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Abstract
Fairness considerations have motivated new clustering problems and algorithms in recent years. In
this paper we consider the Priority Matroid Median problem which generalizes the Priority k-Median
problem that has recently been studied. The input consists of a set of facilities F and a set of clients
C that lie in a metric space (F ∪ C, d), and a matroid M = (F , I) over the facilities. In addition,
each client j has a specified radius rj ≥ 0 and each facility i ∈ F has an opening cost fi > 0. The
goal is to choose a subset S ⊆ F of facilities to minimize

∑
i∈F fi +

∑
j∈C d(j, S) subject to two

constraints: (i) S is an independent set in M (that is S ∈ I) and (ii) for each client j, its distance to
an open facility is at most rj (that is, d(j, S) ≤ rj). For this problem we describe the first bicriteria
(c1, c2) approximations for fixed constants c1, c2: the radius constraints of the clients are violated by
at most a factor of c1 and the objective cost is at most c2 times the optimum cost. We also improve
the previously known bicriteria approximation for the uniform radius setting (rj := L ∀j ∈ C).
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1 Introduction

Clustering and facility-location problems are widely studied in areas such as machine learning,
operations research, and algorithm design. Among these, center-based clustering problems in
metric spaces form a central topic and will be our focus. The input for these problems is a
set of clients C and a set of facilities F from a metric space (F ∪ C, d). The goal is to select
a subset of facilities S ⊆ F to open, subject to various constraints, so as to minimize an
objective that depends on the distances of the clients to the chosen centers; we use d(j, S) to
denote the quantity mini∈S d(j, i) which is the distance from j to S. Typical objectives are
of the form (

∑
j∈C d(j, S)p)1/p for some parameter p (the ℓp norm of the distances). When

the constraint on facilities is that at most k can be chosen (that is, |S| ≤ k), we obtain
several standard and well-studied problems such as k-Center (p =∞), k-Median (p = 1), and
k-Means (p = 2) problems. These problems are extensively studied from many perspectives
[15, 25, 10, 2, 5, 19, 16]. These are also well-studied in the geometric setting when F is the
continuous space Rℓ for some finite dimension ℓ. In this paper we restrict our attention to
the discrete setting, and in particular, to the median objective (p = 1).

The Matroid Median problem is a generalization of the k-Median clustering problem.
Here, the cardinality constraint k on S is replaced by specifying a matroid M = (F , I) on
the facility set F and requiring that S ∈ I (we refer a reader unfamiliar with matroids to
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7:2 Bicriteria Approximation Algorithms for Priority Matroid Median

Section 2 formal definitions and details). The k-Median clustering problem can be written as
an instance of Matroid Median where M is the uniform matroid of rank k. The Matroid
Median problem was first introduced by Krishnaswamy et al. [21] as a generalization of
k-Median and Red-Blue Median [14].

Motivated by the versatility of the Matroid Median problem, and several other consid-
erations that we will discuss shortly, in this paper we study the Priority Matroid Median
problem (PMatMed). Formally, in PMatMed we are given a set of clients C and facilities
F from a metric space (F ∪ C, d) where each facility i ∈ F has a facility opening cost fi,
and each client j ∈ C has a radius value rj . We are also given a matroid M = (F , I) over
the facilities. The goal is to select a subset of facilities S that is an independent set of the
matroid M where the objective

∑
j∈C d(j, S) +

∑
i∈S fi (i.e. the cost induced by selected

facilities) is minimized, and the radius constraint d(j, S) ≤ rj is satisfied for all clients j ∈ C.
Most of the center-based clustering problems are NP-Hard even in very restricted settings.

We focus on polynomial-time approximation algorithms which have an extensive history in
center-based clustering. Moreover, due to the nature of the constraints in PMatMed, we
can only obtain bicriteria approximation guarantees that violate both the objective and the
radius constraints. An (α, β)-approximation algorithm for PMatMed is a polynomial-time
algorithm that either correctly states that no feasible solution is possible or outputs a set
of facilities S ∈ I (hence satisfies the matroid constraint) such that (i) d(j, S) ≤ αrj for all
clients j ∈ C and (ii) the cost objective value of S is at most β ·OPT where OPT is the cost
of an optimum solution.

1.1 Motivation, Applications to Fair Clustering, and Related Work
Our study of PMatMed is motivated, at a high-level, by two considerations. First, there has
been past work that combines the k-Median objective with that of the k-Center objective.
Alamdari and Shmoys [3] considered the k-Median problem with the additional constraint
that each client is served within a given uniform radius L and obtained a (4, 8)-approximation.
Their work is partially motivated by the ordered median problem [24, 4, 8]. Kamiyama [18]
studied a generalization of this uniform radius requirement on clients to the setting of Matroid
Median and derived a (11, 16)-approximation algorithm. Note that this is a special case of
PMatMed where rj = L for each j. We call this the UniPMatMed problem.

Another motivation for studying PMatMed is the recent interest in fair clustering in the
broader context of algorithmic fairness. The goal is to capture and address social concerns
in applications that rely on clustering procedures and algorithms. Various notions of fair
clustering have been proposed. Chierchetti et al. [11] formulated the Fair k-Center problem:
clients belong to one or more groups based on various attributes. The objective is to return
a clustering of points where each chosen center services a representative number of clients
from every group. This notion has since been classified as one that seeks to achieve group
fairness. Several other group fair clustering problems have since been introduced and studied
[7, 20, 1, 13]. Subsequently, clustering formulations that aimed to encapsulate individual
fairness were explored which seek to ensure that each individual is treated fairly. One such
formulation was introduced by Jung et al. [17]. This formulation is related to the well-studied
k-Center clustering and is the following. Given n points in a metric space representing users,
and an integer k, find a set of k centers S such that d(j, S) is at most rj where rj denotes
the smallest radius around j that contains n/k points. Such a clustering is fair to individual
users since no user will be forced to travel outside their neighborhood. Jung et al. [17] showed
that the problem is NP-Hard and described a simple greedy algorithm that finds k centers
S such that d(j, S) ≤ 2rj for all j. Jung et al.’s model can be related to an earlier model
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of Plesník who considered the Weighted k-Center problem [25]. In Plesník’s version, each
user j specifies an arbitrary radius rj > 0 and the goal is to find k centers S to serve each
user within their radius requirement. Plesník showed that a simple variant of a well-known
algorithm for k-Center due to Hochbaum and Shmoys [15] yields a 2-approximation. Plesník’s
problem has been relabeled as the Priority k-Center problem in recent work [6].

Priority clustering. The model of Jung et al. motivated several variations and generalizations
of the Priority k-Center problem. Bajpai et al. [6] defined, and provided constant factor
approximations, for Priority k-Supplier (where facilities and clients are considered to be
disjoint sets), as well as Priority Matroid and Knapsack Center, where facilities are subject
to matroid and knapsack constraints, respectively. Mahabadi and Vakilian [23] explored and
developed approximation algorithms for Priority k-Median and Priority k-Means problems;
their motivation was to combine the individual fairness requirements in terms of radii
proposed by Jung et al., with the traditional objectives of clustering. They obtained bicriteria
approximation algorithms via local-search. The approximation bounds were later improved
via LP-based techniques. Chakrabarty and Negahbani [9] obtained an (8, 8)-approximation for
Priority k-Median and a (8, 16)-approximation for Priority k-Means. Vakilian and Yalcner [28]
further improved these results via a nice black box reduction of Priority k-Median to the
Matroid Median problem! Via their reduction they obtained (3, 7.081 + ϵ)-approximation
for the Priority k-Median problem (relying on the algorithm for Matroid Median from [22]).
They extended the algorithmic ideas from Matroid Median to handle ℓp norm objectives
and were thus able to derive algorithms for Priority k-Means as well. The advantage of the
reduction to Matroid Median is the guarantee of 3 on the radius dilation. This is optimal
even for the k-Supplier problem [15].

1.2 Results and Technical Contribution
In this paper, we define the PMatMed problem and derive the first (c1, c2)-bicriteria approxi-
mation algorithms where c1, c2 are both constants. There are different trade-offs between
c1 and c2 that we can achieve. Since PMatMed simultaneously generalizes k-Supplier and
Matroid Median, the best c1 we can hope for is 3, and the best c2 that we can hope for
is ≈ 8, which comes from current algorithms for Matroid Median [22, 27]. We prove the
following theorem which captures two results, one optimizing for the radius guarantee, and
the other for the cost guarantee.

▶ Theorem 1. There is a (21, 12)-approximation algorithm for the Priority Matroid Median
Problem. There is also a (36, 8)-approximation algorithm.

As we previously mentioned, [28], via their black box reduction to Matroid Median
achieve a (3, α) approximation for Priority k-Median where α is the best approximation for
Matroid Median. We conjecture that there is a (3, O(1))-approximation for PMatMed. This
is interesting and open even for the special case with uniform radii under partition matroid
constraint.

Our second set of results are for UniPMatMed. Recall that [18] obtained a (11, 16)-
approximation for this problem. We prove the following theorem that strictly dominates the
bound from [18]. In addition, we show that a tighter radius guarantee is achievable.

▶ Theorem 2. There is a (9, 8)-approximation algorithm for the Uniform Priority Matroid
Median Problem. For any fixed ϵ > 0 there is a (5 + 8ϵ, 4 + 2

ϵ )-approximation.

APPROX/RANDOM 2023
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▶ Remark 3. We believe that we can extend the ideas from this paper to obtain bicriteria
approximation algorithms for Priority Matroid objectives that involve the ℓp norm of distances
(Priority Matroid Median is when ℓp := 1). Such an approximation algorithm would result in
a radius factor dependent on p. [28] already showed that Matroid Median can be extended
to the p-norm objective.

Now, we give a brief overview of our technical approach. The reader may wonder about
the reduction of Priority k-Median to Matroid Median [28]. Can we make use of this for
PMatMed? Indeed one can employ the same reduction, however, the resulting instance is
no longer an instance of Matroid Median but an instance of Matroid Intersection Median
which is inapproximable [27]. The reduction works in the special case of Priority k-Median
since the intersection of a matroid with a cardinality constraint yields another matroid. We
therefore address PMatMed directly. Our approximation algorithms are based on a natural
LP relaxation. It is not surprising that we need to build upon the techniques for Matroid
Median since it is a special case. We build extensively on the LP-based 8-approximation for
Matroid Median given by Swamy [27] which improved the first constant factor approximation
algorithm of Krishnaswamy et al. [21]. Although the Matroid Median approximation has
been improved to 7.081 [22], the approach in [22] seems more difficult to adapt to PMatMed.

Our main technical contribution is to handle the non-uniform radii constraints imposed in
PMatMed in the overall approach for Matroid Median. We note that the rounding algorithms
for Matroid Median are quite complex, and involve several non-trivial stages: filtering, finding
half integral solutions via an auxiliary polytope, and finally rounding to an integral solution
via matroid intersection [21, 27, 22]. Kamiyama adapted the ideas in [21] to UniPMatMed
and his work involves four stages of reassigments that are difficult to follow. The non-uniform
radii case introduces additional complexity. We explain the differences between the uniform
radii case and the non-uniform radii case briefly. The LP relaxation opens fractional facilities
and assigns each client j to fractionally open facilities. In the LP for PMatMed we write
a natural constraint that j cannot be assigned to any facility i where d(i, j) > rj . Let C̄j

denote the distance paid by j in the LP solution. The preceding constraint ensures that
C̄j ≤ rj . For UniPMatMed, rj = L for all j ∈ C. LP-based approximation algorithms for
k-Median use filtering and other rounding steps by sorting clients in increasing order of
C̄j values since they are directly relevant to the objective. When one considers uniform
radius constraint, one can still effectively work with C̄j values since we have C̄j ≤ L for all j.
However, when clients have non-uniform radii we can have the following situation; there can
be clients j and k such that C̄j ≪ C̄k but rj ≫ rk. Thus the radius requirements may not
correspond to the fractional distances paid in the LP.

We handle the above mentioned complexity via two careful adaptations to Matroid Median
rounding. One of these changes occurs in the second stage of Matroid Median rounding,
where we construct a half-integral solution using an auxiliary polytope. We must take care to
ensure that the half-integral solution constructed in this stage is one that will not violate the
radius requirements for clients. To do so, we create additional constraints in the auxiliary
polytope. These constraints ensure the half-integral solution satisfies certain properties that
are crucial to obtain a constant factor radius guarantee.

The second change occurs in the first filtering stage and plays a role not only for adapting
Matroid Median to PMatMed, but also for each of our other results. We first provide an
abstract way to describe the filtering stage that allows us to specificy the order in which
points are considered, and the distances each point can travel to be reassigned. For our first
PMatMed result, the ordering and distances are based on both C̄j and rj . For UniPMatMed,
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we slightly alter the ordering and distances (using the above observations and some ideas
from [18]). Our remaining results will also involve changes to the filtering stage. This seems
to indicate that filtering plays a large role in the cost and radius trade-off.

Organization. In Section 2, we discuss preliminaries. In particular, we provide definitions
and relevant information regarding matroids, define PMatMed and provide its LP relaxation,
and discuss the generalized filtering procedure we will use in our algorithm. In Section 3
we present our algorithm for PMatMed and show that it can be used to obtain (21, 12)-
approximate solutions for instances of PMatMed. In Section 4, we describe how to modify our
algorithm for PMatMed to obtain a (9, 8)-approximate solution for instances of UniPMatMed,
and the remaining results. We also provide some details for the remaining results, and
(36, 8)-approximate solutions for instances of PMatMed. We defer the proofs of our results to
the Appendix.

2 Preliminaries

2.1 Matroids, Matroid Intersection and Polyhedral Results
We assume some basic knowledge about matroids, but provide a few relevant definitions for
sake of completeness; we refer the reader to [26] for more details. A matroid M = (S, I)
consists of a finite ground set S and a collection of independent sets I ⊆ 2S that satisfy
the following axioms: (i) ∅ ∈ I (non-emptiness of I) (ii) A ∈ I and B ⊂ A implies B ∈ I
(downward closure) and (iii) A, B ∈ I with |A| < |B| implies there is i ∈ B \ A such that
A ∪ {i} ∈ I (exchange property). The rank function of a matroid, rM : 2S → Z≥0 assigns to
each X ⊆ S the cardinality of a maximum independent subset in X. It is known that rM is
a monotone submodular function. The matroid polytope for a matroid M, denoted by PM
is the convex hull of the characteristic vectors of the independent sets of M. This can be
characterized via the rank function:

PM = {v ∈ RS | ∀X ⊆ S : v(X) ≤ rM (X) and ∀e ∈ S : v(e) ≥ 0}.

Assuming an independence oracle1 or a rank function oracle for M, one can optimize and
separate over PM in polynomial time. A partition matroid M = (S, I) is a special type of
matroid that is defined via a partition S1, S2, . . . , Sh of S and non-negative integers k1, . . . , kh.
A set X ⊆ S is independent, that is X ∈ I, iff |X ∩Si| ≤ ki for 1 ≤ i ≤ h. A simple partition
matroid is one in which ki = 1 for each i.

Given two matroids M = (S, I1) and N = (S, I2), on the same ground set, their
intersection is defined as M∩N := (S, I1 ∩ I2) consisting of sets that are independent in
both M and N . Computing a maximum weight independent set in the intersection can
be done efficiently. The convex hull of the characteristic vectors of the independent sets of
M∩N , denoted by PM,N , is simply the intersection of PM and PN ! That is

PM,N = {v ∈ RS
+ | ∀X ⊆ S : v(X) ≤ rM (X), v(X) ≤ rN (X)}.

Thus, one can optimize over PM,N if one has independence or rank oracles for M and N .
We will need these results later in the paper. See [26] for these classical results.

The input matroid M for Priority Matroid Median has ground set F i.e. the set of
facilities. Thus, an integer point of the polytope v∗ ∈ PM will represent a subset of facilities
that is an independent set of the matroid M.

1 An independence oracle returns whether A ∈ I for a given A ⊆ S.

APPROX/RANDOM 2023
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2.2 Priority Matroid Median
We provide below a more general definition of Priority Matroid Median that includes a notion
of client demands.

▶ Definition 4 (PMatMed). The input is a set of facilities F and clients C from a metric
space (F ∪ C, d). Each i ∈ F has an opening cost fi ≥ 0. Each client j ∈ C has a radius
value, rj ≥ 0 and a demand value aj ≥ 0. We are also given a matroid M = (F , I). The
goal is to choose a set S ∈ I to minimize

∑
i∈S fi +

∑
j∈C ajd(j, S)) with the constraint that

d(j, S) ≤ rj for each j ∈ C.

A PMatMed instance I is the tuple (F , C, d, f, r, a,M), where f ∈ RF and r, a ∈ RC .

2.3 LP relaxation for PMatMed
Our algorithm is based on an LP relaxation for a PMatMed instance I = (F , C, d, f, r, a,M)
that we describe next. We use i to index facilities in F , j to index clients in C. Recall that
rM denotes the rank function of the matroid M. The yi variables denote the fractional
amount a facility i is open, while the xij variables indicate the fractional amount a client j

is assigned to facility i.

min
∑
i∈F

fiyi +
∑

j

∑
i

ajd(i, j)xij (1a)

s.t.
∑
i∈F

xij ≥ 1 ∀j ∈ C (1b)

xij ≤ yi ∀i ∈ F , j ∈ C (1c)
xij = 0 ∀i ∈ F , j ∈ C : d(i, j) > rj (1d)

y ∈ PM (1e)
xij , yi ≥ 0 ∀i ∈ F , j ∈ C (1f)

Constraint 1b states that each client must be fully assigned to facilities, and constraint 1c
ensures that these facilities have indeed been opened enough to service clients. For integral
y, constraint 1e mandates that the facilities come from an independent set of the matroid
M. Finally, constraint 1d ensures that no client is assigned to a center that is farther than
its radius value.

We make a few basic observations about the LP relaxation. We assume that it is feasible
for otherwise the algorithm can terminate reporting that there is no feasible integral solution.
Indeed, the LP is solvable in polynomial time via the rank oracle forM. First, some notation.
For X ⊆ F , we let y(X) denote

∑
i∈X yi. For client j and radius parameter R we let B(j, R)

denote the set {i ∈ F | d(i, j) ≤ R} of facilities within R of j. Constraints 1b and 1d ensure
the following simple fact.

▶ Fact 5. Let (x, y) be a feasible solution to the PMatMed LP. Then y(B(j, rj)) ≥ 1 holds
∀j ∈ C.

Let COST (x, y) denote the cost of the LP using solution (x, y). Going forward, we will
assume that we are working with an optimum fractional solution to the LP relaxation for
the given instance.
▶ Remark 6. We say that y is feasible if y ∈ PM and y(B(j, rj)) ≥ 1 for all j ∈ C.
Given feasible y, a corresponding x satisfying the constraints and minimizing COST (x, y) is
determined by solving a min-cost assignment problem for each client j ∈ C separately.
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2.4 Filtering
Filtering is a standard step in several approximation algorithms for clustering and facility
location wherein one identifies a subset of well-separated and representative clients. Each
client is assigned to a chosen representative. In priority median problems there are two
criteria that dictate the filtering process. One is the radius upper bound rj for the client j.
The other is the LP distance C̄j =

∑
i d(i, j)x(i, j) paid by the client which is part of the

objective. Balancing these two criteria is important. To facilitate different scenarios later we
develop a slightly abstract filtering process. Building on a procedure introduced in [15, 25],
Filter takes in the metric and demands from a PMatMed instance I = (F , C, d, f, r, a,M),
as well as functions ϕ, λ : C → R+ that satisfy the following condition.

▶ Definition 7 (compatibility). Functions ϕ, λ : C → R+ are compatible if for any ordering
of clients j1, j2, . . . , jn where ϕ(j1) ≤ ϕ(j2) ≤ . . . ≤ ϕ(jn), it is the case that λ(j1) ≤ λ(j2) ≤
. . . ≤ λ(jn).

▶ Remark 8. This condition trivially holds when ϕ and λ are identical. The filtering stages
of many clustering approximation algorithms [6, 17, 9] utilize equal ϕ and λ functions. We
use both identical and non-identical settings for ϕ and λ in this paper.

The function ϕ encodes an ordering of clients, while λ represents a client’s coverage
distance. Filter chooses cluster centers in order of increasing ϕ values, and then “covers” any
remaining client k that is within distance 2 ·λ(k) from the newly added center j. The demand
from the covered points is transferred to the center that first covered them. The new demand
variables a′ represent the aggregated demand for the chosen centers. Filter returns the set of
cluster centers, the clusters assigned to each cluster center, and new demand assignments for
all clients.

Algorithm 1 Filter.
Require: Metric (F ∪ C, d), demands a, compatible functions ϕ, λ : C → R>0

1: U ← C ▷ The set of uncovered clients
2: C ← ∅ ▷ The set of cluster centers
3: ∀j ∈ C set a′

j := 0 ▷ Initialize new demand variables
4: while U ̸= ∅ do
5: j ← arg minj∈U ϕ(j)
6: C ← C ∪ {j}
7: D(j)← {k ∈ U : d(j, k) ≤ 2 · λ(k)} ▷ Note: D(j) includes j itself
8: a′

j =
∑

k∈D(j) ak ▷ Accumulate all demands of D(j) to j

9: U ← U\D(j)
10: end while
11: Return cluster centers C, {D(j) : j ∈ C}, updated demands a′ ∈ RC

The resulting cluster centers C ⊆ C, and the sets of clients relocated to each cluster center
{D(j) | j ∈ C} form a partition of the client set C. When the given ϕ and λ are compatible,
the returned clusters satisfy certain desirable properties, described in the following facts
which are relatively easy to see, and standard in the literature. For this reason we omit
formal proofs.

▶ Fact 9. The following statements hold for the output of Filter: (a) ∀j, j′ ∈ C, d(j, j′) >

2 max{λ(j), λ(j′)}. (b) {B(j, λ(j)) | j ∈ C} are mutually disjoint. (c) {D(j) | j ∈ C}
partitions C. (d) ∀j ∈ C,∀k ∈ D(j), ϕ(j) ≤ ϕ(k) and λ(j) ≤ λ(k). (e) ∀j ∈ C,∀k ∈
D(j), d(j, k) ≤ 2 · λ(k)

APPROX/RANDOM 2023
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Choosing ϕ and λ. As we remarked, the two criteria that influence the filtering process are
rj and C̄j . For the algorithm in Section 3 we choose ϕ(j) = λ(j) = min{rj , 2C̄j}. There are
other valid settings of compatible ϕ and λ that can be used in the filtering stage. Different
settings of ϕ and λ will result in different approximation factors for cost and radius. We
elaborate on this further in Section 4.

3 A (21, 12)-approximation for Priority Matroid Median

Our algorithm will follow the overall structure of the LP-based procedure used for approxi-
mating Matroid Median from [27], but will contain a few key alterations that allow us to
be mindful of the radius objective of PMatMed. Stage 1 of our algorithm involves filtering
the client set to construct an updated instance I ′ using the cluster centers and updated
demands. We will show that a solution to I ′ can be converted to a solution for I while
only incurring a small increase to the cost and radius. The focus then shifts to constructing
a solution for I ′. In Stage 2, we obtain a half-integral solution for the LP-relaxation for I ′

by working with an auxiliary polytope. In Stage 3, this half-integral solution is converted to
an integral solution for I ′. This is done via a reduction to matroid intersection. Finally,
we will show that this solution yields a (21, 12)-approximation for the original instance I .
Algorithm 2 is given as a summary of the various stages of our algorithm. The omitted
proofs from this section can be found in Appendix A.

Algorithm 2 Overview of bi-criteria approximation algorithm for PMatMed.

Input: PMatMed instance I = (F , C, d, f, r, a, M).
Output: (α, β)-approximate solution for I .

0: Solve LP for I and let (x, y) denote the optimal fractional solution. Use (x, y) and
radius values r to help set ϕ and λ.

1: Stage 1 - Run Filter((F ∪ C, d), a, ϕ, λ) which returns cluster centers C, and updated
client demands a′. Create an updated instance I ′ = (F , C, d, f, r, a′,M) (Section 3.1).

2: Stage 2 - Construct a half-integral solution (x̂, ŷ) for I ′ by setting up a polytope Q
with half-integral extreme points (Section 3.2).

3: Stage 3 - Convert the half-integral solution to an integral solution (x̃, ỹ) for I ′ by
setting up an instance of matroid intersection between the input matroid M, and a
partition matroid N constructed with respect to the half-integral solution (Section 3.3).

4: Convert the integral solution for I ′ to one for I (Lemma 10).

3.1 Stage 1: Filtering Clients
In this stage, we create a new instance of PMatMed from the initial one by using the Filter
process described in Section 2.4. Recall that Filter will return a set of cluster centers C ⊆ C,
and collections of clients that are relocated to each cluster center {D(j) | j ∈ C}. Filter also
returns a set of updated demands for all clients, a′. Now, using C and a′, we construct a
new instance of PMatMed I ′ = (F , C, d, f, r, a′,M). Here, we overload notation and take r
and a′ to denote the vector of radius values and demands, respectively, for cluster centers
(i.e. r, a′ ∈ RC). Notice that we do not lose any information by restricting a′ to C, since the
updated demands for relocated points are set to 0. Furthermore, we will reconcile the radius
objective for relocated points in the final solution at the end of the section.
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The solution (x, y) for instance I , when restricted to C, will still be a feasible solution
for the LP for I ′, since the new LP is made up of a subset of constraints from the original
LP. For updated instance I ′, we denote the cost of the LP solution (x, y) by COST ′(x, y).

COST ′(x, y) =
∑
i∈F

fiyi +
∑
j∈C

a′
j

∑
i∈F

d(i, j)xij =
∑
i∈F

fiyi +
∑
j∈C

a′
jC̄j

The next lemma shows that an integral solution to I ′ can be translated to an integer
solution for I by incurring a small additive increase to the cost objective. In subsequent
sections we will address how the translated solution also ensures that all clients are served
within a constant factor of their radius constraint.

▶ Lemma 10. The following is true of I ′: (a) COST ′(x, y) ≤ 2 · COST (x, y). (b) Any
integer solution (x′, y′) for I ′ can be converted to an integer solution for I that incurs an
additional cost of at most 4 · COST (x, y).

The following lemma follows directly from Fact 9.

▶ Lemma 11. Let k ∈ C be assigned to j ∈ C after Filter (i.e. k ∈ D(j)). Then, d(j, k) ≤
2λ(k) ≤ 2rk.

3.2 Stage 2: Constructing Half-Integral Solution (x̂, ŷ)
In the second stage the goal is to construct a half-integral solution to I ′. This means that
each cluster center/client j ∈ C will connect to at most two facilities. This is accomplished
by constructing a specific polytope Q with only facility variables, and a proxy objective
that also has only facility variables and arguing about the properties of Q and the objective
function.

To describe Q, we define, for each client j ∈ C, several facility sets that will play an
important role. Let Fj = {i ∈ F | d(i, j) = mink∈C d(i, k)} denote the set of facilities i for
which j is the closest client in C (ties are broken arbitrarily). Let F ′

j = {i ∈ Fj | d(i, j) ≤
λ(j)} ⊆ Fj . Let γj := mini/∈Fj

d(i, j) denote the distance between client j ∈ C and the
closest facility i not included in Fj . In other words, i in the definition of γj is the closest
facility to j that has some other closest cluster center j′ ∈ C such that j ̸= j′. Using γj , let
Gj = {i ∈ Fj | d(i, j) ≤ γj}. Finally, let ρj be the smallest distance such that y(B(j, ρj)) ≥ 1,
and Bj := B(j, ρj).2 See Figure 1.

We summarize some basic properties of the defined sets below.

▶ Fact 12. The following hold for all j ∈ C: (a) If j′ ̸= j, Fj ∩ Fj′ = ∅; (b) Fj contains
all the facilities i such that d(i, j) ≤ λ(j); (c) γj > λ(j); (d) F ′

j ⊆ Gj; (e) ρj ≤ rj, (f)∑
i∈F ′

j
xij ≥ 1/2 and when λ(j) = rj,

∑
i∈F ′

j
xij = 1;

Proof. (a) follows from definition of Fj , (b), (c), (d) follow from Fact 9(b) and definitions. (e)
follows from the LP constraint. We now prove (f). If λ(j) = rj , F ′

j = {i | d(i, j) ≤ rj}, and
by LP constraint

∑
i∈F ′

j
xij = 1. Otherwise λ(j) = 2C̄j < rj . Note that C̄j =

∑
i d(i, j)xij .

By averaging argument (Markov’s inequality) we have
∑

i:d(i,j)≤2C̄j
xij ≥ 1/2. This gives

the desired claim since F ′
j = {i | d(i, j) ≤ λ(j)}. ◀

2 Note that though it may be the case that y(B(j, ρj)) > 1, we can split facilities and define Bj as the
points of B(j, ρj) such that y(Bj) = 1.

APPROX/RANDOM 2023
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j′￼

j

γj′￼

γj

Fk

Gk

F′￼k

Bk

ρj′￼

ρj

Figure 1 The F , F ′, G, and B sets for points j ∈ Cs and j′ ∈ Cb. Observe that for j, ρj ≤ γj ,
hence Bj ⊆ Gj .

At this point in the algorithm, in a departure from the Matroid Median algorithm of [27],
we need to be mindful of two cases. If ρj ≤ γj , in order to satisfy the radius requirements
of PMatMed, it is important to open one facility within radius ρj of j. If it is the case that
ρj > γj , it is not necessary to do so. To distinguish these two cases, we partition C into
Cs = {j ∈ C | ρj ≤ γj}, and Cb = {j ∈ C | ρj > γj}. For j ∈ Cs, it should be clear that
Bj ⊆ Gj . Using these sets, we define a polytope Q with facility variables vi, i ∈ F as follows.
It consists of the matroid constraints induced by M and a second set of constraints induced
by C and Cs as defined above. In particular, we require that all points j in C has at least
1/2 value assigned cumulatively to facilities within their F ′

j balls. We require points of Cs to
have exactly 1 assigned to facilities within Bj .

Q =
{

v ∈ RF
≥0 | ∀S ⊆ F : v(S) ≤ rM(S), ∀j ∈ C : v(F ′

j) ≥ 1/2 and v(Gj) ≤ 1,

∀j ∈ Cs : v(Bj) = 1
}

▶ Lemma 13. The extreme points of the polytope Q, if non-empty, are half-integral.

The proof of the preceding lemma is similar to those in previous works on Matroid
Median [21, 27]. We give a proof (found in Appendix A) for the sake of completeness since
the polytope we define is slightly different due to the separation of clients in C into Cs and
Cb in order to enforce an additional constraint.

We will now define a vector y′ that lies in Q which will prove that it is non-empty. Further,
we also define a linear objective function T (·) over vectors in Q to serve as a proxy for the
cost. Following the analysis for the improved bound in [27], we set up T (·) with some slack
so that the slack can be exploited in the analysis of the next step in the algorithm.

We define y′ ∈ RF
≥0 as follows. For all j ∈ C and i ∈ Gj , set y′

i = xij ≤ yi. For a facility
i /∈ ∪jGj set y′

i = 0. From this definition it should be clear that y′(Gj) ≤ 1 for all j ∈ C,
since

∑
i∈Gj

xij ≤ 1. Also, from Fact 12, y′(F ′
j) ≥ 1/2. For j ∈ Cs, it will be the case that

y′(Bj) = 1 since
∑

i∈Bj
xij = 1; we also know that for these points, y′(Gj) = y′(Bj).
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To build up to the definition of T , we first state the following lemma, which we will prove
in the proof of Lemma 17 (Appendix A).

▶ Lemma 14. Consider some j ∈ C, and let i and j′ be the facility and cluster used to
define γj (i.e. γj = d(i, j)) where i ∈ Fj′ for some j′ ̸= j. For every i′ ∈ F ′

j′ , d(i′, j) ≤ 3γj.

Keeping the preceding lemma in mind, we can use as proxy for j’s per-unit-demand cost
a function written in terms of the facility vector v. When y′(Gj) = 1, the cost for j can be
bounded by

∑
i∈Gj

d(i, j)y′
i ≤ C̄j . When y′(Gj) < 1, the preceding lemma indicates that

we can upper bound the cost of the solution by
∑

i∈Gj
d(i, j)y′

i + 3γj(1− y′(Gj)) ≤ 3 · C̄j .
Using these two bounds, we define T (·) for v ∈ Q as follows:

T (v) =
∑
i∈F

fivi +
∑
j∈C

a′
j

(
2

∑
i∈Gj

d(i, j)vi + 4γj(1− v(Gj))
)

For v such that v(F ′
j) ≥ 0.5 and v(Gj) ≤ 1 for all j ∈ C, the term a′

j(2
∑

i∈Gj
d(i, j)y′

i +
4γj(1−y′(Gj))) will upper bound j’s assignment cost with respect to v via Lemma 14. When
v(Gj) = v(Bj) = 1 for j ∈ Cs, j’s assignment cost will be at most a′

j(2
∑

i∈Bj
d(i, j)vi).

Indeed T (v) is an overestimate and we will use this in the next step.
We find an optimum half-integral solution ŷ to Q with objective T (v). It follows that

T (ŷ) ≤ T (y′). Now, we construct a half-integral solution (x̂, ŷ) from ŷ ∈ Q: For each cluster
center j ∈ C, if ŷ(Gj) = 1, set σ(j) = j. Otherwise, set σ(j) = arg minj′∈C:j′ ̸=j d(j, j′). Now,
the primary facility for each cluster center is the closest facility i ∈ F such that ŷi > 0 (this
will always be located in F ′

j), is denoted by i1(j), and thus x̂i1(j)j = ŷi1(j). A cluster center’s
secondary facility, denoted by i2(j), is the next option of facility for j to use, when it cannot
be completely serviced by its primary facility. If ŷi1(j) = 1, then j does not need a secondary
facility, since i1(j) has been completely opened, and will remain completely opened. When
ŷi1(j) < 1 and ŷ(Gj) = 1, then set i2(j) to be the second closest partially opened facility to j

(where ŷi2(j) > 0). Otherwise, when ŷi1(j) < 1 and ŷ(Gj) < 1, we now set i2(j) = i1(σ(j))
and x̂i1(j) = x̂i2(j) = 1/2. Note that if j ∈ Cs then ŷ(Bj) = 1 which implies that j’s primary
and secondary facilities are both in Bj and σ(j) = j. The following two claims are easy to
see.

▷ Claim 15. For all j ∈ C, d(j, σ(j)) ≤ 2γj .

▷ Claim 16. For all j ∈ Cs, ŷ(Gj) = 1. If ŷ(Gj) < 1, it must be the case that j ∈ Cb.

By Fact 9(b), each j will have a unique primary facility that is at least partially opened
in F ′

j . For points j ∈ Cs, their secondary facility must be in Bj . However, for points in
j ∈ Cb, i2(j) might not be in Gj or even Fj . As per Lemma 14, we know that j will be able
to find a partially open facility to be serviced by that is within distance 3γj < 3ρj . In the
following lemma, we derive our bound for the cost of (x̂, ŷ).

▶ Lemma 17. COST ′(x̂, ŷ) ≤ T (ŷ) ≤ T (y′) ≤ 4 · COST ′(x, y) ≤ 8 · COST (x, y).

Before moving on to the final stage of the algorithm, we prove a few lemmas that will be
relevant for our analysis of the radius dilation of the final solution. Lemma 18 allows us to
relate the radius of cluster center j to that of a client k in the original instance that was
relocated to j. We need such a lemma because even though we know that ϕ(j) = min{rj , 2C̄j}
and ϕ(j) ≤ ϕ(k) for all k ∈ D(j), we cannot assume that rj ≤ rk.

▶ Lemma 18. Suppose client k ∈ C is relocated to j ∈ C after filtering (k ∈ D(j)). Then
ρj ≤ 3rk.

APPROX/RANDOM 2023



7:12 Bicriteria Approximation Algorithms for Priority Matroid Median

Proof. Note that y(B(k, rk)) ≥ 1 via the LP constraint. We have d(j, k) ≤ 2λ(k) ≤ 2rk

since λ(k) = min{rk, 2C̄k}. Via triangle inequality, B(k, rk) ⊆ B(j, 3rk). Thus ρj ≤ 3rk. ◀

Lemma 14 and Lemma 18 imply Lemma 19, which bounds the distance between relocated
points and the primary and secondary facilities of the cluster center they are relocated to.

▶ Lemma 19. Let k ∈ C and k ∈ D(j) for a cluster center j ∈ C. Then, d(j, i1(j)) ≤
λ(j) ≤ λ(k) ≤ rk. When j ∈ Cs, d(j, i2(j)) ≤ ρj ≤ 3rk. When j ∈ Cb, d(j, i2(j)) ≤
d(j, σ(j)) + d(i1(σ(j)), σ(j)) ≤ 3γj ≤ 3ρj ≤ 9rk.

▶ Remark 20. Notice that the v(Bj) = 1 constraint imposed for points j ∈ Cs ultimately did
not effect the cost analysis in Lemma 17. That is, we did not need to draw a distinction
between points in Cs and points in Cb in order to obtain COST ′(x̂, ŷ) ≤ 4 · COST ′(x, y).
The purpose of defining sets Cs and Cb and imposing an additional constraint for points in
Cs is to ensure certain radius guarantees. In particular, Lemma 19 would not hold if the
constraint v(Bj) = 1 for j ∈ Cs was not enforced in Q.

3.3 Stage 3: Converting to an Integral Solution
The procedure to convert the half-integral (x̂, ŷ) to an integral solution involves setting up a
matroid intersection instance consisting of the input matroidM and a partition matroid that
is constructed using the primary and secondary facilities from (x̂, ŷ) after another clustering
step. The solution to this instance will be used to construct an integral solution (x̃, ỹ) to I ′.

For j ∈ C set Ĉj = (d(i1(j), j) + d(j, σ(j)) + d(i2(j), σ(j)))/2. In cases where j has no
secondary facility, let i2(j) = i1(j). For each j ∈ C, define Sj = {i | x̂ij > 0} = {i1(j), i2(j)}.
Sj has either one or two facilities. In addition, the following holds and will be relevant later.

▷ Claim 21. When Sj ∩ Sj′ ̸= ∅, one of three cases can occur. (i) Sj ∩ Sj′ = {i1(j), i2(j)},
in which case σ(j) = j′ and σ(j′) = j; (ii) Sj ∩ Sj′ = {i1(j)}, and thus σ(j′) = j and
σ(j) ̸= j′ (a symmetric case occurs when switching j and j′); (iii) Sj ∩ Sj′ = {i2(j)} where
i2(j) = i2(j′), hence σ(j) = σ(j′) = p and p ̸= j, j′.

We construct a partition matroid N on ground set F via another clustering process to
create a set C ′ ⊆ C. Repeat the following two steps until no clients in C are left to consider:
(1) Pick j ∈ C with the smallest Ĉj value and add j to the set C ′ then (2) remove every
j′ ∈ C where Sj ∩ Sj′ ̸= ∅, and have j be the center of j′ (denoted by ctr(j′) = j). It is easy
to see that the sets Sj , j ∈ C ′ are mutually disjoint. Thus, a partition of F is induced by
{Sj | j ∈ C ′}, and the set F \ ∪j∈C′Sj . Set the capacity for each set of this partition to 1.

Now we consider the polytope that is intersection of the matroid polytopes of M and N :

R = {z ∈ RF
+ | ∀S ⊆ F : z(S) ≤ r(S), ∀j ∈ C ′ : z(Sj) ≤ 1}

The polytope R has integral extreme points via the classical result of Edmonds [12, 26].
The goal now is to figure out the set of facilities to open by optimizing a relevant objective

over R. First, we define a vector ŷ′ ∈ RF
+: if i ∈ Sj for some j ∈ C ′ we set ŷ′

i = x̂ij ≤ ŷi,
otherwise we set ŷ′

i = ŷi. Observe that ŷ′ is feasible for R and shows that R is not empty.
We now define a linear function H(·) over vectors in R. We will optimize H(·) over R to

obtain an integral extreme point ỹ and we will analyze its cost via ŷ′. For z ∈ RF
+, define

H(z) as follows.

H(z) =
∑

i

fizi +
∑
j∈C

Lj(z), where
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Lj(z) =


∑

i∈Sctr(j)
a′

jd(i, j)zi i1(j) ∈ Sctr(j)∑
i∈Sctr(j)

a′
j

(
d(j, σ(j)) + d(σ(j), i)

)
zi

+a′
j

(
d(i1(j), j)− d(j, σ(j))− d(i1(σ(j)), σ(j))

)
zi1(j) otherwise

Let ỹ ∈ R be an integer extreme point such that H(ỹ) ≤ H(ŷ′). We use this to define
an integral solution (x̃, ỹ) to the modified instance by assigning each j ∈ C ′ to the facility
opened from Sj i.e. the facility i ∈ Sj such that ỹi = 1. For each j′ ∈ C \ C ′, assign j′ to
either i1(j′) if it is open or the facility opened from Sctr(j′). Lj(ỹ) serves as a proxy and
upper bound for j’s assignment cost. When i1(j) /∈ Sctr(j), the second term of Lj(ỹ) will
adjust the distance j pays depending on whether i1(j) is opened or not. This adjustment is
not needed when i1(j) ∈ Sj or when i1(j) /∈ Sj is not opened, since in this case j must be
assigned to the center opened from Sctr(j). The following lemmas will show how the cost of
(x̃, ỹ) can be bounded by that of the half-integral solution (x̂, ŷ) from the previous stage.

▶ Lemma 22. COST ′(x̃, ỹ) is at most H(ỹ) ≤ H(ŷ′).

▶ Lemma 23. H(ŷ′) ≤ T (ŷ).

▶ Remark 24. We do not lose a factor in the cost when converting the half-integral solution to
an integral solution because the analysis in Stage 2 “overpays” for the half-integral solution.
We follow the approach from [27].

3.4 Cost and Radius Analysis for PMatMed
Lemmas 10, 17, 22, and 23 together imply the following bound on the cost of (x̃, ỹ) for
instance I with respect to the cost of the LP solution (x, y).

▶ Theorem 25. COST (x̃, ỹ) ≤ 12 · COST (x, y).

Proof. COST ′(x̃, ỹ) will be at most T (ŷ) (Lemmas 22 and 23), and T (ŷ) is at most 4 ·
COST ′(x, y) ≤ 8 · COST (x, y) (Lemma 17). Hence, (x̃, ỹ) will give a solution to I ′ of
cost at most 8 · COST (x, y). Lemma 10 tells us that translating an integer solution for I ′

to an integer solution for I will incur an additional cost of at most 4 · COST (x, y). All
together, COST (x̃, ỹ) ≤ COST ′(x̃, ỹ) + 4 ·COST (x, y) ≤ 8 ·COST (x, y) + 4 ·COST (x, y) =
12 · COST (x, y). ◀

To complete our analysis of the radius approximation factor, we must determine how far
points will be made to travel once the final centers are chosen. In Lemma 19 we guaranteed
that each cluster center j will not travel farther than 3ρj to reach its secondary facility.
However, in this final stage, we are assigning some cluster centers to others, and cannot
guarantee that their primary or secondary facility will be opened. We can still show that even
if a cluster center j from Cs gets assigned to a cluster center ℓ from Cb (i.e. that ctr(j) = ℓ),
j will still only travel a constant factor outside of ρj . Consequently, using Lemma 18 we can
show that each client k ∈ C will travel only a constant factor times its radius value rk.

▶ Lemma 26. Let k ∈ C, where k ∈ D(j) for j ∈ C. The final solution will open a facility i

such that d(i, j) ≤ 19rk.

Proof. There are several cases to consider but most of them are simple. We provide the
analysis for the case that gives the 19 factor, and other notable cases.
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i2( j) = i2(ℓ) = i1(p)

i1(ℓ)
i1( j)

p

ℓ j

≤ 2Ĉℓ

≤ 2 ̂Cℓ + d( j, i2( j))

Sℓ
Sj

Figure 2 The farthest a point j ∈ C will be from an opened center occurs when ctr(j) = ℓ,
σ(j) = σ(ℓ) = p, and i1(ℓ) is opened.

If j ∈ C ′, then either i1(j) or i2(j) will be opened in the final solution. Lemma 19
indicates that j will be assigned to a center that is at most 9rk away. If j /∈ C ′, it
must be the case that ctr(j) = ℓ where Sℓ ∩ Sj ̸= ∅, and Ĉℓ ≤ Ĉj . We claim that
Ĉj ≤ 1

2 (d(i1(j), j) + d(i2(j), j)) ≤ 1
2 (rk + 9rk) = 5rk where we used Lemma 19 to bound

d(i1(j), j) and d(i2(j), j)).
The farthest that j would have to travel occurs when j and ℓ share secondary facilities,

and ℓ’s primary facility is opened (see Figure 2). More precisely, this is when Sℓ ∩ Sj =
{i2(ℓ)} = {i2(j)} and σ(ℓ) = σ(j) = p where p is not j or ℓ, and i1(ℓ) is opened at the end
of Stage 3. In this case, we have

d(i1(ℓ), j) ≤ d(i1(ℓ), i2(ℓ)) + d(i2(ℓ), j) ≤ d(i1(ℓ), ℓ) + d(i2(ℓ), ℓ) + d(i2(j), j)

= 2Ĉℓ + d(i2(j), j) ≤ 2Ĉj + d(i2(j), j) ≤ 10rk + 9rk = 19rk. ◀

▶ Remark 27. Notice that in the last step of our proof for Lemma 26, we bound the distance
d(i1(ℓ), j) by d(i1, j) + 2d(i2(j), j), where d(i2(j), j) ≤ 9rk. Hence, the majority of the
distance that j is traveling, according to our analysis, is due to the distance between j and its
secondary facility. If we could guarantee that cluster center j has a reasonably close secondary
facility, we could improve this radius factor. We will explore this further in Section 4.3.

Using Lemmas 11 and 26, we have the following radius bound for the output of our
algorithm.

▶ Theorem 28. Let S be the output of the aforementioned approximation algorithm. For all
k ∈ C, d(k, S) ≤ 21rk.

Theorems 25 and 28 together give us Theorem 1.
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4 Exploring Cost and Radius Trade-offs

In this section, we will outline the remaining results for PMatMed and UniPMatMed. The
algorithms for these results are nearly identical to the one in the previous section. The
only change is in setting ϕ and λ (in the first step of Algorithm 2). These results suggest
that filtering plays a non-trivial role in the cost and radius trade-offs, and that further
improvements may be possible if one finds effective ways to filter points.

We begin with the (9, 8)-approximate solution for UniPMatMed. As we discussed in the
introduction, having uniform radii allows us to rely only on C̄j values obtained from the LP
solution. We will then discuss how we can extend this approach to the non-uniform case to
obtain a (36, 8)-approximate solution for PMatMed. Finally, we show how to further tighten
the radius guarantee for UniPMatMed.

4.1 (9, 8)-approximation for UniPMatMed
First, observe that instances of UniPMatMed can be written as instances of PMatMed, where
each rj := L for all j ∈ C. As such, our algorithm to obtain a (9, 8)-approximation for
UniPMatMed is the following: Run Algorithm 2 on UniPMatMed instance J , but in Line 0,
set ϕ(j) := C̄j and λ(j) := min{rj , 2C̄j}.

Notice that these assignments of ϕ and λ satisfy compatibility (Definition 7) only when
rj ’s are uniform. We explain this in more detail in Appendix B, and defer the analysis and
proofs for this result to that section.

4.2 (36, 8)-approximation for PMatMed
Building off the result for UniPMatMed, which is able to optimize for the cost by changing
ϕ(j), we show how to obtain a (36, 8)-approximate solution for PMatMed. To do so, we will
keep the same setting for ϕ(j) := C̄j as UniPMatMed, but will instead choose a λ that is
compatible for non-uniform radii. Our algorithm is as follows: Run Algorithm 2 on PMatMed
instance I , but in Line 0, set ϕ(j) := C̄j and λ(j) := 2C̄j .

Clearly, ϕ and λ are compatible. Furthermore, notice that this setting of ϕ is identical to
that of our algorithm of UniPMatMed. Since cost analysis for the filtering stage only uses ϕ

(and not λ), our analysis for cost will be identical to that of our analysis of UniPMatMed,
therefore we will have a cost guarantee of 8.

To analyze the radius guarantee, notice that while λ does not explicitly use radius values,
PMatMed LP has a constraint that ensures ∀j ∈ C C̄j ≤ rj . Therefore, λ(j) = 2C̄j ≤ 2rj .
Our initial setting of λ (λ(j) := min{rj , 2C̄j}) made it so λ(j) ≤ rj . Hence, the new setting
of λ will worsen the radius guarantee of the final solution. The analysis for this result can be
found in Appendix C.

4.3 Tighter radius guarantee for UniPMatMed
In the previous result for UniPMatMed, we set ϕ(j) := C̄j and λ := min{L, 2C̄j}. In the
second result for PMatMed, we showed how setting λ(j) := 2L would increase the radius
guarantee. Thus, in order to tighten the radius guarantee for UniPMatMed, we will again
change λ(j), but this time in a way that will allow points to have tighter radius bounds.

To build up to our new setting for λ, we first partition points in the original client set
into points that have relatively small, or tiny C̄j values, CT = {j ∈ C | C̄j ≤ ϵL} and points
that have large C̄j values, CL = {j ∈ C | C̄j > ϵL}. Now, our algorithm is as follows: Run
Algorithm 2 on PMatMed instance I , but in Line 0, set ϕ(j) := C̄j and λ(j) as defined
below.
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λ(j) =
{

2C̄j j ∈ CT

L j ∈ CL

Note that ϕ and λ will satisfy compatibility. Furthermore, this setting of λ improves the
radius bound of Section 4.1 since it forces cluster centers from CL to open their own primary
and secondary facilities (i.e. they will force σ(j) = j for cluster centers j that are from
CL). Any point j such that σ(j) ̸= j will be from CT , and furthermore σ(j) ∈ CT for all of
these points. Therefore, we are decreasing the distance between any point and its secondary
facility, for both points in CL and CT . As noted in Remark 27, this will help reduce the
radius guarantee.

To achieve the (5+8ϵ, 4+2/ϵ)-approximation result, we also make a change to Section 2.4
of Filter. Details about this change, as well as the full analysis for this result can be found in
the full version of this paper.
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A Omitted Proofs

Proof of Lemma 10. We first prove that COST ′(x, y) ≤ 2 · COST (x, y). The fractional
facility opening cost,

∑
i fiyi is identical in both. The difference in the client connection

cost is because the demands of clients in C \ C are relocated. Consider a client k ∈ C \ C

that is relocated to its cluster center j ∈ C (thus k ∈ D(j)). In COST (x, y) client k pays
akC̄k. In COST ′(x, y), the demand of k is moved to j and pays akC̄j . Thus, it suffices
to prove that C̄j ≤ 2C̄k. From Fact 9, ϕ(j) ≤ ϕ(k) ≤ 2C̄k. LP constraints 1d and 1c
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of the LP for I ensures that C̄j ≤ rj for all j ∈ C. Hence, if C̄j > 2C̄k we would have
ϕ(j) = min{rj , 2C̄j} > 2C̄k which would be a contradiction to ϕ(j) ≤ ϕ(k). This shows that
C̄j ≤ 2C̄k.

Now we consider the second part. From Fact 9, d(j, k) ≤ 2λ(k) ≤ 2(2 · C̄k). Suppose the
cost of an integer solution to I ′ is α. We keep the same facilities for I and account for
the increase in connection cost when considering the original client locations. Consider a
client k ∈ C \ C that is relocated to center j ∈ C. If j connects to i in the integer solution
for I ′, k can connect to i in the solution to I , and its per unit connection cost increases by
at most d(j, k) ≤ 4C̄k. Thus the total increase in the connection cost when comparing to α

is upper bounded by
∑

j∈C

∑
k∈D(j) ak · 4C̄k ≤ 4 · COST (x, y). ◀

Proof of Lemma 13. Suppose Q is non-empty and v∗ is any extreme point. Then v∗ is the
unique solution of a linear system Av = b where A is a subset of the inequalities of Q with
A having full row and column rank (in particular the rows of A are linearly independent
vectors). A can be partitioned into A1 and A2 where A1 is a subset of the inequalities coming
from the matroid M (of the form v(S) = rM(S)), while A2 is a subset of the remaining
inequalities. Via the submodularity of the matroid rank function, it is known that one can
choose A1 such that the rows of A1 correspond to a laminar family of subsets of F [26]. We
observe that the non-matroidal system of inequalities in Q correspond to a laminar family of
sets over F : (a) the sets Gj , j ∈ C are disjoint and F ′

j ⊆ Gj for each j and (b) for j ∈ Cs,
we have Bj ⊆ Gj . See Figure 1.

Thus the rows of the matrix of A come from two laminar families of sets over F , and it is
known that such a matrix is totally uniodular [26]. Thus v∗ = A−1b where A−1 is an integer
matrix, and b is half-integral which implies that v∗ is half-integral. ◀

Proof of Lemma 17. We first show that T (y′) ≤ 4 · COST ′(x, y) (we already have T (ŷ) ≤
T (y′)). We know that COST ′(x, y) can be expressed as

∑
i fiyi +

∑
j a′

j · C̄j . For any j ∈ C,
observe that C̄j =

∑
i∈Gj

d(i, j)xij +
∑

i/∈Gj
d(i, j)xij and hence C̄j ≥

∑
i∈Gj

d(i, j)xij +
γj

∑
i/∈Gj

xij .

T (y′) ≤
∑

i

fiyi +
∑

j

a′
j

(
2

∑
i∈Gj

d(i, j)xij + 4γj

(
1−

∑
i∈Gj

xij

))
≤

∑
i

fiyi + 4
∑

j

a′
j · C̄j ≤ 4 · COST ′(x, y)

Next, we upper bound COST ′(x̂, ŷ) by T (ŷ). It suffices to focus on the assignment cost.
Consider j ∈ Cs. Its primary and secondary facilities are in Bj and it is easy to see that
its connection cost is precisely

∑
i∈Bj

d(i, j)x̂ij . Now consider j ∈ Cb. Recall that when
ŷ(Gj) = 1, the total assignment cost of j is at most

∑
i∈Gj

d(i, j)ŷi. When ŷ(Gj) < 1, j

connects to primary facility in F ′
j and a secondary facility. The second nearest facility will

not be in its Gj ball, i.e. i2(j) /∈ Fj . Let j′ ̸= j be client that defines γj . Via Lemma 14, we
have d(i2(j), j) ≤ 3γj . Assuming this, when ŷ(Gj) < 1, the total assignment cost of j is at
most

∑
i∈Gj

d(i, j)ŷi + 3γj(1− ŷ(Gj)). Based on these assignment cost upper bounds we see
that COST ′(x̂, ŷ) ≤ T (ŷ).

Now we prove Lemma 14. From Fact 9 we have 2 max{λ(j), λ(j′)} ≤ d(j, j′). Via triangle
inequality d(j, j′) ≤ d(j, i) + d(i, j′) ≤ 2γj . Thus 2λ(j′) ≤ 2γj which implies that λ(j′) ≤ γj .
Recall that F ′

j′ , from its definition, is contained in a ball of radius λ(j′) around j′. Thus, for
any facility i′ ∈ F ′

j′ , d(i′, j′) ≤ λ(j′) ≤ γj , Therefore, d(i′, j) ≤ d(j, j′) + d(j′, i′) ≤ 3γj . This
gives us the lemma.

Finally, using Lemma 10, we know that COST ′(x, y) ≤ 2 · COST (x, y), hence 4 ·
COST ′(x, y) ≤ 8 · COST (x, y). ◀
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Proof of Lemma 22. Since the facility costs of (x̃, ỹ) will remain as they are in H(ỹ), it
suffices to show that for all j ∈ C, the assignment cost of j is at most Lj(ỹ). When j ∈ C ′,
ctr(j) = j and the assignment cost of j will be exactly Lj(ỹ).

Now we consider two possibilities for j′ ∈ C \ C ′. Let ctr(j′) = j. If j′ gets assigned
to a center from Sj , there are two possible cases for the value of Lj′(ỹ). If i1(j′) ∈ Sj

then the assignment cost for j′ is exactly Lj′(ỹ). Otherwise, i1(j′) /∈ Sj and ỹi1(j′) = 0.
In this case Lj′(ỹ) =

∑
i∈Sj

a′
j′(d(j′, σ(j)) + d(i, σ(j)))ỹi. By triangle inequality, d(i, j′) ≤

d(i, σ(j′)) + d(j, σ(j′)), therefore the assignment cost of j′ is at most Lj′(ỹ).
If j′ is assigned to a center that is not from Sj , it is because ỹi1(j′) = 1 and i1(j′) /∈ Sj .

Here, the assignment cost of j′ is a′
j′d(i1(j′), j′). Let i ∈ Sj be such that ỹi = 1. The value

of Lj′(ỹ) is therefore

Lj′(ỹ) = a′
j

(
d(j′, σ(j′)) + d(i, σ(j′)) + d(i1(j′), j)− d(j′, σ(j′))− d(i1(σ(j)), σ(j))

)
= a′

j

(
d(i, σ(j′)) + d(i, i1(j′))− d(i1(σ(j)), σ(j))

)
Since i ∈ Sj cannot be closer to σ(j′) than the primary facility of σ(j′), we know that
d(i1(σ(j)), σ(j)) ≤ d(i, σ(j′)). Thus, the assignment cost of j′ is at most Lj′(ỹ). ◀

Proof of Lemma 23. For notational ease, let Qj(ŷ) := 2
∑

i∈Gj
d(i, j)ŷi + 4γj(1−

∑
i∈Gj

ŷi).
Thus, T (ŷ) =

∑
i fiŷi +

∑
j∈C a′

jQj(ŷ). As in the proof of the previous lemma, we focus
on just the assignment costs of clients, since clearly

∑
i fiŷ

′
i ≤

∑
i fiŷi. Specifically, we will

show that Lj(ŷ′) ≤ a′
jQj(ŷ) for all j ∈ C. For the remainder of the proof, we omit the term

a′
j from both sides of this inequality, since it remains fixed throughout our analysis.

First, we show Ĉj ≤ Qj(ŷ) for all j ∈ C. Recall that j has no secondary facility when
ŷi1(j) = 1, in which case i2(j) = i1(j). When ŷ(Gj) = 1, σ(j) = j and the primary and
secondary facilities of j are the only facilities in Gj where ŷi > 0. Since ŷ is half integral, we get
Ĉj = (d(i1(j), j)+d(i2(j), j))/2 =

∑
i∈Gj

d(i, j)ŷi ≤ Qj(ŷ). When ŷ(Gj) = 1/2, σ(j) = ℓ ̸= j

and i2(j) = i1(ℓ). In this case Ĉj = (d(i1(j), j) + d(j, ℓ) + d(i1(ℓ), ℓ))/2. Using Claim 15 and
definitions, d(j, ℓ)+d(ℓ, i1(ℓ)) ≤ 3γj . Therefore Ĉj ≤

∑
i∈Gj

d(i, j)ŷi+3γj(1−ŷ(Gj)) ≤ Qj(ŷ).
To prove Lj(ŷ′) ≤ a′

jQj(ŷ) we consider several cases.

1. j ∈ C ′: we have ctr(j) = j and i1(j) ∈ Sj .

Lj(ŷ′) =
∑
i∈Sj

d(i, j)ŷ′
i ≤

∑
i∈Sj

d(i, j)ŷi = 1
2(

(
d(i1(j), j) + d(i2(j), j)

)
≤ 1

2

(
d(i1(j), j) + d(i1(j), σ(j)) + d(i2(j), σ(j))

)
(via triangle ineq.)

= Ĉj ≤ Qj(ŷ).

2. j′ ∈ C \ C ′. Let ctr(j′) = j. We have Ĉj ≤ Ĉj′ .
a. i1(j′) ∈ Sj . Then i2(j) = i1(j′) hence σ(j) = j′.

Lj′(ŷ′) = 1
2(d(i1(j), j′) + d(i2(j), j′))

≤ 1
2(d(i1(j), j) + d(j, j′) + d(i2(j), j′)) (via triangle ineq.)

= Ĉj ≤ Ĉj′ ≤ Qj′(ŷ).

b. i1(j′) /∈ Sj : Then Sj ∩ Sj′ is either {i1(j)} or {i2(j)} (Claim 21). In both cases,
σ(j′) = ℓ ̸= j′ and therefore ŷ(Gj′) = ŷi1(j′) = 1/2. Hence

Lj′(ŷ′) = 1
2 ·

(
2d(j′, ℓ) + d(i1(j), ℓ) + d(i2(j), ℓ) + d(i1(j′), j′)− d(j′, ℓ)− d(i1(ℓ), ℓ)

)

APPROX/RANDOM 2023
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i. When Sj ∩ Sj′ = {i1(j)}, i1(j) = i2(j′) thus ℓ = j. Using the fact that d(i2(j), j) ≤
2Ĉj − d(i1(j), j), we have

Lj′ (ŷ′) = 1
2

(
2d(j′, j) + d(i1(j), j) + d(i2(j), j) + d(i1(j′), j′) − d(j′, j) − d(i1(j), j)

)
= 1

2

(
d(j, j′) + d(i2(j), j) + d(i1(j′), j′)

)
≤ 1

2

(
d(j, j′) + 2Ĉj − d(i1(j), j) + d(i1(j′), j′)

)
≤ 1

2

(
d(j, j′) + 2Ĉj′ − d(i1(j), j) + d(i1(j′), j′)

)
= d(j, j′) + d(i1(j′), j′).

ii. When Sj ∩Sj′ = {i2(j)}, i2(j) = i2(j′) = i1(ℓ) and so ℓ ̸= j, j′ and σ(j) = σ(j′) = ℓ.
Since 2Ĉj ≤ 2Ĉj′ , d(i1(j), j) + d(j, ℓ) ≤ d(i1(j′), j′) + d(j′, ℓ). Therefore,

Lj′(ŷ′) = 1
2

(
d(j′, ℓ) + d(i1(j), ℓ) + d(i1(j′), j′)

)
≤ 1

2

(
d(j′, ℓ) + d(i1(j), j) + d(j, ℓ) + d(i1(j′), j′)

)
(via triangle ineq.)

≤ 1
2

(
d(j′, ℓ) + d(i1(j′), j′) + d(j′, ℓ) + d(i1(j′), j′)

)
≤ d(i1(j′), j′) + d(j′, ℓ).

Thus, in both cases we have

Lj′(ŷ′) ≤ d(i1(j′), j′) + d(j′, ℓ)
≤ d(i1(j′), j′) + 2γj′ (via Claim 15)

≤ 2
∑

i∈Gj′

d(i, j′)ŷi + 4γj′(1−
∑

i∈Gj′

ŷi) = Qj′(ŷ) (since ŷ(Gj′) = 1/2).

This finishes the case analysis and the proof. ◀

B Uniform Priority Matroid Median

The UniPMatMed problem is a special case of the PMatMed problem in which all clients
have the same radius value L. An instance J of the UniPMatMed problem can be described
using the tuple (F , C, d, f, L, a,M). We will abuse notation and interpret L as not only a
single radius value, but also as a vector from RC where each entry is L; this will allow us to
use our algorithm for PMatMed on instances of UniPMatMed.

In this section we show how we can take advantage of the uniform radius requirement to
improve upon the (21, 12)-approximation for PMatMed. In particular, since we have C̄j ≤ L

for all j ∈ C, we can pick points in filtering in order of their C̄j values and set ϕ(j) := C̄j

for Filter. This setting of ϕ will be compatible with the setting of λ(j) := min{L, 2C̄j}.
Furthermore, Filter with these ϕ and λ functions is identical to the filtering step in Kamiyama’s
algorithm [18]. Notice that these same settings for PMatMed, i.e. ϕ(j) := C̄j and λ :=
min{rj , 2C̄j}, are not necessarily compatible. The uniform radius constraint also help us to
derive tighter bounds throughout the radius analysis of the PMatMed algorithm.

Using the above observations, our algorithm for UniPMatMed is the following: Run
Algorithm 2 on UniPMatMed instance J , but in Line 0, set ϕ(j) := C̄j and λ(j) :=
min{rj , 2C̄j}. Thus, the only change in the algorithm is the filtering step. We argue that
this algorithm yields a better approximation algorithm for UniPMatMed.

▶ Theorem 29 (Theorem 2a). There is a (9, 8)-approximation algorithm for UniPMatMed.
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B.1 Cost and Radius Analysis for UniPMatMed
Since our algorithm for UniPMatMed only slightly differs from the one in Section 3, we omit
several proofs that would be identical. The only change to the cost analysis occurs in the
filtering stage (Section 3.1). In particular, we can derive a tighter bound than in Lemma 10.
This ultimately leads to the improved cost bound, shown in Theorem 31.

▶ Lemma 30. The following is true of J ′. (a) COST ′(x, y) ≤ COST (x, y). (b) Any
integer solution (x′, y′) for J ′ can be converted to an integer solution for J that incurs an
additional cost of at most 4 · COST (x, y).

Recall that (x̃, ỹ) is the final integeral solution output by the algorithm.

▶ Theorem 31. COST (x̃, ỹ) ≤ 8 · COST (x, y).

We now analyze the radius guarantee and outline the changes in the analysis. First, we
have the following lemma in place of Lemma 11 which also follows directly from Fact 9.

▶ Lemma 32. Let k ∈ C be assigned to j ∈ C after using the Filtering procedure (i.e.
k ∈ D(j)). Then, d(j, k) ≤ 2λ(k) ≤ 2L.

Since all radius values are equal, we do not need Lemma 18 to relate the radius values of
different clients. We do need to update Lemma 19 and Lemma 26. These updated lemmas
are given below.

▶ Lemma 33. Let k ∈ C and k ∈ D(j) for a cluster center j ∈ C. Then (a) d(j, i1(j)) ≤
λ(j) ≤ λ(k) ≤ L and (b) when j ∈ Cs d(j, i2(j)) ≤ ρj ≤ L and (c) when j ∈ Cb d(j, i2(j)) ≤
d(j, σ(j)) + d(i1(σ(j)), σ(j)) ≤ 3γj ≤ 3ρj ≤ 3L.

The reasoning for the preceding lemma is the same as Lemma 19, except L is used in
place of rj and rk values. This results in the following update to Lemma 26

▶ Lemma 34. Let j ∈ C. The final solution will open a facility i such that d(i, j) ≤ 7L.

Lemma 32 and Lemma 34 give us the following improved radius bound for the solution
output by the algorithm. This, along with Theorem 31, proves Theorem 29.

▶ Theorem 35. Let S be the output of the aforementioned approximation algorithm for
UniPMatMed. For all k ∈ C, d(k, S) ≤ 9L.

C Analysis for (36, 8)-approximation for PMatMed

In this section we show how to obtain a (36, 8)-approximate solution for PMatMed. Our
algorithm is as follows: Run Algorithm 2 on PMatMed instance I , but in Line 0, set
ϕ(j) := C̄j and λ(j) := 2C̄j . Clearly, ϕ and λ are compatible. Furthermore, notice that this
setting of ϕ is identical to that of our algorithm of UniPMatMed. Since cost analysis for the
filtering stage of UniPMatMed only uses ϕ (and not λ), Lemma 30 and Theorem 31 hold in
this case as well. This is the reason why the cost factor guarantee will be 8.

Though our setting for λ does not use radius values, from the PMatMed LP constraint,
∀j ∈ C, C̄j ≤ rj holds. Therefore, λ(j) = 2C̄j ≤ 2rj . Previous settings of λ (where
λ(j) := min{rj , 2C̄j}) made it so λ(j) ≤ rj . Thus the new setting of λ can lead to a
weakening of the radius guarantee. First, we formalize the above observation in Fact 36
which we will use to update the radius analysis of Section 3.

APPROX/RANDOM 2023
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▶ Fact 36. The following holds after Filter when ϕ(j) := C̄j and λ(j) := 2C̄j: (a) C̄j ≤ rj,
and hence λ(j) = 2C̄j ≤ 2rj, (b) ∀k ∈ D(j) d(j, k) ≤ 2λ(k) ≤ 4Ck ≤ 4rk.

The following updated lemmas now hold in place of their counterparts from Section 3.
The proofs for these results are identical to those from Section 3 up to certain bounds that
change due to the above fact and the subsequent lemmas. These changes occur whenever
definitions of ϕ and λ are used in the analysis, and the following lemmas will be invoked in
place of their counterparts from Section 3.

▶ Lemma 37 (Updated Lemma 11). Let k ∈ C be assigned to j ∈ C after using the Filtering
procedure (i.e. k ∈ D(j)). Then, d(j, k) ≤ 2λ(k) ≤ 4rk.

▶ Lemma 38 (Updated Lemma 18). For some k ∈ C, where k ∈ D(j), ρj ≤ 5rk.

▶ Lemma 39 (Updated Lemma 19). Let k ∈ C where k ∈ D(j) for j ∈ C. (a) d(j, i1(j)) ≤
λ(j) ≤ λ(k) ≤ 2rk, (b) when j ∈ Cs, d(j, i2(j)) ≤ ρj ≤ 5rk, and (c) when j ∈ Cb,
d(j, i2(j)) ≤ d(j, σ(j)) + d(i1(σ(j)), σ(j)) ≤ 3γj ≤ 3ρj ≤ 15rk.

▶ Lemma 40 (Updated Lemma 26). Let k ∈ C, where k ∈ D(j) for j ∈ C. The final solution
will open a facility i such that d(i, j) ≤ 32rk.

Finally, using Lemma 37 Lemma 40, along with Theorem 31, we get the following result.

▶ Theorem 41 (Theorem 1(b)). There is a (36, 8)-approximation algorithm for Priority
Matroid Median.
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