Approximation Algorithms for Directed Weighted Spanners

Elena Grigorescu
Department of Computer Science, Purdue University, West Lafayette, IN, USA

Nithish Kumar
Department of Computer Science, Purdue University, West Lafayette, IN, USA

Young-San Lin
Melbourne Business School, Australia

Abstract

In the pairwise weighted spanner problem, the input consists of a weighted directed graph on \(n \) vertices, where each edge is assigned both a cost and a length. Furthermore, we are given \(k \) terminal vertex pairs and a distance constraint for each pair. The goal is to find a minimum-cost subgraph in which the distance constraints are satisfied.

We study the weighted spanner problem, in which the edges have positive integral lengths of magnitudes that are polynomial in \(n \), while the costs are arbitrary non-negative rational numbers. Our results include the following in the classical offline setting:

- An \(\tilde{O}(n^{4/5+\varepsilon}) \)-approximation algorithm for the weighted pairwise spanner problem. When the edges have unit costs and lengths, the best previous algorithm gives an \(\tilde{O}(n^{3/5+\varepsilon}) \)-approximation, due to Chlamtác, Dinitz, Kortsarz, and Laekhanukit (Transactions on Algorithms, 2020).

- An \(\tilde{O}(n^{1/2+\varepsilon}) \)-approximation algorithm for the weighted spanner problem when the terminal pairs consist of all vertex pairs and the distances must be preserved exactly. When the edges have unit costs and arbitrary positive lengths, the best previous algorithm gives an \(\tilde{O}(n^{1/2}) \)-approximation for the all-pair spanner problem, due to Berman, Bhattacharyya, Makarychev, Raskhodnikova, and Yaroslavtsev (Information and Computation, 2013).

We also prove the first results for the weighted spanners in the online setting. Our results include the following:

- An \(\tilde{O}(k^{1/2+\varepsilon}) \)-competitive algorithm for the online weighted pairwise spanner problem. The state-of-the-art results are an \(\tilde{O}(n^{2/5}) \)-competitive algorithm when edges have unit costs and arbitrary positive lengths, and a \(\min\{\tilde{O}(k^{1/2+\varepsilon}), \tilde{O}(n^{2/3+\varepsilon})\} \)-competitive algorithm when edges have unit costs and lengths, due to Grigorescu, Lin, and Quanrud (APPROX, 2021).

- An \(\tilde{O}(k^{\varepsilon}) \)-competitive algorithm for the online weighted single-source (or single-sink) spanner problem. Without distance constraints, this problem is equivalent to the online directed Steiner tree problem. The best previous algorithm for online directed Steiner trees is an \(\tilde{O}(k^{\varepsilon}) \)-competitive algorithm, due to Chakrabarty, Ene, Krishnaswamy, and Panigrahi (SICOMP, 2018).

Our online results also imply efficient approximation algorithms for the corresponding offline problems. To the best of our knowledge, these are the first approximation (online) polynomial-time algorithms with sublinear approximation (competitive) ratios for the weighted spanner problems.

2012 ACM Subject Classification Theory of computation → Online algorithms; Theory of computation → Routing and network design problems; Theory of computation → Rounding techniques

Keywords and phrases directed weighted spanners, linear programming, junction tree

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2023.8

Category APPROX

Approximation Algorithms for Directed Weighted Spanners

Funding Elena Grigorescu: Supported in part by NSF CCF-1910659, NSF CCF-1910411, and NSF CCF-2228814.

Nithish Kumar: Supported in part by NSF CCF-1910411 and NSF CCF-2228814.

Acknowledgements We thank several anonymous reviewers for their valuable comments and suggestions that improved the quality of the writeup.

1 Introduction

We study a multi-commodity problem in directed graphs, which we call the pairwise weighted spanner problem. In this problem, we are given a directed simple graph $G = (V, E)$ with n vertices, and a set of k terminal pairs $D \subseteq V \times V$. Each edge $e \in E$ is associated with a cost given by the function $c : E \to \mathbb{R}_{\geq 0}$ and a length given by the function $\ell : E \to \mathbb{R}_{\geq 0}$. We say that the graph has unit lengths if $\ell(e) = 1$ (respectively, unit costs if $c(e) = 1$) for all $e \in E$.

Each pair $(s, t) \in D$ is associated with a target distance given by a function $\text{Dist} : D \to \mathbb{R}_{\geq 0}$. Let $H = (V(H), E(H))$ be a subgraph of G and $d_H(s, t)$ denote the distance from s to t in H, i.e., the total length of a shortest $s \sim t$ path of edges in $E(H)$. The cost of H is $\sum_{e \in E(H)} c(e)$. The goal is to find a minimum-cost subgraph H of G such that the distance from s to t is at most $\text{Dist}(s, t)$, namely, $d_H(s, t) \leq \text{Dist}(s, t)$ for each $(s, t) \in D$.

The pairwise weighted spanner problem captures many network connectivity problems and is motivated by common scenarios, such as constructing an electricity or an internet network, which requires not only cost minimization but also a delivery time tolerance for the demands. Each edge is thus associated with two “weights” in this setting: the cost and the delivery time. This general formulation has been studied under many variants: when the edges have general lengths and unit costs, one may ask for sparse subgraphs that exactly maintain pairwise distances, i.e., distance preservers, or for sparse subgraphs that approximately maintain pairwise distances, i.e., spanners; when the edges have general costs and unit lengths, one may ask for cheap subgraphs that maintain pairwise connectivity, i.e., Steiner forests. Spanners and distance preservers are well-studied objects, which have found applicability in domains such as distributed computation [7,49], data structures [4,55], routing schemes [20,47,50,52], approximate shortest paths [8,24,25], distance oracles [8,17,48], and property testing [6,11]. Similarly, Steiner forests have been studied in the context of multi-commodity network design [30,34], mechanism design and games [16,42,43,53], computational biology [40,51], and computational geometry [9,13].

A slightly more special case of the pairwise weighted spanner problem was originally proposed by Kortsarz [44] and Elkin and Peleg [27], where it was called the weighted s-spanner problem. The precise goal in [27,44] is to find a minimum-cost subgraph that connects all the pairs of vertices in G, and each $\text{Dist}(s, t) = s \cdot d_G(s, t)$ for some integer s called the stretch of the spanner. The work of [27] presents a comprehensive list of inapproximability results for different variants of sparse s-spanners. Even in the special case where edges have unit costs (i.e., the directed s-spanner problem defined below), the problem is hard to approximate within a factor of $O(2^{\log^{1-\varepsilon} n})$ unless $NP \subseteq DTIME(n^{\text{polylog } n})$.

In the case when the edges have unit costs, the weighted s-spanner problem is called the directed s-spanner problem. For low-stretch spanners, when $s = 2$, there is a tight $\Theta(\log n)$-approximate algorithm [26,44]; with unit lengths and costs, when $s = 3, 4$, there are $\tilde{O}(n^{1/3})$-approximation algorithms [10,23]. For $s > 4$ with general lengths, the best known approximation is $\tilde{O}(n^{1/2})$ [10].

The pairwise spanner problem considers graphs with unit edge costs, D can be any subset of $V \times V$, and the target distances are general. The state-of-the-art is $\tilde{O}(n^{3/5})$-approximate for general lengths [33] and $\min\{\tilde{O}(k^{1/2+\varepsilon}), \tilde{O}(n^{3/5+\varepsilon})\}$-approximation for unit lengths [19,33].
When the target distances are infinite and the edges have unit lengths, the pairwise weighted spanner problem captures the directed Steiner forest problem. For the directed Steiner forest problem, there is an \(\min\{O(k^{1/2+\varepsilon}), O(n^{2/3+\varepsilon})\} \)-approximate algorithm for general costs [10,18] and an \(\tilde{O}(n^{4/7}) \)-approximate algorithm for unit costs [1].

1.1 Our contributions

1.1.1 Pairwise weighted spanners

To the best of our knowledge, none of the variants studied in the literature gives efficient sublinear-factor approximation algorithms for the pairwise weighted spanner problem, even in the case of unit edge length. Our main result for pairwise weighted spanners is stated as follows and proved in Section 2.

Definition 1 (Pairwise Weighted Spanner).

Instance: A directed graph \(G = (V,E) \) with \(n \) vertices and edge costs \(c : E \to \mathbb{Q}_{\geq 0} \), edge lengths \(\ell : E \to \{1,2,3,...,\text{poly}(n)\} \), and a set \(D \subseteq V \times V \) of vertex pairs and their corresponding pairwise distance bounds \(\text{Dist} : D \to \mathbb{Q}_{\geq 0} \) (where \(\text{Dist}(s,t) \geq d_G(s,t) \)) for every terminal pair \((s,t) \in D \).

Objective: Find a min-cost subgraph \(H \) of \(G \) such that \(d_H(s,t) \leq \text{Dist}(s,t) \) for all \((s,t) \in D \).

Theorem 2. For any constant \(\varepsilon > 0 \), there is a polynomial-time randomized algorithm for Pairwise Weighted Spanner with approximation ratio \(\tilde{O}(n^{4/5+\varepsilon}) \), which succeeds in resolving all pairs in \(D \) with high probability.\(^2\)

The Pairwise Weighted Spanner problem is equivalent to the problem of finding a minimum-cost Steiner forest under pairwise distance constraints, and hence our result is the first polynomial-time \(o(n) \)-approximate algorithm for the directed Steiner forests with distance constraints. This problem is hard to approximate within a factor of \(O(2^{\log^{1-\varepsilon} n}) \) unless \(NP \subseteq \text{DTIME}(n^{\text{polylog} n}) \) even for the special case when all vertex pairs are required to be connected and the stretch \(s \geq 5 \) [44].

1.1.2 All-pair weighted distance preservers

When the target distances are the distances in the given graph \(G \), the spanner problem captures the distance preserver problem. When edges have unit costs, there exists a distance preserver of cost \(O(n) \) if the number of the source vertices is \(O(n^{1/3}) \) [12]. When edges have unit costs and lengths, the state-of-the-art result is \(\tilde{O}(n^{3/5+\varepsilon}) \)-approximate [19]. We consider the case where the terminal set consists of all vertex pairs and the subgraph is required to preserve the distances of all vertex pairs. This problem is called All-pair Weighted Distance Preserver. We prove the following in Section 3.

Definition 3 (All-pair Weighted Distance Preserver).

Instance: A directed graph \(G = (V,E) \) with edge costs \(c : E \to \mathbb{Q}_{\geq 0} \), edge lengths \(\ell : E \to \{1,2,3,...,\text{poly}(n)\} \).

Objective: Find a min-cost subgraph \(H \) of \(G \) such that \(d_H(s,t) = d_G(s,t) \), for all \((s,t) \in V \times V \).

\(^2\) Throughout our discussion, when we say high probability we mean probability at least \(1 - 1/n \).
Theorem 4. For any constant $\varepsilon > 0$, there is a polynomial-time randomized algorithm for All-pair Weighted Distance Preserver with approximation ratio $\tilde{O}(n^{1/2+\varepsilon})$, which succeeds in resolving all pairs in $V \times V$ with high probability.

Beside distance preservers, there are other previous special-case results for the all-pair weighted spanner problem. When edges have unit costs, the state-of-the-art is an $O(n^{1/2})$-approximation algorithm [10]. When there are no distance constraints, this problem is termed the minimum strongly connected subgraph problem and is equivalent to the all-pair Steiner forest problem. This problem is NP-hard and does not admit a polynomial-time approximation scheme if $NP \neq P$ [39]. The best algorithm is a $3/2$-approximation [54].

1.1.3 Online weighted spanners

Next, we turn to online weighted spanners. In the online problem, the directed graph, the edge lengths, and the edge costs are given offline. The vertex pairs and the corresponding target distances arrive one at a time, in an online fashion, at each time stamp. The algorithm must irrevocably select edges at each time stamp and the goal is to minimize the cost, subject to the target distance constraints. We call this problem the Online Pairwise Weighted Spanner problem. For notation convenience, the vertex pair (s_i, t_i) denotes the i-th pair that arrives online.

Definition 5 (Online Pairwise Weighted Spanner).

Instance: A directed graph $G = (V, E)$ with edge costs $c : E \rightarrow \mathbb{Q}_{\geq 0}$, edge lengths $\ell : E \rightarrow \{1, 2, 3, ..., \text{poly}(n)\}$, and vertex pairs $D = \{(s_i, t_i) \in V \times V \mid i \in [k]\}$ (k is unknown) with their corresponding pairwise distance bounds $\text{Dist}(s_i, t_i) \in \mathbb{Q}_{\geq 0}$ (where $\text{Dist}(s_i, t_i) \geq d_G(s_i, t_i)$) arrive online one at a time.

Objective: Upon the arrival of (s_i, t_i) with $\text{Dist}(s_i, t_i)$, construct a min-cost subgraph H of G such that $d_H(s_i, t_i) \leq \text{Dist}(s_i, t_i)$ by irrevocably adding edges from E.

The performance of an online algorithm is measured by its competitive ratio, namely the ratio between the cost of the online solution and that of an optimal offline solution. With unit edge costs, the best algorithm is $O(n^{4/3})$-competitive: with unit edge costs and lengths, the state-of-the-art is $\min\{O(k^{1/2+\varepsilon}), \tilde{O}(n^{2/3+\varepsilon})\}$-competitive [33]. Our result for Online Pairwise Weighted Spanner is stated as follows and proved in Section 4.

Theorem 6. For any constant $\varepsilon > 0$, there is a polynomial-time randomized online algorithm for Online Pairwise Weighted Spanner with competitive ratio $\tilde{O}(k^{1/2+\varepsilon})$, which succeeds in resolving all pairs in D with high probability.

In a special case of Pairwise Weighted Spanner where the source vertex $s \in V$ is fixed, we call this problem Single-source Weighted Spanner. Without distance constraints, this problem is equivalent to the directed Steiner tree problem. The best algorithm for the directed Steiner tree problem is $O(k^2)$-approximate [15].

Definition 7 (Single-source Weighted Spanner).

Instance: A directed graph $G = (V, E)$ with edge costs $c : E \rightarrow \mathbb{Q}_{\geq 0}$, edge lengths $\ell : E \rightarrow \{1, 2, 3, ..., \text{poly}(n)\}$, and a set $D \subseteq \{s\} \times V$ of vertex pairs and their corresponding pairwise distance bounds $\text{Dist} : D \rightarrow \mathbb{Q}_{\geq 0}$ (where $\text{Dist}(s, t) \geq d_G(s, t)$) for every terminal pair $(s, t) \in D$.

Objective: Find a min-cost subgraph H of G such that $d_H(s, t) \leq \text{Dist}(s, t)$ for all $(s, t) \in D$.

3 Throughout the paper, the term without distance constraints means that the target distances are infinity. This is equivalent to the connectivity problem.
When $D \subseteq \{s\} \times V$, a single-source weighted spanner connects s to the sinks. We say that s is the root of the single-source weighted spanner and the single-source weighted spanner is rooted at s. The definition for a single-sink weighted spanner where the terminal pairs share the same sink is defined similarly.

The online version of Single-source Weighted Spanner is termed Online Single-source Weighted Spanner. For notation convenience, the vertex pair (s,t_i) denotes the i-th pair that arrives online.

▶ **Definition 8 (Online Single-source Weighted Spanner).**

Instance: A directed graph $G = (V,E)$ with edge costs $c : E \to \mathbb{Q}_{\geq 0}$, edge lengths $\ell : E \to \{1, 2, 3, ..., \text{poly}(n)\}$, and vertex pairs $D = \{(s,t_i) \mid t_i \in V, i \in [k]\}$ (k is unknown) with their corresponding pairwise distance bounds $\text{Dist}(s,t_i) \in \mathbb{Q}_{\geq 0}$ (where $\text{Dist}(s,t_i) \geq d_G(s,t_i)$) arrive online one at a time.

Objective: Upon the arrival of (s,t_i) with $\text{Dist}(s,t_i)$, construct a min-cost subgraph H of G such that $d_H(s,t_i) \leq \text{Dist}(s,t_i)$ by irrevocably selecting edges from E.

The state-of-the-art result for online directed Steiner trees is $\tilde{O}(k^{1/2+\varepsilon})$-competitive implied by a more general online buy-at-bulk network design framework [14]. Our result is stated as follows and proved in Section 4.

▶ **Theorem 9.** For any constant $\varepsilon > 0$, there is a polynomial-time randomized online algorithm for Online Single-source Weighted Spanner with approximation ratio $\tilde{O}(k^{\varepsilon})$, which succeeds in resolving all pairs in D with high probability.

Our online framework essentially generalizes the online Steiner forest problem by allowing distance constraints when edge lengths are positive integers of magnitude $\text{poly}(n)$. We note that the online algorithms also imply efficient algorithms for the corresponding offline problems with the same approximation ratios.

1.1.4 Summary

We summarize our main results for weighted spanners in Table 1 by listing the approximation (competitive) ratios and contrast them with the corresponding known approximation (competitive) ratios. We note that offline $\tilde{O}(k^{1/2+\varepsilon})$-approximate Pairwise Weighted Spanner and offline $\tilde{O}(k^{\varepsilon})$-approximate Single-source Weighted Spanner can be obtained by our online algorithms.

1.2 High-level technical overview

Most of the literature on approximation algorithms for offline spanner problems [10, 11, 19, 21, 28, 33] partition the terminal pairs into two types: thin or thick. A pair $(s,t) \in D$ is thin if the graph $G^{s,t}$ induced by feasible $s \leadsto t$ paths has a small number of vertices, and thick otherwise. To connect each thick terminal pair (s,t), it is sufficient to sample vertices from the graph G to hit $G^{s,t}$, and then add shortest-path in-and-out-arborescences rooted at the sampled vertices. To connect each thin terminal pair (s,t), one uses a flow-based linear program (LP) and then rounds the solution.

1.2.1 Pairwise Weighted Spanners

For this problem, the goal is to approximately minimize the total cost while maintaining the required distances between terminal pairs, so it turns out that the approach for directed Steiner forests [10, 28] is more amenable to this formulation. The approach for directed
Table 1 Summary of the approximation and competitive ratios. Here, n refers to the number of vertices and k refers to the number of terminal pairs. All edge lengths are positive integers in $\text{poly}(n)$ and all edge costs are non-negative rational numbers. We note that **Pairwise Weighted Spanner** without distance constraints is equivalent to the directed Steiner forest problem. The all-pair weighted spanner problem without distance constraints is equivalent to the all-pair Steiner forest problem or the minimum strongly connected subgraph problem.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Our Results</th>
<th>Previous Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pairwise Weighted Spanner</td>
<td>$\tilde{O}(n^{4/5+\varepsilon})$ (Thm 2)</td>
<td>$O(n^{2/3+\varepsilon})$ (unit edge costs) [33]</td>
</tr>
<tr>
<td></td>
<td>$\tilde{O}(k^{1/2+\varepsilon})$ (Thm 6)</td>
<td>$O(n^{3/5+\varepsilon})$ (unit edge costs and lengths) [19]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\min{\tilde{O}(k^{1/2+\varepsilon}), \tilde{O}(n^{2/3+\varepsilon})}$ (without distance constraints) [10,18]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\tilde{O}(n^{4/7+\varepsilon})$ (unit edge costs and lengths, without distance constraints) [1]</td>
</tr>
<tr>
<td>All-pair Weighted Spanner</td>
<td>$\tilde{O}(n^{1/2+\varepsilon})$ (distance preservers, Thm 4)</td>
<td>$O(n^{1/2})$ (unit edge costs) [10]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$3/2$ (without distance constraints) [54]</td>
</tr>
<tr>
<td>Online Pairwise Weighted Spanner</td>
<td>$\tilde{O}(k^{1/2+\varepsilon})$ (Thm 6)</td>
<td>$\tilde{O}(n^{4/5})$ (unit edge costs) [33]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\min{\tilde{O}(k^{1/2+\varepsilon}), \tilde{O}(n^{2/3+\varepsilon})}$ (unit edge costs and lengths) [33]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\tilde{O}(k^{1/2+\varepsilon})$ (without distance constraints) [14]</td>
</tr>
<tr>
<td>Single-Source Weighted Spanner</td>
<td>$O(k^{\varepsilon})$ (also holds for online, Thm 9)</td>
<td>$O(k^{\varepsilon})$ (without distance constraints) [15]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$O(k^{\varepsilon})$ (online, without distance constraints) [14]</td>
</tr>
</tbody>
</table>

Steiner forests [10,28] is slightly different, namely, thick pairs are connected by adding cheap paths that contain at least one sampled vertex. In the Steiner forest algorithms, there are usually three cases for the terminal pairs: 1) pairs that are thick and have low-cost connecting paths, 2) the majority of the remaining pairs have high-cost connecting paths, and 3) the majority of the remaining pairs have low-cost connecting paths.

With distance constraints, we have to modify the analysis for all three cases. The actual implementation of the strategy requires several new ideas and it significantly departs from the analysis of [10,28] in several aspects, as we describe below.

In our first case, we cannot simply add cheap paths because they might violate the distance requirement. Instead, we add feasible cheap paths that satisfy the distance requirements, in order to connect the terminal pairs. For this purpose, we use the restricted shortest path FPTAS from [37,45] as our subroutine.

The remaining two cases are resolved by using an iterative greedy algorithm based on a density argument. In each iteration, the greedy algorithm constructs a partial solution $E' \subseteq E$ with low density. We define the density of E' to be the ratio of the total edge cost of E' to the number of pairs connected by E'. Iteratively adding low-density partial solutions leads to a global solution of approximately minimum cost.

In the second case, [10,28] use the low-density junction trees (the union of an in-arboresence and an out-arboresence rooted at the same vertex) from [18] in order to connect pairs with high-cost paths. However, the junction tree approximation in [18] cannot handle the distance constraints in our setting. Fortunately, with slight modifications, the junction tree approximation from [19] can be made to handle our distance requirements.

In the third case, [10,28] formulate an LP where each edge has an indicator variable, then round the LP solution, and argue that with high probability, one can obtain a low-density partial solution that connects the terminal pairs with cheap paths. Two challenges arise...
in our setting. First, the LP formulation is different from the one in [10, 28] because we have to handle both distance and cost requirements. We resolve these constraints by using a different separation oracle from the previous literature [37, 45], namely we use the FPTAS for the resource-constrained shortest path problem from [38] (see Section A.1 for more details).

Secondly, in order to round the LP solution, we can no longer use the analysis in [10]. This is because the LP rounding scheme uses a union bound that depends on the number of the minimal subset of edges whose removal disconnects the terminal pairs (i.e., anti-spanners). Since we have to handle both lengths and costs in the LP constraints, we consider all possible subsets of edges and this is sufficient to achieve the $\tilde{O}(n^{4/5+\varepsilon})$-approximation.

1.2.2 All-pair Weighted Distance Preservers

For this problem, the solution takes advantage of the requirement that we have to exactly preserve the all-pair distances. It turns out that the strategy for the spanner problems [10, 11, 19, 21, 33] is more amenable. Recall that terminal pairs are either thin or thick.

To settle thick terminal pairs, most of the previous work that considers graphs with unit edge cost samples vertices from the graph G to hit $G^{s,t}$, and then adds shortest-path in-and-out-arborescences rooted at the sampled vertices. Note that the cost of an in-arborescence or an out-arborescence is always $n-1$. However, with edge costs, it is not clear how the cheapest shortest-path in-and-out arborescences can be obtained. Instead, we add cheap single-source and single-sink weighted distance preservers rooted at the sampled vertices. This approach requires using the algorithm for Online Single-source Weighted Spanner described in details in Section 4. The key observation is that the terminal pairs of any single-source (single-sink) weighted distance preserver is a subset of all vertex pairs. This implies that any approximately optimal single-source (single-sink) weighted distance preserver must be cheap compared to the cost of the optimal all-pair weighted distance preserver.

The approach that settles the thin pairs closely follows the algorithm in [10], which rounds a fractional solution of the LP for all-pair spanners. Different from Pairwise Weighted Spanner, we only have to handle the lengths in the LP constraints, so the analysis follows [10] and we can get a better approximation ratio. Ultimately, the costs for settling thick and thin pairs are both at most an $O(n^{1/2+\varepsilon})$ factor of the optimal solution.

1.2.3 Online Weighted Spanners

The main challenge for the online pairwise weighted spanner problem is that the standard greedy approach, which iteratively extracts low-density greedy solutions partially connecting terminal pairs, is no longer applicable. Another challenge is to handle the distance constraints for the terminal pairs that arrive online. Fortunately, the online spanner framework from [33] already adapts both the approach introduced in [14], which constructs a collection of junction trees in an online fashion, and the approach of [19], which judiciously handles distance constraints when edges have unit lengths. Our online results are obtained by extending the framework of [33] from graphs with unit edge costs to general edge costs.

1.3 Organization

In Section 2, we present the $\tilde{O}(n^{4/5+\varepsilon})$-approximation algorithm for Pairwise Weighted Spanner. In Section 3, we present the $\tilde{O}(n^{1/2+\varepsilon})$-approximation algorithm for All-pair Weighted Distance Preserver. In Section 4, we present the $\tilde{O}(k^{1/2+\varepsilon})$-competitive algorithm for Online Pairwise Weighted Spanner and the $\tilde{O}(k^{\varepsilon})$-competitive algorithm for Online Single-source Weighted Spanner. We refer the reader to Appendix A for a detailed description of related work and Appendix C for the concluding remarks.
2 Pairwise Weighted Spanners

In this section, we prove Theorem 2. For ease of presentation, we assume that we have a guess for the cost of the optimal solution - OPT for that instance as in [10,28]. Let \(\tau \) denote the value of our guess. We set \(\tau_0 = \min_{e \in E} \{c(e) \mid c(e) > 0\} \); then we carry out multiple iterations of our overall procedure setting \(\tau \) to be equal to an element in \(\{\tau_0, 2 \cdot \tau_0, 4 \cdot \tau_0, \ldots, 2^i \cdot \tau, \ldots, \sum_{e \in E} c(e)\} \) for those iterations. Finally, we take the cheapest spanner from across all these iterations. Thus, it is sufficient to give the approximation guarantee for the iteration when \(\text{OPT} \leq \tau \leq 2 \cdot \text{OPT} \). We can obtain this guess in \(O(\log(\sum_{e \in E} c(e) / \tau_0)) \) iterations, which is polynomial in the input size.

We define some notions commonly used in the spanner and Steiner forest literature. Fix some parameters \(\beta = n^{4/5} \) and \(L = \tau / n^{4/5} \). We say that a path \(p(s, t) \) that connects a specific terminal pair \((s, t) \) is feasible if \(\sum_{e \in p(s, t)} c(e) \leq \text{Dist}(s, t) \). We say that \(p(s, t) \) is cheap if the \(\sum_{e \in p(s, t)} c(e) \leq L \). We say that a terminal pair \((s, t) \in D \) is thick if the local graph \(G^{s,t} = (V^{s,t}, E^{s,t}) \) induced by the vertices on feasible \(s \rightsquigarrow t \) paths of cost at most \(L \) has at least \(n / \beta \) vertices; we say it is thin otherwise. We note that the definitions of thick and thin pairs are slightly different from how they are defined in [10,28]. We say that a set \(E' \subseteq E \) settles (or resolves) a pair \((s, t) \in D \) if the subgraph \((V, E') \) contains a feasible \(s \rightsquigarrow t \) path.

2.1 Resolving thick pairs

Let \(S = \{s \mid \exists t : (s, t) \in D\} \) and \(T = \{t \mid \exists s : (s, t) \in D\} \). We first settle the thick pairs with high probability. We do this by sampling some vertices using Algorithm 1 and then adding some incoming paths and outgoing paths from the samples to the vertices in \(S \) and \(T \) respectively using Algorithm 2. We ensure that any path we build is both feasible and cheap and we do that with the help of a black box for the Restricted Shortest Path problem.

\begin{algorithm}
\caption{Sample(G(V, E)).}
1: \(R \leftarrow \phi \), \(k \leftarrow 3\beta \ln n \).
2: Sample \(k \) vertices independently and uniformly at random and store them in the set \(R \).
3: \text{return} \(R \).
\end{algorithm}

\(\triangleright \) Claim 10. Algorithm 1 selects a set of samples \(R \) such that with high probability any given thick pair \((s, t) \) has at least one vertex from its local graph in \(R \).

In Algorithm 2, we call Algorithm 1 to get a set of samples \(R \). For each \(u \in R, s \in S, t \in T \), we try to add a shortest \(s \rightsquigarrow u \) path and a shortest \(u \rightsquigarrow v \) path each of cost at most \(L \).

For this purpose, we use the restricted shortest path (bi-criteria path) problem from [45].

\(\triangleright \) Definition 11 (Restricted Shortest Path).

\textbf{Instance:} A directed graph \(G = (V, E) \), edge lengths \(\ell : E \rightarrow \mathbb{R}_{\geq 0} \), edge costs \(c : E \rightarrow \mathbb{R}_{\geq 0} \), a vertex pair \((s, t) \in V \times V \), and a threshold \(T \in \mathbb{R}_{\geq 0} \).

\textbf{Objective:} Find a minimum cost \(s \rightsquigarrow t \) path \(P \) such that \(\sum_{e \in P} \ell(e) \leq T \).

The following lemma from [37,45] gives an FPTAS for Restricted Shortest Path.

\(\triangleright \) Lemma 12 ([37,45]). There exists an FPTAS for Restricted Shortest Path that gives a \((1 + \varepsilon, 1)\) approximation, i.e., the path ensures that \(\sum_{e \in P} \ell(e) \leq T \) and has a cost at most \(1 + \varepsilon \) times the optimal.
Using Lemma 12 as our black box, we binary search for a path of length between $\min_{e \in E} \{\ell(e)\}$ and $n \cdot \max_{e \in E} \{\ell(e)\}$ that will give us a cheap $s \sim u$ path. Since the edge lengths and thus the path lengths are all integers, this is possible in $O(\log(n \cdot \max_{e \in E} \{\ell(e)\}))$ iterations which is polynomial in the input size. It is possible that we never find an $s \sim u$ path of cost less than L, in which case we just ignore this (s, u) pair. We then do the same for all the (u, t) pairs. See the full details in Algorithm 2.

\textbf{Algorithm 2} Thick pairs resolver $(G(V, E), \{\ell(e), c(e)\}_{e \in E})$.

1: $R \leftarrow \phi$, $G' \leftarrow \phi$.
2: $R \leftarrow \text{Sample}(G(V, E))$.
3: for $u \in R$ do
4: \hspace{1em} for $s \in S$ do
5: \hspace{2em} Use RSP to find the shortest $s \sim u$ path of cost at most $L \cdot (1 + \varepsilon)$ and add it to G'.
6: end for
7: end for
8: Use RSP to find the shortest $u \sim t$ path of cost at most $L \cdot (1 + \varepsilon)$ and add it to G'.
9: return G'

\textbf{Lemma 13.} With high probability, the set of edges returned by Algorithm 2 resolves all thick pairs in D with a total cost $\tilde{O}(n^{5/5} \cdot \tau)$. Moreover, Algorithm 2 runs in polynomial time.

\textbf{Proof.} If some $u \in R$ was originally in the local graph $G^{s,t}$, then Algorithm 2 would have added at least one $s \sim u \sim t$ path from $G^{s,t}$ that is feasible and has cost less than $2L(1 + \varepsilon)$. This is because if u was in the local graph of (s, t), then there exists an $s \sim u$ path of cost less than L of some length $\ell \in [n \cdot \max_{e \in E} \{\ell(e)\}]$. Since we binary search over the possible values for ℓ and take the lowest possible one, we will find such a path with distance at most the minimum length of an $s \sim t$ path that is cheap. Note that we could have a smaller distance because we use a larger bound for cost for our path in comparison to the local graph. Using Claim 10, such a cheap and feasible path will exist with a high probability for all $(s, t) \in D$ that are thick for some samples $u \in R$.

Now we analyze the cost of Algorithm 2. The cost from all the edges we add in Algorithm 2 would be $O(n \cdot k \cdot L)$. This is because we pick k samples and each of them needs to add an incoming and outgoing path of cost $L(1 + \varepsilon)$ to at most n vertices. Plugging in the values for k and L, we can see that the total cost would be $\tilde{O}(n^{4/5} \cdot \tau)$. In addition, note that Algorithm 2 will run in polynomial time because our binary search only needs to search the integers in $[\min_{e \in E} \{\ell(e)\}, n \cdot \max_{e \in E} \{\ell(e)\}]$.\footnote{Note that Algorithm 2 will still run in polynomial-time if we use an exhaustive search instead of a binary search since the edge lengths are in $\text{poly}(n)$.}

\subsection{2.2 Resolving thin pairs}

Now we focus on the thin pairs after removing the settled thick pairs from the set D. The density of a set of edges E' is the ratio of the total cost of E' to the number of pairs settled by E'. We first describe how to efficiently construct a subset K of edges with density $\tilde{O}(n^{3/5 + \varepsilon} \cdot \tau / |D|)$. Then we iteratively find edge sets with that density, remove the pairs, and repeat until we resolve all thin pairs. This gives a total cost of $\tilde{O}(n^{3/5 + \varepsilon} \cdot \tau)$. We construct K by building two other sets K_1 and K_2 and picking the smaller density of them. Let H be
an optimal solution with cost τ. Let C be the set of demand pairs for which the minimum cost of a feasible $s \sim t$ path in H is at least L (note that the local graph for these pairs would be empty). We have two cases: 1) $|D|/2 \leq |C| \leq |D|$ and 2) $0 \leq |C| < |D|/2$.

2.2.1 When $|D|/2 \leq |C| \leq |D|$

We will use the notion of junction tree as a black box for resolving this case. Informally, junction trees are trees that satisfy significant demand at low cost. They have a root node r, a collection of paths into r, and paths out of r to satisfy some of this demand. In our case, we also need these paths to be cheap and short. The following is a formal definition of a junction tree variant that fits the needs of our problem.

Definition 14 (Distance-preserving Weighted Junction Tree). Let $G = (V, E)$ be a directed graph with edge lengths $t : E \rightarrow \mathbb{R}_{\geq 0}$, edge costs $c : E \rightarrow \mathbb{R}_{\geq 0}$, and a set $D \subseteq V \times V$ of ordered pairs and their corresponding pairwise distance bounds $\text{Dist} : D \rightarrow \mathbb{R}$ (where $\text{Dist}(s, t) \geq d_G(s, t)$ for every terminal pair $(s, t) \in D$), and a root $r \in V$. We define distance-preserving weighted junction tree to be a subgraph H of G that is a union of an in-arborescences and an out-arborescences both rooted at r containing an $s \sim t$ path going through the root r of length at most $\text{Dist}(s, t)$, for one or more $(s, t) \in D$.

The density of a junction tree is defined as the ratio of the sum of costs of all edges in the junction tree to the number of pairs settled by the junction tree.

Claim 15. If $|D|/2 \leq |C| \leq |D|$, then there exists a distance-preserving weighted junction tree of density $O\left(n^{4/5} \cdot \tau/|D|\right)$.

Proof. Let H be an optimal solution subgraph of G that connects all the costly thin pairs. Take the paths in H connecting the pairs in C. The sum of the costs of all such paths is at least $|C|/L$. Now, let μ be the maximum number of these paths that any edge in G belongs to. The sum of the costs of the paths is at most $\mu \cdot \tau$ and thus there must exist an edge belonging to $\mu \geq |C|/L \cdot \tau$ paths. Pick such an arbitrary edge and call it the heavy-enough edge, and call its source as the heavy-enough vertex, denoted h_v. Now, consider a tree made by adding feasible paths from $s \in S$ to h_v and h_v to $t \in T$ that satisfies at least μ pairs. We do not add an edge if it is not in H. This ensures that the cost of this tree is less than τ. This tree would connect at least μ pairs, and thus it would have a density at most $\tau/\mu = \tau^2/|C|L$. If $L = \tau/n^{4/5}$, then $\tau^2/|C|L = n^{4/5} \cdot \tau/|C|$. If $|D| > |C| > |D|/2$, we have $n^{4/5} \cdot \tau/|C| = O\left(n^{4/5} \cdot \tau/|D|\right)$. We have proved the existence of a junction tree of the required density.

The following lemma is essentially from [19] (Theorem 5.1). But the small yet important modifications that we need are not covered in [19]. We refer the reader to the full version [32] for the complete proof.

Lemma 16. For any constant $\varepsilon > 0$, there is a polynomial-time approximation algorithm for the minimum density distance-preserving junction tree as long as the edge lengths are integral and polynomial in n. In other words, there is a polynomial time algorithm which, given a weighted directed n vertex graph $G = (V, E)$ where each edge $e \in E$ has a cost $c(e) \in \mathbb{R}_{\geq 0}$ and integral length $t(e) \in \{1, 2, \ldots, \text{poly}(n)\}$, terminal pairs $P \subseteq V \times V$, and distance bounds $\text{Dist} : P \rightarrow \mathbb{N}$ (where $\text{Dist}(s, t) \geq d_G(s, t)$) for every terminal pair $(s, t) \in P$, approximates the following problem to within an $O(n^\varepsilon)$ factor:
Find a non-empty set of edges $F \subseteq E$ minimizing the ratio:

\[
\min_{r \in V} \frac{\sum_{e \in F} c(e)}{|\{(s, t) \in P | d_{F, r}(s, t) \leq \text{Dist}(s, t)\}|}
\]

where $d_{F, r}(s, t)$ is the length of the shortest path using edges in F which connects s to t while going through r (if such a path exists).

Lemma 17. When $|D|/2 \leq |C| \leq |D|$, we can get a set of edges K_1 that has density at most $\tilde{O}(n^{4/5+\varepsilon} \cdot \tau/|D|)$

Proof. From Claim 15, there exists a distance-preserving weighted junction tree of density at most $O(n^{4/5} \cdot \tau/|D|)$. We use Lemma 16 to get a distance-preserving weighted junction tree with density at most $\tilde{O}(n^{4/5+\varepsilon} \cdot \tau/|D|)$ and store the edges returned by it in K_1.

2.2.2 When $0 \leq |C| < |D|/2$

To handle this case, we build a linear program (LP) that fits our problem’s requirements, solve it approximately with the help of a separation oracle, and finally round it to get a set of edges with density $\tilde{O}(n^{4/5+\varepsilon} \cdot \tau/|D|)$. The linear program is quite similar to the one used in [10,28], but it has a subtle distinction that significantly changes the tools and proof techniques we have to use. We will be referring to [28] quite frequently in this section because [10] does not directly present a way to solve the LP (it relies on [28] for this).

2.2.2.1 Building and solving the linear program

We will need the following definition in order to set up a relevant LP. For $(s, t) \in D$, let $\Pi(s, t)$ be the set of all feasible $s \rightsquigarrow t$ paths of cost at most L, and let $\Pi = \cup_{(s, t) \in D} \Pi(s, t)$. Each edge e has a capacity x_e, each path $p \in \Pi$ carries f_p units of flow, and $y_{s,t}$ is the total flow through all paths from s to t. Define a linear program as follows:

\[
\min \sum_{e \in E} c(e) \cdot x_e
\]

subject to

\[
\sum_{(s, t) \in D} y_{s,t} \geq \frac{|D|}{2},
\]

\[
\sum_{\Pi(s, t) \ni p \ni e} f_p \leq x_e \quad \forall (s, t) \in D, e \in E, \tag{2}
\]

\[
\sum_{p \in \Pi(s, t)} f_p = y_{s,t} \quad \forall (s, t) \in D,
\]

\[
0 \leq y_{s,t}, f_p, x_e \leq 1 \quad \forall (s, t) \in D, p \in \Pi, e \in E.
\]

LP (2) tries to connect at least $|D|/2$ pairs from D using paths of cost at most L while minimizing the total cost of the used edges. It is almost identical to the corresponding LP in [10,28] for Steiner forests, except that we consider only feasible paths that are cheaper than L, while they consider all paths that are cheaper than L. The crucial part of our approach is the use of an FPTAS for the Restricted Shortest Path problem, which served as an approximate separation oracle for the dual program. The proof of the following lemma is provided in Appendix B.1.

Lemma 18. Let OPT be the optimal value of an instance of Pairwise Weighted Spanner. Then, the optimal value of LP (2) corresponding to that instance is at most OPT. In addition, a solution for LP (2) of value at most $(1 + \varepsilon) \cdot OPT$ can be found in polynomial time.
2.2.2.2 Rounding our solution

Now we need to round the solution of LP (2) appropriately to decide which edges we need to include in our final solution. The overall structure of our rounding procedure is similar to that of [10], but there are some important differences in the proof techniques we use here because of the nature of our problem prevents us from using some of the techniques used by [10]. Let \(\{\hat{x}_e\} \cup \{\hat{y}_{s,t}\} \) be a feasible approximate solution to LP (2). Let \(K_2 \) be the set of edges obtained by running Algorithm 3 on \(\{\hat{x}_e\} \).

\begin{algorithm}
1: \(E'' \leftarrow \phi \).
2: for \(e \in E \) do
3: Add \(e \) to \(K_2 \) with probability \(\min\{\frac{n^{4/5} \ln n \cdot x_e}{s}, 1\} \);
4: return \(E'' \)
\end{algorithm}

The following lemma is an adaptation of Claim 2.3 from [10].

\[\text{Claim 19. Let } A \subseteq E. \text{ If Algorithm 3 receives a fractional vector } \{\hat{x}_e\} \text{ with nonnegative entries satisfying } \sum_{e \in A} \hat{x}_e \geq 2/5, \text{ the probability that it outputs a set } E'' \text{ disjoint from } A \text{ is at most } \exp(-2n^{4/5} / n \ln n) \text{.} \]

Proof. If \(A \) contains an edge \(e \) which has \(\hat{x}_e \geq 1/(n^{4/5} \ln n) \), then \(e \) is definitely included in \(E'' \). Otherwise, the probability that no edge in \(A \) is included in \(E'' \) is

\[\prod_{e \in A} (1 - n^{4/5} \ln n \cdot \hat{x}_e) \leq \exp\left(-\sum_{e \in A} n^{4/5} \ln n \cdot \hat{x}_e\right) \leq \exp\left(-\frac{2}{5} n^{4/5} \ln n\right). \]

Let us now define anti-spanners which serve as a useful tool to analyze the rounding algorithm for our LP. Our definition of anti-spanners is slightly different from Definition 2.4 in [10] to account for the fact we also have distance constraints.

\[\text{Definition 20. A set } A \subseteq E \text{ is an anti-spanner for a terminal pair } (s, t) \in E \text{ if } (V, E \setminus A) \text{ contains no feasible path from } s \text{ to } t \text{ of cost at most } L. \text{ If no proper subset of anti-spanner } A \text{ for } (s, t) \text{ is an anti-spanner for } (s, t), \text{ then } A \text{ is minimal. The set of all minimal anti-spanners for all thin edges is denoted by } A. \]

The following lemma is an analogue of Claim 2.5 from [10].

\[\text{Lemma 21. Let } A \text{ be the set of all minimal anti-spanners for thin pairs. Then } |A| \text{ is upper-bounded by } |D| \cdot 2^{(n/\beta)^2/2}. \]

Proof. Let \(PS(s, t) \) be the power set of all edges in the local graph for a given thin pair \((s, t)\). Since \((s, t)\) is a thin pair we have at most \(n/\beta \) vertices and \((n/\beta)^2/2\) edges in the local graph, therefore \(|PS(s, t)| \leq 2^{(n/\beta)^2/2}\) for any \((s, t)\) that is a thin pair. Now, every anti-spanner for a specific demand pair \((s, t) \in D\) is a set of edges and therefore corresponds to an element in \(PS(s, t) \). Let \(PS_{\text{thin}} = \bigcup_{(s, t) \in D} PS(s, t) \) where \((s, t) \in D\) are thin pairs. Every anti-spanner for a thin pair is a set of edges and therefore corresponds to an element in \(PS_{\text{thin}} \). We have \(|A| \leq |PS_{\text{thin}}| \leq |D| \cdot 2^{(n/\beta)^2/2}\) which proves the lemma.

The rest of this discussion is quite similar to [10] although the exact constants and the expressions involved are different because of the result in Lemma 21. Lemma 22 is similar to Lemma 5.2 from [10].
Lemma 22. With high probability set K_2 settles every thin pair (s, t) with $\hat{y}_{s,t} \geq 2/5$.

Proof. For every thin pair $(s, t) \in D$ with $\hat{y}_{s,t} \geq 2/5$, if A is an anti-spanner for (s, t) then $\sum_{x \in A} \hat{x}_x \geq \sum_{p \in \Pi(s, t)} \hat{f}_p \geq 2/5$, where \hat{f}_p is the value of the variable f_p in LP (2) that corresponds to the solution $\{\hat{x}_x\} \cup \{\hat{y}_{s,t}\}$.

By Claim 19, the probability that A is disjoint from K_2 is at most $\exp(-2n^{4/5} \cdot \ln n/5)$. Further using Lemma 21, we can bound the number of minimal anti-spanners for thin pairs and then if we apply union bound, we have the probability that K_2 is disjoint from any anti spanner for a thin pair is at most $\exp(-\frac{2}{5}n^{4/5} \cdot \ln n)$. In the worst case, $|D|$ is n^2. Recall that $\beta = n^{4/5}$, we have $(n/\beta)^2 = n^{4/5}$, so

$$\exp\left(-\frac{2}{5}n^{4/5} \cdot \ln n + \ln\left(n^2 \cdot 2^{n^{4/5}/2}\right)\right) = \exp\left(-\Theta(n^{4/5} \ln n)\right).$$

Thus we have shown that the probability K_2 is disjoint from any anti-spanner for a thin pair is exponentially small when $\hat{y}_{s,t} \geq 2/5$.

Lemma 23. When $0 \leq |C| < |D|/2$, with high probability, the density of K_2 is at most $\tilde{O}(n^{4/5} \cdot \tau/|D|)$.

Proof. Firstly notice that the expected cost of K_2 would be at most $n^{4/5} \ln n \cdot \tau$. We also point out that the number of pairs $(s, t) \in D$ for which $\hat{y}_{s,t} < 2/5$ is at most $5|D|/6$ because otherwise the amount of flow between all pairs is strictly less than $|D|/2$ which violates a constraint of LP (2). Since with high probability all pairs for which $\hat{y}_{s,t} \geq 2/5$ are satisfied, this means that the expected density of K_2 is at most

$$n^{4/5} \ln n \cdot \tau / |D| = \tilde{O}(n^{4/5} \cdot \tau / |D|).$$

Now we are ready to prove Theorem 2.

Proof of Theorem 2. Using Lemma 13 we can resolve all thick pairs with high probability with cost at most $\tilde{O}(n^{4/5+\epsilon})$. Then, we can make two sets of edges K_1 and K_2 using a distance-preserving weighted junction tree and by rounding the approximate solution to LP (2) respectively. By Lemmas 17 and 23, we can see that at least one of them will have a density at most $\tilde{O}(n^{4/5} \cdot \tau / |D|)$. If we take the cheaper among them and keep iterating we can resolve all thin pairs with a high probability and with cost at most $\tilde{O}(n^{4/5+\epsilon})$.

3 All-pair Weighted Distance Preservers

In this section, we prove Theorem 4. Our proof structure for this subsection is very similar to that of [10] except for our use of single sink and single source spanners.

As in Section 2, we assume that we have a guess for the cost of the optimal solution OPT for the given instance of All-pair Weighted Distance Preserver. Let τ denote the value of our guess. Let us set $\beta = n^{1/2}$. We say that a terminal pair $(s, t) \in D$ is thick if the local graph $G^{s,t} = (V^{s,t}, E^{s,t})$ induced by the vertices on feasible paths from s to t has at least n/β vertices; we say it is thin otherwise. We note that the definitions of thick and thin pairs are slightly different from how they are defined in Section 2 as we only care about the feasibility of a path, not its cost. We say that a set $E' \subseteq E$ settles (or resolves) a pair $(s, t) \in D$ if the subgraph (V, E') contains a feasible path from s to t.
3.1 Thick pairs

We first resolve the thick pairs by randomly sampling vertices and building single-source and single-sink spanners from the samples using Theorem 9. We then resolve thin pairs by building a linear program, solving it, and rounding as in [10]. As mentioned earlier, our definition of thick and thin pairs is different in this section when compared to Section 2, and this allows us to use a much simpler proof (although one that will be effective only in the case of weighted distance preservers as opposed to the more general weighted spanners).

Algorithm 4 Thick pairs resolver - Distance preserver \((G(V, E), \{(v, c(e)) \in E\})\).

1: \(R \leftarrow \phi, G' \leftarrow \phi\).
2: for \(i = 1\) to \(\beta \ln n\) do
3: \(v \leftarrow \) a uniformly random element of \(G\).
4: \(S_{v_{\text{source}}} \leftarrow \) a single-source distance preserver rooted at \(v\) with \(D = \{v\} \times V\).
5: \(S_{v_{\text{sink}}} \leftarrow \) a single-sink distance preserver rooted at \(v\) with \(D = \{v\} \times V\).
6: \(G' \leftarrow G' \cup S_{v_{\text{source}}} \cup S_{v_{\text{sink}}}, R \leftarrow R \cup \{v\}\).
7: return \(G'\).

Lemma 24. Algorithm 4 resolves all thick pairs for ALL-PAIR WEIGHTED DISTANCE PRESERVER with high probability and cost \(\tilde{O}(n^{\varepsilon} \cdot \beta \cdot \text{OPT}) = \tilde{O}(n^{1/2+\varepsilon} \cdot \text{OPT})\).

Proof. Let \(OPT(S_{v_{\text{source}}}^v)\) be the optimal costs of a single-source distance preserver rooted at \(v\) with \(D = \{v\} \times V\) and \(OPT(S_{v_{\text{sink}}}^v)\) be the optimal costs of a single-sink distance preserver rooted at \(v\) with \(D = \{v\} \times V\).

This theorem also gives an \(\tilde{O}(k^d)\)-approximation for the offline problem SINGLE-SOURCE WEIGHTED SPANNER for any constant \(d > 0\). Single-sink distance preservers can be obtained by simply reversing the edges. The number of terminal pairs \(k = \Theta(n^2)\). By setting \(\delta = \varepsilon/2\) and the target distances to the exact distances in \(G\) for all vertex pairs, we observe that the cost due to one sample in Algorithm 4 is at most \(\tilde{O}(n^{\varepsilon}(OPT(S_{v_{\text{source}}}^v) + OPT(S_{v_{\text{sink}}}^v)))\). Note that a distance preserver for all pairs also serves as a distance preserver for any subset of the pairs and thus we have for any \(v \in V\), \(OPT(S_{v_{\text{sink}}}^v) \leq OPT\) and \(OPT(S_{v_{\text{source}}}^v) \leq OPT\). Thus, using Theorem 9, the cost of the \(G'\) returned by Algorithm 4 is at most \(|R| \cdot \tilde{O}(n^{\varepsilon} \cdot \text{OPT}) \leq \tilde{O}(n^{\varepsilon} \cdot \beta \cdot \text{OPT})\).

Using a hitting set argument very similar to Claim 10, we can see that with high probability, there is at least one sample \(v\) such that there is a \(s \sim v \sim t\) path for every \((s, t) \in V \times V\) where \(d_G(s, v) + d_{G'}(v, t) = d_G(s, t)\).

The single-sink distance preserver gives us a \(s \sim v\) path of length \(d_G(s, v)\) and the single-source distance preserver gives us a \(v \sim t\) path of length \(d_G(v, t)\). Thus, thick pairs are resolved with high probability by the edges in \(G'\).

3.2 Thin pairs

To resolve thin pairs, we start by redefining anti-spanners by ignoring the path costs in Definition 20.

Definition 25. A set \(A \subseteq E\) is an anti-spanner for a demand pair \((s, t) \in E\) if \((V, E \setminus A)\) contains no feasible path from \(s\) to \(t\). If no proper subset of anti-spanner \(A\) for \((s, t)\) is an anti-spanner for \((s, t)\), then \(A\) is minimal. The set of all minimal anti-spanners for all thin edges is denoted by \(\mathcal{A}\).
Consider the following LP which is a slightly modified version of a similar LP from [10].

\[
\min \sum_{e \in E} c(e) \cdot x_e \quad \text{subject to} \quad \sum_{e \in A} x_e \geq 1 \quad \forall A \in A \quad \text{and} \quad x_e \geq 0 \quad \forall e \in E.
\]

(3)

Let \(\text{OPT} \) denote the optimal solution to the LP. We can obtain this in a way identical to [10] as we only change the objective (which does not affect the separation oracle). Now, if \(\{\hat{x}_e\} \) denotes the vector of \(x_e \)'s in the solution to LP (3), then add every edge \(e \in E \) to \(G' \) with probability \(\min\{\sqrt{n} \cdot \ln n \cdot \hat{x}_e, 1\} \). We now state the following claim from [10].

\(\triangleright \) Claim 26. Given a feasible solution to LP (3), the rounding procedure produces a set of edges \(E'' \) that settles all thin pairs with high probability and has size at most \(2\text{OPT} \cdot \sqrt{n} \).

\(\triangleright \) Theorem 4. For any constant \(\epsilon > 0 \), there is a polynomial-time randomized algorithm for All-pair Weighted Distance Preserver with approximation ratio \(\tilde{O}(n^{1/2+ \epsilon}) \), which succeeds in resolving all pairs in \(V \times V \) with high probability.

Proof of Theorem 4. Using Lemma 24 we can resolve all thick pairs with high probability with cost at most \(\tilde{O}(n^{1/2+ \epsilon} \cdot \text{OPT}) \) by running Algorithm 4. Then, using Claim 26, we can solve and round LP (3) to resolve the thin pairs with high probability and cost \(\tilde{O}(\text{OPT} \cdot \sqrt{n}) \). \(\triangleright \)

4 Online Weighted Spanners

This section is dedicated to proving Theorems 6 and 9. The proof outline is as follows.

1. We first show that there exists an \(\alpha \)-approximate solution consisting of distance-preserving weighted junction trees (see Definition 14). Here, \(\alpha = O(\sqrt{k}) \) for Pairwise Weighted Spanner and \(\alpha = 1 \) for Single-source Weighted Spanner.

2. We slightly modify the online algorithm from [33] to find an online solution consisting of distance-preserving weighted junction trees by losing a factor of \(\tilde{O}(k^\epsilon) \).

The main difference between the online approach and the offline approach in Section 2 is that we cannot greedily remove partial solutions to settle the terminal pairs in the online setting. Instead, we construct a distance-preserving weighted junction tree solution in an online fashion.

\(\triangleright \) Definition 27. A distance-preserving weighted junction tree solution is a collection of distance-preserving weighted junction trees rooted at different vertices, that satisfies all the terminal distance constraints.

We construct a distance-preserving weighted junction tree solution online and compare the online objective with the optimal distance-preserving weighted junction tree solution with objective value \(\text{OPT}_{junc} \). The following theorem is essentially from [33] for the case when the edges have unit costs and lengths. However, the slight yet important modifications that we need when edges have arbitrary positive costs and integral lengths in \(\text{poly}(n) \) are not covered in [33]. We refer the reader to the full version [32] for the complete proof.

\(\triangleright \) Theorem 28. For any constant \(\epsilon > 0 \), there exists a polynomial-time randomized online algorithm for Online Pairwise Weighted Spanner that constructs a distance-preserving weighted junction tree solution online with a cost at most \(\tilde{O}(k^\epsilon) \text{OPT}_{junc} \) with high probability.

With this theorem, we are ready to prove Theorems 6 and 9.
Proof for Theorems 6 and 9. Let OPT denote the cost of the optimal solution and α denote the ratio between OPT_{junc} and OPT. It suffices to show that $\alpha = O(\sqrt{k})$ for Pairwise Weighted Spanner and $\alpha = 1$ for Single-source Weighted Spanner because Theorem 28 implies the existence of an $\tilde{O}(\alpha k^2)$-competitive online algorithm.

To show that $\alpha = 1$ for Single-source Weighted Spanner, let H be an optimal solution. We observe that H itself is a distance-preserving weighted junction tree rooted at the source s that is connected to all the k sinks, so $\alpha = 1$.

To show that $\alpha = O(\sqrt{k})$ for Pairwise Weighted Spanner, we use a density argument via a greedy procedure which implies an $O(\sqrt{k})$-approximate distance-preserving weighted junction tree solution. We recall the density notion in Section 2.2. The density of a distance-preserving weighted junction tree is its cost divided by the number of terminal pairs that it connects within the required distances.

Intuitively, we are interested in finding low-density distance-preserving weighted junction trees. We show that there always exists a distance-preserving weighted junction tree with density at most a \sqrt{k} factor of the optimal density. The proof of Lemma 29 closely follows the one for the directed Steiner network problem in [18] and pairwise spanners [33] by considering whether there is a heavy vertex that lies in $s_i \sim t_i$ paths for distinct i or there is a simple path with low density. The case analysis also holds when there is a distance constraint for each (s_i, t_i). We refer the reader to Appendix B.2 for the complete proof.

Lemma 29. There exists a distance-preserving weighted junction tree J with density at most OPT/\sqrt{k}.

Consider the procedure that finds a minimum density distance-preserving weighted junction tree in each iteration, and continues on the remaining disconnected terminal pairs. Suppose there are t iterations, and after iteration $j \in [t]$, there are n_j disconnected terminal pairs. Let $n_0 = k$ and $n_t = 0$. After each iteration, the minimum cost for connecting the remaining terminal pairs in the remaining graph is at most OPT, so the total cost of this procedure is upper-bounded by

$$\sum_{j=1}^{t} \frac{(n_{j-1} - n_j)OPT}{\sqrt{n_{j-1}}} \leq \sum_{i=1}^{k} \frac{OPT}{\sqrt{i}} \leq \int_{1}^{k+1} \frac{OPT}{\sqrt{x}} \, dx = 2OPT\sqrt{k+1} - 1 = O(\sqrt{k})OPT$$

where the first inequality uses the upper bound by considering the worst case when only one terminal pair is removed in each iteration of the procedure.

References

<table>
<thead>
<tr>
<th>No.</th>
<th>Author(s)</th>
<th>Title and Details</th>
</tr>
</thead>
</table>

A.1 Resource-constrained Shortest Path

In the resource-constrained shortest path problem [38] for directed networks, each edge is associated with r non-negative weights. Each type of weight $i \in [r−1]$ is associated with a budget. The r-th weight denotes the cost of the edge. The goal is to find a minimum-cost path that connects the single source to the single sink without violating the $r−1$ budgets. The results of [38] show that when r is a constant, there exists an FPTAS that finds a path with a cost at most the same as the feasible minimum-cost path by violating each budget by a factor of $1+\varepsilon$. When $r = 2$, this problem is equivalent to the restricted shortest path problem [37,45], which has been used extensively in the LP formulations for spanners and directed Steiner forests [10,19,21,28,33]. For our purpose, $r = 3$ because the LP formulation implicitly considers whether there exists a feasible path between terminal pairs whose cost exceeds a given threshold.

A.2 Undirected Bi-criteria Network Design

A general class of undirected bi-criteria network problems was introduced by [46]. A more related problem to ours is the undirected Steiner tree problem. The goal is to connect a subset of vertices to a specified root vertex. In the bi-criteria problem, the distance from the
root to a target vertex is required to be at most the given global threshold. [46] presented a bi-criteria algorithm for undirected Steiner trees that is $O(\log n)$-approximate and violates the distance constraints by a factor of $O(\log n)$. Following [46], [36] extends this result to a more general buy-at-bulk bi-criteria network design problem, where the objective is polylog(n)-approximate and violates the distance constraints by a factor of polylog(n).

Recently, [29, 35] studied the tree embedding technique used for undirected network connectivity problems with hop constraints. For a positively weighted graph with a global parameter $h \in [n]$, the hop distance between vertices u and v is the minimum weight among the u-v-paths using at most h edges. Under the assumption that the ratio between the maximum edge weight and the minimum edge weight is poly(n), the tree embedding technique allows a polylog(n)-approximation by relaxing the hop distance within a polylog(n) factor for a rich class of undirected network connectivity problems.

A.3 Other related directed network problems

The more related directed network problems are variants of spanners and Steiner problems, including directed Steiner trees [15, 56], directed Steiner network [18], fault-tolerance spanners [21, 22], and parameterized complexity analysis for directed s-spanners [31]. For a comprehensive account of the vast literature, we refer the reader to the excellent survey for spanners [2].

There is an extensive list of other related directed network problems, including distance preservers [12, 19], approximate distance preservers [41], reachability preservers [1], and buy-at-bulk network design [5]. One direction along this line of research is to study the extremal bounds for the optimal subgraph in terms of the input parameters, instead of comparing the costs of the approximate and optimal solution [1, 12, 41]. Another direction is to consider the online problem where terminal pairs arrive online and the goal is to irrevocably select edges so that the cost of the network is approximately minimized [3, 14, 33].

B Missing Proofs in Section 2

B.1 Proof for Lemma 18

▶ **Lemma 18.** Let OPT be the optimal value of an instance of **Pairwise Weighted Spanner**. Then, the optimal value of LP (2) corresponding to that instance is at most OPT. In addition, a solution for LP (2) of value at most $(1 + \varepsilon) \cdot OPT$ can be found in polynomial time.

Proof. We recall LP (2):

$$\begin{align*}
\min & \quad \sum_{e \in E} c(e) \cdot x_e \\
\text{subject to} & \quad \sum_{(s,t) \in D} y_{s,t} \geq \frac{|D|}{2}, \\
& \quad \sum_{p \ni (s,t) \ni p \ni e} f_p \leq x_e \quad \forall (s,t) \in D, e \in E, \\
& \quad \sum_{p \ni (s,t)} f_p = y_{s,t} \quad \forall (s,t) \in D, \\
& \quad 0 \leq y_{s,t}, f_p, x_e \leq 1 \quad \forall (s,t) \in D, p \in \Pi, e \in E.
\end{align*}$$

(2)
Let us consider the dual of LP (2).

\[
\begin{align*}
\text{max} & \quad \sum_{e \in E} x_e + \sum_{(s,t) \in D} y_{s,t} - W \cdot \frac{|D|}{2} \\
\text{subject to} & \quad \sum_{(s,t) \in D} z_{(s,t),e} + c(e) \leq x_e & \forall e \in E, \quad (4a) \\
& \quad y_{s,t} + w_{s,t} \geq W & \forall (s,t) \in D, \quad (4b) \\
& \quad w_{s,t} \leq \sum_{e \in p} z_{(s,t),e} & \forall (s,t) \in D, p \in \Pi(s,t), \quad (4c) \\
& \quad W, x_e, y_{s,t}, z_{(s,t),e} \geq 0 & \forall (s,t) \in D, e \in E. \quad (4e)
\end{align*}
\]

Our dual is slightly different from the dual in [10, 28]. Constraints in (4b), (4c), and (4e) are identical, but constraints in (4d) are slightly different because the set of paths \(\Pi \) we consider are different from the set of paths considered in [28]. As in [28], we could find violating constraints for (4b), (4c), and (4e) in polynomial time. The only constraints that require care are the constraints in (4d), which may be exponentially many.

When we consider a single \((s,t)\) pair, [28] pointed out that their variant of constraints in (4d) are equivalent to Restricted Shortest Path which is NP-hard, see [37,45]. [28] then uses an FPTAS [37,45] for Restricted Shortest Path as an approximate separation oracle for those constraints. But we need a different separation oracle because the set of paths \(\Pi \) allowed in our LP have two restrictions (as opposed to [28] which has only one) in addition to an objective. We now define the Resource-constrained Shortest Path problem that is presented in [38].

Definition 30 (Resource-constrained Shortest Path \((k-RCSP)\)).

Instance: A directed graph \(G = (V,E) \), with edge costs \(c : E \to \mathbb{Q}_{\geq 0} \), and a pair \((s,t)\). For each edge \(e \in E \), we have a vector \(r_e = (r_{1,e}, r_{2,e}, \ldots, r_{k,e}) \) of size \(k \) where each \(r_{i,e} \in \mathbb{Q}_{\geq 0} \) \(\forall i \in [k] \).

Objective: Find a minimum cost \(s \sim t \) path \(P \) such that \(\sum_{e \in P} r_{i,e} \leq R_i, \forall i \in [k] \).

▷ **Claim 31**. \(2-RCSP \) acts as a separation oracle for those constraints in equation (4d) that correspond to a specific \((s,t) \in D \).

Proof: We can use one of the resource constraints in 2-RCSP for ensuring that the distance constraints for \((s,t)\) are satisfied and use the other resource constraint to ensure that \(w_{s,t} > \sum_{e \in P} z_{(s,t),e} \). In other words, we use one resource to model the edge lengths and another to model the dual variable \(z_{(s,t),e} \). We can now try to find a minimum cost \(s \sim t \) path in this instance of 2-RCSP where costs for 2-RCSP are equivalent to the costs in our instance of Pairwise Weighted Spanner. If the minimum cost obtained when we meet these constraints is less than \(L \), then we have a violating constraint and if not we do not have one.

The Resource-constrained shortest path problem is NP-hard [38]. So, we instead get a separation oracle for an approximate variant of LP (4). Now, given resource constraints \(R_1, R_2, \ldots, R_k \) for the Resource-constrained shortest path problem, let \(\text{OPT}_{RCSP} \) be the cost of the minimum cost \(s \sim t \) path that satisfies the resource constraints. An \((1; 1+\varepsilon, \ldots, 1+\varepsilon)\)-approximation scheme finds an \(s \sim t \) path whose cost is at most \(\text{OPT}_{RCSP} \), but the resource constraints are satisfied up to a factor of \(1 + \varepsilon \) for that path.
Lemma 32 (RCSP – [38]). If k is a constant then there exists a fully polynomial time \((1; 1 + \epsilon, \ldots, 1 + \epsilon)\)-approximation scheme for the k-RCSP that runs in time polynomial in input size and \(1/\epsilon\).

We have to be careful in our usage of Lemma 32. The FPTAS for the Restricted Shortest Path problem from [45] cleanly serves the requirements of [28] as it is a \((1 + \epsilon; 1)\) approximation and it can strictly satisfy the constraints. [28] then uses these constraints to ensure that the weight requirements are strictly met. But the FPTAS given by [38] does not strictly satisfy the constraints since we need both the length and weight constraints to be satisfied strictly.

We overcome this obstacle by re-purposing the objective to handle the edge weights and by carefully ensuring that any error in the path length caused by using the \(1 + \epsilon\) approximation from [38] does not make us use an incorrect path. To ensure that we do not select an incorrect path, it is sufficient to ensure that the potential error from [38] is less than any error that results from our given input graph. Since the edge lengths are positive integers, observe that for any two \(s \sim t\) paths with different lengths, the length difference is at least one. In addition, the path lengths are at most \(n \cdot \max_{e \in E}\{\ell(e)\}\). Since all edge lengths are integral and of magnitude \(\text{poly}(n)\), it is sufficient to have \(\epsilon \leq 1/(n \cdot \text{poly}(n))\) to ensure that the running time will remain polynomial in input size and strictly satisfy the distance constraints.

Now, we take an approximate version of LP (4) which is the following LP:

\[
\begin{align*}
\max & \quad \sum_{e \in E} x_e + \sum_{s,t} y_{s,t} - W \cdot \frac{|D|}{2} \\
\text{subject to} & \quad \sum_{s,t} z_{(s,t),e} + c(e) \leq x_e & \forall e \in E, \\
& \quad y_{s,t} + w_{s,t} \geq W & \forall (s, t) \in D, \\
& \quad (1 + \epsilon) \cdot w_{s,t} \leq \sum_{e \in p} z_{(s,t),e} & \forall (s, t) \in D, p \in \Pi(s, t), \\
& \quad W, x_e, y_{s,t}, z_{(s,t),e} \geq 0 & \forall (s, t) \in D, e \in E.
\end{align*}
\]

We can exactly solve LP (5) using [38] and thus we can also exactly solve the dual of LP (5) which would be:

\[
\begin{align*}
\min & \quad \sum_{e \in E} c(e) \cdot x_e \\
\text{subject to} & \quad \sum_{(s,t) \in D} y_{s,t} \geq \frac{|D|}{2}, \\
& \quad \sum_{P \ni (s,t)} f_p \leq x_e \cdot (1 + \epsilon) & \forall (s, t) \in D, e \in E, \\
& \quad \sum_{P \ni (s,t)} f_p = y_{s,t} & \forall (s, t) \in D, \\
& \quad 0 \leq y_{s,t}, f_p, x_e \leq 1 & \forall (s, t) \in D, p \in \Pi, e \in E.
\end{align*}
\]

Let \(\text{OPT}(\epsilon)\) and \(\text{OPT}\) be the optimal values to (6) and (2) respectively. Observe that \(\text{OPT}(\epsilon) \leq \text{OPT}\) because the constraints in LP (6) are slacker than the constraints in (2) and both these LPs are minimization LPs. Also note that if \(\hat{x}(\epsilon)\) is a feasible solution to (6), then by replacing the value of every variable \(x_e\) in \(\hat{x}(\epsilon)\) by \(\min(1, x_e \cdot (1 + \epsilon))\), we get a new solution \(\hat{x}\) which is a feasible solution to (2). The value of the optimal solution then is at most \((1 + \epsilon) \cdot \text{OPT}(\epsilon) \leq (1 + \epsilon) \cdot \text{OPT}\).
B.2 Missing proof for Lemma 29

Lemma 29. There exists a distance-preserving weighted junction tree J with density at most $\frac{\text{OPT}}{\sqrt{k}}$.

Proof. Let G^* (a subgraph of G) be the optimal pairwise weighted spanner solution with cost OPT. The proof proceeds by considering the following two cases: 1) there exists a vertex $r \in V$ that belongs to at least \sqrt{k} $s_i \sim t_i$ paths of distance at most $\text{Dist}(s_i, t_i)$ in G^* for distinct i, and 2) there is no such vertex $r \in V$.

For the first case, we consider the union of the $s_i \sim t_i$ paths in G^*, each of distance at most $\text{Dist}(s_i, t_i)$, that passes through r. This subgraph in G^* contains an in-arborescence and an out-arborescence both rooted at r, whose union forms a distance-preserving weighted junction tree. This distance-preserving weighted junction tree has cost at most OPT and connects at least \sqrt{k} terminal pairs, so its density is at most $\frac{\text{OPT}}{\sqrt{k}}$.

For the second case, each vertex $r \in V$ appears in at most \sqrt{k} $s_i \sim t_i$ paths in G^*. More specifically, each edge $e \in E$ also appears in at most \sqrt{k} $s_i \sim t_i$ paths in G'. By creating \sqrt{k} copies of each edge, all terminal pairs can be connected by edge-disjoint paths. Since the overall duplicate cost is at most $\sqrt{k} \cdot \text{OPT}$, at least one of these paths has cost at most $\sqrt{k} \cdot \frac{\text{OPT}}{\sqrt{k}}$. This path constitutes a distance-preserving weighted junction tree whose density is at most $\frac{\text{OPT}}{\sqrt{k}}$.

C Conclusion

In this paper, we presented algorithms for a variant of directed spanners that could also handle costs on edges, in addition to the more standard setting of edge lengths. The proof strategy for Theorem 2 follows a high-level structure that is similar to other results for directed Steiner forests, but involves significant obstacles in each part of the proof due to the addition of distance constraints. We overcome these obstacles by using the proper approaches. For example, the Resource-constrained Shortest Path problem from [38] is carefully adapted for our specifics. We also needed to carefully adapt many other parts of the proof, such as the analysis of our junction-tree approximation and our rounding algorithm for the LPs, to fit the addition of distance constraints.

We also present online algorithms for Online Pairwise Weighted Spanner and Online Single-source Weighted Spanner. We use our result for Online Single-source Weighted Spanner to solve a special case of Pairwise Weighted Spanner, namely, All-pair Weighted Distance Preserver, and obtain a significantly better approximation for that case.

We propose the following directions for future work:

- Is it possible to get a better analysis for the rounding algorithm for Theorem 2 as in [10]? This should improve the overall approximation factor for Pairwise Weighted Spanner in Theorem 2.
- Is there a hardness bound for Pairwise Weighted Spanner that is greater than the existing hardness bounds for Steiner forests and unit-cost spanners?
- Is there a better approximation factor for all-pair weighted spanners, i.e., an instance of Pairwise Weighted Spanner where $D = V \times V$?
- Can we get a result for pairwise weighted distance preserver that is better than using the Pairwise Weighted Spanner results in Theorem 2?