
Stable Approximation Algorithms for Dominating
Set and Independent Set
Mark de Berg #

Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands

Arpan Sadhukhan #

Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands

Frits Spieksma #

Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands

Abstract
We study Dominating Set and Independent Set for dynamic graphs in the vertex-arrival model.
We say that a dynamic algorithm for one of these problems is k-stable when it makes at most k

changes to its output independent set or dominating set upon the arrival of each vertex. We study
trade-offs between the stability parameter k of the algorithm and the approximation ratio it achieves.
We obtain the following results.

We show that there is a constant ε∗ > 0 such that any dynamic (1 + ε∗)-approximation algorithm
for Dominating Set has stability parameter Ω(n), even for bipartite graphs of maximum
degree 4.
We present algorithms with very small stability parameters for Dominating Set in the setting
where the arrival degree of each vertex is upper bounded by d. In particular, we give a 1-stable
(d + 1)2-approximation, and a 3-stable (9d/2)-approximation algorithm.
We show that there is a constant ε∗ > 0 such that any dynamic (1 + ε∗)-approximation algorithm
for Independent Set has stability parameter Ω(n), even for bipartite graphs of maximum
degree 3.
Finally, we present a 2-stable O(d)-approximation algorithm for Independent Set, in the
setting where the average degree of the graph is upper bounded by some constant d at all times.
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1 Introduction

Given a simple, undirected graph G = (V, E), a dominating set is a subset D ⊂ V such that
each vertex in V is either a neighbor of a vertex in D, or it is in D itself. An independent set
is a set of vertices I ⊂ V such that no two vertices in I are neighbors. Dominating Set (the
problem of finding a minimum-size dominating set) and Independent Set (the problem of
finding a maximum-size independent set) are fundamental problems in algorithmic graph
theory. They have numerous applications and served as prototypical problems for many
algorithmic paradigms.

We are interested in Dominating Set and Independent Set in a dynamic setting,
where the graph G changes over time. In particular, we consider the well-known vertex-
arrival model. Here one starts with an empty graph G(0), and new vertices arrive one by one,
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27:2 Stable Approximation Algorithms for Dominating Set and Independent Set

along with their edges to previously arrived vertices. In this way, we obtain a sequence of
graphs G(t), for t = 0, 1, 2, . . .. Our algorithm is then required to maintain a valid solution
– a dominating set, or an independent set – at all times. In the setting we have in mind,
computing a new solution is not the bottleneck, but each change to the solution (adding or
deleting a vertex from the solution) is expensive. Of course we also want that the maintained
solution has a good approximation ratio. To formalize this, and following De Berg et al. [12],
we say that a dynamic algorithm is a k-stable ρ-approximation algorithm if, upon the arrival
upon each vertex, the number of changes (vertex additions or removals) to the solution
is at most k and the solution is a ρ-approximation at all times. In this framework, we
study trade-offs between the stability parameter k and the approximation ratio that can
be achieved. Ideally, we would like to have a so-called stable approximation scheme (SAS):
an algorithm that, for any given yet fixed parameter ε > 0 is kε-stable and gives a (1 + ε)
approximation algorithm, where kε only depends on ε and not on the size of the current
instance. (There is an intimate relation between local-search PTASs and SASs; we come
back to this issue in Section 2.)

The vertex-arrival model is a standard model for online graph algorithms, and our stability
framework is closely related to online algorithms with bounded recourse. However, there are
two important differences. First, computation time is free in our framework – for instance,
the algorithm may decide to compute an optimal solution in exponential time upon each
insertion – while in online algorithms with bounded recourse the update time is typically
taken into account. Thus we can fully focus on the the trade-off between stability and
approximation ratio. Secondly, we consider the approximation ratio of the solution, while
in online algorithm one typically considers the competitive ratio. Thus we compare the
quality of our solution at time t to the static optimum, which is simply the optimum for
the graph G(t). A competitive analysis, one the other hand, compares the quality of the
solution at time t to the offline optimum: the best solution for G(t) that can be computed
by a dynamic algorithm that knows the sequence G(0), . . . , G(t) in advance but must still
process the sequence with bounded recourse. See also the discussion in the paper by Boyar et
al. [6]. Thus approximation ratio is a much stronger notion that competitive ratio. As a case
in point, consider Dominating Set, and suppose that n singleton vertices arrive, followed
by a single vertex with edges to all previous ones. Then the static optimum for the final
graph is 1, while the offline optimum with bounded recourse is Ω(n).

Related work. We now review some of the most relevant existing literature on the online
version of our problems. (Borodin and El-Yaniv [5] give a general introduction to online
computation.) The classical online model, where a vertex that has been added to the
dominating set or to the independent set, can never be removed from it – that is, the
no-recourse setting – is e.g. considered by King and Tzeng [18] and Lipton and Tomkins [20].
They show that already for the special case of interval graphs no online algorithm has
constant competitive ratio; see also De et al. [9], who study these two problems for geometric
intersection graphs. For Dominating Set in the vertex-arrival model, Boyar et al. [6]
give online algorithms with bounded competitive ratio for trees, bipartite graphs, bounded
degree graphs, and planar graphs. They actually analyze both the competitive ratio and the
approximation ratio (which, as discussed earlier, can be quite different). A crucial difference
between the work of Boyar et al. [6] and ours is that they do not allow recourse: in their
setting, once a vertex is added to the dominating set, it cannot be removed.

To better understand online algorithmic behavior, various ways to relax classical online
models have been studied. In particular, for Independent Set, among others, Halldórsson
et al. [16] consider the option for the online algorithm to maintain multiple solutions. Göbel
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et al. [13] analyze a stochastic setting where, among other variants, a randomly generated
graph is presented in adversarial order (the prophet inequality model), and one where
an adversarial graph is presented in random order. In these settings they find constant
competitive algorithms for Independent Set on interval graphs, and more generally for
graphs with bounded so-called inductive independence number.

One other key relaxation of the online model is to allow recourse. Having recourse can
be seen as relaxing the irrevocability assumption in classical online problems, and allows
to assess the impact of this assumption on the competitive ratio, see Boyar et al. [7]. The
notion of (bounded) recourse has been investigated for a large set of problems. Without
aiming for completeness, we mention Angelopoulos et al. [1] and Gupta et al. [15] who
deal with online matching and matching assignments, Gupta et al. [14] who investigate the
set cover problem, and Berndt et al. [4] who deal with online bin covering with bounded
migration, and Berndt et al. [3] who propose a general framework for dynamic packing
problems. For these problems, it is shown what competitive or approximation ratios can be
achieved when allowing a certain amount of recourse (or migration). Notice that, in many
cases, an amortized interpretation of recourse is used; then the average number of changes to
a solution is bounded (instead of the maximum, as for k-stable algorithms defined above).
For instance, Lsiu and Charington-Toole [21] show that, for independent set, there is an
interesting trade-off between the competitive ratio and the amortized recourse cost: for any
t > 1, they provide a t-competitive algorithm for independent set using t− 1 recourse cost.
Their results however do not apply to our notion of stability.

Our contribution. We obtain the following results.
In Section 2, we show that the existence of a local-search PTAS for the static version of a
graph problem, implies, under certain conditions, the existence of a SAS for the problem
in the vertex-arrival model (whereas the converse need not be true). This implies that
for graphs with strongly sublinear separators, a SAS exists for Independent Set and
for Dominating Set when the arrival degrees – that is, the degrees of the vertices upon
arrival – are bounded by a constant.
In Section 3, we consider Dominating Set in the vertex-arrival model. Let d denote
the maximum arrival degree. We show (i) there does not exist a SAS even for bipartite
graphs of maximum degree 4, (ii) there is a 1-stable (d + 1)2-approximation algorithm,
and (iii) there is a 3-stable 9d

2 -approximation algorithm.
In Section 4, we consider Independent Set in the vertex-arrival model. We show that
there does not exist a SAS even for bipartite graphs of maximum degree 3. Further, we
give a 2-stable O(d)-approximation algorithm for the case where the average degree of
G(t) is bounded by d at all times.

2 Stable Approximation Schemes versus PTAS by local search

In this section we discuss the relation between Stable Approximation Schemes (SASs) and
Polynomial-Time Approximation Schemes (PTASs). Using known results on local-search
PTASs, we then obtain SASs for Independent Set for Dominating Set on certain graph
classes. While the results in this section are simple, they set the stage for our main results in
the next sections.

The goals of a SAS and a PTAS are the same: both aim to achieve an approximation
ratio (1 + ε), for any given ε > 0. A SAS, however, works in a dynamic setting with the
requirement that kε, the number of changes per update, is a constant for fixed ε, while a

APPROX/RANDOM 2023
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PTAS works in a static setting with the condition that the running time is polynomial for
fixed ε. Hence, there are problems that admit a PTAS (or are even polynomial-time solvable)
but no SAS [12].

One may think that the converse should be true: if a dynamic problem admits a SAS,
then its static version admits a PTAS. Indeed, we can insert the input elements one by one
and let the SAS maintain a (1 + ε)-approximation, by performing at most kε changes per
update. For a SAS, there is no restriction on the time needed to update the solution, but it
seems we can simply try all possible combinations of at most kε changes in, say, nO(kε) time.
This need not work, however, since there could be many ways to update the solution using
at most kε changes. Even though we can find all possible combinations in polynomial time,
we may not be able to decide which combination is the right one: the update giving the
best solution at this moment may get us stuck in the long run. The SAS can avoid this by
spending exponential time to decide what the right update is. Thus the fact that a problem
admits a SAS does not imply that it admits a PTAS.

Notwithstanding the above, there is a close connection between SASs and PTASs and,
in particular between SASs and so-called local-search PTASs: under certain conditions,
the existence of a local-search PTAS implies the existence of a SAS. For simplicity we will
describe this for graph problems, but the technique may be applied to other problems.

Let G = (V, E) be a graph and suppose we wish to select a minimum-size (or maximum-
size) subset S ⊂ V satisfying a certain property. Problems of this type include Dominating
Set, Independent Set, Vertex Cover, Feedback Vertex Set, and more. A local-
search PTAS for such a graph minimization problem starts with an arbitrary feasible
solution S – the whole vertex set V , say – and then it tries to repeatedly decrease the size
of S by replacing a subset Sold ⊂ S by a subset Snew ⊂ V \S such that |Snew| = |Sold|−1 and
(S \Sold)∪Snew is still feasible. (For a maximization problem we require |Snew| = |Sold|+ 1.)
This continues until no such replacement can be found.1 A key step in the analysis of a
local-search PTAS is to show the following, where n is the number of vertices.

Local-Search Property. If S is a feasible solution that is not a (1 + ε)-approximation
then there are subsets Sold, Snew as above with |Sold| ⩽ fε, for some fε depending only
on ε and not on n.

This condition indeed gives a PTAS, because we can simply try all possible pairs Sold, Snew,
of which there are O(n2fε).

Now consider a problem that has the Local-Search Property in the vertex-arrival model,
possibly with some extra constraint (for example, on the arrival degrees of the vertices). Let
G(t) denote the graph after the arrival of the t-th vertex, and let opt(t) denote the size of
an optimal solution for for G(t). We can obtain a SAS if the problem under consideration
has the following properties.

Continuity Property. We say that the dynamic problem (in the vertex-arrival model,
possibly with extra constraints) is d-continuous if |opt(t + 1) − opt(t)| ⩽ d. In other
words, the size of an optimal solution should not change by more than d when a new
vertex arrives. Note that the solution itself may change completely; we only require its
size not to change by more than d.
Feasibility Property. For maximization problems we require that any feasible solution
for G(t− 1) is also a feasible solution for G(t), and for minimization problems we require
that any feasible solution for G(t− 1) can be turned into a feasible solution for G(t) by

1 See the paper by Antunes etal [2] for a nice exposition on problems solved using local-search PTAS.
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adding the arriving vertex to the solution. (This condition can be relaxed to saying that
we can repair feasibility by O(1) modifications to the current solution, but for concreteness
we stick to the simpler formulation above.)

Note that Independent Set, Vertex Cover, and Feedback Vertex Set are 1-
continuous, and that Dominating Set is (d− 1)-continuous when the arrival degree of the
vertices is bounded by d ⩾ 2. Moreover, these problems all have the Feasibility Property.

For problems that have the Local-Search Property as well as the Continuity and Feasibility
Properties, it is easy to give a SAS. Hence, non-existence of SAS for a problem with Continuity
and Feasibility directly implies non-existence of local-search PTAS.2 We give the pseudocode
for minimization problems, but for maximization problems a similar approach works.

Algorithm 1 SAS-for-Continuous-Problems(v).

1: � v is the vertex arriving at time t

2: Salg ← Salg(t− 1) ∪ {v} � Salg is feasible for G(t) by the feasibility condition
3: while Salg is not a (1 + ε)-approximation do
4: Find sets Sold ⊂ Salg and Snew ⊂ V (t)\Salg with |Sold| ⩽ fε and |Snew| = |Sold|−1

such that (Salg \Sold)∪Snew is a valid solution, and set Salg ← (Salg \Sold)∪Snew.
5: Salg(t)← Salg

▶ Theorem 1. Any graph problem that has the Continuity Property, the Feasibility Property
and the Local-Search Property admits a SAS in the vertex arrival model, with stability
parameter (d + 1) · (2fε− 1) + 1 for minimization problems and d · (2fε + 1) for maximization
problems.

Proof. First consider a minimization problem. By the Feasibility Property and the working
of the algorithm, the solution that SAS-for-Continuous-Problems computes upon the
arrival of a new vertex is feasible. Moreover, it must end with a (1+ε)-approximation because
of the Local-Search Property. Before the while-loop we add v to Salg, and in each iteration
of the while-loop, at most fε vertices are deleted from Salg and at most fε − 1 vertices are
added. We claim that the number of iterations is at most ⌈(1 + ε)d⌉+ 1. Indeed, before the
arrival of v we have |Salg(t−1)| ⩽ (1+ε) · |opt(t−1)|, and we have |opt(t−1)−opt(t)| ⩽ d

by the Local-Search Property. Hence, after ⌈(1 + ε)d⌉+ 1 iterations we have

|Salg| = |Salg(t− 1)|+ 1− (⌈(1 + ε)d⌉+ 1)
⩽ (1 + ε) · |opt(t− 1)| − (1 + ε)d
⩽ (1 + ε) · (opt(t) + d)− (1 + ε)d
⩽ (1 + ε) · opt(t).

For a maximization problem the proof is similar. The differences are that we do not add an
extra vertex to Salg in step 2, that the number of changes per iteration is at most 2fε + 1,
and that the number of iterations is at most d. (We do not get the factor (1 + ε) because if
opt increases, then the error that we can make, which is ε · opt, also increases.) ◀

This general result allows us to obtain a SAS for a variety of problems, for graph classes for
which a local-search PTAS is known.

2 Dominating Set and Independent Set, even with maximum degree bounded by 3, do not admit
a PTAS assuming p ̸= np [8, 22]. In sections 3.1 and 4.1, by proving the non-existence of a SAS for
Dominating Set with maximum degree bounded by 4 and Independent Set with maximum degree
bounded by 3, we thus show non-existence of local-search PTAS, independent of the assumption of
p ̸= np.

APPROX/RANDOM 2023
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Recall that a balanced separator of a graph G = (V, E) with n vertices is a subset S ⊂ V

such that V \S can be partitioned into subsets A and B with |A| ⩽ 2n/3 and |B| ⩽ 2n/3 and
no edges between A and B. We say that a graph class3 G has strongly sublinear separators,
if any graph G ∈ G has a balanced separator of size O(nδ), for some fixed constant δ < 1.
Planar graphs, for instance, have separators of size O(

√
n) [19]. A recent generalization of

separators are so-called clique-based separators, which are separators that consist of cliques
and whose size is measured in terms of the number of cliques [10]. (Actually, the cost of a
separator S that is the union of cliques C1, . . . , Ck is defined as

∑k
i=1 log(|Ci|+ 1), but this

refined measure is not needed here.) Disk graphs (which do not have normal separators of
sublinear size) have a clique-based separator of size O(

√
n), for instance, and pseudo-disk

graphs have a clique-based separator of size O(n2/3) [11]. For graph classes with strongly
sublinear separators there are local-search PTASs for several problems. Combining that with
the technique above gives the following result.

▶ Corollary 2. The following problems admit a SAS in the vertex-arrival model.
(i) Independent Set on graph classes with sublinear clique-based separators.
(ii) Dominating Set on graph class with sublinear separators, when the arrival degree of

each vertex bounded by some fixed constant d.

Proof. As noted earlier, Independent Set is 1-continuous and Dominating Set is (d− 1)-
continuous. Moreover, these problems have the Feasibility Property. It remains to check the
Local-Search Property.

(i) Any graph class with a separator of size O(nδ) has the Local-Search Property for
Independent Set; see the paper by Her-Peled and Quanrud [17]. (In that paper they
show the Local-Search Property for graphs of polynomial expansion – see Corollary 26
and Theorem 3.4 – and graphs of polynomial expansion have sublinear separators.)
Theorem 1 thus implies the result for such graph classes. To extend this to clique-
based separators, we note that (for Independent Set) we only need the Local-Search
Property for graphs that are the union of two independent sets, namely the independent
set S and an optimal independent set Sopt. Such graphs are bipartite, so the largest
clique has size two. Hence, the existence of a clique-based separator of size O(nδ)
immediately implies the existence of a normal separator of size O(nδ).

(ii) For Dominating Set on graphs with polynomial expansion (hence, on graphs with
sublinear separators) the Local-Search Property holds [17, Theorem 3.15]. Theorem 1
thus implies an O(d · fε)-stable (1 + ε)-approximation algorithm, for some constant fε

depending only on ε. Hence, if d is a fixed constant , we obtain a SAS. ◀

3 Dominating Set

In this section we study stable approximation algorithms for Dominating Set in the vertex
arrival model. We first show that the problem does not admit a SAS, even when the maximum
degree of the graph is bounded by 4. After that we will describe two algorithms that achieve
constant approximation ratio with constant stability, in the setting where each vertex arrives
with constant degree.

Let G = (V, E) be a graph. For a subset S ⊂ V , we denote the open neighborhood of a sub-
set W ⊂ V in G by NG(W ), so NG(W ) := {v ∈ V \W : there is a w ∈W with (v, w) ∈ E}.
The closed neighborhood NG[W ] is defined as NG(W )∪W . When the graph G is clear from
the context, we may omit the subscript G and simply write N(W ) and N [W ].

3 We only consider hereditary graph classes, that is, graph classes G such that any induced subgraph of a
graph in G is also in G.
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3.1 No SAS for graphs of maximum degree 4
Our lower-bound construction showing that Dominating Set does not admit a SAS – in
fact, our construction will show a much stronger result, namely that there is a fixed constant
ε∗ > 0 such that any stable (1 + ε∗)-approximation algorithm must have stability Ω(n) – is
based on a certain type of expander graphs, as given by the following proposition. Note that
L (the left part of the bipartition of the vertex set) is larger by a constant fraction than R

(the right part of the bipartition), while the expansion property goes from L to R. The proof
of the following proposition was communicated to us by Noga Alon.

▶ Proposition 3. For any µ > 0 and any n that is sufficiently large, there are constants
0 < ε, δ < 1 such that there is a bipartite graph Gexp(L ∪R, E) with the following properties:
|L| = (1 + ε)n and |R| = n.
The degree of every vertex in G is at most 3.
For any S ⊂ L with |S| ⩽ δn we have |N(S)| ⩾ (2− 2µ)|S|

Proof. Let µ > 0 and let t be an integer so that t > 1/µ. Let ε ⩽ 1/32t+1 be a fixed
positive number. Let H = (A ∪B, EH) be a 3-regular bipartite graph with vertex classes A

and B, each of size (1 + ε)n, in which for every subset S ⊂ B of size at most δn we have
|N(S)| ⩾ (2 − µ)|S|, for some fixed real number δ = δ(µ) > 0. (It is known that random
cubic bipartite graphs have this property with high probability.) Now pick a set T ⊂ A of εn

vertices so that the distance between any pair of them is larger that 2t. Such a set exists, as
one can choose its members one by one, making sure to avoid the balls of radius 2t around
the already chosen vertices. This gives a set T of the desired size since ε32t+1 < 1. We define
Gexp to be the induced subgraph of H on the classes of vertices R = A \ T and L = B. It
remains to show that Gexp has the desired properties.

We have |L| = (1 + ε)n and |R| = n by construction, and the maximum degree of Gexp
is clearly at most 3. Now let S be a set of at most δn vertices in L. We have to show that
NGexp(S), its neighbor set in Gexp, has size at least (2− 2µ)|S|. We can assume without loss
of generality that S ∪NGexp(S) is connected in Gexp, since we can apply the bound to each
connected component separately and just add the inequalities. Note that this assumption
implies that S ∪NH(S) is also connected in H. Observe that the neighborhood NH(S) of S

in the original graph H, which is contained in B, is of size at least (2−µ)|S|, by the property
of H. If the set T of deleted vertices has at most µ|S| members in NH(S) then the desired
inequality holds and we are done. Otherwise T has more than µ|S| vertices that belong to
NH(S). But the distance between any two such vertices in H is larger than 2t (and so the
balls of radius t around them are disjoint), and since S ∪ NH(S) is connected this would
imply |S| > t|T ∩NH(S)| > tµ|S| > |S|, which is a contradiction. ◀

Now consider Dominating Set for a dynamic graph in the vertex-arrival model. Let
G(t) denote the graph at time t, that is, after the first t insertions. Let ε∗ > 0 be such
that ε∗ < min

(
ε

2+ε , 0.49δ
2(1+ε)

)
, where ε and δ are the constants in the expander construction

of Proposition 3. Consider a dynamic algorithm alg for Dominating Set such that
|Dalg(t)| ⩽ (1 + ε∗) ·opt(t) at any time t, where Dalg(t) is the output dominating set of alg
at time t and opt(t) is the minimum size of a dominating set for G(t). Let fε∗(n) denote
the stability of alg, that is, the maximum number of changes it performs on Dalg when a
new vertex arrives, where n is the number of vertices before the arrival.

We now give a construction showing that, for arbitrarily large n, there is a sequence of n

arrivals that requires fε∗(n) ⩾ 1
6(7+6ε)⌊δn⌋. To this end, choose N large enough such that

the bipartite expander graph Gexp = (L ∪R, E) from Proposition 3 exists for µ = 0.005 and

APPROX/RANDOM 2023
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u1 v1 w1

u2 v2 w2

u(1+ε)N

r1

r2

r3

rN
v(1+ε)N w(1+ε)N

(1 + ε)N bags, each with at most three vertices

L1

L2

L(1+ε)N

Figure 1 The lower-bound construction for Dominating Set.

|R| = N . Label the vertices in L as ℓ1, . . . , ℓ|L| and the vertices in R as r1, . . . , r|R|. Our
construction uses five layers of vertices, arriving one by one, as described next and illustrated
in Fig. 1.

Layer 1: The first layer consists of vertices u1, . . . , u(1+ε)N , each arriving as a singleton.
Layer 2: The second layer consists of vertices v1, . . . , v(1+ε)N , where each vi has an edge
to vertex ui from the first layer.
Layer 2: The third layer consists of vertices w1, . . . , w(1+ε)N , where each wi has an edge
to vi from the second layer.
Layer 4: Let Gexp = (L ∪R, E) be the expander from Proposition 3. The fourth layer
consists of |L| = (1+ε)N bags, each with at most three vertices. More precisely, if deg(ℓi)
is the degree of vertex ℓi ∈ L in the expander Gexp, then bag Li has deg(ℓi) vertices.
Each vertex in Li has an edge to vertex wi from the third layer.
Layer 5: Finally, the fifth layer arrives. Each vertex in this layer corresponds to a vertex ri

from the bipartite expander Gexp and, with a slight abuse of notation, we will also denote
it by ri. If, in G exp, ri has an edge to some vertex ℓj in Gexp, then the corresponding
vertex ri in our construction will have an edge to some vertex in the bag Lj . Clearly, we
can do this in such a way that each vertex in any of the bags Li has an edge to exactly
one vertex ri. In addition to the edges to (vertices in) the bags, each vertex ri also has
an edge to the vertex vi from the second layer.

Let t1 be the time at which the last vertex of L(1+ε)N was inserted, and let t2 be the time
at which rN was inserted. Let G(t) denote the graph induced by all vertices inserted up to
time t. Thus G(t1) consists of the layers 1–4, and G(t2) consists of layers 1–5.

▶ Observation 4. For any t with t1 ⩽ t ⩽ t2 we have opt(t) ⩽ (2 + 2ε)N . Moreover,
opt(t2) ⩽ (2 + ε)N .

Proof. For any t1 ⩽ t ⩽ t2, the set D1 := {v1, . . . , v(1+ε)N} ∪ {w1, . . . , w(1+ε)N} forms a
dominating set for G(t). Moreover, D1 := {v1, . . . , v(1+ε)N}∪{r1, . . . , rN} forms a dominating
set for G(t2). ◀

We call a bag Li fully dominated by a set D of vertices if each vertex in Li is dominated by
some vertex in D. Observation 4 states that opt(t2) is significantly smaller than opt(t1),
which is because the vertices in R can fully dominate all bags. This means that Dalg(t2)
must contain most vertices of R, in order to achieve the desired approximation. Adding only
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a few vertices from R will be too expensive, however, since fully dominating a small number
of bags will be expensive, because of the expander property of Gexp. Hence, if the stability
parameter fε∗(n) is small, then alg cannot maintain the desired approximation ratio. Next
we make this proof idea precise.

▶ Lemma 5. Let Dalg(t2) denote the output dominating set for G(t2). Suppose Dalg(t2) ∩R

fully dominates at most δN bags Li. Then |Dalg(t2)| > (1 + ε∗) · opt(t2).

Proof. Let m < δN denote the number of bags fully dominated by Dalg(t2) ∩R. Consider a
bag Li that is not fully dominated by Dalg(t2) ∩R. Then Dalg(t2) must contain the vertex
wi or at least one vertex from the bag Li. Hence, the number of vertices in Dalg(t2) from
the third and fourth layer is at least (1 + ε)N −m. Moreover, Dalg(t2) must have at least
(1 + ε)N vertices from the first and second layer, to dominate all vertices from the first layer.
Observe that in order to fully dominate a bag Li by vertices in R, we need all vertices in R

with an edge to some vertex of Li. So if Dalg(t2) ∩ R fully dominates m ⩽ δN bags, then
|Dalg(t2)∩R| ⩾ 1.99m by the properties of the expander graph Gexp in Proposition 3. Hence,

|Dalg(t2)| > (1 + ε)N −m + (1 + ε)N + 1.99m ⩾ (2 + 2ε)N.

Observation 4 thus implies that |Dalg(t2)|
opt(t2) ⩾ 2+2ε

2+ε > 1 + ε∗. ◀

Lemma 5 means that, in order to achieve approximation ratio 1 + ε∗, the set Dalg(t2) ∩R

must fully dominate more than δN bags. Next we show that this cannot be done when the
stability parameter fε∗(n) is o(n).

▶ Lemma 6. Let t∗ be the first time when Dalg(t∗) ∩R fully dominates at least δN bags. If
fε∗(n) < 1

6(7+6ε)⌊δn⌋ then |Dalg(t∗)| > (1 + ε∗) · opt(t∗).

Proof. Let nt denote the number of vertices of the graph G(t), and observe that nt∗ ⩽
(7 + 6ε)N . Hence, fε∗(nt∗) ⩽ 1

6 δN . By definition of t∗, we know that just before time t∗ the
set Dalg ∩R fully dominates less than δN bags. Because alg is fε∗(n)-stable, the number of
vertices from R added to Dalg at time t∗ is at most fε∗(nt∗). Since these new vertices have
degree at most three, they can complete the full domination of at most 3fε∗(nt∗) bags. Thus,(

number of bags fully dominated by Dalg(t∗) ∩R
)

< δN + 3fε∗(nt∗) ⩽
3
2δN.

Let Li be a bag that is not fully dominated by Dalg(t∗) ∩R. Since Dalg(t∗) is a dominating
set, it must then contain the vertex wi or at least one vertex from Li. Hence, the number of
vertices in Dalg(t∗) from layers 3 and 4 is more than (1 + ε)N − 3

2 δN . In addition, Dalg(t∗)
must have at least (1 + ε)N vertices from layers 1 and 2. Finally, in order to fully dominate
a bag Li by vertices in R, we need all the vertices in R that have an edge to some vertex
of Li. In other words, Dalg(t∗) ∩R must contain all neighbors of the fully dominated bags.
Since Dalg(t∗) ∩R dominates at least δN bags, we know that |Dalg(t∗) ∩R| ⩾ 1.99 · δN , by
the properties of the expander graph in Proposition 3. Hence,

|Dalg(t∗)| > (1 + ε)N − 3
2δN + (1 + ε)N + 1.99 · δN

⩾

(
1 + 0.49δ

2 + 2ε

)
(2 + 2ε)N

⩾ (1 + ε∗) · opt(t∗). ◀

By Lemmas 5 and 6 we obtain the following result.

▶ Theorem 7. There is a constant ε∗ > 0 such that any dynamic (1 + ε∗)-approximation al-
gorithm for Dominating Set in the vertex arrival model, must have stability parameter Ω(n),
even when the maximum degree of any of the graphs G(t) is bounded by 4.

APPROX/RANDOM 2023
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3.2 Constant-stability algorithms when the arrival degrees are bounded
In the previous section we saw that there is no SAS for Dominating Set, even when
the maximum degree is bounded by 4. In this section we present stable algorithms whose
approximation ratio depends on the arrival degree of the vertices. More precisely, we give a
simple 1-stable algorithm with approximation ratio (d + 1)2 and a more complicated 3-stable
algorithm with approximation ratio 9d/2, where d is the maximum degree of any vertex upon
arrival. Note we only restrict the degree upon arrival: the degree of a vertex may further
increase due to the arrival of new vertices. This implies that deletions cannot be handled by
a stable algorithm with bounded approximation ratio: even with arrival degree 1 we may
create a star graph of arbitrarily large size, and deleting the center of the star cannot be
handled in a stable manner without compromising the approximation ratio.

A 1-stable (d + 1)2-approximation algorithm. Recall that G(t) denotes the graph after
the arrival of the t-th vertex. We can turn G(t) into a directed graph G⃗(t), by directing each
edge towards the older of its two incident vertices. In other words, when a new vertex arrives
then its incident edges are directed away from it.

Let N+[v] := {v} ∪ {out-neighbors of v in G⃗(t)}, where t is such that v is inserted at
time t. In other words, N+[v] contains v itself plus the neighbors of v immediately after
its arrival. Let optout(t) denote the minimum size of a dominating set in G⃗(t) under the
condition that every vertex v should be dominated by a vertex in N+[v]. We call such a
dominating set a directed dominating set. Note that a directed dominating set for G⃗(t) is
a dominating set in G(t) as well. The following lemma states that optout(t) is not much
larger than opt(t).

▶ Lemma 8. At any time t we have optout(t) ⩽ (d + 1) · opt(t).

Proof. Let Dopt(t) be a minimum dominating set for G(t). Let D :=
⋃

v∈Dopt(t) N+[v].
Observe that D is a directed dominating set for G⃗(t). Since every vertex arrives with degree
at most d, we have |N+[v]| = d + 1. The result follows. ◀

We call two vertices u, v unrelated if N+[u] ∩ N+[v] = ∅, otherwise u, v are related. The
following lemma follows immediately from the definition of optout(t).

▶ Lemma 9. Let U(t) be a set of pairwise unrelated vertices in G⃗(t). Then optout(t) ⩾ |U(t)|.

Our algorithm will maintain a directed dominating set Dalg(t) for G⃗(t) and a set U(t) of
pairwise unrelated vert. Since the initial graph is empty, we initialize Dalg(0) := ∅ and
U(0) := ∅. When a new vertex v arrives at time t, we proceed as follows.

Algorithm 2 Directed-DomSet(v).

1: � v is the vertex arriving at time t

2: if N+[v] ∩Dalg(t− 1) ̸= ∅ then � v is already dominated
3: Set Dalg(t)← Dalg(t− 1) and U(t)← U(t− 1)
4: else
5: if v is unrelated to all vertices u ∈ U(t− 1) then
6: Set U(t)← U(t− 1) ∪ {v} and Dalg(t)← Dalg(t− 1) ∪ {v}
7: else
8: Let u be a vertex related to v, that is, with N+[u] ∩N+[v] ̸= ∅.
9: Pick an arbitrary vertex w ∈ N+[u] ∩N+[v].

10: Set Dalg(t)← Dalg(t− 1) ∪ {w} and U(t)← U(t− 1).
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This leads to the following theorem.

▶ Theorem 10. There is a 1-stable (d + 1)2-approximation algorithm for Dominating Set
in the vertex-arrival model, where d is the maximum arrival degree of any vertex.

Proof. Clearly the set Dalg maintained by Directed-DomSet is a directed dominating set.
Moreover the algorithm is 1-stable as after each arrival, it either adds a single vertex to Dalg
or does nothing. It is easily checked that the set U maintained by the algorithm is always
a set of pairwise unrelated vertices, and that all vertices in Dalg are an out-neighbor of a
vertex in U or are in U themselves. Hence, by Lemmas 8 and 9, at any time t we have

|Dalg(t)| ⩽ (d + 1) · |U(t)| ⩽ (d + 1) · optout(t) ⩽ (d + 1)2 · opt(t),

which finishes the proof. ◀

In Appendix A we show that the approximation ratio Θ(d2) is tight for this algorithm.

A 3-stable (9d/2)-approximation algorithm. The algorithm presented above has optimal
stability, but its approximation ratio is Ω(d2). We now present an algorithm whose stability is
still very small, namely 3, but whose approximation ratio is only O(d). This is asymptotically
optimal, since, as is easy to see, any algorithm with constant stability must have approximation
ratio Ω(d). Our approach is somewhat similar to that of Liu and Toole-Charignon [21], but
a key difference is that we obtain a worst-case bound on the stability and they obtain an
amortized bound. Our algorithm works in phases, as explained next. Suppose we start a new
phase at time t and let Dalg(t− 1) be the output dominating set at time t− 1. The algorithm
then computes a minimum dominating set Dopt(t) for the graph G(t), which we call the
target dominating set. The algorithm will then slowly migrate from Dalg(t− 1) to Dopt(t),
by first adding the vertices in D+ := Dopt(t) \Dalg(t− 1) and then removing the vertices in
D− := Dalg(t − 1) \Dopt(t). This is done in ⌈|D+ ∪D−|/2⌉ steps. Vertices that arrive in
the meantime are also added to the dominating set, to ensure that the output remains a
dominating set at all time. After all vertices in D+ and D− have been added and deleted,
respectively, the next phase starts. Next we describe and analyze the algorithm in detail.

At the start of the whole algorithm, at time t = 0, we initialize Dalg(0) := ∅, and
D(0)+ = ∅ and D(0)− = ∅.

Algorithm 3 Set-and-Achieve-Target(v).

1: � v is the vertex arriving at time t and G(t) is the graph after arrival of v

2: Dalg ← Dalg(t− 1) ∪ {v}
3: if D+(t− 1) = ∅ and D−(t− 1) = ∅ then � start a new phase
4: Let Dopt(t) be a minimum dominating set for G(t).
5: Set D+(t)← Dopt(t) \Dalg(t− 1) and D−(t)← Dalg(t− 1) \Dopt(t).
6: else
7: Set D+(t)← D+(t− 1) and D−(t)← D−(t− 1)
8: Set m+ ← min(2, |D+(t)|). Delete m+ vertices from D+(t) and add them to Dalg.
9: Set m− ← min(2−m+, |D−(t)|). Delete m− vertices from D−(t) and delete the same

vertices from Dalg.
10: Dalg(t)← Dalg

APPROX/RANDOM 2023
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The algorithm defined above is 3-stable, as it adds one vertex to Dalg in step 2 and then
makes two more changes to Dalg in steps 8 and 9. Next we prove that its approximation ratio
is bounded by 9d/2. Note that the size of a minimum dominating set can reduce over time,
due to the arrival of new vertices. The next lemma shows that this reduction is bounded.
Let max-opt(t) := max(opt(1), opt(2), . . . , opt(t)) denote the maximum size of any of the
optimal solutions until (and including) time t.

▶ Lemma 11. For any time t we have max-opt(t) ⩽ d · opt(t), where d is the maximum
arrival degree of any vertex.

Proof. Let t∗ ⩽ t be such that max-opt(t) = opt(t∗). Let Dopt(t) be an optimal dominating
set for G(t) and define V (t∗) to be the set of vertices of G(t∗). Let D be the set of vertices
in Dopt(t) that were not yet present at time t∗, and define D∗ := (Dopt(t) \D) ∪Nt∗(D),
where Nt∗(D) contains the neighbors of D in V (t∗). Then D∗ is a dominating set for G(t∗)
since any vertex in V (t∗) that is not dominated by a vertex in Dopt(t∗) \D is in D∗ itself.
Moreover, |D∗| ⩽ d · opt(t), since each vertex in D has at most d neighbors in V (t∗). ◀

We first bound the size of Dalg at the start of each phase. Note that in the proofs below,
D+(t) and D−(t) refer to the situation before the execution of line 8 and 9 in the algorithm
set-and-achieve-target.

▶ Lemma 12. If a new phase starts at time t, then Dalg(t− 1) ⩽ 3 ·max-opt(t− 1).

Proof. We proceed by induction on t. The lemma trivially holds at the start of the first
phase, when t = 1. Now consider the start of some later phase, at time t, and let tprev
be the previous time at which a new phase started. Recall that Dalg(t) = Dopt(tprev) ∪
{vertices arriving at times tprev, tprev + 1, . . . , t− 1}.

Moreover,

|D+(tprev)∪D−(tprev)| ⩽ |Dalg(tprev−1)|+|Dopt(tprev)| ⩽ 3·max-opt(tprev−1)+opt(tprev),

where the last inequality uses the induction hypothesis. From time tprev up to time t− 1,
the vertices from D+(tprev) ∪D−(tprev) are added/deleted in pairs, so

t − tprev =
⌈

3 · max-opt(tprev − 1) + opt(tprev)
2

⌉
⩽

⌈
4 · max-opt(tprev)

2

⌉
= 2 · max-opt(tprev).

Hence,

Dalg(t− 1) ⩽ opt(tprev) + (t− tprev)
⩽ max-opt(tprev) + 2 ·max-opt(tprev)
⩽ 3 ·max-opt(t− 1) ◀

The previous lemma bounds |Dalg| just before the start of each phase. Next we use this to
bound |Dalg| during each phase.

▶ Lemma 13. For any time t we have |Dalg(t)| ⩽ (9/2) ·max-opt(t).

Proof. Consider a time t. If a new phase starts at time t + 1 then the lemma follows
directly from Lemma 12. Otherwise, let tprev ⩽ t be the last time at which a new phase
started, and let tnext be the next time at which a new phase starts. Furthermore, let
t∗ := max{t′ : tprev ⩽ t′ < tnext and D+(t′) ̸= ∅}. In other words, t∗ is the last time step in
the interval [tprev, tnext) at which we still add vertices from D+ to Dalg. If D+(tprev) is empty
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then let t∗ = tprev. It is easy to see from the algorithm that |Dalg(t)| ⩽ |Dalg(t∗)|. Note that
Dalg(t∗) contains the vertices from Dalg(tprev − 1), plus the vertices from Dopt(tprev), plus
the vertices that arrived from time tprev to time t∗. Hence,

|Dalg(t∗)| ⩽ |Dalg(tprev − 1)|+ opt(tprev) + (t∗ − tprev + 1)
⩽ |Dalg(tprev − 1)|+ opt(tprev) + opt(tprev)

2
⩽ 3 ·max-opt(tprev − 1) + max-opt(tprev) + opt(tprev)

2
⩽ (9/2) ·max-opt(t).

Note that from the first to the second line we replaced (t∗− tprev + 1) by opt(tprev)/2, which
we can do because we add vertices from Dopt(tprev) in pairs. It may seem that we should
actually write

⌈opt(tprev)
2

⌉
here. When opt(tprev) is odd, however, then the algorithm can

already remove a vertex in D− from Dalg when the last vertex from D+ is added to Dalg.
(This is not true in the special case when D−(tprev) = ∅, but in that case the second term is
an over-estimation. Indeed, when D−(tprev) = ∅ then Dalg(tprev − 1) ⊆ Dopt(tprev) and so
|D+(tprev)| = |Dopt(tprev) \Dalg(tprev − 1)| < |opt(tprev − 1)|.) This finishes the proof. ◀

Putting Lemmas 11 and 13 together, we obtain the following theorem.

▶ Theorem 14. There is a 3-stable (9d/2)-approximation algorithm for Dominating Set
in the vertex-arrival model, where d is the maximum arrival degree of any vertex.

4 Stable Approximation Algorithms for Independent Set

In this section we first show that Independent Set does not admit a SAS, even when
restricted to graphs of maximum degree 3. Then we give an 2-stable O(d)-approximation
algorithm for graphs whose average degree is bounded by d.

4.1 No SAS for graphs of maximum degree 3
We prove our no-SAS result for Independent Set in a similar (but simpler) way as for
Dominating Set. Thus we actually prove the stronger result that there is a constant ε∗ > 0
such that any dynamic (1+ε∗)-approximation algorithm for Independent Set in the vertex
arrival model, must have stability parameter Ω(n), in this case even when the maximum
degree of any of the graphs G(t) is bounded by 3.

Let ε∗ > 0 be a real number less than min
(

0.82δ
1−0.82δ , ε

)
. Let alg be an algorithm that

maintains an independent set Ialg such that opt(t) ⩽ (1 + ε∗) · |Ialg(t)| at all times. Let
fε∗(n) denote the stability of alg, that is, the maximum number of changes it performs
on Ialg when a new vertex arrives, where n is the number of vertices before the arrival.
We will show that, for arbitrarily large n, there is a sequence of n arrivals that requires
fε∗(n) ⩾ 1

6(2+ε)⌊δn⌋. As before, choose N large enough such that the bipartite expander
graph Gexp = (L∪R, E) from Proposition 3 exists for µ = 0.005 and |R| = N . In our no-SAS
construction for Independent Set, we only need Gexp, not additional layers are needed.
Thus the construction is simply as follows.

First the vertices r1, . . . , rN from the set R arrive one by one, as singletons.
Next the vertices ℓ1, . . . , ℓ(1+ε)N from L arrive one by one (in any order), along with their
incident edges in Gexp.

▶ Lemma 15. Let t∗ be the first time when |Ialg(t) ∩ L| ⩾ δN . If fε∗(n) < 1
6(2+ε)⌊δn⌋ then

opt(t∗) > (1 + ε∗) · |Ialg(t∗)|.
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Proof. Let nt denote the number of vertices of the graph G(t), and observe that nt∗ ⩽ (2+ε)N .
Hence, fε∗(nt∗) ⩽ 1

6 δN . By definition of t∗, we know that just before time t∗ we have
|Ialg ∩ L| < δN . Because alg is fε∗(n)-stable, we have

|Ialg(t∗) ∩ L| ⩽ δN + f(ntf
) ⩽ 7

6δN.

Since µ = 0.005, from Proposition 3 we have |N(Ialg(t∗)∩L| ⩾ 1.99·δN . Hence |Ialg(t∗)∩R| ⩽
N − 1.99 · δN , and so

|Ialg(t∗)| = |Ialg(t∗) ∩R|+ |Ialg(t∗) ∩ L| ⩽ 7
6δN + N − 1.99 · δN < N − 0.82 δN

. We also have |opt(t∗)| ⩾ N . Hence, opt(t∗) > N
N−0.82δN |Ialg(t∗)| > (1 + ε∗) · |Ialg(t∗)|. ◀

▶ Theorem 16. There is a constant ε∗ > 0 such that any dynamic (1 + ε∗)-approximation al-
gorithm for Independent Set in the vertex arrival model, must have stability parameter Ω(n),
even when the maximum degree of any of the graphs G(t) is bounded by 3.

Proof. By Proposition 3 the maximum degree of the graph is always bounded by 3. Let
t = 2N + εN and let |Ialg(t) ∩ L| = M . We know by Lemma 15 that if alg is a (1 + ε∗)-
approximation and if fε∗(n) < 1

6(2+ε)⌊δn⌋ then M ⩽ δn. Hence |Ialg(t) ∩R| ⩽ N − 1.99M .
So we have

|Ialg(t)| = |Ialg(t) ∩R|+ |Ialg(t) ∩ L| ⩽ N − 1.99M + M ⩽ N.

But we have opt(t) = (1 + ε)N . Hence the approximation ratio at time t = 2N + εN is
greater than or equal to (1+ε)N

N = 1 + ε > 1 + ε∗ which is a contradiction. This finishes the
proof. ◀

4.2 Constant-stability algorithms when the average degree is bounded
A 2-stable O(d)-approximation algorithm. In this section we consider the setting where
the average degree of G(t) is upper bounded by some constant d at all times. It is easy to
observe that in this setting, if we allow just one change after each vertex arrival, then it’s
not possible to get a bounded approximation ratio. However, we are able to get a bounded
approximation ratio with only two changes per arrival.

It is not hard to see that if the maximum degree is bounded by some constant d∗, then a
simple greedy 1-stable algorithm maintains a O(d∗) approximation. Our idea is to maintain
an induced subgraph with a number of vertices that is linear in the number of vertices of
G(t), and whose maximum degree (rather than average degree) is bounded. We then use the
induced subgraph to generate an independent set. Below we make the idea precise.

First we define a (trivial) subroutine algorithm below which takes in an independent
set I∗ and a subset W ∗ of vertices as an input, and tries to add a vertex v from W ∗ \ I∗ to
I∗ such that I∗ ∪ {v} is still an independent set.

Algorithm 4 Greedy-Addition(I∗, W ∗).

1: if there exist a vertex v ∈W ∗ \ I∗ such that I∗ ∪ {v} is an independent set then
2: Set I∗ = I∗ ∪ {v}

Next we move on to describe our main algorithm, which uses Greedy-Addition as a
subroutine. Let ∆(G) denote the maximum degree of a graph G = (V, E). For a subset
W ⊂ V , define G[W ] to be the subgraph of G induced by W . Let V (t) denote the set of
vertices of G(t).



M. de Berg, A. Sadhukhan, and F. Spieksma 27:15

Observe that by ordering the vertices of G(t) in increasing order of their degree and by
taking the first

⌈ 99
100 |V (t)|

⌉
vertices, we can construct a set V ∗(t) ⊆ V such that |V ∗(t)| ⩾

99
100 |V (t)| and ∆(G[V ∗(t)]) ⩽ 100d. (The number 100 has no special significance – it can
be chosen much smaller – but we use it for convenience.) The idea of our algorithm is to
maintain a vertex set W (t) ⊆ V (t) such that ∆(G[W (t)]) ⩽ 100d and the size of W (t) is
linear in |V (t)|. In order to maintain such a subset, we work in phase, as before: at the
start of each phase, the algorithm sets itself a target vertex set V ∗(t) of large size and with
∆(G[V ∗(t)]) ⩽ 100d. At time t, W +(t) and W −(t) denote the vertices that need to be added
and removed respectively from W (t) in order to achieve the target. This is done by the
algorithm presented next, where we initialize W +(t), W −(t), W (t) = ∅.

Algorithm 5 Set-Achieve-And-Use-Target(v).

1: � v is the vertex arriving at time t and G(t) is the graph after arrival of v

2: if W +(t− 1) = ∅ and W −(t− 1) = ∅ then � start a new phase
3: Choose V ∗(t) ⊆ V such that |V ∗(t)| ⩾ 99

100 |V (t)| and ∆(G[V ∗(t)]) ⩽ 100d.
4: Set W +(t)← V ∗(t) \W (t− 1) and W −(t)←W (t− 1) \ V ∗(t).
5: else
6: Set W +(t)←W +(t− 1) and W −(t)←W −(t− 1)
7: Set m− ← min(1, |W −(t)|). Delete m− vertices from W −(t) and delete the same vertices

from W (t). Call the vertex deleted(if any) as v∗.
8: Set Ialg(t)← Ialg(t− 1) \ {v∗}
9: Set m+ ← min(1 − m−, |W +(t)|). Delete m+ vertices from W +(t) and add them to

W (t).
10: Greedy-Addition(Ialg(t), W (t))

▶ Lemma 17. At the start of each phase – that is, at a time t such that W +(t− 1) = ∅ and
W −(t− 1) = ∅ – we have |W (t− 1)| ⩾ 495

1000 · |V (t)|.

Proof. We proceed by induction on t. The lemma trivially holds at the start of the first
phase, when t = 1. Now consider the start of some later phase, at time t, and let tprev be
the previous time at which a new phase started. Since the start of a phase is just after the
end of the previous phase we have |W (t− 1)| ⩾ 99

100 |V (tprev)|.
Observe that W +(tprev) and W −(tprev) are disjoint subsets of the vertices of V (tprev).

Hence |W +(tprev) ∪W −(tprev)| ⩽ |V (tprev)|. So (t− tprev) ⩽ |V (tprev)|, since we make one
change at a time. So |V (t)| ⩽ 2|V (tprev)| and we have

|W (t− 1)| ⩾ 99
100 · |V (tprev)| ⩾ 495

1000 · 2 · |V (tprev)| ⩾ 495
1000 · |V (t)|

This finishes the proof of the lemma. ◀

The previous lemma gives lower bound of |W (t)| at the start of each phase. Next we use
this to give a lower bound of |W (t)| at any time point t.

▶ Lemma 18. For any time t, we have |W (t)| ⩾ 485
1010 · |V (t)|.

Proof. Consider a time t. If a new phase starts at time t then the lemma follows directly
from Lemma 17. Otherwise, let tprev be the previous time at which a new phase started, and
let tnext be the next time at which a new phase starts.
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Let t∗ := max{t′ : tprev ⩽ t′ < tnext and W −(t′) ̸= ∅}. In other words, t∗ is the last
time step in the interval [tprev, tnext) at which we still delete vertices from W (t). It is easy
to see from the algorithm that in the interval [tprev, tnext), the value |W (t)|

|V (t)| is minimum at
t = t∗. Observe that |W −(tprev)| ⩽ 1

100 · |V (tprev)|, which implies (t∗−tprev) ⩽ 1
100 · |V (tprev)|.

Hence, |V (t∗)| ⩽ 101
100 |V (tprev)| and so by Lemma 17 we have

|W (t∗)| ⩾ 495
1000 · |V (tprev)| − 1

100 · |V (tprev)| = 485
1010 ·

101
100 · |V (tprev)| ⩾ 485

1010 · |V (t∗)|

This finishes the proof of the lemma. ◀

▶ Lemma 19. For any time t we have |W (t)|
|Ialg(t)| ⩽ c · d for some constant c.

Proof. Observe that at any time point t the maximum degree of G[W (t)] is bounded by 100d.
Choose a constant c such that c · d > 100d + 1. Hence if I ⊆W (t) is an independent set with
|I| < |W (t)|

c·d , then there always exist a vertex v ∈W (t) \ I such that {v} ∪ I is a independent
set. If not then all vertices in W (t) \ I have an edge to I. Now |W (t) \ I| ⩾ (c·d−1)

c·d |W (t)|, so
the average degree of I in G[W (t)] is greater than c · d− 1 > 100d, which is a contradiction.

Also observe that Ialg(t) ⊂W (t). Now we proceed by induction on t. The lemma holds
trivially for t = 0. Now suppose the lemma holds for t = k. There are two cases.

Case 1: At t=k+1, a vertex v∗ is deleted from W (t)
In this case initially Ialg(t) = Ialg(t − 1) \ {v∗}. Then the subroutine Greedy-Addition
tries to add a new vertex to Ialg(t). If |W (t)|

|Ialg(t)| ⩽ c · d before Greedy-Addition is initiated
then we are done. Else by the arguments above, we know that if |Ialg| < |W (t)|

c·d then the
subroutine Greedy-Addition can always add a vertex. In that case |Ialg(t)| ⩾ |Ialg(t− 1)|
and |W (t)| = |W (t− 1)| − 1, so |W (t)|

|Ialg(t)| ⩽
|W (t−1)|

|Ialg(t−1)| ⩽ c · d by induction.

Case 2: At t=k+1, a vertex v∗ is added to W (t)
If |W (t)|

|Ialg(t)| ⩽ c · d before Greedy-Addition is initiated then we are done. Else we know that
if |Ialg| < |W (t)|

c·d then the subroutine Greedy-Addition can always add a vertex. In that
case |Ialg(t)| = |Ialg(t− 1)|+ 1 and |W (t)| = |W (t− 1)|+ 1, so |W (t)|

|Ialg(t)| ⩽
|W (t−1)|

|Ialg(t−1)| ⩽ c · d by
induction. ◀

▶ Theorem 20. There is a 2-stable O(d)-approximation algorithm for Independent Set in
the vertex-arrival model where the average degree of G(t) is bounded by d at all times.

Proof. We know that the size of the maximum independent set at time t is trivially bounded
by |V (t)|. Now by Lemmas 18 and 19, we have,

|V (t)|
|Ialg(t)| ⩽

1010
485

|W (t)|
|Ialg(t)| ⩽

1010
485 · c · d

Hence the algorithm set-achieve-and-use-target is an O(d) approximation. Also observe
that the maximum number of changes to Ialg(t) occurs when there is a induced deletion of
a single vertex due to the deletion of a vertex from W (t) and then adding a vertex during
the execution of the subroutine algorithm Greedy-Addition. So clearly the stabilty of the
algorithm set-achieve-and-use-target is bounded by 2. ◀
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5 Concluding remarks

We studied the stability of dynamic algorithms for Dominating Set and Independent
Set in the vertex-arrival model. For both problems we showed that a SAS does not exist.
For Independent Set this even holds when the degrees of all vertices are bounded by 3
at all times. This is clearly tight, since a SAS is easily obtained on graphs of maximum
degree 2. For Dominating Set the no-SAS result holds for degree-4 graphs. A challenging
open problem is whether a SAS exists for Dominating Set for degree-3 graphs. We also
gave algorithms whose approximation ratio and/or stability depends on the (arrival or
average) degree. An interesting open problem here is: Is there a 1-stable O(d)-approximation
algorithm for Dominating Set, when the arrival degree is at most d? Finally, we believe
the concept of stability for dynamic algorithms, which purely focuses on the change in the
solution (rather than computation time) is interesting to explore for other problems as well.
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A Lower-bound example for Directed-DomSet

Fig. 2 shows that the Directed-DomSet has approximation ratio Ω(d2). First, vertex a1
arrives, which will be put into U and Dalg. Then a2 and v1, . . . , vd2 arrive, with an outgoing
edge to a1. These vertices are dominated by a1, so U and Dalg are not modified. Next,
w1, . . . , wd arrive. Vertex w1 arrives with neighbors v1, . . . , vd. We have U = Dalg = {a1},
so w1 is not dominated by any node in Dalg and it is not related to any node in Dalg. Hence,
w1 will be put into U and Dalg. Then vertex w2 arrives with neighbors vd+1, . . . , v2d. We
have U = Dalg = {a1, w1}, so w1 is not dominated by any node in Dalg and it is not related
to any node in Dalg. Hence, w2 will be put into U and Dalg. Similarly, w3, . . . , wd will all be
put into U and Dalg. Then x1, . . . , xd(d−1 arrive, each with one outgoing edge, to a unique
node among v1, . . . , vd2 , as shown in the figure. They are all related to a node in U , namely
one of the wi’s, so their out-neighbors will be out into Dalg. Finally, z arrives, which is
also put into Dalg. Hence, at the end of the algorithm |Dalg| = d2 + 2, but opt = 3 since
{a1, a2, z} is a dominating set.
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a1

a2

v1, . . . , vd2

w1, . . . , wd

x1, . . . , xd(d−1)

z

Figure 2 Example showing that Directed-DomSet has approximation ratio Ω(d2).
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