2)-fraction of the bidders in each bucket are Type 1 unhappy.

2. We charge the weight a Type 2 unhappy bidder obtains in round k to the bidder in round
k − 1; there exists a round k − 1 where a total of at most ε ·WOPT weight is charged to
Type 2 unhappy bidders.

Simultaneously satisfying both of the above conditions is enough to obtain our desired
approximation. The rest of this section is devoted to showing our precise analysis using the
above approach.

Detailed Analysis. Recall that we defined the utility of agent i to be the value of the item
matched to her minus its price ui = vi(ai) − pai . In this section, we use the definition of
ε-happy from Definition 3.

A similar observation to the observation made in [6] about the happiness of matched
bidders can also be made in our case; however, since we are dealing with edge weights, we
need to be careful to increment our prices in terms of the newly matched edge weight. In
other words, two different bidders could be ε1-happy and ε2-happy after incrementing the
price of their respective items by ε1 and ε2 where ε1 ̸= ε2; the incremented prices ε1 and
ε2 depend on the matched edge weights of the items assigned to the bidders. We prove the
correct happiness guarantees given by our algorithm below.

▶ Observation 5. At the end of every round, matched bidder i with matched edge (i, ai)
where ai is priced at pai

are (2ε · vi(ai))-happy. At the end of every round, unmatched bidders
with empty demand sets Di are ε-happy.

For the weighted case, we need to consider what we call weight buckets. We define these
weight buckets with respect to the optimum matching OPT. Recall our notation where
i ∈ OPT is a bidder who is matched in OPT and oi is the matched item of the bidder in
OPT. Bidder i is in the b-th weight bucket if εb−1 ≤ vi(oi) < εb−2.

▶ Observation 6. All bidders i ∈ OPT in bucket b satisfy εb−1 ≤ vi(oi) < εb−2.

We now show that if a certain number of bidders in OPT are happy in our matching,
then we obtain a matching with sufficiently large enough weight. However, our guarantee
is somewhat more intricate than the guarantee provided in [6]. We show that in ⌈ log2(N)

ε4 ⌉
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rounds, there exists one round d where a set of sufficient conditions are satisfied to obtain our
approximation guarantee. To do this, we introduce two types of unhappy bidders. Specifically,
Type 1 and Type 2 unhappy bidders.

Each unhappy bidder results in some loss of total matched weight. However, at the end
of round k− 1 it is difficult to determine the exact amount of weight lost to unhappy bidders.
Thus, in our analysis, we determine the amount of weight lost to unhappy bidders at the
end of round k − 1 in round k. The way that we determine the weight lost in round k − 1
is by retroactively categorizing an unhappy bidder in round k − 1 as a Type 1 or Type 2
unhappy bidder depending on what happens in round k. Thus, for our analysis, we categorize
the bidders into categories of unhappy bidders for the previous round.

A Type 1 unhappy bidder in round k − 1 is a bidder i that remains unmatched at the
end of round k. In other words, a Type 1 unhappy bidder was unhappy in round k − 1 and
either remains unhappy in round k or becomes happy because it does not have any demand
items anymore (and remains unmatched). A Type 2 unhappy bidder i in round k − 1 is a
bidder who was unhappy in round k− 1 but is matched to an item in round k. Thus, a Type
2 unhappy bidder i in round k− 1 becomes happy in round k because a new item is matched
to i. Both types of bidders are crucial to our analysis given in the proof of Lemma 7 since
they contribute differently to the potential amount of value that could be matched by our
algorithm.

In the following lemma, let OPT be the optimum matching in graph G and WOPT =∑
i∈OPT vi(oi). Let Bb be the set of bidders i ∈ OPT in weight bucket b. If a Type 2

unhappy bidder i gets matched to ai in round k, we say the weight vi(ai) is charged to
bidder i in round k−1. We denote this charged weight as ci(ai) when performing calculations
for round k − 1.

▶ Lemma 7. Provided G = (L ∪ R, E) and an optimum weighted matching OPT with
weight WOPT =

∑
i∈OPT vi(oi), if in some round d of Algorithm 1 of Algorithm 1 both of the

following are satisfied,

1. at most ε2 · |Bb| of the bidders in each bucket b are Type 1 unhappy and

2. at most ε ·WOPT weight is charged to Type 2 unhappy bidders,
then the matching in G has weight at least (1− 6ε) ·WOPT.

Proof. In such an iteration r, let Happy denote the set of all happy bidders. For any bidder
i ∈ Happy ∩OPT, by Definition 3 and Observation 5, ui ≥ vi(oi)− poi

− 2ε · vi(ai) where
oi is the item matched to i in OPT and ai is the item matched to i from our matching.

Before we go to the core of our analysis, we first make the observation that we can, in
general, disregard prices of the items in our analysis. Let M be our matching. The sum of
the utility of every matched bidder in our matching can be upper and lower bounded by the
following expression:

∑
i∈M

(vi(ai)− pai) ≥
∑

i∈OPT∩Happy
ui ≥

∑
i∈OPT∩Happy

(vi(oi)− poi − 2ε · vi(ai)) .

As in the maximum cardinality matching case, all items with non-zero price are matched
to a bidder. We can then simplify the above expression to give
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∑
i∈M

vi(ai) −
∑
j∈R

pj ≥
∑

i∈OPT∩Happy

vi(oi) −
∑

i∈OPT∩Happy

poi −
∑

i∈OPT∩Happy

2ε · vi(ai) (1)

∑
i∈M\(OPT∩Happy)

vi(ai) +
∑

i∈OPT∩Happy

(1 + 2ε)vi(ai) −
∑

j ̸∈{oi|i∈OPT∩Happy}

pj ≥
∑

i∈OPT∩Happy

vi(oi)

(2)∑
i∈M

(1 + 2ε)vi(ai) −
∑

j ̸∈{oi|i∈OPT∩Happy}

pj ≥
∑

i∈OPT∩Happy

vi(oi). (3)

Equation (1) follows from the fact that all non-zero priced items are matched. Equation (2)
follows from separating OPT ∩Happy from the left hand side and moving the summation
of the 2ε · vi(ai) values over OPT ∩Happy from the right hand side to the left hand side.
Finally, Equation (3) follows because

∑
i∈M (1 + 2ε)vi(ai) upper bounds the left hand side

expression for
∑

i∈M\(OPT∩Happy) vi(ai) +
∑

i∈OPT∩Happy(1 + 2ε)vi(ai).
Let Unhappy1 denote the set of Type 1 unhappy bidders and Unhappy2 denote the set

of Type 2 unhappy bidders. We let ci(ai) be the weight charged to bidder i in Unhappy2 in
the next round. Recall that each bidder in Unhappy2 is matched in the next round.

For each bucket, b, we can show the following using our assumption that at most ε2 · |Bb|
of the bidders in bucket b are Type 1 unhappy,

∑
i∈Bb∩Happy

vi(oi) ≥
∑

i∈Bb\Unhappy2

vi(oi)− ε2 · εb−2 · |Bb| (4)

≥
∑

i∈Bb\Unhappy2

vi(oi)− ε · εb−1 · |Bb| (5)

≥
∑

i∈Bb\Unhappy2

vi(oi)−
∑
i∈Bb

ε · vi(oi). (6)

Equation (4) shows that one can lower bound the sum of the optimum values of all happy
bidders in bucket b by the sum of the optimum values of all bidders who are not Type-2
unhappy minus some factor. First,

∑
i∈Bb\UNHAP P Y2

vi(oi) is the sum of the optimum values
of all bidders in bucket b except for the Type-2 unhappy bidders. Now, we need to subtract
the maximum sum of values given to the Type-1 unhappy bidders. We know that bucket b

has at most ε2 · |Bb| Type-1 unhappy bidders. Each of these bidders could be assigned an
optimum item with value at most εb−2 (by Observation 6). Thus, the maximum value lost to
Type-1 unhappy bidders is ε2 · εb−2 · |Bb|, leading to Equation (4). Thus, the maximum value
of weight lost to all Type 1 unhappy bidders in bucket b is ε2 · εb−2 · |Bb|. Then, Equation (6)
follows because vi(oi) ≥ εb−1 for all i ∈ Bb. This means that

∑
i∈Bb

vi(oi) ≥ εb−1 · |Bb|.
Summing Equation (6) over all buckets b we obtain

∑
i∈OPT∩Happy

vi(oi) ≥
∑

i∈OPT\Unhappy2

vi(oi)−
∑

i∈OPT
ε · vi(oi). (7)

We now substitute our expression obtained in Equation (7) into Equation (3),

∑
i∈M

(1 + 2ε)vi(ai)−
∑

j ̸∈{oi|i∈OPT∩Happy}

pj ≥
∑

i∈OPT\Unhappy2

vi(oi)−
∑

i∈OPT
ε · vi(oi). (8)
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The last thing that we need to show is a bound on the weight lost due to bidders in
OPT ∩ Unhappy2. We now consider our second assumption which states that at most
ε ·WOPT weight is charged to Type 2 unhappy bidders. Since all bidders i ∈ Unhappy2
become happy in the next round, we can bound the weights charged to the Type 2 unhappy
bidders using Observation 5 by∑

i∈OPT∩Unhappy2

ci(ai) ≥
∑

i∈OPT∩Unhappy2

(vi(oi)− poi − 2ε · ci(ai)) . (9)

Note first that
∑

j ̸∈{oi|i∈OPT∩Happy} pj ≥
∑

i∈OPT∩Unhappy2
poi

since OPT \
(OPT ∩Happy) includes OPT∩Unhappy2 so we can remove the prices from these bounds
in Equation (10). We add Equation (9) to Equation (8) and use our assumptions to obtain

∑
i∈M

(1 + 2ε)vi(ai) +
∑

i∈OPT∩Unhappy2

ci(ai) ≥
∑

i∈OPT

(1 − ε) · vi(oi) −
∑

i∈OPT∩Unhappy2

2ε · ci(ai) (10)

∑
i∈M

(1 + 2ε)vi(ai) ≥
∑

i∈OPT

(1 − ε) · vi(oi) −
∑

i∈OPT∩Unhappy2

(1 + 2ε) · ci(ai) (11)

≥

( ∑
i∈OPT

(1 − ε) · vi(oi)

)
− (1 + 2ε) · ε · WOPT (12)

∑
i∈M

vi(ai) ≥ (1 − 4ε)
(1 + 2ε) ·

∑
i∈OPT

vi(oi) (13)∑
i∈M

vi(ai) ≥ (1 − 6ε)WOPT. (14)

Equation (10) follows from summing
∑

i∈OPT(1− ε) · vi(oi) =
∑

i∈OPT\Unhappy2
vi(oi) +∑

i∈OPT∩Unhappy2
vi(oi)−

∑
i∈OPT ε · vi(oi) =

∑
i∈OPT(1− ε) · vi(oi). Equation (11) follows

from moving
∑

i∈OPT∩Unhappy2
ci(ai) to the right hand side. Equation (12) follows from

substituting our assumption that
∑

i∈OPT∩Unhappy2
ci(ai) ≤ ε ·WOPT. Equation (13) follows

from simple manipulations and since WOPT =
∑

i∈OPT vi(oi). Finally, Equation (14) follows
because (1−4ε)

(1+2ε) ≥ (1 − 6ε) for all ε > 0 and gives the desired approximation given in the
lemma statement. ◀

We show that the conditions of Lemma 7 are satisfied for at least one round if the
algorithm is run for at least ⌈ log2(N)

ε4 ⌉ rounds. We prove this using potential functions similar
to the potential functions used for MCM. We first bound the maximum value of these
potential functions.

▶ Lemma 8. Define the potential function Φitems ≜
∑

j∈R pj. Then the upper bound for
this potential is Φitems ≤WOPT.

Proof. We show that the potential function Φitems is always upper bounded by WOPT via
a simple proof by contradiction. Suppose that Φitems > WOPT, then, we show that the
matching obtained by our algorithm has weight greater than WOPT, a contradiction. For a
bidder/item pair, (i, ai), the weight of edge (i, ai) is at least pai

− 2ε · vi(ai). Let p′
ai

be the
price of ai before the last reassignment of ai to i. Furthermore, since i picked ai, it must mean
that vi(ai) > p′

ai
since ai would not be included in Di otherwise. This means that the sum of

the weights of all the matched edges is at least
∑

(i,ai) vi(ai) >
∑

(i,ai) p′
ai
≥ Φitems > WOPT

by our assumption that Φitems > WOPT. Thus, we obtain that we get a matching with
greater weight than the optimum weight matching, a contradiction. ◀
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▶ Lemma 9. There exists a phase d ≤ log2(N)
ε4 wherein both of the following statements are

satisfied:
1. At most ε2 · |Bb| bidders in bucket b are Type 1 unhappy for all buckets b;
2. The set of all Type 2 unhappy bidders results in a loss of less than ε ·WOPT weight (in

charged weight) where WOPT is the optimum weight attainable by the matching.

Recall that we assign each bidder to a weight bucket using the weight assigned to the
bidder in OPT.

Using the above lemmas, we can prove our main theorem that our algorithm gives a
(1− 7ε)-approximate maximum weight bipartite matching in O

(
log3(N)·log(n)

ε4

)
distributed

rounds using O(log n) communication complexity.

▶ Theorem 10. Algorithm 1 returns a (1 − 7ε)-approximate maximum weight bipartite
matching M in O

(
log3(N)·log n

ε4

)
rounds whp using O(log n) bits of communication per message

in the broadcast model.

Reducing the Round Complexity. We can use the following transformation from Gupta-
Peng [18] to reduce the round complexity at an increase in the communication complexity.
For completeness, we give the theorem for the transformation the full version of our paper.

▶ Theorem 11. There exists a (1−ε)-approximate distributed algorithm for maximum weight
bipartite matching that runs in either:

O
(

log n · log(1/ε)
ε7

)
rounds of communication using O

(
log2 n

ε

)
bits of communication, or

O
(

log n · log(1/ε)
ε8

)
rounds of communication using O

(
log2 n

)
bits of communication

where we assume the maximum ratio between weights of edges in the input graph is poly(n).
In the blackboard model, this requires a total of O

(
n log3 n log(1/ε)

ε8

)
bits of communication.

3.3 Semi-Streaming Implementation
The implementation of this algorithm in the semi-streaming model is very similar to the
implementation of the MCM algorithm of Assadi et al. [6].

▶ Lemma 12. Given a weighted graph G = (V, E) as input in an arbitrary edge-insertion
stream where all weights are at most poly(n), there exists a semi-streaming algorithm which
uses O

(
log2(N)

ε4

)
passes and O (n · log n · log(1/ε)) space that computes a (1−ε)-approximate

maximum weight bipartite matching for any ε > 0.

Reducing the Number of Passes. We use the transformation of [18] as stated the full
version of our paper to eliminate our dependence on n within our number of rounds. The
transformation is as follows. For each instance of (1 + ε)-MWM, we maintain the prices in
our algorithm for each of the nodes involved in each of the copies of our algorithm. When an
edge arrives in the stream, we first partition it into the relevant level of the appropriate copy
of the structure.

▶ Theorem 13. There exists a (1− ε)-approximate streaming algorithm for maximum weight
bipartite matching that uses O

(
log(1/ε)

ε7

)
passes in O (n · log n · log(1/ε)) space.
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3.4 Shared-Memory Parallel Implementation
The implementation of this algorithm in the shared-memory work-depth model follows
almost directly from our auction algorithm. We show the following lemma when directly
implementing our auction algorithm.

▶ Lemma 14. Given a weighted graph G = (V, E) as input where all weights are at most
poly(n), there exists a shared-memory parallel algorithm which uses O

(
m log2 n

ε4

)
work and

O
(

log4 n
ε4

)
depth that computes a (1− ε)-approximate maximum weight bipartite matching

for any ε > 0.

Using the transformations, we can reduce the number of rounds for our shared-memory
parallel algorithms.

▶ Theorem 15. Given a weighted graph G = (V, E) as input where all weights are at most
poly(n), there exists a shared-memory parallel algorithm which uses O

(
m log(1/ε)

ε6

)
work

and O
(

log(n)·log(1/ε)
ε8

)
depth that computes a (1− ε)-approximate maximum weight bipartite

matching for any ε > 0.

3.5 MPC Implementation
We implement our auction algorithm in the MPC model below.

▶ Lemma 16. Given a weighted graph G = (V, E) as input where all weights are at most
poly(n), there exists a MPC algorithm using O

(
log2(N)·log log n

ε4

)
rounds, O(n) space per

machine, and O (n log(1/ε) + m) total space that computes a (1− ε)-approximate maximum
weight bipartite matching for any ε > 0.

As before, we can improve the complexity of our MPC algorithm using the transformations
the full version of our paper.

▶ Theorem 17. Given a weighted graph G = (V, E) as input where all weights are at most
poly(n), there exists a MPC algorithm using O

(
log(1/ε)·log log n

ε7

)
rounds, O(n) space per

machine, and O
(

m log(1/ε) log n
ε

)
total space that computes a (1− ε)-approximate maximum

weight bipartite matching for any ε > 0.

4 A (1 − ε)-approximation Auction Algorithm for b-Matching

We show in this section that we also obtain an auction-based algorithm for MCbM by
extending the auction-based algorithm of [6]. This algorithm also leads to better streaming
algorithms for this problem. We use the techniques introduced in the auction-based MCM
algorithm of Assadi, Liu, and Tarjan [6] as well as new techniques developed in this section
to obtain a (1− ε)-approximation algorithm for bipartite maximum cardinality b-matching.
The maximum cardinality b-matching problem is defined in Definition 18.

▶ Definition 18 (Maximum Cardinality Bipartite b-Matching (MCbM)). Given an undirected,
unweighted, bipartite graph G = (L ∪ R, E) and a set of values {bv ≤ |R| | v ∈ L ∪ R}, a
maximum cardinality b-matching (MCbM) finds a matching of maximum cardinality
between vertices in L and R where each vertex v ∈ L ∪ R is matched to at most bv other
vertices.
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The key difference between our algorithm for b-matching and the MCM algorithm of [6]
is that we have to account for when more than one item is assigned to each bidder in L; in
fact, up to bi items in R can be assigned to any bidder i ∈ L. This one to many relationship
calls for a different algorithm and analysis. The crux of our algorithm in this section is to
create bi copies of each bidder i and bj copies of each item j. Then, copies of items maintain
their own prices and copies of bidders can each choose at most one item. We define some
notation to describe these copies. Let Ci be the set of copies of bidder i and Cj be the set of
copies of item j. Then, we denote each copy of i by i(k) ∈ Ci for k ∈ [bi] and each copy of j

by j(k) ∈ Cj for k ∈ [bj ]. As before, we denote a bidder and their currently matched item by(
i(k), ai(k)

)
.

In MCbM, we require that the set of all items chosen by different copies of the same
bidder to include at most one copy of each item. In other words, we require if j(k) ∈

⋃
i′∈Ci

ai′ ,
then no other j(l) ∈

⋃
i′∈Ci

ai′ for any j(k), j(l) ∈ Cj and k ≠ l. This almost reduces to the
problem of finding a maximum cardinality matching in a

∑
i∈L bi +

∑
j∈R bj sized bipartite

graph but not quite. Specifically, the main challenge we must handle is when multiple copies
of the same bidder want to be matched to copies of the same item. In this case, we cannot
match any of these bidder copies to copies of the same item and thus must somehow handle
the case when there exist items of lower price but we cannot match them.

In addition to handling the above hard case, as before, the crux of our proof relies on a
variant of the ε-happy definition and the definitions of appropriate potential functions.

Recall from the MCM algorithm of [6] that an ε-happy bidder has utility that is at least
the utility gained from matching to any other item (up to an additive ε). Such a definition
is insufficient in our setting since it may be the case that matching to a copy of an item that
is already matched to a different copy of the same bidder results in lower cost. However,
such a match is not helpful since any number of matches between copies of the same bidder
and copies of the same item contributes a value of one to the cardinality of the eventual
matching.

Our algorithm solves all of the above challenges and provides a (1 − ε)-approximate
MCbM in asymptotically the same number of rounds as the MCM algorithm of [6]. We
describe our auction based algorithm for MCbM next and the precise pseudocode is given
in Algorithm 2. Our algorithm uses the parameters defined in Table 2. We show the following
results using our algorithm. We discuss semi-streaming implementations of our algorithm
in Section 4.3. Let L be the half with fewer numbers of nodes.

▶ Theorem 2 (Maximum Cardinality Bipartite b-Matching). There exists an auction algorithm
for maximum cardinality bipartite b-matching (MCbM) that gives a (1− ε)-approximation
for any ε > 0 and runs in O

(
log n

ε2

)
rounds of communication. This algorithm can be

implemented in the multi-round, semi-streaming model using O
((∑

i∈L bi + |R|
)

log(1/ε)
)

space and O
( 1

ε2

)
passes. Our algorithm can be implemented in the shared-memory work-depth

model in O
(

log3 n
ε2

)
depth and O

(
m log n

ε2

)
total work.

4.1 Algorithm Description
The algorithm works as follows. We assign to each bidder, i, bi unmatched slots and the
goal is to fill all slots (or as many as possible). For each bidder i ∈ L and each item j ∈ R,
we create bi and bj copies, respectively, and assign these copies to new sets L′ and R′,
respectively (Algorithm 2). This step of the algorithm changes slightly in our streaming
implementation. For each bidder and item with an edge between them (i, j) ∈ E, we create
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Algorithm 2 Auction Algorithm for Bipartite b-Matching.
Input: Graph G = (L ∪R, E) and parameter 0 < ε < 1.
Output: An (1− ε)-approximate maximum cardinality bipartite b-matching.

1: Create L′, R′, E′ and graph G′. (Defined in Table 2.)
2: For each i′ ∈ L′, set (i′,⊥) where ai′ = ⊥, ci′ ← 0.
3: For each j′ ∈ R′, set pj′ = 0.
4: Set Mmax ← ∅.
5: for d = 1, . . . , ⌈ 2

ε2 ⌉ do
6: For each unmatched bidder i′ ∈ L′, find Di′ ← FindDemandSet(G′, i′, ci′) [Al-

gorithm 3].
7: Create G′

d.
8: Find any arbitrary non-duplicate maximal matching M̂d of Gd.
9: for (i′, j′) ∈ M̂d do

10: Set ai′ = j′ and aiprev
= ⊥ for the previous owner iprev of j′.

11: Increase pj′ ← pj′ + ε.
12: For each i′ ∈ L′ with Di′ ̸= ∅ and ai′ = ⊥, increase ci′ ← ci′ + ε.
13: Using M ′

d compute Md where for each (i′, j′) ∈M ′
d, add (i, j) to Md if (i, j) ̸∈Md.

14: If |Md| > |Mmax|, Mmax ←Md.
15: Return Mmax.

Algorithm 3 FindDemandSet(G′ = (L′ ∪ R′, E′), i′, ci′ ).

1: Let N ′(i′) = {j′ ∈ R′ | j(l) ̸= ai(k)∀i(k) ∈ Ci, ∀j(l) ∈ Cj ∧ pj′ ≥ ci′∀j′ ∈ Cj}.
2: Di′ ← arg minj′∈N ′(i′),pj′ <1 (pj′).
3: Return Di′ .

a biclique between Ci and Cj ; the edges of all created bicliques is the set of edges E′. The
graph G′ = (L′ ∪R′, E′) is created as the graph consisting of nodes in L′ ∪R′ and edges in
E′. As before, we initialize each bidder’s assigned item to ⊥ (Algorithm 2). Then, we set
the price for each copy in R′ to 0 (Algorithm 2).

In our MCbM algorithm, we additionally set a price cutoff for each bidder ci′ initialized
to 0 (Algorithm 2). Such a cutoff helps us to prevent bidding on lower price items previously
not bid on because they were matched to another copy of the same bidder. More details
on how the cutoff prevents bidders from bidding against themselves can be found in the
proof of Lemma 25. We maintain the maximum cardinality matching we have seen in Mmax
(Algorithm 2). We perform ⌈ 2

ε2 ⌉ rounds of assigning items to bidders (Algorithm 2). For
each round, we first find the demand set for each unmatched bidder i′ ∈ L′ using Algorithm 3
(Algorithm 2). The demand set is defined with respect to the cutoff price ci′ and the set of
items assigned to other copies of bidder i. The demand set considers all items j′ ∈ R′ that
are neighbors of i′ where no copy of j, j(k) ∈ Cj , is assigned to any copies of i and pj′ ≥ ci′

(Algorithm 3, Algorithm 3). From this set of neighbors, the returned demand set is the set
of item copies with the minimum price in N ′(i′) (Algorithm 3).

Using the induced subgraph of
(⋃

i′∈L′ Di′
)
∪L′ (Algorithm 2), we greedily find a maximal

matching while avoiding assigning copies of the same item to copies of the same bidder
(Algorithm 2). We call such a maximal matching that does not assign more than one copy of
the same item to copies of the same bidder to be a non-duplicate maximal matching. This
greedy matching prioritizes the unmatched items by first matching the unmatched items
and then matching the matched items. We can perform a greedy matching by matching an
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edge if the item is unmatched and no copies of the bidder it will match to is matched to
another copy of the item. For each newly matched item (Algorithm 2), we rematch the item
to the newly matched bidder (Algorithm 2). We increase the price of the newly matched
item (Algorithm 2). For each remaining unmatched bidder, we increase the cutoff price by ε

(Algorithm 2).
We compute the corresponding matching in the original graph using M ′

d (Algorithm 2) by
including one edge (i, j) in the matching if and only if there exists at least one bidder copy
i′ ∈ Ci matched to at least one copy of the item j′ ∈ Cj . Finally, we return the maximum
cardinality Mmax matching from all iterations as our (1−ε)-approximate maximum cardinality
b-matching (Algorithm 2).

4.2 Analysis
In this section, we analyze the approximation error of our algorithm and prove that it provides
a (1− ε)-approximate maximum cardinality b-matching.

Approach. We first provide an intuitive explanation of the approach we take to perform
our analysis and then we give our precise analysis. Here, we describe both the challenges
in performing the analysis and explain our choice of certain methods in the algorithm to
facilitate our analysis. We especially highlight the parts of our algorithm and analysis that
differ from the original MCM algorithm of [6]. First, in order to show the approximation
factor of our algorithm, we require that the utility obtained by a large number of matched
bidders from our algorithm is greater than the corresponding utility from switching to the
optimum items in the optimum matching. For b-matching, any combination of matched
items and bidder copies satisfy this criteria. Furthermore, matching multiple item copies
of the same item to bidder copies of the same bidder does not increase the utility of the
bidder. Thus, we look at matchings where at most one copy of each bidder is matched to at
most one copy of each item. Recall our definition of ε-happy given in Definition 3 and we let
Happy be the set of bidders satisfying that definition.

For b-matching, each bidder i is matched to a set of at most bi items. Let (i, Oi) ∈ OPT
denote the set of items Oi ⊆ R matched to bidder i in OPT. Recall [6] that the proof
requires ui ≥ 1 − poi

− ε for every bidder i ∈ Happy ∩ OPT to show that
∑

i∈L ui ≥∑
i∈Happy∩OPT 1 − poi − ε. Using our bidder copies, Ci, the crux of our analysis proof is

to show that for every (i, Oi) ∈ OPT, we can assign the items in Oi to the set of happy
bidder copies in Ci such that each happy bidder copy receives a unique item, denoted by ri′ ,
and ci′ ≤ pmin,ri′ where pmin,ri′ is the price of the minimum priced copy of ri′ . Using this
assignment, we are able to show once again that

∑
i′∈L′ ui′ ≥

∑
i′∈Happy∩OPT 1− pmin,ri′ − ε.

This requires a precise definition of Happy ∩ OPT. Let Si ⊆ Ci be the set of all happy
bidders in Ci. Recall that the optimum solution gives a matching between a bidder i ∈ L

and potentially multiple items in R; we turn this matching into an optimum matching in G′.
If |Si| ≤ |Oi|, then all happy copies in Si are in OPT; otherwise, we pick an arbitrary set of
|Oi| happy bidder copies in Si to be in OPT. Then, the summation is determined based on
this set of happy bidder copies in Happy ∩OPT.

Once we have shown this, the only other remaining part of the proof is to show that in
the ⌈ 2

ε2 ⌉ rounds that we run the algorithm the potential increases by ε for every unhappy
bidder in OPT for each round that the bidder is unhappy. As in the case for MCM, the
price of an item increases whenever it becomes re-matched. Hence, Πitems increases by ε

each time a bidder who was happy becomes unhappy. To ensure that Πbidders increases by ε
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for each bidder who was unhappy and remains unhappy, we set a cutoff price that increases
by ε for each round where a bidder remains unhappy. Thus, this cutoff guarantees that
Πbidders increases by ε each time.

Detailed Analysis. Now we show our detailed analysis that formalizes our approach described
above. We first show that our algorithm maintains both Invariant 20 and Invariant 21. We
also show our algorithm obeys the following invariant.

▶ Invariant 19. The set of matched items of all copies of any bidder i ∈ L contains at most
one copy of each item. In other words,

∣∣⋃
i′∈Ci

ai′ ∩ Cj

∣∣ ≤ 1 for all j ∈ R.

We restate two invariants used in [6] below. We prove that our Algorithm 2 also maintains
these two invariants.

▶ Invariant 20 (Non-Zero Price Matched [6]). Any item j with positive price pj > 0 is
matched.

▶ Invariant 21 (Maximum Utility [6]). The total utility of all bidders is at most the cardinality
of the matching minus the total price of the items.

▶ Lemma 22. Algorithm 2 maintains Invariant 19, Invariant 20, and Invariant 21.

We follow the style of analysis outlined in [6] by defining appropriate definitions of
ε-happy and appropriate potential functions Πitems and Πbidders. In the case of b-matching,
we modify the definition of ε-happy in this setting to be the following.

▶ Definition 23 ((ε, c)-Happy). A bidder i′ ∈ L′ is (ε, c)-happy (at the end of a round) if
ui′ ≥ 1− pj′ − ε for all neighbors in the set N ′(i′) where N ′(i′) is as defined in Algorithm 3
of Algorithm 3 (i.e. contains all neighboring items j′ where pj′ ≥ ci′ and no copy of the
neighbor is matched to another copy of i′).

At the end of each round, it is easy to show that all matched i′ and i′ whose demand sets
Di′ are empty are (ε, ci′)-happy.

▶ Lemma 24. At the end of any round, if bidder i′ is matched or if their demand set is
empty, Di′ = ∅, then i′ is (ε, ci′)-happy.

In addition to the new definition of happy, we require another crucial observation before
we prove our approximation guarantee. Specifically, we show that for any set of bidder copies
Ci and any set of |Ci| items I ⊆ R, Lemma 24 is sufficient to imply there exists at least one
assignment of items in I to happy bidders in Si such that each item is assigned to at most
one bidder and each happy bidder is assigned at least one item where the minimum price of
the item is at least the cutoff price of the bidder.

▶ Lemma 25. For a set of bidder copies Ci and any set I ⊆ R of |Ci| items where (i, j) ∈ E

for all items j ∈ I, there exists at least one assignment of items in I to bidders in Ci, where
we denote the item assigned to copy i′ by ri′ , that satisfy the following conditions:

1. The assignment is a one-to-one mapping between bidders in Ci and items in I.
2. Any item j matched to i′ is assigned to i′.
3. Let r∗

i′ be the lowest cost copy of item ri′ , r∗
i′ = arg minj′∈Cr

i′
(pj′); then pr∗

i′
≥ ci′ for all

i′ ∈ Ci.
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We now perform the approximation analysis. Suppose as in the case of MCM, we have at
least (1− ε)|OPT| happy bidders in OPT (i.e. |Happy ∩OPT| ≥ (1− ε)|OPT|), then we
show that we can obtain a (1− ε)-approximate MCbM. Let OPT be an optimum MCbM
matching and |OPT| be the cardinality of this matching.

▶ Lemma 26. Assuming |Happy ∩ OPT| ≥ (1 − ε)|OPT|, then we obtain a (1 − 2ε)-
approximate MCbM.

The potential argument proof is almost identical to that for MCM provided our use of
ci′ . Specifically, as in the case for MCM, we use the same potential functions and using
these potential functions, we show that our algorithm terminates in O

( 1
ε2

)
rounds. The

key difference between our proof and the proof of MCM explained in [6] is our definition of
Πbidders which is precisely defined in the proof of Lemma 27 below.

▶ Lemma 27. In ⌈ 2
ε2 ⌉ rounds, there exists at least one round where |OPT ∩ Happy| ≥

(1− ε)|OPT|.

Using the above lemmas, we can prove the round complexity of Theorem 2 to be O
( 1

ε2

)
by Lemma 26 and Lemma 27.

▶ Theorem 28. There exists an auction algorithm for maximum cardinality bipartite b-
matching (MCbM) that gives a (1− ε)-approximation for any ε > 0 and runs in O

(
log n

ε2

)
rounds of communication using O(b log n) bits per message in the blackboard distributed model.
In total, the number of bits used by the algorithm is O

(
nb log2 n

ε2

)
.

4.3 Semi-Streaming Implementation
We now show an implementation of our algorithm to the semi-streaming setting and show
the following lemma which proves the semi-streaming portion of our result in Theorem 2.
We are guaranteed ε ≥ 1

2n2 ; otherwise, an exact matching is found. In order to show the
space bounds, we use an additional lemma below that upper and lower bounds the prices of
any copies of the same item in R′.

▶ Lemma 29. For any j ∈ R, let jmin be the minimum priced copy in Cj and jmax be the
maximum priced copy in Cj. Then, pjmax − pjmin ≤ ε.

Using the above, we prove our desired bounds on the number of passes and the space
used.

▶ Theorem 30. There exists a semi-streaming algorithm for maximum cardinality bipartite
b-matching that uses O

( 1
ε2

)
rounds and Õ

((∑
i∈L bi + |R|

)
log(1/ε)

)
space where L is the

side with the smaller number of nodes in the input graph.

We note that the space bound is necessary in order to report the solution. (There exists a
given input where reporting the solution requires Õ

((∑
i∈L bi + |R|

)
log(1/ε)

)
space.) Thus,

our algorithm is tight with respect to this notion.

4.4 Shared-Memory Parallel Implementation
We now show an implementation of our algorithm to the shared-memory parallel setting.
The main challenge for this setting is obtaining an algorithm for obtaining non-duplicate
maximal matchings. To obtain non-duplicate maximal matchings, we just need to modify
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the maximal matching algorithm of [9] to obtain a maximal matching with the non-duplicate
characteristic. Namely, the modification we make is to consider all copies of a node to be
neighbors of each other. Since there can be at most n copies of a node, this increases the
degree of each node by at most n. Hence, the same analysis as the original algorithm still
holds in this new setting.

▶ Theorem 31. There exists a shared-memory parallel algorithm for maximum cardinality
bipartite b-matching that uses O

(
log3 n

ε2

)
depth and O

(
m log n

ε2

)
total work where L is the

side with the smaller number of nodes in the input graph.
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Abstract
A temporal graph is a graph whose edges appear only at certain points in time. In these graphs,
reachability among nodes relies on paths that traverse edges in chronological order (temporal paths).
Unlike standard paths, temporal paths may not be composable, thus the reachability relation is not
transitive and connected components (i.e., sets of pairwise temporally connected nodes) do not form
equivalence classes, a fact with far-reaching consequences.

Recently, Casteigts et al. [FOCS 2021] proposed a natural temporal analog of the seminal
Erdős-Rényi random graph model, based on the same parameters n and p. The proposed model is
obtained by randomly permuting the edges of an Erdős-Rényi random graph and interpreting this
permutation as an ordering of presence times. Casteigts et al. showed that the well-known single
threshold for connectivity in the Erdős-Rényi model fans out into multiple phase transitions for
several distinct notions of reachability in the temporal setting.

The second most basic phenomenon studied by Erdős and Rényi in static (i.e., non-temporal)
random graphs is the emergence of a giant connected component. However, the existence of a similar
phase transition in the temporal model was left open until now. In this paper, we settle this question.
We identify a sharp threshold at p = log n/n, where the size of the largest temporally connected
component increases from o(n) to n − o(n) nodes. This transition occurs significantly later than in
the static setting, where a giant component of size n − o(n) already exists for any p ∈ ω(1/n) (i.e.,
as soon as p is larger than a constant fraction of n). Interestingly, the threshold that we obtain holds
for both open and closed connected components, i.e., components that allow, respectively forbid,
their connecting paths to use external nodes – a distinction arising from the absence of transitivity.

We achieve these results by strengthening the tools from Casteigts et al. and developing new
techniques that provide means to decouple dependencies between past and future events in temporal
Erdős-Rényi graphs, which could be of general interest in future investigations of these objects.
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1 Introduction

Many real-world networks vary with time, as exemplified by the dynamic nature of today’s
social media, telecommunication, transportation, and interaction in general in a complex
network. Indeed, the examination of specific applications illustrates how networks endowed
with temporal information enable more accurate and effective analysis of real-world systems
compared to static networks [33].

This insight has motivated plethora of studies focusing on network modeling approaches
that incorporate the time dimension [24, 25, 27]. A widely used model for these networks
is given by temporal graphs (sometimes also called time-varying graphs, evolving graphs, or
other names). A temporal graph is a pair G = (G, λ), where G = (V, E) is an underlying
(static) graph, and λ is an edge labeling function that assigns to every edge e ∈ E a set of
time labels λ(e) ⊆ N indicating when this edge is present. This definition, although simple,
already captures two important aspects that determine temporal networks. Namely, (a) the
topology of the network defined by the underlying graph G; and (b) the schedule of edge
availabilities represented by the labeling function λ.

Even though this model has gained much traction recently, the available tools for analyzing
temporal graphs are still nowhere near the level of tools that have been developed for
understanding static networks. One of the main challenges is the fundamentally changed
notion of reachability. In temporal graphs, reachability is naturally based on paths that
traverse edges in ascending time, a.k.a. temporal paths. A first difference with standard
paths is that temporal paths are inherently directed, regardless of whether the graph itself
is directed, due to the arrow of time. Even more significantly, temporal reachability is not
transitive, i.e., the fact that node u can reach node v and node v can reach node w does not
imply that u can reach w. The resulting non-composability is a source of complication for
structural studies, as well as a frequent source of computational hardness. In fact, many
problems related to reachability are hard in temporal graphs, even when their classical analogs
are polynomial time solvable – see, for instance, the seminal paper by Kempe, Kleinberg,
and Kumar [27] on k-disjoint temporal paths (and many further examples appearing in
more recent works [1, 8, 13–15, 20, 22]). As observed by Bhadra and Ferreira [6], the fact
that (temporally) connected components do not form equivalence classes and intersect in
non trivial ways implies, among other consequences, that finding one of maximum size is
NP-hard.

Random Models of Temporal Graphs

One of the most important tools in (static) network theory are random network mod-
els [30]. They allow reproducing characteristics of real networks and studying their statistical
properties. The random perspective enables prediction of properties, anomaly detection,
identification of phase transitions, and other conclusions about the nature of typical networks.

The cornerstone of random network theory is the Erdős-Rényi random graph model [3].
It has proven tremendously useful as a source of insight into the structure of networks [32].
An Erdős-Rényi random graph Gn,p is obtained by placing an edge between each distinct
pair of n vertices1 independently with probability p. The study of this model was sparked
by a series of seminal papers published by Erdős and Rényi starting in 1959 [16–19]. Since
then, an important number of articles and books have been devoted to this model. These

1 We use the terms vertex and node interchangeably.
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results laid a solid foundation for the development of other models of more practical interest,
including the configuration model [28,29,31], the small-world model [34], and the preferential
attachment model [4].

The number of models of random temporal networks proposed in the literature is still
limited and no systematic foundations are available [24]. In establishing such foundations, a
natural question is: What is the temporal analog of the Erdős-Rényi random graph model?
The answer to this question is not unique, as the time dimension can be incorporated in
different ways [32]. Some candidates considered in the literature consider a sequence of
independent Erdős-Rényi graphs, some others incorporate some dependencies in such a
sequence (see for example [2, 5, 10–12,23,35]).

Temporal Erdős-Rényi Random Graphs

Recently, another natural and more direct temporal analog of the Erdős-Rényi random
graphs was proposed by Casteigts et al. [9], based on the same parameters n and p. In
this model, which we refer to as the temporal Erdős-Rényi random graph model, a random
temporal graph is obtained from an Erdős-Rényi random graph Gn,p by assigning to each
edge a unique label (presence time) according to a uniformly random permutation of its
edges. The main motivation is to obtain a temporal graph model whose properties (such
as threshold values) can be directly compared to the classical Erdős-Rényi model, thereby
highlighting the qualitative impact of the time dimension. A systematic study of this model
may also set a benchmark for practical models.

As already remarked, the time dimension leads to a number of distinctions between static
and temporal graphs. Many of them come from the conceptual difference between the notions
of path and temporal paths. The reachability of a temporal graph is not symmetric (even in
the undirected case) and not transitive, which is in stark contrast with static graphs. Indeed,
the results of [9] revealed that even the notion of connectivity translates to a rich spectrum of
phase transitions in the temporal setting. Namely, at p = log n/n, any fixed pair of vertices
can asymptotically almost surely (a.a.s.) reach each other; at 2 log n/n, at least one vertex
(and in fact, any fixed vertex) can a.a.s. reach all the others; and at 3 log n/n, all the vertices
can a.a.s. reach all others, i.e., the graph is temporally connected.

Connected Components in Temporal Erdős-Rényi Random Graphs

Perhaps the most investigated aspects of Erdős-Rényi random graphs is the emergence of a
“giant” connected component [7, 21], which culminates in connectivity itself. The analogous
question in a temporal setting is therefore natural. Interestingly, the lack of transitivity makes
the very definition of temporal components ambiguous. If the vertices of the component
need temporal paths traveling outside the component in order to reach each other, then the
component is open; otherwise, it is closed [6].

Analyzing the emergence of (both types of) temporally connected components in the above
model presents technical challenges that cannot be overcome by the only tools developed
in [9]. These technical challenges and the importance of understanding connected components
in temporal Erdős-Rényi random graphs motivated the present work.

1.1 Contributions
In this paper, we analyze the evolution of the largest connected component in a temporal
Erdős-Rényi random graph with parameters n and p, as p increases (with n → ∞). Our
main result is that, in contrast to static graphs, the phase transition occurs at p = log n/n.
At this point, the size of the largest component jumps from o(n) to n − o(n).

APPROX/RANDOM 2023
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▶ Main Theorem (informal). There exists a function ε(n) ∈ o(log n/n) such that the size of
a largest temporally connected component in a temporal Erdős-Rényi random graph is

(i) o(n) a.a.s., if p < log n
n − ε(n); and

(ii) n − o(n) a.a.s., if p > log n
n + ε(n).

Notably, the same threshold holds for both open and closed connected components,
although showing the latter requires more effort. We achieve these results by developing new
techniques and combining them with strengthened versions of the tools from [9]. Informally,
the new tools enable us to effectively contain the dependencies that exist between different
time slices. Thus they facilitate building graph structures witnessing a desired property in
multiple independent phases.

1.2 Significance of the Results & Techniques
Results. Our main result reveals a qualitative difference between the evolution of connected
components in static random graphs and temporal random graphs. The emergence of a giant
component in (static) Erdős–Rényi graphs follows a well-known pattern of events [19]. Below
a critical probability p0 = 1/n, almost all the components are trees, and no component is
larger than O(log n). Then, at p0, a single “giant” component of size Θ(n2/3) arises. Then,
at p = c/n > 1/n, this component contains a constant fraction 1 − x/c of all vertices (with
0 < x < 1 being defined through xe−x = ce−c). As soon as p ∈ ω(1/n), the component
contains all but o(n) vertices. The case of directed static graphs is similar. Namely, for
p = c/n < 1/n, a.a.s. all strongly connected components have size less than 3c−2 log n,
and when p = c/n > 1/n, the graph contains a strongly connected component of size
approximately (1 − x/c)2

n (with x as above) [21, 26], which implies that this component
contains all but o(n) vertices when p ∈ ω(1/n).

In the temporal setting, we show that the phase transition occurs at p = log n/n. Namely,
all components are of size o(n) before that threshold and there is one component of size
n − o(n) afterwards. The fact that this transition occurs later in the temporal setting is not
surprising, as the thresholds for connectivity is already known to be significantly smaller in
the static setting than in the temporal setting; namely, connectivity occurs at p = log n/n in
the static case (for both directed and undirected graphs) versus p = 3 log n/n for temporal
connectivity [9]. However, while these thresholds for connectivity are within a multiplicative
constant of each other, our results show that in the case of connected components the static
and the temporal threshold are of distinct asymptotic orders.

Techniques. In the temporal Erdős-Rényi model, the unicity of presence times for the edges
causes delicate dependencies between past and future events. To contain these dependencies,
we introduce a multiphase analysis that consists of splitting the time interval into several
phases where these dependencies are decoupled. We believe that many further temporal
graph properties will require such a multiphase analysis and could benefit from the tools
developed here. In constrast, the techniques from [9] are well suited for analyzing single-phase
processes, where temporal paths do not interact across different time intervals (e.g. through
composition).

In particular, our switch from a fixed base graph G = Kn to an arbitrary graph of
high minimum degree provides the possibility to “encapsulate” all dependencies on events
occurring in some fixed “short” phase into the choice of base graph, effectively eliminating
the need to deal with these dependencies individually. As an unsurprising but quite useful
technical extension, we study also the behaviour of sets of journeys starting from any of a
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set of source vertices. Furthermore, Lemma 5.2 is of independent interest for “bootstrapping”
various such multiphase analysis attempts; it essentially proves that in the very early regime,
there is only a small number of poorly connected vertices, and that these can be removed
without compromising the connectivity of the remaining temporal graph.

Although our techniques handle specific dependencies of temporal Erdős-Rényi graphs,
they remain general enough to be adaptable to models with less dependencies, such as models
where several appearances of an edge is possible and these appearances follow an exponential
distribution (Poisson process). The reasons for this are exactly the same as in [9]. Note,
however, that weaker tools could suffice for such models, as past and future appearances of
an edge are independent.

1.3 Organization
In Section 2, we provide all necessary definitions, and introduce the random temporal graph
models used in the paper. In Section 3, we present the algorithm for constructing a foremost
forest. We also state a core technical theorem (Theorem 3.3) concerned with reachability
between two sets of nodes in a temporal graphs. The full proof of that theorem is deferred to
the full version due to space restrictions, as are several other proofs and intermediate results.
Using this theorem, we then prove in Section 4 that at p = log n/n the size of the largest
open connected component jumps from o(n) to n − o(n). This also serves as a stepping
stone towards Section 5, where we extend our technique to also apply to closed connected
components. The proof is slightly more involved than for open components, as it requires
further subdivisions of the phases. However, we show that both variants undergo essentially
the same phase transition.

2 Preliminaries

In this paper, [k] denotes the set of integers {1, . . . , k}, and [a, b] denotes either the discrete
interval from a to b, or the continuous interval from a to b, the distinction being clear from
the context. All graphs are simple, i.e., without loops or multiple edges. For a graph G, we
denote by V (G) and E(G) its vertex set and edge set respectively. We denote by δ(G) and
∆(G) the minimum and the maximum vertex degree of G respectively. As usual, Kn denotes
the complete n-vertex graph.

2.1 Temporal Graphs
A temporal graph is a pair (G, λ), where G = (V, E) is a static graph and λ is a function
that assigns to every edge e ∈ E a finite set of numbers, interpreted as presence times. The
graph G is called the underlying graph of the temporal graph and the elements of λ(e) are
called the time labels of e. We will denote temporal graphs by calligraphic letters, e.g., by G.
Instead of (G, λ) we will sometimes use the notation (V, E, λ) to denote the same temporal
graph. In most cases, time labels will be elements of the real unit interval [0, 1]. Furthermore,
in this paper, we restrict our consideration only to simple temporal graphs2, i.e., temporal
graphs in which every edge e ∈ E is only present at a single point in time, i.e., |λ(e)| = 1. We
sometimes write V (G) and E(G) for the node and edge set of a temporal graph G respectively.

2 We remark that all our results can be directly transferred to another, closely related model of non-simple
temporal graphs; see Section 6.1.2 in [9].
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A temporal graph H = (VH, EH, λH) is a temporal subgraph of a temporal graph G =
(VG , EG , λG), if VH ⊆ VG , EH ⊆ EG and λH(e) = λG(e) for all e ∈ EH. For a vertex set
S ⊆ V (G), we denote by G[S] a temporal subgraph of G induced by S. We use G[a,b] to
denote the temporal subgraph of G with the same node set VG , the edge set E′ := {e ∈ EG :
λG(e) ∈ [a, b]}, and the time labeling function λG |E′ which is the restriction of λG to E′.

A temporal (u, v)-path in G = (V, E, λ) between two nodes u, v ∈ V is a sequence
u = u0, u1, . . . , uℓ = v such that ei = {ui−1, ui} ∈ E for each i ∈ [ℓ], and time labels are
increasing, i.e., λ(e1) < . . . < λ(eℓ). We call λ(eℓ) the arrival time of the path. A temporal
(u, v)-path is called foremost (u, v)-path if it has the earliest arrival time among all temporal
(u, v)-paths. If there exists a temporal (u, v)-path, we say that u can reach v (every vertex
reaches itself). A set S ⊆ V is said to reach v if at least one of its elements reaches v. In that
case, a foremost (S, v)-path in G is a temporal (u, v)-path with earliest arrival time among
all u ∈ S.

A vertex u ∈ V is called temporal source in G = (V, E, λ) if there exists a temporal
(u, v)-path for each v ∈ V . Similarly, a vertex v ∈ V is called temporal sink in G if there
exists a temporal (u, v)-path for each u ∈ V .

A temporal graph G = (V, E, λ) is temporally connected if all nodes are temporal sources.
We note that this also implies that all nodes are temporal sinks. An open temporally connected
component or simply connected component in G is an inclusion-wise maximal set Z ⊆ V of
nodes such that for every ordered pair of vertices u, v ∈ Z, there exists a temporal (u, v)-path
in G. We stress that such a temporal (u, v)-path can contain nodes from V \ Z. If for every
ordered pair u, v ∈ Z, there exists a temporal (u, v)-path in G[Z], then Z is called closed
connected component.

2.2 Random Temporal Graph Models
The model of temporal Erdős-Rényi random graphs was introduced in [9]3 as a natural
temporal generalization of the classical Erdős–Rényi model Gn,p of random graphs. An
n-vertex temporal Erdős-Rényi random graph with the parameter p ∈ [0, 1] is obtained by
first drawing a static random Erdős–Rényi Gn,p and then defining a temporal order on its
edges by ordering them according to a uniformly random permutation. An equivalent and
technically more convenient way of defining the temporal order on the edges is to draw, for
every edge e, independently and uniformly at random a time label λ(e) from the unit interval
[0, 1]. Since the event that two edges get the same time label happens with probability 0, all
edge orderings induced by such random time labels are equiprobable. Therefore, as long as
the absolute values of time labels are irrelevant (which is the case for the questions studied
in [9] and in the present paper), the two models are indeed equivalent. This latter model is
denoted as Fn,p. A possible way of generating objects from Fn,p is to first draw a temporal
graph G = (G, λ) from Fn,1 (thus the underlying graph G is complete), and to then consider
G′ = (G′, λ′) = (G, λ)|[0,p], i.e., the temporal graph obtained from G by removing edges with
time labels greater than p. Observe that G′ ∼ Gn,p and each time label λ(e) is uniformly
distributed on [0, p]. Hence, G′ is distributed according to Fn,p up to multiplying all labels
by a factor of 1

p , which we can ignore as it neither changes the relative order of time labels
nor the absolute values of time labels are of any importance to us. For similar reasons, for
any 0 ≤ a ≤ b ≤ 1, up to rescaling time labels, the temporal subgraph G|[a,b] is distributed
according to Fn,q, where q = b − a.

3 In [9], this model was called Random Simple Temporal Graphs (RSTGs)
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In order to overcome some technical challenges caused by interdependence of different
temporal subgraphs, we define and study a natural generalization of Fn,p that we describe
next. For an n-vertex graph G and a real value p ∈ [0, 1], we denote by Fp(G) the following
random temporal graph model. A random temporal graph G = (V, E, λ) ∼ Fp(G) is obtained
by (1) independently and uniformly sampling a time label λ′(e) ∈ [0, 1] for every e ∈ E(G),
and (2) setting V = V (G), E := {e ∈ E(G) : λ(e) ≤ p} and λ(e) = λ′(e) for every e ∈ E. We
call G the base graph of Fp(G). We observe that the Fn,p model is obtained when choosing
the base graph to be the complete n-vertex graph Kn.

In what follows we sometimes implicitly assume that n = |V | is sufficiently large without
restating this assumption. We note that some of our estimates hold only for rather large
values of n. We did not attempt to reduce these bounds, but instead focused on achieving
best possible readability.

At this point we refer the interested reader to Appendix A of the full version, where, as a
warm-up, we give a simple upper bound on p which guarantees that G ∼ Fp(G) is temporally
connected a.a.s.

3 The Foremost Forest Algorithm

The main aim of this section is to present an algorithm for constructing a foremost forest
and to prove a property of this algorithm.

Foremost forests play a crucial role in the development of our main technical tool: for a
fixed set of vertices S and a given number k, the estimation of the minimum value of p such
that the vertices in S can reach k vertices in G = (V, E, λ) ∼ Fp(G) a.a.s.

We obtain such an estimation by examining the evolution of a foremost forest for S in G
via analysis of the execution of the formost forest algorithm on random temporal graphs.
To elaborate on this approach, let us consider v ∈ V \ S. We would like to estimate the
probability that S reaches v in G. For this, we follow an approach similar to the one used
in [9]. Let G′ ∼ F1(G) and observe that the probability that S can reach v in G is equal
to the probability that the temporal subgraph G′

[0,p] contains a temporal (u, v)-path P for
some node u ∈ S. This again is equivalent to the arrival time of P in G′ being at most p.
Therefore, the estimation of the parameter p for which some node from S can reach v can be
reduced to the estimation of the minimum arrival time of a foremost temporal path from
S to v in G′ ∼ F1(G). A foremost forest for S in G is a minimal temporal subgraph that
preserves foremost reachabilities from S to all other vertices reachable from S in G. We
proceed with the necessary formal definitions.

▶ Definition 3.1. Let G = (V, E, λ) be a temporal graph and let S ⊆ V be a set of vertices.
The graph GF = (VF , EF , λF ) is an increasing temporal forest for S, if
(a) GF is a temporal subgraph of G,
(b) the graph F = (VF , EF ) is a forest (i.e. acyclic graph) with |S| components,
(c) for each s ∈ S there is a connected component Ts of F such that s reaches all vertices

of Ts in GF .
We are now ready to define (partial) foremost forests.

▶ Definition 3.2. Let G = (V, E, λ) be a temporal graph, let S ⊆ V be a set of vertices and
let GF = (VF , EF , λF ) be an increasing temporal forest for S.
1. Then GF is a partial foremost forest for S, if, for all v ∈ VF \ S, the unique temporal

(S, v)-path in GF is a foremost (S, v)-path in G.
2. A partial foremost forest for S is a foremost forest for S if VF contains all vertices

reachable from S in G, i.e., VF = {v ∈ V : ∃(u, v)-temporal path in G for some u ∈ S}.
3. A (partial) foremost forest for {v} is a (partial) foremost tree for v.
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The Algorithm

Next, we present an algorithm that, given a temporal graph G = (V, E, λ) and a set of
nodes S ⊆ V constructs a foremost forest GF for S. This algorithm is a straightforward
generalization of the foremost tree algorithm from [9], where the input set S is assumed to
be singleton.

The idea of the algorithm similar to Prim’s algorithm for minimum spanning trees in
static graphs: Starting from GF = (VF , EF , λF ) = (S, ∅, ∅), which is trivially a partial
foremost forest for S, the algorithm iteratively adds one node and one edge to VF and
EF , λF , respectively, until GF becomes a foremost forest for S. The main difference to Prim’s
algorithm is that, in every iteration, the next edge to be added is chosen as the edge of
minimum time label among all edges that extend the current increasing temporal forest. For
brevity, we introduce the following notation. We write GF ∪ e for adding the edge e = {u, v}
to GF , i.e., the result is the temporal graph (VF ∪ {u, v}, EF ∪ {e}, λF ∪ {(e, λ(e))}). The
set of edges that extend the current partial forest can then be defined as

ext(GF ) := {e = {u, v} ∈ E : u ∈ VF , v ∈ V \ VF , and GF ∪ e is an increasing temporal
forest for S}.

We are now ready to state the algorithm.

Algorithm 1 Foremost Forest.

Input : Simple temporal graph G = (V, E, λ); set of nodes S ⊆ V .
Output : Foremost forest for S.

1 k = |S| − 1, Gk
F = (S, ∅, ∅)

2 while ext(Gk
F ) ̸= ∅ do

3 k := k + 1
4 ek := arg min{λ(e) | e ∈ ext(Gk−1

F )}
5 Gk

F := Gk−1
F ∪ ek

6 return Gk
F

In Appendix B of the full version we prove that Algorithm 1 in fact builds a foremost
forest.Furthermore, one of our main technical results is the following theorem which, for two
given sets of nodes S and T , quantifies the probability that a foremost forest grown from set
S reaches T .

▶ Theorem 3.3 (Foremost Forest Target Set Reachability). Let
G be a graph of minimum degree δ(G) ≥ n − (log n)a for some a ∈ N,
let S and T be two sets of nodes in G of cardinalities s ∈ [(log n)13, n/2] and t, respectively,
let z = z(n) be a function with ε ≤ z(n) ≤ 1 − ε for some constant ε ∈ (0, 1), and
let G ∼ Fp(G) with p ≥ z log n−log s

n + 3 log log n
n .

Then the foremost forest algorithm from S on G reaches T with probability at least 1 −
5
2 n− log log n − e− t

2n (nz−s).

The formal proof of Theorem 3.3 is one of the technically more involved portions of this
work. It is divided into a number of lemmas and has to be deferred to Appendix C of the
full version due to lack of space; for improved accessibility, a high level overview of the proof
structure is depicted in Figure 1. We proceed with a short proof sketch.
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Lemma B.1
Correctness of foremost forest algorithm

Lemma A.1 and Corollary A.2
Two-hop bound on temporal connectivity

Proposition C.3 and Corollary C.4
Bounds on expected waiting time XS

k between the moments of
exposing two consecutive edges of the foremost forest

Lemma C.2
Approximation of XS

k through its truncated version

Proposition C.8 and Corollary C.9
Estimate of the number of exposed edges of the foremost forest

Lemma C.6
Concentration of the number of exposed edges of
the foremost forest

Theorem C.5
Azuma inequality

Lemma C.1
Bound on∑ 2 log (min{k,n−k})+log log n

k(n−k)

Lemma C.7
Bound on

∑ 1
i(n−i)+1

Lemma C.10
Growth of foremost forest

Lemma C.11
Distribution of added vertex

Theorem 3.3
Foremost forest target set reachability

Figure 1 Overview of the proof of Theorem 3.3.

Proof Sketch. The theorem is deduced from Lemma C.10 and Lemma C.11 that can be
found in Appendix C of the full version. Lemma C.10 essentially constitutes a generalization
of the foremost tree growth analysis from [9], which estimates the number of vertices that a
given vertex (referred to as a source) reaches by specific time in Fn,p. Besides the difference
that in Lemma C.10 we need to consider a fixed set of source vertices, the main technical
challenge here is that we have to consider the Fp(G) model rather than the basic Fn,p model,
resulting in fewer edges per node. While Lemma C.10 merely gives a statement over the
number of nodes that are reached from a given source set, Lemma C.11 gives the second
crucial ingredient for proving Theorem 3.3. It states that every new vertex reached by
the foremost forest grown from S (i.e., every new vertex added to the foremost forest) is
distributed almost uniformly on the vertices that are not reached yet and this allows us to
estimate the probability that the forest reaches the target set T . ◀

4 Sharp Threshold for Giant Open Connected Component

In this section, we report on our first main result.

▶ Theorem 4.1 (Main Result for Open Components). The function log n
n is a sharp threshold for

Giant Open Connected Component. More specifically, there exists a function ε(n) ∈ o
(

log n
n

)
,

such that the size of a largest open temporally connected component in G ∈ Fn,p is
(i) o(n) a.a.s., if p < log n

n − ε(n); and
(ii) n − o(n) a.a.s., if p > log n

n + ε(n).

We prove the lower bound on the threshold (i.e. Theorem 4.1 (i)) in Section 4.1. The
proof of this bound is a straightforward consequence of a result on foremost tree growth
in Fp(Kn) from [9]. The upper bound (i.e. Theorem 4.1 (ii)) on the threshold is proved
in Section 4.2 and is significantly more involved. In particular, it relies on Theorem 3.3 to
measure foremost forest growth in Fp(G), where G is chosen to contain all edges that did
not occur within some particular time window.

APPROX/RANDOM 2023
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4.1 Lower Bound on the Threshold
We state the lower bound in form of the following theorem which says that a.a.s. there is no
linear size component before time log n/n. This theorem can be derived rather easily from
results of Casteigts et al. [9]; we refer to Appendix D of the full version for the details.

▶ Theorem 4.2 (Lower Bound in Theorem 4.1). Let G ∼ Fp(Kn) with p < log n
n − 3(log n)0.8

n .
Then, for any constant c ∈ (0, 1), the graph G does not contain a temporally connected
component of size at least c · n with probability at least 1 − 2n−

√
log n.

4.2 Upper Bound on Threshold
Next, we present the first, weaker version of our main result, stating that an open temporally
connected components containing almost all vertices appears already around time log n/n.

▶ Theorem 4.3 (Upper Bound in Theorem 4.1). Let G ∼ Fp(Kn) with p ≥ (1 + ε(n)) · log n
n .

Then, the graph G contains a temporally connected component of size n − o(n) a.a.s.

We begin by giving a sketch of the proof idea.

Proof Sketch. The strategy is as follows, see also Figure 2. We split the time interval [0, p]
into three intervals I1, I2, and I3 of equal duration p/3, and reveal the edges of the graph in
two phases.

In Phase 1, we reveal the edges whose time labels are in one of the intervals I1 and I3.
Using a result from [9] (Lemma D.2), we can conclude that there are n − o(n) nodes (call
them X), each of which a.a.s. reaches at least 3

√
n log n vertices during I1, and there are

at least n − o(n) nodes (call them Y ) that a.a.s. is reached by at least 3
√

n log n vertices
during I3.

In Phase 2, we reveal the edges appearing during the middle interval I2. We show that
for every ordered pair of nodes x, y in the set Z := X ∩ Y (which is our intended connected
component), the set of vertices that x can reach during I1, can reach during I2 at least one
vertex in the set of vertices that reach y during I3; thus implying that x can reach y during
[0, p]. For this purpose we can employ Theorem 3.3 with S being the set that x can reach
during I1 and T being the set of vertices that can reach y during I3. Note that the analysis
of this phase is what requires us to develop the generalization Fp(G) of the model Fn,p. In
fact, the static base graph G used in the application of Theorem 3.3 is the graph obtained
from Kn by removing the edges that appeared during either I1 or I3. Finally a union bound
over all pairs of nodes x and y yields the result. ◀

The remainder of this section is dedicated to proving Theorem 4.3. Throughout, we
denote ε(n) := 1

log log n .
Let p = (1 + ε(n)) · log n

n and G ∼ Fp(Kn). We will prove Theorem 4.3 only for this value
of p as it will then clearly follow for any larger value. Our strategy is to split the interval [0, p]
into three sub-intervals [p0, p1], [p1, p2], [p2, p3], where pi := i

3 (1 + ε(n)) log n
n for i ∈ [0, 3].

We now first deduce the following corollary about the connectivity of the subgraphs G[pi,pi+1]
for i ∈ [0, 2] of G from Lemma D.2.

▶ Corollary 4.4. For i ∈ [0, 2], the number of vertices reached by (resp. reaching) a fixed
vertex in G[pi,pi+1] lies within [n1/3 log n, n1/3+ε(n)] with probability at least 1 − 10

log n .

For space reasons, the proof of Corollary 4.4 is found in Appendix E of the full version.
Using Markov’s inequality we can obtain that, a.a.s., almost all nodes can reach (resp.

be reached by) the above number of nodes.
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0 p = log n
n + ε

p
3

2p
3

Phase 1
I1 I3Phase 2

I2

x

u

Z = X ∩ Y

X − Y

G1

u

G2

v

G3

Z = X ∩ Y

Y − X

y

v

Figure 2 General strategy for upper bounding the value of p in the case of open components.
Here, Gi denotes the restriction of the temporal graph to subinterval Ii. Wavy lines denote temporal
paths. We show that any node x ∈ Z can reach any other node y ∈ Z by reaching a node u in G1,
then a node v in G2, and finally y in G3.

▶ Lemma 4.5. Let i ∈ {0, 1, 2}. The number of vertices that can reach (resp. be reached
by) at least n1/3 log n and at most n1/3+ε(n) vertices in G[pi,pi+1] is at least n − n

log log n with
probability at least 1 − 10 log log n

log n .

Proof. Let X̄ denote the number of nodes in G[pi,pi+1] that can reach (resp. be reached by)
less than n1/3 log n or more than n1/3+ε(n) vertices in G[pi,pi+1]. Then E[X̄] ≤ 10n/ log n

by Corollary 4.4. Using Markov’s inequality P
[
X̄ ≥ n

log log n

]
≤ 10 log log n

log n . ◀

We now denote by X the set of nodes that can reach at least n1/3 log n and at most n1/3+ε(n)

vertices in G[0,p1] and by Y the set of nodes that are reached by at least n1/3 log n and at
most n1/3+ε(n) vertices in G[p2,p3]. Furthermore, we denote by Z = X ∩ Y their intersection.
According to Lemma 4.5, it holds that |Z| ≥ n− 2n

log log n with probability at least 1− 20 log log n
log n .

The hardest part of our proof is to now show that, for a fixed ordered pair x, y ∈ Z, the
probability that there is a temporal path from x to y is so large that we can take a union
bound over all ordered pairs. To this end, let A(x) be the set of nodes that x can reach in
G[0,p1] and let B(y) be the set of nodes that can reach y in G[p2,p3]. Furthermore, for x ∈ X,
let

A′(x) := {v ∈ V : ∃a ∈ A(x) s.t. a reaches v in G[p1,p2]}

be the set of nodes that x can reach in G[0,p2]. Notice that x reaches y if and only if A′(x)
intersects B(y).

Let G′′ = (V, E′′) with E′′ = {e ∈
(

V
2
)

| λ(e) ∈ [0, p1] ∪ [p2, p3]} be the graph containing
all edges appearing in G[0,p1] or G[p2,p3], and let G′ = (V, E′) with E′ =

(
V
2
)

\ E′′ contain
all other edges. Then we observe that the distribution of the set A′(x) conditioned on the
information about the edges appearing in G[0,p1] and G[p2,p3] is identical to the node set
of a foremost forest grown from S := A(x) in H ∼ Fp′(G′), where p′ = 1

3 (1 + ε(n)) log n
n .

Furthermore, G′′ is distributed as an Erdős-Rényi graph G′′ ∼ Gn,p with p := 2
3 (1+ε(n)) log n

n .
From a standard result regarding the maximum degree in Gn,p we can thus conclude the
following fact.
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▶ Observation 4.6. It holds that ∆(G′′) ≤ 4 log n a.a.s. and, thus, δ(G′) ≥ n − (log n)2

a.a.s.

Proof. Recall that G′′ is distributed according to Gn,p with p := 2
3 (1+ε(n)) log n

n . Following [7,
Corollary 3.13], with m = 1 and ω(n) = log n, we have that a.a.s.

∆(G′′) ≤ pn +
√

2pn log n + log n

√
pn

log n
≤ log n +

√
2(log n)2 + log n ≤ 4 log n.

The observation about the minimum degree now follows immediately for sufficiently large
n. ◀

Thus, in order to lower bound the probability that A′(x) intersects B(y), we can use the
following corollary of Theorem 3.3.

▶ Corollary 4.7. Let
G be a graph of minimum degree δ(G) ≥ n − (log n)a for some a ∈ N,
let S and T be two sets of nodes in G, each of cardinality at least n1/3 log n, and
let G ∼ Fp(G) with p ≥ 1

3 (1 + ε(n)) log n
n .

Then, the foremost forest algorithm from S on G reaches T with probability at least 1 −
3n− log log n.

Proof. Set s := |S|, t := |T |. Without loss of generality, we may assume s ≤ n1/3+ε(n). Note
that for large enough n it holds that

p ≥ 1
3

(
1 + 1

log log n

) log n

n

≥
1
3 log n + 4 log log n

n

=
2
3 log n + 2 log log n − 1

3 log n − log log n

n
+ 3 log log n

n

≥ z log n − log s

n
+ 3 log log n

n
,

for z = 2
3 + 2 log log n

log n . From Theorem 3.3 it then follows that the foremost forest algorithm
from S reaches T with probability at least

1 − 5
2n− log log n − e− t

2n (nz−s) ≥ 1 − 5
2n− log log n − e− n1/3 log n

2n (n2/3(log n)2−n1/3+ε(n)))

≥ 1 − 5
2n− log log n − e− (log n)3

4 ≥ 1 − 3n− log log n,

completing the proof. ◀

Using the above stated corollary, we can finally prove our first main result.

Proof of Theorem 4.3. Let p = (1 + ε(n)) · log n
n and G ∼ Fp(Kn). As above, let X be the

nodes that can reach between n1/3 log n and n1/3+ε(n) vertices in G[0,p1] and let Y be the
nodes that are reached by between n1/3 log n and n1/3+ε(n) vertices in G[p2,p3]. Furthermore,
let Z = X ∩ Y be their intersection and recall that |Z| ≥ n − 2n

log log n with probability at least
1 − 20 log log n

log n according to Lemma 4.5. Now, conditioned on the information about the edges
appearing in G[0,p1] and G[p2,p3], let G′ = (V, E′) be the static graph with the same node set
as G and the edge set E′ = {e ∈

(
V
2
)

: λ(e) /∈ [p0, p1] ∪ [p2, p3]}, where λ is the time label
function of G. Note that according to Observation 4.6 the minimum degree in G′ a.a.s. is at
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0 ε1 = o
( log n

n

)
p1 + ε1 p − (p1 + ε1) p − ε1 p = log n

n + ε

I1 I5
Phase 1.1

I2 I4
Phase 1.2

I3
Phase 2

Figure 3 Illustration of the three different phases in our proof for the case of closed components.
Here, the length p1 of I2 and I4 and the length p2 of I3 are each roughly 1

3
log n

n
. In Phase 1.1, we

reveal edges in I1 and I5 and identify our target closed connected component, a set of n′ nodes V ′

each of which can reach (be reached by) poly-logarithmically many vertices within V ′ during I1

(I5) via temporal paths in V ′. For Phase 1.2 (consisting of intervals I2 and I4) we show that every
vertex in v ∈ V ′ reaches (is reached by) polynomially many vertices in V ′ during I1 ∪ I2 (I4 ∪ I5).
We then show that during Phase 2 (consisting of I3), for each ordered pair of vertices u, w ∈ V ′, the
set of vertices reached by u during I1 ∪ I2 can reach the set of vertices that reach w during I4 ∪ I5,
implying that u can reach w during [0, p].

least n−(log n)2. Now, let x, y ∈ Z be a fixed ordered pair of vertices. Applying Corollary 4.7
to H ∼ F p

3
(G′) with S = A(x), a = 2, and T = B(y), we can conclude that A′(x) ∩ B(y) ̸= ∅

with probability at least 1 − 3n− log log n, and, thus, x reaches y with at least that probability.
Hence, after a union bound over all ordered pairs, we get that all nodes in Z reach each
other with probability at least 1 − 3n− log log n+2. Therefore, G has a temporally connected
component of size at least n − 2n

log log n = n − o(n) a.a.s. ◀

5 Sharp Threshold for Giant Closed Connected Component

In this section we report on the result that log n
n is also a sharp threshold for the existence of

a giant closed connected component. We first sketch the general proof idea; the formal proof
given subsequently is based upon a lemma proven in Appendix F of the full version.

▶ Theorem 5.1 (Main Result for Closed Components). The function log n
n is a sharp threshold

for Giant Closed Connected Component. More precisely, there exists a function ε(n) ∈
o
(

log n
n

)
, such that the size of a largest closed temporally connected component in G ∼ Fn,p is

(i) o(n) a.a.s., if p < log n
n − ε(n); and

(ii) n − o(n) a.a.s., if p > log n
n + ε(n).

Proof Sketch. The lower bound of Theorem 5.1 is obviously a trivial consequence of the
lower bound in Theorem 4.1. Thus, it remains to prove the upper bound. We start from our
strategy of splitting the time into three intervals. We do not need to make any changes to our
approach in the middle one (Phase 2), which previously required the most effort. However,
we now need to do additional work in the first and last interval (Phase 1), which is the main
technical contribution of this part. Recall that in the proof of Theorem 4.3, we only required
that n − o(n) vertices can all reach (resp. be reached by) at least n1/3 log n vertices within
each of the three intervals from Figure 2. Now, we will need to prove that there exists a
set V ′ of n − o(n) vertices, such that every vertex in this set can reach (resp. be reached
by) at least n1/3 log n vertices via temporal paths that use only vertices in V ′. Once this is
achieved, we can use the same approach as in the case of open components for Phase 2.

In order to obtain the set of vertices V ′ mentioned above, we have to insert an additional
Phase 1.1, which looks only at a short time interval I1 at the very beginning (and symmetrically
I5 at the very end). The purpose of this new phase is to “bootstrap” the closed component
by identifying a set V ′ of n′ = n−o(n) vertices, which each reach at least poly-logarithmically
many vertices by paths that are contained in V ′. Lemma 5.2 formalizes this result.

APPROX/RANDOM 2023
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A technical difficulty in Phase 1.1 is the need to control possible cascading effects, where
removing low-degree vertices from the graph can cause further vertices to become low-degree
vertices, etc. We overcome this difficulty by partitioning the vertices into sectors V1, . . . , VC

and removing vertices from each sector Vi solely on the base of whether they have too few
neighbors in the next sector Vi+1. This ensures that the sets of vertices removed from each
sector are determined independently of each other. On this base, we are then able to prove
that no cascading effects occur a.a.s. Subsequently, we show that after these removals, every
remaining vertex can reach a poly-logarithmic number of others by considering clocked paths,
which essentially march in lockstep, traversing the sectors in circular order (see Figure 4).

Subsequently, in Phase 1.2, we reveal edges that appear during I2 or I4. We use the
foremost forest technique developed earlier to show that, conditioned on the edges revealed in
Phase 1.1, for every vertex v in V ′ the poly-logarithmic set of vertices reached by v during I1
reaches polynomially many (by which we mean np for some fixed p < 1) vertices during I2.
(Similarly, the set of vertices that reach v during I5 is reached by polynomially many vertices
during I4.) ◀

Vi

Vi+1

Vi+2

Vi+3

v

Figure 4 Example of a temporal tree formed by clocked paths starting at a vertex v ∈ Vi. By
restricting the edges used between sectors Vi+j and Vi+j+1 to an appropriate time interval Ij−i, we
ensure that the time labels of all these paths are monotonically clockwise increasing.

▶ Lemma 5.2. Let C ≥ 3, 1
2 < γ < α < 1, and let G ∼ Fn,p, where p = 2C2 (log n)α

n . Then
a.a.s. G contains a set V ′ of n − o(n) vertices, such that, denoting G′ := G[V ′], every vertex
in V ′ reaches at least (log n)(C−3)γ vertices in G′

[0,p/2] and is reached by at least the same
number of vertices in G′

[p/2,p].

In the rest of this section we prove Theorem 5.1 using the above lemma, whose proof is
found in Appendix F of the full version.

Proof of Theorem 5.1. Let γ = 0.7, α = 0.9, C = 30, and let n′(n) ∈ n − o(n) be
the size of the vertex set guaranteed by Lemma 5.2. Set ε1 := C2 (log n)α

n ∈ o
(

log n
n

)
,

ε2 := 4 log log n′

log n′ ∈ o(1), and ε3 := 1
3 log log n ∈ o(1). Set also p1 :=

( 1
3 + ε2

) log n′

n′ and
p2 :=

( 1
3 + ε3

) log n′

n′ . Finally, define p := 2ε1 + 2p1 + p2, which is equal to log n
n + ε for some

ε ∈ o
(

log n
n

)
.

Let G ∼ Fn,p. We split [0, p] into a total of five intervals Ii, i ∈ [5]. The first and the
last interval are short and each has length ε1, i.e., I1 = [0, ε1] and I5 = [p − ε1, p]. The three
middle intervals are long and have lengths p1, p2, and p1, respectively, i.e., I2 = [ε1, ε1 + p1],
I3 = [ε1 +p1, ε1 +p1 +p2], I4 = [p− (ε1 +p1), p−ε1]. We will reveal the edges of the graph in
three phases (Phase 1.1, Phase, 1.2, and Phase 2), as was graphically summarized in Figure 3
in the introduction, and in each phase we condition on the edges revealed in the previous



R. Becker et al. 29:15

phases. In Phase 1.1 we reveal edges in the intervals I1 and I5 and apply Lemma 5.2 to
identify a large set of nodes V ′, each of which can reach poly-logarithmically many vertices
in V ′ during the first interval and can be reached by poly-logarithmically many vertices in V ′

during the last interval via temporal paths that use only nodes from V ′. In the subsequent
phases we restrict our attention to the subgraph induced by V ′, which is the target giant
closed connected component. In Phase 1.2, we reveal edges appearing in the intervals I2 and
I4. Because in Phase 1.1 a.a.s. we revealed poly-logarithmic number of edges for every vertex,
we can use Lemma C.10 to argue that for every vertex v ∈ V ′ the poly-logarithmic set of
vertices reached by v during I1 can reach polynomially many vertices during I2. Similarly,
during I4 polynomially many vertices can reach the poly-logarithmic set of vertices that
reach v during I5. The main outcome of this phase is that every vertex in v ∈ V ′ reaches
polynomially many vertices in V ′ during I1 ∪ I2 and is reached by at least as many vertices in
I4 ∪ I5. Finally, in Phase 2, because in the previous phases a.a.s. at most poly-logarithmically
many edges were revealed for every vertex, we can apply Corollary 4.7 to prove that for each
ordered pair of vertices u, w ∈ V ′ the set of vertices reached by u during I1 ∪ I2 can reach
during I3 the set of vertices that reach w during I4 ∪ I5, implying that u can reach w during
[0, p]. We now proceed with the formal details.

Phase 1.1. Let G1 be the temporal subgraph of G formed by the edges with time labels in
the intervals I1 ∪ I5. Note that, up to shifting the time labels in the interval I5 by p − 2ε1,
G1 is distributed according to Fn,2ε1 . Thus, by Lemma 5.2, a.a.s. there is a set V ′ ⊆ V (G)
containing n′ vertices such that, denoting G′ := G[V ′], every vertex v ∈ V ′ reaches a set
R1(v) of at least (log n)(C−3)γ vertices in G′

I1
and is reached by a set R′

1(v) of at least
(log n)(C−3)γ vertices in G′

I5
.

Phase 1.2. Let G1 be the underlying graph of G1. Since G1 is distributed as an Erdős-Rényi
graph Gn, 2ε1 , similarly to Observation 4.6, we have that ∆(G1) < 4 log n a.a.s. Hence, in the
graph G′

2 =
(

V ′,
(

V ′

2
)

\ E(G1)
)

the minimum degree is at least n′ − 4 log n ≥ n′ − (log n′)2.
Observe that, up to shifting time labels, G′

I2
∼ Fp1(G′

2) when conditioning on the knowledge
about all edges seen in I1 ∪ I5. Therefore, since |R1(v)| ≥ (log n′)13 for every vertex v ∈ V ′,
by applying Lemma C.10 to G′

I2
and R1(v) (with parameter z = 1/3 + log log n′

log n′ ), we conclude

that the vertices in R1(v) reach in G′
I2

at least r := (n′)
1
3 + log log n′

log n′ = (n′)1/3 log n′ vertices with
probability at least 1 − 2(n′)− log log n′ . By the union bound, we have that with probability
at least 1 − 2(n′)1−log log n′ ∈ 1 − o(1), every vertex v ∈ V ′ can reach in G′

I1∪I2
a set R2(v) of

at least r vertices. Symmetrically, with probability at least 1 − 2(n′)1−log log n′ ∈ 1 − o(1),
every vertex v ∈ V ′ is reached in G′

I4∪I5
by a set R′

2(v) of at least r vertices.

Phase 2. Let G′
3 be the static graph defined by the vertex set V ′ and all edges appearing

in G′
I1∪I2

and G′
I4∪I5

. As in Phase 1.2, we can argue that the maximum degree of G′
3 is at

most 4 log n′ a.a.s., and therefore the minimum degree of the graph G′
4 =

(
V ′,

(
V ′

2
)

\ E(G′
3)

)
is at least n′ − (log n′)2. Hence, up to shifting time labels, G′

I3
is distributed according

to Fp2(G′
4) when conditioned on the knowledge of all edges revealed in I1 ∪ I2 ∪ I4 ∪ I5.

Thus, by Corollary 4.7, a given set of at least (n′)1/3 log n′ vertices in G′
I3

can reach another
given set of at least as many vertices with probability at least 1 − 3(n′)− log log n′ . Applying
this to all ordered pairs of sets (R2(v), R′

2(w)), v, w ∈ V ′ and using the union bound, we
conclude that the probability that all these pairs of sets reach each other in G′

I3
is at least

1 − 3(n′)2−log log n′ ∈ 1 − o(1).
Putting all together, we conclude that a.a.s. in G′ = G[V ′] any vertex reaches every other

vertex. Thus, V ′ is, as desired, a giant closed connected component. ◀
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Abstract
For any positive edge density p, a random graph in the Erdős-Rényi Gn,p model is connected with
non-zero probability, since all edges are mutually independent. We consider random graph models
in which edges that do not share endpoints are independent while incident edges may be dependent
and ask: what is the minimum probability ρ(n), such that for any distribution G (in this model) on
graphs with n vertices in which each potential edge has a marginal probability of being present at
least ρ(n), a graph drawn from G is connected with non-zero probability?

As it turns out, the condition “edges that do not share endpoints are independent” needs to be
clarified and the answer to the question above is sensitive to the specification. In fact, we formalize
this intuitive description into a strict hierarchy of five independence conditions, which we show to
have at least three different behaviors for the threshold ρ(n). For each condition, we provide upper
and lower bounds for ρ(n). In the strongest condition, the coloring model (which includes, e.g.,
random geometric graphs), we show that ρ(n) → 2 − ϕ ≈ 0.38 for n → ∞, proving a conjecture by
Badakhshian, Falgas-Ravry, and Sharifzadeh. This separates the coloring models from the weaker
independence conditions we consider, as there we prove that ρ(n) > 0.5 − o(n). In stark contrast to
the coloring model, for our weakest independence condition – pairwise independence of non-adjacent
edges – we show that ρ(n) lies within O(1/n2) of the threshold 1 − 2/n for completely arbitrary
distributions.
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1 Introduction

The probabilistic method is an important tool in theoretical computer science, graph theory
and combinatorics [3]. With this method, one proves that a random construction has some
desirable property with positive probability, and concludes that some objects with this
property must exist. Early examples of the probabilistic method include simple constructions
of expander graphs [7], or graphs with high girth and large chromatic number [16]. Often, it
is possible to express the property as the intersection of very simple events A1, . . . , Ak. For
example, we can express the property that a set S is a clique as the intersection of the events
“u is adjacent to v” for all pairs u, v ∈ S. In many cases it is clear that each of the Ai has a
large probability to occur, but this is generally not enough to conclude that the intersection
of all Ai has positive probability to occur. Of course, if the probability space were a product
space in which all components are independent of each other, then this would be trivial.

However, for many applications it is too limiting to restrict oneself to product spaces.
The probabilistic method was significantly extended by the realization that it could still
be applied to settings without perfect independence, provided there is some bound on the
amount of dependence in the system. The seminal result was the Lovász Local Lemma
(LLL), which we give here in the slightly stronger version due to Shearer [28]: for events
A1, . . . , Ak that all occur with probability at least p, if each of the Ai depends on at most d

other Aj , where p ≥ 1 − 1/(ed), then there is a positive probability that all of the Ai occur
simultaneously.1 In this context, the dependencies are captured by a dependency graph, a
graph with vertex set {A1, . . . , Ak} such that each vertex is independent from all but its
neighbors. There are many situations in which the dependency graph can be restricted, and
we give some examples in Section 1.1 below.

The LLL allows to re-introduce a product space through the backdoor, because the LLL
condition p ≥ 1 − 1/(ed) allows to couple the process to a product space. This was already
implicit in the inductive proof of the LLL [29], and was made explicit by Liggett, Schonmann
and Spacey [23]. They also generalized this coupling to a countably infinite number of
variables and showed tightness of Shearer’s condition (of the precise version in footnote 1).
For a finite number of variables, coupling the probability space to a product space implies
trivially that the all-one event has positive probability.

Unfortunately, the LLL scales badly in d, i.e., p needs to be very close to one if d is large.
However, in some cases the degree d may grow. In particular, in this paper we will study the
situation that the variables are associated with the edges of a complete graph on n vertices,
and dependencies only run between adjacent edges (edges which share a common endpoint).
This is a common situation, and examples are given in Section 1.1. In this case, the number
of dependencies per edge is 2(n − 2), and thus grows with n. Thus, if every edge is present
with constant probability p < 1, then it is not possible to couple the probability space with a
product space for large n, and it is not true that the complete graph appears with positive
probability [23]. However, in this paper we will show that some weaker global properties can
be guaranteed. Specifically, we will focus on connectivity because this is arguably the most
fundamental global graph property. We will study the question:

Consider a random graph in which every potential edge is inserted with probability
at least p. Assume that non-adjacent edges are independent. For which values of p

can we guarantee that the graph is connected with positive probability?

1 The precise condition is p > 1 − (d−1)(d−1)

dd for d > 1 and p > 1/2 for d = 1. The first expression can be
simplified by the estimate (d−1)(d−1)

dd−1 ≥ e−1, which becomes tight in the limit d → ∞.
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It turns out that the answer depends heavily on what exactly we mean by independence.
Surprisingly, there are at least five different ways to interpret the innocent-looking condition
that non-adjacent edges are independent, which we define next in order of increasing strength.
For an edge e = {u, v}, let Xe be the event that e is present in the random graph.

▶ Definition 1 (Pairwise independence). For every pair of non-adjacent edges e, f , the random
variables Xe and Xf are independent.

▶ Definition 2 (Matching independence). For any set M of pairwise non-adjacent edges (also
called a matching), {Xe | e ∈ M} are mutually independent.

▶ Definition 3 (Edge-subgraph independence). For any edge e = {u, v}, any vertex set W

with u, v /∈ W , and any choice of graph HW on W , we have for the random graph G sampled
from the distribution that

Pr[G[W ] = HW and Xe] = Pr[G[W ] = HW ] · Pr[Xe].

▶ Definition 4 (Subgraph independence). For any two disjoint subsets V, W of vertices, and
any choice of graphs HV and HW on V and W , respectively, we have for the random graph
G sampled from the dsitribution that

Pr[G[V ] = HV and G[W ] = HW ] = Pr[G[V ] = HV ] · Pr[G[W ] = HW ].

▶ Definition 5 (Coloring model). The graph distribution is given by a set of probability spaces
(Ωv, P rv), one for each vertex v ∈ V , and a set of deterministic functions fu,v : Ωu × Ωv →
{0, 1} computing X{u,v}, one for each edge {u, v} ∈

(
V
2
)
. If every probability space (Ωv, P rv)

is finite, we call maxv |Ωv| the number of colors of the coloring model.

We remark that the standard proof of LLL requires edge-subgraph independence. In the
paper [23] that makes the coupling to product spaces explicit, the authors describe subgraph
independence as the required property, but inspecting the proof shows that they only use
the weaker condition of edge-subgraph independence.

Note that some of our models have been previously studied under different names. We
summarize the bounds on the connectivity thresholds obtained before or simultaneously to
this paper in Figure 1, and discuss this related work in more detail in Section 1.1. Our main
results for large n are summarized in Table 1 and Figure 2. We give a refined exposition
of our results for all n in Theorem 7. We do not have matching upper and lower bounds
in all cases, but as can be seen in Figure 2, our bounds imply that there are at least
three different thresholds among the five independence conditions discussed above, and four

Table 1 Lower and upper bounds for the threshold ρ s.t. every constant edge probability > ρ

guarantees connectivity with positive probability for all sufficiently large n, while a constant edge
probability < ρ does not guarantee connectivity with positive probability for infinitely many n.

Independence condition Lower bound Upper bound
Coloring model (2 colors) 1/4 1/4
Coloring model (general) 0.381966 . . . 0.381966 . . .

Subgraph independence 1/2 [14, Thm. 16] 1/2 [14, Thm. 16]
Edge-subgraph independence 1/2 3/4
Matching independence 1/2 1
Pairwise independence 1 1

APPROX/RANDOM 2023



30:4 On Connectivity in Random Graph Models with Limited Dependencies

different thresholds if we also include the coloring models with only 2 colors. Notably, our
proofs give different intervals for the thresholds of all six independence conditions, although
this does not imply that the thresholds are all different.

0 11
2

1
4

3
4

coloring
subgraph ind.

ρ

Figure 1 An illustration of the upper and lower bounds on the thresholds known from related
work. The bounds for subgraph independence can be found in [14, Thm. 16]. The bounds on the
coloring model have been obtained simultaneously and independently to ours [4, Thm. 1.7].

0 11
2

1
4

3
4

coloring, (2 colors)
coloring
subgraph ind.
edge-subgraph ind.
matching ind.
pairwise ind.

ρ

Figure 2 An illustration of the upper and lower bounds mentioned in Table 1 and Theorem 7.
As can be seen, there must be at least four thresholds ρ among the six independence conditions.

Moreover, let us write Gpw(n, p) for the class of all random graph distributions on n vertices,
with marginal edge probabilities at least p and with the property “pairwise independence”.
We write Gpw :=

⋃
n∈N Gpw(n, 0) for the same class without restrictions on the number of

vertices and the marginal probabilities. Likewise, we write Gmat, Gesub, Gsub and Gcol for the
random graph distributions satisfying matching independence, edge-subgraph independence,
subgraph independence and the coloring models respectively. We show that those five models
form a strict hierarchy in Appendix A.

▶ Theorem 6. Gcol ⊊ Gsub ⊊ Gesub ⊊ Gmat ⊊ Gpw.

1.1 Related Work and Examples
There are numerous applications in graph theory, theoretical computer science, and com-
binatorics in which dependency graphs are bounded or otherwise restricted. For example,
if we want to find a vertex coloring in a hypergraph without monochromatic hyperedges,
and we color the vertices independently, then any two disjoint hyperedges are independent.
Therefore, often times LLL type arguments apply to coloring (hyper)graphs of bounded
maximum degree. For instance, the seminal results by Johansson [20] and Molloy [24] stating
that every graph of maxmimum degree ∆ has (list) chromatic number O( ∆

log ∆ ) were proved
using this method. Similarly, if we want to find a satisfying assignment to a SAT-formula
in conjunctive normal form, and assign the variables independently, then any two clauses
are independently satisfied if they do not share a common literal, see for instance [18] for
more detail and background. These are classical applications of LLL and fall into the class
of coloring models.
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Another important source of applications comes from percolation theory, which was also
the main motivation for [23]. There, an important technique to study locally generated
geometric graphs is rescaling: the geometric space is covered by boxes that may partially
overlap, and boxes are called good under some conditions that depend only on the subgraph
induced by the box. It is shown recursively that the probability for a box to be good increases
with the box size. The goodness of two boxes is independent if they don’t overlap, and
typically every box only overlaps with constantly many other boxes.

So far, we gave general examples of bounded dependence. We now turn to examples
where the random variables are naturally tied to the edge set of a complete graph. An
important class of examples come from random graph models that are more complex than
Erdős-Rényi graphs, in particular models that capture graph properties of real-world networks
like clustering, communities, or heavy-tailed degree distributions. Many such models are
generated by drawing some information for each vertex, and connecting two vertices based
on this information. There is a large number of such random graph models: in Chung-Lu
or Norros-Reittu random graphs, the vertices draw weights which determine their expected
degrees [12, 27]; in Random Geometric Graphs (RGG) or Hyperbolic Random Graphs (HRG)
the vertices draw some location in a geometric space [22, 26]; in scale-free percolation (SFP)
the vertices lie on a grid and also draw random weights [15]; in Geometric Inhomogeneous
Random Graphs (GIRG), they draw both a position and a weight [9]. In the Stochastic
Block Model (SBM) they draw the community to which they should belong [21]. Many more
applications of similar flavour that cannot all be listed here can be found in the literature.
All these models fall in the class of coloring models.2

The class of coloring models is the most important one.3 Models that do not fall into this
class can arise when the graphs drawn from the distribution must fulfill some global property.
For example, consider the following distribution for an odd number of vertices n ≥ 5. Every
vertex chooses a color from red and blue independently and uniformly at random. The
resulting graph consists only of a clique on the color chosen an even number of times. We
show later (in the proof of Lemma 38) that this distribution is matching independent, but
not edge-subgraph independent (and thus also not a coloring model). As a second example,
consider the Erdős-Rényi model Gn,1/2 with the additional side constraint that the total
number of edges |E| is divisible by three.4 One can show quite easily that this distribution
is not even pairwise independent. On the other hand, if we instead use the side constraint
that |E| is divisible by two, the distribution is actually a coloring model, indicating that
independence conditions are surprisingly fickle. A proof of both of these facts can be found
in the full version of this paper.

Two of our independence conditions have been previously considered under different
names. Firstly, subgraph independent distributions have been studied under the name of
1-independent random graphs. More generally, a k-independent graph distribution is a
distribution where any two sets of edges E, F are independent if the minimum distance

2 The formulation of many models involves a coin flip for each edge, where the probability of inclusion is a
function of the information of the two endpoints. In this formulation, the event Xe is not a deterministic
function of the information. But one can simply define the coin flip as part of the random experiments
of one of the endpoints.

3 But note that it is not the model that arises naturally for the LLL. This raises the question whether
stronger LLL-type results can be obtained for the coloring model.

4 More formally, we consider the conditional probability distribution obtained by conditioning the Gn,1/2
distribution on the event that |E| ≡3 0.

APPROX/RANDOM 2023
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between any vertex incident to an edge in E and any vertex incident to an edge in F is
at least k. These k-independent graph distributions have been studied extensively in the
context of percolation theory, for example on the infinite integer grid [5]. In [14], Day,
Falgas-Ravry, and Hancock consider 1-independent random finite graphs. Among other
results, they pin down the precise value of the connectivity threshold for 1-independent (i.e.,
subgraph independent) random graphs, as mentioned above in Table 1 and Figure 1.

Coloring models have been studied under two different names. First off, they have
been studied as vertex-based measures in the context of percolation in [14]. Second off, a
deterministic perspective on coloring models lies at the core of the well-studied density Turán
problem for multipartite graphs [6, 8, 13, 17, 25]: instead of a random graph distribution, the
density Turán problem for multipartite graphs considers |V (G)|-partite blow-ups G∗ of a
graph G, and the minimum density needed between parts of G∗ to guarantee the existence of
a graph H as a transversal, i.e., as a subgraph of G∗ that picks precisely one vertex per part
of G∗. This problem has also been considered for the more general case where we are not
considering the occurrence of a single graph H as a transversal, but of any graph from some
collection H. Furthermore, one can consider the weighted case, where the vertices in each
part of G∗ each get a positive weight such that all the weights per part add up to 1. The
density between two parts is then also computed in a weighted fashion. Now, considering G

as the complete graph Kn, and H as the family of spanning trees on n vertices, one can see
that the weighted density Turán problem for multipartite graphs is equivalent to the problem
of determining the minimum edge probability needed to guarantee connectivity with non-zero
probability in coloring models (except that the weighted density Turán setting only allows
for modeling finitely many colors, which turns out to be without loss of generality, as we
discuss in the following subsection). In [4], which appeared simultaneously and independently
from this paper, Badakhshian, Falgas-Ravry, and Sharifzadeh consider exactly this question;
they prove the same lower bound as us [4, Thm. 1.7], and propose our upper bound as a
conjecture [4, Conj. 1.9].

Last but not least, let us mention that in a conceptually similar (but concretely rather
different) direction, Alon and Nussboim [2] studied thresholds for the connectivity of random
graph models in which only edge-sets of size at most k for a fixed parameter k are required
to be independent, but dependencies between edge-sets may occur from size k + 1 and up.

1.2 Detailed Results
In this section we give the main theorem with more detailed results. We denote by

ρpw(n) := inf{p ∈ [0, 1] | ∀D ∈ Gpw(n, p), Pr[Gn ∼ D is connected] > 0}

the smallest (infimum) marginal edge probability that guarantees a positive probability
for Gn being connected. The quantities ρmat(n), ρesub(n), ρsub(n), and ρcol(n) are defined
similarly. Furthermore, let Gcol,k denote the coloring models with at most k colors, and let
ρcol,k(n) be the corresponding threshold.

▶ Theorem 7. We have the following bounds on ρ:

Pairwise independence: For all n ∈ N,

1 − 2/n − Θ(1/n2) ≤ ρpw(n) ≤ 1 − 2/n.

Matching independence: For all n ∈ N,
1
2(1 − tan2 π

2n
) ≤ ρmat(n) ≤ 1 − 2/n.
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Moreover, for any k ∈ N,

1
2 ≤ ρmat(8k).

Edge-subgraph independence: For all n ∈ N,

1
2(1 − tan2 π

2n
) ≤ ρesub(n) ≤ 3/4.

Subgraph independence: [14, Thm 16] For all n ≥ 2,

ρsub(n) = 1
2(1 − tan2 π

2n
).

Coloring model: For all n ≥ 3, we have 1/4 ≤ ρcol(n) ≤ 1/2. Moreover, let ϕ = 1
2 (1 +

√
5)

be the golden ratio. Then

lim
n→∞

ρcol(n) = 2 − ϕ ≈ 0.381966.

Coloring model, two colors: For all n ≥ 3, ρcol,2(n) = 1/4.

To the best of our knowledge, this question had not been considered so far for the pairwise
independence, matching independence, or edge-subgraph independence models. For the
subgraph independence model, the threshold was known precisely [14], but we include it in
our theorem for completeness of the hierarchy of our models. Our results for the coloring
model confirm a conjecture of Badakhshian, Falgas-Ravry, and Sharifzadeh [4].

We remark that, while Gcol(n, p) includes models with infinitely many outcomes of the
random experiment at each vertex, it has been shown5 (in [8] for n = 3 and in [25, Lemma
2.1] for all n) that ρcol,k(n) ≥ ρcol(n) for k = n − 1, which combined with the trivial
ρcol,k(n) ≤ ρcol(n) for any k gives ρcol,n−1(n) = ρcol(n). The proofs of ρcol,n−1(n) ≥ ρcol(n)
take a model which has probability 0 of being connected and modify it to use at most n − 1
many colors while preserving the fact that it is never connected and increasing or keeping the
same its marginal edge probabilities. However, the probability distribution over all graphs
on n vertices that the modified model gives is usually different from the original one. Here, we
prove the even stronger statement that Gcol(n, p) = Gcol,k(n, p) for some k = k(n), showing
that finitely many colors suffice to model any probability distribution over all graphs that
can be represented as a coloring model. The proof of Lemma 8 can be found in Appendix C.

▶ Lemma 8. Consider a coloring model on n vertices along with its corresponding probability
distribution D over the graphs on n vertices. Then there is a coloring model on n vertices
with at most 2(n

2) + 1 colors per vertex which results in the same distribution D.

1.3 Open Questions
There are many interesting questions that remain open. Most obviously, for large n there
are gaps between the upper and lower bounds for matching independence and edge-subgraph
independence. For the coloring model we do have matching upper and lower bounds for

5 In fact, these results are stated only for finitely many colors as they are in the density Turán setting,
but the proofs go through in our more general set-up as well.

APPROX/RANDOM 2023
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an unbounded number of colors and for k = 2, but not for other constant values of k.
Moreover, for fixed n it is unclear how much richer the coloring model gets by adding more
colors. As mentioned above, we know that Gcol(n, p) = Gcol,k(n, p) with k = 2(n

2) + 1 and
ρcol(n) = ρcol,n−1(n). But what is still an open question is the behavior of the functions
kG

min(n) = min{k | Gcol(n, p) = Gcol,k(n, p)} and kρ
min(n) = min{k | ρcol(n, p) = ρcol,k(n, p)},

that is, how many colors are enough to be able to express all coloring models on n vertices,
respectively to capture the behaviour of the connectivity threshold of the coloring models
on n vertices?

Finally, in this paper we focus on connectivity because that is arguably the most funda-
mental global property of a graph. We only see this as a starting point and we would find it
interesting to explore analogous questions for other global properties. A natural extension
might be to study the size of the largest connected component that can be achieved with
non-zero probability, but the same questions arise for any other global graph properties such
as Hamiltonicity, the chromatic number, and many more.

1.4 Proof Techniques

We prove the strict hierarchical structure of our considered independence conditions (The-
orem 6) by giving concrete examples of distributions that fulfill the weaker independence
condition, but not the stronger one. All of these examples are simple to describe and quite
illustrative.

The lower bounds on the thresholds ρ are shown by concrete series of graph distributions
on disconnected graphs. Here, the lower bound on ρpw (pairwise ind.) uses the same
distribution as the distribution used to show Gpw ≠ Gmat. The lower bounds on ρmat, ρesub,
and ρsub all use the same construction, since we were not able to make use of the additional
freedom available in the edge-subgraph or even the matching independence condition (except
for the case when n is divisible by 8 in the matching independence model). This lower bound
on ρsub has been previously proven in [14, Thm. 16]. While we do not restate the proof
here, note that this bound uses a distribution that can be seen conceptually as a version of a
coloring model with complex probabilities. The proof that the distribution fulfills subgraph
independence follows from the fact that the coloring models are subgraph independent, and
from the fundamental theorem of algebra. The lower bounds on ρcol and ρcol,2 once again
are simple constructions.

For the upper bounds on the thresholds ρ we use very different proof techniques depending
on the independence condition. The upper bound for pairwise and matching independence
does not make use of these independence conditions, and just combines a linearity of
expectation argument with the maximum number of edges in a disconnected graph. As
mentioned above, edge-subgraph independence is the first independence condition which
allows us to apply Lovász Local Lemma to achieve a constant bound on ρ. For the coloring
models, we give concrete strategies on how to pick a color for each vertex such that the
graph is connected. For the two color case, this strategy is rather simple, while the strategy
for the general case is based on adjusting a random coloring, which fulfills useful properties
with high probability for large n. The proof of this bound (Theorem 21) is by far the most
technically involved proof in this paper.
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2 Preliminaries

We make use of the following version of the Lovász Local Lemma.

▶ Lemma 9 ([28]). Let A1, . . . Ak be a sequence of events, such that each event occurs with
probability at least p and is independent of all the other events, except at most d of them.
Then, if

p >

{
1 − (d−1)d−1

dd for d ≥ 2,
1/2 for d = 1,

there is a non-zero probability that all of the events occur.

The following lemma is a direct consequence of Markov’s inequality.

▶ Lemma 10. Let X be a random variable such that Pr[X ≤ u] = 1. Then for ℓ < u,

Pr[X ≥ ℓ] ≥ E[X] − ℓ

u − ℓ
.

Proof. Note that the random variable u − X is non-negative and has expectation u − E[X].
We can thus apply Markov’s inequality.

Pr[X ≥ ℓ] = Pr[u − X ≤ u − ℓ] = 1 − Pr[u − X > u − ℓ] ≥ 1 − u − E[X]
u − ℓ

= E[X] − ℓ

u − ℓ
. ◀

3 Bounds on ρ

In this section we prove Theorem 7, showing lower and upper bounds on ρ for our various
models of independence. By the definition of ρ as in Section 1.2, any lower bound on ρX for
some independence condition X also holds for ρY for some weaker independence condition Y ,
i.e., one such that GX ⊆ GY. Conversely, any upper bound on ρY also holds for ρX .

3.1 Pairwise Independence
▶ Lemma 11. For even n ≥ 4, we have ρpw(n) ≥ 1 − 2

n − Θ( 1
n2 ).

Proof. Consider the distribution CM(n, q) as defined in Definition 40 with q = 1 − Θ
(

1
n2

)
chosen such that CM(n, q) is pairwise independent, which can be done by Claim 41. The
marginal edge probability p in CM(n, q) is then p = 1 − 2

n − Θ
(

1
n2

)
. Note that the

probability of G ∼ CM(n, q) being connected is 0, since in the clique regime there is always
an isolated vertex, and in the matching regime G only consists of a perfect matching. Thus,
the threshold ρpw for non-zero probability of connectivity in the pairwise independence model
is at least p = 1 − 2

n − Θ
(

1
n2

)
. ◀

▶ Lemma 12. For any n, we have ρpw(n) ≤ 1 − 2
n .

Proof. If the minimum marginal edge probability p in any graph distribution (not even
necessarily pairwise independent) is larger than 1− 2

n , the expected number of edges E[
∑

e Xe]
is larger than (1 − 2

n )
(

n
2
)

=
(

n−1
2

)
. Since any disconnected graph contains at most

(
n−1

2
)

edges, the graph must be connected with non-zero probability. ◀
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3.2 Matching Independence
We have no general bounds specifically holding for matching independence. Matching
independence is a condition that is surprisingly difficult to exploit. We thus state the
following corollary, following directly from Lemma 12 and Lemma 17.

▶ Corollary 13. For any n ≥ 2, we have 1
2 (1 − tan2 π

2n ) ≤ ρmat(n) ≤ 1 − 2
n .

The lower bound in Corollary 13 can be improved slightly when n is divisible by 8, which
in particular shows that ρmat(n) ̸= ρsub(n) for infinitely many n, illustrating again the
different behavior of the connectivity thresholds for different independence conditions. The
proof of this statement can be found in the full version.

▶ Lemma 14. For any n ∈ N that is divisible by 8, we have ρmat(n) ≥ 1
2 .

3.3 Edge-Subgraph Independence
We have no lower bound specifically for edge-subgraph independence. We inherit this bound
from the stricter subgraph independence, i.e., Lemma 17.

▶ Corollary 15. For any n ≥ 2, we have ρesub(n) ≥ 1
2 (1 − tan2 π

2n ).

▶ Lemma 16. For any n, we have ρesub(n) ≤ 3
4 .

Proof. We show that any edge-subgraph independent distribution with minimum marginal
edge probability p > 3

4 is connected with non-zero probability. To achieve this, we use the
Lovász Local Lemma, as stated in Lemma 9.

We pick the edges of any Hamiltonian path e1, . . . , en−1 of Kn and consider their corre-
sponding events Xe1 , . . . , Xen−1 . Since we have edge-subgraph independence, each of these
events depends on only at most d = 2 of the other events (the ones corresponding to the
neighboring edges). Furthermore, the probability of each of these events is at least p > 3

4 . By
Lemma 9, since p > 3

4 = 1 − 11

22 , with non-zero probability all of the events Xe1 , . . . , Xen−1

happen, all edges of the Hamiltonian path are present, and thus the graph is connected. ◀

3.4 Subgraph Independence
The exact behavior of ρsub has been determined in [14, Thm. 16]. For a proof, we point the
reader to [14]. We also include a proof of the lower bound part of this statement in the full
version of this paper.

▶ Lemma 17 ([14, Thm. 16]). For any n ≥ 2, we have ρsub(n) = 1
2 (1 − tan2 π

2n ).

3.5 Coloring Models
We first consider coloring models with only 2 colors, since we can find matching lower and
upper bounds for that case. Other restrictions of the coloring model could also be interesting
to investigate, such as other bounded numbers of colors, or the case where every vertex must
pick uniformly among its colors. We show that the threshold probability is exactly 1/4 in
this case. The proof can be found in Appendix B.

▶ Lemma 18. For all n ≥ 3, we have ρcol,2(n) = 1/4.

We now consider the full generality of coloring models, with an unbounded or even
infinite (although by Lemma 8 this can w.l.o.g. be excluded) number of outcomes of the
local experiment at each vertex.
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▶ Lemma 19. For all n ≥ 3, we have ρcol(n) ≥ (n − 2) 3n−4−
√

5n2−16n+12
2(n−1)2 .

Note that for n = 3, this bound is equal to 1/4 (which matches the previous subsection, since
our construction only uses 2 colors in this case), and for n → ∞, it tends to 2 − ϕ ≈ 0.381966.
We remark that Lemma 19 was obtained simultaneously and independently in [4, Thm 1.7]
with the exact same construction.

Proof. We show that for each number of vertices n ≥ 3, there exists a coloring model
with marginal edge probability p(n) = (n − 2) 3n−4−

√
5n2−16n+12

2(n−1)2 which is connected with
probability 0.

We define the distribution CS(n) for any n ≥ 3. A fixed vertex v picks as its local
experiment one other vertex v′ ∈ [n] \ {v} uniformly at random. All other vertices pick
the color red with probability q (to be determined later), and blue with probability 1 − q.
Then, v connects to all vertices in V \ {v, v′} that are colored blue. Between the vertices in
V \ {v}, an edge is present if both endpoints are colored red. The resulting graph is clearly
not connected: every red vertex is only connected to other red vertices, and in the case that
all vertices in V \ {v} are blue, only n − 2 edges exist.

For every edge e not incident to v we have Pr[Xe] = q2, and for every edge e′ incident to
v we have Pr[Xe′ ] = (1 − q) n−2

n−1 . We pick q maximizing the minimum of these probabilities.
Since q2 is increasing in q for q ≥ 0, and (1 − q) n−2

n−1 is decreasing in q, the minimum is
maximized when q2 = (1 − q) n−2

n−1 . We can thus solve

q2 + n − 2
n − 1q − n − 2

n − 1 = 0

to get

q = 2 − n ±
√

5n2 − 16n + 12
2(n − 1) .

Only one of these solutions fulfills q > 0, namely the one with “+”. Since the marginal
edge probability p(n) is equal to (1 − q) n−2

n−1 , we get the claimed bound. ◀

Let us now consider upper bounds for ρcol(n). We first state the weaker constant bound
holding for all n. The proof can be found in the full version of this paper. Note that the proof
of Theorem 1.7 in [4], which came out independently and simultaneously, uses essentially the
same techniques as the ones we employ in the proof of the lemma below, except that they
optimize the calculations to get a bound of 1

2 − 1
4n−6 .

▶ Lemma 20. For every n, we have ρcol(n) ≤ 1
2 .

Next, we present the stronger upper bound holding for large enough n. This bound tends
to 2 − ϕ for n → ∞ and thus matches the lower bound for large enough n, as conjectured
in [4].

▶ Theorem 21. For any ε > 0, there exists an n0(ε), such that for any coloring model
distribution on graphs on n ≥ n0(ε) vertices with minimum marginal edge probability at least
p′ = 2 − ϕ + ε, the graph is connected with non-zero probability.

To prove this theorem, we will need the following notation and setup. We write p for 2−ϕ.

▶ Observation 22. For p = 2 − ϕ, we have the nice identities 1
p − 2 = 1 − p and (1 − p)2 = p.
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To begin, we color each vertex independently with a random color according to its own
distribution.6 For this fixed coloring, we write N(v, c) for the set of neighbors of v, if v is
recolored to the color c.

▶ Lemma 23. In a random coloring, with high probability it holds that Ec[|N(v, c)|] >

(p + ε/2)n for all v simultaneously.

The proof of this lemma uses standard concentration bounds and can be found in the full
version.

Thus, from now on, we condition on the high probability event of Lemma 23. This
allows us to argue that we can recolor any vertex such that it has a large neighborhood.
Furthermore, using Lemma 10, we can also argue that for every vertex, relatively large
neighborhoods must exist with a somewhat large probability. This allows us to use union
bounds to show that large neighborhoods must exist at the same time as some fixed edges.

Our general strategy for showing the graph is connected with positive probability will be
to mostly rely on the random coloring of all vertices that we start with, but recolor some
vertices as necessary, using some large neighborhoods to connect vertices to.

Since we will recolor some vertices, the true neighborhoods in the final graph may be
different (possibly also smaller) than in the random coloring for which we get these bounds.
We use the error term C := C ′(ε) log2 n for an upper bound on the number of vertices that
we recolor and aim to connect to (we may recolor more vertices, but we do not argue that
we connect to these vertices, thus recoloring them does not matter). If we can guarantee a
desired intersection of neighborhoods (or of a neighborhood with a fixed set) to contain at
least C + 1 vertices in the random coloring, we know that in the actual coloring at the end
the intersection is non-empty.

Let (r, cr) be a vertex-color pair which maximizes |N(r, cr)|. We recolor r to cr. If
every vertex outside of N(r, cr) can be recolored to some color such that it has an edge to a
vertex in N(r, cr), the graph can be connected. Otherwise, we pick a vertex-color pair (b, cb)
which maximizes |N(b, cb)| among all vertex-color pairs for which b ̸∈ N(r, cr) ∪ {r}, and
|N(r, cr) ∩ N(b, cb)| ≤ C. We recolor b to cb.

In the following, we use the shorthands

R := N(r, cr), B := N(b, cb), α := |R|/n, and β := |B|/n.

The vertices r and b, along with their respective neighborhoods R and B, will be central to
our argument, and we will find various ways to connect all other vertices to those sets.

The next lemma is fairly straightforward and its proof can be found in the full version.

▶ Lemma 24. p < α < 1 − p, and p < β ≤ α.

Note that if we have R ∩ B ≠ ∅, we can easily connect the graph: if we recolor each
vertex v ̸∈ R ∪ B ∪ {r, b} to some color c such that |N(v, c)| > pn, N(v, c) must intersect
R ∪ B. This follows from |R ∪ B| = |R| + |B| − |R ∩ B| ≥ αn + βn − C ≥ 2pn − C, and
(2pn − C) + pn > n. We thus assume in the following that R ∩ B = ∅.

▶ Lemma 25. β ≤ min(1 − α, 1/2).

Proof. This follows directly from R ∩ B = ∅ and thus α + β ≤ 1. ◀

6 We assume that we have a finite number of colors, which we can do by Lemma 8.
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To connect the graph in the remaining cases, we need to introduce some more definitions.
Intuitively, we say that any vertex v is obligate red, if it cannot robustly be connected to the
blue set B. More formally, we say that a vertex v ̸∈ B ∪ {b} is obligate red, if there exists no
color c, such that |N(v, c) ∩ B| > C. Similarly, we say that a vertex v ̸∈ R ∪ {r} is obligate
blue, if there exists no color c such that |N(v, c) ∩ R| > C. Let OR be the set of obligate red
vertices, and OB the set of obligate blue vertices.

Note that no vertex can be both obligate blue and obligate red. When a vertex is neither
obligate blue nor obligate red, we say it is non-obligate.

We start with giving some guarantees on the sizes of neighborhoods of obligate blue and
obligate red vertices.

▶ Lemma 26. Let u ∈ OB, v ∈ OR. Then, over the distribution of the color of u (v), the
following hold for the neighborhood of u (v).
1. Pr[|N(u, c)| ≥ p+pβ−β

p n + εn/2] ≥ 1 − p.
2. Pr[|N(v, c)| ≥ p+pα−α

p n + εn/2] ≥ 1 − p.
3. Pr[|N(u, c)| ≥ (1 − p)(1 − β)n + εn/2] ≥ 1 − √

p.
4. Pr[|N(v, c)| ≥ (1 − p)(1 − α)n + εn/2] ≥ 1 − √

p.

Proof (sketch). We can upper bound the size of a neighborhood of any vertex by αn.
Furthermore, we can upper bound the size of a neighborhood of any obligate blue vertex u

by βn. The lemma follows from applying Lemma 10 and simplifying. The full calculations
are found in the full version. ◀

The next two corollaries follow from Lemma 26 and some calculations that can be found
in the full version.

▶ Corollary 27. Let S be a vertex set of size |S| ≤ C. Let u ∈ OB. Then,

Prc[N(u, c) ∩ (B \ S) ̸= ∅] ≥ 1 − p.

▶ Corollary 28. Let S be a vertex set of size |S| ≤ C. Let v ∈ OR. Then,

Prc[N(v, c) ∩ (R \ S) ̸= ∅] ≥ 1 − p.

We will now prove Theorem 21 by case distinction on the number of obligate red and
obligate blue vertices.

▶ Lemma 29. If there are either no obligate red or no obligate blue vertices, the graph can
be connected.

Proof. If there are no obligate red vertices, we recolor every vertex v ̸∈ B ∪ {b} to a color c

such that N(v, c) intersects B. Every vertex is thus connected to b either directly or through
a vertex in B, proving that the graph is connected. Symmetrically, if there are no obligate
blue vertices, all vertices can be connected to r or R. ◀

▶ Lemma 30. If |OR| > C or |OB| > C, the graph can be connected.

The full proof of this lemma can be found in the full version.

Proof (sketch). Suppose without loss of generality that |OB| > |OR| (the other case is
symmetric). Let OB′ ⊂ OB \ {b} be a subset of C obligate blue vertices. We recolor all
vertices in OB′ as well as all non-obligate vertices such that they connect into B \ OB′.
Crucially, each vertex in OB′ has a color that allows it to connect to B \ OB′ as well as a
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OR

OB

OB′

B

Figure 3 How to connect the graph when |OB| > C.

r b

R B

OR OB

v

f(v)

Figure 4 How to connect the graph given an injective mapping f from OR to OB \ {b}.

constant proportion of the remaining vertices in OR. Since C is logarithmic in n, we are
able to cover all vertices in OR in this way, and thus connect the graph. An illustration of
this can be seen in Figure 3. ◀

We thus assume in the following that the numbers of obligate red and obligate blue
vertices are more than 0 and at most C.

▶ Lemma 31. If there is an injective mapping from OR to OB \{b}, or an injective mapping
from OB to OR \ {r}, the graph can be connected.

Proof. We first assume an injective mapping f from OR to OB \ {b} exists. The opposite
case works symmetrically. In this case we aim to connect every vertex to b, by connecting
each obligate red vertex v to the vertex f(v). These obligate blue vertices, as well as the
non-obligate vertices outside B \ {b} are then connected to some vertex in B \ OB. Since
these vertices are connected to b, the whole graph is connected. This is shown in Figure 4.
Note that we recolor the vertices in OB and outside B, but not those in B \ OB.

We let v ∈ OR and f(v) ∈ OB pick a color independently at random from their respective
distributions. We have that Pr[vf(v) ∈ E(G)] ≥ p′ = p + ε. Furthermore, by Corollary 27,
Pr[N(f(v), c) ∩ (B \ OB) ̸= ∅] ≥ (1 − p). Thus, letting Yv,f(v) be the indicator random
variable that is 1 if and only if vf(v) ∈ E(G) and N(f(v), c) ∩ (B \ OB) ̸= ∅, we have

Pr[Yv,f(v) = 1] ≥ p′ + (1 − p) − 1 ≥ ε.

Thus, we can pick colors for each pair of vertices (v, f(v)), for v ∈ OR, such that v connects
to f(v) and f(v) connects to B \ OB. ◀

We can enhance the previous lemma by considering non-obligate vertices which also have
a large probability (at least 1 − p) to robustly connect to either of the two sets R and B (as
obligate vertices are guaranteed to, by Corollary 27 and Corollary 28, respectively):
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OR OB

r′ b′

(a) Case 1: At least one edge is oriented towards OR.
OR OB

(b) Case 2: All edges are oriented towards OB.

Figure 5 Connecting the graph in Lemma 35.

▶ Lemma 32. If there exists a non-obligate vertex v ̸∈ {r, b} such that for S = R or S = B,
it holds that Prc[|N(v, c) ∩ S| > C] ≥ 1 − p, then the graph can be connected.

Proof. If the conditions of Lemma 30 or Lemma 31 are fulfilled, we can connect the
graph. Otherwise, |OR| = |OB| ≤ C and r ∈ OR and b ∈ OB. Assume there is a
vertex v such that Prc[|N(v, c) ∩ B| > C] ≥ 1 − p (the case S = R works symmetrically).
We can make a bijective mapping from OR to (OB ∪ {v}) \ {b}. Since we have that
Prc[N(v, c) ∩ (B \ (OB ∪ {v} \ {b})) ̸= ∅] ≥ 1 − p, the proof of Lemma 31 also works for
this mapping. ◀

Furthermore, if there exists a vertex that can be used to join the red and blue sets, we
can also connect the graph:

▶ Lemma 33. If there exists a vertex v ̸∈ {r, b} and a color c, such that N(v, c) ∩ R ̸= ∅
and N(v, c) ∩ B ̸= ∅, we can connect the graph.

Proof. We give the vertex v the color c. Every vertex w ̸∈ R ∪ B ∪ {r, b, v} is recolored to
some color cw such that |N(w, cw)| > pn. Since p > 1 − α − β, w is then connected to some
vertex in R or B. After doing this for all w, the graph is connected. ◀

Finally, we will consider the cases which were not covered by the previous lemmas. For
this, we need the following lower bounds regarding non-obligate vertices, the proofs of which
can be found in the full version.

▶ Lemma 34. For any non-obligate vertex v ̸∈ {r, b}, we define

pr
v := max

c:|N(v,c)∩B|≤C
|N(v, c)|, and pb

v := max
c:|N(v,c)∩R|≤C

|N(v, c)|.

Assuming there exists no vertex fulfilling the conditions of either Lemma 32 or Lemma 33,
we have pr

v > βp−β+p
p n, and pb

v > αp−α+p
p n.

Finally, we cover the only remaining case, whose proof can be found in Appendix B.
The idea of the proof is sketched in Figure 5. We consider the potential edges b′r′ between
b′ ∈ OB and r′ ∈ OR. For each such edge we determine the vertex with a higher probability
of picking a color such that the other vertex can be connected to it. We then orient the edge
from this vertex to the other. If at least one edge is oriented from OB to OR, we can use
this fact to connect every vertex to B ∪ OB. Otherwise, we connect every vertex to R ∪ OR.
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▶ Lemma 35. If |OB| = |OR|, and there exists no vertex as in Lemma 32 or Lemma 33, we
can connect the graph.

Proof of Theorem 21. Lemmas 29–33 and 35 cover all possible cases. Thus, we can always
connect the graph, proving the theorem. ◀
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A A Strict Hierarchy

This section is dedicated to proving Theorem 6:

▶ Theorem 6. Gcol ⊊ Gsub ⊊ Gesub ⊊ Gmat ⊊ Gpw.

We will prove each strict inclusion as its own lemma, from left to right. The first among
these lemmas shows that each coloring model is subgraph independent but some subgraph
independent distributions are not coloring models.

▶ Lemma 36. Gcol ⊊ Gsub, i.e., every coloring model is subgraph independent, but there are
some subgraph independent distributions that are not coloring models.

Proof. We first prove Gcol ⊆ Gsub. Consider some graph distribution D ∈ Gcol and consider
any two disjoint subsets of vertices V, W . The resulting graph within V depends only on
elementary experiments on V , and the resulting graph within W depends only on elementary
experiments on W . Since the elementary experiments are mutually independent, we have
independence of the resulting graphs within V and W . Thus, D ∈ Gsub.

The fact that Gcol ̸= Gsub is well-known from prior work [1, 10, 14, 19]. ◀

▶ Lemma 37. Gsub ⊊ Gesub, i.e., every subgraph independent distribution is edge-subgraph
independent, but there are some edge-subgraph independent distributions that are not subgraph
independent.

Proof. Clearly Gsub ⊆ Gesub as subgraph independence implies edge-subgraph independence
by definition, since a single edge is also a subgraph.
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To prove Gsub ̸= Gesub, we consider the following graph distribution CC(n) on n ≥ 6
vertices: with probability 1/2, the distribution returns a graph drawn from the Erdős-Rényi
distribution Gn,1/2. Otherwise, the distribution picks a uniformly random decomposition of
the vertex set [n] into two sets A and B, and returns the graph consisting of the union of
cliques on A and B. We first show that CC(n) is edge-subgraph independent. In both the
Erdős-Rényi regime as well as the two-cliques regime, for any edge e we have Pr[Xe] = 1/2.
This holds even when we condition on the outcome within any subgraph disjoint from e,
thus CC(n) is edge-subgraph independent. On the other hand, we show that CC(n) is not
subgraph independent. To this end, we decompose the vertex set [n] into the sets P = {u, v, w}
and Q = [n] \ P . We consider the two events P := “There are exactly two edges within P”
and Q := “Q is a clique”. Clearly, we have

Pr[Q] = 1
2 · 2−(n−4) + 1

2 · 2−(n−3
2 ) > 2−(n−3

2 ).

On the other hand, P implies that we are in the Erdős-Rényi regime, and thus

Pr[Q|P ] = 2−(n−3
2 ).

We conclude that Pr[Q] > Pr[Q|P] and thus P and Q are not independent, showing that
CC(n) is not subgraph independent. ◀

The graph distribution CC(n) that we built in the proof above is a convex combination
of its two regimes, as defined in the full version of this paper.

▶ Lemma 38. Gesub ⊊ Gmat, i.e., every edge-subgraph independent distribution is matching
independent, but there are some matching independent distributions that are not edge-subgraph
independent.

Proof. To prove Gesub ⊆ Gmat, consider some edge-subgraph independent distribution. To
prove that it is also matching independent, let M = {e1, . . . , ek} be some matching. We
show for all i ≤ k that Pr[Xei

|Xe1 , . . . , Xei−1 ] = Pr[Xei
]. This implies

Pr[Xe1 and Xe2 and . . . and Xek
] =

k∏
i=1

Pr[Xei
],

and thus implies matching independence. Let V ′ be the set of endpoints of the edges
e1, . . . , ei−1. Furthermore, let G(V ′) be the set of all possible graphs on V ′. Then, by the
law of total probability, we have

Pr[Xei
|Xe1 , . . . , Xei−1 ] =

∑
G∈G(V ′)

Pr[Xei
|G]Pr[G|Xe1 , . . . , Xei−1 ].

Due to edge-subgraph independence, Pr[Xei |G] = Pr[Xei ], and we thus have

Pr[Xei |Xe1 , . . . , Xei−1 ] = Pr[Xei ]
∑

G∈G(V ′)

Pr[G|Xe1 , . . . , Xei−1 ] = Pr[Xei ],

proving the desired claim.
For the second part of the statement, Gesub ̸= Gmat, we consider the following graph

distribution SC(n) on n vertices for odd n ≥ 5: every vertex independently and uniformly
picks from the two colors red and blue. Since n is odd, one color was picked by an even
number of vertices. The vertices with that color form a clique, and no other edges are present.
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We first show that SC(n) is matching independent: every edge individually occurs with
probability 1/4, since first both endpoints need to have the same color, and second this color
must be the color picked by an even number of vertices. We prove that a matching of k

edges occurs with probability (1/4)k. For the matching to occur, all 2k vertices must pick
the same color, which happens with probability (1/2)2k−1. Second, that color must end up
to be the color picked by an even number of vertices, which has probability 1/2. Altogether,
we have probability (1/2)2k−1+1 = (1/4)k.

Finally, we show that SC(n) is not edge-subgraph independent. Let W be a set of
n − 2 vertices, and e be the edge between the remaining 2 vertices. If W is a clique, e

cannot be present. Since both W being a clique and e being present have non-zero marginal
probabilities, edge-subgraph independence cannot hold. ◀

▶ Lemma 39. Gmat ⊊ Gpw, i.e., every matching independent distribution is pairwise in-
dependent, but there are some pairwise independent distributions that are not matching
independent.

To prove this final strict inclusion lemma, we define the following distribution. This
distribution will also be useful later to prove a lower bound on ρpw.

▶ Definition 40. CM(n, q) for n even is the following distribution over the graphs on n

vertices: to sample G ∼ CM(n, q), with probability q we sample from the clique regime, and
otherwise from the matching regime. In the clique regime, we pick a vertex x ∈ [n] uniformly
at random and add all edges e with x /∈ e to G. In the matching regime, we pick a perfect
matching on [n] uniformly at random and add its edges to G.

▷ Claim 41. There exists 0 ≤ q(n) ≤ 1 with

q(n) = 1 − Θ
( 1

n2

)
such that CM(n, q(n)) for n even is pairwise independent but not matching independent,
and the probability of each edge is

p(n) = 1 − 2
n

− Θ
( 1

n2

)
.

The proof of this claim is straightforward and just requires some calculations. It can be
found in the full version.

Proof of Lemma 39. Clearly Gmat ⊆ Gpw as matching independence implies pairwise inde-
pendence by definition, since two vertex-disjoint edges e, f are a matching.

To see that Gmat ̸= Gpw, recall that by Claim 41, there exists some q(n) such that
CM(n, q) is pairwise independent but not matching independent. ◀

Proof of Theorem 6. Theorem 6 now follows directly from Lemmas 36–39. ◀

B Omitted Proofs from Section 3.5

Proof of Lemma 18. We first prove ρcol,2(n) ≥ 1/4 by defining the following coloring model
which is always disconnected. Decompose the vertex set into three non-empty sets A, B, C.
Every vertex chooses a color uniformly among the colors red and blue. Two vertices in the
same set are connected if they are both red. A vertex a ∈ A is connected to b ∈ B, if a is
red and b is blue. The same goes for b ∈ B and c ∈ C, as well as c ∈ C and a ∈ A. Clearly,
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the marginal edge probability of every edge is 1/4. We now show that every connected
component of a graph sampled from this distribution is a subset of the union of at most two
of the sets A, B, C. To see this, we pick some edge {a, b} for a ∈ A and b ∈ B to be present,
and try to grow its connected component. Since the edge {a, b} is present, a must be red
and b blue. Now, a can only be connected to other red vertices in A, and to blue vertices in
B. Similarly, b can only be connected to other red vertices in A. No red vertex in A or blue
vertex in B can be connected to a vertex in C, thus the connected component containing
the edge {a, b} is contained in A ∪ B. Symmetrically this holds for any pair of sets, and we
conclude that the graph must be disconnected, proving the lower bound.

Next, we prove ρcol,2(n) ≤ 1/4 by showing that if every marginal edge probability is
strictly larger than 1/4, we can always find a coloring that connects the graph. We say
that a vertex v covers vertex w, if for both colors at vertex w, there exists a color at v,
such that the edge {v, w} is present under this coloring. We now remove vertices one by
one, by repeatedly removing a vertex which covers some remaining vertex, until no more
such vertices exist. If the graph on the remaining vertices V ′ can be connected using some
coloring, we can add back the removed vertices in reverse order, and connect them to the
vertex they cover, thus connecting the whole graph. We thus only have to show that the
graph on V ′ can be connected. Since in this graph no vertex covers any other, each edge is
only present under exactly one of the four possible color combinations of its endpoints.

We pick a vertex v′ ∈ V ′ which maximizes max(Pr[v is red], P r[v is blue]) among all
v ∈ V ′. We give this vertex v′ the color which is more likely, let p be the probability of this
color. One can see that for any other vertex w ∈ V ′ \ {v′}, there must be a color such that
the edge {v′, w} is present. Otherwise, the color combination making {v′, w} present would
have probability of at most p · (1 − p), which is at most 1/4. Thus, we can connect V ′ by
simply coloring each vertex with the correct color to connect to v′. This concludes the proof
of the upper bound, and thus the whole lemma. ◀

Proof of Lemma 35. We consider the potential edges between OR and OB. Each such edge
r′b′ can be oriented in some direction, by considering the following two probabilities:

pr′→b′ := Prcr′ [∃cb′ such that r′b′ ∈ E(G) in coloring c(r′) = cr′ , c(b′) = cb′ ]
pb′→r′ := Prcb′ [∃cr′ such that r′b′ ∈ E(G) in coloring c(r′) = cr′ , c(b′) = cb′ ]

Note that pr′→b′ · pb′→r′ ≥ Pr[r′b′ ∈ E(G)] ≥ p′, and thus max(pr′→b′ , pb′→r′) ≥
√

p′. We
now direct the potential edge r′b′ from r′ to b′ if pr′→b′ > pb′→r′ , and from b′ to r′ otherwise.
We pick an arbitrary perfect matching M among the potential edges between OR and OB,
using |OR| = |OB|.

Case 1: There exists an arc (b′, r′) ∈ M directed towards r′ ∈ OR. In this case we will
connect the graph as shown in Figure 5a. Every obligate red vertex is connected to its
matching obligate blue vertex. The vertex b′ must have a large neighborhood size that can
be guaranteed with probability ≥ 1 − √

p, so that it can simultaneously be connected to r′.
Every obligate blue and every non-obligate vertex connects to this neighborhood.

By Lemma 26, part 3, we have

Pr[|N(b′, c)| ≥ (1 − p)(1 − β)n + εn/2] ≥ 1 − √
p.

Thus, with positive probability over the choice of color for b′, the size of the neighborhood of
b′ is at least (1 − p)(1 − β)n + εn/2 and there is a choice of color for r′ such that r′b′ is an
edge, since 1 − √

p +
√

p′ > 0.
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Similarly, for all other obligate blue vertices u, by Lemma 26, part 1, we have

Pr[|N(u, c)| ≥ p + pβ − β

p
n + εn/2] ≥ 1 − p,

so with positive probability there is an edge between u and its matching vertex in OR and
u’s neighborhood has size at least p+pβ−β

p n + εn/2.
We need to prove that these guaranteed sizes of neighborhoods intersect outside of

OB∪OR. Let S := (1−p)(1−β)n+εn/2 and T := p+pβ−β
p n+εn/2. Since both neighborhoods

can intersect R in at most C vertices, we need to prove that (S − 3C) + (T − 3C) > n − |R|,
i.e.,

S + T + αn − n − 6C
!
> 0. (1)

Additionally, to guarantee that each non-obligate vertex u outside the neighborhood of b′

can connect to that neighborhood, we need to guarantee that u has a neighborhood which
intersects that of b′ outside OB∪OR. Thus, we check that (S −3C)+(pb

u −3C) > n−|R|, i.e.,

S + pb
u + αn − n − 6C

!
> 0. (2)

Since our lower bound on pb
u is smaller than T (as α ≥ β), (2) implies (1), so it suffices

to show (2). The proof of (2) can be found in the full version.

Case 2: All edges in M are oriented towards OB. In this case we will connect the graph
as shown in Figure 5b. We give each obligate red vertex a large neighborhood such that
we can still guarantee to be able to connect the obligate blue vertices to their matching
partner. Then, we give each non-obligate vertex which is not yet connected directly to any of
the obligate vertices a large neighborhood not intersecting B (as guaranteed by Lemma 34).
These neighborhoods must intersect all neighborhoods of the obligate red vertices due to
their sizes, thus the graph is connected.

Let Y := (1 − p)(1 − α)n + εn/2. For any obligate red vertex v, by Lemma 26, part
4, we have Pr[|N(v, cv)| ≥ Y ] ≥ 1 − √

p, so with probability 1 − √
p +

√
p′ > 0 there is a

color for v’s obligate blue partner vertex so that they are connected by an edge and also
|N(v, cv)| ≥ Y .

We now check that every non-obligate vertex u has a neighborhood which intersects with
every neighborhood of size at least Y of the obligate red vertices. Recall that by Lemma 34,
every u has a neighborhood not robustly intersecting B of size pr

u. Note that we need to
show that these neighborhoods intersect outside of OR ∪ OB since these vertices may change
their colors. To this end, it suffices to show that (pr

u − 3C) + (Y − 3C) > n − |B|, i.e.,

pr
u + Y + βn − n − 6C

!
> 0,

which is easy to verify as can be seen in the full version. ◀

C Finitely Many Colors Suffice for the Coloring Model

Proof of Lemma 8. Let D be a random graph distribution given as a coloring model. We
will reduce the number of colors for each vertex one by one, preserving the probability
distribution D. By a slight abuse of notation, here we refer to any outcome of the experiment
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at some vertex as its color, even if there are infinitely many of them. Suppose we’re considering
vertex v and for each graph H on n vertices and color c of v, let pH,c be the probability that
H is sampled from D conditioned on vertex v having color c, and let pH be the unconditional
probability of H being sampled from D. Now for each color c of v, consider the vector p⃗∗,c in
2(n

2)-dimensional space that consists of all the pH,c for all possible graphs H on n vertices in
some canonical order. Consider also the vector p⃗∗ of the same dimension with the pH for all
possible graphs H on n vertices as entries in the same canonical order. By the law of total
probability, p⃗∗ is contained in the convex hull of all the p⃗∗,c vectors (of which there may be
infinitely many). It follows by Carathéodory’s theorem [11] that p⃗∗ is a convex combination
of some 2(n

2) + 1 many vectors among {p⃗∗,c | c is a color of vertex v}. Thus we can pick the
corresponding 2(n

2) + 1 colors for v, use the coefficients given by that convex combination as
probabilities for these colors in the experiment at vertex v, and we end up with the same
distribution D. We repeat this process for each vertex, completing the proof. ◀
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1 Introduction

Circuit Obfuscation

The main purpose of program obfuscation is to transform a given program into an “unintelli-
gible” one, while preserving the program’s original functionality. A natural way to represent
a program is via a Boolean circuit. Given that, the most common notion of obfuscation is the
notion of indistinguishability obfuscation, introduced in [8]. Roughly speaking, a (potentially)
randomized procedure IO is an indistinguishability obfuscator, if the obfuscations of two
circuits C1 and C2 of the same size and functionality are “indistiguishable”. In other words,
no algorithm can “distinguish” between the outputs of IO(C1) and IO(C2) with a “noticeable”
advantage.

The kind of security provided by the IO is defined by the class of the allowed distinguishing
algorithms. More formally, consider a particular class of algorithms A and ask whether IO
is “secure against” A. For example, if A is the class of all (possibly inefficient) algorithms,
we say that IO is statistically secure. On the other hand, if A is the class of efficient (i.e.
randomized polynomial-time) algorithms, we say that IO is computationally secure.

The correctness of an IO procedure is called perfect if the functionality of the input circuit
is preserved with probability one (over the internal randomness of the IO), or imperfect if
the functionality is preserved with high probability only.

Circuit obfuscation turned out to be a very useful tool in many cryptographic and
complexity-theoretic applications, see, e.g., [19, 43, 20, 10, 35]. The past decade saw
numerous candidate constructions, culminating with the work of [29]. Yet, identifying the
exact necessary and sufficient conditions for the existence of indistinguishability obfuscators
remains an important open question. One reason for that is that unlike the vast majority
of cryptographic primitives, obfuscators could still exist even if P = NP! In fact, in this
case we get an “ultimate” obfuscator: for each circuit C, the IO will output some canonical
equivalent Ĉ2.

The place of IO within the Five Worlds

Thus, in the language of Impagliazzo’s Five Worlds [26], an IO exists in Algorithmica. The
work of [29], on the other hand, makes a good argument that an IO may exist in Cryptomania.
What about the other three worlds: Heuristica, Pessiland, and Minicrypt? It turns out that
none of these remaining three worlds can accommodate an IO. The results of [43] show
that an IO plus a one-way function imply public key encryption (and more), and hence IO
cannot exist in Minicrypt. The results of [34] essentially show that an (even imperfect) IO
cannot exist in Pessiland: if there are no one-way functions but an (imperfect) IO exists, then
NP ⊆ io-BPP. This result also rules out Heuristica as a possible home for an IO. We will
prove a stronger connection: if an (imperfect) IO exists in Heuristica (where DistNP ⊆ AvgP),
then NP = P (see Theorem 31 below).

So IO can exist in either Algorithmica or Cryptomania. Many of the results that we shall
present in this paper can be viewed as instantiations of this fact, for various settings of
parameters of IO: If you assume IO exists, and assume something that threatens the existence
of cryptography, then you find yourself in Algorithmica.

2 For example, given a circuit C one can find the lexicographically-smallest, equivalent circuit Ĉ in PH.
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Circuit Minimization

Minimum Circuit Size Problem (MCSP) [45, 31] asks for a given truth table of an n-variate
Boolean function f : {0, 1}n → {0, 1} and a parameter 0 ≤ s ≤ 2n, if f is computable by
a Boolean circuit of size at most s. It is easy to see that MCSP ∈ NP. Yet, it is unknown
if MCSP is NP-hard, or if MCSP is easy, say in BPP. What is known is that MCSP is
powerful enough to “kill” cryptography. That is, any one-way function candidate can be
efficiently inverted on average by a randomized polynomial-time algorithm with access to
the MCSP oracle [41, 3]. Hence, an efficient algorithm for MCSP cannot exist in Minicrypt or
Cryptomania.3

Interplay between IO and MCSP

By the preceding discussion, if we assume that both an IO exists and that MCSP is “easy”,
then we should get that NP is also “easy” (as we must be in some version of Algorithmica;
see Theorems 5 & 6 for more details)4. In fact, we shall argue that MCSP and IO act in a
synergy. That is, the assumed existence of an appropriate version of IO makes MCSP more
powerful that it is known to be. And, on the other hand, we show results where assumed
“easiness” of MCSP makes an IO stronger (i.e., more secure). We state some of our main
results next.

1.1 Our Main Results
We show that the existence of an (even imperfect) IO secure against P/poly implies new
circuit lower bounds.

▶ Theorem 1. Suppose there exists a perfect IO secure against P/poly. Then:
1. NEXP ∩ ZPEXPMCSP ̸⊆ P/poly.
2. For all k ∈ N: NP ∩ ZPPMCSP ̸⊆ SIZE[nk].

▶ Theorem 2. Suppose there exists an imperfect IO secure against P/poly. Then for all
k ∈ N:
MA ∩ ZPPMCSP ̸⊆ SIZE[nk].

The two preceding theorems should be contrasted with the unconditional circuit lower
bounds proved in [44] and [27]. There it is shown that ZPEXPMCSP ̸⊆ P/poly and that, for
every k > 0, ZPPMCSP/1 ̸⊆ SIZE[nk] and MA/1 ̸⊆ SIZE[nk]. Although removing the extra
bit of advice from the lower bounds may seem incremental, it actually has been a long
standing open problem that resisted many attempts! Indeed, the same issue arises in other
instances involving lower bounds for randomized complexity classes; see, e.g., [7, 18, 46, 47].
Additionally, while widely believed to be true, showing that NEXP ̸⊆ P/poly seems to require
techniques beyond our current reach. For a further discussion, see the seminal paper of
Williams [50] where it was shown that NEXP ̸⊆ ACC and subsequent improvements (e.g. [38]).
In conclusion, the two new theorems above prove stronger circuit lower bounds, but under
an assumption that a certain IO exists. One interpretation of that is that a construction of
these kinds of IO will require novel techniques.

Our next result is a uniform version of Theorem 1.

3 In fact, even an efficient one-sided average-case algorithm for MCSP (i.e., an efficiently computable
natural property in the sense of [41], which is useful against exponential-size circuits) would “kill”
one-way functions.

4 This observation was made in [27] and previously a similar observation was made in [34].
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▶ Theorem 3. Suppose there exists a computationally-secure perfect IO. Then ZPEXP ̸= BPP.

While we do not have hierarchy theorems for randomized complexity classes, one can
show that ZPEXP ̸= ZPP (see Appendix C). Yet, separating ZPEXP (or even NEXP and
EXPNP) from BPP appears to be a longstanding open problem (see e.g. [15, 49]). In that
sense our result resolves the problem under the assumption that a computationally-secure
perfect IO exists.

The following theorems are examples of results where MCSP empowers IO, and where IO
empowers MCSP.

▶ Theorem 4. An IO (both imperfect and perfect) is statistically-secure if and only if it is
secure against FBPPMCSP. Hence, assuming MCSP ∈ BPP, statistically-secure IO exists if
and only if computationally-secure IO exists.

▶ Theorem 5. Let Γ ∈ {ZPP, BPP}. Suppose there exists a computationally-secure imperfect
IO. Then MCSP ∈ Γ iff NP ⊆ Γ.

Note that Theorem 5 strengthens a similar result of [27] to the imperfect setting.

▶ Theorem 6. Suppose there exists a computationally-secure perfect IO. Then MCSP ∈ BPP
iff NP = ZPP.

▶ Remark 1. Note that all the results still hold true if we only have an obfuscator IO for
a class of circuits C for which the equivalence problem (i.e., testing if two given circuits
C0, C1 ∈ C agree on all inputs) is coNP-hard such as: 3-CNFs (even read-thrice 3-CNFs),
read-twice depth-3 formulas, monotone depth-3 formulas5 and others. All these circuit classes
are small subsets of NC1, which is the starting points of most candidate IO constructions
(see e.g. [40, 21, 36, 29] and references within).
▶ Remark 2. Recall that the results of [34] show that if there are no one-way functions
yet an imperfect IO exists, then NP ⊆ io-BPP. The authors subsequently pose an open
problem to get a similar result only relying on an obfuscator for 3-CNFs. While we do not
solve their open problem, we believe that Theorem 5, adjusted according to the previous
remark, can be viewed as partial progress towards the resolution of the problem especially in
light of the recent characterizations of one-way functions in terms of “MCSP”-like problems
[37, 4, 25, 24].

1.2 Our Techniques
Our main technical tool is a universal distinguisher that, given any two circuits C0 and C1
that are samplers for some distributions D0 and D1, will distinguish between D0 and D1
essentially as well as is information-theoretically possible (with the distinguishing advantage
equal to the statistical distance between D0 and D1 minus a negligible error term). We show
(see Corollary 17) that such a universal distinguisher is computable in FBPPMCSP6. The
main idea is to use a distributional inverter and a connection between one-way functions
and distributional one-way functions from [28]. In particular, we argue (see Lemma 32)
that a distributional inverter suffices to get a distinguisher for any two circuit-samplable
distributions D0 and D1. We then use the result of [3] that allows to invert any candidate

5 Monotone depth-3 formulas are the only class on the list for which the equivalence problem is coNP-hard
,but the satisfiability problem is trivial. See [16] for more details.

6 FBPPMCSP denotes the class of randomized polynomial-time algorithms with MCSP oracle.
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one-way (and, in fact, any polynomial-time computable) function in randomized-polynomial
time given an MCSP oracle (see Lemma 15 for more details). Indeed, we generalize the
inverter of [3] to get a distributional inverter for any candidate distributional one-way function
(see Lemma 16). We believe that this extension could be of independent interest.

We note, however, that it is fairly easy to construct a universal distinguisher in FBPPSAT

by approximating the “maximum likelihood” distinguisher using the well-known fact that
approximate counting can be done in FBPPNP [30]. For completeness, we provide the full
proof in Theorem 40 of the appendix. From this perspective, our construction constitutes
another example of a computational task that can still be performed with the MCSP oracle
instead of the SAT oracle. See [27] for further discussion.

With this universal distinguisher in hand, we immediately get Theorem 4. We then
obtain the circuit lower bounds in Theorems 1 and 2 by a “win-win” argument on the circuit
complexity of MCSP. If MCSP ̸∈ P/poly, we are done. Otherwise (i.e., if MCSP ∈ P/poly)
security against P/poly implies security against FBPPMCSP and hence, by our universal
distinguisher result above, is equivalent to statistical security for our IO. Then we leverage
this very secure IO to get into Algorithmica where NP is “easy” by extending some ideas from
[23, 48]. The latter leads to certain “collapses” of high complexity classes (such as NEXPNP),
which are known to contain languages outside P/poly, to smaller complexity classes (such as
NEXP). Hence we get circuit lower bounds for these smaller complexity classes, as required.
Theorem 6 is proved using similar ideas.

1.3 Relation to Previous Work
The results in [22, 3] imply the following: For any two samplable distribution ensembles
{An}, {Bn}, we have that {An}, {Bn} are statistically indistinguishable if and only if they
are indistinguishable by FBPPMCSP algorithms. While this result says that statistical indis-
tinguishability and FBPPMCSP-computable indistinguishability are the same for efficiently
uniformly computable distribution ensembles, we need a stronger result applicable also to
efficiently nonuniformly computable distributions. That is, we need a universal distinguisher
that will distinguish any two distributions given by sampler circuits, with the distinguishing
advantage close to the statistical distance between these distributions.

In [39], Naor and Rothblum used similar techniques to prove a similar result, yet with
different quantifier order: for any uniformly computable distribution ensembles there exist a
FBPPMCSP-computable distinguisher with the distinguishing advantage close to the statistical
distance between these distributions. Yet, by using the MCSP oracle as a universal inverter,
one can “extract” a universal distinguisher from their proofs. For completeness we include a
self-contained proof in the universal setting.

In [23], Goldwasser and Rothblum showed that the existence of statistically-secure
obfuscators IO implies that NP ⊆ coAM, which in turn results in a collapse of the polynomial
hierarchy by [11]. In particular, their idea was to solve SAT in SZK7. This is done by
leveraging the IO to reduce SAT to Statistical Difference (SD) - the standard SZK-complete
promise problem of [42]. The result then follows from [17, 2] where it was shown that
SZK ⊆ AM ∩ coAM. In [48] a simplified and quantified proof of the result was presented. We
use some of these ideas as a part our “win-win” argument (see Lemma 22 for more details).

7 The class of decision problems for which a “yes” answer can be verified by a statistical zero-knowledge
proof protocol.
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Finally, it follows from the definition that the existence of non-uniform one-way functions
(i.e. secure against P/poly) already implies very strong circuit lower bounds. Namely,
NP ̸⊆ P/poly. However, this approach cannot be used to derive lower bounds from the
existence of an IO since the very same lower bound is already required in order to obtain
a one-way function from an IO! In other words, given an IO, one-way functions exist iff
NP ̸⊆ P/poly. Our results allow us to obtain a weaker, but still strong circuit lower bound
NEXP ̸⊆ P/poly from the existence of an IO, thus avoiding this circular reference.

The rest of the paper

The necessary background is given in Section 2. Our main technical contribution (a universal
distinguisher) is given in Section 3. In Section 4, we give a simple proof that SZK ⊆
BPPMCSP [5]. We give some consequences for MCSP from IO assumptions (including Theorems
5 and 6) in Section 5, and those for IO from MCSP assumptions (including Theorem 4) in
Section 6. We prove Theorems 1 and 2 in Section 7. In Section 8, we prove that even an
imperfect IO cannot exist in Heuristica. We conclude with some open questions in Section 9.
Some auxiliary results are stated in the appendix.

2 Preliminaries

2.1 Definitions
A function negl(n) is negligible if for any k ∈ N there exists nk ∈ N such that, for all n > nk,
negl(n) < 1/nk.

▶ Definition 3 (Statistical Distance). Let X0 and X1 be two random variables taking values
in some finite universe U . The Statistical Distance between X0 and X1 is defined as

∆(X0, X1) ∆= max
A : U→{0,1}

{Pru∼X0 [A(u) = 1] − Pru∼X1 [A(u) = 1]} ,

where A : U → {0, 1} is an arbitrary statistical test (distinguisher).8 Another equivalent
definition is that

∆(X0, X1) = (1/2) ·
∑
u∈U

|PrX0 [X0 = u] − PrX1 [X1 = u]| .

We say that X0 and X1 are δ-close, if ∆(X0, X1) ≤ δ.

▶ Definition 4 (Indistinguishability Obfuscator [8, 34, 12]). We say that a randomized procedure
IO(C; r) (with randomness r) is an Indistinguishability Obfuscator for a circuit class C with
the following:
1. (Perfect/Imperfect) Correctness: IO is ε-imperfect if for every circuit C ∈ C :

Prr[C ≡ IO(C; r)] ≥ 1 − ε(|C|).

If ε = 0, then we say that IO is perfect.
2. Polynomial slowdown: There are a, k ∈ N such that, for every circuit C ∈ C and

every r,

|IO(C; r)| ≤ a · |C|k .

8 Note that the maximum is attained by the statistical test A such that A(u) = 1 ⇐⇒ Pr[X0 = u] ≥
Pr[X1 = u].
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3. Security:
a. Statistical: IO is statistically (1 − δ)-secure if for all pairs of circuits C1, C2 ∈ C such

that C1 ≡ C2 and |C1| = |C2| = s, we have

∆(IO(C1; r), IO(C2; r′)) ≤ δ(s),

where IO(C; r) is a distribution over the outputs of IO(C; r) for random r. We say that
IO is statistically secure, if δ(s) is a negligible function.

b. Computational: Let A be a class of (randomized) algorithms. We say that IO is
(1 − δ)-secure against A, if for every algorithm A ∈ A, for all pairs of sufficiently large
circuits C1, C2 ∈ C such that C1 ≡ C2 and |C1| = |C2| = s, we have

|Prr,A[A(IO(C1; r)) = 1] − Prr,A[A(IO(C2; r)) = 1]| ≤ δ(s),

where the probabilities are over the internal randomness r of IO as well as over possible
internal randomness of A. If δ(s) is negligible, we say that IO is secure against A. We
say that IO is computationally secure if it is secure against the class FBPP.

▶ Remark 5 (Efficiency of IO). By default, we assume IO(C; r) is computable by a randomized
polynomial-time algorithm with internal randomness r. We consider IO computable in other
complexity classes, e.g., FBPPMCSP. In such a case, we shall explicitly say that an IO is
FBPPMCSP-computable.
▶ Remark 6. Some definitions in the literature also contain a security parameter. In the
above definition it is incorporated in the circuit size. Any reasonable encoding scheme for
Boolean circuits allows one to represent a circuit of size s as a circuit of larger size.

We will need the following definition and result for our proofs.

▶ Definition 7 (Statistical Difference [42]). Let α(n) : N → N and β(n) : N → N be
computable functions, such that α(n) > β(n). Then SD(α(n) , β(n)) is promise problem defined
as SD(α(n) , β(n)) ∆= (SD(α(n) , β(n))

YES , SD(α(n) , β(n))
NO ), where

SD(α(n) , β(n))
YES = {(C0, C1) | ∆(C0, C1) ≥ α(n) }, SD(α(n) , β(n))

NO = {(C0, C1) | ∆(C0, C1) ≤ β(n) }.

Here, C0 and C1 are Boolean circuits C0, C1 : {0, 1}n → {0, 1}m of size poly(n) that are
samplers for some distributions D0 and D1, respectively.
For the standard parameters, we define SD ∆= SD(2/3 , 1/3).
For an oracle O, we define the relativized version of the problem SDO (α(n) , β(n)) as above,
when C0 and C1 are O-oracle circuits.

▶ Lemma 8 ([42]). Suppose α(n)2 − β(n) ≥ 1/poly(n). Then for any oracle O, the problem
SDO (α(n) , β(n)) is SZKO-complete. In particular, SD is SZK-complete.

2.2 Useful Lemmas
Let FBPPMCSP denote the class of randomized polynomial-time algorithms with MCSP oracle.

▶ Lemma 9 (implicit in [27]). If there exists an IO (1 − δ)-secure against FBPPMCSP, for
some δ ≤ 1 − 1/nℓ for a constant ℓ > 0, then NP ⊆ ZPPMCSP and hence ZPPNP = ZPPMCSP.

▶ Lemma 10 ([48]). If there exists an IO statistically (1 − δ)-secure, for some δ < 1, then
NP ⊆ coNP and hence PH = NP ∩ coNP.

▶ Lemma 11 ([48]). Let IO be an ε-imperfect obfuscator and let C1, C2 be such that C1 ̸≡ C2.
Then ∆(IO(C1; r), IO(C2; r′)) ≥ 1 − 2ε, over the internal randomness r, r′ of the IO.
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31:8 Synergy Between IO and MCSP

▶ Lemma 12 ([32]). For any k ∈ N : NPNP ̸⊆ SIZE[nk]. In addition, NEXPNP ̸⊆ P/poly.

▶ Lemma 13 ([13, 33]). If SAT ∈ P/poly, then PH = ZPPSAT, and polynomial-size circuits
for SAT can be constructed in ZPPSAT.

▶ Lemma 14 ([27]). If MCSP ∈ P/poly, then BPPMCSP = ZPPMCSP.

We require the following result of [3] that allows to find preimages of functions computable
in polynomial time.

▶ Lemma 15 ([3]). Let fy(x) = f(y, x) be a function computable uniformly in time polynomial
in |x|. There exists a polynomial-time probabilistic oracle Turing machine M such that for
any n, K ∈ N and any y:

Pr|x|=n,r

[
fy

(
MMCSP(1K , y, fy(x), r)

)
= fy(x)

]
≥ 1/K,

where x ∈ {0, 1}n is chosen uniformly at random and r denotes the internal randomness
of M .

We generalize this result to get a distributional inverter for any candidate distributional
one-way function in the sense of [28]. Roughly speaking, such a distributional inverter finds
uniformly random preimages of a given polynomial-time computable function. More precisely,
we have the following.

▶ Lemma 16. Let fy(x) = f(y, x) be a function computable uniformly in time polynomial in
|x|. There exists a polynomial-time probabilistic oracle Turing machine M such that, for any
n, K ∈ N and any y, the following two distributions

(x, fy(x)) and
(
MMCSP(1K , y, fy(x), r), fy(x)

)
,

for x ∈ {0, 1}n chosen uniformly at random, and r the internal uniform randomness of M ,
are at most (1/K)-far in statistical distance.

Proof. We combine Lemma 15 with the reduction from [28] showing that an inverter for
candidate one-way functions can be used to get a distributional inverter for every distributional
one-way function candidate fy(x) computable in polynomial time. ◀

3 From Computational to Statistical Security

Below we will argue the existence of a universal distinguisher. We will describe an algorithm
D(C0, C1; 11/γ) in FBPPMCSP that, given any pair of circuits C0 and C1 that are samplers
for some distributions D0 and D1, and a parameter 0 < γ < 1, will distinguish D0 and D1
with advantage at least δ − γ, where δ is the statistical distance between D0 and D1.

▶ Corollary 17. There is an FBPPMCSP algorithm D satisfying the following. Given any
pair of circuits C0 and C1 that are samplers for some distributions D0 and D1, and given
a parameter K in unary, the algorithm D(C0, C1; 1K) will distinguish D0 and D1 with
advantage at least δ − 1/K, where δ is the statistical distance between D0 and D1.

As was mentioned, a similar proof was given in [39]. We defer the proof to Section A of the
appendix.
▶ Remark 18. We note that a universal distinguisher as in Corollary 17 is fairly easy to
construct in FBPPSAT (using the well-known fact that approximate counting can be done in
FBPPNP [30]); see Theorem 40 in Section B of the appendix. Thus, Corollary 17 is another
example of a computational task that can still be performed with the MCSP oracle instead
of the SAT oracle.
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4 Another Proof that SZK ⊆ BPPMCSP

Corollary 17 can be used to give another proof of the following result by Allender and Das [5].

▶ Theorem 19 ([5]). SZK ⊆ BPPMCSP.

Proof. Recall the standard SZK-complete promise problem Statistical Difference (SD) (see
Definition 7): Given a pair of circuits (C0, C1) that are samplers for the distributions D0
and D1 such that either D0 and D1 have the statistical distance less than 1/3, or they have
the statistical distance greater than 2/3, decide which is the case.

By Corollary 17, we get an FBPPMCSP universal distinguisher D. Consider the distinguisher
B = D(C0, C1; 110). Let δ be the statistical distance between D0 and D1. Note that in case
δ < 1/3, the algorithm B (and, in fact, any algorithm) has distinguishing advantage less than
1/3, whereas for δ > 2/3, B has advantage at least (2/3) − (1/10) = 17/30 > 1/3. Using
random sampling and the Chernoff bounds, we can estimate in FBPPMCSP the advantage of
our algorithm B at distinguishing between D0 and D1, with high probability and sufficient
accuracy. The theorem follows. ◀

▶ Remark 20. Note that the BPPMCSP algorithm for SZK in the proof of Theorem 19 works
for any version of the Statistical Difference problem with a non-negligible gap between the
yes- and no-instances, not just for the 1/3 vs. 2/3 gap.

Next, we extend the result above to the relativized version of the problem SDO (see
Definition 7) for any O ∈ BPPMCSP ∩ P/poly.

▶ Theorem 21. Let O ∈ BPPMCSP ∩ P/poly be any language. Then for any α(n) and β(n)
such that α(n) ≥ β(n) + n−ℓ, for some ℓ > 0, we have that:

SDO (α(n) , β(n)) ∈ BPPMCSP. (1)

In particular, if MCSP ∈ P/poly, then

SZKMCSP ⊆ BPPMCSP. (2)

Proof. To prove (1), we proceed exactly as in the proof of Theorem 19 above, except using
Corollary 38 instead of Corollary 17, and using the observation in Remark 20. To prove
(2), we use (1) for O = MCSP and the fact that SDMCSP (2/3 , 1/3) is SZKMCSP-complete (by
Lemma 8). ◀

5 Implications for Circuit Minimization from Obfuscation

The following lemma provides some consequences of the existence of an imperfect, compu-
tationally-secure IO, with an appropriate range of parameters. Among other things, the
proof uses some ideas from [23] and [27].

▶ Lemma 22. Let Γ ∈ {FBPP, P/poly}. Suppose there exist an ε-imperfect IO(C; r) that is
(1 − δ)-secure against Γ, where (1 − 2ε)2 − δ ≥ 2/nℓ for some constant ℓ > 0. If MCSP ∈ Γ,
then:
1. NP ⊆ SZK,
2. PH = MA = ZPPMCSP, and
3. There is a ZPPMCSP algorithm A and a constant k > 0, such that A(1n) outputs an

O(nk)-size circuit for SAT (and for MCSP) on n-bit inputs.
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Proof.
1. First, observe that since MCSP ∈ Γ, FBPPMCSP ⊆ Γ. Consequently, an IO that is secure

against Γ is also secure against FBPPMCSP. It follows from Corollary 17 that this IO
is statistically (1 − δ′)-secure, for δ′ = δ + 1/nℓ (since we can make the distributional
inverter’s error α to be smaller than any inverse polynomial of our choice). We now use
this IO to reduce SAT to the Statistical Difference problem (see Definition 7): Given a
SAT instance ϕ, construct some unsatisfiable instance ⊥ of the same size as ϕ and on the
same set of input variables. Consider the distributions

IO(ϕ; r) and IO(⊥; r′) (3)

over all random strings r, r′.
We have two cases:

If ϕ is unsatisfiable, then ϕ ≡ ⊥, and by the statistical (1 − δ′)-security property of
our IO, we get that these two distributions in (3) have statistical distance at most δ′.
If ϕ is satisfiable, then by Lemma 11, the statistical distance between the distributions
in (3) is at least 1 − 2ε.

Since (1 − 2ε)2 ≥ δ + 2n−ℓ = δ′ + n−ℓ, by Lemma 8, the resulting instance of the SD
problem is SZK-complete, and so NP ⊆ SZK.9

2. By [17, 2], we have SZK ⊆ AM ∩ coAM. By [11], since NP ⊆ SZK ⊆ coAM, it follows that

PH = AM. (4)

Next, by Theorem 19, SZK ⊆ BPPMCSP. By Lemma 14, BPPMCSP = ZPPMCSP. Hence,
we get that

NP ⊆ SZK ⊆ ZPPMCSP. (5)

As MCSP ∈ P/poly, we also get from (5) that

NP ⊆ P/poly. (6)

By [6], (6) implies that AM = MA. So by (4), we conclude that

PH = MA.

Finally, (6) also implies PH = ZPPNP by Lemma 13. Hence, by (5), we get that

PH = ZPPNP ⊆ ZPPZPPMCSP
= ZPPMCSP.

3. By Lemma 13, if SAT ∈ P/poly, then polynomial-size circuits for SAT can be found
by a ZPPNP algorithm. By (6), we get that polynomial-size circuits for SAT can be
found by a ZPPZPPMCSP

algorithm, which can be simulated by a ZPPMCSP algorithm. As
MCSP ∈ NP and SAT is NP-complete, polynomial-size circuits for SAT can be used to
construct polynomial-size circuits for MCSP as well. ◀

9 Note that this reduction to SZK actually allows one to solve not just SAT but an equivalence problem
for any class of circuits that an IO can obfuscate. Thus, to conclude that NP ⊆ SZK, it suffices to
pick any coNP-hard circuit equivalence problem for the class of circuits where SAT may be easy. For
example, one can take the problem of testing equivalence of depth-3 monotone formulas, known to be
coNP-complete [16]
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Items (2) and (3) in the lemma should be contrasted with the result of [13, 33] that
SAT ∈ P/poly implies both that polynomial-size circuits for SAT can be constructed by a
ZPPSAT algorithm, and that PH = ZPPSAT. Under an additional assumption that a P/poly-
secure imperfect IO exists, we get similar implications for MCSP instead of SAT.
The following corollary strengthens a result of [27] to the imperfect setting.

▶ Corollary 23 (Theorem 5 re-stated). Let Γ ∈ {ZPP, BPP}. Suppose there is an ε-imperfect
IO that is (1 − δ)-secure against FBPP, where (1 − 2ε)2 ≥ δ + 2/nℓ for some constant ℓ > 0.
Then MCSP ∈ Γ iff NP ⊆ Γ.

Proof. The first direction is clear since MCSP ∈ NP. For the other direction, by Lemma 22,
NP ⊆ ZPPMCSP and hence NP ⊆ ZPPΓ. ◀

For the case of a perfect IO, we get a somewhat stronger statement.

▶ Theorem 24 (Theorem 6 re-stated). Suppose there is a perfect IO that is (1 − δ)-secure
against FBPP, where δ ≤ 1−2/nℓ for some constant ℓ > 0. If MCSP ∈ BPP, then NP = ZPP.

Proof. Since MCSP ∈ BPP, computational (1 − δ)-security implies (1 − δ)-security against
FBPPMCSP. It follows by Corollary 17 that this IO is statistically (1 − δ′)-secure, for δ′ =
δ + 1/nℓ ≤ 1 − 1/nℓ.

By Lemma 10, PH = NP = coNP. By Lemma 9, PH = NP = ZPPMCSP ⊆ BPP. But
NP ⊆ BPP implies that NP = RP. Since coNP = NP, we get NP = ZPP. ◀

6 Implications for Obfuscation from Circuit Minimization

▶ Theorem 25. Suppose MCSP ∈ P/poly. There is an FZPPMCSP-computable perfect IO that
is statistically secure if and only if there is an FBPPMCSP-computable ε-imperfect IO that is
(1 − δ) secure against P/poly, for any 0 ≤ ε, δ ≤ 1 such that 1 − 2ε ≥ δ + 2/nℓ, for some
constant ℓ > 0.

Proof. The interesting direction is from the right to the left. Since MCSP ∈ P/poly, (1 − δ)-
security against P/poly implies, by Corollary 17, statistical (1 − δ′)-security, for δ′ = δ + n−ℓ.

▷ Claim 26. If MCSP ∈ P/poly and there is an FBPPMCSP-computable ε-imperfect IO
that is statistically (1 − δ′)-secure for 1 − 2ε ≥ δ′ + n−ℓ, for some constant ℓ > 0, then
SAT ∈ ZPPMCSP.

Proof of Claim 26. Given an instance ϕ of SAT, let ⊥ be an unsatisfiable formula of the same
size as ϕ (over the same variables). Consider the two distributions IO(ϕ; r) and IO(⊥; r′) over
random r, r′. If ϕ ≡ ⊥, the two distributions are at most statistical distance δ′ apart; if ϕ is
in SAT, then the two distributions have the statistical distance at least 1 − 2ε.

Each distribution is samplable using a polynomial-size MCSP-oracle circuit, which we
can obtain from our IO algorithm. Thus, we get an FPMCSP-reduction from coSAT to
SDMCSP (1−2ε , δ′). Since δ′ +n−ℓ ≤ 1−2ε, we conclude by Theorem 21 that SAT ∈ BPPMCSP.
By Lemma 14, BPPMCSP = ZPPMCSP, concluding the proof. ◁

Since SAT ∈ ZPPMCSP ⊆ P/poly, we get by Lemma 13 that PH = ZPPMCSP. Given a
circuit C, we can find the lexicographically smallest equivalent circuit D (of size at most that
of C) in FPPH ⊆ FZPPMCSP. This gives us a perfect IO(C; r) that is statistically secure.10 ◀

10 Technically, this IO(C; r) outputs either a smallest equivalent circuit D, or, with a tiny probability, the
“don’t know” answer. We can modify it to output the input circuit C in the latter case, getting perfect
correctness, and only slightly decreasing statistical security.
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Along the same lines:

▶ Corollary 27. Suppose MCSP ∈ BPP. There is an ε-imperfect IO with statistical security if
and only if there is an ε-imperfect IO with computational (1−δ)-security where 1−2ε ≥ δ+2/nℓ.
(Assuming MCSP ∈ ZPP, you get a similar equivalence but for a perfect IO with statistical
security.)

Proof sketch. The interesting direction is from the right to the left. We first argue as
in the proof of Theorem 25 to conclude that SAT ∈ ZPPMCSP. Since MCSP ∈ BPP, we
get that NP ⊆ BPP, and hence, PH = BPP. So, given an input circuit C, we can find
the lexicographically smallest equivalent circuit D (of size at most that of C), using an
FPPH = FBPP algorithm. This algorithm is a (negligibly) imperfect IO with statistical
security. (In case of MCSP ∈ ZPP, we argue in a similar way, getting that PH = ZPP, and
so a canonical circuit D for a given input circuit C can be found in FZPP.) ◀

7 Circuit Lower Bounds from Obfuscation

Here we prove Theorems 1 and 2, re-stated below.

▶ Theorem 28 (Theorem 1 re-stated). Suppose there exist a perfect IO (1 − δ)-secure against
P/poly, where δ ≤ 1 − 2/nℓ for some ℓ > 0. Then:
1. NEXP ∩ ZPEXPMCSP ̸⊆ P/poly.
2. For all k ∈ N, NP ∩ ZPPMCSP ̸⊆ SIZE[nk].

Proof. The proof of all items goes by a “win-win” argument. Suppose MCSP ̸∈ P/poly. Then
both claims follow immediately since MCSP ∈ NP.

Now suppose MCSP ∈ P/poly. Then randomized polynomial-time algorithms with
MCSP oracle can be simulated by polynomial-size circuits. Consequently, IO is (1 − δ)-
secure against these algorithms. By Corollary 17, this IO is statistically (1 − δ′)-secure, for
δ′ = δ + n−ℓ ≤ 1 − n−ℓ. By Lemmas 9 and 10, we get that

NPNP ⊆ PH = NP ∩ coNP ⊆ ZPPMCSP ⊆ NPNP.

So, NPNP = NP∩coNP = ZPPMCSP. By padding, NEXPNP = NEXP∩coNEXP = ZPEXPMCSP,
and so both claims follow from Lemma 12. ◀

▶ Theorem 29 (Theorem 2 re-stated). Suppose there exist an ε-imperfect IO (1 − δ)-secure
against P/poly, where (1 − 2ε)2 ≥ δ + 2/nℓ for some ℓ > 0. Then for all k ∈ N, MA ∩
ZPPMCSP ̸⊆ SIZE[nk].

Proof. Again we use a “win-win” argument. If MCSP ̸∈ P/poly, then the theorem follows.
Otherwise, we get by Lemma 22 (Item 2) that PH = MA = ZPPMCSP, which is not in SIZE[nk]
for any fixed k > 0 by Lemma 12. ◀

▶ Theorem 30 (Theorem 3 re-stated). Suppose there is a perfect IO that is (1 − δ)-secure
against FBPP, where δ ≤ 1 − 2/nℓ for some constant ℓ > 0. Then ZPEXP ̸= BPP.

Proof of Theorem 3. Suppose for a contradiction that ZPEXP = BPP. Then, in particular,
MCSP ∈ BPP. By Theorem 6, NP = ZPP and hence

ZPEXP = BPP ⊆ ZPPNP = ZPPZPP = ZPP

which leads to a contradiction (see Appendix C). ◀
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8 Excluding an Imperfect IO from Heuristica

Below we assume that the reader is familiar with the basic definitions of average-case
complexity (in particular, the definitions of DistNP and AvgP); see, e.g., [9].

▶ Theorem 31. Suppose DistNP ⊆ AvgP. If an ε-imperfect computationally (1 − δ)-secure
IO exists for 1 − 2ε ≥ δ + 2n−ℓ for some ℓ > 0, then NP = P.

Proof. Consider MCSP with s = 20.9n under the uniform distribution over 2n-bit inputs.
This is a language in DistNP. If DistNP ⊆ AvgP, we get a language L′ ∈ P that agrees with
MCSP for s = 20.9n on almost all instances, but may be incorrect on a tiny fraction of “no”
instances of MCSP (here we use the zero-error property of problems in AvgP). Then the
complement L = L̄′ is a language in P of polynomial density (because almost all strings are
very hard) such that for every x ∈ L, the circuit complexity of x (when viewed as a truth
table of a boolean function) is at least |x|0.9. All results in this paper that use MCSP as
an oracle continue to hold with any such L as an oracle instead. In particular, as in the
proof of Theorem 25 (see Claim 26), we conclude that NP ⊆ BPPL = BPP. Finally, by [14],
if DistNP ⊆ AvgP then BPP = P, and so NP = P. ◀

9 Open Questions

In this paper we showed that an (even imperfect) IO secure against non-uniform polynomial-
size circuits implies non-trivial circuit lower bounds. Can one prove circuit lower bounds
from the assumption that a (uniform) computationally-secure IO exists?

Can we leverage the connection between one-way functions and a close relative of MCSP
(time-bounded Kolmogorov complexity) [37, 4, 25, 24] to get better understanding of IO?

References
1 Leonard M. Adleman. Two theorems on random polynomial time. In 19th Annual Symposium

on Foundations of Computer Science, Ann Arbor, Michigan, USA, 16-18 October 1978, pages
75–83. IEEE Computer Society, 1978. doi:10.1109/SFCS.1978.37.

2 William Aiello and Johan Håstad. Statistical zero-knowledge languages can be recognized in
two rounds. J. Comput. Syst. Sci., 42(3):327–345, 1991. doi:10.1016/0022-0000(91)90006-Q.

3 Eric Allender, Harry Buhrman, Michal Koucký, Dieter van Melkebeek, and Detlef Ron-
neburger. Power from random strings. SIAM J. Comput., 35(6):1467–1493, 2006. doi:
10.1137/050628994.

4 Eric Allender, Mahdi Cheraghchi, Dimitrios Myrisiotis, Harsha Tirumala, and Ilya Volkovich.
One-way functions and a conditional variant of MKTP. In Mikolaj Bojanczyk and Chandra
Chekuri, editors, 41st IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science, FSTTCS 2021, December 15-17, 2021, Virtual Conference,
volume 213 of LIPIcs, pages 7:1–7:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPIcs.FSTTCS.2021.7.

5 Eric Allender and Bireswar Das. Zero knowledge and circuit minimization. Inf. Comput.,
256:2–8, 2017. doi:10.1016/j.ic.2017.04.004.

6 Vikraman Arvind, Johannes Köbler, Uwe Schöning, and Rainer Schuler. If NP has polynomial-
size circuits, then MA=AM. Theor. Comput. Sci., 137(2):279–282, 1995. doi:10.1016/
0304-3975(95)91133-B.

7 Boaz Barak. A probabilistic-time hierarchy theorem for “slightly non-uniform” algorithms. In
José D. P. Rolim and Salil P. Vadhan, editors, Randomization and Approximation Techniques,
6th International Workshop, RANDOM 2002, Cambridge, MA, USA, September 13-15, 2002,
Proceedings, volume 2483 of Lecture Notes in Computer Science, pages 194–208. Springer,
2002. doi:10.1007/3-540-45726-7_16.

APPROX/RANDOM 2023

https://doi.org/10.1109/SFCS.1978.37
https://doi.org/10.1016/0022-0000(91)90006-Q
https://doi.org/10.1137/050628994
https://doi.org/10.1137/050628994
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.7
https://doi.org/10.1016/j.ic.2017.04.004
https://doi.org/10.1016/0304-3975(95)91133-B
https://doi.org/10.1016/0304-3975(95)91133-B
https://doi.org/10.1007/3-540-45726-7_16


31:14 Synergy Between IO and MCSP

8 Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan,
and Ke Yang. On the (im)possibility of obfuscating programs. J. ACM, 59(2):6:1–6:48, 2012.
doi:10.1145/2160158.2160159.

9 Andrej Bogdanov and Luca Trevisan. Average-case complexity. Found. Trends Theor. Comput.
Sci., 2(1), 2006. doi:10.1561/0400000004.

10 Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing, and more
from indistinguishability obfuscation. Algorithmica, 79(4):1233–1285, 2017. doi:10.1007/
s00453-016-0242-8.

11 Ravi B. Boppana, Johan Håstad, and Stathis Zachos. Does co-np have short interactive proofs?
Inf. Process. Lett., 25(2):127–132, 1987. doi:10.1016/0020-0190(87)90232-8.

12 Zvika Brakerski, Christina Brzuska, and Nils Fleischhacker. On statistically secure obfuscation
with approximate correctness. In Matthew Robshaw and Jonathan Katz, editors, Advances
in Cryptology – CRYPTO 2016 – 36th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II, volume 9815 of Lecture Notes in
Computer Science, pages 551–578. Springer, 2016. doi:10.1007/978-3-662-53008-5_19.

13 Nader H. Bshouty, Richard Cleve, Ricard Gavaldà, Sampath Kannan, and Christino Tamon.
Oracles and queries that are sufficient for exact learning. J. Comput. Syst. Sci., 52(3):421–433,
1996. doi:10.1006/jcss.1996.0032.

14 Harry Buhrman, Lance Fortnow, and Aduri Pavan. Some results on derandomization. Theory
Comput. Syst., 38(2):211–227, 2005. doi:10.1007/s00224-004-1194-y.

15 Harry Buhrman and Leen Torenvliet. Randomness is hard. SIAM J. Comput., 30(5):1485–1501,
2000. doi:10.1137/S0097539799360148.

16 Thomas Eiter and Georg Gottlob. Identifying the minimal transversals of a hypergraph and re-
lated problems. SIAM J. Comput., 24(6):1278–1304, 1995. doi:10.1137/S0097539793250299.

17 Lance Fortnow. The complexity of perfect zero-knowledge. Adv. Comput. Res., 5:327–343,
1989.

18 Lance Fortnow and Rahul Santhanam. Hierarchy theorems for probabilistic polynomial time. In
45th Symposium on Foundations of Computer Science (FOCS 2004), 17-19 October 2004, Rome,
Italy, Proceedings, pages 316–324. IEEE Computer Society, 2004. doi:10.1109/FOCS.2004.33.

19 Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. SIAM J.
Comput., 45(3):882–929, 2016. doi:10.1137/14095772X.

20 Sanjam Garg and Antigoni Polychroniadou. Two-round adaptively secure MPC from indis-
tinguishability obfuscation. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, Theory of
Cryptography – 12th Theory of Cryptography Conference, TCC 2015, Warsaw, Poland, March
23-25, 2015, Proceedings, Part II, volume 9015 of Lecture Notes in Computer Science, pages
614–637. Springer, 2015. doi:10.1007/978-3-662-46497-7_24.

21 Craig Gentry, Allison Bishop Lewko, Amit Sahai, and Brent Waters. Indistinguishability
obfuscation from the multilinear subgroup elimination assumption. In Venkatesan Guruswami,
editor, IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015,
Berkeley, CA, USA, 17-20 October, 2015, pages 151–170. IEEE Computer Society, 2015.
doi:10.1109/FOCS.2015.19.

22 Oded Goldreich. A note on computational indistinguishability. Inf. Process. Lett., 34(6):277–
281, 1990. doi:10.1016/0020-0190(90)90010-U.

23 Shafi Goldwasser and Guy N. Rothblum. On best-possible obfuscation. J. Cryptol., 27(3):480–
505, 2014. doi:10.1007/s00145-013-9151-z.

24 Shuichi Hirahara. Capturing one-way functions via np-hardness of meta-complexity. In Barna
Saha and Rocco A. Servedio, editors, Proceedings of the 55th Annual ACM Symposium on
Theory of Computing, STOC 2023, Orlando, FL, USA, June 20-23, 2023, pages 1027–1038.
ACM, 2023. doi:10.1145/3564246.3585130.

https://doi.org/10.1145/2160158.2160159
https://doi.org/10.1561/0400000004
https://doi.org/10.1007/s00453-016-0242-8
https://doi.org/10.1007/s00453-016-0242-8
https://doi.org/10.1016/0020-0190(87)90232-8
https://doi.org/10.1007/978-3-662-53008-5_19
https://doi.org/10.1006/jcss.1996.0032
https://doi.org/10.1007/s00224-004-1194-y
https://doi.org/10.1137/S0097539799360148
https://doi.org/10.1137/S0097539793250299
https://doi.org/10.1109/FOCS.2004.33
https://doi.org/10.1137/14095772X
https://doi.org/10.1007/978-3-662-46497-7_24
https://doi.org/10.1109/FOCS.2015.19
https://doi.org/10.1016/0020-0190(90)90010-U
https://doi.org/10.1007/s00145-013-9151-z
https://doi.org/10.1145/3564246.3585130


R. Impagliazzo, V. Kabanets, and I. Volkovich 31:15

25 Rahul Ilango, Hanlin Ren, and Rahul Santhanam. Hardness on any samplable distribution
suffices: New characterizations of one-way functions by meta-complexity. Electron. Colloquium
Comput. Complex., TR21-082, 2021. arXiv:TR21-082.

26 Russell Impagliazzo. A personal view of average-case complexity. In Proceedings of the Tenth
Annual Structure in Complexity Theory Conference, Minneapolis, Minnesota, USA, June
19-22, 1995, pages 134–147. IEEE Computer Society, 1995. doi:10.1109/SCT.1995.514853.

27 Russell Impagliazzo, Valentine Kabanets, and Ilya Volkovich. The power of natural properties
as oracles. In Rocco A. Servedio, editor, 33rd Computational Complexity Conference, CCC
2018, June 22-24, 2018, San Diego, CA, USA, volume 102 of LIPIcs, pages 7:1–7:20. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.CCC.2018.7.

28 Russell Impagliazzo and Michael Luby. One-way functions are essential for complexity based
cryptography (extended abstract). In 30th Annual Symposium on Foundations of Computer
Science, Research Triangle Park, North Carolina, USA, 30 October – 1 November 1989, pages
230–235. IEEE Computer Society, 1989. doi:10.1109/SFCS.1989.63483.

29 Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-founded
assumptions. In Samir Khuller and Virginia Vassilevska Williams, editors, STOC ’21: 53rd
Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25,
2021, pages 60–73. ACM, 2021. doi:10.1145/3406325.3451093.

30 Mark Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random generation of combinatorial
structures from a uniform distribution. Theor. Comput. Sci., 43:169–188, 1986. doi:10.1016/
0304-3975(86)90174-X.

31 Valentine Kabanets and Jin-yi Cai. Circuit minimization problem. In F. Frances Yao and
Eugene M. Luks, editors, Proceedings of the Thirty-Second Annual ACM Symposium on
Theory of Computing, May 21-23, 2000, Portland, OR, USA, pages 73–79. ACM, 2000.
doi:10.1145/335305.335314.

32 Ravi Kannan. Circuit-size lower bounds and non-reducibility to sparse sets. Inf. Control.,
55(1-3):40–56, 1982. doi:10.1016/S0019-9958(82)90382-5.

33 Johannes Köbler and Osamu Watanabe. New collapse consequences of NP having small
circuits. SIAM J. Comput., 28(1):311–324, 1998. doi:10.1137/S0097539795296206.

34 Ilan Komargodski, Tal Moran, Moni Naor, Rafael Pass, Alon Rosen, and Eylon Yogev. One-way
functions and (im)perfect obfuscation. In 55th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 374–383.
IEEE Computer Society, 2014. doi:10.1109/FOCS.2014.47.

35 Ilan Komargodski, Moni Naor, and Eylon Yogev. Secret-sharing for NP. J. Cryptol., 30(2):444–
469, 2017. doi:10.1007/s00145-015-9226-0.

36 Huijia Lin. Indistinguishability obfuscation from constant-degree graded encoding schemes. In
Marc Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptology – EUROCRYPT
2016 – 35th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part I, volume 9665 of Lecture Notes
in Computer Science, pages 28–57. Springer, 2016. doi:10.1007/978-3-662-49890-3_2.

37 Yanyi Liu and Rafael Pass. On one-way functions and kolmogorov complexity. In Sandy
Irani, editor, 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020,
Durham, NC, USA, November 16-19, 2020, pages 1243–1254. IEEE, 2020. doi:10.1109/
FOCS46700.2020.00118.

38 Cody D. Murray and R. Ryan Williams. Circuit lower bounds for nondeterministic quasi-
polytime from a new easy witness lemma. SIAM J. Comput., 49(5), 2020. doi:10.1137/
18M1195887.

39 Moni Naor and Guy N. Rothblum. Learning to impersonate. In William W. Cohen and
Andrew W. Moore, editors, Machine Learning, Proceedings of the Twenty-Third International
Conference (ICML 2006), Pittsburgh, Pennsylvania, USA, June 25-29, 2006, volume 148 of
ACM International Conference Proceeding Series, pages 649–656. ACM, 2006. doi:10.1145/
1143844.1143926.

APPROX/RANDOM 2023

https://arxiv.org/abs/TR21-082
https://doi.org/10.1109/SCT.1995.514853
https://doi.org/10.4230/LIPIcs.CCC.2018.7
https://doi.org/10.1109/SFCS.1989.63483
https://doi.org/10.1145/3406325.3451093
https://doi.org/10.1016/0304-3975(86)90174-X
https://doi.org/10.1016/0304-3975(86)90174-X
https://doi.org/10.1145/335305.335314
https://doi.org/10.1016/S0019-9958(82)90382-5
https://doi.org/10.1137/S0097539795296206
https://doi.org/10.1109/FOCS.2014.47
https://doi.org/10.1007/s00145-015-9226-0
https://doi.org/10.1007/978-3-662-49890-3_2
https://doi.org/10.1109/FOCS46700.2020.00118
https://doi.org/10.1109/FOCS46700.2020.00118
https://doi.org/10.1137/18M1195887
https://doi.org/10.1137/18M1195887
https://doi.org/10.1145/1143844.1143926
https://doi.org/10.1145/1143844.1143926


31:16 Synergy Between IO and MCSP

40 Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation from
semantically-secure multilinear encodings. In Juan A. Garay and Rosario Gennaro, edit-
ors, Advances in Cryptology – CRYPTO 2014 – 34th Annual Cryptology Conference, Santa
Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I, volume 8616 of Lecture Notes in
Computer Science, pages 500–517. Springer, 2014. doi:10.1007/978-3-662-44371-2_28.

41 Alexander A. Razborov and Steven Rudich. Natural proofs. J. Comput. Syst. Sci., 55(1):24–35,
1997. doi:10.1006/jcss.1997.1494.

42 Amit Sahai and Salil P. Vadhan. A complete problem for statistical zero knowledge. J. ACM,
50(2):196–249, 2003. doi:10.1145/636865.636868.

43 Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: Deniable encryption,
and more. SIAM J. Comput., 50(3):857–908, 2021. doi:10.1137/15M1030108.

44 Rahul Santhanam. Circuit lower bounds for merlin–arthur classes. SIAM J. Comput.,
39(3):1038–1061, 2009. doi:10.1137/070702680.

45 Boris A. Trakhtenbrot. A survey of russian approaches to perebor (brute-force searches)
algorithms. IEEE Ann. Hist. Comput., 6(4):384–400, 1984. doi:10.1109/MAHC.1984.10036.

46 Dieter van Melkebeek and Konstantin Pervyshev. A generic time hierarchy with one bit of
advice. Comput. Complex., 16(2):139–179, 2007. doi:10.1007/s00037-007-0227-8.

47 Ilya Volkovich. On learning, lower bounds and (un)keeping promises. In Javier Esparza,
Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Automata, Languages, and
Programming – 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July
8-11, 2014, Proceedings, Part I, volume 8572 of Lecture Notes in Computer Science, pages
1027–1038. Springer, 2014. doi:10.1007/978-3-662-43948-7_85.

48 Ilya Volkovich. The final nail in the coffin of statistically-secure obfuscator. Information
Processing Letters, 182:106366, 2023. doi:10.1016/j.ipl.2023.106366.

49 Ryan Williams. Towards NEXP versus bpp? In Andrei A. Bulatov and Arseny M. Shur,
editors, Computer Science – Theory and Applications – 8th International Computer Science
Symposium in Russia, CSR 2013, Ekaterinburg, Russia, June 25-29, 2013. Proceedings,
volume 7913 of Lecture Notes in Computer Science, pages 174–182. Springer, 2013. doi:
10.1007/978-3-642-38536-0_15.

50 Ryan Williams. Nonuniform ACC circuit lower bounds. J. ACM, 61(1):2:1–2:32, 2014.
doi:10.1145/2559903.

A A Universal Distinguisher in FBPPMCSP

We will first argue that such a distinguisher for a pair of distributions sampled by circuits
C0 and C1 can be obtained given oracle access to a distributional inverter (in the sense of
Impagliazzo and Luby [28]) for a function defined in terms of C0 and C1 (see Lemma 32
below). Then we appeal to Lemma 16 to get a universal distributional inverter.

▶ Lemma 32. There is an oracle FBPP algorithm D̂ satisfying the following. Let C0 and C1
be two circuits that are samplers for distributions D0 and D1 over some finite universe U ,
and let δ be the statistical distance between D0 and D1. Let F (b, r) use r to sample from Db.
Let A be a distributional inverter for F so that the distributions

((b, r), F (b, r)) and (A(F (b, r)), F (b, r))

are at most α2-close in statistical distance, where 0 ≤ α ≤ δ/28. Then D̂A(C0, C1; 11/α) is a
distinguisher for D0 and D1 with advantage at least δ − 14α ≥ δ/2.

Proof. Let B(x) be the first bit of A(x), and let Q(x) be the probability that B(x) is 0, i.e.,

Q(x) = PrA[B(x) = 0],
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where the probability is over the internal randomness of A. Let K be such that an empirical
estimate of K iid {0, 1}-valued random variables is within α of its expectation with probability
1 − (α/2); by the Chernoff bounds, we have that K = O((log 1/α)/α2). Let Q̃(x; ρ) be the
random variable where we use randomness ρ to sample from A(x) independently K times and
use these to create an empirical estimate of Q(x); so ρ is K times the internal randomness of
A. Let C(x; ρ) be the probabilistic Boolean algorithm where we accept x if Q̃(x; ρ) ≥ 1/2.
We will show that

Prx∼D0,ρ [C(x; ρ) = 1] − Prx∼D1,ρ [C(x; ρ) = 1] ≥ δ − 14α. (7)

Let p0(x) be the probability of x for D0, and p1(x) that for D1. Note that

q(x) = p0(x)/(p0(x) + p1(x))

is the conditional probability that b = 0 given that F (b, r) = x. Then

Prx∼D0,ρ [C(x; ρ) = 1]−Prx∼D1,ρ [C(x; ρ) = 1] = Expρ

 ∑
x : Q̃(x;ρ)≥1/2

(p0(x) − p1(x))

 , (8)

and

δ =
∑

x : q(x)≥1/2

(p0(x) − p1(x)). (9)

Note that if, for “typical” randomness ρ used by Q̃, we had for all x ∈ U that Q̃(x; ρ) ≥
1/2 ⇔ q(x) ≥ 1/2, then the right-hand sides of (8) and (9) would be identical (for that
randomness ρ of Q̃), and we would get our goal of (7) minus the error term for “atypical”
randomness of Q̃. We formalize this argument next.

For given internal randomness ρ of Q̃, let the error set E = E(ρ) be the set of those
x ∈ U so that exactly one of Q̃(x; ρ) and q(x) is at least 1/2, i.e.,

E(ρ) = {x ∈ U | Q̃(x; ρ) ≥ 1/2 ̸⇔ q(x) ≥ 1/2}.

Then

Prx∼D0,ρ [C(x; ρ) = 1] − Prx∼D1,ρ [C(x; ρ) = 1]

= Expρ

 ∑
x : Q̃(x;ρ)≥1/2

(p0(x) − p1(x))


= Expρ

 ∑
x ̸∈E(ρ) : Q̃(x;ρ)≥1/2

(p0(x) − p1(x)) +
∑

x∈E(ρ) : Q̃(x;ρ)≥1/2

(p0(x) − p1(x))


= Expρ

[ ∑
x ̸∈E(ρ) : q(x)≥1/2

(p0(x) − p1(x)) +
∑

x∈E(ρ) : q(x)<1/2

(p0(x) − p1(x))

]

= Expρ

[ ∑
x : q(x)≥1/2

(p0(x) − p1(x)) +
∑

x∈E(ρ) : q(x)<1/2

(p0(x) − p1(x)) −
∑

x∈E(ρ) : q(x)≥1/2

(p0(x) − p1(x))

]

≥ δ − Expρ

[ ∑
x∈E(ρ)

|p0(x) − p1(x)|

]
,

where we used (9) to get the last line.
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We bound the sum under the expectation in the last line above by looking at three sets
whose union contains E = E(ρ):

E1(ρ) = {x | |Q̃(x; ρ) − Q(x)| ≥ α},

E2 = {x | |Q(x) − q(x)| ≥ 2α,

E3 = {x | |q(x) − 1/2| ≤ 3α}.

▷ Claim 33. For every ρ, E(ρ) ⊆ E1(ρ) ∪ E2 ∪ E3.

Proof of Claim 33. If Q̃(x; ρ) ≥ 1/2, and x ̸∈ (E1 ∪ E2), then q(x) > 1/2 − 3α. So either
q(x) ≥ 1/2, or x ∈ E3. Similar reasoning applies if Q̃(x; ρ) < 1/2. So these three sets cover
E. ◁

We bound the sum for E1 just by using Chernoff bounds, the sum for E2 by the statistical
distinguishability of our distributional inverter A, and the sum for E3 using the fact that
having q close to 1/2 means p0(x) and p1(x) are relatively close. For E1(ρ) and E2, we will
actually upperbound the summation of p0(x) + p1(x), over x from the respective set.

▷ Claim 34. Expρ

[∑
x∈E1(ρ)(p0(x) + p1(x))

]
≤ α.

Proof of Claim 34. By linearity of expectation, it suffices to upperbound

Expρ

 ∑
x∈E1(ρ)

p0(x)

 + Expρ

 ∑
x∈E1(ρ)

p1(x)

 .

The first expectation can be thought of as the probability that, if we sample x from D0, and
then perform the empirical estimate (using randomness ρ), that we are off by at least α. The
second expectation is the same but for D1. By the Chernoff bounds (our choice of K), each
probability is at most α/2. ◁

▷ Claim 35.
∑

x∈E2
(p0(x) + p1(x)) ≤ α.

Proof of Claim 35. We use the accuracy of the inverter A. The distinguishing probability
between (A(F (b, r)), F (b, r)) and ((b, r), F (b, r)) is at least that between any distributions
computable from these. So in particular, the statistical distance between (B(x), x) and
(b, x), for x = F (b, r), is at most α2. Using the fact that the statistical distance is the half of
the ℓ1-norm of the difference between the distributions, we get

α2 ≥ (1/2) ·
∑

x

(1/2) · (p0(x) + p1(x)) · (|q(x) − Q(x)| + |1 − Q(x) − (1 − q(x))|)

= (1/2) ·
∑

x

(p0(x) + p1(x)) · |q(x) − Q(x)|,

Since for all x in E2, |q(x) − Q(x)| ≥ 2α, and restricting to x ∈ E2 only reduces the sum
in the last line, we have

α2 ≥ (1/2) ·
∑

x∈E2

(p0(x) + p1(x))(2α),

or
∑

x∈E2
(p0(x) + p1(x)) ≤ α, as required. ◁
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▷ Claim 36.
∑

x∈E3
|p0(x) − p1(x)| ≤ 12α.

Proof of Claim 36. If x ∈ E3 then∣∣∣∣ p0(x)
p0(x) + p1(x) − 1

2

∣∣∣∣ ≤ 3α.

Multiplying through by 2(p0(x) + p1(x)),

|p0(x) − p1(x)| ≤ 6α(p0(x) + p1(x)).

Thus,∑
x∈E3

|p0(x) − p1(x)| ≤
∑

x∈E3

6α(p0(x) + p1(x))

≤ 12α,

as required. ◁

Combining Claims 34–36, we get that the advantage of our probabilistic circuit C at
distinguishing D0 and D1 is at least δ − 14α, as required. Given oracle access to A, our
algorithm D̂A(C0, C1; 11/α) will construct such a circuit C in time polynomial in 1/α. ◀

We now prove Corollary 17. We repeat it here for convenience.

▶ Corollary 37. There is an FBPPMCSP algorithm D satisfying the following. Given any
pair of circuits C0 and C1 that are samplers for some distributions D0 and D1, and given
a parameter K in unary, the algorithm D(C0, C1; 1K) will distinguish D0 and D1 with
advantage at least δ − 1/K, where δ is the statistical distance between D0 and D1.

Proof. Use Lemma 16 to get an FBPPMCSP-computable universal distributional inverter that
achieves statistical distance α2 for α = 1/(14K). Define the algorithm D as follows. For
given input circuits C0 and C1, run the oracle algorithm D̂A(C0, C1; 11/α) from Lemma 32,
invoking the universal distributional inverter from Lemma 16 on every oracle query to A

made by D̂. ◀

Next, we show that we can extend our universal distinguisher for distributions samplable
by O-oracle circuits for languages O satisfying certain technical conditions.

▶ Corollary 38. Let O ∈ BPPMCSP ∩ P/poly be any language. Then there is an FBPPMCSP

algorithm D that, given any pair of O-oracle circuits C0 and C1 that are samplers for some
distributions D0 and D1, and given a parameter K in unary, the algorithm D(C0, C1; 1K)
will distinguish D0 and D1 with advantage at least δ − 1/K, where δ is the statistical distance
between D0 and D1.

Proof. Use Lemma 16 to get an FBPPMCSP-computable universal distributional inverter that
achieves statistical distance α2 for α = 1/(14K). As in the proof of Lemma 32, we use
MCSP-oracle circuit samplers for distributions D0 and D1 to get a circuit for distributional
one-way function candidate F . We then use our universal inverter to get a distributional
inverter A needed in Lemma 32 for any given input circuits C0 and C1. Observe that we can
invert F since F is computable by a small O-oracle circuit (given the O-oracle circuits for
sampling D0 and D1), and hence F is also computable by a circuit of polynomial size with
no oracle gates (since by assumption O ∈ P/poly). The correctness proof of the inverting
algorithm relies on the fact that a small circuit for F exists. Yet, the inverting algorithm for
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F does not need to know a small circuit for F ; it just must be able to evaluate F efficiently,
given a small description of F . Using the encoding of an O-oracle circuit for F works since
the inverting algorithm can evaluate the circuit with probability close to 1, given access to
the MCSP oracle (since O ∈ BPPMCSP). ◀

B A Universal Distinguisher in FBPPNP

▶ Lemma 39 ([30]). There exists a randomized algorithm that given oracle access to NP
can approximate any function f(x) in #P to within the multiplicative factor (1 ± ε), with
probability at least 1 − γ, in time polynomial in |x|, 1/ε, and log(1/γ).

▶ Theorem 40. There is an FBPPNP algorithm D, that given circuits C0 and C1 that are
samplers for distributions D0 and D1, and K ∈ N in unary, will distinguish D0 and D1 with
the distinguishing advantage at least δ − 1/K, where δ is the statistical distance between D0
and D1.

Proof. Given C0 and C1, let p0(x) be the probability of x according to D0, and p1(x) that
according to D1. For 0 < γ = ε ≤ 1/2 to be determined, consider the following probabilistic
circuit A(x; r): Compute the estimates p̃0(x) = (1 ± ε)p0(x) and p̃1(x) = (1 ± ε)p1(x) with
probability at least 1 − γ (using the algorithm from Lemma 39), and accept iff p̃0(x) > p̃1(x).

We say that randomness r is good for x if both estimates p̃0(x) and p̃1(x) are correct
within the multiplicative factor (1 ± ε). Note that by Lemma 39, for every x, r is good for x

with probability at least 1 − 2γ. We have

Prx∼D0,r[A(x; r) = 1] − Prx∼D1,r[A(x; r) = 1]
≥ Prx∼D0,r[A(x; r) = 1 | r is good for x] − Prx∼D1,r[A(x; r) = 1 | r is good for x] − 2γ

=
∑

x : p0(x)>p1(x)

(p0(x) − p1(x)) − 2γ

−
∑

x : p0(x)>p1(x) ∧ p̃0(x)<p̃1(x)

(p0(x) − p1(x))

+
∑

x : p0(x)≤p1(x) ∧ p̃0(x)>p̃1(x)

(p0(x) − p1(x)).

Note that ∑
x : p0(x)>p1(x) ∧ p̃0(x)<p̃1(x)

(p0(x) − p1(x))

≤
∑

x : (p0(x)>p1(x)) ∧ ((1−ε)p0(x)<(1+ε)p1(x))

(p0(x) − p1(x))

≤
∑

x

((1 + ε)/(1 − ε) − 1) · p1(x)

= (2ε)/(1 − ε).

Similarly, ∑
x : p0(x)≤p1(x) ∧ p̃0(x)>p̃1(x)

(p1(x) − p0(x)) ≤ (2ε)/(1 − ε).

Putting everything together, we get

Prx∼D0,r[A(x; r) = 1] − Prx∼D1,r[A(x; r) = 1] ≥ δ − (2γ + (4ε)/(1 − ε)),

which is at least δ − 10ε. Setting ε = 1/(10K) concludes the proof. ◀



R. Impagliazzo, V. Kabanets, and I. Volkovich 31:21

C Separating ZPEXP from ZPP

▷ Claim 41. ZPEXP ̸= ZPP.

Proof. Suppose for a contradiction that ZPEXP = ZPP. Then

NPNP ⊆ EXP ⊆ ZPEXP ⊆ ZPP.

By translation, NEXPNP ⊆ ZPEXP and hence by Lemma 12, ZPEXP ̸⊆ P/poly. Yet, by
Adleman’s Theorem ([1]) ZPP ⊆ BPP ⊆ P/poly. ◁

▶ Remark 42. Similarly, one can show that BPEXP ̸= BPP. However, separating ZPEXP or
even NEXP or EXPNP from BPP remains a longstanding open question. See e.g. [15, 49].
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Abstract
An interactive error correcting code (iECC) is an interactive protocol with the guarantee that the
receiver can correctly determine the sender’s message, even in the presence of noise. It was shown
in works by Gupta, Kalai, and Zhang (STOC 2022) and by Efremenko, Kol, Saxena, and Zhang
(FOCS 2022) that there exist iECC’s that are resilient to a larger fraction of errors than is possible
in standard error-correcting codes without interaction. In this work, we improve upon these existing
works in two ways:

First, we improve upon the erasure iECC of Kalai, Gupta, and Zhang, which has communication
complexity quadratic in the message size. In our work, we construct the first iECC resilient to
> 1

2 adversarial erasures that is also positive rate. For any ϵ > 0, our iECC is resilient to 6
11 − ϵ

adversarial erasures and has size Oϵ(k).
Second, we prove a better upper bound on the maximal possible error resilience of any iECC
in the case of bit flip errors. It is known that an iECC can achieve 1

4 + 10−5 error resilience
(Efremenko, Kol, Saxena, and Zhang), while the best known upper bound was 2

7 ≈ 0.2857
(Gupta, Kalai, and Zhang). We improve upon the upper bound, showing that no iECC can be
resilient to more than 13

47 ≈ 0.2766 fraction of errors.
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1 Introduction

Consider the following task: Alice wishes to communicate a message to Bob such that even
if a constant fraction of the communicated bits are adversarially tampered with, Bob is still
guaranteed to be able to determine her message. This task motivated the prolific study
of error correcting codes, starting with the seminal works of [16, 15]. An error correcting
code encodes a message x into a longer codeword ECC(x), such that the Hamming distance
between any two distinct codewords is a constant fraction of the length of the codewords.

An important question in the study of error correcting codes is determining the maximal
possible error resilience. It is known that in the adversarial bit-flip model, any ECC can be
resilient to at most 1

4 corruptions, and in the adversarial erasure error model any ECC can
be resilient to at most 1

2 corruptions.
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This prompts the following natural question: Can we achieve better error resilience if we
use interaction?

In [9], Gupta, Kalai and Zhang introduce the notion of an interactive error correcting
code (iECC), which is an interactive protocol with a fixed length and speaking order, such
that Bob can correctly learn Alice’s input x as long as not too large a fraction of the total
communication is erased. They demonstrate that iECC’s can in fact achieve a higher erasure
resilience than standard error correcting codes. In particular, they design an iECC that is
resilient to adversarial erasure of 3

5 − ϵ of the total communication.
Note that a classical error correcting code is an iECC in which Alice speaks in every

round. Their result essentially shows that Bob talking occasionally instead of Alice actually
improves the error resilience. It is not obvious that this should be the case – since Bob can
only send feedback, while Alice can actually send new information, Bob’s messages a priori
seem a lot less valuable than Alice’s. Nevertheless, they are able to leverage this to improve
the erasure resilience past 1

2 . Later, [7] present an iECC that achieves an error (bit flip)
resilience greater than 1

4 .
In this paper, we present two new results about iECC’s. We mention that this conference

version of the paper is a combination of two separate works on the arXiv: [10] and [11]. We
also note the relevant context that the result of [7], which constructed a binary iECC with
> 1

4 error resilience, was published after the positive rate result in this paper, but before the
impossbility bound in this paper.

1.1 Positive Rate iECC
One weakness of the erasure-resilient iECC presented by [9] is that the size of their protocol
is quadratic in the length of Alice’s original message x. This leaves open the question of
whether there exists an iECC achieving > 1

2 erasure resilience with size linear in the length
of the original message. In this paper, we answer this question in the affirmative.

Specifically, we show a positive rate iECC that achieves an erasure resilience of 6
11 − ϵ

over the binary erasure channel, which is larger than 1
2 .

▶ Theorem 1. For any ϵ > 0, there exists an iECC over the binary erasure channel resilient
to 6

11 − ϵ erasures, such that the communication complexity for inputs of size n is Oϵ(n) and
the time complexity is polyϵ(n).

We remark that our iECC achieves a lower erasure resilience than the quadratic sized
iECC of [9], which is resilient to 3

5 − ϵ erasures. However, we believe that an iECC achieving
both positive rate and 3

5 − ϵ erasure resilience can likely be constructed by combining ideas
from this paper and [9]. Nevertheless, we leave open the existence of such an iECC.
▶ Remark 2. Since the original paper [10] was posted to arXiv, the work of [7] constructed
a positive rate iECC resilient to 1

4 + 10−5 bit flip errors, thereby resolving whether iECC’s
can achieve better error resilience in the case of bit flip errors as well! Since bit flip errors
are stronger than erasures, their iECC is also a positive rate iECC resilient to > 1

2 erasures.
Comparing this work with theirs, theirs works in the case of bit flips errors while ours does
not, but our work achieves the higher erasure resilience.

1.2 Upper Bound on Maximal Error Resilience of iECC
The current best known upper (impossibility) bound for the error resilience of an iECC (in the
bit flip setting, rather than erasure setting) was given in [9], who showed that no iECC can
be resilient to more than 2

7 adversarial errors. This upper bound came from the combination
of two natural attacks, one of which is guaranteed to work no matter how the rounds in
which Alice and Bob speak are distributed.
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1. Corrupt none of Bob’s bits. Then, Bob’s messages provide perfect reliable feedback, in
which case works about error-correcting codes with feedback beginning with [2] tell us
that it suffices to corrupt 1

3 of Alice’s bits.
2. Corrupt half of Bob’s bits so that his messages appear random and thus essentially

are useless: then Alice’s communication essentially reduces to the case of a standard
error-correcting code, in which case an adversary can corrupt 1

4 of her bits to confuse
Bob between two possible values of x.

The largest error resilience known so far is achieved by [7], who construct an iECC resilient
to 1

4 + 10−5 bit flip errors. This leaves a large gap between the best known achievable error
resilience and the best known upper bound. What is the largest possible error resilience of
an iECC? Is it possible to achieve error resilience equal to this natural upper bound of 2

7 ?
In this work, we answer the latter question in the negative, providing a new upper bound

of 13
47 ≈ 0.2766, improving upon the previous best upper bound of 2

7 ≈ 0.2857.

▶ Theorem 3. For sufficiently small ϵ > 0, there exists k0 = k0(ϵ) ∈ N such that for any
k > k0, no iECC over the binary bit flip channel where Alice is trying to communicate
x ∈ {0, 1}k is resilient to 13

47 + ϵ fraction of adversarial bit flips.

2 Related Works

In this section, we discuss previous work on interactive error-correcting codes, as well as
prior work on error-correcting codes with feedback.

2.1 Interactive Error-Correcting Codes
The notion of an interactive error-correcting code (iECC) was first introduced in [9], who
demonstrated an iECC resilient to 3

5 fraction of adversarial erasures, surpassing the best
possible erasure resilience of standard ECC’s of 1

2 . They also gave an upper bound of 2
3 on

the erasure resilience of any iECC. In the case of bit flip errors, they proved an upper bound
of 2

7 on the error resilience achievable by any iECC, leaving open the problem of constructing
an iECC resilient to greater than 1

4 adversarial errors.
The followup work of [10] improved upon the erasure iECC of [9], giving a construction of

an iECC with positive rate but resilient to only 6
11 adversarial erasures.

In the bit flip error model, [7] answered [9]’s question in the affirmative, constructing an
iECC with error resilience 1

4 + 10−5. This narrowed the optimal error resilience of any iECC
to the range [ 1

4 + 10−5, 2
7 ].

2.2 Error-Correcting Codes with Feedback
The use of interaction in the noise resilient communication of a message has been studied
previously in the form of error-correcting codes with feedback. In an error-correcting code
with feedback, Alice wishes to communicate a message to Bob in an error-resilient fashion,
provided that after every message she sends she receives some feedback from Bob about what
he has received. She can then use this noiseless feedback to choose the next bit that she sends.
Error-correcting codes with feedback were first introduced in the Ph.D. thesis of Berlekamp [2]
and have been studied in a number of followup works, including [3, 19, 17, 14, 8, 1]. Originally,
this feedback was considered in the noiseless setting, meaning that none of Bob’s messages
are allowed to be corrupted, and error rate is calculated solely as a function of the number
of messages Alice sends. That is, Bob’s feedback is free and always correct, so that Alice can
tailor her next message to specifically the bit of information Bob most needs to hear.
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In the bit flip error model, [3, 19, 17, 14] showed that the maximal error resilience of
an error-correcting code with noiseless feedback is 1

3 . [8] show this is achievable even by
protocols that only send logarithmically many bits of feedback over a constant number
of rounds. For explicit constant number of rounds of feedback, [4] initiated the study of
the noise resilience vs. round complexity tradeoff for both erasures and errors. For larger
alphabets, the maximal error resilience was studied in [1].

When the feedback is noisy, i.e. the feedback may be corrupted as well, much less is
known. Several works such as [5, 6] considered ECC’s with noisy feedback over the binary
symmetric channel. [18] considers adversarial corruption, under a model which places separate
corruption budgets on the forward and feedback rounds. They construct a scheme that
is resilient to 1

2 of the forward communication and 1 of the feedback being erased. We
note that their scheme’s forward erasure resilience is equal to that achievable by standard
error-correcting codes.

3 Preliminaries and Definitions

Before we dive into the technical part of our paper, we present important preliminaries on
classical error correcting codes, and define an iECC formally and what it means for one to be
resilient to α-fraction of erasures.

Notation

In this work, we use the following notations.
The function ∆(x, y) represents the Hamming distance between x and y.
The interval [a, b] for a, b ∈ Z≥0 denotes the integers from a to b inclusive. The interval
[n] denotes the integers 1, . . . , n.
The symbol ⊥ in a message represents the erasure symbol that a party might receive in
the erasure model.
When we say Bob k-decodes a message, we mean that he list decodes it to exactly k

possible messages Alice could have sent in the valid message space.
The output of an ECC is 0-indexed. All other strings are 1-indexed.

3.1 Interactive Error Correcting Codes
We formally define our notion of an interactive error correcting code (iECC). The two types
of corruptions we will be interested in are erasures and bit flips. We first start by defining a
non-adaptive interactive protocol.

▶ Definition 4 (Non-Adaptive Interactive Protocol). A non-adaptive interactive protocol
π = {πn}n∈N is an interactive protocol between Alice and Bob, where in each round a single
party sends a single bit to the other party. The order of speaking, as well as the number of
rounds in the protocol, is fixed beforehand. The number of rounds is denoted |π|.

▶ Definition 5 (Interactive Error Correcting Code). An interactive error correcting code (iECC)
is a non-adaptive interactive protocol π = {πn}n∈N, with the following syntax:

At the beginning of the protocol, Alice receives as private input some x ∈ {0, 1}n.
At the end of the protocol, Bob outputs some x̂ ∈ {0, 1}n.

We say that π is α-resilient to adversarial bit flips (resp. erasures) if there exists n0 ∈ N
such that for all n > n0 and x ∈ {0, 1}n, and for all online adversarial attacks consisting of
flipping (resp. erasing) at most α · |π| of the total communication, Bob outputs x at the end
of the protocol with probability 1.
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3.2 Classical Error Correcting Codes

▶ Definition 6 (Error Correcting Code). An error correcting code (ECC) is a family of maps
ECC = {ECCn : {0, 1}n → {0, 1}m(n)}n∈N. An ECC has relative distance α > 0 if for all
n ∈ N and any x ̸= y ∈ {0, 1}n,

∆ (ECCn(x), ECCn(y)) ≥ αm(n).

Binary error correcting codes with relative distance ≈ 1
2 are well known to exist with

linear blowup in communication complexity.

▶ Theorem 7 ([13]). For all ϵ > 0, there exists an explicit linear error correcting code
ECCϵ = {ECCϵ,n : {0, 1}n → {0, 1}m}n∈N with relative distance 1

2 − ϵ and with m = m(n) =
Oϵ(n). Furthermore, all codewords other than ECCϵ,n(0n) are relative distance 1

2 − ϵ from
0m and 1m as well.

A relative distance of 1
2 is in fact optimal in the sense that as the number of codewords

N approaches ∞, the maximal possible relative distance between N codewords approaches
1
2 . We remark, however, that for small values of N , the distance can be much larger: for
N = 2, the relative distance between codewords can be as large as 1, e.g. the codewords
0M and 1M , and for N = 4, the relative distance can be as large as 2

3 , e.g. the codewords
(000)M , (110)M , (101)M , (011)M . Our constructions leverage this fact that codes with higher
relative distance exist for a small constant number of codewords.

We will also need the following important lemma about the number of shared bits between
any three codewords in an error correcting code scheme that has distance 1

2 .

▶ Lemma 8. For any error correcting code ECCϵ = {ECCϵ,n : {0, 1}n → {0, 1}m}n∈N with
relative distance 1

2 − ϵ, and any large enough n ∈ N, any three codewords in ECCϵ,n overlap
on at most

( 1
4 + 3

2 ϵ
)

· m locations.

Lemma 8 means that assuming that < 3
4 of a codeword is erased, the resulting message

is list-decodable to a set of size ≤ 2, at least in theory. The following theorem says such a
code exists with list-decoding being polynomial time, while also satisfying a couple other
properties necessary in the protocol construction in Section 4.2.

▶ Theorem 9 ([12]). For all ϵ > 0, any explicit (given with its encoding matrix) linear code
ECCϵ = {ECCϵ,n : {0, 1}n → {0, 1}m}n∈N with relative distance ( 1

2 − ϵ), can be efficiently
decoded and list-decoded. That is, there exists a polyϵ(n)-time decoding algorithm DECϵ =
{DECϵ,n : {0, 1}m → P({0, 1}n)}n∈N, such that for any n ∈ N, x ∈ {0, 1}n, and corruption
σ consisting of fewer than ( 1

2 − ϵ) · m erasures,

x = DECϵ,n(σ ◦ ECCϵ,n(x)).

Moreover, for any corruption σ consisting of fewer than ( 3
4 − 3

2 ϵ) · m erasures,

|DECϵ,n(σ ◦ ECCϵ,n(x))| ≤ 2, x ∈ DECϵ,n(σ ◦ ECCϵ,n(x)).

Our following theorem gives an ECC such that any two codewords differ on most segments
of length α.

APPROX/RANDOM 2023
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▶ Theorem 10. For all n ∈ N, ϵ > 0, there exists α = Θϵ(log n) such that, there exists
an explicit linear code ECCϵ = {ECCϵ,n : {0, 1}n → {0, 1}m}n∈N with m = m(n) = Oϵ(n),
satisfying the following property: For all n ∈ N, ϵ > 0, it holds that α|m and for any
x ̸= x′ ∈ {0, 1}n and j ∈ {0 . . . m

α − 1},

ECCϵ,n(x)[jα : (j + 1)α − 1] = ECCϵ,n(x′)[jα : (j + 1)α − 1]

for at most ϵm
α values of j.

▶ Lemma 11. Let ECC′
ϵ = {ECC′

n,ϵ : {0, 1}n → {0, 1}m(n)} be a explicit linear code satisfying
the properties of Theorem 10 with α = αn = Θϵ(log n). For all linear ECCϵ = {ECCn,ϵ :
{0, 1}α × {0, 1}β → {0, 1}p(n)} with relative distance 1

2 − ϵ and for all β, the code defined by

C(x) = ECCϵ(ECC′
ϵ(x)[0, α − 1], 0β)|| . . . ||ECCϵ(ECC′

ϵ(x)[m − α, m − 1], 0β)

is a linear code with relative distance 1
2 − 3

2 ϵ. In particular, assuming that less than 3
4 − 9

4 ϵ

of C(x) is erased, there is an efficient algorithm to obtain a set of size 2 containing x.

4 A New Positive Rate iECC Resilient to 6/11 Erasures

In this section, we discuss our positive rate iECC that is resilient to 6/11 adversarial erasures.

4.1 Overview of Ideas
We begin with an overview of the ideas that go into our positive rate iECC. We first briefly
review the iECC of [9] then describe how to modify it to have a linear communication
complexity.

The overarching goal of the original protocol, as well as ours, is to perform the following
three steps.

1. Bob learns that Alice’s value of x is one of two possible values. (This idea is known as
list decoding, which achieves better noise resilience than unique decoding.)

2. Bob conveys to Alice an index i on which the two possible inputs differ.
3. Alice sends the value of her input at index i.

Summary of the Protocol of [9]

The original protocol consists of many (say ≈ n
ϵ ) chunks, where in each chunk Alice sends a

message followed by Bob’s reply. The protocol is designed so that each such chunk will make
progress towards Bob’s unambiguously learning Alice’s input, as long as the adversary did
not invest more than 3

5 − ϵ erasures in that chunk. At a high level, in the first chunk with
< 3

5 − ϵ erasures, Bob narrows down Alice’s input to at most two options. In every future
chunk with < 3

5 − ϵ erasures, either Alice gets closer to learning the index i on which the
two options differ, or Bob fully determines x by ruling out one of the two values of x, e.g. by
learning the value of x[i] or by uniquely decoding Alice’s message. Alice keeps track of a
counter cnt initially set to 0 indicating her guess for i. The main purpose of Bob’s messages
is to increment Alice’s counter to i.

At the beginning of the protocol, Alice sends ECC(x, cnt) to Bob in every chunk. At the
first point, there are < 3

5 − ϵ erasures in a chunk, Bob will be able to list decode Alice’s
message to at most two options, say (x0, cnt0 = 0) and (x1, cnt1 = 0). This must happen
because the relative message lengths of Alice and Bob will be such that the adversary cannot
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corrupt too much of Alice’s message even if they corrupt none of Bob’s message. Since we
are in the setting of erasures, one of the two decodings must be Alice’s true state, and in
particular, must contain Alice’s true input.

At this point, Bob begins signaling to Alice to increment cnt. His goal is to tell Alice
to increment cnt until cnt = i. He does this by only sending one of two codewords1 every
message that have relative distance 1 apart. This way, if Bob’s message is not entirely
erased, Alice learns what Bob tried to send. The key is that every time < 3

5 − ϵ of a chunk
is corrupted, we can guarantee both that Bob will decode Alice’s message to two possible
messages, and Alice uniquely decodes Bob’s message,2 so that Alice and Bob make progress
towards Alice learning i. Once Alice has discovered i, Bob signals for Alice to send the bit
x[i] for the rest of the protocol,3 which allows him to distinguish whether Alice has x0 or x1.

Modifications to Achieve Positive Rate

The communication complexity of the above protocol is O(n2). This comes from two parts:
(1) O(n) chunks are necessary for Bob to communicate the index i ∈ [n] to Alice via
incrementation, and (2) Alice sends her length n input in every chunk. We show how to
lessen both requirements, thus making the final protocol linear in length.

First, for Bob to communicate i ∈ [n] to Alice, instead of incrementing cnt by 1 until it
equals i. More specifically, we describe a process where Bob writes i out in binary, and then
sends Alice each bit of this binary representation in sequence. This only requires O(log n)
rounds of interaction, as opposed to the O(n) rounds required by [9]. Designing a protocol
to communicate a binary string rather than a unary string requires significant changes to
the procedure used in [9].

Second, we show that instead of sending x every message, it suffices for Alice to encode a
shorter string that is different than the corresponding short string for any other x′ in most
chunks. More precisely, consider an error correcting code ECC with the following property:
set some α and for any x ̸= x′,

ECC(x)[jα, (j + 1)α − 1] ̸= ECC(x′)[jα, (j + 1)α − 1]

for all but an ϵ fraction of values j. Then, Alice rotates through the sections, sending
ECC(x)[jα, (j + 1)α − 1] in the

(
j mod |ECC(x)|

α

)
’th chunk. Then, if Bob has narrowed

down Alice’s input to x0 and x1, he can simply ignore the ϵ fraction of chunks in which
ECC(x0)[jα, (j + 1)α − 1] = ECC(x1)[jα, (j + 1)α − 1]. In the remainder of chunks, the
segment ECC(x)[jα, (j + 1)α − 1] is sufficient for Bob to distinguish between x0 and x1. If
we were to let α ≈ log n,4 then our chunks are now only length O(log n).

Combining the two modifications, we see that Θ(n) communication from Alice is necessary
for Bob to narrow down Alice’s input to two options, and then after that, Bob can convey
i to Alice in O(log n) chunks each of size O(log n). This results in an iECC with total
communication O(n + log2 n) = O(n).

1 In our protocol, Bob will send one of four codewords each message. This contributes to the lower erasure
resilience of 6

11 − ϵ.
2 It is also possible that instead Bob uniquely decodes Alice’s message, but then he will have uniquely

learned x.
3 The reader familiar with the iECC of [9] may recall that in the case that the two Alices Bob sees have

different values of cnt, Bob may instruct Alice to send a different bit for the rest of the protocol, but we
do not address this for now.

4 α = Θ(log n) is necessary since Alice also sends her current guess of i each message, which has length
log n.
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We remark that our protocol has erasure resilience 6
11 − ϵ. The limiting factor is in the

construction of a protocol in which Bob builds i bit by bit: our protocol requires Bob sending
4 codewords with distance 2

3 , rather than 2 codewords with distance 1
2 to achieve 3

5 − ϵ

erasure resilience. However, combining our second observation with the protocol from [9]
would be enough to give an iECC with 3

5 − ϵ erasure resilience with communication O(n log n).

4.2 Positive Rate iECC Protocol (Informal)
Let ECC′ : {0, 1}n → {0, 1}m be an error correcting code satisfying the statement of
Theorem 10 with α = Θ(log n), and let ECC : {0, 1}α × {0, 1}≤log n → {0, 1}p be an error
correcting code with distance 1

2 that is also relative distance 1
2 from 0p, 1p.

Our iECC consists of Oϵ

(
m
α

)
chunks, each consisting of Alice sending a p-bit message

followed by Bob sending a 3p
8 -bit message. Bob’s messages are always one of four words

0̄, 1̄, 2̄, 3̄ ∈ {0, 1}3p/8 with relative distance 2
3 . We outline our protocol below. In what follows,

we assume that all messages Bob receives are consistent with the same two values of x,
otherwise Bob can rule out one of the values of x and determine Alice’s true input.

1. Alice initially holds a string ind ∈ {0, 1}≤log n initially set to the empty string ind = ∅.
Alice begins the protocol by sending ECC(ECC′(x)[jα, (j + 1)α − 1], ind) to Bob in every
chunk.

2. Bob begins the protocol sending 0̄ every message. Every m
α chunks, he attempts to

list-decode Alice’s previous m
α messages to find consistent values of x. Note that by

Lemma 11, if there are at most 3
4 − 3

2 ϵ erasures in Alice’s message in those m
α chunks,

then Bob is guaranteed to find at most two possible values of x.
3. When Bob has found two consistent values of x, say x̂0 and x̂1, he determines an index

i ∈ [n] = {0, 1}log n such that x̂0[i] ̸= x̂1[i]. His goal is now to communicate i to Alice, bit
by bit. He does this by sending either 0̄, 1̄, or 2̄ every chunk.
To communicate the next’th bit of i, Bob adds i[next] + 1 to mes modulo 3, where
mes was the last message he sent, to get his new message mes′, and begins sending
mes′ every chunk. (When Alice receives a message from Bob that is different from
the last message she received, she can calculate the difference in the two messages to
determine the bit.) He does this until he list-decodes Alice’s message to two possibilities
ECC(ECC′(x̂0)[jα, (j + 1)α − 1, ind0) and ECC(ECC′(x̂1)[jα, (j + 1)α − 1], ind1) such that
ECC′(x̂0)[jα, (j + 1)α − 1] ̸= ECC′(x̂1)[jα, (j + 1)α − 1], where at least one of ind0, ind1
has length next. If both have length next, he proceeds to communicate the (next + 1)’th
bit of i in the same way. If only one of the two Alice’s has |indb| = next, Bob switches to
sending 3̄ for the rest of the protocol, signaling to Alice to send him the parity of |ind| so
that he can distinguish between whether Alice has (x̂0, ind0) or (x̂1, ind1).

4. Whenever Alice unambiguously sees a change in Bob’s message from a 0̄ to a 1̄ or 2̄ (or
cyclic), she calculates b = mes′ − mes − 1 mod 3 and appends b to ind. If she ever receives
a 3̄, she switches to sending (|ind| mod 2)p for the rest of the protocol. Otherwise, at
some point she has |ind| = log n, so she can convert ind into an index i ∈ [n] and send
(x[i])p for the rest of the protocol. Note that Bob can distinguish between x̂0 and x̂1
using the value of x at the index i.

In the above outline, one has to be careful around |ind| = log n − 1. In particular, if one
Alice has |ind| = log n − 1 and the other has |ind| = log n, the second will be sending x[i] for
the rest of the protocol and it is thus incorrect for Bob to send 3̄ to signal the first Alice to
send the parity of the length of ind. Instead, once Bob has list-decoded Alice’s message such
that |ind0| = |ind1| = log n − 1, Bob commits to sending the next message ∈ {0̄, 1̄, 2̄} that
conveys to Alice the final bit of i for the rest of the protocol.
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▶ Theorem 12. The above iECC is resilient to a 6
11 − O(ϵ) fraction of erasures. For an input

of size n, the total communication is Oϵ(n). Alice and Bob run in polyϵ(n) time.

The formal version of this protocol is excluded from this conference version of the paper.
The full protocol can be found in [10].

5 Impossibility Bound on Maximal Noise Resilience of iECC

In this section, we present our main upper bound, that for any non-adaptive iECC, there is
some attack consisting of at most 13

47 corruptions such that Bob cannot guess Alice’s input x

correctly with probability better than 1
2 .

▶ Theorem 13. main For sufficiently small ϵ > 0, then for all k > 100ϵ−4, no iECC for
x ∈ {0, 1}k is resilient to more than 13

47 + 2ϵ fraction of errors with probability greater than 1
2 .

The rest of this section will be devoted to the proof of this theorem. Throughout this
section, Alice’s input will always be denoted x ∈ {0, 1}k. The length of the iECC will be
denoted by n.

At a high level, our proof will proceed as follows. We will split any candidate protocol
into two sections, the first consisting of the first 21

47 n rounds of the protocol, and the second
consisting of the remaining 26

47 n rounds of the protocol. In the first section, we denote the
number of bits that Alice sends by A1, and the number that Bob sends by B1. Likewise, in
the second section, we denote the number of bits that Alice and Bob send by A2 and B2
respectively. We will present three attacks in Sections 5.1, 5.2, and 5.3 such that depending
on the values of A1, B1, A2, B2, at least one attack is guaranteed to succeed while using at
most 13

47 corruptions.
Throughout this section, a transcript is the sequence of bits that is received by either

of the parties. Note that since the adversary may corrupt messages, the transcript may
be different than what was sent by Alice and Bob. We say that an attack succeeds with α

corruption if there exist two inputs x1, x2 ∈ {0, 1}k along with respective strategies corrupting
at most αn bits such that Bob’s view of the transcript in both cases is identical. Then, Bob
cannot guess Alice’s true value of x ∈ {x1, x2} with probability better than 1

2 .

5.1 Attack 1

In the first attack, the adversary behaves the same on both sections of the protocol. She
corrupts Alice’s bits while leaving Bob’s untouched, such that there exist two inputs for
which at most of 1

3 of Alice’s communication is corrupted. We remark that this attack has
been known since [2].

▶ Lemma 14. For any protocol consisting of A bits from Alice and B bits from Bob, and for
any three possible inputs x1, x2, x3, there exists two of the three inputs y1, y2 ∈ {x1, x2, x3}
and a transcript T ∈ {0, 1}A+B such that the adversary can corrupt at most 1

3 A + 1 bits so
that the protocol transcript is T in both the case Alice has y1 or y2.

The proof is omitted in this conference version.
The attack is stated below.

APPROX/RANDOM 2023
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Attack 1

Let x1, x2, x3 ∈ {0, 1}k be three of Alice’s possible inputs. By Lemma 14, there exist
y1, y2 ∈ {x1, x2, x3} and transcript T ∈ {0, 1}n such that the adversary can corrupt at most
1
3 (A1 + A2) + 1 bits to obtain transcript T in both the case Alice has y1 and if she has y2.
The adversary simply corrupts the protocol so that the resulting transcript is T .

▶ Lemma 15. Attack 1 succeeds with corrupting 1
3 A1 + 1

3 A2 + 1 bits.

Proof. This follows immediately from Lemma 14: regardless of whether Alice has y1 or y2,
the adversary is able to have Bob receive the same transcript, using 1

3 (A1 + A2) + 1 bits of
corruption. ◀

5.2 Attack 2
In our second attack, the adversary behaves differently in the two sections of the protocol.
In the first section, the adversary essentially causes Bob’s feedback to look random, so that
Alice can do no better than to send a distance 1

2 error-correcting code. This allows the
adversary to corrupt 1

4 of Alice’s bits during this first section so that Bob cannot distinguish
between three inputs. Then, in the second section, we use Lemma 14 from the previous
section to show that the adversary has a strategy corrupting only 1

3 A2 bits to confuse Bob
between two of the remaining three inputs.

To argue that the adversary can perform her attack in the first section, we need the
following lemma.

▶ Lemma 16. For any 0 < ϵ < 0.1, suppose Alice has K possible inputs where K > (4/ϵ)1/3.
Then for any protocol consisting of A bits from Alice and B bits from Bob where A + B ≥
3 log(1/ϵ)

ϵ3 , there exist three inputs x1, x2, x3 and a transcript T such that regardless of which of
x1, x2, x3 Alice has as input, the adversary can corrupt at most

( 1
4 + 3ϵ

2
)

· A +
( 1

2 + ϵ
)

· B + 1
bits so that the protocol transcript is T .

The proof is omitted in this conference version.
We now state our second attack.

Attack 2

Let inputs x1, x2, x3 ∈ {0, 1}k and transcript T1 ∈ {0, 1}21n/47 be such that they satisfy
Lemma 16 for the first section of the protocol. Then, for the first section of the protocol, the
adversary corrupts the transcript to look like T1, using at most

(
1
4 + 3ϵ

2

)
A1 +

(
1
2 + ϵ

)
B1 + 1

bits of corruption in the cases where Alice had x1, x2, x3.

For the second section of the protocol, the adversary corrupts the communication to the
transcript T2 ∈ {0, 1}26n/47 as found in Lemma 14 such that there exist two of x1, x2, x3,
denoted y1, y2, for which the adversary can corrupt at most 1

3 A2 + 1 of the communication
so that the transcript of received bits is T2 if Alice has y1 or y2.

▶ Lemma 17. Suppose that k ≥ 141 log(1/ϵ)
21ϵ3 · Attack 2 succeeds with corrupting

( 1
4 + 3ϵ

2
)

· A1 +( 1
2 + ϵ

)
· B1 + 1

3 A2 + 2 bits.

Proof. Regardless of whether Alice has y1 or y2, the transcript from Bob’s perspective when
the adversary employs this attack looks like T1 followed by T2 (restricted to Bob’s viewpoint).
Since A1 + B1 ≥ max{ 21

26 A2, k − A2} (where A1 + A2 ≥ k holds since Alice needs to send k
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bits to communicate x, even noiselessly), it follows that A1 +B1 ≥ 21
47 k ≥ 3 log(1/ϵ)/ϵ3, so the

condition of Lemma 16 is satisfied. Then, by Lemma 16, the number of corruptions used in
the first section of the protocol when Alice has y1 or y2 is at most

( 1
4 + 3ϵ

2
)

· A1 +
( 1

2 + ϵ
)

· B1,
and by Lemma 14, the number of corrupted bits in the second section whether Alice has y1
or y2 is at most 1

3 A2 + 1. ◀

5.3 Attack 3
In our third attack, we employ the following strategy. At a high level, we choose two inputs x1
and x2. In the first section of the protocol, Bob’s view is as if Alice had x1, while Bob’s bits
are corrupted so that Alice thinks that he has been receiving and responding correctly. In the
second section of the protocol, Bob’s bits are flipped randomly, and Alice’s communication is
corrupted to look like she has x2.

The first lemma we will need is to show that for the first section of the protocol, there are
many inputs for which the uncorrupted transcripts have pairwise small Hamming distance.

▶ Lemma 18. Let ϵ > 0 and suppose Alice has K possible inputs. Then for any protocol
consisting of A bits from Alice and B bits from Bob, there exists a set Γ of size K ′

ϵ(K) = Kϵ− 1
ϵ

inputs such that for any two x1, x2 ∈ Γ, the relative distance of the (uncorrupted) transcripts
in the case where Alice has x1 or x2 is ≤

( 1
2 + ϵ

)
· (A + B).

The proof is omitted in this conference version.

▶ Lemma 19. Let ϵ > 0, and suppose Alice has K ′ >
√

2/ϵ possible inputs. For any protocol
consisting of A bits from Alice and B bits from Bob such that A + B > 3 log(1/ϵ)

ϵ3 , there exist
two inputs x1, x2 such that for any advice α that Bob receives at the beginning of the protocol
(after both Alice and Bob have fixed their strategies), there exist two transcripts T1, T2 such
that the Bob’s view of the two transcripts is the same, and that in the case of Alice having
x1, the adversary needs only corrupt

( 1
2 + 2ϵ

)
A +

( 1
2 + ϵ

)
B bits to get transcript T1, and

in the case of Alice having x2, the adversary needs only corrupt
( 1

2 + ϵ
)

B bits so that the
transcript is T2.

The proof is omitted in this conference version.

Attack 3

Denote by T1(y) the uncorrupted transcript corresponding to Alice having input y in the
first section of the protocol. By Lemma 18, there exists a set M of 2ϵk − 1

ϵ
inputs such

that for every y1, y2 ∈ M , it holds that ∆(T1(y1), T1(y2)) ≤
(

1
2 + ϵ

)
· n. Next, consider the

second section of the protocol, conditioned on Alice having seen T1(x) (restricted to her
view) in the first section of the protocol. By Lemma 19 there exist x1, x2 ∈ M such that
no matter what advice α Bob receives at the beginning of this second section, there exist
transcripts T2,1(α) and T2,2(α) such that Bob’s view of the two transcripts are the same,
and these T2,1(α), T2,2(α) satisfy the properties listed in Lemma 19.

In the first section of the protocol, the adversary corrupts the communication so that Bob
always receives T1(x1) (restricted to the bits that Bob sees), and so that Alice receives T (x)
(restricted to the bits that she sees), where x denotes Alice’s input.

In the second section of the protocol, the adversary corrupts the communication so that the
transcript is T2,1(α = T1(x1)) in the case of Alice having x1, and T2,2(α = T1(x1)) otherwise.
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▶ Lemma 20. Suppose that k > 141 log(1/ϵ)
26ϵ3 . Attack 3 succeeds with corrupting

max
{(

1
2 + 2ϵ

)
· A2 +

(
1
2 + ϵ

)
· B2 ,

(
1
2 + ϵ

)
· A1 +

(
1
2 + ϵ

)
· B1 +

(
1
2 + ϵ

)
· B2

}
bits.

Proof. Regardless of whether Alice has x1 or x2, Bob receives the same transcript (restricted
to his view). Since A2 + B2 ≥ max{ 26

21 A1, k − A1} (where A1 + A2 ≥ k holds since
Alice needs to send k bits to communicate x, even noiselessly), it follows that A2 + B2 ≥
26
47 k > 3 log(1/ϵ)

ϵ3 , so the condition of Lemma 19 is satisfied. If Alice has x1, the amount of
corruption in the first section is 0, while in the second section the adversary corrupted at
most

( 1
2 + 2ϵ

)
A2 +

( 1
2 + ϵ

)
· B2 bits. If Alice has x2, the amount of corruption in the first

section is ∆(T1(x1), T1(x2)) ≤
( 1

2 + ϵ
)

· (A1 + B1), and in the second section the adversary
corrupts at most

( 1
2 + ϵ

)
· B2 bits. ◀

5.4 Proof of Theorem 13
In this section, we prove our main result, restated below.

▶ Theorem 21. For sufficiently small ϵ > 0, there exists k0 = k0(ϵ) ∈ N such that for
any k > k0, no iECC over the binary bit flip channel where Alice is trying to communicate
x ∈ {0, 1}k is resilient to 13

47 + ϵ fraction of adversarial bit flips.

We begin with the following lemma.

▶ Lemma 22. For any nonnegative a1, b1, a2, b2 ∈ R where a1+b1 = 21
47 and a1+b1+a2+b2 =

1, define

δ1 = 1
3a1 + 1

3a2,

δ2 = 1
4a1 + 1

2b1 + 1
3a2,

δ3 = max
{

1
2a2 + 1

2b2,
1
2a1 + 1

2b1 + 1
2b2

}
.

It holds that

min{δ1, δ2, δ3} ≤ 13
47 .

Proof. Using that b1 = 21
47 − a1 and b2 = 26

47 − a2, we can substitute:

δ1 = 1
3a1 + 1

3a2,

δ2 = 21
94 − 1

4a1 + 1
3a2,

δ3 = max
{

13
37 ,

1
2 − 1

2a2

}
.

Then,

min{δ1, δ2, δ3} ≤ 13
47 ⇐⇒ min{δ1, δ2, δ′

3} ≤ 13
47 ,

where δ′
3 = 1

2 − 1
2 a2. But note that

9
35δ1 + 12

35δ2 + 2
5δ′

3 = 13
47

where the weights 9
35 , 12

35 , 2
5 sum to 1, so at least one of δ1, δ2, δ′

3 must be at most 13
47 . ◀
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Proof of Theorem 13. Recall that the length of the iECC is n := A1 + B1 + A2 + B2 ≥
A1 + A2 ≥ k > ϵ−3 (since Alice needs to send at least k bits to communicate x, even in the
noiseless setting). Our goal is to show that regardless of the values of A1, B1, A2, B2, at least
one of Attacks 1, 2, and 3 will require at most

( 13
47 + 2ϵ

)
· n corruptions.

By Lemma 15, Attack 1 succeeds using
1
3A1 + 1

3A2 + 1 ≤ (δ1 + 2ϵ) n

bits of corruption, where δ1 := ( 1
3 A1 + 1

3 A2)/n.
By Lemma 17, Attack 2 succeeds using(

1
4 + 3ϵ

2

)
· A1 +

(
1
2 + ϵ

)
· B1 + 1

3A2 + 2 ≤ 1
4A1 + 1

2B1 + 1
3A2 + 2ϵn = (δ2 + 2ϵ)n

bits of corruption, where we define δ2 = ( 1
4 A1 + 1

2 B1 + 1
3 A2)/n.

By Lemma 20, Attack 3 succeeds using

max
{(

1
2 + 2ϵ

)
· A2 +

(
1
2 + ϵ

)
· B2 ,

(
1
2 + ϵ

)
· A1 +

(
1
2 + ϵ

)
· B1 +

(
1
2 + ϵ

)
· B2

}
≤ max

{
1
2A2 + 1

2B2 + 2ϵn,
1
2A1 + 1

2B1 + 1
2B2 + 2ϵn

}
= (δ3 + 2ϵ)n

bits of corruption, where we define δ3 = max
{ 1

2 A2 + 1
2 B2, 1

2 A1 + 1
2 B1 + 1

2 B2
}

/n.
By Lemma 22, we have that min{δ1, δ2, δ3} ≤ 13

47 , so at least one of the three attacks
succeeds with

( 13
47 + 2ϵ

)
· n corruption, regardless of the relative ratios of A1, B1, A2, B2. ◀
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1 Introduction

This paper studies the mixing time of the Glauber dynamics for the hard-core model assuming
that the underlying graph is an arbitrary tree. In the hard-core model, we are given a graph
G = (V, E) and an activity λ > 0. The model is defined on the collection of all independent
sets of G (regardless of size), which we denote as Ω.

Each independent set σ ∈ Ω is assigned a weight w(σ) = λ|σ| where |σ| is the number of
vertices contained in the independent set σ. The Gibbs distribution µ is defined on Ω: for
σ ∈ Ω, let µ(σ) = w(σ)/Z where Z =

∑
τ∈Ω w(τ) is known as the partition function. When

λ = 1 then every independent set has weight one and hence the Gibbs distribution µ is the
uniform distribution over (unweighted) independent sets.

Our goal is to sample from µ (or estimate Z) in time polynomial in n = |V |. Our
focus is on trees. These sampling and counting problems are computationally easy on trees
using dynamic programming algorithms. Nevertheless, our interest is to understand the
convergence properties of a simple Markov Chain Monte Carlo (MCMC) algorithm known as
the Glauber dynamics for sampling from the Gibbs distribution.

The Glauber dynamics (also known as the Gibbs sampler) is the simple single-site update
Markov chain for sampling from the Gibbs distribution of a graphical model. For the hard-
core model with activity λ, the transitions Xt → Xt+1 of the Glauber dynamics are defined
as follows: first, choose a random vertex v. Then, with probability λ

1+λ set X ′ = Xt ∪ {v}
and with the complementary probability set X ′ = Xt \ {v}. If X ′ is an independent set, then
set Xt+1 = X ′ and otherwise set Xt+1 = Xt.

We consider two standard notions of convergence to stationarity. The relaxation time
is the inverse spectral gap, i.e., (1 − λ∗)−1 where λ∗ = max{λ2, |λN |} and 1 = λ1 > λ2 ≥
· · · ≥ λN > −1 are the eigenvalues of the transition matrix P for the Glauber dynamics. The
relaxation time is a key quantity in the running time for approximate counting algorithms
(see, e.g., [29]). The mixing time is the number of steps, from the worst initial state, to reach
within total variation distance ≤ 1/2e of the stationary distribution, which in our case is the
Gibbs distribution µ.

We say that O(n) is the optimal relaxation time and that O(n log n) is the optimal
mixing time (see Hayes and Sinclair [18] for a matching lower bound for any constant degree
graph). Here, n denotes the size of the underlying graph. More generally, we say the Glauber
dynamics is rapidly mixing when the mixing time is poly(n).

We establish bounds on the mixing time of the Glauber dynamics by means of approximate
tensorization inequalities for the variance and the entropy of the hard-core model. Interestingly,
our analysis utilizes nothing further than the inductive nature of the tree, e.g., we do not
make any assumptions about spatial mixing properties of the Gibbs distribution. As a
consequence, the bounds we obtain have no dependence on the maximum degree of the graph.

To be more specific we derive the following two group of results: We establish approximate
tensorization of variance of the hard-core model on the tree for all λ < 1.1. This implies
optimal O(n) relaxation time for the Glauber dynamics. Notably this also includes the uniform
distribution over independent sets, i.e., λ = 1. Furthermore, we establish approximate
tensorization of entropy for the hard-core model on any tree for all λ < 0.44. In turn, this
implies optimal mixing time O(n log n) for the Glauber dynamics.

We can now state our main results.

▶ Theorem 1. For any n-vertex tree, for any λ < 1.1 the Glauber dynamics for sampling
λ-weighted independent sets in the hard-core model has an optimal relaxation time of O(n).
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Moreover, when λ ≤ 0.44 then we can prove an optimal bound on the mixing time. (This
extends to λ ≤ 1.05 under an intriguing conjecture that we can numerically verify.)

▶ Theorem 2. For any n-vertex tree, for any λ ≤ 0.44 the Glauber dynamics for sampling
λ-weighted independent sets in the hard-core model has an optimal mixing time of O(n log n).

We believe the optimal mixing results of Theorems 1 and 2 are related to the reconstruction
threshold, which we describe now. Consider the complete ∆-regular tree of height h; this is
the rooted tree where all nodes at distance ℓ < h from the root have ∆ − 1 children and all
nodes at distance h from the root are leaves. We are interested in how the configuration at
the leaves affects the configuration at the root.

Consider fixing an assignment/configuration σ to the leaves (i.e., specifying which leaves
are fixed to occupied and which are unoccupied), we refer to this fixed assignment to the
leaves as a boundary condition σ. Let µσ denote the Gibbs distribution conditional on this
fixed boundary condition σ, and let pσ denote the marginal probability that the root is
occupied in µσ.

The uniqueness threshold λc(∆) measures the affect of the worst-case boundary condition
on the root. For all λ < λc(∆), all σ ̸= σ′, in the limit h → ∞, we have pσ = p′

σ; this is known
as the (tree) uniqueness region. In contrast, for λ > λc(∆) there are pairs σ ̸= σ′ (namely, all
even occupied vs. odd occupied) for which the limits are different; this is the non-uniqueness
region. The uniqueness threshold is at λc(∆) = (∆ − 1)∆−1/(∆ − 2)∆ = O(1/∆).

In contrast, the reconstruction threshold λr(∆) measures the affect on the root of a
random/typical boundary condition. In particular, we fix an assignment c at the root and
then generate the Gibbs distribution via an appropriately defined broadcasting process.
Finally, we fix the boundary configuration σ and ask whether, in the conditional Gibbs
distribution µσ, the root has a bias towards the initial assignment c. The non-reconstruction
region λ < λr(∆) corresponds to when we cannot infer the root’s initial value, in expectation
over the choice of the boundary configuration σ and in the limit h → ∞, see Mossel [24] for
a more complete introduction to reconstruction.

The reconstruction threshold is not known exactly but close bounds were established by
Bhatnagar, Sly, and Tetali [3] and Brightwell and Winkler [5] who showed that:
C1 log2 ∆/ log log ∆ ≤ λr(∆) ≤ C2 log2 ∆ for sufficiently large ∆, and hence λr(∆) is
“increasing asymptotically” with ∆ whereas the uniqueness threshold is a decreasing function
of ∆. Martin [21] showed that λr(∆) > e − 1 for all ∆. As a consequence, we conjecture
that Theorems 1 and 2 holds for all trees for all λ < e − 1, which is close to the bound we
obtain. A slowdown in the reconstruction region is known: as described below, Restrepo et
al. [26] showed that there are trees for which there is a polynomial slow down for λ > C for
a constant C > 0; an explicit constant C is not stated in [26] but using the Kesten-Stigum
bound one can show C ≈ 28.

For general graphs the appropriate threshold is the uniqueness threshold, which is
λc(∆) = O(1/∆). In particular, for bipartite random ∆-regular graphs the Glauber dynamics
has optimal mixing in the uniqueness region [13], and is exponentially slow in the non-
uniqueness region [25, 17]. Moreover, for general graphs there is a computational phase
transition at the uniqueness threshold: optimal mixing on all graphs of maximum degree ∆
in the uniqueness region [13, 9, 10], and NP-hardness to approximately count/sample in the
non-uniqueness region [27, 17, 28].

There are a variety of mixing results for the special case on trees, which is the focus of
this paper. In terms of establishing optimal mixing time bounds for the Glauber dynamics,
previous results only applied to complete, ∆-regular trees. Seminal work of Martinelli,

APPROX/RANDOM 2023



33:4 Optimal Mixing for Independent Sets on Arbitrary Trees

Sinclair, and Weitz [22, 23] proved optimal mixing on complete ∆-regular trees for all λ. The
intuitive reason this holds for all λ is that the complete tree corresponds to one of the two
extremal phases (all even boundary or all odd boundary) and hence it does not exhibit the
phase co-existence which causes mixing. As mentioned earlier, Restrepo et al. [26] shows
that there is a there is a fixed assignment τ for the leaves of the complete, ∆-regular tree
so that the mixing time slows down in the reconstruction region; intuitively, this boundary
condition τ corresponds to the assignment obtained by the broadcasting process.

For more general trees the following results were known. A classical result of Berger et
al. [2] proves polynomial mixing time for trees with constant maximum degree [2]. A very
recent result of Eppstein and Frishberg [16] proved polynomial mixing time nC(λ) of the
Glauber dynamics for graphs with bounded tree-width which includes arbitrary trees, however
the polynomial exponent is roughly C(λ) = 11 + 6 log(λ) for trees. For other combinatorial
models, rapid mixing for the Glauber dynamics on trees with bounded maximum degree was
established for k-colorings in [20] and edge-colorings in [15].

Spectral independence is a powerful notion in the analysis of the convergence rate of
Markov Chain Monte Carlo (MCMC) algorithms. For independent sets on an n-vertex
graph G = (V, E), spectral independence considers the n × n pairwise influence matrix IG

where IG(v, w) = Probσ∼µ(v ∈ σ | w ∈ σ) − Probσ∼µ(v ∈ σ | w /∈ σ); this matrix is closely
related to the vertex covariance matrix. We say that spectral independence holds if the
maximum eigenvalue of IG′ for all vertex-induced subgraphs G′ of G are bounded by a
constant. Spectral independence was introduced by Anari, Liu, and Oveis Gharan [1]. Chen,
Liu, and Vigoda [13] proved that spectral independence, together with a simple condition
known as marginal boundedness which is a lower bound on the marginal probability of a valid
vertex-spin pair, implies optimal mixing time of the Glauber dynamics for constant-degree
graphs. This has led to a flurry of optimal mixing results, e.g., [14, 4, 19, 12, 11].

The limitation of the above spectral independence results is that they only hold for
graphs with constant maximum degree ∆. There are several noteworthy results that achieve
a stronger form of spectral independence which establishes optimal mixing for unbounded
degree graphs [9, 10]; however all of these results for general graphs only achieve rapid mixing
in the tree uniqueness region which corresponds to λ = O(1/∆) whereas we are aiming for
λ = Θ(1).

The inductive approach we use to establish approximate tensorization inequalities can also
be utilized to establish spectral independence. In fact, we show that spectral independence
holds for any tree when λ < 1.3, including the case where λ = 1, see Appendix A of the full
version of this paper. Applying the results of Anari, Liu, and Oveis Gharan [1] we obtain
a poly(n) bound on the mixing time, but with a large constant in the exponent of n. For
constant degree trees we obtain the following optimal mixing result by applying the results
of Chen, Liu, and Vigoda [13] (see also [4, 9, 10]).

▶ Theorem 3. For all constant ∆, all λ ≤ 1.3, for any tree T with maximum degree ∆, the
Glauber dynamics for sampling λ-weighted independent sets has an optimal mixing time of
O(n log n).

In the next section we recall the key functional definitions and basic properties of
variance/entropy that will be useful later in the proofs. In Section 3 we prove approximate
tensorization of variance which establishes Theorem 1. Then in Section 4 we prove Theorem 2.
We establish spectral independence and prove Theorem 3 in Appendix A of the full version
of this paper.
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2 Preliminaries

2.1 Standard Definitions
Let P be the transition matrix of a Markov chain {Xt} with a finite state space Ω and
equilibrium distribution µ. For t ≥ 0 and σ ∈ Ω, let P t(σ, ·) denote the distribution of Xt

when the initial state of the chain satisfies X0 = σ. The mixing time of the Markov chain
{Xt}t≥0 is defined by

Tmix = max
σ∈Ω

min
{

t > 0 | ∥P t(σ, ·) − µ∥TV ≤ 1
2e

}
. (1)

The transition matrix P with stationary distribution µ is called time reversible if it satisfies
the so-called detailed balance relation, i.e., for any x, y ∈ Ω we have µ(x)P (x, y) = P (y, x)µ(y).
For P that is time reversible the set of eigenvalues are real numbers and we denote them as
1 = λ1 ≥ λ2 ≥ . . . λ|Ω| ≥ −1. Let λ∗ = max{|λ2|, |λ|Ω||}, then we define the relaxation time
Trelax by

Trelax(P ) = 1
1 − λ∗ . (2)

The quantity 1 − λ∗ is also known as the spectral gap of P . We use Trelax to bound Tmix by
using the following inequality

Tmix(P ) ≤ Trelax(P ) · log
(

2e

minx∈Ω µ(x)

)
. (3)

2.2 Gibbs Distributions and Functional Analytic Definitions
For a graph G = (V, E) and λ > 0, let µ = µG,λ be the hard-core model on this graph with
activity λ, while let Ω ⊆ 2V be the support of µ. For any Λ ⊆ V and any τ ⊆ Λ, we let µΛ,τ

be the distribution µ conditional on that from Λ we choose exactly the vertices in τ . When
there is no danger of confusion, we omit Λ. We let Ωτ ⊆ Ω be the support of µΛ,τ , while we
call τ feasible if Ωτ is nonempty.

For any subset S ⊆ V , let µS denote the marginal of µ at S, while let ΩS ⊆ 2S denote
the support of µS . That is, for any σ ⊆ S, we have that

µS(σ) =
∑

η∈2V

1{η ∩ S = σ}µ(η) . (4)

In a natural way, we define the conditional marginal. That is, for Λ ⊆ V \ S and τ ⊆ Λ, we
let µΛ,τ

S denote the marginal at S conditional on the configuration at Λ being τ . Similarly to
what we had before, when there is no danger of confusion, we omit Λ. We let Ωτ

S denote the
support of µτ

S .
For any function f : Ω → R≥0, we let µ(f) is the expected value of f with respect to µ,

i.e.,

µ(f) =
∑
σ∈Ω

µ(σ)f(σ) .

Analogously, we define variance of f with respect to µ by

Var(f) = µ(f2) − (µ(f))2
. (5)

APPROX/RANDOM 2023



33:6 Optimal Mixing for Independent Sets on Arbitrary Trees

We are also using the following equation for Var(f),

Var(f) = 1
2

∑
σ,τ∈Ω µ(σ)µ(τ) (f(σ) − f(τ))2

. (6)

For any S ⊆ V , for any τ ∈ ΩV \S , we define the function fτ : Ωτ
S → R≥0 such that

fτ (σ) = f(τ ∪ σ) for all σ ∈ Ωτ
S . Let Varτ

S(fτ ) denote the variance of fτ with respect to the
conditional distribution µτ

S :

Varτ
S(fτ ) = µτ

S(f2
τ ) − (µτ

S(fτ ))2 (7)

= 1
2

∑
σ,η∈Ω

1{σ \ S = τ, η \ S = τ}µ(σ)µ(η)(∑
σ̂∈Ω 1{σ̂ \ S = τ}µ(σ̂)

)2 (f(σ) − f(η))2
. (8)

Furthermore, we let

µ(VarS(f)) =
∑

τ∈ΩV \S

µV \S(τ) · Varτ
S(fτ ) , (9)

i.e., µ(VarS(f)) is the average of Varτ
S(fτ ) with respect to the τ being distributed as in

µV \S(·). For the sake of brevity, when S = {v}, i.e., the set S is a singleton, we use
µ(Varv(f)).

Similarly to µ(f) and Var(f) we define the entropy with respect to µ by

Ent(f) = µ
(

f log f
µ(f)

)
, (10)

where we use the convention that 0 log 0 = 0. Analogously to µ(VarS(f)), we let

µ(EntS(f)) =
∑

τ∈ΩV \S

µV \S(τ)Entτ
S(fτ ) . (11)

That is, µ(EntS(f)) is the average of the entropy Entτ
S(fτ ) with respect to the measure

µV \S(·).
When X is a Bernoulli random variable, i.e.,

X =
{

A with probability p

B with probability 1 − p,

one formulation for the variance that will be convenient for us is

Var(X) = p(1 − p)(A − B)2. (12)

2.3 Approximate Tensorization of Variance/Entropy
To bound the convergence rate of the Glauber dynamics we consider the approximate
tensorization of variance/entropy as introduced in [7].

We begin with the definition of approximate tensorization of variance.

▶ Definition 4 (Variance Tensorization). A distribution µ with support Ω ⊆ {±1}V satisfies
the approximate tensorisation of Variance with constant C > 0, denoted using the predicate
V T (C), if for all f : Ω → R≥0 we have that

Var(f) ≤ C ·
∑
v∈V

µ (Varv(f)) .
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For a vertex x, recall that Varx[f ] =
∑

σ µV \{x}(σ)Varσ
x [fσ]. Variance tensorization V T (C)

yields the following bound on the relaxation time of the Glauber dynamics [7, 6]:

Trelax ≤ Cn. (13)

We continue with the analog for entropy, which is the key step in our proofs establishing
optimal mixing bounds of the Glauber dynamics.

▶ Definition 5 (Entropy Tensorization). A distribution µ with support Ω ⊆ {±1}V satisfies
the approximate tensorisation of Entropy with constant C > 0, denoted using the predicate
ET (C), if for all f : Ω → R≥0 we have that

Ent(f) ≤ C ·
∑
v∈V

µ (Entv(f)) .

For a vertex x, recall that Entx[f ] =
∑

σ µV \{x}(σ)Entσ
x [fσ]. Entropy tensorization ET (C)

immediately yields the following mixing time bound for the Glauber dynamics [7, 6]:

Tmix ≤ Cn (log(log(1/µ∗)) + log 2 + 2) . (14)

2.4 Decomposition of Variance/Entropy
We use the following basic decomposition properties for entropy and variance. The following
lemma follows from a decomposition of relative entropy, see [8, Lemma 3.1] (see also [4,
Lemma 2.3]).

▶ Lemma 6. For any S ⊂ V , for any f ≥ 0:

Var(f) = µ[VarS(f)] + Var(µS(f)) , (15)
Ent(f) = µ[EntS(f)] + Ent(µS(f)) . (16)

We utilize the following decomposition of a product measure, see [6, Eqn (4.7)].

▶ Lemma 7. Consider U, W ⊂ V where dist(U, W ) ≥ 2. Then for all f ≥ 0 we have:

µ[VarU (µW f)] ≤ µ[VarU (f)] , (17)
µ[EntU (µW f)] ≤ µ[EntU (f)] . (18)

Proof. We apply [6, Eqn (4.7)], which reaches the same conclusion under the assumptions
that U ∩ W = ∅ and µU µW = µW µU . In the current context, the reason these conditional
expectation operators commute here is that, because dist(U, W ) ≥ 2, if we let S be an
independent set sampled according to distribution µ, then the random variables S ∩ U and
S ∩ W are conditionally independent given S \ (U ∪ W ). ◀

3 Variance Factorization

In this section we prove Theorem 1, establishing an optimal bound on the relaxation time for
the Glauber dynamics on any tree for λ < 1.1. We will prove this by establishing variance
tensorization, see Definition 4.

APPROX/RANDOM 2023
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Let T ′ = (V ′, E′) be a tree, let {λ′
w}w∈V ′ be a collection of fugacities and let µ′ be the

corresponding hard-core measure. We will establish the following variance tensorization
inequality: for all f ′ : 2V ′ → R

Var(f ′) ≤
∑

x∈V ′

F (λ′
x)µ′(Varx(f ′)), (19)

where F : R≥0 → R≥0 is a function to be determined later (in Lemma 8). We refer to Var(f ′)
as the “global” variance and we refer to µ′(Varx(f ′)) as the “local” variance (of f ′ at x).

We will establish (19) using induction. Let v be a vertex of degree 1 in T ′ and let u be
the unique neighbor of v. Let T = (V, E) be the tree which is the induced subgraph of G′

on V = V ′ \ {v}. Let {λw}w∈V be a collection of fugacities where λw = λ′
w for w ≠ u and

λu = λ′
u/(1 + λ′

v). Let µ be the hard-core measure on T with fugacities {λw}w∈V .
Note that for S ⊆ V we have

µ(S) = µ′(S) + µ′(S ∪ {v}) = µ′
V (S). (20)

Fix a function f ′ : 2V ′ → R. Let f : 2V → R be defined by

f(S) = µ′(S)f ′(S) + µ′(S ∪ {v})f ′(S ∪ {v})
µ′(S) + µ′(S ∪ {v}) = EZ∼µ′ [f ′(Z) | Z∩V = S] = µ′

v(f ′)(S). (21)

Note that f ′ is defined on independent sets of the tree T ′ and f is the natural projection of
f ′ to the tree T . Since f = µ′

v(f ′), then by Lemma 6 we have that:

Var(f ′) = µ′(Varv(f ′)) + Var(f). (22)

When we condition on the configuration at u then µ′ becomes a product measure on
V \ {u} and {v}. Hence, from Equation (17) then for any x ̸∈ {u, v} (by setting U = {x}
and W = {v}) we have:

µ′(Varx(f)) ≤ µ′(Varx(f ′)).

Since by (20) we have µ(Varx(f)) = µ′(Varx(f)), the above implies that

µ(Varx(f)) ≤ µ′(Varx(f ′)). (23)

The following lemma is the main technical ingredient. It bounds the local variance at u

for the smaller graph T in terms of the local variance at u and v in the original graph T ′.

▶ Lemma 8. For F (x) = 1000(1 + x)2 exp(1.3x) and any λv, λu ∈ (0, 1.1] we have:

F (λu)µ(Varu(f)) ≤ (F (λ′
v) − 1)µ′(Varv(f ′)) + F (λ′

u)µ′(Varu(f ′)). (24)

We now utilize the above lemma to prove the main theorem for the relaxation time. We
then go back to prove Lemma 8.

Proof of Theorem 1. Note Equation (24) is equivalent to:

µ′(Varv(f ′)) + F (λu)µ(Varu(f)) ≤ F (λ′
v)µ′(Varv(f ′)) + F (λ′

u)µ′(Varu(f ′)). (25)
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We can prove variance tensorization by induction as follows:

Var(f ′) = µ′(Varv(f ′)) + Var(f)

≤ µ′(Varv(f ′)) +
∑
x∈V

F (λx)µ(Varx(f))

≤ µ′(Varv(f ′)) + F (λu)µ(Varu(f)) +
∑

x∈V \{u}

F (λ′
x)µ′(Varx(f ′))

≤ F (λ′
v)µ′(Varv(f ′)) + F (λ′

u)µ′(Varu(f ′)) +
∑

x∈V \{u}

F (λ′
x)µ′(Varx(f ′))

=
∑

x∈V ′

F (λ′
x)µ′(Varx(f ′)),

where the first line follows by by Equation (22), the second line by induction, the third line
by Equation (23), and the fourth line by Equation (25). ◀

Our task now is to prove Lemma 8. The following technical inequality will be useful.

▶ Lemma 9. Let p ∈ [0, 1]. Suppose s1, s2 > 0 satisfy s1s2 ≥ 1. Then for all A, B, C ∈ R
we have

(C − pA − (1 − p)B)2 ≤ (1 + s1)(C − A)2 + (1 − p)2(1 + s2)(B − A)2. (26)

The proof of Lemma 9 is in Appendix B of the full version of this paper. We can now
prove the main lemma.

Proof of Lemma 8. Our goal is to prove Equation (24), let us recall its statement:

F (λu)µ(Varu(f)) ≤ (F (λ′
v) − 1)µ′(Varv(f ′)) + F (λ′

u)µ′(Varu(f ′)). (24)

We will consider each of these local variances µ(Varu(f)), µ′(Varv(f ′)), and µ′(Varu(f ′)).
We will express each of them as a sum over independent sets S of V ′. We can then
establish Equation (24) in a pointwise manner by considering the corresponding inequality
for each independent set S.

Let us begin by looking at the general definition of the expected local variance µ′(Varx(f ′))
for any x ∈ V ′. Applying the definition in Equation (9) and then simplifying we obtain the
following (a reader familar with the notation can apply Equation (12) to skip directly to the
last line):

µ′(Varx(f ′))

=
∑

S⊆V ′\{x}

µ′
V ′\{x}(S) · VarS

x (fS)

=
∑

S⊆V ′\{x}

 ∑
T ⊆{x}

µ′(S ∪ T )

 1
2

∑
T,U⊆{x},T ̸=U

µ
′S
x (T )µ

′S
x (U)(f ′(S ∪ T ) − f ′(S ∪ U))2


=

∑
S⊆V ′\{x}

 ∑
T ⊆{x}

µ′(S ∪ T )

 (
µ

′S
x (x)µ

′S
x (∅)(f ′(S) − f ′(S ∪ {x}))2

)
=

∑
S⊆V ′\{x}

(
µ′(S) + µ′(S ∪ {x})

)
µ′(S)µ′(S ∪ {x})

(µ′(S) + µ′(S ∪ {x}))2

(
f ′(S) − f ′(S ∪ {x})

)2
. (27)
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Notice in Equation (27) that the only S ⊂ V ′ \ {x} which contribute are those where x is
unblocked (i.e., no neighbor of x is included in the independent set S) because we need that
S and S ∪ {x} are both independent sets and hence have positive measure in µ′.

Let us now consider each of the local variances appearing in Equation (24) (expressed
using carefully chosen summations that will allow us to prove (24) term-by-term in terms
of S).

Let Q1 := µ(Varu(f)) denote the expected local variance of f at u. We will use (27);
note that only S where u is unblocked (that is, when no neighbor of u is occupied) contribute
to the local variance. Such an S where u is unblocked and u ̸∈ S has the same contribution
as S ∪ {u} times 1/λu (since µ(S ∪ {u}) = λuµ(S)). Hence the expected local variance of f

at u is given by

Q1 := µ(Varu(f)) =
∑

S⊆V ;u∈S

µ(S)
(

1 + 1
λu

)
λu

1 + λu

1
1 + λu

(f(S \ {u}) − f(S))2
.

We have f(S) = f ′(S) (since u ∈ S) and f(S \{u}) = 1
1+λ′

v
f ′(S \{u})− λ′

v

1+λ′
v
f ′(S \{u}∪{v}).

Plugging these in and simplifying we obtain the following:

Q1 = 1 + λ′
v

1 + λ′
u + λ′

v

∑
S⊆V ;u∈S

µ(S)
(

f ′(S) − 1
1 + λ′

v

f ′(S − u) − λ′
v

1 + λ′
v

f ′(S − u + v)
)2

. (28)

We now consider Q2 := µ′(Varu(f ′)). To compute the expected local variance of f ′ at
u we need to generate Z from µ′ but only Z where u is unblocked contribute to the local
variance. We can generate Z by first generating S from µ and if u ̸∈ S adding v with
probability λ′

v/(1 + λ′
v). The S where u ̸∈ S contribute only if u is unblocked; contributing

the same amount as S ∪ {u} multiplied by 1/λ′
u (since µ′(S ∪ {u}) = λ′

uµ′(S)) and by
1/(1 + λ′

v) (since they only contribute if we do not add v). Hence, we have the following:

Q2 := µ(Varu(f ′)) =
∑

S⊆V ;u∈S

µ(S)
(

1 + 1
λ′

u

1
1 + λ′

v

)
λ′

u

1 + λ′
u

1
1 + λ′

u

(f ′(S − u) − f ′(S))2

=
(

λ′
u + 1

1 + λ′
v

)
1

(1 + λ′
u)2

∑
S⊆V ;u∈S

µ(S) (f ′(S) − f ′(S − u))2
. (29)

Finally, we consider µ′(Varv(f ′)), the expected local variance of f ′ at v. We will establish
a lower bound which we will denote by Q3 (note, Q1 and Q2 were identities but here we will
have an inequality).

To compute µ′(Varv(f ′)), the expected local variance of f ′ at v, we need to generate an
independent set Z from µ′. Only those Z where v is unblocked (that is where u is missing)
contribute to the local variance. We can generate Z by generating S from µ (whether we add
or do not add v does not change the contribution to the local variance). As in Equation (27),
we obtain the following:

µ′(Varv(f ′)) =
∑

S⊆V ;u̸∈S

µ(S) 1
1 + λ′

v

λ′
v

1 + λ′
v

(f ′(S ∪ {v}) − f ′(S))2

≥
∑

S⊆V ;u∈S

µ(S) 1
λ′

u

1
1 + λ′

v

λ′
v

1 + λ′
v

(f ′(S ∪ {v} \ {u}) − f ′(S \ {u}))2
,

where in the summation in the second line we effectively sum over a subset of sets not
containing u (the ones that can be obtained by removing u from a set containing u).
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Let Q3 denote the lower bound we obtained above:

Q3 := 1
λ′

u

1
1 + λ′

v

λ′
v

1 + λ′
v

∑
S⊆V ;u∈S

µ(S) (f ′(S ∪ {v} \ {u}) − f ′(S \ {u}))2 ≥ µ′(Varv(f ′)).

(30)

Plugging in (28), (29), (30) we obtain that Equation (24) follows from the following
inequality:

F (λu)Q1 ≤ (F (λ′
v) − 1)Q3 + F (λ′

u)Q2. (31)

We will establish (31) term-by-term, that is, for each S in the sums of (28), (29), (30). Fix
S ⊆ V such that u ∈ S and let A = f ′(S − u), B = f ′(S − u + v), and C = f ′(S). We need
to show

1 + λ′
v

1 + λ′
u + λ′

v

(
C − 1

1 + λ′
v

A − λ′
v

1 + λ′
v

B

)2
F

(
λ′

u

1 + λ′
v

)
≤ 1 + λ′

v + λ′
u

1 + λ′
v

1
(1 + λ′

u)2 (C − A)2
F (λ′

u) + 1
λ′

u(1 + λ′
v)2 (B − A)2 (F (λ′

v) − 1) . (32)

Let p = 1/(1 + λ′
v). We will match (26) to (32), by first dividing both sides of (32) by

1+λ′
v

1+λ′
u+λ′

v
F

(
λ′

u

1+λ′
v

)
and then choosing

1 + s1 =
(

1 + λ′
u + λ′

v

(1 + λ′
v)(1 + λ′

u)

)2
· F (λ′

u)
F

(
λ′

u

1+λ′
v

) and 1 + s2 = 1 + λ′
u + λ′

v

λ′
u(1 + λ′

v)λ′
v

2 · F (λ′
v) − 1

F
(

λ′
u

1+λ′
v

) .

Note that with this choice of s1 and s2 equations (26) and (32) are equivalent, and hence to
prove (32) it is enough to show s1s2 ≥ 1.

▷ Claim 10. s1s2 ≥ 1.

We defer the proof of this technical inequality to Appendix B of the full version of this
paper. This completes the proof of the lemma. ◀

4 Entropy Factorization

Here we will prove Theorem 2 establishing O(n log n) mixing time for λ ≤ .44. We will
accomplish this task by proving the following approximate tensorization inequality:

Ent(f ′) ≤
∑

x∈V ′

F (λ′
x)µ′(Entx(f ′)), (33)

where F : R≥0 → R≥0 is a function to be determined later. By Equation (14) this implies a
mixing time bound of O(n log n) and hence Theorem 2 follows from Equation (33).

We use the same notation as Section 3. Let T ′ be a tree and µ′ be the hard-core measure
on T ′ with fugacities {λ′

w}w∈V ′ . Let v be a vertex of degree 1 in T ′ and u is the unique
neighbor of v. Let v be a vertex of degree 1 in T ′ and let u be the unique neighbor of v. Let
T = (V, E) be the tree which is the induced subgraph of G′ on V = V ′ \ {v}. Let {λw}w∈V

be a collection of fugacities where λw = λ′
w for w ̸= u and λu = λ′

u/(1 + λ′
v). Let µ be the

hard-core measure on T with fugacities {λw}w∈V .
Fix a function f ′ : 2V ′ → R≥0. Let f : 2V → R≥0 be defined by f(S) = EZ∼µ′ [f ′(Z) |

Z ∩ V = S] = µ′
v(f ′)(S), which is the same definition as in Equation (21).

Our main technical lemma is the following.

APPROX/RANDOM 2023



33:12 Optimal Mixing for Independent Sets on Arbitrary Trees

▶ Lemma 11. For F (x) = 1000(1+x) exp(x) and λu, λ′
v, λ′

u ∈ [0, 0.44] we have the following.

F (λu)µ(Entu(f)) ≤ (F (λ′
v) − 1)µ′(Entv(f ′)) + F (λ′

u)µ′(Entu(f ′)). (34)

Using the above lemma we will establish (33) using induction as done in Section 3 for
variance.

Proof of Theorem 2.

Ent(f ′) = µ′(Entv(f ′)) + Ent(f) by Equation (16)

≤ µ′(Entv(f ′)) +
∑
x∈V

F (λx)µ(Entx(f)) by induction

≤ µ′(Entv(f ′)) + F (λu)µ(Entu(f)) +
∑

x∈V \{u}

F (λ′
x)µ′(Entx(f ′)) by Equation (18)

=
∑

x∈V ′

F (λ′
x)µ′(Varx(f ′)) by Equation (34).

Hence, Theorem 2 follows from Lemma 11. ◀

Let

G(p, A, B) = pA ln A + (1 − p)B ln B − (pA + (1 − p)B) ln(pA + (1 − p)B).

Let Q1 := µ(Entu(f)). Then we have the following analog of Equation (28):

Q1 =
(

1 + 1 + λ′
v

λ′
u

) ∑
S⊆V ;u∈S

µ(S)G
(

1 + λ′
v

1 + λ′
v + λ′

u
,

f ′(S \ {u})
1 + λ′

v
+ λ′

vf ′(S ∪ {v} \ {u})
1 + λ′

v
, f ′(S)

)
.

(35)

Let Q2 := µ′(Entu(f ′)) denote the expected local entropy of f ′ at u. Then we have the
analog of Equation (29):

Q2 =
(

1 + 1
λ′

u(1 + λ′
v)

) ∑
S⊆V ;u∈S

µ(S)G
(

1
1 + λ′

u

, f ′(S − u), f(S)
)

. (36)

Finally, as in Equation (30), we use Q3 for a lower bound on the expected local entropy of
f ′ at v. We prove µ′(Entv(f ′)) ≥ Q3 where:

Q3 = 1
λ′

u

∑
S⊆V ;u∈S

µ(S)G
(

1
1 + λ′

v

, f ′(S − u), f(S − u + v)
)

. (37)

Plugging in (35), (36), (37) we obtain that Equation (34) follows from the following
inequality

F (λu)Q1 ≤ F (λ′
u)Q2 + (F (λ′

v) − 1)Q3. (38)

We will establish (34) term-by-term, that is, for each S in the sums of (35), (36), (37). Fix
S ⊆ V such that u ∈ S and let A = f ′(S − u), B = f ′(S − u + v), and C = f ′(S). We need
to show(

1 + 1 + λ′
v

λ′
u

)
G

(
1 + λ′

v

1 + λ′
v + λ′

u

,
1

1 + λ′
v

A + λ′
v

1 + λ′
v

B, C

)
F

(
λ′

u

1 + λ′
v

)
≤(

1 + 1
λ′

u(1 + λ′
v)

)
G

(
1

1 + λ′
u

, A, C

)
F (λ′

u) + 1
λ′

u

G

(
1

1 + λ′
v

, A, B

)
(F (λ′

v) − 1) . (39)
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We will show that the following lemma implies an optimal mixing time bound of O(n log n)
for all λ ≤ .44.

▶ Lemma 12. Let b, p ∈ (0, 1). For any A, B, C ≥ 0 we have

G (b, A, C) + (1 − b)G (p, A, B) − (b + p − bp)G
(

b

b + p − bp
, pA + (1 − p)B, C

)
≥ 0. (40)

The proof of Lemma 12 appears in Appendix D of the full version of this paper.
Before finishing the proof of Lemma 11 using Lemma 12, we have the following conjecture

which is a generalization of Lemma 12. This conjecture implies (39) for all λ ≤ 1.05 and
hence an optimal mixing time bound of O(n log n) for all λ ≤ 1.05. Lemma 12 corresponds
to Conjecture 13 “around” W = 1 (note that for W = 1 both sides of the below inequality
are zero). We can numerical verify the conjecture.

▶ Conjecture 13. Let b, p ∈ (0, 1). For any W ∈ (1 − b, 1/(1 − p)) and any A, B, C ≥ 0 we
have ∣∣∣ ln W

∣∣∣(b + p − bp)G
(

b

b + p − bp
, pA + (1 − p)B, C

)
≤

p
∣∣∣ ln pW

pW − W + 1

∣∣∣G (b, A, C) + b
∣∣∣ ln W + b − 1

bW

∣∣∣G (p, A, B) .

In Appendix C of the full version of this paper we prove that Conjecture 13 implies a
strengthening of Lemma 11 with the interval [0, 1.05] and hence O(n log n) mixing time.

4.1 Proof of Lemma 11
Here we prove that Lemma 12 implies Equation (39), and hence Lemma 11. Recall, F (x) =
1000(1 + x) exp(x).

Let

p = 1
1 + λ′

v

and b = 1
1 + λ′

u

and α = 1
p(1 − b)F

(
p(1 − b)

b

)
.

Note that

1 + 1 + λ′
v

λ′
u

= b + p − bp

p(1 − b) ,
1 + λ′

v

1 + λ′
v + λ′

u

= b

b + p − bp
,

λ′
u

1 + λ′
v

= p(1 − b)
b

.

We aim to prove (39) using the following sequence of inequalities(
1 + 1 + λ′

v

λ′
u

)
G

(
1 + λ′

v

1 + λ′
v + λ′

u

,
1

1 + λ′
v

A + λ′
v

1 + λ′
v

B, C

)
F

(
λ′

u

1 + λ′
v

)
= α(b + p − bp)G

(
b

b + p − bp
, pA + (1 − p)B, C

)
(41)

≤ αp
(1

p

)
G (b, A, C) + αb

(1 − b

b

)
G (p, A, B) (42)

≤
(

1 + 1
λ′

u(1 + λ′
v)

)
G

(
1

1 + λ′
u

, A, C

)
F (λ′

u) + 1
λ′

u

G

(
1

1 + λ′
v

, A, B

)
(F (λ′

v) − 1) ,

(43)

Here, Eq. (41) follows from the definitions.
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Inequality (42) follows from Lemma 12 (we avoided simplifying (42) in order to make the
match to Lemma 12 easier).

Inequality (43) follows from the following two inequalities:

αp
(1

p

)
≤ b + p − bp

p(1 − b) F
(1 − b

b

)
, and (44)

αb
(1 − b

b

)
≤ b

1 − b

(
F

(1 − p

p

)
− 1

)
. (45)

Replacing α by its definition, equations (44) and (45) become

F

(
p(1 − b)

b

)
≤ (b + p − bp)F

(1 − b

b

)
, and (46)

F

(
p(1 − b)

b

)
(1 − b) ≤ bp

(
F

(1 − p

p

)
− 1

)
. (47)

Let x and y be such that b = 1/(1 + x) and p = 1/(1 + y). Equations (46) and (47) simplify
to the following

F

(
x

1 + y

)
≤ 1 + x + y

(1 + x)(1 + y)F (x) and F

(
x

1 + y

)
x ≤ F (y) − 1

1 + y
.

Note that F (y) ≥ 1000 and hence it is enough to satisfy the following inequalities.

F

(
x

1 + y

)
≤ 1 + x + y

(1 + x)(1 + y)F (x) and F

(
x

1 + y

)
x ≤ 999

1000
F (y)
1 + y

.

Recalling the definition of F , the constraints further simplify to:

exp
(

x

1 + y

)
≤ exp(x) and exp

(
x

1 + y

)
(1 + x + y)x

1 + y
≤ 999

1000 exp(y). (48)

Note that the first constraint follows from the fact that exp() is increasing and x, y > 0. The
second constraint is addressed in the following lemma.

▶ Lemma 14. For x, y ∈ [0, u], where u = 0.44, we have

exp
(

x

1 + y

)
(1 + x + y)x

1 + y
≤ 999

1000 exp(y). (49)

Proof. Let

Q = 999
1000 exp(y) − exp

(
x

1 + y

)
(1 + x + y)x

1 + y
.

We have

∂

∂y
Q = 999

1000 exp(y) +
x2(x + 2y + 2) exp

(
x

1+y

)
(1 + y)3 > 0,

that is, Q is increasing in y and hence we only need to prove (49) for y = 0. We need to
show

999
1000 ≥ exp (x) (1 + x)x. (50)

Note that RHS of (50) is increasing in x and hence we need to check (50) for x = u. For
x = u = 0.44 we have that (50) is satisfied (checked using interval arithmetic). ◀
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▶ Remark 15. In order for (48) to hold for x, y ∈ [0, u] we need it to hold for x = y(y +1) ≤ u.
Equation (48) then simplifies to

(1 + y)2y ≤ 1.

For (48) to hold (for all x, y ∈ [0, u]) we need y ≤ 0.47 which in turn implies u ≤ 0.7. This
means that if we want to prove rapid mixing for unweighted independent sets (λ = 1) we
have to go beyond Lemma 12, see Conjecture 13.
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Koch, Strassle, and Tan [SODA 2023], show that, under the randomized exponential time hypothesis,
there is no distribution-free PAC-learning algorithm that runs in time nÕ(log log s) for the classes of
n-variable size-s DNF, size-s Decision Tree, and log s-Junta by DNF (that returns a DNF hypothesis).
Assuming a natural conjecture on the hardness of set cover, they give the lower bound nΩ(log s).
This matches the best known upper bound for n-variable size-s Decision Tree, and log s-Junta.

In this paper, we give the same lower bounds for PAC-learning of n-variable size-s Monotone
DNF, size-s Monotone Decision Tree, and Monotone log s-Junta by DNF. This solves the open
problem proposed by Koch, Strassle, and Tan and subsumes the above results.

The lower bound holds, even if the learner knows the distribution, can draw a sample according
to the distribution in polynomial time, and can compute the target function on all the points of the
support of the distribution in polynomial time.
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1 Introduction

In the distribution-free PAC learning model [13], the learning algorithm of a class of functions
C has access to an unknown target function f ∈ C through labeled examples (x, f(x)) where
x are drawn according to an unknown but fixed probability distribution D. For a class of
hypothesis H ⊇ C, we say that the learning algorithm A PAC-learns C by H in time T

and error ϵ if for every target f ∈ C and distribution D, A runs in time T and outputs a
hypothesis h ∈ H which, with probability at least 2/3, is ϵ-close to f with respect to D.
That is, satisfies Prx∼D[f(x) ̸= h(x)] ≤ ϵ.

Koch et al., [10], show that, under the randomized exponential time hypothesis (ETH),
there is no PAC-learning algorithm that runs in time nÕ(log log s) for the classes of n-variable
size-s DNF, size-s Decision Tree and log s-Junta by DNF. Assuming a natural conjecture
on the hardness of set cover, they give the lower bound nΩ(log s). Their lower bound holds,
even if the learner knows the distribution, can draw a sample according to the distribution
in polynomial time and can compute the target function on all the points of the support of
the distribution in polynomial time.

In this paper, we give the same lower bounds for PAC-learning of the classes n-variable
size-s Monotone DNF, size-s Monotone Decision Tree and Monotone log s-Junta by DNF.
This solves the open problem proposed by Koch, Strassle, and Tan [10].
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In various learning models, it is widely recognized that the task of learning classes of
monotone Boolean functions is significantly simpler compared to learning classes of non-
monotone Boolean functions. An illustrative example is the distribution-free PAC learning of
monotone DNF within a model that permits membership queries, which can be accomplished
efficiently in polynomial time [2]. Conversely, the challenge of learning DNF in the same
model remains an unsolved problem, emphasizing the inherent difficulty associated with
non-monotone Boolean functions. In this paper, we demonstrate that for specific classes, the
task of PAC-learning monotone Boolean functions under the uniform distribution is equally
challenging as learning non-monotone Boolean functions.

1.1 Our Results
In this paper, we prove the following three Theorems.

▶ Theorem 1. Assuming randomized ETH, there is a constant c such that any PAC learning
algorithm for n-variable Monotone (log s)-Junta, size-s Monotone DT and size-s
Monotone DNF1 by DNF with ϵ = 1/(16n) must take at least

nc log log s
log log log s

time.

▶ Theorem 2. Assuming a plausible conjecture on the hardness of Set-Cover 2, there is a
constant c such that any PAC learning algorithm for n-variable Monotone (log s)-Junta,
size-s Monotone DT and size-s Monotone DNF by DNF with ϵ = 1/(16n) must take at
least

nc log s

time.

▶ Theorem 3. Assuming randomized ETH, there is a constant c such that any PAC learning
algorithm for n-variable Monotone (log s)-Junta, size-s Monotone DT and size-s
Monotone DNF by size-s DNF with ϵ = 1/(16n) must take at least

nc log s

time.

All the above lower bound holds, even if the learner knows the distribution, can draw a
sample according to the distribution in polynomial time and can compute the target on all
the points of the support of the distribution in polynomial time.

In the following two subsections, we give the technique used in [10] to prove Theorem 1
for (log s)-Junta, and the technique we use here to extend the result to Monotone
(log s)-Junta.

1 The results concerning size-s Monotone DT and size-s Monotone DNF stem from the result on
Monotone (log s)-Junta. This relationship also holds for the other theorems. Here, we present a
comprehensive list of all these classes to highlight their significance.

2 See Conjecture 1.
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1.2 Previous Technique
In [10], Koch, Strassle, and Tan show that under the randomized exponential time hypothesis,
there is no PAC-learning algorithm that runs in time nÕ(log log n) for the class of log n-Junta3

by DNF. The results for the other classes follow immediately from this result, since all other
classes contain log n-Junta. All prior works [1, 6] ruled out only poly(n) time algorithms.

The result in [10] uses the hardness result of (k, k′)-Set-Cover where one needs to
distinguish between instances that have set cover of size at most k from instances that have
minimum-size set cover greater than k′:
1. For some parameters k and k′ that depends on N , assuming randomized ETH, there is a

constant λ < 1 such that (k, k′)-Set-Cover on N vertices cannot be solved in time Nλk.

First, for each set cover instance S, they identify each element in the universe with an
assignment in {0, 1}n and construct in polynomial time a target function ΓS : {0, 1}n → {0, 1}
and a distribution DS that satisfies:
2. The instance S has minimum-size set cover opt(S) if and only if the function ΓS is a

conjunction of opt(S) unnegated variables4 over the distribution DS .5

For a DNF F and x ∈ {0, 1}n, they define widthF (x) to be the size of the smallest term
T in F that satisfies T (x) = 1. They then show that
3. Any DNF F with expected width Ex∼DS [widthF (x)] ≤ opt(S)/2 is (1/(2N))-far from ΓS

with respect to DS where N is the size6 of S. That is, Prx∼DS [F (x) ̸= ΓS(x)] ≥ 1/(2N).

They then use the following gap amplification technique. They define the function
ΓS⊕ℓ : ({0, 1}ℓ)n → {0, 1} where for y = (y1, . . . , yn), yi = (yi,1, . . . , yi,ℓ) ∈ {0, 1}ℓ, i ∈ [n],
we have ΓS⊕ℓ(y) = ΓS(⊕y1, . . . , ⊕yn) and ⊕yi = yi,1 + · · · + yi,ℓ. They also extend the
distribution DS to a distribution DS⊕ℓ over domain ({0, 1}ℓ)n and prove that
4. ΓS⊕ℓ(y) is a (opt(S)ℓ)-Junta over DS⊕ℓ.
5. Any DNF formula F with expected width Ey∼DS⊕ℓ

[widthF (y)] ≤ opt(S)ℓ/4 is (1/(4N))-
far from ΓS⊕ℓ with respect to DS⊕ℓ.

Item 4 follows from the definition of ΓS⊕ℓ and item 2. To prove Item 5, they show that if, to
the contrary, there is a DNF F of expected width at most opt(S)ℓ/4 that is 1/(4N)-close
to ΓS⊕ℓ with respect to DS⊕ℓ, then there is j ∈ [ℓ] and a projection of all the variables that
are not of the form yi,j that gives a DNF F ∗ of expected width at most opt(S)/2 that is
1/(2N)-close to ΓS with respect to DS . Then, by item 3, we get a contradiction.

They then show that
6. Any size-s DNF that is (1/(4N))-close to ΓS⊕ℓ with respect to DS⊕ℓ has average width

Ey∼DS⊕ℓ
[widthF (y)] ≤ 4 log s.

If F is (1/(4N))-close to ΓS⊕ℓ with respect to DS⊕ℓ, then, by items 5 and 6, 4 log s ≥ Ey∼DS⊕ℓ

[widthF (y)] ≥ opt(S)ℓ/4 and then s ≥ 2opt(S)ℓ/16. Therefore,
7. Any DNF of size less than 2opt(S)ℓ/16 is (1/(4N))-far from ΓS⊕ℓ with respect to DS⊕ℓ.

Now, let k = Õ(log log n). Suppose, to the contrary, that there is a PAC-learning algorithm
for log n-Junta by DNF with error ϵ = 1/(8N) that runs in time t = nλk/2 = nÕ(log log n),
where λ is the constant in item 1. Given a (k, k′)-Set-Cover instance, we run the learning

3 k-Junta are Boolean functions that depend on at most k variables
4 Their reduction gives a conjunction of negated variable. So here, we are referring to the dual function.
5 That is, there is a term T with opt(S) variables such that for every x in the support of DS , ΓS(x) = T (x).
6 N is the number of sets plus the size of the universe in S.
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algorithm for ΓS⊕ℓ for ℓ = log n/k. If the instance has set cover at most k, then by item 4,
ΓS⊕ℓ is log n-Junta. Then the algorithm learns the target and outputs a hypothesis that is
(1/(8N))-close to ΓS⊕ℓ with respect to DS⊕ℓ.

On the other hand, if the instance has a minimum-size set cover of at least k′, then
any learning algorithm that runs in time t = nλk/2 = nÕ(log log n) cannot output a DNF of
size more than t terms. By item 7, any DNF of size less than 2k′ log n/(16k) ≤ 2opt(S)ℓ/16 is
(1/(4N))-far from ΓS⊕ℓ with respect to DS⊕ℓ. By choosing the right parameters k and k′, we
have 2k′ log n/(16k) > t, and therefore, any DNF that the algorithm outputs has error of at
least 1/(4N).

Therefore, by estimating the distance of the output of the learning algorithm from ΓS⊕ℓ

with respect to DS⊕ℓ, we can distinguish between instances that have set cover of size less
than or equal to k from instances that have a minimum-size set cover greater than k′ in time
t = nλk/2. Thus, we got an algorithm for (k, k′)-Set-Cover that runs in time nλk/2 < nλk.
This contradicts item 1 and finishes the proof of the first lower bound.

Assuming a natural conjecture on the hardness of set cover, they give the lower bound
nΩ(log s). We will discuss this in Section 5.

1.3 Our Technique
In this paper, we also use the hardness result of (k, k′)-Set-Cover . As in [10], we identify
each element in the universe with an assignment in {0, 1}n and use the function ΓS and the
distribution DS that satisfies:
1. The instance S has minimum-size set cover opt(S) if and only if the function ΓS is a

conjunction of opt(S) variables over the distribution DS .

We then build a monotone target function ΓSℓ and a distribution DSℓ and use a different
approach to show that any DNF of size less than 2opt(S)ℓ/20 is (1/(8N) − 2−opt(S)ℓ/20)-far
from ΓSℓ with respect to DSℓ .

We define, for any odd ℓ, the monotone function ΓSℓ : ({0, 1}ℓ)n → {0, 1} where for
y = (y1, . . . , yn), yi = (yi,1, . . . , yi,ℓ), i ∈ [n], we have ΓSℓ (y) = ΓS(Majority(y1), . . . ,

Majority(yn)) where Majority is the majority function. A distribution DSℓ is also defined
such that
2. Pry∼DS

ℓ
[ΓSℓ (y) = 0] = Pry∼DS

ℓ
[ΓSℓ (y) = 1] = 1/2.

In the paper, DSℓ is denoted by Dℓ. To see the definition, refer to Definitions 3 and 4.
Roughly speaking, the distribution is defined in such a way that removing a few coordinates
results in the distribution becoming almost uniform. It is clear from the definition of ΓSℓ and
item 1 that
3. ΓSℓ (y) is a monotone (opt(S)ℓ)-Junta over DSℓ .
We then define the monotone size of a term T to be the number of unnegated variables that
appear in T . The intuition for this definition is that negated variables do not contribute
to reducing the size of the DNF of monotone functions, and therefore they may as well be
ignored. We first show that
4. For every DNF F : ({0, 1}ℓ)n → {0, 1} of size |F | ≤ 2opt(S)ℓ/5 that is ϵ-far from ΓSℓ with

respect to DSℓ , there is another DNF F ′ of size |F ′| ≤ 2opt(S)ℓ/5 with terms of monotone
size at most opt(S)ℓ/5 that is (ϵ − 2−opt(S)ℓ/20)-far from ΓSℓ with respect to DSℓ .

This is done by simply showing that terms of large monotone size in the DNF F have a small
weight according to the distribution DSℓ and, therefore, can be removed from F with the cost
of −2−opt(S)ℓ/20 in the error.

We then, roughly speaking, show that
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5. Let F ′ be a DNF of size |F ′| ≤ 2opt(S)ℓ/5 with terms of monotone size at most opt(S)ℓ/5.
For every y ∈ ({0, 1}ℓ)n in the support of DSℓ that satisfies ΓSℓ (y) = 1, either

F ′(y) = 0 or
F ′(y) = 1, and at least 1/(2N) fraction of the points z below y in the lattice ({0, 1}ℓ)n

that are in the support of DSℓ satisfies F ′(z) = 1 and ΓSℓ (z) = 0.
Roughly speaking, the latter sub-item follows from the fact that when the monotone size of
the terms of F is small and F ′(y) = 1 then y satisfies a small term T in F ′. Now, if z with
ΓSℓ (z) = 0 is a randomly chosen point that is almost uniformly distributed below y, but not
significantly distant from y, then there exists a sufficiently large probability for T (z) = 1 and
then F ′(z) = 1.

By item 5, either 1/(4N) fraction of the vectors y that satisfy ΓSℓ (y) = 1 satisfy F ′(y) = 0
or (1 − 1/(4N))/(2N) > 1/(4N) fraction of the points z that satisfy ΓSℓ (z) = 0 satisfy
F ′(z) = 1. Therefore, with item 2, we get that F ′ is 1/(8N)-far from ΓSℓ with respect to DSℓ .
This, with item 4, implies that
6. If F : ({0, 1}ℓ)n → {0, 1} is a DNF of size |F | < 2opt(S)ℓ/20, then F is (1/(8N) −

2−opt(S)ℓ/20)-far from ΓSℓ with respect to DSℓ .
The rest of the proof is almost the same as in [10]. See the discussion in subsection 1.2 after
item 7.

Assuming a natural conjecture on the hardness of set cover, we establish a lower bound of
nΩ(log s). The details and proof of this result will be discussed in Section 5, where we utilize
a stronger version of item 4.

1.4 Upper Bounds

The only known distribution-free algorithm for log s-Junta is the trivial algorithm that, for
every set of m = log s variables S = {xi1 , . . . , xim}, checks if there is a function that depends
on S and is consistent with the examples. This algorithm takes nO(log s) time.

For size-s decision tree and monotone size-s decision tree, the classic result of Ehrenfeucht
and Haussler [5] gives a distribution-free time algorithm that runs in time nO(log s) and
outputs a decision tree of size nO(log s).

The learning algorithm is as follows: Let T be the target decision tree of size s. First,
the algorithm guesses the variable at the root of the tree T and then guesses which subtree
of the root has size at most s/2. Then, it recursively constructs the tree of size s/2. When it
succeeds, it continues to construct the other subtree.

For size-s DNF and monotone size-s DNF, Hellerstein et al. [7] gave a distribution-free
proper learning algorithm that runs in time 2Õ(

√
n log s).

To the best of our knowledge, all the other results in the literature for learning the above
classes are either restricted to the uniform distribution or, in addition, use black box queries
or return hypotheses that are not DNF.

We recommend that readers who are not experts in the field refer to the first two sections
in [10].

2 Definitions and Preliminaries

In this section, we give the definitions and preliminary results that are needed to prove our
results.

APPROX/RANDOM 2023
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2.1 Set Cover
Let S = (S, U, E) be a bipartite graph on N = n + |U | vertices where S = [n], and for every
u ∈ U , deg(u) > 0. We say that C ⊆ S is a set cover of S if every vertex in U is adjacent to
some vertex in C. The Set-Cover problem is to find a minimum-size set cover. We denote
by opt(S) the size of a minimum-size set cover for S.

We identify each element u ∈ U with the vector (u1, . . . , un) ∈ {0, 1}n where ui = 0
if and only if (i, u) ∈ E. We will assume that those vectors are distinct. If there are two
distinct elements u, u′ ∈ U that have the same vector, then you can remove one of them from
the graph. This is because every set cover that covers one of them covers the other.

▶ Definition 1. The (k, k′)-Set-Cover problem is the following: Given as input a set cover
instance S = (S, U, E), and parameters k and k′. Output Yes if opt(S) ≤ k and No if
opt(S) > k′.

2.2 Hardness of Set-Cover
Our results are conditioned on the following randomized exponential time hypothesis (ETH)
Hypothesis: [3, 4, 8, 9, 12]. There exists a constant c ∈ (0, 1) such that 3-SAT on n variables
cannot be solved by a randomized algorithm in O(2cn) time with success probability at least
2/3.

The following is proved in [11]. See also Theorem 7 in [10]

▶ Lemma 2 ([11]). Let k ≤ 1
2

log log N
log log log N and k′ = 1

2

(
log N

log log N

)1/k

be two integers. Assuming
randomized ETH, there is a constant λ ∈ (0, 1) such that there is no randomized Nλk time
algorithm that can solve (k, k′)-Set-Cover on N vertices with high probability.

2.3 Concept Classes
In Appendix A we give the definition of monotone function, literal, term,clause, monotone
term, DNF, monotone DNF. Then the classes, size-s Monotone DNF, size s-Monotone
DT and Monotone k-Junta.

The size of a term T , |T |, is the number of literals in the term T . The size |F | of a DNF
(resp. CNF) F is the number of terms (resp. clauses) in F .

It is well known that

Monotone (log s)-Junta⊂ size-s Monotone DT ⊂ size-s Monotone DNF . (1)

2.4 Functions and Distributions
For any set R, we define U(R) to be the uniform distribution over R. For a distribution D
over {0, 1}n and two Boolean functions f and g, we define distD(f, g) = Prx∼D[f(x) ̸= g(x)].
Here, bold letters denote random variables. If distD(f, g) = 0, then we say that f = g over
D. For a class of functions C, we say that f is in C over D (or just, is C over D) if there is
a function g ∈ C such that f = g over D.

▶ Definition 3 (ΓS and DS). Let S = (S, U, E) be a set cover instance with S = [n]. Recall
that we identify each element u ∈ U with the vector (u1, . . . , un) ∈ {0, 1}n where ui = 0 if
and only if (i, u) ∈ E. We define the partial function ΓS : {0, 1}n → {0, 1} where ΓS(x) = 0
if x ∈ U and ΓS(1n) = 1. We define the distribution DS over {0, 1}n where DS(x) = 1/2
if x = 1n, DS(x) = 1/(2|U |) if x ∈ U , and DS(x) = 0 otherwise. We will remove the
superscript S when it is clear from the context and write Γ and D.
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▶ Fact 1. We have
1. C ⊆ S is a set cover of S = (S, U, E), if and only if Γ(x) =

∧
i∈C xi over D.

2. In particular, If T is a monotone term of size |T | < opt(S), then there is u ∈ U such
that T (u) = 1.

Proof. Let C be a set cover of S. First, we have Γ(1n) = 1. Now, since C is a set cover, every
vertex u ∈ U is adjacent to some vertex in C. This is equivalent to: for every assignment
u ∈ U , there is i ∈ C such that ui = 0. Therefore, ∧i∈Cui = 0 for all u ∈ U . Thus,
Γ(x) =

∧
i∈C xi over D.

The other direction can be easily seen by tracing backward in the above proof. ◀

For an odd ℓ, define ∆0 = {a ∈ {0, 1}ℓ|wt(a) = ⌊ℓ/2⌋} and ∆1 = {a ∈ {0, 1}ℓ|wt(a) = ⌈ℓ/2⌉},
where wt(a) is the Hamming weight of a. Notice that |∆0| = |∆1| =

(
ℓ
⌊ℓ/2⌋

)
.

▶ Definition 4 (Γℓ, Dℓ, ∆0
n and ∆1

n). For an odd ℓ, define ∆1
n = (∆1)n and7 ∆0

n :=
∪u∈U

∏n
i=1 ∆ui = ∪u∈U (∆u1 × ∆u2 × · · · × ∆un). Define the distribution Dℓ : ({0, 1}ℓ)n →

[0, 1] to be Dℓ(y) = 1/(2|∆1
n|) = 1/(2|∆1|n) if y ∈ ∆1

n, Dℓ(y) = 1/(2|∆0
n|) = 1/(2|U | · |∆0|n)

if y ∈ ∆0
n, and Dℓ(y) = 0 otherwise. We define the partial function Γℓ over the support

∆0
n ∪ ∆1

n of Dℓ to be 1 if y ∈ ∆1
n and 0 if y ∈ ∆0

n.

We note here that the distribution Dℓ is well-defined. This is because: First, the sum of the
distribution of the points in ∆1

n is 1/2. Second, for two different u, u′ ∈ U , we have that∏n
i=1 ∆ui and

∏n
i=1 ∆u′i are disjoint sets. Therefore, |∆0

n| = |U | · |∆0|n, and therefore, the
sum of the distribution of all the points in ∆0

n is half. In particular,

▶ Fact 2. We have Pr
y∼Dℓ

[Γℓ(y) = 1] = Pr
y∼Dℓ

[Γℓ(y) = 0] = Pr
Dℓ

[∆1
n] = Pr

Dℓ

[∆0
n] = 1

2 .

For y ∈ ({0, 1}ℓ)n, we write y = (y1, . . . , yn), where yj = (yj,1, yj,2, . . . , yj,ℓ) ∈ {0, 1}ℓ.
Let (Majority(yi))i∈[n] = (Majority(y1), . . . , Majority(yn)) where Majority is the
majority function.

▶ Fact 3. If C ⊆ S is a set cover of S, then Γℓ(y) = Γ((Majority(yi))i∈[n]) =
∧

i∈C

Majority(yi) over D. In particular, Γℓ is Monotone opt(S)ℓ-Junta over D.

Proof. First notice that Majority(x) = 1 if x ∈ ∆1 and Majority(x) = 0 if x ∈ ∆0.
Therefore, for x ∈ ∆ξ, ξ ∈ {0, 1} we have Majority(x) = ξ.

For y ∈ ∆1
n = (∆1)n, (Majority(yi))i∈[n] = 1n and Γℓ(y) = 1 = Γ(1n).

For y ∈ ∆0
n = ∪u∈U (∆u1 ×∆u2 ×· · ·×∆un), there is u such that y ∈ ∆u1 ×∆u2 ×· · ·×∆un .

Then, (Majority(yi))i∈[n] = u and Γℓ(y) = Γ((Majority(yi))i∈[n]) = Γ(u) = 0. ◀

For t ∈ [ℓ], ξ ∈ {0, 1} and u ∈ {0, 1}ℓ, we define ut←ξ ∈ {0, 1}ℓ the vector that satisfies

ut←ξ
i =

{
ui i ̸= t

ξ i = t
.

Let z ∈ ({0, 1}ℓ)n. For j ∈ [ℓ]n and a ∈ {0, 1}n, define zj←a = (zj1←a1
1 , . . . , zjn←an

n ). For
a set V ⊆ {0, 1}n, we define zj←V = {zj←v|v ∈ V }.

We define one(z) =
∏n

i=1{mi|zi,mi
= 1} = {m1|z1,m1 = 1} × · · · × {mn|zn,mn

= 1}.

7 Here ∆ξ = ∆0 if ξ = 0 and ∆1 if ξ = 1.
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▶ Fact 4. Let w ∈ ∆1
n, j ∈ one(w), and T be a term that satisfies T (w) = 1. Then

1. wj←U ⊆ ∆0
n.

2. |wj←U | = |U |.
3. If T j(y1,j1 , . . . , yn,jn) is the conjunction of all the variables that appear in T of the form

yi,ji
, then T (wj←a) = T j(a).

Proof. We first prove item 1. Let u ∈ U and i be any integer in [n]. Since w ∈ ∆1
n, we have

wi ∈ ∆1. Since j ∈ one(w), we have wi,ji = 1. Therefore, wji←ui

i ∈ ∆ui for all i ∈ [n] and
wj←u ∈

∏n
i=1 ∆ui . Thus, wj←u ∈ ∆0

n for all u ∈ U .
To prove item 2, let u, u′ be two distinct elements of U . There is i such that ui ̸= u′i.

Therefore wji←ui

i ̸= w
ji←u′i
i and wj←u ̸= wj←u′ .

We now prove item 3. Let T ′ be the conjunction of all the variables that appear in T that
are not of the form yi,ji

. Then T = T ′ ∧ T j . Since T (w) = 1, we have T ′(w) = 1. Since the
entries of wj←a are equal to those in w on all the variables that are not of the form yi,ji

, we
have T ′(wj←a) = 1. Therefore, T (wj←a) = T ′(wj←a) ∧ T j(wj←a

1,j1
, . . . , wj←a

n,jn
) = T j(a). ◀

We now give a different way of sampling according to the distribution Dℓ. The proof is in
Appendix B.

▶ Fact 5. Let S be a Set-Cover instance. The following is an equivalent way of sampling
from Dℓ.
1. Draw ξ ∈ {0, 1} u.a.r.8
2. Draw w ∈ ∆1

n u.a.r.
3. If ξ = 1 then output y = w.
4. If ξ = 0 then

a. draw j ∈ one(w) u.a.r.
b. draw v ∈ wj←U u.a.r.
c. output y = v.

In particular, for any event X,

Pr
y∼U(∆0

n)
[X] = Pr

w∼U(∆1
n),j∼U(one(w)),y∼U(wj←U )

[X].

3 Main Lemma

In this section, we prove

▶ Lemma 5. Let S = (S, U, E) be a set cover instance. If F : ({0, 1}ℓ)n → {0, 1} is a DNF
of size |F | < 2opt(S)ℓ/20, then distDℓ

(F, Γℓ) ≥ 1/(8|U |) − 2−opt(S)ℓ/20.

Note that Lemma 5 is used to prove Theorem 1 and 2. To prove Theorem 3, we will need
Lemma 11, a stronger version of Lemma 5.

To prove the lemma, we first establish some results.
For a term T , let TM be the conjunction of all the unnegated variables in T . We define

the monotone size of T to be |TM|. The proof of the following Claim is in Appendix B.

▷ Claim 6. Let S = (S, U, E) be a set cover instance and ℓ ≥ 5. If F : ({0, 1}ℓ)n → {0, 1} is
a DNF of size |F | < 2opt(S)ℓ/20, then there is a DNF, F ′, of size |F ′| ≤ 2opt(S)ℓ/20 with terms
of monotone size at most opt(S)ℓ/5 such that distDℓ

(Γℓ, F ′) ≤ distDℓ
(Γℓ, F ) + 2−opt(S)ℓ/20.

8 Uniformly at random.
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We now prove

▷ Claim 7. Let z ∈ ∆1
n. Let F be a DNF with terms of monotone size at most ⌈ℓ/2⌉(opt(S)−

1)/2 that satisfies F (z) = 1. Then

Pr
j∼U(one(z)),y∼U(zj←U )

[F (y) = 1] ≥ 1
2|U |

.

Proof. Since F (z) = 1, there is a term T in F that satisfies T (z) = 1. Let Y0 = {yi,m|zi,m = 0}
and Y1 = {yi,m|zi,m = 1}. Since T (z) = 1, every variable in Y0 that appears in T must be
negated, and every variable in Y1 that appears in T must be unnegated. For j ∈ one(z),
define q(j) to be the number of variables in {y1,j1 , . . . , yn,jn

} that appear in T (y). All those
variables appear unnegated in T because j ∈ one(z). Recall that TM is the conjunction
of all unnegated variables in T . Then |TM| ≤ ⌈ℓ/2⌉(opt(S) − 1)/2. Each variable in TM
contributes ⌈ℓ/2⌉n−1 to the sum

∑
j∈one(z) q(j) and |one(z)| = ⌈ℓ/2⌉n. Therefore,

E
j∼U(one(z))

[q(j)] = |TM|
⌈ℓ/2⌉

≤ opt(S) − 1
2 .

By Markov’s bound, at least half the elements j ∈ one(z) satisfies q(j) ≤ opt(S) − 1. Let
J = {j ∈ one(z)|q(j) < opt(S)}. Then Prj∼U(one(z))[j ∈ J ] ≥ 1/2. Consider j ∈ J and
let T j be the conjunction of all the variables that appear in T of the form yi,ji

. Then
|T j | = q(j) ≤ opt(S) − 1. By Fact 1, there is u ∈ U such that T j(u) = 1. By Fact 4, we have
T (zj←u) = T j(u) = 1. Then F (zj←u) = 1. Since by item 1 in Fact 4, |zj←U | = |U |, we have

Pr
j∼U(one(z)),y∼U(zj←U )

[F (y) = 1|j ∈ J ] ≥ 1
|U |

.

Therefore,

Pr
j∼U(one(z)),y∼U(zj←U )

[F (y) = 1] ≥ Pr
j∼U(one(z))

[j ∈ J ]×

Pr
j∼U(one(z)),y∼U(zj←U )

[F (y) = 1|j ∈ J ] ≥ 1
2|U |

. ◁

We are now ready to prove Lemma 5

Proof. By Claim 6, there is a DNF, F ′, of size |F ′| ≤ 2opt(S)ℓ/20 with terms of monotone
size at most opt(S)ℓ/5 such that distDℓ

(Γℓ, F ′) ≤ distDℓ
(Γℓ, F ) + 2−opt(S)ℓ/20. Therefore, it

is enough to prove that distDℓ
(Γℓ, F ′) ≥ 1/(8|U |).

If Pr
y∼U(∆1

n)
[F ′(y) ̸= 1] ≥ 1/(4|U |), then by Fact 2, for the event Y (y) = [Γℓ(y) = 1], we

have

distDℓ
(Γℓ, F ′) ≥ Pr

y∼Dℓ

[Γℓ(y) ̸= F ′(y)|Y (y)] Pr
y∼Dℓ

[Y (y)] = 1
2 Pr

y∼U(∆1
n)

[F ′(y) ̸= 1] ≥ 1
8|U |

.
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If Pr
y∼U(∆1

n)
[F ′(y) ̸= 1] < 1/(4|U |), then by Fact 2 and 5, and Claim 7,

distDℓ
(Γℓ, F ′) ≥ Pr

y∼Dℓ

[Γℓ(y) ̸= F ′(y)|Γℓ(y) = 0] · Pr
y∼Dℓ

[Γℓ(y) = 0]

=1
2 Pr

y∼U(∆0
n)

[F ′(y) = 1]

=1
2 Pr

z∼U(∆1
n),j∼U(one(z)),y∼U(zj←U )

[F ′(y) = 1]

≥1
2 Pr

z∼U(∆1
n),j∼U(one(z)),y∼U(zj←U )

[F ′(y) = 1|F ′(z) = 1]×

Pr
z∼U(∆1

n)
[F ′(z) = 1]

≥1
2

1
2|U |

(
1 − 1

4|U |

)
≥ 1

8|U |
. ◀

4 Superpolynomial Lower Bound

In this section, we prove the first results of the paper. First, we prove the following result for
Monotone (log n)-Junta.

▶ Lemma 8. Assuming randomized ETH, there is a constant c such that any PAC learning
algorithm for n-variable Monotone (log n)-Junta by DNF with ϵ = 1/(16n) must take at
least nc log log n

log log log n time.
The lower bound holds, even if the learner knows the distribution, can draw a sample

according to the distribution in polynomial time and can compute the target on all the points
of the support of the distribution in polynomial time.

Proof. Consider the constant λ in Lemma 2. Let c = min(1/40, λ/4). Suppose there is a
PAC learning algorithm A for Monotone (log n)-Junta by DNF with ϵ = 1/(16n) that
runs in time nc log log n

log log log n . We show that there is k such that for

k′ = 1
2

(
log N

log log N

)1/k

,

(k, k′)-Set-Cover can be solved in time N4ck ≤ Nλk. By Lemma 2, the result then follows.
Let S = (S, U, E) be an N -vertex (k, k′)-Set-Cover instance where

k = 1
2

log log N

log log log N
and k′ = 1

2

(
log N

log log N

)1/k

.

Let ℓ = log N
k and consider Γℓ and Dℓ.

Consider the following algorithm B
1. Input S = (S, U, E) an instance for (k, k′)-Set-Cover .
2. Construct Γℓ and Dℓ.
3. Run A using Γℓ and Dℓ. If it runs more than N4ck steps, then output No .
4. Let F be the output DNF.
5. Estimate η = distDℓ

(F, Γℓ).
6. If η ≤ 1

16N , output Yes , otherwise output No .
The running time of this algorithm is N4ck ≤ Nλk. Therefore, it is enough to prove the
following
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▷ Claim 9. Algorithm B solves (k, k′)-Set-Cover .

Proof. Yes case: Let S = (S, U, E) be a (k, k′)-Set-Cover instance and opt(S) ≤ k. Then,
opt(S) · ℓ ≤ kℓ = log N , and by Fact 3, Γℓ is Monotone log N-Junta. Therefore, w.h.p.,
algorithm A learns Γℓ and outputs a DNF that is η = 1/(16N) close to the target with
respect to Dℓ. Since B terminates A after N4ck time, we only need to prove that A runs at
most N4ck time.

The running time of A is N c log log N
log log log N < N4ck.

No Case: Let S = (S, U, E) be a (k, k′)-Set-Cover instance and opt(S) > k′. By
Lemma 5, any DNF, F , of size |F | < 2k′ℓ/20 satisfies distDℓ

(F, Γℓ) ≥ 1/(8|U |) − 2−k′ℓ/20.
First, we have

(2k)2k =
(

log log N

log log log N

) log log N
log log log N

<
log N

log log N
.

Therefore, since c ≤ 1/40,

k′ = 1
2

(
log N

log log N

)1/k

>
1
2(2k)2 > 80ck2.

So k′ℓ/20 > (kℓ)(4ck) and 2k′ℓ/20 > (2kℓ)4ck = N4ck. Now since the algorithm runs in time
N4ck, it cannot output a DNF F of size more than N4ck < 2k′ℓ/20, and by Lemma 5,

distDℓ
(F, Γℓ) ≥ 1

8|U |
− 1

N4ck
≥ 1

9N
.

So it either runs more than N4ck steps and then outputs No in step 3 or outputs a DNF
with an error greater than 1/(9N) > 1/(16N) and outputs No in step 6. ◁

Notice that the learning algorithm knows Γℓ and Dℓ. It is also clear from the definition of
Γℓ and Dℓ that the learning algorithm can draw a sample according to the distribution Dℓ

in polynomial time and can compute the target Γℓ on all the points of the support of the
distribution in polynomial time. ◀

We now prove

▶ Theorem 1. Assuming randomized ETH, there is a constant c such that any PAC learning
algorithm for n-variable size-s Monotone DT and size-s Monotone DNF by DNF with
ϵ = 1/(16n) must take at least

nc log log s
log log log s

time.
The lower bound holds, even if the learner knows the distribution, can draw a sample

according to the distribution in polynomial time and can compute the target on all the points
of the support of the distribution in polynomial time.

Proof. By Lemma 8, assuming randomized ETH, there is a constant c such that any PAC
learning algorithm for n-variable Monotone (log n)-Junta by DNF with ϵ = 1/(16n) runs
in time

nc log log n
log log log n .

Now by (1) and since s = n, the result follows. ◀
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5 Tight Bound Assuming some Conjecture

A plausible conjecture on the hardness of Set-Cover is the following.

▶ Conjecture 1 ([10]). There are constants α, β, λ ∈ (0, 1) such that, for k < Nα, there
is no randomized Nλk time algorithm that can solve (k, (1 − β) · k ln N)-Set-Cover on N

vertices with high probability.

We now prove

▶ Theorem 2. Assuming Conjecture 1, there is a constant c such that any PAC learning
algorithm for n-variable Monotone (log s)-Junta, size-s Monotone DT and size-s
Monotone DNF by DNF with ϵ = 1/(16n) must take at least

nc log s

time.
The lower bound holds, even if the learner knows the distribution, can draw a sample

according to the distribution in polynomial time and can compute the target on all the points
of the support of the distribution in polynomial time.

Proof. We give the proof for Monotone (log s)-Junta. As in the proof of Theorem 1, the
result then follows for the other classes.

Consider the constants α, β and λ in Conjecture 1. Let c = min(λ/10, (1 − β)/(20 log e)).
Suppose there is a PAC learning algorithm A for Monotone (log s)-Junta by DNF with
ϵ = 1/(16n) that runs in time nc log s. We show that there is k < Nα, k = ω(1), such that
(k, k′)-Set-Cover can be solved in time Nλk where k′ = (1 − β)k ln N . By Conjecture 1,
the result then follows.

Consider the following algorithm B
1. Input S = (S, U, E) an instance for (k, k′)-Set-Cover .
2. Construct Γ5 and D5.
3. Run A using Γ5 and D5 with s = 25k. If it runs more than N5ck steps, then output No .
4. Let F be the output DNF.
5. Estimate η = distD5(F, Γ5).
6. If η ≤ 1

16N , output Yes , otherwise output No .
Since c < λ/10, the running time of this algorithm is N5ck < Nλk. Therefore, it is enough
to prove the following

▷ Claim 10. Algorithm B solves (k, k′)-Set-Cover .

Proof. Yes case: Let S = (S, U, E) be a (k, k′)-Set-Cover instance and opt(S) ≤ k. Then,
5 · opt(S) ≤ 5k = log s, and by Fact 3, Γ5 is Monotone log s-Junta. Therefore, w.h.p.,
algorithm A learns Γ5 and outputs a DNF that is η = 1/(16N) close to the target with
respect to D5. Since B terminates A after N5ck time, we only need to prove that A runs at
most N5ck time.

The running time of A is

nc log s ≤ N5ck.

No Case: Let S = (S, U, E) be a (k, k′)-Set-Cover instance and opt(S) > k′ =
(1 − β)k ln N . By Lemma 5, any DNF, F , of size |F | < 2k′/4 satisfies distD5(F, Γ5) ≥
1/(8|U |) − 2−k′/4. Since, c < (1 − β)/(20 log e),

2k′/4 = 2
(1−β)k ln N

4 = N
(1−β)k
4 log e > N5ck,
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any DNF, F , that the learning outputs satisfies

distD5(F, Γ5) ≥ 1
8|U |

− 2−k′/4 ≥ 1
8N

− 1
N5ck

≥ 1
9N

.

Therefore, with high probability the algorithm answer No . ◁

◀

6 Strictly Proper Learning

In this section, we prove

▶ Theorem 3. Assuming randomized ETH, there is a constant c such that any PAC learning
algorithm for n-variable Monotone (log s)-Junta, size-s Monotone DT and size-s
Monotone DNF by size-s DNF with ϵ = 1/(16n) must take at least

nc log s

time.
The lower bound holds, even if the learner knows the distribution, can draw a sample

according to the distribution in polynomial time and compute the target on all the points of
the support of the distribution in polynomial time.

We first prove the following stronger version of Lemma 5

▶ Lemma 11. Let S = (S, U, E) be a set cover instance, and let ℓ ≥ 5. If F : ({0, 1}ℓ)n →
{0, 1} is a DNF of size |F | < 2opt(S)ℓ/16, then distDℓ

(F, Γℓ) ≥ 1/(8|U |).

To prove this lemma, we will give some more results.
Recall that, for a term T , TM is the conjunction of all the unnegated variables in T .

We define the monotone size of T to be |TM|. For a DNF F = T1 ∨ T2 ∨ · · · ∨ Ts and
z ∈ ({0, 1}ℓ)n, we define the monotone width of z in F as

mwidthF (z) :=
{

minTi(z)=1 |(Ti)M| F (z) = 1
0 F (z) = 0 .

We define F−1(1) = {z|F (z) = 1} and

Ω = ∆1
n ∩ F−1(1).

▷ Claim 12. Let F be a DNF with

E
z∼U(Ω)

[mwidthF (z)] ≤ opt(S) · ℓ/4.

Then

Pr
z∼U(Ω),j∼U(one(z)),y∼U(zj←U )

[F (y) = 1] ≥ 1
2|U |

.

Proof. Let z ∈ Ω. Then F (z) = 1 and z ∈ ∆1
n. Let T z be the term in F with |T z

M| =
mwidthF (z) that satisfies T z(z) = 1. Let Y0 = {yi,m|zi,m = 0} and Y1 = {yi,m|zi,m = 1}.
Since T z(z) = 1, every variable in Y0 that appears in T z must be negated, and every variable
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in Y1 that appears in T z must be unnegated. For j ∈ one(z), define qz(j) to be the number of
variables in {y1,j1 , . . . , yn,jn

} that appear in T z(y). All those variables appear unnegated in
T because j ∈ one(z). Each variable in T z

M contributes ⌈ℓ/2⌉n−1 to the sum
∑

j∈one(z) qz(j)
and |one(z)| = ⌈ℓ/2⌉n. Therefore,

E
j∼U(one(z))

[qz(j)] = |T z
M|

⌈ℓ/2⌉
= mwidthF (z)

⌈ℓ/2⌉
.

Now,

E
z∼U(Ω),j∼U(one(z))

[qz(j)] =
E

z∼U(Ω)
[mwidthF (z)]

⌈ℓ/2⌉

≤ opt(S)
2 .

By Markov’s bound,

Pr
z∼U(Ω),j∼U(one(z))

[qz(j) < opt(S)] ≥ 1
2 .

Suppose for some z ∈ Ω and j ∈ one(z), we have qz(j) < opt(S). Let T j be the conjunction
of all the variables that appear in T z

M of the form yi,ji . Then |T j | = qz(j) < opt(S). By
Fact 1, there is u ∈ U such that T j(u) = 1. By Fact 4, we have T z(zj←u) = T j(u) = 1.
Then F (zj←u) = 1. Since by item 1 in Fact 4, |zj←U | = |U |, we have

Pr
z∼U(Ω),j∼U(one(z)),y∼U(zj←U )

[F (y) = 1|qz(j) < opt(S)] ≥ 1
|U |

.

Therefore, for D′(y) = [z ∼ U(Ω), j ∼ U(one(z)), y ∼ U(zj←U )]

Pr
D′

[F (y) = 1] ≥ Pr
z∼U(Ω),j∼U(one(z))

[qz(j) < opt(S)]·

Pr
z∼U(Ω),j∼U(one(z)),y∼U(zj←U )

[F (y) = 1|qz(j) < opt(S)]

≥ 1
2|U |

. ◁

▷ Claim 13. Let S = (S, U, E) be a set cover instance, and let ℓ ≥ 5. If F : ({0, 1}ℓ)n → {0, 1}
is a DNF and E

z∼U(Ω)
[mwidthF (z)] ≤ opt(S)ℓ/4, then distDℓ

(F, Γℓ) ≥ 1/(8|U |).

Proof. If Pr
y∼U(∆1

n)
[F (y) ̸= 1] ≥ 1/(4|U |), then by Fact 2, for the event Y (y) = [Γℓ(y) = 1],

we have

distDℓ
(Γℓ, F ) ≥ Pr

y∼Dℓ

[Γℓ(y) ̸= F (y)|Y (y)] Pr
y∼Dℓ

[Y (y)] = 1
2 Pr

y∼U(∆1
n)

[F (y) ̸= 1] ≥ 1
8|U |

.
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If Pr
y∼U(∆1

n)
[F (y) ̸= 1] < 1/(4|U |), then by Fact 2 and 5, and Claim 12,

distDℓ (Γℓ, F ) ≥ Pr
y∼Dℓ

[Γℓ(y) ̸= F (y)|Γℓ(y) = 0] Pr
y∼Dℓ

[Γℓ(y) = 0]

= 1
2 Pr

y∼U(∆0
n)

[F (y) = 1]

= 1
2 Pr

z∼U(∆1
n),j∼U(one(z)),y∼U(zj←U )

[F (y) = 1]

≥ 1
2 Pr

z∼U(∆1
n),j∼U(one(z)),y∼U(zj←U )

[F (y) = 1|F (z) = 1] · Pr
z∼U(∆1

n)
[F (z) = 1]

= 1
2 Pr

z∼U(Ω),j∼U(one(z)),y∼U(zj←U )
[F (y) = 1] · Pr

z∼U(∆1
n)

[F (z) = 1]

≥ 1
2

1
2|U |

(
1 − 1

4|U |

)
≥ 1

8|U | . ◁

▷ Claim 14. Let F be a size-s DNF formula for s ≥ 2 such that distDℓ
(F, Γℓ) ≤ 1/4, then

E
y∼U(Ω)

[mwidthF (y)] ≤ 4 log s.

Proof. First, we have
3
4 ≤ Pr

y∼Dℓ

[F (y) = Γℓ(y)]

= 1
2 Pr

y∼Dℓ

[F (y) = Γℓ(y)|Γℓ(y) = 1] + 1
2 Pr

y∼Dℓ

[F (y) = Γℓ(y)|Γℓ(y) = 0]

≤ 1
2 Pr

y∼U(∆1
n)

[F (y) = 1] + 1
2 .

Therefore, Pry∼U(∆1
n)[F (y) = 1] ≥ 1/2.

Let F = T1 ∨ T2 ∨ · · · ∨ Ts. For y ∈ Ω, let ω(y) ∈ [s] be the minimum integer such that
mwidthF (y) = |(Tω(y))M| and Tω(y)(y) = 1.

Then, by (6),

Pr
y∼U(Ω)

[Ti(y) = 1] = Pr
y∼U(∆1

n)
[Ti(y) = 1|F (y) = 1] =

Pr
y∼U(∆1

n)
[Ti(y) = 1]

Pr
y∼U(∆1

n)
[F (y) = 1] ≤ 2−|(Ti)M|/2+1.

Now, by the concavity of log,
1
2 E

y∼U(Ω)
[mwidthF (y)] − 1 = E

y∼U(Ω)

[
log

(
2mwidthF (y)/2−1

)]
≤ log

(
E

y∼U(Ω)

[
2mwidthF (y)/2−1

])

= log

∑
i∈[s]

2|(Ti)M|/2−1 Pr
y∼U(Ω)

[ω(y) = i]


≤ log

∑
i∈[s]

2|(Ti)M|/2−1 Pr
y∼U(Ω)

[Ti(y) = 1]


≤ log

∑
i∈[s]

2|(Ti)M|/2−12−|(Ti)M|/2+1


= log s.

Therefore, E
y∼U(Ω)

[mwidthF (y)] ≤ 4 log s. ◁
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We are now ready to prove Lemma 11

Proof. If distDℓ
(F, Γℓ) > 1/4, then the result follows. Now suppose distDℓ

(F, Γℓ) ≤ 1/4. If
s = |F | < 2opt(S)ℓ/16, then by Claim 14, E

y∼U(Ω)
[mwidthF (y)] ≤ 4 log s = opt(S)ℓ/4. Then

by Claim 13, distDℓ
(F, Γℓ) ≥ 1/(8|U |). ◀

The proof of Theorem 3 is the same as the proof of Theorem 14 in [10]. We give the
proof in Appendix C for completeness.
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have f(x) ≤ f(y). A literal is a variable or negated variable. A term is a conjunction (∧)
of literals. A clause is a disjunction (∨) of literals. A monotone term (resp. clause) is a
conjunction (resp. disjunction) of unnegated variables. The size of a term T , |T |, is the
number of literals in the term T . A DNF (resp. CNF) is a disjunction (resp. conjunction)
of terms (resp. clauses). The size |F | of a DNF (resp. CNF) F is the number of terms
(resp. clauses) in F . A monotone DNF (resp. monotone CNF) is a DNF (resp. CNF) with
monotone terms (resp. clauses).

We define the following classes
1. size-s DNF and size-s Monotone DNF are the classes of DNF and monotone DNF,

respectively, of size at most s.
2. size s-DT and size-s Monotone DT are the classes of decision trees and monotone

decision trees, respectively, with at most s leaves.
3. k-Junta and Monotone k-Junta are the classes of Boolean functions and monotone

Boolean functions that depend on at most k variables.
It is well known that

Monotone (log s)-Junta⊂ size-s Monotone DT ⊂ size-s Monotone DNF .

B Proofs

B.1 Proof of Fact 5
Proof. Denote the above distribution by D′. By Item 1 in Fact 4, if w ∈ ∆1

n and j ∈ one(w),
then wj←U ⊆ ∆0

n. Therefore, for z ∈ ∆1
n, Pry∼D′ [y = z|ξ = 0] = 0 and then

Pr
y∼D′

[y = z] = Pr
ξ∼U({0,1})

[ξ = 1] · Pr
y∼U(∆1

n)
[y = z] = 1

2|∆1
n|

= 1
2|∆1|n

.

For z ∈ ∆0
n, suppose z ∈ ∆u1 × · · · × ∆un where u ∈ U . In the sampling according to

D′ and when ξ = 0, since for j ∈ one(w), the elements of wj←U are below w, we have
Pr

y∼D′
[y = z|w ̸> z] = 0. Therefore,

Pr
y∼D′

[y = z] = Pr
ξ∼U({0,1})

[ξ = 0] · Pr
w∼U(∆1

n)
[w > z] ×

Pr
j∼U(one(w))

[z ∈ wj←U |w > z, w ∈ ∆1
n] ×

Pr
v∼U(wj←U )

[v = z|z ∈ wj←U ]. (2)

Now, since, for x ∈ ∆0, the number of elements in ∆1 that are above x is ⌈ℓ/2⌉, we have
that the number of w ∈ ∆1

n = (∆1)n that are above z ∈ ∆u1 × · · · × ∆un is ⌈ℓ/2⌉n−wt(u).
Therefore,

Pr
w∼U(∆1

n)
[w > z] = ⌈ℓ/2⌉n−wt(u)

|∆1
n|

. (3)

Now let w > z and w ∈ ∆1
n. Since for two different u, u′ ∈ U , we have

∏n
i=1 ∆ui and∏n

i=1 ∆u′i are disjoint sets, and since z ∈ ∆u1 × · · · × ∆un , we have z ∈ wj←U if and only
if z = wj←u. Therefore, the number of elements j ∈ one(w) that satisfy z ∈ wj←U is the
number of elements j ∈ one(w) that satisfy z = wj←u. This is the number of elements
j ∈ one(w) that satisfies for every ui = 0, zi,ji = 0. For a j u.a.r. and a fixed i where ui = 0,
the probability that zi and wi differ only in entry ji is 1/⌈ℓ/2⌉. Therefore,

Pr
j∼U(one(w))

[z ∈ wj←U |w > z, w ∈ ∆1
n] = 1

⌈ℓ/2⌉n−wt(u) . (4)
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Finally, by item 2 in Fact 4, since |wj←U | = |U |, we have

Pr
v∼U(wj←U )

[v = z|z ∈ wj←U ] = 1
|wj←U |

= 1
|U |

. (5)

By (2), (3), (4), and (5), we have

Pr
y∼D′

[y = z] = 1
2 · ⌈ℓ/2⌉n−wt(u)

|∆1
n|

· 1
⌈ℓ/2⌉n−wt(u) · 1

|U |
= 1

2|U | · |∆1
n|

= 1
2|U | · |∆0|n

. ◀

B.2 Proof of Claim 6

Proof. Let T be a term of monotone size at least opt(S)ℓ/5. Let bi denote the number of
unnegated variables of T of the form yi,j and let Ti be their conjunction. Then TM = ∧n

i=1Ti

and
∑n

i=1 bi = |TM| ≥ opt(S)ℓ/5. If, for some i, bi > ⌈ℓ/2⌉, then the term Ti is zero on all
∆0 ∪ ∆1, and therefore, T is zero on all ∆0

n ∪ ∆1
n. Thus, it can be just removed from F . So,

we may assume that bi ≤ ⌈ℓ/2⌉ for all i. First,

Pr
y∼Dℓ

[T (y) = 1|Γℓ(y) = 1] = Pr
y∼U(∆1

n)
[T (y) = 1] ≤ Pr

y∼U(∆1
n)

[TM(y) = 1]

=
n∏

i=1
Pr

yi∼U(∆1)
[Ti(yi) = 1]

=
n∏

i=1

(
ℓ−bi

⌈ℓ/2⌉−bi

)(
ℓ
⌈ℓ/2⌉

)
=

n∏
i=1

(
1 − bi

ℓ

) (
1 − bi

ℓ − 1

)
· · ·

(
1 − bi

⌈ℓ/2⌉ + 1

)

≤
n∏

i=1

ℓ∏
j=⌈ℓ/2⌉+1

exp(−bi/j) =
n∏

i=1
exp

−bi

ℓ∑
j=⌈ℓ/2⌉+1

1/j


= exp

−|TM|
ℓ∑

j=⌈ℓ/2⌉+1

1/j


≤ 2−|TM|/2 ≤ 2−opt(S)ℓ/10. (6)

Let F ′ be the disjunction of all the terms in F of monotone size at most opt(S)ℓ/5. Let
T (1), . . . , T (m) be all the terms of monotone size greater than opt(S)ℓ/5 in F . Then, by (6)
and the union bound,

Pr
y∼Dℓ

[F (y) ̸= F ′(y)|Γℓ(y) = 1] ≤ Pr
y∼Dℓ

[∨m
i=1T (i)(y) = 1|Γℓ(y) = 1]

≤ 2−opt(S)ℓ/10m ≤ 2−opt(S)ℓ/20. (7)
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and (Here we abbreviate F ′(y), F (y) and Γℓ(y) by F ′, F and Γℓ)

distDℓ
(Γℓ, F ′) = Pr

y∼Dℓ

[F ′ ̸= Γℓ]

= 1
2 Pr

y∼Dℓ

[F ′ ̸= Γℓ|Γℓ = 1] + 1
2 Pr

y∼Dℓ

[F ′ ̸= Γℓ|Γℓ = 0] (8)

= 1
2 Pr

y∼Dℓ

[F ′ ̸= F |Γℓ = 1] +

1
2 Pr

y∼Dℓ

[F ̸= Γℓ|Γℓ = 1] + 1
2 Pr

y∼Dℓ

[F ′ ̸= Γℓ|Γℓ = 0] (9)

≤ 2−opt(S)ℓ/20 + 1
2 Pr

y∼Dℓ

[F ̸= Γℓ|Γℓ = 1] + 1
2 Pr

y∼Dℓ

[F ̸= Γℓ|Γℓ = 0] (10)

= 2−opt(S)ℓ/20 + distDℓ
(Γℓ, F ).

In (8), we used Fact 2. In (9), we used the probability triangle inequality. In (10), we used
(7) and the fact that if F ′(y) ̸= 0, then F (y) ̸= 0. ◀

C The proof of Theorem 3

Proof. Consider the constant λ in Lemma 2. Let c = λ/6. Suppose there is a PAC learning
algorithm A for Monotone (log s)-Junta by size-s DNF with ϵ = 1/(16n) that runs in
time nclog s. We show that there is k such that for

k′ = 1
2

(
log N

log log N

)1/k

,

(k, k′)-Set-Cover can be solved in time N5ck ≤ Nλk. By Lemma 2, the result then follows.
Let S = (S, U, E) be an N -vertex (k, k′)-Set-Cover instance where

k = 1
2

log log N

log log log N
and k′ = 1

2

(
log N

log log N

)1/k

.

Consider the following algorithm B
1. Input S = (S, U, E) an instance for (k, k′)-Set-Cover .
2. Construct Γ5 and D5.
3. Run A using Γ5 and D5 with s = 25k and n = N . If it runs more than N5ck steps, then

output No .
4. Let F be the output DNF.
5. If |F | > s then output No .
6. Estimate η = distD5(F, Γ5).
7. If η ≤ 1

16N , output Yes , otherwise output No .
The running time of this algorithm is N5ck ≤ Nλk. Therefore, it is enough to prove the
following

▷ Claim 15. Algorithm B solves (k, k′)-Set-Cover .

Proof. Yes case: Let S = (S, U, E) be a (k, k′)-Set-Cover instance and opt(S) ≤ k. Then,
size(Γ5) ≤ 25·opt(S) ≤ 25k = s, and by Fact 3, Γ5 is Monotone log s-Junta. Therefore,
w.h.p., algorithm A learns Γ5 and outputs a DNF that is η = 1/(16N) close to the target
with respect to D5. Since B terminates A after N5ck time, we only need to prove that A
runs at most N5ck time.
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The running time of A is

nc log s = N c log s ≤ N5ck.

No Case: Let S = (S, U, E) be a (k, k′)-Set-Cover instance and opt(S) > k′. By
Lemma 11, any DNF, F , of size |F | < 25k′/16 satisfies distD5(F, Γ5) ≥ 1/(8|U |). First, we
have, for large N

k′ = 1
2

(
log N

log log N

)1/k

> 32k.

Therefore, any DNF, F, of size |F | < 210k satisfies distD5(F, Γ5) ≥ 1/(8|U |).
We have 210k > s. So, B either runs more than N5ck steps and then outputs No in step

3 or outputs a DNF of size more than s and then outputs No in step 4 or outputs a DNF of
size at most s with distD5(F, Γ5) ≥ 1/(8|U |) > 1/(8N) > 1/(16N) and outputs No in step 6.

◁

◀
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Abstract
In 2020 Błasiok (ACM Trans. Algorithms 16(2) 3:1-3:28) constructed an optimal space streaming
algorithm for the cardinality estimation problem with the space complexity of O(ε−2 ln(δ−1) + ln n)
where ε, δ and n denote the relative accuracy, failure probability and universe size, respectively.
However, his solution requires the stream to be processed sequentially. On the other hand, there
are algorithms that admit a merge operation; they can be used in a distributed setting, allowing
parallel processing of sections of the stream, and are highly relevant for large-scale distributed
applications. The best-known such algorithm, unfortunately, has a space complexity exceeding
Ω(ln(δ−1)(ε−2 ln ln n + ln n)). This work presents a new algorithm that improves on the solution
by Błasiok, preserving its space complexity, but with the benefit that it admits such a merge
operation, thus providing an optimal solution for the problem for both sequential and parallel
applications. Orthogonally, the new algorithm also improves algorithmically on Błasiok’s solution
(even in the sequential setting) by reducing its implementation complexity and requiring fewer
distinct pseudo-random objects.
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1 Introduction

In 1985 Flajolet and Martin [14] introduced a space-efficient streaming algorithm for the
estimation of the count of distinct elements in a stream a1, ..., am whose elements are from a
finite universe U . Their algorithm does not modify the stream, observes each stream element
exactly once and its internal state requires space logarithmic in n = |U |. However, their
solution relies on the model assumption that a given hash function can be treated like a
random function selected uniformly from the family of all functions with a fixed domain and
range. Despite the ad-hoc assumption, their work spurred a large number of publications1,
improving the space efficiency and runtime of the algorithm. In 1999 Alon et al. [4] identified

1 Pettie and Wang [33, Table 1] summarized a comprehensive list.
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a solution that avoids the ad-hoc model assumption. They use 2-independent families of
hash functions, which can be seeded by a logarithmic number of random bits in |U | while
retaining a restricted set of randomness properties. Their refined solution was the first
rigorous Monte-Carlo algorithm for the problem. Building on their work, Bar-Yossef et al. in
2002 [6], then Kane et al. in 2010 [24] and lastly, Błasiok in 2020 [9]2 developed successively
better algorithms achieving a space complexity of O(ε−2 ln(δ−1) + lnn), which is known to
be optimal [23, Theorem 4.4].

Table 1 Important cardinality estimation algorithms.

Year, Author Space Complexity Merge

1981, Flajolet and Martin O(ε−2 lnn) for constant δ a) Yes
1999, Alon et al. O(ln lnn) for δ = 2(ε+ 1)−1 Yes
2002, Bar-Yossef et al.b) O(ln(δ−1)(ε−2 ln lnn+ poly(ln(ε−1), ln lnn) lnn)) c) Yes
2010, Kane et al. O(ln(δ−1)(ε−2 + lnn)) No
2020, Błasiok O(ln(δ−1)ε−2 + lnn) No
This work O(ln(δ−1)ε−2 + lnn) Yes

a) Random oracle model.
b) Algorithm 2 from the publication.
c) The notation poly(a, b) stands for a term polynomial in a and b.

These algorithms return an approximation Y of the number of distinct elements |A| (for
A := {a1, . . . , am}) with relative error ε and success probability 1− δ, i.e.:

P(|Y − |A|| ≤ ε |A|) ≥ 1− δ

where the probability is only over the internal random coin flips of the algorithm but holds
for all inputs.

Unmentioned in the source material is the fact that it is possible to run the older
algorithms by Alon et al. and Bar-Yossef et al. in a parallel mode of operation. This is
due to the fact that the algorithms make the random coin flips only in a first initialization
step, proceeding deterministically afterwards and that the processing step for the stream
elements is commutative. For example, if two runs for sequences a and b of the algorithm
had been started with the same coin flips, then it is possible to introduce a new operation
that merges the final states of the two runs and computes the state that the algorithm would
have reached if it had processed the concatenation of the sequences a and b sequentially.

This enables processing a large stream using multiple processes in parallel. The processes
have to communicate at the beginning and at the end to compute an estimate. The
communication at the beginning is to share random bits, and the communication at the
end is to merge the states. Because there is no need for communication in between, the
speed-up is optimal with respect to the number of processes, such algorithms are also called
embarrassingly parallel [15, Part 1]. This mode of operation has been called the distributed
streams model by Gibbons and Tirthaputra [17]. Besides the distributed streams model, such
a merge operation allows even more varied use cases, for example, during query processing
in a Map-Reduce pipeline [11]. Figure 1 illustrates two possible modes of operation (among
many) enabled by a merge function.

2 An earlier version of Błasiok’s work was presented in the ACM-SIAM Symposium on Discrete Algorithms
in 2018. [8]
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Sequential Streaming Model

Process

a1 a2 a3 ... am

merge merge merge estimate

...

random seed

Distributed Streams Model

Process 1

Process 2

Process 3

a1,1 a1,2 a1,3 ... a1,m1

merge merge merge

a2,1 a2,2 a2,3 ... a2,m2

merge merge merge merge merge estimate
random seed

a3,1 a3,2 a3,3 ... a3,m3

merge merge merge

Figure 1 Example use cases for cardinality estimation algorithms that support merge.

However, an extension with such a merge operation is not possible for the improved
algorithms by Kane et al. and Błasiok. This is because part of their correctness proof relies
inherently on the assumption of sequential execution, in particular, that the sequence of
states is monotonically increasing, which is only valid in the sequential case. This work
introduces a new distributed cardinality estimation algorithm which supports a merge
operation with the same per-process space usage as the optimal sequential algorithm by
Błasiok: O(ε−2 ln(δ−1) + lnn). Thus the algorithm in this work has the best possible space
complexity in both the sequential and distributed streaming model.3 (Table 1 provides a
summary of the algorithms mentioned here.)

The main idea was to modify the algorithm by Błasiok into a history-independent
algorithm. This means that the algorithm will, given the same coin-flips, reach the same state
independent of the order in which the stream elements arrive, or more precisely, independent
of the execution tree as long as its nodes contain the same set of elements. This also
means that the success event, i.e., whether an estimate computed from the state has the
required accuracy, only depends on the set of distinct stream elements encountered (during
the execution tree) and the initial random coin flips. As a consequence and in contrast to
previous work, the correctness proof does not rely on bounds on the probability of certain
events over the entire course of the algorithm, but can be established independent of past
events.

Błasiok uses a pseudo-random construction based on hash families, expander walks, an
extractor based on Parvaresh-Vardy codes [21] and a new sub-sampling strategy [9][Lem. 39].
I was able to build a simpler stack that only relies on hash families and a new two-stage
expander graph construction, for which I believe there may be further applications. To
summarize – the solution presented in this work has two key improvements:

3 That the complexity is also optimal for the distributed setting is established in Section 7.
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Supports the sequential and distributed streaming model with optimal space.
Requires fewer pseudo-random constructs, i.e., only hash families and expander walks.

The next section introduces notation. After that, I present new results on expander walks
(Section 3) needed in the new pseudo-random construction and a self-contained presentation
of the new algorithm and its correctness proof (Sections 5 and 6). Concluding with a
discussion of its optimality in the distributed setting (Section 7) and a discussion of open
research questions (Section 8). It is worthwhile noting that an extended version of this
work [26] is available, which includes more background and more detailed proofs.

The results obtained in this work have also been formally verified [25] using the proof
assistant Isabelle [31]. Isabelle has been used to verify many [1] advanced results from
mathematics (e.g. the prime number theorem [12]) and computer science (e.g. the Cook-
Levin theorem [5]). For readers mainly interested in the actual results, the formalization
can be ignored as the theorems all contain traditional mathematical proofs. Nevertheless,
Table 3 references the corresponding formalized fact for every theorem in this work.

2 Notation and Preliminaries

General constants are indicated as C1, C2, · · · etc. Their values are fixed throughout this
work and are summarized in Table 2. For n ∈ N, let us define [n] := {0, 1, . . . , n− 1}. The
notation [P ] for a predicate P denotes the Iverson bracket, i.e., its value is 1 if the predicate
is true and 0 otherwise. The notation ldx (resp. ln x) stands for the logarithm to base 2
(resp. e) of x ∈ R>0. The notations ⌊x⌋ and ⌈x⌉ represent the floor and ceiling functions:
R→ Z. For a probability space Ω, the notation Pω∼Ω(F (ω)) is the probability of the event:
{ω|F (ω)}. And Eω∼Ω(f(ω)) is the expectation of f if ω is sampled from the distribution Ω,
i.e., Eω∼Ω(f(ω)) :=

∫
Ω f(ω) dω. Similarly, V f = E(f − E f)2. For a finite non-empty set S,

U(S) is the uniform probability space over S, i.e., P({x}) = |S|−1 for all x ∈ S. (Usually,
we will abbreviate U(S) with S when it is obvious from the context.) All probability spaces
mentioned in this work will be discrete, i.e., measurability will be trivial.

All graphs in this work are finite and are allowed to contain parallel edges and self-loops.
For an ordering of the vertices of such a graph, it is possible to associate an adjacency matrix
A = (aij), where aij is the count of the edges between the i-th to the j-th vertex. We
will say it is undirected d-regular if the adjacency matrix is symmetric and all its row (or
equivalently) column sums are d. Such an undirected d-regular graph is called a λ-expander
if the second largest absolute eigenvalue of its adjacency matrix is at most dλ.

Given an expander graph G, we denote by Walk(G, l), the set of walks of length l. For a
walk w ∈Walk(G, l) we write wi for the i-th vertex and wi,i+1 for the edge between the i-th
and (i+ 1)-th vertex. Because of the presence of parallel edges, two distinct walks may have
the same vertex sequence. As a probability space U(Walk(G, l)) corresponds to choosing a
random starting vertex and performing an (l − 1)-step random walk.

3 Chernoff-type estimates for Expander Walks

The following theorem has been shown implicitly by Impagliazzo and Kabanets [22, Th. 10]:

▶ Theorem 1 (Impagliazzo and Kabanets). Let G = (V,E) be a λ-expander graph and f a
boolean function on its vertices, i.e.: f : V → {0, 1} s.t. µ = Ev∼U(V ) f(v), 6λ ≤ µ and
2λ < ε < 1 then:

Pw∼Walk(G,l)

(∑
i∈[l] f(wi) ≥ (µ+ ε)l

)
≤ exp(−lD(µ+ ε||µ+ 2λ))
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Especially, the restriction µ ≥ 6λ in the above result causes technical issues since usually one
only has an upper bound for µ. The result follows in Impagliazzo and Kabanets work as a
corollary from the application of their main theorem [22][Thm. 1] to the hitting property
established by Alon et al. [3, Th. 4.2] in 1995. It is easy to improve Theorem 1 by using an
improved hitting property:

▶ Theorem 2 (Hitting Property for Expander Walks). Let G = (V,E) be a λ-expander graph
and W ⊆ V , I ⊆ [l] and let µ := |W |

|V | then:

Pw∼Walk(G,l)
(∧

i∈I wi ∈W
)
≤ (µ(1− λ) + λ)|I| ≤ (µ+ λ)|I|

The above theorem for the case where I = [l] is shown by Vadhan [37, Theorem 4.17].
The extended, full version [26] of this manuscript describes how to extend Vadhan’s proof to
the case where I ⊂ [l]. With the previous result, it is possible to obtain a new, improved
version of Theorem 1:

▶ Theorem 3 (Improved version of Theorem 1). Let G = (V,E) be a λ-expander graph and f a
boolean function on its vertices, i.e.: f : V → {0, 1} s.t. µ = Ev∼U(V ) f(v) and µ+λ ≤ γ ≤ 1
then:

Pw∼Walk(G,l)

(∑
i∈[l] f(wi) ≥ γl

)
≤ exp (−lD (γ||µ+ λ))

Proof. This follows from Theorem 2 and the generalized Chernoff bound [22][Thm. 1]. ◀

Impagliazzo and Kabanets approximate the divergence D(γ||µ+ λ) by 2(γ − (µ+ λ))2. In
this work, we are interested in the case where µ+λ→ 0, where such an approximation is too
weak, so we cannot follow that approach. (Note that D(γ||µ+ λ) can be arbitrarily large,
while (γ − (µ+ λ))2 is at most 1.) Instead, we derive a bound of the following form:

▶ Lemma 4. Let G = (V,E) be a λ-expander graph and f a boolean function on its vertices,
i.e.: f : V → {0, 1} s.t. µ = Ev∼U(V ) f(v) and µ+ λ ≤ γ < 1 then:

Pw∼Walk(G,l)

(∑
i∈[l] f(wi) ≥ γl

)
≤ exp

(
−l(γ ln((µ+ λ)−1)− 2e−1)

)
Proof. The result follows from Theorem 3 and the inequality: D(γ||p) ≥ γ ln(p−1)− 1 for
0 < γ < 1 and 0 < p < 1. ◀

An application for the above inequality, where the classic Chernoff-bound by Gillman [18]
would not be useful, is establishing a failure probability for the repetition of an algorithm that
already has a small failure probability. For example, if an algorithm has a failure probability
of δ∗, then it is possible to repeat it O

(
ln(δ−1)

ln((δ∗)−1)

)
-times to achieve a failure probability of δ.

(This is done in Section 6.) Another consequence of this is a deviation bound for unbounded
functions with a sub-gaussian tail bound:

▶ Lemma 5 (Deviation Bound). Let G = (V,E) be a λ-expander graph and f : V → R≥0 s.t.
Pv∼U(V )(f(v) ≥ x) ≤ exp(−x(ln x)3) for x ≥ 20 and λ ≤ exp(−l(ln l)3) then

Pw∼Walk(G,l)

(∑
i∈[l] f(wi) ≥ C1l

)
≤ exp(−l)

where C1 := e2 + e3 + (e− 1) ≤ 30.
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Note that the class includes sub-gaussian random variables but is even larger. The
complete proof is in Appendix A. The proof essentially works by approximating the function
f using the Iverson bracket: f(x) ≤ Σk[ek ≤ f(x) ≤ ek+1]ek+1 and establishing bounds on
the frequency of each bracket. For large k this is established using the Markov inequality,
and for small k the previous lemma is used. The result is a stronger version of a lemma
established by Błasiok [9][Lem. 36], and the proof in this work is heavily inspired by his.

4 Explicit Pseudo-random Constructions

4.1 Strongly explicit expander graphs
For the application in this work, it is necessary to use strongly explicit expander graphs. For
such a graph, it is possible to sample a random walk without having to represent the graph
in memory. Moreover, sampling a random walk from a d-regular graph G with n-vertices
is possible using a random sample from [ndl−1], i.e., we can map such a number to a walk
algorithmically, such that the resulting distribution corresponds to the distribution from
Walk(G, l) – this allows the previously mentioned two-stage construction.

A possible construction for strongly explicit expander graphs for every vertex count n and
spectral bound λ is described by Murtagh et al. [29][Thm. 20, Apx. B]. Note that the degree
d in their construction only grows polynomially with λ−1, hence ln(d(λ)) ∈ O(ln(λ−1)). We
will use the notation E([n], λ, l) for the sample space of random walks of length l in the
described graph over the vertex set [n]. The same construction can also be used on arbitrary
finite vertex sets S, if it is straightforward to map [|S|] to S algorithmically. Thus we use
the notation E(S, λ, l) for such S. Importantly |E(S, λ, l)| = |S| d(λ)l−1. Thus a walk in such
a graph requires O(ld |S|+ l ld(λ−1)) bits to represent.

4.2 Hash Families
Let us introduce the notation: Hk([n], [2c]) for the k-independent hash-family [39] from [n]
to [2c]. Note that ld (|Hk([n], [2c])|) ∈ O(k(c+ lnn)).

For our application, we will need a second family with a geometric distribution (as opposed
to uniform) on the range, in particular such that P(f(a) ≥ k) = 2−k. A straightforward
method to achieve that is to compose the functions of the hash family Hk([2d], [2d]) with the
function that computes the number of trailing zeros of the binary representation of its input
[2d]→ [d]. We denote such a hash family with Gk([2d]) where the range is [d+1]. Such a hash
family is also one for a domain [n] ⊆ [2d], and hence we can extend the notation: Gk([n]).
Note that: Pf∼Gk([n])(f(a) ≥ k) = 2−k for all k ≤ ⌈ldn⌉ and also ld (|Gk([n])|) ∈ O(k lnn).

5 The Algorithm

Because of all the distinct possible execution models, it is best to present the algorithm as a
purely functional data structure with four operations:

init : ()→ seed single : [n]→ seed→ sketch
merge : sketch→ sketch→ sketch estimate : sketch→ R

The init step should be called only once globally – it is the only random operation – its
result forms the seed and must be the same during the entire course of the algorithm. The
operation single returns a sketch for a singleton set corresponding to its first argument. The
operation merge computes a sketch representing the union of its input sketches and the
operation estimate returns an estimate for the number of distinct elements for a given sketch.
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The algorithm will be introduced in two successive steps. The first step is a solution that
works for (lnn)−1 ≤ δ < 1. The sketch requires only O(ln(δ−1)ε−2 + ln lnn), but the initial
coin flips require O(lnn+ ln(ε−1)2 + ln(δ−1)3) bits. For δ ≥ (lnn)−1 this is already optimal.
In the second step (Section 6) a black-box vectorization of the previous algorithm will be
needed to achieve the optimal O(ln(δ−1)ε−2 + lnn) space usage for all 0 < δ < 1.

For this entire section let us fix a universe size n > 0, a relative accuracy 0 < ε < 1, a
failure probability (lnn)−1 ≤ δ < 1 and define:

l :=
⌈
C6 ln(2δ−1)

⌉
b := 2⌈ld(C4ε

−2)⌉

k := ⌈C2 ln b+ C3⌉ λ := min
(

1
16 , exp(−l(ln l)3)

)
Ψ := G2([n])×H2([n], [C7b

2])×Hk([C7b
2], [b]) Ω := E(Ψ, λ, l)

The implementation of the operations is presented in Algorithm 1. Note that these are

Algorithm 1 Algorithm for δ > (ln n)−1.

function init() : Ω
return randomU(Ω)

function compress((B, q) : S) : S
while

∑
i∈[l],j∈[b] ⌊ld(B[i, j] + 2)⌋ > C5bl

q ← q + 1
B[i, j]← max(B[i, j]− 1,−1) for i ∈ [l], j ∈ [b]

return (B, q)

function single(x : U, ω : Ω) : S
B[i, j]← −1
for i ∈ [l]

B[i, h(g(x))] = f(x) where (f, g, h) = ωi
return compress(B, 0)

function merge((Ba, qa) : S, (Bb, qb) : S) : S
q ← max(qa, qb)
B[i, j]← max(Ba[i, j] + qa − q,Bb[i, j] + qb − q) for i ∈ [l], j ∈ [b]
return compress(B, q)

function estimate((B, q) : S) : R
for i ∈ [l]

s← max(0,max{B[i, j] + q | |j ∈ [b]} − ld b+ 9)
p← |{j ∈ [b]|B[i, j] + q ≥ s}|
Yi ← 2s ln(1− pb−1)(ln(1− b−1))−1

return median(Y0, . . . , Yl−1)

functional programs and pass the state as arguments and results; there is no global (mutable)
state. The sketch consists of two parts (B, q). The first part is a two-dimensional table of
sizes b and l. The second part is a single natural number, the cut-off level. The function
compress is an internal operation and is not part of the public API. It increases the cut-off
level and decreases the table values if the space usage is too high.
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5.1 History-Independence

As mentioned in the introduction, this algorithm is history-independent, meaning that given
the initial coin flips, it will reach the same state no matter in which permutation or frequency
the stream elements are encountered. More precisely, the final state only depends on the
set of encountered distinct elements over the execution tree and the initial coin flips, but
not the shape of the tree. Informally, this is easy to see because the chosen cut-off level is
the smallest possible with respect to the size of the values in the bins, and that property is
maintained because the values in the bins are monotonically increasing with respect to the
set of elements in the execution tree. Nevertheless, let us prove the property more rigorously.
Let ω ∈ Ω be the initial coin flips. Then there is a function τ(ω,A) fulfilling the equations:

single(ω, x) = τ(ω, {x}) (1)
merge(τ(ω,A), τ(ω,B)) = τ(ω,A ∪B) (2)

The function τ is defined as follows:

τ0((f, g, h), A) := j → max{f(a) | a ∈ A ∧ h(g(a)) = j} ∪ {−1}
τ1(ψ,A, q) := j → max{τ0(ψ,A)− q,−1}
τ2(ω,A, q) := (i, j)→ τ1(ωi, A, q)[j]

q(ω,A) := min
{
q ≥ 0

∣∣∣∑i∈[l],j∈[b] ⌊ld(τ2(ω,A, q)[i, j] + 2)⌋ ≤ C5bl
}

τ3(ω,A, q) := (τ2(ω,A, q), q)
τ(ω,A) := τ3(ω,A, q(ω,A))

The function τ0 describes the values in the bins if there were no compression, i.e., when
q = 0. The function τ1 describes the same for the given cut-off level q. Both are with respect
to the selected hash functions ψ = (f, g, h). The function τ2 represents the state of all tables
based on a seed for the expander. The next function τ3 represents the entire state, which
consists of the tables and the cut-off level. The function q represents the actual cut-off level
that the algorithm would choose based on the values in the bins. Finally, the full state is
described by the function τ for a given seed ω and set of elements A.

▶ Lemma 6. Equations 1 and 2 hold for all ω ∈ Ω and ∅ ̸= A ⊂ [n].

Proof. Let us also introduce the algorithms merge1 and single1. These are the algorithms
merge and single but without the final compression step.

The following properties follow elementarily4 from the definition of τ , s and the algorithms:
(i) τ(ω,A) = compress(τ3(ω,A, q)) for all 0 ≤ q ≤ q(ω,A)
(ii) τ3(ω,A1 ∪A2,max(q(ω,A1), q(ω,A2))) = merge1(τ(ω,A1), τ(ω,A2))
(iii) τ3({x}, 0) = single1(ω, x)
(iv) q(ω,A1) ≤ q(ω,A2) if A1 ⊆ A2

(v) q(A) ≥ 0
To verify Eq. 1 we can use i, iii and v and to verify Eq. 2 we use i, ii taking into account
that max(q(ω,A1), q(ω,A2)) ≤ q(ω,A1 ∪A2) because of iv. ◀

4 The verification relies on the semi-lattice properties of the max operator, as well as its translation
invariance (i.e. max(a + c, b + c) = max(a, b) + c).
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5.2 Overall Proof
Because of the argument in the previous section, τ(ω,A) will be the state reached after any
execution tree over the set A and the initial coin flips, i.e., ω ∈ Ω. Hence for the correctness
of the algorithm, we only need to show that:

▶ Theorem 7. Let ∅ ̸= A ⊆ [n] then Pω∈U(Ω) (estimate(τ(ω,A))− |A| > ε |A|) ≤ δ.

Proof: Postponed. This will be shown in two steps: First, we want to establish that the
cut-off threshold q will be equal to or smaller than qmax := max(0, ⌈ld |A|⌉ − ld b) with high
probability. And if the latter is true, then the estimate will be within the desired accuracy
with high probability. For the second part, we verify that the estimation step will succeed
with high probability for all 0 ≤ q ≤ qmax. (This will be because the sub-sampling threshold
s in the estimation step will be ≥ qmax with high probability.)

For the remainder of this section, let ∅ ̸= A ⊂ [n] be fixed and we will usually omit the
dependency on A. For example, we will write τ(ω) instead of τ(ω,A). Then, we can express
the decomposition discussed above using the following chain:

Pω∈Ω (|estimate(τ(ω))− |A|| > ε |A|) ≤

Pω∈Ω (∃q ≤ qmax. |estimate(τ2(ω, q))− |A|| > ε |A| ∨ q(ω) > qmax) ≤ δ

2 + δ

2
(3)

Thus we only have to show the following two inequalities:
Pω∈Ω (q(ω) > qmax) ≤ δ

2
Pω∈Ω (∃q ≤ qmax. |estimate(τ2(ω, q))− |A|| > ε |A|) ≤ δ

2
The first will be shown in the following subsection, and the next in the subsequent one.

5.3 Cut-off Level
This subsection proves that the cut-off level will be smaller than or equal to qmax. This
is the part where the tail estimate for sub-gaussian random variables over expander walks
(Lemma 5) is applied:

▶ Lemma 8. Pω∈Ω (q(ω) > qmax) ≤ δ
2

Proof. Let us make a few preliminary observations:

⌊ld(x+ 2)⌋ ≤ ld(x+ 2) ≤ (c+ 2) + max(x− 2c, 0) for (−1) ≤ x ∈ R and c ∈ N. (4)

This can be verified using case distinction over x ≥ 2c + 2.

Ef∼G2([n]) max(f(a)− qmax − 2c, 0) ≤ 2−qmax2−2c

for all a ∈ [n] and c ∈ N (5)

Note that this relies on the fact f is geometrically distributed.

|A| b−12−qmax ≤ 1 (6)

This follows from the definition of qmax via case distinction.
To establish the result, we should take into account that q(ω) is the smallest cut-off

level q fulfilling the inequality:
∑
i∈[l],j∈[b] ⌊ld(τ2(ω, q)[i, j] + 2)⌋ ≤ C5bl. In particular, if the

inequality is true for qmax, then we can conclude that q(ω) is at most qmax, i.e.:

Pω∈Ω (q(ω) > qmax) = Pω∈Ω

 ∑
i∈[l],j∈[b]

⌊ld(τ2(ω, qmax)[i, j] + 2)⌋ > C5bl

 (7)
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Let us introduce the random variable X over the seed space Ψ. It describes the space
usage of a single column of the table B:

X(ψ) :=
∑
j∈[b]

⌊ld(τ1(ψ, qmax)[j] + 2)⌋

Which can be approximated using Eq. 4 as follows:

X(ψ) ≤
∑
j∈[b]

c+ 2 + max(τ1(ψ, qmax)[j]− 2c, 0) =
∑
j∈[b]

c+ 2 + max(τ0(ψ)[j]− qmax− 2c, 0)

for all 0 ≤ c ∈ N. Hence:

Pψ∼Ψ (X(ψ) ≥ (c+ 3)b) ≤ Pψ∼Ψ

(∑
j∈[b] max(τ0(ψ)[j]− qmax − 2c, 0) ≥ b

)
≤

P(f,g,h)∼Ψ

(∑
j∈[b] max{f(a)− qmax − 2c | a ∈ A ∧ h(g(a)) = j} ∪ {0} ≥ b

)
≤

P(f,g,h)∼Ψ
(∑

a∈A max(f(a)− qmax − 2c, 0) ≥ b
)
≤

b−1
∑
a∈A

E(f,g,h)∼Ψ max(f(a)− qmax − 2c, 0) ≤ b−1 |A| 2−qmax2−2c

≤ 2−2c

where the third and second-last inequality follow from Eq. 5 and 6. It is straightforward to
conclude from the latter that for all 20 ≤ x ∈ R:

Pψ∼Ψ

(
X(ψ)
b
− 3 ≥ x

)
≤ Pψ∼Ψ (X(ψ) ≥ b(⌊x⌋+ 3)) ≤ exp(−2⌊x⌋ ln 2) ≤ e−x(ln x)3

Hence, it is possible to apply Lemma 5 on the random variables b−1X(ψ)− 3 obtaining:

Pω∈Ω

(∑
i∈[l] b

−1X(h(ω, i))− 3 ≥ C1l
)
≤ exp(−l) ≤ δ

2

This lemma now follows using C5 ≥ C1 + 3 and that
∑
i∈[l] X(h(ω, i)) ≤ C5bl implies

q(ω) ≤ qmax as discussed at the beginning of the proof (Eq. 7). ◀

5.4 Accuracy
Let us introduce the random variables:

t(f) := max{f(a) | a ∈ A} − ld b+ 9 s(f) := max(0, t(f))

p(f, g, h) := |{j ∈ [b] | τ1((f, g, h), 0)[j] ≥ s(f)}| Y (f, g, h) := 2s(f)ρ−1(p(f, g, h))

where ρ(x) := b(1− (1− b−1)x) – the expected number of hit bins when x balls are thrown
into b bins. Note that the definitions t, p and Y correspond to the terms within the
loop in the estimate function under the condition that the approximation threshold q is
0. In particular: estimate(τ3(ω, 0)) = mediani∈[l]Y (ωi) for ω ∈ Ω. Moreover, we denote
by R(f) the set of elements in A whose level is above the sub-sampling threshold, i.e.:
R(f) := {a ∈ A | f(a) ≥ s(f)}. The objective is to show that the individual estimates
obtained in the loop in the estimate function (assuming q = 0) have the right accuracy and
that the threshold s ≥ qmax with high probability, i.e.:

Pψ∼Ψ (|Y (ψ)− |A|| > ε |A| ∨ s(f) < qmax) ≤ 1
16 (8)

In Lemma 14 this will be generalized to 0 ≤ q ≤ qmax. To be able to establish a bound on
the above event, we need to check the likelihood of the following 4 events:
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The computed sub-sampling threshold s(f) is approximately ld(|A|).
The size of the sub-sampled elements R(f) is a good approximation of 2−s(f) |A|.
There is no collision during the application of g on the sub-sampled elements R(f).
The count of elements above the sub-sampling threshold in the table is close to the
expected number ρ(R(f)) (taking collisions due to the application of h into account).

Then it will be possible to conclude that one of the above must fail if the approximation is
incorrect. More formally:

E1(ψ) :↔ 2−16b ≤ 2−t(f) |A| ≤ 2−1b E2(ψ) :↔
∣∣∣|R(f)| − 2−s(f) |A|

∣∣∣ ≤ ε
3 2−s(f) |A|

E3(ψ) :↔ ∀a ̸= b ∈ R(f).g(a) ̸= g(b) E4(ψ) :↔ |p(ψ)− ρ(|R(f)|)| ≤ ε
12 |R(f)|

for ψ = (f, g, h) ∈ Ψ. The goal is to show all four events happen simultaneously w.h.p.:

Pψ∼Ψ(¬E1(ψ) ∨ ¬E2(ψ) ∨ ¬E3(ψ) ∨ ¬E4(ψ)) ≤ 1
16 (9)

which can be shown by verifying: Pψ∼Ψ

(∧
j<iEj(ψ) ∧ ¬Ei(ψ)

)
≤ 2−6 for each i ∈ {1, . . . , 4}.

Let us start with the i = 1 case:

▶ Lemma 9. Pψ∈Ψ(¬E1(ψ)) ≤ 2−6

Proof. For X(f) = max{f(a) | a ∈ A} it is possible to show:

P(f,g,h)∼Ψ (X(f) < ld(|A|)− k − 1) ≤ 2−k P(f,g,h)∼Ψ (X(f) > ld(|A|) + k) ≤ 2−k

using the proof for the F0 algorithm by Alon et al. [4][Proposition 2.3]. The desired result
follows taking k = 7 and that t(f) = X(f)− ld b+ 9. ◀

The following lemma is the interesting part of the proof in this subsection. In previous
work, the sub-sampling threshold is obtained using a separate parallel algorithm, which
has the benefit that it is straightforward to verify that |R(f)| approximates 2−s |A|. The
drawback is, of course, additional algorithmic complexity and an additional independent
hash function. However, in the solution presented here, the threshold is determined from the
data to be sub-sampled itself, which means it is not possible to assume independence. The
solution to the problem is to show that |R(f)| approximates 2−s |A| with high probability
for all possible values s(f) assuming E1.

▶ Lemma 10. L := Pψ∼Ψ(E1(ψ) ∧ ¬E2(ψ)) ≤ 2−6

Proof. Let r(f, t) := |{a ∈ A | f(a) ≥ t}| and tmax be maximal, s.t. 2−16b ≤ 2−tmax |A|. Then
27 ≤ ε2

9 2−16b ≤ ε2

9 2−tmax |A|. Hence: 27+tmax−t ≤ ε2

9 2−t |A| = ε2

9 E r(f, t). Thus:

27+tmax−t V r(f, t) ≤ 27+tmax−t E r(f, t) ≤ ε2

9 (E r(f, t))2

for all 0 < t ≤ tmax. (This may be a void statement if tmax ≤ 0.) Hence:

P(f,g,h)∈Ψ

(
∃t.0 < t ≤ tmax ∧ |r(f, t)− E r(·, t)| > ε

3 E r(·, t)
)
≤

tmax∑
t=1
P(f,g,h)∈Ψ

(
|r(f, t)− E r(·, t)| >

√
27+tmax−t V r(f, t)

)
≤
tmax∑
t=1

2−7−tmax+t ≤ 2−6

APPROX/RANDOM 2023
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Note that the predicate E2(ψ) is always true if s(f) = 0 because, in that case, there is no
sub-sampling, i.e., |R(f)| = |A|. On the other hand if s(f) > 0, then s(f) = t(f) ≤ tmax
assuming E1(ψ). Hence:

L ≤ P(f,g,h) (s(f) > 0 ∧ E1(f, g, h) ∧ ¬E2(f, g, h))

≤ P(f,g,h)

(
0 < t(f) ≤ tmax ∧

∣∣∣|R(f)| − 2−t(f) |A|
∣∣∣ > ε

3 2−t(f) |A|
)

≤ P(f,g,h)

(
0 < t(f) ≤ tmax ∧

∣∣∣r(f, t(f))− 2−t(f) |A|
∣∣∣ > ε

3 2−t(f) |A|
)
≤ 2−6

where the last step follows from the previous equation. ◀

Note that: E1(f, g, h) ∧ E2(f, g, h)→ |R(f)| ≤ 2
3b for (f, g, h) ∈ Ψ (10)

▶ Lemma 11. L := Pψ∼Ψ(E1(ψ) ∧ E2(ψ) ∧ ¬E3(ψ)) ≤ 2−6

Proof. Using Eq. 10 we can conclude:

L ≤ P(f,g,h)∼Ψ (|R(f)| ≤ b ∧ (∃a < b ∈ R(f).g(a) = g(b)))

≤
∫

G2([n])
[|R(f)| ≤ b]Pg∼H2([n],[C7b2])(∃a < b ∈ R(f).g(a) = g(b)) df

≤
∫

G2([n])
[|R(f)| ≤ b]

∑
a<b∈R(f)

Pg∼H2([n],[C7b2])(g(a) = g(b)) df

≤
∫

G2([n])

b(b− 1)
2C7b2 df ≤ 1

2C7
= 2−6. ◀

▶ Lemma 12. L := Pψ∼Ψ(E1(ψ) ∧ E2(ψ) ∧ E3(ψ) ∧ ¬E4(ψ)) ≤ 2−6

Proof. Let R̃(f, g, h) = {i ∈ [C7b
2] | f(a) ≥ t(f)∧ g(a) = i∧a ∈ A} denote the indices hit in

the domain [C7b
2] by the application of g on the elements above the sub-sampling threshold.

If E3(f, g, h), then
∣∣R̃(f, g, h)

∣∣ = |R(f)| and if E1(f, g, h) ∧ E2(f, g, h) ,then |R(f)| ≤ b (see
Eq. 10). Recalling that p(ψ) is the number of bins hit by the application of k-independent
family from R̃(ψ) ⊆ [C7b

2] to [b] we can apply Lemma 20. This implies:

P(f,g,h)∼Ψ

(∧
i∈{1,2,3} Ei(f, g, h) ∧ |p(f, g, h)− ρ(|R(f)|)| ≥ ε

12 |R(f)|
)
≤

Pψ∼Ψ

(∣∣R̃(ψ)
∣∣ ≤ b ∧ ∣∣p(ψ)− ρ

(∣∣R̃(ψ)
∣∣)∣∣ ≥ ε

12
∣∣R̃(ψ)

∣∣) ≤
Pψ∼Ψ

(∣∣R̃(ψ)
∣∣ ≤ b ∧ ∣∣p(ψ)− ρ

(∣∣R̃(ψ)
∣∣)∣∣ ≥ 9b−1/2 ∣∣R̃(ψ)

∣∣) ≤ 2−6

where we used, that b ≥ 92122ε−2 (i.e. C4 >= 92122). ◀

▶ Lemma 13. Equation 8 is true.

Proof. Let us start by observing that E1(ψ) ∧E2(ψ) ∧E4(ψ)→ |A∗(ψ)− |A|| ≤ ε |A|. This
is basically an error propagation argument. First note that by using Eq. 10: p(f, g, h) ≤
ρ(R(f)) + ε

12 |R(f)| ≤ ρ( 2
3b) + 1

12 |R(f)| ≤ 41
60b. Moreover, using the mean value theorem:∣∣ρ−1(p(f, g, h))− |R(f)|

∣∣ = (ρ−1)′(ξ) |p(f, g, h)− ρ(|R(f)|)| ≤ ε
3 |R(f)|

for some ξ between ρ(|B(f)|) and p(f, g, h) where we can approximate (ρ−1)′(ξ) < 4. Hence:
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∣∣∣ρ−1(p(f, g, h))− 2−s(f) |A|
∣∣∣ ≤ ∣∣ρ−1(p(f, g, h))− |R(f)|

∣∣+
∣∣∣|R(f)| − 2−s(f) |A|

∣∣∣
≤ ε

3 |R(f)|+
∣∣∣|R(f)| − 2−s(f) |A|

∣∣∣
≤

(
2ε
3 + ε2

9

)
2−s(f) |A| ≤ ε2−s(f) |A|

It is also possible to deduce that E1(f, g, h) → t(f) ≥ ⌈ld(|A|)⌉ − ld b → s(f) ≥ qmax.
Using Lemma 9 to 12 we can conclude that Equation 9 is true. And the implications derived
here show that then Equation 8 must be true as well. ◀

To extend the previous result to the case: q ≤ qmax, let us introduce the random variables:

tc(ψ, q) := max{τ1(ψ, q)[j] + q | j ∈ [b]} − ld b+ 9 sc(ψ, q) := max(0, tc(ψ, q))

pc(ψ, q) := |{j ∈ [b] | τ1(ψ, q)[j] + q ≥ sc(ψ, q)}| Yc(ψ, q) := 2sc(ψ,q)ρ−1(pc(ψ, q))

These definitions tc, pc and Yc correspond to the terms within the loop in the estimate
function for arbitrary q.

▶ Lemma 14. Pψ∼Ψ (∃q ≤ qmax. |Yc(ψ, q)− |A|| > ε |A|) ≤ 1
16

Proof. It is possible to see that tc(ψ, q) = t(ψ) if q ≤ t(ψ). This is because τ1(ψ, q) + q

and τ1(ψ, 0) are equal except for values strictly smaller than q. With a case distinction on
t(ψ) ≥ 0 it is also possible to deduce that s(ψ, q) = s(ψ) if q ≤ s(ψ). Hence: pc(ψ, q) = p(ψ)
and Yc(ψ, q) = Y (ψ) (for q ≤ s(ψ)). Thus this lemma is a consequence of Lemma 13. ◀

▶ Lemma 15. L := Pω∈Ω (∃q ≤ qmax. |estimate(τ2(ω, q))− |A|| > ε |A|) ≤ δ
2

Proof. Because the median of a sequence will certainly be in an interval, if more than half
of the elements are in it, we can approximate the left-hand side as:

L ≤ Pω∈Ω

∃q ≤ qmax.
∑
i∈[l]

[|Y (ωi, q)− |A|| > ε |A|] ≥ l

2


≤ exp

(
−l

(
1
2 ln

((
1
16 + 1

16

)−1
)
− 2e−1

))
≤ exp

(
− l4

)
≤ δ

2

The second inequality follows from Lemma 4 and 14 as well as λ ≤ 1
16 . ◀

Proof of Theorem 7. Follows from Lemma 8 and the previous lemma, as well as the reason-
ing established in Equation 3. ◀

5.5 Space Usage
It should be noted that the data structure requires an efficient storage mechanism for the
levels in the bins. We need to store the table values in a manner in which the number of
bits required for a value x is proportional to ln x. A simple strategy would be to store each
value using a prefix-free universal code and concatenating the encoded variable-length bit
strings.5 A well-known universal code for positive integers is the Elias-gamma code, which

5 Note that a vector of prefix-free values can be decoded even if they are just concatenated.
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requires 2 ⌊ldx⌋+ 1 bits for x ≥ 1 [13]. Since, in our case, the values are integers larger or
equal to (−1), they can be encoded using 2 ⌊ld(x+ 2)⌋+ 1 bits.6 In combination with the
condition established in the compress function of Algorithm 1 the space usage for the table
is thus (2C5 + 1)bl ∈ O(bl) ⊆ O(ln(δ−1)ε2). Additionally, the approximation threshold needs
to be stored. This threshold is a non-negative integer between 0 and ldn requiring O(ln lnn)
bits to store. In summary, the space required for the sketch is O(ln(δ−1)ε2 + ln lnn). For
the coin flips, we need to store a random choice from Ω, i.e., we need to store ln(|Ω|) bits.
The latter is in O(ln(|Ω|)) ⊆ O(ln(|Ψ|) + l ln(λ−1)) ⊆ O(lnn+ ln(ε−1)2 + ln(δ−1)3). Overall
the total space for the coin flips and the sketch is O(ln(δ−1)ε−2 + lnn+ ln(δ−1)3).

6 Extension to small failure probabilities

The data structure described in the previous section has a space complexity that is close
but exceeds the optimal O(ln(δ−1)ε−2 + lnn). The main reason this happens is that, with
increasing length of the random walk, the spectral gap of the expander is increasing as well –
motivated by the application of Lemma 5 in Subsection 5.3, with which we could establish
that the cut-level could be shared between all tables. A natural idea is to restrict that.

If δ−1 is smaller than lnn the term (ln(δ−1))3 in the complexity of the algorithm is not a
problem because it is dominated by the lnn term. If it is larger, we can split the table into
sub-groups and introduce multiple cut-levels. Hence a single cut-level would be responsible
for a smaller count of tables, and thus the spectral gap would be lower. (See also Figure 2).

A succinct way to precisely prove the correctness of the proposal is to repeat the previous
algorithm, which has only a single shared cut-level, in a black-box manner for the same
universe size and accuracy but for a higher failure probability. The seeds of each repetition
are selected again using an expander walk. Here the advantage of Lemma 4 is welcome, as
the inner algorithm needs to have a failure probability depending on n – the natural choice
is (lnn)−1. The length of the walk of the inner algorithm matches the number of bits of the
cut-level O(ln lnn). The repetition count of the outer algorithm is then O

(
ln(δ−1)
ln lnn

)
.

▶ Theorem 16. Let n > 0, 0 < ε < 1 and 0 < δ < 1. Then there exists a cardinality
estimation data structure for the universe [n] with relative accuracy ε and failure probability
δ with space usage O(ln(δ−1)ε−2 + lnn).

Proof. If δ−1 < lnn, then the result follows from Theorem 7 and the calculation in Subsec-
tion 5.5. Moreover, if n < exp(e5), then the theorem is trivially true, because there is an
exact algorithm with space usage exp(e5) ∈ O(1). Hence we can assume e5 ≤ lnn ≤ δ−1.
Let Ω∗, single∗, merge∗ and estimate∗ denote the seed space and the API of Algorithm 1
for the universe [n], relative accuracy ε and failure probability δ∗ := (lnn)−1. Moreover, let
m :=

⌈
4 ln(δ−1)

ln lnn

⌉
– the plan is to show that with these definitions Algorithm 2 fulfills the con-

ditions of this theorem. Let ν(θ,A)[i] := τ∗(θi, A) for i ∈ [m] and θ ∈ Θ := U(E(Ω∗, δ∗,m)).
Then it is straightforward to check that:

single(θ, x) = ν(θ, {x}) merge(ν(θ,A), ν(θ,B)) = ν(θ,A ∪B)

for x ∈ [n] and ∅ ̸= A,B ⊆ [n] taking into account Lemma 6. Hence the correctness follows
if: Pθ∈Θ(|estimate(ν(θ,A))− |A|| > ε |A|) ≤ δ. Because the estimate is the median of the
individual estimates, this is true if at least half of the individual estimates are in the desired
range. Similar to the proof of Lemma 15 we can apply Lemma 4. This works if

6 There are more sophisticated strategies for representing a sequence of variable-length strings that allow
random access. [7]
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exp
(
−m

(
1
2 ln

(
(δ∗ + δ∗)−1)− 2e−1

))
≤ δ

which follows from m ≥ 4 ln(δ−1)(ln lnn)−1 and ln lnn ≥ 5. The space usage for the seed is:
ln |Θ| ∈ O(lnn+ln(ε−1)2 +(ln((δ∗)−1))3 +m ln((δ∗)−1)) ⊆ O(lnn+ln(ε−1)2 +ln(δ−1)). The
space usage for the sketch is: O(m ln((δ∗)−1)ε−2 +m ln lnn) ⊆ O(ln(δ−1)ε−2 + ln lnn). ◀

Algorithm 2 Algorithm for 0 < δ < (ln n)−1.

function init() : Θ
return randomU(Θ)

function single(x : U, θ : Θ) : S
D[i] = single∗(x, θi) for i ∈ [m]
return D

function merge(Da : S, Db : S) : S
D[i]← merge∗(Da[i], Db[i]) for i ∈ [m]
return D

function estimate(D : S) : R
Yi ← estimate∗(D[i]) for i ∈ [m]
return median(Y0, . . . , Ym−1)

table 0

bin 0

bin 1

...

bin b− 1

table 1

· · ·

table l − 1

cut-level 0

group 0

table 0

bin 0

bin 1

...

bin b− 1

table 1

· · ·

table l − 1

cut-level m− 1

group m− 1

· · ·

Figure 2 Schematic representation of the states of Algorithm 2 with m ∈ O
(

ln(δ−1)
ln ln n

)
repetitions

of the inner algorithm. The inner algorithm uses b ∈ O(ε−2) bins and l ∈ O(ln ln n) tables.

7 Optimality

The optimality of the algorithm introduced by Błasiok [9] follows from the lower bound
established by Jayram and Woodruff [23, Theorem 4.4]. The result (as well as its predeces-
sors [4, 40]) follows from a reduction to a communication problem. This also means that
their theorem is a lower bound on the information the algorithm needs to retain between
processing successive stream elements.
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An immediate follow-up question to Theorem 16 is whether the space usage is also optimal
in the distributed setting. Let us assume there are p processes, each retaining m stream
elements, and they are allowed to communicate at the beginning, before observing the stream
elements, and after observing all stream elements. Even with these relaxed constraints, the
number of bits that each process will need to maintain will be the same as the minimum
number of bits of a sequential streaming solution. This follows by considering a specific
subset of the input set where except for process 0, the stream elements on all the other
processes are equal to the last stream element of process 0. In particular, the information the
processes 1, 2, . . . , p− 1 have is 0 bits from the perspective of process 0. If our distributed
hypothetical algorithm is correct, it can only be so if the worst-case space usage per process
is Ω(ln(δ−1)ε−2 + lnn).

8 Conclusion

A summary of this work would be that for the space complexity of cardinality estimation
algorithms, there is no gap between the distributed and sequential streaming models. More-
over, it is possible to solve the problem optimally (in either model) with expander graphs
and hash families without using code-based extractors (as they were used in previous work).
The main algorithmic idea is to avoid using a separate rough estimation data structure
for quantization (cut-off); instead, the cut-off is guided by the space usage. During the
estimation step at the end, an independent rough estimate is still derived, but it may be
distinct from the cut-off reached at that point. This is the main difference between this
solution and the approach by Kane et al. [24]. The main mathematical idea is to take the
tail estimate based on the Kullback-Leibler divergence for random walks on expander graphs,
first noted by Impagliazzo and Kabanets [22, Th. 10] seriously. With which, it is possible
to achieve a failure probability of δ using O

(
ln(δ−1)

ln((δ∗)−1)

)
repetitions of an inner algorithm

with a failure probability δ∗ > δ. Note that the same cannot be done with the standard
Gillman-type Chernoff [18] bounds. This allows the two-stage expander construction that we
needed. As far as I can tell, this strategy is new and has not been used before.

An interesting question is whether the two-stage expander construction can somehow be
collapsed into a single stage. For that, it is best to consider the following non-symmetric
aggregate:

Pω∈E(E(S,exp(−l(ln l)3),l),exp(−l/m),m)

∑
i∈[m]

∑
j∈[l]

X(ωij) ≥ C1

 ≥ m

2

 ≤ exp(−O(lm))

where X may be an unbounded random variable with, e.g., sub-gaussian distribution. Indeed,
the bound on the count of too-large cut-off values from Algorithm 2 turns out to be a
tail estimate of the above form. I tried to obtain such a bound using only a single-stage
expander walk but did not succeed without requiring too large spectral gaps, i.e., with
λ−1 ∈ O(1) for m ≪ l. There is a long list of results on more advanced Chernoff bounds
for expander walks [2, 28, 30, 34, 35, 38] and investigations into more general aggregation
(instead of summation) functions [10, 16, 19, 20, 32, 36], but I could not use any of these
results/approaches to avoid the two-stage construction. This suggests that either there
are more advanced results to be found or multi-stage expander walks are inherently more
powerful than single-stage walks.
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A Proof of Lemma 5

▶ Lemma 5 (Deviation Bound). Let G = (V,E) be a λ-expander graph and f : V → R≥0 s.t.
Pv∼U(V )(f(v) ≥ x) ≤ exp(−x(ln x)3) for x ≥ 20 and λ ≤ exp(−l(ln l)3) then

Pw∼Walk(G,l)

(∑
i∈[l] f(wi) ≥ C1l

)
≤ exp(−l)

where C1 := e2 + e3 + (e− 1) ≤ 30.

Proof. Let µk := Ev∼V [ek ≤ f(v)] ≤ exp(−ekk3) for k ≥ 3. We will show

Lk := Pw∼Walk(G,l)

∑
i∈[l]

[ek ≤ f(wi)] ≥ le−kk−2

 ≤ exp(−l − k + 2) for all k ≥ 3 (11)

by case distinction on the range of k:
Case k ≥ max(ln l, 3): In this case the result follows using Markov’s inequality. Note that

the random walk starts from and remains in the stationary distribution, and thus for any
index i ∈ [l] the distribution of the i-th walks step wi will be uniformly distributed over V ,
hence:

Lk ≤ ekk2l−1 Ew∼Walk(G,l)
∑
i∈[l][ek ≤ f(wi)] = ekk2 Ev∼V [ek ≤ f(v)]

≤ ekk2 exp(−ekk3) = exp(k + 2 ln k − ekk3) ≤ exp(2k − ek(k2 + 2))
≤ exp(2k − ekk2 − ek − ek) ≤ exp(−l − k + 2)

Here we use that k3 ≥ k2 + 2 and ek ≥ k for k ≥ 3 and ek ≥ l.
Case 3 ≤ k < ln l: Then we have

Lk ≤ exp
(
−l(e−kk−2 ln((µk + λ)−1)− 2e−1)

)
using Lemma 4

≤ exp
(
−l(e−kk−2(ekk3 − ln 2)− 2e−1)

)
≤ exp

(
−l(k − e−kk−2 ln 2− 2e−1)

)
≤ exp (−l(k − 1)) ≤ exp (−l − k + 2)

Concluding the proof of Eq. 11.
Note that:∑
i∈[l]

f(wi) ≤ e2l +
∑
i∈[l]

∑
k≥2

ek+1[ek ≤ f(wi) < ek+1]

≤ e2l +
∑
i∈[l]

∑
k≥2

ek+1[ek ≤ f(wi)]−
∑
k≥2

ek+1[ek+1 ≤ f(wi)]


≤ (e2 + e3)l + (e− 1)

∑
i∈[l]

∑
k≥3

ek[ek ≤ f(wi)]
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Hence:

Pw∼Walk(G,l)

∑
i∈[l]

f(wi) ≥ C1l

 ≤ Pw∼Walk(G,l)

 ∑
k≥3,i∈[l]

ek[ek ≤ f(wi)] ≥ l


≤ Pw∼Walk(G,l)

∨
k≥3

∑
i∈[l]

[ek ≤ f(wi)] ≥ le−kk−2


≤
∑
k≥3

Lk ≤
∑
k≥3

exp (−l − k + 2) ≤ exp(−l). ◀

B Balls and Bins

Let Ω = U([r]→ [b]) be the uniform probability space over the functions from [r] to [b] for
b ≥ 1 and 0 ≤ r ≤ b and let X(ω) = |ω([r])| be the size of the image of such a function. This
models throwing r balls into b bins independently, where X is the random variable counting
the number of hit bins. Moreover, let Ei(ω) = {ω | i ∈ ω([r])} be the event that the bin i

was hit. Note that X(ω) =
∑
i∈[b] Ei(ω). And we want to show that

Eω∼Ω X(ω) = b

(
1−

(
1− 1

b

)r)
Vω∼Ω X(ω) ≤ r(r − 1)

b

▶ Lemma 17. Eω∼Ω X(ω) = b
(
1−

(
1− 1

b

)r)
The proof is available in the full version [26].

▶ Lemma 18. Vω∼Ω X(ω) ≤ r(r−1)
b

The proof is available in the full version [26]. The above is a stronger version of the result
by Kane et al. [24][Lem. 1]. Their result has the restriction that r ≥ 100 and a superfluous
factor of 4.

Interestingly, it is possible to obtain a similar result for k-independent balls into bins.
For that let Ω′ be a probability space of functions from [r] to [b] where

Pω∼Ω′

(∧
i∈I

ω(i) = x(i)
)

= r−|I|

for all I ⊂ [r], |I| ≤ k and all x : I → [b]. As before let us denote X ′(ω) := |ω([r])| the
number of bins hit by the r balls. Then the expectation (resp. variance) of X ′ approximates
that of X with increasing independence k, more precisely:

▶ Lemma 19. If ε ≤ e−2 and k ≥ 1 + 5 ln(bε−1)(ln(ln(bε−1)))−1 then:

|Eω′∈Ω′ X ′(ω′)− Eω∈Ω X(ω)| ≤ εr |Vω′∈Ω′ X ′(ω′)− Vω∈Ω X(ω)| ≤ ε2 .

This has been shown7 by Kane et al. [24][Lem. 2]. The proof relies on the fact that
X =

∑
i∈[b] max(1, Yi) where Yi denotes the random variable that counts the number of balls

in bin i. It is possible to show that E(Yi)j = E(Y ′
i )j for all j ≤ k (where Y ′

i denotes the
same notion over Ω′). Their approach is to approximate max(1, ·) with a polynomial g of

7 Without the explicit constants mentioned in here.
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degree k. Since E g(Yi) = E g(Y ′
i ) they can estimate the distance between EX and EX ′ by

bounding the expectation of each approximation error: g(Yi)−max(1, Yi). Obviously, larger
degree polynomials (and hence increased independence) allow better approximations. The
reasoning for the variance is analogous.

▶ Lemma 20. If k ≥ C2 ln b+ C3 then:

L := Pω′∈Ω′

(
|X ′(ω′)− ρ(r)| > 9b−1/2r

)
≤ 2−6

Proof. This follows from Lemma 17, 18 and the previous lemma for ε = min(e−2, b−1/2) in
particular: VX ′ ≤ VX + 1

b ≤
r2

b and hence:

L ≤ Pω′∈Ω′

(
|X ′(ω′)− EX ′|+ |EX ′ − ρ(r)| ≥ 9b−1/2r

)
≤ Pω′∈Ω′

(
|X ′(ω′)− EX ′|+ b−1/2r ≥ 9b−1/2r

)
≤ Pω′∈Ω′

(
|X ′(ω′)− EX ′| ≥ 8b−1/2r

)
≤ Pω′∈Ω′

(
|X ′(ω′)− EX ′| ≥ 8

√
VX ′

)
≤ 2−6

where the last line follows from Chebychev’s inequality. ◀

C Table of Constants

Table 2 Table of Constants.

Constant References Constant References

C1 := e2 + e3 + (e− 1) Lemma 5 C2 := 15
2 Lemma 19

C3 := 16 Lemma 19 C4 := 32223 Lemma 9 and 12
C5 := ⌈C1 + 3⌉ = 33 Lemma 8 C6 := 4 Lemma 15
C7 := 25 Lemma 11

D Formalization

As mentioned in the introduction the proofs in this work have been machine-checked using
Isabelle. They are available [25, 27] in the AFP (Archive of Formal Proofs) [1] – a site hosting
formal proofs verified by Isabelle. Table 3 references the corresponding facts in the AFP
entries. The first column refers to the lemma in this work. The second is the corresponding
name of the fact in the formalization. The formalization can be accessed in two distinct forms:
As a source repository with distinct theory files, as well as two “literate-programming-style”
PDF documents with descriptive text alongside the Isabelle facts (optionally with the proofs).
The latter is much more informative. The third column of the table refers to the file name 8

of the corresponding source file, while the last column contains the reference of the AFP
entry, including the section in the PDF versions.

8 Distributed_Distinct_Elements is abbreviated by DDE and Without with WO.
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Table 3 Reference to the formal entities.

Lemma Formalized Entity Theory Src.
Thm. 1 This theorem from Impagliazzo and Kabanets was stated for motivational

reasons and is never used in any of the following results, hence it is not
formalized.

Thm. 2 theorem hitting-property Expander_Graphs_Walks [27, §9]
Thm. 3 theorem kl-chernoff-property Expander_Graphs_Walks [27, §9]
Lem. 4 lemma walk-tail-bound DDE_Tail_Bounds [25, §5]
Lem. 5 lemma deviation-bound DDE_Tail_Bounds [25, §5]
Lem. 6 (1) lemma single-result DDE_Inner_Algorithm [25, §6]
Lem. 6 (2) lemma merge-result DDE_Inner_Algorithm [25, §6]
Lem. 8 lemma cutoff-level DDE_Cutoff_Level [25, §8]
Lem. 9 lemma e-1 DDE_Accuracy_WO_Cutoff [25, §7]
Lem. 10 lemma e-2 DDE_Accuracy_WO_Cutoff [25, §7]
Lem. 11 lemma e-3 DDE_Accuracy_WO_Cutoff [25, §7]
Lem. 12 lemma e-4 DDE_Accuracy_WO_Cutoff [25, §7]
Lem. 13 lemma

accuracy-without-cutoff
DDE_Accuracy_WO_Cutoff [25, §7]

Lem. 14 lemma accuracy-single DDE_Accuracy [25, §9]
Lem. 15 lemma estimate-result-1 DDE_Accuracy [25, §9]
Thm. 7 lemma estimate-result DDE_Accuracy [25, §9]
Thm. 16 (1) theorem correctness DDE_Outer_Algorithm [25, §10]
Thm. 16 (2) theorem space-usage DDE_Outer_Algorithm [25, §10]
Thm. 16 (3) theorem

asymptotic-space-complexity
DDE_Outer_Algorithm [25, §10]

Lem. 17 lemma exp-balls-and-bins DDE_Balls_And_Bins [25, §4]
Lem. 18 lemma var-balls-and-bins DDE_Balls_And_Bins [25, §4]
Lem. 19 (1) lemma exp-approx DDE_Balls_And_Bins [25, §4]
Lem. 19 (2) lemma var-approx DDE_Balls_And_Bins [25, §4]
Lem. 20 lemma deviation-bound DDE_Balls_And_Bins [25, §4]
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A circuit C samples a distribution X with an error ε if the statistical distance between the output of
C on the uniform input and X is ε. We study the hardness of sampling a uniform distribution over
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cryptography [18, 7] and algorithms [15]. Sampling hardness results1 have been instrumental
in inspiring and improving two-source extractor constructions [28, 9, 10] (see [30] for an
extended discussion), and have yielded lower bounds on succinct data structures [26, 30, 31].

Sampling hardness results are more challenging than computational ones. For example,
while it is known since Smolensky’s classical work [25] that parity requires an exponential
number of gates to compute by an AC0[3] circuit, no hard distributions are known for
the circuit class AC0[p] for any p, and while AC0 requires exponentially many gates to
compute parity [17], a random vector with parity 0 can be sampled by an NC0 circuit.
Moreover, this distribution can be sampled by a 2-local circuit, in the sense that each
output bit depends only on two input bits [2, 19]. A very simple mapping achieves this:
(x1, . . . , xn) 7→ (x1, x1 ⊕ x2, x2 ⊕ x3, . . . , xn−1 ⊕ xn, xn). A more general and striking fact is
that AC0 can sample random permutations and all distributions of form (X, f(X)) where
X is uniform over {0, 1}n and f is symmetric i.e. its value depends only on the Hamming
weight of the input [26].

We conjecture that the power of NC0 in regard to sampling symmetric distributions is
in essence limited to the parity example above. Observe that a function is computable by an
NC0 circuit if and only if it is O(1)-local i.e. each of its output bits depends on at most a
constant number of input bits. For simplicity, we focus only on uniform distributions with
symmetric support: let Un

S be the uniform distribution over strings in {0, 1}n with Hamming
weight in the set S ⊆ {0, . . . , n}.

▶ Conjecture 1. For every d ∈ N, ε ∈ (0, 1) for all large enough n, if X is samplable by a
d-local function and is ε-close to Un

S for some S ⊆ {0, . . . , n}, then X is O(ε)-close to Un
T ,

where T is one of the following: {0}, {n}, {0, n}, {0, 2, 4, . . .}, {1, 3, 5, . . .}, [n].

Our results on sampling slices (namely, Theorem 2) imply this conjecture for all sets S

which only contain small values, in the sense that maxx∈S x = o(n).

Quantum separations

A stronger version of Conjecture 1 would identify the family of sets S such that every
NC0-samplable distribution is 1 − o(1)-far from Un

S . There exists a set S for which this
implies a separation between NC0 and QNC0 for sampling. This is due to the recent partial
separation in [32]: they show that there exists a symmetric function f such that (X, f(X))
for uniform X ∼ {0, 1}n can be sampled by a QNC0 circuit. Observe, however, that if an
NC0-samplable distribution Y is at distance η from (X, f(X)), then the first n bits of Y

are (1/2 + η + o(1))-close to the uniform distribution over f−1(0), due to the fact that the
function f used in [32] is almost balanced (in the sense that |f−1(0)| = (1 + o(1)) · |f−1(1)|).
Now, if the uniform distribution over f−1(0) is not NC0-samplable within the distance
1 − Ω(1), we get the separation. Conjecture 1 implies a weaker lower bound for the distance:
a constant instead of a function approaching 1, but most of the known lower bounds for
distribution sampling have very strong distance guarantees.

Local certificates

One interesting class of sets which is also not covered by our and prior results is Ma =
{x ∈ {0, . . . , n} | x mod a = 0}, where a is a constant. However, the simple construction for
sampling parity-0 vectors can be adapted to match the support of any Un

Ma
, i.e. generate

1 That is, showing that any circuit from a certain class produces a distribution that is far from the target.
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a (not necessarily uniform) distribution whose support is exactly the set of strings with
Hamming weight in Ma. This construction was given in [5, Proposition 3.1], where it was
presented as a proof system. The idea is to interpret the input bits as a certificate that the
output is in the target language (in this case, all n-bits strings whose Hamming weight is
divisible by a). This connection motivates our study of locality in the context of proof systems.
We drastically simplify and improve the locality lower bound of [20] for the language of
n-bit strings whose Hamming weight is at least n/2 (in other words, 1-inputs of the majority
function).

1.1 Notation
We use boldface letters for random variables, e.g. a, A, b, B. We write a ∼ A to say that a is
distributed according to a distribution A, or if A is a set, according to the uniform distribution
over it. For x ∈ {0, 1}n, we denote its Hamming weight by w(x) = |x| := {i ∈ [n] | xi = 1}.
We denote ei = 0i−110n−i ∈ {0, 1}n. For a string x ∈ {0, 1}n and a set T ⊆ [n], we write
xT := (xi)i∈T ∈ {0, 1}T . We write Un

k for the uniform distribution of Hamming weight k

vectors.
For two distributions S and T over the same domain X , the statistical distance is defined

as

∆(S, T ) := max
A⊆X

∣∣∣ Pr
x∼S

[x ∈ A] − Pr
x∼T

[x ∈ A]
∣∣∣ = 1

2
∑
a∈X

∣∣∣ Pr
x∼S

[x = a] − Pr
x∼T

[x = a]
∣∣∣ .

The statistical distance between two random variables is the statistical distance between
their distributions. We say that the distribution S is ε-close from the distribution T if
∆(S, T ) < ε. Otherwise, the distributions are ε-far.

We say that an input bit i ∈ [m] affects an output bit j ∈ [n], or equivalently that the
output bit j depends on the input bit i, if there exist inputs x, x′ ∈ {0, 1}m, differing only in
the ith bit, such that f(x)j ̸= f(x′)j . A function f : {0, 1}m → {0, 1}n is d-local if each of
its output bits depends only on d input bits. A function f : {0, 1}m → {0, 1}n has decision
depth d if each of its output bits can be computed as a depth-d decision tree, i.e. decided
with at most d adaptive input bit queries. If a function is d-local, then it has decision depth
at most d.

1.2 Sampling Slices
The k-slice is the set of all n-bit strings of Hamming weight k. We denote the uniform
distribution over the k-slice by Un

k . A simple computation (see Section 3.5) shows that Un
S and

Un
max S are close in statistical distance whenever max S = o(n). This means that in order to

show the hardness of sampling from symmetric distributions over sublinear-Hamming-weight
strings it is sufficient to study Un

k for k = o(n).
Although in the context of Conjecture 1 it is sufficient to lower bound the locality of a

sampler, in the context of slices the more natural complexity measure is decision depth. A
function f : {0, 1}m → {0, 1}n is computable by a decision forest of depth d if every output
bit of f can be computed by a decision tree of depth d, i.e. with at most d adaptive queries to
the input (in contrast, a d-local function is computed by d non-adaptive queries). Viola [26,
Lemma 6.4] shows that a decision depth d sampler for Un

k can be obtained from a depth-d
switching network. Czumaj [11, Theorem 3.7] proves the existence of such switching networks
with d = O(log n). The following theorem shows that for k = o(n), this construction is
almost tight.

APPROX/RANDOM 2023
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▶ Theorem 2. Suppose that Un
k can be sampled with decision depth d and error η in variation

distance.
1. For every ε > 0 there exists a constant τ such that d ≤ τ log(n/k)/ log log(n/k) implies

η ≥ 1 − ε.
2. There exists a constant τ for which the following holds. For every ε ∈ (0, 1), if k ∈

[log2 n, 2log1−ε n] and d ≤ τ logε n, then η = 1 − n−Ω(k). The same bound holds for
k ∈ [1, log2 n) and d ≤ τ logε n/ log log n.

Moreover, Item 1 holds for any Un
S with maxx∈S x = k or minx∈S x = n − k.

The first key observation in our proof of Theorem 2 is that it is sufficient to prove it for
k = 1, namely:

▶ Theorem 3. There exists a constant τ > 0 such that any distribution sampled with decision
depth τ log n/ log log n is (1 − n−Ω(1))-far from Un

1 .

To see why this implies Item 1, observe that the marginal distribution of the first n/k

bits of Un
k is (1 − 1/e + o(1))-close to U

n/k
1 . Theorem 3 then implies the distance lower

bound 1/e − o(1) for sampling Un
k with depth τ log(n/k)/ log log(n/k). The 1 − ε distance

lower bound for every ε is achieved by generalizing Theorem 3 so it applies to distributions
of the form “first Θ(n/k) bits of Un

k ” directly.
Item 2 is implied by another reduction from Theorem 3. Suppose we have a depth-d

sampler for Un
k . Using this sampler, we can construct a depth-kd sampler for U

(n
k)

1 as follows.
Identify each output bit with a unique subset of [n] of size k, and assign to it the conjunction
of the corresponding k bits in the output of the sampler for Un

k . It is easy to see that the

resulting distribution has the same distance to U
(n

k)
1 as the initial sampler has to Un

k .

Technique for Proving Theorem 3

The locality of a sampler is the maximum number of input bits that an output bit depends
on. The locality is always bounded from above by the decision depth. As a warm-up, let us
discuss an Ω(log log n) locality lower bound for sampling Un

1 which is close in spirit to [30,
Theorem 3].

The main idea in the locality lower bound is a hitting set versus independent set dichotomy:
for a d-local source, it is easy to see that either there are τ2d independent output bits, or
there is a hitting set of input bits of size τd2d such that every output bit depends on one of
the bits in this set. In the former case, we can show that it is very likely that at least two of
the independent bits evaluate to 1, since for each output bit its probability to be 1 is at least
2−d.2 In the latter case, by fixing the hitting set bits in every possible way, we observe that
our source is a mixture (convex combination) of 2τd2d many (d − 1)-local sources. If we show
that (d − 1)-local sources must be (1 − ε)-far from the target distribution, then our source
is (1 − ε2τd2d)-far by [30, Corollary 18]. Picking d = δ log log n for small enough δ yields a
1 − o(1) lower bound on the distance to the target distribution.

In order to improve this lower bound from log log n to log n/ log log n, we introduce several
new ideas.

2 There is a caveat that some bits might be identically zero, but it is not a real issue, since there cannot
be too many of them.
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Monotonization. We observe that it is in some sense sufficient to deal with sources where
each bit is a monotone term in the input bits. The intuitive reason is that the expected
number of output bits evaluating to 1 is 2−d · n (again, this is not always true, since there
are identically zero outputs), so there exists an assignment where that many bits evaluate to
1. By focusing on those bits and replacing them with terms corresponding to the satisfying
assignments, we show that it is likely that at least two of these terms evaluate to 1.

Sunflowers. Let us pretend that all of the output bits are monotone terms. For i ∈ [n], let
Ni be the set of inputs mentioned by the term of the ith output bit. We find a sunflower
S ⊆ {N1, . . . , Nn}, i.e. there exists a kernel K such that the intersection of any pair of sets
in S is K. If the kernel is fixed to 1, the output bits in the sunflower become independent, so
if the sunflower is large enough, it is likely that at least two of them evaluate to 1. For some
small enough d = Ω(

√
log n), a large sunflower always exists among any n sets. Moreover, we

can cover all but o(n) output bits with sunflowers. Then we have the following dichotomy:
either all kernels evaluate to 0, so the source is likely to be identically zero, or at least one
kernel evaluates to 1, which makes it very likely that at least two output bits from the
corresponding sunflower evaluate to 1.

Using robust sunflowers instead of classical sunflowers, we obtain a lower bound of
Ω(log n/ log log n) on the decision depth.

1.3 Local Proof Systems
Local proof systems, introduced in [5] and further studied in [20], are defined as follows:
a local proof system for a language L is an NC0-circuit family Cn such that L ∩ {0, 1}n

is exactly the set of all possible outputs of Cn. A language L has a d-local proof system
if for each n there exists a d-local function whose image is L ∩ {0, 1}n. In relation to the
sampling, it can be viewed as follows: the “sampler” needs to match the support of the given
distribution exactly, but we do not care about matching the actual probabilities.

The hardness landscape in this setting is different from the setting of sampling distributions.
The most notable difference is that the language of strings with Hamming weight divisible by
p always has an O(1)-local proof system, while we conjecture that sampling from the uniform
distribution over this language requires a super-constant locality, unless p = 1 or p = 2.

Our main contribution is in improving the locality lower bound for another symmetric
language: Maj−1(1) := {x ∈ {0, 1}n | |x| ≥ n/2}. The previous best locality lower bound
for proof systems for this language was Ω(log∗ n) [20], with a very complex proof which
we expose in Appendix B. We simplify this proof and improve the locality lower bound
to Ω(

√
log n), which is only polynomially smaller than the current best upper bound of

O(log2 n). The key idea is to consider proof systems with bounded locality of both input
and output bits. For such proof systems it is easy to derive very strong requirements on
locality. These can then be used to count the number of input-output bit pairs where the
input affects the output, which yields the output locality lower bounds.

1.4 Switching Networks
The technique behind Theorem 2 breaks down for linear slices Un

αn. Does it mean there is a
low-depth sampler for such distributions? The only construction of a sampler we have is
based on switching networks [11, Theorem 3.7].

A switching network of depth d is a layered graph with d layers and n nodes in each layer.
The edges of the switching network do not cross between layers, and in each layer, the edges
form a partial matching. A switching network defines a process over permutations of [n]: we
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start with the identity permutation, and then, for each layer, we toss a coin for each edge in
the matching of this layer, and if the coin comes up heads, we transpose the endpoints of the
edge.

Currently, the best upper bound on the depth of a switching network which produces a
distribution close to the uniform distribution over all permutations is O(log2 n) [11]. The
situation is better if the switching network only needs to shuffle sequences of zeroes and ones:
the input is now 1k0n−k. [11, Theorem 3.7] gives a O(log n) depth upper bound for this case
(the construction is randomized), [13] gives an explicit lower bound for generating Un

k for
k ≤

√
n.

It is almost immediate that a switching network that samples Un
k within a non-trivial

distance must have depth Ω(log(n/k)): each input bit of a network of depth d has at most
2d potential positions that it can take in the output, so if d = o(log(n/k)), the switching
network produces a distribution where only o(n) bits have a non-zero probability to have
value 1, which is (1 − o(1))-far from Un

k .
In Appendix A we show that switching networks that produce a distribution close to

Un
αn must have depth Ω(log log n). We use the following properties of samplers that are

constructed from switching networks of depth d: the first is that each input bit of such a
sampler affects at most 2d output bits, the second is that the error is one-sided, i.e. such a
sampler never outputs a string outside the domain of Un

αn. The second property highlights
the similarity with local certificates, and indeed our lower bound proof uses similar ideas.

1.5 Further Research
Our results on sampling slices with decision forests taken together with results of Viola [26]
are summarized in Figure 1.

k ≤ 2log1−ε n k = o(n) k = Θ(n)

Theorem 2 d = Ω̃(logε n) d = Ω̃(log(n/k))

∆ = 1 − n−Ω(k) ∆ = 1 − δ

[26, Thm 1.6] ∆ = 2−O(d) − O(1/n)

Figure 1 The table above depicts the implications of Theorem 2 and [26, Theorem 1.6] for
sampling Un

k for different k. The plot above it illustrates the size of the corresponding set of
bitstrings in the boolean cube.

Here are some important challenges that are left open:
Give any non-trivial decision depth (or even locality!) lower bound for linear Hamming
weight in the constant-error regime. For a non-dyadic α3 an ω(1) decision depth lower
bound for sampling Un

αn follows (in a not completely straightforward way) from the
new separator theorem in [31]: the key idea is to use the fact that biases of all bits of
a distribution generated by a decision forest all have form a/2d, so they are Θ(2−d)-off
from any non-dyadic number. The challenge is to show any non-trivial lower bound for,
say Un

n/2 or Un
n/4, where the bit biases can be matched exactly by a decision forest.

3 That is, not representable in the form a/2t for integers a and t, e.g. 1/3.
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Tighten up the decision depth lower bound for Un
1 to Ω(log n). This would immediately

yield tight (up to a constant) decision depth lower bounds for all polynomial k.
Give any locality lower bound for (X, f(X)), where X ∼ {0, 1}n and f = [(x1 + · · · +
xn) mod p ≥ p/2] ⊕ x1 ⊕ · · · ⊕ xn, as this would separate quantum and classical NC0

circuits for sampling, improving on the partial separation of [32].
Find any non-trivial lower bounds for sampling a uniform vector with Hamming weight
divisible by k, for any k > 2. This is likely to give insights on the QNC0 versus NC0

separation for sampling.
Determine the optimal depth of a switching network that samples a uniform permutation
or a uniform vector in a slice.

2 Tools

In this section, we describe two off-the-shelf tools we use in our proof.

2.1 FKG inequality
▶ Theorem 4 ([16, 12]). Suppose that X is a product distribution over {0, 1}n (that is,
Pr[X = x] =

∏
i∈[n] Pr[Xi = xi]). Let A, B ⊆ {0, 1}n be two monotone events (if x ∈ A and

xi ≤ yi for all i ∈ [n] then y ∈ A, and similarly for B). Then

Pr
x∼X

[x ∈ A ∩ B] ≥ Pr
x∼X

[x ∈ A] · Pr
x∼X

[x ∈ B].

2.2 Robust Sunflowers
In this section, we discuss robust sunflowers.

▶ Definition 5 (Robust sunflower). Let 0 < α, β < 1 be parameters, let F be a set system
over a finite universe, and let K :=

⋂
S∈F S be the intersection of all sets in F , which we

refer to as the kernel. The family F is an (α, β)-robust sunflower if
1. K ̸∈ F ;
2. PrR [∃S ∈ F : S ⊆ R ∪ K] ≥ 1 − β, where each element of the universe appears in R with

probability α independently.
We can write this condition in the equivalent form PrR[∃S ∈ F : R ⊇ S | R ⊇ K] ≥ 1 − β.

A set system is called (α, β)-satisfying if it is an (α, β)-robust sunflower with an empty
kernel.

Large enough set systems always contain a robust sunflower, as proved by Rossman [24]
and improved by later authors.

▶ Theorem 6 ([1, 4, 23]). There exists a constant B > 0 such that the following holds for
all p, ε ∈ (0, 1/2]. Let F be a family of sets of size exactly d such that |F| ≥ (B log(d/ε)/p)d.
Then F contains a (p, ε)-robust sunflower.

▶ Corollary 7. There exists a constant B > 0 such that the following holds for all p, ε ∈
(0, 1/2]. Let F be a family of non-empty sets of size at most d such that |F| ≥ d ·
(B log(d/ε)/p)d. Then F contains a (p, ε)-robust sunflower.

Proof. Let d0 ∈ [d] be the most common size of sets in F . Then the number of sets of size
d0 is at least (B log(d/ε)/p)d, which allows us to apply Theorem 6 to these sets. ◀
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36:8 Sampling and Certifying Symmetric Functions

If we remove a single petal from a robust sunflower, then it remains a robust sunflower
(with slightly worse parameters).

▶ Lemma 8. Suppose that N1, . . . , Nk ⊆ X is a (p, ε)-robust sunflower with kernel K. Then
for every i, the sets N1, . . . , Ni−1, Ni+1, . . . , Nk form a (2p, 2ε)-robust sunflower with kernel
K.

Proof. Let τ be distributed over [3]X∖K such that Pr[τi = 1] = Pr[τi = 2] = p, Pr[τi =
3] = 1 − 2p, and the coordinates of τ are independent. For ℓ ∈ [3], let τ ℓ = {j ∈ X |
τj = ℓ} ∪ K. The definition of (p, ε)-robust sunflower implies that for every ℓ ∈ [2] we have
Pr[∃j ∈ [k] : τ ℓ ⊇ Nj ] ≥ 1 − ε. An application of the union bound implies that

Pr
[
∃j ∈ [k] : τ 1 ⊇ Nj ∧ ∃j′ ∈ [k] : τ 2 ⊇ Nj′

]
≥ 1 − 2ε.

If j = j′, then since τ 1 ∩ τ 2 = K, we have Nj = K, which is impossible by the definition of a
sunflower. Thus j ̸= j′ whenever the event happens. Let R be a distribution of subsets of X

where each element appears in R independently with probability 2p. Then since (R|R ⊇ K)
has the same distribution as τ 1 ∪ τ 2, we have

Pr
R

[∃j ̸= j′ ∈ [k] : R ⊇ Nj ∧ R ⊇ Nj′ | R ⊇ K] ≥ 1 − 2ε.

In particular, for every i ∈ [k] we have

Pr
R

[∃j ̸= i ∈ [k] : R ⊇ Nj | R ⊇ K] ≥ 1 − 2ε,

and so the sets N1, . . . , Ni−1, Ni+1, Nk form a (2p, 2ε)-robust sunflower with kernel K. ◀

Another lemma we use is very similar to the standard connection between robust sunflowers
and the classical ones (see e.g. Lemma 1.6 in [1]):

▶ Lemma 9. Suppose that N1, . . . , Nm ⊆ X is a (1/(2k), ε)-robust sunflower with a kernel
K. Then

Pr
R∼2X

[
∃I ∈

(
[m]
k

)
∀i ∈ I : R ⊇ Ni

∣∣∣∣R ⊇ K

]
≥ 1 − εk.

Proof. Let τ ∼ [2k]X∖K , and τ i := {j ∈ X ∖K | τj = i} ∪ K for i ∈ [2k]. Then τ 1 ∪ · · · ∪ τ k

is distributed equivalently to (R | R ⊇ K) where R ∼ 2X . On the other hand, by the
definition of the (1/(2k), ε)-robust sunflower, for each i ∈ [2k] we get

Pr[∃j ∈ [m] : τ i ⊇ Nj ] ≥ 1 − ε.

Since τ i ∩ τ i′ = K for any i ̸= i′ ∈ [2k], the lemma follows by the union bound over
i ∈ [k]. ◀

3 Sampling Uniform Hamming Weight k Distributions

In this section we prove the following results mentioned in the introduction, which we restate
here for convenience.

▶ Theorem 2. Suppose that Un
k can be sampled with decision depth d and error η in variation

distance.
1. For every ε > 0 there exists a constant τ such that d ≤ τ log(n/k)/ log log(n/k) implies

η ≥ 1 − ε.
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2. There exists a constant τ for which the following holds. For every ε ∈ (0, 1), if k ∈
[log2 n, 2log1−ε n] and d ≤ τ logε n, then η = 1 − n−Ω(k). The same bound holds for
k ∈ [1, log2 n) and d ≤ τ logε n/ log log n.

Moreover, Item 1 holds for any Un
S with maxx∈S x = k or minx∈S x = n − k.

▶ Theorem 3. There exists a constant τ > 0 such that any distribution sampled with decision
depth τ log n/ log log n is (1 − n−Ω(1))-far from Un

1 .

We first prove Theorem 3, in Section 3.1. We then prove Item 2 of Theorem 2 in
Section 3.3, and Item 1 of the Theorem in Section 3.4. We prove the “moreover” part in
Section 3.5.

3.1 Proof of Theorem 3
We prove a more general result which immediately yields Theorem 3.

First let us sketch a proof of Theorem 3 for d-local functions. Suppose that ∆(Un
1 , X) ≤

1 − η. Call a coordinate i good if Pr[X = ei] ≥ 1/n2. Since Pr[U1 = ei] = 1/n, many
coordinates are good: at least Ω(ηn).

Let Y ∼ {0, 1}m denote the random input bits. Each Xi depends on some subset
Ni ⊆ [m] of coordinates of size at most d = τ log n/ log log n, say Xi = fi(YNi).

For each good coordinate i, we choose an assignment αi ∈ f−1
i (1) which maximizes the

conditional probability Pr[X = ei | YNi
= αi], that is, the probability that if YNi

= αi then
all other output bits are 0. This probability is at least 1/(2dn2) = Ω(1/n3).

The assignments αi do not necessarily agree with each other. However, a random
assignment ρ to Y agrees with at least Ω(ηn/2d) = Ω(ηn1−o(1)) of them. Let T consists of
the domains of the assignments αi which agree with ρ. These domains are distinct since
Ni = Nj implies αi = αj and hence that Pr[X = ei | YNi

= αi] = 0. The choice of d

guarantees that T supports a (1/4, ε)-robust sunflower S, for any ε which is inverse-polynomial
in n. Let K be the kernel of S.

If we remove any single petal i from S then by Lemma 8 the result is a (1/2, 2ε)-robust
sunflower, and so given that YK agrees with ρ, the probability that Xj = 1 for some j ̸= i

is at least 1 − 2ε. If we replace the condition with “YNi
agrees with ρ” (and so with αi),

then intuitively, the probability can only increase, and this can be formalized using the FKG
inequality (Theorem 4). By definition of αi, this means that Pr[X = ei] ≤ |f−1

i (1)|2ε ≤ 2d+1ε.
Choosing ε = 1/2d+1n2 shows that i is not good, and we reach a contradiction.

We move on to prove the generalization of Theorem 3.

▶ Theorem 10. Let Y ∼ {0, 1}m be the input bits of the n-bit source X. Suppose that every
bit of X is computed as a DNF of bits of Y of size at most s and width at most d. For every
κ ∈ R there exists a constant τ such that for d = τ log n/ log log n and s ≤ κnκ, we have
∆(X, Un

1 ) = 1 − η = 1 − n−Ω(1).

This implies Theorem 3 since the output of a decision tree of depth d can be represented
as a DNF of size at most 2d and width at most d. In our case d = o(log n) and so 2d ≤ n

(for large enough n).

Proof. We say that an output bit i ∈ [n] is good if Pr[X = ei] ≥ 1/n2. Let G ⊆ [n] be the
set of all good bits, and let G = [n] ∖ G. Let us estimate the size of G: Pr[X ∈ {ei | i ̸∈
G}] ≤ |G|/n2, but Pr[Un

1 ∈ {ei | i /∈ G}] = |G|/n), so |G| · (1/n − 1/n2) ≤ 1 − η, which
yields |G| = Ω(ηn).
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For each i ∈ G, since each bit of X is represented as a DNF we have Xi =
∨

j∈[si][YNj
i

=
αj

i ], where N1
i , . . . , N si

i ⊆ [m] are sets, αj
i ∈ {0, 1}Nj

i are truth assignments, and si ≤ s. By
the law of total probability we have

Pr[X = ei] ≤
∑

j∈[si]

Pr[X = ei ∧ YNj
i

= αj
i ] ≤ s Pr[X = ei ∧ YNmax

i
= αmax

i ],

where Nmax
i and αmax

i correspond to the term in the DNF maximizing the probability
Pr[X = ei ∧ YNj

i
= αj

i ].
Consider the expected number of good output bits such that YNmax

i
= αmax

i :

E

[∑
i∈G

[YNmax
i

= αmax
i ]

]
≥ |G|2−d.

Hence there exists an assignment ρ to the input bits such that for at least |G|2−d good
output bits, we have ρNmax

i
= αmax

i . Let T ⊆ G be the set of those output bits. If i, j ∈ T

then Nmax
i ̸= Nmax

j , since otherwise YNmax
i

= αmax
i implies that also YNmax

j
= αmax

j and so
X ≠ ei, and so Pr[X = ei] = 0, contradicting i ∈ G. Observe moreover that none of the sets
Ni for i ∈ T is empty, since otherwise |T | = 1 and we get an immediate contradiction with
the size of G for any d = o(log n).

Case 1. |T | < d(4B log(d/ε))d. In this case, we immediately get the lower bound on δ.
Indeed, the inequality |G|2−d ≤ |T | < d(4B log(d/ε))d implies |G| ≤ d(8B log(d/ε))d, which
together with |G| = Ω(ηn) yields η ≤ d(8B log(d/ε))d/n. If ε is inverse polynomial in n,
then for small enough τ we get η = n−Ω(1) with d = τ log n/ log log n.

Case 2. |T | ≥ d(4B log(d/ε))d. Then by Corollary 7 there exists a (1/4, ε)-robust sunflower
formed by the sets Nmax

t1
, . . . , Nmax

tk
for {t1, . . . , tk} ⊆ T (recall the sets Nmax

i for i ∈ T

are all distinct, and none of them is empty). Let K denote the kernel of this sunflower.
Consider an arbitrary petal ti of this sunflower. By Lemma 8 we have that {Nmax

i }i∈T∖{ti}
is a (1/2, 2ε)-robust sunflower. Let U be the set of indices such that Yk = ρk. Then

Pr[Xj = 1 for some j ∈ T ∖ {ti} | YNmax
ti

= ρNmax
ti

] ≥

Pr[U ⊇ Nmax
j for some j ∈ T ∖ {ti} | U ⊇ Nmax

ti
] =

Pr[U ⊇ Nmax
ti

and U ⊇ Nmax
j for some j ∈ T ∖ {ti} | U ⊇ K]

Pr[U ⊇ Nmax
ti

| U ⊇ K] ≥ Theorem 4

Pr[U ⊇ Nmax
j for some j ∈ T ∖ {ti} | U ⊇ K] ≥

1 − 2ε,

where the last inequality is due to the definition of a (1/2, 2ε)-robust sunflower. Recall that
by the choice of T , we have ρNmax

ti
= αmax

ti
. Therefore

Pr[X ̸= eti
| YNmax

ti
= αmax

ti
] = Pr[Xj = 1 for some j ∈ T ∖{ti} | YNmax

ti
= ρNmax

ti
] ≥ 1−2ε.

Thus Pr[X = eti
∧ Y Nmax

ti = αmax
ti

] ≤ 2ε. By the choice of αmax
ti

, Pr[X = eti
] ≤ s · 2ε.

Picking ε < 1/(2sn2), which is inverse polynomial in n as required in Case 1, we get that
Pr[X = eti

] < 1/n2, so ti is bad, which contradicts the choice of T . ◀
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3.2 A Generalized Version of Theorem 10

In this section, we generalize Theorem 10 so it can be used to prove Item 1 of Theorem 2.
The proof follows the same path as the proof of Theorem 10, we decided to include both
proofs for simplicity.

▶ Theorem 11. Let Y ∼ {0, 1}m be the input bits of the n-bit source X. Suppose that every
bit of X is computed as a DNF of bits of Y of size at most s and width at most d. Let
t ∈ [n] be a parameter, α(n) be a function and let F be distributed over {0, 1}n and have the
following properties:

For every set T ⊆ [n] such that T ≥ n/2 we have Pr[FT = 0T ] ≤ α(n);
Pr[|F | > t] ≤ α(n).

If 2d · t · (40Bt log n)d ≤ n then ∆(X, F ) ≥ 1 − 2α(n) − 1/2n. Here B is the constant from
Corollary 7.

Proof. We say that an output bit i ∈ [n] is good if Pr[Xi = 1∧|X| ≤ t] ≥ 1/n2. Let G be the
set of good bits and let G := [n] ∖ G. Suppose that |G| ≤ n/2. Then by the conditions on F

we have Pr[FG = 0G] ≤ α(n). On the other hand Pr[XG ̸= 0G ∧ |X| ≤ t] < |G|/n2 < 1/2n.
Then ∆(X, F ) ≥ 1 − 2α(n) − 1/2n, as required. In the rest of the proof, we derive a
contradiction with |G| ≥ n/2.

As in the proof of Theorem 10, we pick the likeliest term in the DNF representation of
each of the output bits. For each i ∈ G, since each bit of X is represented as a DNF, we
have Xi =

∨
j∈[si][YNj

i
= αj

i ], where N1
i , . . . , N si

i ⊆ [m] are sets, αj
i ∈ {0, 1}Nj

i are truth
assignments, and si ≤ s. By the law of total probability, we have

Pr[Xi = 1 ∧ |X| ≤ t] ≤
∑

j∈[si]

Pr[|X| ≤ t ∧ YNj
i

= αj
i ] ≤ s Pr[|X| ≤ t ∧ YNmax

i
= αmax

i ],

where Nmax
i and αmax

i correspond to the term in the DNF maximizing the probability
Pr[|X| ≤ t ∧ YNj

i
= αj

i ]. The expected number of good output bits with YNmax
i

= αmax
i is at

least 2−d|G|, so there exists an assignment ρ to the input bits such that ρNmax
i

= αmax
i for at

least |G|2−d good output bits. Let T ⊆ G be the set of these output bits.
Let us estimate how many distinct elements are in the set N := {Nmax

i | i ∈ T}. Suppose
there exist i1, . . . , it+1 ∈ T such that Nmax

i1
= · · · = Nmax

it+1
. Then, by the definition of ρ, we

have αmax
i1

= · · · = αmax
it+1

as well. Thus YNmax
i1

= αmax
i1

implies that for every j ∈ [t+1] we have
YNmax

ij
= αmax

ij
, which in turn implies that |X| ≥ t+1, and so Pr[YNmax

i1
= αmax

i1
∧|X| ≤ t] = 0,

which contradicts that i1 is good. Hence |N | ≥ |T |/t ≥ |G|2−d/t ≥ 2−dn/2t.
Let ε > n−5 be a parameter to be chosen later. By the condition on n we have

|N | ≥ 2−dn/2t ≥ d · (4Bt log(d/ε))d, and so N contains a (1/(4t), ε)-robust sunflower S. Let
K denote the kernel of this sunflower.

Fix an arbitrary petal p ∈ N . Then N ∖{p} is a (1/(2t), 2ε)-robust sunflower by Lemma 8.
Now by Lemma 9 we have

Pr
R∼2[m]

[There are t distinct petals of N ∖ {p} contained in R | R ⊇ K] ≥ 1 − 2tε.

Let P ⊆ T be the indices of the output bits corresponding to the elements of N ∖ {p}, let i

be the index of the output bit corresponding to the petal p, and let U be the set of indices
of input bits such that Yt = ρt. Then
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Pr[|X| > t | YNmax
i

= ρNmax
i

] =
Pr[|X[n]∖{i}| ≥ t | YNmax

i
= ρNmax

i
] ≥

Pr

∑
j∈P

[U ⊇ Nmax
j ] ≥ t

∣∣∣∣∣∣U ⊇ Nmax
i

 =

Pr[
∑

j∈P ∪{i}[U ⊇ Nmax
j ] ≥ t | U ⊇ K]

Pr[U ⊇ Nmax
i | U ⊇ K] ≥ Theorem 4

Pr

∑
j∈P

[U ⊇ Nmax
j ] ≥ t

∣∣∣∣∣∣U ⊇ K

 ≥

1 − 2tε.

Recall that by the choice of T we have ρNmax
i

= αmax
i , hence Pr[|X| > t | YNmax

i
= αmax

i ] ≥
1 − 2tε. Thus

Pr[|X| ≤ t ∧ Xi = 1] ≤ s · Pr[|X| ≤ t ∧ YNmax
i

= αmax
i ] ≤ 2st · ε.

Picking ε = 1/(4stn2) ≥ n−5, we get a contradiction with i being good. ◀

3.3 Subpolynomial Weights
Although Theorem 11 implies Item 2 of Theorem 2, we give a simpler proof via a reduction
from Un

1 .

▶ Lemma 12. Let S ⊆ {0, 1}n and let S ∼ S. Suppose that S can be sampled with a depth-d
decision forest with error η. Assume furthermore that for each s ∈ S there exists a decision
tree Ts of depth k that accepts s and does not accept any of S ∖ {s}. Then there exists a
decision depth-kd sampler for U

|S|
1 with error η.

Proof. Let Y be the distribution sampled by the sampler for S. For each output bit of our
sampler for U

|S|
1 we take a unique element s ∈ S and implement each of the queries of Ts via

the query to the bits of Y (which makes at most d queries to the input bits). This results in
a kd-deep decision tree T ′

s. Let X be the sampled distribution. Then

∆(X, U
|S|
1 ) = 1

2

(
Pr[w(X) ̸= 1] +

∑
s∈S

∣∣Pr[X = es] − 1/|S|
∣∣)

= 1
2

(
Pr[Y ̸∈ S] +

∑
s∈S

∣∣Pr[Y = s] − 1/|S|
∣∣) = ∆(Y , S) = η. ◀

▶ Corollary 13. For some constant τ ′ > 0 and every ε ∈ (0, 1) every (τ ′ logε n)-decision
depth sampler outputs a distribution (1 − n−Ω(k))-far from Un

k for k ∈ [log n, 2log1−ε n]. If
k < log2 n, this holds for every (τ ′ logε n/ log log n)-local sampler.

Proof. The decision tree that queries all the elements of a k-size set and accepts iff all of them
are 1 satisfies the condition in Lemma 12. If we had a (1 − δ)-error sampler for Un

k , we would

get a (1 − δ)-error sampler for U
(n

k)
1 with decision depth kd, which by Theorem 3 yields that

δ =
(

n
k

)−Ω(1) = n−Ω(k) whenever kd ≤ τ log
(

n
k

)
/ log log

(
n
k

)
. Since log

(
n
k

)
= Θ(k log(n/k)),

we get d = Ω(log(n/k)/(log k + log log n)). ◀
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3.4 Sublinear Weights
In this section, we prove Item 1 of Theorem 2.

▶ Lemma 14. Suppose X is sampled with decision depth d. Then for every small enough
ε > 0 there exists a constant τ such that if d ≤ τ log(n/k)/ log log(n/k) then ∆(X, Un

k ) ≥
1 − 2ε − 1

2n .

Proof. Consider the first ℓ := ε−1 · n/k bits of the sampler: X≤ℓ := X1, . . . , Xℓ. Let Y be
the first ℓ bits of the distribution Un

k . We show that Y satisfies the conditions of Theorem 11
for t = ε−2 and α(n) = ε. First, we have

Pr[|Y | > t] = Pr
[
|Y | > ε−1E[|Y |]

]
< ε.

Now let T be any subset of [ℓ] of size at least ℓ/2. Then

Pr[YT = 0T ] =
(

n − ℓ/2
k

)(
n

k

)−1

=
k−1∏
i=0

n − i − ℓ/2
n − i

≤
(

1 − ℓ

2n

)k

=
(

1 − 1
2εk

)k

≤ e−2ε−1
< ε.

Here we assumed k < n/2, since otherwise the lemma is trivially true.
Applying Theorem 11, for small enough τ (which depends on ε) we have ∆(X≤ℓ, Y ) =

1 − 2ε − 1/2n. To finish the proof, observe that ∆(X, Un
k ) ≥ ∆(X≤ℓ, Y ), since the random

variables on the RHS are the marginals of the variables on the LHS. ◀

3.5 Unions of Slices
In this section, we prove the “moreover” part of Theorem 2 by observing that the distribution
Un

S is close to Un
maxx∈S x as long as maxx∈S x = o(n).

▶ Proposition 15. Let k = o(n) and suppose that S ⊆ {0, 1, . . . , k} with k ∈ S. Then we
have ∆(Un

k , Un
S ) = o(1).

Proof. We use the notation
(

n
S

)
:=
∑

i∈S

(
n
i

)
.

∆(Un
k , Un

S ) = 1
2

(
n

S ∖ {k}

)(
n

S

)−1
+ 1

2

(
1 −

(
n

k

)(
n

S

)−1
)

=
(

n

S ∖ {k}

)(
n

S

)−1

≤
(

n

k

)−1 ∑
i∈S∖{k}

(
n

i

)

≤
k−1∑
i=0

(
k

n − i

)i−k

= Θ(k/n). ◀

The case of S with n − minx∈S x = o(n) reduced to the case where maxx∈S x = o(n) by
observing that flipping all output bits can be done with no increase in the decision depth of
the sampler.

4 Local Certificates

In this section, we explore the power of local proof systems. Section 4.1 gives an example
of a language that requires locality Ω(n), which is inspired by a similar lower bound in the
context of sampling [22]. Section 4.2 then gives our main result, a lower bound on the locality
of proof systems for Maj−1(1).
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4.1 Error-correcting codes
In this section, we show that a good error-correcting code requires a proof system of a linear
locality. This showcases the simple counting technique that we also use for our majority
lower bound.

▶ Proposition 16. Let C ⊆ {0, 1}n be a good code, that is, |C| ≥ 2αn and for every x ̸= y ∈ C,
the Hamming distance between x and y is at least βn, where α and β are constants in (0, 1).

If f : {0, 1}m → {0, 1}n is a d-local function and f({0, 1}m) = C then d ≥ αβn

Proof. We may assume w.l.o.g. that all input bits of f affect some output bits. Take
an arbitrary input bit i ∈ [m] and an output bit j ∈ [n] that depends on i. Then take
x, x′ ∈ {0, 1}m that differ only in the ith coordinate and such that f(x)j ̸= f(x′)j . Since
f(x) and f(x′) are two distinct codewords of C, they must be at Hamming distance at least
βn, hence i must affect at least βn output bits, as x and x′ only differ in i. Thus every bit
affects at least βn output bits.

There are at least αn input bits since |C| = 2αn. Therefore there are αβn2 input-output
pairs in which the input bit affects the output bit. On the other hand, there are at most dn

such pairs, hence d ≥ αβn. ◀

4.2 Majority
Let Majn be the the set {x ∈ {0, 1}n | |x| ≥ n/2}. First, let us give a simple upper bound
on locality which is implicit in [20].

▶ Proposition 17 (essentially Theorem 3.9 and Corollary 3.10 in [20]). There exists an
O(log2 n)-local function f : {0, 1}∗ → {0, 1}n such that f({0, 1}∗) = Maj−1

n (1).

Proof. For simplicity, suppose that n is odd. Construct a binary tree whose root is the
interval [1, n], whose leaves are the singletons {1}, . . . , {n}, and in which each internal node
[ℓ, r] has two children [ℓ, c], [c + 1, r], where c = ⌊(ℓ + r)/2⌋. We can construct such a tree
whose depth is O(log n). For each interval [ℓ, r] in the tree we will have a label w(ℓ, r) whose
value ranges from 0 to r − ℓ + 1, which is supposed to indicate xℓ + · · · + xr (where x1, . . . , xn

is the output). We implement the variables using O(log n) input bits.
An internal node [ℓ, r] with children [ℓ, c], [c + 1, r] is consistent if w(ℓ, r) = w(ℓ, c) + w(c +

1, r). In addition, if the internal node is the root [1, n], we require w(1, n) ≥ (n + 1)/2. Each
position i ∈ {1, . . . , n} corresponds to the leaf w(i, i), which has O(log n) ancestors. We say
that position i is good if all its non-leaf ancestors are consistent. The i’th output is w(i, i) if
i is good, and 1 otherwise. Since each w(ℓ, r) is encoded using O(log n) bits, this system has
locality O(log2 n).

Every vector x1, . . . , xn of weight at least (n + 1)/2 can be generated using this system
by taking w(ℓ, r) = xℓ + · · · + xr. In the other direction, consider any assignment of weights
to the tree. If the root is inconsistent, then the output is 1, . . . , 1, so we can assume that
the root is consistent. Prune the tree by removing all children of inconsistent nodes. If
[ℓ, r] is any node in the pruned tree then either ℓ = r and xℓ = w(ℓ, r), or ℓ < r and
xℓ + · · · + xr = r − ℓ + 1 ≥ w(ℓ, r). It follows that x1 + · · · + xn ≥ w(1, n) ≥ (n + 1)/2. ◀

The Ω(log∗ n) locality lower bound in [5] is inspired by the following observation:

▶ Proposition 18. Let f : {0, 1}m → {0, 1}n be such that every output bit is a function
of at most c input bits, and every input bit affects at most d output bits. Suppose that
cd ≤ (n + 1)/2. Then f({0, 1}m) ̸= Maj−1(1).
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Input bits

Output bits

J

SN

I T

j

< k

Figure 2 I is the set of k-influential inputs bits, and S is the given set. The set T consists of all
inputs bits affecting S, and the set N consists of all bits influenced by T ∖ I.

Proof. Let i ∈ [n] be an arbitrary output bit. There are at most cd many output bits in
the “neighborhood” N(i) of i, which is the set of outputs that share an input bit with i. If
|N(i)| ≤ (n + 1)/2 then we can find an output y of weight (n + 1)/2 such that yN(i) = 1N(i).
Suppose that y is generated by the input x. There must be some setting to the inputs of i

which sets it to zero (since there is a valid output z with zi = 0). If we modify x using this
setting then the new output z agrees with y outside of N(i), and furthermore zi = 0. Since
yN(i) = 1N(i), it follows that |z| < |y|, which is impossible, since y had the smallest possible
weight. ◀

One of the steps in our proof (namely, Lemma 20) is essentially an adaptation of the proof
of Proposition 18 for the sources with influential input bits.

We give a simplified exposition of their proof in Appendix B. Our own lower bound is
contained in the following theorem.

▶ Theorem 19. Let f : {0, 1}m → {0, 1}n be a d-local function such that f({0, 1}m) =
Maj−1

n (1), where n is odd. Then d = Ω(
√

log n).

Proof. We say that an input bit i ∈ [m] is k-influential if at least k output bits of f depend
on it. We are going to show that there are Ω(n/(dk)) many k-influential bits for every k.
Then the number of input-output bit pairs where the output depends on the input is at least∑

k∈[n] cn/(dk) = Ω(n log n/d). On the other hand, there are at most nd such pairs since f

is d-local. Therefore d = Ω(
√

log n).
It remains to show the lower bound on the number of k-influential bits. This is done by

combining the following two lemmas.

▶ Lemma 20. Let I be the set of all k-influential input bits. Then for every set of output
bits S of size at most n/(4kd) there exists an assignment ρ to I such that
1. All bits in S are fixed to 1 by ρ, i.e. for every total extension ρ′ of ρ we have f(ρ′)S = 1S.
2. ρ fixes to 1 at most (n + 1)/2 output bits.

Proof. Fix a set S of size at most n/(4kd).
Let T be the set of input bits that affect S, so |T | ≤ d|S|. Let N be the set of all bits

influenced by T ∖ I. See Figure 2 for a pictorial representation of these definitions.
Since I contains all k-influential input bits, |N | ≤ kd|S|. Let ρ′ be a total assignment

such that f(ρ′)N = 1N and |f(ρ′)| = (n + 1)/2. This is possible since |N | ≤ n/4 by the
statement of the lemma. Let ρ := ρ′

I .
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Since |f(ρ′)| = (n + 1)/2, in particular ρ fixes to 1 at most (n + 1)/2 bits. We claim that
ρ fixes all bits in S to 1. Suppose for the sake of contradiction that it doesn’t fix to 1 the bit
j ∈ S. Let J be the set of input bits affecting j. Let ρ′′ be a total assignment consistent with
ρ′ everywhere except J ∖ I such that f(ρ′′)j = 0. Observe that f(ρ′′)[n]∖N = f(ρ′)[n]∖N ,
hence f(ρ′′) ≤ f(ρ′) coordinate-wise. Since f(ρ′′)j = 0 and f(ρ′)j = 1, we have |f(ρ′′)| < n/2,
which contradicts the fact that the image of f is Maj−1

n (1). ◀

▶ Lemma 21. Let I be an arbitrary set of input bits of size at most n/20. Then there exists
a set S of output bits such that |S| = O(|I|) and for every assignment ρ to I that fixes to 1
at most (n + 1)/2 output bits, there exists a bit in S that is not fixed to 1 by ρ.

Proof. Let ρ1, . . . , ρK be all assignments to I that fix at most (n + 1)/2 output bits. Denote
by U1, . . . , UK ⊆ [n] the sets of bits that are not fixed by ρ1, . . . , ρK , respectively, so that
|U1|, . . . , |UK | ≥ (n − 1)/2 ≥ n/3. Then

K
n

3 ≤
K∑

i=1
|Ui| =

∑
j∈[n]

|{i ∈ [K] | Ui ∋ j}|.

Hence there exists j such that |{i ∈ [K] | Ui ∋ j}| ≥ K/3. Let S1 := {j}, and continue this
process for the set of bits [n] ∖ {j} and the set of assignments {ρi : Ui ̸∋ j}. Suppose the
previous iteration yields a set Sk ⊆ [n] of size k and a set of indices Tk ⊆ [K]. Then let
U ′

i := Ui∖Sk for i ∈ Tk. Then |U ′
1|, . . . , |U ′

K | ≥ (n−1)/2−k ≥ n/3, where the last inequality
is true if k < n/6. As before, there exists j ̸∈ Sk such that |{i ∈ Tk | U ′

i ∋ j}| ≥ |Tk|/3. We
then let Sk+1 := Sk ∪ {j} and Tk+1 := {i ∈ Tk | U ′

i ̸∋ j}.
Clearly |Tk| ≤ K · (2/3)k−1, hence in τ = ⌈log3/2 K⌉ ≤ 2 log2 K ≤ 2|I| ≤ n/10 steps we

eliminate all assignments from the set, i.e. Sτ satisfies that for every assignment ρ to I that
fixes at most (n + 1)/2 output bits, there exists j ∈ Sτ that is not fixed by ρ. (The bound
2|I| ≤ n/10 guarantees that the condition k < n/6 holds). ◀

Let I be the set of all k-influential bits. If |I| ≥ n/20 we get the desired lower bound
immediately, so assume otherwise. Then let S be the set given by Lemma 21, |S| = O(|I|).
By Lemma 20 we get that |S| = Ω(n/(dk)), so |I| = Ω(n/(dk)) as well. ◀
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A Switching Networks for Sampling Linear Slices

In this section, we discuss the limitations of switching networks for constructing decision
tree samplers.

▶ Definition 22. A switching network of depth d is a sequence of d matchings M1, . . . , Md.
Each Mi is a set of n/2 disjoint pairs of elements from [n]. The distribution generated by a
switching network over a slice

([n]
ℓ

)
is defined as follows:

Initialize the string as 1ℓ0n−ℓ;
For each i ∈ [d]: for every pair in (a, b) ∈ Mi, we toss a fair coin, and if it comes up
heads, we swap the ath and the bth bits of the current sequence.

▶ Lemma 23 (A variation of [26]). Suppose there exists a switching network of depth d that
generates the variable X over

([n]
ℓ

)
. Then there exists a decision depth d sampler for X such

that each input bit affects at most 2d output bits. Moreover, the support of X is a subset of([n]
ℓ

)
.

Proof. The input bits correspond to the coin tosses in the switching network. Each output
bit is computed by tracing back its initial position: first, we query the coin corresponding
to the pair in Md containing the bit, then we query the coin corresponding to the pair in
Md−1 and so on until we compute the location of the bit in the initial sequence. Then if the
location is in [ℓ] we output 1 and otherwise output 0. It is easy to see that the described
sampler has the required properties. ◀

▶ Lemma 24. Let α ∈ (0, 1) be a constant. Suppose X is samplable with a d-local sampler
such that each input bit affects at most c output bits, the support of X is within

([n]
αn

)
, and

n/(cd)2 = ω(2cd). Then ∆(X, Un
αn) = 1 − o(1).

Proof. For each output bit i ∈ [n] of X, let N(i) ⊆ [n], the neighborhood of i, be the set
of output bits that share an affecting input bit with i. By assumption, |N(i)| ≤ cd. Let
us greedily choose a set of output bits with disjoint neighborhoods: t1 = 1, and for j > 1,
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tj ∈ [n] is a bit such that N(tj) ∩ (N(t1) ∪ · · · ∪ N(tj−1)) = ∅. For each output bit i there
are at most (cd)2 output bits j for which N(i) ∩ N(j) ̸= ∅, so the greedy process yields
ℓ ≥ n/(cd)2 bits.

Suppose that there is a bit i ∈ {t1, . . . , tℓ} such that Pr[Xi = 0] > 0 and Pr[XN(i) =
1N(i)] > 0. Then we use the approach from Proposition 18: let x ∈

([n]
αn

)
be a string in

the support of X such that xN(i) = 1N(i), and let ρ be the input bits that yield x. Since
Pr[Xi = 0] > 0, we can change the bits of ρ affecting the ith output bit such that its value
switches to 0. Denote the resulting input by x′. Observe then that x[n]∖N(i) = x′

[n]∖N(i),
since N(i) is the set of output bits that are affected by the input bits affecting the ith
bit. Then |x′| < |x|, hence x′ ̸∈

([n]
αn

)
, so it does not lie in the support of X, which is a

contradiction.
Now let us analyze the case when there are no bits satisfying the condition. Let I ⊆

{t1, . . . , tℓ} consist of those output bits for which Pr[Xi = 0] = 0. If |I| ≥ ℓ/2 then

∆(X, Un
αn) ≥

∣∣Pr[XI = 1I ] − Pr[(Un
αn)I = 1I ]

∣∣ = 1 −
(

n − |I|
αn

)(
n

αn

)−1

= 1 −
αn−1∏
j=0

n − |I| − j

n − j
≥ 1 −

(
1 − |I|

n − αn + 1

)αn

≥ 1 − 2−Ω( α
1−α |I|) = 1 − 2−Ω(ℓ).

Since ℓ = Ω(n/(cd)2) = ω(1), in this case ∆(X, Un
αn) = 1 − o(1).

Now suppose that |I| ≤ ℓ/2, and let J = {t1, . . . , tℓ}∖ I. Assume that all bits in J satisfy
Pr[XN(i) ̸= 1N(i)] = 1. Let us compute the probability of this event for Un

αn:

Pr[(Un
αn)N(i) ̸= 1N(i)] = 1 −

(
n − |N(i)|

αn

)(
n

αn

)−1
= 1 −

αn−1∏
j=0

n − |N(i)| − j

n − j

≤ 1 −
(

1 − |N(i)|
n

)αn

≤ 1 − 2−Ω(α|N(i)|) = 1 − 2−Ω(cd).

Therefore

Pr[(Un
αn)N(i) ̸= 1N(i) for all i ∈ J ] =

∏
i∈J

(1 − 2−Ω(cd)) ≤ (1 − 2−Ω(cd))ℓ/2.

Since ℓ/2 = n/(2(cd)2) = ω(2cd), we get the desired lower bound on the statistical distance
in this case as well. ◀

▶ Corollary 25. Let α ∈ (0, 1) be a constant. Any switching network that generates a
distribution that is 1 − Ω(1) close to Un

αn has depth Ω(log log n).

Proof. Consider a switching network of depth d that generates a distribution that is 1 − Ω(1)
close to Un

αn. Lemma 23 translates it to a decision depth d sampler for Un
αn such that each

input bit affects at most c = 2d output bits. The sampler is 1 − Ω(1) close to Un
αn, and

supported within
([n]

αn

)
. The result now follows from Lemma 24. ◀

B Exposition of the Ω(log∗ n) lower bound for Majority

The following is an exposition of the proof of [5, Theorem 5.1].

APPROX/RANDOM 2023



36:20 Sampling and Certifying Symmetric Functions

Suppose that n is odd, and consider a locality c proof system for the vectors containing
more 1s than 0s, that is, having Hamming weight at least (n + 1)/2. We can assume that
c ≥ 2.4

The proof system has inputs and outputs. The number of outputs is n, and each one
depends on at most c input bits. An input bit is d-influential if at least d output bits depend
on it. There are at most cn/d many d-influential input bits.

Let 1 = B(0) < B(1) < · · · < B(c + 1) be a sequence of constants (depending on c but
not on n), and let d(ℓ) = cn/B(ℓ), so that cn = d(0) > d(1) > · · · > d(c + 1) = Ω(n). Thus
there are at most B(ℓ) many input bits which are d(ℓ)-influential.

We will construct a sequence of sets ∅ = R0 ⊆ R1 ⊆ · · · ⊆ Rc ⊆ [n] with the following
property: If ρ is a truth assignment to the d(ℓ)-influential variables which extends to a
complete truth assignment setting all coordinates in Rℓ to zero, then for each coordinate
i /∈ Rℓ, ρ also extends to a complete truth assignment setting coordinate i to zero.5

Given Rℓ−1, here is how we construct Rℓ. We start with R := Rℓ−1, and will potentially
add more output coordinates to R. At any point, suppose that there is a truth assignment ρ

to the d(ℓ)-influential variables which (i) extends to a complete truth assignment setting all
coordinates in R to zero, and (ii) for some coordinate i /∈ R, any complete truth assignment
extending ρ sets coordinate i to one. If that happens, then we add i to R. Henceforth, ρ

will not come up again, since no complete truth assignment extending ρ sets i to one, and i

belongs to R. Eventually, there is no such “bad” truth assignment, and we set Rℓ := R.
If i ∈ Rℓ then there exists some r ≤ ℓ, some R ⊆ Rr, and some truth assignment ρi to

the d(r)-influential variables, such that ρi extends to a complete truth assignment setting all
coordinates in R to zero, and any complete truth assignment extending ρi sets i to one. If
j ∈ Rℓ was added after i then the truth assignment ρj extends to a complete truth assignment
which sets all coordinates in R ∪ {i} to zero. In particular, ρj doesn’t extend ρi (as a special
case, ρj ̸= ρi). It follows that if we extend each ρi arbitrarily to a truth assignment to the
d(ℓ)-influential variables, then the resulting assignments will all be different. Consequently,

|Rℓ| ≤ 2B(ℓ).

For large enough n, this will be at most n−1
2 .

We show below that for a proper choice of parameters, there is an output coordinate
i which satisfies the following, for all ℓ ∈ {0, . . . , c}: i /∈ Rℓ, and all inputs to i which are
also inputs to Rℓ are d(ℓ + 1)-influential. We will show that for each ℓ ∈ {0, . . . , c}, i has an
input which is d(ℓ + 1)-influential but not d(ℓ)-influential. For different ℓ these inputs are
different (since an input which is not d(ℓ)-influential is also not d(r)-influential for all r < ℓ),
and so i depends on c + 1 inputs, which is impossible.

Let ℓ ∈ {0, . . . , c}. Let us show that i has an input which is d(ℓ + 1)-influential but not
d(ℓ)-influential. We do this by contradiction: suppose that all d(ℓ + 1)-influential inputs of i

are d(ℓ)-influential. By assumption, i /∈ Rℓ and all inputs to i which are also inputs to Rℓ are
d(ℓ)-influential. Let N(i) consist of i together with all other output bits which share some
non-d(ℓ)-influential bit with i. All of these shared input bits are in fact non-d(ℓ+1)-influential,
and so

|N(i)| ≤ 1 + cd(ℓ + 1) ≤ 1 + cd(1) = 1 + c2n

B(1) .

4 Alternatively, change B(0) or redefine d-influential as having more than d output bits depending on it.
5 In the paper, ρ extends to a complete truth assignment setting both Rℓ and i to zero.
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If B(1) > 2c2 then |N(i)| < 1 + n
2 and so |N(i)| ≤ (n + 1)/2. Since |Rc| ≤ n−1

2 , the proof
system generates some vector v of weight (n + 1)/2 in which all coordinates of Rc are zero
and all coordinates of N(i) are one. Consider an arbitrary complete truth assignment α

which generates v, and let ρ be its restriction to the d(ℓ)-influential coordinates. Since i /∈ Rℓ,
by construction, we know that ρ extends to some complete truth assignment β which sets i

to zero. Now consider the following complete truth assignment:

γ(j) =


ρ(j) if j is d(ℓ)-influential,
β(j) if j is not d(ℓ)-influential and influences N(i),
α(j) if j is not d(ℓ)-influential and doesn’t influence N(i).

Since α, β both extend ρ, γ agrees with them on the d(ℓ)-influential variables. Therefore the
output generated by γ agrees with that generated by α except for the coordinates in N(i),
which could change from one to zero. Moreover, the i’th output of γ agrees with the i’th
output of β, namely, it is zero. Therefore the output generated by γ has Hamming weight
strictly less than (n + 1)/2, which is impossible.

It remains to show that there exists an output bit i such that i /∈ Rc, and for all
ℓ ∈ {0, . . . , c}, all inputs to i which are also inputs to Rℓ are d(ℓ + 1)-influential. We do this
by giving an upper bound on the number of bad output bits. An output bit is bad if it either
belongs to Rc, or for some ℓ ∈ {0, . . . , c}, there is a joint input of i and Rℓ which is not
d(ℓ + 1)-influential. If i is bad due to some ℓ, then there must be some non-d(ℓ + 1)-influential
input of Rℓ which is an input of i. Therefore the number of bad inputs is at most

|Rc| +
c∑

ℓ=0
|Rℓ| · c · d(ℓ + 1) ≤ 2B(c) + n · c2

c∑
ℓ=0

2B(ℓ)

B(ℓ + 1) .

For a judicious choice of the sequence B(ℓ), the coefficient of n will be strictly less than 1,
and so for large enough n, there are fewer than n bad inputs.

One choice for the sequence B(ℓ) is

B(ℓ + 1) = 2B(ℓ) · 2c2(c + 1).

In particular, B(1) = 4c2(c + 1) > 2c2, which was needed above. For this choice of
B(0), . . . , B(c), the number of bad inputs is at most

2B(c) + n

2 ,

which less than n if 2B(c) ≤ n−1
2 , a condition which was required at a different step of this

proof.
Roughly speaking, B(ℓ + 1) ≈ 2c3 · 2B(ℓ), and so B(c) ≈ 2 ↑↑ c. Therefore 2B(c) ≤ n−1

2 ,
and so the argument works, for c ≤ κ log∗ n, for an appropriate constant κ.
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37:2 Hardness of the (Approximate) Shortest Vector Problem

1 Introduction

[I]t may easily happen that other, perhaps in some sense simpler, lattices also
have the properties that are required from L to complete the proof. . . There
are different reasons which may motivate the search for such a lattice: to make
the proof deterministic; to improve the factor in the approximation result; to
make the proof simpler.

Miklós Ajtai, [3, Remark 2]

A lattice L is the set of all integer linear combinations of some n linearly independent vectors
b1, . . . , bn ∈ Rm. The matrix B = (b1, . . . , bn) whose columns are these vectors is called a
basis of L, and n is called its rank. Formally, the lattice L generated by B is defined as

L = L(B) :=
{ n∑

i=1
aibi : a1, . . . , an ∈ Z

}
.

Lattices are classically studied mathematical objects, and have proved invaluable in many
computer science applications, especially the design and analysis of cryptosystems. Indeed,
the area of lattice-based cryptography, which designs cryptosystems whose security is based
on the apparent intractability of certain computational problems on lattices, has flourished
over the past quarter century. (See [36] and its bibliography for a comprehensive summary
and list of references.)

The central computational problem on lattices is the Shortest Vector Problem (SVP):
given a lattice basis B as input, the goal is to find a shortest non-zero vector in L(B). This
paper is concerned with its γ-approximate decision version in the ℓp norm (γ-GapSVPp),
where p ≥ 1 is fixed and the approximation factor γ = γ(n) ≥ 1 is some function of the lattice
rank n (often a constant). Here the input additionally includes a distance threshold s > 0,
and the goal is to determine whether the length (in the ℓp norm) λ

(p)
1 (L) := minv∈L\{0}∥v∥p

of the shortest non-zero vector in L is at most s, or is strictly greater than γs, when one
of the two cases is promised to hold. For the exact problem, where γ = 1, we often simply
write GapSVPp.

Motivated especially by its central role in the security of lattice-based cryptography,
understanding the complexity of γ-GapSVP has been the subject of a long line of work. In
an early technical report, van Emde Boas [38] initiated the study of the hardness of lattice
problems more generally, and in particular showed that GapSVP∞ is NP-hard. Seventeen
years later, Ajtai [3] finally showed similar hardness for the important Euclidean case of
p = 2, i.e., he showed that exact GapSVP2 is NP-hard, though under a randomized reduction.
Subsequent work [10, 31, 27, 26, 23, 32] improved this by showing that γ-GapSVPp in any ℓp

norm is NP-hard to approximate for any constant γ ≥ 1, and hard for nearly polynomial
factors γ = nΩ(1/ log log n) assuming stronger complexity assumptions, also using randomized
reductions. Recent work [1, 7] has also shown the fine-grained hardness of γ-GapSVPp for
small constants γ (again under randomized reductions). On the other hand, γ-GapSVPp for
finite p ≥ 2 is unlikely to be NP-hard for approximation factors γ ≥ Cp

√
n (where Cp is a

constant depending only on p) [18, 2, 35], and the security of lattice-based cryptography
relies on the conjectured hardness of GapSVP or other problems for even larger (but typically
polynomial) factors.

While this line of work has been very successful in showing progressively stronger hardness
of approximation and fine-grained hardness for γ-GapSVPp, it leaves some other important
issues unresolved. First, for p ̸= ∞ the hardness reductions and their analysis are rather
complicated, and second, they are randomized. Indeed, it is a notorious, long-standing open
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problem to prove that GapSVPp is NP-hard, even in its exact form, under a deterministic
reduction for some finite p. While there have been some potential steps in this direction [31,
32], e.g., using plausible number-theoretic conjectures that appear very hard to prove, there
has been no new progress on this front for a decade.

1.1 Our Contributions
The primary contribution of this work is to give a substantially simpler proof that γ-GapSVPp

is NP-hard under a randomized reduction, for any p ≥ 1 and constant γ < 21/p. The heart
of our reduction is a family of “gadget” lattices L derived from Reed-Solomon codes C ⊆ Fn

q

(for prime q) via the very natural “Construction A” [13], which simply sets L = C + qZn.
These lattices and their properties were previously studied in work of Karabed, Roth, and
Siegel [25, 37]. Additionally, they are closely related to a family of algebraic lattices studied
by Craig [14]. We take advantage of this prior work in our analysis (see Section 1.3 for
details).

▶ Theorem 1 (Hardness of γ-GapSVPp). For any p ≥ 1 and constant γ satisfying 1 ≤ γ <

21/p, γ-GapSVPp is not in RP unless NP ⊆ RP.

We note that Theorem 1 is actually identical to the main result in [31]. As such, it matches
the best known NP-hardness of approximation for γ-GapSVPp (i.e., largest γ) achieved by a
“one-shot” reduction for all sufficiently small p, including p = 2. By “one-shot,” we mean that
the reduction does not amplify the approximation factor from an initial fixed constant to an
arbitrary constant (or more) via tensoring, as is done in [26, 23, 32]. (It is an interesting
question whether our hard γ-GapSVPp instances are amenable to tensoring; see Section 1.4.)

Although our reduction still uses randomness, we believe that it may be easier to
derandomize than previous reductions, both due to its simplicity, and because of its close
connection to prior work showing hardness of minimum distance problem on codes via
a deterministic reduction [12]. To that end, in the full version of our paper [6] we also
describe two approaches to potentially derandomizing our reduction, both of which aim to
deterministically construct a particular lattice coset and lower bound the number of short
vectors in it (see Section 1.2 for the motivation for this). The first approach is based on
Fourier analysis, using similar techniques to those in [12], and the second is based on “smooth”
proxies for point-counting functions.

In the full version of our paper [6] we also show that a close deterministic analog of
our randomized local-density construction would imply improved explicit Reed-Solomon
list-decoding lower bounds, going beyond the current state of the art from [20]. One may
interpret this implication either pessimistically, as a barrier to a very strong derandomization
of our reduction, or optimistically, as a potential route to improve Reed-Solomon list-decoding
lower bounds. Here there is a further connection between the two problems, in that [20]
obtains its list-decoding lower bounds by using the same Fourier-analytic tool underlying
one of our derandomization attempts – specifically, the Weil bound for character sums .
Unfortunately, the Weil bound falls just short of what we need in our context. (The Weil
bound and related techniques were first used for counting Reed-Solomon code words in [11],
and were also used in the deterministic hardness reduction for the minimum distance problem
on codes in [12].)

Efficient decoding near Minkowski’s bound. As a separate contribution of independent
interest, in Appendix A we give a polynomial-time algorithm for decoding “Construction A
Reed-Solomon lattices” of rank n – the same family of lattices as in our hardness reduction,
but instantiated with different parameters – to a distance within a O(

√
log n) factor of

APPROX/RANDOM 2023
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Minkowski’s bound.1 The O(
√

log n) factor in our result asymptotically matches the best
factor known from prior work [34], which is for a different family of lattices. In fact, we rely
on one of the main underlying theorems from that work, but give a simpler construction and
analysis based on individual Reed-Solomon codes instead of towers of BCH codes.

Let RSq[k, S] denote the dimension-k Reed-Solomon code over Fq with evaluation set S

(defined below in Equation (3)). Note that n = q is the rank of the lattice L in the following
theorem.

▶ Theorem 2 (Decoding near Minkowski’s bound, informal). Let q be prime and let k :=
⌊q/(2 log2 q)⌋ ≤ q/2. Then for the “Construction A Reed-Solomon” lattice L := RSq[q −
k,Fq] + qZq ⊆ Zq:

1. We have Ω(
√

q/ log q) ≤ λ1(L) ≤ √
q · det(L)1/q ≤ O(√q), i.e., the minimum distance is

within a O(
√

log q) factor of Minkowski’s bound.
2. There is an algorithm that, on input q and a vector y ∈ Rq, outputs all lattice vectors

v ∈ L satisfying ∥y − v∥ ≤ C
√

k ≈ C
√

q/(2 log2 q) in time polynomial in q, for some
universal constant C > 0.

This result adds to a separate line of work on efficient (list) decoding for various families
of lattices [33, 19, 15, 34]. Recently, Ducas and van Woerden [16] further motivated this
study by showing cryptographic applications of lattices that can be efficiently decoded near
Minkowski’s bound. (However, their application is most compelling when the minimum
distances of both the lattice and its dual are close to Minkowski’s bound, which is not the
case in the present setting.)

1.2 Technical Overview
Here we give an overview of the key new elements in the proof of our main hardness theorem
(Theorem 1), which are the focus of Section 3. For concision, we defer the technical aspects
of our efficient decoding algorithm to Appendix A and of our derandomization attempts to
the full version of our paper [6], respectively.

Besides using randomness, another common feature in nearly all prior hardness results for
GapSVPp is the use of locally dense lattices as advice (the only exception being [27]). Roughly
speaking, a locally dense lattice for relative distance α ∈ (0, 1) in the ℓp norm is a lattice L
and a coset x + L (i.e., the lattice “shifted by” some vector x) such that there are at least
subexponentially many (in the lattice rank) vectors v ∈ x + L satisfying ∥v∥p ≤ α · λ

(p)
1 (L).

One may view such a coset x + L as a “bad” configuration for list-decoding L to within
relative distance α in the ℓp norm, because there are many lattice vectors relatively close
to −x.2

Prior works have obtained locally density from a variety of lattice families: the Schnorr-
Adelman prime number lattices [3, 10, 31]; a variant of Construction A [26] and Construc-
tion D [32] applied to (towers of) BCH codes; and random sublattices of Zn and lattices
with exponential kissing number [1, 7]. In this work, we give a simple construction of locally
dense lattices from Reed-Solomon codes, as described below.

1 Minkowski’s bound gives an upper bound on the “normalized density” of a lattice L. Specifically, it
asserts that λ

(2)
1 (L) ≤

√
n · det(L)1/n for all rank-n lattices L, where det(L) =

√
det(BT B) for any

basis B of L.
2 For technical reasons, the formal definition of local density, given in Definition 8, also requires a linear

transform that maps the short vectors in x + L onto the set of all binary vectors of a given dimension.
Such a transform can be obtained by random sampling using a probabilistic version of Sauer’s Lemma
(see Theorem 9) that is now standard in this context [3, 31]. Therefore, we defer further discussion of
this issue to the main body.
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Our main reduction (Theorem 12) shows how to use a locally dense lattice for relative
distance α in the ℓp norm to prove NP-hardness (via a randomized reduction) of γ-GapSVPp

for any constant γ > 1/α. This reduction is very similar to those from prior works, so for
the remainder of this section we focus on summarizing our new construction of locally dense
lattices.

Locally dense lattices from Reed-Solomon codes. We start with some basic definitions
and facts used in our construction. Recall that the Construction A lattice obtained from a
linear code C ⊆ Fn

q for some prime q is defined as L := C + qZn, i.e., an integer vector z ∈ Zn

is in the lattice if and only if z mod q is a code word. In fact, it will often be convenient
to work with an equivalent “dual view” of Construction A lattices. Namely, if H ∈ Fk×n

q is
a parity-check matrix of a linear code C := ker(H) ⊆ Fn

q for prime q, then the parity-check
lattice L⊥(H) obtained from H is defined as

L⊥(H) := {z ∈ Zn : Hz = 0 ∈ Fk
q } = ker(H) + qZn = C + qZn . (1)

Such lattices have determinant det(L⊥(H)) = |Zn/L⊥(H)| ≤ qk, with equality exactly
when H has full row rank (see Lemma 4).

We next define the family of parity-check matrices H = Hq(k, S) that we use to construct
our family of locally dense lattices. Such a matrix is parameterized by a prime q, a positive
integer k, and a set S ⊆ Fq. Letting s0, . . . , sn−1 be the elements of S in some arbitrary
order, we define

H = Hq(k, S) :=


1 1 1 · · · 1
s0 s1 s2 · · · sn−1
s2

0 s2
1 s2

2 · · · s2
n−1

...
...

...
. . .

...
sk−1

0 sk−1
1 sk−1

2 · · · sk−1
n−1

 ∈ Fk×n
q . (2)

That is, Hq(k, S) is the transposed Vandermonde matrix whose (i, s)th entry is si, where
for convenience we index the rows and columns of Hq(k, S) by i ∈ {0, . . . , k − 1} and s ∈ S,
respectively, and define 00 := 1.

The matrix H = Hq(k, S) defined in Equation (2) is a generator matrix of the dimension-k
Reed-Solomon code

RSq[k, S] := {(p(s))s∈S : p ∈ Fq[x], deg(p) < k} (3)

over Fq with evaluation set S, and hence is a parity-check matrix of its dual code, which
is a so-called generalized Reed-Solomon (GRS) code (see [22, Theorem 5.1.6]). Moreover,
in the special case where S = Fq, it turns out that Hq(k, S) is a parity-check matrix for
the (ordinary) Reed-Solomon code RSq[q − k,Fq] of dimension q − k with evaluation set
S = Fq. So, L⊥(Hq(k,Fq)) = RSq[q −k,Fq]+qZq is the Construction A lattice corresponding
to the Reed-Solomon code RSq[q − k,Fq]. For simplicity, in this overview we restrict to
these “Construction A Reed-Solomon” lattices by taking S = Fq, but note that our results
generalize to any sufficiently large S ⊆ Fq.

It is easy to see that for k < q, the GRS code having parity-check matrix H has minimum
distance (in the Hamming metric) k + 1: any k columns of H are linearly independent,
because they form a transposed Vandermonde matrix, while any k + 1 obviously are not.
Therefore, the corresponding Construction A lattice L := ker(H)+qZq has minimum distance
λ

(1)
1 (L) ≥ k + 1 in the ℓ1 norm. The key to our local density construction and its α ≈ 1/21/p

APPROX/RANDOM 2023
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relative distance is that the ℓ1 minimum distance is in fact almost twice this large (at least):
in Theorem 14 we show that λ

(1)
1 (L) ≥ 2k when k ≤ q/2. The proof is short and elementary,

proceeding via Newton’s identities. Essentially the same result and proof originally appeared
in work by Roth and Siegel [37], and closely related analysis also appeared in work on Craig
lattices [14] (see Section 1.3).

Obtaining a dense coset. Because the determinant of L (i.e., the number of its integer
cosets) is qk, the pigeonhole principle immediately implies that there exists an integer coset
of L containing at least

(
q
h

)
/qk binary vectors in {0, 1}q with Hamming weight h, which

have ℓ1 norm h. By setting parameters appropriately, this yields a coset with subexponentially
many vectors of ℓ1 norm at most α · λ

(1)
1 (L), for any constant α > 1/2.

More specifically, set h := α · (2k) ≤ α · λ
(1)
1 (L) and q ≈ k1/ε for some positive constant

ε < 1 − 1/(2α). (For simplicity, assume that h is an integer.) Then there must exist an
integer coset of L containing at least(

q
h

)
qk

≥
( q

h

)h

· q−k = q(2α−1)k

(2αk)2αk
≈ q(2α−1)k

q2εαk
= q(2(1−ε)α−1)k = qΩ(k) = qΩ(qε) (4)

weight-h binary vectors, which is subexponentially large in q.
The above shows the existence of a suitable coset, but following previous works, it is

straightforward to show that a randomly sampled coset from a suitable distribution is likely
to have enough short vectors (see Lemma 16). Indeed, the difference between showing that
such a coset exists, versus sampling one efficiently, versus deterministically computing one
efficiently, is the main technical difference between getting a non-uniform, versus randomized,
versus deterministic hardness reduction (respectively) for GapSVPp using these techniques.

The above argument generalizes to arbitrary ℓp norms for finite p, albeit for larger relative
distances α > 1/21/p. Because L is integral, λ

(1)
1 (L) ≥ 2k implies that λ

(p)
1 (L) ≥ (2k)1/p for

any finite p ≥ 1. Moreover, reparameterizing the calculation in Equation (4) by choosing
α > 1/21/p and setting h := αp · (2k) shows that some coset of L contains subexponentially
many binary vectors of Hamming weight h, and hence of ℓp norm h1/p = α · (2k)1/p ≤
α · λ

(p)
1 (L). Therefore, this construction yields locally dense lattices in the ℓp norm for any

constant relative distance α > 1/21/p, which by our main reduction implies Theorem 1, i.e.,
randomized NP-hardness of γ-GapSVPp for any constant γ < 21/p.

1.3 Additional Related Work
First, we note that after this work was first published [5] used the properties of the gadget
lattices L = L⊥(Hq(k, S)) we construct to show improved results and answer an open question
about the parameterized complexity of GapSVP. Somewhat more specifically, [5] gave a
parameterized analog of Theorem 1 by showing W[1]-hardness (under randomized reductions)
of γ-GapSVPp for any p ≥ 1 and any γ satisfying 1 ≤ γ < 21/p. This in particular answered
a question from [17, 9], which asked whether γ-GapSVP was W[1]-hard in the ℓ1 norm. Prior
to [5] (which crucially relied on this work), such hardness was not known even in the exact
case of γ = 1.

The key lower bound of λ
(1)
1 (L) ≥ 2k for L = L⊥(Hq(k, S)) follows immediately from

works by Karabed, Roth, and Siegel [25, 37], which adapted an argument by Immink and
Beenker [24]. In fact, [25, 37] showed their lower bounds for the Lee minimum distance
of a family of BCH codes, including ones that are Reed-Solomon codes with parity check
matrices of the form Hq(k, S). However, their results immediately apply to the ℓ1 minimum
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distance of L = L⊥(Hq(k, S)) as well, because Lee distance is essentially “ℓ1 distance with
wrap-around.”3 Even earlier, Berlekamp [8, Chapter 9] gave an argument using Newton’s
identities to prove a similar lower bound on the Lee minimum distance of negacyclic codes,
which are codes whose parity check matrices are of the form in Equation (2) but with its even-
power rows deleted (i.e., with only its odd-power rows). Additionally, our Construction A
Reed-Solomon lattices L are closely related to a family of algebraic lattices studied by
Craig [14]; see also [13, Chapter 8, Section 6].4 Indeed, [13, Chapter 8, Section 6, Theorem 7]
again gives a very similar argument for lower bounding the minimum distance of Craig
lattices using Newton’s identities.Our proof of Theorem 14 is inspired by and similar to all of
these “minimum distance lower bounds via Newton’s identities” arguments, and in particular
is very similar to the ones in [37] and [13, Chapter 8, Section 6, Theorem 7].

We omit further discussion of related work due to space constraints and encourage the
reader to view the full version of this work [6].

1.4 Open Questions
The obvious question left open by our work is whether our reduction can be derandomized,
using the same family of lattices. Addressing this is the main focus of Section 5 in the full
version of this paper [6]. The full version also discusses several other open questions. We
omit this material due to space constraints, but strongly encourage the reader to view [6].

2 Preliminaries

Throughout this work we adopt the convention that 00 := 1 in any ring. For a positive
integer k, define [k] := {0, 1, . . . , k − 1}.

In general, every vector or matrix is indexed by some specified set S. For example,
x ∈ ZS is an integer vector indexed by S, having an entry xs ∈ Z for each s ∈ S (and no
other entries). When the index set is [n] for some non-negative integer n, we usually omit
the brackets in the exponent and just write, e.g., Zn. We emphasize that in this case the
indices start from zero. An object indexed by a finite set S of size n = |S| can be reindexed
by [n], simply by enumerating S = {s0, . . . , sn−1} under some arbitrary order, and identifying
index si with index i.

For a finite set S and a positive integer h ≤ |S|, let BS,h := {v ∈ {0, 1}S : ∥v∥1 = h} be
the set of binary vectors indexed by S of Hamming weight h. As above, when S = [n] we
often write Bn,h. Finally, let Bn

p (r) := {x : ∥x∥p ≤ r} ⊂ Rn denote the real n-dimensional ℓp

ball of radius r centered at the origin.

2.1 Basic Lattice Definitions
Given a lattice L = L(B) with basis B ∈ Rm×n, we define the rank of L to be n and the
(ambient) dimension of L to be m. We denote the minimum distance of L in the ℓp norm,
which is the length of a shortest non-zero vector in L, by

3 More precisely, the Lee distance of x ∈ Fn
q is

∑n

i=1 min{xi, q − xi}, where elements of the prime-order
field Fq are identified in the natural way with the integers {0, 1, . . . , q − 1}. This is the natural analog
of ℓ1 distance on Fq (or Zq). Moreover, the ℓ1 minimum distance of the Construction A lattice C + qZn

is equal to the minimum of q and the Lee minimum distance of C.
4 Specifically, [13] considers Craig lattices obtained from the coefficient vectors of polynomials in principal

ideals of the form (x − 1)mR in rings of the form R = Z[x]/(xp − 1), for some prime p and integer m ≥ 1.
The original definition of [14] is slightly different, and uses the “canonical” (Minkowski) embedding of
such ideals in the ring of integers R = Z[x]/(Φp(x)) of the pth cyclotomic number field.
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37:8 Hardness of the (Approximate) Shortest Vector Problem

λ
(p)
1 (L) := min

x∈L\{0}
∥x∥p .

The central problem that we study in this work asks about the value of λ
(p)
1 (L) for a given

input lattice L.

▶ Definition 3. For p ≥ 1 and γ = γ(n) ≥ 1, the decisional, γ-approximate Shortest Vector
Problem in the ℓp norm (γ-GapSVPp) is the promise problem defined as follows. The input
consists of a basis B ∈ Zm×n of an integer lattice L and a distance threshold s > 0, and the
goal is to determine whether the input is a YES instance or a NO instance, where these are
defined as follows:

YES instance: λ
(p)
1 (L) ≤ s.

NO instance: λ
(p)
1 > γs.

We define the determinant of L to be det(L) :=
√

det(BT B), which is equal to |det(B)|
when m = n (i.e., when L is full-rank). We note that determinant is well defined because,
although lattice bases are not unique, they are equivalent up to multiplication on the right
by unimodular matrices.

The density of a rank-n lattice L is captured by its so-called root Hermite factor
λ1(L)/ det(L)1/n.5 The density of a lattice corresponds to its quality in various applic-
ations, including as the set of centers of a sphere packing and as an error-correcting code.
Minkowski’s bound asserts that the root Hermite factor of such a rank-n lattice is at most

√
n,

which is convenient to write in expanded form as

λ1(L) ≤
√

n · det(L)1/n . (5)

2.2 Parity-Check Matrices and Lattices
For a prime q and a matrix H ∈ Fk×n

q , we define the parity-check lattice L⊥(H) obtained
from H as

L⊥(H) := {z ∈ Zn : Hz = 0} = ker(H) + qZn . (6)

Note that L⊥(H) is simply the “Construction A” lattice [13, Chapter 5, Section 2] of the
linear error-correcting code C having H as a parity-check matrix, i.e., C = {c ∈ Fn

q : Hc = 0}.
More generally, for any “syndrome” u ∈ Fk

q we define

L⊥
u (H) := {x ∈ Zn : Hx = u} .

If there exists some x ∈ Zn such that Hx = u, then it follows immediately that L⊥
u (H) is

simply the lattice coset x+L⊥(H). So, we can identify cosets of L⊥(H) by their corresponding
syndromes. We recall some standard properties of parity-check lattices, and give a proof for
self-containment.

▶ Lemma 4. Let q be a prime, let k and n be positive integers, and let H ∈ Fk×n
q be a

parity-check matrix. Then the parity-check lattice L = L⊥(H) has rank n and determinant
det(L) ≤ qk, with equality if and only if the rows of H are linearly independent.

5 This ratio is the square root of the Hermite factor γ(L) := (λ1(L)/ det(L)1/n)2, which is defined in this
way for historical reasons.
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Proof. The first claim follows simply by noting that qZn ⊆ L⊥(H) ⊆ Zn. For the de-
terminant, observe that the map x 7→ Hx is an additive-group homomorphism from Zn

to Fk
q , and that L⊥(H) is its kernel by definition. So, by the first isomorphism the-

orem, the map induces an isomorphism from the quotient group Zn/L⊥(H) to the im-
age Im(H) = {Hx : x ∈ Zn} ⊆ Fk

q , where the subset relation is an equality if and only
if the rows of H are linearly independent. The claim then follows from the fact that
det(L⊥(H)) =

∣∣Zn/L⊥(H)
∣∣ = |Im(H)|. ◀

We next formally define the family of parity-check lattices that are at the heart of our
construction of locally dense lattices.

▶ Definition 5. For a prime q, positive integer k, and set S ⊆ Fq, define Hq(k, S) ∈ Fk×S
q

to be the matrix H whose rows and columns are respectively indexed by [k] = {0, 1, . . . , k − 1}
and S, and whose (i, s)th entry is

Hi,s := si ∈ Fq .

(Recall that 00 := 1.) Equivalently, if we enumerate S = {s0, . . . , sn−1} in some arbitrary
order, we have

H = Hq(k, S) :=


1 1 1 · · · 1
s0 s1 s2 · · · sn−1
s2

0 s2
1 s2

2 · · · s2
n−1

...
...

...
. . .

...
sk−1

0 sk−1
1 sk−1

2 · · · sk−1
n−1

 ∈ Fk×n
q . (7)

Notice that H is a transposed Vandermonde matrix. In particular, if k ≤ n then its rows are
linearly independent, and so det(L⊥(H)) = qk by Lemma 4.

We recall from the introduction that H = Hq(k, S) is a generator matrix (of row vectors)
of the dimension-k Reed-Solomon code over Fq with evaluation set S, and hence H is a
parity-check matrix of its dimension-(n − k) dual code. So, L⊥(H) is the Construction
A lattice of this dual code. These dual codes are in fact generalized Reed-Solomon codes,
a family of codes that include Reed-Solomon codes as a special case and that are closed
under taking duals (see [22, Theorem 5.1.6]). Moreover, in the special case where S = Fq,
the matrix H = Hq(k,Fq) is in fact a parity-check matrix of an (ordinary) Reed-Solomon
code. For our hardness proof it suffices to use this special case; i.e., we show NP-hardness
(under a randomized reduction) of GapSVP by using Construction A lattices of (ordinary)
Reed-Solomon codes as gadgets. See Appendix A and the section on derandomization in the
full version of this paper [6] for other connections between these lattices and Reed-Solomon
codes.

2.3 Symmetric Polynomials
A symmetric polynomial P (x1, x2, . . . , xm) is a polynomial that is invariant under any
permutation of its variables, i.e., P (x1, . . . , xm) = P (xπ(1), . . . , xπ(m)) as formal polynomials
for all permutations π of {1, 2, . . . , m}. Because the order of the variables is immaterial, we
usually just write a symmetric polynomial as P (X), where X = {x1, . . . , xm} is the set of
variables, and we write P (T ) for its evaluation on a multiset T of values.

We next recall two important symmetric polynomials and the relationship between them.
For a non-negative integer i, the ith power sum of a set X of variables is defined as

pi(X) :=
∑
x∈X

xi . (8)

APPROX/RANDOM 2023



37:10 Hardness of the (Approximate) Shortest Vector Problem

(Recall that 00 := 1.) For 1 ≤ i ≤ |X|, the ith elementary symmetric polynomial of X is
defined as

ei(X) :=
∑

Z⊆X,
|Z|=i

∏
z∈Z

z . (9)

That is, ei(X) is the multilinear polynomial whose monomials consist of all products of i

distinct variables from X. We extend this definition to i = 0 by setting e0(X) := 1 and to
integers i > |X| by setting ei(X) := 0.

Power sums and elementary symmetric polynomials are related by Newton’s identities
(see, e.g., [30]), which assert that for 1 ≤ i ≤ |X|,

i · ei(X) =
i∑

j=1
(−1)j−1 · ei−j(X) · pj(X) . (10)

The following standard claim uses Newton’s identities to show that if the first k power
sums of two multisets of field elements coincide, then so do the first k elementary symmetric
polynomials of those multisets.

▶ Lemma 6. Let T, U be multisets over a prime field Fq, let k ≤ q be a positive integer, and
suppose that pi(T ) = pi(U) for all i ∈ [k]. Then ei(T ) = ei(U) for all i ∈ [k].

Proof. The proof is by (strong) induction. For the base case where i = 0, we have by
definition that e0(T ) = e0(U) = 1. For the inductive case where 1 ≤ i < k, because
i ̸= 0 ∈ Fq we have that

ei(T ) = i−1 ·
i∑

j=1
(−1)j−1 · ei−j(T ) · pj(T ) = i−1 ·

i∑
j=1

(−1)j−1 · ei−j(U) · pj(U) = ei(U) ,

where the first and third equalities follow from Newton’s identities (Equation (10)), and the
second equality follows from the claim’s hypothesis and the inductive hypothesis (note that
the sums involve elementary symmetric polynomials ei−j only for i − j < i). ◀

We define the root polynomial fT (x) ∈ F[x] of a multiset T over a field F to be

fT (x) :=
∏
t∈T

(x − t) =
|T |∑
i=0

(−1)i · ei(T ) · x|T |−i . (11)

We then get the following result, which uses Lemma 6 to show that if sufficiently many
of the initial power sums of two multisets are equal, then the multisets themselves are equal.

▶ Proposition 7. Let q be a prime, let k ≤ q/2 be a positive integer, let T, U be multisets
over F = Fq of total cardinality |T | + |U | < 2k, and suppose that pi(T ) = pi(U) for all i ∈ [k].
Then T = U .

Proof. Because

|T | ≡ p0(T ) = p0(U) ≡ |U | (mod q)

and 0 ≤ |T | + |U | < 2k ≤ q, it follows that |T | = |U | and hence both fT (x), fU (x) have
degree |T | < k.

Next, by the hypotheses and Lemma 6, we have that ei(T ) = ei(U) for all i ≤ |T |. There-
fore, by the equality in Equation (11), fT (x) and fU (x) are identical as formal polynomials
in F[x]. Finally, because the polynomial ring F[x] is a unique factorization domain, and
because fT (x) and fU (x) split over F by construction, it follows that T = U . ◀
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2.4 Locally Dense Lattices
Roughly speaking, locally dense lattices are lattices that have one or more cosets with many
relatively short vectors. Somewhat more precisely, a locally dense lattice consists of an
integer lattice L ⊂ Zn and a shift x ∈ Zn such that for some α ∈ (0, 1), the number of points
in the coset x + L of norm at most α · λ1(L) is large (for our purposes, greater than 2nε

for some constant ε > 0). Therefore, locally dense lattices are not efficiently list decodable,
even combinatorially, to within distance α · λ1(L) in the worst case (in particular, around
center −x). For the purposes of proving hardness, we also require a linear map T that
projects the short vectors in x + L onto a lower-dimensional hypercube {0, 1}r.

▶ Definition 8. For p ∈ [1, ∞), real α > 0, and positive integers r and R, a (p, α, r, R)-locally
dense lattice consists of an integer lattice of rank R (and some dimension n) represented by
a basis matrix A ∈ Zn×R, a positive integer ℓ, a shift x ∈ Zn, and a matrix T ∈ Zr×n, where
1. λ

(p)
1 (L(A)) ≥ ℓ1/p and

2. {0, 1}r ⊆ T (V ) := {Tv : v ∈ V }, where V := (x + L(A)) ∩ Bn
p (α · ℓ1/p) is the set of all

vectors of ℓp norm at most α · ℓ1/p in the lattice coset x + L(A).

A useful tool for satisfying Item 2 in the above definition is the following probabilistic
version of Sauer’s Lemma due to Micciancio [31]. It roughly says that for n ≫ r, for any
large enough collection of vectors W ⊆ Bn,h (the weight-h slice of {0, 1}n), and for a random
matrix T ∈ {0, 1}r×n whose coordinates are sampled independently with a suitable bias,
{0, 1}r ⊆ T (W ) with good probability. We emphasize that all the arithmetic in this theorem
is done over the integers (not over F2).

▶ Theorem 9 ([31, Theorem 4]). Let r, n, h be positive integers, let W ⊆ Bn,h, and let ε > 0.
If |W | ≥ h! · n24r

√
h/ε and T ∈ {0, 1}r×n is sampled by setting each entry to 1 independently

with probability 1/(4hr), then {0, 1}r ⊆ T (W ) with probability at least 1 − ε.

2.5 Hardness of GapSVP via Locally Dense Lattices
We next recall a variant of (the decision version of) the Closest Vector Problem (CVP), which
will be the hard problem that we reduce to GapSVPp. In this variant, called GapCVP′

p,
the target vector is either within a specified distance of a lattice vector given by a binary
combination of basis vectors, or all non-zero integer multiples of the target vector are more
than a γ multiple of this distance from the lattice (where distance is measured in the ℓp

norm).

▶ Definition 10. For p ∈ [1, ∞], an instance of the γ-GapCVP′
p problem consists of a rank-r

lattice basis B ∈ Zd×r, a target vector t ∈ Zd, and a distance threshold s > 0. The goal is to
determine whether an input is a YES instance or a NO instance, where these are defined as
follows:

YES instance: there exists a binary c ∈ {0, 1}r such that ∥Bc − t∥p ≤ s.
NO instance: distp(wt, L(B)) > γs for all w ∈ Z \ {0}.

The following hardness theorem follows via a reduction from Exact Set Cover to GapCVP′
p.

▶ Theorem 11 ([4]). For every p ∈ [1, ∞) and every constant γ ≥ 1, γ-GapCVP′
p is NP-hard.

The following theorem gives a polynomial-time reduction from γ-GapCVP′
p to γ′-GapSVPp

for some approximation factors γ > γ′ ≥ 1, which uses a locally dense lattice as advice.
In general, this advice makes the reduction non-uniform, but when the advice is efficiently
computable by a (randomized) algorithm, as it is in this and prior works, the procedure is
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an efficient (randomized) reduction. The reduction below is very similar to the one in [32,
Theorem 5.1], but written so as to allow for using an arbitrary locally dense lattice as advice.
Due to this similarity, and for concision we defer its proof to the full version of our paper [6].

▶ Theorem 12. Let p ≥ 1, r and n be positive integers, α > 0 be a constant, and γ, γ′ be
constants satisfying

1/α > γ′ ≥ 1 and γ ≥ γ′ ·
( 1

1 − (αγ′)p

)1/p

.

There is a deterministic polynomial-time algorithm that, given a γ-GapCVP′
p instance (B, t, s)

of rank r and a (p, α, r, R)-locally dense lattice (A, ℓ, x, T ) as input, outputs a γ′-GapSVPp

instance (B′, s′) of rank R + 1 which is a YES (respectively, NO) instance if (B, t, s) is a
YES (resp., NO) instance.

From these two theorems we get the following hardness results for GapSVP.

▶ Corollary 13. Let p ≥ 1, let r be a positive integer, let α > 0 be a constant, and suppose
that there is an algorithm A that computes a (p, α, r, poly(r))-locally dense lattice in poly(r)
time. Let γ be a constant satisfying 1 ≤ γ < 1/α. Then:
1. If A is deterministic, then γ-GapSVPp is NP-hard (and exact GapSVPp is NP-complete).
2. If A is randomized and its output satisfies Item 1 of Definition 8 with probability 1 and

Item 2 of Definition 8 with probability at least 2/3, then γ-GapSVPp is not in RP unless
NP ⊆ RP.6

3. If A is randomized, and its output satisfies Items 1 and 2 of Definition 8 with probability
at least 2/3, then there is no randomized polynomial-time algorithm for γ-GapSVPp

unless NP ⊆ BPP.

Proof. Items 1 and 3 follow immediately by combining Theorems 11 and 12. Inspection of
the proof of Theorem 12 shows that for NO instances to be mapped to NO instances, only
Item 1 of Definition 8 is needed, from which Item 2 of the claim follows. ◀

3 Local Density from Reed-Solomon Codes

In this section we show how to obtain locally dense lattices from Reed-Solomon codes with
appropriate parameters. More specifically, we show to satisfy Definition 8 using a lattice
L := L⊥(H) corresponding to a parity-check matrix H = Hq(k, S) from Definition 5. (Recall
that H is the parity-check matrix of a Reed-Solomon code when S = Fq, and of a generalized
Reed-Solomon code for any S ⊆ Fq.)

The overall structure of the argument is as follows. First, in Section 3.1 we give a
lower bound of λ

(p)
1 (L) ≥ (2k)1/p, which corresponds to Item 1 of Definition 8, by using

the connection between power sums and symmetric polynomials (see Section 2.3). Then,
in Section 3.2 we use the upper bound det(L) ≤ qk from Lemma 4 and the pigeonhole
principle to show that there exists a lattice coset with many short (binary) vectors, and in
fact a suitably sampled random coset has this property with good probability. Finally, in
Section 3.3 we set parameters and use Theorem 9 to satisfy Item 2 of Definition 8 with good
probability.

6 The condition “γ-GapSVPp is not in RP” is a slight abuse of notation, since γ-GapSVPp for γ > 1 is a
promise problem rather than a language. However, the definition of RP can naturally be extended to
encompass promise problems, which is the intended meaning here.



H. Bennett and C. Peikert 37:13

3.1 Minimum Distance
The following theorem says that for any k ≤ |S| /2, the ℓ1 minimum distance of L = L⊥(H)
for H = Hq(k, S) is at least 2k. Essentially the same result and proof appeared in works of
Karabed, Roth, and Siegel [25, 37], and a very similar theorem and proof for lower bounding
the minimum distance of Craig lattices appears in [14] and [13, Chapter 8, Theorem 7]. We
reprove the result here in a slightly different form for completeness.

Note that a weaker bound of λ
(1)
1 (L) ≥ k + 1 (for any k < q) follows trivially from the

minimum Hamming distance k + 1 of the (generalized Reed-Solomon) code having parity-
check matrix H. However, this bound is not strong enough for the rest of the local-density
argument below, which requires λ

(1)
1 (L) ≥ (1 + Ω(1))k.

▶ Theorem 14. Let q be a prime, let S ⊆ Fq, let k ≤ |S| /2 be a positive integer, and let
H := Hq(k, S) ∈ Fk×S

q be the matrix from Definition 5. Then L = L⊥(H) has ℓ1 minimum
distance λ

(1)
1 (L) ≥ 2k.

As a consequence, for any p ∈ [1, ∞) the ℓp minimum distance satisfies λ
(p)
1 (L) ≥ (2k)1/p.

We point out that the 21/p factor in Theorem 14 propagates to the relative-distance
bound for local density in Theorem 17 below, and then to the GapSVP approximation factor
in our main hardness theorem, Theorem 1.

Proof. The consequence follows immediately from the fact that L ⊆ ZS and ∥v∥p ≥ ∥v∥1/p
1

for all v ∈ ZS .
Now consider some arbitrary x ∈ L ⊆ ZS for which ∥x∥1 < 2k; we will show that

x = 0. Let x+, x− ∈ ZS be the unique non-negative integer vectors satisfying x = x+ − x−.
Define multisets T + and T − over S that respectively depend on x+ and x− as follows. For
each s ∈ S with x+

s > 0 (respectively, x−
s > 0), let T + (respectively, T −) contain s with

multiplicity x+
s (respectively, x−

s ).7
Note that |T +| + |T −| = ∥x∥1 < 2k. Because Hx = H(x+ − x−) = 0 ∈ Fk

q , by definition
of H we have that pi(T +) = pi(T −) for all i ∈ [k] (where recall that pi denotes the ith
power sum). Because k ≤ |S| /2 ≤ q/2, by Proposition 7 it follows that T + = T −. Since
T + ∩ T − = ∅ by construction, we must have T + = T − = ∅, and hence x = 0, as desired. ◀

The following lemma (which is well known in other forms) shows that the lower bound
λ

(p)
1 (L⊥(H)) ≥ (2k)1/p from Theorem 14 is in fact an equality under mild conditions on

the parameters, by giving an explicit lattice coset that has multiple short vectors. However,
because it proves only that the number of such vectors is polynomial in the dimension, it is
insufficient to establish local density.

▶ Lemma 15. Let q be a prime, let k be a positive integer that divides q − 1, and let
H := Hq(k, S) ∈ Fk×S

q where F∗
q ⊆ S ⊆ Fq. Then for u := (k, 0, . . . , 0) ∈ Fk

q , the lattice coset
L⊥

u (H) = {x ∈ ZS : Hx = u} contains (q − 1)/k binary vectors of Hamming weight k and
pairwise disjoint support. As a consequence, when k < q − 1, we have λ

(p)
1 (L⊥(H)) = (2k)1/p

for any p ∈ [1, ∞).

Proof. Let G be the order-k subgroup of the (cyclic, multiplicative) group F∗
q , i.e., the

subgroup of the kth roots of unity. Then the binary indicator vectors xC ∈ {0, 1}S of each
of the (q − 1)/k pairwise disjoint cosets C = cG of G all belong to the coset L⊥

u (H). This

7 For example, if S = {0, 1, 2, 3, 4} = Fq and x = (x0, x1, x2, x3, x4)t = (1, −2, 0, 1, 0)t, then x+ =
(1, 0, 0, 1, 0), x− = (0, 2, 0, 0, 0), and accordingly T + = {0, 3}, T − = {1, 1}.
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is simply because for any such coset, the 0th power sum of its elements is k, and the ith
power sum for 0 < i < k is zero; this can be seen by Newton’s identities and the fact that
the root polynomial of C is fC(x) =

∏
c∈C(x − c) = xk − rC , where rC = ck for every c ∈ C.

Finally, when k < q − 1, there is more than one such vector xC , and the differences between
distinct pairs of them are lattice vectors in {0, ±1}S of Hamming weight 2k, and hence ℓp

norm (2k)1/p. ◀

3.2 Dense Cosets
Following an approach previously used in [31, 26, 32] (and implicitly in [3]), we first show via
a pigeonhole argument that a dense lattice coset must exist, and then show how to sample
such a coset efficiently (with good probability).

For a prime q, a positive integer k, and a set S ⊆ Fq of size n (with some arbitrary ordering
of its elements), let H = Hq(k, S) ∈ Fk×n

q be the parity-check matrix from Definition 5.
By Lemma 4, the lattice L = L⊥(H) ⊆ Zn has det(L) ≤ qk integer cosets. Recall that
Bn,h is the set of n-dimensional binary vectors of Hamming weight h, which has cardinality
|Bn,h| =

(
n
h

)
. Therefore, by the pigeonhole principle, there must exist some integer coset

x + L with |(x + L) ∩ Bn,h| ≥
(

n
h

)
/qk weight-h binary vectors. In particular, taking n ≈ q,

h ≈ αp · (2k) for some constant α > 1/21/p, and k = qε for a suitable small constant ε > 0
implies the existence of a coset with roughly q(2αp−1)k = qΩ(qε) such vectors. These vectors
have ℓp norm h1/p ≈ α · (2k)1/p, whereas by Theorem 14 the lattice minimum distance is at
least (2k)1/p, yielding a local-density relative distance of roughly α.

The following lemma extends the above existential result by showing that something very
similar holds for a uniformly random shift x ∈ Bn,h: for any δ > 0, the coset x + L contains
at least δ ·

(
n
h

)
/qk weight-h binary vectors with probability greater than 1 − δ. The proof

given below closely follows the structure of the very similar one of [26, Lemma 4.3].

▶ Lemma 16. For a prime q, positive integer k, and set S ⊆ Fq of size n, let H = Hq(k, S) ∈
Fk×n

q be the parity-check matrix from Definition 5. There is an efficient randomized algorithm
that, for any δ ≥ 0, and on input H and any h ∈ [n], outputs a shift x ∈ Bn,h such that

Pr
x

[
|(x + L) ∩ Bn,h| ≥ δ ·

(
n

h

)
/qk

]
> 1 − δ .

Proof. The algorithm simply samples and outputs a uniformly random binary vector x ∈ Bn,h.
This is clearly efficient. To show correctness, we will use the syndromes of H. For each
u ∈ Fk

q , define Ku := |{z ∈ Bn,h : Hz = u}|, and define s := Hx ∈ Fk
q to be the syndrome

corresponding to x. So, we need to prove that Ks ≥ δ ·
(

n
h

)
/qk with probability greater than

1 − δ. Indeed, we have:

Pr
x

[
|(x + L) ∩ Bn,h| < δ ·

(
n

h

)
/qk

]
= Pr

x

[
Ks < δ ·

(
n

h

)
/qk

]
=

∑
u∈Fk

q :Ku<δ·(n
h)/qk

Pr
x

[Hx = u]

=
∑

u∈Fk
q :Ku<δ·(n

h)/qk

Ku(
n
h

)
<

∑
u∈Fk

q :Ku<δ·(n
h)/qk

δ

qk

≤ δ ,
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where the first inequality uses the fact that the sum is over syndromes u with Ku < δ ·
(

n
h

)
/qk,

and the second inequality uses the fact that there are at most qk terms in the sum. ◀

3.3 The Main Argument
▶ Theorem 17 (Locally dense lattices from Reed-Solomon codes). For any p ∈ [1, ∞) and
constant α > 1/21/p, there exists a randomized polynomial-time algorithm that, given any
sufficiently large positive integer r in unary as input, outputs a (p, α, r, R = poly(r))-locally
dense lattice (Definition 8) with probability at least 2/3. Moreover, the algorithm’s output
satisfies Item 1 of Definition 8 with probability 1.

Proof. The algorithm starts by setting its parameters as follows. It sets ε := 2αp − 1 > 0,
and chooses:

a poly(r)-bounded integer k ≥ r1/(1/2−δ) for some arbitrary constant δ ∈ (0, 1/2), and
a poly(r)-bounded prime q ≥ k3(1+ε)/ε. (Such a prime q always exists by Bertrand’s
Postulate.)

The algorithm then computes the components of a (p, α, r, R = q)-locally dense lattice
(A, ℓ, x, T ) as follows. It lets:

A ∈ Zq×q be a basis of L := L⊥(H), where H = H(k, S) ∈ Fk×q
q for S = Fq;8

ℓ := 2k;
x ∈ Bq,h be a uniformly random q-dimensional binary vector of Hamming weight h :=
⌊(1 + ε)k⌋;
T ∈ {0, 1}r×q be chosen by independently setting each of its entries to be 1 with probability
1/(4hr), and to be 0 otherwise.

It then outputs (A, x, ℓ, T ).
We first analyze the algorithm’s running time. A suitable prime q can be found in poly(r)

time using, e.g., trial division (recall that r is given in unary). The basis A can be computed
in deterministic polynomial time from the generating set of column vectors (B | qIq), where B

is a basis of ker(H) ⊆ Fq
q (lifted to the integers). It is clear that ℓ can be computed in

deterministic polynomial time, and that x and T can be computed in randomized polynomial
time. So, the algorithm runs in randomized polynomial time.

It remains to show correctness, i.e., that (A, x, ℓ, T ) satisfies the two conditions in
Definition 8 with suitable probability over the random choices of x and T . First, Item 1 is
always satisfied, because by Theorem 14 we have

λ1(L) ≥ (2k)1/p = ℓ1/p .

In the rest of the proof we consider Item 2 of Definition 8. Let W := (x + L) ∩ Bq,h.
Because

∥w∥p
p = h ≤ (1 + ε)k = αp · ℓ

for each w ∈ W , we have W ⊆ V := (x + L) ∩ Bq
p(α · ℓ1/p).

By Lemma 16, Prx[|W | ≥
(

q
h

)
/(10qk)] > 1 − 1/10 = 9/10. If this event holds, and(

q
h

)
10qk

≥ h! · q240r
√

h , (12)

8 For appropriate parameters, our argument works more generally for any sufficiently large subset S ⊆ Fq ,
with R = |S|; we use S = Fq for simplicity.
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then by Theorem 9 we have {0, 1}r ⊆ T (W ) ⊆ T (V ) with probability at least 1−1/10 = 9/10
(over the choice of T ). So, it suffices to show that the condition in Equation (12) holds for
all sufficiently large k, and hence for all sufficiently large r. By taking a union bound over
the 1/10 failure probabilities from Lemma 16 and Theorem 9, we get that the algorithm’s
overall success probability is at least 1 − 2/10 > 2/3 for all sufficiently large r, as needed.

Using the standard bound
(

q
h

)
≥ (q/h)h for binomial coefficients and that h ≥ (1+ε)k −1,

we have that(
q
h

)
10qk

≥ qh−k

10hh
= Ω

(qεk−1

hh

)
. (13)

Furthermore, by the choice of k relative to r and h ≤ (1 + ε)k, we have that

h! · q240r
√

h ≤ hh · q240k1/2−δ
√

(1+ε)k ≤ hh · qo(k) . (14)

So, by combining Equations (13) and (14), in order to establish Equation (12) it suffices to
show that q(1−o(1))εk ≥ h2h. By taking logs, this is equivalent to

(1 − o(1)) · εk log q ≥ 2h log h . (15)

Finally, using that k3(1+ε)/ε ≤ q ≤ poly(k) and h ≤ (1 + ε)k, in order for Equation (15) to
hold it suffices to have

(1 − o(1)) · εk · 3(1 + ε)
ε

· log k = (3 − o(1)) · (1 + ε) · k log k ≥ 2(1 + ε) · k log k + O(k) ,

which indeed holds for all sufficiently large k, as needed. ◀

We emphasize that Theorem 17 uses randomness only to sample x and T . As an immediate
corollary, we obtain our main hardness result, Theorem 1 – which, to recall, asserts that for
all constants p ∈ [1, ∞) and γ < 21/p, there is no polynomial-time algorithm for γ-GapSVPp

unless NP ⊆ RP.

Proof of Theorem 1. Combine Item 2 of Corollary 13 with Theorem 17. ◀
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A Efficient Decoding Near Minkowski’s Bound

In this appendix, we show that a recent result of Mook and Peikert [34], which builds on work of
Guruswami and Sudan [21] and Koetter and Vardy [28] on list-decoding Reed-Solomon codes,
yields a polynomial-time algorithm for decoding lattices L = L⊥(H) with H = Hq(k,Fq)
up to distance Θ(

√
k). We additionally observe that by choosing k = Θ(q/ log q), such

lattices are asymptotically nearly tight with Minkowski’s bound (Equation (5)). Putting
these observations together, we obtain an efficient algorithm for decoding to a distance within
a O(

√
log q) factor of Minkowski’s bound (here q = n is the lattice rank and dimension).

A.1 Construction and Algorithm
Define the additive quotient group Rq := R/(qZ) and the Euclidean norm of any ŷ ∈ Rn

q as

∥ŷ∥ := min{∥y∥ : y ∈ ŷ + qZn} . (16)

Equivalently, ∥ŷ∥ is the standard Rn Euclidean norm of the unique real vector y ≡ ŷ

(mod qZn) having coordinates in [−q/2, q/2). In additive arithmetic that mixes elements
of Fq and Rq, we implicitly “lift” the former to the latter in the natural way.

We again use the fact that for evaluation set S = Fq, the matrix H = Hq(k,Fq) defined in
Equation (7) is a parity-check matrix of the Reed-Solomon code RSq[q − k,Fq], and therefore
L⊥(Hq(k,Fq)) = RSq[q − k,Fq] + qZq. This view lets us take advantage of the decoding
algorithm from the following theorem of [34], which gives an efficient (list) decoder in the ℓ2
norm for Reed-Solomon codes.9

9 In fact, the cited result from [34] is more general, giving a decoder for Fp-subfield subcodes of Reed-
Solomon codes over finite fields of order q = pr, for a prime p. Here we need only the special case
where the Reed-Solomon code is over a prime field (i.e., where r = 1). On the other hand, we note
that if Proposition 18 were extended to handle generalized Reed-Solomon codes, then we would get a
corresponding strengthening of Corollary 19 for decoding lattices L⊥(Hq(k, S)) with general S, not just
S = Fq.
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▶ Proposition 18 ([34, Algorithm 1 and Theorem 3.4]). Let q be a prime, S ⊆ Fq be an
evaluation set of size n := |S|, k ≤ n be a nonnegative integer, and ε > 0. There is a
deterministic algorithm that, on input q, S, k, ε, and a vector ŷ ∈ Rn

q , outputs all codewords
c ∈ RSq[n − k, S] such that ∥ŷ − c∥2 ≤ (1 − ε)(k + 1)/2, in time polynomial in n, log q, and
1/ε.10

The following corollary, which is the main result of this section, says that by taking
S = Fq and k = Θ(q/ log q), (1) the root Hermite factor of L⊥(H) is within an O(

√
log q)

factor of Minkowski’s bound (Equation (5)), and (2) it is possible to efficiently decode this
lattice to a distance of Ω(

√
k) = Ω(

√
q/ log q), which is again within an O(

√
log q) factor of

Minkowski’s bound.
We remark that by setting ε ≤ 1/(k + 1) in Corollary 19, we get efficient decoding to a

distance at least
√

k/2 but less than
√

(k + 1)/2, which is slightly more than half the lower
bound of

√
2k on the minimum Euclidean distance of the lattice (Theorem 14). Recall that

this lower bound is tight when k is a proper divisor of q − 1 (see Lemma 15), so with this
parameterization we get efficient list decoding (i.e., the algorithm may return more than one
lattice vector) slightly beyond the unique-decoding bound of half the minimum distance.

▶ Corollary 19 (Efficient decoding near Minkowski’s bound). Let H = Hq(k,Fq) for a prime q

and k := ⌊q/(2 log q)⌋ ≤ q/2, where all logarithms are base two. Then for L := L⊥(H) ⊆ Zq:
1.

√
q/ log q − 2 ≤

√
2k ≤ λ1(L) ≤ √

q · det(L)1/q ≤
√

2q.
2. For any ε > 1/ poly(q), there is an algorithm that, on input q and a vector y ∈ Rq, outputs

all lattice vectors v ∈ L satisfying ∥y − v∥ ≤
√

(1 − ε)(k + 1)/2 in time polynomial in q.

Proof. For Item 1, we have√
q/ log q − 2 ≤

√
2k ≤ λ1(L) ≤ √

q · det(L)1/q = √
q · qk/q ≤

√
2q .

The first inequality follows from the choice of k, the second inequality is by Theorem 14, the
third inequality is Minkowski’s bound (Equation (5)), the equality follows from Lemma 4
(recall that the rows of H are linearly independent), and the final inequality again follows
from the choice of k.11

The algorithm claimed in Item 2 works as follows. First, it computes k and ŷ =
y mod qZq ∈ Rq

q from the input q and y. It then calls the algorithm from Proposition 18 on
q, S = Fq, k, ε, and ŷ, and receives as output zero or more codewords c ∈ RSq[q − k,Fq].
For each such c, it outputs the unique vector v := arg minv′∈c+qZq ∥y − v′∥ ∈ L.

The value k and vectors ŷ, v can be computed efficiently (assuming that v is well defined),
so it is clear from Proposition 18 that this algorithm runs in time polynomial in q (recall
that the dimension n = q). It remains to show correctness. First, it is immediate from the
definitions that for any r < q/2, the function f(v) = v mod qZq is a bijection from the set
of lattice vectors

{v ∈ L : ∥y − v∥ ≤ r} ,

10 Formally, the runtimes of the decoding algorithms in Proposition 18 and Corollary 19 additionally
depend on the lengths of the respective “received words” ŷ and y that they take as input, which must
be specified to finite precision. However, for simplicity we describe the algorithms in the “Real RAM
model,” while noting that their runtime dependence on the encoding lengths of ŷ, y is polynomial.

11 Analyzing the derivative of log(
√

2k/qk/q) with respect to k shows that our choice of k is asymptotically
optimal for maximizing the root Hermite factor of L⊥(Hq(k,Fq)).
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to the set of codewords

{c ∈ RSq[q − k,Fq] : ∥ŷ − c∥ ≤ r} ,

and that g(c) := arg minv′∈c+qZq ∥y −v′∥ is the inverse function of f , i.e., g = f−1. Moreover,
because q ≥ 2, we have that the decoding distance r satisfies

r :=
√

(1 − ε)(k + 1)/2 ≤
√

(1 − ε)(q/(2 log q) + 1)/2 ≤
√

1 − ε · q/2 < q/2 .

Because the algorithm from Proposition 18 outputs (exactly) {c ∈ RSq[q−k,Fq] : ∥ŷ−c∥ ≤ r},
it follows that the algorithm described above outputs (exactly) {v ∈ L : ∥y − v∥ ≤ r}, as
needed. ◀

▶ Remark 20. We remark that the main consequence of Item 1 of Corollary 19 – namely, an
explicit construction of a family of lattices having root Hermite factors within a O(

√
log n)

factor of Minkowski’s bound, obtained via Construction A (where n is the lattice dimension)
– only needs a family of codes satisfying milder conditions than what (generalized) Reed-
Solomon codes satisfy. Namely, achieving this result only requires a family of linear q-ary
codes C for prime q with block length n, codimension k = Θ(n/ log n), and minimum distance
(in the Hamming metric) d = Ω(k). The latter is a weaker condition than maximum distance
separability (MDS), which requires that d = k + 1. Indeed, d = Ω(k) implies that the
corresponding Construction-A lattice C + qZn has an ℓ2 minimum distance of Ω(min{

√
k, q}),

which is Ω(
√

k) when k = O(q2). So, unlike our main hardness result, Corollary 19 does not
use Theorem 14 in any essential way.

Finally, we also note that obtaining a direct analog of Item 2 of Corollary 19 – i.e.,
efficiently decoding to within an O(

√
log n) factor of Minkowski’s bound on C + qZn –

additionally requires an efficient algorithm for decoding C to an ℓ2 distance of Ω(
√

k), but
that this is in turn a weaker requirement than what Proposition 18 fulfills.



Perfect Sampling for Hard Spheres from Strong
Spatial Mixing
Konrad Anand
Queen Mary, University of London, UK

Andreas Göbel
Hasso Plattner Institute, University of Potsdam, Germany

Marcus Pappik
Hasso Plattner Institute, University of Potsdam, Germany

Will Perkins
School of Computer Science, Georgia Institute of Technology, Atlanta, GA, USA

Abstract
We provide a perfect sampling algorithm for the hard-sphere model on subsets of Rd with expected
running time linear in the volume under the assumption of strong spatial mixing. A large number of
perfect and approximate sampling algorithms have been devised to sample from the hard-sphere
model, and our perfect sampling algorithm is efficient for a range of parameters for which only
efficient approximate samplers were previously known and is faster than these known approximate
approaches. Our methods also extend to the more general setting of Gibbs point processes interacting
via finite-range, repulsive potentials.

2012 ACM Subject Classification Theory of computation → Randomness, geometry and discrete
structures

Keywords and phrases perfect sampling, hard-sphere model, Gibbs point processes

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2023.38

Category RANDOM

Related Version Full Version: https://arxiv.org/abs/2305.02450 [3]

Funding Konrad Anand: funded by a studentship from Queen Mary, University of London.
Andreas Göbel: funded by the project PAGES (project No. 467516565) of the German Research
Foundation (DFG).
Marcus Pappik: funded by the HPI Research School on Data Science and Engineering.
Will Perkins: supported in part by NSF grant DMS-2309958.

Acknowledgements We thank Mark Jerrum for very helpful discussions on this topic.

1 Introduction

Gibbs point processes, or classical gases, are mathematical models of interacting particles. In
statistical physics they are used to model gases, fluids, and crystals, while in other fields they
are used to model spatial phenomena such as the growth of trees in a forest, the distribution
of stars in the universe, or the location of cities on a map (see e.g. [68, 59, 73, 12]).

Perhaps the longest and most intensively studied Gibbs point process is the hard-sphere
model: a model of a gas in which the only interaction between particles is a hard-core
exclusion in a given radius around each particle. That is, it is a model of a random packing
of equal-sized spheres. Despite the simplicity of its definition, the hard-sphere model is
expected to exhibit the qualitative behavior of a real gas [2], and in particular exhibits
gas, liquid, and solid phases, thus giving evidence for the hypothesis, dating back to at
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least Boltzmann, that the macroscopic properties of a gas or fluid are determined by its
microscopic interactions. This rich behavior exhibited by the hard-sphere model is very
difficult to analyze rigorously, and the most fundamental questions about phase transitions
in this model are open mathematical problems [68, 50].

In studying the hard-sphere model (or Gibbs point processes more generally), a funda-
mental task is to sample from the model. Sampling is used to estimate statistics, observe
evidence of phase transitions, and perform statistical tests on data. A wide variety of meth-
ods have been proposed to sample from these distributions; for instance, the Markov chain
Monte Carlo (MCMC) method was first proposed by Metropolis, Rosenbluth, Rosenbluth,
Teller, and Teller [53] to sample from the two-dimensional hard-sphere model. Understand-
ing sampling methods for point processes in theory and in practice is a major area of
study [58, 59, 16, 39, 47], and advances in sampling techniques have led to advances in the
understanding of the physics of these models [53, 2, 50, 7, 6, 16].

In this paper we will be concerned with provably efficient sampling from the hard-sphere
model. Rigorous guarantees for sampling algorithms come in several different varieties. One
question is what notion of “efficient” to use; another is what guarantee we insist on for the
output. In this paper we will provide an efficient sampling algorithm under the strictest
possible terms with respect to both running time and accuracy of the output: a linear-time,
perfect sampling algorithm.

For simplicity we focus on sampling from the hard-sphere model defined on finite boxes
in Rd. For fixed parameter values of the model, the typical number of points appearing in
such a region is linear in the volume, and so any sampling algorithm will require at least this
much time.

As for guarantees on the output, there are two main types of guarantees. The first type is
an approximate sampler : the output of such an algorithm must be distributed within ε total
variation distance of the desired target distribution. Perhaps the main approach to efficient
sampling from distributions normalized by intractable normalizing constants is the MCMC
method. In this approach, one devises a Markov chain with the target distribution as the
stationary distribution and runs a given number steps of the chain from a chosen starting
configuration; if the number of steps is at least the ε-mixing time, then the final state has
distribution within ε total variation distance of the target [42, 65, 13]. In general, however,
computing or bounding the mixing time can be a very challenging problem.

The second type of guarantee is that of a perfect sampler [63]. Such an algorithm has a
running time that is random, but the distribution of the output is guaranteed to be exactly
that of the target distribution. The main advantage of perfect sampling algorithms – and
the primary reason they are studied and used in practice – is that one need not prove a
theorem or understand the mixing time of a Markov chain to run the algorithm and get
an accurate sample; one can simply run the algorithm and know that the output has the
correct distribution. The drawback is that the running time may be very large, depending on
the specific algorithm and on the parameter regime. Some naive sampling methods such as
rejection sampling return perfect samples but are inefficient on large instances (exponential
expected running time in the volume). The breakthrough of Propp and Wilson in introducing
“coupling from the past” [63, 64] was to devise a procedure for using a Markov chain transition
matrix to design perfect sampling algorithms which, under some conditions, could run in time
polylogarithmic in the size of a discrete state space (polynomial-time in the size of the graph
of a spin system), matching the efficiency of fast mixing Markov chains which only return
approximate samples (see also [5, 49] for precedents in perfect sampling). The work of Propp
and Wilson led to numerous constructions of perfect sampling algorithms for problems with
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both discrete and continuous state spaces including [17, 27, 45, 60, 28, 21, 46, 58, 23]. Notably,
many of the first applications of Propp and Wilson’s technique were in designing perfect
sampling algorithms for Gibbs point processes (though often without rigorous guarantees on
the efficiency of the algorithms).

Perfect sampling continues to be a very active area of research today, with a special focus
on improving the range of parameters for which perfect sampling algorithms can (provably)
run in expected linear or polynomial time [9, 40, 30]

In this paper we design a perfect sampling algorithm for the hard-sphere model (and
Gibbs point processes interacting with a finite-range, repulsive pair potential more generally)
that is guaranteed to run in linear expected time for activity parameters up to the best
known bound for efficient approximate sampling via MCMC.

What is this bound and how do we design the algorithm? One central theme in the
analysis of discrete spin systems is the relationship between spatial mixing (correlation decay
properties) and temporal mixing (mixing times of Markov chains) [35, 1, 72, 52, 15]. At
a high level, these works show that for discrete lattice systems a strong correlation decay
property (strong spatial mixing) implies a near-optimal convergence rate for local-update
Markov chains like the Glauber dynamics. Recently it has been showed that strong spatial
mixing in a discrete lattice model also implies the existence of efficient perfect sampling
algorithms [18, 4]. In parallel, there has been work establishing the connection between
strong spatial mixing and optimal temporal mixing for Markov chains in the setting of the
hard-sphere model and Gibbs point processes [33, 55, 56]. At a high level, our aim is to
combine these threads to show that strong spatial mixing for Gibbs point processes implies
the existence of an efficient perfect sampler. One challenge is that the approaches of [18, 4]
are inherently discrete in that key steps of the algorithms involve enumerating over all
possible configurations in a subregion, something that is not possible in the continuum. To
overcome this we make essential use of Bernoulli factories – a method for perfect simulation
of a coin flip with a bias f(p) given access to coin flips of bias p. Bernoulli factories have
recently been used in perfect sampling algorithms for solutions to constraint satisfaction
problems in [31, 32].

1.1 The hard-sphere model, strong spatial mixing, and perfect sampling

The hard-sphere model is defined on a bounded, measurable subset Λ of Rd with an activity
parameter λ ≥ 0 that governs the density of the model and a parameter r > 0 that governs
the range of interaction (though by re-scaling there is really only one meaningful parameter,
and we could take r = 1 without loss of generality). In words, the hard-sphere model is the
distribution of finite point sets in Λ obtained by taking a Poisson point process of activity λ

on Λ and conditioning on the event that all pairs of points are at distance at least r from
each other; in other words, on the event that spheres of radius r/2 centered at the given
points form a sphere packing.

We can equivalently define the model more explicitly, and in doing so, introduce objects
and notation we work with throughout the paper. To begin, let NΛ be the set of all finite point
sets in Λ. Each point set η ∈ NΛ represents a particle configuration in Λ. Write RΛ ⊆ 2NΛ

for the σ-field generated by the maps
{

NΛ → N0, η 7→ |η ∩ B|
∣∣ B ⊆ Λ Borel-measurable

}
.

The hard-sphere model (or in fact any Gibbs point process) is a probability measure µλ on
the space (NΛ,RΛ).

Define for every x1, . . . , xk ∈ Rd the indicator that the points are centers of non-
overlapping spheres of radius r/2; that is,
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D(x1, . . . , xk) =
∏

{i,j}∈([k]
2 )

1dist(xi,xj)≥r .

Then define the partition function

ZΛ(λ) =
∑
k≥0

λk

k!

∫
Λk

D(x1, . . . , xk) dx1 . . . dxk .

For an event A ∈ RΛ, the hard-sphere model assigns the probability

µλ(A) = 1
ZΛ(λ)

∑
k≥0

λk

k!

∫
Λk

1{x1,...,xk}∈AD(x1, . . . , xk) dx1 . . . dxk . (1)

A very useful generalization of this model is to allow for a non-constant (but measurable)
activity function λλλ : Λ → [0, ∞). Here the model is a Poisson process with inhomogenous
activity λλλ conditioned on the points forming the centers of a sphere packing; the partition
function is now

ZΛ(λλλ) =
∑
k≥0

1
k!

∫
Λk

k∏
i=1

λλλ(xi)D(x1, . . . , xk) dx1 . . . dxk

and the measure µλλλ is defined analogously to (1). This generalization allows modeling of
non-homogenous spaces and generalizes the concept of imposing boundary conditions on the
model. To see this, suppose we fix a particle configuration η ∈ NΛ as boundary conditions.
Additional points are forbidden within the balls of radius r around each point x ∈ η; we can
implement the distribution of additional points by considering the measure µλλλ with λλλ(y) = 0
if dist(y, x) < r for some x ∈ η; and λλλ(y) = λ otherwise. We denote the resulting activity
function by λλλ by λη. Further, we can use this generalization to restrict a point process to
only place points in a subregion Λ′ ⊆ Λ by considering the measure µλ1Λ′ with activity
function λ1Λ′ : x 7→ λ1x∈Λ′ . Of course the generalization to measurable activity functions is
much more general than this, and activity functions λλλ need not be realizable by boundary
conditions or restriction to a subregion, nor take only two values.

This generalization to activity functions is crucial for defining strong spatial mixing, the
condition under which we can guarantee the efficiency of our perfect sampling algorithm.

To define the concept of strong spatial mixing we consider projections of the measure µλλλ

to subregions Λ′ ⊆ Λ. We write µλλλ[Λ′] for the probability measure on (NΛ′ ,RΛ′) induced
by µλλλ (we make this definition formal in Section 3). We can impose two distinct boundary
conditions on Λ′ by choosing two different activity functions λλλ,λλλ′. Strong spatial mixing
asserts that the distributions µλλλ[Λ′], µλλλ′ [Λ′] are close in total variation when λλλ,λλλ′ differ only
on points far from Λ′; i.e., when dist(Λ′, supp(λλλ − λλλ′)) is large (as supp(λλλ − λλλ′) is the set of
points at which the two activity functions disagree).

Writing |Λ′| for the volume of Λ′, strong spatial mixing with exponential decay is defined
as follows.

▶ Definition 1.1. Given a, b ∈ R>0, the hard-sphere model on Rd exhibits (a, b)-strong
spatial mixing up to λ ∈ R>0 if for all bounded measurable Λ ⊂ Rd the following holds:
For all measurable Λ′ ⊆ Λ and all activity functions λλλ,λλλ′ ≤ λ it holds that

dT V (µλλλ[Λ′], µλλλ′ [Λ′]) ≤ a|Λ′|e−b·dist(Λ′,supp(λλλ−λλλ′)),

where dT V (·, ·) denotes total variation distance.
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This definition of strong spatial mixing comes from [56], which in turn adapted similar
notions from discrete spin systems [15, 74]. Strong spatial mixing has proved to be an
essential definition in the analysis, both probabilistic and algorithmic, of spin systems on
graphs, and many recent works are focused on either proving strong spatial mixing for a
particular model, range of parameters, and class of graphs (e.g. [74, 22, 51, 69, 66, 10]) or
deriving consequences of strong spatial mixing (e.g. [70, 19, 48, 18, 4]).

Our main result is a linear expected-time perfect sampling algorithm for the hard-sphere
model under the assumption of strong spatial mixing.

▶ Theorem 1.2. There is a perfect sampling algorithm for the hard-sphere model on finite
boxes Λ ⊂ Rd with the property that if the hard-sphere model exhibits (a, b)-strong spatial
mixing up to λ, then the expected running time of the algorithm at activity λ is O(|Λ|), where
the implied constant is a function of a, b, and λ.

In particular, one can run the algorithm for any value of λ (without knowing whether
or not strong spatial mixing holds) and the algorithm will terminate in finite time with an
output distributed exactly as µλ; under the assumption of strong spatial mixing the expected
running time is guaranteed to be linear in the volume.

Using bounds from [56] on strong spatial mixing in the hard-sphere model, we obtain the
following explicit bounds on the activities for which the algorithm is efficient.

▶ Corollary 1.3. The above perfect sampling algorithm runs in expected time O(|Λ|) when
λ < e

vd(r) , where vd(r) is the volume of the ball of radius r in Rd.

In comparison, near-linear time MCMC-based approximate samplers were given in [56]
for the same range of parameters (following results for more restricted ranges in [43, 33]).
For perfect sampling from the hard-sphere model, linear expected time algorithms were given
in [36, 25] for more restrictive ranges of parameters.

1.2 Gibbs point processes with finite-range repulsive potentials
We now give a closely related result in the more general setting of Gibbs point processes
interacting via finite-range, repulsive pair potentials.

Gibbs point processes are defined via a density against an underlying Poisson point
process. In general, this density is the exponential of (the negative of) an energy function on
point sets that captures the interactions between points. In many of the most studied cases,
this energy function takes a special form: it is the sum of potentials over pairs of points in a
configuration.

A pair potential is a measurable symmetric function ϕ : Rd × Rd → R ∪ {∞}. For a
bounded, measurable activity function λλλ on Λ the Gibbs point process with pair potential ϕ

on Λ is defined via the partition function

ZΛ(λλλ) =
∑
k≥0

1
k!

∫
Λk

 ∏
i∈[k]

λλλ(xi)

e−H(x1,...,xk) dx1 . . . dxk

where

H(x1, . . . , xk) =
∑

{i,j}∈([k]
2 )

ϕ(xi, xj) .

Again the corresponding probability measure µλλλ is obtained as in (1). A pair potential
ϕ is repulsive if ϕ(x, y) ≥ 0 for all x, y. It is of finite-range if there exists r ≥ 0 so that
ϕ(x, y) = 0 whenever dist(x, y) > r. As with the hard-sphere model, we can use the
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activity function to encode the influence of boundary conditions by defining the activity
function λη : y 7→ λe−

∑
x∈η

ϕ(x,y) for any activity λ ∈ [0, ∞) and particle configuration
η ∈ NΛ. Moreover, strong spatial mixing for a Gibbs point process is defined exactly as in
Definition 1.1.

The hard-sphere model is one example of a model interacting via a finite-range, repulsive
pair potential; it is obtained by letting ϕ(x, y) take the value +∞ if dist(x, y) ≤ r and 0
otherwise. The Strauss process [71, 44] is another such example.

Our next result is a near-linear expected time perfect sampling algorithm for Gibbs point
processes interacting via finite-range, repulsive potentials under the assumption of strong
spatial mixing.

▶ Theorem 1.4. Suppose ϕ is a finite-range, repulsive potential on Rd and suppose ϕ exhibits
(a, b)-strong spatial mixing up to λ for some constants a, b > 0. Then there is a perfect
sampling algorithm for the Gibbs point process defined by ϕ and activity functions bounded
by λ on boxes Λ in Rd with expected running time O

(
|Λ| logO(1)|Λ|

)
.

One difference between this algorithm and the hard-sphere algorithm of Theorem 1.2 is
that this algorithm needs knowledge of the constants a, b in the assumption of strong spatial
mixing, whereas the hard-sphere algorithm does not.

Using the results of [56], we can get explicit bounds for the existence of efficient perfect
sampling algorithms in terms of the temperedness constant of the potential defined by

Cϕ := sup
x∈Rd

∫
Rd

|1 − e−ϕ(x,y)| dy . (2)

Under the assumption that ϕ is repulsive and of finite range r, we have 0 ≤ Cϕ ≤ vd(r).

▶ Corollary 1.5. The above perfect sampling algorithm runs in expected time O
(

|Λ| logO(1)|Λ|
)

when λ < e
Cϕ

.

▶ Remark 1.6. In fact, using the results of Michelen and Perkins [54], one can push the bound
for strong spatial mixing up to e/∆ϕ, where ∆ϕ ≤ Cϕ is the potential-weighted connective
constant defined therein; our perfect sampling algorithm is efficient up to that point.

1.3 Related work and future directions
Related work
In recent years there has been a moderate flurry of activity around proving rigorous results
for Gibbs point processes in both the setting of statistical physics and probability theory
and in the setting of provably efficient sampling algorithms.

Work on provably efficient approximate sampling methods for the hard-sphere model
begins with the seminal paper of Kannan, Mahoney, and Montenegro [43], who used techniques
from the analysis of discrete spin systems to prove mixing time bounds for Markov chains
for the hard-sphere model. Improvements to the range of parameters for which fast mixing
holds came in [29, 33], before Michelen and Perkins proved the bound e/vd(r) in [56], which
we match with a perfect sampling algorithm in Corollary 1.3.

Perfect sampling algorithms for the hard sphere model have been considered in [27, 46,
21, 25, 38]. In terms of rigorous guarantees of efficiency, Huber proved a bound of 2/vd(r)
for a near-linear expected time perfect sampler in [36]. The perfect sampling algorithm of
Guo and Jerrum in [25] does not match this bound, but the algorithm, based on “partial
rejection sampling” [26] is novel and particularly simple. Several of these approaches also
apply for finite-range, repulsive potentials or can be extended to that setting (e.g. [57]).
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In parallel, there has been much work on proving bounds on the range of activities
for which no phase transition can occur in the hard-sphere model; and, in recent years in
particular, the techniques used have close connections to algorithms and the study of Markov
chains. The classic approach to proving absence of phase transition is by proving convergence
of the cluster expansion; the original bound here is 1/(evd(r)) due to Groeneveld [24]. In small
dimensions (most significantly in dimension 2) improvements to the radius of convergence
can be obtained [20]. On the other hand, this approach is inherently limited by the presence
of non-physical singularities on the negative real axis. Alternative approaches avoiding
this obstruction include using the equivalence of spatial and temporal mixing [33, 56]; or
disagreement percolation [11, 34, 8]. The best current bound for absence of phase transition
for the hard-sphere model and for repulsive pair potentials is the bound of e/Cϕ (and e/∆ϕ)
obtained by Michelen and Perkins [55, 56, 54]. Theorem 1.4 brings the bound for efficient
perfect sampling up to this bound.

On a technical level, the most relevant past work is [18], in which the authors prove
that for discrete spin systems, strong spatial mixing and subexponential volume growth of a
sequence of graphs imply the existence of an efficient perfect sampling algorithm. We take
their approach as a starting point but need new ideas to replace their exhaustive enumeration
of configurations.

A key step in our algorithm is the use of a Bernoulli factory to implement a Bayes
filter. Bernoulli factories are algorithms by which a Bernoulli random variable with success
probability f(p) can be simulated (perfectly) by an algorithm with access to independent
Bernoulli p random variables, where the algorithm does not know the value p. Whether a
Bernoulli factory exists (and how efficient it can be) depends on the function f(·) and a
priori bounds on the possible values p. Bernoulli factories have been studied in [61, 37, 14]
and recently used in the design of perfect sampling algorithms for CSP solutions in [31, 32].

Future directions
There are a number of extensions and improvements to these results one could pursue.
Perhaps most straightforward would be to relax the notion of strong spatial mixing from
exponential decay to decay faster than the volume growth of Rd and to extend the results
to repulsive potentials of unbounded range but finite temperedness constant Cϕ. Moreover,
it would be nice to upgrade the guarantees of the algorithm in Theorem 1.4 to that of
Theorem 1.2: that the algorithm does not need prior knowledge of the strong spatial mixing
constants a, b to run correctly.

An ambitious and exciting direction would be to remove the assumption of a repulsive
potential and find efficient perfect sampling algorithms for the class of stable potentials (see
e.g. [62, 67, 68] for a definition). A stable potential is repulsive at short ranges but can
include a weak attractive part; such potentials include the physically realistic Lenard-Jones
potential among others [75]. This would require some very new ideas, as much of the
recent probabilistic and algorithmic work on Gibbs point processes (e.g. [55, 56, 8, 54]) has
used repulsiveness as an essential ingredient (for one, repulsiveness of the potential implies
stochastic domination by the underlying Poisson point process). As a notable exception, a
deterministic approximation algorithm for partition functions of finite-range stable potentials
based on cluster expansion was recently proposed in [41].

1.4 Outline of the paper
In Section 2, we describe the high-level idea and intuition behind the algorithm. In Section 3
we introduce some notation and present some preliminary results that we will use throughout
the paper. In Section 4 we present the algorithm that we will apply to both hard spheres
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and more general processes, and we state the main theorems and lemmas that we use for
proving Theorem 1.2. The more general setting of bounded-range repulsive potentials (i.e.,
Theorem 1.4) can be found in the full version of the paper [3]. Intermediate steps and proves
are omitted and can be found in the full version as well.

2 Intuitive idea behind the algorithm

Our algorithm is an adaptation to continuum models of the work by Feng, Guo, and Yin [18]
on perfect sampling from discrete spin systems. We mimic their setting of a spin system on
a graph G = (V, E) by putting a graphical structure on sub-regions of our continuous space.

Let Λ = [0, L)d ⊂ Rd be the region considered, λ > 0 the activity, and let ϕ be a repulsive
potential of range r > 0. We subdivide Λ into (Λvvv)vvv∈V , a set of smaller boxes of side length
r indexed by vertices of a graph: each box corresponds to a vertex and boxes are connected
if they are within r of each other, i.e., particles in the boxes can interact directly through the
potential ϕ. We fix the index set for the boxes to be V ⊂ Nd

0, where each vvv ∈ V corresponds
to the box Λvvv = [v1r, (v1 + 1)r) × · · · × [vdr, (vd + 1)r). We extend this notation to sets of
indices S ⊆ V by setting ΛS =

⋃
vvv∈S Λvvv. Further, we denote by Bk(vvv) the set of indices

www ∈ V with ∥vvv − www∥∞ ≤ k. To shorten notation, we write ∂S =
(⋃

vvv∈S B1(vvv)
)

\ S for the
outer boundary of a set of boxes indexed by S ⊆ V .

Our algorithm runs iteratively, keeping track of two random variables: a point config-
uration Xt ∈ NΛ with X0 = ∅, and a set of “incorrect” boxes Ut ⊆ V with U0 = V. With
each iteration t we maintain the following invariant: the partial configuration Xt ∩ (ΛUt

)c

is distributed according to the projection of µλ to (ΛUt)c under the boundary condition
Xt ∩ ΛUt

. It follows that Xt is distributed according to µλ once we reach the state Ut = ∅.
We proceed by sketching an iteration of the algorithm. An example for the involved

subregions is given in Figure 1. Each iteration runs as follows:
1. We choose uuut ∈ Ut uniformly at random and attempt to “repair” it by updating Xt on a

neighborhood of boxes B = {uuut} ∪ (Bℓ(uuut) \ Ut) for some update radius ℓ ∈ N.
2. We sample a Bayes filter Ft (i.e., a Bernoulli random variable) with probability depending

on the potential ϕ, the activity λ, and the current point configuration Xt on Λuuut and Λ∂B .
3. a) If Ft = 1, we set Ut+1 = Ut \ {uuut} and we get Xt+1 by updating Xt on ΛB according

to a projection of µλ conditioned on the boundary configuration Xt ∩ (ΛB)c.
b) If Ft = 0, the configuration is unchanged and we add the boundary boxes to our

“incorrect” list, i.e., Xt+1 = Xt and Ut+1 = Ut ∪ ∂B.

We use the Bayes filter, as in [18], to remove bias from the resulting distribution. To
give some intuition for its role, suppose we run a naive version of the algorithm where we
always update Xt on ΛB as in step 3.a) above. Assuming the desired invariant holds after
t iterations, this naive algorithm gives a bias to the distribution of Xt+1 proportional to
ZΛB\{uuut}

(
λXt∩Λ∂B∪{uuut}

)
ZΛB (λXt∩Λ∂B ) . We choose the Bayes filter such that, conditioned on Ft = 1, the

bias term gets canceled. This suggests the choice

P[Ft = 1 | Xt, Ut,uuut ] = C(Ut,uuut, Xt) · ZΛB
(λXt∩Λ∂B

)
ZΛB\{uuut}

(
λXt∩Λ∂B∪{uuut}

) , (3)

where the choice C(Ut,uuut, Xt) serves three main purposes.
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ut

Ut

B

∂B

H

Figure 1 The box-shaped region Λ ⊂ R2 is divided into boxes of side length r (dotted lines).
The boxes Ut are bordered by bold black lines. For uuut as given and update radius ℓ = 2, the
corresponding set B of boxes to be updated is indicated by the red hatched area (falling left to
right). Its boundary boxes ∂B are shown as blue hatched area (rising left to right). The boxes in
H = (Ut ∪ B)c are shown with gray background.

First, it must guarantee that the right-hand side of (3) is a probability. To achieve this
we need, for H = (Ut ∪ B)c and almost all realizations of Xt, Ut and uuut, that

C(Ut,uuut, Xt) ≤ inf
ξ∈NΛH

ZΛB\{uuut}

(
λξ∪(Xt∩ΛUt )

)
ZΛB

(
λξ∪(Xt∩ΛUt\{uuut})

) . (4)

Second, C(Ut,uuut, Xt) must introduce no new bias. Carrying out the calculations, it can be
seen that this is guaranteed if C(Ut,uuut, Xt) only depends on Xt ∩ΛUt

. Finally, it must ensure
that the algorithm terminates almost surely. It suffices to ensure C(Ut,uuut, Xt) is uniformly
bounded away from 0 for almost all realizations of Xt, implying that the same holds for the
right-hand side of (3). We refer to a function C(·) satisfying these requirements as a Bayes
filter correction.

If we use a Bayes filter as given in (3), keeping Xt and Ut unchanged whenever Ft = 0
introduces new bias. To prevent this, we set Ut+1 = Ut ∪ ∂B in step 3.b), effectively deleting
the part of the configuration that was revealed by the filter. Since the algorithm only
terminates once Ut = ∅, we further require the Bayes filter correction to ensure that the
probability of Ft = 0 is small to guarantee efficiency.

Constructing a Bayes filter correction that satisfies the requirements above and allows
for efficient sampling of Ft is a non-trivial task. In the next subsections, we present two
approaches for this, the first specialized to the hard-sphere model without requirements, and
the second one for more general potentials with strong spatial mixing of the point process.
Crucially, assuming strong spatial mixing, both constructions allow us to control the success
probability of the Bayes filter via the update radius ℓ in the construction of the updated set
of boxes B (see step 1).

2.1 Bayes filter for the hard-sphere model
To construct a Bayes filter for the hard-sphere model, we efficiently approximate the right-
hand side of (4). To approximate the infimum over the uncountable set of configurations
ξ ∈ NΛH

we take the minimum over a finite, but sufficiently rich set of configurations,
balancing the quality of approximation with the computation required. In fact the number

APPROX/RANDOM 2023
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of configurations needed will depend only on the volume of ΛB∪∂B. We approximate the
fraction of partition functions in (4) with running time only depending on the volume of
ΛB∪∂B . As a result, we efficiently compute a Bayes filter correction Cε(·), with the parameter
ε > 0 controlling how much Cε(Ut,uuut, Xt) deviates from the right-hand side of (4).

While our construction of Cε(·) guarantees correctness of the sampling algorithm for
any ε > 0, proving efficiency requires more. With strong spatial mixing, we choose ε so
that the probability that Ft = 0 is uniformly bounded above, ensuring O(|Λ|) iterations in
expectation.

It remains to argue that we can efficiently sample Ft, using the Bayes filter correction
Cε(·). Explicitly computing the success probability of Ft as in (3) would require computing
the fraction of partition functions on the right-hand side exactly, while approximating these
partition functions would require that the approximation error only depends on Xt ∩ ΛUt

, to
avoid new bias.

It is unclear how to implement these approaches, so instead we use Bernoulli factories to
sample Ft without knowing the success probability. To do so, we observe that the fraction of
partition functions can be written as a ratio of probabilities for drawing the empty set from a
conditional hard-sphere model on ΛB and ΛB\{uuut}. Since both regions have constant volume,
rejection sampling obtains Bernoulli random variables with these success probabilities in
constant time. Hence, we obtain a Bernoulli factory for Ft with constant expected running
time. Wald’s identity yields a total expected running time O(|Λ|) for the algorithm.

2.2 Bayes filter for general potentials
We now consider the case of general bounded-range, repulsive potentials. Unlike the hard
sphere model, it is not clear here how to approximate the infimum in (4) from a finite set of
boundary configurations. However, given constants a, b > 0 such that ϕ satisfies (a, b)-strong
spatial mixing, we can explicitly compute a function δ(a, b) so that

Ca,b(Ut,uuut, Xt) = δ(a, b) ·
ZΛB\{uuut}

(
λXt∩ΛUt

)
ZΛB

(
λXt∩ΛUt\{uuut}

)
is a Bayes filter correction. With strong spatial mixing, we use Ca,b(·) to construct a Bayes
filter such that probability that Ft = 0 is bounded above, again implying a bound of O(|Λ|)
on the expected number of iterations of the algorithm.

Note that in this setting, we require spatial mixing for both correctness and efficiency,
while for the hard-sphere model we only need it for efficiency. Another crucial difference is
that, while we can explicitly compute δ(a, b), the same does not hold for Ca,b(·) due to the
fraction of partition functions involved. Again we circumvent this by rewriting the success
probability of the Bayes filter in a suitable way and applying a Bernoulli factory for sampling
Ft. Finally, we point out that we do not obtain a constant bound for the expected running
time of each iteration, but instead the bound depends on the number of points in Xt ∩ Λ∂B .
Possible dependencies between the configuration Xt and the number of iterations prevent us
from bounding the total expected running time using Wald’s identity. Instead, we provide
tail bounds on the number of iterations and the running time of each iteration, allowing us to
derive an expected total running time that is linear in the volume of Λ up to polylogarithmic
factors.

3 Preliminaries

Throughout the paper, we write N for the set of strictly positive integers, and we write
N0 = N ∪ {0}. For any k ∈ N, we denote by [k] the set [1, k] ∩ N.
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For a bounded measurable region Λ ⊂ Rd and any finite point configuration η ∈ NΛ, we
write |η| for the number of points in η. Note that this notation is the same that as the one
we use for the volume of a region. The particular meaning will be clear from the context.
Moreover, for k ∈ N, we write

(
η
k

)
for the set {η′ ⊆ η | |η′| = k }.

3.1 Gibbs point processes
We introduce some additional notation for Gibbs point processes, used in the rest of the
paper. Firstly, when dealing with a tuple (x1, . . . , xk) ∈ (Rd)k we frequently denote it by
the corresponding bold letter xxx. Based on this, we write dxxx for dx1 . . . dxk and H(xxx) for
H(x1, . . . , xk). Moreover, for any k ∈ N0 and xxx = (x1, . . . , xk) ∈ (Rd)k we write ηxxx for the
set {x1, . . . , xk}, where the case k = 0 results in ηxxx = ∅. Finally, for xxx ∈ Λk we write λλλxxx for∏

i∈[k] λλλ(xi). This simplifies the definition of µλλλ given in the introduction to

µλλλ(A) = 1
ZΛ(λλλ)

∑
k≥0

1
k!

∫
Λk

1ηxxx∈Aλλλxxxe−H(xxx) dxxx.

Next, we formalize two different notions of restricting a Gibbs point process on Λ to a
subregion Λ′ ⊆ Λ that are relevant throughout the paper.

The first is based on restricting the support of λλλ by defining a new activity function
λλλ1Λ′ : y 7→ λλλ(y) · 1y∈Λ′ (for constant activity λ, we write λ1Λ′ : y 7→ λ1y∈Λ′). The resulting
Gibbs point process is a probability measure on (NΛ,RΛ) with

µλλλ1Λ′ (A) = 1
ZΛ(λλλ1Λ′)

∑
k≥0

1
k!

∫
Λk

1ηxxx∈A(λλλ1Λ′)xxxe−H(xxx) dxxx

= 1
ZΛ′(λλλ)

∑
k≥0

1
k!

∫
Λ′k

1ηxxx∈Aλλλxxxe−H(xxx) dxxx

for all A ∈ RΛ. In particular, for A = {η ∈ NΛ | η ∩ (Λ′)c > 0}, it holds that µλλλ1Λ′ (A) = 0.
The second way of restricting a Gibbs point process µλλλ is by projecting it to a measurable

subregion Λ′ ⊆ Λ. To this end, we write µλλλ[Λ′] for the image measure of µλλλ under the map
NΛ → NΛ′ , η 7→ η ∩ Λ′. By construction, µλλλ[Λ′] is a probability distribution on (NΛ′ ,RΛ′)
that, for every A ∈ RΛ′ , assigns a probability

µλλλ[Λ′](A) = 1
ZΛ(λλλ)

∑
k≥0

1
k!

∫
Λk

1ηxxx∩Λ′∈Aλλλxxxe−H(xxx) dxxx.

As discussed in Section 1, we frequently modify the activity function to encode the effect
of fixing a certain point set (boundary condition). More precisely, for a fixed potential ϕ, an
activity function λλλ and a point set η ∈ NΛ we write λλλη for the function y 7→ λλλ(y)e−

∑
x∈η

ϕ(x,y).
Similarly, for k ∈ N and xxx ∈ Λk we write λλλxxx for the activity function y 7→ λλλ(y)e−

∑
i∈[k]

ϕ(xi,y).
We extend this notation to constant activity λ ∈ R≥0, writing λη : y 7→ λe−

∑
x∈η

ϕ(x,y) and
λxxx : y 7→ λe−

∑
i∈[k]

ϕ(xi,y). Using this notation, a useful alternative definition of µλλλ[Λ′] is
given by

µλλλ[Λ′](A) = 1
ZΛ(λλλ)

∑
k≥0

1
k!

∫
Λ′k

1ηxxx∈Aλλλxxxe−H(xxx)ZΛ
(
λλλxxx1(Λ′)c

)
dxxx

= 1
ZΛ(λλλ)

∑
k≥0

1
k!

∫
Λ′k

1ηxxx∈Aλλλxxxe−H(xxx)Z(Λ′)c(λλλxxx) dxxx
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for A ∈ RΛ′ . In particular, note that

µλλλ1Λ′ [Λ′](A) = 1
ZΛ′(λλλ)

∑
k≥0

1
k!

∫
Λ′k

1ηxxx∈Aλλλxxxe−H(xxx) dxxx.

While µλλλ1Λ′ [Λ′] and µλλλ1Λ′ seem similar, the former is a distribution on (NΛ′ ,RΛ′) whereas
the latter is defined on (NΛ,RΛ).

3.2 Bernoulli factories
In designing our sampling algorithm, it will be useful to consider the following Bernoulli
factory problem. We are given access to a sampler for Ber(p) and for Ber(q), that is samplers
of Bernoulli random variables with parameters p and q respectively, where we further assume
p < q. We want to sample a random variable Z ∼ Ber

(
p
q

)
.

Most work on Bernoulli factories studies their running time in terms of the number of coin
flips required. In our setting, the time needed to generate each of these coin flips is random
variable. Fortunately, suitable independence assumptions hold in our setting allowing us to
prove the following lemma.

▶ Lemma 3.1. Fix some p, q ∈ [0, 1] such that q − p ≥ ϵ for some ϵ > 0. Further assume
that we have oracle access to a sampler from Ber(p) and Ber(q) in the following sense:
1. every sample from Ber(p) (resp. Ber(q)) is independent from all previous samples;
2. the expected running time for obtaining a sample from Ber(p) (resp. Ber(q)), conditioned

on previously obtained samples, is uniformly bounded by some t ∈ R≥0.
Then we can sample from Ber

(
p
q

)
in O

(
tϵ−2)

expected time.

4 The algorithm

Let Λ = [0, L)d and consider a Gibbs point processes on Λ with uniform activity λλλ(x) ≡ λ for
some λ ∈ R>0 and repulsive potential ϕ with finite range r ∈ R>0. Throughout the analysis
of our algorithm, it will be useful to focus on configurations η ∈ NΛ such that ϕ(x, y) < ∞
for all {x, y} ∈

(
η
2
)
, in which case we call η a feasible configuration.

Before stating our algorithm, we first formalize how we divide Λ into smaller boxes,
following the description given in Section 2. For a r and L as above, let N = ⌈L/r⌉.
We set V = {0, . . . , N − 1}d to be the set of box indices and associate each box index
vvv = (v1, . . . , vd) ∈ V with the region Λvvv =

(
[v1r, (v1 + 1)r) × · · · × [vdr, (vd + 1)r)

)
∩ Λ. As

in Section 2, we extend this notation to sets of box indices S ⊆ V by setting ΛS =
⋃

vvv∈S Λvvv.
Further, recall that, for vvv ∈ V , we write Bk(vvv) for the set of boxes www ∈ V with ∥vvv − www∥∞ < k.
As mentioned earlier, our algorithm tries to update in each step the point configuration on a
subset of boxes B ⊆ V . To this end, for S ⊆ V , vvv ∈ S, r ∈ R>0 and ℓ ∈ N, we define

B(S,vvv, ℓ) := {vvv} ∪ (Bvvv(ℓ) \ S).

We refer to the parameter ℓ as the update radius. Finally, recall that we write ∂S =
(
⋃

vvv∈S B1(vvv)) \ S for the outer boundary of S ⊆ V .
Whether the algorithm updates the point configuration in iteration t depends on the

outcome of a Bernoulli random variable Ft, called the Bayes filter. We introduce the following
definition.
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▶ Definition 4.1. Fix a repulsive potential ϕ of range r ∈ R>0, an activity λ ∈ R>0 and
some ℓ ∈ N. We call a function C : 2V × V × NΛ → [0, 1] a Bayes filter correction if, for all
non-empty S ⊆ V and vvv ∈ S, it holds that
1. C(S,vvv, ·) is RΛS

-measurable (in particular C(S,vvv, η) = C(S,vvv, η ∩ ΛS) for all η ∈ NΛ),
2. there is some ε > 0 such that for B = B(S,vvv, ℓ), H = (S ∪ B)c and all feasible η ∈ NΛ it

holds that

ε ≤ C(S,vvv, η) ≤ inf
ξ∈NΛH

ξ∪(η∩ΛS) is feasible

 ZΛB\{vvv}

(
λξ∪(η∩ΛS)

)
ZΛB

(
λξ∪(η∩ΛS\{vvv})

)
.

Our perfect sampling procedure is stated in Algorithm 1.

Algorithm 1 Perfect sampling algorithm for repulsive Gibbs point processes.

Data: region Λ = [0, L)d, repulsive potential ϕ of range at most r ∈ R>0, activity
λ ∈ R>0, update radius ℓ ∈ N

1 set t = 0, Ut = V, Xt = ∅
2 while Ut ̸= ∅ do
3 draw uuut ∈ Ut uniformly at random
4 set B = B(Ut,uuut, ℓ)

5 draw Ft from Ber
(

C(Ut,uuut, Xt) · ZΛB (λXt∩Λ∂B )
ZΛB\{uuut}

(
λXt∩Λ∂B∪{uuut}

))
where C is a Bayes

filter correction as in Definition 4.1
6 if Ft = 1 then
7 draw Y from µλXt∩(ΛB )c1ΛB

[ΛB ]
8 set Xt+1 = (Xt \ ΛB) ∪ Y

9 set Ut+1 = Ut \ {uuut}
10 else
11 set Ut+1 = Ut ∪ ∂B

12 increase t by 1
13 return Xt

Before we get to the question of how to sample an appropriate Bayes filter in step 5, the
following statement ensures that the algorithm produces the correct output distribution.

▶ Theorem 4.2. Let T = inft∈N{Ut = ∅}. Then T is almost surely finite and for all t ∈ N0
with P[t ≥ T ] > 0 and all A ∈ RΛ, it holds that P[Xt ∈ A | t ≥ T ] = µλ(A).

We proceed to exemplify how we use Bernoulli factories to sample the Bayes filter. For
brevity, we focus on the hard-sphere model here. The more general case of bounded-range
repulsive potential can be found in the full version of the paper [3].

Bayes filter for the hard-sphere model
Recall that for the hard-sphere model, we have ϕ(x, y) = ∞ if dist(x, y) < r and 0 otherwise.
Given a non-empty set of boxes S ⊆ V , vvv ∈ S and a feasible configuration η ∈ NΛ, we want
to construct a Bayes filter correction C(S,vvv, η) that allows us to efficiently sample the filter.
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To this end, set B = B(S,vvv, ℓ) and H = (S ∪ B)c. Our construction makes use of two
ingredients. Firstly, we argue that, instead of minimization over the uncountable set of
boundary conditions NΛH

, it suffices to minimize over subsets of the finite set (δ1Z)d ∩ΛH∩∂B

for a sufficiently small δ1 > 0. Secondly, choosing a sufficiently small δ2 > 0, we show that
we can approximate the involved partition functions using the function

Ẑ(S, η, δ2) =
∑

γ⊆(δ2Z)d∩ΛS

λ|γ|δ
|γ|
2 · D(γ) · D(γ | η ∩ Λ∂S), (5)

where D(γ) =
∏

{x,y}∈(γ
2) 1dist(x,y)≥r and D(γ | η) =

∏
x∈γ

∏
y∈η 1dist(x,y)≥r.

The following lemma then gives a way to construct a Bayes filter correction for the
hard-sphere model.

▶ Lemma 4.3. For non-empty S ⊆ V, vvv ∈ S, feasible η ∈ NΛ and ε, δ1, δ2 > 0 define

Cε(S,vvv, η) := e−ε · min
γ⊆(δ1Z)d∩ΛH∩∂B

Ẑ(B \ {vvv}, γ ∪ (η ∩ ΛS), δ2)
Ẑ

(
B, γ ∪ (η ∩ ΛS\vvv), δ2

) ,

where B = B(S,vvv, ℓ) and H = (S ∪ B)c. For δ1, δ2 sufficiently small, depending only on
d, r, ℓ and ε, it holds that Cε(S,vvv, η) is a Bayes filter correction.

In fact, we will not use Cε directly for our Bayes filter, but a slightly scaled version
0 < e−εCε, which is again a Bayes filter correction. The additional slack allows us to
efficiently sample the Bayes filter by using a Bernoulli factory, as we argue in the next lemma.

▶ Lemma 4.4. Let S ⊆ V be non-empty, vvv ∈ S and η ∈ NΛ be feasible, and set B = B(S,vvv, ℓ).
For all ε > 0 we can sample a Bernoulli random variable with success probability

e−εCε(S,vvv, η) · ZΛB
(λη∩Λ∂B

)
ZΛB\{vvv}

(
λη∩Λ∂B∪{vvv}

)
with expected running time only depending on ε, ℓ, r, λ and d.

The core idea of the above lemma to express ZΛB (λη∩Λ∂B )
ZΛB\{vvv}

(
λη∩Λ∂B∪{vvv}

) as a fraction of probabilities.

Together with the fact that e−εCε(S,vvv, η) < 1, this allows us to write the success probability
of the Bayes filter as a fraction of probabilities p

q . Arguing that p < q, and that we can
sample Ber(p) and Ber(q) efficiently allows us to apply Lemma 3.1 to prove Lemma 4.4.

While the above suffices to perform each iteration of Algorithm 1 efficiently, we still
need to bound the number of iterations. For this, we derive a lower bound on the success
probability of the Bayes filter with correction e−εCε(·) for a particular choice of ε, using the
assumption of strong spatial mixing.

▶ Lemma 4.5. Consider a hard-sphere model that exhibits (a, b)-strong spatial mixing up
to λ. Then there are constants a′, b′, only depending on a, b, r, λ and d, such that for all
non-empty S ⊆ V, vvv ∈ S and feasible η ∈ NΛ it holds that

e−e−ℓ

Ce−ℓ(S,vvv, η) · ZΛB
(λη∩Λ∂B

)
ZΛB\{vvv}

(
λη∩Λ∂B∪{vvv}

) ≥ 1 − a′e−b′ℓ.

Lemma 4.5 allows us to control the success probability of the Bayes filter in terms of ℓ.
Combining the results above gives the following theorem.
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▶ Theorem 4.6. Consider Algorithm 1 on a hard-sphere model with C(·) = e−e−ℓ

Ce−ℓ(·) as
Bayes filter correction in line 5. We can run the algorithm in almost-surely finite running
time and, on termination, it outputs a sample from the hard-sphere Gibbs measure µλ on Λ.
Moreover, if the hard-sphere model satisfies (a, b)-strong spatial mixing and if ℓ is chosen as
a sufficiently large constant, depending on a, b, r, λ and d, then we can run the algorithm in
expected time O(|Λ|).

References
1 Michael Aizenman and Richard Holley. Rapid convergence to equilibrium of stochastic Ising

models in the Dobrushin Shlosman regime. Percolation theory and ergodic theory of infinite
particle systems, pages 1–11, 1987.

2 Berni Julian Alder and Thomas Everett Wainwright. Phase transition for a hard sphere system.
The Journal of Chemical Physics, 27(5):1208–1209, 1957.

3 Konrad Anand, Andreas Göbel, Marcus Pappik, and Will Perkins. Perfect sampling for hard
spheres from strong spatial mixing. arXiv preprint, 2023. arXiv:2305.02450.

4 Konrad Anand and Mark Jerrum. Perfect sampling in infinite spin systems via strong spatial
mixing. SIAM Journal on Computing, 51(4):1280–1295, 2022.

5 Søren Asmussen, Peter W Glynn, and Hermann Thorisson. Stationarity detection in the initial
transient problem. ACM Transactions on Modeling and Computer Simulation (TOMACS),
2(2):130–157, 1992.

6 Etienne P Bernard and Werner Krauth. Two-step melting in two dimensions: first-order
liquid-hexatic transition. Physical Review Letters, 107(15):155704, 2011.

7 Etienne P Bernard, Werner Krauth, and David B Wilson. Event-chain Monte Carlo algorithms
for hard-sphere systems. Physical Review E, 80(5):056704, 2009.

8 Steffen Betsch and Günter Last. On the uniqueness of Gibbs distributions with a non-negative
and subcritical pair potential. In Annales de l’Institut Henri Poincare (B) Probabilites et
statistiques, volume 59(2), pages 706–725. Institut Henri Poincaré, 2023.

9 Siddharth Bhandari and Sayantan Chakraborty. Improved bounds for perfect sampling of
k-colorings in graphs. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory
of Computing, pages 631–642, 2020.

10 Zongchen Chen, Kuikui Liu, Nitya Mani, and Ankur Moitra. Strong spatial mixing for colorings
on trees and its algorithmic applications. arXiv preprint, 2023. arXiv:2304.01954.

11 Hofer Temmel Christoph. Disagreement percolation for the hard-sphere model. Electronic
Journal of Probability, 24:1–22, 2019.

12 David Dereudre. Introduction to the theory of Gibbs point processes. In Stochastic Geometry,
pages 181–229. Springer, 2019.

13 Persi Diaconis. The Markov Chain Monte Carlo revolution. Bulletin of the American
Mathematical Society, 46(2):179–205, 2009.

14 Shaddin Dughmi, Jason Hartline, Robert D Kleinberg, and Rad Niazadeh. Bernoulli factories
and black-box reductions in mechanism design. Journal of the ACM (JACM), 68(2):1–30,
2021.

15 Martin Dyer, Alistair Sinclair, Eric Vigoda, and Dror Weitz. Mixing in time and space for
lattice spin systems: A combinatorial view. Random Structures & Algorithms, 24(4):461–479,
2004.

16 Michael Engel, Joshua A Anderson, Sharon C Glotzer, Masaharu Isobe, Etienne P Bernard,
and Werner Krauth. Hard-disk equation of state: First-order liquid-hexatic transition in two
dimensions with three simulation methods. Physical Review E, 87(4):042134, 2013.

17 Stefan Felsner and Lorenz Wernisch. Markov chains for linear extensions, the two-dimensional
case. In SODA, pages 239–247, 1997.

18 Weiming Feng, Heng Guo, and Yitong Yin. Perfect sampling from spatial mixing. Random
Structures & Algorithms, 61(4):678–709, 2022.

APPROX/RANDOM 2023

https://arxiv.org/abs/2305.02450
https://arxiv.org/abs/2304.01954


38:16 Perfect Sampling for Hard Spheres from Strong Spatial Mixing

19 Weiming Feng and Yitong Yin. On local distributed sampling and counting. In Proceedings of
the 2018 ACM Symposium on Principles of Distributed Computing, pages 189–198, 2018.

20 Roberto Fernández, Aldo Procacci, and Benedetto Scoppola. The analyticity region of the
hard sphere gas. Improved bounds. J. Stat. Phys., 5:1139–1143, 2007.

21 Pablo A Ferrari, Roberto Fernández, and Nancy L Garcia. Perfect simulation for interacting
point processes, loss networks and Ising models. Stochastic Processes and their Applications,
102(1):63–88, 2002.

22 David Gamarnik, Dmitriy Katz, and Sidhant Misra. Strong spatial mixing of list coloring of
graphs. Random Structures & Algorithms, 46(4):599–613, 2015.

23 Nancy L Garcia. Perfect simulation of spatial processes. Resenhas do Instituto de Matemática
e Estatística da Universidade de São Paulo, 4(3):283–325, 2000.

24 J Groeneveld. Two theorems on classical many-particle systems. Phys. Letters, 3, 1962.
25 Heng Guo and Mark Jerrum. Perfect simulation of the hard disks model by partial rejection

sampling. Annales de l’Institut Henri Poincaré D, 8(2):159–177, 2021.
26 Heng Guo, Mark Jerrum, and Jingcheng Liu. Uniform sampling through the Lovász local

lemma. Journal of the ACM (JACM), 66(3):1–31, 2019.
27 Olle Häggström and Karin Nelander. Exact sampling from anti-monotone systems. Statistica

Neerlandica, 52(3):360–380, 1998.
28 Olle Häggström, Marie-Colette N.M. van Lieshout, and Jesper Møller. Characterization results

and Markov chain Monte Carlo algorithms including exact simulation for some spatial point
processes. Bernoulli, 5(4):641–658, 1999.

29 Thomas P Hayes and Cristopher Moore. Lower bounds on the critical density in the hard disk
model via optimized metrics. arXiv preprint, 2014. arXiv:1407.1930.

30 Kun He, Xiaoming Sun, and Kewen Wu. Perfect sampling for (atomic) Lovász Local Lemma.
arXiv preprint, 2021. arXiv:2107.03932.

31 Kun He, Chunyang Wang, and Yitong Yin. Sampling Lovász Local Lemma for general
constraint satisfaction solutions in near-linear time. In 2022 IEEE 63rd Annual Symposium
on Foundations of Computer Science (FOCS), pages 147–158. IEEE, 2022.

32 Kun He, Kewen Wu, and Kuan Yang. Improved bounds for sampling solutions of random CNF
formulas. In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 3330–3361. SIAM, 2023.

33 Tyler Helmuth, Will Perkins, and Samantha Petti. Correlation decay for hard spheres via
Markov chains. The Annals of Applied Probability, 32(3):2063–2082, 2022.

34 Christoph Hofer-Temmel and Pierre Houdebert. Disagreement percolation for Gibbs ball
models. Stochastic Processes and their Applications, 129(10):3922–3940, 2019.

35 Richard Holley. Possible rates of convergence in finite range, attractive spin systems. Part.
Syst. Random Media Large Deviat., 41:215, 1985.

36 Mark Huber. Spatial birth–death swap chains. Bernoulli, 18(3):1031–1041, 2012.
37 Mark Huber. Nearly optimal Bernoulli factories for linear functions. Combin. Probab. Comput.,

25(4):577–591, 2016.
38 Mark Huber, Elise Villella, Daniel Rozenfeld, and Jason Xu. Bounds on the artificial phase

transition for perfect simulation of hard core Gibbs processes. Involve, a Journal of Mathematics,
5(3):247–255, 2013.

39 Masaharu Isobe. Hard sphere simulation in statistical physics—methodologies and applications.
Molecular Simulation, 42(16):1317–1329, 2016.

40 Vishesh Jain, Ashwin Sah, and Mehtaab Sawhney. Perfectly sampling k ≥ (8/3 + o(1))∆-
colorings in graphs. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory
of Computing, pages 1589–1600, 2021.

41 Matthew Jenssen, Marcus Michelen, and Mohan Ravichandran. Quasipolynomial-time algo-
rithms for repulsive Gibbs point processes. arXiv preprint, 2022. arXiv:2209.10453.

https://arxiv.org/abs/1407.1930
https://arxiv.org/abs/2107.03932
https://arxiv.org/abs/2209.10453


K. Anand, A. Göbel, M. Pappik, and W. Perkins 38:17

42 Mark Jerrum and Alistair Sinclair. The Markov chain Monte Carlo method: an approach to
approximate counting and integration. Approximation algorithms for NP-hard problems, pages
482–520, 1996.

43 Ravi Kannan, Michael W. Mahoney, and Ravi Montenegro. Rapid mixing of several Markov
chains for a hard-core model. In Algorithms and computation, volume 2906 of Lecture Notes
in Comput. Sci., pages 663–675. Springer, Berlin, 2003.

44 Frank P Kelly and Brian D Ripley. A note on Strauss’s model for clustering. Biometrika,
pages 357–360, 1976.

45 Wilfrid S Kendall. Perfect simulation for the area-interaction point process. In Probability
towards 2000, pages 218–234. Springer, 1998.

46 Wilfrid S Kendall and Jesper Møller. Perfect simulation using dominating processes on ordered
spaces, with application to locally stable point processes. Advances in Applied Probability,
pages 844–865, 2000.

47 Botao Li, Yoshihiko Nishikawa, Philipp Höllmer, Louis Carillo, AC Maggs, and Werner Krauth.
Hard-disk pressure computations – A historic perspective. The Journal of Chemical Physics,
157(23):234111, 2022.

48 Jingcheng Liu, Alistair Sinclair, and Piyush Srivastava. Correlation decay and partition
function zeros: Algorithms and phase transitions. SIAM Journal on Computing, pages
FOCS19–200, 2022.

49 Laszlo Lovasz and Peter Winkler. Exact mixing in an unknown Markov chain. The Electronic
Journal of Combinatorics, pages R15–R15, 1995.

50 Hartmut Löwen. Fun with hard spheres. In Statistical physics and spatial statistics, volume
554, pages 295–331. Springer, 2000.

51 Pinyan Lu and Yitong Yin. Improved FPTAS for multi-spin systems. In Approximation, Ran-
domization, and Combinatorial Optimization. Algorithms and Techniques: 16th International
Workshop, APPROX 2013, and 17th International Workshop, RANDOM 2013, Berkeley, CA,
USA, August 21-23, 2013. Proceedings, pages 639–654. Springer, 2013.

52 Fabio Martinelli. Lectures on Glauber dynamics for discrete spin models. In Lectures on
probability theory and statistics, pages 93–191. Springer, 1999.

53 Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H Teller, and
Edward Teller. Equation of state calculations by fast computing machines. The Journal of
Chemical Physics, 21(6):1087–1092, 1953.

54 Marcus Michelen and Will Perkins. Potential-weighted connective constants and uniqueness
of Gibbs measures. arXiv preprint, 2021. arXiv:2109.01094.

55 Marcus Michelen and Will Perkins. Analyticity for classical gasses via recursion. Communica-
tions in Mathematical Physics, pages 1–22, 2022.

56 Marcus Michelen and Will Perkins. Strong spatial mixing for repulsive point processes. Journal
of Statistical Physics, 189(1):9, 2022.

57 Sarat B Moka, Dirk P Kroese, et al. Perfect sampling for Gibbs point processes using partial
rejection sampling. Bernoulli, 26(3):2082–2104, 2020.

58 Jesper Møller. A review of perfect simulation in stochastic geometry. Lecture Notes-Monograph
Series, pages 333–355, 2001.

59 Jesper Møller and Rasmus Plenge Waagepetersen. Statistical inference and simulation for
spatial point processes. CRC Press, 2003.

60 Duncan J Murdoch and Peter J Green. Exact sampling from a continuous state space.
Scandinavian Journal of Statistics, 25(3):483–502, 1998.

61 Serban Nacu and Yuval Peres. Fast simulation of new coins from old. The Annals of Applied
Probability, 15(1A):93–115, 2005.

62 Oliver Penrose. Convergence of fugacity expansions for fluids and lattice gases. Journal of
Mathematical Physics, 4(10):1312–1320, 1963.

63 James Gary Propp and David Bruce Wilson. Exact sampling with coupled Markov chains and
applications to statistical mechanics. Random Structures & Algorithms, 9(1-2):223–252, 1996.

APPROX/RANDOM 2023

https://arxiv.org/abs/2109.01094


38:18 Perfect Sampling for Hard Spheres from Strong Spatial Mixing

64 James Gary Propp and David Bruce Wilson. How to get a perfectly random sample from a
generic Markov chain and generate a random spanning tree of a directed graph. Journal of
Algorithms, 27(2):170–217, 1998.

65 Dana Randall. Rapidly mixing Markov chains with applications in computer science and
physics. Computing in Science & Engineering, 8(2):30–41, 2006.

66 Guus Regts. Absence of zeros implies strong spatial mixing. Probability Theory and Related
Fields, pages 1–21, 2023.

67 David Ruelle. Correlation functions of classical gases. Annals of Physics, 25:109–120, 1963.
68 David Ruelle. Statistical mechanics: Rigorous results. World Scientific, 1999.
69 Alistair Sinclair, Piyush Srivastava, Daniel Štefankovič, and Yitong Yin. Spatial mixing and the

connective constant: Optimal bounds. Probability Theory and Related Fields, 168(1-2):153–197,
2017.

70 Yinon Spinka. Finitary codings for spatial mixing Markov random fields. Ann. Probab.,
48(3):1557–1591, 2020.

71 David J Strauss. A model for clustering. Biometrika, 62(2):467–475, 1975.
72 Daniel W Stroock and Boguslaw Zegarlinski. The logarithmic Sobolev inequality for discrete

spin systems on a lattice. Communications in Mathematical Physics, 149(1):175–193, 1992.
73 Marie-Colette N.M. van Lieshout. Markov Point Processes and Their Applications. Imperial

College Press, 2000.
74 Dror Weitz. Counting independent sets up to the tree threshold. In Proceedings of the

Thirty-Eighth Annual ACM Symposium on Theory of Computing, STOC 2006, pages 140–149.
ACM, 2006.

75 William W. Wood, F. Raymond Parker, and Jack David Jacobson. Recent monte carlo
calculations of the equation of state of lenard-jones and hard sphere molecules. Il Nuovo
Cimento (1955-1965), 9:133–143, 1958.



Subset Sum in Time 2n/2/poly(n)
Xi Chen #

Columbia University, New York, NY, USA

Yaonan Jin #

Columbia University, New York, NY, USA

Tim Randolph #

Columbia University, New York, NY, USA

Rocco A. Servedio #

Columbia University, New York, NY, USA

Abstract
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1 Introduction

One of the most well-known and simple-to-state NP-complete problems is the Subset Sum
problem. An instance of Subset Sum consists of a list X = (x1, . . . , xn) of n positive integer
values and a positive integer target t, and the output is either a subset S ⊆ X such that∑

xi∈S xi = t or a report that no such subset exists. Subset Sum was one of the original
21 problems proved NP-complete in Karp’s seminal paper [18] and has been the subject of
intensive study from many different perspectives for at least five decades.

This paper is motivated by the following open problem in the theory of exact exponential
time algorithms: how quickly can we solve worst-case instances of Subset Sum? Exhaustive
search over all possible solutions yields a trivial 2n ·poly(n)-time algorithm. In 1974, Horowitz
and Sahni introduced the “meet-in-the-middle” technique, which gives an algorithm that
can be implemented in O(2n/2) time in standard RAM models [16]. Since then, obtaining
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a 2(1/2−c)n-time algorithm for some constant c > 0 has emerged as a major goal in the
exact exponential time algorithms community (explicitly mentioned in [23, 11, 3, 4, 20] and
numerous other works) which has attracted the attention of many researchers.

Intriguing progress has been made on a number of variants of the core worst-case
Subset Sum problem. More than forty years ago Schroeppel and Shamir [22] improved the
2n/2 · poly(n) space complexity of the meet-in-the-middle algorithm by giving an algorithm
that runs in 2n/2 · poly(n) time and 2n/4 · poly(n) space. An exciting recent breakthrough
by Nederlof and Węgrzycki [20] further improved this space complexity to 20.249999n. In [17]
Howgrave-Graham and Joux gave an algorithm which can solve average-case Subset Sum
instances in time 20.337n,1 and this was later improved to 20.291n in the work of Becker et
al. [6]. The closely related Equal Subset Sum problem, which looks for two subsets with
the same sum, can be solved exponentially faster than suggested by meet-in-the-middle [19]
and also yields further improvements in the average case [10]. However, to the best of our
knowledge, there have been no improvements on the worst-case O(2n/2) runtime of the
meet-in-the-middle algorithm for Subset Sum since it was first introduced almost fifty years
ago.

Our contribution: Worst-case Subset Sum in 2n/2/poly(n) time. Given the longstanding
difficulty of achieving a 2(1/2−c)n-time worst-case algorithm for Subset Sum, it is natural to
consider the relaxed goal of achieving some nontrivial speedup of the meet-in-the-middle
algorithm. In this paper we achieve this goal; more precisely, we give three different
randomized algorithms for worst-case Subset Sum, each of which runs in time O(2n/2 · n−γ)
for a specific constant γ > 0 in a standard word RAM or circuit RAM model (described in
detail in Section 1.1 below). Our fastest algorithm, which combines techniques from our
other two algorithms, runs in time O(2n/2 · n−0.5023).

The improvements we achieve over the O(2n/2) runtime of the meet-in-the-middle al-
gorithm for Subset Sum are analogous to “log-shaving” improvements on the runtimes of
well-known and simple polynomial-time algorithms for various problems which have resisted
attempts at polynomial-factor improvements. There is a substantial strand of research
along these lines (see [9, 8] for a non-exhaustive overview); indeed, Abboud and Bringmann
[1] have recently stated that: “A noticeable fraction of Algorithms papers in the last few
decades improve the runtime of well-known algorithms for fundamental problems by loga-
rithmic factors.” In our setting, since the well-known and simple algorithm for Subset Sum
(namely, meet-in-the-middle) runs in exponential time, saving a poly(n) factor, as we do, is
analogous to “log-shaving”. Indeed, as we discuss in Section 1.2 below, our first and most
straightforward algorithm is based on “bit-packing” techniques that were used by Baran,
Demaine, and Pǎtraşcu [5] to shave log factors from the standard O(n2)-time algorithm
for the 3SUM problem. We find it somewhat surprising that the “log-shaving” perspective
has not previously appeared in the literature on Subset Sum, and we hope that our work
will lead to further (and more substantial) runtime improvements for Subset Sum and other
problems with well-known and simple exponential-time algorithms.
▶ Remark 1. We note that by a straightforward reduction, an algorithm for 4SUM running
in time O(n2/ log(n)α) for any constant α > 0 would immediately imply a Subset Sum
algorithm running in time O(2n/2/nα), which would be a result comparable to ours. However,
while log-shaving results for 3SUM are known [5, 14], giving an o(n2) algorithm for 4SUM is
a well-known open problem.

1 See the last paragraph of [6] for a discussion of the runtime of [17].
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1.1 Our Computational Model
A Subset Sum instance is parameterized by the number of inputs n and the size of the
target value t (without loss of generality, x1, x2, . . . , xn ≤ t). Thus it is natural to adopt a
memory model with word length ℓ = Θ(log t) such that each input integer can be stored in a
single word. This is the framework used in the work of Pisinger [21], which studies dynamic
programming approaches for Subset Sum in the word RAM model (see [21, Equation (1)]).
We also note that this memory model is analogous to the standard RAM model that is
commonly used for problems such as 3SUM (see e.g. [5]), where it is assumed that each input
value is at most poly(n) and hence fits into a single O(log n)-bit machine word.

This framework lets us consider arbitrary input instances of Subset Sum with no con-
straints on the size of the input integers. If t = 2o(n), standard dynamic programming
algorithms [7] solve the problem in time O(nt) = 2o(n), which supersedes our poly(n)-factor
improvements over meet-in-the-middle; hence throughout the paper we assume t = 2Ω(n). It
is arguably most natural to think about instances in which t = 2Θ(n), in which case ℓ = Θ(n),
and we encourage the first-time reader to imagine ℓ = Θ(n) for easy digestion. More precisely,
we make the assumption throughout the paper that the word size ℓ = poly(n), although
some of our results even hold for extremely large word sizes and are footnoted accordingly.

We consider runtime in two standard variants of the RAM model. The first is circuit
RAM ; in this model, any operation that maps a constant number of words to a single
word and has a poly(ℓ)-size circuit with unbounded fan-in gates can be performed in time
proportional to the depth of the circuit. Consequently, in the circuit RAM model, AC0

operations on a constant number of words can be performed in constant time, and multiplying,
performing modular division, etc., on two ℓ-bit words can be performed in time O(log ℓ).
The second is word RAM, in which the usual arithmetic operations, including multiplication,
are assumed to take unit time, but arbitrary AC0 operations are not atomic operations on
words. We present each of our algorithms for the stronger circuit RAM model,2 and explain
adaptations that give corresponding word RAM algorithms.

1.2 Results, Techniques, and Organization
In Section 2 we establish our notation and review some background results and observations
that will be used throughout the paper.

Sections 3–5 give our three new algorithms, which augment the standard meet-in-the-
middle approach in different ways to achieve their respective runtime improvements. Each
of our algorithms is a randomized decision algorithm that runs in the time bound claimed
below and on every input instance outputs the correct answer with probability at least 3/4.
Further, each of our algorithms has one-sided error, i.e., it never makes a mistake when it
outputs “yes”.

Our first and simplest algorithm, presented in Section 3, achieves a runtime of Õ(2n/2 ·
ℓ−1/2) ≤ Õ(2n/2 · n−1/2) in the circuit RAM model and Õ(2n/2 · n−1/2) in the word
RAM model, for all ℓ = poly(n).3 It works by adapting the bit-packing trick, a tech-
nique developed by Baran, Demaine, and Pǎtraşcu [5] for the 3SUM problem, for the
Meet-in-the-Middle algorithm. The idea is to compress the two lists of partial subset
sums used in Meet-in-the-Middle by packing hashes of multiple values into a machine

2 Note that any algorithm in the word RAM model can be simulated in the circuit RAM model with no
more than an O(log ℓ)-factor slowdown.

3 The notation Õ(·) suppresses polylog(ℓ) = polylog(n) factors.
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word, while preserving enough information to make it possible to run (an adaptation of)
Meet-in-the-Middle on the lists of hashed and packed values. This results in a runtime
savings over performing Meet-in-the-Middle on the original lists (without hashing and
packing), because processing a pair of words, each containing multiple hashed values, takes
constant expected time in the circuit RAM model and can be memoized to take constant
time in the word RAM model.

Our second algorithm, given in Section 4, achieves a runtime of O(2n/2·ℓ−γ) ≤ O(2n/2·n−γ)
for some constant γ > 0.01 in the circuit RAM model and O(2n/2 · n−γ) in the word RAM
model, for all ℓ = poly(n). Although the time savings is smaller than our first algorithm,
we believe that this algorithm is conceptually interesting since it avoids bit-packing and
instead combines Meet-in-the-Middle with two techniques devised in prior work on Subset
Sum. The first of these is the “representation method” introduced by Howgrave-Graham
and Joux [17]. Roughly speaking, the idea of this method is to (i) increase the size of the
search space in such a way that a single solution has many “representations” in the space of
enhanced solutions, and then (ii) search over only a fraction of the enhanced solution space. A
consequence of expanding the solution space, though, is that a number of “pseudosolutions”,
solutions that contain certain input elements more than once, are introduced. This leads us
to the second technique, i.e. the use of a fast subroutine for the Orthogonal Vectors (OV)
problem (recall that OV is the problem of deciding whether two lists of {0, 1}-vectors contain
a pair of vectors, one from each list, that are orthogonal). The fast OV subroutine lets us
efficiently rule out pseudosolutions while running (an adaptation of) Meet-in-the-Middle
on a fraction of the enhanced solution space.

In Section 5 we give our fastest algorithm, which uses a delicate combination of the
techniques from Sections 3 and 4 to obtain a runtime of O(2n/2 ·n−0.5023) for all ℓ = poly(n).
While the runtime improvement over Section 3 is not large, this algorithm demonstrates
that by leveraging insights specific to the Subset Sum problem, we can achieve time savings
beyond what is possible with more “generic” log shaving techniques. Finally, in Section 6 we
briefly discuss directions for future work.

Note that this version of the work is an extended abstract. Readers interested in a more
complete presentation may wish to consult the full version.4

2 Preliminaries

To ease readability, we adopt the following notational conventions throughout the paper:
lowercase Roman letters (ℓ, n, etc.) denote variables; lowercase Greek letters (ε, α, etc.)
denote numerical constants; capital Roman letters (L, W , etc.) denote sets, multisets, or
lists; and calligraphic capital letters (W, Q, etc.) denote collections of sets of numbers.

Logarithms. When written without a specified base, log(·) denotes the base-2 logarithm.

Big-O Notation. We augment big-O notation with a tilde (Õ, Ω̃, Θ̃ etc.) to suppress
polylog(ℓ) = polylog(n) factors. For example, we have Õ(2n) = O(2n · polylog(n)) and
Ω̃(n) = Ω( n

polylog(n) ).

Probability Notation. Random variables are written in boldface. In particular, we write
“x ∼ S” to indicate that an element x is sampled uniformly at random from a finite multiset S.

4 https://arxiv.org/abs/2301.07134

https://arxiv.org/abs/2301.07134
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Set Notation. We write [a : b] for the set of integers {a, a+1, . . . , b} and [a] for {1, 2, . . . , a}.
We write P[a : b] for the set of all primes in the interval [a : b].

Given a multiset or list Y of integers, we adopt several shorthands: Σ(Y ) :=
∑

y∈Y y

denotes the sum, W (Y ) := {Σ(T ) | T ⊆ Y } denotes the set of distinct sub-multiset sums,
and LY denotes the list containing the elements of W (Y ) sorted in increasing order.

Also, we often write f(Y ) for the multiset or list obtained by applying operation f

element-wise, such as Y + α = {y + α | y ∈ Y } and αY = {αy | y ∈ Y }. The only exception
is (Y mod p), which denotes the set of distinct residues {(y mod p) | y ∈ Y }.

Stirling’s Approximation for Binomial Coefficients. We use the following well-known
consequence of Stirling’s approximation (see e.g. [13, Lemma 16.19]): For each integer
j ∈ [0 : n/2],∑

i ≤ j

(
n

i

)
≤ 2H(j/n)·n, (1)

where H(y) := −y log(y)− (1− y) log(1− y) is the binary entropy function.

Pseudolinear Hashing. Recall that ℓ = poly(n) is the word length in our memory model.
Given an integer m ≤ ℓ, we write hm to denote the random hash function defined as

hm(y) := (u · y (mod 2ℓ))≫ ℓ−m. (2)

Here the input y is an ℓ-bit integer, u is selected uniformly at random from all odd ℓ-bit
integers, and ≫ denotes a bit shift to the right, i.e., dividing u · y (mod 2ℓ) by 2ℓ−m and
then truncating the result so that only the higher-order m bits remain.

This hash function hm(y) can be evaluated in time O(log ℓ) = O(log n) for ℓ = poly(n)
in the circuit RAM model, i.e., essentially the time to multiply, or constant time On(1) in
the word RAM model. Further, hm has the following useful properties [12, 5].

▶ Lemma 2 (Pseudolinear Hashing [12, 5]). The following hold for the hash function hm:
1. Pseudolinearity. For any two ℓ-bit integers y, z and any outcome of hm,

hm(y) + hm(z) ∈ hm(y + z)− {0, 1} (mod 2m).

2. Pseudouniversality. For any two ℓ-bit integers y, z with y ̸= z,

Pr
[
hm(y) = hm(z)

]
= O(2−m).

2.1 Preliminary Results
For the purposes of this paper, we may assume that the input target t have size 2Ω(n):

▶ Observation 3 (Assumptions about Input Instances). Given a Subset Sum instance (X, t)
with t ≤ 20.499n, the standard dynamic programming algorithm [7] takes time O(nt) =
20.499n+o(n), much faster than the poly(n)-factor speedups we are targeting, and cannot be
improved to time t1−ε · 2o(n) unless SETH fails [2]. Hence without loss of generality, we
assume t = 2Ω(n) and ℓ = Ω(log t) = Ω(n) throughout the paper.

We further observe that the randomized decision algorithms that we give can be converted
into randomized search algorithms with the same asymptotic runtimes using standard search-
to-decision reductions.
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Procedure Sorted-Sum-Enumeration(Y ).

Input: An integer multiset Y = {y1, . . . , yk}.

Output: A sorted list LY := Lk of W (Y ), all distinct subset sums for Y .

1. Initialize L0 := (0). Then for each i ∈ [k]:
2. Create the sorted list L′

i−1 := Li−1 + yi.
3. Create the sorted list Li obtained by merging Li−1, L′

i−1 and removing
duplicates.

Figure 1 Efficiently enumerating subset sums of k ≥ 1 integers.

A basic primitive for our algorithms is the sorted list LY containing the elements of
W (Y ), all distinct subset sums, for a given multiset Y of size |Y | = k. Figure 1 shows an
O(2k)-time folklore algorithm that enumerates LY :

▶ Lemma 4 (Sorted Sum Enumeration; Folklore). Sorted-Sum-Enumeration runs in time
O(2k).

Proof. We essentially adapt the classic merge sort algorithm. Since |Li−1| = |L′
i−1| ≤ |Li| ≤

2|Li−1| for each i ∈ [k], the runtime of Sorted-Sum-Enumeration is∑
i∈[k] O(|L′

i−1|+ |Li|) =
∑

i∈[k] O(|Li|) =
∑

i∈[k] O(2i) = O(2k). ◀

We can improve this runtime analysis if |W (Y )| is smaller than 2k by a poly(k) factor:

▶ Lemma 5 (Sorted Sum Enumeration for Small W (Y )). If Y is a multiset of |Y | = k integers
with |W (Y )| ≤ 2k · k−ε for some constant ε > 0, Sorted-Sum-Enumeration runs in time
O(2k · k−ε · log k).

Proof. If |W (Y )| ≤ 2k · k−(1+ε), then since |Li| ≤ |Lk| = |W (Y )| for each i ∈ [k], it is
easy to check that the algorithm runs in time O(k · |W (Y )|) = O(2k · k−ε); so suppose
that |W (Y )| ≥ 2k · k−(1+ε). Using the bound |Li| ≤ 2i for i ≤ log |W (Y )| and the bound
|Li| ≤ |W (Y )| for log |W (Y )| < i ≤ k, the runtime of Sorted-Sum-Enumeration is upper
bounded by∑

i∈[k] O(|Li|) =
∑

i ≤ log |W (Y )| O(2i) +
∑

log |W (Y )|<i≤k O(|W (Y )|)

= O(|W (Y )|) + (1 + ε) · log k ·O(|W (Y )|)
= O(|W (Y )| · log k) = O(2k · k−ε · log k). ◀

▶ Remark 6. Lemma 5 gives a tight analysis of the algorithm when |W (Y )| = 2k · k−ε, as can
be seen by considering the particular size-k multiset Y = (20, 21, . . . , 2k−ε log k−1, 1, 1, . . . , 1).

Finally, Figure 2 shows the classic meet-in-the-middle algorithm for Subset Sum, by Horowitz
and Sahni [16], which serves as our baseline for comparison.

▶ Lemma 7. The worst-case runtime of Meet-in-the-Middle is O(2n/2).

Proof. This follows immediately from Lemma 4 as |LA|, |LB | ≤ 2n/2. ◀
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Procedure Meet-in-the-Middle(X, t).

Input: An integer multiset X = {x1, x2, . . . , xn} and an integer target t.

Output: “yes” if (X, t) is a Subset Sum instance that has a solution, “no” otherwise.

0. Fix any partition of X = A ∪B such that |A| = |B| = n/2.
1. Enumerate the sorted lists LA and LB using Sorted-Sum-Enumeration.
2. Initialize two pointers at the smallest value in LA and the largest value in LB .

If these two values sum to the target t, then return “yes”;
if they sum to less than t, then increment the pointer into LA and repeat;
and if they sum to more than t, then increment the pointer into LB and repeat.
If either pointer goes past the end of its list, then return “no”.

Figure 2 The classic Meet-in-the-Middle algorithm [16].

3 Ω(n0.5/ log n)-Factor Speedup via Bit Packing

In this section we analyze our first and simplest algorithm, Bit-Packing (see Figure 3).5

▶ Theorem 8. Bit-Packing is a zero-error randomized algorithm for the Subset Sum problem
with expected runtime O(2n/2 · ℓ−1/2 · log ℓ) ≤ O(2n/2 · n−1/2 · log n) in the circuit RAM
model.6

Bit-Packing works by packing ℓ/m hashed values into a single word via our pseu-
dolinear hash function hm, for m = 3 log ℓ, while preserving enough information to run
Meet-in-the-Middle on the lists of hashed and packed values. This allows us to compare
two length-(ℓ/m) sublists of LA and LB in constant expected time in the circuit RAM
model, since each hashed and packed sublist fits into a constant number of words, instead of
time O(ℓ/m) like the original Meet-in-the-Middle algorithm. So far, this is essentially the
approach taken by [5] in their bit-packing algorithm for 3SUM. However, in our context the
O(ℓ/m) speedup described above is offset by the following issue: if we follow the original
Meet-in-the-Middle setup and take |A| = |B| = n

2 , the lists LA and LB may have length
Ω(2n/2), increasing the runtime.

To deal with this, we set aside a small set D ⊆ X of |D| = log ℓ many input elements and
solve the remaining subinstance X \D for each shifted target t′ ∈ (t−W (D)). Removing
the elements in D shortens the lists LA and LB, which are now formed from the elements
in X \D, and allows us to enumerate and pack them quickly. Balancing the overhead of
solving each of these subinstances against the savings described earlier, we get the claimed
speedup Ω(ℓ1/2/ log ℓ) ≥ Ω(n1/2/ log n).

Proof of Correctness for Bit-Packing. The algorithm outputs “yes” only when a triple
(a, b, t′) ∈ LA×LB × (t−W (D)) with a + b = t′ is found, so it never returns a false positive.

5 As explained in Section 1.1, we assume ℓ = poly(n) throughout; however, our results for Bit-Packing
apply for superpolynomial word length as long as ℓ = O(2n/3). We leave the extensional modifications
to the proofs for this regime as an exercise for the interested reader.

6 By halting Bit-Packing and returning “no” if its runtime exceeds C · 2n/2 · ℓ−1/2 · log ℓ for a large
enough constant C > 0, we get an one-sided error algorithm with success probability ≥ 3/4, as claimed
in Section 1.2.
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Procedure Bit-Packing(X, t).

Input: An integer multiset X = {x1, x2, . . . , xn} and an integer target t.

Setup: Draw a random hash function hm with m = 3 log ℓ (cf. Equation (2)).

0. Fix any partition of X = A ∪B ∪D such that |D| = log ℓ and |A| = |B| = n−|D|
2 .

1. Create the set W (D) and the sorted lists LA, LB using Sorted-Sum-Enumeration.
2. Create lists hm(LA) and hm(LB) by applying hm element-wise to LA and LB .

Let HA be the list obtained from hm(LA) by packing (ℓ/m) elements of hm(LA)
into each ℓ-bit word of HA (preserving the sorted ordering) and likewise for HB .

3. For each t′ ∈ (t−W (D)):
4. Initialize indices i := 0 and j := |HB | − 1. While i < |HA| and j ≥ 0:
5. If the indexed words HA[i] and HB [j] contain a pair of hashes

(hm(a′), hm(b′))
such that hm(a′) + hm(b′) ∈ hm(t′)− {0, 1} (mod 2m),
use Meet-in-the-Middle to search for a solution
(a, b) ∈ LA[iℓ/m : (i + 1)ℓ/m− 1]× LB [jℓ/m : (j + 1)ℓ/m− 1]
such that a + b = t′. Halt and return “yes” if a solution is found.

6. If LA[(i + 1)ℓ/m− 1] + LB [jℓ/m] < t′, increment i← i + 1.
Otherwise, decrement j ← j − 1.

7. Return “no” (i.e., no solution was found for any t′ ∈ (t−W (D))).

Figure 3 The Bit-Packing algorithm.

It remains to show that for any t′ ∈ (t −W (D)), we are guaranteed to find a shifted
solution (a, b) ∈ LA × LB such that a + b = t′, if one exists. Without loss of generality, we
consider two sublists LA[iℓ/m : (i + 1)ℓ/m− 1] and LB [jℓ/m : (j + 1)ℓ/m− 1] that contain
such a shifted solution (a, b) and correspond to two packed words HA[i] and HB [j] for some
indices i and j. The existence of such a shifted solution a+b = t′ combined with the condition
in Line 6 ensures that the algorithm will not step past either the packed word HA[i] or
HB [j] before reaching the other one, so the algorithm will compare these two packed words
at some point. Following Lemma 2, we have hm(a) + hm(b) ∈ hm(t′) − {0, 1} (mod 2m),
satisfying the condition in Line 5. Thus we are guaranteed to find the shifted solution (a, b)
by running Meet-in-the-Middle to check all pairs in LA[iℓ/m : (i + 1)ℓ/m− 1]×LB [jℓ/m :
(j + 1)ℓ/m− 1]. ◀

Proof of Runtime for Bit-Packing. Recalling the assumption ℓ = poly(n):

Line 1 takes time O(2|A| + 2|B| + 2|D|) = O(2n/2 · ℓ−1/2 + ℓ) = O(2n/2 · ℓ−1/2) by
Lemma 4, for the choices of |A|, |B|, and |D|.
Line 2 takes time (|LA|+ |LB |) ·O(log ℓ) = O(2n/2 · ℓ−1/2 · log ℓ), where O(log ℓ) bounds
the time for each evaluation of the hash function hm.
Line 3 (the outer loop) is performed for at most |W (D)| ≤ 2|D| = ℓ iterations.
Line 4 (the inner loop) is performed for at most (|LA|+ |LB |) · 1

ℓ/m = O(2n/2 · ℓ−3/2 · log ℓ)
iterations, since each iteration either increments i← i + 1 or decrements j ← j − 1.
Line 5: (i) Checking whether the “If” condition holds for any two words HA[i] and
HB [j] requires a single AC0 operation on three words, taking constant time in the circuit
RAM model. (ii) Finding a solution (a, b) using Meet-in-the-Middle on the two
length-(ℓ/m) sublists takes time O(ℓ/m) = O(ℓ/ log ℓ).
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The “If” test is passed (i) at most once for a correct solution and (ii) each time we
encounter a hash collision. Note that the sequence of pairs of words (HA[i], HB [j]) we
compare is completely determined by LA and LB and is unaffected by the outcome of
the random hash function hm. Thus by Lemma 2, each of the (ℓ/m)2 hash pairs in
(HA[i], HB [j]) incurs a collision with probability O(2−m). By a union bound, the
expected time taken for Line 5 because of hash collisions is at most
(ℓ/m)2 ·O(2−m) ·O(ℓ/m) = O(1/ log3(ℓ)) = on(1), since m = 3 log ℓ and ℓ = Ω(n).
Line 6 clearly takes time On(1).

Consequently, Bit-Packing has expected runtime

TIME(n, ℓ) = O(2n/2 · ℓ−1/2 + ℓ) + O(2n/2 · ℓ−1/2 · log ℓ) Lines 1 and 2
+ 1 ·

(
On(1) + O(ℓ/ log ℓ) + On(1)

)
Lines 3 to 6

+ ℓ ·O(2n/2 · ℓ−3/2 · log ℓ) ·
(
On(1) + on(1) + On(1)

)
Lines 3 to 6

= O(2n/2 · ℓ−1/2 · log ℓ). ◀

▶ Observation 9 (Adapting Bit-Packing to Word RAM). In the word RAM model, multipli-
cation and evaluation of our pseudolinear hash function hm each take constant time. Hence,
for any word length ℓ = Ω(n) we can get a variant of Bit-Packing with expected runtime
O(2n/2 · n−1/2 · log n), essentially by performing Bit-Packing as if the word length were
ℓ′ := 0.1n. By a similar conversion from [5]:

Run Bit-Packing as if the word length were ℓ′ = 0.1n, which results in the modified pa-
rameters m′ = 3 log ℓ′, |D′| = log ℓ′, and |A′| = |B′| = (n − |D′|)/2 etc., except for two
modifications:
1. Line 2 packs q′ := min{ℓ′, ℓ}/m′ = Θ( n

log n ) many m′-bit hashes into each word of HA′ ,
HB′ , so every (ℓ′/m′) hashes are stored in ℓ′/(m′q′) = Θn(1) words rather than a single
word.

2. Before Line 5, create a table that memoizes the result of every comparison of two ℓ′-
bit strings in time (2ℓ′)2 · poly(ℓ′) = O(20.21n). This table can then be accessed via a
2ℓ′/(m′q′) = Θn(1)-word index in constant time. Line 5 replaces the constant-time AC0

circuit RAM operation on two ℓ′-bit strings with a constant-time lookup into this table.
Compared with running Bit-Packing itself for ℓ′ = 0.1n, the only difference of this variant
is that HA′ and HB′ are stored in Θn(1) times as many words, so the correctness is
easy to check. The expected time taken for the collisions in each execution of Line 5 is
(q′)2 ·O(2−m′) ·O(q′) = on(1). Thus, the overall runtime is as claimed:

O(2|A′| + 2|B′| + 2|D′| + 20.21n)︸ ︷︷ ︸
Lines 1 and 2

+ O(q′) + 2|D′| ·O((2|A′| + 2|B′|)/q′)︸ ︷︷ ︸
Lines 3 to 6; solution versus collisions

= O(2n/2 · n−1/2 · log n).

4 Ω(n0.01)-Factor Speedup via Orthogonal Vectors and the
Representation Method

Our second algorithm, Representation-OV (see Figure 4), achieves a speedup of Ω(ℓγ) ≥
Ω(nγ) over Meet-in-the-Middle for a constant γ > 0.01.7 While this is a smaller speedup
than that achieved by the Bit-Packing algorithm, the Representation-OV algorithm does

7 Similar to Section 3, while we investigate Representation-OV in the regime ℓ = poly(n), analogous
results apply for word length ℓ as large as O(2cn) for an absolute constant c > 0.
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not use “bit tricks”. Instead, Representation-OV combines Meet-in-the-Middle with the
representation method of Howgrave-Graham and Joux [17], so as to reduce the Subset Sum
problem to many small instances of the Orthogonal Vectors (OV) problem: namely, instances
with O(ℓ/ log ℓ) many binary vectors of dimension Θ(log ℓ) = Θ(log n). Such instances of OV
can be solved quickly through a single AC0 word operation in the circuit RAM model (or
through constantly many operations in the word RAM model after an initial memoization
step), which leads to our speedup.

The high-level idea behind our algorithm is to partition the input X = A ∪B ∪ C into
two large subsets8 A and B and one small subset C of size |C| = Θ(log ℓ), and to run
Meet-in-the-Middle on two lists formed from subsets of (A∪C) and (B ∪C). We describe
in more detail below just how these lists are formed, but roughly speaking they are created by
modifying the representation method (in a way somewhat similar to the algorithm of Nederlof
and Węgryzcki [20]) to ensure that the lists are not too long. Further, to eliminate the false
positives due to overlapping subsets of C, we exploit a fast implementation of a function
that computes a batch of small instances of Orthogonal Vectors. (To see the relevance of
the Orthogonal Vectors problem in this context, note that a solution to an instance of OV
on k-dimensional Boolean vectors corresponds to two disjoint subsets of the set [k].) Before
giving more details we provide some helpful notation:

Notation and setup. We write Q(C) := {T | T ⊆ C and |T | ≤ |C|
4 } to denote the collection

of all quartersets for C. While Q(C) is useful for intuition, in fact, as explained below, our
algorithm will use a slight variant of it: we define Q+ε2(C) to be the collection of all subsets
of size at most (1 + ε2) |C|

4 , where ε2 > 0 is a small constant that is fixed in the detailed
description of the algorithm.

We denote by OV the Boolean function on 2ℓ = poly(n) many input bits that takes as
input two lists (x1, . . . , xℓ/|C|), (y1, . . . , yℓ/|C|) of (at most) ℓ/|C| many binary vectors each,
where each binary vector xi, yj ∈ {0, 1}|C|, and returns 1 if and only if the two lists contain
an orthogonal pair, i.e., a pair (i, j) such that xi

k · y
j
k = 0 for every 1 ≤ k ≤ |C|. It is easy to

see that OV is an AC0 operation on two ℓ-bit words, and thus it takes constant time in the
circuit RAM model.

We return to the intuitive overview of our approach. At a high level, the representation
method works by first expanding the search space of possible solutions; for our algorithm this
is done by writing down the list Q+ε2(C) of all “near-quartersets”. If a certain Subset Sum
solution S ⊆ X satisfies |S ∩ C| ≤ |C|

2 , the restricted solution S ∩ C = Q1 ∪Q2 is the union
of many different pairs of disjoint quartersets, namely Q1, Q2 ∈ Q(C) with Q1 ∩Q2 = ∅. In
fact, we work on the list of near-quartersets, Q+ε2(C), rather than Q(C), so as to cover all
disjoint pairs (Q1, Q2) with |Q1|+ |Q2| ≈ |C|/2.

We then filter the list Q+ε2(C): given a random prime modulus p we extract those near-
quartersets that fall into two particular residue classes that sum to Σ(S ∩C) (mod p). With
appropriate preprocessing checks and parameter settings, this significantly reduces the search
space while ensuring that we retain some disjoint pair of near-quartersets Q1, Q2 ∈ Q+ε2(C)
that recover the restricted solution, Q1 ∪Q2 = S ∩ C with Q1 ∩Q2 = ∅.

Finally, we use a modified Meet-in-the-Middle procedure to search for a solution,
i.e., two sum-subset couples (a, Q1) ∈ (LA × Q+ε2(C)), (b, Q2) × (LB × Q+ε2(C)) with
a + Σ(Q1) + b + Σ(Q2) = Σ(S ∩A) + Σ(S ∩B) + Σ(S ∩C) = Σ(S) = t, verifying Q1 ∩Q2 = ∅
via the Boolean function OV.

8 Technically, sub-multisets. We make the same simplification hereafter.
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Procedure Representation-OV(X, t).

Input: An integer multiset X = {x1, x2, . . . , xn} and an integer target t.

Setup: Constants ε1 ≈ 0.1579 and ε2 ≈ 0.2427, the solutions to Equations (3) and (4).
Setup: Parameters β ≈ 1.1186, λ ≈ 0.0202, s(ℓ), and k(n, ℓ), all to be specified in the
proof.
Setup: A uniform random prime modulus p ∼ P[ℓ1+β/2 : 2ℓ1+β/2].
0. Fix any partition of X = A ∪B ∪ C such that |C| = β log( ℓ

β log ℓ ) and
|A| = |B| = n−|C|

2 .
1. Use Lemma 13 to solve (X, t) if there exists a solution S ⊆ X with
|S ∩ C| /∈ (1± ε1) |C|

2 .
2. Use Lemma 12 to solve (X, t) if |W (C)| ≤ 2|C| · ℓ−λ.
3. Create the sorted lists LA and LB using Sorted-Sum-Enumeration. Let
{LA, i}i∈[p] be the sorted sublists given by LA, i := {a ∈ LA | a ≡p i} and likewise
for {LB, i}i∈[p].
Create the collection Q+ε2(C) = {Q | Q ⊆ C and |Q| ≤ (1 + ε2) |C|

4 }.
4. Repeat Lines 5 to 6 either s(ℓ) times or until a total of k(n, ℓ) many sum-subset

couples have been created in Line 5 (whichever comes first):
5. Sample a uniform random residue r ∼ [p]. Then use Lemma 15 and the

subroutine
Residue-Couple-List to create the sorted lists RA, r and RB, r:
RA, r = {(a′ := a + Σ(Q1), Q1) | (a, Q1) ∈ LA ×Q+ε2(C) with a′ ≡p r} and
RB, r = {(b′ := b + Σ(Q2), Q2) | (b, Q2) ∈ LB ×Q+ε2(C) with b′ ≡p (t− r)}.

▷ In fact, RA, r and RB, r are stored in a succinct format by Residue-Couple-List.
6. Use Lemma 15 (based on Meet-in-the-Middle and the Boolean function OV)

to search the sorted lists RA, r and RB, r for a solution (a′, Q1), (b′, Q2) such
that

a′ + b′ = t and Q1 ∩Q2 = ∅. Halt and return “yes” if a solution is found.
7. Return “no” (i.e., no solution was found). ▷ Possibly a false negative.

Figure 4 The Representation-OV algorithm.

▶ Theorem 10. Representation-OV is a one-sided error randomized algorithm for the Subset
Sum problem (with no false positives) with worst-case runtime O(2n/2 · ℓ−γ) ≤ O(2n/2 · n−γ),
for some constant γ > 0.01, and a success probability of 1/3 in the circuit RAM model.

The proofs of correctness and runtime below rely on several auxiliary lemmas, namely
Lemmas 12–15. These lemmas, along with an adaptation of the result to the Word RAM
model, can be found in Appendix A.

Proof of Correctness for Representation-OV. The constants ε1 ≈ 0.1579 and ε2 ≈ 0.2427
given in the description of the algorithm are the solutions to the following equations:

1−H((1−ε1)/2)
(1−ε1)/2 = 1−H( 1−ε2

2 ), (3)

1 + ε1 − 3H( 1−ε1
2 ) = −2H( 1+ε2

4 ). (4)

Also, we set β := 1
H((1+ε2)/4) ≈ 1.1186 and λ := (1− 10−5) · 1−ε1

2 ·β · (1−H( 1−ε2
2 )) ≈ 0.0202.

APPROX/RANDOM 2023



39:12 Subset Sum in Time 2n/2/poly(n)

Lines 1 and 2 preprocess the instance (X, t), solving it deterministically via Lemmas 12
and 13 unless both Conditions (1) and (2) hold:

Condition (1). (X, t) is either a “yes” instance with |S ∩ C| ∈ [(1− ε1) |C|
2 : |C|

2 ] for each
solution S ⊆ X,9 or a “no” instance.

Condition (2). |W (C)| > 2|C| · ℓ−λ. Note that this implies |W (T )| > 2|T | · ℓ−λ for each
T ⊆ C.
Lines 3 to 7 accept only if a solution t = a′ + b′ = (a + Σ(Q1)) + (b + Σ(Q2)) is found in
Line 6, for which a ∈ LA, b ∈ LB, and Q1, Q2 ∈ Q+ε2(C) are disjoint. As a consequence,
the algorithm never reports false positives.

It remains to show that Lines 4 to 6 accept a “yes” instance (X, t) with probability at
least 1/3 when (X, t) satisfies Conditions (1) and (2). Consider a solution S ⊆ X and the
following set W ′ containing distinct sums of all “ε2-balanced” subsets of S ∩ C:

W ′ := {Σ(Q) | Q ⊆ (S ∩ C) and |Q| ∈ (1± ε2) |S∩C|
2 }.

Line 3 creates the residue sublists LA = {LA, i}i∈[p] and LB = {LB, i}i∈[p]. We say that
a residue i ∈ [p] is good if it satisfies i − Σ(S ∩ A) ∈ (W ′ mod p), namely there exists a
subset Q1 ⊆ (S ∩ C) of size |Q1| ∈ (1 ± ε2) |S∩C|

2 such that Σ(S ∩ A) + Σ(Q1) ≡p i. On
sampling a good residue r = i in Line 5, both Q1 and Q2 := (S ∩C) \Q1 are of size at most
(1 + ε2) |S∩C|

2 ≤ (1 + ε2) |C|
4 , so they are included in the collection Q+ε2(C) and, respectively,

in the lists RA, r and RB, r created in Line 5. Then using Lemma 15, we are ensured to find
the solution S = (S ∩A) ∪ (S ∩B) ∪ (Q1 ∪Q2).

Hence it suffices to (i) lower bound the probability that at least one of the s(ℓ) samples
r ∼ [p] is good, and (ii) upper bound the probability that these samples generate a total of
k(n, ℓ) or more sum-subset couples.

(i). We claim that the size of set W ′ is at least Ω(2|S∩C| · ℓ−λ) ≥ Ω̃(ℓ(1−ε1)·β/2−λ) and
is at most 2|S∩C| ≤ ℓβ/2. The lower bound on the size comes from a combination of two
observations. First, the set (S ∩ C) has at least 2|S∩C| · ℓ−λ many distinct subset sums, by
Condition (2). Second, the number of subsets Q ⊆ (S ∩ C) of size |Q| /∈ (1± ε2) |S∩C|

2 is at
most 2 · 2H( 1−ε2

2 )·|S∩C| = o(2|S∩C| · ℓ−λ), given Stirling’s approximation (Equation (1)) and
the technical condition

|S∩C|
log ℓ · (1−H( 1−ε2

2 )) ≥ (1− on(1)) · 1−ε1
2 · β · (1−H( 1−ε2

2 )) > λ,

which is true for our choice of λ.
The upper and lower bounds on |W ′| allow us to apply Lemma 14: with probability

at least 3/4 over the modulus p ∼ P[ℓ1+β/2 : 2ℓ1+β/2], there are |W ′ mod p| = Ω(|W ′|) =
Ω̃(ℓ(1−ε1)·β/2−λ) many good residues. Conditioned on this event, taking

s(ℓ) := Θ̃(ℓ1+λ+ε1·β/2) ≥ Ω̃
(

p
|(W ′ mod p)|

)
many samples r ∼ [p] yields at least one good residue with probability ≥ 2/3.

9 Given Line 1, a solution S ⊆ X or its complementary (X \ S), as a solution to the complementary
instance (X, Σ(X) − t), must have this property.
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(ii). All candidate lists {RA, i}i∈[p], {RB, i}i∈[p] together have a total of

(|LA|+ |LB |) · |Q+ε2(C)| ≤ 2 · 2(n−|C|)/2 · 2|C|/β = O(2n/2 · ℓ1−β/2)

sum-subset couples, by construction (Line 3), the choices of |A|, |B|, |C|, and Stirling’s
approximation (Equation (1)). For any outcome of the random modulus p = p = Θ(ℓ1+β/2),
a number of s(ℓ) samples r ∼ [p] generate a total of O(2n/2 · ℓ1−β/2) · s(ℓ)/p = Õ(2n/2 ·
ℓ−((1−ε1/2)·β−(1+λ))) sum-subset couples in expectation. By setting a large enough cutoff

k(n, ℓ) := Θ̃(2n/2 · ℓ−((1−ε1/2)·β−(1+λ))),

the probability that k(n, ℓ) or more sum-subset couples are generated is at most 1/6.
Overall, our algorithm succeeds with probability ≥ (3/4) · (2/3)− (1/6) = 1/3. ◀

Proof of Runtime for Representation-OV. Recalling the assumption ℓ = poly(n):

Line 1 takes time Õ(2n/2 · ℓ−(1−H((1−ε1)/2))·β/2), by Lemma 13.
Line 2 takes time Õ(2n/2 · ℓ−λ/2), by Lemma 12.
Line 3 takes time O(2|A| + 2|B| + 2|C|) ·O(log ℓ) = Õ(2n/2 · ℓ−β/2), by Lemma 4, the
choices of |A|, |B|, |C|, and that the modulo operation in the circuit RAM model takes
time O(log ℓ).
Lines 4 to 6 take time Õ(k(n, ℓ)) = Õ(2n/2 · ℓ−((1−ε1/2)·β−(1+λ))), because a single
iteration (Lemma 15) takes time Õ(|RA, r|+ |RB, r|) and by construction we create a
total of at most

∑
r(|RA, r|+ |RB, r|) ≤ k(n, ℓ) many sum-subset couples.

The runtime of Line 3 is dominated by that of Line 1, so the bottleneck occurs in Line 1,
Line 2, or Lines 4 to 6. For the choices of constants given in the algorithm, we achieve a
speedup of Ω(ℓγ) for any constant γ ∈ (0, γ∗), where the

γ∗ := min
{

λ/2, (1−H( 1−ε1
2 )) · β/2, (1− ε1/2) · β − (1 + λ)

}
= λ/2 ≈ 0.0101. ◀

5 Subset Sum in Time O(2n/2 · n−0.5023)

Our last algorithm is a delicate combination of Bit-Packing and Representation-OV. Our
main result, Theorem 11, demonstrates that problem-specific features of Subset Sum can be
exploited to obtain an additional nontrivial time savings beyond what can be achieved by
augmenting Meet-in-the-Middle with generic bit-packing tricks. Although the bookkeeping
to analyze the algorithm of this section is somewhat intricate, many of the ideas in this
section are previewed in Section 4.

▶ Theorem 11. Packed-Representation-OVis a one-sided error randomized algorithm for
the Subset Sum problem (with no false positives) with worst-case runtime O(2n/2 ·n−(1/2+γ)),
for some constant γ > 0.0023, and success probability at least 1/12 in the circuit RAM model.

This extended abstract presentation omits the proof of Theorem 11 and the adaptation of
Theorem 11 to the word RAM model. For the proof, the reader is referred to the full version
of the paper.10 Below, we describe a difficulty that arises in the attempt to directly combine
the two building block algorithms, as well as the new AC0 operation used in the approach.

First, we describe a difficulty that arises when attempting to combine our two previous
algorithms. Bit-Packing saves time by removing a subset D ⊆ X from the input, then
running a Meet-in-the-Middle variant on the resulting subinstance multiple times, while

10 https://arxiv.org/abs/2301.07134
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Representation-OV runs a Meet-in-the-Middle variant on multiple subinstances indexed
by residue classes modulo a random prime p. This presents a problem: to get the time
savings from bit packing, we would like to reuse subinstances multiple times, but to get
the time savings from the representation method we need to build separate subinstances
with respect to each residue class (mod p) that contains elements of W (D). To solve this
problem, we construct D in a way that ensures the elements of W (D) fall into few residue
classes (mod p). Specifically, we fix p and consider two cases. In one case , the elements
of X fall into few residue classes (mod p) and it is possible to choose a small set D such
that the elements of D (and W (D)) fall into very few residue classes (mod p). In this case
we need to construct just |W (D) mod p| = polylog(n) distinct subinstances. In the other
case , the elements of X fall into many residue classes (mod p). Here a carefully selected D

satisfies the weaker bound |W (D) mod p| = Õ(nδ) for a small constant δ > 0, increasing the
number of subinstances we need to construct. However, the fact that the elements of X fall
into many residue classes (mod p) lets us select a larger set C such that the subset sums in
W (S ∩ C) distribute well (mod p) for any solution S, offsetting the increase in runtime.

Like the AC0 operation OV in the Representation-OV algorithm, the core of our new
algorithm is another AC0 operation, Hash-OV, that solves Orthogonal Vectors on small
instances. Like OV, Hash-OV takes as input two ℓ-bit words containing multiple bit vectors of
length O(log n), but now the bit vectors in either word may come from two or more lists, and
each list is indexed by the m-bit hash hm(s) of a corresponding subset sum s, for m = 3 log ℓ.
Thus Hash-OV may solve multiple small Orthogonal Vectors instances at once.

6 Extensions and Future Work

Our results open up several natural directions for future investigation:

Derandomization: All of the 2n/2/poly(n)-time algorithms we have given for Subset
Sum use randomness. Can our results be extended to achieve deterministic algorithms
with worst-case running time 2n/2/poly(n)?
Counting: It is straightforward to modify the Meet-in-the-Middle algorithm to output
a count of the number of Subset Sum solutions in time O(2n/2) (essentially, by keeping
track of the multiplicity with which each value occurs in each list LA, LB). Can our
techniques be extended to give counting algorithms for Subset Sum that run in time
2n/2/poly(n)? In time 2n/2/n0.501?
Faster runtimes: Finally, an obvious goal is to quantitatively strengthen our results
by developing faster algorithms for worst-case Subset Sum. It would be particularly
interesting to achieve running times of the form 2n/2/f(n) for some f(n) = nω(1).
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A Auxiliary Lemmas for Representation-OV

A first “preprocessing lemma” stems from the observation that a not-too-large subset Y ⊆ X

with few distinct subset sums (i.e., |W (Y )| ≪ 2|Y |) can help speed up Meet-in-the-Middle.
This idea goes back to [3, 4], although the condition of “few distinct subset sums” we use refers
to sets with polynomially rather than exponentially fewer subset sums than the maximum
possible number.

▶ Lemma 12 (Speedup via Additive Structure). Let (X, t) be an n-integer Subset Sum instance.
Given as input (X, t) and a subset Y ⊆ X of size |Y | ≤ n/2 such that |W (Y )| ≤ 2|Y | · ℓ−ε for
some constant ε > 0, the instance (X, t) can be solved deterministically in time Õ(2n/2 ·ℓ−ε/2).

Proof. Fix any size-( n+ε log ℓ
2 ) subset A such that Y ⊆ A ⊆ X; we have |W (A)| ≤ 2|A\Y | ·

|W (Y )| ≤ 2n/2 · ℓ−ε/2. We also have |W (X \ A)| ≤ 2|X\A| = 2n/2 · ℓ−ε/2. By Lemmas 4
and 5, it takes overall time O(2n/2 · ℓ−ε/2 · log n) in the regime ℓ = poly(n) to create the
sorted lists LA, LX\A and to run Meet-in-the-Middle. ◀

Another useful preprocessing lemma shows that the existence of a solution that is
“unbalanced” vis-a-vis a given small subset yields a speedup:

▶ Lemma 13 (Speedup via Unbalanced Solutions). Let (X, t) be an n-integer Subset Sum
instance that has a solution. Given as input (X, t) and a subset Y ⊆ X of size
|Y | = β log(ℓ/(β log ℓ)) for β as specified in Representation-OV such that some solution
S ⊆ X satisfies |S ∩ Y | /∈ (1± ε) |Y |

2 for some constant ε > 0, the solution S can be found
deterministically in time Õ(2n/2 · ℓ−δ/2), where the constant δ := (1−H( 1−ε

2 )) · β.

Proof. We can assume without loss of generality that the solution S satisfies |S ∩ Y | ≤ |Y |
2

(since either the original instance (X, t) or the complementary instance (X, Σ(X)− t) must
satisfy this property, and we can attempt both instances and only double the runtime).
Hence we can suppose |S ∩ Y | ≤ (1 − ε) |Y |

2 . Then the sorted list L′
Y of the set {Σ(T ) |

T ⊆ Y and |T | ≤ (1 − ε) |Y |
2 } can be created in time O(2|Y |) = O(ℓβ) = poly(n) using

Sorted-Sum-Enumeration (restricted to subsets of sizes < (1− ε) |Y |
2 ).

Fix any size-( n+(δ/β)|Y |
2 ) subset A with Y ⊆ A ⊆ X. In the regime ℓ = poly(n), we can

use L′
Y and Lemma 5 to create the sorted list L′

A of {Σ(T ) | T ⊆ A and |T ∩Y | < (1−ε) |Y |
2 }

in time

Õ(|L′
A|) ≤ Õ(2|A\Y | · |L′

Y |) ≤ Õ(2|A\Y | · 2H( 1−ε
2 )·|Y |) ≤ Õ(2n/2 · ℓ−δ/2),

following Stirling’s approximation (Equation (1)) and the choices of |Y | and |A|. Moreover,
we can use Lemma 4 to create the sorted list LX\A in time O(2|X\A|) = Õ(2n/2 · ℓ−δ/2).

Provided |S∩Y | < (1−ε) |Y |
2 , running Meet-in-the-Middle on L′

A and LX\A solves (X, t)
and takes time O(|L′

A|+ |LX\A|) = Õ(2n/2 ·ℓ−δ/2). The overall runtime is Õ(2n/2 ·ℓ−δ/2). ◀

The next lemma specifies a parameter space within which any set of distinct integers is
likely to fall into many residue classes modulo a random prime. This allows us to reduce the
search space by considering only solutions that fall into certain residue classes.

▶ Lemma 14 (Distribution of Integer Sets modulo Random Primes). Fix a set Y of at most
|Y | ≤ ℓβ/2 distinct ℓ-bit integers for β as specified in Representation-OV. For a uniform
random modulus p ∼ P[ℓ1+β/2 : 2ℓ1+β/2], the residue set has size |(Y mod p)| = Θ(|Y |) with
probability at least 3/4.
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Subroutine Residue-Couple-List({LA, i}i∈[p], Q+ε(C), r).

Input: A collection of p = poly(ℓ) sorted sublists LA =
⋃

i∈[p] LA, i, for some subset
A ⊆ X, indexed by residue class modulo p.

Output: A sorted sum-subset list RA, r with elements in the sum-collection format
(a′, Qa′).

1. For each Q ∈ Q+ε(C), create the sum-subset sublist RQ := fQ(LA, j(Q)) by applying
fQ, the element-to-couple operation a 7→ (a′ := a + Σ(Q), Q), to the particular input
sublist of index j(Q) := ((r − Σ(Q)) mod p). ▷ Each RQ is sorted by the sums a′.

2. Let RA, r be the list obtained by merging {RQ}Q∈Q+ε(C), sorted by sums
a′ = a + Σ(Q).
For each distinct sum a′, compress all couples (a′, Q1), (a′, Q2), . . . with the same
first element = a′ into a single data object (a′, Qa′ := {Q1, Q2, . . . }).

▷ Note that for each sum a′ we have a′ ≡p r and |Qa′ | ≤ |Q+ε(C)|.

Figure 5 The Residue-Couple-List subroutine.

Proof. By the prime number theorem [15, Equation (22.19.3)], there are at least ℓ1+β/2

(1+β/2)·log ℓ

primes in P[ℓ1+β/2 : 2ℓ1+β/2] (for any sufficiently large ℓ). Given any two distinct integers
y ̸= z ∈ Y , the difference |y − z| ≤ 2ℓ has at most ℓ

(1+β/2)·log ℓ distinct prime factors in
P[ℓ1+β/2 : 2ℓ1+β/2]. Thus under a uniform random choice of modulus p ∼ P[ℓ1+β/2 : 2ℓ1+β/2],
the second frequency moment f(2) := |{(y, z) | y, z ∈ Y with y ≡p z}| has the expectation

Ep[f(2)] = |{y = z ∈ Y }|+ |{y ̸= z ∈ Y }| · ℓ−β/2 = |Y |+ (|Y |2 − |Y |) · ℓ−β/2 ≤ 2|Y |.

Therefore, with an arbitrarily high constant probability, we have f(2) = O(|Y |) and, by the
Cauchy-Schwarz inequality |Y mod p| · f(2) ≥ |Y |2,

a residue set of size |Y mod p| = Ω(|Y |). ◀

▶ Lemma 15 (Sorted Lists RA, r and RB, r; Lines 5 and 6). In Representation-OV:
(i) Line 5 uses the subroutine Residue-Couple-List to create the sorted lists RA, r, RB, r

in time Õ(|RA, r| + |RB, r|). Moreover, (ii) Line 6 finds a solution pair (a′, Q1) ∈ RA, r,
(b′, Q2) ∈ RB, r, if one exists, in time O(|RA, r|+ |RB, r|).

Proof. Line 5 creates RA, r and RB, r using the subroutine Residue-Couple-List (see
Figure 5). First, we claim that Residue-Couple-List takes time Õ(|RA|) in the regime
ℓ = poly(n):

Line 1 takes time ΣQ ∈ Q+ε2 (C)O(|RQ|) = O(|RA, r|), since all shifts Σ(Q) for
Q ∈ Q+ε2(C) can be precomputed and memoized when the collection Q+ε2(C) is created
in Line 3.
Line 2 builds one sorted list RA, r from |Q+ε2(C)| ≤ 2|C|/β = ℓ/(β log ℓ) = poly(n)
sorted sublists {RQ}Q ∈ Q+ε2 (C), taking time O(|RA, r| · log n) via the classic merge sort
algorithm.

After Line 5 creates the sorted lists RA, r = {(a′, Qa′)} and RB, r = {(b′, Qb′)}, Line 6
can run Meet-in-the-Middle based on the (ordered) indices a′ and b′ in time O(|RA, r|+
|RB, r|). This ensures that we discover every pair (a′, Qa′), (b′, Qb′) such that a′ + b′ = t.

APPROX/RANDOM 2023
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Such a pair yields a solution if and only if it contains two disjoint near-quartersets Q1 ∈Qa′ ,
Q2 ∈Qb′ with Q1 ∩Q2 = ∅, which we can check in constant time by one call of the Boolean
function OV. Namely, each near-quarterset Q ∈ Q+ε2(C) is stored in |C| < β log ℓ bits, so
each collection Qa′ , Qb′ ⊆ Q+ε2(C) can be stored a single word |C| · |Q+ε2(C)| ≤ ℓ. Thus
one call of OV suffices to check a given pair (a′, Qa′), (b′, Qb′). Overall, Line 6 takes time
O(|RA, r|+ |RB, r|). ◀

▶ Observation 16 (Adapting Representation-OV to Word RAM). In the word RAM model, it
may take superconstant time to evaluate the Boolean function OV. Similar to the strategy used
in Section 3, our word RAM variant avoids this issue by performing Representation-OV
as if the word length were ℓ′ := 0.1n (using sets A′, B′, C ′, etc., with appropriate size
modifications), except for three modifications:
1. In lines 3 and 2, on creating a (sub)collection Q ⊆ Q+ε2(C ′) as a bit string, store it in at

most ≤ ⌈|Q+ε2(C ′)| · |C ′|/ℓ⌉ ≤ ⌈ℓ′/ℓ⌉ = Θ(1) words (since a single word with ℓ bits may
be insufficient).

2. In Line 3, after creating the collection Q+ε2(C ′), create a lookup table OV′ that memoizes
the input-output result of the Boolean function OV on each subcollection pair Qa′ , Qb′ ⊆
Q+ε2(C ′) in time (2|Q+ε2 (C′)|)2 · poly(|Q+ε2(C ′)|) ≤ (2ℓ′)2 · poly(ℓ′) = O(20.21n). This
table can then be accessed using a 2⌈ℓ′/ℓ⌉ = Θ(1)-word index in constant time.

3. Line 6 replaces the Boolean function OV (namely a constant-time AC0 circuit RAM
operation) with constant-time lookup into OV′.

Compared with running Representation-OV itself for ℓ′ = 0.1n, the only difference of this
variant is that RA, r and RB, r are stored in ⌈ℓ′/ℓ⌉ = Θ(1) times as many words, given
ℓ = Ω(n). Hence, it is easy to check the correctness and the runtime O(2n/2 · ℓ′−γ · ⌈ℓ′/ℓ⌉) =
O(2n/2 · n−γ), for the same constant γ > 0.01.
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Given a matroid M = (E, I), and a total ordering over the elements E, a broken circuit is a circuit
where the smallest element is removed and an NBC independent set is an independent set in I with
no broken circuit. The set of NBC independent sets of any matroid M define a simplicial complex
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Recently, Adiprasito, Huh and Katz showed that the face of numbers of any broken circuit complex
form a log-concave sequence, proving a long-standing conjecture of Rota.

We study counting and optimization problems on NBC bases of a generic matroid. We find
several fundamental differences with the independent set complex: for example, we show that it is
NP-hard to find the max-weight NBC base of a matroid or that the convex hull of NBC bases of a
matroid has edges of arbitrary large length. We also give evidence that the natural down-up walk
on the space of NBC bases of a matroid may not mix rapidly by showing that for some family of
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1 Introduction

A matroid M = (E, I) is consists of a finite ground set E and a collection I of subsets of E,
called independent sets, satisfying:
Downward closure: If S ⊆ T and T ∈ I, then S ∈ I.
Exchange axiom: If S, T ∈ I and |T | > |S|, then there exists an element i ∈ T \ S such that

S ∪ {i} ∈ I.
The rank of a set S ⊆ E is the size of the largest independent set contained in S. All maximal
independent sets of M , called the bases of M , have the same size r, which is called the rank
of M .
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40:2 On Optimization and Counting of Non-Broken Bases of Matroids

Sampling and counting problems on matroids have captured the interest of many re-
searchers for several decades with applications to reliability [6], liquidity of markets [19], etc.
A recent breakthrough in this field proved that the down-up walk on the bases of a matroid
mixes rapidly to the (uniform) stationary distribution and can be used to count the number
of bases of a matroid [3, 7], resolving the conjecture of Mihail and Vazirani from 1989 [18].
The down-up walk is easy to describe: Start with an arbitrary base B and repeatedly execute
the following two steps:
1. Choose a uniformly random element i ∈ B and delete it.
2. Among all bases (of M) that contain B ∖ {i}, choose one uniformly at random.

A central question that has puzzled researchers since then is sampling a non-broken
(circuit) basis (NBC basis) of a matroid [4].

A set C ⊆ E is a circuit iff C \ {e} ∈ I for any e ∈ C. A broken circuit (with respect to
a total ordering O) is a set C \ {e}, where C ⊆ E is a circuit and e is the smallest element
of C with respect to O. An independent set S ⊆ E is a non-broken independent set (NBC
independent set) if it contains no broken circuits. The NBC independent sets are closely
related to several interesting combinatorial objects. The number of NBC independent sets of
size k in a graphic matroid is equal to the absolute value of the (n − 1) − k-th coefficient of
the chromatic polynomial of the underlying graph where n is the number of vertices. As a
corollary the following facts hold:

▶ Fact 1. The following facts are well-known about the counts of NBC bases/independent
sets of different family of matroids.

The number of all NBC independent sets of a graphic matroid is equal to the the number
of acyclic orientations of the graph [22].
The number of all NBC independent sets of a co-graphic matroid is equal to the number
of strongly connected orientations of the graph (see e.g., [13]).
The number of non-broken spanning trees of a graph is equal to the number of parking
functions with respect to a unique source vertex [4]
The number of NBC independent of sets of linear matroid with vectors v1, . . . , vn is equal
to the number of regions defined by the intersection of the orthogonal hyperplanes (see
e.g., [23]).

We emphasize that although the set of NBC independent sets/bases of a matroid are
functions of the underlying total order O, the counts of the number NBC independent sets
of rank k for any 0 ≤ k ≤ r are invariant under O [23]. We remark that, to the best
of our knowledge as of this date, none of the above counting problems are known to be
computationally tractable.

Given a matroid M with an arbitrary total ordering O, one can analogously run the
down-up walk only on the NBC bases of M . It is not hard to see that this chain is irreducible
and converges to the uniform stationary distribution. Following the work of [3] it was
conjectured that the down-up walk on the NBC bases of any matroid mixes rapidly 1.

▶ Conjecture 2. For any matroid M , and any total ordering O of the elements of M , the
down-up walk on the NBC bases of a matroid mixes in polynomial time.

1 In fact, this conjecture was raised an an open problem in several recent workshops UC Santa Barbara
workshop on New tools for Optimal Mixing of Markov Chains: Spectral Independence and Entropy
Decay, and Simon’s workshop on Geometry of Polynomials

https://sites.cs.ucsb.edu/~vigoda/School/
https://sites.cs.ucsb.edu/~vigoda/School/
https://sites.cs.ucsb.edu/~vigoda/School/
https://simons.berkeley.edu/programs/geometry-polynomials/
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It turns out that the above conjecture, if true, would be give a generalization of the result
of [3], because of the following fact.

▶ Fact 3 ([5]). For any matroid M one can construct another matroid M ′ with an ordering O
with only one extra element such that there is a bijection between bases of M and non-broken
bases of M ′.

Furthermore, if the above conjecture is true, then since matroids are closed under
truncation, one can also count the number of all NBC independent sets of M , thus resolving
all of the open problems in Fact 1.

A promising reason to expect these problems to be tractable in the first place is the
remarkable work of Adiprasito, Huh and Katz [1] who proved the Rota’s conjecture showing
that the face numbers of a broken circuit complex (see below for definition) of any matroid
forms a log-concave sequence. For comparison, it is well-known that the coefficients of the
matching polynomial of any graph form a log-concave sequence and the classical algorithm
of Jerrum-Sinclair [15] gives an efficient algorithm to count the number of matchings of any
graph (although to this date we still don’t know an efficient algorithm to count the number
of perfect matchings of general graphs).

1.1 Background
The existing analyses of the mixing time of the down-up walk for bases of matroids, crucially
rely on the theory of high dimensional simplicial complxes [3, 17], which has found many
intriguing applications in several areas of computer science and math in the past few years [14].

Simplicial Complex. A simplicial complex X on a finite ground set U is a downwards closed
set system, i.e. if τ ∈ X and σ ⊂ τ ⊆ U , then σ ∈ X. The elements of X are called faces,
and the maximal faces are called facets. We say X is a pure d-dimensional complex if all of
its facets are of size d. We denote the set of facets by X(d). A weighted simplicial complex
(X, π) is a simplicial complex X paired with a probability distribution π on its facets. The
global walk (down-up walk) P ∨ on the facets of a d-dimensional complex (X, π) is defined as
follows: starting at a facet τ , we transition to the next facet τ ′ by the following two steps:
1. Select a uniformly random element x ∈ τ and remove x from τ .
2. Select a random facet τ ′ containing τ \ {x} with probability proportional to π(τ ′).

Broken Circuit Complex. For a concrete example, it turns out that the set NBC independent
sets of any matroid M (with respect to any ordering O) form a pure simplicial complex that
is known as the broken circuit complex. We denote this complex by BC(M, O). We state
purity as the following fact.

▶ Fact 4. For every NBC independent set I, there exists an NBC base B such that I ⊆ B.

The face numbers of the complex BC(M, O) is the sequence n0, n1, . . . , nr where ni is the
number of NBC independent sets of rank i. As alluded to above this sequence is in variant
over O. The down-up walk over this complex equipped with a uniform distribution over its
facets is the same as the down-up walk over NBC bases we explained before.

The link of a face τ ∈ X is the simplicial complex Xτ := {σ \ τ : σ ∈ X, σ ⊃ τ}. For each
face τ , we define the induced distribution πτ on the facets of Xτ as

πτ (η) = Pr
σ∼π

[σ ⊃ η | σ ⊃ τ ]. (1)

APPROX/RANDOM 2023
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Local Walks. For any face τ of size 0 ≤ k ≤ d − 2, the local walk for τ is a Markov chain
on the ground set of Xτ with transition probability matrix Pτ is defined as

Pτ (x, y) = 1
d − k − 1 Pr

σ∼πτ

[y ∈ σ | σ ⊃ τ ∪ {x}]. (2)

for distinct x, y in the ground set of Xτ .
The following theorem shows that the spectral expansion of the global walk P ∨ on a

simplicial complex can be bounded through bounding the local spectral expansion of the
complex.

▶ Theorem 5 (Local-to-Global Theorem [10, 17, 9, 2]). Say a d-dimensional weighted simplicial
complex (X, π) is a (γ0, . . . , γd−2)-local spectral expander if for every face τ of size 0 ≤ k ≤
d − 2, the second largest eigenvalue of Pτ is at most γk, i.e., λ2(Pτ ) ≤ γk.

Given a weighted simplical complex (X, πd) that is a (γ0, . . . , γd−2)-local spectral expander,
the down-up walk which samples from π has spectral gap lower bounded by

1 − λ2(P ∨) ≥ 1
d

d−2∏
j=0

(1 − γj)

To prove that the down-up walk mixes rapidly on the bases of any matroid, [3] proved
that the independent set complex of any matroid M is a (0, 0, . . . , 0)-local spectral expander.
Building on this, a natural method to prove Conjecture 2 is to show that the broken circuit
complex of any matroid M of rank r and for any total ordering is a (γ0, . . . , γr−2)-local
spectral expander for γi ≤ O(1)

r−i .

▶ Conjecture 6. For any matroid M of rank r and any ordering O the broken circuit complex
of M is a (γ0, . . . , γr−2)-local spectral expander for some γi ≤ O(1)

r−i

1.2 Our results
Our main result is to disprove Conjecture 6 in a very strong form, namely for the class of
(truncated) graphic matroids.

▶ Theorem 7. There exists an infinite sequence of (truncated) graphic matroids M1, M2, . . .

with orderings O1, O2, . . . , such that for every n ≥ 1, Mn has poly(n) elements, and there
exists a face τ of the broken circuit complex of X = BC(Mn, O) for which the down-up walk
on the facets of the link Xτ has a spectral gap of at most n−Ω(n).

In fact, we even prove a stronger statement

▶ Theorem 8. Given a matroid M = (E, I) and a total ordering O and a set S ⊆ E, unless
RP=NP, there is no FPRAS for counting the number of NBC bases of M that contain S.

Although this theorem does not refute Conjecture 2, it shows that one probably need
different techniques (or probably a different chain) to sample/count NBC bases of a matroid.
Indeed, one may even need a different proof for the performance of down-up walk to sample
ordinary bases of matroids.

To complement our main results we also prove that, unlike optimization on bases of a
matroid, optimization is NP-hard on the NBC bases of matroids. Moreover, unless NP=
RP, there is no FPRAS for computing the sum of the weights of all NBC bases of a matroid
subject to an external field, while the same computation over the bases of a matroid has a
FPRAS.
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▶ Theorem 9. Given a matroid M = (E, I) with |E| = n elements, an arbitrary total
ordering O, and weights w1, . . . , wn, it is NP-hard to find the maximum weight NBC basis of
M , where the weight of a NBC basis B is

∑
i∈B wi.

▶ Theorem 10. Given a matroid M = (E, I) with |E| = n elements, a total ordering O,
and weights {1 ≤ λe ≤ O(n)}e∈E, unless NP = RP, there is no FPRAS for computing the
partition function of the λ-external field applied to uniform distribution of NBC independent
sets, i.e., there is no FPRAS for computing :∑

B NBC Base

∏
e∈B

λe.

It is well known that a 0/1-polytope (i.e. the convex hull of a subset S ⊆ {0, 1}n) has all
vertices of equal hamming weight r and edges of ℓ2 length

√
2 iff the polytope is a matroid

base polytope of rank r [12]. Moreover, assuming the Mihail-Vazirani conjecture, there is
efficient algorithm to sample a uniformly random vertex of a 0/1-polytope with constant
sized edge length [18].

We show that, unlike matroids, the NBC Base polytope, i.e. the convex hull of the
indicator vectors of all NBC bases of a matroid M , has edges of arbitrarily long length.

▶ Theorem 11. For any n, there exists a graphic matroid M with n elements and a total
ordering O such that the convex hull of all NBC bases of M has edges of ℓ2 length at least
Ω(

√
n).

2 Preliminaries

Given a graph G = (V, E), we denote the number of independent sets of size i of G by ik(G)
For every set S ⊆ V , we define N(S) := {v /∈ S : ∃u ∈ S, {u, v} ∈ E} as the set of neighbors
of S in G.

▶ Definition 12 (Conductance). Given a weighted d-regular graph G = (V, E, w), with weights
w : E → R≥0, for S ⊆ V , the conductance of S is defined as

ϕ(S) = w(S, S)
d|S|

,

where w(S, S) is the sum of the weights of edges in the cut (S, S). Note that since G is
regular, the weighted degree of every vertex is d. The conductance of G is defined as

ϕ(G) = min
S:|S|≤|V |/2

ϕ(S).

Given a weighted graph G = (V, E, w), the simple random walk is the following stochastic
process: Given X0 = v ∈ V , for every u ∼ v, we have X1 = u with probability w{u,v}

dw(v) and we
let P be the transition probability matrix of the walk.

The following theorem is well-known and follows from the easy side of the Cheeger’s
inequality.

▶ Theorem 13. For any regular graph G = (V, E) and any set S ⊆ V and |S| ≤ |V |/2

1 − λ2(P )
2 ≤ ϕ(G) ≤ ϕ(S) ≤ |N(S)|

|S|

where 1 − λ2(P ) is the spectral gap of the simple random walk on G.
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A graphic matroid M = (E, I) is a matroid defined on the edges of a graph G = (V, E) and
its independent sets are all subsets of edges that do not contain any cycle. It is easy to verify
that circuits of M correspond to cycles of G.

▶ Definition 14 (Matroid Truncation). Let M = (E, I) be a matroid of rank r. The truncation
of M to rank r′ ≤ r removes all independent sets of size strictly greater than r′. It is easy to
see that the truncation of any matroid M to any r′ ≤ r is also a matroid.

Let M ′ be the truncation to rank r′ of a graphic matroid of rank r defined on the edges
of a graph G. The bases of M ′ correspond to forests with r′ edges and the circuits of M ′ are
the circuits of G along with all spanning forests of size r′ + 1.

The following fact about polytopes follows from convexity.

▶ Fact 15. For any polytope P ⊆ Rd with vertices v1, . . . , vn ∈ Rd, {vi, vj} is an edge of P

iff there exists a weight function w ∈ Rd such that

⟨w, vi⟩ = ⟨w, vj⟩ > ⟨w, vk⟩,

for any k ̸= i, j.

3 Results

We start with proving Theorem 11.

▶ Theorem 11. For any n, there exists a graphic matroid M with n elements and a total
ordering O such that the convex hull of all NBC bases of M has edges of ℓ2 length at least
Ω(

√
n).

Proof. Let n be odd. Consider the following graphic matroid M (with n edges), with the
ordering O: 1 < 2 < · · · < n defined by the edges of the following graph:

1

2

3

4

n − 2

n − 1

. . . n

We show that for B = {n} ∪ {2i − 1 : 1 ≤ i ≤ n−1
2 } and B′ = {1} ∪ {2i : 1 ≤ i ≤ n−1

2 },
{B, B′} forms an edge in the NBC matroid base polytope denoted as PM . We define a
w ∈ Rn and then use Fact 15 to prove the statement. Let wn = n+1

2 , and for any 1 ≤ i ≤ n−1
2 ,

let w2i = 1 and w2i−1 = 0. It is easy to check that the function ⟨w, 1B⟩ = ⟨w, 1B′⟩ = n+1
2

and ⟨w, 1B′′⟩ < n+1
2 for all NBC basis B′′ ̸= B, B′. Therefore {B, B′} forms and edge in

PM . The statements follows from the fact that ∥1B − 1B′∥2 =
√

n. ◀

Next, we prove Theorem 9 via a reduction from the MAX-INDEP-SET problem: Given
a graph G = (V, E), a weight function w : V → R≥0, and an integer k, decide whether G has
an independent set of weight at least k or not.

Note that independent sets of G and independents sets of a BC complex/matroid are two
different notions. To complete the proof we use the following well-known hardness result.
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▶ Theorem 16 ([16]). MAX-INDEP-SET is NP-complete.

▶ Theorem 9. Given a matroid M = (E, I) with |E| = n elements, an arbitrary total
ordering O, and weights w1, . . . , wn, it is NP-hard to find the maximum weight NBC basis of
M , where the weight of a NBC basis B is

∑
i∈B wi.

Proof. We prove this by a reduction from MAX-INDEP-SET. Let G = (V, E) be a graph, a
vertex weight function w : V → R≥0 and k an integer. Construct a new graph G′ = (V ′, E′)
from G by first copying G and then adding a new vertex z and edges ev = {z, v} for all
v ∈ V . We define w′ : E′ → R≥0 as w′(ev) = w(v) for every v ∈ V , and w′(e) = 0 for every
e ∈ E. Moreover, consider the following total ordering O on E′:

E < {ev : v ∈ V },

where the ordering within each set is arbitrary. Let M be the graphic matroid defined by
the edges of G′, we will be look at bases/independent sets of BC(M, O).

▷ Claim 17. There exists an independent set of G of weight at least k iff there exists an
NBC basis of M with weight at least k.

We prove the claim in a straightforward manner. Suppose there is an independent set
I ⊆ V of G with w(I) ≥ k and consider the set I ′ ⊆ E′ defined by I ′ = {ev : v ∈ I}.
By definition, w′(I ′) ≥ k. We argue that I ′ does not contain any broken circuit. Assume
otherwise that there is a broken circuit C \ {e} ⊆ I ′. Since C corresponds to a cycle in
G′ and C \ {e} is contained in I ′, it is not hard to see that C \ {e} = {ev, ev′} for some
v, v′ ∈ I and e = {v, v′} is an edge in G. But this is a contradiction with the fact that I is
an independent set of G.

Hence I ′ is a NBC independent set. Since the broken circuit complex is pure (see Fact 4),
there exists an NBC basis B containing I ′ which has weight w′(B) ≥ w′(I ′) ≥ k.

For the other direction, suppose we have a NBC basis B′ ⊆ E′ of weight w′(k) ≥ k,
and define I ⊆ V by I = {v : ev ∈ B′}. Since all edges coming from E have zero weight,
w(I) = w′(B′) ≥ k . To see that I is an independent set of G′, note that if there is an
edge {v, v′} for some v, v′ ∈ I, we have ev, ev′ ∈ B′, then {ev, ev′} forms a broken circuit
according to the ordering O. Therefore I is an independent set of G of weight at least k.

◀

It’s important to note that the above proof works under the crucial assumption that the
order O is chosen carefully based on the weights (and in some sense in the same order of the
weights).

We can amplify the ideas in the previous construction to also argue Theorem 7. This is
done by constructing a Broken Circuit complex for which the down-up walk of a carefully
chosen link has inverse exponentially small spectral gap.

▶ Theorem 7. There exists an infinite sequence of (truncated) graphic matroids M1, M2, . . .

with orderings O1, O2, . . . , such that for every n ≥ 1, Mn has poly(n) elements, and there
exists a face τ of the broken circuit complex of X = BC(Mn, O) for which the down-up walk
on the facets of the link Xτ has a spectral gap of at most n−Ω(n).

Proof. Take the complete bipartite graph G = Kn,n = (A, B, E = A × B) , with |A| = |B| =
n. Also, let V = A ∪ B. Let ℓ ≥ 1 be a parameter that we choose later, and construct a new
graph

G′ = (V ′ = V ∪ {y, z} ∪ {zv,i : v ∈ V, i ∈ [ℓ]}, E′ = E ∪ {e0} ∪ {ev,i, fv,i : v ∈ V, i ∈ [ℓ]})
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40:8 On Optimization and Counting of Non-Broken Bases of Matroids

z y
e0

zv,1 zv,ℓ

ev,1 ev,ℓ

. . . zu,1 zu,ℓ

eu,1 eu,ℓ

. . .

G

v

fv,1 fv,ℓ

u

fu,1 fu,ℓ

. . .

Figure 1 A schematic of the graph G′ in the proofs of Theorem 7 and Theorem 8 where G = Kn,n

is the complete bipartite graph in the former and it is a hard instance of ♯INDEP-SET-INC(7, 2
19 )

in latter.

where e0 = {y, z}, ev,i = {z, zv,i}, fv,i = {zv,i, v} (see Figure 1). For a sanity check, note
that |V | = 2n and |V ′| = 2ℓn + 2n + 2.

Let M = (E′, I) be the graphic matroid defined by G′ truncated to rank 2ℓn + n + 1, i.e.,
the bases of M are forests of G′ with exactly 2ℓn + n + 1 edges. Now, consider the following
total ordering O on E′:

e0 < E < {ev,i : v ∈ V, i ∈ [ℓ]} < {fv,i : v ∈ V, i ∈ [ℓ]},

where the ordering within each set is arbitrary.
Moreover, let X := BC(M, O), and define

τ = {ev,i : v ∈ V, i ∈ [ℓ]}.

For simplicity of notation, let FA := {fv,i : v ∈ A, i ∈ [ℓ]} and FB := {fv,i : v ∈ B, i ∈ [ℓ]}.

▷ Claim 18. For any facet S of Xτ , either S ∩ FA = ∅, or S ∩ FB = ∅,

This follows from the fact that G is a complete bipartite graph and edges in E are smaller
than ev,i’s and fu,j ’s; so if S ∩ FA, S ∩ FB ̸= ∅, then it has a broken circuit.

Therefore, the set of facets of Xτ can be partitioned into 2n + 1 sets (∪n
i=1SA,i) ∪

(∪n
i=1SB,i) ∪ S0, where SA,i is the set of all facets S with |S ∩ FA| = i, SB,i is the set of all

facets S with |S ∩ FB | = i, and S0 is the set of all facets with |S ∩ (FA ∪ FB)| = 0. Let
SA := ∪n

i=1SA,i and similarly define SB. We show that |N(SA)|
|SA| ≤ n−Ω(n), where N(SA)

is the set of neighbors of SA in the down-up walk P ∨
τ on the facets of τ . WLOG we can

assume that |SA| is at most half of all facets. Applying Theorem 13, this would imply that
1 − λ2(P ∨

τ ) ≤ n−Ω(n).
First, note that for every facet S ∈ SA and T ∈ SB ∖ SB,1, we get P ∨(S, T ) = 0

since |S∆T | > 2. So, N(SA) ⊆ SB,1 ∪ S0. First, notice |S0| ≤
(|E|

n

)
≤ n2n. Furthermore,

|SB,1| ≤
(

n
1
)
ℓ
( |E|

n−1
)

≤ ℓn2n.
This follows from the fact that any facet in SB,1 can be written as {fv,iv

} ∪ {e0} ∪ K for
some v ∈ A, iv ∈ [ℓ], and subset K ⊆ E of size n − 1.

Lastly, |SA| ≥ |SA,n| = ℓn. This is because every choice of {iv}v∈A corresponds to a set
in SA,n whose sets are of the form {fv,iv : v ∈ V } ∪ {e0}. These sets all don’t contain a
broken circuit because the circuits introduced through truncation are exactly the forests with
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2ℓn + n + 2 edges. However, any proper superset of {fv,iv : v ∈ V } ∪ {e0} must include e0,
so looking at the circuit introduced by the superset, the corresponding broken circuit will
always remove e0. Putting it all together,

1 − λ2(P ∨
τ ) ≤ |N(SA)|

|SA|
≤ n2n(1 + ℓ)

ℓn
≤

assuming ℓ≥n3
n−Ω(n)

as desired. ◀

We prove Theorem 10 and Theorem 8 by a reduction from ♯INDEP-SET-INC(7, 2
19 ),

defined as the following.

▶ Definition 19 (♯INDEP-SET-INC(7, 2
19 )). Given a 7-regular graph G = (V, E) that

satisfies ik(G) ≤ i⌊ 2|V |
19 ⌋(G) for any k < ⌊ 2|V |

19 ⌋, where ik(G) are the independent sets of G of

size k, count the number of independent sets of size ⌊ 2|V |
19 ⌋.

▶ Theorem 20. Unless NP = RP, there is no randomized algorithm with constant approxim-
ation ratio for ♯INDEP-SET-INC(7, 2

19 ).

We leave the proof of this for the appendix.
Now, we are ready to prove Theorem 8. The high-level structure of the proof is similar

to the proof of Theorem 7 where we apply a similar gadget to graphs on which it is hard to
count independent sets (as opposed to the complete bipartite graph).

▶ Theorem 8. Given a matroid M = (E, I) and a total ordering O and a set S ⊆ E, unless
RP=NP, there is no FPRAS for counting the number of NBC bases of M that contain S.

Proof. For simplicity of notion, let α := 2
19 . We prove by a reduction from

♯INDEP-SET-INC(7, 2
19 ). Take any arbitrary 7-regular graph G = (V, E) whose num-

ber of independent sets of size ⌊α|V |⌋ is at least the number of its independent sets of size k

for any k < ⌊α|V |⌋. Let n := |V | and N be the number of independent sets of size ⌊αn⌋ of
G. Also, define ℓ ≥ 1 to be a parameter that we choose later.

Now, construct a new graph

G′ = (V ′ = V ∪ {y, z} ∪ {zv,i : v ∈ V, i ∈ [ℓ]}, E′ = E ∪ {e0} ∪ {ev,i, fv,i : v ∈ V, i ∈ [ℓ]})

where e0 = {y, z}, ev,i = {z, zv,i}, fv,i = {zv,i, v} (see Figure 1). Let M = (E′, I) be the
graphic matroid defined by G truncated at rank ℓn + ⌊αn⌋ + 1, i.e., the bases of M are forests
of G′ with exactly ℓn + ⌊αn⌋ + 1 edges. Now, consider the following ordering O on E′:

e0 < E < {ev,i : v ∈ V, i ∈ [ℓ]} < {fv,i : v ∈ V, i ∈ [ℓ]},

where the ordering within each set is arbitrary. Moreover, let X := BC(M, O), and define

τ = {ev,i : v ∈ V, i ∈ [ℓ]}.

We claim that the number of facets of Xτ is at least ℓ⌊αn⌋N and at most 2ℓ⌊αn⌋N . So, a
1.5-approximation to the number facets of Xτ , i.e., the number NBC bases of M that contain
τ , gives a 3-approximation to N , the number of independent sets of size ⌊αn⌋ of G.

We use the following crucial observation:

▷ Claim 21. For any facet S of Xτ , {v : ∃fv,i ∈ S} is an independent set of G and for any
fv,i, fv,j ∈ S we have i = j.

Conversely, for any S ⊆ {fv,i : v ∈ V, i ∈ [ℓ]}, such that the set {v : ∃fv,i ∈ S} is an
independent set of size ⌊αn⌋ of G, and fv,i, fv,j ∈ S =⇒ i = j, we have S ∪ {e0} is a facet
of Xτ .
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The proof simply follows from the fact that edges of E are smaller than ev,i’s, and f ′
u,js in

O. By the second part of the claim, we can write

|Xτ (⌊αn⌋ + 1)| = ℓ⌊αn⌋N + |{S ∈ Xτ (⌊αn⌋ + 1) : S ∩ E ̸= ∅}| ≥ ℓ⌊αn⌋N. (3)

Define ik := ik(G) as the number of independent sets of size k of graph G. By the first part
of the above claim we can write,

|{S ∈ Xτ (⌊αn⌋ + 1) : S ∩ E ̸= ∅}| ≤
⌊αn⌋−1∑

k=0
ℓk · ik ·

(
|E|

⌊αn⌋ − k

)
(4)

≤
⌊αn⌋−1∑

k=0
ℓk · ik · |E|⌊αn⌋−k (5)

≤
using ik≤N

N |E|⌊αn⌋
⌊αn⌋−1∑

k=0
(ℓ/|E|)k (6)

≤
assuming ℓ≥2|E|

N |E|⌊αn⌋(ℓ/|E|)⌊αn⌋ ≤ Nℓ⌊αn⌋ (7)

Putting these together with (3) concludes the proof. ◀

▶ Theorem 10. Given a matroid M = (E, I) with |E| = n elements, a total ordering O,
and weights {1 ≤ λe ≤ O(n)}e∈E, unless NP = RP, there is no FPRAS for computing the
partition function of the λ-external field applied to uniform distribution of NBC independent
sets, i.e., there is no FPRAS for computing :∑

B NBC Base

∏
e∈B

λe.

Proof. For simplicity of notion, let α := 2
19 . The proof is similar to the proof of Theorem 8 by

a reduction from ♯INDEP-SET-INC(7, 2
19 ). Take any arbitrary 7-regular graph G = (V, E)

with n := |V | vertices whose number of independent sets of size ⌊α|V |⌋ is at least the number
of its independent sets of size k for any k < ⌊α|V |⌋. Construct a new graph

G′ = (V ′ = V ∪ {y, z}, E′ = E ∪ {e0 = {y, z}} ∪ {ev = {v, z} : v ∈ V })

Let M = (E′, I) be the graphic matroid given by G′ truncated to rank ⌊αn⌋ + 1 and consider
the following ordering O on E′′:

e0 < E < {ev : v ∈ V },

where as usual the ordering within each set is arbitrary. Define weights λ : E′ → R≥0 as
follows:

λe =
{

ℓ if e = ev for some v ∈ V ,

1 o.w.
,

for some ℓ that we choose later. We argue that

λ⌊αn⌋N ≤
∑

B

∏
e∈B

λe ≤ 2λ⌊αn⌋N.

where here (and henceforth) the sum is over B’s that are NBC bases of M , and therefore a 1.5-
approximation to the partition function, i.e., the quantity in the middle, is a 3-approximation
to N . Similar to the previous theorem we have the following claim.
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▷ Claim 22. For any NBC base B of M , we have {v : ev ∈ B} is an independent set of G.
Conversely, for any independent set I of G of size |I| = ⌊αn⌋, {e0} ∪ {ev : v ∈ I} is a NBC
base of M .

So,∑
B

∏
e∈B

λe =
∑

B:B∩E ̸=∅

∏
e∈B

λe +
∑

B:B∩E=∅

∏
e∈B

λe (8)

=
∑

B:B∩E ̸=∅

∏
e∈B

λe + ℓ⌊αn⌋|{S ⊆ V : S independent set of G, |S| = ⌊αn⌋}|

Define ik as the number of independent sets of size k of graph G. We have

∑
B:B∩E ̸=∅

∏
e∈B

λe ≤
⌊αn⌋−1∑

k=0
ℓkik

(
|E|

⌊αn⌋ − k

)
≤

using ik≤N,
assuming ℓ≥2|E|

ℓ⌊αn⌋N

where the last inequality follows from the same calculations as in Equation (4). ◀
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A Proof of Theorem 20

In this section we prove Theorem 20. We use a reduction from the problem of computing the
partition function of the Hardcore model when the fugacity is above the critical threshold.
Define ♯HC(∆, λ) as follows: given a ∆-regular graph G = (V, E), compute the partition
function ZG(λ) =

∑
I λ|I|, where the sum is taken over the family of independent sets I ⊆ V

of G. The critical threshold is defined as λc(∆) := (∆−1)∆−1

(∆−2)∆ .

▶ Theorem 23 ([20, 21, 11]). The following holds for any fixed ϵ > 0, integer ∆ ≥ 3 and
λ > λc(∆): unless NP=RP, for any λ > λc(∆) there is no polynomial-time algorithm for for
approximating ♯HC(∆, λ) up to a 1 + ϵ multiplicative factor.

We give a polynomial-time algorithm that given a e±ϵ/2-approximation for
♯INDEP-SET-INC(7, 2

19 ) (see Definition 19), approximates ♯HC(7, 2
3 ) up to a

e±ϵ-multiplicative error. Since 2
3 > λc(7) = 66

57 ≥ 0.6, this finishes the proof of Theorem 20.
Our reduction is a modification of Theorem 16 in [8].

▶ Theorem 24. There exists a polynomial-time algorithm that for any given ϵ ≤ 1, satisfies
the following properties:
1. Given an instance G = (V, E) of ♯HC(7, 2

3 ), the algorithm constructs an instance G′ =
(V ′, E′) of the problem ♯INDEP-SET-INC(7, 2

19 ) with size polynomial in |G|.
2. Given a e±ϵ/2-multiplicative approximation to the number of independent sets of size

⌊ 2|V ′|
19 ⌋ of G′, a e±ϵ-approximation of ZG( 2

3 ) can be computed in polynomial time.

Proof. Given a 7-regular graph G = (V, E), we define G′ as the disjoint union of G with
r := c2n2

ϵ copies of the complete graph K8, where n = |V |, for some c > 1 that we choose
later. For simplicity of notation, let N := |V ′| = n + 8r, α := 2

19 , λ := 2
3 . It is enough to

show that G′ is an instance of ♯INDEP-SET-INC(7, 2
19 ) and

e−ϵ/2 i⌊αN⌋ (G′)(
r

⌊αN⌋
)
8⌊αN⌋ ≤ ZG(λ) ≤ eϵ/2 i⌊αN⌋ (G′)(

r
⌊αN⌋

)
8⌊αN⌋ , (9)

https://arxiv.org/abs/2304.10106
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https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1145/3366423.3380276
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https://doi.org/10.1016/0012-365X(73)90108-8
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where as usual ik(G) is the number of independent sets of size k in G, and(
r

⌊αN⌋

)
8⌊αN⌋ = i⌊αN⌋(rK8).

Here, rK8 is a shorthand for the graph which is a disjoint union of r copies of K8. We first
show that Equation (9) holds. Note that

i⌊αN⌋ (G′) =
n∑

j=0
ij(G)i⌊αN⌋−j(rK8) = i⌊αN⌋(rK8)

n∑
j=0

ij(G)
i⌊αN⌋−j(rK8)
i⌊αN⌋(rK8) .

Thus, to show Equation (9), it is enough to prove that for every 1 ≤ j ≤ n,

e−ϵ/2 ·
i⌊αN⌋−j(rK8)
i⌊αN⌋(rK8) ≤ λj ≤ eϵ/2 ·

i⌊αN⌋−j(rK8)
i⌊αN⌋(rK8) . (10)

We can write

i⌊αN⌋−j(rK8)
i⌊αN⌋(rK8) =

(
r

⌊αN⌋−j

)
8⌊αN⌋−j(

r
⌊αN⌋

)
8⌊αN⌋ = 1

8j

j−1∏
i=0

⌊αN⌋ − i

r − ⌊αN⌋ + j − i
. (11)

To prove the upper bound, first note that

αN

r − αN + j
≥

αN≥8αr

8αr

r(1 − 8α) + n
=

n=
√

ϵr/c
α=2/19

16
3

(
1

1 + 19
√

ϵ
3c

√
r

)
. (12)

This implies that αN
r−αN+j ≥ 1. So, αN

r−αN+j ≤ ⌊αN⌋−i
r−⌊αN⌋+j−i for every i < r − ⌊αN⌋ + j. Thus,

1
8j

·
j−1∏
i=0

⌊αN⌋ − i

r − ⌊αN⌋ + j − i
≥ 1

8j
·
(

αN

r − αN + j

)j

≥
Equation (12)

j≤n=
√

ϵr/c

1
8j

· ( 16
3 )j

(
1

1 + 19
√

ϵ
3c

√
r

)√
ϵr/c

≥ ( 2
3 )je−ϵ/2 = λje−ϵ/2,

for a large enough c > 1. Combining this with Equation (11), we get the upper bound in
Equation (10).

To prove the lower bound, note that

1
8j

·
j−1∏
i=0

⌊αN⌋ − i

r − ⌊αN⌋ + j − i
≤

j−i≥0

1
8j

·
(

⌊αN⌋
r − ⌊αN⌋

)j

≤
⌊αN⌋=⌊ 16r

19 + 2
√

ϵr
19c ⌋

1
8j

·

 16r
19 (1 +

√
ϵ

8c
√

r
)

3r
19 (1 − 2

√
ϵ

3c
√

r
)

j

≤ ( 2
3 )jeϵ/2 = λj · eϵ/2,

for a large enough c > 1. Combining this with Equation (11), the lower bound in Equa-
tion (10), thus (9) follows.

It remains to show that G′ is an instance of ♯INDEP-SET-INC(7, 2
19 ), i.e. ik(G′) ≤

i⌊αN⌋(G′) for any k < ⌊αN⌋.

APPROX/RANDOM 2023
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For any k < ⌊αN⌋, and any independent set S in the original graph G, let TS,k be the
set of all independent sets of size k of G′ whose intersection with the vertices of G is S.
It is enough to show that there exists a constant n0 such that if n ≥ n0, then we have
|TS,k| ≤ |T ′

S,⌊αN⌋| for every independent set S ⊆ V of G and k < ⌊αN⌋. We prove a stronger
statement that there exists a constant n0 such that if n ≥ n0, then for any fixed independent
set S ⊆ V , |TS,k| is increasing as a function of k for all k ≤ ⌊αN⌋. It is enough to show that

|TS,k|
|TS,k−1| ≥ 1 for any |S| ≤ k ≤ αN . Note that |TS,k| =

(
r

k−|S|
)
8k−|S|. So we have

|TS,k|
|TS,k−1|

=
(

r
k−|S|

)
8k−|S|(

r
k−1−|S|

)
8k−1−|S| = 8 · r − k + |S| + 1

k − |S|
≥ 8 · r − k

k
≥ 8

3r
19 − n

16r
19 + n

,

where the last inequality comes from the fact that k ≤ 2N
19 = 2

19 (8r + n) ≤ 16r
19 + n. But since

r = c2n2

ϵ , there is a constant n0 such that for n ≥ n0, we have
3r
19 −n

16r
19 +n

≥ 1
8 . This shows that

|TS,k|
|TS,k−1| ≥ 1, which finishes the proof. ◀
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1 Introduction

The main problem considered in this paper is “low-degree testing over grids”. Specifically given
a degree parameter d ∈ Z⩾0 and proximity parameter δ > 0 we would like to design a tester
(a randomized oracle algorithm) that is given oracle access to a function f : S1 ×· · ·×Sn → F
where F is a field and S1, . . . ,Sn ⊆ F are arbitrary finite sets, and accepts if f is a polynomial
of degree at most d while rejecting with constant probability (say 1/2) if f is δ-far (in relative
Hamming distance) from every degree d polynomial. The main goal here is to identify
settings where the test makes O(1) queries when d, 1/δ and maxi∈[n]{|Si|} are all considered
constants. (In particular the goal is to get a query complexity independent of n.)

© Prashanth Amireddy, Srikanth Srinivasan, and Madhu Sudan;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2023).
Editors: Nicole Megow and Adam D. Smith; Article No. 41; pp. 41:1–41:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pamireddy@g.harvard.edu
https://sites.google.com/view/prashanth-amireddy
https://orcid.org/0000-0002-2713-8961
mailto:srikanth@cs.au.dk
https://cs.au.dk/~srikanth/
https://orcid.org/0000-0001-6491-124X
mailto:madhu@cs.harvard.edu
https://madhu.seas.harvard.edu/
https://orcid.org/0000-0003-3718-6489
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.41
https://arxiv.org/pdf/2305.04983.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


41:2 Low-Degree Testing over Grids

Low-degree testing

The low-degree testing problem over grids is a generalization of the classical low-degree testing
problem which corresponds to the special case where F is a finite field and S1 = · · · = Sn = F.
Versions of the classical problem were studied in the early 90s [5, 6, 11] in the context of
program checking and (multi-prover) interactive proofs. The problem was formally defined
and systematically studied by Rubinfeld and Sudan [24] and played a central role in the
PCP theorem [2, 3] and subsequent improvements. While the initial exploration of low-
degree testing focused on the case where d ≪ |F| (and tried to get bounds that depended
polynomially, or even linearly, on d), a later series of works starting with that of Alon,
Kaufman, Krivelevich, Litsyn and Ron [1] initiated the study of low degree testing in the
setting where d > |F|. [1] studied the setting of F = F2 and this was extended to the
setting of other constant sized fields in [17, 19]. An even more recent sequence of works
[10, 14, 15, 18] explores so-called “optimal tests” for this setting and these results have led to
new applications to the study of the Gowers uniformity norm, proofs of XOR lemmas for
polynomials [10], and novel constructions of small set expanders [8].

Part of the reason for the wide applicability of low-degree testing is the fact that evaluations
of polynomials form error-correcting codes, a fact that dates back at least to the work of
Ore [22]. Ore’s theorem (a.k.a. the Schwartz-Zippel lemma) however applies widely to the
evaluations of polynomial on entire “grids”, i.e., sets of the form S1 × · · · × Sn and bounds
the distance between low-degree functions in terms of the degree d and minimum set size
mini{|Si|}. This motivated Bafna, Srinivasan and Sudan [7] to introduce the low-degree
testing problem over grids. They proposed and analyzed a low-degree test for the special
case of the Boolean grid, i.e., where |S1| = · · · = |Sn| = 2. This setting already captures the
setting considered in [1] while also including some novel settings such as testing the Fourier
degree of Boolean functions (here the domain is {−1,+1}n while the range is R). The main
theorem in [7] shows that there is a tester with constant query complexity, thus qualitatively
reproducing the theorem of [1] (though with a worse query complexity than [1] which was
itself worse than the optimal result in [10]), while extending the result to many new settings.

In this work we attempt to go beyond the restriction of a Boolean grid. We discuss our
results in more detail shortly, but the main outcome of our exploration is that the problem
takes on very different flavors depending on whether the grid is symmetric (S1 = · · · = Sn)
or not. In the former case, we get constant complexity testers for constant |Si| whereas in
the latter setting we show that even when |Si| = 3 low-degree (even d = 1) testing requires
superconstant query complexity. (See Theorem 3 for details.) In contrast to previous testers,
our tester goes via “junta-degree-tests”, a concept that has been explored in the literature
but not as extensively as low-degree tests, and not been connected to low-degree tests in the
past. We describe this problem and our results for this problem next.

Junta-degree testing

A function f : S1 × · · · × Sn → G for an arbitrary set G is said to be a d-junta if it depends
only on d of the n variables. When G is an abelian group, a function f : S1 × · · · × Sn → G
is said to be of junta-degree d if it is the sum of d-juntas (where the sum is over G).1 In
the special case where |Si| = 2 for all i and G is a field, junta degree coincides with the

1 While in principle the problem could also be considered over non-abelian groups, in such a case it not
clear if there is a fixed bound on the number of juntas that need to be summed to get to a function of
bounded junta-degree.
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usual notion of degree. More generally every degree d polynomial has junta degree d, while a
function of junta-degree d is a polynomial of degree at most d ·maxi{|Si|}. Thus junta-degree
is softly related to algebraic degree and our work provides a step towards low-degree testing
via the problem of junta-degree testing.

Junta-degree testing considers the task of testing if a given function has junta-degree at
most d or if it is far from all functions of junta-degree at most d. While this problem has not
been considered in full generality before, two works do consider this problem for the special
case of d = 1. Dinur and Golubev [13] considered this problem in the setting where G = F2,
while Bogdanov and Prakriya [12] consider this for general abelian groups. This special case
corresponds to the problem of testing if a function is a direct sum, thus relating to other
interesting classes of properties studied in testing. Both works give O(1) query testers in
their settings, but even the case of d = 2 remained open.

In our work we give testers for this problem for general constant d in the general
asymmetric domain setting with the range being an arbitrary finite group G, though with
the restriction that the maximum set size |Si| is bounded. We then use this tester to design
our low-degree test over symmetric grids. We turn to our results below. Even though our
primary motivation in studying low-junta-degree testing is to ultimately use it for low-degree
testing, we note that junta-degree testing even for the case of G being the additive group
of R (or C) and Si = Ω (which is some finite set) for all i, is by itself already interesting
as in this case, junta-degree corresponds to the “degree” of the Fourier representation of
the function (in any basis). Low-Fourier-degree functions and such approximations form a
central object in complexity theory and computational learning theory, at least when the
domain size is |Ω| = 2. The problem of learning low-Fourier-degree functions in particular
has received much attention over the years [20,21], and hence testing the same family, over
general domains Ω, is an interesting corollary of our results, especially since our techniques
are more algebraic than analytic (modulo the usage of a hypercontractivity theorem).

1.1 Our results
We start by stating our theorem for junta-degree testing. (For a formal definition of a tester,
see Definition 7).

▶ Theorem 1. The family of junta-degree-d functions from S1 × · · · × Sn to G is locally
testable with a non-adaptive one-sided tester that makes Os,d(1) queries to the function being
tested, where s = maxi |Si|.

In the special case where |Si| = s for all i, the tester makes sO(s2d) queries.

In particular, if we treat all the parameters above except n as constant, this gives a test
that succeeds with high probability by making only a constant number of queries. Taking
(G,+) = (R,+) or (C,+), the above theorem results in a local tester for Fourier-degree:

▶ Corollary 2. The family of functions f : Ωn → R of Fourier-degree at most d is locally
testable in sO(s2d) = Os,d(1) queries, where s = |Ω|.2

We now turn to the question of testing whether a given function f : Sn → F is degree-d, i.e.,
whether there is a polynomial of degree at most d agreeing with f , or δ-far from it. Here S
can be any arbitrary finite subset of the field. Note that being junta-degree-d is a necessary
condition for f being degree-d. Combining the above Junta-deg with an additional test
(called Weak-deg ), we can test low-degree functions over a field, or rather over any subset
of a field.

2 The same result also holds if the co-domain is C instead of R.
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▶ Theorem 3. For any subset S ⊆ F of size s, the family of degree-d functions from Sn to
F is locally testable with a non-adaptive, one-sided tester that makes (sd)O(s3d) = Os,d(1)
queries to the function being tested.

The special case of S = F = Fq (finite field of size q) is especially interesting. Although
this was already established for general finite fields first by Kaufman and Ron [19] and an
optimal query complexity (in terms of d, for constant prime q) was achieved by Haramaty,
Shpilka and Sudan [15], we nevertheless present it as a corollary of Theorem 3.

▶ Corollary 4 (Kaufman and Ron [19]). The family of degree-d functions f : Fnq → Fq is
locally testable in (qd)O(q3d) = Oq,d(1) queries.

Turning our attention to more general product domains, we show that while junta-degree
testing is still locally testable over there more general grids, testing degree in constantly
many queries, even for d = 1, is intractable for all sufficiently large fields F.

▶ Theorem 5. For a growing parameter n, there exists a field F and its subsets S1, . . . ,Sn of
constant size (i.e., 3) such that testing the family of degree-1 functions f : S1 × · · · × Sn → F
requires Ω(log n) queries.

▶ Remark 6. A recent work of Arora, Bhattacharyya, Fleming, Kelman and Yoshida [4]
considers low-degree testing over the reals and tests whether a given f : Rn → R is degree-d
or ε-far with respect to a distribution D. They give a test with query complexity independent
of n for their problem ([4, Theorem 1.1]). This seems to contradict our result which seems
to include the special case of their setting for D = Unif(S1 × · · · × Sn) and F = R, where
Theorem 5 shows that a dependence on n is necessary. The seeming contradiction is resolved
by noting that the models in our paper and that of [4] are quite different. In particular,
while in our setting the function f can only be queried on the support of the distribution
D (namely S1 × · · · × Sn), in [4] the function can be queried at any point in Rn and the
distribution D only shows up when defining the distance between two functions. (So in their
model a function f that happens to agree with a degree d polynomial on the support of D
but disagrees outside the support may be rejected with positive probability, while in our
model such a function must be accepted with probability one.)

1.2 Technical contributions
All low-degree tests roughly follow the following pattern: Given a function f on n variables
x1, . . . , xn they select some k = Od(1) new variables y = (y1, . . . , yk) and substitute xi =
σi(y), where σi’s are simple random functions, to get an O(1)-variate function g(y) = f(σ(y));
and then verify g is a low-degree polynomial in k variables by brute force. When the domain
is Fnq for some field Fq, σi’s can be chosen to be an affine form in y – this preserves the
domain and ensures degree of g is at most the degree of f , thus at least ensuring completeness.
While soundness of the test was complex to analyze, a key ingredient in the analysis is that
for any pair of points a ̸= b ∈ Fkq , σ(a) and σ(b) are uniform independent elements of Fnq
(over the randomness of σ). At least in the case where f is roughly 1/qk distance from the
degree d family, this ensures that with constant probability g will differ from a degree d
polynomial in exactly one point making the test reject. Dealing with cases where f is much
further away is the more complex part that we won’t get into here.

When the domain is not Fnq affine substitutions no longer preserve the domain and so we
can’t use them in our tests. In the cases of the domain being {−1,+1}n, [7] used much simpler
affine substitutions of the form xi = ciyj(i) where ci ∈ {−1,+1} uniformly and independently
over i and j(i) ∈ {1, . . . , k} uniformly though not independently over i. Then [7] iteratively
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reduce the number of variables as follows: When only r variables x1, . . . , xr remain, they
pick two uniformly random indices i ̸= j ∈ {1, . . . , r − 1} and identify xj with xi, and then
rename the r − 1 remaining variables as x1, . . . , xr−1. At the end when r = k, they pick a
random bijection between x1, . . . , xk and y1, . . . , yk. This iterative identification eventually
maps every variable xi to some variable yj(i). The nice feature of this identification scheme is
it leads to a sequence of functions fn, fn−1, ..., fk with fr being a function of r variables on
the same domain, and of degree at most d if f = fn has degree at most d. If however we start
with fn being very far from degree d polynomials, there must exist r such that fr is very far
from high-degree functions while fr−1 is only moderately far. The probability of a bad event
can be bounded (via some algebraic arguments) by O(d2/r2). This step is the key to this
argument and depends on the fact that fr−1 involves very small changes to fr. Summing
over r then gives the constant probability that the final function fk (or equivalently g) is far
from degree d polynomials. This still leaves [7] with the problem of dealing with functions
f that are close to codewords: Here they use the fact that this substitution ensures that
σ(a) is distributed uniformly in {−1,+1}n for every a ∈ {−1,+1}k. It is however no longer
true that σ(b) is uniform conditioned on σ(a) for b ≠ a, but it is still the case that if b is
moderately far in Hamming distance from a then σ(b) has sufficient entropy conditioned on
σ(a). (Specifically σ(b) is distributed uniformly on a sphere of distance Ω(n) from σ(a).) This
entropy, combined with appropriate small-set expansion bounds on the Boolean hypercube,
and in particular a spherical hypercontractivity result due to Polyanskiy [23]), ensures that if
f is somewhat close to a low-degree polynomial then g is far from every degree d polynomial
on an appropriately chosen subset of {−1,+1}k and so the test rejects.

To extend this algorithm and analysis to the setting on non-Boolean domains we are
faced with two challenges: (1) We cannot afford to negate variables (using the random
variables c(i) above) when the domain is not {−1,+1} – we can only work with identification
of variables (or something similar). (2) The increase in the domain size forces us to seek a
general spherical hypercontractivity result on non-Boolean alphabets and this is not readily
available. Overcoming either one of the restrictions on its own seems plausible, but doing it
together (while also ensuring that the sequence of restrictions/identifications do not make the
distance to the family being tested to abruptly drop in distance as we go from fn, fn−1, . . .

to fk) turns out to be challenging and this is where we find it critical to go via junta-degree
testing.

As a first step in our proof we extend the approach of [7] to junta-degree testing over the
domain Sn for arbitrary finite S. (It is relatively simple to extend this further to the case of
S1 × · · · × Sn – we don’t discuss that here.) This is achieved by using substitutions of the
form xi = πi(yj(i)) where πi : S → S is a random bijection. While this might increase the
degree of the function, this preserves the junta-degree (or reduces it) and makes it suitable
for analysis of the junta-degree test, which we now describe: Following the template of a
low-degree test stated at the beginning of this subsection, the junta-tester would simply
check whether g(y) = f(σ(y)) is of junta-degree at most d where σ is the random function
induced by the identifications j(.) and permutations πi of variables. The permutations πi
here serve the same purpose as the coefficients ci’s do in the substitutions xi = ciyj(i) of [7]
which is to ensure that for any a ∈ Sk, σ(a) is uniformly distributed in Sn. With this idea
in place extending the analysis of [7] to our setting ends up with a feasible path, except we
had to address a few more differences; one such challenge is that in the analysis the rejection
probability of junta-degree test on functions that are close to being junta-degree-d, we will
need to analyze the effect of a spherical noise operator on grids (i.e., a subset of coordinates
of fixed size is chosen uniformly at random and each coordinate in that subset is changed to
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a different value uniformly at random). While [23] shows that such a noise operator has the
desired hypercontractivity behavior, and the corresponding small-set expansion theorem was
used in the test of [7], this was only for a Boolean alphabet. In this paper, when the alphabet
size s = |S| is more than 2, by doing Fourier analysis over Zns , we are able to relate it to
the more standard Bernoulli i.i.d. noise operator for which we do have a small-set expansion
theorem available – we believe this can be of independent interest.3

The other differences of our junta-degree test analysis compared to that of [7] are mainly
to account for the fact that we are aiming for junta-degree testing over any (abelian) group
whereas the low-degree testing ideas of [7] and other prior work utilize the properties of
polynomials over fields. We also give a cleaner proof as compared to [7] for the fact that the
sequence of functions of fewer and fewer variables obtained by the random identifications
(along with permutations) does not abruptly decrease in distance to the junta-degree-d family
like we pointed out earlier (see “large-distance lemma” Lemma 16).

We then return to the task of low-degree testing: For this we design a new test: We first
test the given oracle for junta-degree d, then if it passes, we pick a fresh random identification
scheme setting xi = yj(i) for uniform independent j(i) ∈ {1, . . . , k} and verify (by brute-force)
that the resulting k variate function has degree at most d. The advantage with this two
stage tester is that in the second stage the given function is already known to be close to
a polynomial of degree at most sd where s = maxi{|Si|}. This makes the testing problem
closer to a polynomial identity testing problem, though the problem takes some care to define,
and many careful details to be worked out in the analysis. A particular challenge arises
from the fact that the first phase only proves that our function is only close to a low-degree
polynomial and may not be low-degree exactly – so in the second stage we have to be careful
to sample the function on essentially uniform inputs. This prevents us from using all of Sk
when looking at the restricted function g(y), but only allows us to use balanced inputs in
Sk (where a balanced input has an equal number of coordinates with each value v ∈ S). In
turn understanding what the lowest degree of function can be given its values on a balanced
set leads to new algebraic questions. Section 4 gives a full proof of the low-degree test and
analysis spelling out the many technical questions and our solutions to those.

The final testing-related result we prove is an impossibility result, showing that while
low-degree functions are locally testable over Sn, this cannot be extended to general grids
S1×· · ·×Sn for large enough fields (Theorem 5). From a coding theory perspective, this reveals
that local testability of even polynomial evaluations codes requires more structure than simply
having a large distance. To sketch the idea, let d = 1 and F be any field of size at least n+ 2
with distinct elements {0, 1, a1, . . . , an}. For i ∈ [n], let Si = {0, 1, ai}. We will refer to 0, 1 as
Boolean elements and the remaining as non-Boolean ones. Let ζ(b) = b if b is Boolean and ⋆
otherwise. As degree-1 functions over S1 × · · · × Sn form a linear subspace over F, by a result
due to Ben-Sasson, Harsha and Raskhodnikova [9] any test can be converted to a one-sided,
non-adaptive one without changing the number of queries or the error by more than a factor
of 2. Thus, we may assume that the test (call it Test) is of the following form: Test samples
a matrix M ∈ Fℓ×n according to a distribution D with rows x(1), . . . , x(ℓ) ∈ S1 × · · · × Sn
and accepts f if and only if P (f(x(1)), . . . , f(x(ℓ))) is true where P is some fixed predicate.
We will show that if Test accepts degree-1 functions with probability 1 and rejects Ω(1)-far
functions with probability Ω(1), then ℓ = Ω(log n). By the one-sidedness, we must have
for all M ∈ sup(D) that if fM := (f(x(1)), . . . , f(x(ℓ))) ∈ colspace(M), then Test accepts,
where sup denotes the support and colspace denotes the column space. Picking i ∈ [n]
uniformly at random, note that the function g(x) := xi(xi − 1) is Ω(1)-far from degree-1.

3 We note that the hypercontractivity setting we are considering and analyzing in this part is not sufficient
to get a direct analysis of low-degree testing. Such an analysis would require hypercontractivity for
more delicate noise models than the simpler “q-ary symmetric” models we analyze here.
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Then we argue that the “evaluation vector” gM := (g(x(1)), . . . , g(x(ℓ))) lies in the column
space of M with high probability (over i) if ℓ = o(log n), so Test faultily accepts g. The
idea is that if ℓ = o(log n) then there are at least two columns (say i ̸= j ∈ [n]) of M that
are identical under the ζ mapping, so subtracting one from the other gives a vector in Fℓ
that is (up to a constant factor) equal to gM . This is because for k ∈ [ℓ], the k-th coordinate
of the difference vector is ai − aj (some constant) if ζ(x(k)

i ) = ⋆ and 0 otherwise. Similarly
the k-th coordinate of gM is ai(ai − 1) (some constant) if ζ(x(k)

i ) = ⋆ and 0 otherwise.

2 Preliminaries

We denote [n] = {1, . . . , n} ⊆ Z, [m..n] = [n] \ [m − 1] and Zs = Z/sZ = {0, 1, . . . , s − 1}
for s ⩾ 2. Throughout the paper, let (G,+) be an arbitrary abelian group and (F,+, ·) an
arbitrary field. Fnq is a vector space over the finite field of q elements, to which we associate
an inner product (bilinear form) as: ⟨x, y⟩ =

∑n
i=1 xi · yi.

For any finite set S and a ∈ Sn we denote the Hamming weight of a by #a = {i ∈
[n] : ai ̸= 0}, assuming S contains an element called 0. If I ⊆ [n], we use aI to denote the
tuple a restricted to the coordinates of I, i.e., aI = (ai)i∈I . Similarly SI = {aI : a ∈ Sn}.
For disjoint subsets I, J ⊆ [n], and a ∈ SI and b ∈ SJ , we denote their concatenation by
a ◦ b ∈ SI∪J . Denoting a product domain/grid by S = S1 × · · · × Sn, we let SI = ×i∈ISi
denote the Cartesian product of sets restricted to the coordinates of I.

We use
([n]
⩽d

)
to denote the set of subsets of [n] of size at most d. For m a multiple of

s, let “balanced set” B(S,m) ⊆ Sm be the set of points that contain exactly m/s many
repetitions of each element of S. Abusing notation, sometimes we may think of B(S,m)m′

as a subset of Smm′ by flattening the tuple of m-tuples. The group-integer multiplication
operation · : G × Z → G is defined by g · m = g + · · · + g (|m| times) if m ⩾ 0 and
−g − · · · − g (|m| times) otherwise.

2.1 Local testability
The distance between f : S → G and a family of functions F with the same domain S is
δF (f) = ming∈F δ(f, g), where δ(f, g) = Prx∼S [f(x) ̸= g(x)] . We say that f is δ-far from F
if δF (f) ⩾ δ. When F is the family of junta-degree-d functions, we denote δF (.) by simply
δd(.). Similarly f is δ-close to F if δF (f) ⩽ δ.

▶ Definition 7 (Local testability). A randomized algorithm A with an oracle access to a
function f : S → G as its input, is said to be q-local if it performs at most q queries for any
given f . For a family of functions F with domain S and co-domain G, we say that F is
q-locally testable for q = q(F) if there exists a q-local test A that accepts f with probability 1
if f ∈ F , and rejects f with probability at least δF (f)/2 if f /∈ F . Further if q(F) = O(1)
(i.e., independent of the number of variables n), we simply refer to F as being locally testable.

One can define more general two-sided error and adaptive tests, but in the context of this
paper, the above definition for local testability is without loss of generality as we know from
the work of Ben-Sasson, Harsha and Raskhodnikova [9] that for linear properties4, any “test”
can be transformed to be one-sided and non-adaptive without altering the query complexity
(locality) and success probability by more than constant factors.

4 i.e., for families F for which f ∈ F and g ∈ F implies c1f + c2g ∈ F for all c1, c2 ∈ F.
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The family of functions F of our study (namely “junta-degree-d” and “degree-d” to be
formally defined shortly) are parameterized by s = maxi |Si| and an integer d which we treat
as constants. All tests we are going to present are Os,d(1)-local, one-sided and non-adaptive.
However, the probability of rejection in case of f /∈ F is only Ωs,d(δF (f)); nevertheless by
repeating the test an appropriate Os,d(1) number of times, we get a Os,d(1)-local test for F
that succeeds with probability δF (f)/2 when f /∈ F and with probability 1 when f ∈ F .

2.2 Junta-polynomials and polynomials
For this section, we let S = S1 × · · · × Sn denote an arbitrary finite product domain (or grid)
and s = maxi {si}, where si = |Si|.

▶ Definition 8 (Junta-degree). A function f : S → G 5 is said to be junta-degree-d if

f(x) = f1(xD1) + · · · + ft(xDt)

for some t ∈ Z, Dj ∈
([n]
⩽d

)
and functions fj : SDj → G for j ⩽ t. If t = 1, we call f a

d-junta.
The junta-degree of f is the minimum d ⩾ 0 such that f is junta-degree-d.

For junta-degree testing over arbitrary grids S = S1 × · · · × Sn, we may assume that
Si = Zsi

without loss of generality, where si = |Si|. The following claims about junta-
polynomials are analogous to standard facts about multi-variate polynomials over a field.

▷ Claim 9. Any junta-degree-d function f : Zns → G can be uniquely6 expressed as

f(x1, . . . , xn) =
∑
a∈Zs

n

#a⩽d

ga ·
∏

i∈[n]: ai ̸=0

δai
(xi), (1)

where ga ∈ G and δb : Zs → Z is defined as δb(y) = 1 if b = y and 0 otherwise.

▶ Definition 10 (Junta-polynomial). We will call such a representation as a junta-polynomial,
and the degree of a junta-polynomial is defined as maxa∈Zs

n:ga ̸=0 #a. It can be seen that the
degree of a junta-polynomial is exactly equal to the junta-degree of the function it computes,
assuming that the degree of the identically 0 junta-polynomial is 0.

We will refer to the summands in (1) as terms, the constants ga as coefficients, the integer
products

∏
i∈[n]: ai ̸=0 δai

(xi) as monomials. We say that a is a root of a junta-polynomial P
if P (a) = 0 and a is a non-root otherwise.

▷ Claim 11. Any non-zero junta-polynomial P : Zns → G of degree at most d has at least
sn−d non-roots.

We will now discuss standard facts about formal polynomials. Let F be a field and
S ⊆ F be of size s ⩾ 2. For a polynomial P (x1, . . . , xn) ∈ F[x1, . . . , xn] the individual degree
of xi is the largest degree xi takes in any (non-zero) monomial of P . The individual degree
of P is the largest individual degree of any variable xi. We say that P is degree-d if its
degree is at most d. We say that f : Sn → F is degree-d iff there is a degree-d polynomial
P ∈ F[x1, . . . , xn] computing f . For the analysis of our degree-tester, we also need a notion
of degree-d for non-product domains: for any T ⊆ Sn, we say that f : T → F is degree-d if
there is a degree-d polynomial P ∈ F[x1, . . . , xn] computing f .

5 Here we treat a tuple of sets as the domain of the function
6 up to the commutativity of the Σ (group addition) and Π (integer multiplication) operations
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▷ Claim 12. Any degree-d function f : Sn → F has a unique polynomial representation with
degree at most d and individual degree at most s− 1.

By setting d = n(s− 1) (or ∞) in the above claim, we see that the set of all functions
from Sn to F is a vector space over F of dimension sn – the monomials with individual degree
at most s − 1 form a basis. More generally, for any T ⊆ Sn the set of functions from T
to F forms a vector space of dimension |T | with an inner product defined for f, g : T → F
as ⟨f, g⟩ =

∑
x∈T f(x) · g(x). For any d, the set of degree-d functions is a subspace of this

vector space.
It is easy to see that if f : Sn → F is degree-d, then it is also junta-degree-d (w.r.t. to the

additive group of F). Conversely, if f : Sn → F is junta-degree-d, then it is degree-(s− 1)d:
this follows by applying Claim 12 to the d-junta components of f . If s = 2, the degree is
exactly equal to the junta-degree.

Let δ′
d(f) denote the distance of f to the degree-d family.

2.3 Fourier analysis

▶ Definition 13 (Fourier representation). Any function f : Zns → C can be uniquely expressed
as

f(x) =
∑
α∈Zn

s

f̂(α)χα(x) (2)

where the characters are defined as χα(x) =
∏
i∈[n] χαi(xi) where χβ(y) = ωβy mod s for

β, y ∈ Zs and ω ∈ C is a (fixed) primitive s-th root of unity.

▶ Definition 14 (Noise operators). For ν ∈ [0, 1] and x ∈ Zns , we define Nν(x) 7 to be the
distribution over Zns where each coordinate of x is unchanged with probability 1 − ν, and
changes to a different value uniformly at random with probability ν. Similarly, the spherical
noise corresponds to Sν(x) where a subset J ⊆ [n] of fixed size νn is chosen uniformly at
random and the coordinates outside J are unchanged and those within J are changed to
a uniformly different value. Let Dν denote the probability distribution over Zs with mass
1 − ν at 0 and ν/(s− 1) at all the other points. Let Eν denote the uniform distribution over
{y ∈ Zns : #y = νn}. For µ1 ∼ D⊗n

ν and µ2 ∼ Eν , note that Nν(x) and x+µ1 are identically
distributed; so are Sν(x) and x+ µ2.

3 Low-junta-degree testing

We note that junta-degree-d functions with domain S1 × · · · × Sn such that |Si| = s for all i
are “equivalent” to those with domain Zns as one can fix an arbitrary ordering of elements
in each Si and treat the function as being over Zns : this does not change the junta-degree.
Hence, we will fix Si = Zs. The more general case of unequal domain sizes is handled in the
full version of the paper.

We claim that the following test works to check if a given function f : Zns → G is
junta-degree-d.

7 This is different from the standard usage Nρ where ρ denotes the probability of “retention” and not of
noise.
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The junta-degree test (Junta-deg)

For a parameter k = Os,d(1) that is yet to be fixed, the junta-degree test (which we shall
refer to as Junta-deg) for f : Zns → G is the following algorithm with I = [n], r = n and
fr = f :

Test TI,r(fr): gets query access to fr : ZI
s → G where I ⊆ [n] is of size r.

1. If r ⩽ k, accept iff fr is junta-degree-d (check this by querying fr at all points in its
domain). Otherwise,

2. Choose i ̸= j ∈ I and a permutation πj : Zs → Zs independently and uniformly at
random. Let I ′ = I \ {j}.

3. Apply the test TI′,r−1(fr−1) where fr−1 : ZI′

s → G is the function obtained by setting
xj = πj(xi) in fr: that is, fr−1(aI′) := fr(aI

′ ◦ (πj(ai)){j}) for a ∈ SI′ .

The query complexity of the Junta-deg test is sk = Os,d(1) regardless of the randomness
within the test. Furthermore, if the function f happens to be a junta-degree-d function,
then the test Junta-deg always accepts it, since permuting variables and substituting some
variables with other variables does not change the junta-degree, so Step 1 succeeds. In
this section, we will show that if δ := δd(f) > 0, then Pr[Junta-deg rejects f ] ⩾ εδ for
appropriate ε = Ωs,d(1).

We follow the same approach as [7] (which itself follows [10]) and argue that if δd(f) is
“small”, then we will be able to prove Pr[Junta-deg rejects f ] ⩾ ε·δd(f) and if not, at least
we will be able to find some r ∈ [k + 1..n] such that δd(fr) is small enough (but importantly,
not too small). Then, we apply the small-distance analysis to that fr.

We state here the two main lemmas to prove that the correctness of the junta-degree
tester. Here, the parameters ε0 ⩽ ε1 and ε will be chosen to be at least s−O(k). In the
context of the test TI,r(fr) described above, we will set k = ψs2d for a sufficiently large but
constant ψ to be fixed in the proofs of the below lemmas8.

▶ Lemma 15 (Small-distance lemma). For any I ⊆ [n] of size r > k, if δ = δd(fr) ⩽ ε1, then

Pr[TI,r rejects fr] ⩾ εδ.

▶ Lemma 16 (Large-distance lemma). For any I ⊆ [n] of size r > k, if δd(fr) > ε1, then

Pr
i,j,πj

[δd(fr−1) ⩽ ε0] ⩽ k2/2r(r − 1).

Assuming the above two lemmas to be true, the proof of Theorem 1, at least for symmetric
domains S1 × · · · × Sn = Zns , follows the same approach as in [7] and we omit it here. We
also defer the proof of the large-distance lemma to the full version (and Appendix B). The
case of junta-degree testing over general grids can be reduced to that of symmetric grids and
we refer the reader to the full version for details.

3.1 Small-distance lemma
Proof of Lemma 15. We will “unroll” the recursion of the Junta-deg test and state it
more directly as follows: Fix an arbitrary r > k. As r is fixed, we denote fr by f (not to be
confused with the initial function on n variables). For the proof, we will need the following
alternate description of TI,r (subsequently, we shall drop the subscript I). Here, σ : [r] → [k]
is a map chosen according to the following random process:

8 For d = 0, we can take k = ψs2 so that it is non-zero.
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For i = 1 to k, set σ(i) = i.
For i = k + 1 to r, set σ(i) = j with probability |{i′ < i : σ(i′) = j}| /(i − 1), for each
j ∈ [k].

The only property we need about the above distribution of σ is that it is “well-spread”,
which was already shown in [7] as the following lemma.

▶ Lemma 17 (Corollary 6.9 in [7]). With probability at least 1/2O(k), we have
∣∣σ−1(j)

∣∣ ⩾ r/4k
for all j ∈ [k] – we call such a σ good.

Test Tr(f): gets query access to f : S[r] → G with variables x1, . . . , xr.
1. Choose a tuple of permutations of Zs, π = (π1, . . . , πr) u.a.r.
2. Choose a bijection µ : [r] → [r] u.a.r.
3. Choose a map σ : [r] → [k] according to the distribution described above Lemma 17.
4. For y = (y1, . . . , yk) ∈ Zks , define xπσµ(y) =

(
π1(yσ(µ−1(1))), . . . , πr(yσ(µ−1(r)))

)
.

5. Accept iff f ′(y) := f(xπσµ(y)) is junta-degree-d.

Let δ = δd(fr) = δ(f, P ) ⩽ ε1 where P : Z[r]
s → G is junta-degree-d and E ⊆ Sr be the

points where f and P differ. Our objective is to show that

Pr
π,σ,µ

[Tr rejects f ] = Pr
π,σ,µ

[f ′ is not junta-degree-d] ⩾ εδ. (3)

Let the functions f ′ : Sk → G and P ′ : Sk → G be defined by f ′(y) = f(xπσµ(y)) and
P ′(y) = P (xπσµ(y)) respectively (these functions depend on π, σ, µ) and E′ ⊆ Sk be the
points where these two restricted functions differ.

To proceed further, we will need a subset U of Zks with the following properties (we defer
the proof to Appendix A and the full version):

▷ Claim 18. Let w =
⌈
log(8ψs2)d

⌉
< k. There exists a set U ⊆ Zks of size 2w such that

1. (Code) For all y ̸= y′ ∈ U ,

k/4 ⩽ ∆(y, y′) ⩽ 3k/4

where ∆(y, y′) denotes the number of coordinates where y and y′ differ.
2. (Hitting) No two junta-degree-d functions P : Sk → G and Q : Sk → G can differ at

exactly one point in U .

Let V = {xπσµ(y) : y ∈ U} ⊆ Zrs. Because the mapping y 7→ xπσµ(y) is one-one
conditioned on σ being good, it holds that |V ∩ E| = |U ∩ E′| under this conditioning.
Now suppose the randomness is such that |U ∩ E′| = 1. Then, since no two junta-degree-d
functions can disagree at exactly one point in U (Property 2 of Claim 18), it must be the
case that f ′ be of junta-degree greater than d (as P ′, being a restriction of a junta-degree-d
function is already junta-degree-d). Therefore, for (3) we can set ε := Prσ[σ good] ⩾ 1/2O(k)

and show

Pr
π,σ,µ

[|U ∩ E′| = 1 | σ good] = Pr
π,µ

σ good

[|U ∩ E′| = 1] ⩾ δ.

By a simple inclusion-exclusion, the above probability is

Pr
π,µ

σ good

[|V ∩ E| = 1] ⩾
∑
y∈U

Pr
π,µ

σ good

[xπσµ(y) ∈ E] −
∑

y ̸=y′∈U

Pr
π,µ

σ good

[xπσµ(y) ∈ E and xπσµ(y′) ∈ E]

(4)

APPROX/RANDOM 2023
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For any y ∈ U , xπσµ(y) =
(
π1(yσ(µ−1(1))), . . . , πr(yσ(µ−1(r)))

)
is uniformly distributed over

Zrs since π1, . . . , πr are random permutations of Zs. Hence the first part of (4) is

∑
y∈U

Pr[xπσµ(y) ∈ E] = |U | · |E|
sr

= |U | · δ. (5)

For any fixed y ̸= y′ ∈ U and good σ, using Property 1 of Claim 18 for points in U we
claim that the random variables x := xπσµ(y) and x′ := xπσµ(y′) are related as follows:

▷ Claim 19. x′ ∼ Sν(x), for some ν ∈ [1/32, 31/32].

For the second term of (4),

Pr
π,µ

σ good

[xπσµ(y) ∈ E and xπσµ(y′) ∈ E] = Pr
x∼Zr

s

x′∼Sν (x)

[x ∈ E and x′ ∈ E]

(for some ν ∈ [1/32, 31/32] depending on σ, using Claim 19)

⩽ C · δ1+λ for some constant C and λ = 1/214 log s.
(6)

(Using spherical noise small-set expansion (Theorem 23))

Plugging the bounds (5) and (6) back in (4), we get

Pr
π,µ,
σ good

[|V ∩ E| = 1] ⩾ |U | δ − |U |2 Cδ1+λ ⩾ |U | δ/2 ⩾ δ.

The above inequalities follow from |U | = 2w and δ ⩽ ε1; this is where we set ε1 :=
(1/2C |U |)1/λ = (1/2C2w)214 log s ⩾ 1/sO(log(8ψs2)d) ⩾ 1/sO(k). Hence we conclude that

Pr
π,σ,µ

[Tr rejects f ] ⩾ Pr
σ

[σ good] · Pr
π,µ

σ good

[|U ∩ E′| = 1] ⩾ ε Pr
π,µ

σ good

[|V ∩ E| = 1] ⩾ εδ. ◀

4 Low-degree testing

We will describe our low-degree test now.

The degree test (Deg)

Given query access to f : Sn → F, the following test (called Deg) works to test whether f is
degree-d. We may assume that s = |S| ⩾ 2 as f is a constant function otherwise.

Test Deg(f): gets query access to f : Sn → F.
Run Junta-deg(f) to check if f is junta-degree-d.
Run Weak-deg(f).
Accept iff both the above tests accept.

In the above description, the sub-routine Weak-deg corresponds to the following test.
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Test Weak-deg(f): gets query access to f : Sn → F.
Choose a map µ : [n] → [K] u.a.r. where K = t(d+ 1) and t = s3.
For y = (y1, . . . , yK) ∈ SK , define xµ(y) = (yµ(1), . . . , yµ(n)).
Define the function f ′ : B(S, t)K/t → F as f ′(y) = f(xµ(y)), where B(S, t), defined
in Section 2, is the “balanced” subset of St.
Accept iff f ′ is degree-d.

We now move on to the analysis of this test, proving Theorem 3.

Proof of Theorem 3. Let g : Sn → F be a closest junta-degree-d function to f i.e., δd(f) =
δ(f, g). We shall assume that δd(f) ⩽ ε2 for a small enough ε2 = K−O(K), and neither f
nor g are degree-d. Otherwise, we will be able to appeal to the correctness of Junta-deg.

Let E ⊆ Sn be the points where f and g differ; thus |E| /sn = δd(f) ⩽ ε2. Let

Vµ =
{
xµ(y) : y ∈ B(S, t)K/t

}
.

Suppose µ : [n] → [K] is such that Vµ ∩ E = ∅ and Weak-deg rejects g. Then
Weak-deg does not distinguish between f and g and hence rejects f as well. We will
show that both these events occur with good probability. For the first probability, we will
upper bound

Pr
µ

[Vµ ∩ E ̸= ∅] = Pr
µ

[
∃y ∈ B(S, t)K/t : xµ(y) ∈ E

]
⩽

∣∣∣B(S, t)K/t
∣∣∣ · Pr

µ

[
For fixed arbitrary y ∈ B(S, t)K/t, xµ(y) ∈ E

]
.

Note that since all points in B(S, t)K/t contain an equal number of occurrences of all the
elements of S, xµ(y) is uniformly distributed in Sn for a uniformly random µ. Hence, the
above probability is

Pr
µ

[Vµ ∩ E ̸= ∅] ⩽ |S|K · |E|
sn

⩽ sKε2 <
1

2Kd
. (by setting ε2 := 1/4sKKd ⩾ K−O(K))

We show that Weak-deg indeed rejects g with good probability.

▷ Claim 20. Prµ[Weak-deg rejects g] ⩾ 1/Kd.

Assuming this claim,

Pr[Deg rejects f ] ⩾ Pr[Weak-deg rejects f ]

⩾ Pr[Weak-deg rejects g] − Pr[Vµ ∩ E ̸= ∅] ⩾ 1
2Kd

⩾
δ′
d(f)
2Kd

.

This finishes the analysis of the low-degree test assuming Claim 20. ◀

4.1 Soundness of Weak-deg
Proof of Claim 20. We will need the following lemma about the vector space formed by
functions over B(S, t)K/t ⊆ SK .

▶ Lemma 21. For T ⊆ SK , the vector space of functions from T to F has a basis
{m1, . . . ,mℓ} such that for any f : T → F of the form f = c1m1 + . . . cℓmℓ for some
ci ∈ F, we have

f is degree-d ⇐⇒ ∀i, ci = 0 or mi is degree-d. (7)
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Let g′ : B(S, t)K/t → F be defined as g′(y) = g(xµ(y)) where xµ(y) = (yµ(1), . . . , yµ(n)).
Then, recall that Weak-deg rejects g iff g′ is not degree-d. We use Lemma 21 above to fix
a suitable basis m1, . . . ,mℓ for functions from T = B(S, t)K/t to F. Then we can write each
g′(y) obtained above uniquely as

g′(y) =
ℓ∑
i=1

ci ·mi

where the coefficients ci are some functions of µ. We will treat µ : [n] → [K] as a random
element of [K]n.

We argue that each ci is junta-degree-d (as a function of µ). To see this, we recall that
g is junta-degree-d. Consider the case when g is a function of only xi1 , . . . , xis for some
s ⩽ d. In this case, clearly the polynomial g′ depends only on µi1 , . . . , µis . In particular,
each ci is just an s-junta. Extending the argument by linearity, we see that for any g that is
junta-degree-d, the underlying coefficients ci of g′(y) are junta-degree-d polynomials in the
co-ordinates of µ.

Now assume that there exists a µ∗ : [n] → [K] such that g′(y) is not degree-d (we will
show the existence of such a “good” µ in the next subsection). Thus, by Lemma 21 there
exists i∗ ∈ [ℓ] such that mi∗ is not degree-d and ci∗(µ∗) ̸= 0. In particular, the function ci∗

is non-zero.
We have argued that there is an mi∗ in the basis such that the associated coefficient ci∗

is a non-zero junta-degree-d polynomial. In particular, Claim 11 implies that the probability
that c∗

i (µ) ̸= 0 for a random µ is at least 1/Kd. Therefore, using Lemma 21,

Pr
µ

[Weak-deg rejects g] = Pr
µ

[g′ is not degree-d] ⩾ Pr
µ

[ci∗(µ) ̸= 0] ⩾ 1/Kd. ◀

4.2 Existence of a good map µ

We will show for any function g : Sn → F that is not degree-d, there exists a map µ : [n] → [K]
such that the function g′(y) = g(xµ(y)) defined for y ∈ B(S, t)K/t is also not degree-d. This
is easy to prove if the domain of g′ were to be SK , but is particularly tricky in our setting.

Let D = d+ 1. We will give a map µ : [n] → [t] × [D] ≡ [tD] = [K] instead. Let P be
the polynomial with individual degree at most s− 1 representing g; suppose the degree of P
is d′ > d and let m(x) = c · xa1

i1
· · ·xaℓ

iℓ
be a monomial of P (x) of degree d′ for some non-zero

c ∈ F, where aj ⩾ 1 for all j and i1, . . . , iℓ are some distinct elements of [n] and ℓ ⩽ d as g is
junta-degree-d. Then, we define µ as follows for i ∈ [n]:

µ(i) =
{

(1, j), if i = ij for some j ∈ [ℓ]
(1, D), otherwise.

It is easy to inspect that P (xµ(y)) (call it Q(y)) is a polynomial in variables y(1,1), . . . , y(1,D),
and is of degree d′ > d – this is because the monomial m(x), upon this substitution turns to

m(xµ(y)) = c · ya1
(1,1) · · · yaℓ

(1,ℓ),

which cannot be cancelled by m′(xµ(y)) for any other monomial m′(x) of P (x), as if m′

contains the variable xi for some i /∈ {i1, . . . , iℓ} then m′(xµ(y)) contains the variable y(1,D)
and on the other hand if m′ only contains variables xi for some i ∈ {i1, . . . , iℓ}, then the
individual degree of y(1,j) in the two substitutions differs for some j. Hence, the degree of
Q(y) is a1 + · · · +aℓ = d′. As we can express the function ya(1,D) for a > s− 1 as a polynomial
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in y1,D of individual degree at most s − 1, we can further transform Q(y) so that it has
individual degree at most s−1, while maintaining the properties that it still only contains the
variables y(1,1), . . . , y(1,D) (i.e., the first “row”) and has degree d′ and computes the function
g′(y). The following claim then completes the proof of the existence of a good µ by setting
w = D and d′ = d′.

▷ Claim 22. For formal variables y ≡ (y1, . . . , yw) ≡ (y(i,j))(i,j)∈[t]×[w], let Q(y) be a
polynomial of degree d′ ⩾ 0 containing only the variables from the first row. Then the degree
of Q(y) as a function over B(S, t)w is exactly d′.

The proof of the above claim is deferred to Appendix C.

5 Small-set expansion for spherical noise

In this section, we will prove a small-set expansion theorem for spherical noise, which
we have used for (6) in the proof of the small-distance lemma of junta-degree testing.
Let f : Zns → C be arbitrary. For ν ∈ [0, 1] the Bernoulli noise operator is defined as
Nνf(x) = Ey∼Nν (x) [f(y)] = Ey∼D⊗n

ν
[f(x + y)]. Similarly, the spherical noise operator is

defined for ν ∈ [0, 1] such that νn ∈ Z: Sνf(x) = Ey∼Sν (x)[f(y)] = Ey∼Eν [f(x+ y)]. For the
rest of this section, let ρ ∈ [0, 1] and ν = (1 − 1/s)(1 − ρ) ∈ [0, 1]; it is easy to check that if
each coordinate of x is retained with probability ρ and randomized (uniformly over Zs) with
probability 1 − ρ, the resulting string is distributed according to Nν(x).

The goal of this section is to show for s ⩾ 3, that we can reduce the problem of small-set
expansion for spherical noise to that of Bernoulli noise, for which such a theorem is already
known.

▶ Theorem 23 (Small-set expansion for spherical noise). Let s ⩾ 3 and A ⊆ Zns be such that
Prx∼Zn

s
[x ∈ A] = δ. Then, for any ν ∈ [1/32, 1]

Pr
x∼Zn

s

y∼Sν (x)

[x ∈ A and y ∈ A] ⩽ 2 · δ1+λ, (8)

where λ = 1
214 log s .

▶ Remark. When the size of the domain s is equal to 2 and ν ∈ [1/32, 31/32], the above
statement still holds (with the factor 2 replaced with some other constant factor C) as proved
by [23] (or Corollary 2.8 in [7]).

Proof of Theorem 23. Let f : Zns → C be the indicator function of A and consider its
Fourier representation as in Definition 13: f(x) =

∑
α∈Zn

s
f̂(α)χα(x). Then the probability

in (8) is equal to

Pr
x∼Zn

s

y∼Sν (x)

[x ∈ A and y ∈ A] =
∑
α∈Zn

s

∣∣∣f̂(α)
∣∣∣2

E
y∼Eν

[χα(y)] . (9)

We will show that for any α ∈ Zns , the quantity Ey∼Eν
[χα(y)] above is upper bounded by

2 · ρ̃#α for some constant ρ̃. We have

E
y∼Eν

[χα(y)] = E
y∼Eν

[χα1 (y1) · · ·χαn (yn)] = E
I∼([n]

νn)
µ∼Zs\{0}

y∼0I ◦µI

[∏
i∈I

χαi (yi)
∏
i/∈I

χαi (yi)

]

(where I and µ are independent)
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= E
I,µ,y

[∏
i∈I

χαi (µi)

]
(where I ∼

([n]
νn

)
, µ ∼ Zs \ {0}, and y ∼ 0I ◦ µI)

= E
I

[∏
i∈I

E
µi∼Zs\{0}

[χαi (µi)]

]
. (10)

Now we note that the inner term

E
µi∼Zs\{0}

[χαi (µi)] =

{
1, if αi = 0, and

1
s−1

(∑
µi∈Zs\{0} χαi (µi)

)
= 1

s−1 (sEµi∼Zs
[χαi (µi)] − 1) = −1

s−1 otherwise.

(11)

Therefore, denoting the coordinates of α with non-zero entries by J ⊆ [n], plugging (11) into
(10) gives

E
y∼Eν

[χα(y)] = E
I∼([n]

νn)

[(
−1
s− 1

)|J∩I|
]
⩽ E
I∼([n]

νn)

[(
1
2

)|J∩I|
]

(as s ⩾ 3)

⩽ Pr
I∼([n]

νn)
[|J ∩ I| < νk/2] · 1 + E

I∼([n]
νn)

[(
1
2

)|J∩I|
∣∣∣∣∣ |J ∩ I| ⩾ νk/2

]
.

Denoting |J | = #α by k, we observe that |J ∩ I| is distributed according to the hypergeometric
distribution of k draws (without replacement) from a population of size n and νn many success
states. Hence, by a tail bound [16] Pr[|J ∩ I| < νk/2] ⩽ e−ν2k/2 and using ν ⩾ 1/32, we get
that Ey∼Eν

[χα(y)] ⩽ Pr
I∼([n]

νn) [|J ∩ I| < νk/2]·1+E
I∼([n]

νn)
[( 1

2
)|J∩I|

∣∣∣ |J ∩ I| ⩾ νk/2
]
⩽ 2·ρ̃k

for ρ̃ := 2−2−11 .
Plugging the above bound in (9), letting ν̃ = (1 − 1/s)(1 − ρ̃) and q = 2 + ε = 2 + 1

212 log s ,
we get

Pr
x∼Zn

s

y∼Sν (x)

[x ∈ A and y ∈ A] ⩽ 2
∑
α∈Zn

s

∣∣∣f̂(α)
∣∣∣2
ρ̃#α = 2 Pr

x∼Zn
s

y∼Nν̃ (x)

[x ∈ A and y ∈ A] ⩽ 2δ2−2/q,

where the last step uses the small-set expansion theorem corresponding to Bernoulli noise
(e.g. Theorem 10.25 in [21]). ◀
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A Existence of the code U

In order to prove Claim 18 we will need the following:

▷ Claim 24. There exists a matrix M ∈ Fk×w
2 such that U := {Mz : z ∈ Fw2 } ⊆ Fk2 is if size

2w and:
For all y ̸= y′ ∈ U , we have k/4 ⩽ ∆(y, y′) ⩽ 3k/4.
There exists a function χ : U → {±1} such that for all I ∈

( [k]
⩽d

)
, we have∑

y∈U : yI =1I

χ(y) = 0.

Proof. We will show that picking M uniformly at random satisfies both the items with
positive probability. For Item 1, if suffices if for all y ̸= 0k in U , k/4 ⩽ #y ⩽ 3k/4; that is,
for all z ∈ Fa2 \ {0d+1}, k/4 ⩽ #Mz ⩽ 3k/4. For any fixed z ̸= 0a, we note that y = Mz

is uniformly distributed over Fk2 as M ∼ Fk×w
2 . Hence, by a Chernoff bound, we have

PrM [#Mz /∈ [k/4, 3k/4]] ⩽ 2e−k/24. A union bound over all z ∈ Fw2 \ {0w} gives

Pr
M

[¬ (∀y ̸= y′ ∈ U, k/4 ⩽ ∆(y, y′) ⩽ 3k/4)] ⩽ 2w · 2e−k/24 < 1/2.

However, it is a known fact that a uniformly chosen rectangular matrix has full rank with
probability at least 1/2. Therefore, with positive probability there must be a matrix M such
that it is full rank and Item 1 holds. We fix such an M and prove Item 2.

For y ∈ U , as M is full rank there exists a unique z ∈ Fw2 such that Mz = y. Then we
define

χ(y) := (−1)⟨z,η⟩ = (−1)z1η1+···+zwηw ,

where η ∈ Fw2 is an arbitrary vector such that it is not in the Fw2 -span of any d rows of
M . Such an η always exists as the number of vectors that can be expressed as a linear
combination of d rows of M is at most(

k

d

)
2d ⩽

(
ek

d

)d

2d =
(
2eψs2)d

< 2w,

the total number of vectors in Fw2 .
Let M1, . . . ,Mk ∈ Fw2 denote the rows of M . For any I ∈

( [k]
⩽d

)
and y = Mz, the condition

yI = 1I is equivalent to: ⟨z,Mi⟩ = 1 for all i ∈ I. Hence we have∑
y∈U : yI =1I

χ(y) =
∑

z∈Fa
2 : ∀i∈I, ⟨z,Mi⟩=1

(−1)⟨z,η⟩ (12)

As η is linearly independent with {Mi}i∈I , there exists η′ ̸= 0a such that ⟨η′,Mi⟩ = 0 for
all i ∈ I and ⟨η′, η⟩ = 1: this is because we can treat these conditions as a system of linear
equations over F2.

Note that for any z ∈ Fw2 , ⟨z,Mi⟩ = 1 if and only if ⟨z + η′,Mi⟩ = ⟨z,Mi⟩ + ⟨η′,Mi⟩ = 1.
Since z ̸= z + η′, we may partition the summation (12) into buckets of size 2, each bucket
corresponding to z and z + η′ for some z. For each such bucket, the sum is

(−1)⟨z,η⟩ + (−1)⟨z+η′,η⟩ = (−1)⟨z,η⟩ + (−1)⟨z,η⟩+⟨η′,η⟩ = (−1)⟨z,η⟩
(

1 + (−1)⟨η
′,η⟩

)
= 0,

so the overall sum is also 0. ◁
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Using this result, we will prove Claim 18:

Proof of Claim 18. Identifying the 0’s (resp. 1’s) in F2 and Zs, we will rephrase the above
claim as U being a subset of Zks instead of Fk2 : Then, this set U ⊆ {0, 1}k ⊆ Zks immediately
satisfies Item 1 of Claim 18. For Item 2, it suffices to show that for any non-zero junta-degree-d
function P : Zks → G,∑

y∈U
P (y) · χ(y) = 0 (13)

where χ : {0, 1}k → Z is from Claim 24. Towards a contradiction, suppose that a junta-
degree-d function P has exactly one point in y∗ ∈ U such that P (y∗) ̸= 0. Then using (13),
0 + · · · + 0 + P (y∗) · χ(y∗) + 0 + · · · + 0 = 0 and as χ(y∗) = ±1, P (y∗) = 0, a contradiction.

To prove (13), we expand P into its junta-polynomial representation:

∑
y∈U

P (y) · χ(y) =
∑
y∈U

∑
a∈Zs

k

#a⩽d

ga ·

 ∏
i∈[k]: ai ̸=0

δai
(yi)

χ(y)

=
∑
a∈Zs

k

#a⩽d

ga ·

∑
y∈U

χ(y)
∏

i∈[k]: ai ̸=0

δai(yi)


For any a ∈ Zks , letting I := {i ∈ [k] : ai ̸= 0}, the inner factor is∑

y∈U
χ(y)

∏
i∈[k]: ai ̸=0

δai
(yi) =

∑
y∈U : yI =aI

χ(y).

Now if a contains any coordinates taking values other than 0 and 1, the above sum is 0 since
all the coordinates of y ∈ U are either 0 or 1. On the other hand, if a ∈ {0, 1}k, then aI = 1I
and Claim 24 is applicable, again giving a sum of 0. Therefore,

∑
y∈U

P (y) · χ(y) =
∑
a∈Sk

#a⩽d

ga ·

∑
y∈U

χ(y)
∏

i∈[k]: ai ̸=0

δai
(yi)

 =
∑
a∈Sk

#a⩽d

ga · 0 = 0. ◁

B Proof of the large-distance lemma

Proof of Lemma 16. For this proof, we may assume without loss of generality that I = [r]
as relabelling the variables does not affect the probability of a random restriction (i.e.,
xj = πj(xi)) being ε0-close to junta-degree-d. We will prove the contrapositive: assuming
δd(fr−1) ⩽ ε0 for more than k2/2r(r − 1) fraction of choices of (i, j, πj) (call these bad
restrictions), we will construct a junta-degree-d function P such that δ(fr, P ) ⩽ ε1. Like
in [7, 10], the high level idea is to “stitch” together low-junta-degree functions corresponding
to the restrictions fr−1 (which we shall call P (h)) into a low-junta-degree function that is
close to fr.

As there are more than k2

2r(r−1)r(r − 1)s! = k2s!/2 many bad tuples (i, j, πj), by pigeon-
hole principle, there must be some permutation π : Zs → Zs such that the number of bad
tuples of the form (i, j, π) is more than k2/2. In fact, we can say something more: Consider
the directed graph Gbad over vertices [r] with a directed edge (i, j) for each bad tuple (i, j, π).

APPROX/RANDOM 2023
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As the number of edges in Gbad is at least k2/2, by the pigeon-hole principle, we can conclude
that there is a matching or a star9 in Gbad of size L := k/4. For the rest of the proof, we
will handle both the cases in parallel as the differences are minor.

Suppose we are in the matching case and the corresponding bad tuples are

(i1, j1, π), . . . (iL, jL, π),

where i1, . . . , iL, j1, . . . , jL are all distinct. Let id denote the identity permutation of Zs.
Consider the function f̃r(x1, . . . , xr) obtained by replacing the variables xi1 , . . . , xiL in fr
with π(xi1), . . . , π(xiL) respectively. Then, δd(f̃r) = δd(fr) and (ih, jh, π) is a bad restriction
for fr if and only if (ih, jh, id) is a bad restriction for f̃r, for all h ∈ [L]. Moreover, if f̃r
satisfies δ(P̃ , f̃r) ⩽ ε1, then there also exists a junta-degree-d P such that δ(P, fr) ⩽ ε1
(obtained from P̃ by applying the inverse permutation π−1 to xi1 , . . . , xiL). Therefore,
without loss of generality we may assume that π = id to construct a junta-degree-d function
P such that δ(P, fr) ⩽ ε1. A similar reduction holds in the star case.

We may further assume w.l.o.g. that the matching case corresponds to the tuples

(L+ 1, 1, id), (L+ 2, 2, id), . . . (2L,L, id)

and the star case corresponds to

(r, 1, id), (r, 2, id), . . . , (r, L, id).

For h ∈ [L], we define

Rh :=
{

{x ∈ Zrs : xL+h = xh} in the matching case,
{x ∈ Zrs : xh = xr} in the star case.

as the points that agree with the h-th bad restriction (i, j, π) in the matching or star case
correspondingly. Let R′

h denote the complement of Rh. Then for any function P : Zrs → G,

Pr
x∼Zr

s

[fr(x) ̸= P (x)] ⩽ Pr
x

[
x /∈

⋃
h⩽L

Rh

]

+
∑
h⩽L

Pr
x

[
x ∈ Rh \

⋃
h′<h

R′
h

]
· Pr

x

[
fr(x) ̸= P (x)

∣∣∣∣∣x ∈ Rh \
⋃

h′<h

Rh′

]
(14)

To estimate the above probabilities, we note that in both the matching or the star case,
Prx∼Zr

s

[
x /∈

⋃
h⩽L

Rh

]
= Prx

[
x ∈

⋂
h⩽L

R′
h

]
=

(
1 − 1

s

)L
, and Prx∼Zr

s

[
x ∈ Rh \

⋃
h′<h

Rh′
]

=
Prx

[
x ∈ Rh ∩

⋂
h′<h

R′
h′

]
= 1

s

(
1 − 1

s

)h−1.
For h ∈ [L], let f (h)

r−1 : Zrs → G be the restricted function corresponding to the h-th bad
tuple, treated as a function of all the r many variables (rather than r − 1). Let P (h) denote
the junta-degree-d function that is of distance at most ε0 from f

(h)
r−1. We will use the following

claim that there is a junta-degree-d function P that agrees with P (h) over Rh, for all h.

▷ Claim 25. There exists a junta-degree-d function P such that P (x) = P (h)(x) for all
h ∈ [L] and x ∈ Rh.

9 A matching is a set of disjoint edges and a star is a set of edges that share a common start vertex, or a
common end vertex.
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We defer its proof to the full version and only mention here that the idea is to first show
for h ̸= h′ ⩽ L that P (h)|h′ = P (h′)|h, since both these functions agree (with f

(h)
r−1 and f (h′)

r−1)
over a “large” subset Rh ∩ Rh′ of their domain. Then one can interpolate the restricted
functions into a junta-degree-d function P . Then for such P and any h ⩽ L,

Pr
x

[
fr(x) ̸= P (x)

∣∣∣∣∣x ∈ Rh \
⋃
h′<h

Rh′

]
⩽

Prx [fr(x) ̸= P (x) | x ∈ Rh]
Pr

[
x ∈ Rh \

⋂
h′<hRh′ | x ∈ Rh

]
= Prx [fr(x) ̸= P (x) | x ∈ Rh](

1 − 1
s

)h−1

⩽

(
s

s− 1

)h−1
ε0.

Then we can bound (14) as Prx∼Zr
s

[fr(x) ̸= P (x)] ⩽
(
1 − 1

s

)L + Lε0
s ⩽ ε1/2 + ε1/2 = ε1 as

we can set ε0 := 2sε1/k ⩾ 1/sO(k) and(
1 − 1

s

)k/4
⩽ e−k/4s = e−ψsd/4 ⩽

1
2

(
1

2C2⌈log(8ψs2)d⌉

)214 log s
= ε1

2 .

(for the last inequality, we can take ψ to be a sufficiently large constant)

◀

C Proof of Claim 22

Proof of Claim 22. The proof is by induction on w. The base case w = 1 is crucial and it is
equivalent to the following claim:

▷ Claim 26. For 0 ⩽ d′ ⩽ s− 1, the function fd′ : B(S, t) → F defined as fd′(z) = zd
′

1 for
z = (z1, . . . , zt) ∈ B(S, t) has degree exactly d′.

Assuming the above claim to be true, let w > 1 be arbitrary. As d′ = 0 is trivial to handle,
we will assume that d′ ⩾ 1. Hence, Q contains at least one monomial m of degree d′ and
containing some variable y(1,j) with individual degree a ∈ [s− 1]. Without loss of generality,
suppose j = w. Since Claim 26 states that the function ya(1,w) is linearly independent of
degree-(a− 1) functions over B(S, t), there exists a function C : B(S, t) → F such that for
any f : B(S, t) → F

⟨C, f⟩ =
{

1 if f = ya(1,w) i.e., a-th power of the last coordinate
0 if f is degree-(a− 1).

(15)

Now we decompose Q as a polynomial over variables in the first w−1 columns and coefficients
being the monomials over variables in the last column: that is

Q(y) =
∑

α∈[0..a]

Q′
α(y1, . . . , yw−1) · yα(1,w), (16)

where yj represents the variables in the j-th column Q′
a ̸= 0 has degree d′ − a. Here, we are

using the fact that Q only contains variables from the first row.
Towards a contradiction, suppose there is some degree-(d′ − 1) polynomial R(y) such that

Q(y) = R(y) for all y ∈ B(S, t)w. We may decompose R as follows:

APPROX/RANDOM 2023
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R(y) =
∑

α∈[0..s−1]t

R′
α(y1, . . . , yw−1) · yαw

where yαw = yα1
(1,w) · · · yαt

(t,w) and for all α, either R′
α = 0 or is of degree (as a formal polynomial)

at most d′ − 1 − |α|1, where |α|1 = α1 + · · · + αt.
Fixing y1, . . . , yw−1 ∈ B(S, t) to arbitrary values and treating Q(y) and R(y) as functions

of yw, we get

⟨C,Q(y1, . . . , yw−1, yw)⟩ =
〈
C,

∑
α∈[0..a]

Q′
α(y1, . . . , yw−1) · yα(1,w)

〉

=
∑

α∈[0..a]

Q′
α(y1, . . . , yw−1) ·

〈
C, yα(1,w)

〉
= Q′

a(y1, . . . , yw−1). (using (15))

Similarly,

⟨C,R(y1, . . . , yw−1, yw)⟩ =
〈
C,

∑
α∈[0..s−1]t

R′
α(y1, . . . , yw−1) · yαw

〉

=
∑

α∈[0..s−1]t: |α|1⩾a

R′
α(y1, . . . , yw−1) · ⟨C, yαw⟩ (using (15))

As a polynomial in the variables of y1, . . . , yw−1, the final expression above is of degree at
most d′ − 1 − |α|1 ⩽ d′ − 1 − a. However, as a function it is equivalent to Q′

a, which has a
strictly higher degree, d′ − a. This contradicts the induction hypothesis. ◁
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Abstract
A spanner of a graph is a subgraph that preserves lengths of shortest paths up to a multiplicative
distortion. For every k, a spanner with size O(n1+1/k) and stretch (2k + 1) can be constructed by a
simple centralized greedy algorithm, and this is tight assuming Erdős girth conjecture.

In this paper we study the problem of constructing spanners in a local manner, specifically in
the Local Computation Model proposed by Rubinfeld et al. (ICS 2011).

We provide a randomized Local Computation Agorithm (LCA) for constructing (2r −1)-spanners
with Õ(n1+1/r) edges and probe complexity of Õ(n1−1/r) for r ∈ {2, 3}, where n denotes the number
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For general k ≥ 1, we provide an LCA for constructing O(k2)-spanners with Õ(n1+1/k) edges
using O(n2/3∆2) neighbor-probes, improving over the Õ(n2/3∆4) algorithm of Parter et al.

By developing a new randomized LCA for graph decomposition, we further improve the probe
complexity of the latter task to be O(n2/3−(1.5−α)/k∆2), for any constant α > 0. This latter LCA
may be of independent interest.
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predetermined multiplicative factor, the pairwise distance of vertices. Formally, a k-spanner
of a graph G = (V, E) is a graph G′ = (V, E′) such that E′ ⊆ E, in which the distance
between any pair of vertices in G′ is at most k times longer than the corresponding distance
in G. k is referred to as the stretch of the spanner.
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Spanners have numerous applications in a wide variety of fields such as communication
networks [4, 29, 30], biology [5] and robotics [11, 16]. Consequently, the problem of con-
structing spanners has been studied extensively in several models, such as the distributed
model [6, 12, 13, 14, 15, 17, 31], streaming algorithms [1, 22] and dynamic algorithms [10, 9].

This problem was also considered in the realm of sublinear algorithms and in particular
in the model of Local computation algorithms (LCAs) introduced by Rubinfeld et al. [32]
(see also Alon et al. [2] and survey in [24]). In this model the goal is to avoid computing
the entire output and instead to compute parts of the output on demand. This model is
suitable for the case that not only the input is massive but also the output. Moreover, LCAs
support queries from different users while preserving consistency with a single valid solution
(although there might be several valid solutions) across different queries. The notion of
computing the output locally goes back to local algorithms, locally decodable codes and local
reconstruction algorithms. LCAs can be viewed as a generalization of these frameworks.

Recently, several works [26, 25, 23, 28] considered the problem of constructing spanners
in the LCA model. The formulation of the problem in this model is as defined next.

▶ Definition 1 ([2, 26]). An LCA A for graph spanners is a (randomized) algorithm with
the following properties. A has access to the adjacency list oracle OG of the input graph
G, a tape of random bits, and local read-write computation memory. When given an input
(query) edge (u, v) ∈ E, A accesses OG by making probes, then returns YES if (u, v) is in
the spanner H, or returns NO otherwise. This answer must only depend on the query (u, v),
the graph G, and the random bits. For a fixed tape of random bits, the answers given by A to
all possible edge queries, must be consistent with one particular sparse spanner.

For specific details regarding the types of probes supported in the LCA model, we refer the
reader to Section 2.

1.1 Our Results
We provide LCAs that with high probability construct the following spanners.
1. A 3-spanner with Õ(n1+1/2) edges. The probe and time complexity of the algorithm

is Õ(n1/2) which is optimal up to polylogarithmic factors (and constitutes the first
optimal algorithm for general graphs). The size-stretch trade-off is optimal as well (up to
polylogarithmic factors). This improves over the algorithm of Parter et al. [28] whose
probe and time complexity is Õ(n3/4).

2. A 5-spanner with Õ(n1+1/3) edges (the size-stretch trade-off is optimal up to polylog-
arithmic factors). The probe and time complexity of the algorithm is Õ(n2/3). This
improves over the algorithm of Parter et al. [28] whose probe and time complexity is
Õ(n5/6).

3. An O(k2)-spanner with Õ(n1+1/k) edges with high probability. The probe and time
complexity of the algorithm is O(n2/3∆2) where ∆ denotes the maximum degree of the
input graph. This improves over the algorithm of Parter et al. [28] whose probe and time
complexity is Õ(n2/3∆4). Our algorithm (and the algorithm of [28]) uses only neighbor
probes for this task.

4. By additionally taking advantage of adjacency probes we further improve the probe
and time complexity of the latter algorithm to be O(n2/3−(1.5−α)/k∆2), for any constant
α > 0. This result utilizes a new, efficient local computation algorithm for decomposing
a graph into subgraphs with improved maximum degree that may be of independent
interest.
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1.2 Our algorithms and techniques
We next describe our algorithms in high-level. Our LCAs for constructing 3-spanners and
5-spanners share similarities with the LCAs in [28] (which are inspired by the algorithm
of Baswana and Sen for constructing spanners [7]). The main novelty of our algorithms is
in selecting several sets of centers, each designed to cluster different type of vertices. The
basic idea is that for high-degree vertices we need to select less centers. Consequently, we
can allow more edges per pair of vertex-cluster or cluster-cluster which decreases the probe
complexity. To support this approach we also change the way each vertex finds its center.
See more details in Subsections 1.3 and 1.4.

Our algorithm for constructing O(k2)-spanners consists of two parts. The first, which is
described in high-level is Subsection 1.5, closely follows the construction in [28]. The main
novelty in this algorithm is in the way we partition the Voronoi cells, which are formed with
respect to randomly selected centers, into clusters of smaller size. In addition, we make other
adjustments in order to save an additional factor of ∆ in the probe and time complexity. The
second is a new LCA for decomposing a graph into subgraphs of smaller maximum degree.
As the first algorithm depends quadratically on the degree, this allows for further savings.
We elaborate on this algorithm, which may be of independent interest, in Subsection 1.6.

1.3 Algorithm for constructing 3-spanners
We begin with describing our algorithm for constructing 3-spanners from a global point of
view. The local implementation of this global algorithm is relatively straight-forward.

The high level idea is as follows. We consider a partition of the vertices into heavy and
light according to their degrees. All the edges incident to light vertices are added to the
spanner. We now focus on the heavy vertices. As a first step, a random subset of vertices is
selected. We refer to these vertices as centers. With high probability, every heavy vertex has
a center in its neighborhood. Assuming this event occurs, each heavy vertex joins a cluster
of at least one of the centers in its neighborhood. A cluster is composed from a center and
a subset of its neighbors. On query {u, v}, where both u and v are heavy, we consider two
cases.
1. u and v belong to the same cluster. In this case we add the edge {u, v} to the spanner

only in case u is the center of v or vice versa.
2. Otherwise, u and v belong to different clusters. Assume without loss of generality that

the degree of v is not greater than the degree of u. We divide the edges incident to v into
fixed size buckets and add the edge {u, v} only if it has minimum rank amongst the edges
that are incident to the cluster of u.

In order to make the above high-level description concrete we need to set up some
parameters and describe how the centers are selected and how each vertex finds its center.
We begin by defining vertices with degrees larger than

√
n as heavy. Thus by adding all the

edges incident to light vertices we add at most O(n3/2) edges.
The selection of the centers proceeds as follows. We define t = Θ(log

√
n) sets of centers,

which are picked uniformly at random, S1, . . . , St such that the size of S1 is Θ(
√

n) and the
size of Si+1 is roughly half of the size of Si. Thus, overall, the number of centers is Õ(

√
n).

We next describe how each heavy vertex finds its center. We partition the heavy vertices
into t sets, V1, . . . , Vt according to their degrees. The set V1 contains all the vertices with
degree in [

√
n + 1, 2

√
n] and in general for every i ∈ [t], the set Vi contains all the vertices

with degree in [2i−1√
n + 1, 2i

√
n]. The centers for vertices in the set Vi are taken from the

set Si. With high probability, for every i ∈ [t], each vertex v ∈ Vi has at least one vertex
from Si in its neighborhood and at most O(log n). Thus, with high probability, each heavy
vertex belongs to at least one cluster and at most O(log n) clusters.
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Given a heavy vertex v ∈ Vi, the centers of v are found by going over all the vertices in
Si, u, and checking if {u, v} is an edge in the graph. Since the total number of centers is
Õ(

√
n), the probe and time complexity of finding the center of a given vertex is Õ(

√
n).

It remains to set the size of the buckets. Let {u, v} ∈ E be such that v ∈ Vi and
deg(u) ≤ deg(v). Since v ∈ Vi, it follows that deg(v) ≤ 2i

√
n. Since |Si| ≤ c

√
n log n/2i for

some constant c, by setting the size of the buckets to be
√

n we obtain that the total number
of edges between heavy vertices that belong to different clusters is Õ(n3/2), as desired.

From the fact that the size of the buckets is
√

n it follows that the total probe and time
complexity of our algorithms is Õ(

√
n). From the fact that the diameter of every cluster is 2

we obtain that for every edge {u, v} which we remove from the graph, there exists a path of
length at most 3 between u and v. Hence, the stretch factor of our spanner is 3, as desired.

1.4 Algorithm for constructing 5-spanners

We extend the ideas from the previous section to obtain our algorithm for constructing
5-spanners as follows. We partition the vertices in the graph into three sets: heavy, medium,
and light. The set of light vertices is defined to be the set of all vertices with a degree at
most n1/3 and the set of heavy vertices is defined to be the set of all vertices of degree at
least n2/3. The set of the medium vertices is defined to be all vertices that are not light nor
heavy.

As before, we add to the spanner all the edges incident to light vertices and cluster all
the heavy vertices into a cluster of diameter 2. The difference is that now when we partition
the heavy vertices into sets according to their degrees the first set consists of all vertices with
a degree in [n2/3 + 1, 2n2/3].

We partition the set of medium vertices into two sets according to the following random
process. Each medium vertex v samples uniformly at random Θ(log n) of its neighbors. If
one of the vertices in the sample is heavy then v joins the cluster of the heavy vertex in
the sample that has minimum rank. Otherwise we say that v is bad. This forms clusters of
diameter 4.

In a similar manner to the process described above we define another a new collection
of sets of centers for the bad vertices such that the total number of such centers is Õ(n2/3)
and each bad vertex belongs to at least one cluster and at most O(log n) clusters. The new
centers are selected (randomly) only from the set of vertices which are not heavy. We call
the corresponding clusters light-clusters since they contain at most n2/3 vertices and have
diameter 2. Since the total number of light-clusters is Õ(n2/3) we can afford to take an edge
between every pair of adjacent light-clusters. Moreover, we partition each light-cluster into
buckets of size n1/3 and take an edge between every pair of adjacent buckets. Since each
bad vertex belongs to O(log n) light-clusters, the total number of pairs of buckets is Õ(n4/3).
The time and probe complexity of finding all the edges incident to two buckets is Õ(n2/3),
as desired.

To analyse the stretch factor we partition the edges we remove into three types. The first
type of edges are edges between vertices in the same cluster. The second type of edges are
edges between a vertex v and a cluster C which is not light, in which case there at least one
edge in the spanner which is incident to both v and C. The third type of edges are edges
which are incident to a pair of light-clusters, in which case there exists at least one edge in
the spanner which is incident to each pair of such clusters. Thus, overall the stretch factor is
5, as claimed.
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1.5 Algorithm for constructing O(k2)-spanners

The high-level idea of the algorithm for constructing O(k2)-spanners, which we describe from
a global point of view, follows that of [28]. The vertices of the graph are first partitioned into
Õ(n2/3) Voronoi cells which are formed with respect to a randomly selected set of Õ(n2/3)
centers. We can assume that each Voronoi cell has diameter O(k) by using a separate
algorithm to handle remote vertices which may not be close to a center. Each Voronoi
cell is then partitioned into clusters of size L = Õ(n1/3). In addition each Voronoi cell is
marked with probability 1/n1/3 which respectively also marks all the clusters of the cell.
Each non-marked cluster connects to all the adjacent marked clusters using a single edge.
This forms clusters-of-clusters around marked clusters. Instead of connecting every pair
of adjacent clusters A and B, which we can not afford, our goal is to connect A with the
cluster-of-clusters of some marked cluster C adjacent to B. Since we can not afford to
reconstruct the cluster-of-clusters of C, we instead find the identity of all the Voronoi cells
which are adjacent to C and try to connect A with at least one of these cells. We show that
this is indeed the case although A may not be connected directly to any one of these cells.
By applying an inductive argument we show that the number of hops between A and B is
O(k), where traversing from one Voronoi cell to another is considered one hop. Since the
diameter of each Voronoi cell is O(k) we obtain an overall stretch factor of O(k2).

We improve on the LCA of [28] in two main ways. The first main improvement is a
new method for partitioning the Voronoi cells into clusters of size L, allowing the cluster
containing a vertex to be reconstructed using O(∆2L2) probes instead of O(∆3L2). The
second improvement relates to the problem of connecting a cluster A to the cluster-of-clusters
of some marked cluster C adjacent to B. In particular there is an issue of which marked
cluster C should be chosen, since it is too expensive to reconstruct every marked cluster
adjacent to B. The LCA of [28] processes a single cluster of each adjacent marked Voronoi
cell to B, of which there may be as many as Õ(∆). We instead devise a rule by which B is
engaged with a single marked cluster adjacent to it, and show that in fact it suffices to only
consider this one cluster. Combining these improvements reduces the total number of probes
from Õ(n2/3∆4) to O(n2/3∆2).

1.6 Algorithm for graph decomposition

To further reduce the runtime of Theorem 31, we develop a new local computation algorithm
to decompose graphs into subgraphs with smaller degree. Observe that for a graph G, for
subgraphs G1, . . . , Gt, if we have k-spanners Hi ⊂ Gi for every i, the union

⋃
i∈[t] Hi is a k-

spanner for G. As the runtime of Theorem 31 depends on the maximum degree ∆, we develop
an efficient LCA to break G into t graphs, each with maximum degree O(max{∆/t, log n}),
where t is a parameter to be chosen. Given v and an index i ∈ [t], the LCA returns in time
O(∆/

√
t) all neighbors of v in Gi (i.e. it supports ALL_NBR queries to each subgraph). We

believe this algorithm may have other applications.
To apply this algorithm in the spanner framework, we compose the LCA for O(k2)

spanners with the LCA for graph decomposition. This is more subtle than generic sequential
composition of algorithms, as we must ensure the per-query overhead is mild. We do this
by observing the O(k2)-spanner algorithm only ever makes all neighbor queries, and so the
decomposition LCA spends O(∆/

√
t) work per query the spanner LCA makes to the graph.

In particular, as the spanner LCA makes O(n2/3∆) all neighbor queries, our new runtime is
O(n2/3∆2/t3/2) given our choice of t. As decomposing G into t subgraphs increases the size
of the output spanner by a factor of t, we ultimately balance parameters and obtain a probe
and time complexity of O(n2/3−(1.5−α)/k∆2) for any α > 0.

APPROX/RANDOM 2023



42:6 Improved Local Computation Algorithms for Constructing Spanners

1.6.1 Decomposing the Graph
To build this graph, consider assigning each edge of G = (V, E) two colors i, j ∈ [R], one from
each endpoint. In particular, v assigns its first ∆/R edges to receive color 1, the next ∆/R

to receive color 2, etc. Then if an edge (u, v) has received colors i, j from both endpoints, we
can let the overall edge color be (i, j) where we assume w.l.o.g that u < v. Observe that if
each color corresponds to a subgraph, then this decomposition breaks G into R2 subgraphs.
Moreover, given i, j and a vertex v, we can quickly enumerate blocks i and j from v and
determine which edges lie in the specified subgraph. However, as these blocks may be poorly
aligned, this as described results in a maximum subgraph degree of ∆/R rather than ∆/R2.
Instead, we have each vertex choose a random shift, and assign labels to its blocks according
to this shift. Then via standard concentration bounds the maximum degree of every subgraph
is as desired. We remark that as we must enumerate every element of bucket i and j from v

to find edges with label (i, j), the worst-case time for an individual neighbor query can be
up to Ω(∆/R). However, we only need to do this once to answer an all-neighbors query, so
as long as all the neighbors are desired we can efficiently amortize this cost.

1.7 The number of random bits
All our algorithms are randomized and hence use random bits. For results 1-2 we use
randomness in the selection of centers and representatives. In result 3 we use randomness in
the selection of centers, marked clusters, and random ranking of edges.

When the centers and representatives are selected independently, the arguments for
proving the guarantees on the sparsity of the spanner follow from standard concentration
bounds. As shown by Parter at al. [28], by using a less standard analysis one is able to
prove that the same guarantees on the sparsity hold even when the random bits are only
Θ(log n)-wise independent (which requires only O(log2 n) truly random bits). Furthermore,
by using an intricate analysis, they showed that the guarantees on the stretch factor continue
to hold as well. In this writing, we do not repeat the analysis in [28] since it lends itself quite
easily to our setting.

For result 4, similar techniques to those of [28] allow the result to be implemented using
polylog(n)-wise independence as well 1.

1.8 Related work
As mentioned above, the work which is the most closely related to our work is by Parter et
el. [28]. In addition to the upper bounds mentioned in Section 1.1 they also observe that it
is possible to obtain an LCA for constructing 5-spanners with Õ(n1+1/k) edges and probe
complexity Õ(n1−1/(2k)) for the special case in which the minimum degree is known to be at
least n1/2−1/(2k) (this builds on the fact that by picking Õ(n(1+1/k)/2) centers, w.h.p. each
vertex has a center in its neighborhood). In addition to upper bounds, they also provide
a lower bound of Ω(min{

√
n, n2

m }) probes for the simpler task of constructing a spanning
graph with o(m) edges, where m denotes the number of edges in the input graph.

Our work also builds on the upper bound in [23], designed originally for bounded degree
graphs, which provide a spanner with (1 + ϵ)n edges on expectation, where ϵ is a parameter,
stretch factor O(log2 n · poly(∆/ϵ)) and probe complexity of O(poly(∆/ϵ) · n2/3). The work
in [23] is a follow-up of [26, 25] which initiated the study of LCAs for constructing ultra-sparse
(namely, with (1 + ϵ)n edges) spanning subgraphs.

1 More specifically, by using the concentration bound from Fact 5.3 in [28] on the sum of d-wise independent
random variables.
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2 Preliminaries

The input graph G = (V, E) is a simple undirected graph with |V | = n vertices and a bound
on the degree ∆. Both parameters n and ∆ are known to the algorithm. Each vertex v ∈ V

is represented as a unique ID from [n].
A local algorithm has access to the adjacency list oracle OG which provides answers to

the following probes (in a single step):
Degree probe: Given v ∈ V , returns the degree of v, denoted by deg(v).
Neighbour probe: Given v ∈ V and an index i, returns the ith neighbor of v if
i ≤ deg(v). Otherwise, ⊥ is returned. Additionally, for v ∈ V , we define the all-neighbors
query, denoted by ALL_NBR(v), which returns all the neighbors of v. Clearly, this query
can be implemented by deg(v) + 1 neighbor probes.
Adjacency probe: Given an ordered pair ⟨u, v⟩ where u ∈ V and v ∈ V , if v is a
neighbor of u then i is returned where v is the ith neighbor of u. Otherwise, ⊥ is returned.

We denote the distance between two vertices u and v in G by d(u, v) and the set of
neighbours of v in G by NG(v). We denote by NG(v)[i] the i-th neighbour of v in G. For
vertex v ∈ V and an integer k, let Γk(v, G) denote the set of vertices at distance at most k

from v. When the graph G is clear from the context, we shall use the shorthand d(u, v), N(v)
and Γk(v) for dG(u, v), NG(v) and Γk(v, G), respectively. We define a ranking r of the edges as
follows: r(u, v) < r(u′, v′) if and only if min{u, v} < min{u′, v′} or min{u, v} = min{u′, v′}
and max{u, v} < max{u′, v′}.

We shall use the following definitions in our algorithms for constructing 3-spanners and
5-spanners.

▶ Definition 2. We say that a vertex v ∈ V is in class i ∈ N w.r.t. ∆ if deg(v) ∈
[2i−1∆ + 1, 2i∆].

▶ Definition 3. We say that an index i ∈ N is in bucket j ∈ N w.r.t. ∆ if i ∈ [(j − 1) · ∆ +
1, j · ∆].

2.1 Probes in the LCA model
Since the introduction of the model in [32], there have been several formulations concerning,
mainly, the measure of performance, the way the input is accessed, and whether preprocessing
is allowed. In particular, when the input is a graph, there is the question of whether the
LCA can probe the graph anywhere (i.e. ask for the neighbors of an arbitrary vertex). In
contrast to message-passing models such as CONGEST and distributed LOCAL algorithms,
in LCAs the standard assumption is that indeed the LCA can access the graph anywhere
and more specifically that each vertex in the input graph is represented as a unique ID from
[n] = {1, . . . , n}. To support this claim, we refer the reader to the ultra-formal definition
in [20] (Definition 12.11) as well as [3, 18].

We note that the utility of making far-probes 2 was studied in [21], in which the authors
showed that for a large family of problems, this extra power is not so useful. Indeed, this extra
power is not always used by LCAs. For example, in the recent result of Ghaffari [19], which
provides an LCA for the problem of Maximal Independent Set, the assumption is that the IDs
are taken from [n10]. Nonetheless, we stress that this extra power is an important feature of

2 Namely, probing vertices for which we do not yet know a path from the query vertex.
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the LCA model, which, in particular, distinguishes it from message-passing models (see more
on the difference between LCAs and distributed LOCAL algorithms in Section 4.1 in [24]) and
comes into play in problems which have a more global nature. For example, this extra power
is utilized in Prop. 12.13 in [20] for graph coloring and in [27] for approximate Maximum-
Matching. The latter LCA is used in Behnezhad et al. [8] to obtain a state-of-the-art sublinear
algorithm for the extensively studied problem of approximate Maximum-Matching.

3 LCA for constructing 3-spanners

In this section, we prove the following theorem. Due to space limitations, we defer the claims
regarding probe and time complexities as well as the stretch factor to the appendix.

▶ Theorem 4. There exists an LCA that given access to an n-vertex simple undirected
graph G, constructs a 3-spanner of G with Õ(n1+1/2) edges whose probe complexity and time
complexity are Õ(n1/2).

Our algorithm is listed as Algorithm 1. As mentioned-above our algorithm proceeds by
forming clusters around centers and connecting the different clusters. To make the description
of our algorithm complete we begin with describing the selection of centers.

We define t
def= log

√
n sets of centers S1, . . . , St. For every i ∈ [t], we pick u.a.r. xi

vertices to be in Si where x1 =
√

n log n and xi+1 = xi/2 for every i ∈ [t − 1]. The rest of
the details of the algorithm appear in Algorithm 1. We next prove the correctness of the
algorithm.

Recall that we refer to a vertex whose degree is greater than
√

n as heavy. The next claim
states that with high probability every heavy vertex has at least one center and O(log n)
centers in its neighborhood.

▷ Claim 5. With high probability, for every i ∈ [t] and every vertex v ∈ V that is in class i

w.r.t.
√

n it holds that N(v) ∩ Si ̸= ∅ and that |N(v) ∩ Si| = O(log n).

Algorithm 1 LCA for constructing 3-spanners.
Input: Access to an undirected graph G = (V, E) and a query {u, v} ∈ E where we assume
w.l.o.g. that deg(u) ≥ deg(v).
Output: Returns whether {u, v} belongs to the spanner or not.
1. If deg(v) ≤ n1/2 then return YES (recall that deg(u) ≥ deg(v)).
2. Otherwise, let c denote the class of u w.r.t.

√
n (see Definition 2).

3. If v ∈ Sc then return YES.
4. Otherwise, let C def= Sc ∩ N(u). If C = ∅ then return YES.
5. Let i denote the index of u in N(v) and let b denote the bucket of i w.r.t.

√
n (see

Definition 3).
6. For each x ∈ C:

a. Go over every j < i such that j is in bucket b and return YES if for every such j,
N(v)[j] does not belong to the cluster of x.

7. Return NO.

▷ Claim 6. With high probability, the stretch factor of the spanner constructed by Algorithm 1
is 3.
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Proof. Let {u, v} be an edge in E such that deg(u) ≥ deg(v). We will show that there exists
a path of length at most 3 between u and v in the the spanner constructed by Algorithm 1
denoted by G′ = (V, E′). If deg(v) ≤

√
n then {u, v} ∈ E′ and we are done. Otherwise, if

there exists a cluster C such that u and v are both belong to C then in G′ they are both
connected by an edge to the center of C. Thus there exists a path of length at most 2
between u and v in G′. Otherwise, let C ′ be a cluster for which u belongs to. We claim
that v is adjacent to C ′ in G′. This follows by induction on the index of u in N(v) and
Sub-Step 6a. ◁

▷ Claim 7. The probe and time complexity of Algorithm 1 is O(
√

n log n).

Proof. Steps 1-2 can be implemented by making a single degree probe. Their time complexity
is O(1). Step 3 can be implemented by accessing the random coins. To implement Step 4
we need to go over all the vertices in Sc (we may assume w.l.o.g. that we generate all the
centers in advance as there are only O(

√
n log n) centers) and check whether they are in N(u)

(by making a single adjacency probe). Thus the probe (and time) complexity of this step is
O(

√
n log n). Step 5 can be implemented by a single adjacency probe. The total number of

vertices we check in Sub-Step 6a is bounded by the size of C times the size of a bucket which
is

√
n. For each vertex we check we make a single neighbor and then we check whether it

belongs to the cluster of a specific center. The latter can be implemented by making a single
degree probe and a single adjacency probe. By Claim 5, the size of C is bounded by O(log n),
thus the probe (and time) complexity of Step 6 is O(

√
n log n). The claim follows. ◁

▷ Claim 8. With high probability, the number of edges of the spanner constructed by
Algorithm 1 is Õ(n1+1/2).

Proof. The number of edges added to E′ due to Step 1 is at most n3/2. By the bound on
the number of centers, the number of edges added to E′ due to Step 3 is O(n3/2 log n). To
analyse the number of edges added to E′ due to Step 6 consider an edge {u, v} such that
deg(u) ≥ deg(v), deg(v) >

√
n and v /∈ Sc, where c denotes the class of u w.r.t.

√
n. Since u

is in class c it follows that deg(u) ≤ 2c
√

n. Since deg(v) ≤ deg(u) it follows that N(v) has
at most 2c buckets. By Sub-Step 6a, for any cluster C, the number of edges in E′ that are
incident to v and a vertex from C is at most 2c (since we add to E′ at most a single edge for
each bucket of N(v)). Since the number of clusters of class c is O(

√
n log n/2c), the total

number of clusters of class greater or equal to c is O(
√

n log n/2c) as well. Therefore, the
total number of edges that are incident to v and added to E′ due to Step 6 is O(

√
n log n).

By Claim 5, w.h.p., the number of edges that are added due to Step 4 is 0. We conclude
that the |E′| = O(n3/2 log n), as desired. ◁

4 LCA for constructing 5-spanners

In this section, we prove the following theorem.

▶ Theorem 9. There exists an LCA that given access to an n-vertex simple undirected
graph G, constructs a 5-spanner of G with Õ(n1+1/3) edges whose probe complexity and time
complexity are Õ(n2/3).

Our algorithm for constructing 5-spanners also proceeds by forming clusters around
centers and connecting the different clusters. For the sake of presentation, we first describe
our local algorithm from a global point of view (see algorithm 2). In Section 4.1 we describe
the local implementation of this algorithm.
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As in the algorithm for constructing 3-spanners, the clusters are formed around randomly
selected centers only that now we have two types of clusters (and centers), heavy-clusters
and light-clusters that will be described in the sequel.

The selection of the first type of centers

The selection of the first type of centers proceeds as follows. We define a
def= log n1/3

sets of centers S1
1 , . . . , S1

a. For every i ∈ [a], we pick u.a.r. yi vertices to be in S1
i where

y1 = n1/3 log n and yi+1 = yi/2 for every i ∈ [a−1]. The clusters which are formed around the
first type of centers are the heavy-clusters. The formation of the heavy-clusters is described
in Step 2 of Algorithm 2.

The selection of the second type of centers

The selection of the second type of centers proceeds as follows. We define b
def= log n1/3

sets of centers S2
1 , . . . , S2

b . For every i ∈ [b], we pick u.a.r. xi vertices to be in S2
i where

x1 = n2/3 log n and xi+1 = xi/2 for every i ∈ [b − 1].
The clusters which are formed around the second type of centers are the light-clusters.

The formation of the light-clusters is described in Step 3 of Algorithm 2.

The way we connect the different clusters is described in Steps 4 and 5.
In the next couple of claims we prove that with high probability every vertex v such that

deg(v) > n1/3 joins at least one cluster and at most O(log n) clusters. To do so, we partition
the vertices with degree greater than into n1/3 into 3 sets. The first set, denoted by H, is
the set of vertices, v, such that deg(v) ≥ n2/3. The second set is the set of vertices, v, such
that n1/3 < deg(v) < n2/3 for which at least half of the vertices in N(v) have degree at least
n2/3. We denote this set by M1. M2 consists of the remaining vertices. Namely, M2 is the
set of vertices, v, such that n1/3 < deg(v) < n2/3 and for which less than half of the vertices
in N(v) have degree at least n2/3.

The implication of the next claim is that w.h.p. every vertex in H joins at least one
heavy-cluster and at most O(log n) heavy-clusters.

▷ Claim 10. With high probability, for every v ∈ H it holds that N(v) ∩ S1
c ̸= ∅ and that

|N(v) ∩ S1
c | = O(log n) where c ∈ [a] is the class of v w.r.t. n2/3.

The implication of the next claim (when combined with Claim 10) is that w.h.p. every
vertex in M1 joins, via a representative, at least one heavy-cluster and at most O(log n)
heavy-clusters.

▷ Claim 11. With high probability, for every v ∈ M1 it holds that v has a representative.

Proof. Let v ∈ M1. Consider Step 2b of Algorithm 2. Since at least half of the neighbors of
v have degree at least n2/3, it follows that w.h.p. Rv ̸= ∅ and so v has a representative. ◁

The implication of the next claim is that w.h.p. every vertex in M2 that does not have a
representative joins at least one light-cluster and at most O(log n) light-clusters.

▷ Claim 12. With high probability, for every v ∈ M2 it holds that N(v) ∩ S2
c ̸= ∅ and that

|N(v) ∩ S2
c | = O(log n) where c ∈ [b] is the class of v w.r.t. n1/3.

The following corollary follows directly from Claims 10–12.
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Algorithm 2 Global algorithm for constructing 5-spanners.
Input: A graph G = (V, E).
Output: Constructs a 5-spanner of G, G′ = (V, E′).
1. For every v such that deg(v) ≤ n1/3 add to E′ all the edges that are incident to v.
2. Forming heavy-clusters:

a. For each vertex v such that deg(v) ≥ n2/3 we define the centers of v to be N(v) ∩ S1
c

where c is the class of v w.r.t. n2/3 (see Definition 2). For every center s of v, v joins
the cluster of s by adding the edge {s, v} to E′.

b. Each vertex v such that n1/3 < deg(v) < n2/3 sample u.a.r. y
def= Θ(log n) of its

neighbors. Let Rv denote this set. The representative of v is defined to be the vertex,
r, of minimum id in Rv such that deg(r) ≥ n2/3 (if such vertex exists). If v has a
representative, r, then the edge {v, r} is added to E′ (and hence v joins all the clusters
of r).

3. Forming light-clusters:
a. For each vertex v such that n1/3 < deg(v) < n2/3 for which v does not have a

representative we define the centers of v to be N(v) ∩ S2
c where c is the class of v w.r.t.

n1/3 (see Definition 2). For every center s of v, v joins the cluster of s by adding the
edge {s, v} to E′.

4. Connecting vertices to adjacent heavy-clusters:
a. Let {u, v} be such that deg(u) ≥ deg(v) and u belongs to a heavy-cluster. For each

cluster C that u belongs to, do:
i. Partition the interval [deg(v)] into sequential intervals, which we refer to as buckets,

of size n2/3: b1, . . . , bs (where only bs may have size which is smaller than n2/3).
ii. For each i ∈ [s], go over every j ∈ bi in increasing order and check if N(v)[j] belongs

to C. If such j is found, add {v, N(v)[j]} to E′ and move to the next bucket.
5. Connecting adjacent light-clusters:

a. Let {u, v} be such that both u and v belong to different light-clusters. For each light
clusters Cu and Cv that u and v belong to, respectively, do:
i. Let su and sv denote the centers of Cu and Cv, respectively. Let cu and cv denote

the classes of u and v w.r.t. n1/3, respectively.
ii. Partition the vertices in N(su) that belong to the cluster Cu (namely, the neighbors

of su that are in class cu w.r.t. n1/3) into subsets of size n1/3 greedily by their index
in N(su), Su

1 , . . . , Su
t (all the subsets are of size n1/3 except from perhaps Su

t ).
iii. Repeat Step 5(a)ii for the vertices in N(sv) that belong to Cv and let Sv

1 , . . . , Sv
r

denote the resulting subsets.
iv. For each i ∈ [t] and j ∈ [r], add the edge of minimum rank in E(Su

i , Sv
j ) to E′ (if

such edge exists).
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▶ Corollary 13. With high probability every vertex v such that deg(v) > n1/3 joins at least
one cluster and at most O(log n) clusters.

▷ Claim 14. With high probability, |E′| = Õ(n1+1/3).

Proof. The number of edges added to E′ due to Step 1 is at most n1+1/3. By Claims 10
and 12 the number of edges added to E′ due to Steps 2a and 3a is Õ(n). Since each vertex
has at most one representative the number of edges added to E′ due to Step 2b is at most n.

Consider {u, v} such that deg(u) ≥ deg(v) and u belongs to a heavy-cluster C. According
to Step 4(a)ii we connect v to C by adding to E′ at most ⌈deg(v)/n2/3⌉ edges (at most one
edge for each bucket of N(v)).

If deg(u) ≤ n2/3 then deg(v) ≤ n2/3 as well and so ⌈deg(v)/n2/3⌉ ≤ 1. Therefore the
total number of edges that are incident to v and added to E′ due to Step 4(a)ii is bounded
by the total number of centers of the first type which is Õ(n1/3).

Otherwise, let c denote the class of u w.r.t. n2/3, then by definition deg(u) ≤ 2c · n2/3.
Therefore by our assumption deg(v) ≤ 2c · n2/3 as well. The number of centers in S1

c is
n1/3 log n/2c and so the total number of centers in

⋃
c≤i≤a S1

i is O(n1/3 log n/2c). Observe
that the number of edges which are incident to v and added to E′ due to Step 4(a)ii is at
most ⌈deg(v)/n2/3⌉ times the number of centers in

⋃
c≤i≤a S1

i . Thus the total number of
edges that are incident to v and added to E′ due to Step 4(a)ii is Õ(n1/3) in this case as
well. Therefore, the total number of edges which are added to E′ in Step 4(a)ii is Õ(n1+1/3).

By Claim 12 it follows that the total number of subsets partitioning the light clusters
is Õ(n2/3) as the size of each subset is n1/3 except for at most Õ(n2/3) subsets, and since
each vertex may belong to O(log n) different clusters. Since in Step 5(a)iv we add at most a
single edge between a pair of subsets the total number of edges added to E′ due to this step
is Õ(n1+1/3). This concludes the proof of the claim. ◁

▷ Claim 15. With high probability, the stretch factor of the spanner constructed by
Algorithm 2 is 5.

Proof. Let {u, v} be an edge which is not included in E′. By Step 1 of the algorithm it
follows that the degree of both u and v is greater than n1/3. By Corollary 13 w.h.p. all
vertices with degree greater than n1/3 join at least one cluster. In the rest of the proof we
condition on the event that both u and v join at least one cluster.

Assume w.l.o.g. that deg(u) ≥ deg(v). If both u and v belong to the same cluster (either
heavy or light) then there exists a path of length at most 4 in G′ between u and v as the
diameter of each cluster is at most 4.

If u belongs to a heavy cluster, C, then by Step 4(a)ii of the algorithm it follows that
there exists at least one edge in E′ which is incident to v and a vertex in C. Since the
diameter of C is at most 4 it follows that there exists a path in G′ from v to u.

Otherwise, both u and v belong to different light clusters Cu and Cv. By Step 5(a)iv,
there exists at least one edge in E′ which is incident to a vertex in Cu and a vertex in Cv.
Since the diameter of a light cluster is at most 2 we obtain that there exists a path in G′

from u to v of length at most 5. This concludes the proof of the claim. ◁

4.1 The local implementation
In this section we prove the following claim. In the proof of the claim we also describe the
local implementation of Algorithm 2.
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▷ Claim 16. The probe and time complexity of the local implementation of Algorithm 2 is
Õ(n2/3 log n).

Proof. On query {u, v} we first probe the degree of u and v and return YES if either u or
v have degree which is at most n1/3. Otherwise, assume w.l.o.g. that deg(u) ≥ deg(v). we
consider the following cases.

First case: deg(u) ≥ n2/3. In this case we find the centers of u by going over all the
centers, s, in S1

c where c is the class of u w.r.t. n2/3 and preforming the adjacency probe
⟨u, s⟩. If v belongs to the set of centers of u then we return YES. Overall, since the number
of centers of the first type is Õ(n1/3), finding the centers of u requires Õ(n1/3) probes and
time.

We then find the bucket b of u in N(v) w.r.t. n2/3 (see Definition 3) by preforming the
adjacency probe ⟨v, u⟩. Let i denote the index of u in N(v). For each center of u, s and for
each j ∈ b such that j < i, we check if N(v)[j] belongs to the cluster of s. In order to do so
we first probe the degree of y = N(v)[j]. If deg(y) ≥ n2/3 then v is in the cluster of s if and
only if it is a neighbour of s and is in class c w.r.t. n2/3 where c is such that s belongs to S1

c .
If deg(y) < n2/3 then we first find the representative of y and if it has a representative we
check if it belongs to the cluster of s. Since we have to check this for at most n2/3 vertices
and for O(log n) centers, overall the probe and time complexity of preforming this task is
Õ(n2/3).

Second case: n1/3 < deg(u) < n2/3 and either u or v have a representative. In this
case we proceed as in the previous case only that we preform all the checks with respect
to the centers of the representative of u (and/or the representative of v). Since finding the
representative of a vertex requires O(log n) probes and time the probe and time complexity
in this case is Õ(n2/3) as well.

Third case: n1/3 < deg(u) < n2/3 and both u and v do not have representatives.
This corresponds to the case in which both u and v belong to light clusters. In order to find
the centers of u we simply go over all vertices, y, in N(u) and check if y is in S2

c where c

denotes the class of u w.r.t. n1/3. We repeat the same process for v. Since checking if a
vertex belongs to S2

c can be done in O(log n) time (we can generate all the centers in advance
and store them in a binary search tree) this task requires Õ(n2/3) probes and time.

Finally, for each pair of centers su and sv of u and v, respectively, we go over all the
neighbours of su and sv and determine for each one, according to its degree, whether it
belongs to the cluster of su and sv, respectively. We then find the subsets that u and v

belong to as defined in Steps 5(a)ii and 5(a)iii and return YES if and only of {u, v} is the
edge of minimum rank that connects these subsets.

The above three cases cover all possible scenarios which implies that the time (and probe)
complexity of the local implementation of Algorithm 2 is Õ(n2/3) as claimed. ◁

5 Graph Decomposition Via Ranking

We give the formal statement of the LCA of Item 4. We note that our decomposition gives
a stronger promise than the maximum degree of each subgraph being bounded, in that we
actually bound the degree vertex-wise. In particular, up to poly-logarithmic factors, the
average degree of every subgraph is equal to the overall average degree divided by the number
of subgraphs with high probability.
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▶ Theorem 17. There exists an LCA that, given a parameter R ≤
√

∆ and access to an
n-vertex simple undirected graph G = (V, E) with maximum degree ∆, decomposes G into
edge-disjoint subgraphs G1, . . . , GR2 such that:
1. Given (u, v) ∈ E, the i ∈ [R2] such that (u, v) ∈ Gi can be computed in time and space

O(1).
2. Given v ∈ V and i ∈ [R2], ALL_NBRi(v) can be computed in time and space O(dG(v)/R).
3. With high probability, the degree of v in Gi is O(max{log(n), dG(v)/R2}) for every

v ∈ V and i ∈ [R2]. In particular, for every i the maximum degree of Gi is
O(max{log(n), ∆/R2}) with high probability.

We first describe the decomposition in a global manner. We refer to each subgraph as a color.
We assign each edge in G one of R2 colors, such that the degree and ALL_NBR query times
are as claimed. We will identify the set of colors with [R] × [R], and assume R2 ≤ ∆ since
otherwise the statement is trivial. For convenience, let d(v) := dG(v) and di(v) := dHi

(v).
Each vertex v draws a random value rv ∼ [R]. Furthermore, for every vertex v, let the

first ⌈d(v)/R⌉ neighbors of v be B1(v), the second be B2(v), etc. Note that this divides the
out-edges into R blocks. For an edge (u, v) with u < v in blocks Bi(u), Bj(v) respectively,
the color of the edge is the pair (i + ru mod R, j + rv mod R). Let Ga,b for a, b ∈ [R] be
the subgraph consisting of all edges with color (a, b).

We can then combine Theorem 17 with Theorem 31 to give the final result.

▶ Corollary 18. There exists an LCA that given access to an n-vertex simple undirected
graph G with maximum degree ∆, constructs an O(k2)-spanner with Õ(n1+1/k) edges whose
probe complexity and time complexity are O(n2/3−(1.5−α)/k∆2), for any constant α > 0.

5.1 Decomposition Implementation
▷ Claim 19. Given (u, v) ∈ G, we can determine the color (a, b) of the edge in time and
space O(1).

Proof. By making two adjacency probes, we can determine the indices of edge (u, v) in u

and v. Then we can compute which blocks contain this edge using two degree queries and a
constant number of arithmetic operations, and then compute the final color by looking up
the random shifts of u and v. ◁

▷ Claim 20. With high probability, for every v ∈ V and (a, b) ∈ [R] × [R] we have
da,b(v) = O(max{log(n), d(v)/R2}).

Proof. Fix an arbitrary vertex v ∈ V and color (a, b) ∈ [R] × [R]. Fix its shift of rv of v

arbitrarily. Let S = Ba−rv
(v) ∪ Bb−rv

(v) be the set of all edges incident to v (in G) in blocks
a − rv and b − rv. Then S is a superset of the set of edges incident to v with color (a, b),
and |S| = 2d(v)/R.

For an arbitrary edge e = (v, u) in S, let Xe be the indicator random variable which is 1
exactly when the color of e is (a, b). Let k be the block index of e in u so that e ∈ Bk(u).
There are four cases to consider regarding e:

Case 1: v < u and e ∈ Ba−rv (v). Then e has color (a, b) if and only if ru is equal to b − k,
which occurs with probability exactly 1/R.
Case 2: v < u and e /∈ Ba−rv

(v). In this case e never has color (a, b).
Case 3: v > u and e ∈ Bb−rv (v). Similarly to case 1, e has color (a, b) if and only if ru is
equal to a − k, which occurs with probability 1/R.
Case 4: v > u and e /∈ Bb−rv(v). Similarly to case 2, e never has color (a, b).
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In any case, we have P [Xe = 1] ≤ 1/R for all e ∈ S. Furthermore, the variables in {Xe}e∈S

are independent random variables: for distinct edges e, e′ ∈ S where e = (u, v) and e = (u′, v),
Xe and Xe′ are independent since the random variables ru, ru′ are independent.

Letting X =
∑

e∈S Xe and picking an arbitrary constant c ≥ 2, we find

E[X] ≤ 2d(v)/R2 ≤ c max{log n, d(v)/R2} =: µ.

By the multiplicative Chernoff’s bound we have

Pr[X > 3µ] ≤ exp(−µ) ≤ exp(−c log n) = n−c,

and so the total number of neighbors of v with color (a, b) is O(max{log n, d(v)/R2}) with
high probability. Finally, a union bound over all n vertices and R2 ≤ ∆ colors completes the
proof. ◁

▷ Claim 21. ALL_NBRi(v) can be computed in time and space O(d(v)/R).

Proof. Given v ∈ V and a color i = (a, b), let S = Ba−rv
(v) ∪ Bb−rv

(v) as before. Note that
these correspond to the blocks which have received labels a and b respectively, given the
random shift of vertex v. We make 2d(v)/R neighbor probes to determine all elements of S,
then 2d(v)/R adjacency probes to determine the indices of every edge in the other endpoint.
Then for each edge, we can check in time O(1) (by examining the random shift of the other
endpoint) if the label is (a, b). ◁

Proof of Corollary 18. Let β ∈ (0, 1] be such that 3/(2 + β) = 1.5 − α. Given a query
if edge (u, v) ∈ G is in the spanner, we apply the LCA of Theorem 17 with parameter3

R =
⌈
n1/(k(2+β))⌉ to determine the i such that (u, v) ∈ Gi. We then apply Theorem 31

with parameter k′ =
⌈
k(1 + 2

α )
⌉

to the graph Gi and query if (u, v) is contained in the
spanner, and return the answer. Note that we ultimately obtain a O(k′2) = O(k2)-spanner
for every subgraph (and thus for the overall graph), and the number of edges is bounded as
Õ(R2n1+1/k′) ≤ Õ

Ä
n1+ 2

k(2+α) + 1
k(1+2/α)

ä
= Õ(n1+1/k). Furthermore, the time complexity is

O(n2/3∆2R−3) ≤ O
Ä
n

2
3 − 1.5−α

k ∆2
ä
. ◀
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A LCA for constructing O(k2)-spanners

In this section, we present our LCA for constructing O(k2)-spanners.

A.1 The algorithm that works under a promise
We begin by describing a global algorithm for constructing an O(k2)-spanner which works
under the following promise on the input graph G = (V, E). Let L

def= cn1/3 log n, where c is
a constant that will be determined later. For every v ∈ V , let iv

def= minr{|Γr(v)| ≥ L}. We
are promised that maxv∈V {iv} ≤ k. In words, we assume that the k-hop neighborhood of
every vertex in G contains at least L vertices.
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In addition, we assume without loss of generality that k = O(log n) as already for k = log n

our construction yields a spanner with Õ(n) edges on expectation.
Our algorithm builds on the partition of V which is described next.

Centers. Pick a set S ⊂ V by independently including each vertex v in S with probability
n−1/3 log n, so that |S| = Θ(n2/3 log n) w.h.p. We shall refer to the vertices in S as centers.
For each vertex v ∈ V , its center, denoted by c(v), is the center which is closest to v amongst
all centers (break ties between centers according to the id of the center).

Voronoi cells. The Voronoi cell of a vertex v, denoted by Vor(v), is the set of all vertices u

for which c(u) = c(v). Additionally, we assign to each cell a random rank, so that there is a
uniformly random total order on the cells; note carefully that the rank of a cell thus differs
from the rank of its center (which is given by its identifier, which is not assigned randomly).
We remark that we can determine the rank of the cell from the shared randomness and the
cell’s identifier, for which we simply use the identifier of its center.

The Voronoi cells are partitioned into clusters which are classified into a couple of
categories as described next.

Singleton Clusters. For each Voronoi cell, consider the BFS tree spanning it, which is
rooted at the respective center. For every v ∈ V , let p(v) denote the parent of v in this BFS
tree. If v is a center then p(v) = v. For every v ∈ V \ S, let T (v) denote the subtree of v in
the above-mentioned BFS tree when we remove the edge {v, p(v)}; for v ∈ S, T (v) is simply
the entire tree. Now consider a Voronoi cell. If the cell contains at most L vertices, then the
cluster of all the vertices in the Voronoi cell is the cell itself. Otherwise, there are two cases.
If T (v) contains more than L vertices, then we say that v is heavy and define the cluster of v

to be the singleton {v}. Otherwise, we say that v is light and its cluster is defined as follows.

Non-singleton clusters. Observe that if v is light then it has a unique ancestor u (including
v) such that u is not heavy and p(u) is heavy. We define the cluster of v to consist of T (u)
and possibly additional subtrees, T (u′), where u′ is a also a child of p(u) (in T (p(u)), as
described next.

We begin with some definitions and notations. In order to determine the cluster of u

(which is also the cluster of v) consider transforming the heavy vertex r = p(u) into a binary
tree which we call the auxiliary tree of r, Br, as follows. Br is rooted at r and has i complete
layers where i is such that 2i < deg(r) and 2i+1 ≥ deg(r). These layers consist of auxiliary
vertices, namely they do not correspond to vertices in G. We then add another layer to Br

consisting of the neighbors of r, sorted from left to right according to their index in N(r).
Note that except from the root and the vertices at the last layer of Br, all vertices in Br are
auxiliary vertices. This completes the definition of Br. For each vertex x ∈ Br we define
Br(x) to be the subtree of Br rooted at x. We define S(x) def= Br(x) ∩ N(r), namely S(x)
is the set of vertices of N(r) which are in the subtree of Br rooted at x. The descendants
of x, denoted by the set D(x), are defined to be the union of the vertices in T (y) for every
y ∈ S(x), namely D(x) def=

⋃
y∈S(x) T (y). The weight of x is defined to be the number of

vertices in D(x), namely, w(x) def= |D(x)|.
We are now ready to define the cluster of u. Let z(u) be the unique ancestor of u in Br

(including r), z, for which w(z) ≤ L and w(p(z)) > L (where p(z) denotes the parent of z in
Br). The cluster of u (and v) is defined to be the set D(z). This completes the description
of how the Voronoi cell is partitioned into clusters.
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Special vertices. In order to bound the number of clusters (see Section A.3) we shall use
the following definitions.

▶ Definition 22 (Special vertex). We say that a vertex u is special if |T (u)| > L and for
every child of u in T (u), t, it holds that |T (t)| ≤ L.

Analogously we define special auxiliary vertex as follows.

▶ Definition 23 (Special auxiliary vertex). We say that an auxiliary vertex y is a special
auxiliary vertex if either of the following conditions hold:
1. y is a parent of a (non auxiliary) vertex v which is heavy. In this case we say that y is a

type (a) special vertex.
2. w(y) > L and for every child of y, t, it holds that w(t) ≤ L. In this case we say that y is

a type (b) special vertex.

For a cluster C, let c(C) denote the center of the vertices in C (all the vertices in the
cluster have the same center). Let Vor(C) denote the Voronoi cell of the vertices in C.

A.2 The Edge Set
Our spanner, G′ = (V, E′), initially contains, for each Voronoi cell, Vor, the edges of the BFS
tree that spans Vor, i.e., the BFS tree rooted at the center of Vor spanning the subgraph
induced by Vor. Clearly, the spanner spans the subgraph induced on every Voronoi cell.
Next, we describe which edges we add to E′ in order to connect adjacent clusters of different
Voronoi cells.

Marked Clusters and Clusters-of-Clusters
Each center is marked independently with probability p

def= 1/n1/3. If a center is marked,
then we say that its Voronoi cell is marked and all the clusters in this cell are marked as well.

Cluster-of-clusters. For every marked cluster, C, define the cluster-of-clusters of C, denoted
by C(C), to be the set of clusters which consists of C and all the clusters which are adjacent
to C. Let B be a non-marked cluster which is adjacent to at least one marked cluster. Let
Y denote the set of all edges such that one endpoint is in B and the other endpoint belongs
to a marked cluster. The cluster B is engaged with the marked cluster C which is adjacent
to B and for which the edge of minimum rank in Y has its other endpoint in C.

The Edges between Clusters
By saying that we connect two adjacent subsets of vertices A and B, we mean that we add
the minimum ranked edge in E(A, B) to E′. For a cluster A, define its adjacent centers
Cen(∂A) def= {c(v) | u ∈ A ∧ {u, v} ∈ E} \ {c(A)}, i.e., the set of centers of Voronoi cells that
are adjacent to A. This definition explicitly excludes c(A), as there is no need to connect A

to its own Voronoi cell.
We next describe how we connect the clusters. The high-level idea is to make sure that

for every adjacent clusters A and B we connect A with the cluster engaging B (perhaps not
directly) and vise versa. For clusters which are not adjacent to any marked cluster and hence
not engaged with any cluster we make sure to keep them connected to all adjacent Voronoi
cells. Formally:

1. We connect every cluster to every adjacent marked cluster.
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2. Each cluster A that is not engaged with any marked cluster (i.e., no cell adjacent to A is
marked) we connect to each adjacent cell.

3. Suppose cluster A is adjacent to cluster B, where B is adjacent to a marked cell. Denote
by C the (unique) marked cluster that B is engaged with. We connect A with B if the
following conditions hold:
a. the minimum ranked edge in E(A, Vor(B)) is also in E(A, B)
b. c(B) is amongst the n1/k log n lowest ranked centers in Cen(∂A) ∩ Cen(∂C)

A.3 Sparsity
▷ Claim 24. The number of clusters, denoted by s, is at most |S| + O(nk log ∆)/L).

▷ Claim 25. The number of edges in E′ is O(n1+1/k · k2 log3 n) with high probability.

Proof. Deferred to full version. ◁

A.4 Connectivity and Stretch
▷ Claim 26. G′ is connected.

▷ Claim 27. Denote by GVor the graph obtained from G by contracting Voronoi cells and
by G′

Vor its subgraph obtained when doing the same in G′. If the cells’ ranks are uniformly
random, w.h.p. G′

Vor is a spanner of GVor of stretch O(k).

Proof. Deferred to the full version. ◁

▷ Claim 28. W.h.p., G′ is a spanner of G of stretch O(k2).

Proof. Due to the promise on G, w.h.p. the spanning trees on Voronoi cells have depth O(k).
Hence, the claim holds for any edge within a Voronoi cell. Moreover, for an edge connecting
different Voronoi cells, by Lemma 27, w.h.p. there is a path of length O(k) in G′

Vor connecting
the respective cells. Navigating with at most O(k) hops in each traversed cell, we obtain a
suitable path of length O(k2) in G′. ◁

A.5 The algorithm for general graphs
We use a combination of the algorithm in Section A with the algorithm by Baswana and
Sen [7] which has the following guarantees.

▶ Theorem 29 ([7]). There exists a randomized k-round distributed algorithm for computing
a (2k − 1)-spanner G′ = (V, E′) with O(kn1+1/k) edges for an unweighted input graph
G = (V, E). More specifically, for every {u, v} ∈ E′, at the end of the k-round procedure,
at least one of the endpoints u or v (but not necessarily both) has chosen to include {u, v}
in E′.

We call a vertex v remote if the k-hop neighborhood of v contain less than L vertices.
We denote by R̄

def= V \ R the set of vertices which are not remote.

First Step. Run the algorithm from Section A on the subgraph induced by R̄, i.e., {u, v} ∈ E

with u, v ∈ R̄ is added to E′ if and only if the algorithm outputs the edge.
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Second Step. Run the algorithm of Baswana and Sen [7] on the subgraph H = (V, {{u, v} ∈
E | u ∈ R or v ∈ R}), i.e., {u, v} ∈ E with u ∈ R or v ∈ R is added to E′ if and only if the
algorithm outputs the edge.4

A.6 Stretch Factor
Consider any edge e = {u, v} ∈ E \ E′ we removed. If both u and v are in R̄, then e was
removed by the Algorithm from Section A, which was applied to the subgraph induced by R̄.
Applying Claim 27 to the connected component of e, we get that w.h.p. there is a path of
length O(k2) from u to v in G′. If u or v are in R, by Theorem 29 there is a path of length
O(k) from u to v in G′.

▶ Corollary 30. The above algorithm guarantees stretch O(k2) w.h.p. and satisfies that the
expected number of edges in E′ is O(n1+1/k · k2 log3 n)

A.7 The local implementation
In this section we prove the following theorem.

▶ Theorem 31. There exists an LCA that given access to an n-vertex simple undirected graph
G, with high probability constructs a O(k2)-spanners with Õ(n1+1/k) edges in expectation.
The probe complexity and time complexity are O(n2/3∆2). Moreover, the algorithm access
the graph only by ALL_NBR queries (and performs O(n2/3∆) such queries).

Proof. The local implementation of the algorithm which is described in the previous section
is listed in Algorithm 3. The correctness of the algorithm follows from the previous sections.
We shall prove that its complexity is as claimed.

The local implementation for remote vertices. For Step 1, we need to determine for
both u and v if they are remote. Recall that a vertex u is remote if its k-hop neighborhood
contains less than L vertices. Therefore, we can decide for any vertex u whether it is in R

with at most L ALL_NBR probes. Thus the probe and time complexity is O(L∆). If either
u or v are remote then we need to determine for each vertex in their k-hop neighborhood
whether it is remote or not. If either u or v are remote then the k-hop neighborhood of each
of them contain at most L∆ vertices. This follows from the fact that the size of the k-hop
neighborhood of v is at most ∆ factor bigger from the k-hop neighborhood of u and vice
versa. Thus, we need to call ALL_NBR at most L2∆ times for this step. Hence, we obtain
that the probe and time complexity of this step is O(L2∆2), in total.

If u, v ∈ R̄, namely, when both u and v are non-remote, the algorithm proceeds as in
Section A.1. We next describe the local implementation of the algorithm for this case.

Finding the center and reconstructing the BFS tree. We first analyse the probe and time
complexity of determining the center of a vertex. Given a vertex v we perform a BFS from v

layer by layer and stop at the first layer in which we find a center or after exploring at least
L vertices. Let i denote the layer in which the execution of the BFS stops. It follows that up
to layer i − 1 we explored strictly less than L vertices. Thus this step can be implemented by
O(L) calls to ALL_NBR. In particular, the probe and time complexity of finding the center is
O(L∆).

4 The algorithm is described for connected graphs; we simply apply it to each connected component of H.
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Algorithm 3 LCA for constructing O(k2)-spanners.
Input: {u, v} ∈ E

Output: whether {u, v} is in E′ or not.
1. If u or v are in R, simulate the algorithm of Baswana and Sen at u and v when running

it on the connected component of u and v in the subgraph H (see Section A.5). Return
YES if either u or v has chosen to include {u, v} and NO otherwise.

2. Otherwise, u, v ∈ R̄ and we proceed according to Section A.1, where all nodes in R are
ignored:
a. If Vor(u) = Vor(v), return YES if {u, v} is in the BFS tree of Vor(u) and NO

otherwise.
b. Otherwise, let Q and W denote the clusters of u and v, respectively. Return YES if

at least one of the following conditions hold for A = Q and B = W , or symmetrically,
for A = W and B = Q, and NO otherwise.
i. A is a marked cluster and {u, v} has minimum rank amongst the edges in E(A, B).
ii. A is not engaged with any marked cluster. Namely, all the clusters which are

adjacent to A are not marked. In this case, we take {u, v} if it has minimum rank
amongst the edges in E(A, Vor(B)).

iii. There exists a marked cluster C such that B is engaged with C, and the following
holds:

{u, v} has minimum rank amongst the edges in E(A, Vor(B)).
The cell Vor(B) is amongst the n1/k log n minimum ranked cells in Cen(∂A) ∩
Cen(∂C)

We observe that at the same cost we also determine the path from c(v) to v in the BFS
tree rooted at c(v) as follows. The parent of v in the tree is the neighbour of v that has
minimum id amongst all neighbour of v that are closer than v to c(v). Similarly, we can
determine the parent of the parent of v and so on until we reach c(v).

Determining if a vertex is heavy. In order to reconstruct the clusters we need to be able
to determine if a vertex is heavy or not. Recall that a vertex v is heavy if |T (v)| > L. We
explore T (v) by performing a find center procedure on all the neighbours of v and then
continuing recursively on all the neighbours of v that belong to Vor(v). Since finding the
center takes O(L) calls to ALL_NBR, we conclude that we can determine whether v is heavy
or light by using O(L2∆) calls to ALL_NBR. This follows from the fact that when we partially
or completely reveal T (v), we need to find the center of at most L∆ vertices. Thus, the
overall probe and time complexity for this step is O(L2∆2).

Reconstructing the clusters. Given a vertex v we reconstruct its cluster as follows. First,
perform a find-center operation on v and let v := u0, u1, . . . , ud be the path to the center.
We then determine if v is heavy using the prior procedure (and if so we are done). Otherwise,
iteratively find T (ui) for i ∈ [d] (where we do not search down the path that we have already
explored), terminating the search when T (ui) > L. In this case, construct the tree of special
vertices below ui and again find the first ancestor of ui−1 in this tree that is heavy, and let
the cluster be the children of the predecessor special vertex. As we ultimately explore only
O(L∆) vertices, this results in O(L∆) calls to find-center, which results in at most O(L2∆)
calls to ALL_NBR.
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Determining the cells adjacent to clusters. For Step 2 we need to reconstruct the cluster
of u, the cluster of v, and the clusters that u and v are engaged with; this takes O(L2∆)
calls to ALL_NBR. In addition, for each of these clusters C, we need to determine the center
of each vertex adjacent to C. Since the size of the clusters is bounded by L, the number of
vertices adjacent to C is at most L∆. Therefore the number of calls to find-center is at most
L∆. This likewise requires O(L2∆) calls to ALL_NBR and overall O(L2∆2) probes and time.

We conclude that we can perform all necessary checks to decide whether {u, v} ∈ E′

or not using O(L2∆) calls to ALL_NBR which invokes O(L2∆2) neighbour probes. By the
analysis above, the time complexity is O(L2∆2) as well. ◀
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1 Introduction

A distinguisher is an algorithm for hypothesis testing. Its purpose is to tell whether its input
was sampled from one distribution or from another. In algorithmic contexts including much
of cryptography, pseudorandomness, and statistical inference, the computational complexity
of distinguishers plays a crucial role.

In this work, we initiate the study of the classical simulation of quantum distinguishers.
Quantum algorithms promise algorithmic speedups, but the realization of fully capable
quantum computers is still a distant goal. It is thus important to investigate the capabilities
of quantum devices of limited computational power. Our focus here is on devices of bounded
query complexity, a fundamental efficiency measure in complexity theory and cryptographic
analysis.

We are interested in the best possible advantage of simulating a quantum distinguisher of
bounded query complexity by a classical distinguisher of bounded but possibly larger query
complexity k. We focus on quantum distinguishers that make a single query to an n-bit
Boolean-valued oracle. Although this model appears restrictive, we find it interesting for the
following reasons.
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43:2 Classical Simulation of One-Query Quantum Distinguishers

First, Aaronson and Ambainis [1] showed that in the constant advantage regime, one-query
quantum distinguishers already require Ω(

√
n) non-adaptive classical queries to simulate

with the same advantage. Subsequent works [4, 11] showed a rapid deterioration as more
queries are added: In general, q classical queries to a Boolean oracle require Ωq(n1−1/2q)
classical queries to simulate. Beyond one or a handful of quantum queries, the improvement
over brute-force classical simulation becomes marginal. Moreover, addressing the case of one
quantum query already brings up interesting technical challenges and reveals connections to
statistical estimation and random matrix theory.

Second, a one-query quantum algorithm can be viewed as a sensible model of a noise-prone
quantum device. Motivated by the challenges quantum computers pose to cryptography,
it is of interest to study the power of such devices as cryptographic adversaries. In this
context, the best classical simulation of a quantum adversary tells us to what extent our
confidence in cryptographic security of existing constructions carries over to the quantum
setting. While quantum security analyses have been successfully carried out for specific
constructions, e.g., [15, 14, 8], our work provides general black-box “transfer theorems” that
yield quantum security directly from sufficiently strong classical security at a bounded cost
in parameters.

Our results
Our starting point is the separation between quantum and classical query complexity of
Aaronson and Ambainis [1]. In response to a question of Buhrman et al. [6], they constructed
a random variable F (for “Forrelation”) over {±1}2n (where n is a power of two) for which

There exists a one query quantum algorithm that distinguishes F from a uniformly
random input in {±1}2n with constant advantage.
Every classical algorithm that makes o(

√
n) queries fails to distinguish F from random

with constant advantage.
Moreover, their example is tight [5, 2]: Every one-query quantum distinguisher with constant
advantage can be simulated by a O(

√
n)-query non-adaptive classical distinguisher with

constant advantage.
Here, as in the rest of the paper, a distinguisher is an algorithm that produces outputs in

the range [−1, 1]. The output of a quantum algorithm is taken to be its probability that it
collapses to an accepting state. The advantage of D on the pair of distributions (A, B) is
1
2 |E[D(A)] − E[D(B)]|.

We are interested in the best possible advantage that a classical distinguisher with
k ≪

√
n queries can attain for a pair of distributions that are ε-distinguishable by a one-

query quantum algorithm. The example of Aaronson and Ambainis yields the following
generalization:

▶ Proposition 1. For every ε ∈ (0, 1), k ∈ N, and n = 2m for some m ∈ N, there exists a
{±1}2n-valued random variable Fε that is ε-distinguishable from a uniform random 2n-bit
string by 1 quantum query, but O(εk/

√
n)-indistinguishable by any non-adaptive 2k-query

classical algorithm.

The random variable Fε is a mixture of Forrelation F and a uniform random variable
U . We believe that the bound O(εk/

√
n) is the best possible gap in the advantage of

k-query non-adaptive classical versus one-query quantum distinguisher. Our first result is
the following lower bound on the classical advantage:
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▶ Theorem 2. Let ε ∈ (0, 1), k, n ∈ N. Suppose (A, B) is a pair of random variables over
{±1}n that is ε-distinguishable by a one-query quantum algorithm. There exist 2k-query
non-adaptive classical algorithms P2a and P2b, such that
a. P2a distinguishes (A, B) with advantage Ω(ε

√
k/n),

b. P2b distinguishes (A, B) with advantage Ω(ε2k2/n), assuming k = O(
√

n).

Assuming ε is constant, distinguisher P2a works better when k is small but does not
reach constant advantage as k approaches

√
n. In contrast, distinguisher P2b has a constant

advantage when k = Θ(
√

n); but for the case of k = 1, the advantage is worse than the upper
bound O(ε/

√
n) as given in Proposition 1 by a factor of 1/

√
n.

We also show that for constant ε, an advantage of Ω(k/
√

n log n) can be achieved with
two rounds of queries.

▶ Theorem 3. For every ε ∈ (0, 1), n ∈ N, and k ≤
√

n log n/ε, every pair of random
variables over {±1}n that is ε-distinguishable by a one-query quantum algorithm is also
Ω(ε2k/

√
n log n)-distinguishable by a 2k-query two-round adaptive classical algorithm.

Bansal and Sinha [4] showed that no k-query adaptive classical algorithm can distinguish
F from random with advantage better than O(εk1/2(log n)1/4/n1/4). Sherstov, Storozhenko,
and Wu [11] proved the same bound with different distributions.

We prove that their bound can be improved to Õ(εk/
√

n) for two-round algorithms,
thereby showing that the simulation in Theorem 3 is optimal in k and n up to log factors.

▶ Theorem 4. For every ε > 0, k ∈ N, and n = 2m for some m ∈ N, there exists a random
variable Fε on {±1}n, such that it is O(εk

√
log n/

√
n)-indistinguishable from random by any

two-round classical algorithm that makes k queries per round.

Up to the factor of
√

log n, Theorem 4 generalizes Proposition 1 to adaptive two-round
algorithms. The results are summarized in Table 1.

Table 1 Bounds on the best possible advantage of a k-query classical simulation of a one-query
quantum distinguisher with advantage ε for distributions over the n-dimensional Boolean cube.

Type Upper bound Ref. Lower bound Ref.

Non-adaptive O
(
εk/

√
n
)

Proposition 1
Ω(ε
√

k/n) Theorem 2a

Ω(ε2k2/n) Theorem 2b

Two-round O(εk
√

log n/
√

n) Theorem 4
Ω
(
ε2k/

√
n log n

)
Theorem 3

Adaptive O(εk1/2(log n)1/4/n1/4) [4, 11]

While it is worth mentioning that the lower bound on advantage in Theorem 3 never
exceeds the upper bound from Proposition 1, it remains open whether adaptivity helps in
classical simulations of one-query quantum distinguishers.

Our techniques
The acceptance probability of a quantum algorithm that makes one query to an n-bit oracle
can be represented by a bounded (n + 1) × (n + 1) bilinear form, that is a function of the
form p(x, y) =

∑
Aijxiyj for some matrix A ∈ R(n+1)×(n+1) with bounded ∞-to-1 norm

(see Proposition 6). It suffices to prove our results under the assumption that the two
distributions are distinguishable by such bilinear forms. Aaronson et al. [3] showed that
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43:4 Classical Simulation of One-Query Quantum Distinguishers

this representation fully characterizes one-query quantum algorithms: every bilinear form
of bounded ∞-to-1 norm represents the acceptance probability of some one-query quantum
algorithm up to constant scaling.

The general problem of identifying the optimal distinguisher in a class of algorithm
A against a class of distribution pairs B can be modeled as a zero-sum game between
distinguishers in A and distribution pairs in B whose payoff is the advantage. In this setting,
we take A to be the classical algorithms that make k queries to x and k queries to y, and B
to be the distribution pairs ε-distinguishable by some one-query quantum algorithm.

By Yao’s minimax theorem, a given distinguishing advantage is achievable against any
given pair in B if and only if there exists a mixture of distinguishers that has the same
expected advantage against all pairs in B. Hence it is sufficient (and necessary) to construct
a probabilistic distinguisher that is oblivious to the actual distributions. Such a distinguisher
can be obtained from an unbiased estimator for some multiple of p: if E[D(x, y)] = 1

Z p(x, y)
for all inputs x, y then the distinguishing advantage of D is at most Z times smaller than
that of p.

In the proof of Theorem 2a, we construct an unbiased estimator P2a for p/Z with
Z = O(

√
n/k) that is a mixture of 2k-juntas. Each junta is a homogeneous quadratic

function on k bits of x-input and k bits of y-input.
The approximation factor Z is derived based on an additional assumption of boundedness

of the juntas, which we explain in detail in Proposition 6. The proposition states that a
one-query quantum algorithm is fully characterized by a bilinear form with ∞-to-1 norm
bounded by 1 (we say this bilinear form is 1-bounded). It can be shown that Z is the best
possible within this class of unbiased estimators:

▶ Proposition 5. There exists a 1-bounded n×n bilinear form p such that if p/Z is represented
as a mixture of 1-bounded k × k bilinear forms, then Z = Ω(

√
n/k).

In Theorem 2b, we bypass the limitation by truncating a different unbounded unbiased
estimator P2b. Corollary 13 lower bounds the advantage of the distinguisher obtained by
truncating a scaled unbiased estimator in terms of its variance. The relevant estimator is
obtained from independently sampled indices i1, . . . , ik, j1, . . . , jk of x and y input coordinates,
respectively, where each coordinate is chosen with probability weighted by Grothendieck’s
factorization (see Section 2 for the definition). Proposition 16, which is also implicit in the
more general analysis of [5], shows that this estimator has variance O(n/k2).

One weakness of estimator P2b is that it samples the bits of the inputs x and y independ-
ently and fails to detect relevant correlations between them. In contrast, the estimator P3
in Theorem 3 computes the distribution on y-queries adaptively depending on the answers
to the x-queries. Viewing the bilinear form p(x, y) as a linear function of the y-inputs, the
sample of x-inputs is used to estimate the coefficient

∑
i Aijxi of yj for every j. In the second

round, the y-inputs are sampled with probabilities proportional to these estimates. Using
Grothendieck’s factorization and exponential tail bounds, in Proposition 17 we show that
this improves the effective variance of P2b by a factor of Õ(

√
k).

2 Quantum algorithms, bilinear forms, and norms

Notations
We write [n] for the set {1, . . . , n}. We use the standard computer science asymptotic
notations, and the tilde notations hide logarithmic factors. We write N (µ, Σ) for a multivariate
Gaussian with mean µ and covariance matrix Σ, sd for statistical distance, and kl for KL-
divergence.
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For A ∈ Rm×n, we use Ai,: to denote the i-th row of A and A:,j for the j-th column of A.
We write ei the i-th standard basis vector, and Idk the k×k identity matrix. For a symmetric
matrix A, we denote the minimum and maximum eigenvalues (which are guaranteed to be
real) by λmin(A) and λmax(A) respectively.

Norms

For a vector, we denote ∥v∥p the p-norm of v. The 1-norm, 2-norm and ∞-norm will be
relevant in this work. We drop the subscript for Euclidean norm (2-norm) of a vector. The
Cauchy-Schwarz inequality says that

∑
i uivi ≤ ∥u∥∥v∥ and in particular ∥v∥1 ≤

√
n∥v∥ for

v ∈ Rn.
For A ∈ Rm×n, the spectral norm ∥A∥, Frobenius norm ∥A∥F , and ∞-to-1-norm ∥A∥∞→1

are defined to be

∥A∥ := max
u∈Rn:∥u∥=1

∥Au∥ = max
u∈Rm,v∈Rn

∥u∥=∥v∥=1

u⊤Av

∥A∥F :=

√√√√ m∑
i=1

n∑
j=1

A2
ij

∥A∥∞→1 := max
x∈{±1}m

y∈{±1}n

x⊤Ay = max
x∈[−1,1]m

y∈[−1,1]n

x⊤Ay = max
x∈Rn:∥x∥∞=1

∥Ax∥1

The relevance of the ∞-to-1 norm stems from the following connection to one-query
quantum algorithms:

▶ Proposition 6 ([3]). For every quantum algorithm Q making one query to some oracle in
{±1}n, there exists a bilinear form p(x, y) =

∑n+1
i,j=1 Aijxiyj, Aij ∈ R, such that for every

x ∈ {±1}n, the probability that Q accepts x equals p((x1, . . . , xn, 1), (x1, . . . , xn, 1)).

We refer to p as the advantage polynomial, and by abuse of notation, we refer ∥p∥# to
be ∥A∥# for any norm ∥·∥#. Clearly, the matrix defining any advantage polynomial must
have ∞-to-1 norm at most 1 (hence every advantage polynomial is 1-bounded). In general,
this does not imply a constant upper bound on the spectral norm. However, the dual form
of Grothendieck’s inequality, also known as the factorization Grothendieck’s inequality [9,
P.239], shows that such a bound holds up to factorization.

Grothendieck’s factorization

▶ Proposition 7 ([9]). There is a universal constant KG such that if A ∈ Rn×n satisfies that
∥A∥∞→1 ≤ 1, then there exists α, β ∈ Rn

≥0 with ∥α∥ = ∥β∥ = 1, such that A can be factored
as Aij = αiÃijβj with ∥Ã∥ ≤ KG.

If the matrix A has no all-zero row or all-zero column, then we can further assume that α

and β are strictly positive, which is an assumption we can make for advantage polynomials.
If p is the advantage polynomial of a one-query quantum algorithm, the stronger conclusion

∥Ã∥ ≤ 1 can be obtained in Proposition 6 without using Grothendieck’s inequality but we
will not rely on this fact (at the expense of constant factors in some proofs). We also remark
that this factorization can be efficiently found by a semidefinite program.

APPROX/RANDOM 2023
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3 Non-adaptive estimators: Proof of Theorem 2

3.1 Proof of Theorem 2a
Suppose p(x, y) =

∑n
i,j=1 Aijxiyj is the advantage polynomial of a quantum algorithm, so in

particular ∥A∥∞→1 ≤ 1. For I, J ⊆ [n], we write AIJ the submatrix of A restricted to rows
indexed in I and columns indexed in J , and

pIJ(x, y) =
∑

i∈I,j∈J

Aijxiyj .

We analyze the following 2k-query classical distinguisher P2a(x, y):
1. Pick a pair of index sets I, J ⊆ [n], |I| = |J | = k, with probability proportional to

∥pIJ∥∞→1.
2. Query all xi with i ∈ I and all yj with j ∈ J .
3. Output pIJ(x, y)/∥pIJ∥∞→1.

As x and y take ±1 values, the step 3 above, always outputs a value D(x, y) ∈ [−1, 1] as
required for a distinguisher. We first show that D(x, y) is an unbiased estimator of p(x, y)
up to a scalar.

▷ Claim 8. Z · D(x, y) is an unbiased estimator of p(x, y), where

Z =
∑

I,J:|I|=|J|=k

∥pIJ∥∞→1/

(
n − 1
k − 1

)2
.

Proof. The probability for choosing the index pair (I, J) in step 1 is given by

∥pIJ∥∞→1∑
I′,J ′:|I′|=|J ′|=k∥pI′J′∥∞→1

= ∥pIJ∥∞→1

Z
(

n−1
k−1
)2 .

Therefore

E[Z · D(x, y)] = Z
∑

|I|=|J|=k

∥pIJ∥∞→1

Z
(

n−1
k−1
)2 · pIJ(x, y)

∥pIJ∥∞→1

= 1(
n−1
k−1
)2

∑
|I|=|J|=k

∑
i∈I,j∈J

Aijxiyj

=
n∑

i=1

n∑
j=1

Aijxiyj

= p(x, y).

The second-to-last line uses the fact that each index i appears in exactly
(

n−1
k−1
)

sets I and
likewise for j and J . ◁

To complete the analysis we use the following inequality.

▶ Proposition 9. There is a constant C so that for any n × n matrix A,

1(
n
k

)2

∑
|I|=|J|=k

∥AIJ∥∞→1 ≤ C
(k

n

)3/2
∥A∥∞→1. (1)
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Proof of Theorem 2a. Let p be the advantage polynomial of the one-query quantum al-
gorithm with advantage ε on (A, B), and A be the matrix defining p. Without loss of
generality, we assume

E[p(A)] − E[p(B)] ≥ ε.

From Claim 8, we obtain

E[D(A)] − E[D(B)] = 1
Z

(E[p(A)] − E[p(B)]) ≥ ε

Z
.

It remains to upper bound the value of Z. Using Proposition 9 we get

Z =
(

n
k

)2(
n−1
k−1
)2 · 1(

n
k

)2

∑
|I|=|J|=k

∥AIJ∥∞→1 ≤ n2

k2 · C
(k

n

)3/2
∥A∥∞→1 ≤ C

√
n

k
.

This concludes the desired advantage bound of Ω(ε
√

k/n). ◀

It follows from Proposition 5 that our analysis of D is tight up to constant factor.
Proposition 9 is similar to the following inequality proved by Rudelson and Vershynin [10,

Equation (4.1)] who showed that for subsets Iρ and Jρ sampled by including each index
independently with probability ρ = k/n,

E[∥AIρJρ
∥∞→1] ≤ C ′ρ3/2(∥A∥row + ∥A∥col

)
+ C ′ρ2∥A∥∞→1, (2)

for some constant C ′. Here, ∥A∥row =
∑

i∥Ai,:∥ and ∥A∥col =
∑

j∥A:,j∥ denote the sum
of the 2-norms of its rows and columns, respectively. For completeness, we present the
derivation Proposition 9 from (2) using Poissonization [13] (see also [12]).

Proof of Proposition 9. Tropp [13] showed that

1(
n
k

)2

∑
|I|=|J|=k

∥AIJ∥# ≤ 4E[∥AIρJρ
∥#],

for every matrix norm ∥·∥# that satisfies ∥A′∥# ≤ ∥A∥# for every submatrix A′ of A. This
is in particular true for the ∞-to-1 norm: if ∥A′∥∞→1 = x′⊤A′y′ for x′, y′ ∈ [−1, 1]m, then
∥A∥∞→1 ≥ x⊤Ay = x′⊤A′y′ where x and y are extended from x′ and y′ with zeros padded
in the remaining entries. It remains to prove that ∥A∥row, ∥A∥col ≤ KG∥A∥∞→1. ◀

▷ Claim 10. For any M ∈ Rm×n, ∥M i,:∥ ≤ ∥M∥ and ∥M :,j∥ ≤ ∥M∥ for any i ∈ [m], j ∈ [n].

Proof. We prove the case of ∥M i,:∥ and the other case follows the same proof:

∥M i,:∥2 = e⊤
i M(M i,:) ≤ ∥M∥ · ∥M i,:∥ =⇒ ∥M i,:∥ ≤ ∥M∥. ◁

▷ Claim 11. ∥A∥row ≤ KG∥A∥∞→1.

Proof. By re-scaling, we assume ∥A∥∞→1 = 1 without loss of generality. Let Aij = αiÃijβjbe
the Grothendieck’s factorization of A (Proposition 7), by Cauchy-Schwarz inequality,

∥A∥row =
∑

i

√∑
j

A2
ij =

∑
i

αi ·
√∑

j

β2
j Ã2

ij ≤
√∑

i

α2
i

√∑
ij

β2
j Ã2

ij =
√∑

j

β2
j ∥Ã:,j∥2.

By Claim 10 and the bound ∥Ã∥ ≤ KG, we conclude that ∥A∥row ≤
√∑

j β2
j · K2

G = KG.
◁

APPROX/RANDOM 2023



43:8 Classical Simulation of One-Query Quantum Distinguishers

3.2 The bias of truncated unbiased estimators

In preparation for the proof of Theorem 2b, we prove a general bound of the bias arising from
truncating an unbiased estimator of low variance. Denote trunc: R → [−1, 1] the truncation
function

trunc(t) =
{

t, if |t| ≤ 1,
sign(t), if |t| > 1.

▶ Proposition 12. Assume ∥f∥∞ = 1, Z ≥ 1, and Fr is a random function such that
E[Fr(x)] = f(x) for all x (here r denotes the randomness). The distinguisher Dr(x) =
trunc(Fr(x)/Z) has advantage at least

ε

Z
− 2 max

x

∫ ∞

1−1/Z

Prr

(
|Fr(x) − f(x)| ≥ Zt

)
dt.

for any pair of random variables that are ε-distinguishable by f .

▶ Corollary 13. Under the assumptions of Proposition 12, D has advantage at least

ε

Z
− 2

Z(Z − 1) · max
x

Var Fr(x).

Proof. Using Chebyshev’s inequality, the integrand appearing in Proposition 12 is at most
(Var Fr(x))/Z2t2 and so the integral is at most (Var Fr(x))/Z(Z − 1). ◀

The proposition is derived from the following claim:

▷ Claim 14. Let Y be a random variable with |E[Y ]| ≤ 1, then

∣∣E[trunc(Y )] − E[Y ]
∣∣ ≤

∫ ∞

1−|E[Y ]|
Pr(|Y − µ| ≥ t)dt.

Proof of Proposition 12. We apply Claim 14 to the random variable Fr(x)/Z to obtain

|E[Dr(x)] − f(x)/Z| ≤
∫ ∞

1−|f(x)/Z|
Prr

(
|Fr(x)/Z − f(x)/Z| ≥ t

)
dt

≤
∫ ∞

1−1/Z

Prr

(
|Fr(x) − f(x)| ≥ Zt

)
dt.

Suppose (A, B) is ε-distinguishable by f . By the triangle inequality, |E[Dr(A)] − E[f(A)]/Z|
is at most the maximum of the integral over x, and the same bound holds for replacing A by
B. Now the bound on advantage follows from triangle inequality. ◀

In the proof of Claim 14 we use the following fact:

▶ Fact 15. |trunc(t) − t| = max{0, |t| − 1}.
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Proof of Claim 14. Let µ = E[Y ].

|E[trunc(Y )] − E[Y ]| ≤ E[|trunc(Y ) − Y |]

=
∫ ∞

0
Pr(|trunc(Y ) − Y | ≥ t)dt

=
∫ ∞

0
Pr(|Y | − 1 ≥ t)dt (Fact 15)

=
∫ ∞

0
Pr(|Y | ≥ t + 1)dt

≤
∫ ∞

0
Pr(|Y − µ| ≥ t + 1 − |µ|)dt (triangle inequality)

=
∫ ∞

1−|µ|
Pr(|Y − µ| ≥ t)dt (change of variables) ◁

3.3 Proof of Theorem 2b
Let p(x, y) =

∑
ij Aijxiyj be the advantage polynomial so that ∥A∥∞→1 = 1. We let

Aij = αiÃijβj to be the Grothendieck’s factorization of A. We analyze the following
2k-query estimator:
1. Sample a sequence I = (I(1), . . . , I(k)) of k i.i.d indices by picking each i ∈ [n] with

probability pi := αi/∥α∥1. Query the inputs xI(u) for u ∈ [k].
2. Sample a sequence J = (J(1), . . . , J(k)) of k i.i.d indices by picking each j ∈ [n] with

probability qj := βj/∥β∥1. Query the inputs yJ(v) for v ∈ [k].
3. Output the empirical average

P (x, y) = Ei∼I,j∼J

[
Aij

xiyj

piqj

]
.

Clearly this estimator makes at most 2k queries. Now we show that this is an unbiased
estimator of bounded variance.

▶ Proposition 16. P (x, y) is an unbiased estimator of p(x, y) of variance at most O(n/k2).

Proof. Unbiasedness follows from linearity of expectation:

E[P (x, y)] = E
[
E
[
Aij

xiyj

piqj

∣∣∣ I, J
]]

= E
[
Aij

xiyj

piqj

]
=
∑
i,j

Aij
xiyj

piqj
· piqj = p(x, y).

In preparation for calculating the variance, let Buv = AI(u)J(v)/pI(u)qJ(v). By independence
and the fact that x2

i = y2
j = 1,

Cov
(
Buv, Bu′v′

)
=



E
[

A2
ij

p2
i
q2

j

]
− p(x, y)2, if u = u′ and v = v′

E
[

AijAij′ yjyj′

p2
i
qjqj′

]
− p(x, y)2, if u = u′ and v ̸= v′

E
[

AijAi′jxixi′

pipi′ q2
j

]
− p(x, y)2, if u ̸= u′ and v = v′

0, otherwise.

Here i, i′ and j, j′ denote random indices chosen independently. Decomposing Var[P (x, y)] as
an average of covariances, we obtain
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Var[P (x, y)] = 1
k4

∑
u,v,u′,v′

Cov
(
Buv, Bu′v′

)
≤ 1

k2 E
[

A2
ij

p2
i q2

j

]
+ k − 1

k2

(
E
[

AijAij′yjyj′

p2
i qjqj′

]
+ E

[
AijAi′jxixi′

pipi′q2
j

])
. (3)

We bound the three types of terms using Grothendieck’s factorization of A.

E
[

A2
ij

p2
i q2

j

]
=
∑
i,j

A2
ij

piqj

= ∥α∥1 · ∥β∥1 ·
∑
i,j

αiβjÃ2
ij (Grothendieck’s factorization)

≤ ∥α∥1 · ∥β∥1 ·
√∑

i,j

α2
i Ã2

ij ·
√∑

i,j

β2
j Ã2

ij (Cauchy-Schwarz inequality)

= ∥α∥1 · ∥β∥1 ·
√∑

i

α2
i ∥Ãi,:∥2 ·

√∑
j

β2
j ∥Ã:,j∥2

≤ ∥α∥1 · ∥β∥1 · ∥Ã∥ · ∥Ã∥ (Claim 10)

≤ n · K2
G. (Cauchy-Schwarz inequality)

E
[

AijAij′yjyj′

p2
i qjqj′

]
=
∑
i,j,j′

AijAij′yjyj′

pi

=
∑

i

1
pi

(∑
j

Aijyj

)2

≤ ∥α∥1
∑

i

αi

(∑
j

Ãijyjβj

)2
(Grothendieck’s factorization)

≤ ∥α∥1
∑

i

(Ãβy)2
i (Define (βy)j := yjβj ; and αi ∈ [0, 1])

= ∥α∥1∥Ãβy∥2

≤ ∥α∥1∥Ã∥2 (∥βy∥ = ∥β∥ = 1)
≤

√
n · K2

G. (Cauchy-Schwarz inequality)

By symmetry the third term is also at most
√

nK2
G. Plugging into (3), we obtain

Var[P (x, y)] = O(n/k2 +
√

n/k) = O(n/k2). ◀

Proof of Theorem 2b. Unbiasedness follows from linearity of expectation. Let V be the
variance bound from Proposition 16. We instantiate Corollary 13 with this P and Z = 1+4V/ε.
This is at most 1 provided k2 = o(n). The resulting distinguishing advantage is Ω(ε2/V ). ◀

The advantage of any distinguisher with the same distribution over samples cannot
be better than εk2/n. Therefore our analysis is optimal in terms of k and n. To see
this, consider the distribution in which the bit-pairs (xi, yi) are unbiased, ε-correlated,
and mutually independent. The resultant bilinear form (

∑
xiyi)/n is 1-bounded, which

corresponds to a one-query quantum distinguisher; and it distinguishes this distribution from
random with advantage ε. In contrast, the advantage of a classical distinguisher is at most ε

times the expected number of collisions i = j with i ∈ I and j ∈ J , which is at most εk2/n.
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4 An adaptive estimator: Proof of Theorem 3

We modify the estimator of Section 3.3 so that the values {xi : i ∈ I} adaptively affect the
probabilities for index sampling of J . Again we assume ∥A∥∞→1 = 1 and let Aij = αiÃijβj

to be the Grothendieck’s factorization of A.

1. Choose a sample I of k i.i.d indices by picking each i ∈ [n] with probability pi = αi/∥α∥1.
Query the inputs xi for i ∈ I. Let ax

I ∈ Rn be defined by [ax
I ]j := Ei∼I [Aijxi/pi].

2. Choose a sample J of k i.i.d indices by picking each j ∈ [n] with probability qj =
|[ax

I ]j |/∥ax
I ∥1. Query the inputs yj for j ∈ J .

3. Output the empirical average P (x, y) = Ej∼J [[ax
I ]jyj/qj ].

This estimator is unbiased by linearity of expectation. The main technical result of this
section is the following deviation bound:

▶ Proposition 17. There is a constant C such that for all x, y, ε > 0, and t > 0,

Pr
(

|P (x, y) − p(x, y)| ≥ C
√

n log n

k

t

ε

)
≤ k√

n log n

(ε

t

)2
+ 2n−(t/ε)2

.

Proof of Theorem 3. With a (possible) change in the constant factor in the lower bound,
we may assume that ε ≤ ε0 for a sufficiently small constant ε0 and Z := C

√
n log n/kε ≥ 2.

We apply Proposition 17 to bound the integral in Proposition 12 by∫ ∞

1−1/Z

Pr
(
|P (x, y) − p(x, y)| ≥ Zt

)
≤ C√

log n
· ε

Z

∫ ∞

1−1/Z

dt

t2 + 2
∫ ∞

1−1/Z

n−(t/ε)2
dt

= C√
log n

· ε

Z
· 1

1 − 1/Z
+

√
4πε2

log n
· Pr
(
N (0, ε2/2 log n) ≥ 1 − 1/Z

)
≤ 2C√

log n
· ε

Z
+

√
4πε2

log n
· Pr
(
N (0, 1) ≥

√
log n/2ε2

)
≤ 2C√

log n
· ε

Z
+

√
4πε2

log n
· n−1/ε2

≤ ε

6Z
+ ε

6Z
.

The second to last inequality is the Gaussian tail bound. The last inequality holds for
sufficiently large n using the assumption that ε ≤ ε0. By Proposition 12, D has advantage
at least ε/3Z. ◀

To prove Proposition 17, we split the difference between P and p via the “hybrid”
P ′(x, y) = (ax

I )⊤y =
∑

j [ax
I ]jyj . Claims 18 show that P ′ has small variance and is therefore

close to P . Claim 19 shows that P ′ is typically close to P .

▷ Claim 18. Var[P ′(x, y)] ≤ K2
G

√
n/k.

▷ Claim 19. Pr[|P (x, y) − P ′(x, y)| ≥ t · KG
√

n/k | I] ≤ 2 exp(−t2/2) for every t > 0.

Proof of Proposition 17. By Claim 18 and Chebyshev’s inequality, for every t1 > 0,

Pr
[
|P ′(x, y) − p(x, y)| ≥ t1 · KG(

√
n/k)1/2] ≤ 1

t2
1

.
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Using Claim 19 together with a union bound and the triangle inequality, it follows that

Pr
[
|P (x, y) − p(x, y)| ≥ t1 · KG(

√
n/k)1/2 + t2 · KG

√
n/k

]
≤ 1

t2
1

+ 2 exp(−t2
2/2)

for every t1 > 0 and t2 > 0. Plugging in t1 = (t/ε)·(
√

n log n/k)1/2 and t2 = (t/ε)·(2 log n)1/2

gives the desired inequality. ◀

Proof of Claim 18. As the samples in I are independent,

Var[P ′(x, y)] = 1
k

Vari

∑
j

Aijxiyj

pi

 = 1
k

Vari

∑
j

Aijyj

pi


because x2

i = 1. As i is sampled with probability pi = αi/∥α∥1, we get

Var

∑
j

Aijyj

pi

 ≤
∑

i

pi

(∑
j

Aijyj

pi

)2

≤ ∥α∥1
∑

i

αi

(∑
j

Ãijyjβj

)2
(Grothendieck’s factorization)

≤ ∥α∥1
∑

i

(Ãβy)2
i (Define (βy)j := yjβj ; and αi ∈ [0, 1])

≤ ∥α∥1 · ∥Ã∥2 (∥βy∥ = ∥β∥ = 1)
≤

√
n · K2

G. (Cauchy-Schwarz inequality) ◀

Proof of Claim 19. Since [ax
I ]jyj/qj = ∥ax

I ∥1yj , conditioned on I, P (x, y) is an average of
k independent random variables taking values either −∥ax

I ∥1 or ∥ax
I ∥1 with mean P ′(x, y).

Applying the Chernoff-Hoeffding bound to kP/∥ax
I ∥1, we obtain

Pr
[
|P (x, y) − P ′(x, y)| ≥ t∥ax

I ∥1/
√

k
∣∣ I
]

≤ 2 exp(−t2/2).

It remains to show that ∥ax
I ∥1 ≤ KG

√
n/k for every choice of I:

∥ax
I ∥1 =

∑
j

∣∣∣∣1k ∑
i∈I

xiAij

pi

∣∣∣∣
= ∥α∥1

k

∑
j

βj

∣∣∣∣∣∑
i∈I

xiÃij

∣∣∣∣∣ (Grothendieck’s factorization)

≤ ∥α∥1

k

√√√√∑
j

(∑
i∈I

xiÃij

)2

(Cauchy-Schwarz inequality)

= ∥α∥1

k

√∑
j

(x⊤
I Ã)2

j (Define (xI)i := xi · 1(i ∈ I))

= ∥α∥1

k
∥x⊤

I Ã∥

≤ ∥α∥1 · ∥xI∥ · ∥Ã∥
k

≤
√

n ·
√

k · KG

k
. (Cauchy-Schwarz inequality) ◀

As mentioned, Theorem 4 shows that the distinguisher in Theorem 3 is best possible up
to a factor of log n.
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5 Classical advantage upper bounds: Proofs of Proposition 1
and Theorem 4

To start this section, we first present the proof for the classical advantage upper bound of
non-adaptive algorithms.

Proof of Proposition 1. Aaronson and Ambainis [1] show that F is Ω(1)-distinguishable
from the uniform random U by one quantum query. The random variable F is obtained by
rounding a pair of n-dimensional Gaussians (X, Y ) where X is standard Gaussian and Y is
obtained by applying the Hadamard matrix to X. So the non-adaptive classical 2k-query
advantage is upper bounded by the maximum statistical distance between the projections
(XI , YJ) over all sets I, J with |I| + |J | = 2k and a standard 2k-dimensional Gaussian.

In general, the statistical distance between centered multivariate Gaussians with covariance
matrices Σ1 and Σ2 is Θ(1) min{1, ∥Σ−1

2 Σ1 − I∥F } [7]. As Σ2 is the identity and all non-
diagonal entries of Σ1 are ±1/

√
n, it follows that ∥Σ−1

2 Σ1 − Id∥F = O(k/
√

n).
Setting Fε as εF + (1 − ε)U , the advantage of any distinguisher, classical or quantum,

scales precisely by ε. ◀

As for the classical advantage upper bound of two-round algorithms, the proof of Theorem 4
bounds the statistical distance between the distinguisher’s views on the two distributions via
their KL-divergence. We need the following explicit formula for KL-divergence of multivariate
Gaussians:

▶ Fact 20. kl(N (µ, Σ), N (0, Idk)) = 1
2 (∥µ∥2 + tr(Σ − Idk) − log detΣ).

The following consequence of this formula is implicit in [7]:

▷ Claim 21. Assuming λmin(Σ) ≥ 1/3, kl((N (µ, Σ), N (0, Idk)) ≤ 1
2 (∥µ∥2 + ∥Σ − Idk∥2

F ).

Proof. Let η1, . . . , ηk be the eigenvalues of Σ − Idk. By assumption η1, . . . , ηk ≥ −2/3. Then

tr(Σ − Idk) − log detΣ =
k∑

i=1
(ηi − log(1 + ηi)) ≤

k∑
i=1

η2
i = ∥Σ − Idk∥2

F ,

where the inequality uses the fact that η − log(1 + η) ≤ η2 for all η ≥ −2/3. ◁

The requirement λmin(Σ) ≥ 1/3 is satisfied by matrices that are close to the identity in
the following sense:

▶ Fact 22. If A ∈ Rk×k is a symmetric matrix with |Aij | ≤ ε for all i, j ∈ [k], then
λmin(Idk + A) ≥ 1 − kε and λmax(Idk + A) ≤ 1 + kε.

In particular, as long as Σ is 2/3k-close to the identity in (entrywise) infinity-norm, the
bound in Claim 21 applies.

Another tool we need is the chain rule for KL-divergence:

▶ Fact 23 (Chain rule for KL-divergence). kl((U, V ), (U ′, V ′)) = kl(U, U ′) + kl(V |U, V ′|U ′),
where kl(V |U, V ′|U ′) = Eu∼U kl(V |U = u, V ′|U ′ = u).

In our application of Fact 23, (U, V ) = (U1, . . . , Uk, V1, . . . , Vk) is a multivariate Gaussian.
This class of distributions is closed under conditioning. To calculate the effect of conditioning
on the parameters, we identify the zero-mean (assumed without loss of generality) random
variables U1, . . . , Uk, V1, . . . , Vk with vectors in Hilbert space endowed with the inner product
E[A · B]. The conditional means and conditional covariances of V |U are given by
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E[Vj |U ] = V
∥

j (4)

Cov[Vj , Vj′ |U ] = E[V ⊥
j · V ⊥

j′ ], (5)

where Vj = V
∥

j + V ⊥
j is the orthogonal decomposition of Vj into a parallel component

V
∥

j ∈ Span(U) and a perpendicular component V ⊥
j ∈ Span(U)⊥. As V

∥
j is in Span(U), its

value is determined by U1, . . . , Uk. And as V ⊥
j and V ⊥

j′ are in Span(U)⊥, their values are
independent of U1, . . . , Uk.

Lastly we will use the following fact:

▶ Fact 24. If M is the maximum of n standard Gaussian random variables, then E
[
M2] ≤

4 log(
√

2n).

Proof of Fact 24. By Jensen’s inequality, for every t ∈ (0, 1/2),

exp(tE[M2]) ≤ E[exp(tM2)] ≤ E[n exp(tN (0, 1)2)] = n√
1 − 2t

.

Here, the last equality follows from the formula of the moment-generating function of a squared
Gaussian. We obtain the desired formula by setting t = 1/4 and taking logarithms. ◀

Proof of Theorem 4. The random variable F = (sign X, sign Y ) is the same as in Proposi-
tion 1. As in the previous proof, we first reduce to the case when ε is constant and use the
same notations in that proof.

Aaronson and Ambainis showed that E[sign(X)(H/n) sign(Y )] = Ω(1), where H is the
n × n Hadamard matrix. As ∥H/n∥∞→1 ≤ ∥H∥ ≤ 1, this justifies the quantum advantage.

For the classical case, as taking signs can only decrease advantage, we upper bound the
advantage of distinguishing Z = (X, Y ) from N (0, Id2n). The only relevant property of Z

is that E[Zi] = 1 and |E[ZiZj ]| ≤ 1/
√

n for all pairs i ̸= j. Without loss of generality, we
assume that k ≤

√
n/4.

The distinguisher’s strategy is specified by the query sets I and J with |I| = |J | = k,
issued in the first and second round, respectively. For the sake of upper bound, we can assume
without loss of generality that J is a deterministic function of the coordinates ZI = (Zi)i∈I

observed in the first round. The distinguisher’s advantage is at most

εC = max
I,J

sd((ZI , ZJ ), N (0, Id2k))

≤
√

1
2 max

I,J
kl((ZI , ZJ ), N (0, Id2k)) (Pinsker’s inequality)

=
√

1
2

(
max

I
kl(ZI , N (0, Idk)) + max

I
max

J
EZI kl(ZJ |ZI , N (0, Idk))

)
(Fact 23)

≤
√

1
2

(
max

I
kl(ZI , N (0, Idk)) + max

I
EZI max

J
kl(ZJ |ZI , N (0, Idk))

)
(convexity of max)

As k ≤ 2
3
√

n, the covariance matrix ΣI of ZI is 2/3k-close to the identity in infinity norm,
so using Claim 21, for every I one has

kl(ZI , N (0, Idk)) ≤ 1
2∥ΣI − Idk∥F ≤ k2

2n
. (6)

For the second KL-divergence, let µJ|I and ΣJ|I denote the vector of conditional means
(E[Zj |ZI ])j∈J and covariances Cov[Zj , Zj′ |ZI ] for j, j′ ∈ J , respectively. We will prove that
for all choices of I and J , ΣJ|I is 2/3k-close to Idk and apply Claim 21 to bound it by
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EZI
max

J
kl(ZJ |ZI , N (0, Idk)) ≤ 1

2 max
J

E
[
∥µJ|I∥2]+ 1

2 max
J

E
[
∥ΣJ|I∥2

F

]
. (7)

To bound the first term in (7), we analyze the projections Z
∥
j of Zj onto Span{Zi : i ∈ I}

for every j ̸∈ I. Fix a basis for the vector space spanned by Z1, . . . , Z2n and let zi be the
representation of Zi under this basis. Let B be the k × n matrix whose rows are zi for i ∈ I.
The projection z

∥
j of zj onto the row-span of B is given by the formula

z
∥
j = B⊤(BB⊤)−1Bzj .

The norm of this projection is at most

∥z
∥
j ∥ ≤ λmax(BB⊤)1/2 ·λmin(BB⊤)−1 ·∥Bzj∥ ≤

(
1 + k√

n

)1/2(
1 − k√

n

)−1
·
√

k

n
≤ 2
√

k

n
.

The second inequality follows from Fact 22 as BB⊤ is 1/
√

n-close to the identity and the
entries of Bzj are all bounded by 1/

√
n. The third inequality follows from the assumption

k ≤
√

n/3.
By (4), for every j, E[Zj |ZI ] is a Gaussian random variable of mean zero and standard

deviation at most 2
√

k/n. Letting µJ|I denote the vector of conditional means (E[Zj |ZI ])j∈J ,
by Fact 24, for any fixed I,

max
J

E
[
∥µJ|I∥2] ≤ kE max

j∈[n]\I
E[Zj |ZI ]2 ≤ k

(
2
√

k

n

)2

· 4 log(
√

2n) = 16k2 log(
√

2n)
n

. (8)

For the second term in (7), we apply (5) to obtain

Cov[Zj , Zj′ |ZI ] = E[Z⊥
j · Z⊥

j′ ] = E[Zj · Zj′ ] − E[Z∥
j · Z

∥
j′ ]

by orthogonality, from which we have∣∣Cov[Zj , Zj′ |ZI ] − E[Zj · Zj′ ]
∣∣ ≤ ∥z

∥
j ∥ · ∥z

∥
j′∥ ≤ 4k

n
≤ 1√

n
. (9)

As E[Zj · Zj′ ] is 1/
√

n close to the identity, we conclude that ΣJ|I is 2/
√

n ≤ 2/3k-close to
the identity. Therefore Claim 21 applies. Plugging (8) and (9) into (7) we obtain

EZI
max

J
kl(ZJ |ZI , N (0, Idk)) ≤ 1

2 · 16k2 log(
√

2n)
n

+ 1
2 · k2 · 4

n
= O

(k2 log n

n

)
.

Together with (6), this gives εC = O(k
√

log n/
√

n) as desired. ◀

6 Optimality of local unbiased estimators: Proof of Proposition 5

Proof of Proposition 5. With a (possible) change in the constant factor in the lower bound,
we may assume each form in the mixture depends on k bits of x and k bits of y. Let
p(x, y) =

∑
Aijxiyj , and let BIJ be a matrix supported on I, J ⊆ [n] with |I| = |J | = k:

[BIJ ]ij =
{

bij if i ∈ I, j ∈ J

0 otherwise
.
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Suppose ∥A∥∞→1 = 1 and A = EI,J [BIJ ], where the expectation is over an arbitrary
distribution over pairs I, J . It is sufficient to show that ∥BIJ∥∞→1 = Ω(

√
n/k) for at least

one choice of the index sets (I, J).
We prove the contrapositive. Suppose ∥BIJ∥∞→1 ≤ ε for all BIJ . By Claim 11,

∥BIJ∥row ≤ KG · ε, so
∑

i∈I,j∈J |[BIJ ]ij | ≤ KG · ε
√

k. Therefore∑
i,j

|Aij | =
∑
i,j

|EI,J [[BIJ ]ij ]| ≤ E
∑

i∈I,j∈J

|[BIJ ]ij | ≤ KG · ε
√

k.

For n being a power of two, let A be the n × n Hadamard matrix scaled by 1/n, such
that ∥A∥∞→1 = n. Then |Aij | = n−3/2 for all i and j, thus KG · ε

√
k ≥

√
n and hence

ε = Ω(
√

n/k) as desired. If n is not a power of two, we plant the largest possible Hadamard
matrix and zero out the remaining entries, the same argument still applies. ◀
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Abstract
We give new upper and lower bounds on the power of several restricted classes of arbitrary-order
read-once branching programs (ROBPs) and standard-order ROBPs (SOBPs) that have received
significant attention in the literature on pseudorandomness for space-bounded computation.

Regular SOBPs of length n and width ⌊w(n+1)/2⌋ can exactly simulate general SOBPs of length
n and width w, and moreover an n/2 − o(n) blow-up in width is necessary for such a simulation.
Our result extends and simplifies prior average-case simulations (Reingold, Trevisan, and Vadhan
(STOC 2006), Bogdanov, Hoza, Prakriya, and Pyne (CCC 2022)), in particular implying that
weighted pseudorandom generators (Braverman, Cohen, and Garg (SICOMP 2020)) for regular
SOBPs of width poly(n) or larger automatically extend to general SOBPs. Furthermore, our
simulation also extends to general (even read-many) oblivious branching programs.
There exist natural functions computable by regular SOBPs of constant width that are average-
case hard for permutation SOBPs of exponential width. Indeed, we show that Inner-Product
mod 2 is average-case hard for arbitrary-order permutation ROBPs of exponential width.
There exist functions computable by constant-width arbitrary-order permutation ROBPs that
are worst-case hard for exponential-width SOBPs.
Read-twice permutation branching programs of subexponential width can simulate polynomial-
width arbitrary-order ROBPs.
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1 Introduction

Read-once branching programs (ROBPs) have been extensively studied over the past four
decades, motivated by the fact that these programs capture how small-space machines use
random coins, and hence optimal and explicit pseudorandom generators for them would
imply BPL = L, showing that every randomized logspace algorithm can be simulated
deterministically with only a constant factor blow-up in space. Thus, there has been several
decades of research on constructing pseudorandom generators for different variants of ROBPs.
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44:2 On the Power of Regular and Permutation Branching Programs

In this paper, we study how those variants compare to each other in computational power,
through new simulations and separations. To describe our results, we first define the models
we are studying, starting from the most general model of read-many branching programs.

▶ Definition 1. An (oblivious) branching program (BP) B of length m and width w

computes a function B : {0, 1}n → {0, 1}. On an input x ∈ {0, 1}n, the branching program
computes as follows. It has m + 1 layers V0, . . . , Vm, each with vertices labeled {1, . . . , w}.
It starts at a fixed start state vst ∈ V0. Then for each step t = 1, . . . , m, it reads the next
symbol xi(t) for some i(t) ∈ [n], and updates its state according to a transition function
Bt : Vt−1 × {0, 1} → Vt by taking vt = Bt[vt−1, xi(t)]. For v ∈ Vs and u ∈ Vt for t > s, we
write B[v, y] = u if the program transitions to state u starting from state v upon reading
y = (xi(s+1), . . . , xi(t)). Moreover, there is a set of accept states Vacc ⊆ Vm. For x ∈ {0, 1}n,
we define B(x) = 1 if and only if B[vst, x] ∈ Vacc. That is, B accepts the inputs x that
lead it from the start state vst ∈ V0 in the first layer to an accept state in the last layer
vacc ∈ Vacc ⊆ Vm. We write B(v, x) = 1 if the program transitions to an accept state from a
state v on input x. We call the function i : [m]→ [n] the read order of B.

▶ Definition 2. A read-k branching program is a BP where the read order i satisfies
|i−1(j)| ≤ k for every j ∈ [n]. For k = 1 we denote this a read-once branching program
(ROBP).

▶ Definition 3. A standard-order ROBP (SOBP) is an ROBP whose read order is the
identity function (i.e. i(t) = t for every t ∈ [n]).

Note that we have the inclusions

SOBPs ⊆ ROBPs ⊆ BPs.

To emphasize the distinction between the standard-order model and general ROBPs (which
have i(t) = π(t) for some permutation π), we denote the latter as arbitrary-order ROBPs.
▶ Remark 4. Our choice of notation follows the recent surveys of Hatami and Hoza [26] and
Hoza [28]. There have been several (inconsistent) choices of notation in prior papers. In
particular, prior works have referred to standard order ROBPs as simply ROBPs, or “ordered
BPs”. Other works have referred to ROBPs as “unordered ROBPs”.

In 1990, Nisan [38] constructed an explicit pseudorandom generator (PRG) for SOBPs with
seed length O(log n · log(nw/ε)) (c.f. the optimal O(log(nw/ε)) achieved by the probabilistic
method). Despite extensive effort, this result has not been improved when the width of
the programs w is at least 4 and at most 2no(1) . Motivated by this longstanding challenge,
researchers have extensively studied restricted cases of the model, known as regular and
permutation SOBPs:

▶ Definition 5. A regular BP is a branching program where for all t ∈ [m] and i ∈ [w], there
are exactly two distinct pairs (j1, b1), (j2, b2) such that Bt[j1, b1] = Bt[j2, b2] = i. Equivalently,
the graph of transitions from Vt−1 to Vt is 2-in-regular.

▶ Definition 6. A permutation BP is an branching program where for all t ∈ [m] and
σ ∈ {0, 1}, Bt[·, σ] is a permutation on [w].

Note that we have the inclusions

permutation BPs ⊆ regular BPs ⊆ BPs

and the same inclusions hold when restricting BPs to ROBPs or SOBPs.
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There has been extensive prior work studying pseudorandomness for regular [31, 8, 16, 5,
34, 12] and permutation [32, 44, 41, 10, 29, 39, 22] SOBPs and ROBPs over roughly the last
decade.

For regular SOBPs, the PRG of Braverman, Rao, Raz, and Yehudayoff [8] improves
on Nisan’s (which has seed length O(log2 n) even for w = 4 and ε = 1/3) in the regime
where both w and 1/ε are subpolynomial, i.e. no(1). The later work [5] obtained better seed
length than O(log2 n) when either w or 1/ε was no(1) (whereas Braverman et al. required
both parameters to be small relative to n), at the cost of obtaining only a hitting set
generator (HSG), a weaker object than pseudorandom generators that is sufficient for most
derandomization tasks. For permutation SOBPs, Pyne and Vadhan [39] achieved seed length
Õ(log3/2 n) for an object known as a weighted PRG,1 in the w = n regime motivated by
derandomizing logspace.

Despite this extensive prior work, and the status quo where the known pseudorandom
objects for regular and permutation SOBPs are better than those known for generic SOBPs
in many regimes, there was relatively little work investigating the relative power of these
models. As an example, it is well known that SOBPs can be simulated by a one-way two-party
communication protocol, and therefore any program of width less than 2Ω(n) cannot compute
the Inner-Product function IP2n(x) :=

∑n
i=1 xixn+i (mod 2) on average. However, this

result does not say anything about the relative power of general SOBPs versus regular and
permutation SOBPs.

1.1 Our Results

We begin a systematic study of the relative power of SOBPs, regular SOBPs, and permutation
SOBPs. We first survey the landscape of known results before stating our results.

1.1.1 General vs. Regular Programs

Perhaps the best known upper bound in this regard is the work of Reingold, Trevisan, and
Vadhan [42] and its recent extension of Bogdanov, Hoza, Pyne, and Prakriya [5]. They showed
that regular SOBPs of width poly(nw) and length Õ(n) can approximately simulate general
SOBPs of width w and length n. This implies a “transfer result”: in the width-poly(n) regime,
optimal PRGs or HSGs for regular ROBPs imply the equivalent objects for general ROBPs,
and hence for logspace computation. However, these results have a few limitations. First,
the simulation was average-case, and due to this did not imply a transfer result for weighted
PRGs, a pseudorandom object that has seen extensive recent interest [7, 11, 14, 39, 27].
Moreover, both proofs are relatively involved.

We show that this upper bound can be improved and substantially simplified, and in fact,
general and regular programs of the same length m, regardless of being read-once or not, are
equivalent up to a factor of m in the width.

▶ Theorem 7 (Informal statement of Theorem 18). Let B be an oblivious branching program
of length m and width w ≥ 4. There exists a regular oblivious branching program R of length
m and width mw/2 such that R(x) = B(x) for all x. Moreover, R has the same read order
as B.

1 A weighted PRG is a tuple of functions (G, ρ) : {0, 1}s → {0, 1}n × R, where the weighted expectation
Ex[ρ(x) · B(G(x))] is within ε of E[B(Un)] for all B in the class.
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As a consequence, weighted PRGs for regular SOBPs with seed length matching those
known for permutation SOBPs [39] would imply an improved derandomization of logspace:2

▶ Corollary 8. Suppose there is an explicit weighted PRG for regular SOBPs of length n and
width w with seed length Õ(log n · (log n +

√
log(w/ε)) + log(w/ε)). Then BPL ⊂ L4/3+o(1).

This follows as a corollary of Theorem 7 and the argument of Chattopadhyay and Liao [11]
that the Saks–Zhou algorithm [43] can be instantiated with a weighted PRG.

As mentioned above, Theorem 7 holds even for non-read-once branching programs (as
defined in Definition 1), in contrast to the prior results of [42, 5]. As a corollary, we derive
that L can be computed by polynomial width regular branching programs:

▶ Corollary 9. Every language in L can be decided by a (read-many) regular branching
program of length and width poly(n), on inputs of size n.

In terms of separation results, some simple observations were known. The AND function,
which can be shown to require width n for permutation (in fact, regular) BPs, has a trivial
general BP of width 2. (See Observation 19 for a proof.) We extend this separation to larger
widths. This complements our simulation result (Theorem 7) by showing that in the case of
ROBPs, the loss of a factor of n/2 is tight up to an additive term of (w log w)/2.

▶ Proposition 10. For every w = 2t, n ∈ N, there is a function f : {0, 1}n → {0, 1}
computable by an general SOBP of width w such that every regular SOBP computing f has
width at least nw

2 − w log w.

It is known that general SOBPs of constant width cannot be approximated by regular
SOBPs of some poly(n) width in the “sandwiching notion” [3]. This can be derived by
combining the results of [9, 8]. Brody and Verbin [9] showed that there is an instantiation of
the Impagliazzo–Nisan–Wigderson PRG [31] that does not fool general SOBPs of width 3,
and yet Braverman et al. [8] shows that this same PRG fools regular SOBPs of width nc for
some c > 0.

1.1.2 Regular vs. Permutation Programs
For the relationship between permutation and regular SOBPs, the situation was even less
clear. As discussed in the previous section, despite extensive work on pseudorandomness for
permutation and regular SOBPs, prior work has not proven separations between the two
models. In fact, as far as we know, prior work did not exhibit any function computable by a
regular program that was not computable by a permutation program of equal width.

We develop new lower bounds that separate these models to a near-maximal extent.

▶ Theorem 11. There is c > 0 and w0 ∈ N such that for every ε > 0 and n the following
holds. There exists a function f : {0, 1}n → {0, 1} computable by a regular SOBP of width w0
such that no permutation SOBP of width 2cn/ log(1/ε) agrees with f on a 1/2 + ε fraction of
the inputs. In particular, no permutation SOBP of width 2c

√
n agrees with f on a 1/2 + 2−

√
n

fraction of inputs.

2 A preprint circulated by the second author claimed this as a consequence of [5]. However, it does not
follow from the argument in that work.
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The hard function in Theorem 11 is the Inner-Product function with a specific variable-
ordering. Our techniques for proving Theorem 11 are information-theoretic, and rely on
showing that the entropy of the state over the n + 1 layers of a permutation ROBP must be
non-decreasing.

Our next result shows that the Inner-Product function is in fact average-case hard for
arbitrary-order permutation ROBPs of exponential width.

▶ Theorem 12. Every arbitrary-order permutation ROBP B that computes IP⊕n(x) :=∑n
i=1 x2i−1x2i (mod 2) on more than a 3/4 + ε fraction of inputs has width at least 24ε2n.

Moreover, IP⊕n can be computed by a regular SOBP of width 4.

We conjecture that Theorems 11 and 12 can be strengthened to give optimal average-case
hardness, namely 1/2 + 2−n, but we have not been able to prove such a result.

▶ Conjecture 13. There exists a constant c > 0 such that the following holds. Every
arbitrary-order permutation ROBP B that computes IP⊕n(x) :=

∑n
i=1 x2i−1x2i (mod 2) on

more than a 1/2 + 2−cn fraction of inputs has width at least 2cn.

1.1.3 Standard-Order vs. Arbitrary-Order Programs
In the past decade, researchers have turned their attention of constructing PRGs from
SOBPs to the more general model of arbitrary-order ROBPs, as a way to generate new
ideas to improve the state-of-the-art PRGs for SOBPs, and to develop PRGs for several
natural subclasses of circuits that are not captured by SOBPs, as circuit classes are closed
under permutation of the input coordinates. This line of research has received extensive
interests [30, 41, 45, 25, 36, 21, 19], and in particular has resulted near-optimal PRGs
for several well-studied models of computation, including read-once formulas [6, 23, 13,
17, 19], constant-width arbitrary-order permutation ROBPs [41, 10, 34], and read-once
F2-polynomials [35, 36, 33, 18].

While Theorem 12 shows that there are regular SOBPs which cannot be approximated by
arbitrary-order permutation ROBPs of exponential width, we show that the opposite direction
is also true, by giving a function that is computable by an arbitrary-order permutation
ROBP of constant width that requires exponential width for (even general) SOBPs.

▶ Proposition 14 (Informal statement of Proposition 35). For every n, there exists a function
f : {0, 1}n → {0, 1} such that f is computable by an arbitrary-order permutation ROBP of
width 6, and every SOBP computing f has width at least 2n/2.

This result uses a non-Abelian group product and an adversarial argument.

1.1.4 Read Once vs. Read Many
Given our exponential lower bounds (Theorems 11 and 12) for permutation ROBPs, it is
natural to ask whether any of them extends to read-k programs.

We show that even in the read-2 setting, permutation branching programs already become
substantially more powerful. Specifically, read-twice permutation branching programs of
subexponential width can simulate arbitrary-order ROBPs of polynomial width:

▶ Proposition 15. Let f : {0, 1}n → [w] be computable by an arbitrary-order ROBP B of
width w. Then for every k ∈ N, f is computable by a read-(2k) permutation branching
program B′ of width w(k+1)n1/k .
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Our simulation in Proposition 15 follows directly from Bennett’s work on reversible
computation [4]. We complement Proposition 15 by showing that a subexponential blow-up
in the width is necessary for read-twice programs: there is no fixed read order such that
read-twice permutation BPs reading bits in that order can simulate even regular SOBPs of
constant width.

▶ Theorem 16. For every read-twice ordering i : [2n] → [n], there exists a function
g : {0, 1}n → {0, 1} computable by a regular ROBP of width O(1), such that every read-twice
permutation branching program P of width 2n1/8 with read order i computes g correctly on at
most 1/2 + 2−Ω(n1/8) fraction of inputs.

1.1.5 Permutation vs. Monotone Programs
Several works [37, 19] have studied the model of monotone branching programs, which
correspond to branching programs where the edges labeled 1 do not cross, and likewise
for the edges labeled 0. They are considered to be the “extreme opposite” of permutation
programs [19]. We provide evidence for this belief by showing that read-once DNFs, which
are computable by constant-width monotone programs, are worst-case hard for permutation
SOBPs of exponential width:

▶ Proposition 17. Let f(x1, y1, . . . , xn, yn) =
∨

i(xi ∧ yi). Then every permutation SOBP
computing f has width at least 2n.

2 Regular Branching Programs

We show that regular programs can exactly simulate general programs with a moderate
blow-up in width. We emphasize that our simulation is not restricted to the read-once
setting.

▶ Theorem 18. Let B : {0, 1}n → {0, 1} be a branching program of length m and width
w. There is a regular branching program R : {0, 1}n → {0, 1} of length m and width w′ :=
max{w, wm

2 + w(1− log w
2 )} such that R(x) = B(x) for all x ∈ {0, 1}n. Moreover, R has the

same variable read order as B. In particular, for w ≥ 4, we have w′ ≤ wm/2.

Proof. We prove by induction on length m. We show the stronger claim that R exactly com-
putes the states of B, i.e. that there are maps ϕt : [w′] → [w] such that
ϕi(R[vst, (xi(1), . . . , xi(t))]) = B[vst, (xi(1), . . . , xi(t))] for every x ∈ {0, 1}n and t ∈ [m].

When m ≤ log w, we can simulate B trivially by storing the bits read in at most 2m ≤ w

states. Now, suppose m ≥ log w + 1. For each state v in the (m − 1)-th layer Bm−1 of
B, let Cm−1(v) := ϕ−1

m−1(v). By the inductive assumption, we have
∑

v∈Bm−1
|Cm−1(v)| ≤

w(m− 1)/2 + w(1− log(w)/2).
Now, for each state u in the m-th layer Bm of B, create⌈

1
2

∑
(v,b):B[v,b]=u

|Cm−1(v)|
⌉

states, denoted Cm(u), and define ϕm such that ϕm(Cm(u)) := u.
Finally, for each b ∈ {0, 1} and v ∈ Bm−1 such that B[v, b] = u, we add a b-edge from

every state in Cm−1(v) to some state in Cm(u). There are su :=
∑

(v,b):B[v,b]=u|Cm−1(v)|
many such edges, and hence there are enough states in Cm(u) to accommodate this (with
each state having at most 2 edges). Now, summing over all u ∈ Bm, we have
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|Rm| =
∑

u∈Bm

|Cm(u)|

=
∑

u∈Bm

⌈
1
2

∑
(v,b):B[v,b]=u

|Cm−1(v)|
⌉

≤
∑

u∈Bm

(
1
2 + 1

2 ·
∑

(v,b):B[v,b]=u

|Cm−1(v)|
)

= |Bm|
2 +

∑
v∈Vm−1

|Cm−1(v)|

≤ w(m− 1)
2 + w

(
1− log w

2

)
+ w

2

= wm

2 + w
(

1− log w

2

)
.

Let k ≤ w be the number of u such that su is odd. Note that k must be even. For each such
u there is a state in Cm(u) such that it has in-degree one. To preserve regularity, we add
k/2 ≤ w/2 of dummy states in Rm−1 that are not reachable from the start state and connect
the k outgoing edges of these states to these u’s. ◀

We now show that for general SOBPs, this loss of a factor of m is tight, and in fact the
loss is even tight in the leading constant.

▶ Proposition 10. For every w = 2t, n ∈ N, there is a function f : {0, 1}n → {0, 1}
computable by an general SOBP of width w such that every regular SOBP computing f has
width at least nw

2 − w log w.

We recall the well-known fact that ANDn can be computed by a constant-width SOBP,
but requires width n for regular ROBPs. We provide a proof for completeness.

▶ Observation 19. Given n ∈ N, AND := ANDn can be computed by a general SOBP of
width 2. However, every regular SOBP R computing AND must have i + 1 distinct states
reachable from vst in layer i.

Proof. The fact that AND can be computed by a general SOBP of width 2 is direct. We show
the lower bound by induction. It is clearly true for layer 0 as vst can reach itself. Assuming
it holds for layer i, we note that from correctness, u := R[vst, 1i+1] ̸= R[vst, 1i||0] and hence
there are two distinct states reachable in layer i + 1 from R[vst, 1i]. Let Ri be the reachable
states in layer i that are not R[vst, 1i]. We have that there are at least 2|Ri| edges from
Ri (and every endpoint of such an edge is reachable). Moreover, we claim that these edges
cannot reach u. Otherwise there would be τ ≠ 1i+1 such that B[vst, τ ||1n−i−1] = B[vst, 1n]
which contradicts R computing AND. Thus there are at least |Ri|+ 1 vertices reachable in
layer i + 1 that are not u, so we conclude. ◀

We can then bootstrap this separation to work for larger widths. Essentially, we use a
multiplexer to force the program to remember a large amount of information before computing
AND.

▶ Definition 20. Given n, w = 2t, let m = n − 2(t − 1). Define f : {0, 1}t−1 × {0, 1}m ×
{0, 1}t−1 → {0, 1} as f(x, y, z) = ⟨x, z⟩ ⊕ AND(y) =

∑t−1
i=1 xizi + AND(y) (mod 2).

We first argue that f can be computed by a SOBP of width w.
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▷ Claim 21. f can be computed by an SOBP of width w.

Proof. We define a program B(x, y, z). In the first t layers, B stores the entire input. For
each state in layer t, B uses 2 states to compute AND(y), and hence at layer m + t− 1 the
states are labeled (x, AND(y)). Then the program reads in z and computes ⟨x, z⟩, such that
the states in the final layer are labeled (⟨x, z⟩, AND(y)) and hence B can return the value of
f . It is clear from this description that B has width 2 · 2t−1 = w. ◁

We then argue that no regular SOBP can do better than remembering the first t− 1 bits,
and moreover must compute AND using essentially disjoint states.

▷ Claim 22. For every regular SOBP B computing f , for every x ̸= x′ ∈ {0, 1}t−1 we have
B[vst, x] ̸= B[vst, x′]. Furthermore, for every k < m the states reachable in layer t− 1 + k

from B[vst, x] must be disjoint from those reachable from B[vst, x′].

Proof. First assume for contradiction there are x, x′ ∈ {0, 1}t−1 with x′ ̸= x where B[vst, x] =
B[vst, x′]. Let i be some index where x′

i ̸= xi and hence ⟨x, ei⟩ ̸= ⟨x′, ei⟩. Thus, f(x, 0m, ei) ̸=
f(x′, 0m, ei), but

B
[
vst, x||0m||ei

]
= B

[
vst, x′||0m||ei

]
which is a contradiction. For the second claim, assume for contradiction there are τ, τ ′ ∈
{0, 1}k (where we do not require τ ̸= τ ′) such that B[vst, x||τ ] = B[vacc, x′||τ ′]. But then
f(x, τ ||0m−k, ei) ̸= f(x′, τ ′||0m−k, ei) from before, but

B
[
vst, x||τ ||0m−k||ei

]
= B

[
vst, x′||τ ′||0m−k||ei

]
which is a contradiction. ◁

We can then prove the result.

Proof of Proposition 10. Let f be the function in Definition 20 with n, w = 2t. By Claim 21,
f can be computed by a general SOBP of width w.

Now let R be an arbitrary regular SOBP computing f . By Claim 22, we must have
R[vst, x] ̸= R[vst, x′] for every x ̸= x′ ∈ {0, 1}t−1. Since R must correctly compute AND(y)
(which can be shown by a similar extension argument), we obtain that for every x, there are
at least m states reachable from R[vst, x] in layer t + m− 1 for every x, and all of these states
are disjoint by Claim 22. Thus, it follows from m = n− 2(t− 1) that R has width at least

2t−1 ·m = w

2 ·m = nw

2 + w(1− log w). ◀

3 Permutation Read-Once Branching Programs

In this section, we give explicit functions computable by small width regular SOBPs that
are average-case hard against permutation SOBPs and ROBPs of large widths. We will be
working with the Inner-Product functions with their input bits ordered in a certain manner.

▶ Definition 23. For integers ℓ, m, define IP⊕m
2ℓ : ({0, 1}2ℓ)m → {0, 1} to be

IP⊕m
2ℓ (x1, y1, . . . , xm, ym) :=

m⊕
i=1
⟨xi, yi⟩,

where ⟨x1, . . . , xℓ, y1, . . . , yℓ⟩ :=
⊕ℓ

j=1 xjyj. We omit the subscript 2ℓ when ℓ = 1.
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We first show that IP⊕m
2ℓ can be computed by a regular SOBP of width 22ℓ+1 via a simple

argument. This follows from the fact that regular SOBPs can compute the XOR of an
arbitrary function on 2ℓ bits using 2ℓ + 1 bits, because we can store all the 2ℓ bits and
maintaining the prefix-XOR with 1 extra bit using a regular program. The program we
construct is essentially the one used in simulating high-degree regular programs by binary
regular programs in [5]:

▶ Lemma 24. Let f : {0, 1}k → {0, 1} be an arbitrary function. Then g : ({0, 1}k)n → {0, 1}
defined as

g(x1, . . . , xn) :=
⊕
i∈[n]

f(xi),

where xi ∈ {0, 1}k for each i ∈ [n], can be computed by a regular SOBP of width 2k+1.

Proof. Let B be a program where each state has label (s, b) ∈ {0, 1}k × {0, 1}. On reading
xi

j where j ∈ [k], the program updates as

(s, b)→
{

(s′, b) if 1 ≤ j ≤ k − 1
(s′, b⊕ f(s)) if j = k.

where s′ is s with the j-th coordinate replaced with the bit xi
j . The width of this program

is 2k · 2, and the fact that it computes f is direct. Finally, the program is regular as every
s′ has a single b ∈ {0, 1} and two strings s ∈ {0, 1}k for which the replacement of the j-th
coordinate of s with b produces s′. ◀

We recall our average-case lower bound against permutation ROBPs computing inner
product.

▶ Theorem 12. Every arbitrary-order permutation ROBP B that computes IP⊕n(x) :=∑n
i=1 x2i−1x2i (mod 2) on more than a 3/4 + ε fraction of inputs has width at least 24ε2n.

Moreover, IP⊕n can be computed by a regular SOBP of width 4.

For permutation SOBPs, we can strengthen this to a strong average case lower bound:

▶ Theorem 11. There is c > 0 and w0 ∈ N such that for every ε > 0 and n the following
holds. There exists a function f : {0, 1}n → {0, 1} computable by a regular SOBP of width w0
such that no permutation SOBP of width 2cn/ log(1/ε) agrees with f on a 1/2 + ε fraction of
the inputs. In particular, no permutation SOBP of width 2c

√
n agrees with f on a 1/2 + 2−

√
n

fraction of inputs.

Our argument relies on the fact that the entropy of the states in each layer of a permutation
ROBP is non-decreasing. Before stating this property formally, we first recall some basic
facts in information theory. We use capital letters to denote random variables, and lower
case to denote specific assignments.

▶ Definition 25. Given a joint random variable (X, Y ), let
H(X) :=

∑
x∈Supp(X) p(x) log2(1/p(x)) be the (binary) entropy of X;

H(X | Y ) := H(X, Y )−H(Y ) be the conditional entropy of X given Y , and
I(X; Y ) := H(X)−H(X | Y ) be the mutual information of X and Y .

Moreover, given p ∈ [0, 1], let H(p) := p log2(1/p) + (1− p) log2(1/(1− p)) be the entropy of
a p-biased Bernoulli random variable.
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We define the distributions over states of a program.

▶ Definition 26. Given a ROBP B of length n, for i ∈ {0, . . . , n}, let Si be the distribution
over the reachable states after reading Xi of a uniformly random X ∼ {0, 1}n.

We then note the most important property of permutation SOBPs from this perspective:
given the state reached after reading xi and the value of xi, one can exactly recover the state
after reading xi−1. More generally, we have the following proposition.

▶ Proposition 27. Let (X1, . . . , Xn) ← Un. For every SOBP B and i < j, we have
H(Sj | Si, Xi+1, . . . , Xj) = 0. Moreover, if B is a permutation SOBP then H(Si |
Sj , Xi+1, . . . , Xj) = 0.

Proof. The first claim is immediate from the fact that knowing the current state Si and
next j − i bits Xi+1, . . . , Xj to be read determines the state Sj . The second claim is likewise
immediate, as for a permutation SOBP there is exactly one state Si in layer i that reaches
the state Sj in layer j after reading Xi+1, . . . , Xj . ◀

We use this property to show that for permutation SOBPs, the entropy of the state at
layer i must increase by at least the mutual information between the state and the i-th input
bit, and use this to conclude a lower bound on the width.

▶ Lemma 28. Let (X1, . . . , Xn) ∼ {0, 1}n be a uniform n-bit input. For a permutation
SOBP B of length n and width w, let i1 < · · · < im be some m layers in B, and Xij :=
(Xij−1+1, . . . , Xij ), where i0 := 0. Then

log w ≥
m∑

j=1
I(Xij ; Sij ).

Proof. We first prove that for every j ∈ [m],

H(Sij
) = I(Xij ; Sij

) + H(Sij−1). (1)

Given this, the lemma follows from H(S0) = 0 and

log w = log supp(Sim) ≥ H(Sim) =
m∑

j=1
H(Sij )−H(Sij−1) =

m∑
j=1

I(Xij ; Sij ).

We now prove Equation (1). By Proposition 27 we have

H(Sij | Sij−1 , Xij ) = 0 = H(Sij−1 | Sij−1 , Xij ).

Applying the chain rule to both sides we obtain

H(Sij−1 , Xij ) = H(Sij
, Sij−1 , Xij )−H(Sij

| Sij−1 , Xij )
= H(Sij−1 , Sij , Xij )−H(Sij−1 | Sij , Xij )
= H(Sij , Xij ).

Another chain rule to both sides gives

H(Xij | Sij
) + H(Sij

) = H(Xij | Sij−1) + H(Sij−1).
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Thus,

H(Sij
) = H(Xij | Sij−1) + H(Sij−1)−H(Xji | Sji

)
= H(Sij−1) +

(
H(Xij

)−H(Xij | Sij
)
)
−
(
H(Xij )−H(Xij | Sij−1)

)
= H(Sij−1) + I(Sij ; Xij )− I(Sij−1 ; Xij )
= H(Sij−1) + I(Sij

; Xij ),

where the final step follows from the fact that Xij
is independent of all prior bits, and thus

the state at layer ij . ◀

We are now prepared to prove the lower bounds. In both cases, we require Fano’s
inequality. For the inner product bound, we use a simple formulation due to Regev [40]:

▶ Lemma 29 (Claim 2.1 [40]). Let X be uniformly distributed over {0, 1}. Let S be a
random variable such that there exists f such that PrX,S [f(S) ̸= X] =: p ≤ 1/2. Then
I(X; S) ≥ 1−H(p).

3.1 Mild Average-Case Lower Bounds for Arbitrary-Order Programs

We now prove the lower bound in Theorem 12: To illustrate the idea, consider a permutation
SOBP B that reads its input x in the order of x1, . . . , x2n. We will show that when X is
uniform over {0, 1}2n, for every i ∈ [n], given the state S2i−1 reached by B after reading
X1, . . . , X2i−1, we can use B to predict the value of X2i−1 better than random guessing,
showing that there is non-trivial amount of mutual information between S2i−1 and X2i−1.
To see this, note that for every x ∈ {0, 1}n,

x2i−1 = IP⊕2n(x1, . . . , x2i−1, 0, x2i+1, . . . , x2n)⊕ IP⊕2n(x1, . . . , x2i−1, 1, x2i+1, . . . , x2n).

Moreover, given a state Si+1, we can simulate the remaining program on the two inputs
(x2i = 0, X2i+1, . . . , X2n) and (x2i = 1, X2i+1, . . . , X2n), for a uniform X2i+1, . . . , X2n, to
compute the right hand side, which by a union bound, is correct and thus equals X2i−1 with
probability at least 1/2 + 2ε.

Proof of Theorem 12. Let X = (X1, . . . , X2n) := (X1, Y1, . . . , Xn, Yn) be a uniform ran-
dom input. Fix an arbitrary-order permutation ROBP B that reads x in the order of
xσ(1), . . . , xσ(2n) for some permutation σ. By assumption we have Pr[B(X) ̸= f(X)] ≤ 1/4−ε.

For every i ∈ [n], let ri := min{σ−1(2i − 1), σ−1(2i)} be the layer reached by B after
reading the first bit of x2i−1 and x2i. Let L ⊂ [2n] be the indices of the variables of X read
up to this point (i.e., L = {σ(1), . . . , σ(ri)} and let R := [2n] \ L = {σ(ri + 1), . . . , σ(2n)}.

We now show that I(Xri ; Sri) ≥ 1−H(1/2− 2ε), which suffices to prove the result by
Lemma 28. To do so, given the state sri

in layer ri, we let our guess of xri
be

g(sri) = B
[
v, y0]⊕B

[
v, y1],

where y ← UR is a random suffix and yb is y with its (ti := max{σ−1(2i− 1), σ−1(2i)})-th
bit replaced with b ∈ {0, 1}. Observe that B[Sri , Y b∗] is identical to f(X) conditioned on
Xti

= b. We have
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Pr
X

[
g(Sri

) ̸= Xri

]
= Pr

X

[
B
[
Sri

, Y 0∗]⊕B
[
Sri

, Y 1∗] ̸= Xri

]
≤ Pr

X

[
B
[
Sri

, Y 0∗] ̸= f(X)
]

+ Pr
X

[
B
[
Sri

, Y 1∗] ̸= f(X)
]

≤ Pr
X

[
B(X) ̸= f(X) | Xti = 0

]
+ Pr

[
B(X) ̸= f(X) | Xti = 1

]
= 2 Pr

[
B(X) ̸= f(X)

]
≤ 1/2− 2ε.

By Lemma 29 we have I(Xri
; Sri

) ≥ 1 −H(1/2 − 2ε) ≥ 4ε2. Therefore by Lemma 28 we
have

log w ≥
n∑

i=1
I(Xri ; Sri) ≥ 4ε2n,

and hence w ≥ 24ε2n. The “moreover” claim follows from Lemma 24. ◀

3.2 Moderate Average-Case Lower Bounds
Before proving our strong average-case lower bound (Theorem 11), we have to extend
Theorem 12 to improve the correlation bound from 3/4 + ε to 1/2 + ε0 for an arbitrary
constant ε0.

▶ Theorem 30. Let ℓ ≥ 8 log(1/ε). If B is a permutation SOBP of width w and length 2ℓm

that agrees with IP⊕m
2ℓ on a 1/2 + ε fraction of inputs, then w ≥ 2εmℓ/4.

The high-level idea is to combine the idea in the previous subsection with Goldreich–Levin
list-decoding. Instead of predicting 1 bit, we will divide the input into blocks and show
that we can predict the whole block of Xi given the state Si reached by B upon reading
Xi. To do so, we first show that with probability at least ε/2 over all-but-the-Y i-part of
the input, we have the following property: Given the state Si, we can predict ⟨Xi, Y i⟩ for a
random sample Y i ∼ {0, 1}ℓ correctly with probability 1/2 + ε. Then by the Goldreich–Levin
theorem, we can use this predictor to narrow Xi down to a list of size 1/ε2, showing that
there is a non-trivial amount of mutual information between Xi and Si.

Our argument only requires the following bound on the “list size,” which follows from
Parseval’s identity.

▷ Claim 31. For every Boolean function f : {0, 1}ℓ → {0, 1}, there are at most 1/ε2 many
a ∈ {0, 1}ℓ such that Pr[f(U) = ⟨a, x⟩] ≥ 1/2 + ε/2.

Proof. This is equivalent to f̂(a) ≥ ε, where f̂(a) := Ex[f(x)(−1)⟨a,x⟩]. Let L be the number
of such a’s. Then by Parseval’s identity, we have Lε2 ≤

∑
a∈{0,1}ℓ f̂(a)2 = E[f(x)2] ≤ 1.

Rearranging gives L ≤ 1/ε2. ◁

3.2.1 Proof of Theorem 30
Proof. Let (X1, . . . , Y m) be a uniformly random input of IP⊕m

2ℓ . Let B be a width-w
permutation SOBP that agrees with IP⊕m

2ℓ with probability 1/2 + ε. Our goal is to show that
w ≥ 2εℓm/4. For i ∈ [m], let Si denote the state B reaches after reading Xi. We will show
that I(Si; Xi) ≥ εℓ/4, from which the theorem follows from Lemma 28.
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To proceed, fix an i ∈ [m]. Given an input (x1, y1, . . . , xm, ym) of B, let z ∈ ({0, 1}ℓ)2m−1

denote all but the yi-th block of y, that is, z = (x1, . . . , yi−1, xi, xi+1, . . . , ym). We will use
the shorthand B(z, yi) to denote B(x1, y1, . . . , xm, ym). Given z ∈ ({0, 1}ℓ)2m−1 and an
auxiliary bit a ∈ {0, 1}, consider the function Bz,a : {0, 1}ℓ → {0, 1} defined by

Bz,a(yi) := B(z, yi)⊕
⊕
j>i

⟨xi, yi⟩ ⊕ a. (2)

(One should think of a as a guess of the bit
⊕

j<i⟨xj , yj⟩.) Let si be the state reached by B

upon reading the prefix (x1, y1 . . . , xi) ∈ ({0, 1}ℓ)2i−1. Observe that we can compute Bz,a(yi)
by simulating B starting from state si on the remaining inputs (yi, xi+1, . . . , ym) and then
XORing its output with a.

We claim that with probability at least ε/2 over (Z, A) ∼ ({0, 1}ℓ)2m−1 × {0, 1}, we have

Pr
Y i∼{0,1}n

[
BZ,A(Y i) = ⟨Xi, Y i⟩

]
≥ 1/2 + ε/2. (3)

To see this, note that A is a correct guess of the bit
⊕

j<i⟨xj , yj⟩ with probability 1/2, i.e.
PrA∼{0,1}[

⊕
j<i⟨xj , yj⟩ = A] = 1/2. Conditioned on A being the correct guess, it follows by

an averaging argument that with probability at least ε/2 over Z ∼ ({0, 1}ℓ)2m−1 we have

Pr
Y i∼{0,1}ℓ

[
BZ,A(Y i) = ⟨Xi, Y i⟩

]
= Pr

Y i∼{0,1}ℓ

[
B(Z, Y i) = ⟨Xi, Y i⟩ +

⊕
j>i

⟨Xj , Y j⟩ +
⊕
j<i

⟨Xj , Y j⟩
]

= Pr
Y i∼{0,1}ℓ

[
B(Z, Y i) = IP⊕k(Z, Y i)

]
≥ 1/2 + ε/2.

Let us call the pair (z, a) good if it satisfies Equation (3). Note that for a good (z, a), by
Claim 31, there are at most 1/ε2 many choices of r ∈ {0, 1}ℓ such that

Pr
Y i∼{0,1}ℓ

[
Bz,b(Y i) = ⟨r, Y i⟩

]
≥ 1/2 + ε/2,

and xi is one of them, and thus we have the following claim.

▷ Claim 32. H(Xi | Si, (Z, A) is good) ≤ log(1/ε2).

We will use the following fact behind the proof of Fano’s inequality.

▷ Claim 33 (Fano’s inequality). Let X, Y, G be three random variables such that H(G |
X, Y ) = 0. Then

H(X | Y ) = H(G | Y ) + H(X | G, Y ).

For a uniform (X1, . . . , Y m) ∼ ({0, 1}ℓ)2m, let G := G(Z, A) be the indicator random
variable of whether (Z, A) is good. Let Z>i denote (Xi+1, . . . , Y m). Since Xi is independent
of Z>i and A,

H(Xi | Si) = H(Xi | Si, Z>i, A).

Now, given Si, Z>i, A, and Xi, we can compute BZ,A and determine if (Z, A) is good,
and thus we have H(G | Si, Xi, Z>i, A) = 0. So by Claim 33,

H(Xi | Si, Z>i, A) = H(G | Si, Z>i, A) + H(Xi | G, Si, Z>i, A). (4)
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We can bound the first term H(G | Si, Z>i, A) by H(G). For the second term, we apply
Claim 32 as follows:

H(Xi | Si, Z>i, A, G) = Pr[G] · H(Xi | Si, Z>i, A, G = 1) + (1 − Pr[G]) · H(Xi | Si, Z>i, A, G = 0)

≤ Pr[G] · log(1/ε2) + (1 − Pr[G]) · H(Xi).

Applying both bounds to the right hand side of Equation (4) gives

H(Xi | Si, Z>i, A) ≤ H(G) + Pr[G] · log(1/ε2) + (1− Pr[G]) ·H(Xi).

As Pr[G] ≥ ε/2, we have H(G) ≤ 2 Pr[G] log(1/ Pr[G]) ≤ 2 Pr[G] log(2/ε). Therefore,

I(Xi; Si) = H(Xi)−H(Xi | Si)
= H(Xi)−H(Xi | Si, Z>i, A)
≥ Pr[G] ·

(
H(Xi)− log(1/ε2)

)
−H(G)

≥ Pr[G] ·
(
H(Xi)− 4 log(1/ε)

)
≥ (ε/2) ·

(
ℓ− 4 log(1/ε)

)
,

which is at least ε · ℓ/4 for ℓ ≥ 8 log(1/ε). It follows from Lemma 28 that

log w ≥
m∑

i=1
I(Si; Xi) ≥ εmℓ/4. ◀

3.3 Strong Average-Case Lower Bounds
We now prove Theorem 11. Assadi and N. [1] proved the following XOR Lemma for multi-
pass streaming algorithms.3 In the case of one pass this is essentially the same as SOBPs.
Moreover, we observe that their argument also applies to permutation SOBPs.

▶ Lemma 34 ([1]). There exists an absolute constant ε0 > 0 such that the following holds.
Let f : {0, 1}m → {0, 1} be any function and let f⊕ℓ be the XOR of ℓ copies of f on disjoint
(sequential) blocks. Suppose Pr[P (U) = f(U)] ≤ 1/2+ε for some ε ≤ ε0 for every permutation
SOBP P of width w. Then Pr[P (U) = f⊕ℓ(U)] ≤ 1/2 + εℓ/7 for every permutation SOBP P

of width w.

Proof of Theorem 11. By Theorem 30, for every constant ε0 > 0, there exists a constant ℓ

such that the function IP⊕m
2ℓ on 2ℓm bits is (1/2 + ε0)-hard for permutation SOBPs of width

2ε0mℓ/8. By Lemma 34, the function IP⊕mk
2ℓ on 2ℓmk bits is (1/2+ε

k/7
0 )-hard for permutation

SOBPs of width 2ε0mℓ/8. Choosing ε0 to be a sufficiently small constant, k = 7 logε0
(1/ε),

and letting n := 2ℓmk gives us a hard function on n bits that is (1/2+ε)-hard for permutation
SOBPs of width 2cn/ log(1/ε) for a universal constant c. ◀

3.4 Worst Case Lower Bounds Against Monotone Functions
Next, we show there are monotone functions (in fact, read-once DNFs) that are worst-case
hard for permutation SOBPs of exponential width.

▶ Proposition 17. Let f(x1, y1, . . . , xn, yn) =
∨

i(xi ∧ yi). Then every permutation SOBP
computing f has width at least 2n.

3 There is a mistake in the publicly available versions which has been corrected by the authors [2].



C. H. Lee, E. Pyne, and S. Vadhan 44:15

Proof. Let B be a permutation SOBP computing f . We will show that in layer 2i (the state
after reading both variables in the ith term), there are 2i states reachable by strings that
have not yet satisfied a term. This holds vacuously for i = 0. Now suppose this holds for
term i and let Ti be the set of such states, and for b ∈ {0, 1} define

Ti[b] := {v ∈ V2i+1 : ∃u ∈ Ti s.t. B[u, b] = v}.

We first observe that |Ti[1]| = |Ti[0]| = |Ti| ≥ 2i and Ti[1] ∩ Ti[0] = ∅. The first follows
since B is a permutation SOBP (and hence all states in Ti[1] can have a single in-1-edge
and likewise for Ti[0]) and the second follows via an extension argument, since otherwise B

fails to compute f . This implies |Ti[10] ∪ Ti[00]| ≥ 2|Ti| again using that B is a permutation
SOBP. Finally, we observe that Ti+1 ⊇ Ti[10] ∪ Ti[00] and hence |Ti+1| ≥ 2i+1 as claimed,
which completes the induction.

The “moreover” claim follows from inspection. ◀

3.5 Separating General SOBPs From Permutation ROBPs
We now give a function f that is computable by an arbitrary-order permutation ROBP of
constant width but is hard for any SOBP of exponential width.

▶ Proposition 35. Let D3 be the Dihedral group of order 6 with identity element e and
fix two reflections r, s such that r2 = s2 = e and rs ̸= sr. Let S = {r, s, sr}. Consider
f : {0, 1}2n → {0, 1} defined by

f(x, y) := ⊮(rx1sy1 · · · rxnsyn ∈ S).

Then every general SOBP computing f has width at least 2n. Moreover, f can be computed
by a arbitrary-order permutation ROBP of width 6.

Proof. The “moreover” claim follows from the fact that any group product can be simulated
by a permutation ROBP of width equal to the group’s order. We now claim that for every
x ̸= x′ ∈ {0, 1}n, there is a y ∈ {0, 1}n such that f(x, y) ̸= f(x′, y), and therefore any SOBP
must use 2n states to remember x after reading it.

First, consider the case where the Hamming weights of x and x′ have different parities.
Then by taking y to be the all-zero string 0n and using r2 = e, we have f(x, y) = rb and
f(x′, y) = r1−b for some b ∈ {0, 1}.

Now, suppose their parities are the same. Let i ∈ [n] be the first position where x and
x′ differ, and without loss of generality assume xi = 1 (and so x′

i = 0). Let y = ei. Then
f(x, y) = rsrb and f(x′, y) = sr1−b for some b ∈ {0, 1}, but s, sr ∈ S and rsr, rs ̸∈ S. So in
either case we have f(x, y) ̸= f(x′, y). ◀
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We construct P as follows. At each step, P remembers the at most m out of the n states
reached by O. Let si ∈ [w] be the state reached by O after reading x1, . . . , xi. The program
P first reads x1, . . . , xm to compute and store the m states (s1, . . . , sm) ∈ [w]m reached by
O in the first m steps. Knowing sm−2, we can read xm−1 again to erase sm−1 from the
memory, reaching the state (s1, . . . , sm−2, 0, sm). Knowing sm−3, we can read xm−2 again
to erase sm−2, reaching (s1, . . . , sm−3, 0, 0, sm). More generally, after reading xm−2, . . . , x1
the second time 4, we can erase sm−1, . . . , s1 from memory and we are left with

(0, . . . , 0, sm).

Now, given sm, we read the next m − 1 bits xm+1, . . . , x2m−1 to compute and store
(sm+1, . . . , s2m−1, sm). Using a similar strategy, we can read x2m−2, . . . , xm+1 again to
erase s2m−2, . . . , sm+1 from memory, giving us

(0, . . . , 0, s2m−1, sm).

Continuing, we can compute (s∑m

i=1
i, s∑m

i=2
i, . . . , s2m−1, sm) reversibly with wm states.

Thus we can compute sn as long as

m∑
i=1

i = m(m + 1)
2 ≥ n.

which holds when m =
√

2n.
We just showed how to compute the m-tuple of states (s∑m

i=1
i, s∑m

i=2
i, . . . , s2m−1, sm)

reversibly by reading the input twice. By reading the input another two times, from
(s∑m

i=1
i, s∑m

i=2
i, . . . , s2m−1, sm) we can erase everything but s∑m

i=1
i =: sf(m) to com-

pute (sf(m), 0, . . . , 0) reversibly. We now repeat the above strategy recursively to com-
pute (s∑m

i=1
f(i), s∑m

i=2
f(i), . . . , s2f(m)−1, sf(m)) with a read-4 permutation program of width∑m

i=1 f(i).
By an inductive argument, we can compute the state sn of the read-once branching

program reversibly with a read-(2k) permutation program of width wm, whenever

n ≤
m∑

ik=1

ik∑
ik−1=1

· · ·
i2∑

i1=1
i1 =

(
m + k

k + 1

)
.

Choosing m ≥ (k + 1)n1/(k+1) completes the proof. ◀

A.1 Hardness for Read-Twice Permutation Programs
We now show that an exponential blow-up in the width in Proposition 15 is necessary. We
first restate the theorem.

▶ Theorem 16. For every read-twice ordering i : [2n] → [n], there exists a function
g : {0, 1}n → {0, 1} computable by a regular ROBP of width O(1), such that every read-twice
permutation branching program P of width 2n1/8 with read order i computes g correctly on at
most 1/2 + 2−Ω(n1/8) fraction of inputs.

4 Note that the order of how the bits are read matters. For example, without knowing sm−2 we cannot
compute sm−1 using xm−1.
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A 2-pass BP is a read-2 BP where the first read of all its n-bit input come before the
second read of any bit. We first prove an average-case lower bound against 2-pass permutation
programs of width 2

√
n, where the second pass of the n-bit input is read in the same or the

reverse order as the first pass. We show that given any read-twice ordering of the input bits,
either

√
n of the bits can be read in a read-once manner, or n1/4 of the bits can be read in

the 2-pass manner described above. In either case, we can define our hard function on at
least n1/4 bits and apply our average-case lower bounds. As both programs in the theorem
can read input bits in arbitrary order, by permuting the indices of the input we can assume
the indices in the first pass of the read are in increasing order.

A.1.1 From 2-pass lower bound to read-once lower bound
We obtain our 2-pass lower bound by a reduction to our read-once lower bound (Theorem 11)
based on an idea by David, Papakonstantinou, and Sidiropoulos [15].

▶ Proposition 36. Let P be a 2-pass permutation BP of width w that reads its first pass of the
input in the standard order, and its second pass in the same or reverse order as the first pass.
If Pr[P (U) = f(U)] ≥ 1/2 + ε for some f : {0, 1}n → {0, 1}, then there exists a permutation
SOBP permutation program P ′ of width w2 such that Pr[P ′(U) = f(U)] ≥ 1/2 + ε/w.

▶ Corollary 37. There exists a function f : {0, 1}n → {0, 1} computable by a regular SOBP
of constant width that is (1/2 + 2−

√
n)-hard against 2-pass permutation BPs of width 2c

√
n

that reads its second pass of the input in the same or reverse order as the first pass for a
universal constant c.

Proof. Let f be the function in Theorem 11 with ε = 2−(1+c)
√

n, which is hard against
permutation SOBPs of width 2(c′/(1+c))

√
n for some universal constant c. Suppose f is

not (1/2 + 2−
√

n)-hard against a 2-pass permutation SOBP of width w = 2c
√

n. Then by
Proposition 36, f is not (1/2 + 2−(1+c)

√
n)-hard against a permutation SOBP of width 22c

√
n.

Choosing c such that 2c < c′/(1 + c), we get a contradiction. ◀

Proof of Proposition 36. We first handle the case where the second pass is in the same
order as the first pass. Suppose

Pr[P (U) = f(U)]− Pr[P (U) ̸= f(U)] > ε.

Let Vn be the layer P reaches after making its first pass on x. By an averaging argument,
there must be a state v∗ ∈ Vn such that

Pr
[(

P (U) = f(U)
)
∧ P→v∗(U)

]
− Pr

[(
P (U) ̸= f(U)

)
∧ P→v∗(U)

]
≥ 1
|Vn|

∑
v∈Vn

(
Pr
[(

P (U) = f(U)
)
∧ P→v(U)

]
− Pr

[(
P (U) ̸= f(U)

)
∧ P→v(U)

])
≥ 1
|Vn|

(
Pr
[
P (U) = f(U)

]
− Pr

[
P (U) ̸= f(U)

])
≥ ε

|Vn|
.

For b ∈ {0, 1}, consider the new function P ′
b that outputs P (x) if Pv∗(x) = 1 and outputs b

otherwise. Note that adv(P ′
b, f) ≥ ε/|Vn| for one of the b ∈ {0, 1}. Assume b = 0 without

loss of generality.
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We now show that the function P ′
0 can be computed by a permutation SOBP of width

w2 as follows. Its i-th layer V ′
i is Vi × Vn+i. Its start state is (v0, v∗). Its accept states are

V ′
acc := {(v1, v2) : (v1 = v∗ ∧ v2 ∈ Vacc)}.

To handle the case where the second pass is in the reverse order, we use a similar idea.
Suppose

Pr[P (U) = f(U)]− Pr[P (U) ̸= f(U)] > ε.

Let Vacc ⊆ V2n be the set of accept states in the final layer. By an averaging argument, there
must be a state v∗ ∈ Vacc such that

Pr
[
P→v∗(U) = f(U)

]
− Pr

[
P→v∗(U) ̸= f(U)

]
≥ ε

|Vacc|
.

We now show that the function P→v∗ can be computed by a permutation SOBP program
of width w2. Here we use the fact that P is a permutation BP, where we can reverse the
transitions in the program as follows. Define the reversed transition P −1

r : Vr×{0, 1} → Vr−1
to be P −1

r [vr, xr] := vr−1, where vr−1 is the unique state v ∈ Vr−1 such that Pr[vr−1, xr] = vr.
To implement P→v∗ , its i-th layer V ′

i is Vi × V2n−i. Its start state is (v0, v∗) ∈ V0 × V2n.
Its transition P ′

i : V ′
i−1 → V ′

i is P ′
i ((v1, v2), xi) = (Pi(v1, xi), P −1

n−i+1(v2, xi)). Its accept states
are V ′

acc := {(v1, v2) : v1, v2 ∈ Vn : v1 = v2)}. ◀

A.1.2 From 2-pass lower bound to read-2 lower bound
We follow a similar idea that is used in [24]. Given a read-2 sequence, by permuting the
indices of the input bits, we may assume the first pass is in increasing order. We will show that
it contains a subsequence of the form i1i1i2i2 · · · i√

ni√
n, in which case we can define the hard

function on xi1 , . . . , xi√
n

and applying our read-once lower bound on
√

n bits, or it contains a
2-pass subsequence of the form i1 · · · i√

niσ(1) · · · iσ(
√

n) for some permutation σ : [
√

n]→ [
√

n],
in which case by the Erdős–Szekeres theorem (Theorem 38 below), the sequence iσ(1) · · · iσ(

√
n)

must contain a monotone subsequence ij1 · · · ij
n1/4−1

of length n1/4 − 1, and so the read-2
sequence contains a 2-pass sequence on n1/4 − 1 bits where the second pass is in the same or
reverse order as the first pass. So we can apply our 2-pass lower bound.

Before proving Theorem 16, we first state the Erdős–Szekeres theorem, which will be
used in our proof.

▶ Theorem 38 (Erdős–Szekeres [20]). For any integers s and r, any sequence of distinct real
numbers of length sr + 1 contains a monotonically increasing subsequence of length s + 1 or
a monotonically decreasing subsequence of length r + 1.

Proof of Theorem 16. Let s ∈ [n]2n be a read-2 sequence. For i ∈ [n], let pos1(i) and pos2(i)
be the locations of the first and second occurrence of i, respectively. Partition the 2n indices of
the sequence into

√
n blocks Bk : k ∈ [

√
n], where Bk := [pos1((k−1)

√
n+1) : pos1(k

√
n)−1].

We consider two cases.
Suppose each block contains both occurrences of some element. That is, for each block

Bk : k ∈ [
√

n], we have pos1(ik), pos2(ik) ∈ Bk for some ik ∈ [n]. Then s contains the
subsequence

i1i1 · · · i√
ni√

n.
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We define g(x) := f(xi1 , . . . , xi√
n
), where f is the hard function defined in Theorem 11 (but

on
√

n bits). Let P be a read-2 permutation BP of width 2n1/8 ≤ 2n1/4 which reads its input
in the order given by s. By Theorem 11, we have that Pr[P (U) = g(U)] ≤ 1/2 + 2−Ω(n1/4)

and g is computable by a regular ROBP of constant width.
Otherwise, some block does not contain both occurrences of any element. In other words,

there exists a block Bk such that none of pos2((k − 1)
√

n + 1), . . . , pos2(k
√

n) lies in Bk. In
this case, s contains the 2-pass subsequence(

(k − 1)
√

n + 1
)
· · ·
(
k
√

n
)
· σ
(
(k − 1)

√
n + 1

)
· · ·σ

(
k
√

n
)

for some permutation σ on the
√

n elements in the subsequence. Applying the Erdős–Szekeres
theorem to the second half of the subsequence, we obtain a 2-pass subsequence on n1/4 − 1
elements from s where the second pass in the same or reverse order as the first pass. As in
the previous case, by defining g to be the hard function f in Theorem 11 on these n1/4 − 1
bits, we conclude that Pr[P (U) = g(U)] ≤ 1/2 + 2−Ω(n1/8) for any read-twice permutation
program reading its input in the order given by s, and g is computable by a regular ROBP
of constant width. ◀
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k-support norms, top-k norms, and the box norm as special cases. Although it may be possible
to design and analyze a separate mechanism for each symmetric norm, we propose a general
parametrizable framework that differentially privately releases a number of sufficient statistics from
which the approximation of all symmetric norms can be simultaneously computed. Our framework
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1 Introduction

The family of Lp norms represent important statistics on an underlying dataset, where
the Lp norm1 of an n-dimensional frequency vector x is defined as the number of nonzero
coordinates of x for p = 0 and Lp(x) = (xp

1 + . . . + xp
n)1/p for p > 0. Thus, the L0 norm

counts the number of distinct elements in the dataset and, e.g., is used to detect denial of
service or port scan attacks in network monitoring [3, 32], to understand the magnitude of
quantities such as search engine queries or internet graph connectivity in data mining [55],
to manage workload in database design [33], and to select a minimum-cost query plan in

1 Lp for p ∈ (0, 1) does not satisfy the triangle inequality and therefore is not a norm, but is still
well-defined/well-motivated and can be computed
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query optimization [57]. The L1 norm computes the total number of elements in the dataset
and, e.g., is used for data mining [26] and hypothesis testing [39], while the L2 norm, e.g.,
is used for training random forests in machine learning [20], computing the Gini index in
statistics [50, 36], and network anomaly detection in traffic monitoring [44, 62], in particular
in the context of heavy-hitters, e.g., [24, 16, 15, 17, 49, 14]. More generally, Lp norms for
p ∈ (0, 2) have been used for entropy estimation [37]. Consequently, Lp estimation has
been extensively studied in the data stream model [4, 40, 38, 45, 41, 5, 18, 35, 65, 66]. The
simplest streaming model is perhaps the insertion-only model, in which a sequence of m

updates increments coordinates of an n-dimensional frequency vector x and the goal is to
compute or approximate some statistic of x in space that is sublinear in both m and n. For
a more formal introduction to the streaming model, see Section 2.1.

In many cases, the underlying dataset contains sensitive information that should not be
leaked. Hence, an active line of work has focused on estimating Lp norms for various values
of p, while preserving differential privacy [53, 12, 59, 21, 63].

▶ Definition 1 (Differential privacy, [29]). Given ε > 0 and δ ∈ (0, 1), a randomized algorithm
A : U∗ → Y is (ε, δ)-differentially private if, for every neighboring streams S and S′ and for
all E ⊆ Y,

Pr [A(S) ∈ E] ≤ eε ·Pr [A(S′) ∈ E] + δ.

For example, [12] showed that the Johnson-Lindenstrauss transformation preserves differ-
ential privacy (DP), thereby showing one of the main techniques in the streaming model for
L2 estimation already guarantees DP. Similarly, [59] showed that the Flajolet-Martin sketch,
which is one of the main approaches for L0 estimation in the streaming model, also preserves
DP. However, algorithmic designs for Lp estimation in the streaming model differ greatly
and require individual analysis to ensure DP, especially because it is known that for some
problems, guaranteeing DP provably requires more space [28]. Unfortunately, the privacy
and utility analysis can be quite difficult due to the complexity of the various techniques.
This is especially pronounced in the work of [63], who studied the p-stable sketch [38], which
estimates the Lp norm for p ∈ (0, 2]. [63] showed that for p ∈ (0, 1], the p-stable sketch
preserves DP, but was unable to show DP for p ∈ (1, 2], even though the general algorithmic
approach remains the same. Thus the natural question is whether differential privacy can
be guaranteed for an approach that simultaneously estimates the Lp norm in the streaming
model, for all p. More generally, the family of Lp norms are all symmetric norms, which
are invariant under sign-flips and coordinate-wise permutations on an input data stream.
Symmetric norms thus also include other important families of norms such as the k-support
norms and the top-k norms.

1.1 Our Contributions
In this paper, we show that not only does there exist a differentially private algorithm for
the estimation of symmetric norms in the streaming model, but also that there exists an
algorithm that privately releases a set of statistics, from which estimates of all (properly
parametrized) symmetric norms can be simultaneously computed. To illustrate the difference,
suppose we wanted to release approximations of the Lp norm of the stream for k different
values of p. To guarantee (ε, δ)-DP for the set of k statistics, we would need, by advanced
composition, to demand

(
O

(
ε√
k

)
,O

(
δ
k

))
-DP from k instances of a single differentially

private Lp-estimation algorithm, corresponding to the k different values of p. Due to accuracy-
privacy tradeoffs, the quality of the estimation will degrade severely as k increases. For an
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extreme example, consider when k is some large polynomial of n and m so that the added
noise will also be polynomial in n and m, and then there is no utility at all – the private
algorithm might as well just release 0 for all queries!

In contrast, our algorithm releases a single set C of private statistics. By post-processing,
we can then estimate the Lp norms for k different values of p while only requiring (ε, δ)-DP
from C. Hence, our algorithm can simultaneously handle any large number of estimations of
symmetric norms without compromising the quality of approximation.

We first informally introduce the definition of the maximum modulus of concentration of
a norm, which measures the worst-case ratio of the maximum value of a norm on the L2-unit
sphere to the median value of a norm on the L2-unit sphere, where the median can be taken
over any restriction of the coordinates. Intuitively, maximum modulus of concentration of a
norm quantifies the complexity of computing a norm. For example, the L1 norm is generally
“easy” to compute and has maximum modulus of concentration O (log n). See Definition 18
for a more formal definition. Then our main result can informally be stated as follows:

▶ Theorem 2 (Informal). There exists a (ε, δ)-differentially private algorithm that outputs
a set C, from which the (1 + α)-approximation to any norm, with maximum modulus of
concentration at most M of a vector x ∈ Rn induced by a stream of length poly(n) can be
computed, with probability at least 1− δ. The algorithm uses M2 · poly

( 1
α , 1

ε , log n, log 1
δ

)
bits

of space.

We remark that as is standard in differential privacy on data streams, both the privacy
parameter ε and the accuracy parameter α cannot be too small or the additive noise will be
too large and cannot be absorbed into the (1 + α)-multiplicative bounds. See Theorem 33
for the formal statement of Theorem 2 describing these bounds.

We also remark that in the statement of Theorem 2, the δ failure parameter of approximate
DP is equal to the failure parameter δ of the utility guarantees of the algorithm. More
generally, if the desired failure probability δ′ of the utility guarantee is not equal to the
privacy parameter δ, then the dependencies will change from log 1

δ to log 1
δδ′ .

We emphasize that prior to our work, there is no algorithm that can handle private
symmetric norm estimation for arbitrary symmetric norms, much less simultaneously for
all parametrized symmetric norms. Although there is specific analysis for various norm
estimation algorithms, e.g., see the discussion on related work in Section 1.3, these algorithms
require a specific predetermined norm for their input. Thus a separate private algorithm must
be run for each estimation, which increases the overall space. Moreover, for a large number
of queries, the privacy parameter will need to be much smaller due to the composition of
privacy, and thus to ensure privacy, the utility of each algorithm is provably poor. Our
algorithm sidesteps both the space and accuracy problems and is the first and only work to
do so, as of yet.

Applications. We briefly describe a number of specific symmetric norms that are handled
by Theorem 2 and commonly used across various applications in machine learning. We first
note the following parameterization of the previously discussed Lp norms.

▶ Lemma 3 ([52, 43]). For Lp norms, we have that mmc(L) = O (log n) for p ∈ [1, 2] and
mmc(L) = O

(
n1/2−1/p

)
for p > 2.

Thus our algorithm immediately introduces a differentially private mechanism for the approx-
imation of Lp norms that unlike previous work, e.g., [12, 58, 25, 59, 21, 63], does not need to
provide separate analysis for specific values of p. Moreover for constant-factor approximation,
the space complexity is tight with the optimal Lp-approximation algorithms that do not
consider privacy, up to polylogarithmic factors [42, 46, 34, 65] in the universe size n.
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▶ Definition 4 (Q-norm and Q′-norm). We call a norm L a Q-norm if there exists a
symmetric norm L′ such that L(x) = L′(x2)1/2 for all x ∈ Rn. Here, we use x2 to denote
the coordinate-wise square power of x. We also call a norm L′ a Q′-norm if its dual norm is
a Q-norm.

The family of Q′-norms includes the Lp norms for 1 ≤ p ≤ 2, the k-support norm, and the
box norm [10] and thus Q′-norms have been proposed to regularize sparse recovery problems
in machine learning. For instance, [7] showed that Q′ norms have tighter relaxations than
elastic nets and can thus be more effective for sparse prediction. Similarly, [51] used Q′

norms to optimize sparse prediction algorithms for multitask clustering.

▶ Lemma 5 ([11]). mmc(L) = O (log n) for every Q′-norm L.

Theorem 2 and Lemma 5 thus present a differentially private algorithm for Q′-norm approx-
imation that uses polylogarithmic space.

▶ Definition 6 (Top-k norm). The top-k norm for a vector x ∈ Rn is the sum of the largest k

coordinates of |x|, where we use |x| to denote the vector whose entries are the coordinate-wise
absolute value of x.

The top-k norm is frequently used to understand the more general Ky Fan k-norm [67],
which is used to regularize optimization problems in numerical linear algebra. Whereas the
Ky Fan k norm is defined as the sum of the k largest singular values of a matrix, the top-k
norm is equivalent to the Ky Fan k norm when the input vector x represents the vector of
the singular values of the matrix.

▶ Lemma 7 ([11]). mmc(L) = Õ
(√

n
k

)
for the top-k norm L.

In particular, the top-k norm for a vector of singular values when k = n is equivalent to the
Schatten-1 norm of a matrix, which is a common metric for matrix fitting problems such as
low-rank approximation [47].

▶ Definition 8 (Shannon entropy). For a frequency vector v ∈ Rn, we define the Shannon
entropy by H(v) = −

∑n
i=1 vi log vi.

To achieve an additive approximation to the Shannon entropy, we instead compute a
multiplicative approximation to the exponential form, as follows:

▶ Observation 9. A (1 + α)-multiplicative approximation of the function h(v) := 2H(v)

corresponds to an α-additive approximation of the Shannon Entropy H(v) (and vice versa).

Moreover, computing a (1+α)-approximation to 2H(v) can be achieved through computing
a (1 + α)-approximation to various Lp norms for p ∈ (0, 2).

▶ Lemma 10 (Section 3.3 in [37]). Let k = log 1
α + log log m and α′ = α

12(k+1)3 log m . There
exists an explicit set {y0, . . . , yk} with yi ∈ (0, 2) for all i and a post-processing function
that takes (1 + α′)-approximations to Fyi(x), i.e., the (yi)-th frequency moment of x, and
outputs a (1 + α)-approximation to h(v) = 2H(x). Furthermore, the set {y0, . . . , yk} and
post-processing function are both efficiently computable, i.e., polynomial runtime.

Since our mechanism releases a private set of statistics from which (1 +α)-approximations
to Lp norms can be computed for any p ∈ (0, 2), then our mechanism also privately achieves
an additive α-approximation to Shannon entropy.
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1.2 Algorithmic Intuition and Overview
Our starting point is the Lp estimation algorithm of [40], which was parametrized by [11]
to handle symmetric norms. For a (1 + α)-approximation, the algorithm partitions the n

coordinates of the frequency vector x into powers of ξ-based on their magnitudes, where ξ > 1
is a fixed function of α. Each partition forms a level set, so that the i-th level set consists of
the coordinates of x with frequency [ξi, ξi+1), but [40, 11] showed that it suffices to accurately
count the size of each important level set and zero out to the other level sets, where a level
set is considered important if its size is large enough to contribute an α2

log m fraction of the
symmetric norm. In other words, if x̃ is a vector whose coordinates match those of x in
important levels sets and are 0 elsewhere, then (1 − α)L(x) ≤ L(x̃) ≤ (1 + α)L(x). We
formalize the definition of importance in Section 2.2.

Private symmetric norm estimation in the centralized setting. To preserve (ε, δ)-differential
privacy, one initial approach would be to view the frequency vector as a histogram and
add Laplacian noise with scale O

( 1
ε

)
to the frequency of each element. However, the level

sets consisting of elements with frequencies between [ξi, ξi+1) for small i, say i = 0, could
be largely perturbed by such Laplacian noise. For example, it is possible that for some
coordinate j in an important level set, we have xj = 1, in which case adding Laplacian noise
with scale O

( 1
ε

)
to xj will heavily distort the coordinate. This can happen to all coordinates

in the important level set, which results in an inaccurate estimation of the norm.
Fortunately, if i is small, the corresponding level set must contain a large number of

elements if it is important, so it seems possible to privately release the size Γi of the level set.
Indeed, we can show that the L1 sensitivity of the vector corresponding to level set sizes is
small and so we can add Laplacian noise with scale O

( 1
ε

)
to each level set size. Hence if the

level set has size Γi roughly Ω
( 1

αε

)
, then the Laplacian noise will affect Γi by a (1 + α)-factor.

Unfortunately, there can be level sets that are both important and small in size. For
example, if there is a single element with frequency m, then the size of the corresponding
level set is just one. Then adding Laplacian noise with scale O

( 1
ε

)
will severely affect the

size of the level set and thus the estimation of the symmetric norm. On the other hand, for
m > 1

αε , the frequency of the coordinate is quite large so again it seems like we can just add
Laplacian noise with scale O

( 1
ε

)
and output the noisy frequency of the coordinate.

New approach: classifying and separately handling high, medium, and low frequency
levels. The main takeaway from these challenges is that we should handle different level
sets separately. For the level sets of small coordinates, the important level sets must have
large size and thus we would like to release noisy sizes. For the important level sets of large
coordinates, we would like to release noisy frequencies of the coordinates.

In that vein, we partition the levels into three groups after defining thresholds T1 and
T2, with T1 > T2. We define the “high frequency levels” as the levels whose coordinates
exceed T1 in frequency. The intuition is that because the high frequency levels have such
large magnitude, their frequencies can be well-approximated by running an L2-heavy hitters
algorithm on the stream S.

We define the “medium frequency levels” as the levels whose coordinates are between
T1 and T2 in frequency. These coordinates are not large enough to be detected by running
an L2-heavy hitters algorithm on the stream S. However, the sizes of these level sets must
be large if the level set is important. Thus there exists a substream Sj for which a large
number of these coordinates are subsampled and their frequencies can be well-approximated
by running an L2-heavy hitters algorithm on the substream Sj .
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Finally, we define the “low frequency levels” as the levels whose coordinates are less than
T2 in frequency. These coordinates are small enough that we cannot add Laplacian noise
to their frequencies without affecting the level sets they are mapped to. Instead, we show
that the L1 sensitivity for the level set estimations is particularly small for the low frequency
levels. Thus, for these frequency levels, we report the size of the frequency levels rather
than the approximate frequencies of the heavy-hitters. We remark that if our goal was to
just approximate the symmetric norms without preserving differential privacy, then it would
suffice to just consider the high and medium frequency levels, since the low frequency levels
are particularly problematic when Laplacian noise is added to the frequency vector. We
also remark that we only use the thresholds T1 and T2 for the purposes of describing our
algorithm – in the actual implementation of the algorithm, the thresholds T1 and T2 will be
implicitly defined by each of the substreams.

Private symmetric norm estimation in the streaming model. Although the previously
discussed intuition builds towards a working algorithm, the main caveat is that so far, we
have mainly discussed the centralized model, where space is not restricted and so each
coordinate and thus each level set size can be counted exactly. In the streaming model, we
cannot explicitly track the frequency vector, or even the frequencies of a constant fraction of
coordinates. Instead, to estimate the sizes of each level set, [40, 11] take the stream S and
form s = O (log n) substreams S1, . . . , Ss, where the j-th substream is created by sampling
the universe of size n at a rate of 1

2j−1 . Then Sj will only consist of the stream updates to
the particular coordinates of x that are sampled. Thus in expectation, the frequency vector
induced by Sj will have sparsity ∥x∥0

2j−1 . Similarly, if a level set i has size Γi, then Γi

2j−1 of its
members will be sampled in Sj in expectation. It can then be shown through a variance
argument that if level set i is important, then there exists an explicit substream j from
which Γi can be well-approximated using the L2-heavy hitter algorithm CountSketch
and as a result, the symmetric norm of x can be well-approximated. The main point of
the subsampling approach is that if there exists a level set with large size consisting of
small coordinates, then the coordinates will not be detected by the CountSketch on S,
but because Sj has significantly smaller L2 norm, then the coordinates will be detected by
CountSketch on Sj .

However, adapting the subsampling and heavy-hitter approach introduces additional chal-
lenges for privacy. For instance, we can analyze the L2-heavy hitter algorithm CountSketch
and show that although the L1 sensitivity of the estimated frequency for a single coordinate
is small, the L1 sensitivity of the estimated frequency vector for all the coordinates may be
large. Instead, we use the view that CountSketch is a composition function that first only
estimates frequencies for the top poly

( 1
α , 1

ε , log n
)

and then outputs only those estimates
that are above a certain threshold. Similarly, the Laplacian noise added to privately use
CountSketch can alter the sizes of a significant number of level sets for small coordinates.
Thus for the small coordinates (corresponding to the substreams Sj with large j), we invoke
CountSketch with much higher accuracy, so that with high probability, it will return
exactly the frequencies for the small coordinates. For example, note that if the frequency
xk of a coordinate k ∈ [n] is at most 1

2α2ε , then any (1 + α2ε)-approximation to xk can be
rounded to exactly recover xk. This decreases the L1 sensitivity of the vector of estimated
level set sizes, therefore allowing us to add Laplacian noise without greatly affecting the
quality of approximation.
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1.3 Related Work

Non-private Lp norm estimation is one of the fundamental problems in the streaming model,
beginning with [4]’s seminal work that tracks the inner product of the frequency vector
with a random sign vector for L2 estimation (as well as a telescoping argument for integer
p > 0). [38, 45] later showed that this approach could be generalized for p ∈ (0, 2] by tracking
the inner product of the frequency vector with a vector with randomly generated p-stable
variables, which only exist for p ∈ (0, 2]. For p > 2, [5] gave an Lp estimation algorithm
using the max-stability property of exponential random variables. More generally, [40]
introduced the framework of subsampling and using heavy-hitters for Lp estimation, which
[11] parametrized to all symmetric norms. It should be emphasized that these techniques all
handle the more general turnstile model, in which ±1 updates are allowed to each coordinate,
rather than single positive increments. Hence our techniques also extend to the turnstile
model with a minor change on the conditions.

More recently, [13, 61] given a general framework for converting non-private approximation
algorithms into private approximation algorithms, provided that the accuracy of these
algorithms could be tuned with an input parameter ε > 0, i.e., the algorithms can achieve (1+
ε)-approximation for a wide range of ε > 0. Their results presented a solution that addresses
the difficulty of adapting privacy specifically to each non-private algorithm separately.
However, their framework only applies to problems with scalar outputs and thus do not
handle synthetic data release. Therefore, privately answering multiple norm queries while
circumventing composition bounds is still a challenge that their results cannot handle.

Symmetric norms have also recently received attention in other big data models as well.
[6] studied approximate near neighbors for general symmetric norms while [48] studied
symmetric norm estimation for network monitoring. [60] considered Orlicz norm regression
and other loss functions where the penalty is a symmetric norm. [19] gave an algorithm to
approximate the symmetric norm in the sliding window model, where updates in the data
stream implicitly expire after a fixed amount of time.

Specific cases of private Lp estimation in the streaming model have also been previously
well-studied. [25, 59] studied private L0 estimation using the Flajolet-Martin sketch, while
[63] studied private Lp estimation for p ∈ (0, 1] using the p-stable sketch and [12, 58, 25, 21]
studied private L2 estimation using the Johnson-Lindenstrauss projection. Specifically, [12]
gave an (ε, δ)-DP algorithm for L2 estimation that achieves a (1 + ε)-approximation while
using O

( 1
ε2 log n log 1

δ

)
bits of space and [63] gave an (ε, δ)-DP algorithm for Lp estimation

that achieves a (1+α)-approximation while using O
( 1

α2 log n log 1
δ

)
bits of space for constant

ε and p ∈ (0, 1). For fractional p > 1, private distribution estimation algorithms [2, 68, 9, 64]
can be used to approximate the Lp norm, but since the algorithms provide information over
a much larger distribution, e.g., much larger histograms of frequencies, the privacy-accuracy
trade-off is sub-optimal and the space complexity is exponentially worse.

The related problem of privately releasing heavy-hitters in big data models has also
been well-studied. [23] studied the problem of continually releasing L1-heavy hitters in a
stream, while [30] studied L1-heavy hitters and other problems in the pan-private streaming
model. The heavy-hitter problem has also received significant attention in the local model,
e.g., [9, 27, 1, 22, 8], where individual users should locally randomize their data before sending
differentially private information to an untrusted server that aggregates the statistics across
all users.
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2 Preliminaries

In this section, we introduce definitions and simple or well-known results from differential
privacy, sketching algorithms, and symmetric norms. For notation, we use [n] for an integer
n > 0 to denote the set {1, . . . , n}. We also use the notation poly(n) to represent a constant
degree polynomial in n and we say an event occurs with high probability if the event holds with
probability 1− 1

poly(n) . Similarly, we use polylog(n) to denote poly(log n). Given a vector
x ∈ Rn, we define its second frequency moment F2(x) = x2

1 +. . .+x2
n. Finally, for a parameter

c ≥ 1, we say that X provides a C-approximation to a quantity Y if X
C ≤ Y ≤ C ·X.

Privately releasing multiple statistics that are individually differentially private can also
be done, but comes at a slight cost.

▶ Theorem 11 (Composition and post-processing of differential privacy, [31]). Let Ai : Ui → Xi

be an (εi, δi)-differential private algorithm for i ∈ [k]. Then A[k](x) = (A1(x), . . . ,Ak(x))
is

(∑k
i=1 εi,

∑k
i=1 δi

)
-differentially private. Furthermore, if gi : Xi → X ′

i is an arbitrary
random mapping, then gi(Mi(x)) is (εi, δi)-differentially private.

Although there exists more sophisticated approaches for composition, such as advanced
composition, we do not need them for our purposes.

2.1 Streaming and Sketching Algorithms
In the streaming model, a frequency vector x ∈ Rn is induced by a sequence of updates. In
the insertion-only streaming model, x is defined through a stream of m updates u1, . . . , um,
where ut ∈ [n] for each t ∈ [m] so that xi = |{t ∈ [m] |ut = i}| for all i ∈ [n]. In other
words, xi is the number of times that i ∈ [n] appears in the stream. We remark that our
techniques generalize to some degree to turnstile streams, where each update is an ordered
pair ut = (∆t, ct), so that the t-th update changes the ct-th coordinate by ∆t, i.e., ct ∈ [n]
is a coordinate and ∆t ∈ [−M, M ] for some parameter M > 0. In this turnstile model, the
vector x is defined so that xi =

∑
t:ct=i ∆t for all i ∈ [n]. Although our techniques can apply

to the general turnstile model with a minor change on the conditions and assumptions, we
shall work with the insertion-only streaming model throughout the remainder of the paper.

Given a frequency vector x ∈ Rn on a data stream, the AMS algorithm for L2-estimation
first generates a sign vector σ ∈ {−1, +1}n and sets S1 = (⟨σ, x⟩)2. We remark that to
maintain σ in small space, it suffices for the coordinates of the sign vector σ to be 4-wise
independent and therefore it suffices to randomly generate and store a 4-wise independent
hash function. The AMS algorithm then repeats this process b = 6

α2 independent times to
obtain dot products S1, . . . , Sb, sets Z2 to be the arithmetic mean of S1, . . . , Sb, and reports
Z. We define the L2 norm of a vector x ∈ Rn by L2(x) =

√
x2

1 + . . . + x2
n.

▶ Definition 12 (ν-approximate η L2-heavy hitters problem). Given an accuracy parameter
ν ∈ (0, 1), a threshold parameter η, and a frequency vector x ∈ Rn, compute a set H ⊆ [n]
and a set of approximations x̂k for all k ∈ H such that:

(1) If xk ≥ ηL2(x) for any k ∈ [n], then k ∈ H, so that H contains all η L2-heavy hitters of
x.

(2) There exists a universal constant C ∈ (0, 1) so that if xk ≤ Cη
2 L2(x) for any k ∈ [n], then

k /∈ H, so that H does not contain any index that is not an Cη
2 L2-heavy hitter of x.

(3) If k ∈ H for any k ∈ [n], then compute (1± ν)-approximation to the frequency xk, i.e., a
value x̂k such that (1− ν)xk ≤ x̂k ≤ (1 + ν)xk.
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The well-known CountSketch algorithm can be parametrized to provide an estimated
frequency to each item and then releases the approximate frequencies of each item that
surpasses a threshold proportional to the output of AMS:

▶ Theorem 13 (CountSketch for ν-approximate η L2-heavy hitters, [24]). There exists a one-
pass streaming algorithm CountSketch that takes an accuracy parameter ν ∈ (0, 1) and a
threshold parameter η2 and outputs a list H that contains all indices k ∈ [n] of an underlying
frequency vector x with xk ≥ η L2(x) and no index k ∈ [n] with xk ≤ η(1−ν) L2(x). For each
k ∈ H, CountSketch also reports a estimated frequency x̂k such that (1 − ν)xk ≤ x̂k ≤
(1 + ν)xk. The algorithm uses O

(
1

η2ν2 log2 n
)

bits of space and succeeds with probability
1− 1

poly(m) .

Algorithm 1 Heavy-hitter algorithm CountSketch.

Input: Stream S inducing frequency vector x ∈ Rn, accuracy parameter ν ∈ (0, 1), and
threshold parameter η ∈ (0, 1)

Output: L2 Heavy-hitter algorithm
1: r ← O (log n), b← O

(
1

η2ν2

)
2: Pick hash functions h(1), . . . , h(r) : [n]→ [b] and s(1), . . . , s(r) : [n]→ {−1, +1}
3: Si,j ← 0 for (i, j) ∈ [r]× [b]
4: for each update ui ∈ [n], i ∈ [m] do
5: for each j ∈ [r] do
6: bi,j ← h(j)(ui) and si,j ← s(j)(ui)
7: Sj,bi,j

← Sj,bi,j
+ si,j

8: for each i ∈ [n] do
9: bi,j ← h(j)(ui) for each j ∈ [r]

10: return medianj∈[r] |Sj,bi,j
| as the estimated frequency for xi

We recall the following sensitivity analysis of CountSketch.

▶ Lemma 14 (Sensitivity of CountSketch). Let x, x′ ∈ Rn with max(∥x−x′∥0, ∥x−x′∥1) ≤ 2.

There exists a private variant PrivCountSketch of CountSketch that adds noise to
each coordinate and then uses a standard private threshold routine to ensure differential
privacy, giving the following guarantees:

▶ Lemma 15. There exists a one-pass streaming algorithm PrivCountSketch that takes
an accuracy parameter ν ∈ (0, 1) and a threshold parameter η2 and outputs a list H that
contains all indices k ∈ [n] of an underlying frequency vector x with xk ≥ η L2(x) and no
index k ∈ [n] with xk ≤ η(1− ν) L2(x). For each k ∈ H, PrivCountSketch also reports a
estimated frequency x̂k such that (1− ν)xk −O

(
log m

ην

)
≤ x̂k ≤ (1 + ν)xk +O

(
log m

ην

)
. The

algorithm uses O
(

1
η2ν2 log2 n

)
bits of space and succeeds with probability 1− 1

poly(m) .

2.2 Symmetric Norms
In this section, we provide necessary preliminaries for symmetric norm estimation.

▶ Definition 16 (Symmetric norm). A function L : Rn → R is a symmetric norm if L is a
norm and for all x ∈ Rn and any vector y ∈ Rn that is a permutation of the coordinates of
x, we have L(x) = L(y). Moreover, we have L(x) = L(|x|), where |x| is the coordinate-wise
absolute value of x.
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▶ Definition 17 (Modulus of concentration). Let x ∈ Rn be a random variable drawn from
the uniform distribution on the L2-unit sphere Sn−1 and let bL denote the maximum value
of L(x) over Sn−1. The median of a symmetric norm L is the unique value ML such that
Pr [L(x) ≥ML] ≥ 1

2 and Pr [L(x) ≤ML] ≥ 1
2 . Then the ratio mc(L) := bL

ML
is the modulus

of concentration of the norm L.

Although the modulus of concentration quantifies the “average” behavior of the norm L on
Rn, norms with challenging behavior can still be embedded in lower-dimensional subspaces.
For instance, the L1 norm satisfies mc(L) = O (1), but when x ∈ Rn has fewer than

√
n

nonzero coordinates, the norm max(L∞(x), L1(x)/
√

n) on the unit ball becomes identically
L∞(x) [11], which requires Ω(

√
n) space [4] to estimate. Hence, we further quantify the

behavior of a norm L by examining its behavior on all lower dimensions.

▶ Definition 18 (Maximum modulus of concentration). For a norm L : Rn → R and every
k ≤ n, define the norm L(k) : Rk → R by L(k)((x1, . . . , xk)) := L((x1, . . . , xk, 0, . . . , 0)).
Then the maximum modulus of concentration of the norm L is mmc(L) := max

k≤n
mc(L(k)) =

max
k≤n

b
L(k)

M
L(k)

.

▶ Definition 19 (Important Levels). For x ∈ Rn and ξ > 1, we define the level i as the set
Bi = {k ∈ [n] : ξi−1 ≤ |xk| ≤ ξi}. We define bi := |Bi| as the size of level i. For β ∈ (0, 1],
we say level i is β-important if

bi > β
∑
j>i

bj , biξ
2i ≥ β

∑
j≤i

bjξ2j .

Informally, level i is β-important if (1) its size is at least a β-fraction of the total sizes of
the higher levels and (2) its contribution is roughly a β-fraction of the total contribution of
all the lower levels. We would like to show that to approximate a symmetric norm L(x), it
suffices to identify the β-important levels and their sizes for a fixed base ξ > 1.

▶ Definition 20 (Level Vectors and Buckets). For x ∈ Rn and ξ > 1, the level vector for x is

V (x) :=(ξ1, . . . , ξ1︸ ︷︷ ︸
b1 times

, ξ2, . . . , ξ2︸ ︷︷ ︸
b2 times

, . . . , ξk, . . . , ξk︸ ︷︷ ︸
bk times

, 0, . . . , 0) ∈ Rn,

where each bi is the size of level i. The i-th bucket of V (x) is

Vi(x) :=( 0, . . . , 0,︸ ︷︷ ︸
b1+...+bi−1 times

ξi, . . . , ξi︸ ︷︷ ︸
bi times

, . . . , 0, . . . , 0︸ ︷︷ ︸
bi+1+...+bk times

, 0, . . . , 0) ∈ Rn.

We similarly define the approximate level vectors V̂ (x) and V̂i(x) using approximations
b̂1, . . . , b̂k for b1, . . . , bk. We write V (x) \ Vi(x) to denote the vector that replaces the i-th
bucket in V (x) with all zeros and we write V (x) \ Vi(x) ∪ V̂i(x) to denote the vector that
replaces the i-th bucket in V (x) with b̂i instances of ξi.

Rather than directly handle the important levels, we define the β-contributing levels and
instead work toward estimating the contribution of the β-contributing levels.

▶ Definition 21 (Contributing Levels). Given x ∈ Rn, a level i defined by base ξ > 1 is
β-contributing if L(Vi(x)) ≥ βL(V (x)).

[11] showed that even if all levels that are not β-contributing are removed, the contribution
of the remaining levels forms a good approximation to L(x).
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▶ Lemma 22 ([11]). Given x ∈ Rn and levels defined by a base ξ > 1, let V ′(x) be
the vector obtained by removing all levels that are not β-contributing from V (x). Then
(1−O

(
logξ n

)
· β)L(V (x)) ≤ L(V ′(x)) ≤ L(V (x)).

Hence for appropriate ξ > 1 and β ∈ (0, 1], it suffices to identify the β-contributing levels,
zero out the remaining levels, and determine the contribution of the resulting vector to
approximate the symmetric norm L(x).

▶ Lemma 23 ([11]). Given an accuracy parameter α ∈ (0, 1], let base ξ = (1 + O (α)),
importance parameter β = O

(
α5

mmc(ℓ)2·log5 m

)
, and α′ = O

(
α2

log n

)
. Let b̂i ≤ bi for all i and

b̂i ≥ (1 − α′)bi for all β-important levels. Let V̂ be the level vector constructed using the
estimates b̂1, b̂2, . . . and let V ′ be the level vector constructed by removing all the buckets that
are not β-contributing in V̂ . Then (1− α)L(V (x)) ≤ L(V ′(x)) ≤ L(V (x)).

To identify the β-contributing levels, [11] first notes that the size of the level must be at least
a significant fraction of the total size of the higher levels.

▶ Lemma 24 ([11]). Given x ∈ Rn, let the level sets be defined by a base ξ > 1. If level i is β-
contributing, then there exists some fixed constant λ > 0 such that bi ≥ λβ2

mmc(ℓ)2 log2 n
·
∑

j>i bj .

Moreover, [11] observes that the squared mass of a β-contributing level must be at least a
significant fraction of the total squared mass of the lower levels.

▶ Lemma 25 ([11]). Given x ∈ Rn, let the level sets be defined by a base ξ > 1. If
level i is β-contributing, then there exists some fixed constant λ > 0 such that biξ

2i ≥
λβ2

mmc(ℓ)2(logξ n) log2 n
·
∑

j≤i bjξ2j.

Observe that together, Lemma 24 and Lemma 25 imply that a β-contributing level i must
also be an important level as defined in Definition 19. Crucially, since Lemma 25 states
that the squared mass (or the F2 frequency moment) of the β-contributing levels must be a
significant fraction of the total squared mass of the lower levels, then it suggests we might
be able to identify the β-contributing levels through an L2-heavy hitters algorithm after
removing the higher levels. Indeed, [11] show that the problem of identifying the size (and
thus the contribution) of the β-contributing levels can be reduced to the task of finding
ν-approximate η-heavy hitters for specific parameters of ν and η.

▶ Lemma 26 ([11]). Let s = O (log n). If a level i is β-important, then either ξ2i ≥
α2βε2

log2 m
F2(x) or there exists j ∈ [s] such that bi ≥ 2j log2 m

α2ε2 and ξ2i ∈
[

α2βε2

log2 m
· F2(x)

2j , α2βε2

log2 m
· F2(x)

2j−1

]
.

Lemma 26 implies that if level i is β-important, then either (1) it will be identified by
using PrivCountSketch, i.e., Lemma 15, with threshold α2β

log2 m
on the stream or (2) its

contribution can be well-approximated by using PrivCountSketch with threshold α2βε2

log2 m

on a substream formed by sampling coordinates of the universe with probability 1
2j . We thus

split our algorithm and analysis to handle these cases. In particular, we call a frequency level
i “high” if ξ2i ≥ α2βε2

log2 m
F2(x). We call a frequency level i “medium” if ξ2i ≥ α2β′ε2

2j F2(x) > T

and bi ≥ O
(

2j log2 m
α2ε2

)
for a certain β′ > 0 and a threshold T . We call a frequency level i

“low” if ξ2i ≥ α2β′ε2

2j F2(x) and bi ≥ O
(

2j log2 m
α2ε2

)
, but T ≥ α2β′ε2

2j F2(x).
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3 Private Symmetric Norm Estimation Algorithm

In this section, we give our algorithm that releases a set of private statistics from which
an arbitrary number of symmetric norms can be well-approximated. In particular, recall
that Lemma 23 suggests that it suffices to approximate the sizes of the important levels and
identity the non-important levels, so that the contributions of the non-important levels can
be set to zero. We partition the levels into three groups after defining explicit thresholds
T1 and T2, with T1 > T2. Recall that we define the “high frequency levels” as the levels
whose coordinates exceed T1 in frequency, the “medium frequency levels” as the levels whose
coordinates are between T1 and T2 in frequency, and the “low frequency levels” as the levels
whose coordinates are less than T2 in frequency.

The intuition is that because the high frequency levels have such large magnitude, their
frequencies can be well-approximated by running an L2-heavy hitters algorithm on the stream
S. On the other hand, the medium frequency level coordinates are not large enough to be
detected by running an L2-heavy hitters algorithm on the stream S, but the sizes of these
level sets must be large if the level set is important and therefore, there exists a substream Sj

for which a large number of these coordinates are subsampled and their frequencies can be
well-approximated by running an L2-heavy hitters algorithm on the substream Sj . Here we
form substreams S0, S1, . . . so that Sj first samples elements of the universe [n] at a rate 1

2j

and then only contains the stream updates that are relevant to the sampled elements. Finally,
the low frequency level coordinates are small enough that we cannot add Laplacian noise
to their frequencies without affecting the level sets they are mapped to. We instead show
that L1 sensitivity for the level set estimations is particularly small for the low frequency
levels and thus, we report the size of the level sets of the low frequency levels rather than
the approximate frequencies of the heavy-hitters.

We emphasize that we only use the thresholds T1 and T2 for the purposes of describing
our algorithm – in the actual implementation of the algorithm, the thresholds T1 and T2 will
be implicitly defined by each of the substreams. For example, the items with threshold larger
than T1 will automatically be revealed through the stream S, while the items with thresholds
between T1 and T2 will be revealed through the substreams Sj with 2j > log n

β′αε for explicit

parameters α, β′, and ε. More specifically, note that Algorithm 2 sets β′ = O
(

α2βε2

log2 m

)
or

more specifically β′ = α2βε2

2 log2 m
. Then β′ · F2(x) corresponds to the threshold T1, which is

utilized in the proofs of Section 3.1. Similarly, Algorithm 3 leverages the quantity log n
β′αε to

define the threshold T2, which is then utilized in the proofs of Section 3.2.

3.1 Recovery of High Frequency Levels
In this section, we describe our algorithm for recovering the high frequency levels, whose
coordinates have sufficiently large magnitude and thus their frequencies can be well-approxi-
mated by running an L2-heavy hitters algorithm on the stream S. Moreover, with high
probability, adding Laplacian noise will not affect the level sets because the frequencies are
so large. Thus it simply suffices to return the noisy estimated frequencies of each of the
elements in the high frequency levels. This algorithm is the simplest of our cases and we give
the algorithm in full in Algorithm 2.

We first show that coordinates in high frequency levels are identified and their frequencies
are accurately estimated. Similarly, we show that if a coordinate does not have high frequency,
it will not be output by Algorithm 2.
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Algorithm 2 Algorithm to privately estimate the high levels.

Input: Privacy parameter ε > 0, accuracy parameter α ∈ (0, 1)
Output: Private estimation of the frequencies of the coordinates of the high frequency levels

1: β ← O
(

α5

mmc(L)2 log5 m

)
, β′ ← O

(
α2βε2

log2 m

)
2: Run PrivCountSketch on the stream S with threshold α2β′ and failure probability

1
poly(m)

3: for each heavy-hitter k ∈ [n] reported by PrivCountSketch do
4: Let x̃k be the frequency estimated by PrivCountSketch
5: x̂k ← x̃k + Lap

(
8

β′ε

)
6: return x̂k

▶ Lemma 27. Suppose m = Ω(log5 m)
α5β2ε5 . Then with high probability Algorithm 2 outputs x̂k

such that if x2
k ≥

α2βε2

log2 m
F2(x), then (1 − α2)xk ≤ x̂k ≤ xk and if x2

k < α2βε2

2 log2 m
F2(x), then

x̂k < 3α2βε2

4 log2 m
F2(x).

We then show that Algorithm 2 preserves differential privacy and analyze its space
complexity.

▶ Lemma 28. Algorithm 2 is
(

ε
4 , δ

4
)
-differentially private for δ = 1

poly(m) and uses space
mmc(L)2 · poly

( 1
α , 1

ε , log m
)
.

3.2 Recovery of Medium Frequency Levels
In this section, we describe our algorithm for recovering the medium frequency levels, whose
coordinates do not have sufficiently large magnitude to be detected by running an L2-heavy
hitters algorithm on the stream S, but have sufficiently large size, so that there exists some
j ∈ [s] across the s subsampling levels such that the coordinates can be detected by running
an L2-heavy hitters algorithm on the stream Sj . On the other hand, their magnitudes are
sufficiently large so that with high probability, adding Laplacian noise will not affect the
level sets. We give the algorithm in full in Algorithm 3.

We first upper bound the second frequency moment (and hence the L2 norm) of each sub-
stream. This is necessary because we want to detect the coordinates of the medium frequency
levels as L2-heavy hitters for each substream, but if the substream has overwhelmingly large
L2 norm, then we will not be able to find coordinates of the medium frequency levels. How-
ever, it may not be true that F2(Sj) is significantly smaller than F2(S) with high probability.
For example, if there were a single large element, then the probability it is sampled at level
s is 1

2s , which is roughly 1
n > 1

poly(m) . Instead, we note that PrivCountSketch benefits
from the stronger tail guarantee, which states that not only does PrivCountSketch with
threshold η < 1 detect the elements k such that (xk)2 ≥ ηF2(S), but it also detects the
elements k such that (xk)2 ≥ ηF2(Stail(1/η)), where Stail(1/η) is the frequency vector x induced
by S, with the largest 1

η entries instead set to zero [15, 17].

▶ Lemma 29. Consider a β-important level i with ξ2i ∈
[

βα2ε2

log2 m
· F2(x)

2j , βα2ε2

log2 m
· F2(x)

2j−1

]
for

some integer j > 0 and ξi > log n
β′αε . If F2((Sj)1/(α2β′ε2)) ≤ 200 log m

2j F2(x) for all j ∈ [s], then
with high probability, Algorithm 3 outputs b̂i such that (1−O (α))bi ≤ b̂i ≤ bi, where bi is
the size of level i.
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Algorithm 3 Algorithm to privately estimate the medium levels.

Input: Privacy parameter ε > 0, accuracy parameter α ∈ (0, 1)
Output: Private estimations of the sizes of the medium frequency levels

1: β ← O
(

α5

mmc(L)2 log5 m

)
, β′ ← O

(
α3βε2

log2 m

)
, ξ ← (1 +O (ε))

2: γ ← (1/2, 1) uniformly at random, ℓ←
⌈
logξ(2m)

⌉
, s← O (log n)

3: for j ∈ [s] with 2j > log n
β′αε do

4: Form stream Sj by sampling elements of [n] with probability 1
2j

5: Run PrivCountSketchj on stream Sj with threshold α2β′ε2 and failure probability
1

poly(m)
6: for each heavy-hitter k ∈ [n] reported by PrivCountSketchj do
7: Let x̂k be the frequency estimated by PrivCountSketchj

8: if x̂k > log n
β′αε then

9: x̃k ← x̂k + Lap
(

8
β′ε

)
10: for i ∈ [ℓ] with m2

2j+1 > γξ2i ≥ 2j > O
(

log n
β′α2ε

)
do

11: Let b̃i be the number of indices k ∈ [n] such that γξ2i ≤ x̃k < γξ2i+2

12: b̂i ← 2j

(1+O(α)) b̃i

13: return b̂i

We now show that Algorithm 3 preserves differential privacy and analyze its space
complexity.

▶ Lemma 30. Algorithm 3 is
(

ε
4 , δ

4
)
-differentially private for δ = 1

poly(m) and uses space
mmc(L)2 · poly

( 1
α , 1

ε , log m
)
.

3.3 Recovery of Low Frequency Levels
In this section, we describe our algorithm for recovering the low frequency levels, whose
coordinates have magnitude small enough that we cannot add Laplacian noise to their
frequencies without affecting the corresponding level set sizes. We instead report the sizes
of the level sets for the low frequency levels rather than the approximate frequencies of the
heavy-hitters. Thus we must add Laplacian noise to the sizes of the level sets; we show that
the L1 sensitivity for the level set estimations is particularly small for the low frequency
levels and thus the Laplacian noise does not greatly affect the estimates of the level set
sizes. We note that this approach does not work for the high frequency levels because the
high frequency levels may have small level set sizes, so that adding Laplacian noise to the
sizes can significantly affect the resulting estimates of the level set sizes. Similarly, it is
more challenging to argue the low L1 sensitivity for the level set estimations for the medium
frequency levels. Hence, both the algorithm and analysis are especially well-catered to the
low frequency levels. We give the algorithm in full in Algorithm 4.

We first show that the estimates of the level set sizes for the low frequency levels are
accurate.

▶ Lemma 31. Consider a β-important level i with ξ2i ∈
[

βα2ε2

log2 m
· F2(x)

2j , βα2ε2

log2 m
· F2(x)

2j−1

]
for

some integer j > 0 and ξi ≤ log n
β′αε . If F2((Sj)1/(α2β′ε2)) ≤ 200 log m

2j F2(x) for all j ∈ [s], then
with high probability, Algorithm 4 outputs b̂i such that

(1−O (α))bi ≤ b̂i ≤ bi,

where bi is the size of level set i.
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Algorithm 4 Algorithm to privately estimate the low levels.

Input: Privacy parameter ε > 0, accuracy parameter α ∈ (0, 1)
Output: Private estimations of the sizes of the low frequency levels

1: β ← O
(

α5

mmc(L)2 log5 m

)
, β′ ← O

(
α2βε
log n

)
, ξ ← (1 +O (ε))

2: γ ← (1/2, 1) uniformly at random, ℓ←
⌈
logξ(2m)

⌉
, s← O (log n)

3: for j ∈ [s] with 2j ≤ log n
β′αε do

4: Form stream Sj by sampling elements of [n] with probability 1
2j

5: Run PrivCountSketchj on stream Sj with threshold β′′ := O
(

β′α2ε3

log2 n

)
6: for each heavy-hitter k ∈ [n] reported by PrivCountSketchj do
7: Let x̂k be the frequency estimated by PrivCountSketchj

8: for i ∈ [ℓ] with O
(

log n
β′α2ε

)
≥ 2j+1 > γξ2i ≥ 2j do

9: Let b̃i be the number of indices k ∈ [n] such that γξ2i ≤ x̂k < γξ2i+2

10: b̂i ← 2j

(1+O(α))

(
b̃i + Lap

( 8
ε

))
11: return b̂i

We then show that Algorithm 4 is differentially private and analyze its space complexity.

▶ Lemma 32. Algorithm 4 is
(

ε
4 , δ

4
)
-differentially private for δ = 1

poly(m) and uses space
mmc(L)2 · poly

( 1
α , 1

ε , log m
)
.

3.4 Putting Things Together
We would like to combine the subroutines from the previous sections to output a private
dataset for symmetric norm estimation. Thus it remains to describe how to privately partition
the coordinates into the high, medium, and low frequency levels. To that end, we remark that
by Lemma 14, the sensitivity of PrivCountSketch in Algorithm 1 is at most 2. Moreover,
although PrivCountSketch actually provides an estimated frequency for each coordinate,
for our purposes, we only need estimated frequencies for the L2-heavy hitters and there are
at most K := O

(
1

η2

)
possible L2-heavy hitters with whichever threshold η that we choose,

e.g., η = α2β′ in Algorithm 2. Thus it suffices to observe that we can privately partition the
coordinates into the high, medium, and low frequency levels by first privately outputting the
top K estimated frequencies and then partitioning the coordinates according to their noisy
estimated frequencies, which can be viewed as post-processing. In particular, [56] observes
that it suffices to add Laplacian noise with scale 8

ηε to each of the frequencies and then
outputting the top K noisy estimated frequencies to achieve ε

4 -differential privacy.
We now finally put together the results from the previous sections to show the following

result. We remark that we set ε, α = Ω̃
((

M2

m

) 1
30

)
so that along with the assumption that

m ≥ n, the conditions of the previous statements are satisfied, e.g., Lemma 34, we obtain
the following formalization of Theorem 2.

▶ Theorem 33. Given a parameter M > 1, let ε, α = Ω̃
((

M2

m

) 1
30

)
. There exists a (ε, δ)-

differentially private algorithm that outputs a set C, from which the (1 + α)-approximation to
any norm , with maximum modulus of concentration at most M of a vector x ∈ Rn induced
by a stream of length poly(n) can be computed, with probability at least 1− δ. The algorithm
uses M2 · poly

( 1
α , 1

ε , log n, log 1
δ

)
bits of space.
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A Missing Proofs

We first show that coordinates in high frequency levels are identified and their frequencies
are accurately estimated.

▶ Lemma 34. Suppose x2
k ≥

α2βε2

log2 m
F2(x) and m = Ω(log5 m)

α5β2ε5 . Then with high probability,
Algorithm 2 outputs x̂k such that

(1− α2)xk ≤ x̂k ≤ xk.

Proof. Consider Algorithm 2. Since x2
k ≥

α2βε2

2 log2 m
F2(x) and we call PrivCountSketch

with threshold α2β′ with β′ := O
(

α2βε2

log2 m

)
, then with high probability, the output x̃k satisfies

(1−O
(
α2)

)xk ≤ x̃k ≤ xk.
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We then add Laplacian noise Lap
(

8
β′ε

)
to x̃k to form x̂k. Since x2

k ≥
α2βε2

2 log2 m
F2(x) = β′ F2(x)

and F2(x) ≥ m, then with high probability, the Laplacian noise is at most an α2 fraction of x̂k

for O(log m)
β′ε ≤ α2m or equivalently, m ≥ Ω(log m)

α(β′)2ε ≥
Ω(log5 m)

α5β2ε5 . Hence with high probability,

(1− α2)xk ≤ x̂k ≤ xk. ◀

Similarly, we show that if a coordinate does not have high frequency, it will not be output by
Algorithm 2.

▶ Lemma 35. Suppose x2
k < α2βε2

2 log2 m
F2(x) and m = Ω(log5 m)

α5β2ε5 . Then with high probability,
Algorithm 2 outputs x̂k such that

x̂k <
3α2βε2

4 log2 m
F2(x).

Proof. Since x2
k < α2βε2

2 log2 m
F2(x) and we call PrivCountSketch with threshold α2β′ with

β′ := O
(

α2βε2

log2 m

)
, then the output x̃k satisfies

|(x̃k)2 − (xk)2| ≤ 2α2β′ F2(x).

We then add Laplacian noise Lap
(

8
β′ε

)
to x̃k to form x̂k. Since F2(x) ≥ m, then with high

probability, the Laplacian noise is at most an α2β′ fraction of F2(x) for O(log m)
β′ε ≤ α2m or

equivalently, m ≥ Ω(log m)
α(β′)2ε ≥

Ω(log5 m)
α5β2ε5 . Hence with high probability,

|(x̃k)2 − (xk)2| ≤ α2βε2

4 log2 m
F2(x).

Since x2
k < α2βε2

2 log2 m
F2(x), then it follows that

x̂k <
3α2βε2

4 log2 m
F2(x). ◀

We now show that Algorithm 2 preserves differential privacy.

▶ Lemma 36. Algorithm 2 is
(

ε
4 , δ

4
)
-differentially private for δ = 1

poly(m) . Algorithm 2 uses
space mmc(L)2 · poly

( 1
α , 1

ε , log m
)
.

Proof. By Lemma 14, the sensitivity of PrivCountSketch is at most 2 and the failure
probability is 1

poly(m) . Thus by adding Laplacian noise Lap
(

8
β′ε

)
to x̃k, each estimated

frequency is
(

β′ε
4 , δ

4β

)
-differentially private for δ = 1

poly(m) . Since PrivCountSketch with
threshold β′ can release at most 1

β estimated frequencies and post-processing does not cause
loss in privacy, then by Theorem 11, Algorithm 2 is

(
ε
4 , δ

4
)
. ◀

Finally, we analyze the space complexity of Algorithm 2.

▶ Lemma 37. Algorithm 2 uses space mmc(L)2 · poly
( 1

α , 1
ε , log m

)
.

Proof. The space complexity follows from running a single instance of PrivCountSketch
with threshold α2β′ and failure probability 1

poly(m) , where β′ = O
(

α2βε2

log2 m

)
and β =

O
(

α5

mmc(L)2 log5 m

)
. ◀
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▶ Lemma 38. With high probability, we have that F2((Sj)1/(α2β′ε2)) ≤ 200 log m
2j F2(x) for all

j ∈ [s].

Proof. For each j ∈ [s], we have that E [F2(Sj)] = F2(x)
2j . By Chernoff bounds with O (log n)-

wise limited independence, we have that

Pr
[
F2((Sj)1/(α2β′ε2)) >

200 log m

2j
F2(x)

]
≤ 1

poly(m) .

Since s ≤ 2 log m, then by a union bound over all j ∈ [s], we have that F2(Sj) ≤
(200 log m)F2(x) for all j ∈ [s]. ◀

We now show that conditioned on the event that the L2 norm of the subsampled streams are
not too large, then we can well-approximate the frequency of any coordinate of the medium
frequency levels, provided that they are sampled in the substream.

▶ Lemma 39. Suppose i is a β-important level and k ∈ [n] is in level i, so that xk ∈ [ξi, ξi+1).
If F2((Sj)1/(α2β′ε2)) ≤ 200 log m

2j F2(x) for all j ∈ [s] and k is sampled in stream Sj with
2j > log n

β′αε , then with high probability, Algorithm 3 outputs x̂k such that

(1− α2)xk ≤ x̂k ≤ xk.

Proof. Consider Algorithm 3. By Lemma 26, x2
2 ∈

[
α2βε2

log2 m
· F2(x)

2j , α2βε2

log2 m
· F2(x)

2j−1

]
. Condi-

tioned on the event that F2((Sj)1/(α2β′ε2)) ≤ 200 log m
2j F2(x) for all j ∈ [s], then x2

k ≥
α2βε2

200 log m F2(Sj). We call PrivCountSketch with threshold α2β′ε2 = O
(

α4βε3

log2 m

)
. Thus

with high probability, the output x̃k satisfies

(1−O
(
α2)

)xk ≤ x̃k ≤ xk.

We then add Laplacian noise Lap
(

8
β′ε

)
to x̃k to form x̂k. Since x2

k ≥ O
(

log n
β′α2ε

)
, then with

high probability, the Laplacian noise is at most an α2 fraction of x̂k. Hence with high
probability,

(1− α2)xk ≤ x̂k ≤ xk. ◀

Unfortunately, Lemma 39 only provides guarantees for the coordinates of the medium
frequency levels that are sampled. Thus, we still need to use Lemma 39 to show that a good
estimator to the sizes of the medium frequency levels can be obtained from the estimates of
the coordinates of the medium frequency levels that are sampled. In particular, we show
that rescaling the empirical sizes of the medium frequency levels forms a good estimator to
the actual sizes of the medium frequency levels.

Proof of Lemma 29. Suppose i is a β-important level. Then by Lemma 26 and a shifting of
the index j, bi ≥ O

(
2j log2 m

α2ε2

)
. Thus in Sj , the expected number of items Ej from level i is at

least log2 m
α2ε2 and the variance Vj is at most Ej . Hence by Chernoff bounds with O (log n)-wise

limited independence, we have that the number of items Nj from level i satisfies

(1−O (α))bi ≤ 2j ·Nj ≤ (1 +O (α))bi,

with high probability. [11] show that due to the uniformly random chosen γ ∈ (1/2, 1), we
further have

(1−O (α))Nj ≤ (1 +O (α))b̂i ≤ (1 +O (α))Nj ,
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with high probability. Since s ≤ 2 log m, then by a union bound over all j ∈ [s], we have that
with high probability, Algorithm 3 outputs b̂i such that

(1−O (α))bi ≤ b̂i ≤ bi. ◀

We now show that Algorithm 3 preserves differential privacy.

▶ Lemma 40. Algorithm 3 is
(

ε
4 , δ

4
)
-differentially private for δ = 1

poly(m) .

Proof. By Lemma 14, the sensitivity of PrivCountSketch is at most 2 and the failure
probability is 1

poly(m) . Thus by adding Laplacian noise Lap
(

8
β′ε

)
to x̃k, each estimated

frequency is
(

β′ε
4 , δ

4β

)
-differentially private for δ = 1

poly(m) . Since PrivCountSketch with
threshold β′ can release at most 1

β estimated frequencies, then by Theorem 11, Algorithm 3
is

(
ε
4 , δ

4
)
. ◀

It remains to analyze the space complexity of Algorithm 3.

▶ Lemma 41. Algorithm 3 uses space mmc(L)2 · poly
( 1

α , 1
ε , log m

)
.

Proof. The space complexity follows from running s instances of PrivCountSketch
with threshold α2β′ and failure probability 1

poly(m) , where β′ = O
(

α2βε2

log2 m

)
and β =

O
(

α5

mmc(L)2 log5 m

)
. Since s = O (log n) and we assume n ≤ m so that O (log n) = O (log m),

then the space complexity follows. ◀

Proof of Lemma 31. Suppose i is a β-important level. Hence by a shifting of the index j in
Lemma 26, we have that bi ≥ O

(
2j log2 m

α2ε2

)
. Therefore, the expected number of items Ej

from level i sampled in the substream Sj is at least log2 m
α2ε2 and the variance Vj is at most Ej .

Thus by Chernoff bounds with O (log n)-wise limited independence, the number of items Nj

from level i satisfies

(1−O (α))bi ≤ 2j ·Nj ≤ (1 +O (α))bi,

with high probability. [11] show that due to the uniformly random chosen γ ∈ (1/2, 1), we
further have

(1−O (α))Nj ≤ (1 +O (α))b̂i ≤ (1 +O (α))Nj ,

with high probability. Since s ≤ 2 log m and Lap
( 8

ε

)
is at most an ε-fraction of bi ≥

O
(

2j log2 m
α2ε2

)
with high probability, then by a union bound over all j ∈ [s], we have that with

high probability, Algorithm 3 outputs b̂i such that

(1−O (α))bi ≤ b̂i ≤ bi. ◀

We then show that Algorithm 4 is differentially private.

▶ Lemma 42. Algorithm 4 is
(

ε
4 , δ

4
)
-differentially private for δ = 1

poly(m) .

Proof. Note that since each instance of PrivCountSketchj uses threshold
β′′ := O

(
β′α2ε3

log2 n

)
on a stream Sj with F2(Sj) ≤ 200 log m

2j F2(x), then for any k ∈ [n]

with xk ≤ O
(

log n
β′α2ε

)
, we have that PrivCountSketchj outputs xk exactly. Hence, at

most two estimates of the sizes of the level sets b̂i can change, and then can change by at
most one. Thus the sensitivity is at most 2, so it suffices to add Laplcian noise Lap

( 8
ε

)
to

each estimate b̂i to obtain
(

ε
4 , δ

4
)
-differentially private for δ = 1

poly(m) . ◀
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Finally, we argue the space complexity of Algorithm 4.

▶ Lemma 43. Algorithm 4 uses space mmc(L)2 · poly
( 1

α , 1
ε , log m

)
.

Proof. Similar to Algorithm 3, the space complexity follows as a result of running s instances
of PrivCountSketch with threshold α2β′ and failure probability 1

poly(m) , where β′ =

O
(

α2βε2

log2 m

)
and β = O

(
α5

mmc(L)2 log5 m

)
. Since s = O (log n) and we assume n ≤ m so that

O (log n) = O (log m), then the space complexity follows. ◀

▶ Theorem 44. Given a parameter M > 1, let ε, α = Ω̃
((

M2

m

) 1
30

)
. There exists a

(ε, δ)-differentially private algorithm that outputs a set C, for δ = 1
poly(m) . From C, the

(1 + α)-approximation to any norm with maximum modulus of concentration at most M can
be computed, with probability at least 1− δ. The algorithm uses M2 · poly

( 1
α , 1

ε , log m
)

bits
of space.

Proof. Note that from Lemma 34 and Lemma 35, the frequencies of the coordinates in the
high frequency levels are well-approximated with high probability. Similarly, from Lemma 29
and Lemma 31, the sizes of the level sets of the medium and low frequency levels are
well-approximated with high probability. Moreover, all the level sets are partitioned into
the high, medium, or low frequency levels. We would like to say that by Lemma 23, these
statistics are sufficient to recover a (1 + α)-approximation to any norm with maximum
modulus of concentration at most M and so we achieve a (1 + α)-approximation to any norm
with maximum modulus of concentration at most M that with high probability. Indeed, in
an idealized process where ξi ≤ x̂k ≤ ξi+1 if and only if k is sampled by the substream j

assigned to level i and ξi ≤ xk < ξi+1, Lemma 23 would show that we achieve a (1 + α)-
approximation to any norm with maximum modulus of concentration at most M that with
high probability. However, this may not always be the case because the frequency xk may lie
near the boundary of the interval [ξi, ξi+1) and the estimate x̂k may lie outside of the interval,
in which case x̂k is used toward the estimation of some other level set. Thus, our algorithm
randomizes the boundaries of the level sets by instead defining the level sets as [γξi, γξi+1)
for some γ ∈ (1/2, 1) chosen uniformly at random. Since we call PrivCountSketch with
threshold at most α2β′, then the probability that item k ∈ [n] is misclassified over the choice
of γ is at most O

(
α2β′). Furthermore, if k in level set i is misclassified, it can only be

classified into level set i− 1 or i + 1, causing at most an incorrect multiplicative factor of two.
Then in expectation across all k ∈ [n], the error due to the misclassification is at most an
O

(
α2β′) fraction of the symmetric norm. Hence by Markov’s inequality, the error due to the

misclassification is at most an additive α
2 fraction of the symmetric norm with probability at

least 0.99. To obtain high probability of success, it then suffices to take the median across
O (log m) independent instances, finally showing correctness of our algorithm.

The private partitioning of the coordinates into the high, medium, and low frequency
levels is ε

4 -differentially private. Each of the three sets of statistics released by the high,
medium, and low frequency levels are

(
ε
4 , δ

4
)
-differentially private, by Lemma 36, Lemma 40,

and Lemma 42. Then (ε, δ)-differential privacy follows from the composition of differential
privacy, i.e., Theorem 11.

Finally, the space complexity follows from Lemma 37, Lemma 41, and Lemma 43. ◀
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We remark that our algorithm is presented as having unlimited access to random bits
but is analyzed using O (log m)-wise independence, so it can be properly derandomized
to provide the space guarantees without needing to store a large number of random bits.
Alternatively, our algorithm can also be derandomized using Nisan’s pseudorandom generator,
which induces an extra multiplicative factor of O (log m) in the space overhead [54].

Finally, we remark that the failure probability can be raised from δ = 1
poly(m) to arbitrarily

δ > 0 using additional space overhead polylog 1
δ , since the space dependency in each subroutine

on the failure probability δ is polylog 1
δ .
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We show that for every P, one can turn a testing algorithm for P into a distance estimator
with a double exponential loss. This improves over the transformation of Fischer–Newman that
incurred a tower-type loss.
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1 Introduction

1.1 Background on graph property testing
Property testers are fast randomized algorithms that can distinguish between objects satisfying
some predetermined property P and those that are ε-far from satisfying P. In most cases,
ε-far means that an ε-proportion of the object’s representation needs to be changed in order
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to obtain a new object satisfying P . Hence, testing for P is a relaxed version of the classical
decision problem which asks to decide whether an object satisfies P . In this paper we study
properties of graphs in the so called adjacency matrix model (which is also sometimes referred
to as the dense graph model). This is arguably one of the most well studied models in the
area of property testing. The reader is referred to [20] for more background and references
on property testing.

We now introduce the model of testing graph properties in the adjacency matrix model.
A graph property P is a family of graphs closed under isomorphism. A graph G on n vertices
is ε-far from P if one should add/delete at least εn2 edges to turn G into a graph satisfying
P . If G is not ε-far from P then it is ε-close to P . A tester for P is a randomized algorithm
that given ε > 0 distinguishes with high probability (say, 2/3) between graphs satisfying P
and those that are ε-far from P. We assume the algorithm can query for each 1 ≤ i, j ≤ n

whether the input G contains the edge (i, j). The edge query complexity, denoted Q(ε),
of a tester is the number of edge queries it performs. If P has a tester whose edge query
complexity depends only on ε (and is independent of n) then P is called testable. In what
follows we will mainly work with vertex query complexity which is the smallest q = q(ε) so
that we can ε-test P by inspecting a subgraph of the input graph G, induced by a set of
q randomly selected vertices. By a theorem of Goldreich and Trevisan [22] we know that
q(ε) ≤ 2Q(ε) ≤ q2(ε). In most (but not all) discussions below we will not care much about
these quadratic factors. In such cases we might use the term query complexity without
mentioning if this is vertex or edge query complexity.

Property testing in the adjacency matrix model was first introduced by Goldreich,
Goldwasser and Ron [21], who proved that every partition property (e.g. k-colorability and
MAX-CUT) is testable. There are several general results guaranteeing that a graph property
is testable [3, 10]. A result of this nature was obtained by Alon and Shapira [5] who proved
that every hereditary1 graph property is testable. Their proof applied Szemerédi’s regularity
lemma [35] (see also [33]), which is one of the most useful tools when studying properties of
dense graphs. Using this tool comes with a hefty price, since the bounds one obtains when
using the regularity lemma are of tower-type2.

One of the central open (meta) problems related to testing graph properties is when
can one turn an ineffective (e.g. one with tower-type bounds) result into an efficient one,
preferably with polynomial bounds. While this is a quantitative question, what lies beneath
it is in fact the following qualitative problem; when can we prove a testability result while
avoiding Szemerédi’s regularity lemma, either by giving a direct combinatorial argument
or by using a weaker variant of the regularity lemma (e.g. the Frieze–Kannan regularity
lemma [18] which we discuss below). For example, Rödl and Duke [31] used the regularity
lemma in order to (implicitly) prove that k-colorability is testable. The tower-type bounds
obtained in [31] were improved to polynomial in [21] using a direct argument which avoided
the use of the regularity lemma. A specific central open problem, due to Alon and Fox [4],
concerns hereditary properties, and asks which hereditary properties are testable with query
complexity poly(1/ε). A systematic investigation of this problem was carried out in [19].

1.2 Distance estimation
In the dense graph model we say that a graph’s distance from P is α, if α is the smallest
real so that G is α-close to P. In other words, this is the minimum number of edges one
should add/delete in order to obtain a graph satisfying P, normalised by n2. We denote

1 A graph property is hereditary if it is closed under vertex removal. Some examples are being 3-colorable,
being triangle-free and being induced H-free, for some fixed H.

2 The tower function tower(x) is a tower of exponents of height x.
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this quantity by distP(G). A distance estimator for P is a randomized algorithm that given
α, ε > 0 distinguishes with high probability (say, 2/3) between graphs that are (α − ε)-close
to P and those that are α-far from P. If for every α, ε there is a distance estimator for P
whose query complexity depends only on ε, then P is said to be estimable. Note that testing
P is equivalent to distance estimation with α = ε, hence this notion is at least as strong as
testability.

Distance estimation was first studied in [30] and has since been studied in various other
settings such as distributions [7], strings [6], sparse graphs [11, 13, 28], boolean functions
[1, 9], error correcting codes [23, 26] and image processing [8]. It is known that in certain
settings, there are testable properties which are not estimable [15]. One of the central and
most unexpected results in the area of graph property testing is the Fischer–Newman theorem
[16], which states that in the setting of graphs, every testable property is also estimable. As
with several of the main results in this area, the proof in [16] relied on Szemerédi’s regularity
lemma [35] and thus resulted in a tower-type loss when transforming a tester for P into a
distance estimator for P. Returning to the discussion in the last paragraph of the previous
subsection, it is natural to ask if one can improve the transformation of [16] and turn a tester
for P into a distance estimator with a polynomial loss.

1.3 New results concerning hereditary graph properties
As we mentioned in the previous subsection, the family of hereditary graph properties has
been extensively studied within the setting of graph property testing. The fact that every
hereditary property is testable follows from the following statement, where we use ind(F, G)
to denote the probability that a random mapping φ : V (F ) → V (G) is an injective induced
homomorphism. 3

▶ Lemma 1 (Induced Removal Lemma, [5]). For every ε > 0 and every hereditary P, there
exists M = M1(ε, P), δ = δ1(ε, P) > 0 and n0 = n1(ε, P) such that if a graph G on n ≥ n0
vertices is ε-far from P then there is a graph F ̸∈ P with |V (F )| ≤ M such that ind(F, G) ≥ δ.

The first version of the above lemma was obtained by Alon, Fischer, Krivelevich and
Szegedy [2] who proved it when P can be characterized using a finite number of forbidden
induced subgraphs. The lemma was proved in full generality by Alon and Shapira [5].
Alternative proofs were later obtained by Lovász and Szegedy [27], Conlon and Fox [12] and
Borgs et al. [10]. It was also extended to the setting of hypergraphs by Rödl and Schacht [32].

Note that it follows immediately from Lemma 1 that every hereditary property is testable
with vertex query complexity

q(ε) = max{n0, M/δ} . (1)

Indeed, the algorithm samples a set X of q vertices, queries about all pairs within X, and
then accepts if and only if the graph on X satisfies P. If G satisfies P then the algorithm
clearly answers correctly (with probability 1). If G is ε-far from P, then by Lemma 1 a
random M -tuple of vertices spans an induced copy of a graph F ̸∈ P with probability at
least δ. Hence, a sample of size M/δ contains an induced copy of F with probability at least
2/3, thus guaranteeing that the sample of vertices does not satisfy P (since P is hereditary).
Recall that [22] proved that if P is testable, then it is testable using an algorithm as above.
Hence, the bounds in Lemma 1 more or less determine the query complexity of testing a

3 A mapping φ : V (F ) → V (G) is an induced homomorphism if uv ∈ E(F ) if and only if φ(u)φ(v) ∈ E(G).

APPROX/RANDOM 2023



46:4 Testing Versus Estimation of Graph Properties, Revisited

hereditary P . This raises the following natural problem, introduced by Hoppen et al. [25, 24]
and by Fiat and Ron [14], asking if it is possible to estimate every hereditary P with (roughly)
the same query complexity with which it can be tested as in (1).

▶ Problem 2. Determine if every hereditary graph property P is estimable with query
complexity

n0 · M/δ ,

where M = M1(ε′, P), δ = δ1(ε′, P), n0 = n1(ε′, P) are given by Lemma 1 with ε′ = poly(ε).

▶ Remark 3. There are hereditary graph properties (e.g. triangle-freeness) for which the
best known bounds for M and δ in Lemma 1 are of tower-type. One can argue that in
such cases there is little difference between the tower(M/δ) bounds given by [16] and those
suggested by Problem 2. However, we should emphasize that for many of these properties
(e.g. triangle-freeness) the tower-type bounds are not known to be tight (indeed, the best
known lower bounds are just slightly super polynomial). Perhaps more importantly, there are
numerous hereditary graph properties for which it is known that both M and δ in Lemma 1
are polynomial in ε (e.g. k-colorability, being an interval graph or being a line graph; see the
detailed discussion in [19]). For all these properties, Problem 2 suggests a poly(1/ε) bound,
versus the tower(1/ε) bound given by [16].

Problem 2 was studied by Hoppen et al. [25, 24]. Their main result was that every
hereditary P is estimable with query complexity 2poly((1/δ)M2

,log n0). Our first main result
is the following exponential improvement of this result, making a significant step towards
resolving Problem 2.

▶ Theorem 4. Every hereditary P is estimable with query complexity

2poly(M/δ,log n0) ,

where M = M1(ε/2, P), δ = δ1(ε/2, P) and n0 = n1(ε/2, P) are the parameters of Lemma 1.

▶ Remark 5. In all known cases, the best bounds in Lemma 1 are such that log n0 ≪ 1/δ,
hence the upper bound of [25] is 2(1/δ)O(M2) while the one in Theorem 4 is 2poly(M/δ).

In almost all cases, results concerning testing of dense graphs rely on combinatorial
statements which imply trivial algorithms. For example, the algorithm for testing a hereditary
property P is trivial once we have Lemma 1 at our disposal. In sharp contrast, many
estimation results involve sampling a set of vertices and then carrying out a highly non-trivial
computation over this sample. This is certainly the case in the present paper, see the proofs
of Lemmas 14 and 15. However, thanks to a well known sampling trick [21], one can transfer
any estimation result into a combinatorial statement. For example, this trick gives the
following corollary of Theorem 4.

▶ Corollary 6. Set q = 2poly(M/δ,log n0) as in Theorem 4. Then

Pr
X

[|distP(G[X]) − distP(G)| ≤ ε] ≥ 2/3 ,

where the probability is over randomly selected subsets X of q vertices from G, and G[X] is
the graph induced by G on X.
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It is interesting to note that with Corollary 6 at hand, we can now go back and reprove
Theorem 4 using the “trivial/natural” algorithm which samples a set of q vertices X, computes
distP(G[X]), and then states that G is (α − ε)-close to P if distP(G[X]) ≤ α − ε/2 and is
otherwise α-far from P.

Our proof of Theorem 4 actually gives the bound 2poly(M/εδ,log n0). One can speculate
that poly(M/εδ) = poly(M/δ) since in all known cases δ is at best polynomial in ε, and in
many cases much smaller. In order to formally be able to remove the dependence on ε from
our bound, we prove the following proposition, where P is trivial if either P contains all
graphs or if it contains finitely many graphs. The proof of this proposition relies on a subtle
application of Ramsey’s theorem.

▶ Proposition 7. The following holds for every non-trivial hereditary property P. If q(ε)
denotes the vertex query complexity of P then for every small enough ε, we have

M/δ ≥ q(ε) ≥ Ω(1/ε) , (2)

where M = M1(ε, P) and δ = δ1(ε, P) are the constants of Lemma 1.

The left inequality above follows from (1). Observe that the lower bound on q(ε) is best
possible since it is tight when P is the property of having no edges (in which case q(ε) =
O(1/ε)). The proof of the proposition will appear in the journal version of the paper.

It is of course natural to study Problem 2 also for specific hereditary properties. A natural
problem of this type is whether every hereditary P that is testable with query complexity
poly(1/ε) is also estimable with query complexity poly(1/ε). Such an investigation was
initiated recently by Fiat and Ron [14] who proved such a statement for many natural
hereditary properties such as Chordality and not containing an induced path on 4 vertices.

1.4 New results concerning general graph properties
Given the discussion above, the following problem seems natural.

▶ Problem 8. Determine if every property P that is testable with vertex query complexity
q(ε), is estimable with query complexity q(ε′) for some ε′ = poly(ε).

Prior to this work, the only result concerning general graph properties P was the
transformation of Fischer and Newman [16] which turns a testing algorithm for a graph
property P with query complexity q(ε) into a distance estimator with query complexity
tower(q(ε/2)). Using the tools we develop in order to obtain Theorem 4, we also obtain the
following improved bound.

▶ Theorem 9. If P is testable with query complexity q(ε) then it is estimable with query
complexity 2poly(1/ε)·2q(ε/2) .

We would like to argue at this point that since any “natural” property satisfies q(ε) ≥
log(1/ε) the above bound can be written as exp(exp(poly(q(ε/2)))). In order to formally
make such a claim, we prove the following variant of Proposition 7, in which P is unnatural
if there is ε0 so that the following holds for every 0 < ε < ε0 and n ≥ n0(ε): either every
n-vertex graphs is ε-close to P, or every n-vertex graph does not belong to P. If P is not
unnatural then it is (naturally) natural.

▶ Proposition 10. Let P be a natural property and let q(ε) be its vertex query complexity,
and Q(ε) be its edge query complexity. Then

Q(ε) = Ω(1/ε) . (3)

In particular, q(ε) = Ω(
√

1/ε).
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The “in particular” part above follows directly from the Goldreich–Trevisan [22] theorem
mentioned earlier. Observe that the general lower bound given in (3) is best possible since it
is tight when P is the property of having no edges, where Q(ε) = O(1/ε). The proof of the
proposition will appear in the journal version of the paper.

1.5 Main technical contributions and comparison to previous approaches

Summary of previous approaches

The main reason why Szemerédi’s regularity lemma is so useful when studying testing/estim-
ation problems is that an ε-regular partition of a graph G determines (approximately) the
values of ind(F, G) for all small F . Hence, on a very high level, the way one can estimate a
graph’s distance to a hereditary property P is to take a single ε-regular partition of G (one
such exists by the regularity lemma) and then try to modify this partition using the smallest
possible number of edge modifications, so that the new partition “predicts” that there are no
induced copies of graphs F ̸∈ P in the new graph G′. A key “continuity” feature one has to
use at this stage is that if G has a regular partition with certain edge densities between the
clusters of the partition, and one would like to modify G so that in the new graph G′ one
has a regular partition where the edge densities between the clusters will change on average
by γ, then one can achieve this by modifying (γ + o(1))n2 edges of G. Fischer and Newman
[16] critically relied on the fact that regular partitions in the sense of Szemerédi have this
continuity property. The approach of [16] was ineffective since although a regular partition
has constant size (i.e., depending only on ε), this constant has tower-type dependence on
ε. We should point that one of the key novel ideas of [16] was a method for obtaining the
densities of a single Szemerédi partition of the input G.

The way Hoppen et al. [25, 24] managed to improve upon [16] (for hereditary P) was
by first observing that in order to estimate ind(F, G) for all small F , one does not need the
full power of Szemerédi’s regularity lemma. Instead, one can use the weak regularity lemma
of Frieze and Kannan [17] which involves constants that are only exponential in ε. The
main reason why their proof gave a doubly exponential bound is that Frieze–Kannan regular
partitions do not (seem to) have the same continuity feature we mentioned in the previous
paragraph with respect to Szemerédi partitions. To overcome this, Hoppen et al. [25, 24]
introduced a sophisticated method that somehow combines working with Frieze–Kannan
regular partitions in some parts of the proof, together with vertex partitions that have no
regularity4 features at all (these are sometimes called GGR partitions, after [21]) in other
parts of the proof.

Our main technical contribution

Our main technical contribution in this paper establishes that Frieze-Kannan weak regular
partitions “almost” satisfy the same continuity feature we mentioned above with respect
to Szemerédi partitions. What we show is that one can indeed efficiently modify a Frieze–
Kannan partition if one starts with a partition with guarantees slightly stronger than those
of Frieze–Kannan, and one is content with ending with a usual Frieze–Kannan partition.

4 Working with partitions that have no regularity requirements has the advantage that they trivially
have the continuity property. Indeed, if we want to change the edge density between two sets A, B by
γ we just add/remove γ|A||B| edges. Needless to say that working with such partitions has various
disadvantages resulting from their lack of regularity features.
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See Lemma 28 for the precise statement, whose proof relies on a randomized-rounding-
type argument. With the above continuity feature at hand, we can now go back to the
Fischer–Newman approach and turn it into an effective one, by taking full advantage of the
Frieze–Kannan lemma. One additional hurdle we need to overcome in order to make sure
we only incur an exponential loss in our proof, is a method for finding a Frieze–Kannan
partition of a graph using a constant number of queries. Here we introduce a variant of the
method of Fischer–Newman tailored for Frieze–Kannan partitions, see Lemma 14. The main
tools we develop for proving Theorem 4 turn out to be also applicable for proving Theorem
9. The reason why in Theorem 9 we have a double exponential loss is that it is not enough
to estimate ind(F, G) for a single F (as in Theorem 4 thanks to Lemma 1) but we instead
need to control ind(F, G) for all graphs F of order q(ε). We expect Lemmas 14 and 28 to be
applicable in future studies related to efficient testing and estimation of graph properties.

Paper overview

In Section 2 we introduce the two main lemmas in the paper, and show how they imply
Theorem 4. These lemmas are proved in Sections 3 and 4. In Section 5 we prove Theorem 9.
We prove Proposition 7 at the end of Section 2 and Proposition 10 at the end of Section
5. We use a = poly(x) to denote the fact that a is bounded from above (or below, when
0 < x < 1) by xd for some fixed d, which is independent of n or ε. Also, when we say that
“for every a = poly(x) there is b = poly(x)” we mean that for every d there is d′ so that if
a ≤ xd then there is a b ≤ xd′ .

2 The Key Lemmas and Proof of Theorem 4

Our goal in this section is to state Lemmas 14 and 15 and then use them to derive Theorem 4.
We prove these lemmas in Sections 3 and 4. At the end of this section we also prove
Proposition 7.

To state Lemmas 14 and 15 we need some definitions. We first recall that given a
graph G = (V, E), an equipartition A = {V1, . . . , Vk} of V (G) is a partition satisfying
||Vi| − |Vj || ≤ 1. Given a graph G and subsets X, Y ⊆ V (G), we use e(X, Y ) to denote the
number of edges between X and Y , and d(X, Y ) = e(X, Y )/|X||Y | to denote the density
between them.

▶ Definition 11 (Signature). For an equipartition A = {V1, . . . , Vt} of V (G), a (γ, ε)-signature
of A is a sequence of reals S = (ηi,j)1≤i<j≤t, such that |d(Vi, Vj) − ηi,j | ≤ γ for all but at
most ε

(
t
2
)

of the pairs i < j. A (γ, γ)-signature is referred to as γ-signature.

▶ Definition 12 (Index of a partition). For an equipartition A of a graph V (G) into t sets,
we define the index of A to be

ind(A) = 1
t2

∑
1≤i<j≤t

d2(Vi, Vj) .

▶ Definition 13 (Final partition). For a function f : N → N and γ > 0, we say that an
equipartition A of G consisting of t sets is (f, γ)-final if there exists no equipartition B of
V (G) with at least t and up to f(t) sets for which ind(B) ≥ ind(A) + γ .

The above notion of a final partition is useful since (as we show later) every graph has
such a partition and furthermore, we can design an algorithm for finding a signature of one
such partition of an input G. The first key lemma leading to the proof of Theorem 4 does
exactly that.
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▶ Lemma 14. For every k, ζ > 0, and every γ = poly(ζ) and fζ(x) = x · 2poly(1/ζ), there are
q = q14(ζ, k), N = N14(ζ, k) and T = T14(ζ, k) so that

q, N, T ≤ poly(k) · 2poly(1/ζ)

and such that the following holds. If G is a graph on at least N vertices then there is an
algorithm making at most q queries to G, computing with probability at least 2

3 a γ-signature
of an (fζ , γ)-final partition of G into at least k and at most T sets.

We prove the above lemma is Section 3. The following is the second key lemma, which
we prove in Section 4. In its statement we use the notion ind(F, G) which we defined before
the statement of Lemma 1. What it roughly states, is that having a signature of G (with
good parameters) is enough for estimating G’s distance to satisfying P.

▶ Lemma 15. For every h, ε, δ > 0, there are γ = γ15(h, ε, δ), s = s15(h, ε, δ) and f
(h,ε,δ)
15 :

N → N so that

γ = poly(εδ/h), s = poly(h/εδ), f15(x) = x · 2poly(h/εδ)

and the following holds. For every family H of graphs, each on at most h vertices, there
exists a deterministic algorithm, that receives as an input a γ-signature S of an (f15, γ)-final
partition A into t ≥ s sets of a graph G with n ≥ N15(h, ε, δ, t) = poly(t) · 2poly(h/εδ) vertices,
and distinguishes given any α between the following two cases:

(i) G is (α − ε) close to some graph G′ for which ind(H, G′) = 0 for every H ∈ H.
(ii) G is α-far from every G′ for which ind(H, G′) < δ for every H ∈ H.

Proof (of Theorem 4). Suppose P is a hereditary graph property, and let α, ε > 0. Lemma
1 with inputs ε/2 and P asserts that there are

h = M1(ε/2), δ = δ1(ε/2), n0 = n1(ε/2) ,

so that if a graph G on at least n0 vertices is ε/2-far from P, then ind(H, G) ≥ δ for some
H /∈ P with |V (H)| ≤ h. We need to describe an algorithm making 2poly(h/δ,log n0) queries
to G and distinguishes with probability at least 2/3 between the case that G is (α − ε)-close
to P and the case that G is α-far from P. Set

γ = γ15(h, ε/2, δ), s = s15(h, ε/2, δ), f = f
(h,ε/2,δ)
15 .

Finally, set ζ = δε/h and observe that

γ = γ15(h, ε/2, δ) = poly(εδ/2h) = poly(ζ) ,

that

f(x) = f
(h,ε/2,δ)
15 (x) = x · 2poly(2h/εδ) = x · 2poly(1/ζ) ,

that

s = s15(h, ε/2, δ) = poly(2h/εδ) = poly(1/ζ) .

Also, note that by Proposition 7 we have poly(1/ζ) = poly(h/δ). Let q, N, T be the
parameters given by Lemma 14 when applied with k = s, and ζ, γ, f defined above. (note
that γ and f satisfy the assumptions of the lemma). Lemma 14 then guarantees that
q, N, T ≤ 2poly(1/ζ) ≤ 2poly(h/δ).
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If G has less than N vertices then we can just ask about all the edges of G and answer
correctly with probability 1. The number of queries is then at most N2 ≤ 2poly(h/δ) as
needed. If G has more than N vertices then we can use the algorithm of Lemma 14 with the
parameters k, ζ, γ, f defined above. The algorithm makes at most q ≤ 2poly(h/δ) queries and
with probability at least 2/3 returns a γ-signature S of an equipartition of G into s ≤ t ≤ T

sets that is (f, γ)-final. Let

N ′ = N15(h, ε/2, δ, T ) = poly(T ) · 2poly(h/εδ) = 2poly(h/δ) .

Again, if G has less than N1 = max{N ′, n0} vertices then we can just ask about all the
edges of G and answer correctly with probability 1. The number of queries is then at most
(N1)2 ≤ 2poly(h/δ,log n0) as needed.

Suppose then that G has at least max{N, N1} vertices. Let H be the family of graph on
at most h vertices which do not satisfy P . Then we can now run the algorithm of Lemma 15
on the signature S, with respect to H, with α′ = α − ε/2 and with ε/2 instead of ε (note that
we chose the parameters with ε/2). If the algorithm says that case (i) holds (namely that G

is (α′ − ε/2)-close to some G′ with ind(H, G′) = 0 for every H ∈ H) then we declare that G

is (α − ε)-close to P , and if the algorithm says that case (ii) holds (namely that G is α′-far
from every G′ with ind(H, G′) < δ for every H ∈ H) then we declare that G is α-far from P .

Let us prove the correctness of the above algorithm. If G is (α − ε)-close to P then it is
(α − ε)-close to a graph G′ satisfying ind(H, G′) = 0 for every H ∈ H. Since α − ε = α′ − ε/2
the algorithm will say that case (i) holds, hence the algorithm answers correctly in this
case. Suppose now that G is α-far from P. Then any G′ that is α′-close to G must be
ε/2-far from P. Hence, by Lemma 1 in any such G′ we have ind(H, G′) ≥ δ for at least
one H ∈ H. We conclude that G is α′-far from every G′ satisfying ind(H, G′) < δ for every
H ∈ H. Hence, the algorithm of Lemma 15 will say that case (ii) holds , so our algorithm
will answer correctly in this case as well. ◀

3 Proof of Lemma 14

The proof is similar to one in [16]. What they have shown is that for every f, γ, one can find
an (f, γ)-final partition with a constant, albeit huge tower-type, query complexity. What we
do here is show that for restricted types of f , one can get a much better bound. To do this
we also need to rely on a recent result of [34].

3.1 Preliminary lemmas
In this subsection we describe some preliminary lemmas that will be used in the next
subsection in which we prove Lemma 14. We will need the following Chernoff-type large
deviation inequality.

▶ Lemma 16. Suppose X1, . . . , Xm are m independent Boolean random variables, so that
for every 1 ≤ i ≤ m we have Pr[Xi = 1] = pi. Let E =

∑m
i=1 pi. Then, Pr[|

∑m
i=1 Xi − E| ≥

θm] ≤ 2e−2θ2m.

▶ Definition 17 (Partition Properties). A partition property is a triple π = (s, ℓ, u) where s

is an integer (the size of the partition property), ℓ is a vector of
(

s
2
)

reals 0 ≤ αi,j ≤ 1 for
each 1 ≤ i < j ≤ s, and u is a vector of

(
s
2
)

reals 0 ≤ βi,j ≤ 1 for each 1 ≤ i < j ≤ s. We
say that a graph G satisfies π if there is an equipartition {V1, . . . , Vs} of V (G), such that
αij ≤ d(Vi, Vj) ≤ βij for every 1 ≤ i < j ≤ s.
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Given s and µ we use π(s, µ) to denote the family of partition properties π of size s in
which every αi,j and βi,j is an integer multiple of µ (so π(s, µ) contains {0, µ, 2µ, . . . , 1}2(s

2)
partition properties). Finally, define Π(t, µ) =

⋃
s≤t π(s, µ).

Note that each π as above is one of the partition properties studied in [21], where it
was shown that they are µ-testable with query complexity (1/µ)poly(s). This was improved
recently to poly(s/µ) in [34]. The next lemma states that with (roughly) the same query
complexity we can in fact simultaneously test all properties in Π(t, µ).

The proof of the next lemma will appear in the journal version of the paper.

▶ Lemma 18. For every t and µ > 0 there is q = q18(t, µ) = poly(t/µ) satisfying the
following. There is a randomized algorithm, that given a graph G, makes q queries to G

and with probability at least 2/3, for every π ∈ Π(t, µ), distinguishes between the case that G

satisfies π and the case that G is µ-far from π.

Proof (of Lemma 14): Given k, ζ, γ and fζ as in the statement of the lemma, we define
T0 = k and for i ≥ 1 define Ti = fζ(Ti−1). Now set the following parameters.

N = N14(k, ζ) = T2/γ = k · 2poly(1/ζ), T = T14(k, ζ) = T2/γ = k · 2poly(1/ζ) ,

and

t = fζ(T ) = k · 2poly(1/ζ), µ = γ

48(fζ(T ))2 = 1
poly(k) · 2poly(1/ζ) .

We now describe the algorithm for finding a signature S satisfying the requirement of
the lemma. For what follows let π′(s, µ) be the partition properties in which βi,j = αi,j + µ

for every 1 ≤ i < j ≤ s. Also for each π ∈ π′(s, µ) define the index of π to be ind(π) =
1
t2

∑
1≤i<j≤t α2

ij . In the Step-1 we run the algorithm of Lemma 18 with the parameters t, µ

defined above. This is the only randomized part of the algorithm. In the Step-2 of the
algorithm we do the following.

(i) For each k ≤ s ≤ t set M(s) = maxπ ind(π) where the maximum is taken over all
π ∈ π′(s, µ) which the algorithm of Step-1 accepted.

(ii) Let s⋆ be the smallest number in {k, . . . , T } such that M(s′) ≤ M(s⋆) + 3
4 γ for every

s′ ∈ {s⋆ + 1, . . . , fζ(s⋆)}. If there exists such an s⋆, output the signature S⋆ that
achieves the maximum over s⋆. Otherwise, the algorithm fails.

Note that the query complexity of the algorithm is q = q18(t, µ) = poly(t/µ) = poly(k) ·
2poly(1/ζ), as needed. Also, Lemma 18 guarantees that Step-1 of the above described algorithm
succeeds with probability at least 2/3. It thus remains to show that assuming this event
holds, Step-2 of the algorithm will return an (fζ , γ)-final partition. First of all note that if it
succeeds then it returns a partition of size at least k and at most T , as required.

The proof that if Step-1 succeeded, then Step-2 returns an (fζ , γ)-final partition is
identical to the proof of Claim 5.5 in [16], so we give a sketch of the proof. First, the reader
might be wondering why every graph necessarily has an (fζ , γ)-final partition as in the
statement of the lemma. Let us actually explain why every G has an (fζ , γ/2)-final partition,
while using the definitions we introduced above. Start from an arbitrary equipartition A0 of
G into T0 = k sets, and let ind0 = ind(A0) denote the index of A0 as in Definition 12. If
A0 is (fζ , γ/2)-final then we are done. If not, then there must be another partition A1 of G

with at least T0 and at most f(T0) = T1 parts, with index ind(A1) ≥ ind(A0) + γ/2. Since
0 ≤ ind(A) ≤ 1 for every equipartition, we see that this process will eventually end up with
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a partition A of size k ≤ s ≤ T so that all partitions of G into at least s and at most f(s)
parts have index less than ind(A) + γ/2. But this means that A is (fζ , γ/2)-final. Note that
we thus get that G has a (fζ , γ/2)-final partition A of size s ≤ T .

Let us now explain how to turn the above existential proof into a proof of correctness of
the algorithm describe earlier. Let MG(s) denote the largest index of an equipartition of G

of size s. First we claim that for every k ≤ s ≤ t,

M(s) − γ/8 ≤ MG(s) ≤ M(s) + γ/8. (4)

For the second inequality in (4), let A be an equipartition with s parts such that MG(s) =
ind(A). Let π ∈ π′(s, µ) be the partition property obtained from A by rounding down the
densities to the closest integer multiple of µ. Then we have |ind(A) − ind(π)| ≤ 3µ ≤ γ/8.
Hence, M(s) ≥ ind(π) ≥ ind(A) − γ/8 = MG(s) − γ/8.

For the first inequality in (4), let π ∈ π′(s, µ) be a partition property which the algorithm
accepted and such that M(s) = ind(π). Then G must be µ-close to π (as otherwise π

should have been rejected). Let G′ be a graph µ-close to G that satisfies π, and let A be
the vertex partition of G′ witnessing that G′ satisfies π. Note that when turning G into
G′, for each pair of parts of A, we change the density between this pair by at most µs2.
Hence, in G, the partition property π is a 2µs2-signature of A (here and in what follows,
we view π as a signature). So |ind(A) − ind(π)| ≤ 6µs2 ≤ γ/8, using our choice of µ. Now,
MG(s) ≥ ind(A) ≥ ind(π) − γ/8 = M(s) − γ/8. This proves (4).

It follows from the existential proof above that there is k ≤ s⋆ ≤ T and an equipartition
A of G into s⋆ parts which is (fζ , γ/2)-final. We can assume that MG(s⋆) = ind(A), because
the equipartition satisfying this must also be final. We have MG(s′) ≤ MG(s⋆)+γ/2 for every
s⋆ ≤ s′ ≤ fζ(s⋆). By (4), this implies that M(s′) ≤ M(s⋆) + 3γ/4 for every s⋆ ≤ s′ ≤ fζ(s⋆).
So the algorithm will return a partition.

Note that the algorithm does not necessarily return the same signature/partition-property
as above π that is µ-close to the above partition A. The reason for the algorithm to choose
a different partition is that there might be another partition of size s with a larger index
(which is of course also (fζ , γ)-final) or there might be an s∗ < s with the same properties, or
there might be other partitions with the same index. However, one can invert the reasoning
in the previous paragraph and show that if a π is returned then it must be the γ-signature
of an (fζ , γ)-final partition. ◀

4 Proof of Lemma 15

4.1 Preliminary lemmas
In this subsection we describe some preliminary lemmas that will be used in the next
subsection in which we prove Lemma 15. We start with introducing the Frieze–Kannan
regularity lemma [17, 18]. We first state their notion of γ-regularity.

▶ Definition 19 (Frieze–Kannan Regularity [18]). Let G = (V, E) be a graph and A =
{V1 . . . , Vk} be an equipartition of V (G). For a subset X ⊆ V and 1 ≤ i ≤ k denote
Xi = X ∩ Vi. We say that A is γ-Frieze–Kannan-regular if:

dA
□(G) := max

S,T ⊆V

1
n2

∣∣∣∣ ∑
i,j∈[k]2

(
d(Si, Tj) − dij

)
|Si||Tj |

∣∣∣∣ < γ (5)
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Roughly speaking, a partition A is γ-Frieze–Kannan-regular, or γ-FK-regular for short,
if we can estimate the number of edges between large sets S, T from the intersection sizes
S ∩ Vi and T ∩ Vi. We will also need the following slightly stronger notion of weak regularity
that was introduced in [29].

▶ Definition 20 (Frieze–Kannan Regularity⋆ [29]). In the setting of Definition 19, we say that
A is γ-Frieze–Kannan Regular⋆ if:

d⋆A
□ (G) := max

S,T ⊆V

1
n2

∑
i,j∈[k]2

∣∣∣∣d(Si, Tj) − dij

∣∣∣∣|Si||Tj | < γ (6)

The translation between these two notions will be crucial in Lemma 28 below. Suppose
A = {V1, . . . , Vk} is an equipartition of V (G). Then an equipartition B = {W1, ..., Wℓ} of
V (G) is said to refine A if each Wi ∈ B is contained in some Vj ∈ A. The following lemma
is proved in [29] using a simple variant of the original proof of Frieze and Kannan [18].

▶ Lemma 21 (Frieze–Kannan Weak Regularity Lemma [18, 29]). For every k0 and γ > 0 there
is T = T21(k0, γ) = k0 · 2poly(1/γ) so that the following holds for every graph G on at least T

vertices. If A is an equipartition of V (G) into at most k0 sets, then there is a refinement B

of A into at most T sets such that d⋆B
□ (G) < γ.

Let us now extend the definition of d□ to distance between pairs of weighted graph,
where a weighted graph R is a complete graph, so that every edge (i, j) is assigned a weight
0 ≤ R(i, j) ≤ 1.

If R, R′ are two weighted graphs on n vertices then we define

d1(R, R′) = 1
n2

∑
i<j

|R(i, j) − R′(i, j)| , (7)

and

d□(R, R′) = max
α,β

1
n2

∣∣∣∣∣∣
∑
i<j

α(i)β(j)(R(i, j) − R′(i, j))

∣∣∣∣∣∣ , (8)

where the maximum is taken over all functions α, β : [n] → [0, 1].

▶ Definition 22 (ind(F, R)). Let R be a weighted graph on [k] and let φ be an injective
function φ : V (F ) → [k]. We set

indφ(F, R) =
∏

i<j∈E(F )

R(φ(i), φ(j))
∏

i<j ̸∈E(F )

(1 − R(φ(i), φ(j)))

In the case of φ not being injective, we define

indφ(F, R) = 0

Denoting by Φ the set of functions from V (F ) to [k], we define

ind(F, R) = 1
|Φ|

∑
φ∈Φ

indφ(F, R) . (9)

Note that we can think of a signature S = (ηi,j)1≤i<j≤t as a weighted graph on t vertices.
This means that for a pair of signatures S, S′ we can define d1(S, S′) and d□(S, S′) as in (7)
and (8) respectively, and we can also define ind(F, S) as in (9). We will need the following
lemmas from [25]. The proof of the next two lemmas will appear in the journal version of
the paper.
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▶ Lemma 23. Suppose R, R′ are two weighted graphs on n vertices, and H is a graph on h

vertices. Then for any γ ≥ d□(R, R′) and n ≥ 2
γ , we have |ind(H, R) − ind(H, R′)| ≤ 2h2 · γ

Given a graph G on n vertices, and an equipartition A = {V1, . . . , Vk}, we define the
graph GA on V (G) to be the weighted graph with weights GA(u, v) = d(Vi, Vj) for every
u ∈ Vi and v ∈ Vj . Let SA be the 0-signature of A, that is, the weighted graph on k vertices
with S(i, j) = d(Vi, Vj). Observe that if k divides n (so all sets of A are of equal size)
then ind(H, GA) is almost the same as ind(H, SA). It is not hard to see that for general
equipartitions these quantities do not differ my much.

▶ Lemma 24. Given a graph G on n vertices, and an equipartition A = {V1, . . . , Vk}, let GA

and SA be defined as above. Then |ind(H, GA) − ind(H, SA)| ≤ 2h2

k + 2kh
n for every graph H

on h vertices.

We now combine the above facts to conclude that a signature of a γ-FK-partition of a
graph gives a good approximation of ind(H, G). The proof of the next lemma will appear in
the journal version of the paper.

▶ Lemma 25. For every h, k and δ > 0 there are

γ = γ25(h, δ) = poly(δ/h), r = r25(h, δ) = poly(h/δ), N = N25(h, k, δ) = poly(hk/δ) ,

so that if G is a graph on at least N vertices, and A is a γ-FK-regular partition of G with at
least r and up to k parts, then for every γ-signature S of A, we have |ind(H, G)−ind(H, S)| ≤
δ for every H on h vertices.

▶ Definition 26 (Extension). Given a signature S = (ηij)1≤i<j≤t of an equipartition A, and a
refinement B = {W1, . . . , Ws} of A, the extension of S to B is the sequence S′ = (η′

ij)1≤i<j≤s

defined as η′
i,j = ηk,l if there exist k ̸= l such that Wi ⊆ Vk and Wj ⊆ Vl, and setting η′

i,j = 0
if Wi and Wj are both subsets of the same Vk.

The proof of the next claim will appear in the journal version of the paper.

▷ Claim 27. For every ε and s there exists r = r27(ε) = poly(1/ε) and N = N27(ε, s) =
poly(s/ε) so that the following holds for every pair of graphs G, G′ on the same set of n ≥ N

vertices. If G, G′ are α-close and S, S′ are γ, γ′-signatures of G, G′ respectively, of the same
equipartition A of the vertex set of G, G′ into s ≥ r sets, then d1(S, S′) ≤ α + ε + 2(γ + γ′).

The proof of the next lemma will appear in the journal version of the paper.

▶ Lemma 28. For every ε and t there exists γ = γ28(ε) = poly(ε) and N = N28(t, ε) =
poly(t/ε), so that for every graph G on n ≥ N vertices, if S is a γ-signature of a γ-FK-
regular⋆ partition A of G with t sets, then for every signature S′ satisfying d1(S, S′) ≤ δ for
some δ, there is a graph G′ that is (δ + ε)-close to G, so that A is an ε-FK-regular partition
of G′, and S′ is an ε-signature of A.

We will also need the following lemmas.

▶ Lemma 29 ([2] Lemma 3.7). For every ε, t there exists γ = γ29(ε) = poly(ε) and N =
N29(t, ε) = poly(t/ε) satisfying the following. Assume A is an equipartition into s sets of a
graph G with n ≥ N vertices, and that B is a refinement of A into at most t sets. Assume
further that S is any γ-signature of A, and that T is its extension to B. If B satisfies
ind(B) ≤ ind(A) + γ, then T is an ε-signature for B.

APPROX/RANDOM 2023
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▶ Lemma 30 ([16] Lemma 6.6). For every ε, t there exists N = N30(t, ε) = poly(t/ε) so that
for every equipartition A of G with n ≥ N vertices into s sets, and every refinement B of A

into at most t sets, ind(B) ≥ ind(A) − ε.

The next observation is implicit in the proof of the Frieze–Kannan Regularity Lemma
(i.e. Lemma 21). The main step of the proof involves showing that if A is an equipartition of
G into t parts and A is not ε-FK-regular⋆, then A has a refinement B into k ≤ 16t/ε4 sets
so that ind(B) ≥ ind(A) + ε4

2 (see, e.g., the proof of Theorem 1.1 in [33] and the proof of
Theorem 6 in [29]).

▶ Lemma 31. For every ε > 0 there exists γ = γ31(ε) = poly(ε) and f = f
(ε)
31 : N → N

satisfying f(x) = poly(1/ε) · x and such that every (f, γ)-final partition of a graph is also
ε-FK-regular⋆.

The proof of the next lemma will appear in the journal version of the paper.

▶ Lemma 32. For every s and ε > 0 there are γ = γ32(ε), T = T32(s, ε), f = f
(ε)
32 and

N = N32(ε, s) so that

γ = poly(ε), T = s · 2poly(1/ε), f(x) = x · 2poly(1/ε), N = poly(s) · 2poly(1/ε)

and the following holds. Suppose G has at least N vertices and A is an (f, γ)-final partition
of G into at most s sets and that S is a γ-signature of A. Then for every G′ on the same
vertex set of G, there exists a refinement A′ of A into t ≤ T sets so that

(i) A′ is an ε-FK-regular⋆ partition of G′.
(ii) Every refinement A′′ of A with t ≤ T sets (and in particular A′), is an ε-FK-regular⋆

partition of G.
(iii) For every refinement A′′ of A with t ≤ T sets, the extension S′′ of S (in the sense of

Definition 26) with respect to A′′ is an ε-signature of A′′ with respect to G (note that
A′ is such an A′′).

4.2 Proof of Lemma 15
Given h, ε and δ we first choose

γ0 = min{ε/10, γ25(h, δ/6), γ28(min{ε/2, γ25(h, δ/6)})} = poly(εδ/h) ,

and then define

γ = γ32(γ0) = poly(εδ/h), s = max{r25(h, δ/6), r27(ε/10), 20h2/δ} = poly(h/εδ) ,

f(x) = f
(γ0)
32 (x) = x · 2poly(1/γ0) = x · 2poly(h/εδ) ,

to be the constants and function in the statement of Lemma 15, noting that they satisfy the
guarantees of that lemma. Given t as in the statement of Lemma 15, we set

T = T32(t, γ0)

and define

N = max{N25(h, T, δ/6), N27(ε/10, T ), N32(γ0, s), N28(t, γ0)} = poly(t) · 2poly(h/εδ) ,

to be the constant in Lemma 15.
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Given a family of graphs H on at most h vertices, we define a family of signatures as
follows

Cδ,H,T = {C : |C| ≤ T and ind(H, C) ≤ δ/2 for every H ∈ H} .

In order for Cδ,H,T to be finite, we only put in it signatures C with edge weights ηi,j that
are integer multiples of β = min{ε/10, δ/10h2}. Intuitively, this is the set of signatures
“certifying” (hence C) that a graph with that signature is close to being induced H-free. We
also define ST to be the set of all signatures on up to T parts, that are extensions5 of S.
Intuitively, these are the signatures one can obtain by refining A into at most T sets (recall
that the crucial point is that the algorithm only has access to S and not to G).

Suppose now that we are given a γ-signature S of some (f, γ)-final (with the above defined
f, γ) partition A of a graph G, so that S has t ≥ s parts and G has at least N vertices. The
algorithm checks if there are S′ ∈ ST and C ∈ Cδ,H,T satisfying d1(S′, C) ≤ α − ε

2 . If there
is such a pair, the algorithm says that case (i) holds, otherwise it says that case (ii) holds.
We now prove the correctness of the algorithm.

Proof of first direction

Suppose there is a graph G′ which is (α − ε)-close to G, and satisfies ind(H, G′) = 0 for
every H ∈ H. We will show that the algorithm will declare that case (i) holds.

Recall that A is an (f, γ)-final partition of G into t ≥ s sets and that S is a γ-signature
of A. By Lemma 32, there exists a refinement A′ of A into at most T sets so that A′ is
γ0-FK-regular⋆ for both G and G′. Moreover, denoting by S′ the corresponding extension of
S to A′, we have that S′ is a γ0-signature of A′ with respect to G. Note that S′ ∈ ST . By the
choice of γ0, this implies that A′ is γ25(h, δ/6)-FK-regular⋆ for both G and G′, and that S′

is a 1
10 ε-signature of A′ with respect to G. Let C ′ be the 0-signature of A′ over G′. Lemma

25 (using A′ and G′) implies that |ind(H, G′) − ind(H, C ′)| ≤ δ/6 for all H ∈ H. Thus
ind(H, C ′) ≤ δ/6 for all H ∈ H. Clearly there is a signature C of size C ′ so that all of C’s
weights are constant multiples of β and d1(C ′, C) ≤ β. Since d□(C ′, C) ≤ d1(C ′, C) ≤ δ/10h2

we infer from Lemma 23 (applied on δ
10h2 , as s ≥ 20h2

δ ) that ind(H, C) ≤ δ/6 + δ/5 < δ/2
for all H ∈ H, so C ∈ Cδ,H,T . In addition, by Claim 27 (since A′ has at least r27(ε/10) parts
and assuming that n is large enough), we infer that d1(S′, C) ≤ α − ε

2 (since G and G′ are
(α − ε)-close and d1(C, C ′) ≤ ε/10). Thus, S′ and C provide a witness that the algorithm
will indeed declare that case (i) holds.

Proof of second direction

Suppose the algorithm declares that case (i) holds. We show that in this case there is a
graph G′, which is α-close to G, and satisfies ind(H, G′) < δ for all H ∈ H.

Indeed, if the algorithm declared that case (i) holds then there are signatures S′ ∈ ST

and C ∈ Cδ,H,T satisfying d1(S′, C) ≤ α − ε
2 . As S′ ∈ ST , there is a refinement A′ of A,

so that S′ is the extension of S according to A′. Lemma 32 (regarding A′ as a possible

5 Note that strictly speaking, an extension per Definition 26 must be relative to a partition A and its
refinement B, while here we only have the signature S. So what we mean here is that if one takes some
graph that has a partition A whose 0-signature is S, then ST is the family of all signatures that one
obtains by taking all refinements of A into at most T sets, and then taking the extension of S to these
refinements. Of course we do not need any graph in order to produce ST ; we just break the “parts” of
S into a total of at most T new “parts”, and then define the densities η′

i,j between the new vertices as
in Definition 26.
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refinement of A with respect to G) asserts that S′ is a γ0-signature of A′ (with respect to
G), which by the choice of γ0 means that it is a γ28(min{ ε

2 , γ25(h, δ/6)})-signature for A′

with respect to G. Now, Lemma 28 (applied with A′ as the γ0-FK-regular⋆ partition of G,
and with S′ as S and C as S′) implies that there is a graph G′ that is (α − ε

2 + ε
2 )-close to

G, namely α-close to G, and for which C is a γ25(h, δ/6)-signature of A′, which in turn is
γ25(h, δ/6)-FK-regular over G′ . Lemma 25 implies that |ind(H, G′) − ind(H, C)| ≤ δ/6 for
all H ∈ H. Thus, ind(H, G′) < δ/2 + δ/6 < δ for all H ∈ H as required. Hence we have
found the required G′.

5 Proof of Theorem 9

The proof of Theorem 9 is very similar to that of Theorem 4. In order to assist the reader who
is already familiar with the proof of Theorem 4, we mention in several places where certain
lemmas are analogous to lemmas we introduced in one of the previous sections. The idea is
the following: by a theorem of Goldreich and Trevisan [22], every testable property is testable
by a canonical tester, which samples a set of vertices of size q = qP(ε) and accepts/rejects
based on the graph induced by these q vertices. Hence the acceptance/rejection of the
algorithm only depends on the number of induced copies in G of graphs on q vertices. Hence,
turning a graph into a graph satisfying P is equivalent to turning it into a graph with a
certain number of copies of certain graphs on q vertices. As evident, this is very similar to
the case of Theorem 4 where we wanted to have a very small number of copies of graphs not
in P . The reason why there is an additional exponential factor is that we need to control the
number of induced copies of all graphs on q vertices.

We now state the key lemmas, which are variants of lemmas we used in the proof of
Theorem 4.

▶ Definition 33. Given two distributions µ and ν over a finite family H of combinatorial
structures, their variation distance is defined as: |µ − ν| = 1

2
∑

H∈H | Prµ(H) − Prν(H)|

▶ Lemma 34. If two distributions µ and ν over a finite family H of combinatorial structures
satisfy |µ − ν| ≤ δ , then for any set A ⊂ H we have | Prµ(A) − Prν(A)| ≤ δ

▶ Lemma 35. Suppose that µ and ν are two probability distributions over graphs with set
of vertices {v1, . . . , vq}, where each edge vivj is independently chosen to be an edge with
probability µi,j and νi,j respectively. If |µi,j − νi,j | ≤ ε/

(
q
2
)

for every 1 ≤ i < j ≤ q, then the
variation distance between µ and ν is bounded by ε.

▶ Definition 36 (q-statistic). The q-statistic of a graph G is the probability distribution over
all (labeled) graphs with q vertices that result from picking at random q distinct vertices of
G and considering the induced subgraph. For a given graph H we denote the probability for
obtaining H when drawing a graph according to the q-statistic by PrG(H).

▶ Definition 37. For an equipartition A = {V1, . . . , Vt} of G, and a signature S =
(ηi,j)1≤i<j≤t of A, the perceived q-statistic according to S is the following distribution PrS

over labeled graphs with q vertices v1, . . . , vq. Start by choosing a uniformly random sequence
without repetitions of indices i1, . . . , iq from 1, . . . , t. Then, independently, take every vkvl

for k < l to be an edge with probability ηik,il
if ik < il and with probability ηil,ik

if il < ik.
Then PrS(H) is defined as the probability that the resulting labeled graph equals H.

The following lemma will replace Lemma 1 in the proof of Theorem 9.
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▶ Lemma 38 (see [22]). If there is an ε-test for a graph property P that makes Q = Q(ε)
edge queries, then there exists an appropriate family H of labeled graphs on q = 2Q vertices
such that any graph G which satisfies P, satisfies also PrG(H) ≥ 2

3 , and any graph G that is
ε-far from satisfying P, satisfies also PrG(H) < 1

3 .

We now introduce a variant of Lemma 25 that is suited for the proof of Theorem 9. The
proof of the lemma will appear in the journal version of the paper.

▶ Lemma 39. For every q, ε there are γ = γ39(q, ε), r = r39(q, ε) so that

γ = poly(ε · 2−q2
), r = poly(1/ε · 2q2

)

and for every γ-signature S of a γ-FK-regular equipartition A into t ≥ r sets, of a graph G

on n ≥ N39(q, ε, t) = poly(t/ε)2poly(q) vertices, we have | PrS − PrG | ≤ ε, where PrG is the
q-statistic and PrS is the perceived q-statistic according to S.

We now introduce a variant of Lemma 15 that is suited for the proof of Theorem 9. The
proof of the lemma will appear in the journal version of the paper.

▶ Lemma 40. For every q and ε there exist γ = γ40(q, ε), s = s40(q, ε) and f
(q,ε)
40 : N → N,

such that

γ = poly(ε · 2−q2
), s = poly

(2q2

ε

)
, f

(q,ε)
40 (x) = x · 2poly

(
2q2

ε

)
with the following property. For every family H of graphs with q vertices, there exists a
deterministic algorithm, that receives as an input a γ-signature S of an (f, γ)-final partition
A into t ≥ s sets of a graph G with n ≥ N40(q, ε, t) = t · 2poly(1/ε)·2poly(q) vertices and
distinguishes given any α between the following two cases:

(i) G is (α − ε)-close to some graph G′ for which PrG′(H) ≥ 2
3 .

(ii) G is α-far from every G′ for which PrG′(H) ≥ 1
3 .

Theorem 9 is derived from Lemmas 14 and 40, similarly to how Theorem 4 is derived
from Lemmas 14 and 15. This will appear in the journal version of the paper.
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Abstract
The celebrated IP = PSPACE Theorem gives an efficient interactive proof for any bounded-
space algorithm. In this work we study interactive proofs for non-deterministic bounded space
computations. While Savitch’s Theorem shows that nondeterministic bounded-space algorithms can
be simulated by deterministic bounded-space algorithms, this simulation has a quadratic overhead.
We give interactive protocols for nondeterministic algorithms directly to get faster verifiers.

More specifically, for any non-deterministic space S algorithm, we construct an interactive proof
in which the verifier runs in time Õ(n + S2). This improves on the best previous bound of Õ(n + S3)
and matches the result for deterministic space bounded algorithms, up to polylog(S) factors.

We further generalize to alternating bounded space algorithms. For any language L decided by
a time T , space S algorithm that uses d alternations, we construct an interactive proof in which the
verifier runs in time Õ(n + S log(T ) + Sd) and the prover runs in time 2O(S). For d = O(log(T )),
this matches the best known interactive proofs for deterministic algorithms, up to polylog(S) factors,
and improves on the previous best verifier time for nondeterministic algorithms by a factor of log(T ).
We also improve the best prior verifier time for unbounded alternations by a factor of S.

Using known connections of bounded alternation algorithms to bounded depth circuits, we also
obtain faster verifiers for bounded depth circuits with unbounded fan-in.
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1 Introduction

Interactive proofs, introduced by Goldwasser Micali and Rackoff [22], are proof systems that
enable a prover to convince a verifier of the truth of a given statement. The interaction
proceeds in rounds where in each round the prover sends a message and the verifier responds.
Crucially, in every round the verifier uses randomness that the prover cannot predict. At the
end of the interaction the verifier either accepts or rejects the statement. We require that
the honest prover convinces the verifier to accept true statements with high probability (and
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in fact, in most1 protocols with probability 1) and that no prover, even a computationally
unbounded one, can convince the verifier to accept a false statement other than with some
small probability.

One of the most celebrated results in complexity theory is that IP = PSPACE [26, 34].
That is, the set of languages with polynomial space algorithms is exactly the set of languages
with interactive protocols whose verifiers run in polynomial time. Interactive proofs have
been prolific throughout other areas of complexity theory, including circuit lower bounds
[33, 28], pseudorandomness from uniform assumptions [42], and has also been very influential
in other proof systems, such as MIPs [5], PCPs [6, 14, 4, 3], and IOPs [7, 32].

The IP = PSPACE result can be generalized to any deterministic bounded space
computation. For a space S deterministic algorithm, the interactive protocols with the
fastest verifiers [9, 40] have a time Õ(n + S2) verifier and time 2O(S) prover, where Õ hides
polylog(S) factors.2

In this work we study interactive proofs for more general forms of bounded space
computations: non-deterministic bounded space and alternating bounded space. Recall that
a non-deterministic space S algorithm is a space S Turing machine that gets in addition
read-once access to a witness (which can be as long as 2S). For example, the complexity
class NL refers to non-deterministic logarithmic-space algorithms. Alternating algorithms
are a generalization of nondeterministic algorithms that can “alternate” quantifiers. The
prior best protocols [9] for space S nondeterministic algorithms have verifier time Ω(n + S3),
which is an S factor slower than the best verifiers for deterministic algorithms. See Table 1
for a more complete comparison with prior works.

1.1 Our Results
Our main result is an improved interactive proof for alternating algorithms. We start by
highlighting a special-case of this result for nondeterministic bounded-space algorithms. We
construct interactive proofs for space S nondeterministic algorithms whose verifier runs
in time Õ(n + S2), matching the time bound for deterministic verifiers (up to polylog(S)
factors). Broadly, our techniques combine the recent verifier efficient interactive proofs for
bounded space by Cook [9], with an efficient interactive proof for AC0

⊕ circuits of Goldreich
and Rothblum [20], and an improved derandomization through random walks on expander
graphs.

The new interactive proof for non-deterministic bounded space is a special case of a more
general result that we show for alternating bounded space algorithms. To state the result
precisely, we first set up the notation. Let ATISPd[T, S] be the set of languages decided by
a simultaneous time T , space S and d alternation algorithm. Alternating algorithms have 3
tapes, a read only input tape containing the input, a read once input containing a witness,
and a work tape. Only the work tape is limited to have space S. The input tape is read
only, but can be read many times. The witness tape can have T symbols on it, but must be
read sequentially and each symbol can only be read once. The witness can be thought of as
being separated into d segments, each with a different quantifier. The change of quantifier is
called an alternation. For example, nondeterministic algorithms have d = 1 since they only
use existential quantifiers.

1 By [17], probability 1 can always be achieved, but that reduction has a significant cost to the prover’s
runtime.

2 Throughout this work we mostly optimize for verification time and leave the proving time as a secondary
consideration. This is in contrast to doubly efficient interactive proofs (see [19]) in which we insist on a
polynomial-time prover. In this “doubly-efficient” regime, interactive proofs with a polynomial-time
prover and almost linear time verifier are known for linear depth, poly-size, uniform circuits [21] and
poly-time and bounded-poly space computation [32].
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Let ITIME[TV , TP ] be the set of languages with an interactive proof whose verifier runs
in time TV and whose prover runs in time TP . If TP is omitted, we assume it is the trivial
bound of TP = O(2TV ). In this paper, all our protocols are public-coin and have perfect
completeness.

Our most general result is an interactive protocol for alternating bounded-space algorithms.

▶ Theorem 1 (Interactive Proof For Alternating Space). For any T , S, and d constructible in
time O(S log(T )) and space O(S):

ATISPd[T, S] ⊆ ITIME
[
Õ (n + S log(T ) + Sd) , 2O(S)

]
.

Further, the verifier runs in space O(S log(d + S)), the protocol is public coin, has
O(S log(S)(log(T ) + d)) rounds, O(S log(S)(log(T ) + d) log(d + S)) bits of communication,
and perfect completeness.

For d = O(log(T )), up to small polylog(S) factors, our protocol has the same verifier time
and prover time as the best known protocol for deterministic bounded space algorithms [9]:
verifier time Õ(n + S log(T )) and prover time 2O(S). As a special case for nondeterministic
algorithms, this gives an interactive protocol with verifier time Õ(n + S log(T )), improving
upon the nondeterministic algorithms in [9], whose verifiers required time Õ(n + S log(T )2),
by a factor of log(T ). We note log(T ) may be as large as S.

In a limited sense, these results could be seen as tight, as they match, up to polylog(S)
factors, the best known results for simulating deterministic algorithms by alternating ones.
Chandra, Kozen, and Stockmeyer [8] show that any deterministic algorithm running in time T

and space S has an alternating algorithm running in time S log(T ). Specifically, TISP[T, S] ⊆
ATISPlog(T )[O(S log(T )), O(S)]. If we improved our verifier time dependence on S log(T )
or Sd, this would improve the time of alternating algorithms simulating deterministic ones.

For d = T , Theorem 1 improves over the best known interactive proofs for alternating
algorithms, with unbounded alternations, by Fortnow and Lund [16], which have verifier
time Õ(n + S2T ) and verifier space O(S log(T )). Our protocol’s verifier is at least a factor S

faster (when ST = Ω(n)).
See Table 1 for a comparison of how our protocol compares to prior protocols for

nondeterministic algorithms, and Table 2 for a comparison of how our protocol compares to
prior protocols for alternating algorithms.

The best verifiers [9, 40] for deterministic algorithms have verifier time Õ(S log(T ) + n),
verifier space O(S log(S)), and provers with time 2O(S). The best provers [32] for determin-
istic algorithms have prover time T 1+o(1)poly(S), but require verifier time T o(1)poly(S) +
npolylog(T ). These protocols are incomparable for T much larger than S, but much smaller
than 2S . For a more comprehensive summary, see the full version [11].

Table 1 Comparison of different protocols for NTISP[T, S] with polylog(S) factors omitted.

NTISP[T, S] Verifier Time Verifier Space Prover Time
[34] (n + S) log(T )2 (n + S) log(n + T ) 2poly(S,n)

[16] n + S3 log(T ) S log(S) 2poly(S,n)

[21] n + S2 log(T ) S log(S) 2O(S)

[9] n + S log(T )2 S log(T ) 2O(S)

This Work n + S log(T ) S log(S) 2O(S)

APPROX/RANDOM 2023
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Table 2 Comparison of different protocols for ATISPd[T, S] with polylog(S) factors omitted.

ATISPd[T, S] Verifier Time Verifier Space Prover Time
[34] (n + S(log(T ) + d))S(log(T ) + d) n + S log(T ) + Sd 2poly(S,n)

[16] n + S2T S log(T ) 2poly(S,n)

[21] n + S2 log(T ) + S2d S log(S + d) 2O(S)

[9] n + (S log(T ) + Sd)2 S log(T ) + Sd 2O(S log(T )+Sd)

This Work n + S log(T ) + Sd S log(S + d) 2O(S)

When S = O(log(n)), our prover runs in polynomial-time. This gives us doubly efficient
proofs for alternating algorithms with few alternations and logarithmic space. As a special
case, we give doubly efficient interactive proofs for NL where the number of bits communicated
is Õ(log(n)2). This improves on the amount of communication achieved by GKR (specialized
for NL), which uses Ω̃(log(n)3) bits of communication.

▶ Corollary 2 (Doubly Efficient Interactive Proofs for NL). NL has interactive protocols whose
provers run in polynomial time, verifiers run in quasilinear time, verifiers use Õ(log(n))
space, the protocol uses Õ(log(n)2) rounds, Õ(log(n)2) bits of communication, is public coin
and has perfect completeness.

More generally, our protocols for nondeterministic algorithms use a factor log(T ) less
communication then the previous best protocols by Cook, and match the best prior protocols
for deterministic algorithms, up to polylogarithmic factors.

1.1.1 Unbounded Fan in Circuit Results

Let SIZE − DEPTH[2S , d] be the set of space O(S) uniform circuits of size 2S and depth
d with unbounded fan in AND and OR gates. Let T -uniform SIZE − DEPTH[2S , d] be the
set of time T uniform, space S circuits of size 2S and depth d with unbounded fan in AND
and OR gates. Then due to a close relationship between alternating circuits and low depth
circuits by Ruzzo and Tompa [37] (see the full version [11]), we have

▶ Theorem 3 (Uniform Shallow Circuits Have Fast Interactive Proofs). For any d, T, S con-
structible in time O(S log(T )) and space O(S), we have

T -uniform SIZE − DEPTH
[
2S , d

]
⊆ITIME

[
Õ(n + S log(T ) + Sd), 2O(S)

]
SIZE − DEPTH

[
2S , d

]
⊆ITIME

[
Õ(n + S2 + Sd), 2O(S)

]
.

Further, the verifier runs in space O(S log(d + S)) and the protocol is public coin and has
perfect completeness.

For fan in 2 circuits, this matches the verifier time of GKR [21], while the prover time
remains polynomial in the circuit size3. For unbounded fan in circuits, or for alternating
algorithms, our verifier is a factor of S faster than GKR.

3 Note however that recent improvements [12, 39, 44, 45] of GKR have a (close to) linear prover, whereas
our prover is only polynomial in the circuit size.
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1.2 Proof Overview

We start by reviewing our efficient interactive proofs for deterministic algorithms. Then we
explain the difficulty of extending this to nondeterministic algorithms, and how to overcome
these problems. Finally we show how to extend this technique to alternating algorithms. We
assume familiarity with the sumcheck protocol [26]. For a more detailed explanation of our
interactive proofs for deterministic algorithms, see [9] or the nearly identical protocol by
Thaler [41, Section 4.5.5] (see also [23, 40]).

1.2.1 Deterministic Algorithms

For a deterministic algorithm A, we first reduce the problem to repeated matrix squaring,
then give an interactive protocol for that. Suppose A runs in time T on some input x and has
unique start state a and accept state b. Let M be the adjacency matrix of A’s computation
graph on input x. Then A accepts x if and only if (MT )a,b = 1 (where MT is M raised to
the T th power, not M transposed). For notation, we write Ma,b as M(a, b). At a high level,
the idea is that if we have an interactive protocol that can reduce a claim that M2i(u, v) = α

to the claim that M i(u′, v′) = α′, then by applying this protocol log(T ) times, we can verify
the value of MT (a, b). We give such a reduction, but on the multilinear extensions of M2i

and M i.
Like [9, 40], we reduce to matrix exponentiation and give an interactive protocol for that,

instead of reducing to a quantified Boolean formula [34], or to a uniform circuit [21]. This
both simplifies the protocol somewhat and makes it more efficient to compute the prover.
The idea is to arithmetize these adjacency matrices, and then use a sum check [26] to reduce
the statement about M2i to the statement about M i. In particular, we use the sum check
for matrix exponentiation given by Thaler [39], details follow.

For a finite field F, for any i define M̂ i : FS × FS → F as the multilinear extension of M i.
That is, M̂ i is multilinear and for each u, v ∈ {0, 1}S we have M̂ i(u, v) = M i(u, v). Then
observe that for any i, and u, v ∈ FS we have

M̂2i(u, v) =
∑

w∈{0,1}S

M̂ i(u, w)M̂ i(w, v).

To see that this formula is correct, first observe that it is correct for Boolean values as it
precisely corresponds to the definition of matrix multiplication. So the formula is correct on
Boolean values. Since both sides of the equation are multi-linear4, it follows that the formula
holds for all values.

Then, we can use the sum check of [26] to reduce this to a claim that for some w′ ∈ FS

and some β ∈ F we have β = M̂ i(u, w′)M̂ i(w′, v). Then using a multi-point reduction, as
was done in GKR [21], we reduce this to a claim that for some u′, v′ ∈ FS and α′ ∈ F we
have that α′ = M̂ i(u′, v′).

Finally running this log(T ) times gives the interactive protocol for deterministic algorithms,
since the verifier can efficiently calculate M̂ itself.

4 To show it is multilinear, we take any variable, say ui, and show the formula is linear in ui. For
any w see that M̂ i(u, w) is linear in ui since M̂ i is multilinear, and M̂ i(w, v) is constant in ui. Thus∑

w∈{0,1}S M̂ i(u, w)M̂ i(w, v) is linear in ui.

APPROX/RANDOM 2023
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We remark that, using linearization type ideas (as in [35]), the above can be extended from
the task of deciding whether a deterministic algorithm accepts, to verifying the multilinear
extension of a function that the algorithm computes. This will be important for us later on
when we use the above interactive proof as a subroutine in the protocol for nondeterministic
algorithms.

1.2.2 Nondeterministic Algorithms and Changing Arithmetization
To try to apply this technique to a nondeterministic algorithm, A, we immediately encounter
an issue with how to formulate the problem. Namely, if we are doing arithmetic over Z, if the
underlying matrix M corresponds to a non-deterministic computation, then the matrix MT

a,b

is no longer 1 if and only if A accepts x. Rather, MT
a,b specifies the number of length T paths

from a to b. This might be as large as 2Ω(T ). If we do arithmetic over a field of characteristic
q, then MT

a,b is the number of paths mod q. If the number of paths is some adversarial
product of many small primes, we may need q = Ω(T ) for the number of accepting paths to
be non zero, mod q. This gave the less efficient verifier time for nondeterministic algorithms
in [9].

We will still solve this problem by arithmetization, but we need to change our matrix
multiplication from a field matrix multiplication to a binary multiplication, then arithmetize
that. We define the matrix multiplication with binary operations where multiplication is
AND and addition is OR. So let M (2) : {0, 1}S × {0, 1}S → {0, 1} denote this binary matrix
multiplication, squaring, so that for any u, v ∈ {0, 1}S we have

M (2i)(u, v) =
∨

w∈{0,1}S

M (i)(u, w)M (i)(w, v).

With this form of matrix exponentiation, it suffices to check if M
(T )
a,b = 1. To do so, we

convert binary matrix multiplication into an algebraic circuit. The obvious approach is to
use a formula like

˜M (2i)(u, v) = 1 −
∏

w∈{0,1}S

(
1 − M̂ (i)(u, w) · M̂ (i)(w, v)

)
.

Unfortunately, this has too high of individual degree: 2S . One can insert some linearization
operations between the multiplications to reduce the degree, like those used by Shen [35]. But
then for each of the S variables in w, one would need to add O(S) linearization operations,
giving a size O(S2) algebraic circuit, which we cannot afford.

Instead, we use an idea of Goldreich and Rothblum [20] to probabilistically reduce the
degree of these large conjunctions by leveraging the Razborov-Smolensky [31, 36] approxima-
tion of large disjunctions as low degree polynomials. Razborov-Smolensky give a reduction
from a large disjunction to a random parity check that succeeds with high probability:

∀g ∈ {0, 1}n : Pr
r∈{0,1}n

 ∨
i∈[n]

gi =
∑
i∈[n]

giri (mod 2)

 ≥ 1
2 .

We note that if g = 0n, then for any r, we have
∑

i∈[n] giri (mod 2) = 0. That is, the error is
one sided. The formula

∑
i∈[n] giri (mod 2) is a linear polynomial in a field of characteristic

2. As this is useful for us, we shall only work with fields of characteristic 2 in this paper.
Then, taking an OR of k independent choices of randomness, we get an individual degree

k polynomial that succeeds with probability 1 − 1
2k . If n = 2S and k = S, this gives us a

degree log(n) polynomial for the disjunction that is only wrong with probability 1
n .
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The idea is to replace our boolean formula with a low degree polynomial through Razborov-
Smolensky. So let Dr : {0, 1}ℓ × {0, 1}S → {0, 1} be a function outputting our random bits.
Here 2ℓ = k = O(S) is the number of choices of random bits. Then our new approximation
for M (2i) is

M̃ (2i)(u, v) = 1 −
∏

j∈{0,1}ℓ

1 −
∑

w∈{0,1}S

Dr(j, w)M̂ (i)(u, w)M̂ (i)(w, v)

 . (1)

Now we only need to insert ℓ = log(S) levels of linearizations. In the technical details of the
paper, we will not actually use algebraic circuits with linearization operations, but will work
with these polynomials directly with an “unlinearization” procedure, to avoid discussing
circuit uniformity.

1.2.3 Efficient Randomness

At this point we encounter a problem - Equation (1) calls for sampling 2ℓ+S random bits
for Dr, which we cannot afford (since we want our verifier to run in time Õ(S)). So as in
GR, we need to sample these using an ϵ biased set. For our ϵ biased set, we use the same
one as GR, described in [1] (which is based on a Reed-Solomon code concatenated with a
Hadamard code).

Thus, for every value of j ∈ {0, 1}ℓ, we would like to set Dr(j, ·) to be an ϵ-biased set.
As ℓ = log(S), if we were to sample these independently, as in GR (i.e., the protocol given
in [20]), our verifier would require O(S2) bits of randomness. Instead, we sample these small
bias sets in a correlated manner - via a random walk on an expander (each node in the
expander specifies a seed for a small bias set). We use the Margulis [27] expander since it
is a constant degree, constant spectral expander with extremely simple edge descriptions:
simple additions and subtractions. This makes it very easy to take a start vertex and a
(specification of a) random walk and compute any given step on that walk in both small
space and small time.

Thus, we only require R = O(S) truly random bits to describe a length O(S) random
walk on the ϵ biased sets described by a Reed-Solomon code concatenated with a Hadamard
code. So let D : {0, 1}R × {0, 1}ℓ × {0, 1}S → {0, 1} be a function that generates our pseu-
dorandomness, given R bits of true randomness. The verifier first chooses that randomness
r, and then Dr(j, w) = D(r, j, w).

Since D is both space and time efficient, we can have the prover compute its value for the
verifier, and then have the verifier run the deterministic interactive protocol to confirm its
value. In contrast, the GR verifier must calculate some low degree extension of Dr directly
to use a constant number of rounds. This saves us time over GR.

Finally, as in GR, there is a chance that our pseudorandom bits give a polynomial that
fails to compute the disjunctions correctly. In this case, to get perfect completeness we
need to prove that the pseudorandom bits are incorrect. To do this, the prover just finds
a disjunction closest to the input where the low degree approximation fails and tells the
verifier where it fails. This would be a gate where its value in the low degree polynomial is
one thing, but one of its input gates should force it to be something else. For instance, an
OR gate with a value of 0, and an input to it with a value of 1. Then the verifier can run
the interactive protocol to confirm that the low degree polynomial indeed says the gate’s
value conflicts with its input gate value, showing the pseudorandom bits were bad.

APPROX/RANDOM 2023
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1.2.4 Alternating Algorithms In Terms Of Nondeterministic Algorithms
To use our protocol with alternating algorithms, we want to reduce the alternating algorithm
to one with a few large disjunctions or conjunctions over a nondeterministic algorithm. This
is similar to what is done when converting alternating algorithms to alternating circuits.
Once we have few conjunctions and disjunctions over a nondeterministic algorithm, we can
do the same low degree approximations again.

The idea is to, instead of quantifying over the symbols in the read once proof, quantify
over the potential states the algorithm could be in when the quantifier changes. Then a
nondeterministic algorithm describes if a proof could cause the state to change from one
intermediate state to the next when the quantifier changes.

For example, suppose A is an algorithm with d = 2 alternations and running in space
S recognizing language L. Think of A as a deterministic algorithm taking a proof and
outputting true or false. Then since A is an alternating algorithm, x ∈ L if and only if

∀BigProof1 : ∃BigProof2 : A(x, (BigProof1, BigProof2)).

We can instead be more fine grain with A and talk about its states. Let a be the start
state of A and b be its unique accept state. Let B be the algorithm which takes an initial
state u a final state v and a proof p, then checks if A starting at u is at state v when given
the proof p after time |p|. Then our algorithm accepts x if and only if

∀w ∈ {0, 1}S : ((∃Proof1 : B(x, a, w, Proof1)) =⇒ (∃Proof2 : B(x, w, b, Proof2))) .

If we know how long Proof1 is supposed to be, we can replace

∃Proof1 : B(x, a, w, Proof1)

with a nondeterministic algorithm C. Then our alternating algorithm becomes

∀w ∈ {0, 1}S : C(x, a, w) =⇒ C(x, w, b).

Now, beside our nondeterministic algorithm, we are only quantifying over a variable of size
O(S), whereas Proof1 has size O(T ).

For a more general example, we can replace

∀π1 : ∃π2 : ∀π3 : ∃π4 : A(x, (π1, π2, π3, π4))

with

∀w1 : C(x, a, w1) =⇒ (∃w2 : C(x, w1, w2) ∧ (∀w3 : C(x, w2, w3) =⇒ C(x, w3, b))).

1.2.5 Protocols for Alternating Algorithms
At this point, each quantification is now only over S variables, so we can use the same trick
as before to replace these quantifications with low degree polynomials. Each of the universal
quantifiers gets replaced with a large conjunction, and each of the existential quantifiers
gets replaced with a large disjunction. Then we use Razborov-Smolensky to replace these
conjunctions and disjunctions with low degree polynomials and use an interactive proof to
remove the quantifiers one by one.

A few subtleties show up when doing this. One subtlety of this process is that in a
straightforward reduction, a d alternation algorithm would give our verifier a claim about
C at d different places. Running an interactive protocol d times to confirm each of these d
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claims independently would require time dS log(T ), which is too much for us. Instead, we
need to use a multi point reduction again to reduce this to a claim about C at one location
before running an interactive protocol to confirm that value.

Another subtlety is that it is not convenient to represent C as a nondeterministic algorithm
taking two states as an input and checking if there is a computation path from one to the
other. It is more convenient to describe C directly with the computation graph of A (now
viewing A as a nondeterministic algorithm). For this to work, we need to make sure each

alternation takes the same amount of time, say T . Then we write C(x, u, v) = M̂
(T )
x (u, v).

So for example, consider the simple case of a 2 alternation algorithm. That is, suppose
we want to verify that

∀w ∈ {0, 1}S : C(x, a, w) =⇒ C(x, w, b).

As described before, we replace C with M̂ (T ). So we want to verify

∀w ∈ {0, 1}S : M̂
(T )
x (a, w) =⇒ M̂

(T )
x (w, b).

Now we need to arithmetize the formula being quantified. So let

Ẽ(w) = 1 − M̂
(T )
x (a, w)(1 − M̂

(T )
x (w, b)).

See that E is low degree and agrees with the predicate M̂
(T )
x (a, w) =⇒ M̂

(T )
x (w, b) on

binary inputs. Of course, Ẽ is not multilinear, it has individual degree 2. Luckily, if we
let Ê be the multilinear function consistent with D on binary inputs, then one can use an
unlinearization operation (similar to those used by Shen [35]) to reduce from a statement
about Ê to a statement about Ẽ. So we need to verify that

∀w ∈ {0, 1}S : Ê(w).

Using our low degree approximation, our verifier first chooses Dr, then wants to check if

1 =
∏

j∈{0,1}ℓ

1 −
∑

w∈{0,1}S

Dr(j, w)(1 − Ê(w))

 . (2)

Then we can reduce this to a statement about D̂r at a random location, and Ê at a random
location by using ℓ = O(log(S)) product reductions. We can unlinearize the statement about

Ê to get a claim about Ẽ, or equivalently, about M̂
(T )
x at two locations. Now we can verify

the value of M̂
(T )
x by using our protocol for nondeterministic algorithms. But to avoid doing

this twice, we first run a multi-point reduction to reduce this to a statement about M̂
(T )
x at

one location first.
We can do a similar thing d times for an alternating algorithm. One more subtlety is

that for d > 2, we need to make Ê a function of a and b. This is so that we can view the
formula in Equation (2) as a function of a and b so we can properly linearize and unlinearize
it with respect to a and b. See the full proof for details.
▶ Remark 4 (Proof For Unbounded Fan in Depth Circuits Directly). We could have made an
interactive protocol for unbounded fan-in circuits directly. After all, we start with a formula
that is essentially the low depth, unbounded fan in circuit for an alternating algorithm, if we
view C as a low depth circuit. We can think of our alternating algorithms as a particular
kind of very uniform circuit. We don’t give an interactive proof for circuits directly to avoid
handling uniformity.

APPROX/RANDOM 2023
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One reason we chose not to just provide an interactive protocol for circuits directly is that
we need a faster interactive protocol for deterministic algorithms as a subroutine to verify
our pseudorandom bits. Since we view this interactive protocol as a problem for bounded
space, we find it natural to present the rest of the results in this framework.

An overview of the protocol for alternating algorithms are in Appendix A, but a full
proof is given in the full version [11].

1.2.6 Extensions
We note that our paper focuses on verifier time, so we have not optimized other parameters, like
verifier space. There are also some other straightforward extensions to further generalizations
of alternations we don’t prove here.
▶ Remark 5 (Parity Gates and Parity Quantifiers). Like GR, our techniques can also be used
on alternating circuits with parity gates, or bounded space algorithms with parity quantifiers.
This is clear since a parity gate is an addition gate over fields of characteristic 2, so is of low
degree already.

We emphasize that our protocol is different from GR since we need more randomness
efficient pseudorandom bits, efficient computation of those pseudorandom bits, more rounds
of interaction to keep our degree (and thus verifier time) lower, use of an interactive protocol
for deterministic algorithms as a subroutine, and by using connections between low space
algorithms, low alternation algorithms, and uniform, low depth circuits.
▶ Remark 6 (Space Efficiency of Our Verifier). While we only achieve a verifier running in
space O(S log(S)), for any ϵ > 0 we should be able to get verifier space O(S/ϵ) using standard
techniques, at the cost of increasing verifier time by a factor of Sϵ. Specifically, instead of
using multilinear polynomials, we would use individual degree Sϵ polynomials. Since we are
focused on improving verifier time, we do not prove this result.

This technique was used by Shamir, Fortnow and Lund, and GKR [34, 16, 21] to give the
space efficiency claimed in those papers. We state the special case where ϵ = 1

log(S) in our
results since we want to compare verifier time.

2 Preliminaries

We assume the reader is familiar with basic complexity concepts like circuits, Turing machines,
and big O notation. See [2] for a reference. For notation, we define Õ to hide polylogarithmic
factors in whatever is inside it in general, not specifically polylog(T ) or polylog(n). That is:

▶ Definition 7 (Big Tilde O). For functions f, g : N → N, we define f(n) = Õ(g(n)) if and
only if there exists some constant c such that f(n) = O(g(n) log(g(n))c).

2.1 Bounded Space and Alternating Algorithms
We denote by TISP[T, S] languages that are computable by a Turing Machine running in
time T and space S.

▶ Definition 8 (TISP). For functions T, S : N → N, we say language L is in TISP[T, S] if
there is an Turing Machine, A, running in time T and space S that decides L.

We want interactive proofs for a generalization of nondeterministic algorithms called
alternating algorithms, as was formally defined in [8]. Like how a nondeterministic algorithms
have existential states where the algorithm accepts if any transition from that state accepts,
alternating algorithms get both existential and accept states.
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We further parameterize our alternating algorithms by the number of alternations. The
number of alternations is the number of times it switches between existential and universal
states, plus one. For instance, nondeterministic algorithms can be viewed as having one
alternation, the second level of the polynomial hierarchy has two, and so on.

▶ Definition 9 (ATISP). For functions T, S, d : N → N, we say a language L is in
ATISPd[T, S] if there is an alternating Turing Machine, A, running in time T and space
S that recognizes L such that on any input x, our algorithm A only changes from no
quantification to one, from existential to universal quantifiers, or from universal to existential
quantifiers d times.

So for instance, nondeterministic time T and space S algorithms would be contained in
ATISP1[T, S].

2.2 Interactive Proofs
An interactive proof informally is a proof system where a verifier with access to unpredictable
randomness can verify a result such that if the statement is true, an honest prover can
convince the verifier with high probability. And if the statement is false, no prover, no matter
how powerful, can convince the verifier the statement is true above some constant probability.

For our definition of interactive time, let Int(V, P ′, x) denote the random variable that V

outputs on input x when interacting with prover P ′. See the full version for a more detailed
definition [11]. Now we define interactive time. We note that in all our protocols, we achieve
perfect completeness. That is, c = 1.

▶ Definition 10 (Interactive Time (ITIME)). If for any language L, soundness s ∈ [0, 1],
completeness c ∈ [0, 1], verifier V and prover P we have
Completeness: If x ∈ L, then Pr[Int(V, P, x) = 1] ≥ c, and
Soundness: if x /∈ L, then for any function P ′ we have Pr[Int(V, P ′, x) = 1] ≤ s,

then we say V and P are an interactive protocol for L with soundness s and completeness c.
If in addition verifier V runs in time TV , soundness s < 1

3 , and completeness c > 2
3 , then

L ∈ ITIME[TV ].

If P is also computable by an algorithm running in time TP , we say

L ∈ ITIME[TV , TP ].

2.3 Expander Graphs
We will use expander graphs to create hitting samplers through the hitting properties of
expanders [24]. See [43] for a more detailed review of expander graphs. We will assume some
basic familiarity with graphs here.

We use an expander graph given by Margulis [27] proven by Gabber and Galil [18]. We
use this expander because it’s simple structure makes it very clear that we can compute
random walks on it in very little time and linear space.

▶ Lemma 11 (Efficient Expander Graphs). For any square n = m2, there exists an expander
graph G with constant degree d and constant spectral expansion λ < 1.

Let V be the vertex set of G, and E : V × [d] → V be the edge function taking in a vertex,
v, and the index of an edge, e, out of v, and outputting the other vertex incident to e. Then
E can be computed in space O(log(n)) and time O(log(n)).

APPROX/RANDOM 2023
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2.4 Arithmetization
A core technique of standard interactive proofs is called “arithmetization”. Arithmetization
is the process of converting some Boolean function, f , to a low degree formula over a larger
field, F, which agrees with f on Boolean inputs. The main function we will be arithmetizing
is the state transition of Turing Machines. So for a given algorithm, on a length n input x

and two states s0 and s1, let the state transition function Mn(x, s0, s1) be one if and only if
the algorithm on input x starting in state s0 can transition to state s1 in one step. See the
full version for a more detailed definition [11].

We use [10, Lemma 36] for our arithmetization of the Turing Machine State transition.

▶ Theorem 12 (Arithmetization of State Transition). Suppose A is a space S nondeterministic
algorithm with transition matrix Mn : {0, 1}n × {0, 1}S × {0, 1}S → {0, 1} as above.

Then we can compute the multilinear extension of Mn, denoted M̂n : Fn × FS × FS → F,
in time (n + S)Õ(log(|F|)) and space O((log(S) + log(n)) log(|F|)).

2.5 Standard Algebraic, Interactive Proof Tools
We use a few standard tools in interactive proofs. Like [21, 9, 40, 26, 34, 35], perhaps the
most important tool is the original sum check from [26]. We also use an unlinearization
protocol, like the one used by Shen [35]. And a multi-point reduction, like those used in
[21, 9]. Similar query reductions have a long history in PCP literature [3, 15, 13, 30, 25]. To
see statements of these lemmas, see the full version [11].

3 Interactive Proof For Deterministic Algorithms

Internally, our proof will need interactive proofs for deterministic algorithms. We use a
variation of the deterministic protocols from [9, 40]. A full proof can be found in our full
version [11], here is just an overview.

The idea of the algorithm is that for a time T algorithm A, if on an input x algorithm
A has computation graph G with adjacency matrix M , then for unique start state a and
end state b, algorithm A accepts A if and only if MT

a,b = 1. Then by using a matrix square
reduction repeatedly, this can be reduced to a statement about the value of M̂ , the multilinear
extension of M , at a random point. And M̂ can be calculated quickly using Theorem 12.

Our matrix square reduction is very similar to the matrix reduction by Thaler [39], except
generalized to the case where the matrix is also a multilinear extension of a third input. The
main difference with Thaler’s is that we need to perform a few unlinearizations, similar to
Shen’s [35].

▶ Lemma 13 (Matrix Square To Matrix Reduction). Given a function M : {0, 1}n × {0, 1}S ×
{0, 1}S → F, denote for any x ∈ {0, 1}n the matrix Mx such that (Mx)u,v = M(x, u, v).
Then M2

x is defined in the usual way: (M2
x)u,v =

∑
w∈{0,1}S Mx(u, w)Mx(w, v). Now define

M2 : {0, 1}n × {0, 1}S × {0, 1}S → F by M2
x(u, v) = (M2

x)u,v. Let M̂ be the multilinear
extension of M and M̂2 be the multilinear extension of M2.

Then there is an S + n + 2 round interactive protocol with O((S + n) log(|F|)) bits of
communication, a verifier V that runs in time (S+n)Õ(log(|F|)) and space O((S+n) log(|F|)),
and a prover P that runs in time 2S+nÕ(log(|F|)) with O(2S+n) oracle queries to M̂ . The
protocol takes as input α ∈ F, u, v ∈ FS, and x ∈ Fn and acts such that
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Completeness: If α = M̂2(x, u, v), then when V interacts with P , V outputs a u′, v′ ∈ FS,
x′ ∈ Fn, and α′ ∈ F such that α′ = M̂(x′, u′, v′).

Soundness: If α ̸= M̂2(x, u, v), then for any prover P ′ with probability at most 4S+3n
|F| will

V output a u′, v′ ∈ FS, x′ ∈ Fn, and α′ ∈ F such that α′ = M̂(x′, u′, v′).

Now applying this square reduction log(T ) times gives our interactive proof for the
multilinear extension of a space efficient function. The proof is essentially many calls to
Lemma 13, along with a final check by computing M̂n directly at the final point using
Theorem 12.

▶ Theorem 14 (Interactive Proof For Multilinear Extension of Bounded Space). For any
function D : {0, 1}n × {0, 1}m → {0, 1}, for any x ∈ {0, 1}n, denote Dx : {0, 1}m → {0, 1}
by Dx(y) = D(x, y). Let D̂x be the multilinear extension of Dx. If D is computed by a
space S time T deterministic algorithm, then there is a (m + S + 2) log(T ) round interactive
protocol with O((m + S) log(T ) log(|F|)) bits of communication, a verifier V that runs in
time (n + (m + S) log(T ))Õ(log(|F|)) and space O((log(n) + m + S) log(|F|)), and a prover
P that runs in time 22m+2S log(T )Õ(log(|F|)) which takes as input an x ∈ {0, 1}n, w ∈ FS

and α ∈ F such that
Completeness: If D̂x(w) = α, then when V interacts with P , V accepts.
Soundness: If D̂x(w) ̸= α, then for any prover P ′ with probability at most (4S+3m) log(T )

|F|
will V accept.

4 Interactive Proofs For Nondeterministic Algorithms

Now we describe an interactive proof for nondeterministic algorithms because it is an
interesting special case in its own right, it develops the tools needed for the more general
alternating algorithm, and gives a good warm up for the general case. Here we give an
outline of the proof, a full proof is in the full version [11].

But before we start, we quickly make a detour to explain that the matrix “multiplication”
used here for nondeterministic algorithms is different than the one used for deterministic
algorithms. For deterministic algorithms, we used standard multiplication and addition
in some field. But for nondeterministic algorithms, we do binary matrix multiplication,
with multiplication replaced with AND, and addition replaced with OR. To emphasize the
difference, we use parentheses around the exponent to indicate we are performing binary
matrix multiplication.

▶ Definition 15 (Binary Matrix Multiplication). Let M : {0, 1}S × {0, 1}S → {0, 1} be any
function. Then by induction, define M (1) = M and for any i, define

M (i+1)(u, v) =
∨
w

M (i)(u, w)M(w, v).

See that if M is an adjacency matrix of a graph, then M (i)(s, t) = 1 if and only if there
is a path from s to t of length i.

▶ Remark 16. M i is different from M (i) in that M (i+1) uses an OR function, whereas M i+1

uses a plus function. These are equivalent for the adjacency matrix of a deterministic
algorithm, but crucially differ for a nondeterministic algorithm.

We emphasize that these binary matrix multiplications algebraically act very similarly to
integer matrix multiplication. Specifically, M (T ) can still be calculated with log(T ) repeated
binary squaring.

APPROX/RANDOM 2023
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Now our goal is to replace the matrix sum check used for deterministic algorithms, with a
new efficient reduction for nondeterministic algorithms. It is not clear how to do this directly,
so we use a Razborov-Smolensky style low degree approximation, and give a reduction for
that instead.

4.1 Extended Product Reduction
The main tool for this new reduction is this extended product reduction. This reduces a
statement about the multilinear extension of a large product of terms to a statement about
the multilinear extension of one term. This product reduction could be used to give a square
reduction for nondeterministic algorithms directly, but is much more efficient if the number
of multiplications is smaller. This is why we use Razborov-Smolensky.

The idea is to just apply many unlinearizations and product reductions, to one variable
the product ranges over at a time. See the full version for a proof [11].

▶ Lemma 17 (Extended Product Reduction). Suppose f̂ : Fℓ × FS → F is multilinear. Let
g : {0, 1}S → F be defined by g(v) =

∏
u∈{0,1}ℓ f̂(u, v) and let ĝ be the multilinear extension

of g.
Then there is an ℓ(S + 1) round interactive protocol with O(ℓS log(|F|)) bits of commu-

nication, a verifier V that runs in time ℓSÕ(log(|F|)) and space O((ℓ + S) log(|F|)), and a
prover P that runs in time 2ℓ+SÕ(log(|F|)) which takes as input w ∈ FS, and α ∈ F such
that
Completeness: If ĝ(w) = α, then when V interacts with P , V outputs a u′ ∈ Fℓ, v′ ∈ FS,

and α′ ∈ F such that f̂(u′, v′) = α′.
Soundness: If ĝ(w) ̸= α, then for any prover P ′ with probability at most l(3S+1)

|F| will V

output a u′ ∈ Fℓ, v′ ∈ FS, and α′ ∈ F such that f̂(u′, v′) = α′.

4.2 Low degree Approximations
To use Razborov-Smolenski efficiently, we need to be able to sample and calculate our ϵ

biased sets, Dr, so they work with high probability and can be calculated efficiently.
Construction of efficient ϵ-biased sets is well researched and very efficient constructions

are known [29, 38] and is equivalent to constructing good, linear codes. We use the third
construction in [1] as our ϵ biased sets. This is the same ϵ biased set used in [20], except
that we need to sample them more efficiently.

▶ Lemma 18 (ϵ-Biased Set). For any S, there is an m = O(S) and a function D′ :
{0, 1}m × {0, 1}S → {0, 1} such that for any X ⊆ {0, 1}S \ ∅

Pr
r∈{0,1}m

[∑
x∈X

D′(r, x) = 1 (mod 2)
]

≥ 1
4

such that D′ runs in poly(S) time and O(S) space.

Now we have a D′ which with constant probability correctly converts an OR to a parity.
Now we need to sample enough of these so that with constant probability, we convert 2S

ORs into parities. If we take O(S) independent samples of D′, then with probability less
than 2−2S will any of these ORs fail to be converted into a parity, so by a union bound with
probability at most 2−S will any of them fail to be converted into parity. Of course, we can
not afford to take O(S) samples of a string of length O(S). So we take correlated samples
using random walks on an expander graph.
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Then by using a random walk on the Margulis expander, Lemma 11, with our ϵ biased
sets as vertices, we can sample a good choice of ϵ biased sets with high probability.

▶ Lemma 19 (Sampling a Good D for Many ORs). Suppose for n = 2S and m = 2S′ , for
each i ∈ [m] there is an fi ∈ {0, 1} and ui ∈ {0, 1}i such that fi =

∨
j∈[n] ui

j.
Then for any ϵ, for R = O(S + S′ + log(1/ϵ)), L = 2ℓ = O(S′ + log(1/ϵ)), there is a

space O(S + log(1/ϵ)), time poly(S + log(1/ϵ)) algorithm D such that for each i ∈ [m] define

F r
i =1 +

∏
k∈{0,1}ℓ

(1 +
∑

j∈[n]

Dr(k, j)ui
j) mod 2.

If ∀i ∈ [m] : F r
i = fi, then we say Dr is good for each f . Then Prr[Dr is not good for f ] < ϵ.

4.3 Interactive Proofs For Nondeterministic Algorithms
Now we give a summary of our proof, full version available at [11]. We start by defining our
interactive proof we wish to run, assuming we got a good Dr. This is a square reduction,
assuming we can use the Razborov-Smolensky formula to describe M (2). We call the
Razborov-Smolensky style polynomial given by our pseudorandomness D as “M relative to
D”. We say that our Dr is good if M (T ) relative to D is M (T ). If Dr is good, we are done.
Otherwise, Dr is bad, and makes some mistake first. Then we give an interactive proof to
show where it is bad.

First, we formally define M relative to D.

▶ Definition 20 (M Relative to D). For any M : {0, 1}S × {0, 1}S → {0, 1}, and D :
{0, 1}ℓ×{0, 1}S → F, we define M relative to D as the functions, for k = 1, M

(1)
D = MD = M ,

and for any k > 1 the function M
(2k)
D : {0, 1}S × {0, 1}S → {0, 1} is

M
(2k)
D (u, v) = 1 +

∏
j∈{0,1}ℓ

(1 +
∑

w∈{0,1}S

D(j, w)M (2k−1)
D (u, w)M (2k−1)

D (w, v)).

Similar to the deterministic case Lemma 13, we have a repeated square reduction for M

relative to D. This is based on an extended product reduction, Lemma 17, and a sum check.

▶ Lemma 21 (Repeated Square Reduction For M relative to D). For some M : {0, 1}S ×
{0, 1}S → {0, 1}, let M̂ be the multilinear extension of M and M̂ (2) be the multilinear

extension of M (2). For some D : {0, 1}ℓ ×{0, 1}S → F and T = 2t let M̂
(T )
D be the multilinear

extension of M relative to D given by Definition 20.
Then there is an O(ℓS log(T )) round interactive protocol with O(ℓS log(T ) log(|F|)) bits

of communication, a verifier V that runs in time ℓS log(T )Õ(log(|F|)) and space O((S +
ℓ) log(|F|)), and a prover P (with access to the truth table of M and D) that runs in time
2O(ℓ+S)Õ(log(|F|)) which takes as input u, v ∈ FS, and α ∈ F such that

Completeness: If M̂
(T )
D (u, v) = α, then when V interacts with P , V outputs a u′, v′, w′ ∈ FS,

j′ ∈ Fℓ, and α′, β′ ∈ F such that M̂(u′, v′) = α′ and D(j′, w′) = β′.

Soundness: If M̂
(T )
D (u, v) ̸= α, then for any prover P ′ with at most log(T )(ℓ+2)(6S+2)

|F| prob-
ability will V output a u′, v′, w′ ∈ FS, j′ ∈ Fℓ, and α′, β′ ∈ F such that M̂(u′, v′) = α′

and D(j′, w′) = β′.

If D is good, this gives our interactive protocol for nondeterministic algorithms. Unfortu-
nately, D is not always good. But if it is not good, then a prover can show the verifier where
it is bad, giving us perfect completeness. See [11] for full details.
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We note here that the field size in our final protocol is |F| = poly(S) and l = O(log(S)).
So the specific polylog(S) hidden by Õ in our main result is O(log(S)2polylog(log(S))). This
is worse than the polylog(S) overhead for deterministic algorithms given in [9], which was
O(log(S)polylog(log(S))). This is because our extended product reduction is slower than a
sum check, but only a log(S) factor slower.

An overview of the protocol for alternating algorithms are in Appendix A, but a full
proof is given in the full version [11].

5 Open Problems

While this mostly closes the gap between the best verifier for deterministic and nondetermin-
istic algorithms, many interesting open problems remain, including:

1. Finding a stronger relationship between verifier time (or even alternating time) and
bounded space. We know, for S ≥ n, that

TISP[T, S] ⊆ ITIME[Õ(S log(T ))].

But it is unknown whether, even with the stronger class of alternating algorithms, if

TISP[T, S] ⊆ ATIME[o(S log(T ))].

2. Finding a stronger relationship between verifier time and alternating time. We know, for
T ≥ n, that

ATISP[T, S] ⊆ ITIME[Õ(ST )].

Can this factor of S in verifier time be removed?
3. Find interactive protocols for BPTISP[T, S] with simultaneous verifier time Õ(n +

S log(T )), prover time 2O(S) and perfect completeness.
Cook [9] gave a protocol with that verifier and prover time, but with imperfect complete-
ness. Perfect completeness can be achieved in a black box way [17], but these black box
reductions do not preserve the prover time.

4. Better doubly efficient proofs. In our special case of alternating algorithms, we can not
get provers who run in less than exponential time, without giving sub-exponential time
deterministic algorithms for nondeterministic problems.
But even in the deterministic time and space bounded setting, for S ≥ n, a major open
problem is whether

TISP[T, S] ⊆ ITIME[poly(S), poly(T )].

We do know from [21] that

TISP[T, S] ⊆ ITIME[poly(S), 2O(S)],

and from [32] that

TISP[T, S] ⊆ ITIME[T o(1), poly(T )],

but it is unknown if both the fast verifier time and prover time can be achieved simultan-
eously.
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5. Similar verifier time for algorithms with more general kinds of quantifiers. For instance,
threshold quantifiers.
Currently the most verifier efficient known interactive protocol for threshold circuits is
to use shallow circuits to compute threshold and run GKR. In this paper, we showed
one can do better for unbounded fan-in AND and OR gates. Can this also be done for
unbounded fan-in threshold gates? This would be interesting because threshold gates
seem much more powerful than AND, OR, or parity gates.
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A Interactive Proofs For Alternating Algorithms

Now we a sketch of our interactive protocols for alternating algorithms. This still uses the
same Razborov-Smolensky degree reduction technique used for nondeterministic algorithms
to reduce the degree of large fan in AND and ORs. The main conceptual challenge is
rewriting the alternating algorithm in the correct format. So we do this first. For full proofs,
see the full paper [11].

A.1 Alternation Reductions For Bounded Space
To prove our interactive protocol with alternating algorithms, we first must convert our
algorithm into a simpler, layered algorithm. This is closely related to the reduction from an
alternating algorithm to a low depth circuit by Ruzzo and Tompa [37], and a similar reduction
was used by Fortnow and Lund [16] in their interactive proof for alternating algorithms.
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▶ Definition 22 (M with d Alternations). For any M : {0, 1}S × {0, 1}S → {0, 1} and
integer d, define M with time T and d alternations inductively on d as a function Bd :
{0, 1}S × {0, 1}S → {0, 1} by

d = 1: B1(u, v) = M(u, v).
d is even

Bd(u, v) =∀w ∈ {0, 1}S : M(u, w) =⇒ Bd−1(w, v)

=¬
∨

w∈{0,1}S

(M(u, w) ∧ ¬Bd−1(w, v))

d is odd

Bd(u, v) =∃w ∈ {0, 1}S : M(u, w) ∧ Bd−1(w, v)

=
∨

w∈{0,1}S

M(u, w) ∧ Bd−1(w, v).

Our interactive proof will focus on this intermediate representation of an alternating
circuit as a matrix M with d quantifiers of S variables between them. Any alternating
algorithm can be converted to a problem of a matrix M (which is the computation graph of
a nondeterministic algorithm) with alternations. The idea is that the quantifiers guess the
states at which the alternating algorithm switches quantifiers. A more detailed relationship
is shown in the full version [11].

▶ Lemma 23 (Layered Alternating Programs). For any L ∈ ATISPd[T, S], there is a
nondeterministic algorithm A running in time T ′ = O(T ) and space S′ = O(S) such that
on any input x, if M is the adjacency matrix of the computation graph of A on input x,
then x ∈ L if and only if the M (T ′) with d alternations, Bd as defined in Definition 22, has
Bd(a, b) = 1 for some unique starting state a and unique accepting state b.

A.2 Interactive Proof For Layered Alternations
Now the rest of the proof closely follows the proof for nondeterministic algorithms, defining M

with alternations relative to D, showing how an alternation reduction for M with alternations
relative to D, and a protocol to show that D is bad.

A subtle difference is that our interactive protocols actually reduce a statement about
our alternating algorithm, to a statement about M (T ), where M is the adjacency matrix
of a nondeterministic algorithm. So we then have to apply our interactive proofs for
nondeterministic algorithms. That is, we reduce our statement about alternating algorithms
to one about nondeterministic ones, which we already developed the tools for.

▶ Definition 24 (M with d Alternations, Relative to D). For any M : {0, 1}S×{0, 1}S → {0, 1},
and D : {0, 1}ℓ ×{0, 1}S → {0, 1}, we define M with d alternations, relative to D, inductively
on d as a function Bd

D : {0, 1}S × {0, 1}S → {0, 1} by

d = 1: B1
D(u, v) = M(u, v).

d is even Bd
D(u, v) =

∏
k∈{0,1}ℓ(1 +

∑
w∈{0,1}S Dr(k, w)(M(u, w) + M(u, w)Bd−1

D (w, v)))
mod 2.

d is odd Bd
D(u, v) = 1 +

∏
k∈{0,1}ℓ(1 +

∑
w∈{0,1}S Dr(k, w)(M(u, w)Bd−1

D (w, v))) mod 2.
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Now there is an interactive protocol for reducing the number of alternations by 1. Similar
to our product reduction for nondeterministic algorithms, it uses our extended product
reduction, Lemma 17, and a sum check.

▶ Lemma 25 (IP for M with d Alternations, Relative To D, Single Step). For any M :
{0, 1}S × {0, 1}S → {0, 1} and integer d > 1, D : {0, 1}ℓ × {0, 1}S → {0, 1} let Bd

D :
{0, 1}S × {0, 1}S → {0, 1} be M with d layered alternations relative to D, as defined in
Definition 24. Let B̂d

D be the multilinear extension of Bd
D.

Then there is an O(ℓS) round interactive protocol with O(ℓS log(|F|)) bits of communica-
tion, a verifier V that runs in time ℓSÕ(log(|F|)), space O((ℓ + S) log(|F|)), and a prover P

(given the truth table of M , Bd
D and D) that runs in time 2O(ℓ+S)Õ(log(|F|)) which takes as

input u, v ∈ FS, and α ∈ F such that
Completeness: If B̂d

D(u, v) = α, then when V interacts with P , V outputs a u′, v′, w′ ∈ FS,
j′ ∈ Fℓ, and α′, β′, γ′ ∈ F such that B̂d−1

D (w′, v′) = α′, D̂(j′, w′) = β′, and M̂(u′, w′) = γ′.
Soundness: If B̂d

D(u, v) ̸= α, then for any prover P ′ with probability at most (ℓ+1)(6S+1)
|F|

will V output a u′, v′, w′ ∈ FS, j′ ∈ Fℓ, and α′, β′, γ′ ∈ F such that B̂d−1
D (w′, v′) = α′,

D̂(j′, w′) = β′, and M̂(u′, w′) = γ′.

Applying this many times gives an interactive protocol reducing a statement about our
alternating algorithm to one about a nondeterministic one, which we can solve using the
ideas in Lemma 21.

▶ Lemma 26 (IP for M with d Alternations, Relative To D). For any M : {0, 1}S × {0, 1}S →
{0, 1} and integer d, D : {0, 1}ℓ × {0, 1}S → {0, 1} let Bd

D : {0, 1}S × {0, 1}S → {0, 1} be
M with d layered alternations relative to D, as defined in Definition 24. Let B̂d

D be the
multilinear extension of Bd

D.
Then there is an O(ℓSd) round interactive protocol with O(ℓSd log(|F|)) bits of communic-

ation, a verifier V that runs in time ℓSdÕ(log(|F|)), space O((ℓ + S) log(|F|)), and a prover
P (given the truth table of M , Bd

D and D) that runs in time d2O(ℓ+S)Õ(log(|F|)) which takes
as input u, v ∈ FS, and α ∈ F such that
Completeness: If B̂d

D(u, v) = α, then when V interacts with P , V outputs a u′, v′, w′ ∈ FS,
j′ ∈ Fℓ, and α′, β′ ∈ F such that M̂(u′, v′) = α′ and D̂(j′, w′) = β′.

Soundness: If B̂d
D(u, v) ̸= α, then for any prover P ′ with probability at most d(ℓ+2)(6S+2)

|F|

will V output a u′, v′, w′ ∈ FS, j′ ∈ Fℓ, and α′, β′ ∈ F such that M̂(u′, v′) = α′ and
D̂(j′, w′) = β′.

This would be enough if D was always good, but D may be bad, which must be handled
to get perfect completeness. First, let us define what it means for D to be good.

▶ Definition 27 (D is good for M up to d Alternations). For any M : {0, 1}S ×{0, 1}S → {0, 1},
d and D : {0, 1}ℓ × {0, 1}S → {0, 1}, we say that D is good for M with up to d alternations
if for all k ∈ [d] with k > 1 we have Bk

D = Bk.

But when D is bad, we give a protocol showing where it is bad. A similar protocol exists
for non deterministic algorithms. The idea is to find the first quantifier that D is not good
for, and tell them both which clause it has the wrong value on, and which input should have
given it a different value.
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For instance, if D would claim (∀y : ϕ(x, y)) = 1, but it isn’t, the prover says which y

gives this wrong claim, and which x would have ϕ(x, y) = 0. Our protocol can then show the
verifier that indeed D claims that ϕ(x, y) = 1, but ϕ(x, y) = 0 since D is correct all the way
up to the quantification on y.

More detailed proofs can be found in the full version [11].

▶ Lemma 28 (Proving D is Bad for M with Alternations). For some M : {0, 1}S × {0, 1}S →
{0, 1}, and integer d, let M̂ be the multilinear extension of M . Let ℓ be an integer and
D : Fℓ × FS → F a multilinear function.

Then there is a round O(ℓSd) interactive protocol with O(ℓSd log(|F|)) bits of commu-
nication, a verifier V that runs in time ℓSdÕ(log(|F|)) and space O((ℓ + S) log(|F|)), and a
prover P (with access tot he truth table of M) that runs in time d2O(ℓ+S)Õ(log(|F|)) such
that
Completeness: If D is not good for M up to d alternations, then when V interacts with

P , V outputs u′, v′, w′ ∈ FS, j′ ∈ Fℓ, and α′, β′ ∈ F such that M̂(u′, v′) = α′ and
D̂(j′, w′) = β′.

Soundness: If D is good for M up to d alternations, then when V interacts with P , with
probability at most d(ℓ+2)(6S+2)

|F| will V output u′, v′, w′ ∈ FS, j′ ∈ Fℓ, and α′, β′ ∈ F such
that M̂(u′, v′) = α′ and D̂(j′, w′) = β′.

Combining all of these gives our main theorem. Again, we see that the polylogarithmic
factor overhead is O(log(S)2polylog(log(S))). As noted in the nondeterministic section, this
is worse than the O(log(S)polylog(log(S))) factor overhead for deterministic algorithms
in [9].

For a full proof, see [11].
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oracle, recently introduced by Assadi, Chakrabarty, and Khanna [ESA’21] to test graph connectivity.
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null; (iii) adjacency query: given u, v ∈ V (G), the oracle reports whether {u, v} ∈ E(G).
There is another related query oracle RandomEdge query: the oracle reports an edge
uniformly at random when we query.1

Let us start by looking into the formal definitions of BIS and IS.

▶ Definition 1.1 (Bipartite Independent Set). Given disjoint subsets U, U ′ ⊆ V (G), a
BIS query answers whether there exists an edge between U and U ′ in G.

▶ Definition 1.2 (Independent Set). Given a subset U ⊆ V (G), a IS query answers
whether there exists an edge between vertices of U in G.

The introduction of this new type of oracle access to a graph spawned a series of works that
either solved open questions [12, 13] mentioned in Beame et al. or were generalizations [13, 8, 6].
Beame et al. used BIS and IS queries to estimate the number of edges in a graph [4, 5].
One of their striking observations was that BIS queries were more effective than IS queries
for estimating edges. This observation also fits in with the fact that IS queries can be
simulated in a randomized fashion using polylogarithmic BIS queries.2 Edge estimation
using BIS was also solved in [12] albeit in a higher query complexity than [4]. There were
later generalizations of the BIS oracle to estimate higher order structures like triangles and
hyperedges [13, 7, 6]. On the IS front, Beame et al.’s result for edge estimation using IS
oracle was improved in [11] with an almost matching lower bound and thereby resolving the
query complexity of estimating edges using IS oracle. One can observe the interest generated
in these (bipartite) independent set based oracles in a short span of time. The results are
summarized in Table 1: a cursory glance would tell us that commensurate higher order
queries were needed for estimating higher order structures (Tripartite Independent Set
(shortened as TIS) for counting triangles, Colorful Independence Oracle (shortened
as CID) for counting hyperedges) if polylogarithmic number of queries is the benchmark.
We provide the definitions of TIS and CID below.

▶ Definition 1.3 (Tripartite Independent Set (TIS) [7]). Given three disjoint subsets
A, B, C of the vertex set V of a graph G(V, E), the TIS oracle reports whether there exists
a triangle having endpoints in A, B and C.

▶ Definition 1.4 (Colorful Independence Oracle (CID) [9, 13]). Given d pairwise
disjoint subsets of vertices A1, . . . , Ad ⊆ U(H) of a hypergraph H (U(H) is the vertex set of
the hypergraph H) as input, CID query oracle answers whether m(A1, . . . , Ad) ̸= 0, where
m(A1, . . . , Ad) denotes the number of hyperedges in H having exactly one vertex in each Ai,
∀i ∈ {1, 2, . . . , d}.

Notice the use of number of disjoint subsets in the definition of TIS and CID. That is
why, we call TIS and CID as higher order query oracles than BIS and IS.

1.1 The open questions suggested by Beame et al. [4, 5]
For a work that has spawned many interesting results in such a short span of time, let us
focus on the open problems and future research directions mentioned in [4, 5].

1 Note that that, in RandomEdge query, the probability space is the set of all edges. So, it is not actually
a local query.

2 Let us consider an IS query with input U . Let us partition U into two parts X and Y by putting each
vertex in U to X or Y independently and uniformly at random. Then we make a BIS query with inputs
X and Y , and report U is an independent set if and only if BIS reports that there is no edge with one
endpoint in each of X and Y . Observe that we will be correct with at least probability 1/2. We can
boost up the probability by repeating the above procedure suitable number of times.
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Table 1 The whole gamut of results involving Local queries [17], BIS, IS and its generalizations.
† ∆ is the maximum number of triangles on an edge. ‡ Both these results estimate the number of
hyperedges in a d-uniform hypergraph, where d is treated as a constant. Here n, m and T denote the
number of vertices, edges and triangles in a graph G, respectively. Õ(·) and Ω̃(·) hide a multiplicative
factor of poly(log n, 1/ε) and 1/poly(log n, 1/ε), respectively.

Work Oracle used Structure Upper bound Any other
estimated Lower bound problem solved?

[19] Local edge Õ
(

n√
m

)
Approximating

Ω
(

n√
m

)
average distance.

[11] IS edge Õ
(
min

{√
m, n/

√
m

})
–

Ω̃
(
min

{√
m, n/

√
m

})
–

[4] BIS edge poly(log n, 1/ε) = Õ(1) Edge estimation
– using IS queries.

[7] TIS triangle poly(log n, ∆, 1/ε)† –
– –

[13], CID hyperedge poly(log n, 1/ε) = Õ(1) [13] resolved
[6] ‡ – Q2 in positive.

[14] Local triangle Õ
(

n

T 1/3 + min
{

m, m3/2

T

})
–

Ω
(

n

T 1/3 + min
{

m, m3/2

T

})
–

[2] Local+ triangle Õ
(

min
{

m, m3/2

T

})
Estimated number

Random Edge Ω
(

min
{

m, m3/2

T

})
of arbitrary subgraphs.

This work BIS triangle Õ
(

min
{

m√
T

, m3/2

T

})
–

Ω̃
(

min
{√

T , m3/2

T

})
–

Q1 Can we estimate the number of cliques using polylogarithmic number of BIS queries?
Q2 Can polylogarithmic number of BIS queries sample an edge uniformly at random?
Q3 Can BIS or IS queries possibly be used in combination with local queries for graph

parameter estimation problems?
Q4 What other oracles, besides subset queries, allow estimating graph parameters with a

polylogarithmic number of queries?

Answers to the above questions and a discussion
Only Q2 has been resolved till now in the positive [13] as can be observed from Table 1. At
its core, Q1 asks if a query oracle can step up, that is, if it can estimate a structure that is of
a higher order than what the oracle was designed for. The framing of Q1 seems that Beame
et al. expected a polylogarithmic query complexity for estimation of the number of cliques
using BIS. Pertinent to these questions, we also want to bring to focus a work [22] where
the authors mention that it seems to them that estimation of higher order structures will
require higher order queries (see the discussion after Proposition 23 of [22]). They showed
that Ω(n2/ log n) BIS queries are required to separate triangle free graph instances from
graph instances having at least one triangle. This lower bound follows directly from the
communication complexity of triangle freeness testing [3]. However, the full complexity of
triangle estimation using emptiness queries like BIS remains elusive. It seems to us that
the observations in [4, 5] and [22] about the power of BIS in estimating higher order
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structures stand in contrast. In this backdrop, we have almost resolved the lower bound for
estimating triangles using BIS queries, and our upper bound result show that even if BIS
can not estimate triangles using polylogarithmic queries but it is still more powerful than
Local + Random Edge queries on graph for estimating triangles (see Table 1). BIS has
an inherent asymmetry in its structure in the following sense – when BIS says that there
exists no edge between two disjoint sets, then BIS stands as a witness to the existence of two
sets of vertices having no interdependence, while a yes answer implies that there can be any
number of edges, varying from one to the product of the cardinality of the two sets, going
across the two sets. We feel that this property of BIS gives it its power, but on the other
hand, also makes it difficult to prove lower bounds. That is probably the reason why works
related to upper bound for BIS and its generalizations exist, whereas works on lower bound
were not forthcoming. Though not on BIS, the work of Chen et al. using IS queries gave
an interesting lower bound construction for IS oracle. Our work goes one step further in
being able to prove a lower bound for the BIS oracle which is much stronger than IS oracle.
We have almost resolved the open question Q1 by proving almost matching lower and upper
bounds involving BIS for estimating triangles.

1.2 A stronger oracle than BIS, our main result and its consequences
Now we define Edge Emptiness (shortened as EE) query oracle which is stronger than
both BIS and IS. The Edge Emptiness query is a form of a subset query [24, 25, 23] where
a subset query with a subset P ⊆ U asks whether P ∩ T is empty or not, where T is also a
subset of the universe U . The Edge Emptiness query operates with U being the set of all
vertex pairs in G, T being the set of edges E in G, and P being a subset of pairs of vertices
of V .

▶ Definition 1.5 (Edge Emptiness). Given a subset P ⊆
(

V (G)
2

)
, a EE query answers

whether there exists an {u, v} ∈ P such that {u, v} is an edge in G.

EE query is recently introduce by Assadi et al. [1].3 Note that BIS and IS queries can be
simulated by an EE query. 4 We prove our lower bound in terms of the stronger5 EE queries
that will directly imply the lower bound in terms of BIS. But we prove matching upper
bound in terms of BIS. Our main results are stated below in an informal setting. The formal
statements are given in Theorems 3.1 and A.1.

▶ Theorem 1.6 (Main lower bound (informal statement)). Let m, n, t ∈ N. Any (randomized)
algorithm that has EE query access to a graph G(V, E) with n vertices and Θ(m) edges,
requires Ω̃

(
min

{√
t, m3/2

t

})
EE queries to decide whether the number of triangles in G is

at most t or at least 2t.

▶ Theorem 1.7 (An upper bound (informal statement)). There exists an algorithm, that has
BIS query access to a graph G(V, E), finds a (1±ε)-approximation to the number of triangles
in G with high probabilility, and makes Õ

(
min

{
m√

T
, m3/2

T

})
BIS queries in expectaton.

Here m, n, T denote the number of vertices, edges and triangles in G.

3 Assadi et al. [1] named EE query as OR query in their paper.
4 Let us consider a BIS query with inpus A and B. Let P be the set of vertex pairs with one vertex from

each of A and B. We call EE oracle with input P , and report there is an edge having one vertex in
each of A and B if and only if the EE oracle reports that there exists an {u, v} ∈ P that forms an edge
in G. Similarly, we can simulate an IS query with input U by using an EE query with input P =

(
U
2

)
.

5 For an example to show how EE query can be powerful than that of BIS or IS, O(log log n) EE
queries [24] are enough to estimate the number of edges in a graph, as opposed to high query complexity
(compared to O (log log n)) when we have BIS or IS queries (See Table 1).
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Note that Edge Emptiness query is the strongest subset query on edges of the graph.
Informally speaking, our lower bound states that no subset query on edges can estimate
the number of triangles in a graph by using polylogarithmic queries. However, the results
of Bhattacharya et al. [6] and Dell et al. [13] imply that polylogarithmic TIS queries are
enough to estimate the number of triangles in the graph. Note that TIS query is also a
subset query on triangles in the graph. To complement our lower bound result, we also give
an algorithm (see Theorem 1.7) for estimating the number of triangles in a graph with BIS
queries that matches our lower bound. Here we would also like to mention that the number
of BIS queries our algorithm uses is less than that of the number of local queries [17] needed
to estimate the number of triangles in a graph. This implies that we are resolving Q3 in
positive in the sense that BIS queries are efficient queries for triangle estimation vis-a-vis
local queries [14] coupled with even random edge queries [2] (see Table 1).

1.3 Notations

Throughout the paper, the graphs are undirected and simple. For a graph G(V, E), V (G)
and E(G) denote the set of vertices and edges, respectively; |V (G)| = n, |E(G)| = m and
the number of triangles is T , unless otherwise specified. We use

(
V (G)

2
)

to denote the set of
vertex pairs in G. Note that E(G) ⊆

(
V (G)

2
)
. For P ⊆

(
V (G)

2
)
, V (P ) represents the set of

vertices that belong to at least one pair in P . The neighborhood of a vertex v ∈ V (G) is
denoted by NG(v), and |NG(v)| is called the degree of vertex v in G. Γ({x, y}) denotes the set
NG(x) ∩NG(y), that is, the set of common neighbors of x and y in G. If e = {x, y} ∈ E(G),
Γ(e) denotes the set of vertices that forms triangles with e as one of their edges. The induced
degree of a vertex v in Z ⊆ V (G) \ {v} is the cardinality of NG(v) ∩ Z. For X ⊆ V (G), the
subgraph of G induced by X is denoted by G[X]. Note that E(G[X]) = {{x, y} : x, y ∈ X}.
For two disjoint sets A, B ⊂ V (G), the bipartite subgraph of G induced by A and B is
denoted by G[A, B]. Note that E(G[A, B]) is the set of edges having one vertex in A and
the other vertex in B.

Throughout the paper, ε ∈ (0, 1) is the approximation parameter. When we say a is a
(1±ε)-approximation of b, then (1−ε)b ≤ a ≤ (1+ε)b. Polylogarithmic means poly (log n, 1/ε).
Õ(·) and Ω̃(·) hide a multiplicative factor of poly(log n, 1/ε) and 1/poly(log n, 1/ε), respectively.
We have avoided floor and ceiling for simplicity of presentation. The constants in this paper
are not taken optimally. We have taken them to let the calculation work with clarity. However,
those can be changed to other suitable and appropriate constants.

1.4 Paper organization

We start with the technical overview of our lower and upper bounds in Section 2.1 and
Section 2.2, respectively. The detailed lower and upper bound proofs are in Section 3 and
Appendix A, respectively. The missing proofs of Section 3 are presented in the full version of
the paper [10].

2 Technical overview

In this section, we discuss about the techniques and proof overview, The overview of the lower
bound is discussed in Section 2.1 and that of the upper bound is discussed in Section 2.2.

APPROX/RANDOM 2023
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A B

C D

BA

C D

C ′

G ∼ DY es G ∼ DNo

Figure 1 Illustration of G ∼ DYes and G ∼ DNo when t = Ω(m log n).

2.1 Overview for the proof of our lower bound (Theorem 1.6)
Let us consider m, n, t as in Theorem 1.6. We prove the desired bound for BIS (stated in
Theorem 1.6) by proving the lower bound is Ω̃

(
m3/2

t

)
when t ≥ km log n and Ω̃

(√
t
)

when
t < km log n for EE query access, where k is a suitably chosen constant. In this Section,
we discuss the overview of the proof when t ≥ km log n. The desired lower bound when
t < km log n can be proved by using a reduction from the case when t ≥ km log n. The main
intuition behind the lower bound is to “hide” a suitably generated vertex set such that a
large number of queries is necessary to detect such a vertex.

The idea for the lower bound of Ω̃
(

m3/2

t

)
when t ≥ km log n

We prove by using Yao’s method [21]. There are two distributions DYes and DNo (as
described below) from which G is sampled satisfying P (G ∼ DYes) = P (G ∼ DNo) = 1/2.
Note that, for each G ∼ DYes ∪ DNo, |V (G)| = n = Θ(

√
m),6 and |E(G)| = Θ(m) with a

probability of at least 1− o(1). But the number of triangles in each G ∼ DNo is at least two
factor more than that of the number of triangles in any G ∼ DYes, with a probability of at
least 1− o(1).
DYes: The vertex set V (G) (with |V (G)| = Θ(

√
m)) is partitioned into four parts A, B, C, D

uniformly at random. Vertex set A forms a biclique with vertex set B and vertex set C

forms a biclique with vertex set D. Then every vertex pair {x, y}, with x ∈ A ∪B and
y ∈ C, is added as an edge to graph G with probability Θ

(√
t

m3/2

)
;

DNo: The vertex set V (G) (with |V (G)| = Θ(
√

m)) is partitioned into four parts A, B, C, D

uniformly at random. Vertex set A forms a biclique with vertex set B and vertex set C

forms a biclique with vertex set D. Then every vertex pair {x, y}, with x ∈ A ∪B and

6 Without loss of generality, we assume that
√

m is an integer. The proof can be extended to any graph
having n ≥

√
m vertices and m edges by adding n −

√
m isolated vertices.
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y ∈ C, is added as an edge to graph G with probability Θ
(√

t
m3/2

)
. Then each vertex

of C is sampled with probability Θ
(

t
m3/2

)
. Let C ′ be the sampled set. Each vertex of C ′

is connected to every vertex of A ∪B with an edge;
See Figure 1 for an illustration of the above construction. The constants, including k, in the
order notations above are suitably set to have the following:
When G ∼ DYes: The number of triangles in each graph is at most t, with a probability of

at least 1− o(1);
When G ∼ DNo: |C ′| = Θ

(
t

m

)
with a probability of at least 1− o(1). Hence, the number

of triangles in each G ∼ DNo is at least 2t, with a probability of at least 1− o(1).

Now, consider a particular EE query with input P ⊆
(

V (G)
2

)
. Here, we divide the

discussion into two parts, based on |P | ≤ τ and |P | > τ , where τ = Θ(log2 n) is a threshold.
If we query with the number of vertex pairs more than the threshold, chances are more we
will not be able to distinguish between G ∼ DYes and G ∼ DNo. When |P | > τ , we can
show that there exists a vertex pair {x, y} ∈ P such that {x, y} is an edge in G, with a
probability of at least 1− o(1), irrespective of whether G ∼ DYes or G ∼ DNo. Intuitively,
this is because the number of vertices and edges in G are Θ(

√
m) and Θ(m), respectively.

So, EE queries with input P ⊆
(

V (G)
2

)
such that |P | > τ will not be useful to distinguish

whether G ∼ DYes or G ∼ DNo.
We prove the desired lower bound by proving Ω̃

(
m3/2

t

)
EE queries are necessary to

decide whether G ∼ DYes or G ∼ DNo with a probability of at least 2/3. Note that C ′ = ∅
when G ∼ DYes. So, the number of EE queries needed to decide whether G ∼ DYes or
G ∼ DNo, is at least the number of EE queries needed to touch at least one vertex of C ′ when
G ∼ DNo. Here, by touching at least a vertex of C ′, we mean V (P ) ∩ C ′ ̸= ∅. As we have
argued that only EE query with input P ⊆

(
V (G)

2
)

with |P | ≤ τ can be useful, the probability
that we touch a vertex in C ′ with such a query is at most p = O

(
C′

√
m
· τ

)
= O

(
t log2 n
m3/2

)
.

Hence the number of EE queries to touch at least a vertex of C ′, is at least 1/p, that is,
Ω̃

(
m3/2

t

)
.

To let the the above discussion work, when G ∼ DNo, |C ′| = Θ
(

t
m

)
must be at least

Ω(log n). But |C ′| = Θ
(

t
m

)
with a probability of at least 1 − o(1). Because of this, we

take t ≥ km log n in the above discussion. The formal statement of the lower bound, when
t ≥ km log n, is given in Lemma 3.2 in Section 3. What we have discussed here is just
an overview, the formal proof of Lemma 3.2 is much more invloved and delicate, which is
presented in Section 3.1.

As we have already mentioned, the desired lower bound of Ω̃
(√

t
)

when t < km log n

can be proved by a reduction from the case when t ≥ km log n. The formal statement of
the lower bound, when t < km log n, is given in Lemma 3.3 in Section 3, and the proof is
presented in Section 3.2.

2.2 Overview for our upper bound (Theorem 1.7)
We establish the upper bound claimed in Theorem 1.7 by giving two algorithms that report
a (1± ε)-approximation to the number of triangles in the graph:

(i) Triangle-Est-High(G, ε) that makes Õ
(

m3/2

T

)
BIS queries;

(ii) Triangle-Est-Low(G, ε) that makes Õ
(

m+T√
T

)
BIS queries.

Informally speaking, our final algorithm Triangle-Est calls Triangle-Est-High(G, ε)
and Triangle-Est-Low(G, ε) when T = Ω(m) and T = O(m), respectively. Observe
that, if Triangle-Est knows T within a constant factor, then it can decide which one to
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use among Triangle-Est-High(G, ε) and Triangle-Est-Low(G, ε). If Triangle-Est
does not know T within a constant factor, then it starts from a guess L =

(
n
3
)
/2 and

makes a geometric search on L until the output of Triangle-Est is consistent with L.
Depending on whether L = Ω(m) or L = O(m), Triangle-Est decides which one among
Triangle-Est-High(G, ε) and Triangle-Est-Low(G, ε) to call. This guessing technique
is very standard by now in property testing literature [19, 14, 15, 2]. Another point to note
is that we do not know m. However, we can estimate m by using poly(log n) BIS queries
(see Table 1). An estimate of m will perfectly work for us in this case.

Algorithm Triangle-Est-High(G, ε)

Algorithm Triangle-Est-High is inspired by the triangle estimation algorithm of Assadi
et al. [2], where we have Adjacency, Degree, Random neighbor and Random Edge
queries. Please see Appendix A.2 for formal definitions of these queries. Note that the
algorithm by Assadi et al. can be suitably modified even if we have approximate versions
of Degree, Random neighbor and Random Edge queries. Also refer Appendix A.2
for formal definitions of approximate version of the above queries. By Corollary A.8, Õ(1)
BIS queries are enough to simulate the approximate versions of Degree and Random
neighbor, with a probability of at least 1− o(1). By Proposition A.7, approximate version
of Random Edge queries can also be simulated by Õ(1) BIS queries, with a probability
of at least 1 − o(1). Putting everything together, we get Triangle-Est-High(G, ε) for
triangle estimation that makes Õ(1) BIS queries. The formal statement of the corresponding
triangle estimation result is given in Lemma A.2, and algorithm Triangle-Est-High(G, ε)
is described in Appendix A.2.

Algorithm Triangle-Est-Low(G, ε)

This algorithm is inspired by the two pass streaming algorithm for triangle estimation by
McGregor et al. [20]. Basically, we show that the steps of McGregor et al.’s algorithm
can be executed by using Õ

(
m+T√

T

)
BIS queries. To do so, we have used the fact that,

given any X ⊆ V (G), all the edges of the subgraph induced by X can be enumerated
by using Õ (|E(G[X])|) BIS queries (see Proposition A.4 for the formal statement). The
formal statement of the corresponding triangle estimation result is given in Lemma A.3, and
algorithm Triangle-Est-Low(G, ε) is described in Appendix A.3 along with its correctness
proof and query complexity analysis.

3 Lower bound for estimating triangles using Edge Emptiness queries

In this Section, we prove the main lower bound result as sketched in Theorem 1.6; the formal
theorem statement is stated below. As mentioned earlier, the lower bound proofs will be for
the stronger query oracle EE. This will imply the lower bound for BIS.

▶ Theorem 3.1 (Main lower bound result). Let m, n, t ∈ N be such that 1 ≤ t ≤ m3/2

2 .
Any (randomized) algorithm that has EE oracle access to a graph G(V, E) must make
Ω̃

(
min

{√
t, m3/2

t

})
EE queries to decide whether the number of triangles in G is at most t

or at least 2t with a probability of at least 2/3, where G has n ≥ 4
√

m vertices and Θ (m)
edges.

We prove the above theorem by proving Lemmas 3.2 and 3.3, as stated below. Note that
Lemmas 3.2 and 3.3 talk about the desired lower bound when the number of triangles in the
graph is large (Ω(m log n)) and small (O(m log n)), respectively.
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▶ Lemma 3.2 (Lower bound when there are large number of triangles). Let m, n, t ∈ N be such
that t ≥ m log n

8 . Any (randomized) algorithm that has EE oracle access to a graph G(V, E)
must make Ω̃

(
m3/2

t

)
EE queries to decide whether the number of triangles in G is at most t

or at least 2t with a probability of at least 2/3, where G has n ≥ 4
√

m vertices, Θ (m) edges.

▶ Lemma 3.3 (Lower bound when there are small number of triangles). Let m, n, t ∈ N be
such that t < m log n

8 . Any (randomized) algorithm that has EE oracle access to a graph
G(V, E) must make Ω̃

(√
t
)

EE queries to decide whether the number of triangles in G is at
most t or at least 2t with a probability of at least 2/3, where G has n ≥ 4

√
m vertices and

Θ (m) edges.

We first show Lemma 3.2 in Section 3.1, and then Lemma 3.3 in Section 3.2. Note that the
proof of Lemma 3.3 will use Lemma 3.2.

3.1 Proof of Lemma 3.2
Without loss of generality, assume that

√
m is an integer. We prove for the case when

n = 4
√

m. But, we can make the proof work for any n ≥ 4
√

m by adding n− 4
√

m isolated
vertices. Note that t ≥ m log n

8 here. We further assume that t ≤ m3/2

128 , and m = Ω(log2 n).
Otherwise, the stated lower bound of Ω̃

(
m3/2

t

)
trivially follows as Ω̃(·) hides a multiplicative

factor of 1
poly(log n) .

We use Yao’s min-max principle to prove the lower bound. To do so, we consider two
distributions DYes and DNo on graphs where

Any graph G ∼ DYes ∪ DNo has 4
√

m vertices;
Any graph G ∼ DYes ∪ DNo has Θ(m) edges with a probability of at least 1− o(1);
The number of triangles in any graph G ∼ DYes is at most t with a probability of at least
1− o(1), and any graph G ∼ DNo has at least 2t triangles with a probability of at least
1− o(1).

Note that, if we can show that any deterministic algorithm that distinguishes graphs from
DYes and DNo, with a probability of at least 2/3, must make Ω̃

(
m3/2

t

)
EE queries, then we

are done with the proof of Lemma 3.2.

3.1.1 The (hard) distribution for the input, its properties, and the proof
set up

DYes: A graph G ∼ DYes is sampled as follows:
Partition the vertex set V (G) into 4 parts A, B, C, D, by initializing A, B, C, D as
empty sets, and then putting each vertex in V (G) into one of the parts uniformly at
random and independent of other vertices;
Connect each vertex of A with every vertex of B with an edge to form a biclique. Also,
connect each vertex of C with every vertex of D with an edge to form another biclique;
For every {x, y} where x ∈ A ∪ B and y ∈ C, add edge {x, y} to G with probability√

t
16m3/2 .

DNo : A graph G ∼ DNo is sampled as follows:
Partition the vertex set V (G) into 4 parts A, B, C, D, by initializing A, B, C, D as
empty sets, and then putting each vertex in V (G) into one of the partitions uniformly
at random and independent of other vertices;
Connect each vertex of A with every vertex of B with an edge to form a biclique. Also,
connect each vertex of C with every vertex of D with an edge to form another biclique;
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For every {x, y} where x ∈ A ∪ B and y ∈ C, add edge {x, y} to G with probability√
t

16m3/2 .
Select C ′ ⊆ C by putting each x ∈ C into C ′ with a probability of at least 32t

m3/2 ,
independently, and then, add each edge in {x, y : x ∈ A ∪B, y ∈ C ′} to G.

The following observation establishes the number of vertices, edges, and the number of
triangles in the graphs that can be sampled from DYes ∪DNo. The proof uses large deviation
inequalities and is presented in the full version of the paper.

▶ Observation 3.4 (Properties of the graph G ∼ DYes ∪ DNo).
(i) For G ∼ DYes∪DNo, the number of vertices in G is 4

√
m. Also,

√
m
2 ≤ |A| , |B| , |C| , |D| ≤

2
√

m holds with a probability of at least 1 − o(1), and the number of edges in G is
Θ(m) with a probability of at least 1− o(1);

(ii) If G ∼ DYes, then there are at most t triangles in G with a probability of at least
1− o(1),

(iii) If G ∼ DNo, 8t
m ≤ |C

′| ≤ 64t
m with a probability of at least 1− o(1), and there are at

least 2t triangles in G with a probability of at least 1− o(1).

The following remark is regarding the connection between graphs in DYes and that in
DNo. This will be used later in our proof, particularly in the proof of Claim 3.12.

▶ Remark 1 (A graph G′ ∼ DNo can be generated from a graph G ∼ DYes). Let us first
generate a graph G ∼ DYes. Select C ′ ⊆ C by putting each x ∈ C into C ′ with a probability
of at least 32t

m3/2 , and then, add each edge in {x, y : x ∈ A ∪B, y ∈ C ′} to G to generate G′,
then (the resulting graph) G′ ∼ DNo.

The following observation says that a {x, y} ∈
(

V (G)
2

)
(with some condition) forms an edge

with a probability of at least a constant. It will be used while we prove Claim 3.11.

▶ Observation 3.5 (Any vertex pair {x, y} is an edge in G with constant probability). Let
{x, y} ∈

(
V (G)

2
)
, and we are in the process of generating G ∼ DYes ∪ DNo. Let at most one

of x and y has been put into one of the parts out of A, B, C and D. Then {x, y} is an edge
in G with probability at least 1

4 .

The above observation follows from the description of G ∼ DYes ∪ DNo – each vertex in
V (G) is put into one of the parts out of A, B, C, D uniformly at random, each vertex of A is
connected with every vertex in B, and each vertex of C is connected with every vertex in D.

In order to prove Lemma 3.2, by contradiction, assume that there is a randomized
algorithm that makes q = o

(
m3/2

t
1

log2 n

)
EE queries and decides whether the number of

triangles in the input graph is at most t or at least 2t, with a probability of at least 2/3.
Then there exists a deterministic algorithm ALG that makes q EE queries and decides the
following (when the input graph G ∼ DYes∪DNo be such that both G ∼ DYes and G ∼ DNo
holds with probability 1/2) –

PG∼DNo(ALG(G) reports NO)− PG∼DYes(ALG(G) reports NO) ≥ 1
3 − o(1).

(Here PG∼DNo(E) and PG∼DYes(E) denote the probability of the event E under the conditional
space G ∼ DNo and G ∼ DYes, respectively.) Hence, we will be done with the proof of
Lemma 3.2 by showing the following lemma.
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▶ Lemma 3.6 (Lower bound on the number of EE queries when G ∼ DYes ∪ DNo). Let the
unknown graph G be such that G ∼ DYes and G ∼ DNo hold with equal probabilities. Consider
any deterministic algorithm ALG that has EE access to G, and makes q = o

(
m3/2

t
1

log2 n

)
EE queries to G. Then

PG∼DNo(ALG(G) reports NO)− PG∼DYes(ALG(G) reports NO) ≤ o(1).

Next, we define an augmented EE oracle (EE∗ oracle). EE∗ is tailor-made for the graphs
coming from DYes ∪ DNo. Moreover, it is stronger than EE, that is, any EE query can be
simulated by a EE∗ query. We will prove the claimed lower bound in Lemma 3.6 when we
have access to EE∗ oracle. Note that this will imply Lemma 3.6.

Before getting into the formal description of EE∗ oracle, note that the algorithm (with
EE∗ access) maintains a four tuple data structure initialized with ∅. With each query to
EE∗ oracle, the oracle updates the data structure and returns the updated data structure to
the algorithm. Note that the updated data structure is a function of all previously made
EE∗ queries, and it is enough to answer corresponding EE queries.

3.1.2 Augmented Edge Emptiness oracle (EE∗)
Before describing the EE∗ query oracle and its interplay with the algorithm, first we present
the data structure (EQ, V (EQ) , e, ℓv) that the algorithm maintains with the help of EE∗

oracle. The data structure keeps track of the following information.

Information maintained by (EQ, V (EQ) , e, ℓv)

EQ is a subset of
(

V (G)
2

)
that have been seen by the algorithm till now, V (EQ) is the set

of vertices present in any vertex pair in EQ.
e :

(
V (EQ)

2
)
→ {0, 1} such that e({x, y}) = 1 means the algorithm knows that {x, y} is an

edge in G, e(x, y) = 0 means that {x, y} is not an edge in G.
ℓv : V (EQ)→ {A, B, C, C ′, D}, where

ℓv(x) =


A, x ∈ A

B, x ∈ B

C, x ∈ C \ C ′

C ′, x ∈ C ′

D, x ∈ D

Intuitively speaking, unless the algorithm knows about the presence of some vertex in C ′, it
cannot distinguish whether the unknown graph G ∼ DYes or G ∼ DNo. So, we define the
notion of good and bad vertices, along with good and bad data structures. This notion will
be used later in our proof.

▶ Definition 3.7 (Bad vertex). A vertex x ∈ V (EQ) is said to be a bad vertex if ℓv(x) = C ′.
(EQ, V (EQ) , e, ℓv) is said to be good if there does not exist any bad vertex in V (EQ).

EE∗ oracle and its interplay with the algorithm
The algorithm initializes the data structure (EQ, V (EQ) , e, ℓv) with EQ = ∅, V (EQ) = ∅.
So, e and ℓv are initialized with trivial functions with domain ∅. At the beginning of each
round, the algorithm queries the EE∗ oracle with a subset P ⊆

(
V (G)

2
)

deterministically.
Note that the choice of P depends on the current status of the data structure. Now, we
explain how EE∗ oracle responds to the query and how the data structure is updated.
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(1) If |P | ≤ τ = 25 log2 n, the oracle sets EQ ← EQ ∪ P , and changes V (EQ) accordingly.
The oracle also sets the function e and ℓv as per their definitions, and then it sends the
updated data structure to the algorithm.

(2) Otherwise (if |P | > τ), the oracle finds a random subset P ′ ⊆ P such that |P ′| = τ. The
oracle checks if there is a pair {u, v} ∈ P ′ such that {u, v} is an edge. If yes, then the
oracle responds as in (1) with P being replaced by P ′. If no, the oracle sends the data
structure corresponding to the entire graph along with a Failure signal.7

Owing to the way EE∗ oracle updates the data structure after each EE∗ query, we can
make some assumptions on the inputs to the EE∗ oracle, as described in Remark 2. It will
actually be useful when we prove Claim 3.11.

▶ Remark 2 (Some assumptions on the EE∗ query). Let (EQ, V (EQ) , e, ℓv) be the data
structure just before the algorithm makes EE query with input P , and let

(
E′

Q, V
(
E′

Q

)
, e′, ℓ′

v

)
be the data structure updated by EE∗ oracle after the algorithm makes EE∗ query with
input P . Without loss of generality, we assume that

(i) P is disjoint from
(

V (EQ)
2

)
. It is because EE∗ maintains whether {x, y} is an edge or

not for each {x, y} ∈
(

V (EQ)
2

)
;

(ii) When x, z ∈ V (EQ), there does not exist {x, y} and {y, z} in P . It is because the oracle
updates the data structure in the same way in each of the following three cases when
x, z ∈ V (EQ) – (i) {x, y} and {y, z} are in P , (ii) {x, y} ∈ P and {y, z} /∈ P , and (iii)
{x, y} /∈ P and {y, z} ∈ P . By the description of EE∗ oracle and its interplay with
the algorithm, in all the three cases, the updated data structure (E′

Q, V
(
E′

Q

)
, e′, ℓ′

v)
contains labels of all the three vertices x, y, z along with the information whether {x, y}
and {y, z} form edges in G or not. So, instead of having both {x, y} and {y, z} in P

with x, z ∈ V (EQ), it is equivalent to have exactly one among {x, y} and {y, z} in P .

In the following observation, we formally show that EE∗ oracle is stronger than that of
EE. Then we prove Lemma 3.9 that says that Ω

(
m3/2

t
1

log2 n

)
EE∗ queries are necessary to

distinguish between G ∼ DYes and G ∼ DNo. Note that Lemma 3.9 will imply Lemma 3.6.

▶ Observation 3.8 (EE∗ is stronger than EE). Let G ∼ DYes ∪ DNo. Each EE query to G

can be simulated by using an EE∗ query to G.

Proof. Let us consider an EE query with input P ⊆
(

V (G)
2

)
. We make a EE∗ query with

the same input P , and answer the EE query as follows depending on whether |P | ≤ τ or
|P | > τ .
|P | ≤ τ : The EE∗ oracle updates the data structure and let (E′

Q, V
(
E′

Q

)
, e′, ℓ′

v) be the
updated data structure. It contains the the information about each {x, y} ∈ P whether
it forms an edge in G or not. So, from (E′

Q, V
(
E′

Q

)
, e′, ℓ′

v), the EE query with input P

can be answered as follows: there exists an edge {x, y} ∈ P with {x, y} ∈ E(G) if and
only if e′({x, y}) = 1.

|P | > τ : In this case, the EE∗ oracle finds a random subset P ′ ⊆ P such that |P ′| = τ . It
checks if there is an {x, y} ∈ P ′ such that {x, y} is an edge. If yes, the updated data
structure contains the the information about each {x, y} ∈ P ′ whether it forms an edge.
In this case, we can report that there exists an {x, y} ∈ P such that {x, y} is an edge
in G. If there is no {x, y} ∈ P ′ such that {x, y} is an edge, then (by the description of

7 We later argue that Failure signal is sent with a very low probability.
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EE oracle and its interplay with the algorithm) the EE∗ oracle sends the data structure
corresponding to the entire graph. Obviously, we can report whether there exists an
{x, y} ∈ P such that {x, y} ∈ E(G) or not.

Hence, in any case, we can report the answer to EE query with input P . ◀

We are left with proving the following technical lemma. As noted earlier, this will imply
Lemma 3.6.

▶ Lemma 3.9 (Lower bound on the number of EE∗ queries when G ∼ DYes ∪ DNo). Let the
unknown graph G be such that G ∼ DYes and G ∼ DNo hold with equal probabilities. Consider
any deterministic algorithm ALG∗ that has EE∗ access to G, and makes q = o

(
m3/2

t
1

log2 n

)
EE∗ queries to G. Then

PG∼DNo(ALG∗ (G) reports NO)− PG∼DYes(ALG∗ (G) reports NO) ≤ o(1).

3.1.3 Proof of Lemma 3.9
For clarity of explanation, we first describe ALG∗ as a decision tree. Then we will prove
Lemma 3.9.

Decision tree view of ALG∗

Each internal node of T is labeled with a nonempty subset
(

V (G)
2

)
and each leaf node is

labeled with YES or NO;
Each edge in the tree is labeled with a data structure (EQ, V (EQ) , e, ℓv);
The algorithm starts the execution from the root node r by setting r as the current node.
Note that for the root node r, EQ = V (EQ) = ∅ and e and ℓv are the trivial functions.
As the algorithm ALG∗ is deterministic, the first EE∗ query is same irrespective of the
graph G ∼ DYes ∪ DNo that we are querying. By making that query, we get an updated
data structure from the oracle and let {r, u} be the edge that is labeled with the updated
data structure. Then ALG∗ sets u as the current node.
If the current node u is not a leaf node in T , ALG∗ makes a EE∗ query with a subset
P ⊆

(
V (G)

2
)
, where P is determined by the label of the node u. Note that P satisfies the

condition described in Remark 2. The oracle updates the knowledge structure and ALG∗

moves to a child of u depending on the updated data structure;
If the current node u is a leaf node in T , report YES or NO according to the label of u.

Now, we define the notion of good and bad nodes in T . The following definition is inspired
from Definition 3.7.

▶ Definition 3.10 (Bad node in the decision tree). Let u be a node of T and (EQ, V (EQ) , e, ℓv)
be the current data structure. u is said to be good if there does not exist x in V (EQ) such
that ℓv(x) = C ′. Otherwise, u is a bad node.

If G ∼ DYes, then ALG∗ will never encounter a bad node. In other words, when ALG∗

reaches a bad node of the tree T , then it can (easily) decide G ∼ DNo. However, the inverse
in not true. From this fact, consider two claims (Claims 3.11 and 3.12) about the traversal
of the decision tree T when the graph G ∼ DYes ∪DNo. These claims will be useful to show
Lemma 3.9. Intuitively, Claim 3.11 says that the probability of reaching a bad node is very
low when G ∼ DNo. Claim 3.12 says that the probability to reach any particular good node
is more when G ∼ DYes as compared to that of when G ∼ DNo.
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▶ Claim 3.11 (Probability of reaching a bad node is very low when G ∼ DNo). Let G ∼ DNo.
Then the probability that ALG∗ reaches a bad node of the decision tree is o(1). That is,

PG∼DNo(ALG∗ reaches a bad node) = o(1).

▶ Claim 3.12 (A technical claim to prove Lemma 3.9). For any good node in the decision tree
T , the following holds:

PG∼DNo(ALG∗ reaches v) ≤ PG∼DYes(ALG∗ reaches v).

The proofs of Claims 3.11 and 3.12 are non trivial and are in the full version due to paucity
of space.

Now, we will prove Lemma 3.9.

Proof of Lemma 3.9. Let LNo denote the set of leaf nodes of the decision tree T that are
labeled NO. Also, let Lg ⊆ LNo be the set of leaf nodes that are good and labeled as NO.

PG∼DNo(ALG∗ (G) reports NO)

≤
∑

v∈LNo

PG∼DNo(ALG∗ (G) reaches u)

=
∑

u∈Lg

PG∼DNo(ALG∗ (G) reaches u) +
∑

u∈LNo\Lg

PG∼DNo(ALG∗ (G) reaches u)

≤
∑

u∈Lg

PG∼DNo(ALG∗ (G) reaches u) + PG∼DNo(ALG∗ (G) reaches a bad node)

≤
∑

u∈Lg

PG∼DYes(ALG∗ (G) reaches u) + o(1) (By Claims 3.11 and Claims 3.12 )

≤ PG∼DYes(ALG∗ (G) reports NO) + o(1) ◀

3.2 Proof of Lemma 3.3

We assume that t = ω(log7 n). Otherwise, as Ω̃(·) hides a multiplicative term of 1
poly(log n) ,

the stated lower bound is trivial. Assume, for a contradiction, that there is an algorithm A
for t < m log n

8 such that
it has EE oracle access to a graph G1(V1, E1) with Θ(

√
m) vertices and Θ(m) edges;

makes o
(√

t 1
log3.5 n

)
EE queries;

decides whether the number of triangles in G1 is at most t or at least 2t with a probability
of at least 2/3.

Now we give an algorithm A′ for
it has EE oracle access to a graph G2(V2, E2) with 4

√
t/ log n vertices and 8t/ log n edges,

that is, t = |E2| log n
8 ;

makes o
( √

t
log3.5 n

)
= o

(
|E2|3/2

t
1

log2 n

)
EE queries;

decides whether the number of triangles in G2 is at most t or at least 2t with a probability
of at least 2/3.
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Description of A′ using A

Let the unknown graph be G1 = G2 ∪ G′ such that V (G1) = V (G2) ⊔ V (G′) and
E(G1) = E(G2) ⊔E(G′), where G′ is a graph having Θ(

√
m− t/ log n) vertices (disjoint

from V (G2)), Θ
(√

(m− 8t/ log n)
)

edges, and no triangles.8 The number of vertices
and edges in G1 are Θ(

√
m) and Θ(m), respectively. Also, the number of triangles in G1

is same as in G2;
As an EE query to G1 can be answered using one EE query to G2, we can consider
having EE query access to graph G1;
We run algorithm A assuming G1 as the unknown graph;
We report the output of A as the output of A.

The correctness of A′ follows from the correctness of A. The number of queries made by
the algorithm A′ is o

(√
t 1

log3.5 n

)
. Recalling that A works on graph G2(V2, E2) satisfying

t = |E2| log n
8 and by Lemma 3.2, algorithm A′ does not exist as such an algorithm requires

at least Ω
(

|E2|3/2

t
1

log2 n

)
EE queries, which is Ω

( √
t

log3.5 n

)
.

Hence, we are done with the proof of Lemma 3.3.

4 Conclusion

We touched upon two open questions of Beame et al. [5] in this paper. We resolved the query
complexity of triangle estimation when we have a Bipartite Independent Set oracle
access to the unknown graph when T = Ω(m). But the query complexity of triangle counting
remain illusive when T = o(m) though we believe that our upper bound of Õ(m/

√
T ) BIS

queries is tight in this regard. It is also interesting if our upper bound can be improved when
T = o(m).
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A Upper bound for estimating triangles using BIS

In this Section, we prove Theorem 1.7, which is formally stated as follows:

▶ Theorem A.1 (Upper bound matching the lower bound in Theorem 3.1). There exists
an algorithm Triangle-Est(G, ε) that has BIS query access to a graph G(V, E) having n

vertices, takes a parameter ε ∈ (0, 1) as input, and reports a (1 ± ε)-approximation to the
number of triangles in G with a probability of at least 1−o(1). Moreover, the expected number
of BIS queries made by the algorithm is Õ

(
min{ m√

T
, m3/2

T }
)

, where m and T denote the
number of edges and triangles in G, respectively.

In order to prove the above theorem, we first prove Lemmas A.2 and A.3.

▶ Lemma A.2 (Upper bound when the number of triangles is large). There exists an algorithm
Triangle-Est-High(G, ε) that has BIS query access to a graph G(V, E) having n vertices,
ε ∈ (0, 1) as input, and reports a (1± ε)-approximation to the number of triangles in G with
a probability of at least 1 − o(1). Moreover, the expected number of BIS queries made by
the algorithm is Õ

(
m3/2

T

)
, where m and T denote the number of edges and triangles in G,

respectively.

▶ Lemma A.3 (Upper bound when the number of triangles is small). There exists an algorithm
Triangle-Est-Low(G, ε) that has BIS query access to a graph G(V, E) having n vertices,
ε ∈ (0, 1) as input, and reports a (1± ε)-approximation to the number of triangles in G with
a probability of at least 1 − o(1). Moreover, the expected number of BIS queries made by
the algorithm is Õ

(
m+T√

T

)
, where m and T denote the number of edges and triangles in G,

respectively.

Our final algorithm Triangle-Est(G, ε) (as stated in Theorem A.1) is a combination
of Triangle-Est-High(G, ε) and Triangle-Est-Low(G, ε). Informally, Triangle-Est
(G, ε) calls Triangle-Est-High(G, ε) and Triangle-Est-Low (G, ε) when T = Ω(m) and
T = O(m), respectively. Observe that, if Triangle-Est knows T within a constant factor,
then it can decide which one to use among Triangle-Est-High(G, ε) and
Triangle-Est-Low(G, ε). If Triangle-Est does not know T within a constant factor,
then it starts from a guess L =

(
n
3
)
/2 and updates L by making a geometric search until

the output of Triangle-Est is consistent with L. Depending on whether L = Ω(m)
or L = O(m), Triangle-Est decides which one among Triangle-Est-High(G, ε) and
Triangle-Est-Low(G, ε) to call. This guessing technique is standard in the property
testing literature. It has been used several times in the literature (for example in [19, 14],
generalized in [15], and used directly in [2]). So, we explain Triangle-Est-High(G, ε) and
Triangle-Est-Low(G, ε) assuming a promised lower bound on L, and the respective query
complexities will be in terms of L instead of T .

Another important thing to observe is that to execute the above discussed steps of
algorithm Triangle-Est(G, ε) must know m. But we note that an estimate of m will be
good enough for our purpose, and that can be estimated by using Õ(1) BIS queries (see
Table 1).

In Appendix A.1, we discuss some properties of BIS and some tasks it can perform. These
properties will be useful while describing our Triangle-Est-High(G, ε) and
Triangle-Est-Low(G, ε), and proving Lemma A.2 and Lemma A.3, in Section A.2 and
Section A.3, respectively.
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A.1 Some preliminaries about BIS
Let G(V, E) be the unknown graph to which we have BIS query access. One can compute the
exact number of edges using Õ(|E(G)|) queries [5] deterministically. Also, we can estimate
the number of edges in graph G [5, 6, 13] and sample an edge from G almost uniformly [13],
with a probability of at least 1− o(1), and making Õ(1) BIS queries. Here, we would like
to note that, all three results we mentioned above hold for induced subgraphs as well as
induced bipartite subgraph, as formally described below. Those will be used when we design
our upper bounds in Appendix A.2 and A.3.

▶ Proposition A.4 (Exact edge estimation using BIS [5]). There exists a deterministic
algorithm that has BIS query access to an unknown graph G(V, E) with n vertices, takes X ⊆
V (G) (alternatively, two disjoint subsets A, B) as input, makes Õ(|E(G[X])|) (alternatively,
Õ(|E(G[A, B])|)) BIS queries, and reports all the edges in E(G) (alternatively, E(G[A, B])).

▶ Proposition A.5 (Approximate edge estimation using BIS [6, 13]). There exists an algorithm
that has BIS query access to an unknown graph G(V, E) with n vertices, takes X ⊆ V (G)
(alternatively, two disjoint subsets A, B) and a parameter ε ∈ (0, 1) as inputs, makes Õ(1)
BIS queries, and reports a (1± ε)-approximation to |E(G[X])| (alternatively, |E(G[A, B])|),
with a probability of at least 1− o(1).

To state the next proposition, we need the following definition.

▶ Definition A.6 (Approximate uniform sample from a set). For a nonempty set X and
ε ∈ (0, 1), getting a (1±ε)-approximate uniform sample from X means getting a sample from
a distribution on X such that the probability of getting x ∈ X lies in [(1−ε)/ |X| , (1+ε)/|X|].

▶ Proposition A.7 (Approximate edge sampling using BIS [13]). There exists an algorithm
that has BIS query access to an unknown graph G(V, E) with n vertices, takes X ⊆ V (G)
(alternatively, two disjoint subsets A, B) and a parameter ε ∈ (0, 1) as inputs, makes Õ(1)
BIS queries, and reports a (1± ε)-approximate uniform sample from E(G[X]) (alternatively,
E(G[A, B]), with a probability of at least 1− o(1).

Observe that the following corollary follows from Propositions A.4, A.5 and A.7, by taking
A = {v} and B = Z, where v ∈ V (G) and Z ⊆ V (G) \ {v}.

▶ Corollary A.8 (BIS query can extract useful information about the neighborhood of a given
vertex).
(i) Entire neighbourhood of a vertex using BIS: There exists a deterministic algorithm

that has BIS query access to an unknown graph G(V, E) with n vertices, takes v ∈ V (G)
and Z ⊆ V (G) \ {v} as input, makes Õ(|NG(v) ∩ Z|) BIS queries, and reports all the
neighbors of v in Z.

(ii) Approximate degree using BIS: There exists an algorithm that has BIS query access
to an unknown graph G(V, E) with n vertices, takes v ∈ V (G), Z ⊆ V (G) \ {v} and
ε ∈ (0, 1) as inputs, makes Õ(1) BIS queries, and reports a (1 ± ε)-approximation to
|NG(v) ∩ Z|, with a probability of at least 1− o(1).

(iii) Finding an approximate random neighbor of a vertex using BIS: There exists an alg-
orithm that has BIS query access to an unknown graph G(V, E) with n vertices, takes
v ∈ V (G), Z ⊆ V (G) \ {v} and ε ∈ (0, 1) as inputs, makes Õ(1) BIS queries, and reports
a (1± ε)-approximate uniform sample from the set NG(v) ∩ Z, with a probability of at
least 1− o(1).
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A.2 Algorithm Triangle-Est-High and proof of Lemma A.2

Algorithm Triangle-Est-High is inspired by the triangle estimation algorithm of Assadi
et al. [2] 9 when we have the following query access to the unknown graph.

Adjacency Query: Given vertices u, v ∈ V (G) as input, the oracle reports whether (u, v)
is an edge or not;

Degree Query: Given a vertex u ∈ V (G) as input, the oracle reports the degree of vertex
u in G;

Random Neighbor Query: Given a vertex u ∈ V (G), the oracle reports a neighbor of u

uniformly at random if the degree of u is nonzero. Otherwise, the oracle reports a special
symbol ⊥;

Random Edge Query: With this query, the oracle reports an edge from the graph G

uniformly at random.

The number of queries to the oracle made by Assadi et al.’s algorithm [2] is Õ
(

m3/2

L

)
,

where m denotes the number of edges and L is a promised lower bound on the number of
triangles in G. Also, note that, the triangle estimation algorithm by Assadi et al. [2] can be
suitably modified even if we have approximate versions of Degree, Random Neighbor
and Random Edge queries, as described below.

Apx Degree Query: Given a vertex u ∈ V (G) and ε ∈ (0, 1) as input, the oracle reports
a (1± ε)-approximation to the degree of vertex u in G;

Apx Random Neighbor Query: Given a vertex u ∈ V (G) and ε ∈ (0, 1) as input, the
oracle reports a (1 ± ε)-approximate uniform sample from NG(u) if the degree of u is
nonzero. Otherwise, the oracle reports a special symbol ⊥;

Apx Random Edge Query: Given ε ∈ (0, 1), the oracle reports a (1 ± ε)-approximate
uniform sample from E(G).

From Corollary A.8, Õ(1) BIS queries are enough to simulate Apx Degree Query
and Apx Random Neighbor Query, with a probability of at least 1 − o(1). Also, by
Proposition A.7, Apx Random Edge Query can be simulated by Õ(1) BIS queries, with a
probability of at least 1− o(1). Moreover, a BIS query can trivially simulate an Adjacency
Query. Combining these facts with the fact that the triangle estimation algorithm by Assadi
et al. [2] can be suitably modified even if we have approximate versions of Degree, Random
Neighbor and Random Edge queries, we are done with the proof of Lemma A.2.

A.3 Algorithm Triangle-Est-Low and the proof of Lemma A.3

Algorithm Triangle-Est-Low is inspired by the streaming algorithm for triangle counting
by McGregor et al. [20]. Algorithm Triangle-Est-Low extracts a subset of edges by
making BIS queries in a specific way as explained below. Later, we discuss that those sets of
edges will be enough to estimate the number of triangles in G.

9 Actually, they have given an algorithm for estimating the number of copies of any given subgraph of
fixed size.
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Generating a random sample S ⊆ V (G) and exploring its neighborhood

Algorithm Triangle-Est-Low adds each vertex in V (G) to S with probability Õ
(

1√
L

)
.

Recall Corollary A.8 (i). For each v ∈ S, we find all the neighbors of v (the set NG(v))
by making Õ(|NG(v)|) BIS queries. Let ES be the set of all the edges having at least one
end point in S, that is, ES = {(v, w) : v ∈ S and w ∈ NG(v)}. After finding ES , we do
the following. For each v ∈ S, we find all the edges in the subgraph induced by NG(v) by
using Õ (|E(G[NG(v)])|) BIS queries. This is again possible by Corollary A.8 (i). Note
that |E(G[NG(v)])| is the number of edges in the subgraph of G induced by NG(v). Let E′

S

be the set of all edges present in the subgraph induced by NG(v) for some v ∈ S, that is,
E′

S =
⋃

v∈S

E(G[NG(v)]). Later, we argue that the number of BIS queries that we make to

generate ES and E′
S is bounded in expectation.

Apart from S, ES and E′
S , Triangle-Est-Low extracts some more required edges by

making BIS queries, as explained below.

Generating F , a set of (1 ± O(ε))-approximate uniform sample from E(G), and
exploring the subgraphs induced by sets NG(v) ∩ V (F ) for each v ∈ V (F )

Algorithm Triangle-Est-Low calls the algorithm corresponding to Proposition A.7, for
Õ

(
m√

L

)
times. By this process, we get a set F of (1±O(ε))-approximate uniform sample

from E(G), with a probability of at least 1− o(1). Note that |F | = Õ
(

m√
L

)
, and the number

of BIS queries we make to generate F is Õ
(

m√
L

)
. Let V (F ) be the set of vertices present in

at least one edge in F . For each vertex v ∈ V (F ), we find all the edges in the subgraph of G

induced by NG(v)∩V (F ), by using Õ (|E(G[NG(v) ∩ V (F )])|) BIS queries (see Corollary A.8
(i)). Note that |E (G[NG(v) ∩ V (F )])| is the number of edges in the subgraph of G induced
by NG(v) ∩ F . Let EF be the set of all the edges that are present in subgraphs induced
by NG(v) ∩ V (F ) for some v ∈ V (F ), that is, EF =

⋃
v∈V (F )

E(G[NG(v) ∩ V (F )]). Later we

show that the expected number of BIS queries needed to find F and EF is bounded.
In algorithm Triangle-Est-Low, BIS queries are made only to generate S, ES , E′

S , F

and EF . After these sets are generated, no more BIS queries are made by the algorithm.
We formally prove the query complexity of Triangle-Est-Low. But, first, we show that
S, ES , E′

S , F and EF can be carefully used to estimate T , the number of triangles in G.

Connection with streaming algorithm for triangle counting by McGregor et al. [20]

(Estimating the number of triangles from S, ES , E′
S , F and EF )

McGregor et al. [20] gave a two-pass algorithm that estimates the number of triangles in
a graph G when the edges of G arrive in an arbitrary order. Moreover, the space complexity
of their algorithm is Õ

(
m√

L

)
. Note that their algorithm assumes a lower bound L on the

number of triangles in the graph. The high level sketch of their algorithm is as follows:
Generate a subset X of V (G) by sampling each vertex in V (G) with probability Õ

(
1√
L

)
;

In the first pass, the edges having at least one vertex in X is found, and let it be EX .
Also, in the first pass, a subset of edges Y is generated by sampling each edge with
probability Õ

(
1√
L

)
;

In the second pass, for each edge e = {x, y} in the stream, their algorithm finds the
vertices in X with which e forms a triangle. Also, for each edge, e = {x, y} in the stream,
their algorithm finds the pairs of edges in Y that forms a triangle with e. Let Z be the
set of useful edges in the second pass, that is, the set of edges that either forms a triangle
with a vertex in X or forms a triangle with two edges in Y .
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Note that their algorithm does not talk about the set Z. We are introducing it for our
analysis. Executing the two passes described above is straightforward. They have proved
that performing two passes as described is good enough to estimate the number of triangles
in the graph.

Now, we compare the information maintained by our algorithm with the information
maintained by McGregor et al.’s algorithm. S and ES in our algorithm Triangle-Est-Low
follows the same probability distribution as that of X and EX , respectively, in McGregor et
al.’s algorithm. Recall that F is a set of Õ

(
m√

L

)
(1 ± ε)-approximate sample from E(G)

with a probability 1− o(1). But Y in McGregor et al.’s algorithm is generated by sampling
each edge with probability Õ

(
1√
L

)
. But observe that the total variation distance between

the probability distributions of F and Y is o(1).
Before discussing about E′

S and EF in our algorithm Triangle-Est-Low, consider the
following observation about the set Z. Note that we have defined Z while describing the
second pass of McGregor et al.’s algorithm.

▶ Observation A.9. Consider X, EX , and Y generated by the first pass of McGregor et al.’s
algorithm. Let E′

X be the edges in the subgraph induced by NG(v) for some v ∈ X, and let
EY be the set of edges in the subgraph induced by NG(v) ∩ V (Y ). Here V (Y ) denotes the
set of vertices present in at least one vertex of Y . Then for each edge e /∈ E′

X ∪ EY , there is
neither a vertex in X with which e forms a triangle in G nor there are two edges in Y with
which e forms a triangle in G. Then the set of useful edges Z is E′

X ∪ EY .

By the above observation, E′
S and EF in our algorithm Triangle-Est-Low are essentially

enough for maintaining the information and executing the same steps as that of the second
pass of McGregor et al.’s algorithm.

Putting everything together, algorithm Triangle-Est-Low outputs a (1± ε)-approximation
to the number of triangles in the graph.

Query complexity analysis

The set S can be generated without making any BIS queries. The number of BIS queries we
make to find the set ES is at most

∑
v∈S

Õ(|NG(v)|), which in expectation is

E

[∑
v∈S

Õ(|NG(v)|)
]

=
∑

v∈V (G)

Pr(v ∈ S) · Õ(|NG(v)|) = Õ
(

m√
L

)
.

The number of BIS queries we make to find the set E′
S is at most

∑
v∈S

Õ (|E(G[NG(v)])|).

Note that |E(G[NG(v)]| is Tv, that is, the number of triangles having v as one of the vertex.
So, the expected number of BIS queries we make to find E′

S is at most

E

[∑
v∈S

Õ(Tv)
]

=
∑

v∈V (G)

Pr(v ∈ S) · Õ(Tv) = Õ
(

T√
L

)
.

The number of BIS queries we make to find the set F is Õ(|F |) = Õ
(

m√
L

)
The number of BIS queries to generate EF is at most

∑
v∈V (F )

Õ (|E(G[NG(v) ∩ V (F )])|).

Observe that an edge {x, y} is present in EF if there exists a z ∈ V (G) such that {x, y, z}
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forms a triangle in G and {x, z} and {y, z} are in F . So, the probability that an edge {x, y}
is in E(G[NG(v) ∩ V (F )] is at most |Γ({x, y})| · Õ

( 1
L

)
, where Γ({x, y}) denotes the set of

common neighbors of x and y in G. So, the expected number of BIS queries to enumerate
all the edges in EF is at most∑

{x,y}∈E(G)

Õ
(
|Γ({x, y}|)√

L

)
= Õ

(
T√
L

)
.

Hence, the expected number of BIS queries made by the algorithm is Õ
(

m+T√
L

)
.
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One of the most important properties of high dimensional expanders is that high dimensional random
walks converge rapidly. This property has proven to be extremely useful in a variety of fields in
the theory of computer science from agreement testing to sampling, coding theory and more. In
this paper we present a state of the art result in a line of works analyzing the convergence of high
dimensional random walks [13, 10, 15, 1], by presenting a structured version of the result of [1].
While previous works examined the expansion in the viewpoint of the worst possible eigenvalue, in
this work we relate the expansion of a function to the entire spectrum of the random walk operator
using the structure of the function; We call such a theorem a Fine Grained High Order Random
Walk Theorem. In sufficiently structured cases the fine grained result that we present here can be
much better than the worst case while in the worst case our result is equivalent to [1].

In order to prove the Fine Grained High Order Random Walk Theorem we introduce a way
to bootstrap the expansion of random walks on the vertices of a complex into a fine grained
understanding of higher order random walks, provided that the expansion is good enough.

In addition, our single bootstrapping theorem can simultaneously yield our Fine Grained High
Order Random Walk Theorem as well as the well known Trickling down Theorem. Prior to this
work, High order Random walks theorems and Tricking down Theorem have been obtained from
different proof methods.
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dimensional expanders is that higher dimensional random walks (which are higher dimensional
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Fine grained analysis of random walk

Prior to this paper, the state of the art analysis of high dimensional random walks was done
by Alev and Lau in [1] following [10, 13, 15]. Their work analyzed the eigenvalues of an
important random walk called the down-up random walk. Their result, however, was only
useful for the worst case analysis as it did not relate the structure of the function to its
expansion and thus was forced to consider the worst possible function. In this paper we
present an improvement upon Alev and Lau’s result by finding a connection between the
structure of a function and how well it expands and can therefore yield better results on
cochains that posses a “nice” structure.

In two-sided spectral expanders a fine grained analysis of high dimensional random walks
was already proven, based on Fourier analysis in high dimensional expanders [8, 15]. In the
two sided case even stronger results following from hypercontractivity are known [5, 6, 12]
and more. Our result is, importantly, about one-sided spectral expanders as there are cases
when the use of one-sided high dimensional expansion is crucial - for example in Anari et al’s
breakthrough proof of the fast convergence of the basis exchange walk [4] and thus showed an
algorithm that samples a basis of a matroid. This result started a wave of sampling results
that use high dimensional expanders [7, 3, 2] to name a few examples. This result relies
heavily on fast convergence of high dimensional random walks on one-sided expanders (As
they show that that the basis exchange corresponds to a down-up walk on the top dimension
of a one-sided high dimensional expander). In this work we present, to our knowledge, the
first result to show a fine grained analysis of the random walk operator in one-sided local
spectral expanders.

Replacing eigendecomposition

Previous fine grained analysis of high dimensional random walks relied on finding approximate
eigendecomposition of the high dimensional random walk. We present a new approach to
finding a fine grained understanding of the high dimensioanl random walks: bootstrapping
an understanding of the expansion of random walks on the vertices of the complex. We
show that, if the expansion of these random walks beat the expansion of high dimensional
random walks on the vertices of local structures1, we can bootstrap it into a fine grained
understanding of higher dimensional random walks.

Unification of the High order random walk theorem and the Tricking down theorem

In order to perform our fine grained analysis of the higher dimensional random walk operators
we develop a new bootstrapping framework. This new framework is fairly generic and seems
to be of independent interest as it can be used to prove another central theorem in the theory
of high dimensional expansion, namely the trickling down theorem [16]. We comment that
prior to this work these two important theorems were obtained by different proof techniques.

Before we can state our results more formally, we have to define the high dimensional
analogs of expander graphs as graphs do not posses high dimensions. This high dimensional
object is called a “simplicial complex” and is defined as:

▶ Definition 1 (Simplicial complex). A set X is a simplicial complex if it is closed downwards
meaning that if σ ∈ X and τ ⊆ σ then τ ∈ X. We call members of X the faces of X.

1 Specifically, high dimensional random walks on the vertices of the links of vertices.
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Simplicial complexes can be thought of as hyper-graphs with closure property (i.e. every
subset of a hyper-edge is a hyper-edge). We are interested in higher dimensions and therefore
it would be useful to define the dimension of these higher dimensional objects:

▶ Definition 2 (Dimension). Let X be a simplicial complex and let σ ∈ X be a face of
X. Define the dimension of σ to be dim (σ) = |σ| − 1. We also denote the set of all faces
of dimension i in X as X(i). Also define the dimension of the complex X as dim (X) =
maxσ∈X {dim (σ)}. Note that there is a single (−1)-dimensional face - the empty face.

Of particular interest are simplicial complexes whose maximal faces are of the same dimension,
defined below:

▶ Definition 3 (Pure simplicial complex). A simplicial complex X is a pure simplicial complex
if every face σ ∈ X is contained in some (dim (X))-dimensional face.

Throughout this paper we will assume that every simplicial complex is pure. In most cases
we will be interested in weighted pure simplicial complexes. In weighted pure simplicial
complexes the top dimensional faces are weighted and the weight of the rest of the faces
follows from there as described here:

▶ Definition 4 (Weight). Let X be a pure d-dimensional simplicial complex. Define its
weight function w : X → [0, 1] to be a function such that:∑

σ∈X(d) w (X) = 1
For every face τ of dimension i < d it holds that w (τ) = 1

(d+1
i+1)

∑
σ∈X(d)

τ⊆σ

w (σ).

It is important to note that we think of unweighted complex as complexes that satisfy ∀σ ∈
X(d) : w (σ) = 1

|X(d)| . While the top dimensional faces of unweighted complexes all have the
same weight, the same cannot be said for lower dimensional faces.

It is also important to note that the sum of weights in every dimension is exactly 1 and
therefore for every k the weight function can, and at times will, be thought of as a distribution
on X(k).

One key property of high dimensional expanders is that they exhibit local to global phenomena.
These phenomena are at the main interest of this paper. It is therefore useful to consider
local views of the simplicial complex which we define as follows:

▶ Definition 5 (Link). Let X be a simplicial complex and σ ∈ X be a face of X. Define
the link of σ in X as Xσ = {τ \ σ|σ ⊆ τ}. It is easy to see that the link of any face is a
simplicial complex.

The weight of faces in the links is induced by the weights of the faces in the original
complex. Specifically, we denote by wσ the weight function in the link of σ ∈ X(i) and it holds
that ∀τ ∈ Xσ(j) : wσ (τ) = w(τ∪σ)

(i+j+2
i+1 ) w(σ)

. Generally speaking, the local to global phenomena
are ways to derive properties of the entire complex by only looking at local views (i.e. links).

Another important substructure of a simplicial complex is its skeletons

▶ Definition 6 (Skeleton). Let (X, w) be a weighted pure d-dimensional simplicial complex
and let i ≤ d. Define the i-skeleton of X as the following weighted simplicial complex:

X(i) = {σ ∈ X|dim σ ≤ i}

With the original weight function.
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In many cases we will think of the 1-skeleton of a simplicial complex as a graph. In addition,
it is important to note that even if the original complex is unweighted, the skeletons of said
complex might be.

We are now ready to define a high dimensional expander2.

▶ Definition 7 (Local spectral expander). A pure d-dimensional simplicial complex X is a
λ-local spectral expander3 if for every face σ of dimension at most d − 2 it holds that X

(1)
σ is

a λ-spectral expander4. Note that this includes σ = ∅, i.e. the entire complex.

Much like graphs, simplicial complexes also support random walks. In graphs, the random
walks are of the form vertex-edge-vertex - the walk might move between two vertices if they
are connected by an edge. The high dimensional analogue of these random walks travel
between two k-dimensional faces if they are part of a common (k + 1)-dimensional face. Our
particular random walk of interest is the higher dimensional analogue of the non-lazy random
walk, defined as follows:

▶ Definition 8 (Non-lazy up-down operator informal, for formal see 24). Define the k-
dimensional non-lazy up-down random walk, (M ′)+

k as the k dimensional analogue of the
non-lazy random walk on the vertices of a graph: A walk that moves between two k-dimensional
faces if they are contained in a (k + 1)-dimensional face and never stays in place.

We are going to improve our understanding of how these higher dimensional random walks
apply to structured states. These states correspond to another natural structure on high
dimensional expanders called cochains that is defined as follows:

▶ Definition 9 (Cochains). Let X be a pure d-dimensional simplicial complex. For −1 ≤ k ≤ d

define a k-dimensional cochain F to be any function from X(k) to R. We also denote by
Ck (X;R) the set of all k-dimensional cochains.

We are going to be interested in ways of viewing the cochains in the links of the complex.
For now we will only introduce one such way. Namely localization:

▶ Definition 10 (Localization). Let X be a pure d-dimensional simplicial complex, k, i be
dimensions such that i < k and F ∈ Ck (X;R). Also let σ ∈ X(i). Define the localization of
F to σ to be:

Fσ(τ) = F (σ ∪ τ).

We note that there is a very natural inner product defined on the cochains of a simplicial
complex, defined as follows:

▶ Definition 11 (Inner product). Let X be a pure d-dimensional simplicial complex and let
F, G ∈ Ck (X;R). Define the inner product of F and G to be:

⟨F, G⟩ =
∑

σ∈X(k)

w (σ) F (σ)G(σ).

2 There is no singular definition of high dimensional expander but in this paper we only use the algebraic
definition - local spectral expansion.

3 Much like one dimensional expanders, in high dimensions there is also notion of one-sided vs. two-sided
local spectral expansion. The definition we use throughout the paper is that of one-sided local spectral
expander. The difference being that in two-sided local spectral expander the underlying graph of every
link is a two-sided expander rather than a one-sided expander.

4 The complexes are weighted and therefore their expansion property is defined as the second largest
eigenvalue of the non-lazy random walk. A random walk that walks from a face to one of its neighbours
with probability equal to the proportion between the weight of the edge that connects them and the
sum of the weights of the edges that include said vertex.
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1.1 Main Results
In this paper we present a state of the art analysis the high dimensional analogue of the non-
lazy random walk. We are specifically interested in going beyond Alev and Lau’s worst case
result [1, Theorem 1.5] and relate the structure of the cochain to its expansion. Specifically,
we define:

▶ Definition 12 (i-level cochain, informal. For formal see Definition 29). A cochain F is an
i-level cochain with respect to localization if for every σ ∈ X(i − 1) it holds that ⟨Fσ,1⟩ = 0.5

Previously the best analysis of high dimensional random walk was due to Alev and Lau [1,
Theorem 1.5] who showed that:

▶ Theorem 13 (Alev and Lau [1], restated). Let X be a pure d-dimensioanl high dimensional
expander. Define γi = maxσ∈X(i) {λ2(Xσ)}. For any dimension k and any k-dimensional
0-level cochain F it holds that:

〈
(M ′)+

k F, F
〉

≤

1 − 1
k + 1

k−2∏
j=−1

(1 − γi)

 ∥F∥2
.

We show that this result can be vastly improved for structured cochains. Specifically, we
show the following decomposition of the high dimensional random walks:

▶ Theorem 14 (Fine grained analysis of high dimensional random walks, Informal. For formal see
Theorem 54). Let F ∈ Ck (X;R) and let F0, · · · , Fk be an orthogonal decomposition of F such
that Fi is an i-level cochain and F =

∑k
i=0 Fi. In addition, let γi = maxσ∈X(i) {λ2(Xσ)}

(Where λ2(Xσ) is the second largest eigenvalue of the underlying graph of Xσ) then:

〈
(M ′)+

k F, F
〉

≤
k∑

i=0

1 − 1
k − i + 1

k−1∏
j=i−1

(1 − γj)

 ∥Fi∥2
.

Cases where we improve upon previous results

In the worst case (i.e. no assumption is made on the structure of F ) our result matches that
of Alev and Lau. In cases where the cochain is structured, however, our Theorem yields
strictly better results than what was previously known. We also give some examples of
families of structured cochains on which our result is strictly better than the result of Alev
and Lau - Specifically, we show two families of cochains that are highly structured: The
first is a set of cochains associated with a different form of high dimensional expansion, the
minimal cochains and the second is the indicator function of a balanced set of faces (for more
information see the full version).

Comparison with other known decompositions

Similar decompositions of the high dimensional random walks were already known for two-
sided high dimensional expanders [8, 15]. These decomposition relied on finding approximate
eigenspaces of the walk operator. Unlike the case in two-sided high dimensional expanders,

5 We note that every j-dimensional i-level cochain corresponds to a cochain in the ith dimension that
has been “lifted” up to the jth dimension. A more formal version of this statement can be found in
Lemma 53.

APPROX/RANDOM 2023



49:6 Fine Grained Analysis of High Dimensional Random Walks

in one-sided high dimensional expanders the eigenspaces of the high dimensional random
walks are not currently understood, even approximately. We do, however, understand the
expansion of key random walks on the 0-dimensional cochains. We follow this by showing
that if this expansion is strong enough (i.e. these random walks converge fast enough) we can
boost it to all levels and get a decomposition theorem without eigendecomposition. In order
to apply our bootstrapping method we have to show that the expansion of the aforementioned
0-dimensional cochains “beats” the expansion of cochains of higher levels. Note that the
decomposition achieved by our bootstrapping theorem differs from the decomposition known
in two-sided expanders in one crucial way: In our decomposition the level functions are
not approximate eigenfunctions. Moreover, applying the non-lazy up-down random walk
operator to any one of them yields a cochain that is not orthogonal to many of the other
Fjs. This allows us to sidestep a major technical barrier in previous works as we do not rely
on the existence of an eigendecomposition of the walk operator (or even an approximate
decomposition of that operator). Note that many results that use local spectral expanders,
such as their usage in proving the existence of cosystolic expanders, agreement testing, locally
testable codes and more only require one application of the walk operator and thus we believe
that our result will prove to be influential with regards to these fields.

Our main tool for proving the decomposition of high dimensional random walks is a
bootstrapping theorem that reduces decomposition of higher dimensional random walk to
an understanding of highly structured cochains (for example cochains that correlate with
0-dimensional cochains). The bootstrapping theorem is fairly general and thus we bring a
special case of it here:

▶ Theorem 15 (Bootstrapping theorem, informal. For formal see Theorem 34). Let X be a
simplicial complex and k be a dimension. Every F ∈ Ck (X;R) that is orthogonal to the
constant functions can be decomposed into F =

∑k
i=0 Fi such that the cochains Fi are both:

1. i-level cochains with respect to localization.
2. Orthogonal: For every i ̸= j it holds that Fi is orthogonal to Fj.

We can use a solution of some recursive formula on 0-level cochains and values {λi}k
i=0 in

order to bootstrap a decomposition of the following form:

〈
(M ′)+

k F, F
〉

=
k∑

i=0
λi ∥Fi∥2

.

Solving the recursive formula in the bootstrapping theorem requires us to gain some
“advantage” for highly structured cochains in the complex. We can therefore view this
Theorem as a tool that allows us to bootstrap an advantage we have to a decomposition of
the non-lazy random walks.

As we said, our bootstrapping theorem is fairly generic and can also yield the celebrated
Oppenheim’s trickling down theorem [16, Theorem 4.1]:

▶ Theorem 16 (Trickling Down, [16]). Let X be a pure d-dimensional simplicial complex. If
it holds that:

For every vertex v: X
(1)
v is a λ spectral expander.

X is connected.
Then it holds that X(1) is a λ

1−λ spectral expander.

In order to prove the trickling down we use Theorem 15 while defining the i-level cochains
differently. For more detail, see Section A.
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1.2 Proof Layout
As we mentioned before, we analyze the non-lazy up-down random walk - a high dimensional
analogue of the non-lazy random walk in graphs. We would like to get a decomposition
of the non-lazy random walk operator. In order to do that we decompose the space of
cochains to spaces which we term level cochains. Our proof is then comprised of two steps:
A bootstrapping Lemma that reduces the problem of decomposing the non-lazy up-down
random walk operator to a simple recursive condition about the 0-level cochains and an
advantage that allows us to solve said recursive condition. We note that solving the recursive
condition is considerably simpler than proving the decomposition directly as the 0-level
cochains are very structured objects.

Link viewers

Local-to-global arguments are typically structured by taking a global cochain, decomposing
it to local cochains (i.e. cochains on the links of the vertices of the complex) and then using
a property of the cochains in the links in order to argue about the original cochain. Two
extremely useful ways of decomposing a global cochain to cochains in the links are restriction
and localization. These two methods share many properties, for example:

They preserve constant functions - Any global constant function is constant locally.
They are linear - The local view of sum of any two global cochains is the sum of the local
views.
They interact well with the inner product - The expected value of the local inner products
of two cochains is their inner product.

We start by identifying these properties and defining a general object that satisfy them called
a link viewer. A link viewer Λ defines the local view of a cochain F in the link of σ which we
denote by ΛσF . For the rest of this section, unless stated otherwise, we will think of the
localization link viewer defined as Λℓ

σF = Fσ.

Level cochains

Any link viewer decomposes the space of cochains to subspaces called i-level cochains.
These spaces are the set of cochains whose expected value is 0 when viewed from any
i-dimensional face. We think of these cochains as not correlated with any i-dimensional
face. For example, under the localization link viewer the i-level cochains are cochains G

that satisfy: ∀σ ∈ X(i) : Eτ∈Xσ(k−i−1)
[
Λℓ

σG(τ)
]

= Eτ∈Xσ(k−i−1) [Gσ(τ)] = 0. Note that
any i-level cochain is also an (i − 1)-level cochain and that of F is an i-level cochain then
ΛvF is an (i − 1)-level cochain in the link of every vertex v. It is therefore useful to define
proper level cochains as well - a proper i-level cochain is an i-level cochain that is orthogonal
to every (i − 1)-level cohain. Every cochain F can be decomposed to F =

∑p
i=−1 Fi such

that every Fi is a proper i-level cochain. This decomposition plays a key role in our proof.

The bootstrapping argument

We can now present our proof for the bootstrapping argument. We assume that the non-lazy
up-down random walk expands locally and show that this yields that the non-lazy up-down
random walk expands globally. We restrict our attention only to 0-level cochains (which are
not necessarily proper) as (−1)-level cochains correspond to the trivial eigenvalue in which
we are not interested. Let F =

∑p
i=0 Fi be a 0-level cochain. Consider its localization to

the links of vertices ΛvF =
∑p

i=0 ΛvFi. Note that
∑p

i=1 ΛvFi is a 0-level cochain in Xv(as
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the localization to links of vertices of i-level cochains is an (i − 1)-level cochain). Note that
ΛvF0 is not a 0-level cochain. We can, however, apply our decomposition theorem to some
part of ΛvF0 by decomposing it to two parts:

A 0-level cochain - ΛvF0 −E [ΛvF0]
A remainder - E [ΛvF0].

We can therefore apply our decomposition theorem to
∑p

i=0 ΛvFi −E [ΛvF0]. Note that a
key step in this decomposition is that despite the fact that these new localized cochains
are not orthogonal to each other, they are all orthogonal to the constants. This allows us
to separate them from the constant part of every localization. All we have left to do is to
compensate for the remainder. This is done using the advantage step which we will describe
next.

The Advantage

In the advantage step we try to bound the remainder we have left in the bootstrapping stage.
The advantage required in order to achieve the random walk decomposition Theorem is done
by considering the localization link viewer that showing the following observations:
1. Any 0-level function F0 is, in a sense, a high dimensional description of some other

0-dimensional cochain G ∈ C0 (X;R). This is true in the sense that ∥F0∥ = ∥G∥ and
E
[
Λℓ

vF0
]

=
∥∥M+k

0 G
∥∥ where M+k

0 is the random walk the applied the up step k times
followed by applying the down step k times.

2. There is a connection between the random walk on the underlying graph of the complex
and M+k. The key claim we use is that once the random walk has performed its first
up step it can already “see” all the vertices it will ever see (this is due to the structure
of simplicial complexes - if two vertices share a k-dimensional face then by the closure
property they also share an edge). Going further up only decreases the probability of
staying in place. Therefore M+k is a weighted sum of the underlying graph’s non-lazy
random walk transition matrix and a lazy component (which corresponds to staying
in place). We note that this observation can be generalized to any random walk on
k-dimensional faces that “walks through” faces of dimension higher than 2k.

Using these observations as well as our understanding of the 0-dimensional random walk we
obtain the advantage we seek.

2 The Signless Differential and Its Adjoint Operator

One of the key operators induced by any simplicial complex is its signless differential operator.
The signless differential operator is an averaging operator that accepts a k-dimensional
cochain and returns a (k + 1)-dimensional cochain. We adopt the terminology of [15] and
consider repeated application of the signless differential and its adjoint operator.

▶ Definition 17 (Signless differential). The signless differential operator
dk : Ck (X;R) → Ck+1 (X;R) in the following way:

dkF (σ) = Eτ∈X(k) [F (τ)|τ ⊆ σ] =
∑

τ∈( σ
k+1)

1
k + 2F (τ).

When the dimension is clear from context it will be omitted from the notation. Also define
d∗

k : Ck+1 (X;R) → Ck (X;R) to be the adjoint operator of dk.

▶ Note. The signless differential does not meet the definition of a differential as dkdk−1 ̸= 0.
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▶ Lemma 18 ([15, Lemma 3.6], [8]). It holds that:

d∗
kF (τ) = Eσ∈X(k+1) [F (σ)|τ ⊆ σ] = Eσ∈Xτ (0) [Fτ (σ)].

For proof see the full version.
We will be interested in repeated application of the signless differential and its adjoint

operator. To that effect it will be useful to present them explicitly. Lemmas 19 and 20 will
present repeated applications of these operators explicitly (and the proofs of both Lemmas
can be found in the full version of this paper).

▶ Lemma 19. Let F be an i-dimensional cochain. Then:

dj−1 · · · diF (σ) = Eτ∈X(i) [F (τ)|τ ⊆ σ].

▶ Lemma 20. Let F be an i-dimensional cochain. Then:

d∗
i · · · d∗

j−1F (σ) = Eτ∈Xσ(j−i−1) [Fσ(τ)].

3 Up-Down and Down-Up Operators

In this section we will present two objects of interest - the up-down and down-up walks. These
are natural operators that result from considering a standard walk on the k-dimensional
faces of a simplicial complex using the following two steps: A down step where, given a
k-dimensional face, the walk moves to a (k − 1)-dimensional face that is contained in it with
equal probability. And an up step in which, given a k-dimensional face, the walk moves to a
(k + 1)-dimensional face with probability proportional to its weight. Applying the up step
followed by the down step yields the up-down walk while applying the down step followed by
the up step yields the down-up walk.

▶ Definition 21 (Up-down and down-up operators). Let X be a simplicial complex. Then
define the up-down random walk to be:

[
M+

k

]
σ,τ

=


1

k+2 σ = τ
wσ(τ\σ)

k+2 σ ∪ τ ∈ X(k + 1)
0 Otherwise.

And the down-up random walk to be:

[
M−

k

]
σ,τ

=


1

k+1
∑

τ ′∈(σ
k) wτ ′ (σ \ τ ′) σ = τ

1
k+1 wσ∩τ (τ \ σ) σ ∩ τ ∈ X(k − 1)
0 Otherwise.

We would now like to present characterization the up-down random walk and the down-
up random walk using the signless differential (this characterization had appeared in [15,
Corollary 3.7] and is given here for completeness). In order to do that, consider the following
Lemma:

▶ Lemma 22. Let X be a simplicial complex, it holds that:

M+
k = d∗

kdk M−
k = dk−1d∗

k−1.

For proof, see the full version of this paper.
We are also going to be interested in applying the signless differential and its adjoint

operator multiple times in a row. We will therefore define the k-dimensional i-up-down
operator and the k-dimensional i-down-up operator in the following way:
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▶ Definition 23. Let M+i
k be the k-dimensional i-up-down operator and M−i

k be the k-
dimensional i-down-up operator defined as follows:

M+i
k = d∗

k · · · d∗
k+i−1dk+i−1 · · · dk M−i

k = dk−1 · · · dk−i−1d∗
k−i−1 · · · d∗

k−1.

Recall that the i-up-down operator and the i-down-up operators can be presented explicitly
using Lemma 19 and Lemma 20. In addition, note that the i-up-down operator corresponds
to applying the up step i times and then applying the down step i times. Likewise the
i-down-up operator corresponds to applying the down step i times and then applying the up
step i times.

4 The Non-Lazy Walk Operator

Our main object of study is going to be the non-lazy k-dimensional random walk operator.
This operator is a generalization of the non-lazy random walk operator in graphs to higher
dimensions. In graphs the non-lazy random walk operator moves between two vertices if they
have an edge connecting them. The higher dimensional version of this operator is going to
be something very similar: It is going to move between two k-faces if there is a (k + 1)-face
that contains both faces.

▶ Definition 24 (The Non-Lazy k-dimensional Random Walk Operator). Let X be a pure
d-dimensional simplicial complex define the k-dimensional random walk operator to be the
following operator:[

(M ′)+
k

]
σ,τ

=
{

wσ(τ\σ)
k+1 σ ∪ τ ∈ X(k + 1)

0 Otherwise.

One can also think of the non-lazy random walk operator as the regular up-down operator
with the lazy part removed. Formally:

▶ Observation 25. For every dimension k it holds that (M ′)+
k = k+2

k+1 M+
k − 1

k+1 I.

Of specific interest is the 0-dimensional non-lazy up-down operator as it can be used to
describe every one of the 0-dimensional i-up-down operators. This is because every one of
these operators ultimately move between a vertex and its neighbours. The more steps one
takes up the complex the more mixed the result is. By that we mean that the non-lazy walk
operator has a larger effect on the result. Quantitatively, this can be formulated via the
following Lemma.

▶ Lemma 26. It holds that (M ′)+
0 = i+1

i M+i
0 − 1

i I.

For proof, see the full version.

5 Analyzing the Non-Lazy Random Walk Operator

We are now ready to start analyzing the random walk operators. In order to do so we are
going to use a local to global argument. In order to apply a local to global argument we must
understand how to view a cochain through the links. Specifically we will be interested in
viewing methods that satisfy the following:

▶ Definition 27 (Link viewer). A link viewer is any transformation Λ that accepts a face σ

and a cochain in X. It then returns a cochain in Xσ. In addition, a link viewer satisfies the
following:
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For every face σ it holds that Λσ is linear.
For every face σ it holds that Λσ1 = 1.
For every two cochains F, G and any two faces of the same dimension σ,τ it holds
that dim (F ) − dim (ΛσF ) = dim (G) − dim (Λτ G). In addition, denote the dimensional
difference for vertices by ∆ (Λ) = dim (F ) − dim (ΛvF ).
Viewing of a cochain in a link is only determined by the cochain and the face for which it
is the link (and not the path taken to achieve said view). Formally: For every τ ⊆ σ ∈ X

it holds that Λσ = Λσ\τ Λτ .
For every dimension i it holds that ⟨F, G⟩ = Eσ∈X(i) [⟨ΛσF, ΛσG⟩].

Of particular interest are link viewers that view the non-lazy random walk operator in “the
right way”:

▶ Definition 28. A link viewer respects the non-lazy up-down random walk if for every k:〈
(M ′)+

k F, F
〉

= Ev∈X(0)

[〈
(M ′)+

k−∆(Λ) ΛvF, ΛvF
〉]

.

▶ Definition 29 (i-level cochain). A cochain F is an i-level cochain with respect to Λ if it
holds that ∀σ ∈ X(i − 1) : ⟨ΛσF,1⟩ = 0.

When the link viewer is clear from context we will simply refer to them as i-level cochains.
Denote the set of i-level j-dimensional cochains in X by Cj

Λ,i (X;R).

▶ Lemma 30. For every dimension j ≤ i: Ck
Λ,i (X;R) ⊆ Ck

Λ,j (X;R).

Proof. Let F ∈ Ck
Λ,i (X;R) and let σ be a (j − 1)-dimensional face and note the following:

⟨ΛσF,1⟩ = Eτ∈Xσ(i−j) [⟨Λτ ΛσF, Λτ1⟩] = Eτ∈Xσ(i−j) [⟨ΛτσF,1⟩]. = 0

Where the last equality is due to the fact that σ ∪ τ is an (i − 1)-dimensional face. ◀

Of particular interest are i-level cochains that are orthogonal to the (i + 1)-level cochains.
We will therefore define the following:

▶ Definition 31 (Proper i-level cochain). A cochain F is a proper i-level cochain with respect

to Λ if it holds that F ∈ Cj
Λ,i (X;R) ∩

(
Cj

Λ,i+1 (X;R)
)⊥

.
When the link viewer is clear from context we will simply refer to them as proper i-level

cochains. Denote the set of proper i-level j-dimensional cochains in X by Cj

Λ,̂i
(X;R).

Consider the following key property of proper level cochains:

▶ Lemma 32. Let i < j and let F be a proper i-level cochain and G be a proper j-level
cochain then ⟨F, G⟩ = 0.

Proof. Due to Lemma 30 it holds that G is also a i + 1 level cochain and thus is orthogonal
to G by definition. ◀

Note that considering proper level cochains is one of the key ingredients of this paper. In
previous results (For example [15]) instead of considering proper i-level cochains the authors

essentially considered cochains in
(

Ck
Λ,i (X;R)

)⊥
. Using proper level cochains allows us to

separate the different levels completely and achieve a proper decomposition. Since analyzing
the decomposition with only pure level cochains in mind is hard (as even if F is a level
cochain the same cannot be said about ΛσF ) we resort to first show the following technical
theorem.
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▶ Theorem 33 (Bootstrapping Theorem, Technical Version). Let X be a pure d-dimensional
simplicial complex, Λ be a link viewer that respects the non-lazy up-down random walk and
for every i let Fi ∈ Ck

Λ,i (X;R) and F =
∑p

i=0 Fi. Denote r = k − ∆ (Λ) and suppose that
there are values of {λσ,i,j}σ∈X,i∈[d],j∈[d] (λσ,i,j is the contraction of an i-level j-dimensional
cochain in the link of σ) such that for every σ ∈ X and G0 a 0-level cochain:λσ,1,k ∥G0∥2 +Ev∈Xσ(0)

[
(1 − λσ∪{v},1,r) ∥M−r

r ΛvG0∥2
]

≤ λσ,0,k ∥G0∥2

maxv∈Xσ(0)
{

λσ∪{v},i−1,r

}
≤ λσ,i,k.

Then:〈
(M ′)+

k F, F
〉

≤
p∑

i=0
λ∅,i,k ∥Fi∥2 +

p∑
i=0

p∑
j=1
i<j

ci,j ⟨Fi, Fj⟩ .

For some constants {ci,j} and where p is the number of level functions that span the space
orthogonal to the constants.

Proof. Let r be the dimension of ΛσF . Consider the following:〈
(M ′)+

k F, F
〉

=
〈

(M ′)+
k

p∑
i=0

Fi,

p∑
i=0

Fi

〉

= Ev∈X(0)

[〈
Λv

(
(M ′)+

r

p∑
i=0

Fi

)
, Λv

(
p∑

i=0
Fi

)〉]

= Ev∈X(0)

[〈
(M ′)+

r

p∑
i=0

ΛvFi,

p∑
i=0

ΛvFi

〉]

= Ev∈X(0)

[〈
(M ′)+

r

(
I − M−r

r

) p∑
i=0

ΛvFi,
(
I − M−r

r

) p∑
i=0

ΛvFi

〉]

+Ev∈X(0)

[〈
(M ′)+

r M−r
r

p∑
i=0

ΛvFi, M−r
r

p∑
i=0

ΛvFi

〉]

= Ev∈X(0)

[〈
(M ′)+

r

(
I − M−r

r

) p∑
i=0

ΛvFi,
(
I − M−r

r

) p∑
i=0

ΛvFi

〉]
+Ev∈X(0)

[∥∥M−r
r ΛvF0

∥∥2
]

.

(1)

We will now like to apply our Theorem to the localized cochains in the links. For that,
consider the following level cochains:

level cochain square of norm
k − 1 F v

k−1 := ΛvFk ∥ΛvFk∥2

...
...

...
1 F v

1 := ΛvF2 ∥ΛvF2∥2

0 F v
0 := ΛvF1 +

(
I − M−r

r

)
ΛvF0 ∥ΛvF1∥2 +

∥∥(I − M−r
r

)
ΛvF0

∥∥2 + 2 ⟨ΛvF1, ΛvF0⟩

Note that, by definition, for every i ≥ 2 it holds that ΛvFi ∈ Cr
Λ,i−1 (Xv;R). In addition

ΛvF1 + (I − M−r
r ) ΛvF0 ∈ Cr

Λ,0 (Xv;R). We can therefore apply the Theorem to every link
which (after some manipulation of the mixed terms that can be found in the full version)
yields that, for every link v, it holds that:
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〈
(M ′)+

v,k

(
I − M−r

r

)
ΛvF,

(
I − M−r

r

)
ΛvF

〉
≤

k−1∑
i=0

λv,i,r ∥F v
i ∥2 +

p∑
i=0

p∑
j=1
i<j

ci,j

〈
F v

i , F v
j

〉

=
k−1∑
i=0

λv,i,r ∥ΛvFi∥2 + λv,0,r

∥∥(I − M−r
r

)
ΛvF0

∥∥2 +
p∑

i=0

p∑
j=1
i<j

c′
i,j ⟨ΛvFi, ΛvFj⟩ .

Combining this with 1 and noting that λ∅,i,k ≥ maxv∈X(0) {λv,i−1,r} yields that:〈
(M ′)+

k F, F
〉

≤
k∑

i=1
λ∅,i,k ∥Fi∥2

+Ev∈X(0)

[∥∥M−r
r ΛvF0

∥∥2 + λv,0,r

∥∥(I − M−r
r

)
ΛvF0

∥∥2
]

+
p∑

i=0

p∑
j=1
i<j

c′
i,j ⟨Fi, Fj⟩ .

Therefore all we have to do is prove that:

Ev∈X(0)

[∥∥M−r
r ΛvF0

∥∥2 + λv,0,r

∥∥(I − M−r
r

)
ΛvF0

∥∥2
]

≤ λ∅,0,k ∥F0∥2

This follows directly from our choice of λs:

Ev∈X(0)

[∥∥M−r
r ΛvF0

∥∥2 + λv,0,r

∥∥(I − M−r
r

)
ΛvF0

∥∥2
]

=Ev∈X(0)

[
(1 − λv,0,r)

∥∥M−r
r ΛvF0

∥∥2 + λv,0,r

(∥∥M−r
r ΛvF0

∥∥2 +
∥∥(I − M−r

r

)
ΛvF0

∥∥2
)]

=Ev∈X(0)

[
(1 − λv,0,r)

∥∥M−r
r ΛvF0

∥∥2 + λv,0,r ∥ΛvF0∥2
]

≤Ev∈X(0)

[
(1 − λv,0,r)

∥∥M−r
r ΛvF0

∥∥2
]

+ λ∅,1,k ∥F0∥2 ≤ λ∅,0,k ∥F0∥2 . ◀

▶ Theorem 34 (Bootstrapping Theorem). Let X be a pure d-dimensional simplicial complex,
Λ be a link viewer that respects the non-lazy up-down random walk and for every i let
Fi ∈ Ck

Λ,̂i
(X;R) be a proper i-level cochain and F =

∑p
i=0 Fi. Denote r = k − ∆ (Λ) and

suppose that there are values of {λσ,i,j}σ∈X,i∈[d],j∈[d] such that for every σ ∈ X and G0 a
0-level cochain:λσ,1,k ∥G0∥2 +Ev∈Xσ(0)

[
(1 − λσ∪{v},1,r) ∥M−r

r ΛvG0∥2
]

≤ λσ,0,k ∥G0∥2

maxv∈Xσ(0)
{

λσ∪{v},i−1,r

}
≤ λσ,i,k

Then:〈
(M ′)+

k F, F
〉

≤
p∑

i=0
λ∅,i,k ∥Fi∥2

.

For some constants {ci,j} and where p is the number of level functions that span the space
orthogonal to the constants.

Proof. Note that the difference between this Theorem and Theorem 33 is the choice of Fis.
Specifically, in this Theorem the the cochains Fi are chosen to be proper i-level cochains.
Therefore, due to Lemma 32, they are orthogonal to each other. This allows us to apply
Theorem 33 and note that:〈

(M ′)+
k F, F

〉
≤

p∑
i=0

λ∅,i,k ∥Fi∥2 +
p∑

i=0

p∑
j=1
i<j

c′′
i,j ⟨Fi, Fj⟩ =

p∑
i=0

λ∅,i,k ∥Fi∥2
. ◀
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It is important to note that, unlike the decomposition known in the two-sided case, this
decomposition is not a decomposition to approximate eigenfunctions. When applying the
walk operator to a level function the result might be spread over multiple levels. Theorem 34
also yields a decomposition to the up-down operator:

▶ Corollary 35. With the same assumptions as Theorem 34 it holds that

〈
M+

k F, F
〉

≤
p∑

i=0

(
k + 1
k + 2λ∅,i,k − 1

k + 1

)
∥Fi∥2

.

Proof. The following holds:

〈
M+

k F, F
〉

= k + 2
k + 1

〈
(M ′)+

k F, F
〉

− 1
k + 1 ⟨F, F ⟩

≤ k + 2
k + 1

〈
λ∅,i,kF, F

〉
− 1

k + 1 ∥F∥2 = k + 2
k + 1λ∅,i,k ∥F∥2 − 1

k + 1 ∥F∥2

=
p∑

i=0

(
k + 1
k + 2λ∅,i,k − 1

k + 1

)
∥Fi∥2

. ◀

We use the bootstrapping theorem in order to show both a fine grained analysis of higher
order random walks (for full proof, see Appendix B) and the trickling down theorem (for full
proof, see Appendix A).

6 Fine Grained Analysis of High Dimensional Random Walks From the
Bootstrapping Theorem

In this short section we will present a shortened version of our fine grained analysis of higher
order random walks. For the a more detailed version of this analysis, see Appendix B and
the full version of this paper.

We define the localization link viewer in the following way:

▶ Definition 36 (Localization). Given a simplicial complex X and a cochain F ∈ Ck (X;R)
define the localization link viewer in the following way ∀σ ∈ X : Λℓ

σF = Fσ.

First, we show that it is indeed a link viewer that respects the non-lazy random walk. We
then prove the following:

▶ Lemma 37. Let X be a pure d-dimensional simplicial complex and let F ∈ Ck (F ;R) be a
cochain. Then ⟨F,1⟩ = 0 ⇔ F ∈ ker

(
d∗

−1 · · · d∗
k−1
)
.

We use this observation to gain the following advantage:

▶ Lemma 38 (The advantage). Let X be a d dimensional simplicial complex whose 1-skeleton
is a γ spectral expander. Also let F ∈ Ck

Λℓ,0 (X;R) then:

∥∥d∗
0 · · · d∗

k−1F
∥∥2 ≤

(
1 − k

k + 1 (1 − γ)
)

∥F∥2
.

For more details on the proof of this Lemma, see Lemma 53.
We then use this advantage together with our bootstrapping theorem in order to show

the following:
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▶ Theorem 39 (Random walk decomposition). Let X be a d-dimensional pure simplicial
complex. Also, assume that for every face σ of dimension smaller than d − 2 it holds that
λ2

(
(M ′)+

σ,0

)
≤ λσ. Denote by γτ,i = maxσ∈Xτ (i) (λσ). For every set of proper level cochains

Fi ∈ Ck
Λℓ ,̂i

(X;R) it holds that:

〈
(M ′)+

k

k∑
i=0

Fi,
k∑

i=0
Fi

〉
≤

k∑
i=0

1 − 1
k − i + 1

k−1∏
j=i−1

(1 − γj)

 ∥Fi∥2
.

Proof sketch, for full proof see Theorem 54. We will prove this theorem by applying The-
orem 34 to the k-dimensional non-lazy random walk operator. We start by noting that the
space of k-dimensional cochains that are orthogonal to the constants is comprised of exactly
k level functions as the space orthogonal to the constants is exactly ker (d∗

0 · · · d∗
k).

We prove the rest of this theorem using a recursive argument. First note that for k = 0
the claim holds trivially as

〈
(M ′)+

0 F, F
〉

≤ λσ ∥F∥2 = γ−1 ∥F∥2.

Assume that for every non-empty face σ it holds that λσ,i,k ≤ 1− 1
k−i+1

∏k−1
j=i−1 (1 − γσ,j).

Note that for every i ≥ 1:

λ∅,i,k = max
v∈X(0)

{λv,i−1,k−1}

≤ max
v∈X(0)

1 − 1
k − i + 1

k−2∏
j=i−2

(1 − γσ,j)

 ≤ 1 − 1
k − i + 1

k−1∏
j=i−1

(1 − γ∅,j).

Consider the left hand side of the recursive formula:

λ∅,1,k ∥F0∥2 +Ev∈X(0)

[
(1 − λ∅,1,k)

∥∥∥M
−(k−1)
(k−1) Λℓ

vF0

∥∥∥2
]

≤ λ∅,0,k ∥F0∥ . (2)

We show that:

λ∅,1,k ∥F0∥2 +Ev∈X(0)

[
(1 − λ∅,1,k)

∥∥∥M
−(k−1)
(k−1) Λℓ

vF0

∥∥∥2
]

= λ∅,1,k ∥F0∥2 + (1 − λ∅,1,k)
∥∥d∗

0 · · · d∗
k−1F0

∥∥2
.

Consider, again, the left hand side of inequality 2 and note that due to Lemma 53 it suffices
to solve the following:

λ∅,1,k

∥∥F =0∥∥2 + (1 − λ∅,1,k)
(

1 − k

k + 1 (1 − γ−1)
)∥∥F =0∥∥2 ≤ λ∅,0,k

∥∥F =0∥∥2
.

We show that if we set λ∅,0,k = 1 − 1
k+1

∏k−1
j=−1 (1 − γ∅,j) we get that for every face σ and

dimensions i, k:

λσ,i,k ≤ 1 − 1
k − i + 1

k−1∏
j=i−1

(1 − γσ,j).

Applying Theorem 34 proves the decomposition. ◀
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A Trickling Down

Before we present our random walk decomposition Theorem, let us start with a “warm up”:
An alternative proof for the trickling down theorem [16] that is based on Theorem 34. We
believe that the fact that the main tool presented here can be used to prove the trickling
down theorem is of independent interest: it shows that there is a single, local to global
argument at the heart of both claims. In the trickling down theorem we are interested in the
connection between the 0-dimensional non-lazy random walk on the vertices of a complex
and the 0-dimensional non-lazy up-down random walk on the links of the vertices of the
complex. It will, therefore, be natural to consider a link viewer that does not incur a decrease
in dimension. One such link viewer is the restriction link viewer defined as:

▶ Definition 40 (Restriction). Given a simplicial complex X and a cochain F ∈ Ck (X;R)
define the restriction link viewer in the following way: ∀σ ∈ X : Λr

σF (τ) = F0(τ).

This link viewer maps the 0-dimensional non-lazy up-down random walk to the 0-dimensional
non-lazy up-down on the links of the vertices. We will show that applying Theorem 34
to the restriction link viewer yields the trickling down theorem. However, before applying
Theorem 34, we must first show that restriction is indeed a link viewer that respects the
non-lazy up-down random walk. We state here that this is indeed the case and leave the
proofs of these claims to the full version of this paper.

▶ Lemma 41. The restriction link viewer is a link viewer.

▶ Lemma 42. The restriction link viewer respects the non-lazy random walk operator.

▶ Lemma 43. It holds for every vertex v and every cochain F ∈ C0 (X;R) that:

M−
v,0Λr

vF0 = ⟨Λr
vF,1⟩v = Eu∈Xv(0) [Λr

vF (u)] = (M ′)+
0 F (v)

Proof.

(M ′)+
0 F (v) =

[
(M ′)+

0 F
]

v
=

∑
u∈X(0)

[
(M ′)+

0

]
v,u

F (u) =
∑

u∈X(0)
u∪v∈X(1)

wv (u \ v) F (u)

=
∑

u∈Xv(0)

wv (u) Λr
vF (u) = Eu∈Xv(0) [Λr

vF (u)] . ◀

▶ Corollary 44 (The advantage). If X’s 1-skeleton is a λ-spectral expander it holds for every
vertex v and every cochain F ∈ C0 (X;R) that:

∥d∗
0Λr

vF0∥ =
∥∥M−

0 Λr
vF0
∥∥ ≤ λ2 ∥F∥2

.

Proof. Note that the 1-skeleton of X is a λ-spectral expander and F ∈ C0 (X;R) therefore∥∥∥(M ′)+
0 F

∥∥∥2
≤ λ2 ∥F∥2. Combining this with Lemma 43 yields:

∥∥M−
0 Λr

vF0
∥∥2 =

∥∥∥(M ′)+
0 F

∥∥∥2
=
∥∥∥(M ′)+

0 F0

∥∥∥2
≤ λ2 ∥F0∥2

. ◀
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We can now show how applying Theorem 34 to the restriction link viewer yields Oppenheim’s
trickling down theorem [16, Theorem 4.1].

▶ Theorem 45 (Trickling Down, restated Theorem 16). If it holds that:
For every vertex v: Xv is a λv,0,k spectral expander.
X is connected.

Then it holds that λ∅,0,k = λ∅,1,k

1−λ∅,1,k
.

Proof. Consider the following:

λ∅,1,k ∥F0∥2 + (1 − λ∅,1,k)Ev∈X(0)

[∥∥M−
v,0Λr

vF0
∥∥2
]

≤ λ∅,0,k ∥F0∥2
.

Using Corollary 44 it suffices to find values of λσ,i,j such that:

λ∅,1,k ∥F0∥2 + (1 − λ∅,1,k)λ2
∅,0,k ∥F0∥2 ≤ λ∅,0,k ∥F0∥2

.

Therefore solving the following inequality would bound λ∅,0,k:

λ∅,1,k + (1 − λ∅,1,k)λ2
∅,0,k ≤ λ∅,0,k.

Note that picking λ∅,0,k = λ∅,1,k

1−λ∅,1,k
satisfies the inequality and thus proves the Theorem. ◀

B Decomposition of the Random Walk Operators

We are now ready to present the random walk decomposition theorem based on Theorem 34.
Unlike the tricking down theorem, here the assumption we have is only on the expansion
of the no-lazy up-down random walk on the vertices. We will, therefore, be interested in a
link viewer that decreases the dimension of the cochain. Namely, the localization link viewer,
defined as follows:

▶ Definition 46 (Localization). Given a simplicial complex X and a cochain F ∈ Ck (X;R)
define the localization link viewer in the following way: ∀σ ∈ X : Λℓ

σF = Fσ.

As with the trickling down theorem, we will be interested in applying Theorem 34 to the
localization link viewer. We start by proving that the localization link viewer that respects
the non-lazy up-down random walk. Full proofs of these claims can be found in the full
version of this paper.

▶ Lemma 47. The localization link viewer is a link viewer.

▶ Lemma 48. The localization link viewer respects the non-lazy random walk operator.

B.1 Gaining the Advantage
Before we present the exact Lemma we use as the advantage step we should expand our
understanding of Λℓ’s level functions. We will begin by characterising the space of cochains
that are orthogonal to the eigenspace of 1 (i.e. the constant functions).

▶ Lemma 49. Let X be a pure d-dimensional simplicial complex and let F ∈ Ck (F ;R) be a
cochain. Then: ⟨F,1⟩ = 0 ⇔ F ∈ ker

(
d∗

−1 · · · d∗
k−1
)
.

Proof. Note that, due to Lemma 20 it holds that: ⟨F,1⟩ = Eσ∈X(k) [F (σ)] = d∗
−1 · · · d∗

k−1(∅).
This proves the lemma. ◀
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Now that we understand the constant part of a cochain we are ready to move on to
understanding cochains of a higher level.

▶ Lemma 50. Let X be a pure d-dimensional simplicial complex, i be a dimension and
F ∈ Ck (X;R) be a cochain. Then: ∀σ ∈ X(i) :

〈
Λℓ

σF,1
〉

σ
= 0 ⇔ F ∈ ker

(
d∗

i · · · d∗
k−1
)
.

Proof. Using Lemma 20 we prove that:

∀σ ∈ X(i) :
〈
Λℓ

σF,1
〉

σ
=

∑
τ∈Xσ(0)

wσ (τ) Λℓ
σF (τ)

= d∗
σ,i−1 · · · d∗

σ,k−2Fσ(∅) =
(
d∗

i · · · d∗
k−1F

)
σ

(∅) = d∗
i · · · d∗

k−1F (σ).

Which proves the Lemma. ◀

▶ Corollary 51. It holds that F is a proper k-dimensional i-level cochain
iff F ∈ Im (dk−1 · · · di) ∩ ker

(
d∗

i−1 · · · d∗
k−1
)
.

Proof. The Corollary holds due the definition of i-level cochains and Lemma 50. ◀

Note that cochains that pure i-level cochains can be thought of as originating in the i-
dimensional faces. For example, for every pure 0-level cochain there is a 0-dimensional
cochain G such that F = d · · · dG. We also note that any cochain that is not originated in
the vertices can be distributed along the links in the sense that they remain orthogonal to
the constants when applying the localization link viewer. We will therefore be interested in
the cochains that originated in the vertices (as these are exactly the cochains which the local
perspective seems to miss). Specifically, we show that the following hold:

▶ Lemma 52. Let F be a k-dimensional proper 0-level cochain then there exists F =0 ∈
C0 (X;R) such that:
1. d∗

−1F =0 = 0
2. ∥F∥2 =

∥∥F =0
∥∥2

3.
∥∥d∗

0 · · · d∗
k−1F

∥∥2 =
∥∥dk−1 · · · d0F =0

∥∥2

The proof of this Lemma can be found in the full version of this paper.
We are now ready to present the advantage we use:

▶ Lemma 53 (The advantage). Let X be a d dimensional simplicial complex whose 1-skeleton
is a γ spectral expander. Also let F ∈ Ck

Λℓ,0 (X;R) then:

∥∥d∗
0 · · · d∗

k−1F
∥∥2 ≤

(
1 − k

k + 1 (1 − γ)
)

∥F∥2

Proof. Let F0 be the projection of F into Ck
Λℓ,0 (X;R)∩

(
Ck

Λℓ,1 (X;R)
)⊥

. Due to Lemma 50
it holds that for every dimension i that Ck

Λℓ,i (X;R) = ker
(
d∗

i−1 · · · d∗
k−1
)

and therefore
F0 ∈ Im (dk−1 · · · d0) ∩ ker

(
d∗

−1 · · · d∗
k−1
)
. We can therefore use Lemma 52 to find F =0 such

that:
1. d∗

−1F =0 = 0
2. ∥F0∥2 =

∥∥F =0
∥∥2

3.
∥∥d∗

0 · · · d∗
k−1F0

∥∥2 =
∥∥dk−1 · · · d0F =0

∥∥2
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Due to Lemma 26 it holds that:

M+k
0 = k

k + 1 (M ′)+
0 + 1

k + 1I

And therefore:∥∥dk−1 · · · d0F =0∥∥2 =
〈
dk−1 · · · d0F =0, dk−1 · · · d0F =0〉 =

〈
M+k

0 F =0, F =0〉 =

=
〈(

k

k + 1 (M ′)+
0 − 1

k + 1I

)
F =0, F =0

〉
=

= k

k + 1

〈
(M ′)+

0 F =0, F =0
〉

+ 1
k + 1

〈
F =0, F =0〉 ≤

≤
(

k

k + 1γ + 1
k + 1

)∥∥F =0∥∥2 =

=
(

k

k + 1γ − k

k + 1 + 1
)∥∥F =0∥∥2 =

=
(

1 − k

k + 1 (1 − γ)
)∥∥F =0∥∥2 =

(
1 − k

k + 1 (1 − γ)
)

∥F0∥2

And thus:∥∥d∗
0 · · · d∗

k−1F
∥∥2 = ∥dk−1 · · · d0F0∥2

≤
(

1 − k

k + 1 (1 − γ)
)

∥F0∥2 ≤
(

1 − k

k + 1 (1 − γ)
)

∥F∥2
. ◀

B.2 Decomposing the Random Walk Operators
Now that we have developed the tools we need, we can move on to strengthening the result
of Alev and Lau [1] by showing a decomposition of the random walk operators. We will do
so by applying Theorem 34 to the localization link viewer:

▶ Theorem 54 (Random walk decomposition). Let X be a d-dimensional pure simplicial
complex. Also, assume that for every face σ of dimension smaller than d − 2 it holds that
λ2

(
(M ′)+

σ,0

)
≤ λσ. Denote by γτ,i = maxσ∈Xτ (i) (λσ). For every set of proper level cochains

Fi ∈ Ck
Λℓ ,̂i

(X;R) it holds that:

〈
(M ′)+

k

k∑
i=0

Fi,
k∑

i=0
Fi

〉
≤

k∑
i=0

1 − 1
k − i + 1

k−1∏
j=i−1

(1 − γj)

 ∥Fi∥2
.

Proof. We will prove this theorem by applying Theorem 34 to the k-dimensional non-lazy
random walk operator. We start by noting that the space of k-dimensional cochains that are
orthogonal to the constants is comprised of exactly k level functions as the space orthogonal
to the constants is exactly ker (d∗

0 · · · d∗
k).

We prove the rest of this theorem using a recursive argument. First note that for k = 0
the claim holds trivially as:〈

(M ′)+
0 F, F

〉
≤ λσ ∥F∥2 = γ−1 ∥F∥2

.

Assume that for every non-empty face σ it holds that λσ,i,k ≤ 1 − 1
k−i+1

∏k−1
j=i−1 (1 − γσ,j)

and note that for every i ≥ 1:
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λ∅,i,k = max
v∈X(0)

{λv,i−1,k−1}

≤ max
v∈X(0)

1 − 1
k − i + 1

k−2∏
j=i−2

(1 − γσ,j)

 ≤ 1 − 1
k − i + 1

k−1∏
j=i−1

(1 − γ∅,j).

Consider the left hand side of the recursive formula:

λ∅,1,k ∥F0∥2 +Ev∈X(0)

[
(1 − λ∅,1,k)

∥∥∥M
−(k−1)
(k−1) Λℓ

vF0

∥∥∥2
]

≤ λ∅,0,k ∥F0∥ . (3)

And note that:

λ∅,1,k ∥F0∥2 +Ev∈X(0)

[
(1 − λ∅,1,k)

∥∥∥M
−(k−1)
(k−1) Λℓ

vF0

∥∥∥2
]

= λ∅,1,k ∥F0∥2 +Ev∈X(0)

[
(1 − λ∅,1,k)

∥∥d∗
−1 · · · d∗

k−2Λℓ
vF0
∥∥2]

= λ∅,1,k ∥F0∥2 +Ev∈X(0)

[
(1 − λ∅,1,k)

∥∥Λℓ
vd∗

0 · · · d∗
k−1F0

∥∥2]
= λ∅,1,k ∥F0∥2 + (1 − λ∅,1,k)

∥∥d∗
0 · · · d∗

k−1F0
∥∥2

.

Consider, again, the left hand side of inequality 3 and note that due to Lemma 53 it suffices
to solve the following:

λ∅,1,k

∥∥F =0∥∥2 + (1 − λ∅,1,k)
(

1 − k

k + 1 (1 − γ−1)
)∥∥F =0∥∥2 ≤ λ∅,0,k

∥∥F =0∥∥2

λ∅,1,k + (1 − λ∅,1,k)
(

1 − k

k + 1 (1 − γ−1)
)

≤ λ∅,0,k

k

k + 1 (1 − γ−1) λ∅,1,k +
(

1 − k

k + 1 (1 − γ−1)
)

≤ λ∅,0,k.

Consider the following:
k

k + 1 (1 − γ−1) λ∅,1,k +
(

1 − k

k + 1 (1 − γ−1)
)

≤ k

k + 1 (1 − γ−1)

1 − 1
k

k−1∏
j=0

(1 − γ∅,j)

+ 1 − k

k + 1 (1 − γ−1)

= k

k + 1 (1 − γ−1) − 1
k + 1

k−1∏
j=−1

(1 − γ∅,j) + 1 − k

k + 1 (1 − γ−1)

= 1 − 1
k + 1

k−1∏
j=−1

(1 − γ∅,j).

Thus if we set:

λ∅,0,k = 1 − 1
k + 1

k−1∏
j=−1

(1 − γ∅,j).

We get that for every face σ and dimensions i, k:

λσ,i,k ≤ 1 − 1
k − i + 1

k−1∏
j=i−1

(1 − γσ,j).

Applying Theorem 34 proves the decomposition. ◀
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Note that the decomposition presented in Theorem 54 is the first decomposition theorem
to offer a proper (i.e. not approximate) decomposition of the k-dimensional random walk
whose components are orthogonal to each other.



A Deterministic Construction of a Large Distance
Code from the Wozencraft Ensemble
Venkatesan Guruswami # Ñ

Department of EECS, University of California, Berkeley, CA, USA

Shilun Li #

Department of Mathematics, University of California, Berkeley, CA, USA

Abstract
We present an explicit construction of a sequence of rate 1/2 Wozencraft ensemble codes (over
any fixed finite field Fq) that achieve minimum distance Ω(

√
k) where k is the message length.

The coefficients of the Wozencraft ensemble codes are constructed using Sidon Sets and the cyclic
structure of Fqk where k + 1 is prime with q a primitive root modulo k + 1. Assuming Artin’s
conjecture, there are infinitely many such k for any prime power q.

2012 ACM Subject Classification Theory of computation → Pseudorandomness and derandomiza-
tion; Theory of computation → Error-correcting codes

Keywords and phrases Algebraic codes, Pseudorandomness, Explicit Construction, Wozencraft
Ensemble, Sidon Sets

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2023.50

Category RANDOM

Related Version Full Version: https://arxiv.org/abs/2305.02484

Funding Venkatesan Guruswami: Research supported by a Simons Investigator Award and NSF
grants CCF-2210823 and CCF-2228287.
Shilun Li: Research supported by University of California, Berkeley under Berkeley Fellowship.

1 Introduction

The explicit construction of binary error-correcting codes with a rate vs. distance trade-off
approaching that of random constructions, i.e., the so-called Gilbert-Varshamov (GV) bound,
remains an outstanding challenge in coding theory and combinatorics.

For large n, a random binary linear code of rate R ∈ (0, 1), defined for example as the
column span of a random matrix G ∈ Fn×Rn

2 , has relative distance h−1(1 − R) with high
probability, where h−1(·) is the inverse of the binary entropy function. There is a similar GV
bound h−1

q (1 − R), involving the q-ary entropy function, for codes over other finite fields Fq.
While explicit constructions meeting the GV bound remain elusive1, there are known

derandomizations showing that codes drawn randomly from much smaller, structured en-
sembles can also achieve the GV bound. One of the most classical and famous such ensemble
is the Wozencraft ensemble, which consists of codes Cα

WE = {(x, αx) : x ∈ Fqk } as α varies
over nonzero elements of the field Fqk , and one uses some fixed basis to express elements of
Fqk as length k vectors over Fq. Note that each code Cα

WE has rate 1/2. The construction of
Wozencraft ensemble codes Cα

WE first appeared in a paper by Massey [13], who attributed
the discovery of these codes to John M. Wozencraft.

1 Ta-Shma [19] recently constructed explicit binary codes near the GV bound for low rates. The codes
have distance 1−ϵ

2 and rate Ω(ϵ2+o(1)) which is asymptotically close to the rate Ω(ϵ2) guaranteed by
the GV bound.

© Venkatesan Guruswami and Shilun Li;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2023).
Editors: Nicole Megow and Adam D. Smith; Article No. 50; pp. 50:1–50:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:venkatg@berkeley.edu
http://people.eecs.berkeley.edu/~venkatg/
https://orcid.org/0000-0001-7926-3396
mailto:shilun@berkeley.edu
https://orcid.org/0000-0001-5765-0432
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.50
https://arxiv.org/abs/2305.02484
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


50:2 Deterministic Wozencraft Ensemble Code

It is a standard exercise to show that for most choices of α, the code Cα
WE has distance

close to h−1
q (1/2) and thus achieves the GV bound. Puncturing the Wozencraft ensemble

gives codes of higher rates that also meet the GV bound. The property of the Wozencraft
ensemble and its punctured variants behind this phenomenon is that every nonzero word
appears as a codeword in an equal number of codes in the ensemble (if it appears in any
code of the ensemble at all).

Using this property, Justesen [10] in 1972 gave the first strongly explicit asymptotically
good binary linear codes, by concatenating an outer Reed–Solomon code with different inner
codes drawn from the Wozencraft ensemble for different positions of the Reed-Solomon code.
The Justesen construction achieves a trade-off between rate vs. distance called the Zyablov
bound for rates at least 0.3. There are variants of Wozencraft codes which give Zyablov-
bound-achieving codes for lower rates as well (see Section 5). In recent years, Wozencraft
ensemble codes have also found other varied uses, for example in constructing covering codes
of small block length [14] and write-once-memory codes [16, 17].

Given that for most α, the code Cα
WE meets the GV bound, it is a natural question

whether one can find an explicit α for which the code has good distance (even if it doesn’t
quite meet the GV bound). Gaborit and Zemor [8] showed that it suffices to consider random
α in a subset of size ≈ qk/k and used it to show the existence of linear codes which are a
factor k larger in terms of size than the Gilbert-Varshamov bound (such a result was shown
earlier for general codes in [9]).

However, it remains an outstanding challenge to find some α in deterministic poly(k)
time for which Cα

WE has distance Ω(k). This question is relatively well-known, eg. it received
mention in a blog post by Dick Lipton [12], but has resisted progress. To the best of our
knowledge, even an explicit α for which Cα

WE has distance kΩ(1) was not known.
For certain structured fields Fqk (of which there are an infinite family under Artin’s

conjecture), we give an explicit construction of α ∈ Fqk for which Cα
WE has distance Ω(

√
k).

We also give an explicit puncturing of these codes to achieve any desired rate r < 1, and
Ωr(

√
k) distance (the constant in the Ω() depends on r). Our theorems are informally stated

below.

▶ Theorem 1 (Informal). Fix a field Fq and consider an integer k such that k + 1 is prime
and q is a primitive root modulo k + 1. There exist α∗ ∈ Fqk which can be constructed in
deterministic poly(k) time such that:

Cα∗

WE has distance Ω(
√

k).
For any r > 1

2 , there is an explicit puncturing of Cα∗

WE with rate at least r and distance
Ωr(

√
k).

Please refer to Theorem 7 and Theorem 17 for construction of α∗ and choice of puncturing.

2 Preliminaries

Throughout this paper, we will assume the alphabet has size q, where q is a prime power.
Furthermore, we will assume k′ is a prime such that q is a primitive root modulo k′.
Assuming Artin’s conjecture, such k′ exists infinitely often at sufficiently high density and
can be efficiently found in deterministic poly(k′) time.

Denote k = k′ −1 for ease of notation. Let p(x) = 1+x+x2 +. . .+xk′−1 be the cyclotomic
polynomial which is irreducible over Fq (see Proposition 3). Note that Fq[x]/(p(x)) ∼= Fqk

for the extension field Fq[x]/(p(x)) and we will fix the representation of Fqk as polynomials
in x of degree less than k, with operations performed modulo p(x). We will fix the Fq-linear
isomorphism φ : Fqk → Fk

q that maps a polynomial of degree less than k to its coefficient
vector. That is, φ(

∑k−1
i=0 aix

i) = (a0, a1, . . . , ak−1). For α ∈ Fqk , define wt(α) to be the
Hamming weight of φ(α).
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The Wozencraft ensemble is a classic family of codes defined as follows.

▶ Definition 2. For α ∈ Fqk , the Wozencraft ensemble code Cα
WE parameterized by α is

given by

Cα
WE = {(φ(x), φ(αx)) : x ∈ Fqk } .

Note that Cα
WE is an Fq-linear code of rate 1/2.

▶ Proposition 3. If k′ is a prime such that q is a primitive root modulo k′, then p(x) =∑k′−1
i=0 xi is an irreducible polynomial of degree k′ − 1 in Fq[x].

Proof. Since q is a primitive root modulo k′, d = k′ − 1 is the smallest integer satisfying
qd ≡ 1 mod k′. Note that a field extension Fqd of Fq contains a primitive k′-th root of unity
ζ if and only if k′|qd − 1, i.e., qd ≡ 1 mod k′. So Fqk′−1 is the smallest field extension of
Fq containing ζ and the mimimal polynomial of ζ has degree k′ − 1. Since p =

∑k′−1
i=0 xi is

a degree k′ − 1 polynomial such that p(ζ) = 0, p is the minimal polynomial of ζ and thus
irreducible. ◀

We will use Sidon sets [18, 1] to construct the parameter α for Cα
WE.

▶ Definition 4. A Sidon set is a set of integers A = {a1, . . . , ad} where a1 < a2 < . . . < ad

such that for all i, j, k, l ∈ [d] with i ̸= j and k ̸= l,

ai − aj = ak − al ⇐⇒ i = k and j = l.

A Sidon set modulo n is a Sidon set such that for all i, j, k, l ∈ [d] with i ≠ j and k ̸= l,

ai − aj ≡ ak − al (mod n) ⇐⇒ i = k and j = l.

Size d of the Sidon set A is referred to as its order and ad − a1 as its length.

▶ Remark 5. For any Sidon set with order d and length m, the
(

d
2
)

distances between
each pair of points need to be distinct. So m ≥

(
d
2
)

and this gives a trivial upper bound
d ≤

√
2m. This upper bound on d can be improved to d ≤

√
m + O(m1/4) [7] and

further to d ≤
√

m + m1/4 + 1 [11]. On the other hand, the maximal d given m satisfies
d ≥

√
m − O(m5/16) [7] but it is believed that we can have d >

√
m [6].

We will introduce the Bose-Chowla construction of Sidon sets [4, 3].

▶ Theorem 6 (Bose-Chowla, [4]). Let p be a power of a prime, g be a primitive root in Fp2 .
Then the sequence of p integers

A = {i ∈ [p2 − 2] : gi + gpi = 1}

forms a Sidon set modulo p2 − 1.

This construction of Sidon set has order d = p and length at most m(d) = p2 − 2. They are
asymptotically optimal in the sense that limd→∞

√
m(d)/d = 1. Given p, such construction

can be done in O(p2) time by fixing s = 1 and finding a primitive root g via naive search.
We will later define our parameter α to be

∑
a∈A xa where A is a Sidon set and show that

Cα
WE has good distance.

APPROX/RANDOM 2023
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3 Rate 1/2 Construction

In this section, we will give explicit construction of rate 1/2 Wozencraft ensemble codes with
minimum distance Ω(

√
k) using Sidon sets. To begin, we provide an intuitive explanation for

the natural occurrence of Sidon sets in this specific context. Subsequently, we proceed with
the analysis of the minimum distance of our construction.

3.1 Motivation
Fix a set of indices A ⊆ [k] and an element α =

∑
a∈A xa ∈ Fqk with coefficients either 0

or 1. Take any y =
∑

s∈S bsxs where S is the set of non-zero indices of the coefficients of
y, so bs ̸= 0 for all s ∈ S. To establish a lower bound on ∆(Cα

WE), we would like show a
lower bound on the weight of the product αy ∈ Fqk for any y. To simplify the analysis, we
consider a ring extension of Fqk (described in Section 3.2), in which the coefficient cj in
front of xj of the product αy can be expressed as cj =

∑
a∈A,s∈S 1{a + s ≡ j (mod k′)}bs.

We would like to establish a lower bound on the number of non-zero coefficients cj ̸= 0,
which would transform into a lower bound on the weight of αy in Fqk . It is sufficient to
demonstrate the existence of numerous choices of j satisfying j ≡ a + s (mod k′) for a unique
combination of a and s. In this case, cj corresponds to the sum of one non-zero element
and is therefore non-zero. To ensure there are an abundance of such choices for j with this
uniqueness property, it is desirable to minimize collisions of the form a + s ≡ a′ + s′ (mod k′)
where a, a′ ∈ A and s, s′ ∈ S. Since S can be selected adversarially with respect to A, it is
advantageous to have (a − a′) mod k′ be unique, which is exactly the property of Sidon sets
modulo k′. The result of this construction is stated formally as follows, where the proof is
propounded to Section 3.2:

▶ Theorem 7. Let d be the largest prime smaller than
√

k and let A = {a1, . . . , ad} be a Bose-
Chowla Sidon set with order d. Define α∗ =

∑
a∈A xa ∈ Fqk . Then ∆(Cα∗

WE) ≥ d = Ω(
√

k).

▶ Remark 8. Since there exists a prime between [ 1
2
√

k,
√

k] by Bertrand–Chebyshev the-
orem [5], d can be found efficiently via naive search and d ≥ 1

2
√

k. Moreover, Baker, Harman
and Pintz [2] showed that there exists a prime in the interval [

√
k−k0.27,

√
k, ] for k sufficiently

large. So d = (1 − o(1))
√

k and the constructed code Cα∗

WE has distance asymptotically
∆(Cα∗

WE) ≥ (1 − o(1))
√

k as k → ∞.

It is also worthwhile to note that when a + s ≡ j (mod k′) holds for more than one pair
of (a, s), cj may still be non-zero as it is a sum of multiple non-zero elements. In fact, for α

with large weight, it is common that αy has substantial weight yet few choices of j satisfy
the uniqueness property. One possible approach to improving the construction of A involves
analyzing scenarios where j ≡ a + s (mod k′) for multiple pairs of (a, s).

3.2 Proof of Theorem 7
To analyze the minimum distance of Cα

WE, it is helpful to define the ring R = Fq[x]/(xk′ − 1),
which consists of polynomials of degree less than k′ = k + 1. We can identify Fqk

∼= R/(p)
by the map sending f ∈ R to (f mod p) ∈ Fqk . In addition, we can consider Fqk ⊆ R and
extend φ to the Fq-linear map φ̃ : R → Fk′

q mapping polynomials of degree less than k′ to
its coefficient vector. Define w̃t(f) to be the Hamming weight of φ̃(f) for any f ∈ R. The
following lemma gives the relationship between w̃t(f) and wt(f mod p).

▶ Lemma 9. For any f ∈ R, wt(f mod p) ≥ min{w̃t(f), k − w̃t(f)}.
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Proof. For any f ∈ R, let us write f =
∑k

i=0 bix
i. Then

f mod p = f − bkp =
k−1∑
i=0

(bi − bk)xi.

If bk = 0, then wt(f mod p) = w̃t(f); if bk ̸= 0, then

wt(f mod p) = |{i : bi ̸= bk}| ≥ k − w̃t(f).

So wt(f mod p) ≥ min{w̃t(f), k − w̃t(f)}. ◀

▶ Lemma 10. Given α ∈ Fqk ⊆ R, suppose that for every y ∈ R with w̃t(y) ≤ c(k) the
condition

c(k) − w̃t(y) ≤ w̃t(αy) ≤ k −
(

c(k) − w̃t(y)
)

holds, where the product αy is taken in R. Then ∆(Cα
WE) ≥ c(k), where ∆(Cα

WE) denotes
the distance of the code Cα

WE.

Proof. Take any non-zero y ∈ Fqk ⊆ R. Its corresponding codeword Cα
WE(y) = (φ(y),

φ(αy mod p)) has Hamming weight wt(y) + wt(αy mod p). By Lemma 9, the above
condition implies

wt(y) + wt(αy mod p) ≥ w̃t(y) + min{w̃t(αy), k − w̃t(αy)} ≥ c(k).

Since Cα
WE is a linear code, ∆(Cα

WE) ≥ c(k). ◀

We can now prove Theorem 7 by showing that α∗ satisfies the condition of Lemma 10
with c(k) = d.

Proof of Theorem 7. Note that α is an element of Fqk since it has degree at most k − 2 by
construction. Let us check that the condition of Lemma 10 indeed holds for α∗ =

∑
a∈A xa

and c(k) = d. For any y ∈ R with w̃t(y) = w, we can write y =
∑w

i=1 bsi
xsi where bsi ≠ 0 for

all 1 ≤ i ≤ w. We will denote S = {s1, . . . , sw} ⊆ [k′] the set non-zero coefficient indices of y,
where we define [k′] = {0, . . . , k′ − 1 = k}. The coefficients of the product α∗y =

∑k
j=0 cjxj

are given by

cj =
∑
a∈A
s∈S

1{a + s ≡ j (mod k′)}bs.

This motivates us to define the shifted set

(j − A)k = {(j − a1) mod k′, . . . , (j − ad) mod k′}

which gives us

cj =
∑

s∈(j−A)k∩S

bs.

We will denote by

Jm = {j ∈ [k′] : |(j − A)k ∩ S| = m}

APPROX/RANDOM 2023
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the indices j such that |(j − A)k ∩ S| has size m. It is evident that if (j − A)k ∩ S = ∅ then
cj = 0, and if |(j − A)k ∩ S| = 1 then cj ̸= 0. So

|J1| ≤ w̃t(α∗y) ≤ k − |J0|.

Looking at the conditions of Lemma 10, it would be sufficient to take c(k) such that

c(k) − w ≤ min{|J0|, |J1|}

for all w. We make the following claims on lower bounds of |J0| and |J1| which will be proven
in Section 3.3.

▷ Claim 11. J1 has size at least wd − w(w − 1).

▷ Claim 12. J0 has size at least k − wd.

Assuming the claims, it suffices to take c(k) such that

c(k) ≤ min
1≤w≤c(k)

wd − w(w − 1) + w = min{d + 1, (d − c(k) + 2)c(k)},

c(k) ≤ min
1≤w≤c(k)

k − wd + w = k − (d − 1)c(k).

Solving the two inequalities, it suffices to take c(k) ≤ d. So α∗ =
∑

a∈A xa, c(k) = d satisfy
the condition of Lemma 10. ◀

3.3 Proofs of Claim 11 and Claim 12
To show a lower bound on |J1|, it is desired that the sets J2, .., Jw are small. The following
lemma gives an upper bound on the sizes of J2, .., Jw:

▶ Lemma 13. The sets J2, . . . , Jw defined in the proof of Theorem 7 satisfy:
w∑

m=2
(m − 1)|Jm| ≤

w∑
m=2

(
m

2

)
|Jm| ≤ 2

(
w

2

)
= w(w − 1).

Proof. It is evident that the first inequality holds. Let us now show that for any two distinct
s, s′ ∈ S, we have {s, s′} ⊆ (j − A)k for at most two choices of j. Take any distinct pair
s, s′ ∈ S. Without loss of generality, assume s < s′. Suppose {s, s′} ⊆ (j − A)k, then we can
write s ≡ j − al (mod k′) and s′ ≡ j − al′ (mod k′) for some l, l′ ∈ [d]. Then al − al′ ≡ s′ − s

(mod k′). So

al − al′ =
{

s′ − s if l > l′,

s′ − s − k′ if l < l′.

In both cases, by definition of Sidon sets, l, l′ are uniquely determined. Thus j ≡ al + s is
also uniquely determined.

For any jm ∈ Jm, |(jm − A) ∩ S| = m so there are
(

m
2
)

distinct pairs {s, s′} ⊆ (jm − A)k.
So the total count of such distinct pairs for all j ∈ ∪w

m=2Jm is
∑w

m=2
(

m
2
)
|Jm|, which must

not exceed 2
(

w
2
)

since each pair can only occur in (j − A)k for two choices of j. This gives

w∑
m=2

(
m

2

)
|Jm| ≤ 2

(
w

2

)
= w(w − 1)

which completes the proof. ◀
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We can now obtain a lower bound on the size of J1.

▷ Claim. J1 has size at least wd − w(w − 1).

Proof. For each s ∈ S, there are |A| = d number of j such that s ∈ (j − A)k. When w = 1,
the lemma holds as |J1| = d. When w ≥ 2, |J1| equals |S|d = wd minus the times we
overcount:

|J1| = wd −
w∑

m=2
(m − 1)|Jm|.

The proof is complete via the bound of Lemma 13:

|J1| = wd −
w∑

m=2
(m − 1)|Jm| ≥ wd − w(w − 1). ◁

▷ Claim. J0 has size at least k − wd.

Proof. For any s ∈ S, there are |A| = d values of j ∈ [k′] such that s ∈ (j − A)k. So there
are at most |S|d = wd indices j such that |(j − A)k ∩ S| > 0. ◁

4 Higher Rate Construction

In the last section, we gave an explicit construction of rate 1/2 Wozencraft ensemble code
Cα∗

WE achieving minimum distance Ω(
√

k). In this section, we will show that appropriate
puncturing of Cα∗

WE will give us codes of rates r ∈ (1/2, 1) and minimum distance at least
Ω

((
1 −

√
2 − 1

r

) √
k
)

.

▶ Definition 14. Let Cα,r
WE be the rate r punctured code given by removing the last (2 − 1

r )k
message bits of each codeword in Cα

WE.

Let φr denote the map sending any polynomial f to the first ( 1
r − 1)k least significant

coefficients. Let wtr(f) denote the Hamming weight of φr(f).

▶ Lemma 15. For any f ∈ R, wtr(f mod p) ≥ min{wtr(f), ( 1
r − 1)k − wtr(f)}.

Proof. Writing f =
∑k

i=0 bix
i, we have

f mod p = f − bkp =
k−1∑
i=0

(bi − bk)xi.

If bk = 0, then wtr(f mod p) = wtr(f); if bk ̸= 0, then

wtr(f mod p) =
∣∣∣{i ∈ [(1

r
− 1)k] | bi ̸= bk

}∣∣∣ ≥ (1
r

− 1)k − wtr(f).

So wtr(f mod p) ≥ min{wtr(f), ( 1
r − 1)k − wtr(f)}. ◀

▶ Lemma 16. Let α ∈ Fqk ⊆ R. Suppose for every y ∈ R with w̃t(y) ≤ c(k) the condition

c(k) − w̃t(y) ≤ wtr(αy) ≤ (1
r

− 1)k −
(

c(k) − w̃t(y)
)

holds, where the product αy is taken in R. Then ∆(Cα,r
WE) ≥ c(k).
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50:8 Deterministic Wozencraft Ensemble Code

Proof. Take any non-zero y ∈ Fqk ⊆ R. Its corresponding codeword Cα,r
WE(y) = (φ(y),

φr(αy mod p)) has hamming weight wt(y) + wtr(αy mod p). By Lemma 15, the above
condition implies

wt(y) + wt(αy mod p) ≥ w̃t(y) + min{wtr(αy), (1
r

− 1)k − wtr(αy)} ≥ c(k).

Since Cα,r
WE is a linear code, ∆(Cα,r

WE) ≥ c(k). ◀

The following theorem establishes a lower bound on the minimum distance of the punctured
code Cα∗,r

WE with α∗ constructed using Sidon sets as outlined in Theorem 7.

▶ Theorem 17. For any rate r > 1/2, using the construction of α∗ by Theorem 7, the
condition of Lemma 16 is satisfied with c(k) = Ω

((
1 −

√
2 − 1

r

) √
k
)

. Thus the punctured

code Cα∗,r
WE has minimum distance at least Ω

((
1 −

√
2 − 1

r

) √
k
)

.

The proof is omitted2 since it follows a similar outline as the proof of Theorem 7. We present
two claims similar to Claim 11 and Claim 12 that substantiate this argument. For any
y =

∑
s∈S bsxs with weight |S| = w, denote Jr

m = {j ∈ [( 1
r − 1)k] : |(j − A)k ∩ S| = m} the

non-punctured indices j such that |(j − A)k ∩ S| has size m, where A is the Sidon set in the
construction of α∗. Then analogous to Claim 11 and Claim 12, we can lower bound the size
of Jr

1 and Jr
2 :

▷ Claim 18. Jr
1 has size at least w

((
1 −

√
(2 − 1

r ) − o(1)
) √

k − (2 − 1
r ) 1

4 k
1
4 − 1

)
− w2.

▷ Claim 19. Jr
0 has size at least ( 1

r − 1)k − w
(√

( 1
r − 1)k + ( 1

r − 1) 1
4 k

1
4 + 1

)
.

To justify the claims, we will require the following theorem by Lindström [11] which bounds
the order of any Sidon set via its length.

▶ Theorem 20 (Lindström [11]). For any Sidon set with length m, the order is at most√
m + m1/4 + 1.

The key observation is that for any s ∈ S, the shifted set (s + A)k is a Sidon set. Moreover,
it is partitioned into two parts after puncturing: the remaining part (s + A)k ∩ [( 1

r − 1)k] and
the removed part (s + A)k ∩ ([k′] \ [( 1

r − 1)k]), where each part is itself a Sidon set. Applying
Theorem 20 to the two parts and recalling that |A| = (1 − o(1))

√
k by Remark 8, we can

then obtain the results described in Claim 18 and Claim 19.

5 Open Questions

It is well known that Wozencraft ensemble codes Cα
WE satisfy the Gilbert-Varshamov bound

for most α. Concretely,

lim
k→∞

Pr
α∈S

[∆(Cα
WE) ≥ d(k)] = 1,

where S = F∗
qk , d(k) =

(
h−1

q ( 1
2 ) − ϵ

)
· 2k with hq the q-ary entropy function and ϵ > 0

chosen arbitrarily. In this paper, we have proposed a construction of S = {α∗} such that the
equation above holds with d(k) = Ω(

√
k). It is of natural interest to reduce the size of the

2 The proof appears in detail in the full version of the paper posted at https://arxiv.org/abs/2305.02484.

https://arxiv.org/abs/2305.02484
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ensemble and find S, d(k) satisfying the equation above with |S| small and d(k) large. For
example, can one construct S such that the equation above is satisfied via |S| = O(2o(k))
and d(k) = Ω(k), or |S| = poly(k) and d(k) = Ω(kc) with c > 1

2 ? In addition, are there any
barriers to such constructions, as in, would such constructions imply progress on some other
explicit construction challenge?

In 1973, Weldon [20] proposed an ensemble of codes, a code that generalizes Wozencraft
ensemble codes. The Weldon ensemble was used by him, and later Shen [15], to construct
explicit concatenated codes achieving the Zyablov bound for rates less than 0.3, thus improving
upon Justesen codes [10] for low rates. Weldon codes3 of rate 1/(t + 1) are indexed by
α1, α2, . . . , αt ∈ Fqk and defined as

Cα1,...,αt

WE = (φ(x), φ(α1x), . . . , φ(αtx)).

For some fixed t > 2, can one find explicit αi’s where the distance of Cα1,...,αt

WE is asymptotically
larger than

√
k?

References
1 Wallace C Babcock. Intermodulation interference in radio systems frequency of occurrence

and control by channel selection. The Bell System Technical Journal, 32(1):63–73, 1953.
2 Roger C Baker, Glyn Harman, and János Pintz. The difference between consecutive primes, ii.

Proceedings of the London Mathematical Society, 83(3):532–562, 2001.
3 R. C. Bose. An affine analogue of singer’s theorem. The Journal of the Indian Mathematical

Society, 6(0), 1942. URL: https://www.i-scholar.in/index.php/JIMSIMS/article/view/
151305.

4 Raj Chandra Bose and Sarvadaman Chowla. Theorems in the additive theory of numbers.
Technical report, North Carolina State University. Dept. of Statistics, 1960.

5 Pafnutij Lvovič Čebyšev. Mémoire sur les nombres premiers, 1850.
6 Apostolos Dimitromanolakis. Analysis of the golomb ruler and the sidon set problems and

determination of large near-optimal golomb rulers. Diploma thesis, Department of Electronic
and Computer Engineering, Technical University of Crete, 2002.

7 Paul Erdos and Pál Turán. On a problem of sidon in additive number theory, and on some
related problems. J. London Math. Soc, 16(4):212–215, 1941.

8 Philippe Gaborit and Gilles Zemor. Asymptotic improvement of the gilbert–varshamov bound
for linear codes. IEEE Transactions on Information Theory, 54(9):3865–3872, 2008.

9 Tao Jiang and Alexander Vardy. Asymptotic improvement of the Gilbert-Varshamov bound
on the size of binary codes. IEEE Trans. Inf. Theory, 50(8):1655–1664, 2004.

10 Jørn Justesen. Class of constructive asymptotically good algebraic codes. IEEE Transactions
on Information Theory, 18(5):652–656, 1972.

11 Bernt Lindström. On b2-sequences of vectors. Journal of number Theory, 4(3):261–265, 1972.
12 Dick Lipton. An error correcting code from the book. https://rjlipton.wpcomstaging.

com/2011/08/08/an-error-correcting-code-from-the-book/, August 2011. URL: https:
//rjlipton.wpcomstaging.com/2011/08/08/an-error-correcting-code-from-the-book/.

13 James L Massey. Threshold decoding, 1963.
14 Aditya Potukuchi and Yihan Zhang. Improved efficiency for covering codes matching the

sphere-covering bound. In 2020 IEEE International Symposium on Information Theory (ISIT),
pages 102–107. IEEE, 2020.

3 The ensemble codes which Weldon [20] proposed can have any rate of n1/(n1 + n2) with n1, n2 positive
integers. However, he only used codes of rate 1/(t + 1) to construct the concatenated code.

APPROX/RANDOM 2023

https://www.i-scholar.in/index.php/JIMSIMS/article/view/151305
https://www.i-scholar.in/index.php/JIMSIMS/article/view/151305
https://rjlipton.wpcomstaging.com/2011/08/08/an-error-correcting-code-from-the-book/
https://rjlipton.wpcomstaging.com/2011/08/08/an-error-correcting-code-from-the-book/
https://rjlipton.wpcomstaging.com/2011/08/08/an-error-correcting-code-from-the-book/
https://rjlipton.wpcomstaging.com/2011/08/08/an-error-correcting-code-from-the-book/


50:10 Deterministic Wozencraft Ensemble Code

15 B-Z Shen. A justesen construction of binary concatenated codes that asymptotically meet the
zyablov bound for low rate. IEEE Transactions on Information Theory, 39(1):239–242, 1993.

16 Amir Shpilka. Capacity achieving two-write wom codes. In Latin American Symposium on
Theoretical Informatics, pages 631–642. Springer, 2012.

17 Amir Shpilka. New constructions of wom codes using the wozencraft ensemble. IEEE
Transactions on Information Theory, 59(7):4520–4529, 2013.

18 Simon Sidon. Ein satz über trigonometrische polynome und seine anwendung in der theorie
der fourier-reihen. Mathematische Annalen, 106(1):536–539, 1932.

19 Amnon Ta-Shma. Explicit, almost optimal, epsilon-balanced codes. In Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing, pages 238–251, 2017.

20 E.J. Weldon. Justesen’s construction–the low-rate case (corresp.). IEEE Transactions on
Information Theory, 19(5):711–713, 1973. doi:10.1109/TIT.1973.1055068.

https://doi.org/10.1109/TIT.1973.1055068


NP-Hardness of Almost Coloring Almost
3-Colorable Graphs
Yahli Hecht #

School of Computer Science, Tel Aviv University, Israel

Dor Minzer #

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA

Muli Safra #

School of Computer Science, Tel Aviv University, Israel

Abstract
A graph G = (V, E) is said to be (k, δ) almost colorable if there is a subset of vertices V ′ ⊆ V of
size at least (1 − δ) |V | such that the induced subgraph of G on V ′ is k-colorable. We prove that
for all k, there exists δ > 0 such for all ε > 0, given a graph G it is NP-hard (under randomized
reductions) to distinguish between:
1. Yes case: G is (3, ε) almost colorable.
2. No case: G is not (k, δ) almost colorable.

This improves upon an earlier result of Khot et al. [16], who showed a weaker result wherein in the
“yes case” the graph is (4, ε) almost colorable.
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1 Introduction

The graph coloring problem is one of the most basic combinatorial optimization problems
studied in theoretical computer science. A graph G = (V, E) is k-colorable if there exists
a vertex coloring col : V → {1, . . . , k} such that for each edge e = (u, v) ∈ E, it holds that
col(u) ̸= col(v). The chromatic number of G, denoted by χ(G), is defined to be the smallest
integer k so that G is k-colorable. What is the computational complexity of finding the
chromatic number of a graph?

It has long been known that computing the chromatic number of a graph is NP-hard [10].
Using the PCP theorem, one can improve this result and show that even approximating
the chromatic number of a graph (within any constant factor) is NP-hard [12]. Thus, the
next natural question to ask is how hard is it to find somewhat efficient coloring of a graph,
provided that a very efficient one exists. Specifically, given a k ∈ N, what is the smallest k′

such that given a k-colorable graph, one may efficiently color it using k′?
As the case of k = 2 is the 2-coloring problem which is known to be in P, the first

interesting case to consider is that of k = 3. Despite significant effort, the best unconditional
result along these lines, due to [2], asserts that such graphs are NP-hard to color using 5
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colors. In terms of conditional results, based on Khot’s 2-to-2 Games Conjecture (with
perfect completeness) [13], Dinur et al. [7] proved that it is NP-hard to C-color 4-colorable
graphs for all C > 0. This result was recently improved by Guruswami and Sandeep [8], who
showed that it is NP-hard to C-color 3-colorable graphs for any C > 0.1 The gap between
the ratios known to be hard and those known to be efficiently achievable is huge: on the
algorithmic front, the state of the art result (due to [11]) asserts that one may efficiently
find an n0.2−ε-coloring of a given 3-colorable graph, where n is the number of vertices of the
graph and ε > 0 is an absolute constant.

Due to the lack of progress towards unconditional hardness results for the graph coloring
problem, one is motivated to consider relaxations of the problem that are easier to work with
that still capture its essence. Most relevant to us is the almost coloring relaxation. Here, we
say a graph G = (V, E) is (k, δ) almost colorable if there exists a subset of vertices V ′ ⊆ V

with |V ′| ⩾ (1−δ)|V | such that the induced subgraph of G on V ′ is k-colorable. That is, that
the graph G′ = (V ′, E′), where E′ = {e = (u, v) | u, v ∈ V ′}, is k-colorable. With regards to
this notion, based on the hardness of 2-to-2 Games with imperfect completeness [15, 6, 5, 16],
one can show that almost coloring almost 4-colorable graphs is NP-hard with any constant
number of colors. More specifically, using ideas from [7], one can show that for all ε, δ > 0,
given a graph G = (V, E), it is NP-hard to distinguish between:
1. Yes case: G is (4, ε) almost colorable.
2. No case: G does not contain an independent set of fractional size δ.
In particular, it is NP-hard to (k, 1 − ε) almost color a given (4, ε) almost colorable graph.
We remark that the “independent set” conclusion in the no case is in fact stronger, and one
often manages to achieve it via the typical style of PCP reductions for coloring problems.

The distinction between 3-coloring and 4-coloring may seem minor at first glance. This
distinction hides within it a technical barrier related to the difference between Unique-Games
and 2-to-2 Games. Indeed, the only type of problems that seem to facilitate results for
3-coloring are Unique-Games [7] (which inherently lack perfect completeness) and a certain
variant of 2-to-2 games called Rich 2-to-2 Games [4, 3]. Both problems are conjectured to
be NP-hard, but the proof of this assertion seems out of reach of current techniques. Using
standard 2-to-2 Games, which are now known to be NP-hard (with imperfect completeness),
there seem to have been fundamental difficulties beyond 4-colorable graphs.

Recently, Guruswami and Sandeep [8] observed that there there are transformations from
the algebraic CSPs world [17] (which date back to [9]) that reduce the chromatic number
of a graph from 4 to 3. Using these ideas, and combining them with the reduction of [7],
Guruswami and Sandeep managed to prove the aforementioned conditional result, asserting
that assuming the d-to-d conjecture of Khot with perfect completeness, it is NP-hard to
C-color a given 3-colorable graph, for all constants C > 0. We remark that interestingly their
reduction fails to establish the stronger “independent set” type conclusion in the no case.

The main result of this paper is that while this reduction does not preserve the independent
set conclusion, it does preserve the intermediate, strictly weaker conclusion of almost coloring.
More precisely, we use these ideas to get an (unconditional) NP-hardness result regarding
almost coloring almost 3-colorable graphs with a constant number of colors. Specifically, we
prove:

▶ Theorem 1. For all k ∈ N, there exists δ > 0 such that for all ε > 0, given a graph
G = (V, E) it is NP-hard (under randomized reductions) to distinguish between:
1. Yes case: G is (3, ε) almost colorable.
2. No case: G is not (k, δ) almost colorable.

1 In fact, for the result of Guruswami et al./ it suffices to assume that the d-to-d Games Conjecture of
Khot [13] holds for some constant d ∈ N.
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Proof Idea

While the reduction of Guruswami and Sandeep [8] does not preserve the notion of almost
coloring for all graphs, it turns out that it does so for bounded degree graphs. Indeed, this is
the main insight behind the proof of Theorem 1. Thus, our proof of Theorem 1 starts with a
hard instance of 2-to-2 Games with imperfect completeness and uses the reduction of [7] to
establish hardness of almost coloring almost 4-colorable graphs for instances with certain
regularity properties. We then use random sparsification to further reduce such instances
to instances with bounded maximal degree. Finally, we use line-graph based reductions as
in [8] to reduce this problem to the problem of almost coloring almost 3-colorable graphs.

We remark that just like in the result of Guruswami and Sandeep, our result also fails to
establish the stronger “independent set” type conclusion in the no case. Indeed, strengthening
Theorem 1 in that manner would automatically improve upon the best known hardness of
approximation result for Vertex Cover, which is a long standing challenge. Currently, it is
known that it is NP-hard to approximate the size of the smallest vertex cover of a graph
within factor

√
2 − ε for all ε > 0, and an “independent-set”-type strengthening of Theorem 1

would improve this factor to 3/2 − ε, for all ε > 0. While we do not know how to prove such
strengthening, we believe it may be doable and discuss such a possibility in Section 4.

2 Preliminaries

In this section, we present a few notions that will be necessary in the proof of Theorem 1.

2.1 Induced Coloring and Constraint Satisfaction Problems
For an integer k ∈ N, the k-induced coloring of a graph G is the fractional size of the largest
induced subgraph of G which is k-colorable. More precisely:

▶ Definition 2. For a graph G = (V, E), the induced-coloring iColk(G) is the fractional size
of the largest induced subgraph that is k-colorable. That is, it is the maximum of |V ′| / |V |
among all induced sub-graphs (V ′, E′) of G that are k-colorable.

According to this notation, the fact that a graph G is (k, δ) almost colorable is equivalent to
iColk(G) ⩾ 1 − δ. Next, we define the label cover problem, followed by the definition of a
specific type of label cover instances called 2-to-2 Games.

▶ Definition 3. An instance of Label Cover Ψ = (G, Σ, Φ) consists of a graph G = (V, E), a
finite alphabet Σ and a collection of constraints Φ = {Φe}e∈E one for each edge of G. The
constraint on an edge e ∈ E specifies tuples Φe ⊆ Σ × Σ that are deemed satisfactory.

Given an instance of label cover Ψ, the goal is to find an assignment A : V → Σ satisfying
as many of the constraints as possible. Here, we say A satisfies the constraint on an edge
e = (u, v) ∈ E if (A(u), A(v)) ∈ Φe. We denote by sat(Ψ) the maximum fraction of constraints
that are satisfied in Ψ by any assignment A. We will mostly be interested in a specific type
of label cover instances, known as 2-to-2 instances, in which the constraints take a special
form.

▶ Definition 4. A label cover instance (G = (V, E), Φ, 2R) is called a 2-to-2 Games instance
if for every edge e = (u, v) ∈ E, the constraint Φe is of the form ∪R

i=1Ai × Bi, where {Ai}R
i=1

and {Bi}R
i=1 are two partitions of Σ into sets of size 2. Equivalently, the constraint Φe takes

the form{
(i, j) ∈ {1, . . . , 2R}

∣∣ (π−1(i), σ−1(j)) ∈ {(2k, 2k), (2k, 2k + 1), (2k + 1, 2k), (2k + 1, 2k + 1)}
}

for some permutations π, σ : [2R] → [2R].
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Typically, given a 2-to-2 Games instances Ψ, the goal is to find an assignment to the
vertices satisfying as many of the constraints as possible. For our purposes, it will be useful
for define a variation of this parameter denoted by iSat(Ψ).

▶ Definition 5. For an integer m ∈ N and a 2-to-2 Games instance Ψ = (G = (V, E), Σ, Φ),
we define iSat(Ψ) to be the fractional size of the largest V ′ ⊆ V for which there is an
assignment A : V ′ → Σ satisfying all of the constraints of Ψ inside V ′.

2.2 Fourier Analysis
Our reduction requires a few basic notions from discrete Fourier analysis which we present
next. We refer the reader to [19] for a more thorough presentation.

2.2.1 The Fourier Decomposition over Product Spaces
Let q ∈ N be an integer, and denote [q] = {0, 1, . . . , q − 1}. We will consider the product
space L2([q]n, µ) where µ is the uniform measure over [q]n and the inner product between
f, g : [q]n → R is defined as

⟨f, g⟩ = E
x∼µ

[f(x)g(x)].

We may pick an orthonormal basis α0, . . . , αq−1 : [q] → R of L2([q], µ) so that α0 ≡ 1, and
we do so canonically. Given this basis, we may tensorize it to get an orthonormal basis of
L2([q]n, µ) as {αj1,...,jn

}j1,...,jn∈[q] where αj1,...,jn
is defined as

αj1,...,jn
(x1, . . . , xn) =

n∏
i=1

αji
(xi).

Given the orthonormal basis {αj⃗}j⃗∈[q]n , we may decompose any f : [q]n → R as a linear
combination of the basis functions, and the coefficients in this linear combination are given
by the Fourier coefficients:

▶ Definition 6. For f : [q]n → R and j⃗ ∈ [q]n, we define f̂ (⃗j) def=
〈

f, αj⃗

〉
.

Also, given j⃗ ∈ [q]n, we define the degree of j⃗, deg(⃗j), to be the number of indices i = 1, . . . , n

such that ji ̸= 0. We define the action of a permutation on a function:

▶ Definition 7. For a permutation π : [n] → [n] and a function f : [q]n → R, we define
fπ : [q]n → R by fπ(x1, . . . , xn) def= f(xπ(1), . . . , xπ(n)) = f(xπ).

2.2.2 Low Degree Influences and a Corollary of the Invariance Principle
Our analysis requires the notion of low degree influences, which is defined in terms of the
Fourier coefficients of a function f in the following way:

▶ Definition 8. For a function f : [q]n → R, a coordinate i = 1, . . . , n and an integer d, the
degree d influence of i on f is defined as

I⩽d
i [f ] def=

∑
j⃗∈[q]n

j⃗i ̸=0,deg(⃗j)⩽d

f̂2(⃗j).
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The following well known fact asserts that the number of coordinates with significant low
degree influence is relatively small.

▶ Fact 9. For a function f : [q]n → R with ∥f∥2 ⩽ 1 and τ > 0, the number of coordinates
i = 1, . . . , n with I⩽d

i [f ] ⩾ τ is at most d
τ .

In the reduction from 2-to-2 Games to 4-coloring we will have functions operating on the
space [q2]n, and we will want to sometimes view it as [q]2n. To do so, we will use the natural
identification between [q]2 and [q2] and thus define an identification between the spaces [q2]n
and [q]2n in the following way:

▶ Definition 10. For x = (x1, . . . , x2n) ∈ [q]2n, we denote x
def= ((x1, x2), . . . , (x2n−1, x2n)) ∈

[q2]n.

Thus, given a function f : [q]2n → R, one may consider the function f : [q2]n → R defined by
the natural identification above as:

f((x1, x2), . . . , (x2n−1, x2n)) = f(x1, . . . , x2n).

The following facts from [7] will be used in the analysis of our reduction. The first claim
related low-degree influences of f and of f :

▷ Claim 11. For a function f : [q]2n → R, a coordinate 1 ⩽ i ⩽ n and a degree parameter d,
we have that

I⩽d
i [f ] ⩽ I⩽2d

2i−1[f ] + I⩽2d
2i [f ].

Next, we need a corollary of the invariance principle which is also used in [7], and towards
this end, we define the parameter Γρ(µ, τ):

▶ Definition 12. Let Φ be the cumulative distribution function of N (0, 1). We denote

Γρ(µ, τ) def= Pr
[
X ⩽ Φ−1(µ) ∧ Y ⩾ Φ−1(1 − τ)

]
,

where (X, Y ) are ρ-correlated Gaussian random variables. If µ = τ , we write Γρ(µ), we also
omit ρ when clear from context.

Asymptotics for the value Γρ(µ, τ) exist (and are not too hard to establish), however, we
will only require the fact that Γρ(ε) is a positive constant for all ρ < 1 and ε > 0. With the
parameter Γρ(µ, τ) in hand, we now state the corollary of the invariance principle necessary
for our analysis which can also be found in [7].

▶ Theorem 13. Let q ∈ N be an integer and let T be a connected symmetric Markov chain
on [q], with eigenvalues λ0 = 1 ⩾ . . . ⩾ λq−1. If ρ := max(|λ1|, |λq−1|) < 1, then for any
µ, τ > 0 there exist δ > 0 and d ∈ N, for which the following holds. For all functions
f, g : [q]n → [0, 1], if E[f ] ⩾ µ,E[g] ⩾ τ , and ⟨f, T ⊗ng⟩ ⩽ 1

2Γρ(µ, τ), then there exists a
coordinate i = 1, . . . , n such that I⩽d

i [f ], I⩽d
i [g] ⩾ δ.

2.2.3 A Markov Chain on [4]2

We end this section with the following claim due to [7] establishing the existence of a Markov
chain on [4]2 with certain properties:

▷ Claim 14. There exists a connected symmetric Markov chain T on {0, 1, 2, 3}2 with
max(|λ1|, |λq−1|) < 1, such that if T ((x1, x2) ↔ (y1, y2)) > 0 then {x1, x2} ∩ {y1, y2} = ∅.
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3 Hardness of Almost Coloring Almost 3-Colorable Graphs

3.1 The Starting Point: 2-to-2 Games
The starting point of our reduction is the hardness of 2-to-2 Games with imperfect com-
pleteness [15, 6, 5, 16] (see [18, 14] for an exposition). Specifically, we will use the following
formulation:

▶ Theorem 15. For all s, η > 0, given a 2-to-2 Games instance Ψ, it is NP-hard to distinguish
between:

YES case: iSat(Ψ) ⩾ 1 − η.
NO case: sat(Ψ) ⩽ s.

Additionally, in both the Yes and No cases, the graph G underlying Ψ satisfies the following
regularity property: for all ε ⩽ β ⩽ 1, any set S ⊆ V of fractional size β contains at least
Ω(β2) fraction of the edges of G.

3.2 A Reduction from 2-to-2 Games to Almost 4-Coloring
In this section, we apply the reduction of [7] on instances from Theorem 15 to get the
following hardness result for almost 4-coloring:

▶ Theorem 16. For all ε, η > 0, given an edge weighted graph G = (V, E, w), it is NP-hard
to distinguish between:

Yes case: iCol4(G) ⩾ 1 − η

No case: any set S ⊆ V of fractional size at least ε contains edges of total weight of at
least Ω

(
ε2Γρ(ε/2)

)
, where ρ ∈ (0, 1) is an absolute constant.

Proof. Let Ψ = (G = (V, E), Σ, Φ) be a 2-to-2 Games instances from Theorem 15 with
completeness 1 − η and soundness s > 0, and let T be the Markov chain from Claim 14.
Without loss of generality, we assume that the alphabet Σ is [2R], where 2R = |Σ|. Below,
when we write Γ, we mean Γ = Γρ where ρ is the absolute constant from Claim 14.

We construct a graph G = (V ′, E′) by replacing each vertex u ∈ V by a block of vertices
{u} × {0, 1, 2, 3}2R, denoted by B[u]. Thus, V ′ =

⋃
u∈V B[u]. As for the edges of H, for an

edge {u, v} ∈ E in G with a 2-to-2 constraint described by the permutations π, σ ∈ S2R, we
add an edge between (u, x) and (v, y) if T ⊗R(xπ ↔ yσ) > 0, in which case we assign the
edge the weight 1

|E| T
⊗R(xπ ↔ yσ).

Completeness. If iSat(Ψ) ⩾ 1 − η, then there is S ⊆ V of fractional size 1 − η and a
assignment c : S → [2R], satisfying all constraints within S. For each u ∈ S we assign the
block B[u] by A(u, x) = xc(u), and note that this assignment forms a 4-coloring of

⋃
u∈S B[u].

Thus, iCol4(G′) ⩾ 1 − η.

Soundness. Assume towards contradiction that there is a set of vertices S′ ⊆ V ′ of fractional
size ε that contains less than cε2Γ(ε/2) of the edges (weighted), where c > 0 is an absolute
constant to be determined. Define

S
def=

{
v ∈ V

∣∣∣ |B[v] ∩ S′| ⩾ ε

2 |B[v]|
}

.

By an averaging argument we have that |S| ⩾ ε
2 |V |, and for each v ∈ S we define

fv : {0, 1, 2, 3}2R → {0, 1} by fv(x) = 1(v,x)∈S . Thus, E[fv] = |B[v]∩S′|
|B[v]| ⩾ ε

2 for all v ∈ S.
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By the regularity condition on Ψ, the set S contains at least αε2 fraction of the edges of
Ψ, where α > 0 is an absolute constant. Fix u, v ∈ S between which there is an edge and
let π, σ be the permutations defining the constraint on it. Note that the weight of edges
between the block of u and the block of v is proportional to ⟨fπ−1

u , T ⊗Rfσ−1
v ⟩. Thus, as the

total weight edges covered by S′ is at most cε2Γ(ε/2), it follows that for at least half of the
edges (u, v) inside S we have that

⟨fπ−1
u , T ⊗Rfσ−1

v ⟩ ⩽ 2cε2Γ(ε/2)
αε2 <

1
2Γ(ε/2)

where we used the fact that c is sufficiently small. We refer to such edges (u, v) as good.
Fix a good edge (u, v). Applying Theorem 13 we find d ∈ N and δ > 0 depending only on

ε, such that there is i ∈ {1, . . . , R} for which I⩽d
i [fπ−1

u ] ⩾ δ, I⩽d
i [fσ−1

v ] ⩾ δ. Using Claim 11
we conclude that

I⩽2d
π(2i−1)[fu] + I⩽2d

π(2i)[fu] = I⩽2d
2i−1[fπ−1

u ] + I⩽2d
2i [fπ−1

u ] ⩾ I⩽d
i [fπ−1

u ] ⩾ δ,

I⩽2d
σ(2i−1)[fv] + I⩽2d

σ(2i)[fv] = I⩽2d
2i−1[fσ−1

v ] + I⩽2d
2i [fσ−1

v ] ⩾ I⩽d
i [fσ−1

v ] ⩾ δ.

Taking List[u] =
{

i ∈ {1, . . . , R}
∣∣∣ I⩽2d

i [fu] ⩾ δ
2

}
, we conclude that for each good edge

(u, v) it holds that the lists List[u] and List[v] contain a pair of assignments satisfying the
constraint on (u, v). Also, by Fact 9 the size of each one of these lists is at most 4d

δ . Thus, if
we choose for each u ∈ S a label from List[u] uniformly at random, then we get an assignment
that satisfies at least δ

4d of the good edges in expectation. Therefore, in expectation, it
satisfies at least Ω(ε2δ/d) of the constraints of Ψ. In particular, there exists an assignment
to Ψ satisfying at least Ω(ε2δ/d) of the constraints in it, and this is a contradiction provided
that the soundness parameter s is sufficiently small. ◀

3.3 Sparsification: Hardness of Almost 4-coloring on Bounded Degree
Graphs

In this section, we start with instances produced from Theorem 16, and reduce them to
unweighted graph instances in which the maximal degree is bounded. To do so, we apply the
random sparsification technique from [1]. More precisely, we show the following result:

▶ Theorem 17. For all ε, η > 0, given a graph G = (V, E) it is NP-hard under randomized
reductions to distinguish between:

Yes case: iCol4(G) ⩾ 1 − η

No case: G has no independent set of size ε |V |.
Moreover, the maximal degree of a vertex in G is at most O

(
1

ε2Γ(ε/2))

)
.

Proof. Let (G = (V, E), w) be a weighted graph as in Theorem 16, and construct a graph
G′ = (V ′, E′) in the following way:

Step 1: reduce the average degree and remove weight. Let d−1 = C−1 · ε2Γ(ε/2) for
a large absolute constant C > 0 to be determined. Independently sample dn edges from
G (allowing repetitions), with probabilities proportional to the weights and include them,
unweighted, in the graph G′.

Completeness. It is clear that iCol4(G′) ⩾ iCol4(G) as G′ is a subgraph of G.

APPROX/RANDOM 2023
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Soundness. Let S ⊆ V be a set of fractional size ε, and recall that it contained at least
cε2Γ(ε/2) of the total weight, for some c > 0. Thus, the probability that S is an independent
set in G′ is at most(

1 − cε2Γ(ε/2)
)dn

⩽ e−cε2Γ(ε/2)dn ⩽ e−ncC ⩽ 2−2n

for sufficiently large C > 0. As there are at most 2n distinct such sets S, it follows from
the union bound that the probability at least one of them is an independent set is at most
2n · 2−2n ⩽ 2−n.

Step 2: Average to maximal degree. After step 1 the average degree is at most 2d. We
remove from G′ vertices with degree higher than 4d. By Markov’s inequality, at most half of
the vertices are removed. Consequently, if an almost coloring for 1 − η of the vertices existed,
the same coloring colors at least 1 − 2η of the vertices. Similarly, if the largest independent
set had fractional size at most ε, after removing vertices, no independent set has a fractional
size larger than 2ε. ◀

3.4 Decreasing the Chromatic number
The final step in our proof is to apply a transformation on instances from Theorem 17 that
reduces the almost coloring number in the “yes case” to 3, while keeping the soundness
in the form of almost coloring. Toward this end, we use the directed line graph. The line
graph was shown by [9, 20] to reduce the chromatic number (to be roughly logarithmic in
the chromatic number of the original graph). This fact was used in [17, 8] to get hardness
results for 3-colorable graphs. We also use this property of the line graph. For our purposes
though, we show that a stronger guarantee can be made so long as the original graph has a
bounded degree.

▶ Definition 18. For a digraph G = (V, E), the directed line graph of G, denoted by
δ(G) = (V ′, E′), is defined in the following way:

The vertices are V ′ = E(G), the (directed) edges of the original graph G.
The edges are any pair of edges of G that shares a vertex, namely:

E′ = {((u, v), (v, w)) | (u, v), (v, w) ∈ E(G)}.

Applying the line-graph twice is denoted by δ2(G) def= δ(δ(G)).

We use the following properties of the line graph. The first two lemmas address the
completeness of the reduction.

▶ Lemma 19. If G is 4-colorable, then χ(δ2(G)) ⩽ 3.

Proof. Given a 4-coloring c : V → {0, 1, 2, 3} of G, we can color δ2(G) in the following way:
for every vertex ((i, j), (j, k)), if c(j) ∈ {0, 1, 2} we will assign the color c(j). Otherwise, we
will assign any color in {0, 1, 2} \ {c(i), c(k)}. ◀

Next, we show that if G has bounded degree and a large induced subgraph which is
4-colorable, then δ2(G) is almost 3-colorable.

▶ Lemma 20. For a directed graph G = (V, E) with bounded degree d, if iCol4(G) ⩾ 1 − η,
then iCol3(δ2(G)) ⩾ 1 − 6d2η.
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Proof. Since iCol4(G) ⩾ 1 − η, there exists an induced subgraph H of G, where |V (H)| ⩾
(1 − η) |V (G)| and χ(H) ⩽ 4. By Lemma 19 we get that δ2(H) is 3-colorable. Therefore, it
suffices to bound the fractional number of vertices of δ2(G) that are not vertices of δ2(H).

The set V (δ2(G))\V (δ2(H)) contains vertices of the form ((u, v), (v, w)) when {u, v, w} ̸⊆
V (H). The fractional size of V (G)\V (H) in V (G) is at most η, and for each vertex v ∈ V (G),
there exists at most 3d2 vertices in V (δ2(G)) that include v. Therefore, at most |V (G)| 3d2η

of the vertices are not inside V (δ2(H)), which implies that
∣∣V (δ2H)

∣∣ ⩾ (1 − 6d2)
∣∣V (δ2G)

∣∣
and so iCol3(δ2(G)) ⩾ 1 − 6d2η. ◀

The next lemma addresses the soundness of the reduction:

▶ Lemma 21. Let G = (V, E) be a directed graph with a maximal degree of at most d. Then

iCol⌊log(Q)⌋(δ(G)) ⩽ d − 1
d

+ iColQ(G)
d

.

Proof. For S ⊆ V (δG) = E(G) and a partial t = ⌊log(Q)⌋ coloring c : S → [t], we can
construct the following partial coloring of G. Let H ⊆ V (G) be the set of vertices u such
that (u, v) ∈ S for all neighbours v of u in G. Define f : H → P ([t]) by

f(u) = {c((u, v)) | (u, v) ∈ E(G)}.

The function above is indeed a valid partial coloring, since for each (u, v) ∈ E(G), such that
u, v are both colored, c((u, v)) ∈ f(u) and c((u, v)) ̸∈ f(v). This partial coloring has at most
Q colors, since |P([t])| = 2t ⩽ 2log(Q) = Q.

Finally, by definition, we must have that |H| ⩽ iColQ(G) |V |. On the other hand, if the
size of S is denoted by 1 − η, then we have that H contains at least (1 − dη) |V | vertices. It
follows that 1 − dη ⩽ iColQ(G), and so η ⩾ 1−iColQ(G)

d . ◀

We are now ready to complete the proof of Theorem 1, restated below:

▶ Theorem 22. For all k ∈ N there is δ = δ(k) < 1 such that the following holds for all
η > 0. Given an undirected graph G = (V, E), it is NP-hard (under randomized reductions)
to distinguish between:

Yes case: iCol3(G) ⩾ 1 − η

No case: iColk(G) ⩽ 1 − δ

Moreover, the problem is NP-hard on instances with bounded degrees (depending only on k).

Proof. We start with a graph G from Theorem 17 with sufficiently small parameters, construct
δ2(G), and replace the directed edges with undirected ones. Let d be the bound on the
maximal degree of G.

Completeness. If iCol4(G) ⩾ 1 − η, then by Lemma 20 iCol3(δ2(G)) ⩾ 1 − 6d2η, which is
at least 1 − √

η provided η is small enough (recall that d only depends on the soundness
parameter ε in Theorem 17).

Soundness. Suppose that the largest independent set in G has fractional size at most 1/Q.
By Lemma 21 we get that iCol⌊log(Q/2)⌋(δG) ⩽ 2d−1

2d + 1
4d . Note that the maximum degree

in δ(G) is at most 4d, so applying Lemma 21 on δ(G) we get that

iCol⌊log(⌊log(Q/2)⌋)⌋(δ2(G)) ⩽ 4d − 1
4d

+ 4d − 1
16d2 = 1 − 1

16d2 . ◀
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4 Discussion

As discussed in the introduction, we believe that it may be possible to improve Theorem 1
so that in the “no case”, the graph does not contain an independent set of fractional size ε.
More precisely, we believe that the following conjecture should hold:

▶ Conjecture 23. For all ε, η > 0, given an undirected graph G = (V, E), it is NP-hard to
distinguish between:

Yes case: iCol3(G) ⩾ 1 − η

No case: G does not contain an independent size of fractional size ε.
If true, Conjecture 23 would be a significant result in our opinion. To start with, it immediately
implies an improvement on the best known hardness of approximation result for Vertex
Cover (to factor 3/2 − ε for all ε > 0, where the state of the art NP-hardness result stands at√

2 − ε). Below, we show that a strong enough form of Theorem 1 in which δ is a sufficiently
large function of k (more specifically, δ ⩾ 2−o(k)) implies that Conjecture 23 holds. We
remark that unfortunately, in our proof δ = 22−kO(1)

, which is quantitatively not strong
enough to conclude Conjecture 23.

▶ Definition 24. Given a graph G = (V, E) and t ∈ N, define G[t] = (V [t], E[t]) as:
The vertices are (a1, . . . , at) ∈ V t.
There is an edge between A = (a1, . . . , at) and B = (b1, . . . , bt), if we can move from A to
B by replacing one vertex with one of his neighbors.

(b1, . . . , bt) = (a1, . . . , ai−1, u, ai+1 . . . , at).

The following claim shows that the transformation from G to G[t] has an amplification-type
effect:

▷ Claim 25. If iColQ(G) ⩽ 1 − (1 − c)Q, then for all ε > 0, there exists t = t(Q, ε) such that
G[t] has no independent set of size c + ε.

Proof. Fix t. For an independent set I ⊆ V [t] we define

estI(v) := |{(a1, . . . , at−1, v) ∈ V [t]} ∩ I|
|{(a1, . . . , at−1, v) ∈ V [t]}|

For any independent set I and v ∈ V , it holds that estI(v) ⩽ IS(G[t−1]), where IS(G) denotes
the fractional size of the largest IS in G. This holds since {(a1, . . . , at−1) | (a1, . . . , at−1, v) ∈
I} is an IS in G[t − 1]. It also follows that IS(G[1]) ⩾ IS(G[2]) ⩾ IS(G[3]) ⩾ . . . (as
Ev [est(v)] = |I|/|V [t]|).

Let ρ > 0 be a parameter. Since IS(G[1]) ⩾ IS(G[2]) ⩾ IS(G[3]) ⩾ . . ., there exists
t ⩽ ⌈1/ρ2⌉ + 1, for which IS(G[t − 1]) − IS(G[t]) ⩽ ρ2. Fixing a maximal independent
I ⊆ V [t], it holds that estI(v) ⩽ IS(G[t]) + ρ2 for all v ∈ V . By Markov’s inequality,
for at most ρ|V | vertices of G, estI(v) < IS(G[t]) − ρ. We say a vertex v ∈ V is good if
estI(v) ⩾ IS(G[t]) − ρ.

Sampling a1, . . . , at−1 ∈ V uniformly and taking {u | (a1, . . . , at−1, u) ∈ I} Q times, we
get Q independent sets, which is a partial Q-coloring. For a good vertex v, the probability
that it is included in one of the Q samples is at least

1 − (1 − estI(v))Q ⩾ 1 − (1 − IS(G[t]) + ρ)Q,
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so the expected fractional size of such Q coloring is at least:

(1 − ρ)
(

1 − (1 − IS(G[t]) + ρ)Q
)

|V | .

As this must be smaller than iColQ(G) ⩽ 1 − (1 − c)Q, it follows that IS(G[t]) ⩽ c + O(ρ),
and the proof is concluded for small enough ρ. ◁

▶ Corollary 26. If δ(Q) > 1
2o(Q) in Theorem 22, then Conjecture 23 holds.

Proof. Start with a graph G = (V, E) from Theorem 22 and take G[t] for sufficiently large t.
If iCol3(G) ⩾ 1 − η and S ⊆ V is a set of fractional size at least 1 − η such that the induced
subgraph on S is 3-colorable, then we may color St by (a1, . . . , at) →

∑t
i=1 c(ai) (mod 3),

when c : S → {0, 1, 2} is a 3-coloring of S.
The soundness follows from Claim 25. ◀
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1 Introduction

We study the problem of extracting randomness from somewhere-random sources, and related
combinatorial phenomena: partition analogues of Shearer’s lemma on projections. For the
(completely self-contained) combinatorics, see Section 1.2, Section 6 and Section 7.

A t-part somewhere-random source is a tuple (X1, . . . , Xt) of (possibly correlated) {0, 1}n-
valued random variables Xi, where some unknown Xi is guaranteed to be uniformly distrib-
uted. We will take t to be constant and n growing throughout this paper. A merger is a
seeded device that takes a somewhere-random source and purifies its randomness. Mergers
have been extensively studied in the theory of extractors, and have played an important
role in their development. In fact, there were at least 3 distinct points in the history of
extractors [19, 15, 7] when the best known explicit extractor constructions were based on
new advances in explicit merger constructions.

An important observation is that t-part somewhere-random sources are special cases of
sources with (min) entropy rate 1/t. Thus any randomness purifying device (such as an
extractor, condenser or disperser) that can give guarantees when fed a source with entropy
rate at least 1/t is automatically some kind of merger for t-part somewhere-random sources.

In the literature, mergers have only been studied in the condensing regime: where their
output is required to have high entropy rate (rather than requiring the output to be near-
uniform). It turns out that information-theoretically, condensing mergers are completely
overshadowed by classical condensers. A condenser is a seeded device that takes in a source
with sufficient entropy rate and outputs a random variable with high entropy rate. Thus a
condenser that can operate on sources with entropy rate 1/t is automatically a condensing
merger for t-part somewhere-random sources. It turns out that whatever parameter ranges
are achievable by condensing mergers can be completely explained by condensers.

In this paper, we study mergers in the extracting regime: where their output is required
to be near-uniform. Our main result is a characterization of the seed-length needed for such
extracting mergers. Unlike the tragic case of condensing mergers and their relationship with
condensers, extracting mergers are able to step out of the shadow of extractors, and carve a
niche, albeit small, for themselves.

We also study extracting multimergers, where more random variables out of the given
tuple of random variables are required to be uniform and independent. This leads us to a
number of interesting combinatorial / geometric questions, for which we give some new and
basic combinatorial theorems (such as a partition analogue of Shearer’s lemma on projections
of a set in a product space).

1.1 Overview of results
Our results are best viewed in contrast to the situation with classical extractors and condensers.
An extractor takes a source with some min-entropy and an independent uniform seed, and
outputs a nearly-uniform distributed random variable. A condenser takes a source with
some min-entropy and an independent uniform seed, and outputs a source with higher
min-entropy-rate.

Both extractors and condensers are functions of the form:

F : {0, 1}n × {0, 1}d → {0, 1}m,

where d is the “seed-length” and m is the “output-length”.
Consider a random source X that is {0, 1}n-valued and has entropy rate 1/t (which means

that its min-entropy is ≥ n/t).
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In the case of extractors, for (1 − ϵ)-fraction of j ∈ {0, 1}d, the output F (X, j) is required
to be ϵ-close in statistical distance to the uniform distribution over {0, 1}m. In the case of
condensers, for (1 − ϵ)-fraction of j ∈ {0, 1}d, the output F (X, j) is required to be ϵ-close in
statistical distance to some {0, 1}m-valued random variable with min-entropy ≥ k′.

Extractors and condensers are qualitatively very different from the point of view of
seed-length. We summarize their salient features below:

There are no seedless extractors or condensers.
There are condensers with constant seed-length d = O(log 1

ϵ ) which are lossless (we
can take k′ as large as n

t + d), provided m > k′ + Ω(log 1
ϵ ).

The seed-length required for an extractor to extract one bit of entropy from a random
source ({0, 1}n)t is log n + 2 log 1

ϵ + O(1). Furthermore, this seed-length suffices to extract
almost all the entropy out of the source.

A merger takes in a t-part somewhere-random source (which is a special case of a source
with entropy rate 1

t ) and an independent uniform seed, and outputs a source with purer
randomness. This naturally creates two kinds of mergers - condensing mergers and extracting
mergers. To the best of our knowledge, only condensing mergers have been studied in the
literature, and the (non-constructive) existence results for condensing mergers all follow from
the existence results for condensers mentioned above.

Let E : ({0, 1}n)t × {0, 1}d → {0, 1}m be an extracting merger, namely its output is
guaranteed to be ϵ-close to uniform on {0, 1}m whenever given a t-part somewhere-random
source as input.

▶ Theorem A (Informal). We have the following:
There are no seedless extracting mergers, even with output length 1.
There are extracting mergers with constant seed length O(log 1

ϵ ), which can output a
constant number of nearly-uniform bits.
Nevertheless, if the seed length required for an extracting merger to extract almost all (or
even a constant fraction) the entropy out of a somewhere-random source is Θ(log n).

The first item is trivial. The second item is also not difficult, but it already gives a taste of
why things are different with extracting mergers. Indeed, randomly-chosen functions are not
extracting mergers. The third item in the above theorem is our main technical result. It is
proved by a second-moment strengthening of the graph-theoretic approach of Radhakrishnan
and Ta-Shma to extractors.

1.2 Projections of partitions
Our study of these questions about randomness extraction leads us to formulate and
make progress on a new and natural combinatorial question: the partition analogue of
the Shearer/Loomis-Whitney inequalities on volumes of projections. These questions arise
when we consider the problem of extracting randomness from t-part s-where random sources
(where s out of the t parts of the source are uniform and independent). We call devices
that do this extracting multimergers. For the rest of this subsection we only focus on the
combinatorial aspect.

Let A be an “nice” subset of the solid cube [0, 1]3 with (Lebesgue) volume α. Consider
the three axis-parallel 2-dimensional projections: ΠXY (A), ΠY Z(A), ΠXZ(A). The Shearer/
Loomis-Whitney inequality [5, 14] implies that at least one of these three projections has
area at least α2/3. This is tight, as witnessed by the case where A is a cube of side-length
α1/3 (and this is roughly the only such example).

APPROX/RANDOM 2023
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Now consider the following partition variant: Let A, B be “nice” subsets of [0, 1]3 that
partition [0, 1]3. Consider the six axis-parallel 2-dimensional projections of these two sets:
ΠXY (A), ΠY Z(A), ΠXZ(A) and ΠXY (B), ΠY Z(B), ΠXZ(B). How large can we guarantee
that one of them is?

Using the previous inequality and the fact that at least one of A, B has volume at least
1/2, we get that one of these six 2-dimensional projections has area at least (1/2)2/3 ≥ 0.6299.
For this bound to be tight, we would need both A and B to have volume 1/2, and both A

and B to be tight examples for the Shearer/Loomis-Whitney inequality. This would require
us to be able to cover [0, 1]3 by two cubes of volume 1/2 – which is clearly impossible. This
suggests that there should be a better bound!

We show, using a delicate study of the sections of the cube and some seemingly lucky
inequalities, a tight bound for this problem.

▶ Theorem B (Informal). Let A, B be “nice” subsets of [0, 1]3 that partition [0, 1]3. Then at
least one of the six 2-dimensional projections

ΠXY (A), ΠY Z(A), ΠXZ(A), ΠXY (B), ΠY Z(B), ΠXZ(B),

has area at least 3/4.

Such “projections of partitions” questions can be formulated in great generality, and
apart from Theorem B (whose proof we find very interesting), we also make some general
observations and make some slightly non-trivial progress. We think these are very natural
combinatorial questions worthy of further study. Beyond having connections to mergers, these
questions turn out to be related to the KKL and BKKKL theorems/conjectures [12, 2, 10, 9]
on influences of Boolean functions on the solid cube [0, 1]n. For example, Theorem B implies
that any 3-variable Boolean function f : [0, 1]3 → {0, 1} has some variable and some bit b

such that the “influence towards b” of that variable is at least 1/4, and this is tight.
Another application of such results is to partition analogues of the Kruskal-Katona

theorem. For example, Theorem B implies that for any partition of
([n]

3
)

into two parts, one
of the two parts has shadow with size at least

( 3
4 − o(1)

) (
n
2
)
.

1.3 Related work
Mergers were introduced by Ta-Shma [19] in his thesis, and were used to construct state-of-
the-art extractors at the time (these were condensing mergers). Later, [15] proposed a new
condensing merger construction based on taking random linear combinations of vectors over
finite fields, and used it in their construction of the first extractors optimal upto constant
factors. This analysis was greatly improved by Dvir [6] through his solution to the finite
field Kakeya conjecture. Subsequently, [8, 7] defined a higher degree polynomial variant
of the [15] merger, and by developing the ideas from [6], were able to construct improved
(constant seed) mergers and state-of-the-art extractors. Subsequently [20] showed how to get
analogous explicit constructions of condensers (subsuming the [7] condensing mergers) by
improving the [11] condensers.

Another interesting constant seed condensing merger is by [18], which was constructed
on the way to multi-source extractors.

Our lower bounds for the seed length of extracting mergers are proved by developing
ideas from the paper of Radhakrishnan and Ta-Shma [17]. A recent beautiful proof of [1]
also achieved a similar result to [17] in a much cleaner way, but we were not able to adapt
this approach to our setting.
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Other papers relevant to the study of multimergers are related to resilient functions [3, 4,
16].

Finally, our combinatorial results are related to the KKL and BKKKL theorems/conjec-
tures [12, 2, 10, 9] on influences of Boolean functions on the solid cube [0, 1]n.

1.4 Organization
We give the basic definitions of extracting mergers and extracting multimergers in Section 2.
In Section 3 we start with a simple proof that seedless mergers do not exist. This is followed
by showing the existence of mergers and multimergers in the extracting regime with constant
seed-length. We prove our lower bound on the seed length of extracting mergers in Section 4,
which culminates in Theorem 9. In Section 5 we explore the connection between seedless
extracting mergers and projections of partition questions. Section 6 is devoted to proving
Theorem 17, our (optimal) lower bound on partitioning the unit cube into 2 parts, and
Section 7 is devoted to partitions of the cube into 3 parts.

2 Sources and Mergers

▶ Definition 1 (k-source). For any k, we say that a random variable X is a k-source if for
all x, Pr[X = x] ≤ 2−k

2.1 Somewhere and s-where Random Sources
▶ Definition 2 (Somewhere-Random Source). For a domain D, a tuple X = (X1, . . . , Xt) of
jointly distributed D-valued random variables is called a t-part somewhere random source if
for some i ∈ [t], the distribution of Xi is uniform over D.

▶ Definition 3 (s-where Random Source). For a domain D and an integer s > 0, a tuple
X = (X1, . . . , Xt) of jointly distributed D-valued random variables is called a t-part s-where
random source if for some distinct i1, . . . , is ∈ [t], the joint distribution of (Xi1 , Xi2 , . . . , Xis

)
is uniform over Ds.

2.2 Extracting Mergers and Multimergers
▶ Definition 4 (Extracting Mergers). Let n, t, d, m be integers, and let ϵ > 0.

A function E : ({0, 1}n)t × {0, 1}d → {0, 1}m is called an (n, t, d, m, ϵ)-extracting
merger if the following holds.

Suppose X = (X1, . . . , Xt) is a somewhere-random source where each Xi is {0, 1}n-valued.
Then for at least (1 − ϵ)-fraction of j ∈ {0, 1}d, the distribution of:

Z = E(X, j),

is ϵ-close to the uniform distribution on {0, 1}m.

We will sometimes refer to these as ϵ-extracting mergers (since n, d, t, m are related to
the shape of E).

▶ Definition 5 (Extracting Multimergers). Let n, t, s, d, m be integers, and let ϵ > 0.
A function E : ({0, 1}n)t × {0, 1}d → {0, 1}m is called an (n, d, t, m, ϵ, s)-extracting

multimerger if the following holds.

APPROX/RANDOM 2023
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Suppose X = (X1, . . . , Xt) is an s-where random source where each Xi is {0, 1}n-valued.
Then for at least (1 − ϵ)-fraction of j ∈ {0, 1}d, the distribution of:

Z = E(X, j),

is ϵ-close to the uniform distribution on {0, 1}m.

We will sometimes refer to these as (ϵ, s)-extracting multimergers (since n, d, t, m are
related to the shape of E).

Observe that the s = 1 case in the above definition corresponds to extracting mergers.

Note on the definitions

In all our definitions, we chose to define the “strong” versions (where the output bits are
required to be independent of the seed) for simplicity. In fact, our existence result for mergers
is for the strong version, and our impossibility result is for the weak version.

3 Simple results about extracting mergers

For the rest of this paper, we only talk about extracting (not condensing) mergers and
multimergers.

3.1 Seedless Mergers do not exist
We begin with the simple observation that there are no seedless extracting mergers.

▶ Theorem 6 (There are no seedless mergers). Let n be an integer and ε < 1/2. There does
not exist a function M : {0, 1}n × {0, 1}n → {0, 1} that is an ε-merger.

Proof. Fix an ε < 1/2. Assume for the sake of contradiction there exists an ε-merger
M : {0, 1}n × {0, 1}n → {0, 1}.

In particular, this means for every function f : {0, 1}n → {0, 1}n, when X is distributed
uniformly over {0, 1}n, the distribution of M(X, f(X)) is ε-close to uniform on {0, 1} –
and in particular, it has full support on {0, 1}. We will now demonstrate a function
g : {0, 1}n → {0, 1}n such that M(g(Y ), Y ) is constant for uniformly distributed Y , thus
contradicting the merger assumption.

Fix any y ∈ {0, 1}n. Consider the constant function fy : {0, 1}n → {0, 1}n given by
fy(x) = y for all x. By our hypothesis above, the distribution of M(X, fy(X)) has full
support {0, 1}. Thus there exists x ∈ {0, 1}n such that M(x, y) = 0. Pick one such x and
call it g(x).

Thus we have M(g(y), y) = 0 for all y ∈ {0, 1}n. We conclude that for uniform Y ∈ {0, 1}n,
M(g(Y ), Y ) = 0, which is the desired contradiction. ◀

3.2 Extracting mergers with constant seed exist
We now show that constant seed extracting mergers with constant output length exist. While
the proof is quite simple, it is interesting because (1) constant seed extractors do not exist,
(2) a random choice of E : ({0, 1}n)t × {0, 1}d → {0, 1}m does not give a constant seed
extracting mergers, and most importantly (3) as we will later see, the seed length still needs
to be superconstant to produce a superconstant number of output bits, as we will see in the
next section.
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▶ Theorem 7. Let n, t be integers and ϵ > 0.
Then for any integer m ≤ n, setting:

d = log m + log(t − 1) + 2 log 1
ϵ

+ O(1),

there exists a function E : ({0, 1}n)t × {0, 1}d → {0, 1}m that is an ε-extracting merger.

Thus with O(log t + log 1
ϵ ) bits of seed, we can extract poly( 1

ϵ ) bits out.

Proof. We want to get an extracting merger E((x1, . . . , xt), j), where the xi ∈ {0, 1}n and
j ∈ {0, 1}d.

The nature of a somewhere-random source is that applying a truncation to each element
of the source yields a smaller somewhere-random source. The idea of our extracting merger
is to truncate our somewhere-random source, and to then apply a standard seeded extractor
to the entire truncated source. The truncation makes the instance size smaller, enabling us
to use a reduced seed length in the extractor.

We truncate each xi to the first m bits, thus obtaining x′
1, . . . , x′

t ∈ {0, 1}m.
We can verify that our truncation to the first m bits produces a source (X ′

1, . . . , X ′
t)

of length mt and min-entropy m. By the standard result on existence of extractors (See
Theorem 6.14 in [21]), there exists a strong (m, ϵ)-extractor Ext0 : {0, 1}mt × {0, 1}d →
{0, 1}m with seed length d = log m + log(t − 1) + 2 log 1

ϵ + O(1).
We can thus define the function E : ({0, 1}n)t × {0, 1}d → {0, 1}m:

E((x1, . . . , xt), j) = Ext0((x′
1, . . . , x′

t), j).

Observe that the function E is an ϵ-extracting merger that uses a seed j of length d and
outputs m bits as required. ◀

In contrast, a random E : ({0, 1}n)t × {0, 1}d → {0, 1} is not an extracting merger at all!
To see this, it suffices to fix t = 2. If E is chosen at random, then for every j ∈ {0, 1}d and
x ∈ {0, 1}n, it is very likely that there exists a y ∈ {0, 1}n such that E((x, y), j) = 0. Define
fj : {0, 1}n → {0, 1}n by fj(x) = any such y. Then for every j ∈ {0, 1}d, E(X, fj(X), j) is
constant when X is picked uniformly at random, showing that E is not a merger.

3.3 Extracting Multimergers
Using the same idea, we also get interesting multimergers.

▶ Theorem 8. Let n, t, s be integers with s < t, and ϵ > 0. Then for any integer a ≤ n,
setting m = s · a and:

d = log a + 2 log 1
ϵ

+ log(t − s) + Ω(1),

there exists a function E : ({0, 1}n)t × {0, 1}d → {0, 1}m that is an (ε, s)-extracting mul-
timerger.

Taking for example s = t − 1 and a = poly
( 1

ϵ

)
≪ n, we get that by investing O(log 1

ϵ )
bits of seed, we can extract poly

( 1
ϵ

)
· t bits of randomness from any t-part (t − 1)-where

random source X ∈ ({0, 1}n)t.
In this setting of parameters, the seed length does not even depend on t, and we could

take t to be growing superconstantly while preserving constant seed-length.

APPROX/RANDOM 2023
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3.4 Seedless Multimergers
Our final observation of this section is that for multimergers with large t and where s is a
large fraction of t, seedless multimergers with small error do exist. Indeed, if s = t − 1, and
we define E : ({0, 1}n)t → {0, 1} by

E(x1, . . . , xt) = Maj(x11, x21, . . . , xt1),

it is easy to see that E is a seedless (ϵ, t − 1)-multimerger for ϵ = O( 1√
t
). Replacing E with

any resilient function gives other examples of seedless multimergers (including with larger
output size).

Investigation of this phenomenon leads us to the projections of partitions question, and
we explicitly give the connection and some results about it in a later section. Nevertheless,
this seems like the tip of an iceberg.

4 Mergers with large output need large seed

In this section we show a lower bound on the seed-length for 2-source extracting mergers,
essentially showing that the dependence of the seed-length for extracting mergers in Theorem 7
on m and ϵ is tight.

▶ Theorem 9. Let ϵ < 1/40. Let E : ({0, 1}n)2 × {0, 1}d → {0, 1}m be a ε-extracting merger.
Then for ϵ ≥ 2−Ω(m), we have:

d ≥ log m + log 1
ϵ

− O(1).

and for ϵ < 2−Ω(m), we have:

d ≥ Ω(m).

For the proof of this theorem, the representation of the inputs and output of E in
terms of bits is a distraction. So, letting N = 2n, D = 2d, M = 2m and identifying
{0, 1}n, {0, 1}d, {0, 1}m with [N ], [D], [M ] respectively, we will view E as a function E :
[N ]2 × [D] → [M ].

Recalling the ϵ-extracting merger property, we have that E is such that whenever X, Y

are jointly distributed [N ]-valued random variables, with at least one of them uniformly
distributed, and J is picked uniformly from [D] and independently of (X, Y ), then the
distribution of E((X, Y ), J) is ϵ-close to the uniform distribution on [M ].

We will show that for ϵ ≥ M−Ω(1), we have:

D ≥ Ω
(

1
ϵ

log M

)
,

and for ϵ < M−Ω(1), we have:

D ≥ Ω
(

MΩ(1)
)

.

Our proof is based on the following idea. Consider a uniformly random subset S ⊆ [M ]
of size λM . For each y ∈ [N ], we look for an x such that for all j ∈ [D], E(x, y, j) ̸∈ S. If
there is such an x, then we define g(y) = x. If such an x exists for most y, then for uniformly
chosen Y ∈ [N ], J ∈ [D], we have PrY,J [E(g(Y ), Y, J) ∈ S] ≪ λ − ϵ, contradicting the merger
property. Thus for most S, for many y there is no such x; namely, for most S, for many y,
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for all x, there is some j, such that E(x, y, j) ∈ S. For this to happen for even one y turns
out to be very abnormal, and we derive our lower bound on D by digging into its structure.
This part uses a second moment variation of the Radhakrishnan-TaShma [17] approach to
extractor lower bounds.

4.1 Abnormal conductors
A map C : [N ] × [D] → [M ] is called a conductor (this is a general term capturing the shape
of seeded extractors and seeded condensers). We will also view this as a bipartite multigraph
with [N ] on the left, [M ] on the right and D labelled edges coming out of every left vertex.

If C is chosen at random, then for most S ⊆ [M ] of size λM and most x ∈ [N ], we expect
about λ fraction of the edges coming out of x to land in S. But we do not expect that this
will happen for all x! When C is chosen at random, then for most S there will be some
x ∈ [N ] for which a very small (≪ λ) fraction of edges coming out of x lie in S. We capture
this with the following definition.

▶ Definition 10. Let C : [N ] × [D] → [M ] be a conductor. Let S be a subset of [M ].
We say the vertex x ∈ [N ] totally misses S (under C) if

|{j ∈ [D] | C(x, j) ∈ S}| = 0.

We say the vertex x ∈ [N ] mostly misses S (under C) if

|{j ∈ [D] | C(x, j) ∈ S}| <
1
2

|S|
M

D.

▶ Definition 11 (Abnormal conductors). Let C : [N ] × [D] → [M ] be a conductor.
We say that C is (γ, λ)-abnormal if

Pr
S∈([M]

λM)
[∃x ∈ [N ] s.t. x mostly misses S] < 1 − γ.

▶ Lemma 12 (Extracting mergers contain abnormal conductors). Suppose 0 < γ < λ
2 − ϵ.

Suppose E : [N ]2×[D] → [M ] is an ϵ-extracting merger. For y ∈ [N ], let Ey : [N ]×[D] → [M ]
be the function E(·, y, ·). Then for some y ∈ [N ], Ey is (γ, λ)-abnormal.

Proof. Suppose not; namely that for all y ∈ [N ], we have that Ey is not (γ, λ)-abnormal.
Pick S ∈

([M ]
λM

)
uniformly at random.

Let By be the event that there exists some x ∈ [N ] that mostly misses S under Ey.
By our assumption, Pr[By] ≥ 1 − γ. So the expected number of y for which By happens

is at least (1 − γ)N .
Thus there exists some particular choice of S for which By happens for at least (1 − γ)N

many ys. Call this choice S0. Define f : [N ] → [N ] by defining f(y) as follows:

f(y) =
{

any x that mostly misses S0 under Ey By happened,
arbitrary By did not happen.

Then

Pr
Y ∈[N ],J∈[D]

[E(f(Y ), Y, J) ∈ S0] <
λ

2 (1 − γ) + γ < λ − ϵ.

But |S0| = λM , and thus we get a contradiction to the ϵ-extracting merger property of E.
This completes the proof. ◀
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4.2 The structure of abnormal conductors
The previous lemma gave us a y for which Ey is abnormal. We now use show that abnormal
conductors are very structured, and thus get a lower bound on D.

▶ Lemma 13. Let C : [N ]×[D] → [M ] be a (γ, λ)-abnormal conductor. Suppose 10ϵ < λ < 1
2 .

Suppose that for X ∈ [N ] and J ∈ [D] picked uniformly and independently, C(X, J) is
ϵ-close to the uniform distribution on [M ]. Then

D ≥ min
{

Ω
(

1
λ

log(λγM)
)

, Ω
(

λγM)1/4
)}

.

Proof. We begin with a pruning phase to remove the high degree vertices from the right
side. At first reading, it will be helpful to consider the case where B = ∅.

Let β = λ
5 −ϵ. Note that the average right degree is ND/M . Define the set of high-degree

right vertices by:

B = {z ∈ [M ] | there are at least 1
β

ND

M
edges to z}.

Thus |B| ≤ βM . By the hypothesis on C(X, J), we have

Pr
X∈[N ],J∈[D]

[C(X, J) ∈ B] ≤ β + ϵ.

Let G be the set of all vertices on the left that do not have too many edges to B; namely:

G = {x ∈ [N ] | x has at most 2(β + ϵ)D edges to B }.

Then |G| ≥ N/2.
Now pick S ∈

([M ]
λM

)
uniformly at random. If there is a vertex x ∈ G that totally misses

S \ B, then by choice of G:

|{j | C(x, j) ∈ S}| ≤ 2(β + ϵ)D <
1
2λD,

namely, x mostly misses S.
By our hypothesis on the abnormality of C, the existence of such an x cannot happen

too often. Thus:

Pr
S

[∃x ∈ G | x totally misses S \ B] < 1 − γ. (1)

For each x ∈ G, let Ax be the event that x totally misses S \ B under C.
We are interested in the event that some x ∈ G totally misses S \ B, namely, the event∨

x∈G Ax.
Observe that1

Pr[Ax] ≥
(

M−D
λM

)(
M

λM

) ≥ e−4λD =: p.

Define A =
∑

x∈G Ax. Then E[A] ≥ |G|p.

1 Here we use the observation that (1 − D
(1−λ)M ) < e

− 2D
(1−λ)M < e−4D/M , which follows from the fact that

1 − x < e−2x for x < 1/2.
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By the second moment method, we have:

Pr[A = 0] ≤ Var[A]
E[A]2 .

But Equation (1) tells us that Pr[A = 0] > γ.
Thus Var[A] ≥ γE[A]2 ≥ γ · p2|G|2.
We now extract some structure from this.
We have:

Var[A] =
∑

x,x′∈G

(Pr[Ax ∧ Ax′ ] − Pr[Ax] Pr[Ax′ ]) .

Two simple observations about this expression:
Each term in the sum above is at most 1.
Furthermore, if x, x′ have no common neighbors in [M ] \ B, then the corresponding term
of the sum above is ≤ 0. Indeed, if Ux, Ux′ ⊆ [M ] \ B are the neighborhoods of x and x′

in [M ] \ B, and if they are disjoint, then:

Pr[Ax] =
(

M−|Ux|
λM

)(
M

λM

) ,

Pr[Ax′ ] =
(

M−|Ux′ |
λM

)(
M

λM

) ,

Pr[Ax ∧ Ax′ ] =
(

M−|Ux∪Ux′ |
λM

)(
M

λM

) =
(

M−|Ux|−|Ux′ |
λM

)(
M

λM

) .

So

Pr[Ax ∧ Ax′ ]
Pr[Ax] Pr[Ax′ ] =

λM−1∏
i=0

(M − i) · (M − |Ux| − |Ux′ | − i)
(M − |Ux| − i) · (M − |Ux′ | − i) ≤ 1.

Combining the largeness of Var[A] with these two observations tells us that there are
many x, x′ ∈ G which have a common neighbor in [M ] \ B. Specifically:

γp2|G|2 ≤ Var[A] ≤
∑

x,x′∈G

1[x, x′ have a common neighbor in [M ] \ B].

Thus there are at least γp2|G|2 ≥ 1
4 γp2N2 pairs x, x′ from G that have a common

neighbor in [M ] \ B.
Now the initial pruning we did will help us. Since all the vertices in [M ] \ B have degree

at most 1
β

ND
M , we can bound the number of such pairs x, x′. For every vertex x ∈ G, there

are at most D · 1
β

ND
M vertices x′ such that x and x′ share a common neighbor in [M ] \ B.

Thus the total number of pairs x, x′ from G that have a common neighbor in [M ] \ B is at
most

N · D · 1
β

ND

M
= 1

β

D2

M
N2.

Thus 1
4 γp2 ≤ 1

β
D2

M . Since p = e−4λD, we get:

M ≤ 4
γβ

D2e8λD.

This means that either D ≥ Ω
(

(γβM)1/4
)

= Ω
(
(γλM)1/4)

, or else:

D ≥ Ω
(

1
λ

log(γβM)
)

≥ Ω
(

1
λ

log(γλM)
)

. ◀
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4.3 Putting everything together
We now prove Theorem 9.

Proof. Let E : [N ]2 × [D] → [M ] be an ϵ-extracting merger.
Set λ = 20ϵ and γ = ϵ. Lemma 12 tells us that there is some y := y0 for which Ey is

(λ, γ)-abnormal.
Now, since E is ϵ-extracting, we have that Ey(X, J) = E(X, y, J) is ϵ-close to the uniform

distribution on [M ] for uniform and independent X ∈ [N ] and J ∈ [D]. Thus Lemma 13
tells us that

D ≥ min
{

Ω
(

1
ϵ

log(ϵ2M)
)

, Ω
(

(ϵ2M)1/4
)}

.
If ϵ ≥ 1

M1/10 , then the first expression is smaller and

D ≥ Ω(1
ϵ

log M),

and if ϵ < 1
M1/10 , then E is also a 1

M1/10 -extracting merger, and thus using the above lower
bound for 1

M1/10 in place of ϵ, we get that:

D ≥ MΩ(1). ◀

5 Seedless Extracting Multimergers and Projections of Partitions

In this section, we study seedless multimergers. Here our understanding is far from complete,
and we suggest many directions for research.

We begin by observing a connection between seedless multimergers and a very natural
and clean geometric question: how do we partition the unit cube [0, 1]t into c parts to ensure
that all s-dimensional axis-parallel projections of all parts are small? We then prove some
interesting positive and negative results about special cases of this general question. We
conclude by collecting a number of observations and questions about this natural partitioning
problem.

5.1 Seedless Multimergers with 1 bit output
In Section 3.1 we have already seen that there are no seedless mergers (i.e., with s = 1). We
now look into seedless multimergers.

Let us consider the simplest nontrivial situation: t = 3 and s = 2, and m = 1 (we only try
to extract 1 bit of randomness), with n big. Suppose a given function E : ({0, 1}n)3 → {0, 1}
is known to be a (ϵ, s)-multimerger. For convenience, we identify {0, 1}n with [N ], for
N = 2n.

By the multimerger property, for every function f : [N ]2 → [N ], the distribution of
E(X, Y, f(X, Y )) should be ϵ-close to uniform. Let

PXY,0 = {(x, y) ∈ [N ]2 : ∃z | E(x, y, z) = 0}.

Notice that this is the projection of E−1(0) to two coordinates.
If PXY,0 is bigger than 1+ϵ

2 N2, then we can violate the multimerger property: we define
f : [N ]2 → [N ] by f(x, y) = z, if any, such that E(x, y, z) = 0”. Then E(X, Y, f(X, Y )) for
uniform and independent X, Y ∈ [N ] is ϵ-far from uniform.
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We have a similar observation for all the other two dimensional projections, and also for
the set E−1(1). Thus if a seedless one-bit output multimerger for 3-part 2-where random
sources exists, then there is a partition of [N ]3 into 2 parts such that each part has all its
2-dimensional axis parallel projections have size at most 1+ϵ

2 N2.
The connection also goes in reverse. Suppose we have a partition A, B of [N ]3 for which

each part has all its 2-dimensional axis parallel projections with size at most 1+ϵ
2 N2. Let

E : [N ]3 → {0, 1} be the unique function with E−1(0) = A and E−1(1) = B. Suppose
(X, Y, Z) is an [N ]3-valued random variable that is 2-where random. Then we claim that
E(X, Y, Z) is ϵ-close to the uniform distribution. Indeed, if (X, Y ) is uniformly distributed
over [N ]2 (the cases of (Y, Z) and (X, Z) being uniformly distributed are similar), then:

Pr[E(X, Y, Z) = 0] ≤ Pr
X,Y

[∃z ∈ [N ] s.t. E(X, Y, z) = 0]

≤ Pr
X,Y

[∃z ∈ [N ] s.t. (X, Y, z) ∈ A]

≤ |ΠXY (A)|
N2

≤ 1 + ϵ

2 ,

Pr[E(X, Y, Z) = 1] ≤ Pr
X,Y

[∃z ∈ [N ] s.t. E(X, Y, z) = 1]

≤ Pr
X,Y

[∃z ∈ [N ] s.t. (X, Y, z) ∈ B]

≤ |ΠXY (B)|
N2

≤ 1 + ϵ

2 ,

which implies the desired ϵ-closeness to uniform of E(X, Y, Z).
The exact same argument applies to general t, s. We record this below.

▶ Theorem 14. Let N = 2n. There exists a seedless (n, d, t, m, ϵ, s)-multimerger if and only
if there is a partition of [N ]t into two sets A, B such that for every subset U ⊆ [t] of size s,
the projections ΠU (A) and ΠU (B) onto the coordinates U are of size at most 1+ϵ

2 Ns.

Motivated by this, we consider general projections of partitions questions, where the set
[N ]t is partitioned into c parts, and we seek to minimize the maximum s-dimensional axis
parallel projection of all the parts2.

As noted in the introduction, there is a basic bound for this problem that comes from
Shearer’s lemma. It says that there is a lower bound of

( 1
c

)s/t
Ns on the size of some

projection. This bound is usually not tight – but it sometimes is! Whenever c is a perfect
t’th power, then this bound is tight, and is realized by a partition into product sets. But
for other c this kind of partition does not work, and very interesting questions ensue. In
particular, we would like to highlight the case of N gigantic, and c = poly(t) (so that c is
clearly not a perfect t’th power).

Here is one observation that gives a flavor of what happens for large t and s. When c is a
constant, and s = t − o(

√
t), there is a partition so that all s-dimensional projections of size

1
c + o(1). This comes by considering suitable threshold partitions. Extensions of this are
related to the BKKKL [2, 10] conjectures on low influence functions.

2 For c > 2, the problem of getting such partitions with c parts is somewhat related to the problem of
multimergers with log2(c) bit output, but the connection is not as tight as for the case of c = 2

APPROX/RANDOM 2023
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This question is also equivalent to a problem in the continuous domain about open covers
of [0, 1]t. Here we want to minimize the maximum s-dimensional projection size when we
cover [0, 1]t by c open sets.

In the following sections, we discuss two results on partitioning in three dimensions. For
the first result, we get (to our surprise!) the tight bound for partitioning the cube into two
parts. For the second result, we get nontrivial bounds (both upper and lower) for partitioning
the cube into three parts.

Apology

These questions are more naturally phrased as questions about covers rather than partitions.
However we stick to the partition language because of the particular sequence of events that
led us to these problems.

6 Partitioning the 3-dimensional cube into two parts

In this section, we prove a tight bound on the largest 2 dimensional axis parallel projection
of a part when partitioning [0, 1]3 into 2 parts.

Let πXY , πY Z , πXZ : [0, 1]3 → [0, 1]2 be the 2-dimensional projection maps.
The following example gives a nice partitioning with small projections.

▶ Definition 15 (Majority Partitioning Scheme). We define the function MAJ3 : [0, 1]3 →
{0, 1} as

MAJ3(x, y, z) = Maj(x1, y1, z1)

where Maj denotes the Majority function on 3 bits, and where x1, y1, z1 denote the indicator
variables for whether x > 1/2, y > 1/2, z > 1/2 respectively.

We refer to the partition naturally induced by the output of MAJ3 on the input space
[0, 1]3 i.e. {MAJ−1

3 (0), MAJ−1
3 (1)}, as the Majority Partitioning Scheme.

We next record the observation tha all 2-dimensional axis-parallel projections of all parts
in the majority partitioning scheme on [N ]3 are of size at most 3

4 N2, which is stated in the
following lemma:

▶ Lemma 16 (Majority Partitions Optimally). Every 2-dimensional projection of every partition
in the majority partitioning scheme MAJ3 on [0, 1]3 is of size at most 3

4 .

In the other direction, we first prove a lower bound on projection sizes for a discrete
version of the problem.

Let N be a large positive integer. We reuse notation and let πXY , πY Z , πXZ : [N ]3 → [N ]2
be the 2-dimensional projection maps.

▶ Theorem 17. Let A, B ⊆ [N ]3 be a partition.
Then one of the six 2-dimensional projections of A and B

πXY (A), πY Z(A), πXZ(A), πXY (B), πY Z(B), πXZ(B)

has size at least 3
4 N2.

Proof of Theorem 17 can be found in the appendix.
By a simple discretization argument, we get the following corollary:
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2

Figure 1 Majority Partitioning of the cube into 2 parts, where the partitioned sets are coloured
in red and blue. Observe that all projections of the red set and the blue set are of equal size 3

4 , and
Theorem 17 implies this partitioning is optimal.

▶ Corollary 18. Any cover of [0, 1]3 by two open sets A, B has one of the following 6 sets:

ΠXY (A), ΠY Z(A), ΠXZ(A), ΠXY (B), ΠY Z(B), ΠXZ(B)

having area at least 3/4.

Thus we get that MAJ3 is an optimal partition for partitioning [N ]3 into two parts.

7 Partitioning the 3-dimensional cube into three parts

In this section we study the case of partitioning the 3 dimensional cube [0, 1]3 into 3 parts.
We begin with a nice partition of [0, 1]3 into 3 parts so that each part has small 2-

dimensional axis-parallel projections.

▶ Definition 19 (Golden Ratio Partitioning Scheme). Let u be the positive root of x2 + x = 1.
We define the function GR3 : [0, 1]3 → {0, 1, 2} as

GR3(x, y, z) =


0, |x| > u, |y| > u

1, |x| ≤ u, |y| ≤ u, |z| ≤ 1
2

2, otherwise.

We refer to the partition into 3 parts naturally induced by the output of GR3 on the input
space [0, 1]3 i.e. {GR−1

3 (0), GR−1
3 (1), GR−1

3 (2)}, as the golden ratio partitioning scheme.

▶ Lemma 20 (Golden Ratio Partitioning Bound). Every 2-dimensional projection of every
partition in the golden ratio partitioning scheme GR3 on [0, 1]3 is of size u ≤ 0.619.

We do not know if this is the optimal partition into 3 parts. For the rest of this section,
we prove the best lower bound that we know. As in the previous section, we do this via an
analogous discrete problem.

Let η0 ≈ 0.5264 be the real number ∈ [0.5, 1.0] satisfying:

(2 − 3η0) ·
(

2 − 2
√

1 − η0

)
+ (3η0 − 1) = 1

6(4 − η0).

APPROX/RANDOM 2023



52:16 Extracting Mergers and Projections of Partitions

u

1-u

u1-u

1
2

1
2

Figure 2 Golden Ratio Partitioning of the cube into 3 parts, where the partitioned sets are
coloured in red, green and blue. The green and red parts are just translates of each other. Here u is
the positive root of x2 + x = 1.

▶ Theorem 21. Let A, B, C ⊆ [N ]3 be a 3-partition of [N ]3. Then one of the nine 2-
dimensional projections of A, B and C, i.e.,

ΠXY (A), ΠXY (B), ΠXY (C), ΠY Z(A), ΠY Z(B), ΠY Z(C), ΠXZ(A), ΠXZ(B), ΠXZ(C) has
size at least η0N2.

Proof of Theorem 21 can be found in the appendix.
This gives us a corresponding result about covers of [0, 1]3 with 3 open sets.

▶ Corollary 22. Any cover of [0, 1]3 by three open sets A, B, C has one of the following 9
sets:

ΠXY (A), ΠY Z(A), ΠXZ(A), ΠXY (B), ΠY Z(B), ΠXZ(B), ΠXY (C), ΠY Z(C), ΠXZ(C)

having area at least η0.
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A Appendix

▶ Theorem 23 (Restatement of Theorem 17). Let A, B ⊆ [N ]3 be a partition.
Then one of the six 2-dimensional projections of A and B

πXY (A), πY Z(A), πXZ(A), πXY (B), πY Z(B), πXZ(B)

has size at least 3
4 N2.

Proof. Suppose πXY (A) and πXY (B) are both at most 3
4 N2.

Fix z ∈ [N ]. Let us consider the slice Sz = [N ]2 × {z}, and focus on the X and Y

projections of the sets A ∩ Sz and B ∩ Sz (so four projections in all, each being a subset
of [N ]).

Define3:

AXz = {x | ∀y ∈ [N ], (x, y, z) ∈ A}.

3 If A, B was merely a cover of [N ]3 rather than a partition, the correct definition would be
AXz = {x |̸ ∃y ∈ [N ] s.t. (x, y, z) ∈ B},

etc, and the rest of the proof would remain the same.
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BXz = {x | ∀y ∈ [N ], (x, y, z) ∈ B}.

AY z = {y | ∀x ∈ [N ], (x, y, z) ∈ A}.

BY z = {y | ∀x ∈ [N ], (x, y, z) ∈ B}.

Let αXz, βXz, αY z, βY z ∈ [0, 1] be their fractional sizes (= size divided by N).
Then we have the following:
AXz ∩ BXz = ∅ and AY z ∩ BY z = ∅. Thus:

αXz + βXz ≤ 1, (2)
αY z + βY z ≤ 1. (3)

((AXz × [N ]) ∪ ([N ] × AY z)) ⊆ πXY (A).
This is because any (x, y) ∈ (AXz × [N ]) has (x, y, z) ∈ A, and thus (x, y) ∈ πXY (A).
The fractional size of the left hand side is 1 − (1 − αXz)(1 − αY z), and the fractional size
of the right hand side is ≤ 3/4.
This gives us (after applying the AM-GM inequality4):

αXz + αY z ≤ 1. (4)

Similarly,

((BXz × [N ]) ∪ ([N ] × BY z)) ⊆ πXY (B),

βXz + βY z ≤ 1. (5)

At most one of AXz, BY z can be nonempty, and at most one of AY z, BX,z can be nonempty.
This is because x ∈ AXz and y ∈ BY z imply that (x, y, z) ∈ A and (x, y, z) ∈ B

respectively. Thus at most one of αXz, βY z, and at most one of αY z, βXz can be nonzero.

Putting everything together, we get that only two of the four numbers αXz, βXz, αY z, βY z

can be nonzero, and furthermore, the sum of those two is bounded above by 1.
Therefore, for each z ∈ [N ],

αXz + βXz + αY z + βY z ≤ 1.

Averaging in z, we get that

Ez[αXz + βXz + αY z + βY z] ≤ 1,

and thus one of the four numbers:

Ez[αXz], Ez[βXz], Ez[αY z], Ez[βY z]

is at most 1/4.
Finally, observe that (1 − Ez[αXz]) is the fractional size of πXZ(B) (and similarly for the

other three numbers), and so one of the four projections

πXZ(B), πXZ(A), πY Z(B), πY Z(A)

has size at least 3
4 N2. ◀

4 For any non-negative real numbers x and y, √
x · y ≤ x+y

2
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▶ Theorem 24 (Restatement of Theorem 21). Let A, B, C ⊆ [N ]3 be a 3-partition of [N ]3.
Then one of the nine 2-dimensional projections of A, B and C, i.e.,

ΠXY (A), ΠXY (B), ΠXY (C), ΠY Z(A), ΠY Z(B), ΠY Z(C), ΠXZ(A), ΠXZ(B), ΠXZ(C) has
size at least η0N2.

Before embarking on the proof of Theorem 21, we note down a simple set intersection
lemma that will be useful.

▶ Lemma 25 (Set intersection inequality). Suppose U, V, W be arbitrary sets which have union
equal to T .

Then

|U | + |V | + |W | ≥ 2|T | − (|U \ (V ∪ W )| + |V \ (W ∪ U)| + |W \ (U ∪ V )|) + |U ∩ V ∩ W |.

This lemma gives a way to get a lower bound on the average size of three sets U, V, W

that cover a set T by first proving an upper bound on the sizes of the “unique” parts
U \ (V ∪ W ), V \ (U ∪ W ), W \ (U ∪ V ). The proof is simple and omitted.

We now prove Theorem 21.

Proof. Consider any partition A, B and C of [N ]3 into 3 parts. Suppose ΠXY (A), ΠXY (B)
and ΠXY (C) are at most η0. (If not we are done).

Fix z ∈ [N ].
Our first step is to consider the slice Sz = [N ]2 × {z}, and focus on the X and Y

projections of the 3 sets A ∩ Sz, B ∩ Sz, C ∩ Sz (so six projections in all, each being a subset
of [N ]).

Define:

AXz = {x ∈ [N ] | ∃y ∈ [N ] s.t. (x, y, z) ∈ A}.

BXz = {x ∈ [N ] | ∃y ∈ [N ] s.t. (x, y, z) ∈ B}.

CXz = {x ∈ [N ] | ∃y ∈ [N ] s.t. (x, y, z) ∈ C}.

AY z = {y ∈ [N ] | ∃x ∈ [N ] s.t. (x, y, z) ∈ A}.

BY z = {y ∈ [N ] | ∃x ∈ [N ] s.t. (x, y, z) ∈ B}.

CY z = {y ∈ [N ] | ∃x ∈ [N ] s.t. (x, y, z) ∈ C}.

Note that:

AXz ∪ BXz ∪ CXz = [N ]

AY z ∪ BY z ∪ CY z = [N ]

since A, B, C is a partition of [N ]3.
Next we identify the “pure” parts of these projections, defined below:

ÃXz = AXz \ (BXz ∪ CXz)

B̃Xz = BXz \ (CXz ∪ AXz)

C̃Xz = CXz \ (AXz ∪ BXz)

ÃY z = AY z \ (BY z ∪ CY z)
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B̃Y z = BY z \ (CY z ∪ AY z)

C̃Y z = CY z \ (AY z ∪ BY z)

Furthermore, we have:

{x | Π−1
XZ(x, z) ⊆ A} ⊆ ÃXz

and five similar containments for B̃Xz, C̃Xz, ÃY z, B̃Y z, C̃Y z.
Let α̃Xz, β̃Xz, γ̃Xz, α̃Y z, β̃Y z, γ̃Y z ∈ [0, 1] be their fractional sizes.
Note that since the corresponding sets are disjoint, we have:

α̃Xz + β̃Xz + γ̃Xz ≤ 1 (6)

α̃Y z + β̃Y z + γ̃Zz ≤ 1 (7)

▶ Lemma 26. For any z ∈ [N ], out of the 6 variables α̃Xz, β̃Xz, γ̃Xz, α̃Y z, β̃Y z, γ̃Y z, let H be
the set of those variables that are nonzero. Then H is a subset of at least one of the following
sets of variables:

{α̃Xz, α̃Y z}, {β̃Xz, β̃Y z}, {γ̃Xz, γ̃Y z}, {α̃Xz, β̃Xz, γ̃Xz}, {α̃Y z, β̃Y z, γ̃Y z}

Proof. It is a consequence of the easy observation that α̃Xz and β̃Y z cannot both be nonzero
(and 5 similar easy observations). ◀

Let

δXz =
{

1 α̃Y z, β̃Y z, γ̃Y z > 0
0 otherwise

.

δY z =
{

1 α̃Xz, β̃Xz, γ̃Xz > 0
0 otherwise

.

Note that δXz depends on the projections in the Y direction (and vice versa). The reason
for this definition is the following observation: if δXz = 1, then we have

AXz ∩ BXz ∩ CXz = AXz = BXz = CXz = [N ], (8)

and similarly, if δY z = 1, then we have

AY z ∩ BY z ∩ CY z = AY z = BY z = CY z = [N ], (9)

which is something that our set intersection lemma can exploit.
Define

λXz = α̃Xz + β̃Xz + γ̃Xz − δXz,

λY z = α̃Y z + β̃Y z + γ̃Y z − δY z.

λz = λXz + λY z.

Note that by Equations (6), (7), for all z,

λXz ≤ 1. (10)
λY z ≤ 1. (11)
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By the set intersection lemma,

|AXz| + |BXz| + |CXz| ≥ 2N −
(

|ÃXz| + |B̃Xz| + |C̃Xz|
)

+ |AXz ∩ BXz ∩ CXz|

≥ (2 − λXz)N

Similarly,

|AY z| + |BY z| + |CY z| ≥ (2 − λY z)N

Summing over z ∈ [N ] and adding these two equations, we get:

ΠXZ(A) + ΠXZ(B) + ΠXZ(C) ≥ (2 − Ez[λXz]) N2, (12)

ΠY Z(A) + ΠY Z(B) + ΠY Z(C) ≥ (2 − Ez[λY z]) N2, (13)

ΠXZ(A) + ΠXZ(B) + ΠXZ(C) + ΠY Z(A) + ΠY Z(B) + ΠY Z(C) ≥ (4 − Ez[λz]) N2. (14)

Our goal is now to get an upper bound on Ez[λz].
To get our main result, we will show that Ez[λz] ≤ λ∗ := 4 − 6η0 ≈ 0.856 (or else we find

a large projection in some other way). This will show that one of the 6 projections on the
left hand side is at least η0N2, as desired.

If we just want to get a projection of size ≥ 1
2 N2, then it suffices to show that λ∗ ≤ 1,

and this turns out to be simpler.
Towards that end, we define αX to be the fraction of x for which {x} × [N ] ⊆ ΠXY (A).

Similarly define αY , βX , βY , γX , γY .
Note that since ÃXz × [N ] × {z} ⊆ A, we have:

αXz ≤ αX ,

and 5 similar inequalities.
Note that αX ≤ η, and 5 similar inequalities.
Define u : [0, 1] → [0, 2] by:

u(a) = 2 − 2
√

1 − a.

Using the argument used to arrive at Equation (4) (by the AM-GM inequality), we have

α̃Xz + α̃Y z ≤ u(η0) ( and thus αX + αY ≤ u(η0) ).

and 2 similar pairs of inequalities.
Let gX = max{αX + βX , βX + γX , αX + γX}., similarly qY .
By the inequalities above, we have: gX + gY ≤ 2η0 + u(η0).
Now let qX = Prz∈[n][exactly two of αXz, βXz, γXz are nonzero], similarly define qY .

q = Pr
z∈[n]

[at most one of αXz, βXz, γXz and at most one of αY z, βY z, γY z is nonzero]

We are now in a position to state a key lemma which will prove our lower bound:

▶ Lemma 27.

Ez[λz] ≤ q · u(η0) + qX · min(gX , 1) + qY · min(gY , 1)).

Proof. Let z ∈ [N ]. We take cases on which of the 6 numbers α̃Xz, β̃Xz, γ̃Xz, α̃Y z, β̃Y z, γ̃Y z

are nonzero. By Lemma 26, there only a few cases to consider.
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If the first three numbers are nonzero or the second three numbers are nonzero, then λz

is nonpositive because the sum of those three is at most 1 (by Equations (6), (7), and
δXz = 1 or δY z = 1.
If exactly two of the first three numbers are nonzero, then λz is at most min(gX , 1). This
happens for qX fraction of the z’s.
If exactly two of the second three numbers are nonzero, then λz is at most min(gY , 1).
This happens for qY fraction of the z’s
If at most one of the first three numbers and at most one of the second three numbers is
nonzero, then λz is at most 2 − 2

√
1 − η0. This happens for q fraction of the z’s. ◀

Now q+qX +qY ≤ 1. At this point, we already see that Ez[λz] ≤ 1 (since u(η0) ≈ 0.6237 ≤ 1),
and this gives us the result that some projection has size at least 1

2 N2.
To get our improved bound of η0N2, we need one more idea.

▶ Lemma 28. qX + Ez[λY z] ≤ 1 and qY + Ez[λXz] ≤ 1

Proof. We prove the first inequality, the second being similar. qX is the fraction of z for
which exactly two of {α̃Xz, β̃Xz, γ̃Xz} are nonzero. For such a z, we have α̃Y z = β̃Y z =
γ̃Y z = δY z = 0, and thus λY z = 0. Along with Equations (10), (11), this completes the
proof. ◀

By Equation (12), if Ez[λXz] is at most 2 − 3η0, then we get a projection onto the XZ plane
of size at least η0N2, and we are done. Similarly, by Equation (13), if Ez[λY z] is at most
2 − 3η0, then we get a projection onto the Y Z plane of size at least η0N2, and we are done.
Thus we may assume that both Ez[λXz] and Ez[λY z] are at least 2 − 3η0.

By the previous lemma, we thus get that qX , qY ≤ 3η0 − 1. Summarizing everything
we know: gX + gY ≤ 2η0 + u(η0), qX , qY ≤ 3η0 − 1. and q + qX + qY ≤ 1. Under these
constraints, we claim that: q · u(η0) + qX · min(gX , 1) + qY · min(gY , 1) ≤ λ∗. By inspection,
we see that the LHS is maximized when:

gX = 1, qX = 3η0 − 1, q = 1 − qX = 2 − 3η0,

which makes it evaluate to:

(2 − 3η0) · u(η0) + (3η0 − 1) = 1
6(4 − η0) = λ∗,

where the first equality is the defining equation of η0, and the second equality is the definition
of λ∗. This completes the proof. ◀
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We consider spin systems on general n-vertex graphs of unbounded degree and explore the effects of
spectral independence on the rate of convergence to equilibrium of global Markov chains. Spectral
independence is a novel way of quantifying the decay of correlations in spin system models, which
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independence holds. Finally, for monotone spin systems such as the Ising model and the hardcore
model on bipartite graphs, we show that spectral independence implies that the mixing time of the
systematic scan dynamics is O(∆c log n) for a constant c > 0 independent of ∆ and n. Systematic
scan dynamics are widely popular but are notoriously difficult to analyze. This result implies
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1 Introduction

Spectral independence is a powerful new approach for quantifying the decay of correlations
in spin system models. Initially introduced in [4], this condition has revolutionized the study
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independence has been shown to be instrumental in determining the convergence rate of the
Glauber dynamics, the simple single-site update Markov chain that updates the spin at a
randomly chosen vertex in each step.

The first efforts in this series (see [4, 24, 25]) showed that spectral independence implies
optimal O(n log n) mixing of the Glauber dynamics on n-vertex graphs of bounded degree
for general spin systems. The unbounded degree case was studied in [20, 19, 3, 44], while [6]
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explored the effects of this condition on the speed of convergence of global Markov chains
(i.e., Markov chains that update the spins of a large number of vertices in each step) in
the bounded degree setting. Research exploring the applications of spectral independence
is ongoing. We contribute to this line of work by investigating how spectral independence
affects the speed of convergence of global Markov chains for general spin systems on graphs
of unbounded degree.

A spin system is defined on a graph G = (V, E). There is a set S = {1, . . . , q} of spins or
colors, and configurations are assignments of spin values from S to each vertex of G. The
probability of a configuration σ ∈ SV is given by the Gibbs distribution:

µ(σ) = e−H(σ)

Z
, (1)

where the normalizing factor Z is known as the partition function, and the Hamiltonian H :
SV → R contains terms that depend on the spin values at each vertex (a “vertex potential”
or “external field”) and at each pair of adjacent vertices (an “edge potential”); see Definition
24. A widely studied spin system, and one that we will pay close attention to in this paper,
is the ferromagnetic Potts model, where for a real parameter β > 0, associated with inverse
temperature in physical applications, the Hamiltonian is given by:

H(σ) = −β
∑

{u,v}∈E

1(σu = σv).

The classical ferromagnetic Ising model corresponds to the q = 2 case. (In this variant of the
Potts model, the Hamiltonian only includes edge potentials, and there is no external field.)
We shall use µIsing and µPotts for the Gibbs distributions corresponding to the Ising and
Potts models. Other well-known, well-studied spin systems include uniform proper colorings
and the hardcore model.

Spin systems provide a robust framework for studying interacting systems of simple
elements and have a wide range of applications in computer science, statistical physics, and
other fields. In such applications, generating samples from the Gibbs distribution (1) is
a fundamental computational task and one in which Markov chain-based algorithms have
been quite successful. A long line of work dating back to the 1980s relates the speed of
convergence of Markov chains to various forms of decay of correlations in the model. Spectral
independence, defined next, captures the decay of correlations in a novel way.

Roughly speaking, spectral independence holds when the spectral norm of a “pairwise”
influence matrix is bounded. To formally define it, let us begin by introducing some notations.
Let Ω ⊆ SV be the support of µ: the set of configurations σ such that µ(σ) > 0. A
pinning τ on a subset of vertices Λ ⊆ V is a fixed partial configuration on Λ; i.e., a spin
assignment from SΛ to the vertices of Λ. For a pinning τ on Λ ⊆ V and U ⊆ V \ Λ, we let
Ωτ

U = {σU ∈ SU : µ(σU | σΛ = τ) > 0} be the set of partial configurations on U that are
consistent with the pinning τ . We write Ωτ

u = Ωτ
{u} if u is a single vertex. Let

Pτ := {(u, s) : u /∈ Λ, s ∈ Ωτ
u}

denote the set of consistent vertex-spin pairs in Ωτ
V \Λ under µ. For each Λ ⊆ V and pinning

τ on Λ, we define the signed pairwise influence matrix Ψτ
µ ∈ RPτ ×Pτ to be the matrix with

entries:

Ψτ
µ((u, a), (v, b)) = µ(σv = b | σu = a, σΛ = τ) − µ(σv = b | σΛ = τ)

for u ̸= v, and Ψτ
µ((u, a), (u, b)) = 0 otherwise.
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▶ Definition 1 (Spectral Independence). A distribution µ satisfies η-spectral independence if
for every subset of vertices Λ ⊆ V and every pinning τ ∈ ΩΛ, the largest eigenvalue of the
signed pairwise influence matrix Ψτ

µ, denoted λ1(Ψτ
µ), satisfies λ1(Ψτ

µ) ≤ η.

There are several definitions of spectral independence in the literature; we use here the one
from [22].

We show that spectral independence implies new upper bounds on the mixing time of
several well-studied global Markov chains in the case where the maximum degree ∆ of the
underlying graph G = (V, E) is unbounded; i.e., ∆ → ∞ with n. The mixing time is defined
as the number of steps required for a Markov chain to reach a distribution close in total
variation distance to its stationary distribution, assuming a worst possible starting state; a
formal definition is given in Section 2. The global Markov chains we consider include the
Swendsen–Wang dynamics for the ferromagnetic q-state Potts, the systematic scan dynamics
for monotone spin systems, and the block dynamics for general spin systems. These three
dynamics are among the most popular and well-studied global Markov chains and present
certain advantages (e.g., faster convergence and amenability to parallelization) to the Glauber
dynamics.

1.1 The Swendsen–Wang dynamics
A canonical example of a global Markov chain is the Swendsen–Wang (SW) dynamics for
the ferromagnetic q-state Potts model. The SW dynamics transitions from a configuration
σt to σt+1 by:
1. For each edge e = {u, v} ∈ E, if σt(u) = σt(v), independently include e in the set At with

probability p = 1 − e−β ;
2. Then, independently for each connected component C in (V, At), draw a spin s ∈ {1, . . . , q}

uniformly at random and set σt+1(v) = s for all v ∈ C.
The SW dynamics is ergodic and reversible with respect to µPotts and thus converges to it.
This Markov chain originated in the late 1980s [53] as an alternative to the Glauber dynamics,
which mixes exponentially slowly at low temperatures (large β). The SW dynamics bypasses
key barriers that cause the slowdown of the Glauber dynamics at low temperatures. For the
Ising model (q = 2), for instance, it was recently shown to converge in poly(n) steps on any
n-vertex graph for any value of β > 0 [39]. (The conjectured mixing time is Θ(n1/4), but
we seem to be far from proving such a conjecture.) For q ≥ 3, on the other hand, the SW
dynamics can converge exponentially slowly at certain “intermediate” temperatures regimes
corresponding to first-order phase transitions; see [38, 15, 36, 37, 26].

Recently, η-spectral independence (with η = O(1)) was shown to imply that the mixing
time of the SW dynamics is O(log n) on graphs of maximum degree ∆ = O(1), i.e., bounded
degree graphs [6]. This mixing time bound is optimal since the SW dynamics requires Ω(log n)
steps to mix in some cases where η and ∆ are both O(1) [7, 9]. However, it does not extend
to the unbounded degree setting since the constant factor hidden by the big-O notation
depends exponentially on the maximum degree ∆; this is the case even when η = O(1) and
β∆ = O(1). Our first result provides a mixing time bound that depends only polynomially
on ∆.

▶ Theorem 2. Let q ≥ 2, β > 0, η > 0 and ∆ ≥ 3. Suppose G = (V, E) is an n-vertex
graph of maximum degree ∆. Let µPotts be the Gibbs distribution of the q-state ferromagnetic
Potts model on G with parameter β. If µPotts is η-spectrally independent with η = O(1) and
β∆ = O(1), then there exists a constant c > 0 such that the mixing time of the SW dynamics
satisfies Tmix(PSW ) = O

(
(∆ log n)c

)
.
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The constant c has a near linear dependency on η and β∆; a more precise statement of
Theorem 2 with a precise expression for c is given in Theorem 11.

Despite the expectation that the SW dynamics mixes in O(log n) steps in weakly correlated
systems (i.e., when β∆ is small), proving sub-linear upper bounds on its mixing time has
been difficult. Recently, various forms of decay of correlation (e.g., strong spatial mixing,
entropy mixing, and spectral independence) have been used to obtain O(log n) bounds for
the mixing time of the SW dynamics on cubes of the integer lattice graph Zd, regular trees,
and general graphs of bounded degree (see [7, 9, 6]). However, for graphs of large degree,
i.e., with ∆ → ∞ with n, the only sub-linear mixing time bounds known either hold for
the very distinctive mean-field model, where G is the complete graph [35, 11], or hold for
very small values of β; i.e., β ≲ 1/(3∆) [43]. Our results provide new sub-linear mixing time
bounds for graph families of sub-linear maximum degree, provided η = O(1) and β∆ = O(1).
These last two conditions go hand-in-hand: in all known cases where η = O(1), we also have
β∆ = O(1).

On graphs of degree at most ∆, η-spectral independence is supposed to hold with η = O(1)
whenever β < βu(q, ∆), where βu(q, ∆) is the threshold for the uniqueness/non-uniqueness
phase transition on ∆-regular trees. This has been confirmed for the Ising model (q = 2)
but not for the Potts model. Specifically, for the ferromagnetic Ising model, we have
βu(2, ∆) = ln ∆

∆−2 , and when β ≤ (1 − δ)βu(2, ∆) for some δ ∈ (0, 1), µIsing is η-spectrally
independent with η = O(1/δ); see [24, 25]. In contrast, for the ferromagnetic Potts model
with q ≥ 3, there is no closed-form expression for βu(q, ∆) (it is defined as the threshold
value where an equation starts to have a double root), and for graphs of unbounded degree
η-spectral independence is only known to hold when β ≤ 2(1−δ)

∆ . As a result, we obtain the
following corollary of Theorem 2.

▶ Corollary 3. Let δ ∈ (0, 1), ∆ ≥ 3. Suppose that either q = 2 and β < (1 − δ)βu(2, ∆),
or q ≥ 3 and β ≤ 2(1−δ)

∆ . Then, there exists a constant c = c(δ) > 0 such that the mixing
time of the SW dynamics for the q-state ferromagnetic Potts model on any n-vertex graph of
maximum degree ∆ satisfies Tmix(PSW ) = O

(
(∆ log n)c

)
.

We mention that other conditions known to imply spectral independence (e.g., those in [14])
are not well-suited for the unbounded degree setting since under those conditions, the best
known bound for η depends polynomially on ∆. For another application of Theorem 2, see
Section 3.3.1 where we provide a bound on the mixing of the SW dynamics on random
graphs.

We comment briefly on our proof approach for Theorem 2. A mixing time bound for
the SW dynamics can be deduced from the so-called edge-spin factorization of the entropy
functional introduced in [7]. It was noted there that this factorization, in turn, follows
from a different factorization of entropy known as k-partite factorization, or KPF. Spectral
independence is known to imply KPF but with a loss of a multiplicative constant that depends
exponentially on the maximum degree of the graph. Our proof of Theorem 2 follows this
existing framework, but pays closer attention to establishing KPF with an optimized constant
with a better dependence on the model parameters. This is done through a multi-scale
analysis of the entropy functional; in each scale, we apply spectral independence to achieve a
tighter KPF condition. Our new results for KPF not only hold for the Potts model, but also
for a general class of spin systems, and we use it to establish new mixing time bounds for
the systematic scan dynamics and block dynamics.
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1.2 The systematic scan dynamics
Our next contribution pertains the systematic scan dynamics, which is a family of Markov
chains closely related to the Glauber dynamics in the sense that updates occur at single
vertices sequentially. The key difference is that the vertex updates happen according to a
predetermined ordering ϕ of the vertices instead of at random vertices. These dynamics offer
practical advantages since there is no need to randomly select vertices at each step, thereby
reducing computation time.

There is a folklore belief that the mixing time of the systematic scan dynamics (properly
scaled) is closely related to that of the Glauber dynamics. However, analyzing this type
of dynamics has proven very challenging (see, e.g., [28, 41, 30, 29, 49, 40, 8]), and the best
general condition under which the systematic scan dynamics is known to be optimally mixing
is a Dobrushin-type condition due to Dyer, Goldberg, and Jerrum [30]. The new developments
on Markov chain mixing stemming from spectral independence have not yet provided new
results for this dynamics, even for the bounded degree case where much progress has already
been made. We show that spectral independence implies optimal mixing of the systematic
scan dynamics for monotone spin systems with bounded marginals; we define both of these
notions next.

▶ Definition 4 (Monotone spin system). In a monotone system, there is a linear ordering
of the spins at each vertex which induces a partial order ⪯q over the state space. A spin
system is monotone with respect to the partial order ⪯q if for every Λ ⊆ V and every pair
of pinnings τ1 ⪰q τ2 on V \ Λ, the conditional distribution µ(· | σΛ = τ1) stochastically
dominates µ(· | σΛ = τ2).

Canonical examples of monotone spin systems include the ferromagnetic Ising model and the
hardcore model on bipartite graphs. As in earlier work (see [24, 25, 6]), our bounds on the
mixing time will depend on a lower bound on the marginal probability of any vertex-spin
pair. This is formalized as follows.

▶ Definition 5 (Bounded marginals). The distribution µ is said to be b-marginally bounded if
for every Λ ⊆ V and pinning τ ∈ ΩΛ, and each (v, s) ∈ Pτ , we have µ(σv = s | σΛ = τ) ≥ b.

Before stating our result for the systematic scan dynamics of b-marginally bounded
monotone spin systems, we note that this Markov chain updates in a single step each vertex
once in the order prescribed by ϕ. Under a minimal assumption on the spin system (the
same one required to ensure the ergodicity of the Glauber dynamics), the systematic scan
dynamics is ergodic. Specifically, when the spin system is totally-connected (see Definition 25),
the systematic scan dynamics is ergodic. Moreover, the systematic scan dynamics is not
necessarily reversible with respect to µ, so, as in earlier works, we work with the symmetrized
version of the dynamics in which, in each step, the vertices are updated according to ϕ first,
and subsequently in the reverse order of ϕ. The resulting dynamics, which we denote by
Pϕ, is reversible with respect to µ. Our main result for the systematic scan dynamics is the
following.

▶ Theorem 6. Let b > 0, η > 0, and ∆ ≥ 3. Suppose G = (V, E) is an n-vertex graph of
maximum degree ∆. Let µ be the distribution of a totally-connected monotone spin system
on G. If µ is η-spectrally independent and b-marginally bounded, then for any ordering ϕ,

Tmix(Pϕ) =
(e2∆

b

)9+4⌈ 2η
b ⌉

· O(log n).
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The bound in this theorem is tight: for a particular ordering ϕ, we prove an Ω(log n) mixing
time lower bound that applies to settings where ∆, b and η are all Θ(1); see Lemma 26.

We present next several interesting consequences of Theorem 6. First, we obtain the
following corollary using the known results about spectral independence for the ferromagnetic
Ising model.

▶ Corollary 7. Let δ ∈ (0, 1), ∆ ≥ 3 and 0 < β < (1 − δ)βu(2, ∆). Suppose G = (V, E) is an
n-vertex graph of maximum degree ∆. For any ordering ϕ of the vertices of G, the mixing
time of Pϕ for the Ising model on G with parameter β satisfies Tmix(Pϕ) = O(log n).

The constant hidden by the big-O notation is an absolute constant that depends only on
the constant δ, even when ∆ depends on n. This result, compared to the earlier conditions
in [28, 41, 30], extends the parameter regime where the O(log n) mixing time bound applies;
in fact, the parameter regime in Corollary 7 is tight, as the systematic scan dynamics
undergoes an exponential slowdown when β > βu(2, ∆) [49]. We also derive analogous results
for the hardcore model on bipartite graphs; see Section 4.1.

Our next application concerns the specific but relevant case where the underlying graph
is an n-vertex cube of the integer lattice graph Zd. In this context, it was proved in [8]
that all systematic scan dynamics converge in O(log n(log log n)2) steps whenever a well-
known condition known as strong spatial mixing (SSM) holds. A pertinent open question is
whether SSM implies spectral independence. In fact, spectral independence is often proved
by adapting earlier arguments for establishing SSM (see, e.g., [4, 24]). Recently, it was proved
in [23] that SSM on trees implies spectral independence on large-girth graphs. We show that
for general spin systems on Zd, SSM implies η-spectral independence with η = O(1).

▶ Lemma 8. For a spin system on a d-dimensional cube V ⊆ Zd, SSM implies η-spectral
independence, where η = O(1).

The formal definition of SSM is given later in Section 4. Lemma 8 does not assume
monotonicity for the spin system and could be of independent interest. An interesting
consequence of this lemma, when combined with Theorem 6 is the following.

▶ Corollary 9. Let d ≥ 2. For a b-marginally bounded monotone spin system on a d-
dimensional cube V ⊆ Zd, SSM implies that the mixing time of any systematic scan Pϕ is
O(log n).

For the ferromagnetic Ising model on Z2, SSM is known to hold for all β < βc(2) = ln(1+
√

2)
(see [17, 45, 2, 5]), so by Corollary 9 we deduce that when β < βc(2), the mixing time of any
systematic scan Pϕ on an n-vertex square box of Z2 is O(log n); note that βc(2) > βu(2, 2d),
the corresponding tree uniqueness threshold.

We comment briefly on the techniques used to establish our results for the systematic
scan dynamics. Our starting point is again the k-partite factorization of entropy (KPF).
Our improved bounds for KPF imply that a global Markov chain that updates a random
independent set of vertices in each step is rapidly mixing. We then use the censoring technique
from [34, 10] to relate the mixing time of this Markov chain to that of the systematic scan
dynamics. To establish Lemma 8, we use SSM to construct a contractive coupling for a
particular Markov chain. Our Markov chain is similar to the one from [31], but modified
to update rectangles instead of balls, and thus match the variant of SSM that holds up to
the critical threshold for the Ising model on Z2. This contractive coupling is then used to
establish spectral independence using the machinery from [6].
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1.3 The block dynamics
Our final result concerns a family of Markov chains known as the block dynamics. They are
a natural generalization of the Glauber dynamics where a random subset of vertices (instead
of a random vertex) is updated in each step. More precisely, let B := {B1, . . . , BK} be a
collection of subsets of vertices (called blocks) such that V = ∪K

i=1Bi. Let α be a distribution
over B. The (heat-bath) block dynamics with respect to (B, α) is the Markov chain that,
in each step, given a spin configuration σt, selects Bi ∈ B according to the distribution α

and updates the configuration on Bi with a sample from the µ(· | σt(V \ Bi)); that is, from
the conditional distribution on Bi given the spins of σt in V \ Bi. We denote this Markov
chain (and its transition matrix) by PB,α. When the Bi’s are each single vertices, and α is a
uniform distribution over the blocks in B, we obtain the Glauber dynamics. Our result for
the mixing time of the block dynamics is the following.

▶ Theorem 10. Let b > 0, η > 0 and ∆ ≥ 3. Suppose G = (V, E) is an n-vertex graph
of maximum degree ∆. Let µ be a Gibbs distribution of a totally-connected spin system on
G. Let B := {B1, . . . , BK} be any collection of blocks such that V = ∪K

i=1Bi, and let α be a
distribution over B. If µ is η-spectrally independent and b-marginally bounded, then there
exists a constant C > 0 such that the mixing time of block dynamics PB,α satisfies:

Tmix(PB,α) = O
(

α−1
min ·

(C∆ log n log log n

b7

)2+⌈ 2η
b ⌉)

,

where αmin = minv∈V

∑
B∈B αB.

Previous results for the block dynamics only apply to the bounded degree case [9, 17, 6], so
Theorem 10 provides the first bounds for its mixing time in the unbounded degree setting.

Organization. The rest of the paper is organized as follows. In Section 2, we provide a
number of definitions and background results. In Sections 3 and 4, we provide proof sketches
for our results for the SW dynamics and the systematic scan dynamics; that is, Theorems 2
and 6, respectively. Some of our proofs are deferred to the full version of the paper [12].

2 Mixing times and modified log-Sobolev inequalities

Let P be an irreducible and aperiodic (i.e., ergodic) Markov chain with state space Ω and
stationary distribution µ. Let us assume that P is reversible with respect to µ, and let

d(t) := max
x∈Ω

∥P t(x, ·) − µ∥T V := max
x∈Ω

max
A⊆Ω

|P t(x, A) − µ(A)|,

where P t(x, ·) denotes the distribution of the chain at time t assuming x ∈ Ω as the starting
state; ∥ · ∥T V denotes the total variation distance. Note that with a slight abuse of notation
we use P for both the Markov chain and its transition matrix. For ε > 0, let

Tmix(P, ε) := min{t > 0 : d(t) ≤ ε},

and the mixing time of P is defined as Tmix(P ) = Tmix(P, 1/4).
For functions f, g : Ω → R, the Dirichlet form of a reversible Markov chain P with

stationary distribution µ is defined as

EP (f, g) = ⟨f, (I − P )g⟩µ = 1
2

∑
x,y∈Ω

µ(x)P (x, y)(f(x) − f(y))(g(x) − g(y)),

where ⟨f, g⟩µ :=
∑

x∈Ω f(x)g(x)µ(x).
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The spectrum of the ergodic and reversible Markov chain P is real, and we let 1 = λ1 >

λ2 ≥ · · · ≥ λ|Ω| ≥ −1 denote its eigenvalues. The (absolute) spectral gap of P is defined by
GAP(P ) = 1 − max{|λ2|, |λ|Ω||}. When P is positive semidefinite, we have

GAP(P ) = 1 − λ2 = inf
{

EP (f, f)
⟨f, f⟩µ

| f : Ω → R, ⟨f, f⟩µ ̸= 0
}

.

For P reversible and ergodic, we have the following standard comparison between the spectral
gap and the mixing time

Tmix(P, ε) = 1
GAP(P ) · log

( 1
εµmin

)
, (2)

where µmin := minx∈Ω µ(x).
The expected value of a function f : Ω → R≥0 with respect to µ is defined as Eµ[f ] =∑

x∈Ω f(x)µ(x). Similarly, the entropy of the function with respect to µ is given by

Entµ(f) := Eµ

[
f log f

Eµ[f ]

]
= Eµ[f log f ] − Eµ[f log(Eµ[f ])].

We say that the Markov chain P satisfies a modified log-Sobolev inequality (MLSI) with
constant ρ if for every function f : Ω → R≥0,

ρ · Entµ(f) ≤ EP (f, log f).

The smallest ρ satisfying the inequality above is called the modified log-Sobolev constant of
P and is denoted by ρ(P ). A well-known general relationship (see [27, 13]) shows that

1 − 2µmin

log(1/µmin − 1)GAP(P ) ≤ ρ(P ) ≤ 2GAP(P ). (3)

For distributions µ and ν over Ω, the relative entropy of ν with respect to µ, denoted as
H(ν | µ), is defined as H(ν | µ) :=

∑
x∈Ω ν(x) log ν(x)

µ(x) . A Markov chain P with stationary
distribution µ is said to satisfy discrete relative entropy decay with rate r > 0 if for all
distributions ν:

H(νP | µ) ≤ (1 − r)H(ν | µ). (4)

It is a standard fact (see, e.g., Lemma 2.4 in [7]) that when (4) holds, then ρ(P ) ≥ r, and

Tmix(P, ε) ≤ 1
r

·
(

log log
( 1

µmin

)
+ log

( 1
2ε

))
. (5)

3 Swendsen-Wang dynamics on general graphs

In this section, we consider the SW dynamics for the q-state ferromagnetic Potts models
on general graphs. In particular, we establish Theorem 2 from the introduction, which is a
direct corollary of the following more general result.

▶ Theorem 11. Let q ≥ 2, β > 0, η > 0, b > 0, ∆ ≥ 3, and χ ≥ 2. Suppose G = (V, E) is
an n-vertex graph of maximum degree ∆ and chromatic number χ. Let µPotts be the Gibbs
distribution of the q-state ferromagnetic Potts model on G with parameter β. If µPotts is
η-spectrally independent and b-marginally bounded, then there exists a universal constant
C > 1 such that the modified log-Sobolev constant of the SW dynamics satisfies:
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ρ(PSW ) = Ω
(

b7+6κ

χ · (C∆ log n)κ · (log log n)κ+1

)
,

where κ = 1 + ⌈ 2η
b ⌉, and

Tmix(PSW ) = O
(
b−(7+6κ) · χ · (C∆ log n)κ(log log n)κ+1 · log n

)
.

Theorem 2 follows from this theorem by noting that χ ≤ ∆ and that under the assumptions
η = O(1) and β∆ = O(1), we have b = O(1) and κ = O(1).
▶ Remark 12. When ∆ is small, i.e., ∆ = o(log n), we can obtain slightly better bounds
on ρ(PSW ) and Tmix(PSW ) and replace the (C∆ log n · log log n)κ factor by a factor of
(C∆)6+4⌈ 2η

b ⌉. This result is included in the full version of this paper [12].
Before proving Theorem 11, we provide a number of definitions and required background
results in Section 3.1. We then sketch the proof of Theorem 11 in Sections 3.2 and include
some applications of this result in Section 3.3.

3.1 Factorization of entropy
We present next several factorizations of the entropy functional Entµ(f), which are in-
strumental in establishing the decay of the relative entropy for the SW dynamics. We
introduce some useful notations first. For a pinning τ in V \ Λ (i.e., τ ∈ ΩV \Λ), we let
µτ

Λ(·) := µ(· | σV \Λ = τ). Given a function f : Ω → R≥0, subsets of vertices B ⊆ Λ ⊂ V , and
τ ∈ ΩV \Λ, the function fτ

B : Ωτ
B → R≥0 is defined by:

fτ
B(σ) = Eξ∼µτ

Λ\B
[f(τ ∪ ξ ∪ σ)].

If B = Λ, we often write fτ for fτ
B, and if τ = ∅, then we use fB for fτ

B. We use Entτ
B(fτ )

to denote Entµτ
B

(fτ ), and if the pinning τ on V \ B is from a distribution π over ΩV \B , we
use Eτ∼π[Entτ

B(fτ )] to denote the expected value of the function f on S over the random
pinning τ .

Various forms of entropy factorization arise from bounding Entµ(f) by different (weighted)
sums of restricted entropies of the function f . The first one we introduced, is the so-called
ℓ-uniform block factorization of entropy of ℓ-UBF. For an integer ℓ ≤ n, ℓ-UBF holds for µ

with constant CUBF if for all functions f : Ω → R≥0,

ℓ

n
· Entµ(f) ≤ CUBF · 1(

n
ℓ

) ∑
S∈(V

ℓ )
Eτ∼µV \S

[Entτ
S(fτ )] , (6)

where
(

V
ℓ

)
denotes the collection of all subsets of V of size ℓ. An important special case is

when ℓ = 1, in which case (6) is called approximate tensorization of entropy (AT); this special
case has been quite useful for establishing optimal mixing time bounds for the Glauber
dynamics in various settings (see, e.g., [47, 16, 18, 46]). The following result will be useful
for us.

▶ Theorem 13 ([25, 6]). Let b and η be fixed. For θ ∈ (0, 1) and n ≥ 2
θ ( 4η

b2 + 1), the following
holds. If the Gibbs distribution µ of a spin system on an n-vertex graph is η-spectrally
independent and b-marginally bounded, then ⌈θn⌉-UBF holds with CUBF = (e/θ)⌈ 2η

b ⌉. In
addition, if θ < b2/(12∆), then:

Entµ(f) ≤ CUBF · 18
b5θ

n∑
i=1

Eτ∼µV \{i} [Entτ
i (fτ )] .

APPROX/RANDOM 2023
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Note that the inequality in the theorem corresponds to AT with constant CAT = CUBF · 18
b5θ .

Another useful notion is k-partite factorization of entropy or KPF. Let U1, . . . , Uk be k

disjoint independent sets of V such that
⋃k

i=1 Ui = V . We say µ satisfies KPF with constant
CKPF if for all functions f : Ω → R≥0,

Entµ(f) ≤ CKPF

k∑
i=1

Eτ∼µV \Ui

[
Entτ

Ui
(fτ )

]
.

KPF was introduced in [6], where it was used to analyze global Markov chains. The interplay
between KPF and UBF is intriguing and is further explored in this paper.

3.2 Proof of main result for the SW dynamics: Theorem 11
The main technical contribution in the proof of Theorem 11 is establishing KPF with a
better (i.e., smaller) constant CKPF. As in [6], KPF is then used to derive an improved
“edge-spin” factorization of entropy which is known to imply the desired bounds on the
modified log-Sobolev constant and on the mixing time of the SW dynamics.

▶ Theorem 14. For a b-marginally bounded Gibbs distribution µ that satisfies η-spectral
independence on an n-vertex graph G = (V, E) of maximum degree ∆, if b and η are constants
independent of ∆ and n, and ∆ ∈ [3, b4n

10e(4η+b2) ], then there exists an absolute constant c > 0
such that k-partite factorization of entropy holds for µ with constant CKPF = (∆ log n)c.
Specifically, for a set of k disjoint independent sets V1, . . . , Vk such that

⋃k
j=1 Vj = V ,

Entµ(f) ≤ 54 · e13κ

b5+6κ
· (∆ log n)κ · (log log n)1+κ

k∑
j=1

Eτ∼µV \Vj
[Entτ

Vj
(fτ )], (7)

where κ = 1 + ⌈ 2η
b ⌉. Moreover, if ∆2 ≤ b4n

10e(4η+b2) , then the following also holds

Entµ(f) ≤ 72 · e8κ

b5+4κ
· ∆2+4κ

k∑
j=1

Eτ∼µV \Vj
[Entτ

Vj
(fτ )]. (8)

This Theorem is proved in the full version [12].
▶ Remark 15. Let B = {B1, . . . , Bk} be a collection of disjoint independent sets such that
V =

⋃k
i=1 Bi. The independent set dynamics PB is a heat-bath block dynamics w.r.t. B and

a uniform distribution over B. If µ satisfies k-partite factorization of entropy with CKPF,
then PB satisfies a relative entropy decay with rate r ≥ 1/(k · CKPF).

As mentioned, KPF was first studied in [6]; the constant proved there was

CKPF = bO(∆) · (b∆)O(η/b),

so our new bound improves the dependence on ∆ from exponential to polynomial.
With KPF on hand, the next step in the proof of Theorem 11 relies on the so-called

edge-spin factorization of entropy. Let ΩJ := Ω × {0, 1}E be the set of joint configurations
(σ, A) corresponding to pairs of a spin configuration σ ∈ Ω and an edge configuration (a subset
of edges in a graph) A ⊆ E. For a q-state Potts model µPotts with parameter p = 1 − e−β ,
we use ν to denote the Edwards-Sokal measure on ΩJ given by

ν(σ, A) := 1
ZJ

(1 − p)|E|−|A|p|A|1(σ ∼ A),
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where σ ∼ A is the event that every edge in A has its two endpoints with the same spin in σ,
and ZJ :=

∑
(A,σ)∈ΩJ

(1 − p)|E|−|A|p|A|1(σ ∼ A) is a normalizing constant. Let ν(· | σ) and
ν(· | A) denote the conditional measures obtained from ν by fixing the spin configuration
to be σ or fixing the edge configuration to be A respectively. For a function f : ΩJ → R≥0,
let fσ : {0, 1}|E| → R≥0 be the function given by fσ(A) = f(σ ∪ A), and let fA : Ω → R≥0
be the function given by fA(σ) = f(σ ∪ A). We say that edge-spin factorization of entropy
holds with constant CES if for all functions f : ΩJ → R≥0,

Entν(f) ≤ CES
(
E(σ,A)∼ν

[
EntA∼ν(·|σ)(fσ)

]
+ E(σ,A)∼ν

[
Entσ∼ν(·|A)(fA)

])
. (9)

The following result from [6] will be useful for us.

▶ Lemma 16 (Theorem 6.1 [6]). Suppose the q-state ferromagnetic Potts model with parameter
β on a graph G of maximum degree is ∆ ≥ 3 satisfies KPF with constant CKPF. Then, the
edge-spin factorization of entropy holds with constant CES = O(β∆keβ∆) · CKPF.

The final ingredient in the proof of Theorem 11 is the following.

▶ Lemma 17 (Lemma 1.8 [7]). Suppose edge-spin factorization of entropy holds with constant
CES. Then, the SW dynamics PSW satisfies the relative entropy decay with rate Ω

(
1

CES

)
.

We are now ready to prove Theorem 11. Since Theorem 14 requires an upper bound on
the maximum degree ∆, when ∆ = Ω(n) we use a crude comparison argument to obtain
a polynomial bound for the modified log-Sobolev constant and mixing time of the SW
dynamics.

Proof of Theorem 11. First, we assume ∆ ∈ [3, b4n
10e(4η+b2) ]. By Theorem 14, µPotts satisfies

χ-partite factorization of entropy with constant

CKPF = (∆ log n)κ(log log n)1+κ · O

(
e13κ

b5+6κ

)
.

It follows from Lemma 16 and Lemma 17 that the SW dynamics satisfies (4) with

r = Ω
(

b5+6κ

χβ∆eβ∆ · (∆ log n)κ(log log n)1+κ · e13κ

)
.

Note that b ≤ q−1e−β∆, and so β∆eβ∆ ≤ e2β∆ ≤ b−2. Therefore, the mixing time bound
follows from (5).

Next, let us consider the case when ∆ = Ω(n). In this case, it suffices to provide a
1/poly(n) lower bound on the modified log-Sobolev constant of the SW dynamics, which
can be obtained in a straightforward manner using the known bounds for the Potts Glauber
dynamics and the comparison technology from [8].

Recall that PB is the independent set dynamics; that is, the block dynamics with respect
to a collection of disjoint independent sets {B1, . . . , Bk}; see Remark 15. From Theorem 3.2 in
[32], we know that GAP(PGD) ≥ n−(2η+1), where PGD denotes the Potts Glauber dynamics.
Since EPGD

(f, f) ≤ EPB (f, f) for any function f , it follows that GAP(PB) ≥ n−(2η+1). In
addition, the comparison inequalities from [8] imply that

GAP(PSW ) ≥ GAP(PB) · min
i=1,...,k

min
τ∈ΩV \Bi

min
v∈Bi

GAP(P τ
v ),

where P τ
v is the transition matrix for the update at vertex v, with τ as the fixed boundary

condition, that adds each monochromatic edge between v and its neighbors independently with
probability p := 1−e−β , and assigns a new random spin to v only if no edge is added. From a
simple coupling argument it follows that for any v ∈ Bi, GAP(P τ

v ) ≥ (1 − p)∆ = e−β∆ ≥ qb.
Thus, GAP(PSW ) ≥ n−(2η+1)qb, and ρ(PSW ) = Ω(n−(2η+2)b) by (3). The mixing time
bound follows from (2). ◀
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3.3 Applications of Theorem 11
In this section, we prove Corollary 3 from the introduction and present another application
of Theorem 11 concerning the SW dynamics on a random graph generated from the classical
Erdős-Rényi G(n, p) model. For this, we first define Dobrushin’s influence matrix.

▶ Definition 18. The Dobrushin influence matrix A ∈ Rn×n is defined by A(u, u) = 0 and
for u ̸= v,

A(u, v) = max
(σ,τ)∈Su,v

dT V (µv(· | σ), µv(· | τ)),

where Su,v contains the set of all pairs of partial configurations (σ, τ) in ΩV \{v} that can
only disagree at u, namely, σw = τw if w ̸= u.

It is known that an upper bound on the spectral norm of A implies spectral independence.
In particular, we have the following result from [6].

▶ Proposition 19 (Theorem 1.13, [6]). If the Dobrushin influence matrix A of a distribution
µ satisfies ∥A∥ ≤ 1 − ε for some ε > 0, then µ is spectral independent with constant η = 2/ε.

For the ferromagnetic Ising model, βu(∆) := ln ∆
∆−2 corresponds to the threshold value

of the parameter β for the uniqueness/non-uniqueness phase transition on the ∆-regular tree.
For the anti-ferromagnetic Ising model, the phase transition occurs at β̄u(∆) := − ln ∆

∆−2 . If
β̄u(∆)(1 − δ) < β < βu(∆)(1 − δ), we say the Ising model satisfies the δ-uniqueness condition.
On a bounded degree graph, ∥A∥ ≤ 1 − δ for the Ising model is a strictly stronger condition
than δ-uniqueness condition. However, due to the observation made in [3], if ∆ → ∞, the
two conditions are roughly equivalent.

▶ Proposition 20. The Ising model with parameter β̄u(∆)(1 − δ) < β < βu(∆)(1 − δ) and
∆ → ∞ satisfies ∥A∥ ≤ 1 − δ/2.

This proposition is proved in the full version [12]; we show next that Corollary 3 follows
from Theorem 11. For this, we first restate the corollary in a more precise manner.

▶ Corollary 21. Let δ ∈ (0, 1) and ∆ ≥ 3. For the ferromagnetic Ising model with β ≤
(1 − δ)βu(∆) on any graph G of maximum degree ∆ and chromatic number χ, or for the
ferromagnetic q-state Potts model with q ≥ 3 and β ≤ 2(1−δ)

∆ on the same graph, the mixing
time of the SW dynamics satisfies

Tmix(PSW ) = O
(
χ · ∆κ · (log n log log n)1+κ

)
,

where κ = 1 + ⌈ 4qe2

δ ⌉.

Proof. If ∆ = O(1), then the corollary was proved in a stronger form in [6]. Thus, we assume
∆ → ∞.

We first show spectral independence. Let q = 2. Under the δ-uniqueness condition
0 < β < (1 − δ)βu(∆), by Proposition 20 and Proposition 19, the Ising model µIsing satisfies
(4/δ)-spectral independence. For the q-state Potts model with q ≥ 3, the Dobrushin influence
matrix corresponding to µPotts satisfies ∥A∥ ≤ 1

2 β∆; see proof of Theorem 2.13 in [54].
Thus, if β ≤ 2(1−δ)

∆ , then ∥A∥ ≤ 1 − δ, and by Proposition 19, µPotts satisfies (2/δ)-spectral
independence.
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Letting N(v) denote the neighborhood of v, and noting that for any configuration η on
N(v) we have µ(σv = c | σN(v) = η) ≥ 1/(qe2), we deduce that µPotts and µIsing are both
(1/(qe2))-marginally bounded. Therefore, by noting that κ = 1 + ⌈ 4qe2

δ ⌉ is a constant that
only depends on δ, the mixing time bound follows from Theorem 11

Tmix(PSW ) = O
(
b−(7+6κ) · χ · (C∆ log n)κ(log log n)κ+1 · log n

)
= O

(
χ · ∆κ · (log n log log n)1+κ

)
,

as desired. ◀

3.3.1 The SW dynamics on random graphs
As another application of Theorem 11, we consider the SW dynamics on a random graph
generated from the classical G(n, d

n ) model in which each edge is included independently
with probability p = d/n; we consider the case where d is a constant independent of n. In
this setting, while a typical graph has Õ(n) edges, its maximum degree is of order Θ( log n

log log n )
with high probability. Our results imply that the SW dynamics has polylogarithmic mixing
on this type of graph provided β is small enough.

▶ Corollary 22. Let δ ∈ (0, 1) and d ∈ R≥0 be constants independent of n. Suppose that
G ∼ G(n, d/n) and G has maximum degree ∆. For the ferromagnetic Ising model with
parameter β < (1 − δ)βu(∆) on G or the ferromagnetic q-Potts model with q ≥ 2 and
β ≤ 2(1−δ)

∆ on the same graph, the SW dynamics has (log n)3+2⌈ 4qe2
δ ⌉ · O(log log n) mixing

time, with high probability over the choice of the random graph G.

Corollary 22 is established using Corollary 21 and the following fact about random graphs.
The full proof is provided in the full version [12].

▶ Proposition 23 ([1]). Let G ∼ G(n, d
n ) for a fixed d ∈ R≥0, and let χ be the chromatic

number of G. With high probability over the choice of G, χ = kd or χ = kd + 1, where kd is
the smallest integer k such that d < 2k log k.

4 Systematic scan dynamics

In this section, we study the systematic scan dynamics for general spin systems, which we
define next.

▶ Definition 24 (Spin system). Let G = (V, E) be a graph and S = {1, . . . , q} a set of spins.
Let Ω ⊆ SV be the set of possible spin configurations on G. We write σv for the spin assigned
to v by σ. Given a configuration σ ∈ Ω and a subset Λ of V , we write σΛ ∈ SΛ for the
configuration of σ restricted to Λ. For a subset of vertices Λ ⊆ V , a boundary condition τ is
an assignment of spins to (some) vertices in outer vertex boundary ∂Λ ⊆ V \ Λ of Λ; namely,
τ : (∂Λ)τ → S, with (∂Λ)τ ⊆ ∂Λ. Note that a boundary condition is simply a pinning of
a subset of vertices identified as being in the boundary of G. Given a boundary condition
τ : (∂V )τ → S, the Hamiltonian H : Ω → R of a spin system is defined as

H(σ) = −
∑

{v,u}∈E

K(σv, σu) −
∑

{v,u}∈E:u∈V,v∈(∂V )τ

K(σv, τv) −
∑
v∈V

U(σv), (10)

where K : S × S → R and U : S → R are respectively the symmetric edge interaction
potential function and the spin potential function of the system. The Gibbs distribution of a
spin system with Hamiltonian H is defined as

µ(σ) = 1
ZH

e−H(σ),

where ZH :=
∑

σ∈Ω e−H(σ). We use Ω for the set of configurations σ satisfying µ(σ) > 0.
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The Potts model, as defined in the introduction, corresponds to the spin system with q ≥ 2,
K(x, y) = β · 1(x = y), and U(σv) = 0 for all v ∈ V . In this section, we focus on the
ferromagnetic Ising model where β > 0 and S = {−1, +1}. Another important spin system
is the hardcore model that can be defined by setting S = {1, 0}, K(x, y) = ∞ if x = y = 1
and K(x, y) = 0 otherwise, and U(x) = 1(x = 1) · ln λ, where λ > 0 is referred to as the
fugacity parameter of the model.

We restrict attention to totally-connected spin systems, as this ensures that the Glauber
dynamics, the systematic scan dynamics, and the block dynamics are all irreducible Markov
chains (and thus ergodic).

▶ Definition 25. For a subset CU of partial configurations on U ⊆ V , let H[CU ] = (CU , E[CU ])
be the induced subgraph where E[CU ] consists of all pairs of configurations on CU that differ
at exactly one vertex. We say that CU is connected when H[CU ] is connected. For a pinning
τ on Λ ⊆ V , we say Ωτ

V \Λ is connected if H[Ωτ
V \Λ] is connected. A distribution µ over SV

is totally-connected if for every Λ ⊆ V and every pinning τ on Λ, Ωτ
V \Λ is connected.

Given an ordering ϕ = [v1, . . . , vn] of the vertices, a systematic scan dynamics performs
heat-bath updates on v1, . . . , vn sequentially in this order. Recall that a heat-bath update
on vi simply means the replacement of the spin on vi by a new spin assignment generated
according to the conditional distribution in vi given the configuration in V \ {vi}. Let
Pi ∈ R|Ω|×|Ω| be the transition matrix corresponding to a heat-bath update on the vertex vi.
The transition matrix of the systematic scan dynamics for the ordering ϕ can be written
as Sϕ := Pn . . . P1. In general, Sϕ is not reversible, so as in earlier works we work with the
symmetrized version of the scan dynamics that updates the spins in the order ϕ and in
addition updates the spins in the reverse order of ϕ [33, 48]. The transition matrix of the
symmetrized systematic scan dynamics can then be written as

Pϕ :=
n∏

i=1
Pi

n−1∏
i=0

Pn−i.

Henceforth, we only consider the symmetrized version of the dynamics. Since Pϕ is a
symmetrized product of reversible transition matrices, one can straightforwardly verify its
reversibility with respect to µ; its ergodicity follows from the assumption that the spin system
is totally-connected (see Definition 25).

We show tight mixing time bounds for Pϕ for monotone spin systems (see Definition 4).
Our main result for the systematic scan dynamics is Theorem 6 from the introduction; its
proof is included in the full version of this paper [12]. We complement Theorem 6 with a
lower bound for the mixing time of systematic scan dynamics for a particular ordering ϕ.
Specifically, on a bipartite graph G = (VE ∪ VO, E), an even-odd scan dynamics PEOE is a
systematic scan dynamics with respect to an ordering ϕ such that ve appears before vo in ϕ

for all ve ∈ VE and vo ∈ VO. In other words,

Pϕ =
∏

i:vi∈VE

Pi

∏
i:vi∈VO

Pi

∏
i:vi∈VO

Pi

∏
i:vi∈VE

Pi.

The above expression is well-defined without specifying the ordering in which the vertices in
VE and VO are updated since the updates commute.

▶ Lemma 26. Let ∆ be a constant and let G be an n-vertex connected bipartite graph with
maximum degree ∆. The even-odd scan dynamics PEOE for the ferromagnetic Ising model
on G has mixing time Tmix(PEOE) = Ω(log n).
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The lower bound in Lemma 26 is proved in the full version of this paper [12] using
the machinery from [42] and the fact that even-odd scan dynamics does not propagate
disagreements quickly (under a standard coupling). Our proof can thus be extended to other
scan orderings that propagate disagreements slowly; however, there are orderings that do
propagate disagreements quickly (think of a box in Z2 with the vertices sorted in a “spiral”
from the boundary of the box to its center). For this type of ordering, the technique does
not provide the Ω(log n) lower bound. In addition, while we focus on the ferromagnetic Ising
model to ensure clarity in the proof, the established lower bound is expected to apply to a
broader class of spin systems.

4.1 Applications of Theorem 6
We discuss next some applications of Theorem 6. As a first application, we can establish
optimal mixing for the systematic scan dynamics on the ferromagnetic Ising model under the
δ-uniqueness condition, improving the best known results that hold under the Dobrushin-type
conditions [51, 28, 41]. This result was stated in Corollary 7 in the introduction and is
proved next. For this, we recall that under δ-uniqueness condition, the Ising distribution
µIsing satisfies spectral independence and the bounded marginals condition.

▶ Proposition 27 ([24, 25]). The ferromagnetic Ising model with parameter β such that
β̄u(∆)(1 − δ) < β < βu(∆)(1 − δ) is O(1/δ)-spectrally independent and b-marginally bounded
with b = O(1).

Proof of Corollary 7. We fix δ ∈ (0, 1) and first assume that ∆ is a constant. By Proposi-
tion 27, the ferromagnetic Ising model with parameter β < (1 − δ)βu(∆) satisfies η-spectral
independence and b-bounded marginals, where η = O(1/δ) and b is a constant. Since the fer-
romagnetic Ising model is a monotone system, it follows from Theorem 6 that Tmix = O(log n)
for any ordering ϕ.

Now, when ∆ → ∞ as n → ∞, by Proposition 20, the Dobrushin’s influence matrix A of
ferromagnetic Ising model satisfies that ∥A∥ ≤ 1 − δ/2. Under this assumption, it is known
that Tmix = O(log n) for any ordering ϕ; see [41]. ◀

We can similarly show mixing time bound for the systematic scan dynamics of the
hardcore model on bipartite graphs under δ-uniqueness condition.

▶ Corollary 28. Let δ ∈ (0, 1) be a constant. Suppose G is an n-vertex bipartite graph of
maximum degree ∆ ≥ 3. For the hardcore model on G with fugacity λ such that 0 < λ <

(1 − δ)λu(∆), where λu(∆) = (∆−1)∆−1

(∆−2)∆ is the tree uniqueness threshold on the ∆-regular
tree, the systematic scan with respect to any ordering ϕ satisfies

Tmix(Pϕ) = ∆O(1/δ) · O(log n).

Proof of Corollary 28. The hardcore model on a bipartite graph (V1 ∪ V2, E) with fugacity
0 < λ < (1 − δ)λu(∆) is monotone, and [25, 3, 21] show that it satisfies O(1/δ)-spectral
independence and the O(λ)-bounded marginals condition. Theorem 6 then implies ∆O(1/δ) ·
O(log n) mixing of systematic scan for any ordering. ◀

We consider next the application of Theorem 6 to the special case where the underlying
graph is a cube of the d-dimensional lattice graph Zd. We show that strong spatial mixing
implies optimal O(log n) mixing of any systematic scan dynamics. Previously, under the same
type of condition, [8] gave an O(log n(log log n)2) mixing time bound for arbitrary orderings,
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and an O(log n) mixing time bound for a special class of scans that (deterministically)
propagate disagreements slowly under the standard identity coupling. We first provide the
definition of our SSM condition.

▶ Definition 29. We say a spin system µ on Zd satisfies the strong spatial mixing (SSM)
condition if there exist constants α, γ, L > 0 such that for every d-dimensional rectangle
Λ ⊂ Zd of side length between L and 2L and every subset B ⊂ Λ, with any pair (τ, τ ′) of
boundary configurations on ∂Λ that only differ at a vertex u, we have

∥µτ
B(·) − µτ ′

B (·)∥T V ≤ γ · exp(−α · dist(u, B)),

where dist(·, ·) denotes graph distance.

The definition above differs from other variants of SSM in the literature (e.g., [31, 8, 45]) in
that Λ has been restricted to “regular enough” rectangles. In particular, our variant of SSM
is easier to satisfy than those in [31, 45] but more restricting than the one in [8] (that only
considers squares). Nevertheless, it follows from [17, 45, 2, 5] that for the ferromagnetic Ising
model, this form of SSM holds up to a critical threshold temperature β < βc(2) = ln(1 +

√
2)

on Z2.
Corollary 9 from the introduction states that for b-marginally bounded monotone spin

system on d-dimensional cubes V ⊆ Zd, SSM implies that the mixing time of any systematic
scan Pϕ is O(log n). As mentioned there, this result in turn implies that any systematic scan
dynamics for the ferromagnetic Ising model is mixing in O(log n) steps on boxes of Z2 when
β < βc(2). Another interesting consequence of Corollary 9 is that we obtain O(log n) mixing
time for any systematic scan dynamics Pϕ for the hardcore model on Z2 when λ < 2.538,
which is the best known condition for ensuring SSM [52, 50].

Our proof of Corollary 9 relies on Lemma 8 that is restated below. The proof of Lemma 8
is provided in the full version of this paper [12]. Remarkably, Lemma 8 generalizes beyond
monotone systems and may be of independent interests.

▶ Lemma 8. For a spin system on a d-dimensional cube V ⊆ Zd, SSM implies η-spectral
independence, where η = O(1).

Proof of Corollary 9. Assume a monotone spin system satisfies SSM condition. Then the
spin system satisfies η-spectral independence, where η = O(1) by Lemma 8. By noting that
∆ = 2d the corollary follows from Theorem 6. ◀
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We derive a sufficient condition for a sparse random matrix with given numbers of non-zero entries
in the rows and columns having full row rank. Inspired by low-density parity check codes, the family
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1 Introduction

1.1 Background and motivation
While “continuous” random matrices such as, for example, a random n × n-matrix with
independent Gaussian entries have full rank almost surely for trivial reasons, the rank problem
for random combinatorial matrices with entries drawn from discrete distributions poses deep
mathematical challenges. In the 1960s Komlós, among the first to study this type of problem,
proved that a random n × n-matrix with independent ±1-entries has full rational rank with
high probability [24]. An obvious lower bound on the singularity probability is the probability
2−n+o(n) that two rows or columns coincide. The conjecture that this lower bound is tight
inspired an impressive line of work (e.g., [23, 33]), which culminated in Tikhomirov’s proof
of the conjecture [34].
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By comparison to the case of dense random matrices, relatively little is known about the
sparse case where the average number of non-zero entries per row or column is bounded.
Moreover, techniques developed for dense random matrices such as large deviations inequalities
or Littlewood-Offord arguments do not easily carry over to the sparse case. Yet sparse random
matrices are of key interest in computer science. Prominent applications include low-density
parity check codes [32], data compression [1, 36] and hashing [16].

One of the first full rank theorems for sparse random matrices came in the guise of a
random constraint satisfaction problem. Specifically, in the random k-XORSAT problem
we form a random Boolean formula over n variables with m independent XOR-clauses of
length k. The question is for what clause densities m/n such a random formula admits
an (XOR-)satisfying assignment. Because Boolean XOR is equivalent to addition over the
field F2, this question boils down to determining the threshold m/n up to which a random
m × n-matrix over F2 with precisely k ones per row has full row rank. For the case k = 3 this
problem was solved by Dubois and Mandler [18] in 2002. Remarkably, the case of general k

was solved only more than ten years later by Pittel and Sorkin [31]. Both proofs depend on
delicate and technically demanding moment computations.

The contribution of the present paper is a sufficient condition for a sparse random
combinatorial matrix to have full row rank. We derive this sufficient condition within the
framework of a very general model of random matrices that hails from coding theory [32].
As a very special case this general result encompasses the random k-XORSAT problem. But
in addition, we obtain a range of other important special cases such as matrices in which the
number of non-zero entries per row or column follows a power law. In fact, the sufficient
condition that we obtain is essentially necessary, too. The proof of the main result is based
on a novel combination of statistical physics-inspired coupling arguments and local limit
theorem techniques. These methods are conceptually more powerful than the method of
moments as there exist concrete instances of the present random matrix model where the
matrix provably has full rank even though the method of moments fails spectacularly.

1.2 Results
The random matrix model that we investigate allows to control the number of non-zero
entries in the rows and columns. The model is identical to the type of model used to construct
low-density parity check codes [9, 32]. Specifically, let d ≥ 0, k ≥ 3 be independent integer-
valued random variables such that E[d2+η] + E

[
k2+η

]
< ∞ for an arbitrarily small η > 0.

Let (di, ki)i≥1 be independent copies of (d, k) and set d = E[d], k = E[k]. Furthermore, let
d and k be the greatest common divisors of the support of d and k, respectively. Finally, let
n > 0 be a large integer divisible by k and let m ∼ Po(dn/k) be independent of (di, ki)i≥1.
These definitions ensure that the event

n∑
i=1

di =
m∑

j=1
kj (1.1)

occurs with probability Ω(n−1/2) [9, Proposition 1.7]. Hence, assuming (1.1) occurs, let
G = Gn(d, k) be a simple random bipartite graph on a set {a1 . . . , am} of check nodes and a
set {x1, . . . , xn} of variable nodes such that the degree of ai equals ki and the degree of xj

equals dj for all i, j. Adopting coding terminology, we refer to G as the Tanner graph. We
need to assume that the second moment is bounded so that the Tanner graph is locally finite.
The random graph G naturally induces a {0, 1}-matrix, namely the m×n-biadjacency matrix
B = B(G) of the bipartite graph. Explicitly,
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Bij = 1{aixj ∈ E(G)} (1 ≤ i ≤ m, 1 ≤ i ≤ n).

Let

D(z) =
∞∑

ℓ=0
P [d = ℓ] zℓ and K(z) =

∞∑
ℓ=0

P [k = ℓ] zℓ

be the probability generating functions of d and k. Since E[d2] + E[k2] < ∞, the function

Φ : [0, 1] → R, z 7→ D (1 − K ′(z)/k) − d

k
(1 − K(z) − (1 − z)K ′(z)) (1.2)

is well-defined. The following result renders a sufficient condition for B to have full row rank.

▶ Theorem 1. If

Φ(z) < Φ(0) for all 0 < z ≤ 1, (1.3)

then B has full rational row rank w.h.p.

Theorem 1 is a direct consequence of a significantly stronger result on matrices over
finite fields. Specifically, suppose that q ≥ 2 is a prime power, let Fq signify the field with q

elements and let χ be a random variable that takes values in F∗
q = Fq \ {0}. Let (χi,j)i,j≥1

be independent copies of χ. Finally, let A = An(d, k, χ) be the m × n-matrix with entries

Ai,j = 1 {aixj ∈ E(G)} · χi,j ∈ Fq.

Hence, the i-th row of A contains ki non-zero entries and the j-th column contains dj

non-zero entries.

▶ Theorem 2. If q and d are coprime and (1.3) is satisfied, then A has full row rank over
Fq w.h.p.

Theorem 1 follows from Theorem 2 and a few lines of linear algebra.
The sufficient condition (1.3) is quite close to being necessary, too. Indeed, the normalised

rank of A (and B) can be expressed in terms of the function Φ as follows [9, Theorem 1.1]:

rk(A)
n

n → ∞−→ 1 − max
z∈[0,1]

Φ(z) in probability. (1.4)

Since k ≥ 3, the definition (1.2) ensures that Φ(0) = 1 − d/k and thus nΦ(0) ∼ n − m w.h.p.
Hence, (1.4) implies that rk(A) ≤ m − Ω(n) w.h.p. unless Φ(z) attains its maximum at
z = 0. In other words, A has full row rank only if Φ(z) ≤ Φ(0) for all 0 < z ≤ 1. Indeed,
in Section 1.3 we will discover examples that require a strict inequality as in (1.3). The
condition that q and d be coprime is generally necessary as well, as we will see in Example 8
below.

▶ Remark 3. We emphasise that (1.4) does not guarantee that A has full row rank w.h.p.
even if (1.3) is satisfied. In fact, due to the normalisation on the l.h.s., (1.4) only implies
that rk(A) = m − o(n) w.h.p., rather than the far stronger statement that rk(A) = m w.h.p.
delivered by Theorem 2.

APPROX/RANDOM 2023
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Figure 1 From left to right: the shape of Φ for Examples 4–7.

1.3 Examples
To illustrate the power of Theorems 1 and 2 we consider a few instructive special cases of
distributions d, k, χ.

▶ Example 4 (random k-XORSAT). In random k-XORSAT we are handed a number of
independent random constraints ci of the type ci = yi1 XOR · · · XOR yik where each literal
yij is either one of n available Boolean variables x1, . . . , xn or a negation ¬x1, . . . , ¬xn. The
goal to determine the maximum number of random constraints can be satisfied simultaneously
w.h.p. Because Boolean XOR comes down to addition over F2 and since the clauses are drawn
independently, XOR-satisfiability can be rephrased as the full rank problem for the random
matrix A over Fq with q = 2, k = k fixed to a deterministic value and d ∼ Po(d) a Poisson
variable. Hence, the generating functions of d, k read D(z) = exp(d(z − 1)) and K(z) = zk

and Φd,k(z) = exp(−dzk−1) − d
k

(
1 − kzk−1 + (k − 1)zk

)
. Thus, Theorem 2 implies that for

a given k ≥ 3 the threshold of d up to which random k-XORSAT is satisfiable w.h.p. equals
the largest d such that

Φd,k(z) < Φd,k(0) = 1 − d/k for all 0 < z ≤ 1. (1.5)

A few lines of calculus verify that (1.5) matches the formulas for the k-XORSAT threshold
derived by combinatorial methods tailored to this specific case [18, 31]. Theorem 2 also
encompasses the generalisations of XORSAT to other finite fields Fq from [5, 21].

▶ Example 5 (identical distributions). An interesting scenario arises when d, k are identically
distributed. For example, suppose that P[d = 3] = P[d = 4] = P[k = 3] = P[k = 4] = 1/2.
Thus, D(z) = K(z) = (z3 + z4)/2. The resulting Φ(z) attains two identical maxima, namely
Φ(0) = Φ(1) = 0. Since ki, di are chosen independently subject only to (1.1), the probability
that A has more rows than columns works out to be 1/2 + o(1). As a consequence, A cannot
have full row rank w.h.p. This shows that the condition that 0 be the unique maximiser of
Φ(x) is generally necessary.

▶ Example 6 (fixed d, k). Suppose that both d = d, k = k ≥ 3 are constants rather than
genuinely random. Then Φ(z) = (1 − zk−1)d − d

k (1 − kzk−1 + (k − 1)zk). Clearly, A cannot
have full row rank unless d ≤ k, while Theorem 2 implies that A has full row rank w.h.p. if
d < k. This result was previously established via the second moment method [30]. But in
the critical case d = k the function Φ(z) attains its identical maxima at z = 0 and z = 1.
Specifically, 0 = Φ(0) = Φ(1) > Φ(z) for all 0 < z < 1. Hence, Theorem 2 does not cover this
special case. Nonetheless, Huang [22] and Mészáros [29] proved that the random {0, 1}-matrix
B has full rational rank w.h.p. The proof is based on a delicate moment computation in
combination with a precise local expansion via the Laplace method. However, numerical
evidence indicates that the corresponding “d-regular” random matrix A over a finite field
fails to have full rank w.h.p.
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▶ Example 7 (power laws). Let P(d = ℓ) ∝ ℓ−α for some α > 3 and k = k ≥ 3. Thus,

D(z) = 1
ζ(α)

∞∑
ℓ=1

zℓ

ℓα
, K(z) = zk,

Φ(z) = D
(
1 − zk−1)− ζ−1(α)ζ(α − 1)

k

(
1 − kzk−1 + (k − 1)zk

)
and it can be verified that Φ′(z) < 0 for all z ∈ (0, 1). Hence, (1.3) is always satisfied and
Theorems 1 and 2 show that A,B have full row rank.

▶ Example 8 (zero row sums). Theorem 2 requires the assumption that q and the g.c.d. d of
the support of d be coprime. This assumption is indeed necessary. To see this, consider the
case that q = 2, χ = 1, d = 4 and k = 8 deterministically. Then the rows of A always sum
to zero. Hence, A cannot have full row rank.

2 Proof Strategy

The proof of the main theorem (Theorem 2) substantially extends the techniques behind
the asymptotic rank formula (1.4) from [9]. As one key additional ingredient we require
a new method to count “equitable” vectors in the kernel of A, i.e., vectors in which each
element of Fq occurs with frequency 1/q + o(1). This part of the proof, which involves the
asymptotic enumeration of lattice points that satisfy certain arithmetic conditions, hinges
on local limit techniques and algebraic arguments, specifically the identification of suitable
bases of Z-modules generate by lattice points. This argument generalises techniques that
were also used in the study of adjacency matrices of random d-regular graphs [22, 29].

To motivate the proof strategy we first go down the “classical” path of the method of
moments. We will discover where this proof strategy gets stuck and then work our way
around the obstacle by means of physics-inspired coupling arguments. In statistical physics
jargon, the moment calculation amounts to an “annealed” analysis. In a nutshell, the issue
with such analyses is that unlikely events can render outsized contributions to moments of
exponentially large random variables such as the number of vectors in the kernel of A. Once
we see where such large deviations hazards lurk, we will be able to replace the “annealed”
strategy by a “quenched” approach that sidesteps these large deviations effects.

2.1 The method of moments
By extension of random k-XORSAT from Example 4, the full rank problem for the random
matrix A over Fq can be viewed as a random constraint satisfaction problem. Specifically,
choose a vector y ∈ Fm

q uniformly independently of A. Then a solution to our random CSP
is just a solution x ∈ Fn

q to the linear system Ax = y. Thus, together with the corresponding
entry of y each of the m rows of A induces a constraint.
Since the early 2000s the default method for approaching random CSPs has been the second
moment method [2, 3]. Indeed, one of the first contributions to this line of work was the
aforementioned work of Dubois and Mandler on random 3-XORSAT [18], which corresponds
to the special case q = 2, k = 3, d = Po(d). A natural first stab at the full rank problem
therefore appears to be to run the second moment routine on the number Z = Z(A, y) of
solutions to Ax = y. But clearly, to have any chance of success we need to condition on
the degrees of the variable and check nodes, and a few more innocent pieces of information.
Formally, let A be the σ-algebra generated by m, (ki)i≥1, (di)i≥1 and by the numbers
m(χ1, . . . , χℓ) of rows with non-zero entries χ1, . . . , χℓ ∈ F∗

q . Let us write PA = P [ · | A] and
EA = E [ · | A] for the conditional probability and expectation given A.

APPROX/RANDOM 2023
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Figure 2 Left: the r.h.s. of (2.6) for d = 2.5 (blue) and d = 2.7 (red) in the interval [0, 1
2 ]. Middle:

the function Φ(z) from Example 9. Right: numerical lower bound on the moment formula from
Example 9.

Since y is independent of A, for any fixed x ∈ Fn
q the event Ax = y has probability q−m.

As there are qn choices of x, linearity of expectation yields

EA[Z] = qn−m. (2.1)

For the second moment method to succeed we need to verify that EA[Z2] ∼ EA[Z]2.
Then Chebyshev’s inequality yields Z ∼ EA[Z] w.h.p., and thus Ax = y has a solution
w.h.p., provided that n ≤ m. This fact, in turn, would imply that A has full row rank w.h.p.;
for if it were the case that rkA < m, then the linear system Ax = y would fail to have a
solution with probability at least 1/q.

Concerning the computation of EA[Z2], because the set of solutions is either empty or a
translation of the kernel, we obtain

EA[Z2] =
∑

σ,τ∈Fn
q

PA [Aσ = Aτ = y] =
∑

σ,τ∈Fn
q

PA [Aσ = y]PA [σ − τ ∈ kerA] (2.2)

= EA [Z]EA [| kerA|] .

Hence, we are left to calculate EA [| kerA|].
Unlike in the case (2.1) of the first moment of Z, the probability of belonging to the

kernel of A is not the same for all x ∈ Fn
q . Indeed, as an extreme example, the zero vector

always belongs to the kernel. By contrast, depending on d, k and q there may be vectors
that cannot possibly belong to the kernel for divisibility reasons; e.g., if k = 3 and q = 2,
then the all-ones vector cannot lie in kerA.

Hence, we need to tread carefully. In order to calculate the expected size of the kernel we
need to discriminate vectors x according to the number nℓ(s) of variable nodes of a given
degree ℓ that take a specific value s ∈ Fq. Further, given the nℓ(s) we need to know the
numbers mχ1,...,χℓ

(s1, . . . , sℓ) of rows with non-zero entries χ1, . . . , χℓ whose neighbouring
variable nodes in G receive values s1, . . . , sℓ. Since given A the matching of the variable
and check nodes remains random given their degrees, the ensuing contribution to the first
moment works out to be

Ξ(nℓ(s), mχ1,...,χℓ
(s1, . . . , sℓ))ℓ,s,s1,...,sℓ

=
∑
s∈Fq

E
[
(d − 1)nd(s) log nd(s)

n

]
(2.3)

− d

k
E

 ∑
σ1,...,σk∈Fq

1 {χ ⊥ σ} mχ1,1,...,χ1,k
(σ1, . . . , σk) log

mχ1,1,...,χ1,k
(σ1, . . . , σk)

m

 .

Then

EA| kerA| = exp
[

max
nℓ(s),mχ1,...,χℓ

(s1,...,sℓ)
Ξ(nℓ(s), mχ1,...,χℓ

(s1, . . . , sℓ)) + o(n)
]

. (2.4)
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Hence, in order to compute the expected kernel size we should maximise the fairly impressive
formula (2.3) over a potentially very large range of parameters nℓ(s), mχ1,...,χℓ

(s1, . . . , sℓ).
The choice of these parameters is subject to the constraint that for every value s ∈ Fq the
number of occurrences of s counted from the side of the check nodes must equal the number
of occurrences viewd from the variable side. This leads to the equations

E[dnd(s)] = E

 ∑
σ1,...,σk∈Fq

k1 {σ1 = s}1 {χ ⊥ σ} mχ1,1,...,χ1,k
(σ1, . . . , σk)

 ∀s ∈ Fq.

Taking these constraints into account, we can transform (2.4) into a Lagrangian optimisation
problem whose only variables are the nℓ(s), s ∈ Fq, ℓ ∈ suppd. A somewhat delicate
application of the Laplace method then shows that EA[| kerA|] = O(qn−m), i.e., that the
second moment method “nearly works”, if and only if the maximum of (2.3) is attained at
the “equitable” solution

nℓ(s) ∼ nP [d = ℓ] /q for all s ∈ Fq, ℓ ∈ suppd. (2.5)

Unfortunately, we have no idea how to solve the optimisation problem (2.4) in any
generality. Worse, even if we knew how to tackle this optimisation task, that would still
not suffice to prove Theorem 2. Indeed, the plain moment calculation fails even for random
3-XORSAT, i.e., the case q = 2, k = 3 constant and d = Po(d). In this case the second
moment calculation reduces to the one-dimensional optimisation problem

log EA| kerA| ∼ n · max
z∈[0,1]

−z log z − (1 − z) log(1 − z) + m

n
log 1 + (1 − 2z)3

2 (cf. [18]).

(2.6)

At z = 1/2 the r.h.s. of (2.6) simplifies to (n − m) log 2, and thus EA| kerA| = 2n−m

matches the first moment (2.1). But if the maximum (2.6) is attained at z ̸= 1/2, then
EA| kerA| ≫ 2n−m and the second moment method fails. Figure 2 displays (2.6) for d = 2.5
and d = 2.7. While for d = 2.5 the function takes its maximum at z = 1/2, for d = 2.7 the
maximum is attained at z ≈ 0.085. However, the actual random 3-XORSAT threshold is
d ≈ 2.75 [18]. Thus, method of moments fails short of the real threshold.

The reason for this is that rare events are apt to boost the expected number of vectors in
the kernel. This is precisely what happens in random k-XORSAT. The rare event in question
is a fluctuation of the density of the 2-core G(2) of the Tanner graph, which is obtained by
iteratively removing any variable nodes of degree at most one along with their unique adjacent
check node if the variable degree equals one. Dubois and Mandler therefore pinpointed the
3-XORSAT threshold by applying the second moment method to the minor A(2) induced
by G(2) while conditioning on the 2-core having its typical size and density. However, even
in random k-XORSAT with k > 3 the ensuing optimisation problem (2.3) is anything but
straightforward, as witnessed by the work of Pittel and Sorkin [31]. Furthermore, increasing
the size of the field to q > 2 boosts the number of variables involved, which adds further
significant challenges to the optimisation problem; even the case q = 3 turns out to be
essentially intractable [21]. Finally, for general d, k and q it is far from clear what the
“relevant” variables would be that are responsible for any large deviations effects. Inspecting
a few examples of degree distributions d, k reveals that conditioning on the size and density
of the 2-core will not generally suffice.

The upshot is that the second moment method hardly seems like a promising path
towards Theorem 2. But we learned that we basically need to get a handle on the typical
size of the kernel of A. Specifically, if we could prove that typical vectors in the kernel are
nearly equitable in the sense that all elements s ∈ Fq occur about n/q times, then we could
conceivably derive the desired bound | kerA| ≤ qn−m w.h.p.
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54:8 The Full Rank Condition for Sparse Random Matrices

▶ Example 9 (failure of the moment method). To underscore the issue with the method of
moments, consider the random variables d, k with generating functions D(z) = 0.889z3 +
0.111z21 and K(z) = z5 and set q = 101. The resulting function Φ(z) (just barely) attains its
unique maximum at z = 1. Hence, Theorem 2 shows that A has full row rank w.h.p. However,
the moment formula (2.4) fails to attain its global maximum at the uniform solution; hence,
the method of moments provably fails on this example, even though the 2-core G(2) coincides
with the entire original Tanner graph G. Indeed, Figure 2 displays Φ(z) (middle) along with
a numerical lower bound on the moment formula (right). The parameter on the horizontal
axis of the right plot corresponds to the fraction variable occurrences set to zero. Hence, a
necessary condition for the method of moments to succeed is that the maximum value be
attained at 1/q, which clearly is not the case.

2.2 Quenched analysis
Informed by this discussion, we are thus going to seize upon a different set of techniques to show
that typical kernel vectors are essentially equitable. To be precise, let xA = (xA,i)i∈[n] ∈ Fn

q

be a random vector from the kernel of A. We would like to show that for a given random
matrix A, such a random vector xA ∈ kerA is equitable w.h.p. In physics jargon, such a
direct investigation of random solutions to a typical random combinatorial problem instance
(in contrast to a moment calculation) is termed a quenched analysis. The fundamental merit
of such a conditional (or quenched) analysis is that we may condition on the matrix A being
typical; hence, we do not need to take very unlikely outcomes of A into consideration. By
contrast, in the moment computations that we sketched in Section 2.1 we average over all
possible outcomes of A, including pathological cases that for some reason possess excessively
large kernels.

The cornerstone of the quenched analysis will be to prove that w.h.p. over the choice of
A the event

O =

 ∑
σ,τ∈Fq

n∑
i,j=1

∣∣P [xA,i = σ, xA,j = τ | A] − q−2∣∣ = o(n2)

 (2.7)

occurs. In words, O asks that for any two field elements σ, τ ∈ Fq for most pairs 1 ≤ i, j ≤
n the probability that the i-th entry xA,i of a random kernel vector xA equals σ while
the j-th entry xA,j equals τ is about q−2. Thus, for most choices of the indices i, j the
pair (xA,i, xA,j) ∈ F2

q is approximately uniformly distributed. Together with Chebyshev’s
inequality, this implies that a random vector xA ∈ kerA is equitable w.h.p. In fact, if O

occurs then even the degree-weighted empirical distribution of the entries of a typical xA is
asymptotically uniform w.h.p., i.e., w.h.p. over the choice of xA we have

n∑
i=1

di1{xA = τ} ∼ q−1
n∑

i=1
di for all τ ∈ Fq. (2.8)

Thus, the thrust behind considering the event O is to accomplish just what we failed to
accomplish via the moment computation: to show that the dominant contribution to the
kernel comes from approximately equitable vectors.

Apart from showing that A ∈ O w.h.p., the following proposition also shows that the
first moment formula (2.1) remains true on O.

▶ Proposition 10. Under the assumptions of Theorem 2 we have P [A ∈ O] ∼ 1 and

EA [Z · 1 {A ∈ O}] ∼ EA [Z] ∼ qn−m. (2.9)
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Before we elaborate on the proof of Proposition 10 in Section 2.3, we remark that the
second moment method “works” once we condition on the event O. Indeed, the estimate
(2.8), which is valid on O w.h.p., demonstrates that once we condition on O, the dominant
contribution to (2.3) comes from approximately uniform choices of nd(s) as in (2.5). Due
to the concavity of the entropy function, (2.5) implies that the optimal choices of the check
variables mχ1,...,χℓ

are asymptotically uniform as well, subject to the obvious linear constraint.
Explicitly, the optimal mχ1,...,χℓ

read

mχ1,...,χℓ
(s1, . . . , sℓ) ∼ 1{s1χ1 + · · · + sℓχℓ = 0}q1−ℓmP [k = ℓ]

ℓ∏
i=1

P [χ = χi] . (2.10)

Expanding (2.3) around (2.5) and (2.10), one could derive the bound EA

[
Z2 · 1 {A ∈ O}

]
=

O(EA [Z])2 via a routine application of the Laplace method. However, to prove Theorem 2
we actually require the following more precise estimate.

▶ Proposition 11. Under the assumptions of Theorem 2 we have

EA

[
Z2 · 1 {A ∈ O}

]
∼ EA [Z]2 . (2.11)

The key challenge towards the proof the (2.11) is to obtain asymptotic equality, rather
than the weaker bound EA

[
Z2 · 1 {A ∈ O}

]
= O(EA [Z]2). This requires a meticulous

expansion of the second moment around the equitable solution, which involves the detailed
analysis of the lattices generated by integer vectors that encode conceivable values of the
variables from (2.3). We are going to outline this analysis in Section 2.4. But first let us
observe that Theorem 2 follows from Propositions 10 and 11 easily.

Proof of Theorem 2. The assumption (1.3) implies that 1 − d/k = Φ(0) > Φ(1) = 0.
Since m = Po(dn/k), we thus obtain n − m = Ω(n) w.h.p. Therefore, (2.9) implies that
EA [Z · 1 {A ∈ O}] ∼ qn−m = qΩ(n) w.h.p. Hence, (2.11) implies together with Chebyshev’s
inequality that Z ≥ Z1{A ∈ O} = qΩ(n) w.h.p. Consequently, the random linear system
Ax = y has a solution w.h.p., which implies that rkA = m w.h.p. ◀

2.3 Proof of Proposition 10: typical kernel vectors
The asymptotic rank formula (1.4) provides our point of departure toward the proof of
Proposition 10. The basic idea is to show that (1.4) could not possibly be correct unless
A ∈ O w.h.p. However, at closer inspection it turns out we cannot just apply (1.4) as is.
Instead, we need to derive the analogue of (1.4) for a slightly enhanced random matrix from
scratch.

Specifically, for an integer t ≥ 0 obtain A[t] from A by adding t more rows that each
contain precisely three non-zero entries. The positions of these non-zero entries are chosen
uniformly, mutually independently and independently of A. The non-zero entries themselves
are independent copies of χ. For this enhanced matrix we derive the following upper bound
on its asymptotic rank.

▶ Proposition 12. If (1.3) is satisfied then there exists δ0 = δ0(d, k) > 0 such that for all
0 < δ < δ0 we have

lim sup
n→∞

1
n
E[nulA[⌊δn⌋]] ≤ 1 − d

k
− δ. (2.12)
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The proof of Proposition 12 relies on the so-called “Aizenman-Sims-Starr scheme” [4],
a coupling argument inspired by spin glass theory that also constituted the cornerstone of
the derivation of (1.4) in [9]. That said, a subtle modification of this argument is necessary
to accommodate the additional ternary equations. A vital assumption towards the proof of
Proposition 12 is that the function Φ from (1.2) attains its unique global max at z = 0. In
fact, the proof of Proposition 12 is the only place where the uniqueness of the maximiser is
required.

How does Proposition 10 follow from Proposition 12? Assuming (1.3), we obtain from
(1.4) that

1
n

nulA ∼ 1 − d

k
w.h.p. (2.13)

Now suppose that we add ⌊δn⌋ extra ternary rows to A to obtain A[⌊δn⌋]. Comparing (2.12)
and (2.13), we conclude that all but o(n) of these extra rows decrease the nullity by one.
Indeed, adding a single row cannot decrease the nullity by more than one, and routine
arguments show that nulA[⌊δn⌋] concentrates about its expectation.

But a drop in nullity of δn + o(n) w.h.p. is conceivable only if A ∈ O w.h.p. To see this,
let us contemplate the kernel of a general M × N matrix A over Fq for a brief moment.
Draw xA = (xA,i)i∈[N ] ∈ ker A uniformly at random. For any given coordinate xA,i, i ∈ [N ]
there are two possible scenarios: either xA,i = 0 with probability one, or xA,i is uniformly
distributed over Fq. To see this, consider a basis ζ1, . . . , ζh of the kernel of A. Then we
can sample xA by just multiplying each ζj with a random scalar zj ∈ Fq and summing up:
xA = z1ζ1 + · · ·+zhζh. If the i-th coordinate of all ζj is zero, then xA,i = 0 deterministically;
otherwise xA,i is a sum of uniformly random elements of Fq, and thus uniformly random
itself. It therefore makes sense to call coordinate i frozen if xi = 0 for all x ∈ ker A, and
unfrozen otherwise. Let F(A) be the set of frozen coordinates.

If A had many frozen coordinates then adding an extra random row with three non-zero
entries could hardly decrease the nullity w.h.p. For if all three non-zero coordinates fall into the
frozen set, then we get the new equation “for free”, i.e., nulA[1] = nulA. Thus, Proposition 12
implies that |F(A)| = o(n) w.h.p. We conclude that xA,i is uniformly distributed over Fq

for all but o(n) coordinates i ∈ [n]. However, this does not yet imply that xA,i, xA,j are
independent for most i, j, as required by O. Yet a slightly more careful deliberation based
on linear algebra and the “pinning lemma” [9, Proposition 2.4] shows that A ∈ O w.h.p.

2.4 Proof of Proposition 11: expansion around the equitable solution
We prove Proposition 11 by way of expanding (2.3) carefully around the uniform distribution
(2.5). Recall that once the nℓ(s) are set to the equitable solution (2.5), the optimal check
variables mχ1,...,χℓ

(s1, . . . , sℓ) are given by (2.10). This observation by itself now suffices to
conclude without (much) further ado that

EA[Z2 · 1{A ∈ O}] = O
(
EA[Z · 1{A ∈ O}]2

)
. (2.14)

The challenge is to sharpen this estimate so as to obtain the asymptotic equality claimed
in (2.11). In his work on adjacency matrices of random regular graphs, Huang [22] actually
faced a similar issue (with d = k constant and q a prime number). To prove Proposition 11
we need to cope with the (significantly) more general situation of arbitrary d, k and prime
powers q. This improvement actually constitutes one of the main technical obstacles that we
need to surmount toward the proof of Theorem 2.
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The issue is that in order to eliminate the constant factor hidden in the O( · ) in (2.14)
we need to carefully consider divisibility properties that make it possible or impossible for
a vector x ∈ Fn

q to belong to the kernel. These questions depend not only on the degree
distributions d, k but also on q and the distribution χ of the non-zero entries. Hence, to
estimate the kernel size precisely we need to crystallise the conceivable frequencies of field
elements that may lead to solutions. Specifically, for an integer ℓ ≥ 3 and χ1, . . . , χℓ ∈ Fq \{0}
let

Sq(χ1, . . . , χℓ) =
{

σ ∈ Fℓ
q :

ℓ∑
i=1

χiσi = 0
}

(2.15)

comprise all solutions to a linear equation with coefficients χ1, . . . , χk0 ∈ Fq. Furthermore,
for each σ ∈ Sq(χ1, . . . , χℓ) we define the vector

σ̂ =
(

ℓ∑
i=1

1 {σi = s}

)
s∈Fq\{0}

∈ ZFq\{0} (2.16)

to track the frequencies with which the various non-zero field elements appear. Moreover, let

Mq(χ1, . . . , χℓ) ⊆ ZFq\{0}

be the Z-module generated by the frequency vectors σ̂ for σ ∈ Sq(χ1, . . . , χℓ). Thus,
Mq(χ1, . . . , χℓ) ⊆ ZFq\{0} captures all conceivable frequency vectors of solutions σ to∑ℓ

i=1 χiσi.
Depending on the coefficients χ1, . . . , χℓ, the module Mq(χ1, . . . , χℓ) may be a proper sub-

module of the integer lattice ZFq\{0}. For example, in the case q = ℓ = 3 and χ1 = χ2 = χ3 = 1
the module M3(1, 1, 1) constitutes the sub-lattice spanned by

(1
1
)

and
(0

3
)
, which is a proper

sub-lattice of Z2. The following proposition characterises the lattice spanned by the frequency
vectors for general χ1, . . . , χℓ. The determinant formula that the proposition provides shows
that Mq(χ1, . . . , χℓ) is a proper sub-module iff all the coefficients χ1, . . . , χℓ coincide.

▶ Proposition 13. Let q ≥ 2 be a prime power, ℓ ≥ 3 and let χ1, . . . , χℓ ∈ Fq \ {0}. Then
Mq(χ1, . . . , χℓ) has a basis b1, . . . , bq−1 of non-negative integer vectors with ∥bi∥1 ≤ 3 for
all 1 ≤ i ≤ q − 1 such that

det (b1 · · · bq−1) = q1{χ1=···=χℓ}.

A vital feature of Proposition 13 is that the module basis consists of non-negative integer
vectors with small ℓ1-norm. In effect, the basis vectors are “combinatorially meaningful”
towards our purpose of counting solutions. Perhaps surprisingly, the proof of Proposition 13
turns out to be rather delicate, with details depending on whether q is a prime or a prime
power, among other things.

In addition to the subgrid constraints imposed by the linear equations themselves, we
need to take another divisibility condition into account. Indeed, for any assignment σ ∈ Fn

q

of values to variables the frequencies of the various field elements s ∈ Fq are divisible by the
g.c.d. d of supp(d), i.e.

d |
n∑

i=1
di1 {σi = s} for all s ∈ Fq. (2.17)

Thus, to compute the expected kernel size we need to study the intersection of the sub-
grid (2.17) with the grid spanned by the frequency vectors σ̂ for σ ∈ Sq(χ1,1, . . . , χ1,k).
Specifically, in order to derive Proposition 11 from Proposition 13 we need to estimate
the number of vectors σ ∈ Fn

q represented by each grid point and calculate the ensuing
satisfiability probability. This argument combines the Laplace method with local limit
techniques.
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3 Discussion

While there is a substantial body of work on dense random matrices where the average
number of non-zero entries per row/column diverges or even is linear in the size of the matrix
(e.g., [6, 7, 14, 15, 23, 24, 33, 34]), far less is known about sparse random matrices. The aim
of this paper has been to determine sufficient (as well as necessary) conditions for a sparse
random matrix to have full row rank. To this end we drew upon some of the elements of
prior work on the asymptotic rank of random matrices [5, 9], specifically the formula (1.4). In
particular, the proof of Proposition 12 adapts and extends the Aizenman-Sims-Starr scheme
from [9]. Additionally, the expansion around the centre employs some of the techniques
developed in the study of satisfiability thresholds, particularly the extensive use of local
limit theorems [12, 11]. These also played a role in prior work on the adjacency matrices of
random d-regular graphs [22, 29].

A principal new proof ingredient is the asymptotically precise analysis of the moment
formula (2.3) for general d, k, q around the equitable solution by means of the study of the
sub-grids of the integer lattice induced by the constraints. This issue that was absent in the
prior literature on variations on random k-XORSAT [5, 9, 13] and on other random constraint
satisfaction problems [12, 11]. That said, in the study of the random regular matrix from
Example 6 Huang [22] faced a similar issue in the special case d = k constant and χ = 1
deterministically. Proposition 13, whose proof is based on a combinatorial investigation of
lattices in the general case, constitutes a considerable generalisation of this case. A further
new feature of the proof of Proposition 13 is the explicit ℓ1-bound on the basis vectors, which
greatly facilitates the proof of Theorem 2.

Satisfiability thresholds of random constraint satisfaction problems have been studied
extensively in the statistical physics literature via a non-rigorous technique called the “cavity
method”. The cavity method comes in two installments: the simpler “replica symmetric
ansatz” associated with the Belief Propagation message passing scheme, and the more
intricate “replica symmetry breaking ansatz”. The proof of Theorem 2 demonstrates that
the former renders the correct prediction as to the satisfiability threshold of random linear
equations. By contrast, in quite a few problems, notoriously random k-SAT, replica symmetry
breaking occurs [10, 17], requiring a substantially different proof strategy.

A natural question is whether the methods presented in this work can be extended to
the adjacency matrices of random graphs. Apart from the aforementioned works regarding
the regular case [22, 29] and the work of Bordenave, Lelarge and Salez [8], an exciting
recent contribution by Glasgow, Kwan, Sah and Sawhney deals with the precise connection
between the matching number and the rank [20]. By contrast to the present work, these
contributions rely on local weak convergence and/or Littlewood-Offord techniques; see
also [19]. Furthermore, recently the methods from [9] were extended to obtain a rank formula
for the adjacency matrices of Erdös-Rényi graphs over arbitrary fields [35]. In fact, the
consideration of general fields reveals new phenomena, as was already discovered in some of
the earlier literature [6, 7, 25, 26, 27, 28].
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Abstract
We prove that for some constant a > 1, for all k ≤ a,

MATIME[nk+o(1)]/1 ̸⊂ SIZE[O(nk)],

for some specific o(1) function. This is a super linear polynomial circuit lower bound.
Previously, Santhanam [29] showed that there exists a constant c > 1 such that for all k > 1:

MATIME[nck]/1 ̸⊂ SIZE[O(nk)].

Inherently to Santhanam’s proof, c is a large constant and there is no upper bound on c. Using
ideas from Murray and Williams [26], one can show for all k > 1:

MATIME[n10k2
]/1 ̸⊂ SIZE[O(nk)].

To prove this result, we construct the first PCP for SPACE[n] with quasi-linear verifier time:
our PCP has a Õ(n) time verifier, Õ(n) space prover, O(log(n)) queries, and polynomial alphabet
size. Prior to this work, PCPs for SPACE[O(n)] had verifiers that run in Ω(n2) time. This PCP
also proves that NE has MIP verifiers which run in time Õ(n).
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1 Introduction

Some of the most fundamental problems in complexity theory are proving circuit lower
bounds for uniform complexity classes. One such conjecture is that NP does not have
polynomial size circuits, which is a strong version of P ̸= NP. Very little is known on
such lower bounds. In particular, there are no known proofs that NEXP does not have
polynomial sized circuits! However, there are some closely related results that could be
loosely seen as relaxations.

One can strengthen NP slightly by giving the non-deterministic algorithm access to
randomness, as well as an extra bit of trusted advice. This gives the complexity class MA/1.
We can weaken polynomial sized circuits to circuits of fixed polynomial size: SIZE[nk] for
constant k.
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Santhanam [29] proved that for any constant k, MA/1 ̸⊆ SIZE[nk]. The MA/1 algorithm
runs in time nck for a large c > 1. In fact, inherently to Santhanam’s proof, there is no upper
bound on c (We will explain why when we describe Santhanam’s proof in Section 1.2.1). One
can use ideas from Murray and Williams [26] to get, for some explicit c with 2 < c < 10, the
result MATIME[nck2 ]/1 ̸⊂ SIZE[nk].

The goal of this paper is to prove a fine grained separation of MA/1 from fixed polynomial
size circuits, namely,

MATIME[nk+o(1)]/1 ̸⊂ SIZE[nk].

We believe that the gold standard for separations should be fine grained separations. Fine
grained separations are necessary for key results in complexity theory, e.g., Williams’ program
(See, e.g., [33]) and optimal derandomization [14].

Some fine grained separations are known, namely, hierarchy theorems that show that giving
algorithms more time allows them to solve more problems [18, 11]. Hierarchy theorems are
known for many complexity classes. While no hierarchy theorems are known for MA, they are
known for MA/1. Fortnow, Santhanam, and Trevisan showed that MA with a small amount
of advice can solve more problems when given more time [16]. Van Melkebeek and Pervyshev
showed that for any 1 < b < d, MATIME[nb]/1 ⊊ MATIME[nd]/1 [32]. In particular,
they imply that even MATIME[n2k]/1 is much larger than MATIME[nk+o(1)]/1.

1.1 Results
In this work, we give a fine grained separation for MA/1 and SIZE[nk]. We show that for
at least some k > 1, there is an MA protocol with one bit of advice whose verifier has time
almost nk such that any circuit solving the same problem also requires size nk. Formally:

▶ Theorem 1 (Fine Grained MA Lower Bound). There exists a constant a > 1, such that for
all k < a, for some f(n) = o(1),

MATIME[O(nk+f(n))]/1 ̸⊂ SIZE[O(nk)].

We stress that we give super linear polynomial lower bounds. Our result holds for some
k strictly greater than 1, even though we don’t know which k. This result removes the large
polynomial factor in the gap between the MA/1 time and the circuit size in Santhanam’s
result. It may be the case that a is small, like a = 1.0001. But in that case, we get the
following result for all k:

▶ Theorem 2 (MA Lower Bound for Small a). If the a from Theorem 1 is finite, then for all
k > 0, for some f(n) = o(1),

MATIME[O(nak+f(n))]/1 ̸⊂ SIZE[O(nk)].

This gives us a win-win scenario: if a is large, we get a strong result for a large range of
k, but if a is small we get a similar result for all k.

When we describe our proof we will explain why we only get separations for k < a for
an (unknown) a > 1 and not for all k > 1. For now we would like to stress that: (1) under
plausible complexity assumptions the upper bound a is in fact super-constant in n; (2) even
the case of a constant a > 1 as promised in our theorem is highly interesting, since it is
unknown how to prove that NP ̸⊆ SIZE[nk] for any k > 1.

Santhanam’s original proof uses an interactive protocol for PSPACE. To prove our
circuit lower bound, we replace the interactive protocol with a new, more efficient PCP.
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To get our fine grained results, we need a PCP for space S = O(n) and time T = 2O(n)

algorithms, where the verifier simultaneously has Õ(n) time and poly(log(n)) many queries.
Further, the PCP needs a prover that can compute any bit of the proof in Õ(n) space.
Notably, we do not need any bounds on the proof length.

The PCP given by Babai, Fortnow, and Lund in their proof that MIP = NEXP [4]
required Ω(log(T )) queries, while we want O(log(log(T ))) queries.

Holmgren and Rothblum in their work on delegated computation [20] improved on the
BFL PCP in several ways that can1 be used to give a PCP with verifier time Õ(n + log(T )).
Unfortunately, it still requires Ω(log(T )) queries.

Ben-Sasson, Goldreich, Harsha, Sudan, and Vadhan [5] gave a PCP that uses a constant
number of queries, but has verifier time poly(log(T )), while we need Õ(n + log(T )) verifier
time. Similar results were given by subsequent work [23, 8, 6].

The small space requirement for the prover is achieved by Holmgren and Rothblum [20].
In some PCPs, like the PCP in Ben-Sasson, Chiesa, Genkin, and Tromer’s work on the
concrete efficiency of PCPs [6], the prover requires space Ω(T ). In contrast, our result needs
prover space Õ(S + n).

A sufficiently efficient PCP was not known, so we construct a new PCP.

▶ Theorem 3 (Verifier Efficient PCP). Let S, T = Ω(n) be functions, and L be any language
computed by a simultaneous time T and space S algorithm. Let δ ∈ (0, 1/2) be a constant.
Then there is a PCP for L with:
1. Verifier time Õ(n + log(T )).
2. Query time Õ(log(T )).
3. O(log(n) + log(log(T ))) queries.
4. Alphabet Σ with log(|Σ|) = O(log(log(T ))).
5. Log of proof length Õ(log(T )).
6. Prover space Õ(S).
7. Perfect completeness and soundness δ.

We believe we can achieve a similar verifier time, query time and prover space while also
achieving constant number of queries and alphabet size. We do not need these improvements
for our main result, so we only prove this simpler result.

Only our prover requires the space bound for its efficient computation. If we remove this
space limitation, we get a similar PCP for nondeterministic algorithms.

▶ Theorem 4 (Verifier Efficient PCP for Nondeterministic Algorithms). Let T = Ω(n),
δ ∈ (0, 1/2) be a constant, and L ∈ NTIME[T ]. Then there is a PCP for L with:
1. Verifier time Õ(n + log(T )).
2. Query time Õ(log(T )).
3. O(log(n) + log(log(T ))) queries.
4. Alphabet Σ with log(|Σ|) = O(log(log(T ))).
5. Log of proof length Õ(log(T )).
6. Perfect completeness and soundness δ.

An immediate corollary of Theorem 4 is a more fine grained equivalence between MIP
and NEXP.

1 The PCP constructed by Holmgren and Rothblum was built to have no signalling soundness and has
many steps that take longer than Õ(log(T )) time to compute. Still, the basic elements of of their PCP
needed for a standard PCP are computable in Õ(n + log(T )) time.
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▶ Corollary 5 (Fine Grained Equivalence of MIP = NEXP). For any time constructable
function p(n) = Ω(n), language L ∈ NTIME[2Õ(p(n))] if and only if there is a two prover,
one round MIP protocol for L whose verifier runs in time Õ(p(n)).

Note this equivalence implies a hierarchy theorem for MIP since there are hierarchy
theorems for NTIME [11, 30, 34, 15].

A special case is MIP protocols for NE.

▶ Corollary 6 (NE Has Quasi-linear Time Verifiers). For any language L ∈ NE, there is a
two prover, one round MIP protocol for L whose verifier runs in time Õ(n).
Note this verifier time is nearly optimal since the verifier requires linear time to read its
entire input.

All previous PCPs fail to achieve such an efficient MIP verifier. If the original PCP
makes Ω(n) queries of size Ω(n), then it takes Ω(n2) time to send the queries even if we
allow more provers. And all previous PCPs with fewer queries require verifier time Ω(n2) to
either verify the response or compute the queries.

1.2 Proof Idea
1.2.1 MA Lower Bounds Using PCP
We first review Santhanam’s original proof.

Santhanam’s original result uses the fact that if PSPACE ⊂ P/poly, then PSPACE =
MA. This follows from the famous result that IP = PSPACE [31, 22]. The idea is that
if PSPACE ⊂ P/poly, then an MA protocol can guess a circuit computing any problem
in PSPACE. The prover in the interactive protocol for PSPACE is also computable in
PSPACE. So to solve any PSPACE problem in MA, the MA protocol first guesses the
circuit for a prover, then simulates the verifier using the circuit we guessed as the prover.

Using this, Santhanam’s original proof then considered two cases: either PSPACE ⊂
P/poly, or PSPACE ̸⊂ P/poly.

If PSPACE ⊂ P/poly, then we already know PSPACE = MA. Now we just need a
problem not computable by a size nk circuit. But there is a straightforward algorithm that
exhaustively finds a circuit of size larger than nk that computes a function that cannot be
computed by a smaller circuit. In fact, such an algorithm only requires space Õ(nk). So
PSPACE ̸⊂ SIZE[nk]. In this case, PSPACE = MA, so MA ̸⊂ SIZE[nk].

If PSPACE ̸⊂ P/poly, then we know a hard problem that is not in SIZE[nk], namely
any PSPACE complete problem. Let us take a PSPACE complete, downward self reducible
language, Y . Now Y may be too hard for MA to solve, but if we give it enough padding,
eventually the padded version of Y will be computable by size nk circuits. But for this
amount of padding, MA can pull the same trick it does in the PSPACE ⊂ P/poly case.
Namely, guess a circuit for Y and then simulate the IP protocol for Y . For some PSPACE
complete Y , the language itself is its proof and this works. The trick is to use just the right
amount of padding so it requires circuits of at least size nk, but not much larger. Santhanam
uses the single bit of advice in a clever way to figure out when there is just the right amount
of padding.

In either case, the time of this protocol is roughly the time of the verifier in the IP
protocol, plus the size of the prover circuit times the number of times the prover is queried.

There are two reasons the MA protocol could take polynomially more time than the size
of the circuits it wants to compute in the case PSPACE ⊂ P/poly. One is that the IP from
the original Santhanam result has polynomial verifier time and a polynomial time interaction
with the prover, making the verifier in the MA/1 protocol take polynomially longer than
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the circuit complexity of the problem being solved. By using a PCP, we get better results.
The other is that the prover circuit complexity could be large, depending on the circuit
size required for PSPACE (could be any polynomial when PSPACE ⊂ P/poly). This is
the reason there is no upper bound on the polynomial run time of the MA/1 protocol in
Santhanam’s proof. To avoid this issue we consider a finer case analysis.

We break the problem into three cases. For some SPACE[O(n)] complete language, X,
we have one2 of the following:
1. X /∈ P/poly.
2. X ∈ SIZE[n1+o(1)].
3. X ∈ SIZE[na+o(1)] \ SIZE[na−o(1)] for some a > 1.

The original proof only used the two cases X /∈ P/poly and X ∈ P/poly. The case
where X /∈ P/poly is completely unchanged. Note that this is the plausible case, and here
there is no constant upper bound a on k.

If X ∈ P/poly, we use our efficient PCP, Theorem 3, instead of the IP Santhanam uses.
With this substitution, the case where X ∈ SIZE[n1+o(1)] is almost unchanged from the
original proof. By separating this into it’s own case, we get tight bounds for all k in this case.

If X ∈ SIZE[na+o(1)] \ SIZE[na−o(1)] for some a > 1, then we use the same padding
technique we use if X /∈ P/poly, just using our new PCP. In this case, we can only do this
if for some k < a, we are trying to show MATIME[nk+o(1)]/1 ̸⊂ SIZE[nk−o(1)]. This is the
case where a is finite, but in this case, we can use Santhanam’s argument using our PCP to
get Theorem 2.

To see why k > a poses a difficulty, suppose SPACE[O(n)] ̸⊆ SIZE[o(n2)], but
SPACE[O(n2)] ⊆ SIZE[O(n2)]. Then to get a language requiring size n3 circuits, we
need to use a space n3 algorithm. But the prover for a space n3 language is a language
running on an input with length n3, and using space linear in its input length. Thus we
may need a size (n3)2 = n6 circuit for our prover. So the verifier takes time at least n6 to
even read the prover circuit, thus can’t run in time n3. See Item 2 in our open problems for
further explanation.

▶ Remark 7. We note our verifier in Theorem 1 is a RAM machine, not a standard Turing
Machine. This is because we know how to efficiently simulate a circuit on a RAM machine,
but not on a standard Turing Machine.

1.2.2 Verifier Efficient PCP
Now we explain the PCP we actually use in the MA protocol. We start with a PCP similar
to [20] and [4] that we refer to as our base PCP. This PCP has a verifier that runs in time
Õ(n + log(T )) and uses O(log(T )) queries. To reduce the number of queries, we use PCP
composition [3, 7, 13, 25, 12].

To perform PCP composition, we need a robust PCP. Loosely, a robust PCP is a
PCP so that when x /∈ L, for any proof, most sets of queries to that proof return not only a
rejected response, but a response that is far from any accepted response. To make our base
PCP robust, we use the aggregation through curves technique [2]. Now we briefly explain
how to use aggregation through curves to convert our base PCP into a robust PCP.

An honest proof for our base PCP is a single low degree polynomial. Suppose our base
PCP has q queries. To make our PCP robust, we first choose the randomness for the base
PCP, and another random point in the PCP proof. Then we find the degree q curve that

2 This is a trichotomy in an asymptotic sense: for every constant a, either X ∈ SIZE[O(na)] or it is not.
See Section 3.5 for details.
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goes through all these points. Then we check if the proof, restricted to this curve, is a low
degree polynomial, and whether the base PCP would have accepted on this input. Since a
low degree polynomial is an error correcting code, this gives robustness.

One concern one might have with this robust PCP is that it actually requires Ω(log(T )2)
queries. We don’t need to actually calculate all of these query locations. Since we reduce the
actual number of queries with PCP composition, we only need to be able to calculate any
individual query location quickly. To find these query locations requires us to compute a
point on the degree q curve going through each of our q points our base PCP queries plus a
random point. In our base PCP, q = O(log(T )) and our proof has dimension O(log(T )). So
the naive way to compute this curve is to calculate each coordinate independently, which
would take time Õ(log(T )2).

To efficiently compute low degree curves through points, or to extrapolate a function
going through those points, we introduce the concept of time extrapolatable functions.

▶ Definition 8 (Extrapolatability). For any n, q, t > 0, and field F, we call Q : [q] → Fn “t

extrapolatable” (or time t extrapolatable) if there is a time t algorithm taking any v ∈ Fq,
that outputs∑

i∈[q]

viQ(i).

Equivalently, if we think of Q as outputting the columns of a matrix, then we say Q is
time t extrapolatable if one can multiply a vector with it in time t. An important property
of extrapolatable functions is that an extrapolation of an extrapolatable function can be
computed efficiently. This is where it gets its name.

Our base PCP is just a sum check and a few point checks. Each of these are time
Õ(log(T )) extrapolatable. Our robust PCP only queries locations easily computable given
the extrapolation of our base PCP query locations. Extrapolations of extrapolatable
functions are easy to compute, so we can easily compute the query locations of the robust
PCP.

We also introduce the concept an extrapolatable PCP (ePCP) as one where an honest
proof is a low degree polynomial, and the query locations after fixing a choice of randomness
are extrapolatable. We show that any ePCP can be extended into a robust PCP where the
query locations of that robust PCP can be computed efficiently.

1.3 Generalization And Sharpness
We actually prove a stronger result than Theorem 1 that is sharp. First, our MA protocol
is input oblivious: the message from Merlin is just a program for computing a PSPACE
complete language and doesn’t depend on the specific input, just its length. Second, the
hardness is against the model used in Merlin’s message. We used circuits, but we can describe
a randomized algorithm directly to save some polynomial factors.

We define input oblivious Merlin-Arthur time, OMATIME, the same way as Fortnow,
Santhanam, and Williams [17]. Input oblivious Merlin-Arthur are languages solvable with
untrusted advice, where the advice only depends on the input length. In our case, Merlin gets
to send a long, untrusted message for every input length, and Arthur also gets a single bit of
trusted advice. Note that Santhanam’s original proof implicitly also uses input oblivious MA.

The main property of circuits we use is that a randomized algorithm can efficiently
simulate it. We can instead use BPTIME[nk]/nk, that is, randomized algorithms running
in time nk with description length nk. This uses the same model of computation as our
verifier, allowing it to more efficiently simulate OMATIME.
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Using OMATIME instead of MATIME and BPTIME instead of SIZE, we can follow
the same proof as our main result to show:

▶ Theorem 9 (OMATIME Lower Bound Against BPTIME). There exists constant a > 1,
such that for all k < a, for some f(n) = o(1),

OMATIME[O(nk+f(n))]/1 ̸⊂ BPTIME[O(nk)]/O(nk).

This result is tight in the sense that for any function f(n), we have

OMATIME[f(n)]/1 ⊆ BPTIME[O(f(n))]/(f(n) + 1).

To get stronger results, we need to use nondeterminism that depends on the input. So one
could say our result is less about the power of nondeterminism, and more about the power
of trusted versus untrusted advice. Specifically: trusting advice doesn’t always buy (much)
time in the randomized setting, as long as we have some trusted advice.

Let us briefly outline what would need to change in our main proof to prove Theorem 9,
and justify why those changes would work.

First we need to make a class of randomized programs that act more like circuits. Consider
the class of programs, C, that contain randomized algorithms that work only a specific input
length. For any C ∈ C, we say C(x) is the random variable that simulates C on input x for
time |C|, and outputs what C does if C terminates in time |C|, and outputs 0 otherwise. See
that C behaves like circuits in the following important ways:
1. Given a program C ∈ C, a randomized algorithm can calculate the random variable C(x)

in time O(|C|).
2. For any function f(n) and language L ∈ BPTIME[f(n)]/f(n), for every n, there is a

Cn ∈ C such that |Cn| = O(f(n)) and with high probability Cn(x) = 1x∈L.

A few notes on using C in our proof, as opposed to circuits.
1. First, see that SPACE[O(nk)] ̸⊆ BPTIME[o(nk)]/o(nk). This follows using the same

exhaustive search type algorithm used for SIZE[o(nk)].
For any polynomial nk, there is a deterministic program, A, with length O(nk) running
in time O(nk), but is not computable with high probability by any program C ∈ C with
length o(nk). This follows from a simple counting argument: length nk deterministic
programs contain more than 2αnk functions for some constant α (just use some lookup
table), while there are only 2αnk length αnk programs.
Such an A can still be found by exhaustive search in space O(nk), since given C ∈ C, we
can space efficiently check every choice of randomness and calculate majority. This gives
us that

SPACE[O(nk)] ̸⊆ BPTIME[o(nk)]/o(nk).

2. Given that L ∈ BPTIME[f(n)]/f(n), then for any n, there is some advice (notably, a
program Cn ∈ C with size |Cn| ≤ f(n)) such that a randomized algorithm given that
advice can compute whether x ∈ L with probability 1 − ϵ in time O(f(n) log( 1

ϵ )).
This allows our verifier to efficiently compute a SPACE[O(n)] complete problem, L, in
time nearly f(n) if L ∈ BPTIME[f(n)]/f(n), given correct advice.

3. We also note that for some programs C ∈ C, for some inputs x, our program C evaluated
on x may answer one or zero with very close to half probability. That is, the syntax of C
does not only give bounded error randomized algorithms, just a randomized algorithm.
This is not an issue, because in the completeness case, there will be a program C that does
have bounded error the prover should provide. And in the soundness case, the soundness
of our PCP holds against any multi-prover strategy, even a randomized strategy. So no
program provided will convince the verifier with high probability.
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Finally, see that in all cases of our proof, Arthur only asks Merlin for a program computing
some SPACE[O(n)] complete problem. This advice does not depend on the specific input,
only on the input size.

2 Preliminaries

We assume some familiarity with basic complexity theory. See Arora and Barak’s book for
background [1]. In this paper, by algorithm, we mean algorithm on a RAM machine, and
by circuit, we mean a fan in 2 circuit with unbounded depth. A randomized algorithm is a
deterministic algorithm with an extra input for randomness. We will assume in this paper
that all time and space bounds for algorithms are sufficiently easily computable.

Now recall that MA is the complexity class of problems with polynomial sized certificates
that can be verified with bounded error by a randomized, polynomial time algorithm. This
is like NP with a randomized verifier. Then we define MATIME in an analogous way to
NTIME. Our results have perfect completeness, so we only define MATIME with perfect
completeness.

▶ Definition 10 (MATIME/1). For any function f : N → N, define MATIME[f(n)]/1
as the set of languages, L, such that there is a function b : N → {0, 1} and a time f(n)
randomized algorithm M taking four inputs, an input x, a random input r, a witness w, and
an advice bit such that

Completeness If x ∈ L and n = |x|, then there exists w with |w| ≤ f(n) such that

Pr
r

[M(x, r, w, b(n)) = 1] = 1.

Soundness If x /∈ L and n = |x|, then for every w,

Pr
r

[M(x, r, w, b(n)) = 1] < 1/2.

We let SIZE denote the class of languages with circuits of a given size.

▶ Definition 11 (SIZE). For any function f : N → N, SIZE[f(n)] is the class of languages,
L, where for each input length n, there is a circuit of size f(n) with n inputs computing L

for inputs of length n.
Further, SIZE[O(f(n))] is the class of languages, L, such that for some g(n) = O(f(n)),

we have L ∈ SIZE[g(n)]. Similarly for SIZE[o(f(n))].

In this paper, we will focus on time and space efficient, non-adaptive PCPs with perfect
completeness. Because we need to pay close attention to the amount of time it takes to make
a single query to the proof, we separate the algorithm for producing queries, Q, from the
algorithm for verifying the response, V . We also separate the function that gives all the
query locations for a choice of randomness, I, from the algorithm that gives a single one of
those query locations, Q.

So at a high level, a PCP protocol does the following:
1. Chooses a common random string, r.
2. Runs query function Q with randomness r for q(n) many times to get all query locations,

I.
3. Looks up all query locations, I, into a provided proof, π, to get proof window πI .
4. Runs verifier V with randomness r and proof window πI and outputs if V accepts.
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Now we formally define a PCP.

▶ Definition 12 (PCP). We say that a language L has a non-adaptive PCP, A, with perfect
completeness if there exists verifier V , prover P , index function I, and query function Q,
such that, for some alphabet Σ, δ ∈ [0, 1], and functions r, l, q : N → N:
1. I takes 2 inputs, an input of length n and randomness of length r(n), and outputs an

element of [l(n)]q(n). That is, I outputs q(n) indexes in a length l(n) string,
2. Q is an algorithm with three inputs, an input x of length n, randomness r of length r(n),

and an index i ∈ [q(n)] and outputs an element of [l(n)] such that Q(x, r, i) = I(x, r)i.
3. V is an algorithm with three inputs, an input of length n, randomness of length r(n), and

q(n) symbols from Σ, and outputs either accept or reject.
4. P is an algorithm that takes two inputs, an input of length n, and an index i ∈ [l(n)],

and outputs a symbol from Σ.

Completeness If x ∈ L and n = |x|, then there exists πx ∈ Σl(n) such that

Pr
r

[V (x, r, πx
I(x,r)) = 1] = 1,

and for every i ∈ [l(n)], P (x, i) = πx
i .

Soundness If x /∈ L then for every π′,

Pr
r

[V (x, r, π′
I(x,r)) = 1] ≤ δ.

Then we also say:
1. A has proof length l(n).
2. A has alphabet Σ.
3. A has soundness δ.
4. A uses q(n) queries.
5. A uses r(n) bits of randomness.
6. If V runs in time t(n), A has verifier time t(n).
7. If V runs in space s(n), A has verifier space s(n).
8. If P runs in space s′(n), A has prover space s′(n).
9. If Q is computable in time t′(n), A has query time t′(n).

3 Efficient PCP To Fine Grained Lower Bounds

We only give a detailed sketch here. The full version of our paper is available at [9].
Our analysis depends on the circuit complexity of some PSPACE complete problem. So

we start by choosing a SPACE[O(n)] complete problem. We use a version of SPACE TMSAT
(on page 83 of [1]).

▶ Definition 13 (Specific Problem). SPACE TMSAT is the language

{(M, x, 1n, 0∗) : Turing machine M accepts x using at most n space.}

Note: SPACE TMSAT ∈ SPACE[O(n)] and SPACE TMSAT is SPACE[O(n)] complete. The 0∗

is just there to make it explicit the language is paddable. In particular, this means that the
circuit complexity of SPACE TMSAT is non-decreasing.

▶ Lemma 14 (SPACE TMSAT Circuit Complexity is Non-Decreasing). If A′(n) is the size of the
minimum circuit solving SPACE TMSAT for inputs of length n, then A′(n) is non-decreasing.
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Proof. Let C be the circuit of size A′(n + 1) solving SPACE TMSAT for length n + 1 inputs.
Then to get a circuit for length n inputs, use C with an extra 0 hard coded into the last
input. The resulting circuit will be at most the size of C and solve length n inputs. Thus
A′(n + 1) ≥ A′(n). ◀

Then using Theorem 3, we can get a PCP for SPACE TMSAT by setting T = 2O(n) and
S = O(n). This can be turned into a PCP with a binary alphabet by replacing every query
for a symbol in Σ with O(log(n)) queries to the individual bits of that symbol.

▶ Corollary 15 (PCP for SPACE TMSAT). There is a PCP for SPACE TMSAT with:
1. Verifier time Õ(n).
2. Query time Õ(n).
3. poly(log(n)) queries.
4. Binary alphabet.
5. Log of proof length Õ(n).
6. Prover space Õ(n).
7. Soundness 1/2 and perfect completeness.

We prove three different MATIME/1 lower bounds that are based on three different
hard problems. Different ones work better in different parameter regimes. After constructing
them all, we show we always fall into some range of parameters so that we can get the lower
bounds of Theorem 1.

3.1 Implicitly Encoding Advice in Input Length
In each of our cases, we will use advice to find the size of some prover circuit. To do this, we
implicitly encode a number in the input length. If that implicitly encoded number describes
the size, our advice bit will be 1. Otherwise, the advice bit is 0.

For any input length n ∈ N, for some l ∈ N, we have n ∈ [2l, 2l+1). For such an l, there is
some m ∈ N such that n = 2l + m. This m, or equivalently this l, is our implicitly encoded
number. Because we will use this decomposition a lot, we will explicitly define some functions
that perform this decomposition.

▶ Definition 16 (Implicit Encoding In Input). For natural n ≥ 1, let l ≥ 0 be an integer so
that n ∈ [2l, 2l+1), and m ≥ 0 be an integer so that n = 2l + m. Then define µ(n) = m and
ρ(n) = l.

There is a simple interpretation of this m = µ(n) and l = ρ(n) in terms of the binary
representation of n. You can think of l as the length of the binary number, and m the binary
number after the top bit is removed.

3.2 SPACE TMSAT not in P/poly
In this case, we follow the proof in the original work [29] where PSPACE ̸⊂ P/poly. We
present the same arguments here with more precise parameters.

When PSPACE ̸⊂ P/poly, the circuit complexity of SPACE TMSAT for different input
sizes could change drastically and in a way that may be hard to analyze. This is an issue
because the PCP for SPACE TMSAT needs a prover with a longer input than the input being
verified, thus might require a much larger circuit.

Instead, we use a downward self reducible PSPACE complete language. Specifically, a
language that has a sound interactive protocol with queries the same length as its input and
whose prover is the language itself. We cite the result from Lemma 11 in [29]:
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▶ Lemma 17 (Same Size, Self Proving PSPACE Complete Language). There is a PSPACE-
complete language Y and a probabilistic polynomial-time oracle Turing machine M such that
for any input x:
1. M only asks its oracle queries of length |x|.
2. If M is given Y as oracle and x ∈ Y , then M accepts with probability 1.
3. If x /∈ Y , then irrespective of the oracle given to M , M rejects with probability at least

1/2.

The important feature of language Y is that for an input x, the prover for x is the same
language Y , and queries to the prover have the same length as x. This means Y , and the
prover for Y , have the same circuit. Then if PSPACE ̸⊂ P/poly, then the polynomial
overhead of the proof protocol grows much more slowly than the difficulty of Y . So a padded
version of Y can be used as our language in this case. A proof sketch is in Appendix A, full
proofs are in the full version [9].

▶ Lemma 18 (Bound if PSPACE does not have Polynomial Sized Circuits). If SPACE TMSAT /∈
P/poly, then for any k > 0, and some f(n) = o(1):

MATIME[O(nk+f(n))]/1 ̸⊂ SIZE[O(nk)].

3.3 SPACE TMSAT in Almost Linear Size
The idea in this case is to use a brute force, small space algorithm that finds a problem not
in a fixed polynomial size. In particular, for circuit size S(n), the brute force algorithm uses
space O(S(n)) to compute some function with minimum circuit size Θ(S(n)). Then we want
to simulate the PCP from Corollary 15 to prove the output of this algorithm. Since the
PCP is efficient, the prover for this algorithm does not use much more space than the brute
force algorithm itself.

If SPACE TMSAT has almost linear sized circuits, the prover doesn’t require much larger
circuits than the space of the prover. Finally, our PCP is efficient, so the time of the MA
verifier isn’t much more than the size of the prover circuit. So the MA protocol doesn’t
require much more time then the size of the circuit it proves the output of.

If SPACE TMSAT requires larger circuits, say quadratic circuits, then the size of the prover
circuits would be quadratically larger than the input length of the prover. That is, the prover
circuit would be quadratically larger than the circuit it is trying to prove. This would give
quadratic overhead for the MA verifier time over the size of the circuit it verifies. So this
construction only works well enough when SPACE TMSAT has almost linear sized circuits.

So this gives a proof when SPACE TMSAT has almost linear sized circuits. A proof sketch
is in Appendix A, full proofs are in the full version [9].

▶ Lemma 19 (Bound if SPACE TMSAT has Size n1+o(1)). If for some g(n) = o(1) and some
non-decreasing function A(n) = n1+g(n) we have SPACE TMSAT ∈ SIZE[O(A(n))], then for
any k > 0, there is an f(n) = o(1) such that:

MATIME[O(nk+f(n))]/1 ̸⊂ SIZE[O(nk)].

3.4 SPACE TMSAT in Polynomial Size, but not Almost Linear
This is the “bad” case, where we can’t prove the result for every constant k, only for k < a.
This is the most complicated case, requiring us to both pad the input to get the correct
problem difficulty, and use advice to get the size of the circuits for the prover. The idea is to
solve SPACE TMSAT on a padded version of the input using our PCP. So we need the advice
to tell us three things:

APPROX/RANDOM 2023
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1. Some m so that SPACE TMSAT on length m inputs requires circuits of size ω(nk).
2. Further, we need SPACE TMSAT on length m inputs to require circuits of size near ma.

This keeps the prover from requiring circuits too much larger than SPACE TMSAT on length
m inputs does.

3. How big the circuit for the prover in Corollary 15 needs to be.

Similar to the previous cases, this advice will come implicitly from the input length, and
the single advice bit will be 1 if and only if the input length encodes valid advice. A skectch
is in Appendix A. For full details, see the full version [9].

▶ Lemma 20 (Bound if SPACE TMSAT has size na+o(1)). Suppose for some function h(n) with
|h(n)| = o(1) and for some constant a > 1, for some function A(n) we have A(n) = na+h(n).
Then if A(n) is non-decreasing and we have SPACE TMSAT ∈ SIZE[O(A(n))]\SIZE[o(A(n))],
then for any k < a, for some f(n) = o(1),

MATIME[O(nk+f(n))]/1 ̸⊂ SIZE[O(nk)].

3.5 Altogether
Altogether, these three cases imply Theorem 1. More details can be found in the full
version [9].

▶ Theorem 1 (Fine Grained MA Lower Bound). There exists a constant a > 1, such that for
all k < a, for some f(n) = o(1),

MATIME[O(nk+f(n))]/1 ̸⊂ SIZE[O(nk)].

Proof. First, we will find the best polynomial approximation of the circuit complexity of
SPACE TMSAT. So define set

S = {a ∈ R : SPACE TMSAT ∈ SIZE[O(na)]}.

If S = ∅, then there is no constant a such that SPACE TMSAT ∈ SIZE[O(na)]. Then
SPACE TMSAT /∈ P/poly, so we use Lemma 18.

So suppose S ≠ ∅. One can show that SPACE TMSAT requires linear size circuits since it
depends on all inputs. Thus for any a < 1, we know that SPACE TMSAT /∈ SIZE[O(na)], that
is a /∈ S. So 1 is a lower bound for S.

Then the set S is nonempty and has a lower bound. So S has an infimum, a, so
that for any constant ϵ > 0, we have SPACE TMSAT ∈ SIZE[O(na+ϵ)], but SPACE TMSAT /∈
SIZE[O(na−ϵ)]. This implies that for some h(n) with |h(n)| = o(1) and A(n) = na+h(n) that
SPACE TMSAT ∈ SIZE[O(A(n))] \ SIZE[o(A(n))].

If a = 1, we use Lemma 19. If a > 1, we use Lemma 20. ◀

To prove Theorem 2, we use a proof similar to Lemma 19. See the full paper [9] for
details.

4 PCP Sketch

We give a brief overview of the PCP proof. A full proof is available at [9].
Our overall protocol constructs an extrapolatable PCP by observing that a simple BFL

style PCP is extrapolatable. Then this can be turned into an rPCP with an efficient query
function. Finally we can compose this with a decodable, BFL style PCP with a very fast
verifier.



J. Cook and D. Moshkovitz 55:13

4.1 Extrapolatable PCPs

We start by showing some lemmas about extrapolatability that make the definition easy to
work with. Notably, if 2 functions are extrapolatable, so is their concatenation. This allows
us to show components of a PCP are extrapolatable individually to get an extrapolatable
PCP.

▶ Lemma 21 (Extrapolatability Combination). For integers n, q, q′, t, t′ > 0, and field F, if
p : [q] → Fn is t extrapolatable, and p′ : [q′] → Fn is t′ extrapolatable, then g : [q + q′] → Fn

is O(t + t′ + n log(F)) extrapolatable where

g(i) =
{

p(i) i ≤ q

p′(i − q) i > q
.

Of course, extrapolatability’s main purpose is to allow efficient extrapolation.

▶ Lemma 22 (Efficient Polynomials From Extrapolatability). For any n, q, t > 0, field F
where |F| > q, and t extrapolatable Q : [q] → Fn, there is a time O(t + qpolylog(|F|))
algorithm computing the value of a degree q − 1 polynomial, g, such that for all i ∈ [q] we
have g(i) = Q(i).

Now we introduce extrapolatable PCPs and show they imply robust PCPs with fast
query functions. Extrapolatable PCPs are PCPs whose proofs are low degree functions,
only require soundness against proofs that are low degree functions, and whose query location
function is extrapolatable.

In our notation, the query function Q returns a single query location of the verifier V on
a choice of randomness, whereas I returns every query location for a choice of randomness.
Query function, Q, needs to be extrapolatable, but index function, I, is more convenient for
defining completeness and soundness. See standard PCPs, Definition 12, for reference.

▶ Definition 23 (Extrapolatable PCP). We say a non-adaptive PCP, A, for language L with
verifier V , prover P , individual query function Q, and index function I is an extrapolatable
PCP (ePCP) if for some m and d:
1. For some field F, A uses alphabet F.
2. The proof length is |F|m.

That is, any proof, π, can be viewed as a function π : Fm → F.

Low Degree Completeness If x ∈ L and n = |x|, then there exists a polynomial πx : Fn → F
of degree at most d such that Prr[V (x, r, πx(I(x, r))) = 1] = 1, and for every i ∈ [l(n)],
we have P (x, i) = πx

i .
Low Degree Soundness If x /∈ L then for every polynomial π′ : Fn → F of degree at most d

has Prr[V (x, r, π′(I(x, r))) = 1] ≤ δ.

Further, we say A has:
1. Extrapolation time t(n) if for any x, r, the function Qx,r(i) = Q(x, r, i) is time t(n)

extrapolatable.
2. Degree d and m variables.
3. Low degree soundness δ.
4. Perfect low degree completeness.
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The main application of an ePCP is a convenient primitive in constructing efficient
robust PCPs (rPCP). Robust PCPs are a standard primitive in the literature and are
commonly used in PCP composition [3, 7, 13, 25, 12]. This conversion of ePCP to rPCP
is where all the low degree testing is performed. But low degree test queries are simple lines
so are easy to compute. Note that our rPCPs constructed from an ePCP uses the same
proof, so if the ePCP prover is efficient, so is the rPCP prover. See the full paper [9] for a
proof.

▶ Theorem 24 (ePCP gives efficient rPCP). For any language L with an ePCP, A, with
1. Verifier time t(n).
2. Verifier space s(n).
3. Extrapolation time t′(n).
4. Randomness r(n).
5. Degree d(n) and m(n) variables.
6. q(n) queries.
7. Alphabet F where |F| > 10q(n)d(n).
8. Prover P .
9. Low degree soundness 0.1.

10. Perfect low degree completeness.
Language L has an rPCP, B, with
1. Verifier time O(t(n) + |F|3polylog(|F|)).
2. Verifier space O(s(n) + log(|F|)).
3. Randomness r(n) + O(m(n) log(|F|)).
4. Query time O(t′(n) + (q(n) + m(n))polylog(|F|)).
5. O(|F|) queries.
6. Prover P with perfect completeness.
7. Soundness at most 0.99.

4.2 Constructing our Extrapolatable PCP
Our ePCP is a BFL [4] style PCP. We start by converting our algorithm into a cellular
automata so that it has very uniform, local constraints, similar to the Cook-Levin theorem
[10, 21], or what was done in [20]. In particular, the constraints can be described by a simple
polynomial of the computation history of the cellular automata.

Then our ePCP will ask for a multilinear extension of the computation history, a low
degree polynomial encoding the constraint function of that computation history, and a sum
check [22] style proof verifying that constraint is always satisfied. Then the verifier just needs
to check the computation history is consistent with the input, the constraint polynomial is
consistent with the computation history polynomial, and the sum check of the constraint
polynomial succeeds. All low degree testing is handled in the conversion from an ePCP to
an rPCP.

Now we verify that a variation on standard sum check [22, 4] is extrapolatable. Since
ePCPs only need soundness against low degree proofs, our base ePCP only needs to perform
constantly many queries besides the sum check. So the check sum is the most difficult thing
to prove the extrapolatability of.

▶ Lemma 25 (Sum Check Queries Are Extrapolatable). For any variable number n ∈ N, degree
d ∈ N, field F with |F| > max{d, n} + 1, and randomness r, the query location function, Qr,
used in the sum check protocol for a degree d and n variable function are O(ndpolylog(|F|))
extrapolatable.
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The proof is straightforward and comes from a close observation of the specific sum check
query locations.

We need a low space prover to use in our MA lower bounds. Creating the computation
history itself takes about as much space as the original algorithm. Multilinear extensions
can be done straightforwardly in small space if one only needs one symbol, or does not care
about time.

▶ Lemma 26 (Multilinear Extensions Require Low Space). Suppose function G : {0, 1}n →
{0, 1} is computable in space S. Then the multilinear function g consistent with G on Boolean
inputs is computable in space O(n log(|F|) + S).

Similarly, individual symbols from the constraint polynomial can be computed in small
space from the multilinear extension of the computation history. The sum check proof is
essentially partial linearizations of the constraint polynomial, so can also be done in small
space.

4.3 Decodable PCP
After that, we use a similar PCP for the decodable inner PCP (dPCP), and apply a
standard robust, decodable PCP composition [12]. Essentially only two changes need to be
made to get our dPCP. First we need to only check consistency of the computation history
with the explicit input (and not the implicit input). Second, we need to do an additional
query to an implicit input to decode from it. This does not require any new tricks.

Finally, we do a standard PCP composition of a robust PCP with a decodable PCP
to do query reduction. We note that we can not do the standard trick of having the outer
rPCP output a circuit that the inner dPCP proves the output of as that circuit description
would be too large for a verifier to compute. Instead this must be done implicitly, similar to
[5]. We also note that to keep the space of the inner PCP prover small requires the space of
the outer PCP prover, the space of the outer query function, and the space of the outer
PCP verifier to be small.

4.4 Fine Grained MIP = NEXP
We note that the low space and deterministic algorithm requirements were only to keep
the prover space low. Dropping the prover space requirement and using the same proof
gives Theorem 4. Then using Theorem 4, one can use a standard technique to get 1

polylog(n)
error, 2 query PCP. Combining this with a repetition theorem [28, 19, 27] gives the 2 query,
constant error MIP stated in Corollary 5.

5 Open Problems

There are several ways we would like to improve the circuit lower bounds.

1. Remove the advice bit.
We still had to use advice, a limitation from the original Santhanam result. It would be
nice if we could get lower bounds on MA with no non-uniformity.

2. Prove tight bounds for all k.
Another limitation of our circuit lower bound is that it does not prove this tight bound
for all k > 1, just for some k.
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The major barrier is in the case that SPACE[n] algorithms may require super linear,
but polynomial, sized circuits. Then the circuit size required for any given space may
change in a strange way. For example, suppose for some a > 1

SPACE[n] ⊆ SIZE[O(na)] \ SIZE[o(na)].

What we would like, but this does not obviously imply, is that for all b > 1:

SPACE[nb] ⊆ SIZE[O(nab)] \ SIZE[o(nab)].

While a padding argument shows SPACE[nb] ⊆ SIZE[O(nab)], it does not show that
SPACE[nb] ̸⊆ SIZE[o(nab)].

3. Make lower bound more frequent.
We only prove that infinitely often this lower bound occurs, but it may have even super
exponential gaps between input sizes where the circuit lower bound holds. Murray
and Williams [26] gave a refinement of the Santhanam circuit lower bounds, that is
incomparable to ours, which gives circuit lower bounds that holds for input lengths only
polynomially far apart.

4. Prove exponential lower bounds for MAEXP.
A similar problem is to prove exponential circuit lower bounds for the exponential version
of MA, known as MAEXP. The best circuit lower bounds known for MAEXP are
“half-exponential” by Miltersen, Vinodchandran, and Watanabe [24]. Loosely, a function
is half exponential if that function composed with itself is exponential.

Another open problem is to give a PCP whose verifier time matches ours with only
quasilinear proof length. Known PCPs with proof length Õ(T ) have verifier time Ω(n +
log(T )2). We suspect ideas from theorem 2.6 in [5]3 (which extends the results of [7] from
NP to NEXP) may give a PCP with verifier time near Õ(n + log(T )) while giving a proof
of length T 1+o(1). But it would not have proof length Õ(T ) = Tpolylog(T ). We stress that
close analysis of the verifier time for the PCP of [5] has not been performed, and that PCP
is much more complex than ours.
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Now we define our language, W , in MATIME[nk+f(n)]/1 but not in SIZE[O(nk)]. For
any input size, n, using Definition 16, let m = µ(n) and l = ρ(n). Let our advice bit be 1 if
both:
1. Y on length m inputs has circuits with size nk log(n). This makes sure there is a fast

prover for Y .
2. And Y on length m inputs does not have circuits of size mg(m). This makes sure m grows

much more slowly than n.
Then x ∈ W for some x with |x| = n if and only if the advice bit is 1 and for some y ∈ Y

with |y| = m we have x = y1n−m.
Let a > 0 be the constant so that the verifier (M in Lemma 17) for Y ’s interactive protocol

runs in time O(na). Define the MA protocol as follows. If the trusted advice bit is one, Merlin
gives Arthur a length nk log(n) circuit. Then Arthur simulates the interactive protocol for Y

on y using the circuit from Merlin as the prover. This protocol runs in time O(mank log(n)).
By assumption we have mg(m) < nk log(n), which one can show implies m < nf ′(n) for some
f ′(n) = o(1). Thus the MA/1 protocol runs in time O(nf ′(n)nk log(n)2) = nk+f(n) for some
f(n) = o(1).

By choice of g(m), for infinitely many m, the second condition is satisfied and g(m) > k+1.
For such m, the smallest choice of n = 2l + m where Y on length m inputs has circuits of
size nk log(n) can not have circuits of size (n/2)k log(n/2). For such n, language W does not
have circuits of size O(nk), but does have an MA protocol running in time nk+f(n). ◀

▶ Lemma 19 (Bound if SPACE TMSAT has Size n1+o(1)). If for some g(n) = o(1) and some
non-decreasing function A(n) = n1+g(n) we have SPACE TMSAT ∈ SIZE[O(A(n))], then for
any k > 0, there is an f(n) = o(1) such that:

MATIME[O(nk+f(n))]/1 ̸⊂ SIZE[O(nk)].

Proof. The proof proceeds in five steps.
1. Find a language L ∈ SPACE[nk log(n)2] \ SIZE[nk log(n)/10]. In particular, for every

input length n, language L has circuits of size nk log(n) but not nk log(n)/10.
2. Reduce L to SPACE TMSAT and use Corollary 15. In particular, find a circuit, Cn, for the

prover in an MA protocol for L on length n inputs.
3. Define our advice bit to implicitly give an upper bound for the size of Cm for some m

within a factor of 2 of n. Then we define W to be length m elements of L, padded to
length n.

4. Show that infinitely often the advice bit is 1 and W does not have small circuits.
5. Show that W has an efficient MA protocol.

With that outline in mind, let us begin the proof.

1. Find a language L ∈ SPACE[nk log(n)2] \ SIZE[nk log(n)/10].
From the non-uniform hierarchy (in Arora and Barak [1, Theorem 6.22]), there is a
language L ∈ SIZE[nk log(n)] \ SIZE[nk log(n)/10]. In particular, for every n, language
L on length n has circuits size nk log(n) but not size nk log(n)/10. A brute force search
can then find and simulate such a circuit using space O(nk log(n)2).

2. Reduce L to SPACE TMSAT and use Corollary 15.
Since M only uses space g(n) = Õ(nk), we know x ∈ L if and only if (M, x, 1g(n), 0) ∈
SPACE TMSAT. We know SPACE TMSAT on length Õ(nk) inputs has a PCP protocol from
Corollary 15 that uses polylog(n) many length Õ(nk) queries to a space Õ(nk) prover,
P , where each query can be calculated by a time Õ(nk) algorithm, Q, and the results
from P are verified by a time Õ(nk) verifier, V .
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Now we reduce the prover P to SPACE TMSAT so we can use that SPACE TMSAT ∈
SIZE[O(n1+g(n))] to get a circuit for P . A length Õ(nk) query, q, to P can be con-
verted into a length Õ(nk) input, q′, for SPACE TMSAT by providing the algorithm for
P and Õ(nk) 1s. Call the circuit for SPACE TMSAT on length |q′| inputs Cn. Since
SPACE TMSAT ∈ SIZE[O(n1+g(n))], we know Cn has size (Õ(nk))1+g(n) = nk+g′(n) for
some g′(n) = o(1).

3. Define our advice bit.
Now an MA protocol can guess Cn, but we may not be able to compute how large Cn

needs to be. The function g′(n) may be hard to compute. So we use advice.
Let l = ρ(n), m = 2l and t = µ(n) so that n = m + t. Then let the advice bit be 1 if
a. Circuit Cm has size mk2t.
b. For any natural t′ less than t, circuit Cm does not have size mk2t′ .

This condition allows us to use the smallest t possible for a given m.
Then x ∈ W for some x with |x| = n if and only if the advice bit is 1 and for some
y ∈ SPACE TMSAT with |y| = m we have x = y1n−m.

4. Show W does not have small circuits.
First see that for every large enough l, for m = 2l, there will be one t such that this
advice bit is 1. That is for some t < m, Cm has size mk2t. Otherwise, Cm would have
exponential size, but it only has almost linear size. Then for the minimum such t, the
advice bit will be one. So infinitely often, the advice bit will be 1.
When the advice bit is 1, the language W on length n = m + t inputs is equal to L

on length m inputs. Language L on length m inputs does not have circuits of size
mk log(m)/10. See by choice of m that 2m > n, so nk = o(mk log(m)/10). Thus infinitely
often, W does not have size nk circuits. Thus W /∈ SIZE[O(nk].

5. Show W has an efficient MA protocol.
If the advice bit is 0, this is trivially true. For n = 2l + t so that the advice bit is 1 and
m = 2l, either
t = 0: Then Cm has size nk = O(mk+g′(m)).
t ≥ 1: Then Cm has size mk2t but not mk2t−1. Since Cm does have circuits of size

mk+g′(m), we have mk2t = O(mk+g′(m)).
In either case, an MA protocol can guess Cm with a circuit with size O(mk+g′(m)).
Then an MA protocol for x = y1n−m and an advice bit of 1 can verify if y ∈ L by
first guessing a circuit for Cm, then using it as the prover in the PCP protocol from
Corollary 15.
The MA verifier needs to calculate polylog(m) queries with Q, run Cm on each of those
queries, and run V on those results. Since Cm has size O(mk+g′(m)), and Q and V run in
time Õ(mk+g′(m)), calculating all query locations, running Cm on each of those locations,
and V on those outputs takes time

polylog(m)(Õ(mk) + O(mk+g′(m))) + Õ(mk)

=Õ(mk+g′(m)).

Finally, since m < n, for some f(n) = o(1), the MA verifier runs in time nk+f(n).
The MA protocol is complete and sound since the PCP is. Thus

W ∈ MATIME[O(nk+f(n))]/1. ◀
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▶ Lemma 20 (Bound if SPACE TMSAT has size na+o(1)). Suppose for some function h(n) with
|h(n)| = o(1) and for some constant a > 1, for some function A(n) we have A(n) = na+h(n).
Then if A(n) is non-decreasing and we have SPACE TMSAT ∈ SIZE[O(A(n))]\SIZE[o(A(n))],
then for any k < a, for some f(n) = o(1),

MATIME[O(nk+f(n))]/1 ̸⊂ SIZE[O(nk)].

Proof. We want to solve a smaller instance of SPACE TMSAT that requires circuits of size
nk log(n), and we also need advice to tell us the size of circuits needed to prove SPACE TMSAT.
The advice for this will come implicitly from the input length.

For input x of length n, (using ρ and µ from Definition 16) let l = ρ(n), l′ = ρ(µ(n)), and
t = µ(µ(n)) so that n = 2l + 2l′ + t. We want to solve SPACE TMSAT on length 2l′ inputs,
so we let m := 2l′ . Then n = 2l + m + t and our language will solve length m inputs for
SPACE TMSAT using prover circuits of size (2l)k2t. Our advice bit will tell us when 2l, m and
t are appropriate.

So then m is the input length to SPACE TMSAT we want to solve, 2l is how much padding
is needed to make length m problems the right difficulty, and (2l)k2t is the size of the circuits
needed for our PCP prover.

The proof proceeds in 4 steps.
1. Define circuits Cm that prove SPACE TMSAT for length m inputs using our PCP and our

theorem assumptions on circuits for SPACE TMSAT.
2. Define when the advice bit should be 1.
3. Show infinitely often the advice bit is 1 and W /∈ SIZE[O(nk)].
4. Show that W has an efficient MA protocol.

Now following this outline:
1. Define circuits Cm that prove SPACE TMSAT for length m inputs.

Then SPACE TMSAT on length m inputs has a PCP protocol with verifier time Õ(m),
log of proof length Õ(m), and prover space Õ(m). Then the prover for SPACE TMSAT on
length m inputs can be reduced to a circuit for SPACE TMSAT with length Õ(m) inputs.
Then SPACE TMSAT on length Õ(m) inputs has a circuit, Cm, of size at most Õ(m)a+h(m).
So for some h′(m) = o(1), we have |Cm| ≤ ma+h′(m).

2. Define when the advice bit should be 1.
Since SPACE TMSAT /∈ SIZE[o(A(n))], for some c1 > 0, for some infinite set, U ′, for all
n′ ∈ U ′, language SPACE TMSAT on length n′ inputs does not have circuits with size
c1A(n′).
Let the advice bit be 1 if and only if each of the following hold:
a. SPACE TMSAT on length m inputs does not have circuits with size at most c1A(m/2).

This restricts us to m where the circuits for SPACE TMSAT require size near our upper
bound. This limits how much bigger Cm needs to be than the circuits for SPACE TMSAT
on length m inputs.

b. SPACE TMSAT on length m inputs does not have a circuit with size (l − 1)(2l−1)k.
c. SPACE TMSAT on length m inputs does have a circuit with size l(2l)k.
d. Circuit Cm has size (2l)k2t.
e. Either t = 0, or Cm does not have size (2l)k2t−1.
Then x ∈ W for some x with |x| = n if and only the advice bit is 1 and for some
y ∈ SPACE TMSAT with |y| = m we have x = y1n−m.

3. Now we will argue that infinitely often the advice bit is 1 and W does not have circuits
with size O(nk). See the full version [9] for full details. We do this in a few steps:
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First restrict our focus to m large enough and where SPACE TMSAT on length m inputs
requires circuits of size at least c1A(m/2). This will be the set of input lengths, U .
Since m can be any power of 2 and A is monotone, as long as A is tight, we can always
find an infinite set of m = 2l′ such that SPACE TMSAT on length m inputs requires
circuits of size A(m/2).
For each m ∈ U , find appropriate l and t.
Take the smallest l so that SPACE TMSAT on length m inputs does have a circuit of
size l(2l)k. Note that l > l′ = log(m), since SPACE TMSAT on length m inputs does not
have circuits with size mk log(m) since k < a.
Let t be the smallest t such that Cm has size (2l)k2t. Since we know Cm has poly
sized circuits, we know that some t < m achieves this.
Now for n = 2l + m + t, the advice bit is 1 and language SPACE TMSAT on length n

inputs does not have circuits with size O(nk).

4. Show that

W ∈ MATIME
[
nk+f(n)

]
/1.

If the advice bit is 0, this is trivial. Otherwise, assume for n the advice bit is 1.
When the advice bit is 1, we know Cm has size at most (2l)k2t and either
t = 0: Then Cm has size (2l)k = O(nk).
t ≥ 1: Then Cm does not have size (2l)k2t−1 by choice of t. Circuit Cm has size ma+h′(m).

Further, SPACE TMSAT on length m inputs does not have circuits with size c1A(m/2)
since the advice bit is 1, but it does have circuits with size l(2l)k. Together this implies
that

c1A(m/2)2t−1

l
<ma+h′(m)

2t <
2
c1

lma+h′(m)

A(m/2) .

Then one can show that 2t = mo(1). So for some f ′(n) = o(1) we have (2l)k2t =
nk+f ′(n).

The verifier for SPACE TMSAT can be simulated in time Õ(m), and the poly(log(m))
queries to the prover can be simulated in time

poly(log(m))S(2l)2t = nk+f(n)

for some f(n) = o(1). Thus

W ∈ MATIME
[
nk+f(n)

]
/1. ◀
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Abstract
We show that the space-bounded Statistical Zero Knowledge classes SZKL and NISZKL are surprisingly
robust, in that the power of the verifier and simulator can be strengthened or weakened without
affecting the resulting class. Coupled with other recent characterizations of these classes [4], this
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NISZK have been studied intensively by the research communities in cryptography and
computational complexity theory. In [12], a space-bounded version of SZK, denoted SZKL
was introduced, primarily as a tool for understanding the complexity of estimating the
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Decisional Diffie-Hellman. The corresponding “non-interactive” subclass of SZKL, denoted
NISZKL, was subsequently introduced in [1], primarily as a tool for clarifying the complexity
of computing time-bounded Kolmogorov complexity under very restrictive reducibilities (such
as projections). Just as every problem in SZK ≤AC0

tt reduces to problems in NISZK [14], so
also every problem in SZKL≤AC0

tt reduces to problems in NISZKL, and thus NISZKL contains
intractable problems if and only if SZKL does.

Very recently, all of these classes were given surprising new characterizations, in terms
of efficient reducibility to the Kolmogorov random strings. Let R̃K be the (undecidable)
promise problem (Y

R̃K
, N

R̃K
) where Y

R̃K
contains all strings y such that K(y) ≥ |y|/2 and

the NO instances N
R̃K

consists of those strings y where K(y) ≤ |y|/2 − e(|y|) for some
approximation error term e(n), where e(n) = ω(log n) and e(n) = no(1).

▶ Theorem 1 ([4]). Let A be a decidable promise problem. Then
A ∈ NISZK if and only if A is reducible to R̃K by randomized polynomial time reductions.
A ∈ NISZKL if and only if A is reducible to R̃K by randomized AC0 or logspace reductions.
A ∈ SZK if and only if A is reducible to R̃K by randomized polynomial time “Boolean
formula” reductions.
A ∈ SZKL if and only if A is reducible to R̃K by randomized logspace “Boolean formula”
reductions.

In all cases, the randomized reductions are restricted to be “honest”, so that on inputs of
length n all queries are of length ≥ nϵ.

There are very few natural examples of computational problems A where the class of
problems reducible to A via polynomial-time reductions differs (or is conjectured to differ)
from the class or problems reducible to A via AC0 reductions. For example the natural
complete problems for NISZK under ≤P

m reductions remain complete under AC0 reductions.
Thus Theorem 1 gives rise to speculation that NISZK and NISZKL might be equal. (This
would also imply that SZK = SZKL.)

This motivates a closer examination of SZKL and NISZKL, to answer questions that have
not been addressed by earlier work on these classes.

Our main results are:
1. The verifier and simulator may be very weak. NISZKL and SZKL are defined in

terms of three algorithms: (1) A logspace-bounded verifier, who interacts with (2) a
computationally-unbounded prover, following the usual rules of an interactive proof, and
(3) a logspace-bounded simulator, who ensures the zero-knowledge aspects of the protocol.
(More formal definitions are to be found in Section 2.) We show that the verifier and
simulator can be restricted to lie in AC0. Let us explain why this is surprising.
The proof presented in [1], showing that EANC0 is complete for NISZKL, makes it clear
that the verifier and simulator can be restricted to lie in AC0[⊕] (as was observed in [24]).
But the proof in [1] (and a similar argument in [14]) relies heavily on hashing, and it is
known that, although there are families of universal hash functions in AC0[⊕], no such
families lie in AC0 [19]. We provide an alternative construction, which avoids hashing,
and allows the verifier and simulator to be very weak indeed.

2. The verifier and simulator may be somewhat stronger. The proof presented in
[1], showing that EANC0 is complete for NISZKL, also makes it clear that the verifier and
simulator can be as powerful as ⊕L, without leaving NISZKL. This is because the proof
relies on the fact that logspace computation lies in the complexity class PREN of functions
that have perfect randomized encodings [7], and ⊕L also lies in PREN. Applebaum,
Ishai, and Kushilevitz defined PREN and the somewhat larger class SREN (for statistical
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randomized encodings), in proving that there are one-way functions in SREN if and only
if there are one-way functions in NC0. They also showed that other important classes
of functions, such as NL and GapL, are contained in SREN.1 We initially suspected that
NISZKL could be characterized using verifiers and simulators computable in GapL (or even
in the slightly larger class DET, consisting of problems that are ≤NC1

T reducible to GapL),
since DET is known to be contained in NISZKL [1].2 However, we were unable to reach
that goal.
We were, however, able to show that the simulator and verifier can be as powerful as NL,
without making use of the properties of SREN. In fact, we go further in that direction.
We define the class PM, consisting of those problems that are ≤L

T-reducible to the Perfect
Matching problem. PM contains NL [18], and is not known to lie in (uniform) NC (and it
is not known to be contained in SREN). We show that statistical zero knowledge protocols
defined using simulators and verifiers that are computable in PM yield only problems in
NISZKL.

3. The complexity of the simulator is key. As part of our attempt to characterize
NISZKL using simulators and verifiers computable in DET, we considered varying the
complexity of the simulator and the verifier separately. Among other things, we show
that the verifier can be as complex as DET if the simulator is logspace-computable.
In most cases of interest, the NISZK class defined with verifier and simulator lying in
some complexity class remains unchanged if the rules are changed so that the verifier is
significantly stronger or weaker.

We also establish some additional closure properties of NISZKL and SZKL, some of which are
required for the characterizations given in [4].

The rest of the paper is organized as follows: Section 3 will show how NISZKL can be
defined equivalently using an AC0 verifier and simulator. Section 4 will show that increasing
the power of the verifier and simulator to lie in PM does not increase the size of NISZKL
(where PM is the class of problems (containing NL) that are logspace Turing reducible to
Perfect Matching). Section 5 expands the list of problems known to lie in NISZKL. McKenzie
and Cook [20] studied different formulations of the problem of solving linear congruences.
These problems are not known to lie in DET, which is the largest well-studied subclass of P
known to be contained in NISZKL. However, these problems are randomly logspace-reducible
to DET [8]. We show that NISZKL is closed under randomized logspace reductions, and
hence show that these problems also reside in NISZKL. Section 6 shows that the complexity
of the simulator is more important than the complexity of the verifier, in non-interactive
zero-knowledge protocols. In particular, the verifier can be as powerful as DET, while still
defining only problems in NISZKL. Finally Section 7 will show that SZKL is closed under
logspace Boolean formula truth-table reductions.

2 Preliminaries

We assume familiarity with basic complexity classes L,NL,⊕L and P, and circuit complexity
classes NC0 and AC0. We assume knowledge of m-reducibility (many-one-reducibility) and
Turing-reducibility. #L is the class of functions that count the number of accepting paths
of NL machines, and GapL = {f − g : f, g ∈ #L}. The determinant is complete for GapL,
and the complexity class DET is the class of languages NC1-Turing reducible to functions in
GapL.

1 This is not stated explicitly for GapL, but it follows from [17, Theorem 1]. See also [11, Section 4.2].
2 More precisely, as observed in [3], the Rigid Graph (non-) Isomorphism problem is hard for DET [26],

and the Rigid Graph Non-Isomorphism problem is in NISZKL [1, Corollary 23].
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Many of the problems we consider deal with entropy (also known as Shannon entropy).
The entropy of a distribution X (denoted H(X)) is the expected value of log(1/Pr[X = x]).
Given two distributions X and Y , the statistical difference between the two is denoted
∆(X,Y ) and is equal to

∑
α

∣∣ Pr[X = α]− Pr[Y = α]
∣∣/2. Equivalently, for finite domains D,

∆(X,Y ) = maxS⊆D{
∣∣ PrX [S]− PrY [S]

∣∣}. This quantity is also known as the total variation
distance between X and Y . The support of X, denoted supp(X), is {x : Pr[X = x] > 0}.

▶ Definition 2. Promise Problem: a promise problem Π is a pair of disjoint sets (ΠY ,ΠN )
(the “YES” and “NO” instances, respectively). A solution for Π is any set S such that
ΠY ⊆ S, and S ∩Πn = Ø.

▶ Definition 3. A branching program is a directed acyclic graph with a single source and
two sinks labeled 1 and 0, respectively. Each non-sink node in the graph is labeled with a
variable in {x1, . . . , xn} and has two edges leading out of it: one labeled 1 and one labeled 0.
A branching program computes a Boolean function f on input x = x1 . . . xn by first placing
a pebble on the source node. At any time when the pebble is on a node v labeled xi, the
pebble is moved to the (unique) vertex u that is reached by the edge labeled 1 if xi = 1 (or
by the edge labeled 0 if xi = 0). If the pebble eventually reaches the sink labeled b, then
f(x) = b. Branching programs can also be used to compute functions f : {0, 1}m → {0, 1}n,
by concatenating n branching programs p1, . . . , pn, where pi computes the function fi(x) =
the i-th bit of f(x). For more information on the definitions, backgrounds, and nuances of
these complexity classes, circuits, and branching programs, see the text by Vollmer [27].

▶ Definition 4 (Non-interactive zero-knowledge proof (NISZK), adapted from [1, 14]). A
non-interactive statistical zero-knowledge proof system for a promise problem Π is defined
by a pair of deterministic polynomial time machines3 (V, S) (the verifier and simulator,
respectively) and a probabilistic routine P (the prover) that is computationally unbounded,
together with a polynomial r(n) (which will give the size of the random reference string σ),
such that:
1. (Completeness): For all x ∈ ΠY , the probability (over random σ, and over the random

choices of P ) that V (x, σ, P (x, σ)) accepts is at least 1− 2−O(|x|).
2. (Soundness): For all x ∈ ΠN , and for every possible prover P ′, the probability that

V (x, σ, P ′(x, σ)) accepts is at most 2−O(|x|). (Note P ′ here can be malicious, meaning it
can try to fool the verifier)

3. (Zero Knowledge): For all x ∈ ΠY , the statistical distance between the following two
distributions is bounded by 2−|x|:
a. Choose σ ← {0, 1}r(|x|) uniformly random, p← P (x, σ), and output (p, σ).
b. S(x, r) (where the coins r for S are chosen uniformly at random).

It is known that changing the definition, to have the error probability in the soundness and
completeness conditions and in the simulator’s deviation be 1

nω(1) results in an equivalent
definition [1, 14]. (See the comments after [1, Claim 39].) We will occasionally make use of
this equivalent formulation, when it is convenient.

NISZK is the class of promise problems for which there is a non-interactive statistical
zero knowledge proof system.

NISZKC denotes the class of problems in NISZK where the verifier V and simulator S lie
in complexity class C.

3 In prior work on NISZK [14, 1], the verifier and simulator were said to be probabilistic machines. We
prefer to be explicit about the random input sequences provided to each machine, and thus the machines
can be viewed as deterministic machines taking a sequence of random bits as input.
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▶ Definition 5 (EA and EANC0 , [1, 14]). Consider Boolean circuits CX : {0, 1}m → {0, 1}n

representing distribution X. The promise problem EA is given by:

EAY := {(CX , k) : H(X) > k + 1}

EAN := {(CX , k) : H(X) < k − 1}

EANC0 is the variant of EA where the distribution Cx is an NC0 circuit with each output bit
depending on at most 4 input bits.

▶ Definition 6 (SDU and SDUNC0). Consider Boolean circuits CX : {0, 1}m → {0, 1}n

representing distributions X. The promise problem SDU = (SDUY , SDUN ) is given by:

SDUY := {CX : ∆(X,Un) < 1/n}

SDUN := {CX : ∆(X,Un) > 1− 1/n}.

SDUNC0 is the analogous problem, where the distributions X are represented by NC0 circuits
where no output bit depends on more than four input bits.

▶ Theorem 7 ([1, 4]). EANC0 and SDUNC0 are complete for NISZKL. EANC0 remains complete,
even if k is fixed to k = n− 3.

▶ Definition 8 (SD and SDBP, [12, 25]). Consider a pair of Boolean circuits C1, C2 : {0, 1}m →
{0, 1}n representing distributions X1, X2. The promise problem SD is given by:

SDY := {(C1, C2) : ∆(X1, X2) > 2/3}

SDN := {(C1, C2) : ∆(X1, X2) < 1/3}.

SDBP is the variant of SD where the distributions X1, X2 are represented by branching
programs.

2.1 Perfect Randomized Encodings

We will make use of the machinery of perfect randomized encodings [7].

▶ Definition 9. Let f : {0, 1}n → {0, 1}ℓ be a function. We say that f̂ : {0, 1}n × {0, 1}m →
{0, 1}s is a perfect randomized encoding of f with blowup b if it is:

Input independent: for every x, x′ ∈ {0, 1}n such that f(x) = f(x′), the random variables
f̂(x, Um) and f̂(x′, Um) are identically distributed.
Output Disjoint: for every x, x′ ∈ {0, 1}n such that f(x) ̸= f(x′), supp(f̂(x, Um)) ∩
supp(f̂(x′, Um)) = Ø.
Uniform: for every x ∈ {0, 1}n the random variable f̂(x, Um) is uniform over the set
supp(f̂(x, Um)).
Balanced: for every x, x′ ∈ {0, 1}n |supp(f̂(x, Um))| = |supp(f̂(x′, Um))| = b

The following property of perfect randomized encodings is established in [12].

▶ Lemma 10. Let f : {0, 1}n → {0, 1}ℓ be a function and let f̂ : {0, 1}n × {0, 1}m → {0, 1}s

be a perfect randomized encoding of f with blowup b. Then H(f̂(Un, Um)) = H(f(Un))+log b.
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3 Simulators and Verifiers in AC0

In this section, we show that NISZKL can be defined equivalently using verifiers and simulators
that are computable in AC0. The standard complete problems for NISZK and NISZKL take a
circuit C as input, where the circuit is viewed as representing a probability distribution X;
the goal is to approximate the entropy of X, or to estimate how far X is from the uniform
distribution. Earlier work [15, 1, 24] that had presented non-interactive zero-knowledge
protocols for these problems had made use of the fact that the verifier could compute hash
functions, and thereby convert low-entropy distributions to distributions with small support.
But an AC0 verifier cannot compute hash functions [19].

Our approach is to “delegate” the problem of computing hash functions to a logspace
verifier, and then to make use of the uniform encoding of this verifier to obtain the desired
distributions via an AC0 reduction. To this end, we begin by defining a suitably restricted
version of SDUNC0 and show that this restricted version remains complete for NISZKL under
AC0 reductions (and even under projections).

With this new complete problem in hand, we provide a NISZKAC0 protocol for the complete
problem, to conclude NISZKL = NISZKAC0 .

▶ Definition 11. Consider an NC0 circuit C : {0, 1}m → {0, 1}n and the probability distri-
bution X on {0, 1}n defined as C(Um) - where Um denotes m uniformly random bits. For
some fixed ϵ > 0 (chosen later in Remark 16), we define:

SDU’NC0,Y = {X : ∆(C,Un) < 1
2nϵ }

SDU’NC0,N = {X : | supp(X)| ≤ 2n−nϵ

}

We will show that SDU’NC0 is complete for NISZKL under uniform ≤proj
m reductions. In

order to do so, we first show that SDU’NC0 is in NISZKL by providing a reduction to SDUNC0 .

▷ Claim 12. SDU’NC0≤proj
m SDUNC0 , and thus SDU’NC0 ∈ NISZKL.

Proof. On a given probability distribution X defined on {0, 1}n for SDU’NC0 , we claim that
the identity function f(X) = X is a reduction of SDU’NC0 to SDUNC0 . If X is a YES instance
for SDU’NC0 , then ∆(X,Un) < 1

2nϵ , which clearly is a YES instance of SDUNC0 . If X is a
NO instance for SDU’NC0 , then | supp(X)| ≤ 2n−nϵ . Thus, if we let T be the complement of
supp(X), we have that, under the uniform distribution, a string α is in T with probability
≥ 1− 1

2nϵ , whereas this event has probability zero under X. Thus ∆(X,Un) ≥ 1− 1
2nϵ , easily

making it a NO instance of SDUNC0 . ◁

3.1 Hardness for SDU’NC0

▶ Theorem 13. SDU’NC0 is hard for NISZKL under ≤proj
m reductions.

Proof. In order to show that SDU’NC0 is hard for NISZKL, we will show that the reduction
given in [1] proving the hardness of SDUNC0 for NISZKL actually produces an instance of
SDU’NC0 .

Let Π be an arbitrary promise problem in NISZKL with proof system (P, V ) and simulator
S. Let x be an instance of Π. Let Mx(r) denote a machine that simulates S(x) with
randomness r to obtain a transcript (σ, p) - if V (x, σ, p) accepts then Mx(r) outputs σ; else
it outputs 0|σ|. We will assume without loss of generality that |σ| = nk for some constant k.
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It was shown in [15, Lemma 3.1] that for the promise problem EA, there is an NISZK
protocol with completeness error, soundness error and simulator deviation all bounded
from above by 2−m for inputs of length m. Furthermore, as noted in the paragraph before
Claim 38 in [1], the proof carries over to show that EABP has an NISZKL protocol with the
same parameters. Thus, any problem in NISZKL can be recognized with exponentially small
error parameters by reducing the problem to EABP and then running the above protocol for
EABP on that instance. In particular, this holds for EANC0 . In what follows, let Mx be the
distribution described in the preceding paragraph, assuming that the simulator S and verifier
V yield a protocol with these exponentially small error parameters.

▷ Claim 14. If x ∈ ΠY ES then ∆(Mx(r), Unk ) ≤ 1/2n−1. And if x ∈ ΠNO then
| supp(Mx(r))| ≤ 2nk−nϵk for ϵ < 1

k .

Refer to Appendix A.1 for the proof.
The above claim talks about the distribution Mx(r) where M is a logspace machine. We

will instead consider an NC0 distribution with similar properties that can be constructed
using projections. This distribution (denoted by Cx) is a perfect randomized encoding of
Mx(r). We make use of the following construction:

▶ Lemma 15 ([1, Lemma 35]). There is a function computable in AC0 (in fact, it can be a
projection) that takes as input a branching program Q of size l computing a function f and
produces as output a list pi of NC0 circuits, where pi computes the i-th bit of a function f̂

that is a perfect randomized encoding of f that has blowup b = 2((l
2)−1)2((l−1)2−1) (and thus

the length of f̂(r) = log b+ |f(r)|). Each pi depends on at most four input bits from (x, r)
(where r is the sequence of random bits in the randomized encoding).

The properties of perfect randomized encodings (see Definition 9) imply that the range of f̂
(and thus also the range of Cx) can be partitioned into equal sized pieces corresponding to each
value of f(r). Thus, let α1, α2, .., αz be the range of f(r), and let [α] = {f̂(r, s) : f(r) = α}.
It follows that |[α]| = b. For a given α, and for a given β of length log b we denote by αβ

the β-th element of [α]. Since the simulator S runs in logspace, each bit of Mx(r) can be
simulated with a branching program Qx. Furthermore, it is straightforward to see that there
is an AC0-computable function that takes x as input and produces an encoding of Qx as
output, and it can even be seen that this function can be a projection. Let the list of NC0

circuits produced from Qx by the construction of Lemma 15 be denoted Cx.
We show that this distribution Cx is an instance of SDU’NC0 if x ∈ Π. For x ∈ ΠY ES , we

have ∆(Mx(r), Unk ) ≤ 1/2n−1, and we want to show ∆(Cx(r), Ulog b+nk ) ≤ 1/2n−1. Thus it
will suffice to observe that ∆(Mx(r), Unk ) = ∆(Cx(r), Ulog b+nk ) ≤ 1/2n−1.

To see this, note that

∆(Cx(r), Ulog b+nk ) =
∑
αβ

∣∣ Pr[Cx = αβ]− 1
2nk+b

∣∣/2 =
∑

β

∑
α

∣∣ Pr[Mx = α] 1
2b
− 1

2b

1
2nk

∣∣/2
=

∑
α

∣∣ Pr[Mx = α]− 1
2nk

∣∣/2 = ∆(Mx(r),Unk ).

Thus, for x ∈ ΠY ES , Cx is a YES instance for SDU’NC0 .
For x ∈ ΠNO, Claim 14 shows that | supp(Mx(r))| ≤ 2nk−n. Since the NC0 circuit Cx is

a perfect randomized encoding of Mx(r), we have that the support of Cx for x ∈ ΠNO is
bounded from above by b× 2nk−n Note that log b is polynomial in n; let q(n) = log b. Let
r(n) denote the length of the output of C; r(n) = q(n) + nk. Thus the size of supp(Cx) ≤
2nk−n+q(n) = 2r(n)−n < 2r(n)−r(n)ϵ (if 1/ϵ is chosen to be greater than the degree of r), and
hence Cx is a NO instance for SDU’NC0 . ◀
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▶ Remark 16. Here is how we pick ϵ in the definition of SDU’NC0 . SDUNC0 is in NISZKL via
some simulator and verifier, where the error parameters are exponentially small, and the
shared reference strings σ have length nk on inputs of length n. Now we pick ϵ > 0 so that
ϵ < 1/k (as in Claim 14) and also 1/ϵ is greater than the degree of r (as in the last sentence
of the proof of Theorem 13).

3.2 NISZKAC0 protocol for SDU’NC0 on input X represented by circuit C

3.2.1 Non Interactive proof system
1. Let C take inputs of length m and produce outputs of length n, and let σ be the reference

string of length n.
2. If there is no r such that C(r) = σ, then the prover sends ⊥. Otherwise, the prover picks

an element r uniformly at random from p ∼ {r|C(r) = σ} and sends it to the verifier.
3. V accepts iff C(r) = σ. (Since C is an NC0 circuit, this can be accomplished in AC0 – this

step can not be accomplished in NC0 since it depends on all of the bits of σ.)

3.2.2 Simulator for SDU’NC0 proof system, on input X represented by
circuit C

1. Pick a random s of length m and compute γ = C(s).
2. Output (s, γ).

3.3 Proofs of Zero Knowledge, Completeness and Soundness
Completenss: Suppose X ∈ SDU’NC0,Y , then ∆(X,Un) < 1

2nϵ . This implies | supp(X)| >
2n(1− 1

2nϵ ), which immediately implies that the verifier accepts with high probability.
Soundness: Suppose X ∈ SDU’NC0,N , we note that whenever σ ̸∈ supp(X), no prover can
make the verifier accept. If X ∈ SDU’NC0,N , the probability that σ ̸∈ supp(X) is greater
than 1− 1

2nϵ .
Statistical Zero-Knowledge: Refer to Appendix A.2 for proof. ⌟

4 Simulator and Verifier in PM

In this section, we show that NISZKL can be defined equivalently using verifiers and simulators
that lie in the class PM of problems that logspace-Turing reduce to Perfect Matching. (PM
is not known to lie in (uniform) NC.) That is, we can increase the computational power of
the simulator and the verifier from L to PM without affecting the power of noninteractive
statistical zero knowledge protocols.

The Perfect Matching problem is the well-known problem of deciding, given an undirected
graph G with 2n vertices, if there is a set of n edges covering all of the vertices. We define a
corresponding complexity class PM as follows:

PM := {A : A ≤L
T Perfect Matching}

It is known that NL ⊆ PM [18].
Our argument proceeds by first observing4 that NISZKL = NISZK⊕L, and then making

use of the details of the argument that Perfect Matching is in ⊕L/poly [6].

4 This equality was previously observed in [24].
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▶ Proposition 17. NISZK⊕L = NISZKL

Proof. It suffices to show NISZK⊕L ⊆ NISZKL. We do this by showing that the problem
EANC0 is hard for NISZK⊕L; this suffices since EANC0 is complete for NISZKL. The proof
of [1, Theorem 26] (showing that EANC0 is complete for NISZKL involves (a) building a
branching program to simulate a logspace computation called Mx that is constructed from a
logspace-computable simulator and verifier, and (b) constructing an NC0-computable perfect
randomized encoding of Mx, using the fact that L ⊂ PREN , where PREN is the class
defined in [7], consisting of all problems with perfect randomized encodings. But Theorem
4.18 in [7] shows the stronger result that ⊕L lies in PREN , and hence the argument of
[1, Theorem 26] carries over immediately, to reduce any problem in NISZK⊕L to EANC0 (by
modifying step (a), to build a parity branching program for Mx that is constructed from a
⊕L simulator and verifier). ◀

We also rely on the following lemma:

▶ Lemma 18 (Adapted from [6, Section 3] and [21, Section 4]). Let W = (w1, w2, · · · , wnk+3)
be a sequence of nk+3 weight functions, where each wi : [

(
n
2
)
] → [4n2] is a distinct weight

assignment to edges in n-vertex graphs. Let (G,wi) denote the result of weighting the edges
of G using weight assignment wi. Then there is a function f in GapL, such that, if (G,wi)
has a unique perfect matching of weight j, then f(G,W, i, j) ∈ {1,−1}, and if G has no
perfect matching, then for every (W, i, j), it holds that f(G,W, i, j) = 0. Furthermore, if W
is chosen uniformly at random, then with probability ≥ 1− 2−nk , for each n-vertex graph G:

If G has no perfect matching then ∀i∀j f(G,W, i, j) = 0.
If G has a perfect matching then ∃i such that (G,wi) has a unique minimum-weight
matching, and hence ∃i∃j f(G,W, i, j) ∈ {1,−1}.

Thus if we define g(G,W ) to be 1− Πi,j(1− f(G,W, i, j)2), we have that g ∈ GapL and with
probability ≥ 1− 2−nk (for randomly-chosen W ), g(G,W ) = 1 if G has a perfect matching,
and g(G,W ) = 0 otherwise.

Note that this lemma is saying that most W constitute a good “advice string”, in the sense
that g(G,W ) provides the correct answer to the question “Does G have a perfect matching?”
for every graph G with n vertices.

▶ Corollary 19. For every language A ∈ PM there is a language B ∈ ⊕L such that, if x ∈ A,
then PrW←[4n2]n5 [(x,W ) ∈ B] ≥ 1 − 2−n2 , and if x ̸∈ A, then PrW←[4n2]n5 [(x,W ) ∈ B] ≤
2−n2 .

Refer to Appendix A.3 for proof.

▶ Theorem 20. NISZKL = NISZKPM

Proof. We show that NISZKPM ⊆ NISZK⊕L, and then appeal to Proposition 17.
Let Π be an arbitrary problem in NISZKPM, and let (S, P, V ) be the PM simulator, prover,

and verifier for Π, respectively. Let S′ and V ′ be the ⊕L languages that are probabilistic
realizations of S, V , respectively, guaranteed by Corollary 19. We now define a NISZKL
protocol (S′′, P ′′, V ′′) for Π.

On input x with shared randomness σW , the prover P ′′ sends the same message p =
P (x, σ) as the original prover sends. The verifier V ′′, returns the value of V ′((x, σ, p),W ),
which with high probability is equal to V (x, σ, p). The simulator S′′, given as input x and
random sequence rW , executes S′((x, r, i),W ) for each bit position i to obtain a bit that
(with high probability) is equal to the ith bit of S(x, r), which is a string of the form (σ, p),
and outputs (σW, p).
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Now we will analyze the properties of (S′′, P ′′, V ′′):
Completeness: Suppose x ∈ ΠY , then Prσ[V (x, σ, P (x, σ)) = 1] ≥ 1 − 2−O(n). Since
∀y ∈ {0, 1}n : PrW [V (y) = V ′(y,W )] ≥ 1− 2−nk we have:

Pr
σW

[V ′((x, σ, P ′′(x, σ)),W ) = 1] ≥ [1− 2−O(n)][1− 2−nk

] = 1− 2−O(n)

Soundness: Suppose x ∈ ΠN , then Prσ[∀p : V (x, σ, p) = 0] ≥ 1 − 2−O(n). Since
∀y ∈ {0, 1}n : PrW [V (y) = V ′(y,W )] ≥ 1− 2−nk , we have:

Pr
σW

[∀p : V ′((x, σ, p),W ) = 0] ≥ [1− 2−O(n)][1− 2−nk

] = 1− 2−O(n)

Statistical Zero-Knowledge: Suppose x ∈ ΠY . Let S∗ denote the distribution on strings
of the form (σ, p) that S(x, r) produces, where r is uniformly generated, and let P ∗ denote
the distribution on strings given by (σ, P (x, σ)) where σ is chosen uniformly at random.
Similarly, let S′′∗ denote the distribution on strings of the form (σW, p) that S′′(x, rW )
produces, where r and W are chosen uniformly, and let P ′′∗ be the distribution given by
(σW,P ′′(x, σW )). Let A = {(σW, p) : ∃i∃r S(x, r)i ̸= S′((x, r, i),W )}.
Since PrW [∀i∀r : S(x, r)i = S′((x, r, i),W )] ≥ 1− 2−O(n) we have:

∆(S′′∗, P ′′∗) = 1
2

∑
(σW,p)

∣∣ Pr[S′′∗ = (σW, p)]− Pr[P ′′∗ = (σW, p)]
∣∣

≤ 1
2(2−O(n) +

∑
(σW,p)∈A

∣∣ Pr[S′′∗ = (σW, p)]− Pr[P ′′∗ = (σW, p)])
∣∣

= 1
2(2−O(n) +

∑
(σW,p)∈A

∣∣ Pr[S∗ = (σ, p)]− Pr[P ∗ = (σ, p)]
∣∣ Pr[W ])

≤ 2−O(n) +
∑
W

Pr[W ] 12
∑
(σ,p)

∣∣ Pr[S∗ = (σ, p)]− Pr[P ∗ = (σ, p)]
∣∣

= 2−O(n) + ∆(S∗, P ∗) = 2−O(n)

Therefore (S′′, P ′′, V ′′) is a NISZK⊕L protocol deciding Π. ◀

5 Additional problems in NISZKL

In this section, we give additional examples of problems in P that lie in NISZKL. These
problems are not known to lie in (uniform) NC. Our main tool is to show that NISZKL is
closed under a class of randomized reductions.

The following definition is from [4]:

▶ Definition 21. A promise problem A = (Y,N) is ≤BPL
m -reducible to B = (Y ′, N ′) with

threshold θ if there is a logspace-computable function f and there is a polynomial p such that
x ∈ Y implies Prr∈{0,1}p(|x|) [f(x, r) ∈ Y ′] ≥ θ.
x ∈ N implies Prr∈{0,1}p(|x|) [f(x, r) ∈ N ′] ≥ θ.

Note, in particular, that the logspace machine computing the reduction has two-way access
to the random bits r; this is consistent with the model of probabilistic logspace that is used
in defining NISZKL.

▶ Theorem 22. NISZKL is closed under ≤BPL
m reductions with threshold 1− 1

nω(1) .



E. Allender, J. Gray, S. Mutreja, H. Tirumala, and P. Wang 56:11

Proof. Let Π≤BPL
m EANC0 , via logspace-computable function f . Let (S1, V1, P1) be the NISZKL

proof system for EANC0 .

Algorithm 1 Simulator S(x, rσ′).

(σ, p)← S1(f(x, σ′), r);
return ((σ, σ′), p);

Algorithm 2 Verifier V (x, (σ, σ′), p).

return V1((f(x, σ′), σ, p))

Algorithm 3 Prover P (x, (σ, σ′)).

return P1((f(x, σ′), σ));

We now claim that (S, P, V ) is a NISZKL protocol for Π.
It is apparent that S and V are computable in logspace. We just need to go through

completeness, soundness, and statistical zero-knowledge of this protocol.

Completeness: Suppose x is YES instance of Π. Then with probability 1− 1
nω(1) (over

randomness of σ′): f(x, σ′) is a YES instance of EANC0 . Thus for a randomly chosen σ:

Pr[V1(f(x, σ′), σ, P1(f(x, σ′), σ)) = 1] ≥ 1− 1
nω(1)

Soundness: Suppose x is NO instance of Π. Then with probability 1 − 1
nω(1) (over

randomness of σ′): f(x, σ′) is a NO instance of EANC0 . Thus for a randomly chosen σ:

Pr[V1(f(x, σ′), σ, P1(f(x, σ′), σ)) = 0] ≥ 1− 1
nω(1)

Statistical Zero-Knowledge: If x is a YES instance, f(x, σ′) is a YES instance of EANC0

with probability close to 1. For any YES instance y of EANC0 , the distribution given by
S1 on input y is exponentially close the the distribution on transcripts (σ, p) induced by
(V1, P1) on input y. Thus the distribution on (σσ′, p) induced by (V, P ) has distance at
most 1

nω(1) from the distribution produced by S on input x. The claim now follows by
the comments regarding error probabilities in Definition 4. ◀

McKenzie and Cook [20] defined and studied the problems LCON, LCONX and LCONNULL.
LCON is the problem of determining if a system of linear congruences over the integers mod
q has a solution. LCONX is the problem of finding a solution, if one exists, and LCONNULL
is the problem of computing a spanning set for the null space of the system.

These problems are known to lie in uniform NC3 [20], but are not known to lie in uniform
NC2, although Arvind and Vijayaraghavan showed that there is a set B in LGapL ⊆ DET ⊆ NC2

such that x ∈ LCON if and only if (x,W ) ∈ B, where W is a randomly-chosen weight
function [8]. (The probability of error is exponentially small.) The mapping x 7→ (x,W ) is
clearly a ≤BPL

m reduction. Since DET ⊆ NISZKL [1], it follows that

LCON ∈ NISZKL

The arguments in [8] carry over to LCONX and LCONNULL as well.

▶ Corollary 23. LCON ∈ NISZKL. LCONX ∈ NISZKL. LCONNULL ∈ NISZKL.
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6 Varying the Power of the Verifier

In this section, we show that the computational complexity of the simulator is more important
than the computational complexity of the verifier, in non-interactive protocols. The results in
this section were motivated by our attempts to show that NISZKL = NISZKDET. Although we
were unable to reach this goal, we were able to show that the verifier could be as powerful as
DET, if the simulator was restricted to be no more powerful than NL. The general approach
here is to replace a powerful verifier with a weaker verifier, by requiring the prover to provide
a proof to convince a weak verifier that the more powerful verifier would accept.

We define NISZKA,B as the class of problems with a NISZK protocol where the simulator
is in A and the verifier is in B (and hence NISZKA = NISZKA,A). We will consider the
case where A ⊆ B ⊆ NISZKA and A,B are both classes of functions that are closed under
composition.

▶ Theorem 24. NISZKA,B = NISZKA

Proof. Let Π be an arbitrary promise problem in NISZKA,B with (S1, V1, P1) being the A
simulator, B verifier, and prover for Π’s proof system, where the reference string has length
p1(|x|) and the prover’s messages have length q1(|x|). Since V1 ∈ B ⊆ NISZKA, L(V1) has
a proof system (S2, V2, P2), where the reference string has length p2(|x|) and the prover’s
messages have length q2(|x|).

Then Π has the following NISZKA proof system:

Algorithm 4 Simulator S(x, r1, r2).

Data: x ∈ ΠY es ∪ΠNo

(σ, p)← S1(x, r1);
(σ′, p′)← S2((x, σ, p), r2);
return ((σ, σ′), (p, p′));

Algorithm 5 Verifier V (x, (σ, σ′), (p, p′)).

return V2((x, σ, p), σ′, p′)

Algorithm 6 Prover P (x, σσ′).

Data: x ∈ ΠY es ∪ΠNo, σ ∈ {0, 1}p1(|x|), σ′ ∈ {0, 1}p2(|x|)

if x ∈ ΠY es then
p← P1(x, σ);
p′ ← P2((x, σ, p), σ′);
return (p, p′);

else
return ⊥,⊥;

end

Correctness: Suppose x ∈ ΠY es, then given random σ, with probability (1 − 1
2O(|x|) ):

(x, σ, P1(x, σ)) ∈ L(V1) which means with probability (1− 1
2O(|x|+p1(|x|)+|p|) ) it holds that

((x, σ, p), σ′, P2(x, σ, P1(x, σ)) ∈ L(V2). So the probability that V accepts is at least:

(1− 1
2O(|x|) )(1− 1

2O(|x|+p1(|x|)+q1(|x|)) ) = 1− 1
2O(|x|)

Soundness: Suppose x ∈ ΠN . When given a random σ, we have that with probability
less than 1

2O(|x|) : ∃p such that (x, σ, p) ∈ L(V1). For (x, σ, p) ̸∈ L(V1), the probability that
there is a p such that ((x, σ, p), σ′, p′) ∈ L(V2) is at most 1

2O(|x|+p1(|x|)+|p|) (given random
σ′). So the probability that V rejects is at least:

(1− 1
2O(|x|) )(1− 1

2O(|x|+p(|x|)+|p|) ) = 1− 1
2O(|x|)
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Statistical Zero-Knowledge: Refer to the full version [2]. ◀

▶ Corollary 25. NISZKL = NISZKAC0 = NISZKAC0,DET = NISZKNL,DET

The proof of Theorem 24 did not make use of the condition that the verifier is at least as
powerful as the simulator. Thus, maintaining the condition that A ⊆ B ⊆ NISZKA, we also
have the following corollary:

▶ Corollary 26. NISZKB = NISZKB,A

▶ Corollary 27. NISZKA,B ⊆ NISZKB,A

▶ Corollary 28. NISZKDET = NISZKDET,AC0

7 SZKL closure under ≤L
bf−tt reductions

Although our focus in this paper has been on NISZKL, in this section we report on a closure
property of the closely-related class SZKL.

The authors of [12], after defining the class SZKL, wrote:

We also mention that all the known closure and equivalence properties of SZK (e.g.
closure under complement [22], equivalence between honest and dishonest verifiers [15],
and equivalence between public and private coins [22]) also hold for the class SZKL.

In this section, we consider a variant of a closure property of SZK (closure under
≤P

bf−tt [25]), and show that it also holds5 for SZKL. Although our proof follows the general
approach of the proof of [25, Theorem 4.9], there are some technicalities with showing that
certain computations can be accomplished in logspace (and for dealing with distributions
represented by branching programs instead of circuits) that require proof. (The characteri-
zation of SZKL in terms of reducibility to the Kolmogorov-random strings presented in [4]
relies on this closure property.)

▶ Definition 29 (From [25, Definition 4.7]). For a promise problem Π, the characteristic
function of Π is the map XΠ : {0, 1}∗ → {0, 1, ∗} given by

XΠ(x) =


1 if x ∈ ΠY es,

0 if x ∈ ΠNo,

∗ otherwise.

▶ Definition 30. Logspace Boolean formula truth-table reduction (≤L
bf−tt reduction): We

say a promise problem Π logspace Boolean formula truth-table reduces to Γ if there
exists a logspace-computable function f , which on input x produces a tuple (y1, . . . , ym) and
a Boolean formula ϕ (with m input gates) such that:

x ∈ ΠY es =⇒ ϕ(XΓ(y1), . . . ,XΓ(ym)) = 1

x ∈ ΠNo =⇒ ϕ(XΓ(y1), . . . ,XΓ(ym)) = 0

5 We observe that open questions about closure properties of NISZK also translate to open questions
about NISZKL. NISZK is not known to be closed under union [23], and neither is NISZKL. Neither is
known to be closed under complementation. Both are closed under conjunctive logspace-truth-table
reductions.
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We begin by proving a logspace analogue of a result from [25], used to make statistically
close pairs of distributions closer and statistically far pairs of distributions farther.

▶ Lemma 31 (Polarization Lemma, adapted from [25, Lemma 3.3]). There is a logspace-
computable function that takes a triple (P1, P2, 1k), where P1 and P2 are branching programs,
and outputs a pair of branching programs (Q1, Q2) such that:

∆(P1, P2) < 1
3 =⇒ ∆(Q1, Q2) < 2−k

∆(P1, P2) > 2
3 =⇒ ∆(Q1, Q2) > 1− 2−k

To prove this, we adapt the same method as in [25] and alternate two different procedures,
one to drive pairs with large statistical distance closer to 1, and one to drive distributions
with small statistical distance closer to 0. The following lemma will do the former:

▶ Lemma 32 (Direct Product Lemma, from [25, Lemma 3.4]). Let X and Y be distributions
such that ∆(X,Y ) = ϵ. Then for all k,

kϵ ≥ ∆(⊗kX,⊗kY ) ≥ 1− 2 exp(−kϵ2/2)

The proof of this statement follows from [25]. To use this for Lemma 31, we note that a
branching program for ⊗kP can easily be created in logspace from a branching program P

by simply copying and concatenating k independent copies of P together.
We now introduce a lemma to push close distributions closer:

▶ Lemma 33 (XOR Lemma, adapted from [25, Lemma 3.5]). There is a logspace-computable
function that maps a triple (P0, P1, 1k), where P0 and P1 are branching programs, to a pair
of branching programs (Q0, Q1) such that ∆(Q0, Q1) = ∆(P0, P1)k. Specifically, Q0 and Q1
are defined as follows:

Q0 =
⊗
i∈[k]

Pyi
: y ←R {y ∈ {0, 1}k : ⊕i∈[k]yi = 0}

Q1 =
⊗
i∈[k]

Pyi : y ←R {y ∈ {0, 1}k : ⊕i∈[k]yi = 1}

Refer to Appendix A.4 for proof. We now have the tools to prove Lemma 31.

Proof of Lemma 31. From [25, Section 3.2], we know that we can polarize (P0, P1, 1k) by:
Letting l = ⌈log4/3 6k⌉, j = 3l−1

Applying Lemma 33 to (P0, P1, 1l) to get (P ′0, P ′1)
Applying Lemma 32: P ′′0 = ⊗jP ′0, P ′′1 = ⊗jP ′1
Applying Lemma 33 to (P ′′0 , P ′′1 , 1k) to get (Q0, Q1)

Each step is computable in logspace, and since logspace is closed under composition, this
completes our proof. ◀

We also mention the following lemma, which will be useful in evaluating the Boolean
formula given by the ≤L

bf−tt reduction.

▶ Lemma 34. There is a function in NC1 that takes as input a Boolean formula ϕ (with m
input bits) and produces as output an equivalent formula ψ with the following properties:
1. The depth of ψ is O(logm).
2. ψ is a tree with alternating levels of AND and OR gates.
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3. The tree’s non-leaf structure is always the same for a fixed input length.
4. All NOT gates are located just before the leaves.
Refer to Appendix A.5 for proof.

▶ Theorem 35. SZKL is closed under ≤L
bf−tt reductions.

To begin the proof of this theorem, we first note that as in the proof of [25, Lemma 4.10],
given two SDBP pairs, we can create a new pair which is in SDBP,No if both of the original
two pairs are (which we will use to compute ANDs of queries.) We can also compute in
logspace the OR query for two queries by creating a pair (P1 ⊗ S1, P2 ⊗ S2). We prove that
these operations produce an output with the correct statistical difference with the following
two claims:

▷ Claim 36. {(y1, y2)|XSDBP(y1) ∨ XSDBP(y2) = 1}≤L
mSDBP.

▷ Claim 37. {(y1, y2)|XSDBP(y1) ∧ XSDBP(y2) = 1} ≤L
m SDBP.

Refer to Appendix A.6 and Appendix A.7 for the construction and proof. Crucially we
note that the construction still retains a 2/3 completeness and 1/3 soundness bound.

Proof of Theorem 35. Now suppose that we are given a promise problem Π such that
Π ≤L

bf−tt SDBP. We want to show Π ≤L
m SDBP, which by SZKL’s closure under ≤L

m reductions
implies Π ∈ SZKL.

We follow the steps below on input x to create an SDBP instance (F0, F1) which is in
SDBP,Y if x ∈ ΠY :
1. Run the L machine for the ≤L

bf−tt reduction on x to get queries (q1, . . . , qm) and the
formula ϕ.

2. Build ψ from ϕ using Lemma 34. Replace negated queries ¬qi with the query produced by
the reduction from SDBP,Y to SDBP,N on qi, and then apply Lemma 31 (the Polarization
Lemma) with k = n on these queries to get (y1, . . . , yk). Pad the output bits of each
branching program so each branching program has m output bits.

3. Build the template tree T . At the leaf level, for each variable in ψ, we will plug in the
corresponding query yi. By Lemma 34 the tree is full.

4. Given x and designated output position j of F0 or F1, there is a logspace computation
which finds the original output bit from y1 . . . ym that bit j was copied from. This machine
traverses down the template tree from the output bit and records the following:

The node that the computation is currently at on the template tree, with the path
taken depending on j.
The position of the random bits used to decide which path to take when we reach
nodes corresponding to AND.

This takes O(logm) space. We can use this algorithm to copy and compute each output
bit of F0 and F1, creating (F0, F1) in logspace.

For step 4, we give an algorithm Eval(x, j, ψ, y1, . . . , ym) to compute the jth output bit of
F0 or F1 on x, for a formula ψ satisfying the properties of Lemma 34, a list of SDBP queries
(y1, . . . , ym), and j. Without loss of generality, we lay out the algorithm to compute only
F0(x).

Outline of Eval(x, j, ψ, y1, . . . , ym) :
The idea is to compute the jth output bit of F0 by recursively calculating which query

output bit it was copied from. To do this, first notice that the AND and OR operations
produce branching programs where each output bit is copied from exactly one output bit of
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one of the query branching programs, so composing these operations together tells us that
every output bit in F0 is copied from exactly one output bit from one query. By Lemma 34
and our AND and OR operations preserving the number of output bits, we also have that
if every BP has l output bits, F0 will have 2al = |ψ|l output bits, where a is the depth of
ψ. This can be used to recursively calculate which query the jth bit is from: for an OR
gate, divide the output bits into fourths, and decide which fourth the jth bit falls into (with
each fourth corresponding to one BP, or two fourths corresponding to a subtree.) For an
AND gate, divide the output into fourths, decide which fourth the jth bit falls into, and
then use the 4 random bits for the XOR operation to compute which fourth corresponds to
which branching programs (2 fourths will correspond to 1 BP or subtree, and the other 2
fourths will correspond to the 2 BPs from the other subtree.) If j is updated recursively,
then at the query level, we can directly return the j′th output bit. This can be done in
logspace, requiring a logspace path of “lefts” and “rights” to track the current gate, logspace
to record and update j′, logspace to compute 2al at each level, and logspace to compute
which subtree/query the output bit comes from at each level.

The resulting BP will be two distributions that will be in SDBP,Y ⇐⇒ x ∈ ΠY . By this
process Π ≤L

m SDBP. ◀
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A Appendix

This appendix contains some proofs that were moved from the main part of the paper, due
to space limitations.

A.1 Proof of Claim 14
Proof. For x ∈ ΠY ES , claim 38 of [1] shows that ∆(Mx(r), Unk ) ≤ 1/2n−1, establishing the
first part of the claim.
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For x ∈ ΠNO, from the soundness guarantee of the NISZKL protocol for EANC0 , we know
that, for at least a 1− 1

2n fraction of the shared reference strings σ ∈ {0, 1}nk , there is no
message p that the prover can send that will cause V to accept. Thus there are at most
2nk−n outputs of Mx(r) other than 0nk . For ϵ < 1

k , we have | supp(Mx(r))| ≤ 2nk−nϵk . ◁

A.2 Proof of Statistical Zero-Knowledge in Section 3.3

Proof. Suppose X ∈ SDU’NC0,Y . Recall that σ ∼ {0, 1}n, s ∼ {0, 1}m, p ∼ {r : C(r) = σ}
and γ = C(s). In order to provide an upper bound on ∆((p, σ), (s, γ)), we consider the
element wise probability of each distribution and show that for X ∈ SDU’NC0,Y the claim
holds. For a ∈ {0, 1}m and b ∈ {0, 1}n we have:

∆((p, σ), (s, γ)) =
∑
(a,b)

1
2 |Pr[(p, σ) = (a, b)]− Pr[(s, γ) = (a, b)]|

Let us consider an element b ∈ {0, 1}n. Let Ab = {a1, a2, .., akb
} be the pre-images of b under

C i.e. for 1 ≤ i ≤ kb it holds that C(ai) = b. Let βb = Pr
y∼Um

[C(y) = b]. Then kb2−m = βb

(since exactly kb elements of {0, 1}m are mapped to b under C). Let B = {b|¬∃y : C(y) = b}.
Since ∆(C(Um), Un) ≤ 1

2nϵ , it follows that |B|2m ≤ 1
2nϵ . We have:

∆((p, σ), (s, γ)) =
∑
(a,b)

1
2(|Pr[(p, σ) = (a, b)]− Pr[(s, γ) = (a, b)]|)

= 1
2

∑
(a,b):b∈B

|Pr[(p, σ) = (a, b)]− Pr[(s, γ) = (a, b)]|

+ 1
2

∑
(a,b):b̸∈B

|Pr[(p, σ) = (a, b)]− Pr[(s, γ) = (a, b)]|

For (a, b) satisfying b ∈ B, we have Pr[(s, γ) = (a, b)] = Pr[(p, σ) = (a, b)] = 0. For b ̸∈ B
and a satisfying C(a) ̸= b we again have Pr[(s, γ) = (a, b)] = Pr[(p, σ) = (a, b)] = 0. For
(a, b) : C(a) = b we have Pr[(s, γ) = (a, b)] = 2−m since s ∼ Um and picking s fixes b. We
also have Pr[(p, σ) = (a, b)] = 2−n

kb
since σ ∼ Un and then the prover picks p uniformly from

Ab. This gives us

∆((p, σ), (s, γ)) = 1
2

∑
(a,b):C(a)=b

∣∣2−m − 2−n

kb

∣∣
= 1

2
∑

(a,b):C(a)=b

∣∣∣∣2−m − 2−m−n

βb

∣∣∣∣
= 1

2
∑

(a,b):C(a)=b

2−m

βb

∣∣βb − 2−n
∣∣

≤ 1
2

∑
(a,b):C(a)=b

∣∣βb − 2−n
∣∣ = ∆(C(Um), Un) ≤ 1

2nϵ

where the first inequality holds since βb ≥ 2−m whenever βb ̸= 0. Thus we have :

∆((p, σ), (s, γ)) = O( 1
2nϵ ). ◀
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A.3 Proof of Corollary 19
Proof. Let A be in PM, where there is a logspace oracle machine M accepting A with an
oracle P for Perfect Matching. We may assume without loss of generality that all queries
made by M on inputs of length n have the same number of vertices p(n). This is because G
has a perfect matching iff G∪ {x1 − y1, x2 − y2, ..., xk − yk} has a perfect matching. (I.e., we
can “pad” the queries, to make them all the same length.)

Let C = {(G,W ) : g(G,W ) ≡ 1 mod 2}, where g is the function from Lemma 18. Clearly,
C ∈ ⊕L. Now, a logspace oracle machine with input (x,W ) and oracle C can simulate
the computation of MP on x; each time M poses the query “Is G ∈ P”, instead we ask if
(G,W ) ∈ C. Then with high probability (over the random choice of W ) all of the queries
will be answered correctly and hence this routine will accept if and only if x ∈ A, by
Lemma 18. Let B be the language accepted by this logspace oracle machine. We see that
B ∈ LC ⊆ L⊕L = ⊕L, where the last equality is from [16]. ◀

A.4 Proof of Lemma 33
Proof. The proof that ∆(Q0, Q1) = ∆(P0, P1)k follows from [25, Proposition 3.6]. To finish
proving this lemma, we show a logspace-computable mapping between (P0, P1, 1k) and
(Q0, Q1).

Let ℓ and w be the max length and width between P0 and P1. We describe the structure
of Q0, with Q1 differing in a small step: to begin with, Q0 reads the k − 1 random bits
y1, . . . , yk−1. For each of the random bits, it can pick the correct of two different branches,
one having P0 built in at the end and the other having P1. We will read y1, branch to P0
or P1 (and output the distribution accordingly), then unconditionally branch to reading y2
and repeat until we reach yk−1 and branch to P0 or P1. We then unconditionally branch to
y1 and start computing the parity, and at the end we will be able to decide the value of yk

which will allow us to branch to the final copy of P0 or P1.

y1

P0

P1

y2

. . .

. . .

yk−1

P0

P1

y1

y2

y2

. . .

. . .

yk−1

yk−1

P0

P1

0/1 1 0

Figure 1 Branching program for Q0 of Lemma 33.

Creating (Q0, Q1) can be done in logspace, requiring logspace to create the section to
compute yk and logspace to copy the independent copies of P0 and P1. ◀

A.5 Proof of Lemma 34
Proof. Although this lemma does not seem to have appeared explicitly in the literature,
it is known to researchers, and is closely related to results in [13] (see Theorems 5.6 and
6.3, and Lemma 3.3) and in [5] (see Lemma 5). Alternatively, one can derive this by using
the fact that the Boolean formula evaluation problem lies in NC1 [9, 10], and thus there is
an alternating Turing machine M running in O(log n) time that takes as input a Boolean
formula ψ and an assignment α to the variables of ψ, and returns ψ(α). We may assume
without loss of generality that M alternates between existential and universal states at each
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step, and that M runs for exactly c log n steps on each path (for some constant c), and that
M accesses its input (via the address tape that is part of the alternating Turing machine
model) only at a halting step, and that M records the sequence of states that it has visited
along the current path in the current configuration. Thus the configuration graph of M , on
inputs of length n, corresponds to a formula of O(log n) depth having the desired structure,
and this formula can be constructed in NC1. Given a formula ϕ, an NC1 machine can thus
build this formula, and hardwire in the bits that correspond to the description of ϕ, and
identify the remaining input variables (corresponding to M reading the bits of α) with the
variables of ϕ. The resulting formula is equivalent to ϕ and satisfies the conditions of the
lemma. ◀

A.6 Proof of Claim 36
Proof. Let y1 = (A1, B1) and y2 = (A2, B2). Let p > 0 be a parameter, where we are
guaranteed that:

(Ai, Bi) ∈ SDBP,Y =⇒ ∆(Ai, Bi) > 1− p

(Ai, Bi) ∈ SDBP,N =⇒ ∆(Ai, Bi) < p

Then consider:

y = (A1 ⊗A2, B1 ⊗B2)

Let us analyze the Yes and No instance of XSDBP(y1) ∨ XSDBP(y2):
YES: ∆(A1 ⊗ A2, B1 ⊗ B2) ≥ max{∆(A1 ⊗ B2, B1 ⊗ B2),∆(B1 ⊗ A2, B1 ⊗ B2)} =
max{∆(A1, B1),∆(A2, B2)} > 1− p.
NO: ∆(A1 ⊗A2, B1 ⊗B2) ≤ ∆(A1, B1) + ∆(A2, B2) < 2p.

The second equality is from [25, Fact 2.3]. ◁

In our Boolean formula, we will have only d = O(logm) depth, so we have this OR
operation for at most d+1

2 levels (and the soundness gap doubles at every level). Since p = 1
2m

at the beginning, the gap (for NO instance) will be upper bounded at the end by:

< 2
d+1

2
1

2m
= mO(1)

2m
< 1/3.

A.7 Proof of Claim 37
Proof. Let y1 = (A1, B1) and y2 = (A2, B2). Let p > 0 be a parameter, where we are
guaranteed that:

(Ai, Bi) ∈ SDBP,Y =⇒ ∆(Ai, Bi) > 1− p

(Ai, Bi) ∈ SDBP,N =⇒ ∆(Ai, Bi) < p

We can construct a pair of BPs y = (A,B) whose statistical difference is exactly

∆(A1, B1) ·∆(A2, B2)

The pair (A,B) we construct is analogous to (Q0, Q1) in Lemma 33, and can be created
in logspace with 2 random bits b0, b1. We have A = (A1, A2) if b0 = 0 and A = (B1, B2) if
b0 = 1, while B = (A1, B2) if b2 is 0 and (A2, B1) if b1 = 1.

Let us analyze the Yes and No instance of XSDBP(y1) ∧ XSDBP(y2):
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YES: ∆(A1, B1) ·∆(A2, B2) > (1− p)2.
NO: ∆(A1, B1) ·∆(A2, B2) ≤ max{∆(A1, B1),∆(A2, B2)} < p. ◁

In our Boolean formula we will have only d = O(logm) depth, so we have this AND
operation for at most d+1

2 levels (and the completeness gap squares itself at every level).
Since p = 1

2m at the beginning, the gap (for YES instance) will be lower bounded at the end
by:

> (1− 1
2m

)2
d+1

2 = (1− 1
2m

)mO(1)
> (1− 1

2m
)2m/m ≈ (1

e
)1/m >

2
3 .
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Abstract
Graph sketching is a powerful paradigm for analyzing graph structure via linear measurements
introduced by Ahn, Guha, and McGregor (SODA’12) that has since found numerous applications in
streaming, distributed computing, and massively parallel algorithms, among others. Graph sketching
has proven to be quite successful for various problems such as connectivity, minimum spanning
trees, edge or vertex connectivity, and cut or spectral sparsifiers. Yet, the problem of approximating
shortest path metric of a graph, and specifically computing a spanner, is notably missing from
the list of successes. This has turned the status of this fundamental problem into one of the most
longstanding open questions in this area.

We present a partial explanation of this lack of success by proving a strong lower bound for a
large family of graph sketching algorithms that encompasses prior work on spanners and many (but
importantly not also all) related cut-based problems mentioned above. Our lower bound matches
the algorithmic bounds of the recent result of Filtser, Kapralov, and Nouri (SODA’21), up to
lower order terms, for constructing spanners via the same graph sketching family. This establishes
near-optimality of these bounds, at least restricted to this family of graph sketching techniques, and
makes progress on a conjecture posed in this latter work.
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1 Introduction

Analyzing structure of different objects via random linear projections, also known as sketching,
is a fundamental paradigm that arise in various contexts. Canonical examples of this
approach include dimensionality reduction results such as Johnson-Lindenstrauss lemma [25],
sparse recovery results in compressed sensing [16], approximation algorithms for large
matrices [40, 41], or various sketches for statistical estimation such as AMS sketch [4], count
sketch [12], or count-min sketch [14] in data streams.

A pioneering work of [1] initiated graph sketching that considers this paradigm for
graphs. A graph sketching algorithm samples a sketching matrix A from a fixed distribution,
independent of the input graph G, and compute A ·R(G) where R is a suitable representation
of G chosen by the algorithm designer, say, its adjacency matrix, Laplacian, or (signed)
edge-incidence matrix. The algorithm then uses A · R(G), referred to as the sketch, to
(approximately) discover properties of G with no further access to G, e.g., to determine
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whether or not G is connected. Assuming one can design a sketching matrix A with “few”
rows, this approach leads to sketches that can be stored and updated efficiently and be used
to recover fundamental properties of G.

The linearity of the sketches and the natural “composability” guarantee that comes with
it makes graph sketching a versatile tool in many applications. For instance, graph sketching
is the de facto method of algorithm design for dynamic streaming algorithms that process a
graph specified via a sequence of edge insertions and deletions; see, e.g. [1, 2, 30, 6, 31, 21].
Graph sketching works seamlessly in this model as linearity of sketches allows one to update
them easily after each update in the stream. It is even known that this method is universal
for dynamic streams under certain (strong) assumptions on length of the stream [35, 3] (see
also [28] for necessity of these assumptions). Another model that has benefited greatly from
graph sketching is that of distributed sketching (a.k.a. simultaneous communication model or
broadcast congested clique) wherein every vertex is a processor that sees only edges incident
on the vertex and its task is to communicate a small message, simultaneously with other
vertices, that allows a referee to solve the problem; see, e.g. [10, 1, 2, 11, 37, 7, 42]. Finally,
graph sketching has also been a powerful tool for designing distributed or massively parallel
algorithms; see, e.g. [1, 2, 24, 22, 38, 27, 20, 21].

All these considerations have turned graph sketching into a highly attractive solution
concept in the last decade since their introduction in [1]. We now have efficient sketches, that
often match existentially optimal bounds up to poly-log factors1, for various fundamental
problems such as connectivity [1], minimum spanning trees [1], edge connectivity [1], vertex
connectivity [23], cut sparsifiers [2], spectral sparsifiers [30, 31], graph coloring [5], densest
subgraph [36], and others.

Graph sketching for spanners

We study graph sketching for the problem of computing spanners that (approximately)
preserve the shortest path metric of the input graph. Formally,

▶ Definition 1. A subgraph H of a graph G = (V, E) is a d-spanner of G for some integer
d ≥ 1, called the stretch of the spanner, if for every pair u, v ∈ V one has

distG(u, v) ≤ distH(u, v) ≤ d · distG(u, v),

where dist∗(·, ·) stands for the shortest path metric of the corresponding graph.

For every integer k ≥ 1, every n-vertex graph G = (V, E) admits a (2k − 1)-spanner with
only O(n1+1/k) edges which is also existentially optimal under the widely-believed Erdős
Girth Conjecture. For instance, every graph admits an O(log n)-spanner on O(n) edges.

Spanners are notably absent from the list of successes in graph sketching. Indeed, despite
the significant attention given to sketching spanners, see, e.g., [2, 34, 20, 21, 17], until very
recently, it was not even known whether an o(n)-spanner can be recovered via sketches of
O(n) size. The work of [21] made the first progress on this problem in nearly a decade by
presenting an O(n2/3)-spanner using sketches of Õ(n) size2, or more generally a d-spanner
using sketches of size Õ(n2/d3/2). But such bounds are still quite far from existential bounds
on spanners dictated by the girth conjecture. Yet, no non-trivial lower bounds are known for

1 For instance, sketches of size O(n log3 n) for spanning forests of n-vertex graphs [1] compared to
existential bound of Ω(n log n) bits to store the spanning forest.

2 We use Õ(·) and Ω̃(·) notation to hide poly-log factors.
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this problem3, beside the work of [37] (see also [42]) that proves that finding any spanning
tree requires sketches of size Ω(n log3 n) bits (namely, a lower bound for any spanner of finite
stretch).

The lack of progress on understanding graph sketching for spanners have also been
consequential in other computing models that use graph sketching as their primary tool,
most notably, the dynamic streaming model. Indeed, complexity of spanners has been a
tantalizing open question in the dynamic streaming model already since its introduction in [1]
(for insertion-only streams, optimal algorithms that essentially match existential bounds
under Erdős girth conjecture have been known since the introduction of the model itself
in [18]; see, also [9, 19]).

This state-of-affairs raises the following question: What is the best stretch-vs-size tradeoff
possible for constructing spanners via graph sketching? We make progress on this longstanding
open question by proving a nearly-tight lower bound for a large family of graph sketching
algorithms that encompasses prior work on spanners in [21] and most other closely related
problems.

1.1 Our Contribution
We prove a lower bound on the size of a special case yet general family of sketches
for graph spanners. This family, that shall be defined shortly, contains the prior sketching
algorithm of [21] for graph spanners – our lower bound matches their bound up to lower order
terms and is thus nearly-optimal. In addition, this family also contains many prior sketching
algorithms for “cut-based” problems such as connectivity [1], vertex connectivity [23], and
spectral sparsifiers [30] (and thus also cut sparsifiers). We now elaborate more on our results,
starting with the definition of our sketches, which we call random Gaussian sketches.

Random Gaussian sketches

To date, the main success of graph sketching has been for cut-based problems [1, 2, 30, 23].
These sketches all work by encoding a graph G as its

(
n
2
)

× n signed edge-incidence matrix
B(G) (see Section 3.1) and then apply a sketching matrix A with few rows on the left to
obtain the sketch A · B(G). The power of these sketches comes from surprisingly powerful
cancellations that the use of the signed edge incidence matrix enables. In addition, the
sketching matrix A of in these approaches implements a sparse recovery scheme on carefully
chosen random subgraphs of the input graphs (e.g. uniformly random subgraphs of the
input graph in the case of connectivity [1], cut sparsifiers [2], or spectral sparsifiers [30], and
sampled vertex induced subgraphs in the case of spanners [21]).

To give a concrete example, let us consider the AGM sketches [1] for finding spanning
forests. For any graph G = (V, E) and any set of vertices S ⊆ V , adding up the columns
of B(G) corresponding to vertices in S, i.e.,

∑
v∈S B(G)v gives us a vector with non-zero

entries corresponding to edges of the cut (S, V \ S). The linearity of matrix A then allows us
to obtain

A ·

(∑
v∈S

B(G)v

)
=
∑
v∈S

A · B(G)v,

3 This state-of-affairs is in sharp contrast with another widely-studied problem of finding large matchings
which is also absent from the list of successes in graph sketching; for the matching problem, asymptotically
tight lower bounds which are much stronger than existential bounds are known; see [6, 15, 8].
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for a cut S specified in the recovery phase. The sketching matrix A itself is an ℓ0-sampler
sketch that samples a non-zero entry of a vector v given A · v (see [26, 32]). An ℓ0-sampler
sketch is typically implemented via a simple sparse recovery sketch combined with a sampling
matrix that samples the edges of the graph at O(log n) geometrically decreasing rates.
Combined with the above approach, we can thus sample an edge from any cut of the graph
specified in the recovery phase. The algorithm of [1] heavily builds on this subroutine by
implementing Borůvka’s algorithm for growing connected components via using these sketches
to find an outgoing edge from each component in each step.

In this paper, we focus on this family of sketches where the sparse recovery scheme is
implemented using random Gaussian projections. This means that each row of the sketching
matrix is of the type g · S where S is an

(
n
2
)

×
(

n
2
)
-dimensional diagonal sampling matrix –

where S(u,v),(u,v) = 1 iff (u, v) is sampled – and g is an
(

n
2
)
-dimensional vector of independent

Gaussian variables:

[
g

]
1×(n

2) ×

 S


(n

2)×(n
2)

×

 B(G)


(n

2)×n

=
[

g · S · B(G)
]

1×n
.

The entire sketch is obtained by taking s such rows where sampling matrices can be
correlated but Gaussian vectors are independent. The recovery algorithm is given sampling
matrices and the sketch but not Gaussian variables. We refer to s as the dimension of the
sketch (thus size of the sketch is O(s · n)). See Section 3.1 for formal definitions.

General “power” of random Gaussian sketches? In Appendix A, we show this family of
sketches can implement many (but importantly not all) prior cut-based sketching algorithms
in [1, 30, 23], and most importantly the spanner sketch of [21]. But we also point out that
these sketches are not universal and one can easily construct problems where the power of
these sketches does not match general sketching algorithms4. Perhaps more importantly, we
assume that the recovery algorithm of these sketches is oblivious to the Gaussian vectors used
in the sketching matrix which means that the recovery algorithm has a partial knowledge of
the sketching matrix. A particular shortcoming of this is that while these sketches handle
the “main” source of cancelations enabled by edge-incidence matrix, they do not handle a
“secondary” source of cancelation: to obtain sketches of subgraphs of the input by generating
the sketching matrix again at the recovery phase, apply it on some recovered part of the
input, and subtract it from the original sketch (this approach is used in the edge connectivity
and cut sparsifier sketch of [2] – although we note that random Gaussian sketches can recover
a cut sparsifier by instead implementing the algorithm of [30]). We thus see the merit of
study of this family as arguably the “most natural” candidate for finding spanners, given
their past successes for closely related problems.

Our result

We prove a near-optimal lower bound on the dimension of random Gaussian sketches for
constructing spanners, or even returning the distance of two fixed vertices (see also The-
orem 5).

4 Consider recovering the induced subgraph of the input on the first
√

n vertices. A sparse recovery
algorithm that spends O(

√
n) bits per each of these

√
n vertices gives a sketch of size O(n) for this

problem. However, any random Gaussian sketch requires a dimension of Θ(
√

n) that cannot be amortized
over all vertices, leading to a sketch of size O(n3/2) instead.



S. Assadi, M. Kapralov, and H. Yu 57:5

▶ Result 1. Any random Gaussian sketch for constructing a d-spanner with constant
probability of success requires dimension Ω(n1−o(1)/d3/2), or put differently, any random
Gaussian sketch of dimension s can only achieve a stretch of Ω((n/s)2/3−o(1)). The lower
bound applies even to the problem of approximating the distance of two fixed vertices.

Our lower bounds in Result 1 matches algorithmic bounds of [21] up to the no(1) term
for computing spanners via graph sketching (whose sketches fit the framework of random
Gaussian sketches) for all stretch d. This establishes the optimality of these bounds at least
among this popular family of graph sketching algorithms. We note that [21] conjectured
optimality of their algorithmic bounds among all graph sketching techniques; our bounds
in Result 1 makes partial progress towards settling this conjecture.

Before moving on, we note that for the case when dimension s = polylog(n), corresponding
to sketches of size Õ(n), Result 1 implies a lower bound of n2/3−o(1) on the stretch; this
should be contrasted with the O(log n) bound of existential results on the stretch of spanners
with O(n) edges, suggesting that computing spanner is much harder using graph sketching
(specifically via random Gaussian sketches) compared to existential bounds and arbitrary
algorithms. Finally, the lower bound holds even for the algorithmically easier problem of
simply estimating distance of two fixed vertices in the graph, as opposed to recovering the
entire shortest path metric via a spanner.

Our techniques

We consider a family of hard instances that form a random chain of cliques of size (n/d)
with diameter d, and a single edge e∗ that connects two vertices at distance Θ(d) together
(see Figure 1). It is easy to see that such e∗ should belong to every o(d)-spanner of the graph
and we prove that no random Gaussian sketch of “small” dimension can recover e∗. The proof
is through analyzing how much a single random Gaussian projection can reveal information
about e∗, or a bit more formally, the KL-divergence between the resulting sketches of two
neighboring graphs that only differ on e∗. The rest follows by summing up this information
across the s projections.

To prove the bound for a single projection, we use properties of Gaussian variables and
KL-divergence to bound the information revealed about the edge e∗ by the effective resistance
of the sampled subgraph of the input after applying the sampling matrix. We prove that
the distribution of our input, combined with a hierarchical expander decomposition of all
edges of sampling matrix, implies that the sampled subgraph of the input form a chain of
expanders (with proper lower bounds on both expansion and minimum degree). This step
requires analyzing expansion of vertex-sampled subgraphs of an expander which can be of
independent interest. Lastly, we bound the effective resistance of the edge e∗ in this chain of
expanders by exhibiting a proper electrical flow in the graph using properties of expanders.

Related work

In a recent independent work Chen, Khanna and Li [13] showed, similarly to our work, a
lower bound matching the sketching dimension of [21] for linear sketches that can support
continuous weight updates (as opposed to sketches that are only required to work for
unweighted graphs). Thus, from the perspective of the ultimate result, the lower bound
of [13] is incomparable to ours. Their lower bound works for more general sketches than ours
(although still not universal), but assumes that these sketches work in the continuous weight
update model; our lower bound assumes a special sketch structure, but works in the mode
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standard setting of unweighted graphs. There is quite a bit of overlap in techniques: both
papers use expander decompositions and prove that expanders are preserved under vertex
sampling (but the actual proofs of the corresponding lemmas are different).

2 Preliminaries

Notation

We use N (µ, σ) to denote the Gaussian distribution with mean µ and variance σ2. For any
distributions P and Q, D(P || Q) denotes the KL-divergence of P from Q and ∥P − Q∥tvd
is the total variation distance between P and Q.

For a graph G = (V, E) on n vertices, we use d1, . . . , dn to denote the degrees of vertices
in G. For any sets of vertices S, T ⊆ V , E(S, T ) denotes the set of edges between S and T

and volG(S) :=
∑

v∈S dv denotes the volume of S (we drop the subscript when clear). The
conductance of G is defined as

φ(G) := min
S⊆V

|E(S, V \ S)|
min{vol(S), vol(V \ S)} .

We say that G is a φ-expander if its conductance is at least φ.
For a graph G, A is the adjacency matrix, D is the degree diagonal matrix, B is the signed

edge-incidence matrix, L is the Laplacian matrix, and L̃ is the normalized Laplacian matrix.
The spectral gap of G is defined as the second smallest eigenvalue of L̃ which is related to
the conductance via Cheeger’s inequality. Finally, RG

eff(u, v) denotes the effective resistance
between u, v when treating edges of G as resistors with unit resistance.

We also use the following (variant of) expander decomposition that bounds the minimum
degree of resulting expanders. The proof is a simple modification of standard decompositions,
e.g. in [29, 39].

▶ Proposition 2. Let G = (V, E) be any graph on n vertices and m edges, and ε ∈ (0, 1/2)
and dmin ≥ 1 be parameters. The vertices of G can be partitioned into subgraphs H1, . . . , Hk

such that:
(i) Each Hi is an ε-expander with minimum degree dmin;
(ii) At most 8ε · m log n + n · dmin edges E0 of G do not belong to any subgraph {Hi}i∈[k].

3 Main Result

We formalize Result 1 in this section. We start by defining the sketching model, using random
Gaussian projections, that we study. We then present our lower bound for constructing
spanners (and in general preserving shortest path metric) using these sketches. Finally, we
give the proof outline of this result here and postpone the proof of its main ingredients to
the subsequent sections.

3.1 Random Gaussian Projections and Sketches
For an n-vertex graph G = (V, E), its signed edge-incidence matrix is an

(
n
2
)

× n-
dimensional matrix B = B(G) defined as follows:

Each column corresponds to a vertex v and each row corresponds to a pair of vertices
(u, w);
The entry B(u,w),v is either +1 if (u, w) is an edge in G and v = u, −1 if (u, w) is an edge
in G and v = w, and 0 otherwise.
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Note that for any edge e = (u, v) of G, the corresponding row (u, v) in B has exactly one +1
at column u, one −1 at column v, and is otherwise 0. A row (u, v) of B which does not have
a corresponding edge in G is the all-0 row.

Our sketches are based on taking random Gaussian projections of matrix B, which roughly
speaking correspond to sampling edge of G (using any sampling scheme oblivious to the
graph), and multiply a Gaussian vector with signed edge-incidence matrix of the resulting
graph. Formally,

▶ Definition 3. Let G = (V, E) be an n-vertex graph and consider the following:
(i) Sampling matrix: Let S be a

(
n
2
)

×
(

n
2
)
-dimensional diagonal matrix with 0-1-values

on the diagonal. Notice that the matrix S · B(G) is the edge-incidence matrix of
the subgraph of G obtained by picking only those edges of G that their corresponding
(diagonal) value in S is 1.

(ii) Gaussian projection: Let g be a
(

n
2
)
-dimensional vector of Gaussian random variables,

where each entry is sampled independently from N (0, 1).
A random Gaussian projection of G with respect to S is an n-dimensional vector obtained
by sampling g ∼ N (0, 1)(

n
2), and returning p := g · S · B(G).

Using Definition 3, we can define the sketches we focus on as follows.

▶ Definition 4. Let Π be a problem defined on n-vertex graphs G = (V, E). A random
Gaussian sketch for Π is defined via the following pair:

(i) Sketching matrices: A distribution Dsmpl on s-tuples of sampling matrices for some
s ≥ 1.

(ii) Recovery algorithm: An algorithm that given s sampling matrices S = (S1, . . . , Ss) ∼
Dsmpl and s random Gaussian projection P = (p1, . . . , ps) of any graph G with respect
to these sampling matrices, returns a solution to Π(G).

We refer to s as the dimension of the sketch (note that a sketch of dimension s has size
O(s · n)).

A random Gaussian sketch for a graph G then consists of sampling the sketching matrices
S from Dsmpl (independent of G), receiving random Gaussian projections P, and running
the recovery algorithm on (S, P) to return the solution.

We emphasize that in Definition 4, the recovery algorithm is given the sketching matrices
used for random Gaussian projections explicitly, but is not given the Gaussian vectors
themselves.

We note that our formalization of random Gaussian sketches is new to this paper, albeit
it has been used implicitly in prior algorithmic results for in graph sketching literature.
In Appendix A, we elaborate more on this connection and point out that how these sketches
can be used to solve many of the canonical problems in graph sketching literature such as
connectivity, minimum spanning tree, cut or spectral sparsifiers, and most closely related
to ours, spanners. But we also emphasize that these sketches are not universal – see the
discussion on the power of these sketches in Section 1.1.

3.2 The Lower Bound
The following is the formalization of Result 1 that we prove.

▶ Theorem 5. For any absolute constant δ ∈ (0, 1), and integers n ≥ 1 and 1 ≤ d ≤ n2/3−δ,
any random Gaussian sketch (Definition 4) that outputs a d-spanner of every given n-vertex
graph G with probability at least 2/3 has dimension (i.e., number of rows)

Ω(n1−δ

d3/2 ).
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Moreover, the lower bound continues to hold even if the algorithm is only required to answer
the shortest path distance between two prespecified vertices up to a factor of d.

Theorem 5 can alternatively be seen as proving that any random Gaussian sketch of dimension
s can only achieve a stretch of

Ω((n

s
)2/3−δ),

for any constant δ > 0. In light of the result of [21], the bounds obtained in Theorem 5
are optimal, up to no(1)-factors, for the entire range of dimension s or stretch d. In
particular, Theorem 5 implies that to obtain a n2/3−Ω(1)-spanner, one needs random Gaussian
sketches of dimension nΩ(1). This makes progress on a conjecture of [21] that stated the
same bounds for arbitrary sketches.

Finally, we also mention that Theorem 5 works even for the problem wherein we are
given two vertices a and b of the graph, and our goal is to simply determine the distance of
a and b in the graph using the sketches. This problem is algorithmically easier than finding
a spanner of the graph in that firstly, we do not need to pick subset of edges of the graph G

and can preserve the shortest path metric in any desired way, and secondly that we only
need to maintain the distance between two vertices and not all pairs. Yet, effectively the
entirety of our effort is to prove the result for spanners already and we get this stronger lower
bound almost for free using standard ideas.

In the rest of this section, we first present a hard input distribution used to establish The-
orem 5. We then state our main technical lemma that bounds the information revealed by a
single random Gaussian projection on the graphs sampled from this distribution and show
how this lemma easily implies the theorem. The next subsection then includes the proof
outline of this technical lemma, whose main ingredients are postponed to the next sections.

3.3 A Hard Input Distribution
For any sufficiently large n, d > 0, we define a hard distribution µ = µ(n, d) over n-
vertex graphs. For simplicity, we prove the lower bound for (d/2)-spanners instead – re-
parameterizing d then implies the same asymptotic lower bound for exact d-spanners as well
(see Figure 1).

Distribution µ(n, d). A hard input distribution for (d/2)-spanners of n-vertex graphs.
1. Partition the vertices V into d groups V1, . . . , Vd: each v ∈ V is sent to one of the

groups chosen uniformly at random.
2. Let G be a graph obtained by placing a clique on each Vi ∪ Vi+1 for i ∈ [d − 1].
3. Sample a pair of vertices (u∗, v∗) ∈

(
V
2
)

independently and return the graph G + e∗ for
e∗ = (u∗, v∗).

In the following, we use B = B(G) to the denote the signed edge-incidence matrix of G;
we also use B(e∗) as the edge-incidence matrix of the n-vertex graph consisting of the single
edge e∗ = (u∗, v∗). We emphasize that the final graph output by the distribution is G + e∗

(this notation will be make the latter parts of the proof cleaner).
We first establish a straightforward property of graphs sampled from µ in context of

spanners.

▶ Lemma 6. With constant probability over the choice of (G, e∗) ∼ µ(n, d), every (d/2)-
spanner of G + e∗ contains the edge e∗ = (u∗, v∗).
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V1
V2 V3 V4 V5 V6 V7 V8

u∗

v∗

e∗

Figure 1 An illustration of µ = µ(n, d) for n = 24 and d = 8. Any 4-spanner of G contains e∗.

Proof. For a graph G and pairs (u∗, v∗) sampled from µ(n, d),

Pr
u∗,v∗

(distG(u∗, v∗) > d/2) = 1
d2 ·

(
O(d) +

d∑
i=1

|d/2 − i|

)
>

1
5 ,

where the equality holds since when u∗ ∈ V1, v∗ can be in Vd/2+2, . . . , Vd, when u∗ ∈ V2, v∗

can be in Vd/2+3, . . . , Vd, and so on (O(d) handles the differences of even or odd choices of d

and d/2).
Moreover, whenever the distance of u∗, v∗ in G is more than d/2, any (d/2)-spanner

of G + e∗ should contain the edge e∗, as otherwise the distance between u∗ and v∗ in the
spanner will be more than d/2 times their distance in G + e∗, violating the bound on the
stretch of the spanner. ◀

The following lemma is the main technical contribution of our work. Roughly speaking,
this lemma bounds the “information” that can be learned about the edge e∗ in µ using a
single sub-sampled Gaussian projection of a graph sampled from µ.

▶ Lemma 7. Let S be any sampling matrix and consider a single random Gaussian projection
with respect to S. For (G, e∗) sampled from µ = µ(n, d),

E
G,e∗

[
min{1,Dg(g · S · B(G) || g · S · (B(G) + B(e∗)))}

]
= O( d3/2

n1−δ
),

for any constant δ > 0, where the KL-divergence is taken only over the Gaussian variables.

Before getting to the proof of Lemma 7, we show that it implies Theorem 5 immediately.

Proof of Theorem 5 (assuming Lemma 7). Let (Dsmpl, A) be any sub-sampled Gaussian
sketch of dimension s ≥ 1 for recovering a (d/2)-spanner. Consider a distribution µ′ on
n-vertex graphs defined as follows:

Distribution µ′: Sample (G, e∗) from µ and θ ∈ {0, 1} uniformly at random; if θ = 0,
return G, otherwise return G + e∗.

Let G′ be a graph sampled from µ′. Suppose we sample S = (S1, . . . , Ss) from Dsmpl

and receive sub-sampled Gaussian projections P = (p1, . . . , ps) where for every i ∈ [s],
pi = gi · Si · B(G′) for a Gaussian vector gi. Additionally, suppose we are even given
(S, G, e∗), and thus the only unknown information is whether or not e∗ ∈ G′ also, i.e.,
whether θ = 1 or not. This way, we can run A, using S, P as input, to obtain a (d/2)-spanner
of G′: if e∗ belongs to this spanner, we declare e∗ is in G′ and otherwise we say it is not.
By Lemma 6, we are going to be able to determine the value of θ with probability 1/2 + Θ(1).
This implies that over the distribution µ′,

∥[(S, G, e∗, P) | θ = 0] − [(S, G, e∗, P) | θ = 1]∥tvd = Ω(1), (1)
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as otherwise, we cannot estimate the value of θ with probability better than 1/2 + o(1) given
our input (S, G, e∗, P) which is sampled from either µ′ | θ = 0 or µ′ | θ = 1. We now have,

LHS of Eq (1) ≤ E
(S,G,e∗)

∥[P | θ = 0, S, G, e∗] − [P | θ = 1, S, G, e∗]∥tvd

(as the distribution of (S, G, e∗) is the same under both θ = 0 and θ = 1)

≤
√

E
(S,G,e∗)

min{1,D(P | θ = 0, S, G, e∗ || P | θ = 1, S, G, e∗)}

(by Pinsker’s inequality, the fact that TVD is bounded by 1, and concavity of
√

·)

=

√√√√ E
(S,G,e∗)

[
min{1,

s∑
i=1

D(pi | θ = 0, S, G, e∗ || pi | θ = 1, S, G, e∗)}

]
(by chain rule of KL-divergence as pi’s are now only function of gi’s and so are independent)

≤

√√√√ s∑
i=1

E
(S,G,e∗)

[
min{1,D(pi | θ = 0, S, G, e∗ || pi | θ = 1, S, G, e∗)}

]
(we can take min inside the summation to get an upper bound)

=

√√√√ s∑
i=1

E
(Si,G,e∗)

[
min{1,D(pi | θ = 0, Si, G, e∗ || pi | θ = 1, Si, G, e∗)}

]
(as pi is only a function of Si conditioned on G, e∗)

=

√√√√ s∑
i=1

E
(Si,G,e∗)∼µ

min{1,Dgi (gi · Si · B(G) || gi · Si · (B(G) + B(e∗)))},

where the last equality is because input graph G′ in µ′ is G when θ = 0 and G + e∗ when
θ = 1, and distribution of (Si, G, e∗, gi) is the same under µ and µ′.

Now given that Si ⊥ (G, e∗) in µ, each term in the RHS above is the same quantity upper
bounded in Lemma 7. Thus, combining Eq (1), the above equation, and Lemma 7, we get
that

Ω(1) = ∥[(S, G, e∗, P) | θ = 0] − [(S, G, e∗, P) | θ = 1]∥tvd ≤
√

s · O( d3/2

n1−δ
),

which implies that s = Ω(n1−δ/d3/2) as desired. This implies the first part of Theorem 5.
The proof of the second part follows almost immediately from the above argument as

follows. Consider the following distribution:
Distribution µ′′: Sample (G′, e∗, θ) from µ′. Add two new vertices a and b to the graph
and add edges (a, u∗) and (v∗, b) to the graph as well.

Let G′′ be a graph sampled from µ′′. Consider the distance between a and b in G′′: if θ = 1
in the sampled G′, distance of a and b is 3, otherwise, if θ = 0, by the same argument
as Lemma 6, the distance between a and b is more than (d/2) with constant probability.
This means that if our algorithm could simply estimate the distance of a and b to within a
factor of (d/6), it can determine the value of θ with probability 1/2 + Θ(1).

Now if we further give u∗, v∗, and the Gaussian variables on all edges incident to a or b

to the recovery algorithm, what the algorithm knows becomes the sketches of G′′ \ {a, b}
(by simply subtracting the corresponding Gaussians). Since the Gaussians revealed are
independent of the sketch of G′′ \ {a, b}, the same exact argument as the first part now
implies that the same lower bound of s = Ω(d3/2/n1−δ) on the sketch dimension. Given that
the number of vertices in G′′ is n + 2, and by re-parameterizing d with a constant factor, we
obtain the desired lower bound. This concludes the proof of Theorem 5. ◀
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3.4 Proof Outline of Lemma 7
We now present the proof outline of Lemma 7, postponing the proof of its two main ingredients
to the next two sections. For convenience, we restate Lemma 7 below.

▶ Lemma (Restatement of Lemma 7). Let S be any sampling matrix and consider a single
random Gaussian projection with respect to S. For (G, e∗) sampled from µ = µ(n, d),

E
G,e∗

[
min{1,Dg(g · S · B(G) || g · S · (B(G) + B(e∗)))}

]
= O( d3/2

n1−δ
),

for any constant δ > 0, where the KL-divergence is taken only over the Gaussian variables.

To continue, we define the following notation for the sampling matrix S:
graph(S): the graph on V containing all edges e ∈

(
V
2
)

where Se,e = 1.
m(S): the number of edges in graph(S).
G(S): the subgraph of G on edges that belong to graph(S), i.e., G(S) := G ∩ graph(S).
Note that this way we have, B(G(S)) = S · B(G) and B(G(S) + e∗) = S · (B(G) + B(e∗)).

Ingredient one: from KL-divergence to effective resistances

The first key step of the proof of Lemma 7 is to relate the KL-divergence term of Lemma 7
to effective resistance of the edge e∗ in the underlying sampled graph. Formally,

▶ Lemma 8. For any sampling matrix S, any fixed G, and any pair of vertices e = (u, v) ∈(
V
2
)
,

min{1,Dg(g · S · B(G) || g · S · (B(G) + B(e)))} ≤ 2 · R
G(S)+e
eff (u, v).

We will apply Lemma 8 to the choice of edge e∗ = e whenever e∗ belongs to graph(S), i.e.,
when e∗ is sampled by the sampling matrix S. To prove Lemma 8, we first calculate the
KL-divergence between two high-dimensional Gaussians in terms of their covariance matrices.
Then we observe that the covariance matrix of g · S · B(G) is simply the Laplacian matrix of
G(S). The lemma is proved by plugging in the Laplacian matrices of G(S) and G(S) + e,
and applying the connection between effective resistance and Laplacian matrix. The proof is
provided in the full version.

Ingredient two: bounding effective resistances via expanders

Our strategy is now to bound the effective resistance of the edge e∗ in G(S) + e∗. To do
so, we will identify a “good”-expander subgraph H of the graph(S) that contains the edge
e∗, and then primarily focus on the edges of H that appear in G(S) to bound the effective
resistance of e∗ also. The following lemma is the heart of the proof.

▶ Lemma 9. For any sampling matrix S, suppose H is any subgraph of graph(S) which is
an ε-expander with min-degree D for some ε > 0 and D ≥ (ε−8 · nδ) · d for a constant δ > 0.
For any edge e = (u, v) ∈ H,

E
G

[
R

G(S)+e
eff (u, v)

]
= O(ε−4) ·

( d

D
+ d3

D2

)
.

We will use a hierarchical expander decomposition of graph(S) to identify an expander
that contains the edge e∗ and then apply Lemma 9 to this expander and edge e∗. To
prove Lemma 9, we first observe that adding edges to a graph could only decrease the
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effective resistance, and thus, it suffices to study the effective resistance of (u, v) in G ∩ H.
Note that G ∩ H randomly partitions the vertices into d sets, and only keeps the edges of
H with endpoints in the same set or adjacent sets. We then show that because H is an
expander with large min-degree, G ∩ H restricted to any two adjacent sets must also be an
expander with large min-degree with high probability. Hence, G ∩ H looks like a “chain of
expanders” (which we call a balanced path of expanders), where adjacent expanders have
a constant fraction overlap. Finally, we show that since G ∩ H overall is well-connected,
if we place a unit electric flow from u to v, the flow will be well-spread across the graph.
Most edges have a small current, i.e., a low potential difference. Therefore, it allows us to
argue that the potential difference between u and v is also small, i.e., the effective resistance
between u and v is small. The detailed proof is provided in the full version.

Putting everything together

We now put these two ingredients together to prove Lemma 7. In order to be able to apply
our second tool in Lemma 9, we need a hierarchical expander decomposition of graph(S),
which shows that the edge e∗ is “more likely” to land in “better” expanders of graph(S) for
the purpose of Lemma 9 – here, “better” means an expander with a higher minimum degree
(the parameter in Lemma 9 that governs the final bound).

▶ Lemma 10. For every t ≥ 1, we can partition edges of graph(S) into t sets E1(S), . . . , Et(S)
such that:

(i) For any i ≤ t, define mi(S) := |Ei(S)|; then, m1(S) ≤ m(S) and mi+1(S) ≤ mi(S)/2.
(ii) For any i < t, there is some ki ≥ 1 such that edges in Ei(S) can be partitioned into

ε-expanders Hi
1, . . . , H i

ki
with minimum degree at least Di for parameters5

ε := 1
36 log n

and Di ≥ mi(S)
36n

.

Proof. For simplicity of exposition, we drop (S) when denoting Ei(S)’s in the following. We
construct E1, . . . , Et inductively using an auxiliary set of edges F0, . . . , Ft. Start with F0
being the set of all edges in graph(S) and for i = 1 to t do:
1) Apply the expander decomposition of Proposition 2 to Fi−1 with parameters

ε = 1
36 log n

and dmin = Di = |Fi−1|
36n

,

to get ε-expanders Hi
1, . . . , H i

ki
each with minimum degree at least Di.

2) Let Ei be the union of edges assigned to the expanders in the decomposition of Pro-
position 2 in the previous step, and Fi be the leftover edges. Continue to iteration
i + 1.

We argue that |Fi| ≤ |Fi−1| /4 for all i ≤ t. For i > 0, we have that |Fi| is the number of
leftover edges of the decomposition and thus by Proposition 2,

|Fi| ≤ 8ε · |Fi−1| · log n + n · Di = 8 |Fi−1|
36 + |Fi−1|

36 = |Fi−1|
4 .

Now firstly, Ei = Fi−1 \ Fi and so by the above bound, |Ei| ≥ 2 |Fi|. At the same time,
Ei+1 ⊆ Fi for and thus |Ei| ≥ 2 |Ei+1|. This proves the first part.

Secondly, we get property (ii) of the lemma by the choice of ε = 1/36 log n in the
decomposition and since Di = |Fi−1| /36n ≥ |Ei|/36n as Ei ⊆ Fi−1. ◀

5 Notice that the edges Et(S) admit no such type of expander decomposition in our partitioning.
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We now have all the tools needed to prove Lemma 7. For the rest of the proof, we fix a
partitioning (E1(S), . . . , Et(S)) of graph(S) using Lemma 10 for some t ≥ 1 such that:

t is the largest index where: mt−1(S) ≥ n1+δ · d3/2, (2)

where δ > 0 is the absolute constant in Lemma 7. This means that for every e ∈ Ei(S) for
i < t, the edge e belongs to some ε-expander Hi

j for j ∈ [ki] with min-degree Di such that,

ε = 1
36 log n

and Di ≥ mi(S)
36n

. (3)

This also implies that Di ≥ (1/36) · d3/2 · nδ ≥ (ε−10 · nδ′) · d for some absolute constant
δ′ > 0 which allows us to apply Lemma 9 to each expander Hi

j in the proof.
We now have,

LHS of Lemma 7 = E
G,e∗

[
min{1,Dg(g · S · B(G) || g · S · (B(G) + B(e∗)))}

]
=

∑
e∈graph(S)

Pr (e∗ = e) · E
G|e∗=e

[
min{1,Dg(g · S · B(G) || g · S · (B(G) + B(e∗)))}

]
(whenever e∗ /∈ graph(S), both terms of the KL-divergence will be the same and thus it will be 0)

=
t∑

i=1

∑
e∈Ei(S)

Pr (e∗ = e) · E
G

[
min{1,Dg(g · S · B(G) || g · S · (B(G) + B(e∗)))}

]
(by the partitioning of edges of graph(S) and since G ⊥ e∗ in µ)

= 1(
n
2
) t∑

i=1

∑
e∈Ei(S)

[
min{1,Dg(g · S · B(G) || g · S · (B(G) + B(e)))}

]
(as the marginal distribution of e∗ is uniform over

(
V
2
)

and we conditioned on e∗ = e)

≤ mt(S)(
n
2
) + 1(

n
2
) ·

t−1∑
i=1

∑
e=(u,v)∈Ei(S)

E
G

[
2 · R

G(S)+e
eff (u, v)

]
(using the trivial upper bound of 1 for Et(S) and Lemma 8 for E1(S), . . . , Et−1(S))

= mt(S)(
n
2
) + 2(

n
2
) ·

t−1∑
i=1

ki∑
j=1

∑
e=(u,v)∈Hi

j

E
G

[
R

G(S)+e
eff (u, v)

]
(as each Ei(S) for i < t is partitioned into expanders Hi

1, . . . , H i
ki

by Lemma 10)

= mt(S)(
n
2
) + 2(

n
2
) ·

t−1∑
i=1

ki∑
j=1

∑
e=(u,v)∈Hi

j

O(ε−4) ·
( d

Di
+ d3

D2
i

)
(by Lemma 9 as each Hi

j is an ε-expander with min-degree Di (and by Eq (3) we can use the lemma))

= mt(S)(
n
2
) + 2(

n
2
) ·

t−1∑
i=1

mi(S) · O(log4 n) ·
( d · n

mi(S) + d3 · n2

mi(S)2

)
(as ε = Θ(1/ log n) and Di ≥ mi(S)/12n by Eq (3) and Hi

1, . . . , H i
ki

have mi(S) edges in total)

= mt(S)(
n
2
) + O(log5 n · d

n
) + O(log4 n) · d3

mt−1(S)
(as mi(S)’s decrease (at least) by a geometric series and t = O(log n) by Lemma 10)

≤ n1+δ · d3/2(
n
2
) + O(log5 n · d

n
) + O(log4 n) · d3

n1+δ · d3/2 (by the choice of t in Eq (2))

= O( d3/2

n1−δ
).

This concludes the proof of Lemma 7. Due to page limits, we omit the proof of Lemma 8
and Lemma 9 here. They can be found in the full version.
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A Implementing Prior Work Via Random Gaussian Sketches

We now outline implementations of existing works on graph sketching in our model.

A.1 ℓ0-samplers and connectivity sketches

Recall that in the ℓ0-sampling problem one needs to design a sketching matrix A such that
for every x ∈ Rn one can recover a uniformly random element of x from Ax (to within total
variation distance δ) or output FAIL (with failure probability bounded by δ)6. We outline a
construction of an ℓ0-sampler in our model, i.e. where every rows of the sketch A is of the
form g · S, where S is an arbitrary matrix with zeros and ones on the diagonal and zeros on
off-diagonal entries (S is known to the decoder) and g is a vector with i.i.d. unit variance
Gaussian entries (g is not known to the decoder). Note that our ℓ0-sampler only needs to
work for vectors x whose entries are in {−1, 0, +1}, as this is the case in all applications of
graph sketching.

We first recall the construction of a basic ℓ0 sampler (see [26] for a space-optimal
construction). For integer j between 0 and ⌈log2 n⌉ let xj ∈ Rn denote the restriction of xj

to elements of a subset of the universe [n] that includes every element independently with
probability 2−j . There exists j∗ such that with constant probability xj contains exactly
one nonzero. To determine the value of j∗ or conclude that such an index does not exist, it
suffices to estimate the ℓ2

2 norm of x to within a 1 ± 1/3 factor, for example (since nonzero
entries of x equal 1 in absolute value). The latter can be achieved (with at most inverse
polynomial failure probability) by averaging squared dot products of O(log n) independent
Gaussian vectors with xj , which is allowed by our model. Note that here the decoder indeed
does not need to know the Gaussian vectors, as required. If j∗ exists, one must recover the
identity of the nonzero element. The typical way to do it is to compute the dot product of
xj∗ with the vector whose i-th coordinate equals i, for every i ∈ [n]. This is not available
in our model. To replace this approach, for every j = 0, . . . , ⌈log2 n⌉ and b = 0, . . . , ⌈log2 n⌉
approximate the ℓ2

2 norm of the vector xj restricted to the set of elements in [n] that have
1 in the b-th position in their binary representation using O(log n) dot products with i.i.d.
Gaussians. This allows one to read off the binary representation of the nonzero in xj∗ , and
therefore yields an ℓ0 sampler.

Graph connectivity and spanning trees

Since an ℓ0-sampler is the only sketch used by the connectivity sketch of [1], it follows that a
spanning forest of the input graph can be recovered by a sketch that fits our model and has
a polylogarithmic number of rows.

6 Note that these two parameters appear differently in the space complexity of ℓ0-sampling, and are
therefore treated separately in works that obtain optimal space bounds for ℓ0-samplers [1]. We set both
parameters to δ for simplicity.
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Approximate vertex connectivity

The result of [23] uses the spanning tree sketch of [1] black box (the sketch is applied to
random vertex induced subgraphs) to approximate vertex connectivity. Since the sketch
of [1] can be implemented in our model, as described above, the result of [23] also can.

A.2 ℓ2-heavy hitters, spectral sparsifiers and spanners
Recall that in the φ-heavy hitters problem in ℓ2 one needs to design a sketching matrix A

such that for every x ∈ Rn one can recover a list of elements L ⊆ [n] such that every i ∈ [n]
satisfying x2

i ≥ φ∥x∥2
2 belongs to L and no i ∈ [n] with x2

i < cφ∥x∥2
2 for a constant c > 0

belongs to L.
A basic ℓ2 heavy hitters sketch works by first hashing elements of [n] to B ≈ 1/φ buckets,

i.e. effectively defining xb for b ∈ [B] to be the restriction of x to bucket b, and computing
the sum of elements of xb with random signs. In our model we can replace the random
signs with random Gaussians, so that the resulting dot product is Gaussian with variance
∥xb∥2

2. Fixing any j ∈ [n] and letting b denote the bucket that j hashes to we get that a
single hashing can be used to obtain an estimate of its absolute value that is correct up to
constant factor and an additive O(1/

√
B)∥x∥2 term with probability7 at least 9/10. We can

now repeat the estimator O(log n) times and include in L elements that are estimated as
larger than a c′φ∥x∥2 for a sufficiently small constant c′ > 0 in absolute value. Therefore,
setting B = O(1/φ) achieves the required bounds. This yields an ℓ2-heavy hitters sketch with
decoding time nearly linear in the size n of the universe. The decoding time can be improved
to (1/φ) · poly(log n) using a bit-encoding approach similar to the one from Section A.1
above.

Spectral sparsifiers and spanners

Spectral sparsification sketches [30, 33, 31] require graph connectivity sketches, which we
already implemented in Section A.1, as well as ℓ2-heavy hitters sketches, and therefore
can also be implemented in our model. Non-adaptive sketching algorithms for spanner
construction [21] rely on spectral sparsification sketches that are applied to vertex-induced
subgraphs of the input graph. Thus, these sketches can also be implemented in our model
with at most a polylogarithmic loss in the number of rows.

7 We use the fact that the dot product of xb with a random Gaussian vector will be distributed as
gjxj + N(0, ∥xb

−j∥2
2), and |gj | is at least a constant with probability at least 9/10. Here xb

j stands for
the vector obtained from xb by zeroing out entry j.
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1 Introduction

Structural balance theory [21, 30, 35, 36] arises in the study of social relationships with
positive and negative relations. Positive links describe friendship/agreement and negative
links describe antagonism/disagreement. The theory dates back to work by Heider [35]. It
describes the stability of relations among three individuals – only two kinds of triangles are
stable: the ones where all three ties are positive, indicating mutual friendship; and the ones
with two negative ties and one positive tie, describing the folklore that “the enemy of your
enemy is your friend.” A network that is far from being balanced (i.e., with many unstable
triangles) accumulates stress which may lead to major re-arrangements of edges.

The structural balance theory appears in many application areas such as international
relations [7,43], biological networks [29,38], portfolio analysis in financial networks [33], Ising
model [14] in statistical physics, and online social media and opinion formation, dynamics,
and evolution [6,48–50] which bears itself on, for example, Facebook [47] and Twitter [40,51].

One fundamental question is to understand whether a network is close to being balanced
or not. In a complete signed graph where each pair of vertices is labeled positive or negative –
the focus of our study – , the Cartwright-Harary Theorem [21, 32] states that every balanced
network must have the nodes partitioned into (at most) two “camps”, inside each of which
the edges are all positive and between them the edges are negative. For graphs that are
not balanced, a natural measure to characterize its distance from total balance is the
frustration index, defined as the minimum number of edges whose negation of signs results in
balance [1, 8, 34, 53]. These questions can be distilled into the following algorithmic problems
(see Problem 1 and Problem 2 for the formal definitions):

Structural Balance Testing: Given a complete signed graph G, decide whether or not
it is balanced, namely, does not contain any imbalanced triangle.
Frustration-minimizing Partition: Given a complete signed graph G, find a partition
of vertices into two camps such that the minimum number of sign flips on the edges is
required for the resulting graph to be balanced.

The problems we consider are closely related to (min-disagreement) correlation clustering
where the goal is to partition the graph into clusters, so as to minimize the total number
of negative edges inside clusters and positive edges across the clusters [5, 13,24,25,28,31],
except that structural balance enforces the number of clusters to be two. Structural balance
testing is straightforward to solve in O(n2) time on n-vertex graphs: place an arbitrary vertex
and all its positive neighbors on one side of the bi-partition L, and its negative neighbors
on the other side R, and then verify. On the other hand, the classical work by Giotis
and Guruswami [31] on correlation clustering with two clusters implies the NP-hardness
of the frustration-minimizing partition. It further provides a PTAS with running time
nO(1/ε2) + n · (1/ε)O(1/ε4) for (1 + ε)-approximation of this problem. To our knowledge, this
is the state of the art for structural balance testing and frustration-minimizing partition.

Prior work primarily focused on running time of algorithms and assume unrestricted
access to the entire graph. In many modern applications of large-scale networks, however,
there are many other considerations to take into account. For instance, the algorithms may
only have limited access to and a memory much smaller than the input. One of the most
popular models capturing the above scenario is the graph streaming model. In this model,
the edges arrive one after another and the algorithm needs to process this stream “on-the-fly”
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with limited memory. The algorithm is allowed to make one or multiple passes over the
stream, and the memory is usually substianlly smaller than the (worst-case) input size, i.e.
Θ(n2). We focus on the single-pass setting and ask the following motivating question: How
well can we solve structural balance testing and frustration-minimizing partition problems in
the single-pass graph streaming setting?

The golden spots for streaming algorithms are (i) the polylog(n) memory regime, which
is polynomial to the memory that is necessary to represent a single edge, and (ii) the
Õ(n) := O(n · polylog(n)) memory regime – often referred to as the semi-streaming model.
We study structural balance in the graph streaming model in these parameter regimes.

1.1 Our Contributions
Structural balance testing. One way of testing structural balance of G is to check whether
the 2-lift of G associated with its edge signing is connected. Computing the 2-lift can be done
on-the-fly, and testing connectivity in the streaming model can be done with O(n log n) space.
This is already a quadratic improvement over the trivial algorithm with O(n2) space, and it is
also known that graph connectivity requires Ω(n log n) space in the streaming model. Is this
also the limit for structural balance testing? Our first result is a simple algebraic algorithm,
which stems from testing for complete bipartiteness of negative edges, that uses exponentially
improved space complexity. In the full version, we also provide a companion algorithm that,
while more complicated to describe, is combinatorial and introduces a technique that partially
derandomizes a vertex sketch we use where hash functions with limited-independence alone
do not suffice.

▶ Result 1 (Informal statement of Theorem 2). There is a single-pass randomized
algorithm that given a complete signed graph G in a graph stream, tests whether G is
balanced with probability at least 99

100 using O(log n) space.

Result 1 shows that structural balance testing can be done with high space efficiency –
note that Θ(log n) space is necessary to simply write down a single edge. As we elaborate
later, our algorithms in Result 1 are sketching-based algorithms that are randomized and
crucially use the fact that each edge of the graph appears precisely once in the stream. We
further complement our algorithms with two new lower bounds (Propositions 10 and 11)
that show the necessity of both conditions for obtaining any o(n)-space algorithm for this
problem. Additionally, a standard Ω(n log n) space lower bound for input graphs that are
not necessarily complete via a reduction from bipartiteness testing can be shown (see the
full version); the generalized problem and the o(n) space regime are thus incompatible.

Frustration-minimizing partition. Outputting the solution to frustration-minimizing parti-
tion already requires Ω(n) space, thus, as is standard, we focus on semi-streaming algorithms
for this problem. One can use cut sparsifiers and a variant of an argument by [3] (for correla-
tion clustering) to obtain an algorithm with Õ(n/ε2) space that can return the “frustration
value” of any bi-partition of vertices to within a (1 ± ε) factor. By enumerating over all
bi-partitions, then, we can find the frustration-minimizing one up to a (1 + ε)-approximation.
The problem with this approach is that the resulting algorithm takes exponential time (to
enumerate all bi-partitions), which is quite prohibitive, especially in large graphs1.

1 This scenario is not uncommon in the streaming model. For instance, the Tournament Feedback Arc
Set problem admits an “easy” exponential-time (1 + ε)-approximation semi-streaming algorithm [22]
that was improved very recently by [16] to a PTAS albeit with O(log n) passes over the stream; see [15]
for another example.
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To bypass this challenge, we present a “streamified” version of the correlation clustering
algorithm with two clusters of [31] (henceforth, the Giotis-Guruswami algorithm); namely,
an approach that allows us to collect just enough information from the stream to weakly
simulate (meaning not entirely faithfully) the Giotis-Guruswami algorithm in polynomial
time at the end of the stream.

▶ Result 2 (Informal statement of Theorem 7). There is a single-pass randomized
algorithm that given a complete signed graph in a graph stream, with high probabilitya

finds a partition of vertices with frustration value at most (1 + ε) factor of the frustration
index using Õ(n/ε2) space and polynomial (in n but not ε) time.
a Here, and throughout, with high probability means with probability at least 1 − 1/n.

Result 2 gives an efficient semi-streaming algorithm for (1 + ε)-approximation of the
frustration-minimizing partition problem, which is NP-hard to solve exactly. We further
show (Proposition 13) that even if we allow the streaming algorithm to use exponential (or
more) time, solving this problem exactly requires Ω(n2) space (the same as storing the entire
input). This fully rules out any non-trivial streaming algorithms for solving this problem
exactly.

There is still one missing piece in obtaining “truly efficient” semi-streaming algorithms
for our problem. As stated earlier, the Giotis-Guruswami algorithm that Result 2 builds
on has running time (roughly) nO(1/ε2) even ignoring any streaming aspects2, which makes
this algorithm quite impractical. Our final contribution remedies this state of affairs. By
building on our weak simulation of the Giotis-Guruswami algorithm in Result 2, we design
an improved offline (non-streaming) algorithm for frustration-minimizing partition with
nearly-linear running time for any fixed ε > 0 (note that the input is of size Θ(n2) in this
problem over a complete signed graph).

▶ Result 3 (Informal statement of Theorem 9). There is a randomized (classical) algorithm
that given a complete signed graph, with high probability, finds a partition of vertices with
frustration value at most (1+ε) factor of the frustration index in Õ(n2/ε2+n·(1/ε)O(1/ε4))
time.

Result 3 presents the first improvement after two decades over the Giotis-Guruswami
algorithm for frustration-minimizing partition and correlation clustering with two fixed
clusters outside of graph streaming models, which can be of independent interest. Moreover,
the algorithm in Result 3 can also be used in Result 2, improving the running time to
nearly-linear for any constant ε > 0 in the semi-streaming model.

Our algorithmic results combined with our new lower bounds (in Section 5) collectively
complete the picture of streaming and efficient algorithms for structural balance testing and
frustration-minimizing partition problems.

1.2 Our Techniques
Structural balance testing. The lower bounds in Propositions 10 and 11 show that any o(n)-
space algorithm for testing structural balance has to be randomized and, more importantly,
uses the fact that it sees the sign between every pair of vertices exactly once. This motivates

2 A simple modification of the Giotis-Guruswami algorithm and a slightly more careful analysis actually
reduces the running time of their algorithm to roughly O(n100 + n · (1/ε)O(1/ε4)) (see the analysis in
Section 4). While this is faster than the original nO(1/ε2) bound, it is still quite far from being practical.
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us to consider sketching-based algorithms that are based on collecting aggregate statistics
of large subsets of edges in the graph when seeing them in the stream (without having to
store explicit information). We proceed by proving the following structural result (stated
informally): (i) In any balanced graph, for any set S of odd size, there is an even number of
pairs of vertices in S with a negative sign (easy direction); (ii) Conversely, in any unbalanced
graph, a constant fraction of odd-size sets S (of certain cardinality) have an odd number of
negatively-signed pairs inside (hard direction).

This result naturally suggests the following algorithm (stated with some oversimplification):
sample an odd-size set S of vertices uniformly at random at the beginning of the stream and
count the number of negative edges in the stream with both endpoints in S. In the balanced
case, this number will be even, while in the unbalanced case, it has a non-trivial chance of
being odd.

There is a serious challenge in making this strategy work: determining S and therefrom
which edges should be counted requires Ω(n) space to store the random bits. We surmount
this by observing that the function for the parity of “−” edges in a sampled set S can
be viewed as a degree-2 polynomial with one variable per vertex. As such, we turn from
sampling vertices to using PRGs for low-degree polynomials based on sums of small bias
generators so that O(log(n)) truly random bits and O(log(n)) extra space suffice to generate
pseudorandom bits whose 0-set on the polynomial is in proportion with that of truly random
bits. In the full version, we also give an alternative combinatorial algorithm (in contrast with
the abovestated algebraic algorithm) which is interesting in its own right, especially from a
techniques standpoint.

Frustration-minimizing partition. Our algorithm in Result 2 is obtained via “streamify-
ing” the Giotis-Guruswami algorithm [31]. Their algorithm considers the high versus low
frustration index cases separately where the high frustration index scenario means at least
a constant fraction of all pairs needs to flip sign. Among these, the first part has a simple
solution in [31] which already lends itself to a semi-streaming algorithm immediately. Our
main technical ingredient in Result 2 lies in addressing the low frustration index case. For
simplicity of exposition, in the following, we assume ε is a constant.

The Giotis-Guruswami algorithm in the low frustration index case is as follows. Sample
O(log n) vertices S and enumerate all nO(1) bi-partitions of S. Then, for every bi-partition
(SL, SR), perform a merging operation followed by a switching operation: In merging, every
vertex v ∈ V \ S is assigned in parallel to the side of (SL, SR) that creates less frustration for
v, i.e., the number of negative edges of v to this side plus its positive edges to the opposing
side is minimized. Let (L, R) be the resulting bi-partition of vertices. In switching, each
vertex v ∈ V in parallel is re-assigned to the side of (L, R) with the least frustration. The
analysis of [31] is as follows: for the bi-partition (SL, SR) of S that is consistent with the
optimal solution, (i) after merging, most vertices are in the “correct” side of (L, R) already,
namely, they are consistent with the optimal bi-partition, and (ii) after switching, the vertices
already consistent with the optimal solution do not change side, and the rest of vertices are
moved to the side that only induce a small additive cost. The key reasoning behind both
steps is that in the low frustration-index case, most vertices have a “clear” preference toward
which side of the optimal bi-partition they should reside.

To simulate the Giotis-Guruswami algorithm via a semi-streaming algorithm, we can
sample the set S at the beginning of the stream and store all Õ(n) edges incident on it during
the stream. The merging phase can now be easily implemented as it relies only on the edges
connected to S. The switching phase, on the other hand, requires checking every edge in

APPROX/RANDOM 2023



58:6 Efficient Streaming Algorithms for Structural Balance

the graph and thus cannot be faithfully implemented in o(n2) space. We instead develop a
way to approximately implement this step, by sampling O(log n) edges per vertex and using
them to estimate the frustration of each vertex in the switching phase. This allows us to
still classify the majority of vertices the same as that of the Giotis-Guruswami algorithm
except for the ones with no clear preference between bi-partitions of the optimal solution.
An extra argument here ensures that this step does not increase the cost too much and this
new solution is still a (1 + ε)-approximation, leading to our semi-streaming algorithm.

The ideas above also allow us to significantly improve the running time of the Giotis-
Guruswami algorithm even outside of graph streaming models. The most time-consuming
step of that algorithm is the need to enumerate all bi-partitions of the sampled set S of
size O(log n). We preface the sampling step of the set S by sampling a smaller set T of size
only O(log log n), enumerate only over (log n)O(1) bi-partitions of T , and use those to find an
approximate optimal bi-partition of the set S. We then follow a similar strategy as above to
simulate the Giotis-Guruswami algorithm, by showing that even though the bi-partition of
the set S is no longer truly optimal, the extra error occurred by the approximation, does not
propagate too much in the merging and switching step – in other words, these operations
are “robust” enough to handle even an approximately optimal bi-partition of S, not a truly
optimal one.

Lower Bounds. Most of our lower bounds are based on reductions from known problems
in communication complexity such as Index or Equality. The exception is our lower bound
in Proposition 11 which shows that, perhaps counter-intuitively, when a stream contains
copies of an edge more than once, solving structural balance testing becomes impossible in
o(n) space. We show this lower bound by presenting a new 3-party communication problem
which is a mixture of the Index and Set Intersection problems. Roughly speaking, in this
new problem, we also provide the information about the hidden index of the Index problem
to all players, but in a way that to find this index, they will need to solve an instance of the
Set Intersection problem. We then borrow an idea from [9,10] that allows us to argue that
a low-communication protocol cannot even change the distribution of the hidden index by
much. We then combine this with standard information-theoretic arguments to show that
the Index problem the players need to solve remains hard as the distribution of its hidden
index has not been altered too much.

1.3 Related Work
By slightly relaxing structural balance to allow triangles with three negative ties as in [30],
the frustration-minimizing partitions becomes fully equivalent to the correlation clustering
problem (without any constraint on the number of clusters). More recently, motivated by
similar considerations as in our paper, there has been a flurry of results on this problem
in modern models of computation such as sublinear-time, streaming, or massively parallel
algorithms [3, 11,17, 18, 26,27]. In particular, for the single-pass streaming setting, the very
recent state-of-the-art result by [23] obtains a (3 + ε)-approximation correlation clustering
in O(n/ε) space and polynomial time. Our result shows that we can obtain a better
approximation when the number of clusters is two. Furthermore, [18] independently observes
a (1 + ε)-approximation algorithm for correlation clustering in exponential time using cut
sparsifiers, which is similar to our observation in Lemma 8.

In a general graph (not necessarily complete), structural balance means that all cycles
must contain an even number of negative edges. The problem of minimizing frustration index,
phrased in the literature as the Balanced Subgraph problem [37], is MaxSNP-hard [45,52]
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and even NP-hard to approximate within any constant factor assuming Khot’s Unique
Games Conjecture [39]. On the positive side, this problem admits a polynomial time
O(

√
log n)-approximation [2] and an O(log k)-approximation [12] when the frustration index

is k. Readers can refer to [37] for further details about applications in practice. None of
these algorithms consider space constraints or the streaming setting.

2 Preliminaries

Notation. Throughout, we use G = (V, E = E+ ∪ E−) to denote a complete signed graph
with |V | = n vertices, where E+ is the set of “+” edges and E− is the set of “−” edges. We
further use G+ = (V, E+) and G− = (V, E−) to denote the graph restricted to the “+” and
“−” edges. Note that E+ and E− are always disjoint and |E+ ∪ E−| =

(
n
2
)
. For any set

S ⊆ V of vertices, G[S] denotes the induced subgraph of G on S.
For two sets of vertices S, T ⊂ V , we use E(S, T ) to denote the set of edges (both “+”

and “−”) with one endpoint in S and the other in T . Analogously, we use E(v, S) to denote
the set of edges (both “+” and “−”) with one endpoint v and the other in S. Furthermore,
E+(S, T ) (resp. E−(S, T )) refers to the set of “+” (resp. “−”) edges with one endpoint in S

and the other in T , and E+(v, S) (resp. E−(v, S)) refers to the set of “+” (resp. “−”) edges
with one endpoint v and the other in S. In particular, N+(S) = E+(S, V \ S) and similarly,
N+(v) = E+(v, V ) (N−(S) and N−(v) defined in the same manner).

When the context involves more than one graph (say G and H), we add a subscript to
make the notation clear as to which graph is being referred to (for example, EG(S, T ) and
EH(S, T )).

2.1 Problem Definition
In this paper, we consider (strong) structural balance. A complete signed graph G =
(V, E+ ∪ E−) is said to exhibit structural balance property (in short, is balanced) if every
triangle has an even number of “−” edges. An equivalent characterization of structural
balance shown in [21] is that there exists a bi-partition of the vertices into S and T , S ∩T = ∅
and S ∪ T = V , such that every edge with both endpoints in S (or T ) is labelled “+”, and
every edge connecting S to T is labelled “−”. Inspired by this, the notion of frustration
index [1, 34,53] captures how far a graph is from structural balance.

▶ Definition 1 (Frustration Index). Let G = (V, E+ ∪ E−) be a complete signed graph, and
let (L, R) be a bi-partition of V . Then the frustration of G with respect to L, R is

frust(G, L, R) =
∣∣E+(L, R)

∣∣ +
∣∣E−(L)

∣∣ +
∣∣E−(R)

∣∣.
When the context is clear, we use the notation frust(G, L) instead of frust(G, L, R). The
frustration index frust(G) is the minimum of frust(G, L, R) over all possible bi-partitions
(L, R) of V .

Frustration can be equivalently defined using “disagreement” notation:

frust(G, L, R) = 1
2

∑
v∈V

Dis(v, L, R).

We use Dis(v, S, T ) to count the disagreement of edges incident to v with respect to S, T .
For example, when v ∈ S, we have Dis(v, S, T ) = |E−(v, S)| + |E+(v, T )|. When T = V \ S,
we may write Dis(v, S) instead of Dis(v, S, V \ S).

Now we are ready to formally define our problems.
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▶ Problem 1 (Structural Balance Testing). Given a complete signed graph G = (V, E+ ∪ E−),
decide if there is a partition (L, R) of V such that

If (u, v) ∈ E+, then u and v are both contained in L or both contained in R;
If (u, v) ∈ E−, then either u is in L and v is in R, or vice versa.

In other words, the answer is “YES” if and only if the graph is balanced.

▶ Problem 2 (Frustration-minimizing Partition). Given a complete signed graph
G = (V, E+ ∪ E−), find a partition (L∗, R∗) of V such that

(L∗, R∗) = arg min
(L,R):

L∪R=V
L∩R={}

frust(G, L, R).

In other words, the partition (L∗, R∗) minimizes the frustration.

3 Structural Balance Testing in Logarithmic Space

We formally present our main algorithm for structural balance testing (Problem 1) – a
randomized algorithm that uses only O(log n) bits and returns whether the graph is balanced
with high (constant) probability.

▶ Theorem 2 (Formalization of Result 1). There is a randomized single-pass algorithm Bal-
anceTester that solves Problem 1 with O(log n) bits of space and the following guarantees:

If input graph G is balanced, BalanceTester always outputs Balanced;
If input graph G is not balanced, BalanceTester outputs NotBalanced with probab-
ility at least 99

100 .

A few remarks on Theorem 2 are in order. First, it is not hard to design a deterministic
algorithm that uses Õ(n) space to test whether the graph is balanced – for completeness,
such an algorithm can be found in the full version of this paper. However, by our lower
bound in Proposition 10, any single-pass streaming algorithm for structural balance testing
with o(n) memory has to be randomized. Furthermore, we remark that the O(log n) memory
is asymptotically optimal since it is the number of bits that is necessary to store even a single
edge. Finally, since the error is one-sided, we can boost the success probability to 1 − 1

n by
running the algorithm O(log n) times, which results in O(log2 n) overall space complexity.

We now proceed to the design and analysis of our algorithm. In what follows, we assume
our graph contains at least n ≥ 3 vertices, as the structural balance is always satisfied
otherwise.

3.1 A Sample-and-Test Lemma for “−” Edges
The idea behind our algorithm starts as follows. If we focus on “−” edges, our task can
be framed as testing if the graph G− = (V, E−) is a complete bipartite graph. To this end,
observe that if we sample a set S of an odd number of vertices, and count the number of “−”
edges in G[S], the parity will always be even when G− is complete bipartite. With a slightly
more involved analysis, we can show that if G− is not complete bipartite, then by sampling
S uniformly at random, the number of “−” edges in G[S] is odd with constant probability.
As such, we can use the parity of such a counter as a signal of the structural balance of the
graph.

We now formalize the above intuition. In particular, in the following lemma, we design
the S-sampler and state its properties.
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▶ Lemma 3 (S-sampler Lemma). For a given complete signed graph G = (V, E), let S ⊆ V

be a subset of vertices sampled with the following S-sampler:
1. Pick a fixed vertex vn arbitrarily.
2. Sample each vertex in v ∈ V \ {vn} independently with probability 1

2 to get S′.
3. If |S′| is odd, let S = S′; otherwise, let S = S′ ∪ {vn}.

Then, the following statements are true:
1. If G is balanced, the induced subgraph G[S] always has an even number of “−” edges;
2. If G is not balanced, the induced subgraph G[S] has an odd number of “−” edges with

probability at least 1
4 , over the randomness of sampling S.

The main idea to prove Lemma 3 is by observing that the parity of “−” edges counted
by our S-sampler is in fact captured by a degree-2 polynomial over F2. The observation can
be formalized as the following lemma.

▶ Lemma 4. Let Xi ∈ {0, 1} be the indicator random variable for whether vertex vi is
sampled by S-sampler. Define the following polynomial with (n − 1) variables over F2:

P ∗(X) =
∑

i,j<n

(vi,vj)∈E−

XiXj +
∑
i<n

(vi,vn)∈E−

Xi

1 +
n−1∑
j=1

Xj

. (1)

Then, the polynomial P ∗(X) = |E−(G[S])| over F2, which is the parity of number of negative
edges induced by the sample set S.

Proof. Note that Eq (1) is essentially obtained by substituting Xn = 1 +
∑n−1

j=1 Xj , and
counting a “−” edge (vi, vj) if both vi and vj are sampled. If the number of sampled vertices
other than vn is odd, we have

∑n−1
j=1 Xj = 1, which implies Xn = 0 over F2; otherwise, if

the number of sample vertices other than vn is even, we have
∑n−1

j=1 Xj = 0, which implies
Xn = 1 over F2. Therefore, the polynomial P ∗ exactly captures the sampling process of the
S-sampler. Finally, if the total number of “−” edges is odd, the polynomial P ∗ evaluates to
1, and vice versa. ◀

As we will see shortly, Lemma 4 is also crucial to run our streaming algorithm for the
S-sampler by storing limited number of random bits. To show that the S-sampler gives a
useful signal for whether the graph is balanced, we show that the polynomial P ∗ in Eq (1)
gives a useful signal. We first show that P ∗ is identically 0 if and only if G is balanced.

▶ Lemma 5. The polynomial P ∗ in Eq (1) is identically 0 if and only if G is balanced.

Proof. Suppose first that G is balanced. Then either G− is empty, or it is a complete
bipartite graph. Let S be the sample from S-sampler. In the first case, the number of “−”
edges in G[S] is always 0. In the second case, let L and R be the bi-partition of G−, and let
A = L ∩ S and B = R ∩ S. The number of “−” edges in G[S] is |A| · |B|, which is an even
number since one of |A| and |B| is even (recall that |S| is odd). By Lemma 4, P ∗ is thus
identically 0 when G is balanced.
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Suppose, on the other hand, that G is not balanced. Then there is a triangle (vi, vj , vk)
with an odd number of “−” edges. If i, j, k ̸= n, setting Xi = Xj = Xk = 1 and Xℓ = 0 for
ℓ ̸= i, j, k yields P ∗(X) = 1. If on the other hand, say, k = n, then setting Xi = Xj = 1
and Xℓ = 0 for ℓ ̸= i, j yields P ∗(X) = 1. Hence P ∗ is not identically 0 when G is not
balanced. ◀

Next, we give a lemma on the fraction of assignments that are non-zero on the polynomial
P ∗, which gives us a lower bound for the success probability to capture an odd number of
“−” edges when G is imbalanced. We note that the lemma is standard in the coding theory
community (e.g. [46]), but we state a proof here for completeness.

▶ Lemma 6. Let P (x1, x2, . . . , xn) be a polynomial over F2 with degree at most 2. If P

is not identically 0, then there is a set X, with cardinality at least 2n−2, such that x ∈ X

implies P (x) = 1.

Proof. We may assume that P is multilinear since P̄ (x) = P (x) for all x ∈ {0, 1}n, where P̄

is the linearization of P (i.e. all monomials of the form x2
i are replaced with xi).

If P is of degree 1 or less, the claim holds by using the Schwartz-Zippel lemma.Suppose
then that P is of degree 2. Up to a reordering of variables, xn−1xn is a term of P with
coefficient 1. Let a be a fixed assignment of xk to {0, 1} for all k ∈ [n−2]. Then P (a, xn−1, xn)
is a multilinear degree 2 polynomial Q(xn−1, xn) with the term xn−1xn having coefficient 1.
Checking over all 8 possible polynomials that Q may take, we see that each of them has at
least one assignment a′ of xn−1, xn to {0, 1} such that Q(a′) = 1. This completes the proof
since there are 2n−2 possible assignments a. ◀

Finalizing the proof of Lemma 3. By Lemma 4 and Lemma 5, if G is balanced, the poly-
nomial P ∗ is identically 0, which means the S-sampler always finds an even number of “−”
edges. Otherwise, if G is not balanced, P ∗ is not 0. Therefore, by Lemma 6, the S-sampler
finds an odd number of “−” edges with probability at least 1

4 . ◀

By Lemma 3, to test the structural balance of a complete signed graph, it suffices to
implement the S-sampler and count the number of negative edges. However, while the counter
takes O(log n) space, it is not immediately clear how the S-sampler can be implemented with
a small space in the streaming setting. In particular, since we need to sample each vertex
independently, the trivial solution requires Ω(n) memory to store the random bits (for each
vertex). We address this issue in the next step.

3.2 Simulating the S-sampler in Streaming with O(log n) Space

We tackle this issue by using the fact that our S-sampler is a degree-2 polynomial (Lemma 4).
We may consequently use a PRG that fools degree-2 polynomials (see [20, 41, 44] for con-
structions). More concretely, there exists a PRG that takes O(log n) truly random bits,
and generates n pseudorandom bits with O(log n) extra space per bit so that a degree-2
polynomial cannot distinguish a truly random input from a pseudorandom input to within a
small constant error.

Using this, we design an O(log n)-memory algorithm as follows.
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A streaming algorithm to test structural balance.
Run 100 independent copies of the following S-sampler simulation:

1. Maintain O(log n) truly random bits and a counter.
2. For each arriving “−” edge (u, v) ∈ E−:

a. Generate the pseudorandom bits for vertices u and v (name the bits Xu and
Xv) with a PRG for degree 2 polynomials with ε = 1

20 (see [20,41,44]).
b. If both Xu = 1 and Xv = 1, increase the counter by 1.

3. By the end of the stream, if the parity of the counter is odd, return 1; otherwise,
return 0.

If any of the copies of S-sampler simulation returns 1, report Not Balanced;
otherwise, report Balanced.

Analysis of the space complexity. The truly random bits and the counter take O(log n)
bits of space. Furthermore, for each “−” edge, the PRG generates the pseudorandom bits
for Xu and Xv with O(log n) bits of extra space since ε = 1

20 . The space for this purpose
can be re-used across different edges. Each copy of the S-sampler simulation therefore takes
O(log n) space to implement. Finally, since we run 100 independent copies in parallel, the
final algorithm take O(log n) space.

Analysis of correctness. By Lemma 3, if the graph is balanced, the S-sampler simulation
always returns 0. On the other hand, if the graph is imbalanced and we sample with truly
random bits Un−1, it holds from Lemma 3 that Pr(P ∗(Un−1) = 1) ≥ 1

4 since P ∗ is a valid
implementation of the S-sampler. By the guarantees of the PRG g : {0, 1}O(log n)→(n−1), we
have

| Pr(P ∗(g(Uℓ)) = 1) − Pr(P ∗(Un−1) = 1)| ≤ 1
20 ,

where Uℓ are O(log n) truly random bits, the seed for the PRG. We hence have Pr(P ∗(g(Ul)) =
1) ≥ 1

4 − 1
20 = 1

5 . As such, the probability for no copy to return 1 is at most ( 4
5 )100 < 1

100 , as
desired.

4 Semi-streaming Frustration-minimizing Partition in Poly-Time

In this section, we consider Problem 2 of finding, in the semi-streaming model, a partition of
a complete signed graph that is as close to structurally balanced as possible. More specifically,
we want to divide the set of vertices into two parts and minimize the number of “−” edges
contained in either part and “+” edges connecting the two parts.

Giotis and Guruswami [31] showed that Problem 2 is NP-hard. In the streaming setting,
we show that any algorithm that gives the exact optimal frustration-minimizing partition
(or computes the optimal frustration index) requires Ω(n2) memory (see Proposition 13).
In view of this, we settle for finding a partition that approximates one which is as close to
structurally balanced as possible. This section shows how to adapt the correlation clustering
algorithm with two clusters in [31] to the semi-streaming model. We leave the technical
details to the full version of the paper and, here, highlight the ingredients that make up the
following result.
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▶ Theorem 7 (Formalization of Result 2). There is an algorithm that, given a complete signed
graph G = (V, E+ ∪ E−) and ε ∈ (0, 1), with high probability finds a partition (L, R) of V

where

frust(G, L) ≤ (1 + ε) · frust(G).

Moreover, the algorithm uses O
(

n · log4(n/ε)
ε6

)
space, a single pass over the stream and has

running time of O

(
( n

ε )2 · log3 n + n log n ·
( 1

ε

)O(ε−4)
)

.

4.1 Evaluating Frustration
The first key ingredient is a tool for determining frust(G, L) for an arbitrary L ⊆ V , subject
to the memory constraints of the semi-streaming setting. We turn to the idea of cut sparsifiers
(see [4,19,42]), which store a sparse representation of G which approximately answers the
cut queries for all S ⊆ V : what is the size of E(S, V \ S)?

▶ Lemma 8. Let G = (V, E+ ∪ E−) be a complete signed graph. There is a single-pass
streaming algorithm using O

(
n log3 n/ε2)

space and O
(
n2 log2 n

)
time that, for any ε ∈ (0, 1),

with high probability produces an oracle that, when given L ⊆ V , returns frustε(G, L) in
O

(
n log n/ε2)

time where

(1 − ε)frust(G, L) ≤ frustε(G, L) ≤ (1 + ε)frust(G, L).

Our construction of the “frustration sparsifier” in Lemma 8 follows from a standard
application of cut sparsifiers, and the fact that the portion of frustration contributed to by
the “−” edges in each side can be estimated indirectly by looking at “+” edges crossing the
cut.

Frustration Sparsifier for G = (V, E+ ∪ E−) and ε ∈ (0, 1):
Let H = (V, EH , wH) be an ε

2 cut sparsifier for G′ = (V, E+).
Return frustε(G, ·) which, when given L ⊆ V , computes

wH(L, V \ L)︸ ︷︷ ︸
≈|E+(L,V \L)|

+
∣∣E−∣∣ − (|L| · |V \ L| − wH(L, V \ L))︸ ︷︷ ︸

≈|E−(L)|+|E−(V \L)|

.

The proof of Lemma 8 can be found in the full version of this paper.
Observe as an aside that frustration sparsifiers alone give us a single-pass algorithm that

uses Õ(n) space which, however, runs in exponential time: construct a frustration sparsifier
with parameter ε, enumerate over all partitions of V , and return the one which gives the
smallest estimated frustration.

4.2 A Polynomial Time Algorithm: Streamification of Giotis-Guruswami
Algorithm

The next key ingredient is a simulation of the Giotis-Guruswami algorithm [31]. For the
remainder of this section, let frust(G) = γn2 where γ is not necessarily a constant. We are
particularly interested in the case when γ ≤ ε/1004, which is the case of the Giotis-Guruswami
algorithm which is non-trivial to simulate.
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When there is no constraint on space usage, the Giotis-Guruswami algorithm works by
sampling Θ(log n) vertices (called the sample S) and trying every partition (SL, SR) of S.
SL and SR are taken to be subsets of L and R respectively, where (L, R) is a partition
of V . For each such partition (SL, SR), there should be a clear local choice for whether a
vertex v should be assigned to L or to R by choosing the smaller of Dis(v, SL + v, SR)3 and
Dis(v, SL, SR + v) respectively; we do this for all unsampled vertices, and refer to this step
of the algorithm as merging. The algorithm then tries to further refine the solution quality
by marking each vertex that improves the frustration when moved from L to R or vice versa,
keeping every other vertex fixed. All marked vertices are then moved to the other part. The
process of marking vertices and moving them after all have been marked is referred to as the
switching step.

As it turns out, the correctness of the Giotis-Guruswami algorithm still holds with a
small error introduced by graph sparsification. This is crucial as it allows us to design space
efficient streaming algorithms by simply maintaining a cut sparsifier during the stream, and
performing the Giotis-Guruswami procedure in the end. More concretely, only once the
sparse representations of the input stream have been obtained (i.e. a single pass over the
stream has been completed), do we then start iterating over every partition (SL, SR) of S,
and in each iteration merging, switching, and storing the best resulting (L, R) seen so
far. Merging is easily ported to the streaming setting; we just need to store the Θ(n log n)
edges incident to S. The way switching is adapted, on the other hand, is less trivial; we
store a sparse representation of the input graph by sampling Θ

(
(1/ε2) log n

)
neighbors for

each vertex. Finally, determining the (approximate) best partition seen through all iterations
can be done by using a frustration sparsifier.

Streamification of [31] for G = (V, E+ ∪ E−) and ε ∈ (0, 1), when γ ⪅ ε:
1. Sample 100 log n vertices uniformly at random. Call this set S.
2. Sample 1003 · log n

ε2 vertices uniformly at random for each vertex v. Call these sets Nv.
3. Read through the stream of (signed) edges and

Store edges incident to S. Call this graph GS .
Store edges joining v and Nv for all v. Call this graph GN .
Store frustε/10(G, ·), a frustration sparsifier of G.

4. For every partition (SL, SR) of S

(Merging)
For every v ∈ V \ S, assign v to L if DisGS

(v, SL + v, SR) < DisGS
(v, SL, SR + v),

and R otherwise.
SL is assigned to L and SR is assigned to R.

(Switching)
Mark v ∈ L if DisGN

(v, L + v, R − v) > DisGN
(v, L − v, R + v) and mark v ∈ R

similarly (flip the inequality).
Switch assignments of all marked vertices from L to R or vice versa.

Keep (L, R) if frustε/10(G, L) is the smallest seen so far.
5. Return (L, R).

3 In this section, we use the following notation: For any set S and any vertex v, S + v denotes S ∪ {v}
and S − v denotes S \ {v}.

APPROX/RANDOM 2023



58:14 Efficient Streaming Algorithms for Structural Balance

The roles of merging and switching are roughly explained as follows. When (SL, SR) is
congruent with how S would be partitioned in an optimal solution, merging assigns most
vertices to L and R in the same way they would have been assigned in said optimal solution.
These vertices do not change assignment when switching. The remaining vertices may have
lots of disagreement with their current assignment in spite of having lots of agreement with
SL or SR. Switching rectifies this, minimizing the disagreement of these vertices with a
large number of vertices (the ones that stay put, mentioned earlier).

We leave the proofs to the full version of the paper. Suffice to say, the core technical
work here is in the analysis showing that weakly simulating switching in the way we have
still yields a correct algorithm.

4.3 Looking at Exponentially Fewer Candidate Partitions

Observe that the first two ingredients yield an algorithm with Θ(n101) running time, where
the inefficiency stems from having to iterate over all partitions of a sample of size 100 log n.
The last key ingredient completes Theorem 7 by instead iterating over all partitions of a
sample of size 100 log log n, building from this a partition of size O(log n) via an independent
sample (we call this step mini-merging), and thereafter running merging and switching.

This gives us Theorem 7, and also Theorem 9 by running the algorithm in an offline
setting regardless of it being a streaming algorithm.

▶ Theorem 9 (Formalization of Result 3). There is a randomized algorithm that, given a
complete signed graph G = (V, E+ ∪ E−), and for any ε ∈ (0, 1), with high probability returns
a partition (L, R) of V where

frust(G, L) ≤ (1 + ε) · frust(G).

Moreover, the algorithm has runtime O
(

n2 log3 n
ε2 + n log n · (1/ε)O(ε−4))

.

To the best of our knowledge, this is the first algorithm for Problem 2 and 2-correlation
clustering that is nearly-linear in the input. A little more formalism is supplied in Appendix A,
but much of the details are left to the full version of the paper.

5 Space Lower Bounds

In this section, we state space lower bounds that complement our algorithmic results.
Any p-pass deterministic streaming algorithm solving Problem 1 requires Ω

(
n
p

)
space.

Any single-pass randomized algorithm solving Problem 1 on a complete signed multi-graph,
where edges are allowed to repeat twice, requires Ω(n) space.
Any single-pass randomized streaming algorithm solving Problem 2 exactly, or that
outputs the exact frustration index, requires Ω

(
n2)

space.
Combined with our upper bounds in Theorem 2 and Theorem 7, our results convey the
following message: (i). It is possible to test structural balance with a very high space
efficiency by taking advantage of the arrive-once inputs and randomness, and both aspects
are necessary; and (ii). It is possible to achieve a (1 + ε)-approximation in Õ(n) space and
polynomial time for any constant ε. In contrast, the exact solution requires almost all the
input to be stored.
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5.1 Structural Balance Testing by Deterministic Algorithms
We first present space lower bound for deterministic streaming algorithms. The formal
statement of the lower bound is as follows.

▶ Proposition 10. Any deterministic p-pass algorithm for Problem 1 requires Ω
(

n
p

)
bits of

space. In particular, any deterministic single-pass algorithm requires Ω(n) bits of space.

The proof of our deterministic lower bound uses a reduction from EQUALITY, which is
known to require Ω

(
n
p

)
bits of communication over p rounds. More can be found in the full

version.

5.2 Structural Balance Testing by Randomized Algorithms with
Multi-edges

The second lower bound is the most interesting from a technical standpoint. It shows that
we need to use Ω(n) space if the inputs are complete signed graphs with multi-edges. We
assume that the signs of the multi-edges between the same pair of vertices are consistent: if
e1 between (u, v) is “+”, a second edge e2 between (u, v) also has to be “+”. The definition
of structural balance still holds by checking one of the edges between each vertex pair.

The formal statement of our lower bound is as follows.

▶ Proposition 11. Any single-pass streaming algorithm that correctly tests structural balance
with probability at least 99

100 on complete signed multi-graphs with sign-consistent multi-edges
has to use a memory of Ω(n) bits.

On the high level, the plan to prove Proposition 11 is a reduction from INDEX. The
standard INDEX problem is described as follows: Alice holds a string x ∈ {0, 1}N , Bob holds
an index i∗ ∈ [N ], and the two players want to learn the value of xi∗ .

In a first attempt at a reduction, the two players are initially given 2N + 2 vertices, with
each bit xj corresponding to two vertices uj and vj and two special vertices s and t. Alice
creates two empty sets A and B, and for each input bit xj , j ∈ [N ], Alice puts uj to A and vj

to B if xj = 0, and vj to A and uj to B if xj = 1. Then, for every vertex except ui∗ and vi∗ 4,
Alice adds “+” edges from s to the vertices in A and from t to vertices in B. Furthermore,
for each pair of vertices both inside A or B, Alice adds a “+” edge; and for vertex pairs such
that u ∈ A and v ∈ B, Alice adds a “−” edge. On the other end, Bob completes the graph
by adding “+” edges to (s, ui∗) and (t, vi∗) and “−” edges to (s, vi∗) and (t, ui∗). Now, if
xi∗ = 0, the resulting graph is balanced; otherwise, the graph is unbalanced since vi∗ is in A.

While the plan sounds nice, it does not work. Careful readers may have already found the
problem: Alice does not know which vertices correspond to ui∗ and vi∗ ; and if she somehow
infers it, the problem becomes easy as she can output xi∗ without any communication. As
such, for the above idea to work, we need to somehow “hide” the index to the holder of the
string, but give them the ability to create graphs that leave everything but xi∗ .

To the above end, we introduce the following version of Leave-One INDEX.

▶ Problem 3 (Leave-One INDEX). Consider a communication problem between 3 players,
namely Alice, Bob, and Charlie. Both Alice and Bob hold the same string x ∈ {0, 1}N , and
Charlie holds an index i∗ ∈ [N ]. Furthermore, Alice holds S ⊂ [N ] and Bob holds T ⊂ [N ],
such that S ∪ T = [N ] \ {i∗}. The communication goes in the order of Alice, Bob and Charlie,
and the players want to output xi∗ .

4 The construction is in fact not possible as we will see in the next paragraph; it is here to explain the
intuition.
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The sets of S and T create some “flexibility” for Alice and Bob to infer the index. Indeed,
if S ∩ T = ∅, the problem becomes easy as Bob can learn Alice’s bits from a message that
simply encodes which bits are missing5. Nevertheless, we prove (see Appendix B) that the
worst-case communication complexity of the Leave-One INDEX problem is still Ω(N). The
formal lower bound is as follows.

▶ Lemma 12. Any (possibly randomized) one-way communication protocol for the Leave-One
INDEX defined in Problem 3 that outputs xi∗ correctly with probability at least 99

100 requires
Ω(N) bits of communication.

Figure 1 shows how Alice, Bob, and Charlie can use the previously mentioned (wrong)
idea to get a (now) correct reduction of Leave-One Index to testing structural balance, where
the multi-edges occur from the intersection S ∩ T of Alice’s and Bob’s sets.

Figure 1 An illustration of the reduction from Leave-One Index.

5.3 Frustration-minimizing Partition by Exact Algorithms

Finally, we show that any single-pass streaming algorithm that solves the frustration index
exactly has to store almost the entire graph.

▶ Proposition 13. Any single-pass streaming algorithm that solves Problem 2 exactly or
returns the optimal frustration index value requires Ω

(
n2)

bits of space.

Proposition 13 goes through communication complexity again. This time, our reduction
is from INDEX (a matrix variant thereof) which is hard under the one-way communication
regime. Details are to be found in the full version.

5 In particular, there is a simple protocol with 1 bit of communication when S ∩ T = ∅: Alice takes XOR
of all bits in x[S], and send it to Bob. Bob takes XOR of all bits in x[T ] he will learn the XOR of
x[S ∪ T ]. Bob then compares the XOR of x vs. the XOR of all bits in x[S ∪ T ] to learn xi∗



V. Ashvinkumar, S. Assadi, C. Deng, J. Gao, and C. Wang 58:17

References
1 Robert P. Abelson and Milton J. Rosenberg. Symbolic psycho-logic: A model of attitudinal

cognition. Behavioral Science, 3(1):1–13, 1958.
2 Amit Agarwal, Moses Charikar, Konstantin Makarychev, and Yury Makarychev. O(

√
log n)

approximation algorithms for min UnCut, min 2CNF deletion, and directed cut problems. In
Proceedings of the thirty-seventh annual ACM symposium on Theory of computing – STOC
’05, New York, New York, USA, 2005. ACM Press.

3 Kook Jin Ahn, Graham Cormode, Sudipto Guha, Andrew McGregor, and Anthony Wirth.
Correlation clustering in data streams. In Francis R. Bach and David M. Blei, editors,
Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille,
France, 6-11 July 2015, volume 37 of JMLR Workshop and Conference Proceedings, pages
2237–2246. JMLR.org, 2015.

4 Kook Jin Ahn and Sudipto Guha. Graph sparsification in the semi-streaming model. In Susanne
Albers, Alberto Marchetti-Spaccamela, Yossi Matias, Sotiris E. Nikoletseas, and Wolfgang
Thomas, editors, Automata, Languages and Programming, 36th Internatilonal Colloquium,
ICALP 2009, volume 5556 of Lecture Notes in Computer Science, pages 328–338. Springer,
2009. doi:10.1007/978-3-642-02930-1_27.

5 Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistent information:
ranking and clustering. In Harold N. Gabow and Ronald Fagin, editors, Proceedings of the
37th Annual ACM Symposium on Theory of Computing, pages 684–693. ACM, 2005.

6 Claudio Altafini. Dynamics of opinion forming in structurally balanced social networks. PloS
one, 7(6):e38135, 2012.

7 T Antal, P L Krapivsky, and S Redner. Social balance on networks: The dynamics of friendship
and enmity, 2006.

8 Samin Aref, Andrew J Mason, and Mark C Wilson. A modeling and computational study of
the frustration index in signed networks. Networks, 75(1):95–110, January 2020.

9 Sepehr Assadi, Yu Chen, and Sanjeev Khanna. Polynomial pass lower bounds for graph
streaming algorithms. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019., pages 265–276, 2019.

10 Sepehr Assadi and Ran Raz. Near-quadratic lower bounds for two-pass graph streaming
algorithms. In Sandy Irani, editor, 61st IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2020, pages 342–353. IEEE, 2020. doi:10.1109/FOCS46700.2020.00040.

11 Sepehr Assadi and Chen Wang. Sublinear Time and Space Algorithms for Correlation
Clustering via Sparse-Dense Decompositions. In Mark Braverman, editor, 13th Innovations in
Theoretical Computer Science Conference (ITCS 2022), volume 215 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 10:1–10:20, Dagstuhl, Germany, 2022. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ITCS.2022.10.

12 Adi Avidor and Michael Langberg. The multi-multiway cut problem. Theor. Comput. Sci.,
377(1):35–42, May 2007.

13 Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Mach. Learn.,
56(1-3):89–113, 2004. doi:10.1023/B:MACH.0000033116.57574.95.

14 Francisco Barahona. On the computational complexity of Ising spin glass models. Journal of
Physics A: Mathematical and General, 15(10):3241–3253, 1982.

15 MohammadHossein Bateni, Hossein Esfandiari, and Vahab S. Mirrokni. Almost optimal
streaming algorithms for coverage problems. In Proceedings of the 29th ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA 2017, pages 13–23, 2017.

16 Anubhav Baweja, Justin Jia, and David P. Woodruff. An efficient semi-streaming PTAS for
tournament feedback arc set with few passes. In Mark Braverman, editor, 13th Innovations in
Theoretical Computer Science Conference, ITCS 2022, volume 215 of LIPIcs, pages 16:1–16:23.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.

APPROX/RANDOM 2023

https://doi.org/10.1007/978-3-642-02930-1_27
https://doi.org/10.1109/FOCS46700.2020.00040
https://doi.org/10.4230/LIPIcs.ITCS.2022.10
https://doi.org/10.1023/B:MACH.0000033116.57574.95


58:18 Efficient Streaming Algorithms for Structural Balance

17 Soheil Behnezhad, Moses Charikar, Weiyun Ma, and Li-Yang Tan. Almost 3-approximate
correlation clustering in constant rounds. In 63rd IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2022, pages 720–731. IEEE, 2022. doi:10.1109/FOCS54457.2022.
00074.

18 Soheil Behnezhad, Moses Charikar, Weiyun Ma, and Li-Yang Tan. Single-pass streaming
algorithms for correlation clustering. In Nikhil Bansal and Viswanath Nagarajan, editors,
Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, pages
819–849. SIAM, 2023. doi:10.1137/1.9781611977554.ch33.

19 András A. Benczúr and David R. Karger. Approximating s-t minimum cuts in Õ(n2) time.
In Gary L. Miller, editor, Proceedings of the Twenty-Eighth Annual ACM Symposium on the
Theory of Computing, pages 47–55. ACM, 1996. doi:10.1145/237814.237827.

20 Andrej Bogdanov and Emanuele Viola. Pseudorandom bits for polynomials. SIAM J. Comput.,
39(6):2464–2486, 2010. doi:10.1137/070712109.

21 Dorwin Cartwright and Frank Harary. Structural balance: a generalization of Heider’s theory.
Psychol. Rev., 63(5):277–293, September 1956.

22 Amit Chakrabarti, Prantar Ghosh, Andrew McGregor, and Sofya Vorotnikova. Vertex ordering
problems in directed graph streams. In Proceedings of the 2020 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2020, pages 1786–1802, 2020.

23 Sayak Chakrabarty and Konstantin Makarychev. Single-pass pivot algorithm for correlation
clustering. keep it simple! arXiv preprint arXiv:2305.13560, 2023.

24 Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. Clustering with qualitative
information. In Proceedings of the 44th Symposium on Foundations of Computer Science
(FOCS 2003), pages 524–533, 2003.

25 Shuchi Chawla, Konstantin Makarychev, Tselil Schramm, and Grigory Yaroslavtsev. Near
optimal LP rounding algorithm for correlation clustering on complete and complete k-partite
graphs. In Rocco A. Servedio and Ronitt Rubinfeld, editors, Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing, STOC 2015, pages 219–228. ACM,
2015.

26 Flavio Chierichetti, Nilesh N. Dalvi, and Ravi Kumar. Correlation clustering in mapreduce.
In Sofus A. Macskassy, Claudia Perlich, Jure Leskovec, Wei Wang, and Rayid Ghani, editors,
The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’14, pages 641–650. ACM, 2014.

27 Vincent Cohen-Addad, Silvio Lattanzi, Slobodan Mitrovic, Ashkan Norouzi-Fard, Nikos Parot-
sidis, and Jakub Tarnawski. Correlation clustering in constant many parallel rounds. In Marina
Meila and Tong Zhang, editors, Proceedings of the 38th International Conference on Machine
Learning, ICML 2021, volume 139 of Proceedings of Machine Learning Research, pages 2069–
2078. PMLR, 2021. URL: http://proceedings.mlr.press/v139/cohen-addad21b.html.

28 Vincent Cohen-Addad, Euiwoong Lee, and Alantha Newman. Correlation clustering with
Sherali-Adams. CoRR, abs/2207.10889, 2022.

29 Bhaskar DasGupta, German Andres Enciso, Eduardo Sontag, and Yi Zhang. Algorithmic
and complexity results for decompositions of biological networks into monotone subsystems.
Biosystems., 90(1):161–178, July 2007.

30 James A Davis. Clustering and structural balance in graphs. Human relations, 20(2):181–187,
1967.

31 Ioannis Giotis and Venkatesan Guruswami. Correlation clustering with a fixed number of
clusters. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete
Algorithm, SODA ’06, pages 1167–1176, 2006.

32 Frank Harary. On the notion of balance of a signed graph. Michigan Math. J., 2(2), January
1953.

33 Frank Harary. Signed graphs for portfolio analysis in risk management. IMA Journal of
Management Mathematics, 13(3):201–210, 2002.

https://doi.org/10.1109/FOCS54457.2022.00074
https://doi.org/10.1109/FOCS54457.2022.00074
https://doi.org/10.1137/1.9781611977554.ch33
https://doi.org/10.1145/237814.237827
https://doi.org/10.1137/070712109
http://proceedings.mlr.press/v139/cohen-addad21b.html


V. Ashvinkumar, S. Assadi, C. Deng, J. Gao, and C. Wang 58:19

34 Frank Harary. On the measurement of structural balance. Behavioral Science, 4(4):316–323,
2007.

35 Fritz Heider. Attitudes and cognitive organization. J. Psychol., 21:107–112, January 1946.
36 Fritz Heider. The Psychology of Interpersonal Relations. Psychology Press, 1982.
37 Falk Hüffner, Nadja Betzler, and Rolf Niedermeier. Separator-based data reduction for signed

graph balancing. J. Comb. Optim., 20(4):335–360, November 2010.
38 Giovanni Iacono, Fahimeh Ramezani, Nicola Soranzo, and Claudio Altafini. Determining the

distance to monotonicity of a biological network: a graph-theoretical approach. IET Syst.
Biol., 4(3):223–235, May 2010.

39 Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of the
thiry-fourth annual ACM symposium on Theory of computing, STOC ’02, pages 767–775, New
York, NY, USA, May 2002. Association for Computing Machinery.

40 Funda Kivran-Swaine, Priya Govindan, and Mor Naaman. The impact of network structure on
breaking ties in online social networks: unfollowing on twitter. In Proceedings of the SIGCHI
conference on human factors in computing systems, pages 1101–1104. ACM, 2011.

41 Shachar Lovett. Unconditional pseudorandom generators for low degree polynomials. Theory
Comput., 5(1):69–82, 2009. doi:10.4086/toc.2009.v005a003.

42 Andrew McGregor. Graph stream algorithms: a survey. SIGMOD Rec., 43(1):9–20, 2014.
doi:10.1145/2627692.2627694.

43 Michael Moore. An international application of Heider’s balance theory. Eur. J. Soc. Psychol.,
8(3):401–405, July 1978.

44 Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and
applications. SIAM J. Comput., 22(4):838–856, 1993. doi:10.1137/0222053.

45 Christos Papadimitriou and Mihalis Yannakakis. Optimization, approximation, and complexity
classes. In Proceedings of the twentieth annual ACM symposium on Theory of computing,
STOC ’88, pages 229–234, New York, NY, USA, January 1988.

46 Ron M. Roth. Introduction to coding theory. Cambridge University Press, 2006.
47 Christopher Sibona. Unfriending on facebook: Context collapse and unfriending behavi-

ors. In 2014 47th Hawaii International Conference on System Sciences, pages 1676–1685.
ieeexplore.ieee.org, January 2014.

48 Jiliang Tang, Yi Chang, Charu Aggarwal, and Huan Liu. A survey of signed network mining
in social media. ACM Computing Surveys (CSUR), 49(3):1–37, 2016.

49 Andreia Sofia Teixeira, Francisco C Santos, and Alexandre P Francisco. Emergence of social
balance in signed networks. In Complex Networks VIII, pages 185–192. Springer International
Publishing, 2017.

50 Haotian Wang, Feng Luo, and Jie Gao. Co-evolution of opinion and social tie dynamics towards
structural balance. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms
(SODA’22), pages 3362–3388, January 2022.

51 Bo Xu, Yun Huang, Haewoon Kwak, and Noshir Contractor. Structures of broken ties:
Exploring unfollow behavior on twitter. In Proceedings of the 2013 Conference on Computer
Supported Cooperative Work, CSCW ’13, pages 871–876, 2013. doi:10.1145/2441776.2441875.

52 Mihalis Yannakakis. Edge-Deletion problems. SIAM J. Comput., 10(2):297–309, May 1981.
53 Thomas Zasĺavsky. Balanced decompositions of a signed graph. J. Combin. Theory Ser. B,

43(1):1–13, August 1987.

A Offline Solution to Problem 2 (More Details)

Here we present an offline algorithm for solving Problem 2 when γ < ε/1004 (which is an
important part leading to Theorem 9), which can be transferred to the semi-streaming setting
with superficial modification.
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Nearly-Linear Time EPTAS solving Problem 2 for G = (V, E+ ∪ E−) and ε ∈
(0, 1), when γ < ε/1004:
1. Sample 2000 log n vertices uniformly at random from V . Call this set S and let

GS = (V, E(S) ∪ E(S, V \ S)).
2. Sample 100 log log n vertices uniformly at random from S. Call this set S′, the

seed-set, and let GS′ = (V, E(S′) ∪ E(S′, V \ S′)).
3. Sample 1003 · log n

ε2 vertices uniformly at random for each vertex v. Call these sets
Nv and let GN = (V,

⋃
v E(v, Nv)).

4. Construct frustε/10(G, ·), a frustration sparsifier of G.
5. For every partition (S′

L, S′
R) of S′

(Mini-merging on S′)
For every v ∈ S\S′, assign v to SL if DisGS′ (v, S′

L + v, S′
R) < DisGS′ (v, S′

L, S′
R + v),

and SR otherwise.
S′

L is assigned to SL and S′
R is assigned to SR.

(Merging on S)
For every v ∈ V \ S, assign v to L if DisGS

(v, SL + v, SR) < DisGS
(v, SL, SR + v),

and R otherwise.
SL is assigned to L and SR is assigned to R.

(Switching)
Mark v ∈ L if DisGN

(v, L + v, R − v) > DisGN
(v, L − v, R + v) and mark v ∈ R

similarly (flip the inequality).
Switch assignments of all marked vertices from L to R or vice versa.

Keep (L, R) if frustε/10(G, L) is the smallest seen so far.
6. Return (L, R).

B Proof of Lemma 12

In the proof of the communication complexity for the standard INDEX problem, the intuition
is that the first player (Alice) has no knowledge of i∗ other than knowing it is uniformly
distributed (in the particular hard distribution). As such, the problem can only be solved if
a sufficiently large number of bits are communicated. However, in the Leave-One INDEX
problem (Problem 3), the first two players (Alice and Bob) might be able to learn where
exactly i∗ is by comparing their sets of indices S and T . In Problem 3, by the promise that
i∗ ̸∈ T , Bob can learn the distribution of i∗ better than uniform even without communication.

Our plan to prove Lemma 12 is to conduct a case analysis on whether the communication
between Alice and Bob somehow “solves” the problem. To be precise, we separate the cases
based on whether Alice’s message significantly changes the distribution of i∗ from Bob’s
perspective. If such a case happens, then we can use a result from [10] to show that the
communication between Alice and Bob has to be Ω

(
ε2N

)
. On the other hand, if the message

from Alice does not tell Bob a lot about the distribution of i∗, a large number of bits are still
required for the communication between Bob and Charlie since there are constant fraction
of coordinates where i∗ still looks almost uniform. The latter bound cannot be obtained
directly by a reduction since i∗ is already not uniform from Bob’s perspective. Nevertheless,
we can adapt the information-theoretic proof for INDEX to get the desired lower bound in a
standard manner.
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We now formalize the above intuition. Let ΠA,B be the random variable for the message
between Alice and Bob, and ΠB,C be the random variable for the message between Bob
and Charlie. Furthermore, let X be the random variable for the string being held by Alice
and Bob, and let I be the random variable for i∗. For the choice of the set T , we use T ′

to denote the realization. Conditioning on the first message ΠA,B = πA,B and Bob’s local
inputs X, T , we let IB := I | X, T, ΠA,B be the random variable for i∗ from Bob’s internal
perspective after message πA,B . We slightly abuse notation and let these random variables
also represent their distributions.

As promised, the first case we are going to show is the communication lower bound
between Alice and Bob if the distribution of i∗ that Bob learns is ε-far from his prior
knowledge. Formally, we define the notation of ε-learn as follows.

▶ Definition 14. Let πA,B be the message of a randomized one-way communication protocol.
We say that Bob ε-learns i∗ if after the message πA,B, in expectation, the distribution of i∗

from Bob’s perspective is more than ε-far from the distribution he knows from his own input
in the total variation distance, i.e.

E[∥I | ΠA,B , X, T − I | X, T ∥TVD] > ε,

where the expectation is over the randomness of X, T and ΠA,B.

The notion of ε-learn was first developed by [9,10]. As such, we can prove a communication
lower bound for Bob to ε-learn i∗.

▶ Lemma 15. Any such protocol πA,B for Bob to ε-learn i∗ has to use Ω
(
ε2 · N

)
bits of

communication between Alice and Bob.

Proof. We prove the lemma by a direct reduction from [10], which address the set intersection
problem. The definition of the problem and the communication complexity is as follows.

▶ Proposition 16 ([10]). The Set-Intersection is a two-player game between Alice and Bob.
The two players are given A ⊆ [m] and B ⊆ [m], respectively, with the promise that there
exists a unique element e∗ such that e∗ = A∩B. The goal is to find the target element e∗ after
one-way communication. Let E be the distribution of e∗, it is known that any communication
protocol that achieves

E[∥E | Π, B − E | B∥TVD] > ε

has to use a communication of Ω
(
ε2m

)
bits, where the expectation is over the randomness of

B and the protocol’s randomness Π. In particular, the communication lower bound applies to
the following distribution.

A hard distribution for Set-Intersection.
Sample two disjoint sets of coordinates A′ and B′ of size N/4 − 1 each uniformly at
random from [N ].
Sample an element e∗ uniformly at random from [N ]\(A′ ∪B′), and let A := A′ ∪{e∗},
B := B′ ∪ {e∗}.

The result of Proposition 16 can be generalized to back-and-forth communication if we allow
Alice or Bob to ε-learn the distribution. However, for the purpose of our reduction, the
one-way version suffices. The reduction from Set-Intersection to the communication between
Alice and Bob in Lemma 12 is as follows.
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Inputs: Alice holds A ⊆ [m], Bob holds B ⊆ [m], A ∩ B = e∗.

A communication protocol PROT for Lemma 12 that ε-learns the index i∗ as
in Lemma 15.
1. Alice creates a set S′ = [m] \ A.
2. Bob creates a set T ′ = [m] \ B.
3. Alice runs PROT, sends to Bob. Bob uses the distribution for i∗ as the distribution

for e∗.

To prove the correctness of the reduction, we only need to show that a). S′ and T ′ are
valid inputs for PROT and b). i∗ = e∗. It is straightforward to verify these conditions: we
know that an element is not covered by S′ ∪ T ′ if and only if both A and B cover it, which is
exactly e∗. Therefore, the desired lower bound is established. ◀

Lemma 15 implies that with o(N) bits of communication it is impossible for Bob to gain
knowledge of the distribution of I that is significantly different from what he already knows.
We now observe that with the input X and T , and conditioning on Alice’s message does not
significantly change Bob’s distribution, Bob’s distribution of I is close to uniform on the
[N ] \ T coordinates.

▷ Claim 17. Conditioning on the event that Bob does not ε-learn i∗, the distribution of i∗

that Bob learns from T and Alice’s message πA,B is at most ε-far from uniform in expectation
over the supports of [N ] \ T , i.e.,

E
T,ΠA,B

[∥I | T, ΠA,B − U([N ] \ T )∥TVD] ≤ ε.

Proof. We first show that without Alice’s message, the distribution I of Bob restricted to
[N ] \ T is uniform. This is a simple observation: with the promise that i∗ ̸∈ T , Bob can safely
discard all coordinates therein. Since the string x is independent of i∗, Bob does not learn
anything from x. As such, Bob’s distribution remains uniform on the [N ] \ T coordinates.

We now condition on the fact that Bob does not ε learn i∗. As such, there is

E
X,T,ΠA,B

[∥I | X, T, ΠA,B − U([N ] \ T )∥TVD]

≤ E
X,T,ΠA,B

[
∥I | X, T − U([N ] \ T )∥TVD + ∥IB − I | X, T ∥TVD

]
(triangle inequality)

≤ E
X,T,ΠA,B

[0 + ∥I | ΠA,B , X, T − I | X, T ∥TVD] ≤ ε,

where the last inequality directly comes from our assumption of no ε-learning.
Finally, note that the choice of i∗ is independent of X (whether or not conditioning on

ΠA,B). Therefore, we have

E
X,T,ΠA,B

[∥I | X, T, ΠA,B − U([N ] \ T )∥TVD]

= E
T,ΠA,B

[∥I | T, ΠA,B − U([N ] \ T )∥TVD]

≤ ε,

as desired. ◁
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We now use the result of Claim 17 to prove the communication complexity conditioning
on Bob does not ε-learn i∗. To continue, we insist that the distribution T where T ′ is sampled
from always produces size-t sets. As such, we can establish the following lemma.

▶ Lemma 18. Suppose the players sample from a distribution T to ensure the size of the
set given to Bob is always t. Conditioning on the event that Bob does not ε-learn i∗, any
communication protocol such that Charlie correctly outputs xi∗ with probability at least 1 − δ

requires at least (1 − H2(δ) − 2ε) · (N − t) bits of communication.

On a high level, the proof of Lemma 18 uses a strategy that is similar to the information-
theoretic proof of INDEX, but it controls the entropy on the coordinates outside T . The
sketch of the proof is as follows. By Fano’s inequality, for Charlie to output xi∗ correctly with
probability at least 1 − δ, there has to be H(XI | ΠA,B , ΠB,C , T, I) ≤ H2(δ). Using Claim 17,
we can prove that if Bob does not ε-learn i∗, the “uncertainty” of XI – measured by the
entropy – is still comparable to the entropy of XI restricted to the [N ] \ T coordinates, i.e.,

H(XI | ΠA,B , ΠB,C , T, I) ≥ 1
N − t

· H
(
X[N ]\T | ΠA,B , ΠB,C , T

)
− 2ε.

Therefore, we can apply Fano’s inequality to lower bound the mutual information between
X[N ]\T and the information revealed by the protocol, i.e., (ΠA,B , ΠB,C), which in turn gives
us the lower bound on the number of bits to communicate. We leave the proof of Lemma 18
to the full version.

Finalizing the proof of Lemma 12. For completeness, we construct the hard distribution of
Problem 3 as follows.

A hard distribution for Problem 3.
1. Sample A and B according to the hard distribution for Set-Intersection prescribed in

Proposition 16.
2. Let S = [N ] \ A, and T = [N ] \ B. Sample X from {0, 1}N uniformly at random.
3. Give (X, S) to Alice, (X, T ) to Bob, and i∗ to Charlie.

Observe that in the above distribution, for any choice of T ′, there is t = |T ′| = 3
4 · N .

Furthermore, it agrees with the hard distribution of Proposition 16 through the reduction in
Lemma 15.

If Bob ε-learns i∗ for ε = 1
100 , then the communication lower bound is already Ω

(
N2)

(by
Lemma 15). Therefore, we condition on the case when Bob does not (1/100)-learns i∗. As
such, let us conditioning on the event that E

[
∥IB − I | X, T ∥TVD

]
≤ 1

100 ; and by Lemma 18,
to make up the success probability of 99

100 , the protocol needs to send a message of length at
least (1 − H2( 1

100 ) − 2/100) · (N − t) = Ω(N) bits, as desired. ◀
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1 Introduction

Approximation algorithms are often used to efficiently approximate a function f : D → R+

in settings where resource constraints prevent us from computing the function exactly. For
example, problems such as Knapsack are NP-Hard and, unless P = NP, do not admit a
polynomial time solution. However, the Knapsack problem admits a fully polynomial time
approximation scheme (FPTAS) i.e., for any α > 0 there is a deterministic algorithm, running
in time poly(n, 1/α), which outputs a solution that is guaranteed to be be nearly as good
(up to multiplicative factor 1 ± α) as the optimal solution. As a second example, even if
the problem is computationally tractable it may still be the case that the input dataset
D ∈ D is extremely large, making it infeasible to load the entire dataset into RAM, or
impractical to execute a linear time algorithm. To remedy such shortcomings, models such
as sublinear-space and sublinear-time algorithms have been proposed. For example, one
may want to estimate frequencies of elements that appear in a stream of n elements up to
a multiplicative 1 ± α factor, while using only poly

(
log n, 1

α

)
memory cells. Or, one may

want to estimate the number of connected components of a dense graph on n vertices up to
(relative) additive error κ by only inspecting poly(log n, 1

κ ) many edges.
In addition to time and space efficiency, user privacy is another important consideration

in contexts where the input to our function f is sensitive user data. Differential privacy
(DP) [20, 22] is a rigorous mathematical concept that gives provable guarantees on what
it means for an algorithm to preserve the privacy of individual information in the input
dataset. Informally, a randomized function computed on a dataset D is differentially private
if the distribution of the function’s output does not change significantly with the presence or
absence of an individual data point. Thus, a natural goal is to develop efficient differentially
private algorithms to approximate functions/queries of interest.

One general way to preserve differential privacy is to add noise scaled to the global
sensitivity ∆f of our function f , i.e., the maximum amount |f(D) − f(D′)| that the answer
could change by modifying a single record in our dataset D to obtain a new dataset
D′. This general approach yields efficient and accurate approximations for f as long
as we have an efficient algorithm to compute f exactly and the global sensitivity of f

is sufficiently small. However, in some resource-constrained settings, we may need to
use an approximation algorithm Af instead of evaluating f exactly. Unfortunately, the
mechanism that computes Af (D) and then adds noise scaled to the global sensitivity ∆f of
our function f is not necessarily differentially private. In particular, even if we are guaranteed
that |Af (D) − f(D)| ≤ αf(D) we might still have |Af (D) − Af (D′)| ≥ 2αf(D) ≫ ∆f

for neighboring datasets D and D′, e.g., suppose Af (D) = (1 + α)f(D) and Af (D′) =
(1 − α)f(D′). Thus, the global sensitivity of Af can be quite large and adding noise
proportional to ∆Af

would prevent us from providing meaningful accuracy guarantees. This
raises a natural question: Suppose that our function f admits an accurate (but not necessarily
resource-efficient) differentially private approximation algorithm and that f also admits an
efficient (but not necessarily private) approximation algorithm. Is it necessarily the case that
there is also an equally efficient differentially private approximation algorithm?

Unfortunately, a result of [36, 18] suggests that the answer to the previous question may
be no. Suppose our dataset D consists of n users x1, . . . , xn with n binary attributes i.e.,
xi ∈ {0, 1}n. Consider the function f(D) that computes all of the one-way marginals i.e.,
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f(D) = ⟨ 1
n

∑n
i=1 xi[j]⟩n

j=1 ∈ Rn. In particular, there is a non-private sublinear time algorithm
that samples O (log n) users and (with high probability) outputs a good approximation to all
n one-way marginals. However, if we require that our algorithm satisfy pure, i.e, ε-differential
privacy (resp. approximate, i.e., (ε, δ)-differential privacy) then we need to look at at least
Ω(n/ε) (resp. Ω(

√
n log(1/δ))) samples [36, 18]. In light of this, we pose the following general

questions:

What are sufficient conditions for an approximation algorithm to be made
differentially private?

Can an approximation algorithm be made differentially private in an efficient
black-box manner?

Over the years, many differentially private approximation algorithms have been developed
for problems in optimization, machine learning, and distribution testing (see for e.g., [35,
1, 30, 34]), in a somewhat ad-hoc manner. Often, these results give a differentially private
algorithm for that specific problem and do not easily generalize to give differentially private
algorithms for a large class of problems. A general framework for developing differentially
private approximation algorithms for a large class of problems is desirable as this would not
only make DP approximation algorithms more easily accessible to non-DP experts, but more
importantly, it would shed light on what kinds of algorithms are more amenable to differential
privacy. Furthermore, a framework that uses the underlying approximation algorithm as a
black-box is desirable as this avoids the need to (re)design, (re)analyze, and (re)implement
the new differentially private versions of these approximation algorithms. We emphasize that
this type of framework has been well-studied for computing functions privately by calibrating
noise proportional to their global or smooth sensitivity [23, 41] (see Section A for more
discussion).

Our work makes partial progress towards answering these general questions. In particular,
we give an efficient black-box framework for converting a non-private approximation algorithm
Af with tunable accuracy parameters into a differentially private approximation algorithm
A′

f with reasonable accuracy guarantees as long as the global sensitivity ∆f of the function
f being approximated is sufficiently low. For the case when Af is deterministic, we achieve a
pure ε-differentially private approximation algorithm via a direct transformation, and when
Af is randomized, i.e., has a small failure probability, we achieve ε-differential privacy by
first applying a transformation that gives a (ε, δ)-differentially private algorithm and then
apply a postprocessing step to achieve ε-differentially privacy. For example, suppose that for
any α > 0 our algorithm Af , taking α and our dataset D as input, provides the guarantee
that |Af (D)−f(D)| ≤ αf(D) e.g., any FPTAS algorithm would satisfy our tunable accuracy
requirement. In such a case, for any α > 0 we can transform our non-private algorithm Af into
a differentially private version with multiplicative error α and small additive error term which
(necessarily) comes from the noise that we added. Intuitively, we exploit the fact that we can
run Af with an even smaller accuracy parameter ρ ≪ α which can be tuned to ensure that
the smooth sensitivity of our algorithm is sufficiently small. Our same general framework still
applies if we allow that the approximation algorithm Af has a small additive error term i.e.,
|Af (D) − f(D)| ≤ αf(D) + κ. If Af (D) is only guaranteed to output a good approximation
(i.e., |Af (D) − f(D)| ≤ αf(D) + κ) with probability 1 − δ/2 (e.g., an FPRAS algorithm
would satisfy this requirement with additive error κ = 0) then our framework achieves
ε-differential privacy by first obtaining an approximate (ε, δ)-differential privacy algorithm
and then a postprocessing step. In cases where the approximation algorithm is not tunably

APPROX/RANDOM 2023



59:4 How to Make Your Approximation Algorithm Private

accurate our black-box framework does not necessarily apply1. For example, the best known
approximation algorithms for vertex cover achieve the guarantee f(G) ≤ Af (G) ≤ 2f(G) i.e.,
because there is no way to control the smooth sensitivity of our approximation algorithm.

1.1 Our Contributions
We introduce a generic black-box framework for converting certain approximation algorithms
for a function f : D → R+ into a differentially private approximation algorithm using smooth
sensitivity [41]. We first introduce a definition for tunable approximation algorithms used
throughout our paper, and then present our main results for the DP framework, and then
give new differentially private algorithms for a variety of approximation algorithms obtained
via this unifying framework. We refer to our full version [11] for missing details.

▶ Definition 1 ((α, κ, δ)-approximation). An algorithm Af is a (α, κ, δ)-approximation for f

if for every D ∈ D with probability at least 1 − δ, we have that (1 − α)f(D) − κ ≤ Af (D) ≤
(1 + α)f(D) + κ.

We may abuse notation and omit the failure probability δ parameter in the above
definition, if it is clear from the context. Some algorithms Af may take the approximation
parameters α, κ, δ ≥ 0 as input2.

▶ Definition 2 (tunable approximation). Af (D, α, κ, δ) provides a tunable approximation of
f if for every α, κ, δ ≥ 0 the algorithm Af (·, α, κ, δ) obtained by hardcoding α, κ and δ is a
(α, κ, δ)-approximation for f .
When the parameters α, κ, δ are clear from the context, we may abuse notation and just
write Af (D). For a tunable approximation algorithm we will use R(n, α, κ, δ) to denote the
amount of a particular resource used by the algorithm. The resources we consider in this
work include time, space and query complexity of the algorithm (depending on the model)
which we denote by T (·, ·, ·, ·), S(·, ·, ·, ·) , and Q(·, ·, ·, ·) respectively.

As a concrete example any FPTAS algorithm Af for f would be a tunable approximation
for f with running time T (n, α, κ, δ) = poly(n, 1/α) for any α > 0 and any κ, δ ≥ 0 – an
FPTAS has no additive error (κ = 0) and zero failure probability (δ = 0). Similarly a
FPRAS algorithm would be a tunable approximation with running time T (n, α, κ, δ) =
poly(n, α, log(1/δ)) for any α, δ > 0 and any κ ≥ 0 – an FPRAS also has no additive error
(κ = 0).

General Framework for Approximation Algorithms. Our main result gives a framework
for converting any existing non-DP algorithm Af that provides an (α, κ, δ)-approximation
of f into an ε-DP algorithm A′′

f in the following manner: (1) Apply Algorithm 1 to obtain
an (ε, δ)-DP algorithm A′

f that achieves an (α′, κ′, δ′)-approximation (see Theorem 3), (2)
Apply a postprocessing step on the output of A′

f outlined in Theorem 5 to achieve an ε-DP
algorithm A′′

f with the same accuracy guarantees as A′
f barring an additive error of o(1).

We emphasize that Af is a tunable approximation, in other words, Af takes the parameters
(α, κ, δ) as input.

1 One could still apply our black-box transformation. However, the accuracy guarantees would be degraded
and we would only achieve (ε, δ)-differential privacy for sufficiently large values of ε, δ > 0 which depend
on the approximation error parameter α.

2 We allow that α = κ = δ = 0 in which case Af can simply compute f exactly – whether or not this
computation is efficient.
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▶ Theorem 3 ((ε, δ)-privacy). Suppose that Af is a tunable approximation of f : D → R+.
Then for all ε > 0, δ = δ(n) > 03, α ≥ 0 and κ ≥ 0, there is an algorithm A′

f such that
(1) (Privacy) A′

f is (ε, δ′)-differentially private where δ′ = δ(1 + exp(ε/2)).
(2) (Accuracy) For all D ∈ D, and 0 < γ, with probability 1 − δ − exp(−γ),

(1 − α′)f(D) − κ′ − 2∆f

ε
· γ ≤ A′

f (D) ≤ (1 + α′)f(D) + κ′ + 2∆f

ε
· γ

where α′ = α(ε+16γ)
12 log(4/δ) , κ′ = κ

(
2γα

3 log(4/δ) + 8γ
ε + 1

)
, and ∆f := maxD,D′∈D,D∼D′ ∥f(D)−

f(D′)∥1.

(3) (Resource) A′
f uses R

(
n, εα

log(4/δ) , κ, δ
)

resource, where R(·, ·, ·, ·) is the resource used by
Af .

We illustrate the utility of Theorem 3 with specific parameters – if we have a non-private
algorithm Af that guarantees an (α, 0, δ)-approximation, then for constant ε, δ = 1

nc and
γ = c log(n), we see that the DP algorithm Af achieves an

(
α(1 + o(1)), O

(
∆f log(n)

ε

)
, 1

nc

)
-

approximation. We typically use these parameters for δ, γ in our applications for streaming
and sublinear-time algorithms.

Our reduction in Theorem 3 is quite simple – we describe the associated Algorithm 1
below.

Algorithm 1 (ε, δ)-differentially private framework A′
f for tunable approximation algorithm Af .

Input: Input set D, accuracy parameters α ∈ (0, 1) and κ, DP parameter ε, DP failure
probability δ ∈ (0, 1), approx. algorithm Af .

1: Let xA := Af (D, ρ, τ, δ/2), where ρ :=
(

εα
12 log(4/δ)

)
, and τ := κ.

2: return xA + X where X ∼ Lap
(

2(4ρxA+4τ+∆f )
ε

)

Note that in Algorithm 1, we leave our additive parameter κ as is when running Af ,
but we still choose to define τ := κ. This is because depending on the problem, and the
accuracy/efficiency guarantees desired, we can set τ to be a tuned version of κ (for e.g., we
set τ := κ/ log(n) for the problem of estimating the number of connected components).
▶ Remark 4. We also note that, even if the failure probability δ > 0 of Af is non-negligible,
that we can always boost the success probability by running Af (D) multiple times and
computing the median over all outputs. Even if the error rate 0 < δ < 1/2 is a constant we
can always reduce the failure probability to a lower target 0 < δ′ ≪ δ while increasing the
running time by a multiplicative factor O (log(1/δ′)). In particular, we can set δ′ to be a
negligible function of n such as δ′ = n− log n whilst only incurring a O

(
log2 n

)
blowup in our

running time.
We stress that we can only apply Theorem 3 to existing non-DP algorithms Af that give

an approximation guarantee of the form (1−α)f(D)−κ ≤ Af ≤ (1+α)f(D)+κ. For example,
we cannot apply Theorem 3 to obtain an (ε, δ)-DP algorithm for estimating the minimum
vertex cover size in sublinear time. This is because the non-DP sublinear-time algorithm Avc

has an approximation guarantee of the form 2V C(G) − κn ≤ Avc ≤ 2V C(G) + κn. On the
other hand, we can use our DP framework to obtain an (ε, δ)-DP algorithm for obtaining a

3 typically we set δ = negl(n) or δ = n−c for some constant c > 0. In particular δ(n) may approach zero
as n → ∞.
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(0, κn, δ)-approximation of the maximum matching size in sublinear time (see full version for
details [11]). Intriguingly, both the minimum vertex cover size and the maximum matching
size algorithms use the same underlying strategy of estimating a greedy maximal matching
in a local fashion, but since they return different estimators based on the objective and we
can only use our framework as a black-box, we cannot apply our framework to the former
while we can still apply it to the latter.

Finally, by applying a post-processing step described below, we show how to obtain
an ε-DP algorithm from the (ε, δ)-DP algorithm obtained in Theorem 3. Importantly, the
accuracy guarantee of the resulting ε-DP algorithm only differs by a small additive factor
of 1/(KM), where M = maxD f(D) is the maximum possible output value, e.g., M ≤ n3

for triangle counting and K > 0. Moreover for negligible δ, the accuracy guarantee of the
resulting pure DP algorithm still holds with high probability.

▶ Theorem 5. Let M = maxD f(D) and let parameter K > 0. If A′
f (D) is (ε, δ)-DP

algorithm with accuracy guarantee (1 − α)f(D) − κ ≤ Af (D) ≤ (1 + α)f(D) + κ holding with
probability 1 − η then there exists an algorithm A′′

f (D) which is ε-DP with accuracy guarantee
(1 − α)f(D) − κ − 1

KM ≤ Af (D) ≤ (1 + α)f(D) + κ + 1
KM with probability at least 1 − η − p

where p = δK(M+1)
eε−1+δK(M+1) .

Our second result is an analogous framework for converting any existing deterministic
non-DP approximation algorithm Af that provides an (α, κ, 0)-approximation of f into an
ε-DP algorithm A′

f .

▶ Theorem 6 (ε-privacy). Suppose that Af is a deterministic tunable approximation of
f : D → R+.Then for all ε > 0, α ≥ 0 and κ ≥ 0, there is an algorithm A′

f such that
(1) (Privacy) A′

f is ε-differentially private.
(2) (Accuracy) For all D ∈ D, we have that with probability ≥ 9/10,

(1 − α′)f(D) − κ′ − 7∆f

ε
≤ A′

f (D) ≤ (1 + α′)f(D) + κ′ + 7∆f

ε

where α′ := αC1(ε + C2γ), κ′ := κC3(α + C4
ε ) for some constants C1, C2, C3, C4 > 0 and

∆f := maxD,D′∈D,D∼D′ ∥f(D) − f(D′)∥1.

(3) (Resource) A′
f uses R

(
n, εα

36 , κ
)

resource, where R(·, ·, ·) is the resource used by Af .

DP Sublinear-time Results. We use Theorem 3 in conjunction with Theorem 5 in a
black-box manner to obtain pure differentially-private sublinear time algorithms for several
problems (see Table 1 for a summary).

In many models of sublinear-time computation the efficiency of the algorithm is measured
in the number of queries made to the input, rather than the time complexity of the algorithm.
It is often the case that the two are polynomially related, but there are instances in which
the actual time complexity of the algorithm may be exponentially larger than the query
complexity, in terms of the approximation factor. Nevertheless, in these instances too, the
literature uses time and query complexity interchangeably. This is because the sublinear-time
model assumes restricted or expensive access to the input, while further computation on
local machines with the answers obtained from queries is considered to be cheap. We use
query complexity for the sake of clarity.

We note that in the sublinear-time literature, the approximation parameters α, κ are
usually considered to be a constant, but the analyses for most of these theorems hold for
α = α(n), κ = κ(n) ∈ (0, 1), where n is the input size.
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Here we do not explicitly define the sublinear model (or the queries allowed) for each
problem.For a graph G we denote the number of vertices as n, the number of edges as m,
and the average degree of the graph as d̄.

Typically, the accuracy guarantees of the non-DP results are presented with probability
at least 2/3 – in order to apply our framework, we apply the median trick (see Remark 4) to
boost the probability of success to 1 − δ. For simplicity of comparing our results, for any
constant c > 0, we set δ := 1/nc in the sequel.

Table 1 Summary of Sublinear-time DP graph algorithms obtained via our black-box DP
transformation. According to our notation multiplicative error α means a multiplicative factor of
(1 ± α).

Problem Reference Privacy Mult. error Add. error Query Complexity

Number of Triangles [24] Non-Private α 0 O
(

( n

t1/3 + m3/2

t
) poly(log(n), 1

α
)
)

This Work ε-edge DP α O
(

n log(n)
ε

)
O

(
( n

t1/3 + m3/2

t
) poly(log(n), 1

αε
)
)

Connected Components [7] Non-Private 0 κn O
(

1
κ2 log

(
1
κ

)
log(n)

)
This Work ε-edge DP 0 O (κn) + O

( log(n)
ε

)
O

(
log3(n)

κ2 log
( log(n)

κ

))
Weighted MST [19] Non-Private α 0 O

(
d̄wα−2 log

(
d̄w
α

)
log(n)

)
This Work ε-edge DP α O

( log(n)
ε

)
O

(
d̄w log2(n)

α2ε2 log
(

d̄w log(n)
αε

)
log(n)

)
Average Degree

[33] Non-Private α 0 O
(

n√
m

poly
( log(n)

α

)
log(n)

)
[10] ε-edge DP α 0 O

(√
n poly

( log(n)
α

)
poly

(
1
ε

)
log(n)

)
(analysis assumes d̄ ≥ 1)

This Work ε-edge DP α 0 O
(

n√
m

poly
(

log2(n)
αε

)
log(n)

)
for d̄ = Ω( log(n)

nε
)

Maximum Matching Size [48] Non-Private 0 κn O
(

dO(1/κ2) log(n)
)

This Work ε-node DP 0 O
(

κn
ε

)
O

(
dO(1/κ2) log(n)

)
Distance to Bipartiteness [31] Non-Private 0 κn2 O

(
(1/κ3) log(n)

)
This Work ε-edge DP 0 O

(
κn2)

+ O
( log(n)

ε

)
O

(
(log4(n)/κ3)

)
We give the first (to the best of our knowledge) ε-DP sublinear time algorithm for

estimating the number of triangles, connected components, and the weight of a minimum
spanning tree whose accuracy guarantees hold with high probability.

For estimating the average degree of a graph, in recent work, [10] gave a pure ε-DP
algorithm that achieves an (α, 0)-approximation – a crucial observation is that their analysis
only holds under the assumption that the average degree is at least one i.e., d̄ ≥ 1 (see full
version [11] for details). In this work, we remove the need for this assumption in the DP
setting, by directly applying our black-box DP transformation to the original algorithm
of [33] which works substantially better whenever we have m = ω(n) edges.

For estimating the maximum matching size in a graph, although [10] gave an ε-DP
algorithm for estimating the maximum matching size that achieves a 2-multiplicative factor
and κn additive factor, they left the task of finding an (0, κn)-approximation in the DP
setting as an open problem. In this work, we partially resolve this problem by presenting
an ε-DP algorithm that gives a (0, O

(
κn
ε

)
)-approximation of the maximum matching size.

Crucially, our resulting analysis cannot guarantee that the added Laplace noise will be small
with high probability, but only guarantees this will be the case with constant probability. This
problem highlights a limitation of our black-box DP framework – if the non-DP algorithm
that we want to apply our DP transformation on has a time/space/query complexity that
has an exponential dependence on the approximation parameters then the resulting DP
algorithm that achieves a similar approximation guarantee with high probability may be
highly inefficient in terms of time/space/query complexity.

APPROX/RANDOM 2023
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We also show how to apply our DP framework to an algorithm estimating the distance
to bipartiteness in dense graphs [31, 3], which is accurate with probability 1 − o(1). The
same reduction can be similarly applied to other natural properties that enjoy the feature
that they admit distance-estimation algorithms with poly(1/κ) query complexity, where κ is
the additive (normalized) error. For example, in the fundamental results of [32] an efficient
distance approximation algorithm for the maximum k-cut problem, and thus k-colorability is
presented. [27], also based on results from [6], generalizes these properties to the notion of
“semi-homogeneous partition properties” and show efficient distance estimation algorithms
for properties such as Induced P3-freeness, induced P4-freeness, and chordality.4

DP Streaming Results. We also apply our framework given by Theorem 3 and Theorem 5
to obtain differentially-private streaming algorithms for many fundamental problems, i.e.,
see Table 2 and Table 3. We remark that while the accuracy guarantees of our resulting
algorithms may be surpassed by recent works studying these problems on an individual basis,
our applications are black-box reductions that avoid individual utility and privacy analysis
of each non-private streaming algorithm, which can be heavily involved and quite non-trivial,
e.g., [40, 9, 43, 17, 46, 13].

In the streaming model, elements of an underlying dataset arrive one-by-one and the
goal is to compute or approximate some predetermined function on the dataset using space
that is sublinear in the size of the dataset. Our reductions also have wide applications to
various archetypes of data stream models, which we now discuss. In insertion-only streams,
the updates of the stream increment the underlying dataset, such as adding edges to a graph,
adding terms to a sequence, or increasing the coordinates of a frequency vector. In turnstile
(or dynamic) streams, the updates of the stream can both increase and decrease (or insert
and delete) elements of the underlying dataset. Finally, in the sliding window model, only
the W most recent updates of the data stream define the underlying dataset. Both the
turnstile streaming model and the sliding window model are generalizations of insertion-only
streams, and our framework has implications in all three models.

We first show that our framework can be applied to existing non-private dynamic
algorithms for weighted minimum spanning tree, Lp norm estimation for p ≥ 1 (and also
Fp moment estimation for 0 < p < 1), and distinct elements estimation. Thus using our
framework, we essentially get private dynamic algorithms for these problems for free (in terms
of correctness, not optimality). Since the dynamic streaming model generalizes the insertion-
only streaming model, we also obtain private streaming algorithms in the insertion-only
model as well. We summarize these results in Table 2.

We then apply our framework in Theorem 3 to the sliding window model. To that end,
we first recall that given a (α, 0)-approximation algorithm for the insertion-only streaming
model, the smooth histogram framework [14] provides a transformation that obtains a (α, 0)-
approximation algorithm in the sliding window model for a “smooth” function. Although
there are problems that are known to not be smooth, e.g., [15, 12, 16, 25, 37], the smooth
histogram framework does provide a (α, 0)-approximation to many important problems,
such as counting, longest increasing subsequence, Lp norm estimation for p ≥ 1 (and also
Fp moment estimation for 0 < p < 1), and distinct elements estimation. We remark that

4 In general, distance estimation is closely related to tolerant testing [42], and for dense graph properties
it is known that if a property is testable with a number of queries of the form f(κ), then they admit a
distance estimator [28] with an exponential blowup in 1

κ in the query complexity. Hence, in its general
form the query complexity of estimating the distance to “hereditary” graph properties is a tower of
exponential of height poly(1/κ) [4].
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Table 2 Summary of DP algorithms in the dynamic/turnstile model obtained via our black-box
DP transformation. According to our notation multiplicative error α means a multiplicative factor
of (1 ± α).

Problem Reference Privacy Mult. error Add. error Space Complexity

Weighted Minimum Spanning Tree [2] Non-Private α 0 O
(

1
α

n log4 n
)

This Work ε-DP α O
(

M log m
ε

)
O

(
1

αε
n log5 n

)
Lp-norm, p > 2 [29] Non-Private α 0 O

(
1

α2 n
1− 2

p log2 n + 1
α4/p n

1− 2
p log2/p n log2 n

)
This Work ε-DP α O

( log m
ε

)
O

(
p

α2ε2 n1−2/p
)

· poly
(
log n, log 1

αε

)
Lp-norm, p = 2 [5] Non-Private α 0 O

(
1

α2 log2 n
)

This Work ε-DP α O
( log m

ε

)
O

(
1

α2ε2 log4 n
)

Lp-norm, p ∈ (0, 2) [38] Non-Private α 0 O
(

1
α2 log2 n

)
This Work ε-DP α O

( log m
ε

)
O

(
1

α2ε2 log4 n
)

Lp-norm, p = 0 [39] Non-Private α 0 O
(

1
α2 log2 n log 1

α

)
This Work ε-DP α O

( log m
ε

)
Õ

(
1

α2ε2 log4 n
)

if we tried to apply the non-private smooth histogram framework to a DP insertion-only
streaming algorithm, this might preserve privacy by post-processing, but may significantly
increase the error in terms of accuracy. On the other hand, our framework avoids these
issues and achieves private analogs of these algorithms in the sliding window model without
compromising utility. We summarize our results for the sliding window model in Table 3.
We note that in recent work, [26] give a generalized smooth histogram approach to convert a
DP continual release streaming algorithm into a sliding window algorithm in the continual
release setting. We focus on the one-shot streaming setting in our work.

Table 3 Summary of DP algorithms in the sliding window model obtained via our black-box DP
transformation. According to our notation multiplicative error α means a multiplicative factor of
(1 ± α).

Problem Reference Privacy Mult. error Add. error Space Complexity

Longest Increasing Subsequence [44] Non-Private α 0 O
(

k2

α
log2 n

)
This Work ε-DP α O

( log m
ε

)
O

(
k2

αε
log4 n

)
Distinct Elements [8] Non-Private α 0 O

(
1

α3 log2 n
)

This Work ε-DP α O
( log m

ε

)
O

(
1

α3ε3 log5 n
)

Lp-norm, p = 2 [47] Non-Private α 0 O
(

1
α2 log3 n log3 1

α

)
This Work ε-DP α O

( log m
ε

)
Õ

(
1

α2ε2 log5 n log3 1
αε

)
Lp-norm, p ∈ (0, 2) [47] Non-Private α 0 O

(
1

α2 log3 n(log log n)2 log3 1
α

)
This Work ε-DP α O

( log m
ε

)
Õ

(
1

α2ε2 log5 n
)

1.2 Our Techniques
Given a tunable (α, κ, δ)-approximation algorithm Af for the function f : D → R+, our
goal is to obtain a differentially private approximation algorithm that achieves a target
(α′, κ′, δ′)-approximation of f where α′, κ′ are in terms of α, κ.

Warm-up: When Af is deterministic and only has multiplicative error. For simplicity, let
us first consider an (α, 0, 0)-approximation algorithm Af , in other words, Af always outputs a
value such that (1−α)f(D) ≤ Af (D) ≤ (1+α)f(D). Since we want to make Af differentially
private, intuitively, we need to add noise to the output of Af . The local sensitivity of Af at
D (i.e., LSAf

(D) = maxD′∼D |Af (D) − Af (D′)|) is upper bounded by 2αf(D) + ∆f . Since
∆f is small and we can tune α to be arbitrarily small, it is tempting to think that we can just
add noise proportional to 2αf(D) + ∆f . Unfortunately, scaling noise proportional to local
sensitivity is not necessarily private. On the other hand we could ensure privacy by scaling
noise proportional to the global sensitivity (i.e., maxD∈D LSAf

(D) ≤ maxD∈D 2αf(D) + ∆f )
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but noise will likely be too large to obtain meaningful accuracy guarantees. We adopt
the strategy of adding noise proportional to the smooth sensitivity [41] of Af instead. In
particular, [41] observed that if we can find a “sufficiently smooth” function Sf (D) ≥ LSAf

(D)
upper bounding the local sensitivity of Af then we can preserve privacy by computing Af (D)
and adding noise scaled according to Sf (D).

We can show that the function Sf (D) = 4αAf (D) + ∆f is a β-smooth upper bound
on the local sensitivity of Af for β = 6α where Sf is β-smooth if Sf (D) ≤ eβSf (D′) for
all pairs of neighboring datasets D ∼ D′. To achieve privacy using the smooth sensitivity
framework we need to ensure that β is sufficiently small relative to our privacy parameters ε

and δ (if applicable). For example, we can achieve
(
ε, δ

(
1 + exp

(
ε
2
)))

-differential privacy
by adding Laplace Noise scaled by 2Sf (D)

ε , but only if Sf is β-smooth for β ≤ ε
2 ln(2/δ) . For

pure differential privacy we require that β < ε
2(λ+1) where λ is a parameter of the noise

distribution – smaller λ implies higher variance.
If we want to ensure that the output is accurate, we also need to ensure that the

calibrated noise with Sf (D) is small e.g., o(f(D)) + O (∆f ). Note that by definition since
Sf (D) = 4αAf (D) + ∆f , and we add noise proportional Sf (D), we expect that the noise
added may be > αf(D). Thus, in order to address this challenge, our basic strategy is to
run the original (non-private) approximation algorithm Af with tuned error factors e.g.,
we decrease α by a multiplicative factor of ε

ln(n) , let ρ := εα
ln(n) . Since we are now running

Af (D, ρ, 0, 0), we have that the function Sf (D) = 4ρAf (D) + ∆f is a β-smooth upper bound
on the local sensitivity of the algorithm Af (·, ρ, 0, 0). Assuming the global sensitivity ∆f

is small, we can now show that w.h.p. the noise sampled proportional to Sf (D) is at most
αf(D) + O (∆f /ε) thus resulting in an ε-differentially private algorithm with reasonable
accuracy.

By tuning the parameter α we actually accomplish two useful properties (1. accuracy)
we decrease both the local sensitivity and our smooth upper bound Sf (D) which reduces
the magnitude of the noise that we add, and (2. privacy) we achieve β-smoothness for
increasingly small values of β so that the required condition β ≤ ε

2 ln(2/δ) (or β < ε
2(λ+1) ) can

be satisfied if we want to scale noise according to Sf (D).

Extending to deterministic Af with multiplicative and additive error. More generally, if
we have an (α, κ, 0)-approximation algorithm Af then we can show that Sf (D) = 4αAf (D) +
∆f +4τ is a β-smooth upper bound on the local sensitivity of Af with β = 6α (see Lemma 14).
In particular, note that the additive error term κ does not adversely impact smoothness.
Thus, we can achieve pure differentially privacy by tuning α such that 6α < β < ε

2(λ+1) and
scaling our noise according to Sf (D) (see Lemma 15). We can also obtain stronger accuracy
guarantees by relaxing the requirement for pure DP and tuning α such that 6α ≤ β ≤ ε

2 ln(2/δ)
so that we can sample our noise from the Laplace distribution which has strong concentration
guarantees.

When Af is randomized. The remaining challenge is to handle randomized approximation
algorithms Af which are only guaranteed to output a good approximation with high probab-
ility i.e., with non-zero probability δ > 0 the algorithm is allowed to output an arbitrarily bad
approximation. In particular, let us consider an (α, κ, δ)-approximation algorithm Af . For
any possible input D we are always guaranteed that with probability ≥ 1 − δ the algorithm
Af (D) outputs a good approximation (1 − α)f(D) ≤ Af (D) ≤ (1 + α)f(D). Unfortunately,
the function Sf (D) = 4αAf (D) + ∆f + 4κ is no longer guaranteed to be a β-smooth upper
bound on the local sensitivity of Af since Af may sometimes output a value outside the
specified approximation bounds.
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In order to address this challenge, we define a function gf (D) that matches Af (D) with
probability at least 1 − δ/2 and is always guaranteed to output a good approximation.
We emphasize that gf (D) may not be efficiently computable, but it is well-defined and
only used for the purpose of analysis. More specifically, we set gf (D) = Af (D) as long
as (1 − α)f(D) − κ ≤ Af (D) ≤ (1 + α)f(D) + κ. If Af (D) > (1 + α)f(D), then we
define gf (D) := (1 + α)f(D), similarly, if Af (D) < (1 − α)f(D), then we define gf (D) :=
(1 − α)f(D) + κ. Observe that we are always guaranteed that (1 − α)f(D) − κ ≤ gf (D) ≤
(1 + α)f(D) + κ. Thus, Sf (D) = 4αgf (D) + ∆f + 4τ is a β = 6α-smooth upper bound on
the local sensitivity of gf (see Lemma 8). As long as 6α ≤ β ≤ ε

2 ln(2/δ) we could preserve(
ε, δ

(
1 + exp

(
ε
2
)))

-differential privacy by outputting gf (D) plus Laplace Noise scaled by
8αgf (D)+∆f +8τ

ε i.e., scaled according to our β-smooth upper bound on the local sensitivity of
gf . Unfortunately, the function gf may not be efficiently computable. Thus, we substitute
gf for Af and instead output Af (D) plus Laplace noise scaled according to 8αAf (D)+∆f +8τ

ε .
While 4αAf (D) + ∆f + 4τ is not necessarily a β-smooth upper bound on the local sensitivity
of A, the key point is that the latter (efficiently computable) procedure is equivalent to
the former (differentially private) procedure as long as gf (D) = Af (D) which happens
as long as Af outputs a good approximation i.e., except with probability δ/2. Thus, we
can apply a hybrid argument to argue that the final efficiently computable algorithm is(
ε, δ

2 + δ
(
1 + exp

(
ε
2
)))

-differential privacy (see Lemma 10). In order to ensure accuracy, we
use the same strategy as before, i.e., we run Af (D, ρ, τ, δ/2), where ρ ≤ εα

log(1/δ) . Sampling
noise proportional to Sf (D) (where Sf (D) is now defined in terms of ρ), and absorbing
the failure probability of algorithm Af into the DP failure probability term δ, results in
an approximate differentially private algorithm. Finally applying the postprocessing step
results in a pure differentially private algorithm. We refer to the full proofs ( Section 2) for
additional details.

Applications. We give some intuition on how we apply Theorem 3 to various applications by
choosing appropriate parameters. Recall that with probability 1 − δ − exp(−γ), A′

f outputs
(1 − α′)f(D) − κ′ − 2∆f

ε · γ ≤ A′
f (D) ≤ (1 + α′)f(D) + κ′ + 2∆f

ε · γ, where α′ = α(ε+16γ)
12 log(4/δ) , and

κ′ = κ
(

2γα
3 log(4/δ) + 8γ

ε + 1
)

with a time/space/query complexity blow-up incurred by running
the original algorithm Af with multiplicative accuracy parameter ρ = εα

log(4/δ) . First, observe
that if the original algorithm Af has time/space/query complexity with a dependence on
poly( 1

α ), then the resulting time/space/query complexities for A′
f will still have a polynomial

dependence, i.e., poly( log(4/δ)
α ) – this naturally leads to FPRAS or FPTAS applications,

as well as other classes of approximation algorithms like sublinear time or space. On the
otherhand, if the time/space/query complexity of Af has a non-polynomial dependence
on 1/α, e.g., exp( 1

α ), then since δ is typically negl(n) or 1
nc for c > 0, the resulting DP

algorithm A′
f could have much worse time/space/query-guarantees with respect to n, e.g.,

in an extreme case if we set δ = 2− poly(n) then ρ = Ω(poly(n)/α) and we could incur a
exp( poly(n)

α ) multiplicative overhead in the running time. It is worth noting that one could
optionally reduce the additive error term κ′ for A′

f by reducing the error term κ for A.
We further emphasize this trade-off between obtaining small failure probability bounds

and the accuracy or resource guarantees. Consider the following two examples – (Example 1)
if we set the probability of failure, i.e., exp(−γ) = δ = 1

nc for any c > 0, then the resulting
approximation parameters are roughly α′ = α(1 + o(1)), and κ′ = κ(α + log(n)

ε + 1)5, and

5 In the applications we consider the original (non-private) approximation algorithm typically has only
multiplicative or only additive error and not both. In particular, we typically either have α > 0 and
κ = 0 or κ > 0 and α = 0, but not the case where α > 0 and κ > 0. Considering the case when κ ̸= 0,
and α = 0, we (roughly) have κ′ = κ( log(n)

ε + 1).
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the additional error term depending on global sensitivity is roughly ∆f log(n)
ε . We incur a

time/space overhead by running Af with multiplicative accuracy parameter ρ = Ω(εα/ log n)
instead of α. (Example 2) if we set the probability of failure, i.e., exp(−γ) = δ = 1

nlog log(n) −
negl(n), then α′ remains the same as before, and now κ′ = κ(α + log(n) log log(n)

ε + 1), but the
additional error term depending on global sensitivity becomes ∆f log(n) log log(n)

ε . In this latter
case we incur time or space overhead by running Af with multiplicative accuracy parameter
ρ = Ω

(
εα

log n log log n

)
– to reduce the κ′ log n log log n error term it could be useful to run Af

with additive error parameter κ
log n log log n which may incur additional time or space overhead.

Thus these two examples illustrate how, as we decrease the failure probability, the accuracy
and resource (time/space in this case) guarantees become worse. See full version [11] for
applications to sublinear time and streaming algorithms.

2 General Transformation for Approximation Algorithms

In this section, we formally define our black-box differentially private transformation for
(randomized) approximation algorithms. Given a tunable approximation (see Definition 2)
algorithm of f , call it Af , that outputs an (α, κ, δ)-approximation, our framework for
randomized algorithms involves two steps – (1) Apply Algorithm 1 to Af to obtain an (ε, δ)-
DP algorithm A′

f with accuracy guarantees outlined in Theorem 3 (2) Apply postprocessing
step to the output of A′

f to obtain an ε-DP algorithm (see Theorem 5).
We first prove Theorem 3 that provides theoretical guarantees for algorithm A′

f (Al-
gorithm 1). This is our main contribution as the postprocessing step to obtain pure DP
applies a folkore result.

Observe that even for the case when the original algorithm Af gives an (α, 0, δ)-
approximation of f (i.e., κ = 0), the resulting DP algorithm A′

f will still have an additive
error, this additive error is inherent due to the requirement of adding Laplace noise to
preserve DP. We emphasize that the Laplace noise added to the output of algorithm Af

depends on the global sensitivity of the function f , therefore, we can only get meaningful DP
approximation algorithms using this transformation for functions with low global sensitivity.

Proof of Theorem 3. A′
f is defined in Algorithm 1 – it first runs Af (D, ρ, κ, δ/2) where

ρ := εα
12 log(4/δ) and then adds Laplace Noise. Thus, the resource used by A′

f is R (n, ρ, κ, δ).
The privacy guarantee follows from Lemma 10, and the accuracy guarantee follows from
Lemma 12. ◀

▶ Remark 7. When Af is a PRAS, by definition, the output of Af is an (α, 0, δ)-approximation
of f running in time T (n, α, 0, δ) = poly(n, 1/α, log(1/δ)). Applying Theorem 3 with negli-
gible δ = n− log n and γ = log2 n for any α′ > 0 we obtain a private

(
α′, O

(
∆f

ε log2 n

)
, 2n− log n

)
-

approximation with polynomial running time poly(n, 1/ε, 1/α′).

▶ Lemma 8. Let 0 < ρ < 1/2. Suppose that Af outputs a (ρ, τ, δ)-approximation of a
function f : D → R+ with global sensitivity ∆f . Let Af,R denote a deterministic run of A
using a fixed set of random coins R. Define function gf,R by

gf,R(D) =


Af,R(D) if (1 − ρ)f(D) − τ ≤ Af,R(D) ≤ (1 + ρ)f(D) + τ

(1 − ρ)f(D) − τ if Af,R(D) < (1 − ρ)f(D) − τ

(1 + ρ)f(D) + τ if Af,R(D) > (1 + ρ)f(D) + τ

Then the function Sf (D) = 4ρgf,R(D) + 4τ + ∆f is a β-smooth upper bound for gf,R where
β ≥ 6ρ.
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Proof. Fix an arbitrary set of random coin tosses R. We frequently use the fact that
(1 − ρ)f(D) − τ ≤ gf,R(D) ≤ (1 + ρ)f(D) + τ . We also note that since 0 ≤ ρ < 1/2, we have
that 1

2 f(D) − τ ≤ gf,R(D) ≤ 2f(D) + τ .
First, we show that Condition 1 of Definition 24 holds. Without loss of generality, we

assume f(D) ≥ f(D′), where D′ is any neighboring input. Then:

LSgf,R
(D) = max

D′:D∼D′
∥gf,R(D) − gf,R(D′)∥

≤ ∥(1 + ρ)f(D) + τ − (1 − ρ)f(D′) + τ∥
≤ ρ∥f(D) + f(D′)∥ + 2τ + ∆f

≤ 2ρf(D) + 2τ + ∆f

≤ 4ρgf,R(D) + 2ρτ + 2τ + ∆f as 1
2f(D) − τ ≤ gf,R(D)

≤ 4ρgf,R(D) + 4τ + ∆f

= Sf (D)

Next, we show that Condition 2 of Definition 24 holds below. We have:

Sf (D) = 4ρgf,R(D) + 4τ + ∆f

≤ 4ρ (1 + ρ) f(D) + 4ρτ + 4τ + ∆f by def of gf,R

≤ 4ρ (1 + ρ) (∆f + f(D′)) + 4ρτ + 4τ + ∆f since D ∼ D′

≤ 4ρ(1 + ρ)f(D′) + (4ρ(1 + ρ) + 1)∆f + 4ρτ + 4τ

≤ 4ρ
(1 + ρ)
1 − ρ

(gf,R(D′) + τ) + (1 + 6ρ)∆f + 4ρτ + 4τ by def of gf,R

≤ 4ρ(1 + ρ)(1 + 2ρ)(gf,R(D′) + τ) + (1 + 6ρ)∆f + 4ρτ + 4τ

≤ 4ρ(1 + ρ)(1 + 2ρ)gf,R(D′) + 12ρτ + (1 + 6ρ)∆f + 4ρτ + 4τ

≤ 4ρ(1 + ρ)(1 + 2ρ)gf,R(D′) + (1 + 6ρ)(∆f + 4τ)
≤ 4ρ(1 + 4ρ)gf,R(D′) + (1 + 6ρ)(∆f + 4τ)
≤ (1 + 6ρ)(4ρgf,R(D′) + ∆f + 4τ)
≤ e6ρ · (4ρgf,R(D′) + ∆f + 4τ) = eβSf (D′),

where β ≥ 6ρ. ◀

▶ Remark 9. As a special case if we have a (0, κ, 0)-approximation algorithm Af (i.e., no
multiplicative error, zero failure probability) then applying Lemma 8 yields the smooth upper
bound Sf (D) = 4τ + ∆f . We observe that this smooth upper bound is independent of D

and, therefore, Sf is just an upper bound on the global sensitivity of gf . Furthermore, in this
special case we are guaranteed that Af (D) = gf (D) with probability 1. Thus, in this special
case, we can achieve pure ε-DP by computing Af (D) and adding Laplace noise proportional
to Sf .
If we have a (0, κ, δ)-approximation algorithm for δ ̸= 0 then we still have Sf (D) = 4τ + ∆f

which means that Sf (D) is an upper bound on the global sensitivity of gf . However,
computing Af (D) and adding Laplace noise proportional to Sf does not necessarily yield a
pure DP algorithm since we may have ∆f (D) ̸= Af (D) with non-zero probability δ. If we
have (α, κ, 0)-approximation algorithm Af , and α ̸= 0, since Sf (D) = 4ρAf (D) + 4τ + ∆f

still depends on the input D. However, we can still achieve DP using Theorem 6.
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Applying Lemma 8 to the theorem calibrating noise to smooth bounds on the smooth
sensitivity [41] we show that the Algorithm 1 preserves privacy below.

▶ Lemma 10 (Privacy). Algorithm 1 is (ε, δ′)-differentially private where δ′ = δ(1+exp(ε/2)).

Proof. Consider a modification of Algorithm 1, call it Algorithm 1’ where instead of com-
puting Af (D, ρ, τ, δ/2) we instead sample the random coins R that Af would have used
and replace the value Af (D, ρ, τ, δ/2; R) (which we denote as Af,R(D) in the sequel) with
gf,R(D).The function gf,R may not be efficiently computable, but we only use Algorithm 1’
for the purpose of analysis. We first observe that by Lemma 8, for any β ≥ 6ρ the function
Sf (D) = 4ρgf,R(D) + 4τ + ∆f is a β-smooth upper bound on the sensitivity of gf,R. Thus,
by Theorem 25, it is sufficient to set ρ := εα

12 log(4/δ) for 6ρ ≤ β ≤ ε

2 ln( 4
δ ) and add noise

proportional to Lap
(

2Sf (D)
ε

)
= Lap

(
2(4ρgf,R(D)+4τ+∆f )

ε

)
to preserve (ε, δ/2)-privacy of

Algorithm 1’.
Since gf,R(D) is Af,R(D) except with probability δ/2, Algorithm 1 is identical to Al-

gorithm 1’ except with probability δ/2. Thus, this shows that Algorithm 1 is (ε, δ)-private. ◀

▶ Fact 11. If Y ∼ Lap(b), then Pr[|Y | ≥ ℓ · b] = exp(−ℓ).

▶ Lemma 12 (Accuracy). For all γ > 0, with probability 1 − exp(−γ) − δ,(
1 − ρ(1 + 16γ

ε
)
)
f(D) − τ

(8γρ

ε
+ 8γ

ε
+ 1

)
− 2∆f γ

ε
≤ A′(D) ≤

(
1 + ρ(1 + 16γ

ε
)
)
f(D)

+ τ
(8γρ

ε
+ 8γ

ε
+ 1

)
+ 2∆f γ

ε
.

Proof. First, using Fact 11, for any γ > 0, we have that,

Pr
[
|X| ≥ 2(4ρA(D) + 4τ + ∆f )

ε
· γ

]
= exp(−γ)

Af is a (ρ, τ, δ/2)-approximation of f so for any D ∈ D, we have that Af (D) ≤ (1+ρ)f(D)+τ

with probability 1 − δ/2. Since 0 < ρ < 1/2 we have (1 + ρ)f(D) + τ ≤ 2f(D) + τ . Therefore,
by a union bound,

Pr
[(

Af (D) > (1 + ρ)f(D) + τ
)

∨
(
Af (D) < (1 − ρ)f(D) − τ

)
∨

(
|X|

≥ 2(4ρAf (D) + 4τ + ∆f )
ε

· γ
)]

≤ δ/2 + exp(−γ)

Thus, with probability 1 − exp(−γ) − δ/2, we have that

(1 − ρ)f(D) − τ ≤ Af (D) ≤ (1 + ρ)f(D) + τ ≤ 2f(D) + τ (1)

and

|X| <
2(4ρAf (D) + 4τ + ∆f )

ε
· γ (2)

By plugging in Eq. 1 into Eq. 2, we have that with probability 1 − exp(−γ) − δ/2,

|X| <
2(4ρ(2f(D) + τ) + 4τ + ∆f )

ε
· γ

Overall, this means that with probability 1 − exp(−γ) − δ/2,

(1 − ρ)f(D) − τ − 2(4ρ(2f(D) + τ) + 4τ + ∆f )
ε

· γ ≤ A′
f (D)

≤ (1 + ρ)f(D) + τ + 2(4ρ(2f(D) + τ) + 4τ + ∆f )
ε

· γ

Grouping the like terms together gives the theorem statement. ◀
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▶ Theorem 5. Let M = maxD f(D) and let parameter K > 0. If A′
f (D) is (ε, δ)-DP

algorithm with accuracy guarantee (1 − α)f(D) − κ ≤ Af (D) ≤ (1 + α)f(D) + κ holding with
probability 1 − η then there exists an algorithm A′′

f (D) which is ε-DP with accuracy guarantee
(1 − α)f(D) − κ − 1

KM ≤ Af (D) ≤ (1 + α)f(D) + κ + 1
KM with probability at least 1 − η − p

where p = δK(M+1)
eε−1+δK(M+1) .

The proof of Theorem 5 is in Appendix D. At a high level our idea is to define A′
f (D) =

⌈KAf (D)⌉
KM . The rounding step introduces a small additive error term ≤ 1

KM and ensures
that A′

f (D) now has bounded range |R| ≤ (M + 1)K. Since A′
f has bounded range we can

apply a folklore result (see Theorem 19) to transform this (ε, δ)-DP algorithm into an ε-DP
algorithm.

2.1 Achieving Pure DP for Approximation Algorithms with Zero Failure
Probability

In this section we show how one can achieve pure differential privacy (δ = 0) when we have
a tunable (α, κ, 0)-approximation algorithm. The basic framework is the same except that
we use the Cauchy distribution instead of Laplace when applying the Smooth Sensitivity
framework – see Theorem 25. Since we assume δ = 0 in this section we will sometimes simplify
notation and write T (n, α, κ) (resp. S(n, α, κ)) instead of T (n, α, κ, 0) (resp. S(n, α, κ, 0)).
We move the proofs in this section to Appendix C.

Algorithm 2 ε-differentially private framework for tunable deterministic approximation algorithms.

Input: Input set D, accuracy parameter α ∈ (0, 1), differential privacy parameter ε, approx.
algorithm Af .

1: Let xA := Af (D, ρ, τ, 0) where ρ := εα
36 and τ := κ.

2: return xA + X where X ∼ C
(

6(4ρxA+∆f )
ε

)

▶ Remark 13. When Af is a PTAS, by definition, the output of Af is an (α, 0, 0)-approximation
of f running in time T (n, α, 0) = poly(n, 1/α). Applying Theorem 6 with for any α >

0 we obtain a private
(

α, O
(

∆f

ε

)
, 9/10

)
-approximation with polynomial running time

poly(n, 1/ε, 1/α).

▶ Lemma 14. Suppose that Af outputs a (ρ, τ, 0)-approximation where 0 < ρ < 1/2 of a
function f : D → R+ with global sensitivity ∆f . Then the function Sf (D) = 4ρAf (D) + 4τ +
∆f is a β-smooth upper bound for Af where β ≥ 6ρ.

The proof remains the same as in Lemma 8. Applying Lemma 14 to the theorem calibrating
noise to smooth bounds on the smooth sensitivity [41] we show that the Algorithm 2 preserves
privacy below.

▶ Lemma 15. Algorithm 2 is ε-differentially private.

▶ Lemma 16. For all γ > 6.5, with probability at least 9/10,(
1 − ρ

(
1 + 48γ

ε

))
f(D) − 24(ρ + 1)γτ

ε
− 6∆f

ε
· γ ≤ A′

f (D)

≤
(

1 + ρ

(
1 + 48γ

ε

))
f(D) + 24(ρ + 1)γτ

ε
+ 6∆f

ε
· γ
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▶ Remark 17. For simplicity, we have chosen to sample from the standard cauchy distribution
λ = 2, more generally, if we sample noise with density h(z) ∝ 1

1+|z|λ , where λ = c, then with
probability 1 − δ, γ = 1

δ1/c in Lemma 16.

Application to the Knapsack Problem. As a fun example we consider the knapsack problem.
The knapsack problem is well known to be NP-Hard, but also admits an FPTAS. To define an
instance of the knapsack problem we have a maximum weight capacity W for the knapsack
and n items each with a value vmax ≥ vi ≥ 0 and a weight wi ≥ 0. The goal is to find a
subset S ⊆ [n] of items to put in the knapsack maximizing the total value v(S) =

∑
i∈S vi

subject to the constraint that the total weight w(S) =
∑

i∈S wi does not exceed our capacity
i.e., w(S) ≤ W .

For the purpose of this illustration let’s fix the capacity W and weights w1, . . . , wn and let
f(v1, . . . , vn) denote the value of the optimal knapsack solution given values v1, . . . , vn. Let’s
say that two knapsack instances (W, v1, . . . , vn, w1, . . . , wn) and (W, v′

1, . . . , v′
n, w1, . . . , wn)

are neighbors if
∑

i ∥vi − v′
i| ≤ 1. Thus, we are viewing the exact value of each item as

sensitive and the goal of differential privacy is to prevent an attacker from inferring these
sensitive values exactly. Observe that the global sensitivity of f is upper bounded by
∆f ≤ maxv∼v′ maxS⊆[n] |v(S) − v′(S)| ≤ 16.

Since there is an FPTAS algorithm for Knapsack we can find a non-private approximation
algorithm Af (v⃗, α, κ = 0) running in time T (n, α) = poly(n, 1/α). If we apply Theorem 6
then for any target α′ our ε-DP algorithm A′

f runs in time poly(n, 1/ε, 1/α) and solves
Knapsack with additive error O (1/ε) and multiplicative error α′ with probability at least
9/10. If we don’t require pure DP then we can also apply Theorem 3 then for any target α′ our
algorithm A′

f runs in time poly(n, 1/ε, 1/α, log(1/δ)) and solves Knapsack with probability
at least 1 − δ − exp(−γ) with additive error at most O (γ/ε) and multiplicative error α′.

3 Conclusion and Open Questions

In this work, we introduce a general framework for transforming a non-private approximation
algorithm into a differentially private approximation algorithm. We show specific applications
of our framework for sublinear time and sublinear space algorithms. Although our framework
applies to a large variety of problems and settings, it does incur a small penalty in both
runtime and space for achieving differential privacy. A natural question is whether these
losses are necessary for a general black-box framework and what are sufficient conditions for
achieving a black-box reduction.

It also seems possible that our framework could provide a method for achieving differen-
tially private algorithms when the important resource is not runtime, number of queries, or
space. For example, in distributed algorithms, it is often desired to achieve sublinear commu-
nication while in learning/testing, it is often desired to achieve sublinear query complexity.
We believe that exploring the limits and capabilities of our framework in those settings would
be a natural future direction of work.

6 We could also define neighboring knapsack instances such that we can completely replace the value of
any item i.e., v and v′ are neighbors if there exists some index i ∈ [n] such that vi ̸= v′

i and vj = v′
j for

all j ≠ i. However, in this case we can we would have large global sensitivity ∆f = vmax. Thus, we
won’t be able to design an accurate differentially private approximation even if we are willing to solve
the NP-Hard knapsack problem exactly.
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A Related Work

One of the first differentially private frameworks for computing general functions was
introduced by [23] which released functions with additive noise, where the noise is calibrated
according to the global sensitivity of the function f . This framework was generalized by [41],
to handle functions which might have a high global sensitivity but are usually less sensitive
in practice. The framework allows the release of functions with instance-specific noise, where
the noise that is added is not just determined by f but by the input dataset as well. The
noise magnitude calibrated is according to the smooth sensitivity of f on the input dataset
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which is a smooth upper bound on the local sensitivity of f on an input dataset. The
smooth sensitivity of a function may be hard to compute, therefore in the same work, [41]
give a generic method called the sample and aggregate method that bypasses the explicit
computation of the smooth sensitivity of the function and works even when the function
is given as a black-box. [21] suggested a framework called Propose-Test-Release to release
statistical estimators with additive noise where the noise is calibrated according to the local
sensitivity of the estimator. Note that adding noise proportional to the local sensitivity of a
function with respect to an input set usually does not preserve privacy, but their approach
first proposes a bound on the local sensitivity and privately tests whether this bound holds
for the specific input set, and then releases the noisy response to the query.

In the context of developing differentially private frameworks for approximation algorithms,
[10] formally introduced the notion of coupled global sensitivity of a randomized algorithm,
which gives an analogous framework as that of the global sensitivity framework [23], but for
randomized approximation algorithms instead of deterministic functions. In this framework,
one can run a non-private randomized approximation algorithm Af (D) on the dataset, and
privacy is obtained by adding noise proportional to the coupled global sensitivity of Af .
More formally, the coupled global sensitivity measures the worst-case L1-sensitivity of the
outputs of a randomized algorithm Af on neighboring inputs over a minimum coupling of
the internal coin tosses of Af .

In independent work, Tetek [45] also explores the problem of transforming randomized
approximation algorithms into (pure) differentially private approximation algorithms. In
contrast to our results Tetek’s transformation [45] assumes that the error of the original
approximation algorithm either has small subexponential diameter or bounded mean error –
assumptions that would not apply generically to every (tunable) approximation algorithm.
Assuming subexponential error their work shows that it is possible to achieve ε-DP by
adding Laplace Noise yielding accuracy guarantees that hold with high probability. However,
the assumption of the error being subexponential is quite strong and does not often hold
for many randomized approximation algorithms. While assuming bounded mean error
is a weaker assumption on the error of the non-private randomized algorithm, however
the DP noise is sampled from the Pareto distribution, which has polynomial tail bounds.
This leads to accuracy guarantees which only hold with constant probability. Note that
applying the median trick commonly used to amplify success probability in the non-private
literature adversely affects the privacy budget and is thus not desirable. In contrast, our
transformation applies generically to any (tunably) accurate approximation algorithm and we
achieve accuracy guarantees that hold with high probability for the same problems studied
in their paper. Finally, we correct an outdated claim7 from the comparison to our work
detailed in [45] that says that we only achieve approximate privacy. We can achieve pure DP
algorithms by applying a postprocessing step to the output of our transformation as outlined
in Theorem 5.

B Preliminaries

We use the notation Õ (f(n)) to mean f(n) · polylog(f(n)). We define datasets D and D′

as neighboring, denoted as D ∼ D′, if removing or adding one point in D results in D′;
alternatively, if changing one data point in D results in D′.

7 A prior version of the paper achieved pure DP, but that transformation (Theorem 1.5) only applied to
deterministic tunable approximation algorithms
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▶ Definition 18 (Differential privacy). [22] An algorithm A is (ε, δ)-DP if for every pair of
neighboring datasets D ∼ D′, and for all sets S of possible outputs, we have that Pr[A(D) ∈
S] ≤ eε Pr[A(D′) ∈ S] + δ. When δ = 0 we simply say that the algorithm is ε-DP.

Given an (ε, δ)-DP algorithm, one can obtain an ε-DP algorithm under certain conditions
outlined below. We include the proof for completeness in Appendix D.

▶ Theorem 19 (Approximate DP to Pure DP). Let A : D → R. If A is an (ε, δ)-DP algorithm
such that δ ≤ (eε−1)p

|R|(1−p) then there is an algorithm A′ such that A′ is ε-DP defined in the
following manner.

A′(D) =
{

A(D) with probability 1 − p

random(R) with probability p

where R is the range of Af .

We define the distributions we will use to sample additive noise from below.

▶ Definition 20 (Laplace distribution). We say a random variable X is drawn from a Laplace
distribution with mean µ and scale b > 0 if the probability density function of X at x is
1
2b exp

(
− |x−µ|

b

)
. We use the notation X ∼ Lap(b) to denote that X is drawn from the

Laplace distribution with scale b and mean µ = 0.

▶ Definition 21 (Cauchy distribution). We say a random variable X is drawn from a Cauchy
distribution with location parameter x0 and scale b > 0 if the probability density function of
X at x is 1

πb

(
b2

(x−x0)2+b2

)
. We use the notation X ∼ C(b) to denote that X is drawn from

the Cauchy distribution with scale b and location parameter x0 = 0.

We formally define the concept of global sensitivity which is a worst-case notion of
sensitivity for deterministic functions below.

▶ Definition 22 (Global sensitivity). The global sensitivity of a function f : D → Rd is defined
by

∆f = max
D,D′∈D,D∼D′

∥f(D) − f(D′)∥1.

We define the notion of local sensitivity for a fixed input, which can be much smaller
than the global sensitivity, but in general, adding noise calibrated according to the local
sensitivity does not preserve DP.

▶ Definition 23 (Local sensitivity). For f : D → R and D ∈ D, the local sensitivity of f at
D is defined as

LSf (D) = max
D′:D∼D′

∥f(D) − f(D′)∥1.

Note: if f : D × R → R is a randomized function which, in addition to a dataset D ∈ D
takes random coins r ∈ R as input we simply define LSf (D) = maxr∈R LSfr

where fr(D) .=
f(D; r).

In order to add instance-specific noise, we define the notions of β-smooth upper bound
which is a smooth upper bound on the local sensitivity.

APPROX/RANDOM 2023
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▶ Definition 24 (Smooth upper bound on local sensitivity). For β > 0, a function S : D → R
is a β-smooth upper bound on the local sensitivity of f : D → R if
(1) For all D ∈ D, we have S(D) ≥ LSf (D).
(2) For all D, D′ ∈ D with ∥D − D′∥1 = 1, we have S(D) ≤ eβ · S(D′).
Finally, although one cannot add noise calibrated with local sensitivity, one can add noise
proportional to a β-smooth upper bound on the local sensitivity as follows.

▶ Theorem 25 (Corollary 2.4 in [41]). Let f : D → R and S : D → R be a β-smooth upper
bound on the local sensitivity of f .
(1) If β ≤ ε

2(λ+1) and λ > 1, the algorithm D → f(D) + 2(λ+1)S(D)
ε · η, where η is sampled

from the distribution with density h(z) ∝ 1
1+|z|λ , is ε-differentially private.

(2) If β ≤ ε
2 ln(2/δ) and δ ∈ (0, 1), then the algorithm D → f(D) + 2S(D)

ε · η where η ∼ Lap(1)
is (ε, δ′)-differentially private for δ′ = δ

(
1 + exp

(
ε
2
))8.

C Proofs of Section 2.1

Proof of Theorem 6.

Proof. A′
f is defined in Algorithm 2 – we first run Af (D, ρ, κ) where ρ := εα

36 and then we
add noise proportional to the standard Cauchy distribution. Thus, the resource used will be
R(n, ρ, κ).

The privacy guarantee follows from Lemma 15, and the accuracy guarantee follows from
Lemma 16. ◀

Proof of Lemma 15

Proof. We first observe that by Lemma 14, Sf (D) = 4Af (D) + 4τ + ∆f is a β-smooth upper
bound for Af . Recall that ρ := εα

36 , thus we can apply Theorem 25 (with λ = 2) where
6ρ ≤ β ≤ ε

6 and conclude that it is sufficient to add noise proportional to C
(

2(2+1)Sf (x)
ε

)
=

C
(

6(4ρAf (D)+4τ+∆f )
ε

)
to preserve ε-privacy.

◀

▶ Fact 26. If Y ∼ C(x; 0, b), then Pr[|Y | ≥ ℓb] = 1 − 2 tan−1(ℓ)
π .

Proof of Lemma 16.

Proof. First, we invoke Fact 26 below,

Pr
[
|X| ≥ 6(4ρAf (D) + 4τ + ∆f )

ε
· γ

]
= 1 − 2 tan−1(γ)

π
≤ 1

10

where the final inequality comes from using the fact that γ > 6.5. In other words, with
probability ≥ 9/10,

|X| ≤ 6(4ρAf (D) + 4τ + ∆f )
ε

· γ (3)

Af is a (ρ, τ, 0)-approximation of f so for any D ∈ D, we have that Af (D) ≤ (1+ρ)f(D)+ τ .
Since 0 < ρ < 1/2 we have (1 + ρ)f(D) + τ ≤ 2f(D) + τ .

8 These bounds differ slightly from those listed in the original paper (Corollary 2.4 in [41]). We confirmed
with the authors in private communication that δ should be multiplied by (1 + exp(ε/2)).
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By plugging in the relation Af (D) ≤ 2f(D) + τ into Eq. 3, we have that with probability
at least 9/10,

|X| ≤ 6(8ρf(D) + 4ρτ + 4τ + ∆f )
ε

· γ

Thus with probability at least 9/10,

(1 − ρ)f(D) − τ − 6(8ρf(D) + 4ρτ + 4τ + ∆f )
ε

· γ ≤ A′
f (D)

≤ (1 + ρ)f(D) + τ + 6(8ρf(D) + 4ρτ + 4τ + ∆f )
ε

· γ

Rearranging the like terms together in the above expression completes the proof. ◀

D Proof of Approximate DP to Pure DP transformation

▶ Theorem 5. Let M = maxD f(D) and let parameter K > 0. If A′
f (D) is (ε, δ)-DP

algorithm with accuracy guarantee (1 − α)f(D) − κ ≤ Af (D) ≤ (1 + α)f(D) + κ holding with
probability 1 − η then there exists an algorithm A′′

f (D) which is ε-DP with accuracy guarantee
(1 − α)f(D) − κ − 1

KM ≤ Af (D) ≤ (1 + α)f(D) + κ + 1
KM with probability at least 1 − η − p

where p = δK(M+1)
eε−1+δK(M+1) .

Proof. Note that WLOG we can assume that Af (D) outputs a value between 0 and M

since we can always truncate the output to this range – this operation preserves privacy by
postprocessing and does not adversely affect accuracy. For some K > 0, define algorithm
A′′

f (D) as outputting ⌈KAf (D)⌉
KM . Observe that A′′

f is (ε, δ)-DP by postprocessing and the
accuracy guarantee of A′′

f is almost identical to that of Af since by definition |A′′
f (D) −

Af (D)| < 1
KM . By post-processing we can ensure that the range R of A′′

f (D) is small
|R| = (M +1)K since R = { i

KM : 0 ≤ i ≤ KM}. Thus, we can pick p such that δ ≤ (eε−1)p
|R|(1−p)

and apply a folklore theorem (see Theorem 19) to transform our (ε, δ)-DP algorithm A′′
f (D)

to an ε-DP algorithm A′
f (D) in the following manner:

A′
f (D) =

{
A′′

f (D) with probability 1 − p

random(R) with probability p

By combining the accuracy guarantees of Af and A′′
f we see that with probability 1−η−p, we

have that (1−α)f(D)−κ− 1
KM ≤ Af (D) ≤ (1+α)f(D)+κ+ 1

KM where p = δK(M+1)
eε−1+δK(M+1)

as claimed. ◀

▶ Theorem 19 (Approximate DP to Pure DP). Let A : D → R. If A is an (ε, δ)-DP algorithm
such that δ ≤ (eε−1)p

|R|(1−p) then there is an algorithm A′ such that A′ is ε-DP defined in the
following manner.

A′(D) =
{

A(D) with probability 1 − p

random(R) with probability p

where R is the range of Af .

Proof. Recall that we define A′ as follows:

A′(D) =
{

A(D) with probability 1 − p

random(R) with probability p

APPROX/RANDOM 2023
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Let D, D′ ∈ D be neighboring databases and fix output y ∈ R. We first give a general
claim regarding the probability of A′(D) = y in terms of the Pr[A(D) = y].

▷ Claim 27. For D ∈ D,

Pr[A′(D) = y] = Pr[A(D) = y] (1 − p) + p

|R|

Now we need to show that Pr[A′(D) = y] ≤ eε Pr[A′(D′) = y].

Pr[A′(D) = y]

= Pr[A(D) = y] (1 − p) + p

|R|

≤ (1 − p) (eε Pr[A(D′) = y] + δ) + p

|R|

≤ eε Pr[A(D′) = y] (1 − p) + δ (1 − p) + p

|R|
(4)

= eε(Pr[A′(D′) = y] − p

|R|
) + δ (1 − p) + p

|R|
(5)

≤ eε Pr[A′(D′) = y] + δ (1 − p) + p

|R|
(1 − eε)

≤ eε Pr[A′(D′) = y] (6)

The transition 4 to 5 follows from the observation that Pr[A′(D′) = y] = (1 − p) Pr[A(D′) =
y] + p

|R| and therefore, (1 − p) Pr[A(D′) = y] = Pr[A′(D′) = y] − p
|R| . The last equation 6

follows because δ ≤ (eε−1)p
|R|(1−p) and thus

δ (1 − p) + p

|R|
(1 − eε) ≤ 0 . ◀
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1 Introduction

Codes over small alphabet sizes have attracted a lot of effort in coding theory [17]. There is
now a vast theory about them, but important mysteries remain. One very natural alphabet
is the binary alphabet, which has a myriad of uses and applications. However, it also comes
with an important limitation, namely, a family of good binary codes cannot1 surpass distance
1/2. By using a q-ary alphabet, a family of good codes can approach distance 1 − 1/q but
not surpass it. This makes the use of q-ary codes a necessity whenever larger distances are
needed. Working towards explicit and efficiently decodable codes with optimal trade-offs
between rate and distance has been a challenging but fruitful guiding goal in coding theory.

In the large distance case, namely, distances are of the form 1 − 1/q − ε for small values
of ε > 0, the Gilbert–Varshamov (GV) bound [13, 36] asserts that rate Ωq(ε2) is achievable
whereas the q-ary version of McEliece, Rodemich, Rumsey and Welch (MRRW) [26] gives an
impossibility upper of Oq(ε2 log(1/ε)). This means that the GV bound is nearly optimal in
this regime of constant alphabet size q and large distance. To the best of our knowledge, in
this regime, (prior to this work) no explicit and efficiently decodable families of q-ary codes
near the GV bound were known for any q ≥ 3.

Two widely used approaches in the construction of q-ary codes for small q are based on
code concatenation [11] and on algebraic geometry (AG) constructions [30, 34]. Using code
concatenation, it is possible to obtain explicit constructions achieving the suboptimal Zyablov
bound trade-off between rate and distance, which gives a rate of Ωq(ε3). Some explicit families
of AG codes are celebrated for beating the GV bound in some specific parameter regimes,
e.g., the seminal work of Tsfasman, Vlădut and Zink2 [35] or the (non-linear) construction of
Elkies [9]. This surprising phenomenon of explicit AG codes beating random codes cannot
happen in a major way in the large distance and constant alphabet regime since the GV
bound is nearly optimal. Furthermore, known explicit constructions of linear AG codes are
far from the GV bound for large distances and constant q. Another drawback of several
explicit families of good AG codes is that known decoders can take much longer than linear
time in the blocklength [27].

On a more combinatorial side, in a breakthrough work using expander graphs, Ta-
Shma [31] gave the first explicit construction of binary codes of distance 1/2 − ε and rate
Ω(ε2+o(1)), namely, near the Gilbert–Varshamov bound. A polynomial time decoder for
these binary codes was first given in [23] followed by a near-linear time decoder in [24].
Subsequently, Jalan and Moshkovitz [22] extended Ta-Shma’s analysis [31] to handle (in
particular) codes over larger alphabets3. Suitable instantiations of [22] imply explicit codes
over prime Fq of distance 1 − 1/q − ε with rate Ωq(ε2+oq(1)), namely, again near the (q-ary)
GV bound for constant q.

Motivated by the above situation, we design a near-linear time decoder for explicit families
of q-ary codes of distance (1 − 1/q)(1 − ε) and rate Ω(ε2+oq(1)) for any constant prime q,
namely, near the GV bound in the large distance regime. More precisely, our main result is
as follows (answering a question from [22]).

1 This is a consequence of the Plotkin bound.
2 More precisely, the TVZ bound [35] establishes a rate of r ≥ 1 − δ − 1/(√q − 1) with respect to the

relative distance δ.
3 More precisely, [22] analyzed the (scalar) Abelian case of Ta-Shma’s amplification.
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▶ Theorem 1 (Main I – Near-linear Time Unique Decoding over Fq). Let q be a prime. For
every ε > 0 sufficiently small, there are explicit linear Ta-Shma codes CN,q,ε ⊆ FN

q for
infinitely many values N ∈ N with

(i) distance at least (1 − 1/q)(1 − ε) (actually ε-balanced),
(ii) rate Ωq(ε2+α) where α = O(1/(log2(1/ε))1/6), and
(iii) an r(q/ε) · Õ(N) time randomized unique decoding algorithm that decodes within radius

((1 − 1/q)(1 − ε))/2,
where r(x) = exp(exp(poly(x))).

In fact, we actually prove the following stronger list decoding result.

▶ Theorem 2 (Near-linear time List Decoding over Fq). Let q be a prime. For every ε > 0
sufficiently small, there are explicit binary linear Ta-Shma codes CN,q,ε ⊆ FN

q for infinitely
many values N ∈ N with

(i) distance at least (1 − 1/q)(1 − ε) (actually ε-balanced),
(ii) rate Ωq(ε2+α) where α = O(1/(log2(1/ε))1/6), and
(iii) an r(q/ε) · Õ(N) time randomized list decoding algorithm that decodes within radius

1 − 1/q − 2−Θq((log2(1/ε))1/6) and works with high probability,
where r(x) = exp(exp(poly(x))).

We obtain our results by building on and extending the binary decoding framework in [24].
This framework is based on a generalization of the weak regularity decomposition to (sparse)
expanding hypergraphs that generalizes the seminal work of Frieze and Kannan [12]. The weak
regularity decomposition of [24] was then used to approximate expanding k-XOR instances
naturally arising in the decoding of binary Ta-Shma’s codes [31]. Similarly, constraint
satisfaction problems (CSPs) will play a key role in our decoder. Here, we also take the
opportunity to investigate expanding CSPs more broadly.

An instance of a k-CSP is given by a k-uniform (ordered) constraint hypergraph W ⊆ [n]k,
where each vertex is associated with a variable taking values in an alphabet of size q and
each edge is associated with a constraint involving the variables of its vertices. While even
approximating a CSP is NP-hard in general, suitable notions of expansion of the constraint
hypergraph allow for efficient approximation algorithms as in [24]. One such notion is
splittability [2]. Roughly speaking, a τ -splittable collection of tuples for some τ ∈ (0, 1] is the
higher-order analogue of the second largest singular value of the normalized adjacency matrix
of a graph (the smaller the τ the more expanding is the collection). Approximating expanding
k-CSPs is at the core of some decoding algorithms for expander based constructions of codes
[8, 1, 23, 24, 6].

As mentioned above, approximating expanding k-CSPs will be again at the core of our
extension of [24] to more general constraints over larger alphabets. Our new q-ary decoder
will need to handle instances of linear equations over the alphabet Zq, where each equation
involves a sum of k variables. This kind of k-CSP is commonly denoted k-LIN over alphabet
Zq. We will see that the special algebraic structure of these linear constraints will allow to
obtain some improved parameter trade-offs, which will be explored in the decoding application.
More precisely, the expansion (splittability) parameter τ will have no dependence on alphabet
size q and only a polynomial dependence on the arity4 k, and this allows us to obtain better
approximation guarantees. Our second result follows.

4 In the binary case of [24], it was also possible to have a polynomial dependence on the arity k.

APPROX/RANDOM 2023
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▶ Theorem 3 (Main II). Let I be an instance of MAX k-LINq on n variables with alphabet
Zq and constraints supported on a regular5 collection of tuples W ⊆ [n]k. If W is τ -splittable
with τ ≤ τ0(k, δ) := poly(δ/k), then we can compute an assignment satisfying OPT − δ in
time r(q/τ0) · Õ(|W | + n), where r(x) = exp(exp(poly(x))).

We show that this phenomenon of no dependence of the expansion on the alphabet
size q and only polynomial dependence on arity k also occurs for linear equations over a
general finite groups G. Similarly, this leads to better approximation guarantees. To actually
implement and obtain this advantage, we will design a new matrix version of the weak
regularity decomposition for expanding hypergraphs. Our third result follows.

▶ Theorem 4 (Main III). Let I be an instance of MAX k-LING on n variables with alphabet
a finite group G and constraints supported on a regular collection of tuples W ⊆ [n]k. If W

is τ -splittable with τ ≤ τ0(k, δ) := poly(δ/k), then we can compute an assignment satisfying
OPT − δ in time O|G|,k,δ(1) · poly(|W | + n).

▶ Remark 5. In Theorem 4, we did not attempt to make the running time near-linear in the
number of constraints and variables, but it is plausible that it can be done.

We find intriguing this interplay between the type of constraint used in the CSP and the
expansion requirement for a given approximation. A natural question is to investigate this
interplay for more general constraint types.

In this work, we also investigate how fast we can approximate expanding k-CSPs over
q-ary alphabet without making any assumptions on the constraints. We show that k-CSPs
can be approximated in near-linear time in the number of constraints and variables, assuming
k and q are constants, and provided the constraint hypergraph is sufficiently expanding
(splittable). An important caveat of this general case is that the expansion requirements
will now depend on both the alphabet size q and arity k in an exponential way (of the form
q−O(k)).

▶ Theorem 6. Let I be an instance of MAX k-CSP on n variables with alphabet [q] and
constraints supported on a regular collection of tuples W ⊆ [n]k. If W is τ -splittable with
τ ≤ τ0(k, q, δ) := poly(δ/(kqk)), then we can compute an assignment satisfying OPT − δ in
time r(kq/δ) · Õ(|W | + n), where r(x) = exp(exp(exp(poly(x)))).

We obtain the above result via a reduction to the “binary” weak regularity in [24] in a
somewhat similar fashion to [10]. Even though it is not hard to make this connection, we
think it is worth stating it since this result may be more broadly applicable. Moreover, for
fixed arity k and alphabet size q, this improves the running time in the expanding regime of
the Sum-of-Squares based algorithm in [2] and also the expanding regime6 of earlier results
2-CSPs [5, 18, 19, 28].

For comparison, we recall the expanding regime7 of [2] below.

▶ Theorem 7 (Sum-of-Squares [2]). Let I be an instance of MAX k-CSP on n variables with
alphabet [q] and constraints supported W ⊆ [n]k. If W is τ -splittable with τ ≤ τ0(k, q, δ) :=
poly(δ/k) · q−k, then we can compute an assignment satisfying OPT − δ in time npoly(1/τ0).

▶ Remark 8. In the new theorem above, we do not attempt to optimize the function r(x).

5 This is an analog to tuples of a graph being d-vertex regular.
6 We point out these approaches also consider when the expansion is defective (low threshold rank case).

Since we are interested in near-linear running time, we need to focus on the expanding case.
7 Using the improved analysis of swap walks by Dikstein and Dinur [7].
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Related Work. As we mentioned above, our work is an extension of the binary framework
of [24]. This framework was designed for approximating expanding k-XOR and to give a
near-liner time decoding algorithm for the explicit binary codes of Ta-Shma [31], near the
GV bound. The first polynomial time decoder for these codes was given in [23] using the
Sum-of-Squares semi-definite programming hierarchy and its running time, albeit polynomial,
is very far from near-linear in the blocklength.

AG codes are widely used in the study of explicit constructions over constant q-ary
alphabets. Some of these constructions achieve very competitive parameter trade-offs (e.g.,
rate versus distance) if not the best known in several cases. However, explicit and efficiently
decodable codes near GV bound for large distances,i.e., 1 − 1/q − ε, and constant alphabet
size were not known prior to this work. In fact, the first explicit construction only appeared
in the breakthrough work of [31] for binary codes using more combinatorial expander based
techniques. This absence of explicit construction near the GV bound in this regime means
that much is yet to be discovered about this case. We view our near-linear time decoder
of prime q-ary codes in this regime as not only reaching previously unattained parameter
regimes with an explicit construction, but also offering a more combinatorial perspective
among a wealthy of algebraic techniques.

For non-explicit families of codes approaching the GV bound, much more is known.
Random linear codes achieve this bound, but their decoding is believed to be computationally
hard. It is possible to construct more structured ensembles of random codes that allow for
efficient decoding in this regime. We have the non-explicit classical Goppa codes. Another
important technique is based on Thommesen’s [32] technique of concatenation with random
inner codes. These Thommesen based ensembles can sometimes approach the GV bound and
also allow for efficient decoding [16, 14, 21, 25] and even near-linear time decoding [21, 25].

More recently, Blanc and Doron [6] used the framework in [24] to decode explicit binary
codes near the GV bound with improved parameters, where they obtain a polynomial
improvement on the o(1) error term of the rate Ω(ε2+o(1)) (the α in Theorem 1) and also
put forward some interesting conjectures towards further improving the rate. It is plausible
that their improvement also applies here for q-ary alphabets.

In the constant alphabet case, a different parameter regime that has received much
attention is the near-capacity regime [15, 20, 21, 25] of list decoding from radius 1 − r − ε

with rate r for small values of ε > 0. This regime can only occur when the alphabet size
q is a function of ε. Note that our near GV bound regime is the opposite, we have a fixed
constant q and we can take ε arbitrarily small (smaller than some function of q).

Due to space constraints, most of our proofs only appear in the full version of this paper.

2 Proof Strategy

We will now describe our contributions in more detail. Our algorithmic results will be
based on extensions of the binary weak regularity framework of [24]. Roughly speaking, this
framework being a “low level” framework gives fine control over its components leading to a
near-linear time decoder for Ta-Shma’s codes [31] over F2. This same low level structure
means that extensions may require suitable generalizations in several of these components as
well technical work to implement them. The extensions to handle codes over prime q-ary
alphabet and a matrix version of weak regularity will be no exception.

First, we will recall the weak regularity decomposition of Frieze and Kannan [10] in a
more analytic form [33]. We will also first consider its existential form and later discuss its
algorithmic form. Our setup will be as follows. Let W ⊆ [n]k be a collection of tuples endowed
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60:6 Fast Decoding and Fast Approximation of CSPs

with the uniform probability measure µk. Suppose that we have a function g : W → C that
we want to approximate using a simpler approximating function, which will be made precise
below. Further suppose that the quality of approximation will be measured with respect to
correlations with a class of test functions F . Given some desired approximation error δ > 0,
the goal will be to find a “simple” approximator h ≈ g such that

max
f∈F

∣∣∣⟨g − h, f⟩µk

∣∣∣ ≤ δ .

As an existential result, it is well-known that an h of the form h =
∑p

ℓ=1 cℓ · fℓ always exists,
where cℓ’s are scalars and the fℓ’s are functions belonging to F . Furthermore, the number
of test functions p is small being at most8 O(1/δ2). This means that h is indeed “simple”
since it is the sum of a small number of test functions, so h is almost as complex as the test
functions it needs to fool.

To motivate the generalizations in the weak regularity framework, we will start the
discussion of the important case of linear equations over Zq as a motivating example. As
mentioned above, approximating k-LIN over Zq will be crucial in the near-linear time decoding
algorithm for prime q-ary alphabets. For us, an instance I of k-LIN is given by a system of
linear equations9

xi1 + · · · + xik
≡ rw (mod q) ∀ w = (i1, . . . , ik) ∈ W, (1)

where (rw)w∈W ∈ ZW
q are given RHS coefficients. We will need to model this problem in a

way that is amenable to the weak regularity approach. We will also take advantage of the
algebraic structure of the constraints to avoid any dependence of the alphabet size q and
to have only a mild dependence on the arity k in the expansion the framework will require
from W .

“Global” Approximation of Dirac Delta Functions. An elementary property of Fourier ana-
lysis over Zq is that the Dirac delta function x 7→ 1[x=y] admits a simple but extremely handy
Fourier decomposition which we now recall. Let ω = exp(2π

√
−1/q). Using orthogonality of

characters, we have

1[x=y] = E
a∈Zq

[
ωa(x−y)

]
.

Suppose we have an assignment b ∈ Zn
q to the variables of our system of linear equations I.

Then, the fraction of satisfied constraints, which we denote by val(I, b) and refer as the value
of this assignment, can be expressed as

val(I, b) := E
w=(i1,...,ik)∼µk

[
1[bi1 +···+bik

≡rw]
]

= E
w=(i1,...,ik)∼µk

[
E

a∈Zq

[
ωa(bi1 +···+bik

−rw)
]]

.

This suggests defining q functions one for each a ∈ Zq of the form ga : W → C as ga(w) :=
ωa·bw , the “harmonic” components. We also endow the space CW with the inner product
defined by the measure µk on W . We will need some additional notation. For b ∈ Zn

q , we
define the function χb,a on [n] as χb,a(i) = ωa·bi . We can now rexpress val(I, b) in terms of
its harmonic components as

8 The ℓ1-norm of the coefficients is “small”, i.e.,
∑p

ℓ=1 |cℓ|.
9 The coefficients of the variables are always taken to be 1 here.
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val(I, b) = E
w=(i1,...,ik)∼µk

[
E

a∈Zq

[
ωa(bi1 +···+bik

−rw)
]]

= E
a∈Zq

[
E

w=(i1,...,ik)∼µk

[
ω−a·rw · ωa(bi1 +···+bik

)
]]

= E
a∈Zq

〈
ga, χb,a ⊗ · · · ⊗ χb,a︸ ︷︷ ︸

k

〉
µk


= E

a∈Zq

[〈
ga, (χb,a)⊗k

〉
µk

]
.

We can now try to further approximate each ga using a simpler function ha that behaves
similarly to ga with respect to functions of the form fb,a = χb,a ⊗ · · · ⊗ χb,a as in the inner
product above. We can view functions of form fb,a as tests with respect to which ga and its
simpler approximator have similar correlations. This means that we can model the problem
in way amenable to the existential weak regularity framework. For each a, we will consider a
(slightly) more general class of test functions CUT⊗k

ω,q,a defined as follows

CUT⊗k
ω,q,a := {χb(1),a ⊗ · · · ⊗ χb(k),a | b(1), . . . , b(k) ⊆ Zn

q } .

A simple yet useful remark is that if we can find a decomposition fooling a larger class of
test functions, this would suffice since, in particular, it fools the initial class of test.

Suppose that for some δ ∈ (0, 1) we can find a δ-approximation ha =
∑pa

ℓ=1 ca,ℓ ·χb(a,ℓ,1),a ⊗
· · · ⊗ χb(a,ℓ,k),a to ga with respect to a class of test functions, i.e.,

max
f∈CUT⊗k

ω,q,a

∣∣∣⟨ga − ha, f⟩µk

∣∣∣ ≤ δ .

By replacing ga with ha in the computation of val(I, b) above, we obtain10

val(I, b) = E
a∈Zq

[〈
ga, (χb,a)⊗k

〉]
= E

a∈Zq

[〈
ha, (χb,a)⊗k

〉]
± δ.

We will explain how to algorithmically find ha in near-linear time later. Now, we will
argue why having access to weak regularity decomposition greatly simplifies our task of
approximating val(I, b) and also later while decoding q-ary codes.

We can simplify the above equation for val(I, b) even further using the assumed expansion
(splittability) of W . A suitable version of the expander mixing lemma allows us to pass from
the measure µk to the product measure µ⊗k

1 , where µ1 is the uniform measure on [n]. More
precisely, we can show that if W is sufficiently expanding (depending on δ), then

val(I, b) = E
a∈Zq

[〈
ha, (χb,a)⊗k

〉
µk

]
± δ = E

a∈Zq

[〈
ha, (χb,a)⊗k

〉
µ⊗k

1

]
± 2δ

= E
a∈Zq

 pa∑
ℓ=1

ca,ℓ ·
k∏

j=1

〈
χb(a,ℓ,1),a, χb,a

〉
µ1

 ± 2δ .

The low complexity of the approximator ha will allow us to simplify the search for an
approximately optimal assignment b ∈ Zn

q . The expression above reveals that we only need
to know the values of

10 For scalars x, y (real or complex) and real δ ∈ R+, we use the notation x = y ± δ if |x − y| ≤ δ.
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60:8 Fast Decoding and Fast Approximation of CSPs

{〈
χb(a,ℓ,j),a, χb,a

〉
µ1

}
a∈Zq,ℓ∈[pa],j∈[k]

.

Luckily, algorithmically, there will be only O(qk3/δ2) such numbers (no dependence on n and
only slightly more than the O(qk/δ2) from the existential result). Using brute-force search,
it is possible to find sufficiently fine and (close to valid) approximations for these numbers.

To make the entire process efficient and near-linear time we still need to say how to find
the functions ha’s in near-linear time. As in [24], we will reduce the problem of finding a
weak regularity decomposition with respect to a class of k-tensors, in this case the class
CUT⊗k

ω,q,a, to multiple applications of the 2-tensor case (in a sparse regime). To execute this
process in near-linear, we will again use the expansion of W to conveniently move to easier to
handle product measures (as above). This involves finding a constant factor approximation
for the following expression

max
x,y∈Zn

q

∣∣∣∣∣∣
n∑

i,j=1
Ai,j · ωa·xi · ωa·yj

∣∣∣∣∣∣ , (2)

This kind of optimization is known as the Grothendieck problem and, in this case, it is for
roots of unity going beyond the ±1 case of Alon and Naor [3]. In [29], So, Zhang and Ye
considered a more restricted version of this problem (with positive semi-definite matrices)
known as the little Grothendieck problem. We will extend their analysis to the Grothendieck
problem building on some ingredients present in their proof. In our application, the matrices
A will be sparse with m ≈ n non-zero entries and to achieve a near-linear time we will need to
find an (additive) approximation to the Grothendieck problem in time Õ(m) of Equation (2).
This can be done using the fast SDP solver of Arora and Kale [4].

We now explain how the above weak regularity decomposition can be used in decoding
of the expander based construction of Ta-Shma’s codes [31]. We will see that the decoding
problem can be naturally phrased as a k-LIN instance over Zq, which is a natural q-ary
extension of the k-XOR over Z2 from [1, 23, 24]. First, we briefly describe Ta-Shma’s code
construction over alphabet Fq, with q prime, as analyzed11 in [22]. The idea is to start with
a good base code C0 ⊆ Fn

q and to use a carefully constructed collection of tuples W ⊆ [n]k to
amplify its distance via the direct-sum encoding. For any z ∈ Fn

q , recall that its direct-sum
encoding is a new word denoted y = dsumW (z) in FW

q and defined as

y(i1,...,ik) = zi1 + · · · + zik
(mod q) ∀ (i1, . . . , ik) ∈ W .

The direct-sum code C = dsumW (C0) is defined as C = {dsumW (z) | z ∈ C0}. Note
the similarity of the above equation and the system of linear equations from Equation (1).
In the decoding task, we are given a (possibly) corrupted version of ỹ of some codeword
y = dsumW (z) ∈ C, with z ∈ C0. We can view ỹ as defining the RHS coefficients of an
instance of k-LIN, namely, rW = ỹw.

Having an instance of k-LIN over Zq, we can now use weak regularity as described above.
For each a ∈ Zq, let ga be the harmonic component associated with RHS vector ỹ (as above).
Similarly, we find a weak regularity approximation ha for each function ga.

11 In [22], they considered the more general (scalar) Abelian case.
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If the distance ∆(ỹ, dsumW (z)) ≤ (1 − 1/q)(1 − β) is not too large, we will be able to
deduce that some harmonic function ha “captures” the structure of the codeword z in the
following sense. Set R = {ωa·a′ | a′ ∈ Zq} and let f1, . . . , fr : [n] → R be the functions
appearing in the decomposition of ha. For each tuple (y1, . . . , yr) ∈ Rr, we can consider the
set

{x ∈ [n] | f1(x) = y1, . . . , fr(x) = yr}.

These sets partition12 the space [n], and we can show that z is approximately constant in
most of these parts. In this sense, the low complexity structure of ha captures the structure
of the codeword z. In this last argument, we use that assumption that q is prime13.

The case of k-LIN over a finite group will also allow for a weak regularity decomposition
in a similar spirit as above, where scalar Fourier characters are replaced by larger dimensional
representations and “global” approximation of Dirac delta functions are performed. Extending
the weak regularity framework to this case will require considering matrix valued functions.
The way we model this case is done in the full version and it uses very elementary properties
of representation theory. This case again exhibits an interesting interplay between the type
of constraints and the requirement on expansion. (The reader who is only interested in
decoding can safely ignore this extension and focus on the Zq case.)

3 Constraint Types and Alphabets

We explore the role of different types of constraints and corresponding alphabets going
beyond the binary k-XOR considered in [24]. For the special case of linear equations over Zq

or over an arbitrary finite group G, we will explore the special structure of the constraints
and obtain results with improved parameters.

3.1 General CSPs via the Binary Regularity
We will prove our first result for approximating a general expanding k-CSPs over a q-ary
alphabet in near-linear time. We obtain this result using the binary near-linear time weak
regularity decomposition from [24] in a similar way that Frieze and Kannan modeled k-
CSPs [10] using regularity. We formalize this (relatively simple) connection since we believe
this result may be of independent interest and may find applications elsewhere. Moreover, it
also improves the running time of [2] to near-linear time, for fixed k and q, while offering a
different approach to approximating general expanding k-CSPs which could be simpler than
their Sum-of-Squares based algorithm. We now restate and proceed to prove this result.

▶ Theorem 6. Let I be an instance of MAX k-CSP on n variables with alphabet [q] and
constraints supported on a regular collection of tuples W ⊆ [n]k. If W is τ -splittable with
τ ≤ τ0(k, q, δ) := poly(δ/(kqk)), then we can compute an assignment satisfying OPT − δ in
time r(kq/δ) · Õ(|W | + n), where r(x) = exp(exp(exp(poly(x)))).

We will find a weak regularity decomposition with respect to 0/1 valued test functions
F = CUT⊗k where

CUT⊗k := {±1S1 ⊗ · · · ⊗ 1Sk
| S1, . . . , Sk ⊆ [n]} .

The near-linear weak regularity decomposition of [24], which we recall below, can handle
this class of functions.

12 Possibly with empty parts.
13 So that all non-trivial roots of unity are primitive roots. It is plausible that this restriction is not

necessary.
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60:10 Fast Decoding and Fast Approximation of CSPs

▶ Theorem 9 (Efficient Weak Regularity from [24]). Let W ⊆ [n]k be a τ -splittable collection
of tuples. Suppose F is one of CUT⊗k, CUT⊗k

± . Let R be the domain of the functions
in F , when k = 1. Let g ∈ RW [1]k be supported on W with ∥g∥µk

≤ 1. For every δ > 0,
if τ ≤ δ2/(k3 · 220), then we can find h =

∑p
ℓ=1 cℓ · fℓ with p = O(k2/δ2), c1, . . . , cp ∈ R

and functions f1, . . . , fp ∈ F , such that ∥h∥µ⊗k
1

≤ 2,
∑p

ℓ=1 |cℓ| = O(k/δ) and h is a good
approximator to g in the following sense

max
f∈F

∣∣∣∣∣
〈

g −
(

d

n

)k−1
h, f

〉∣∣∣∣∣ ≤ δ · |W | ,

where the inner product is over the counting measure on W [1]k. Furthermore, h can be found

in Õ(22Õ(k2/δ2) · |W |) time.

Having access to a weak regularity decomposition as above makes the task of approximating
the value of a CSP instance relatively simple, as we now describe. This is a common feature
of weak regularity based arguments,e.g., [10, 28]. Here, we consider both arbitrary arity k

and arbitrary alphabet size q.
We will first need some notation. Let α ∈ [q]k and define Wα = {w ∈ W | Pw(α) = 1}

to be the set of tuples whose predicates Pw are satisfied by on the input α. Let A(I) = {α ∈
[q]k | Wα ̸= ∅} be the set of satisfying inputs of at least one predicate of I.

We will use the following claim which relates the value of an assignment to the structure
of the weak regularity decomposition.

▷ Claim 10. Suppose that for every α ∈ [q]k, we have a weak regularity decomposition hα,
from Theorem 9, of the indicator 1W (α) with error parameter δ > 0 and with respect to
the test class CUT⊗k. Let b ∈ [q]n (viewed as an assignment), which induces a partition
T1 ⊔ · · · ⊔ Tq of [n]. Then,

val(I, b) =
∑
α∈A

pα∑
ℓ=1

cα,ℓ

∣∣∣Sα,ℓ
1 ∩ Tα1

∣∣∣
n

· · ·

∣∣∣Sα,ℓ
k ∩ Tαk

∣∣∣
n

± δ · |A(I)| .

Proof. Let A = A(I). The value of this assignment is

val(I, b) =
∑
α∈A

〈
1Wα , 1Tα1 ⊗ · · · ⊗ 1Tαk

〉
µk

= 1
|W |

∑
α∈A

〈(
d

n

)k−1
hα, 1Tα1 ⊗ · · · ⊗ 1Tαk

〉
± δ · |A|

= 1
|W |

∑
α∈A

〈(
d

n

)k−1 pα∑
ℓ=1

cα,ℓ · 1
S

α,ℓ
1

⊗ · · · ⊗ 1
S

α,ℓ
k

, 1Tα1 ⊗ · · · ⊗ 1Tαk

〉
± δ · |A|

= 1
nk

∑
α∈A

pα∑
ℓ=1

cα,ℓ ·
〈

1
S

α,ℓ
1

⊗ · · · ⊗ 1
S

α,ℓ
k

, 1Tα1 ⊗ · · · ⊗ 1Tαk

〉
± δ · |A|

=
∑
α∈A

pα∑
ℓ=1

cα,ℓ ·
〈

1
S

α,ℓ
1

, 1Tα1

〉
µ1

· · ·
〈

1
S

α,ℓ
k

, 1Tαk

〉
µ1

± δ · |A|

=
∑
α∈A

pα∑
ℓ=1

cα,ℓ

∣∣Sα,ℓ
1 ∩ Tα1

∣∣
n

· · ·

∣∣Sα,ℓ
k ∩ Tαk

∣∣
n

± δ · |A| ,

concluding the proof. ◁
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Proof of Theorem 6. Let I be an instance of a k-CSP over alphabet [q] supported on a
collection of tuples W ⊆ [n]k and with predicates (Pw : [q]k → {0, 1})w∈W .

For each α ∈ A(I), we apply the weak regularity decomposition of Theorem 9 to the
function 1Wα with error parameter δ > 0 and test class F = CUT⊗k. This gives an
approximation hα =

∑pα

ℓ=1 cα,ℓ · 1Sα,ℓ
1

⊗ · · · ⊗ 1Sα,ℓ
k

.
A crucial property is that instead of having to know an assignment b ∈ [q]n, represented

as a partition T1 ⊔ · · · ⊔ Tq = [n], it is enough to know the values of the following inner
products{〈

1Sα,ℓ
j

, 1Tαj

〉
µ1

}
α∈A(I),ℓ∈[pα],j∈[k]

The decomposition is low complexity, in the sense that there are only a few of these values.
However, we cannot take arbitrary values for these inner products since they may be far from
realizable, i.e., no true assignment b ∈ [q]n can give rise to these values even approximately.
From the inner products above, we can extract the following class of functions

F ′ =
{

1Sα,ℓ
j

}
α∈A(I),ℓ∈[pα],j∈[k]

,

whose size r = |F ′| = O(|A(I)| k3/δ2) is independent from n.
Using Claim 10, to be able to approximate val(I, b) within error δ′ > 0 we need to choose

the error of the weak regularity decomposition14 to be δ = δ′/(2 |A(I)|) In this case, we have
r = O(|A(I)|2 k3/(δ′)2) = O(q2kk3/(δ′)2) and the τ -splittability parameter of W needs to
satisfy τ ≤ poly(δ′/(kqk)).

For convenience, label the functions of F ′ as f1, . . . , fr. Their range is the (simple) binary
set R = {0, 1}. We will consider the factor B defined by the collection F ′, which, roughly
speaking, is a partition of [n] according to the values of these functions. More precisely, for
every tuple (y1, . . . , yr) ∈ Rr we have a (possibly empty) part (or atom) of the form

{x ∈ [n] | f1(x) = y1, . . . , fr(x) = yr} .

In this case, we have at most Rr = 2r atoms in the factor. By definition the functions F ′ are
constant in each of them. An assignment b gives rise to a distribution on [q] in each atom
of the factor. Conversely, any approximate distribution on [q] in each atom approximately
corresponds to a realizable assignment b.

Let L =
∑

α∈A(I),ℓ∈[pα] |cα,ℓ| ≤ |A(I)| O(k/δ). Set η = δ/(k ·L·q). We can η-approximate
these distributions in ℓ1-norm on each atom15. The number of approximate distributions
can be (crudely) bounded as

(1/(ηq))Rr

≤ exp(exp(exp(poly(qk/δ′)))) .

With this fine enough discretization of the distributions on each atom, when computing the
expression

val(I, b) =
∑
α∈A

pα∑
ℓ=1

cα,ℓ

∣∣∣Sα,ℓ
1 ∩ Tα1

∣∣∣
n

· · ·

∣∣∣Sα,ℓ
k ∩ Tαk

∣∣∣
n

± δ · |A|

we incur an additional error of δ′/2. By our choice of δ, the total approximation error is at
most δ′. ◀

14 We can assume without loss of generality that A(I) ̸= ∅ since otherwise the value of the CSP is always
zero.

15 If the atom is too smaller than 1/(ηq), then we can consider all the possible exact distribution.
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3.2 Stating the Extended Weak Regularity Framework
We now show how to obtain our main results for linear equations k-LIN over Zq in Theorem 3
and over a finite group G in Theorem 4.

In the full version, we see that to approximate k-LIN over Zq it suffices to find a good
weak regularity decomposition with respect to the test functions F = CUT⊗k

ω,q,a defined as
follows

CUT⊗k
ω,q,a := {χb1,a ⊗ · · · ⊗ χbk,a | b1, . . . , bk ⊆ Zn

q } .

In the full version, we will see that to approximate k-LIN over a finite group, it suffices to
find a good weak regularity decomposition with respect to the matrix valued test functions
F defined as follows

CUT⊗k
ρ := {ρb1 ⊗ · · · ⊗ ρbk

| b1, . . . , bk ∈ Gn} .

It will be more convenient to enlarge the test class F to unitary valued functions as follows

CUT⊗k
Us,k,δ

:= {f1 ⊗ · · · ⊗ fk | f1, . . . , fk : [n] → Us,k,δ} ,

where Us,k,δ will be a fine enough discretization of the matrices16 Ms(C) of operator norm
at most 1.

We will extend the framework to additionally handle the classes of functions CUT⊗k
ω,q,a

and CUT⊗k
Us,k,δ

. This is proven in the full version. Let K be the underlying field which is
either R or C. Our extended framework gives the following efficient algorithmic result.

▶ Theorem 11 (Efficient Weak Regularity (Extension of [24])). Let W ⊆ [n]k be a τ -splittable
collection of tuples. Suppose F is one of CUT⊗k, CUT⊗k

± , CUT⊗k
ω,q,a, for q ≥ 3, or CUT⊗k

Us,k,δ
.

Let R be the domain of the functions in F , when k = 1. Let g ∈ RW [1]k be supported on W

with ∥g∥µk
≤ 1. For every δ > 0, if τ ≤ δ2/(k3 · 220), then we can find h =

∑p
ℓ=1 cℓ · fℓ with

p = O(k2/δ2), scalars c1, . . . , cp ∈ K and functions f1, . . . , fp ∈ F , such that ∥h∥µ⊗k
1

≤ 2,∑p
ℓ=1 |cℓ| = O(k/δ) and h is a good approximator to g in the following sense

max
f∈F

∣∣∣∣∣
〈

g −
(

d

n

)k−1
h, f

〉∣∣∣∣∣ ≤ δ · |W | ,

where the inner product is over the counting measure on W [1]k. Furthermore, h can be

found in Õ(2|R|Õ(k2/δ2) · |W |) time in the scalar valued case and in time Õs,k,δ(poly(|W |)),
otherwise.

3.3 Improved Case: k-LIN over Zq

The goal of this section is to prove Theorem 3 (restated below) assuming the new extended
efficient regularity algorithm from Theorem 11.

▶ Theorem 3 (Main II). Let I be an instance of MAX k-LINq on n variables with alphabet Zq

and constraints supported on a regular17 collection of tuples W ⊆ [n]k. If W is τ -splittable
with τ ≤ τ0(k, δ) := poly(δ/k), then we can compute an assignment satisfying OPT − δ in
time r(q/τ0) · Õ(|W | + n), where r(x) = exp(exp(poly(x))).

16 We use Ms(C) for the set of s × s matrices over C.
17 This is an analog to tuples of a graph being d-vertex regular.



F. G. Jeronimo 60:13

For k-LIN over alphabet Zq, we are given a collection of equations (each variable appearing
with coefficient one) specified as collection of tuples W ⊆ [n]k and we are given a collection
of corresponding RHS (rw)w∈W ∈ ZW

q . The system of linear equations can be written as
follows

xi1 + · · · + xik
= rw (mod q) ∀ w = (i1, . . . , ik) ∈ W.

Orthogonality of Fourier characters will be crucially used here.

▶ Fact 12 (Character Orthogonality). Let ω be a non-trivial q-th root of unit. Then,

E
a∈Zq

[ωa] = 0 .

Orthogonality allows for a convenient way of implementing the Dirac delta function on
(the alphabet) Zq.

▶ Fact 13. Fix y ∈ Zq. The indicator function x 7→ 1[x=y] on Zq can be expressed as

E
a∈Zq

[
ωa(x−y)

]
.

We now make precise the argument sketched in the proof strategy of Section 2.

Proof of Theorem 3. Let I be an instance of k-LIN over Zq with constraints supported on
W ⊆ [n]k and RHS values {rw}w∈W . For every a ∈ Zq, we define ga : W → C as the map
w ∈ W 7→ ωa·rw , where ω = exp(2π

√
−1/q).

Apply the efficient weak regularity decomposition of Theorem 11 to each ga using
error parameter δ > 0 and test functions F = CUT⊗k

ω,q,a. Note that this requires the
splittability (expansion) parameter τ of W to satisfy τ ≤ O(δ2/k3). We obtain a function
ha =

∑pa

ℓ=1 ca,ℓ · χb(a,ℓ,1),a ⊗ · · · ⊗ χb(a,ℓ,k),a, where b(a,ℓ,1),. . .,b(a,ℓ,k) ∈ Zn
q , for every a ∈ Zq

and every ℓ ∈ [pa]. Let b ∈ Zn
q be an assignment to the variables of the system of linear

equations. The value of this CSP on input b can be computed as

val(I, b) = E
a∈Zq

[
⟨ga, χb,a ⊗ · · · ⊗ χb,a⟩µk

]
= E

a∈Zq

[
E

w=(i1,...,ik)∼µk

[
ω−a·rw ωa(bi1 +···+bik

)
]]

= E
w=(i1,...,ik)∼µk

[
E

a∈Zq

[
ωa(bi1 +···+bik

−rw)
]]

= E
w=(i1,...,ik)∼µk

[
1[bi1 +···+bik

=rw]
]

.

Using the weak regularity decomposition ha of each ga, we obtain

val(I, b) = E
a∈Zq

[
⟨ga, χb,a ⊗ · · · ⊗ χb,a⟩µk

]
= 1

|W |
E

a∈Zq

[〈(
d

n

)k−1
ha, χb,a ⊗ · · · ⊗ χb,a

〉]
± δ

= 1
nk

E
a∈Zq

[
pa∑

ℓ=1
ca,ℓ ·

〈
χb(a,ℓ,1),a ⊗ · · · ⊗ χb(a,ℓ,k),a, χb,a ⊗ · · · ⊗ χb,a

〉]
± δ

= E
a∈Zq

[
pa∑

ℓ=1
ca,ℓ ·

〈
χb(a,ℓ,1),a, χb,a

〉
µ1

· · ·
〈
χb(a,ℓ,k),a, χb,a

〉
µ1

]
± δ ,

concluding the proof.
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Now it suffices to approximate the following values{〈
χb(a,ℓ,j),a, χb,a

〉
µ1

}
a∈Zq,ℓ∈[pa],j∈[k]

,

so that there is always a true assignment b ∈ [q]n which gives these values.
To this end, we first define the following collection F ′ of functions

F ′ =
{

χb(a,ℓ,j),a

}
a∈Zq,ℓ∈[pa],j∈[k] .

Note that r = |F ′| = O(qk3/δ2). The functions above have range R = {ωa′ | a′ ∈ Zq}.
They form a factor B with at most |R|r atoms. By the definition of a factor, the functions
F ′ are constant in each one of them, so to compute

〈
χb(a,ℓ,j),a, χb,a

〉
µ1

it suffices to know the
distribution of symbols of b in each atom.

Let L =
∑

a∈Zq,ℓ∈[pa] |ca,ℓ| = O(qk/δ) and set η = δ/(k · L · q). The total number of
η-approximate distributions in ℓ1-norm on each atom can be (crudely) bounded as

(1/ηq)|R|r

≤ exp(exp(poly(qk/δ))).

Using these distributions, we can approximate

val(I, b) = E
a∈Zq

[
pa∑

ℓ=1
ca,ℓ ·

〈
χb(a,ℓ,1),a, χb,a

〉
µ1

· · ·
〈
χb(a,ℓ,k),a, χb,a

〉
µ1

]
± δ ,

incurring an additional error of δ. ◀
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Directed Poincaré Inequalities and L1

Monotonicity Testing of Lipschitz Functions
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Abstract
We study the connection between directed isoperimetric inequalities and monotonicity testing. In
recent years, this connection has unlocked breakthroughs for testing monotonicity of functions
defined on discrete domains. Inspired the rich history of isoperimetric inequalities in continuous
settings, we propose that studying the relationship between directed isoperimetry and monotonicity
in such settings is essential for understanding the full scope of this connection.

Hence, we ask whether directed isoperimetric inequalities hold for functions f : [0, 1]n → R,
and whether this question has implications for monotonicity testing. We answer both questions
affirmatively. For Lipschitz functions f : [0, 1]n → R, we show the inequality dmono

1 (f) ≲ E
[
∥∇−f∥1

]
,

which upper bounds the L1 distance to monotonicity of f by a measure of its “directed gradient”.
A key ingredient in our proof is the monotone rearrangement of f , which generalizes the classical
“sorting operator” to continuous settings. We use this inequality to give an L1 monotonicity tester
for Lipschitz functions f : [0, 1]n → R, and this framework also implies similar results for testing
real-valued functions on the hypergrid.
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1 Introduction

In property testing, algorithms must make a decision about whether a function f : Ω → R

has some property P , or is far (under some distance metric) from having that property, using
a small number of queries to f . One of the most well-studied problems in property testing
is monotonicity testing, the hallmark case being that of testing monotonicity of Boolean
functions on the Boolean cube, f : {0, 1}n → {0, 1}. We call f monotone if f(x) ≤ f(y)
whenever x ⪯ y, i.e. xi ≤ yi for every i ∈ [n].

A striking trend emerging from this topic of research has been the connection between
monotonicity testing and isoperimetric inequalities, in particular directed analogues of
classical results such as Poincaré and Talagrand inequalities. We preview that the focus
of this work is to further explore this connection by establishing directed isoperimetric
inequalities for functions f : [0, 1]n → R with continuous domain and range, and as an
application obtain monotonicity testers in such settings. Before explaining our results, let us
briefly summarize the connection between monotonicity testing and directed isoperimetry.
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For a function f : {0, 1}n → R, let dconst
1 (f) denote its L1 distance to any constant

function g : {0, 1}n → R, and for any point x, define its discrete gradient ∇f(x) ∈ Rn by
(∇f(x))i := f(xi→1) − f(xi→0) for each i ∈ [n], where xi→b denotes the point x with its i-th
coordinate set to b. Then the following inequality1 is usually called the Poincaré inequality
on the Boolean cube (see e.g. [31]): for every f : {0, 1}n → {0, 1},

dconst
1 (f) ≲ E [∥∇f∥1] . (1)

(Here and going forward, we write f ≲ g to denote that f ≤ cg for some universal constant c,
and similarly for f ≳ g. We write f ≈ g to denote that f ≲ g and g ≲ f .)

Now, let dmono
1 (f) denote the L1 distance from f to any monotone function g : {0, 1}n → R,

and for each point x let ∇−f(x), which we call the directed gradient of f , be given by
∇−f(x) := min{∇f(x), 0}. Then [17] were the first to notice that the main ingredient of
the work of [27], who gave a monotonicity tester for Boolean functions on the Boolean cube
with query complexity O(n/ϵ), was the following “directed analogue” of (1)2: for every
f : {0, 1}n → {0, 1},

dmono
1 (f) ≲ E

[
∥∇−f∥1

]
. (2)

The tester of [27] is the “edge tester”, which samples edges of the Boolean cube uniformly at
random and rejects if any sampled edge violates monotonicity. Inequality (2) shows that, if
f is far from monotone, then many edges are violating, so the tester stands good chance of
finding one.

In their breakthrough work, [17] gave the first monotonicity tester with o(n) query
complexity by showing a directed analogue of Margulis’s inequality. This was improved
by [20], and eventually the seminal paper of [30] resolved the problem of (nonadaptive)
monotonicity testing of Boolean functions on the Boolean cube, up to polylogarithmic factors,
by giving a tester with query complexity Õ(

√
n/ϵ2). The key ingredient was to show a

directed analogue of Talagrand’s inequality. Talagrand’s inequality gives that, for every
f : {0, 1}n → {0, 1},

dconst
1 (f) ≲ E [∥∇f∥2] .

Compared to (1), this replaces the ℓ1-norm of the gradient with its ℓ2-norm. [30] showed the
natural directed analogue3 up to polylogarithmic factors, which were later removed by [32]:
for every f : {0, 1}n → {0, 1},

dmono
1 (f) ≲ E

[
∥∇−f∥2

]
.

Since then, directed isoperimetric inequalities have also unlocked results in monotonicity
testing of Boolean functions on the hypergrid [7, 5, 16, 6] (see also [8, 28]) and real-valued
functions on the Boolean cube [9].

Our discussion so far has focused on isoperimetric (Poincaré-type) inequalities on discrete
domains. On the other hand, a rich history in geometry and functional analysis, originated
in continuous settings, has established an array of isoperimetric inequalities for functions

1 The left-hand side is usually written Var [f ] instead; for Boolean functions, the two quantities are
equivalent up to a constant factor, and writing dconst

1 (f) is more consistent with the rest of our
presentation.

2 Typically the left-hand side would be the distance to a Boolean monotone function, rather than any
real-valued monotone function, but the two quantities are equal; this may be seen via a maximum
matching of violating pairs of f , see [26].

3 In fact, they require a robust version of this inequality, but we omit that discussion for simplicity.
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defined on continuous domains, as well as an impressive range of connections to topics such
as partial differential equations [33], Markov diffusion processes [1], probability theory and
concentration of measure [12], optimal transport [15], polynomial approximation [35], among
others.

As a motivating starting point, we note that for suitably smooth (Lipschitz) functions
f : [0, 1]n → R, an L1 Poincaré-type inequality holds [13]:

dconst
1 (f) ≲ E [∥∇f∥2] . (3)

Thus, understanding the full scope of the connection between classical isoperimetric
inequalities, their directed counterparts, and monotonicity seems to suggest the study of
the continuous setting. In this work, we ask: do directed Poincaré-type inequalities hold for
functions f with continuous domain and range? And if so, do such inequalities have any
implications for monotonicity testing? We answer both questions affirmatively: Lipschitz
functions f : [0, 1]n → R admit a directed L1 Poincaré-type inequality (Theorem 1.2), and
this inequality implies an upper bound on the query complexity of testing monotonicity of
such functions with respect to the L1 distance (Theorem 1.4). (We view L1 as the natural
distance metric for the continuous setting; see Section 1.3 for a discussion.) This framework
also yields results for L1 testing monotonicity of real-valued functions on the hypergrid
f : [m]n → R. Our testers are partial derivative testers, which naturally generalize the
classical edge testers [27, 18] to continuous domains.

We now introduce our model, and then summarize our results.

1.1 Lp-testing
Let (Ω, Σ, µ) be a probability space (typically for us, the unit cube or hypergrid with
associated uniform probability distribution). Let R ⊆ R be a range, and P a property of
functions g : Ω → R. Given a function f : Ω → R, we denote the Lp distance of f to
property P by dp(f, P) := infg∈P dp(f, g), where dp(f, g) := E

x∼µ
[|f(x) − g(x)|p]1/p. For

fixed domain Ω, we write dconst
p (f) for the Lp distance of f to the property of constant

functions, and dmono
p (f) for the Lp distance of f to the property of monotone functions.

(See Definition 2.2 for a formal definition contemplating e.g. the required measurability and
integrability assumptions.)

▶ Definition 1.1 (Lp-testers). Let p ≥ 1. For probability space (Ω, Σ, µ), range R ⊆ R,
property P ⊆ Lp(Ω, µ) of functions g : Ω → R, and proximity parameter ϵ > 0, we say that
randomized algorithm A is an Lp-tester for P with query complexity q if, given oracle access
to an unknown input function f : Ω → R ∈ Lp(Ω, µ), A makes at most q oracle queries and
1) accepts with probability at least 2/3 if f ∈ P; 2) rejects with probability at least 2/3 if
dp(f, P) > ϵ.

We say that A has one-sided error if it accepts functions f ∈ P with probability 1,
otherwise we say it has two-sided error. It is nonadaptive if it decides all of its queries in
advance (i.e. before seeing output from the oracle), and otherwise it is adaptive. We consider
two types of oracle:

Value oracle: Given point x ∈ Ω, this oracle outputs the value f(x).
Directional derivative oracle: Given point x ∈ Ω and vector v ∈ Rn, this oracle outputs the

derivative of f along v at point x, given by ∂f
∂v (x) = v ·∇f(x), as long as f is differentiable

at x. Otherwise, it outputs a special symbol ⊥.

APPROX/RANDOM 2023
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A directional derivative oracle is weaker than a full first-order oracle, which would
return the entire gradient [14], and it seems to us like a reasonable model for the high-
dimensional setting; for example, obtaining the full gradient costs n queries, rather than
a single query. This type of oracle has also been studied in optimization research, e.g.
see [21]. For our applications, only the sign of the result will matter, in which case we remark
that, for sufficiently smooth functions (say, functions with bounded second derivatives) each
directional derivative query may be simulated using two value queries on sufficiently close
together points.

Our definition (with value oracle) coincides with that of [4] when the range is R = [0, 1].
On the other hand, for general R, we keep the distance metric unmodified, whereas [4]
normalize it by the magnitude of R. Intuitively, we seek testers that are efficient even when
f may take large values as the dimension n grows; see Section 1.3.3 for more details.

1.2 Results and main ideas

1.2.1 Directed Poincaré-type inequalities
Our first result is a directed Poincaré inequality for Lipschitz functions f : [0, 1]n → R, which
may be seen as the continuous analogue of inequality (2) of [27].

▶ Theorem 1.2. Let f : [0, 1]n → R be a Lipschitz function with monotone rearrangement
f∗. Then

dmono
1 (f) ≈ E [|f − f∗|] ≲ E

[
∥∇−f∥1

]
. (4)

As hinted in the statement, a crucial tool for this result is the monotone rearrangement
f∗ of f . We construct f∗ by a sequence of axis-aligned rearrangements R1, . . . , Rn; each Ri

is the non-symmetric monotone rearrangement operator along dimension i, which naturally
generalizes the sorting operator of [27] to the continuous case. For each coordinate i ∈ [n],
the operator Ri takes f into an equimeasurable function Rif that is monotone in the i-th
coordinate, at a “cost” E [|f − Rif |] that is upper bounded by E

[
|∂−

i f |
]
, where ∂−

i f :=
(∇−f)i is the directed partial derivative along the i-th coordinate. We show that each
application Ri can only decrease the “cost” associated with further applications Rj , so that
the total cost of obtaining f∗ (i.e. the LHS of (4)) may be upper bounded, via the triangle
inequality, by the sum of all directed partial derivatives, i.e. the RHS of (4).

A technically simpler version of this argument also yields a directed Poincaré inequality
for real-valued functions on the hypergrid. We also note that Theorems 1.2 and 1.3 are both
tight up to constant factors.

▶ Theorem 1.3. Let f : [m]n → R and let f∗ be its monotone rearrangement. Then

dmono
1 (f) ≈ E [|f − f∗|] ≲ mE

[
∥∇−f∥1

]
.

Table 1 places our results in the context of existing classical and directed inequalities. In
that table and going forward, for any p, q ≥ 1 we call the inequalities

dconst
p (f)p ≲ E

[
∥∇f∥p

q

]
and dmono

p (f)p ≲ E
[
∥∇−f∥p

q

]
a classical and directed (Lp, ℓq)-Poincaré inequality, respectively. Note that the Lp notation
refers to the space in which we take norms, while ℓq refers to the geometry in which we
measure gradients. In this paper, we focus on the L1 inequalities.
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Table 1 Classical and directed Poincaré-type inequalities on discrete and continuous domains.
Cells marked with * indicate inequalities that follow from another entry in the table.

Continuous

{0, 1}n → {0, 1} {0, 1}n → R [0, 1]n → R

dconst
1 (f) ≲ E [∥∇f∥1] * [34] * [34] * [13]

dmono
1 (f) ≲ E

[
∥∇−f∥1

]
[27] Theorem 1.3 Theorem 1.2

dconst
1 (f) ≲ E [∥∇f∥2] * [34] [34] [13]

dmono
1 (f) ≲ E

[
∥∇−f∥2

]
[30] ? Conjecture 1.8

Discrete

(L1, ℓ1)-Poincaré

(L1, ℓ2)-Poincaré

Inequality

Setting

We also note that we have ignored in our discussion the issues of robust inequalities, which
seem essential for some of the testing applications (see [30]), and the distinction between
inner and outer boundary, whereby some inequalities on Boolean f may be made stronger by
setting ∇f(x) = 0 when f(x) = 0 (see e.g. [34]). We refer the reader to the original works
for the strongest version of each inequality and a detailed treatment of these issues.

1.2.2 Testing monotonicity on the unit cube and hypergrid
Equipped with the results above, we give a monotonicity tester for Lipschitz functions
f : [0, 1]n → R, and the same technique yields a tester for functions on the hypergrid as well.
The testers are parameterized by an upper bound L on the best Lipschitz constant of f in ℓ1

geometry, which we denote Lip1(f) (see Definition 2.1 for a formal definition).
Both of our testers are partial derivative testers. These are algorithms which only have

access to a directional derivative oracle and, moreover, their queries are promised to be
axis-aligned vectors. In the discrete case, these are usually called edge testers [27, 18].

▶ Theorem 1.4. There is a nonadaptive partial derivative L1 monotonicity tester for Lipschitz
functions f : [0, 1]n → R satisfying Lip1(f) ≤ L with query complexity O

(
nL
ϵ

)
and one-sided

error.
Similarly, there is a nonadaptive partial derivative L1 monotonicity tester for functions

f : [m]n satisfying Lip1(f) ≤ L with query complexity O
(

nmL
ϵ

)
and one-sided error.

The testers work by sampling points x and coordinates i ∈ [n] uniformly at random, and
using directional derivative queries to reject if ∂−

i f(x) < 0. Their correctness is shown using
Theorems 1.2 and 1.3, which imply that, when f is ϵ-far from monotone in L1-distance, the
total magnitude of its negative partial derivatives must be large – and since each partial
derivative is at most L by assumption, the values ∂−

i f(x) must be strictly negative in a
set of large measure, which the tester stands good chance of hitting with the given query
complexity.

1.2.3 Testing monotonicity on the line
The results above, linking a Poincaré-type inequality with a monotonicity tester that uses
partial derivative queries and has linear dependence on n, seem to suggest a close parallel
with the case of the edge tester on the Boolean cube [27, 18]. On the other hand, we also show
a strong separation between Hamming and L1 testing. Focusing on the simpler problem of
monotonicity testing on the line, we show that the tight query complexity of L1 monotonicity
testing Lipschitz functions grows with the square root of the size of the (continuous or
discrete) domain:

APPROX/RANDOM 2023
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▶ Theorem 1.5. There exist nonadaptive L1 monotonicity testers for Lipschitz functions
f : [0, m] → R and f : [m] → R satisfying Lip1(f) ≤ L with query complexity Õ

(√
mL/ϵ

)
.

The testers use value queries and have one-sided error.

This result (along with the near-tight lower bounds in Section 1.2.4) is in contrast with
the case of Hamming testing functions f : [m] → R, which has sample complexity Θ(log m)
[23, 25, 11, 2]. Intuitively, this difference arises because a Lipschitz function may violate
monotonicity with rate of change L, so the area under the curve may grow quadratically
on violating regions. The proof is in fact a reduction to the Hamming case, using the
Lipschitz assumption to establish a connection between the L1 and Hamming distances to
monotonicity.

1.2.4 Lower bounds

We give two types of lower bounds: under no assumptions about the tester and for constant
n, we show that the dependence of Theorem 1.4 on L/ϵ is close to optimal4. We give stronger
bounds for the special case of partial derivative testers (such as the ones from Theorem 1.4),
essentially showing that our analysis of the partial derivative tester is tight.

▶ Theorem 1.6. Let n be a constant. Any L1 monotonicity tester (with two-sided error,
and adaptive value and directional derivative queries) for Lipschitz functions f : [0, 1]n → R
satisfying Lip1(f) ≤ L requires at least Ω

(
(L/ϵ)

n
n+1

)
queries.

Similarly, any L1 monotonicity tester (with two-sided error and adaptive queries) for
functions f : [m]n → R satisfying Lip1(f) ≤ L requires at least Ω

(
min

{
(mL/ϵ)

n
n+1 , mn

})
queries.

Notice that the bounds above cannot be improved beyond logarithmic factors, due to
the upper bounds for the line in Theorem 1.5. It also follows that adaptivity (essentially)
does not help with L1 monotonicity testing on the line, matching the situation for Hamming
testing [25, 19, 2].

Theorem 1.6 is obtained via a “hole” construction, which hides a non-monotone region of
f inside an ℓ1-ball B of radius r. We choose r such the violations of monotonicity inside B

are large enough to make f ϵ-far from monotone, but at the same time, the ball B is hard to
find using few queries. However, this construction has poor dependence on n.

To lower bound the query complexity of partial derivative testers with better dependence
on n, we employ a simpler “step” construction, which essentially chooses a coordinate i

and hides a small negative-slope region on every line along coordinate i. These functions
are far from monotone, but a partial derivative tester must correctly guess both i and the
negative-slope region to detect them. We conclude that Theorem 1.4 is optimal for partial
derivative testers on the unit cube, and optimal for edge testers on the hypergrid for constant
ϵ and L:

▶ Theorem 1.7. Any partial derivative L1 monotonicity tester for Lipschitz functions
f : [0, 1]n → R satisfying Lip1(f) ≤ L (with two-sided error and adaptive queries) requires at
least Ω(nL/ϵ) queries.

4 Note that one may always multiply the input values by 1/L to reduce the problem to the case with
Lipschitz constant 1 and proximity parameter ϵ/L, so this is the right ratio to look at.
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Table 2 Query complexity bounds for testing monotonicity on the unit cube and hypergrid.
Upper bounds are for nonadaptive (n.a.) algorithms with one-sided error (1-s.), and lower bounds
are for adaptive algorithms with two-sided error, unless stated otherwise. For L1-testing, the upper
bounds derived from prior works (*) are specialized to the Lipschitz case by us; see the full version of
the paper for details. Our lower bounds hold either for constant (const.) n, or for partial derivative
testers (p.d.t.).

Domain

Õ
(

n2L
ϵ

)
(*) [4] O

(
nL
ϵ

)
p.d.t.

–

Hamming testing
f : Ω → R

L1-testing (prior works)
f : Ω → R, Lip1(f) ≤ L

L1-testing (this work)
f : Ω → R, Lip1(f) ≤ L

Ω = [0, 1]n Infeasible Ω
((

L
ϵ

) n
n+1

)
const. n

Ω
(

nL
ϵ

)
p.d.t.

Ω = [m]n
O

(
n log m

ϵ

)
[18] Õ

(
n2mL

ϵ

)
(*) [4] O

(
nmL

ϵ

)
p.d.t.

Ω
(

n log(m)−log(1/ϵ)
ϵ

)
[19]

Ω̃
(

L
ϵ

)
n.a. 1-s. [4]

Ω(n log m) n.a. [11]

Ω
((

mL
ϵ

) n
n+1

)
const. n

Ω(nm) p.d.t.

For sufficiently small constant ϵ and constant L, any partial derivative L1 monotonicity
tester for functions f : [m]n → R satisfying Lip1(f) ≤ L (with two-sided error and adaptive
queries) requires at least Ω(nm) queries.

Table 2 summarizes our upper and lower bounds for testing monotonicity on the unit
cube and hypergrid, along with the analogous Hamming testing results for intuition and
bounds for L1 testing from prior works. See Section 1.3.3 and the full version of the paper
for a discussion and details of how prior works imply the results in that table, since to our
knowledge the problem of L1 monotonicity testing parameterized by the Lipschitz constant
has not been explicitly studied before.

1.3 Discussion and open questions
1.3.1 Stronger directed Poincaré inequalities?
Classical Poincaré inequalities are usually of the ℓ2 form, which seems natural e.g. due to
basis independence. On the other hand, in the directed setting, the weaker ℓ1 inequalities
(as in [27] and Theorems 1.2 and 1.3) have more straightforward proofs than ℓ2 counterparts
such as [30]. A perhaps related observation is that monotonicity is not a basis-independent
concept, since it is defined in terms of the standard basis. It is not obvious whether directed
ℓ2 inequalities ought to hold in every (real-valued, continuous) setting. Nevertheless, in light
of the parallels and context established thus far, we are hopeful that such an equality does
hold. Otherwise, we believe that the reason should be illuminating. For now, we conjecture:

▶ Conjecture 1.8. For every Lipschitz function f : [0, 1]n → R, it holds that

dmono
1 (f) ≲ E

[
∥∇−f∥2

]
.

Accordingly, we also ask whether an L1 tester with O(
√

n) complexity exists, presumably
with a dependence on the Lip2(f) constant rather than Lip1(f) since ℓ2 is the relevant
geometry above.
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1.3.2 Query complexity bounds
Our lower bounds either have weak dependence on n, or only apply to a specific family of
algorithms (partial derivative testers). Previous works have established tester-independent
lower bounds with strong dependence on n by using reductions from communication com-
plexity [10, 11], whose translation to the continuous setting is not obvious5, by reduction to
comparison-based testers [19], whose connection to L1 testing setting seems less immediate,
or directly via a careful construction [2]. We believe that finding strong tester-independent
lower bounds for L1 testing Lipschitz functions on the unit cube is an interesting direction
for further study.

We also remark that even a tight lower bound matching Theorem 1.4 may not rule out
testers with better dependence on n if, for example, such a tester were parameterized by
Lip2(f), which can be a factor of

√
n larger than Lip1(f). We view the possibility of better

testers on the unit cube, or otherwise a conceptual separation with [30], as an exciting
direction for future work.

1.3.3 Relation to prior work on Lp-testing
[4] initiated the systematic study of Lp-testing and, most relevant to the present work,
established the first (and, to our knowledge, only) results on Lp testing of the monotonicity
property, on the hypergrid and on the discrete line. While our models are broadly compatible,
a subtle but crucial distinction must be explained.

[4] focused their exposition on the case of functions f : Ω → [0, 1], and in this regime, L1

testing can only be easier than Hamming testing, which they show via a reduction based
on Boolean threshold functions. On the other hand, for functions with other ranges, say
f : Ω → [a, b], their definition normalizes the notion of distance by a factor of 1

b−a . In our
terminology, letting r := b − a and g := f/r, it follows that d1(g) = d1(f)/r, so testing f

with proximity parameter ϵ reduces to testing g with proximity parameter ϵ/r. For Hamming
testers with query complexity that depends linearly on 1/ϵ, this amounts to paying a factor
of r in the reduction to the Boolean case6. This loss is indeed necessary, because by the
same reasoning, testing g with proximity parameter ϵ reduces to testing f with proximity
parameter rϵ. Therefore the problems of testing f with proximity parameter ϵ and testing
f/r with proximity parameter ϵ/r have the same query complexity.

In this work, we do not normalize the distance metric by r; we would like to handle
functions f that may take large values as the dimension n grows, as long as f satisfies a
Lipschitz assumption, and our goal is to beat the query complexity afforded by the reduction
to the Boolean case. We derive these benchmarks by assuming that the input f is Lipschitz,
and inferring an upper bound on r based on the Lipschitz constant and the size of the domain.
Combined with the hypergrid tester of [4] and a discretization argument for the unit cube
inspired by [8, 28], we establish benchmarks for our testing problem. See the full version of
the paper for further details.

With the discussion above in mind, it is instructive to return to Table 2. We note
that our upper bounds have polynomially smaller dependence on n than the benchmarks,
suggesting that our use of the Lipschitz assumption – via the directed Poincaré inequalities

5 Note that there is no obvious reduction from testing on the hypergrid to testing on the unit cube –
one idea is to simulate the unit cube tester on a multilinear interpolation of the function defined on
the hypergrid, but the challenge is that simulating each query to the unit cube naively requires an
exponential number of queries to the hypergrid.

6 This factor can also be tracked explicitly in the characterization of the L1 distance to monotonicity of
[4]: it arises in Lemmas 2.1 and 2.2, where an integral from 0 to 1 must be changed to an integral from
a to b, so the best threshold function is only guaranteed to be ϵ/r-far from monotone.
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in Theorems 1.2 and 1.3 – exploits useful structure underlying the monotonicity testing
problem (whereas the benchmark testers must work for every function with bounded range,
not only the Lipschitz ones). Our lower bounds introduce an almost-linear dependence on
the hypergrid length m; intuitively, this dependence is not implied by the previous bounds in
[4, 11] because those construct the violations of monotonicity via Boolean functions, whereas
our constructions exploit the fact that a Lipschitz function can “keep growing” along a
given direction, which exacerbates the L1 distance to monotonicity in the region where
that happens. Our lower bounds for partial derivative testers show that the analysis of our
algorithms is essentially tight, so new (upper or lower bound) ideas are required to establish
the optimal query complexity for arbitrary testers.

On the choice of L1 distance and Lipschitz assumption

We briefly motivate our choice of distance metric and Lipschitz assumption. For continuous
range and domain, well-known counterexamples rule out testing with respect to Hamming
distance: given any tester with finite query complexity, a monotone function may be made
far from monotone by arbitrarily small, hard to detect perturbations. Testing against L1

distance is then a natural choice, since this metric takes into account the magnitude of the
change required to make a function monotone ([4] also discuss connections with learning
and approximation theory). However, an arbitrarily small region of the input may still have
disproportionate effect on the L1 distance if the function is arbitrary, so again testing is
infeasible. Lipschitz continuity seems like a natural enough assumption which, combined with
the choice of L1 distance, makes the problem tractable. Another benefit is that Lipschitz
functions are differentiable almost everywhere by Rademacher’s theorem, so the gradient is
well-defined almost everywhere, which enables the connection with Poincaré-type inequalities.

Organization

Section 2 introduces definitions and notation. In Section 3 we prove our directed Poincaré
inequality on the unit cube, and in Section 4 we give our L1 monotonicity tester for this
domain. The analogous versions for the discrete case of the hypergrid, as well as the proofs
of our results for testing on the line (Section 1.2.3) and lower bounds (Section 1.2.4) may be
found in the full version of the paper.

2 Preliminaries

For integer m ≥ 1, we write [m] to denote the set {i ∈ Z : 1 ≤ i ≤ m}. For any c ∈ R, we
write c+ for max{0, c} and c− for − min{0, c}. We denote the closure of an open set B ⊂ Rn

by B.
For a measure space (Ω, Σ, ν) and measurable function f : Ω → R, we write

∫
Ω f dν for

the Lebesgue integral of f over this space. Then for p ≥ 1, the space Lp(Ω, ν) is the set of
measurable functions f such that |f |p is Lebesgue integrable, i.e.

∫
Ω|f |p dν < ∞, and we

write the Lp norm of such functions as ∥f∥Lp = ∥f∥Lp(ν) =
(∫

Ω|f |p dν
)1/p. We will write

ν to denote the Lebesgue measure on Rn (the dimension n being clear from context), and
simply write Lp(Ω) for Lp(Ω, ν); we will reserve µ for the special case of probability measures.

2.1 Lipschitz functions and Lp distance
We first define Lipschitz functions with respect to a choice of ℓp geometry.

APPROX/RANDOM 2023
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▶ Definition 2.1. Let p ≥ 1. We say that f : Ω → R is (ℓp, L)-Lipschitz if, for every x, y ∈ Ω,
|f(x) − f(y)| ≤ L∥x − y∥p. We say that f is Lipschitz if it is (ℓp, L)-Lipschitz for any L (in
which case this also holds for any other choice of ℓq), and in this case we denote by Lipp(f)
the best possible Lipschitz constant:

Lipp(f) := inf
L

{f is (ℓp, L)-Lipschitz} .

It follows that Lipp(f) ≤ Lipq(f) for p ≤ q.

We now formally define Lp distances, completing the definition of Lp-testers from Sec-
tion 1.1.

▶ Definition 2.2 (Lp-distance). Let p ≥ 1, let R ⊆ R, and let (Ω, Σ, µ) be a probability space.
For a property P ⊆ Lp(Ω, µ) of functions g : Ω → R and function f : Ω → R ∈ Lp(Ω, µ), we
define the distance from f to P as dp(f, P) := infg∈P dp(f, g), where

dp(f, g) := ∥f − g∥Lp(µ) = E
x∼µ

[|f(x) − g(x)|p]1/p
.

For p = 0, we slightly abuse notation and, taking 00 = 0, write d0(f, g) for the Hamming
distance between f and g weighted by µ (and P may be any set of measurable functions on
(Ω, Σ, µ)).

In our applications, we will always take µ to be the uniform distribution over Ω7. As a
shorthand, when (Ω, Σ, µ) is understood from the context and R = R, we will write
1. dconst

p (f) := dp(f, Pconst) where Pconst := {f : Ω → R ∈ Lp(Ω, µ) : f = c, c ∈ R}; and
2. dmono

p (f) := dp(f, Pmono) where Pmono := {f : Ω → R ∈ Lp(Ω, µ) : f is monotone}.

Going forward, we will also use the shorthand dp(f) := dmono
p (f).

2.2 Directed partial derivatives and gradients
Let B be an open subset of Rn, and let f : B → R be Lipschitz. Then by Rademacher’s
theorem f is differentiable almost everywhere in B. For each x ∈ B where f is differentiable,
let ∇f(x) = (∂1f(x), . . . , ∂nf(x)) denote its gradient, where ∂if(x) is the partial derivative
of f along the i-th coordinate at x. Then, let ∂−

i := min{0, ∂i}, i.e. for every x where f

is differentiable we have ∂−
i f(x) = − (∂if(x))−. We call ∂−

i the directed partial derivative
operator in direction i. Then we define the directed gradient operator by ∇− := (∂−

1 , . . . , ∂−
n ),

again defined on every point x where f is differentiable.

3 Directed Poincaré inequalities for Lipschitz functions

In this section, we establish Theorem 1.2. We start with the one-dimensional case, i.e.
functions on the line, and then generalize to higher dimensions. See the full version of the
paper for the discrete case of the hypergrid.

3.1 One-dimensional case
Let m > 0, let I := (0, m), and let f : I → R be a measurable function. We wish to show that
∥f − f∗∥L1 ≲ m ∥∂−f∥L1 , where f∗ is the monotone rearrangement of f . We first introduce
the monotone rearrangement, and then show this inequality using an elementary calculus
argument.

7 More precisely: when Ω = [0, 1]n, µ will be the Lebesgue measure on Ω (with associated σ-algebra Σ).
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3.1.1 Monotone rearrangement

Here, we introduce the (non-symmetric, non-decreasing) monotone rearrangement of a one-
dimensional function. We follow the definition of [29], with the slight modification that we
are interested in the non-decreasing rearrangement, whereas most of the literature usually
favours the non-increasing rearrangement. The difference is purely syntactic, and our choice
more conveniently matches the convention in the monotonicity testing literature. Up to this
choice, our definition also agrees with that of [3, Chapter 2], and we refer the reader to these
two texts for a comprehensive treatment.

We define the (lower) level sets of f : I → R as the sets

Ic :=
{

x ∈ I : f(x) ≤ c
}

for all c ∈ R. For nonempty measurable S ⊂ R of finite measure, the rearrangement of S is
the set

S∗ := [0, ν(S)]

(recall that ν stands for the Lebesgue measure here), and we define ∅∗ := ∅. For a level set
Ic, we write I

∗
c to mean

(
Ic

)∗.

▶ Definition 3.1. The monotone rearrangement of f is the function f∗ : I → R given by

f∗(x) := inf
{

c ∈ R : x ∈ I
∗
c

}
. (5)

Note that f∗ is always a non-decreasing function.
We note two well-known properties of the monotone rearrangement: equimeasurability

and order preservation. Two functions f, g are called equimeasurable if ν{f ≥ c} = ν{g ≥ c}
for every c ∈ R. A mapping u 7→ u∗ is called order preserving if f(x) ≤ g(x) for all x ∈ I

implies f∗(x) ≤ g∗(x) for all x ∈ I. See [3, Chapter 2, Proposition 1.7] for a proof of the
following:

▶ Fact 3.2. Let f : I → R be a measurable function. Then f and f∗ are equimeasurable.

▶ Fact 3.3. The mapping f 7→ f∗ is order preserving.

3.1.2 Absolutely continuous functions and the one-dimensional Poincaré
inequality

Let f : I → R be absolutely continuous. It follows that f has a derivative ∂f almost
everywhere (i.e. outside a set of measure zero), ∂f ∈ L1(I) (i.e. its derivative is Lebesgue
integrable), and

f(x) = f(0) +
∫ x

0
∂f(t) dt

for all x ∈ I. It also follows that ∂−f ∈ L1(I).
We may now show our one-dimensional inequality:

▶ Lemma 3.4. Let f : I → R be absolutely continuous. Then ∥f − f∗∥L1 ≤ 2m ∥∂−f∥L1 .
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Proof. Let S :=
{

x ∈ I : f∗(x) > f(x)
}

, and note that S is a measurable set because f, f∗ are
measurable functions (the latter by Fact 3.2). Moreover, since f and f∗ are equimeasurable
(by the same result), we have

∫
f dν =

∫
f∗ dν and therefore

∥f − f∗∥L1 =
∫

I

|f − f∗| dν =
∫

S

(f∗ − f) dν +
∫

I\S

(f − f∗) dν

=
∫

S

(f∗ − f) dν +
(∫

I

(f − f∗) dν −
∫

S

(f − f∗) dν

)
= 2

∫
S

(f∗ − f) dν .

Hence our goal is to show that∫
S

(f∗ − f) dν ≤ m
∥∥∂−f

∥∥
L1 .

Let x ∈ I. We claim that there exists x′ ∈ [0, x] such that f(x′) ≥ f∗(x). Suppose this is not
the case. Then since f is continuous on [0, x], by the extreme value theorem it attains its
maximum and therefore there exists c < f∗(x) such that f(y) ≤ c for all y ∈ [0, x]. Thus
[0, x] ⊆ Ic, so ν

(
Ic

)
≥ x and hence x ∈ I

∗
c . Then, by Definition 3.1, f∗(x) ≤ c < f∗(x), a

contradiction. Thus the claim is proved.
Now, let x ∈ S and fix some x′ ∈ [0, x] such that f(x′) ≥ f∗(x). Since f is absolutely

continuous, we have

f∗(x) − f(x) ≤ f(x′) − f(x) = −
∫ x

x′
∂f(t) dt ≤ −

∫ m

0
∂−f(t) dt =

∥∥∂−f
∥∥

L1 .

The result follows by applying this estimate to all x:∫
S

(f∗ − f) dν ≤
∫

S

∥∥∂−f
∥∥

L1 dν = ν(S)
∥∥∂−f

∥∥
L1 ≤ m

∥∥∂−f
∥∥

L1 . ◀

3.2 Multidimensional case

Although we ultimately only require an inequality on the unit cube [0, 1]n, we will first work
in slightly more generality and consider functions defined on a box in Rn, defined below.
This approach makes some of the steps more transparent, and also gives intuition for the
discrete case of the hypergrid.

▶ Definition 3.5. Let a ∈ Rn
>0. The box of size a is the closure B ⊂ Rn of B = (0, a1) ×

· · · × (0, an).

Going forward, B ⊂ Rn will always denote such a box.

Notation

For x ∈ Rn, y ∈ R and i ∈ [n], we will use the notation x−i to denote the vector in R[n]\{i}

obtained by removing the i-th coordinate from x (note that the indexing is not changed),
and we will write (x−i, y) as a shorthand for the vector (x1, . . . , xi−1, y, xi+1, . . . , xn) ∈ Rn.
We will also write x−i directly to denote any vector in R[n]\{i}. For function f : B → R
and x−i ∈ R[n]\{i}, we will write fx−i for the function given by fx−i(y) = f(x−i, y) for all
(x−i, y) ∈ B. For any set D ∈ Rn, we will denote by D−i the projection {x−i : x ∈ D}, and
extend this notation in the natural way to more indices, e.g. D−i−j .
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▶ Definition 3.6 (Rearrangement in direction i). Let f : B → R be a measurable function and
let i ∈ [n]. The rearrangement of f in direction i is the function Rif : B → R given by

(Rif)x−i := (fx−i)∗ (6)

for all x−i ∈
(
B

)−i. We call each Ri the rearrangement operator in direction i.

We may put (6) in words as follows: on each line in direction i determined by point x−i,
the restriction of Rif to that line is the monotone rearrangement of the restriction of f to
that line.

▶ Proposition 3.7. Let B be the box of size a ∈ Rn, and let f : B → R be Lipschitz
continuous. Then for each i ∈ [n],

∥f − Rif∥L1 ≤ 2ai

∥∥∂−
i f

∥∥
L1 .

Proof. Since f is Lipschitz continuous, each fx−i : [0, ai] → R is Lipschitz continuous and a
fortiori absolutely continuous. The result follows from Lemma 3.4, using Tonelli’s theorem
to choose the order of integration. ◀

A key ingredient in our multidimensional argument is that the rearrangement operator
preserves Lipschitz continuity:

▶ Lemma 3.8 ([29, Lemma 2.12]). If f : B → R is Lipschitz continuous (with Lipschitz
constant L), then Rif is Lipschitz continuous (with Lipschitz constant 2L).

We are now ready to define the (multidimensional) monotone rearrangement f∗:

▶ Definition 3.9. Let f : B → R be a measurable function. The monotone rearrangement of
f is the function

f∗ := RnRn−1 · · · R1f .

We first show that f∗ is indeed a monotone function:

▶ Proposition 3.10. Let f : B → R be Lipschitz continuous. Then f∗ is monotone.

Proof. Say that g : B → R is monotone in direction i if gx−i is non-decreasing for all
x−i ∈

(
B

)−i. Then g is monotone if and only if it is monotone in direction i for every
i ∈ [n]. Note that Rif is monotone in direction i by definition of monotone rearrangement.
Therefore, it suffices to prove that if f is monotone in direction j, then Rif is also monotone
in direction j.

Suppose f is monotone in direction j, and suppose i < j without loss of generality. Let a ∈
Rn be the size of B. Let x−j ∈

(
B

)−j and 0 ≤ y1 < y2 ≤ aj , so that (x−j , y1), (x−j , y2) ∈ B.
We need to show that (Rif)(x−j , y1) ≤ (Rif)(x−j , y2). Let Ii := [0, ai]. For each k ∈ {1, 2},
let gk : Ii → R be given by

gk(z) := f(x1, . . . , xi−1, z, xi+1, . . . , xj−1, yk, xj+1, . . . , xn) .

Note that

g∗
k(z) = (Rif)(x1, . . . , xi−1, z, xi+1, . . . , xj−1, yk, xj+1, . . . , xn)

for every z ∈ Ii, and therefore our goal is to show that g∗
1(xi) ≤ g∗

2(xi). But f being
monotone in direction j means that g1(z) ≤ g2(z) for all z ∈ Ii, so by the order preserving
property (Fact 3.3) of the monotone rearrangement we get that g∗

1(xi) ≤ g∗
2(xi), concluding

the proof. ◀

APPROX/RANDOM 2023
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It is well-known that the monotone rearrangement is a non-expansive operator. Actually
a stronger fact holds, as we note below.

▶ Proposition 3.11 ([22]). Let m > 0 and let f, g ∈ L1[0, m]. Then f∗, g∗ satisfy∫
[0,m]

(f∗ − g∗)− dν ≤
∫

[0,m]
(f − g)− dν

and∫
[0,m]

|f∗ − g∗| dν ≤
∫

[0,m]
|f − g| dν .

The result above is stated for functions on the interval. Taking the integral over the
box B and repeating for each operator Ri yields the non-expansiveness of our monotone
rearrangement operator, as also noted by [29]:

▶ Corollary 3.12. Let f, g ∈ L1(B). Then ∥f∗ − g∗∥L1 ≤ ∥f − g∥L1 .

We show that the rearrangement operator can only make the norm of the directed partial
derivatives smaller, i.e. decrease the violations of monotonicity, which is the key step in this
proof.

▶ Proposition 3.13. Let f : B → R be Lipschitz continuous and let i, j ∈ [n]. Then∥∥∂−
j (Rif)

∥∥
L1 ≤

∥∥∂−
j f

∥∥
L1 .

Proof. We may assume that i ̸= j, since otherwise the LHS is zero. We will use the following
convention for variables names: w ∈ Rn will denote points in B; z ∈ R[n]\{i,j} will denote
points in B−i−j ; x ∈ R will denote points in (0, ai) (indexing the i-th dimension); and y ∈ R
will denote points in (0, aj) (indexing the j-th dimension). For each i ∈ [n], let ei denote the
i-th basis vector.

Since f is Lipschitz, so is Rif by Lemma 3.8. By Rademacher’s theorem, these functions
are differentiable almost everywhere. Therefore, let D ⊆ B be a measurable set such that f

and Rif are differentiable in D and ν(D) = ν(B). We have

∥∥∂−
j (Rif)

∥∥
L1 =

∫
D

∣∣∂−
j (Rif)

∣∣ dν =
∫

D

[
lim
h→0

(
(Rif)(w + hej) − (Rif)(w)

h

)−
]

dν(w)

(BC1)= lim
h→0

∫
D

(
(Rif)(w + hej) − (Rif)(w)

h

)−

dν(w)

(D1)= lim
h→0

∫
B

(
(Rif)(w + hej) − (Rif)(w)

h

)−

dν(w)

(T 1)= lim
h→0

∫
B−i−j

∫
(0,aj)

∫
(0,ai)

(
(Rif)(z, y + h, x) − (Rif)(z, y, x)

h

)−

dν(x) dν(y) dν(z)

≤ lim
h→0

∫
B−i−j

∫
(0,aj)

∫
(0,ai)

(
f(z, y + h, x) − f(z, y, x)

h

)−

dν(x) dν(y) dν(z)

(T 2)= lim
h→0

∫
B

(
f(w + hej) − f(w)

h

)−

dν(w)

(D2)= lim
h→0

∫
D

(
f(w + hej) − f(w)

h

)−

dν(w)

(BC2)=
∫

D

[
lim
h→0

(
f(w + hej) − f(w)

h

)−
]

dν(w) =
∫

D

∣∣∂−
j f

∣∣ dν =
∥∥∂−

j f
∥∥

L1 .
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Equalities (BC1) and (BC2) hold by the bounded convergence theorem, which applies
because the difference quotients are uniformly bounded by the Lipschitz constants of Rif

and f (respectively), and because Rif and f are differentiable in D (which gives pointwise
convergence of the limits). Equalities (D1) and (D2) hold again by the uniform boundedness
of the difference quotients, along with the fact that ν(B \ D) = 0. Equalities (T1) and
(T2) hold by Tonelli’s theorem. Finally, the inequality holds by Proposition 3.11, since
(Rif)(z, y + h, ·) is the monotone rearrangement of f(z, y + h, ·) and (Rif)(z, y, ·) is the
monotone rearrangement of f(z, y, ·). ◀

We are now ready to prove our directed (L1, ℓ1)-Poincaré inequality.

▶ Theorem 3.14. Let B be the box of size a ∈ Rn and let f : B → R be Lipschitz continuous.
Then

∥f − f∗∥L1 ≤ 2
n∑

i=1
ai

∥∥∂−
i f

∥∥
L1 .

Proof. We have

∥f − f∗∥L1 ≤
n∑

i=1
∥Ri−1 · · · R1f − Ri · · · R1f∥L1 (Triangle inequality)

≤ 2
n∑

i=1
ai

∥∥∂−
i (Ri−1 · · · R1f)

∥∥
L1 (Lemma 3.8 and Proposition 3.7)

≤ 2
n∑

i=1
ai

∥∥∂−
i f

∥∥
L1 (Lemma 3.8 and Proposition 3.13) .

◀

Setting B = (0, 1)n yields the inequality portion of Theorem 1.2:

▶ Corollary 3.15. Let B = (0, 1)n and let f : B → R be Lipschitz continuous. Then

E [|f − f∗|] = ∥f − f∗∥L1 ≤ 2
∫

B

∥∇−f∥1 dν = 2E
[
∥∇−f∥1

]
.

To complete the proof of Theorem 1.2, we need to show that d1(f) ≈ E [|f − f∗|], i.e.
that the monotone rearrangement is “essentially optimal” as a target monotone function
for f . The inequality d1(f) ≤ E [|f − f∗|] is clear from the fact that f∗ is monotone. The
inequality in the other direction follows from the non-expansiveness of the rearrangement
operator, with essentially the same proof as that of [30] for the Boolean cube:

▶ Proposition 3.16. Let f : [0, 1]n → R be Lipschitz continuous. Then E [|f − f∗|] ≤ 2d1(f).

Proof. Let g ∈ L1([0, 1]n) be any monotone function. It follows that g∗ = g. By Co-
rollary 3.12, we have that ∥f∗ − g∗∥L1 ≤ ∥f − g∥L1 . Using the triangle inequality, we
obtain

∥f − f∗∥L1 ≤ ∥f − g∥L1 + ∥g − f∗∥L1 = ∥f − g∥L1 + ∥f∗ − g∗∥L1 ≤ 2 ∥f − g∥L1 .

The claim follows by taking the infimum over the choice of g. ◀

To check that Corollary 3.15 is tight up to constant factors, it suffices to take the linear
function f : [0, 1]n → R given by f(x) = 1 − x1 for all x ∈ [0, 1]n. Then f∗ is given by
f∗(x) = x1, so E [f − f∗] = 1/2 while E [∥∇−f∥1] = 1, as needed.

APPROX/RANDOM 2023
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Algorithm 1 L1 monotonicity tester for Lipschitz functions using partial derivative queries.
Input: Partial derivative oracle access to Lipschitz function f : [0, 1]n → R.
Output: Accept if f is monotone, reject if d1(f) > ϵ.
Requirement: Lip1(f) ≤ L.

procedure PartialDerivativeTester(f, L, ϵ)
repeat Θ (nL/ϵ) times

Sample x ∈ [0, 1]n uniformly at random.
Sample i ∈ [n] uniformly at random.
Reject if ∂if(x) < 0.

end repeat
Accept.

4 Application to monotonicity testing

In this section, we use the directed Poincaré inequality on the unit cube to show that the
natural partial derivative tester attains the upper bound from Theorem 1.4. As noted in the
introduction, we refer to the full version of the paper for the case of the hypergrid.

The tester is given in Algorithm 1. It is clear that this algorithm is a nonadaptive partial
derivative tester, and that it always accepts monotone functions. It suffices to show that it
rejects with good probability when d1(f) > ϵ.

▶ Lemma 4.1. Let f : [0, 1]n → R be a Lipschitz function satisfying Lip1(f) ≤ L. Suppose
d1(f) > ϵ. Then Algorithm 1 rejects with probability at least 2/3.

Proof. Let D ⊆ [0, 1]n be a measurable set such that f is differentiable on D and µ(D) = 1,
which exists by Rademacher’s theorem. For each i ∈ [n], let Si := {x ∈ D : ∂if(x) < 0}. A
standard argument gives that each Si ⊂ Rn is a measurable set. We claim that

n∑
i=1

µ(Si) >
ϵ

2L
.

Suppose this is not the case. By the Lipschitz continuity of f , we have that |∂if(x)| ≤ L for
every x ∈ D and i ∈ [n], and therefore

2
n∑

i=1
E

[∣∣∂−
i f

∣∣] ≤ 2L
n∑

i=1
µ(Si) ≤ ϵ .

On the other hand, the assumption that d1(f) > ϵ and Corollary 3.15 yield

ϵ < E [|f − f∗|] ≤ 2E
[
∥∇−f∥1

]
= 2

n∑
i=1

E
[∣∣∂−

i f
∣∣] ,

a contradiction. Therefore the claim holds.
Now, the probability that one iteration of the tester rejects is the probability that x ∈ Si

when x and i are sampled uniformly at random. This probability is

P [Iteration rejects] =
n∑

j=1
P
i

[i = j]P
x

[x ∈ Sj ] =
n∑

j=1

1
n

· µ(Sj) >
ϵ

2nL
.

Thus Θ
(

nL
ϵ

)
iterations suffice to reject with high constant probability. ◀
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Abstract
In classical statistics and distribution testing, it is often assumed that elements can be sampled
exactly from some distribution P, and that when an element x is sampled, the probability P(x) of
sampling x is also known. In this setting, recent work in distribution testing has shown that many
algorithms are robust in the sense that they still produce correct output if the elements are drawn
from any distribution Q that is sufficiently close to P. This phenomenon raises interesting questions:
under what conditions is a “noisy” distribution Q sufficient, and what is the algorithmic cost of
coping with this noise?

In this paper, we investigate these questions for the problem of estimating the sum of a
multiset of N real values x1, . . . , xN . This problem is well-studied in the statistical literature in
the case P = Q, where the Hansen-Hurwitz estimator [Annals of Mathematical Statistics, 1943]
is frequently used. We assume that for some (known) distribution P, values are sampled from a
distribution Q that is pointwise close to P. That is, there is a parameter γ < 1 such that for all
xi, (1 − γ)P(i) ≤ Q(i) ≤ (1 + γ)P(i). For every positive integer k we define an estimator ζk for
µ =

∑
i
xi whose bias is proportional to γk (where our ζ1 reduces to the classical Hansen-Hurwitz

estimator). As a special case, we show that if Q is pointwise γ-close to uniform and all xi ∈ {0, 1}, for
any ε > 0, we can estimate µ to within additive error εN using m = Θ(N1− 1

k /ε2/k) samples, where
k = ⌈(lg ε)/(lg γ)⌉. We then show that this sample complexity is essentially optimal. Interestingly,
our upper and lower bounds show that the sample complexity need not vary uniformly with the
desired error parameter ε: for some values of ε, perturbations in its value have no asymptotic effect
on the sample complexity, while for other values, any decrease in its value results in an asymptotically
larger sample complexity.
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1 Introduction

Consider the following simple problem. Let us have values xi ∈ {0, 1} for i ∈ [N ] and assume
we may sample i from a distribution Q that is pointwise γ-close to uniform (see Definition 2).
It is easy to obtain an additive ±γN approximation of the number of 1′s. But is it possible
to get a better approximation using a number of samples that is sub-linear in N? We answer
this question positively. Specifically, we solve a more general sum estimation problem, with
the above problem being the simplest application. Additionally, we derive lower bounds
showing that for a wide range of parameters, the sample complexity of our algorithm is
asymptotically tight.

In full generality, estimating the sum of a (multi)set of numbers is a fundamental problem
in statistics, and the problem plays an important role in the design of efficient algorithms
for large datasets. The basic problem can be formulated as follows: given a multiset of N

elements, S = {x1, x2, . . . , xN}, compute an estimate of the sum µ =
∑

i∈[N ] xi.
Assume that the values xi can be sampled according to some probability distribution Q

over S (equivalently, over [N ]). The classical work of Hansen and Hurwitz [12] examines the
setting in which, when an element x ∈ S is sampled, the probability Q(x) can be determined.
They introduce the Hansen-Hurwitz estimator defined by

µHH = 1
m

m∑
j=1

Xj

Q(Xj) (1)

where X1, X2, . . . , Xm are samples taken from the distribution Q. This estimator has been
used extensively (though often implicitly) in sublinear algorithms [5, 20, 1, 14]. Hansen and
Hurwitz prove that (1) is an accurate estimator of µ via the following theorem:

▶ Theorem 1 (Hansen & Hurwitz, 1943 [12]). The value µHH is an unbiased estimator of the
sum µ (i.e., E(µHH) = µ) and its variance is

Var[µHH] = 1
m

N∑
i=1
Q(i)

(
xi

Q(i) − µ

)2
. (2)

Theorem 1 can be applied to obtain probabilistic guarantees for estimating µ via sampling.
For example, if one wishes to compute a 1±ε multiplicative estimate of µ with probability 1−δ,
by Chebyshev’s inequality, it suffices to take m sufficiently large that Var[µHH]/(ε2µ2) < δ.

In practice, it may however be unreasonable to assume that the probability distribution
from which elements are sampled is known precisely. For example, the underlying process
generating the samples may be noisy or may induce some underlying bias. We model
this situation by assuming that the true sampling distribution Q is close to some known
distribution P . When an element x is sampled, the probability P(x) can be determined, but
not the true probability Q(x). We assume that Q is pointwise close to P in the following
sense. The assumption of pointwise closeness turns out to be necessary (as compared to
weaker notions of closeness); see the discussion on page 4.

▶ Definition 2. Let P and Q be probability distributions over a (multi)set S. Then for any
γ < 1, we say that Q is pointwise γ-close to P if for every x ∈ S, we have

(1− γ)P(x) ≤ Q(x) ≤ (1 + γ)P(x). (3)

Given the situation above, one can apply the Hansen-Hurwitz estimator (1) with the
known distribution P in place of the true sample distribution Q. We define the positive sum,
µ+ to be



T. Eden, J. B. T. Houen, S. Narayanan, W. Rosenbaum, and J. Tětek 62:3

µ+ =
∑
x∈S

|x| . (4)

It is straightforward to show that the resulting estimator has bias at most γµ+, and its
variance increases by a factor of 1 + O(γ). However, the parameter γ may be too large to
guarantee the desired error in the estimate of µ. For the above problem of estimating the
sum of 0-1 values, this would lead to error of γN , while we want error of εN for ε < γ.1

Our setting is closely related to recent work in distribution testing. For example, it has
been noted that many algorithms that rely on a probability oracle are “robust” in the sense
that we may do distribution testing to within ε if the oracle’s answers have relative error of,
say, 1± ε/3 [18, 3]. Our work goes further in the sense that our estimators work also in the
setting when the error in the oracle’s answers is greater than the desired error parameter ε.
Specifically, our goal is to characterize the (sample) complexity of a task as a function of the
oracle error parameter γ and a desired approximation parameter ε. This can also be seen as
a generalization of the learning-augmented distribution testing setting where γ is assumed to
be constant [6].

1.1 Our Contributions
In this paper, our goal is to estimate the sum µ =

∑N
i=1 xi with an error that is strictly

less than the bias γµ+ (Equation (4)) guaranteed by µHH. Specifically, given a desired error
parameter ε with 0 < ε < γ, we wish to estimate µ with bias close to εµ+. In our setting,
for each sample we are given a random index i ∈ [N ] drawn from the unknown distribution
Q, along with the value xi and our estimate P(i) of the true probability Q(i). We introduce
a family of estimators ζ1, ζ2, . . ., where each ζk has bias at most γkµ+. To motivate the
construction of ζk, we first re-write the Hansen-Hurwitz estimator in terms of the frequency
vector of samples from S. Specifically, if X1, X2, . . . , Xm are the sampled elements, define
the frequency vector Y = (Y1, Y2, . . . , YN ) by

Yi = |{j : Xj = i}| .

We define the estimator

ξ1 = 1
m

N∑
i=1

Yi ·
xi

P(i) .

Note that this estimator can be efficiently implemented, as the items that have not been
sampled contribute 0 to the sum. We may thus implement this in time linear in the sample
complexity, and do not need to take O(N) time.

In the case where P = Q, ξ1 is equivalent to the Hansen-Hurwitz estimator µHH. More
generally, Q is pointwise γ-close to P, and ξ1 has bias at most γµ+.

The estimator ξ1 can be generalized as follows. Rather than sampling individual elements,
we can examine h-wise collisions between samples, where an h-wise collision consists of h

samples resulting in the same outcome.

1 It is possible to get tighter bounds if parameterizing also by the sum, but for simplicity, we choose to
parameterize the error only by N, ε, and γ.
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62:4 Bias Reduction for Sum Estimation

▶ Definition 3. For any positive integer h, we define the h-wise collision estimator ξh of
µ =

∑
i xi to be

ξh = 1(
m
h

) N∑
i=1

(
Yi

h

)
xi

(P(i))h
. (5)

We note that
(

Yi

h

)
gives the number of h-wise collisions involving the value Xj = i. It is

straightforward to show that when Q = P , all ξh are unbiased estimators for µ, and that ξh

has bias O(hγµ+) when Q is pointwise γ-close to P.
Individually, the estimators ξ1, ξ2, . . . are no better than ξ1 = µHH in terms of bias and

variance. As we will show, however, for any positive integer k, a suitable linear combination
of the ξi can be chosen such that the coefficients of γj in the bias cancel out for j < k. The
resulting estimator then has bias ≤ γkµ+.

▶ Definition 4. For each positive integer k, we define the bias reducing estimator of order k,
ζk, to be

ζk =
k∑

h=1
(−1)h+1

(
k

h

)
ξh =

k∑
h=1

(−1)h+1
(

k
h

)(
m
h

) ∑
i∈[N ]

(
Yi

h

)
xi

(P(i))h
. (6)

▶ Example 5. In order to give some intuition about the expression (6), consider the case where
P is the uniform distribution and k = 2. Define αi to be such that Q(i) = (1 + αi)P(i). Note
that |αi| ≤ γ becauseQ is assumed to be pointwise γ-close to uniform. By a simple calculation,
we have that E[ξ1] =

∑N
i=1(1 + αi)xi and E[ξ2] =

∑N
i=1(1 + αi)2xi = (1 + 2αi + α2

i )xi.
Therefore, it holds that2

E[ζ2] = E[2ξ1 −ξ2] =
N∑

i=1

2(1+αi)xi −(1+2αi +α2
i )xi =

n∑
i=1

(1+α2
i )xi ⊆ µ±

n∑
i=1

α2
i |xi| ⊆ µ±γ2µ+.

This proves that the bias of the estimator is at most γ2µ+. Similarly, one can show that the
bias of the estimator above is ≤ γkµ+. We prove this in Section 2.

▶ Theorem 6 (Bias portion of Theorem 10). Supoose P and Q are probability distributions
over [N ] with Q pointwise γ-close to P. Let ζk be defined as in (6). Then

|E[ζk − µ]| ≤ γkµ+.

In particular, if xi ≥ 0 for all i, then ζk has bias at most γkµ.

This theorem shows that ζk reduces the bias to γk compared to the bias γ for the
Hansen-Hurwitz estimator (equivalent to ζ1). Theorem 10 additionally bounds the variance
of ζk, which is required for our applications.

We apply Theorem 6 (or more specifically, Theorem 10) to obtain our main algorithmic
results. Our goal is as follows: given sample access to some Q that is pointwise γ-close to P
and a desired error parameter ε, estimate µ with error ε using as few samples as possible.
To this end, we employ a two-stage estimation technique (see Algorithm 2). In the first
stage, we use the 1-wise collision estimator ξ1 (i.e., the Hansen-Horwitz estimator) to obtain
a coarse estimate of µ. Then, the second stage refines this estimate by applying the bias
reducing estimator ζk with an appropriately chosen k. Specifically, we show the following:

2 The first of the two inclusions is not tight in that the absolute value in |xi| is not necessary, but it
becomes necessary for odd values of k.
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▶ Theorem 7 (Special case of Theorem 10). Define n = maxi 1/P(i).3 Suppose Q is pointwise
γ-close to P, and let VarHH be defined as

VarHH = 1
N2

N∑
i=1
Q(i)

(
xi

Q(i) − µ

)2
. (7)

That is, VarHH is the variance of the Hansen-Hurwitz estimator for the mean µHH/N with
sample size m = 1 (cf. (Equation 2)). For ε1, ε2 > 0, define k = ⌈(log ε1)/ log γ)⌉. Then
using

m = O

(
k

√
nk−1ε−2

2 VarHH

)
independent samples from Q, with probability at least 2/3, Algorithm 2 produces an estimate
µ̂ of µ =

∑
i xi with absolute error

|µ− µ̂| ≤ ε1µ+ + ε2.

To understand the complexity of this algorithm, we note that when P = Q, in order to get
an error ε2 the complexity of the Hansen-Hurwitz estimator is ε−2

2 VarHH. The complexity
of our algorithm can thus be seen as a weighted geometric average between the complexity
of the Hansen-Hurwitz estimator, and n.

As a corollary of Theorem 7, we obtain a solution to the aforementioned problem of
estimating a sum of 0-1 values.

▶ Corollary 8. Suppose Q is pointwise γ-close to the uniform distribution over [N ] and xi ∈
[0, 1] for every i ∈ [N ]. For any ε > 0 define k = ⌈(log ε)/ log γ⌉. Then m = O(N1−1/kε−2/k)
samples are sufficient to obtain an estimate of µ =

∑
i xi with additive error εN with

probability 2/3.

We note that the asymptotic sample complexities in Theorem 7 and Corollary 8 are
non-uniform in γ and ε. In the case of Corollary 8, for any fixed postive integer k and
constant γ > 0, if ε = γk, then O(N1−1/k) samples are sufficient to obtain an εN additive
estimate. On the other hand, if γk+1 ≤ ε < γk, then our algorithm uses O(N1−1/(k+1))
samples. Our next main result shows that this sample complexity is essentially optimal,
and perhaps surprisingly, that the non-uniformity of the sample complexity is unavoidable.
Specifically, we show the following lower bound.

▶ Theorem 9. Suppose x1, x2, . . . , xN ∈ {0, 1} and N is a parameter. Then for every positive
integer k, there exists a positive constant ck such that for ε ≤ ckγk, there is a sequence of
distributions on [N ] that are γ-close to uniform such that the number of samples required to
estimate µ within error εN is Ω(N1−1/(k+1)).

This lower bound matches the upper bound of Corollary 8 for a large range of parameters.
When γ ≤ ck (where ck is as in the conclusion of the theorem), our algorithm has sample
complexity O(N1−1/(k+1)) for all ε ∈ [γk+1, γk), while the lower bound shows Ω(N1−1/(k+1))
samples are necessary for all ε ∈ [γk+1, ckγk]. Interestingly, these matching upper and lower
bounds show that the asymptotic sample complexity is non-uniform as a let of ε for any
fixed (sufficiently small) γ: for every ε ∈ [γk+1, ckγk], exactly Θ(N1−1/(k+1)) samples are

3 Note that N ≤ n, where N is the size of the multiset being sampled. In the case where P(i) = Ω(1/N)
for all i, we have n = Θ(N). The convention of defining n in this way was previously used in [6].
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62:6 Bias Reduction for Sum Estimation

necessary and sufficient, while for ε = γk, Θ(N1−1/k) samples are necessary and sufficient.
Thus, as a function ε, the sample complexity contains “islands of stability” – intervals in
which some perturbations of ε have no effect on the asymptotic sample complexity – while
between these intervals, an arbitrarily small (constant) decrease in ε results in a polynomial
(in N) increase in the sample complexity.

Discussion and Related Work

Throughout the paper, we assume that the probability distribution Q from which samples are
generated is pointwise close to P in the sense of Definition 2. Pointwise closeness is a strictly
stronger (and less commonly used) distance measure than, for example, total variation distance
(i.e., L1 distance) or other Lp distances. Nonetheless, this relatively strong assumption about
the relationship between P and Q is necessary in order to obtain any non-trivial guarantee for
estimating µ.4 Algorithms for generating samples with pointwise approximation guarantees
have been studied in the context of sublinear time algorithms [10, 18, 8, 7, 6, 20, 9] as well as
Markov chains [16, 13]. In the latter case, uniform mixing time gives a bound on complexity
of obtaining samples with pointwise guarantees. Interestingly, Hermon [13] shows a result
that can be viewed as an analogue of our lower bound for Markov chains (specifically random
walks on bounded degree graphs). Namely, small perturbations in the transition probabilities
of edges can result in an asymptotic increases in the uniform mixing time.

The problem of estimating the sum is well-studied in statistics. Classical estimators for
non-uniform sampling probabilities are described by Hansen and Hurwitz [12] and Horvitz
and Thompson [15]. Sum estimation in the related setting where we do not know the
sampling probabilities but know that they are proportional to the items’ values has been
studied in [17, 2].

Open problem: Sample correctors for uniform sampling

Finally, we state one interesting open problem. The concept of sample correctors from [4]
assumes that we may sample from a distribution that is close to some property, and we want
to be able to use it to sample from a distribution even closer to satisfying the property. It is
natural to ask if one can use o(n) samples from a distribution pointwise γ-close to uniform
and simulate a sample with bias o(γ).

1.2 Technical Overview
Upper Bound

The goal is to reduce the bias from γ to γk. Now the main observation that guides our
construction is the following identity:

1 + (−1)k+1γk =
k∑

h=1
(−1)h+1

(
k

h

)
(1 + γ)h . (8)

This should be compared to our estimator, ζk =
∑k

h=1(−1)h+1(k
h

)
ξh, which clearly mirrors

the identity. The reason for this is that the probability of an h-wise collision on position
i ∈ [N ] is Q(i)h ≈ (1 + γ)hP(i)h in the worst case when Q(i)

P(i) = 1 + γ. Hence the expectation
of the h-wise collision estimator, ξh, is approximately bounded by (1+γ)hµ. This implies that

4 As an extreme example, consider the case where only a γ-fraction of values xi are nonzero. If P is
uniform, then Q can assign zero mass to the nonzero elements, and still be γ-close to P with respect to
total variation distance. Thus, any estimator will return a value that is independent of the actual sum.
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when we take the expectation of our estimator then the expression reduces to Equation (8)
which shows that the bias is reduced to γk. Here, we cheated slightly by assuming that the
bias is the same for all the positions i ∈ [N ]. This is of course not true, but actual calculation
reduces to N instances of Equation (8).

The more delicate part of the analysis of our estimator is the bound on the variance. The
main difficulty lies in rewriting ζk − E[ζk] into something manageable. We note that we can
write our estimator ζk as

ζk =
∑

i∈[N ]

xi

k∑
h=1

(−1)h+1
(

k
h

)(
m
h

) (
Yi

h

)
(P(i))h

.

We can express the frequency vector Y by random variables as follows: Yi =
∑

j∈[m][Xj = i].
(Here, we use [Xj = i] to denote the indicator random variable of the event Xj = i.) This
allows us to see that

(
Yi

h

)
=
∑

I⊆[m]
|I|=h

∏
j∈I [Xj = i]. If we now define the polynomials Pi by

Pi(β1, . . . , βm) =
k∑

h=1
(−1)h+1

(
k
h

)(
m
h

) 1
(P(i))h

∑
I⊆[m]
|I|=h

∏
j∈I

βj ,

then we can write our estimator as ζk =
∑

i∈[N ] xiPi([X1 = i], . . . , [Xm = i]). We observe
that P has degree 1 in each variable so E[Pi([X1 = i], . . . , [Xm = i])] = Pi(Q(i), . . . ,Q(i)).
Furthermore, it seems reasonable that there should exist polynomials Qi which have degree
1 in each variable and satisfy Pi([X1 = i], . . . , [Xm = i]) − Pi(Q(i), . . . ,Q(i)) = Qi([X1 =
i]−Q(i), . . . , [Xm = i]−Q(i)). This will help us in understanding the variance of our final
estimator ζk by decomposing into variances of the simpler events [X1 = i]. We show that Qi

exist and are defined as follows

Qi(β1, . . . , βm) = (−1)k+1
k∑

h=1

(
k
h

)(
m
h

) γk−h
i

(P(i))h

∑
I⊆[m]
|I|=h

∏
j∈I

βj

So we get that ζk − E[ζk] =
∑

i∈[N ] xiQi([X1 = i] − Q(i), . . . , [Xm = i] − Q(i)). Since
[X1 = i]−Q(i) is a zero mean variable and Qi has degree 1 in each variable, it becomes easy
to calculate the variance.

A technical detail that we have not touched upon yet is that if k ≥ 2 then Var[ζk] becomes
very large if µ2 ≫ Var[µHH]. The reason is that Var[ζk] depends on

∑
i∈[N ] P(i)

(
xi

P(i)

)2
=

Var[µHH] + µ2. Thus, if µ2 ≫ Var[µHH] then our variance becomes much larger which
is a problem. Now imagine that we already have an estimate, W , of µ. We then set
x̄i = xi − P(i)W and make a new estimator ζ̄k that uses x̄i instead of xi. Then ζ̄k will
estimate µ −W so ζ̄k + W will be an estimator of µ. The trick is that Var[ζ̄k] depends
on Var[µHH] + (µ −W )2 so if W = µ + O(

√
Var[µHH]) then we will have control over the

variance. We can get such estimate, W , by using our estimator for k = 1 where there are
no issues with variance (i.e., the standard deviation of W − µ only depends on

√
Var[µHH]

rather than on µ).

Lower Bound

At a high level, our strategy is to define a reduction from the problem of distinguishing two
distributions D1 and D2 to the problem of estimating µ =

∑
i xi. More concretely, for each

fixed positive integer k, we define distributions D1 and D2 with support sizes n1 and n2,
respectively, such that:
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62:8 Bias Reduction for Sum Estimation

1. n1 = (1 + (Θ(γ))k)n2,
2. D1 and D2 are both pointwise γ-close to uniform, and
3. D1 and D2 have identical pth frequency moments for p = 1, 2, . . . , k.5

We describe a reduction showing that for N = n1 + n2, P uniform over [N ], and xi ∈ {0, 1}
for all i ∈ [N ], any algorithm that distinguishes µ = n1 from µ = n2 can also distinguish
D1 from D2. We then apply a framework of Raskhodnikova et al. [19], which implies that
distinguishing any two distributions whose first k frequency moments are equal requires
Ω(n1−1/(k+1)) samples. One difference between our setting and that of [19] is that in our
setting, for each sample i we are also given xi, whereas [19] focuses on support size estimation.
However, since the xi’s are 0 or 1-valued, estimating the sum requires us to estimate either the
number of xi’s which are 0 or the number of xi’s which are 1. We can apply this observation
to reduce the problem to finding two nearly uniform distributions (i.e., both are pointwise
γ-close to uniform) that differ in support size by a multiplicative 1±Θ(γ)k factor, yet match
in the first k moments.

To do this, we use a combinatorial construction that is inspired by a related lower bound
in [6]. For simplicity, we assume that the probability of sampling any fixed item lies in
{ 1

n , 1+γ
n , . . . , 1+kγ

n } (while these distributions would only be k · γ-close to uniform, we can
replace γ with γ/k). For the distribution D1, we assume the number of elements with
probability 1+i·γ

n is ai, and for the distribution D2 the number of elements with probability
1+i·γ

n is bi. Then, our goal is for the support sizes of D1 and D2 (which are
∑

ai,
∑

bi,
respectively) to differ significantly but for the first k moments to match. This means

∑
ai

and
∑

bi differ significantly, but
∑

ai(1 + i · γ)ℓ =
∑

bi(1 + i · γ)ℓ. If we define ci := ai − bi

and think of (1 + i · γ)ℓ as a degree ℓ polynomial P (i), we want
∑

ciP (i) = 0 but
∑

ci to be
large (roughly γk · n). Finally, we need to make sure that

∑
ai,
∑

bi are both Θ(n).
To determine the values of each ci, we utilize the observation that for any polynomial

P (x) of degree less than k, the successive differences, i.e., P (x)− P (x− 1) is a polynomial
of degree less than k − 1. We can repeatedly take successive differences k times to get a
linear combination of P (0), P (1), . . . , P (k) that equals 0 for any polynomial P of degree less
than k. We can therefore set ci := ai − bi to be these linear coefficients. Unfortunately,
we will have

∑
ci = 0 as well. Instead, we replace ci with c′

i := ci/(1 + iγ), so that∑
c′

i · (1 + i · γ)ℓ =
∑

ci · (1 + i · γ)ℓ−1 = 0 for all 1 ≤ ℓ ≤ k. However,
∑

c′
i =

∑
ci/(1 + i · γ)

is not expressible as
∑

ciP (i) for a polynomial P of low degree, and will in fact be nonzero,
which is exactly what we want. We scale the c′

i terms so that
∑

c′
i = γk · n. If we write

ai = max(c′
i, 0) and bi = max(−c′

i, 0), then every ai and bi is nonnegative but ai − bi = c′
i.

One can show via some careful combinatorics that after this scaling,
∑

ai and
∑

bi are both
Θ(n), as desired.

2 Sum Estimation

We now give the algorithm for the sum estimation problem. We then state our main result
(Theorem 10) as well as the special case for estimating the sum of 0-1 values (Corollary 8)
that we discussed in the introduction. We then state and prove Lemma 12 which we then
use to prove Theorem 10.

We now state our main theorem. Note that this implies, by a simple substitution, the
simpler version mentioned in the introduction as Theorem 7.

5 Recall that the pth frequency moment of a distribution D is
∑

x
(D(x))p.
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Algorithm 1 EstimateSum(m, k, W ).

1 (Xj)j∈[m] ← take m samples from the distribution Q
2 For every i ∈ [N ], let Yi denote the number of times value i was sampled

(Yi =
∑

j∈[m][Xj = i] )
3 For every h ∈ [k], let ξh be the h-wise collision estimator(

ξh = 1
(m

h)
∑N

i=1
(

Yi

h

)xi−P(i)W
(P(i))h

)
4 return W +

∑k
h=1(−1)h+1(k

h

)
ξh

Algorithm 2 ImprovedEstimateSum(m, t, k).

1 W ← EstimateSum(t, 1, 0)
2 return EstimateSum(m, k, W )

▶ Theorem 10. Define n = maxi 1/P(i). Suppose Q is pointwise γ-close to P, and let VarHH
be the variance of µHH/N defined in Equation (7). For ε1, ε2 > 0, define k = ⌈(lg ε1)/ lg γ)⌉.
Then using

m = O

(
k

√
nk−1ε−2

2 VarHH

)
independent samples from Q, with probability at least 2/3, Algorithm 2 produces an estimate
µ̂ of µ =

∑
i xi with absolute error

|µ− µ̂| ≤ ε1(1 + γ) E
X∼P

[|P(X)−1xX − µ|] + ε2

This theorem implies in a straightforward way a solution to the problem of estimating the
sum of 0-1 values that we discussed in the introduction.

▶ Corollary 11. Suppose Q is pointwise γ-close to the uniform distribution over [N ] and xi ∈
{0, 1} for every i ∈ [N ]. For any ε > 0 define k = ⌈(log ε)/ log γ⌉. Then m = O(n1−1/kε−2/k)
samples are sufficient to obtain an estimate of µ =

∑
i xi with additive error ε(µ +

√
µN)

with probability 2/3.

Before we can prove our main result, we need the following lemma.

▶ Lemma 12 (Analysis of EstimateSum(m, k, 0)). Define n = maxi 1/P(i). Let (xi)i∈[N ]
be a sequence of numbers and define µ =

∑
i∈[N ] xi. Let P be a probability distribution over

[N ], and let Q be another probability distribution over [N ] that is pointwise γ-close to P.
Consider a sequence (Xj)j∈[m] of independent random variables both with distribution Q.

Define Yi =
∑

j∈[m][Xj = i] for every i ∈ [N ]. Define

ζk =
k∑

h=1
(−1)h+1

(
k
h

)(
m
h

) ∑
i∈[N ]

(
Yi

h

)
P(i)−hxi .

Then for k ≥ 2, we get that

| E[ζk] − µ| ≤ γk
∑

i∈[N ]

|xi| (9)

Var[ζk] ≤ max

{
2(1 + γ)γ2k−2k2

∑
i∈[N ] P(i)−1x2

i

m
, 2k(1 + γ)kk3k

nk−1∑
i∈[N ] P(i)−1x2

i

mk

}
,

(10)
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and for k = 1, we get that

|E[ζ1]− µ| ≤ γ
∑

i∈[N ]

|xi − P(i)µ| (11)

Var[ζ1] ≤ (1 + γ)
∑

i∈[N ] P(i)−1(xi − P(i)µ)2

m
(12)

We are now ready to prove the main theorem.

Proof of Theorem 10. Let W be an estimate of µ using EstimateSum(t, 1, 0) where t =
O(1 + γ2kε−2

2 VarHH). Using Lemma 12 we get an estimate of the bias and the variance.
Now by Chebyshev’s inequality, we easily get that |W − µ| ≤ γ

∑
i∈[N ] P(i)|P(i)−1xi −

µ| + max
{

ε2/(2γk),
√∑

i∈[N ] P(i)(P(i)−1xi − µ)2
}

with probability 5/6. We note that∑
i∈[N ] P(i)|P(i)−1xi − µ| ≤

√∑
i∈[N ] P(i)(P(i)−1xi − µ)2 since p-norms are increasing. So

we also get that |W − µ| ≤ O(
√∑

i∈[N ] P(i)(P(i)−1xi − µ)2)

Now we calculate ζ using EstimateSum(m, k, W ) with m = O

(
k

√
nk−1ε−2

2 VarHH

)
so

ζ corresponds to ImprovedEstimateSum(m, t, k). We now note that by Lemma 12,

|(E[ζ]−W )− (µ−W )| ≤ γk
∑

i∈[N ]

P(i)|P(i)−1xi −W |

≤ γk|W − µ|+ γk
∑

i∈[N ]

P(i)|P(i)−1xi − µ|,

and

Var[ζ] ≤ max
{

2(1 + γ)γ2k−2k2
∑

i∈[N ] P(i)(P(i)−1xi −W )2

m
,

2k(1 + γ)kk3k
nk−1∑

i∈[N ] P(i)(P(i)−1xi −W )2

mk

}
= max

{
2(1 + γ)γ2k−2k2

∑
i∈[N ] P(i)(P(i)−1xi − µ)2 + (W − µ)2

m
,

2k(1 + γ)kk3k
nk−1

(∑
i∈[N ] P(i)(P(i)−1xi −W )2 + (W − µ)2

)
mk

}
Assuming that

|W − µ| = γ
∑

i∈[N ]

P(i)|P(i)−1xi − µ|+ max

ε1/(2γk),
√∑

i∈[N ]

P(i)(P(i)−1xi − µ)2

 ,

we get that |(E[ζ] −W ) − (µ −W )| ≤ γk(1 + γ)
∑

i∈[N ] P(i)|P(i)−1xi − µ| + ε2/2. Using
that |W − µ| ≤ O(

√∑
i∈[N ] P(i)(P(i)−1xi − µ)2) we can then use Chebyshev’s inequality

to conclude that with probability 5/6

|ζ − E[ζ]| ≤ ε2/2

So all in all, with probability at least 2/3 we that |ζ −µ| ≤ ε1(1 + γ)
∑

i∈[N ] P(i)|P(i)−1xi−
µ|+ ε2. ◀
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3 Lower Bound

In this section, we prove that for a range of parameters – specifically in the setting of
Corollary 11 – the sample complexity of our sum estimation algorithm (Algorithm 2) is
asymptotically tight.

▶ Theorem 13. Let k be a positive integer and let ε < γ < 1 be positive numbers. Suppose
A is an algorithm such that for any v ∈ {0, 1}N and any distribution P over [N ] that is
pointwise γ-close to uniform, A uses samples from P and returns an estimate of ∥v∥1 =

∑
i vi

within additive error εN with probability 2/3. Then there exists ck with 0 < ck < 1 such that
if ε ≤ ckγk then A requires Ω(N1−1/(k+1)) samples.

While at a first glance this result might seem contradictory to our upper bound (specifically,
Corollary 8), it actually reveals the following interesting phenomena. Notice that in our
upper bound, the complexity depends on k = ⌈(log ε)/ log γ⌉, so that, e.g., for ε = γk, the
complexity is O(N1− 1

k ). Once ε becomes slightly smaller, i.e., ε = cγk for c satisfying
γ ≤ c < 1, the complexity of our algorithm abruptly jumps to O(n1− 1

k+1 ). The lower
bound implies that this increase in complexity is unavoidable for sufficiently small c. That
is, Theorem 13 states that there exists a (sufficiently small) constant ck, such that indeed
once ε = ck · γk, the required number of samples is Ω(n1− 1

k+1 ). Interestingly, for all ε

satisfying γk+1 ≤ ε ≤ ckγk, the asymptotic complexity of sum estimation is the same; the
complexity only varies for ε satisfying ckγk ≤ ε ≤ γk. Our matching upper and lower bounds
demonstrate that the sample complexity’s non-uniform dependence on ε is not an artifact,
but captures the true complexity of the problem (up to the dependency on γk/2 in the
numerator of the upper bound). Note that if the conclusion of Theorem 13 held every c < 1,
then this would capture the right dependency on n for all possible ranges of γ. Since we
only prove the theorem for a sufficiently small ck, it might be the case that for values ε that
are not too much smaller than γk, the optimal dependency on N is lower than our stated
upper bound. Nonetheless, our upper and lower bounds match (up to constant factors) for
all ε satisfying γk+1 ≤ ε ≤ ckγk.

As described in Section 1.2, the main technical ingredient in the proof of the theorem is
in describing two distributions D1 and D2 over ranges [n1], [n2], respectively, such that D1
and D2 are pointwise γ-close to uniform, n1 = (1 + Θ(γ)k)n2, and D1 and D2 have matching
frequency moments 1 through k. Given these distributions we rely on the framework for
proving lower bounds by Raskhodnikova et al. [19], which states that any uniform algorithm
that distinguishes two random variables with matching frequency moments 1 through k must
perform Ω(n1−1/(k+1)) many samples.

In order to simplify our construction and its analysis, we prove the lower bound for
uniform algorithms. Here, a uniform algorithm is an algorithm whose output depends only
on the “collision statistics” of the samples – i.e., the number of collisions involving each
sample, and not the identities of the samples themselves.

▶ Definition 14 (Uniform algorithm. Definition 3.2 in [19]). An algorithm is uniform if
it samples indices i1, · · · , im independently with replacement and its output is uniquely
determined by (i) the value of the items xij and (ii) the set of collisions, where two indices j

and j′ collide if ij = ij′ .

In particular, a uniform algorithm’s output does not depend on the sampled indices
themselves. The following lemma asserts that our restriction to uniform algorithms is without
loss of generality.

APPROX/RANDOM 2023
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▶ Lemma 15 (cf. Theorem 11.12 in [11]). Suppose there exists an algorithm A such that
for any v ∈ {0, 1}N

A uses samples from P and returns an estimate of ∥v∥1 =
∑

i vi within
additive error εN with probability 2/3 using s samples in expectation. Then there exists a
uniform algorithm A′ that achieves the same approximation guarantee using s samples in
expectation.

The proof of Lemma 15 is essentially the same as that of Goldreich’s Theorem 11.12
in [11]. The key idea is that

∑
i vi is a “label invariant” in the sense that it is unaffected

by any permutation of the indices of v. Thus, given an algorithm A as in the hypothesis
of Lemma 15, we can obtain uniform algorithm A′ with the same approximation guarantee
by simply choosing a uniformly random permutation of the indices of v, then using the
permuted indices of v as inputs for A. See Theorem 11.12 in [11] for details.

Finally, our lower bound argument requires the following result that is a direct consequence
of the work of Raskhodnikova et al. [19].

▶ Theorem 16 (Consequence of Lemma 5.3 and Corollary 5.7 from [19]). Let D1 and D2 be
distributions over positive integers b1 < . . . < bℓ, that have matching frequency moments 1
through k. Then for any uniform algorithm A with sample complexity s that distinguishes D1
and D2 with high constant probability, s = Ω(n1−1/(k+1)).

Our main argument for the lower bound applies Theorem 16 in conjunction with a
reduction from distinguishing D1 and D2 to sum estimation. The main technical ingredient
is the following lemma, which asserts the existence of suitable distributions D1 and D2.

▶ Lemma 17. For every positive integer k and sufficiently large integer n, there exist two
distributions D1, D2 over [n1] and [n2] (respectively) satisfying n1 = (1+Θ(γ)k)n, and n2 = n

such that pDj
(i) ∈ (1± γ) 1

n for j ∈ {1, 2} and the following holds. For all ℓ ∈ {1, 2, . . . , k},
it holds that

n1∑
i=1

(pD1(i))ℓ =
n2∑

i=1
(pD2(i))ℓ.

In particular, there exists an absolute constant ck such that for sufficiently large n, n2 ≥
(1 + ckγk)n1 and the above conclusion holds.

Before proving the lemma, we show how the lemma implies Theorem 13.

Proof of Theorem 13. The theorem follows from Theorem 16 together with Lemma 17. Let
N = n1 + n2, where n1 = (1 + Θ(γ)k)n2 as in the conclusion of Lemma 17, and consider
distinguishing between two possible outcomes O1 and O2.

In the first outcome O1, let S = {1, 2, . . . , n1} ⊆ [N ] and T = {t1, . . . , tn2} := [N ]\S.
The distribution Q will be as follows. With exactly 1/2 probability, we choose S: if so, we
then choose a sample i ∼ D1, which will be in [n1], and output i. Otherwise, we choose T :
we then choose a sample i ∼ D2, which will be in [n2], and then output ti. Here, D1, D2 are
the distributions from Lemma 17. Finally, we let vi = 1 if i ∈ S and vi = 0 if i ∈ T .

The second outcome O2 is similar but “flipped”. Now, we let S = {1, 2, . . . , n2} ⊆ [N ],
and T = {t1, . . . , tn1} := [N ]\S. With exactly 1/2 probability, we choose S: if so, we then
choose a sample i ∼ D2, and output i. Otherwise, we choose T : we then choose a sample
i ∼ D1, and then output ti. Finally, we let vi = 1 if i ∈ S and vi = 0 if i ∈ T .

Under O1, we have that
∑

vi always equals n1, whereas under O2, we have that
∑

vi

is always n2. In addition, since both n1 and n2 are N
2 · (1 ± O(γ)), and since D1 and D2

are γ-pointwise close to uniform, the distribution Q that we sample from in either case is
O(γ)-pointwise close to uniform. So, we may assume that P is uniform over [N ] in either
case.
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Now, assume that there exists a uniform algorithm6 A that draws samples (i, vi) either
from outcome O1 or outcome O2 and with probability at least 2/3, computes an estimate of∑

i vi up to additive error ckγkN/5, where ck is as in the second conclusion of Lemma 17.
Observe that when the error bound on A is satisfied (which occurs with probability at least
2/3), A’s output distinguishes scenarios O1 and O2.

Finally, we observe that distinguishing O1 from O2 is sufficient to distinguish the distri-
butions D1 and D2. Indeed, under scenario O1, the 1-values and sampled from D1, while
the 0-values are sampled from D2, while the roles are reversed in O2. Thus, the output of A

suffices to distinguish D1 and D2. Since A uses s samples in expectation, Theorem 16 and
Lemma 17 imply that s = Ω(n1−1/(k+1)), as desired. ◀

We now conclude by proving our main technical lemma.

Proof of Lemma 17. First, we note that
k∑

i=0
(−1)i

(
k

i

)(
i

r

)
=

k∑
i=r

(−1)i

(
k

i

)(
i

r

)
=

k∑
i=r

(−1)i · k!
(k − i)!(i− r)!r!

=
k∑

i=r

(−1)i ·
(

k

r

)(
k − r

i− r

)
= (−1)r

(
k

r

)
·

k−r∑
j=0

(−1)j

(
k − r

j

)
.

The last line follows by setting j = i−r. Now, note that the summation in the last line equals
(1− 1)k−r = 0 if k > r, and equals 1 if k = r. So, this means that

∑k
i=0(−1)i

(
k
i

)(
i
r

)
= 0 for

all 0 ≤ r < k.
Next, note that

(
i
r

)
= i(i−1)···(i−r+1)

r! for all integers i ≥ 0. This is a degree-r polynomial
in i. From this observation, it is well-known that every degree at most k − 1 polynomial in i

can be written as a linear combination of
(

i
0
)
, . . . ,

(
i

k−1
)
. Therefore, for any polynomial P of

degree at most k − 1,
∑k

i=0(−1)i
(

k
i

)
· P (i) = 0.

Now, we let the distribution D1 have exactly a (k
i)

2k−1 fraction of its mass consisting of
items each with probability

(
1 + γ·i

k

)
· 1

n0
, for each even integer 0 ≤ i ≤ k. Here, n0 will

be an integer chosen later. Note this means it must have n0 ·
(k

i)
2k−1·(1+ γ·i

k ) points with mass(
1 + γ·i

k

)
· 1

n0
for each even integer 0 ≤ i ≤ k. Likewise, we let the distribution D2 have

exactly a (k
i)

2k−1 fraction of its mass consisting of items each with probability
(
1 + γ·i

k

)
· 1

n0
,

for each odd integer 0 ≤ i ≤ k. Note that the total fraction of mass for both D1 and D2 is
clearly 1.

First, we note that for any 1 ≤ ℓ ≤ k,
n1∑

i=1
(pD1(i))ℓ −

n1∑
i=1

(pD2(i))ℓ (13)

=
k∑

i=0
i even

n0 ·
(

k
i

)
2k−1 · (1 + γ·i

k )
·
((

1 + γ · i
k

)
· 1

n0

)ℓ

(14)

−
k∑

i=0
i odd

n0 ·
(

k
i

)
2k−1 · (1 + γ·i

k )
·
((

1 + γ · i
k

)
· 1

n0

)ℓ

(15)

6 Again, the assumption that A is uniform is without loss of generality by Lemma 15. For our construction,
however, the two scenarios O1 and O2 can be distinguished by a non-uniform algorithm using O(γk)
samples. Indeed, the two scenarios are distinguished by seeing any value vi with n2 < i ≤ n1. Following
the proof of Lemma 15 (cf. Theorem 11.12 in [11]), the scenarios are indistinguishable to even a
non-uniform algorithm we we replace S and T with randomly chosen complementary subsets of [N ].
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= 1
nℓ−1

0 · 2k−1
·

k∑
i=0

(−1)i

(
k

i

)
·
(

1 + γ · i
k

)ℓ−1
. (16)

By letting P (i) be the polynomial
(
1 + γ·i

k

)ℓ−1, we have that P (i) has degree at most k − 1,
so this equals 0, as desired.

Finally, we look at the difference n1 − n2, i.e., the difference in support size between D1
and D2. This simply equals

k∑
i=0

i even

n0 ·
(

k
i

)
2k−1 · (1 + γ·i

k )
−

k∑
i=0

i odd

n0 ·
(

k
i

)
2k−1 · (1 + γ·i

k )
= n0

2k−1 ·
k∑

i=0
(−1)i ·

(
k
i

)
1 + γ

k · i
. (17)

We now inductively prove (by inducting on k ≥ 1) that
∑k

i=0(−1)i · (k
i)

a+γ·i = k!·γk

a(a+γ)···(a+kγ)

for any real numbers a, γ. For k = 1, we have that
∑k

i=0(−1)i · (k
i)

a+γ·i = 1
a −

1
a+γ = γ

a(a+γ) .
For general k, we can write

k∑
i=0

(−1)i ·
(

k
i

)
a + γ · i

=
k∑

i=0
(−1)i ·

(
k−1
i−1
)

+
(

k−1
i

)
a + γ · i

(18)

=
k−1∑
i=0

(−1)i ·
(

k−1
i

)
a + γ · i

+
k∑

i=1
(−1)i ·

(
k−1
i−1
)

a + γ · i
(19)

=
k−1∑
i=0

(−1)i ·
(

k−1
i

)
a + γ · i

−
k−1∑
j=0

(−1)j ·
(

k−1
j

)
(a + γ) + γ · j

, (20)

where we have set j = i− 1. We can now use the inductive hypothesis on k − 1 to obtain
that this equals

(k − 1)! · γk−1

a(a + γ) · · · (a + (k − 1)γ) −
(k − 1)! · γk−1

(a + γ) · · · (a + (k − 1)γ)(a + kγ) (21)

= (k − 1)! · γk−1 · (a + kγ)− a

a(a + γ) · · · (a + (k − 1)γ)(a + kγ) (22)

= k! · γk · 1
a(a + γ) · · · (a + (k − 1)γ)(a + kγ) . (23)

Therefore, by setting a = 1 and replacing γ with γ′ = γ/k, we have that the difference in
support size between D1 and D2 is

n0

2k−1 ·
k!
kk
· γk · 1

(1 + γ/k)(1 + 2γ/k) · (1 + γ) .

Assuming that γ ≤ 1/2, we can apply Stirling’s approximation to obtain that this difference
is n0 · (γ/Θ(1))k.

To finish, we will set n0 appropriately. Note that we wish for D2 to have support size
exactly n. However, all of the points in D2 has mass between 1

n0
and 1+γ

n0
, which means

that the support size n2 must be between n0
1+γ and n0. So, we can first set n0, and then

choose n = n2 to be n0 ·
∑k

i=0,i odd
(k

i)
2k−1·(1+ γ·i

k ) , which is in the range
[

n0
1+γ , n0

]
, and n1 to

be n0 ·
∑k

i=0,i even
(k

i)
2k−1·(1+ γ·i

k ) . Both n1 and n = n2 are in the range
[

n0
1+γ , n0

]
. Indeed, we

will have that
∑n1

i=1(pD1(i))ℓ =
∑n2

i=1(pD2(i))ℓ, and n1 − n2 = Θ(γ)k · n0 = Θ(γ)k · n. In
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addition, because all of the values pDj
(i) are in the range

[
1

n0
, 1+γ

n0

]
for both j = 1 and

j = 2, this means that they are also in the range
[ 1−γ

n , 1+γ
n

]
, as desired. This completes the

proof. ◀
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A Proof of Lemma 12

Here, we prove the main technical lemma for our sum estimator.

Proof. For each i ∈ [N ] we define γi such that Q(i) = (1 + γi)P(i). Since we know that Q
is pointwise γ-close to P then |γi| ≤ γ, and since both Q and P are probability distributions
then

∑
i∈[N ] γiP(i) = 0.

We start by proving the bounds on the expectation, i.e., Equation (9) and Equation (11).

E[ζk] = E

 k∑
h=1

(−1)h+1

(
k
h

)(
m
h

) ∑
i∈[N ]

(
Yi

h

)
P(i)−hxi


=

k∑
h=1

(−1)h+1

(
k
h

)(
m
h

) ∑
i∈[N ]

E
[(

Yi

h

)]
P(i)−hxi .

We use the fact that Yi =
∑

j∈[m][Xj = i] is a sum of 0-1 variables so(
Yi

h

)
=
∑

I⊆[m]:|I|=h

∏
j∈I [Xj = i]. This implies that E

[(
Yi

h

)]
=
(

m
h

)
Q(i)h =

(
m
h

)
(1 +

γi)hP(i)h. Plugging this in, we get that

E[ζk] =
k∑

h=1

(−1)h+1

(
k
h

)(
m
h

) ∑
i∈[N ]

(
m

h

)
(1 + γi)hP(i)hP(i)−hxi =

k∑
h=1

(−1)h+1
(

k

h

) ∑
i∈[N ]

(1 + γi)hxi

=
∑

i∈[N ]

xi

k∑
h=1

(−1)h+1
(

k

h

)
(1 + γi)h =

∑
i∈[N ]

xi

(
1 +

k∑
h=0

(−1)h+1
(

k

h

)
(1 + γi)h

)
=
∑

i∈[N ]

xi

(
1 − (1 − (1 + γi))k

)
=
∑

i∈[N ]

xi

(
1 + (−1)k+1γk

i

)
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If k ≥ 2 then we easily see that

|E[ζk]− µ| = |
∑

i∈[N ]

xi −
∑

i∈[N ]

xi(1 + (−1)k+1γk
i )| = |

∑
i∈[N ]

γk
i xi| ≤ γk

∑
i∈[N ]

|xi|

For k = 1 we will exploit that
∑

i∈[N ] γiP(i) = 0.

|E[ζ1]− µ| = |
∑

i∈[N ]

γixi| = |
∑

i∈[N ]

γi(P(i)µ + (xi − P(i)µ))|

= |
∑

i∈[N ]

γi(xi − P(i)µ)| ≤ γ
∑

i∈[N ]

|xi − P(i)µ|

Now we will focus on bounding the variance. First we prove Equation (12).

Var[ζ1] = E


 1

m

∑
j∈[m]

∑
i∈[N ]

xi([Xj = i]P(i)−1 − (1 + γi))

2


= 1
m2

∑
j∈[m]

E


∑

i∈[N ]

xi([Xj = i]P(i)−1 − (1 + γi))

2


We will argue that
∑

i∈[N ] xi([Xj = i]P(i)−1 − (1 + γi)) =
∑

i∈[N ](xi − P(i)µ)([Xj =
i]P(i)−1 − (1 + γi)).∑

i∈[N ]

xi([Xj = i]P(i)−1 − (1 + γi))

=
∑

i∈[N ]

(xi − P(i)µ + P(i)µ)([Xj = i]P(i)−1 − (1 + γi))

=
∑

i∈[N ]

(xi − P(i)µ)([Xj = i]P(i)−1 − (1 + γi)) + µ
∑

u∈[N ]

P(i)γi

Now since
∑

i∈[N ] γiP(i) = 0 it follows. We can now bound the variance.

Var[ζ1] = 1
m2

∑
j∈[m]

E

∑
i∈[N ]

(xi − P(i)µ)([Xj = i]P(i)−1 − (1 + γi))

2
≤ 1

m2

∑
j∈[m]

E

∑
i∈[N ]

P(i)−1(xi − P(i)µ)[Xj = i]

2
= 1

m

∑
i∈[N ]

Q(i)
P(i)2 (xi − P(i)µ)2 ≤ 1 + γ

m

∑
i∈[N ]

P(i)−1(xi − P(i)µ)2

Now we just need to focus on the case of k ≥ 2 and prove Equation (10). For this we
need the following lemma for which we defer the proof till Appendix A.

▶ Lemma 18. For all sequences of numbers (βj)j∈[m] and all α the following identity holds:

∑
I⊆[m]

0<|I|≤k

(−1)|I|+1

(
k

|I|

)(
m
|I|

) (∏
j∈I

βj − (1 + α)h

)
= (−1)k+1

∑
I⊆[m]

0<|I|≤k

(
k

|I|

)(
m
|I|

)αk−|I|
∏
j∈I

(βj − (1 + α))
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The idea is to use Lemma 18 to prove that

ζk − E[ζk] =
∑

I⊆[m]
0<|I|≤k

(
m−|I|
k−|I|

)(
m
k

) αk−|I|
∑

i∈[N ]

xi

∏
j∈I

(P(i)−1[Xj = i]− (1 + γi)) . (24)

First we use that E[ζk] =
∑k

h=1(−1)h (k
h)

(m
h)
∑

i∈[N ] P(i)−hxi E
[(

Yi

h

)]
which allow us to rewrite

ζk − E[ζk].

ζk − E[ζk] =
k∑

h=1
(−1)h

(
k
h

)(
m
h

) ∑
i∈[N ]

P(i)−hxi

((
Yi

h

)
− E

[(
Yi

h

)])

We now again use that Yi =
∑

j∈[m][Xj = i] is a sum of 0-1 variables so(
Yi

h

)
=
∑

I⊆[m]:|I|=h

∏
j∈I [Xj = i] and E

[(
Yi

h

)]
=
(

m
h

)
(1 + γi)hP(i)h.

k∑
h=1

(−1)h

(
k
h

)(
m
h

) ∑
i∈[N ]

P(i)−hxi

((
Yi

h

)
− E

[(
Yi

h

)])

=
k∑

h=1

(−1)h

(
k
h

)(
m
h

) ∑
i∈[N ]

P(i)−hxi

∑
I⊆[m]
|I|=h

(∏
j∈I

[Xj = i] − (1 + γi)hP(i)h

)

=
∑

i∈[N ]

xi

k∑
h=1

∑
I⊆[m]
|I|=h

(−1)h

(
k
h

)(
m
h

)P(i)−h

(∏
j∈I

[Xj = i] − (1 + γi)hP(i)h

)

=
∑

i∈[N ]

xi

∑
I⊆[m]

0<|I|≤k

(−1)|I|+1

(
k

|I|

)(
m
|I|

)P(i)−h

(∏
j∈I

[Xj = i] − (1 + γi)|I|P(i)|I|

)

=
∑

i∈[N ]

xi

∑
I⊆[m]

0<|I|≤k

(−1)|I|+1

(
k

|I|

)(
m
|I|

) (∏
j∈I

P(i)−1[Xj = i] − (1 + γi)|I|

)

For each i ∈ [N ], the expression
∑

I⊆[m]
0<|I|≤k

(−1)|I|+1 ( k
|I|)

(m
|I|)
(∏

j∈I P(i)−1[Xj = i]− (1 + γi)|I|
)

is of the form of Lemma 18. So applying that N times we get that

∑
i∈[N ]

xi

∑
I⊆[m]

0<|I|≤k

(−1)|I|+1

(
k

|I|
)(

m
|I|
)
∏

j∈I

P(i)−1[Xj = i]− (1 + γi)|I|



=
∑

i∈[N ]

xi(−1)k+1
∑

I⊆[m]
0<|I|≤k

(
k

|I|
)(

m
|I|
)γ

k−|I|
i

∏
j∈I

(
P(i)−1[Xj = i]− (1 + γi)

)

= (−1)k+1
∑

I⊆[m]
0<|I|≤k

(
k

|I|
)(

m
|I|
) ∑

i∈[N ]

γ
k−|I|
i xi

∏
j∈I

(
P(i)−1[Xj = i]− (1 + γi)

)

This shows that Equation (24) is true.
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Now let I1, I2 ⊆ [m] be two different set of indices with 0 < |I1|, |I2| ≤ k. Without loss of
generality, we can assume that there exists h ∈ I1 \ I2.

T = (
∑

i∈[N ]

γ
k−|I1|
i xi

∏
j∈I1

(P(i)−1[Xj = i] − (1 + γi)))

· (
∑

i∈[N ]

γ
k−|I2|
i xi

∏
j∈I2

(P(i)−1[Xj = i] − (1 + γi)))

Note that if we multiply this expression out then every term will contain a factor of the form
(P(i)−1[Xh = s]− (1 + γi)) for some s ∈ [N ] and where all the other factors are independent
of Xh. Since E[(P(i)−1[Xh = s]− (1 + γi))] = 0 we get that E[T ] = 0. This implies that

E[(ζk − E[ζk])2] =
∑

I⊆[m]
0<|I|≤k

((
k

|I|
)(

m
|I|
))2

E[(
∑

i∈[N ]

γ
k−|I|
i xi

∏
j∈I

(P(i)−1[Xj = i]− (1 + γi)))2]

Let I ⊆ [N ] be fixed then

E[(
∑

i∈[N ]

γ
k−|I|
i xi

∏
j∈I

(P(i)−1[Xj = i] − (1 + γi)))2] ≤ E[(
∑

i∈[N ]

γ
k−|I|
i xi

∏
j∈I

P(i)−1[Xj = i])2]

=
∑

i∈[N ]

γ
2k−2|I|
i x2

i
Q(i)|I|

P(i)2|I| ≤ γ2k−2|I|
∑

i∈[N ]

x2
i

(1 + γi)|I|

P(i)|I|

Collecting terms we get that

E[(ζk − E[ζk])2] ≤
∑

I⊆[m]
0<|I|≤k

((
k

|I|
)(

m
|I|
))2

γ2k−2|I|
∑

i∈[N ]

x2
i

(1 + γi)|I|

P(i)|I|

=
k∑

h=1

(
k
h

)2(
m
h

) γ2k−2h
∑

i∈[N ]

x2
i

(1 + γi)h

P(i)h
≤

k∑
h=1

(
k
h

)2(
m
h

) γ2k−2h(1 + γ)h
∑

i∈[N ]

x2
i

P(i)h

≤
k∑

h=1

k2h(
m
h

)γ2k−2h(1 + γ)h
∑

i∈[N ]

x2
i

P(i)h
≤ kmax

h=1

2hk2h(
m
h

) γ2k−2h(1 + γ)h
∑

i∈[N ]

x2
i

P(i)h

Now we note that for all i ∈ [N ], the map h 7→ 2hk2h

(m
h) γ2k−2h(1+γ)h x2

i

P(i)h is log-convex since

each factor is log-convex. This implies that the map h 7→ 2hk2h

(m
h) γ2k−2h(1 + γ)h

∑
i∈[N ]

x2
i

P(i)h

is convex and is thus maximized at the boundary. We then get that

E[(ζk − E[ζk])2] ≤max
{

2(1 + γ)γ2k−2k2
∑

i∈[N ] P(i)−1x2
i

m
,

2k(1 + γ)kk3k
nk−1∑

i∈[N ] P(i)−1x2
i

mk

}
which finishes the proof of Equation (10). ◀

Finally, we must prove Lemma 18 which will finish the proof of Lemma 12.

▶ Lemma 19. For all sequences of numbers (βj)j∈[m] and all α the following identity holds:

∑
I⊆[m]

0<|I|≤k

(−1)|I|+1

(
k

|I|

)(
m
|I|

) (∏
j∈I

βj − (1 + α)h

)
= (−1)k+1

∑
I⊆[m]

0<|I|≤k

(
k

|I|

)(
m
|I|

)αk−|I|
∏
j∈I

(βj − (1 + α))
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First we need a simple lemma.

▶ Lemma 19. For all sequences of numbers (βj)j∈I and all α the following identity holds:

∏
j∈I

βj − (1 + α)|I| =
∑

∅̸=J⊆I

(1 + α)|I|−|J|
∏
j∈J

(βj − (1 + α))

Proof. Let β′
j := βj − (1 + α). Then,

∏
j∈I

β′
j − (1 + α)|I| =

∏
j∈I

(β′
j + (1 + α))− (1 + α)|I|

=

∑
J⊆I

(1 + α)|I|−|J|
∏
j∈J

β′
j

− (1 + α)|I|

=
∑

∅̸=J⊆I

(1 + α)|I|−|J|
∏
j∈J

(βj − (1 + α)). ◀

Proof of Lemma 18. We start by applying Lemma 19

∑
I⊆[m]

0<|I|≤k

(−1)|I|+1

(
k

|I|

)(
m
|I|

) (∏
j∈I

βj − (1 + α)h

)

=
∑

I⊆[m]
0<|I|≤k

(−1)|I|+1

(
k

|I|

)(
m
|I|

) ∑
∅̸=J⊆I

(1 + α)|I|−|J|
∏
j∈J

(βj − (1 + α))

We use that ( k
|I|)

(m
|I|)

= (m−|I|
k−|I| )
(m

k ) which follows from the fact that
(

m
k

)(
k

|I|
)

=
(

m
|I|,k−|I|,m−k

)
=(

m
|I|
)(

m−|I|
k−|I|

)
.

∑
I⊆[m]

0<|I|≤k

(−1)|I|+1

(
k

|I|

)(
m
|I|

) ∑
∅̸=J⊆I

(1 + α)|I|−|J|
∏
j∈J

(βj − (1 + α))

=
∑

I⊆[m]
0<|I|≤k

(−1)|I|+1

(
m−|I|
k−|I|

)(
m
k

) ∑
∅̸=J⊆I

(1 + α)|I|−|J|
∏
j∈J

(βj − (1 + α))

= 1(
m
k

) ∑
J⊆[m]

0<|J|≤k

(∏
j∈J

(βj − (1 + α))

) ∑
I⊆[m]

J⊆I,|I|≤k

(−1)|I|+1
(

m − |I|
k − |I|

)
(1 + α)|I|−|J|

= 1(
m
k

) ∑
J⊆[m]

0<|J|≤k

(∏
j∈J

(βj − (1 + α))

)
k∑

h=|J|

(−1)h+1
(

m − |J |
h − |J |

)(
m − h

k − h

)
(1 + α)h−|J|
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Now we use that
(

m−h
k−h

)(
m−|J|
h−|J|

)
=
(

m−|J|
k−h,m−k,h−|J|

)
=
(

m−|J|
k−|J|

)(
k−|J|
h−|J|

)
.

1(
m
k

) ∑
J⊆[m]

0<|J|≤k

(∏
j∈J

(βj − (1 + α))

)
k∑

h=|J|

(−1)h+1
(

m − |J |
h − |J |

)(
m − h

k − h

)
(1 + α)h−|J|

= 1(
m
k

) ∑
J⊆[m]

0<|J|≤k

(∏
j∈J

(βj − (1 + α))

)
k∑

h=|J|

(−1)h+1
(

m − |J |
k − |J |

)(
k − |J |
h − |J |

)
(1 + α)h−|J|

= 1(
m
k

) ∑
J⊆[m]

0<|J|≤k

(−1)|J|+1
(

m − |J |
k − |J |

)(∏
j∈J

(βj − (1 + α))

)
k−|J|∑
h=0

(−1)h

(
k − |J |

h

)
(1 + α)h

= 1(
m
k

) ∑
J⊆[m]

0<|J|≤k

(−1)|J|+1
(

m − |J |
k − |J |

)(∏
j∈J

(βj − (1 + α))

)
(1 − (1 + α))k−|J|

= (−1)k+1(
m
k

) ∑
J⊆[m]

0<|J|≤k

(
m − |J |
k − |J |

)
αk−|J|

(∏
j∈J

(βj − (1 + α))

)

Finally, we again use that ( k
|I|)

(m
|I|)

= (m−|I|
k−|I| )
(m

k ) to finish the proof.

(−1)k+1(
m
k

) ∑
J⊆[m]

0<|J|≤k

(
m− |J |
k − |J |

)
αk−|J|

∏
j∈J

(βj − (1 + α))



= (−1)k+1
∑

J⊆[m]
0<|J|≤k

(
k
h

)(
m
h

)αk−|J|

∏
j∈J

(βj − (1 + α))

 ◀
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Abstract
For any Boolean functions f and g, the question whether R(f ◦ g) = Θ̃(R(f) · R(g)), is known as the
composition question for the randomized query complexity. Similarly, the composition question for
the approximate degree asks whether d̃eg(f ◦ g) = Θ̃(d̃eg(f) · d̃eg(g)). These questions are two of
the most important and well-studied problems in the field of analysis of Boolean functions, and yet
we are far from answering them satisfactorily.

It is known that the measures compose if one assumes various properties of the outer function f

(or inner function g). This paper extends the class of outer functions for which R and d̃eg compose.
A recent landmark result (Ben-David and Blais, 2020) showed that R(f ◦g) = Ω(noisyR(f)·R(g)).

This implies that composition holds whenever noisyR(f) = Θ̃(R(f)). We show two results:
1. When R(f) = Θ(n), then noisyR(f) = Θ(R(f)). In other words, composition holds whenever the

randomized query complexity of the outer function is full.
2. If R composes with respect to an outer function, then noisyR also composes with respect to the

same outer function.
On the other hand, no result of the type d̃eg(f ◦ g) = Ω(M(f) · d̃eg(g)) (for some non-trivial
complexity measure M(·)) was known to the best of our knowledge. We prove that

d̃eg(f ◦ g) = Ω̃(
√

bs(f) · d̃eg(g)),

where bs(f) is the block sensitivity of f . This implies that d̃eg composes when d̃eg(f) is asymptotically
equal to

√
bs(f).

It is already known that both R and d̃eg compose when the outer function is symmetric. We
also extend these results to weaker notions of symmetry with respect to the outer function.
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63:2 On the Composition of Randomized Query Complexity and Approximate Degree

1 Introduction

For studying the complexity of Boolean functions, a number of simple complexity measures
(like decision tree complexity, randomized query complexity, degree, certificate complexity
and so on) have been studied over the years. (Refer to the survey [15] for an introduction to
complexity measures of Boolean functions.) Understanding how these measures are related
to each other [1, 2, 4, 27], and how they behave for various classes of Boolean functions has
been a central area of research in complexity theory [34, 23, 42].

A crucial step towards understanding a complexity measure is: how does the complexity
measure behave when two Boolean functions are combined to obtain a new function (i.e.,
what is the relationship between the measure of the resulting function and the measures
of the two individual functions) [16, 12, 25, 44]? One particularly natural combination of
functions is called composition, and it takes a central role in complexity theory.

For any two Boolean functions f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1}, the composed
function f ◦ g : {0, 1}nm → {0, 1} is defined as the function

f ◦ g(x1, . . . , xn) = f(g(x1), . . . , g(xn)),

where xi ∈ {0, 1}m for i ∈ [n]. For the function f ◦ g, the function f is called the outer
function and g is called the inner function. See Definition 13 for a natural extension to
partial functions.

Let M(·) be a complexity measure of Boolean functions. A central question in complexity
theory is the following.

▶ Question 1 (Composition question for M). Is the following true for all Boolean functions
f and g:

M(f ◦ g) = Θ̃(M(f) · M(g))?

The notation Θ̃(·) hides poly-logarithmic factors of the arity of the outer function f .
Composition of Boolean functions with respect to different complexity measures is a very

important and useful tool in areas like communication complexity, circuit complexity and
many more. To take an example, a popular application of composition is to create new
functions demonstrating better separations (refer to [33, 44, 3, 25] for some other results of
similar flavour).

It is known that the answer to the composition question is in the affirmative for complexity
measures like deterministic decision tree complexity [37, 44, 31], degree [44] and quantum
query complexity [35, 29, 28]. While it is well understood how several complexity measures
behave under composition, there are two important measures (even though well studied)
for which this problems remains wide open: randomized query complexity (denoted by R)
and approximate degree (denoted by d̃eg) [38, 33, 3, 39, 17, 40]. (See Definition 30 and
Definition 31 for their respective formal definitions.)

For both R and d̃eg the upper bound inequality is known, i.e., R(f ◦ g) = Õ(R(f) · R(g))
(folklore) and d̃eg(f ◦ g) = O(d̃eg(f) · d̃eg(g)) [41]. Thus it is enough to prove the lower
bound on the complexity of composed function in terms of the individual functions. Most of
the attempts to prove this direction of the question have focused on special cases when the
outer function has certain special properties1.

1 We note that some works have also studied the composition of R and d̃eg when the inner functions have
special properties, for example, [1, 13, 6, 24, 30, 10].
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The initial steps taken towards answering the composition question for R were to show
a lower bound by using a weaker measure of outer function than the randomized query
complexity. In particular, it was shown that R(f ◦ g) = Ω(s(f) · R(g)) [26, 5], where s(f)
is the sensitivity of f (Definition 32). Since s(f) = Θ(R(f)) for any symmetric function2

f , these results show that R composes when the outer function is a symmetric function
(like OR, AND, Majority, Parity, etc.). The lower bound was later improved to obtain
R(f ◦ g) = Ω(fbs(f) · R(g)) [7, 8], where fbs(f) is the fractional block sensitivity of f

(Definition 33).
Unfortunately, at this stage, there could even be a cubic gap between R and fbs; the

best known bound is R(f) = O(fbs(f)3) [2]. Given that there are already known Boolean
functions with quadratic gap between fbs(f) and R(f) (e.g., BKK function [1]), it is natural
to consider composition question for randomized query complexity when R is big but fbs is
small. We take a step towards this problem by showing that composition for R holds when
the outer function has full randomized query complexity, i.e., R(f) = Θ(n), where n is the
arity of the outer function f .

For composition of d̃eg, Sherstov [38] already showed that d̃eg(f ◦ g) composes when the
approximate degree of the outer function f is Θ(n), where n is the arity of the outer function.
Thus approximate degree composes for several symmetric functions (having approximate
degree Θ(n), like Majority and Parity). Though, until recently it was not even clear if
d̃eg(OR ◦ AND) = Ω(d̃eg(OR) d̃eg(AND)) (arguably the simplest of composed functions). OR
has approximate degree O(

√
n), and thus the result of [38] does not prove d̃eg composition

when the outer function is OR (similarly for AND). In a long series of work by [33, 3, 39, 17, 40],
the question was finally resolved; it was later generalized to the case when the outer function
is symmetric [11].

In contrast to R composition, no lower bound on the approximate degree of composed
function is known with a weaker measure on the outer function. It is well known that for any
Boolean function f ,

√
s(f) ≤

√
bs(f) = O(d̃eg(f)) [33]. So a natural step towards proving

d̃eg composition is: prove a lower bound on d̃eg(f ◦ g) by
√

bs(f) · d̃eg(g). We show this
result by generalizing the approach of [11].

While the techniques used for the composition of R and d̃eg are quite different, one can
still observe similarities between the classes of outer functions for which the composition of
R and d̃eg is known to hold respectively. We further expand these similarities, by extending
the classes of outer functions for which the composition theorem hold.

2 Our Results and Techniques

It is well-known, by amplification, that R(f ◦ g) = O(R(f) · R(g) · log R(f)). In the case of
approximate degree, Shrestov [41] showed that d̃eg(f ◦ g) = O(d̃eg(f) · d̃eg(g)). So, to answer
the composition question for R (or d̃eg), we are only concerned about proving a lower bound
on R(f ◦ g) (or d̃eg(f ◦ g)) in terms of R(f) and R(g) (or d̃eg(f) and d̃eg(g)) respectively.

We split our results into three parts. In the first part we prove the tight lower bound
on R(f ◦ g) when the outer function has full randomized complexity. In the second part we
provide a tight lower bound on d̃eg(f ◦ g) in terms of bs(f) and d̃eg(g). Our results on the
lower bound of R(f ◦ g) and d̃eg(f ◦ g) are summarized in Table 1. Finally, we also prove
composition theorems for R and d̃eg when the outer functions have a slightly relaxed notion
of symmetry.

2 Functions that depend only on the Hamming weight of their input.
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Table 1 Composition of R and d̃eg depending on the complexity of the outer function in terms
of block-sensitivity and arity.

In terms of bs(f) In terms of arity of f

R R(f ◦ g) = Ω̃(bs(f) · R(g)) R(f ◦ g) = Ω̃(R(f) · R(g)) when R(f) = Θ(n)
[26] Theorem 2

d̃eg d̃eg(f ◦ g) = Ω̃(
√

bs(f) · d̃eg(g)) d̃eg(f ◦ g) = Ω̃(d̃eg(f) · d̃eg(g)) when d̃eg(f) = Θ(n)
Theorem 7 [38]

2.1 Lower bounds on R(f ◦ g) when the outer function has full
randomized query complexity

Sherstov [38] proved that d̃eg(f ◦ g) = Ω(d̃eg(f) · d̃eg(g)) when the approximate degree of
the outer function f is Θ(n), where n is the arity of f . Though, a corresponding result for
the case of randomized query complexity was not known. Our main result is to prove the
corresponding theorem for randomized query complexity.

▶ Theorem 2. Let f be a partial Boolean function on n-bits such that R(f) = Θ(n). Then
for all partial functions g, we have

R(f ◦ g) = Ω(R(f) · R(g)).

The proof of this theorem is given in Section 4. Notice, since R(f ◦ g) = O(R(f) ·
R(g) log R(f)) (by error reduction), Theorem 2 says that composition of R holds when the
randomized query complexity of the outer function, f , is Θ(n). Next, we give main ideas
behind the proof of the above theorem.

Ideas behind proof of Theorem 2

A crucial complexity measure that we use for the proof of Theorem 2 is called the noisy
randomized query complexity, first introduced by Ben-David and Blais [9] in order to study
randomized query complexity. Noisy randomized query complexity can be seen as a generaliz-
ation of randomized query complexity where the algorithm can query a bit with any bias and
only pays proportionally to the square of the bias in terms of cost (see Definition 16). They
give the following characterization of noisyR(f) (the noisy randomized query complexity
of f).

▶ Theorem 3 (Ben-David and Blais [9]). For all partial functions f on n-bits, we have

noisyR(f) = Θ
(

R(f ◦ GapMajn)
n

)
, (1)

where GapMajn is the Gap-Majority function on n bits whose input is promised to have
Hamming weight either (n/2 + 2

√
n) (in which case the output is −1) or (n/2 − 2

√
n) (in

which case the output is 1).

We want to point out that the arity of f and Gap-Majority is the same in Theorem 3.
Towards a proof of Theorem 2, we first make the following crucial observation.

▶ Observation 4. Let f be a partial Boolean function on n bits. If t(n) ≥ 1 is a non-decreasing
function of n and

noisyR(f) = Ω
(R(f ◦ GapMajt(n))

t(n)

)
,

then R(f ◦ g) = Ω((R(f) · R(g))/t(n)) for all partial functions g.
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In particular choosing t(n) to be (log n), if the outer function f satisfies

noisyR(f) = Ω
(R(f ◦ GapMajlog n)

log n

)
. (2)

then the above observation gives R(f ◦g) = Ω((R(f) ·R(g))/(log n)) for all partial functions g.
The Observation 4 allows us to approach the composition question for randomized query

complexity in a conceptually fresh manner. The goal of proving that randomized query
complexity composes for a function or a class of functions, say upto (log n)-factor, reduces to
showing that Equation 2 holds for that function or class of functions for t(n) = log n.

We are able to show that Equation 2 holds for all non-decreasing functions t(n) with a
slight overhead.

▶ Theorem 5. Let f be a partial function on n bits and let t ≥ 1, then R(f ◦ GapMajt) =
O (t · noisyR(f) + n).

Notice that this is a generalization of Ben-David and Blais’ characterization of noisyR
given by Theorem 3 in one direction. To give an idea of the proof, their characterization
(Theorem 3) shows that any noisy oracle algorithm for f can be simulated using only two
biases, 1 and 1/

√
n (where n is the arity of f), with only constant overhead. We generalize

this by showing that the same simulation works with a slight overhead even when the bias
1/

√
n is replaced by a bias 1/

√
t, for some t ≥ 1. A detailed proof the above theorem has

been included in the full version of this paper [20].
This seemingly inconsequential generalization allows us to complete the proof of Theorem 2,

i.e. if for an n-bit partial function f , R(f) = Θ(n), then R(f ◦ g) = Θ̃(R(f) · R(g)) for all
partial functions g (see Section 4 for details).

Furthermore, Theorem 5 even sheds light on the composition question for noisyR. A
corollary of this theorem is that if R composes with respect to an outer function, then noisyR
also composes with respect to the same outer function (see Section 4 for a proof).

▶ Corollary 6. Let f be a partial Boolean function. If R(f ◦ g) = Θ̃(R(f) · R(g)) for all
partial functions g then noisyR(f ◦ g) = Θ̃(noisyR(f) · noisyR(g)).

2.2 Lower bound on d̃eg(f ◦ g) in terms of block sensitivity of f and
d̃eg(g)

As discussed in the introduction, the composition question for d̃eg is only known to hold
when the outer function f is symmetric [11] or has high approximate degree [38]. There
are also no known lower bounds on d̃eg(f ◦ g) in terms of weaker measures of f and d̃eg(g).
Compare this with the situation with respect to composition of R. It was shown in [26] that
R(f ◦ g) = Ω(s(f) R(g)), where s(f) denotes the sensitivity of f . This was later strengthened
to Ω(fbs(f) R(g)) [7, 8], where fbs(f) is the fractional block sensitivity of f .

In this second part we show analogous lower bounds on approximate degree of composed
function f ◦ g. Our main result here is the following.

▶ Theorem 7. For all non-constant (possibly partial)3 Boolean functions f : {0, 1}n → {0, 1}
and g : {0, 1}m → {0, 1}, we have

d̃eg(f ◦ g) = Ω̃(
√

bs(f) · d̃eg(g)).

3 For definitions of block sensitivity and approximate degree in the context of partial functions, please see
Definitions 32 and 17.
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We first note that the above theorem is tight in terms of block sensitivity, i.e., we
cannot have d̃eg(f ◦ g) = Ω̃(bs(f)c · d̃eg(g)) for any c > 1/2. This is because the OR
function over n bits witnesses the tight quadratic separation between d̃eg and bs, i.e.,
d̃eg(ORn) = Θ(

√
n) = Θ(

√
bs(ORn)) [33].

We also get the following composition theorem as a corollary. It says that the composition
for d̃eg holds when the outer function has minimal approximate degree with respect to its
block sensitivity. Recall, d̃eg(f) = Ω(

√
bs(f)) [33].

▶ Corollary 8. For all Boolean function f : {0, 1}n → {0, 1} with d̃eg(f) = Θ(
√

bs(f)) and
for all g : {0, 1}m → {0, 1}, we have d̃eg(f ◦ g) = Θ̃(d̃eg(f) · d̃eg(g)).

This complements a result of Sherstov [38, Theorem 6.6], which shows that composition
of d̃eg holds when the outer function has maximal d̃eg with respect to its arity.

We further note that Corollary 8 covers new set of composed functions f ◦ g for which
the composition theorem for d̃eg doesn’t follow from the known results [11, 38]. For example,
consider the Rubinstein function RUB with arity n( see [36] for Definition ) as the outer
function f . It is clearly not a symmetric function. It also doesn’t have high approximate
degree, i.e., d̃eg(RUB) = O(

√
n log n) (see Lemma A.7 from [20]). Therefore, the composition

of d̃eg(RUB ◦ g) doesn’t follow from the existing results. However, it follows from Corollary 8,
since bs(RUB) = Ω(n) and so d̃eg(RUB) = Θ̃(

√
bs(RUB)).

Another example is the sink function SINK over
(

n
2
)

variables ([22]), which is also not
a symmetric function. Furthermore, its approximate degree is O(

√
n log n) (Lemma A.7

from [20]). Therefore, the composition of d̃eg(SINK ◦ g) also doesn’t follow from the existing
results. Again, it follows from Corollary 8, since bs(SINK) = Θ(n) (Observation A.4, [20])
and d̃eg(SINK) = Θ̃(

√
n).

Ideas behind proof of Theorem 7

We will first sketch the proof ideas in the case when f and g are total Boolean functions,
and then explain how to extend it to partial functions too.

Our starting point is the well known Nisan-Szegedy’s embedding of PrOR (see Definition 18)
over bs(f) many bits in a Boolean function f [33]. Carrying out this transformation in
f ◦ g embeds PrORbs(f) ◦ (g1, . . . , gbs(f)) into f ◦ g, where g1, . . . , gbs(f) are different partial
functions such that b̃deg(gi) ≥ d̃eg(g) for all i ∈ [bs(f)]4. Since the transformation is just
substitutions of variables by constants, we further have

d̃eg(f ◦ g) ≥ b̃deg(PrORbs(f) ◦ (g1, . . . , gbs(f))). (3)

It now looks like that we can appeal to the composition theorem for PrOR (Theorem 21)
[11] to obtain our theorem. However, there is a technical difficulty – Theorem 21 doesn’t
hold for different inner partial functions. It only deals with a single total inner function. We
therefore generalize the proof of Theorem 21 to obtain the following general version of the
composition theorem for PrOR.

▶ Theorem 9. For any partial Boolean functions g1, g2, . . . , gn, we have

b̃deg (PrORn ◦ (g1, g2, . . . , gn)) = Ω
(√

n · minn
i=1 b̃deg(gi)

log n

)
.

4 b̃deg is the notion of approximate degree in the context of partial functions. For a formal definition, see
Definition 17.
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We can now obtain Theorem 7 from Equation (3) and Theorem 9. The proof of Theorem 9
is a generalization of a result due to [11] (see Theorem 21). For lack of space, we present the
proof of this theorem in the complete version of this paper [20].

2.3 Composition results when the outer functions has some symmetry

The class of symmetric functions capture many important function like OR, AND, Parity
and Majority. Recall that a function is symmetric when the function value only depends on
the Hamming weight of the input; in other words, a function is symmetric iff its value on an
input remains unchanged even after permuting the bits of the input. As noted earlier, both
for R and d̃eg, composition was known to hold when the outer function was symmetric.

A natural question is, whether one can prove composition theorems when the outer
function is weakly symmetric (it is symmetric with respect to a weaker notion of symmetry).
In this paper we consider one such notion of symmetry – junta-symmetric functions.

▶ Definition 10 (k-junta symmetric function). A function f : {0, 1}n → {0, 1} is called a
k-junta symmetric function if there exists a set J of size k of variables such that the function
value depends on assignments to the variables in J as well as on the Hamming weight of the
whole input.

k-junta symmetric functions can be seen as a mixture of symmetric functions and k-juntas.
This class of functions has been considered previously in literature, particularly in [19, 14]
where these functions plays a crucial role. [19] even presents multiple characterisations of
k-junta symmetric functions for constant k. Note that by definition an arbitrary k-junta
(i.e., a function that depend on k variables) is also a k-junta symmetric function, since we
can consider the dependence on Hamming weight to be trivial. Thus, this notion loses out
on the symmetry of the function considered. We, therefore, consider the class of strongly
k-junta symmetric functions.

▶ Definition 11 (Strongly k-junta symmetric function). A k-junta symmetric function is called
strongly k-junta symmetric if every variable is influential. In other words, there exists a
setting to the junta variables such that the function value depends on the Hamming weight of
the whole input in a non-trivial way.

We prove that if the outer function is strongly
√

n-junta symmetric (“strongly” indicating
that the dependence on the Hamming weight is non-trivial) then d̃eg composes. On the other
hand, Theorem 2 implies that R composes for any strongly k-junta symmetric functions (as
long as n − k = Θ(n)).

▶ Theorem 12. For any strongly k-junta symmetric function f : {0, 1}n → {0, 1} and any
Boolean function g : {0, 1}m → {0, 1}, we have

d̃eg(f ◦ g) = Θ̃(d̃eg(f) · d̃eg(g)) where k = O(
√

n).
R(f ◦ g) = Θ̃(R(f) · R(g)) where n − k = Θ(n).

For the lack of space, the proof of the above theorem is given in Appendix C. Note
that if one is able to prove the above theorem for k-junta-symmetric functions (without the
requirement of “strongly”) for any non-constant k then we would have the full composition
theorem.
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Organization of the paper

We have formally defined complexity measures and Boolean functions needed for our results in
Section 3 and Appendix A. Section 4 contains proofs of our results related to the composition
of randomized query complexity (Theorem 2). In Section 5 we give the proof of our result for
the composition of approximate degree (Theorem 7). Finally, for the sake of space, the results
about the composition of functions with the weak notion of symmetry are in Appendix C.

3 Preliminaries

Notations: We will use [n] to represent the set {1, . . . , n}. For any (possibly partial) Boolean
function f : {0, 1}n → {0, 1, ∗} we will denote by Dom(f) the set f−1({0, 1}). The arity of f

is the number of variables - in this case n. A Boolean function f : {0, 1}n → {0, 1, ∗} is said
to be total if Dom(f) = {0, 1}n. Any function (not otherwise stated) will be a total Boolean
function.

For any x ∈ {0, 1}n, we will use |x| to denote the number of 1s in x, that is, the Hamming
weight of the string x. The string xi denotes the modified string x with the i-th bit flipped.
Similarly, xB is defined to be the string such that all the bits whose index is contained in
the set B ⊆ [n] are flipped in x.

Following is a formal definition of (partial) function composition.

▶ Definition 13 (Generalized composition of functions). For any (possibly partial) Boolean
function f : {0, 1}n → {0, 1, ∗} and n (possibly partial) Boolean functions g1, g2, . . . , gn,
define the (possibly partial) composed function

f ◦ (g1, g2, . . . , gn)(x1, x2, . . . , xn) = f(g1(x1), g2(x2), . . . , gn(xn)),

where gi’s can have different arities and, moreover, if xi /∈ Dom(gi) for any i ∈ [n] or the
string (g1(x1), g2(x2), . . . , gn(xn)) /∈ Dom(f), then the function f ◦ g outputs ∗.

In this paper we use the standard definitions of various complexity measures like ran-
domized query complexity, sensitivity, block-sensitivity, fractional block sensitivity and
approximate degree. We present the formal definitions in Appendix A.

3.1 Standard definitions and functions for the composition of R

The function Gap-Majority has played an important role in the study of composition of R.

▶ Definition 14 (Gap-Majority). The function GapMajt : {0, 1}t → {0, 1, ∗} is a partial
function with arity t such that

GapMajt(x) =


1 if |x| = t/2 + 2

√
t,

0 if |x| = t/2 − 2
√

t,

∗ otherwise.

It can be shown that R(GapMajt) = Θ(t) [9].
In regards to the composition question of R, one of the most significant complexity

measures (defined by Ben-David and Blais [9]) is that of noisyR. We first define the noisy
oracle model.
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▶ Definition 15 (Noisy Oracle Model and Noisy Oracle Access to a String ([9])). For b ∈ {0, 1},
a noisy oracle to b takes a parameter −1 ≤ γ ≤ 1 as input and returns a bit b′ such that
Pr[b′ = b] = (1 + γ)/2. The cost of one such query is γ2. Each query to noisy oracle returns
independent bits.

For x = (x1, . . . , xn) ∈ {0, 1}n, noisy oracle access to x is access to n independent noisy
oracles, one for each bit xi, i ∈ [n].

Next, we define the noisy oracle model of computation.

▶ Definition 16 (Noisy Oracle Model of Computation ([9])). Let f : {0, 1}n → {0, 1, ∗} be a
partial Boolean function. A noisyR query algorithm A computes f if for all x ∈ Dom(f),
Pr[A(x) ̸= f(x)] ≤ 1/3, where A is a randomized algorithm given noisy oracle access to x,
and the probability is over both noisy oracle calls and the internal randomness of the algorithm
A. The cost of the algorithm A for an input x is the sum of the cost of all noisy oracle calls
made by A on x, and the cost of A, cost(A), is the maximum cost over all x ∈ Dom(f). The
noisyR randomized query complexity of f , denoted by noisyR(f), is defined as

noisyR(f) = min
A computes f

cost(A).

Again, 1/3 in the above definition can be replaced by any constant < 1/2. If only queries
with γ = 1 are allowed in the noisy query model, then we obtain the usual randomized
algorithm for f , thus noisyR(f) = O(R(f)).

3.2 Standard definitions and functions for the composition of d̃eg
The definition of d̃eg can naturally be extended to partial functions f by restricting the
definition to hold only for inputs in Dom(f), but the approximating polynomial can take
arbitrarily large values on points outside the domain. However, for the purpose of under-
standing the composition of approximate degree of Boolean functions (or even total Boolean
functions) one need a measure of approximate degree of partial Boolean functions which is
bounded on all the points of the Boolean cube.

▶ Definition 17 (Bounded approximate degree (b̃deg)). For a partial Boolean function
f : {0, 1}n → {0, 1, ∗}, the bounded approximate degree of f (b̃deg(f)) is the minimum
possible degree of a polynomial p such that

|p(x) − f(x)| ≤ 1/3, ∀x ∈ Dom(f), and
0 ≤ p(x) ≤ 1 ∀x ∈ {0, 1}n.

In other words, we take the minimum possible degree of a polynomial which is bounded
for all possible inputs (p(x) ∈ [0, 1] for all x ∈ {0, 1}n), and it approximates f in the usual
sense over Dom(f).

Over the years people have tried to study the composition of d̃eg with different outer
functions. In this context the following restriction of OR is an important partial function:

▶ Definition 18 (Promise-OR). Promise-OR (denoted by PrORn) is the function PrORn :
{0, 1}n → {0, 1, ∗} such that PrORn(x) = 0 if |x| = 0, equals to 1 if |x| = 1, and ∗
otherwise.

Some useful previous results. We will also be crucially using a few results from prior works
in our proofs. The following are a couple of useful results on noisyR.

▶ Lemma 19 ([9]). Let f be a non-constant partial Boolean function then noisyR(f) = Ω(1).

APPROX/RANDOM 2023



63:10 On the Composition of Randomized Query Complexity and Approximate Degree

▶ Theorem 20 ([9]). For all partial functions f and g, R(f ◦ g) = Ω(noisyR(f) · R(g)).

We will also be using the following theorem of [11] regarding the composition question
of b̃deg when the outer function is PrORn. Informally, we will call it the Promise-OR
composition theorem.

▶ Theorem 21 ([11]). For any Boolean function g : {0, 1}m → {0, 1} we have,

b̃deg (PrORn ◦ g) = Ω
(√

n · d̃eg(g)/ log n
)

.

4 Results about composition of R

This section is devoted to the results related to the composition of randomized query
complexity. Our main result states that composition of R holds if the outer function has
full randomized query complexity (Theorem 2). As mentioned in the proof idea, the proof
critically depends on the notion of noisy randomized query complexity and its properties
(introduced by Ben-David and Blais [9]).

Recall the definition of noisy randomized query complexity of a function f from Defin-
ition 16. As mentioned in the introduction (Theorem 3), Ben-David and Blais [9] proved
that

noisyR(f) = Θ
(

R(f ◦ GapMajn)
n

)
, (4)

where GapMajn is the Gap-Majority function on n bits. Note that Ben-David and Blais
proved Equation 4 when the arity of functions f and Gap-Majority is the same. We show
that if Equation 4 can be generalized for Gap-Majority functions of arbitrary arity for some
outer function f , then randomized query complexity composes for the function f . We restate
the following observation from the introduction.

▶ Observation 4. Let f be a partial Boolean function on n bits. If t(n) ≥ 1 is a non-decreasing
function of n and

noisyR(f) = Ω
(R(f ◦ GapMajt(n))

t(n)

)
,

then R(f ◦ g) = Ω((R(f) · R(g))/t(n)) for all partial functions g.

Proof. Suppose noisyR(f) = Ω
(

R(f◦GapMajt(n))
t(n)

)
, since R(f ◦ GapMajt) ≥ R(f), we have

noisyR(f) = Ω(R(f)/(t(n)). Theorem 20 implies that a lower bound on noisyR translates to
a lower bound on R(f ◦ g). We have,

R(f ◦ g) = Ω(noisyR(f) · R(g)) (Theorem 20)

= Ω
(

R(f) · R(g)
t(n)

)
. ◀

Observation 4 follows from the above observation by choosing t(n) to be a small function
of n.

We restate from Section 1 our generalized characterization of noisyR (i.e., generalization
of Equation 4). For a complete proof of Theorem 5 we refer to the full version of this
paper [20].
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▶ Theorem 5. Let f be a partial function on n bits and let t ≥ 1, then R(f ◦ GapMajt) =
O (t · noisyR(f) + n).

This allows us to show that if for an n-bit partial function f , R(f) = Θ(n), then
R(f ◦ g) = Θ̃(R(f) · R(g)) for all partial functions g (Theorem 2).

The proof of Theorem 2 is discussed in Section 4.1. A corollary of this theorem is that if
R composes with respect to an outer function, then noisyR also composes with respect to
the same outer function (Corollary 6).

We give proof of Theorem 2 in the next section and prove Corollary 6 in Section 4.3. We
need the following theorem for these proofs, which lower bounds R(f ◦ g) in terms of R(f)
and R(g).

▶ Theorem 22 ([24]). Let f and g be partial functions then R(f ◦ g) = Ω(R(f) ·
√

R(g)).

4.1 Composition for functions with R(f) = Θ(n)
We restate the theorem below.

▶ Theorem 2. Let f be a partial Boolean function on n-bits such that R(f) = Θ(n). Then
for all partial functions g, we have

R(f ◦ g) = Ω(R(f) · R(g)).

Proof. From Theorem 22 we have a lower bound on the randomized query complexity of
(f ◦ GapMajt):

R(f ◦ GapMajt) = Ω(R(f) ·
√

t). (5)

On the other hand, Theorem 5 gives an upper bound of O (t · noisyR(f) + n) on R(f ◦
GapMajt). Thus, choosing t =

(
C·n

noisyR(f)

)
for a large enough constant C, we have

R(f) ·
√

n

noisyR(f) = O

(
n

noisyR(f) · noisyR(f) + n

)
.

This implies that

R(f) = O
(√

n · noisyR(f)
)

. (6)

Thus, if R(f) = Θ(n), then noisyR(f) = Ω(R(f)), which implies composition from The-
orem 20. ◀

Notice that Equation 6 is equivalent to the following observation.

▶ Observation 23. Let f be a partial Boolean function on n-bits. Then, noisyR(f) =
Ω
(

R(f)2

n

)
.

When R(f) = Θ(n), we have already seen that Observation 23 implies composition of
randomized query complexity when the outer function is f .

Though, Observation 23 implies a more general result. When R(f) is close to n (arity of
f), Observation 23 places a limit on the gap between R(f) and noisyR(f) (consequently on
the violation of composition with outer function being f). These implications are formally
discussed in Appendix 4.2.

Another implication of Theorem 2 is that composition of R for an outer function f implies
the composition of noisyR for outer function being f (Corollary 6).
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4.2 Additional implications of Observation 23
Without loss of generality we can assume R(f ◦ g) = Ω(R(g)) (note that this is true when f

is non-constant).
Ben-David and Blais [9] gave a counterexample for composition, but the arity of the used

function was very high compared to the randomized query complexity. They observed that
the composition can still be true in the weaker sense:

R(f ◦ g) = Ω
(

R(f) · R(g)
log n

)
.

Observation 23 shows that a much weaker composition result is true.

▶ Corollary 24. Let f and g be partial functions on n and m bits respectively. If R(f ◦ g) =
Ω(R(g)), then

R(f ◦ g) = Ω
(

R(f) · R(g)√
n

)
.

Proof.

R(f ◦ g) = Ω(noisyR(f) · R(g)) (Theorem 20)

= Ω
(

R(f)2 · R(g)
n

)
. (7)

Where the last equality follows from Observation 23 5 Now there are two cases:
Case 1. R(f) = O(

√
n). In this case R(f)/

√
n = O(1) and since we assumed R(f ◦ g) =

Ω(R(g)), the claim follows from Equation 7.
Case 2. R(f) = Θ(n1/2 · t(n)) where t(n) is a strictly increasing function of n. Thus,

R(f)2 · R(g)
n

= Ω
(
t(n)2 · R(g)

)
= Ω

(
R(f) · R(g)√

n

)
.

Again, the claim follows from Equation 7. ◀

The weaker composition, Corollary 24, implies that if R(f) and R(g) are comparable to
the arity of these functions, the randomized query complexity of f ◦ g is “not far” from the
conjectured randomized query complexity R(f) · R(g). In other words, if there is a large
polynomial separation between R(f ◦ g) and (R(f) · R(g)), then R(f) and R(g) can not be
too large.

▶ Corollary 25. Let f and g be partial functions such that f is a function on n-bits and
g is a function on t(n)-bits where t(n) is a strictly increasing function of n. If R(f) =
Θ(nβ), R(g) = Θ(nγ) and R(f ◦ g) = O((R(f) · R(g))α), where α < 1 is a constant, then
(1 − α)(α + β) < 1/2.

Proof. For some constants A and B we have

A · R(f) · R(g)√
n

≤ R(f ◦ g) ≤ B · (R(f) · R(g))α,

5 Sherstov [38] proved that for Boolean functions f and g, d̃eg(f ◦ g) = Ω((d̃eg(f)2d̃eg(g))/n). Thus in
Equation 7 we prove the same result but in the randomized world.
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where the first inequality follows from Corollary 24 and second from assumption. Assigning
the values of R(f) and R(g) in terms on n we have,

A · nβ+γ−1/2 ≤ B · nα(β+γ)

n(1−α)(β+γ)−1/2 ≤ B

A
.

which implies, for large enough n, (1 − α)(β + γ) ≤ 1/2. ◀

A special case of the above corollary is when arity and randomized query complexity of g

are superpolynomial in n. In this case a polynomial gap between R(f ◦ g) and (R(f) · R(g)))
is not possible.

4.3 Proof of Corollary 6
First, we need the following lemma which follows from Theorem 5, Theorem 20 and Lemma 19.

▶ Lemma 26. Let f be a partial function on n bits and let t = Ω(n). Then

noisyR(f) = Θ
(

R(f ◦ GapMajt)
t

)
.

Proof. From Theorem 5 we have for all t ≥ 1, R(f ◦ GapMajt) = O(t · noisyR(f) + n). Since
we have assumed t = Ω(n) and noisyR(f) = Ω(1) (Lemma 19), we get R(f ◦ GapMajt) =
O(t · noisyR(f)). Thus, noisyR(f) = Ω

(
R(f◦GapMajt)

t

)
.

The upper bound noisyR(f) = O
(

R(f◦GapMajt)
t

)
follows from Theorem 20 and the fact

that R(GapMajt) = Θ(t). ◀

Now we prove that if R composes for f then noisyR composes for that f . For convenience,
we recall the statement of the corollary from the introduction.

▶ Corollary 6. Let f be a partial Boolean function. If R(f ◦ g) = Θ̃(R(f) · R(g)) for all
partial functions g then noisyR(f ◦ g) = Θ̃(noisyR(f) · noisyR(g)).

Proof. From Theorem 3, we have

noisyR(f ◦ g) = Θ
(

R ((f ◦ g) ◦ GapMajmn)
mn

)
.

Since (f ◦ g) ◦ h = f ◦ (g ◦ h), the right hand side of the above expression is equal to

Θ
(

R (f ◦ (g ◦ GapMajmn))
mn

)
.

The proof follows from the assumption that R composes and Lemma 26.

noisyR(f ◦ g) = Θ
(

R (f) · R (g ◦ GapMajmn)
mn

)
(assuming R composes)

= Θ (R(f) · noisyR(g)) (from Lemma 26)
= Θ (noisyR(f) · noisyR(g)) . (assuming R composes)

◀
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5 Composition of approximate degree in terms of block sensitivity

In this section we study the composition question for approximate degree. Recall that the
composition question asks: whether for all Boolean functions f and g

d̃eg(f ◦ g) = Ω̃(d̃eg(f) d̃eg(g))?

Following our discussion from the introduction, we know that the above composition is known
to hold for only two sub-classes of outer functions, namely symmetric functions [11] and
functions with high approximate degree [38]. It is thus natural to seek weaker lower bounds
to make progress towards the composition question. One way to weaken the expression on
the right-hand side would be to replace the measure d̃eg(f) by a weaker measure (like

√
s(f),√

bs(f) or
√

fbs(f)). Here we will establish one such lower bound of
√

bs(f) d̃eg(g).
We restate our theorem now.

▶ Theorem 7. For all non-constant (possibly partial)6 Boolean functions f : {0, 1}n → {0, 1}
and g : {0, 1}m → {0, 1}, we have

d̃eg(f ◦ g) = Ω̃(
√

bs(f) · d̃eg(g)).

We note that many analogous results are known in the setting of composition of R; see,
for example, [26, 7, 8, 13, 6, 24, 10]. To the best of our knowledge, this is the first such result
in the setting of d̃eg. We present only a proof sketch here; most of the technical parts of the
proof appear in Appendix B.

Further, we present the sketch of the proof in two parts. For simplicity, in the first part
we sketch a proof of the lower bound

√
s(f) d̃eg(g) for total function f , and then in the

second part we modify the arguments to obtain Theorem 7.
We begin with a proof sketch for a lower bound of

√
s(f) d̃eg(g). Let x ∈ {0, 1}n be an

input having the maximum sensitivity with respect to f , and S ⊆ [n] be the set of sensitive
bits at x (|S| = s(f)). Consider the subfunction f ′ obtained from f by fixing the set of
variables not in S according to x. By construction, f ′ is defined over s(f) many variables
and is fully sensitive at the input x|S given by x restricted to the indices in S. Since f ′ is a
subfunction of f and g is non-constant, we have d̃eg(f ◦ g) ≥ d̃eg(f ′ ◦ g).

Notice that f ′ at the neighbourhood of x, in the Boolean cube, is the partial function PrOR
(Definition 18) or its negation. Therefore, we have d̃eg(f ◦g) ≥ d̃eg(f ′ ◦g) ≥ b̃deg(PrOR|S| ◦g)
(see Definition 17 for a definition of the bounded approximate degree). We can now invoke
the composition theorem for PrOR (Theorem 21) [11] to obtain our lower bound:

d̃eg(f ◦ g) ≥ d̃eg(f ′ ◦ g) ≥ b̃deg(PrOR|S| ◦ g) = Ω̃(
√

s(f) d̃eg(g)).

However, there is a technical issue with our argument above. When we claimed that
f ′ looks like a PrOR function we were not quite correct. Technically, it is a Shifted-PrOR
function PrORx|S

|S| , where PrORa
n(y1, y2, . . . , yn) := PrORn(y1 ⊕ a1, y2 ⊕ a2, . . . , yn ⊕ an) for

a ∈ {0, 1}n. Formally, we have

d̃eg(f ◦ g) ≥ d̃eg(f ′ ◦ g) ≥ b̃deg(PrORx|S

|S| ◦ g) = b̃deg(PrOR|S| ◦ (g1, . . . , g|S|)), (8)

where gi = g or ¬g depending on the corresponding i-th bit in x|S .

6 For definitions of block sensitivity and approximate degree in the context of partial functions, please see
Definitions 32 and 17.
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We, therefore, need a composition theorem for PrOR with different inner functions, while
Theorem 21 requires that all the inner functions be same. In fact, we would need a more
general composition theorem with different inner partial functions, which we restate below.
This generalization is crucially used when dealing with block sensitivity.

▶ Theorem 9. For any partial Boolean functions g1, g2, . . . , gn, we have

b̃deg (PrORn ◦ (g1, g2, . . . , gn)) = Ω
(√

n · minn
i=1 b̃deg(gi)

log n

)
.

The proof of Theorem 9 is a generalization of proof of Theorem 21. For the sake of
completeness we have added a proof in the full version of the paper [20].

Now returning to Equation (8) and using Theorem 9, we obtain the desired lower bound:

d̃eg(f ◦ g) ≥ d̃eg(f ′ ◦ g) ≥ b̃deg(PrORx|S

|S| ◦ g) = Ω̃(
√

s(f) d̃eg(g)).

We are now ready to present the modifications required to improve the lower bound to
Ω̃(
√

bs(f) d̃eg(g)).

Proof of Theorem 7. Let b = bs(f) and a = (a1, a2, . . . , an) be an input where f achieves
the maximum block sensitivity. Further, let B1, B2, . . . , Bb be disjoint minimal sets of
variables that achieves the block sensitivity at a, i.e., f(a) ̸= f(aBi) for all i ∈ [b]. Recall,
aBi denotes the Boolean string obtained from a by flipping the bits at all the indices given
by Bi. Define a partial function f ′ : {0, 1}n → {0, 1, ∗} such that,

f ′(x) =


0 if x = a,

1 if x = aBi , for some i ∈ [b],
∗ otherwise.

Note that f contains f ′ or its negation as a sub function. Thus, d̃eg(f ◦ g) ≥ b̃deg(f ′ ◦ g).
Since g is non-constant, we can fix the indices not in

⋃b
i=1 Bi according to a to obtain

f ′′ ◦ g. We would now like to embed PrORb over the remaining variables in f ′′. For this
purpose we define the following partial functions: for every i ∈ [b], let Ii : {0, 1}Bi → {0, 1, ∗}
be such that

Ii(x) =


0 if x = a|Bi ,

1 if x = aBi |Bi
,

∗ otherwise.

Now observe that f ′′ ◦ g can be rewritten as PrORb ◦ (I1 ◦ g, . . . , Ib ◦ g). We therefore have

d̃eg(f ◦ g) ≥ b̃deg(f ′ ◦ g) ≥ b̃deg(f ′′ ◦ g) = b̃deg(PrORb ◦ (I1 ◦ g, . . . , Ib ◦ g))

= Ω
(√

b · mini b̃deg(Ii ◦ g)
log b

)
= Ω̃

(√
b · d̃eg(g)

)
,

where the second last equality follows from Theorem 9 and the last equality uses the fact
b̃deg(Ii ◦ g) ≥ d̃eg(g) for all i, which in turn follows from each Ii being non-constant. ◀

We end this section with few final remarks. As a corollary to Theorem 7 we have the
following composition for d̃eg when the outer function has minimal approximate degree with
respect to its block sensitivity.
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▶ Corollary 8. For all Boolean function f : {0, 1}n → {0, 1} with d̃eg(f) = Θ(
√

bs(f)) and
for all g : {0, 1}m → {0, 1}, we have d̃eg(f ◦ g) = Θ̃(d̃eg(f) · d̃eg(g)).

We also note that the set of Boolean functions with d̃eg(f) = Θ(
√

bs(f)) includes
examples of non-symmetric functions f with low approximate degree. In other words, when
such functions are outer function in a composed function then the composition of d̃eg doesn’t
follow from the known results [11, 38]. Such examples are described in Subsection 2.2.

As stated in the introduction, we recall that Theorem 7 is tight in terms of block-sensitivity,
i.e., the lower bound can not be improved to Ω̃(bs(f)c · d̃eg(g)) for some c > 1/2.

6 Conclusion

While our work makes progress on the composition problem for R and d̃eg, the main problems
of whether d̃eg and R composes for any pair of Boolean functions still remains open. In this
light, we would like to highlight some questions that can be useful stepping stones towards
the main questions.

We showed that the composition question for R is equivalent to the following open
question (which is a generalization of Ben-David and Blais [9] result):

▶ Open question 27. Let f : {0, 1}n → {0, 1, ∗} be a Boolean function. Then, is it true that
for arbitrary t, noisyR(f) = Θ (R(f ◦ GapMajt)/t)?

In case of approximate degree composition, a natural question is whether
√

bs(f) can be
replaced by some other complexity measures. In this regards we state the following open
problems:

▶ Open question 28. For all Boolean functions f and g, can we prove either of the following:
d̃eg(f ◦ g) = Ω(

√
deg(f) · d̃eg(g))? d̃eg(f ◦ g) = Ω(

√
fbs(f) · d̃eg(g))?

Recently, in [43, 42, 23, 18, 21], the classes of transitive functions got a lot of attention as
natural generalization of the classes of symmetric functions. Can the result for symmetric
functions be extended to transitive functions?

▶ Open question 29. Can we prove that d̃eg and R compose when the outer function is
transitive?
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▶ Definition 30 (Randomized query complexity (R)). Let f : {0, 1}n → {0, 1, ∗} be a (pos-
sibly partial) Boolean function. A randomized query algorithm A computes f if ∀x ∈
Dom(f), Pr[A(x) ̸= f(x)] ≤ 1/3, where the probability is over the internal randomness of the
algorithm. The cost of the algorithm A, cost(A), is the number of queries made in the worst
case over any input as well as internal randomness. The randomized query complexity of f ,
denoted by R(f), is defined as

R(f) = min
A computes f

cost(A).

▶ Definition 31 (Approximate degree (d̃eg)). A polynomial p : Rn → R is said to approximate
a Boolean function f : {0, 1}n → {0, 1} if |p(x) − f(x)| ≤ 1/3, ∀x ∈ {0, 1}n. The
approximate degree of f , d̃eg(f), is the minimum possible degree of a polynomial which
approximates f .

Note that the constant 1/3 in the above definitions can be replaced by any constant strictly
smaller than 1/2 which changes d̃eg(f) by only a constant factor.

Other than R and d̃eg, two important related measures are sensitivity (s(f)) and block
sensitivity (bs(f)). While the sensitivity and block sensitivity of a total function is well
defined, we note that for the case of partial functions there are at least two valid ways of
extending the definition from total functions to partial functions. All our results in this
paper will hold for partial functions with the following definitions of sensitivity and block
sensitivity.

▶ Definition 32. The sensitivity s(f, x) of a function f : {0, 1} → {0, 1, ∗} on x is the
maximum number s such that there are indices i1, i2, . . . , is ∈ [n] with f(xij ) = 1 − f(x),
for all 1 ≤ j ≤ s. Here xi is obtained from x by flipping the ith bit. The sensitivity of f is
defined to be s(f) = maxx∈Dom(f) s(f, x).

Similarly, the block sensitivity bs(f, x) of a function f : {0, 1} → {0, 1, ∗} on x is the
maximum number b such that there are disjoint sets B1, B2, . . . , Bb ⊆ [n] with f(xBj ) =
1 − f(x) for all 1 ≤ j ≤ b. Recall xBj is obtained from x by flipping all bits inside Bj. The
block sensitivity of f is defined to be bs(f) = maxx∈Dom(f) bs(f, x).

In the definition of block sensitivity, the constraint that the blocks has to be disjoint can be
relaxed by extending the definition to “fractional blocks”. This gives the measure of fractional
block sensitivity.

▶ Definition 33. The fractional block sensitivity fbs(f, x) of a function f : {0, 1} → {0, 1, ∗}
on x is the maximum value of

∑b
j=i pj such that there are sets B1, B2, . . . , Bb ⊆ [n] and

p1, . . . , pb ∈ (0, 1] satisfying the following two conditions.
For each 1 ≤ j ≤ b, f(xBj ) = 1 − f(x), and
For each 1 ≤ i ≤ n,

∑
j : i∈Bj

pj ≤ 1.
The fractional block sensitivity of f is defined to be fbs(f) = maxx∈Dom(f) fbs(f, x).

B Approximate degree of Promise-OR composed with different inner
functions

In this section we show that the approximate degree composes when the outer function
is PrOR and the inner functions are (possibly) different partial functions. The proof is
essentially a straightforward generalization of the proof of Theorem 21 [11, Theorem 16
(arXiv version)]. However, for the sake of completeness and reader’s convenience, we give an
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overview of the proof here. We will need some definitions and theorems from [11] which we
state now. We start with the definition of a problem called “singleton combinatorial group
testing”. It generalizes the combinatorial group testing problem.

▶ Definition 34 (Singleton CGT). Let D be the set of all w ∈ {0, 1}2n

for which there exists
an x ∈ {0, 1}n such that for all S ⊆ [n] satisfying

∑
i∈S xi ∈ {0, 1}, we have

∑
i∈S xi = wS.

Note that for all w ∈ D, the string x is uniquely defined by xi = w{i}. Let us denote this string
by x(w). we then define the partial function SCGT2n : D → {0, 1}n by SCGT2n(w) = x(w).

▶ Theorem 35 ([11, Theorem 19 (arXiv version)]). The bounded-error quantum query com-
plexity of SCGT2n is Θ(

√
n).

For a formal Definition of bounded error quantum query complexity we refer the survey
by [15]. Before we state the next result that we need from [11] we are defining robustness of
a polynomial to input noise.

▶ Definition 36 (Robustness to input noise). For any function f : {0, 1}n → {0, 1, ∗} we say
a polynomial p : {0, 1}n → R approximately computes f with δ-robustness where δ ∈ [0, 1

2 ) if
for any x ∈ Dom(f) and ∆ ∈ [−δ, δ]n, we have |f(x) − p(∆ + x)| ≤ 1

3 .

Now we are ready to state the next result.

▶ Theorem 37 ([11, Theorem 17 (arXiv version)]). For a partial Boolean function f , there exists
a bounded multilinear polynomial p of degree O(Q(f)) that approximates f with robustness
Ω(1/Q(f)2) where Q(f) is the bounded error quantum query complexity of the function f .

We refer [11] for more details about robustness of a polynomial induces by quantum
algorithm. We also need the existence of a multilinear robust polynomial for XORn ◦ SCGT2n ,
which follows from Theorems 35 and 37 above, where XORn ◦ SCGT2n is the parity of n

output bits of SCGT2n .

▶ Theorem 38 ([11, Theorem 20 (arXiv version)]). There is a real polynomial p of degree O(
√

n)
over 2n variables {wS}S⊆[n] and a constant c ≥ 10−5 such that for any input w ∈ {0, 1}2n

with XORn ◦ SCGT2n(w) ̸= ∗ and any ∆ ∈ [−c/n, c/n]2n ,

|p(w + ∆) − XORn ◦ SCGT2n(w)| ≤ 1/3.

Furthermore, p is multilinear and for all w ∈ {0, 1}2n

, p(w) ∈ [0, 1].

We also need the following result of Sherstov that shows composition holds for the approximate
degree of the parity of n different functions.

▶ Theorem 39 ([38, Theorem 5.9]). For any partial Boolean functions f1, . . . , fn, we have

b̃deg(XOR ◦ (f1, . . . , fn)) = Ω
(

n∑
i=1

b̃deg(fi)
)

.

Theorem 9 can be proved in the similar line of [11, Theorem 20 (arXiv version)], which
we are restating below. For the sake of completeness a detailed proof has been added in the
full version of the paper [20].

▶ Theorem 40. For any partial Boolean functions f1, f2, . . . , fn, we have

b̃deg (PrORn ◦ (f1, f2, . . . , fn)) = Ω
(√

n · minn
i=1 b̃deg(fi)

log n

)
.
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Furthermore the following upper bound also holds,

b̃deg (PrORn ◦ (f1, f2, . . . , fn)) = O
(√

n · nmax
i=1

b̃deg(fi) · log n
)

.

We will now use this weak bound to establish nearly optimal bound for the approximate
degree of PrOR composed with n different partial functions. This will again be a simple
generalization of OR composed with different functions [11, Theorem 37]. For the sake of
completeness, we work out some of the details.

▶ Theorem 41. For any partial Boolean functions f1, f2, . . . , fn, we have

b̃deg (PrORn ◦ (f1, f2, . . . , fn)) = Θ̃

√√√√ n∑
i=1

b̃deg(fi)2

 ,

when the lcm of b̃deg(fi)2 for i ∈ [n] is Θ(maxi b̃deg(fi)2).

Proof. As mentioned before, the proof is merely working out the details of [11, Theorem 37]
while keeping in mind that we are working with partial functions.

Let F = PrORn ◦ (f1, f2, . . . , fn), di = b̃deg(fi)2 for i ∈ [n], and ℓ be the lcm of di’s. Now
consider the function G = PrORℓ ◦ F . From Theorem 40, we have the following bounds on
b̃deg(G) up to constants

√
ℓ · b̃deg(F )

log ℓ
≤ b̃deg(G) ≤

√
ℓ · b̃deg(F ) · log ℓ. (9)

Now using the associativity of PrOR we can rewrite G as

G = PrORnℓ ◦ (f1, . . . , f1︸ ︷︷ ︸
ℓ times

, . . . , fn, . . . , fn︸ ︷︷ ︸
ℓ times

). (10)

Further regrouping fi’s, we can rewrite G as follows

G = PrORd ◦ (PrORℓ/d1 ◦ f1, . . . , PrORℓ/d1 ◦ f1︸ ︷︷ ︸
d1 times

, . . . , PrORℓ/dn
◦ fn, . . . , PrORℓ/dn

◦ fn︸ ︷︷ ︸
dn times

),

(11)

where d =
∑n

i=1 di. Now using Theorem 40 and
√

di = b̃deg(fi), we obtain following bounds
for PrORℓ/di

◦ fi (up to constants)
√

ℓ

log(ℓ/di)
≤ b̃deg(PrORℓ/di

◦ fi) ≤
√

ℓ · log(ℓ/di). (12)

Now consider (11) and using Theorem 40 along with (12), we obtain
√

dℓ

log d · log ℓ
≤ b̃deg(G) ≤

√
dℓ · log ℓ · log d (13)

Now from (13) and (9) it follows
√

d

log d · log2 ℓ
≤ b̃deg(F ) ≤

√
d · log2 ℓ · log d. ◀
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C Composition theorems for strongly-k-junta symmetric outer
functions

In this section we will prove the composition result of d̃eg and R when the outer function has
some amount of symmetry. Of course, there are various notion of symmetry. Traditionally
a function is said to have the maximum amount of symmetry when the function value is
invariant under any permutation of the variables. Such functions are called symmetric.
Symmetric functions are very well studied in the literature of Boolean function analysis. In
the terms of composition theorems of d̃eg and R it was proved in [11] and [26] that d̃eg and
R respectively composes when the outer function is symmetric.

In terms of weaker notions of symmetry there are various possible definitions. In this paper
we consider the case of strongly-k-junta symmetric functions. The composition theorem for
d̃eg when the outer function is strongly-k-junta symmetric (Theorem 12(Part(i)) is presented
in Appendix C.1. The proof of the composition theorem for R when the outer function is
strongly-k-junta symmetric (Theorem 12(Part(ii)) follows easily from Theorem 2.

▶ Observation 42. For any strongly k−junta symmetric function f : {0, 1}n → {0, 1}
and any Boolean function g : {0, 1}m → {0, 1}, we have R(f ◦ g) = Ω̃(R(f) · R(g)) where
n − k = Θ(n).

Proof. There exists an assignment of the k-bits such that the resulting function is a non-
constant symmetric function on (n − k) bits. Since the sensitivity of the restricted function
is Ω(n), the randomized query complexity is also Ω(n) (see [32]). Hence, from Theorem 2
the result follows. ◀

C.1 Composition of approximate degree for
√

n-junta symmetric
functions

In this section, first, we define Multiplexer Function or Addressing Function that will be
useful is the analysis.

▶ Definition 43 (Multiplexer Function or Addressing Function).
The function MUX : {0, 1}k+2k

→ {0, 1} with input (x0, . . . , xk−1, y0, . . . , y2k−1) outputs the
bit yt, where t =

∑k−1
i=0 xi2i.

A crucial result that we use in the prove of composition theorem of d̃eg is the following
result from [34].

▶ Theorem 44 ([34]). For any non-constant symmetric function f : {0, 1}n → {0, 1}, let k

be the closest integer to n/2 such that f takes different values on inputs of Hamming weight
k and k + 1. Define,

γ(f) =
{

k if k ≤ n/2,

n − k otherwise.

Then

d̃eg(f) = Θ
(√

n(γ(f) + 1)
)

.

Using the result of [34] we prove the following proposition about the approximate degree
of a k-junta symmetric function. Recall the multiplexer function from Definition 43.



S. Chakraborty, C. Kayal, R. Mittal, M. Paraashar, S. Sanyal, and N. Saurabh 63:23

▶ Proposition 45. For any k-junta symmetric function f : {0, 1}n → {0, 1}, we have
d̃eg(f) = Ω

(√
(n − k)γmax

)
and d̃eg(f) = O

(
max{k,

√
(n − k)γmax}

)
, where γmax =

maxi∈{0,1}k {γ(fi)} such that fi is the symmetric function obtained by restricting the junta
variables according to i.

Proof. Fixing the junta variables in f we obtain a symmetric function on n − k variables
with approximate degree Ω(

√
(n − k)γmax) (Theorem 44), which in turn implies the same

lower bound on d̃eg(f).
For the upper bound, we obtain an approximating polynomial for f by composing

the (exact) polynomial for the multiplexer function MUX : {0, 1}k+2k

→ {0, 1} with the
approximating polynomials for different symmetric functions obtained by restricting the k

junta variables. Therefore, d̃eg(f) = k + O(
√

(n − k)γmax) = O
(

max{k,
√

(n − k)γmax}
)

.
◀

As mentioned earlier, the composition of d̃eg when the outer function is symmetric was
proved in [11]. The following is their result that we crucially use in the proof of Theorem 12.

▶ Theorem 46 ([11]). For any symmetric Boolean function f : {0, 1}n → {0, 1} and any
Boolean function g : {0, 1}m → {0, 1} we have,

d̃eg(f ◦ g) = Ω̃(d̃eg(f) · d̃eg(g))

We now present the proof of Part (i) of Theorem 12, that the proof of composition of d̃eg
when the outer function is strongly-k-junta symmetric.

Proof of Theorem 12(Part (i)). Since f is a strongly-k-junta symmetric function so there
exists a setting of the k junta variables such that the resulting function is a non-constant
symmetric function. Let f ′ be the symmetric function obtained by restricting the junta
variables of f so that f ′ is non-constant. Then by Theorem 44 the approximate degree of f ′

is Ω(
√

(n − k)γmax). Then clearly we have

d̃eg(f ◦ g) ≥ d̃eg(f ′ ◦ g) = Ω̃(d̃eg(f ′) · d̃eg(g)) = Ω̃(
√

(n − k)γmax · d̃eg(g)), (14)

where the first equality follows from Theorem 46. Now from Proposition 45 we know that
d̃eg(f) = O(

√
(n − k)γmax) if k = O(

√
(n − k)γmax), which is satisfied when k = O(

√
n).

Thus from (14) we obtain

d̃eg(f ◦ g) = Ω̃(d̃eg(f) · d̃eg(g)). ◀
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We consider the performance of Glauber dynamics for the random cluster model with real parameter
q > 1 and temperature β > 0. Recent work by Helmuth, Jenssen and Perkins detailed the
ordered/disordered transition of the model on random ∆-regular graphs for all sufficiently large q

and obtained an efficient sampling algorithm for all temperatures β using cluster expansion methods.
Despite this major progress, the performance of natural Markov chains, including Glauber dynamics,
is not yet well understood on the random regular graph, partly because of the non-local nature of
the model (especially at low temperatures) and partly because of severe bottleneck phenomena that
emerge in a window around the ordered/disordered transition.

Nevertheless, it is widely conjectured that the bottleneck phenomena that impede mixing from
worst-case starting configurations can be avoided by initialising the chain more judiciously. Our
main result establishes this conjecture for all sufficiently large q (with respect to ∆). Specifically, we
consider the mixing time of Glauber dynamics initialised from the two extreme configurations, the
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use In(F) to denote the set of edges e with F(e) = 1, Out(F) to denote the set of edges e

with F(e) = 0, |F| for the cardinality of In(F) and c(F) for the number of connected
components in the graph (V, In(F)). Then, the weight of F in the RC model is given by
wG(F) = qc(F)(eβ − 1)|F|.

For integer values of q, the RC model is closely connected to the (ferromagnetic) Ising/-
Potts models; q = 2 is the Ising model and q ≥ 3 is the Potts model whose configurations are
all possible assignments of q colours to the vertices of the graph where an assignment σ has
weight proportional to eβm(σ) with m(σ) being the number of monochromatic edges under σ.
The RC model is an alternative edge representation of the models (for integer q) that has
also been studied extensively in its own right due to its intricate behaviour (see, e.g., [19]).

We will be primarily interested in sampling from the so-called Gibbs distribution on Ω
induced by these weights, denoted by πG(·), where for a configuration F , πG(F) = wG(F)/ZG

where the normalising factor ZG =
∑

F ′∈ΩG
wG(F ′) is the aggregate sum of weight of all

configurations (known as the partition function). We focus on the Glauber dynamics which is
a classical Markov chain for sampling from Gibbs distributions which is a particularly useful
tool for developing approximate sampling algorithms. We will refer to Glauber dynamics for
the RC model as the RC dynamics. Roughly, the RC dynamics is a Markov chain (Xt)t≥0
initialised at some configuration X0 which evolves by iteratively updating at each step t ≥ 1
a randomly chosen edge based on whether its endpoints belong to the same component in
the graph (V, In(Xt)). The mixing time of the chain is the number of steps to get within
total variation distance ≤ 1/4 from πG, see Section 2 for details.

Our goal is to obtain a fast algorithm for the RC model using Glauber dynamics on the
random regular graph. There are two key obstacles that arise, especially at low temperatures
(large β): (i) Glauber dynamics for the RC model has a highly non-local behaviour, and
(ii) there are severe bottleneck phenomena and worst case graphs which prohibit a general
fast-convergence result, and more generally an efficient algorithm. The random regular
graph is a particularly interesting testbed in this front since it exhibits all the relevant phase
transition phenomena and has also been used as the main gadget in hardness reductions [15].

To overview the phenomena that are most relevant for us, the following picture was
detailed in a remarkable development by Jenssen, Helmuth, and Perkins [22]: for ∆ ≥ 5
and all sufficiently large q, they established the ordered/disordered transition occurring at
some βc satisfying βc = (1 + oq(1)) 2 log q

∆ (see also [15] for integer q ≥ 3).1 Roughly, for
β < βc a typical configuration of the model is disordered, whereas for β > βc it is ordered:
disordered configurations resemble the all-out configuration (in that all components are of
size O(log n)) whereas ordered configurations resemble the all-in configuration (where there
is a giant component with Ω(n) vertices). The two types of configurations coexist at β = βc,
i.e., each appears with some probability bounded away from zero. The methods in [22] are
based on cluster expansion techniques which also yielded an efficient sampling algorithm at
all temperatures β > 0. This is a surprising algorithmic result given that the coexistence
causes multimodality in πG and severe bottleneck phenomena for Markov chains in a window
around βc; it was shown for instance in [22] that the RC dynamics (and the related non-local
Swendsen-Wang dynamics) have exponential mixing time, essentially because of the number
of steps needed for the chain to move from ordered to disordered (and vice versa).

These results pose a rather bleak landscape for the RC dynamics; yet, on random regular
graphs it is widely conjectured that the multimodality and the associated bottlenecks can be
circumvented by initialising the chain more judiciously, in particular at either the all-out

1 Recent results of Bencs, Borbényi, and Csikvári [1] yield the exact formula βc = log q−2
(q−1)1−2/∆−1 for all

q > 2 and ∆ ≥ 3, which was previously only known for integer q [15].
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or the all-in configurations (depending on whether β ≤ βc). However the tools available for
analysing Markov chains are typically insensitive to the initial configuration, and even more
so when working at a critical range of the parameters.

Our main result establishes this conjecture for all ∆ ≥ 5 and q sufficiently large (conditions
which we inherit from [22]). For an integer n such that ∆n is even, let Gn,∆ denote the set
of all ∆-regular graphs with n vertices.2 Throughout, we use O(1) to denote a constant
depending on q, β, ∆ but independent of n.

▶ Theorem 1. Let ∆ ≥ 5 be an integer. There exists C = C(∆) > 0 such that, for all
sufficiently large q, the following holds for any β > 0, w.h.p. over G ∼ Gn,∆.
1. For β < βc, the mixing time of the RC dynamics starting from all-out is O(n log n).
2. For β > βc, the mixing time of the RC dynamics starting from all-in is O(nC). For

integer q, the mixing time is in fact O(n log n).
Note that Theorem 1 implies an O(n log n) sampling algorithm from the Potts model for
all β ̸= βc (and all sufficiently large q). Intuitively, and as we will see later in more detail,
Theorem 1 asserts that the RC dynamics starting from all-in mixes quickly within the set of
ordered configurations for β > βc, and similarly it mixes well within the disordered set of
configurations starting from all out when β < βc. In fact the same is true for β = βc and
hence the RC dynamics can be used to sample even at criticality, see Remark 12 for details.

Finally, let us note that the RC dynamics can be used analogously to the theorem above
to produce a sample within total variation distance ε of πG for any ε ≥ e−Θ(n), by running
it for a number of steps which is log(1/ε) times the corresponding mixing time bound.3
The lower bound on the error comes from the total variation distance between πG and the
conditional “ordered” and “disordered” configurations, see Lemma 3.

1.1 Further related work
Our approach to proving Theorem 1 is inspired from a recent paper by Gheissari and
Sinclair [16] who established similar flavoured results for the Ising model (q = 2) on the
random regular graph for large β. To obtain our results for all β, we adapt suitably their
notion of “spatial mixing within the phase”, see Section 2.2 for details.

Among the results in [16], it was established that Glauber dynamics on the random
regular graph, initialised appropriately, mixes in O(n log n) time when β is sufficiently large.4
More recently, Gheissari and Sinclair [17] obtained mixing-time bounds for the RC dynamics
on the lattice Zd under appropriate boundary conditions. They also analyse the mixing time
starting from a mixture of the all-in/all-out initialisation. Note that the phase transition on
grid lattices is qualitatively different than that of the random regular graph; there, instead of
a window/interval of temperatures, the three points βu, β∗

u and βc all coincide into a single
phase transition point. See also [6, 23] for related algorithmic results on Zd using cluster
expansion methods.

For the random regular graph, Blanca and Gheissari [4] showed for all integer ∆ ≥ 3
and real q ≥ 1 that the mixing time is O(n log n) provided that β < βu(q, ∆) where βu is
the uniqueness threshold on the tree. A sampling algorithm (not based on MCMC) for

2 We write G ∼ Gn,∆ to denote a graph in Gn,∆ chosen uniformly at random, and we say that a property
holds w.h.p. for G ∼ Gn,∆ as a shorthand for “with probability 1 − on(1) over a graph G ∈ Gn,∆ chosen
uniformly at random.

3 The standard submultiplicative argument to bootstrap the total-variation distance goes through using
the monotonicity of the RC model (to account for the constraint on the initial configuration), see
also [25].

4 Note that, for q = 2, an O(n10) upper bound for the RC dynamics on any graph G was previously
known at all temperatures β by Guo and Jerrum [20] (see also [13]).
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β < βc(q, ∆) and q, ∆ ≥ 3 was designed by Efthymiou [12] (see also [3]), albeit achieving
weaker approximation guarantees. Coja-Oghlan et al. [10] showed that, for all integer q, ∆ ≥ 3
and β ∈ (βu, β′

u) the mixing time is eΩ(n) where β′
u = log(1 + q

∆−2 ) > βu is (conjectured to
be) another uniqueness threshold on the tree (see [21, 24]). More generally, for integer q ≥ 3,
the hardness results/techniques of [18, 15] yield that for any β > βc, there are graphs G where
the mixing time of the RC dynamics is exp(nΩ(1)) and the problem of appoximately sampling
on graphs of max-degree ∆ becomes #BIS-hard; on the other hand, for β ≤ (1 − oq,∆(1))βc

it has been shown in [11, 7] that the cluster-expansion technique of [22] yields a sampling
algorithm on any max-degree ∆ graph.

As a final note, another model of interest where analogous mixing results for Glauber
dynamics (initialised appropriately) should be obtainable is for sampling independent sets
on random bipartite regular graphs. However, in contrast to the RC/Potts models, the
phase transition there is analogous to that of the Ising model, and hence, establishing the
relevant spatial mixing properties close to the criticality threshold is likely to require different
techniques, see, e.g., [9] for more discussion.

1.2 Independent results of Blanca and Gheissari
In an independent and simultaneous work, Blanca and Gheissari [5] obtain related (but
incomparable) results. For ∆ ≥ 3, q ≥ 1 and arbitrarily small τ > 0, they show for sufficiently
large β a mixing time bound of O(n1+τ ) for the RC dynamics on the random regular graph
starting from an arbitrary configuration (and obtain an analogous result for the grid and
the Swendsen-Wang dynamics). Our result instead applies to all β for the random regular
graph (even the critical window) by taking into consideration the initial configuration; the
two papers have different approaches to obtain the main ingredients.

2 Proof of Theorem 1

We start with the formal description of the RC dynamics. Given a graph G = (V, E) and
an initial configuration X0 : E → {0, 1}, the RC dynamics on G is a Markov chain (Xt)t≥0
on the set of configurations ΩG. Let p := 1 − e−β and p̂ := p

(1−p)q+p (note that for q > 1 it
holds that p̂ ∈ (p/q, p)). For t ≥ 0, to obtain Xt+1 from Xt:
1. Choose u.a.r. an edge e ∈ E. If e is a cut-edge in the graph (V, In(Xt) ∪ {e}), set

Xt+1(e) = 1 with probability p̂ (and Xt+1(e) = 0 otherwise). Else, set Xt+1(e) = 1 with
probability p, and Xt+1(e) = 0 otherwise.

2. Set Xt+1(f) = Xt(f) for all f ∈ E\{e}.
It is a standard fact that the distribution of Xt converges to the RC distribution πG. Let
Tmix(G; X0) = mint≥0{t | distTV(Xt, πG) ≤ 1/4} be the number of steps needed to get within
total-variation distance ≤ 1/4 from πG starting from X0, and Tmix(G) = maxX0 Tmix(G; X0)
be the mixing time from the worst starting state.

2.1 The ordered and disordered phases on random regular graphs
We review in more detail the ordered/disordered transition, following [22].

▶ Definition 2. For ∆ ≥ 3, let η = η(∆) ∈ (0, 1/2) be a small constant (see Definition 17).
For G ∈ Gn,∆, the ordered phase is the set of configurations Ωord := {F ∈ Ω : | In(F)| ≥
(1 − η)|E|}, whereas the disordered phase is the set Ωdis := {F ∈ Ω : | In(F)| ≤ η|E|}. For
q, β > 0, let πord

G , πdis
G be the conditional distributions of πG on Ωord, Ωdis, respectively.



A. Galanis, L. A. Goldberg, and P. Smolarova 64:5

We will use the following result of Helmuth, Jenssen and Perkins [22, Lemma 9].

▶ Lemma 3 ([22, Theorem 1]). Let ∆ ≥ 5 be an integer. Then, for all sufficiently large q,
there exists βc > 0 satisfying βc = (1 + oq(1)) 2 log q

∆ such that the following holds for any
β > 0 w.h.p. for G ∼ Gn,∆.

if β < βc, then
∥∥πG − πdis

G

∥∥
TV = e−Ω(n); if β > βc, then

∥∥πG − πord
G

∥∥
TV = e−Ω(n). (1)

Moreover, there exists ζ = ζ(∆) > 0 with ζ < η such that

for β ≤ βc, πdis
G

(
| In(F)| ≥ ζ|E|

)
= e−Ω(n), and

for β ≥ βc, πord
G

(
| In(F)| ≤ (1 − ζ)|E|

)
= e−Ω(n).

(2)

Proof. The claims about the total variation distance are shown in [22, Theorem 1, Items (2),
(3), (8)]. Equation (2) shows a bit of slack in the definitions of Ωdis and Ωord that will be
useful later; it follows essentially from the same theorem, we defer the details to Lemma 25
of the full version [14]. ◀

2.2 Main ingredient: Weak spatial mixing within a phase
Let G = (V, E) be a graph. For v ∈ V and r ≥ 0, let Br(v) denote the set of all vertices
in V whose distance from v is at most r. Let π = πG be the RC distribution on G and
let πB+

r (v) be the conditional distribution of π where all edges in E\E(Br(v)) are “in”. We
define analogously πB−

r (v) by conditioning the edges in E\E(Br(v)) to be “out”.

▶ Definition 4. Let G be a graph with m edges. Let q, β > 0 be reals and r ≥ 1 be an integer.
We say that the graph G has WSM within the ordered phase at radius r if for every v ∈ V (G)
and every edge e incident to v, ∥πB+

r (v)(e 7→ ·) − πord
G (e 7→ ·)∥TV ≤ 1

100m . Analogously, we
say that G has WSM within the disordered phase at radius r if for every v ∈ V (G) and
every edge e incident to v, ∥πB−

r (v)(e 7→ ·) − πdis
G (e 7→ ·)∥TV ≤ 1

100m .

The bulk of our arguments consists of showing the following two theorems.

▶ Theorem 5. Let ∆ ≥ 5 be an integer. There exists M = M(∆) > 0 such that for all q

sufficiently large, the following holds for any β ≥ βc. W.h.p. over G ∼ Gn,∆, G has WSM
within the ordered phase at a radius r which satisfies r ≤ M

β log n.

The upper bound on the radius r in terms of 1/β ensures that we can remove the
dependence on β of the mixing time in Theorem 1 (caused by a loose bound on the mixing
time on the tree, see Lemma 9 below). For the disordered phase, we have

▶ Theorem 6. For all integer ∆ ≥ 5, for all q sufficiently large and any β ≤ βc, w.h.p.
over G ∼ Gn,∆, G has WSM within the disordered phase at a radius r which satisfies
r ≤ 1

3 log∆−1 n.

2.3 Second ingredient: Local mixing on tree-like neighbourhoods
We first define a local version of RC dynamics where we perform only updates in a small ball
around a vertex. Here, we need to consider the extreme boundary conditions that all vertices
outside of the ball belong in distinct components (“free boundary”) and where they belong
to the same component (“wired boundary”); we will refer to these two chains as the free
and wired RC dynamics, respectively. For the random regular graph, these “local-mixing”
considerations are strongly connnected to the ∆-regular tree.
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Formally, given a graph G = (V, E) and a subset U ⊆ V , let G[U ] be the induced subgraph
of G on U . The tree-excess of a connected graph G is given by |E| − |V | + 1. For a vertex
v in G and integer r ≥ 0, let Br(v) denote the set of vertices at distance at most r from v

and Sr(v) those at distance exactly r from v. For K > 0, a max-degree ∆ graph G is locally
K-treelike if for every v ∈ V and r ≤ 1

3 log∆−1 |V |, the graph G[Br(v)] has tree excess ≤ K.

▶ Lemma 7 (see, e.g., [16, Lemma 5.8]). For any integer ∆ ≥ 3, there is K > 0 such that
w.h.p. G ∼ Gn,∆ is locally K-treelike.

For a graph G, a vertex ρ in G and an integer r ≥ 1, the free RC dynamics on Br(ρ) is
the RC dynamics where all edges outside of Br(ρ) are conditioned to be out and only edges
of G with both endpoints in Br(ρ) are updated.

▶ Lemma 8 ([4, Lemma 6.5]). Let ∆ ≥ 3 be an integer, and q, K > 1, β > 0 be reals. There
exists C > 0 such that the following holds for any ∆-regular graph G and integer r ≥ 1.

Suppose that ρ ∈ V is such that G[Br(ρ)] is K-treelike. Then, with n = |Br(ρ)|, the
mixing time of the free RC dynamics on Br(ρ) is ≤ Cn log n.

To define the wired RC dynamics, for a graph G, a vertex ρ in G and an integer r ≥ 1,
let H be the graph obtained by removing all vertices and edges outside of Br(ρ), and adding
a new vertex v∞ connected to all vertices in Sr(ρ). The wired RC dynamics on Br(ρ) is the
RC dynamics on H where the edges adjacent to v∞ are conditioned to be in and only edges
of G with both endpoints in Br(ρ) are updated. Denote by π̂Br(ρ) the stationary distribution
of the wired RC dynamics. Note that when the graph outside of Br(ρ) is connected, π̂Br(ρ)
induces the same distribution as πB+

r (ρ).5

▶ Lemma 9. Let ∆ ≥ 3 be an integer, and q, K > 1, β > 0 be reals. There exists Ĉ > 0
such that the following holds for every ∆-regular graph G = (V, E) and any integer r ≥ 1.

Suppose that ρ ∈ V is such that G[Br(ρ)] is K-treelike. Then, with n = |Br(ρ)|, the
mixing time of the wired RC dynamics on Br(ρ) is ≤ Ĉn3(q4eβ)∆r.

▶ Remark 10. For integer q > 1, the mixing time bound in Lemma 9 can be improved to
O(n log n) using results of [2], see Appendix A.2. in the full version [14] for details.

2.4 Proof of Theorem 1
In this section, we will prove the β > βc part of Theorem 1, given below as Theorem 11
for convenience. The proof of the β < βc part of Theorem 1 is in Appendix A of the full
version [14].

▶ Theorem 11. Let ∆ ≥ 5 be an integer. Then, for all sufficiently large q, there exists
C = C(q, ∆) such that the following holds w.h.p. for G ∼ Gn,∆. For β > βc, the mixing time
of the RC dynamics starting from all-in is O(nC). For integer q, the mixing time is in fact
O(n log n).

Proof of Theorem 11 (Theorem 1(b)). The argument resembles that of [16], a bit of care
is required to combine the pieces. Consider G = (V, E) ∼ Gn,∆ with n = |V | and m = |E|.
Let q be sufficiently large so that both Lemma 3 and Theorem 5 apply; assume also that
Lemma 7 applies so that G is locally K-treelike.

5 More precisely, the weight of a configuration F : E(Br(ρ)) → {0, 1} in π̂Br(ρ) is proportional to
qĉ(F)(eβ − 1)|F| where ĉ(F) denotes the number of components in the graph (Br(ρ), In(F )) that do
not include any of the vertices in Sr(ρ) (since all of these belong to the same component in the wired
dynamics and hence contribute just a single extra factor of q).
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Consider arbitrary β > βc and set β0 := log(q1.9/∆ + 1). Since βc = (1 + oq(1)) 2 log q
∆ ,

we have that β ≥ β0 for all sufficiently large q. By Lemma 3, a graph G = (V, E) ∼ Gn,∆
satisfies w.h.p.

∥∥πG − πord
G

∥∥
TV = e−Ω(n) and πord

G

(
| In(F)| ≤ (1−ζ)|E|

)
= e−Ω(n). Moreover,

by Theorem 5, G has WSM within the ordered phase at radius r for some r ≤ M
β log n,

where M = M(∆) > 0 is a constant independent of β. Note that by taking q large, we can
ensure that β0 and hence β are at least M so that r ≤ 1

3 log∆−1 n. Theorem 11 will follow by
showing that the mixing time is bounded by T = O(n2+log W ), where W = ∆2M/β0eM∆(∆+1)

is independent of q, β; for integer q we will show the stronger upper bound T̃ = O(n log n).
Consider the RC dynamics (Xt)t≥0 with X0 being the all-in configuration on the edges.

Consider also the “ordered” RC dynamics X̂t with X̂0 ∼ πord
G where we reject moves that

lead to configurations outside of Ωord; note that X̂t ∼ πord
G for all t ≥ 0. For t ≥ 0, let Et be

the event that In(X̂t) ≥ (1 − ζ)|E| and let E<t :=
⋂

t′=0,...,t−1 Et′ . From Lemma 3 we have
that πord

G (Et) ≥ 1 − e−Ω(n) and hence by a union bound πord
G (E<t) ≥ 1 − te−Ω(n) as well.

We couple the evolution of Xt and X̂t using the monotone coupling, i.e., at every step
of the two chains choose the same edge et to update and use the same uniform number
Ut ∈ [0, 1] to decide whether to include et in each of Xt+1, X̂t+1. Using the monotonicity
of the model for q ≥ 1 (and in particular that p > p̂), under the monotone coupling, for all
t ≥ 0 such that E<t holds (and hence no reject move has happened in X̂t so far), we have
that X̂t ≤ Xt (i.e., In(X̂t) ⊆ In(Xt)). To complete the proof, it therefore suffices to show
that

Pr(XT ̸= X̂T ) ≤ 1/4. (3)

Consider an arbitrary time t ≥ 0. By a union bound, we have that

Pr
(
Xt ̸= X̂t

)
≤

∑
e

Pr
(
Xt(e) ̸= X̂t(e)

)
≤ m Pr

(
E<t

)
+

∑
e

Pr
(
Xt(e) ̸= X̂t(e) | E<t

)
. (4)

Fix an arbitrary edge e incident to some vertex v, and let (Xv
t ) be the wired RC dynamics on

G[Br(v)]. We couple the evolution of (Xv
t ) with that of (Xt) and (X̂t) using the monotone

coupling analogously to above, where in Xv
t we ignore updates of edges outside the ball

G[Br(v)]). We have Xv
t ≥ Xt for all t ≥ 0, and hence, conditioned on E<t, we have that

Xv
t ≥ Xt ≥ X̂t. It follows that

Pr
(
Xt(e) ̸= X̂t(e) | E<t

)
= Pr(Xt(e) = 1 | E<t) − Pr(X̂t(e) = 1 | E<t)

≤ | Pr(Xv
t (e) = 1 | E<t) − Pr(X̂t(e) = 1 | E<t)|.

For any two events A, B, we have | Pr(A) − Pr(A | B)| ≤ 2 Pr(B), so using this for B = E<t

and A the events {Xv
t (e) = 1}, {X̂t(e) = 1}, the triangle inequality gives

Pr
(
Xt(e) ̸= X̂t(e) | E<t

)
≤ 4 Pr

(
E<t

)
+ | Pr(Xv

t (e) = 1) − Pr(X̂t(e) = 1)|

Note that Pr(X̂t(e) = 1) = πord
G (e 7→ 1), so another application of triangle inequality gives

Pr
(
Xt(e) ̸= X̂t(e) | E<t

)
≤ 4 Pr

(
E<t

)
+

∣∣ Pr(Xv
t (e) = 1) − πB+

r (v)(e 7→ 1)
∣∣

+
∣∣πB+

r (v)(e 7→ 1) − πord
G (e 7→ 1)

∣∣. (5)

Since G has WSM within the ordered phase at radius r, we have that∣∣πB+
r (v)(e 7→ 1) − πord

G (e 7→ 1)
∣∣ ≤ 1/(100m). (6)
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Moreover, let Tv be the mixing time of the wired RC dynamics on G[Br(v)] and let Nv =
|E(Br(v))| ≤ ∆r+1. Since r ≤ 1

3 log∆−1 n, G[Br(v)] is K-treelike, so from Lemma 9, with
Ĉ = O(1) denoting the constant there (and absorbing a couple of factors of ∆ into it),

Tv ≤ Ĉ(Nv)3(q4eβ)∆r ≤ ĈNv∆2rq4∆reβ∆r = ĈNv

(
∆2M/βq4∆M/βeM∆

)log n

≤ ĈNvW log n,

where in the last inequality we used that β > β0, β0 > 1
∆ log q and W = ∆2M/β0eM∆(∆+1).

For T = Θ(n2+log W ), we have T ≥ 40Tv
m
Nv

log m, so by Chernoff bounds, with probability
1 − exp(−nΩ(1)), we have at least 10Tv log m updates inside Br(v) among t = 1, . . . , T . For
integer k ≥ 1 the distance from stationarity after kTv steps is at most (1/4)k, we obtain∣∣ Pr(Xv

T (e) = 1) − πB+
r (v)(e 7→ 1)

∣∣ ≤ exp(−nΩ(1)) + e−4 log m ≤ 1/m3. (7)

Plugging (6) and (7) into (5) for t = T , and then back into (4), we obtain using Pr(E<T ) ≤
T e−Ω(n) that Pr(XT ̸= X̂T ) ≤ 5mT e−Ω(n) + m/m3 + 1/100 ≤ 1/4, as needed.

For integer q, to get the improved mixing time bound O(n log n) in Theorem 11 the
reasoning is similar. The main difference is that for integer q, we have that for any vertex v

the mixing time Tv is bounded by Tv = O(Nv log Nv) (cf. Remark 10), and therefore the
above argument yields a mixing time upper bound of O(n(log n)2). With a bit more care,
for T̃ = Θ(n log n), we show in Appendix A.3 in the full version [14] using a log-Sobolev
inequality that∣∣ Pr(Xv

T̃
(e) = 1) − πB+

r (v)(e 7→ 1)
∣∣ ≤ 1/m3, (8)

which analogously to above yields Pr(XT̃ ̸= X̂T̃ ) ≤ 1/4, and hence the desired mixing time
bound of O(n log n) for integer q. ◀

▶ Remark 12. All the ingredients to show the coupling of the RC dynamics starting from
all-in with πord

G (i.e., (3)) work even at criticality, i.e., for β = βc; a similar observation
applies at β = βc for πdis

G when starting the RC dynamics from all-out. The difference at
criticality is that πG is a mixture of πord

G and πdis
G , i.e., to obtain a sample for πG, one should

output a sample for πord
G with some probability Q and otherwise a sample from πdis

G . The
value of Q can be computed in time Õ(n2) by approximating the corresponding partition
functions, by using, e.g., the algorithms in [22, 8] (or even the RC dynamics itself). See also
[22, Theorems 2 & 3] for precise results characterising the distribution of Q; it is shown for
example that Q converges to 1/(q + 1) as q grows large.

3 Proof outline of the WSM within the ordered phase

3.1 Locally tree-like expanders
Analogously to [22], we work a bit more generally with ∆-regular expanders, which are also
tree-like. The expansion profile of an n-vertex graph G = (V, E) for ε > 0 is given by

ϕG(ε) := min
S⊆V ; 0<|S|≤εn

|E(S, V \S)|
∆|S|

.

Then the classes G∆,δ and G∆,δ,K are as follows.

▶ Definition 13. Let ∆ ≥ 5 be an integer, and δ ∈ (0, 1/2), K > 0 be reals. G∆,δ is the class
of ∆-regular graphs such that ϕG(1/2) ≥ 1/10 and ϕG(δ) ≥ 5/9. G∆,δ,K is the class of all
locally K-treelike graphs G ∈ G∆,δ.
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We use the following lemma.

▶ Lemma 14 ([22, Proposition 37]). Fix ∆ ≥ 5. There is a constant δ ∈ (0, 1/2) such that
w.h.p. a uniformly random ∆-regular graph belongs to G∆,δ.

Lemma 14 and Lemma 7 show that there is also a positive integer K such that, w.h.p,
G ∈ G∆,δ,K . Next we state an important property of expanders from [26].

▶ Lemma 15 ([26, Lemma 2.3]). Let G = (V, E) be a regular graph and consider E′ ⊆ E

with |E′| ≤ θ|E| for some θ ∈ (0, ϕG(1/2)). Then (V, E\E′) has a component of size at least(
1 − θ

2ϕG(1/2)
)
|V |.

We use Lemma 15 to establish the existence of a giant component.

▶ Definition 16. The size of a component of a graph is the number of vertices in the
component. A giant component in an n-vertex graph is a component whose size is greater
than n/2. Given a graph G = (V, E) and a subset F ⊆ E, G[F ] denotes the graph (V, F ).

▶ Definition 17. Fix ∆ ≥ 5. Fix δ ∈ (0, 1/2) satisfying Lemma 14. Let η = min(δ/5, 1/100).

▶ Corollary 18. Fix integers ∆ ≥ 5 and K ≥ 0 and a real number δ ∈ (0, 1/2). Let G

be a graph in G∆,δ,K and let F be a configuration in Ωord or a partial configuration with
| In(F)| ≥ (1 − η)|E|. Then there is a giant component in G[In(F)] whose size is at least
(1 − δ)|V |.

Proof. Apply Lemma 15 with E′ = Out(F) and θ = η = min(δ/5, 1/100). Note | Out(F)| ≤
η|E| and ϕG(1/2) ≥ 1/10. Thus the lemma say that G[In(F)] has a component of size at
least

(
1 − δ/5

2·1/10

)
|V | = (1 − δ)|V | > |V |/2. ◀

3.2 Sketch of proof of Theorem 5
Let ∆ ≥ 5 be an integer. Consider any sufficiently large q and any β ≥ βc. For sufficiently
large n, choose a “radius” r ≈ 1

β log n and let G = (V, E) ∼ Gn,∆. Fix a vertex v ∈ V

and an edge e incident to v. We wish to show, with sufficiently high probability, that
∥πB+

r (v)(e 7→ ·) − πord
G (e 7→ ·)∥TV ≤ 1/(100|E|).

Our goal is essentially to construct a coupling of F+ ∼ πB+
r (v) and Ford ∼ πord, such

that Pr(F+(e) ̸= Ford(e)) is sufficiently small. In order to construct the coupling, we take
advantage of the fact that G[Br(v)] is locally tree-like. In fact, we identify a suitable subgraph
of G[Br(v)] without cycles and restrict the coupling to this subgraph.

Consider a breadth-first search from v in G[Br(v)]. Let T0 be the rooted tree consisting
of all forward edges in this breadth-first search. All other edges in Br(v) are called “excess
edges”. W.h.p., since G ∼ Gn,∆, there are at most K excess edges in Br(v) for some absolute
constant K > 0. In particular, since G is locally tree-like, we can identify integers r1 and
r2 satisfying r ≥ r1 > r2 ≥ 0 such that E(Br1(v)) \ E(Br2(v)) contains no excess edges and
r1 − r2 ≥ r/(2K) = Ω(r). The fact that r1 − r2 = Ω(r) ensures that Br1(v) \ Br2(v) is a
sufficiently large subgraph of G, and the coupling focuses on this subgraph.

In order to describe the coupling process we need a small amount of notation. A partial
configuration F is a map from the edges of G to the set {0, 1, ∗}. In-edges and out-edges
(those that are mapped to 1 or to 0) are “revealed” and edges that are mapped to ∗ are
“unrevealed”. A refinement of a partial configuration is obtained by revealing more edges.
We use F ⊆ F ′ to denote the fact that F ′ refines F .
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In the coupling, we generate a sequence of edge subsets F0 ⊆ F1 ⊆ · · · ⊆ E such that,
after iteration i, the edges in Fi are revealed. We also construct two sequences of partial
configurations F+

0 ⊆ F+
1 ⊆ · · · ⊆ F+ and Ford

0 ⊆ Ford
1 ⊆ · · · ⊆ Ford, maintaining the

invariant that the revealed edges in Ford
i and F+

i are exactly the edges in Fi. The coupling
will have the crucial property that Ford ∼ πord and F+ ∼ πB+

r1 (v)

The process starts with iteration i = 0. The initial set F0 of revealed edges is all edges
except those in E(Br1(v)). In Ford

0 these revealed edges are sampled from the projection
πord

F0
of πord onto F0. It is likely that the configuration Ford

0 has at least (1 − η)|E|
in-edges. If not, then the coupling terminates (unsuccessfully), generating Ford and
F+ from the right distributions. We will show that the probability of this unsuccessful
termination is low. On the other hand, if Ford

0 has a least (1 − η)|E| in-edges, then we
are off to a good start. All configurations refining Ford

0 are in Ωord, so the projection
of π and πord onto subsequent edges that get revealed are the same (making it easier to
continue the coupling). At this point F+

0 is taken to be the configuration with revealed
edges F0 where all revealed edges are in-edges.
After iteration i = 0, iterations continue with i = 1, 2, . . . until an edge is revealed whose
distance from v is at most r2 or until the in-edges in Ford

i induce a giant component,
and this giant component contains all vertices on the boundary of Fi. We will show that
it is very unlikely that an edge at distance at most r2 from v is reached. So it is likely
the giant component in Ford

i contains all vertices on the boundary of Fi. This is a good
situation because the conditional distribution of π, conditioned on refining Ford

i and the
conditional distribution of F+, conditioned on refining F+

i induce the same distribution
on edges incident to v, which enables us to show that Pr(F+(e) ̸= Ford(e)) is sufficiently
small.
The process at iteration i + 1 is as follows. Wi is taken to be the set of all vertices on the
boundary of Fi whose components (induced by the in-edges in Ford

i ) are all small. By
“boundary” we mean that vertices in Wi are adjacent to revealed edges, and to unrevealed
edges. If Wi is empty, then the coupling finishes. Otherwise, a vertex wi ∈ Wi is chosen
to be as far from v as possible. The edges in the subtree of T0 below the parent of wi are
revealed in Fi+1.

The main remaining ingredient in the proof is showing that the unsuccessful terminations
of the coupling are unlikely. To do this, we use the polymer framework of [22]. (Ordered)
polymers are defined using an inductive definition. For a set of edges A ⊆ E, let B0(A) = A,
and inductively for j = 0, 1, 2, . . . define Bj+1(A) to be the set of all edges such that they
are either in Bj(A) or edges that are incident to a vertex that has at least 5∆/9 incident
edges in Bj(A). Let B∞(A) =

⋃
j∈N Bj(A). An ordered polymer of a configuration F is a

connected component of B∞(Out(F)). The bulk of the work is to prove the following lemma,
which is repeated in the appendix of the full version [14] (with more detail) as Lemma 44.

▶ Lemma 19. Fix ∆ ≥ 5 and K, M > 0. Suppose that β ≥ 3M . Suppose that n is sufficiently
large so that r := M

β log∆−1 n > K and |Br(v)| ≤ 9∆n/200. Define r1 as above. Let Ford

and F+ be generated by the process. Then at least one of the following conditions holds.
1. Ford and F+ agree on the edges that are incident to v.
2. | In(Ford) \ E(Br1(v))| < (1 − η)|E|.
3. Ford contains a polymer of size at least r

400∆(1+K) − 1.

To complete the proof of Theorem 5, we show that items 2 and 3 are unlikely. The proof
that item 2 is unlikely, Lemma 45 in the full version [14], follows from the slack specified
in Equation (2) of Lemma 3. The proof that item 3 is unlikely, Lemma 29 in the full
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version [14], follows from an analysis on the size of polymers by adapting appropriately the
cluster expansion techniques of [22] (a bit of extra work is needed there to capture the 1/β

dependence in the size of the polymer, see [14, Lemma 29] for details).
The proof of WSM for the disordered phase (Theorem 6) follows a similar strategy, the

details are given in Appendix D of the full version [14].
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Abstract
Range Avoidance (Avoid) is a total search problem where, given a Boolean circuit C : {0, 1}n →
{0, 1}m, m > n, the task is to find a y ∈ {0, 1}m outside the range of C. For an integer k ≥ 2,
NC0

k-Avoid is a special case of Avoid where each output bit of C depends on at most k input bits.
While there is a very natural randomized algorithm for Avoid, a deterministic algorithm for the
problem would have many interesting consequences. Ren, Santhanam, and Wang (FOCS 2022)
and Guruswami, Lyu, and Wang (RANDOM 2022) proved that explicit constructions of functions
of high formula complexity, rigid matrices, and optimal linear codes, reduce to NC0

4-Avoid, thus
establishing conditional hardness of the NC0

4-Avoid problem. On the other hand, NC0
2-Avoid admits

polynomial-time algorithms, leaving the question about the complexity of NC0
3-Avoid open.

We give the first reduction of an explicit construction question to NC0
3-Avoid. Specifically,

we prove that a polynomial-time algorithm (with an NP oracle) for NC0
3-Avoid for the case of

m = n + n2/3 would imply an explicit construction of a rigid matrix, and, thus, a super-linear lower
bound on the size of log-depth circuits.

We also give deterministic polynomial-time algorithms for all NC0
k-Avoid problems for m ≥

nk−1/ log(n). Prior work required an NP oracle, and required larger stretch, m ≥ nk−1.

2012 ACM Subject Classification Theory of computation → Circuit complexity

Keywords and phrases Boolean function analysis, Explicit Constructions, Low-depth Circuits, Range
Avoidance, Matrix Rigidity, Circuit Lower Bounds

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2023.65

Category RANDOM

Related Version arXiv Version: https://arxiv.org/abs/2303.05044

Acknowledgements We would like to thank Justin Thaler, Sam King, and anonymous reviewers for
their helpful comments on our paper.

1 Introduction

The Range Avoidance (Avoid) problem is: given a Boolean circuit C : {0, 1}n → {0, 1}m for
some stretch m > n, find an element y ∈ {0, 1}m outside the range of C. By the pigeonhole
principle, such a y always exists. This problem was first introduced by Kleinberg, Korten,
Mitropolsky, and Papadimitriou [15] as a complete problem for the class APEPP (Abundant
Polynomial Empty Pigeonhole Principle). Informally, APEPP contains total search problems
where the existence of a solution follows via the union bound (such as Shannon’s classical
proof that most functions require circuits of exponential size).
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Korten [16] proved that a deterministic algorithm for Avoid would imply explicit con-
structions of objects that are central to the field of computational complexity, and would
resolve several long-standing open problems. Such objects include functions of high circuit
complexity, rigid matrices, pseudorandom generators, and Ramsey graphs. The key idea is
that there is a succinct way to encode all “easy” objects (such as descriptions of functions of
low circuit complexity) in the input space of a small circuit that acts as a decoder. Then
a solution to the Avoid problem yields a “hard” object (such as a function of high circuit
complexity), implying an explicit construction. In fact, the aforementioned works [15, 16]
showed that even a deterministic algorithm with an NP oracle solving Avoid in polynomial
time would lead to breakthrough results in complexity theory.

The only known deterministic algorithm for Avoid is the trivial brute force algorithm
running in time 2n · poly(n, |C|).1 No better algorithms are known for Avoid even if the
algorithm is allowed to use an NP oracle. On the other hand, using both an NP oracle and
randomness, one can solve Avoid in polynomial time: Pick a random string y ∈ {0, 1}m, and
simply check if y ∈ Range(C) using the NP oracle. This shows that Avoid ∈ FZPPNP, and,
using the standard trick of simulating randomness by non-uniformity, Avoid ∈ FPNP/Poly.2
Interestingly, for the class of polynomial-time algorithms with an NP oracle, the Avoid
problem is equally hard for all values of stretch n + 1 ≤ m ≤ poly(n) [15].

For a class of circuits C, the C-Avoid problem is a special case of Avoid where each
output is computed by a circuit from C. Recent works by Ren, Santhanam, and Wang [19]
and Guruswami, Lyu, and Wang [9] proved that efficient algorithms for C-Avoid even for
certain simple circuit classes C would be sufficient for getting various explicit constructions.
Later, Chen, Huang, Li, and Ren [6] re-derived the best known lower bounds against ACC0

circuits from an efficient algorithm for a certain C-Avoid problem. While this suggests that
designing efficient algorithms for Avoid problems is a promising approach to various explicit
construction questions, the work of Ilango, Li, and Williams [10] proves barriers for designing
polynomial time algorithms under certain cryptographic assumptions.

Let NC1 denote the class of Boolean fan-in-2 circuits of depth O(log(n)), and NC0
k denote

the class of Boolean functions where each output depends on at most k inputs for a constant k.
[19] used perfect encodings of [13, 14, 2] to reduce NC1-Avoid to NC0

4-Avoid in polynomial
time. Consequently, [9] reduced most of the aforementioned explicit constructions in [16]
(and several new ones!) to NC1-Avoid, and, thus, to NC0

4-Avoid. In particular, polynomial-
time deterministic algorithms (even with an NP oracle) for NC0

4-Avoid would now imply
breakthrough results in complexity theory.

[9] gave a polynomial-time algorithm solving NC0
2-Avoid for any stretch m ≥ n + 1. As

mentioned above, NC0
4-Avoid might be hard to solve efficiently. This leaves the question

about the complexity of NC0
3-Avoid open.

▶ Open Problem 1 ([9]). Can we reduce explicit construction problems to solving NC0
3-Avoid?

Or can we solve NC0
3-Avoid in polynomial time?

Unlike the case of the general Avoid problem, NC0
k-Avoid may be much easier for large

1 This trivial algorithm is (conditionally) tight for a related problem studied in [15], where the range of C
has size much smaller than 2n+1, and is given by a circuit computing a function from [N ] to [M ]. [15]
gives a deterministic reduction from SAT on n variables to Avoid for a circuit C : [2n] → [2n + 2o(n)]
running in subexponential time. Thus, under the Exponential Time Hypothesis [12, 11], this problem
does not admit deterministic (and randomized) algorithms running in time 2o(n).

2 Here, the complexity classes FP, FE, FZPP are simply the functional analogs of the decision classes
P, E, ZPP.
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values of the stretch m. Indeed, on one hand, NC0
k-Avoid for small stretch m = n + o(n)

is capable of encoding hard explicit construction problems [19, 9]. On the other hand,
NC0

k-Avoid for m = Ω(nk) is easily solvable in polynomial time: since the number of distinct
functions depending on at most k out of n inputs is O(nk), every such instance of the problem
must have two outputs computing identical functions. Assigning different values to these
outputs solves NC0

k-Avoid.
[9] presented an algorithm solving NC0

k-Avoid for stretch m ≥ Ω(nk−1) in polynomial
time with an NP oracle.3 This improvement on the trivial algorithm suggests a natural
question of whether one can solve NC0

k-Avoid for even smaller values of stretch m.

▶ Open Problem 2. Design a polynomial-time algorithm (with an NP oracle) solving NC0
k-

Avoid with n inputs and stretch m = o(nk−1) for k ≥ 3.

1.1 Our Results
The classical result of Shannon [20] shows that most Boolean functions of n variables require
Boolean circuits of exponential size. Despite that, the best known lower bound on the size
of a circuit (or even a circuit of logarithmic depth, i.e., NC1) for a function in P (or even
ENP) is 3.1n− o(n) proven by Li and Yang [17]. A central problem in circuit complexity is
to prove a super-linear lower bound on the number of gates of NC1 circuits computing an
explicit function [22, 3, Frontier 3].

Similarly, for the class of linear NC1 circuits – NC1 circuits where each gate computes
the XOR (or its negation) of its two inputs – no super-linear lower bound on the complexity
of an explicit linear map M ∈ Fn×n

2 is known. The best lower bound against linear circuits
is 3n− o(n) proven by Chashkin [5].

In our first result (Theorem 9), we answer Open Problem 1 by showing that a polynomial-
time algorithm for NC0

3-Avoid would imply an explicit construction of a map requiring linear
NC1 circuits of super-linear size (thus, demonstrating the hardness of NC0

3-Avoid).

▶ Theorem 1. An FP (resp. FPNP) algorithm for NC0
3-Avoid with stretch m = n + O(n2/3)

implies an explicit construction of a linear map in FP (resp. FPNP) that cannot be computed
by linear NC1 circuits of size o(n log log(n)).

Our proof of Theorem 1 first reduces an explicit construction of a rigid matrix to NC0
3-

Avoid (Theorem 9). A matrix M ∈ Fn×n
2 is called (r, s)-rigid if it cannot be written as a

sum M = L + S of a rank-r matrix L and a matrix S with at most s non-zeros per row. In
a seminal work, Valiant [22] introduced an approach for proving super-linear lower bounds
on the size of linear NC1 circuits via matrix rigidity. Valiant proved that an (εn, nε)-rigid
matrix M ∈ Fn×n

2 for any constant ε > 0 requires linear NC1 circuits of size Ω(n log log(n)).
Theorem 1 now follows straightforwardly as a corollary of Theorem 9.

The best known constructions of rigid matrices do not yet achieve the parameters sufficient
for Valiant’s circuit lower bound. [7, 18, 21] construct an

(
r, Ω

(
n
r log( n

r )
))

-rigid matrix in
polynomial time, [8] gives an

(
r, Ω

(
n2

r2 log(n)

))
-rigid matrix in time 2O(n) for r ≥

√
n, and

[1, 4] give (2ε log(n)/ log log(n), Ω(n))-rigid matrices in polynomial time with an NP oracle.
However, even an FPNP algorithm for NC0

3-Avoid with stretch m = n + n12/17−ε for any
constant ε > 0 would already improve on these known constructions of rigid matrices.

3 The algorithm of [9] does not use the full power of FPNP: it outputs a hitting set H ⊆ {0, 1}m such that
for every NC0

k function C, at least one point y ∈ H is outside the range of C. Only then the algorithm
looks at the input function and finds a solution y ∈ H using the NP oracle.

APPROX/RANDOM 2023
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In fact, we reduce the problem of constructing explicit rigid matrices to a problem that
we call degree-2-Avoid, where each output computes a degree-2 polynomial of the inputs.
Following Ren, Santhanam, and Wang’s approach [19], this problem can be reduced to
NC0

3-Avoid using the perfect encoding scheme of Applebaum, Ishai, and Kushilevitz [2].4
On the algorithmic side, we make partial progress towards resolving Open Problem 2.

We first give a simple deterministic polynomial-time algorithm for NC0
3-Avoid for stretch

m ≥
(

n
2
)
/3 + 2n (presented in Appendix A). This algorithm already improves on the best

known algorithm for NC0
3, as it does not use an NP oracle. Then, in Theorem 4 we extend

this algorithm to solve NC0
k-Avoid for all constant k. Recall that the current best algorithms

for this problem solve the case where m ≥ Ω(nk−1) in polynomial time using an NP oracle [9].
We improve this result in two directions: our algorithm does not use an NP oracle, and it
works in polynomial time for stretch m ≥ nk−1/ log(n).

▶ Theorem 2. There is a deterministic polynomial-time algorithm that solves the NC0
k-Avoid

problem with n inputs and stretch m for every k ≥ 3 and m ≥ nk−1/ log(n).

1.2 Proof Overview

1.2.1 Hardness of NC0
3-Avoid

Valiant [22] proved that linear NC1 circuits with a linear number of gates can only compute
non-rigid linear maps M ∈ Fn×n

2 , i.e., maps M that can be written as a sum M = Q + S,
where rank(Q) ≤ εn and each row of S has at most nδ ones in it. For the rest of the section,
our non-rigid matrices can be written as the sum of a matrix with rank ≤ n/10 and a
matrix with row sparsity at most n0.1. Therefore, constructing a rigid matrix would imply a
super-linear lower bound on the size of linear NC1 circuits computing it.

To reduce an explicit construction of an n× n rigid matrix to solving an instance of NC0
3-

Avoid, we design an NC0
3 function f : {0, 1}p(n) → {0, 1}n2 , for some polynomial p(n) < n2,

such that for every non-rigid matrix M ∈ {0, 1}n×n, there exists x ∈ {0, 1}p(n) satisfying
f(x) = M . Now, any solution M ′ ∈ {0, 1}n×n to the NC0

3-Avoid problem for the function f

must be a rigid matrix.
Before constructing such an NC0

3 function f , we first design a function g : Fn2/2
2 → Fn2

2 ,
where each output bit of g is a degree-2 polynomial of the inputs, and the range of g contains
all non-rigid matrices. A solution to the degree-2-Avoid problem for the function g would
give us a rigid matrix. Following [19], we can then apply a perfect encoding scheme [13, 14, 2]
to g, and obtain an NC0

3 function f , as required (see Lemma 6). Effectively, this reduces
solving Avoid on g to solving Avoid on f .

Now we construct a degree-2 function g : Fn2/2
2 → Fn2

2 whose inputs encode all non-rigid
matrices, i.e., for every non-rigid matrix M , there is an x ∈ {0, 1}n2/2 such that f(x) = M .
A non-rigid matrix M can be written as M = LR + S, where L, RT ∈ Fn×n/10

2 , and each
row of S contains at most n0.1 ones. The first n2/5 inputs of the function g will correspond
to the elements of L and R. Note that every entry of LR is a degree-2 function of the entries
of L and R since it just computes the inner product of a row in L and a column in R. Now,
for each n0.1-sparse row of S, we show how to encode it using n0.6 inputs and a degree 2
function. Repeating this procedure for each row of S will finish the proof.

4 Ren, Santhanam, and Wang use the following definition of perfect encodings: A function f̂ is a
perfect encoding of a function f if there exists a polynomial time algorithm Dec such that for all x, y:
Dec(y) = f(x) ⇐⇒ ∃r, y = f̂(x, r).
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We interpret the n0.1-sparse row with n entries as a
√

n×
√

n matrix A. Since A has at
most n0.1 non-zero entries, rank(A) ≤ n0.1. It can be written as a product A = BC where
B, CT ∈ F

√
n×n0.1

2 . Therefore, there is a degree-2 function h that takes as input B, C of size
2n0.6 and outputs the sparse matrix A.

The presented encoding of s-sparse vectors in Fn
2 is only non-trivial for s <

√
n (as

otherwise the number of inputs of h exceeds the number of outputs). As a result, we cannot
encode the entire matrix S as an n1.1-sparse vector in Fn2

2 . However, for Valiant’s approach
of proving circuit lower bounds, we can assume that S is n0.1-row sparse.5 Thus, we can
separately encode each row of S using only O(n0.6) inputs to obtain an encoding of S in
O(n1.6) bits. In Lemma 8, we will demonstrate how to accommodate slightly better sparsity
parameter when we are allowed higher (but still constant) degree d for the encoding function.

1.2.2 Simple algorithm for NC0
3-Avoid

We start with a short description of a simple deterministic polynomial-time algorithm for
NC0

3-Avoid for stretch m ≥
(

n
2
)
/3 + 2n (presented in Appendix A). This algorithm already

improves on the best known algorithm for NC0
3-Avoid, as our algorithm does not use an NP

oracle.
If we had a #SAT oracle, then we could solve NC0

3-Avoid even for stretch m = n + 1.
Our algorithm would iteratively find constant assignments to each of the first n outputs
to minimize the number of inputs that map to the current (partial) output assignments.
Throughout our exposition, we say such inputs are consistent with the (partial) output
assignments. Before we describe our algorithm, it is important to note that we always fix
circuit outputs to constant assignments. At each iteration, we would use the #SAT oracle
to find the output assignment that reduces the size of the input set by at least half. After
fixing the first n outputs, we still have at least m− n ≥ 1 unassigned outputs, and only one
input point x ∈ Fn

2 that is consistent with the previously assigned output bits. This allows
us to find an assignment of the (n + 1)-th output bit such that the string specified by the
output bits lies outside the range of the circuit.

Unfortunately, solving #SAT (even approximately) is hard for this class of multi-output
circuits. In the absence of an efficient #SAT algorithm, our algorithm maintains an affine
subspace S that contains all inputs from Fn

2 that are consistent with the current partial
assignment (S may also contain inputs that are not consistent with the current partial
assignment). We carefully set output values so that at each iteration, we reduce the
dimension of S by at least one. This way, after n + 1 steps we will find a solution to the
NC0

3-Avoid problem. However, our algorithm can only work when the stretch is m ≥ Ω(n2).
Without loss of generality, we assume that each output reads exactly three input bits.

At each iteration the number of currently unassigned outputs is >
(

n
2
)
/3. This allows us to

find a pair of outputs y1 and y2 that share a pair of input variables.6 Say, y1 = f1(x1, x2, x3)
and y2 = f2(x2, x3, x4). We will find a constant assignment to y1 and y2 that reduces the
dimension of the affine subspace S.

Note that there are 16 assignments to (x1, x2, x3, x4) and four different values of (y1, y2).
Therefore, there is a way to assign y1 = c1, y2 = c2 such that at most four points (x1, x2, x3, x4)
map to these values of the outputs. Note that there always exists a hyperplane H containing

5 Alternatively, one can argue by Markov’s inequality that if a matrix M cannot be written as a sum
of rank-r and n0.1-row sparse matrices, then M also cannot be written as a sum of rank-2r and
rn0.1-globally sparse matrices.

6 Each output sees 3 pairs of input bits, giving a total of 3m >
(

n
2

)
pairs. By the pigeonhole principle, at

least one pair of inputs appears in two outputs.
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any four points in F4
2. Let H be the affine subspace obtained by extending H to all n inputs.

Then, S ∩H gives us an affine subspace containing all inputs consistent with the assignment
y1 = c1, y2 = c2.

If S ⊈ H, then we have an assignment of two outputs that reduces the dimension of our
affine subspace as dim(S ∩ H) < dim(S). Otherwise, if S ⊆ H, then instead of considering
all 16 assignments to the inputs (x1, x2, x3, x4), we can restrict our attention to at most 8
such assignments that belong to H, which makes the problem only easier (as we show in
Theorem 16).

1.2.3 Better algorithm for NC0
k-Avoid

The main bottleneck of this simple algorithm is that it maintains an affine subspace that
must contain all consistent inputs. While affine subspaces are easy to work with, they are
not expressive enough to accurately describe all inputs that are consistent with an arbitrary
partial assignment. In order to improve the previous algorithm, we will maintain a more
expressive structure than an affine subspace – a union of affine subspaces. Below we sketch
our approach to solving NC0

3-Avoid with stretch m ≥ Ω(n2/ log(n)). Theorem 4 generalizes
this to solving NC0

k-Avoid problems with stretch m ≥ Ω(nk−1/ log(n)) for all values of k.
Again, without loss of generality, we assume that each output depends on exactly three

inputs. Consider a bipartite graph, where the left vertices correspond to n inputs, the
right vertices correspond to m outputs, and an input-output pair (xi, yj) is connected by
an edge if the output yj depends on the input xi. First we select t = 3n2/m highest-
degree inputs I = {x1, . . . , xt}. Their neighborhood must contain at least 3n distinct
outputs O = {y1, . . . , y3n}.7 Let C be the sub-circuit defined on outputs from O and their
corresponding inputs. Now, we will find a y ∈ F3n

2 outside Range(C).
First, consider all 2t assignments to the inputs in I = {x1, . . . , xt}, resulting in circuits

C1, . . . , C2t . Since every output in O is connected to at least one input from I, fixing an
assignment to the inputs I reduces each Ci to an NC0

2 circuit. In a way, we have reduced
NC0

3-Avoid to an OR of 2t instances of NC0
2-Avoid: we need to find a y ∈ {0, 1}3n outside the

ranges of all the Ci’s. For each circuit Ci, we will maintain an affine subspace Si containing
all inputs consistent with the current partial assignment of the outputs.

Our algorithm works by iteratively fixing the output bits from {y1, . . . , y3n} such that
at each step the total number of points in the (disjoint) union of the affine subspaces Si is
reduced by a constant factor, eventually making all the subspaces empty. We observe (in
Lemma 13) that for any affine subspace Si, one of the assignments yi = 0 or yi = 1 always
reduces the dimension of Si by one. Therefore, by picking the “best” assignment yi = c

across all the subspaces Si, we can reduce the size of the union of such affine subspaces by a
constant factor of 4/3. Repeating this procedure for log4/3(2n) + 1 < 3n steps finishes the
proof.

1.3 Open Problems
Our work motivates several natural questions about the complexity of NC0

3-Avoid and
degree-2-Avoid. We reduce explicit constructions of rigid matrices to solving degree-2-Avoid,
and then NC0

3-Avoid, with appropriate stretch.

7 Since the number of outputs is m, and each output has degree 3, the number of edges in the graph
is 3m, and the average degree of an input is 3m/n. The t highest-degree inputs then have total degree
at least 3mt/n, and must be connected to at least mt/n = 3n distinct outputs.
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▶ Open Problem 3. Can other explicit construction questions be reduced to NC0
3-Avoid or

degree-2-Avoid?

Particularly, we suspect that the construction of linear and list-decodable codes with optimal
parameters [9] might be good candidates for these reductions.

Using the encoding of [2] in the reduction from degree-2-Avoid to NC0
3-Avoid almost

always decreases the required stretch to m = n + o(n) (as highlighted in Section 3). It would
also be interesting to find a more efficient encoding or reduction from degree-2-Avoid to
NC0

3-Avoid. This could potentially increase the stretch for NC0
3-Avoid required to obtain

explicit constructions thereby making the problem easier.

▶ Open Problem 4. Can we construct a more efficient reduction from degree-2-Avoid to
NC3

0-Avoid?

We believe degree-2-Avoid might be of independent interest since it allows for a larger
stretch. For example, for improved constructions of rigid matrices, it suffices to solve degree-
2-Avoid for super-linear stretch m ≥ n12/11−ε for a constant ε > 0. In fact, degree-2-Avoid
is easy to solve when the stretch is m ≥ n2. Note that there are at most

(
n
2
)

unique degree-2
monomials on n variables. If m ≥ n2, then we can replace each unique monomial with a new
variable. As a result, we will have m linear functions in < m variables. We can solve Avoid
on this linear function instance by a dimension reduction strategy similar to the one outlined
in the previous section.

▶ Open Problem 5. Are there algorithmic techniques to solve degree-2-Avoid that do not
use a reduction to NC0

3-Avoid?

For the NC0
3-Avoid problem, our algorithm runs in deterministic time 2O(n2/m) for any

stretch m ≥ n + 1. In particular, this recovers the exponential-time brute force algorithm for
the hardest case of m = n + 1. It would be interesting to obtain matching conditional lower
bounds for deterministic algorithms for NC0

3-Avoid.

▶ Open Problem 6. Is there a conditional lower bound of 2Ω(n2/m) on the complexity of
deterministic algorithms without an NP oracle for NC0

3-Avoid?

Finally, it is natural to ask if algorithms with NP oracles can solve NC0
3-Avoid more

efficiently.

▶ Open Problem 7. Do there exist polynomial-time algorithms with NP oracles that solve
NC0

3-Avoid for stretch m = o(n2/ log(n))?

1.4 Structure

The rest of the paper is organized as follows. In Section 2, we give all necessary background
material, including a reduction from degree-d-Avoid to NC0

d+1-Avoid in Section 2.3. In
Section 3, we reduce the problem of constructing explicit rigid matrices to NC0

3-Avoid. In
Section 4, we give deterministic algorithms solving NC0

k-Avoid in polynomial time for stretch
m ≥ nk−1/ log(n). Finally, Appendix A contains an alternative deterministic polynomial-time
algorithm for NC0

3 for the case where stretch m ≥ Ω(n2).
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2 Preliminaries

For every a ∈ Fn
2 and subspace L of Fn

2 , we can define an affine subspace A ⊆ Fn
2 where

A = {a + v | v ∈ L}. The dimension of the affine subspace dim(A) is the same as the
dimension of the linear subspace L that defines it. Equivalently, the set of points that lie
on a specified set of hyperplanes over Fn

2 also characterize an affine subspace of Fn
2 . The

hyperplanes can be written as a system of linear equations Ax = b, and the dimension of the
corresponding affine subspace A can be calculated as dim(A) = n− rank(A).

The circuits and algorithms in this paper generally work over the boolean hypercube
{0, 1}n. We work with multi-output circuits C : {0, 1}n → {0, 1}m where m > n and m is
called the stretch of the circuit. A partial output assignment, y ∈ {0, 1, ∗}m, is a fixing of a
subset of the output bits of the circuit to constants. For an input x ∈ {0, 1}n to the circuit,
we say x is consistent with a partial output assignment y ∈ {0, 1, ∗}m, if C(x) agrees with y

on the fixed bits. When specified, the input (resp. output) space of a circuit might instead
be viewed as the vector space Fn

2 (resp. Fm
2 ) over the finite field F2.

The complexity classes FP, FPNP, FE, and FENP are classes of search problems analogous
to the classes of decision problems P, PNP, E, and ENP. For example, the class FP contains all
functions that can be computed by deterministic polynomial-time Turing machines.

2.1 Circuits and Matrix Rigidity
In this paper, we work with circuit classes NC0

k and NC1, which we define below.

▶ Definition 1 (NC Circuits). The circuit class NCi contains multi-output Boolean circuits
on n inputs of depth O(logi(n)) where each gate has fan-in 2. We are particularly concerned
with the following classes of circuits:

For every constant k ≥ 1, NC0
k is the class of circuits where each output depends on at

most k inputs.
NC1 is the class of circuits of depth O(log(n)) where all gates have fan-in 2.
Linear NC1 circuits are circuits of depth O(log(n)) where every gate has fan-in 2 and
computes an affine function, i.e., the XOR of its two inputs or its negation.

It is a long-standing open problem in circuit complexity to prove super-linear lower
bounds on the size of (linear) NC1 circuits computing an n-output function from FP or even
FENP [22, 3, Frontier 3]. Valiant [22] suggested an approach for proving super-linear lower
bounds for linear NC1 circuits using the notion of matrix rigidity.

▶ Definition 2 (Matrix Rigidity). For r, s ∈ Z+, a matrix M ∈ Fn×n
2 is (r, s)-rigid if M

cannot be written as a sum

M = L + S ,

where L, S ∈ Fn×n
2 , L is low rank, i.e., rank(L) ≤ r, and S is row sparse, i.e., every row of

S has at most s non-zero entries.

Valiant [22] proved that a linear operator given by a sufficiently rigid matrix requires
linear NC1 circuits of size at least Ω(n log log(n)), but there are still no known constructions
of such rigid matrices even in FENP.

▶ Theorem 3 ([22]). If a family of matrices (Mn)n≥1, Mn ∈ Fn×n, is (εn, nδ)-rigid for con-
stant ε, δ > 0, then the linear map x 7→Mx requires linear NC1 circuits of size Ω(n log log(n)).
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2.2 Range Avoidance for Circuits
In the range avoidance problem, given a circuit C with n inputs and m outputs, m > n, the
goal is to find an m-bit string outside the range of C.

▶ Definition 3 (Avoid). In the Avoid problem, given a description of a circuit C : {0, 1}n →
{0, 1}m for m > n, the task is to find a y ∈ {0, 1}m such that ∀x ∈ {0, 1}n : C(x) ̸= y.

The function m = m(n) is called the stretch of the multi-output circuit C. Note that
Avoid is a total search problem, i.e., there always exists such a y ∈ {0, 1}m since m > n.
We focus on a more restricted problem where there is an additional promise that the input
circuit C is from a fixed circuit class C.

▶ Definition 4 (C-Avoid). In the C-Avoid problem, given a description of a circuit C :
{0, 1}n → {0, 1}m for m > n, where C ∈ C, the task is to find a y ∈ {0, 1}m such that
∀x ∈ {0, 1}n : C(x) ̸= y.

In particular, we are concerned with NC1-Avoid and NC0
k-Avoid for constant k ≥ 1. We

will also consider the class of functions where each output is a multivariate polynomial of
the inputs of degree at most d over F2.

▶ Definition 5 (degree-d-Avoid). In the degree-d-Avoid problem, given a description of a
function C : Fn

2 → Fm
2 for m > n, where each output can be computed by a polynomial of

degree ≤ d in the n inputs, the task is to find a y ∈ Fm
2 such that ∀x ∈ Fn

2 : C(x) ̸= y.

2.3 Low Degree and Low Locality
Perfect randomized encodings were introduced by [2] for various cryptographic applications.
We are interested in the following property of perfect encodings: For a Boolean function
f : {0, 1}n → {0, 1}m and its encoding f̂ : {0, 1}n+ℓ → {0, 1}m+ℓ, there exists a polynomial-
time decoding algorithm, Dec: {0, 1}m+ℓ → {0, 1}m, such that for all y ∈ {0, 1}m+ℓ and
x ∈ {0, 1}n satisfying Dec(y) = f(x), there exists r ∈ {0, 1}ℓ such that y = f̂(x, r). This
property can be used in Avoid reductions as follows. Given a solution to the Avoid problem
for the function f̂ , i.e., y ̸∈ Range(f̂), one can find a solution to the Avoid problem for the
function f in polynomial time by simply computing Dec(y) ̸∈ Range(f).

[2] first encode NC1 functions as degree-3 functions. Then, they encode every degree-d
function as an NC0

d+1 function. Composing these two encodings provides an encoding of
NC1 functions in NC0

4. Using this encoding, [19] provides a polynomial time reduction from
NC1-Avoid to NC0

4-Avoid. We use only one part of the result from [2]: there is a polynomial
time reduction from degree-d-Avoid to NC0

d+1-Avoid. For completeness, we include the
proof here.

▶ Lemma 6. Let d ≥ 2 be a constant, and f : Fn
2 → Fm

2 be a multi-output function where
every output computes a sum of k monomials of degree ≤ d. Then there exists a function
f̂ : {0, 1}n+(2k−1)m → {0, 1}2km computed by an NC0

d+1 circuit and a polynomial time al-
gorithm Dec: {0, 1}2km → {0, 1}m such that for all x, y, if Dec(y) = f(x), there exists an
r ∈ {0, 1}(2k−1)m such that f̂(x, r) = y.

Proof. We follow the encoding constructed in [2]. First, we construct an encoding ĝ for each
single output function g of f . Let g(x) = T1(x) + T2(x) + · · · + Tk(x) be a single output
degree-d function where each Ti(x) is a monomial of degree at most d. Consider the encoding
of g, ĝ : {0, 1}n × {0, 1}k × {0, 1}k−1 → {0, 1}2k defined as follows

ĝ(x, r, s) = (T1(x)− r1, T2(x)− r2, . . . Tk−1(x)− rk−1(x), Tk(x)− rk,

r1 − s1, s1 + r2 − s2, . . . sk−2 + rk−1 − sk−1, sk−1 + rk) .
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Clearly, each output bit of ĝ can be computed by an NC0
d+1 circuit. We define a polynomial-

time algorithm Dec
ĝ

: {0, 1}2k → {0, 1} such that if Dec
ĝ
(y) = g(x) then there exist r and s

satisfying ĝ(x, r, s) = y. Given y ∈ {0, 1}2k, Dec
ĝ
(y) sums up the bits of y modulo 2.

Suppose Dec
ĝ
(y) = g(x) for some x ∈ {0, 1}n, i.e.,

Dec
ĝ
(y) =

2k∑
j=1

yj = g(x) =
k∑

j=1
Tj(x) . (1)

We will now show that there exist r and s such that ĝ(x, r, s) = y. For each j ∈ [k], we set
rj = Tj(x)− yj . We also set s1 = r1 − yk+1 and sequentially set sj = sj−1 + rj − yk+j for
each j ∈ {2, . . . , k − 1}. By definition, the first 2k − 1 bits of ĝ(x, r, s) equal the first 2k − 1
bits of y. For the last bit, note that:

sk−1 + rk =
k∑

i=1
ri −

2k−1∑
i=k+1

yi (by the definition of s)

=
k∑

i=1
Ti(x)−

2k−1∑
i=1

yi (by the definition of r)

= y2k . (by Equation (1))

Therefore, for the constructed r and s, ĝ(x, r, s) = y, as required.
Suppose f(x) = (f1(x), f2(x), . . . , fm(x)), where each fi(x) is a sum of at most k monomi-

als of degree ≤ d. Let f̂i be the encoding of fi as defined above. Then our encoding of f

is simply a concatenation of the encodings of its individual outputs, f̂ : {0, 1}n+(2k−1)m →
{0, 1}2km, where

f̂(x, r(1), r(2), . . . , r(m), s(1), s(2), . . . , s(m)) = (f̂1(x, r(1), s(1)), . . . , f̂m(x, r(m), s(m))) . (2)

On input y = (y1, y2, . . . , ym) ∈ {0, 1}2km, the decoding algorithm returns

Dec(y) = (Dec
f̂1

(y1), . . . , Dec
f̂m

(ym)) . (3)

Suppose Dec(y) = f(x) for some x ∈ {0, 1}n. Then Dec
f̂i

(yi) = fi(x) for all i ∈ [m]. By
our proof above, there exists r(i) and s(i) such that yi = f̂i(x, r(i), s(i)) and, thereby,

y = (y1, . . . , ym) = (f̂1(x, r(1), s(1)), . . . , f̂m(x, r(m), s(m))) = f̂(x, r(1), s(1), . . . , r(m), s(m)) .

Finally, Dec runs in time O(mk) since it runs m iterations of Dec
f̂i

for each i, each of
which simply computes a sum of 2k bits. Since each f̂i is in NC0

d+1, so is f̂ . ◀

Now, following [19], we conclude that there is a polynomial-time reduction from degree-d-
Avoid to NC0

d+1-Avoid.

▶ Corollary 7. For every d ≥ 1, if there exists an FP (resp. FPNP) algorithm for NC0
d+1-

Avoid, then there exists an FP (resp. FPNP) algorithm for degree-d-Avoid.

Proof. Let f be an input to a degree-d-Avoid problem with m output bits. Then, each
output bit of f is a sum of at most k = O(nd) monomials of degree d. Let f̂ be the encoding
of f in NC0

d+1 guaranteed by Lemma 6. Note that f̂ : {0, 1}n+(2k−1)m → {0, 1}2km. By
the assumption of the Corollary, there is an FP (resp. FPNP) algorithm that returns a
y ̸∈ Range(f̂). Then, by Lemma 6, Dec(y) ̸∈ Range(f) and Dec runs in polynomial time.
Therefore, there is an FP (resp. FPNP) algorithm for degree-d-Avoid. ◀
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3 Hardness of NC0
3-Avoid

In this section, we reduce the problem of constructing explicit rigid matrices to the al-
gorithmic task of solving NC0

3-Avoid. First, in Lemma 8 we give an explicit degree-2 function
f : {0, 1}k → {0, 1}n, k ≪ n, whose range contains all sparse vectors of length n. Note that
such a function f must have degree at least 2. Indeed, if f was affine and its range contained
all vectors of sparsity at most 1, then its range must have dimension n, and the number of
inputs of f would be k ≥ n.

Next, in Theorem 9, we apply this lemma, together with the reduction from degree-2-
Avoid to NC0

3-Avoid from Lemma 6, to conclude that an efficient algorithm for NC0
3-Avoid

would provide an explicit construction of rigid matrices.

▶ Lemma 8. For every d ≥ 1 and every polynomial-time computable s := s(n) < n1−1/d

d ,
there exists a polynomial-time computable function f : Fdsn1/d

2 → Fn
2 whose range contains

all vectors of sparsity at most s, and each output of f is a degree-d polynomial.

Proof. Let G be an arbitrary d-uniform hypergraph on ℓ = dn1/d vertices and n hyperedges
(such a graph exists because

(
ℓ
d

)
≥ (ℓ/d)d = n). Fix an ordering {1, . . . , ℓ} of the vertices

and {1, . . . , n} of the edges. Each vertex of G will be labeled by a vector from Fs
2. Our

function f : Fsℓ
2 → Fn

2 will take as input the labels of the vertices of G and output n

elements corresponding to the n hyperedges of G: the ith output is the generalized inner
product of the labels of the d vertices in the ith hyperedge. We interpret the input as a
matrix X ∈ Fs×ℓ

2 , where the jth column Xj ∈ Fs
2 is the label corresponding to the jth

vertex. Suppose the hyperedge i contains the vertices {j1, . . . , jd} then the ith output is
fi(X) =

∑s
k=1 Xk,j1 · · ·Xk,jd

. Clearly, f is a degree-d function, it only remains to show that
its output contains all vectors of sparsity ≤ s. For this, we show that for every vector y ∈ Fn

2
of sparsity ≤ s, there is an input, i.e., a labeling of the vertices of G, such that f outputs y.
Let the s non-zero elements of y correspond to the distinct edges i1, . . . , is in G. For each
vertex j in G we set its label Xj ∈ Fs

2 to be such that (Xj)k = 1 if j ∈ ik and (Xj)k = 0
otherwise.

Consider any edge i = {j1, . . . , jd} and the submatrix Xj1,...,jd
of X containing the labels

of these vertices connected by i.
If i = ik for some k ∈ [s], then yi = 1. The ikth row of Xj1,...,jd

contains all 1 entries.
Furthermore, every other row contains at least one zero. Therefore, fi(X) = 1.
If i ̸= ik for all k ∈ [s], then yi = 0 and each row of Xj1,...,jd

contains at least one zero.
Therefore, fi(X) = 0. ◀

Equipped with Lemma 8, we are ready to show that an efficient algorithm for degree-2-
Avoid or NC0

3-Avoid would imply an explicit construction of rigid matrices.

▶ Theorem 9. For every constant 1/2 ≤ δ ≤ 1, an FP (resp. FPNP) algorithm for degree-2-
Avoid with stretch m = 2n2/(1+δ) will provide an FP (resp. FPNP) algorithm for finding an
(nδ/10, nδ−1/2/10)-rigid matrix.

Furthermore, for every 1/2 ≤ δ ≤ 1, an FP (resp. FPNP) algorithm for NC0
3-Avoid

with stretch m = n + O(n2/(2+δ)) will provide an FP (resp. FPNP) algorithm for finding an
(nδ/10, nδ−1/2/10)-rigid matrix.

Proof. Let r = nδ/10 and s = nδ−1/2/10. First, we reduce (in deterministic polynomial
time) the problem of finding an (r, s)-rigid matrix to solving degree-2-Avoid for a function
g : F4rn

2 → Fn2

2 .
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Suppose M ∈ Fn×n
2 is not (r, s)-rigid. Then, M can be written as a sum M = Q + S,

where rank(Q) ≤ r and S is s-row sparse. Furthermore, Q = L · R for some matrices
L, RT ∈ Fn×r

2 .
We view the input of g as 2rn entries of the matrices L and R, and 2sn3/2 inputs of n

copies of the degree-2 function f from Lemma 8 needed to encode the entries of n sparse
rows of S. Then the function g simply outputs all n2 entries of M = L ·R + S. Note that
each output of g computes a dot-product of a row of L and a column of R, and adds a
degree-2 output of f . Therefore, we constructed a degree-2 function g whose range contains
all non-rigid matrices. A solution to degree-2-Avoid on input g would therefore give an
(r, s)-rigid matrix. The number of inputs of g is n′ = 2rn + 2sn3/2 = 4rn = 2n1+δ/5, and
the stretch of the function g is at least m′(n′) ≥ 2(n′)2/(1+δ). This concludes the proof of
the first part of the theorem.

For the second part, we use the polynomial-time reduction from degree-2-Avoid to NC0
3-

Avoid from Lemma 6. By the construction above, we have a degree-2 function g : F4rn
2 → Fn2

2
where each output bit is the sum of at most t = r + s ≤ 2r degree-2 monomials. We apply
Lemma 6 to reduce Avoid for g to Avoid for an NC0

3 function ĝ : {0, 1}n̂ → {0, 1}m̂, where
n̂ = n′ + (2t− 1)n2 and m̂ = 2tn2. This yields a stretch of m̂(n̂) = n̂ + O(n̂2/(2+δ)) for the
function ĝ. Therefore, an algorithm for NC0

3-Avoid for stretch m̂(n) yields an (r, s)-rigid
matrix. ◀

We remark that in the regime δ > 1/2, Theorem 9 would give matrices that for rank nδ

have higher rigidity than all known constructions of rigid matrices in FP, FPNP and FENP.
Therefore, for every ε > 0, an FPNP algorithm for degree-2-Avoid with stretch n12/11−ε or
an FPNP algorithm for NC0

3-Avoid with stretch n + n12/17+ε would lead to new rigidity lower
bounds. Since the regime of δ = 1 in Theorem 9 is sufficient for Valiant’s program of proving
super-linear lower bounds on the size of linear NC1 circuits (see Theorem 3), we have the
following corollary.

▶ Corollary 10. An FP (resp. FPNP) algorithm for degree-2-Avoid with stretch m = 2n

or for NC0
3-Avoid with stretch m = n + O(n2/3) will provide a linear function in FP (resp.

FPNP) that cannot be computed by linear NC1 circuits of size o(n log log(n)).

4 Algorithms for NC0
k-Avoid

In this section, we describe polynomial-time algorithms for solving NC0
k-Avoid with non-

trivial stretch. More specifically, we provide an algorithm that runs in time 2O(nk−1/m)·poly(n)
when the stretch of the input circuit is at least m ≥ Ω(nk−2). First, we describe a useful
structural property of NC0

k circuits, which follows from the following simple graph-theoretic
result.

▶ Lemma 11. For any constants c ≥ 1 and k ≥ 3, every k-uniform hypergraph G = (V, E)
with n vertices and m ≥ cnk−2 hyperedges contains a subset of vertices V ′ ⊆ V, |V ′| ≤
cnk−1/m and a subset of hyperedges E′ ⊆ E, |E′| ≥ cn such that each hyperedge in E′

contains at least k − 2 vertices from V ′. Furthermore, there is a polynomial-time algorithm
that finds such a V ′ and E′.

Proof. Consider the following bipartite graph H with vertex set A ⊔ B where A = {uS |
S ⊆ V, |S| = k − 2} is the set of vertices indexed by the k − 2 sized subsets of V and
B = {ve | e ∈ E} is indexed by the edges of G. Furthermore there is an edge (uS , ve) in H if
S ⊆ e, i.e., if all the vertices in S are contained in the hyperedge e ∈ E. Since each hyperedge



K. Gajulapalli, A. Golovnev, S. Nagargoje, and S. Saraogi 65:13

e contains k vertices, the degree of each vertex in B is exactly
(

k
k−2

)
. Then, the average

degree of the vertices in A is |B|( k
k−2)

|A| = m( k
k−2)

( n
k−2)

. Let A′ ⊆ A be the subset of t vertices with
highest degree in A and let N(A′) be their neighbors in B. Then total degree of vertices in
A′ is at least tm( k

k−2)
( n

k−2)
. Since each vertex in B has degree

(
k

k−2
)
, |N(A′)| ≥ tm( k

k−2)
( n

k−2)( k
k−2)

= tm

( n
k−2)

.

Therefore, setting t = cn( n
k−2)
m , V ′ to be the set of t(k−2) = cn(k−2)( n

k−2)
m ≤ cnk−1/m vertices

of G contained in the union of the vertex subsets in A′, and E′ = N(A′) completes our proof.
To find V ′ and E′, we first construct the graph H which has polynomial size, and then

find the vertices in A′ by finding the t vertices in A with maximum degree. It is now
straightforward to construct V ′ from A′ and to find E′ = N(A′). ◀

▶ Corollary 12. For any constants c ≥ 1 and k ≥ 3, given an NC0
k circuit C with n inputs

and m ≥ cnk−2 outputs, there exists a subset of outputs O of size |O| ≥ cn, and a subset of
inputs I of size |I| ≤ cnk−1/m, such that for every output bit Ci ∈ O, at least k − 2 of the
input bits feeding into Ci are from I. Furthermore, there is a polynomial-time algorithm that
finds such sets I and O.

Proof. Without loss of generality we assume that each output of C reads exactly k inputs (as
if it reads ℓ < k inputs, we let it additionally read arbitrary k − ℓ inputs and ignore them).
Consider the hypergraph where each vertex corresponds to one of the n inputs {x1, . . . , xn}
of C. Each edge of the hypergraph corresponds to an output Ci, ei = {j | Ci reads xj}.
Now, we apply Lemma 11 on this hypergraph and set I = V ′ and O = E′. Note that
|I| = |V ′| ≤ cnk−1/m and |O| = |E′| ≥ cn. ◀

This corollary finds a linear number of output bits O of the circuit that mostly depend
on a small number of common input bits I. Our algorithm for NC0

k-Avoid will “branch” on
all possible assignments to the inputs from I. Each such assignment will correspond to an
affine subspace S ⊆ Fn

2 of the input space. Then, our algorithm works by fixing the output
bits from O such that the sum of the dimensions of these affine subspaces is significantly
reduced at each step, eventually making all subspaces empty. Note that by the guarantee of
Corollary 12, after fixing the inputs I, each output from O depends on at most two inputs.
Thus, we need an efficient way to reduce the dimension of the affine subspace containing
the consistent inputs for the case where output functions depend on at most two inputs. In
Lemma 13, we provide such a subroutine AffineReduce (Algorithm 1).

▶ Lemma 13. Let S ⊆ Fn
2 be an affine subspace, and f : Fn

2 → F2 be a function that depends
on at most two inputs. The algorithm AffineReduce in deterministic polynomial time finds
two affine subspaces (or empty sets) S0,S1 ⊆ S such that
(1) ∀x ∈ S, b ∈ F2, if f(x) = b, then x ∈ Sb;
(2) |S0|+ |S1| ≤ 3|S|/2.

Proof. Without loss of generality we assume that f(x) depends on (a subset of) x1 and x2.
We will consider three cases depending on the degree of f , and in each case we will find affine
subspaces (or empty sets) S0,S1 ⊆ S such that at least one of them has dimension strictly
smaller than the dimension of S (or at least one of them is an empty set). This will ensure
that |S0|+ |S1| ≤ 3|S|/2.

If f(x) = c for some c ∈ F2 is a constant function, then we set Sc = S and S1−c = ∅.
Clearly, Sc = S and S1−c contain all points x ∈ S that are consistent with f(x) = c and
f(x) = 1− c, respectively.

APPROX/RANDOM 2023
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If f(x) = a1x1 + a2x2 + c for some constants a1, a2, c ∈ F2 is an affine function, then
for each b ∈ F2 let Hb be the hyperplane defined by a1x1 + a2x2 + c = b, and let
Sb = S ∩Hb. Again, S ∩Hb contains all the inputs in S that are consistent with f(x) = b.
Furthermore, if dim(S0) = dim(S), then S ⊆ H0 and S1 = S ∩H1 = ∅. Therefore, either
dim(S0) < dim(S) or S1 = ∅.
If f(x) = (x1 + a1)(x2 + a2) + c for some constants a1, a2, c ∈ F2 is a quadratic function,
then let H be the affine subspace defined by H = {x ∈ Fn

2 | x1 = 1 + a1, x2 = 1 + a2}.
Consider the affine subspace S1−c = S ∩ H which contains all points x ∈ S satisfying
f(x) = 1− c.

If dim(S1−c) < dim(S), then we are done as we can take Sc = S

If dim(S1−c) = dim(S), then S ⊆ H. Then, every point in S satisfies f(x) = 1 − c,
thus, setting S1−c = S and Sc = ∅ completes our construction.

In each case, either |S0| ≤ |S|
2 or |S1| ≤ |S|

2 . Therefore, |S0|+ |S1| ≤ 3|S|/2.
The only computation made by AffineReduce is to compute the dimensions of explicitly

given affine subspaces, which can be performed in polynomial time. ◀

Algorithm 1 AffineReduce(S, f).

Input: Affine subspace S ⊆ Fn
2 , f : Fn

2 → F2 that may depend only on x1 and x2
Output: S0,S1 ⊆ S

if f(x) = c then
return Sc = S and S1−c = ∅

if f(x) = a1x1 + a2x2 + c then
For b ∈ F2, let Hb = {x ∈ Fn

2 : a1x1 + a2x2 + c = b}
return S0 = S ∩H0 and S1 = S ∩H1

if f(x) = (x1 + a1)(x2 + a2) + c then
Let H = {x ∈ Fn

2 : x1 = 1 + a1, x2 = 1 + a2}
Let S1−c = S ∩ H
if dim(S1−c) < dim(S) then

return S1−c and Sc = S
else

return S1−c and Sc = ∅

A simple application of AffineReduce recovers a polynomial-time algorithm for NC0
2-

Avoid from [9].

▶ Corollary 14. There is a deterministic polynomial-time algorithm that, given an NC0
2

circuit C : {0, 1}n → {0, 1}m, m ≥ n + 1, finds an element y ∈ {0, 1}m, y ̸∈ Range(C).

Proof. At iteration 1 ≤ i ≤ n + 1, our algorithm will fix the value of the ith output bit yi.
The algorithm also maintains an affine subspace S ⊆ Fn

2 that contains all inputs x ∈ Fn
2

consistent with the partial output assignments of y1, . . . , yi. By Lemma 13, there exists an
assignment yi = b, such that either none of the inputs in Sb are consistent with y or the
dimension of S = Sb reduces at least by one. In the former case, we already find our desired
output y (we can just set the unassigned bits of y to arbitrary values). Otherwise, after
fixing the first n outputs, we have dim(S) = 0, i.e., S = {x} for some x ∈ Fn

2 . Let b ∈ {0, 1}
be the value of the (n + 1)th output bit of C(x). Then setting yn+1 = 1− b produces our
desired output y. This algorithm runs in polynomial time since it makes at most n calls to
AffineReduce and one call to C(x). ◀
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Finally, equipped with Lemma 13, we are ready to present our main algorithm for NC0
k-Avoid.

▶ Theorem 4. Given an NC0
k circuit C : {0, 1}n → {0, 1}m, where m ≥ 3nk−2, the al-

gorithm SubspaceUnion finds an element y ∈ {0, 1}m, y ̸∈ Range(C) in deterministic time
2O(nk−1/m) · poly(n).

Proof. First we apply Corollary 12 with c = 3 to the circuit C, and select in polynomial
time a subset of inputs I = {x1, . . . , xt} and a set of outputs O = {y1, y2, ...., y3n} for
t ≤ 3nk−1/m. This ensures that each yi has at most two inputs outside of I. For each of
the 2t assignments of the inputs from I, we consider a circuit where the values of these t

inputs are fixed. Namely, for j ∈ {0, . . . , 2t − 1}, we fix the inputs in I to the bits in the
binary representation of j. Then we restrict the circuit C to the outputs y1, . . . , y3n and all
the inputs that feed them, and obtain a circuit Cj , where each output depends on at most 2
inputs. We’ll find a value y ∈ {0, 1}3n that no Cj outputs, and this will give us a solution to
the original NC0

k-Avoid instance.
Our algorithm will maintain the following invariant. At the ith iteration of the algorithm

after we fix the values of the outputs y1, . . . , yi, we maintain U =
⋃2t−1

j=0 Uj , a disjoint union
of 2t affine subspaces, such that all inputs x ∈ Fn

2 that are consistent with y1, . . . , yi belong
to U (and U may contain points that are inconsistent with y1, . . . , yi, too).

In the beginning of the algorithm, for every 0 ≤ j < 2t, we let Uj be the affine subspace
where the inputs in I are fixed to the bits in the binary representation of j. Then U =⋃

j Uj = Fn
2 is the set of all inputs consistent with our initial empty partial assignment.

At every step i, we will show how to find a constant b ∈ {0, 1} such that after fixing
yi = b, the size of our disjoint union |U| reduces by a factor of 4/3. Therefore, after repeating
this procedure for the 3n outputs from O, we will have an empty U , and the constructed
partial assignment will give us a solution to the NC0

k-Avoid problem.
At the ith iteration of the algorithm, we have values of outputs y1, . . . yi−1 fixed, and

are to fix the value of yi. We have two choices: either set yi = 0 or set yi = 1. By
Lemma 13, we have two affine subspaces (or empty sets) Uj,0,Uj,1 ⊆ Uj containing all inputs
x ∈ Uj mapping to yi = 0 and yi = 1, respectively. Moreover, Lemma 13 guarantees that
|Uj,0|+ |Uj,1| ≤ 3|Uj |/2. Summing over all 0 ≤ j < 2t, we get∑

j

|Uj,0|+
∑

j

|Uj,1| ≤
∑

j

3|Uj |/2 = 3|U|/2 .

Let b ∈ {0, 1} be the value minimizing
∑

j |Uj,b|. In particular, we have that
∑

j |Uj,b| ≤
3|U|/4. Therefore, setting yi = b reduces the size of U at least by a factor of 4/3. Repeating
this procedure log4/3(2n) + 1 ≤ 3n times will result in a partial assignment to the output
bits O with no inputs that map to it.

The algorithm SubspaceUnion maintains 2t affine subspaces of Fn
2 , computes their di-

mensions and calls the deterministic polynomial-time AffineReduce procedure polynomial
number of times. Therefore, this algorithm runs in time 2t ·poly(n) = 2O(nk−1/m) ·poly(n). ◀

We conclude this section with a corollary stating that SubspaceUnion solves NC0
k-Avoid

efficiently for certain non-trivial values of stretch m.

▶ Corollary 15. For any constants k ≥ 3 and ε > 0, the algorithm SubspaceUnion
solves NC0

k-Avoid on n inputs and m outputs in deterministic polynomial and deterministic
sub-exponential 2O(n1−ε) time for m ≥ nk−1/ log(n) and m ≥ nk−2+ε, respectively.

APPROX/RANDOM 2023
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Algorithm 2 SubspaceUnion(C).

Input: NC0
k circuit C : {0, 1}n → {0, 1}m, where m ≥ 3nk−2

Output: y ∈ {0, 1}m, y /∈ Range(C)
Find x1, . . . , xt and y1, . . . , y3n via Corollary 12 for t ≤ 3nk−1/m

For 0 ≤ j < 2t, set Uj = {x ∈ {0, 1}n :
∑t

i=1 xi2i−1 = j}
for i=1 to 3n do

Find function f at yi

For 0 ≤ j < 2t, set Uj,0,Uj,1 ← AffineReduce(Uj , f)
Find b ∈ {0, 1} minimizing

∑
j |Uj,b|

Set yi = b

For 0 ≤ j < 2t, set Uj = Uj,b

Set all remaining yk = 0
return y
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A An Alternative Algorithm for NC0
3-Avoid

▶ Theorem 16. Given an NC0
3 circuit C : {0, 1}n → {0, 1}m, where m ≥ 1

3
(

n
2
)

+ 2n,
the algorithm OneSubspace finds an element y ∈ {0, 1}m, y ̸∈ Range(C) in deterministic
polynomial time.

Proof. The algorithm maintains an affine subspace S ⊆ Fn
2 over the inputs, and a partial

output assignment y ∈ {0, 1, ∗}m such that S contains all inputs x ∈ Fn
2 consistent with

y. Initially, y = (∗, . . . , ∗) and S = Fn
2 . At each iteration, OneSubspace assigns at most

two outputs and reduces the dimension of S by at least 1. After n steps, S must have
dimension 0. Then the algorithm assigns one more output bit, and terminates with an
element y ̸∈ Range(C).

Now, we only need to argue that the algorithm can reduce the dimension of S in each
iteration and that we can perform each step in polynomial time.

First, if there is an output y1 that depends on at most 2 inputs x1, x2, let f be the
function computed at that output: y1 = f(x1, x2). By Lemma 13, AffineReduce(S, f)
outputs an affine subspace Sb of lower dimension dim(Sb) < dim(S), containing all inputs
consistent with y1 = b. Thus, in the following we assume that each output depends on
exactly 3 inputs.

Since we fix at most 2 bits of the output at each iteration, the number of unassigned
outputs m is always greater than 1

3
(

n
2
)
. Then, there exists a pair of outputs y1, y2 that both

depend on the same pair of inputs x2, x3. Since each output depends on three pairs of inputs,
and the number of such pairs is

(
n
2
)

< 3m, there must be a pair of inputs that feeds into two
outputs. Let x1, x4 be the remaining inputs that feed into the outputs y1, y2, respectively:
y1 = f1(x1, x2, x3), y2 = f2(x2, x3, x4).

There exist 4 possible values of (y1, y2) and at most 16 possible values of the input bits
(x1, x2, x3, x4) appearing in S. Then, there exists a pair of constants (b1, b2) ∈ {0, 1}2 such
that at most 4 different assignments A ⊆ {0, 1}4 to (x1, x2, x3, x4) are consistent with the
partial assignment (y1, y2) = (b1, b2). Since |A| ≤ 4, there is a 3-dimensional affine subspace
in F4

2 that contains all points from A. Therefore, there is a hyperplane H ⊆ F4
2 defining

this 3-dimensional affine subspace. Extending H to all n inputs, gives us an affine subspace
H′ = {x ∈ Fn

2 : (x1, x2, x3, x4) ∈ H} ⊆ Fn
2 that contains all inputs in Fn

2 consistent with the
partial assignment (y1, y2) = (b1, b2).

If S ̸⊆ H′, then setting (y1, y2) = (b1, b2),S = S ∩H′ reduces the dimension of the affine
subspace S. In the following we assume that S ⊆ H′.

Suppose there exists (c1, c2) ∈ {0, 1}2 such that for all points (x1, x2, x3, x4) in H′,
(f1(x1, x2, x3), f2(x2, x3, x4)) ̸= (c1, c2). Then we can set (y1, y2) = (c1, c2) and S = ∅ as
no points in S ⊆ H′ can output (c1, c2). In this case we found a y ̸∈ Range(C).
If there are no such assignments, then since |H| = 8, there must exist an assignment
(c1, c2) ∈ {0, 1}2 such that at most two points fromH are consistent with (y1, y2) = (c1, c2).
These (at most) two points form a 0- or 1-dimensional affine subspace U ⊆ F4

2, which we
extend to all n inputs U ′ = {x ∈ Fn

2 : (x1, x2, x3, x4) ∈ U} ⊆ Fn
2 .
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If S ̸⊆ U ′, we can set (y1, y2) = (c1, c2) and S = S ∩ U ′, reducing the dimension of S.
Otherwise, all inputs in S ⊆ U ′ have (y1, y2) = (c1, c2), and we can set (y1, y2) =
(1− c1, c2) to obtain S = ∅.

This algorithm performs n iterations, each of which computes dimensions of a constant
number of explicitly given affine subspaces in polynomial time. ◀

Algorithm 3 OneSubspace(C).

Input: NC0
3 circuit C : {0, 1}n → {0, 1}m, where m ≥ 1

3
(

n
2
)

+ 2n

Output: y ∈ {0, 1}m, y /∈ Range(C)
Let S = Fn

2
for i=1 to n do

if S = ∅ then
Set all remaining yk = 0
return y

if ∃y1, x1, x2 s.t. y1 = f(x1, x2) then
S0,S1 = AffineReduce(S, f)
Find b ∈ {0, 1} that minimizes |Sb|, Set y1 = b, S = Sb

else
Find y1, y2, x1, x2, x3, x4 s.t. y1 = f1(x1, x2, x3), y2 = f2(x2, x3, x4)
Find b1, b2 ∈ {0, 1}, s.t.

A = {(x1, x2, x3, x4) ∈ F4
2 : (f1(x1, x2, x3), f2(x2, x3, x4)) = (b1, b2)} and |A| ≤

4
Let H ⊆ F4

2 be the hyperplane defined by points in A

Let H′ = {x ∈ Fn
2 : (x1, x2, x3, x4) ∈ H}

if S ⊈ H then
Set (y1, y2) = (b1, b2), S = S ∩ H′

else
if ∃(c1, c2) s.t. ∀(x1, x2, x3, x4) ∈ H (f1(x1, x2, x3), f2(x2, x3, x4)) ̸= (c1, c2)

then
Set S = ∅, (y1, y2) = (c1, c2)

else
Find (c1, c2) s.t.

U = {(x1, x2, x3, x4) ∈ H : (f1(x1, x2, x3), f2(x1, x2, x3)) =
(c1, c2)},|U| ≤ 2

Let U ′ = {x ∈ Fn
2 |(x1, x2, x3, x4) ∈ U}

if S ⊈ U ′ then
Set S = S ∩ U ′, (y1, y2) = (c1, c2)

else
S = ∅, (y1, y2) = (1− c1, c2)

return y
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Abstract
We investigate algorithms for testing whether an image is connected. Given a proximity parameter
ϵ ∈ (0, 1) and query access to a black-and-white image represented by an n × n matrix of Boolean
pixel values, a (1-sided error) connectedness tester accepts if the image is connected and rejects
with probability at least 2/3 if the image is ϵ-far from connected. We show that connectedness can
be tested nonadaptively with O( 1

ϵ2 ) queries and adaptively with O( 1
ϵ3/2

√
log 1

ϵ
) queries. The best

connectedness tester to date, by Berman, Raskhodnikova, and Yaroslavtsev (STOC 2014) had query
complexity O( 1

ϵ2 log 1
ϵ
) and was adaptive. We also prove that every nonadaptive, 1-sided error tester

for connectedness must make Ω( 1
ϵ

log 1
ϵ
) queries.
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1 Introduction

Connectedness is one of the most fundamental properties of images [16]. In the context of
property testing, it was first studied two decades ago [18], but the query complexity of this
property is still unresolved. We improve the algorithms for testing this property and also
give the first lower bound on the query complexity of this task.

We focus on black-and-white images. For simplicity, we only consider square images, but
everything in this paper can be easily generalized to rectangular images. We represent an
image by an n × n binary matrix M of pixel values, where 0 denotes white and 1 denotes
black. To define connectedness, we consider the image graph GM of an image M . The vertices
of GM are {(i, j) | M [i, j] = 1}, and two vertices (i, j) and (i′, j′) are connected by an edge
if |i − i′| + |j − j′| = 1. In other words, the image graph consists of black pixels connected by
the grid lines. The image is connected if its image graph is connected.

We study connectedness in the property testing model [20, 11], first considered in the
context of images in [18]. A (1-sided error) property tester for connectedness gets query
access to the input matrix M . Given a proximity parameter ϵ ∈ (0, 1), the tester has to
accept if M is connected and reject with probability at least 2/3 if M is ϵ-far from connected.
An image is ϵ-far from connected if at least an ϵ fraction of pixels have to be changed to
make it connected. The tester is nonadaptive if it makes all its queries before receiving any
answers; otherwise, it is adaptive.
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In [18], it was shown that connectedness can be tested adaptively with O( 1
ϵ2 log2 1

ϵ )
queries. The adaptive complexity of testing connectedness was later improved to O( 1

ϵ2 log 1
ϵ )

in [8].

1.1 Our Results
1.1.1 Connectedness Testers
We give two new algorithms for testing connectedness of images: one adaptive, one nonadapt-
ive. Both improve on the best connectedness tester to date in terms of query complexity.
Previously, no nonadaptive testers for connectedness were proposed.

▶ Theorem 1.1. Given a proximity parameter ϵ ∈ (0, 1), connectedness of n × n images,
where n > ϵ−2 · 256, can be ϵ-tested adaptively and with 1-sided error with query and time
complexity O( 1

ϵ3/2

√
log 1

ϵ ).
It can be tested nonadaptively and with 1-sided error with query and time complexity

O( 1
ϵ2 ).

Previous algorithms for testing connectedness of images are modeled on the connectedness
tester for bounded-degree graphs by Goldreich and Ron [12]: they pick a uniformly random
pixel and adaptively try to find a small connected component by querying its neighbors.
As discussed in [18], even though connectedness of an image is defined in terms of the
connectedness of the corresponding (degree-4) image graph, these two properties are different
because of how the distance is defined. In the bounded-degree graph model, the (absolute)
distance between graphs is the number of edges that need to be changed to transform one
graph into the other. In contrast, the (absolute) distance between two image graphs is the
number of pixels (vertices) on which they differ; in other words, the edge structure of the
image graph is fixed, and only vertices can be added or removed to transform one graph into
another. However, previous connectedness testers in the image model did not take advantage
of the differences.

Figure 1 An image M . Figure 2 The same image with a grid.

As our starting point, we use an idea from [7] that gave an algorithm for approximating
the (relative) distance to the nearest connected image with additive error ϵ with query O( 1

ϵ4 )
and running time exp

(
O
( 1

ϵ

))
. They observed that one can modify an image in a small

number of pixels by drawing a grid on the image (as shown in Figures 1 and 2). In the
resulting image, the distance to connectedness is determined by the properties of individual
squares into which the grid lines partition the image.
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Our algorithms consider different partitions of the grid (a logarithmic number of partitions
in 1

ϵ ). For each partition, they sample random squares and try to check whether the squares
satisfy the following property called border-connectedness.

▶ Definition 1.2 (Border connectedness). A (sub)image s is border-connected if for every
black pixel (i, j) of s, the image graph Gs contains a path from (i, j) to a pixel on the border of
s. The property border connectedness, denoted C ′, is the set of all border-connected images.

Our nonadaptive algorithm reads all pixels in each sampled square. Our adaptive algorithm
further partitions each square into diamonds, as shown in Figure 4. It queries all pixels on
the diamond lattice and then adaptively tries to catch a witness (that is, a small connected
component) in one of the diamonds, using the lattice structure. (We could have partitioned
into squares again, but partitioning into diamonds makes the proof cleaner and saves a
constant factor in the analysis.)

1.1.2 The Lower Bound
We also prove the first nontrivial lower bound for testing connectedness of images. Note
that all nontrivial properties have query complexity Ω(1/ϵ), even for adaptive testers. In
particular, for connectedness, this is the number of queries needed to distinguish between the
white image and an image, where we color black a random subset of size ϵn2 of the set of
pixels with both coordinates divisible by 3. By standard arguments, it implies a lower bound
of Ω(1/ϵ). Some properties of images, such is being a halfplane, can be tested nonadaptively
(with 1-sided error) with O(1/ϵ) queries [5]. We show that it is impossible for connectedness.

▶ Theorem 1.3. Every nonadaptive (1-sided error) ϵ-tester for connectedness of images
must query Ω( 1

ϵ log 1
ϵ ) pixels (for some family of images).

Every 1-sided error tester must catch a witness of disconnectedness in order to reject.
This witness could include a connected component completely surrounded by white pixels.
The difficulty for proving hardness is that, unlike in the case of finding a witness for
disconnectedness of graphs, the algorithm does not have to read the whole connected
component. Instead, it is sufficient to find a closed white loop with a black pixel inside it
(and another black pixel outside it). As we discussed, it is sufficient for an algorithm to look
for witnesses inside relatively small squares (specifically, squares with side length O(1/ϵ)),
since adding a grid around such squares, as shown in Figure 2, would change O(ϵn2) pixels.
But no matter how you had a witness inside such a square, it can be easily captured with
O(1/ϵ) queries if the border of the square is white.

To overcome this difficulty, we consider a checkerboard-like pattern with white squares
replaced by many parallel lines, called bridges, with one white (disconnecting) pixel positioned
randomly on each bridge. See Figure 5. To catch a white border around a connected
component, a tester has to query all disconnecting pixels of at least one square. To make
this difficult, we hide the checkerboard pattern inside a randomly positioned interesting
window. The sizes of interesting windows and their positions are selected so that the tester
cannot effectively reuse queries needed to succeed in catching the disconnecting pixels in
each interesting window.

1.2 Other Related Work
In addition to [12], connectedness testing and approximating the number of connected
components in graphs in sublinear time was explored in [9, 8, 4]. Other property testing
tasks studied in the pixel model of images, the model considered in this paper, include
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testing whether an image is a half-plane [18], convexity [18, 6, 5], and image partitioning
properties [13]. Early implementations and applications to vision were provided in [13, 14,
15, 17]. Finally, general classes of matrix properties were investigated, including matrix-poset
properties [10], earthmover resilient properties [2], hereditary properties [1], and classes of
matrices that are free of specified patterns [3].

Testing connectedness has also been studied by Ron and Tsur [19] with a different input
representation suitable for testing sparse images.

2 Definitions and Notation

We use [0..n) to denote the set of integers {0, 1, . . . , n − 1} and [n] to denote {1, 2, . . . , n}.

2.1 Image Representation
We represent an image by an n × n binary matrix M of pixel values, where 0 denotes white
and 1 denotes black. The object is a subset of [0..n)2 corresponding to black pixels; namely,
{(i, j) | M [i, j] = 1}. The border of the image is the set {(i, j) ∈ [0..n)2 | i ∈ {0, n − 1} or j ∈
{0, n − 1}}.

2.2 Property Testing Definitions
A property P is a set of images. The set of connected images is denoted C. The absolute
distance from an image M to a property P, denoted Dist(M, P), is the smallest number of
pixels in M that need to be modified to get an image in P. The (relative) distance between
an n × n image M and a property P is dist(M, P) = Dist(M, P)/n2. We say that M is ϵ-far
from P if dist(M, P) ≥ ϵ; otherwise, M is ϵ-close to P.

3 Adaptive and Nonadaptive Property Testers for Connectedness

In this section, we present our testers for connectedness, proving Theorem 1.1. Both testers
use the same top-level procedure, described in Algorithm 1. First, it samples random pixels
to ensure that a black pixel is found. It will be used later to certify non-connectedness
by producing a black pixel and an isolated black component. Then Algorithm 1 considers
a logarithmic number of partitions of the image into subimages of the same size. For
each partition, it samples a carefully selected number of these subimages and tests them
for border connectedness (see Definition 1.2). This is where the two algorithms diverge.
The nonadaptive algorithm tests for border connectedness using the subroutine Exhaustive-
Square-Tester which queries all pixels in the sampled square and determines exactly if the
square is border connected. The adaptive algorithm uses subroutine Diagonal-Square-Tester
(Algorithm 2). If the top-level procedure finds a subimage that violates border connectedness
and a black pixel outside that subimage, it rejects; otherwise, it accepts.

To simplify the analysis of the algorithm, we assume1 that n − 1 and 1/ϵ are powers of 2.
Next, we define terminology used to describe the partitions considered by Algorithm 1.

1 This assumption can be made w.l.o.g. because if n ∈ (2i−1 + 1, 2i + 1) for some i , instead of the original
image M we can consider a (2i + 1) × (2i + 1) image M ′, which is equal to M on the corresponding
coordinates and has white pixels everywhere else. Let ϵ′ = ϵn2/(2i + 1)2. To ϵ-test M for connectedness,
it suffices to ϵ′-test M ′ for connectedness. The resulting tester for M has the desired query complexity
because ϵ′ = Θ(ϵ). If ϵ ∈ (1/2j , 1/2j−1) for some j, to ϵ-test a property P, it suffices to run an ϵ′′-test
for P with ϵ′′ = 1/2j < ϵ.
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Figure 3 An illustration to Definition 3.1: black lines consist of grid pixels; the 16 yellow ki × ki

squares represent squares of Si. One of the squares includes diagonal lattice pixels from Definition 3.6
that are used in Algorithm 2.

▶ Definition 3.1 (Grid pixels, squares of different levels, witnesses). For i ∈ [0..log 1
ϵ ), let

ki = 4
ϵ ·2−i −1. Call (x, y) a grid pixel of level i if (ki +1)|x or (ki +1)|y. For all coordinates

u, v, which are divisible by ki + 1, the ki × ki subimage that consists of pixels [ki]2 + (u, v) is
called a square of level i. The set of all squares of level i is denoted Si. Boundary pixels of a
square of level i are the pixels of the square which are adjacent to the grid pixels of level i. A
square of any level that violates property C ′ (see Definition 1.2) is called a witness.

Algorithm 1 ϵ-tester for connectedness.

input : parameter ϵ ∈ (0, 1) ; access to a n × n binary matrix M .

1 Query 4
ϵ pixels uniformly at random with replacement.

2 For i = 0 to log 1
ϵ

(a) Sample 2i+3 uniformly random squares of level i (see Definition 3.1) with replacement.
(b) For every sampled square s from Step 2a, let [ki]2 + (u, v) be the set of its pixels.

Run the border-connectedness subroutine with inputs i, u, v: if the tester is nonadaptive,
use Exhaustive-Square-Tester ; otherwise use Diagonal-Square-Tester (Algorithm 2).
If the subroutine rejects and Step 1 detected a black pixel outside s, reject.

3 Accept.

3.1 Effective Local Cost and the Structural Lemma
In this section, we prove our main structural lemma (Lemma 3.5) used in the analysis of
Algorithm 1. It relates the distance to connectedness to the properties of individual squares,
defined next.

▶ Definition 3.2 (Local cost and effective local cost). For a level i, consider a square
s ∈ Si. The local cost of s is lc(s) = Dist(s, C ′). The effective local cost of s is elc(s) =
min(2ki, lc(s)).

Next we state and prove two claims used in the proof of Lemma 3.5.
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▷ Claim 3.3. For any square s of level i ∈ [0..log 1
ϵ − 1), let ch(s) denote the set of its 4

children (i.e., squares of level i + 1 inside it). Then lc(s) ≤ elc(s) +
∑

q∈ch(s) lc(q).

Proof. If lc(s) ≤ 2ki then elc(s) = lc(s). Since all costs are nonnegative, the inequality in
Claim 3.3 becomes trivial.

Now assume that lc(s) > 2ki. Then elc(s) = 2ki. We can modify
∑

q∈ch(s) lc(q) pixels
in s so that all its children satisfy the property C ′. (Note that here C ′ is the set of ki × ki

(sub)images.) Then we can make black all pixels of s that partition it into its children, i.e.,
pixels {(x, y) | x = ki+1

2 or y = ki+1
2 }. There are at most 2ki such pixels, and after this

modification s will satisfy C ′. Hence, lc(s) ≤ elc(s) +
∑

q∈ch(s) lc(q). ◁

▷ Claim 3.4 (Distance to Border Connectedness). Let s be a k × k image. Then

Dist(s, C ′) ≤ k2

4 .

Proof. If s contains at most k2

4 black pixels, we can make all of them white, i.e., modify at
most k2

4 pixels and obtain an image that satisfies C ′. Now consider an image s with more
than k2

4 black pixels, i.e., with less than 3k2

4 white pixels. Partition all pixels of s into 3
groups such that group i ∈ {0, 1, 2} contains all pixels (x, y), where y ≡ i (mod 3). Making
all pixels of one group black produces an image that satisfies C ′. By averaging, at least one
group has less than k2

4 white pixels. Making all these white pixels black results in an image
that satisfies C ′. This completes the proof. ◁

▶ Lemma 3.5 (Structural Lemma). Let M be an n × n image that is ϵ-far from C. Then the
sum of effective local costs of all squares of all levels inside M is at least ϵn2

2 .

Proof. To obtain a connected image, we can make all the ϵn2

2 grid pixels of level 0 black and
modify pixels inside every square of S0 to ensure it satisfies the property C ′. Thus,

∑
s∈S0

lc(s) ≥ Dist(M, C) − ϵn2

2 ≥ ϵn2

2 .

Consequently, it suffices to show that
∑log 1

ϵ −1
i=0

∑
s∈Si

elc(s) ≥
∑

s∈S0
lc(s).

Let s be a square of level i. We use desc(s, j) to denote the set of all squares of level
j ≥ i inside s. (In particular, desc(s, i) contains only s.) We will prove by induction that for
any integer j ∈ [i, log 1

ϵ − 1),

lc(s) ≤
j∑

h=i

∑
q∈desc(s,h)

elc(q) +
∑

q∈desc(s,j+1)
lc(q). (1)

For j = i (base case), the inequality in (1) holds since it is equivalent to the statement in
Claim 3.3. Assume that (1) holds for j = m, that is,

lc(s) ≤
m∑

h=i

∑
q∈desc(s,h)

elc(q) +
∑

q∈desc(s,m+1)
lc(q).

We will prove (1) holds for j = m + 1. By Claim 3.3,

lc(q) ≤ elc(q) +
∑

f∈ch(q)
lc(f).
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Thus,∑
q∈desc(s,m+1)

lc(q) ≤
∑

q∈desc(s,m+1)
elc(q) +

∑
q∈desc(s,m+2)

lc(q)

and

lc(s) ≤
m∑

h=i

∑
q∈desc(s,h)

elc(q) +
∑

q∈desc(s,m+1)
lc(q)

≤
m+1∑
h=i

∑
q∈desc(s,h)

elc(q) +
∑

q∈desc(s,m+2)
lc(q),

completing the inductive argument.
By (1) applied with j = log 1

ϵ − 2, we get that for every square s of level i,

lc(s) ≤
log 1

ϵ −2∑
h=i

∑
q∈desc(s,h)

elc(q) +
∑

q∈desc(s,log 1
ϵ −1)

lc(q)

=
log 1

ϵ −1∑
h=i

∑
q∈desc(s,h)

elc(q), (2)

where the final equality holds because in every square of level i = log 1
ϵ − 1, we have ki = 7,

and consequently, by Claim 3.4, the local cost is at most 72

4 < 2 · 7, i.e., it is equal to the
effective local cost of that square.

Summing up (2) for all squares in S0, we get∑
s∈S0

lc(s) ≤
∑

s∈S0

∑log 1
ϵ −1

h=i

∑
q∈desc(s,h)

elc(q) =
∑log 1

ϵ −1

h=i

∑
s∈Si

elc(s),

where the last equality is obtained by switching the order of summations and rearranging
the second summation in terms of levels. ◀

3.2 Testing Border-Connectedness
In this section, we state and analyze our adaptive border connectedness subroutine after
defining the concepts used in it. We state the guarantees of both border connectedness
subroutines in Lemma 3.7.

For the adaptive subroutine, we partition the square into diamonds and fences surrounding
them, as described in Definition 3.6. The subroutine queries all pixels on the fences and
categorizes diamonds into those whose black pixels are potentially connected to the border
(set B in Algorithm 2) and those whose black pixels are definitely not (set A in Algorithm 2).
Then it tries to find a black pixel in a diamond from set A or (using BFS) an isolated black
component in diamonds from set B. Observe that either of the two provides evidence that
the square is not border-connected.

▶ Definition 3.6 (Diagonal lattice pixels, diamonds and fences). For a fixed value of i, consider
a square s in Si. Let mi be the largest odd integer less than or equal to ⌈

√
ki/ log ki⌉.

Diagonal lattice pixels of the square is the set of pixels L = {(x, y) ∈ s | mi|(x + y) or
mi|(x − y)}. Let D be a ki × ki image whose pixels with coordinates from [ki]2 − L are black
and the remaining pixels are white. A set of pixels of the square whose corresponding pixels
in D form a connected component is called a diamond of the square. A set of all diagonal
lattice pixels that have some neighbouring pixel(s) from a particular diamond is called the
fence of that diamond.
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Figure 4 An example of execution of Algorithm 2. Black lines represent lattice pixels. The blue
diamonds are included in B because they are adjacent to the border of the square. The purple dots
represent black pixels in the lattice. The green diamonds are added to B during the BFS because
their fences contain black pixels. The white diamonds remain in A.

Note that lattice pixels are not part of any diamond. Moreover, some diamonds are partial
(those that have pixels from the border of the square.)

Algorithm 2 Border-connectedness subroutine Diagonal-Square-Tester.

input : parameters i, u and v; access to an n × n matrix M .

Let s be a square of level i that consists of pixels [ki]2 + (u, v) and mi be the largest odd
integer less than or equal to ⌈

√
ki/ log ki⌉.

1 Query all the diagonal lattice pixels of s (see Definition 3.6).
2 Initialize B to be the set of all diamonds of s that contain a border pixel of s. Initialize

A to be the set of the remaining diamonds of s.

3 While ∃d1 ∈ B and ∃d2 ∈ A such that d1 and d2 have a black pixel in the common
portion of their fences, move d2 from A to B.

4 Query kimi pixels in s uniformly at random with replacement.
(a) If a black pixel from a diamond in A or its fence is discovered, reject.
(b) If a black pixel from a diamond in B is discovered, pick a natural number x ∈ [k2

i ] from
the distribution with the probability mass function f(j) = 1

j(j+1) for all j ∈ [k2
i − 1]

and f(j) = 1
j for j = k2

i . (Observe that Pr(x ≥ j) = 1
j for all j ∈ [k2

i ].) Starting from
the black pixel, perform a BFS of its connected component. If the search halted after
discovering at most x black pixels, none of which are on the border of s, reject. Else (if
x + 1 black pixels were found for this component or a black pixel on the border of
square s is reached) stop the search and proceed with the remaining queried pixels.

5 Accept.

Recall from Definition 3.1 that a witness is a square of one of the levels that violates
border-connectedness.

▶ Lemma 3.7. Fix level i ∈ [0..log 1
ϵ ). Let s ∈ Si be a witness that consists of pixels

[ki]2 + (u, v). A border-connectedness subroutine of Algorithm 1 rejects s with probability
at least elc(s)·α

2ki
, where α = 1 for Exhaustive-Square-Tester and α = 1 − e−1 for Diagonal-

Square-Tester.

Proof. Exhaustive-Square-Tester determines that s is a witness with probability 1 ≥ elc(s)
2ki

· 1.
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Now we prove the statement for Diagonal-Square-Tester. Let A and B be defined as in
Algorithm 2 after Step 3. Let a be the number of black pixels in all the diamonds of the
set A and on the fences of those diamonds. Let b be the number of connected components
of the image graph that are formed by black pixels in all the diamonds in the set B and in
their fences and that contain no pixels on the border of s.

Next, we prove that

bmi + a ≥ lc(s) ≥ elc(s). (3)

We claim that we can connect all b connected components to each other and to the border
of the square by modifying at most bmi pixels. To see this, notice that any two black pixels
in the same diamond can be connected to each other by changing less than mi pixels (by
taking any Manhattan-distance shortest path between the two pixels and making it all black).
To prove the claim, we can connect the b connected components to the border of the square
in the order their diamonds were added to B by the algorithm. The initial diamonds placed
in B have at least one pixel on the border of the square, so their connected components
can be directly connected to the border (using at most mi pixels per connected component).
Now assume that we already connected to the border all components that have pixels in the
diamonds added to B so far. When the algorithm moves some diamond d2 from A to B, it
is done because there is already a diamond d1 in B such that d1 and d2 have a black pixel β

in the common portion of their fences. Then β must be already connected to the border. If
there are any connected components in d2 that are not connected to the border yet, we can
fix that by connecting them to β (using at most mi pixels per connected component). We
proceed like this until all b connected components of the diamonds that were added to B by
the algorithm are connected to the border of the square. At this point, we have changed at
most bmi pixels.

Recall that we have a black pixels in all the diamonds of the set A and on the fences of
those diamonds. We make all of them white. After these at most bmi + a modifications, the
square s satisfies C ′. Thus, Equation (3) holds.

Observe that for x ∈ [0, 1],

x ≥ 1 − e−x ≥ x(1 − e−1) > x/2. (4)

By (4), the probability that a specific pixel from s is selected by Algorithm 2 in Item b is

1 − (1 − 1/k2
i )kimi ≥ 1 − e

− kimi
k2

i >
mi

2ki
.

Consider one of the b connected components defined above. Let p be the number of pixels in
it. Diagonal-Square-Tester finds this component completely if in Step 4b of the subroutine,
one of the p pixels from the component is selected and x ≥ p is chosen. This happens with
probability at least 1

p · mi

2ki
· p = mi

2ki
. The subroutine determines that s is a witness if it finds

one of the b connected components or one of the a black pixels considered above. Thus, by
(3) and (4), the probability that Algorithm 2 determines that square s is a witness is at least

1 −
(

1 − mi

2ki

)a+b

≥ 1 − e
− mi(a+b)

2ki ≥ 1 − e
− bmi+a

2ki ≥ 1 − e
− elc(s)

2ki ≥ elc(s)(1 − e−1)
2ki

,

completing the proof of Lemma 3.7. ◀
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3.3 Proof of Theorem 1.1
In this section, we use Lemmas 3.5 and 3.7 to complete the analysis of our connectedness
tester and the proof of Theorem 1.1.

Algorithm 1 always accepts connected images, since it sees no violation of C ′ in Step 2b.
Consider an image M that is ϵ-far from connectedness. For every i ∈ [0..log 1

ϵ ), there are
n2

k2
i

squares in Si. Let Wi be the set of all witnesses in Si. Let s be a square in Wi. The
probability that Algorithm 1 chooses s in Step 2a is

1 −
(

1 − k2
i

n2

)2i+3

≥ 1 − e
k2

i
·2i+3

n2 >
k2

i · 2i+2

n2 ,

where the inequalities follow from (4). By Lemma 3.7, the probability that the algorithm
rejects s after choosing it is at least α · elc(s)/2ki. Thus, the probability that the algorithm
samples s in Step 2a and then rejects in Step 2b is at least

2i+2ki · α · elc(s)
2n2 ≥ 6α · elc(s)

ϵn2 .

Thus, the probability that Algorithm 1 does not catch s ∈ Wi as a witness is at most
1 − 6α·elc(s)

ϵn2 ≤ e− 6α·elc(s)
ϵn2 . The probability that the algorithm does not catch any witness of

Wi is at most

Pi = e
− 6α

ϵn2 ·
∑

s∈Wi
elc(s)

.

Observe that elc(s) = 0, for s ∈ Si − Wi. Thus, by Lemma 3.5,

∑
s∈Wi

elc(s) =
∑
s∈Si

elc(s) ≥ ϵn2

2 .

By a union bound over all levels, the probability that Algorithm 1 fails to catch any witness
is at most∑

i∈{0}∪[log(1/ϵ)]
Pi ≤ e− 6α

ϵn2 · ϵn2
2 = e−3α.

Therefore, the probability that the algorithm detects at least one witness is at least 1 − e−3α.
Since at least an ϵ fraction of pixels in M are black and every square of every level contains
at most 16

ϵ2 < ϵn2

2 pixels, the probability that Algorithm 1 detects a black pixel outside of
that witness in Step 1 is at least 1 − (1 − ϵ

2 ) 4
ϵ > 1 − e−2. Thus, for both values of α, the

probability that Algorithm 1 rejects M is at least

(1 − e−2)(1 − e−3α) ≥ 2/3.

3.3.1 Query Complexity
We prove that Algorithm 1 has query complexity O( 1

ϵ2 ) if it uses Exhaustive-Square-Tester
as a subroutine. Algorithm 1 samples 2i+1 squares of level i ∈ {0} ∪ [log 1

ϵ ] and, for each
sampled square, it calls Exhaustive-Square-Tester which makes ( 4

ϵ ·2−i −1)( 4
ϵ ·2−i −1) < 16

ϵ222i

queries in each sampled square of level i. Thus, the query complexity of Algorithm 1 is∑log 1
ϵ

i=0
2i+1 · 16

ϵ222i
<
∑log 1

ϵ

i=0

32
ϵ22i

= O

(
1
ϵ2

)
.
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When Algorithm 1 uses Diagonal-Square-Tester, it queries at most 2k2
i

mi
diagonal lattice pixels

inside each square of level i (in Step 1 of the subroutine). After that, in Step 4 of the subroutine,
it selects kimi pixels and a number x ∈ [k2

i ] from the specified distribution and then makes at
most 4x queries for each selected pixel. Observe that E(x) = O(log ki). Thus, the expected
number of queries inside a square of level i is at most 2k2

i

mi
+kimi ·4·O(log ki) = O(k3/2

i

√
log ki).

The expected total number of queries is
∑log(1/ϵ)

i=0 O(k3/2
i

√
log ki) · 2i+1 = O(ϵ−3/2

√
log 1

ϵ ).
By standard arguments, the adaptive version of Algorithm 1 can be converted to an

algorithm that makes asymptotically the same number of queries in the worst case, and has
the same accuracy guarantee and running time.

3.3.2 Running Time

The time complexity of Step 1a and Step 2 of Algorithm 1 is O( 1
ϵ ). Therefore, the total time

complexity of Algorithm 1 is O( 1
ϵ )+time complexity of Step 1b. In Step 1b, Algorithm 1

uses either Exhaustive-Square-Tester or Diagonal-Square-Tester. Both of them perform a
breadth first search within each sampled square. Breadth first search is linear in the sum of
the number of edges and the number of nodes of the graph. Every pixel of a sampled square
has at most 4 neighboring pixels. Thus, the number of edges in the image graph of every
sampled square is linear in the number of pixels inside it and the time complexity of Step 1b
is linear in the number of all queried pixels, i.e., O( 1

ϵ2 ) for Exhaustive-Square-Tester and
O(ϵ−3/2

√
log(1/ϵ)) for Diagonal-Square-Tester. This completes the proof of the theorem.

4 Lower Bound for Testing Connectedness

In this section, we give a lower bound on the query complexity of testing connectedness,
proving Theorem 1.3. We use the standard set up of constructing a distribution N on ϵ-far
inputs such that every deterministic nonadaptive algorithm that makes q ≤ c

ϵ log 1
ϵ queries

(for some constant c) has probability of error greater than 1/3. By Yao’s Principle [21], it is
sufficient to prove Theorem 1.3.

4.1 Construction of N

Figure 5 Our construction of N : an interesting window together with a column of black pixels
immediately to the right of it. All other pixels in the constructed image are white.
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66:12 Testing Connectedness of Images

The construction is parameterized by n and the proximity parameter ϵ. It gives a
distribution supported on (n + 1) × (n + 1) images that are ϵ-far from connectedness. We
assume that ϵ is sufficiently small and that n > 1

16 ( 1
ϵ )5/8. We also assume that n is a power

of 2 and 1/ϵ is an even power of 2 and that both of them are sufficiently large, so that all
indices in our construction are integer. (See also Footnote 1 for the discussion of integrality
issues.) Our construction starts by selecting a level. The indices of the levels range from
the low index ℓ = 1

8 log 1
ϵ to the high index h = 1

4 log 1
ϵ . For all i ∈ {ℓ, ℓ + 1, . . . , h}, define

ai = 2i and ni = 16 ·
√

ϵ · n · ai =
√

ϵ · n · 2i+4. First, we pick a uniformly random integer
i ∈ {ℓ, ℓ + 1, . . . , h}. Consider the n × n image resulting from removing the last row and
the last column of the (n + 1) × (n + 1) image. We partition this n × n image into ( n

ni
)2

squares with side length ni called windows of level i; that is, each window of level i is an
ni × ni subimage. We pick one of the windows of level i uniformly at random and call it
an interesting window. We make the ni pixels immediately to the right of the interesting
window black, representing a vertical black line segment, and all other pixels outside of the
interesting window white.

Now we describe how to color the interesting window. See Figure 5 for an illustration. We
fill the interesting window with a checkerboard pattern of squares of size ai × ai pixels. Inside
each white checkerboard square that is not in the first column, number the rows starting
from 0 and make every odd row, excluding the last, fully black, except for one randomly
selected pixel for each row. The resulting ai

2 − 1 black lines, each containing one white pixel,
are called bridges. The white pixels on the bridges are called disconnecting pixels. We refer
to each checkerboard square with the bridges as a bridge square.

The intuition behind the construction is the following. Each black checkerboard square
is in its own connected component. However, to “catch” this connected component as a
witness of disconnectedness, a tester would have to query all the disconnecting pixels in the
bridge squares to the left and/or to the right of the black square. Since the positions of
the disconnecting pixels are random, it would have to query Ω(a2

i ) pixels in at least one
relevant bridge square. Since the windows are selected at random, the algorithm would
have to do it for many windows of each level. The key feature of our construction is that
interesting windows of different levels are either disjoint or contained in one another, so
potential witnesses for one window can’t significantly help with another.

4.2 Analysis of the Construction
We start by showing that all images in the support of N are far from connected.

▶ Lemma 4.1. Every image in the support of N is ϵ-far from connected.

Proof. There are (ni/ai)2

2 = 128ϵn2 black regions, each one in a separate connected component
except for the last ni/ai

2 = 8
√

ϵ · n which are connected by the vertical line. Thus, the image
graph has at least 128 · ϵn2 − 8

√
ϵ · n connected components. Changing one pixel from white

to black corresponds to adding a node of degree at most 4 to the image graph. This decreases
the number of connected components by at most 3. Removing a pixel decreases the number
of connected components by at most 1. Consequently, overall, we need to change at least
1
3 (128ϵn2 − 8

√
ϵ · n) pixels. This is at least ϵn2 for sufficiently large n; in particular, it holds

for n > 1
16 ( 1

ϵ )5/8, which was our assumption in the beginning of Section 4.1. ◀

Next we show that if the number of queried pixels is small, then every 1-sided error determ-
inistic algorithm detects a violation of connectedness in an image distributed according to N
with insufficiently small probability.
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▶ Lemma 4.2. Let M be an image distributed according to N . Fix a deterministic nonadaptive
1-sided error algorithm A for testing connectedness of images. Let Q be the set of pixels
queried by A and let q = |Q|. For sufficiently small constant c > 0, if q ≤ c

ϵ log 1
ϵ , then A

detects a violation of connectedness in M with probability less than 1/3.

Proof. We define an event E that must happen in order for the algorithm A to succeed in
finding a witness of disconnectedness in an image distributed according to N . Then we show
that the probability of E is too small. To define E, we define a special group of pixels.

▶ Definition 4.3 (A revealing set and event E). Let M be an image distributed according
to N . The set of all disconnecting pixels from one bridge square of M is called a revealing
set for the window containing the bridge square. Let E denote the event that Q contains a
revealing set for the interesting window of M .

Since the tester A has 1-sided error, it can reject only if it finds a violation of connectedness.
In particular, for an image distributed according to N , in order to succeed, it must find a
revealing set for the interesting window of the image.

▷ Claim 4.4. If the number of queries q ≤ c
ϵ log 1

ϵ for sufficiently small constant c, then
Pr[E] < 1/3.

Proof. An important feature of our construction is that the largest bridge square is smaller
than the smallest window. Indeed, the side length of the largest bridge square is ah = ( 1

ϵ )1/4,
whereas the side length of the smallest window is nℓ = 16

√
ϵ · ( 1

ϵ )1/8n = 16ϵ3/8n. Thus,
ah < nℓ as long as n > 1

16 ( 1
ϵ )5/8, as we assumed in the beginning of Section 4.1. The

consequence of this feature and the fact that both ai’s and ni’s are powers of 2 is that each
bridge square of level i is contained in one window of level j for all levels i and j.

A (potential) bridge square of level i ∈ {ℓ, ℓ + 1, . . . , h} is covered if Q contains at least
a2

i /8 pixels from that square. A window of level i is good if it contains a covered bridge
square of level j ≥ i; otherwise, it is bad. For each good window w, we pick a covered bridge
square of the highest level contained in w and call it the covered bridge square associated
with w. All windows of the same level are associated with different covered bridge squares,
because each bridge square is contained in exactly one window of a given level.

Let G be the event that the interesting window in M is good. Then, by the law of total
probability,

Pr[E] = Pr[E | G] · Pr[G] + Pr[E | G] · Pr[G] ≤ Pr[G] + Pr[E | G].

Next, we analyze event G. For every level i ∈ {ℓ, ℓ + 1, . . . , h}, let gi be the number of good
windows of level i associated with covered bridge squares of level i and let ti be the total
number of good windows of level i. Then gh = th and gi = ti − ti+1 for all i ∈ [ℓ, h − 1].
Observe that, for each level i ∈ [ℓ, h], the covered bridge squares associated with the good
windows of level i are distinct. By definition, each of them contributes at least a2

i /8 towards
Q. Therefore, the number of all pixels in Q satisfies

q ≥
h∑

i=ℓ

a2
i gi

8 = 1
8

(
h−1∑
i=ℓ

a2
i (ti − ti+1) + a2

hth

)
= 1

8

(
h−1∑
i=ℓ

4i(ti − ti+1) + 4hth

)

≥ 3
32

h∑
i=ℓ

(4iti). (5)
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Recall that q ≤ c
ϵ log 1

ϵ , that the total number of levels is h − ℓ + 1 = Θ(log 1
ϵ ), and that the

number of all windows for each level i is ( n
ni

)2 = Θ( 1
4iϵ ). Thus,

Pr[G] = 1
h − ℓ + 1

h∑
i=ℓ

ti

(n/ni)2 = 1
Θ(log( 1

ϵ ))

h∑
i=ℓ

(ti · Θ(4iϵ)) = 1
Θ( 1

ϵ log( 1
ϵ ))

h∑
i=ℓ

(4iti)

<
q

Θ( 1
ϵ log( 1

ϵ ))
< 1/6,

where Equation (5) was used to obtain the first inequality, and the last inequality holds for
sufficiently small constant c.

It remains to analyze Pr[E | G], that is, the probability of E, given that the interesting
window is bad. Consider a bad window of level i ∈ {ℓ, . . . , h}. It has at most q bridge squares
that contain a queried pixel. Consider one of such bridge squares. Recall that this bridge
square has ai/2 − 1 bridges. Number these bridges using integers 1, 2, . . . , ai/2 − 1. Let xk

denote the number of pixels of Q on the bridge number k ∈ [ai/2 − 1] of the bridge square.
Then the probability that this bridge square has a revealing set for the window is

ai/2−1∏
k=1

xk

ai
≤

 1
ai/2 − 1 ·

ai/2−1∑
k=1

xk

ai

ai/2−1

≤
(

ai/8
ai/2 − 1

)ai/2−1
≤
(

1
2

)ai/2−1

≤ 2(
√

2)− 8
√

1
ϵ ,

where the first inequality follows from the inequality between geometric and arithmetic
means, the second inequality holds since

∑ai/2
k=1 xk < a2

i /8, and the third inequality holds
since ϵ is sufficiently small and, consequently, we can assume that the minimum value of ai

is at least 4. By a union bound over all bridge squares in this window that contain a query,

Pr[E | G] ≤ 2(
√

2)− 8
√

1
ϵ · q ≤ 2(

√
2)− 8

√
1
ϵ · c

ϵ
· log 1

ϵ
<

1
6 ,

for sufficiently small ϵ and constant c.
Thus, Pr[E] ≤ Pr[G] + Pr[E | G] < 1

6 + 1
6 = 1

3 , as claimed. This completes the proof of
Claim 4.4. ◁

This concludes the proof of Lemma 4.2. ◀

Theorem 1.3 follows from Lemma 4.2.
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