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Abstract
The demand for instructions during wayfinding, defined as the frequency of requesting instructions
for each decision point, can be considered as an important indicator of the internal cognitive processes
during wayfinding. This demand can be a consequence of the mental state of feeling lost, being
uncertain, mind wandering, having difficulty following the route, etc. Therefore, it can be of great
importance for theoretical cognitive studies on human perception of the environment. From an
application perspective, this demand can be used as a measure of the effectiveness of the navigation
assistance system. It is therefore worthwhile to be able to predict this demand and also to know what
factors trigger it. This paper takes a step in this direction by reporting a successful prediction of
instruction demand (accuracy of 78.4%) in a real-world wayfinding experiment with 45 participants,
and interpreting the environmental, user, instructional, and gaze-related features that caused it.
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1 Introduction

Human-computer interaction (HCI) in wayfinding and pedestrian navigation has attracted
much attention in recent years [27]. Reducing cognitive load in a complex task such as
wayfinding is an important goal in this domain. Efforts in this area range from working
on the structure, content, and presentation of navigation information to better adapting
it to the needs of users. The current research trend in navigation assistance systems
provides instructions in various modalities, from conventional turn-by-turn instructions
with map visualization to auditory instructions based on landmarks and, more recently,
visual instructions with augmented reality (e.g., [44, 10]). The performance of these different
modalities is evaluated using various metrics including travel time, number of errors, deviation
from shortest/fastest path, cognitive demand, subjective ratings, etc. (see Section 2). One
possible indicator which is less explored is how often the user asks for the instruction after
first receiving it, i.e., the instruction demand. The behavior of requesting more information
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or the same information again can also be considered as an indicator of how cognitively
demanding the processing of this information is. However, we still do not know whether such
behavior is caused by the complexity of the environment, the user’s personal characteristics or
spatial abilities, the content of the instructions and how they are conveyed, or a combination
of all these factors.

Being able to predict the overall demand for instructions shortly after receiving a nav-
igation instruction, can be very useful in developing more customized navigation aids. On
the other hand, knowing why people need more instructions and what factors trigger this
demand in users is of great importance for cognitive studies on human perception of the
environment. For instance, the need for repetition of navigation instructions can be seen
as a prototypical behavior of feeling lost or needing reassurance. Therefore, predicting this
need can as well help us predict these cognitive states during wayfinding. Theoretical studies
and empirical evidence suggest that cognitive demand in wayfinding is strongly influenced by
user-, environment-, and assistance-related factors [39, 15]. Requesting instructions is one of
the many activities performed during this process and can be considered a proxy for cognitive
demand. Machine learning (ML) has shown promising results, not only in predicting such
activities but also in partially explaining the predictions. The latter is crucial when it comes
to interpreting the results and extending knowledge about the causality of actions, here e.g.,
instructional needs.

In this paper, we show that instruction demand in a pedestrian wayfinding experiment
can be predicted with reasonably high accuracy using ML techniques. This prediction is not
a black box; rather, our results suggest that it can be interpreted by environmental features,
user- and instruction-related features, and gaze features. These findings are the result of
an outdoor wayfinding experiment conducted in the city with 45 participants navigating
to two different known and unknown destinations using an audio-assisted landmark-based
navigation system. Participants were allowed to ask for auditory instructions at any time and
as often as they wished. While walking, their behavioral data in the form of eye movements
and trajectory were recorded by eye-tracking glasses and a high-precision GNSS antenna
(see Section 3.1).

We trained several classifiers, namely Support Vector Machines (SVM), RandomForest,
and XGBoost on a variety of gaze features, environmental features, user- and instruction-
related features. Our analysis shows that instruction demand can be predicted shortly after
the first instruction (within two seconds), mainly based on the complexity of the environment
and user characteristics. Through several experimental setups, we found that a minimal
subset of 21 features (a combination of the above factors) leads to an accuracy of 78.9%
on unseen data, making our prediction approach beneficial for real-time applications and
giving us a better understanding of why people may need more informative assistance in
wayfinding.

2 Related Work

With the goal of predicting instruction needs in an auditory-aided wayfinding task, we
examined the existing literature from several perspectives: the evaluation and perception of
navigation instructions, the processing of instructional information using gaze analysis, and
exploring the use of machine learning in predicting wayfinding activities and states.
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2.1 Research on Navigational Instructions

Efforts have been made to optimize wayfinding support systems through the structure
of instructions [25, 41, 35], use of landmarks [34, 31, 12], and modality of information
presentation [20, 10]. One of the first papers to address the conceptualization of route
instructions is by Klippel et al. [24], who proposed a set of wayfinding choremes as mental
conceptualizations of route guidance elements used to simplify visualization of turn-by-turn
information. Another method to reduce instruction complexity is the Spatial Chunking
method, where unnecessary instructions are chunked together to reduce complexity [23]. A
second aspect besides simplifying instructions is how much spatial information they convey.
Krukar et al. [26], addressed this matter by introducing orientation instructions that combine
local and global route information. In a study with 84 participants, they evaluated the
performance of these instructions by measuring the memorability of the instructions and
showed that they conveyed survey information without interfering with the retrieval of
route information. A systematic review of navigation systems for people with dementia
was conducted by Pillette et al. [32] to compare common evaluation standards. They
reviewed 23 papers, including indoor, outdoor, and VR-based experimental designs, in terms
of presentation modality, navigation content, and timing of presentation. Most objective
measures introduced for evaluation were the number of errors, time to complete the navigation
task, arrival at destination, and the number of times participants asked questions or received
outside assistance. Most subjective measures were obtained either by experimenters observing
participants’ behavior, hesitation, or difficulty in completing the task, or by interviews and
questionnaires.

The work most closely related to ours is that of Golab et al. [17]. The authors used
survival analysis to model the times at which participants needed navigation instruction,
accounting for personal, environmental, and route-related variables. They reported that
“participants request a route instruction later as a function of their age, on segments longer
than 120m and in unfamiliar conditions if they score below average on the personality trait
extraversion.” This is initial evidence from a real-world wayfinding experiment, reporting
user-related and environmental aspects to be influential on the timing of the instructions.

2.2 Gaze Analysis in Instruction-based Wayfinding

Eye tracking provides insight into human cognitive processes [18, 11] complementing standard
behavioral responses. Previous work has shown the potential of gaze for user modeling,
such as including user’s attention [1], cognitive load assessment [6], and spatial decision
making [40, 22]. The knowledge obtained from user modeling can further be used for adapting
the system behavior [16]. An example of gaze analysis in wayfinding is Brügger’s study [8]
where they examined the impact of navigation system behavior on human navigation behavior
and performance in an outdoor experiment with 64 participants. They measured cognitive
function and scene complexity using fixation frequency and duration, finding that average
fixation duration varied across different tasks, i.e., incidental knowledge acquisition and
knowledge retrieval.

De Cock et al. [10] used gaze behavior analysis to investigate the nature of navigation
instructions in an indoor experiment with a VR-based adaptive route guidance system.
They focused on photos or icons at start and end points, and photos or 3D simulations at
turn junctions. They mainly used dwell time for their analysis and found that the detailed
information of a static photo instruction is more difficult to transfer to the environment.
Very recently in a paper by Ludwig et al. [29], the instruction needs in a real-world indoor
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multi-level wayfinding experiment were analyzed using the normalized mean square error
between the observed dwell time distribution and its estimation from the distribution of the
aggregated fixations between two routing instructions which were generated automatically
by their system incorporating the most salient landmark close to the user. Their result
suggested that instruction need tends to increase when there is a change in direction or level.
These papers show practical evidence that gaze analysis can reveal aspects of the cognitive
demands of processing navigation instructions.

2.3 Machine Learning for Wayfinding Activities’ Prediction
The use of ML techniques for prediction and classification tasks in wayfinding has become
increasingly important in recent years. Alinaghi et al. [4] predicted the direction in which
the wayfinder would like to turn a few seconds before the turn action is performed, based on
gaze behavior and environmental complexity. They tested several ML techniques, including
SVM, DecisionTree, and XGBoost, and reported that XGBoost outperformed the other
two with 91% accuracy. In another paper [3], the authors analyzed the effect of familiarity
with the environment using the pre-trained XGBoost model from their earlier work and
were able to show that the gaze behavior of familiar and unfamiliar wayfinders differed as
they approached a turn decision point. There, the authors introduced a terminology as
matching-to-action phase of wayfinding, which in their context refers to the part of the route
from the point where an instruction is given to the turn to which the instruction refers. We
have segmented our trial routes based on this notion (see Section 3.2). Liao et al. [28] trained
a RandomForest classifier with gaze features from 38 participants in a real-world outdoor
study to classify five common wayfinding tasks: Self-location and orientation, target search
in the local environment, target search on the map, route memorization, and walking to the
target, with an overall accuracy of 67%.

Another related experience with the RandomForest classifier is reported by Zhu et al. [44].
In a VR-based indoor study with 30 participants, the authors collected EEG recordings from
participants performing a series of 10 wayfinding trials of varying difficulty, each exploring a
portion of the virtual reality model (i.e., different sets of origin and destination locations
were defined at different distances and on multiple floors for each trial). Using a combination
of objective measurements (e.g., frequency of inputs to the VR controller) and behavioral
recordings from two independent observers, a classifier was trained to predict uncertainty
time segments during navigation trials. The overall predictive power of the model was
reported to be 0.70 as measured by the area under the Receiver Operating Characteristics
Curve (ROC-AUC). Although most work on activity recognition in the wayfinding domain
uses the RandomForest model due to its simplicity in training and explainability, higher
performance with other models is also reported in the broader domain of human activity
recognition. For example, XGBoost, as an ensemble model of tree-based architectures that
can better model more complex relationships and is as explainable as other tree-based models,
has been successfully used in the literature for many different tasks (see, e.g., [5, 43]).

3 Data Collection, Pre-processing and Feature Extraction

This section summarizes the details of the data collection procedure, the pre-processing steps,
and finally the feature extraction methods. The data we report on here was collected in
2020 and was first described in [17]1. Parts of the data have already been used for analyses

1 Parts of the data used in the current paper, will be made available at: https://geoinfo.geo.tuwien.
ac.at/resources/ (DOI: 10.5281/zenodo.4298703).

https://geoinfo.geo.tuwien.ac.at/resources/
https://geoinfo.geo.tuwien.ac.at/resources/
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published in [4], [3] and [2]. The original dataset has 104 trials recorded from 52 participants
(27 female and 25 males, M(age) = 26 years, SD(age) = 8.3). However, due to some sensor
malfunctioning and data loss in eye-tracking data, here we have analyzed 71 trials from 45
participants.

3.1 Data Collection
The study was a within-subject experiment with two phases: an online phase for registration,
demographic, Big Five personality traits [33], and the Spatial Strategies Questionnaire
(FRS) [30] data collection; and an in-situ phase for recording participants’ eye movements
(using PupilLabs Invisible glasses with 200 Hz recording frequency) and trajectory data
(using a PPM 10-xx38 GNSS receiver) as they walked familiar and unfamiliar routes2. The
familiar trial was conducted in a region and to a destination that the participant reported
being completely familiar with, as opposed to the unfamiliar trial. In both cases, however,
participants were asked to walk a pre-calculated route by following the auditory turn-by-turn,
German-language, landmark-based navigation instructions3 provided to them upon request.
Participants were given a clicking device that they held in their hands and could click on
when and as often as they wanted. The obligation to follow the predefined route (which was
unknown to participants) prompted all participants to request navigation instructions to
find their way, whether or not they were in the familiar condition. This design provided us
with the opportunity to examine primarily when they need instructions and then why they
need the same instruction more than once.

3.2 Data Pre-processing
To determine the motives behind instruction demand, we processed four of the data sources:
GPS tracks to obtain the environmental features, online-phase data to obtain the demograph-
ics, personality traits, and spatial strategy scales, eye-tracking records for gaze behavior, and
navigation instructions for their length and content. Of these, we only needed to preprocess
the GPS tracks to match them with the Open Street Maps (OSM) data and extract urban
complexity measures from them. Figure 1 depicts the six steps required for this preprocessing.
First, we cleaned the GPS data and smoothed it by preserving the timestamps. Then, using
the intersection framework [14], we extracted street intersections from the OSM data and
matched them to the GPS tracks. The instruction-request events were also matched to the
GPS tracks based on their timestamps. Then, we segmented the route based on the idea of
matching-to-action phase [3] (See Subsection 2.3) with the small difference that we do not
start this segment with the instruction request event, but with the previous turn intersection
to also track how far the request event is from the last turn decision point, and we call the
outcome chunks of the route “unified segments”. We also call the part of the route between
any two intersections (whether it is a turn or not) a “segment”. Finally, a buffer of 30m

(large enough to cover the buildings and Points of Interest (PoIs) from both sides of the road)
was considered around the unified segments to extract building footprints and their relative
attributes.

As for the prediction class, we labeled each event of the first request as “1-click”, “2-clicks”,
or “more-clicks”. The 1-click class means that the instruction was requested only once, while
the 2-clicks and more-clicks classes mean that the instruction was requested two or more

2 Participants indicated their familiarity in three levels (region, route, and landmark) in the online phase.
3 Route instruction pattern: Turn left [imperative] at Cafe Fabrik [landmark].
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times. For example, in Figure 1, E1 and E2 events are marked as instances of class “1-click”,
E3 as an instance of class “more-clicks”, and E4 as an instance of class “2-clicks”. In total,
we had 234 samples of such first-request events in the unified segments, with an unbalanced
distribution across the classes (1-click = 68.803%, 2-clicks = 20.940%, and more-clicks =
10.256%).

Figure 1 Preprocessing steps applied to the GPS tracks: smoothing (green line), OSM junction
extraction and mapping to the route (black and yellow circles), instruction-event alignment (red
circles), segmentation into unified segments with class labels (E1–E4), and extraction of land use
and POI information from OSM in a 30m buffer around the route.

3.3 Feature Extraction
Selecting the right features for training a machine learning model is a very important step.
Of course, any algorithm trained on any set of features will yield a model, but according
to the principle of “garbage-in, garbage-out”, the model trained on inappropriate features,
even if it performs well on the training data, fails to generalize and thus explain the results.
Following the model of wayfinding decision situations [15], we selected features that reflect
the complexity of the environment and instructions, as well as the characteristics of the user.

We extracted four groups of features from our data sources: 41 Environmental, 16
Instruction-, 12 User-related, and six Gaze features, yielding a total of 75 features. Table 1
summarizes these features into subcategories. For the environment category, we extracted
seven features for the segments, including the length of the route and road segments, the
elapsed time since the start of the trial, the distance to the previous and next non-turn
intersections, and the distance to the previous and next turn intersections. The elapsed
time, while not a direct environmental feature, may serve as a proxy for length/speed and
may also be related to working memory (see Section 6). Based on the landcover codes of
Urban Atlas data4, we extracted 13 features describing land use in the buffer around the
unified segments. These features are in fact the proportion of buffer area for each land use.
For example, we calculated how much of the area is occupied by “Green-urban-areas” or
“Sports-and-leisure-facilities”. Using the same approach, we extracted from the OSM data
the semantic label of PoIs5 and their density along the unified segments. For example, by
counting the number of PoIs with the amenity tag “shop” per unit area along the unified
segments, we calculated the density of the PoI “shop”. In total, there were 10 amenities in
our experimental regions and we calculated the density for each. We also calculated the total
PoI density to have a measure of the visual complexity of the environment. This yields a
total of 21 PoI-related features for the environment category.

4 https://land.copernicus.eu/user-corner/technical-library/urban-atlas-mapping-guide/
view

5 https://wiki.openstreetmap.org/wiki/Key:amenity

https://land.copernicus.eu/user-corner/technical-library/urban-atlas-mapping-guide/view
https://land.copernicus.eu/user-corner/technical-library/urban-atlas-mapping-guide/view
https://wiki.openstreetmap.org/wiki/Key:amenity
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Table 1 Extracted features for predicting instruction demand: POIs (environmental and
instruction-related) are extracted from OSM with standard amenity types (e.g. shop, touristic, etc.).

Environmental Features 41
(7+13+21) Instruction Features 16

(2+14)
unified-segment 7 length-related 2

distance from/to previous/next turn junctions 2 number of words 1
distance from/to previous/next non-turn junctions 2 number of characters 1

segment-length 1 content-related 14
route-length 1 OSM PoI 11

time passed since start 1 landmark OSM type 1
landuse 13 contains-street-names (boolean) 1

PoI 21 last instruction (boolean) 1

User Features 12
(3+5+4) Gaze Features 6

demographics 3 fixation count 1
gender (binary) 1 min/max/sd fixation 3
age (in years) 1 mean fixation duration 1

familiarity (binary) 1 fixation duration skewness 1
Big Five Personality traits 5

Spatial Strategies Questionnaire FRS 4

For instructions, since we assumed that the length of the instruction may affect the
demand, we calculated the number of words and characters in the instructions. We also
extracted 11 OSM-PoI features as one-hot encoding (the 11 PoIs used as landmarks in the
instructions), and three features describing whether the instruction contains a street name,
whether it is the last instruction, or what kind of spatial object it refers to (e.g., point or an
area). In terms of user-related characteristics, we had age, gender, and a binary measure
of familiarity as demographic data from the online study; five values for personality traits
(openness, conscientiousness, extraversion, agreeableness, and neuroticism) obtained from the
Big Five personality test; and four values for spatial strategy scales (preference for egocentric,
allocentric, cardinal directions, and the sense of direction score).

Finally, for the gaze-based features, as one goal of our analysis was also to determine how
quickly we could predict instruction demand after the first request, we segmented the gaze
data into 1- to 10-second windows immediately after the first event, and extracted features
within these windows. In this way, we were able to find the minimal set of gaze data for the
prediction task. Eye-tracking datasets were collected in a mobile eye-tracking scenario with
free head/body movements. It is well known that head movements strongly influence the
calculation of saccade length and velocity [2], so no saccadic features were computed. We,
therefore, computed only basic fixation-based features. Fixations were extracted using the
Dispersion-Threshold Identification (I-DT) algorithm [36] (gaze-dispersion threshold: 1 deg;
duration threshold: 100 ms). Fixation count and five statistical measures from fixation
duration (mean, minimum, maximum, standard deviation, and skewness of the frequency
distribution), were extracted from the data.

By extracting all these features, we obtained a dataset of size 234 ∗ 75. These 75 features
were extracted based on our assumptions about influential factors on instruction demand.
After training the models and analyzing the feature importance (see Section 5), we were able
to prune this list and extract the most relevant features and interpret their effect.

GISc ience 2023
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4 Machine Learning Experiments

To predict instruction demand, i.e., how often a wayfinder requests an instruction, we trained
three classifiers: SVM, RandomForests, and XGBoost. The choice of models was based on
previous experience [4] and other successful reports of the performance of these models in the
literature of both human activity recognition and wayfinding (see Section 2.3). For instance,
our experience with the SVM-RBF, CART, Random Forest, and XGBoost algorithms for a
similar task of predicting pedestrians’ turning activity based on their gaze behavior (whether
they turn left/right at an intersection or continue straight ahead) yielded test accuracies of
.58 ±.05, .61 ±.06, .77 ±.06, and .91 ±.08, respectively. Before applying any of these models,
we first normalized the data and converted all categorical values to numerical values. To
deal with the imbalance of the data, we also compared two methods, sample weighting, and
oversampling. It is known that if the number of samples in the minority class is too small
and the samples are much farther away from the other classes, the highly weighted samples,
although drawing the edge of the decision function to themselves, may not be effective
enough to actually lie within the decision function [19]. However, we tried both methods
and obtained better results (≈ 5.6%) with Synthetic Minority Over-sampling Technique
(SMOTE) [9], which may also be an observation of the same phenomenon in sample weighting.
To find out how fast we can predict the demand, in a pilot testing, we trained an XGBoost
classifier for each of the 1- to 10- second windows gaze data and plotted the performance
metrics to select the optimal window size (see Section 5 for details).

Once we had the data ready, we set up the experimental pipeline in a way to avoid both
data leaks and unwanted effects of participants’ individuality in training and testing. We
split the data into 70% and 30% (train, test) using the leave-one-group-out (LOGO) method
to ensure that test participant samples were not part of the training. Then, oversampling
was applied as a pipeline separately on the test data and within the 10-fold cross-validation
to ensure that there was no data leakage not only between the training and test datasets
but also within the validation folds. The training results were checked for overfitting by
mlogloss and merror with cross-entropy loss function. Finally in order to interpret the
results and prune the features, and see how much the model’s predictions are influenced by
every feature, we applied both the Tree SHapley Additive exPlanations (SHAP) method
and feature importance by permutation (i.e., leaving the features one by one out ordered by
their importance and monitor the drop in accuracy). The interpretation of the results using
features’ importance is presented and discussed in Section 6.

5 Results

This section summarizes the results of our analysis. First, we report on the SVM and
RandomForest classifiers, which achieved test accuracy of 62.88% and 69.78%, respectively,
when trained on all the data, being the highest accuracy in both cases. However, the
XGBoost classifier outperformed both by an average of 11.2% across all feature combinations.
Therefore, only the XGBoost results are presented here in more detail.

We begin with the gaze window sizes. Figure 2 plots the train and test accuracies for 1- to
10-second windows, with the 8- and 2-second windows representing the best and second-best
prediction results for instruction demand. The fact that we can predict demand 6 seconds
faster while losing less than 1% in accuracy makes window size two more attractive for the
application domain. However, since the 8-second window still has the highest accuracy, we
continue to report results for this window size.
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Figure 2 Compares the XGBoost results trained on the gaze data of different window sizes.

As explained in Subsection 3.3, we extracted different categories of features to determine
which categories are most important for our prediction task. We conducted 15 experiments
in which the pipeline was set to different categories of features or combinations thereof.
Table 2 summarizes these results in terms of accuracy, f1 score, precision, recall, and Cohen’s
kappa. Exp. 1, 2, 3, and 4 are based on single categories with 6, 16, 12, and 41, gaze,
instruction, user, and environmental features, respectively. We also run some experiments
with the subcategories of these features, which are summarized in Table 1. These experiments
are labeled *.1 through *.3. For example, in Exp. 3.2, the model is trained with the five
features of the Big Five personality test to see how personality alone can define instruction
demand. In Exp. 6, the model was trained with 16 features that were among the top 4
features from Exp. 1, 2, 3, and 4. Exp. 7 is the result of applying the feature selection by
permutation approach. In each iteration of the permutation step, a subset of the features was
selected by removing each individual feature based on its importance rank and the model
was trained on that subset. The best feature set to report was defined as the smallest subset
with the least deviation from the best resulting model, in this case the model trained on all
75 features. As can be seen in Table 2, the three best performances of the model belong
to experiments using all features (Exp. 5), permutation-selected features (Exp. 7), and a
combination of the four most important features of individual categories (Exp. 6), with a
test accuracy of 79.1%, 78.9%, and 77.4%, respectively. However, the kappa values show
a better agreement result for the permutation-selected features. Using only gaze features,
the model achieves the lowest performance of 49.3%. After that, the instruction-related
features provide an accuracy of 58%. User-related features, despite having a smaller number
of features than instruction-related features, provide the model with an accuracy of 65.6%.
The environment-related features with the highest number of features among the individual
categories are close to the best-performing model with less than 4% difference in test accuracy
(i.e., 75.8%).

Figures 3 and 4 show the SHAP ranks of each feature category (i.e., Exp. 1, 2, 3, and 4)
and the top three best-performing experiments (i.e., Exp. 5, 6, and 7), respectively. In Figure
3, the top four features from each category are used to train the model in Exp. 6. These
features are distance to and from turn points and the nearest non-turn intersection, time
elapsed since the start of the experiment, familiarity, sense of direction, openness, egocentric
preference, length of the instruction, content of the instruction in terms of type of landmarks
used and turn direction (left or right), number of fixations, standard deviation of fixations,
average, and skewness of fixation duration. In Figure 4, environmental characteristics are
among the top four important features in all cases (Exp. 5, 6, and 7). Among user-related
features, which are the second most important category, gender, the personality trait of
openness, and sense of direction are the most important ones. Instruction length, measured
by the number of characters, and instruction content, measured by the type of landmark

GISc ience 2023
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and turn direction, are as well present in the list of the most important features. Fixation
features are at the bottom of all three lists, with average duration and maximum fixation
being the most important ones. These results are further discussed in Section 6.

Table 2 Summarizes the results of the trained XGBOOST classifier for different combinations of
features in terms of accuracy, f1 score, precision, recall, and Cohen’s kappa. Experiment 7 with 21
features yields the best performance after experiment 5 with 75 features.

Exp. Features # Split
(LOGO)

Evaluation Metrics
Accuracy F1 Score Precision Recall Kappa

1 gaze 6 train
test

0.683
0.493

0.683
0.493

0.682
0.495

0.682
0.443

–
0.432

2 instruction 16 train
test

0.689
0.580

0.690
0.523

0.692
0.560

0.689
0.567

–
0.526

2.1 instruction length 2 train
test

0.513
0.44

0.506
0.394

0.511
0.393

0.512
0.469

–
0.413

2.2 instruction content 14 train
test

0.586
0.565

0.565
0.568

0.627
0.581

0.608
0.565

–
0.505

3 user 12 train
test

0.731
0.656

0.729
0.632

0.729
0.678

0.730
0.641

–
0.632

3.1 user demographics 3 train
test

0.537
0.527

0.527
0.485

0.529
0.492

0.536
0.584

–
0.415

3.2 user BigFive 5 train
test

0.682
0.530

0.683
0.505

0.689
0.528

0.683
0.529

–
0.531

3.3 user FRS 4 train
test

0.634
0.569

0.634
0.521

0.634
0.614

0.634
0.548

–
0.489

4 environment 41 train
test

0.855
0.758

0.854
0.711

0.855
0.744

0.854
0.757

–
0.752

4.1 environment segment 7 train
test

0.841
0.696

0.836
0.642

0.849
0.655

0.840
0.670

–
0.644

4.2 environment PoI 21 train
test

0.675
0.656

0.677
0.638

0.681
0.702

0.675
0.682

–
0.638

4.3 environment landuse 13 train
test

0.668
0.521

0.671
0.495

0.680
0.528

0.668
0.532

–
0.567

5 all 75 train
test

0.896
0.791

0.897
0.746

0.902
0.758

0.896
0.757

–
0.742

6 manual selection of features based on their
importance rank in experiments 1, 2, 3, and 4 16 train

test
0.879
0.774

0.879
0.764

0.882
0.784

0.879
0.792

–
0.763

7 selection by permutation 21 train
test

0.896
0.789

0.896
0.778

0.897
0.794

0.896
0.802

–
0.783

6 Discussion

Here we predicted the instruction demand in a pedestrian wayfinding scenario, after the first
instruction was given, based on a set of feature categories. In a real-world application scenario,
we assume that three of these categories, namely environmental features, user-related features,
and instruction-related features, are fixed once the route to be navigated is selected. That
is, once the navigation system computes the optimal route and generates the instructions
for it, the environment- and instruction-related features can be easily computed. Similarly,
user-related features can be collected in the sign-up information. In contrast, gaze behavior
is not static and is heavily influenced by the task, stimulus processing, movements, and so
on [11]. Gaze features should therefore be computed immediately after the first instruction.
To determine how much gaze data should be recorded for this prediction, we tested different
window sizes and found that as little as two seconds of fixation behavior recording can
support the prediction with slightly lower accuracy than 8 seconds (Exp. 1). It is well
known from the gaze analysis literature that fixation behavior can be interpreted in terms
of frequency and duration as a sign of cognitive load on information processing, attention,
and scene perception (see, e.g., [38, 21]). Our results are consistent with these findings, but
also show that in a real-world situation, these features do not by themselves encode enough
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Figure 3 The SHAP feature importance rank for Experiments 1 to 4. Top 4 features of each
category is manually selected for training the model in experiment 6.

Figure 4 The SHAP feature importance rank of the three best-performing feature sets: All
features, manually selected features, and permutation selected features. In all groups, environmental
features are among the most important features.

GISc ience 2023
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information to predict instructional demand.
According to Table 2, instruction-related features (Exp. 2) are more informative for the

model than gaze alone. Among them, the length of the instruction, encoded with the number
of words as a language-independent proxy and the number of characters as a German-language
proxy, is more important. This is consistent with the well-known word length effect, which
states that longer words (which are common in German) are less well remembered [7]. We
assume that both length measures correlate with the memory and recall performance of
the instruction. This assumption is inline with previous findings suggesting that longer and
more complex navigation instructions may lead to increased cognitive load and decreased
wayfinding performance, making the instructions less memorable [23, 26]. The observation
that landmark type and turn direction (two important content-related features) are also
among the top five features, also supports this assumption. It means that what information
and how much information to be processed are important for predicting instruction needs.
This pattern is also found in the three best-performing experiments (Figure 4).

Exp. 3, was based on user-related characteristics only. Familiarity played the most
important role here, followed by the sense of direction and egocentric preference scores.
These observations are consistent with previous research on the importance of familiarity
in activity recognition in wayfinding [39, 3] and the fact that instructions were given in
an egocentric viewpoint. The same pattern for spatial strategy scores was also observed
in Exp. 3.3. Among the personality traits, openness, which correlates with eagerness
to learn and experience new things, is also the most important factor in Exp. 3.2. The
relationship between openness and need for instruction is not well studied, but some studies
have reported that individuals with higher openness tend to prefer more creative and less
structured tasks [37] and therefore may need less detailed instructions. Our results suggest
the same: Wayfinders with higher openness scores tend to show a lower need for instruction.
However, further research is needed to decipher the relationship between this personality
trait and prior experience (i.e., familiarity), task description and complexity, etc.

The result of Exp. 4 and its sub-experiments with environmental features shows that
segment-related features, including distance measurements to and from the immediate
non-turn intersections and the previous and next turn points (which are the target of the
instructions), as well as the time passed since onset, are the most important. This means that
the longer the distance to these decision points the more probable it is to need instructions
again. Analysis of this feature between the two familiarity conditions shows that distance to
and from turn points is equally relevant for both conditions, but the distance to and from
non-turn points is less dominant for familiar cases. These observations are consistent with
those of [17], in which the authors showed that unfamiliar participants ask for instructions
earlier on longer segments, and because the upcoming decision point is likely to be seen later
on long segments, unfamiliar wayfinders might experience higher levels of uncertainty due to
their less developed mental representation of the area. This explanation is also valid for our
observation. All these measures that somehow capture the distance to/from different points
on the route (time since start or length of segments) may also be related to the capacity of
the wayfinder’s working memory, which means that the longer the distance, the more likely
it is that someone will forget the instruction and need it again. However, in our study, we
did not control for this characteristic, and according to the psychological literature, working
memory as a cognitive process of temporarily storing and processing information in the mind
to perform tasks, while playing an important role in following instructions, is not the only
factor that provides an advantage in a complex task environment [42]. Other factors that
play a role in a complex task environment, such as problem-solving ability, creativity, or other
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cognitive skills, may provide an advantage beyond good working memory [13]. However, we
cannot relate our results to these explanations because our data do not provide corresponding
information on these merits. Secondly important are PoI-based features, including the overall
density of PoIs and shop in particular. Overall PoI density can be considered as a good
indicator of the density of the urban landscape, which affects human-environment interactions
including information seeking for wayfinding [31]. Our results suggest that the higher the
PoI density, the higher the cognitive effort required to match the received instruction to the
environment, and the greater the probability of requesting the same instruction again.

Finally, for the land use characteristics (e.g. green urban area, roads, etc.), which are
equally important as PoIs in Exp. 4 but not in Exp. 5, 6, and 7, no precise explanation
can be offered because land use is likely biased by the study design. The familiar trials were
conducted closer to the center of the city, while the unfamiliar trials were largely in the
outskirts with different land use. This may justify the absence of land use characteristics in
the experiments with combined features, as familiarity already encodes this difference. The
effect of this environmental aspect needs to be further explored.

None of the experiments with a single category achieved practically high accuracy, with
the exception of the environment category. Our combinatorial experiments aimed to find a
pruned list of features that are most informative for predicting instruction demand. Exp.
5, 6, and 7 are the best-performing experiments, and we consider the last experiment to
be the optimal one with one-third of the features and only less than 1% loss in accuracy.
In the last three experiments, we can see some similarities in the features. However, even
in terms of features, we consider the permutatively selected features (listed in Figure 4
Exp. 7) to be the most informative features for predicting instruction needs. This list of
features encodes well the wayfinding situation in terms of the instruction needs related to
the wayfinder’s relative position to the next and previous decision points (both turn and
non-turn points); the effect of cognitive load on fixation behavior caused by two factors:
the density of the urban landscape and PoIs in the environment and the processing of the
instructional information (length and content); and finally, the characteristics of the user,
from personality to preference for spatial strategies, gender, and familiarity.

7 Conclusion and Future Work

This paper presents the results of 15 ML experiments that predict the need for navigation
instructions with an accuracy of 78.4%. The predictions are based on a combination of factors
such as the wayfinder’s position, the next decision points, cognitive load, the amount of visual
information, the length and content of the instructions, and the user’s personality traits
and spatial strategies. The findings have theoretical and practical implications for better
understanding the cognitive aspects of wayfinding and for adapting navigation instructions
in real time.

The features used in the experiments encode several aspects of the wayfinder’s situation:
The wayfinder’s position with respect to the starting point, the previous and upcoming
decision points (both turn and non-turn), the cognitive load due to information processing
and environmental perception reflected in fixation behavior and caused by the density of
the landscape and the amount of visual information, the length and content of the given
instruction, and finally the user’s characteristics in terms of personality traits and spatial
strategies. In our experimental design, instruction demand was defined as the frequency with
which the same instruction is requested after it has been heard once. In other navigation
systems with different HCI components, this demand can be defined, for example, as the
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frequency of transition between the map screen and the environment, or as the number of
fixations on the augmented information in AR-based systems after a first viewing. In any case,
this prediction offers advantages from both theoretical and application perspectives: Behavior
before and after an instruction is retrieved contains valuable information about the cognitive
aspects of human-environment interaction and spatial perception. Knowing what external
and internal features affect this demand can help us better understand the spatial-cognitive
aspects of wayfinding and even mental states of uncertainty, being lost, or needing reassurance
that are common in wayfinding but not yet well explored. A further research question would
be when and in which stage of wayfinding we feel such needs more strongly and for which
purpose (e.g. self-localization or route planning), the repeated instructions may be useful.

Since our prediction results are based on unseen data, it is very likely that a pre-trained
model can perform on-the-fly predictions as a module of the navigation system, which can
be beneficial for real-time instruction adaptation. Off-line predictions can also be used as
a measurable metric for evaluating navigation instructions. However, further research is
needed to examine the generalizability of our observations for different modalities.
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