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Abstract
We show that the space-bounded Statistical Zero Knowledge classes SZKL and NISZKL are surprisingly
robust, in that the power of the verifier and simulator can be strengthened or weakened without
affecting the resulting class. Coupled with other recent characterizations of these classes [4], this
can be viewed as lending support to the conjecture that these classes may coincide with the
non-space-bounded classes SZK and NISZK, respectively.
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1 Introduction

The complexity class SZK (Statistical Zero Knowledge) and its “non-interactive” subclass
NISZK have been studied intensively by the research communities in cryptography and
computational complexity theory. In [12], a space-bounded version of SZK, denoted SZKL
was introduced, primarily as a tool for understanding the complexity of estimating the
entropy of distributions represented by very simple computational models (such as low-degree
polynomials, and NC0 circuits). There, it was shown that SZKL contains many important
problems previously known to lie in SZK, such as Graph Isomorphism, Discrete Log, and
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56:2 Robustness for Space-Bounded Statistical Zero Knowledge

Decisional Diffie-Hellman. The corresponding “non-interactive” subclass of SZKL, denoted
NISZKL, was subsequently introduced in [1], primarily as a tool for clarifying the complexity
of computing time-bounded Kolmogorov complexity under very restrictive reducibilities (such
as projections). Just as every problem in SZK ≤AC0

tt reduces to problems in NISZK [14], so
also every problem in SZKL≤AC0

tt reduces to problems in NISZKL, and thus NISZKL contains
intractable problems if and only if SZKL does.

Very recently, all of these classes were given surprising new characterizations, in terms
of efficient reducibility to the Kolmogorov random strings. Let R̃K be the (undecidable)
promise problem (Y

R̃K
, N

R̃K
) where Y

R̃K
contains all strings y such that K(y) ≥ |y|/2 and

the NO instances N
R̃K

consists of those strings y where K(y) ≤ |y|/2 − e(|y|) for some
approximation error term e(n), where e(n) = ω(logn) and e(n) = no(1).

▶ Theorem 1 ([4]). Let A be a decidable promise problem. Then
A ∈ NISZK if and only if A is reducible to R̃K by randomized polynomial time reductions.
A ∈ NISZKL if and only if A is reducible to R̃K by randomized AC0 or logspace reductions.
A ∈ SZK if and only if A is reducible to R̃K by randomized polynomial time “Boolean
formula” reductions.
A ∈ SZKL if and only if A is reducible to R̃K by randomized logspace “Boolean formula”
reductions.

In all cases, the randomized reductions are restricted to be “honest”, so that on inputs of
length n all queries are of length ≥ nϵ.

There are very few natural examples of computational problems A where the class of
problems reducible to A via polynomial-time reductions differs (or is conjectured to differ)
from the class or problems reducible to A via AC0 reductions. For example the natural
complete problems for NISZK under ≤P

m reductions remain complete under AC0 reductions.
Thus Theorem 1 gives rise to speculation that NISZK and NISZKL might be equal. (This
would also imply that SZK = SZKL.)

This motivates a closer examination of SZKL and NISZKL, to answer questions that have
not been addressed by earlier work on these classes.

Our main results are:
1. The verifier and simulator may be very weak. NISZKL and SZKL are defined in

terms of three algorithms: (1) A logspace-bounded verifier, who interacts with (2) a
computationally-unbounded prover, following the usual rules of an interactive proof, and
(3) a logspace-bounded simulator, who ensures the zero-knowledge aspects of the protocol.
(More formal definitions are to be found in Section 2.) We show that the verifier and
simulator can be restricted to lie in AC0. Let us explain why this is surprising.
The proof presented in [1], showing that EANC0 is complete for NISZKL, makes it clear
that the verifier and simulator can be restricted to lie in AC0[⊕] (as was observed in [24]).
But the proof in [1] (and a similar argument in [14]) relies heavily on hashing, and it is
known that, although there are families of universal hash functions in AC0[⊕], no such
families lie in AC0 [19]. We provide an alternative construction, which avoids hashing,
and allows the verifier and simulator to be very weak indeed.

2. The verifier and simulator may be somewhat stronger. The proof presented in
[1], showing that EANC0 is complete for NISZKL, also makes it clear that the verifier and
simulator can be as powerful as ⊕L, without leaving NISZKL. This is because the proof
relies on the fact that logspace computation lies in the complexity class PREN of functions
that have perfect randomized encodings [7], and ⊕L also lies in PREN. Applebaum,
Ishai, and Kushilevitz defined PREN and the somewhat larger class SREN (for statistical
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randomized encodings), in proving that there are one-way functions in SREN if and only
if there are one-way functions in NC0. They also showed that other important classes
of functions, such as NL and GapL, are contained in SREN.1 We initially suspected that
NISZKL could be characterized using verifiers and simulators computable in GapL (or even
in the slightly larger class DET, consisting of problems that are ≤NC1

T reducible to GapL),
since DET is known to be contained in NISZKL [1].2 However, we were unable to reach
that goal.
We were, however, able to show that the simulator and verifier can be as powerful as NL,
without making use of the properties of SREN. In fact, we go further in that direction.
We define the class PM, consisting of those problems that are ≤L

T-reducible to the Perfect
Matching problem. PM contains NL [18], and is not known to lie in (uniform) NC (and it
is not known to be contained in SREN). We show that statistical zero knowledge protocols
defined using simulators and verifiers that are computable in PM yield only problems in
NISZKL.

3. The complexity of the simulator is key. As part of our attempt to characterize
NISZKL using simulators and verifiers computable in DET, we considered varying the
complexity of the simulator and the verifier separately. Among other things, we show
that the verifier can be as complex as DET if the simulator is logspace-computable.
In most cases of interest, the NISZK class defined with verifier and simulator lying in
some complexity class remains unchanged if the rules are changed so that the verifier is
significantly stronger or weaker.

We also establish some additional closure properties of NISZKL and SZKL, some of which are
required for the characterizations given in [4].

The rest of the paper is organized as follows: Section 3 will show how NISZKL can be
defined equivalently using an AC0 verifier and simulator. Section 4 will show that increasing
the power of the verifier and simulator to lie in PM does not increase the size of NISZKL
(where PM is the class of problems (containing NL) that are logspace Turing reducible to
Perfect Matching). Section 5 expands the list of problems known to lie in NISZKL. McKenzie
and Cook [20] studied different formulations of the problem of solving linear congruences.
These problems are not known to lie in DET, which is the largest well-studied subclass of P
known to be contained in NISZKL. However, these problems are randomly logspace-reducible
to DET [8]. We show that NISZKL is closed under randomized logspace reductions, and
hence show that these problems also reside in NISZKL. Section 6 shows that the complexity
of the simulator is more important than the complexity of the verifier, in non-interactive
zero-knowledge protocols. In particular, the verifier can be as powerful as DET, while still
defining only problems in NISZKL. Finally Section 7 will show that SZKL is closed under
logspace Boolean formula truth-table reductions.

2 Preliminaries

We assume familiarity with basic complexity classes L,NL,⊕L and P, and circuit complexity
classes NC0 and AC0. We assume knowledge of m-reducibility (many-one-reducibility) and
Turing-reducibility. #L is the class of functions that count the number of accepting paths
of NL machines, and GapL = {f − g : f, g ∈ #L}. The determinant is complete for GapL,
and the complexity class DET is the class of languages NC1-Turing reducible to functions in
GapL.

1 This is not stated explicitly for GapL, but it follows from [17, Theorem 1]. See also [11, Section 4.2].
2 More precisely, as observed in [3], the Rigid Graph (non-) Isomorphism problem is hard for DET [26],

and the Rigid Graph Non-Isomorphism problem is in NISZKL [1, Corollary 23].

APPROX/RANDOM 2023



56:4 Robustness for Space-Bounded Statistical Zero Knowledge

Many of the problems we consider deal with entropy (also known as Shannon entropy).
The entropy of a distribution X (denoted H(X)) is the expected value of log(1/Pr[X = x]).
Given two distributions X and Y , the statistical difference between the two is denoted
∆(X,Y ) and is equal to

∑
α

∣∣ Pr[X = α]− Pr[Y = α]
∣∣/2. Equivalently, for finite domains D,

∆(X,Y ) = maxS⊆D{
∣∣ PrX [S]− PrY [S]

∣∣}. This quantity is also known as the total variation
distance between X and Y . The support of X, denoted supp(X), is {x : Pr[X = x] > 0}.

▶ Definition 2. Promise Problem: a promise problem Π is a pair of disjoint sets (ΠY ,ΠN )
(the “YES” and “NO” instances, respectively). A solution for Π is any set S such that
ΠY ⊆ S, and S ∩Πn = Ø.

▶ Definition 3. A branching program is a directed acyclic graph with a single source and
two sinks labeled 1 and 0, respectively. Each non-sink node in the graph is labeled with a
variable in {x1, . . . , xn} and has two edges leading out of it: one labeled 1 and one labeled 0.
A branching program computes a Boolean function f on input x = x1 . . . xn by first placing
a pebble on the source node. At any time when the pebble is on a node v labeled xi, the
pebble is moved to the (unique) vertex u that is reached by the edge labeled 1 if xi = 1 (or
by the edge labeled 0 if xi = 0). If the pebble eventually reaches the sink labeled b, then
f(x) = b. Branching programs can also be used to compute functions f : {0, 1}m → {0, 1}n,
by concatenating n branching programs p1, . . . , pn, where pi computes the function fi(x) =
the i-th bit of f(x). For more information on the definitions, backgrounds, and nuances of
these complexity classes, circuits, and branching programs, see the text by Vollmer [27].

▶ Definition 4 (Non-interactive zero-knowledge proof (NISZK), adapted from [1, 14]). A
non-interactive statistical zero-knowledge proof system for a promise problem Π is defined
by a pair of deterministic polynomial time machines3 (V, S) (the verifier and simulator,
respectively) and a probabilistic routine P (the prover) that is computationally unbounded,
together with a polynomial r(n) (which will give the size of the random reference string σ),
such that:
1. (Completeness): For all x ∈ ΠY , the probability (over random σ, and over the random

choices of P ) that V (x, σ, P (x, σ)) accepts is at least 1− 2−O(|x|).
2. (Soundness): For all x ∈ ΠN , and for every possible prover P ′, the probability that

V (x, σ, P ′(x, σ)) accepts is at most 2−O(|x|). (Note P ′ here can be malicious, meaning it
can try to fool the verifier)

3. (Zero Knowledge): For all x ∈ ΠY , the statistical distance between the following two
distributions is bounded by 2−|x|:
a. Choose σ ← {0, 1}r(|x|) uniformly random, p← P (x, σ), and output (p, σ).
b. S(x, r) (where the coins r for S are chosen uniformly at random).

It is known that changing the definition, to have the error probability in the soundness and
completeness conditions and in the simulator’s deviation be 1

nω(1) results in an equivalent
definition [1, 14]. (See the comments after [1, Claim 39].) We will occasionally make use of
this equivalent formulation, when it is convenient.

NISZK is the class of promise problems for which there is a non-interactive statistical
zero knowledge proof system.

NISZKC denotes the class of problems in NISZK where the verifier V and simulator S lie
in complexity class C.

3 In prior work on NISZK [14, 1], the verifier and simulator were said to be probabilistic machines. We
prefer to be explicit about the random input sequences provided to each machine, and thus the machines
can be viewed as deterministic machines taking a sequence of random bits as input.
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▶ Definition 5 (EA and EANC0 , [1, 14]). Consider Boolean circuits CX : {0, 1}m → {0, 1}n

representing distribution X. The promise problem EA is given by:

EAY := {(CX , k) : H(X) > k + 1}

EAN := {(CX , k) : H(X) < k − 1}

EANC0 is the variant of EA where the distribution Cx is an NC0 circuit with each output bit
depending on at most 4 input bits.

▶ Definition 6 (SDU and SDUNC0). Consider Boolean circuits CX : {0, 1}m → {0, 1}n

representing distributions X. The promise problem SDU = (SDUY ,SDUN ) is given by:

SDUY := {CX : ∆(X,Un) < 1/n}

SDUN := {CX : ∆(X,Un) > 1− 1/n}.

SDUNC0 is the analogous problem, where the distributions X are represented by NC0 circuits
where no output bit depends on more than four input bits.

▶ Theorem 7 ([1, 4]). EANC0 and SDUNC0 are complete for NISZKL. EANC0 remains complete,
even if k is fixed to k = n− 3.

▶ Definition 8 (SD and SDBP, [12, 25]). Consider a pair of Boolean circuits C1, C2 : {0, 1}m →
{0, 1}n representing distributions X1, X2. The promise problem SD is given by:

SDY := {(C1, C2) : ∆(X1, X2) > 2/3}

SDN := {(C1, C2) : ∆(X1, X2) < 1/3}.

SDBP is the variant of SD where the distributions X1, X2 are represented by branching
programs.

2.1 Perfect Randomized Encodings

We will make use of the machinery of perfect randomized encodings [7].

▶ Definition 9. Let f : {0, 1}n → {0, 1}ℓ be a function. We say that f̂ : {0, 1}n × {0, 1}m →
{0, 1}s is a perfect randomized encoding of f with blowup b if it is:

Input independent: for every x, x′ ∈ {0, 1}n such that f(x) = f(x′), the random variables
f̂(x, Um) and f̂(x′, Um) are identically distributed.
Output Disjoint: for every x, x′ ∈ {0, 1}n such that f(x) ̸= f(x′), supp(f̂(x, Um)) ∩
supp(f̂(x′, Um)) = Ø.
Uniform: for every x ∈ {0, 1}n the random variable f̂(x, Um) is uniform over the set
supp(f̂(x, Um)).
Balanced: for every x, x′ ∈ {0, 1}n |supp(f̂(x, Um))| = |supp(f̂(x′, Um))| = b

The following property of perfect randomized encodings is established in [12].

▶ Lemma 10. Let f : {0, 1}n → {0, 1}ℓ be a function and let f̂ : {0, 1}n × {0, 1}m → {0, 1}s

be a perfect randomized encoding of f with blowup b. Then H(f̂(Un, Um)) = H(f(Un))+log b.

APPROX/RANDOM 2023



56:6 Robustness for Space-Bounded Statistical Zero Knowledge

3 Simulators and Verifiers in AC0

In this section, we show that NISZKL can be defined equivalently using verifiers and simulators
that are computable in AC0. The standard complete problems for NISZK and NISZKL take a
circuit C as input, where the circuit is viewed as representing a probability distribution X;
the goal is to approximate the entropy of X, or to estimate how far X is from the uniform
distribution. Earlier work [15, 1, 24] that had presented non-interactive zero-knowledge
protocols for these problems had made use of the fact that the verifier could compute hash
functions, and thereby convert low-entropy distributions to distributions with small support.
But an AC0 verifier cannot compute hash functions [19].

Our approach is to “delegate” the problem of computing hash functions to a logspace
verifier, and then to make use of the uniform encoding of this verifier to obtain the desired
distributions via an AC0 reduction. To this end, we begin by defining a suitably restricted
version of SDUNC0 and show that this restricted version remains complete for NISZKL under
AC0 reductions (and even under projections).

With this new complete problem in hand, we provide a NISZKAC0 protocol for the complete
problem, to conclude NISZKL = NISZKAC0 .

▶ Definition 11. Consider an NC0 circuit C : {0, 1}m → {0, 1}n and the probability distri-
bution X on {0, 1}n defined as C(Um) - where Um denotes m uniformly random bits. For
some fixed ϵ > 0 (chosen later in Remark 16), we define:

SDU’NC0,Y = {X : ∆(C,Un) < 1
2nϵ }

SDU’NC0,N = {X : | supp(X)| ≤ 2n−nϵ

}

We will show that SDU’NC0 is complete for NISZKL under uniform ≤proj
m reductions. In

order to do so, we first show that SDU’NC0 is in NISZKL by providing a reduction to SDUNC0 .

▷ Claim 12. SDU’NC0≤proj
m SDUNC0 , and thus SDU’NC0 ∈ NISZKL.

Proof. On a given probability distribution X defined on {0, 1}n for SDU’NC0 , we claim that
the identity function f(X) = X is a reduction of SDU’NC0 to SDUNC0 . If X is a YES instance
for SDU’NC0 , then ∆(X,Un) < 1

2nϵ , which clearly is a YES instance of SDUNC0 . If X is a
NO instance for SDU’NC0 , then | supp(X)| ≤ 2n−nϵ . Thus, if we let T be the complement of
supp(X), we have that, under the uniform distribution, a string α is in T with probability
≥ 1− 1

2nϵ , whereas this event has probability zero under X. Thus ∆(X,Un) ≥ 1− 1
2nϵ , easily

making it a NO instance of SDUNC0 . ◁

3.1 Hardness for SDU’NC0

▶ Theorem 13. SDU’NC0 is hard for NISZKL under ≤proj
m reductions.

Proof. In order to show that SDU’NC0 is hard for NISZKL, we will show that the reduction
given in [1] proving the hardness of SDUNC0 for NISZKL actually produces an instance of
SDU’NC0 .

Let Π be an arbitrary promise problem in NISZKL with proof system (P, V ) and simulator
S. Let x be an instance of Π. Let Mx(r) denote a machine that simulates S(x) with
randomness r to obtain a transcript (σ, p) - if V (x, σ, p) accepts then Mx(r) outputs σ; else
it outputs 0|σ|. We will assume without loss of generality that |σ| = nk for some constant k.
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It was shown in [15, Lemma 3.1] that for the promise problem EA, there is an NISZK
protocol with completeness error, soundness error and simulator deviation all bounded
from above by 2−m for inputs of length m. Furthermore, as noted in the paragraph before
Claim 38 in [1], the proof carries over to show that EABP has an NISZKL protocol with the
same parameters. Thus, any problem in NISZKL can be recognized with exponentially small
error parameters by reducing the problem to EABP and then running the above protocol for
EABP on that instance. In particular, this holds for EANC0 . In what follows, let Mx be the
distribution described in the preceding paragraph, assuming that the simulator S and verifier
V yield a protocol with these exponentially small error parameters.

▷ Claim 14. If x ∈ ΠY ES then ∆(Mx(r), Unk ) ≤ 1/2n−1. And if x ∈ ΠNO then
| supp(Mx(r))| ≤ 2nk−nϵk for ϵ < 1

k .

Refer to Appendix A.1 for the proof.
The above claim talks about the distribution Mx(r) where M is a logspace machine. We

will instead consider an NC0 distribution with similar properties that can be constructed
using projections. This distribution (denoted by Cx) is a perfect randomized encoding of
Mx(r). We make use of the following construction:

▶ Lemma 15 ([1, Lemma 35]). There is a function computable in AC0 (in fact, it can be a
projection) that takes as input a branching program Q of size l computing a function f and
produces as output a list pi of NC0 circuits, where pi computes the i-th bit of a function f̂

that is a perfect randomized encoding of f that has blowup b = 2((l
2)−1)2((l−1)2−1) (and thus

the length of f̂(r) = log b+ |f(r)|). Each pi depends on at most four input bits from (x, r)
(where r is the sequence of random bits in the randomized encoding).

The properties of perfect randomized encodings (see Definition 9) imply that the range of f̂
(and thus also the range of Cx) can be partitioned into equal sized pieces corresponding to each
value of f(r). Thus, let α1, α2, .., αz be the range of f(r), and let [α] = {f̂(r, s) : f(r) = α}.
It follows that |[α]| = b. For a given α, and for a given β of length log b we denote by αβ

the β-th element of [α]. Since the simulator S runs in logspace, each bit of Mx(r) can be
simulated with a branching program Qx. Furthermore, it is straightforward to see that there
is an AC0-computable function that takes x as input and produces an encoding of Qx as
output, and it can even be seen that this function can be a projection. Let the list of NC0

circuits produced from Qx by the construction of Lemma 15 be denoted Cx.
We show that this distribution Cx is an instance of SDU’NC0 if x ∈ Π. For x ∈ ΠY ES , we

have ∆(Mx(r), Unk ) ≤ 1/2n−1, and we want to show ∆(Cx(r), Ulog b+nk ) ≤ 1/2n−1. Thus it
will suffice to observe that ∆(Mx(r), Unk ) = ∆(Cx(r), Ulog b+nk ) ≤ 1/2n−1.

To see this, note that

∆(Cx(r), Ulog b+nk ) =
∑
αβ

∣∣ Pr[Cx = αβ]− 1
2nk+b

∣∣/2 =
∑

β

∑
α

∣∣ Pr[Mx = α] 1
2b
− 1

2b

1
2nk

∣∣/2
=

∑
α

∣∣ Pr[Mx = α]− 1
2nk

∣∣/2 = ∆(Mx(r),Unk ).

Thus, for x ∈ ΠY ES , Cx is a YES instance for SDU’NC0 .
For x ∈ ΠNO, Claim 14 shows that | supp(Mx(r))| ≤ 2nk−n. Since the NC0 circuit Cx is

a perfect randomized encoding of Mx(r), we have that the support of Cx for x ∈ ΠNO is
bounded from above by b× 2nk−n Note that log b is polynomial in n; let q(n) = log b. Let
r(n) denote the length of the output of C; r(n) = q(n) + nk. Thus the size of supp(Cx) ≤
2nk−n+q(n) = 2r(n)−n < 2r(n)−r(n)ϵ (if 1/ϵ is chosen to be greater than the degree of r), and
hence Cx is a NO instance for SDU’NC0 . ◀

APPROX/RANDOM 2023



56:8 Robustness for Space-Bounded Statistical Zero Knowledge

▶ Remark 16. Here is how we pick ϵ in the definition of SDU’NC0 . SDUNC0 is in NISZKL via
some simulator and verifier, where the error parameters are exponentially small, and the
shared reference strings σ have length nk on inputs of length n. Now we pick ϵ > 0 so that
ϵ < 1/k (as in Claim 14) and also 1/ϵ is greater than the degree of r (as in the last sentence
of the proof of Theorem 13).

3.2 NISZKAC0 protocol for SDU’NC0 on input X represented by circuit C

3.2.1 Non Interactive proof system
1. Let C take inputs of length m and produce outputs of length n, and let σ be the reference

string of length n.
2. If there is no r such that C(r) = σ, then the prover sends ⊥. Otherwise, the prover picks

an element r uniformly at random from p ∼ {r|C(r) = σ} and sends it to the verifier.
3. V accepts iff C(r) = σ. (Since C is an NC0 circuit, this can be accomplished in AC0 – this

step can not be accomplished in NC0 since it depends on all of the bits of σ.)

3.2.2 Simulator for SDU’NC0 proof system, on input X represented by
circuit C

1. Pick a random s of length m and compute γ = C(s).
2. Output (s, γ).

3.3 Proofs of Zero Knowledge, Completeness and Soundness
Completenss: Suppose X ∈ SDU’NC0,Y , then ∆(X,Un) < 1

2nϵ . This implies | supp(X)| >
2n(1− 1

2nϵ ), which immediately implies that the verifier accepts with high probability.
Soundness: Suppose X ∈ SDU’NC0,N , we note that whenever σ ̸∈ supp(X), no prover can
make the verifier accept. If X ∈ SDU’NC0,N , the probability that σ ̸∈ supp(X) is greater
than 1− 1

2nϵ .
Statistical Zero-Knowledge: Refer to Appendix A.2 for proof. ⌟

4 Simulator and Verifier in PM

In this section, we show that NISZKL can be defined equivalently using verifiers and simulators
that lie in the class PM of problems that logspace-Turing reduce to Perfect Matching. (PM
is not known to lie in (uniform) NC.) That is, we can increase the computational power of
the simulator and the verifier from L to PM without affecting the power of noninteractive
statistical zero knowledge protocols.

The Perfect Matching problem is the well-known problem of deciding, given an undirected
graph G with 2n vertices, if there is a set of n edges covering all of the vertices. We define a
corresponding complexity class PM as follows:

PM := {A : A ≤L
T Perfect Matching}

It is known that NL ⊆ PM [18].
Our argument proceeds by first observing4 that NISZKL = NISZK⊕L, and then making

use of the details of the argument that Perfect Matching is in ⊕L/poly [6].

4 This equality was previously observed in [24].
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▶ Proposition 17. NISZK⊕L = NISZKL

Proof. It suffices to show NISZK⊕L ⊆ NISZKL. We do this by showing that the problem
EANC0 is hard for NISZK⊕L; this suffices since EANC0 is complete for NISZKL. The proof
of [1, Theorem 26] (showing that EANC0 is complete for NISZKL involves (a) building a
branching program to simulate a logspace computation called Mx that is constructed from a
logspace-computable simulator and verifier, and (b) constructing an NC0-computable perfect
randomized encoding of Mx, using the fact that L ⊂ PREN , where PREN is the class
defined in [7], consisting of all problems with perfect randomized encodings. But Theorem
4.18 in [7] shows the stronger result that ⊕L lies in PREN , and hence the argument of
[1, Theorem 26] carries over immediately, to reduce any problem in NISZK⊕L to EANC0 (by
modifying step (a), to build a parity branching program for Mx that is constructed from a
⊕L simulator and verifier). ◀

We also rely on the following lemma:

▶ Lemma 18 (Adapted from [6, Section 3] and [21, Section 4]). Let W = (w1, w2, · · · , wnk+3)
be a sequence of nk+3 weight functions, where each wi : [

(
n
2
)
] → [4n2] is a distinct weight

assignment to edges in n-vertex graphs. Let (G,wi) denote the result of weighting the edges
of G using weight assignment wi. Then there is a function f in GapL, such that, if (G,wi)
has a unique perfect matching of weight j, then f(G,W, i, j) ∈ {1,−1}, and if G has no
perfect matching, then for every (W, i, j), it holds that f(G,W, i, j) = 0. Furthermore, if W
is chosen uniformly at random, then with probability ≥ 1− 2−nk , for each n-vertex graph G:

If G has no perfect matching then ∀i∀j f(G,W, i, j) = 0.
If G has a perfect matching then ∃i such that (G,wi) has a unique minimum-weight
matching, and hence ∃i∃j f(G,W, i, j) ∈ {1,−1}.

Thus if we define g(G,W ) to be 1− Πi,j(1− f(G,W, i, j)2), we have that g ∈ GapL and with
probability ≥ 1− 2−nk (for randomly-chosen W ), g(G,W ) = 1 if G has a perfect matching,
and g(G,W ) = 0 otherwise.

Note that this lemma is saying that most W constitute a good “advice string”, in the sense
that g(G,W ) provides the correct answer to the question “Does G have a perfect matching?”
for every graph G with n vertices.

▶ Corollary 19. For every language A ∈ PM there is a language B ∈ ⊕L such that, if x ∈ A,
then PrW←[4n2]n5 [(x,W ) ∈ B] ≥ 1 − 2−n2 , and if x ̸∈ A, then PrW←[4n2]n5 [(x,W ) ∈ B] ≤
2−n2 .

Refer to Appendix A.3 for proof.

▶ Theorem 20. NISZKL = NISZKPM

Proof. We show that NISZKPM ⊆ NISZK⊕L, and then appeal to Proposition 17.
Let Π be an arbitrary problem in NISZKPM, and let (S, P, V ) be the PM simulator, prover,

and verifier for Π, respectively. Let S′ and V ′ be the ⊕L languages that are probabilistic
realizations of S, V , respectively, guaranteed by Corollary 19. We now define a NISZKL
protocol (S′′, P ′′, V ′′) for Π.

On input x with shared randomness σW , the prover P ′′ sends the same message p =
P (x, σ) as the original prover sends. The verifier V ′′, returns the value of V ′((x, σ, p),W ),
which with high probability is equal to V (x, σ, p). The simulator S′′, given as input x and
random sequence rW , executes S′((x, r, i),W ) for each bit position i to obtain a bit that
(with high probability) is equal to the ith bit of S(x, r), which is a string of the form (σ, p),
and outputs (σW, p).

APPROX/RANDOM 2023
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Now we will analyze the properties of (S′′, P ′′, V ′′):
Completeness: Suppose x ∈ ΠY , then Prσ[V (x, σ, P (x, σ)) = 1] ≥ 1 − 2−O(n). Since
∀y ∈ {0, 1}n : PrW [V (y) = V ′(y,W )] ≥ 1− 2−nk we have:

Pr
σW

[V ′((x, σ, P ′′(x, σ)),W ) = 1] ≥ [1− 2−O(n)][1− 2−nk

] = 1− 2−O(n)

Soundness: Suppose x ∈ ΠN , then Prσ[∀p : V (x, σ, p) = 0] ≥ 1 − 2−O(n). Since
∀y ∈ {0, 1}n : PrW [V (y) = V ′(y,W )] ≥ 1− 2−nk , we have:

Pr
σW

[∀p : V ′((x, σ, p),W ) = 0] ≥ [1− 2−O(n)][1− 2−nk

] = 1− 2−O(n)

Statistical Zero-Knowledge: Suppose x ∈ ΠY . Let S∗ denote the distribution on strings
of the form (σ, p) that S(x, r) produces, where r is uniformly generated, and let P ∗ denote
the distribution on strings given by (σ, P (x, σ)) where σ is chosen uniformly at random.
Similarly, let S′′∗ denote the distribution on strings of the form (σW, p) that S′′(x, rW )
produces, where r and W are chosen uniformly, and let P ′′∗ be the distribution given by
(σW,P ′′(x, σW )). Let A = {(σW, p) : ∃i∃r S(x, r)i ̸= S′((x, r, i),W )}.
Since PrW [∀i∀r : S(x, r)i = S′((x, r, i),W )] ≥ 1− 2−O(n) we have:

∆(S′′∗, P ′′∗) = 1
2

∑
(σW,p)

∣∣ Pr[S′′∗ = (σW, p)]− Pr[P ′′∗ = (σW, p)]
∣∣

≤ 1
2(2−O(n) +

∑
(σW,p)∈A

∣∣ Pr[S′′∗ = (σW, p)]− Pr[P ′′∗ = (σW, p)])
∣∣

= 1
2(2−O(n) +

∑
(σW,p)∈A

∣∣ Pr[S∗ = (σ, p)]− Pr[P ∗ = (σ, p)]
∣∣ Pr[W ])

≤ 2−O(n) +
∑
W

Pr[W ] 12
∑
(σ,p)

∣∣ Pr[S∗ = (σ, p)]− Pr[P ∗ = (σ, p)]
∣∣

= 2−O(n) + ∆(S∗, P ∗) = 2−O(n)

Therefore (S′′, P ′′, V ′′) is a NISZK⊕L protocol deciding Π. ◀

5 Additional problems in NISZKL

In this section, we give additional examples of problems in P that lie in NISZKL. These
problems are not known to lie in (uniform) NC. Our main tool is to show that NISZKL is
closed under a class of randomized reductions.

The following definition is from [4]:

▶ Definition 21. A promise problem A = (Y,N) is ≤BPL
m -reducible to B = (Y ′, N ′) with

threshold θ if there is a logspace-computable function f and there is a polynomial p such that
x ∈ Y implies Prr∈{0,1}p(|x|) [f(x, r) ∈ Y ′] ≥ θ.
x ∈ N implies Prr∈{0,1}p(|x|) [f(x, r) ∈ N ′] ≥ θ.

Note, in particular, that the logspace machine computing the reduction has two-way access
to the random bits r; this is consistent with the model of probabilistic logspace that is used
in defining NISZKL.

▶ Theorem 22. NISZKL is closed under ≤BPL
m reductions with threshold 1− 1

nω(1) .
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Proof. Let Π≤BPL
m EANC0 , via logspace-computable function f . Let (S1, V1, P1) be the NISZKL

proof system for EANC0 .

Algorithm 1 Simulator S(x, rσ′).

(σ, p)← S1(f(x, σ′), r);
return ((σ, σ′), p);

Algorithm 2 Verifier V (x, (σ, σ′), p).

return V1((f(x, σ′), σ, p))

Algorithm 3 Prover P (x, (σ, σ′)).

return P1((f(x, σ′), σ));

We now claim that (S, P, V ) is a NISZKL protocol for Π.
It is apparent that S and V are computable in logspace. We just need to go through

completeness, soundness, and statistical zero-knowledge of this protocol.

Completeness: Suppose x is YES instance of Π. Then with probability 1− 1
nω(1) (over

randomness of σ′): f(x, σ′) is a YES instance of EANC0 . Thus for a randomly chosen σ:

Pr[V1(f(x, σ′), σ, P1(f(x, σ′), σ)) = 1] ≥ 1− 1
nω(1)

Soundness: Suppose x is NO instance of Π. Then with probability 1 − 1
nω(1) (over

randomness of σ′): f(x, σ′) is a NO instance of EANC0 . Thus for a randomly chosen σ:

Pr[V1(f(x, σ′), σ, P1(f(x, σ′), σ)) = 0] ≥ 1− 1
nω(1)

Statistical Zero-Knowledge: If x is a YES instance, f(x, σ′) is a YES instance of EANC0

with probability close to 1. For any YES instance y of EANC0 , the distribution given by
S1 on input y is exponentially close the the distribution on transcripts (σ, p) induced by
(V1, P1) on input y. Thus the distribution on (σσ′, p) induced by (V, P ) has distance at
most 1

nω(1) from the distribution produced by S on input x. The claim now follows by
the comments regarding error probabilities in Definition 4. ◀

McKenzie and Cook [20] defined and studied the problems LCON, LCONX and LCONNULL.
LCON is the problem of determining if a system of linear congruences over the integers mod
q has a solution. LCONX is the problem of finding a solution, if one exists, and LCONNULL
is the problem of computing a spanning set for the null space of the system.

These problems are known to lie in uniform NC3 [20], but are not known to lie in uniform
NC2, although Arvind and Vijayaraghavan showed that there is a set B in LGapL ⊆ DET ⊆ NC2

such that x ∈ LCON if and only if (x,W ) ∈ B, where W is a randomly-chosen weight
function [8]. (The probability of error is exponentially small.) The mapping x 7→ (x,W ) is
clearly a ≤BPL

m reduction. Since DET ⊆ NISZKL [1], it follows that

LCON ∈ NISZKL

The arguments in [8] carry over to LCONX and LCONNULL as well.

▶ Corollary 23. LCON ∈ NISZKL. LCONX ∈ NISZKL. LCONNULL ∈ NISZKL.
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6 Varying the Power of the Verifier

In this section, we show that the computational complexity of the simulator is more important
than the computational complexity of the verifier, in non-interactive protocols. The results in
this section were motivated by our attempts to show that NISZKL = NISZKDET. Although we
were unable to reach this goal, we were able to show that the verifier could be as powerful as
DET, if the simulator was restricted to be no more powerful than NL. The general approach
here is to replace a powerful verifier with a weaker verifier, by requiring the prover to provide
a proof to convince a weak verifier that the more powerful verifier would accept.

We define NISZKA,B as the class of problems with a NISZK protocol where the simulator
is in A and the verifier is in B (and hence NISZKA = NISZKA,A). We will consider the
case where A ⊆ B ⊆ NISZKA and A,B are both classes of functions that are closed under
composition.

▶ Theorem 24. NISZKA,B = NISZKA

Proof. Let Π be an arbitrary promise problem in NISZKA,B with (S1, V1, P1) being the A
simulator, B verifier, and prover for Π’s proof system, where the reference string has length
p1(|x|) and the prover’s messages have length q1(|x|). Since V1 ∈ B ⊆ NISZKA, L(V1) has
a proof system (S2, V2, P2), where the reference string has length p2(|x|) and the prover’s
messages have length q2(|x|).

Then Π has the following NISZKA proof system:

Algorithm 4 Simulator S(x, r1, r2).

Data: x ∈ ΠY es ∪ΠNo

(σ, p)← S1(x, r1);
(σ′, p′)← S2((x, σ, p), r2);
return ((σ, σ′), (p, p′));

Algorithm 5 Verifier V (x, (σ, σ′), (p, p′)).

return V2((x, σ, p), σ′, p′)

Algorithm 6 Prover P (x, σσ′).

Data: x ∈ ΠY es ∪ΠNo, σ ∈ {0, 1}p1(|x|), σ′ ∈ {0, 1}p2(|x|)

if x ∈ ΠY es then
p← P1(x, σ);
p′ ← P2((x, σ, p), σ′);
return (p, p′);

else
return ⊥,⊥;

end

Correctness: Suppose x ∈ ΠY es, then given random σ, with probability (1 − 1
2O(|x|) ):

(x, σ, P1(x, σ)) ∈ L(V1) which means with probability (1− 1
2O(|x|+p1(|x|)+|p|) ) it holds that

((x, σ, p), σ′, P2(x, σ, P1(x, σ)) ∈ L(V2). So the probability that V accepts is at least:

(1− 1
2O(|x|) )(1− 1

2O(|x|+p1(|x|)+q1(|x|)) ) = 1− 1
2O(|x|)

Soundness: Suppose x ∈ ΠN . When given a random σ, we have that with probability
less than 1

2O(|x|) : ∃p such that (x, σ, p) ∈ L(V1). For (x, σ, p) ̸∈ L(V1), the probability that
there is a p such that ((x, σ, p), σ′, p′) ∈ L(V2) is at most 1

2O(|x|+p1(|x|)+|p|) (given random
σ′). So the probability that V rejects is at least:

(1− 1
2O(|x|) )(1− 1

2O(|x|+p(|x|)+|p|) ) = 1− 1
2O(|x|)
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Statistical Zero-Knowledge: Refer to the full version [2]. ◀

▶ Corollary 25. NISZKL = NISZKAC0 = NISZKAC0,DET = NISZKNL,DET

The proof of Theorem 24 did not make use of the condition that the verifier is at least as
powerful as the simulator. Thus, maintaining the condition that A ⊆ B ⊆ NISZKA, we also
have the following corollary:

▶ Corollary 26. NISZKB = NISZKB,A

▶ Corollary 27. NISZKA,B ⊆ NISZKB,A

▶ Corollary 28. NISZKDET = NISZKDET,AC0

7 SZKL closure under ≤L
bf−tt reductions

Although our focus in this paper has been on NISZKL, in this section we report on a closure
property of the closely-related class SZKL.

The authors of [12], after defining the class SZKL, wrote:

We also mention that all the known closure and equivalence properties of SZK (e.g.
closure under complement [22], equivalence between honest and dishonest verifiers [15],
and equivalence between public and private coins [22]) also hold for the class SZKL.

In this section, we consider a variant of a closure property of SZK (closure under
≤P

bf−tt [25]), and show that it also holds5 for SZKL. Although our proof follows the general
approach of the proof of [25, Theorem 4.9], there are some technicalities with showing that
certain computations can be accomplished in logspace (and for dealing with distributions
represented by branching programs instead of circuits) that require proof. (The characteri-
zation of SZKL in terms of reducibility to the Kolmogorov-random strings presented in [4]
relies on this closure property.)

▶ Definition 29 (From [25, Definition 4.7]). For a promise problem Π, the characteristic
function of Π is the map XΠ : {0, 1}∗ → {0, 1, ∗} given by

XΠ(x) =


1 if x ∈ ΠY es,

0 if x ∈ ΠNo,

∗ otherwise.

▶ Definition 30. Logspace Boolean formula truth-table reduction (≤L
bf−tt reduction): We

say a promise problem Π logspace Boolean formula truth-table reduces to Γ if there
exists a logspace-computable function f , which on input x produces a tuple (y1, . . . , ym) and
a Boolean formula ϕ (with m input gates) such that:

x ∈ ΠY es =⇒ ϕ(XΓ(y1), . . . ,XΓ(ym)) = 1

x ∈ ΠNo =⇒ ϕ(XΓ(y1), . . . ,XΓ(ym)) = 0

5 We observe that open questions about closure properties of NISZK also translate to open questions
about NISZKL. NISZK is not known to be closed under union [23], and neither is NISZKL. Neither is
known to be closed under complementation. Both are closed under conjunctive logspace-truth-table
reductions.
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We begin by proving a logspace analogue of a result from [25], used to make statistically
close pairs of distributions closer and statistically far pairs of distributions farther.

▶ Lemma 31 (Polarization Lemma, adapted from [25, Lemma 3.3]). There is a logspace-
computable function that takes a triple (P1, P2, 1k), where P1 and P2 are branching programs,
and outputs a pair of branching programs (Q1, Q2) such that:

∆(P1, P2) < 1
3 =⇒ ∆(Q1, Q2) < 2−k

∆(P1, P2) > 2
3 =⇒ ∆(Q1, Q2) > 1− 2−k

To prove this, we adapt the same method as in [25] and alternate two different procedures,
one to drive pairs with large statistical distance closer to 1, and one to drive distributions
with small statistical distance closer to 0. The following lemma will do the former:

▶ Lemma 32 (Direct Product Lemma, from [25, Lemma 3.4]). Let X and Y be distributions
such that ∆(X,Y ) = ϵ. Then for all k,

kϵ ≥ ∆(⊗kX,⊗kY ) ≥ 1− 2 exp(−kϵ2/2)

The proof of this statement follows from [25]. To use this for Lemma 31, we note that a
branching program for ⊗kP can easily be created in logspace from a branching program P

by simply copying and concatenating k independent copies of P together.
We now introduce a lemma to push close distributions closer:

▶ Lemma 33 (XOR Lemma, adapted from [25, Lemma 3.5]). There is a logspace-computable
function that maps a triple (P0, P1, 1k), where P0 and P1 are branching programs, to a pair
of branching programs (Q0, Q1) such that ∆(Q0, Q1) = ∆(P0, P1)k. Specifically, Q0 and Q1
are defined as follows:

Q0 =
⊗
i∈[k]

Pyi
: y ←R {y ∈ {0, 1}k : ⊕i∈[k]yi = 0}

Q1 =
⊗
i∈[k]

Pyi : y ←R {y ∈ {0, 1}k : ⊕i∈[k]yi = 1}

Refer to Appendix A.4 for proof. We now have the tools to prove Lemma 31.

Proof of Lemma 31. From [25, Section 3.2], we know that we can polarize (P0, P1, 1k) by:
Letting l = ⌈log4/3 6k⌉, j = 3l−1

Applying Lemma 33 to (P0, P1, 1l) to get (P ′0, P ′1)
Applying Lemma 32: P ′′0 = ⊗jP ′0, P ′′1 = ⊗jP ′1
Applying Lemma 33 to (P ′′0 , P ′′1 , 1k) to get (Q0, Q1)

Each step is computable in logspace, and since logspace is closed under composition, this
completes our proof. ◀

We also mention the following lemma, which will be useful in evaluating the Boolean
formula given by the ≤L

bf−tt reduction.

▶ Lemma 34. There is a function in NC1 that takes as input a Boolean formula ϕ (with m
input bits) and produces as output an equivalent formula ψ with the following properties:
1. The depth of ψ is O(logm).
2. ψ is a tree with alternating levels of AND and OR gates.
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3. The tree’s non-leaf structure is always the same for a fixed input length.
4. All NOT gates are located just before the leaves.
Refer to Appendix A.5 for proof.

▶ Theorem 35. SZKL is closed under ≤L
bf−tt reductions.

To begin the proof of this theorem, we first note that as in the proof of [25, Lemma 4.10],
given two SDBP pairs, we can create a new pair which is in SDBP,No if both of the original
two pairs are (which we will use to compute ANDs of queries.) We can also compute in
logspace the OR query for two queries by creating a pair (P1 ⊗ S1, P2 ⊗ S2). We prove that
these operations produce an output with the correct statistical difference with the following
two claims:

▷ Claim 36. {(y1, y2)|XSDBP(y1) ∨ XSDBP(y2) = 1}≤L
mSDBP.

▷ Claim 37. {(y1, y2)|XSDBP(y1) ∧ XSDBP(y2) = 1} ≤L
m SDBP.

Refer to Appendix A.6 and Appendix A.7 for the construction and proof. Crucially we
note that the construction still retains a 2/3 completeness and 1/3 soundness bound.

Proof of Theorem 35. Now suppose that we are given a promise problem Π such that
Π ≤L

bf−tt SDBP. We want to show Π ≤L
m SDBP, which by SZKL’s closure under ≤L

m reductions
implies Π ∈ SZKL.

We follow the steps below on input x to create an SDBP instance (F0, F1) which is in
SDBP,Y if x ∈ ΠY :
1. Run the L machine for the ≤L

bf−tt reduction on x to get queries (q1, . . . , qm) and the
formula ϕ.

2. Build ψ from ϕ using Lemma 34. Replace negated queries ¬qi with the query produced by
the reduction from SDBP,Y to SDBP,N on qi, and then apply Lemma 31 (the Polarization
Lemma) with k = n on these queries to get (y1, . . . , yk). Pad the output bits of each
branching program so each branching program has m output bits.

3. Build the template tree T . At the leaf level, for each variable in ψ, we will plug in the
corresponding query yi. By Lemma 34 the tree is full.

4. Given x and designated output position j of F0 or F1, there is a logspace computation
which finds the original output bit from y1 . . . ym that bit j was copied from. This machine
traverses down the template tree from the output bit and records the following:

The node that the computation is currently at on the template tree, with the path
taken depending on j.
The position of the random bits used to decide which path to take when we reach
nodes corresponding to AND.

This takes O(logm) space. We can use this algorithm to copy and compute each output
bit of F0 and F1, creating (F0, F1) in logspace.

For step 4, we give an algorithm Eval(x, j, ψ, y1, . . . , ym) to compute the jth output bit of
F0 or F1 on x, for a formula ψ satisfying the properties of Lemma 34, a list of SDBP queries
(y1, . . . , ym), and j. Without loss of generality, we lay out the algorithm to compute only
F0(x).

Outline of Eval(x, j, ψ, y1, . . . , ym) :
The idea is to compute the jth output bit of F0 by recursively calculating which query

output bit it was copied from. To do this, first notice that the AND and OR operations
produce branching programs where each output bit is copied from exactly one output bit of
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one of the query branching programs, so composing these operations together tells us that
every output bit in F0 is copied from exactly one output bit from one query. By Lemma 34
and our AND and OR operations preserving the number of output bits, we also have that
if every BP has l output bits, F0 will have 2al = |ψ|l output bits, where a is the depth of
ψ. This can be used to recursively calculate which query the jth bit is from: for an OR
gate, divide the output bits into fourths, and decide which fourth the jth bit falls into (with
each fourth corresponding to one BP, or two fourths corresponding to a subtree.) For an
AND gate, divide the output into fourths, decide which fourth the jth bit falls into, and
then use the 4 random bits for the XOR operation to compute which fourth corresponds to
which branching programs (2 fourths will correspond to 1 BP or subtree, and the other 2
fourths will correspond to the 2 BPs from the other subtree.) If j is updated recursively,
then at the query level, we can directly return the j′th output bit. This can be done in
logspace, requiring a logspace path of “lefts” and “rights” to track the current gate, logspace
to record and update j′, logspace to compute 2al at each level, and logspace to compute
which subtree/query the output bit comes from at each level.

The resulting BP will be two distributions that will be in SDBP,Y ⇐⇒ x ∈ ΠY . By this
process Π ≤L

m SDBP. ◀
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A Appendix

This appendix contains some proofs that were moved from the main part of the paper, due
to space limitations.

A.1 Proof of Claim 14
Proof. For x ∈ ΠY ES , claim 38 of [1] shows that ∆(Mx(r), Unk ) ≤ 1/2n−1, establishing the
first part of the claim.
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For x ∈ ΠNO, from the soundness guarantee of the NISZKL protocol for EANC0 , we know
that, for at least a 1− 1

2n fraction of the shared reference strings σ ∈ {0, 1}nk , there is no
message p that the prover can send that will cause V to accept. Thus there are at most
2nk−n outputs of Mx(r) other than 0nk . For ϵ < 1

k , we have | supp(Mx(r))| ≤ 2nk−nϵk . ◁

A.2 Proof of Statistical Zero-Knowledge in Section 3.3

Proof. Suppose X ∈ SDU’NC0,Y . Recall that σ ∼ {0, 1}n, s ∼ {0, 1}m, p ∼ {r : C(r) = σ}
and γ = C(s). In order to provide an upper bound on ∆((p, σ), (s, γ)), we consider the
element wise probability of each distribution and show that for X ∈ SDU’NC0,Y the claim
holds. For a ∈ {0, 1}m and b ∈ {0, 1}n we have:

∆((p, σ), (s, γ)) =
∑
(a,b)

1
2 |Pr[(p, σ) = (a, b)]− Pr[(s, γ) = (a, b)]|

Let us consider an element b ∈ {0, 1}n. Let Ab = {a1, a2, .., akb
} be the pre-images of b under

C i.e. for 1 ≤ i ≤ kb it holds that C(ai) = b. Let βb = Pr
y∼Um

[C(y) = b]. Then kb2−m = βb

(since exactly kb elements of {0, 1}m are mapped to b under C). Let B = {b|¬∃y : C(y) = b}.
Since ∆(C(Um), Un) ≤ 1

2nϵ , it follows that |B|2m ≤ 1
2nϵ . We have:

∆((p, σ), (s, γ)) =
∑
(a,b)

1
2(|Pr[(p, σ) = (a, b)]− Pr[(s, γ) = (a, b)]|)

= 1
2

∑
(a,b):b∈B

|Pr[(p, σ) = (a, b)]− Pr[(s, γ) = (a, b)]|

+ 1
2

∑
(a,b):b̸∈B

|Pr[(p, σ) = (a, b)]− Pr[(s, γ) = (a, b)]|

For (a, b) satisfying b ∈ B, we have Pr[(s, γ) = (a, b)] = Pr[(p, σ) = (a, b)] = 0. For b ̸∈ B
and a satisfying C(a) ̸= b we again have Pr[(s, γ) = (a, b)] = Pr[(p, σ) = (a, b)] = 0. For
(a, b) : C(a) = b we have Pr[(s, γ) = (a, b)] = 2−m since s ∼ Um and picking s fixes b. We
also have Pr[(p, σ) = (a, b)] = 2−n

kb
since σ ∼ Un and then the prover picks p uniformly from

Ab. This gives us

∆((p, σ), (s, γ)) = 1
2

∑
(a,b):C(a)=b

∣∣2−m − 2−n

kb

∣∣
= 1

2
∑

(a,b):C(a)=b

∣∣∣∣2−m − 2−m−n

βb

∣∣∣∣
= 1

2
∑

(a,b):C(a)=b

2−m

βb

∣∣βb − 2−n
∣∣

≤ 1
2

∑
(a,b):C(a)=b

∣∣βb − 2−n
∣∣ = ∆(C(Um), Un) ≤ 1

2nϵ

where the first inequality holds since βb ≥ 2−m whenever βb ̸= 0. Thus we have :

∆((p, σ), (s, γ)) = O( 1
2nϵ ). ◀
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A.3 Proof of Corollary 19
Proof. Let A be in PM, where there is a logspace oracle machine M accepting A with an
oracle P for Perfect Matching. We may assume without loss of generality that all queries
made by M on inputs of length n have the same number of vertices p(n). This is because G
has a perfect matching iff G∪ {x1 − y1, x2 − y2, ..., xk − yk} has a perfect matching. (I.e., we
can “pad” the queries, to make them all the same length.)

Let C = {(G,W ) : g(G,W ) ≡ 1 mod 2}, where g is the function from Lemma 18. Clearly,
C ∈ ⊕L. Now, a logspace oracle machine with input (x,W ) and oracle C can simulate
the computation of MP on x; each time M poses the query “Is G ∈ P”, instead we ask if
(G,W ) ∈ C. Then with high probability (over the random choice of W ) all of the queries
will be answered correctly and hence this routine will accept if and only if x ∈ A, by
Lemma 18. Let B be the language accepted by this logspace oracle machine. We see that
B ∈ LC ⊆ L⊕L = ⊕L, where the last equality is from [16]. ◀

A.4 Proof of Lemma 33
Proof. The proof that ∆(Q0, Q1) = ∆(P0, P1)k follows from [25, Proposition 3.6]. To finish
proving this lemma, we show a logspace-computable mapping between (P0, P1, 1k) and
(Q0, Q1).

Let ℓ and w be the max length and width between P0 and P1. We describe the structure
of Q0, with Q1 differing in a small step: to begin with, Q0 reads the k − 1 random bits
y1, . . . , yk−1. For each of the random bits, it can pick the correct of two different branches,
one having P0 built in at the end and the other having P1. We will read y1, branch to P0
or P1 (and output the distribution accordingly), then unconditionally branch to reading y2
and repeat until we reach yk−1 and branch to P0 or P1. We then unconditionally branch to
y1 and start computing the parity, and at the end we will be able to decide the value of yk

which will allow us to branch to the final copy of P0 or P1.

y1

P0

P1

y2

. . .

. . .

yk−1

P0

P1

y1

y2

y2

. . .

. . .

yk−1

yk−1

P0

P1

0/1 1 0

Figure 1 Branching program for Q0 of Lemma 33.

Creating (Q0, Q1) can be done in logspace, requiring logspace to create the section to
compute yk and logspace to copy the independent copies of P0 and P1. ◀

A.5 Proof of Lemma 34
Proof. Although this lemma does not seem to have appeared explicitly in the literature,
it is known to researchers, and is closely related to results in [13] (see Theorems 5.6 and
6.3, and Lemma 3.3) and in [5] (see Lemma 5). Alternatively, one can derive this by using
the fact that the Boolean formula evaluation problem lies in NC1 [9, 10], and thus there is
an alternating Turing machine M running in O(logn) time that takes as input a Boolean
formula ψ and an assignment α to the variables of ψ, and returns ψ(α). We may assume
without loss of generality that M alternates between existential and universal states at each
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step, and that M runs for exactly c logn steps on each path (for some constant c), and that
M accesses its input (via the address tape that is part of the alternating Turing machine
model) only at a halting step, and that M records the sequence of states that it has visited
along the current path in the current configuration. Thus the configuration graph of M , on
inputs of length n, corresponds to a formula of O(logn) depth having the desired structure,
and this formula can be constructed in NC1. Given a formula ϕ, an NC1 machine can thus
build this formula, and hardwire in the bits that correspond to the description of ϕ, and
identify the remaining input variables (corresponding to M reading the bits of α) with the
variables of ϕ. The resulting formula is equivalent to ϕ and satisfies the conditions of the
lemma. ◀

A.6 Proof of Claim 36
Proof. Let y1 = (A1, B1) and y2 = (A2, B2). Let p > 0 be a parameter, where we are
guaranteed that:

(Ai, Bi) ∈ SDBP,Y =⇒ ∆(Ai, Bi) > 1− p

(Ai, Bi) ∈ SDBP,N =⇒ ∆(Ai, Bi) < p

Then consider:

y = (A1 ⊗A2, B1 ⊗B2)

Let us analyze the Yes and No instance of XSDBP(y1) ∨ XSDBP(y2):
YES: ∆(A1 ⊗ A2, B1 ⊗ B2) ≥ max{∆(A1 ⊗ B2, B1 ⊗ B2),∆(B1 ⊗ A2, B1 ⊗ B2)} =
max{∆(A1, B1),∆(A2, B2)} > 1− p.
NO: ∆(A1 ⊗A2, B1 ⊗B2) ≤ ∆(A1, B1) + ∆(A2, B2) < 2p.

The second equality is from [25, Fact 2.3]. ◁

In our Boolean formula, we will have only d = O(logm) depth, so we have this OR
operation for at most d+1

2 levels (and the soundness gap doubles at every level). Since p = 1
2m

at the beginning, the gap (for NO instance) will be upper bounded at the end by:

< 2
d+1

2
1

2m
= mO(1)

2m
< 1/3.

A.7 Proof of Claim 37
Proof. Let y1 = (A1, B1) and y2 = (A2, B2). Let p > 0 be a parameter, where we are
guaranteed that:

(Ai, Bi) ∈ SDBP,Y =⇒ ∆(Ai, Bi) > 1− p

(Ai, Bi) ∈ SDBP,N =⇒ ∆(Ai, Bi) < p

We can construct a pair of BPs y = (A,B) whose statistical difference is exactly

∆(A1, B1) ·∆(A2, B2)

The pair (A,B) we construct is analogous to (Q0, Q1) in Lemma 33, and can be created
in logspace with 2 random bits b0, b1. We have A = (A1, A2) if b0 = 0 and A = (B1, B2) if
b0 = 1, while B = (A1, B2) if b2 is 0 and (A2, B1) if b1 = 1.

Let us analyze the Yes and No instance of XSDBP(y1) ∧ XSDBP(y2):
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YES: ∆(A1, B1) ·∆(A2, B2) > (1− p)2.
NO: ∆(A1, B1) ·∆(A2, B2) ≤ max{∆(A1, B1),∆(A2, B2)} < p. ◁

In our Boolean formula we will have only d = O(logm) depth, so we have this AND
operation for at most d+1

2 levels (and the completeness gap squares itself at every level).
Since p = 1

2m at the beginning, the gap (for YES instance) will be lower bounded at the end
by:

> (1− 1
2m

)2
d+1

2 = (1− 1
2m

)mO(1)
> (1− 1

2m
)2m/m ≈ (1

e
)1/m >

2
3 .
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